# AutoGluon Predictor constructor arguments # - see https://github.com/awslabs/autogluon/blob/ef3a5312dc2eaa0c6afde042d671860ac42cbafb/tabular/src/autogluon/tabular/predictor/predictor.py#L51-L159 ag_predictor_args: eval_metric: roc_auc label: fraud # AutoGluon Predictor.fit arguments # - see https://github.com/awslabs/autogluon/blob/ef3a5312dc2eaa0c6afde042d671860ac42cbafb/tabular/src/autogluon/tabular/predictor/predictor.py#L280-L651 ag_fit_args: hyperparameters: # GBM: # num_boost_round: 20 # NN: # num_epochs: 2 presets: "medium_quality_faster_train" num_bag_folds: 2 num_bag_sets: 1 num_stack_levels: 0 output_prediction_format: csv # predictions output format: csv or parquet feature_importance: true # calculate and save feature importance if true leaderboard: true # save leaderboard output if true