{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Simulation Run Log Analysis and Visualization for AWS DeepRacer\n", "\n", "This notebook walks through how you can analyze and debug using the AWS DeepRacer Simulation logs \n", "\n", "\n", "1. Tools to find best iteration of your model\n", "1. Visualize reward distribution on the track\n", " - Visualize reward heatmap per episode or iteration\n", "1. Identify hotspots on the track for your model\n", "1. Understand probability distributions on simulated images\n", "1. Evaluation run analysis - plot lap speed heatmap\n" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Requirements\n", "\n", "boto3 >= 1.9.133 ; configure your aws cli and/or boto credentials file\n", "\n", "AWS CLI: https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html\n", "\n", "Boto Configuration: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## IAM permissions\n", "\n", "\n", "Assign your Sagemaker notebook an execution role with permission to access the deepracer service. Typically this is done by providing \"deepracer:*\" permissions." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import re\n", "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "from datetime import datetime\n", "import boto3\n", "import shutil\n", "import os\n", "import glob\n", "import math\n", "import tarfile\n", "import requests\n", "import json\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[33mWARNING: Ignoring invalid distribution -umpy (/home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n", "\u001b[0m\u001b[33mWARNING: Ignoring invalid distribution -umpy (/home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n", "\u001b[0mLooking in indexes: https://pypi.org/simple, https://pip.repos.neuron.amazonaws.com\n", "Requirement already satisfied: shapely in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (1.8.5.post1)\n", "\u001b[33mWARNING: Ignoring invalid distribution -umpy (/home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n", "\u001b[0m\u001b[33mWARNING: Ignoring invalid distribution -umpy (/home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n", "\u001b[0m\u001b[33mWARNING: Ignoring invalid distribution -umpy (/home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n", "\u001b[0m\u001b[33mWARNING: Ignoring invalid distribution -umpy (/home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n", "\u001b[0m\u001b[33mWARNING: You are using pip version 22.0.4; however, version 22.3 is available.\n", "You should consider upgrading via the '/home/ec2-user/anaconda3/envs/python3/bin/python -m pip install --upgrade pip' command.\u001b[0m\u001b[33m\n", "\u001b[0m" ] } ], "source": [ "!pip install shapely\n", "!pip install opencv-python" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "#Shapely Library\n", "from shapely.geometry import Point, Polygon\n", "from shapely.geometry.polygon import LinearRing, LineString" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "from log_analysis import *\n", "from os import listdir\n", "from os.path import isfile, join\n" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Jobs run from AWS DeepRacer Console. Download the desired log file by providing model name" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "model_name=\"deepracer-300l-2\" ## Change to your model\n", "is_training = True ## Make this False if you want to do log analysis on Evaluation.\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "!rm -rf ./tmp\n", "!rm -rf ./intermediate_checkpoint\n", "!rm -rf ./downloaded_model" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "envroot = os.getcwd()\n", "aws_data_path = set(os.environ.get('AWS_DATA_PATH', '').split(os.pathsep))\n", "aws_data_path.add(os.path.join(envroot, 'models'))\n", "os.environ.update({'AWS_DATA_PATH': os.pathsep.join(aws_data_path)})\n", "\n", "region = \"us-east-1\"\n", "dr_client = boto3.client('deepracer', region_name=region,\n", " endpoint_url=\"https://deepracer-prod.{}.amazonaws.com\".format(region))\n", "models = dr_client.list_models(ModelType=\"REINFORCEMENT_LEARNING\",MaxResults=100)[\"Models\"]\n", "for model in models:\n", " if model[\"ModelName\"]==model_name:\n", " break\n", "ModelArn=model[\"ModelArn\"]" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "if is_training:\n", " training_job=dr_client.list_training_jobs(ModelArn=ModelArn,MaxResults=100)[\"TrainingJobs\"][0]\n", " training_log_url= dr_client.get_asset_url(Arn=training_job['JobArn'], AssetType=\"LOGS\")['Url']\n", "\n", " with requests.get(training_log_url, stream=True) as response:\n", " with open(\"{}.tar.gz\".format(model_name), \"wb\") as tarball:\n", " for chunk in response.iter_content(16384):\n", " tarball.write(chunk)\n", "else: \n", " evaluation_job = dr_client.list_evaluations(ModelArn=ModelArn,MaxResults=100)[\"EvaluationJobs\"][0]\n", " evaluation_log_url= dr_client.get_asset_url(Arn=evaluation_job['JobArn'], AssetType=\"LOGS\")['Url']\n", "\n", " with requests.get(evaluation_log_url, stream=True) as response:\n", " with open(\"{}.tar.gz\".format(model_name), \"wb\") as tarball:\n", " for chunk in response.iter_content(16384):\n", " tarball.write(chunk)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "ModelUuid=ModelArn[ModelArn.rfind('/')+1:]\n", "simtrace_path = \"./downloaded_model/{}/sim-trace/training/training-simtrace/\".format(ModelUuid)\n", "if not is_training:\n", " simtrace_path = \"./downloaded_model/{}/sim-trace/evaluation/*/evaluation-simtrace/\".format(ModelUuid)\n", "merged_simtrace_path = \"./logs/deepracer-{}.csv\".format(model_name)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "!mkdir -p downloaded_model/{ModelUuid}\n", "!mkdir -p intermediate_checkpoint/{ModelUuid}/model-artifacts\n", "\n", "!tar -xf {model_name}.tar.gz -C ./downloaded_model/\n", "!mkdir -p ./tmp\n", "!rsync -a --delete --include=*.csv --exclude=* {simtrace_path} ./tmp/\n", "!rm -rf downloaded_model/{model_name}\n", "!rm -rf {model_name}.tar.gz" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "7a42c0c5-e13b-49c6-955e-18e3b64dba4b/metrics/training/training-20221006234810-WmtODh1TQOC3VfLA8slGjA.json\n", "7a42c0c5-e13b-49c6-955e-18e3b64dba4b/model/0_Step-0.ckpt.data-00000-of-00001\n", "7a42c0c5-e13b-49c6-955e-18e3b64dba4b/model/0_Step-0.ckpt.index\n", "7a42c0c5-e13b-49c6-955e-18e3b64dba4b/model/0_Step-0.ckpt.meta\n", "7a42c0c5-e13b-49c6-955e-18e3b64dba4b/model/model_0.pb\n", "7a42c0c5-e13b-49c6-955e-18e3b64dba4b/model/model_1.pb\n", "7a42c0c5-e13b-49c6-955e-18e3b64dba4b/model/model_metadata.json\n", "7a42c0c5-e13b-49c6-955e-18e3b64dba4b/sim-trace/training/training-simtrace/0-iteration.csv\n", "7a42c0c5-e13b-49c6-955e-18e3b64dba4b/model/.coach_checkpoint\n" ] } ], "source": [ "model_url=dr_client.get_asset_url(Arn=model[\"ModelArn\"],AssetType=\"COMPLETE_MODEL_ARTIFACT\")['Url']\n", " \n", "with requests.get(model_url, stream=True) as response:\n", " with open(\"{}-model.tar.gz\".format(model_name), \"wb\") as tarball:\n", " for chunk in response.iter_content(16384):\n", " tarball.write(chunk)\n", "\n", "!tar zxvf {model_name}-model.tar.gz -C intermediate_checkpoint/ \\*.csv {ModelUuid}/model/* {ModelUuid}/metrics/*\n", "!rm -rf {model_name}-model.tar.gz" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "model_metadata.json\n", "agent/\n", "agent/model.pb\n", "worker_0.multi_agent_graph_0.json\n", "worker_0.multi_agent_graph.main_level.main_level.agent_0.csv\n" ] } ], "source": [ "model_url= dr_client.get_asset_url(Arn=model[\"ModelArn\"], AssetType=\"MODEL_ARTIFACT\")['Url']\n", "\n", "with requests.get(model_url, stream=True) as response:\n", " with open(\"{}-model-artifacts.tar.gz\".format(model_name), \"wb\") as tarball:\n", " for chunk in response.iter_content(16384):\n", " tarball.write(chunk)\n", "\n", "!tar zxvf {model_name}-model-artifacts.tar.gz -C intermediate_checkpoint/{ModelUuid}/model-artifacts\n", "!rm -rf {model_name}-model-artifacts.tar.gz" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'action_space': {'steering_angle': {'high': 30.0, 'low': -30.0},\n", " 'speed': {'high': 1.0, 'low': 0.5}},\n", " 'sensor': ['FRONT_FACING_CAMERA'],\n", " 'neural_network': 'DEEP_CONVOLUTIONAL_NETWORK_SHALLOW',\n", " 'version': '5',\n", " 'training_algorithm': 'clipped_ppo',\n", " 'action_space_type': 'continuous',\n", " 'preprocess_type': 'GREY_SCALE',\n", " 'regional_parameters': [0, 0, 0, 0]}" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "with open(\"intermediate_checkpoint/{}/model/model_metadata.json\".format(ModelUuid),\"r\") as jsonin:\n", " model_metadata=json.load(jsonin)\n", "sensor = [sensor for sensor in model_metadata['sensor'] if sensor != \"LIDAR\"][0]\n", "model_metadata" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Job run from Public Notebook. Download the desired log file given the simulation ID " ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "#### Merge all the csv files into one big .csv file" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "19,51.0,-0.046280430337451675,1.482784544785264,-96.13279240882623,-13.188262982150597,0.7375999534103954,\"[-13.188262982150597, 0.7375999534103954]\",0.001,False,False,9.627196990181133,7,23.11822180235112,89.38,in_progress,0.0\r\n", "19,52.0,-0.05280528033537059,1.4341913626510783,-96.47211078019367,30.0,0.6983249630726855,\"[30.0, 0.6983249630726855]\",0.001,False,False,9.800809736728866,7,23.11822180235112,89.44,in_progress,0.0\r\n", "19,53.0,-0.060624045095831115,1.3815727016334425,-96.93289329791561,19.868771479325126,0.6842793803112996,\"[19.868771479325126, 0.6842793803112996]\",0.001,True,False,9.987304606826896,8,23.11822180235112,89.524,off_track,0.0\r\n" ] } ], "source": [ "def get_sort_csv_file():\n", " sim_trace_csvs = glob.glob(\"./tmp/*.csv\")\n", " csvs_with_ids = [(int(os.path.basename(file).split(\"-\")[0]), file) for file in sim_trace_csvs]\n", " csvs_sorted = sorted(csvs_with_ids, key=lambda csvs_with_ids: csvs_with_ids[0])\n", " return [csv_file[1] for csv_file in csvs_sorted]\n", " \n", "def merge_csv_files(output_file_path):\n", " csv_files = get_sort_csv_file()\n", " header_saved = False\n", " with open(output_file_path, 'w') as fout:\n", " for csv_file in csv_files:\n", " with open(csv_file) as fin:\n", " header = next(fin)\n", " if not header_saved:\n", " fout.write(header)\n", " header_saved = True\n", " for line in fin:\n", " line = re.sub(r'(\\[[^\\]]*\\])', r'\"\\1\"', line, flags=re.M)\n", " fout.write(line)\n", "\n", "merge_csv_files(merged_simtrace_path)\n", "!tail -n 3 $merged_simtrace_path" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Load waypoints for the track you want to run analysis on\n" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['arctic_pro.npy', 'hamption_pro.npy', 'ChampionshipCup2019_track.npy', 'Virtual_May19_Train_track.npy', 'reInvent2019_wide_mirrored.npy', 'Singapore_f1.npy', 'dubai_pro.npy', 'red_star_pro.npy', 'H_track.npy', 'Singapore.npy', 'Spain_track_f1.npy', 'Spain_track.npy', 'Mexico_track.npy', 'AWS_track.npy', 'AmericasGeneratedInclStart.npy', 'Vegas_track.npy', 'Aragon.npy', 'reInvent2019_wide.npy', 'Canada_Training.npy', 'New_York_Track.npy', 'morgan_pro.npy', 'caecer_loop.npy', 'Tokyo_Training_track.npy', 'caecer_gp.npy', 'thunder_hill_open.npy', 'reInvent2019_track.npy', 'Austin.npy', 'jyllandsringen_pro.npy', 'Singapore_building.npy', 'penbay_open.npy', 'Belille.npy', 'morgan_open.npy', 'penbay_pro.npy', 'jyllandsringen_open.npy', 'Straight_track.npy', 'Monaco_building.npy', 'Bowtie_track.npy', 'thunder_hill_pro.npy', 'FS_June2020.npy', 'LGSWide.npy', 'hamption_open.npy', 'Albert.npy', 'reinvent_base.npy', 'London_Loop_Train.npy', 'dubai_open.npy', 'arctic_open.npy', 'Monaco.npy', 'Oval_track.npy', 'red_star_open.npy', 'China_track.npy', 'July_2020.npy']\n" ] } ], "source": [ "ListFiles = [f for f in listdir(\"tracks/\") if isfile(join(\"tracks/\", f))]\n", "print(ListFiles)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(155, 6)" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def get_track_waypoints(track_name):\n", " return np.load(\"tracks/%s.npy\" % track_name)\n", "\n", "if is_training:\n", " track_arn=training_job[\"Config\"][\"TrackConfig\"][\"TrackArn\"]\n", "else:\n", " track_arn=evaluation_job[\"Config\"][\"TrackArn\"]\n", "\n", "trackname=track_arn[track_arn.rfind(\"/\")+1:]\n", "waypoints = get_track_waypoints(trackname)\n", "waypoints.shape" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Visualize the Track and Waypoints" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "def plot_points(ax, points):\n", " ax.scatter(points[:-1,0], points[:-1,1], s=1)\n", " for i,p in enumerate(points):\n", " ax.annotate(i, (p[0], p[1]))" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABHcAAAJACAYAAAAHAIo0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzde1zNh//A8ddJ9xoKUR2J3NLppjbsEvu2cqfklplLNnz3te/GsL42c9ksxs9t82Vftxmm6Ysy80XL3OYaOygk1JQaSoYSDp/fH9aZVlGbzknez8fDIz7nc855f87J5by9LypFURBCCCGEEEIIIYQQTyYTYwcghBBCCCGEEEIIIf48Se4IIYQQQgghhBBCPMEkuSOEEEIIIYQQQgjxBJPkjhBCCCGEEEIIIcQTTJI7QgghhBBCCCGEEE8wSe4IIYQQQgghhBBCPMEemdxRqVQtVCqV9oEf11Qq1TsGiE0IIYQQQgghhBBCPIJKUZTyn6xS1QAuAG0URfm5rPPq1q2ruLq6/vXohBBCCCGEEEIIIQQAhw8fzlEUpd4fj5tW8HECgbMPS+wAuLq6kpiYWMGHFkIIIYQQQgghhBBlUalUpeZjKjpzpz+w5q+HI4QQQgghhBBCCCEeh3Ind1QqlTnQA4gp4/bhKpUqUaVSJV6+fPlxxSeEEEIIIYQQQgghHqIilTudgSOKolws7UZFUf6jKIq/oij+9eqVaP8SQgghhBBCCCGEEJWgIsmdcKQlSwghhBBCCCGEEKJKKVdyR6VSWQNBwPrKDUcIIYQQQgghhBBCVES5tmUpilIA1KnkWIQQQgghhBBCCCFEBVV0W5YQQgghhBBCCCGEqEIkuSOEEEIIIYQQQgjxBJPkjhBCCCGEEEIIIcQTTJI7QgghhBBCCCGEEE8wSe4IIYQQQgghhBBCPMEkuSOEEEIIIYQQQgjxBJPkjhBCCCGEEEIIIcQTTJI7QgghhBBCCCGEEE8wSe4IIYQQQgghhBBCPMEkuSOEEEIIIUQlmTdvHhqNBg8PD+bOnQvA0aNHadeuHZ6ennTv3p1r16499HytVkvbtm3x8fHB39+fgwcPPvT8fv364ePjg4+PD66urvj4+BjoaoUQQhiLJHeEEEIIIYQoh4iICBwcHNBoNPpjV65cISgoiGbNmhEUFEReXp7+tnfeeYfx48dz+/ZtZs6cyaZNm0hNTeX1119n+vTpHD9+nNDQUGbOnAlAUlISixcv5uDBgxw9elR//vjx45k0aRJarZapU6cyfvz4h57/zTffoNVq0Wq1hIWF0atXL31MpSWDAD777DNatGiBh4eH/vGFEEI8OSS5I4QQQgghnkoVSdbk5uby008/cePGDbKzs/XnT58+ncDAQFJTUwkMDGT69OkAnDhxgtjYWAYMGMDWrVt56623eOmll9iwYQMpKSkEBAQAEBQUxLp16wA4efIkbdu2xdraGlNTU9q3b8+GDRtQqVT66p5ff/0VJyenh55fRFEU1q5dS3h4OFB2MuiHH34gLi6OY8eOkZyczNixY/WPUVoyaPLkyTg7O+urgzZv3vxY3xchhBAVJ8kdIYQQQgjxVBoyZAhbtmwpdqysZI2lpSWfffYZ77//frHz4+LiGDx4MACDBw8mNjZWfzw0NJQff/yRmjVr0rhxY2JiYsjIyECj0bBx40YA/TEAjUbDrl27yM3NpaCggM2bN5ORkcHcuXMZN24cDRs2ZOzYsURFRT30/CK7d++mfv36NGvWDCg7GbRw4UIiIyOxsLAAwMHBASg7GQQwevRofXVQly5dHs8bIoQQ4k+T5I4QQgghhKgWKlKJEx8fz+jRoxkwYABnz55l+/btQNnJGhsbG1588UV9AqTIxYsXcXR0BMDR0ZFLly4BcOHCBfz8/HjvvfcICgoiKSkJJycnTE1NWbZsGQsWLMDPz4/r169jbm4OgLu7u/78Tp064e3tjampKQsXLmTOnDlkZGQwZ84chg0b9tDzi6xZs0ZftQNlJ4NOnz7N7t27adOmDe3bt+fQoUPAoyuDSlNW2xfArFmzUKlU5OTkPOKdFEIIUVGS3BFCCCGEENVCRSpx6taty7fffsuWLVtwdnbmtddeA8pO1lSUoigADBs2jCNHjtC1a1dsbW1p1qwZLVu2ZNu2bRw+fJjw8HDc3Nz09ys6f9euXdjb29OsWTNWrFihn5vTp0+fYgOVSzsfQKfTsX79evr166c/t6xkkE6nIy8vj/379zNz5kz69u2LoigPrQz6/PPP8fLyIiIiQp8we1ilT0ZGBvHx8bi4uPyp11MIIcTDSXJHCCGEEEJUCwEBAdjb2xc7VlYljq+vr352jYWFBYWFhdy6davCz1m/fn39DJ7s7Gx9S5NarSYjI0OfHDpz5ow+mVN07N69e3z88ceMHDlS/3hFt50/f57169cTHh6Ok5MTO3fuBGD79u36BE5Z5wN8//33tGzZErVaXSze0pJBarWaXr16oVKpeO655zAxMSEnJ6fMZNDf//53zp49i1arxdHRkXfffRd4eKXP6NGj+fTTT1GpVCVew9KqfSZOnIiXlxc+Pj4EBweTlZVV4fdGCCGeJpLcEUIIIYQQVU5FWqwOHjyoH+7buXPnYqvFy1OJc+3aNXx9fbGwsCgzWVOWHj16sGLFCgBWrFhBz549ySvM4677XVavWU1oaChNmzZl//79LF68GDs7O9asWUPz5s1p2bIlTk5OhISHsDxpOXmFeYSFhdGqVSu6d+/OggULsLOzY/Hixbz77rt4e3szYcIEZn0266HnA0RHRxdrySpSWjIoJCRE35Z2+vRpbt++Td26dYHSk0H169enRo0amJiY8MYbb+gricqq9Nm4cSPOzs54e3uXiKesap9x48Zx7NgxtFot3bp1Y+rUqQ99H4QQ4mln+uhThBBCCCGEMKwhQ4YwatQoBg0apD9W1GIVGRnJ9OnTmT59OjNmzECj0ZCYmIipqSkHDx7k+eefR6fTFZs/U5bTp09z8eJFduzYAfyerImMjCyWrIk9E8umqZv4fuv3XL9+HbVazZQpU4iMjKRv374sXboUFxcXYmJiiD0Tyze/fkPzDs05+t1RTE1NiY2NJTg4GIC3336bt99+Wx/D8qTlzD48G7g/BPmPXnzxRQ4fPlzu8wG+/PJL/c+L4g9pGkJYWBi5ubmYmZnpk0ERERFERESg0WgwNzdnxYoV+gqbS5cu4eDgoE8G7du3j+zsbH3CbMOGDfoE3IOVPra2tvpKn2nTprFt27ZS43yw2gfQV/s8uI49Pz+/1IofIYQQv5PkjhBCCCGEqHICAgJIT08vdiwuLk6fhBk8eDAdOnRgxowZ+sQAUKK1qqgSx9HRUV+JU5TsWBu5lvgt8cD9pMLDkjWzD88m+8dsatSooX++du3aUadOHRISEoo9Z4h1yP2v/UKwm2/3yGsNaRpS7OvjPr8ofig9GWRubs6qVav0v84rzGN50vIyk0GvvfYaWq0WlUqFq6srX3zxhf6+w4YN0w98njBhAvXr12f16tX6qp3MzExat27NwYMHadCgARqNhvfff5/c3FysrKzYvHkz/v7+ALz//vt89dVX1KpVix9++KFc1yqEEE8rVdGwt8fJ399fSUxMfOyPK4QQQgghnkwRERFs2rQJBwcHkpKSgPttVv369SM9PR1XV1fWrl2rbysC+PHHHwkICGDGjBmMHTuW2rVrc/XqVf3tdnZ2+tasAwcOEBERQXp6OnXq1OH8+fMAjBs3jjp16uirfa5cuYL7IHdm7prJ9XnXmfvJXMLCwh4a+4OVL3aWj07WVDUVjb+oMmiM3xiGaoZW6LkerPQJDg5m3759xd5TV1dXEhMT9W1fAEuXLmXBggXY2trSqlUrrKysmDNnjv72qKgoCgsLmTJliv7YvHnzWLx4MYqi8MYbb/DOO+8wbtw4vv32W8zNzXFzc2P58uXUrl27QvELIURVp1KpDiuK4v/H4zJzRwghhBBCVLqKbLIq8vHHH2Nra/vIx84rzOOEzQlaerTE2tqajIwMnJ2dWbp0KZGRkcTHx9OsWTPi4+OJjIwkpGkILU+25ErmFT766CP9vJ6yNmPZWdoxVDP0iUzsQMXjD2kawhi/MeWuDILfq316hvYsdQbQw5S18avIgAEDWLdunf7XZc3pKVo5f+zYMZo3b05UVFS54xdCiCedtGUJIYQQQohKV5E2K4DY2FgaNmyIhYWF/vzSWqzg97ajMR+OYd3adbz88svMnDlT397zx7YpgPWfrYfPKuFCq4GiZFBF6N+DLx5e7fPH7wEofa5PamqqPsmzceNGWrZsqT+/PHN62rZty3//+98KXYMQQjzJpHJHCCGEEEL8KRXZaJWenk7Lli05e/YsPj4+jBw5stRNVnmFeSw6uIhpUdOKDR2G0jdTAfia+vK299uENA3h559/JiUlBVdXVwO8AqJIRat9iip9ytr4FRkZiUajwcvLi23btjFv3jz9fcvayvWgZcuW0blz58d5iUIIUaXJzB0hhBBCCPGn7Nq1C1tbWwYNGqSfozN+/Hjs7e31M27y8vKYMWMG6enpdOzYETMzM/25pc3Qmb17NuPGjaP2L7XJ/yWfixcv8swzzzB79mxCQkLo27cv58+f1w87tre3Z+XKlUyfPh0zMzNMTEz48MMPCQkJMcIrIsrrr8z1gYfP6Zk2bRqJiYmsX79ev2WrtBk9MTExTJ48mZMnT3Lw4EF9pZcQQlRlZc3ckbYsIYQQQgjxp1S01eqPSmuzCmkaQtSlKAqvFGJhYUHNmjUxMTHh5s2bpW6mAnjttdd47bXXHvfliUpU0Y1ff/THrVxqtRq4X9G1adMmEhIS9ImdB2f0mJub06lTJ7p27YpGo2H9+vWMGDHiL1+PEEIYm7RlCSGEEEKIx+aPrVYXL11kedJyfr31KxkZGZw9e5b27duze/fuUtus7CztOH34NOd/Pk96ejrvvPMOEyZMYNSoUca8LPGY/dUh1UXDr4vm9ISHh7NlyxZmzJjBxo0b9fN4oPiMHlNTU/2MHnd3d1q0aPFYrkcIIYxNkjtCCCGEEAKo2AwdgGPHjtGrVy/OnDmDp6cnhYWFJR7zzt07zD48m9f/+TrPPPMMOp2OkydP0rNnT/7xj3+U2GQlRFkeNadn1KhRXL9+naCgIP1cJyjfjB4hhHjSSVuWEEIIIYQA7q8rHzVqFIMGDdIfK1pXXjRDZ/r06cyYMQOdTsfAgQOZPn0648ePZ8eOHZiZmZVotXJq4HR/0G6/kGJVGh06dCAnJ6fUNqsHTZ48ubIuVzxhijZyAezevbvE7WfOnCn1fu7u7rz33nsEBQVha2uLt7c3pqbyMUgIUb1I5Y4QQgghhADuz9Cxt7cvdiwuLo7BgwcD92foxMbGArBt2za8vLxo1aoVAHXq1KFGjRolWq1CQ0IZqhmK7rqOu3fvAnDu3DlSU1Np0qSJga5MVAcV3cj1oGHDhnHkyBF27dqFvb29fs26EEJUF5LcEUIIIYQQZSprXfnKnSvZtXsXLVq0IDk5mVq1arF06VIiIyNLbbXatWsXXl5eeHt707t3bxYtWlQikSTEw/yVOT2lzegpj3nz5qHRaPDw8GDu3LnAw1sVhRDCWKQeUQghhBBCVEjsmVh2/LwD3V0dFy5cwNramsDAQFxdXcvcaBUWFkZYWJgRohVPs7zCPGLPxPKfEf/h17xfMTMz08/o2bBhA2+99RaXL1+ma9eu+Pj4sHXrVv19y9qytXjx4lJbFYUQwpikckcIIYQQopqqyIDk1atX4+PjQ5cuXTh79iwmJiZotVr9DB2g2Lrynn49CXo5iLp162JtbU2XLl04cuSIUa5TiLIUzekZ/sVwTpw4wdGjRwkMDAQgNDSUzMxMbt26xcWLF4sldqDsLVtltSoKIYQxSXJHCCGEEKKaGjJkCFu2bCl2rGhAcmpqKoGBgUyfPh2AV199Fa1Wy+bNm3F2dsbV1RUfH58y15VHvR7FqeRTFBQUoNPp2Llzp37+jhBVxV+Z01PWlq3SWhWFEMLYpC1LCCGEEKKaCggIID09vdixuLg4duzYAdyvOujQoQORUyKJPRPLpqmb2Lt7LxcvXsTGxkY/Q6dv374sXboUFxcXYmJiALCzs2PMmDE8++yzqFQqunTpQteuXQ18hUI8XNGcnj9DtmwJIZ4k8qeTEEIIIcRTpLSqg6LWlTEfjmGdZh1ubm7ExcXp27nKWlc+cOBABg4caLDYhTC0YcOGMWzYMAAmTJiAWq3Wtyo6OjrqWxWFEMLYJLkjhBBCCPGUK2pZCWkawoEDB7C2ti42p0eIp9WlS5dwcHDQb9nat28faWlprFixgsjISH2rohBCGJskd4QQQgghniKlVR082LoSHR1d7jXRQlRHRRu2QpqGEBYWRm5ubrEtW2W1KgohhDFJckcIIYQQ4ilSNCC5tKqDe/fuERMTw65du4wYoRDGVdSmCLB79+4St9epU6fMVkWAOXPmsGTJElQqFZ6enixfvpyUlBRGjhzJjRs3cHV1ZfXq1dSsWbPSrkEI8fSRbVlCCCGEEE+Aiqw1v3T9Ei/0fIFatWrRtGlTTp48iVqt1g9Ijo+Pp1mzZsTHxxMZGal/vF27dqFWq2nSpInBr0+IquKvbNi6cOEC8+fPJzExkaSkJO7evUt0dDSvv/4606dP5/jx44SGhjJz5szHH7gQ4qkmyR0hhBBCiCdARdaaT/z3RJJ/SWbuj3O5du0aDRs2ZM+ePQwbNkxfdZCamkpCQgL29vb6x+vQoQP79+836HUJUdUUtSnaWdr9qfvrdDpu3ryJTqejoKAAJycnUlJSCAgIACAoKIh169Y9zpCFEEKSO0IIIYQQT4KAgIBiiRi4v9Z88ODBwP215rGxsQA82+BZXK1c6ebajZs3b2Jubi4tIEIYgLOzM2PHjsXFxQVHR0dq1apFcHAwGo2GjRs3AhATE0NGRoaRIxVCVDeS3BFCCCGEeEKVttYcYPCAwbRs0JJWjVvh4uLC2LFjSySGhBCPX15eHnFxcaSlpZGVlUV+fj6rVq1i2bJlLFiwAD8/P65fv465ubmxQxVCVDMyUFkIIYQQopo5ePAgNWrUICsri7y8PF566SVeeeUVmaUjRCX7/vvvady4MfXq1QOgV69e7N27l4EDB7Jt2zYATp8+zXfffWfMMIUQ1ZBU7gghhBBCPKGK1poD+rXmAF9//TWdOnXCzMwMBwcHXnjhBRITE40ZqhBPBRcXF/bv309BQQGKopCQkIC7u7u+qu7evXt8/PHHjBw50siRCiGqG0nuCCGEEEI8oYrWmgPF1pq7uLiwfft2FEUhPz+f/fv307JlS2OGKkS1lleYx/Kk5TT3bk7v3r1p3bo1np6e3Lt3j+HDh7NmzRqaN29Oy5YtcXJyYujQocYOWQhRzagURXnsD+rv76/I/w4JIYQQQvx1eYV5xJ6JZdPUTezdvZecnBzq16/PlClTCAkJoW/fvpw/fx4XFxdiYmKwt7fnxo0bDB06lBMnTqAoCkOHDmXcuHHGvhQhqq3lScuZfXg2Y/zGMFQjiRshROVRqVSHFUXx/+NxmbkjhBBCCFGFxZ6Jvf+h8cMxrNOUXJ+ckJBQ4pitrS0xMTGGCE8IAYQ0DSn2VQghDE3asoQQQgghDCwiIgIHBwc0Go3+2JUrVwgKCqJZs2YEBQWRl5cHQBeXLtTaUIuZ/Wfi7e3Njh07jBS1eFBF3sN58+ZRv359zM3NcXBwYOvWrRw9epR27drh6elJ9+7duXbtmv5cjUaDh4cHc+fOBUCr1dK2bVt8fHzw9/fn4MGDZZ7br18/fHx88PHxwdXVFR8fn1LPA/jss89o0aIFHh4ejB8/vvJftGrMztKOoZqh2FnaVfi+c+bMwcPDA41GQ3h4OIWFhWW+50IIUSZFUR77Dz8/P0UIIYQQQpRu586dyuHDhxUPDw/9sXHjxilRUVGKoihKVFSUMn78eEVRFOXzzz9XhgwZoiiKoly8eFFp3bq1cvfuXcMH/ZQYOnSoUq9evWLvTW5urvLKK68oTZs2VV555RXlypUrys6dO5WEhATF2tpasbGxUf7xj3+U+h4eP35ccXNzUzQajXLjxg3l+eefVxo2bKj4+fkpO3bsUBRFUZYuXap88MEHyvHjxxUPDw8lPz9fuXPnjhIYGKicPn1aCQoKUjZv3qwoiqJ89913Svv27cs890FjxoxR3nzzzVLP2759uxIYGKgUFhYqinL/e0tRFGXu3LmKh4eH0qpVK2XOnDmKoijKpEmTFCcnJ8Xb21vx9vZWvvvuu0p9D54mmZmZiqurq1JQUKAoiqL06dNHWb58eanvuRBCKIqiAIlKKXkYqdwRQgghhDCwgIAA7O3tix2Li4tj8ODBAAwePJjY2FgATpw4QWBgIAAODg7Url1bNl9VoiFDhrBly5Zix6ZPn05gYCCpqakEBgYyffp0AgICaNCgAQ4ODsyaNQso/T08efIkdnZ2DBgwABsbGzp16oSlpSUnT54kICAAgKCgINatW8fJkydp27Yt1tbWmJqa0r59ezZs2IBKpdJX9vz66684OTmVeW4RRVFYu3YtLVq0KPW8hQsXEhkZiYWFBXD/eyspKYnFixdz8OBBjh49yqZNm0hNTQVg9OjRaLVatFotXbp0qdw34Smj0+m4efMmOp2OgoICnJycSn3PhRDiYSS5I4QQQghRBVy8eBFHR0cAHB0d9auTvb29iYuLQ6fTkZaWxuHDh8nIyDBmqE+cirRQ3bp1i8GDB3PmzBn8/PzYvn17mYk3a2trbGxssLS0BEp/DzUaDampqdSuXZuCggI2b96MqakparWajRs3AhATE0NGRgYajYZdu3aRm5urPzcjI4O5c+cybtw4GjZsyNixY4mKiirz3CK7d++mfv36BAUFlXre6dOn2b17N23atKF9+/YcOnTokQmjB5XV6gUwa9YsVCoVOTk5f/3Nq+acnZ0ZO3YsLi4uODo6UqtWLYKDg0t9z4UQ4mEkuSOEEEIIUYVFRESgVqvx9/fnnXfe4fnnn8fUVHZiVER5q3EA6taty5IlS2jatCkrVqzgtddeKzPxVh7u7u60bt2aGTNm0KlTJ7y9vTExMeEf//gHCxYswM/Pj+vXr2Nubo67uzvvvfceQUFB+nNNTU1ZuHAhc+bMISMjgzlz5jBs2LAyzy2yZs0awsPDyzxPp9ORl5fH/v37mTlzJn379sXDw6PMhNHnn3+Ol5cXERER/Pjjj2VW+GRkZBAfH4+Li8tfes+eFnl5ecTFxZGWlkZWVhb5+fmsWrWq1PdcCCEeRpI7QgghhBBVQP369cnOzgYgOzsbBwcHAExNTZkzZw5arZa4uDiuXr1Ks2bNjBlqlVHeipyAgADOnz/P2bNn8fHxwdvbm1WrVpVajePr60v9+vUB8PDwoLCwkPsjDh6trPcwKCiIESNGsGvXLuzt7bl37x7PPvss27Zt4/Dhw4SHh+Pm5gbAsGHDOHLkiP7cZs2asWLFCnr16gVAnz599MN1SzsX7rf5rF+/nn79+pV5nlqtplevXqhUKp577jlMTEyoV69eqYmgv//975w9exatVoujoyMffPBBmRU+o0eP5tNPP0WlUulfl9KqfCZOnIiXlxc+Pj4EBweTlZVVgXe++vj+++9p3Lgx9erVw8zMjF69erF3794y33MhhCiLJHeEEEIIIaqAHj16sGLFCgBWrFhBz549ASgoKCA/Px+A+Ph4TE1NadWqldHirEoqUpHTokULmjRpglarZcuWLfzyyy/Uq1cPKLsaZ926dfj6+tKgQYNSkzZ/VNZ7+MILLxAdHU1qairR0dEUFBTg6uoKwL1795g4eSotX+7Flfzb+jjOnz/P+vXrCQ8Px8nJiZ07dwIQ+91W7BxdyjwX7icMWrZsiVqtBij1vJCQELZv3w7A6dOnuX37NnXr1i01EVS/fn1q1KiBiYkJb7zxBpmZmaVW+GzcuBFnZ2e8vb31r0lZc3zGjRvHsWPH0Gq1dOvWjalTp5bvTa8m8grzWJ60nNr1a7N//34KCgpQFIWEhATc3d2Lvefbt2+XhK4Q4pGkplcIIYQQwkDyCvOIPRPLpqmb2Lt7Lzk5OajVaqZMmUJkZCR9+/Zl6dKluLi4EBMTA9z/YN6xY0dMTExwdnZm5cqVRr6KqiMgIID09PRix+Li4vTr4gcPHkyHDh2YMWMGVlZW+mqSwsLCRz52YWEh7733Htu2bWPRokWsWLGCyMhIFi5eRqPW7Qnr04+9e3aRk5PD6NGj8fX1JSYmpth7+J8vV/PFzrN8+a8JZGdno9FocHBw4D//+Q9r165lwYIFADTxf5mTaIhJzGDVB0PIzc3FzMyMBQsWYGdnx+LFi3n77bfR6XRcu6Pidrs3yjwXIDo6mh69+vDFzrP08W9IWFhYifMiIiKIiIhAo9Fgbm7OihUrUKlUXLp0CQcHB30iaN++fWRnZ+vb0jZs2ICfnx9BQUEEBQVha2urr/CZNm0a27ZtK/Y6PjjHB9BX+Ty4ej0/P79Ypc/TIPZMLLMPz2aM3xh69+5N69atMTU1xdfXl+HDh+Pr66t/zy0tLfnPf/5j7JCFEFVdaSu0/uoPWYUuhBBCCFHSsuPLFM2XGmXZ8WXGDqVKK+86ckVRlLS0NMXDw0P5+eefFRsbG8XS0rLYY9WuXVt/XuPGjZVWrVopNjY2iqOjo5KVlaUoiqJkZWUpbs2aKYt2nFF69e6r1KtXTwGUunXrKkuWLFFycnKUv/3tb0rTpk2VFq3bKep/rlEW7TijKIqiNGrUSLGzs1NsbGwUZ2dnJTk5Wf/ci3acURq9t0l/bllyb9xSFu04o+TeuPXI16a855b3uf/4mC+++KLi7u6ueHl5Kd9//72iKIoycOBARaPRKJ6enkr37t31r1uRf/3rX8rcuXOVevXqKY0aNVIaNWqk1KhRQ2nYsKGyc+dOpVmzZkpOTo6Sn5+vtG3bVhk1apSiKIoyYcIERa1WKx4eHsqlS5dKXcM+duxYpUWLFoqnp6cSEhKi5OXlPfJ6ngRXbl5Rlh1fply5ecXYoQghnjCUsQpdpZSzh7gi/P39FVnRKYQQQghRXFHlTkjTEOws7YwdTpW1a9cubG1tGTRoEElJSQCMHz8ee3t7IiMjmT59Onl5ecyYMYP09HS6detGixYtMDExYdOmTdy8eVP/WHZ2duTl5enPS0pK4uTJk/ztb3/jzTffZOLEiUyfPp3tR89xulFP3n7RiS/fH8KHH35IWFhYidiu5N8mJjGDPv4Nsbcxf+h1VOTcx60iz/3FzrNE/e8U/+rckhHt3cr1+A9W+AQHB7Nv3z595RCAq6sriYmJ1K1bl6VLl7JgwQJsbW1p1aoVVlZWzJkzR39uVFQU58+fZ/fu3Rw8eBBzc3M6derEwoULSUtL429/+xumpqa89957AMyYMeNPvCJCCFE9qFSqw4qi+P/xuMzcEUIIIYR4DEob7hsTE4OHhwcmJiYkJiZiZ2nHUM1Q7CztiIqKomnTprRo0YKtW7caMfKqJyAgAHt7+2LHylpHDnDt2jWaNGmCh4cHtra2+vk4J87+jMUzdoT16Ue7du1ISUlBrVazd+9e3Nzc2LhxI82aNSM+Pp6Fn07lX51bcvngRs6cOcNHH32Ej48PPj4+xebx2NuYM6K9W7mSNRU593GryHP38W/Ivzq3pI9/w0eeeyX/Nl/sPEvPkF60atWK7t27F2sJK01Zg5+LDBgwgO+++67UIc3BwcH6LWBt27YlMzPzkTEKIcTTSJI7QgghhBCPQWnDfTUaDevXrycgIKDY8RMnThAdHU1ycjJbtmzhzTff5O7du4YM1+DKu9kKID09nZYtW+q3W40cObLMdeQFBQXk5OQwadIk4P6Gq6Khxu/P+Jybjr4Ej/qEvXv3cvPmTTIzM3nllVc4d+4c//vf/0hNTSUhIQG3hg0Y0d6NT6ZOIj8/H61Wq/9R1gDl6qIiiaCYxAyi/neKIVErOHHiBEePHiUwMLDEeenp6dStWxcofaBz0ep0gI0bN+Lu7l7mGvYiy5Yto3PnzqVu3/pjIlUIIZ42ktwRQgghhHgMSqs2cXd3p0WLFiXOjYuLo3///lhYWNC4cWOaNm1a7VcdV2SzFUCjRo1wc3NDq9WyaNGiYve7kn+b27p7hPXpx7PPPsutW7do2bIlR44c4eWXXyY+Pp5mzZqRezqRSR9MoI9/Q/bs2YO3tzc+Pj6Ehoby73//W598EOVX3iqfogqfK/m3CQsLK1HlExkZiUajwcvLi23btrFs2bJS17AXmTZtGqampnh7e5e6fausRKoQQjwtZFuWEEIIIYSBXbhwgbZt2+p/rVaruXDhghEjqnwV2WxVmvr16+u3Ni3Zepjb5s8QPOoTLv2Spa/w2LVrF3v27GHq1KmMGjWq2P1fe+01Xnvttcd+XU+boiqfRymq8AHYvXt3idvXrVtX4tiwYcMYNmwYABMmTNCvcl+xYgWbNm0iISGhWPsWlL59q7qbM2cOS5YsQaVS4enpyfLlyxk8eDApKSkAXL16ldq1a6PVao0bqBDCoMpVuaNSqWqrVKr/qlSqUyqV6qRKpWpX2YEJIYQQQlRXpS20eFJXQVek3Qrurxhv164dHh4enDlzRj+rxaJmHTKzfuFK/m0AMjIyOHv2LO3bt2f37t306NFD3251I2k7Lwd3oY9/Q3bv3k16ejrp6em88847TJgwoURiRxjen6nwKa19a8uWLcyYMYONGzdibW2NRqN5ZPtWdXbhwgXmz59PYmIiSUlJ3L17l+joaL755ht9G2FYWBi9evUydqhCCAMrb1vWPGCLoigtAW/gZOWFJIQQQghRvanV6mIfSDMzM3FycjJiRH9eRdqtdDodmZmZLFq0iOTkZGxsbDAzMwPuV3oU3rlLTGIG48eP55lnnkGn03Hy5El69uzJP/7xD3271Y87txO9YLpRBhWL8invHJ+iCp+YxIxS27dGjRrF9evXCQoKwsfHh3nz5j20fetBpc3meVji8Umh0+m4efMmOp2OgoKCYn92KIrC2rVrCQ8PN2KEQghjeGRblkqlqgkEAEMAFEW5Ddyu3LCEEEIIIZ4MD643L68ePXowYMAAxowZQ1ZWFqmpqTz33HOVF2Qlqki71e7du7G0tMTb2xv4fTCyo6MjL6lNqefgQB//hoxYu7bY43Xo0IGcnBwSEhIeGsvkyZMf12UJAymq7Onj35ARpbRvnTlzptT7lda+9aCkpCT9bJ6i1epdu3Zl8eLFBAYGEhkZyfTp05k+ffoTtVrd2dmZsWPH4uLigpWVFcHBwQQHB+tv3717N/Xr1y+xkUwIUf2Vp3KnCXAZWK5SqX5SqVRLVCqVTSXHJYQQQgjxRIg9E8vsw7Pp1KtTsXXbS5cuZcOGDajVavbt20fXrl3p2LEjcH+jU9++fWnVqhWdOnViwYIF1KhRw8hX8viUtdkqLS0NgI4dO9K6dWsaNGigb7XaGLOGQf17Y29jzuXLl/Xbw86dO0dqaipNmjQxwpWIyvZn1sWX1r71RydPnix1tXpcXByDBw8G7iceY2NjH8t1GEpeXh5xcXGkpaWRlZVFfn4+q1at0t++Zs0aqdoR4imlKq3nu9gJKpU/sB94QVGUAyqVah5wTVGUiX84bzgwHMDFxcXv559/rqSQhRBCCCGqjgcrd+ws7YwdzmMVERHBpk2bcHBwICkpCbjf1tKvXz/S09NxdXVl7dq1/Prrr7z44ov67VPHjx9HURSOHDmCS7NWNGxQj06dOhG/9X9cv36dBg0aMHHiRJYvX45Op+PGjRu4uLgQExODvb0969at48MPP8TU1JQaNWowZcoUunfvbsyXQhjZlfzbxCRm0Me/IT07BZKbm4uZmRmzZ88mMDCQDRs28NZbb3H58mVq165Ns2bNuHTpEvv27cPKyorAwED8/f1ZuXIlV69e1T+unZ3dE9WaFRMTw5YtW1i6dCkAX331Ffv37+ff//43Op0OZ2dnDh8+XGo1kxCielCpVIcVRfH/4/HybMvKBDIVRTnw26//C0T+8SRFUf4D/AfA39//4RkjIYQQQohqws7SjqGaocYOo1IMGTKEUaNGMWjQIP2xonk6D7a1/P3vfy+2ncfV1RVFUfDx8eHT9fv0m636hIWyZcsWvvzySwByc3OxtLRk3LhxxZ43LCyMsLAwQ12meAI8avtWaGgooaGhxY4tXbqUoKAgbG1tHzqb50mRV5jH0TtH+XHfjxQUFGBlZUVCQgL+/vc/433//fe0bNlSEjtCPKUe2ZalKMovQIZKpWrx26FA4ESlRiWEEEIIUYWUthEqJiYGDw8PTExMSExM1B/Pzc3l5ZdfxtbW9onf2hQQEIC9vX2xY+Vpa2nQoIG+jerBzVYdO3bk2LFjFBQUoNPp2LlzJ61atar06xBPvvJu33rQsGHDOHLkCLt27cLe3p5mzZpRv359srOzAcjOzsbBwaGyQn7sYs/EEncnjhbtW9C6dWs8PT25d+8ew4cPByA6OlpasoR4ipU3ff0WsFqlUpkD54Dq+d9TQgghhBClKK2CRaPRsH79ekaMGFHsXEtLSz766COSkpL0rUzVSdE8nSv5t9l4uoC0tDTatWtHTk4OarWaKVOmcPHiRRwcHGjWrNnv7VY25mBjzpgxY3j22WdRqVR06dKFrl27GvuSxBOgaDZPRVy6dAkHBwf9bJ59+/aRlpbGihUriIyMZMWKFTg7O+Ph4YFKpcLT05Ply5eTkpLCyJEjuXHjBq6urqxevZqaNWtW0pWVX9HQ9pB+pbeAFlXECSGeTuVK7iiKogVK9HQJIYQQQjwNStsI5e7uXuq5NjY2vPjii2Vu+akuitpkzCys9JUQAAcOHMDW1pYDBw6Uer+BAwcycOBAQ4UpnjIPzuYJCwvTz+YpWq0eGRlJ3759Wbp0KfXr1+f8+fOkpKRgZWVF3759iY6OZsGCBcyaNYv27duzbNkyZs6cyUcffWTsS6vWLaBCiL/uyW48FUIIIYQQFVbeQcl2dnbcuXOHzMxMPD090el0mJmZkZ2dTR//hvyae4n/rK9f7LGlNUQY06Nm89SpU4eEhAQALly4QNu2bbl58yZmZmYUFBTg5ORESkoKAQEBAAQFBdGxY8cqkdwRQoiHKc8qdCGEEEIIUY0MGTKELVu2FDtWNCg5NTWVwMBApk+fDsDmzZtRFIXjx49z+PBhbt++zdy5c7G3Mefe6Z30CgnRP8a9e/eIiYmhf//+hrwcIfQqMpvH2dmZsWPH4uLigqOjI7Vq1SI4OBiNRsPGjRuB+7O1MjIyKjtsIYT4yyS5I4QQQgjxlHnYoOQr+bcxad6edRs2EB4ezqRJk7h+/TrOzs4sXryYunXrsm/fPpo1a0Z8fDyRkb8vUd21axdqtVo/TFkIQyuazWNvY/7Ic/Py8oiLiyMtLY2srCzy8/NZtWoVy5YtY8GCBfj5+XH9+nXMzR/9WEIIYWzSliWEEEIIUYa8wjxiz8TqB5lWZ0WDkr/YeZZ/H7zC5eyLrFmzhjt37vDaa6+RkJDAhAkTmDNnjn47zx916NCB/fv3GzhyIf6c77//nsaNG1OvXj0AevXqxd69exk4cCDbtm0D4PTp03z33XfGDFMIIcpFKneEEEIIIcoQeyaW2Ydn06lXJ9q1a0dKSgpqtZqlS5eyYcMG1Go1+/bto2vXrnTs2FF/P1dXV8aMGcOXX36JWq3mxIkTRryKiilqazEzvf/PxIMHD1KjRg2ysrJIS0vj//7v/zh37pyRoxTir3NxcWH//v0UFBSgKAoJCQm4u7tz6dIl4H6b4auvvkpmZiYajYbw8HAKCwvRarW0bdsWHx8f/P39OXjwoJGvRAghpHJHCCGEEKJMj1o9HBoaWur9/rhZ60lQv359srOzcXR0pEdza2Y7OADw9ddf06lTJ8zMzHBwcOCFF14gMTFRWq/EE+v3jVq+9O7dm9atW2Nqaoqvry/Dhw9n0aJFLFiwAJ1OR25uLtnZ2VhbW+u3aX399ddMmjSJzp07s3nzZsaPH8+OHTuMfVnFzJkzhyVLlhRb8W5paclnn33G559/jqmpKV27duXTTz81dqhCiMdEKneEEEIIIcpQtHq4tMROVRUREYGDgwMajUZ/7MqVKwQFBdGsWTOCgoLIy8sD7lcmDB06FE9PT/Ly8pg0aRIAK1asoGfPnsD96obt27ejKAr5+fns37+fli1bGv7ChHhMijZqxSRmMGXKFE6dOkVSUhIrV67EwsKCt99+m9OnT7N7925q1qxJYWEhOp1Ov01LpVJx7do1AH799VecnJyMfEXFXbhwgfnz55OYmEhSUhJ3794lOjqaH374gbi4OI4dO0ZycjJjx441dqhCiMdIKneEEEIIIaqRIUOGMGrUKAYNGqQ/VrQJa/hbYxg2+n3atm3HtWu/cunSJX7++Wfmz5/PCy+8wHPPPcf27dtp1KgRMTExAPzjH/9g6NChaDQaFEVh6NCheHl5GevyhPjLijZpPWqj1oPbtKysrAgODiY4OJiGDRvSsWNHxo4dy71799i7d68hwq4QnU5XYsX7woULiYyMxMLCAgCH36rzhBDVg1TuCCGEEOKpVlqlS0xMDB4eHpiYmJCYmKg/Hh8fj5+fH56envj5+bF9+3ZjhPxQD9uEFZOYwSFzL369eZvs7GxGjhzJF198wbBhw2jZsiXPPvssX3/9NQkJCfrHsLW1JSYmhuTkZE6cOMG4ceOMcVlCPDbl3ahV1jathQsXMmfOHDIyMpgzZw7Dhg0zUOTlU9aK96JqpDZt2tC+fXsOHTpk7FCFEI+RJHeEEEII8VQbMmQIW7ZsKXZMo9Gwfv16AgICih2vW7cu3377LcePH2fFihW89tprhgz1TyvahNXHvyET+zxP4fX7bVne3t7ExcWh0+lIS0vj8OHDZGRkGDlaIaqGB7dpmZmZ6bdprVixgl69egHQp0+fKjdQuayklE6nIy8vj/379zNz5kz69u2LoijGDlcI8ZhIckcIIYQQT7XSKl3c3d1p0aJFiXN9fX318zU8PDwoLCzk1q1bBonzcSiqWFD99uuIiAjUajX+/v688847PP/885iaSte+EFD2Ni0nJyd27twJwPbt22nWrJmRIy2urKSUWq2mV69eqFQqnnvuOUxMTMjJyTF2uEKIx0T+9hZCCCGE+BPWrVuHr6+vfn5FVfbgJqzs7Gz9rA1TU1PmzJmjP+/555+vch9UhTC0R23T8vX15e2330an02Fpacl//vMfY4dczINJKSsrKxISEvD398fLy4vt27fToUMHTp8+ze3bt6lbt66xwxVCPCaS3BFCCCGEqKDk5GTee+89tm3bZuxQyqVHjx6sWLGCyMjIYpuwiioSbGxsiI+Px9TUlFatWhk5WiGMq2ibFsCUKVOYMmVKsdtffPFFDh8+rF83PnjwYP268cGDB5OSkgLA1atXqV27Nlqt1mCx5xXmccLmBF1DupZISqlUKiIiItBoNJibm7NixQpUKtWjH1QI8USQ5I4QQgghRAVkZmYSGhrKV199hZubm8GfPyIigk2bNuHg4EBSUhJwfwD0xA8ncTrlFB1eDuTkiSRycnJQq9W0adOGn376iYsXLzJ//nzc3d31m7AuXbpEx44dMTExwdnZmZUrVxr8eoSoasqzTato3fiJEyewsrKib9++REdH88033+jPeffdd6lVq1alx/ug2DOxzD48mzHhY/h02qclbl+1apVB4xFCGI7M3BFCCCGEKKerV6/StWtXoqKieOGFF4wSQ1kDoMMnzMNc7UHbvv8gOzubO3fusG3bNs6cOcPJkydJSkrCysqKbdu26WcMubq6kpKSwsmTJ/n+++9p1KiRMS7pqTFv3jw0Gg0eHh7MnTsXgKNHj9KuXTs8PT3p3r07M2bMKHGOVqulbdu2+Pj44O/vz5gxY0qc069fP3x8fPDx8cHV1RUfHx+jXGN1UN5tWkXrxnU6nX7deBFFUVi7di3h4eGVHW4xIU1DGOM3hpCmIQZ9XiGE8UlyRwghhBBPpbzCPJYnLSesbxjt2rUjJSUFtVrN0qVL2bBhA2q1mn379tG1a1c6duwIwOeff86ZM2f46KOP9B+kL126ZNC4yxoA/Vav9rjYWxPYqr7+eFxcHP3798fCwoLGjRvTtGnTKrfZpzqIiIjAwcEBjUajP3blyhWCgoJo1qwZQUFB/PjjjyxevJiDBw8yYMAAJkyYQJMmTejTpw/Tp0/n+PHjPPfcc8yaNYuDBw9y9OhRNm3aRGpqKuPHj2fSpElotVoiIiL44osvSpzzzTffoNVq0Wq1hIWF4ejoWCIBBPDZZ5/RokULPDw8GD9+vBFereqhrHXjRXbv3k39+vUNPsPKztKOoZqh2FnaGfR5hRDGJ8kdIYQQQjyVitoXun3YTV/pkpmZybBhwwgNDSUzM5Nbt25x8eJFtm7dCsAHH3xAfn6+/kO0VqvVDyc2Nnsbc5xqW1HLykx/7MKFCzRs+HtriVqt5sKFC8YI74lVnsRNWFgYW7ZsQafT8fLLL2Nra8srr7xCYGAgqampBAYG8umnn9K2bVvS09NZu3Yt48aNo2/fvpw5c0ZfBVa3bl10Oh3W1taYmprSvn17NmzYgEql4tq1awCkpKTQoEGDEucUURSF1atXc+bMmRIJoB9++IG4uDiOHTtGcnIyNWvWLJEAmjx5Ms7Ozvrk5ebNmw33Yj9Bylo3XmTNmjUGr9oRQjzdJLkjhBBCiKfS09C+oChKiWMyQLW4RyVvjh07xtq1awGIj4/Hz8+PFi1acOLECb744gsCAwPZtWsX9vb2mJiY8NFHHzFr1izOnTvH4MGDARg8eDDHjh1j165drFmzhl69erFt2zby8/OpWbMm//d//wdAeno6v/76K7m5uRQUFLB582YyMjKYO3cu48aNo2HDhkRHR3Pv3r0S5xTZvXs3NjY2tG/fvkQCaOHChURGRmJhYUFSUhLR0dElEkAAo0eP1icvU1NTS60AApg1axYqleqpXKdd1rpxuN+utX79evr162fkKIUQTxNJ7gghhBDiqfQ0tC+o1epiH/wzMzOLzQURpc8wmj59ur7qpnfv3kRHRwP3K2u+/fZb7O3tWbVqFa+99hqDBw8mNjYWABMTE1588UUsLS25efMmjo6OADg6OnL16lXee+89Fi1axJo1a/D29sbU1JTAwEC+/vpr/Pz8sLa2xtramqCgIDp16qQ/Z+HChcyZM4eMjAw+++wzrKysSpxTZM2aNYSFhbFr164SCaDTp0+ze/du2rRpQ9++fXFzcyuzAgggKSlJ30r2xwRQRkYG8fHx2NnZ8eKLLxZL/kycOBEvLy98fHwIDg4mKyurMt46o3pw3biiKCQkJODu7g7cT/y0bNkStVpt5CiFEE8TSe4IIYQQQlRTPXr0IDo6mlu3bpGWlkZqairPPfecscMymPK0VHl6emJvb09BQYG+FWnevHn6drvBgwfrV977+vri5OTExYsX6dChA4WFhdjb25d77tKwYcPo27cvH3zwAfb29jRr1ozatWvz4YcfcvjwYcLDw2nVqhVHjhzRVwM1a9aMFStW0KtXLwD69OlDZmZmiXPg94qRf/7zn7z33nslEkA6nY68vDz279/PpEmT2Lx5Mzk5OSUqgD7//HO8vLx466238PX1LTUBNHr0aIYPH86NGzfYtm1bseTPuHHjOHbsGFqtlm7dujF16tTH84ZWEVfyb6MtrEvXHqG0bt0aT09P7t27x/DhwwGIjo6WliwhhMFJckcIIYQQ1V5pH/JjYmLw8PDAxMSExMRE/fGDBw/qP+R7e3uXqGYwliv5t/li51nC+vQr9wBoDw8P+vbtS6tWrejUqRMLFiygRo0aRr4Sw3lUVU5gYCDTp08HwNLSksTERLRaLRYWFkRGRqLT6XB0dCQ3N7fEY69btw5fX18sLCxKfW4rKyuys7MByM7OxsHBgUuXLqFWqzl+/Djr168nPDycc+fO4eTkxL179/j4448ZMGAAAOfPn9ef4+TkxM6dOwHYvn07jRs3LnEOFK8YGTZsWIkEkFqtplevXqhUKvr164ednR0vv/xysQTQ3//+d86ePYtWq6V58+Zs3LixRAXQxo0bcXZ25t69e1hYWJRI/tSsWVP/Omzbto21a9cWq+wZN24cLVu2xMvLi9DQUK5evfon32HjiEnMIOp/p3DrNJRTp06RlJTEypUr9d8LX375JSNHjjRylEKIp46iKI/9h5+fnyKEEEIIUVXs3LlTOXz4sOLh4aE/duLECeXUqVNK+/btlUOHDumP5+fnK3fu3FEURVGysrKUevXq6X9tKEOHDlXq1atXLN43Js9XzOq4KCqVqli8OTk5SocOHRQbGxvlH//4h0HjNLbSXqfc3FzllVdeUZo2baq88sorilarLXZ748aNFWtra2XmzJlKVlaW0rx5cyUtLa3YOc8884zi4OCgf99r1qxZ7PZGjRopjRo1Us6cOVPqYyxfvlzx8fFRoqKiFOVGjhI1opsy7p1Ryosvvqg0adJEsbS0VDZv3qycO3dOqVOnjtK0aVOlWdMmynuvBiovtG2juLu7K15eXsr333+vKIqi7N69W2ndurXipfFQnnN3UXw8NSXOURRFGTx4sLJw7kxF2TNXuXjupKIoivLzzz8rLVq0UK5cuaIsXLhQmThxoqIoipKSkqKo1Wrl3r17iqIoyr/+9S9lwYIFxV7ftLQ0xcnJSfH19VVeeuklZcSIEco777yjPPfcc8rVq1eVEydOKKampkpKSoqSn5+vtG3bVhk1apSiKIoyYcIEpX79+oqFhYWSnp6u3LlzRwkMDFROnz6tbN26Vf/ajh8/Xhk/fvxf+TYwuNwbt5RFO84ouTdulXr77NmzlVatWikeHh5K//79lZs3byqKoijz589XmjdvrrRq1UoZN26cIUN+aGyTJk1SnJycFG9vb8Xb21v57rvvjBKbEKJ8gESllDyMVO4IIYQQotora314ixYtSpxbVIUAUFhYaJQBxKVVnAztFsD7c5bw/AsvFTtuaWmpH+L7tClPZc7ChQuL3Z6RkUGXLl2A+7NwHmypOnDgAB4eHty4cYOoyRMwPbCA7LPJ1KlTR39OZmYm165do1OnTrg1qM2KKcMxQSlWTbVr1y78/PyIj4+nWcuWxG/7H5HBjuzevZuzZ8/ywQcfMGrUKDp16sTKlStJTU3l9Jf/ZHrTQ+yZFc6JEyc4evQogYGBALz44oscPnyYo4ve4EDfq/y08PUS58BvFSP+ZhD/IWEhXWnVqhXdu3dnwYIF2NnZERERwblz59C0cqd/90DmTv8IlUpVrAKoqNoIYMOGDbz00kvFKoBcXV1JS0vD29ubzp07c+/ePTQaDX/729+Kzf+ZNm0an332GZ6enixbtqxYZU9wcLD+vLZt25KZmfk4vh0Mxt7GnBHt3bC3MS9x24ULF5g/fz6JiYkkJSVx9+5doqOjS2wqGzt2rMHjLis2KD5Eu+j3hxDiySLJHSGEEEKIPyj6kO/p6cmiRYuKDaw1hNKSUe38vJn0WhCmNYonm2xsbPRDfKuTiszLuX37NlZWVvj4+DB//nxOnDgBFJ+XAxAbG4uJiQkeHh6lPmebNm1ITk5myJAhTJo0icL/TaRTxyAuXbpESkoKTk5OtGvXjtmzZ5OamqpP3Pw4dwjZ2dncuXMHU1NTYmNjiY6OJiUlhbgNcSSs/D/sA0bon+f999/n7NmzpKSk0Llz5/sHfQZC0NT7X8tSgXN27z1YIgFkbm7OqlWrSFo8kiPh15j76UclEkDjx4/H06MVXk2d+OH7rbz//vvA7y1ggwYN4tKlS6Snp5Oenk7Dhg3Jyspi//79xeb/AGg0GnJycli7dm2pm73mzZvHoEGD2LFjh75lq6x2ySeJTqfj5s2b6HQ6CgoKcHJyKrapDNDPdKoKsQkhqgdJ7gghhBBC/EHRh/xDhw4RFRVFYWGhsUN66lRkXg6Am5sbWq0WS0tLvvrqK4Bi83Ly8/OZMWMGLi4uXL9yCdJ2k302mbt375aYYTRz5kxu3IZmi02oq27K+fPnuXPnDm+++SZXrlxh7ty55ObmYmPXgDXzJxdL3KSnp3PlyhVu3LhBZmYmrfyfhxfeBps6PJRNnUef97jOeUgCaOXKlRz/zwiODcxn44TOvPnmmyUSQA+6d+8eUHz+T9FGLXd3d9q1a8cvv/xSYrNXUlISn3zyCS+//DLp6en6YcwajYb169cTEBDw8NerinJ2dmbs2LG4uLjg6OhIrVq1CA4OLraprH379hw6dKjKxAa/D9GOiIggLy/P4LEJIf46Se4IIYQQQpTB3d0dGxsbkpKSjB3KU6e06qW4uDgGDx4MUGwFeQn5ufDjvPtffzNp0iRGjx5NSEgIR/d+D6lbWTEzkpEjR5Kdnc3p06dJT09n2LBh3LhxAytra35KPkPCjl36OD744APy8/P17SvaY8dx6PbBoxM3Vc2jEkAPVAjt3r27ZAvYA69vo0aNCAgIKJb8iYyMRKPR4OXlxfXr10lKSiqx2WvhwoUoikJ0dDRmZmb6lq2y2iWfFHl5ecTFxZGWlkZWVhb5+fmsWrWq2KaymTNn0rdvX+6PzjB+bA8O0XZ0dOTdd981aFxCiMfDsDXGQgghhBBVXFpaGg0bNsTU1JSff/6ZlJQUXF1djR1WtRMREcGmTZtwcHDQJ8+uXLlCv379SE9Px9XVtdgcoWPHjnH27FleeeUVTExMOHToULF5OWlpafj6+nL79m1i540n5PZ/CYlcQn5+PikpKaSmpvLMM89gbW1NdlYWP9y7R1O3k+w7sAKAPXv2MH36dMzMzDAxMeHf//43devWNeyLUlUUJX/Kol0F8R8CsHv37hI3r1u3Tv/zS5cu4eDgoK/s2bdvH1u2bGHLli3Y2tpy8+ZNADZv3oy/vz9wv13r0KFD9O3bl3/+85+88847Jb431q5dW6KKqCr4/vvvady4MfXq1QOgV69e7N27t9imsueeew4TExNycnL05xkztoEDf2/ze+ONN+jWrZvBYhJCPD5SuSOEEEKIaimvMI/lScvJK8wjPDy83OvD9+zZg7e3Nz4+PoSGhj7dH/IrUUWGIet0OgYOHIiVlRXJB3exY0Y4Zrev6e9namrK+fPn+emnnwgLC2PIjP9y7fkJtA0KZcyYMdy5c4dbt26Rk5PD+fPnef+DD5jx6aekpJ7RV+W89tprJCcno9VqOXLkCCEhIQZ7LZ44j5r980BlT1hYWIm2rlGjRnH79m10Oh0NGzbEzc1N37KVlJTE4sWL8fPz4+uvv9a3az2sJa8qcXFxYf/+/RQUFKAoCgkJCbi7uxMSEsL27dsBOH36NLdv3zb4nytlxfbHIdoPzrkSQjw5pHJHCCGEENVS7JlYZh+eDcCaNWtKPSc0NLTEsddee43XXnutUmMry5X828QkZrDt8wns3bOLnJwc1Go1U6ZMwd7enrfeeovLly/TtWtXfHx82Lp1KwCurq5cu3btftVKbCzbtm2jVatWRrmG8goICCA9Pb3Ysbi4OHbs2AHcb7t64YUXsLa2Ztu2bXh5eXHr1i2yv1+A40//R/YdnX5eTk5ODt7e3kyZMoW5c+eyadMmPIZ9TvPmzYmJiTH8xVV3f7Gy58yZMyWOTZgwAbVazcmTJ2nbti1nzpwptmHrj98bHTp0YMaMGY/lch6Hot+7ffx96d27N61bt8bU1BRfX1+GDx+OSqUiIiICjUaDubk5K1asMOgmvrzCPE7YnKBrSNcSsb3++utotVpUKhWurq588cUXBotLCPH4SHJHCCGEENVSSNOQYl+roj+2JsUkZvDBnCWYHT3CxYsXOXjwoL5VJT4+nvr162NnZ4e5uTnvvfee/nH+mCSpCirSdrV69WpmzpzJmTNn6Ny5M8eOHePIkSPk5uZibW3N6dOnUalU3L59G/+/L+TtkPbcO6pj5MiRfPrpp1y+fBl7e3tq1KjBuXPnsLa25ujRoyVm9hSZPHmyoV6Gp1NRRc/DtnpResvWL7/8wvvvv0+9evUoLCzUt2tdvHiR6OholixZgkqlIi0tjcLCQlJSUhg5ciQ3btzA1dWV1atXU7NmTQNcZHExiRlE/e8UAFOmTGHKlCklzlm1apWhw9IrSnaPCR/Dp9M+LXbbypUrjRSVEOJxUlXGIC9/f3/lSV1dKIQQQghhKLt27cLW1pZBgwaRlJTElfzbzF/3A509nXhv9FvMmjVLn9z56aefqF+/Pk5OTiQlJdGxY0cuXLhg5Cso2x+vDWD8+PHY29sTGRnJ9OnTSU9PZ8+ePfrba9euze6t39IzNJQ2LwTwzbpYatSogbW1Nebm5vz4448MHz6c/fv34+7uTkJCAvb29qxbt44PP/wQU1NTatSowZQpU+jevbsxL188TH4uaFfx0rhocq/+ipmZGbNnzyYwMJANGzYwbNgwrl69iqmpKfXr16d3794sW7YMe3t7Tpw4gZWVFebm5vznP/9hwYIFzJo1i/bt27Ns2TLS0tL46KOPDH5Jv1fuNMTextzgz/8oeYV5xJ6JJaRpCHaWVW9WkRCi/FQq1WFFUfxLHJfkjhBCCCGE8aSnp9OtW7cSG7k6dOhQLLnzIEVRqFu3LllZWVhYWBgq1Ar747W1aNGCHTt24OjoSHZ2tr7t6sHbO3rW55mLBxg19n06jF9NSkoK0dHRbNmyhS+//BKAjz76CEtLS8aNG2esSxN/xY/z7rdtBU19eHsXv7dr/d///R83b94kKSmJ/Px83N3dWb9+Pb179+bXX39FpVKRkZFBx44dOXHihIEu5NHmzJmjrzby9PRk+fLlTJ8+ncWLF+sHG3/yySd06dLFyJEKIZ4UZSV3ZKCyEEIIIaqFiIgIHBwcig0DjYmJwcPDAxMTE0r7j6fz589ja2tbbCvTk2DdunX4+vpWicROaa/7lStXCAoK4uWXXyY9PZ28vDwAfvnlFyIjI/H09ORvf/sbWVlZxR6rR48erN6eRPjw0aw4qqNnz54AdOzYkWPHjlFQUIBOp2Pnzp1VfqaQeIhHDGQu2oJW1K4VHh5Or1698PPzw8XFhZYtW+Li4kJycjI6nY5GjRoRHh7O119/zc8//0zbtm3x8fHB39+fgwcPGvLKirlw4QLz588nMTGRpKQk7t69S3R0NACjR49Gq9Wi1WolsSOEeCwkuSOEEEKIaqG07UsajYb169cTEBBQ6n1Gjx5N586dDRHeY5OcnMx7771XZYaePmzr1Q8//ICNjY1+s9GdO3e4lX+N44teR9OyGbdu3eLUqVP6DWZBQUHcun2b0KnriN/5I5GRkQDY2dkxZswYnn32WXx8fGjdujVdu3Y1+LWKx6RoILNNneLHf9uyFRbSs8SGrZEjR7Jnzx4cHBxo06YNDRo04JNPPmHv3r20bNmSLVu2sG/fPu7cucOkSZPQarVMnTqV8ePHG+caf6PT6bh58yY6nY6CggKcnJyMGo8QovqS5I4QQgghqoWAgIASA3Td3d1p0aJFqefHxsbSpEkTPDw8DBHeY5GZmUloaChfffUVbm5uxg4HKP11j4uLY/DgwcD9OTqxsbEA1KpVi9yfT6DbOpHJvVphZmbGpUuXyMzMZNiwYfzvf/9jwoQJpKam6ufpFBk4cCDJyckkJSXx6afFB8KKauK3LVu7Z/bnxIkTHD16lMDAQACOHDlCr169OHfuHNu3b6dnz57cvHkTFxcXNm/ezAsvvECPHj2wsrLi2rVrAPz6669GTaY4OzszduxYXFxccHR0pFatWgQHBwPw+eef4+XlRUREhL6yTQgh/gpJ7gghhBDiqZOfn8+MGTOYNGmSsUMpt6tXr9K1a1eioqJ44YUXjB3OQ128eBFHR0cAfQIHIDw8nEuFpjh+dg/fYbN5+eWX9Qmce/fuERMTQ//+/Y0WtzCyh7Rrubi4sH//fgoKClAUhSNHjtCxY0caNmxI7dq12bVrF2PGjMHFxYWxY8dibW3NoEGD0Gq1uLq64uPjY/DLycvLIy4ujrS0NLKyssjPz2fVqlX8/e9/5+zZs2i1WhwdHXn33XcNHpsQovqR5I4QQgghnjqTJk1i9OjR2NraGuX5r+Tf5oudZwnr04927dqRkpKib03asGEDarWaffv20bVrVzp27Ajc/5/+M2fO8NFHH+Hj44OPj48+aWJIpc3YuXr1Kunp6TRr1oygv3VA0RUS3qcXbdu25cSJE1y9epWGDRvi4ODAxcu51KrTgDZt2nD27FnOnTsH3N+upVaradKkicGvSVQRpbVr/daq1UbTlN69e9O6dWs8PT0pLCwkNzeXUaNGcevWLe7du8dLL73EzZs36dmzJwUFBaxevRonJyfCwsLo1auXwS/n+++/p3HjxtSrVw8zMzN69erF3r17qV+/PjVq1MDExIQ33njDqHOB5syZg4eHBxqNhvDwcAoLC/W3zZo1C5VKRU5OjtHiE0KUnyR3hBBCCPHUOXDgAOPHj8fV1ZW5c+fyySef8Pnnnxvs+WMSM4j63ymCR31CdnY2d+7c0bcmhYaGkpmZya1bt7h48SJbt24F4IMPPiA/P18/hFWr1eLg4GCwmIuUNmNn4cKF2NjYkJqaSmDzZ6hx9xazB/owceJE+vTpQ/PmzTl8+DCzZ89mxowZnDlzht27dxMQEKAfdN2hQwf2799v8OsRVdxvrVpoVzFlyhROnTpFUlISvXv3xs3NjX/+8580aNCATz/9lNzcXM6ePcu3335LeHg43bt35+DBgyxbtozly5fj4eFh0Bk8f6w2SkhIwN3dnezsbP05GzZsKJYoNaSHDXzOyMggPj4eFxcXo8QmhKg4Se4IIYQQ4qmze/du0tPTSU9P55133mHChAmMGjWq0p7vj9UuffwbEmx1jjkju5fY5HXw4EF9ZY63tzcbNmyotLj+jNJm7MTHx1O7dm0ABo+bDmZWrDiq06+k7tmzJw4ODtSsWZOYmBgURSE/P5/9+/fTsmVLQ1+CeJKU0apVlDixs7Pj3Xff5Z///Cf79+/nmWeeYcWKFdy9e5dJkyZRq1Yt7t69y6lTp0hOTmbs2LEGCftK/m20hXXp2iNUX2107949hg8fzvjx4/H09MTLy4sffviBOXPmGCSm0pQ18Hn06NF8+umnqFQqo8UmhKgYU2MHIIQQQgjxV+QV5hF7JpZNUzexd/decnJyUKvVTJkyBXt7e9566y0uX75M165d8fHx0VfCGNKQIUMYNWoUgwYNAsDexpzRfV/h3f7BjBgxoti5Go2GxMRETE1Nyc7Oxtvbm+7du2NqWsX+2XbvLvw4j/C5O0lPT6dGjRr61/2eiTnxO3/k+PHjACQlJZGWlkZOTg65ubloNBoURWHo0KF4eXkZ+UJElVbUqlUkPxe0q2jjM5DevXvj4+NDVlYWnTp14qeffqJhw4YMGTKEK1eu4OTkhKIohIeHY2FhAWCwarei6rx/dR7KqaiPi922cuVKg8TwKA8OfLaysiI4OJjg4GA2btyIs7Mz3t7exg5RCFEBVexfCUIIIYQQFRN7JpbZh2cz5sMxrNOsK3F7aGjoQ+8/efLkSorsdwEBAaSnpxc75u7uXuq51tbW+p8XFhYa9X/OIyIi2LRpEw4ODiQlJQEQExPD+++/T2pqKokr3mfNO9P4X/x2rl69SlRUFFFRUVy/fp3x48cTGBjIuHHjCA4OplGjRjz//POMGDGCnj17Gu2axBOuqE0LmDJlChqNhi1btrB06VLmzZvH+PHjMTExoVevXqxYsQIrKyusra1p06YNlpaWzJo1i2effbbSw+zj37DY16rowYHPtWvXpk+fPnz11VcsWLCAbdu2GTs8IUQFSVuWEEIIIZ5oIU1DGOM3hpCmIcYO5bE5cOAAHh4eeHp6smjRIqNV7ZQ2X0ej0bBw4UKsra2gzQjwGUj9+vXZuXMn0dHRfP/99zRq1Ig333wTlUrFnDlz0Gq1xMXFcfXqVZo1a2aUaxHVxINtWvm5uOTtZf/eH7lw4QKxsbG0atWKWrVq8e233+Lp6Ym5uTl79+4lIyOD7OxsXnzxRb777rtKD9PexpwR7d2wtzGv9Of6s0ob+Lx8+XLS0tLw9vbG1dWVzMxMWrduzS+//GLscIUQjyDJHSGEEEI80ews7RiqGYqdpZ2xQ3ls2rRpQ3JyMocOHSIqKqrYBhtDKjZf57etRe4uDri5uQEq8A4Hmzr06NGDqKgo+vfvT3R0NL1796Zp06bs2rWL/Px84P5cHlNTU1q1amWUaxHVxIMbtbSraJO1jN7tXHnuuec4cuQIqampnDp1is8//5wLFy5Qu3Zt3N3dGTNmDKdPn0atVvPcc88ZPOyquJWqtIHPvXr14tKlS/qZZGq1miNHjtCgQQODxiaEqDhJ7gghhBBCVFHu7u7Y2NjoW6KM6rd2mPCeQbRr146CggK6dOnC0qVLiYyMJCkpiXnz5hEfH09kZCRqtZqTJ0/SunVr3N3dmTFjRpWZNSKqid+qeKZ8tpr169fToEED/QDl+Ph4GjZsSFhYGGlpaQCcPn2a27dvU7duXYOGWdW2UuUV5rE8aTnNvZsXWy9fNPBZCPFkkuSOEEIIIZ44f9w+BfdnwXh4eJTYPpWeno6VlZV+A9XIkSONEXK5paWlodPpAPj5559JSUnB1dXVuEGB/oP0mrh4srOzad++PZs3b2bYsGHUqVOHnj17MmvWLBISEvTVPvXr1yclJYWTJ0/q27WEeGxs6tz/vtSuoo2mKf3790en01GvXj1iYmLw9PRk1qxZ5OXlMWHCBLy9vfHw8ODq1asGD7UqbaUqmlMWeya22Hr5lStX6gdPF0lPTzd4MkwI8edIckcIIYQQT5yyZsGsX7+egICAEue7ubmh1WrRarUsWrTIUGFyJf82X+w8S1iffrRr146UlBTUajVLly5lw4YNqNVq9u3bR9euXenYsSMAe/bswdvbGx8fH0JDQ/n3v/9tkA9XZSXMgoODSU5OJvFkmr4dJjc3F61WS0BAgH6FvFqtJiMjQ3/fzMxM/QdYISpN0YBl7SreeecdPDw8uHjxItevX6ewsJC1a9cSHx/PzZs3yc/Px8/Pj3fffdegIT64lcrR0ZFatWoZdStVdZxTJoSQbVlCCCGEeAJVZPuUMenXIY/6hHUxbiVuL22T12uvvcZrr71miPCK+eO6dvh9eHKPHj2KnWtpaUnjxo3p1KkT169fB6BHjx4MGDCAMWPGkJWVRWpqqlFmm4injM9A/dfvN/8+IBigV69e7N27l4EDB+pPf+ONN+jWrZtBQ6xqW6mK5pQJIaoXSe4IIYQQotpLS0vD19eXmjVr8vHHH/PSSy8Z5HmfhHXIRfQJs3t34cd54DOQqVOnsmPHDv18naioKOzt7Xnrrbe4fPkyZ8+epXbt2nz++ed4eHjQt29fWrVqhampKQsWLKBGjRrGvixR3RUNWOb3AcEzZsxgxYoVZGVl4ebmRlpaGo0bNwbgn//8J8nJyeTk5Bis3ejBrVRAia1UgH4r1cGDB2V4sRDiT5G2LCGEEEJUa46Ojpw/f56ffvqJ2bNnM2DAAK5du1Zpz/dge1PROuSEzXGlzgMqcv78eWxtbZk1a1alxVVuhVf1bS5r1qwpMV8nNDSUzMxMbt26xfz584tV9bz//vucPXuWlJQUOnfubLxrEE+f/Fza6PYT/HIAH3zwASqViu7du+Pq6sqrr76Kp6cn7u7u7N+/H2dnZ4OFdSX/NodzTPhx7z7ZSiWEqFSS3BFCCCFEtWZhYUGdOnUA8PPzw83NjdOnT1fa81V0HhDcH6paZZIhlrUhaOrv7S5CPAl+m70z9pUGNGjQgN27d7N8+XJu3brF5MmTOX78OB4eHsTHx2NqarjmhZjEDKJ/tqRpm0DZSiWEqFTSliWEEEKIau3y5cvY29tTo0YNzp07R2pqKk2aNKm056voPKDY2FiaNGmCjY1NpcVUISY19G0uQjwxfktGOvsMZOzY2ri4uGBlZUVwcLBRhxf/3poZhL2NeZnn/fHPDCGEqCip3BFCCCHEEyOvMI/lScsJ6xtW7u1Tu3btwsvLC29vb3r37s2iRYv0q7qNLT8/nxkzZjBp0iSDPu8jN2M90DoWHx/P4cOH6d+/P35+fmzfvt2gsQpRLr/N3sm7baIfXpyVlUV+fj5fffUV06ZNY+rUqQYPq6g182GJHWObM2cOHh4eaDQawsPDKSwsZOLEiXh5eeHj40NwcDBZWVnGDlMI8QiS3BFCCCHEEyP2TCyzD8+m24fdyM7O5s6dO2RmZpaYBXPx4kW2bt0KQFhYGMnJyRw9epQjR47QvXt3I1/F7yZNmsTo0aOxtbU16PMWax3Lz4Uf57F8yRfk5eUB0KVLF33C7NVXX+XWrVtcv34dCwsL/SYvV1dXxowZw5dffolarebEiRMGvQYhSvPg8GIzM7MSw4tdXV31w4t/+eUXg8ZWFZMoFy5cYP78+SQmJpKUlMTdu3eJjo5m3LhxHDt2DK1WS7du3YySGBNCVIy0ZQkhhBDiiRHSNKTY1yfdgQMH+O9//8v48eO5evUqJiYmWFpaMmrUqEp93mKtY7/NKtn84VR44Xs6dOjArFmz8Pf3B4qva1cUhbp163Lr1i1pIxFVT34uLnl72b/3xxIbs86fP8+0adOIi4vDxMSEJk2acO/ePYOFVpREOXHiBFZWVvTt21efRPnoo48AmD9/PlOnTmXRokUGiwtAp9Nx8+ZNzMzMKCgowMnJiZo1a+pvz8/PR6VSGTQmIUTFSXJHCCGEEE8MO0s7hmqGGjuMx2b37t36n0+ePBlbW9tKT+yUUDQ4uRwDlNetW4evry8WFhaVHJQQf4J2FW2ylhHs5csHH3xA8+bN6d69OwUFBcUSKa6urgQHBxs8kVIVkyjOzs6MHTu2xIwiuL/97quvvqJWrVr88MMPBo1LCFFx0pYlhBBCiCqvrBkxZa0XP3bsGO3atcPDwwNPT08KCwsrPcYr+bf5YudZwvr0K/c8oCrht1kl2NR56GnJycm89957fPHFFwYKTIgK8hkIQVMZ+/HnJTZmPZhISU9PR6VSGTSR8mASxdHRkVq1ahVLojRs2JDVq1cbvP0pLy+vxIyiVatWATBt2jQyMjJ49dVX+fzzzw0alxCi4iS5I4QQQogqryLrxXU6HQMHDmTRokUkJyezY8cOzMzMKj3GmMQMov53iuBRn5R7HtCDJk+ezNixYys9zj8jMzOT0NBQvvrqK9zc3IwdjhCl+y1R6dxMU+USKVU1iVLajKK9e/cWO2fAgAGsW7fOoHEJISpOkjtCCCGEqPICAgJKbLhyd3enRYsWJc7dtm2bfjsWQJ06dahRo0alx9jHvyH/6txSv/q4qimt+unXX38ttfopOTkZHx8ffHx80Gg0vPjii0RFRfHCCy8YI3QhKqQqJlKqWhKlaPNg7fq12b9/PwUFBSiKQkJCAu7u7qSmpurP3bhxIy1btjRIXEKIP0+SO0IIIYSoVk6fPo1KpaJjx460bt2aTz/9tFKfryhpEtCmtX7lcVktY+np6VhZWekTJyNHjqzU2B40ZMgQtmyIhoJcwvv0ol27dmRnZ5OTk0OzZs344Ycf9K1j48aNo169emi1Wrp27crPP//M1KlT9XFfunTJYHELUVFVLZEC4OLiUqWSKEWbBzPtM+nduzetW7fG09OTe/fuMXz4cCIjI9FoNHh5ebFt2zbmzZtnkLiEEH+eDFQWQgghRLWi0+nYs2cPhw4dwtramsDAQPz8/AgMDKyU5xsyZAijRo1i0KBB+mNFLWMjRowocb6bmxtarbZSYnmYgIAA0v/7Idy4xJp32kPMev1tHTp04OWXX2bcuHEl7jdy5Ei+/PJLDh8+jKmp/NNRVH0PJlKsrKxISEjA39+f1NRUmjVrBhg2kXIl/zbawrp07RFK69atMTU1xdfXl+HDhzNgwABSUlIwMTGhUaNGBhvw/ODmQbspdkyZMqXY7dKGJcSTR/6GFkIIIUS1olarad++PXXr1gWgS5cuHDlypNKSO8XWiv/G3d29Up7rL2sVCraLy7UZ68CBA0RERPDzzz+zcuVKSeyIqi8/9/7GLJ+B+mqUqpBIKZrH9a/OQzkV9XGx24yVRKlumweFENKWJYQQQohqpmPHjhw7doyCggJ0Oh07d+6kVatWxg5LLy0tDV9fX9q3b19sFbpBWNuBdZ1HbsYCaNOmDcnJyRw6dIioqCiDbBwT4i/RroL4D0G7itq1a+tnbel0OhRFoUmTJuh0OgBMTU2xsbExSFhVfR6XEKJ6KFdyR6VSpatUquMqlUqrUqkSH30PIYQQQoi/rmjoZ1jfsHKvF7ezs2PMmDE8++yz+Pj40Lp1a7p27WrkK7nP0dGR8+fP89NPPzF79mwGDBjAtWvXjB3WQ7m7u2NjY0NSUpKxQxHi4X5bhX7BIZD58+eTmJhIUlISd+/eJTo6mqCgIJKSkjh27BjNmzcnKirKIGHZ25jr53EJIURlqUh97cuKouRUWiRCCCGEEH9QNPRzzIdjWKcp2b4QGhpa6v0GDhzIwIGPbj0yNAsLCywsLADw8/PDzc2N06dP4+/vb+TIiktLS6Nhw4aYmpry888/k5KSgqurq7HDEuLhfluFzoUL6HQ6bt68iZmZGQUFBTg5OenXoQO0bduW//73vwYNb86cOSxZsgSVSoWnpyfLly9n4sSJfPvtt5ibm+Pm5sby5cupXbu2QeMSQlQP0pYlhBBCiCorpGkIY/zG6Id/ViVX8m/zxc6zXMm/Xe77XL58mbt37wJw7tw5UlNTadKkSaXEFxERgUO9emiaOEJ+LuHh4fj6+pKcnIxKpWLixIklqp8CAgKwtbVlwoQJeHt74+PjQ2hoKP/+97/1M4yEqOqcnZ0ZO3YsLi4uODo6UqtWrWKJHYBly5bRuXNng8V04cKFKlVN9KA5c+bg4eGBRqMhPDycwsJCxo0bR8uWLfHy8iI0NJSrV68aPC4hRMWUN7mjANtUKtVhlUo1vLQTVCrVcJVKlahSqRIvX778+CIUQgghxFOnaL34S/4vMVQzFDtLuzLXi69evVq/otvHxwcTExODbKMqGpLasUf5W8Z27dqFl5cX3t7e9O7dm0WLFmFvb18p8Q0ZMoQtMwbDjUugXcWaNWvYu3cvp06don379vTs2ZPQ0FAyMzO5desWFy9epF69enTu3Bk/Pz+Sk5PRarUcOXKEkJCQSolRiMqQl5dHXFwcaWlpZGVlkZ+fz6pVq/S3T5s2DVNTU1599VWDxlVUTaTT6YpVExUNK2/bti2ZmZkGjakqJ52EEBVT3rasFxRFyVKpVA5AvEqlOqUoyq4HT1AU5T/AfwD8/f2VxxynEEIIIZ4iFVkv/uqrr+o/pB0/fpyePXvi4+NT6TEWDUftM3FdqbM0SmsZCwsLIywsrNJjg9+2eNV9BmxX67djPWyLV2xsLE2aNDHYkFkhKsv3339P48aNqVevHgC9evVi7969DBw4kBUrVrBp0yYSEhJQqVQGi+nBaiIrKyuCg4NLrSbq16+fwWIqUhVb2IQQFVeuyh1FUbJ++3oJ2AA8V5lBCSGEEOLpFhAQUKKixd3dnRYtWjz0fmvWrCE8PLwyQ9N7IoaklnM7Vn5+PjNmzGDSpEkGCkyIyuPi4sL+/fspKChAURQSEhJwd3dny5YtzJgxg40bN2JtbW3QmKpqNVFVbGETQvw5j0zuqFQqG5VK9UzRz4FgQNYlCCGEEKLK+eabbyo9uVPUMqbRaPTHymoZAzh27Bjt2rXDw8MDT0/PKrlSfNKkSYwePRpbW1tjhyLEn5efCz/Oo42mKb1796Z169Z4enpy7949hg8fzqhRo7h+/TpBQUH4+PgwcuRIg4X2YDWRmZmZvpoI0FcTrV692qDVRFB1k05CiIorT1tWfWDDb3/QmAJfK4qypVKjEkIIIYSooAMHDmBtbV0s6VIZKtIyptPpGDhwICtXrsTb25vc3FzMzMwqNb4/48CBA/z3v/9l/PjxXL16FRMTEywtLRk1apSxQxOi/LSrIP5D5nyzg/8mnMbU1BRPT08WL17Mxo0bsbCw4Ny5c2zYsMGgG+qu5N/mcI4JP+7dR0FBAVZWViQkJODv76+vJtq5c6fBq4mgarawCSH+nEdW7iiKck5RFO/ffngoijLNEIEJIYT4a0qrLigya9YsVCoVOTk5+mNRUVE0bdqUWrVqUbt27WL3mzhxIl5eXvj4+BAcHExWVhYAt2/fZujQoXh6euLt7c2OHTsq/bqEKEt0dLRBWrIq0jK2bds2/QBlgDp16lCjRo1Kj7Gidu/eTXp6Ounp6bzzzjtMmDBBEjviyeMzkAs+Y5i/8UiJAcFFCdiAgACDhxWTmEH0z5Y0bRNYpaqJoGq2sAkh/pzyDlQWQgjxhCmtugAgIyOD+Ph4XFxc9MdOnDhBdHQ0ycnJxMbG8u6776Iov8/GHzduHB999BEA8+fPZ+rUqSxatIjFixcD94fYXrp0ic6dO3Po0CFMTMq7jFGIx+PevXvExMSwa9euR59sQKdPn0alUtGxY0cuX75M//79GT9+fKU9X0REBJu+/RaHZ0zx9GvHjj37uHTpEmZmZty9e5cZM2Ywb948Ll++TKdOncjLy8PT0xO4PzR10aJFlRabEJXOpg48+zq6u0tKDAh+2DDxyqYfvu4fVGJG15kzZ4wREnmFecSeiSXEO0TfwmZqaoqvry/Dhw/Hw8ODW7duERQUBMifD0I8CeRf30II8QSoSBVObm4uL7/8Ml26dGHu3Lklzh89ejSffvppsRLruLg4+vfvj4WFBf369aNJkybcvHlTf3vNmjX1P8/Pz9ff98SJEwQGBgIQGRnJ8ePHadq0qf7csip+7ty5w+DBg/H09MTd3V1WrAq9vMI8lictJ6xv+deLw/0V42q1miZNmhgx+pJ0Oh179uxh9erV7Nmzhw0bNpCQkFBpz/fg+vM177QnOzubpKQkkpKSCAgI4OWXX9avPk9MTMTd3R2tVotWq9V/cJs8eTJjx46ttBiFqEzlGRBsaFVx+HrsmVhmH55N7JlYpkyZwqlTp0hKSmLlypVYWFhw5swZMjIySvz5IISouiS5I4QQT4AhQ4awZUvJcWelVeFYWlry0UcfMWvWrBLnb9y4EWdnZ32LSJELFy7QsGFD/a8dHR25c+dOsXPef/99GjZsyOrVq5k6dSoA3t7exMXFodPp6NixIxYWFuh0Ov19xo0bx7Fjx9BqtXTr1k1/v5iYGG7dusXx48c5fPgwX3zxBenp6RV/YUS1U/SBo9uH3cjOzubOnTtkZmYybNgwQkND9YmJixcvsnXrVv39OnTowP79+40YeenUajXt27enbt26WFtb06VLF44cOVJpzxcQEIB921fB1qHY+vNHbRkTorp41IBgY5kzZw4eHh5oNBrCw8MpLCx86CD2yhbSNIQxfmMIaRpi0OcVQlQeSe4IIYQBVaQCJz4+Hj8/Pzw9PRk9ejSnTp0qcZ/SqnBsbGx48cUXsbS0LHZuQUEB06ZN0ydYHvRgC1aRPw5PnDZtGhkZGbz66qt8/vnn+utRq9X4+/vz9ddflxhQWVbFj0qlIj8/H51Ox82bNzE3Ny92rng6RUREMP5v48n7OE//gaOsDz/GqP66kn+bL3ae5Ur+7XLfp2PHjhw7doyCggJ0Oh07d+6kVatWlRgl5V5/DpCWloavry/t27dn9+7dlRuXEAbwsK1UxnLhwgXmz59fpeYA2VnaMVQzFDtLO4M/txCickhyRwghDKgiFTh169bl22+/5fjx46xYsYIxY8YUu09ZVThlOXv2LGlpaXh7e+Pq6kpmZiatW7fml19+Qa1Wk5GRoT83OzsbU9PSx7INGDCAdevWAWBqasqcOXPQarXExcVx7do1zM2Ll52XVvHTu3dvbGxscHR0xMXFhXr16tGyZctyDXFevXo1Pj4++h8mJiZotdpyvQaiahsyZAhbt2yltkVt/QeOsj78GKP6KyYxg6j/naJjj/K3jNnZ2TFmzBieffZZfHx8aN26NV27dq3UOMvL0dGR8+fP89NPPzF79mwGDBjAtWvXjB2WEH9JWQOCja3oPzN0Ol2xOUBSVSeEeFwkuSOEEAZU2pYdKL0Cx9fXFycnJwD9YMN79+4BD6/CKYunpyeXLl3Sb8RRq9UcOXKEBg0a0KNHD6Kjo7l16xZpaWmkp6djZWWlv29qaqr+5xs3bqRly5b6OPLz84H7lUY1atQoUTFUWsXPwYMHqVGjBllZWaSlpZGRkcGSJUuK3a+slq5XX31VPwNg5cqVuLq64uPjU+7XQVRdFdlCZYzqrz7+DflX55Zs3biuQi1jAwcOJDk5maSkJD799NNKjbEiLCwsqFPnfnWPn58fbm5unD592shRCfEX5OfSRref3j26lNhK9bCZXZWtKs4BEkJUP5LcEUIIIytPBc66dev0rSnw8CqcooG0n//7c9atW1esuqAsHh4edO/VnYZNG+Ll5cWNGzc4ffq0/n6RkZFoNBq8vLzYtm0b8+bNA+DSpUu0bt0ad3d3ZsyYwezZs8t8jgcrfr7++ms6deqEmZkZDg4OvPLKK5w/f77Y+WW1dD1ozZo1Bll9LaqeP1Z/jR07ttTE6eNUFYei/hWXL1/m7t27AJw7d47U1NQqN5BaiArRroL4D5nSTV1iQPDDErCVrarOARJCVC+S3BFCiAqqyNycgwcP6tuHvL292bBhQ7HzH1aBU5Sk2XtkL++99x7Tpk3T3/awKpyigbTePbwZOnRoseqCB6Wnp1O3bl39r93C3Kj/cX3m75vPlStXit1v3bp1JCUlcezYMb799lucnZ0BcHV1Zf/R/YyPGU/MphjUanWx5yir4sfFxYXt27ejKAr5+fns378fNze3Eq9BaS1dD/rmm28kufOU+mP11//93/9x7ty5Snu+0n7flzUPyCitg/m58OM8wvv0KnfL2K5du/Dy8sLb25vevXuzaNGiSk+QCVGpfAYy58rf8Hh9YbHBxVeuXCEoKIhmzZoRFBREXl6eQcOqinOAilS1Qc9CiL9AUZTH/sPPz08RQojqaufOncrhw4cVDw+PYsfPnz+vBAcHKy4uLsrly5cVRVGU/Px85c6dO4qiKEpWVpZSr149JTU1VX/fY8eOKfXq1VMaNWqkNGrUSKlRo4bSsGFDJTs7W1l2fJnSYnYLpX6j+kpgYKDSoEEDxdTUVHF2dlaWLFlS7LkbNWqkf84rN68odZzqKLXtais2NjaKs7Ozkpyc/MjrunLzirLs+DLlys0rFXo9lh1fpmi+1CjPdX6uRIy9evVSPDw8FE9PT6Vbt25KZmamoiiKcv36daV3795Kq1atFHd3d+XTTz9V0tLSSrymRT755BPlww8/LHZs//79Su3atZV69eoVu98HH3ygeHp6Kt7e3kpQUJBy4cIF/W1Hjx5V2rZtq7Rq1UrRaDTKzZs3K3StovKV9X3Qvn175dChQ/pfv/nmm8pXX32l//XQoUOVb775ptLiKu33/YkTJ5RTp06ViO1Bx44dUxo3blxpcentmasok2re/yrEUyozM1NxdXVVCgoKFEVRlD59+ijLly9Xxo0bp0RFRSmKoihRUVHK+PHjDRrX/v37lVatWin5+fnKvXv3lEGDBinz58/X3/6wP0MqU1mvV3n+bBNCGA+QqJSSh5HKHSGEqKCKzM2xtrbWDyYuLCws0Vr0sAqcl+u+TP6ifGZEzeD7778vMePjQQ9W4dhZ2pFzIYe8K3ncuHGDzMzMcm3n+bObM4rWqW5Zv6VEjGVV/Nja2hITE0NycjInTpxg3LhxD32OB1u6ikRHR9O7d+8SA6rLmtWj0+kYOHAgixYtIjk5mR07dmBmZlahaxVVR2nVX0WVYZWhIvOAHmSI1sGIiAgcQj5G85W1fv35w/7n/dixY7Rr1w4PDw88PT0pLCys1PiEMKTSBhfHxcUxePBgAAYPHkxsbKzB4rmSfxttYV269gitUnOAisigZyGqD0nuCCHEY/CwuTkHDhygZauWuHu407hpY1566aVyzcFZtWQVVzKvMGfGHH17x6VLlyrzMv6Uv7JOtaj1LK+wZIl8WS1dAPfu3SMmJoZ//etfJT5wlzWrZ9u2bfoWFIA6depQo0aNCscsHq+IiAjqOdRD3UxNWN/7W6hOnjyJmZkZJiYmzJw5U//hp0uXLjg7O+Pp6cmqVas4d+4cGo2GZ599lqFDh+Ll5WXsyynBEK2DQ4YMYcvWrcXWn5e1ZUySnKI6K2tw8cWLF3F0dATub4kz5N+lRVv23DoNrVJzgEAGPQtR3ZS+51YIIUS5Fc3N2bZtW6m3t2nThvfWvscn337Cpa8vkZaWVmKjVJEHVzl/8MEHfPDBB5URcpVRNB9o0fhFnP/pPDk5OajVaqZMmcLmzZtJSUnBxMSERo0asWjRIv39du3ahVqtpkmTJqWuv37//ff56quvqFWrFj/88AMAp0+fRqVS0bFjRy5fvkz//v0ZP368oS5VlGHIkCG4dHJh+pjpdPuwG+s06zh58iQmJiaMGDGCl19+WV/ZtWDBAhITE1m+fDmXLl2ic+fOHD9+XD9ovKo5cOAA1tbWpc7nepwCAgJK/D4oa/VzaUlOIaqLBwcX165dmz59+hh9cHEf/4bFvlYlZb1eAwcONHZoQog/oWr+a0gIIZ4gD9tcVSSkaQgTuk/A2d6ZpKQkI0ZbtfyZli6ADh06sH///jIft7T16zqdjj179rB69Wr27NnDhg0bSEhIqPRrFA8XEBBAqHcoda3qEtI0BCi73enEiRMEBgYC4ODgQO3atav0sM/o6OgqN/D7wSRn69atq9RqdiH+qrIGF9evX5/s7GwAsrOzcXBwMFhMVXnLXlUe9CyEqDhJ7gghxF/0sLk5aWlp6HQ67Czt+Nszf+Ns6llcXV2NHXKV8VdausrjwVk9arWa9u3bU7duXaytrenSpQtHjhyplOcVFVPLoha1LWo/8vvA29ubuLg4dDodaWlpHD58mIyMjEqN7Ur+bb7YeZYr+bcrdL+i1sH+/ftXUmR/jiQ5RbX027Y4l3q12L9/PwUFBSiKQkJCAu7u7vTo0YMVK1YAsGLFCnr27GnQ8ErbSGXMDV5FLdG169cu9fUSQjyZJLkjhHgqVWSdeZHjp49jaW2Jp7dniVXDZdmzZw/e3t74+PgQGhrKv//972Lrx8XjV9asno4dO/Ltt99Sr149PDw82LlzJ61atWLixIl4eXnh4+NDcHAwWVlZwP0WOSsrK/28o5EjRxrlesTvIiIiUKvV+Pv788477/D888/rB5ZXlqJ5GR17hJV7xTgUbx2sSiTJKaol7SqI/5A2Zifp3bt3icHFkZGRxMfH06xZM+Lj44mMjDRYaBcuXGD+/PkkJiaSlJTE3bt3iY6OZvr06QQGBpKamkpgYCDTp083WExFLdGZ9pmlvl5VYdCzEOJPKG2F1l/9IavQhRBVXUXWmRfxe8VPqelfU+n7bl9DhipKUbS2vVefXuVev64oivL+++8rTZo0USwsLJRx48YpiqIov/76q/72efPmKSNGjFAUpeyV3OLxGDp0qH6NfdFrPXbsWKVFixaKp6enEhISorzwwgv6NbyffPKJ4ubmpjRv3lzZsmWLoiiK0q5dOyU5OblS48y9cUtZtOOMknvjVqU+z19V3hXyV65cUXx9fZX8/Hzlzp07SmBgoLJp0yZDhirE43cjR1H2zL3/tYrJzMxU1Gq1kpubq9y5c0fp2rWrsnXrVqV58+ZKVlaWoiiKkpWVpTRv3txgMRX9HXrl5hWDPacQ4vFBVqELIcTvKrLOHCA2NpZ2mnZ0eLYDHnU8DBWmKEPR/zp2+7BbhWb1fPzxxyQkJNC0aVP9rJGytmuJyjVkyJASa+yDgoL0713z5s05f/48cH/WTnR0NIcOHWL9+vW8+eabbNmyBVNTU1q1alWpcVbZeRm/taGQn0t4eHi5q4rs7OwYM2YMzz77LD4+PrRu3ZquXbsa+WKE+Its6pBStxM+LwTqqy1r1qzJ3LlzOXr0KO3atcPT05Pu3btz7do1g4ZWFTd4VXZLtBDCOGRblhBC/Kasdeb5+fnMmDGD+Ph4Zs2ahbWZtZEiFEWKBu8Wff2rStuuBZCWloavry81a9bk448/5qWXXnoszyfA8zlPluxcQkZGBu3atSMnJ4eIiAimTJmCvb09S5Ys4erVq3Tt2pWaNWsSERHBr7/+Sq9evbh48SITJ07kv//9b6XFFxERwaZNm3BwcNAPQY+JiWHy5MmcPHmSgwcP4u/vD8CdO3d4/fXXOXLkCDqdjkGDBvGvf/2r0mID9G0oAGvWrCn1lNDQ0FKPDxw4ULbhiGqnRYsWaLVaAO7evYuzszOhoaH07t2bWbNm0b59e5YtW8bMmTP56KOPDBZXVdzgJYSonqRyRwgh+H2d+dSpU0vcNmnSJEaPHo2tra0RIhOledz/61jadi1HR0fOnz/PTz/9xOzZsxkwYIDB/8e3unlw1lXsmViWHF/CPZN71KpVC3d3d5599lnCwsIIDQ3F39+fFi1akJ+fj5WVFQ0bNsTV1ZWUlBT69evHe++9R6NGjSot1tIqizQaDevXrycgIKDY8ZiYGG7dusXx48c5fPgwX3zxRYnV5I+dz0AImnr/qxCimISEBNzc3GjUqBEpKSn637NBQUH6IfuGUhU3eAkhqidJ7gghBA9fZ37gwAHGjx+Pq6src+fO5ZNPPtEnAET18uB2rb///e+4u7uj0Wjw8/PDzc2N0aNHlzp8ucj58+extbVl1qxZxgi/ynswYRLSNITXPV/HrqZdsVasqKgopk2bhrm5OV988QWzZs3ifnt5cZXdPlda62ZZK9pVKhX5+fnodDpu3ryJubl5sXa/xy0iIgKHxu5oRiwGmzrA/QSTh4cHJiYmxdbDr169Wt+m4uPjg4mJib66QYjqKjo6mvDwcOB+Unbjxo3A/d8nlb1h749cXFxkg5cQwiAkuSOEeKoUrf/MKyz+D5aHrTPfvXu3/vg777zDhAkTGDVqlJGuQPwZZb3vUPZ2rZCQEL777jsAzp07R2pqKhMnTuTYsWNotVq6detWotJr9OjRdO7cuRKv5MlUVLHz5ptv6hMmn0z8hEVvLuLSxUv06dOHq1ev0rZtWzZu3EhUVBTnzp3jnXfe4dy5c9ja2hb7QJaZmYmTk5OxLqeE3r17Y2Njg6OjIy4uLowdO7bUmV6PS0Wqil599VW0Wi1arZaVK1fi6uqKj49PpcUmhLHdvn2bjRs30qdPHwCWLVvGggUL8PPz4/r165ibG2Z+1pX823yx8yzNNL6ywUsIYRAyc0cI8VQpGsS7aPwizv90npycHNRqNVOmTGHYsGHGDk9Ukoe975s3byYlJQUTExMaNWrEokWLgPtzVF599VXOnz9P7969WbRoEa6urvrH/OPw5djYWJo0aYKNjY2hL6/KKppbY2try5YtWxg0aBCffPIJqampFBQU0LRpU8zNzWnevDn//Oc/WbduHbdu3cLNzY2PP/6YZs2a8dJLL9G5c2eio6MZM2YMWVlZpKam8txzzxn78vQOHjxIjRo1yMrKIi8vj5deeolXXnml0tagBwQElGj7cnd3f+T91qxZo69mEKK6+t///kfr1q2pX78+AC1btmTbtm0AnD59Wp+0r2wxiRlE/e8UAFOmTGHKlCnFbrewsCAhIcEgsZSmqNLQzMyMgoICnJyciIqKYseOHQAMHjyYDh06MGPGDKPFKISoGEnuCCGeaKUNPS0ya9Ysxo0bx+XLl6lbty7p6em8+eyb1GtUDyygZ8+e+g/yf1TWvIzJkyc/5isQhqAfwNwvpMScnrKSemFhYfj5+dGtWzeOHDmiP17a8OU/Dt0W9w0ZMoRRo0YxaNAg7O3tuavcRXFVaOzWGF9vX7799lsKCgpYsmQJlpaWADRo0ABTU1P69u3LkCFDuHPnDrVq1aJv3760atUKU1NTFixYQI0aNYx8db/7+uuv6dSpE2ZmZjg4OPDCCy+QmJhYacmdP+ubb74hLi7O2GEI8Xjl594fMO4zEGzqlEhiXrp0CQcHB+7du8fHH3/MyJEjDRJWH/+Gxb5WJQ9u8LKysiI4ONjoG7yEEH+dtGUJIZ5opbUnAGRkZBAfH4+Li0ux425ubpw/dZ7jR4+XmdgR1c/jHMBc2vBlGbpduj/Orbl++zq7zHdx484N1qxZw8qVKwkPD6dhw4ZYWVlx+fJlMjMz2bRpE/b29rzyyis0atSIGjVq8P7773P27FlSUlIqtfWtqJXiSv7tct/HxcWF7du3oygK+fn57N+/X9/eV1UcOHAAa2trNBqNsUMR4vEq2hynXUVBQQHx8fH06tVLf/OaNWto3rw5LVu2xMnJiaFDhxokrMuZaSx8O4y/vfBclVrNDsU3eGVlZZGfny8bvISoBiS5I4R4opU29BTuzz759NNPK33oqnh6DRgwgPnz5+Pg4MDChQv1Q7enT59OZGQkarW62NDlgwcP6ofaent7s2HDBiNfwV/34ParIuPGjaNly5Z4eXkRGhpa7IPLM+bPEFY/jKyzWcyaNYtly5Zx/vx5zp49y969ezl+/DgeHh54enoyYcIEJkyYwODBgw16TUWtFB17hNGuXTtSUlJQq9UsXbqUDRs2oFar2bdvH127dqVjx44A/OMf/+DGjRtoNBqeffZZhg4dipeXl0HjfpQHB8wKUa08sDnO2tqa3NxcatWqpb/57bff5vTp05w+fZrp06cb7N8FRavZtVothw8fxtramtDQUF5//XWmT5/O8ePHCQ0NZebMmQaJ50GywUuI6kmSO0KIamfjxo04Ozvj7e1d4ra0tDR8fX1p3749u3fvNkJ04kn2x+HL3t7ebNmyhcaNG+uHbo8ePZrp06eTmZlZbOiyRqMhMTERrVbLli1bGDFiBDqdzliX8liUVjkXFBRUbPvVv//9b+4qd4lJiSErM4vZb8wG4IMPPuDYsWMcPHiQmjVrEhwczIgRI3jppZf49ttvee+997hx4wbTp0/nyy+/RK1Wc+LEiUq/pj7+DflX55Zs3biO7Oxs7ty5Q2ZmJsOGDSM0NJTMzExu3brFxYsX2bp1KwC2trbExMSQnJzMiRMnGDduXKXHWRH37t0jJiaG/v37GzsUIR67lMwcfP6xHJ8XAotVyGi1Wtq2bYuPjw/+/v4cPHjQaDFWpdXsUHU3eAkh/hqZuSOEqFYKCgqYNm2afnjigxwdHTl//jx16tTh8OHDhISEkJycXKkri8WTJ68wj9gzsWyauom9u/c+dPjy6tWruXPnTrH7W1hY6H/+4NBla2tr/fHCwsInpqqstLlW48aN49tvv8Xc3BxHR0fu3r0L3J9V1bNnT/268Pr162NlZcX129dZcnwJptamDB8+nNTUVPbu3YuVlRWZmZnUq1dP/3xXr16lffv2NG3alC+//BJ/f3+jXWdMTAyTJ0/m5MmTHDx4UB/L7du3GTFiBImJiZiYmDBv3jw6dOhQ+UH+NlskfO5OduzZV+x7097enrfeeovLly/TtWtXfHx89MmnXbt2oVarq9wMICEeh6IKGYC7d+/i7OxMaGgob7zxBpMmTaJz585s3ryZ8ePH64cFG1ppq9l79uxp8NXsRX+/hXiH6Dd4mZqa4uvry/Dhw7lx4wZ9+/Zl6dKluLi4EBMTY7DYhBCPgaIoj/2Hn5+fIoQQhpKWlqZ4eHgoiqIox44dU+rVq6c0atRIadSokVKjRg2lYcOGSnZ2don7tW/fXjl06JChwxVV3LLjyxTNlxpl2fFl5Tr/we+/IhMmTFCsra2VGjVqKC1atNAfHzp0qGJhYaGYmJgo3t7eyoULFxRFUZRt27YprVu3VjQajdK6dWslISHh8V3QX7Rz507l8OHDxa5x69atyp07dxRFUZQRI0YoderUURSl5GvRsUtHpf+4/sozNZ9RatapqQCKvb29Ymtrq9jZ2SlqtVrx9vZWvL29lfDwcOXOnTvKRx99pFhaWiqmpqaKh4eH4u3trVy8eNEo13nixAnl1KlTJf6s+Pzzz5UhQ4YoiqIoFy9eVFq3bq3cvXu30mNU9sxVlEk1738VQpSwdetW5fnnn1cURVGCg4OV6OhoRVEU5euvv1bCw8ONEtOtW7eUOnXqKL/88ouiKIpy8uRJJSgoSGndurUyefJkxd7e3mCxVPTvNyFE1QQkKqXkYaRyRwhRrXh6ehbb7uDq6kpiYiJ169bl8uXL2NvbU6NGDc6dO0dqaqr8T7YoQb9Z67evf8a0adPo2LEja9euZe3atfrjc+fOZdmyZZw8eZJOnTrx4YcfsmTJEurWrcu3336Lk5MTSUlJdOzYkQsXLvzFK3m0R1XluLm5sXz5cq5evQrAsWPHGDFiBNeuXcPExIRDhw7h6+tLdHS0/jHvKndZnrScs+vOcvDwQa7tuQYFYGVpxYgRI/j++++5dOkSlpaW1KlTh7Zt27Jo0SJWrlyJt7c3ZmZmuLu78+GHHxISElLpr0GRiqwXP3HiBIGBgQA4ODhQu3ZtEhMTK389u8/A4l+FEMU8WCEzd+5cOnbsyNixY7l37x579+41SkxVZTU7PJ6/34QQVZfM3BFCPJHyCvNYnrScsL4lh56WZdeuXXh5eeHt7U3v3r1ZtGhRqcOYxdPtcW3WCggIoH///sUGCtesWZOIiAjat29PdnY2eXl5AKxfv55OnTrh4+PD6NGjKSgo4NatW+Tm5vLyyy9ja2vLqFGjKvT85Rl2HBYWxpYtW7h69ap+2PP69es5ffo0X331Fc2bNycqKgq4X+k7cOBAFi1aRHJyMjt27MDMzIy1a9cW2xJ2Lu0cIzqM4P9m/h9Lli5h8Y+LuXz9Mj4+PmzZsgWdToeJiQmFhYW8/vrr+q11r732GsnJyWi1Wo4cOWLQxE5FeXt7ExcXh06nIy0tjcOHDxumtcKmDrzw9v2vQohibt++zcaNG+nTpw8ACxcuZM6cOWRk/D97dx5Xc/79Afx1K5WyRJR0WxTa66qGMBMzJvtS9qVB4YcZM9nCDGMn23cwmsEskWWYyVKNMSn7MkMqtxSKFopIm+Wm/f37I/cz3bqXLN3PjfN8PHqU+/ncOve2uPfcs2Ri48aNmDRpEi9xyVvNDkDpq9mBt7s5khCieii5QwhpkEJvheK72O8wcPHAWkNPq8vIyECrVq0AAMOGDUNSUhLi4+MRFxeHQYMG8RE6eQdIk4sFxQW1jlUfunz8+HFuBk96ejrKy8tRVlYGxhjKysqwatUq7tj9+/dRXl4OExMT6OrqYuXKlejRowdiY2Px7NkzmTW17u7u0NTUhLq6OlfpAlQ9ubG3t4eWlhb27t2Ltm3bcvNwysrKIBaLoaGhgbKyMuTn5+Ps2bNo2bIl9PT0uK0uoaGhMDc3h0gkgpubG7KysgAAT58+5ZKjAKCvr481a9ZAQ0OD20xjZGSErT9tRavmrfDb77/Bb5ofhpkOQwvtFjh37hw3dHrmzJn45ptvXjlhpSp8fX0hFArh6uqKmTNnolu3btDQqL9iaHmJupCQENjZ2UFNTQ0xMTHc5WVlZZgwYQIcHBxgY2PDJecIedfVrJAJDg7mVqKPGDFCaQOV8yWl2H4mFfmSUpVazU4IefdRcocQ0iB5tvfEbJfZVFpMeCFNLvYd2rdW5diCBQtgb28PR0dHnDt3Dm3atAEAnD9/Hk5OTrh69SoMDQ3RvHlz7Nu3DwDwf//3f4iIiEBxcTHCwsLg7u4Of39/JCYm4siRI+jduzeKi4sBVLUEZWVloaCgAL/99hu0tbW5V4J//vlntG3bFhKJBJmZmbh79y53LCQkBPr6+khMTERsbCyuX7+OGzdu1Lpt1V9lDgoKQr9+/QBUJY4EAgH69OkDp05O6Ny3M7777jvEx8cjJSUFQqEQe/bsweqlq6Feqo5lC5ehoKDgnXzioqGhgY0bN0IsFiMsLAyFhYXo0KFDvX09eVvJ7O3tcejQIW7rjlRISAhKSkpw9epVxMbGYvv27bXazQh5J0jygAubq96jdoVM27ZtcebMGQDAyZMn6/V3tLqQmEwE/H0DITGZKrWaHQCSk5O5Ks3qm8Xi4+PRtWtXODg4YNCgQTIVp4SQBkTeIJ43faOByoQQQt5l+c/yWdDVIJb/LP+F58kbtiy9vEOHDjLHxo8fzwCwdu3asZycHJnz+/Xrx7S0tBhjjK1evZqtXr2aO2Zra8t0dXUZY4x9/vnnbPfu3dwxKysr7thvv/3GBg4cyMrKylhubi7T1dVlW7durRWjhYUFu3r1Klu5ciXz9PRklZWVLD09nRkaGjJzc3P28OFDNmPzDCZoJGCff/e5TJw5OTmsvLycMcZYamoqa9u2LcvLy3vhfaRKFH2/ag5Ulkgk7OnTp4yxqmHYH330kcrEVvP73KFDhwb1PSCkzqoNGJdIJKxly5assLCQO3zu3Dnm7OzMHB0dWefOnVlMTIxSwsp7WsK2nb7F8p6WKOXrva7y8nJmaGjIMjIymKurKzt9+jRjjLFff/2VLVq0iOfoCCEvAgUDlalyhxBCCHlFL5pbUNeWrSdPnsDa2hpA1frv6OhomJiYYMqUKQgMDAQALFy4ECYmJoiLi0Pjxo0BAHfv3oWJicl/X6+ggGv9qjkLJjU1lTs2fPhw6OrqwsjICEZGRujQoQOmTp0qE9+lS5ego6OD2NhYhIaHos83fTB81HB07doVDx8+RE5ODsLCwvDX5r+gpamFg+sOQiQScTMjGuJcK2kLxbARo2pVYR0+fBhCoRD//vsvBgwYgD59+gCompnh7OwMGxsbrF27Frt37+b5Vvyn+vfZ1NQUc+fOVfnvASGvReQNeCwHRN5yK2Q+/PBDxMbGIj4+HpcuXYKLi4tSwmqpq4mpPSzRUldTKV/vdZ04cQKWlpYwMzNDcnIyVwXo4eGBgwcP8hwdIeR10LYsQohKkbe9R2rDhg3w9/fHw4cPuTk68rb3aGtr8xE6IQD+a9naNm8b7ly5g9zcXAiFQixbtgxHjx5FcnIyysvL8fTpU2zevBkAEBgYiNu3b4Mxht27dyM9PR1ffPEFVq1ahVWrVqF///44deoUgKqKW6lVq1ZBTU0NOjo6AKp+f65fvw5XV1eUlJRAT0+PSwpFR0dDXV0da9aswdatW/H48WOkp6dDTe2/13n2798PFxcXrF27FlO3TcUP137A7MWzcdD+IAoKCtCrVy+MGTMGEyZMQN++fTFr1iwMGDCAu/6wYcMwbNiwer+P3yZpC8XXM1bjYIhlreNeXl61LjM3N0dycrIywntl0u/zvXv3UFBQgI8++giffvopbQYk75Tk5GSMGjXq+b92IC0tDcuXL8e///7L/W4WFhZy88T4iw1cbD179sS0adNQXFwMDQ0N/Pjjj/W/Ye8Fqm8Ws7e3R3h4OIYMGYKQkBDlDIgnhLx1lNwhhKiUiRMnYsaMGRg/frzM5ZmZmYiKioKpqSl3WXl5Oby9vbkVynl5eWjUqJGyQyZEBrdqdpRnrcoe6cDvjIwMDBw4EMbGxgCAUaNGwdvbGwMHDsTUqVNx5swZGBgYcNcTiUQ4duwYAEAoFCIzMxPBwcE4cuQIzM3Nce/ePQD/zYIJDg7Gtm3boK2tjSdPngAAfvvtN7Rt2xb/+9//EHYsDL5f+WLMuDG4k1GVgDI2NsazZ8/QtGlTVFZW4pcvf8Gjkkc4+9FZ+PzsgxYtWmD27Nn44IMPIBAI0L9/f5nETkM1wtVE5n1D99tvv6Fv375o1KgRDAwM0L17d8TExFByh7xTrKysuKRNRUUFjI2N4eXlhZkzZ3LnzJkzR6aSh+/YpkyZgiVLlqBfv344evQo5s2bh9OnTys9PuC/zWLSgetBQUH46quvsHz5cgwePBiamqpddUQIkY/asgghKsXd3V1uC8GsWbOwbt06mcGDkZGRtbb3qKurKy1WQuRR1LIlbdcaNnKY3CHMffr0wa1btxAZGYnNmzdzLVzm5ubYuHEjKisrIRQKYWdnh59//hkBAQHYsmUL7ty5w1XnFBUVYfcfu/H18q9RiUokJSXh9u3bEAqFePDgAbZv347Hjx/j414f48KRC6hsWsltm9u7dy86duyI27dvIzMzE1fjr+LOjTvY8fMO7jZ4e3sjKSkJiYmJWLdunfLu1Les+vYpaQtFwNKFMmviCwsLufMDAgLQvn17WFlZcUk2VWVqaoqTJ0+CMQaJRIKLFy9y7X+EvIuqtxdJMcbwxx9/yAxY5kP12AQCATeo+NGjR2jbti1vcdXcLGZtbY3IyEjExsZizJgxsLSsXcVICFF9lNwhhKi88PBwGBsbc0kcqZSUFG57j7Ozc4N+slmf5K1RltqwYQMEAgFyc3O58wwNDbknsmPHjoWjoyNEIhF69+7NVYiUlpbCx8cHDg4OcHJy4u3Vx4ZE2q41cPFALqFy9dZVqHVRA9SBx48fo6KiAleuXEFERARm+8+GsIMQBYUFYIxxicuHDx+isLAQN2/dRJcuXXD37l1cv34dQqEQW7Zsgc84H2RnZCM+IR7t27fHpEmTkJWVhZ07d6JPnz5o3rw5dNV1Mfyr4YgMj+Ti69mzJy5evMjX3aNU8rZPeXh4IDExEQkJCejYsSP3iva1a9ewf/9+JCUlISIiAp9//jm3Xr7ePd8GNGbE0DrPA/riiy/w9OlT2Nvb44MPPoCPjw8cHR2VEy8hPKjeXiR17tw5GBoaKm1DliLVY9u0aRP8/f1hYmKCuXPncn9j+FBzs5h0q2JlZSVWrlzJzVEjhDQw8qYsv+kbbcsihLyJ6lthJBIJ69y5M7cBw8zMjD18+JAxxtj69eu57T0SiYS5ubmx48eP8xa3Mvn4+LDWrVvL3Z6zfv16BoC7n8LDw5mLiwtTU1NjX3zxBXfenTt3WO/evZmpqSl7+PAhO3PmDAsJCWFaWlqsuLiYpaWlMXNzc2770ebNm9nUqVMZY4y5ubkxLS0tZmdnxx48eMCcnZ3ZwoULmYODA3NycmIeHh7s7t27jDHGSktL2fjx45m9vT2ztraW2fT0PpG3YSvoahCz32nPgq4G1Tr/dY/VdZPX+07R9inGGDt06BAbO3YsY6z2drLevXuzf/75RykxVt8GRAipraSkhOnr67P79+/LXD5t2jS2YcMGnqKqUjO2L7/8kh04cIAxxtjvv//OevXqpbRYqv+/IG+z2KZNm1iHDh1Yhw4d2Pz581llZaXSYiOEvDrQtixCSEOUmpqK9PR0ODk5wdzcHFlZWXB2dsb9+/chFArRo0cPtGrVCjo6Oujfvz/i4uL4DvmN1LXKZuLEiVi6dClSU1Ph4OAAFxcXnDx5Uu5sok8++QTz58/nyq+lara6ubu7Izo6Gs2bN4eWlhbatWuHjh07Ijo6GgAgkUi4c9u0aYNFixYBAAwMDKCnp4devXohISEBYrEYAwcOxPLlywEAISEhKCkpwdWrVxEbG4vt27cjIyPjrd93qk5eu5Zne0/MdpnNzemp7nWPvWiTF6mboKAg9OvXD0Dt7WRCoRB3795VTiDVtgERQmqr2V4EVM3jO3TokMxQYz7UjC04OBhDhw4FAIwYMYL7v1UZpJWjobdC5W4W8/PzQ0pKClJSUrBmzRqZFnhCSMNByR1CiEpQtD7awcEBOTk5yMjIQEZGBoRCIeLi4tCmTRv06dMHCQkJKCoqQnl5Oc6cOQNbW1uebsHbIa9dBKg9UNrd3R1mZmYwNTXF1atXERwcjM8++0zubCJdXV1uCK6Uola3+/fvywylFgqFWL9+PUxMTLB3714uYdOvXz/8888/YIwhPT0dsbGxyM/P564nTQT5+vpi2rRp+Ouvv1BeXo5nz57hyZMn6N+/f61Wr71790IkEnFvampqSt9yomwvSsS87jHyZlatWgUNDQ2MGzcOgOx2MimlPfHR1Qe6+1W9J4RwrYqQ5AGo3V4EAMePH4e1tTWEQqFSQ8uXlGL7mVTkS0rlxta2bVucOXMGAHDy5Emltoy96AUBQsi7g5I7hBCVIH1Vqe/QvrVmSyhSfXuPSCSCs7Nzg9/e8yoDpe3s7LhEjJ2dHZ48eQJDQ8NaCZuaioqKsGrVKi5RU528J7Ljxo1DZmYmxo0bh8DAQABVFUZGRkZIS0vDzJkz0a1bN2hoaGDhwoUyiaCJEyciKioKampqMDIygqmpKRYvXoxr167VqvAZN24cxGIxxGIxdu/eDXNzc4hEojrfd4S8KekGsr1793K/a9LtZFJZWVm8DkIl5L0m3gNELQbEe1BUVISoqCiuGkZK3gweZQiJyUTA3zcQEpMpN7aff/4Zc+bMgZOTE7755hv89NNPSouNXhAg5P1Aq9AJISrhReujq6vZzuPt7Q1vb9VvWfD19cWRI0dgYGCAxMREmWMbNmyAv78/Hj58iFatWkEsFiM1NRUikQiMMfTv319ulU11v/32GwQCAVavXv3SWKq3ugHgWt2io6NhZGSEsrIy7tzqT2THjh2LAQMGYNmyZdDQ0MC3336LS5cuISwsDN26dUOHDh0wZMgQrFq1CgEBAQgMDMSyZctw4MABCAQC3Lt3DwUFBfjoo48waNAgWFhYyLR6VSfv1VhC3lS+pBQhMZly155HRERg7dq1OHPmDHR0dLjLBw8ejLFjx2L27Nm4d+8ebt68ic6dOyszbEKIlLRFUeTNtRfVtHPnTuXG9Jz078oIVxPo6GjWiu3DDz9EbGwsH6ERQt4TVLlDCFEJ7/qrSnVttwIAKysrWFhYQCwW49ChQ9iwYQMWL16s8HMnJSVhwYIF0NDQkDubqKYXtbp9+umnePToEUpKSpCeno5r165xT2TDw8O5lcpFRUUoKioCAERFRUFDQ0OmJW7s2LE4ePAgACAsLAxNmjRBo0aNYGBggO7du2POnDkyFT41Zw39/vvvyM3NlbupCwASEhLQtWtX2NnZwcHBAcXFxXX+XpD3l/SV9T6Da6+jnzFjBp48eQIPDw+IRCJuW4ydnR1GjhwJW1tb9O3bFz/88AO3uaw+yJu7FRISAjs7O6ipqSEmJoa7nLbWkfdJcnIyRN17QfTFDoi690KzZs2wadMmAMCWLVtgZWUFOzs7zJs3j5f4WupqYmoPS7TU1eTl6yuSnJws0/Isvd/EYjHc3NwgEong6uqq1BlAhJB6Im/K8pu+0bYsQgipTd52nmHDhjGxWCyzBaz6eUePHmUCgYCZmpoyMzMzpq6uzloYGLFrqbdZeno669ixI+vQoQM7f/68zOc1MzNjKRl32bbTt9jQ4SNZmzZtmJqaGtPV1WW//PKLzLkmpmZsQ2i0zHnq6urM0NCQdevWjdnZ2TEHBwc2cOBAlpWVxcXYrl07pqmpyXr16sUyMjJYSkoK9zm///57NmzYMMYYY/Pnz2d6enqssrKSPX36lNnY2LD4+HjGWNUmosWLF7MzZ86w2NhYZmdnxy5evMjs7e3Zo0ePuM9XfVNXWVkZc3BwYGKxmDHGWG5uLrfRixApeRvlZvjNYoYmFszWzp55enqygoICxljVz1DPnj2Zrq6uzEY5PlT/XZC6du0au3HjBuvRowe7fPkyd3lgYCCbOHEiY4xxW+sqKiqUHjMhylZeXs4MDQ1ZRkYGO3nyJOvVqxcrLi5mjFX9LijbjRs3mJOTE/fWtGlTtnHjRjZy5EjuMjMzM+bk5KT02Kqrfr95eHiwo0ePMsYY++uvv1iPHj14jY0QUnegbVmEEKJaFA01BqoqY+zs7DBixAgcPHgQt2/fRkZGBpq3agPdURswfsoX6NKlC1JSUpCXl4cbN27U/vziuwj4+wZ6z1gNLS0tbjPGkiVLcO3aNe68hbtOYMu/Oeg9YzWys7NRUVGB8vJy3L9/HxcuXEBiYiISEhLw559/orFea2w/k4o5/vPx7NkzVFZW4saNGzh+/DgWLFgAe3t7ODo6IjIyEps3bwYAfPbZZ6isrIS9vT0++OAD+Pj4wNHREcB/FT7VZw1J5yU0a9aMi7F6+1ZkZCQcHR25+01fX79eKylIwySvWm5Q/77ISktGUuJVdOzYEQEBAQAAbW1trFixAhs2bOAjVBny5m7Z2NjAysqq1rnXrl1Dr169APy3ta56ZQ8h76oTJ07A0tISZmZm2Lp1KxYsWAAtLS0AVb8LymZlZcXNjIuNjYWOjg68vLzw+++/c5cPGzas1nwgZat+vwkEAjx+/BgA8OjRI5olRsg7gJI7hBClqOuKb+D92JpUc6hxJQOCL6Rj2IhR6Nq1KzIzM/Ho0SPMnz8fAQEBXNuRrpYGZvbqgGPhB/Hll19CR0cHJiYm2LJlC0QiEXJycgBUzSby+dQJX/ezxghXE2RkZCA/Px9Pnz5FVlaWTAvVCFcT7ryXkba1SBNBZWVlyMrKwqRJk3Dw4EGZRJCxsXFVzLq6MDExQVJSEq5duwZPT0/u81Vv9QKqqklDQkIwevRoAKg1oBkAUlJSIBAI0KdPHzg7O2PdunVv8J0g7yp5SZLevXtDQ6Nq3KCbmxuysrIAVP2Mfvjhh9DW1lZ6nG/CyckJYWFhKC8v57bWVR/+TMi7qvrQ5JSUFJw7dw5dunRBjx49cPnyZV5jq55AkWKM4Y8//uB9llz1+23Tpk3w9/eHiYkJ5s6dyyW7CSENmLxynjd9o7YsQkhN8loNGGPszp07rHfv3szU1JRrS6ouISGBtWvXTllhvjJ5rR9S69evZwBqtVvdvn2bNW7cmOnq6jIzMzNmZmbG1NTUmXrT1mztwX9rfZ6ePXvKtGLwKe9pCdt2+hbLe1pSp/OkrV4aGhrM2NiY/fLLL2zo0KEKW73Mzc1Zly5dan0+afuWj48P09XVZY0aNWIPHz5kEomEGRsbs3bt2jEnJyfm4eHB7t69y30+bW1triRe2tZF3h/yWiGlBg4cyHbv3i1z2Y4dO3hvy2JMcdw127LKysrYzJkzmZOTExs8eDDr168fCw0NVWaohChdSUkJ09fXZ/fv32eMMWZnZ8e+/PJLVllZyS5dusTMzc1ZZWUlb/H5+PiwLVu2yFx25swZxvfzo5r325dffskOHDjAGGPs999/Z7169eIzPELIK4CCtizalkUIUQp3d/dam66A/1Z8DxkyRO71VH1r0sSJEzFjxgyMHz9e5nJ5g5KlZs2ahQEDBqBLly6YO3cuAMDUzBx+34fA51MnpKenw8TEBBoaGrh9+zaSk5Nhbm6ujJvzUtKBkS8jrfD5esZqHAyRPX/SpEkKr6erq4uLFy/Wuly6qevHH39Ehw4dsG7dOrRq1QpA1fegefPm8Pf3x/fff4/ly5dj27ZtAABLS8t3ruqLvLlVq1ZBQ0MD48aN4zuUN6KhoYGNGzdy/5ZurSPkXfb333/D2dkZhoaGAAChUIihQ4dCIBCgc+fOUFNTQ25uLlq3bq302EpLSxEeHl6rCkYVHsvUvN+Cg4O59ukRI0Zg8uTJfIZHCHkLqC2LEMKbF82ckfr99995f0D0IvJaP4CqBM7CZavwtKQCBZJSjBkzBl27dsX169cRGRmJkpISmfPVBMCE7u3QUlcT58+fh5OTE0QiEby8vPDjjz9yiYyG4lVavRS5efMm97G0fcvd3R39+/dHcXExioqKUF5ejosXL3JtZopWqxMiFRwcjCNHjmDv3r2q9bMiyQMubK56X0dFRUWQSCQA5G+tI+SdUe33o2aixNPTEydPngRQ1aJVWlrK2/+ZNRMoAFBeXo5Dhw5h1KhRSo2loLgAOxJ3oKC4AEDtBFPbtm1x5swZAMDJkycpMUzIO4AqdwghvJDOnImMjFR4zqVLl6CjoyN3To8qkyatrpe0wKNnZQgX38W+ffsgkUjw6aefIioqqtbg1upVTZ999hk+++wzJUf9dtW1widfUoqQmExEBn6Df86fRW5uLoRCIZYtW4ajR48iOTkZampqMDMz46pxmjdvDn19fXzwwQcQCATo378//vnnH0ybNg3NmzfHqVOnuM+fnp6OTp06oVmzZli5ciU++uijervNRPVFRERg7dq1OHPmDHR0dPgOR5Z4DxC1GGOWBON0UrbM70LLli3x5Zdf4uHDhxgwYABEIhGOHTuGnJwc9OnTB2pqajA2Nsbu3bv5vhWE1I/nvx9FxaWIiorC9u3buUO+vr7w9fWFvb09NDU1ERwczFviVl6FzvHjx2FtbQ2hUKjUWEJvheK72O8AAKMsRtW6337++Wf4+fmhvLwc2tra+Omnn5QaHyHk7RNUtWy9Xa6uroy2NRBCasrIyMDAgQORmJiIq1evolevXtwTrKysLLRt2xbR0dFo06YNgKrql9atW+Obb77hM+yXqn67ioqK8PHHHyMyMhIVGo3RwdICFy9Fo4NZW8ydOxedO3fGyJEjsXTpUjRp0oRry3pfbT+TWtW+1c+6TskgQPb+rkk6fHrZsmUoKSnB06dPoa+vj9jYWHh6eiIpKUlmCxdpuHx9fXHkyBEYGBhwPwv+/v4IDQvHswoBKoufoqK8DPn5+WjevDl0dXVx//59MMZgYmKCpk2bws3NjUsampub4/HjxygtLYWenh4iIyOVWwUjyat6AivyBnT1lfd1CWkIVPT3Q/oCxQhXE2gLymFiYoK0tDRuOyVQ1Trs5uaGadOmKTW2guIChN4KhWd7T7TQbqHUr00IqV8CgSCWMeZa63JK7hBClOVFT8rNzc0RExPDlVJXVlbC1NQUZ8+ehYWFhbJDBSD/yaPUhg0b4O/vj4cPH+Lp06fo3bs3MjMzYWZmhlu3bqFx48bQ19eXSVqNGDGC22RTWFgINTU1LF++HDNmzODj5qmE6g+MW+pq1uk6L/o5un37NgYMGIDOnTvX+t6ZmZmhUaNGaNKkCQwMDLBz506Z1a937tyBra0tli5d+t4n3RqCs2fPokmTJhg/fjz3PY6MjMQtdTOsi7oFqzvhEJnoYe3atbhy5QoMDQ3Rtm1bJCYmok+fPrh79y7Pt4AQ8jLJycky7UxpaWlYvnw5CgsL8fPPP3NzdVavXo3+/fsrPb7XeYGCEELelKLkDs3cIYTUm+r93tKZM8nJyRAKhfj1119feN2zZ89CKBTyltgBql5ti4iIqHV5ZmYmjkYcQ0vDtiiQlHKXW1pa4saNGygvL8eTJ0+QkZEBoVCIuLg4tGnTBufOnUNGRgYyMjIwc+ZMfPPNN+91Ygf4r32rrokdeeTN5pk4cSL27dsH6QsYaWlpKCsrQ3R0NMRiMQYOHMitVpeaNWsW+vXr99pxEOVStOp8tFs7fN3PGuMGfcqtOu/UqROXyLOzs0NxcXGtuVeEENVjZWUFsVgMsViM2NhY6OjowMvLC0DV32zpMT4SO8DbmS9HCCFvC83cIYTUm+r93vv27XvhuTU3afXs2VPu1iRletGGr+5j/HB29iSM8PbBg1sJePjwIQQCAX799dcXboMir+dVZ/MYGxtj69atSE1NhZOTE9TV1bF9+3YuGVBz8HJoaCgsLCygq6vL100kb4k0YTho0Ey5A0wPHjyITp06QUtLi4foCCGv68SJE7C0tISZmRnfoQCQrSraiv+qimbOnIktW7YgMDAQGhoaGDBgANatW8dbbKgW27///ovk5GQAVRXEenp6tFGSkHcIJXcIIfXGs72nzPt3gXRY8qzRvfHjwkYI2bMDHczaIiMjA3Z2dggMDMSuXbu44b3ykkMAsHTpUqXG3dC9zmr1fv364YcffkB8fDx32cKFC7Fr1y6ZwcsSiQRr166VO+iaNEyKVp0nJSVh/vz5LxzkTghRTfv375cZViz9/9bV1RX/+9//0KKFcufKSKuKAKCiogLGxsbw8vLCqVOnEBYWhoSEBGhpaSEnJ0epcb0otpkzZ3LnzJkzR2Y2ECGk4aO2LEJIvWmh3QI+9j7vzCA/6Yav5cuXo6WuJppqa6DF83YiIyMj3LlzB1euXMF3332HsWPH4vHjxzxH/O54W6Xvq1atQmZmJsaNG4fAwEAAwJIlSzBr1iw0adLkbYRK3gJfX18YGBjIbMrz9/eHtbU1HB0d4eXlhcLCQgBVv5cikQgikQhOTk746quv5K46z8rKgpeXF3bt2gVLS/5mY7zKbQOqhoS3b98eVlZWOHbsGA8RE8K/0tJShIeHY8SIEQCA6dOnIzU1FWKxGEZGRpgzZw6v8VWvKtq6dSsWLFjAVQcaGBioTGxSjDH88ccftTZ7EUIaNkruEEJIHaWmpiI9PR1OTk4wNzdHVlYWnJ2dcf/+fWhpaUFfv2qDh4uLCywtLZGSksJzxO+OtzGbp7qxY8fi+++/h4GBAbZu3Yp58+bB3Nwca9aswYIFCyAUCtG7d2/cu3cPABAdHS2TQDh8+PBbiYPIJ2/elYeHBxITE3H63xgUNTbA4uUrAQDa2tqIiYmBWCzG/Pnz8eOPP+LQoUMyq84LCwsxYMAABAQEoHv37kq9LTW96LYlJCSgY8eOCAgIAABcu3YN+/fvR1JSEiIiIvD555+joqKCj7AJ4dXff/8NZ2dnGBoaAgAMDQ2hrq4ONTU1TJkyBdHR0bzGV72qKCUlBefOnUOXLl3Qo0cPXL58WWVikzp37hwMDQ3RoUMHnqIihNQHSu4QQkgdOTg4ICcnhxuKXH1Y8sOHD7knXWlpabh58yavw6BJbTUHLzs5OSEiIgLt2rXjvqezZs3CmjVrkJWVJTN02d7enksgREREYOrUqSgvL+frprzzFA1L1tDQQEhMJq4Ut8Le3/aha9euuHnzJszNzfHrr7/i66+/BmMMffv2hUgk4lYPBwYG4tatW1ixYgWXpOOjVQJ48W0DADc3N24QdFhYGEaPHg0tLS20a9cO7du35/1JLCFKI8kDLmwGJHnYt2+fTIIiOzub+/jw4cMylXDKVrOqqLy8HAUFBbh48SLWr1+PkSNHoj62E79ObFI1709CyLuBZu4QQt5bilad50tKMWXuEhzatgYGBgbIz8+HUCjE5MmTcezYMTx+/BhqamoyD9bOnj2LxYsXQ0NDA+rq6ti2bVutJ3Ck/r3K4OW9e/eirKxM5vrVh+xWH7pcvQqkuLhYpt2H1J283zl/f3/8+eef0NTUhKWlJXbs2AE9PT3uOjVX1I9wNcEP9//F56tWYdqkiQCAS5cuwdfXF3l5eThw4AC3TUdq0aJFWLRokbJu5hsJCgriBqHevXsXbm5u3DGhUEgr3Mn7Q7wHiFqMouJSREVFYfv27dyhefPmQSwWQyAQwNzcXOaYstWsKhIKhRg6dCgEAgE6d+4MNTU15Obmcmvb+YwNqEo+HTp0CLGxsUqPhxBSv6hyhxDyxuTNkJDasGEDBAIBcnNzAQBlZWWYMGECHBwcYGNjw7Uf8EHRqvPtRy9xq86TkpJQVlaGjIwMHDp0CNu2bUNSUhJOnz6NtLQ0tGrVCgAwbNgwJCUlIT4+HnFxcRg0aJCybw7Bf4OXe89YjezsbJSVlSErKwuTJk3CwYMHudaXP//8E8bGxrWuv3TpUhQUFMDExAR79+6VWZd+6dIl2NnZwcHBAdu2beMqLUjdvUpLklTNFfVbN62HpWFzTPWdwF3WpUsXJCUl4fLlywgICEBxcXH93pB6UnMQtLxX+ymxSN4bIm/AYzl03KoSt9WH/+7evRtXr15FQkICwsPDYWRkxFuYNatgPD09cfLkSQBVLVqlpaXcYwW+YwOA48ePw9raGkKhkJeYCCH1p87JHYFAoC4QCK4IBIIj9RkQIaThUZQkyczMRFRUFExNTbnLQkJCUFJSgqtXryI2Nhbbt29XuFGqvslrjwCAf/duxNxFy6Gr1Yi7LDIyEo6OjnBycgIA6OvrQ11dXWmxkrp5G4OXaw5dliYvJ02axCUQZsyYAXt7e4hEIpnZPFFRUXBxcYGDgwNcXFy4B/ikyqu0JAHA48ePYWFhATs7OwBAcHCw3GHJUjY2NtDV1ZWpxGso5N02oVCIzMxM7pysrCy0bduWrxAJUYrk5OSq9snuvSD6YgeaGbXDpk2buOM1XzRStnxJKbafSUW+pBRFRUWIiorC0KFDueO+vr5IS0uDvb09Ro8ejeDgYKUlZQuKC7AjcQcKigvkxgbIn8FDCHk3vErljh+A6/UVCCGk4VKUJJk1axbWrVsn86BGIBBAIpGgvLwcz549g6amJpo1a6bMcF8oPDwc7cxMsGLSQKhVeyyWkpICgUCAPn36wNnZGevWreMvSKLQ2xy8PHbsWBw8eLBW8tLGxgaWlpbYuXMnxGKxzGyeVq1a4c8//8TVq1cRHByMzz777I3jaAheZQNUVlYWrl27xs2+kc7FAapakqRVOkVFRcjNzcWSJUsAADdu3MDatWsRHh4u0yaXnp7OzT+6ffs2kpOTYW5uXs+3+O2KiIiQe9sGDx6M/fv3o6SkBOnp6bh58yY6d+7MY6SE1D/pGm+xWIzY2Fjo6OhwrZbyXjRSNmmFaEhMJnR0dGpVFWlqamLPnj1ITExEXFwcPvnkE6XFFnorFN/FfofQW6FyYwOAnTt3yvzdJYS8O+qU3BEIBEIAAwD8Ur/hEELeFeHh4TA2NuYqXaSGDx8OXV1dGBkZwdTUFHPnzlWZ2TTVV53XVF5ejvPnz2Pv3r04f/48Dh8+jBMnTvAQJalPNYcuW1tbw93dHRKJhGuRuX37Nm7dusUlEKrP5unUqRNXWWFnZ4fi4mKUlJQo90bw4FXbrTQ1Nbknb9u2bQNQVTFVCTU8Fbph2IhR+OCDD1BSUgJra2vExcUhNDQUT548gYeHh0xS6Pz583BycoJIJIKXlxd+/PFH3logXuj5cNgxI4aia9euSE5OhlAoxK+//ooZM2bIvW12dnYYOXIkbG1t0bdvX/zwww9UMUjeKzXXeMt70UjZ3kaFaH3xbO+J2S6z4dnek+9QCCE8qOvAgE0A5gFoWn+hEELeFdIkSWRkZK1j0dHRUFdXx71791BQUICPPvoIn376qUpslqq+6hwAt+o8OjoaQqEQPXr04J409u/fH3FxcejVqxefIZPX8CpDl6WJh8uXLyM1NRUikQhqamr48ccfsXHjRuzatQvNmzfHqVOnan2dgwcPolOnTjJDmt9V7u7utdore/fuzX3s5uaGAwcOKLy+tCVp7NKfsSYiGV/PWI2c+/e4lqSzZ89CTU0N8+fPx4wZM2Su+9lnnzWMCqnnw2H3zVwOhBySOTRp0iSFV1u4cCEWLlxY39ERopKqtxApetFImZKTk7mB51tRtR1z+fLlKCwsxM8//8wNTV69ejX69++v9PhaaLeAj72P0r8uIURFMMZe+AZgIIAfn3/cE8ARBef9H4AYADGmpqaMEPJ+SU9PZ3Z2dowxxhISEljr1q2ZmZkZMzMzY+rq6szExIRlZ2ezzz//nO3atYu7no+PD/v999/5Clsm7prMzMzYw4cPGWOM5efns06dOjGJRMLKyspYr1692JEjR5QZKnlLtp2+xczmH2HbTt+q83Ve9HOyevVqtnjxYubj48Nat27N7OzsWGJiIrOwsGCff/45c3BwYE5OTszDw4PdvXuXMcZYbm4u69mzJ9PV1WVffPHFW7ldb1v12yM1d+5cZmVlxRwcHJinpycrKCjgjh09epQ1btyY2draMnt7e/bs2TPu2MCBA9nu3bsZY4ydO3eOCQQCJhKJmLu7O1u/fj2zsbFhOTk5LO9pCdt2+hbLe1oiE8uSJUvY+vXr6/cG17enuYyd31T1nhDyUiUlJUxfX5/dv3+fSSQS1rlzZ1ZYWMgYk/3/mS/l5eXM0NCQZWRkqMTfqBs3bjAnJyfurWnTpmzjxo2MMca+//571rFjR2Zra8v8/f15jZMQ8uYAxDA5OZm6tGV1BzBYIBBkANgP4BOBQLBHTpLoJ8aYK2PMlY9Vf4QQ1eHg4ICcnBxkZGQgIyMDQqEQcXFxaNOmDUxNTXHy5EkwxiCRSHDx4kVYW1srNT7pMMRhI0bVao9QpEWLFpg9ezY++OADiEQiODs7Y8CAAUqMmrwtb7ukvuZsnrKyMnh5eWHXrl0ICAhAQkJCrdk82traWLFiBTZs2PBWYngVdZ2PM3HiRHz11VdcxZJIJML//vc/7Nmzp1arVXl5OWbNmoW2bdty2+QaNaoaSF6z3Wr48OFQU1PDw4cP4e7ujgULFuDRo0fw8PDAJ90748q+9W9lZpLK0dUHuvtVvSeEvFT1Nd7VK2vNzc25ytr79+/zFl/NljG+KZpVdOrUKYSFhSEhIQFJSUmYO3cu36ESQuqLvIyPoje8oHKn+puLi4tyUlaEEF7lP8tnQVeD2NARQ1mbNm2YhoYGMzY2Zr/88ovMedVfYXvy5AkbPnw4s7W1ZTY2NmzdunVKj/t1KjfI+61m5U5KSgr38ffff8+GDRvGGGMsPj6eaWlpsQMHDtT6HKtXr2bTpk2TqYjZsWMH++KLL9iiRYvkVvhIr2dpack6duzIIiIi3vi2nDlzhsXGxsrcnmPHjrGysjLGGGPz5s1j8+bNq3W7ExISWLt27bjrHDp0iI0dO5Yxxthff/3FhgwZUqu6aefOnczNzY19H3FV4e9cjx492OXLl9/4dhFCGrga1W2jRo1iQUFBck9VhcodHx8ftmXLFsZYVXWhmZkZc3BwYD4+Piw/P5/X2I4dO8a6devGGGNsxIgRLCoqitd4CCFvF96gcocQQuSSbmUYuHggsrOzUVZWhqysrFrzIzIyMrhZNU2aNEFISAiSkpJw7do1+Pv712uM8qoUpJUbDy6EyKxT3bt3L1ehIJ2tIhaL6zU+orpeVOG1YMEC2Nvbw9HREZGRkdi8eTOAqtkxpaWlWLFiBfdzNHPmTJiYmGDv3r1Yvny53OHD/v7+cit8hg4dim+//RaampqIiIjA559/jjlz5tSqsvH19UXr1q3RokULODg4wMnJCaNGjZK7rapr165YtWoVbt26BRsbGwQEBLxwHbnUvn37ZNbnVt9sJd0ml5GRwW2Tq74BatyHHblqqYcPH6KiogJA1byKmzdvqsTMLUIIz57PpYJ4j8I13qqitLQU4eHhGDFiBABg+vTpSE1NhVgshpGREebMmcNrfNVnFaWkpODcuXPo0qULevTogcuXL/MaGyGk/tR1oDIAgDF2GsDpeomEENLgSLcxqPJWhokTJ2LGjBkYP348d1lLXU30t9DE5NWnZNapjhs3DuPGjQMAXL16FUOGDIFIJFJ2yERFSNfdfj1jNQ6GWMocUzQA98svv8SxY8dqJQU3bdqEgIAABAYGYtmyZbWGDzdr1oz7uPr2rVatWmHatGk4ffo02rVrh/bt28PExASJiYnQ0NDA/PnzERAQgIkTJ8LAwADbt2/H1atXkZOTg+7duyMpKQmamprceWvXrkVISAhKS0vRvn17REdHw9bWFmPGjOG2fwUFBXEDQ6v7/fffERYWBqCq1UpDQwP9PEdg+5lU/Bq0A9evJQEA7t+/j+3bt+PZs2dQV1eHh4cHgKqk0dQe23Aw4iwWL14MDQ0NqKurY9u2bSqzMY8QwiORN/deusZbkZp/Q5WtessYAO49AEyZMgUDBw7kKzQu8VS9bbagoAAXL17E5cuXMXLkSKSlpfG6cYwQUj+ococQ8tqkWxlaaLfgOxSF3N3d5T5xfNk61ZpVCuT9U1+zeRRZuHChTIUPULUy3NLyv8SSUCiEUCisVWXj7u6Ou3fvQldXFwBgYGAAU1NTLslUvRpHIBCgqKgIjDE8e/YMmpqaXHJJmrSRJjmlLl26BB0dHdjb23Obrfbu3YsDsVkI+PsGunj6wtvbG+Xl5bh37x4mTpyIWbNmITMzs9bK82HDhiEpKQnx8fGIi4vDoEGD3sK9y6+6zjECgLy8PHz88cdo0qRJrc1fhLyPkpOTqyodu/eC6IsdaGbUDps2bcK3334LR0dHiEQi9O7dG/fu3eM7VE7NxwjZ2dncx4cPH5b5W6BsNRNPQqEQQ4cOhUAgQOfOnaGmpsZVLBNC3i2U3CGEvHfqsk71999/p+TOe66lriam9rB8o+G+N2/e5D4ODw9/4fDwVatWITMzE+PGjUNgYCAASOfdyaiekKzeGmVjY4MnT56gvLwc6enpiI2N5VaJVz9v+PDh0NHRQXJyMkxNTTF37ly0bNmSS9ps+WkHfjqbhnxJKfd1pCX+1VutdHR0uATYN/83GgkJCSgqKkJ5eTnOnDkDW1vb177fGhp5rXYeHh5ITEysNXyaz2HahKgiRYOAFbWr8kHappsvKZXbMjZv3jw4ODjA0dERp06dwsaNG3mLtWbiydPTEydPngRQ1aJVWlrKtcoTQt4tr9SWRQghDV1RURFWrVqFyMhIhedUr1Ig5GXyJaUIiclEZOA3+Of8WeTm5kIoFGLZsmU4evQokpOToaamBjMzM656Bah6kD179myUlpYiNDQUkZGRsLW1xdixYzFgwAAsW7YMQqFQ5hXhrKwstG3bFkDtKpuRI0fif//7H1xdXWFmZoZu3bpBQ0Oj1nnR0dFQV1eHlZUVTp06hY8++giNGjXC+vXrcebMGRy6loeAv2/gl+UzkXUtBg8fPsT169exatUqzJgxAyUlJTKtVtLbJN0mJxAI0L9///dqm5y7u3utNpHevXtzH7u5ueHAgQMAAF1dXXz44Ye4deuWMkMkpEFQtIGqersqH6RtugAwtYdlrZax3bt38xEWAKCguACht0Lh2d4TWpVaiIqKwvbt27njvr6+8PX1hb29PTQ1NREcHEwtWYS8oyi5Qwh5r1RfpwqAW6caHR2NNm3aAJAdREjIy7zObB4A6NixIxITEwFUVfh06NABgGyFz+DBgzF8+HAIBAKkp6fj5s2b6Ny5M1dlc+LECe5BuoaGBoyMjLhWrG7duiEpKYk7r6CoDCExmVg3aQLycnMhkUjg7OwMc3NzfP3112jUqBE8PDxQUclgam6H0PCDaKmridOnT2PBggXcmyLe3t7w9vZ+7fvxXaZojhEhRFbN/38XLlyIXbt2oXnz5jh16hRvcUnbc99Wm+7bJF1uAQA+9j61Ek+amprYs2cPH6ERQpSM2rIIIXUmb66E1IYNG2Q2T5WWlsLHx4fb3HP69Gmlxlq9hLo6BwcH5OTkICMjAxkZGRAKhYiLi+MSO5WVlQgJCcHo0aOVGm99q8v3rlWrVtzxgIAAtGzZElpaWrCwsJCZd8D391bV1HU2z+ts37Kzs8OAAQNw69Yt9O3bFz/88AOioqK41qhipsH9nD979gyVlZUAgKioKDx58gR79uzhWqikSSinXkPh5eWF0tJSJCcnIz8/H5GRkdx8nKsJ8Tgb/hvXjtazZ09cvHixfu/Ed5iiOUaEEFk1N1AB8ttVlUk6D+iT7p2x1W8YzI1aYdOmTdzxmo99+ODZ3hOzXWar9HILQohyUOUOIaTO5G2eAoDMzExERUXJbJ76+eefAYDb3NOvXz9cvnwZamrKySlLn8hKW0uqt8q8qJri7NmzEAqFDXI1s6+vL44cOQIDAwOuIkRKW1sbDx8+5IZL5+XlYfjw4YiOjoa+vj4MDQ2xd+9e+Pn54dq1a9i/fz+Sk5Px9OlTODk54cGDB7C3t0d+fj5+/vlnxMXFQSAQoLy8HIMHD8a1a9cgFApRVlaGyZMnIy4uDuXl5Rg/fjy+/vprPu4OpZHO5nmZV6nwkSaCpK1ejDFIJBLcu3cPAQEBXGtU3tNSFDY1wy8tNZCRcBG5ublo1KgROnToAIlEgsrKSq6FqpPLB/h6/AL0s+6KOTOmwt7eHowx+Pj4wNHR8e3dIYQjr8KKECJfzUHA1VVvV1Um6TwgAKioqICxsTG8vLwAyH/swwfpcgtCCKHkDiGkzuTNlQD+2zw1ZMgQ7rJr166hV69eAKo29+jp6SEmJgadO3dWSqxcCfW3B184ELfm7VH1KoVXSeBERUVhwYIFXFJAX19f5twVK1bgq6++QseOHXHx4kW0aFG19SwsLAyjR49G69at0bp1a1hbW8PU1JQbyHjt2jXMmDED//77L44cOYKSkhJ89dVXOHToEEaOHIlTp07B3NwcBgYG+PHHHzFmzBhcuHAB69ev575+QkIC4uLi3qtV869S1l/XRJB03s8IV5NXGvwcEhJS53PJ65EOnz5z5gx0dHT4DocQ1STJA8R7AJF3rUHAitpV+VJzHpC8xz7KlJycLNPumZaWhuXLl6OwsBA///wzWrduDQBYvXo1+vfvz0uMhBDlorYsQsgbUbR5ysnJCWFhYXI399SX6q1HNTcd1SydLisrw4QJE+Dg4AAbGxtuk42qk7eVB6h6BTE1NZUbtgsArVq1wp9//gl7e3vs2LEDBQUF3DFdXV3k5+dDX1+/1taMu3fvwsSkKgGxcOFCJCUl4Z9//oGBgQGAqu9tZGQkvL298euvv6KsrAwSiQQAMGjQIHz00UeIiYnBp59+iidPnqBZs2YYN24ctw1l9+7dMDc3f68SO8Crbd+qa6vX29joRd6AJA+4sBljRgyt1Wo3Y8YMPHnyBB4eHhCJRJg2bRp3NXNzc8yePRs7d+6EUCjEtWvXeLwRhPBIvAeIWoyii0G1NlApalflS/V5QHXZulnfFG0ZA6oST9JjlNgh5P1BlTuEkNf2os1Tvr6+uH79eq3NPfXpVdrGQkJCUFJSgqtXr6KoqAi2trYYM2YMzM3N6zXGulJUoePu7o5vvvkGSUlJyM3NRatWrRAdHY3evXvD0NAQOTk53LmdOnXiHoAOHToUjDFuJov0ezdhwoRaTyyrr99etWoV7t+/j9zcXPz7779cbNevX8eYMWPw6NEjCAQCbp7IZ599hpUrV0JTUxOMMbi7u6Nly5b49ttvERYWBjU1NTx69AiDBg3ivkZCQgKmTp2Kx48fQ01NDZcvX4a2tvbbv1MbkLq2ehGePX9ium/mciDkkMyhF7V/yquAJOS9JKoawq4j8kZenr/MoYMHD/IRkVzSeUABAQF12rqpbIq2jBFC3i9UuUMIeW3VN0+Zm5tzm6fu378PDQ0NbNy4EWKxGGFhYSgsLOTKq+uLNJFQk7R0uvrMC4FAAIlEgvLycjx79gyamppo1qxZvcb3Kl5UoXP+/Hk0atSIu+z27dv47LPPkJycjFatWuHBgwcoLy/nHoAuX74cBw8ehKamJjfzSPq9W7x4MXbt2oWsrCwMGjQIZWVlEAqFMlVWWVlZ6NevHx4/fgwA3Pf2wYMHuHHjBtTU1LhWtujoaDDG0Lp1a2hqauLu3btIS0uDv78/EhISIBaL8eTJE9y/fx8AUF5eDm9vb2zbtg1JSUk4ffq0zG0jRKWJvAGP5dwTVEJI3UgHFYu694Loix1oZtQOmzZtgr+/P6ytreHo6AgvLy8UFhbyHSoA2XlAL3rsw5eaW8YCAwPh6OgIX19fmapdQsi7jZI7hJDX9qLNU0VFRVyrTlRUFDQ0NGBra6v0GBWVTg8fPhy6urowMjKCqakp5s6dKzcxpAzyNllJE1W5ubky7WSzZs3CggULwBiDmZkZVq9ejQ0bNmDlypUAZKtupA9AbWxsMGbMGJSVlSEtLQ3379/nvncbNmzA+PHjIRQK8eeff6JRo0YYPHgw9u/fj6SkJG799r1796ClpQUAMt/bc+fOQUNDA2fPngUA/Pbbb1i+fDkuXboEPT09NG3aFDExMVzi7NKlS9DQ0ODm/0RGRsLR0ZH7/ujr60NdXb0+725C3h5dfaC7X9V7QkidKWop8vDwQGJiIhISEtCxY0eVaZmuPg/oZVs3la3mlrHp06cjNTUVYrEYRkZGmDNnDi9xEUKUj5I7hJCXKiguwI7EHRg2clituRKK5OTkwNnZGTY2Nli7di12796txIirVK9cqSk6Ohrq6uq4d+8e0tPT8b///Q9paWlKjxFQXKVz7949PH36lGsnkyaqbG1tUVFRgV69eiEvLw/p6emwtraGpqYmHjx4AADIzc2Fg4MD4s6fQBP1cvT4sBuAqlXvrq6u/33vSp4C2fF4+PAh+vXrh+TkZPTp0wcWFhbo0qULrK2twRjDhQsXuAeuOTk53Kyi7du3o2nTptygS+ngZcYYmjZtiuvXr3PHFi5ciA8//BA5OTk4deoUACAlJQXx8fFo2rQpdHR00LFjR27lekZGBho3blz16m6NmSWEEELeDdVbinr37s21cLu5uSErK4uXmKQbC/MlpSgqKqo1D0iV1NwyZmhoCHV1daipqWHKlCmIjo7mOUJCiLJQcocQ8lKht0LxXex3GLh4ILKzs1FWVoasrKxaMyUyMjK44bzm5uZITk7G9evXcfz4cV76wF9UOv3bb7+hb9++aNSoEQwMDNC9e3fExMQoJa6alTrV28mqD35esWIF9PX1kZmZiR49emDMmDF48uQJIiMjIRAIYG1tDSMjI+SkX0f2gQUYNmQgBAIBKioq4OLigi1btmBA/74I6PoUx1cOhYmJCe7fv89978zNzTHbfz52/nkeLXQb4dSpU9z39vDhw3j64DZKTq6Dm2snXLt2DWlpaRAKhThx4gQ6deoEdXV15Obm4tmzZ9ygyz59+uDp06fo06cPMjIy0KFDB27N9ooVK9CiRQuMGzcO+fn5AKrash4/foz09HTk5uairKwM//d//8fdV5aWltyru9u2bVPK94e8v+RV0SlqE4mKioKLiwscHBzg4uLCbZMjhLyami1FUkFBQejXrx8PEf23sTAkJhM6OjrIy8tD8+bN5Z5b/bEPH2puGcvOzuY+Pnz4sMzfM0LIu42SO4SQl/Js74nZLrPh2d6T71BeyYtKp6tXmEgkEly8eFFpa1YVVeqUlZVxg58jIiLQpk0baGlpQUNDA1u/WwNdTTXs378fU6dORWVlJTZs2IAzZ85UG+raA6ampujevTvCwsLw6NEj3MouxIorLSCa/gv09PS4gcpA1QPS/Ow7eHpqE7LSU2u3zVX7vDJJvdGeODjbHQ42HfHo0SMUFxejS5cu+PXXX7FixQpcv34dampqaNy4scztPHv2LCwsLLjhyQAgFArx8ccfo1WrVtDR0UH79u2Rl5dXP3c8IS8h73dTUZuIdBvd1atXERwcjM8++4yPkAlp0Gq2FEmtWrUKGhoa3LB+ZavrxkI+SKupC4oL5FYVzZs3Dw4ODnB0dMSpU6ewceNGHqMlhCgVY+ytv7m4uDBCCFGWvKclbNvpW2zo8JGsTZs2TENDgxkbG7NffvlF5jwzMzP28OFDxhhjT548YcOHD2e2trbMxsaGrVu3Tqkxp6enMzs7O5l/N2vWjIn/Pc1MDVuwTk6OLD4+nnXo0IE1atSIPTyykrElzdic0R+z33//nZmZmTF/f3+2fv16lpYYy8pO/4+xp7ksIyODGRkZcbfzjTzNZez8pqr31Z3fxNiSZlXv63j7UlJSuI+XLFnCmjVrxhhjLD8/n3Xq1In5+/szY2Njpqury/bu3ct9Dh0dHSYSiZi7uzs7e/bsm98mQl6i5s9udYcOHWJjx46tdXllZSVr2bIlKy4uru/wCHmnhIaGMg8PD5nLdu7cydzc3JhEIlF6PDdu3GBOTk7cW9OmTdnGjRvZokWLmIODA3NycmIeHh7s7t27So9NKuhqELPfac+CrgbxFgMhhF8AYpicPAwldwghDd6207eY2fwjbNvpW3yHopCPjw9r3bo196Sx+hPI9evXMwBMT0+PsfObWNsmAqahrsYAcG9qamrMzc6MOdjZMjMzM6aurs6aNWvGWrRowT777DNma2vLnJycWKdOndjhw4fr98YoSvo8v3z0cK9aSbahQ4cyOzs75uDgwD755BPWsWNH7mq7d+9mtra2zM7OjhkaGjIdHR1mZ2fHiouLWW5uLlu0aBFr3749a9SoEfv4449rPai+ffs209XVZevXr6/f203eCy9K7gwcOJDt3r271uUhISGsV69e9R0aIe+cUaNGsaCg/5IUf//9N7OxsWE5OTk8RlWlvLycGRoasoyMDPbo0SPu8s2bN7OpU6fyFlf+s3wWdDWI5T/L5y0GQgi/FCV3BKzaZpW3xdXVlSlrdgUhhORLShESk4kRriZoqavJdzhynT17Fk2aNMH48eORmJiIjIwMDOzfD3+vHAWfLadw9sK/MDMzw03xRZhZtkeTFgb4bf8fsLa2Rrt27XDlyhVkZWXB09MTSUlJaNasGZYuXYomTZpg7ty5fN+8Khc2A1GLq1ZDd/dTeFpGRgYGDhyIxMTEWsf++OMPfPPNN9DW1uaOP378GM2aNUPPnj3h6uqKp0+fyszfGTZsGNTU1NClSxfVuS9Ig6Xo53PVqlWIiYnBoUOHIBAIuMuTkpIwePBgREZGwtLSUtnhEtKwSPKqWn5F3igSNIaJiQnS0tK4eTbt27dHSUkJt1HRzc2Nt3lrkZGRWLZsGS5cuCBzeUBAAO7cuYOtW7fyEhchhAgEgljGmGvNy2nmDiGkwZIOP3Xv4oypPSxlEjvVBxMDVX39Pj4+cHBwgJOTE06fPq3UWKsPTeYUF2LWolV4lnsHZWVluHXrFjSaGyIz5xEy7mTB0NAQWlpa0NTUhLq6OlxcXGBpaYmUlBSlxl5nIu+qxI7I+5WudvPmTe7jBw8eoEOHDgCAhw8foqKiAs2aNUNaWhpu3ryJxo0byzyxDg0NhYWFBezs7N7ObSBEjuDgYBw5cgR79+6V+fnLysqCl5cXdu3aRYkdQuri+Sw3iPfIHVR869YtZGZmqsQg/ZqDnhcuXAgTExPs3btX7hbO+pacnMxtjxSJRGjWrBk2bdrEHa/5uIcQ8v6h5A4hRCF5m2OWLl0KY2Nj7sHF0aNHuWMBAQFo3749rKyscOzYsXqPT9Fg4szMTG4wsdTPP/8MALh69SqioqIwZ84cmeHCfHhcpg5ju264cDEGZmZmePjwIcrLy6Gnp4cBAwZgwoQJcHR0xLRp09CqVSsuwWFhYQGg6nuhUpUquvpVFTu6+rWPSfKAC5sxZsRQdO3aFcnJyRAKhfj111+xYMEC2Nvbw9HREZGRkViyZAmAqmonR0dHODk5oVu3bigpKcHhw4e5B9USiQRr167lzifktT3/+YSk9jDviIgIrF27FuHh4dDR0eEuLywsxIABAxAQEIDu3bsrM1pCGhwuMTH9F4j2NkGzfouwadMmhISEwM7ODmpqakrbWFkX8gY9r1q1CpmZmRg3bhwCAwOVHpOVlRWX9IqNjYWOjg68vLwAyH/cQwh5D8nr1XrTN5q5Q8i74cyZMyw2NlZm/sSSJUvkzjZJSkpijo6OrLi4mKWlpTELCwtWXl5e7zHKm48xbNgwJhaLZQYof/755zKzMj755BN26dKleo2t1pydpDhm164NGz3cizVp0oQBYIaGhuyXX35h+vr6zM7Ojjk5OTE1tap5OydPnmR79+5ljRs3Zu3atWOdOnVi4eHh9RpzvanDEGapF808Wb16NVu8eDFjjLE5c+aw33//nTGm+OeSkDp5/vM5ulenWvOiLC0tmVAo5AasSmdtrFixguno6MgMX33w4AHPN4QQ1Vd9ls21a9fYjRs3WI8ePdjly5f5Do0jb9CzVEZGhsL/o5Tl2LFjrFu3bty/5T3uIYS8u6Bg5o4Gz7klQogKc3d3R0ZGRp3ODQsLw+jRo6GlpYV27dqhffv2iI6ORteuXes3yBrCw8NhbGwMJycnmcudnJy4GDMzMxEbG4vMzEx07ty53mKZOHEiZsyYgfHjx1ddcO0w8DQH68Y44s69B7h48SIaNWqEFStWoLCwEDo6OoiOjsauXbuwYsUKfPzxxwCA1NRUaGtrw9/fv95irXfSVq1XbNmqaezYsRgwYACWLVuGS5cu4cCBA5g3bx4KCwuhpqYGbW1tzJgx4y0ETBoiX19fHDlyBAYGBtzMHH9/f/z555/Q1NSEpaUlduzYAT09PURHR+P//u//AACsohxLxwzHvrB1tSrPJk2aJPdrLVq0CIsWLarfG0TIO+jEiROwtLSEmZkZ36EotG/fPpmWrJs3b3Itw+Hh4bC2tuYrNACyLWOKHvcQQt4/1JZFCHllgYGBcHR0hK+vLwoKCgAAd+/ehYmJCXeOUCjE3bt3lRpXUVERVq1aJbcX3tfXF0KhEK6urpg5cya6desGDY36zW/XmrNj6wU0McCsXXH48ccfYWJigitXriAjIwNCoRBxcXFo06YN7t+/D11dXRQVFaG8vBxnzpyBra1tvcZa717UsvUS1WfySB9U+/r6Ijk5GU2aNEFGRgZmzpwJZ2dn/PTTTxCJROjduzfu3bsHAIiOjubaCJ2cnHD48OG3drOIapHXqunh4YHExEQkJCSgY8eOCAgIAADY29sjJiYGYrEYEZFRmLrpT5RrNZf3aQkhb1HNWTaqIF9Siu1nUpEvKUVRURGioqIwdOhQ7njN9uHNmzfzFmv1lrEXPe4hhLx/KLlDCHkl06dPR2pqKsRiMYyMjDBnzhwAVS2eNVUfPKoMqampSE9Ph5OTE8zNzZGVlQVnZ2fcv38fGhoa2LhxI8RiMcLCwlBYWMi9ClevigqAoryqWTO9+uP67RxEHD/5wtkCYWFh8PPzwwcffACRSARnZ2cMGDCg/mPl0yvM5Nm8ebPcJ/E9e/ZEQkICxGIxBg4cyD3YlXkSHxGBqVOnory8nI9bSeqZvMHlvXv35hK5bm5uyMrKAgDo6OhwlxcXFyv97xUh7yN5s2xUQUhMJgL+voGQmEy5g54PHjzIJYn//PNPGBsb8xbr33//DWdnZxgaGr7wcQ8h5P1DbVmEkFdiaGjIfTxlyhQMHDgQQFWlTmZmJncsKysLbdu2fetf/0Vrzx0cHJCTk8P929zcHDExMWjVqhWKiorAGIOuri6ioqKgoaGhnGqY561Y+2b2QFHwHnz88ceIjIxE8+bNsWLFCu40afvbpUuXoKOjg6+//hpff/11/cenKp5vUNk3czkQckjmkLy2GGNjY5mWwaVLl8ocl0gk3JP16kNw6Un8+y0oKAijRo3i/n3p0iX4+vri9u3b2L17d71X8xHyvquemFAlI1xNZN6rsuotYy963EMIef/QoxhCyCvJzs6GkZERAODw4cPcJq3Bgwdj7NixmD17Nu7du4ebN2/Wyzwb6atrAHB62yKcPn0aubm5EAqFWLZsmcL5GDk5OejTpw/U1NRgbGyM3bt3v/XYADkzP2y9gCY/AyJvfPvtt4iOjoa9vT3U1dWRmZkJMzMzbrvF+PHjkZOTo3Ll6krxlmbyLFy4ELt27ULz5s1x6tQp7nJ6Ek9WrVoFDQ0NjBs3jrusS5cuSEpKwvXr1zFhwgT069cP2traPEZJyLut5iwbviUnJ8skfP3T0rB8+XLcvXtX7qwuPhQUFyD0Vig823tCq1ILUVFR2L59Oy+xEEJUnLwpy2/6RtuyCGnY8p/ls6CrQWzoiKG1Nsd4e3sze3t75uDgwAYNGsTu3bvHXW/lypXMwsKCdezYkR09erReYst7WsK2nb7F8p6W1Mvnf1M1N4xJNz/duXOH9e7dm5mamnKbLFq1asU8PT0ZY4xJJBJmZmbGDA0NWWpqKm/xNyR13apV3bVr19gHH3zAnj17Vt/hkTdUc9scY4zNnTuXWVlZMQcHB+bp6ckKCgpkrnP79m2mo6PDDA0NZS7fuXMnc3NzYxKJROHX69mzp0pt6yHknfA0t2ob3dNcJpFIWMuWLVlhYSF3+NChQ8zY2JhpamoyAwMD1rt3b95Crb7F69ixY6ysrIwxxti8efPYvHnzeIsr6GoQs99pz4KuBvEWAyFEtUDBtiyauUMIqSX0Vii+i/0OAxcPRHZ2NsrKypCVlYVJkyZh9+7duHr1KhISEhAeHs5V8QBVVROpqalITk5Gv3796iW2lrqamNrDslZLlqpwd3dHS23Bf3N2ns+P6dixI7p27VqrJUg6NPnZs2eoqKiAUCiEhYUFT9G/O8aOHYuDBw/KXObr64sePXogKSmJ26T07bffwtHRsdYQ5qioKLi4uMDBwQEuLi44efKk0m/D++5VhiNLzZo1Cz169JC5LCIiAmvXrkV4eLhMi156ejo3e+n27dtITk6Gubl5/dwYQt5Xz1tuId4jd5aNl5cXsrKyUFJSggcPHuDYsWO8hVp9i5eiWV188Gzvidkus+HZ3pO3GAghDQMldwghtajyAwlfX18YGBhw7WBA1bwVY2NjbiPS0aNHuWMBAQFo3749rKyslPegsdqcnezsbBw8eBD/93//V2suzL1799CiRQsYGRnB1NQU33777QsHLRNwg5chyat1SN5WLeC/J/ETJ07Ejh07UFpayj2J9/f3lzuEuVWrVvjzzz9x9epVBAcH47PPPqv/20ZkvMpwZEjyEBowCdcSE3D27Fk8fPiQG8g9Y8YMPHnyBB4eHhCJRJg2bRoA4Pz583BycoJIJIKXlxd+/PFHmlNByFuSnJxc9X/y9F8g2tsEzfotwqZNm5Cfnw8PDw906NABHh4e3MZNVaBoi1dQUFC9vWBVFy20W8DH3gcttFvwFgMhpGGgoQOEkFqkDyRU0cSJEzFjxgyMHz9e5vJZs2Zh7ty5Mpddu3YN+/fvR1JSEu7du4dPP/0UKSkpUFdXr98gq83Zka4pjYyMrHVadHQ01NXVce/ePRQUFOCjjz7Cp59+SpU7L/L8VeAxS4JxOilbZt7S0aNHkZycDDU1NZiZmWHbtm0Aqp7Er1mzBo0aNUJ5eTmMjIy4J/HNmjXjPnX1IcydOnXiLrezs0NxcTFKSkqgpaWlxBtLXqT6cGTJv79i7Y/BuBy0GhsuFKFJkybc3wNFc7g+++wzStoRUk+srKwgFosBABUVFTA2NoaXlxfWrFmDXr16YcGCBVizZg3WrFmDtWvX8hss/tviVbMaUN6sLmWpOQ8o7fk8oLy8PISFhUFNTQ0GBgbYuXNnvSywIIQ0PFS5QwhpUOS9mq9IWFgYRo8eDS0tLbRr1w7t27dHdHR0vcQlU1Gk0wLQ0Qd09ZGamoqkpCTo6enBxMQEWVlZ6NSpE0aPHo3Bgwfj3LlzuHDhAgwMDNC9e3eq3HkZkTfgsRz7wqJqtQwqWlX72WefISkpCWKxGEeOHJFJ6ABV7YQmJibYu3cvV7lT3cGDB9GpUydK7LwheVV3/v7+sLa2hqOjI7y8vFBYWAigantc48aN0b9/f6SmpnLVNlI1n3At+fM2Zk3xRpNu8hM5hBD+VG93CgsLw4QJEwAAEyZMQGhoKL/BPSdvi1dwcDCOHDmCvXv38rJlUZogE4vFiI2NhY6ODry8vBRWnBJCCCV3CCHvhMDAQDg6OsLX15cr87579y5MTP5bayoUCnH37t16+foTR3khYs14oLJC5nI9PT10794dpqamuHLlCoRCIWbMmIHGjRtj3rx56NatG+bMmYMnT57g4sWLXCsRUUBXH+juV/X+LVm1ahUyMzMxbtw4BAYGyhxLSkrC/PnzaTPJW/CqM3QsLS1x9OhRWFpaclVYgPwnXJfiEjAv6DTM7VywadMmrF69utb3khDCj+rtTg8ePOBm9RkZGcms8VamfEkptp9JRb6kFEDtLV6KZnXxpXqCTFHFKSGEUHKHENLgTZ8+HampqRCLxTAyMsKcOXMAVG0DrKm+HgS5N0lDy4TtyLqTwQ1RFgqF8PLywrp162S+bnJyMnr16oUvvvgCFRUVuHHjBhwdHeHj4wNHR8d6iY+8XM0hzFlZWfDy8oK1tTW6du0qU3GiaBBzXl4ePv74YzRp0gQzZsxQ+m1QplepxAGqEp2TJ0/GrVu34ODggOLi4lceWqroCde5c+eQkZGBjIwMzJw5E9988807f/8T0hBI251GjBjBdygyQmIyEfD3DYTEZKKoqAhRUVEYOnQod1zRrC6+1JwH9LKKU0LI+4mSO4SQWl5laLEqPJk1NDSEuro61NTUMGXKFK71SigUIjMzkzsvKyur/vrSRd7Ah7MgNDXn2oV+/PFHdO/eHU5OTtxpGRkZcHNzQ1hYGLS1tbFu3To0atQIGzZsgL+/f/3ERhRSNIS5sLAQAwYMQEBAAObPn1+r4kRRWby2tjZWrFiBDRs2KO9G8ORVKnHKy8vh7e2NlStXon379jh9+jQaNWokc11uaKkkD4gJwo0bN9ChQwckJSWhdevWLxyOTAhRTTXbnQwNDZGdnQ0AyM7OhoGBAS9xjXA1wdf9rDHC1UTuFq9bt24hMzOTa4uqXj2obPISZC+qOCWEvL8ouUMIqUXekzagamix9IFO//79ASjnyWzN8umapA8UAeDw4cNcUmrw4MHYv38/SkpKkJ6ejps3b6Jz5871E6SuPuDqC6hVDWuWDlKW94qar68vhEIhXF1dMXPmTHTr1o2rXiD14PmGreqr6aWblBYsWAB7e3s4OjoiMjISmzdvBlDV5nfr1i2sWLECX331Fby9vbm12YDiQcy6urr48MMPoa2trdzbyINX2WYVGRkJR0dH2NraAgD09fVlBpvLzNAR74GReBMehC9HWVkZYmJioK2tjREjRtTpCdfSpUtrDVcnhPCjZrvT4MGDERwcDKCqxXLIkCFKjUe6xeuT7p2x1W8YzI1aYdOmTQgJCYGdnR3U1NRUbvadvHlAUjUrTgkh7zd6NkEIqcXd3R0ZGRl1Olf6ZPbWrVv1Fo+0fBoATm9bhNOnT8tsSTp9+jTEYjEEAgHMzc25+Sh2dnYYOXIkbG1toaGhgR9++KH+N2U9l5qaivT0dK5qJysrC87OzoiOjkabNm2wceNG7txu3bqhQ4cOSonrvfR8w9a+mcuBkEMyhxRtUlq0aBEWLVrE/TsjIwMDBw6UOWfhwoXYtWsXmjdvjlOnTsn9PL6+vjhy5AgMDAyQmJgIoKqlS9Gmk4CAAPz6669QV1fH999/jz59+rz2zX4V8uL09/fHn3/+CU1NTVhaWmLHjh3Q09PD3r17sX79egBVryhfv34dYrEYIpFI5nNW32aVkpICgUCA8ePHIzU1FevWrcO8efMA/DdD58SJE1VJMpE3tABoibwBAC4uLrC0tERKSgpcXV2Vcn8QQl6TJK/qb67IG0WCxoiKipKZWbZgwQKMHDkSv/76K0xNTRESEqLU8BRt8SoqKsKhQ4cwdepUpcZTFzUTZDdv3uQeM1SvOCWEEDDG3vqbi4sLI4Q0bOnp6czOzo7795IlS5iZmRlzcHBgPj4+LD8/X+b8HTt2sC+++KJeYsl7WsK2nb7F8p6W1MvnfxM+Pj6sdevWzM7OjrvPlixZwtq2bcucnJyYk5MT++uvv5iZmRl7+PAhW716NbOwsGAdOnRgERERLDIykn300Ud834x329Ncxs5vqnr/mmr+PlS3evVqtnjxYpnLpL8PZ86cYbGxsTLXffToEffx5s2b2dSpUxljjCUlJTFHR0dWXFzM0tLSWNOmTVmrVq1krjt37lxmZWXFHBwcmKenJysoKGCMMVZSUsImTpzI7O3tWYsWLVjz5s3rdL3S0lI2fvx41q5dO2Zubs4MDAy46xw7doyVlZUxxhibN28emzdvXq3b/vfff7NGjRrVunzlypXM09OTVVZWMvY0l63/fDAzNzNlsbGxzMbGhrm5ubHjx4+zv//+m9nY2LCcnByZ6+fk5LDy8nLGGGOpqamsbdu2LC8vT+79TwhRIec3MbakWdV7FXfs2DHWrVs3mct69OjBLl++zFNEVfKf5bOgq0Es/1k+k0gkrGXLlqywsJA7PnToUGZnZ8ccHBzYwIEDWVZWFo/REkL4ACCGycnDUFsWIaROFA0tVoaWupqY2sMSLXU1lfY160q6JSsr8w7X8vPdd9+he/futVrYkpOTsX//fhw9ehTl5eUYNGgQ1qxZg927d/N8K95x9bBhq7oXlcXLa11S1NIVFhaG0aNHQ0tLC+3atYO1tTVXISOlaKbNzz//DAC4evUqduzYASMjI5mB4oquFxISgpKSEqSlpeHo0aMoKCjgqvbqMuz4zz//lJlTAcjZZiXeA+GDKKD0KQYMGICbN28iKSkJ27ZtUzhD5+zZs3B0dISTkxOGDx+Obdu21bofCSGqo7CwEMOHD4e1TyBsdmrj3xIrxMfHo2vXrnBwcMCgQYPw+PFjvsOUUXNIsaoIvRWK72K/Q+itULnzgA4ePMj9Pf/zzz9hbGzMY7SEEFVCyR1CSJ0oGlqsLKo65Fm6JUuor8sNUp49e3at2T4ZGRk4e/YsRo8eDSsrK6SlpeHjjz/GypUrYWZmVq8xkrdP0SDmupK36eTu3bswMTHhznFwcEBRUZHM9RQlXK5du4ZevXoBAIYMGYKWLVvi2bNnL72eQCCARCJBeXk5iouLIRAIZJJPUtyw4xqOHDki86RD7jYrkTf6TPoWLQyMkZqaimfPnqFz586YOHGiwhk6w4YNQ1JSEuLj4xEXF4dBgwa9wr1LCFE2Pz8/9O3bFzdSbiI+JRM2zm6YPHky1qxZg6tXr8LLy6tWsppPqrrFCwA823titstseLb35DsUQkgDQ8kdQggAoKC4ADsSd6CguEDucUVDi5VF1YY8c55vyYK2nszFgYGBcHR0hK+vLwoKqu7Tmk/ehUIh7t69W/8xktfzGoOYAcDc3ByzZ8/Gzp07IRQKZRJBUvI2nVSvtJGSVvXIUz3h4uTkhLCwMJSXlyM9PR1Xr16VGQCt6HrDhw+Hrq4ujIyM0L17d+jr69eqkJEZdlztfun9SU/cu3cPt2/f5u4XuZU4uvpo0e9rzJ47Dx988AFEIhGcnZ0xYMCAF9z5hJCG4vHjxzh79iw3w0xTUxN6enpITk6Gu7s7gKrqQVUa/PuiIcV8kA56FolE+NjtY/h180PwtmD4+/vD2toajo6O8PLyQmFhId+hEkJUGA1UJoQA+K8MGAAiV0XWeWgxUPVk9vHjxygtLUVoaCgiIyO5rThvi6oNef7vi0m3ZP03qHf69On49ttvIRAI8O2332LOnDkICgp65SfvhGevMYgZQK2f0xf93I4dOxYDBgzAsmXLIBQKkZmZyR3LyspSmACpmXDx9fXF9evX4erqCjMzM7i4uCA1NfWl14uOjoa6ujru3buH+Ph4dO/eHWlpabCwsAAgZ9hxtfvFrnUn9Fy2DN98802d7hdvb294e3srPE4IaZjS0tLQunVr+Pj4ID4+Hi4uLti8eTPs7e0RHh6OIUOGICQkRObvG99qDinmm6JBz8nJyQgICICGhgbmz5+PgIAArF27lt9gCSEqi5I7hBAA4Mp/Pdt7wmefT63jr/JkVpkCAwOxa9cuuLq64n//+x9atGjBWyxS1V8JnDJlCrdlSd6Td+mWJKKCnm9r4t6/JYo2nQwePBhjx47F7Nmzce/ePdy8eZPbtladvISLhoaGzAY2FxcXaGpqvvR6vwUHoa+FAI1KH6NVq1bQ0dFBTEwMLCwsuBarM2fO/Ndi9fz+qKysRMjP63E2IOit3jeEkIanvLwccXFx2LJlC7p06QI/Pz+sWbMGQUFB+Oqrr7B8+XIMHjy41t8kZcqXlCIkJhMjXE2gLSivtcXr8OHD+PLLL/Hw4UMMGDAAIpEIx44d4yXWEydOwNLSEmZmZjJt225ubjhw4AAvMRFCGgZqyyKEAABaaLeAj70PWmjznxypKz6HPL+Ioha2wYMHY//+/SgpKUF6ejpu3rxZazYPUSFvMoj5NVq67OzsMHLkSNja2qJv37744YcfoK6uLvNp5c60AVBUVASJRAIAiIqKgrq6OrS1tV96PVP1HJw88gdGD/4UXbp0QWFhIb788kvFLVbP75ezFZ0gNDHlKnwIIe8voVAIoVCILl26AKhq94yLi4O1tTUiIyMRGxuLMWPGwNLSkrcYQ2IyEfD3DYTEZModUuzl5YWsrCyUlJTgwYMHvCV2AMWDnhXNPiOEECmq3CGENFiKKmSUQpIHiPdgzKYzOH3+3zq1sFV/8q6hoSH3yTt5R7xmS9fChQuxcOa05z9bP9f62QoICEBJSQk8PDwAVL2Su23bNuTk5KBP70+hVvoEBc8YKhlQUFDw0ut9sTQQPqOH4Nq9Z9DX18fcuXPh7+//0jh79uyJixcvvum9RAhpyJ7/P9hG5A0TExMkJyfDysoKJ06cgK2tLXJycmBgYIDKykqsXLnyvwQxD0a4msi8V1XSQc/SjYZStWafEUKIHJTcIYQ0WNnZ2TAyMgLAw5Bn8R74zvDHiQwtGBibcdU6S5cuxcmTJ9G6dWsAwLRp02BkZIS8vDwMHz4cly9fxsSJE7khuuQd9SYtXa+RGDI3N0fyji+BqMWAx/KqiqM6XK+JoRlCTolfPUZCCHn+twoAtmzZgnHjxqG0tBQWFhbYsWMHdu3ahR9++AEAMHToUPj41G75rk/JyckYNWoU9++0tDQ8W74c48ePx6hRo5CRkQFzc3P88ccfKtHSDcgf9Cx39hkhhMghkDfg8025urqymJiYt/55CSHvl+o98l9MnsANeTY0NFRYISNN9lQf8qynp/f2hzxL8nB25zI0EXli/NSvkJiYCKAqudOkSRPMnTtX9nSJBFeuXEFiYiISExMpuUMUe/5qOETer9YS9rrXI4SQ19GA/uZIhxRfunQJP/zwA1q2bIkFCxZgzZo1KCgoUJkhxaNHj0afPn24RFhERARmz56NM2fOcC8aEUKIQCCIZYy51rycKncIIRxfX18cOXIEBgYGMsmKn3/+mXtQsXr1avTv3x9RUVFYsGABSktLoampifXr1+OTTz55q/FIe+SBqs0WNfE65FlXH+5ffK+aG7xIwyad9aOs6xFCyCsqLCzE5MlTkZiYCIFgG4KCgtC4cWNMmzYNxcXF0NDQwI8//qgyc+WqDykOCwvD6dOnAQATJkxAz549eU3uFBQXIPRWKHq37V1r0POMGTPkttQSQog8lNwhhHAmTpyIGTNmYPz48TKXz5o1q1YlSqtWrfDnn3+ibdu2SExMRJ8+fXD37t23Gk9D6ZGvSRU3eBFCCCFvi5+fH/r27YsDBw6gtLQURUVFGDlyJJYsWYJ+/frh6NGjmDdvHpdE4Vv1IcUPHjzgqnyNjIyQk5PDZ2gIvRWK72K/AwDk5eXJHKMXhAghr4K2ZRFCOO7u7mjZsmWdzu3UqRO3xtvOzg7FxcUoKSl5q/G01NXE1B6WaKnL3/rUV6WqG7wIIYSQt+Hx48c4e/YsVz2rqakJPT09CAQCPH78GADw6NEj7jEC36RDikeMGMF3KHJ5tvfEbJfZ8GzvyXcohJAGjpI7hJCXCgwMhKOjI3x9fVFQUFDr+MGDB9GpUydoaWm99a/t6+sLAwMDmWHJS5cuhbGxMUQiEUQiEY4ePQqgagW0i4sLHBwc4OLigpMnT771eF7G0NAQ6urqUFNTw5QpUxAdHa30GAghhJD6kpaWhtatW8PHxwedOnXC5MmTIZFIsGnTJvj7+8PExARz586ttfGJLzWHFBsaGnJLELKzs2FgYMBneGih3QI+9j5ooU1VvoSQN0PJHULIC72sEiUpKQnz58+X6RF/myZOnIiIiIhal8+aNQtisRhisRj9+/cH8F+r2NWrVxEcHIzPPvvs7QckyQMubK56L4f0ASPAwwYvQgghpJ6Vl5cjLi4O06dPx5UrV6Crq4s1a9Zg69at2LhxIzIzM7Fx48YXzsVTpn379nEtWQAwePBgBAcHA6jaRDVkyBClx5ScnMy9QCUSidCsWTNs2rQJISEhsLOzg5qaGmg5DSHkVdG2LEKIjIyMDAwcOJAbqPyiY1lZWfjkk0+wY8cOdO/eXWkxKdpIVR1jDK1atcK9e/febkXRhc1A1GL4XrbGbyfiUVFRAaDqlUBnZ2ccP34c0r+rjo6OCA0NRWJiIhYsWICrV6+isrISjRo1gr6+/tvf4EUIIYTUs/v378PNzY1bKHDu3DmsWbMG58+fR2FhIQQCARhjaN68OdempWzSbZsDbPXhZG2JtLQ0NG/eHEDVXJuRI0fizp07MDU1RUhISJ1b0utD9U1eRUVFUFNTw9SpU7Fhwwa4utZahkMIIQq3ZVHlDiHkhRRVohQWFmLAgAEICAio18SOIry1iom8AY/lmPjVIvzzzz+wsrJCWVkZsrKy4OzsjOXLl+PZs2d49uwZLl26BCMjI66iqLS0FGKxGC1btkRWVhYldgghhDQczytX2zRtBBMTEyQnJwOo2kRla2uLtm3b4syZMwCAkydPokOHDryFKt22+de1POTl5XGJHQDQ19fHiRMncPPmTZw4cYLXxA4gu8nLxsYGVlZWvMZDCGm4aFsWIYRbw3lk+RH8c+4f5ObmQigUYtmyZTh9+jTEYjEEAgHMzc259qvAwEDcunULK1aswIoVKwAAkZGRSuldnz59Or799lsIBAJ8++23mDNnDoKCgrjj0laxyMjIt//Fn6+bdkfd16136tSJ+7j68On6mFFECCGE1AvxHiBqMQBgy5YtGDduHEpLS2FhYYEdO3ZgyJAh8PPzQ3l5ObS1tfHTTz8pPcSqFe2TEZ9wFSUlFTDvHYT4+KeYNm0anj59CnNzc+zduxfNmjVTemyKVN/kRQghb4KSO4QQbg3n7MWzcdD+oMwxRT3zixYtwqJFi5QRXi3SoYgAMGXKFAwcOJD7d1ZWFry8vLBr1y5YWloqPbaXrUGvz+HThBBCyNsmTZgkJsRDUKqNIHcrbPo+AOXl5VBTU4NYLMbHH38MsViM2NhYXmOVt6Ldw8MDGzZsQI8ePRAUFIT169dzL0rxTbrJS1WGTxNCGjZqyyKEqOQaznxJKbafSUW+pLTWMVVtFeN7+DQhhBDytkkTJjdSbiI+JRM2zm74/fffuaUGw4YNw9ChQ/kOU+GK9uTkZLi7uwMAPDw8cPDgwRd9GqWqucmLEELeBCV3CCEquYZT2i/fZ/AwdO3aFcnJyRAKhfj1118xb948ODg4wNHREadOncLGjRsByLaKSTdQ5OTkKC3mF61B57uiiBBCCHlVihImUowx/PHHHyrRVqRoRbu9vT3Cw8MBACEhIcjMzOQtxoLiAuxI3IGC4qpZgTU3eRFCyJug5A4hRCWNcDXB1/2scSz8ILKzs7mhxZMmTcLu3btx9epVJCQkIDw8HEZGRgCqWsUkEgn3aqJYLFbKDCApVa0oIoQQQl6HooSJ1Llz52BoaMjr8GQpRSvag4KC8MMPP8DFxQVPnjyBpqYmbzFK2+BDb4WiqKgIUVFRMlVPhw8fhlAoxL///osBAwagT58+vMVKCGl4aBU6IYS8CkkeIN6DMZvO4PT5f5GbmwtDQ0OFw6eNjIywcuVKBAQEyDz4VdbwaUIIIeR1xcTEwM3NDRcuXECXLl3g5+eHZs2acTNrpk+fjvbt29dqQ+aDohXtf/31F3dOSkoKvL29ZSprlUm6wMKzvadKVUsTQhoWWoVOCGmQfH19YWBgwFXBAMDSpUthbGzMtV4dPXoUABAdHc1d5uTkhMOHD7/9gJ5vC2lcdBcVFRWwsrLiKoosLS2Rn58PNTU13LlzB1euXAEA9O7dm0vsMMawZMkSSuwQQghReUKhEEKhEF26dAEADB8+HHFxcQCqKmUOHTqEUaNG8Rkip02bNnJXtEvbsysrK7Fy5UpMmzaNtxhVsQ2eEPLuoOQOIYSjcokUABMnTkRERESty2fNmsW1XvXv3x8AYG9vj5iYGIjFYkRERGDq1KkoLy9/uwGJvAGP5Zj41SLViosQQgh5yxQlTADg+PHjsLa2hlAo5DNEmQUM0hXtjo6OEIvF+Oabb7Bv3z507NgR1tbWaNu2LXx8fJQaX3JyMvd4SSQSoVmzZti0aRPy8/Ph4eGBDh06wMPDAwUFBUqNixDy7qFV6IQQzsSJEzFjxgyMHz9e5vJZs2Zh7ty5MpdJExYaGhrIzs6Gk5MTBg0aBA2Nt/tnxd