# Amazon EKS Construct Library This construct library allows you to define [Amazon Elastic Container Service for Kubernetes (EKS)](https://aws.amazon.com/eks/) clusters. In addition, the library also supports defining Kubernetes resource manifests within EKS clusters. ## Table Of Contents * [Quick Start](#quick-start) * [API Reference](https://docs.aws.amazon.com/cdk/api/latest/docs/aws-eks-readme.html) * [Architectural Overview](#architectural-overview) * [Provisioning clusters](#provisioning-clusters) * [Managed node groups](#managed-node-groups) * [Fargate Profiles](#fargate-profiles) * [Self-managed nodes](#self-managed-nodes) * [Endpoint Access](#endpoint-access) * [ALB Controller](#alb-controller) * [VPC Support](#vpc-support) * [IPv6 Support](#ipv6-support) * [Kubectl Support](#kubectl-support) * [ARM64 Support](#arm64-support) * [Masters Role](#masters-role) * [Encryption](#encryption) * [Permissions and Security](#permissions-and-security) * [Applying Kubernetes Resources](#applying-kubernetes-resources) * [Kubernetes Manifests](#kubernetes-manifests) * [Helm Charts](#helm-charts) * [CDK8s Charts](#cdk8s-charts) * [Patching Kubernetes Resources](#patching-kubernetes-resources) * [Querying Kubernetes Resources](#querying-kubernetes-resources) * [Using existing clusters](#using-existing-clusters) * [Known Issues and Limitations](#known-issues-and-limitations) ## Quick Start This example defines an Amazon EKS cluster with the following configuration: * Dedicated VPC with default configuration (Implicitly created using [ec2.Vpc](https://docs.aws.amazon.com/cdk/api/latest/docs/aws-ec2-readme.html#vpc)) * A Kubernetes pod with a container based on the [paulbouwer/hello-kubernetes](https://github.com/paulbouwer/hello-kubernetes) image. ```ts import { KubectlV26Layer } from '@aws-cdk/lambda-layer-kubectl-v26'; // provisioning a cluster const cluster = new eks.Cluster(this, 'hello-eks', { version: eks.KubernetesVersion.V1_26, kubectlLayer: new KubectlV26Layer(this, 'kubectl'), }); // apply a kubernetes manifest to the cluster cluster.addManifest('mypod', { apiVersion: 'v1', kind: 'Pod', metadata: { name: 'mypod' }, spec: { containers: [ { name: 'hello', image: 'paulbouwer/hello-kubernetes:1.5', ports: [ { containerPort: 8080 } ], }, ], }, }); ``` ## Architectural Overview The following is a qualitative diagram of the various possible components involved in the cluster deployment. ```text +-----------------------------------------------+ +-----------------+ | EKS Cluster | kubectl | | |-----------------------------------------------|<-------------+| Kubectl Handler | | | | | | | +-----------------+ | +--------------------+ +-----------------+ | | | | | | | | | Managed Node Group | | Fargate Profile | | +-----------------+ | | | | | | | | | +--------------------+ +-----------------+ | | Cluster Handler | | | | | +-----------------------------------------------+ +-----------------+ ^ ^ + | | | | connect self managed capacity | | aws-sdk | | create/update/delete | + | v +--------------------+ + +-------------------+ | | --------------+| eks.amazonaws.com | | Auto Scaling Group | +-------------------+ | | +--------------------+ ``` In a nutshell: * `EKS Cluster` - The cluster endpoint created by EKS. * `Managed Node Group` - EC2 worker nodes managed by EKS. * `Fargate Profile` - Fargate worker nodes managed by EKS. * `Auto Scaling Group` - EC2 worker nodes managed by the user. * `KubectlHandler` - Lambda function for invoking `kubectl` commands on the cluster - created by CDK. * `ClusterHandler` - Lambda function for interacting with EKS API to manage the cluster lifecycle - created by CDK. A more detailed breakdown of each is provided further down this README. ## Provisioning clusters Creating a new cluster is done using the `Cluster` or `FargateCluster` constructs. The only required property is the kubernetes `version`. ```ts new eks.Cluster(this, 'HelloEKS', { version: eks.KubernetesVersion.V1_26, }); ``` You can also use `FargateCluster` to provision a cluster that uses only fargate workers. ```ts new eks.FargateCluster(this, 'HelloEKS', { version: eks.KubernetesVersion.V1_26, }); ``` > **NOTE: Only 1 cluster per stack is supported.** If you have a use-case for multiple clusters per stack, or would like to understand more about this limitation, see . Below you'll find a few important cluster configuration options. First of which is Capacity. Capacity is the amount and the type of worker nodes that are available to the cluster for deploying resources. Amazon EKS offers 3 ways of configuring capacity, which you can combine as you like: ### Managed node groups Amazon EKS managed node groups automate the provisioning and lifecycle management of nodes (Amazon EC2 instances) for Amazon EKS Kubernetes clusters. With Amazon EKS managed node groups, you don’t need to separately provision or register the Amazon EC2 instances that provide compute capacity to run your Kubernetes applications. You can create, update, or terminate nodes for your cluster with a single operation. Nodes run using the latest Amazon EKS optimized AMIs in your AWS account while node updates and terminations gracefully drain nodes to ensure that your applications stay available. > For more details visit [Amazon EKS Managed Node Groups](https://docs.aws.amazon.com/eks/latest/userguide/managed-node-groups.html). **Managed Node Groups are the recommended way to allocate cluster capacity.** By default, this library will allocate a managed node group with 2 *m5.large* instances (this instance type suits most common use-cases, and is good value for money). At cluster instantiation time, you can customize the number of instances and their type: ```ts new eks.Cluster(this, 'HelloEKS', { version: eks.KubernetesVersion.V1_26, defaultCapacity: 5, defaultCapacityInstance: ec2.InstanceType.of(ec2.InstanceClass.M5, ec2.InstanceSize.SMALL), }); ``` To access the node group that was created on your behalf, you can use `cluster.defaultNodegroup`. Additional customizations are available post instantiation. To apply them, set the default capacity to 0, and use the `cluster.addNodegroupCapacity` method: ```ts const cluster = new eks.Cluster(this, 'HelloEKS', { version: eks.KubernetesVersion.V1_26, defaultCapacity: 0, }); cluster.addNodegroupCapacity('custom-node-group', { instanceTypes: [new ec2.InstanceType('m5.large')], minSize: 4, diskSize: 100, amiType: eks.NodegroupAmiType.AL2_X86_64_GPU, }); ``` To set node taints, you can set `taints` option. ```ts declare const cluster: eks.Cluster; cluster.addNodegroupCapacity('custom-node-group', { instanceTypes: [new ec2.InstanceType('m5.large')], taints: [ { effect: eks.TaintEffect.NO_SCHEDULE, key: 'foo', value: 'bar', }, ], }); ``` #### Node Groups with IPv6 Support Node groups are available with IPv6 configured networks. For custom roles assigned to node groups additional permissions are necessary in order for pods to obtain an IPv6 address. The default node role will include these permissions. > For more details visit [Configuring the Amazon VPC CNI plugin for Kubernetes to use IAM roles for service accounts](https://docs.aws.amazon.com/eks/latest/userguide/cni-iam-role.html#cni-iam-role-create-role) ```ts