{
"cells": [
{
"cell_type": "markdown",
"id": "9f0916d5",
"metadata": {},
"source": [
"# Model Deployment \n",
"* Container: codna_pytorch_py39"
]
},
{
"cell_type": "markdown",
"id": "95f12c06",
"metadata": {},
"source": [
"## AutoReload"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "87188bfb",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "markdown",
"id": "122ce182",
"metadata": {},
"source": [
"## 1. parameter store 설정"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "67e463c3",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import boto3\n",
"from utils.ssm import parameter_store"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "615db888",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"strRegionName=boto3.Session().region_name\n",
"pm = parameter_store(strRegionName)\n",
"prefix = pm.get_params(key=\"PREFIX\")"
]
},
{
"cell_type": "markdown",
"id": "40253673",
"metadata": {},
"source": [
"## 2.package import for model deployment"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f69d0ea4",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import os\n",
"import sagemaker\n",
"from sagemaker.pytorch.model import PyTorchModel"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "a494fa65",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from time import strftime\n",
"from smexperiments.trial import Trial\n",
"from smexperiments.experiment import Experiment"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "7caa5ba2",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def create_experiment(experiment_name):\n",
" try:\n",
" sm_experiment = Experiment.load(experiment_name)\n",
" except:\n",
" sm_experiment = Experiment.create(experiment_name=experiment_name)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "875fd63c",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def create_trial(experiment_name):\n",
" create_date = strftime(\"%m%d-%H%M%s\")\n",
" sm_trial = Trial.create(trial_name=f'{experiment_name}-{create_date}',\n",
" experiment_name=experiment_name)\n",
"\n",
" job_name = f'{sm_trial.trial_name}'\n",
" return job_name"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "e416e7e3",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"sagemaker_role_arn: arn:aws:iam::419974056037:role/service-role/AmazonSageMaker-ExecutionRole-20221206T163436\n",
"model_artifact_s3_uri: s3://sm-nemo-ramp/nemo-asr/training/model-output/nemo-asr-nemo-experiments-0322-10521679482352/output/model.tar.gz\n",
"inf_image_uri: 419974056037.dkr.ecr.us-east-1.amazonaws.com/nemo-test-inference\n",
"code_location: s3://sm-nemo-ramp/nemo-asr/inference/backup_codes\n",
"monitor_output: s3://sm-nemo-ramp/nemo-asr/inference/monitor_output\n",
"git_config: {'repo': 'https://git-codecommit.us-east-1.amazonaws.com/v1/repos/nemo-code', 'branch': 'main', 'username': 'dongjin-at-419974056037', 'password': 'wtLv/fP4ESjBDnyW5xgqFPGR0dMTIyK5/8gK6IS1Zsg='}\n"
]
}
],
"source": [
"local_mode = True\n",
"\n",
"if local_mode: \n",
" inference_instance_type = 'local_gpu'\n",
" \n",
" import os\n",
" from sagemaker.local import LocalSession\n",
" \n",
" sagemaker_session = LocalSession()\n",
" sagemaker_session.config = {'local': {'local_code': True}}\n",
" \n",
"else:\n",
" inference_instance_type = \"ml.g4dn.xlarge\"\n",
" sagemaker_session = sagemaker.Session()\n",
" \n",
"\n",
"\n",
"sagemaker_role_arn = pm.get_params(key=prefix + '-SAGEMAKER-ROLE-ARN') \n",
"bucket_name = pm.get_params(key=prefix + '-BUCKET')\n",
"model_artifact_s3_uri = pm.get_params(key=prefix + '-MODEL-PATH')\n",
"inf_image_uri = pm.get_params(key=''.join([prefix, '-INF-IMAGE-URI']))\n",
"\n",
"code_location= os.path.join(\n",
" \"s3://{}\".format(bucket_name),\n",
" prefix,\n",
" \"inference\",\n",
" \"backup_codes\"\n",
")\n",
"\n",
"monitor_output= os.path.join(\n",
" \"s3://{}\".format(bucket_name),\n",
" prefix,\n",
" \"inference\",\n",
" \"monitor_output\"\n",
")\n",
"\n",
"git_config = {\n",
" 'repo': f'https://{pm.get_params(key=\"-\".join([prefix, \"CODE_REPO\"]))}',\n",
" 'branch': 'main',\n",
" 'username': pm.get_params(key=\"-\".join([prefix, \"CODECOMMIT-USERNAME\"]), enc=True),\n",
" 'password': pm.get_params(key=\"-\".join([prefix, \"CODECOMMIT-PWD\"]), enc=True)\n",
"} \n",
"\n",
"print (f\"sagemaker_role_arn: {sagemaker_role_arn}\")\n",
"print (f\"model_artifact_s3_uri: {model_artifact_s3_uri}\")\n",
"print (f\"inf_image_uri: {inf_image_uri}\")\n",
"print (f\"code_location: {code_location}\")\n",
"print (f\"monitor_output: {monitor_output}\")\n",
"print (f\"git_config: {git_config}\")"
]
},
{
"cell_type": "markdown",
"id": "4f5ef566",
"metadata": {},
"source": [
"* Define inference job"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "36a23bac",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Cloning into '/tmp/tmpz7ocy0g2'...\n",
"remote: Counting objects: 20, done. \n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Your branch is up to date with 'origin/main'.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Already on 'main'\n"
]
}
],
"source": [
"model = PyTorchModel(\n",
" entry_point='predictor.py',\n",
" source_dir='./code',\n",
" git_config=git_config,\n",
" code_location=code_location,\n",
" model_data=model_artifact_s3_uri,\n",
" role=sagemaker_role_arn,\n",
" image_uri=inf_image_uri,\n",
" # framework_version=\"1.13.1\",\n",
" # py_version=\"py39\",\n",
" sagemaker_session=sagemaker_session\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "6b981409",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"if local_mode: \n",
" data_capture_config = None\n",
"else:\n",
" from sagemaker.model_monitor import DataCaptureConfig\n",
"\n",
" data_capture_config = DataCaptureConfig(\n",
" enable_capture=True,\n",
" sampling_percentage=100,\n",
" destination_s3_uri=monitor_output\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "7ae28e0c",
"metadata": {
"collapsed": true,
"jupyter": {
"outputs_hidden": true
},
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:botocore.credentials:Found credentials from IAM Role: BaseNotebookInstanceEc2InstanceRole\n",
"INFO:botocore.credentials:Found credentials from IAM Role: BaseNotebookInstanceEc2InstanceRole\n",
"INFO:botocore.credentials:Found credentials from IAM Role: BaseNotebookInstanceEc2InstanceRole\n",
"INFO:sagemaker:Creating model with name: nemo-test-inference-2023-03-22-11-38-32-323\n",
