{ "cells": [ { "cell_type": "markdown", "id": "c4a68ee1-09fb-4d8f-a614-d137c731d243", "metadata": {}, "source": [ "# Unsupervised evaluation of LLMs using LLMs" ] }, { "cell_type": "markdown", "id": "ded26b0e", "metadata": {}, "source": [ "_License information_\n", "\n", " Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.\n", " SPDX-License-Identifier: MIT-0" ] }, { "cell_type": "markdown", "id": "ecaa6385-94c8-43d1-8f25-9abf3b9f02c1", "metadata": {}, "source": [ "This notebook shows how to use an LLM to evaluate the work of other LLMs.\n", "\n", "In this simple example, we will load a canned summarization dataset from Hugging Face. We will obtain summaries from two LLMs, Falcon 40B Instruct BF16 and Flan T5 XL. We will ask Anthropic's Claude model to evaluate those summaries, along with the ground truth summary." ] }, { "cell_type": "markdown", "id": "6ea04ab4-09e7-4dee-b725-5e31bb6f04e6", "metadata": {}, "source": [ "## Prerequisites\n", "\n", "You will need an [API key](https://docs.anthropic.com/claude/docs/getting-access-to-claude) to use Claude. In the future you can use [Amazon Bedrock](https://aws.amazon.com/bedrock/) instead, as it offers Claude as a supported model." ] }, { "cell_type": "code", "execution_count": 3, "id": "4edc13f1-283c-43a4-9e61-4461850231cf", "metadata": { "tags": [] }, "outputs": [], "source": [ "claude_api_key = '' ## Enter your API key here" ] }, { "cell_type": "markdown", "id": "1850362f-d73b-4fac-904b-fb00f621e66d", "metadata": { "tags": [] }, "source": [ "You will also need to install several Python modules." ] }, { "cell_type": "code", "execution_count": null, "id": "298f4860-c7c4-4575-9590-08a50862f703", "metadata": { "tags": [] }, "outputs": [], "source": [ "!pip install datasets" ] }, { "cell_type": "code", "execution_count": null, "id": "7f892d3a-4dcc-4699-a763-9f04e3b7db55", "metadata": { "tags": [] }, "outputs": [], "source": [ "! pip install -U anthropic" ] }, { "cell_type": "code", "execution_count": null, "id": "218f5f95-aa09-4028-8342-fdebce701f63", "metadata": { "tags": [] }, "outputs": [], "source": [ "! pip install -U pydantic==1.10" ] }, { "cell_type": "markdown", "id": "de6ac61a-49d6-4bbb-a2ad-1e19784ea35d", "metadata": {}, "source": [ "Finally, define the names of the SageMaker endpoints you're using for Falcon and Flan-T5." ] }, { "cell_type": "code", "execution_count": 4, "id": "bd36946a-d42a-4113-9575-6062a3605fad", "metadata": { "tags": [] }, "outputs": [], "source": [ "t5_ep_name = '' # Enter the name of the SageMaker inference endpoint you deployed with Flan-T5" ] }, { "cell_type": "code", "execution_count": 5, "id": "922690e3-e1e5-46d8-b7f3-aa8006ca5be4", "metadata": { "tags": [] }, "outputs": [], "source": [ "falcon_ep_name = '' # Enter the name of the SageMaker inference endpoint you deployed with Falcon 40B" ] }, { "cell_type": "markdown", "id": "8cae7a3d-ce06-4655-a203-8f6e13aa15b7", "metadata": { "tags": [] }, "source": [ "## Dataset\n", "\n", "We'll use the cnn_dailymail dataset. We'll only process five samples to save time." ] }, { "cell_type": "code", "execution_count": 6, "id": "57890bee-eaee-41a4-bb11-455475df0e6f", "metadata": { "tags": [] }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/conda/lib/python3.8/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.16.5 and <1.23.0 is required for this version of SciPy (detected version 1.24.3\n", " warnings.warn(f\"A NumPy version >={np_minversion} and <{np_maxversion}\"\n", "Found cached dataset cnn_dailymail (/root/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0/1b3c71476f6d152c31c1730e83ccb08bcf23e348233f4fcc11e182248e6bf7de)\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "29e891a9f3d148beb24e9d36b0e4cbb5", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/3 [00:00\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
docvaluetypemodel
0By . Daily Mail Reporter . PUBLISHED: . 12:03 ...5accuracyt5
1By . Daily Mail Reporter . PUBLISHED: . 12:03 ...5coherencet5
2By . Daily Mail Reporter . PUBLISHED: . 12:03 ...5factualityt5
3By . Daily Mail Reporter . PUBLISHED: . 12:03 ...3completenesst5
4By . Daily Mail Reporter . PUBLISHED: . 12:03 ...4accuracyfalcon
