import torch import torch.nn as nn import torch.nn.functional as F class ConvLayer(nn.Module): def __init__(self, c_in): super(ConvLayer, self).__init__() padding = 1 if torch.__version__>='1.5.0' else 2 self.downConv = nn.Conv1d(in_channels=c_in, out_channels=c_in, kernel_size=3, padding=padding, padding_mode='circular') self.norm = nn.BatchNorm1d(c_in) self.activation = nn.ELU() self.maxPool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1) def forward(self, x): x = self.downConv(x.permute(0, 2, 1)) x = self.norm(x) x = self.activation(x) x = self.maxPool(x) x = x.transpose(1,2) return x class EncoderLayer(nn.Module): def __init__(self, attention, d_model, d_ff=None, dropout=0.1, activation="relu"): super(EncoderLayer, self).__init__() d_ff = d_ff or 4*d_model self.attention = attention self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1) self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) self.activation = F.relu if activation == "relu" else F.gelu def forward(self, x, attn_mask=None): # x [B, L, D] # x = x + self.dropout(self.attention( # x, x, x, # attn_mask = attn_mask # )) new_x, attn = self.attention( x, x, x, attn_mask = attn_mask ) x = x + self.dropout(new_x) y = x = self.norm1(x) y = self.dropout(self.activation(self.conv1(y.transpose(-1,1)))) y = self.dropout(self.conv2(y).transpose(-1,1)) return self.norm2(x+y), attn class Encoder(nn.Module): def __init__(self, attn_layers, conv_layers=None, norm_layer=None): super(Encoder, self).__init__() self.attn_layers = nn.ModuleList(attn_layers) self.conv_layers = nn.ModuleList(conv_layers) if conv_layers is not None else None self.norm = norm_layer def forward(self, x, attn_mask=None): # x [B, L, D] attns = [] if self.conv_layers is not None: for attn_layer, conv_layer in zip(self.attn_layers, self.conv_layers): x, attn = attn_layer(x, attn_mask=attn_mask) x = conv_layer(x) attns.append(attn) x, attn = self.attn_layers[-1](x, attn_mask=attn_mask) attns.append(attn) else: for attn_layer in self.attn_layers: x, attn = attn_layer(x, attn_mask=attn_mask) attns.append(attn) if self.norm is not None: x = self.norm(x) return x, attns class EncoderStack(nn.Module): def __init__(self, encoders, inp_lens): super(EncoderStack, self).__init__() self.encoders = nn.ModuleList(encoders) self.inp_lens = inp_lens def forward(self, x, attn_mask=None): # x [B, L, D] x_stack = []; attns = [] for i_len, encoder in zip(self.inp_lens, self.encoders): inp_len = x.shape[1]//(2**i_len) x_s, attn = encoder(x[:, -inp_len:, :]) x_stack.append(x_s); attns.append(attn) x_stack = torch.cat(x_stack, -2) return x_stack, attns