"INFO:sagemaker:Creating endpoint-config with name nemo-asr-nemo-experiments-0322-11371679485066\n",
"INFO:sagemaker:Creating endpoint with name nemo-asr-nemo-experiments-0322-11371679485066\n",
"INFO:sagemaker.local.image:serving\n",
"INFO:sagemaker.local.image:creating hosting dir in /tmp/tmpkdalsucj\n",
"INFO:botocore.credentials:Found credentials from IAM Role: BaseNotebookInstanceEc2InstanceRole\n",
"INFO:sagemaker.local.image:No AWS credentials found in session but credentials from EC2 Metadata Service are available.\n",
"INFO:sagemaker.local.image:docker compose file: \n",
"networks:\n",
" sagemaker-local:\n",
" name: sagemaker-local\n",
"services:\n",
" algo-1-62uxc:\n",
" command: serve\n",
" container_name: w00uaj7h7n-algo-1-62uxc\n",
" deploy:\n",
" resources:\n",
" reservations:\n",
" devices:\n",
" - capabilities:\n",
" - gpu\n",
" environment:\n",
" - '[Masked]'\n",
" - '[Masked]'\n",
" - '[Masked]'\n",
" - '[Masked]'\n",
" image: 419974056037.dkr.ecr.us-east-1.amazonaws.com/nemo-test-inference\n",
" networks:\n",
" sagemaker-local:\n",
" aliases:\n",
" - algo-1-62uxc\n",
" ports:\n",
" - 8080:8080\n",
" stdin_open: true\n",
" tty: true\n",
" volumes:\n",
" - /tmp/tmpme1pu6_2:/opt/ml/model\n",
"version: '2.3'\n",
"\n",
"INFO:sagemaker.local.image:docker command: docker-compose -f /tmp/tmpkdalsucj/docker-compose.yaml up --build --abort-on-container-exit\n",
"INFO:sagemaker.local.entities:Checking if serving container is up, attempt: 5\n",
"WARNING:urllib3.connectionpool:Retrying (Retry(total=2, connect=None, read=None, redirect=None, status=None)) after connection broken by 'NewConnectionError(': Failed to establish a new connection: [Errno 111] Connection refused')': /ping\n",
"WARNING:urllib3.connectionpool:Retrying (Retry(total=1, connect=None, read=None, redirect=None, status=None)) after connection broken by 'NewConnectionError(': Failed to establish a new connection: [Errno 111] Connection refused')': /ping\n",
"WARNING:urllib3.connectionpool:Retrying (Retry(total=0, connect=None, read=None, redirect=None, status=None)) after connection broken by 'NewConnectionError(': Failed to establish a new connection: [Errno 111] Connection refused')': /ping\n",
"INFO:sagemaker.local.entities:Container still not up, got: -1\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Attaching to w00uaj7h7n-algo-1-62uxc\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m ['torchserve', '--start', '--model-store', '/.sagemaker/ts/models', '--ts-config', '/etc/sagemaker-ts.properties', '--log-config', '/opt/conda/lib/python3.9/site-packages/sagemaker_pytorch_serving_container/etc/log4j2.xml', '--models', 'model=/opt/ml/model']\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m WARNING: sun.reflect.Reflection.getCallerClass is not supported. This will impact performance.\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Warning: Nashorn engine is planned to be removed from a future JDK release\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Warning: Nashorn engine is planned to be removed from a future JDK release\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:44,658 [INFO ] main org.pytorch.serve.servingsdk.impl.PluginsManager - Initializing plugins manager...\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:44,763 [INFO ] main org.pytorch.serve.ModelServer - \n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Torchserve version: 0.7.0\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m TS Home: /opt/conda/lib/python3.9/site-packages\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Current directory: /\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Temp directory: /home/model-server/tmp\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Metrics config path: /opt/conda/lib/python3.9/site-packages/ts/configs/metrics.yaml\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Number of GPUs: 1\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Number of CPUs: 8\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Max heap size: 15322 M\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Python executable: /opt/conda/bin/python3.9\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Config file: /etc/sagemaker-ts.properties\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Inference address: http://0.0.0.0:8080\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Management address: http://0.0.0.0:8080\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Metrics address: http://127.0.0.1:8082\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Model Store: /.sagemaker/ts/models\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Initial Models: model=/opt/ml/model\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Log dir: /logs\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Metrics dir: /logs\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Netty threads: 0\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Netty client threads: 0\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Default workers per model: 1\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Blacklist Regex: N/A\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Maximum Response Size: 6553500\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Maximum Request Size: 6553500\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Limit Maximum Image Pixels: true\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Prefer direct buffer: false\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Allowed Urls: [file://.*|http(s)?://.*]\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Custom python dependency for model allowed: false\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Metrics report format: prometheus\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Enable metrics API: true\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Workflow Store: /.sagemaker/ts/models\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Model config: N/A\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:44,772 [INFO ] main org.pytorch.serve.servingsdk.impl.PluginsManager - Loading snapshot serializer plugin...