\n", "" ], "text/plain": [ " doc value type \\\n", "0 By . Daily Mail Reporter . PUBLISHED: . 12:03 ... 5 accuracy \n", "1 By . Daily Mail Reporter . PUBLISHED: . 12:03 ... 5 coherence \n", "2 By . Daily Mail Reporter . PUBLISHED: . 12:03 ... 5 factuality \n", "3 By . Daily Mail Reporter . PUBLISHED: . 12:03 ... 3 completeness \n", "4 By . Daily Mail Reporter . PUBLISHED: . 12:03 ... 4 accuracy \n", "\n", " model \n", "0 t5 \n", "1 t5 \n", "2 t5 \n", "3 t5 \n", "4 falcon " ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head()" ] }, { "cell_type": "code", "execution_count": 38, "id": "c05c2124-adbf-453e-9110-d09af6909c60", "metadata": { "tags": [] }, "outputs": [], "source": [ "df['value'] = df['value'].astype(int)" ] }, { "cell_type": "code", "execution_count": 39, "id": "5a865da3-7006-413b-b06c-d3cd00d88e83", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6wAAAHlCAYAAADx83HJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAyZklEQVR4nO3deYBVdf0//ucMsyCggIA7irkQuXwUwdzSRMsV0Swzs/yYZtrn+5EyIxXLHUFtcUsUzT72cylzQbBVzTTNErFSMzUh1FJBRFkEZmDO7w+/zjc+goLO3HuYeTz+OXPvPee8XucO73vmyVluTVEURQAAAKBkaqvdAAAAACyPwAoAAEApCawAAACUksAKAABAKQmsAAAAlJLACgAAQCnVVbuBlTVnzoK0tPgGHgAAgI6ktrYmvXt3X+5rq01gbWkpBFYAAIBOxCnBAAAAlJLACgAAQCkJrAAAAJTSanMNKwAAQJktXbokc+bMypIlTdVupZTq6hrSu3e/dOmy8jFUYAUAAGgDc+bMSteu3dK9+3qpqampdjulUhRFFiyYmzlzZqVv3/VXejmnBAMAALSBJUua0r37WsLqctTU1KR797VW+eizwAoAANBGhNUVey/vjcAKAABAKQmsAAAAncR5552Zq676/krN+8lPDs/DD/+hnTt6ZwIrAAAApSSwAgAAUEq+1gYAAKBkPvnJ4fnEJz6VX/7yZ/nnP1/IXnt9PF/60n/lvPPOyl/+8qd86ENb55xzxmattdbK737324wff3leeWVmNt98y5x88qkZMGDTJMnTT/8tY8eek+effz4777xr/vd9jx544P5MmHBFXnrpXxkw4AM5+eRTs/nmW1Rhi5fPEVYAAIASuvfee/Ld716eG2+8NQ88cH9OPvnEfOlLX86dd96VomjJT396U557bkbOPHN0Ro48KZMn35Wdd9413/jGV9Pc3Jzm5uaceurJ2Wef/fPzn9+TPffcK/fee0/r+p966m85//yz8/Wvn5Y777w7I0Z8IqecclKamlbtq2fak8AKAABQQp/85Kez9tp90q/fOvmP/9guH/rQ1tlyyw+moaEhu+/+0TzzzFO5555fZ+edd8vQoTulrq4un/nM57J48eI89tif88QTj2XJkiU57LAjUldXlz333DuDBm3Vuv5Jk27LiBGfyFZbbZ0uXbpkv/0OTH19fZ544rEqbvWynBIMAABQQr17r936c2Nj17c9fuONhXnllVlZb731W5+vra3NOuusm1demZXa2tr067fOMt9/uu6667X+/NJLL+bnP5+cW275cetzzc3NeeWVWe21SausYoF12LBhaWhoSGNjY5Lk5JNPzkc+8pFKlQcAAOhw+vbtl2ef/Xvr46IoMnPmy+nbt19qamoya9bMFEXRGlpnznwpG264UZJknXXWzec//4UcddQxVel9ZVT0lOBLLrkkEydOzMSJE4VVAACA92nYsL3z+9//LlOm/DFLlizJjTf+f6mvb8g22/xHtt5623Tp0iU333xTlixZkt/+9p789a9PtC570EGHZOLEW/PEE4+nKIosXLgwDz74u7zxxoIqbtGynBJcYVOnTsmkSbdl+PBDMnjwkGq3A3RQPmsAoHPYeOMB+eY3z8n3vndhZs2amS22GJhx476T+vr6JMmYMRdm3LhzM2HCFdl5512zxx7DWpf94Ac/lFGjRue7370gL7zwXBobG7PNNttlu+22r9bmvE1NURRFJQoNGzYsPXr0SFEU2WGHHXLSSSdlrbXWqkTpUjn++OPzzDPPZIsttsj48eOr3Q7QQfmsAYDKe+KJv2aDDTapdhul9q9/zchWW31opeev2BHW66+/Puuvv36amppy3nnn5eyzz85FF1200svPnj0/LS0Vydbtat68Ba3TWbPmVbkboKPyWQMAldfS0pIlS1qq3UaptbS0vO1vk9ramvTp02O581fsGtb113/zzlUNDQ054ogjMnXq1EqVBgAAYDVUkcD6xhtvZN68N1N0URT52c9+lkGDBlWiNAAAAKupipwSPHv27Pz3f/93li5dmpaWlmy22WY544wzKlEaAACA1VRFAmv//v1z++23V6IUAAAAHURFv4cVAAAAVpbACgAAQClV7GttAAAAOpM11+qaro31bb7eRYubM2/uojZfbxkJrAAAAO2ga2N9jhh1fZuv94YLPpt5effAes01V+bzn/9C6uvrc801V+a2236avn37JUm22eY/8rWvfaPNe2trAisAAEAHdO21E/KZz3wu9fVvHuXdd98D8n/+z1eq29QqElgBAAA6mG9/e1yS5IQTvpCamtpsv/0O6dKlS5W7WnVuugQAANDBvHW67xVX/CA//OEN6dGjR+6++1c56qjD89Wv/lcef/wvVe5w5TjCCgAA0MEdfPChOeqoY1JXV5eHH34op5zytVx//c3p2bNXtVt7R46wAgAAdHB9+vRNXd2bxyuHDt0p66yzbqZNe7bKXb07gRUAAKAD6tatexYsmJ8kmTVrZuvzzzzzVF566cVsvPEm1WptpTklGOgUpk6dkkmTbsvw4Ydk8OAh1W6HNuR3W26d7ffT2bYXeGeLFjfnhgs+2y7rXRmHH/7ZnHji8Wls7Jr11lsv//znC6mt7ZL6+vp885tnpU+fvm3eW1sTWIFO4eabb8j06dOyaNFCf0R2MH635dbZfj+dbXuBdzZv7qKV+r7U9vKFLxyXL3zhuKrVbwtOCQY6hYULFy0zpePwuy23zvb76WzbC9DeBFYAAABKSWAFAACglARWAAAASklgBQAAoJQEVgAAAErJ19oAAAC0g949G1LX0Njm613StDhzXm961/nuu+/eXHnlZWloaMhZZ43JxhsPeNs8U6dOyeWXX5xrrvlRm/fZFgRWAACAdlDX0JhHLji2zde7w6irk7x7YJ048dYcc8zxGTZs7zbvoVIEVgAAgA7mkku+nb/85dE899yM3Hbbzenbt1+ee25GmpubsuGG/XPqqd/KWmut9bblHnjg/vzgB1dlyZIlqa2tyejRZ2XzzbfIQw89mCuvvCwtLS3p1at3vv7107LRRv0zdeqUXHLJd/KhD22VJ554LElNzjprTAYM2LRNtkNgBQAA6GBOPPFrefrpp/KZz3wuu+76kbz22mvp1atXkuSqq76f66//n5xwwn8vs8xzz83IuHHn5vLLJ6R//43T1NSUJUuaM2fOqzn33G/l0kuvyqabfiCTJ9+es846PRMm/E+SZPr0Z3Paad/KqFGj8z//c03+53+uyRlnnNsm2yGwAgAAdHC/+MXk/OpXv8iSJc1ZuHBR+vff+G3zPPzwH7LTTru0vtbQ0JCGhoZMnfpINttsy2y66QeSJPvvf1C+/e1xeeONBUmSjTfeJFtu+cEkyVZbbZMHHri/zfoWWAEAADqwP//50dx++y254oofpHfv3vnVr36RO+64dTlzFitYQ5GamhWvv+HfbixVW1ubpUuXvq9+/52vtQEAAOjA5s2bl+7de6Rnz55pamrKnXfesdz5dtxx5zz00IN5/vnnkiRNTU15440F2WqrbfP3vz+dGTP+kST5+c8nZ4stBqZbt+7t3rsjrAAAAO1gSdPi/3tH37Zf76rYaadd8qtf/TxHHPHJrLPOOvngBwflr3994m3z9e+/cUaNGp0zzjg1S5e2pEuX2owefVY222zznH762TnrrNFZunRpevXqnW9965y22px3JLACALDKpk6dkkmTbsvw4Ydk8OAh1W4HSunN70p996+faS+XXXZV689nn33+cucZPHjIMt/Buttuu2e33XZ/23w77bRLdtppl3dd/n8/fr8EVgAAVtnNN9+Q6dOnZdGihQIr0G5cwwoAwCpbuHDRMlOA9iCwAgAAUEoCKwAAAKUksAIAAFBKAisAAACl5C7BAAAA7WCtno1pbGho8/UubmrK3NdX7btYV1cCKwAAQDtobGjIf147ss3X+8OjL07y3gPrNddcmc9//gupr69vu6baiVOCAQAAOpFrr52Q5ubmarexUhxhBQAA6IDuvffuXHXV99PY2Jg999w7V131/RxwwEFJkhNO+EJqampz6aVXZs0116xypysmsAIAAHQwc+a8mgsuGJMrr7w2/ftvnB//+PokyciRJ+fOO+/IFVf8IN26datyl+/OKcEAAAAdzBNPPJYttxyY/v03TpIccMCIKnf03gisAAAAHUxRFKmpqal2G++bwAoAANDBbLXVNnnqqb/lhReeT5L87GeTWl/r1q17FiyYX63WVolrWAEAANrB4qam//sVNG2/3nez9tp9cvLJp+brXx+ZXr16ZZdddk9dXV26du2aww//bE488fg0NnZ10yUAAIDOaO7ri/N+vi/1/dppp50zbNjeSZI777wjgwZtldra2nzhC8flC184rmp9rQqBFdrI1KlTMmnSbRk+/JAMHjyk2u0AANDJ3XzzTfnNb+7O0qVLstZaPfONb5xe7ZZWWacOrGuu1TVdG+srWrNLl5rWab9+lT30vmhxc+bNXVTRmp3JzTffkOnTp2XRooUCK8vo3bMhdQ2NFa1Zrc+apiVNaahrqFi9pLqfq4ubmv7v/54DQPkcddQxOeqoY6rdxvvSqQNr18b6HDHq+orWfOWVeUmSl16ZV/HaN1zw2cyLwNpeFi5ctMwU3lLX0JhHLji2ojUXz3m5dVrJ2juMujr/ee3IitVLkpfnzmqdVrr2m9clCawA/D8d5e687aEoilVexl2CAQAA2kBdXUMWLJj7noJZR1cURRYsmJu6VTwTq1MfYQUAAGgrvXv3y5w5szJ//mvVbqWU6uoa0rt3v1Vbpp16AQAA6FS6dKlL377rV7uNDsUpwQAAAJSSwAoAAEApCawAAACUksAKAABAKQmsAAAAlJLACgAAQCkJrAAAAJSSwAoAAEApCawAAACUksAKAABAKQmsAAAAlFJdtRsAOp811+qaro31Fa3ZpUtN67RfvzUrWhvKorONvUWLmzNv7qKK1gSgbQmsQMV1bazPEaOur2jNV16ZlyR56ZV5Fa99wwWfrWg9WJHOOPbmRWAFWJ05JRgAAIBSElgBAAAoJYEVAACAUhJYAQAAKCWBFQAAgFISWAEAACglgRUAAIBSElgBAAAoJYEVAACAUhJYAQAAKCWBFQAAgFISWAEAACiligfWyy67LAMHDszTTz9d6dIAAACsRioaWJ944on86U9/ygYbbFDJsgAAAKyGKhZYm5qacvbZZ+eMM85ITU1NpcpSRVOnTslZZ43O1KlTqt0KAACwGqqrVKGLL744Bx10UPr37/+elu/Tp0cbd9Q59eu3ZsVq3Xbbj/PMM89kyZKm7LPPnhWrWy1dutS0Tiv5PkNnV1Nfu8y00oz38mpZ0lzx30+19gVNS5rSUNdQsXpJdfd7TUua01BXX9GaQHVUJLA++uijeeyxx3LyySe/53XMnj0/LS1FG3bVOf/ImDVrXsVqzZu3oHVaybrVsnRp0TrtDNv7fnTGsUf76bntupn35CtZc1DfqtRfncZ7Zxt7tXX1eeSCYytac/Gcl1unlay9w6ir85/XjqxYvSR5ee6s1mmla//w6ItXq7EHvLPa2poVHqCsyH9HP/zww5k2bVr22muvDBs2LC+99FKOOeaY/O53v6tEeQA6sDU2WjPrfGzTrLFR5wpjANAZVOQI63HHHZfjjjuu9fGwYcMyfvz4bLnllpUoDwAAwGrI97ACAABQShW76dK/u+eee6pRFgAAgNWII6wAAACUksAKAABAKQmsAAAAlJLACgAAQCkJrAAAAJSSwAoAAEApCawAAACUksAKAABAKQmsAAAAlJLACgAAQCkJrAAAAJRSXbUb6GxqutQvM62kliXN6ddvzYrV69KlpnVaybpJ0rSkKQ11DRWtWc3tXdzUlLmvL65oTcqtsa52mSkAwOpIYK2wHhsMzoKXHkv39bapeO3auvo8csGxFau3eM7LrdNK1k2SHUZdnf+8dmRFa748d1brtNK1f3j0xUkEVv6fj2/eO7+d/nr22LRntVsBAHjPBNYKa+zZP409+1e7DaCDG9SvWwb161btNgAA3hfnigEAAFBKAisAAAClJLACAABQSgIrAAAApSSwAgAAUEoCKwAAAKUksAIAAFBKAisAAAClJLACAABQSgIrAAAApSSwAgAAUEoCKwAAAKUksAIAAFBKAivQKdR0qV9mClSGsQfA+yGwAp1Cjw0Gp77HeumxweBqtwKdirEHwPtRV+0GACqhsWf/NPbsX+02oNMx9gB4PxxhBQAAoJQEVgAAAEpJYAUAAKCUBFYAAABKSWAFAACglARWAAAASklgBQAAoJQEVgAAAEpJYAUAAKCUBFYAAABKSWAFAACglARWAAAASklgBQAAoJQEVgAAgNXE1KlTctZZozN16pRqt1IRddVugI6rsa52mSkA0HHU1NcuMwUq4+abb8j06dOyaNHCDB48pNrttDufMLSbj2/eOx/o3TUf37x3tVsBANpYz23XTeO63dNz23Wr3Qp0KgsXLlpm2tE5wkq7GdSvWwb161btNgCAdrDGRmtmjY3WrHYbQAfnCCsAAAClJLACAABQSgIrAAAApSSwAgAAUEoCKwAAAKUksAIAAFBKAisAAAClJLACAABQSgIrAAAApSSwAgAAUEoCKwAAAKUksAIAAFBKAisAALBamzp1Ss46a3SmTp1S7VZoY3XVbgA6ipr62mWmAHQ+jXW1y0yByrj55hsyffq0LFq0MIMHD6l2O7Qhn6bQRnpuu24a1+2entuuW+1WAKiSj2/eOx/o3TUf37x3tVuBTmXhwkXLTOk4HGGFNrLGRmtmjY3WrHYbAFTRoH7dMqhft2q3AdBhOMIKAABAKQmsAAAAlJLACgAAQCkJrAAAAJSSwAoAAEApCawAAACUksAKAABAKQmsAAAAlJLACgAAQCkJrAAAAJSSwAoAAEAp1VWq0Je//OW88MILqa2tTbdu3fLNb34zgwYNqlR5AAAAVjMVC6zjxo3LmmuumSS56667ctppp+W2226rVHkAAABWMxU7JfitsJok8+fPT01NTaVKAwBApzJ16pScddboTJ06pdqtwPtSsSOsSTJ69Og88MADKYoiV1999Sot26dPj3bqCjqGfv3WfPeZgDZn7EF1GHvv7LbbfpxnnnkmS5Y0ZZ999qx2O+2uS5ea1mlH/7fRmbY1qXBgPe+885Ikt99+ey644IJMmDBhpZedPXt+WlqKNu2nM/yC6TxmzZpX7RZWmrFHR2LsQXWsTmOvGubNW9A67Qzv1dKlReu0o29vR9zW2tqaFR6grMpdgg8++OD84Q9/yJw5c6pRHgAAgNVARQLrggUL8uKLL7Y+vueee9KzZ8/06tWrEuUBAABYDVXklOCFCxdm5MiRWbhwYWpra9OzZ8+MHz/ejZcAAABYoYoE1r59++YnP/lJJUoBAADQQVTlGlYAAAB4NwIrAAAApSSwAgAAUEoCKwAAAKUksAIAAFBKAisAAAClJLACAABQSgIrAAAApSSwAgAAUEoCKwAAAKVUV+0GAAAAVldr9WxMY0NDxep16VLTOu3Xb82K1U2SxU1Nmfv64orWXKXA2tzcnD//+c+ZOXNm9t9//7zxxhtJkm7durVLcwAAAGXW2NCQ/7x2ZMXqvTx3Vuu0knWT5IdHX5ykpIH1qaeeygknnJCGhoa8/PLL2X///fPwww/ntttuy/e+9712bBEAAIDOaKWvYT3zzDNz4okn5he/+EXq6t7MuUOHDs0jjzzSbs0BAADQea10YP373/+eESNGJElqat48b7pbt25ZvLiyh4QBAADoHFY6sG644YZ5/PHHl3nuL3/5SzbeeOM2bwoAAABW+hrWkSNH5ktf+lIOP/zwNDc358orr8xNN92Uc845pz37AwAAoJNa6SOse+65ZyZMmJBXX301Q4cOzT//+c9ceuml2W233dqzPwAAADqpVfpam6222ipbbbVVe/UCAAAArVY6sF588cUrfG3kyMp+/w8AAAAd30oH1pdeemmZx7NmzcrDDz+cvffeu82bAgAAgJUOrOeff/7bnrvvvvty5513tmlDAAAAkKzCTZeWZ7fddstdd93VVr0AAABAq5U+wvr8888v83jhwoWZPHly1l9//TZvCgAAAFY6sH7sYx9LTU1NiqJIkqyxxhoZNGhQxo4d227NAQAA0HmtdGD929/+1p59AAAAwDLe1zWsAAAA0F7e8QjrHnvskZqamnddyb333ttW/QAAQIez5lpd07WxvmL1unSpaZ3267dmxeomyaLFzZk3d1FFa9JxvWNgvfDCCyvVBwAAdFhdG+tzxKjrK1bvlVfmJUleemVeResmyQ0XfDbzIrDSNt4xsO64446V6gMAAACWsdI3XUqSJ598MlOmTMmcOXNa7xacJCNHjmzzxgAAAOjcVvqmSz/+8Y/zmc98Jg899FAmTJiQp59+Otdee22ee+659uwPAACATmqlA+vVV1+dq6++Opdffnm6du2ayy+/PBdffHHq6lbpIC0AAACslJUOrLNnz86QIUPeXKi2Ni0tLdljjz3ym9/8pt2aAwAAoPNa6cOj6623Xp5//vn0798/AwYMyN13353evXunvr5yt+cGAACg81jpwHrsscdm2rRp6d+/f7785S9n5MiRaW5uzujRo9uzPwAAADqplQ6sTz75ZIYPH54k2WOPPfLHP/4xzc3N6d69e7s1BwAAQOe1SndM+vKXv5xu3brlwAMPzPDhw7Ppppu2V18AAAB0cit906XRo0fnvvvuyxlnnJEXX3wxhx12WD7xiU/k2muvbc/+AAAA6KRWOrAmb94deNddd83555+fyZMnp1evXrngggvaqzcAAAA6sVU6JXjBggW56667cuedd+aPf/xjhg4dmrFjx7ZXbwAAAHRiKx1YTzzxxNx///350Ic+lAMOOCBjx47N2muv3Z69AQAA0ImtdGDdeuutc8opp2SDDTZoz34AAAAgySoE1uOOO649+wAAADqAliXN6ddvzYrW7NKlpnVa6dq0r1W6hhUAAOCd1NbV55ELjq1ozcVzXm6dVrr2DqOurmi9zmaV7hIMAAAAlSKwAgAAUEoCKwAAAKUksAIAAFBKAisAAAClJLACAABQSgIrAAAApSSwAgAAUEoCKwAAAKUksAIAAFBKAisAAAClJLACAABQSgIrAAAApSSwAgAAUEoCKwAAAKUksAIAQAdT06V+mSkdR0197TLTjq5zbCUAAHQiPTYYnPoe66XHBoOr3QptrOe266Zx3e7pue261W6lIuqq3QAAANC2Gnv2T2PP/tVug3awxkZrZo2N1qx2GxXjCCsAAAClJLACAABQSgIrAAAApSSwAgAAUEoCKwAAAKUksAIAAFBKAisAAAClJLACAABQSgIrAAAApSSwAgAAUEp1lSgyZ86cjBo1Ks8991waGhqyySab5Oyzz87aa69difIAAACshipyhLWmpibHHntsfvnLX2bSpEnp379/LrrookqUBgAAYDVVkcDaq1evfPjDH259vN122+Vf//pXJUoDAACwmqr4NawtLS258cYbM2zYsEqXBgAAYDVSkWtY/90555yTbt265cgjj1yl5fr06dFOHUHH0K/fmtVuATolYw+qw9jj3zXW1S4zpf1UeuxVNLCOGzcuM2bMyPjx41Nbu2r/mGbPnp+WlqJN+/FBR0cya9a8arew0ow9OhJjD6pjdRp7ifHX3j6+ee/8dvrr2WPTntVupcNrj7FXW1uzwgOUFQus3/3ud/P444/nqquuSkNDQ6XKAgAAHdygft0yqF+3ardBO6hIYH3mmWcyfvz4DBgwIIcffniSZKONNsrll19eifIAAACshioSWLfYYos89dRTlSgFAABAB+GqZAAAAEpJYAUAAKCUBFYAAABKSWAFAACglARWAAAASklgBQAAoJQEVgAAAEpJYAUAAKCUBFYAAABKSWAFAACglARWAAAASklgBQAAoJQEVgAAAEpJYAUAAKCUBFYAAABKSWAFAACglARWAAAASklgBQAAoJQEVgAAAEpJYAUAAKCUBFYAAABKSWAFAACglARWAAAASklgBQAAoJQEVgAAAEpJYAUAAKCUBFYAAABKSWAFAACglARWAAAASklgBQAAoJQEVgAAAEpJYAUAAKCUBFYAAABKSWAFAACglARWAAAASklgBQAAoJQEVgAAAEpJYAUAAKCUBFYAAABKSWAFAACglARWAAAASklgBQAAoJQEVgAAAEpJYAUAAKCUBFYAAABKSWAFAACglARWAAAASklgBQAAoJQEVgAAAEpJYAUAAKCUBFYAAABKSWAFAACglARWAAAASklgBQAAoJQEVgAAAEpJYAUAAKCUBFYAAABKSWAFAACglARWAAAASklgBQAAoJQEVgAAAEpJYAUAAKCUBFYAAABKSWAFAACglARWAAAASklgBQAAoJQEVgAAAEpJYAUAAKCUBFYAAABKSWAFAACglARWAAAASklgBQAAoJQEVgAAAEpJYAUAAKCUKhJYx40bl2HDhmXgwIF5+umnK1ESAACA1VxFAutee+2V66+/PhtuuGElygEAANAB1FWiyJAhQypRBgAAgA6kIoG1LfTp06PaLUCp9eu3ZrVbgE7J2IPqMPagOio99labwDp79vy0tBRtuk4fdHQks2bNq3YLK83YoyMx9qA6Vqexlxh/dBztMfZqa2tWeIDSXYIBAAAoJYEVAACAUqpIYD333HOz++6756WXXsrRRx+dAw44oBJlAQAAWI1V5BrW008/PaeffnolSgEAANBBOCUYAACAUhJYAQAAKCWBFQAAgFISWAEAACglgRUAAIBSElgBAAAoJYEVAACAUhJYAQAAKCWBFQAAgFISWAEAACglgRUAAIBSElgBAAAoJYEVAACAUhJYAQAAKCWBFQAAgFISWAEAACglgRUAAIBSElgBAAAoJYEVAACAUhJYAQAAKCWBFQAAgFISWAEAACglgRUAAIBSElgBAAAoJYEVAACAUhJYAQAAKCWBFQAAgFISWAEAACglgRUAAIBSElgBAAAoJYEVAACAUhJYAQAAKCWBFQAAgFISWAEAACglgRUAAIBSElgBAAAoJYEVAACAUhJYAQAAKCWBFQAAgFISWAEAACglgRUAAIBSElgBAAAoJYEVAACAUhJYAQAAKCWBFQAAgFISWAEAACglgRUAAIBSElgBAAAoJYEVAACAUhJYAQAAKCWBFQAAgFISWAEAACglgRUAAIBSElgBAAAoJYEVAACAUhJYAQAAKCWBFQAAgFISWAEAACglgRUAAIBSElgBAAAoJYEVAACAUhJYAQAAKCWBFQAAgFISWAEAACglgRUAAIBSElgBAAAoJYEVAACAUhJYAQAAKCWBFQAAgFISWAEAACglgRUAAIBSElgBAAAoJYEVAACAUhJYAQAAKKWKBdbp06fn05/+dPbZZ598+tOfzj/+8Y9KlQYAAGA1VLHAesYZZ+SII47IL3/5yxxxxBH51re+VanSAAAArIbqKlFk9uzZ+etf/5prr702SXLggQfmnHPOyauvvpq11157pdZRW1vTLr317d29XdZbVg1r9al2CxXTt8fK/dvqKNprjLQXY6/jMvbKzdjruIy98utM468zjb2kc42/9hh777TOmqIoijav+L88/vjj+cY3vpE777yz9bn