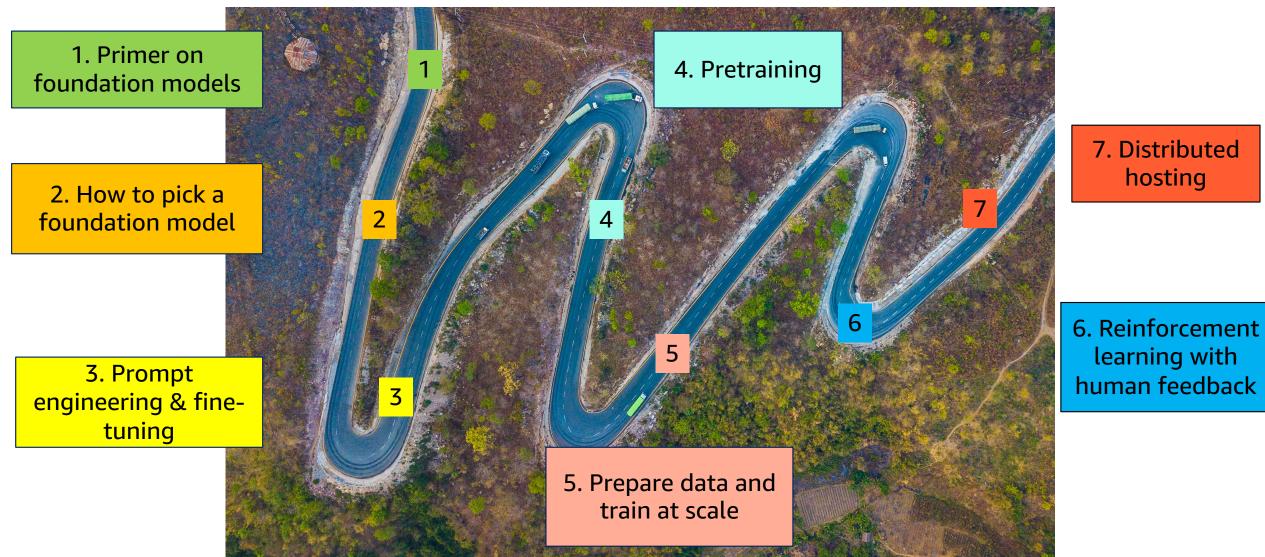


Pretrain Vision and Large Language Models on AWS

Tutorial

Emily Webber Principal ML Specialist SA at AWS

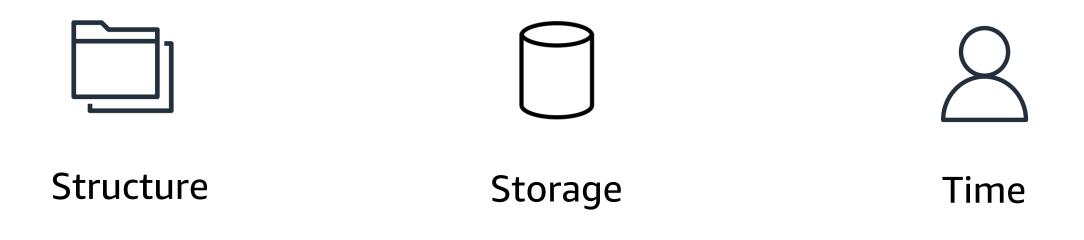
The winding road of R&D for foundation models



So you want to build your own foundation model

- Why to pretrain
- When in your project lifecycle
- Which base model to pick
- What datasets to use
- How to do this easily and efficiently
- Hands-on demo: pretrain 30B parameter LLM on AWS with SageMaker
- Resources

Let's say I asked you to learn everything on the internet. How would you do it?