\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:44,801 [INFO ] main org.pytorch.serve.ModelServer - Loading initial models: /opt/ml/model\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:44,804 [WARN ] main org.pytorch.serve.archive.model.ModelArchive - Model archive version is not defined. Please upgrade to torch-model-archiver 0.2.0 or higher\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:44,805 [WARN ] main org.pytorch.serve.archive.model.ModelArchive - Model archive createdOn is not defined. Please upgrade to torch-model-archiver 0.2.0 or higher\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:44,806 [INFO ] main org.pytorch.serve.wlm.ModelManager - Model model loaded.\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:44,819 [INFO ] main org.pytorch.serve.ModelServer - Initialize Inference server with: EpollServerSocketChannel.\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:44,940 [INFO ] main org.pytorch.serve.ModelServer - Inference API bind to: http://0.0.0.0:8080\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:44,941 [INFO ] main org.pytorch.serve.ModelServer - Initialize Metrics server with: EpollServerSocketChannel.\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:44,943 [INFO ] main org.pytorch.serve.ModelServer - Metrics API bind to: http://127.0.0.1:8082\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:sagemaker.local.entities:Checking if serving container is up, attempt: 10\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Model server started.\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,226 [WARN ] pool-3-thread-1 org.pytorch.serve.metrics.MetricCollector - worker pid is not available yet.\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,408 [INFO ] pool-2-thread-2 ACCESS_LOG - /172.19.0.1:42912 \"GET /ping HTTP/1.1\" 200 45\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,412 [INFO ] pool-2-thread-2 TS_METRICS - Requests2XX.Count:1|#Level:Host|#hostname:226f672518e1,timestamp:1679485125\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,863 [INFO ] pool-3-thread-1 TS_METRICS - CPUUtilization.Percent:0.0|#Level:Host|#hostname:226f672518e1,timestamp:1679485125\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,864 [INFO ] pool-3-thread-1 TS_METRICS - DiskAvailable.Gigabytes:445.66086196899414|#Level:Host|#hostname:226f672518e1,timestamp:1679485125\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,864 [INFO ] pool-3-thread-1 TS_METRICS - DiskUsage.Gigabytes:32.492488861083984|#Level:Host|#hostname:226f672518e1,timestamp:1679485125\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,865 [INFO ] pool-3-thread-1 TS_METRICS - DiskUtilization.Percent:6.8|#Level:Host|#hostname:226f672518e1,timestamp:1679485125\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,865 [INFO ] pool-3-thread-1 TS_METRICS - GPUMemoryUtilization.Percent:0.0|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485125\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,865 [INFO ] pool-3-thread-1 TS_METRICS - GPUMemoryUsed.Megabytes:0|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485125\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,866 [INFO ] pool-3-thread-1 TS_METRICS - GPUUtilization.Percent:0|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485125\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,866 [INFO ] pool-3-thread-1 TS_METRICS - MemoryAvailable.Megabytes:57296.1328125|#Level:Host|#hostname:226f672518e1,timestamp:1679485125\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,866 [INFO ] pool-3-thread-1 TS_METRICS - MemoryUsed.Megabytes:3298.69921875|#Level:Host|#hostname:226f672518e1,timestamp:1679485125\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,867 [INFO ] pool-3-thread-1 TS_METRICS - MemoryUtilization.Percent:6.5|#Level:Host|#hostname:226f672518e1,timestamp:1679485125\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:46,293 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - Listening on port: /home/model-server/tmp/.ts.sock.9000\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:46,299 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - Successfully loaded /opt/conda/lib/python3.9/site-packages/ts/configs/metrics.yaml.\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:46,300 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - [PID]50\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:46,300 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - Torch worker started.\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:46,301 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - Python runtime: 3.9.13\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:46,306 [INFO ] W-9000-model_1.0 org.pytorch.serve.wlm.WorkerThread - Connecting to: /home/model-server/tmp/.ts.sock.9000\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:46,313 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - Connection accepted: /home/model-server/tmp/.ts.sock.9000.\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:46,317 [INFO ] W-9000-model_1.0 org.pytorch.serve.wlm.WorkerThread - Flushing req. to backend at: 1679485126317\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:46,340 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - model_name: model, batchSize: 1\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:48,257 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - Created a temporary directory at /home/model-server/tmp/tmpl0pkjbc2\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:48,258 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - Writing /home/model-server/tmp/tmpl0pkjbc2/_remote_module_non_scriptable.py\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:48,394 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - [NeMo W 2023-03-22 11:38:48 optimizers:54] Apex was not found. Using the lamb or fused_adam optimizer will error out.\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:49,476 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - [NeMo W 2023-03-22 11:38:49 experimental:27] Module is experimental, not ready for production and is not fully supported. Use at your own risk.