#!/usr/bin/env python import numpy as np from .base import ImageAugmentor from .transform import Transform __all__ = ['IAAugmentor', 'Albumentations'] class IAATransform(Transform): def __init__(self, aug, img_shape): self._init(locals()) def apply_image(self, img): return self.aug.augment_image(img) def apply_coords(self, coords): import imgaug as IA points = [IA.Keypoint(x=x, y=y) for x, y in coords] points = IA.KeypointsOnImage(points, shape=self.img_shape) augmented = self.aug.augment_keypoints([points])[0].keypoints return np.asarray([[p.x, p.y] for p in augmented]) class IAAugmentor(ImageAugmentor): """ Wrap an augmentor form the IAA library: https://github.com/aleju/imgaug. Both images and coordinates are supported. Note: 1. It's NOT RECOMMENDED to use coordinates because the IAA library does not handle coordinates accurately. 2. Only uint8 images are supported by the IAA library. 3. The IAA library can only produces images of the same shape. Example: .. code-block:: python from imgaug import augmenters as iaa # this is the aleju/imgaug library from tensorpack import imgaug # this is not the aleju/imgaug library # or from dataflow import imgaug # if you're using the standalone version of dataflow myaug = imgaug.IAAugmentor( iaa.Sequential([ iaa.Sharpen(alpha=(0, 1), lightness=(0.75, 1.5)), iaa.Fliplr(0.5), iaa.Crop(px=(0, 100)), ]) """ def __init__(self, augmentor): """ Args: augmentor (iaa.Augmenter): """ super(IAAugmentor, self).__init__() self._aug = augmentor def get_transform(self, img): return IAATransform(self._aug.to_deterministic(), img.shape) class AlbumentationsTransform(Transform): def __init__(self, aug, param): self._init(locals()) def apply_image(self, img): return self.aug.apply(img, **self.param) class Albumentations(ImageAugmentor): """ Wrap an augmentor form the albumentations library: https://github.com/albu/albumentations. Coordinate augmentation is not supported by the library. Example: .. code-block:: python from tensorpack import imgaug # or from dataflow import imgaug # if you're using the standalone version of dataflow import albumentations as AB myaug = imgaug.Albumentations(AB.RandomRotate90(p=1)) """ def __init__(self, augmentor): """ Args: augmentor (albumentations.BasicTransform): """ super(Albumentations, self).__init__() self._aug = augmentor def get_transform(self, img): return AlbumentationsTransform(self._aug, self._aug.get_params())