#!/usr/bin/env python from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments from sklearn.metrics import accuracy_score, precision_recall_fscore_support from datasets import load_from_disk from transformers import AutoTokenizer import random import logging import sys import argparse import os import torch import pandas as pd import pathlib import json if __name__ == "__main__": parser = argparse.ArgumentParser() # hyperparameters sent by the client are passed as command-line arguments to the script. parser.add_argument("--epochs", type=int, default=3) parser.add_argument("--train_batch_size", type=int, default=32) parser.add_argument("--eval_batch_size", type=int, default=64) parser.add_argument("--warmup_steps", type=int, default=500) parser.add_argument("--model_name", type=str) parser.add_argument("--learning_rate", type=str, default=5e-5) # Data, model, and output directories parser.add_argument("--output-data-dir", type=str, default=os.environ["SM_OUTPUT_DATA_DIR"]) parser.add_argument("--model-dir", type=str, default=os.environ["SM_MODEL_DIR"]) parser.add_argument("--n_gpus", type=str, default=os.environ["SM_NUM_GPUS"]) parser.add_argument("--training_dir", type=str, default=os.environ["SM_CHANNEL_TRAIN"]) parser.add_argument("--test_dir", type=str, default=os.environ["SM_CHANNEL_TEST"]) args, _ = parser.parse_known_args() # Set up logging logger = logging.getLogger(__name__) logging.basicConfig( level=logging.getLevelName("INFO"), handlers=[logging.StreamHandler(sys.stdout)], format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", ) print('output_data_dir location',args.output_data_dir) print('model_dir location',args.model_dir) # load datasets train_dataset = load_from_disk(args.training_dir) test_dataset = load_from_disk(args.test_dir) logger.info(f" loaded train_dataset length is: {len(train_dataset)}") logger.info(f" loaded test_dataset length is: {len(test_dataset)}") # compute metrics function for binary classification def compute_metrics(pred): labels = pred.label_ids preds = pred.predictions.argmax(-1) precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average="binary") acc = accuracy_score(labels, preds) return {"accuracy": acc, "f1": f1, "precision": precision, "recall": recall} # download model from model hub model = AutoModelForSequenceClassification.from_pretrained(args.model_name) tokenizer = AutoTokenizer.from_pretrained(args.model_name) # define training args training_args = TrainingArguments( output_dir=args.model_dir, num_train_epochs=args.epochs, per_device_train_batch_size=args.train_batch_size, per_device_eval_batch_size=args.eval_batch_size, warmup_steps=args.warmup_steps, evaluation_strategy="epoch", logging_dir=f"{args.output_data_dir}/logs", learning_rate=float(args.learning_rate), ) # create Trainer instance trainer = Trainer( model=model, args=training_args, compute_metrics=compute_metrics, train_dataset=train_dataset, eval_dataset=test_dataset, tokenizer=tokenizer, ) # train model trainer.train() # evaluate model eval_result = trainer.evaluate(eval_dataset=test_dataset) # writes eval result to file which can be accessed later in s3 ouput with open(os.path.join(args.output_data_dir, "eval_results_s3.txt"), "w") as writer: print(f"***** Eval results *****") for key, value in sorted(eval_result.items()): writer.write(f"{key} = {value}\n") evaluation_path = "/opt/ml/model/evaluation.json" with open(evaluation_path, "w+") as f: f.write(json.dumps(eval_result)) # Saves the model to s3 trainer.save_model(args.model_dir) # #Predictions on each row of the test dataset print('--- Inference For Downstream Analysis---') arr_text = [tokenizer.decode(ele["input_ids"]) for ele in test_dataset] predictions = trainer.predict(test_dataset) arr_preds = predictions.predictions.argmax(-1) arr_labels = predictions.label_ids df_res = pd.DataFrame({'text':arr_text, 'preds':arr_preds, 'labels':arr_labels}) df_res.to_csv(args.output_data_dir + '/preds_data.csv', index=False) # df_res.to_csv(args.model_dir + '/preds_data.csv', index=False) # default_bucket = 'sagemaker-us-east-1-114175483951' # s3_prefix = "RegMLNB" # output_destination = "s3://{}/{}/data".format(default_bucket, s3_prefix) # print('output_destination:',output_destination) # df_res.to_csv(output_destination + '/preds_data.csv', index=False) # print('Save model to S3..', output_destination + '/model/') # trainer.save_model(output_destination + '/model/model.tar.gz')