\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,035 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - generated new fontManager\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,655 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - ***************** model_fn ********************\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,656 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - Lightning automatically upgraded your loaded checkpoint from v1.8.6 to v1.9.4. To apply the upgrade to your files permanently, run `python -m pytorch_lightning.utilities.upgrade_checkpoint --file Conformer-CTC-Char1/checkpoints/Conformer-CTC-Char1--val_wer=1.0000-epoch=2-last.ckpt`\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,732 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - [NeMo W 2023-03-22 11:38:50 modelPT:161] If you intend to do training or fine-tuning, please call the ModelPT.setup_training_data() method and provide a valid configuration file to setup the train data loader.\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,732 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - Train config : \n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,733 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - manifest_filepath: /opt/ml/input/data/training/an4/train_manifest.json\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,733 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - labels:\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,733 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - ' '\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,734 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - a\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,734 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - b\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,734 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - c\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,735 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - d\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,735 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - e\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,735 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - f\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,736 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - g\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,736 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - h\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,737 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - i\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,737 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - j\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,737 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - k\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,738 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - l\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,738 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - m\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,738 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - 'n'\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,739 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - o\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,739 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - p\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,740 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - q\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,740 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - r\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,740 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - s\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,741 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - t\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,741 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - u\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,741 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - v\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,742 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - w\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,742 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - x\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,743 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - 'y'\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,743 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - z\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,743 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - ''''\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,744 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - sample_rate: 16000\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,744 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - batch_size: 16\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,744 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - shuffle: true\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,745 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - num_workers: 8\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,745 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - pin_memory: true\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,745 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - trim_silence: false\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,745 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - [NeMo I 2023-03-22 11:38:50 features:287] PADDING: 0\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,746 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - max_duration: 16.7\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,746 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - min_duration: 0.1\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,747 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - is_tarred: false\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,747 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - tarred_audio_filepaths: null\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,747 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - shuffle_n: 2048\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,748 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - bucketing_strategy: synced_randomized\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,748 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - bucketing_batch_size: null\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,749 