# ___________________________________________________________________________ # # Pyomo: Python Optimization Modeling Objects # Copyright 2017 National Technology and Engineering Solutions of Sandia, LLC # Under the terms of Contract DE-NA0003525 with National Technology and # Engineering Solutions of Sandia, LLC, the U.S. Government retains certain # rights in this software. # This software is distributed under the 3-clause BSD License. # ___________________________________________________________________________ # # Unit Tests for Integral Objects # import os from os.path import abspath, dirname import pyutilib.th as unittest from pyomo.environ import (ConcreteModel, Var, Set, TransformationFactory, Expression) from pyomo.dae import ContinuousSet, Integral from pyomo.dae.diffvar import DAE_Error from pyomo.repn import generate_standard_repn currdir = dirname(abspath(__file__)) + os.sep class TestIntegral(unittest.TestCase): # test valid declarations def test_valid(self): m = ConcreteModel() m.t = ContinuousSet(bounds=(0, 1)) m.x = ContinuousSet(bounds=(5, 10)) m.s = Set(initialize=[1, 2, 3]) m.v = Var(m.t) m.v2 = Var(m.s, m.t) m.v3 = Var(m.t, m.x) def _int1(m, t): return m.v[t] m.int1 = Integral(m.t, rule=_int1) def _int2(m, s, t): return m.v2[s, t] m.int2 = Integral(m.s, m.t, wrt=m.t, rule=_int2) def _int3(m, t, x): return m.v3[t, x] m.int3 = Integral(m.t, m.x, wrt=m.t, rule=_int3) def _int4(m, x): return m.int3[x] m.int4 = Integral(m.x, wrt=m.x, rule=_int4) self.assertTrue(isinstance(m.int1, Expression)) self.assertTrue(isinstance(m.int2, Expression)) self.assertTrue(isinstance(m.int3, Expression)) self.assertTrue(isinstance(m.int4, Expression)) self.assertTrue(m.int1.get_continuousset() is m.t) self.assertTrue(m.int2.get_continuousset() is m.t) self.assertTrue(m.int3.get_continuousset() is m.t) self.assertTrue(m.int4.get_continuousset() is m.x) self.assertEqual(len(m.int1), 1) self.assertEqual(len(m.int2), 3) self.assertEqual(len(m.int3), 2) self.assertEqual(len(m.int4), 1) self.assertTrue(m.int1.ctype is Integral) self.assertTrue(m.int2.ctype is Integral) self.assertTrue(m.int3.ctype is Integral) self.assertTrue(m.int4.ctype is Integral) repn = generate_standard_repn(m.int1.expr) self.assertEqual(repn.linear_coefs, (0.5, 0.5)) self.assertTrue(repn.linear_vars[0] is m.v[1]) self.assertTrue(repn.linear_vars[1] is m.v[0]) repn = generate_standard_repn(m.int2[1].expr) self.assertEqual(repn.linear_coefs, (0.5, 0.5)) self.assertTrue(repn.linear_vars[0] is m.v2[1, 1]) self.assertTrue(repn.linear_vars[1] is m.v2[1, 0]) repn = generate_standard_repn(m.int4.expr) self.assertEqual(repn.linear_coefs, (1.25, 1.25, 1.25, 1.25)) self.assertTrue(repn.linear_vars[0] is m.v3[1, 10]) self.assertTrue(repn.linear_vars[1] is m.v3[0, 10]) self.assertTrue(repn.linear_vars[2] is m.v3[1, 5]) self.assertTrue(repn.linear_vars[3] is m.v3[0, 5]) # test invalid declarations def test_invalid(self): m = ConcreteModel() m.t = ContinuousSet(bounds=(0, 1)) m.x = ContinuousSet(bounds=(5, 10)) m.s = Set(initialize=[1, 2, 3]) m.v = Var(m.t) m.v2 = Var(m.s, m.t) m.v3 = Var(m.x, m.t) def _int(m, t): return m.v[t] def _int2(m, x, t): return m.v3[x, t] def _int3(m, s, t): return m.v2[s,t] # Integrals must be indexed by a ContinuousSet with self.assertRaises(ValueError): m.int = Integral(rule=_int) # Specifying multiple aliases of same option with self.assertRaises(TypeError): m.int = Integral(m.t, wrt=m.t, withrespectto=m.t, rule=_int) # No ContinuousSet specified with self.assertRaises(ValueError): m.int2 = Integral(m.x, m.t, rule= _int2) # 