9998/F154Ybbaaqv2Lg8AAMBqyE2XAAAAKKWKBNb1118/L7/8cpYuXZokWbp0aWbOnJn111+/EuUBAABYDVUksPbp0yeDBg3K5MmTkySTJ0/OoEGDVvr6VQAAADqfilzDmiTPPvtsTjnllMydOzdrrbVWxo0blw984AOVKA0AAMBqqGKBFQAAAFaFmy4BAABQSgIrAAAApSSwAgAAUEoCKwAAAKUksAIAAFBKAitACb3wwgv58Ic/XO02oMO56667st9+++Xggw/OtGnTVmnZuXPnZsKECe+7h/89vkeMGJFFixYlSX74wx9m9uzZ77sGdES33nprTjzxxHed78knn8zPfvazCnREJQisVNySJUuq3QJ0GkuXLq12C1AqN910U0488cTcfvvtq/x98HPnzs3VV1/d5j1NnDgxXbt2TZJcd911Aiu8T08++WR+8YtfVLsN2khdtRug+r72ta9l+vTpaW5uzsYbb5wxY8akZ8+e+elPf5rrrrsuSVJfX58rr7wyffv2zW9+85tceumlWbJkSWprazN27Nj06NEjhx56aP7whz8kefN/j996/NbPRx55ZB588MEcdNBBGTBgQL73ve9l8eLFWbp0aY4//vgccMABSZKXX3455557bv7xj38kSQ488MAcfPDBOfTQQ3P33XensbExSVqXGT58eOXfNHgPHn300VxwwQVZsGBBkmTUqFFZa621ct555+WNN95It27dMnr06Gy77baty3z3u9/Nb3/72yxcuDDnnXdehgwZkiT57W9/myuuuCJNTU2pr6/Pqaeemu222y5/+MMfMmbMmAwZMiSPPfZYTjjhhGyyySYZM2ZM5syZk+bm5hx11FE59NBDkyQDBw7MV7/61fz617/Oa6+9llGjRmWfffZZYb+77bZbpk2btsL1QZmNGTMmjzzySKZPn54bbrgh66yzznL3f0mWuw88++yzM2/evIwYMSJrrLFGbrrppgwbNizjx4/PlltumSTLPB43blz++Mc/prm5Ob17986YMWOy4YYbvq2vgQMHZurUqbnuuusyc+bMnHjiiWlsbMxFF12Uo48+OrfeemvWWWedJMm5556bvn375vjjj6/QuwbLtyr7tLf+FjzssMNy//33Z9GiRbnoooty00035c9//nO6du2a73//++nXr19uvfXWTJo0KT169MiMGTPSq1evXHjhhVl33XXf1sNtt92WG264IUuXLk2PHj1y5plnpnfv3rnkkksyf/78jBgxIkOHDs3pp5+eP//5z7nooota+z3xxBPz0Y9+tLW3ww8/fJX2t9OmTcupp56ahQsXpqWlJYccckiOOeaY3HXXXbn44otTW1ubpUuX5pvf/KYzpt6vgk5v9uzZrT9/5zvfKS688MLioYceKvbee+9i5syZRVEUxfz584tFixYV06ZNK3bZZZdi+vTpRVEUxeLFi4t58+YVzz//fLHjjju2ruffHz///PPFlltuWdx5552tr7/22mvFkiVLiqIoilmzZhUf+chHitdee60oiqI48sgjiwkTJrytv6985SvFrbfeWhRFUbzwwgvFrrvuWixevLit3w5oF3PmzCl22WWX4pFHHimKoiiWLFlSzJo1q9hjjz2KBx54oCiKonjwwQeLPfbYo1i8eHHruLnnnnuKoiiKiRMnFp/+9KeLoiiKGTNmFIcddlgxb968oiiK4umnny722GOPoiiK4qGHHio++MEPFlOnTi2Koiiam5uLQw45pPj73/9eFEVRzJs3r/j4xz/e+njLLbcsfvSjHxVFURRTpkwpdttttxX2+9prr73r+qDsjjzyyNZxtbz9X1EUK9wH/u99XVEUxZ577lk89dRTy3387+v/yU9+UnzlK18piqJ423q23HLLYv78+ctd34UXXlhceumlRVEUxYIFC4qddtqpeOWVV97nuwDvz3vdp/3mN78piqIoJkyYUOywww7FX//616IoiuKMM84ovvOd7xRFURS33HJLsc022xTPPvtsURRFcemllxb//d//3fraWz8//PDDxRe/+MXWvwXvvffe1v3kv89XFEXx+uuvFyNGjChefvnloiiK4uWXXy4+8pGPFK+//vp73t+ec845xWWXXdZa462/Y4cPH148/PDDre/LW8vy3jnCSiZOnJhJkyalubk5b7zxRgYMGJClS5dmxIgR6devX5Kke/fuSZIHH3wwu+++ewYMGJAkaWhoSENDQ1577bV3rNHY2Jj99tuv9fGrr76a0047LTNmzEiXLl3y+uuvZ/r06dliiy3y6KOP5tprr22dd+21106SfO5zn8v555+fQw45JDfeeGMOPfTQNDQ0tOE7Ae3nT3/6UzbbbLMMHjw4SdKlS5fMnj079fX12WWXXZIkO++8c+rr6zN9+vR079493bp1y5577pkk2W677TJu3Lgkyf3335/nnnsun/3sZ1vXv2TJkrzyyitJkk022STbb799kuQf//hHnn322Zx00kmt8zY3N2fatGnZbLPNkiT7779/a42ZM2dm8eLFy+23Z8+e+fvf//6u64PVxfL2f0ly7733LncfuKruu+++3HDDDXnjjTfe8+Uwn/3sZ3PEEUfk+OOPz8SJE7PrrrumT58+72ld0Fbe6z7tox/9aJJkq622ynrrrZdBgwa1Pn7wwQdb17/DDju0nrL/qU99arln091zzz3529/+lk996lNJkqIoMnfu3OX2++ijj+aFF17IF7/4xdbnampqMmPGjPTu3fs97W+HDh2acePGpbm5OR/+8Iez0047JUl22mmnjB07Nvvuu29233331rMveO8E1k5uypQpufHGG3PTTTdl7bXXzqRJk/KTn/xkhfMXRbHc5+vq6pZ5bfHixcu8vsYaa6Smpqb18Zlnnplhw4blsssuS01NTfbZZ5+3LfO/DR48OEuXLs0jjzyS22+/PTfffPPKbCKUwvLGTlEUy4yLt7z13L//h0xtbe0yf/B+5CMfyQUXXPC2ZZ999tl069ZtmRq9e/fOxIkTV9jbW6fZd+nSJcmbO+MVjfWVWR+sDlZ1/7ciXbp0SUtLS+vjt/Zl//znP3P++efnpz/9afr375+pU6fm5JNPXuX1r7/++tlmm21y991354YbbsjZZ5+9yuuAttYW+7R/f9ylS5cV3nNhRestiiKHHnpoRo4cuVL9Dhw4MNdff/3bXnvhhRfe0/52n332yXbbbZcHHnggEyZMyC233JKLLroop512Wp566qk89NBDGTlyZI4++ugcdthh79ojK+amS53c3Llz06NHj/Tq1StNTU255ZZbkiR77rlnJk6c2HrEZsGCBWlqaspuu+2W++67r/X60qampsyfPz99+/ZNc3NzZsyYkSSZPHnyO9adN29eNtxww9TU1OSBBx5oXa579+7Zfvvt88Mf/rB13ldffbX158997nM56aSTst1222X99ddvq7cB2t3222+fZ599No8++miSN2+G1Ldv3zQ1NeWhhx5Kkjz00ENZsmRJ61GeFdl1111z//3355lnnml97i9/+cty5910003TtWvX3H777a3PPfvss5k/f/4q9/v666+/5/VB2axo/5eseB/Yo0ePLFq0aJk/ZjfeeOM89thjSZLf//73rcvMnz8/9fX16devX1paWnLTTTetVF/du3fPvHnzlnnuyCOPzJgxY1JXV9d69gRUU1vu05Zn6tSprX9r3nrrrcu9BnTYsGGZOHFiXnrppdYeHn/88SRJjx49lhlH22+/fWbMmNHaW/LmfnNF/zn7lnfa386YMSP9+vXLJz7xifzXf/1X6+fAtGnTMnDgwBx11FE56KCDWp/nvXOEtZPbfffdc8cdd2S//fbLuuuum6233jqPPfZYdtxxxxx33HE5+uijU1NTk4aGhowfPz4DBgzIOeeck69+9atZunRpunTpkrFjx2bgwIEZPXp0jj766Gy44YbvenH51772tZx11lmZMGFCBg4cmIEDB7a+dtFFF+Wss87KgQcemNra2hx44IE57rjjkiQHHHBAzj777BxxxBHt+r5AW+vVq1cuvfTSjB07Nm+88UZqa2vzjW98I5dccskyN6i4+OKL3/VU9wEDBuTCCy/M6NGjs2jRojQ3N2fw4MHL3KzpLXV1dRk/fnzGjBmTa665Ji0tLenTp0++973vvad