""" You must have an AWS account to use the Amazon Connect CTI Adapter. Downloading and/or using the Amazon Connect CTI Adapter is subject to the terms of the AWS Customer Agreement, AWS Service Terms, and AWS Privacy Notice. © 2017, Amazon Web Services, Inc. or its affiliates. All rights reserved. NOTE: Other license terms may apply to certain, identified software components contained within or distributed with the Amazon Connect CTI Adapter if such terms are included in the LibPhoneNumber-js and Salesforce Open CTI. For such identified components, such other license terms will then apply in lieu of the terms above. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging, os, json, boto3 logger = logging.getLogger() logger.setLevel(logging.getLevelName(os.environ["LOGGING_LEVEL"])) def getDataSource(): return 'Contact_Lens' def processContactLensTranscript(iItems, participants): customerTranscripts = [] agentTranscripts = [] finalTranscripts = [] for iTranscript in iItems: transcript = {} transcript['id'] = iTranscript['Id'] transcript['participantId'] = iTranscript['ParticipantId'] # For now it's either AGENT or CUSTOMER transcript['beginOffsetMillis'] = iTranscript['BeginOffsetMillis'] transcript['endOffsetMillis'] = iTranscript['EndOffsetMillis'] transcript['content'] = iTranscript['Content'] transcript['sentiment'] = iTranscript['Sentiment'] transcript['loudness_score'] = iTranscript['LoudnessScore'] # array if 'IssuesDetected' in iTranscript: transcript['issues_detected'] = iTranscript['IssuesDetected'] if 'Redaction' in iTranscript: transcript['redaction'] = iTranscript['Redaction'] finalTranscripts.append(transcript) if iTranscript['ParticipantId'] == 'AGENT': transcript['participantRole'] = getParticipantRole('AGENT', participants) agentTranscripts.append(transcript) elif iTranscript['ParticipantId'] == 'CUSTOMER': transcript['participantRole'] = getParticipantRole('CUSTOMER', participants) customerTranscripts.append(transcript) return {'customerTranscripts' : customerTranscripts, 'agentTranscripts' : agentTranscripts, 'finalTranscripts': finalTranscripts} def processContactLensConversationCharacteristics(contactLensObj, connectBucket, transcripts): resultSet = {} # Overall Sentiment resultSet['contactLensAgentOverallSentiment'] = contactLensObj['ConversationCharacteristics']['Sentiment']['OverallSentiment']['AGENT'] if 'AGENT' in contactLensObj['ConversationCharacteristics']['Sentiment']['OverallSentiment'] else None resultSet['contactLensCustomerOverallSentiment'] = contactLensObj['ConversationCharacteristics']['Sentiment']['OverallSentiment']['CUSTOMER'] if 'CUSTOMER' in contactLensObj['ConversationCharacteristics']['Sentiment']['OverallSentiment'] else None # Sentiment By Period if 'CUSTOMER' in contactLensObj['ConversationCharacteristics']['Sentiment']['SentimentByPeriod']['QUARTER']: customerSentimentCurve = [] customerSentimentCurveLabel = 'Other' for quarter in contactLensObj['ConversationCharacteristics']['Sentiment']['SentimentByPeriod']['QUARTER']['CUSTOMER']: customerSentimentCurve.append(quarter['Score']) customerSentimentCurve[1:3] = [sum(customerSentimentCurve[1:3]) / 2] if (customerSentimentCurve[0] <= customerSentimentCurve[1] - 1) & (customerSentimentCurve[1] < customerSentimentCurve[2]): customerSentimentCurveLabel = 'S' elif (customerSentimentCurve[0] >= customerSentimentCurve[1] + 1) & (customerSentimentCurve[1] > customerSentimentCurve[2]): customerSentimentCurveLabel = 'Z' resultSet['contactLensCustomerSentimentCurve'] = customerSentimentCurveLabel else: resultSet['contactLensCustomerSentimentCurve'] = None # Interruptions Total Count resultSet['contactLensInterruptions'] = contactLensObj['ConversationCharacteristics']['Interruptions']['TotalCount'] resultSet['contactLensAgentInterruptions'] = json.dumps(contactLensObj['ConversationCharacteristics']['Interruptions']['InterruptionsByInterrupter']['AGENT']) if 