# The following code is licensed under: https://www.apache.org/licenses/LICENSE-2.0 # and has been adapted from the TensorFlow object detection tutorial at: # https://www.tensorflow.org/hub/tutorials/object_detection # For downloading the image. import matplotlib.pyplot as plt import tempfile from six.moves.urllib.request import Request from six.moves.urllib.request import urlopen from six import BytesIO # For drawing onto the image. import numpy as np import tensorflow as tf from PIL import Image from PIL import ImageColor from PIL import ImageDraw from PIL import ImageFont from PIL import ImageOps def load_img(path): img = tf.io.read_file(path) img = tf.image.decode_jpeg(img, channels=3) return img def display_image(image): fig = plt.figure(figsize=(15, 12)) plt.grid(False) plt.imshow(image) def download_and_resize_image(url, new_width=256, new_height=256, display=False): _, filename = tempfile.mkstemp(suffix=".jpg") req = Request(url, headers={'User-Agent': 'Mozilla/5.0'}) response = urlopen(req) image_data = response.read() image_data = BytesIO(image_data) pil_image = Image.open(image_data) pil_image = ImageOps.fit(pil_image, (new_width, new_height), Image.ANTIALIAS) pil_image_rgb = pil_image.convert("RGB") pil_image_rgb.save(filename, format="JPEG", quality=90) print("Image downloaded to %s." % filename) if display: display_image(pil_image) return filename def draw_bounding_box_on_image(image, ymin, xmin, ymax, xmax, color, font, thickness=2, display_str_list=()): """Adds a bounding box to an image.""" draw = ImageDraw.Draw(image) im_width, im_height = image.size (left, right, top, bottom) = (xmin * im_width, xmax * im_width, ymin * im_height, ymax * im_height) draw.line([(left, top), (left, bottom), (right, bottom), (right, top), (left, top)], width=thickness, fill=color) # If the total height of the display strings added to the top of the bounding # box exceeds the top of the image, stack the strings below the bounding box # instead of above. display_str_heights = [font.getsize(ds)[1] for ds in display_str_list] # Each display_str has a top and bottom margin of 0.05x. total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights) if top > total_display_str_height: text_bottom = top else: text_bottom = top + total_display_str_height # Reverse list and print from bottom to top. for display_str in display_str_list[::-1]: text_width, text_height = font.getsize(display_str) margin = np.ceil(0.05 * text_height) draw.rectangle([(left, text_bottom - text_height - 2 * margin), (left + text_width, text_bottom)], fill=color) draw.text((left + margin, text_bottom - text_height - margin), display_str, fill="black", font=font) text_bottom -= text_height - 2 * margin def draw_boxes(image, boxes, class_names, scores, max_boxes=10, min_score=0.1): """Overlay labeled boxes on an image with formatted scores and label names.""" colors = list(ImageColor.colormap.values()) try: font = ImageFont.truetype("/usr/share/fonts/dejavu/DejaVuSansMono.ttf", 12) except IOError: print("Font not found, using default font.") font = ImageFont.load_default() for i in range(min(boxes.shape[0], max_boxes)): if scores[i] >= min_score: ymin, xmin, ymax, xmax = tuple(boxes[i]) display_str = "{}: {}%".format(class_names[i], int(100 * scores[i])) color = colors[hash(class_names[i]) % len(colors)] image_pil = Image.fromarray(np.uint8(image)).convert("RGB") draw_bounding_box_on_image( image_pil, ymin, xmin, ymax, xmax, color, font, display_str_list=[display_str]) np.copyto(image, np.array(image_pil)) return image