'wrt' is not a ContinuousSet with self.assertRaises(ValueError): m.int = Integral(m.s, m.t, wrt=m.s, rule=_int2) # 'wrt' is not in argument list with self.assertRaises(ValueError): m.int = Integral(m.t, wrt=m.x, rule=_int) # 'bounds' not supported with self.assertRaises(DAE_Error): m.int = Integral(m.t, wrt=m.t, rule=_int, bounds=(0,0.5)) # No rule specified with self.assertRaises(ValueError): m.int = Integral(m.t, wrt=m.t) # test DerivativeVar reclassification after discretization def test_reclassification_finite_difference(self): m = ConcreteModel() m.t = ContinuousSet(bounds=(0, 1)) m.x = ContinuousSet(bounds=(5, 10)) m.s = Set(initialize=[1, 2, 3]) m.v = Var(m.t) m.v2 = Var(m.s, m.t) m.v3 = Var(m.t, m.x) def _int1(m, t): return m.v[t] m.int1 = Integral(m.t, rule=_int1) def _int2(m, s, t): return m.v2[s, t] m.int2 = Integral(m.s, m.t, wrt=m.t, rule=_int2) def _int3(m, t, x): return m.v3[t, x] m.int3 = Integral(m.t, m.x, wrt=m.t, rule=_int3) def _int4(m, x): return m.int3[x] m.int4 = Integral(m.x, wrt=m.x, rule=_int4) self.assertFalse(m.int1.is_fully_discretized()) self.assertFalse(m.int2.is_fully_discretized()) self.assertFalse(m.int3.is_fully_discretized()) self.assertFalse(m.int4.is_fully_discretized()) TransformationFactory('dae.finite_difference').apply_to(m, wrt=m.t) self.assertTrue(m.int1.is_fully_discretized()) self.assertTrue(m.int2.is_fully_discretized()) self.assertFalse(m.int3.is_fully_discretized()) self.assertFalse(m.int4.is_fully_discretized()) self.assertTrue(m.int1.ctype is Integral) self.assertTrue(m.int2.ctype is Integral) self.assertTrue(m.int3.ctype is Integral) self.assertTrue(m.int4.ctype is Integral) TransformationFactory('dae.finite_difference').apply_to(m, wrt=m.x) self.assertTrue(m.int3.is_fully_discretized()) self.assertTrue(m.int4.is_fully_discretized()) self.assertTrue(m.int1.ctype is Expression) self.assertTrue(m.int2.ctype is Expression) self.assertTrue(m.int3.ctype is Expression) self.assertTrue(m.int4.ctype is Expression) # test DerivativeVar reclassification after discretization def test_reclassification_collocation(self): m = ConcreteModel() m.t = ContinuousSet(bounds=(0, 1)) m.x = ContinuousSet(bounds=(5, 10)) m.s = Set(initialize=[1, 2, 3]) m.v = Var(m.t) m.v2 = Var(m.s, m.t) m.v3 = Var(m.t, m.x) def _int1(m, t): return m.v[t] m.int1 = Integral(m.t, rule=_int1) def _int2(m, s, t): return m.v2[s, t] m.int2 = Integral(m.s, m.t, wrt=m.t, rule=_int2) def _int3(m, t, x): return m.v3[t, x] m.int3 = Integral(m.t, m.x, wrt=m.t, rule=_int3) def _int4(m, x): return m.int3[x] m.int4 = Integral(m.x, wrt=m.x, rule=_int4) self.assertFalse(m.int1.is_fully_discretized()) self.assertFalse(m.int2.is_fully_discretized()) self.assertFalse(m.int3.is_fully_discretized()) self.assertFalse(m.int4.is_fully_discretized()) TransformationFactory('dae.collocation').apply_to(m, wrt=m.t) self.assertTrue(m.int1.is_fully_discretized()) self.assertTrue(m.int2.is_fully_discretized()) self.assertFalse(m.int3.is_fully_discretized()) self.assertFalse(m.int4.is_fully_discretized()) self.assertTrue(m.int1.ctype is Integral) self.assertTrue(m.int2.ctype is Integral) self.assertTrue(m.int3.ctype is Integral) self.assertTrue(m.int4.ctype is Integral) TransformationFactory('dae.collocation').apply_to(m, wrt=m.x) self.assertTrue(m.int3.is_fully_discretized()) self.assertTrue(m.int4.is_fully_discretized()) self.assertTrue(m.int1.ctype is Expression) self.assertTrue(m.int2.ctype is Expression) self.assertTrue(m.int3.ctype is Expression) self.assertTrue(m.int4.ctype is Expression) if __name__ == "__main__": unittest.main()