const ipv6Management = new iam.PolicyDocument({ statements: [new iam.PolicyStatement({ resources: ['arn:aws:ec2:*:*:network-interface/*'], actions: [ 'ec2:AssignIpv6Addresses', 'ec2:UnassignIpv6Addresses', ], })], }); const eksClusterNodeGroupRole = new iam.Role(this, 'eksClusterNodeGroupRole', { roleName: 'eksClusterNodeGroupRole', assumedBy: new iam.ServicePrincipal('ec2.amazonaws.com'), managedPolicies: [ iam.ManagedPolicy.fromAwsManagedPolicyName('AmazonEKSWorkerNodePolicy'), iam.ManagedPolicy.fromAwsManagedPolicyName('AmazonEC2ContainerRegistryReadOnly'), iam.ManagedPolicy.fromAwsManagedPolicyName('AmazonEKS_CNI_Policy'), ], inlinePolicies: { ipv6Management, }, }); const cluster = new eks.Cluster(this, 'HelloEKS', { version: eks.KubernetesVersion.V1_26, defaultCapacity: 0, }); cluster.addNodegroupCapacity('custom-node-group', { instanceTypes: [new ec2.InstanceType('m5.large')], minSize: 2, diskSize: 100, nodeRole: eksClusterNodeGroupRole, }); ``` #### Spot Instances Support Use `capacityType` to create managed node groups comprised of spot instances. To maximize the availability of your applications while using Spot Instances, we recommend that you configure a Spot managed node group to use multiple instance types with the `instanceTypes` property. > For more details visit [Managed node group capacity types](https://docs.aws.amazon.com/eks/latest/userguide/managed-node-groups.html#managed-node-group-capacity-types). ```ts declare const cluster: eks.Cluster; cluster.addNodegroupCapacity('extra-ng-spot', { instanceTypes: [ new ec2.InstanceType('c5.large'), new ec2.InstanceType('c5a.large'), new ec2.InstanceType('c5d.large'), ], minSize: 3, capacityType: eks.CapacityType.SPOT, }); ``` #### Launch Template Support You can specify a launch template that the node group will use. For example, this can be useful if you want to use a custom AMI or add custom user data. When supplying a custom user data script, it must be encoded in the MIME multi-part archive format, since Amazon EKS merges with its own user data. Visit the [Launch Template Docs](https://docs.aws.amazon.com/eks/latest/userguide/launch-templates.html#launch-template-user-data) for mode details. ```ts declare const cluster: eks.Cluster; const userData = `MIME-Version: 1.0 Content-Type: multipart/mixed; boundary="==MYBOUNDARY==" --==MYBOUNDARY== Content-Type: text/x-shellscript; charset="us-ascii" #!/bin/bash echo "Running custom user data script" --==MYBOUNDARY==--\\ `; const lt = new ec2.CfnLaunchTemplate(this, 'LaunchTemplate', { launchTemplateData: { instanceType: 't3.small', userData: Fn.base64(userData), }, }); cluster.addNodegroupCapacity('extra-ng', { launchTemplateSpec: { id: lt.ref, version: lt.attrLatestVersionNumber, }, }); ``` Note that when using a custom AMI, Amazon EKS doesn't merge any user data. Which means you do not need the multi-part encoding. and are responsible for supplying the required bootstrap commands for nodes to join the cluster. In the following example, `/ect/eks/bootstrap.sh` from the AMI will be used to bootstrap the node. ```ts declare const cluster: eks.Cluster; const userData = ec2.UserData.forLinux(); userData.addCommands( 'set -o xtrace', `/etc/eks/bootstrap.sh ${cluster.clusterName}`, ); const lt = new ec2.CfnLaunchTemplate(this, 'LaunchTemplate', { launchTemplateData: { imageId: 'some-ami-id', // custom AMI instanceType: 't3.small', userData: Fn.base64(userData.render()), }, }); cluster.addNodegroupCapacity('extra-ng', { launchTemplateSpec: { id: lt.ref, version: lt.attrLatestVersionNumber, }, }); ``` You may specify one `instanceType` in the launch template or multiple `instanceTypes` in the node group, **but not both**. > For more details visit [Launch Template Support](https://docs.aws.amazon.com/eks/latest/userguide/launch-templates.html). Graviton 2 instance types are supported including `c6g`, `m6g`, `r6g` and `t4g`. Graviton 3 instance types are supported including `c7g`. ### Fargate profiles AWS Fargate is a technology that provides on-demand, right-sized compute capacity for containers. With AWS Fargate, you no longer have to provision, configure, or scale groups of virtual machines to run containers. This removes the need to choose server types, decide when to scale your node groups, or optimize cluster packing. You can control which pods start on Fargate and how they run with Fargate Profiles, which are defined as part of your Amazon EKS cluster. See [Fargate Considerations](https://docs.aws.amazon.com/eks/latest/userguide/fargate.html#fargate-considerations) in the AWS EKS User Guide. You can add Fargate Profiles to any EKS cluster defined in your CDK app through the `addFargateProfile()` method. The following example adds a profile that will match all pods from the "default" namespace: ```ts declare const cluster: eks.Cluster; cluster.addFargateProfile('MyProfile', { selectors: [ { namespace: 'default' } ], }); ``` You can also directly use the `FargateProfile` construct to create profiles under different scopes: ```ts declare const cluster: eks.Cluster; new eks.FargateProfile(this, 'MyProfile', { cluster, selectors: [ { namespace: 'default' } ], }); ``` To create an EKS cluster that **only** uses Fargate capacity, you can use `FargateCluster`. The following code defines an Amazon EKS cluster with a default Fargate Profile that matches all pods from the "kube-system" and "default" namespaces. It is also configured to [run CoreDNS on Fargate](https://docs.aws.amazon.com/eks/latest/userguide/fargate-getting-started.html#fargate-gs-coredns). ```ts const cluster = new eks.FargateCluster(this, 'MyCluster', { version: eks.KubernetesVersion.V1_26, }); ``` `FargateCluster` will create a default `FargateProfile` which can be accessed via the cluster's `defaultProfile` property. The created profile can also be customized by passing options as with `addFargateProfile`. **NOTE**: Classic Load Balancers and Network Load Balancers are not supported on pods running on Fargate. For ingress, we recommend that you use the [ALB Ingress Controller](https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html) on Amazon EKS (minimum version v1.1.4). ### Self-managed nodes Another way of allocating capacity to an EKS cluster is by using self-managed nodes. EC2 instances that are part of the auto-scaling group will serve as worker nodes for the cluster. This type of capacity is also commonly referred to as *EC2 Capacity** or *EC2 Nodes*. For a detailed overview please visit [Self Managed Nodes](https://docs.aws.amazon.com/eks/latest/userguide/worker.html). Creating an auto-scaling group and connecting it to the cluster is done using the `cluster.addAutoScalingGroupCapacity` method: ```ts declare const cluster: eks.Cluster; cluster.addAutoScalingGroupCapacity('frontend-nodes', { instanceType: new ec2.InstanceType('t2.medium'), minCapacity: 3, vpcSubnets: { subnetType: ec2.SubnetType.PUBLIC }, }); ``` To connect an already initialized auto-scaling group, use the `cluster.connectAutoScalingGroupCapacity()` method: ```ts declare const cluster: eks.Cluster; declare const asg: autoscaling.AutoScalingGroup; cluster.connectAutoScalingGroupCapacity(asg, {}); ``` To connect a self-managed node group to