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - \n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,749 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - [NeMo W 2023-03-22 11:38:50 modelPT:168] If you intend to do validation, please call the ModelPT.setup_validation_data() or ModelPT.setup_multiple_validation_data() method and provide a valid configuration file to setup the validation data loader(s). \n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,750 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - Validation config : \n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,750 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - manifest_filepath: /opt/ml/input/data/testing/an4/test_manifest.json\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,751 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - labels:\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,751 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - ' '\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,752 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - a\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,752 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - b\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,752 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - c\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,753 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - d\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,753 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - e\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,753 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - f\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,754 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - g\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,754 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - h\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,754 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - i\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,755 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - j\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,755 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - k\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,755 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - l\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,756 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - m\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,756 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - 'n'\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,756 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - o\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,757 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - p\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,757 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - q\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,757 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - r\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,758 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - s\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,758 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - t\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,758 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - u\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,759 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - v\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,759 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - w\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,759 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - x\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,759 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - 'y'\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,760 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - z\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,760 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - ''''\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,760 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - sample_rate: 16000\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,761 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - batch_size: 16\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,761 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - shuffle: false\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,761 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - num_workers: 8\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,761 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - pin_memory: true\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,762 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - \n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,762 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - [NeMo W 2023-03-22 11:38:50 modelPT:174] Please call the ModelPT.setup_test_data() or ModelPT.setup_multiple_test_data() method and provide a valid configuration file to setup the test data loader(s).\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,763 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - Test config : \n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,763 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - manifest_filepath: null\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,763 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - labels:\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,764 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - ' '\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,764 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - a\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,764 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - b\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,765 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - c\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,765 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - d\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,765 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - e\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,765 