name: "ensemble" platform: "ensemble" max_batch_size: 882352 input [ { name: "User" data_type: TYPE_FP32 dims: [ 1 ] }, { name: "Card" data_type: TYPE_FP32 dims: [ 1 ] }, { name: "Year" data_type: TYPE_FP32 dims: [ 1 ] }, { name: "Month" data_type: TYPE_FP32 dims: [ 1 ] }, { name: "Day" data_type: TYPE_FP32 dims: [ 1 ] }, { name: "Time" data_type: TYPE_STRING dims: [ 1 ] }, { name: "Amount" data_type: TYPE_STRING dims: [ 1 ] }, { name: "Use Chip" data_type: TYPE_STRING dims: [ 1 ] }, { name: "Merchant Name" data_type: TYPE_STRING dims: [ 1 ] }, { name: "Merchant City" data_type: TYPE_STRING dims: [ 1 ] }, { name: "Merchant State" data_type: TYPE_STRING dims: [ 1 ] }, { name: "Zip" data_type: TYPE_STRING dims: [ 1 ] }, { name: "MCC" data_type: TYPE_STRING dims: [ 1 ] }, { name: "Errors?" data_type: TYPE_STRING dims: [ 1 ] } ] output [ { name: "predictions" data_type: TYPE_FP32 dims: [ 1 ] } ] ensemble_scheduling { step [ { model_name: "preprocessing" model_version: 1 input_map { key: "User" value: "User" } input_map { key: "Card" value: "Card" } input_map { key: "Year" value: "Year" } input_map { key: "Month" value: "Month" } input_map { key: "Day" value: "Day" } input_map { key: "Time" value: "Time" } input_map { key: "Amount" value: "Amount" } input_map { key: "Use Chip" value: "Use Chip" } input_map { key: "Merchant Name" value: "Merchant Name" } input_map { key: "Merchant City" value: "Merchant City" } input_map { key: "Merchant State" value: "Merchant State" } input_map { key: "Zip" value: "Zip" } input_map { key: "MCC" value: "MCC" } input_map { key: "Errors?" value: "Errors?" } output_map { key: "OUTPUT" value: "preprocessed_data" } }, { model_name: "fil" model_version: 1 input_map { key: "input__0" value: "preprocessed_data" } output_map { key: "output__0" value: "predictions" } } ] }