an imported cluster, use the `cluster.connectAutoScalingGroupCapacity()` method: ```ts declare const cluster: eks.Cluster; declare const asg: autoscaling.AutoScalingGroup; const importedCluster = eks.Cluster.fromClusterAttributes(this, 'ImportedCluster', { clusterName: cluster.clusterName, clusterSecurityGroupId: cluster.clusterSecurityGroupId, }); importedCluster.connectAutoScalingGroupCapacity(asg, {}); ``` In both cases, the [cluster security group](https://docs.aws.amazon.com/eks/latest/userguide/sec-group-reqs.html#cluster-sg) will be automatically attached to the auto-scaling group, allowing for traffic to flow freely between managed and self-managed nodes. > **Note:** The default `updateType` for auto-scaling groups does not replace existing nodes. Since security groups are determined at launch time, self-managed nodes that were provisioned with version `1.78.0` or lower, will not be updated. > To apply the new configuration on all your self-managed nodes, you'll need to replace the nodes using the `UpdateType.REPLACING_UPDATE` policy for the [`updateType`](https://docs.aws.amazon.com/cdk/api/latest/docs/@aws-cdk_aws-autoscaling.AutoScalingGroup.html#updatetypespan-classapi-icon-api-icon-deprecated-titlethis-api-element-is-deprecated-its-use-is-not-recommended%EF%B8%8Fspan) property. You can customize the [/etc/eks/boostrap.sh](https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh) script, which is responsible for bootstrapping the node to the EKS cluster. For example, you can use `kubeletExtraArgs` to add custom node labels or taints. ```ts declare const cluster: eks.Cluster; cluster.addAutoScalingGroupCapacity('spot', { instanceType: new ec2.InstanceType('t3.large'), minCapacity: 2, bootstrapOptions: { kubeletExtraArgs: '--node-labels foo=bar,goo=far', awsApiRetryAttempts: 5, }, }); ``` To disable bootstrapping altogether (i.e. to fully customize user-data), set `bootstrapEnabled` to `false`. You can also configure the cluster to use an auto-scaling group as the default capacity: ```ts const cluster = new eks.Cluster(this, 'HelloEKS', { version: eks.KubernetesVersion.V1_26, defaultCapacityType: eks.DefaultCapacityType.EC2, }); ``` This will allocate an auto-scaling group with 2 *m5.large* instances (this instance type suits most common use-cases, and is good value for money). To access the `AutoScalingGroup` that was created on your behalf, you can use `cluster.defaultCapacity`. You can also independently create an `AutoScalingGroup` and connect it to the cluster using the `cluster.connectAutoScalingGroupCapacity` method: ```ts declare const cluster: eks.Cluster; declare const asg: autoscaling.AutoScalingGroup; cluster.connectAutoScalingGroupCapacity(asg, {}); ``` This will add the necessary user-data to access the apiserver and configure all connections, roles, and tags needed for the instances in the auto-scaling group to properly join the cluster. #### Spot Instances When using self-managed nodes, you can configure the capacity to use spot instances, greatly reducing capacity cost. To enable spot capacity, use the `spotPrice` property: ```ts declare const cluster: eks.Cluster; cluster.addAutoScalingGroupCapacity('spot', { spotPrice: '0.1094', instanceType: new ec2.InstanceType('t3.large'), maxCapacity: 10, }); ``` > Spot instance nodes will be labeled with `lifecycle=Ec2Spot` and tainted with `PreferNoSchedule`. The [AWS Node Termination Handler](https://github.com/aws/aws-node-termination-handler) `DaemonSet` will be installed from [Amazon EKS Helm chart repository](https://github.com/aws/eks-charts/tree/master/stable/aws-node-termination-handler) on these nodes. The termination handler ensures that the Kubernetes control plane responds appropriately to events that can cause your EC2 instance to become unavailable, such as [EC2 maintenance events](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring-instances-status-check_sched.html) and [EC2 Spot interruptions](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html) and helps gracefully stop all pods running on spot nodes that are about to be terminated. > Handler Version: [1.7.0](https://github.com/aws/aws-node-termination-handler/releases/tag/v1.7.0) > > Chart Version: [0.9.5](https://github.com/aws/eks-charts/blob/v0.0.28/stable/aws-node-termination-handler/Chart.yaml) To disable the installation of the termination handler, set the `spotInterruptHandler` property to `false`. This applies both to `addAutoScalingGroupCapacity` and `connectAutoScalingGroupCapacity`. #### Bottlerocket [Bottlerocket](https://aws.amazon.com/bottlerocket/) is a Linux-based open-source operating system that is purpose-built by Amazon Web Services for running containers on virtual machines or bare metal hosts. `Bottlerocket` is supported when using managed nodegroups or self-managed auto-scaling groups. To create a Bottlerocket managed nodegroup: ```ts declare const cluster: eks.Cluster; cluster.addNodegroupCapacity('BottlerocketNG', { amiType: eks.NodegroupAmiType.BOTTLEROCKET_X86_64, }); ``` The following example will create an auto-scaling group of 2 `t3.small` Linux instances running with the `Bottlerocket` AMI. ```ts declare const cluster: eks.Cluster; cluster.addAutoScalingGroupCapacity('BottlerocketNodes', { instanceType: new ec2.InstanceType('t3.small'), minCapacity: 2, machineImageType: eks.MachineImageType.BOTTLEROCKET, }); ``` The specific Bottlerocket AMI variant will be auto selected according to the k8s version for the `x86_64` architecture. For example, if the Amazon EKS cluster version is `1.17`, the Bottlerocket AMI variant will be auto selected as `aws-k8s-1.17` behind the scene. > See [Variants](https://github.com/bottlerocket-os/bottlerocket/blob/develop/README.md#variants) for more details. Please note Bottlerocket does not allow to customize bootstrap options and `bootstrapOptions` properties is not supported when you create the `Bottlerocket` capacity. For more details about Bottlerocket, see [Bottlerocket FAQs](https://aws.amazon.com/bottlerocket/faqs/) and [Bottlerocket Open Source Blog](https://aws.amazon.com/blogs/opensource/announcing-the-general-availability-of-bottlerocket-an-open-source-linux-distribution-purpose-built-to-run-containers/). ### Endpoint Access When you create a new cluster, Amazon EKS creates an endpoint for the managed Kubernetes API server that you use to communicate with your cluster (using Kubernetes management tools such as `kubectl`) By default, this API server endpoint is public to the internet, and access to the API server is secured using a combination of AWS Identity and Access Management (IAM) and native Kubernetes [Role Based Access Control](https://kubernetes.io/docs/reference/access-authn-authz/rbac/) (RBAC). You can configure the [cluster endpoint access](https://docs.aws.amazon.com/eks/latest/userguide/cluster-endpoint.html) by using the `endpointAccess` property: ```ts const cluster = new eks.Cluster(this, 'hello-eks', { version: eks.KubernetesVersion.V1_26, endpointAccess: eks.EndpointAccess.PRIVATE, // No access outside of your VPC. }); ``` The default value is `eks.EndpointAccess.PUBLIC_AND_PRIVATE`. Which means the cluster endpoint is accessible from outside of your