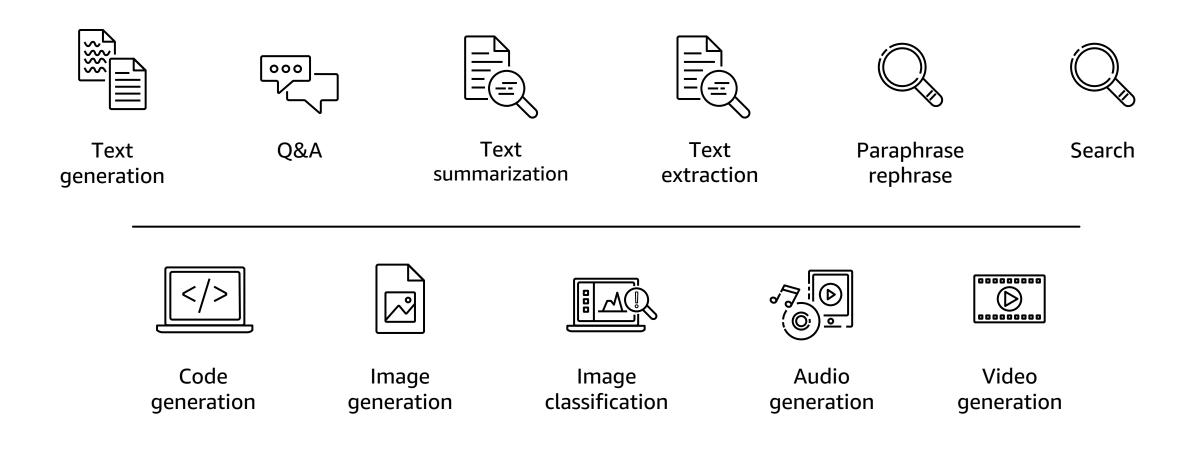


5.74 B pages x 52 seconds = ~85M hours

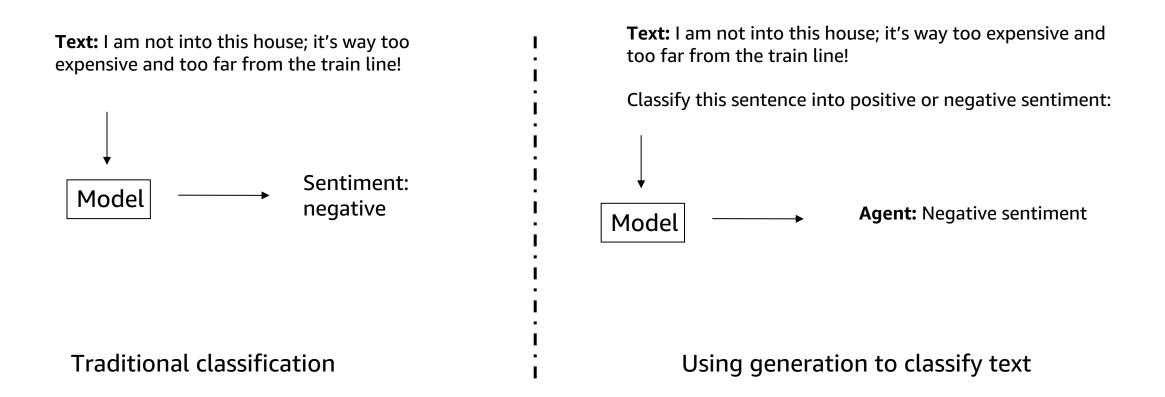
A foundation model can do this in a few months.

=> ~41,000 human years

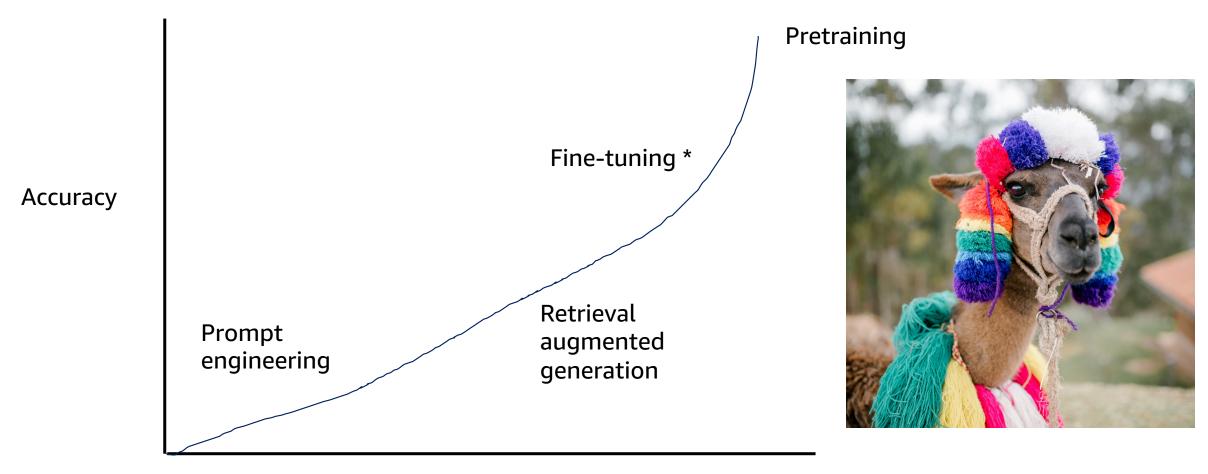
You can do a lot with foundation models!



Many ML tasks can now be re-cast as generative, and most will benefit from foundation models.



There are many ways to customize a foundation model

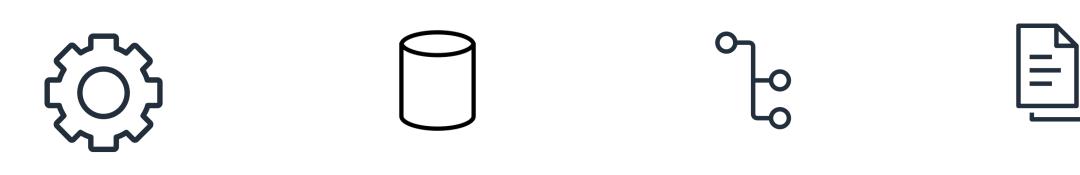


Complexity and cost

The biggest lesson that can be read from 70 years of AI research is that general methods that leverage computation are ultimately the most effective, and by a large margin ... the only thing that matters in the long run is the leveraging of computation.

