# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # SPDX-License-Identifier: MIT-0 # # Permission is hereby granted, free of charge, to any person obtaining a copy of this # software and associated documentation files (the "Software"), to deal in the Software # without restriction, including without limitation the rights to use, copy, modify, # merge, publish, distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A # PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """Example workflow pipeline script for abalone pipeline. . -RegisterModel . Process-> Train -> Evaluate -> Condition . . . -(stop) Implements a get_pipeline(**kwargs) method. """ import os import boto3 import logging import sagemaker import sagemaker.session from sagemaker.estimator import Estimator from sagemaker.inputs import TrainingInput from sagemaker.model_metrics import ( MetricsSource, ModelMetrics, ) from sagemaker.processing import ( ProcessingInput, ProcessingOutput, ScriptProcessor, ) from sagemaker.sklearn.processing import SKLearnProcessor from sagemaker.workflow.conditions import ConditionLessThanOrEqualTo from sagemaker.workflow.condition_step import ( ConditionStep, ) from sagemaker.workflow.functions import ( JsonGet, ) from sagemaker.workflow.parameters import ( ParameterInteger, ParameterString, ) from sagemaker.workflow.pipeline import Pipeline from sagemaker.workflow.properties import PropertyFile from sagemaker.workflow.steps import ( ProcessingStep, TrainingStep, ) from sagemaker.workflow.step_collections import RegisterModel from botocore.exceptions import ClientError from sagemaker.network import NetworkConfig # BASE_DIR = os.path.dirname(os.path.realpath(__file__)) logger = logging.getLogger(__name__) def get_session(region, default_bucket): """Gets the sagemaker session based on the region. Args: region: the aws region to start the session default_bucket: the bucket to use for storing the artifacts Returns: `sagemaker.session.Session instance """ boto_session = boto3.Session(region_name=region) sagemaker_client = boto_session.client("sagemaker") runtime_client = boto_session.client("sagemaker-runtime") session = sagemaker.session.Session( boto_session=boto_session, sagemaker_client=sagemaker_client, sagemaker_runtime_client=runtime_client, default_bucket=default_bucket, ) return session def get_pipeline( region, role=None, default_bucket=None, bucket_kms_id=None, model_package_group_name="AbalonePackageGroup", pipeline_name="AbalonePipeline", base_job_prefix="Abalone", project_id="SageMakerProjectId", ): """Gets a SageMaker ML Pipeline instance working with on abalone data. Args: region: AWS region to create and run the pipeline. role: IAM role to create and run steps and pipeline. default_bucket: the bucket to use for storing the artifacts Returns: an instance of a pipeline """ sagemaker_session = get_session(region, default_bucket) if role is None: role = sagemaker.session.get_execution_role(sagemaker_session) # parameters for pipeline execution processing_instance_count = ParameterInteger(name="ProcessingInstanceCount", default_value=1) processing_instance_type = ParameterString(name="ProcessingInstanceType", default_value="ml.m5.xlarge") training_instance_type = ParameterString(name="TrainingInstanceType", default_value="ml.m5.xlarge") inference_instance_type = ParameterString(name="InferenceInstanceType", default_value="ml.m5.xlarge") model_approval_status = ParameterString(name="ModelApprovalStatus", default_value="PendingManualApproval") input_data = ParameterString( name="InputDataUrl", default_value=f"s3://sagemaker-servicecatalog-seedcode-{region}/dataset/abalone-dataset.csv", ) processing_image_name = "sagemaker-{0}-processingimagebuild".format(project_id) training_image_name = "sagemaker-{0}-trainingimagebuild".format(project_id) inference_image_name = "sagemaker-{0}-inferenceimagebuild".format(project_id) # network_config = NetworkConfig( # enable_network_isolation=True, # security_group_ids=security_group_ids, # subnets=subnets, # encrypt_inter_container_traffic=True, # ) # processing step for feature engineering try: processing_image_uri = sagemaker_session.sagemaker_client.describe_image_version( ImageName=processing_image_name )["ContainerImage"] except (sagemaker_session.sagemaker_client.exceptions.ResourceNotFound): processing_image_uri = sagemaker.image_uris.retrieve( framework="xgboost", region=region, version="1.0-1", py_version="py3", instance_type="ml.m5.xlarge", ) script_processor = ScriptProcessor( image_uri=processing_image_uri, instance_type=processing_instance_type, instance_count=processing_instance_count, base_job_name=f"{base_job_prefix}/sklearn-abalone-preprocess", command=["python3"], sagemaker_session=sagemaker_session, role=role, output_kms_key=bucket_kms_id, ) step_process = ProcessingStep( name="PreprocessAbaloneData", processor=script_processor, outputs=[ ProcessingOutput(output_name="train", source="/opt/ml/processing/train"), ProcessingOutput(output_name="validation", source="/opt/ml/processing/validation"), ProcessingOutput(output_name="test", source="/opt/ml/processing/test"), ], code="source_scripts/preprocessing/prepare_abalone_data/main.py", # we must figure out this path to get it from step_source directory job_arguments=["--input-data", input_data], ) # training step for generating model artifacts model_path = f"s3://{default_bucket}/{base_job_prefix}/AbaloneTrain" try: training_image_uri = sagemaker_session.sagemaker_client.describe_image_version(ImageName=training_image_name)[ "ContainerImage" ] except (sagemaker_session.sagemaker_client.exceptions.ResourceNotFound): training_image_uri = sagemaker.image_uris.retrieve( framework="xgboost", region=region, version="1.0-1", py_version="py3", instance_type="ml.m5.xlarge", ) xgb_train = Estimator( image_uri=training_image_uri, instance_type=training_instance_type, instance_count=1, output_path=model_path, base_job_name=f"{base_job_prefix}/abalone-train", sagemaker_session=sagemaker_session, role=role, output_kms_key=bucket_kms_id, ) xgb_train.set_hyperparameters( objective="reg:linear", num_round=50, max_depth=5, eta=0.2, gamma=4, min_child_weight=6, subsample=0.7, silent=0, ) step_train = TrainingStep( name="TrainAbaloneModel", estimator=xgb_train, inputs={ "train": TrainingInput( s3_data=step_process.properties.ProcessingOutputConfig.Outputs["train"].S3Output.S3Uri, content_type="text/csv", ), "validation": TrainingInput( s3_data=step_process.properties.ProcessingOutputConfig.Outputs["validation"].S3Output.S3Uri, content_type="text/csv", ), }, ) # processing step for evaluation script_eval = ScriptProcessor( image_uri=training_image_uri, command=["python3"], instance_type=processing_instance_type, instance_count=1, base_job_name=f"{base_job_prefix}/script-abalone-eval", sagemaker_session=sagemaker_session, role=role, output_kms_key=bucket_kms_id, ) evaluation_report = PropertyFile( name="AbaloneEvaluationReport", output_name="evaluation", path="evaluation.json", ) step_eval = ProcessingStep( name="EvaluateAbaloneModel", processor=script_eval, inputs=[ ProcessingInput( source=step_train.properties.ModelArtifacts.S3ModelArtifacts, destination="/opt/ml/processing/model", ), ProcessingInput( source=step_process.properties.ProcessingOutputConfig.Outputs["test"].S3Output.S3Uri, destination="/opt/ml/processing/test", ), ], outputs=[ ProcessingOutput(output_name="evaluation", source="/opt/ml/processing/evaluation"), ], code="source_scripts/evaluate/evaluate_xgboost/main.py", property_files=[evaluation_report], ) # register model step that will be conditionally executed model_metrics = ModelMetrics( model_statistics=MetricsSource( s3_uri="{}/evaluation.json".format( step_eval.arguments["ProcessingOutputConfig"]["Outputs"][0]["S3Output"]["S3Uri"] ), content_type="application/json", ) ) try: inference_image_uri = sagemaker_session.sagemaker_client.describe_image_version(ImageName=inference_image_name)[ "ContainerImage" ] except (sagemaker_session.sagemaker_client.exceptions.ResourceNotFound): inference_image_uri = sagemaker.image_uris.retrieve( framework="xgboost", region=region, version="1.0-1", py_version="py3", instance_type="ml.m5.xlarge", ) step_register = RegisterModel( name="RegisterAbaloneModel", estimator=xgb_train, image_uri=inference_image_uri, model_data=step_train.properties.ModelArtifacts.S3ModelArtifacts, content_types=["text/csv"], response_types=["text/csv"], inference_instances=["ml.t2.medium", "ml.m5.large"], transform_instances=["ml.m5.large"], model_package_group_name=model_package_group_name, approval_status=model_approval_status, model_metrics=model_metrics, ) # condition step for evaluating model quality and branching execution cond_lte = ConditionLessThanOrEqualTo( left=JsonGet( step_name=step_eval.name, property_file=evaluation_report, json_path="regression_metrics.mse.value" ), right=6.0, ) step_cond = ConditionStep( name="CheckMSEAbaloneEvaluation", conditions=[cond_lte], if_steps=[step_register], else_steps=[], ) # pipeline instance pipeline = Pipeline( name=pipeline_name, parameters=[ processing_instance_type, processing_instance_count, training_instance_type, model_approval_status, input_data, ], steps=[step_process, step_train, step_eval, step_cond], sagemaker_session=sagemaker_session, ) return pipeline