import torch.optim as optim def Adam(parameters, lr=0.0001, betas=(0.9, 0.999), weight_decay=0): """ Args: parameters (iterable) – iterable of parameters to optimize or dicts defining parameter groups lr (float, optional) – learning rate betas (Tuple[float, float], optional) – coefficients used for computing running averages of gradient and its square weight_decay (float, optional) – weight decay (L2 penalty) """ return optim.Adam(parameters, lr=lr, betas=betas, weight_decay=weight_decay) def StepLR(optimizer, step_size=30, gamma=0.1): """ Args: optimizer (Optimizer) – Wrapped optimizer. step_size (int) – Period of learning rate decay. gamma (float) – Multiplicative factor of learning rate decay. Default: 0.1. """ return optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma)