# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # SPDX-License-Identifier: MIT-0 # # Permission is hereby granted, free of charge, to any person obtaining a copy of this # software and associated documentation files (the "Software"), to deal in the Software # without restriction, including without limitation the rights to use, copy, modify, # merge, publish, distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A # PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """Feature engineers the abalone dataset.""" import argparse import logging import os import pathlib import requests import tempfile import boto3 import numpy as np import pandas as pd from sklearn.compose import ColumnTransformer from sklearn.impute import SimpleImputer from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, OneHotEncoder logger = logging.getLogger() logger.setLevel(logging.INFO) logger.addHandler(logging.StreamHandler()) # Since we get a headerless CSV file we specify the column names here. feature_columns_names = [ "sex", "length", "diameter", "height", "whole_weight", "shucked_weight", "viscera_weight", "shell_weight", ] label_column = "rings" feature_columns_dtype = { "sex": str, "length": np.float64, "diameter": np.float64, "height": np.float64, "whole_weight": np.float64, "shucked_weight": np.float64, "viscera_weight": np.float64, "shell_weight": np.float64, } label_column_dtype = {"rings": np.float64} def merge_two_dicts(x, y): """Merges two dicts, returning a new copy.""" z = x.copy() z.update(y) return z if __name__ == "__main__": logger.debug("Starting preprocessing.") parser = argparse.ArgumentParser() parser.add_argument("--input-data", type=str, required=True) args = parser.parse_args() base_dir = "/opt/ml/processing" pathlib.Path(f"{base_dir}/data").mkdir(parents=True, exist_ok=True) input_data = args.input_data bucket = input_data.split("/")[2] key = "/".join(input_data.split("/")[3:]) logger.info("Downloading data from bucket: %s, key: %s", bucket, key) fn = f"{base_dir}/data/abalone-dataset.csv" s3 = boto3.resource("s3") s3.Bucket(bucket).download_file(key, fn) logger.debug("Reading downloaded data.") df = pd.read_csv( fn, header=None, names=feature_columns_names + [label_column], dtype=merge_two_dicts(feature_columns_dtype, label_column_dtype), ) os.unlink(fn) logger.debug("Defining transformers.") numeric_features = list(feature_columns_names) numeric_features.remove("sex") numeric_transformer = Pipeline(steps=[("imputer", SimpleImputer(strategy="median")), ("scaler", StandardScaler())]) categorical_features = ["sex"] categorical_transformer = Pipeline( steps=[ ("imputer", SimpleImputer(strategy="constant", fill_value="missing")), ("onehot", OneHotEncoder(handle_unknown="ignore")), ] ) preprocess = ColumnTransformer( transformers=[ ("num", numeric_transformer, numeric_features), ("cat", categorical_transformer, categorical_features), ] ) logger.info("Applying transforms.") y = df.pop("rings") X_pre = preprocess.fit_transform(df) y_pre = y.to_numpy().reshape(len(y), 1) X = np.concatenate((y_pre, X_pre), axis=1) logger.info("Splitting %d rows of data into train, validation, test datasets.", len(X)) np.random.shuffle(X) train, validation, test = np.split(X, [int(0.7 * len(X)), int(0.85 * len(X))]) logger.info("Writing out datasets to %s.", base_dir) pd.DataFrame(train).to_csv(f"{base_dir}/train/train.csv", header=False, index=False) pd.DataFrame(validation).to_csv(f"{base_dir}/validation/validation.csv", header=False, index=False) pd.DataFrame(test).to_csv(f"{base_dir}/test/test.csv", header=False, index=False)