VPC, but worker node traffic and `kubectl` commands issued by this library stay within your VPC. ### Alb Controller Some Kubernetes resources are commonly implemented on AWS with the help of the [ALB Controller](https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/). From the docs: > AWS Load Balancer Controller is a controller to help manage Elastic Load Balancers for a Kubernetes cluster. > > * It satisfies Kubernetes Ingress resources by provisioning Application Load Balancers. > * It satisfies Kubernetes Service resources by provisioning Network Load Balancers. To deploy the controller on your EKS cluster, configure the `albController` property: ```ts new eks.Cluster(this, 'HelloEKS', { version: eks.KubernetesVersion.V1_21, albController: { version: eks.AlbControllerVersion.V2_4_1, }, }); ``` Querying the controller pods should look something like this: ```console ❯ kubectl get pods -n kube-system NAME READY STATUS RESTARTS AGE aws-load-balancer-controller-76bd6c7586-d929p 1/1 Running 0 109m aws-load-balancer-controller-76bd6c7586-fqxph 1/1 Running 0 109m ... ... ``` Every Kubernetes manifest that utilizes the ALB Controller is effectively dependant on the controller. If the controller is deleted before the manifest, it might result in dangling ELB/ALB resources. Currently, the EKS construct library does not detect such dependencies, and they should be done explicitly. For example: ```ts declare const cluster: eks.Cluster; const manifest = cluster.addManifest('manifest', {/* ... */}); if (cluster.albController) { manifest.node.addDependency(cluster.albController); } ``` ### VPC Support You can specify the VPC of the cluster using the `vpc` and `vpcSubnets` properties: ```ts declare const vpc: ec2.Vpc; new eks.Cluster(this, 'HelloEKS', { version: eks.KubernetesVersion.V1_26, vpc, vpcSubnets: [{ subnetType: ec2.SubnetType.PRIVATE_WITH_EGRESS }], }); ``` > Note: Isolated VPCs (i.e with no internet access) are not currently supported. See https://github.com/aws/aws-cdk/issues/12171 If you do not specify a VPC, one will be created on your behalf, which you can then access via `cluster.vpc`. The cluster VPC will be associated to any EKS managed capacity (i.e Managed Node Groups and Fargate Profiles). Please note that the `vpcSubnets` property defines the subnets where EKS will place the _control plane_ ENIs. To choose the subnets where EKS will place the worker nodes, please refer to the **Provisioning clusters** section above. If you allocate self managed capacity, you can specify which subnets should the auto-scaling group use: ```ts declare const vpc: ec2.Vpc; declare const cluster: eks.Cluster; cluster.addAutoScalingGroupCapacity('nodes', { vpcSubnets: { subnets: vpc.privateSubnets }, instanceType: new ec2.InstanceType('t2.medium'), }); ``` There are two additional components you might want to provision within the VPC. #### Kubectl Handler The `KubectlHandler` is a Lambda function responsible to issuing `kubectl` and `helm` commands against the cluster when you add resource manifests to the cluster. The handler association to the VPC is derived from the `endpointAccess` configuration. The rule of thumb is: *If the cluster VPC can be associated, it will be*. Breaking this down, it means that if the endpoint exposes private access (via `EndpointAccess.PRIVATE` or `EndpointAccess.PUBLIC_AND_PRIVATE`), and the VPC contains **private** subnets, the Lambda function will be provisioned inside the VPC and use the private subnets to interact with the cluster. This is the common use-case. If the endpoint does not expose private access (via `EndpointAccess.PUBLIC`) **or** the VPC does not contain private subnets, the function will not be provisioned within the VPC. If your use-case requires control over the IAM role that the KubeCtl Handler assumes, a custom role can be passed through the ClusterProps (as `kubectlLambdaRole`) of the EKS Cluster construct. #### Cluster Handler The `ClusterHandler` is a set of Lambda functions (`onEventHandler`, `isCompleteHandler`) responsible for interacting with the EKS API in order to control the cluster lifecycle. To provision these functions inside the VPC, set the `placeClusterHandlerInVpc` property to `true`. This will place the functions inside the private subnets of the VPC based on the selection strategy specified in the [`vpcSubnets`](https://docs.aws.amazon.com/cdk/api/latest/docs/@aws-cdk_aws-eks.Cluster.html#vpcsubnetsspan-classapi-icon-api-icon-experimental-titlethis-api-element-is-experimental-it-may-change-without-noticespan) property. You can configure the environment of the Cluster Handler functions by specifying it at cluster instantiation. For example, this can be useful in order to configure an http proxy: ```ts declare const proxyInstanceSecurityGroup: ec2.SecurityGroup; const cluster = new eks.Cluster(this, 'hello-eks', { version: eks.KubernetesVersion.V1_26, clusterHandlerEnvironment: { https_proxy: 'http://proxy.myproxy.com', }, /** * If the proxy is not open publicly, you can pass a security group to the * Cluster Handler Lambdas so that it can reach the proxy. */ clusterHandlerSecurityGroup: proxyInstanceSecurityGroup, }); ``` ### IPv6 Support You can optionally choose to configure your cluster to use IPv6 using the [`ipFamily`](https://docs.aws.amazon.com/eks/latest/APIReference/API_KubernetesNetworkConfigRequest.html#AmazonEKS-Type-KubernetesNetworkConfigRequest-ipFamily) definition for your cluster. Note that this will require the underlying subnets to have an associated IPv6 CIDR. ```ts declare const vpc: ec2.Vpc; // make an ipv6 cidr const ipv6cidr = new ec2.CfnVPCCidrBlock(this, 'CIDR6', { vpcId: vpc.vpcId, amazonProvidedIpv6CidrBlock: true, }); // connect the ipv6 cidr to all vpc subnets let subnetcount = 0; let subnets = [...vpc.publicSubnets, ...vpc.privateSubnets]; for ( let subnet of subnets) { // Wait for the ipv6 cidr to complete subnet.node.addDependency(ipv6cidr); this._associate_subnet_with_v6_cidr(subnetcount, subnet); subnetcount++; } const cluster = new eks.Cluster(this, 'hello-eks', { vpc: vpc, ipFamily: eks.IpFamily.IP_V6, vpcSubnets: [{ subnets: [...vpc.publicSubnets] }], }); ``` ### Kubectl Support The resources are created in the cluster by running `kubectl apply` from a python lambda function. By default, CDK will create a new python lambda function to apply your k8s manifests. If you want to use an existing kubectl provider function, for example with tight trusted entities on your IAM Roles - you can import the existing provider and then use the imported provider when importing the cluster: ```ts const handlerRole = iam.Role.fromRoleArn(this, 'HandlerRole', 'arn:aws:iam::123456789012:role/lambda-role'); // get the serivceToken from the custom resource provider const functionArn = lambda.Function.fromFunctionName(this, 'ProviderOnEventFunc', 'ProviderframeworkonEvent-XXX').functionArn; const kubectlProvider = eks.KubectlProvider.fromKubectlProviderAttributes(this, 'KubectlProvider', { functionArn, kubectlRoleArn: 'arn:aws:iam::123456789012:role/kubectl-role', handlerRole, }); const cluster = eks.Cluster.fromClusterAttributes(this, 'Cluster', { clusterName: 'cluster', kubectlProvider, }); ``` #### Environment You