
Pretrain Vision and Large
Language Models on AWS

Tutorial
Emily Webber
Principal ML Specialist SA at AWS

The winding road of R&D for foundation models

1. Primer on
foundation models 1

2. How to pick a
foundation model 2

3

4

5. Prepare data and
train at scale

5
6. Reinforcement

learning with
human feedback

6

7. Distributed
hosting

7

3. Prompt
engineering & fine-

tuning

4. Pretraining

So you want to
build your own

foundation model
• Why to pretrain

• When in your project lifecycle

• Which base model to pick

• What datasets to use

• How to do this easily and efficiently

• Hands-on demo: pretrain 30B parameter
LLM on AWS with SageMaker

• Resources

Let’s say I asked you to learn everything on the internet.
How would you do it?

TimeStorageStructure

A foundation model can
do this in a few months.

5.74 B pages x 52 seconds
= ~85M hours

=> ~41,000 human years

You can do a lot with foundation models!

Text
generation

Q&A Paraphrase
rephrase

Code
generation

Image
generation

Image
classification

Audio
generation

Video
generation

Text
extraction

SearchText
summarization

Many ML tasks can now be re-cast as generative,
and most will benefit from foundation models.

Traditional classification Using generation to classify text

Text: I am not into this house; it’s way too
expensive and too far from the train line!

Model
Sentiment:
negative

Text: I am not into this house; it’s way too expensive and
too far from the train line!

Classify this sentence into positive or negative sentiment:

Agent: Negative sentimentModel

There are many ways to customize a foundation model

Complexity and cost

Accuracy

Prompt
engineering

Fine-tuning *

Pretraining

Retrieval
augmented
generation

The biggest lesson that can be read from 70 years
of AI research is that general methods that
leverage computation are ultimately the most
effective, and by a large margin … the only thing
that matters in the long run is the leveraging of
computation.

Richard Sutton’s Bitter Lesson, 2019
The Father of Reinforcement Learning

Pretraining might be the best long-term bet in AI

Better loss function Unsupervised data
are always larger

Deeper learning in
the networks

Efficiency gains
at scale

To consider a pretraining project, you want a chart like this

Model
accuracy

Zero-shot Single-shot Few-shot Parameter-
efficient
fine-tuning

Classic fine-tuning

We hope pretraining
will fill this gap

What to do before you launch all the accelerators

Model
accuracy

Open-source model Your pretrained model

After this experiment, you
can prove pretraining will

fill this gap

Pro tip – prove empirically
at 1% of your data that

pretraining does improve
performance on your use

case.

Do this before you run on
massive accelerator clusters.

Fine-tune both
models for this
comparison

What does it take to pretrain a new foundation model?

Model name Dataset size Model size in
parameters

Cluster size Time to train

Stable Diffusion 2.1 5B images, 240 TB < 1 billion 37 p4d instances 28 days

Falcon 1T tokens, 2.8 TB 40B 48 p4d instances Two months

BloombergGPT 700B tokens, 1.9 TB 50B 64 p4d instances 53 days

All trained on
SageMaker

How to pretrain foundation models on AWS

1

Gather data
and store

2

Process data
for training

3

Optimize data storage
for training runs

4

Develop and test training
scripts with small instances,

models, and data sizes

5

Scale up your training runs to your
maximum cluster, data, and model size

6

Evaluate model
artifacts

What does this look like in action?

Phase Number Dataset sample Model size Cluster size in
accelerators

Development and
compute time

1 1% Base 1 Hours

2 5% Medium 8 Days

3 50% Large 16 Weeks

4 100% Jumbo Max Months

• Set a plan for your project to scale in steps

• This gives you solvable goals that start at the smallest possible sizes and work

your way up to hitting the largest compute size

• Make sure you test your model checkpoint at each step to ensure it’s valid!

There are many kinds of distributed training

Distributed training

Job parallelism

Run multiple jobs in parallel to process and train faster

SageMaker Job

SageMaker Job

SageMaker JobS3 bucket
Streams logs to

CloudWatch

SageMaker
control plane

Stores metadata with
hyperparameters

Amazon CloudWatch

1. Each job can train as many models
as you need, or process as much
data as you need.

2. You can use warm pools to reuse
the instances

for model in list_of_models:

 s3_input = get_data(model)

 s3_output = get_location(model)

 estimator = get_estimator(model, s3_output)

 estimator.fit(s3_input, wait=False)

There are many kinds of distributed training

Distributed training

Data parallelismJob parallelism

Distributed gradient descent has evolved over time

Parameter server
 E.g., TensorFlow

ParameterServerStrategy

MPI AllReduce
E.g., Horovod,

PyTorch DistributedDataParallel

SageMaker Distributed
Data Parallel

• Optimized backend for distributed training of
deep learning models in TensorFlow, PyTorch

• Accelerates training for network-
bound workloads

• Built and optimized for AWS network
topology and hardware

• 20%–40% faster and cheaper than NCCL
and MPI-based solutions. Best performance
on AWS for large clusters.

ml.p3dn.24xl

There are many kinds of distributed training

Distributed training

Model parallelismData parallelism

Pipeline parallelism Tensor parallelism

Job parallelism

SageMaker model parallel

Automated
model partitioning

Managed
SageMaker training

Interleaved
pipelined training

Clean
framework integration

L1 L2 L3 L4• Split minibatches into N “microbatches”

• Feed microbatches sequentially, but

process them to keep GPU utilization

more even

• Minimize “idle” time on GPUs

SageMaker Model Parallel
splits your model over
multiple accelerators

Approach linear-scaling with Sharded Data Parallelism

23

MiCS achieves 169 TFLOPS per GPU with 175B parameter model on AWS p4de.24xlarge instances

Available within SageMaker Model Parallel
2.8x faster than DeepSpeed

• MiCS hits 99.4% of

linear-scaling

efficiency from 128

to 512 GPUs

• DeepSpeed hits only

72% , saturates at

62 TFLOPS per GPU

But what about reinforcement learning with
human feedback?

