{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Compute powers with numpy and matplotlib\n", "\n", "This is a simple notebook that you can run with parameters to see SageMaker notebook execution in action.\n", "\n", "It takes two parameters:\n", "\n", "* _n_ the number of points\n", "* _p_ the power to raise to\n", "\n", "This will compute $ i^p $ for $ i $ in $ [0,n) $ and draw a graph of the result." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First, show the date so you can see that it really ran." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Notebook run on 2020-03-13 17:49:12\n" ] } ], "source": [ "from datetime import datetime\n", "\n", "print(\"Notebook run on {}\".format(datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Set up numpy and matplotlib to display our data the right way" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "%matplotlib inline\n", "import matplotlib as mpl\n", "import matplotlib.pyplot as plt\n", "mpl.rc('axes', labelsize=14)\n", "mpl.rc('xtick', labelsize=12)\n", "mpl.rc('ytick', labelsize=12)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Parameters\n", "\n", "The following cell is the _parameter cell_. If you select it and then click the wrench icon (assuming you're using JupyterLab), you can see that it has the `parameters` tag set in it's metadata.\n", "\n", "Papermill will add a cell after this cell that sets any parameters that you added in the call. Note that it is not necessary to reset all the parameters (_e.g.,_ just setting `p` is fine here to get the same range but a different exponent. See the documentation [Parameterize][parameters] in the Papermill documentation for more information.\n", "\n", "[parameters]: https://papermill.readthedocs.io/en/latest/usage-parameterize.html" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "tags": [ "parameters" ] }, "outputs": [], "source": [ "n = 100\n", "p = 3" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Computation\n", "\n", "Now use some simple numpy to compute the values and then use matplotlib