{ "cells": [ { "cell_type": "markdown", "id": "9f0916d5", "metadata": {}, "source": [ "# Model Deployment \n", "* Container: codna_pytorch_py39" ] }, { "cell_type": "markdown", "id": "95f12c06", "metadata": {}, "source": [ "## AutoReload" ] }, { "cell_type": "code", "execution_count": 1, "id": "87188bfb", "metadata": { "tags": [] }, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "markdown", "id": "122ce182", "metadata": {}, "source": [ "## 1. parameter store 설정" ] }, { "cell_type": "code", "execution_count": 2, "id": "67e463c3", "metadata": { "tags": [] }, "outputs": [], "source": [ "import boto3\n", "from utils.ssm import parameter_store" ] }, { "cell_type": "code", "execution_count": 3, "id": "615db888", "metadata": { "tags": [] }, "outputs": [], "source": [ "strRegionName=boto3.Session().region_name\n", "pm = parameter_store(strRegionName)\n", "prefix = pm.get_params(key=\"PREFIX\")" ] }, { "cell_type": "markdown", "id": "40253673", "metadata": {}, "source": [ "## 2.package import for model deployment" ] }, { "cell_type": "code", "execution_count": 4, "id": "f69d0ea4", "metadata": { "tags": [] }, "outputs": [], "source": [ "import os\n", "import sagemaker\n", "from sagemaker.pytorch.model import PyTorchModel" ] }, { "cell_type": "code", "execution_count": 5, "id": "a494fa65", "metadata": { "tags": [] }, "outputs": [], "source": [ "from time import strftime\n", "from smexperiments.trial import Trial\n", "from smexperiments.experiment import Experiment" ] }, { "cell_type": "code", "execution_count": 6, "id": "7caa5ba2", "metadata": { "tags": [] }, "outputs": [], "source": [ "def create_experiment(experiment_name):\n", " try:\n", " sm_experiment = Experiment.load(experiment_name)\n", " except:\n", " sm_experiment = Experiment.create(experiment_name=experiment_name)" ] }, { "cell_type": "code", "execution_count": 7, "id": "875fd63c", "metadata": { "tags": [] }, "outputs": [], "source": [ "def create_trial(experiment_name):\n", " create_date = strftime(\"%m%d-%H%M%s\")\n", " sm_trial = Trial.create(trial_name=f'{experiment_name}-{create_date}',\n", " experiment_name=experiment_name)\n", "\n", " job_name = f'{sm_trial.trial_name}'\n", " return job_name" ] }, { "cell_type": "code", "execution_count": 8, "id": "e416e7e3", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "sagemaker_role_arn: arn:aws:iam::419974056037:role/service-role/AmazonSageMaker-ExecutionRole-20221206T163436\n", "model_artifact_s3_uri: s3://sm-nemo-ramp/nemo-asr/training/model-output/nemo-asr-nemo-experiments-0322-10521679482352/output/model.tar.gz\n", "inf_image_uri: 419974056037.dkr.ecr.us-east-1.amazonaws.com/nemo-test-inference\n", "code_location: s3://sm-nemo-ramp/nemo-asr/inference/backup_codes\n", "monitor_output: s3://sm-nemo-ramp/nemo-asr/inference/monitor_output\n", "git_config: {'repo': 'https://git-codecommit.us-east-1.amazonaws.com/v1/repos/nemo-code', 'branch': 'main', 'username': 'dongjin-at-419974056037', 'password': 'wtLv/fP4ESjBDnyW5xgqFPGR0dMTIyK5/8gK6IS1Zsg='}\n" ] } ], "source": [ "local_mode = True\n", "\n", "if local_mode: \n", " inference_instance_type = 'local_gpu'\n", " \n", " import os\n", " from sagemaker.local import LocalSession\n", " \n", " sagemaker_session = LocalSession()\n", " sagemaker_session.config = {'local': {'local_code': True}}\n", " \n", "else:\n", " inference_instance_type = \"ml.g4dn.xlarge\"\n", " sagemaker_session = sagemaker.Session()\n", " \n", "\n", "\n", "sagemaker_role_arn = pm.get_params(key=prefix + '-SAGEMAKER-ROLE-ARN') \n", "bucket_name = pm.get_params(key=prefix + '-BUCKET')\n", "model_artifact_s3_uri = pm.get_params(key=prefix + '-MODEL-PATH')\n", "inf_image_uri = pm.get_params(key=''.join([prefix, '-INF-IMAGE-URI']))\n", "\n", "code_location= os.path.join(\n", " \"s3://{}\".format(bucket_name),\n", " prefix,\n", " \"inference\",\n", " \"backup_codes\"\n", ")\n", "\n", "monitor_output= os.path.join(\n", " \"s3://{}\".format(bucket_name),\n", " prefix,\n", " \"inference\",\n", " \"monitor_output\"\n", ")\n", "\n", "git_config = {\n", " 'repo': f'https://{pm.get_params(key=\"-\".join([prefix, \"CODE_REPO\"]))}',\n", " 'branch': 'main',\n", " 'username': pm.get_params(key=\"-\".join([prefix, \"CODECOMMIT-USERNAME\"]), enc=True),\n", " 'password': pm.get_params(key=\"-\".join([prefix, \"CODECOMMIT-PWD\"]), enc=True)\n", "} \n", "\n", "print (f\"sagemaker_role_arn: {sagemaker_role_arn}\")\n", "print (f\"model_artifact_s3_uri: {model_artifact_s3_uri}\")\n", "print (f\"inf_image_uri: {inf_image_uri}\")\n", "print (f\"code_location: {code_location}\")\n", "print (f\"monitor_output: {monitor_output}\")\n", "print (f\"git_config: {git_config}\")" ] }, { "cell_type": "markdown", "id": "4f5ef566", "metadata": {}, "source": [ "* Define inference job" ] }, { "cell_type": "code", "execution_count": 10, "id": "36a23bac", "metadata": { "tags": [] }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Cloning into '/tmp/tmpz7ocy0g2'...\n", "remote: Counting objects: 20, done. \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Your branch is up to date with 'origin/main'.