can configure the environment of this function by specifying it at cluster instantiation. For example, this can be useful in order to configure an http proxy: ```ts const cluster = new eks.Cluster(this, 'hello-eks', { version: eks.KubernetesVersion.V1_26, kubectlEnvironment: { 'http_proxy': 'http://proxy.myproxy.com', }, }); ``` #### Runtime The kubectl handler uses `kubectl`, `helm` and the `aws` CLI in order to interact with the cluster. These are bundled into AWS Lambda layers included in the `@aws-cdk/lambda-layer-awscli` and `@aws-cdk/lambda-layer-kubectl` modules. The version of kubectl used must be compatible with the Kubernetes version of the cluster. kubectl is supported within one minor version (older or newer) of Kubernetes (see [Kubernetes version skew policy](https://kubernetes.io/releases/version-skew-policy/#kubectl)). Depending on which version of kubernetes you're targeting, you will need to use one of the `@aws-cdk/lambda-layer-kubectl-vXY` packages. ```ts import { KubectlV26Layer } from '@aws-cdk/lambda-layer-kubectl-v26'; const cluster = new eks.Cluster(this, 'hello-eks', { version: eks.KubernetesVersion.V1_26, kubectlLayer: new KubectlV26Layer(this, 'kubectl'), }); ``` You can also specify a custom `lambda.LayerVersion` if you wish to use a different version of these tools, or a version not available in any of the `@aws-cdk/lambda-layer-kubectl-vXY` packages. The handler expects the layer to include the following two executables: ```text helm/helm kubectl/kubectl ``` See more information in the [Dockerfile](https://github.com/aws/aws-cdk/tree/main/packages/%40aws-cdk/lambda-layer-awscli/layer) for @aws-cdk/lambda-layer-awscli and the [Dockerfile](https://github.com/aws/aws-cdk/tree/main/packages/%40aws-cdk/lambda-layer-kubectl/layer) for @aws-cdk/lambda-layer-kubectl. ```ts const layer = new lambda.LayerVersion(this, 'KubectlLayer', { code: lambda.Code.fromAsset('layer.zip'), }); ``` Now specify when the cluster is defined: ```ts declare const layer: lambda.LayerVersion; declare const vpc: ec2.Vpc; const cluster1 = new eks.Cluster(this, 'MyCluster', { kubectlLayer: layer, vpc, clusterName: 'cluster-name', version: eks.KubernetesVersion.V1_26, }); // or const cluster2 = eks.Cluster.fromClusterAttributes(this, 'MyCluster', { kubectlLayer: layer, vpc, clusterName: 'cluster-name', }); ``` #### Memory By default, the kubectl provider is configured with 1024MiB of memory. You can use the `kubectlMemory` option to specify the memory size for the AWS Lambda function: ```ts new eks.Cluster(this, 'MyCluster', { kubectlMemory: Size.gibibytes(4), version: eks.KubernetesVersion.V1_26, }); // or declare const vpc: ec2.Vpc; eks.Cluster.fromClusterAttributes(this, 'MyCluster', { kubectlMemory: Size.gibibytes(4), vpc, clusterName: 'cluster-name', }); ``` ### ARM64 Support Instance types with `ARM64` architecture are supported in both managed nodegroup and self-managed capacity. Simply specify an ARM64 `instanceType` (such as `m6g.medium`), and the latest Amazon Linux 2 AMI for ARM64 will be automatically selected. ```ts declare const cluster: eks.Cluster; // add a managed ARM64 nodegroup cluster.addNodegroupCapacity('extra-ng-arm', { instanceTypes: [new ec2.InstanceType('m6g.medium')], minSize: 2, }); // add a self-managed ARM64 nodegroup cluster.addAutoScalingGroupCapacity('self-ng-arm', { instanceType: new ec2.InstanceType('m6g.medium'), minCapacity: 2, }) ``` ### Masters Role When you create a cluster, you can specify a `mastersRole`. The `Cluster` construct will associate this role with the `system:masters` [RBAC](https://kubernetes.io/docs/reference/access-authn-authz/rbac/) group, giving it super-user access to the cluster. ```ts declare const role: iam.Role; new eks.Cluster(this, 'HelloEKS', { version: eks.KubernetesVersion.V1_26, mastersRole: role, }); ``` In order to interact with your cluster through `kubectl`, you can use the `aws eks update-kubeconfig` [AWS CLI command](https://docs.aws.amazon.com/cli/latest/reference/eks/update-kubeconfig.html) to configure your local kubeconfig. The EKS module will define a CloudFormation output in your stack which contains the command to run. For example: ```plaintext Outputs: ClusterConfigCommand43AAE40F = aws eks update-kubeconfig --name cluster-xxxxx --role-arn arn:aws:iam::112233445566:role/yyyyy ``` Execute the `aws eks update-kubeconfig ...` command in your terminal to create or update a local kubeconfig context: ```console $ aws eks update-kubeconfig --name cluster-xxxxx --role-arn arn:aws:iam::112233445566:role/yyyyy Added new context arn:aws:eks:rrrrr:112233445566:cluster/cluster-xxxxx to /home/boom/.kube/config ``` And now you can simply use `kubectl`: ```console $ kubectl get all -n kube-system NAME READY STATUS RESTARTS AGE pod/aws-node-fpmwv 1/1 Running 0 21m pod/aws-node-m9htf 1/1 Running 0 21m pod/coredns-5cb4fb54c7-q222j 1/1 Running 0 23m pod/coredns-5cb4fb54c7-v9nxx 1/1 Running 0 23m ... ``` If you do not specify it, you won't have access to the cluster from outside of the CDK application. > Note that `cluster.addManifest` and `new KubernetesManifest` will still work. ### Encryption When you create an Amazon EKS cluster, envelope encryption of Kubernetes secrets using the AWS Key Management Service (AWS KMS) can be enabled. The documentation on [creating a cluster](https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html) can provide more details about the customer master key (CMK) that can be used for the encryption. You can use the `secretsEncryptionKey` to configure which key the cluster will use to encrypt Kubernetes secrets. By default, an AWS Managed key will be used. > This setting can only be specified when the cluster is created and cannot be updated. ```ts const secretsKey = new kms.Key(this, 'SecretsKey'); const cluster = new eks.Cluster(this, 'MyCluster', { secretsEncryptionKey: secretsKey, version: eks.KubernetesVersion.V1_26, }); ``` You can also use a similar configuration for running a cluster built using the FargateCluster construct. ```ts const secretsKey = new kms.Key(this, 'SecretsKey'); const cluster = new eks.FargateCluster(this, 'MyFargateCluster', { secretsEncryptionKey: secretsKey, version: eks.KubernetesVersion.V1_26, }); ``` The Amazon Resource Name (ARN) for that CMK can be retrieved. ```ts declare const cluster: eks.Cluster; const clusterEncryptionConfigKeyArn = cluster.clusterEncryptionConfigKeyArn; ``` ## Permissions and Security Amazon EKS provides several mechanism of securing the cluster and granting permissions to specific IAM users and roles. ### AWS IAM Mapping As described in the [Amazon EKS User Guide](https://docs.aws.amazon.com/en_us/eks/latest/userguide/add-user-role.html), you can map AWS IAM users and roles to [Kubernetes Role-based access control (RBAC)](https://kubernetes.io/docs/reference/access-authn-authz/rbac). The Amazon EKS construct manages the *aws-auth* `ConfigMap` Kubernetes resource on your behalf and exposes an API through the `cluster.awsAuth` for mapping users, roles and accounts. Furthermore, when auto-scaling group capacity is added to the cluster, the IAM instance role of the auto-scaling group will be automatically mapped to RBAC so nodes can connect to