[COMMON] base_job_prefix = SM-NeMo-ASR-PIPELINE- [INPUT] input_data_s3_uri = s3://sm-nemo-bucket/data [PIPELINE] name = NeMoASRPipeline-Example enable_caching = False expire_after = T48H [PREPROCESSING] instance_type = ml.g4dn.xlarge instance_count = 1 [TRAINING] framework_version = None py_version = None instance_type = ml.p3.2xlarge instance_count = 1 experiment_name = train-exp [EVALUATION] instance_type = ml.g4dn.xlarge instance_count = 1 experiment_name = eval-exp [MODEL_REGISTER] model_package_group_name = NeMoASRModelPackageGroup-Example model_approval_status_default = PendingManualApproval inference_instances = ["ml.p3.2xlarge"] transform_instances = ["ml.p3.2xlarge"] [DEPLOY] processing_instance_type = ml.m5.xlarge processing_instance_count = 1 processing_framework_version = 1.0-1 instance_type = ml.g4dn.xlarge initial_instance_count = 1 model_server_workers = 1 framework_version = 1.12.1 py_version = py38