{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import sagemaker\n", "from sagemaker.mxnet.model import MXNetModel\n", "from sagemaker import get_execution_role" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sagemaker_session = sagemaker.Session()\n", "\n", "role = get_execution_role()\n", "\n", "model_data = 's3:///gpt2-model/model.tar.gz'\n", "entry_point = './gpt2-inference.py'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## To define MXNetModel" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "mxnet_model = MXNetModel(model_data=model_data,\n", " role=role,\n", " entry_point=entry_point,\n", " py_version='py3',\n", " framework_version='1.6.0',\n", " image=',\n", " model_server_workers=2\n", " )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Deploy model endpoint" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "predictor = mxnet_model.deploy(instance_type='ml.c5.large', initial_instance_count=1)\n", "print(predictor.endpoint)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Run a simple performance test" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import sagemaker\n", "from sagemaker.mxnet.model import MXNetPredictor\n", "\n", "sagemaker_session = sagemaker.Session()\n", "\n", "endpoint_name = ''\n", "predictor = MXNetPredictor(endpoint_name, sagemaker_session)\n", "\n", "input_sentence = '아기 공룡 둘리는 희동이와'\n", "\n", "pred_latency_sum = 0\n", "pred_count_sum = 0\n", "pred_cnt = 0\n", "\n", "for i in range(20):\n", " try:\n", " pred_out = predictor.predict(input_sentence)\n", " if i == 0:\n", " continue\n", " \n", " predicted_sentence= pred_out[0]\n", " predict_count = pred_out[1]\n", " predict_latency = pred_out[2]\n", " \n", " pred_latency_sum += predict_latency\n", " pred_count_sum =+ predict_count\n", " pred_cnt += 1\n", " except:\n", " print('Error and ingore it.')\n", "\n", "avg_latency = pred_latency_sum / pred_cnt\n", "avg_latency_per_inf = avg_latency / pred_count_sum\n", "\n", "print('Input sentence: {}'.format(input_sentence))\n", "print('Predicted sentence: {}'.format(predicted_sentence))\n", "print('Average number of inferenced token: {:.2f}'.format(pred_count_sum))\n", "print('Average inference latency for a sentence completion: {:.2f}'.format(avg_latency))\n", "print('Average inference latency per a token: {:.2f}\\n'.format(avg_latency_per_inf))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Clean UP!" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "predictor.delete_endpoint()\n", "predictor.delete_model()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } }, "nbformat": 4, "nbformat_minor": 4 }