the cluster. No manual mapping is required. For example, let's say you want to grant an IAM user administrative privileges on your cluster: ```ts declare const cluster: eks.Cluster; const adminUser = new iam.User(this, 'Admin'); cluster.awsAuth.addUserMapping(adminUser, { groups: [ 'system:masters' ]}); ``` A convenience method for mapping a role to the `system:masters` group is also available: ```ts declare const cluster: eks.Cluster; declare const role: iam.Role; cluster.awsAuth.addMastersRole(role); ``` ### Cluster Security Group When you create an Amazon EKS cluster, a [cluster security group](https://docs.aws.amazon.com/eks/latest/userguide/sec-group-reqs.html) is automatically created as well. This security group is designed to allow all traffic from the control plane and managed node groups to flow freely between each other. The ID for that security group can be retrieved after creating the cluster. ```ts declare const cluster: eks.Cluster; const clusterSecurityGroupId = cluster.clusterSecurityGroupId; ``` ### Node SSH Access If you want to be able to SSH into your worker nodes, you must already have an SSH key in the region you're connecting to and pass it when you add capacity to the cluster. You must also be able to connect to the hosts (meaning they must have a public IP and you should be allowed to connect to them on port 22): See [SSH into nodes](test/example.ssh-into-nodes.lit.ts) for a code example. If you want to SSH into nodes in a private subnet, you should set up a bastion host in a public subnet. That setup is recommended, but is unfortunately beyond the scope of this documentation. ### Service Accounts With services account you can provide Kubernetes Pods access to AWS resources. ```ts declare const cluster: eks.Cluster; // add service account const serviceAccount = cluster.addServiceAccount('MyServiceAccount'); const bucket = new s3.Bucket(this, 'Bucket'); bucket.grantReadWrite(serviceAccount); const mypod = cluster.addManifest('mypod', { apiVersion: 'v1', kind: 'Pod', metadata: { name: 'mypod' }, spec: { serviceAccountName: serviceAccount.serviceAccountName, containers: [ { name: 'hello', image: 'paulbouwer/hello-kubernetes:1.5', ports: [ { containerPort: 8080 } ], }, ], }, }); // create the resource after the service account. mypod.node.addDependency(serviceAccount); // print the IAM role arn for this service account new CfnOutput(this, 'ServiceAccountIamRole', { value: serviceAccount.role.roleArn }); ``` Note that using `serviceAccount.serviceAccountName` above **does not** translate into a resource dependency. This is why an explicit dependency is needed. See for more details. It is possible to pass annotations and labels to the service account. ```ts declare const cluster: eks.Cluster; // add service account with annotations and labels const serviceAccount = cluster.addServiceAccount('MyServiceAccount', { annotations: { 'eks.amazonaws.com/sts-regional-endpoints': 'false', }, labels: { 'some-label': 'with-some-value', }, }); ``` You can also add service accounts to existing clusters. To do so, pass the `openIdConnectProvider` property when you import the cluster into the application. ```ts // you can import an existing provider const provider = eks.OpenIdConnectProvider.fromOpenIdConnectProviderArn(this, 'Provider', 'arn:aws:iam::123456:oidc-provider/oidc.eks.eu-west-1.amazonaws.com/id/AB123456ABC'); // or create a new one using an existing issuer url declare const issuerUrl: string; const provider2 = new eks.OpenIdConnectProvider(this, 'Provider', { url: issuerUrl, }); const cluster = eks.Cluster.fromClusterAttributes(this, 'MyCluster', { clusterName: 'Cluster', openIdConnectProvider: provider, kubectlRoleArn: 'arn:aws:iam::123456:role/service-role/k8sservicerole', }); const serviceAccount = cluster.addServiceAccount('MyServiceAccount'); const bucket = new s3.Bucket(this, 'Bucket'); bucket.grantReadWrite(serviceAccount); ``` Note that adding service accounts requires running `kubectl` commands against the cluster. This means you must also pass the `kubectlRoleArn` when importing the cluster. See [Using existing Clusters](https://github.com/aws/aws-cdk/tree/main/packages/@aws-cdk/aws-eks#using-existing-clusters). ## Applying Kubernetes Resources The library supports several popular resource deployment mechanisms, among which are: ### Kubernetes Manifests The `KubernetesManifest` construct or `cluster.addManifest` method can be used to apply Kubernetes resource manifests to this cluster. > When using `cluster.addManifest`, the manifest construct is defined within the cluster's stack scope. If the manifest contains > attributes from a different stack which depend on the cluster stack, a circular dependency will be created and you will get a synth time error. > To avoid this, directly use `new KubernetesManifest` to create the manifest in the scope of the other stack. The following examples will deploy the [paulbouwer/hello-kubernetes](https://github.com/paulbouwer/hello-kubernetes) service on the cluster: ```ts declare const cluster: eks.Cluster; const appLabel = { app: "hello-kubernetes" }; const deployment = { apiVersion: "apps/v1", kind: "Deployment", metadata: { name: "hello-kubernetes" }, spec: { replicas: 3, selector: { matchLabels: appLabel }, template: { metadata: { labels: appLabel }, spec: { containers: [ { name: "hello-kubernetes", image: "paulbouwer/hello-kubernetes:1.5", ports: [ { containerPort: 8080 } ], }, ], }, }, }, }; const service = { apiVersion: "v1", kind: "Service", metadata: { name: "hello-kubernetes" }, spec: { type: "LoadBalancer", ports: [ { port: 80, targetPort: 8080 } ], selector: appLabel, } }; // option 1: use a construct new eks.KubernetesManifest(this, 'hello-kub', { cluster, manifest: [ deployment, service ], }); // or, option2: use `addManifest` cluster.addManifest('hello-kub', service, deployment); ``` #### ALB Controller Integration The `KubernetesManifest` construct can detect ingress resources inside your manifest and automatically add the necessary annotations so they are picked up by the ALB Controller. > See [Alb Controller](#alb-controller) To that end, it offers the following properties: * `ingressAlb` - Signal that the ingress detection should be done. * `ingressAlbScheme` - Which ALB scheme should be applied. Defaults to `internal`. #### Adding resources from a URL The following example will deploy the resource manifest hosting on remote server: ```text // This example is only available in TypeScript import * as yaml from 'js-yaml'; import * as request from 'sync-request'; declare const cluster: eks.Cluster; const manifestUrl = 'https://url/of/manifest.yaml'; const manifest = yaml.safeLoadAll(request('GET', manifestUrl).getBody()); cluster.addManifest('my-resource', manifest); ``` #### Dependencies There are cases where Kubernetes resources must be deployed in a specific order. For example, you cannot define a resource in a Kubernetes namespace before the namespace was created. You can represent dependencies between `KubernetesManifest`s using `resource.node.addDependency()`: ```ts declare const cluster: eks.Cluster; const namespace = cluster.addManifest('my-namespace', { apiVersion: 'v1', kind: 'Namespace', metadata: { name: 'my-app' }, }); const service = cluster.addManifest('my-service', { metadata: { name: 'myservice', namespace: 'my-app', }, spec: { }, // ... }); service.node.addDependency(namespace); // will apply `my-namespace` before `my-service`. ``` **NOTE:** when a `KubernetesManifest` includes multiple resources (either directly or through `cluster.addManifest()`) (e.g. `cluster.addManifest('foo', r1, r2, r3,...)