import argparse import os import torch import json from exp.exp_informer import Exp_Informer from distutils.dir_util import copy_tree import shutil import dist.sm_dist as sm_dist def arg_setting(): parser = argparse.ArgumentParser(description='[Informer] Long Sequences Forecasting') parser.add_argument('--model', type=str, required=True, default='informer',help='model of experiment, options: [informer, informerstack, informerlight(TBD)]') parser.add_argument('--data', type=str, required=True, default='ETTh1', help='data') parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file') parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file') parser.add_argument('--features', type=str, default='M', help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate') parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task') parser.add_argument('--freq', type=str, default='h', help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h') parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints') parser.add_argument('--seq_len', type=int, default=96, help='input sequence length of Informer encoder') parser.add_argument('--label_len', type=int, default=48, help='start token length of Informer decoder') parser.add_argument('--pred_len', type=int, default=24, help='prediction sequence length') # Informer decoder input: concat[start token series(label_len), zero padding series(pred_len)] parser.add_argument('--enc_in', type=int, default=7, help='encoder input size') parser.add_argument('--dec_in', type=int, default=7, help='decoder input size') parser.add_argument('--c_out', type=int, default=7, help='output size') parser.add_argument('--d_model', type=int, default=512, help='dimension of model') parser.add_argument('--n_heads', type=int, default=8, help='num of heads') parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers') parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers') parser.add_argument('--s_layers', type=str, default='3,2,1', help='num of stack encoder layers') parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn') parser.add_argument('--factor', type=int, default=5, help='probsparse attn factor') parser.add_argument('--padding', type=int, default=0, help='padding type') parser.add_argument('--distil', type=lambda s:s.lower() in ['false', 'f', 'no', '0'], help='whether to use distilling in encoder, using this argument means not using distilling', default=True) parser.add_argument('--dropout', type=float, default=0.05, help='dropout') parser.add_argument('--attn', type=str, default='prob', help='attention used in encoder, options:[prob, full]') parser.add_argument('--embed', type=str, default='timeF', help='time features encoding, options:[timeF, fixed, learned]') parser.add_argument('--activation', type=str, default='gelu',help='activation') parser.add_argument('--output_attention', type=lambda s:s.lower() in ['true', 't', 'yes', '1'], help='whether to output attention in ecoder', default=False) parser.add_argument('--do_predict', type=lambda s:s.lower() in ['true', 't', 'yes', '1'], help='whether to predict unseen future data', default=False) parser.add_argument('--mix', type=lambda s:s.lower() in ['false', 'f', 'no', '0'], help='use mix attention in generative decoder', default=True) parser.add_argument('--cols', type=str, nargs='+', help='certain cols from the data files as the input features') parser.add_argument('--num_workers', type=int, default=0, help='data loader num workers') parser.add_argument('--itr', type=int, default=2, help='experiments times') parser.add_argument('--train_epochs', type=int, default=6, help='train epochs') parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data') parser.add_argument('--patience', type=int, default=3, help='early stopping patience') parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate') parser.add_argument('--des', type=str, default='test',help='exp description') parser.add_argument('--loss', type=str, default='mse',help='loss function') parser.add_argument('--lradj', type=str, default='type1',help='adjust learning rate') parser.add_argument('--use_amp', type=lambda s:s.lower() in ['true', 't', 'yes', '1'], help='use automatic mixed precision training', default=False) parser.add_argument('--inverse', type=lambda s:s.lower() in ['true', 't', 'yes', '1'], help='inverse output data', default=False) parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu') parser.add_argument('--gpu', type=int, default=0, help='gpu') parser.add_argument('--use_multi_gpu', type=lambda s:s.lower() in ['true', 't', 'yes', '1'], help='use multiple gpus', default=False) # parser.add_argument('--devices', type=str, default='0,1,2,3',help='device ids of multile gpus') args = parser.parse_args() return args def check_sagemaker(args): ## SageMaker print(f"os.environ.get('SM_CHANNEL_TRAINING') : {os.environ['SM_CHANNEL_TRAINING']}") print(f"os.environ['SM_MODEL_DIR'] : {os.environ['SM_MODEL_DIR']}") print(f"os.environ['SM_NUM_GPUS'] : {os.environ['SM_NUM_GPUS']}") print(f"json.loads(os.environ['SM_HOSTS']) : {json.loads(os.environ['SM_HOSTS'])}") print(f" os.environ['SM_CURRENT_HOST'] : {os.environ['SM_CURRENT_HOST']}") if os.environ.get('SM_MODEL_DIR') is not None: args.root_path = os.environ['SM_CHANNEL_TRAINING']+args.root_path args.checkpoints = "/opt/ml/checkpoints" return args def main(args): args.use_gpu = True if torch.cuda.is_available() else False args.device = torch.device("cuda" if args.use_gpu else "cpu") if args.use_gpu: print(f"args.use_multi_gpu : {args.use_multi_gpu}") if args.use_multi_gpu: ## 1. dist_set args = sm_dist.dist_set(args) else: # args.devices = args.devices.replace(' ','') # device_ids = args.devices.split(',') # args.device_ids = [int(id_) for id_ in device_ids] # args.gpu = args.device_ids[0] # args.devices = '0,1,2,3,4,5,6,7' args.local_rank = 0 args.rank = 0 args.gpu = 0 else: print("No GPU") args.local_rank = 0 args.rank = 0 data_parser = { 'bikeshare':{'data':'informer_dataset.csv','T':'demand','M':[11,11,11],'S':[1,1,1],'MS':[7,7,1]}, 'ETTh1':{'data':'ETTh1.csv','T':'OT','M':[7,7,7],'S':[1,1,1],'MS':[7,7,1]}, 'ETTh2':{'data':'ETTh2.csv','T':'OT','M':[7,7,7],'S':[1,1,1],'MS':[7,7,1]}, 'ETTm1':{'data':'ETTm1.csv','T':'OT','M':[7,7,7],'S':[1,1,1],'MS':[7,7,1]}, 'ETTm2':{'data':'ETTm2.csv','T':'OT','M':[7,7,7],'S':[1,1,1],'MS':[7,7,1]}, 'WTH':{'data':'WTH.csv','T':'WetBulbCelsius','M':[12,12,12],'S':[1,1,1],'MS':[12,12,1]}, 'ECL':{'data':'ECL.csv','T':'MT_320','M':[321,321,321],'S':[1,1,1],'MS':[321,321,1]}, 'Solar':{'data':'solar_AL.csv','T':'POWER_136','M':[137,137,137],'S':[1,1,1],'MS':[137,137,1]}, } if args.data in data_parser.keys(): data_info = data_parser[args.data] args.data_path = data_info['data'] args.target = data_info['T'] args.enc_in, args.dec_in, args.c_out = data_info[args.features] args.s_layers = [int(s_l) for s_l in args.s_layers.replace(' ','').split(',')] args.detail_freq = args.freq args.freq = args.freq[-1:] print('Args in experiment:') print(args) Exp = Exp_Informer for ii in range(args.itr): # setting record of experiments setting = '{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_at{}_fc{}_eb{}_dt{}_mx{}_{}_{}'.format(args.model, args.data, args.features, args.seq_len, args.label_len, args.pred_len, args.d_model, args.n_heads, args.e_layers, args.d_layers, args.d_ff, args.attn, args.factor, args.embed, args.distil, args.mix, args.des, ii) exp = Exp(args) # set experiments print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting)) exp.train(setting) print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting)) exp.test(setting) if args.do_predict: print('>>>>>>>predicting : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting)) exp.predict(setting, True) # torch.cuda.empty_cache() print("End of Exp") ## copy code to model.tar.gz for predictor/inference if args.rank==0: copy_tree(f"/opt/ml/checkpoints/{setting}", os.path.join(os.environ['SM_MODEL_DIR'],setting)) copy_tree("/opt/ml/checkpoints/results", os.path.join(os.environ['SM_MODEL_DIR'],"results")) shutil.copyfile("/opt/ml/checkpoints/test_report.json", os.environ['SM_MODEL_DIR'] + "/test_report.json") copy_tree("/opt/ml/code", os.environ['SM_MODEL_DIR']) if __name__ == '__main__': args = arg_setting() args = check_sagemaker(args) main(args)