+d9lll/e0PiibFe3/kqxwH9i3b98MHz48w4cPT8+ePXPTTTdl5MiROeWUU3LzzTdn8ODB2WCDDZK8eSOlfffdNwcccEA22GCDDB06NFOmTHnXvj7/+c/ntNNOS9euXfPtb387m2++eXbcccc0Njba91EabblPW56hQ4fm0ksvzTPPPNN606XlzfOVr3wlJ5xwQpYuXZrm5ubsu+++2XrrrbPzzjvnBz/4QQ466KDsuOOOOf300/P9738/F154YcaMGZPm5ub0798/48ePf8c+3ml/+/Of/zyTJk1KfX19ampqctpppyVJvv3tb7de8vbWTah4f2qKd/uvBSiRKVOm5Mwzz8ykSZOWe3oIAHQ0zz//fD7zmc/k17/+ddZYY41qtwPt6tZbb829996bSy65pNqtUBKOsLLaOO200/Lggw9m3LhxwioAncLFF1+cW265JaeccoqwCnRKjrACAABQSm66BAAAQCkJrAAAAJSSwAoAAEApCawAAACUksAKAO1s2LBhefDBB6vdBgCsdgRWAAAASklgBYB29PWvfz3/+te/cvzxx2f77bfPtttumx/96EfLzDN8+PDcddddSZKBAwfmuuuuy1577ZUPf/jDGTduXFpaWlrn/elPf5r99tsvQ4cOzTHHHJN//vOfFd0eAKgkgRUA2tGFF16YDTbYIOPHj8+jjz6asWPH5o477mh9/W9/+1tmzpyZ3XffvfW5X//617nlllty22235Z577sktt9ySJLnrrrty5ZVX5rLLLsvvf//77LDDDvna175W8W0CgEoRWAGggvbee+/MmDEj//jHP5IkEydOzH777ZeGhobWeb74xS+mV69e2WCDDfL5z38+kydPTpLcdNNNOe6447LZZpulrq4uxx9/fJ588klHWQHosARWAKighoaG7LvvvrnjjjvS0tKSyZMnZ8SIEcvMs/7667f+vOGGG2bmzJlJkn/9618ZM2ZMhgwZkiFDhmTHHXdMURR5+eWXK7oNAFApddVuAAA6m0MOOSSjRo3KDjvskDXWWCPbb7/9Mq+/+OKL2WKLLZK8GVLXWWedJG8G2eOPPz4HHXRQxXsGgGpwhBUA2lnfvn3z/PPPtz7efvvtU1tbm7Fjxy43fF5zzTV5/fXX8+KLL+a6667L/vvvnyQ5/PDDc9VVV+WZZ55JksybNy8///nPK7MRAFAFAisAtLPjjjsuV1xxRYYMGZJrrrkmSTJixIg8/fTTbzsdOEn22muvfOITn8jBBx+cj370o/nkJz+ZJPnYxz6WY489NieddFIGDx6cAw88MPfdd19FtwUAKqmmKIqi2k0AQGdz++2358c//nFuvPHGZZ4fOHBgfvWrX2WTTTapUmcAUB6OsAJAhS1cuDA33HBDPv3pT1e7FQAoNYEVACro/vvvz84775w+ffrkwAMPrHY7AFBqTgkGAACglBxhBQAAoJQEVgAAAEpJYAUAAKCUBFYAAABKSWAFAACglP5/AIyv9/m2Z08AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.set(rc={\"figure.figsize\":(16, 8)})\n", "sns.barplot(data=df, x='type', y='value', hue='model')" ] }, { "cell_type": "code", "execution_count": null, "id": "03d516c3-3173-4ab4-9a9b-9f858d2f76bf", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "availableInstances": [ { "_defaultOrder": 0, "_isFastLaunch": true, "category": "General purpose", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 4, "name": "ml.t3.medium", "vcpuNum": 2 }, { "_defaultOrder": 1, "_isFastLaunch": false, "category": "General purpose", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 8, "name": "ml.t3.large", "vcpuNum": 2 }, { "_defaultOrder": 2, "_isFastLaunch": false, "category": "General purpose", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 16, "name": "ml.t3.xlarge", "vcpuNum": 4 }, { "_defaultOrder": 3, "_isFastLaunch": false, "category": "General purpose", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 32, "name": "ml.t3.2xlarge", "vcpuNum": 8 }, { "_defaultOrder": 4, "_isFastLaunch": true, "category": "General purpose", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 8, "name": "ml.m5.large", "vcpuNum": 2 }, { "_defaultOrder": 5, "_isFastLaunch": false, "category": "General purpose", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 16, "name": "ml.m5.xlarge", "vcpuNum": 4 }, { "_defaultOrder": 6, "_isFastLaunch": false, "category": "General purpose", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 32, "name": "ml.m5.2xlarge", "vcpuNum": 8 }, { "_defaultOrder": 7, "_isFastLaunch": false, "category": "General purpose", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 64, "name": "ml.m5.4xlarge", "vcpuNum": 16 }, { "_defaultOrder": 8, "_isFastLaunch": false, "category": "General purpose", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 128, "name": "ml.m5.8xlarge", "vcpuNum": 32 }, { "_defaultOrder": 9, "_isFastLaunch": false, "category": "General purpose", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 192, "name": "ml.m5.12xlarge", "vcpuNum": 48 }, { "_defaultOrder": 10, "_isFastLaunch": false, "category": "General purpose", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 256, "name": "ml.m5.16xlarge", "vcpuNum": 64 }, { "_defaultOrder": 11, "_isFastLaunch": false, "category": "General purpose", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 384, "name": "ml.m5.24xlarge", "vcpuNum": 96 }, { "_defaultOrder": 12, "_isFastLaunch": false, "category": "General purpose", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 8, "name": "ml.m5d.large", "vcpuNum": 2 }, { "_defaultOrder": 13, "_isFastLaunch": false, "category": "General