to draw the graph" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "x = np.array(range(n))" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "y = np.power(x, p)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 0, 1, 8, 27, 64, 125, 216, 343,\n", " 512, 729, 1000, 1331, 1728, 2197, 2744, 3375,\n", " 4096, 4913, 5832, 6859, 8000, 9261, 10648, 12167,\n", " 13824, 15625, 17576, 19683, 21952, 24389, 27000, 29791,\n", " 32768, 35937, 39304, 42875, 46656, 50653, 54872, 59319,\n", " 64000, 68921, 74088, 79507, 85184, 91125, 97336, 103823,\n", " 110592, 117649, 125000, 132651, 140608, 148877, 157464, 166375,\n", " 175616, 185193, 195112, 205379, 216000, 226981, 238328, 250047,\n", " 262144, 274625, 287496, 300763, 314432, 328509, 343000, 357911,\n", " 373248, 389017, 405224, 421875, 438976, 456533, 474552, 493039,\n", " 512000, 531441, 551368, 571787, 592704, 614125, 636056, 658503,\n", " 681472, 704969, 729000, 753571, 778688, 804357, 830584, 857375,\n", " 884736, 912673, 941192, 970299])" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAgAElEQVR4nO3deXxU5d338c8v+x4IBGQJBBAUQQEJmxZtq9WqtUWtT3G3LrjctrZuj7XaWmut9WmtVq1LcatY1HJLxbrvYr2V1QARSNgJEBLIQvb1ev6YoXdMAxlgkjPL9/165ZXMOddkflcm+eaa65y5jjnnEBGRyBLjdQEiIhJ8CncRkQikcBcRiUAKdxGRCKRwFxGJQAp3EZEIpHAXEYlAIRXuZnadmS0xs0Yze+YA7zvTzFabWa2ZrTez6d1UpohIyIvzuoAOtgN3A6cCyYHeycy+BfwO+AGwCBjQLdWJiISJkBq5O+deds79A9jdcZ+ZfcfMvjCzSjP71MyOabf7V8BdzrnPnHNtzrltzrltPVa4iEiICalw3xczmwA8BVwF9AEeBxaYWaKZxQJ5QLaZrTOzYjN72MwCHvmLiESasAh3YBbwuHPuc+dcq3PuWaARmAr0B+KB7wPTgfHABOB2r4oVEfFauIT7UOBG/5RMpZlVAjnAQKDe3+Yh59wO59wu4H7gdI9qFRHxXKgdUN2XrcBvnHO/6WynmRUD7Ze31FKXIhLVQmrkbmZxZpYExAKxZpZkZnHAX4CrzWyK+aSa2Rlmlu6/69PAj8ysn5n1Bn4K/NObXoiIeC+kwh3fPHk9cCtwof/r251zS4ArgYeBCmAdcGm7+/0aWAwUAquB5UCno3wRkWhguliHiEjkCbWRu4iIBEFIHFDt27evy83N9boMEZGwsnTp0l3OuezO9gUU7mZ2Hb457qOBuc65S/fT9qfA/wVSgHnANc65xv19/9zcXJYsWRJIKSIi4mdmm/e1L9Bpmb1rvjzVxQOdiu9g6En4zk0fjm9pABER6UEBhfv+1nzp4BLgSedcgXOuAt9ZLJceWokiInKggn1AdQyQ3+52PtDfzPp0bGhms/zL+y4pKysLchkiItEt2OGeBlS1u7336/SODZ1zTzjn8pxzednZnR4PEBGRgxTscK8BMtrd3vt1dZAfR0RE9iPY4V4AjGt3exyw0znX1Vy9iIgEUUDhvp81Xzr6K3C5mR1lZr3wLSfwTNCqFRGRgAQ6cu90zRczG2JmNWY2BMA59yZwH/ABsAXYDPwy6FWLiESAB98tYunm8m753gG9ick5dydw5z52p3Voez++9dRFRGQfVhRX8sd3C4FRTByaFfTvr7VlREQ88Pu3C+mdEs9lX8vtlu+vcBcR6WGLNpbzcWEZV584gvSk+G55DIW7iEgPcs7x+7fXkp2eyMXTcrvtcRTuIiI9aGHRLhZtLOdH3zyc5ITYbnschbuISA9xzvGHt9cyqFcyMycN6dbHUriLiPSQtwp2kl9cxfUnjyQhrnvjV+EuItIDWtt8c+0jslM5e8Kgbn88hbuISA94eVkx60pruPnUI4iL7f7oVbiLiHSzxpZWHni3iHGDMzl1zGE98pgKdxGRbvb8Z1vYVlnPLd8+EjPrkcdUuIuIdKOaxhYe+WAdxx/eh+MP79tjj6twFxHpRn/5eAO7a5u45dQje/RxFe4iIt2ktLqBvyzcwBlHD2BcTq8efWyFu4hIN3novXU0trRx06lH9PhjK9xFRLrBxl21zF20hfMm5zCsb2qPP77CXUSkG/z+rbUkxMXw45NGevL4CncRkSD7Ymslr63cwRXTh9MvPcmTGhTuIiJB5JzjntdW0zctgVknDPesDoW7iEgQvfPlThZtKuf6k0eRlhjQlUy7hcJdRCRImlvbuPfNNQzPTmXmpBxPa1G4i4gEyQuLtrChrJafnTaa+B5YHGx/FO4iIkFQ3dDMA+8WMXlYFieP7ud1OXg3ISQiEkEe/XA9u2ubeOr00T22ONj+aOQuInKIiivqmP3JRmaMH9jjywzsi8JdROQQ3ffmWgy4+ds9uzjY/ijcRUQOwbItFSzI386sE4YzqFey1+X8m8JdROQgOee4+59fkp2eyNUnjvC6nK9QuIuIHKR/rtjBsi2V3HTKKFI9fMNSZxTuIiIHob6plXvfWMPoARl8f6K3b1jqjMJdROQgPPHxBrZV1vPLM48iNsb7Ux87UriLiBygHVX1PPbRek4/+jCmDu/jdTmdCijczSzLzOabWa2ZbTaz8/fRLtHMHjOznWZWbmavmtmg4JYsIuKt372xhlbn+Nlpo70uZZ8CHbk/AjQB/YELgEfNbEwn7a4HpgHHAAOBCuChINQpIhISlm6u4B9fbGfW9OHkZKV4Xc4+dRnuZpYKnAPc4Zyrcc59AiwALuqk+TDgLefcTudcA/Ai0Nk/ARGRsNPW5rhzQQH9MxK55uuhdepjR4GM3EcBLc65wnbb8uk8tJ8EjjezgWaWgm+U/0Zn39TMZpnZEjNbUlZWdqB1i4j0uJeWbGXltipuO310yJ362FEg4Z4G7OmwrQpI76RtEbAV2Oa/z2jgrs6+qXPuCedcnnMuLzs7O/CKRUQ8UFXfzH1vrWVSbm++O26g1+V0KZBwrwEyOmzLAKo7afsIkAj0AVKBl9nHyF1EJJz88Z1CKuuauPO7Y0Ji1ceuBBLuhUCcmbW/hPc4oKCTtuOBZ5xz5c65RnwHUyebWd9DL1VExBtrS6p57rPNnDd5CGMGZnpdTkC6DHfnXC2+EfhdZpZqZscD3wOe66T5YuBiM8s0s3jgWmC7c25XMIsWEekpzjl+8coq0hLjuOmUI7wuJ2CBngp5LZAMlAJzgWuccwVmNt3Matq1uwlowDf3XgacDpwVxHpFRHrUgvztfL6xnFu+fQS9UxO8LidgAR3udc6VAzM62b4Q3wHXvbd34ztDRkQk7FU3NPOb11ZzzOBMZk4a4nU5ByS0z+UREfHQg+8WUVbTyF8uzgvJ9WP2R2vLiIh0Ym1JNU9/uomZk4aEzKXzDoTCXUSkA+ccd7yyivSkOG45NXwOorancBcR6eC/l21j0cZyfnbakWF1ELU9hbuISDsVtU3c8/pqJg7tzbkheBGOQCncRUTaue+tNVTVN3P3jLHEhNlB1PYU7iIifks3VzB30VYuOz6X0QM6rroSXhTuIiJAc2sbP5+/kgGZSfzk5FFel3PIdJ67iAgwe+FG1pRU88RFE0N+Od9AaOQuIlFvy+46HnyvkFPH9OeUMYd5XU5QKNxFJKo55/j5P1YSFxPDr7471utygkbhLiJRbUH+dhYW7eKmU0ZxWGaS1+UEjcJdRKJWRW0Td736JeMGZ3LRtFyvywmq8D9qICJykH792pdU1Tcz54opYbcwWFc0cheRqPRxYRkvL9vG1SeOCPtz2jujcBeRqFPX1MJt81cyPDuV6755uNfldAtNy4hI1PnD24UUV9Tz0lXTSIqP9bqcbqGRu4hElWVbKnjqXxu5cOoQJg/L8rqcbqNwF5Go0dDcys1/z2dgZjK3njba63K6laZlRCRq/Om9ItaX1fLsZZNJi4AlBvZHI3cRiQori6t4/OMNnDtxMCeOyva6nG6ncBeRiNfU0sbN8/Lpk5rA7Wcc5XU5PSKyX5eIiAAPvV/EmpJqZl+cR2ZKvNfl9AiN3EUkoq0oruTPH67nnGMHc/JR/b0up8co3EUkYjW2tHLjS/lkpyXyizOjYzpmL03LiEjEeuDdIopKa3jmh5PITI6O6Zi9NHIXkYi0dHM5j3+0nh/k5fD1I/p5XU6PU7iLSMSpbWzhhpfyGdgrmdu/E9lvVtoXTcuISMT57Rur2VJex9wrp5KeFF3TMXtp5C4iEeWjwjLmfLaFK742jKnD+3hdjmcU7iISMSpqm7hlXj4j+6Vx4ylHeF2OpwIKdzPLMrP5ZlZrZpvN7Pz9tD3WzD42sxoz22lm1wevXBGRzjnnuG3+Ssprm/jjD8ZH7FK+gQp0zv0RoAnoD4wHXjOzfOdcQftGZtYXeBP4KTAPSAAGB69cEZHOzVtazBurSrj1tCMZOyjT63I81+XI3cxSgXOAO5xzNc65T4AFwEWdNL8BeMs597xzrtE5V+2cWx3ckkVEvmrL7jruXFDAlGFZXDl9uNflhIRApmVGAS3OucJ22/KBMZ20nQqUm9mnZlZqZq+a2ZDOvqmZzTKzJWa2pKys7MArFxEBWlrb+OlLXxATY9z/g/ERd6HrgxVIuKcBezpsqwLSO2k7GLgEuB4YAmwE5nb2TZ1zTzjn8pxzednZkb/8poh0j4feX8fSzRXcPWMsg3ole11OyAhkzr0G6Hhp8AygupO29cB859xiADP7FbDLzDKdc1WHVKmISAeLNpbz0PtFnD1hEN8bP8jrckJKICP3QiDOzEa22zYOKOik7QrAtbvtOmkjInLIquqa+ckLy8nJSuGuGWO9LifkdBnuzrla4GXgLjNLNbPjge8Bz3XS/GngLDMbb2bxwB3AJxq1i0gwOef42fwVlFY38qeZEyL+knkHI9A3MV0LJAOl+ObQr3HOFZjZdDOr2dvIOfc+cBvwmr/t4cA+z4kXETkYcxdt5fWVJdxwyijG5fTyupyQFNC/O+dcOTCjk+0L8R1wbb/tUeDRoFQnItLBmpI9/OrVAqaP7MvVJ4zwupyQpeUHRCRs1DW1cN3flpOeFM/9/2c8MTrtcZ80USUiYePOBQWsL6thzuVTyE5P9LqckKaRu4iEhfnLi3lpSTH/9fXDOf7wvl6XE/IU7iIS8op2VnPby6uYPCyLn5w8sus7iMJdREJbXVML1z6/jJSEWB46bwJxsYqtQGjOXURClnOO2+evYl1ZDc9dNoX+GUlelxQ29C9QRELWC4u38vLybVx/0ki+NlLz7AdC4S4iIWlFcSW/fMV3PvuPvql59gOlcBeRkFNR28Q1c5aRnZ7IgzMnaBnfg6A5dxEJKa1tjutf/IKy6kb+fvU0slITvC4pLGnkLiIh5cF3C/m4sIxffvcorRtzCBTuIhIy3ioo4U/vr+P7Ewdz/uROL+ImAVK4i0hIWFdaw40v5XPM4EzunjEWM82zHwqFu4h4rrqhmaueW0JiXAyPXTiRpPhYr0sKezqgKiKeamtz/PTFfDbtrmPO5VMYqOugBoVG7iLiqfvfKeTd1Tu544zRTBvRx+tyIobCXUQ8888V23n4g3X8IC+HS47L9bqciKJwFxFPrNpWxU1/z2fi0N7cNWOMDqAGmcJdRHpc6Z4GrvzrEnqnJPDYhRNJjNMB1GDTAVUR6VENza1c+dxSKuuamXfNNF1RqZso3EWkxzjnuHneClYUV/LYhRMZMzDT65IilqZlRKTHPPheEa/mb+eWU4/k1DGHeV1ORFO4i0iPmL+8mAfeLeKcYwdz9YnDvS4n4incRaTbfb5hN/933kqmDs/it2cfrTNjeoDCXUS61YayGmY9t5TBWck8fmEeCXGKnZ6gn7KIdJtdNY1c+vRiYmOMZy6dTGZKvNclRQ2Fu4h0i7qmFi5/ZjGl1Q08eUkeQ/qkeF1SVFG4i0jQtbS28aO/LWfltioeOu9YJgzp7XVJUUfnuYtIUDnnuOOVAt5bU8qvZ4zlW0f197qkqKSRu4gE1QPvFjF30Rau/foILpo61OtyolZA4W5mWWY238xqzWyzmZ3fRfsEM1ttZsXBKVNEwsGczzbz4HtFnDtxMDefeoTX5US1QKdlHgGagP7AeOA1M8t3zhXso/3NQBmQfuglikg4eGPlDu54ZRUnHdlP57KHgC5H7maWCpwD3OGcq3HOfQIsAC7aR/thwIXAb4NZqIiErk+KdnH9C18wIacXD59/LHGxmvH1WiDPwCigxTlX2G5bPjBmH+0fAm4D6vf3Tc1slpktMbMlZWVlARUrIqFn+ZYKZj23hGF9U3nq0kkkJ2j53lAQSLinAXs6bKuikykXMzsLiHXOze/qmzrnnnDO5Tnn8rKzswMqVkRCy9qSai59ejF90xJ57vLJ9EpJ8Lok8Qtkzr0GyOiwLQOobr/BP31zH3B6cEoTkVC2aVctFz35OYlxMTx/xRT6ZSR5XZK0E0i4FwJxZjbSOVfk3zYO6HgwdSSQCyz0H0hJADLNrASY6pzbFJSKRcRzxRV1XDD7c5pb23jxqmnkZOndp6Gmy3B3ztWa2cvAXWZ2Bb6zZb4HHNeh6Sogp93t44CHgWPxnTkjIhGgdE8DF87+nD0Nzcy9ciqj+uukuFAU6CHta4FkoBSYC1zjnCsws+lmVgPgnGtxzpXs/QDKgTb/7dZuqV5EetSumkYumP05pdWNPPPDyYwdpCsphaqAznN3zpUDMzrZvhDfAdfO7vMhMPhQihOR0FFe28SFsz9na0UdT186mYlDtV5MKNPJqCLSpco6X7Bv3FXLk5dMYtqIPl6XJF3QwmEisl+VdU1c+OTnrCurYfbFeRx/eF+vS5IAKNxFZJ8qan3BXrSzhscvmsgJo/SelHChcBeRTpXXNnHB7M9ZX1bDExdP5OtH9PO6JDkACncR+Q+7ahr/Pcc+++I8jdjDkMJdRL6ipKqBC2Z/xrbKep68ZBJfG6k59nCkcBeRf9ta7nvn6e6aRp794WSmDNdZMeFK4S4iAGwoq+HC2Z9T09jC81dOZXxOL69LkkOgcBcRVm2r4pKnFgEwd9ZUxgzUO0/DncJdJMot3lTOZU8vJj0pjjlXTGF4dqdvOpcwo3AXiWIfrCnlmueXMrBXMnMun8LAXslelyRBouUHRKLUvKXFXPHXJRzeL42XrpqmYI8wGrmLRBnnHI9/vIF731jD1w7vy2MXTSQtUVEQafSMikSR1jbH3a99ydP/2sSZ4wbyh3PHkRCnF/CRSOEuEiUamlu5/oXlvFWwk8uOH8btZ4wmJsa8Lku6icJdJAqU1zZxxbOLWb61kl985ygu+9owr0uSbqZwF4lw60pruPzZxZRUNfDn84/ltKMHeF2S9ACFu0gE+3TdLq6es5T42BjmzprKsUN09aRooXAXiVAvLt7Cz+evYljfVJ66dBI5WSlelyQ9SOEuEmFaWtv4zeurefpfm5g+si+PXHAsGUnxXpclPUzhLhJBquqbue5vy1hYtIsfHp/Lz08fTVysTnWMRgp3kQhRtLOaWc8tpbiijnvPPpqZk4d4XZJ4SOEuEgHeKijhhhe/IDkhluevmMrkYVlelyQeU7iLhLHWNscD7xby0PvrGDc4k8cumsiATK0RIwp3kbBVXtvE9S8sZ2HRLs6dOJhfzxhLUnys12VJiFC4i4ShL7ZW8l/PL6OsupHfnn00MyflYKalBOR/KdxFwohzjmc+3cQ9r6+mX3oS866ZxjGDdTk8+U8Kd5EwUVXfzC3z8nmrYCcnj+7H788dR6+UBK/LkhClcBcJA8u2VPDjucspqWrg56eP5orpwzQNI/ulcBcJYW1tjkc/Ws/97xRyWEYSL141jYlDtT6MdE3hLhKidlTVc+NL+Xy6fjdnHDOAe846msxkLSMggQnofclmlmVm882s1sw2m9n5+2h3s5mtMrNqM9toZjcHt1yR6PDaih18+4GFLN9Syb1nH83D501QsMsBCXTk/gjQBPQHxgOvmVm+c66gQzsDLgZWACOAt81sq3PuhWAVLBLJquqb+dWrBby8bBvjcnrxwA/GM6xvqtdlSRjqMtzNLBU4BxjrnKsBPjGzBcBFwK3t2zrn7mt3c62ZvQIcDyjcRbqwsKiMW+atoLS6kR+fNJIfffNw4rXolxykQEbuo4AW51xhu235wIn7u5P5DuVPBx7fx/5ZwCyAIUO0wJFEr5rGFu59YzVzPtvCiOxUXr7mOMbl6Nx1OTSBhHsasKfDtiogvYv73YlvTv/pznY6554AngDIy8tzAdQhEnEWFpVx63+vZHtVPVd8bRg3nXqElhCQoAgk3GuAjA7bMoDqfd3BzK7DN/c+3TnXePDliUSmqrpm7nl9NS8u2cqI7FTmXX2cTnGUoAok3AuBODMb6Zwr8m8bB3Q8mAqAmV2Gby7+BOdccXDKFIkMzjleX1nCLxcUUFHXxNUnjuAnJ4/UaF2Crstwd87VmtnLwF1mdgW+s2W+BxzXsa2ZXQDcA3zDObch2MWKhLPiijruXFDAu6tLGTsog2d+OImxgzK9LksiVKCnQl4LPAWUAruBa5xzBWY2HXjDOZfmb3c30AdY3O6t0XOcc1cHsWaRsNLU0sbsTzbwp/eKMIzbzxjNpcfl6vJ30q0CCnfnXDkwo5PtC/EdcN17e1jwShMJf5+u28UvFhSwrrSGU8f05xdnjmFQL11MQ7qflh8Q6QbbKuv5zWtf8vrKEnKyknnykjxOGt3f67IkiijcRYKovqmVxz9ez2MfrQfgxm+N4soThuuAqfQ4hbtIELS1ORbkb+d3b65hR1UDZxw9gNvOGK0pGPGMwl3kEH26fhe/fX0NK7dVcczgTP503gQm5WZ5XZZEOYW7yEFaU7KH+95cy/trShmYmcQfzh3HWRMGEROji2iI9xTuIgdoy+467n9nLa/kbyctMY5bTzuSS4/L1by6hBSFu0iAtlfW88gH63hx8VbiYo2rThjB1ScO13VMJSQp3EW6UFLVwJ8/XMcLi7bicMycnMOPvjmS/hlJXpcmsk8Kd5F9KK6o49EP1/P3JcW0Oce5eTn81zdGMLh3iteliXRJ4S7SwbrSah7/aAPzl2/DDM7Ny+GaE0eQk6VQl/ChcBfxW7q5gsc/Ws/bX+4kKT6GC6cO5aoThzMgU+eqS/hRuEtUa21zvF1Qwl8WbmDZlkoyk+P58UkjuWTaUPqkJXpdnshBU7hLVKqqb+bvS7by7P9sYmt5PTlZydx55lGcm5dDaqL+LCT86bdYosrqHXuY89lmXl62jfrmVibnZnHbaaM5ZcxhxOrNRxJBFO4S8RqaW3lzVQlzPtvMks0VJMbFcOa4gVx6XK4uliERS+EuEWttSTVzF21h/vJtVNU3k9snhdvPGM33Jw7WG48k4incJaJU1jWxIH8785YWs6K4ioTYGE4Z05/zJg9h2vA+WvdFoobCXcJeQ3MrH64tZf7ybXywpoym1jaOGpDBHd85irMmDCIrVaN0iT4KdwlLLa1tfLp+N6/mb+fNghKqG1rom5bIhVOHcs7EQYwZqLl0iW4Kdwkbza1t/M/63byxagdvFeykvLaJtMQ4TjmqPzMmDOK4EX100WkRP4W7hLTaxhY+LizjnS938t6aUqrqm0lNiOUbR/bjzHEDOXFUtpbaFemEwl1CztbyOj5YW8r7a0r5dP1umlra6JUSz0lH9uO0owcwfWRfBbpIFxTu4rmG5lYWbSzno8IyPiosY11pDQC5fVK4YMoQTjnqMCbl9taUi