{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Getting the dataset prepared in Lab `1-DataPrep`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's load the dataset with the features we engineered in the previous lab 1-DataPrep.\n", "\n", "(If you want, just run all cells. Go to the top toolbar click on `Run -> Run All Cells`)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import boto3\n", "import sagemaker\n", "\n", "sess = boto3.Session()\n", "sm = sess.client('sagemaker')\n", "role = sagemaker.get_execution_role()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Set the paths for the datasets saved locally\n", "local_train_path = 'train.csv'\n", "train_df = pd.read_csv(local_train_path, header=None)\n", "train_df.head()\n", "\n", "pd.set_option('display.max_columns', 500) # Make sure we can see all of the columns\n", "pd.set_option('display.max_rows', 10) # Keep the output on one page\n", "train_df.head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Let's check the validation dataset\n", "local_validation_path = 'validation.csv'\n", "validation_df = pd.read_csv(local_validation_path, header=None)\n", "validation_df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you remember from previous lab, we saved the CSV without headers. CSV with headers are stored in `config/training-dataset-with-header.csv`.\n", "\n", "To see our train set with headers:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "pd.read_csv(\"training-dataset-with-header.csv\").head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we'll upload the files to S3 for training." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%store -r bucket\n", "%store -r prefix" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "train_dir = f\"{prefix}/data/train\"\n", "val_dir = f\"{prefix}/data/validation\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Return the URLs of the uploaded file, so they can be reviewed or used elsewhere\n", "s3uri_train = sagemaker.s3.S3Uploader.upload(local_train_path, 's3://{}/{}'.format(bucket, train_dir))\n", "s3uri_validation = sagemaker.s3.S3Uploader.upload(local_validation_path, 's3://{}/{}'.format(bucket, val_dir))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you want to see in the console, go to S3 and verify the 2 CSV files are there:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from IPython.core.display import display, HTML\n", "s3_url_placeholder = \"https://s3.console.aws.amazon.com/s3/buckets/{}?&prefix={}/\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "display(HTML(f\"S3 Train object\"))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "display(HTML(f\"S3 Validation object\"))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Saving variables to use in the main notebook for this lab" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%store train_dir\n", "%store val_dir\n", "%store s3uri_train\n", "%store s3uri_validation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[You can now go back to modeling.ipynb](../modeling.ipynb)" ] } ], "metadata": { "instance_type": "ml.t3.medium", "kernelspec": { "display_name": "Python 3 (Data Science)", "language": "python", "name": "python3__SAGEMAKER_INTERNAL__arn:aws:sagemaker:us-east-2:429704687514:image/datascience-1.0" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.10" } }, "nbformat": 4, "nbformat_minor": 4 }