Richard Sutton's *Bitter Lesson*, 2019 The Father of Reinforcement Learning

Pretraining might be the best long-term bet in AI



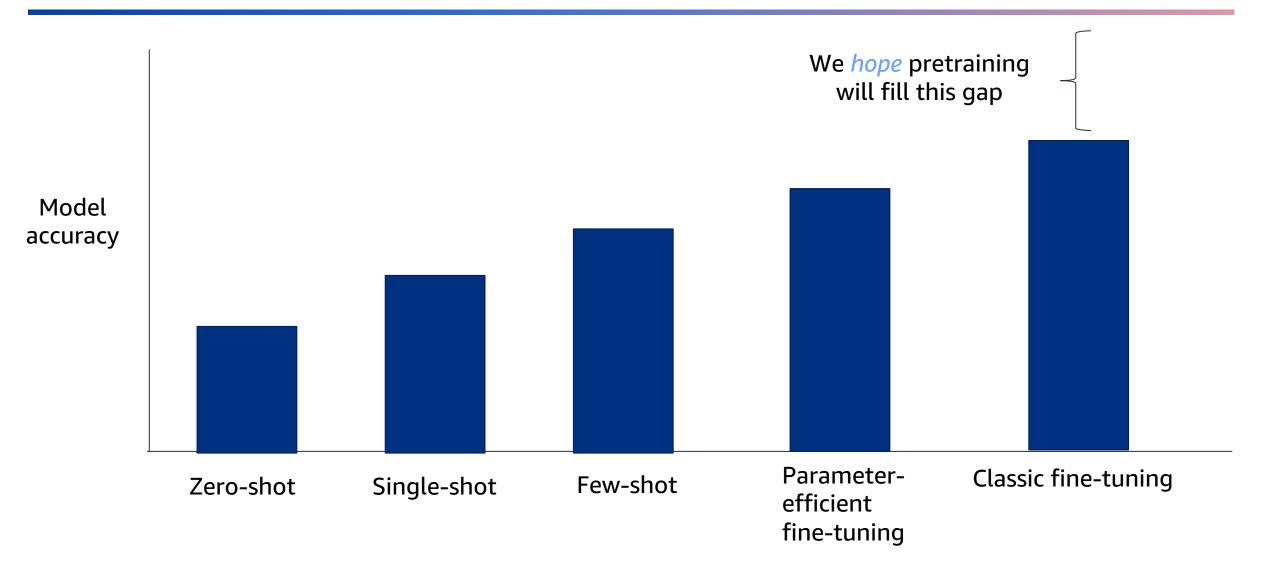
Better loss function

Unsupervised data are always larger

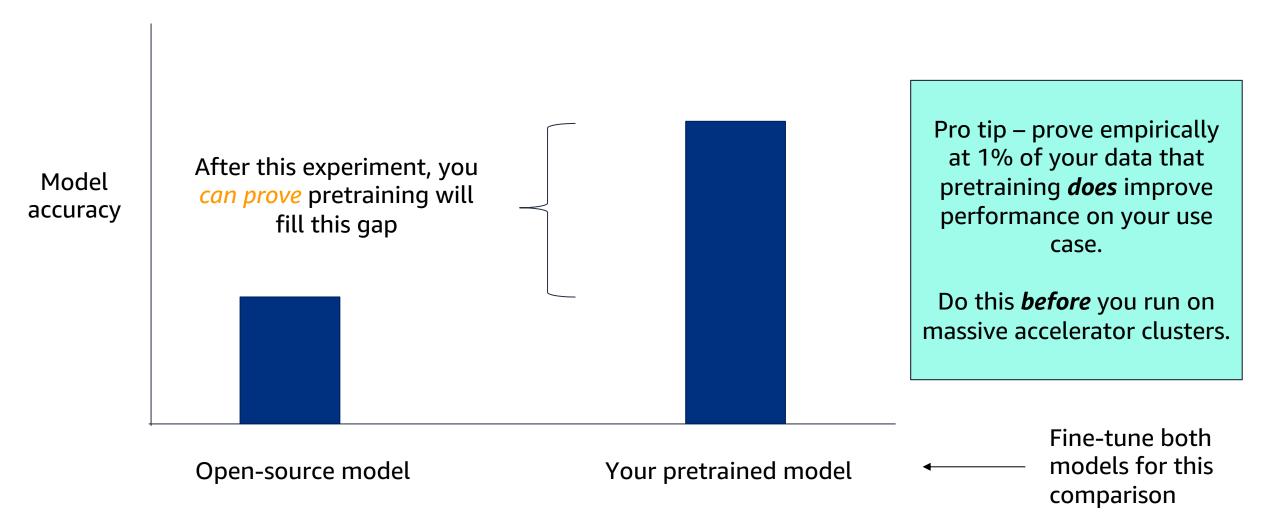
Deeper learning in the networks

Efficiency gains at scale

To consider a pretraining project, you want a chart like this

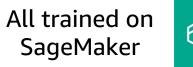


What to do before you launch all the accelerators

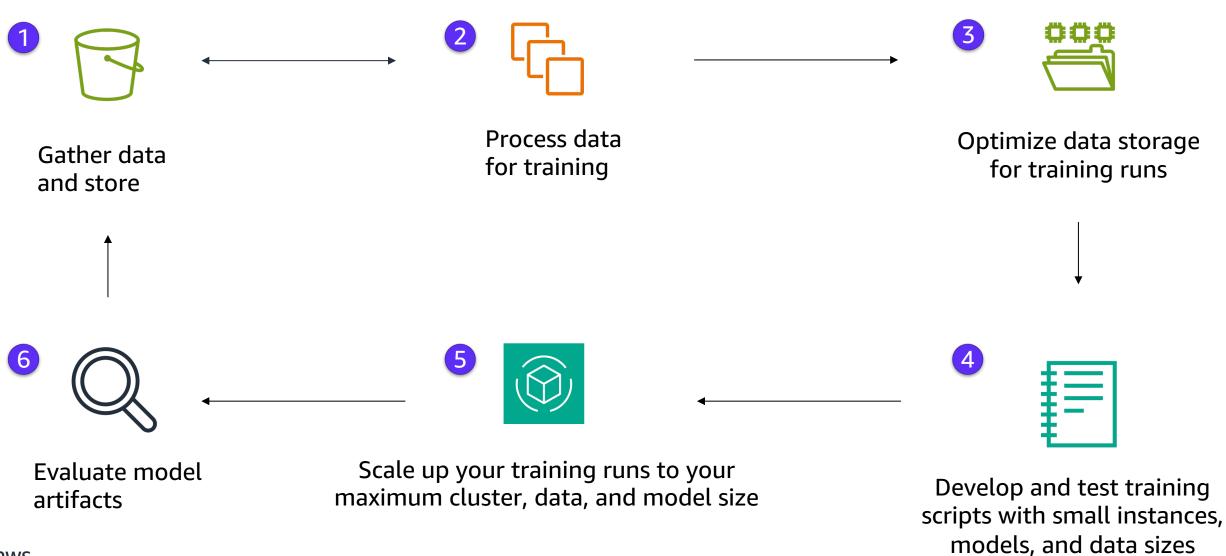


What does it take to pretrain a new foundation model?