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Already on 'main'\n" ] } ], "source": [ "model = PyTorchModel(\n", " entry_point='predictor.py',\n", " source_dir='./code',\n", " git_config=git_config,\n", " code_location=code_location,\n", " model_data=model_artifact_s3_uri,\n", " role=sagemaker_role_arn,\n", " image_uri=inf_image_uri,\n", " # framework_version=\"1.13.1\",\n", " # py_version=\"py39\",\n", " sagemaker_session=sagemaker_session\n", ")" ] }, { "cell_type": "code", "execution_count": 11, "id": "6b981409", "metadata": { "tags": [] }, "outputs": [], "source": [ "if local_mode: \n", " data_capture_config = None\n", "else:\n", " from sagemaker.model_monitor import DataCaptureConfig\n", "\n", " data_capture_config = DataCaptureConfig(\n", " enable_capture=True,\n", " sampling_percentage=100,\n", " destination_s3_uri=monitor_output\n", " )" ] }, { "cell_type": "code", "execution_count": 12, "id": "7ae28e0c", "metadata": { "collapsed": true, "jupyter": { "outputs_hidden": true }, "tags": [] }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "INFO:botocore.credentials:Found credentials from IAM Role: BaseNotebookInstanceEc2InstanceRole\n", "INFO:botocore.credentials:Found credentials from IAM Role: BaseNotebookInstanceEc2InstanceRole\n", "INFO:botocore.credentials:Found credentials from IAM Role: BaseNotebookInstanceEc2InstanceRole\n", "INFO:sagemaker:Creating model with name: nemo-test-inference-2023-03-22-11-38-32-323\n", "INFO:sagemaker:Creating endpoint-config with name nemo-asr-nemo-experiments-0322-11371679485066\n", "INFO:sagemaker:Creating endpoint with name nemo-asr-nemo-experiments-0322-11371679485066\n", "INFO:sagemaker.local.image:serving\n", "INFO:sagemaker.local.image:creating hosting dir in /tmp/tmpkdalsucj\n", "INFO:botocore.credentials:Found credentials from IAM Role: BaseNotebookInstanceEc2InstanceRole\n", "INFO:sagemaker.local.image:No AWS credentials found in session but credentials from EC2 Metadata Service are available.\n", "INFO:sagemaker.local.image:docker compose file: \n", "networks:\n", " sagemaker-local:\n", " name: sagemaker-local\n", "services:\n", " algo-1-62uxc:\n", " command: serve\n", " container_name: w00uaj7h7n-algo-1-62uxc\n", " deploy:\n", " resources:\n", " reservations:\n", " devices:\n", " - capabilities:\n", " - gpu\n", " environment:\n", " - '[Masked]'\n", " - '[Masked]'\n", " - '[Masked]'\n", " - '[Masked]'\n", " image: 419974056037.dkr.ecr.us-east-1.amazonaws.com/nemo-test-inference\n", " networks:\n", " sagemaker-local:\n", " aliases:\n", " - algo-1-62uxc\n", " ports:\n", " - 8080:8080\n", " stdin_open: true\n", " tty: true\n", " volumes:\n", " - /tmp/tmpme1pu6_2:/opt/ml/model\n", "version: '2.3'\n", "\n", "INFO:sagemaker.local.image:docker command: docker-compose -f /tmp/tmpkdalsucj/docker-compose.yaml up --build --abort-on-container-exit\n", "INFO:sagemaker.local.entities:Checking if serving container is up, attempt: 5\n", "WARNING:urllib3.connectionpool:Retrying (Retry(total=2, connect=None, read=None, redirect=None, status=None)) after connection broken by 'NewConnectionError(': Failed to establish a new connection: [Errno 111] Connection refused')': /ping\n", "WARNING:urllib3.connectionpool:Retrying (Retry(total=1, connect=None, read=None, redirect=None, status=None)) after connection broken by 'NewConnectionError(': Failed to establish a new connection: [Errno 111] Connection refused')': /ping\n", "WARNING:urllib3.connectionpool:Retrying (Retry(total=0, connect=None, read=None, redirect=None, status=None)) after connection broken by 'NewConnectionError(': Failed to establish a new connection: [Errno 111] Connection refused')': /ping\n", "INFO:sagemaker.local.entities:Container still not up, got: -1\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Attaching to w00uaj7h7n-algo-1-62uxc\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m ['torchserve', '--start', '--model-store', '/.sagemaker/ts/models', '--ts-config', '/etc/sagemaker-ts.properties', '--log-config', '/opt/conda/lib/python3.9/site-packages/sagemaker_pytorch_serving_container/etc/log4j2.xml', '--models', 'model=/opt/ml/model']\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m WARNING: sun.reflect.Reflection.getCallerClass is not supported. This will impact performance.\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Warning: Nashorn engine is planned to be removed from a future JDK release\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Warning: Nashorn engine is planned to be removed from a future JDK release\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:44,658 [INFO ] main org.pytorch.serve.servingsdk.impl.PluginsManager - Initializing plugins manager...\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:44,763 [INFO ] main org.pytorch.serve.ModelServer - \n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Torchserve version: 0.7.0\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m TS Home: /opt/conda/lib/python3.9/site-packages\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Current directory: /\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Temp directory: /home/model-server/tmp\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Metrics config path: /opt/conda/lib/python3.9/site-packages/ts/configs/metrics.yaml\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Number of GPUs: 1\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Number of CPUs: 8\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Max heap size: 15322 M\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Python executable: /opt/conda/bin/python3.9\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Config file: /etc/sagemaker-ts.properties\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Inference address: http://0.0.0.0:8080\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Management address: http://0.0.0.0:8080\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Metrics address: http://127.0.0.1:8082\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Model Store: /.sagemaker/ts/models\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Initial