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - f\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,766 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - g\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,766 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - h\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,766 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - i\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,766 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - j\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,767 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - k\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,767 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - l\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,767 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - m\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,768 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - 'n'\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,768 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - o\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,768 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - p\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,769 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - q\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,769 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - r\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,769 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - s\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,769 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - t\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,770 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - u\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,770 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - v\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,770 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - w\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,770 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - x\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,771 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - 'y'\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,771 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - z\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,771 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - ''''\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,771 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - sample_rate: 16000\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,772 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - batch_size: 16\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,772 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - shuffle: false\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,772 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - num_workers: 8\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,772 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - pin_memory: true\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,953 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - [NeMo I 2023-03-22 11:38:50 ctc_models:64] \n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,954 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - Replacing placeholder number of classes (-1) with actual number of classes - 28\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,965 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - [NeMo I 2023-03-22 11:38:50 conv_asr:428] num_classes of ConvASRDecoder is set to the size of the vocabulary: 28.\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:52,675 [INFO ] W-9000-model_1.0 org.pytorch.serve.wlm.WorkerThread - Backend response time: 6336\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:52,676 [INFO ] W-9000-model_1.0 TS_METRICS - W-9000-model_1.0.ms:7863|#Level:Host|#hostname:226f672518e1,timestamp:1679485132\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:52,677 [INFO ] W-9000-model_1.0 TS_METRICS - WorkerThreadTime.ms:23|#Level:Host|#hostname:226f672518e1,timestamp:1679485132\n",
"!\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:39:45,747 [INFO ] pool-3-thread-1 TS_METRICS - CPUUtilization.Percent:50.0|#Level:Host|#hostname:226f672518e1,timestamp:1679485185\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:39:45,747 [INFO ] pool-3-thread-1 TS_METRICS - DiskAvailable.Gigabytes:445.6606903076172|#Level:Host|#hostname:226f672518e1,timestamp:1679485185\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:39:45,748 [INFO ] pool-3-thread-1 TS_METRICS - DiskUsage.Gigabytes:32.49266052246094|#Level:Host|#hostname:226f672518e1,timestamp:1679485185\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:39:45,748 [INFO ] pool-3-thread-1 TS_METRICS - DiskUtilization.Percent:6.8|#Level:Host|#hostname:226f672518e1,timestamp:1679485185\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:39:45,748 [INFO ] pool-3-thread-1 TS_METRICS - GPUMemoryUtilization.Percent:5.364990234375|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485185\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:39:45,749 [INFO ] pool-3-thread-1 TS_METRICS - GPUMemoryUsed.Megabytes:879|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485185\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:39:45,749 [INFO ] pool-3-thread-1 TS_METRICS - GPUUtilization.Percent:0|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485185\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:39:45,749 [INFO ] pool-3-thread-1 TS_METRICS - MemoryAvailable.Megabytes:55793.296875|#Level:Host|#hostname:226f672518e1,timestamp:1679485185\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:39:45,750 [INFO ] pool-3-thread-1 TS_METRICS - MemoryUsed.Megabytes:4791.53515625|#Level:Host|#hostname:226f672518e1,timestamp:1679485185\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:39:45,750 [INFO ] pool-3-thread-1 TS_METRICS - MemoryUtilization.Percent:9.0|#Level:Host|#hostname:226f672518e1,timestamp:1679485185\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:40:45,754 [INFO ] pool-3-thread-1 TS_METRICS - CPUUtilization.Percent:0.0|#Level:Host|#hostname:226f672518e1,timestamp:1679485245\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:40:45,755 [INFO ] pool-3-thread-1 TS_METRICS - DiskAvailable.Gigabytes:445.6606559753418|#Level:Host|#hostname:226f672518e1,timestamp:1679485245\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:40:45,755 [INFO ] pool-3-thread-1 TS_METRICS - DiskUsage.Gigabytes:32.49269485473633|#Level:Host|#hostname:226f672518e1,timestamp:1679485245\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:40:45,755 [INFO ] pool-3-thread-1 TS_METRICS - DiskUtilization.Percent:6.8|#Level:Host|#hostname:226f672518e1,timestamp:1679485245\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:40:45,755 [INFO ] pool-3-thread-1 TS_METRICS - GPUMemoryUtilization.Percent:5.364990234375|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485245\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:40:45,755 [INFO ] pool-3-thread-1 TS_METRICS - GPUMemoryUsed.Megabytes:879|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485245\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:40:45,756 [INFO ] pool-3-thread-1 TS_METRICS - GPUUtilization.Percent:0|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485245\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:40:45,756 [INFO ] pool-3-thread-1 TS_METRICS - MemoryAvailable.Megabytes:55793.2265625|#Level:Host|#hostname:226f672518e1,timestamp:1679485245\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:40:45,756 [INFO ] pool-3-thread-1 TS_METRICS - MemoryUsed.Megabytes:4791.60546875|#Level:Host|#hostname:226f672518e1,timestamp:1679485245\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:40:45,756 [INFO ] pool-3-thread-1 TS_METRICS - MemoryUtilization.Percent:9.0|#Level:Host|#hostname:226f672518e1,timestamp:1679485245\n"
]
}
],
"source": [
"experiment_name = pm.get_params(key=prefix + \"-EXPERI-NAME\")\n",
"create_experiment(experiment_name)\n",
"job_name = create_trial(experiment_name)\n",
"\n",
"\n",
"predictor = model.deploy(\n",
" initial_instance_count=1,\n",
" instance_type=inference_instance_type,\n",
" data_capture_config=data_capture_config,\n",
" endpoint_name=job_name,\n",
" experiment_config={\n",
" 'TrialName': job_name,\n",
" 'TrialComponentDisplayName': job_name,\n",
" }\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "10b2bb45",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'/home/ec2-user/SageMaker/nemo-on-sagemaker/1.building-component/data/preprocessing/an4/wav/an4test_clstk/fcaw/an406-fcaw-b.wav'"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"paths2audio_files = f\"{os.getcwd()}/data/preprocessing/an4/wav/an4test_clstk/fcaw/an406-fcaw-b.wav\"\n",
"paths2audio_files"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "ecc9c485",
"metadata": {
"collapsed": true,
"jupyter": {
"outputs_hidden": true
},
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:45,763 [INFO ] pool-3-thread-2 TS_METRICS - CPUUtilization.Percent:50.0|#Level:Host|#hostname:226f672518e1,timestamp:1679485305\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:45,765 [INFO ] pool-3-thread-2 TS_METRICS - DiskAvailable.Gigabytes:445.66065979003906|#Level:Host|#hostname:226f672518e1,timestamp:1679485305\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:45,765 [INFO ] pool-3-thread-2 TS_METRICS - DiskUsage.Gigabytes:32.49269104003906|#Level:Host|#hostname:226f672518e1,timestamp:1679485305\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:45,766 [INFO ] pool-3-thread-2 TS_METRICS - DiskUtilization.Percent:6.8|#Level:Host|#hostname:226f672518e1,timestamp:1679485305\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:45,766 [INFO ] pool-3-thread-2 TS_METRICS - GPUMemoryUtilization.Percent:5.364990234375|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485305\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:45,766 [INFO ] pool-3-thread-2 TS_METRICS - GPUMemoryUsed.Megabytes:879|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485305\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:45,766 [INFO ] pool-3-thread-2 TS_METRICS - GPUUtilization.Percent:0|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485305\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:45,766 [INFO ] pool-3-thread-2 TS_METRICS - MemoryAvailable.Megabytes:55720.03125|#Level:Host|#hostname:226f672518e1,timestamp:1679485305\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:45,767 [INFO ] pool-3-thread-2 TS_METRICS - MemoryUsed.Megabytes:4864.80078125|#Level:Host|#hostname:226f672518e1,timestamp:1679485305\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:45,767 [INFO ] pool-3-thread-2 TS_METRICS - MemoryUtilization.Percent:9.1|#Level:Host|#hostname:226f672518e1,timestamp:1679485305\n"
]
},
{
"data": {
"text/html": [
"\n",
" \n",
" "
],
"text/plain": [
""
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import librosa\n",
"import IPython.display as ipd\n",
"\n",
"# Load and listen to the audio file\n",
"audio, sample_rate = librosa.load(paths2audio_files)\n",
"\n",
"ipd.Audio(paths2audio_files, rate=sample_rate)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "d9e00117-a789-46ba-8d57-78af35c6a485",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from sagemaker.predictor import Predictor"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "97eb42b8-fb51-4f99-bfeb-1017ca99b7c4",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# predictor = Predictor('nemo-cyj-nemo-experiments-0322-10501679482211')"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "000a6dd0",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from sagemaker.serializers import DataSerializer\n",