3dnSuxfhkdHR3u4+LiYggEgrcaCwBAVx/o7gd3QLXiIoQQQt6W5y3IEHlzCZPS0lJYWFhgx44dAID9+/erxDBg6QIGAJjaQ4SaoyH8/Pzg5+fHR2gAACsrK4jFYgBARUUFjI2N4eXlhTVr1qBXr15YsGAB1qxZgzVr1mDt2rW8xUkIafheWrkjEAi0BQJBtEAgiBcIBEkCgWCZMgIjhCifu7s7WrZsWadzdXR0uEQOHwmLwMBAODo6wtfXV+bVrkuXLsHOzg4ODg7Ytm3bW082NdS4CCGEkDp73oIM8R6IRFUJk4SEBISGhqJFi6qWop07d/La4iQlXcAwwtWE71Be6sSJE7C0tISZmRnCwsIwYcIEAMCECRMQGhrKb3CEkAavLm1ZJQA+YYw5ARAB6CsQCNzqNSpCiEpRtYTF9OnTkZqaCrFYDCMjI5lBjl26dEFSUhIuX76MgIAAFBcXKyUmVY6LEEIIqYvCwkIMHz4c1j6BsNmpjX9LrAAAW7ZsgZWVFezs7DBv3jyeo6wijbWbiyM2TRuI5IRYiMViuLm5QSQSwdXVlbfByYpUr3Z68OABt+3TyMiImw1ECCGv66XJHVbl6fN/Nnr+9vZXbBFCVJIqJiwMDQ2hrq4ONTU1TJkyRe6DNxsbG+jq6iIxMVEpMalyXIQQQkhd+Pn5oW/fvriRchPxKZmwcXbDqVOnEBYWhoSEBCQlJdVq0+YLF+uNG4iPj4eNjQ3mzZuHJUuWQCwWY/ny5SqTiAKA0tJShIeHY8SIEXyHQgh5R9VpoLJAIFAXCARiADkAohhjl+o1KkKIylDFhEV2djb38eHDh7kB0Onp6dyg4tu3byM5ORnm5uZKiUmV4yKEEEJe5vHjxzh79iwmTZoEANDU1ISenh62bt2KBQsWQEtLCwBUYtujolgFAgEeP34MAHj06BHatm3LZ5gy/v77bzg7O8PQ0BBA1eMr6eOG7OxslbhfCSENW516KBhjFQBEAoFAD8BhgUBgzxiTeRYnEAj+D8D/AYCpqenbjpMQwpPs7GyubLhmwsLExAQaGhr1mrAYM2YMTp8+jdzcXAiFQixbtgynT5+GWCyGQCCAubk5tm/fDgA4f/481qxZg0aNGkFNTQ0//vgjWrVq9dZjUuW4CCGEkNeRlpaG1q1bw8fHB/Hx8XBxccHmzZuRkpKCc+fOYeHChdDW1saGDRvwwQcfqGSsmzZtQp8+fTB37lxUVlbin3/+4TXO6vbt2yczgHrw4MEIDg7GggULEBwcjCFDhvAYHSHkXSBg7NU6rAQCwRIAEsbYBkXnuLq6spqT6gkhqq96wsLQ0FBhwsLIyAi7d++WSVgsXrwYnp6efN8EpYmIiICfnx8qKiowefJkLFiwgO+QCCGEkNcWExMDNzc3XLhwAV26dIGfnx+aNWuGw4cP45NPPsHmzZtx+fJljBo1CmlpabxuflQU66NHj9CjRw8MGzYMf/zxB3766SccP36clxgLigsQeisUnu09oVWpBRMTE6SlpaF58+YAgLy8PIwcORJ37tyBqakpQkJC6rzUghDyfhMIBLGMMddal78suSMQCFoDKGOMFQoEgsYAIgGsZYwdUXQdSu4QQt5lFRUV6NixI6KioiAUCvHBBx9g3759sLW15Ts0Qggh5LXcv38fbm5uyMjIAACcO3cOa9asQUVFBRYsWICePXsCACwtLXHx4kW0bt1a5WI9f/48CgsLIRAIwBhD8+bNuTYtZduRuAPfxX6H2S6z4WPvw0sMhJB3k6LkTl1m7hgBOCUQCBIAXEbVzB2FiR1CCHnXRUdHo3379rCwsICmpiZGjx6NsLAwvsMihBBCXlubNm1gYmKC5ORkAFVru21tbeHp6YmTJ08CAFJSUlBaWsp7a7GiWNu2bYszZ84AAE6ePIkOHTrwFqNne0/MdpkNz/aevMVACHm/vHTmDmMsAUAnJcRCCCFyqVoL1N27d2FiYsL9WygU4tIlmjNPCCGkAZLkAeI9gMgbW7Zswbhx41BaWgoLCwvs2LEDurq68PX1hb29PTQ1NREcHMxbS1a+pBQhMZkY4WoiN9YhQ4bAz88P5eXl0NbWxk8//aT0GAsLCzF58mQkJiZCIBDAOsgaOjo6mDZtGp4+fQpzc3Ps3bsXzZo1U3pshJB3W50GKhNCCF8qKirwxRdfyLRADR48mNcWKHntrHzOHiCEEEJeFZeEuHwOgqJcBK1Mx7FsPWRnZ6N169bIyMjAv//+i/79+2PPnj18hwsACInJRMDfNwAAU3uIUHMMxIcffojY2Fg+QuNIV7QfOHAApaWlKCoqgoeHBzZs2IAePXogKCgI69evx4oVK3iNkxDy7qnTKnRCCOGLKrZACYVCZGZmcv/OyspSqXWrhBBCyMtIkxA3rl1DfMg62Az8CgAwa9YsiMViiMVi9O/fn+coqxQWFmL48OHYMKU/Svb5wbziLkaNGgWRSASRSARzc3OIRCK+w1S4oj05ORnu7u4AAA8PDxw8eJDPMAkh7yhK7hBCZERERMDKygrt27fHmjVr+A5HbgvU3bt3+QtIkocPSv/FzZRkpKeno7S0FPv378fgwYP5i4kQQgh5BTJJCF19aPacAz1jC77DUkiaiLqZkozbN6+hi7Mjfv/9dy4JNWzYMAwdOpTvMGVWtHfq1AmTJ0+GRCKBvb09wsPDAQAhISEyLxARQsjbQskdQghH2gL1999/49q1a9i3bx+uXbvGa0wq1wIl3gONU8sQ+EUf9OnTBzY2Nhg5ciTs7Oz4i4kQQgh5BYqSEAAQGBgIR0dH+Pr6oqCggOdIFVfDSDHG8Mcff2DMmDE8Rfif8vJyxMXFYfr06bhy5Qp0dXWxZs0aBAUF4YcffoCLiwuePHkCTU1NvkMlhLyDKLlDCOFQC1QdiLwBj+XoP301UlJSkJqaioULF/IXDyGEEPKKFCUhpk+fjtTUVIjFYhgZGWHOnDl8h/rCRBRQtQbd0NCQ181YUkKhEEKhEF26dAEADB8+HHFxcbC2tkZkZCRiY2MxZswYWFpa8hwpIeRdRMkdQghH5VqgAHzwwQe4efOm6rRA6eoD3f0AXX34+vrCwMAA9vb2/MVDCCGEvCJFSQhDQ0Ooq6tDTU0NU6ZMQXR0NM+RKk5ESe3bt08lqnYAxSvac3JyAACVlZVYuXIlpk2bxmeYhJB3FCV3CCEcVWuBypeU4tcLtxGwYaNKtkBNnDgRERERfIdBCCGEvBJFSYjs7GzunMOHD6vEixeKElFAVeLn0KFDGDVqFJ8hoqC4ADsSd6CguIBb0e7o6AixWIxvvvkG+/btQ8eOHWFtbY22bdvCx8eH13gJIe8mWoVOCOGoWguUdOXp1/3skZKSwlsciri7uyMjI4PvMAghhJC6keQB4j2AyJtLQpSWlsLCwgI7duzAV199BbFYDIFAAHNzc2zfvp3viGUSUVZWVlwiCgCOHz8Oa2trCIVCXmMMvRWK72K/AwD4iHxqrWj38/ODn58fH6ERQt4jlNwhhHCqt0AZGxtj//79+O2333iLZ4Sricx7QgghhLwB8R4gajEAQNTdr1YSYvfu3XxEJVe+pBQhMZkY4WoiNxEFAPv371eJlizP9p4y7wkhhA+U3CGEoKC4AKG3QuHZ3hOBgYHo06cPKioq4Ovry2sLVEtdTUztUTV00NfXF0eOHIGBgQESExN5i4kQQghpaAoLCzF58mQkJsRDUKqNIHcrdH1+bMOGDfD398fDhw/RqlUrXuOsTlq9CwBTe4hqJaIAYOfOnUqOShZ3vyYmQiAQwDrIGo0bN8a0adNQXFwMDQ0N/Pjjj+jcuTOvcRJC3g+U3CGEyJYT9/dB//79eY6otokTJ2LGjBkYP34836EQQgghDYqfnx/69u2LAwcOoLS0FEVFRQCAzMxMREVFwdTUlOcI/yNNmMQnXEVJSQXMewcBsMSWLVsQGBgIDQ0NDBgwAOvWreM7VLn368iRI7FkyRL069cPR48exbx583D69Gm+QyWEvAcouUMIaRDlxDTfhhBCCHl1jx8/xtmzZ7kqF01NTWhqagIAZs2ahXXr1mHIkCE8RihLXsLk1KlTCAsLQ0JCArS0tLjtU3xSdL8KBAI8fvwYAPDo0SNeZxcSQt4vtC2LEIIW2i3gY++DFtot+A6lYZDkARc2Y8yIoejatSuSk5MhFArx66+/8h0ZIYQQIiMtLQ2tW7eGj48POnXqhMmTJ0MikSA8PBzGxsZwcnLiO0SONGEyadIkAFUJEz09PWzduhULFiyAlpYWAMDAwIDPMAEovl83bdoEf39/mJiYYO7cuQgICOA7VELIe4KSO4QQ8qqeD6TcN7MHsrOzUVZWhqysLO7BKCGEEKIqysvLERcXh+nTp+PKlSvQ1dXF0qVLsWrVKixfvpzv8GQoSpikpKTg3Llz6NKlC3r06IHLly/zHarc+3XNmjXYunUrNm7ciMzMTGzcuJEeGxBClIaSO4SQWnx9fWFgYAB7e3u+Q1FNIm/AYzkg8kZmZiY+/vhj2NjYwM7ODps3b+Y7OkIIIYQjFAohFArRpUsXAMDw4cMRFxeH9PR0ODk5wdzcHFlZWXB2dsb9+/d5jVVRwqS8vBwFBQW4ePEi1q9fj5EjR4Ixxmusiu7X4OBgDB06FAAwYsQIREdH8xkmIeQ9QskdQkgtEydOREREBN9hqC5dfaC7H6CrDw0NDfzvf//D9evXcfHiRfzwww+4du0a3xESQgghAIA2bdrAxMQEycnJAIATJ07A2dkZOTk5yMjIQEZGBoRCIeLi4tCmTRteY1WUMBEKhRg6dCgEAgE6d+4MNTU15Obm8hqrvPvV1tYWbdu2xZkzZwAAJ0+eRIcOHfgMkxDyHqGByoSQWlRpeHG+pBQhMZmIDPwG/5w/i9zcXAiFQixbtkwlSp2NjIxgZGQEAGjatClsbGxw9+5d2Nra8hwZIYSQ95okr6qNWOSNLVu2YNy4cSgtLYWFhQV27NjBd3RyVU+YWFlZcQkTS0tLnDx5Ej179kRKSgpKS0t5W9teUFyA0Fuh8GzvKfd+HTJkCPz8/FBeXg5tbW389NNPvMRJCHn/UHKHEKLSQmIyEfD3DXw9YzUOhljyHc4LZWRk4MqVK9wrjoQQQoiySVeJJ14+B0FRLoJWpuNoVlOUlpZCTU0NRUVFePbsGVq0+G+JAt8v6EhfyBnhaiI3YaKrqwtfX1/Y29tDU1MTwcHBEAgEvMQaeisU38V+BwDwEfkgJiZG5viHH36I2NhYPkIjhLznKLlDCFFpI1xNZN6rqqdPn2LYsGHYtGkTmjVrxnc4hBBC3lPcKvHg7Si9vBNFHbxg17QVVqxYAQD4/vvvsXz5cmzbto3nSP8jfSEHAKb2ENVKmADAnj17lB2WXJ7tPWXeE0KIqqDkDiFEpbXU1cTUHqpdsVNWVoZhw4Zh3Lhx3BBFQgghRNmkq8R37twJCATQ7DkHmjXOkUgkvFW9KNIQXsjhKqISEyEQCGAdZI1NmzZxM3cKCwuhp6cHsVjMb6CEkPcWDVQmhDQYqriZijGGSZMmwcbGBrNnz+Y7HEIIIe8xRavEAWDhwoUwMTHB3r17VWIFemFhIYYPHw5ra2t0d3WCOxim/wAAo4JJREFUo2YOvl+/GsbGxhCJRBCJRDh69CjfYXKkFVE3btxAfHw8bGxs8Pvvv0MsFkMsFmPYsGH0Ag8hhFeC+lgj6OrqyuSVUxJCVFf1AYGf+3yO06dPIzc3F4aGhiozvDg7OxvZ2dlwdnbGkydP4OLigtDQUH6GFz8fVHm+qD0+6j0QDg4OUFOrypevXr0a/fv3V35MhBBC3msxMTFwc3PDhQsX0KVLF/j5+aFZs2ZcSxYABAQEoLi4GMuWLeMxUmDChAn46KOPMHnyZJSWlqKoqAibNm1CkyZNMHfuXF5jq+nx48dwcnJCWlqa3KonxhhMTU1pOxYhRCkEAkEsY8y15uXUlkUIASA7IHDfvn08RyOfSm2mEu8BohbjQ4/lqI8kOSGEEPKq5K0SX7Nmjcw5Y8eOxYABA3hN7si0jwHQ1NSEpmbNBjLVUb0iKj4+Hi4uLti8eTN0dXUBAOfOnYOhoSEldgghvKK2LEIIgKrBgLNdZjeYAYG8b6YSeQMeywGRN4qLi9G5c2c4OTnBzs4OS5Ys4ScmQggh77Xqq8QBcKvEb968yZ0THh4Oa2trvkIE8OL2scDAQDg6OsLX1xcFBQW8xilVXl6OuLg4TJ8+HVeuXIGurq5M0mzfvn0YM2YMjxESQgi1ZRFCGqCnT5+iR48eWLhwoUr0tzPGIJFI0KRJE5SVleHDDz/E5s2b4ebmxndohBBC3gfPW4Uh8ob4ZibX6iRdJT558mQkJydDTU0NZmZm2LZtG4yNjXkLV1H72IwZM9CqVSsIBAJ8++23yM7ORlBQEG9xSt2/fx9ubm7cyvhz585hzZo1+Ouvv1BeXg5jY2PExsZCKBTyGygh5L1AbVmEkHeCKm6mEggEaNKkCYCq+MrKylRuEwkhhJB32PNWYQAQdfertUr84MGDfESlkKL2MUNDQ+6cKVOmYODAgXyFKKN6RZSVlRVXEQUAx48fh7W1NSV2CCG8o7YsQohctJnq1VRUVEAkEsHAwAAeHh78tYsRQgh5L1TfNmXj+wP+NfKBf8hNWFtbw9HREV5eXigsLOQ7TBn5klJsP5MKzaYt5baPZWdnc+cePnwY9vb2fIUKoGrZxI7EHSgoLsCWLVswbtw4ODo6QiwW45tvvgEA7N+/n1qyCCEqgdqyCCFyqdJmqnxJKUJiMmFSegcDen+i0pupCgsL4eXlhS1btvD+oJQQQsi7S962qejoaHzyySfQ0NDA/PnzAQBr167lOdL/bD+TioC/b+Drftbo0vxJrfaxr776CmKxGAKBAObm5ti+fTu3SIEPOxJ34LvY7zDbZTZ87H14i4MQQqqjtixCyCtRpc1UITGZ3INBVd9Mpaenh549eyIiIoKSO4QQQuqFom1TvXv35s5xc3PDgQMHeIpQvhGuJtz7lrqatdrHdu/ezUdYCkmXTDSUZROEkPcbtWURQl6K781UI1xN8HU/a+5BoUqR5OHhkVUovJsGAHj27BnXf08IIYTUhxdtm5IKCgpCv379eIpQlrSFrJuLIzZNG4jkhFju2IYNGyAQCJCbm8tjhP+p3u7WrVM3WD+xRgvtFtiyZQusrKxgZ2eHefPm8R0mIYTUQskdQsgLPX36FMOGDcOmTZvQrFkzXmJoqauJqT0s0VJXEwBUa/W4eA+y/wrAxx+7w9HRER988AE8PDxUZggkIYSQd8/LVnOvWrUKGhoaGDduHI9R/sfPzw99+/bFjRs3EB8fDxsbGwBV8/2ioqJgamrKc4T/kRfrqVOnEBYWhoSEBCQlJWHu3Ll8h0kIIbVQWxYhRCFV3EwFAFpaWjh58qTM6vF+/frxs3pc5A1HAFc2eAO6+sr/+oQQQt47irZNAUBwcDCOHDmCEydOqMTmRkUtZAAwa9YsrFu3DkOGDOExwv8oinXr1q1YsGABtLS0AAAGBgY8RkkIIfJR5Q4hRC5V3kylUqvHdfWB7n4yiZ2Kigp06tSJqncIIYTUi+qruYH/tk1FRERg7dq1CA8Ph46ODs9RVlHUQhYeHg5jY2M4OTnxHSJHUawpKSk4d+4cunTpgh49euDy5ct8h0oIIbVQcocQIkO69jPiZAR2796NkydPQiQSQSQS4ejRo3yHx1Hl1eObN2/mSs4JIYSQt0aSB1zYDEjy5K7mnjFjBp48eQIPDw+IRCJMmzaN74jltpAtXboUq1atwvLly/kOT4aidrfy8nIUFBTg4sWLWL9+PUaOHKnyCx4IIe8fassihMgIvRXKrf1U5Qcu6urqEIvF3OrxxMREldhOlZWVhb/++gsLFy7Ed999x3c4hBBC3gGFhYWYPHkyEi+fg6AoF0Er05HVsjuePXuG69evIygoCC1atMCtW7f4DrUWeS1kS5cuRXp6Ole1k5WVBWdnZ0RHR6NNmzYqFeuaNWsgFAoxdOhQCAQCdO7cGWpqasjNzUXr1q15i5UQQmqiyh1CiAzP9p6Y7TK7waz9rL56XBXMnDkT69atg5oa/XklhBDydnBDfq9dQ3zIOtgM/Ar29vY4dOgQ3N3d+Q5PrnxJKbafSYVm05a1WsicnZ2Rk5ODjIwMZGRkQCgUIi4ujtfEDqC43c3T0xMnT54EAKSkpKC0tBStWrXiM1RCCKmFKncIITJaaLeAj70P32G80MOHD9GoUSPo6elxq8fnz5/Pd1g4cuQIDAwM4OLigtOnT/MdDiGEkHeAzJBfgQCaPedAE4CeMd+RvVhITCYC/r4BAFwLWWlpKSwsLLBjxw6eo5NVUFyA0Fuh8GzvKTdWXV1d+Pr6wt7eHpqamggODlaJYdWEEFIdJXcIIQ1GvqQUITGZsNUuxFfTJqOiogKVlZUYOXKkSgwvvnDhAsLDw3H06FEUFxfj8ePH8Pb2xp49e/gOjRBCSANVfchvfHw8XFxcsHnzZujq6vId2guNcDXh3rfU1URMTIzCczMyMpQUlXzSlnQA8BH5yI2V/i8nhKg66hsghLxQcXExOnfuDCcnJ9jZ2WHJkiW8xSJ9FfBasR6uXLmChIQEJCYmYvHixbzFxJHkIWBgG2QlxyMjIwP79+/HJ598Qg8GCSGEvBFFQ35VUWFhIYYPHw5ra2t0d3WCo2YONq5ZAUdHR4hEIvTu3Rv37t3jO8xaGlpLOiGEyEPJHULIC2lpaeHkyZOIj4+HWCxGREQELl68yEssI1xN8HU/a+7VQJUi3gNELa56TwghhLwl8ob8xsXF8RyVfNxsoBs3EB8fDxsbG/j7+yMhIQFisRgDBw5UmQ1Z1RNR3Tp1g/UTa2xesxnGxsYquSWUEEJehtqyCCEvJBAI0KRJEwBAWVkZysrKeOszb6mriak9LHn52i8l8pZ537NnT0ycOBEODg5QV1eHhobGC0vSCSGEEHmqD/m1srLihvyqGpnZQAA0NTWhqakpc45EIlGZWTXSRNSBAwdQWlqKoqIiHDt2DLNmzcLcuXP5Do8QQl4ZVe4QQl6qoqICIpEIBgYG8PDw4F49VBUVFRXo1KkTv3N3dPWB7n5V76s5deoUxGIxJXYIIYS8GkkecGEzIMnjhvw6OjpCLBbjm2++weHDhyEUCvHvv/9iwIAB6NOnD6/hVp8N1KlTJ0yePBkSiQQAsHDhQpiYmGDv3r0qUbkjTURNmjQJQFUiSk9Pj9+gCCHkDVFyhxDyUurq6hCLxcjKykJ0dDQSExP5DknG5s2bYWNjw3cYhBBCyBup3ipkY2eLf4O+Qf7Z7fD398ejR49gaGiIHTt2oEWLFvDy8kJWVhZKSkrw4MEDHDt2jNfYXzQbaNWqVcjMzMS4ceMQGBjIa5zAixNRgYGBcHR0hK+vLwoKCniOlBBC6o6SO4SQOtPT00PPnj0RERHBdyicrKws/PXXX5g8eTLfodQiEAjQu3dvuLi44KeffuI7HEIIISpOZmbNFTFsRizCmshs9OrVCzdv3kSvXr1UdphyXWYDjR07FgcPHuQjPBmKElHTp09HamoqxGIxjIyMMGfOHL5DJYSQOqPkDiHkhR4+fIjCwkIAwLNnz3D8+HFYW1vzG1Q1M2fOxLp166Cmpnp/zi5cuIC4uDj8/fff+OGHH3D27Fm+QyKEEKKiarUKtTCCXt+vEXY0EhMmTAAATJgwAaGhoTxGWVu+pBTbz6RCs2lLbjYQAG420M2bN7lzw8PDVeIxhKJElKGhIdTV1aGmpoYpU6YgOjqa50gJIaTuaKAyIUSuguIChN4KRYdnHfDl/32JiooKVFZWYuTIkfzOtqnmyJEjMDAwgIuLC06fPs13OLW0bdsWAGBgYAAvLy9ER0fD3d2d56gIIYSoouqtQvHx8XBxccHmzZvx4MEDGBkZAQCMjIyQk5PDc6SyQmIyEfD3DQDgZgOVlpbCwsICO3bswOTJk5GcnAw1NTWYmZlh27ZtPEeseEh1dnY2d18fPnwY9vb2PEdKCCF1R8kdQohcobdC8V3sd5jtMhtXrlzhOxy5Lly4gPDwcBw9ehTFxcV4/PgxvL29sWcP/+vIJRIJKisr0bRpU0gkEkRGRmLx4sV8h0UIIURFSVuFtmzZgi5dusDPz09lW7CqG+Fqwr1vqatZa4GAKrRhVSd98WrVhlW1ElFfffUVxGIxBAIBzM3NsX37dr7DJYSQOqPkDiFELs/2njLvVUm+pBQh/8/encdFWW8PHP8MEGqCuxCLyM0NFGQUUrvXq5R3cC0FXHK5qWhqv2tRpmZ5Xcs0d1PLslBSr6a5Eam54JZlCDoiaaAmBYmighuKCHx/fxATA4NiqQ/geb9evgbmeZ6Z8ww4zJw533Nikhnz3ylMnz4dgD179jB79mztEzuZl8C4kvPV2xLYPwTIf8Her18/OnXqpG1sQgghyixLS4VmzJiBo6OjqaIkNTUVBwcHjSPNb/w8dOhQ4uPj0el0hIWFMX3yEr766itsbW1p0KABy5YtK5MTqAp/eFU0EbVixQqNohJCiL+u7DWpEEKUCTUr12Sw12BqVq6pdSjFFJSAr4tJ1jqU4owrYcdEnrzyLUePHuXo0aMcOHCAI0eO5E8/8fTk+++/1zpKIYQQZUzhpULwR8+a559/nvDwcADCw8Pp3r27lmECRRo/Hz2Kp6cnBoOB+Ph44uLiaNy4senDl7Kg8BSy6T2n87z186YPr2bPno1Op+PixYvaBimEEH+RVO4IIcqdwiXgBfz9/fH399cookL0A8wv+eNF8Jdffkl2djY3btzQKDghhBBlzu8Vn+gHWOxZU9Dv7rPPPsPNzY1169ZpGm5B4+fly5cDYGtri62tLQEBAaZ92rRpw5dffqlRhMVZ+jtco3INkpOT2bFjB25ublqHKIQQf5lOKXXfb9TPz08VLXMUQlQcubm5+Pn54eLiQmRkpNbhlGlXr17Fx8eHn3/+GZ1Op3U4QgghygB3d3fs7e2xtrbGJiudmBeucNR9OCM+3s/169dxd3dn1apVVKtWTetQizEajQwbNoymTZuaNX6uWrWqaZ/nnnuOPn36MGDAgDvc0sNxp7/DPXv2ZMKECXTv3p2YmBjq1KmjUZRCCFF6Op0uVinlV/R6WZYlhLhnCxYswNPTU+swinF3d8fb2xu9Xo+fX7HnO00Unn7SokULhg4dSmZmptZhCSGE0Nju3bsxGo3ExB4Bw1SGLtzBjBkzOHbsGIGBgcyaNUvrEC0qaPz88ssvc+TIEapWrWrW+HnatGnY2NjQv39/DaP8Q0l/hyMiInBxccHHx0frEIUQ4r6Q5I4Q4p6kpKTw9ddfM3ToUK1Dscj0YrmMVA/e7UWwEEKIR1zV2vCPUBJOnqZdu3YAGAyGMjdlqoClxs+HDx8G8nsCRUZGsmrVqjJTrWrp7/DkyZOZNm0aU6dO1To8IYS4byS5I4S4J6+99hozZ87EykqePkrjTi+ChRBCPJp0Oh0BAQH4+vryySefAODl5UVERAQA69atIzm57A0NSM/MZnNCJk7OrsUaP2/bto3333+fiIgIHn/8cY0j/UNJf4fPnDmDj48P7u7upKSk0LJlS86dO6dxtEII8efJuzMhRKlFRkbi4OCAr6+v1qFYZOnFstZKmn4ihBDi0XXgwAEOHz7M1q1bWbx4Mfv27SMsLIzFixfj6+vLtWvXsLW11TrMYgqmVXYIeZP+/fvTvHlzjEYjb7/9NiNHjuTatWsYDAb0ej0jRozQOlzA8t/hli1bkpaWRlJSEklJSbi6unL48GGeeOIJjaMVQog/T6ZlCSFK7cCBA0RERLBlyxaysrK4evUqAwYMYOXKlVqHBuTH5+zsTFpaGgaDAQ8PD1OJuyZ+n4CycOY79O/fn2vXrnHu3Dnc3NzYsWMHP//8M1OnTuW1117TLkYhhBAPnbOzMwAODg4EBgYSHR3N6NGj2b59OwCJiYl8/fXXWoYI5I8QHzp0KPHx8eh0OuYv/piAKj/z5ZyPSEz4iejoaFOPu1OnTmkcrbmMrAw2ndpEj4Y9LE4hE0KIikaSO0KIuyp4gTR20limT58OwJ49e5g9e3aZSeyA5RfLmiZ3jCthx0T0hqnFegDl5ubi4uJCYGCgRsEJIYTQQmZmJnl5edjb25OZmcn27duZOHEiaWlpODg4kJeXx7vvvlsmKl8sjRB3c6rLGy8EMHz4cK3Du6NNpzYxN3YuAIP1g+/Yiy8pKekhRSWEEA+OJHeEEHdl9gLJa7DG0VhW0otlTekHmF8WsmvXLho0aED9+vUfclBCCCE08Xs15/nqbQnsHwLkN/vt168fnTp1YsGCBSxevBiAoKAgBg/W9u/t1atX2bdvH8uXLwfA1tYWW1tbatSooWlcpdWjYQ+zSyGEqOgkuSOEuCtLL5D8/f3x9/fXJJ7C0jOzWReTzFO1bzO4fx/A/MWypn6fgGLJmjVr6Nu370MOSAghxMPk7u6Ovb091tbW2GSlE/PCFa66D6NKlSpkZWVRpUoVDAYDkF8lExpq+W+GFgqPED969Ci+vr4sWLCAqlWrah1aiYouIwsLC2PutLls3rwZKysrHBwcWL58uanSVwghKhKdUuq+36ifn58qK2OIhRAV28d7TzN960+81dmD4e0baB1OqWRnZ+Ps7MyPP/6Io6Oj1uEIIYR4QNzd3YmJiaFOnTqmyp2AiZt4ffRYOnfuzJYtW5g5cyZ79uzROtRiYmJiaNOmDQcOHKB169aEhoZSrVo13nnnHSD/Q57Zs2ebeu6UBQMHDuSf//wnQ4cONS0js7Kyolq1agB88MEHHD9+nCVLlmgcqRBC/Hk6nS5WKVXsyVcqd4QQ5Vovv3pml+XB1q1badmypSR2hBDiUfJ7NafOZgtXr14F4MqVK2W2isTSCPEZM2ZoHFXJSlpGVlhmZiY6nU6D6IQQ4sG76yh0nU5XT6fT7dbpdCd0Ot2POp2u7NSLCiE05e7ujre3N3q9XrNP7mpVtWV4+wbUqmr+Au7y5cv07NkTDw8PPD09+f777zWJz5LVq1fTt29f5s2bR7NmzfDy8qJv375kZWVpHZoQQoj7SKfTERAQgK+vL5988gkA8+fPZ8yYMdSrV4/Ro0ebBhWUNZZGiDdt2lTjqEpWeBlZixYtGDp0KJmZmQCMHz+eevXqsWrVKqZOnapxpEII8WDcdVmWTqdzApyUUod1Op09EAv0UEodL+kYWZYlxKPBrNy8jLFUmq1pE8jfy/FvNA6inoeeb7/9li5dunD8+HGqVKlC79696dKlC4MGDdIuRiGEEPfV2bNncXZ2Ji0tDYPBwMKFC/nyyy9p3749wcHBrF27lk8++YSdO3dqHaqZgn52HrbpvPHKy2YjxPfs2cMrr7zChQsXqFGjBnq9nm+++UbrkO+6jAxg+vTpZGVlMWXKFA0jFUKIv6akZVl3rdxRSqUqpQ7//vU14ATgcv9DFEKI+6OgNHvIkCEAZWO6x+9j0R9P3MClS5eoVq0aOTk53Lx5k5ycHG7cuFFmS/OFEEL8OQXP6w4ODgQGBhIdHU14eDhBQUEA9OrVi+joaC1DtGhdTDLTt/7ET9m1iImJIS4ujk2bNlGzZk0CAwNJSUnh1q1bnD9/vkwkdsDyMrLDhw+b7dOvXz/Wr1+vRXhCCPHA3TW5U5hOp3MHWgA/PJBohBDliqVy87LgTqXZmtEPAMNU01h0FxcXRo8ejZubG05OTlSvXp2AgABtYxRCCHHfZGZmcu3aNdPX27dvx8vLC2dnZ/bu3QtAVFQUjRo10jJMoPhSZvfc33j1H0+wesowGjVqhMFgICMjQ+sw76ikZWQnT5407RMREYGHh4dWIQohxANV6uSOTqezA9YDrymlrlrYPkyn08XodLqYCxcu3M8YhRBl1IEDBzh8+DBbt25l8eLF7Nu3T+uQgPxR6IcPH+bll1/myJEjVK1aVfsmkAVj0avWBiAjI4PNmzdz5swZzp49S2ZmJitXrtQ2RiGEEH9d5iU4sIDzZ36ibdu2+Pj40KpVK7p27UqnTp1YunQpb7zxBj4+Prz99ttl4sOR0NBQOnXqxE8//cTRo0dp3bI55/Z/QacAAydPnqRDhw7a/x0tQUZWBsvil5GRlcHChQvp378/zZs3x2g08vbbbzNu3Di8vLxo3rw527dvZ8GCBVqHLIQQD0SpRqHrdLrHgEjgG6XU3LvtLz13hHj0TJ48GTs7O0aPHq11KJw7d442bdqQlJQEwP79+5kxYwZff/21toEVsm7dOrZt28Znn30GwOeff87Bgwf58MMPNY7s0ZacnMyLL77IuXPnsLKyYtiwYYSGhjJmzBi++uorbG1tadCgAcuWLdN+qZ8Qosxwd3fH3t4ea2trbLLSiXnhCn32P0nCpfzX2ZcvX6ZGjRoYjUZtA7Xg6tWr+Pj48PPPP5tNkmrSpAl79uzBycmJ1NRU/P39TVUxZcmy+GXMjZ3LKN9RDPYarHU4QgjxwP3pnju6/Gf5z4ATpUnsCCEeDSWVm5cF5WHCh5ubGwcPHuTGjRsopdi1axfnz5/Hy8uLZs2aMX/+fK1DfCTZ2NgwZ84cTpw4wcGDB1m8eDHHjx/HYDAQHx9PXFwcjRs3LjbdJjk5mWeeeQZPT0+aNWtm+mR4woQJNG/eHL1eT0BAAGfPntXitIQQD8Hu3bsxGo3ExB4Bw1S+iNiJ0WjEaDQSHBxs6rNT1pS0lPn8+fM4OTkB4OTkRFpamsaR5iu6hMz5ojOue1yZHjyd5s2bExgYyOXLl7UOUwghHrrSLMv6B/Bv4FmdTmf8/V+XBxyXEKKMKih/Tvw10WK5udbSM7P5eO9p3p05t1hpdpmReYnWOQfp+XwXWrZsibe3N+np6fz0009ER0dz9OhRIiMjzfoEiNIrKdGybt06mjVrhpWVFSVVlzo5OdGyZUsA7O3t8fT05LfffiMgIAAbGxsA2rRpQ0pKitlxJSWFxowZQ1xcHEajkW7duskIXiEeBUWW4SqlWLt2LX379tU4MMvK5FLmOyi2hEzfmtf7vs7xH4+XmIAXQohHQWmmZX2rlNIppZorpfS//9vyMIITQpQ9m05tYm7sXIy5Ro4ePcrRo0f58ccfGT9+vNahAXee8FFm/D45a0o3V3766Sfi4+N58cUXefrpp3n88cexsbGhffv2bNy4UetIy4ySEjbp6ekYDAazhp8lJVq8vLzYsGED7dq1K9V9JiUlceTIEdPklQJhYWF07tzZ7LqSkkLVqlUz7ZOZmWm25KE051dg9uzZ6HQ6Ll68WKrYhRAP150GDOzfvx9HR8cy0TjZkpKmTDk6OpKamgpAamoqDg4OWoYJlDwN824JeCGEeBTYaB2AEKJ86dGwh9llWdPLr57ZZZn0+8Qs0yXg5eXF+PHjuXTpElWqVGHLli34+RVbSvvIKkjYtGzZkmvXruHr64vBYGD58uV06NCBcePGMWPGDGbMmMH7779vWkpQONFiMBhKfX/Xr18nODiY+fPnmyVopk2bho2NDf379y/x2KJJofHjx/P5559TvXp1du/efU/n17RpU5KTk9mxYwdubm6ljl8I8XAdOHAAZ2dn0tLSMBgMeHh4mBLJq1evLrNVO2C+lLlJkyampcxNmzYlPDyccePGER4eTvfu3bUO1WwJ2dGjR/H19WXBggVUrVrVtE9YWBh9+vTRMEohhNDGPY1CF0KImpVrMthrMDUrl6FKmEJqVbVlePsG1Kpqa7ouISEBvV5v+letWjVte9oUKdkH8PT05M0338RgMNCpUycyMjL47LPPzPoYWapSKe9CQkJwcHAwO8+jR4/y9NNP4+3tzXPPPcfVq1dLrIzZvHkzAwcOBGDgwIFs2rTJ7PZLqr65k9u3bxMcHEz//v3NemSEh4cTGRnJqlWrSqzAsZQUmjZtGsnJyfTv359FixZZPK6k8wN4/fXXmTlzZon3KYTQnrOzMwAODg4EBgYSHR0N5C952rBhQ5lMNhQsY07PzC5xytSOHTto1KgRO3bsYNy4cVqHfNclZKVJwAshREUlyR0hRIXXpEkTU1PL2NhYHn/8cQIDA7UOq5ghQ4Zw+PBh9u3bh5+fH6+++qrZ9hkzZtChQ4cyP5b2XgwaNIht27aZXTd06FBmzJjBsWPHCAwMZNasWWbbCyds7tTws6TqmztRSjFkyBA8PT0ZNWqU6fpt27bx/vvvExERweOPP27x2JKSQgX69evH+vXr7xpD4fOLiIjAxcUFHx+fUsUvhHiIfh95npn2a4kDBnbu3ImHhweurq5aRmpRwTLmdTHJ6PX6YkuZa9euza5duzh58iS7du2iVq1aWodc4hIyKF0CXgghKjJJ7gghHim7du2iQYMG1K9fX+tQiilITPz666/ExMSYyvgLqlsWLFhgqlKpVasW8+fPv2NzYK1YqsYxGo20adMGvV6Pn5+f6VPtdu3aFXvDkJCQYFrOYDAYzBIipU3Y3C3RUszvb9IO7NzCihUriIqKMlV6bdmyhZEjR3Lt2jUMBgN6vZ4RI0aYHaeuX7SYFCrcFDsiIgIPD487hlH4/GxsbJg2bZo0YRaiDHF3d8fb2zv/ucy3BeyYyPk9S/Hw8KBSpUrUrl0ba2tr04CBNWvWlKklWYXj/+j13rzV2QPPShnFqiXLqpKmYZYmAS+EEBWeUuq+//P19VVCiEdPRkaGCg4OVk2aNFEeHh7qu+++0zqkYgYPHqwWLlyodRjmrl9U6tv5qu3TbZSnp6dq3ry52rlzpzpz5oxq1qyZ2rt3r4qNjVVWVlamQ44fP67s7e1V+/bt1aFDhx5KmIMHD1Z169ZVzZo1M13Xu3dv5ePjo3x8fFT9+vWVj4+PKd7C+xkMBrVlyxallFJff/21at++vWlbwXkWePrpp9WmTZuUUkrNmTNH2dnZKaWUys7OVgEBAWrOnDmmfRs3bqzOnj2rlFLq7Kl41bheXZV37YL697//rUJDQy2eh8XH7Nv5Sk2qln95L34/bv/iVxWgvL29TY/H119/rYKCglSzZs2Ut7e36tatm0pJSSnxpoqeX1xcnKpbt66qX7++ql+/vrK2tlb16tVTqampFo//9ddflb+/v/Lw8FBNmzZV8+fnn8ukSZOUs7OzWVxCiD+nfv366sKFC/nf/P7cHfX1RtWhQweVlZWllFLq/PnzGkZ4Z2bx/87Pz0/t2bNHKaXUZ599pv773/9qEdpdpd9MV2HHwtTeg3uVr6+v8vb2Vt27d1fp6emqQYMGytXV1fQ8N3z4cK3DFUKIBwaIURbyMJLcEULcNy+++KJaunSpUkqpW7duqYyMDG0DKuLWrVuqdu3a6ty5c1qHYq6ExELhpMeZM2cUYJZcqVGjhnJ1dVX169dX3t7eqkePHg/0MbeUtCls1KhRasqUKcViV0qpgIAAtWbNGqWUUv/73/9U3759TduK7nvixAllMBhUy5Yt1eTJk1WtWrVUXl6exYTN6NGj1fTp05VSSk0f3k2N+bttiYmWDRs2KBcXF2Vra6scHBxUQEDAHzf0+5s0df3ivT0of/a4Iko6v8IsvSkr7OzZsyo2NlYppdTVq1dVo0aN1I8//qgmTZqkZs2a9ZfiE0Lks/T/sFevXmrHjh0aRXRvLMVvb2+v8vLylFL5SWJPT08tQrursGNhymu5lwo7FqZ1KEIIoamSkjuyLEsIcV+UNJ60LNm6dSstW7bE0dFR61DM6QeAYarZ9CxLbGxsWLFiBZA/ljYvL4/U1FSsra2Ji4vj9OnT1K1bl8qVK6PX6wkICODs2bMAtGrVCp1Oh6enp+n2Jk+ejIuLC3q9nlq1alGjRg2zpVQACxcupEmTJjRr1ozIyMgSey4opVi7dm2Jyw/mz5/PmDFjqFevHqNHj2b69OklnqeHhwfbt28nNjaWvt070cDRrsTlUmYNP3+6wrj/TqLtwIkopYiLizP1WurSpQuBgYGkpKRw69Ytzp8/zzfffPPHnVpocl0qf/a4AndZDnYv7tSUWQhxf1gaeZ6YmMj+/ftp3bo17du359ChQxpHWTJL8Xt5eREREQHAunXrSE5O1jLEEvVo2INRvqPK7LROIYTQmoxCF0LcF6UZT6q1MjuOtiBBcBfVq1cnKioKyG8c2aVLFxITE7l8+TIAvXv3Zu/evaSmpmI0Gvnggw+YOnUq48ePRynFE088Uew2X3/9dUaPHs2+ffuws7PjxRdfNG3bvXs3mzdvJi4ujkqVKpGWlsaNGzcsxrZ//34cHR1p1KiRxe0fffQR8+bNIzg4mLVr1zJkyBB27txpcd+0tDQcHBzIy8vj3XEjGdEojbaPn8ovN7Vg165dJT5mZZ5xJeyYSFvD1BLPr0BSUlKpb7ZwU+YDBw6waNEiPv/8c/z8/JgzZw41a5bNaXdClHWWRp7n5OSQkZHBwYMHOXToEL179+bnn38uk019LcUfFhbGq6++ytSpU3n++eextbW9+w09BJcvX2bo0KHEx8ej0+kICwvDLsWOtn3acuLECaKjo/Hz89M6TCGEKDOkckcIcV/cbTypVgpGvaZcuMyOHTtK11xXS79XcvTtFcTTTz9NQkICrq6ufPHFF9StW5f9+/dz8uRJduzYweLFi3nsscdMh/7www906dLlj5vKzESn0/H666/z6aefYm1tXeLdWmps/NFHHzFu3DgqVaoE5I/4LcndEmfh4eGmx75Xl2eJ/v5byLxE3759zc7zs88+Y/Xq1TRu3BgPDw+cm/2dwWOm37WqqdwqZdXWvSjadPrll1/m9OnTGI1GnJyceOONN+7bfQnxqLE08tzV1ZWgoCB0Oh2tWrXCysqKixcvahypZZbiN6uW7NuXBg0aaBxlvtDQUDp16sRPP/3E0aNH8fT0xMvLiw0bNpia7gshhPiDJHeEEPfFncaTaqlg1OvXxy9x6dIlqlevrnVId/Z7Jcfq19qTmprK7du3SUlJoU+fPlhbW/O///2PRo0aFRtLO23aNGxsbOjRowfnz5+nXr16rFq1ir///e93HKW9aNEimjdvTkhICFeuXDHbVtqlBjk5OWzYsIE+zwXAgQX5CaoinJ2d2bt3LwBRn02iUfXbYFzJ6tWrzc5zyJAhhIaGkpiYSGJiIjPmLEDX9rU/v+yprPury7qKsDQlzNHREWtra6ysrHjppZdMk8qEEPcmMzPT4sjzHj16mKoqExMTyc7Opk6dOlqGaqbgQ47ktAyL8RdMaszLy+Pdd9/9Yxqghkpa6u3p6UmTJk00jk4IIcomWZYlhLgvCo8nbdKkiWk8qdZ6+dUzuyxs3rx5fPrpp+h0Ory9vVm2bBmVK1d+2CGaK6jgaNwlP1GiH0DfoSPZs2cPFy9epE2bNlhbW7Nx40ZeeeUV0tLSyM3NZdasWZw9e5a0tDQcHR2Jj49nypQpjBs3juPHj1u8q5dffpkJEyag0+mYMGEC7777rtl2S0sNCt7AFLZz5048PDxwvRAFOybSd1I4e35M5eLFi7i6ujJlyhSWLl1KaGgoOTk5VLa14ZN3Xq+41TgaUUpZHMeempqKk5MTABs3bizWV0kIcReZl8C4kvPV2xLYPwTIf37s168fnTp1Ijs7m5CQELy8vLC1tSU8PLxMLckq+JDjwtnHWTfjNcA8/gULFrB48WIAgoKCGDx4sIbR5isPS72FEKKs0d1tjf+f4efnp2JiYu777Qohyp6MrAw2ndpEj4Y9+OWnXxg6dCjZ2dk8+eSTLFu2rMz29vjtt99o27Ytx48fp0qVKvTu3ZsuXbowaNAgrUPLd2AB7JiYv2SnUD+epKQkunXrRnx8PJC/3Gn48OEkJydTt25ds+3ffPMNXbt2xdXVFYDk5GSsrKxITk4u1n8nKSmJgIAAbG1tTbfdqVMnxo0bh/9T3mBciV3H8VStWpX09HQcHR2ZMmUKQ4YMYdCgQbRp04YR/+6VX3mkH1BxK23Kot/feH57oyH/DOiGt7c3Vlb5hbnvvfceq1evxmg0otPpcHd35+OPPzYle4QQxbm7u2Nvb4+1tTU2NjbELPg3k8ePZemPVajr4g7k/98qvAy2rCl8DlhZ8/K8tXjYpvPm66+QlZWFjY0NH374Ia1atdI6VItiYmJo06YNBw4coHXr1oSGhlKtWjXeeecdAPz9/Zk9e7b03BFCPJJ0Ol2sUqrYE6BU7ggh/pJNpzYxN3YuAIP1gylPid2cnBxu3rzJY489xo0bN0y9CMqEgqoW/QDTm/e+8/ey59vvzSpipk6dSm5uLgaDAYB69f6oUEpMTKRHjx58+eWXQP7SOXt7e1NiJzU1FadqtmBcycZvr9GkSRPOnDljOr5gqYH/Y0dJXDOemlUf49dz54p9Ir18+fI/vilFY2hxn92lKXNp3oAmJyfz4osvcu7cOaysrBg2bBihofk/y4ULF7Jo0SJsbGzo2rUrM2fOvO+nIERZs3v37j+WVmVegie38nrA04x+e5K2gd0Ds3MAAgJeZtKkSXTu3JktW7YwduxY9uzZo12Ad2BpqXdZ6OMnhBBlmSR3hBB/ScFI0vI2mtTFxYXRo0fj5uZGlSpVCAgIICAgQOuw/lB4gtbvVTyrX5sKy5eaqmP6Dh1J9q0sUHlcvJCGi2s9duzYwa1bt3jsscdo2rQpW75cld+gef5ezp07x/nz502JoT179mD8bhe66+e5lGdHjlVl0tPTTdtDQkLylxq8tA7b3JqEh31QppYaiN8VTgT+STY2NsyZM4eWLVty7do1fH19MRgMnD9/vtjENCEeOVVrg1sbsC3fS4J0Oh1Xr14F4MqVK2XrA43fFa4GLotLvYUQoiyTZVlCiEdSRkYGwcHBfPHFF9SoUYNevXrRs2dPBgwog31gfq/cQT/AVKVhWq5VwvItk7ttL3zbspRK/K579+6MHDmSpUuXMmzYMP71r39pHZIQD83f/vY3atasiU6nY/jw4QwbNozJkyezfPlyqlWrhp+fH3PmzCmzy47B8jmcOHGCjh07opQiLy+P7777jvr162sdqpll8cuYGzuXUb6jaJHTothS7z179vDKK69w4cIFatSogV6v55tvvtE6bCGEeKhKWpYlyR0hxCNp3bp1bNu2jc8++wyAzz//nIMHD/Lhhx9qHNldFE3G3C05I8kbcY+SkpJo164d8fHxtGvXju7du7Nt2zYqV67M7Nmzeeqpp7QOUYgH6uzZszg7O5OWlobBYGDhwoU0adKEOnXqmBrQp6amEhYWpnWoJbJ0Dl9++SXt27cnODiYtWvX8sknn7Bz506tQzVTuHKnZuWymzwTQggtlZTckVHoQogHJiEhAb1eb/pXrVo15s+fr3VYALi5uXHw4EFu3LiBUopdu3bh6empdVh3V3R09t1Gad/nUduiYrt+/TrBwcHMnz+fatWqmU1MmzVrFr1797bY10eIiqRguZKDgwOBgYFER0fj6OiItbU1VlZWvPTSS0RHR2sc5Z1ZOofw8HCCgoIA6NWrV5k5h8uXL9OzZ088PDz4e4u/43HNA3VDYTAYaNSoEQaDgYyMDK3DFEKIMk+SO0KIB6ZJkyYYjUaMRiOxsbE8/vjjBAYGahpTemY2H+89TSOvFvTs2ZOWLVvi7e1NXl4ew4YN0zQ2IbR0+/ZtgoOD6d+/v+kNoKurK0FBQeh0Olq1aoWVlRUXL17UOFIhHoDMS3BgAZlpv3Lt2rX8qzIz2b59O15eXqSmppp23bhxI15eXlpFeleZmZkWz8HZ2Zm9e/cCEBUVRaNGjbQM0yQ0NJROnTrx008/cfToUTw9PZkxYwYdOnTg5MmTdOjQQZopCyFEKUhDZSHEQ7Fr1y4aNGig+fr+dTHJTN/6EwBTpkxhypQpmsYjRFmglGLIkCF4enoyatQo0/WmiWn+/iQmJpKdnW02fUeI8sxs5HlWOjEvXOH8bxcJnBbBhQsXSE1N5a233qJTp078+9//xmg0otPpcHd35+OPP9Y6/GLSM7NZF5PMU7VvM7h/HyB/KmS/fv3o1KkTdnZ2hIaGkpOTQ+XKlfnkk080jhiuXr3Kvn37TFMXbW1tsbW1ZfPmzaZJXgMHDsTf35/3339fu0CFEKIckJ47QoiHIiQkhJYtWzJy5EhN4yh48dvLrx61qtpa3GfBggUsXboUpRQvvfQSr7322sMNUoiH5feeTN/eaMg/A7rh7e2NlVV+Ue97773Hv/71L0JCQjAajdja2jJ79myeffZZjYMW4v5wd3cnJiYmP2FZqD9ZcvoNhg4dyk8//URsbGyZTWiaJadsbHhpzheMGjGYWrcvUtvOlsuXL1OjRg2MRqPWoZbIaDQybNgwmjZtytGjR/H19WXBggW4uLhw+fJl0341a9aUpVlCCPG7knruSOWOEOKBy87OJiIigunTp2sdCrWq2jK8fYMSt8fHx7N06VKio6OxtbWlU6dOdO3atcyUrwtxX/0+fa2tYWqJvXRWrlz5kIMSQgMF/cmA1wcOZ+bMmXTv3l3joO5u9+7dpuRTemY2LFlm+vDijTfeoHr16hpHeGc5OTkcPnyYhQsX0rp1a0JDQ2UJlhBC/EnSc0cI8cBt3bqVli1b4ujoqHUod3XixAnatGnD448/jo2NDe3bt2fjxo1ahyXEg6EfAIap+ZdCPGJ0Oh0BAQH4+vqalihFRETg4uKCj4+PxtHdu4IPL2pVtUUpxdq1a+nbt6/WYd2Rq6srrq6utG7dGoCePXty+PBhHB0dTX2OUlNTcXBw0DJMIYQoFyS5I4R44FavXl3mX2AW8PLyYt++fVy6dIkbN26wZcsWkpOTtQ5LiAfjL0xTS05O5plnnsHT05NmzZqxYMECAPr06WOakOfu7o5er7/PQQtxfxw4cIDDhw+zdetWFi9ezL59+5g2bRpTp07VOrRSsZScKrB//34cHR3LfNXpE088Qb169UhISADy+/M1bdqU559/nvDwcADCw8PLRRWVEEJoTZZlCSEeiIysDDad2kSAcwA7duwok80nLfH09OTNN9/EYDBgZ2eHj48PNjbyVClEUTY2NsyZM4eWLVty7do1fH19MRgMfPHFF6Z9ysOyEPHoKjoufO/evZw5c8ZUtZOSkkLLli2Jjo7miSee0DJUiw4cOICzszNpaWkYDAY8PDxo164dUPY/VCl4jdCjYQ8WLlxI//79yc7O5sknn2TZsmXk5eXRu3dvPvvsM9zc3Fi3bp3WIQshRJkn71iEEA/EplObmBs7F4BLly5pHM29GTJkCEOGDAHg7bffxtXVVeOIhCh7nJyccHJyAsDe3h5PT09+++03mjZtCmBaFhIVFaVlmEKY+71xcmajQPKq1MTe3t40LnzixImkpaWZdjVruFwGFU1ORUdH065dO3JyctiwYQOxsbEaR1iywq8RBusHY2kQy65dux52WEIIUa5JckcI8UD0aNjD7LI8SUtLw8HBgV9//ZUNGzbw/fffax2SEGVaUlISR44cMfXNgPKzLERUbEUnSsUs+DcT3hrLul+m8UvaNWxsbHB2dubFF1+kU6dOWodbapmZmeTl5RVLTgHs3LkTDw+PMvXBRNGfw45vd/Brwq98OORD5t6Yi7u7O6tWraJatWpahyqEEOWWJHeEEA9Ezco1Gew1WOswSq3wiPTg4GAuXbrEY489xuLFi6lZs6bW4QlRZl2/fp3g4GDmz59v9sasrC8LEY+OwhOlyLzEmP9m8c4/hkLV2nzwwQccP36c8ePHFzsuKSnp4QZaCgV/q56qfZvB/fsA+ROn+vXrZ0pOrVmzpkz+3zP7OQCRMyKZPXs27du3JywsjFmzZvHOO+9oGKEQQpRvktwRQghgXUwy07f+BORXHFgSEhJCZGQkDg4OxMfHA5Cenk6fPn1ISkrC3d2dtWvXSjJIPDJu375NcHAw/fv3JygoyHR9eVgWIh5RVWtTLeBN07eZmZnodDoNA7qzohUvL835gulbf6LNzWiysrKwsbGha9euZsmp5cuXaxfwPUhISDD1CDIYDHTs2FGSO0II8RfItCwhhAB6+dXjrc4e9PKrV+I+gwYNYtu2bWbXzZgxgw4dOnDy5Ek6dOjAjBkzHnSoQpQJSimGDBmCp6cno0aNMttWFpeFiEdTSROlxo8fT7169Vi1alWZn461e/dujEYjMTEx9PKrR9ATGaTG7ScuLo4ff/yR0aNHax3iXVn6OXh5eREREQHAunXrZDKlEEL8RZLcEUJoZt68eTRr1gwvLy/69u1LVlaWZrHUqmrL8PYNqFXVtsR92rVrR61atcyu27x5MwMHDgRg4MCBbNq06UGGKYT2Mi/BgQUc2LmFFStWEBUVZRp9vmXLFqDsLgsRjx5L484Bpk2bRnJyMv3792fRokUaR1l6tarakvJdBBPGv02lSpWA/IbKZZ2ln0NYWBiLFy/G19eXa9euYWtb8t9fIYQQdyfJHSGEJn777Tc++OADYmJiiI+PJzc3lzVr1mgd1j07f/68aWKQk5OT2aQVISok40rYMZG2j59CKUVcXBxGoxGj0UiXLl2A/GUhI0aM0DhQISxPlCqsX79+rF+/XovQSsVSxUtiYiL79++ndevWtG/fnkOHDmkc5d1Z+jl4eHiwfft2YmNj6du3Lw0aNNA4SiGEKN8kuSOE0ExOTg43b94kJyeHGzdumF78CSHKMP0AMEzNvxSiLPq9uiwz7VeuXbuWf9XvE6W8vLw4efKkadeIiAg8PDy0ivSuLFW85OTkkJGRwcGDB5k1axa9e/dGKaV1qCXKzMy0+HMo+DAkLy+Pd999VxLCQgjxF0lDZSGEJlxcXBg9ejRubm5UqVKFgIAAAgICtA7rnjk6OpKamoqTkxOpqanlojxeiL+kam34R6jWUQhhYmnc+ZgxY1n/yzukpmdia2uLs7MzAwYMoFOnTgQHB5OQkICVlRX169dnyZIlWp9CiSxVvLi6uhIUFIROp6NVq1ZYWVlx8eJF6tatq3G05jKyMth0ahN6az2DXhgEmE/2WrBgAYsXLwYgKCiIwYPLz4RNIYQoiyS5I4TQREZGBps3b+bMmTPUqFGDXr16sXLlSgYMKF/VAM8//zzh4eGMGzeO8PBwunfvrnVIQpQpycnJvPjii5w7dw4rKyuGDRtGaGgoRqORESNGmCb+fPjhh7Rq1UrrcEU5VXTcuaHXT0wPmYxNdUfefDN/OlbBRKmyvAyrsMzMTPLy8rC3tzdVvEycOBE7OzuioqLw9/cnMTGR7OxssxHjZcWmU5uYGzuXUb6jOHr0aLHtoaGhhIZKolgIIe4XWZYlhNDEzp07+dvf/kbdunV57LHHCAoK4rvvvtM6LIvSM7P5eO9pgnv14emnnyYhIQFXV1c+++wzxo0bx44dO2jUqBEffPABy5Ytw8vLy3TsunXraNasGVZWVsTExGh4FqK0kpOTeeaZZ/D09KRZs2YsWLAAgDFjxuDh4UHz5s0JDAwkPj7e4n4TJkygefPm6PV6AgICOHv2rJanozkbGxvmzJnDiRMnOHjwIIsXL+b48eOMHTuWSZMmYTQamTp1KmPHjtU6VFFRVK1NwOsfYVPdEYA2bdqQkpKicVClV/A3J+FMMm3btsXHx4dWrVrRtWtXOnXqREhICD///DNeXl688MILhIeHl4lx7u7u7nh7e6PX6/Hz86NHwx70rNqTxSGLTdcV7XkkhBDi/pHkjhBCE25ubhw8eJAbN26glGLXrl14enpqHZZF62KSmb71JwJGvkdqaiq3b98mJSWFIUOGULt2bXbt2sXJkydZs2YN33zzjdmxXl5ebNiwgXbt2mkUvYCSEzaWkm8lJSMMBgPx8fHExcXRuHFjPvroI4v7jRkzxtRkuFu3bkydOrXE+y8we/ZsdDodFy9efOiPzYPm5OREy5YtAbC3t8fT05PffvsNnU7H1atXAbhy5Yr03BJ/WknjzguEhYXRuXNnDSIrnaJJkXUxybw5fgLPPuOPTqdDp9Mxa9YsU+WRra0tK1euJD4+nsOHD/Pss89qewKFFB7bXrNyTQ58coB3prwjSVwhhHgIZFmWEOKhKliD38OnBz179qRly5bY2NjQokULhg0bpnV4FvXyq2d2WZJ27dqRlJRkdl1ZTVhVFCUt+UlPT6dPnz4kJSXh7u7OBx98wJw5c2jZsiXXrl3D19cXg8FgSr4NHz7cdJtOTk6mCWiFkxGFe0K1adOGL7/80mLSomnTpqb9MjMz0el0poRR0ftv2rQpycnJ7NixAzc3t4f0qGknKSmJI0eO0Lp1a+bPn0/Hjh0ZPXo0eXl5ZbZyT5R9Bw4cwNnZmbS0NAwGAx4eHqaE+rRp07CxsaF///4aR3lnhZeVpWdm81XDOrTq8hoT3x6ncWR/jSRxhRDi4ZHKHSHEQ1WwBn/TqU1MmTKFn376ifj4eFasWEGlSpW0Ds+iWlVtGd6+AbWq2modiiiipCqbGTNm0KFDB06ePEmHDh1Yvny5xUSMp6cnTZo0KfH2CycjCitaCVB0v/Hjx1OvXj1WrVrF1KlTS6xeAXj99deZOXNmmVhW8SBdv36d4OBg5s+fT7Vq1fjoo4+YN28eycnJzJs3jyFDhmgdoiinShp3Hh4eTmRkJKtWrSpX/79qVbXFz70Wj9uWr89gLVVQzZ8/nzFjxlCvXj1Gjx7N9OnTNY5SCCEqLknuCCEeqh4NezDKdxQ9GvbQOhRRhoWEhODg4GDWv+jo0aM8/fTTeHt789xzz3H16tUSkyabN29m4MCBAAwcOJBNmzaZbqekhE1RRZMRBYpWAljab9q0aSQnJ9O/f38WLVpkdruF7z8iIgIXFxd8fHz+/INVDty+fZvg4GD69+9PUFAQkP/Gu+DrXr16SS8OcUdFly6ReYl17wzGs0ljdDodMTExZmO2t23bxvvvv09ERASPP/641uHfUUnLyhYtWkTz5s0JCQkhIyNDwwhLx9LYdkniCiHEwyPJHSHEQ1Wzck0Gew2mZuWaWoeiGUuJi6LNei9fvqxdgGXAoEGD2LZtm9l1Q4cOZcaMGRw7dozAwEBmzZpltr1w0uT8+fOmpVVOTk6kpaUBJSdsirKUjIDilQAl7VegX79+ZpN5Ct+/jY0N06ZNY+rUqabtv/32m8XePJMnT8bFxQW9Xo9er2fLli2lfSg1p5RiyJAheHp6MmrUKNP1zs7O7N27F4CoqCgaNWqkVYiinCjczwXjSrzOrWPhyx2oWrUq/fr1M2s6PHLkSK5du4bBYECv1zNixAitwy+RpaTIyy+/zOnTpzEajTg5OfHGG29oHeZdWaqgkiSuEEI8PJLcEUKIh8xS4qJos96KWLpuKallNBpp06ZNsUkq7dq1o1atWmbHJyQkmPpoGAyGEpMmJSVt7paIuXLzNh/vPc2l67csJiOKVgKUlLQ4efKk6euIiAg8PDws3v/p06c5c+YMPj4+uLu7k5KSQpcuXXjrrbeKLTOD/OVbRqMRo9FIly5dSvegay3zEgc+eo0VK1YQFRVllpxaunQpb7zxBj4+Prz99tsWG+EKUSL9ADz7TeNfL72Ln58f//vf//jxxx9NTYdPnTpFcnKy6f/MkiVLNA64ZJaSIo6OjlhbW2NlZcVLL71U5pMimZmZXLt2zfR1QQWVJHGFEOLhKV+LeYUQj4wFCxawdOlSlFK89NJLvPbaa1qHVKL0zGzWxSSzfdHbfPftPi5evIirqytTpkyhVq1avPLKK1y4cIGuXbui1+v55ptvijVettSst7wICQkhMjISBwcH4uPjAejTpw8JCQkAXL58mRo1avDBBx8wcuRIXnzxRdOxBeOwO3fuzJYtWxg7dix79uyxeD9eXl5ERETQvXt31q1bR3JyMmA5aePo6EhqaipOTk4cP/0LtnY1GDBwcLFETGG7jp/nf2fSORUXw4oVK0xLQADee+89Xn31VW7duoXBYCA3T2Fl70DcdzuL7ffZZ5+RkJCAlZUV9evXZ8mSJRYTQd7e3qaKIshfdhITE2Nqqlq0N0+5ZFxJ27TlqG/nwz9Ci22OjY19+DGJcqlg6ZJOp2P48OH5Dfgt/E6VN5mZmeTl5WFvb29KikycONH0/AWwceNGs6R4WVIwJEFvrWfQC4MAyMnJoV+/fnTq1Ak7OztCQ0PJycmhcuXKksQVQogHSJI7QogyJz4+nqVLlxIdHY2trS2dOnWia9euZfYTv4JR6W+NfI/16xoU2x4YGHhPtxcWFkafPn0sJk0mTJjA5s2bsbKywsHBgeXLl2s+fWTQoEHFkjZffPGF6es33niD6tWrW5wmdi+TVMLCwnj11VeZOnUqzz//PLa2tiVWzzz//POEh4czbtw4xr+/iOv2bqxdvapYIubWrVum5Nvx4yeo696Yt3bvYtYrqtj9F66W+XjvaaZv/Ykl7y1hePsGJe5XkPird3yPxYTRnSpwCi8zO3DgAIsWLeLzzz/Hz8+POXPmULNmOVjaqB9gfinEn3SniVjlUcFzw1O1bzO4fx/APCny73//G6PRiE6nw93dnY8//ljjiC0rGJIwyncUR48eLba9bdu2ksQVQoiHRSl13//5+voqIYT4s9auXauGDBli+n7q1Knq/fff1zCiO7t0/ZZasueUunT9VqmPOXPmjGrWrFmx6999913Vo0cPlZeXp/bu3atiY2PN9rty5Yrp6wULFqjhw4f/teBLMHjwYFW3bt1iMX7wwQeqcePGqmnTpmrMmDGm60s6n7y8POXq6qoSExMt7nf8+HFVr1495erqqpydnVVSUtJdb1MppX44ckzV92iuvt4epQDl7e2tfHx8lI+Pj/r666/VxYsX1bPPPqsaNmyo/tneX82JiLmnn8/dlPZnvmTPKVX/zUi1ZM+pe7r9a9euqZYtW6r169crpZQ6d+6cysnJUbm5uertt99WgwcP/tOxl0W//vqr8vf3Vx4eHqpp06Zq/vz5SimljEajatOmjfLy8lLdunUz+/0Xj65JkyapWbNmmb5v3769OnTokIYR3V39+vWVl5eX8vHxUb6+vmbPDbNmzVKAunDhgtZh3lXR80i/ma6e6viU8mqef139+vWVj4+P1mEKIUSFBsQoC3kYqdwRQpQ5Xl5ejB8/nkuXLlGlShW2bNmSPx2ljCoYlf5XFTTr3bVrFzqdzmKlS+F+MpmZmeh0OosVPgVmz57NmDFjuHDhAnXq1LG47+TJk1m6dCl169YF8itKLFXj7N69m82bNxMXF0elSpXMlhSVZP/+/Tg6OpZYdVUwSSU4OJi1a9cyZMgQdu7caXHftLQ0HBwcyMvL49U3J3D9b/4k27qR/zeuuF27dt01vj+rtD/zXn71zC5Lo6RlZgW6du2KwWDg+++/x8rKimHDhhEamr88ZeHChSxatAgbGxu6du3KzJkz7+W0NFMw0r5ly5Zcu3YNX19fDAYDQ4cOZfbs2bRv356wsDBmzZrFO++8o3W44gFxd3fH3t4ea2trbGxsiImJIT09nZ49e/LLL7/w5JNPsmzZMtPSpfJm9+7dpmWX6ZnZAPz9CRi9Ywdubm5ahnZPCp8HQPS2P/oBFVRqCiGEePikobIQoszx9PTkzTffxGAw0KlTJ3x8fLCxqdi56HsZ2zt+/Hjq1avHqlWrmDp1qsUGzQDJycnsKPKmoaR9izbrtdTQ+KOPPmLcuHFUqlQJyG/+eTerV6+mb9++JW4vOknlh+hoPt57muBefXj66adJSEjA1dWVzz77jNWrV9O4cWM8PDxo7dWQd8e+ck9JEy0UJIFqVbW9437pmdl3bOacmppq+nrHjh384x//KNZ0uXDy7ccff2T06NEP7Lzut5JG2t+pibaomMwmYmVeYsYrvfBr3gw7Ozvi4+PR6/WmiVgbN27E1dWV77//nq5du9KxY0etwy+1gueGKePfZObMmeh0Oq1D+suUUqxdu/aOz/lCCCEeHEnuCCHKpCFDhnD48GH27dtHrVq1ymy/ndIqePOenplN3759iyUu7mVs77Rp00hOTqZ///4sWrTIYiIG8hM2Rd80lLRvaSQmJrJ//35at25N+/btOXTo0B33z8nJYcOGDQQ8F2g696KKTlKp5eTG9K0/ETDyPVJTU7l9+zYpKSkMGTKE0NBQEhMTSUxMZMGcWYzwb3jXpEl5UdC3acayTRYnS40dOxZvb2+aN29ObGws4eHhgHki5M8k38qiwr2GCppoA2ZNtMUjwriSzd/s4fVn6nL06FEOHz5M7dq1TROxAgMDSUlJ4datW5w/f55vvvlG44BLVtAQ2tfX19RUOCIiAhcXF3x8fDSOrvQsnUeBu1VqCiGEeLAq9kfhQohyq2AJzq+//sqGDRv4/vvvtQ7pLyl48w751SxFDRky5J5vs1+/fnTt2pUpU6YU23avbxpK06w3JyeHjIwMDh48yKFDh+jduzc///xziZ8479y5Ew8PD75LVUzf+hOfTn2NlOMxZtPEli5dajZJZdlnn3Iyt26Zr8i53wov37pbM+fCCidCxowZw/79+xk/fjyVK1dm9uzZPPXUUw807vut6Eh7S020RcVVbCJW/wGcvzUOp3/9B8iv8CrNctCyyFJD6GnTprF9+3atQ7snd2psfbdKTSGEEA+WJHeEEGVKwVjVT4Z/wpWMKzz22GMsXry4fEwGuoM/03vFkpMnT5o+FY2IiMDDw6PYPjdu3LinNw0vv/wyEyZMQKfTMWHCBN544w3CwsKK7efq6kpQUBA6nY5WrVqBTseciEN8v3JOsRHwQ4YMYc2aNfTt2/ePc5+w3mKlTdFJKs+WKuqK5c/0bSqaCLnX5FtZY6nXkIeHh+n3ODExka+//lrLEMUDZilxgHUlqFpb69D+soJJgA4ODgQGBrJ3717OnDljSsCnpKTQsmVLoqOjeeKJJ7QM9Y6Knkd0dDTt2rUzVWrKZCwhhNCOJHeEEGWKaazqx6MY7DVY63Dum9K+eS8Yj9vLrx7/GTqQPXv2mCVNtmzZQkJCAlZWVtSvX58lS5YUu43Tp0/f05uGws16X3rpJbp162Yxth49ehAVFYW/vz+JiYlcuX6Thd+l8XYJI+CXL19u+vp+NJwWf7CUCCmafLOysuLixYumRtllmSphpH3hJtrvvvvuHZcrivLPUuLA0dGR1NRUnJycSE1NLZfLDTMzM8nLy8Pe3p7MzExTQ+jCVUju7u7ExMSYNSoua0o6D/ijUtPV1VXjKIUQ4tElyR0hRJnSo2EPs8tHzb0s3zIlgmqY97Lx9vYu9qZhx97v2JyQSS/74n1vCt44Aaz6Yh1VHNwJ7tWnWDVOSEgIISEheHl5YWtrS9iy5Zy3a/jILaHSUnpmNmsP/cruTyYXS4QUTr7t3buX3377jXbt2plN1OrTpw8JCQkAXL58mRo1amA0GjU6GyDzEhhXcuBGQ1asWIG3tzd6vR7In9p28uRJFi9eDEBQUBCDB1echO+jLDc3Fz8/P1xcXIiMjOTo0aO89NJLXL9+nQYNGvDJJ5+YEgfPP/884eHhjBs3jvDwcLp37651+KVW8Bz9VO3bDO7fB8hf3tqvXz86