{ "cells": [ { "cell_type": "markdown", "id": "e02d8339", "metadata": {}, "source": [ "# Queries for Blog 1" ] }, { "cell_type": "markdown", "id": "68e46fa1", "metadata": {}, "source": [ "## Scenario 1: Worldwide gross of movies which has been shot in New Zealand, with minimum 7.5 rating.\n" ] }, { "cell_type": "code", "execution_count": null, "id": "484787c7", "metadata": {}, "outputs": [], "source": [ "%%gremlin --store-to result\n", "\n", "g.V().has('place', 'name', containing('New Zealand')).in().has('movie', 'rating', gt(7.5)).dedup().valueMap(['name', 'gross_worldwide', 'rating', 'studio','id'])" ] }, { "cell_type": "code", "execution_count": null, "id": "15b40b70", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "\n", "df = pd.DataFrame(result)\n", "for c in df:\n", " df[c] = df[c].apply(lambda x: x[-1])\n", "\n", "df.sort_values(\"gross_worldwide\", ascending=False).reset_index(drop=True).head(10)" ] }, { "cell_type": "markdown", "id": "4b602256", "metadata": {}, "source": [ "## Scenario 2: Top 50 movies which belong to Action and Drama genre and has Oscar winning actors." ] }, { "cell_type": "code", "execution_count": null, "id": "f2adaf4f", "metadata": {}, "outputs": [], "source": [ "%%gremlin --store result_action --silent\n", "\n", "g.V().has('genre', 'name', 'Action').in().has('movie', 'rating', gt(8.5)).dedup().valueMap(['name', 'year', 'poster'])" ] }, { "cell_type": "code", "execution_count": null, "id": "51e52cca", "metadata": {}, "outputs": [], "source": [ "%%gremlin --store result_drama --silent\n", "\n", "g.V().has('genre', 'name', 'Drama').in().has('movie', 'rating', gt(8.5)).dedup().valueMap(['name', 'year', 'poster'])" ] }, { "cell_type": "code", "execution_count": null, "id": "087ac2e2", "metadata": {}, "outputs": [], "source": [ "%%gremlin --store result_actors --silent\n", "\n", "g.V().has('person', 'oscar_winner', true).in().has('movie', 'rating', gt(8.5)).dedup().valueMap(['name', 'year', 'poster'])" ] }, { "cell_type": "code", "execution_count": null, "id": "ddb32501", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from IPython.display import Image, HTML\n", "\n", "df_action = pd.DataFrame(result_action)\n", "df_drama = pd.DataFrame(result_drama)\n", "df_actors = pd.DataFrame(result_actors)\n", "\n", "for df in [df_action, df_drama, df_actors]:\n", " for c in df:\n", " df[c] = df[c].apply(lambda x: x[-1])" ] }, { "cell_type": "code", "execution_count": null, "id": "e4a9148a", "metadata": {}, "outputs": [], "source": [ "df = pd.merge(df_drama, df_action, on=[\"name\", \"year\", \"poster\"])\n", "df = pd.merge(df, df_actors, on=[\"name\",\"year\", \"poster\"])\n", "\n", "df.poster = df.poster.apply(lambda x: f'')\n", "\n", "HTML(df.to_html(escape=False))" ] }, { "cell_type": "markdown", "id": "4815caa5", "metadata": {}, "source": [ "## Scenario 3: Movies which has common keyword \"tattoo\" and \"assassin\"." ] }, { "cell_type": "code", "execution_count": null, "id": "ea8373c1", "metadata": {}, "outputs": [], "source": [ "%%gremlin --store result\n", "\n", "\n", "g.V().has('keyword', 'name', 'assassin').in().has('keyword','name','tattoo').dedup().limit(10).valueMap(['name', 'year', 'poster'])" ] }, { "cell_type": "code", "execution_count": null, "id": "0b0c7840", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from IPython.display import Image, HTML\n", "\n", "df = pd.DataFrame(result)\n", "for c in df:\n", " df[c] = df[c].apply(lambda x: x[-1])\n", "\n", "df.poster = df.poster.apply(lambda x: f'')\n", "\n", "df.sort_values(\"year\", ascending=False).reset_index(drop=True)\n", "\n", "HTML(df.to_html(escape=False))" ] }, { "cell_type": "markdown", "id": "f29f9567", "metadata": {}, "source": [ "## Scenario 4: Movies that connect two actors Leonardo Dicaprio and Tom Hanks." ] }, { "cell_type": "code", "execution_count": null, "id": "320892ce", "metadata": {}, "outputs": [], "source": [ "%%gremlin --store result \n", "\n", "g.V().has('person', 'name', containing('Leonardo')).in().hasLabel('movie').out().hasLabel('person').has('name', 'Tom Hanks').path().by(valueMap('name', 'poster'))" ] }, { "cell_type": "code", "execution_count": null, "id": "008fe01f", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from IPython.display import Image, HTML\n", "\n", "df = pd.DataFrame(result[0].objects)\n", "for c in df:\n", " df[c] = df[c].apply(lambda x: x[-1])\n", "\n", "df.poster = df.poster.apply(lambda x: f'')\n", "\n", "HTML(df.to_html(escape=False))" ] } ], "metadata": { "kernelspec": { "display_name": "conda_amazonei_mxnet_p36", "language": "python", "name": "conda_amazonei_mxnet_p36" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.13" } }, "nbformat": 4, "nbformat_minor": 5 }