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So you want to 
build your own 

foundation model 
• Why to pretrain

• When in your project lifecycle

• Which base model to pick

• What datasets to use

• How to do this easily and efficiently

• Hands-on demo: pretrain 30B parameter 
LLM on AWS with SageMaker

• Resources



Let’s say I asked you to learn everything on the internet. 
How would you do it?

TimeStorageStructure

A foundation model can 
do this in a few months.

5.74 B pages x 52 seconds 
= ~85M hours  

=> ~41,000 human years  



You can do a lot with foundation models!

Text 
generation

Q&A Paraphrase 
rephrase

Code
generation

Image
generation 

Image 
classification 

Audio 
generation

Video 
generation

Text
extraction

SearchText
summarization



Many ML tasks can now be re-cast as generative, 
and most will benefit from foundation models. 

Traditional classification Using generation to classify text

Text: I am not into this house; it’s way too 
expensive and too far from the train line!

Model
Sentiment: 
negative

Text: I am not into this house; it’s way too expensive and 
too far from the train line!

Classify this sentence into positive or negative sentiment:

Agent: Negative sentimentModel



There are many ways to customize a foundation model

Complexity and cost

Accuracy

Prompt 
engineering

Fine-tuning *

Pretraining

Retrieval 
augmented 
generation



The biggest lesson that can be read from 70 years 
of AI research is that general methods that 
leverage computation are ultimately the most 
effective, and by a large margin … the only thing 
that matters in the long run is the leveraging of 
computation.

Richard Sutton’s Bitter Lesson, 2019
The Father of Reinforcement Learning



Pretraining might be the best long-term bet in AI

Better loss function Unsupervised data 
are always larger

Deeper learning in 
the networks

Efficiency gains 
at scale



To consider a pretraining project, you want a chart like this

Model 
accuracy

Zero-shot Single-shot Few-shot Parameter-
efficient 
fine-tuning

Classic fine-tuning

We hope pretraining 
will fill this gap



What to do before you launch all the accelerators

Model 
accuracy

Open-source model Your pretrained model

After this experiment, you 
can prove pretraining will 

fill this gap

Pro tip – prove empirically 
at 1% of your data that 

pretraining does improve 
performance on your use 

case. 

Do this before you run on 
massive accelerator clusters.

Fine-tune both 
models for this 
comparison



What does it take to pretrain a new foundation model?

Model name Dataset size Model size in 
parameters

Cluster size Time to train

Stable Diffusion 2.1 5B images, 240 TB < 1 billion 37 p4d instances 28 days

Falcon 1T tokens, 2.8 TB 40B 48 p4d instances Two months

BloombergGPT 700B tokens, 1.9 TB 50B 64 p4d instances 53 days

All trained on 
SageMaker



How to pretrain foundation models on AWS

1

Gather data 
and store

2

Process data 
for training

3

Optimize data storage 
for training runs

4

Develop and test training 
scripts with small instances, 

models, and data sizes

5

Scale up your training runs to your 
maximum cluster, data, and model size

6

Evaluate model 
artifacts



What does this look like in action?

Phase Number Dataset sample Model size Cluster size in 
accelerators

Development and 
compute time

1 1% Base 1 Hours

2 5% Medium 8 Days

3 50% Large 16 Weeks

4 100% Jumbo Max Months

• Set a plan for your project to scale in steps 

• This gives you solvable goals that start at the smallest possible sizes and work 

your way up to hitting the largest compute size  

• Make sure you test your model checkpoint at each step to ensure it’s valid!



There are many kinds of distributed training

Distributed training

Job parallelism



Run multiple jobs in parallel to process and train faster

SageMaker Job

SageMaker Job

SageMaker JobS3 bucket
Streams logs to 

CloudWatch

SageMaker 
control plane

Stores metadata with 
hyperparameters

Amazon CloudWatch

1. Each job can train as many models 
as you need, or process as much 
data as you need.

2. You can use warm pools to reuse 
the instances

for model in list_of_models:

 s3_input = get_data(model)

 s3_output = get_location(model)

 estimator = get_estimator(model, s3_output)

 estimator.fit(s3_input, wait=False)



There are many kinds of distributed training

Distributed training

Data parallelismJob parallelism



Distributed gradient descent has evolved over time

Parameter server 
 E.g., TensorFlow

ParameterServerStrategy

MPI AllReduce  
E.g., Horovod, 

PyTorch DistributedDataParallel



SageMaker Distributed 
Data Parallel

• Optimized backend for distributed training of 
deep learning models in TensorFlow,  PyTorch

• Accelerates training for  network-
bound workloads

• Built and optimized for AWS network  
topology and hardware

• 20%–40% faster and cheaper than  NCCL 
and MPI-based solutions. Best  performance 
on AWS for large clusters.

ml.p3dn.24xl



There are many kinds of distributed training

Distributed training

Model parallelismData parallelism

Pipeline parallelism Tensor parallelism

Job parallelism



SageMaker model parallel

Automated
model partitioning

Managed
SageMaker training

Interleaved
pipelined training

Clean
framework integration



L1 L2 L3 L4• Split minibatches into N “microbatches”

• Feed microbatches sequentially, but 

process them to keep GPU utilization 

more even

• Minimize “idle” time on GPUs

SageMaker Model Parallel 
splits your model over 
multiple accelerators



Approach linear-scaling with Sharded Data Parallelism

23

MiCS achieves 169 TFLOPS per GPU with 175B parameter model on AWS p4de.24xlarge instances

Available within SageMaker Model Parallel   
2.8x faster than DeepSpeed

• MiCS hits 99.4% of 

linear-scaling 

efficiency from 128 

to 512 GPUs

• DeepSpeed hits only 

72% , saturates at 

62 TFLOPS per GPU 



But what about reinforcement learning with 
human feedback?



Not all human feedback is the same

Objective human feedback

1+1 = 2

Literal translations and 
classifications

External outcomes 

Empirical observations

Subjective human feedback

Nuanced preferences

Gut reactions

Responses to content

Interpreting artwork



Human feedback varies by use case and personality

Objective human feedback Subjective human feedback

Great for traditional 
ML tasks

Great for generative 
ML tasks



Reward modelling aggregates human feedback at scale

1

Pick a base 
foundation model

2

Collect prompts and multiple 
responses from the model

3

Use human labelers 
to rank the responses

4

Train a reward model

5

Use the reward model to 
train a new generative model

6

Evaluate the new model to 
see performance boosts



Reinforcement learning with human feedback

• Start with a dataset of prompts and responses, with multiple responses for each 
prompt

• Send these to humans for ranking

• Train a new reward model on the human rankings, using reinforcement learning

• Use the reward model to train a new generative model

• The final model should be 2-3x better than the original

Pro tip:
 

Reinforcement learning with human feedback is one of the most common ways to 
perform reward modelling



Quick recap of reinforcement learning

Vocabulary

• Reinforcement learning: a type of machine learning commonly used to train robotic agents

• Agent: an autonomous entity we want to train 

• Policy: how the agent learns, commonly a neural network

• Action space: all possible actions the agent can take

• Reward function: a signal provided to the agent to drive its learning

Agent Picks an 
action

Uses the policy to 
pick an action

Takes an 
action

Action 
produces a 

result

Reward signal is sent back to the agent to update the policy



Applying reinforcement learning to update LLMs

• Policy: the LLM you want to fine-tune, orchestrated by proxy policy optimization 
(PPO)

• Action space: all possible tokens in the vocabulary

• Reward model: a model you train on the human-ranked responses from the LLM

• Divergence: a distance function you use to keep the original LLM and the one you 
are training closer 

• Reward function: uses a pretrained reward model, combined with the divergence 
term, to update the agent and its neural network



RLHF mathematically speaking
• 𝑥  = prompts from the training dataset

• 𝑦∗ = text generated by the LLM (the PPO) you are training, using the prompts

• 𝑦" = text generated from the original LLM you used first, also using the prompts

𝑟! = 	𝑟𝑒𝑤𝑎𝑟𝑑_𝑚𝑜𝑑𝑒𝑙 𝑥 +	𝑦∗

𝑟#$ = KLDivergence(𝑦∗, 𝑦%)

𝑟&&' = 𝑟! − 	𝜖 ∗ 𝑟#$ +	? 

Tells you what 
humans prefer

Prevents out-of-
character RL hacks

Serves as the signal 
to update your 
neural network

A tunable weighting term

May be useful to 
add pretraining 
gradients here



RLHF shows 2-3x boost over base GPT-3

Training language models to follow 
instructions with human feedback

Ouyang et al, 2022



What you need to train a reward model

1:many dataset with 
prompts and responses

A GPT-based model that 
returns a number 

Distributed 
training systems

A regressive large language model 

But not that large, ~6B is good enough



Datasets for reward modelling 
“What’s the weather like in Washington, DC?”

The local weather in 
Washington DC is 

currently sunny and 
humid, at a temperature 

of 82 degrees Fahrenheit. 

It’s freaking hot!!
Relative to Phoenix, 

Arizona, Washington DC 
is a cool 82 degrees.

2 1 3

You want some preference number to rank all of the possible responses to each prompt.

You can use humans, AI’s, or any kind of digital signal to create these rankings.

The rankings become the label to train a supervised reward model.

Prompt

Responses 

Preference 
rankings



How to build and train a reward model on AWS

Store datasets Training scripts

Analyze data, develop 
scripts, run jobs

Training instances

Amazon SageMakerAmazon Elastic Container 
Registry (Amazon ECR)

Amazon Simple Storage 
Service (Amazon S3)



Use your reward model to train a new LLM

Prompts dataset Your original 
pretrained LLM

Store prompts and responses from 
your original LLM

AWS Cloud

• Run a CPU-based and/or serverless job 

ahead of time 

• Store both the prompts and the 

responses from your original LLM

• Prepare the training dataset on a high-

performance distributed file system to 

optimize the training runs

• May already be in your ranking dataset!

Ahead of time, precompute the original model responses



Use your reward model to train a new LLM

Prompts and 
responses from 

your original LLM

Heterogenous clusters

Reward model The LLM you are 
fine-tuning

1 Get response from latest 
epoch in your tunable LLM

2

Run the KL penalty function 
to compare the model 
responses

3

Send to the reward model to 
get the human preferences

Use the reward model and the 
KL penalty to update your 
LLM

4

Amazon SageMaker

Pro tips:

1. Use smaller accelerators for 

the reward model

2. Use larger accelerators for the 

LLM you are fine-tuning

3. Keep these in the same cluster 

to maximize run-time



Hands-on demo

https://bit.ly/sm-nb-4



Pretrain Vision and 
Large Language Models 

https://bit.ly/dist-train-book



Thank you!
Emily Webber

Link to slides