Not all human feedback is the same

Objective human feedback

1+1 = 2

Literal translations and
classifications

External outcomes

Empirical observations

Subjective human feedback

Nuanced preferences

Gut reactions

Responses to content

Interpreting artwork

Human feedback varies by use case and personality

Objective human feedback Subjective human feedback

Great for traditional
ML tasks

Great for generative
ML tasks

Reward modelling aggregates human feedback at scale

1

Pick a base
foundation model

2

Collect prompts and multiple
responses from the model

3

Use human labelers
to rank the responses

4

Train a reward model

5

Use the reward model to
train a new generative model

6

Evaluate the new model to
see performance boosts

Reinforcement learning with human feedback

• Start with a dataset of prompts and responses, with multiple responses for each
prompt

• Send these to humans for ranking

• Train a new reward model on the human rankings, using reinforcement learning

• Use the reward model to train a new generative model

• The final model should be 2-3x better than the original

Pro tip:

Reinforcement learning with human feedback is one of the most common ways to
perform reward modelling

Quick recap of reinforcement learning

Vocabulary

• Reinforcement learning: a type of machine learning commonly used to train robotic agents

• Agent: an autonomous entity we want to train

• Policy: how the agent learns, commonly a neural network

• Action space: all possible actions the agent can take

• Reward function: a signal provided to the agent to drive its learning

Agent Picks an
action

Uses the policy to
pick an action

Takes an
action

Action
produces a

result

Reward signal is sent back to the agent to update the policy

Applying reinforcement learning to update LLMs

• Policy: the LLM you want to fine-tune, orchestrated by proxy policy optimization
(PPO)

• Action space: all possible tokens in the vocabulary

• Reward model: a model you train on the human-ranked responses from the LLM

• Divergence: a distance function you use to keep the original LLM and the one you
are training closer

• Reward function: uses a pretrained reward model, combined with the divergence
term, to update the agent and its neural network

RLHF mathematically speaking
• 𝑥 = prompts from the training dataset

• 𝑦∗ = text generated by the LLM (the PPO) you are training, using the prompts

• 𝑦" = text generated from the original LLM you used first, also using the prompts

𝑟! = 	𝑟𝑒𝑤𝑎𝑟𝑑_𝑚𝑜𝑑𝑒𝑙 𝑥 +	𝑦∗

𝑟#$ = KLDivergence(𝑦∗, 𝑦%)

𝑟&&' = 𝑟! − 	𝜖 ∗ 𝑟#$ +	?

Tells you what
humans prefer

Prevents out-of-
character RL hacks

Serves as the signal
to update your
neural network

A tunable weighting term

May be useful to
add pretraining
gradients here

RLHF shows 2-3x boost over base GPT-3

Training language models to follow
instructions with human feedback

Ouyang et al, 2022

What you need to train a reward model

1:many dataset with
prompts and responses

A GPT-based model that
returns a number

Distributed
training systems

A regressive large language model

But not that large, ~6B is good enough

Datasets for reward modelling
“What’s the weather like in Washington, DC?”

The local weather in
Washington DC is

currently sunny and
humid, at a temperature

of 82 degrees Fahrenheit.

It’s freaking hot!!
Relative to Phoenix,

Arizona, Washington DC
is a cool 82 degrees.

2 1 3

You want some preference number to rank all of the possible responses to each prompt.

You can use humans, AI’s, or any kind of digital signal to create these rankings.

The rankings become the label to train a supervised reward model.

Prompt

Responses

Preference
rankings

How to build and train a reward model on AWS

Store datasets Training scripts

Analyze data, develop
scripts, run jobs

Training instances

Amazon SageMakerAmazon Elastic Container
Registry (Amazon ECR)

Amazon Simple Storage
Service (Amazon S3)

Use your reward model to train a new LLM

Prompts dataset Your original
pretrained LLM

Store prompts and responses from
your original LLM

AWS Cloud

• Run a CPU-based and/or serverless job

ahead of time

• Store both the prompts and the

responses from your original LLM

• Prepare the training dataset on a high-

performance distributed file system to

optimize the training runs

• May already be in your ranking dataset!

Ahead of time, precompute the original model responses

Use your reward model to train a new LLM

Prompts and
responses from

your original LLM

Heterogenous clusters

Reward model The LLM you are
fine-tuning

1 Get response from latest
epoch in your tunable LLM

2

Run the KL penalty function
to compare the model
responses

3

Send to the reward model to
get the human preferences

Use the reward model and the
KL penalty to update your
LLM

4

Amazon SageMaker

Pro tips:

1. Use smaller accelerators for

the reward model

2. Use larger accelerators for the

LLM you are fine-tuning

3. Keep these in the same cluster

to maximize run-time

Hands-on demo

https://bit.ly/sm-nb-4

Pretrain Vision and
Large Language Models

https://bit.ly/dist-train-book

Thank you!
Emily Webber

Link to slides