Model name	Dataset size	Model size in parameters	Cluster size	Time to train
Stable Diffusion 2.1	5B images, 240 TB	< 1 billion	37 p4d instances	28 days
Falcon	1T tokens, 2.8 TB	40B	48 p4d instances	Two months
BloombergGPT	700B tokens, 1.9 TB	50B	64 p4d instances	53 days



How to pretrain foundation models on AWS

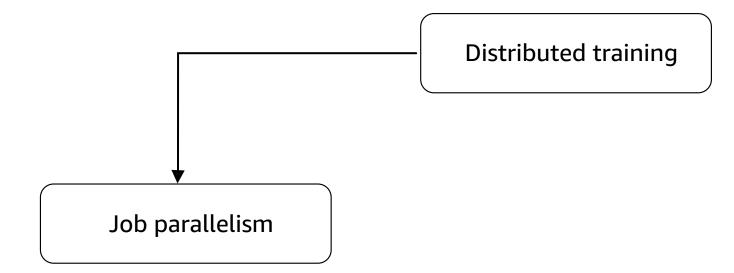


What does this look like in action?

Phase Number	Dataset sample	Model size	Cluster size in accelerators	Development and compute time
1	1%	Base	1	Hours
2	5%	Medium	8	Days
3	50%	Large	16	Weeks
4	100%	Jumbo	Max	Months

- Set a plan for your project to scale in steps
- This gives you solvable goals that start at the smallest possible sizes and work your way up to hitting the largest compute size
- Make sure you test your model checkpoint at each step to ensure it's valid!

There are many kinds of distributed training



Run multiple jobs in parallel to process and train faster

- Each job can train as many models as you need, or process as much data as you need.
- 2. You can use *warm pools* to reuse the instances

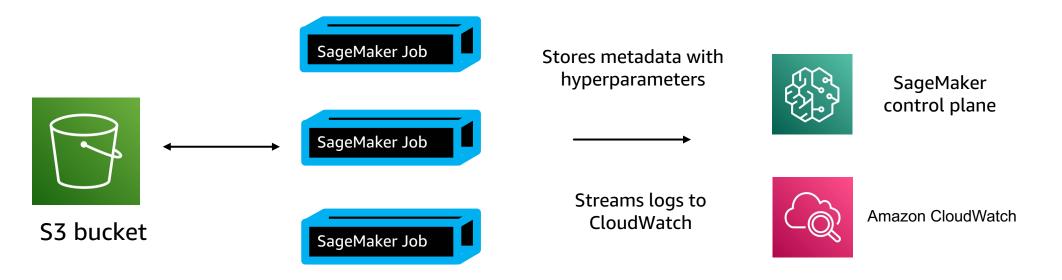
for model in list_of_models:

s3_input = get_data(model)

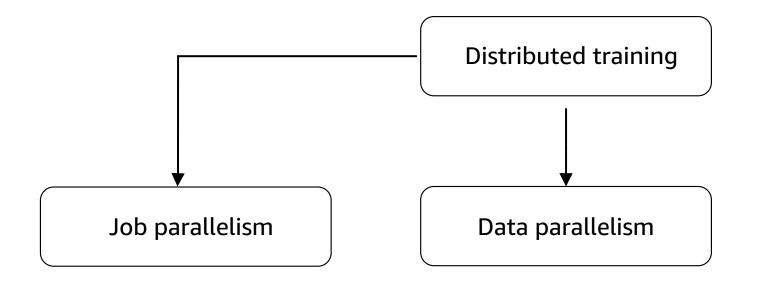
s3_output = get_location(model)

estimator = get_estimator(model, s3_output)

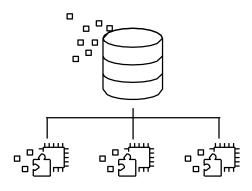
estimator.fit(s3_input, wait=False)



There are many kinds of distributed training

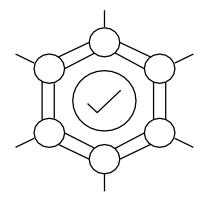


Distributed gradient descent has evolved over time



Parameter server

E.g., TensorFlow ParameterServerStrategy



MPI AllReduce E.g., Horovod, PyTorch DistributedDataParallel

SageMaker Distributed Data Parallel

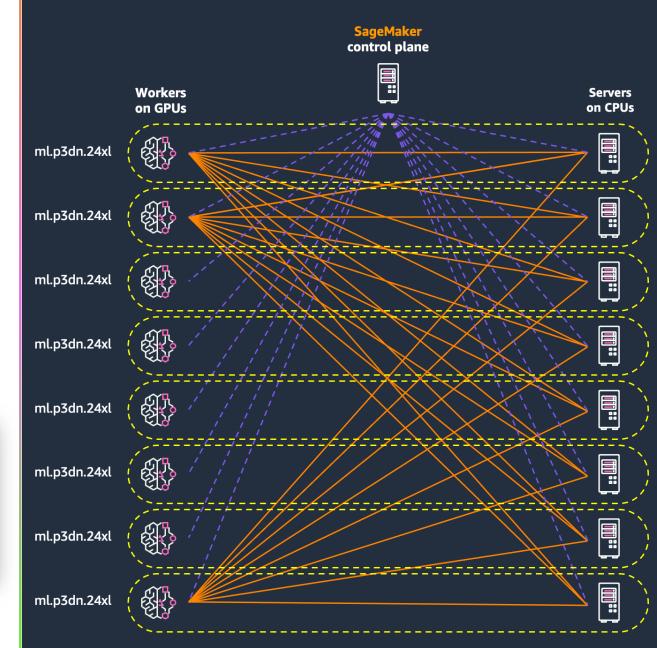
- Optimized backend for distributed training of deep learning models in TensorFlow, PyTorch
- Accelerates training for networkbound workloads

