
Pretrain foundation
models on AWS

Generative AI Foundations on AWS
Emily Webber, Principal ML Specialist SA at AWS
Lesson 4 – Level 400

Today’s activities
• When to pretrain a new foundation model

from scratch

• What you need to do this effectively

• How to do this on AWS

• Distributed training fundamentals

• Hands-on walk through: pretraining a 30B
parameter LLM on SageMaker

Reminder – everything we discuss today
is possible on AWS and SageMaker!

At this point in your foundation model journey you should …

1. Have tested many different foundation models with

prompt engineering

2. Have tried a variety of fine-tuning techniques at

different scales of models and dataset sizes

3. Have exposed these models to your end consumers and

gotten feedback on their performance

4. Be able to empirically demonstrate where your current

foundation models both succeed and fail

To consider a pretraining project, you want a chart like this

Model
accuracy

Zero-shot Single-shot Few-shot Parameter-
efficient
fine-tuning

Classic fine-tuning

We hope pretraining
will fill this gap

What does it take to pretrain a new foundation model?

Model name Dataset size Model size in
parameters

Cluster size Time to train

Stable Diffusion 2.1 5B images, 240 TB < 1 billion 37 p4d instances 28 days

Falcon 1T tokens, 2.8 TB 40B 48 p4d instances Two months

BloombergGPT 700B tokens, 1.9 TB 50B 64 p4d instances 53 days

All trained on
SageMaker

What does it take to pretrain a new foundation model?

Data in TB’s Tens of
compute nodes

Really strong
business case

What to do before you launch all the accelerators

Model
accuracy

Open-source model Your pretrained model

After this experiment, you
can prove pretraining will

fill this gap

Pro tip – prove empirically
at 1% of your data that

pretraining does improve
performance on your use

case.

Do this before you run on
massive accelerator clusters.

Fine-tune both
models for this
comparison

How to pretrain foundation models on AWS

1

Gather data
and store

2

Process data
for training

3

Optimize data storage
for training runs

4

Develop and test training
scripts with small instances,

models, and data sizes

5

Scale up your training runs to your
maximum cluster, data, and model size

6

Evaluate model
artifacts

What does this look like in action?

Phase Number Dataset sample Model size Cluster size in
accelerators

Development and
compute time

1 1% Base 1 Hours

2 5% Medium 8 Days

3 50% Large 16 Weeks

4 100% Jumbo Max Months

• Set a plan for your project to scale in steps

• This gives you solvable goals that start at the smallest possible sizes and work

your way up to hitting the largest compute size

• Make sure you test your model checkpoint at each step to ensure it’s valid!

There are many kinds of distributed training

Distributed training

Job parallelism

Run multiple jobs in parallel to process and train faster

SageMaker Job

SageMaker Job

SageMaker JobS3 bucket
Streams logs to

CloudWatch

SageMaker
control plane

Stores metadata with
hyperparameters

Amazon CloudWatch

1. Each job can train as many models
as you need, or process as much
data as you need.

2. You can use warm pools to reuse
the instances

for model in list_of_models:

 s3_input = get_data(model)

 s3_output = get_location(model)

 estimator = get_estimator(model, s3_output)

 estimator.fit(s3_input, wait=False)

There are many kinds of distributed training

Distributed training

Data parallelismJob parallelism

Distributed gradient descent has evolved over time

Parameter server
 E.g., TensorFlow

ParameterServerStrategy

MPI AllReduce
E.g., Horovod,

PyTorch DistributedDataParallel

SageMaker Distributed
Data Parallel

• Optimized backend for distributed training of
deep learning models in TensorFlow, PyTorch

• Accelerates training for network-
bound workloads

• Built and optimized for AWS network
topology and hardware

• 20%–40% faster and cheaper than NCCL
and MPI-based solutions. Best performance
on AWS for large clusters.

ml.p3dn.24xl

There are many kinds of distributed training

Distributed training

Model parallelismData parallelism

Pipeline parallelism Tensor parallelism

Job parallelism

SageMaker model parallel

Automated
model partitioning

Managed
SageMaker training

Interleaved
pipelined training

Clean
framework integration

L1 L2 L3 L4• Split minibatches into N “microbatches”

• Feed microbatches sequentially, but

process them to keep GPU utilization

more even

• Minimize “idle” time on GPUs

SageMaker Model Parallel
splits your model over
multiple accelerators

Approach linear-scaling with Sharded Data Parallelism

18

MiCS achieves 169 TFLOPS per GPU with 175B parameter model on AWS p4de.24xlarge instances

Available within SageMaker Model Parallel
2.8x faster than DeepSpeed

• MiCS hits 99.4% of

linear-scaling

efficiency from 128

to 512 GPUs

• DeepSpeed hits only

72% , saturates at

62 TFLOPS per GPU

Get started with SageMaker distributed training

Example notebooks Set as your backend Add to Docker files

Hands-on demo

https://bit.ly/sm-nb-4

Thank you!
Type: Corrections, feedback, or other questions?
Contact us at https://support.awsamazon.com/#/contacts/aws-academy.
All trademarks are the property of their owners.

https://support.aws.amazon.com/

