# References ## Key Features --- ### Real-time Inference - [AWS Innovate 2021 - Amazon SageMaker 기반 사전 훈련된 딥러닝 모델 손쉽게 배포하기 (김대근 AIML SA)](https://www.youtube.com/watch?v=ZdOcrLKow3I) - [Developer Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints.html) ### Batch Inference - [AWS AI/ML Blog](https://aws.amazon.com/blogs/machine-learning/performing-batch-inference-with-tensorflow-serving-in-amazon-sagemaker/) - [Developer Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html) ### Asynchronous Inference - [AWS AI/ML Blog](https://aws.amazon.com/ko/blogs/machine-learning/run-computer-vision-inference-on-large-videos-with-amazon-sagemaker-asynchronous-endpoints/) - [Developer Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/async-inference.html) ### Lambda Serverless Inference - [AWS AI/ML Blog](https://aws.amazon.com/ko/blogs/korea/new-for-aws-lambda-container-image-support/) - [SageMaker Python SDK](https://sagemaker.readthedocs.io/en/stable/overview.html?highlight=lambdamodel#serverless-inference) - [AWS Builders Online - AWS Lambda 컨테이너 이미지 서비스 활용하기 (김태수 SA)](https://www.youtube.com/watch?v=tTg9Lp7Sqok) ### SageMaker Serverless Inference - [AWS AI/ML Blog](https://aws.amazon.com/ko/blogs/machine-learning/deploying-ml-models-using-sagemaker-serverless-inference-preview/) - [Developer Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-endpoints.html) ### Multi-container Endpoint - [AWS AI/ML Blog](https://aws.amazon.com/ko/blogs/machine-learning/deploy-multiple-serving-containers-on-a-single-instance-using-amazon-sagemaker-multi-container-endpoints/) - [Developer Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/multi-container-endpoints.html) ### Inference Pipeline - [AWS AI/ML Blog](https://aws.amazon.com/ko/blogs/machine-learning/preprocess-input-data-before-making-predictions-using-amazon-sagemaker-inference-pipelines-and-scikit-learn/) - [Developer Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/inference-pipelines.html)
## Cost Optimization --- ### Model Compilation using SageMaker Neo - [AWS AI/ML Blog](https://aws.amazon.com/ko/blogs/machine-learning/unlock-performance-gains-with-xgboost-amazon-sagemaker-neo-and-serverless-artillery/) - [AWS AI/ML Blog - SageMaker Neo](https://aws.amazon.com/ko/blogs/machine-learning/category/artificial-intelligence/amazon-sagemaker-neo/) - [Developer Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/neo.html) ### Model Compilation for multiple on-devices - [AWS AI/ML Blog](https://aws.amazon.com/ko/blogs/machine-learning/build-machine-learning-at-the-edge-applications-using-amazon-sagemaker-edge-manager-and-aws-iot-greengrass-v2/) - [Developer Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/edge.html) ### Elastic Inference - [AWS AI/ML Blog](https://aws.amazon.com/ko/blogs/machine-learning/reduce-ml-inference-costs-on-amazon-sagemaker-with-hardware-and-software-acceleration/) - [AWS AI/ML Blog - Elastic Inference](https://aws.amazon.com/ko/blogs/machine-learning/category/artificial-intelligence/amazon-elastic-inference/) - [Developer Guide](https://docs.aws.amazon.com/elastic-inference/latest/developerguide/basics.html)
## From PoC to Production --- ### A/B Testing - [AWS AI/ML Blog](https://aws.amazon.com/ko/blogs/machine-learning/a-b-testing-ml-models-in-production-using-amazon-sagemaker/) - [AWS AI/ML Blog - Advanced](https://aws.amazon.com/ko/blogs/machine-learning/dynamic-a-b-testing-for-machine-learning-models-with-amazon-sagemaker-mlops-projects/) - [Developer Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/model-ab-testing.html) ### Blue/Green Deployment Guardrail - [AWS AI/ML Blog](https://aws.amazon.com/ko/blogs/machine-learning/take-advantage-of-advanced-deployment-strategies-using-amazon-sagemaker-deployment-guardrails/) - [Developer Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/deployment-guardrails.html) ### End-to-end ML pipelines - [AWS AI/ML Blog](https://aws.amazon.com/ko/blogs/machine-learning/building-automating-managing-and-scaling-ml-workflows-using-amazon-sagemaker-pipelines/) - [AWS AI/ML Blog - Advanced](https://aws.amazon.com/ko/blogs/machine-learning/building-a-scalable-machine-learning-pipeline-for-ultra-high-resolution-medical-images-using-amazon-sagemaker/) - [Developer Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines.html) ### Korean NLP and Hugging Face - [KoELECTRA](https://github.com/monologg/KoELECTRA) - [Naver Sentiment Movie Corpus v1.0](https://github.com/e9t/nsmc) - [Hugging Face on Amazon SageMaker](https://huggingface.co/docs/sagemaker/main) - [Hugging Face examples](https://github.com/huggingface/notebooks/tree/master/sagemaker)