import os from sagemaker.sklearn.estimator import SKLearn from mlsolution.get_data_lambda import iris_data_filepath import mlsolution import sagemaker sagemaker_session = sagemaker.Session() role = sagemaker.get_execution_role() source_dir = os.path.abspath(os.path.split(mlsolution.__file__)[0]) dependencies_dir = os.path.abspath(os.path.join(os.path.split(mlsolution.__file__)[0], "..")) inspectlocal = False def test_training_script_in_local_container(): sklearn = SKLearn( entry_point="sagemaker_classifier.py", source_dir=source_dir, dependencies_dir=dependencies_dir, role=role, py_version="py3", framework_version="0.20.0", instance_type="local" ) sklearn.fit(inputs={ "train": "file://" + iris_data_filepath }) pass