deqkcXSlV1BRq7fWM+iFQUDx8yio1BRCCKEdXUkjZP8KPz8/FRMTc99vVwghKrrClTt3axb88d7TTN/6E3UPLTH1snF0dDQtiyrg7u7OKwvWsfD7NIv77tmzB6PRiE6nQ2dfl0stBjGh19+l2qYM+njvaSYtXc/5VW/i7e2NlVX+XIT33nuPf/3rX4SEhJh+lv/5z38YMWKEabT4pk2baNq0qem2CkYWazpS+sAC2DERDFPhH6HaxSEeqrlz5xITE8PVq1eJ/CKcp/xaMGrsf5kxfzHp6elkZWXx2muvMX78eC5dukTv3r359ddfcXNzY926dX+6KfyDVnSU+0tzvuDNt8Zjd95IHfvKODg4sHz5clOFUnmxLH5ZfkWtb8WqqBVCiPJKp9PFKqX8il0vyR0hhCif7iURVNp97+U2xcP3Z38+3bt3Z+TIkRgMBiB/GZSbmxtRUVHaTrb5vXIH/QCLfVWysrJo164dt27dIicnh549ezJlyhTS09Pp06cPSUlJuLu7s3bt2nLfl+tRkZKSwsCBAxk/fjxz584l8i0D1Z59jSu75qFr+xrJycl07NiR48ePax3qPSu6tCo9M5vP9x7nxfZNqVXVlg8++IDjx49bXE5blhRNUu34dgebTm0ibXsaYR+HYWNjQ9euXZk5c6bWoQohxCOppOSOLMsSQohy6l6a8JZ23z/T2Fc8PH/m51N4olaBMjOyuGrtO1bsVKpUiaioKOzs7Lh9+zZt27alc+fObNiwgQ4dOjBu3DhmzJjBjBkzeP/99x9i4OLPeu2115g5cybXrl3Lv0I/AK/G84n4rTbdqVgj72tVteW1LnrT95mZmeWmwfnu3bvN+v+4X3Bn1ZZVxMXFUalSpXI7tUwIISoyK60DEEKIvyokJAQHBwe8vLxM16Wnp2MwGGjUqBEGg4GMjAwNIxRCG0UnahUoLyOLdToddnZ2QH4T6du3b6PT6di8eTMDBw4EYODAgWzatEnDKEVpRUZG4uDggK+v7x9XVq1N2LqtLP5sBb6+vly7dq3cjrwvGOXu6+vLJ598Yrp+/Pjx1KtXj1WrVjF16lQNI/zzPvroI8aNG0elSpUAymVjayGEqOgkuSOEKPcGDRrEtm3bzK6bMWMGHTp04OTJk3To0IEZM2ZoFJ0Q2rA0UQswjSzu06ePhtGVXm5uLnq9HgcHBwwGA61bt+b8+fOmJuBOTk5SRVBOHDhwgIiICNzd3XnhhReIiopiwIABppH3sbGx9O3blwYNymf14IEDBzh8+DBbt25l8eLF7Nu3D4Bp06aRnJxM//79WbRokcZR3p2lJFViYiL79++ndevWtG/fnkOHDmkcpRBCiKIkuSOEKPfatWtXrMGmfLIvHmUljRaH8jey2NraGqPRSEpKCtHR0cTHx2sdkiiF3NxcWrRoQbdu3QAwGo2mpT516tRh0qRJPPvss6xcudKUnCvvI+8tjXIvrF+/fqxfv16L0O6JpSRVTk4OGRkZHDx4kFmzZtG7d28eRN9OIYQQf54kd4QQFZJ8si8eRemZ2Xy89zRbd+5hxYoVREVFodfr0ev1bNmyBSi/I4tr1KjBP/7xD7p06cLNmzdp0qQJkyZNIjU1lSpVqtCsWTOsrKyQgQ5lw4IFC/D09Mz/JvMSY4e9wKQ3X8doNDJ16lQ+/vhj076rV6+mcePGeHh44OzsXC5H3mdmZpr6CGVmZrJ9+3a8vLw4efKkaZ+IiAg8PDy0CrHULCWpXF1dCQoKQqfT0apVK6ysrLh48aLGkQohhChMGioLIYQQFcS6mGSmb/2Jtzp7lPip+jvvvMOLL77IggULsLKyYtiwYYSGhmI0GhkxYgRZWVnY2Njw4Ycf0qpVq4d8BuYuXLjAY489Ro0aNbh58yZ79uxhzpw5REdHU6NGDSIiIrhw4QKdO3dm7NixDB8+XNN4Rb6UlBS+/vpr00QsjCvRpZ/i6rEtENiHK1eu0LRpU/73v/8BEBoaSmhoyY21y4qiU6RiYmJ45bVRrNuwGfvKNqSdP0e9evVQStGvXz86depEcHAwCQkJWFlZUb9+/TI7KSsjK4NNpzZhcDJQ3bY69vb2piTVxIkTsbOzIyoqCn9/fxITE8nOzjZruCyEEEJ7ktwRQlRIjo6OpKam4uTkRGpqqjR/FI+EXn71zC4tsbGxYc6cObRs2ZJr167h6+uLwWBg7NixTJo0ic6dO7NlyxbGjh3Lnj17HlLkRfw+Ij3VpgUDR4SSm5tLXl4evXv3plevXjz77LMEBwdz9OhRcnNz2b59e7GlmUI7liZizZ9yjo7jVjB6aT3y8vL47rvvtA3yTyo6RcrKtTmVXvBndNdm/Lwlvz9N4clt5WEZFsCmU5uYGzuXNIc0/jcuP+mWk5NjSlJlZ2cTEhKCl5cXtra2hIeHl5vJX0II8aiQ5I4Qolwq+JSxR8Me1Kxcs9j2559/nvDwcMaNG0d4eDjdu3fXIEohHq7SjEp3cnIyLVm0t7fH09OT3377DZ1Ox9WrVwG4cuWKaWmGJowrYcdEmhumcuTIEbNNubm5dOjQgVOnThEaGioj0MuYwhOxTMnBqrX56IdM5s1fQHBwMGvXrmXIkCHs3LlT01jvh0kv96NpTDK9/OqxN70NX375pdYh3ZWlCqSf1vxEytIUVj6xEmudNe+99x5dunQxHWNra8vKlSs1jFoIIcTd6O7WDE2n04UB3YA0pZTXHXf+nZ+fn5I170KIB2lZ/DLmxs5llO8otk/bzp49e7h48SKOjo5MmTKFHj160Lt3b3799Vfc3NxYt26dfLIvRBFJSUm0a9eO+Ph4fvvtNzp27IhSylRZUb9+fW0C+71yB/0AqFrb4i6XL18mMDCQhQsX4uWV//LE39+f2bNn4+fn9zCjfSTl5ubi5+eHi4sLkZGR9OnTh4SEBFJTU7l06RJWVlbUqlWLq1evEhQUxFdffcXly5fR6XQopahevbopmVhe/O1vf6NmzZrodDqGDx/OsGHDzLY/99xz9OnThwEDBmgUYem4u7sTExNjVoE0efJk7OzsGD16tIaRCSGEKA2dTherlCr2Yqc0lTvLgUXA5/c7KCGE+LN6NOxhuhy82nLzzV27dj3EiIQoX65fv05wcDDz58+nWrVq/Pe//2XevHllo7Kiam34x517sNSoUQN/f3+++uorQkJCuHXrFqdOneLjjz/Gz8+PMWPG8NVXX2Fra0uDBg1YtmwZNWrUeDjxPwIKGiYXJGi+CPvQlJB7Y+J7VK9enXbt2jF79mxWrlyJp6cne/fuxd/fn6ioKBo1aqTxGdy7AwcO4OzsTFpaGgaDAQ8PD9q1awfkjzu3sbGhf//+GkcphBDiUXXXaVlKqX1A+kOIRQghSq1m5ZoM9hpscUmWEOLObt++TXBwMP379ycoKAiA8PBw09e9evUqNsa5LLhw4QKXL18G4ObNm+zcuRMvLy+ioqI4evQovr6+fP/99xw8eBCDwUB8fDxxcXE0btyY6dOnaxt8BVLQMHno0KF/XPn7Ujp1ZAVr164tNpFt6dKlvPHGG/j4+PD222/zySefPOSo/7qSRp2Hh4cTGRnJqlWrykUfGp1OR0BAAL6+vmY/h0WLFtG8eXNCQkLIyMjQMEIhhBB/hoxCF0IIIR4BBWPSL12/xZAhQ/D09GTUqFGm7c7OzuzduxegbFZWZF4idctsnmnfjubNm/PUU09hMBh47rnn2LFjB66urhw8eJCEhARCQ0MJCAjAxia/QLlNmzakpKRofAIVR0HDZCurQi8j9QPAMJX9mQ1wdHSkUaNG+Pv7ExkZCUDbtm2JjY3l6NGj/PDDD/j6+moU/Z9T0qjzbdu28f777xMREcHjjz+ucZSlc+DAAQ4fPszWrVtZvHgx+/bt4+WXX+b06dMYjUacnJx44403tA5TCCHEPbpvyR2dTjdMp9PF6HS6mAsXLtyvmxVCiAciJCQEBwcHU68OgHXr1tGsWTOsrKyQvmGioikYkz5j2SZWrFhBVFQUer0evV7Pli1byn5lhXElzc8s4ciHQ4iLiyM+Pp6JEycC+Q3U69Spg62tLaNGjeKHH34wOzQsLIzOnTtrEXWFU7hhspnfl9Kt3rSlWNVOeVaQFE04k0zbtm3x8fGhVatWdO3alU6dOjFy5EiuXbuGwWBAr9czYsQIrUO+K0sVSI6OjlhbW2NlZcVLL71UJiv3hBBC3NldGyoD6HQ6dyBSGioLISqKffv2YWdnx4svvkh8fDwAJ06cwMrKiuHDh0tTVlHhpGdms+73qT61qtpa3Cc5OZkXX3yRc+fOYWVlxbBhwwgNDeXo0aOMGDGC69ev4+7uzqpVq6hWrdrDPYF7aLI8e/ZsXn75ZW7dusW5c+eoWbMmJ06cYOLEiWzevBkrKyscHBxYvny5tlPByriiTZMBDAYDe/bsQafT8dhjj6GUIigoiJUrV5KTk4OLiwuxsbG4urpqHP2fU3SS1EtzvuC/8z7lsaNfcu6X00RHR5frvw2ZmZnk5eVhb29PZmYmBoOBiRMn4uPjY5qiN2/ePH744QfWrFmjcbRCCCEsKamhsizLEkI8ktq1a1dsepanpydNmjTRKCIhHqyCMeklJXYAbGxsmDNnDidOnODgwYMsXryY48ePM3ToUGbMmMGxY8cIDAxk1qxZDzHy3xU0WS4hsQN/NFmOiooiKiqKUaNGmd6s//DDD4wZM4a4uDiMRiPdunVj6tSpD/EEyp+CpskFdm/ZhMr4levnfyE7O5uVK1fy7LPPmkZk79y5Ew8Pj3Kb2Cmwe/dujEYjMTEx9PKrx3+C/Nm4YYOpeXJ5lJGVwbL4ZST+mmixAmns2LF4e3vTvHlzdu/ezbx587QOWQghxD26a3JHp9OtBr4Hmuh0uhSdTjfkwYclhBBCiIfNycmJli1bAmBvb4+npye//fYbCQkJpje2BoOB9evXaxlmvsxLcGABF5ISijVZ9vT05Ntvv+X9999n7dq15ObmotPpzKqNMjMzy0XzW61Yapr80ewpjGuaQqUT6wCoWdO8of2aNWsq1JIsyE+KTn6xI61beGsdyl+y6dQm5sbOxZhr5OjRoxw9epQff/yR8ePHA7BixQqOHTtGXFwcERERpioeIYQQ5cddR6ErpSrWX2khhBBC3FVSUhJHjhyhdevWeHl5ERERQffu3Vm3bh3Jyclah2eazpT6t7MMnL+d3Nxc8vLy6N27N926daNBgwYkJyfz5JNPUrt2bZYtW4aPjw9PPvkkFy9exMrKipEjR5rd5OzZsxkzZgwXLlygTp06Gp1Y2VDQNLmgiTBA4sUc9rv/k/GvfU7lxzcwe/Zs03ItgOXLl2sQ6f1VMElKp9MxfPhwhg0bpnVI96zo0rKYmBh6NOwBQPJXyei8dfI7LoQQFdBdkztCCCGEeLRcv36d4OBg5s+fT7Vq1QgLC+PVV19l6tSpPP/889jalry066HRDwCguX4ARwa+X2zz6dOngT/68IwcOZJKlSqRmJiInZ0d7777Lh999BE9e/akTZs2JCcns2PHDtzc3B7qaWipaE+dyZMns3TpUipVqsTVq1cJCQkxmwCVk6fIsGvMweitHDp0iN69e/Pzzz9XqAqoAwcO4OzsTFpaGgaDAQ8Pj3K5HGv37t1myZualWvyr+r/YuieoY/U77gQQjxKpOeOEEIIUURycjLPPPMMnp6eNGvWjAULFgAwZswYGjRogJ2dnWnZUsG2CRMm0Lx5c/R6PQEBAZw9e1bLU/jTbt++TXBwMP379ycoKAgADw8Ptm/fTmxsLH379qVBgwYaR0mpevDAH314tm3bhk6nw87ODoCePXuSnp5uSky8/vrrzJw5s0IlKu6maE8dyH8c+vTpQ+XKlfm///s/XnjhBaKiohgwYACurq4EBQWh0+lo1aoVVlZWXLx4UaPoHwxLk6Qqikfxd1wIIR4lktwRQjxSCppKBvcO5umnnyYhIQFXV1c+++wzNm7ciKurK99//z1du3alY8eOWocrHrCSkjhbt27ll19+ISEhgQ8//NDUWLhgUtC+ffv4v//7Pzp27MjixYvZtWsXe/fu5fbt29y+fRs7OzuzZr2zZ89Gp9OV+TfCSimGDBmCp6cno0aNMl2flpYGQF5eHu+++27ZHfd8hz48Hh4enDx5ktzcXPR6PT4+Pri5udG6dWu+/PJLvv32W1588UXOnj3L++/nVwJNnjwZFxcXs5HxFYWlnjpk34Az+5n+39GkpKSQlJTEmjVrTE2Te/ToQVRUFACJiYlkZ2dXiKU9BePOk9MyTMvQMjMz2b59O15epRoUW6YULC3z9fXlk08+ASAiIgIXFxd8fHw0jk4IIcSDIsuyhBCPlIKmkqMmjmK9V/GmsIGBgRpEJe63kkZ6p6en06dPH5KSknB3d+eDDz5gzpw5tGzZkmvXruHr64vBYOCf//wn7du3Z/jw4VStWtXUWDggIACAevXq8csvv/Dll1/i6enJhQsXmD9/Pi1btuTEiRM0b96cKlWqsH//fnr16sX3339PtWrV8Pb2xtHREYD33nuPLl26aPkwmRSMSa+X/SsrVqzA29sbvV4P5Md58uRJFi9eDEBQUBCDBw/WMNo7uEsfnuDgYBISErCysuKZZ57h6tWrxMXFMXPmTGJjY3FxcaF+/fpERUVx8OBBIL/aYfTo0Rqf2F9jaaT5a6+9hre3Nx06dMBgMOTveC6ORRu28/k33vi168ScOXPMbickJISQkBC8vLywtbUlPDy83FWBWOpHszzqGONfGcrbWWlkZ16lfv36KKXo168fnTp1YuPGjbzyyitcuHCBrl27otfr+eabb7Q+lRJZWlo2bdo0tm/frnVoQgghHiCdUuq+36ifn5+KiYm577crhBB/VUZWBptObaJHwx7UrFzz7geUICQkhMjISBwcHIiPjwfyl+x89dVX2Nra0qBBA5YtW0aNGjXuU+TiXqSmppKammqWtNm0aRPLly+nVq1ajBs3jhkzZpCRkWGq0gDo3r07I0eONL3Z9ff3Z9SoUYwcOZL4+HizaUvPPfcczz77LPPmzTNtGz9+PMuWLePKlSssX76cTp064ezsTHh4OCEhIbz++utMmjTpoT8ed/Px3tNM3/oTb3X2YHj74kuusrKyaNeuHbdu3SInJ4eePXsyZcqUYsmytWvXFpug9FBlXspP8OgH3HW5FsCUKVOwsrJi4cKFpt4yycnJWFtbs2nTJqKjo6lUqRIbN24sdu4ACxcuZNGiRdjY2NC1a1dmzpz5QE/vz5o7dy4xMTFcvXqVyMhIIiMjWbt2LefPn8doNOLj48P27ds5//MJ6qRsQ9diABNmzCc1NZWwsDCtw7+v3N3diYmJMas4evX1N0jOtOKzedP4ZOHcYs8L5dnkyZOxtrY2+x1PSUnB2dmZ6OhonnjiCY0jFEIIca90Ol2sUsqv2Aal1H3/5+vrq4QQoiLbu3evio2NVc2aNTNd980336jbt28rpZQaO3asGjt2rFbhVViDBw9WdevWNXvcjUajatOmjfLy8lLdunVTV65cKXbc888/r7Zv364aN26szp49q5RS6uzZs6px48amfc6cOaPq1atndnzbtm2Vh4eHWr9+vdntvfvuu6pbt26qZcuWxbadOXNGVa9eXb355ptq8+bNql69esrHx0dZWVmpunXrqvnz55v2/eCDD1Tjxo1V06ZN1ZgxY/7ag/MXXLp+Sy3Zc0pdun7L4va8vDx17do1pZRS2dnZqlWrVur7779XY8aMUdOnT1dKKTV9+vQy/zuflpamMjIylFJK3bhxQ7Vt21Z99dVXSimlcnJylI+Pj9LpdOqVV15RSik1adIk5ebmppo2baoGDx6szp8/bzr3qKgo1aFDB5WVlaWUUur8+fOanFNhOTk5Sq/Xq65duyqllPrvf/+rPDw8lJ2dnfL19VUdOnRQSik1btw4VaVKFeXk5KSsrKxUlSpVVP/+/c1u68yZM2b/zyqK+vXrqwsXLphdd6fnhfLm+vXr6urVq6avn376abV161azfSw9BkIIIcoPIEZZyMNIzx0hhPgT2rVrR61atcyuCwgIwMYmf7VrmzZtSElJ0SK0Cm3QoEFs27bN7LqhQ4cyY8YMjh07RmBgILNmzTLbXnik9/nz53FycgLAycnJ1Eum6HQoyG8s/OOPP9KpUydTY2GA8PBwIiIiuHnzplnT4cK38/777xMREcHEiRPJycnhgw8+wN7eHltbW8aOHUtQUBARERFs3ryZuLg4fvzxR02X/tSqasvw9g2oVdXyFKzCjYgL+grpdDo2b97MwIEDARg4cCCbNm16WCHfm9978aT+fIJnnnmG5s2b89RTT2EwGOjWrRsA1tbWGI1GXF1dOXz4MPHx8bz88sv8/PPPHDt2DCcnJ0aPHm0690WLFpGSkkKrVq1o1qyZadlanz59TD163N3dTcvb7pfc3FxatGhhinvMmDF4eHiYmnkXbnY9ZswYmjVrxp49e3j66ac5efIkZF7i6RoXeWnQvzl79ix169albdu2rFy5ktTUVNOxGzduLJf9Zu7GUj+akp4XypuMrAwW7VvE0/94Gh8fH1q1akXXrl3p1KmT1qEJIYR4CCS5I4QQD0BYWBidO3fWOoxyISQkBAcHB7M3kkajkTZt2qDX6/Hz8zNNrLGUVEtISDCNKjYYDKxf/0cvJUtJm6IsTYdSvzcWfvzxx+nfv79p323btjFjxgzq16+Pl5eXWdPh48ePm24nOzsbR0dHfvzxR3JycnjxxRe5du0aOp0Of39/KleuTGhoKOPGjaNSpUpA/nSesqygEbGDgwMGg+GOybIy5/dePM1zjnDkyBHi4uKIj49n4sSJxXb99ddfMRgMbNu2DUdHR6ytrVFKsXHjRlatWmU691OnThEYGEjlypWpVasW69ev5+DBg3zxxRfs2bOHU6dOkZKSQnx8PO3btwfgiy++wN7ensqVK2NtbU2bNm0ASE9Px2Aw0KhRIwwGAxcvXjRL4Kxbt45mzZphZWXF6NGjzSZcGQwG4uPj2bJlC1evXjUlmAH27duHg4MDvr6+ZGVlAXDjYBjTFoYxtfvfip372LFj8fb2pnnz5uzevZt58+bdv59BGXHgwAEOHz7M1q1bWbx4Mfv27dM6pHvm7u5u6ovl55dflV8wrW/y8Mlgl98U/scff2T8+PHFjk9KSqoQjbCFEEIUYamc56/+k2VZQohHQUnLFt59913Vo0cPlZeXp0FUZYelJVS9e/dWPj4+ysfHR9WvX1/5+PhYXOJmMBjUli1blFJKff3116p9+/ambUUf96efflpt2rRJKaXUnDlzlJ2dnVIqf/lQQECAmjNnjmnfguUX6TfT1dyouapBwwbq3//+twoNDVVKKZV+M12FHQtTW3ZuUYCqWrWqatSokfLx8VFfbPxCOdRzULXr1FaAqly5sqpdu7by8fFRkZGRys3NTdWqVUt5e3urLl26qPbt25vdd/369VVsbKxycnJSTz31lNLpdKpu3brKzc1NtWvXTv3rX/8q9tiURRkZGcrf318dO3ZMVa9e3WxbjRo1tAnqbq5fVOrb+fmXFpS0XKtgqY5SSs2dO1cFBgaazr1Zs2bqlVdeUXl5eWrv3r3K1tZWff/990oppXJzc9XZs2eVq6urMhqNqmrVqmrp0qWqWrVq6v3331dz5sxRjRs3VpUrV1ZKqWLL25555hnVt29f0/Kq48ePq59++km1adNG+fn5qV27dpm2FQgODlazZs1SHTp0MG0bN26csre3V9bW1srGxkZVqVJFBT3fTdWtYafqu9VT9evXV9bW1qpevXoqNTX1/j3e5cSkSZPUrFmzyt2yLEvLqq5cuWJ6/po+e7oaPny4RtEJIYR40JBlWUII8eCFh4cTGRnJqlWr7jpFxlLFSsGnr3q9noCAAM6ePfugQ35gLC2h+uKLLzAajRiNRoKDgwkKCrJYjaPT6bh69SoAV65cwdnZucT7CQsLY/Hixfj6+nLt2jVsbW1LHOn9/PPPEx4ezqZTm3j/w/ep07gOK1asICoqKn88tt6HKWFT+Dr+a1xcXLh9+zZXrlzB0dGRzIaZOLzjwKzds1BKcfPmTU6mnCR0ZShWla349ddfcXFxQafT8f3331OjRg2z+87Ozmbw4MG88847/POf/8Te3p6goCAqVarEyy+/zKlTpzhy5IjZY1MW1ahRA39/f1NlS8FSntTU1LJbfVS1NvwjtHiT5bss1ypaybJ48WLTubu6utK9e3datGhBly5dqFKlimlJlJWVFSdPnsTR0REXFxfy8vLQ6XRkZmZStWpVvv76awICAsjJyQEwW95mMBg4ePCg2YhyT09PmjRpwqlTp3j11VexsjJ/+VbQ3H3v3r20bt3adG7Tuz3B1dQz5OTkMGjQIFxdXVm/+SvSMq6R9MuvJCUlmZahPQqNdTMzMy2OOi94XoD85/Du3btrGeafUq1aNWpWrslgr8GobFXuppgJIYS4DyxlfP7qP6ncEUJUVAWfjKbfTC9WQbJ161bl6emp0tLSSnVblipWCjfzXbBgQZn59NVSFY5Sd28IXFJ1U15ennJ1dVWJiYkW9zt+/LiqV6+ecnV1Vc7OziopKemut6mUUtFx0epvXn8zVd54e3ubqmG+/vprdfHiRfXss8+qJxs8qTxbe6rTv502O77wz7coS9vCjoUpr+VeKuxYmGmfceHjit335s2blZOTk3riiSeUt7e3eu6555S/v7/avXu3qdnzk08+qdLS0oo9NmVBSZUto0ePNqs40bIp9J/y7XylJlXLvyxBSef+0UcfqQkTJiillDp06JCqVKmSiouLMx03dOhQZWNjowDVqlUrpZRSer1e2draKgcHB/X4448ra2trpZQyq4AKDg5WdnZ2avfu3WbVOV999ZVydnZWhw4dKrZt3Lhxqlq1aqpKlSrK0dExv0FygK/Zua1evdpU1VZYRWuuW7SptNFoVH6tWivnvzVW/2zvr7y8vFTz5s1V06ZN1bvvvquUUqbnhYYNG6pnn31WXbp0SctTuCt3d3fVokUL1bJlS/Xxxx+brn/77beVq6uratasWan/DgkhhCh/KKFyx+bOqR8hhBCFbTq1ibmxc1kydgm/HvmVixcv4urqypQpU5g+fTq3bt0yjdFu06YNS5YsKfG22rVrR1JSktl1hfvCZGZmlqr6p+hI9gKzZ89mzJgxXLhwway/gqVjJk+ezNKlS6lbty4A7733Hl26dDEdM2jQIEaOHMmLL75oum737t2mhsCVKlW6p34r+/fvx9HRkUaNGlnc/tFHHzFv3jyCg4NZu3YtQ4YMYefOnRb3TUtLw8HBgby8PELHh5LdKptzjufI/9tX3K5du0qMq+CT79Ju69Gwh9nlplObiFSRhB0LM+2rlGLgwIH07t2b+fPnm45dsmQJGzZs4MiRI9SuXZvs7Gzq1Klz18fmYUrPzGZdTDJNK1/m1RFDyc3NJS8vj969e9OtWzeefvppevfuzWeffYabmxvr1q3TOuR7ox9gflnY72PVU21aMHBEaLFzz87OJiQkBC8vL2xtbXnhhRf45ptv8Pb2Jicnh4iICM6cOWPqVbRx40aqV6+Ovb09rq6u2NnZsX//frO7LPh/WbhvToEDBw5w8eJFnn/+efLy8rh69SoDBgxg5ccL8LD+laYejdm1ey/R0dHMnj2blV+Ec/KreTT6/dwuXLhAx44di91u0eeg8m7BggV4enqaKv+GDh1KuwGvsz61Ou7qGO1tM3nnnXfMjqldu/YdnxfKmgMHDuDs7ExaWhoGgwEPDw/atWvHtGnTmDZtGtOnT2fRokVMmTJF61CFEEI8TJYyPn/1n1TuCCEqqjtVdvwZlqpQ7uXTV0vVP0op9euvv6qAgADl5uZW7FN5S8cU9J64l1h79eqlduzYcc/np5RSI0aMULNnzy5xv2rVqpl6FuXl5Sk7ezsVdixMBfUKUk888YSysbFRLi4u6tNPP1Xz589XjRo1Uo0aNVKhb4Sqz+I+u28/n3tV+PejaP+eolVEly5dUrVq1VJOTk7Kzs7ONHL773//u5o9e7Y6cuSIat26tfLx8VG+vr7qhx9+eOjns2TPKVX/zUi1ZM+ph37fmrtLVc+dxqpv3bpVtWvXzrSvv7+/6tq1q7K1tVUuLi6qfv36qk6dOgpQ/fv3N/V8GTdunHJyclI2NjZ/VOAUGlHevn37YpU7W2cPV551rFTaV/lVKIW3BQUFqWbNmilvb2/VrVs3lZKSct8fprIkOTlZPfvss2Y9iezt7dXFa1lqyZ5TKu6nU8rT01PjKO8vS8/dSUlJFXKMvRBCiHxIzx0hhPjrCqo3alau+cDuY9q0aSQnJ9O/f38WLVp0x30t9asBeP3115k5c6bFyp+SjrlXiYmJ7N+/n9atW9O+fXsOHTpUquNycnLYsGEDHbt3ZFn8MjKyMort4+zszN69ewGIioqitmtt5sbOpdvEbqSmpnL79m1SUlIYMmQIoaGhJCYmkpiYyPzZ8wnxDnmgP587Kfz7UVDlVVBFFBcXZ+o3ZDAY6Nu3L+PHjyc2Npa9e/fyyy+/8O233/LDDz/QokULxo4dy6RJkzAajUydOpWxY8c+9PPp5VePtzp70MuvXon7ZGVl0apVK3x8fGjWrBmTJk0CzCc8xcTEPKyQ7x/9ADBMLV7VU4qx6kuWLCEgIADIn4R1+PBhWrZsiZubGytXruTnn3/Gzc2NypUrs3LlSlPPl+nTp/Pqq6/y+uuvs2bNGp599llWrlxpuk9ybxcLc+SH27lmVQ3D22vQ6/WsWbOGyMhIANavX098fDxxcXF89dVXuLi4PNjHTGOvvfYaM2fONOtJ5OXlxbe7tjG8fQN2fL2Z5ORkDSP860rqG3Ty5EnTPhEREXh4eGgVohBCCI3IsiwhhCij+vXrR9euXe+5tD4iIgIXFxd8fHzu6bhFixbx+eef4+fnx5w5c6hZ884JkpycHDIyMjh48CCHDh2id+/e/Pzzz3ddSrZz5048PDw4lHWoxCVuS5cuJTQ0lJycHCpXrsyyT5eRVC3JtPypPCi6ZKuAstDsuWCc+A8//ECNGjXIzc29p6bSD0qtqrYMb9/gjvtUqlSJqKgo7OzsuH37Nm3btqVz5854eXmxYcMGhg8f/pCivc8KmjAXVTBW3TCVI0eOmG+7cBK2v82A557lxVfG8e6776KU4u9//ztT3wzlyom9dOrUEaXAzs7ONMZ63CvD6B3Ulc8+/QS3+n9j3bp1xMXFmW5244KxvDJjGReyrOjatSt6vZ5vvvkGgFOnf35gD0F5UrCkzdfXlz179piuDwsL49VXX2Xq1Kk8//zz2NraahfkX5SRlcEn+z5hxZsrsNZZk5OTQ79+/ejUqRPBwcEkJCRgZWVF/fr177gkWAghRMUkyR0hhChDTp48aeq18mc+fb1x4wbTpk1j+/bt93Tcyy+/zIQJE9DpdEyYMIE33niDsLCwOx7j6upKUFAQOp2OVq1aYWVlxamUU3x75Vt6NOzB/w3+P/bs2WOWtBkyZAhr1qyhb9++fyQ/+vSwWGkTGxt7T+dQ1hTt0ZORlcGmU5t44vwTrFixAm9vb/R6PfBHj6NPP/2UvLw8Wrduzfz58+nYsSOjR48mLy+P7777TqMzuTOdToednR0At2/f5vbt2+h0Ojw9PTWO7AG5U5+e7W/Dye30bAQ9b9ww33ZgAQuaGVnw2sxiSaPayVvY1e18fqXQ79v8/f3x9/cHIDB0JoHtm+ffZ9GJXwLI70MTERHBli1byMrK+qMn0cqVpufDxMREvv76a40jvTt3d3fs7e2xtrbGxsaGmJgYxowZw8ovV5KRk0HTxk2JWh9FjRo1TMesX79eu4CFEEKUCZLcEUKIh6jgDX5JyY8tW7b8pU9fT58+zZkzZ0xVOykpKbRs2ZLo6Og7jjp2dHQ0ff3SSy+ZlpfcSY8ePYiKisLf35/ExESys7PZf3k/8w7PA2D16tUWj1u+fLnp65KaF1dEBcu0RvmOstjs+fr165w5c4ZPP/2UatWq8d///rfUTaW1lpubi6+vL6dOneI///nPH+O4K6KSKnoAAt4zvyzsTkmhO227230+YnJzc/Hz88PFxYXIyEiMRiNDhw3nfPo16jg48smSj7hx40Z+U+mVK80arr/77ruMGDFC61Mold27d5s1wjcYDIydNJbIpEiMy4xMnz6d999/X8MIhRBClDWS3BFCiIeo4A0+WE5+DBky5C/dvre3t9nUKnd3d2JiYszeJFiSmppqWhq0ceNGvLy8gD+SUZFTI/lu/3dmiaiQkBCzaUHh4eG0aNQCnU5XrpZPPSwlLdOC/IqX4OBg+vfvT1BQEADh4eEsWLAAgF69ejF06NCHFeo9s7a2xmg0cvnyZQIDA4mPjzf9Dj1S6jaC/iVMDLtTgkaSN6VWdBrW2LFjebrncL5Kd6RtzXOMHTuWyZMnm/ZfvXo1ixcvBiAoKIjBg8tnQrmgh9Ngr8FsbLuRL7/8UuOIhBBClDWS3BFCiIfoTm/w78Wdki4lJYjudMyePXswGo3odDrc3d35+OOPgULVJhNHsd6reNn/ypUri133KFXj3IuSxqxb6sEDfzSV9vf3JyoqqkyMRr+bGjVq4O/vz7Zt2x7N5I54oFJSUvj6668ZP348c+fmJ8l1Oh16x0p4tfbA6ud00p2dzZa0hYaGEhpavhJnOp2OgIAAdDodw4cPZ9iwYWbbw8LC6NOnj0bRCSGEKKskuSOEEA9RSW/w79Xdki4FkpKSSnVMSQmh+5WMEsXdqQfP66+/TpUqVejUqROQv2xuw4YNHD16lBEjRnD9+nXc3d1ZtWoV1apV0yT+9Mxs1sUk80z9yjjUqEqNGjW4efMmO3fu5M0339QkJlGxFUzDKpgWBZh6UymlynRvqntx4MABnJ2dSUtLw2Aw4OHhQbt27YD8aYo2Njb0799f4yiFEEKUNTIKXQghyqEeDXswynfUPSVd/swxD2P0+6PqTqPSAwIC+PTTT8nKyuLChQtUqlSJKlWqMHToUGbMmMGxY8cIDAxk1qxZmsW/LiaZ6Vt/YkWU0eJI8I0bN+Lq6sp3333H008/jb29vdmo9DFjxuDh4UHz5s0JDAzk8uXLmp2LKPsKT8Mq7KOPPmLevHkkJyczb968v7y0tSwomIzn4OBAYGAg0dHRQP5SzcjISFatWnXXqYRCCCEePTpLTR3/Kj8/PxUTE3Pfb1cIIYSoKAo3175b8qx79+6MHDmS4OBgrly5gk6nIzk5mY4dO3L8+PGHFLG5gsqdXn71qFW15PHSSikyMzPNRqUvWLCAq1ev8uyzz2JjY2Oq9JEGsaIkb731FitWrMDGxsY0DSsoKIivvvqKy5cvo9PpUEpRvXp1Uz+e8igzM5O8vDzs7e3JzMzEYDAwceJEAEaNGsXevXupW7euxlEKIYTQkk6ni1VK+RW9XpZlCSGEEBoo7RK9pKQkjhw5QuvWrfHy8iIiIoLu3buzbt06kpOTH0KkltWqasvw9g3uul9Jo9ILGsQCtGnTRhrEimKTsPr06UNCQgIAly9fpk6dOhiNRvbs2WOahuXp6VnuelNZUpDs1VvrGfTCIABycnLo168fnTp1omHDhty6dQuDwQDk/5+512mKQgghKjZJ7gghhBBl1PXr1wkODmb+/PlUq1aNsLAwXn31VaZOncrzzz+PrW3JFTNlyd1GpUuDWAHFJ2F98cUXpgqxuPULcaxTq9gxS5cuJTQ0lJycHCpXrswnn3zysMO+Z+7u7tjb22NtbY2NjQ0xMTGMXzyesLlhZKdmEx0djZ+f+Qeyp06d0ihaIYQQ5YUkd4QQQogyyNJ4dA8PD7Zv3w5AYmIiX3/9tZYhltqdRqVLg1gBlidhQX5vp/e2nODami/44cA+ALNpWG3btiU2NlaLkP+S3bt3U6dOHdP3L3Z4EdfGrmyZtUXDqIQQQpRn0lBZCCGEKCMysjJYFr+M9JvpFsejp6WlAZCXl8e7777LiBEjtAr1Tyk8Kh2kQaz4Q8EkLCsr85emvfzq0cvlGm6uzuV2yVVptNG34e3n3sbGSj53FUII8edIckcIIYQoIwomaM1aN4sVK1YQFRWFXq9Hr9ezZcsWVq9eTePGjfHw8MDZ2ZnBg+/es0drFy5cME3CKhiV7uHhwbZt23j//fdZu3Yt/v7++Pj4mE3TmjBhAs2bN0ev1xMQEMDZs2c1PAvxIJU0CQvyeztlntjHv/v30yCyB6Og55Svr2+5WEYmhBCifJCPB4QQQogyomBMfY+GPZj+4vRi27Oysli1ahW3bt3iq6++olKlSkyZMoX09HT69OlDUlIS7u7urF27lpo1tR1fX9ArpWnly7w6Yii5ubnk5eXRu3dvunXrZmoQ261bN/Ly8vjHP/7BwoULadu2LZ07d2bMmDG88847AHzwwQdMnTpVGshWUAcOHCAiIoItW7aYJmENGDCAlStXkpOTw4YNG8rl0quSHDhwAGdnZ9LS0jAYDHh4eNCuXTutwxJCCFHOSXJHCCGEKCPuNkGrUqVKREVFmY0V79y5Mxs2bKBDhw6MGzeOGTNmMGPGDM3Hiq+LSWb61p94q7MHR44cKbbdUoPYGzdumKZpVatWzXR9ZmamLNsq54pOwgJYuHAhixYtwsbGhn79+jFz5kyzSViAqdLL1dVVy/DvK2dnZwAcHBwIDAwkOjpakjtCCCH+MknuCCGEEOVESWPFN2/ezJ49ewAYOHAg/v7+mid3evnVM7u8k5KmaY0fP57PP/+c6tWrs3v37gcar3iwik7C2r17N19u2MgrizbS7+8Nycm8bPG4NWvW0Ldv34cY6YOVmZlJXl4e9vb2ZGZmsn37diZOnKh1WEIIISoA6bkjhBBClCO5ubno9XocHBwwGAy0bt2a8+fP4+TkBICTk5Op8bKWalW1ZXj7BtSqevdx7QXTtFJSUoiOjiY+Ph7In6SVnJxM//79WbRo0YMOWTwgBZOwhg4darruo48+okW3QczedYZ1Mck4ODgA+ZOwCip7AJYvX17uGodbUtAsPfHXRNq2bYuPjw+tWrWia9eudOrUiY0bN+Lq6sr3339P165d6dixo9YhCyGEKGekckcIIYQoRyyNFa8oCk/TKhiVDtCvXz+6du3KlClTNIxO/FkFk7CuXbtmui4xMRH3BonoIiL5/NtqtJw3h6eeekrDKO8Pd3d37O3tsba2xsbGhpiYGNLT0/ln139y6swpGv6tId/u+bZYT6zAwEACAwM1iloIIURFIJU7QgghRDlUOBHi6OhIamoqAKmpqaYqiPKgpGlaJ0+eNO2zfv16zp49W2yiVoHZs2ej0+m4ePHiwwxdlEJJk7BycnLIyrzKzz8eYd7c2fTu3RullEZR3l+7d+/GaDQSExMDwIwZM+jZpSdLdi6hZ5eezJgxQ+MIhRBCVERSuSOEEEKUExcuXOCxxx6jRo0apkTIm2++yfPPP094eDjjxo0jPDyc7t27ax3qXd1tmlZwcDAJCQlYWVnh5ubGwYMHady4sVkj6TZt2pCcnMyOHTtwc3PT+pQeWUWbJU+ePJmlS5dSt25dUlNTyc3NLTYJy9XVlaCgIHQ6Ha1atcLKyoqLFy9St25drU/nvivoieXk5ERq7dQy0RNLCCFExSPJHSGEEKKMy8jKYNOpTTS62YhXhr1SLBHy9NNP07t3bz777DPc3NxYt26d1iHf1d2maa1fv97icYUbSQO8/vrrzJw5s1wktCqqos2SAYb/5xUc/9GLXn71TH2XCk/CWrJkCVFRUfj7+5OYmEh2djZ16tTR6hTuG51OR0BAADqdjuHDhzNs2LAy2RNLCCFExSPJHSGEEKKM23RqE3Nj5zLKd5TFREjt2rXZtWuXBpH9efcyTQssT9SKiIjAxcUFHx+fBxmquIOCZsnjx49n7ty5puuPJl8hdutPAAxv36DYcSEhIYSEhODl5YWtrS3h4eEVYtz9gQMHcHZ2Ji0tDYPBgIeHh9YhCSGEeERIckcIIYQo43o07GF2WREUTNMqraKNpOPi4pg2bRrbt29/gFGKu7HULBng0JbV5NlsZN/ZNvRuPo+aNWvi7++Pv78/ALa2tqxcuVKDiB8sZ2dnABwcHAgMDCQ6OtrUE8vJyanc9cQSQghRfkhDZSGEEKKMq1m5JoO9BlOzcs2771zBFTSS3rx5M2fOnMHHxwd3d3dSUlJo0aIFLVq0KNZ4efLkybi4uKDX69Hr9WzZskXjsygfcnNzadGiBd26dTO7vqCB9f/+9z+LzZJffvllzvx8ml9PHse9ngtvvPHGwwxbM5mZmaYkV2ZmJtu3b8fLy8vUEwsoNz2xhBBClD9SuSOEEEJUMFlZWbRr145bt26Rk5NDz549mTJlCuvWrWPy5MmcOHGC6Oho/Pz8tA61VEpqJF24d4m7uzuHDh2iSpUq2NnZmTVehvzePKNHj9bqFMolS710Cjew/uGHH4iIiCjWLLlwRc5LL71ULDlU0RT0xNJb6xn0wiAgfxpYv3796NSpE0899VS564klhBCi/JHkjhBCCFHBVKpUiaioqGJJDi8vLzZs2MDw4cO1DrFU7jZRqyidToednR1QvPGyuDcl9dIp3MB6woQJLFiwADBvllywBAlg48aNeHl5aXIO91vRqWBHjx5lxIgRJF9M5mrVq8xYMoOjR48WO6489sQSQghR/siyLCGEEKKCKSnJ4enpSZMmTTSOrvQKJmodz6rBkSNHiIuLIz4+nokTJxbbNykpiTp16pCbm4ter8fBwQGDwUDr1q0BWLRoEc2bNyckJITU1FRatWpVbPkWwMKFC2nSpAnNmjVj7NixD+1cy5qCXjpWVn+8VCxoYF2voSfXsnLIyMy2eOzYsWPx9vamefPm7N69m3nz5j2ssB+ogkqmAkOHDmXGjBkcO3aMnsE9+XnzzxpGJ4QQ4lEnlTtCCCFEBWRpulR5c68TtaB44+X4+HhefvllJkyYgE6nY8KECbz99tsWK5tu3rzJ5s2biYuLo1KlShV2ZHXRCpQJEyawefNmrKyscHBwoH///qZeOnv27AHgxo0bpgbWa2KSuXLzNhHG33ijfn4D4cLNklesWKHRmT04liqZEhISaNeuHTqdjimDptCxY0dmT5+tcaRCCCEeVVK5I4QQQlRABUmOlJQUoqOjiY+P1zqke1YwUatWVdt7Prag8fK2bdtwdHTE2toaKysrXnrpJQ4dOmSxsumjjz5i3LhxVKpUCaDCTjUqWoEyZswY4uLiMBqNdOvWjfnz5xMREYG7uzsvvPACUVFR/Pvf/zY1sJ72YgfU9UvMGxnMuXPnNDyTh8dSJZOXlxcREREArFu3juTkZK3CE0IIISS5I4QQQlRkhZMcFVV6ZjYf7z1NYtJvXL58GcDUeNnDw4PU1FTTvgU9YCwt30pMTGT//v20bt2a9u3b8+2331pcvtWnTx/T5C13d3f0er0GZ11c0elWY8aMwcPDg+bNmxMYGMjly5dNFShDhw41HVetWjXT15mZmbRp04aUlBSSkpJYs2YNzz77LOvXryctLY2kpCR+/SWJevVcMR45zBNPPPHQz/Nhi4yMtDgVLCwsjMWLF+Pr68u1a9ewtb33JKQQQghxv0hyRwghhKhgLly4YDHJUVEV9OZZEWXkmWeeoXnz5jz11FMYDAa6detmsQeMpcqmnJwcMjIyOHjwILNmzWLAgAHs2rWLo0ePYjQa2bZtGwcPHuSLL77AaDRiNBoJDg6mc+fO2NnZUaVKFSpXrkz79u0B+OKLL7C3t6dKlSrUqFGDqKioez63ogmbdevW0axZM6ysrIiJiTHbt2hFjsFgID4+nri4OBo3bsz06dMtVqAAjB8/nnr16vH5ipU06DSY9BL66TyKDhw4UKySacCAAXh4eLB9+3ZiY2Pp27cvDRo00DpUIYQQjzBJ7gghhBAVREZWBsvil5GQlGAxybFx40ZcXV35/vvv6dq1Kx07dtQ65Puil1893urswet9DBYbL69YsYJjx44RFxdHRESEaZITmFc2ubq6EhQUhE6no1WrVlhbW5OVlQVYnr6llGLt2rUMGjSIU6dOcfPmTdLT04mNjeXTTz9l2LBhTJgwgZs3bzJo0CAGDx5sOrZo0iY9PR2DwUCjRo0wGAxkZGQAxRM2BRPP2rVrZ/YYWKrICQgIwMYmv71imzZt+OGHHyxWoABMmzaN5ORkPNp25t2Z81kXk7/EyN/fn8jIyGL7FzSwfhRMnz69WCXTypUrTT2Z8vLyePfddxkxYoTGkQohhHiUSXJHCCGEqCA2ndrE3Ni5nKxy0mKSIzAwkJSUFG7dusX58+f55ptvNI74/rjX3jwlVTb16NHDVF2TmJhIdnY2NWvWtDh9C2D//v04OjrSpEkT0/KkGzdukJeXh06nIzMzEzc3NwAaNmxouk8onrSZMWMGHTp04OTJk3To0IEZM2ZYTNiUNPGspIqcAmFhYdjb21usQCls8uvDqXo25p6aWFcERZNtRqORNm3a4O3jjXszd3bu31nsmNWrV9O4cWM8PDxwdnY2S94JIYQQD5tMyxJCCCEqiB4Ne5hdCnPpmdmsi0mmaeXLvDpiKLm5ueTl5dG7d2+6detGdnY2ISEheHl5YWtrS3h4ODY2NsWmb3l5eQH5b+779u0LQHZ2NtWrVycrK4tWrVoxZMgQFi1axCuvvMKYMWO4evUqubm5gOXJS5s3bzZNpho4cCD+/v6cPn2amTNncu3atTueV+GeMAW3Udi0adPIw4rn3phD+FNu1Kpqy549e5g9ezYrV67k5MmTNGrUCIB9O7fxtG/zP9XEujwrSLZdvXoVyB/nPmnSJM7VO8eUsCmMHDWSnw79ZDYVLDQ0lNDQUA2jFkIIIf4gyR0hhBCigqhZuSaDvUpfPZCVlUW7du24desWOTk59OzZkylTpjBmzBi++uorbG1tadCgAcuWLaNGjRoPLvCHpKA3z1udPThy5Eix7ba2tqxcudLisYWXb3l5eZGTk8OGDRuIjY01HXvz5k1++eUX9Ho9GzdupFmzZuTl5WFjY0ObNm3YtGkT8EeVTeGkzfnz503LxZycnPjtt9/o0KFDiQmbwgp6wmzZsoWsrCyuXr3KgAEDWLlyJeHh4URGRtJv8lJmbEtAp9MxvL15b5hx48aRkJCAlZUV9evXZ8mSJaV9SCsES8k2nU7H1atX6dGwBwefOMilJy9pHKUQQghxZzql1H2/UT8/P1W0yZ8QQgghyhalFJmZmdjZ2XH79m3atm3LggULuHr1Ks8++yw2Nja8+eabALz//vsaR/vXFVTu9PKrV6rKlAsXLvDYY49Ro0YNbt68SUBAAG+++SbdunVj27ZtTJ8+nb179xY77plnnqFq1ars37+fy5cvo9PpSEhIoGnTpmzevJktW7bw4YcfmqpnIiMjqVGjhtmyrcqVK1OnTh1sbGxMCZugoCBT8snf35/Zs2fj5+dndt+Fb3Pbtm2MGjWKvXv3Yv149Xs690dJz549eeutt7h27ZrpsTtx4gQdO3ZEKUVeXh7fffcd9evX1zpUIYQQAp1OF6uU8it6vfTcEUIIIR5ROp0OOzs7wLxhcNFGvCkpKVqGed+UtjdPwWj1n37+1WJjaoA1a9aYlmSdOHGCX375Jf/Y9HQOHz5My5YtcXBwYO/eveTl5TFy5EhcXV1LnLzk6OhoGtmemppK/fr1LTbxLezKzdt8vPd0iZOtRo4cybVr1zAYDDz7j1YcWT1LEjtFlDTm/KOPPmLevHkkJyczb948hgwZolGEQgghROlI5Y4QQgjxCMvNzcXX15dTp07xn//8p1iFznPPPUefPn2KNd6tyD7ee9q0fKvoEqaiTl+4zpBJCzm4bCo68quh/v73vxMVFUVoaCgff/wxSilq165NRESEWaVN4SqbMWPGULt2bcaNG8fEqdM4eOIX1ny6yKw/TmRkJBs3buSVV17hwoULVKpqz+3qbsxfvu6ucQrL3nrrLVasWFGsQuqrr74yVV0ppahevbqpH48QQgihJancEUIIIUQx1tbWGI1GUlJSiI6OJj4+3rRt2rRp2NjY0L9/fw0jfPgKRquXZmLUu5HHSarWnL4f7uXmzZtkZWWZJm4tWLCArKwsbt26RfzJJGIza5ZYZTNu3Dh27NhBo0aNWLv5a044PGtxHHnhiWdJyWeZv3zdIzfZ6n4qacy5s7OzacldVFSUqeG0EEIIUVZJQ2UhhBBCFGsYXNCId9euXeh0Oq3De6gKlm+Vxn+7NQWO/35ZsoJmzoDptgtPXqpduza7du0CzHsD3a84H1W5ubn4+fnh4uJCZGQkffr0ISEhgVyVS+rFVJzqOHHs6LFixy1dupTQ0FBycnKoXLkyn3zyiQbRCyGEEKUny7KEEEKIR1RJDYNtbGxMjXjr1q2rdZgVwr02cxb3x9y5c4mJieHq1aum6ieAZfHLGDN6DP9s8E82Lt6oYYRCCCHEvZFlWUIIIYQAICMrg2Xxy0hISrDYMLhwI169Xs+IESO0DrncK20zZ3H/FIw4Hzp0aLFt3Rt0J8+Yx/iXx2sQmRBCCHH/ybIsIYQQ4hGz6dQm5sbOZZTvKI4cOVJs+6lTpzSISoj767XXXmPmzJlcu3at2Lb4Q/E86fokfl7FPvgUQgghyiWp3BFCCCEeMT0a9mCU7yh6NOxxT8dlZWXRqlUrfHx8aNasGZMmTQJgwoQJNG/eHL1eT0BAAGfPnn0AUQtReiWNOC+wevVq0yh7IYQQoiKQnjtCCCGEKBWlFJmZmdjZ2XH79m3atm3LggULaNq0KdWqVQPggw8+4Pjx4yxZskTjaMWjrKQR5ytXriQnJwcXFxdiY2NxdXXVOlQhhBDinkjPHSGEEEL8JTqdDjs7OwBu377N7du30el0psQOQGZm5iM3XUuUPSWNOAfYuXMnHh4ektgRQghRoUhyRwghhBCllpubi16vx8HBAYPBQOvWrQEYP3489erVY9WqVUydOlXjKEVFlpubS4sWLejWrZvpuoULF9KkSRM8mnrQOaQzGVkZJR6/Zs0aWZIlhBCiwpHkjhBCCCFKzdraGqPRSEpKCtHR0cTHxwMwbdo0kpOT6d+/P4sWLdI4SlGRLViwAE9PT9P3u3fvZvPmzcTFxfHm2jdJapHEplObTNv9/f3NxqAvX75cJsAJIYSocEqV3NHpdJ10Ol2CTqc7pdPpxj3ooIQQQghRttWoUQN/f3+2bdtmdn2/fv1Yv369RlGJis7SePOPPvqIcePGUalSJXo07MHYZ8bec7NwIYQQory7a3JHp9NZA4uBzkBToK9Op2v6oAMTQgghRNly4cIFLl++DMDNmzdNvUtOnjxp2iciIgIPDw+NIhQVXcF4cyurP17CJiYmsn//flq3bk2Pjj3wuulFzco1NYxSCCGEePhsSrFPK+CUUupnAJ1OtwboDhx/kIEJIYQQomzIyMpg06lNNLrZiFeGvUJubi55eXn07t2bbt26ERwcTEJCAlZWVtSvX18mZYkHovB48z179piuz8nJISMjg4MHD3Lo0CF69+7Nzz//LI29hRBCPFJKk9xxAZILfZ8CtC66k06nGwYMA3Bzc7svwQkhhBBCe5tObWJu7FxG+Y7iyJEjxbaXtAwrKyuLdu3acevWLXJycujZsydTpkwxbZ89ezZjxozhwoUL1KlT54HFLyqGAwcOEBERwZYtW0zjzQcMGICrqytBQUHodDpatWqFlZUVFy9epG7dulqHLIQQQjw0pem5Y+ljD1XsCqU+UUr5KaX85I+pEEIIUXH0aNiDUb6j7rmPSaVKlYiKiuLo0aMYjUa2bdvGwYMHAUhOTmbHjh3ygZAAik/Amjx5Mi4uLuj1evR6PWs3raVx/8YcO3Ws2HjzHj16EBUVBeQv0crOzpZkoRBCiEdOaZI7KUC9Qt+7AmcfTDhCCCGEKGtqVq7JYK/B99zHRKfTYWdnB8Dt27e5ffu2aanM66+/zsyZM2XpjACKT8CC/N8Ro9GI0Wgks2Emc2Pnmk3BKhASEsLPP/+Ml5cXL7zwAuHh4fJ7JYQQ4pFTmmVZh4BGOp3ub8BvwAtAvwcalRBCCCEqhNzcXHx9fTl16hT/+c9/aN26NREREbi4uODj46N1eKIMKJiANX78eObOnWtxn4KqsYJLf39//P39AbC1tWXlypUPIVIhhBCi7Lpr5Y5SKgcYCXwDnADWKqV+fNCBCSGEEKL8s7a2xmg0kpKSQnR0NHFxcUybNo2pU6dqHZooIyxNwAJYtGgRzZs3JyQkBG7yp6rHhBBCiEdFaZZloZTaopRqrJRqoJSa9qCDEkIIIUTFUqNGDfz9/dm8eTNnzpzBx8cHd3d3UlJSaNmyJefOndM6RKGBwhOwCnv55Zc5ffo0RqMRJycn3njjDY0iFEIIIcqHUiV3hBBCCCHu1YULF7h8+TIAN2/eZOfOnbRo0YK0tDSSkpJISkrC1dWVw4cP88QTTwD5E7ZatWqFj48PzZo1Y9KkSUDxBrtbtmzR6rTEfVQwAcvd3Z0XXniBqKgoBgwYgKOjI9bW1lhZWfHSSy8RHR2tdahCCCFEmSbJHSGEEELcVxlZGSyLX0ZCUgLPPPMMzZs356mnnsJgMJimIZXkThO2CjfY7dKly8M4FfEnFJ18VWD27NnodDouXrxoum769OmkpKQUm4CVmppq2mfjxo14eXk9tPiFEEKI8qg0DZWFEEIIIUpt06lNzI2dyyjfURw5cuSO+yYlJZl9f6cJW6J8KJh8dfXqVdN1ycnJ7NixAzc3NyA/Abjp1CZ6NOxhsY/O2LFjMRqN6HQ63N3d+fjjjx9a/EIIIUR5JJU7QgghhLivejTswSjfUabJRvcqNzcXvV6Pg4MDBoOB1q1bA+YNdjMyMu5jxOJ+KZh8NXToULPrX3/9dWbOnGlK1BUkAAuPNvf39ycyMhKAFStWcOzYMeLi4oiIiMDJyemhnYMQQghRHklyRwgh/r+9+w+q8srvOP75EiXqGiWr1VFZfzTx18oYTYmxqYOMitHG2ajJEhN1jEnHdqaxNtuSkGa0E2ccTSTOmtjRafwRM+yocYNCGEvcahz5xypEYm+Tiq6SlS2rpICkAipw+gfcu/y6IIo899H3a8bx3uNznvt9mDPC+XLO9wDoUg/3eviOTjZqecJWIBCgwK5PtHXyVVZWloYNG6bHHnss1HanCUAAANAcyR0AABCRgids5eTktFtgN1wRZkn68MMPNXbsWE2YMEFvvPGGF49x32jr5KuqqiqtW7dOa9eubXbtnSYAAQBAc9TcAQAAEaO0tFQ9e/ZUTExM6IStN998UyUlJaGtOS0L7AaLMPft21c3b97UtGnTNHfuXFVXVyszM1NnzpzRgw8+qCtXrnj1WL5UV1en+Ph4DRs2TNnZ2Vq9erUyMzMVFRWlQYMG6eOPP9bQoUND1wdPvjp06JBqampUWVmppUuX6uLFi6FVO8XFxXr88cd18uTJ0AlpAADgzplzrstvGh8f7/Ly8rr8vgAA4N4ULLA7unq0Vq5Yqbq6OtXX1ys5OVlr1qzR0qVLWxXYbasOS1VVlaZNm6atW7fq/fff14oVKzRr1iwPnsj/Nm3apLy8PFVWVio7O1uVlZXq16+fJOmDDz7QN998o23btrXZ99ixY0pLSwvV0AkaOXKk8vLyNHDgwLsePwAA9yIzy3fOxbdsZ1sWAADwXLDA7rne53T69GmdOXNGgUBAa9askdRxgd22ijAXFhYqNzdXTz75pKZPn65Tp0558Wi+1FZh5GBiR5KuXbvW7BSz8ppy7QrsUnkNha4BAPAC27IAAIDngoV1b7fAbrAIc0VFhRYsWKBAIKDa2lqVl5frxIkTOnXqlJKTk3XhwoVQUqKmpkYJCQm6fv26amtr9fzzz+udd97RCy+8oLNnz0qSKioqFBMTo4KCgi54Sm+03F6VkpKizz//XNHR0XrkkUe0a9cuxcTENOsTLIz8ww8/NGt/++239cknn6h///768ssvQ+3B5JwkLY9brsTERCUmJraKpaioqKsfDwAAiJU7AAAgAnRVgd2mRZhjY2O1cOFCmZmmTJmiqKgoff/996Frg7V6vv76axUUFCgnJ0cnTpzQvn37VFBQoIKCAj333HNauHDhnT6epzZv3qzx48eH3iclJSkQCOjMmTMaM2aM1q9f3+z6tgojB61bt06XLl3S4sWLtWXLllA7p18BAOAtkjsAAMDXSktLVVFRIUmhIszjxo3T/PnzdfToUUlSYWGhbty40azWi5mpb9++kqSbN2/q5s2bzbYaOef06aef6sUXX2z1mRUVFerbt6969+6tXr16afr06ZKkffv26aGHHlLv3r0VExMT+vyW6urqNHnyZM2bN0+SVFZWpqSkJI0ePVpJSUkqL2+9valln/3792vChAmKiopSuFqHbW2vmj17tnr0aFi8PXXqVBUXFzfrEyyMPHLkSC1atEhHjx7VkiVLml3z0ksv6bPPPgu95/QrAAC8RXIHAAD4VnlNubYe36qExARNnDhRTzzxhJKSkjRv3jy98sorunDhguLi4rRo0SLt3r27WfJGartWT1Bubq4GDx6s0aNHt/rcfv366fz586qurlZZWZny8/O1fft2rVixQqtXr1Z1dbVefvllLV++vM24W66m2bBhg2bOnKlz585p5syZ2rBhQ4d94uLilJGRoYSEhLBfn+D2qqiotn/k27lzp+bOndusbf369SouLlZRUZH27t2rGTNmKD09XefOnQtdk5WVpXHjxoX9XAAA0L1I7gAAAN86eP6g9v/ffr2e/nqrIszR0dFKT09XIBDQV199pRkzZrTqH6zVU1xcrJMnTyoQCIT+bc+ePW2u2pGkqKio0FHeVVVVqq+vl5np2rVrGj58uCTp0UcfDa0oaqqt1TSZmZlatmyZJGnZsmU6ePBgh33Gjx+vsWPHhv3atLe9SmrYYtWjRw8tXrw41NZeYeTU1FTFxcVp4sSJOnz4sDZv3hz2swEAQPeioDIAAPCtOy3EHNS0Vk9cXJxqa2uVkZGh/Pz8sH1u3Lih/v37q6amRlOmTNGrr76qLVu2aOXKlUpJSVFlZaXq6upa9WurWPHly5dDJ4ANGTJEV65c6bBPR4Lbqw4dOqSamhpVVlZqyZIlSk9P1+7du5Wdna0jR440W83UXmHkptuwAABAZGHlDgAA8K3brfVSXlOuzcc3q+gPRZKa1+qRFHodGxsb9h7R0dGqrq5WUVGRCgsLdeDAAU2YMEFDhw7VoEGDNHv2bF2/fr1Zn45W07TldvpI4bdX5eTk6N1331VWVpb69OnTrA+FkQEA8CdW7gAAgPvOwfMHteX4Fm36603q37O/6uvrlZycHCpWvHfv3rBbsloaMWKEJk2apB07dig3N1cVFRUyM509e1YZGRnNrg23mmbw4MEqKSnRkCFDVFJSokGDBnXYJz09PWxM5TXlOnj+oOY/Or9V4uu1117T9evXlZSUJKmhqPK2bdsk/TFZBgAA/MWcc11+0/j4eBfu1AYAAACvtZf8aM/Fqxe18dRGLei3QGMGj9GIESNUVlamUaNGadWqVdqzZ48++ugjJSQk6Omnn1ZhYaG+++67Nu917NgxpaWlKTs7WykpKRowYIBSU1O1YcMGlZWV6b333msVZ9M+QYmJiUpLS1N8fHyobVdglzblb9Iv/uwXJGsAALiHmFm+cy6+ZTsrdwAAwH3ndleobDy1Ubm/z9Vvj/9WuWm5cs7JOaennnpKa9eu1dWrVzVnzhw55zRgwABlZWVJ6jiZlJqaquTkZO3YsUPDhw/X/v37JbWugdPUgQMHtHLlSpWWluqZZ57RpEmT9MUXX0jqulpEAADAH1i5AwAAcIuCK3dSnkjRqP6jbrnf7a6kud0VRgAA4N4UbuUOyR0AAIC7jCQNAADoCmzLAgAA8AiFigEAwN3EUegAAAAAAAA+RnIHAAAAAADAx0juAAAAAAAA+BjJHQAAAAAAAB8juQMAAAAAAOBjJHcAAAAAAAB8jOQOAAAAAACAj5HcAQAAAAAA8DGSOwAAAAAAAD5GcgcAAAAAAMDHSO4AAAAAAAD4GMkdAAAAAAAAHyO5AwAAAAAA4GMkdwAAAAAAAHyM5A4AAAAAAICPkdwBAAAAAADwMZI7AAAAAAAAPkZyBwAAAAAAwMdI7gAAAAAAAPgYyR0AAAAAAAAfI7kDAAAAAADgYyR3AAAAAAAAfMycc11/U7NSSd91+Y3R3QZK+t7rIOAbjBd0BuMFncWYQWcwXtAZjBd0FmMGndHV42WEc+5PWjbeleQO7g1mlueci/c6DvgD4wWdwXhBZzFm0BmMF3QG4wWdxZhBZ3TXeGFbFgAAAAAAgI+R3AEAAAAAAPAxkjtoz796HQB8hfGCzmC8oLMYM+gMxgs6g/GCzmLMoDO6ZbxQcwcAAAAAAMDHWLkDAAAAAADgYyR3EJaZbTSz/zazM2Z2wMxivI4JkcfM5pjZWTM7b2apXseDyGZmPzGzL83sWzP7LzNb5XVMiHxm9oCZnTazbK9jQeQzsxgz+3XjzzDfmtmfex0TIpeZvd74/ShgZnvMrJfXMSGymNlOM7tiZoEmbT82s9+Y2bnGvx/2MkZEjjDjpVvm1SR30J7fSIpzzk2UVCjpLY/jQYQxswck/YukuZJ+KulFM/upt1EhwtVK+gfn3HhJUyX9LWMGt2CVpG+9DgK+sVlSjnNunKTHxNhBGGY2TNLfSYp3zsVJekDSIm+jQgT6WNKcFm2pko4450ZLOtL4HpDaHi/dMq8muYOwnHOHnXO1jW9PSIr1Mh5EpCmSzjvnLjjnbkjaK+lZj2NCBHPOlTjnvmp8/YMaJl3DvI0KkczMYiU9I2m717Eg8plZP0kJknZIknPuhnOuwtOgEOl6SOptZj0k9ZH0Px7HgwjjnDsuqaxF87OSdje+3i1pfnfGhMjV1njprnk1yR3cqlck/ZvXQSDiDJN0qcn7YjFRxy0ys5GSJkv6D49DQWT7paQ3JNV7HAf84U8llUra1biVb7uZ/cjroBCZnHO/l5Qm6XeSSiRddc4d9jYq+MRg51yJ1PCLK0mDPI4H/nHX5tUkd+5zZvbvjXuMW/55tsk1b6thK8WvvIsUEcraaOMIPnTIzPpK+kzS3zvnKr2OB5HJzOZJuuKcy/c6FvhGD0mPS9rqnJss6ZrYLoEwGuukPCtplKShkn5kZku8jQrAvepuz6t73I2bwj+cc7Pa+3czWyZpnqSZzjkm7WipWNJPmryPFcuZ0QEz66mGxM6vnHMZXseDiPYXkn5mZn8pqZekfmaW7pxj8oVwiiUVO+eCKwJ/LZI7CG+WpIvOuVJJMrMMSU9JSvc0KvjBZTMb4pwrMbMhkq54HRAiW3fMq1m5g7DMbI6kNyX9zDlX5XU8iEinJI02s1FmFq2GIoRZHseECGZmpoZaGN865zZ5HQ8im3PuLedcrHNupBr+fzlKYgftcc79QdIlMxvb2DRT0jcehoTI9jtJU82sT+P3p5miADduTZakZY2vl0nK9DAWRLjumlcbizEQjpmdl/SgpP9tbDrhnPsbD0NCBGr8jfov1XDCxE7n3DpvI0IkM7NpknIl/af+WEPln5xzh7yLCn5gZomS/tE5N8/jUBDhzGySGgpwR0u6IGm5c67c06AQsczsHUkvqGGrxGlJf+Wcu+5tVIgkZrZHUqKkgZIuS/pnSQclfSppuBqShD93zrUsuoz7UJjx8pa6YV5NcgcAAAAAAMDH2JYFAAAAAADgYyR3AAAAAAAAfIzkDgAAAAAAgI+R3AEAAAAAAPAxkjsAAAAAAAA+RnIHAAAAAADAx0juAAAAAAAA+BjJHQAAAAAAAB/7f1utyr3oes58AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Plot the results\n", "fig, ax = plt.subplots(figsize=(20,10))\n", "plot_points(ax, waypoints[:-1,0:2])\n", "plot_points(ax, waypoints[:-1,2:4])\n", "plot_points(ax, waypoints[:-1,4:6])\n", "ax.axis('equal')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "<__array_function__ internals>:180: ShapelyDeprecationWarning: The array interface is deprecated and will no longer work in Shapely 2.0. Convert the '.coords' to a numpy array instead.\n" ] }, { "data": { "image/svg+xml": [ "" ], "text/plain": [ "" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Use Shapely to generate lines for the inner \n", "# and outer track borders, and centerline\n", "l_center_line = LineString(waypoints[:,0:2])\n", "l_inner_border = LineString(waypoints[:,2:4])\n", "l_outer_border = LineString(waypoints[:,4:6])\n", "\n", "# Create a shapely Polygon representing the track\n", "road_poly = Polygon(np.vstack((l_outer_border.coords, np.flipud(l_inner_border.coords))))\n", "road_poly" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "# rescale waypoints to centimeter scale\n", "\n", "center_line = waypoints[:,0:2] \n", "inner_border = waypoints[:,2:4]\n", "outer_border = waypoints[:,4:6]" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Helper Functions " ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "def plot_track(df, track_size=(500, 800), x_offset=0, y_offset=0, scale=100):\n", " '''\n", " Each track may have a diff track size, \n", " For reinvent track, use track_size=(500, 800)\n", " Tokyo, track_size=(700, 1000)\n", " x_offset, y_offset is used to convert to the 0,0 coordinate system\n", " '''\n", " #track = np.zeros(track_size) # lets magnify the track by *100\n", " #for index, row in df.iterrows():\n", " # x = int(row[\"x\"]*scale + x_offset)\n", " # y = int(row[\"y\"]*scale + y_offset)\n", " # reward = row[\"reward\"]\n", " # track[y, x] = reward\n", " # plt.plot(y,x,reward)\n", " allx=[]\n", " ally=[]\n", " allreward=[]\n", " for index, row in df.iterrows():\n", " x = float(row[\"x\"])\n", " y = float(row[\"y\"])\n", " reward = float(row[\"reward\"])\n", " allx.append(x)\n", " ally.append(y)\n", " allrewards=reward\n", " #track[y, x] = reward\n", " #plt.plot(y,x,reward)\n", " heatmap, xedges, yedges = np.histogram2d(allx, ally, bins=50)\n", " extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]\n", " \n", " #fig = plt.figure(1, figsize=(12, 16))\n", " fig = plt.figure(1, figsize=track_size)\n", " ax = fig.add_subplot(111)\n", " print_border(ax, center_line, inner_border, outer_border)\n", " return heatmap.T,extent" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "def plot_top_laps(sorted_idx, n_laps=5):\n", " fig = plt.figure(n_laps, figsize=(12, 30))\n", " for i in range(n_laps):\n", " idx = sorted_idx[i]\n", " \n", " episode_data = episode_map[idx]\n", " \n", " ax = fig.add_subplot(n_laps,1,i+1)\n", " \n", " line = LineString(center_line)\n", " plot_coords(ax, line)\n", " plot_line(ax, line)\n", " \n", " line = LineString(inner_border)\n", " plot_coords(ax, line)\n", " plot_line(ax, line)\n", "\n", " line = LineString(outer_border)\n", " plot_coords(ax, line)\n", " plot_line(ax, line)\n", "\n", "\n", " for idx in range(1, len(episode_data)-1):\n", " x1,y1,action,reward,angle,speed = episode_data[idx]\n", " car_x2, car_y2 = x1 - 0.02, y1\n", " plt.plot([x1, car_x2], [y1, car_y2], 'b.')\n", " \n", " return fig" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Load the training log" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "EPISODE_PER_ITER = 20 if is_training else 1" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
