# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * """Example workflow pipeline script for abalone pipeline. . -RegisterModel . Process-> Train -> Evaluate -> Condition . . . -(stop) Implements a get_pipeline(**kwargs) method. """ import os import boto3 import sagemaker import sagemaker.session from sagemaker.estimator import Estimator from sagemaker.inputs import TrainingInput from sagemaker.model_metrics import ( MetricsSource, ModelMetrics, ) from sagemaker.processing import ( ProcessingInput, ProcessingOutput, ScriptProcessor, ) from sagemaker.sklearn import SKLearnModel from sagemaker.sklearn.processing import SKLearnProcessor from sagemaker.workflow.functions import Join from sagemaker.workflow.conditions import ConditionLessThanOrEqualTo from sagemaker.workflow.condition_step import ( ConditionStep, JsonGet, ) from sagemaker.workflow.parameters import ( ParameterInteger, ParameterString, ) from sagemaker.workflow.pipeline import Pipeline from sagemaker.workflow.properties import PropertyFile from sagemaker.workflow.steps import ( ProcessingStep, TrainingStep ) from sagemaker.model import Model from sagemaker.pipeline import PipelineModel from sagemaker.workflow.step_collections import RegisterModel BASE_DIR = os.path.dirname(os.path.realpath(__file__)) def get_session(region, default_bucket): """Gets the sagemaker session based on the region. Args: region: the aws region to start the session default_bucket: the bucket to use for storing the artifacts Returns: `sagemaker.session.Session instance """ boto_session = boto3.Session(region_name=region) sagemaker_client = boto_session.client("sagemaker") runtime_client = boto_session.client("sagemaker-runtime") return sagemaker.session.Session( boto_session=boto_session, sagemaker_client=sagemaker_client, sagemaker_runtime_client=runtime_client, default_bucket=default_bucket, ) def get_pipeline( region, role=None, default_bucket=None, model_package_group_name="AbaloneModelPackageGroup", pipeline_name="AbalonePipeline", base_job_prefix="Abalone", ): """Gets a SageMaker ML Pipeline instance working with on abalone data. Args: region: AWS region to create and run the pipeline. role: IAM role to create and run steps and pipeline. default_bucket: the bucket to use for storing the artifacts Returns: an instance of a pipeline """ sagemaker_session = get_session(region, default_bucket) if role is None: role = sagemaker.session.get_execution_role(sagemaker_session) # parameters for pipeline execution processing_instance_count = ParameterInteger(name="ProcessingInstanceCount", default_value=1) processing_instance_type = ParameterString( name="ProcessingInstanceType", default_value="ml.m5.xlarge" ) training_instance_type = ParameterString( name="TrainingInstanceType", default_value="ml.m5.xlarge" ) model_approval_status = ParameterString( name="ModelApprovalStatus", default_value="Approved" ) # processing step for feature engineering sklearn_processor = SKLearnProcessor( framework_version="1.2-1", instance_type=processing_instance_type, instance_count=processing_instance_count, base_job_name=f"{base_job_prefix}/sklearn-preprocess", sagemaker_session=sagemaker_session, role=role, ) f = open(os.path.join(BASE_DIR, "..", "dataManifest.json")) step_process = ProcessingStep( name="PreprocessData", processor=sklearn_processor, outputs=[ ProcessingOutput(output_name="train", source="/opt/ml/processing/train"), ProcessingOutput(output_name="validation", source="/opt/ml/processing/validation"), ProcessingOutput(output_name="test", source="/opt/ml/processing/test"), ProcessingOutput(output_name="model", source="/opt/ml/processing/model"), ], code=os.path.join(BASE_DIR, "..", "src", "preprocess.py"), job_arguments=["--data-manifest", f.read()], ) f.close() # training step for generating model artifacts model_path = f"s3://{sagemaker_session.default_bucket()}/{base_job_prefix}/Train" image_uri = sagemaker.image_uris.retrieve( framework="xgboost", region=region, version="1.2-1", py_version="py3", instance_type=training_instance_type, ) xgb_train = Estimator( image_uri=image_uri, instance_type=training_instance_type, instance_count=1, output_path=model_path, base_job_name=f"{base_job_prefix}/train", sagemaker_session=sagemaker_session, role=role, ) xgb_train.set_hyperparameters( objective="reg:linear", num_round=50, max_depth=5, eta=0.2, gamma=4, min_child_weight=6, subsample=0.7, verbosity=1, ) step_train = TrainingStep( name="TrainModel", estimator=xgb_train, inputs={ "train": TrainingInput( s3_data=step_process.properties.ProcessingOutputConfig.Outputs[ "train" ].S3Output.S3Uri, content_type="text/csv", ), "validation": TrainingInput( s3_data=step_process.properties.ProcessingOutputConfig.Outputs[ "validation" ].S3Output.S3Uri, content_type="text/csv", ), }, ) # processing step for evaluation script_eval = ScriptProcessor( image_uri=image_uri, command=["python3"], instance_type=processing_instance_type, instance_count=1, base_job_name=f"{base_job_prefix}/script-eval", sagemaker_session=sagemaker_session, role=role, ) evaluation_report = PropertyFile( name="EvaluationReport", output_name="evaluation", path="evaluation.json", ) step_eval = ProcessingStep( name="EvaluateModel", processor=script_eval, inputs=[ ProcessingInput( source=step_train.properties.ModelArtifacts.S3ModelArtifacts, destination="/opt/ml/processing/model", ), ProcessingInput( source=step_process.properties.ProcessingOutputConfig.Outputs[ "test" ].S3Output.S3Uri, destination="/opt/ml/processing/test", ), ], outputs=[ ProcessingOutput(output_name="evaluation", source="/opt/ml/processing/evaluation"), ], code=os.path.join(BASE_DIR, "..", "src", "evaluate.py"), property_files=[evaluation_report], ) # register model step that will be conditionally executed model_metrics = ModelMetrics( model_statistics=MetricsSource( s3_uri="{}/evaluation.json".format( step_eval.arguments["ProcessingOutputConfig"]["Outputs"][0]["S3Output"]["S3Uri"] ), content_type="application/json", ) ) sklearn_model = SKLearnModel( name='SKLearnTransform', entry_point=os.path.join(BASE_DIR, "..", "src", "transform.py"), role=role, framework_version="1.2-1", py_version="py3", sagemaker_session=sagemaker_session, model_data=Join(on='/', values=[step_process.properties.ProcessingOutputConfig.Outputs[ "model" ].S3Output.S3Uri, "model.tar.gz"]), ) inference_model = Model( image_uri=sagemaker.image_uris.retrieve( framework="xgboost", region=region, version="1.2-1", py_version="py3", instance_type="ml.t2.medium", ), model_data=step_train.properties.ModelArtifacts.S3ModelArtifacts ) model = PipelineModel( name='PipelineModel', role=role, models=[ sklearn_model, inference_model ] ) step_register_inference_model = RegisterModel( name="RegisterModel", estimator=xgb_train, content_types=["text/csv"], response_types=["text/csv"], inference_instances=["ml.t2.medium", "ml.m5.large"], transform_instances=["ml.m5.large"], model_package_group_name=model_package_group_name, approval_status=model_approval_status, model_metrics=model_metrics, model=model ) # condition step for evaluating model quality and branching execution cond_lte = ConditionLessThanOrEqualTo( left=JsonGet( step=step_eval, property_file=evaluation_report, json_path="regression_metrics.mse.value", ), right=6.0, ) step_cond = ConditionStep( name="CheckMSEEvaluation", conditions=[cond_lte], if_steps=[step_register_inference_model], else_steps=[], ) # pipeline instance pipeline = Pipeline( name=pipeline_name, parameters=[ processing_instance_type, processing_instance_count, training_instance_type, model_approval_status ], steps=[step_process, step_train, step_eval, step_cond], sagemaker_session=sagemaker_session, ) return pipeline