image: python:latest definitions: caches: pip-cache: ~/.cache/pip # Workflow Configuration pipelines: default: - step: name: Training caches: - pip-cache script: - pip install --upgrade --force-reinstall . "awscli>1.20.30" - export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python - export PYTHONUNBUFFERED=TRUE - export SAGEMAKER_PROJECT_NAME_ID=$SAGEMAKER_PROJECT_NAME-$SAGEMAKER_PROJECT_ID - run-pipeline --module-name pipelines.abalone.pipeline --role-arn $SAGEMAKER_PIPELINE_ROLE_ARN --tags "[{\"Key\":\"sagemaker:project-name\", \"Value\":\"$SAGEMAKER_PROJECT_NAME\"}, {\"Key\":\"sagemaker:project-id\", \"Value\":\"$SAGEMAKER_PROJECT_ID\"}]" --kwargs "{\"region\":\"$AWS_REGION\",\"sagemaker_project_arn\":\"$SAGEMAKER_PROJECT_ARN\",\"role\":\"$SAGEMAKER_PIPELINE_ROLE_ARN\",\"default_bucket\":\"$ARTIFACT_BUCKET\",\"pipeline_name\":\"$SAGEMAKER_PROJECT_NAME_ID\",\"model_package_group_name\":\"$SAGEMAKER_PROJECT_NAME_ID\",\"base_job_prefix\":\"$SAGEMAKER_PROJECT_NAME_ID\"}" - echo "Create/Update of the SageMaker Pipeline and execution completed."