episodestepsxyyawsteerthrottleactionrewarddoneall_wheels_on_trackprogressclosest_waypointtrack_lentimestampepisode_statuspause_durationiteration
001.00.3225182.691228-84.00545730.0000000.560888[30.0, 0.5608882080663238]0.0FalseTrue0.606218123.11822225.775prepare0.01
102.00.3224972.691373-84.006075-30.0000000.907791[-30.0, 0.9077906154815218]1.0FalseTrue0.605583123.11822225.850in_progress0.01
203.00.3202912.681217-84.76823530.0000000.500000[30.0, 0.5]1.0FalseTrue0.648278123.11822225.902in_progress0.01
304.00.3158182.663724-86.528469-26.9850150.500000[-26.985014707237596, 0.5]1.0FalseTrue0.719943123.11822225.969in_progress0.01
405.00.3108072.641229-88.0099113.6657500.500000[3.665749990146402, 0.5]1.0FalseTrue0.813219123.11822226.048in_progress0.01
\n", "
" ], "text/plain": [ " episode steps x y yaw steer throttle \\\n", "0 0 1.0 0.322518 2.691228 -84.005457 30.000000 0.560888 \n", "1 0 2.0 0.322497 2.691373 -84.006075 -30.000000 0.907791 \n", "2 0 3.0 0.320291 2.681217 -84.768235 30.000000 0.500000 \n", "3 0 4.0 0.315818 2.663724 -86.528469 -26.985015 0.500000 \n", "4 0 5.0 0.310807 2.641229 -88.009911 3.665750 0.500000 \n", "\n", " action reward done all_wheels_on_track progress \\\n", "0 [30.0, 0.5608882080663238] 0.0 False True 0.606218 \n", "1 [-30.0, 0.9077906154815218] 1.0 False True 0.605583 \n", "2 [30.0, 0.5] 1.0 False True 0.648278 \n", "3 [-26.985014707237596, 0.5] 1.0 False True 0.719943 \n", "4 [3.665749990146402, 0.5] 1.0 False True 0.813219 \n", "\n", " closest_waypoint track_len timestamp episode_status pause_duration \\\n", "0 1 23.118222 25.775 prepare 0.0 \n", "1 1 23.118222 25.850 in_progress 0.0 \n", "2 1 23.118222 25.902 in_progress 0.0 \n", "3 1 23.118222 25.969 in_progress 0.0 \n", "4 1 23.118222 26.048 in_progress 0.0 \n", "\n", " iteration \n", "0 1 \n", "1 1 \n", "2 1 \n", "3 1 \n", "4 1 " ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv(merged_simtrace_path)\n", "iteration_arr = np.arange(math.ceil(df.episode.max()/EPISODE_PER_ITER)+1) * EPISODE_PER_ITER\n", "df['iteration'] = np.digitize(df.episode, iteration_arr)\n", "df = df.rename(columns={\"X\": \"x\", \"Y\": \"y\", \"tstamp\": \"timestamp\"})\n", "df.head()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "If the model loaded uses a continuous action space, convert it to a discrete action space for analysis. This will map the choices the model made in the simtrace logs into discrete buckets to allow for later visualization." ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " episode steps x y yaw steer throttle action \\\n", "0 0 1.0 0.322518 2.691228 -84.005457 30.000000 0.560888 16 \n", "1 0 2.0 0.322497 2.691373 -84.006075 -30.000000 0.907791 3 \n", "2 0 3.0 0.320291 2.681217 -84.768235 30.000000 0.500000 16 \n", "3 0 4.0 0.315818 2.663724 -86.528469 -26.985015 0.500000 0 \n", "4 0 5.0 0.310807 2.641229 -88.009911 3.665750 0.500000 8 \n", "\n", " reward done all_wheels_on_track progress closest_waypoint track_len \\\n", "0 0.0 False True 0.606218 1 23.118222 \n", "1 1.0 False True 0.605583 1 23.118222 \n", "2 1.0 False True 0.648278 1 23.118222 \n", "3 1.0 False True 0.719943 1 23.118222 \n", "4 1.0 False True 0.813219 1 23.118222 \n", "\n", " timestamp episode_status pause_duration iteration \n", "0 25.775 prepare 0.0 1 \n", "1 25.850 in_progress 0.0 1 \n", "2 25.902 in_progress 0.0 1 \n", "3 25.969 in_progress 0.0 1 \n", "4 26.048 in_progress 0.0 1 \n" ] } ], "source": [ "NUM_ANGLE_BUCKETS = 5\n", "NUM_SPEED_BUCKETS = 4\n", "\n", "if 'action_space_type' in model_metadata and model_metadata['action_space_type']=='continuous':\n", " max_angle = model_metadata['action_space']['steering_angle']['high']\n", " min_angle = model_metadata['action_space']['steering_angle']['low']\n", "\n", " max_speed = model_metadata['action_space']['speed']['high']\n", " min_speed = model_metadata['action_space']['speed']['low']\n", "\n", " #Determine which discrete bucket would be the equivalent for the continuous action space\n", " for index, row in df.iterrows(): \n", " angle_bucket = math.floor(((row[\"steer\"] - min_angle)/(max_angle-min_angle))*NUM_ANGLE_BUCKETS)\n", " speed_bucket = math.floor(((row[\"throttle\"] - min_speed)/(max_speed-min_speed))*NUM_SPEED_BUCKETS)\n", " if angle_bucket==NUM_ANGLE_BUCKETS:\n", " angle_bucket -= 1\n", " if speed_bucket==NUM_SPEED_BUCKETS:\n", " speed_bucket -= 1\n", " df.at[index,\"action\"] = int(angle_bucket*NUM_SPEED_BUCKETS+speed_bucket)\n", " \n", "\n", " #Convert the model metadata in memory to use the new forced discrete action space\n", " angle_bucket_size = (max_angle-min_angle)/NUM_ANGLE_BUCKETS\n", " angle = min_angle+.5*angle_bucket_size\n", " speed_bucket_size = (max_speed-min_speed)/NUM_SPEED_BUCKETS\n", " speed = min_speed+.5*speed_bucket_size \n", " model_metadata['action_space'] = []\n", " index = 0\n", " for anglei in range(0,NUM_ANGLE_BUCKETS):\n", " for speedi in range(0,NUM_SPEED_BUCKETS):\n", " model_metadata['action_space'].append({'index':index,\n", " 'speed': speed,\n", " 'steering_angle': angle})\n", " index+=1\n", " speed += speed_bucket_size\n", " angle += angle_bucket_size\n", " speed = min_speed+.5*speed_bucket_size\n", " \n", " print(df.head())" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(-0.0762047494113641, 8.812047821609287)" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['y'].min(), df['x'].max()" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "# Normalize the rewards to a 0-1 scale\n", "\n", "from sklearn.preprocessing import MinMaxScaler\n", "min_max_scaler = MinMaxScaler()\n", "scaled_vals = min_max_scaler.fit_transform(df['reward'].values.reshape(df['reward'].values.shape[0], 1))\n", "df['reward'] = pd.DataFrame(scaled_vals.squeeze())\n" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(0.0, 1.0)" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['reward'].min(), df['reward'].max()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Plot rewards per Iteration\n", "\n", "This graph is useful to understand the mean reward and standard deviation within each episode " ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of episodes = 19\n" ] }, { "data": { "text/plain": [ "Text(0.5, 0, 'Episode')" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAALJCAYAAACur7RyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABF60lEQVR4nO3dfbxcVX3v8c83DwgSkEBCDASIIFWRW0GOGETtCYhipCBULyJoLHKj9wpCq9VY24q91xYfqmj1ViNagqZEKyBcCE8ihxRqwARDSAwIpiAxIQkQhEArJPndP/Y6OhzWnDM5M3v2zDnf9+u1X7P32mvv+a2Z5Pxmr7UfFBGYmZkNNKbqAMzMrDM5QZiZWZYThJmZZTlBmJlZlhOEmZllOUGYmVmWE4RZIul9km6tOo5OJGmLpAOrjsPaywnC2kLSA5L+M/2heVjSxZImVB1XN0if3ZvSfOlJTFKfpLNqyyJiQkSsKfN9rfM4QVg7/XFETAAOAw4HPlFVIJLGVfXe9ahQ6v/JTmy3dS4nCGu7iHgYuJ4iUQAgaYakf5f0uKS7JPWm8pmS7q6p9yNJd9Qs3yrp7Wl+rqRfSnpS0s8lnVxT732SbpP0JUmPAedL2kvSVZKeSPs8qKa+Ut2Nkn4jaYWkQ3PtSb+4/17SHanulZL2HKptNdt+RtJtwNNA3W4cSa8Avg4clY7EHk/lL5D0BUm/krRB0tcl7ZLW9UpaK+njkh4G/lnSRElXS9okaXOan5bqfwZ4A/DV9B5fTeUh6aVp/kWSLknbPyjpr/oTW/8RTopns6T/kPTWem2yDhcRnjyVPgEPAG9K89OAu4Evp+V9gUeBWRQ/Wo5Ly5OBnYH/BCYB44CHgXXAbsAuad1eaT/vBPZJ+zgVeAqYmta9D9gKnJP2swuwEPg+sCtwKPBr4NZU/y3AMmAPQMAr+veVaVtf2vbQtK/LgO8O1baabX8FvDLFNX6Iz+59/THWrL8QuArYM30u/w/4+7SuN7X7s8ALUrv3Av4EeGGq/6/ADwe056wB7xHAS9P8JcCVadvpwC+A99fE9yzwP4CxwP9M35eq/jfoaRj/b6sOwNPomNIfuS3Ak+mPzU3AHmndx4HvDKh/PTA7zf8bcAowA7gh/VE/HpgJrBjkPZcDJ6X59wG/qlk3Nv0he3lN2d/VJIhj0h++GcCYIdrWB1xQs3wI8Ex6j6Ha1gf8bQOfXTZBUCSvp4CDasqOAv4jzfemWHYeZP+HAZsHtCebIFKbfgscUrPuA0BfTXz316x7Ydr2xVX/G/S045P7I62d3h4RP5L0R8C/UBwVPA4cALxT0h/X1B0P3Jzmb6H4Q7c2zW8G/ojiD9Ut/RtIei/w5xS/agEmpPfo91DN/GSKX+y1ZQ/2z0TEj1P3yteA/SVdAXw0Ip6o07aB+xmf3nuotg3cdkdNpvgjvExSf5ko/pD32xQR//W7ldILgS9RJNmJqXg3SWMjYtsQ7zcJ2ImazyrN71uz/HD/TEQ8neLyCQldyGMQ1nYRcQtwMfCFVPQQxa/sPWqmXSPigrS+P0G8Mc3fQpEg/ijNI+kA4JvA2RRdTnsAKyn+WP7urWvmN1F0vexXU7b/gDi/EhFHUHT//AHwF4M0a+B+ngUeaaBtA+MaysC6j1B0s72yZv8viuJkgHrbfAR4GfDaiNid4nOF339Wg8XzCEXbDqgp25+ii81GGCcIq8qFwHGSDgO+C/yxpLdIGitp5zS4Oi3V/XeKP2hHAndExCqKP1CvBRanOrtS/GHbBCDpTynGBLLSL+XLKQarXyjpEGB2/3pJr5H0WknjKbpw/gsY7Nf1GZIOSb/O/xb4QXqPodq2ozYA0yTtlNqxnSIxfknS3in2fSW9ZZB97EaRVB5Pg+mfyrxHdrA8ten7wGck7ZYS85+ndtoI4wRhlYiITRSDnX8dEQ8BJwF/SfEH/iGKX+tjUt2ngDuBVRHxTNrFT4AHI2JjqvNz4B9S+QbgvwG3DRHG2RRdHw9THNH8c8263Sn+8G6m6EJ5lN8f8eR8J+3jYYqB9Q+nuAZt2zD8GFgFPCzpkVT2ceB+YImkJ4AfUSTUei6kGKx+BFgCXDdg/ZeBd6SzkL6S2f4ciqS5BriVorvw28NqjXU0RfiBQWbNkNRHcdbSRVXHYtZKPoIwM7MsJwgzM8tyF5OZmWX5CMLMzLJG1IVykyZNiunTp1cdxg556qmn2HXXXasOo63c5tHBbe4Oy5YteyQiJufWjagEMX36dJYuXVp1GDukr6+P3t7eqsNoK7d5dHCbu4OkB+utcxeTmZllOUGYmVmWE4SZmWU5QZiZWZYThJmZZTlBmJlZlhOEmZllOUGYmVmWE4SZmWU5QZiZWZYThJmZZTlBmJlZVmkJQtJ+km6WtFrSKknnpvLPS7pH0gpJV0jao872D0i6W9JySd11Bz4zsxGgzCOIrcBHIuIVwAzgQ5IOAW4EDo2IPwR+AXxikH3MjIjDIqKnxDjNzCyjtAQREesj4s40/ySwGtg3Im6IiK2p2hJgWlkxmJnZ8LVlDELSdOBw4PYBq84Erq2zWQA3SFomaU6J4ZmZWUbpz6SWNAG4BfhMRFxeU/5JoAc4JTJBSNonItZJ2puiW+qciFicqTcHmAMwZcqUIxYuXFhSS8qxZcsWJkyYUHUYbeU2jw5uc3eYOXPmsnrd+KUmCEnjgauB6yPiizXls4EPAsdGxNMN7Od8YEtEfGGwej09PeEnynU+t3l0cJu7g6S6CaLMs5gEfAtYPSA5HA98HDixXnKQtKuk3frngTcDK8uK1czMnq/MMYijgfcAx6RTVZdLmgV8FdgNuDGVfR2KLiVJi9K2U4BbJd0F3AFcExHXlRirmZkNMK6sHUfErYAyqxZlyoiIdcCsNL8GeFVZsZmZ2dB8JbWZmWU5QZiZWZYThJmZZTlBmJlZlhOEmZllOUGYmVmWE4SZmWU5QZiZWZYThJmZZTlBmJlZlhOEmZllOUGYmVmWE4SZmWU5QZiZWZYThJmZZTlBmJlZlhOEmZllOUGYmVmWE4SZmWU5QZiZWZYThJmZZTlBmJlZlhOEmZllOUGYmVmWE4SZmWU5QZiZWZYThJmZZTlBmJlZlhOEmZllOUGYmVmWE4SZmWU5QZiZWVZpCULSfpJulrRa0ipJ56byz0u6R9IKSVdI2qPO9sdLulfS/ZLmlhWnmZnllXkEsRX4SES8ApgBfEjSIcCNwKER8YfAL4BPDNxQ0ljga8BbgUOA09K2ZmbWJqUliIhYHxF3pvkngdXAvhFxQ0RsTdWWANMymx8J3B8RayLiGWAhcFJZsZqZ2fONa8ebSJoOHA7cPmDVmcD3MpvsCzxUs7wWeG2dfc8B5gBMmTKFvr6+JqNtry1btnRdzM1ym0cHt7n7lZ4gJE0ALgPOi4gnaso/SdENtSC3WaYscvuPiHnAPICenp7o7e1tNuS26uvro9tibpbbPDq4zd2v1AQhaTxFclgQEZfXlM8GTgCOjYjcH/61wH41y9OAdWXGamZmz1XmWUwCvgWsjogv1pQfD3wcODEinq6z+U+BgyW9RNJOwLuAq8qK1czMnq/Ms5iOBt4DHCNpeZpmAV8FdgNuTGVfB5C0j6RFAGkQ+2zgeorB7e9HxKoSYzUzswFK62KKiFvJjyUsqlN/HTCrZnlRvbpmZlY+X0ltZmZZThBmZpZVt4tJ0p6DbRgRj7U+HDMz6xSDjUEso7j2QMD+wOY0vwfwK+AlZQdnZmbVqdvFFBEviYgDKc4k+uOImBQRe1Fcv3B5ve3MzGxkaGQM4jXpjCIAIuJa4I/KC8nMzDpBI6e5PiLpr4DvUnQ5nQE8WmpUZmZWuUaOIE4DJgNXpGlyKjMzsxFs0COI9FyGr0TEGW2Kx8zMOsSgRxARsQ2YnO6HZGZmo0gjYxAPALdJugp4qr+w9gZ8ZmY28jSSINalaQzFTfbMzGwUGDJBRMSn2xGImZl1liEThKTJwMeAVwI795dHxDElxmVmZhVr5DTXBcA9FLfW+DTFmMRPS4zJzMw6QCMJYq+I+BbwbETcEhFnAjNKjsvMzCrWyCD1s+l1vaS3UQxYTysvJDMz6wSNJIj/I+lFwEeAfwR2B/6s1KjMzKxyjSSIH0XEfwG/AWaWHI+ZmXWIRhLESkkbgH8DFgO3RcRvyg3LzMyqNuQgdUS8lOLmfHdTPAviLknLS47LzMwq1sh1ENOAo4E3AK8CVgG3lhyXmZlVrJEupl9RXPfwdxHxwZLjMTOzDtHIdRCHA5cA75b0E0mXSHp/yXGZmVnFGrkX012Sfgn8kqKb6QzgjcC3So7NzMwq1MgYxFLgBcC/U4w9vDEiHiw7MDMzq1YjYxBvjYhNpUdiZmYdpZExiDGSviXpWgBJh3gMwsxs5GskQVwMXA/sk5Z/AZxXUjxmZtYhGkkQkyLi+8B2gIjYCmwrNSozM6tcIwniKUl7AQEgaQbFfZnMrAH3XH49T//jJdxz+fVVh2K2QxpJEH8OXAUcJOk2imsizhlqI0n7SbpZ0mpJqySdm8rfmZa3S+oZZPsHJN0taXk6k8qs69xz+fUccOqJvPmK+Rxw6olOEtZVBj2LSdJY4I/S9DJAwL0R8exg2yVbgY9ExJ2SdgOWSboRWAmcAnyjgX3MjIhHGqhn1pE2X3sjL922lXGxHbZtZfO1N8Ipb6k6LLOGDHoEERHbgJMiYmtErIqIlQ0mByJifUTcmeafBFYD+0bE6oi4t+nIzbrAxLcex7Njx7FVY3h27DgmvvW4qkMya1gj10HcJumrwPeAp/oL+//4N0LSdIpbdty+A7EFcIOkAL4REfN2YFuzjvDyU97CPd+7ijULvseBp5/Ky330YF1EETF4BenmTHFExDENvYE0AbgF+ExEXF5T3gd8NCKy4wuS9omIdZL2Bm4EzomIxZl6c4A5AFOmTDli4cKFjYTVMbZs2cKECROqDqOt3ObRwW3uDjNnzlwWEdnx4EbuxTTsp8hJGg9cBiyoTQ6NiIh16XWjpCuAIykeWDSw3jxgHkBPT0/09vYON9xK9PX10W0xN8ttHh3c5u7XyFlMwyJJFDf0Wx0RX9zBbXdNA9tI2hV4M8XgtpmZtUlpCYLiIUPvAY5Jp6oulzRL0smS1gJHAddIuh6KLiVJi9K2U4BbJd0F3AFcExHXlRirmZkN0Mgg9bBExK0Up8XmXJGpvw6YlebXUDy9zszMKtJQgpD0OmB6bf2IuKSkmMzMrAM08jyI7wAHAcv5/T2YguKKajMzG6EaOYLoAQ6Joc6HNTOzEaWRQeqVwIvLDsTMzDpLI0cQk4CfS7oD+G1/YUScWFpUZmZWuUYSxPllB2FmZp2nkSupb2lHIGZm1lmGHIOQNEPSTyVtkfSMpG2SnmhHcGZmVp1GBqm/CpwG3AfsApyVyszMbARr6EK5iLhf0tj0fIh/lvTvJcdlZmYVayRBPC1pJ2C5pM8B64Fdyw3LzMyq1kgX03tSvbMpHhi0H/AnZQZlZmbVa+Qspgcl7QJMjYhPtyEmMzPrAI2cxfTHFPdhui4tHybpqpLjMjOzijXSxXQ+xdPcHgeIiOUUd3Y1M7MRrJEEsTUiflN6JGZm1lEaOYtppaR3A2MlHQx8GPBprmZmI1wjRxDnAK+kuFHfpcATwHklxmRmZh2gkbOYngY+mSYzMxsl6iaIoc5U8u2+zcxGtsGOII4CHqLoVrodUFsiMjOzjjBYgngxcBzFjfreDVwDXBoRq9oRmJmZVavuIHVEbIuI6yJiNjADuB/ok3RO26IzM7PKDDpILekFwNsojiKmA18BLi8/LDMzq9pgg9TzgUOBa4FPR8TKtkVlZmaVG+wI4j0Ud2/9A+DD0u/GqAVEROxecmxmZlahugkiIhq5iM7MzEYoJwEzM8tygjAzsywnCDMzy3KCMDOzLCcIMzPLKi1BSNpP0s2SVktaJencVP7OtLxdUs8g2x8v6V5J90uaW1acZmaWV+YRxFbgIxHxCopbdXxI0iHASuAUYHG9DSWNBb4GvBU4BDgtbWtmZm1SWoKIiPURcWeafxJYDewbEasj4t4hNj8SuD8i1kTEM8BC4KSyYjUzs+dr5JGjTZM0HTic4rbhjdiX4lbj/dYCr62z7znAHIApU6bQ19c37DirsGXLlq6LuVlu8+jgNne/0hOEpAnAZcB5EfFEo5tlyiJXMSLmAfMAenp6ore3dzhhVqavr49ui7lZbvPo4DZ3v1LPYpI0niI5LIiIHbkL7Fpgv5rlacC6VsZmZmaDK/MsJgHfAlZHxBd3cPOfAgdLeomknYB3AYM+AtXMzFqrzCOIoynuCHuMpOVpmiXpZElrKR5peo2k6wEk7SNpEUBEbAXOBq6nGNz+vp9kZ2bWXqWNQUTErdR/jvUVmfrrgFk1y4uAReVEZ2ZmQ/GV1GZmluUEYWZmWU4QZmaW5QRhZmZZThBmZpblBGFmZllOEGZmluUEYWZmWU4QZmaW5QRhZmZZThBmZpblBGFmZllOEGZmluUEYWZmWU4QZmaW5QRhZmZZThBmZpblBGFmZllOEGZmluUEYWZmWU4QZmaW5QRhZmZZThBmZpblBGFmZllOEGZmluUEYWZmWU4QZmaW5QRhZmZZThBmZpblBGFmZllOEGZmllVagpC0n6SbJa2WtErSual8T0k3SrovvU6ss/0Dku6WtFzS0rLiNDOzvDKPILYCH4mIVwAzgA9JOgSYC9wUEQcDN6XlemZGxGER0VNinGZmllFagoiI9RFxZ5p/ElgN7AucBMxP1eYDby8rBjMzG762jEFImg4cDtwOTImI9VAkEWDvOpsFcIOkZZLmtCNOMzP7PUVEuW8gTQBuAT4TEZdLejwi9qhZvzkinjcOIWmfiFgnaW/gRuCciFicqTcHmAMwZcqUIxYuXFhWU0qxZcsWJkyYUHUYbeU2jw5uc3eYOXPmsnrd+OPKfGNJ44HLgAURcXkq3iBpakSslzQV2JjbNiLWpdeNkq4AjgSelyAiYh4wD6Cnpyd6e3tb35AS9fX10W0xN8ttHh3c5u5X5llMAr4FrI6IL9asugqYneZnA1dmtt1V0m7988CbgZVlxWpmZs9X5hjE0cB7gGPSqarLJc0CLgCOk3QfcFxaRtI+khalbacAt0q6C7gDuCYirisxVjMzG6C0LqaIuBVQndXHZuqvA2al+TXAq8qKzczMhuYrqc3MLMsJwszMspwgzMwsywnCzMyynCDMzCzLCcLMzLKcIMzMLKv0ezG1k6RNwINVx7GDJgGPVB1Em7nNo4Pb3B0OiIjJuRUjKkF0I0lLR9vzLtzm0cFt7n7uYjIzsywnCDMzy3KCqN68qgOogNs8OrjNXc5jEGZmluUjCDMzy3KCMDOzLCeINpC0p6QbJd2XXp/3DO5U73hJ90q6X9LczPqPSgpJk8qPujnNtlnS5yXdI2mFpCsk7dG24HdAA9+ZJH0lrV8h6dWNbtuphttmSftJulnSakmrJJ3b/uiHp5nvOa0fK+lnkq5uX9QtEBGeSp6AzwFz0/xc4LOZOmOBXwIHAjsBdwGH1KzfD7ie4kLASVW3qew2Uzxmdlya/2xu+6qnob6zVGcWcC3Fw7NmALc3um0nTk22eSrw6jS/G/CLkd7mmvV/DvwLcHXV7dmRyUcQ7XESMD/NzwfenqlzJHB/RKyJiGeAhWm7fl8CPgZ0y1kFTbU5Im6IiK2p3hJgWrnhDstQ3xlp+ZIoLAH2kDS1wW070bDbHBHrI+JOgIh4ElgN7NvO4Iepme8ZSdOAtwEXtTPoVnCCaI8pEbEeIL3unamzL/BQzfLaVIakE4FfR8RdZQfaQk21eYAzKX6ddZpG4q9Xp9G2d5pm2vw7kqYDhwO3tz7Elmu2zRdS/LjbXlJ8pSntmdSjjaQfAS/OrPpko7vIlIWkF6Z9vHm4sZWlrDYPeI9PAluBBTsWXVsMGf8gdRrZthM10+ZipTQBuAw4LyKeaGFsZRl2myWdAGyMiGWSelsdWNmcIFokIt5Ub52kDf2H2Omwc2Om2lqKcYZ+04B1wEHAS4C7JPWX3ynpyIh4uGUNGIYS29y/j9nACcCxkTpyO8yg8Q9RZ6cGtu1EzbQZSeMpksOCiLi8xDhbqZk2vwM4UdIsYGdgd0nfjYgzSoy3daoeBBkNE/B5njtg+7lMnXHAGopk0D8Q9spMvQfojkHqptoMHA/8HJhcdVsGaeOQ3xlF33Pt4OUdO/J9d9rUZJsFXAJcWHU72tXmAXV66bJB6soDGA0TsBdwE3Bfet0zle8DLKqpN4vizI5fAp+ss69uSRBNtRm4n6JPd3mavl51m+q083nxAx8EPpjmBXwtrb8b6NmR77sTp+G2GXg9RdfMiprvdVbV7Sn7e67ZR9clCN9qw8zMsnwWk5mZZTlBmJlZlhOEmZllOUGYmVmWE4SZmWU5QZhlSNqSXqdLeneL9/2XA5b/vZX7N2sVJwizwU0HdihBSBo7RJXnJIiIeN0OxmTWFk4QZoO7AHiDpOWS/izd1//zkn6a7vv/AQBJvelZB/9CcaEUkn4oaVl69sGcVHYBsEva34JU1n+0orTvlZLulnRqzb77JP0gPSNjgdJ9V8zK5HsxmQ1uLvDRiDgBIP2h/01EvEbSC4DbJN2Q6h4JHBoR/5GWz4yIxyTtAvxU0mURMVfS2RFxWOa9TgEOA14FTErbLE7rDgdeSXF/n9uAo4FbW91Ys1o+gjDbMW8G3itpOcWtqvcCDk7r7qhJDgAflnQXxfMs9qupV8/rgUsjYltEbABuAV5Ts++1EbGd4hYV01vQFrNB+QjCbMcIOCcirn9OYXEr56cGLL8JOCoinpbUR3E3z6H2Xc9va+a34f+71gY+gjAb3JMUj8fsdz3wP9Ntq5H0B5J2zWz3ImBzSg4vp7jDZ79n+7cfYDFwahrnmAy8EbijJa0wGwb/CjEb3Apga+oquhj4MkX3zp1poHgT+cepXgd8UNIK4F6KbqZ+84AVku6MiNNryq8AjqK4nXQAH4uIh1OCMWs7383VzMyy3MVkZmZZThBmZpblBGFmZllOEGZmluUEYWZmWU4QZmaW5QRhZmZZThBmZpY1oq6knjRpUkyfPr3qMHbIU089xa675u7UMHK5zaOD29wdli1b9khETM6tG1EJYvr06SxdurTqMHZIX18fvb29VYfRVm7z6OA2dwdJD9Zb5y4mMzPLcoIwM7Os0hKEpG9L2ihpZU3ZO9PjF7dL6hli+7GSfibp6rJiNDOz+so8grgYOH5A2UqKxyoufl7t5zsXWN3imMzMrEGlJYiIWAw8NqBsdUTcO9S2kqYBbwMuKik8MzMbQqeexXQh8DGe+ySvrPQQ+TkAU6ZMoa+vr9TAWm3Lli1dF3Oz3ObRwW3ufh2XICSdAGyMiGXpub6Dioh5FE/ooqenJ7rtFLNuPC2uWW7z6OA2d79OPIvpaOBESQ8AC4FjJH232pDMzEafjksQEfGJiJgWEdOBdwE/jogzKg7LzGzUKfM010uBnwAvk7RW0vslnSxpLcWD2a+RdH2qu4+kRWXFYmZmO660MYiIOK3OqisyddcBszLlfUBfSwMzM7OGdFwXk5mZdQYnCDMzy3KCMDOzLCcIMzPLcoIwM7MsJwgzM8tygjAzsywnCDMzy3KCMDOzLCcIMzPLcoIwM7MsJwgzM8tygjAzsywnCDMzy3KCMDOzLCcIMzPLcoIwM7MsJwgzM8tygjAzsywnCDMzy3KCMDOzLCcIMzPLcoIwM7Os0hKEpG9L2ihpZU3ZOyWtkrRdUk+d7faTdLOk1anuuWXFaGZm9ZV5BHExcPyAspXAKcDiQbbbCnwkIl4BzAA+JOmQUiI0M7O6xpW144hYLGn6gLLVAJIG2249sD7NPylpNbAv8POyYjUzs+crLUG0QkowhwO3D1JnDjAHYMqUKfT19bUltlbZsmVL18XcLLd5dHCbu1/HJghJE4DLgPMi4ol69SJiHjAPoKenJ3p7e9sTYIv09fXRbTE3y20eHdzm7teRZzFJGk+RHBZExOVVx2NmNhp1XIJQMUDxLWB1RHyx6njMzEarMk9zvRT4CfAySWslvV/SyZLWAkcB10i6PtXdR9KitOnRwHuAYyQtT9OssuI0M7O8Ms9iOq3OqisyddcBs9L8rUD905zMzKwtOq6LyczMOoMThJmZZTlBmJlZlhOEmZllOUGYmVmWE4SZmWU5QZiZWZYThJmZZTlBmJlZlhOEmZllOUGYmVmWE4SZmWU5QZiZWZYThJmZZTlBmJlZlhOEmZllOUGYmVlW3SfKSTplsA0j4vLWh2NmZp1isEeO/nF63Rt4HfDjtDwT6AOcIMzMRrC6CSIi/hRA0tXAIRGxPi1PBb7WnvDMzKwqjYxBTO9PDskG4A9KisfMzDrEYF1M/fokXQ9cCgTwLuDmUqMyM7PKDZkgIuJsSScDb0xF8yLiinLDMjOzqg3axSRpjKSVEXFFRPxZmhpKDpK+LWmjpJU1Ze+UtErSdkk9g2x7vKR7Jd0vaW7jzTEzs1YZNEFExHbgLkn7D2PfFwPHDyhbCZwCLK63kaSxFIPgbwUOAU6TdMgw3t/MzJrQyBjEVGCVpDuAp/oLI+LEwTaKiMWSpg8oWw0gabBNjwTuj4g1qe5C4CTg5w3EamZmLdJIgvh06VE8177AQzXLa4HXtjkGM7NRr5FB6lvaEUiN3OFF1K0szQHmAEyZMoW+vr6SwirHli1bui7mZrnNo4Pb3P2GTBCSZgD/CLwC2AkYCzwVEbuXFNNaYL+a5WnAunqVI2IeMA+gp6cnent7SwqrHH19fXRbzM1ym0cHt7n7NXKh3FeB04D7gF2As1JZWX4KHCzpJZJ2orju4qoS38/MzDIauptrRNwPjI2IbRHxz0DvUNtIuhT4CfAySWslvV/SyZLWAkcB16QL8JC0j6RF6b22AmcD1wOrge9HxKphtM3MzJrQyCD10+mX/HJJnwPWA7sOtVFEnFZn1fOuo4iIdcCsmuVFwKIGYjMzs5I0cgTxnlTvbIrTXPcD/qTMoMzMrHqNHEEcBGyKiCdo/ymvZmZWkUYSxPuAr0t6FPi3NN0aEZvLDMzMzKrVyHUQ74ViIBl4B8VtMPZpZFszM+tejVwHcQbwBuC/AY9QnOL6byXHZWZmFWvkKOBC4JfA14GbI+KBMgMyM7POMORZTBExCTgT2Bn4jKQ7JH2n9MjMzKxSQyYISbsD+wMHANOBFwHbyw3LzMyq1kgX060101cjYm25IZmZWSdo5CymPwSQtGtEPDVUfTMzGxka6WI6StLPKe6LhKRXSfq/pUdmZmaVauRWGxcCbwEeBYiIu4A3lhiTmZl1gEbv5vrQgKJtJcRiZmYdpJFB6ockvQ6IdFfXD5O6m8zMbORq5Ajig8CHKJ4VvRY4LC2bmdkINugRhKSxwIURcXqb4jEzsw4x6BFERGwDJqeuJTMzG0UaGYN4ALhN0lUUDwwCICK+WFZQZiPJPZdfz9MLvsc9j/2Wl5/ylqrDMWtYIwliXZrGALuVG47ZyHLP5ddzwKkn8tJtW3n2qgXc872rnCSsazRyJbWfImc2TJuvvZGXbtvKuNgO27ay+dobwQnCukRD10GY2fBMfOtxPDt2HFs1hmfHjmPiW4+rOiSzhvmpcGYlevkpb+Ge713FmgXf48DTT3X3knWVukcQkj6bXt/ZvnDMRp6Xn/IWXnjOe50crOsM1sU0S9J44BPD2bGkb0vaKGllTdmekm6UdF96nVhn2z+TtErSSkmXStp5ODGYmdnwDZYgrqN4BvUfSnpC0pO1rw3s+2Lg+AFlc4GbIuJg4Ka0/ByS9qW4nUdPRBwKjAXe1cD7mZlZC9VNEBHxFxHxIuCaiNg9InarfR1qxxGxGHhsQPFJwPw0Px94e53NxwG7SBoHvJDiNFszM2ujRk5zPUnSFOA1qej2iNg0zPebEhHr037XS9o7836/lvQF4FfAfwI3RMQNw3w/MzMbJkXE4BWKQeovAH2AgDcAfxERPxhy59J04OrUVYSkxyNij5r1myNi4oBtJgKXAacCjwP/CvwgIr5b5z3mAHMApkyZcsTChQuHCqujbNmyhQkTJlQdRlu5zaOD29wdZs6cuSwienLrGjnN9a+A10TERgBJk4EfAUMmiIwNkqamo4epwMZMnTcB/9F/lCLpcuB1QDZBRMQ8YB5AT09P9Pb2DiOs6vT19dFtMTfLbR4d3Obu18iFcmP6k0PyaIPb5VwFzE7zs4ErM3V+BcyQ9EJJAo7Fz58wM2u7Rv7QXyfpeknvk/Q+4Bpg0VAbSboU+AnwMklrJb0fuAA4TtJ9wHFpGUn7SFoEEBG3Uxyd3AncnWKct8MtMzOzpjQySP0Xkk4BXk8xBjEvIq5oYLvT6qw6NlN3HTCrZvlTwKeGeg8zMytPQ7faiIjLgctLjsXMzDqIb9ZnZmZZThBmZpY1ZIKQdLKkF7QjGDMz6xyNHEGcCPxC0nckvS3d/sLMzEa4IRNERPwp8FKKK5rfDfxS0kVlB2ZmZtVq9CymZyVdCwSwC8VN984qMzAzM6tWI2MQx0u6GLgfeAdwETC15LjMzKxijRxBvA9YCHwgIn5bbjhmZtYpGhmDeBfwM4q7uCJpF0m7lR2YmZlVq5Eupv9BcW+kb6SiacAPS4zJzMw6QCOnuX4IOBp4AiAi7gOe96AfMzMbWRpJEL+NiGf6F9J1EIM/ZcjMzLpeIwniFkl/SfGM6OMorof4f+WGZWZmVWskQcwFNlE8m+EDFM+C+KsygzIzs+o18jyI7ZJ+CPyw/zGgZmY28tU9glDhfEmPAPcA90raJOlv2heemZlVZbAupvMozl56TUTsFRF7Aq8Fjpb0Z+0IzszMqjNYgngvcFpE/Ed/QUSsAc5I68zMbAQbLEGMj4hHBhamcYjx5YVkZmadYLAE8cww15mZ2Qgw2FlMr5L0RKZcwM4lxWNmZh2iboKIiLHtDMTMzDpLIxfKmZnZKFRagpD0bUkbJa2sKdtT0o2S7kuvE+tsu4ekH0i6R9JqSUeVFaeZmeWVeQRxMXD8gLK5wE0RcTBwU1rO+TJwXUS8HHgVsLqsIM3MLK+0BBERi4HHBhSfBMxP8/OBtw/cTtLuwBuBb6X9PBMRj5cVp5mZ5SmivDt3S5oOXB0Rh6blxyNij5r1myNi4oBtDgPmAT+nOHpYBpwbEU/VeY85wByAKVOmHLFw4cLWN6REW7ZsYcKECVWH0VZu8+jgNneHmTNnLouInty6Rp5J3W7jgFcD50TE7ZK+TNEV9de5yhExjyKh0NPTE729ve2KsyX6+vrotpib5TaPDm5z92v3WUwbJE0FSK8bM3XWAmsj4va0/AOKhGFmZm3U7gRxFTA7zc8GrhxYISIeBh6S9LJUdCxFd5OZmbVRmae5Xgr8BHiZpLWS3g9cABwn6T7guLSMpH0kLarZ/BxggaQVwGHA35UVp5mZ5ZU2BhERp9VZdWym7jpgVs3yciA7aGJmZu3hK6nNzCzLCcLMzLKcIMzMLMsJwszMspwgzMwsywnCzMyynCDMzCzLCcLMzLKcIMzMLMsJwszMspwgzMwsywnCzMyynCDMzCzLCcLMzLKcIMzMLMsJwszMspwgzMwsywnCzMyynCDMzCzLCcLMzLKcIMzMLMsJwszMspwgzMwsq7QEIenbkjZKWllTtqekGyXdl14nDrL9WEk/k3R1WTGamVl9ZR5BXAwcP6BsLnBTRBwM3JSW6zkXWF1OaGZmNpTSEkRELAYeG1B8EjA/zc8H3p7bVtI04G3ARWXFZ2Zmg1NElLdzaTpwdUQcmpYfj4g9atZvjojndTNJ+gHw98BuwEcj4oRB3mMOMAdgypQpRyxcuLClbSjbli1bmDBhQtVhtJXbPDq4zd1h5syZyyKiJ7duXLuDGYqkE4CNEbFMUu9Q9SNiHjAPoKenJ3p7h9yko/T19dFtMTfLbR4d3Obu1+6zmDZImgqQXjdm6hwNnCjpAWAhcIyk77YvRDMzg/YniKuA2Wl+NnDlwAoR8YmImBYR04F3AT+OiDPaF6KZmUG5p7leCvwEeJmktZLeD1wAHCfpPuC4tIykfSQtKisWMzPbcaWNQUTEaXVWHZupuw6YlSnvA/paGpiZmTXEV1KbmVmWE4SZmWU5QZiZWZYThJmZZTlBmJlZlhOEmZllOUGYmVmWE4SZmWU5QZiZWZYThJmZZTlBmJlZlhOEmZllOUGYmVmWE4SZmWU5QZiZWZYThJmZZTlBmJlZlhOEmZllKSKqjqFlJG0CHqw6jh00CXik6iDazG0eHdzm7nBAREzOrRhRCaIbSVoaET1Vx9FObvPo4DZ3P3cxmZlZlhOEmZllOUFUb17VAVTAbR4d3OYu5zEIMzPL8hGEmZllOUG0gaQ9Jd0o6b70OrFOveMl3SvpfklzM+s/KikkTSo/6uY022ZJn5d0j6QVkq6QtEfbgt8BDXxnkvSVtH6FpFc3um2nGm6bJe0n6WZJqyWtknRu+6Mfnma+57R+rKSfSbq6fVG3QER4KnkCPgfMTfNzgc9m6owFfgkcCOwE3AUcUrN+P+B6ius8JlXdprLbDLwZGJfmP5vbvuppqO8s1ZkFXAsImAHc3ui2nTg12eapwKvT/G7AL0Z6m2vW/znwL8DVVbdnRyYfQbTHScD8ND8feHumzpHA/RGxJiKeARam7fp9CfgY0C2DRk21OSJuiIitqd4SYFq54Q7LUN8ZafmSKCwB9pA0tcFtO9Gw2xwR6yPiToCIeBJYDezbzuCHqZnvGUnTgLcBF7Uz6FZwgmiPKRGxHiC97p2psy/wUM3y2lSGpBOBX0fEXWUH2kJNtXmAMyl+nXWaRuKvV6fRtneaZtr8O5KmA4cDt7c+xJZrts0XUvy4215SfKUZV3UAI4WkHwEvzqz6ZKO7yJSFpBemfbx5uLGVpaw2D3iPTwJbgQU7Fl1bDBn/IHUa2bYTNdPmYqU0AbgMOC8inmhhbGUZdpslnQBsjIhlknpbHVjZnCBaJCLeVG+dpA39h9jpsHNjptpainGGftOAdcBBwEuAuyT1l98p6ciIeLhlDRiGEtvcv4/ZwAnAsZE6cjvMoPEPUWenBrbtRM20GUnjKZLDgoi4vMQ4W6mZNr8DOFHSLGBnYHdJ342IM0qMt3WqHgQZDRPweZ47YPu5TJ1xwBqKZNA/EPbKTL0H6I5B6qbaDBwP/ByYXHVbBmnjkN8ZRd9z7eDlHTvyfXfa1GSbBVwCXFh1O9rV5gF1eumyQerKAxgNE7AXcBNwX3rdM5XvAyyqqTeL4syOXwKfrLOvbkkQTbUZuJ+iT3d5mr5edZvqtPN58QMfBD6Y5gV8La2/G+jZke+7E6fhthl4PUXXzIqa73VW1e0p+3uu2UfXJQhfSW1mZlk+i8nMzLKcIMzMLMsJwszMspwgzMwsywnCzMyynCDMMiRtSa/TJb27xfv+ywHL/97K/Zu1ihOE2eCmAzuUICSNHaLKcxJERLxuB2MyawsnCLPBXQC8QdJySX+W7uv/eUk/Tff9/wCApN70rIN/obhQCkk/lLQsPftgTiq7ANgl7W9BKus/WlHa90pJd0s6tWbffZJ+kJ6RsUDpvitmZfK9mMwGNxf4aEScAJD+0P8mIl4j6QXAbZJuSHWPBA6NiP9Iy2dGxGOSdgF+KumyiJgr6eyIOCzzXqcAhwGvAialbRandYcDr6S4v89twNHAra1urFktH0GY7Zg3A++VtJziVtV7AQendXfUJAeAD0u6i+J5FvvV1Kvn9cClEbEtIjYAtwCvqdn32ojYTnGLiuktaIvZoHwEYbZjBJwTEdc/p7C4lfNTA5bfBBwVEU9L6qO4m+dQ+67ntzXz2/D/XWsDH0GYDe5Jisdj9rse+J/pttVI+gNJu2a2exGwOSWHl1Pc4bPfs/3bD7AYODWNc0wG3gjc0ZJWmA2Df4WYDW4FsDV1FV0MfJmie+fONFC8ifzjVK8DPihpBXAvRTdTv3nACkl3RsTpNeVXAEdR3E46gI9FxMMpwZi1ne/mamZmWe5iMjOzLCcIMzPLcoIwM7MsJwgzM8tygjAzs6yOSBDpvO+fSbo6LZ8v6dfpfjXLJc2qOkYzs9GmU66DOBdYDexeU/aliPhCRfGYmY16lR9BSJoGvA24qOpYzMzs9zrhCOJC4GM893YGAGdLei+wFPhIRGzObZzurjkHYNdddz3i5S/3RadmZo1atmzZIxExObeu0iupJZ0AzIqI/5VubvbRiDhB0hTgEYrbDfxvYGpEnDnU/np6emLp0qVlhmxmNqJIWhYRPbl1VR9BHA2cmAahdwZ2l/TdiDijv4KkbwJXVxWgmdloVekYRER8IiKmRcR04F3AjyPiDElTa6qdDKysJEAzs1Gs6iOIej4n6TCKLqYHgA9UGo2Z2SjUMQkiIvqAvjT/nkqDMTOz6k9zNTOzzuQE0QGWPbiZr918P8sezJ7Ja2ZWiY7pYhqtlj24mdMvWsIzW7ez07gxLDhrBkccMLHqsMzMfARRtSVrHuWZrdvZHvDs1u0sWfNo1SGZmQFOEJWbceBe7DRuDGMF48eNYcaBe1UdkpkZ4C6myh1xwEQWnDWDJWseZcaBe7l7ycw6hhNEBzjigIlODGbWcdzFZGZmWU4QZmaW5QRhZmZZThBmZpblBGFmZllOEGZmluUEYWZmWU4QZmaW5QRhZmZZThBmZpbVEQlC0lhJP5N0dVreU9KNku5Lr74PhZlZm3VEggDOBVbXLM8FboqIg4Gb0rKZmbVR5QlC0jTgbcBFNcUnAfPT/Hzg7W0Oy8xs1Ks8QQAXAh8DtteUTYmI9QDpde96G0uaI2mppKWbNm0qNVAzs9Gk0gQh6QRgY0QsG+4+ImJeRPRERM/kyZNbGJ2Z2ehW9fMgjgZOlDQL2BnYXdJ3gQ2SpkbEeklTgY2VRmlmNgpVegQREZ+IiGkRMR14F/DjiDgDuAqYnarNBq6sKEQzs1GrE8Ygci4AjpN0H3BcWjYzszaquovpdyKiD+hL848Cx1YZj5nZaNepRxBmZlYxJwir3LIHN/O1m+9n2YObqw7FzGp0TBeTjU7LHtzM6Rct4Zmt29lp3BgWnDWDIw7wnVXMOoGPIKxSS9Y8yjNbt7M94Nmt21my5tGqQzKzxAnCKjXjwL3YadwYxgrGjxvDjAP3qjokM0vcxWSVOuKAiSw4awZL1jzKjAP3cveSWQdxgrDKHXHARCcGsw7kLiYzM8tygjAzsywnCOt6vo7CrBweg7Cu5usozMrjIwjrar6Owqw8ThDW1XwdhVl53MVkXc3XUZiVxwnCup6vozArh7uYzMwsq/IEIWlnSXdIukvSKkmfTuXnS/q1pOVpmlV1rGZmo0kndDH9FjgmIrZIGg/cKunatO5LEfGFCmMzMxu1Kj+CiMKWtDg+TVFhSKOOLzQzs5zKEwSApLGSlgMbgRsj4va06mxJKyR9W5JHIUvQf6HZP9xwL6dftMRJwsx+pyMSRERsi4jDgGnAkZIOBf4JOAg4DFgP/ENuW0lzJC2VtHTTpk1tinjk8IVmZlZPRySIfhHxONAHHB8RG1Li2A58EziyzjbzIqInInomT57cvmBHCF9oZmb1VD5ILWky8GxEPC5pF+BNwGclTY2I9anaycDKyoIcwXyhmZnVU3mCAKYC8yWNpTii+X5EXC3pO5IOoxiwfgD4QHUhjmy+0MzMcipPEBGxAjg8U/6eCsIxM7Oko8YgzMysczhBmJlZlhOEmZllOUGYmVmWE4SZmWU5QZiZWZYThJmZZTlBmJlZlhOEmZllOUGYmVmWEwR+YI6ZWU7T92KS9CSDPAEuInZv9j3K1P/AnGe2bmencWNYcNYM37jOzIwWJIiI2A1A0t8CDwPfAQScDuzW7P7LlntgjhOEmVlru5jeEhH/NyKejIgnIuKfgD9p4f5L4QfmmDXHXbQjVytv971N0unAQooup9OAbS3cfyn8wByz4XMX7cjWygTxbuDLaQrgtlTW8fzAHLPhcRftyNaSBJGeBvehiDipFfszs+7Q30X77Nbt7qIdgVqSICJim6QjhrOtpJ2BxcALUjw/iIhPSdoT+B4wneKRo/89ItzJadZB3EU7srWyi+lnkq4C/hV4qr8wIi4fYrvfAsdExBZJ44FbJV0LnALcFBEXSJoLzAU+3sJ4zawF3EU7crUyQewJPAocU1MWwKAJIiIC2JIWx6cpgJOA3lQ+H+jDCcLMrG1aliAi4k+Hu20aw1gGvBT4WkTcLmlKRKxP+14vae8WhWpmZg1oWYJIYwnvB14J7NxfHhFnDrVtRGwDDpO0B3CFpEN34H3nAHMA9t9//x2M2qx6yx7c7D5860itvFDuO8CLgbcAtwDTgCd3ZAcR8ThFV9LxwAZJUwHS68Y628yLiJ6I6Jk8efKwgzerQv91BP9ww72cftESX2xmHaWVCeKlEfHXwFMRMR94G/DfhtpI0uR05ICkXYA3AfcAVwGzU7XZwJUtjNWsI+SuIzDrFK0cpH42vT6euogepjhFdShTgflpHGIM8P2IuFrST4DvS3o/8CvgnS2M1awj+DoC62StTBDzJE0E/pri1/+END+oiFgBHJ4pfxQ4toXxmXUcX0dgnayVZzFdlGZvAQ5s1X7NRjpfR2CdqpVnMf0SWAL8G7A4In7eqn2bmVn7tXKQ+hDgG8BewBckrZF0RQv3b2ZmbdTKBLGNYqB6G7Ad2ECdU1PNzKzztXKQ+gngbuCLwDfTILOZmXWpVh5BnEZxV9b/BSyU9GlJPgvJzKxLtfIspiuBKyW9HHgrcB7wMWCXVr2HmZm1T8uOICRdls5k+jKwK/BewOfumZl1qVaOQVwA3JluvGdmZl2ulWMQq4BPSJoHIOlgSSe0cP9mZtZGrUwQ/ww8A7wuLa8F/k8L929mZm3UygRxUER8jnTTvoj4T0At3L+ZmbVRKxPEM+l23QEg6SCK502bmVkXauUg9aeA64D9JC0Ajgbe18L9m5lZG7UkQUgaQ3FK6ynADIqupXMj4pFW7N/MzNqvJQkiIrZLOjsivg9c04p9mpnZ0Mp8pnkru5hulPRR4HvAU/2FEfFYC9/DzMyS/meaP7N1OzuNG8OCs2a0NEm0cpD6TOBDFPdjWpampUNtJGk/STdLWi1plaRzU/n5kn4taXmaZrUwVjOzrlf2M81beS+mlwxz063ARyLiTkm7Acsk3ZjWfSkivtCaCM3MRpayn2neyi6mYYmI9cD6NP+kpNXAvtVGZWbW+cp+pnnlCaKWpOnA4cDtFKfJni3pvRRdVR+JiM2ZbeYAcwD233//9gVrZtYBynymeSvHIJoiaQJwGXBeRDwB/BNwEHAYxRHGP+S2i4h5EdETET2TJ09uV7hmZiNe00cQkl492PqIuLOBfYynSA4LIuLytN2GmvXfBK5uMlQzM9sBrehiyv6yTwI4ZrCNJQn4FrA6Ir5YUz41jU8AnAysbDZQMzNrXNMJIiJmNrmLo4H3AHdLWp7K/hI4TdJhFEnmAeADTb6PmZntgJYOUks6FDgE2Lm/LCIuGWybiLiV/F1fF7UyNjMz2zEtSxCSPgX0UiSIRRTPpb4VGDRBmJlZZ2rlWUzvAI4FHo6IPwVeBbyghfs3M7M2amWC+M+I2A5slbQ7sBE4sIX7NzOzNmrlGMRSSXsA36S4D9MW4I4W7t/MzNqolfdi+l9p9uuSrgN2j4gVrdq/mZm1V8u6mCTd1D8fEQ9ExIraMjMz6y6tuJJ6Z+CFwCRJE/n9Kau7A/s0u38zM6tGK7qYPgCcR5EMam+r8QTwtRbs38zMKtCKK6m/DHxZ0jkR8Y8tiMnMzDpAK89i+oakDwNvTMt9wDci4tkWvoeZmbVJKxPE/wXGp1co7q/0T8BZLXwPMzNrk1YMUo+LiK3AayLiVTWrfizprmb3b2Zm1WjFaa79F8Ntk3RQf6GkA4FtLdi/mZlVoBVdTP2ntX4UuFnSmrQ8HfjTFuzfzMwq0IoEMVnSn6f5bwBjgacobvl9OHBzC97DzMzarBUJYiwwgec+02FCet2tBfs3M7MKtCJBrI+Iv23BfszMrIO0YpA69zS4xjeW9pN0s6TVklZJOjeV7ynpRkn3pdeJLYjVzMwa1IoEcWyT228FPhIRrwBmAB+SdAgwF7gpIg4GbkrLZmbWJk0niIh4rMnt10fEnWn+SWA1sC9wEjA/VZsPvL2Z9zEzsx3TyifKNU3SdIozn24HpkTEeiiSCLB3nW3mSFoqaemmTZvaFquZ2UjXMQlC0gTgMuC8iHii0e0iYl5E9EREz+TJk8sL0MxslOmIBCFpPEVyWBARl6fiDZKmpvVTKZ5xbWY2oix7cDNfu/l+lj24uepQnqeVN+sbFkkCvgWsjogv1qy6CpgNXJBer6wgPDOz0ix7cDOnX7SEZ7ZuZ6dxY1hw1gyOOKBzTtjshCOIoynu/HqMpOVpmkWRGI6TdB9wXFo2Mxsxlqx5lGe2bmd7wLNbt7NkzaNVh/QclR9BRMSt1L+WotlTaM3MOtaMA/dip3FjeHbrdsaPG8OMA/eqOqTnqDxBmJmNVkccMJEFZ81gyZpHmXHgXh3VvQROEGZmlTrigIkdlxj6dcIYhJmZdSAnCDMzy3KCMDOzLCcIMzPLcoKwpnXylaBmNnw+i8ma0ulXgprZ8PkIwprS6VeCmtnwOUFYU/qvBB0rOvJKUDMbPncxWVM6/UpQMxs+JwhrWidfCWpmw+cuJjMzy3KCMDOzLCcIMzPLcoIwM7MsJwgzM8uqPEFI+rakjZJW1pSdL+nXAx5Bamb2PL7VS3k64TTXi4GvApcMKP9SRHyh/eGYWbfwrV7KVfkRREQsBh6rOg4z6z6+1Uu5Kk8Qgzhb0orUBVX3J4GkOZKWSlq6adOmdsZnZhXzrV7KpYioOgYkTQeujohD0/IU4BEggP8NTI2IM4faT09PTyxdurTMUM06zrIHN4/qW52M9vY3S9KyiOjJreuEMYjniYgN/fOSvglcXWE4Zh3LffC+1UuZOrKLSdLUmsWTgZX16pqNZu6DtzJVfgQh6VKgF5gkaS3wKaBX0mEUXUwPAB+oKj6zTtbfB//s1u3ug7eW64gxiFbxGISNRu6Dt2Z03RiEmTXOffBWlo4cgzAzs+o5QZhZpXyrjM7lLiYzq4xP0+1sPoIws8qMhNN0R/IRkI8gzKwy3X6a7kg/AnKCMLPKHHHARBacNaPS03SbOU04dwTkBGE2gvg6gmpVeZpus0cA3X4ENBQnCBvVRnoXgQ2u2SOATjgCKpMTxAjgX8DDN9K7CGxwrTgCGMkXKjpBdDn/Am7OSO8isMGN9COAZjlBdDn/Am6O/0D4CHQkHwE0ywmiy/kXcPNG8x8IH4HaYJwgupx/AVszfARqg3GCGAFG8y9ga46PQG0wThBmo5iPQG0wThBmo5yPQK2eym/WJ+nbkjZKWllTtqekGyXdl179r9fMrM0qTxDAxcDxA8rmAjdFxMHATWnZzMzaqPIEERGLgccGFJ8EzE/z84G3tzMmMzPrgARRx5SIWA+QXveuV1HSHElLJS3dtGlT2wKsNZLvB29D8/dvI1XXD1JHxDxgHkBPT0+0+/19odHo5u/fRrJOPYLYIGkqQHrdWHE8dY2EJ2LZ8Pn7t5GsUxPEVcDsND8buLLCWAbVf6HRWOELjUYhf/82kimi7b0yzw1AuhToBSYBG4BPAT8Evg/sD/wKeGdEDBzIfp6enp5YunRpabHWM9pvdjba+fu3biZpWUT0ZNdVnSBaqaoEYWbWrQZLEJ3axWRmZhVzgjAzsywnCDMzy3KCMDOzLCcIMzPLGlFnMUnaBDw4zM0nAY+0MJxWc3zNcXzNcXzN6eT4DoiIybkVIypBNEPS0nqnenUCx9ccx9ccx9ecTo+vHncxmZlZlhOEmZllOUH83ryqAxiC42uO42uO42tOp8eX5TEIMzPL8hGEmZllOUGYmVnWqEoQko6XdK+k+yXNzayXpK+k9SskvbrN8e0n6WZJqyWtknRupk6vpN9IWp6mv2lzjA9Iuju99/NunVvlZyjpZTWfy3JJT0g6b0Cdtn5+kr4taaOklTVle0q6UdJ96TV7j/Ch/r2WGN/nJd2Tvr8rJO1RZ9tB/y2UGN/5kn5d8x3OqrNtVZ/f92pie0DS8jrblv75NS0iRsUEjAV+CRwI7ATcBRwyoM4s4FpAwAzg9jbHOBV4dZrfDfhFJsZe4OoKP8cHgEmDrK/0MxzwfT9McRFQZZ8f8Ebg1cDKmrLPAXPT/Fzgs3XiH/Tfa4nxvRkYl+Y/m4uvkX8LJcZ3PvDRBr7/Sj6/Aev/Afibqj6/ZqfRdARxJHB/RKyJiGeAhcBJA+qcBFwShSXAHv2PPm2HiFgfEXem+SeB1cC+7Xr/Fqn0M6xxLPDLiBjulfUtERGLgYEPuzoJmJ/m5wNvz2zayL/XUuKLiBsiYmtaXAJMa/X7NqrO59eIyj6/fpIE/Hfg0la/b7uMpgSxL/BQzfJanv/Ht5E6bSFpOnA4cHtm9VGS7pJ0raRXtjcyArhB0jJJczLrO+UzfBf1/2NW+fkBTImI9VD8KAD2ztTplM/xTIojwpyh/i2U6ezUBfbtOl10nfD5vQHYEBH31Vlf5efXkNGUIJQpG3iObyN1SidpAnAZcF5EPDFg9Z0U3SavAv6R4vGs7XR0RLwaeCvwIUlvHLC+8s9Q0k7AicC/ZlZX/fk1qhM+x08CW4EFdaoM9W+hLP8EHAQcBqyn6MYZqPLPDziNwY8eqvr8GjaaEsRaYL+a5WnAumHUKZWk8RTJYUFEXD5wfUQ8ERFb0vwiYLykSe2KLyLWpdeNwBUUh/K1Kv8MKf7D3RkRGwauqPrzSzb0d7ul142ZOpV+jpJmAycAp0fqMB+ogX8LpYiIDRGxLSK2A9+s875Vf37jgFOA79WrU9XntyNGU4L4KXCwpJekX5jvAq4aUOcq4L3pTJwZwG/6uwLaIfVZfgtYHRFfrFPnxakeko6k+A4fbVN8u0rarX+eYjBz5YBqlX6GSd1fblV+fjWuAman+dnAlZk6jfx7LYWk44GPAydGxNN16jTyb6Gs+GrHtE6u876VfX7Jm4B7ImJtbmWVn98OqXqUvJ0TxRk2v6A4u+GTqeyDwAfTvICvpfV3Az1tju/1FIfBK4DlaZo1IMazgVUUZ2UsAV7XxvgOTO97V4qhEz/DF1L8wX9RTVllnx9FoloPPEvxq/b9wF7ATcB96XXPVHcfYNFg/17bFN/9FP33/f8Gvz4wvnr/FtoU33fSv60VFH/0p3bS55fKL+7/N1dTt+2fX7OTb7VhZmZZo6mLyczMdoAThJmZZTlBmJlZlhOEmZllOUGYmVmWE4RZHZK26bl3hx30jqCSPijpvS143wcquHjP7Hl8mqtZHZK2RMSECt73AYrrRx5p93ub1fIRhNkOSr/wPyvpjjS9NJWfL+mjaf7Dkn6ebii3MJXtKemHqWyJpD9M5XtJukHSzyR9g5r7CEk6I73HcknfkDS2gibbKOUEYVbfLgO6mE6tWfdERBwJfBW4MLPtXODwiPhDiiu5AT4N/CyV/SVwSSr/FHBrRBxOcWXw/gCSXgGcSnFTt8OAbcDprWyg2WDGVR2AWQf7z/SHOefSmtcvZdavABZI+iG/v2Ps64E/AYiIH6cjhxdRPHTmlFR+jaTNqf6xwBHAT9Pto3Yhf2M/s1I4QZgNT9SZ7/c2ij/8JwJ/nZ47MdgtqHP7EDA/Ij7RTKBmw+UuJrPhObXm9Se1KySNAfaLiJuBjwF7ABOAxaQuIkm9wCNRPO+jtvytQP8DcG4C3iFp77RuT0kHlNYiswF8BGFW3y567gPnr4uI/lNdXyDpdoofWacN2G4s8N3UfSTgSxHxuKTzgX+WtAJ4mt/f8vvTwKWS7gRuAX4FEBE/l/RXFE8dG0Nxx9APAZU+RtVGD5/maraDfBqqjRbuYjIzsywfQZiZWZaPIMzMLMsJwszMspwgzMwsywnCzMyynCDMzCzr/wMrpkTHoJEWAgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "REWARD_THRESHOLD = 0\n", "\n", "# reward graph per episode\n", "min_episodes = np.min(df['episode'])\n", "max_episodes = np.max(df['episode'])\n", "print('Number of episodes = ', max_episodes)\n", "\n", "total_reward_per_episode = list()\n", " \n", "for epi in np.arange(min_episodes, max_episodes+1,1):\n", " df_slice = df[df['episode'] == epi]\n", " total_reward_per_episode.append(np.sum(df_slice['reward']))\n", "\n", "average_reward_per_iteration = list()\n", "deviation_reward_per_iteration = list()\n", "\n", "buffer_rew = list()\n", "for val in total_reward_per_episode:\n", " buffer_rew.append(val)\n", "\n", " if len(buffer_rew) == EPISODE_PER_ITER:\n", " average_reward_per_iteration.append(np.mean(buffer_rew))\n", " deviation_reward_per_iteration.append(np.std(buffer_rew))\n", " # reset\n", " buffer_rew = list()\n", "\n", "\n", "fig = plt.figure(figsize=(6, 12))\n", "ax = fig.add_subplot(311)\n", "ax.plot(np.arange(len(average_reward_per_iteration)), average_reward_per_iteration, '.')\n", "ax.set_title('Rewards per Iteration')\n", "ax.set_ylabel('Mean reward')\n", "ax.set_xlabel('Iteration')\n", "\n", "for rr in range(len(average_reward_per_iteration)):\n", " if average_reward_per_iteration[rr] >= REWARD_THRESHOLD :\n", " ax.plot(rr, average_reward_per_iteration[rr], 'r.')\n", "\n", "plt.grid(True)\n", "\n", "ax = fig.add_subplot(312)\n", "ax.plot(np.arange(len(deviation_reward_per_iteration)), deviation_reward_per_iteration, '.')\n", "\n", "ax.set_ylabel('Dev of reward')\n", "ax.set_xlabel('Iteration')\n", "plt.grid(True)\n", "\n", "for rr in range(len(average_reward_per_iteration)):\n", " if average_reward_per_iteration[rr] >= REWARD_THRESHOLD:\n", " ax.plot(rr, deviation_reward_per_iteration[rr], 'r.')\n", "\n", "\n", "ax = fig.add_subplot(313)\n", "ax.plot(np.arange(len(total_reward_per_episode)), total_reward_per_episode, '.')\n", "ax.set_ylabel('Total reward')\n", "ax.set_xlabel('Episode')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Analyze training/evaluation metrics with progress and reward function\n", "\n", "This graph gives you an idea whether your model has convergered or more training is required. If you see the curve trending upwards then more training time would help the agent to get better rewards" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "if is_training:\n", " METRIC_PATH = glob.glob(\"./intermediate_checkpoint/{}/metrics/training/*.json\".format(ModelUuid))[0]\n", "else:\n", " METRIC_PATH = glob.glob(\"./intermediate_checkpoint/{}/metrics/evaluation/*.json\".format(ModelUuid))[0]\n", " \n", "with open(METRIC_PATH, \"r\") as fp:\n", " data = json.loads(fp.read())\n", " metric_data = data['metrics']\n", " df_metrics = pd.DataFrame(metric_data)\n", "\n", "if is_training:\n", " df_metrics = df_metrics[df_metrics['phase'] == \"training\"]" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