Models: model=/opt/ml/model\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Log dir: /logs\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Metrics dir: /logs\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Netty threads: 0\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Netty client threads: 0\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Default workers per model: 1\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Blacklist Regex: N/A\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Maximum Response Size: 6553500\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Maximum Request Size: 6553500\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Limit Maximum Image Pixels: true\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Prefer direct buffer: false\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Allowed Urls: [file://.*|http(s)?://.*]\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Custom python dependency for model allowed: false\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Metrics report format: prometheus\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Enable metrics API: true\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Workflow Store: /.sagemaker/ts/models\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Model config: N/A\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:44,772 [INFO ] main org.pytorch.serve.servingsdk.impl.PluginsManager - Loading snapshot serializer plugin...\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:44,801 [INFO ] main org.pytorch.serve.ModelServer - Loading initial models: /opt/ml/model\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:44,804 [WARN ] main org.pytorch.serve.archive.model.ModelArchive - Model archive version is not defined. Please upgrade to torch-model-archiver 0.2.0 or higher\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:44,805 [WARN ] main org.pytorch.serve.archive.model.ModelArchive - Model archive createdOn is not defined. Please upgrade to torch-model-archiver 0.2.0 or higher\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:44,806 [INFO ] main org.pytorch.serve.wlm.ModelManager - Model model loaded.\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:44,819 [INFO ] main org.pytorch.serve.ModelServer - Initialize Inference server with: EpollServerSocketChannel.\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:44,940 [INFO ] main org.pytorch.serve.ModelServer - Inference API bind to: http://0.0.0.0:8080\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:44,941 [INFO ] main org.pytorch.serve.ModelServer - Initialize Metrics server with: EpollServerSocketChannel.\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:44,943 [INFO ] main org.pytorch.serve.ModelServer - Metrics API bind to: http://127.0.0.1:8082\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:sagemaker.local.entities:Checking if serving container is up, attempt: 10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m Model server started.\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,226 [WARN ] pool-3-thread-1 org.pytorch.serve.metrics.MetricCollector - worker pid is not available yet.\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,408 [INFO ] pool-2-thread-2 ACCESS_LOG - /172.19.0.1:42912 \"GET /ping HTTP/1.1\" 200 45\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,412 [INFO ] pool-2-thread-2 TS_METRICS - Requests2XX.Count:1|#Level:Host|#hostname:226f672518e1,timestamp:1679485125\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,863 [INFO ] pool-3-thread-1 TS_METRICS - CPUUtilization.Percent:0.0|#Level:Host|#hostname:226f672518e1,timestamp:1679485125\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,864 [INFO ] pool-3-thread-1 TS_METRICS - DiskAvailable.Gigabytes:445.66086196899414|#Level:Host|#hostname:226f672518e1,timestamp:1679485125\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,864 [INFO ] pool-3-thread-1 TS_METRICS - DiskUsage.Gigabytes:32.492488861083984|#Level:Host|#hostname:226f672518e1,timestamp:1679485125\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,865 [INFO ] pool-3-thread-1 TS_METRICS - DiskUtilization.Percent:6.8|#Level:Host|#hostname:226f672518e1,timestamp:1679485125\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,865 [INFO ] pool-3-thread-1 TS_METRICS - GPUMemoryUtilization.Percent:0.0|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485125\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,865 [INFO ] pool-3-thread-1 TS_METRICS - GPUMemoryUsed.Megabytes:0|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485125\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,866 [INFO ] pool-3-thread-1 TS_METRICS - GPUUtilization.Percent:0|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485125\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,866 [INFO ] pool-3-thread-1 TS_METRICS - MemoryAvailable.Megabytes:57296.1328125|#Level:Host|#hostname:226f672518e1,timestamp:1679485125\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,866 [INFO ] pool-3-thread-1 TS_METRICS - MemoryUsed.Megabytes:3298.69921875|#Level:Host|#hostname:226f672518e1,timestamp:1679485125\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:45,867 [INFO ] pool-3-thread-1 TS_METRICS - MemoryUtilization.Percent:6.5|#Level:Host|#hostname:226f672518e1,timestamp:1679485125\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:46,293 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - Listening on port: /home/model-server/tmp/.ts.sock.9000\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:46,299 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - Successfully loaded /opt/conda/lib/python3.9/site-packages/ts/configs/metrics.yaml.