purpose", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 16, "name": "ml.m5d.xlarge", "vcpuNum": 4 }, { "_defaultOrder": 14, "_isFastLaunch": false, "category": "General purpose", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 32, "name": "ml.m5d.2xlarge", "vcpuNum": 8 }, { "_defaultOrder": 15, "_isFastLaunch": false, "category": "General purpose", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 64, "name": "ml.m5d.4xlarge", "vcpuNum": 16 }, { "_defaultOrder": 16, "_isFastLaunch": false, "category": "General purpose", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 128, "name": "ml.m5d.8xlarge", "vcpuNum": 32 }, { "_defaultOrder": 17, "_isFastLaunch": false, "category": "General purpose", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 192, "name": "ml.m5d.12xlarge", "vcpuNum": 48 }, { "_defaultOrder": 18, "_isFastLaunch": false, "category": "General purpose", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 256, "name": "ml.m5d.16xlarge", "vcpuNum": 64 }, { "_defaultOrder": 19, "_isFastLaunch": false, "category": "General purpose", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 384, "name": "ml.m5d.24xlarge", "vcpuNum": 96 }, { "_defaultOrder": 20, "_isFastLaunch": false, "category": "General purpose", "gpuNum": 0, "hideHardwareSpecs": true, "memoryGiB": 0, "name": "ml.geospatial.interactive", "supportedImageNames": [ "sagemaker-geospatial-v1-0" ], "vcpuNum": 0 }, { "_defaultOrder": 21, "_isFastLaunch": true, "category": "Compute optimized", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 4, "name": "ml.c5.large", "vcpuNum": 2 }, { "_defaultOrder": 22, "_isFastLaunch": false, "category": "Compute optimized", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 8, "name": "ml.c5.xlarge", "vcpuNum": 4 }, { "_defaultOrder": 23, "_isFastLaunch": false, "category": "Compute optimized", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 16, "name": "ml.c5.2xlarge", "vcpuNum": 8 }, { "_defaultOrder": 24, "_isFastLaunch": false, "category": "Compute optimized", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 32, "name": "ml.c5.4xlarge", "vcpuNum": 16 }, { "_defaultOrder": 25, "_isFastLaunch": false, "category": "Compute optimized", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 72, "name": "ml.c5.9xlarge", "vcpuNum": 36 }, { "_defaultOrder": 26, "_isFastLaunch": false, "category": "Compute optimized", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 96, "name": "ml.c5.12xlarge", "vcpuNum": 48 }, { "_defaultOrder": 27, "_isFastLaunch": false, "category": "Compute optimized", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 144, "name": "ml.c5.18xlarge", "vcpuNum": 72 }, { "_defaultOrder": 28, "_isFastLaunch": false, "category": "Compute optimized", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 192, "name": "ml.c5.24xlarge", "vcpuNum": 96 }, { "_defaultOrder": 29, "_isFastLaunch": true, "category": "Accelerated computing", "gpuNum": 1, "hideHardwareSpecs": false, "memoryGiB": 16, "name": "ml.g4dn.xlarge", "vcpuNum": 4 }, { "_defaultOrder": 30, "_isFastLaunch": false, "category": "Accelerated computing", "gpuNum": 1, "hideHardwareSpecs": false, "memoryGiB": 32, "name": "ml.g4dn.2xlarge", "vcpuNum": 8 }, { "_defaultOrder": 31, "_isFastLaunch": false, "category": "Accelerated computing", "gpuNum": 1, "hideHardwareSpecs": false, "memoryGiB": 64, "name": "ml.g4dn.4xlarge", "vcpuNum": 16 }, { "_defaultOrder": 32, "_isFastLaunch": false, "category": "Accelerated computing", "gpuNum": 1, "hideHardwareSpecs": false, "memoryGiB": 128, "name": "ml.g4dn.8xlarge", "vcpuNum": 32 }, { "_defaultOrder": 33, "_isFastLaunch": false, "category": "Accelerated computing", "gpuNum": 4, "hideHardwareSpecs": false, "memoryGiB": 192, "name": "ml.g4dn.12xlarge", "vcpuNum": 48 }, { "_defaultOrder": 34, "_isFastLaunch": false, "category": "Accelerated computing", "gpuNum": 1, "hideHardwareSpecs": false, "memoryGiB": 256, "name": "ml.g4dn.16xlarge", "vcpuNum": 64 }, { "_defaultOrder": 35, "_isFastLaunch": false, "category": "Accelerated computing", "gpuNum": 1, "hideHardwareSpecs": false, "memoryGiB": 61, "name": "ml.p3.2xlarge", "vcpuNum": 8 }, { "_defaultOrder": 36, "_isFastLaunch": false, "category": "Accelerated computing", "gpuNum": 4, "hideHardwareSpecs": false, "memoryGiB": 244, "name": "ml.p3.8xlarge", "vcpuNum": 32 }, { "_defaultOrder": 37, "_isFastLaunch": false, "category": "Accelerated computing", "gpuNum": 8, "hideHardwareSpecs": false, "memoryGiB": 488, "name": "ml.p3.16xlarge", "vcpuNum": 64 }, { "_defaultOrder": 38, "_isFastLaunch": false, "category": "Accelerated computing", "gpuNum": 8, "hideHardwareSpecs": false, "memoryGiB": 768, "name": "ml.p3dn.24xlarge", "vcpuNum": 96 }, { "_defaultOrder": 39, "_isFastLaunch": false, "category": "Memory Optimized", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 16, "name": "ml.r5.large", "vcpuNum": 2 }, { "_defaultOrder": 40, "_isFastLaunch": false, "category": "Memory Optimized", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 32, "name": "ml.r5.xlarge", "vcpuNum": 4 }, { "_defaultOrder": 41, "_isFastLaunch": false, "category": "Memory Optimized", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 64, "name": "ml.r5.2xlarge", "vcpuNum": 8 }, { "_defaultOrder": 42, "_isFastLaunch": false, "category": "Memory Optimized", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 128, "name": "ml.r5.4xlarge", "vcpuNum": 16 }, { "_defaultOrder": 43, "_isFastLaunch": false, "category": "Memory Optimized", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 256, "name": "ml.r5.8xlarge", "vcpuNum": 32 }, { "_defaultOrder": 44, "_isFastLaunch": false, "category": "Memory Optimized", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 384, "name": "ml.r5.12xlarge", "vcpuNum": 48 }, { "_defaultOrder": 45, "_isFastLaunch": false, "category": "Memory Optimized", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 512, "name": "ml.r5.16xlarge", "vcpuNum": 64 }, { "_defaultOrder": 46, "_isFastLaunch": false, "category": "Memory Optimized", "gpuNum": 0, "hideHardwareSpecs": false, "memoryGiB": 768, "name": "ml.r5.24xlarge", "vcpuNum": 96 }, { "_defaultOrder": 47, "_isFastLaunch": false, "category": "Accelerated computing", "gpuNum": 1, "hideHardwareSpecs": false, "memoryGiB": 16, "name": "ml.g5.xlarge", "vcpuNum": 4 }, { "_defaultOrder": 48, "_isFastLaunch": false, "category": "Accelerated computing", "gpuNum": 1, "hideHardwareSpecs": false, "memoryGiB": 32, "name": "ml.g5.2xlarge", "vcpuNum": 8 }, { "_defaultOrder": 49, "_isFastLaunch": false, "category": "Accelerated computing", "gpuNum": 1, "hideHardwareSpecs": false, "memoryGiB": 64, "name": "ml.g5.4xlarge", "vcpuNum": 16 }, { "_defaultOrder": 50, "_isFastLaunch": false, "category": "Accelerated computing", "gpuNum": 1, "hideHardwareSpecs": false, "memoryGiB": 128, "name": "ml.g5.8xlarge", "vcpuNum": 32 }, { "_defaultOrder": 51, "_isFastLaunch": false, "category": "Accelerated computing", "gpuNum": 1, "hideHardwareSpecs": false, "memoryGiB": 256, "name": "ml.g5.16xlarge", "vcpuNum": 64 }, { "_defaultOrder": 52, "_isFastLaunch": false, "category": "Accelerated computing", "gpuNum": 4, "hideHardwareSpecs": false, "memoryGiB": 192, "name": "ml.g5.12xlarge", "vcpuNum": 48 }, { "_defaultOrder": 53, "_isFastLaunch": false, "category": "Accelerated computing", "gpuNum": 4, "hideHardwareSpecs": false, "memoryGiB": 384, "name": "ml.g5.24xlarge", "vcpuNum": 96 }, { "_defaultOrder": 54, "_isFastLaunch": false, "category": "Accelerated computing", "gpuNum": 8, "hideHardwareSpecs": false, "memoryGiB": 768, "name": "ml.g5.48xlarge", "vcpuNum": 192 }, { "_defaultOrder": 55, "_isFastLaunch": false, "category": "Accelerated computing", "gpuNum": 8, "hideHardwareSpecs": false, "memoryGiB": 1152, "name": "ml.p4d.24xlarge", "vcpuNum": 96 }, { "_defaultOrder": 56, "_isFastLaunch": false, "category": "Accelerated computing", "gpuNum": 8, "hideHardwareSpecs": false, "memoryGiB": 1152, "name": "ml.p4de.24xlarge", "vcpuNum": 96 } ], "instance_type": "ml.m5.large", "kernelspec": { "display_name": "Python 3 (Data Science 2.0)", "language": "python", "name": "python3__SAGEMAKER_INTERNAL__arn:aws:sagemaker:us-east-1:081325390199:image/sagemaker-data-science-38" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.13" } }, "nbformat": 4, "nbformat_minor": 5 }