
LAB 3.1: CREATE A PERSONAL GROUP

Keyboard Time: 1 mins, Automation Wait Time: 0 mins

Scenarios: Instructor-Led, Self-Paced

1. While in ‘classgroup’, near the top right of the page, Click New
subgroup (button)

2. Name the group with the mask firstname_lastname so that

it will be unique, easy to remember and easy for others to
identify. (For example if your gitlab user id is @supercoolcoder

and your avatar URL is https://gitlab.com/supercoolcoder,

name your subgroup ‘supercoolcoder’).
From here on in the
exericses this will be referred to as ‘yourpersonalgroup’

3. Click Create Group.

4. On the left hand navigation Click Settings

5. Next to “General”, Click Expand

6. For “Visibility Level”, Check Public.

7. Record or remember ‘yourpersonalgroup’ =



Must Be Public

Projects that are used by the GitLab Agent must be public

when the agent registration is done in a project other than

the one the deployment happens from and when the image

being sourced is not using a stored docker login secret.

 

IMPORTANT

Throughout the remaining exercises you will replace the text

yourpersonalgroup with this actual group name

 

https://gitlab.com/supercoolcoder

Workshop Version: v1.3.3

 

yourpersonalgroup with this actual group name.

http://localhost:1313/030_gitlab_cd_via_agent/section_overview.html
http://localhost:1313/030_gitlab_cd_via_agent/032_gitlab_autodevops_via_agent.html

LAB 3.2: GITLAB AUTO DEVOPS VIA THE

K8S AGENTS

Keyboard Time: 15 mins, Automation Wait Time: 15 mins

Scenarios: Instructor-Led, Self-Paced



Runner Based CD Push Through GitLab Agent

When a cluster is connected via the GitLab Agent, kubectl and

helm commands can be run in CI jobs. The only special thing to

be specified is to use the special GitLab Agent path reference as

the Kubernetes Context (stored in KUBE_CONTEXT in labs and

for GitLab Auto Deploy).



Target Outcomes

This one Auto DevOps scenario proves out multiple outcomes:

1. Setup a simple application to use Runner Based Push CD to

deploy an application to Kubernetes through the cluster

connection established by the GitLab Agent. This includes
any custom CI/CD that directly uses kubectl and helm

commands.

2. Use Auto DevOps (Runner Push Deployment) with the
GitLab Agent cluster connection method.

3. Leveraging the Group Level agent configuration that was

done in a previous lab. (Visual Depiction Here)

 

Tip

This configuration also works for any kind of GitLab Runner
Push CD to the cluster using Helm and kubectl commands not

 

http://localhost:1313/020_gitlab_integrated_eks/section_overview.html#visual-overview-of-gitlab-agent-group-level-cluster-integration

Configure An Auto DevOps
Project

1. While in ‘yourpersonalgroup’ Click New project (button) and
then Click Import project

2. On the ‘Import project’ page, Click Repository by URL

3. On the next page, for ‘Git repository URL’ Paste
https://gitlab.com/guided-explorations/gl-k8s-agent/gl-
ci/simply-simple-notes.git

4. In ‘Project name’ Type yourgitlabusername DevOps Security

Scanning

5. Near the bottom of the page Click Create project (button)

6. When the import is complete

7. Click Settings => CI/CD

8. Next to ‘Variables’ Click Expand

9. Click Add variable once for each table row

Key Value Protect Mask

POSTGRES_ENABLED false No No

TEST_DISABLED 1 No No

10. Click Settings => CI/CD

Push CD to the cluster using Helm and kubectl commands, not

only Auto DevOps.

Warning

Before continuning make sure to use DNSChecker.com to check

if both the Load Balancer DNS Name and <the Load Balancer

IP>.nip.io have propagated through global DNS and wait (or

troubleshoot) if they have not.

 

https://gitlab.com/guided-explorations/gl-k8s-agent/gl-ci/simply-simple-notes.git

11. Next to ‘Auto DevOps’, Click Expand

12. Under ‘Auto DevOps’ Check Default to Auto DevOps pipeline

13. Leave ‘Deployment strategy’ at the default and Click Save

changes

14. On the left navigation Click CI/CD => Pipelines

15. Only if a pipeline is not already running:

1. On the upper right of the page Click Run pipeline

2. On the ‘Run pipeline’ page, Click Run pipeline

16. Watch the pipeline progress by clicking the linked number
starting with # under the ‘Pipeline’ column.

17. To explore the various pipeline jobs by clicking their status

icon.

18. To return to the pipelines view, on the left navigation bar, Click
CI/CD => Pipelines

19. [Automation wait: 15 mins] wait for the pipeline to complete
the ‘production’ job

20. On the left navigation Click Deployments => Environments

21. To see the environment deployment status, to the left of
‘production’ Click [the small right arrow]

22. To the right of ‘production’ Click Open (button)

It can take a while for SSL to register, you can click through

the advanced button to see the site if SSL is not working
yet.

23. If everything worked as expected, you should see an

application page called Simply Simple Notes and should not

have any warnings or problems with SSL certificates.

Workshop Version: v1.3.3

 

Accomplished Outcomes

1. Setup a simple application to use Runner Based Push CD to

deploy an application to Kubernetes through the cluster

connection established by the GitLab Agent.

2. Use Auto DevOps with the GitLab Agent cluster connection

method.

3. Leveraging the Group Level agent configuration method.

 

http://localhost:1313/030_gitlab_cd_via_agent/031_create_a_personal_group.html
http://localhost:1313/040_gitlab_gitops_via_agent.html

