/* Copyright (c) 2017, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /*************************************************************************** * Small modification by Nir Drucker and Shay Gueron * AWS Cryptographic Algorithms Group * (ndrucker@amazon.com, gueron@amazon.com) * include: * 1) Use memcpy/memset instead of OPENSSL_memcpy/memset * 2) Include aes.h as the underlying aes code * 3) Modifying the drbg structure * ***************************************************************************/ #include "ctr_drbg.h" #include // Section references in this file refer to SP 800-90Ar1: // http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf #define SEED_KEY_BYTE_LEN (32) #define SEED_CTR_BYTE_LEN (16) #if CTR_DRBG_ENTROPY_LEN != SEED_KEY_BYTE_LEN + SEED_CTR_BYTE_LEN # error "Size mismatches" #endif // See table 3. static const uint64_t kMaxReseedCount = UINT64_C(1) << 48; int CTR_DRBG_init(CTR_DRBG_STATE *drbg, const uint8_t entropy[CTR_DRBG_ENTROPY_LEN], const uint8_t * personalization, size_t personalization_len) { // Section 10.2.1.3.1 if(personalization_len > CTR_DRBG_ENTROPY_LEN) { return ERROR; } uint8_t seed_material[CTR_DRBG_ENTROPY_LEN]; memcpy(seed_material, entropy, CTR_DRBG_ENTROPY_LEN); for(size_t i = 0; i < personalization_len; i++) { seed_material[i] ^= personalization[i]; } // Section 10.2.1.2 // kInitMask is the result of encrypting blocks with big-endian value 1, 2 // and 3 with the all-zero AES-256 key. static const uint8_t kInitMask[CTR_DRBG_ENTROPY_LEN] = { 0x53, 0x0f, 0x8a, 0xfb, 0xc7, 0x45, 0x36, 0xb9, 0xa9, 0x63, 0xb4, 0xf1, 0xc4, 0xcb, 0x73, 0x8b, 0xce, 0xa7, 0x40, 0x3d, 0x4d, 0x60, 0x6b, 0x6e, 0x07, 0x4e, 0xc5, 0xd3, 0xba, 0xf3, 0x9d, 0x18, 0x72, 0x60, 0x03, 0xca, 0x37, 0xa6, 0x2a, 0x74, 0xd1, 0xa2, 0xf5, 0x8e, 0x75, 0x06, 0x35, 0x8e, }; for(size_t i = 0; i < sizeof(kInitMask); i++) { seed_material[i] ^= kInitMask[i]; } aes256_key_t key; memcpy(key.raw, seed_material, SEED_KEY_BYTE_LEN); memcpy(drbg->counter.bytes, seed_material + SEED_KEY_BYTE_LEN, SEED_CTR_BYTE_LEN); #ifdef MSAN // MSAN can't read assembly memset(&drbg->ks, 0, sizeof(drbg->ks)); #endif aes256_key_expansion(&drbg->ks, &key); drbg->reseed_counter = 1; return SUCCESS; } // ctr_inc adds |n| to the last four bytes of |drbg->counter|, treated as a // big-endian number. static void ctr32_add(CTR_DRBG_STATE *drbg, uint32_t n) { drbg->counter.words[3] = CRYPTO_bswap4(CRYPTO_bswap4(drbg->counter.words[3]) + n); } static int ctr_drbg_update(CTR_DRBG_STATE *drbg, const uint8_t *data, size_t data_len) { // Per section 10.2.1.2, |data_len| must be |CTR_DRBG_ENTROPY_LEN|. Here, we // allow shorter inputs and right-pad them with zeros. This is equivalent to // the specified algorithm but saves a copy in |CTR_DRBG_generate|. if(data_len > CTR_DRBG_ENTROPY_LEN) { return ERROR; } uint8_t temp[CTR_DRBG_ENTROPY_LEN]; for(size_t i = 0; i < CTR_DRBG_ENTROPY_LEN; i += AES_BLOCK_SIZE) { ctr32_add(drbg, 1); aes256_enc(temp + i, drbg->counter.bytes, &drbg->ks); } for(size_t i = 0; i < data_len; i++) { temp[i] ^= data[i]; } aes256_key_t key; memcpy(key.raw, temp, SEED_KEY_BYTE_LEN); memcpy(drbg->counter.bytes, temp + SEED_KEY_BYTE_LEN, SEED_CTR_BYTE_LEN); aes256_key_expansion(&drbg->ks, &key); return SUCCESS; } int CTR_DRBG_reseed(CTR_DRBG_STATE *drbg, const uint8_t entropy[CTR_DRBG_ENTROPY_LEN], const uint8_t * additional_data, size_t additional_data_len) { // Section 10.2.1.4 uint8_t entropy_copy[CTR_DRBG_ENTROPY_LEN]; if(additional_data_len > 0) { if(additional_data_len > CTR_DRBG_ENTROPY_LEN) { return ERROR; } memcpy(entropy_copy, entropy, CTR_DRBG_ENTROPY_LEN); for(size_t i = 0; i < additional_data_len; i++) { entropy_copy[i] ^= additional_data[i]; } entropy = entropy_copy; } if(SUCCESS != ctr_drbg_update(drbg, entropy, CTR_DRBG_ENTROPY_LEN)) { return ERROR; } drbg->reseed_counter = 1; return SUCCESS; } int CTR_DRBG_generate(CTR_DRBG_STATE *drbg, uint8_t * out, size_t out_len, const uint8_t * additional_data, size_t additional_data_len) { // See 9.3.1 if(out_len > CTR_DRBG_MAX_GENERATE_LENGTH) { return ERROR; } // See 10.2.1.5.1 if(drbg->reseed_counter > kMaxReseedCount) { return ERROR; } if(additional_data_len != 0 && (SUCCESS != ctr_drbg_update(drbg, additional_data, additional_data_len))) { return ERROR; } // kChunkSize is used to interact better with the cache. Since the AES-CTR // code assumes that it's encrypting rather than just writing keystream, the // buffer has to be zeroed first. Without chunking, large reads would zero // the whole buffer, flushing the L1 cache, and then do another pass (missing // the cache every time) to “encrypt” it. The code can avoid this by // chunking. static const size_t kChunkSize = 8 * 1024; while(out_len >= AES_BLOCK_SIZE) { size_t todo = kChunkSize; if(todo > out_len) { todo = out_len; } todo &= ~(AES_BLOCK_SIZE - 1); const size_t num_blocks = todo / AES_BLOCK_SIZE; if(1) { memset(out, 0, todo); ctr32_add(drbg, 1); #ifdef VAES aes256_ctr_enc512(out, drbg->counter.bytes, num_blocks, &drbg->ks); #else aes256_ctr_enc(out, drbg->counter.bytes, num_blocks, &drbg->ks); #endif ctr32_add(drbg, num_blocks - 1); } else { for(size_t i = 0; i < todo; i += AES_BLOCK_SIZE) { ctr32_add(drbg, 1); aes256_enc(&out[i], drbg->counter.bytes, &drbg->ks); } } out += todo; out_len -= todo; } if(out_len > 0) { uint8_t block[AES_BLOCK_SIZE]; ctr32_add(drbg, 1); aes256_enc(block, drbg->counter.bytes, &drbg->ks); memcpy(out, block, out_len); } // Right-padding |additional_data| in step 2.2 is handled implicitly by // |ctr_drbg_update|, to save a copy. if(SUCCESS != ctr_drbg_update(drbg, additional_data, additional_data_len)) { return ERROR; } drbg->reseed_counter++; return SUCCESS; } void CTR_DRBG_clear(CTR_DRBG_STATE *drbg) { secure_clean((uint8_t *)drbg, sizeof(CTR_DRBG_STATE)); }