"predictor.serializer = DataSerializer()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "ef0b6896",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:56,559 [INFO ] W-9000-model_1.0 org.pytorch.serve.wlm.WorkerThread - Flushing req. to backend at: 1679485316559\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:56,562 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - Backend received inference at: 1679485316\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:56,579 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - ***************** 1input_fn ********************\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:56,579 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - \n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:56,579 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - ***************** predict_fn ********************\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:56,580 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - \n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:57,849 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - Transcribing: 0%| | 0/1 [00:00, ?it/s]\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:57,850 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - Transcribing: 100%|██████████| 1/1 [00:01<00:00, 1.27s/it]\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:57,851 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - Transcribing: 100%|██████████| 1/1 [00:01<00:00, 1.27s/it]\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:57,852 [INFO ] W-9000-model_1.0-stdout MODEL_METRICS - PredictionTime.Milliseconds:1290.17|#ModelName:model,Level:Model|#hostname:226f672518e1,requestID:d438721c-5e9b-4acd-93da-3f07abff8386,timestamp:1679485317\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:57,854 [INFO ] W-9000-model_1.0 org.pytorch.serve.wlm.WorkerThread - Backend response time: 1293\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:57,854 [INFO ] W-9000-model_1.0 ACCESS_LOG - /172.19.0.1:57866 \"POST /invocations HTTP/1.1\" 200 1305\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:57,855 [INFO ] W-9000-model_1.0 TS_METRICS - Requests2XX.Count:1|#Level:Host|#hostname:226f672518e1,timestamp:1679485125\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:57,855 [INFO ] W-9000-model_1.0 TS_METRICS - QueueTime.ms:0|#Level:Host|#hostname:226f672518e1,timestamp:1679485317\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:57,855 [INFO ] W-9000-model_1.0 TS_METRICS - WorkerThreadTime.ms:3|#Level:Host|#hostname:226f672518e1,timestamp:1679485317\n"
]
},
{
"data": {
"text/plain": [
"array({'result': [' ']}, dtype=object)"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predictor.predict(paths2audio_files)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "fae1aa6b",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'Store suceess'"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pm.put_params(key=\"ENDPOINT-NAME\", value=job_name, overwrite=True)\n",
"pm.put_params(key=\"MONITOR-OUTPUT\", value=monitor_output, overwrite=True)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "03fe5507-3551-417d-9b1e-0ca6a17a6521",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ENDPOINT-NAME: nemo-asr-nemo-experiments-0322-11371679485066\n",
"MONITOR-OUTPUT: s3://sm-nemo-ramp/nemo-asr/inference/monitor_output\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:42:45,754 [INFO ] pool-3-thread-2 TS_METRICS - CPUUtilization.Percent:0.0|#Level:Host|#hostname:226f672518e1,timestamp:1679485365\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:42:45,754 [INFO ] pool-3-thread-2 TS_METRICS - DiskAvailable.Gigabytes:445.9645690917969|#Level:Host|#hostname:226f672518e1,timestamp:1679485365\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:42:45,754 [INFO ] pool-3-thread-2 TS_METRICS - DiskUsage.Gigabytes:32.18878173828125|#Level:Host|#hostname:226f672518e1,timestamp:1679485365\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:42:45,755 [INFO ] pool-3-thread-2 TS_METRICS - DiskUtilization.Percent:6.7|#Level:Host|#hostname:226f672518e1,timestamp:1679485365\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:42:45,755 [INFO ] pool-3-thread-2 TS_METRICS - GPUMemoryUtilization.Percent:7.891845703125|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485365\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:42:45,755 [INFO ] pool-3-thread-2 TS_METRICS - GPUMemoryUsed.Megabytes:1293|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485365\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:42:45,756 [INFO ] pool-3-thread-2 TS_METRICS - GPUUtilization.Percent:0|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485365\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:42:45,756 [INFO ] pool-3-thread-2 TS_METRICS - MemoryAvailable.Megabytes:54867.03125|#Level:Host|#hostname:226f672518e1,timestamp:1679485365\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:42:45,756 [INFO ] pool-3-thread-2 TS_METRICS - MemoryUsed.Megabytes:5710.79296875|#Level:Host|#hostname:226f672518e1,timestamp:1679485365\n",
"\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:42:45,756 [INFO ] pool-3-thread-2 TS_METRICS - MemoryUtilization.Percent:10.5|#Level:Host|#hostname:226f672518e1,timestamp:1679485365\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Exception in thread Thread-5:\n",
"Traceback (most recent call last):\n",
" File \"/home/ec2-user/anaconda3/envs/pytorch_p39/lib/python3.9/site-packages/sagemaker/local/image.py\", line 854, in run\n",
" _stream_output(self.process)\n",
" File \"/home/ec2-user/anaconda3/envs/pytorch_p39/lib/python3.9/site-packages/sagemaker/local/image.py\", line 916, in _stream_output\n",
" raise RuntimeError(\"Process exited with code: %s\" % exit_code)\n",
"RuntimeError: Process exited with code: 137\n",
"\n",
"During handling of the above exception, another exception occurred:\n",
"\n",
"Traceback (most recent call last):\n",
" File \"/home/ec2-user/anaconda3/envs/pytorch_p39/lib/python3.9/threading.py\", line 980, in _bootstrap_inner\n",
" self.run()\n",
" File \"/home/ec2-user/anaconda3/envs/pytorch_p39/lib/python3.9/site-packages/sagemaker/local/image.py\", line 859, in run\n",
" raise RuntimeError(msg)\n",
"RuntimeError: Failed to run: ['docker-compose', '-f', '/tmp/tmpkdalsucj/docker-compose.yaml', 'up', '--build', '--abort-on-container-exit'], Process exited with code: 137\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[36mw00uaj7h7n-algo-1-62uxc exited with code 137\n",
"\u001b[0mAborting on container exit...\n"
]
}
],
"source": [
"print (f'ENDPOINT-NAME: {pm.get_params(key=\"ENDPOINT-NAME\")}')\n",
"print (f'MONITOR-OUTPUT: {pm.get_params(key=\"MONITOR-OUTPUT\")}')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7395fdee-1785-461f-ae82-5931b8eb4e2b",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# predictor.delete_endpoint()"
]
}
],
"metadata": {
"instance_type": "ml.t3.medium",
"kernelspec": {
"display_name": "conda_pytorch_p39",
"language": "python",
"name": "conda_pytorch_p39"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
}
},
"nbformat": 4,
"nbformat_minor": 5
}