aws

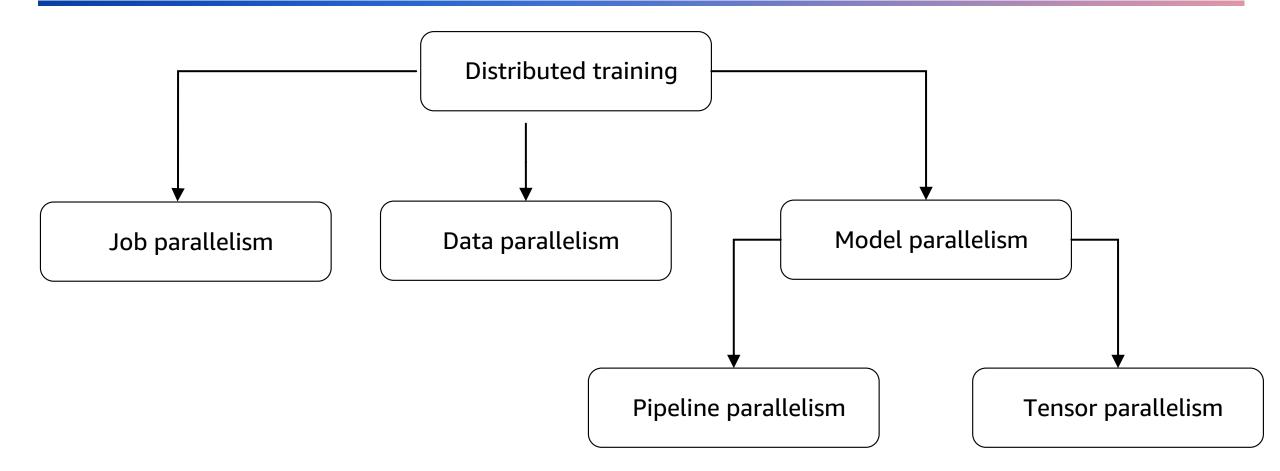
- Built and optimized for AWS network topology and hardware
- 20%–40% faster and cheaper than NCCL and MPI-based solutions. Best performance on AWS for large clusters.

Herring: Rethinking the Parameter Server at Scale for the Cloud

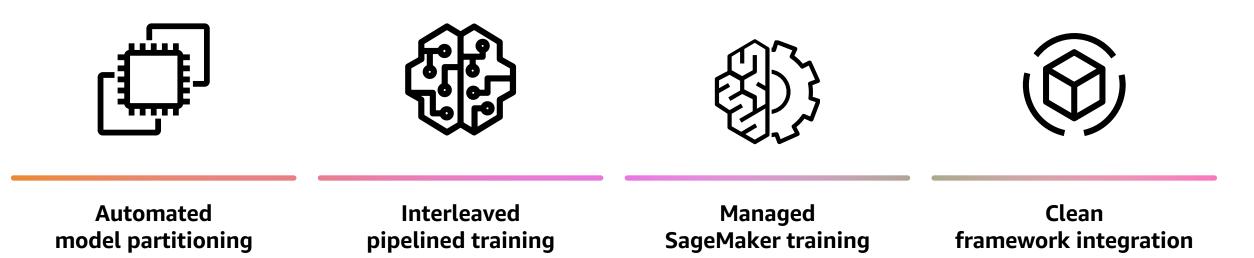
> Indu Thangakrishnan, Derya Cavdar, Can Karakus, Piyush Ghai, Yauheni Selivonchyk, Cory Pruce Amazon Web Services {thangakr, dcavdar, cakarak, ghaipiyu, yauheni, cpruce}@amazon.com



There are many kinds of distributed training

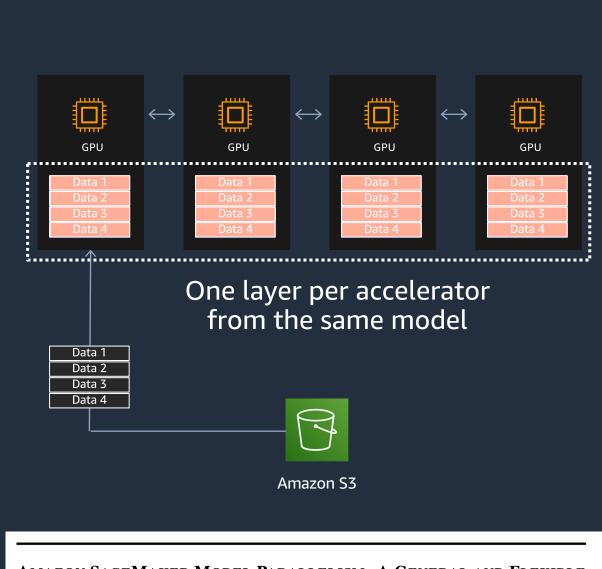


SageMaker model parallel



SageMaker Model Parallel splits your model over multiple accelerators

- Split minibatches into N "microbatches"
- Feed microbatches sequentially, but process them to keep GPU utilization more even
- Minimize "idle" time on GPUs