`), these resources will be applied as a single manifest via `kubectl` and will be applied sequentially (the standard behavior in `kubectl`). --- Since Kubernetes manifests are implemented as CloudFormation resources in the CDK. This means that if the manifest is deleted from your code (or the stack is deleted), the next `cdk deploy` will issue a `kubectl delete` command and the Kubernetes resources in that manifest will be deleted. #### Resource Pruning When a resource is deleted from a Kubernetes manifest, the EKS module will automatically delete these resources by injecting a _prune label_ to all manifest resources. This label is then passed to [`kubectl apply --prune`]. [`kubectl apply --prune`]: https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/#alternative-kubectl-apply-f-directory-prune-l-your-label Pruning is enabled by default but can be disabled through the `prune` option when a cluster is defined: ```ts new eks.Cluster(this, 'MyCluster', { version: eks.KubernetesVersion.V1_26, prune: false, }); ``` #### Manifests Validation The `kubectl` CLI supports applying a manifest by skipping the validation. This can be accomplished by setting the `skipValidation` flag to `true` in the `KubernetesManifest` props. ```ts declare const cluster: eks.Cluster; new eks.KubernetesManifest(this, 'HelloAppWithoutValidation', { cluster, manifest: [{ foo: 'bar' }], skipValidation: true, }); ``` ### Helm Charts The `HelmChart` construct or `cluster.addHelmChart` method can be used to add Kubernetes resources to this cluster using Helm. > When using `cluster.addHelmChart`, the manifest construct is defined within the cluster's stack scope. If the manifest contains > attributes from a different stack which depend on the cluster stack, a circular dependency will be created and you will get a synth time error. > To avoid this, directly use `new HelmChart` to create the chart in the scope of the other stack. The following example will install the [NGINX Ingress Controller](https://kubernetes.github.io/ingress-nginx/) to your cluster using Helm. ```ts declare const cluster: eks.Cluster; // option 1: use a construct new eks.HelmChart(this, 'NginxIngress', { cluster, chart: 'nginx-ingress', repository: 'https://helm.nginx.com/stable', namespace: 'kube-system', }); // or, option2: use `addHelmChart` cluster.addHelmChart('NginxIngress', { chart: 'nginx-ingress', repository: 'https://helm.nginx.com/stable', namespace: 'kube-system', }); ``` Helm charts will be installed and updated using `helm upgrade --install`, where a few parameters are being passed down (such as `repo`, `values`, `version`, `namespace`, `wait`, `timeout`, etc). This means that if the chart is added to CDK with the same release name, it will try to update the chart in the cluster. Additionally, the `chartAsset` property can be an `aws-s3-assets.Asset`. This allows the use of local, private helm charts. ```ts import * as s3Assets from 'aws-cdk-lib/aws-s3-assets'; declare const cluster: eks.Cluster; const chartAsset = new s3Assets.Asset(this, 'ChartAsset', { path: '/path/to/asset' }); cluster.addHelmChart('test-chart', { chartAsset: chartAsset, }); ``` Nested values passed to the `values` parameter should be provided as a nested dictionary: ```ts declare const cluster: eks.Cluster; cluster.addHelmChart('ExternalSecretsOperator', { chart: 'external-secrets', release: 'external-secrets', repository: 'https://charts.external-secrets.io', namespace: 'external-secrets', values: { installCRDs: true, webhook: { port: 9443 } }, }); ``` Helm chart can come with Custom Resource Definitions (CRDs) defined that by default will be installed by helm as well. However in special cases it might be needed to skip the installation of CRDs, for that the property `skipCrds` can be used. ```ts declare const cluster: eks.Cluster; // option 1: use a construct new eks.HelmChart(this, 'NginxIngress', { cluster, chart: 'nginx-ingress', repository: 'https://helm.nginx.com/stable', namespace: 'kube-system', skipCrds: true, }); ``` ### OCI Charts OCI charts are also supported. Also replace the `${VARS}` with appropriate values. ```ts declare const cluster: eks.Cluster; // option 1: use a construct new eks.HelmChart(this, 'MyOCIChart', { cluster, chart: 'some-chart', repository: 'oci://${ACCOUNT_ID}.dkr.ecr.${ACCOUNT_REGION}.amazonaws.com/${REPO_NAME}', namespace: 'oci', version: '0.0.1' }); ``` Helm charts are implemented as CloudFormation resources in CDK. This means that if the chart is deleted from your code (or the stack is deleted), the next `cdk deploy` will issue a `helm uninstall` command and the Helm chart will be deleted. When there is no `release` defined, a unique ID will be allocated for the release based on the construct path. By default, all Helm charts will be installed concurrently. In some cases, this could cause race conditions where two Helm charts attempt to deploy the same resource or if Helm charts depend on each other. You can use `chart.node.addDependency()` in order to declare a dependency order between charts: ```ts declare const cluster: eks.Cluster; const chart1 = cluster.addHelmChart('MyChart', { chart: 'foo', }); const chart2 = cluster.addHelmChart('MyChart', { chart: 'bar', }); chart2.node.addDependency(chart1); ``` ### CDK8s Charts [CDK8s](https://cdk8s.io/) is an open-source library that enables Kubernetes manifest authoring using familiar programming languages. It is founded on the same technologies as the AWS CDK, such as [`constructs`](https://github.com/aws/constructs) and [`jsii`](https://github.com/aws/jsii). > To learn more about cdk8s, visit the [Getting Started](https://cdk8s.io/docs/latest/getting-started/) tutorials. The EKS module natively integrates with cdk8s and allows you to apply cdk8s charts on AWS EKS clusters via the `cluster.addCdk8sChart` method. In addition to `cdk8s`, you can also use [`cdk8s+`](https://cdk8s.io/docs/latest/plus/), which provides higher level abstraction for the core kubernetes api objects. You can think of it like the `L2` constructs for Kubernetes. Any other `cdk8s` based libraries are also supported, for example [`cdk8s-debore`](https://github.com/toricls/cdk8s-debore). To get started, add the following dependencies to your `package.json` file: ```json "dependencies": { "cdk8s": "^2.0.0", "cdk8s-plus-25": "^2.0.0", "constructs": "^10.0.0" } ``` Note that here we are using `cdk8s-plus-25` as we are targeting Kubernetes version 1.25.0. If you operate a different kubernetes version, you should use the corresponding `cdk8s-plus-XX` library. See [Select the appropriate cdk8s+ library](https://cdk8s.io/docs/latest/plus/#i-operate-kubernetes-version-1xx-which-cdk8s-library-should-i-be-using) for more details. Similarly to how you would create a stack by extending `aws-cdk-lib.Stack`, we recommend