'AGENT' in contactLensObj['ConversationCharacteristics']['Interruptions']['InterruptionsByInterrupter'] else None resultSet['contactLensCustomerInterruptions'] = json.dumps(contactLensObj['ConversationCharacteristics']['Interruptions']['InterruptionsByInterrupter']['CUSTOMER']) if 'CUSTOMER' in contactLensObj['ConversationCharacteristics']['Interruptions']['InterruptionsByInterrupter'] else None # Non Talk Time resultSet['contactLensNonTalkTime'] = contactLensObj['ConversationCharacteristics']['NonTalkTime']['TotalTimeMillis'] # Talk Speed resultSet['contactLensTalkSpeedCustomer'] = contactLensObj['ConversationCharacteristics']['TalkSpeed']['DetailsByParticipant']['CUSTOMER']['AverageWordsPerMinute'] resultSet['contactLensTalkSpeedAgent'] = contactLensObj['ConversationCharacteristics']['TalkSpeed']['DetailsByParticipant']['AGENT']['AverageWordsPerMinute'] # Talk time resultSet['contactLensTalkTimeTotal'] = contactLensObj['ConversationCharacteristics']['TalkTime']['TotalTimeMillis'] resultSet['contactLensTalkTimeCustomer'] = contactLensObj['ConversationCharacteristics']['TalkTime']['DetailsByParticipant']['CUSTOMER']['TotalTimeMillis'] resultSet['contactLensTalkTimeAgent'] = contactLensObj['ConversationCharacteristics']['TalkTime']['DetailsByParticipant']['AGENT']['TotalTimeMillis'] # Categories resultSet['contactLensMatchedCategories'] = '|'.join(contactLensObj['Categories']['MatchedCategories']) if len(contactLensObj['Categories']['MatchedCategories']) > 0 else None resultSet['contactLensMatchedDetails'] = json.dumps(contactLensObj['Categories']['MatchedDetails']) # Recording Path contactAttributes = getContactAttributes(contactLensObj) contactId = contactLensObj['CustomerMetadata']['ContactId'] if ('postcallRedactedRecordingImportEnabled' in contactAttributes and contactAttributes['postcallRedactedRecordingImportEnabled'] == 'true'): logger.info('Redacted recording import is enabled') redactedRecordingLocation = getRedactedRecordingLocation(contactId, connectBucket) resultSet['recordingPath'] = redactedRecordingLocation else: resultSet['recordingPath'] = None # Transcript Full Text transcriptsText = [] if len(transcripts) > 0: for transcript in transcripts: transcriptsText.append(transcript["content"]) resultSet['contactLensTranscriptsFullText'] = ' '.join(transcriptsText) return resultSet def getParticipantRole(participantId, participants): for participant in participants: if participant['ParticipantId'] == participantId: return participant['ParticipantRole'] logger.warning('Participant Role not found for participant id: %s' % participantId) return '' def getRedactedRecordingLocation(contactId, connectBucket): logger.info('Retrieving Redacted Recording S3 Location, contact ID is: %s', contactId) redactedRecordingKey = contactId + '_call_recording_redacted_' # Using paginator because S3 only returns up to 1000 objects from list_objects_v2() method client = boto3.client('s3') paginator = client.get_paginator('list_objects_v2') pages = paginator.paginate(Bucket=connectBucket, Prefix='Analysis/Voice/Redacted') for page in pages: for obj in page['Contents']: if redactedRecordingKey in obj['Key'] and obj['Key'].endswith('.wav'): redactedRecordingLocation = connectBucket + '/' + obj['Key'] return redactedRecordingLocation logger.warn('Redacted Recording Not Found!') return '' def getContactAttributes(contactLensObj): client = boto3.client('connect') try: connect_response = client.get_contact_attributes( InstanceId=contactLensObj['CustomerMetadata']['InstanceId'], InitialContactId=contactLensObj['CustomerMetadata']['ContactId'] ) return connect_response["Attributes"] except Exception as e: logger.error('Error when retrieving contact attribute: {}'.format(e))