# This file is part of DEAP. # # DEAP is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as # published by the Free Software Foundation, either version 3 of # the License, or (at your option) any later version. # # DEAP is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with DEAP. If not, see . import array import random import json import numpy from deap import algorithms from deap import base from deap import creator from deap import tools from utils import * # gr*.json contains the distance map in list of list style in JSON format # Optimal solutions are : gr17 = 2085, gr24 = 1272, gr120 = 6942 with open("/tmp/tsp/gr17.json", "r") as tsp_data: tsp = json.load(tsp_data) distance_map = tsp["DistanceMatrix"] IND_SIZE = tsp["TourSize"] creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) creator.create("Individual", array.array, typecode='i', fitness=creator.FitnessMin) toolbox = base.Toolbox() # Attribute generator toolbox.register("indices", random.sample, range(IND_SIZE), IND_SIZE) # Structure initializers toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.indices) toolbox.register("population", tools.initRepeat, list, toolbox.individual) def evalTSP(individual): distance = distance_map[individual[-1]][individual[0]] for gene1, gene2 in zip(individual[0:-1], individual[1:]): distance += distance_map[gene1][gene2] return distance, toolbox.register("mate", tools.cxPartialyMatched) toolbox.register("mutate", tools.mutShuffleIndexes, indpb=0.05) toolbox.register("select", tools.selTournament, tournsize=3) toolbox.register("evaluate", evalTSP) def main(): random.seed(169) pop = toolbox.population(n=300) hof = tools.HallOfFame(1) stats = tools.Statistics(lambda ind: ind.fitness.values) stats.register("avg", numpy.mean) stats.register("std", numpy.std) stats.register("min", numpy.min) stats.register("max", numpy.max) algorithms.eaSimple(pop, toolbox, 0.7, 0.2, 40, stats=stats, halloffame=hof) log_metric('fstar',int(hof[0].fitness.values[0])) return pop, stats, hof if __name__ == "__main__": main()