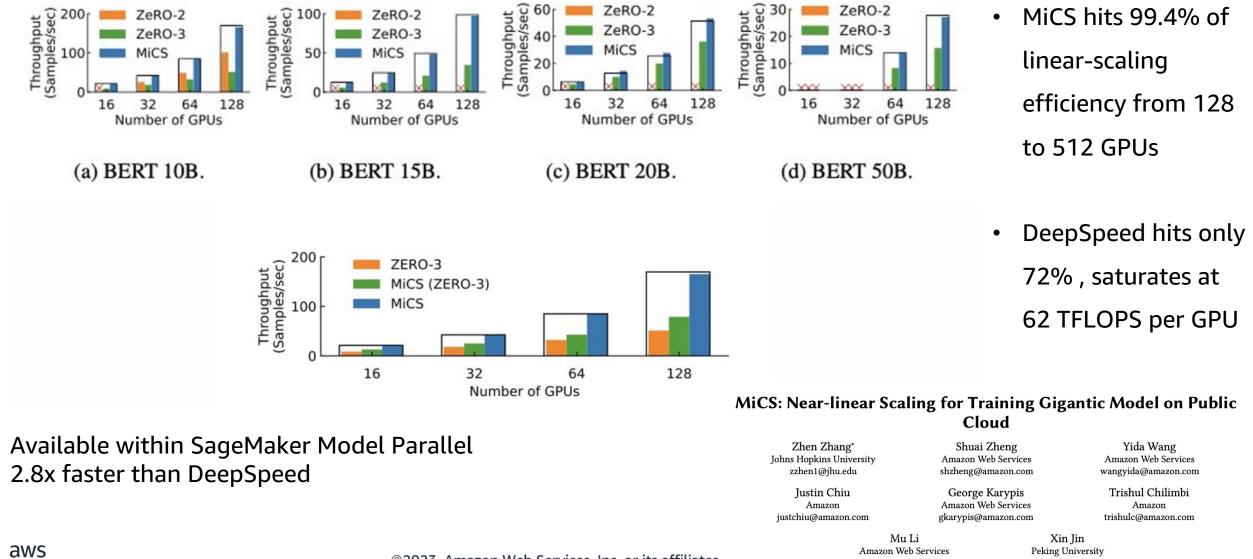


AMAZON SAGEMAKER MODEL PARALLELISM: A GENERAL AND FLEXIBLE FRAMEWORK FOR LARGE MODEL TRAINING

Can Karakus¹ Rahul Huilgol¹ Fei Wu¹ Anirudh Subramanian¹ Cade Daniel¹ Derya Cavdar¹ Teng Xu¹ Haohan Chen¹ Arash Rahnama¹ Luis Quintela¹

Approach linear-scaling with Sharded Data Parallelism

MiCS achieves 169 TFLOPS per GPU with 175B parameter model on AWS p4de.24xlarge instances



xinjinpku@pku.edu.cn

mli@amazon.com

But what about reinforcement learning with human feedback?

Not all human feedback is the same

Objective human feedback

1+1 = 2

- Literal translations and classifications
 - External outcomes
- **Empirical observations**

Subjective human feedback Nuanced preferences

Gut reactions

Responses to content

Interpreting artwork

Human feedback varies by use case and personality

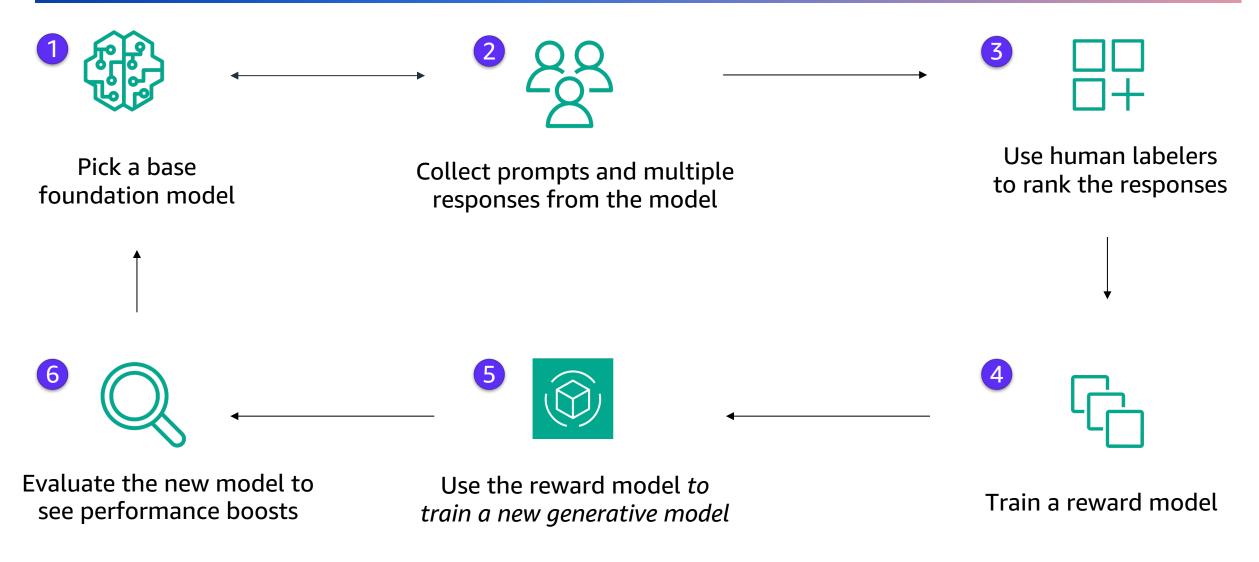
Objective human feedback

Subjective human feedback

Great for traditional ML tasks

Great for generative ML tasks

Reward modelling aggregates human feedback at scale



Reinforcement learning with human feedback

- Start with a dataset of prompts and responses, with multiple responses for each prompt
- Send these to humans for ranking
- Train a new *reward model* on the human rankings, using reinforcement learning
- Use the reward model to train a new generative model
- The final model should be 2-3x better than the original

