# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 import logging import sys from os import environ, path, makedirs from threading import Condition from datetime import datetime from awsiot.greengrasscoreipc.model import QOS dt = datetime.now().strftime('%Y-%m-%d-%H-%M-%S') SCORE_THRESHOLD = 0.7 MAX_NO_OF_RESULTS = 5 SHAPE = (300, 450) QOS_TYPE = QOS.AT_LEAST_ONCE TIMEOUT = 10 # Intialize all the variables with default values DEFAULT_PREDICTION_INTERVAL_SECS = 3600 SCHEDULED_THREAD = None TOPIC = "" condition = Condition() STREAM_NAME = "S3UploadStream" UPLOAD_BUCKET_NAME = path.expandvars(environ.get("IMAGE_UPLOAD_BUCKET")) UPLOAD_BUCKET_LABELING_FOLDER = "pipeline/labeling/images/{}/".format(dt) UPLOAD_BUCKET_INFERENCE_FOLDER = "inference/{}/".format(dt) UPLOAD_DIR_INFERENCE = "{}/inference/{}/".format(path.expandvars(environ.get("UPLOAD_DIR")), dt) UPLOAD_DIR_LABELING = "{}/labeling/{}/".format(path.expandvars(environ.get("UPLOAD_DIR")), dt) makedirs(UPLOAD_DIR_INFERENCE, exist_ok=True) makedirs(UPLOAD_DIR_LABELING, exist_ok=True) IMAGE_DIR = path.expandvars(environ.get("IMAGE_DIR")) INFERENCE_COMP_PATH = path.expandvars(environ.get("INFERENCE_COMP_PATH")) MODEL_COMP_PATH = path.expandvars(environ.get("MODEL_COMP_PATH")) MODEL_NAME = path.expandvars(environ.get("MODEL_NAME")) logger = logging.getLogger() handler = logging.StreamHandler(sys.stdout) logger.setLevel(logging.INFO) logger.addHandler(handler)