# -*- coding: utf-8 -*- """ author SparkByExamples.com """ import pandas as pd data = [['Scott', 50], ['Jeff', 45], ['Thomas', 54],['Ann',34]] # Create the pandas DataFrame pandasDF = pd.DataFrame(data, columns = ['Name', 'Age']) # print dataframe. print(pandasDF) from pyspark.sql import SparkSession spark = SparkSession.builder \ .master("local[1]") \ .appName("SparkByExamples.com") \ .getOrCreate() sparkDF=spark.createDataFrame(pandasDF) sparkDF.printSchema() sparkDF.show() #sparkDF=spark.createDataFrame(pandasDF.astype(str)) from pyspark.sql.types import StructType,StructField, StringType, IntegerType mySchema = StructType([ StructField("First Name", StringType(), True)\ ,StructField("Age", IntegerType(), True)]) sparkDF2 = spark.createDataFrame(pandasDF,schema=mySchema) sparkDF2.printSchema() sparkDF2.show() spark.conf.set("spark.sql.execution.arrow.enabled","true") spark.conf.set("spark.sql.execution.arrow.pyspark.fallback.enabled","true") pandasDF2=sparkDF2.select("*").toPandas print(pandasDF2) test=spark.conf.get("spark.sql.execution.arrow.enabled") print(test) test123=spark.conf.get("spark.sql.execution.arrow.pyspark.fallback.enabled") print(test123)