# ___________________________________________________________________________ # # Pyomo: Python Optimization Modeling Objects # Copyright 2017 National Technology and Engineering Solutions of Sandia, LLC # Under the terms of Contract DE-NA0003525 with National Technology and # Engineering Solutions of Sandia, LLC, the U.S. Government retains certain # rights in this software. # This software is distributed under the 3-clause BSD License. # ___________________________________________________________________________ # # Author: Gabe Hackebeil # Purpose: For regression testing to ensure that the Pyomo # NL writer properly modifies product expressions # with only constant terms in the denominator (that # are involved in nonlinear expressions). # The ASL differentiation routines seem to have a # bug that causes the lagrangian hessian to become # dense unless this constant term in moved to the # numerator. # # This test model relies on the gjh_asl_json executable. It # will not solve if sent to a real optimizer. # from pyomo.environ import ConcreteModel, Var, Objective, Constraint model = ConcreteModel() model.x = Var(bounds=(-1.0,1.0),initialize=1.0) model.y = Var(bounds=(-1.0,1.0),initialize=2.0) model.v = Var(bounds=(-1.0,1.0),initialize=3.0) model.p = Var(initialize=2.0) model.p.fixed = True model.OBJ = Objective(expr=model.x) model.CON1 = Constraint(rule=lambda model: (2.0,1.0/model.p*model.v*(model.x-model.y))) model.CON2 = Constraint(expr=model.v*1.0/model.p*(model.x-model.y) == 2.0) model.CON3 = Constraint(expr=model.v*(model.x-model.y)/model.p == 2.0) model.CON4 = Constraint(expr=model.v*(model.x/model.p-model.y/model.p) == 2.0) model.CON5 = Constraint(expr=model.v*(model.x-model.y)*(1.0/model.p) == 2.0) model.CON6 = Constraint(expr=model.v*(model.x-model.y) - 2.0*model.p == 0)