import os import diffusers from inference import model_fn,predict_fn,prepare_opt os.environ['s3_bucket']='sagemaker-us-east-1-596030579944' inputs={ "canny": { "prompt": "taylor swift, best quality, extremely detailed", "negative_prompt":"monochrome, lowres, bad anatomy, worst quality, low quality", "steps":20, "sampler":"euler_a", "seed":43768, "height": 512, "width": 512, "count":2, "control_net_model":"canny", "input_image":"https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png", }, "openpose": { "prompt": "super-hero character, best quality, extremely detailed", "negative_prompt":"monochrome, lowres, bad anatomy, worst quality, low quality", "steps":20, "sampler":"euler_a", "seed":43768, "height": 512, "width": 512, "count":2, "control_net_model":"openpose", "input_image":"https://huggingface.co/datasets/YiYiXu/controlnet-testing/resolve/main/yoga1.jpeg" }, "mlsd": { "prompt": "room", "negative_prompt":"monochrome, lowres, bad anatomy, worst quality, low quality", "steps":20, "sampler":"euler_a", "seed":43768, "height": 512, "width": 512, "count":2, "control_net_model":"mlsd", "input_image":"https://huggingface.co/lllyasviel/sd-controlnet-mlsd/resolve/main/images/room.png" }, "depth": { "prompt": "Stormtrooper's lecture", "negative_prompt":"monochrome, lowres, bad anatomy, worst quality, low quality", "steps":20, "sampler":"euler_a", "seed":43768, "height": 512, "width": 512, "count":2, "control_net_model":"depth", "input_image":"https://huggingface.co/lllyasviel/sd-controlnet-depth/resolve/main/images/stormtrooper.png" }, "hed": { "prompt": "oil painting of handsome old man, masterpiece", "negative_prompt":"monochrome, lowres, bad anatomy, worst quality, low quality", "steps":20, "sampler":"euler_a", "seed":43768, "height": 512, "width": 512, "count":2, "control_net_model":"hed", "input_image":"https://huggingface.co/lllyasviel/sd-controlnet-hed/resolve/main/images/man.png" }, "scribble": { "prompt": "bag", "negative_prompt":"monochrome, lowres, bad anatomy, worst quality, low quality", "steps":20, "sampler":"euler_a", "seed":43768, "height": 512, "width": 512, "count":2, "control_net_model":"scribble", "input_image":"https://huggingface.co/lllyasviel/sd-controlnet-scribble/resolve/main/images/bag.png" } } model=model_fn(".") def test_model_fn(): assert isinstance(model,diffusers.DiffusionPipeline) # def test_canny_predict(): # assert inputs.get("canny",None) is not None # data=prepare_opt(inputs.get("canny",None)) # predict_fn(data,model) def test_openpose_predict(): assert inputs.get("openpose",None) is not None data=prepare_opt(inputs.get("openpose",None)) predict_fn(data,model) # def test_mlsd_predict(): # assert inputs.get("mlsd",None) is not None # data=prepare_opt(inputs.get("mlsd",None)) # predict_fn(data,model) # def test_depth_predict(): # assert inputs.get("depth",None) is not None # data=prepare_opt(inputs.get("depth",None)) # predict_fn(data,model) # def test_hed_predict(): # assert inputs.get("hed",None) is not None # data=prepare_opt(inputs.get("hed",None)) # predict_fn(data,model) # def test_scribble_predict(): # assert inputs.get("scribble",None) is not None # data=prepare_opt(inputs.get("scribble",None)) # predict_fn(data,model) def test_openpose_02_predict(): assert inputs.get("openpose",None) is not None data=prepare_opt(inputs.get("openpose",None)) predict_fn(data,model) test_openpose_02_predict() test_openpose_02_predict()