\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:46,300 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - [PID]50\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:46,300 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - Torch worker started.\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:46,301 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - Python runtime: 3.9.13\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:46,306 [INFO ] W-9000-model_1.0 org.pytorch.serve.wlm.WorkerThread - Connecting to: /home/model-server/tmp/.ts.sock.9000\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:46,313 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - Connection accepted: /home/model-server/tmp/.ts.sock.9000.\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:46,317 [INFO ] W-9000-model_1.0 org.pytorch.serve.wlm.WorkerThread - Flushing req. to backend at: 1679485126317\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:46,340 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - model_name: model, batchSize: 1\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:48,257 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - Created a temporary directory at /home/model-server/tmp/tmpl0pkjbc2\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:48,258 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - Writing /home/model-server/tmp/tmpl0pkjbc2/_remote_module_non_scriptable.py\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:48,394 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - [NeMo W 2023-03-22 11:38:48 optimizers:54] Apex was not found. Using the lamb or fused_adam optimizer will error out.\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:49,476 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - [NeMo W 2023-03-22 11:38:49 experimental:27] Module is experimental, not ready for production and is not fully supported. Use at your own risk.\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,035 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - generated new fontManager\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,655 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - ***************** model_fn ********************\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,656 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - Lightning automatically upgraded your loaded checkpoint from v1.8.6 to v1.9.4. To apply the upgrade to your files permanently, run `python -m pytorch_lightning.utilities.upgrade_checkpoint --file Conformer-CTC-Char1/checkpoints/Conformer-CTC-Char1--val_wer=1.0000-epoch=2-last.ckpt`\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,732 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - [NeMo W 2023-03-22 11:38:50 modelPT:161] If you intend to do training or fine-tuning, please call the ModelPT.setup_training_data() method and provide a valid configuration file to setup the train data loader.\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,732 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - Train config : \n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,733 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - manifest_filepath: /opt/ml/input/data/training/an4/train_manifest.json\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,733 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - labels:\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,733 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - ' '\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,734 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - a\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,734 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - b\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,734 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - c\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,735 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - d\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,735 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - e\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,735 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - f\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,736 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - g\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,736 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - h\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,737 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - i\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,737 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - j\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,737 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - k\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,738 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - l\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,738 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - m\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,738 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - 'n'\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,739 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - o\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,739 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - p\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,740 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - q\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,740 