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Today’s activities
• When to pretrain a new foundation model 

from scratch

• What you need to do this effectively

• How to do this on AWS

• Distributed training fundamentals

• Hands-on walk through: pretraining a 30B 
parameter LLM on SageMaker

Reminder – everything we discuss today 
is possible on AWS and SageMaker!



At this point in your foundation model journey you should …

1. Have tested many different foundation models with 

prompt engineering

2. Have tried a variety of fine-tuning techniques at 

different scales of models and dataset sizes

3. Have exposed these models to your end consumers and 

gotten feedback on their performance

4. Be able to empirically demonstrate where your current 

foundation models both succeed and fail



To consider a pretraining project, you want a chart like this

Model 
accuracy

Zero-shot Single-shot Few-shot Parameter-
efficient 
fine-tuning

Classic fine-tuning

We hope pretraining 
will fill this gap



What does it take to pretrain a new foundation model?

Model name Dataset size Model size in 
parameters

Cluster size Time to train

Stable Diffusion 2.1 5B images, 240 TB < 1 billion 37 p4d instances 28 days

Falcon 1T tokens, 2.8 TB 40B 48 p4d instances Two months

BloombergGPT 700B tokens, 1.9 TB 50B 64 p4d instances 53 days

All trained on 
SageMaker



What does it take to pretrain a new foundation model?

Data in TB’s Tens of 
compute nodes

Really strong 
business case



What to do before you launch all the accelerators

Model 
accuracy

Open-source model Your pretrained model

After this experiment, you 
can prove pretraining will 

fill this gap

Pro tip – prove empirically 
at 1% of your data that 

pretraining does improve 
performance on your use 

case. 

Do this before you run on 
massive accelerator clusters.

Fine-tune both 
models for this 
comparison



How to pretrain foundation models on AWS

1

Gather data 
and store

2

Process data 
for training

3

Optimize data storage 
for training runs

4

Develop and test training 
scripts with small instances, 

models, and data sizes

5

Scale up your training runs to your 
maximum cluster, data, and model size

6

Evaluate model 
artifacts



What does this look like in action?

Phase Number Dataset sample Model size Cluster size in 
accelerators

Development and 
compute time

1 1% Base 1 Hours

2 5% Medium 8 Days

3 50% Large 16 Weeks

4 100% Jumbo Max Months

• Set a plan for your project to scale in steps 

• This gives you solvable goals that start at the smallest possible sizes and work 

your way up to hitting the largest compute size  

• Make sure you test your model checkpoint at each step to ensure it’s valid!



There are many kinds of distributed training

Distributed training

Job parallelism



Run multiple jobs in parallel to process and train faster

SageMaker Job

SageMaker Job

SageMaker JobS3 bucket
Streams logs to 

CloudWatch

SageMaker 
control plane

Stores metadata with 
hyperparameters

Amazon CloudWatch

1. Each job can train as many models 
as you need, or process as much 
data as you need.

2. You can use warm pools to reuse 
the instances

for model in list_of_models:

 s3_input = get_data(model)

 s3_output = get_location(model)

 estimator = get_estimator(model, s3_output)

 estimator.fit(s3_input, wait=False)



There are many kinds of distributed training

Distributed training

Data parallelismJob parallelism



Distributed gradient descent has evolved over time

Parameter server 
 E.g., TensorFlow

ParameterServerStrategy

MPI AllReduce  
E.g., Horovod, 

PyTorch DistributedDataParallel



SageMaker Distributed 
Data Parallel

• Optimized backend for distributed training of 
deep learning models in TensorFlow,  PyTorch

• Accelerates training for  network-
bound workloads

• Built and optimized for AWS network  
topology and hardware

• 20%–40% faster and cheaper than  NCCL 
and MPI-based solutions. Best  performance 
on AWS for large clusters.

ml.p3dn.24xl



There are many kinds of distributed training

Distributed training

Model parallelismData parallelism

Pipeline parallelism Tensor parallelism

Job parallelism



SageMaker model parallel

Automated
model partitioning

Managed
SageMaker training

Interleaved
pipelined training

Clean
framework integration



L1 L2 L3 L4• Split minibatches into N “microbatches”

• Feed microbatches sequentially, but 

process them to keep GPU utilization 

more even

• Minimize “idle” time on GPUs

SageMaker Model Parallel 
splits your model over 
multiple accelerators



Approach linear-scaling with Sharded Data Parallelism

18

MiCS achieves 169 TFLOPS per GPU with 175B parameter model on AWS p4de.24xlarge instances

Available within SageMaker Model Parallel   
2.8x faster than DeepSpeed

• MiCS hits 99.4% of 

linear-scaling 

efficiency from 128 

to 512 GPUs

• DeepSpeed hits only 

72% , saturates at 

62 TFLOPS per GPU 



Get started with SageMaker distributed training

Example notebooks Set as your backend Add to Docker files



Hands-on demo

https://bit.ly/sm-nb-4



Thank you!
Type: Corrections, feedback, or other questions? 
Contact us at https://support.awsamazon.com/#/contacts/aws-academy. 
All trademarks are the property of their owners.

https://support.aws.amazon.com/

