import torch import torch.nn as nn import torch.nn.functional as F class DecoderLayer(nn.Module): def __init__(self, self_attention, cross_attention, d_model, d_ff=None, dropout=0.1, activation="relu"): super(DecoderLayer, self).__init__() d_ff = d_ff or 4*d_model self.self_attention = self_attention self.cross_attention = cross_attention self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1) self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) self.activation = F.relu if activation == "relu" else F.gelu def forward(self, x, cross, x_mask=None, cross_mask=None): x = x + self.dropout(self.self_attention( x, x, x, attn_mask=x_mask )[0]) x = self.norm1(x) x = x + self.dropout(self.cross_attention( x, cross, cross, attn_mask=cross_mask )[0]) y = x = self.norm2(x) y = self.dropout(self.activation(self.conv1(y.transpose(-1,1)))) y = self.dropout(self.conv2(y).transpose(-1,1)) return self.norm3(x+y) class Decoder(nn.Module): def __init__(self, layers, norm_layer=None): super(Decoder, self).__init__() self.layers = nn.ModuleList(layers) self.norm = norm_layer def forward(self, x, cross, x_mask=None, cross_mask=None): for layer in self.layers: x = layer(x, cross, x_mask=x_mask, cross_mask=cross_mask) if self.norm is not None: x = self.norm(x) return x