you create a chart of your own that extends `cdk8s.Chart`, and add your kubernetes resources to it. You can use `aws-cdk` construct attributes and properties inside your `cdk8s` construct freely. In this example we create a chart that accepts an `s3.Bucket` and passes its name to a kubernetes pod as an environment variable. `+ my-chart.ts` ```ts nofixture import { aws_s3 as s3 } from 'aws-cdk-lib'; import * as constructs from 'constructs'; import * as cdk8s from 'cdk8s'; import * as kplus from 'cdk8s-plus-25'; export interface MyChartProps { readonly bucket: s3.Bucket; } export class MyChart extends cdk8s.Chart { constructor(scope: constructs.Construct, id: string, props: MyChartProps) { super(scope, id); new kplus.Pod(this, 'Pod', { containers: [ { image: 'my-image', envVariables: { BUCKET_NAME: kplus.EnvValue.fromValue(props.bucket.bucketName), }, } ], }); } } ``` Then, in your AWS CDK app: ```ts fixture=cdk8schart declare const cluster: eks.Cluster; // some bucket.. const bucket = new s3.Bucket(this, 'Bucket'); // create a cdk8s chart and use `cdk8s.App` as the scope. const myChart = new MyChart(new cdk8s.App(), 'MyChart', { bucket }); // add the cdk8s chart to the cluster cluster.addCdk8sChart('my-chart', myChart); ``` #### Custom CDK8s Constructs You can also compose a few stock `cdk8s+` constructs into your own custom construct. However, since mixing scopes between `aws-cdk` and `cdk8s` is currently not supported, the `Construct` class you'll need to use is the one from the [`constructs`](https://github.com/aws/constructs) module, and not from `aws-cdk-lib` like you normally would. This is why we used `new cdk8s.App()` as the scope of the chart above. ```ts nofixture import * as constructs from 'constructs'; import * as cdk8s from 'cdk8s'; import * as kplus from 'cdk8s-plus-25'; export interface LoadBalancedWebService { readonly port: number; readonly image: string; readonly replicas: number; } const app = new cdk8s.App(); const chart = new cdk8s.Chart(app, 'my-chart'); export class LoadBalancedWebService extends constructs.Construct { constructor(scope: constructs.Construct, id: string, props: LoadBalancedWebService) { super(scope, id); const deployment = new kplus.Deployment(chart, 'Deployment', { replicas: props.replicas, containers: [ new kplus.Container({ image: props.image }) ], }); deployment.exposeViaService({ ports: [ { port: props.port }, ], serviceType: kplus.ServiceType.LOAD_BALANCER, }); } } ``` #### Manually importing k8s specs and CRD's If you find yourself unable to use `cdk8s+`, or just like to directly use the `k8s` native objects or CRD's, you can do so by manually importing them using the `cdk8s-cli`. See [Importing kubernetes objects](https://cdk8s.io/docs/latest/cli/import/) for detailed instructions. ## Patching Kubernetes Resources The `KubernetesPatch` construct can be used to update existing kubernetes resources. The following example can be used to patch the `hello-kubernetes` deployment from the example above with 5 replicas. ```ts declare const cluster: eks.Cluster; new eks.KubernetesPatch(this, 'hello-kub-deployment-label', { cluster, resourceName: "deployment/hello-kubernetes", applyPatch: { spec: { replicas: 5 } }, restorePatch: { spec: { replicas: 3 } }, }) ``` ## Querying Kubernetes Resources The `KubernetesObjectValue` construct can be used to query for information about kubernetes objects, and use that as part of your CDK application. For example, you can fetch the address of a [`LoadBalancer`](https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer) type service: ```ts declare const cluster: eks.Cluster; // query the load balancer address const myServiceAddress = new eks.KubernetesObjectValue(this, 'LoadBalancerAttribute', { cluster: cluster, objectType: 'service', objectName: 'my-service', jsonPath: '.status.loadBalancer.ingress[0].hostname', // https://kubernetes.io/docs/reference/kubectl/jsonpath/ }); // pass the address to a lambda function const proxyFunction = new lambda.Function(this, 'ProxyFunction', { handler: 'index.handler', code: lambda.Code.fromInline('my-code'), runtime: lambda.Runtime.NODEJS_14_X, environment: { myServiceAddress: myServiceAddress.value, }, }) ``` Specifically, since the above use-case is quite common, there is an easier way to access that information: ```ts declare const cluster: eks.Cluster; const loadBalancerAddress = cluster.getServiceLoadBalancerAddress('my-service'); ``` ## Using existing clusters The Amazon EKS library allows defining Kubernetes resources such as [Kubernetes manifests](#kubernetes-resources) and [Helm charts](#helm-charts) on clusters that are not defined as part of your CDK app. First, you'll need to "import" a cluster to your CDK app. To do that, use the `eks.Cluster.fromClusterAttributes()` static method: ```ts const cluster = eks.Cluster.fromClusterAttributes(this, 'MyCluster', { clusterName: 'my-cluster-name', kubectlRoleArn: 'arn:aws:iam::1111111:role/iam-role-that-has-masters-access', }); ``` Then, you can use `addManifest` or `addHelmChart` to define resources inside your Kubernetes cluster. For example: ```ts declare const cluster: eks.Cluster; cluster.addManifest('Test', { apiVersion: 'v1', kind: 'ConfigMap', metadata: { name: 'myconfigmap', }, data: { Key: 'value', Another: '123454', }, }); ``` At the minimum, when importing clusters for `kubectl` management, you will need to specify: * `clusterName` - the name of the cluster. * `kubectlRoleArn` - the ARN of an IAM role mapped to the `system:masters` RBAC role. If the cluster you are importing was created using the AWS CDK, the CloudFormation stack has an output that includes an IAM role that can be used. Otherwise, you can create an IAM role and map it to `system:masters` manually. The trust policy of this role should include the the `arn:aws::iam::${accountId}:root` principal in order to allow the execution role of the kubectl resource to assume it. If the cluster is configured with private-only or private and restricted public Kubernetes [endpoint access](#endpoint-access), you must also specify: * `kubectlSecurityGroupId` - the ID of an EC2 security group that is allowed connections to the cluster's control security group. For example, the EKS managed [cluster security group](#cluster-security-group). * `kubectlPrivateSubnetIds` - a list of private VPC subnets IDs that will be used to access the Kubernetes endpoint. ## Logging EKS supports cluster logging for 5 different types of events: * API requests to the cluster. * Cluster access via the Kubernetes API. * Authentication requests into the cluster. * State of cluster controllers. * Scheduling decisions. You can enable logging for each one separately using the `clusterLogging` property. For example: ```ts const cluster = new eks.Cluster(this, 'Cluster', { // ... version: eks.KubernetesVersion.V1_26, clusterLogging: [ eks.ClusterLoggingTypes.API, eks.ClusterLoggingTypes.AUTHENTICATOR, eks.ClusterLoggingTypes.SCHEDULER, ], }); ``` ## Known Issues and Limitations * [One cluster per stack](https://github.com/aws/aws-cdk/issues/10073) * [Service Account dependencies](https://github.com/aws/aws-cdk/issues/9910) * [Support isolated VPCs](https://github.com/aws/aws-cdk/issues/12171)