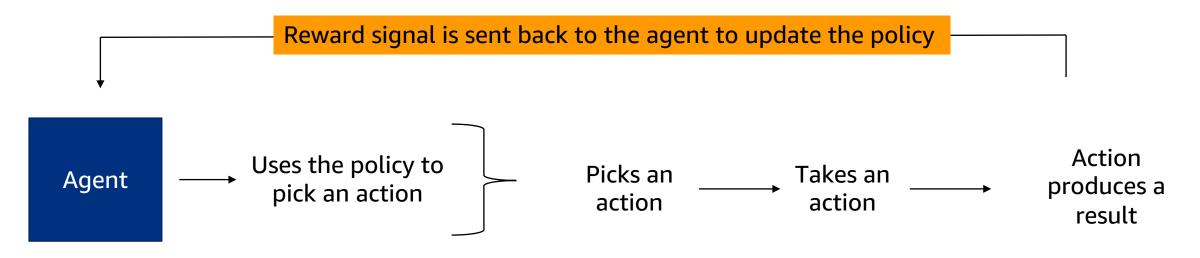
Pro tip:

Reinforcement learning with human feedback is one of the most common ways to perform *reward modelling*

Quick recap of reinforcement learning

Vocabulary

- *Reinforcement learning*: a type of machine learning commonly used to train robotic agents
- Agent: an autonomous entity we want to train
- *Policy*: how the agent learns, commonly a neural network
- *Action space*: all possible actions the agent can take
- *Reward function*: a signal provided to the agent to drive its learning



Applying reinforcement learning to update LLMs

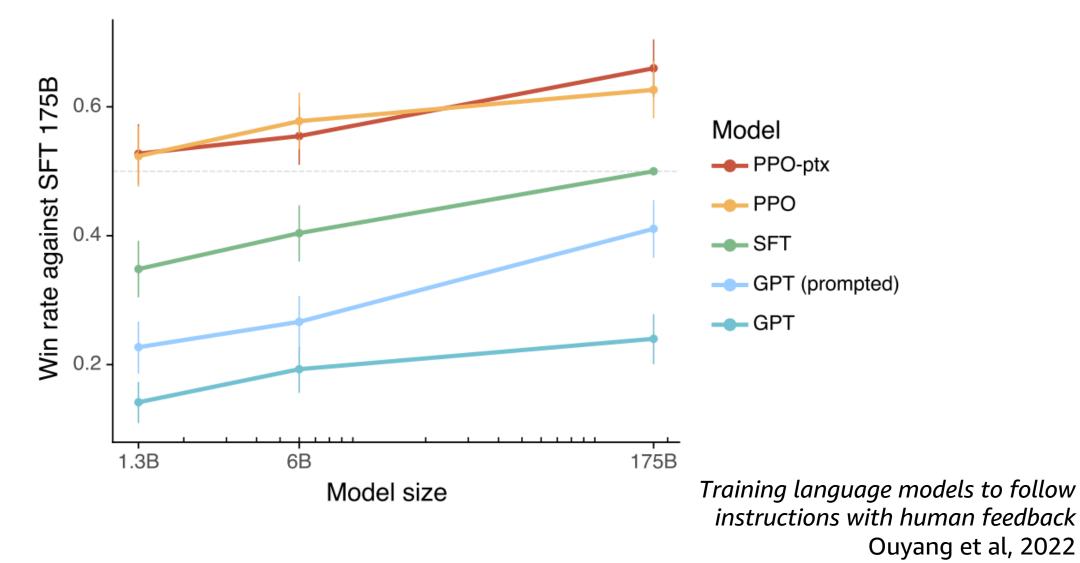
- **Policy**: the LLM you want to fine-tune, orchestrated by proxy policy optimization (PPO)
- Action space: all possible tokens in the vocabulary
- Reward model: a model you train on the human-ranked responses from the LLM
- **Divergence**: a distance function you use to keep the original LLM and the one you are training closer
- **Reward function**: uses a pretrained reward model, combined with the divergence term, to update the agent and its neural network

RLHF mathematically speaking

- x = prompts from the training dataset
- y^* = text generated by the LLM (the PPO) you are training, using the prompts
- y^0 = text generated from the original LLM you used first, also using the prompts

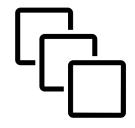
$$\begin{array}{ccc} \begin{array}{c} \text{Tells you what} & \longrightarrow & r_{\theta} = reward_model(x + y^{*}) \\ \\ \begin{array}{c} \text{Prevents out-of-} \\ \text{character RL hacks} & \longrightarrow & r_{KD} = \text{KLDivergence}(y^{*}, y^{0}) \\ \\ \begin{array}{c} \text{Serves as the signal} \\ \text{to update your} \\ \text{neural network} \end{array} & \longrightarrow & r_{PPO} = r_{\theta} - \epsilon * r_{KD} + ? \longleftarrow & \begin{array}{c} \text{May be useful to} \\ \text{add pretraining} \\ \text{gradients here} \\ \\ \text{A tunable weighting term} \end{array} \end{array}$$

