#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dllogger import Logger, StdOutBackend, JSONStreamBackend, Verbosity import numpy class dllogger_class(): def format_step(self, step): if isinstance(step, str): return step elif isinstance(step, int): return "Iteration: {} ".format(step) elif len(step) > 0: return "Iteration: {} ".format(step[0]) else: return "" def __init__(self, log_path="bert_dllog.json"): self.logger = Logger([ StdOutBackend(Verbosity.DEFAULT, step_format=self.format_step), JSONStreamBackend(Verbosity.VERBOSE, log_path), ]) self.logger.metadata("mlm_loss", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "TRAIN"}) self.logger.metadata("nsp_loss", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "TRAIN"}) self.logger.metadata("avg_loss_step", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "TRAIN"}) self.logger.metadata("total_loss", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "TRAIN"}) self.logger.metadata("loss", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "TRAIN"}) self.logger.metadata("f1", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "VAL"}) self.logger.metadata("precision", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "VAL"}) self.logger.metadata("recall", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "VAL"}) self.logger.metadata("mcc", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "VAL"}) self.logger.metadata("exact_match", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "VAL"}) self.logger.metadata( "throughput_train", {"unit": "seq/s", "format": ":.3f", "GOAL": "MAXIMIZE", "STAGE": "TRAIN"}, ) self.logger.metadata( "throughput_inf", {"unit": "seq/s", "format": ":.3f", "GOAL": "MAXIMIZE", "STAGE": "VAL"}, )