'''This module defines the concrete classes for training''' from markov.agent_ctrl.utils import load_action_space from markov.agent_ctrl.agent_ctrl_interface import AgentCtrlInterface class TrainingCtrl(AgentCtrlInterface): '''Concrete class for an agent that drives forward''' def __init__(self, agent_name, model_metadata): """constructor for the training agent ctrl Args: agent_name (str): name of the agent model_metadata (ModelMetadata): object containing the details in the model metadata json file """ # Store the name of the agent used to set agents position on the track self._agent_name_ = agent_name #Create default reward parameters self._action_space_ = load_action_space(model_metadata) self._model_metadata_ = model_metadata @property def action_space(self): return self._action_space_ @property def model_metadata(self): return self._model_metadata_ def reset_agent(self): pass def send_action(self, action): pass def update_agent(self, action): return {} def judge_action(self, agents_info_map): return None, None, None def finish_episode(self): pass