RLHF shows 2-3x boost over base GPT-3



©2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What you need to train a reward model



1:many dataset with prompts and responses

A GPT-based model that returns a number

Distributed training systems

A regressive large language model

But not that large, ~6B is good enough

Datasets for reward modelling

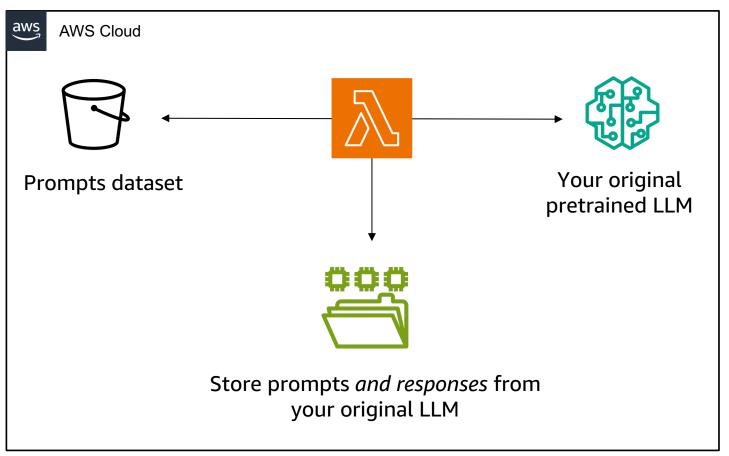
Prompt	>	"What's the weather like in Washington, DC?"							
Responses		The local weather in Washington DC is currently sunny and humid, at a temperature of 82 degrees Fahrenheit.	It's freaking hot!!	Relative to Phoenix, Arizona, Washington DC is a cool 82 degrees.					
Preference rankings		2	1	3					
You want some preference number to rank all of the possible responses to each prompt.									
You can use humans, AI's, or any kind of digital signal to create these rankings.									
The rankings become the label to train a supervised reward model.									
aws	©2023, Amazon Web Services, Inc. or its affiliates, All rights reserved.								

How to build and train a reward model on AWS



Use your reward model to train a new LLM

Ahead of time, precompute the original model responses



• Run a CPU-based and/or serverless job

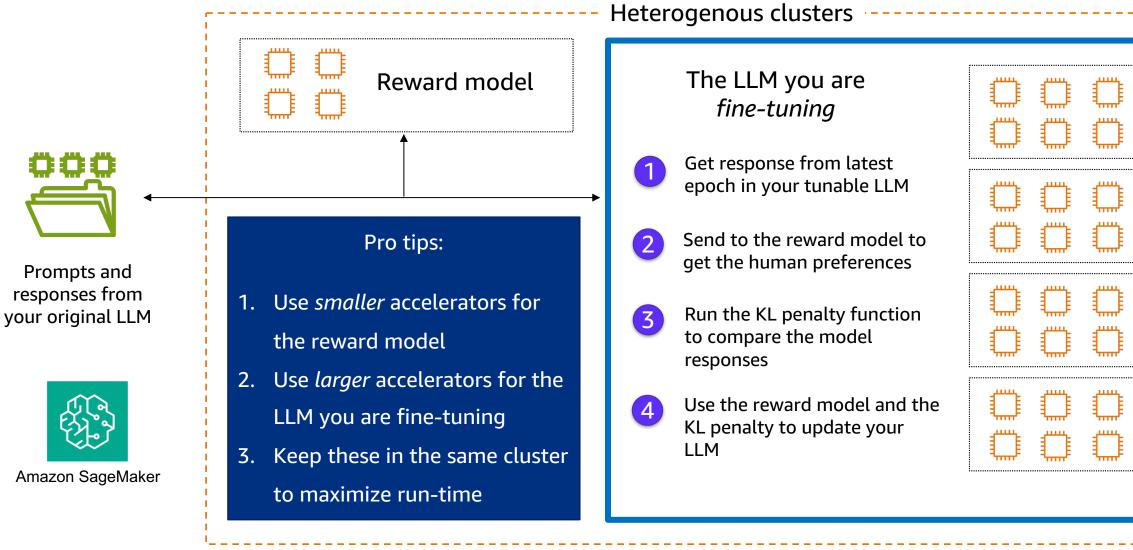
ahead of time

• Store both the prompts and the

responses from your original LLM

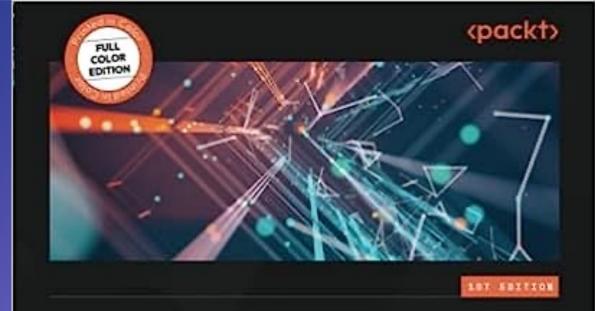
- Prepare the training dataset on a highperformance distributed file system to optimize the training runs
 - May already be in your ranking dataset!

Use your reward model to train a new LLM



https://bit.ly/sm-nb-4

Pretrain Vision and Large Language Models https://bit.ly/dist-train-book



Pretrain Vision and Large Language Models in Python

End-to-end techniques for building and deploying foundation models on AWS

> EMILY WEBBER Foreword by Andrea Olgiafi, Chief Engineer Amazon SageMaker

©2023, Amazon Web Services, Inc. or its af

Thank you!

Emily Webber

Link to slides