8gBULhLj2tubWPVtio+Xb+bf63bxZLNFTS1tJEQF8OUYVnMnJTDN4/sx/DsNK9LFQlbCnfpdo0trawsrmLRpnI+31DOkk3l1Da1AjB6QAaXTBvK8Yf3ZcqwPiQnaLpFJBgU7hJ0pdUNLNtcyfItFSzbUkF+cRVNLW0AHN4vjbOPHczU4X2YMjyLvlp5UaRbKNzlkJTXNrFqWxWrtlexYmsV+cWV7KhqACAhNoYxgzK4eOpQJg3LIm9oby2jK9JDFO4SkNY2x6bdtRSWVLN6xx6+3LGH1Tuq2VZZ/+82Q/ukMCk3i3E5vRif04uxgzJIjNM0i4gXFO7yFY0trWzeXceGshrWlfo+ivyfG/1TKzEGI7LTmDi0NxdPG8rRgzIZMzCTzJR4j6sXkb0U7lGouqGZreX1bK2oY2t5HZt317Fpdy2bdteyraKeNve/bQf1SmZEvzSOG9GHUf3TOeKwdEb1T9d55iIhTuEeQZxz1DS2sHNPI6XVDezc08COqgZKqhrYXlnPtsoGtlXUsaeh5Sv3y0iKI7dvKuNzenPWhMGMyE5lWN9URmSn6apEImEqoL9cM8sCngROAXYBP3PO/a2TdgbcC1zh3zQbuNU55zq2la61tLaxp6GFqvpmKuuaqKxrpqKuiYq6ZsprGymvbWJXTRO7ahp9H9VN1De3/sf3yUyOZ0BmEoN6JTMptzcDeyWT0zuFIVkp5GQla21zkQgU6LDsEaAJ6A+MB14zs3znXEGHdrOAGcA4wAHvABuBx4JTbmhobXM0t7bR0uZoaW2jqbWN5lZHc4vv66aWNhpb2mhsbqWxpY2G5lYaWlqpb2qjvrmV+qYW6ppaqWtqpbaxhdqmFmoaW6lpaKamsYXqhhb21Df/+1zwzsTGGL1TEuiTmkCftAQmDulNdnoifdMSOSwziez0RPpnJDEgM4mUBI2+RaJNl3/1ZpYKnAOMdc7VAJ+Y2QLgIuDWDs0vAf7gnCv23/cPwJV0U7h/VFjG3f/88t+32788aP9iwbX7wvn3+T6Dw/k+O2hzzv8BbW2OVudoa/Pdbmlro7XN0dLma3+o4mKM1MQ4UhNiSU6IJS0pnvTEOPqlJ5GeFEdGcjzpSXFkJsfTKyXe/zmB3ikJ9E6JJyMpXheeEJF9CmRINwpocc4VttuWD5zYSdsx/n3t243p7Jua2Sx8I32GDBkSULEdpSXGMbL/V9+iblj7G//xpZmvhRn+z+b/2oiNgRj/7RgzYmOMGPN9xMcaMTFGXIwRFxNDXKxvW3xsDHGxMSTEGglxMcTHxpAQG0NSfCwJcTEkxvm+To6P9X1OiCUlIZZ4rZMiIt0okHBPA/Z02FYFpO+jbVWHdmlmZh3n3Z1zTwBPAOTl5R3UWHji0N5MHDrxYO4qIhLRAhk+1gAZHbZlANUBtM0AanRAVUSkZwUS7oVAnJmNbLdtHNDxYCr+beMCaCciIt2oy3B3ztUCLwN3mVmqmR0PfA94rpPmfwVuMLNBZjYQuBF4Joj1iohIAAI9qnctkAyUAnOBa5xzBWY23cxq2rV7HHgVWAmsAl7zbxMRkR4U0AnQzrlyfOevd9y+EN9B1L23HXCL/0NERDyi8/FERCKQwl1EJAIp3EVEIpCFwinoZlYGbD7Iu/fFt5hZtInGfkdjnyE6+x2NfYYD7/dQ51x2ZztCItwPhZktcc7leV1HT4vGfkdjnyE6+x2NfYhXAvAAAATcSURBVIbg9lvTMiIiEUjhLiISgSIh3J/wugCPRGO/o7HPEJ39jsY+QxD7HfZz7iIi8p8iYeQuIiIdKNxFRCKQwl1EJAKFbbibWZaZzTezWjPbbGbne11TsJlZopk96e9ftZl9YWantdt/kpmtMbM6M/vAzIZ6WW+wmdlIM2swsznttp3v/3nUmtk/zCzLyxqDzcxmmtlqf//Wm9l0//aIfa7NLNfMXjezCjMrMbOHzSzOv2+8mS3193upmY33ut6DYWbXmdkSM2s0s2c67Nvnc+vPgKfMbI//Z3NDoI8ZtuEOPAI0Af2BC4BHzazT67WGsThgK77r1WYCtwMv+f8Y+uJbZ/8OIAtYArzoVaHd5BFg8d4b/uf3cXwXZ+8P1AF/9qa04DOzbwG/A36I7zKWJwAbouC5/jO+5cQHAOPx/b5fa2YJwCvAHKA38Czwin97uNkO3A081X5jAM/tncBIYCjwDeAWM/t2QI/onAu7DyAVX7CParftOeBer2vrgb6vAM7Bd3HxTzv8TOqBI72uMUj9nAm85P/lnuPfdg/wt3ZtRvh/D9K9rjdIff4UuLyT7ZH+XK8GTm93+//h+yd+CrAN/1l9/n1bgG97XfMh9PVu4JlAn1t8/xROabf/18ALgTxWuI7cRwEtzrnCdtvygUgbuX+FmfXH1/cCfH3N37vP+a6YtZ4I+BmYWQZwF9DxJWjHPq/H/0++56rrHmYWC+QB2Wa2zsyK/dMTyUTwc+33ADDTzFLMbBBwGvAmvv6tcP5U81tB5PQb9vPcmllvfK9m8tu1DzjnwjXc04A9HbZV4XspG5HMLB54HnjWObcG38+gqkOzSPkZ/Bp40jlX3GF7JPe5PxAPfB+Yjm96YgK+qbhI7jfAx/gCaw9QjG9q4h9Efr9h/31Ma3e7474uhWu41wAZHbZlANUe1NLtzCwG37RTE3Cdf3NE/gz8B8xOBv7Yye6I7LNfvf/zQ865Hc65XcD9wOlEcL/9v9tv4pt3TsW3KmJvfMceIrbf7eyvjzXtbnfc16VwDfdCIM7MRrbbNg7fdEVEMTMDnsQ3sjvHOdfs31WAr89726Xim4MO95/B14FcYIuZlQA3AeeY2TL+s8/DgUR8vw9hzTlXgW/U2n4KYu/Xkfpcg+8g4hDgYedco3NuN/A0vn9qBcAx/r+BvY4hMvq91z6fW//vxI72+zmQnPP6AMMhHJh4Ad/FulOB4/G9XBnjdV3d0M/HgM+AtA7bs/19PgdIwjfS+czreoPQ3xTgsHYfvwfm+fu796X7dP/zPocADy6Fwwe+4wyLgX74Rq8L8U1RReRz3a7fG4Bb8Z0d1guYD/wNSMB3nYfr8f0Tv85/O8Hrmg+ij3H+5+63+F6FJ/m37fe5Be4FPvL/PhzpD/uADih73ulD+GFl4ZuXq8V3BP18r2vqhj4OxTd6a8D3Em3vxwX+/ScDa/C9pP8QyPW65m74GdyJ/2wZ/+3z/c93Lb7T5LK8rjGIfY3Hd1pgJVAC/AlIivTnGt/xhQ+BCnwXqngJ6O/fNwFY6u/3MmCC1/UeZB/v9P8tt/+4s6vn1v9P7Sl8g5qdwA2BPqYWDhMRiUDhOucuIiL7oXAXEYlACncRkQikcBcRiUAKdxGRCKRwFxGJQAp3EZEIpHAXEYlA/x8+Wk97zIWI/AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(x, y)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Environment\n", "\n", "The SageMaker Run Notebook tools will pass through and set up environment variables in the running notebook. You can see what they all are here. Note that this list or the structure of the values may change over time as the tool evolves." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "import pprint\n", "\n", "pprint.pprint({k:v for k,v in os.environ.items()})" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.1" }, "sagemaker_run_notebook": { "saved_parameters": [ { "name": "p", "value": "0.5" }, { "name": "n", "value": "20" } ] } }, "nbformat": 4, "nbformat_minor": 4 }