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - r\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,740 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - s\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,741 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - t\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,741 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - u\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,741 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - v\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,742 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - w\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,742 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - x\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,743 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - 'y'\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,743 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - z\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,743 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - ''''\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,744 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - sample_rate: 16000\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,744 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - batch_size: 16\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,744 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - shuffle: true\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,745 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - num_workers: 8\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,745 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - pin_memory: true\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,745 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - trim_silence: false\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,745 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - [NeMo I 2023-03-22 11:38:50 features:287] PADDING: 0\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,746 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - max_duration: 16.7\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,746 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - min_duration: 0.1\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,747 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - is_tarred: false\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,747 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - tarred_audio_filepaths: null\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,747 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - shuffle_n: 2048\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,748 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - bucketing_strategy: synced_randomized\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,748 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - bucketing_batch_size: null\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,749 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - \n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,749 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - [NeMo W 2023-03-22 11:38:50 modelPT:168] If you intend to do validation, please call the ModelPT.setup_validation_data() or ModelPT.setup_multiple_validation_data() method and provide a valid configuration file to setup the validation data loader(s). \n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,750 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - Validation config : \n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,750 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - manifest_filepath: /opt/ml/input/data/testing/an4/test_manifest.json\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,751 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - labels:\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,751 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - ' '\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,752 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - a\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,752 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - b\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,752 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - c\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,753 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - d\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,753 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - e\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,753 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - f\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,754 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - g\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,754 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - h\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,754 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - i\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,755 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - j\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,755 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - k\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,755 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - l\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,756 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - m\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,756 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - 'n'\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,756 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - o\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,757 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - p\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,757 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - q\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,757 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - r\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,758 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - s\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,758 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - t\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,758 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - u\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,759 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - v\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,759 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - w\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,759 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - x\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,759 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - 'y'\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,760 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - z\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,760 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - ''''\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,760 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - sample_rate: 16000\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,761 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - batch_size: 16\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,761 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - shuffle: false\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,761 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - num_workers: 8\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,761 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - pin_memory: true\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,762 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - \n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,762 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - [NeMo W 2023-03-22 11:38:50 modelPT:174] Please call the ModelPT.setup_test_data() or ModelPT.setup_multiple_test_data() method and provide a valid configuration file to setup the test data loader(s).\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,763 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - Test config : \n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,763 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - manifest_filepath: null\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,763 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - labels:\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,764 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - ' '\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,764 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - a\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,764 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - b\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,765 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - c\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,765 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - d\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,765 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - e\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,765 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - f\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,766 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - g\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,766 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - h\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,766 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - i\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,766 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - j\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,767 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - k\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,767 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - l\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,767 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - m\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,768 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - 'n'\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,768 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - o\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,768 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - p\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,769 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - q\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,769 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - r\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,769 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - s\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,769 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - t\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,770 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - u\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,770 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - v\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,770 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - w\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,770 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - x\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,771 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - 'y'\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,771 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - z\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,771 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - - ''''\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,771 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - sample_rate: 16000\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,772 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - batch_size: 16\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,772 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - shuffle: false\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,772 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - num_workers: 8\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,772 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - pin_memory: true\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,953 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - [NeMo I 2023-03-22 11:38:50 ctc_models:64] \n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,954 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - Replacing placeholder number of classes (-1) with actual number of classes - 28\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:50,965 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - [NeMo I 2023-03-22 11:38:50 conv_asr:428] num_classes of ConvASRDecoder is set to the size of the vocabulary: 28.\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:52,675 [INFO ] W-9000-model_1.0 org.pytorch.serve.wlm.WorkerThread - Backend response time: 6336\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:52,676 [INFO ] W-9000-model_1.0 TS_METRICS - W-9000-model_1.0.ms:7863|#Level:Host|#hostname:226f672518e1,timestamp:1679485132\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:38:52,677 [INFO ] W-9000-model_1.0 TS_METRICS - WorkerThreadTime.ms:23|#Level:Host|#hostname:226f672518e1,timestamp:1679485132\n", "!\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:39:45,747 [INFO ] pool-3-thread-1 TS_METRICS - CPUUtilization.Percent:50.0|#Level:Host|#hostname:226f672518e1,timestamp:1679485185\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:39:45,747 [INFO ] pool-3-thread-1 TS_METRICS - DiskAvailable.Gigabytes:445.6606903076172|#Level:Host|#hostname:226f672518e1,timestamp:1679485185\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:39:45,748 [INFO ] pool-3-thread-1 TS_METRICS - DiskUsage.Gigabytes:32.49266052246094|#Level:Host|#hostname:226f672518e1,timestamp:1679485185\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:39:45,748 [INFO ] pool-3-thread-1 TS_METRICS - DiskUtilization.Percent:6.8|#Level:Host|#hostname:226f672518e1,timestamp:1679485185\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:39:45,748 [INFO ] pool-3-thread-1 TS_METRICS - GPUMemoryUtilization.Percent:5.364990234375|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485185\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:39:45,749 [INFO ] pool-3-thread-1 TS_METRICS - GPUMemoryUsed.Megabytes:879|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485185\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:39:45,749 [INFO ] pool-3-thread-1 TS_METRICS - GPUUtilization.Percent:0|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485185\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:39:45,749 [INFO ] pool-3-thread-1 TS_METRICS - MemoryAvailable.Megabytes:55793.296875|#Level:Host|#hostname:226f672518e1,timestamp:1679485185\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:39:45,750 [INFO ] pool-3-thread-1 TS_METRICS - MemoryUsed.Megabytes:4791.53515625|#Level:Host|#hostname:226f672518e1,timestamp:1679485185\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:39:45,750 [INFO ] pool-3-thread-1 TS_METRICS - MemoryUtilization.Percent:9.0|#Level:Host|#hostname:226f672518e1,timestamp:1679485185\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:40:45,754 [INFO ] pool-3-thread-1 TS_METRICS - CPUUtilization.Percent:0.0|#Level:Host|#hostname:226f672518e1,timestamp:1679485245\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:40:45,755 [INFO ] pool-3-thread-1 TS_METRICS - DiskAvailable.Gigabytes:445.6606559753418|#Level:Host|#hostname:226f672518e1,timestamp:1679485245\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:40:45,755 [INFO ] pool-3-thread-1 TS_METRICS - DiskUsage.Gigabytes:32.49269485473633|#Level:Host|#hostname:226f672518e1,timestamp:1679485245\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:40:45,755 [INFO ] pool-3-thread-1 TS_METRICS - DiskUtilization.Percent:6.8|#Level:Host|#hostname:226f672518e1,timestamp:1679485245\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:40:45,755 [INFO ] pool-3-thread-1 TS_METRICS - GPUMemoryUtilization.Percent:5.364990234375|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485245\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:40:45,755 [INFO ] pool-3-thread-1 TS_METRICS - GPUMemoryUsed.Megabytes:879|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485245\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:40:45,756 [INFO ] pool-3-thread-1 TS_METRICS - GPUUtilization.Percent:0|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485245\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:40:45,756 [INFO ] pool-3-thread-1 TS_METRICS - MemoryAvailable.Megabytes:55793.2265625|#Level:Host|#hostname:226f672518e1,timestamp:1679485245\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:40:45,756 [INFO ] pool-3-thread-1 TS_METRICS - MemoryUsed.Megabytes:4791.60546875|#Level:Host|#hostname:226f672518e1,timestamp:1679485245\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:40:45,756 [INFO ] pool-3-thread-1 TS_METRICS - MemoryUtilization.Percent:9.0|#Level:Host|#hostname:226f672518e1,timestamp:1679485245\n" ] } ], "source": [ "experiment_name = pm.get_params(key=prefix + \"-EXPERI-NAME\")\n", "create_experiment(experiment_name)\n", "job_name = create_trial(experiment_name)\n", "\n", "\n", "predictor = model.deploy(\n", " initial_instance_count=1,\n", " instance_type=inference_instance_type,\n", " data_capture_config=data_capture_config,\n", " endpoint_name=job_name,\n", " experiment_config={\n", " 'TrialName': job_name,\n", " 'TrialComponentDisplayName': job_name,\n", " }\n", ")" ] }, { "cell_type": "code", "execution_count": 13, "id": "10b2bb45", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "'/home/ec2-user/SageMaker/nemo-on-sagemaker/1.building-component/data/preprocessing/an4/wav/an4test_clstk/fcaw/an406-fcaw-b.wav'" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "paths2audio_files = f\"{os.getcwd()}/data/preprocessing/an4/wav/an4test_clstk/fcaw/an406-fcaw-b.wav\"\n", "paths2audio_files" ] }, { "cell_type": "code", "execution_count": 14, "id": "ecc9c485", "metadata": { "collapsed": true, "jupyter": { "outputs_hidden": true }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:45,763 [INFO ] pool-3-thread-2 TS_METRICS - CPUUtilization.Percent:50.0|#Level:Host|#hostname:226f672518e1,timestamp:1679485305\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:45,765 [INFO ] pool-3-thread-2 TS_METRICS - DiskAvailable.Gigabytes:445.66065979003906|#Level:Host|#hostname:226f672518e1,timestamp:1679485305\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:45,765 [INFO ] pool-3-thread-2 TS_METRICS - DiskUsage.Gigabytes:32.49269104003906|#Level:Host|#hostname:226f672518e1,timestamp:1679485305\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:45,766 [INFO ] pool-3-thread-2 TS_METRICS - DiskUtilization.Percent:6.8|#Level:Host|#hostname:226f672518e1,timestamp:1679485305\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:45,766 [INFO ] pool-3-thread-2 TS_METRICS - GPUMemoryUtilization.Percent:5.364990234375|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485305\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:45,766 [INFO ] pool-3-thread-2 TS_METRICS - GPUMemoryUsed.Megabytes:879|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485305\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:45,766 [INFO ] pool-3-thread-2 TS_METRICS - GPUUtilization.Percent:0|#Level:Host,device_id:0|#hostname:226f672518e1,timestamp:1679485305\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:45,766 [INFO ] pool-3-thread-2 TS_METRICS - MemoryAvailable.Megabytes:55720.03125|#Level:Host|#hostname:226f672518e1,timestamp:1679485305\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:45,767 [INFO ] pool-3-thread-2 TS_METRICS - MemoryUsed.Megabytes:4864.80078125|#Level:Host|#hostname:226f672518e1,timestamp:1679485305\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:45,767 [INFO ] pool-3-thread-2 TS_METRICS - MemoryUtilization.Percent:9.1|#Level:Host|#hostname:226f672518e1,timestamp:1679485305\n" ] }, { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import librosa\n", "import IPython.display as ipd\n", "\n", "# Load and listen to the audio file\n", "audio, sample_rate = librosa.load(paths2audio_files)\n", "\n", "ipd.Audio(paths2audio_files, rate=sample_rate)" ] }, { "cell_type": "code", "execution_count": 15, "id": "d9e00117-a789-46ba-8d57-78af35c6a485", "metadata": { "tags": [] }, "outputs": [], "source": [ "from sagemaker.predictor import Predictor" ] }, { "cell_type": "code", "execution_count": null, "id": "97eb42b8-fb51-4f99-bfeb-1017ca99b7c4", "metadata": { "tags": [] }, "outputs": [], "source": [ "# predictor = Predictor('nemo-cyj-nemo-experiments-0322-10501679482211')" ] }, { "cell_type": "code", "execution_count": 16, "id": "000a6dd0", "metadata": { "tags": [] }, "outputs": [], "source": [ "from sagemaker.serializers import DataSerializer\n", "predictor.serializer = DataSerializer()" ] }, { "cell_type": "code", "execution_count": 17, "id": "ef0b6896", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:56,559 [INFO ] W-9000-model_1.0 org.pytorch.serve.wlm.WorkerThread - Flushing req. to backend at: 1679485316559\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:56,562 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - Backend received inference at: 1679485316\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:56,579 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - ***************** 1input_fn ********************\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:56,579 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - \n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:56,579 [INFO ] W-9000-model_1.0-stdout MODEL_LOG - ***************** predict_fn ********************\n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:56,580 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - \n", "\u001b[36mw00uaj7h7n-algo-1-62uxc |\u001b[0m 2023-03-22T11:41:57,849 [WARN ] W-9000-model_1.0-stderr MODEL_LOG - Transcribing: 0%| | 0/1 [00:00