reward_scoremetric_timestart_timeelapsed_time_in_millisecondsepisodetrialphasecompletion_percentageepisode_status
0322891825719319911training7Off track
1103084228977186522training3Off track
2433738630921646533training20Off track
3123932237442188044training3Off track
4354418139385479655training15Off track
5174711544248286766training7Off track
6385611447175893977training27Off track
7376031556184413188training11Off track
8126224460376186899training5Off track
910638476231315341010training3Off track
1030675856391636691111training8Off track
1115694496764518041212training3Off track
1211715876951520721313training4Off track
1331750487164534031414training8Off track
1413770487510719411515training4Off track
1515791837711420691616training4Off track
1612813187924120771717training4Off track
1713835838138521981818training6Off track
1819859108364222681919training5Off track
1926895248597635482020training9Off track
25221097901055144276211training17Off track
26471145891098394750222training13Off track
27171168491146502199233training5Off track
28241212381169184320244training12Off track
29191241081213102798255training7Off track
30151264471241792268266training5Off track
31341305841265184066277training12Off track
32211331141306452469288training5Off track
33491395811331796402299training21Off track
343614364913963540143010training10Off track
351414598114371922623111training4Off track
361314804314603820053212training5Off track
371415071814810326153313training6Off track
383615571015077749333414training15Off track
393715924615577634703515training9Off track
401516211515930828073616training6Off track
412116445016218022703717training5Off track
422216737616450528713818training7Off track
431316984916744124083919training5Off track
441517204916990321464020training4Off track
\n", "
" ], "text/plain": [ " reward_score metric_time start_time elapsed_time_in_milliseconds \\\n", "0 32 28918 25719 3199 \n", "1 10 30842 28977 1865 \n", "2 43 37386 30921 6465 \n", "3 12 39322 37442 1880 \n", "4 35 44181 39385 4796 \n", "5 17 47115 44248 2867 \n", "6 38 56114 47175 8939 \n", "7 37 60315 56184 4131 \n", "8 12 62244 60376 1868 \n", "9 10 63847 62313 1534 \n", "10 30 67585 63916 3669 \n", "11 15 69449 67645 1804 \n", "12 11 71587 69515 2072 \n", "13 31 75048 71645 3403 \n", "14 13 77048 75107 1941 \n", "15 15 79183 77114 2069 \n", "16 12 81318 79241 2077 \n", "17 13 83583 81385 2198 \n", "18 19 85910 83642 2268 \n", "19 26 89524 85976 3548 \n", "25 22 109790 105514 4276 \n", "26 47 114589 109839 4750 \n", "27 17 116849 114650 2199 \n", "28 24 121238 116918 4320 \n", "29 19 124108 121310 2798 \n", "30 15 126447 124179 2268 \n", "31 34 130584 126518 4066 \n", "32 21 133114 130645 2469 \n", "33 49 139581 133179 6402 \n", "34 36 143649 139635 4014 \n", "35 14 145981 143719 2262 \n", "36 13 148043 146038 2005 \n", "37 14 150718 148103 2615 \n", "38 36 155710 150777 4933 \n", "39 37 159246 155776 3470 \n", "40 15 162115 159308 2807 \n", "41 21 164450 162180 2270 \n", "42 22 167376 164505 2871 \n", "43 13 169849 167441 2408 \n", "44 15 172049 169903 2146 \n", "\n", " episode trial phase completion_percentage episode_status \n", "0 1 1 training 7 Off track \n", "1 2 2 training 3 Off track \n", "2 3 3 training 20 Off track \n", "3 4 4 training 3 Off track \n", "4 5 5 training 15 Off track \n", "5 6 6 training 7 Off track \n", "6 7 7 training 27 Off track \n", "7 8 8 training 11 Off track \n", "8 9 9 training 5 Off track \n", "9 10 10 training 3 Off track \n", "10 11 11 training 8 Off track \n", "11 12 12 training 3 Off track \n", "12 13 13 training 4 Off track \n", "13 14 14 training 8 Off track \n", "14 15 15 training 4 Off track \n", "15 16 16 training 4 Off track \n", "16 17 17 training 4 Off track \n", "17 18 18 training 6 Off track \n", "18 19 19 training 5 Off track \n", "19 20 20 training 9 Off track \n", "25 21 1 training 17 Off track \n", "26 22 2 training 13 Off track \n", "27 23 3 training 5 Off track \n", "28 24 4 training 12 Off track \n", "29 25 5 training 7 Off track \n", "30 26 6 training 5 Off track \n", "31 27 7 training 12 Off track \n", "32 28 8 training 5 Off track \n", "33 29 9 training 21 Off track \n", "34 30 10 training 10 Off track \n", "35 31 11 training 4 Off track \n", "36 32 12 training 5 Off track \n", "37 33 13 training 6 Off track \n", "38 34 14 training 15 Off track \n", "39 35 15 training 9 Off track \n", "40 36 16 training 6 Off track \n", "41 37 17 training 5 Off track \n", "42 38 18 training 7 Off track \n", "43 39 19 training 5 Off track \n", "44 40 20 training 4 Off track " ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_metrics" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mean percentage: 8.225\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABB8AAAGDCAYAAABjpLg3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAB9tUlEQVR4nOzdd3gc5dXG4d+x3Hs37jbGGIy7JdnUUENvgdBxkcEQIPTQQoAEkhBICAFCMVhu9N5D7wEsy93GvTfce5d0vj9m9GURkr22tTvS6rmvay/tTtl9Zsu7r87OvGPujoiIiIiIiIhIolSKOoCIiIiIiIiIpDYVH0REREREREQkoVR8EBEREREREZGEUvFBRERERERERBJKxQcRERERERERSSgVH0REREREREQkoVR8SGFmtsnM9o86R0VgZu3MzM2s8l6u/6SZ/aG0c4nI3jGze8zs2ahzJIuZ1TCzd8xsvZm9EnWe4pjZADP7Zh/Wn2pmR5deIhGR0qE+e/TM7AszuyzqHKlOxYcEMbP5ZnZ8eH2fOkxxPt7PPjDuXtvd5ybgseab2Q4za1xk+oTwH/B2pf2YqaS494O7X+nu90aVSaS8CtujrWHHba2ZvWdmrSPME0nRohQe91ygGdDI3X9dSrEiY2bDzey+2Gnufoi7fxFRpEhVtGKayJ5Qn10keVR8KAf29tf0BJsHXFh4w8y6AjWiiyP7qrTfZ2X0fSup6XR3rw00B5YDj0acpzxqC8x097yog1RUFlC/TKQcK6N9nzLbZ4/i+VJbGy098QlmZgcDTwKHhr/MrQunVzOzv5vZQjNbHu52XyOcd7SZLTazW83sR2CYmTUws3fNbGX46967ZtYqXP7PwJHAY+FjPBZOdzM7ILxez8xGhusvMLM7Cz94hVXeMM9aM5tnZifvZtNGAf1ibvcHRhbZ9l1tY4nbE87/wszuNbP/mtlGM/uoaNW2yGOdGVZxN5jZHDM7KZzewszeNrM1ZjbbzC6PWeceM3vFzJ4NH2OymR1oZreb2QozW2RmvyyS6a9mlmPBrslvmVnDEvLUM7OhZrbMzJaY2X1mlraL98NPfqUzs8vDvGvC/C1i5rmZXWlms8Ln7t9mZiXkuMfMXjWzl8JtHGdm3WPmzw/fZ5OAzWZW2czOsGD35HXhNh8cs3wvMxsf3tcr4f3eF84r7n1bycxuC1+T1Wb2cuFzZmbVw+d+dfhYY8ysWThvgJnNDR9nnpldXNJrL1LI3bcBrwKdC6dZkV+YrMivWmZ2iJl9HH7WlpvZHUXv18yqmNkLZvaamVUN25XXwvZrnpldGy53EnAHcH74+Z5YXE4za21mr4frr7b/tdmVLGibF4Rt0EgzqxfOO9rMFhe5n/lmdvwePO7B4fOxLvyMnxFO/yNwV8z6g4pZN83M7gg/yxvNbKyFe5iY2WHh53d9+PewIs//fWb2bXjf75hZIzN7zoL2eozF/PIWtm/Xhp//VWb2oJXQSTSzg2Jeuxlmdl44fTBwMXBL4WPGPl/h9Wpm9rCZLQ0vD5tZtdjn2sxuCl+HZWY2sLgMMdtY4neDmfUNt3+dmU20mEM/wnX/bGb/BbYA+5f0nrRdt6ftwueuvwXfuavM7PfhvGLfH2Y20Mymha/nXDO7osh23RJu+1Izu8x+2qco8ftdpLwy9dkT3mcv4fnaVds2wsxuCq+3DJ+nq8LbB4TtpMWZsWhbe4KZTbeg3X4MKLYvLaXM3XVJwAWYDxwfXh8AfFNk/sPA20BDoA7wDvDXcN7RQB7wN6AaQXWyEXAOUDNc/hXgzZj7+wK4rMhjOHBAeH0k8Fa4bjtgJjAoJt9O4HIgDfgNsBSwXW0bMAM4OFxnEcEvZw60i2Mb49meOcCB4fZ/AdxfQp5MYD1wAkFBrSVwUDjvS+BxoDrQA1gJHBfOuwfYBpwIVA6fo3nA74Eq4fMxr0imJUAXoBbwGvBsOK9duO2Vw9tvAk+FyzUFcoArdvF+GA7cF14/FlgF9Apf/0eBr4q8ru8C9YE24TadVMJzc0/42p4bbtPN4TZWiXktJwCtw+f5QGBz+FxWAW4BZgNVw8sC4Lpw3q+AHTG5j+bn79vrge+BVuG0p4AXwuWvIHhP1CR4D/UG6obP2QagU7hcc+CQqD/TupTNCz9ta2sCI4CRMfO/IKZtjP38EbQ9y4CbCNqIOkCfcN49wLPh+/i98DOaRtDGjCX4Z70qsD8wFzgxdr1d5E0DJgL/DN/r1YEjwnlZ4edtf6A28DowKpx3NLB4F9u+u8etEt73HWHuY4GNMZ+z3a3/O2Ay0Imgg9adoB1vCKwFLiVoRy8MbzeKef5nAx2AesAPBN8/x/O/dndYzOM48Hl4v23CZS8r5rWrRfC9MzC8n14E7eYh4fzhhG1TCc/XnwjapqZAE+Bb4N6Y5zovXKYKcApBZ7VBCc/NF5T83dASWB3eRyWCtnU10CRm3YXAIeF27Oo9eT0lt6ftwufuaYL3bHdgO3BwSa8vcGr4uhjwi3Abe4XzTgJ+DHPVJPjnJbZP8TAlfL/rokt5u6A+++62sTT77MU9X9dTctuWBbwTXr8ofJyXYua9tQcZY9vaJgR9zcL+8Q1hrsuKy61LKX7eog6Qqhd20ZARfNFvBjrETDuU8B/d8IO5A6i+i/vvAayNuV1iQxY2NNuBzjHzrgC+iMk3O2ZezXDd/Xa1bcCdwF8JOikfhx9mJ2god7mNcW7PnTG3rwI+KGHdp4B/FjO9NZAP1ImZ9ldgeHj9HuDjmHmnA5uAtPB2nXB76sdkuj9m+c7h65RGTPGB4Ljp7UCNmGUvBD4v7v0QThvO//6JHwo8EDOvNsEXTbuY1/WImPkvA7eV8NzcA3wfc7sSQcf2yJjXMitm/h+Al4ssv4TgPXlUeN1i5n/DT4sPP3nfAtMIiz3h7ebhtlQm+NL4FuhWJHMtYB3Bl0iN4rZLF10KL+F7eFP4nskj6IR1jZn/BSUXHy4Expdwv/cQdMS+BB4pfN8DfYCFRZa9nfAfaHb/T/yhBAXDysXM+xS4KuZ2p5jPy9HsW/HhSIJ/JivFTHsBuCfO9WcAZxYz/VIgp8i074ABMc//72Pm/QP4T8zt04EJMbedmGIqQdv/aTGv3fnA10Ue9yng7vD6cHZdfJgDnBIz70Rgfnj9aGBr7GsErAD6lvDcfEHJ3w23EhaQYuZ/CPSPWfdPMfN29Z7cVXvaLnzuWsXMzwEuiOf1DZd5E7guvJ5NTDGBoC9R2KfYo+93XXQp6xfUZ09mn/1nz9du2rYOBN/vlQj2SrmC8LuQ4MeGG/cgY2xb24+f9o8NWFz0ddGl9C9l8bikiqAJQWMx1v63t7wRNDiFVnqwC3Ew06wmwS9lJwENwsl1zCzN3fN383iN+d+v1oUWEPwiU+jHwivuviXMVXs39zsK+ApoT5Hdt9jNNsa5PT/+7+7Ysos8rYH3i5neAljj7htjpi0A0mNuL4+5vhVYFfP4W8O/tQkaPgiqxbH3VYXg+Y3VNpy+LGbbKxVZd1daAOMKb7j7JjNbTfB6zQ8nx/vc/CSzuxdYsOt2i+Lmh9MXFFl+UfjY+cASD1vpYtaFIu9bgufiDTMriJmWT1CgGUXw2r1oZvUJfmX+vbtvNrPzCfbSGBruIneTu0/fxTZKxXaWu39iZmnAmcCXZtbZ3X/czXqtCf4JLUlfgs/yhTHv+7ZAi8LdcUNpwNdxZm0NLPDix1b4yecvvF5Y0NxXLYBF7h77WSz6PbArJT1XRTMXd79F29mit4u2X0Xb2Rb8XFugT5HXoTJBuxKP4p7r2MdZXeQ1irud5affDW2BX5vZ6THzqxDs3VHcurt6T+6qPS0U93dDuKv23QS/VlYi+M6eHM5uAeSWkDGePoxIqlCfvXT77LAHfUV3n2NmmwiKCUcC9wKDzKwTwR5bj+xBxqL93dj+sYf9XUkwjfmQHF7k9iqCDtch7l4/vNTzYMC0kta5ieBXsD7uXpfgV2j43/FJRZcv+ng7CT7chdoQ/Iq919x9AcEu/KcQ7B5c9DF3tY272549sYigMlrUUqChmdWJmbav2x07in4bgud1VTF5tgONY7a9rrsfEs7f1WtVmPv/Xyszq0WwO9ne5v7/zOExg63CxygUm6foY1u4/hKCPSZamv1kfImiZxUoum2LgJNjnof67l7d3Ze4+053/6O7dwYOA04jPCbR3T909xMIqt/TCXYlFtkld89399cJOi1HhJM3E3SqCu0Xc72ktqPQRwS/FH1q4Xgk4Trziryn67j7KYUxdhNzEdDGih9k6yefP4I2Jo/gn/WfbEdYaGkSs2w87Upr++n4CXvSHu6qnW1bZFppt7NLi1lmEfBlkdehtrv/Jpy/R+3sLh4nXiV9Nywi2PMhNmctd78/ZvmiBd2S3pMltqdx5PvJ82HB+BavAX8n6ODXJyjiF7bvywi+K4rbvnj6MCLllfrsie2zwx70FcP5XxIcHlE1nPYlQX+xAcGhw/FmjH3cZfy0f2z8vE8rCaDiQ3IsB1qZWVUIfk0m+Gfqn2bWFP5/EJUTd3EfdQgahnXhICx3F/MYxZ4fOKz4vQz82czqmFlb4EaCX5r31SDgWHffXOQxd7eNu9uePTEUGGhmx4WD1rQ0s4PcfRHBbv1/tWBww25h3uf24bEuMbPOYYX1T8CrRavY7r6M4J+Wf5hZ3TBTBzP7RbjIT94PxXg+3J4eYQfxL8Bod5+/l5l7m9mvwn92ricojHxfwrIvA6eGz2UVgsZ8O8Hz+B3BP3XXWDAw5ZkE423sypME77u2AGbWJFwPMzvGzLqG/0RtIPiyzTezZhYMelkrfOxN4eOK7FI46NSZBB2SaeHkCcCvzKymBYN5xQ6m+C6wn5ldb8FgW3XMrE/sfbr7AwSfyU8tGEArB9hgwWBZNSwYiLGLmWWEqywH2lnJI2nnEHR67jezWmHbdHg47wXgBjNrb2a1CT77L4W/wM8EqpvZqeFn806CY2ML7e5xRxMUMG6xYADNowkOeXixhOWLega418w6hs9zNzNrRPAP64FmdlHYLpxPcNjBu3Heb3F+Z8HgYa0Jxph5qZhl3g0f99Jwe6qYWYb9b4DcEr8TQy8Ad4ZtUmOCMTz25TuxpO+GZ4HTzezE8L1S3YIB11qVcD+7ek+W2J7Goej7oyrB+2clkGfBXhC/jFn+ZYLvoYPDbbqrcMZe9mFEygv12Ulon704u2vbvgSuIdhzA4JDKH5LcHhMYf9wTzO+BxwS0z++lp/+OCEJouJDcnwGTAV+NLPCX8lvJRiE63sz2wB8QlCxK8nDBIOyrCL4x/GDIvP/BZxrwQivjxSz/m8JOp5zCY7Tf57gmM594u5z3D23hNm72saH2fX27EmGHIJBx/5JMPDkl/yvYnwhwfFsS4E3CI4H/nhvH4tgt7XhBLuXVSdorIrTj6Bz9wPB4GuvEvyKD8W/H2K351OCsRdeI/gnpQNwwT5kfovg+Oi1BMdn/8rddxa3oLvPAC4hGORyFcE/J6e7+w5330EwyOQggsNQLiHoKG/fxWP/i+C4+Y/MbCPBa13Ykd6P4HnZQPCP4pcEX66VCIoeS4E1BLvVXbUX2y0VxzsW7Ja5AfgzwfH0U8N5/yQ4vnQ5wfGh/1989OCQrBMI3uc/ArOAY4reubvfS3A8/CcEgyaeTrAL6DyCz8kz4XQIBrkCWG1m4ygi7CidTnBs70KCY0zPD2dn879dY+cRDIj723C99QSfg2cIfgHbHK5baHePuwM4Azg5zPw40G8PDmd6iKBD/BHB8zyUYEyW1QR7Ld1EMJDiLcBp7v6ztm0PvEUwqOcEgg7i0GK2ZyPBP8sXELQVP/K/AcwI1+lswRkm3izmMe4jOKxgEsGhBuPCaXur2O+GsAh+JsFAnysJfuH7HSX0v3bzntxVe7o7P3l/hI9zLcFrupZgILe3Y3L8h2B35s8Jvse/C2cVtvd72ocRKS/UZ09gn70Eu2vbviQoLhQWH74h2BPwq5hl9ihj+B31a+B+gu+ujsB/93E7JA6FA2iJyG6Y2RcEA3Y9E3WWeJnZPQSjJ1+SoPsfDTzp7sMScf8iUrGYmQMd3X121FniVR6/G/ZUuEfJFKCaFz9eiYiIyG5pzwcRiZuZ/cLM9gt3r+4PdKP0K+AiIhIxMzvbzKqaWQOCvUreUeFBRET2hYoPIrInOgETCQ5vuQk4NxzjQkREUssVBIeKzCEYd+c3u15cRERk13TYhYiIiIiIiIgklPZ8EBEREREREZGEUvFBRERERERERBKqctQB9lTjxo29Xbt2UccQEfmZsWPHrnL3JlHnSAa1xSJSFqkdFhGJXkltcbkrPrRr147c3JJOUSsiEh0zWxB1hl0xs+oE58WuRtD+v+rud5tZQ+AloB0wHzjP3dfu6r7UFotIWVTW2+HSpHZYRMqqktpiHXYhIlJxbAeOdffuQA/gJDPrC9wGfOruHYFPw9siIiIiIqVGxQcRkQrCA5vCm1XCiwNnAiPC6SOAs5KfTkRERERSmYoPIiIViJmlmdkEYAXwsbuPBpq5+zKA8G/TEtYdbGa5Zpa7cuXKpGUWERERkfJPxQcRkQrE3fPdvQfQCsg0sy57sO4Qd0939/QmTSrEeG4iIiIiUkpUfBARqYDcfR3wBXASsNzMmgOEf1dEl0xEREREUpGKDyIiFYSZNTGz+uH1GsDxwHTgbaB/uFh/4K1IAoqIiIhIyip3p9oUEZG91hwYYWZpBMXnl939XTP7DnjZzAYBC4FfRxlSRERERFKPig8iIhWEu08CehYzfTVwXPITiYiIiEhFocMuRERERERERCShVHwQERERERERkYRS8UFEREREREREEkrFBxGRGCs2buObWauijiEiIiIiEpkVG7bx7ezS7ROr+CAiEtq4bScDssdw1XNjWb91Z9RxRERERESSbsO2nfTLzuE3z41j47bS6xOr+CAiAmzPy2fwyLHMXL6RRy7sSb0aVaKOlHKat2qDmSXl0rxVm6g3V0RERKTc2bYzn8tH5DJn5SYeu6gndaqXXp9Yp9oUkQovv8C54aUJfDd3Nf88vztHd2oadaSU9OOSRbS99d2kPNaCv52WlMcRERERSRX5Bc71L05g9Lw1/OuCHhzZsUmp3r/2fBCRCs3d+eM7U3l/8o/ceerBnN2zVdSRRERERESSyt35w1tT+GDqj9x1WmfO7NGy1B9DxQcRqdAe+2w2I79bwBVH7c9lR+4fdRwRERERkaT716ezeH70Qn5zdAeyjmifkMdQ8UFEKqwXcxbyj49n8qteLbn1pIOijiMiIiIiknTPjV7Aw5/M4te9W3HLiZ0S9jgqPohIhfTR1B+5443JHN2pCX87pxuVKlnUkUREREREkuqDKcv4w5tTOO6gpvz1V10xS1yfWMUHEalwcuat4bcvjKdbq/o8fnEvqqSpKRQRERGRiuX7uau59sUJ9Ghdn8cu6kXlBPeJ1eMWkQpl+o8buGzEGFo2qEH2gAxqVtVJf0RERESkYvlh6QYuH5FLm4Y1Gdo/gxpV0xL+mCo+iEiFsXjtFvpn51CjahojszJpWKtq1JFERERERJJq0Zot9B+WQ+3qlRmZlUmDJPWJVXwQkQphzeYd9MvOYeuOfEZm9aFVg5pRRxIRERERSarVm7bTLzuHHXkFjMjKpEX9Gkl7bO1vLCIpb8uOPAYOH8OStVsZNagPnfarE3UkEREREZGk2rw96BMvW7+V5y7rw4HNktsnVvFBRFLazvwCrnpuHJMXr+PJS3qT2b5h1JFERERERJJqR14BVz47lqlLN/DUJb3p3Tb5fWIVH0QkZRUUOLe+OokvZqzk/l915ZeH7Bd1JBERERGRpCoocG55dSJfz1rFA+d24/jOzSLJkdAxH8zsBjObamZTzOwFM6tezDJHm9mEcLkvE5lHRCqWv30wndfHL+GmEw7kgsw2UccREREREUkqd+fP70/jzQlL+d2JnTgvvXVkWRJWfDCzlsC1QLq7dwHSgAuKLFMfeBw4w90PAX6dqDwiUrE8/dVcnvpqLv0Obcs1xx4QdRwRERERkaQb8tVchn4zjwGHteOqoztEmiXRZ7uoDNQws8pATWBpkfkXAa+7+0IAd1+R4DwiUgG8MX4xf35/Gqd2bc7dpx+CmUUdSUREREQkqV4du5i//mc6p3Vrzl2ndY68T5yw4oO7LwH+DiwElgHr3f2jIosdCDQwsy/MbKyZ9UtUHhGpGL6YsYLfvTKJwzo04qHzu5NWSYUHEREREalYPpu+nFtfm8QRBzTmH+d1p1IZ6BMn8rCLBsCZQHugBVDLzC4pslhloDdwKnAi8AczO7CY+xpsZrlmlrty5cpERRaRcm78wrX85tlxHNisDk9d2ptqldOijiQiIiIiklTjFq7lqufG0bl5XZ4sQ33iRB52cTwwz91XuvtO4HXgsCLLLAY+cPfN7r4K+AroXvSO3H2Iu6e7e3qTJk0SGFlEyqs5KzeRNXwMTepUY3hWBnWqV4k6koiIVCBm1trMPjezaeFA6tcVmX+zmbmZNS5h/ZPMbIaZzTaz25KTWkRSzewVG8kaPob96lZn2MAMalcrOye4TGTxYSHQ18xqWnBwyXHAtCLLvAUcaWaVzawm0KeYZUREdmn5hm30G5pDWiVjZFYmTev87MQ6IiIiiZYH3OTuBwN9gavNrDMEhQngBIL+8c+YWRrwb+BkoDNwYeG6IiLxWrZ+K/2G5lC5UiVGZvWhce1qUUf6iUSO+TAaeBUYB0wOH2uImV1pZleGy0wDPgAmATnAM+4+JVGZRCT1rN+6k/7ZOazbsoPhAzNp17hW1JFERKQCcvdl7j4uvL6R4Ae1luHsfwK3AF7C6pnAbHef6+47gBcJDl8WEYnL+i1Bn3jDtjxGZGXQplHNqCP9TEL3wXD3u4G7i0x+ssgyDwIPJjKHiKSmbTvzuXxELnNWbmLYgEy6tKwXdSQRERHMrB3QExhtZmcAS9x94i5Gmm8JLIq5vZhgj2ARkd3atjOfQSPGMH/VFoZnZXBIi7LZJy47B4CIiOyB/ALn2hfGM2bBGh65oCdHdCz2EFoREZGkMrPawGvA9QSHYvwe+OXuVitm2s/2kjCzwcBggDZt2uxTThFJDXn5BVzz/HjGLlzLYxf24rAOZbdPnMgxH0REEsLdufPNKXz0w3LuPq0zp3dvEXUkERERzKwKQeHhOXd/HehAcOa3iWY2H2gFjDOz/YqsuhhoHXO7FbC06P1rEHYRieXu/P6NKXwybTl/OuMQTu3WPOpIu6Q9H0Sk3PnnJ7N4IWchVx/TgQGHt486joiICOEA60OBae7+EIC7TwaaxiwzH0gPz/IWawzQ0czaA0uAC4CLkpFbRMqvf3w0k5dyF3HtsQdw6aHtoo6zW9rzQUTKlVHfzeeRT2dxXnorbv5lp6jjiIiIFDocuBQ41swmhJdTSlrYzFqY2fsA7p4HXAN8SDBQ5cvuPjUZoUWkfBr+33k89vlsLsxszQ0nHBh1nLhozwcRKTfen7yMu96eyvEHN+UvZ3dlFwN3iYiIJJW7f0PxYzfELtMu5vpS4JSY2+8D7ycqn4ikjncnLeWP7/7ALzs3494zu5SbPrH2fBCRcuG7Oau5/sUJ9G7TgEcv7EXlNDVfIiIiIlKx/Hf2Km54aQIZbRvyyIU9y1WfuPwkFZEKa+rS9QwemUvbRjV5pn86NaqmRR1JRERERCSppixZzxWjxrJ/49o83T+d6lXKV59YxQcRKdMWrt7CgGFjqFO9MiMHZVK/ZtWoI4mIiIiIJNWC1ZsZMCyHejWqMCIrk3o1qkQdaY+p+CAiZdaqTdvplz2anfkFjByUSfN6NaKOJCIiIiKSVCs3bufSoTnkFzgjsjLZr171qCPtFQ04KSJl0qbteQwcNoYfN2zjucv6ckDTOlFHEhERERFJqo3bdjJgWA4rN27n+cv7cEDT2lFH2msqPohImbMjr4ArR43lh2UbeLpfb3q3bRB1JBERERGRpNqel88Vo8Yy48eNPNM/nZ5tynefWMUHESlTCgqcm1+ZyDezV/H3X3fn2IOaRR1JRERERCSpCgqcG1+eyLdzVvPQed05ulPTqCPtM435ICJlhrtz73s/8PbEpdx28kGc27tV1JFERERERJLK3fnjO1N5b9Iyfn/KwfyqV2r0iVV8EJEy48kv5zLsv/MZdER7rjhq/6jjiIiIiIgk3eNfzGHEdwsYfNT+XJ5CfWIVH0SkTHg5dxF/+2A6Z/Zowe9PORgzizqSiIiIiEhSvZizkAc/nMHZPVty20kHRR2nVKn4ICKR+3Tacm5/fTJHdmzMg+d2p1IlFR5EREREpGL5+Ifl3PHGZH5xYBMeOLdbyvWJVXwQkUiNXbCGq58fxyEt6vLEJb2pWlnNkoiIiIhULGPmr+Ga58fRtVV9Hr+4F1XSUq9PnHpbJCLlxqzlG8kankvzejXIHpBB7Wo6AY+IiIiIVCwzftzIoOFjaNmgBsMGZFArRfvEKj6ISCSWrttKv+wcqlauxMisTBrXrhZ1pJRnZq3N7HMzm2ZmU83sunD6PWa2xMwmhJdTos4qIiIiUhEsXruFftmjqVE1jZFZmTSsVTXqSAmTmiUVESnT1m3ZQb/sHDZty+OlKw6ldcOaUUeqKPKAm9x9nJnVAcaa2cfhvH+6+98jzCYiIiJSoazdHPSJt+zI55UrD6VVg9TuE6v4ICJJtXVHPoNG5LJwzRZGZmXSuUXdqCNVGO6+DFgWXt9oZtOAltGmEhEREal4tuzIY+DwMSxeu5VnB/XhoP1Sv0+swy5EJGny8gu45vlxjFu4ln+d34O++zeKOlKFZWbtgJ7A6HDSNWY2ycyyzaxBCesMNrNcM8tduXJlsqKKiIiIpJSd+QVc/dw4Ji1ex6MX9iSzfcOoIyWFig8ikhTuzu2vT+bT6Su498wunNy1edSRKiwzqw28Blzv7huAJ4AOQA+CPSP+Udx67j7E3dPdPb1JkybJiisiIiKSMtydW1+bxOczVnLfWV058ZD9oo6UNCo+iEhSPPjhDF4Zu5jrjuvIJX3bRh2nwjKzKgSFh+fc/XUAd1/u7vnuXgA8DWRGmVFEREQkVd3/wXReH7eEG084kIv6tIk6TlKp+CAiCZf9zTwe/2IOF/Vpw/XHd4w6ToVlZgYMBaa5+0Mx02N3QzkbmJLsbCIiIiKp7pmv5/LUl3O5tG9bfnvsAVHHSToNOCkiCfX2xKX86d0fOOmQ/bj3zC4E//9KRA4HLgUmm9mEcNodwIVm1gNwYD5wRRThRERERFLVm+OXcN970zil637cc8YhFbJPrOKDiCTM17NWctPLE8hs35CHL+hBWqWK18iWJe7+DVDci/B+srOIiIiIVBRfzlzJza9M5ND9G/HP8ytun1iHXYhIQkxevJ4rR42lQ5PaPN0vnepV0qKOJCIiIiKSVBMXreM3z47lwGZ1eKpfb6pVrrh9YhUfRKTUzVu1mQHDcqhfsyojsjKpV6NK1JFERERERJJq7spNDBw+hka1qzI8K4O61St2n1jFBxEpVSs2bqNf9mgcGDUok2Z1q0cdSUREREQkqZZv2MalQ3MwYGRWH5rWUZ9YxQcRKTUbtu2kf/YYVm/aQfaADPZvUjvqSCIiIiIiSbV+6076Z+ewbssOhg/MpH3jWlFHKhM04KSIlIptO/MZPDKXWcs3MnRABj1a1486koiIiIhIUm3bmc/lI3OZs3IT2QMy6NqqXtSRygwVH0Rkn+UXODe+PIHv567h4fN78IsDm0QdSUREREQkqfILnOteHE/OvDU8cmFPjuyoPnEsHXYhIvvE3bnn7am8P/lH7jz1YM7q2TLqSCIiIiIiSeXu/OGtKXw4dTl3n96ZM7q3iDpSmaPig4jsk8c+m82o7xdwxS/257Ij9486joiIiIhI0v3r01k8P3ohVx3dgYGHt486Tpmk4oOI7LUXchbyj49nck6vVtx20kFRxxERERERSbpnv1/Aw5/M4rz0VvzuxE5RxymzVHwQkb3y4dQf+f0bkzmmUxPuP6crZhZ1JBERERGRpPrP5GX84a0pHHdQU/5ytvrEu6Lig4jssdFzV/PbF8bTrVV9/n1xL6qkqSkRERERkYrluzmrue7FCfRsXZ/HLupFZfWJd0nPjojskek/buCykbm0blCDYQMyqFlVJ80RERERkYrlh6UbGDwylzaNapI9IIMaVdOijlTmqfggInFbtGYL/YbmUKtqZUYO6kODWlWjjiQiIiIiklSL1myh/7AcalevzMisTOrXVJ84Hio+iEhc1mzeQf/sHLbtzGdEViYt69eIOpKIiIiISFKt2rSdS4eOZkdeASOzMmmhPnHctL+0iOzWlh15DBw+hiXrtvLsZX3otF+dqCOJiIiIiCTV5u15ZA0fw48btvHcZX3p2Ex94j2h4oOI7NLO/AJ+8+w4Ji9ex1OXppPRrmHUkUREREREkmpHXgFXPjuWqUs3MOTS3vRu2yDqSOWOig8iUqKCAueWVyfx5cyV3P+rrpzQuVnUkUREREREkqqgwPndqxP5etYqHji3G8cdrD7x3tCYDyJSovs/mM4b45dw8y8P5ILMNlHHERERERFJKnfnvvem8daEpdxyUifOS28ddaRyS8UHESnWkK/mMOSrufQ/tC1XH3NA1HFERERERJLuqa/mkv3feQw8vB2/+UWHqOOUayo+iMjPvD5uMX95fzqndmvOXacfgplFHUlEREREJKleyV3E/f+ZzhndW/CHUzurT7yPVHwQkZ/4fMYKbnl1Eod1aMRD53UnrZIaWRERERGpWD6bvpzbXp/MEQc05u+/7k4l9Yn3mYoPIvL/xi9cy1XPjqPTfnV46tLeVKucFnUkEREREZGkGrtgLVc9N47Ozevy5KW9qVpZ/zaXBj2LIgLAnJWbyBo+hqZ1qzF8YCZ1qleJOpKIiIiISFLNXrGRQSPGsF/d6gwbmEHtajpBZGlR8UFE+HH9NvoNzSGtkjEyK5MmdapFHUlEREREJKmWrd9Kv6E5VEmrxKhBfWhcW33i0qTig0gFt37rTvpn57Buyw6GD8ykbaNaUUcSEREREUmqdVt20G9oDhu25TF8YAatG9aMOlLKUfFBpALbtjOfy0fkMnfVJob0S6dLy3pRRxIRESmXzKy1mX1uZtPMbKqZXRdOv9fMJpnZBDP7yMxalLD+fDObHC6Xm9z0IhXb1h35XDYilwWrtzCkX28OaaE+cSKo+CBSQeXlF3DtC+MZs2AN/zy/B4cf0DjqSCIiIuVZHnCTux8M9AWuNrPOwIPu3s3dewDvAnft4j6Ocfce7p6e+LgiAkGf+LcvjGPswrU8fEEPDuugPnGiqPggUgG5O394awof/bCcu0/rzGndiv0RRkREROLk7svcfVx4fSMwDWjp7htiFqsFeBT5ROTn3J073pjMJ9NW8Kczu3BK1+ZRR0ppGrpTpAL658czeSFnEdcccwADDm8fdRwREZGUYmbtgJ7A6PD2n4F+wHrgmBJWc+AjM3PgKXcfkoSoIhXa3z+awcu5i7n2uI5c2rdt1HFSnvZ8EKlgRn03n0c+m8356a256ZcHRh1HREQkpZhZbeA14PrCvR7c/ffu3hp4DrimhFUPd/dewMkEh2wcVcx9DzazXDPLXblyZYK2QKRiGP7fefz78zlcmNmGG47vGHWcCkHFB5EK5P3Jy7jr7akcf3Az/nx2F8ws6kgiIiIpw8yqEBQennP314tZ5HngnOLWdfel4d8VwBtAZjHLDHH3dHdPb9KkSekFF6lg3pm4lD+++wMnHtKM+85SnzhZVHwQqSC+nbOK61+cQO82DXjsop5UTtPHX0REpLRY8N/LUGCauz8UMz32J9UzgOnFrFvLzOoUXgd+CUxJbGKRiumbWau48eUJZLRtyL8u6ElaJRUekkVjPohUAFOWrGfwyLG0a1yTZ/qnU71KWtSRREREUs3hwKXAZDObEE67AxhkZp2AAmABcCVAeMrNZ9z9FKAZ8Eb462tl4Hl3/yC58UVS35Ql67liVC4dmtTmafWJk07FB5EUt3D1FgYMG0Pd6pUZkZVJ/ZpVo44kIiKSctz9G6C4n1DfL2H5pcAp4fW5QPfEpROR+as2M2BYDvVrVmVEVib1alSJOlKFk9D9rs3sBjObamZTzOwFM6tewnIZZpZvZucmMo9IRbNy43YuzR5NXkEBIwdl0rxejagjiYiIiIgk1YqN2+iXnUN+gTNyUCbN6hb7b6kkWMKKD2bWErgWSHf3LkAacEExy6UBfwM+TFQWkYpo0/Y8Bg7PYfmGbWQPyOCApnWijiQiIiIiklQbt+1kQPYYVm7czrCBmXRoUjvqSBVWokecqwzUMLPKQE1gaTHL/JZgVOAVCc4iUmHsyCvgylFjmbZsI09c3JtebRpEHUlEREREJKm25+VzxaixzFy+kScu6UWP1vWjjlShJaz44O5LgL8DC4FlwHp3/yh2mXDviLOBJxOVQ6SiKShwbnplIt/MXsUD53TjmIOaRh1JRERERCSp8gucG1+ayLdzVvPgr7txdCf1iaOWyMMuGgBnAu2BFkAtM7ukyGIPA7e6e/5u7muwmeWaWe7KlSsTklckFbg7f3r3B96ZuJTbTz6Ic3q3ijqSiIiIiEhSuTt/fGcq701exp2nHszZPdUnLgsSedjF8cA8d1/p7juB14HDiiyTDrxoZvOBc4HHzeysonfk7kPcPd3d05s0aZLAyCLl2xNfzmH4t/MZdER7Bh+1f9RxRERERESS7t+fz2bkdwsYfNT+XHak+sRlRSJPtbkQ6GtmNYGtwHFAbuwC7t6+8LqZDQfedfc3E5hJJGW9nLuIBz6YwZk9WvD7Uw4mPFe4iIiIiEiF8WLOQv7+0Ux+1bMlt510UNRxJEYix3wYDbwKjAMmh481xMyuNLMrE/W4IhXRJz8s5/bXJ3Nkx8Y8eG53KlVS4UFEREREKpaPpv7IHW9M5uhOTfjbud3UJy5jErnnA+5+N3B3kcnFDi7p7gMSmUUkVY1dsIarnx9HlxZ1efKS3lStnOiT2IiIiIiIlC0589bw2xfG07VVfR6/uBdV0tQnLmv0ioiUYzOXbyRreC4t6tcge0AGtaoltJ4oIiIiIlLmTP9xA5eNGEPLBjUYNiCDmlXVJy6Ldlt8MLPDzexjM5tpZnPNbJ6ZzU1GOBEp2dJ1W+mfnUO1ypUYmZVJo9rVoo4kZZyZtTazz81smplNNbPrwukNw3Z+Vvi3QdRZRUREROKxeO0W+mfnUKNqGiOzMmlYq2rUkaQE8ez5MBR4CDgCyCA4Q0VGIkOJyK6t27KDftk5bNqWx4isTFo3rBl1JCkf8oCb3P1goC9wtZl1Bm4DPnX3jsCn4W0RERGRMm3N5qBPvHVHPiOz+tCqgfrEZVk8+6Osd/f/JDyJiMRl6458soaPYeGaLYzMyuTg5nWjjiTlhLsvA5aF1zea2TSgJXAmcHS42AjgC+DWCCKKiIiIxGXLjjyyho9h8dqtPDuoD532qxN1JNmNeIoPn5vZg8DrwPbCie4+LmGpRKRYO/MLuPr5cYxftI4nLu5F3/0bRR1Jyikzawf0BEYDzcLCBO6+zMyaRplNREREZFd25hdw1XPjmLR4HU9c0pvM9g2jjiRxiKf40Cf8mx4zzYFjSz+OiJTE3bn99cl8Nn0F953VhZO6NI86kpRTZlYbeA243t03mMV3GiozGwwMBmjTpk3iAoqIiIiUoKDAufXVSXwxYyV//VVXTjxkv6gjSZx2W3xw92OSEUREdu2BD2fw6tjFXH98Ry7p2zbqOFJOmVkVgsLDc+7+ejh5uZk1D/d6aA6sKG5ddx8CDAFIT0/3pAQWERERifG3D6bz+vgl3HTCgVyYqR9DypN4znZRz8weMrPc8PIPM6uXjHAiEhj6zTye+GIOF/dpw3XHdYw6jpRTFuziMBSY5u4Pxcx6G+gfXu8PvJXsbCIiIiK78/RXc3nqq7n0O7Qt1xx7QNRxZA/Fc7aLbGAjcF542QAMS2QoEfmftyYs4d53f+CkQ/bjT2d2Id5d5EWKcThwKXCsmU0IL6cA9wMnmNks4ITwtoiIiEiZ8cb4xfz5/Wmc2rU5d59+iPrE5VA8Yz50cPdzYm7/0cwmJCiPiMT4etZKbn5lIn3aN+ThC3qQVkmNrOw9d/8GKOlNdFwys4iIiIjE68uZK/ndK5M4rEMjHjq/u/rE5VQ8ez5sNbMjCm+Y2eHA1sRFEhGASYvXceWosXRoUpun+6dTvUpa1JFERERERJJqwqJ1/ObZsRzYrA5PXdqbapXVJy6v4tnz4TfAiHCcBwPWAAMSGUqkopu3ajMDh42hQa2qjMjKpG71KlFHEhERERFJqjkrN5E1fAyNaldleFYGddQnLtfiOdvFBKC7mdUNb29IdCiRimzFhm30yx6NAyOzMmlWt3rUkUREREREkmr5hm30G5qDAaOy+tC0jvrE5V2JxQczu8TdnzWzG4tMB6DISOkiUgo2bNtJ/2FjWL1pBy9c3pf9m9SOOpKIiIiISFKt37qT/tk5rNuygxcHH0q7xrWijiSlYFd7PhS+wnWKmafzu4uUsm078xk8MpdZyzeSPSCD7q3rRx1JRERERCSptu3M5/IRucxZuYlhAzLp2qpe1JGklJRYfHD3p8Krn7j7f2PnhYNOikgpyS9wbnhpAt/PXcO/LujBUQc2iTqSiIiIiEhS5Rc41704njEL1vDIBT05omPjqCNJKYrnbBePxjlNRPaCu3PP21P5z5Qf+cNpnTmzR8uoI4mIiIiIJJW7c+ebU/hw6nLuPq0zp3dvEXUkKWW7GvPhUOAwoEmRcR/qAjq/iUgpefSz2Yz6fgFX/qIDg45oH3UcEREREZGke/iTWbyQs5Crj+nAgMPVJ05FuxrzoSpQO1wmdtyHDcC5iQwlUlE8P3ohD308k3N6teLWkzpFHUdEREREJOlGfb+Af306i/PSW3HzL9UnTlW7GvPhS+BLMxvu7gvMrJa7b05iNpGU9sGUH7nzzckc06kJ95/T9f/PJCOyJ8ysElBbp0EWERGR8uj9ycu4660pHHdQU/5ytvrEqSyeMR9amNkPwDQAM+tuZo8nNpZIahs9dzXXvjie7q3r8++Le1ElLZ6PokjAzJ43s7pmVgv4AZhhZr+LOpeIiIjInvhuzmquf3ECvdo04LGLelFZfeKUFs+r+zBwIrAawN0nAkclMJNISpu2bAOXjcyldYMaZPfPoGbVXR39JFKszuGeDmcB7wNtgEsjTSQiIiKyB6YuXc/gkbm0bVSTof3TqVFVwwqmurhKS+6+qMik/ARkEUl5i9ZsoX92DrWqVmbkoD40qFU16khSPlUxsyoExYe33H1nxHlERERE4rZw9RYGDBtDneqVGTkok/o11SeuCOIpPiwys8MAN7OqZnYz4SEYIhK/1Zu20z87h2078xk5KJOW9WtEHUnKr6eA+UAt4CszawusjzSRiIiISBxWbdpOv+zR7MwvYOSgTJrXU5+4ooin+HAlcDXQElgM9Ahvi0icNm/PI2tELkvWbSV7QAYHNquz+5VESvaOu7d091Pc3YGFQFbUoUREUoWZHWFmA8PrTcxM5/0TKQWbtueRNXwMP27YxtD+GRzQVH3iimS3B5u7+yrg4iRkEUlJO/ML+M1z45i8eB1PXZpOeruGUUeS8u81oFfhDXd3M3sR6B1dJBGR1GBmdwPpQCdgGFAFeBY4PMpcIuXdjrwCfvPsWKYu3cDT/XrTu22DqCNJkpVYfDCzRwEvab67X5uQRCIppKDAueXVSXw1cyV/O6crJ3RuFnUkKcfM7CDgEKCemf0qZlZdoHo0qUREUs7ZQE9gHIC7LzUz/Twrsg8KCpybX5nI17NW8eC53Tj2IPWJK6Jd7fmQm7QUIinqr/+Zxhvjl/C7EztxfkabqONI+dcJOA2oD5weM30jcHkUgUREUtCOcI8yBwhPaywie8ndufe9H3h74lJuPekgfp3eOupIEpESiw/uPiL2tpnVDSb7xoSnEkkBQ76aw9Nfz2PAYe246ugOUceRFODubwFvmdmh7v5d1HlERFLUy2b2FFDfzC4nGFPn6YgziZRbT345l2H/nU/W4e258hf7Rx1HIrTbMR/MLJ3geLc6wU1bB2S5+9gEZxMpt14bu5i/vD+dU7s1567TOmNmUUeS1DLbzO4A2hHTjru7Bp0UEdkHFnxhvwQcBGwg2OPsLnf/ONJgIuXUy7mL+NsH0zmjewvuPPVg9YkruN0WH4Bs4Cp3/xqC0X8JihHdEhlMpLz6fMYKbnltEocf0IiHzutOpUpqZKXUvQV8DXwC5EecRUQkZYSHW7zp7r0BFRxE9sGn05Zz++uTObJjY/7+a/WJJb7iw8bCwgOAu39jZjr0QqQY4xeu5apnx3Fw8zo8eUlvqlVOizqSpKaa7n5r1CFERFLU92aW4e5jog4iUl6NXbCWq58fxyEt6vLEJb2pWrlS1JGkDIin+JATHvf2AsHZL84HvjCzXgDuPi6B+UTKjdkrNpE1fAxN61Zj2IBM6lSvEnUkSV3vmtkp7v5+1EFERFLQMcCVZjYf2AwYwU4R2utXJA6zlm8ka/gYmterQfaADGpXi+dfTqkI4nkn9Aj/3l1k+mEExYhjSzOQSHn04/pt9M/OIa2SMTIrkyZ1qkUdSVLbdcAdZrYd2Mn/OsZ1o40lIpISTo46gEh5tXTdVvpl51C1ciVGZmXSuLb6xPI/uy0+uPsxyQgiUl6t37KT/tk5rN+6kxcH96VtI52RSxLL3XW+eRGRBHH3BWbWHTgynPS1u0+MMpNIebBuyw76Z+ewaVseL17Rl9YNa0YdScqYeM52UR/ox89HVb82YalEyoltO/O5bOQY5q3azPCBGXRpWS/qSFIBmNlRxU1396+SnUVEJNWY2XXA5cDr4aRnzWyIuz8aYSyRMm3rjnwGjchlweotjMjK5JAW6hPLz8Vz2MX7wPfAZKAgsXFEyo+8/AKueX48uQvW8uiFPTnsgMZRR5KK43cx16sDmcBYdBiciEhpGAT0cffNAGb2N+A7QMUHkWIEfeJxjFu4lscv6sWhHRpFHUnKqHiKD9Xd/caEJxEpR9ydO9+cwifTlvPHMw7htG4too4kFYi7nx5728xaAw9EFEdEJNUYPz2NcX44TUSKcHduf30yn05fwX1ndeHkrs2jjiRlWDznPBllZpebWXMza1h4SXgykTLsoY9n8uKYRfz22APof1i7qOOILAa6RB1CRCRFDANGm9k9ZnYPwR7AQ3e3kpm1NrPPzWyamU0ND9/AzO41s0lmNsHMPjKzYn+xMLOTzGyGmc02s9tKc4NEEuXBD2fwytjFXHdcRy7p2zbqOFLGxbPnww7gQeD3BGe3IPy7f6JCiZRlI7+bz6OfzeaCjNbceMKBUceRCsjMHuV/7XElgrMSaTA0EZFS4O4PmdkXwBEEezwMdPfxcayaB9zk7uPMrA4w1sw+Bh509z8AmNm1wF3AlbErmlka8G/gBIKC8hgze9vdfyit7RIpbcP+O4/Hv5jDRX3acP3xHaOOI+VAPMWHG4ED3H1VosOIlHXvTVrG3W9P5fiDm3HfWV0w016YEoncmOt5wAvu/t+owoiIpBIz6wtMdfdx4e06ZtbH3Ufvaj13XwYsC69vNLNpQMsiBYRa/K94HCsTmO3uc8PHfBE4E1DxQcqktycu5U/v/sCJhzTj3jPVJ5b4xFN8mApsSXQQkbLu29mruOGlCaS3bcBjF/Wkclo8Ry2JlD53H2FmVYHCXW9mRJlHRCTFPAH0irm9uZhpu2Rm7YCewOjw9p8Jzh63HijuNPYtgUUxtxcDffYktEiyfDNrFTe9PIGMdg351wU9SaukwoPEJ57iQz4wwcw+B7YXTtSpNqUimbJkPYNHjaVd45o80y+D6lXSoo4kFZiZHQ2MAOYT7BLc2sz661SbIiKlwtz9//dOcPcCM4unzxysbFYbeA243t03hPfxe+D3ZnY7cA1wd9HVirmrn+0hYWaDgcEAbdq0iTeSSKmZvHg9V4zKpUOT2jzdL119Ytkj8TSkb4YXkQppwerNDBg2hno1qjAyqw/1alaJOpLIP4BfuvsMADM7EHgB6B1pKhGR1DA3HJvhifD2VcDceFY0syoEhYfn3P31YhZ5HniPnxcfFgOtY263ApYWXdndhwBDANLT04s7fEMkYeat2syAYTnUr1mVEVmZ1KuhPrHsmd0WH4rbvdfddyY2lkjZsHLjdvpl55BXUMCLWX3Zr171qCOJAFQpLDwAuPvMsMMrIiL77krgEeBOgr0PPiXc22BXLDjofSgwzd0fipne0d1nhTfPAKYXs/oYoKOZtQeWABcAF+3LRoiUphUbt9EvezQOjBqUSbO66hPLnttt8UG790pFtWl7HgOH57Biw3aev7wPBzStHXUkkUK5ZjYUGBXevhgYG2EeEZGU4e4rCP7531OHA5cCk81sQjjtDmCQmXUCCoAFhGe6CE+5+Yy7n+LueWZ2DfAhkAZku/vUfdsSkdKxcdtOBmSPYfWmHTx/eV/2b6I+seydeA670O69UuFsz8vnilG5TFu2kWf6p9OzTYOoI4nE+g1wNXAtQVH4K+DxSBOJiKQIM3sAuA/YCnwAdCcYv+HZXa3n7t9Q/NgN75ew/FLglJjb75e0rEhUtuflM3jkWGYu38jQARn0aF0/6khSjsUzXP/Pdu8FtHuvpKyCAuemlyfy39mreeCcbhzTqWnUkUSKqgz8y91/5e5nE+werBGfRERKxy/DgSJPIxiL4UDgd9FGEkm+/ALnhpcm8N3c1fz91935xYFNoo4k5Vw8xYdcMxtqZkeHl6fR7r2SotydP737A+9OWsbtJx/EOb1bRR1JpDifAjVibtcAPokoi4hIqin8ke0U4AV3XxNlGJEouDt/fGcq70/+kTtPPZizeraMOpKkgHgOu9DuvVJhPP7FHIZ/O5/LjmjP4KP2jzqOSEmqu/umwhvuvsnMakYZSEQkhbxjZtMJDru4ysyaANsiziSSVI99NpuR3y3giqP257Ij1SeW0hFP8aFw996HAMwsDaiW0FQiEXhpzEIe/HAGZ/VowR2nHEwwaLVImbTZzHq5+zgAM+tN0EkWEZF95O63mdnfgA3unm9mW4Azo84lkiwv5CzkHx/P5Fe9WnLrSQdFHUdSSDzFh0+B44HCX9lqAB8BhyUqlEiyffzDcm5/fTJHHdiEB87tTqVKKjxImXY98IqZFZ4DvjlwfnRxRERSi7uvjbm+GdgcYRyRpPlw6o/8/o3JHN2pCX87p5v6xFKq4ik+aPdeSWm589dwzfPj6NqyHk9c3IuqleMZCkUkOu4+xswOAjoRHA433d13RhxLREREyrHRc1fz2xfG061VfR6/uBdV0tQnltIVT/FBu/dKypq5fCNZw8fQsn4NsgdkUKtaPB8JkeiFxYYpUecQERGR8m/6jxu4bGQurRvUYNiADGpWVZ9YSl8876rr0e69koKWrttK/+wcqldJY0RWJo1qaygTERGRisrMeu1qfuEPcSKpZvHaLfTPzqFW1cqMHNSHBrWqRh1JUtRuiw/avVdS0drNO+iXncOm7Xm8fMWhtG6oI4kk9ZlZNsF561e4e5dw2j3A5cDKcLE73P39aBKKiETqH+Hf6kA6MJGg79sNGA0cEVEukYRZE/aJt+7I55UrD6Nl/Rq7X0lkL8V1II+773T3Ke4+WYUHKe+27Mgja8QYFq7ZwtP90jm4ed2oI4nsEQtcYmZ3hbfbmFlmHKsOB04qZvo/3b1HeFHhQUQqJHc/xt2PARYAvdw93d17Az2B2dGmEyl9W3bkMXD4GJas3coz/TPotF+dqCNJitMoIlKh7Mwv4JrnxzNx0ToeuaAHffdvFHUkkb3xOHAocGF4eyPw792t5O5fAWsSmEtEJBUc5O6TC2+4+xSgR3RxRErfzvwCfvPsOCYvXsejF/Yks33DqCNJBaDig1QY7s5tr03ms+kruPesLpzUpXnUkUT2Vh93vxrYBv9/Srh9OUDzGjObZGbZZtagpIXMbLCZ5ZpZ7sqVK0taTESkvJtuZs+Y2dFm9gszexqYFnUokdJSUODc8uokvpy5kr+c3ZVfHrJf1JGkgtht8WEfdu8VKVP+9sEMXhu3mBuOP5CL+7SNOo7IvthpZmmAA5hZE6BgL+/rCaADwa96y/jfMc8/4+5Dwt2Q05s0abKXDyciUuYNAKYC1xEMvP4DMDDCPCKl6v4PpvPG+CXc/MsDuSCzTdRxpAKJ52wXjxN0ao8F/kSwe+9rQEYCc4mUqqHfzOPJL+dwSd82XHvcAVHHEdlXjwBvAE3N7M/AucCde3NH7r688Hr46967pZJQRKQcCgu777r78cA/o84jUtqe/mouQ76aS/9D23L1MeoTS3LFU3zo4+69zGw8BLv3mllcu/ea2Q3AZQS/zk0GBrr7tpj5FwO3hjc3Ab9x94l7sgEiu/PWhCXc++4PnNxlP/54RhfMLOpIIvvE3Z8zs7HAcQQjsZ/l7nu1S7CZNXf3ZeHNs4EppRRTRKTccfd8M9tiZvXcfX3UeURK0xvjF/Pn96dxarfm3HX6IeoTS9LFU3zYq917zawlcC3Q2d23mtnLwAUEo60Xmgf8IixonAwMAfrs2SaIlOyrmSu5+ZWJ9GnfkH+e34O0Smpkpfwys9jRoFYAL8TOc/ddDiZpZi8ARwONzWwxcDdwtJn1IGjj5wNXlG5qEZFyZxsw2cw+BjYXTnT3a6OLJLJvvpixgt+9MonDOjTiofO6q08skYin+LAvu/dWBmqY2U6gJrA0dqa7fxtz83ugVZz3K7JbExet48pnx3JA0zo83T+d6lXSoo4ksq/GEhQJDGgDrA2v1wcWAu13tbK7X1jM5KGlG1FEpNx7L7yIpITxC9fym2fHcWCzOjx1aW+qVVafWKKx2+LD3u7e6+5LzOzvBB3ircBH7v7RLlYZBPynuBlmNhgYDNCmjQZFkd2bu3ITA4ePoWGtqowYmEHd6lWijiSyz9y9PYCZPQm87e7vh7dPBo6PMpuISKpw9xFRZxApLXNWbiJr+Bia1KnG8KwM6qhPLBGK52wXDfnf7r3PA8vNbLfv2vB0bWcS/BLXAqhlZpeUsOwxBMWHW4ubrxHWZU+s2LCNftk5GDBqUB+a1q0edSSR0pZRWHgAcPf/AL+IMI+ISMows45m9qqZ/WBmcwsvUecS2VM/rt9Gv6E5pFUyRmZl0rSO+sQSrd0WH4BxwEpgJjArvD7PzMaZWe9drHc8MM/dV7r7TuB14LCiC5lZN+AZ4Ex3X72nGyASa8O2nfTLzmHN5h0MG5hB+8a1oo4kkgirzOxOM2tnZm3N7PeA2k8RkdIxjOA0xHnAMcBIYFSkiUT20PqtO+mfncO6LTsYPjCTduoTSxkQT/HhA+AUd2/s7o2Ak4GXgasITsNZkoVAXzOracFQqscBPzlcw8zaEBQlLnX3mXuzASKFtu3M5/IRucxZuYmnLu1Nt1b1o44kkigXAk0IxuN5E2gaThMRkX1Xw90/BczdF7j7PQSnnBcpFwr7xHNXbWJIv3S6tKwXdSQRIL4BJ9Pd/crCG+7+kZn9xd1vNLNqJa3k7qPN7FWCPSfygPHAEDO7Mpz/JHAX0Ah4PDzVS567p+/95khFlV/g3PDSBEbPW8O/LujBkR11eI6krvCsFteZWV2gwN03RZ1JRCSFbDOzSsAsM7sGWEJQ5BUp8/ILnGtfGM+YBWt49MKeHH5A46gjify/eIoPa8zsVuDF8Pb5wNrw9Ju7POWmu99NcCq3WE/GzL8MuCz+uCI/5+7c9dYU/jPlR+46rTNn9mgZdSSRhDKzrgS7ATcMb68C+rv7lEiDiYikhusJztJ2LXAvwaEX/aMMJBIPd+fON6fw0Q/Luef0zpzWrUXUkUR+Ip7iw0UEBYQ3Cc528U04LQ04L2HJROL0yKezeW70Qq78RQeyjtjlmQZFUsVTwI3u/jmAmR0NDKGYcXVERGSPrQ73KNsEDIw6jEi8/vnJLF7IWcjVx3RgwOHqE0vZE8+pNlcBvy1h9uzSjSOyZ54bvYB/fjKTc3q14taTOkUdRyRZahUWHgDc/Qsz00hSIiKlY7iZtQTGAF8BX7v75IgziezSqO/m88inszgvvRU3/1J9Yimbdlt8MLMmwC3AIcD/n5/F3TXwjkTqgynL+MObUzj2oKbcf05XwnFDRCqCuWb2B/43+volwLwI84iIpAx3P8rMqgIZwNHAe2ZW290bRptMpHjvT17GXW9P5fiDm/KXs9UnlrIrnsMungNeAk4DriQ45m1lIkOJ7M73c1dz7YsT6N66Pv++qBdV0uI5cYtIysgC/khwtiADvkS7BouIlAozOwI4MrzUB94Fvo4yk0hJvp2ziutfnEDvNg149MJeVFafWMqweIoPjdx9qJld5+5fAl+a2ZeJDiZSkh+WbuDyEbm0aViT7P4Z1KiaFnUkkaRy97UEA6ERDv5by903RJtKRCRlfAnkAn8F3nf3HRHnESnWlCXrGTxyLO0a1+SZ/unqE0uZF09pbGf4d5mZnWpmPYFWCcwkUqJFa7bQf1gOtatXZmRWJg1qVY06kkjSmdnzZlY3HOdhKjDDzH4XdS4RkRTRCPgTcCjwgZl9Ymb3RpxJ5CcWrt7CgGFjqFu9MiOyMqlfU31iKfviKT7cZ2b1gJuAm4FnCE5BJJJUqzdtp392DjvyChiRlUmL+jWijiQSlc7hng5nAe8DbYBLI00kIpIi3H0dMJdgLJ1lQAfgqCgzicRatWk7/bJHk1dQwMhBmTSvpz6xlA/xHHax1t3XA+sJznOMmR2e0FQiRWzenkfW8DEsWbeV5y/vw4HN6kQdSSRKVcysCkHx4TF332lmHnEmEZGUYGZzgBkEp5d/EhioQy+krNi0PY+Bw8bw44ZtPH95Xw5oqj6xlB/xFB8eBXrFMU0kIXbkFXDls2OZsnQDT13Sm95tNdi0VHhPAfOBicBXZtYW0JgPIiKlo6O7F0QdQqSoHXkFXDlqLD8s28DT/XrTq02DqCOJ7JESiw9mdihwGNDEzG6MmVUX0GgmkhQFBc4tr07k61mreOCcbhzfuVnUkUQi5+6PAI/ETFpgZsdElUdEJMUcYGZPAM3cvYuZdQPOcPf7og4mFVdBgXPTKxP5ZvYq/v7r7hx7kPrEUv7sas+HqkDtcJnY/Xk2AOcmMpQIgLvz5/en8eaEpfzuxE6cl9E66kgikTKzS9z92SIF4VgPJTWQiEhqehr4HcFeZrj7JDN7HlDxQSLh7vzp3R94Z+JSbjv5IM7trbH/pXwqsfgQc1rN4e6+IImZRAAY8tVchn4zjwGHteOqoztEHUekLKgV/tUBniIiiVPT3XPMLHZaXlRhRJ74cg7Dv53PoCPac8VR+0cdR2SvxTPmQzUzGwK0i13e3Y9NVCiR18Yu5q//mc5p3Zpz12mdKdIBEKmQ3L3wV7g/Rp1FRCSFrTKzDoADmNm5BGe9EEm6l3MX8cAHMzizRwt+f8rB6hNLuRZP8eEVgpF+nwHyExtHBD6fvoJbXpvEEQc05h/ndadSJTWyIrHMbH/gX0Bfgs7xd8AN7j430mAiIqnhamAIcJCZLSE45ebF0UaSiujTacu5/fXJHNmxMQ+eqz6xlH/xFB/y3P2JhCcRAcYtXMtVz42jc/O6PHlpb6pV1timIsV4Hvg3cHZ4+wLgBaBPZIlERFJEWMg93sxqAZWArcD5gA5DlqQZu2ANVz8/ji4t6vLkJb2pWrlS1JFE9lk87+J3zOwqM2tuZg0LLwlPJhXO7BUbyRo+hqZ1qzFsYAa1q8VTGxOpkMzdR7l7Xnh5lnD3YBER2TtmVtfMbjezx8zsBGAL0B+YDZwXbTqpSGYt30jW8Fya16tB9oAMaqlPLCkinndy//Dv72KmOaDRTqTULFu/lX5Dc6hcqRIjszJpXLta1JFEyrLPzew24EWC9vh84L3CwrC7r4kynIhIOTUKWEtwKNvlwC0EZ387y90nRJhLKpCl67bSLzuHqpWDPnEj9Yklhey2+ODu7ZMRRCqu9Vt20j87hw3b8nhxcF/aNqq1+5VEKrbzw79XFJmehYrDIiJ7a3937wpgZs8Aq4A27r4x2lhSUazbsoN+2Tls2pbHS1ccSuuGNaOOJFKqdlt8MLOawI0Eje9gM+sIdHL3dxOeTlLetp35DBoxhvmrtjB8YAZdWtaLOpJImaeisIhIQuwsvOLu+WY2T4UHSZatO/LJGj6GhWu2MDIrk84t6kYdSaTUxTPmwzBgB3BYeHsxcF/CEkmFkZdfwDXPj2fswrX88/weHHZA46gjiZRpZnZLzPVfF5n3l+QnEhFJKd3NbEN42Qh0K7xuZhuiDiepa2d+AVc/P47xi9bxyAU96Lt/o6gjiSREPMWHDu7+AGE12N23AjrPi+wTd+f3b0zhk2nL+dMZh3Bqt+ZRRxIpDy6IuX57kXknJTOIiEiqcfc0d68bXuq4e+WY6/oZWhLC3bnj9cl8Nn0F957ZhZO6qE8sqSue4sMOM6tBOJK6mXUAtic0laS8hz6eyUu5i7j22AO49NB2UccRKS+shOvF3RYREZEy7sEPZ/DK2MVcf3xHLunbNuo4IgkVz9ku7gY+AFqb2XPA4cCARIaS1Dbi2/k8+tlsLsxszQ0nHBh1HJHyxEu4XtxtERERKcOyv5nH41/M4aI+bbjuuI5RxxFJuHjOdvGxmY0D+hL8snadu69KeDJJSe9OWso970zlhM7NuPfMLpjpx1qRPdA9PO7YgBoxxyAbUD26WCIiIrIn3p64lD+9+wMnHbKf+sRSYez2sAszOxvIc/f3wjNc5JnZWQlPJinnv7NXccNLE0hv24BHL+xJ5bR4jvoRkUIxxyPHHotceLtK1PlERCoyM2ttZp+b2TQzm2pm14XTHzSz6WY2yczeMLP6Jaw/38wmm9kEM8tNanhJqq9nreSmlyeQ2b4hD1/Qg7RKKjxIxRDPf393u/v6whvuvo7gUAyRuE1Zsp4rRo1l/8a1eaZfBtWrpEUdSURERKQ05QE3ufvBBHsMX21mnYGPgS7u3g2Yyc8HDI51jLv3cPf0xMeVKExavI4rR42lQ5PaPN0vXX1iqVDiKT4Ut0w8Y0WIALBg9WYGDMuhXo0qjMjKpF5N/UArIiIiqcXdl7n7uPD6RmAa0NLdP3L3vHCx74FWUWWUaM1btZmBw8bQoFbVoE9cQ31iqVjiKT7kmtlDZtbBzPY3s38CYxMdTFLDyo3buXRoDvkFzoisTParp8PSRUREJLWZWTugJzC6yKws4D8lrObAR2Y21swGJzCeRGDFxm30yx6NAyOzMmlWV31iqXjiKT78FtgBvAS8DGwFrk5kKEkNG7ftZMCwHFZu3E72gAwOaFo76kgiIiIiCWVmtYHXgOvdfUPM9N8THJrxXAmrHu7uvYCTCQ7ZOKqY+x5sZrlmlrty5coEpJdE2LBtJ/2zx7B60w6GDchg/ybqE0vFtMvDJ8wsDXjL3Y9PUh5JEdvz8rny2bHM+HEjT/dPp2ebBlFHEhEREUkoM6tCUHh4zt1fj5neHzgNOM7diz01srsvDf+uMLM3gEzgqyLLDAGGAKSnp+sUy+XAtp35DB6Zy6zlG8kekEH31vWjjiQSmV3u+eDu+cAWM6uXpDySAgoKnBtfnsh/Z6/mb+d045hOTaOOJCIiIpJQFpwrcSgwzd0fipl+EnArcIa7bylh3VpmVqfwOvBLYEriU0si5Rc4N748ge/nruHvv+7OUQc2iTqSSKTiGThyGzDZzD4GNhdOdPdrE5ZKyi1354/vTOW9Scu445SDOKe3xlQSERGRCuFw4FKCfvOEcNodwCNANeDjoD7B9+5+pZm1AJ5x91OAZsAb4fzKwPPu/kGS80spcnfueXsq70/+kTtPPZizeraMOpJI5OIpPrwXXkR26/Ev5jDiuwVcfmR7Bh/VIeo4IiIiIknh7t8AVsys90tYfilwSnh9LtA9cekk2R79bDajvl/AFb/Yn8uO3D/qOCJlwm6LD+4+wsxqAG3cfUYSMkk59WLOQh78cAZn92zJ7ScfHHUcEREREZGke370Qh76eCbn9GrFbScdFHUckTJjt2e7MLPTgQnAB+HtHmb2doJzSTnz8Q/LueONyfziwCY8cG43KlUqrvAvIiIiIpK6Ppz6I3e+OZljOjXh/nO6Eh5KIyLEd6rNewhG210H4O4TgPYJSyTlTu78NVzz/Di6tqrP4xf3okpaPG8rEREREZHUMXruan77wni6t67Pv9UnFvmZeD4Ree6+vsg0ndpHAJi5fCNZw8fQskENhg3IoFa1eIYRERERERFJHdN/3MBlI3Np3aAG2f0zqFlVfWKRouL5VEwxs4uANDPrCFwLfJvYWFIeLFm3lX5Dc6heJY2RWZk0rFU16kgiIiIiIkm1aM0W+g3NoVbVyowc1IcG6hOLFCuePR9+CxwCbAeeB9YD1ycwk5QDazfvoN/Q0WzekceIrExaNagZdSQR2Q0zyzazFWY2JWZaQzP72MxmhX8bRJlRRESkPFmzeQf9s3PYtjOfEVmZtKxfI+pIImVWicUHM6tuZtcDDwALgUPdPcPd73T3bckKKGXPlh15DBw+hkVrt/JMv3QObl436kgiEp/hwElFpt0GfOruHYFPw9siIiKyG5u3B33iJeu2MnRABp32qxN1JJEybVd7PowA0oHJwMnA35OSSMq0nfkFXP3cOCYtXsejF/akz/6Noo4kInFy96+ANUUmn0nQ3hP+PSuZmURERMqjnfkF/Oa5cUxevI7HLupFRruGUUcSKfN2NeZDZ3fvCmBmQ4Gc5ESSssrdufW1SXw+YyV/ObsrJx6yX9SRRGTfNXP3ZQDuvszMmkYdSEREpCwrKHBueXUSX81cyd/O6coJnZtFHUmkXNjVng87C6+4e14SskgZd/8H03l93BJuPOFALurTJuo4IpJkZjbYzHLNLHflypVRxxEREYnEX/8zjTfGL+F3J3bi/Az1iUXitaviQ3cz2xBeNgLdCq+b2YZkBZSy4Zmv5/LUl3O5tG9bfnvsAVHHEZHSs9zMmgOEf1eUtKC7D3H3dHdPb9KkSdICioiIlBVDvprD01/PY8Bh7bjq6A5RxxEpV0osPrh7mrvXDS913L1yzHWNMFiBvDl+Cfe9N41Tuu7HPWccgplFHUlESs/bQP/wen/grQiziIiIlFmvj1vMX96fzqndmnPXaZ3VJxbZQ/GcalMqsK9mruTmVybSd/+GPHReD9IqqZEVKa/M7AXgO6CTmS02s0HA/cAJZjYLOCG8LSIiIjE+n7GCW16dxGEdGvHQed2ppD6xyB7b1YCTUsFNXLSOK58dS8dmdRjSL53qVdKijiQi+8DdLyxh1nFJDSIiIlKOjF+4lqueHUen/erw1KW9qVZZfWKRvaE9H6RYc1duYuDwMTSqXZURAzOoW71K1JFERERERJJq9opNZA0fQ9O61Rg+MJM66hOL7DUVH+Rnlm/YxqVDczBgZFYfmtatHnUkEREREZGk+nH9Nvpn55BWyRiZlUmTOtWijiRSrumwC/mJDdt20j87h3VbdvDi4ENp37hW1JFERERERJJq/ZagT7x+605eHNyXto3UJxbZVyo+yP/btjOfy0fkMmflJrIHZNC1Vb2oI4mIiIiIJNW2nflcPjKXeas2M3xgBl1aqk8sUhpUfBAA8guc61+cwOh5a3jkwp4c2bFJ1JFERERERJIqL7+Aa18Yz5gFa3j0wp4cdkDjqCOJpAyN+SC4O394awofTP2Ru07rzBndW0QdSUREREQkqQr7xB/9sJx7Tj+E07qpTyxSmlR8EP716SyeH72Q3xzdgawj2kcdR0REREQk6f758UxeyFnENcccQP/D2kUdRyTlqPhQwT37/QIe/mQWv+7diltO7BR1HBERERGRpBv53Xwe+Ww256e35qZfHhh1HJGUpOJDBfafycv4w1tTOO6gpvz1V10xs6gjiYiIiIgk1XuTlnH321M5/uBm/PnsLuoTiySIig8V1HdzVnPdixPo2bo+j13Ui8ppeiuIiIiISMXy7exV3PDSBNLbNuCxi3qqTyySQPp0VUA/LN3A4JG5tGlUk+wBGdSomhZ1JBERERGRpJqyZD2DR42lXeOaPNMvg+pV1CcWSSQVHyqYRWu20H9YDrWrV2ZkVib1a1aNOpKIiIiISFItXL2FAcPGUK9GFUZm9aFezSpRRxJJeSo+VCCrN22nX3YOO/IKGJmVSYv6NaKOJCIiIiKSVCs3bufS7NHkFRQwIiuT/epVjzqSSIWg4kMFsXl7HgOHj2HZ+q1kD0inY7M6UUcSEREREUmqTdvzGDg8h+UbtpE9IIMDmtaOOpJIhZHQ4oOZ3WBmU81sipm9YGbVi8w3M3vEzGab2SQz65XIPBXVjrwCrnx2LFOXbuCxC3vRu23DqCOJiIiIiCTV9rx8rhiVy7RlG3ni4t70atMg6kgiFUrCig9m1hK4Fkh39y5AGnBBkcVOBjqGl8HAE4nKU1EVFDi/e3UiX89axV9/1ZXjOzeLOpKIiIiISFIVFDg3vTyR/85ezQPndOOYg5pGHUmkwkn0YReVgRpmVhmoCSwtMv9MYKQHvgfqm1nzBGeqMNyd+96bxlsTlnLLSZ04L7111JFERJIjrQpmlpRL81Ztot5aERHZBXfnT+/+wLuTlnH7yQdxTu9WUUcSqZAqJ+qO3X2Jmf0dWAhsBT5y94+KLNYSWBRze3E4bVnsQmY2mGDPCNq0UScvXk99NZfs/85j4OHt+M0vOkQdR0QkefJ30vbWd5PyUAv+dlpSHkdERPbO41/MYfi387nsiPYMPmr/qOOIVFiJPOyiAcGeDe2BFkAtM7uk6GLFrOo/m+A+xN3T3T29SZMmpR82Bb06djH3/2c6Z3RvwR9O7YxZcU+1iIiIiEjqejl3EQ9+OIOzerTgjlMOVp9YJEKJPOzieGCeu690953A68BhRZZZDMQeC9CKnx+aIXvos+nLufW1SRxxQGP+/uvuVKqkRlZEREREKpZPfljO7a9P5qgDm/DAueoTi0QtkcWHhUBfM6tpQYnxOGBakWXeBvqFZ73oC6x392VF70jiN27hWq56bhydm9flyUt7U7WyzqYqIiIiIhXL2AVruPr5cXRpUZcnLu6lPrFIGZDIMR9Gm9mrwDggDxgPDDGzK8P5TwLvA6cAs4EtwMBE5akIZq/YSNbwMexXtzrDBmZQu1rCXl4RERERkTJp5vKNZA3PpUX9GmQPyKCW+sQiZUJCP4nufjdwd5HJT8bMd+DqRGaoKJat30q/oTlUrlSJkVl9aFy7WtSRRERERESSaum6rfTPzqFa5UqMzMqkkfrEImWG9j9KAeu27KDf0Bw2bMtjRFYGbRrVjDqSiIiIiEhSrd28g37ZOWzalseIrExaN1SfWKQs0T5I5dzWHflcNiKXBau3MDwrg0Na1Is6koiIiIhIUm3ZkUfWiDEsXLOFkVmZHNy8btSRRKQI7flQjuXlF/DbF8YxduFaHr6gB4d1aBx1JBERERGRpNqZX8A1z49n4qJ1PHJBD/ru3yjqSCJSDO35UE65O79/YwqfTFvBvWd14ZSuzaOOJCIiIiKSVO7O7a9P5rPpK/jz2V04qYv6xCJllfZ8KKf+8dFMXspdxLXHHsClfdtGHUdEREREJOke+HAGr45dzPXHd+TiPuoTi5RlKj6UQ8P/O4/HPp/NhZmtueGEA6OOIyIiIiKSdEO/mccTX8zh4j5tuO64jlHHEZHdUPGhnHln4lL++O4P/LJzM+49swtmFnUkEREREZGkemvCEu599wdOOmQ//qQ+sUi5oOJDOfLNrFXc+PIEMto25JELe1I5TS+fiIiIiFQsX81cyc2vTKRP+4Y8fEEP0iqp8CBSHui/13JiypL1XDEqlw5NavN0/3SqV0mLOpKIiIiISFJNXLSOK58dywFN66hPLFLOqPhQDixYvZkBw3KoX7MqI7IyqVejStSRRERERESSat6qzQwcPoaGtaoyYmAGdaurTyxSnqj4UMat3LidS4fmkF/gjByUSbO61aOOJCIiIiJFmFlrM/vczKaZ2VQzuy6c/qCZTTezSWb2hpnVL2H9k8xshpnNNrPbkhq+HFixYRv9skdjwKhBfWiqPrFIuaPiQxm2cdtOBgzLYeXG7WQPyKBDk9pRRxIRERGR4uUBN7n7wUBf4Goz6wx8DHRx927ATOD2oiuaWRrwb+BkoDNwYbiuABu27aT/sDGs3rSDYQMzaN+4VtSRRGQvqPhQRm3Py+eKUWOZ8eNGnrikFz3bNIg6koiIiIiUwN2Xufu48PpGYBrQ0t0/cve8cLHvgVbFrJ4JzHb3ue6+A3gRODMZucu6bTvzGTwyl1nLN/LkJb3p1qp+1JFEZC+p+FAG5Rc4N740kW/nrOaBc7txdKemUUcSERERkTiZWTugJzC6yKws4D/FrNISWBRze3E4rULLL3BueGkC389dwz/O685RBzaJOpKI7AMVH8oYd+eP70zlvcnL+P0pB/OrXsUVx0VERESkLDKz2sBrwPXuviFm+u8JDs14rrjVipnmxdz3YDPLNbPclStXllbkMsndueutKfxnyo/84bTOnNmjwtdiRMo9FR/KmH9/PpuR3y1g8FH7c/lR+0cdR0RERETiZGZVCAoPz7n76zHT+wOnARe7+8+KCgR7OrSOud0KWFp0IXcf4u7p7p7epElq7wXwyKezeW70Qq78RQcGHdE+6jgiUgpUfChDXsxZyN8/msmverbktpMOijqOiIiIiMTJzAwYCkxz94dipp8E3Aqc4e5bSlh9DNDRzNqbWVXgAuDtRGcuq54bvYB/fjKTc3q14taTOkUdR0RKiYoPZcTHPyznjjcmc3SnJvzt3G5UqlTc3nciIiIiUkYdDlwKHGtmE8LLKcBjQB3g43DakwBm1sLM3gcIB6S8BviQYKDKl919aiRbEbEPpvzIH96cwrEHNeX+c7oS1HREJBVUjjqAwJj5a7jm+XF0bVWfxy/uRZU01YREREREyhN3/4bix254v4TllwKnxNx+v6RlK4rRc1dz7Yvj6d66Pv++SH1ikVSjT3TEZvy4kUHDx9CyQQ2GDcigZlXVg0RERESkYpm2bAOXjcylTcOaZPfPoEbVtKgjiUgpU/EhQovXbqFf9mhqVE1jZFYmDWtVjTqSiIiIiEhSLVqzhf7ZOdSqWpkRWZk0UJ9YJCXpZ/aIrNm8g37ZOWzZkc8rVx5KqwY1o44kIiIiIpJUqzdtp392Dtt25vPqbw6jZf0aUUcSkQRR8SECW3bkkTV8DIvXbuXZQX04aL+6UUcSkQrOzOYDG4F8IM/d06NNJCIiqW7z9qBPvGTdVp67rA8HNqsTdSQRSSAVH5JsZ34BVz03jkmL1/HEJb3JbN8w6kgiIoWOcfdVUYcQEZHUtyOvgCufHcuUpRt46pLepLdTn1gk1an4kETuzq2vTeKLGSv566+6cuIh+0UdSUREREQkqQoKnFtencjXs1bxwDndOL5zs6gjiUgSaMDJJLr/g+m8Pm4JN51wIBdmtok6johILAc+MrOxZja4uAXMbLCZ5ZpZ7sqVK5McT0REUsVf/zONNycs5XcnduK8jNZRxxGRJFHxIUme+XouT305l36HtuWaYw+IOo6ISFGHu3sv4GTgajM7qugC7j7E3dPdPb1JkybJTygiIuXekK/m8PTX8xhwWDuuOrpD1HFEJIlUfEiCN8cv4b73pnFK1/24+/RDMLOoI4mI/IS7Lw3/rgDeADKjTSQiIqnmtbGL+cv70zm1W3PuOq2z+sQiFYyKDwn25cyV3PzKRA7dvxH/PL8HaZXUyIpI2WJmtcysTuF14JfAlGhTiYhIKvl8+gpueW0Shx/QiIfO604l9YlFKhwNOJlAExat4zfPjuXAZnV4ql9vqlVOizqSiEhxmgFvhL9AVQaed/cPoo0kIiKpYtzCtVz13DgObl6HJy9Rn1ikolLxIUHmrNxE1vAxNKpdleFZGdStXiXqSCIixXL3uUD3qHOIiEjqmb1iI1nDx9C0bjWGDcikjvrEIhWWDrtIgOUbttFvaA4GjMrqQ9M61aOOJCIiIiKSVD+uD/rElStVYmRWJk3qVIs6kohESMWHUrZ+6076Z+ewbssOhg/MpF3jWlFHEhERERFJqvVbgj7xhm15DB+YQdtG6hOLVHQ67KIUbduZz+Ujc5mzchPDBmTStVW9qCOJiIiIiCTVtp35XDZyDPNWbWb4wAy6tFSfWERUfCg1+QXOdS+OJ2feGh65sCdHdGwcdSQRERERkaTKyy/gmufHk7tgLY9d2IvDDlCfWEQCOuyiFLg7d745hQ+nLufu0ztzRvcWUUcSEREREUmqwj7xJ9OWc8/ph3Bqt+ZRRxKRMkTFh1Lw8CezeCFnIVcd3YGBh7ePOo6IiIiISNI99PFMXhyziN8eewD9D2sXdRwRKWNUfNhHo75fwL8+ncV56a343Ymdoo4jIiIiIpJ0I76dz6OfzeaCjNbceMKBUccRkTJIxYd98P7kZdz11hSOO6gpfzm7K2YWdSQRERERkaR6d9JS7nlnKid0bsZ9Z3VRn1hEiqXiw176bs5qrn9xAr3aNOCxi3pROU1PpYiIiIhULN/OXsWNL00kvW0DHr2wp/rEIlIitQ574YelGxg8Mpe2jWoytH86NaqmRR1JRERERCSppixZz+BRY2nfuBbP9MugehX1iUWkZCo+7KFFa7bQf1gOtatXZkRWJvVrVo06koiIiIhIUi1YvZkBw8ZQr0YVRmRlUq9mlagjiUgZp+LDHli1aTuXDh3NjrwCRmZl0qJ+jagjiYiIiIgk1cqN2+mXnUNeQQEjsjLZr171qCOJSDmg4kOcNm3PI2v4GH7csI3sARl0bFYn6kgiIiIiIkm1cdtOBgzLYcWG7QwbkMEBTWtHHUlEyonKUQcoD3bkFfCbZ8cydekGhlzam95tG0QdSUREREQkqbbn5XPls2OZ/uNGnumfTs826hOLSPy058NuFBQ4N78yka9nreL+X3XluIObRR1JRERERCSpCgqcG1+eyH9nr+aBc7pxTKemUUcSkXJGxYddcHfue28ab09cyq0nHcSv01tHHUlEREREJKncnT+9+wPvTVrGHaccxDm9W0UdSUTKIRUfduGpr+aS/d95ZB3enit/sX/UcUREpCxKq4KZJeXSvFWbqLdWRCqgx7+Yw/Bv53P5ke0ZfFSHqOOISDmlMR9K8EruIu7/z3TO6N6CO089GDOLOpKIiJRF+Ttpe+u7SXmoBX87LSmPIyJS6KUxC3nwwxmc3bMlt598cNRxRKQc054Pxfhs+nJue30yR3ZszN9/3Z1KlVR4EBEREZGK5eMflnP765M56sAmPHBuN/WJRWSfqPhQxNgFa7nquXF0bl6XJy7pTdXKeopEREREpGLJnb+Ga54fR9eW9Xji4l5USVOfWET2jVqRGLOWbyRr+Bj2q1udYQMzqF1NR6WIiIiISMUyM+wTt6xfg+wBGdRSn1hESoGKD6Gl67bSLzuHqpUrMWpQHxrXrhZ1JBERERGRpFqybiv9huZQvUoaI7IyaaQ+sYiUEhUfgHVbdtA/O4dN2/IYPjCD1g1rRh1JRERERCSp1m7eQb+ho9m8I48RWZnqE4tIqarw+1Bt3ZHPoBG5LFi9hRFZmRzSol7UkUREREREkmrLjjyyRoxh0dqtjMrK5ODmdaOOJCIppkLv+ZCXX8BvXxjHuIVr+dcFPTi0Q6OoI4mIiIiIJNXO/AKueX48Exet49ELe9Jnf/WJRaT0Vdg9H9ydO96YzCfTVnDvWV04uWvzqCOJiIiIiCSVu3Pba5P5bPoK/nJ2V048ZL+oI4lIiqqwez78/aMZvJy7mGuP68ilfdtGHUdEREREJOn+9sEMXhu3mBuOP5CL+rSJOo6IpLAKWXwY9t95/PvzOVyY2YYbju8YdRwRERERkaR75uu5PPnlHC7p24Zrjzsg6jgikuIqXPHh7YlL+dO7P3DiIc2476wumFnUkUREREREkurN8Uu4771pnNxlP/54hvrEIpJ4Far48M2sVdz08gQy2jXkXxf0JK2SGlkRERERqVi+mrmSm1+ZSN/9G/LP83uoTywiSZGw4oOZdTKzCTGXDWZ2fZFl6pnZO2Y20cymmtnAROWZvHg9V4zKpUOT2jzdL53qVdIS9VAiIiIiImXSxEXruPLZsXRsVoch6hOLSBIl7GwX7j4D6AFgZmnAEuCNIotdDfzg7qebWRNghpk95+47SjPL/FWbGTg8h/o1qzIiK5N6NaqU5t2LiIiIiJR5c1duYuDwMTSqXZURAzOoW119YhFJnmQddnEcMMfdFxSZ7kAdCw4yqw2sAfJK84FXbNxGv+wc8guckYMyaVa3emnevYiIiIhImbdiQ9AnNmBkVh+aqk8sIkmWsD0firgAeKGY6Y8BbwNLgTrA+e5eUHQhMxsMDAZo02YPTwHk0KRONR65sCcdmtTew9giIiIiIuWfA83qVufu0zvTvnGtqOOISAWU8OKDmVUFzgBuL2b2icAE4FigA/CxmX3t7htiF3L3IcAQgPT0dN+Tx29atzqvXnmoRvAVERERkQqrmfrEIhKxZBx2cTIwzt2XFzNvIPC6B2YD84CDSjuAGlkRERERSSQza21mn5vZtHAg9evC6b8ObxeYWfou1p9vZpPDgdpzE5QxEXcrIhKXZBx2cSHFH3IBsJBgPIivzawZ0AmYm4RMIiIiIiKlKQ+4yd3HmVkdYKyZfQxMAX4FPBXHfRzj7qsSGVJEJCoJLT6YWU3gBOCKmGlXArj7k8C9wHAzmwwYcKsaXBEREREpb9x9GbAsvL7RzKYBLd39Y9BeByIiCS0+uPsWoFGRaU/GXF8K/DKRGUREREREksnM2gE9gdF7sJoDH5mZA0+FY56JiKSMZJ3tQkREREQk5ZlZbeA14Pqig6jvxuHuvtTMmhIMwj7d3b8qct97fwY4EZGIJWPASRERERGRlGdmVQgKD8+5++t7sm64RzDuvgJ4A8gsZpkh7p7u7ulNmjQpjcgiIkmj4oOIiIiIyD6yYFCHocA0d39oD9etFQ5SiZnVIjgseUrppxQRiY6KDyIiIiIi++5w4FLg2PB0mRPM7BQzO9vMFgOHAu+Z2YcAZtbCzN4P120GfGNmE4Ec4D13/yCKjRARSRSN+SAiIiIiso/c/RuCs7cV541ill8KnBJenwt0T1w6EZHoac8HERHBzE4ysxlmNtvMbos6j4iIiIikFhUfREQqODNLA/4NnAx0Bi40s87RphIRERGRVKLig4iIZAKz3X2uu+8AXgTOjDiTiIiIiKQQFR9ERKQlsCjm9uJwmoiIiIhIqTB3jzrDHjGzlcCCvVi1MbCqlONELRW3CbRd5UkqbhPs/Xa1dfdyd+J1M/s1cKK7XxbevhTIdPffFlluMDA4vNkJmLGHD6X3S/mSituVitsE2q5Y5bId3hvqE/9EKm4TaLvKk1TcJijlPnG5O9vF3n6hmFmuu6eXdp4opeI2gbarPEnFbYLU3a5dWAy0jrndClhadCF3HwIM2dsHSdXnVdtVfqTiNoG2q6JSn/h/UnGbQNtVnqTiNkHpb5cOuxARkTFARzNrb2ZVgQuAtyPOJCIiIiIppNzt+SAiIqXL3fPM7BrgQyANyHb3qRHHEhEREZEUUpGKD3u9q3AZlorbBNqu8iQVtwlSd7tK5O7vA+8n+GFS9XnVdpUfqbhNoO2SPZOKz2sqbhNou8qTVNwmKOXtKncDToqIiIiIiIhI+aIxH0REREREREQkoVKq+GBmJ5nZDDObbWa3FTPfzOyRcP4kM+sVRc49Fcd2XRxuzyQz+9bMukeRc0/tbrtilssws3wzOzeZ+fZGPNtkZkeb2QQzm2pmXyY7496I4z1Yz8zeMbOJ4XYNjCLnnjCzbDNbYWZTSphfLtuLsirez3tZZmatzexzM5sWvs+vC6c3NLOPzWxW+LdB1Fn3hpmlmdl4M3s3vF3ut8vM6pvZq2Y2PXzdDi3v22VmN4Tvvylm9oKZVS+P21RcG7yr7TCz28P2Y4aZnRhN6vJDfWL1iaOmPrH6xMVy95S4EAySNgfYH6gKTAQ6F1nmFOA/gAF9gdFR5y6l7ToMaBBePzlVtitmuc8IjkU/N+rcpfBa1Qd+ANqEt5tGnbuUtusO4G/h9SbAGqBq1Nl3s11HAb2AKSXML3ftRVm9xPt5L+sXoDnQK7xeB5gJdAYeAG4Lp99W+FkobxfgRuB54N3wdrnfLmAEcFl4vWrYBpfb7QJaAvOAGuHtl4EB5XGbimuDS9qO8HM2EagGtA/bk7Sot6GsXuL83i5333Fxbpf6xGXgEudrVR/1icvEpbj2uMj8UmsvUmnPh0xgtrvPdfcdwIvAmUWWORMY6YHvgfpm1jzZQffQbrfL3b9197Xhze+BVknOuDfieb0Afgu8BqxIZri9FM82XQS87u4LAdw9VbbLgTpmZkBtgoY2L7kx94y7f0WQsyTlsb0oq+L9vJdp7r7M3ceF1zcC0wj+GTyT4J9cwr9nRRJwH5hZK+BU4JmYyeV6u8ysLkGHaiiAu+9w93WU8+0iGCy8hplVBmoCSymH21RCG1zSdpwJvOju2919HjCboF2R4qlPHFCfODrqE6tPXKxUKj60BBbF3F4cTtvTZcqaPc08iKAyVdbtdrvMrCVwNvBkEnPti3heqwOBBmb2hZmNNbN+SUu39+LZrseAgwk6wZOB69y9IDnxEqY8thdlVco9l2bWDugJjAaaufsyCAoUQNMIo+2th4FbgNjPbXnfrv2BlcCw8HCSZ8ysFuV4u9x9CfB3YCGwDFjv7h9RjrepiJK2I+XakARTnzigPnF01CdWn7hYqVR8sGKmFT2VRzzLlDVxZzazYwga2lsTmqh0xLNdDwO3unt+4uOUini2qTLQm+AXxhOBP5jZgYkOto/i2a4TgQlAC6AH8Fj4q2N5Vh7bi7IqpZ5LM6tN8OvT9e6+Ieo8+8rMTgNWuPvYqLOUssoEu5E+4e49gc0Eu/KXW+EYCGcSHHrQAqhlZpdEmyopUqoNSQL1idUnjpr6xOoTF6vyPgYpSxYDrWNutyKoOO3pMmVNXJnNrBvB7rInu/vqJGXbF/FsVzrwYrDXEo2BU8wsz93fTErCPRfve3CVu28GNpvZV0B3gmPHy6p4tmsgcL8HB4bNNrN5wEFATnIiJkR5bC/KqpR5Ls2sCkHh4Tl3fz2cvNzMmrv7snA3xPKw62isw4EzzOwUoDpQ18yepfxv12JgsbuPDm+/SlB8KM/bdTwwz91XApjZ6wTHuJfnbYpV0nakTBuSJOoTq08cNfWJ1ScuVirt+TAG6Ghm7c2sKnAB8HaRZd4G+oUjdvYl2F1xWbKD7qHdbpeZtQFeBy5197L8gY212+1y9/bu3s7d2xF0Gq8qw40sxPcefAs40swqm1lNoA/BceNlWTzbtRA4DsDMmgGdgLlJTVn6ymN7UVbF8x4q88LjN4cC09z9oZhZbwP9w+v9CT7n5Ya73+7urcK29gLgM3e/hPK/XT8Ci8ysUzjpOILBzcrzdi0E+ppZzfD9eBzBd0h53qZYJW3H28AFZlbNzNoDHSnfHflEU59YfeKoqU+M+sTFSZk9H9w9z8yuAT4kGIk0292nmtmV4fwnCUaHPYVgoKItBJWpMi3O7boLaAQ8HlZE89w9ParM8Yhzu8qVeLbJ3aeZ2QfAJIJjq59x92JPa1NWxPla3QsMN7PJBLtm3eruqyILHQczewE4GmhsZouBu4EqUH7bi7KqpPdQxLH2xuHApcBkM5sQTrsDuB942cwGEXQ6fh1NvFKXCtv1W+C5sJM4l+BzXIlyul3uPtrMXgXGEQxgNh4YQjCoWbnaphLa4GLfc+F3zssExaM84OpytPt50qlPrD5x1NQnVp+4xMcK9ggREREREREREUmMVDrsQkRERERERETKIBUfRERERERERCShVHwQERERERERkYRS8UFEREREREREEkrFBxERERERERFJKBUfZI+ZmZvZP2Ju32xm95TSfQ83s3NL47528zi/NrNpZvZ5kektwtOYYWY9zOyUUnzM+mZ2VXGPJSKpzcw2RZ1hX8TTNpvZADNrEXP7GTPrXAqPfY+Z3VzM9FJpQ83sKDMbZ2Z5RbfRzPqb2azw0n9fHyvmft8PvxN+8r0gIuWL+sR7/ZjqE1dQKj7I3tgO/MrMGkcdJJaZpe3B4oOAq9z9mNiJ7r7U3Qsb+h4E57TdkwyVdzG7PvD/DW2RxxIRKe8GAP9ffHD3y9z9h0Q9WCm2oQsJsj8fO9HMGhKc67wPkAncbWYNSuHxcPdT3H0dRb4XRKTcUZ+45AzqE8vPqPggeyMPGALcUHRG0Spt4a99Zna0mX1pZi+b2Uwzu9/MLjazHDObbGYdYu7meDP7OlzutHD9NDN70MzGmNkkM7si5n4/N7PngcnF5LkwvP8pZva3cNpdwBHAk2b2YJHl24XLVgX+BJxvZhPM7Hwzq2Vm2WGG8WZ2ZrjOADN7xczeAT4ys9pm9mn4S9rkwuWA+4EO4f09WPhY4X1UN7Nh4fLjzeyYmPt+3cw+CH95eyDm+RgeZp1sZj97LUSkbDOz081sdPiZ/8TMmoXT7zGzUWb2Wfi5v7yE9fuF7eFEMxsVTmsbtj+Twr9twunDzeyJsL2ca2a/CNuzaWY2POY+N5nZP8L261Mza1LM4/YO2/OxZvahmTUP2/104LmwjathZl+YWXq4zs/a4pjH+3O4Dd8XPgfF6F70+SjShu51W+nu8919ElBQZNaJwMfuvsbd1wIfAycV83zEbmdjM5u/q0zhvPkW/LNS9HuhuZl9Fd6eYmZHlvB8iEjZoD6x+sSyJ9xdF1326AJsAuoC84F6wM3APeG84cC5scuGf48G1gHNgWrAEuCP4bzrgIdj1v+AoDDWEVgMVAcGA3eGy1QDcoH24f1uBtoXk7MFwS9aTYDKwGfAWeG8L4D0YtZpB0wJrw8AHouZ9xfgkvB6fWAmUCtcbjHQMJxXGagbXm8MzAYs9r6LeaybgGHh9YPC3NXD+54bPs/VgQVAa6A3Qae48L7qR/2+0EUXXUq+FLaFRaY1ACy8fhnwj/D6PcBEoEbYhiwCWhRZ9xBgBtA4vF3Y/rwD9A+vZwFvhteHAy+GbdGZwAaga9jWjgV6hMs5cHF4/a7CNjBc/1ygCvAt0CScfj6QHV7/SbtaeHs3bbEDp4fXHyBs54tsa7HPBz9vr/epreTn3183x+YB/gDcXMx6/7/dYb75u8oUzpsfLvv/2xBOvwn4fXg9DagT9XtXF110KfmC+sSgPrEue3DRng+yV9x9AzASuHYPVhvj7svcfTswB/gonD6ZoNEp9LK7F7j7LIJG5iDgl0A/M5sAjAYaETTEADnuPq+Yx8sAvnD3le6eBzwHHLUHeYv6JXBbmOELgoavTTjvY3dfE1434C9mNgn4BGgJlPRrXqEjgFEA7j6doEE9MJz3qbuvd/dtwA9AW4LnZX8ze9TMTiL4R0JEypdWwIdmNhn4HUFBodBb7r7V3VcBnxPs9h/rWODVcD4x7c+h/O/wgVEEbUuhdzzomU0Glrv7ZHcvAKbyvza4AHgpvP5skfUBOgFdgI/DtvDOcDt2ZVdt8Q7g3fD6WH76XRBrd88HlH5bacVM8z1Yv6RMuzIGGGjBMeNd3X3jHj6eiCSZ+sTqE0v8VHyQffEwwXFitWKm5RG+r8zMgKr/1969hFpVR3Ec//4sJz2QiGhQ9Bo4EcmKBo2aOSoKoqikqFFF2cyBw5JoYiFFTbQHRBMjQqLCQYRSEPakknLmQIuKgkgpE10N/vvkvtd97j3H21GL7wcunNfee+09WPt/1vmv/+29d6T3+Hjv+XFaZXRk/uCuaMlrfVWt6f6urqpRoj48Jr6hgeNSBLijF8MVVfXtQAzraJXlG6pqDfAjLSkvtu9x+tftGHButSnA19IS/qPAtonPQtLZ4nnaL0mrgYeYmyeG8mBfBl4b0v9MP+fOz8fjenOHjru3lwdXV9XaRWJYKL8d7Qoi0OW3CeMYOvd/O1ceoP2qNnI58P3A5/6573Fyrj8ppoUOWFW7aV8IDgKvJbl/inglnTlbcEzsmFiLsvigU9ZVNbfTku3Iftr0J2hTe5efwq7vTLKs63m7hja1eCfwSJLlAElWJjl/oZ3QqsE3dz245wD3ALumiON34MLe853A+u4GQpLrxmy3Avipqo52fWqjX7rm769vNy1Bk2QlrXq8b1xgXa/wsqp6kzYV+PqJzkjS2WQF7UsmwPz/pHBb1/d6MW0q7Sfz3n8fuKt7f7Q4IrSWiLu7x+uAD6eMaRmtvQLg3oHt9wGXJLmpO+7yJKMZG+Ny3FJzMSx+PQYtMVfuBNYmuShtocm13Wvz7efEfW/aBdPmXLMkV9LuH1uBl6aMV9IZ4pjYMbEms2AFXprAM8BjvedbgR1J9tAGx+MqsAvZR0uIlwIPV9WfSbbRpqF93iW6n4HbF9pJVf2QZCNtim6Ad6tqxxRxfMCJKWVPA5tole2vuhj2A7cMbPc68HaST4Evge+6eH5J8lG3oM57wAu9bV6kLfbzNa1S/kBVHely+pDLgFeSjAqIG6c4L0mn33lJDvSeP0tby+CNJAeBj2k9uyN7gHdog65NVTXnF/eq2pvkKWBXkmPAF7R+2MeBl5NsoOXJB6eM8zCwKslnwG+0NR36x/0rbQG155KsoI0jttBaN16l5bE/aO0fo22Wmoth4HokuWqC7RbNlUluBN6ircFxa5InqmpVVf2aZBMnCh1P9qYS920Gtie5j9ZHPbGB+8I3wIYkR2m95M58kP47HBOfzDGx5hgtdCVJks4CXb//oarafAaOfaiqLjjdx5UkSf9/tl1IkiRJkqSZcuaDJEmSJEmaKWc+SJIkSZKkmbL4IEmSJEmSZsrigyRJkiRJmimLD5IkSZIkaaYsPkiSJEmSpJmy+CBJkiRJkmbqb/KlIOhnDBtKAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "bins= [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]\n", "\n", "df_metrics = df_metrics.sort_values(by=\"metric_time\")\n", "print('Mean percentage: {}'.format(df_metrics.completion_percentage.mean()))\n", "\n", "completion_percentage_np = np.array(df_metrics.completion_percentage)\n", "episode_progress_buckets = np.split(completion_percentage_np[:EPISODE_PER_ITER*(len(completion_percentage_np)//EPISODE_PER_ITER)],\n", " len(completion_percentage_np)//EPISODE_PER_ITER)\n", "episode_progress_mean = np.mean(episode_progress_buckets, axis=1)\n", "\n", "fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(18, 6))\n", "# Line graph showing the mean iteration of completion progress\n", "ax1.plot(episode_progress_mean)\n", "ax1.title.set_text('Iteration Mean completion progress')\n", "ax1.set_xlabel('Number of iterations')\n", "ax1.set_ylabel('Percentage completion')\n", "\n", "# Bar chart to show completion_percentage with bucketing of 10% bar chart\n", "ax2.hist(df_metrics.completion_percentage, bins=bins, edgecolor=\"k\")\n", "ax2.title.set_text('Bucket cout of completion percentage')\n", "ax2.set_xlabel('Lap completion bins 10 units')\n", "ax2.set_ylabel('Episode counts')\n", "\n", "# Line graph showing the mean iteration of reward mean\n", "if is_training:\n", " reward_score_np = np.array(df_metrics.reward_score)\n", " episode_reward_buckets = np.split(reward_score_np[:EPISODE_PER_ITER*(len(reward_score_np)//EPISODE_PER_ITER)],\n", " len(reward_score_np)//EPISODE_PER_ITER)\n", " episode_reward_mean = np.mean(episode_reward_buckets, axis=1)\n", " ax3.plot(episode_reward_mean)\n", " plt.title(\"Metric analysis - Reward/percentage vs number of iterations\")\n", " ax3.title.set_text('Iteration Mean reward')\n", " ax3.set_xlabel('Number of iterations')\n", " ax3.set_ylabel('Reward score')\n", " plt.show()\n" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Analyze the reward distribution for your reward function" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Min x-axis -0.0606240450958311; Max x-axis 8.812047821609287\n", "Min y-axis -0.0762047494113641; Max y-axis 6.902695545100437\n" ] } ], "source": [ "print(\"Min x-axis {}; Max x-axis {}\".format(np.min(df['x']), np.max(df['x'])))\n", "print(\"Min y-axis {}; Max y-axis {}\".format(np.min(df['y']), np.max(df['y'])))" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArkAAAI+CAYAAAC46xLUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gc1dm377NFWu2q2yqWuyzLBoNtijFgsAHTO0kgAdJI8iaEwJdKEtJJJaTwphFCGrwB0olDDcEUm2JMc8NNttfdlixbdXel1WrnfH/MnN2zo11ZrpLtc1/XXDNzZnbmbJv5zXOeIqSUGAwGg8FgMBgMRxOewe6AwWAwGAwGg8FwsDEi12AwGAwGg8Fw1GFErsFgMBgMBoPhqMOIXIPBYDAYDAbDUYcRuQaDwWAwGAyGow4jcg0Gg8FgMBgMRx1G5BoMhiGHEOLDQoiX92H/TUKI853lrwghfncQ+xIRQtQ6yw8IIb57EI99nxDi6wfreNpxhRDij0KIViHE6wf7+FnOl/pchBDnCCG2HYZzni2EWHuoz2MwGI5cfIPdAYPBcHgRQmwCqoAkEAH+A9wqpYwMZr8OFlLK7w9kPyHEi8BDUsp+BbGUsvBg9EsI8WHgY1LKs7Rj33wwjp2Fs4ALgFFSyughOsdhRQghgYlSyvUAUsqXgEmD2yuDwTCUMZZcg+HY5ApHvE0HTgLuGKyOCCGG5MP2UO3XABkLbNofgXuEv2+DwWBIYUSuwXAMI6VsBJ7BFrsACCFOF0K8KoRoE0IsE0Kc47SfK4RYoe03Xx8KF0K8LIS42ln+shBigxCiUwixSghxjbbfh4UQrwgh7hFCtADfEkIME0I8JoTocI45ob9+CyE+IITYLITYI4T4qmvbt4QQDznLASHEQ85+bUKIN4QQVUKI7wFnA7903BF+6ewvhRCfEkKsA9ZpbXXaKYYLIZ513tsCIcRYZ79xzr4+rS8vCiE+JoQ4DrgPOMM5X5uzPcP9QQjxP0KI9UKIFufzqNG2SSHEzUKIdY4bwq+EECLLZ/NR4Hfaue4c4LEz3neW4/5dCNEohGgXQiwUQkzp7zvKhRDiZ0KIrc53/ZYQ4mxtm9dxN1G/nbeEEKOFEAudXZY57+m9brcIIcRxzufdJoRYKYS4Utv2gPN5Pekcd7EQYoKzTTi/xV3Oe1suhDhhf96bwWAYWhiRazAcwwghRgGXAOud9ZHAk8B3gXLgC8A/hRAVwCKgTggx3BFyJwCjhBBFQogC4BTgJefQG7BFZAlwJ/CQEGKEduqZQBioBL4H/AroBkYAH3GmXH0+Hvg18AGgBhgGjMqx+4ecPox29rsZ6JJSftXp661SykIp5a3aa652+nd8jmPeCHwHGA4sBR7O1VeFlHK1c+5FzvlKs7yv84AfANdhfw6bgb+4drscmAFMc/a7KMu5fu861zcHeOyr6f99Pw1MxP7O3mYA7zsHb2A/VJUDjwB/F0IEnG2fA64HLgWKsX8HMSnlbGf7NOc9/VU/oBDCDzwO/Nfp323Aw0II3Z3heuzfYhn27/17TvuFwGygHigF3gvs2c/3ZjAYhhBG5BoMxybzhBCdwFZgF/BNp/39wFNSyqeklJaU8lngTeBSKWW3szwbOBVYDrwMzAJOB9ZJKfcASCn/LqXc4Rzjr9jWwdO08++QUv5CStkL9ADvBr4hpYxKKd8BHuyn7+8BnpBSLpRSxoGvA1aOfRPY4rZOSpmUUr4lpezYy2fzAylli5SyK8f2J7VzfxXbYjp6L8ccCDcCf5BSvu0c+w7n2OO0fe6SUrZJKbcAL6BZ4A/Csft931LKP0gpO53XfwuYJoQo2Yf3p47zkJRyj5SyV0r5EyCftG/tx4CvSSnXSptl6je1F04HCrE/nx4p5fPAE9jCVvGolPJ15zf3MOnPLgEUAZMBIaVcLaXcua/vy2AwDD2MyDUYjk2ullIWAedg39yHO+1jgWudId82Z1j9LGzrH8AC5zWzneUXgTnOtEAdXAjxQSHEUu0YJ2jnAFtcKyqwg2D1ts399L1G39fxO80lhP6E7Y7xFyHEDiHE3Y7Vrz+2DnS7E6zX4vTpQKlBe9/OsfcAI7V9GrXlGLawO1jHzvm+HTeCuxw3gg5gk7NpeK7X9HOszwshVjuuAW3YlnZ1nNHYowD7Sg2wVUqpP+xsZgCfnSOIf4k9mtAkhLhfCFG8H30wGAxDDCNyDYZjGCnlAuAB4MdO01bgT1LKUm0KSSnvcra7Re4CXCLX8VH9LXArMMwZmn8H0P1HpbbcDPRiCxzFmH66vVPfVwgRxLbWZnt/CSnlnVLK44EzsYf7P5ilDxkv6+fcuM5diD3svgNQQV5Bbd/qfTjuDuyHDHXsEPb72r6X1w2EgRy7v/7dAFwFnI8tSsepQ+1LJxz/2y9hu02UOb+Ndu04W9mLP3YOdgCjhRD6PW0MA/zspJQ/l1KeAkzBdlu4fT/6YDAYhhhG5BoMhv8FLhBCTAceAq4QQlzkWO8CToCP8nl9FXto+TTgdSnlSmzxNBNQwUEhbMHUDCCEuAnbkpsVKWUSeBQ7AC3o+Nx+qJ/+/gO4XAhxlhAiD/g2Oa5lwg6WO1EI4QU6sIemk87mJqC2n/Pk4lLt3N8BFkspt0opm7FF1fudz+4jZAq2Jmwf5rwcx30EuEkIMV0IkQ983zn2pv3o48E+dhEQx7b+Bp3X7w9F2A80zYBPCPENbN9bxe+A7wghJjoBYVOFEOoBpr/vazH2Q8YXhRB+YQdLXkFfv+M+CCFmCCFmOhb+KLZveHIvLzMYDEcARuQaDMc4jjj7P+DrUsqt2Ba7r2ALka3YVi2Ps28UO+hopZSyxznEImCzlHKXs88q4CdOexNwIvDKXrpxK/bwcSO2ZfmP/fR3JfApbOG2E2gFchUfqMYWxR3Aamxr80POtp8B7xF2poKf76V/Oo9g+zC3YAfb3aht+x/sz2sPtlXwVW3b88BKoFEIsTvL+3oO27/4n877mgC8bx/6lZODcOz/wx7+3w6sAl7bz648gx3A1uAcr5tMN4mfAn/DDiDrAH4PFDjbvgU86LjAXKcf1PktXokdRLkbuBf4oJRyzQD6VIw98tDq9GkP6ZENg8FwBCOk3NsImsFgMBgMBoPBcGRhLLkGg8FgMBgMhqMOI3INBoPBYDAYDEcdRuQaDAaDwWAwGI46jMg1GAwGg8FgMBx1GJFrMBgMBoPBYDjq8B2KgwohpFHPBoPBYDAMHKFNnhzL7jYf4HXm7skLeEWWHcDOVtyLnRG4F5Iytag3pxJL92Inv5bYNbRljnX3NsOBsz+/C0h/F/19P3rbkYoFSCmzFqY5JCLXAwQOxYENBoPBYDhK8WPfO9U8L0ub37U8DLvknpqXY9fJVuvFPm3DMGcj2NmAW5xpD0TjdmJsVzPN2nLCmbpd8x7sSiE9Wpvabjhw9ud3kaDv96V/P+7vSa+Sc6TR3+/MGFwNBoPBYDAYDEcdRuQaDAaDwTAE8A7iuY9UK96xwP78LgbztzSUMCLXYDAYDAaDwXDUYUSuwWAwGAxDAN2aag1we9JZTmrLyv8yAUjdOVM5Zfa42rKdzEH5eio/UK8z92hzrzZ3T4aDh/55ekh/5mqbPunfi5qy7ec+7tHGIQk8MxgMBoPBsO9YZIpWD7YO1VFiFiBGOthIFy664C1pgYJuZ+eYs1Mb0GlPXQm7WZ3HC+QDRdo5/dj6OE5aJ6tlffJry6of+lx/n+73ZMiN+m7zsL+bQJbJry0nSX8PedjflwpI68b+XSWcub4OR9d3ZUSuwWAwGAxDkMTed8GPrVV1q50SyErQdANFMSiNgbfD2bkbknGIavsksAWNEksWacttyNknpu0fJS24omQKbSW2lWD3k2l99pIWS5Zr3ZCJ/t0qq7ouboPOPKS19Wj7KgN+njNX30+25aPtuzIi12AwGAyGIYKy3qrhZTXsnHDtoyy+7mFrZb3VBW4UKMYWw0WRzBRT7rRf6pwB55hKNBWTFsQxZ1mJ2xj2MaOkBZlCpabSrc8e+oqlI008HS50l4JsqcOC2OJWzVWb/v3rAld3X1DiVj+X+q4g/fvSt+kcCd+VEbkGg8FgMAwBlNBTAlZHF7HK0pZ0bctmwY1hi9t2bPeDILbggb6uBOqcyrrnd9aV20InaVHrHibX/XPd/dZFrhLxev/192/oi+5fq+fD1QVusWtd/Qai9BW4usVdfyDp77vSORLErcKIXIPBYDAYhghKQOSKClfiw21Z031wdYGrhE8+aQGUR2agmDt4zC2ClHANknLjJeAcU4nbPDLFtuor2jGS2rLbz9j9/g2Z6K4Kuu+tLmyLnCmE/TtQLiTK0q4LXOj7QKIErbK+u7+3bO4zQ/37MiLXYDAYDIYhRjarpi5w9eA03YIbIC1wlRDdW5CSPgSuW3HdltpOra2TvhkV9H4qsYSrf0rg5tFXpINxWciGO2uC+7ssck3FpH1ylQtJNku7+zvTg9HUd5Ur48eR8h0ZkWswGAwGwxAgm8+jEh9u9wSv1q5bcJUodftvqjYlenXrX8g5tvLpVL64Rdp+IgihWHofPZ2YO6uDmnq0NiV49YAmfZ7NfcFgo1vYdXeFkGsqAkqdeYL0byCPtNjNleJNt9wmtHk2dLeaoY4RuQaDwWAwDCGy+UDqQ/9KhKhlXXCqoWm3CNXnQTLFkBItKvWUshaGgJAfKLF3zmuHYW3gt9LH090q3FZlJZL0gDZ3AJ0SSx6OHOE0GKjPJ5u7gnpYKSYtdPXfiPt7Uujfl8qeocRvf+4kKoPHkYARuQaDwWAwDBGyBWPpokJZ3xLacraCDP353AawxXC5dkwlfiEzsEmWQLLSS2+Fj94OHzum1rG9up6ytevxbdhAXjJJwLKIJ5MUOPMeKYmTFs2qH27LoLuQhSE7uguJbp1XftbKiqsEbilpt4P+XBR0a/pALOn6Q4nujjKUMSLXYDAYDIYhRjZ/VUgLi2yiccykSYw98UQ27NzJ9t278YRCyGAQGQpBMIgIhZChEP5gkFAoRCAYpHDECAqGD8cTiZDX1UWez0ee14vX74eAj96Qz1ZTeRAXQZqG1YIQICXDw2FELJZKRaYKqfUAvZZFIpnEsix8BQXkBYMkmpuJNzUhY7HUlOzqQsZiWLEYia4uks7yiGHDGF9Zybbly9m2dCkicSRIqkOH7rKQLU+uHnhWSjqbgu6WoKy5urjV09ElXfvr6AJXt8wP9YcTI3INBoPBYBiiSCGguBhZVgZlZUhn6i0rQ5aXI0tLoayMgtGjEccfzxYh8EsJ4TCRWCzrMX1AL5AMBgnU1hJxRKsnHCY/FksFrOXj7OiYgbuDhSAEUggEEC8sJOCcQ3c38AN4PEiPB4JBgrW1CCHIGzeOeDhMTyyWElZKXOnrgWCQwtpamoUgX0q84TBdzc2I1lZobUU4E21t9nJLS6qdjg7EofkqBg3dIu/2y1WTnivXmw/BeKbbiJrc6d6ypQ1zB5vleuA6EjAi12AwGAyGQUKCLV6rq5EjRqSmosmTCY4dS5uUxLq793YYgsOHgxAIIZBAqLCQWA6RK7HFS15hIUII2zILJAsLScRiGf6beXHw9SbxdfVSHmmmJ1CKB5BSUtrYCF1deDwehNeL9HiQXq8tzAEBCO0cAigoLMSKxeh1tvf5LJy+Z3svMhSCUaNyfwbBIKGCAuJbthBZswbPjh2wcyeeHTsQO3ZAczMieaTJtDRu9xR3MJqy8BKwP1t/PC1o9e9UdzfQC4f0uNp6yHwA0Qt76H7iQxkjcg0Gg8FgOIRIIWD48AwRm5qqq5GBQMb+wWCQmlrbLaBUSjaFwzkFqyIaiVA1fDiB3l78iQQ73nnHFnexGESjiGgUolGIxciPRimOxRhbVsa5119v583t7SXy619Tsn49FYkEw3t7qejtpbq3l+HYAWjJBGytrWV7fT0lDQ0UhMMZVbXi2MKoC+j2eIh5vUQmTEB8+tNYfj9xIVj3f//Hrt27iRYUEC0oIBIMEgsG6QoG6Q4G6QkGsUaOZOQ559CTn0/U7yfa0bHXzzgYDDLO+cwYMYJNFRV9PjORTMKuXYgdOzIE8Ci/n8nDhrFhzRo2h8MD/2IPA3rFMX3yZ5nyAa8y8QKBuO177XZXgMwMGLrQ1UWubglWgvdIw4hcg8FgMBgOEtLrRY4Zg6yvx6qro/DUU8mvryfS1bVXoapwWzJLPB66t26Flpb0UL0+bN/aSrK1lZ7KSsbW17O+oYHucDhV2cyNB1sQdQIr165lbH09PQ0N5IXDBIAI6YIRvc56acIRRuEwFeEwFraAUhY9r3NMVRii0LJIWBbda9bQ/qMf0eWco8I5R6fz+g7SBSbUFAW21NZSV19PY0MDyXCY/KKiPi4b+vKwadMI9PYSz8vLacmWXi84DxfWKacAtjgO1NayTUpq2tpo/ec/aX3tNcS6dYht2xBSMti4q5JlC0QL4FSyUw1JEH7wJzILQOguCe7yz+ohxSItfi2tTbfqHikIeQi+QK8QMrD33QwGg8FgOGKRQiBHj0bW1WHV1yPr6pDjxyP9dkHcDOtiPxZZEY0idu5MTdXA+y+5hJJ4nPyuLn7zk58cVAujn8ycqgNdVmQr3etGCTNVVrhNm7e52tqxxW47aZG7r4ytreWWz34WKy+P1vx8/vjEE+y0LGRNjT2NGIEcNqzP6yoqK6moqrIfKKSkuamJ5l27ABDxOCIcxrN+vS16169HbN9+WIWvH6hwTdX9rHvLnYUo0AJdMWixF9njzNtc62o5RqagVdZct9DV24eCdbcbSEqZ1RXbWHINBoPBYNgLEhg5cyYVs2ez0etld2kpcsIEZH5+ztfoFtmCeJyqlha2vPpqhqAVO3dCJJLhn7ob+Nerr1LnWGUPxRC6hS0O9GIO7sISSqCqohDu/LsqZyv0HUJX6+oc7lRWkGlJzJXLdaBsDoe59557Up9ZczjcR+DI/HzbPUSJ3poaeo87juB55xELBEBKopFI5v7HHYd13HGpNtHdjQiHGd7ezvhkkt3z57P97bcPoOcDI1shB7e7QspVIUCq5Jkqt6x//m5Lbg9pa64uXnUfXN2SeyRhLLkGg8FgMGRBVlRgnXgi1rRpBGfNYvTJJ+/VKgsgdu3C09BAZWcnHzj7bKoiEXzxOPfec8+Q8Pn0Ykfiq6h8lW9VpaPSl7PtE3BtD5IZ5R/Q9ncMilktiG5Lotqn81C98RyMra1l7Eknsaa3lx2BgG2Zr6vLavmFvhb6ba+8QmzhQsSSJXjeeQcxgEDBgaIsudWkLbZVzryGTEtucVDb2Ak0g9wNzdifbbMz7dGW1bZGMt1P9CwLVpb2oWLFBWPJNRgMBoNhr8jS0pSotaZORVZXp7YFKiuzRvyLPXtSw9keNaTdacu0VuDfzzxzSC2y+4sqJqFb75Q1T1VNC5Dp81nkmiBtAVZFJlS+1gKPvZDXbWdo0K2Iyt9T+YHGyLQKH242h8Op70YXRbK01Ba7zmTV1SHLy/v4TOdPnEhHSQlccQUimUSsXYtnyRI8S5fabg7Wgdk/3blu9Qp2egW0jCeQhD1XfrnZsivoVns1z1ZmWV8+0qy5RuQaDAaD4ZhEFhbaonbqVOTUqVijR+fcNxqJUFNezoi2Noa3trLw178mf8ECO/CrH3QBNVRQpVnVcLSfdA7VbGWB1VQKDMMWQ5a23V0prUCVAnZ2DjVCMp45TN7tvC6KbfXV3SaGCqKtDe+bb8Kbb6baZFkZBXPmcMonP0nTsGHsKC3NdHHwepHHH491/PFw442IaBTPihV4lixBLF1qu6jsZ3/clev01GF+tJUAaT8RP3gT6ddD5vegC11lf7a0/fR5tm1DHSNyDQaDwXBMIAE5fjzWaadReOGF+I8/nmg0mtvtoKcHsXIlnuXL6V2+nC4p8dbV8UZDA7vC4SO66IAKJgJb5MTJ9NvMVhY4RloYK8ttiLTgzXPWKcIWuBWkzIPFTXYKMt3fV/n8KpF2ID65hwvR2squefN4ffly6urriW/aRG8ggO+kk7CmT8caPz5jfxkKkTz9dJKnnw5AUVcXo5ubiT75JI3/+c+Ag9iyCVz1ufmxLbYpPxE93YIn+8ODss7qVnW3k0U2i+2RIm4VRuQaDAaD4ahF+nzIE08kOXMm1mmnIYcPz8hDW6H514reXsSaNXiWL8ezfDmioQHR25s61hZgy/r1g/dmDiK6z+VAC+bqJYV19wUllj04wU/KZ6GcjLHw4t1pYatK0So9pos23bVhqKJb6D2AZ+lSAGRJie3u4ohe3a83GAwy+oQTQAhCl15K3pIldD39NJ6FC+3fWo5z5XJVUBXQApApbkPYn7uz7o/0Fbq6NVfPlXu0YUSuwWAwGI4qZFER1qmnYs2ciXXyyX2KLSifSi8wvL0d35IlrHnoIcTq1YienuwHNQCZ0fgxbHeDGHbAWD4QSEBxC2kVlsCOdOq099X9PnU/3lIyrcTQt7KWO+BpqAVAAYj2drwLF+JduNAeORg1yha7J51E0QUXZPjyBkaOpPPKK+HKKxGNjXgXLsSzcCGeLVv6HFfPqKA8EkKky/lSTDrnWwn2hxKzd8hrh2Ai84GiP/cQd/EI717aIdN/V1/P1X64MCLXYDAYDEc8NWecQekll7CxspK2ESNSpWXdiGgU+fzzzK2vZ1xLi5314Ne/xjPE/GaHIm6fWj3NmD5C7o1BqFl7UQt0OdW3solcZXhUlkQ/uXOz6nMvfcXUUEIAYts2PNu2wRNPUPKXv3DFt77FxpEjWV9dnenLW11N73XXwXXX4dm8GY8jlGlqSpXl1a3deoyZUGZxPblxgowowVBLX8t5ttRuukuEvqy34Vp3Z1zI9WAyGN+VEbkGg8FgOCKRFRUkZ88mdOWVBM4+m24hGCElcVd6L7FzJ97XX8ezeDFi9WoiyST/dSpqDbWsB0MZt8iNkhZOumjyAMTsgDMs6Eqkizy4xazybujR2lRyAH0YXV9XeXXVcXQBNZTZsm4d877+derq64msX09vYSHe2bOxzjgDGQql9rPGjsX6wAfo/cAHSK5dS8fChVS9/DLe1tYMgZuPY8V1C9xS7A9HJTkOQrAl/Zo80mJZ5dFV6OJVfZ95rrnbZaK/BxG1PfXeDuwj3GdMnlyDwWAwHDHIoiKsWbNInnOOHcFOlqpVjY3sWbgQjxK227Yd0UFiQ4Vy0hkWyp1pGOlECmp7ubauRs2j2MFtUTLdHHLNu7FFbZy01Vi3IGdrO1KRfj/WySdjzZlj+43npQsye7A1bHFBAXU7d3LSn//MKU8/zThgHDDSA4wGxjpztbwb2ApsAjbby3ti9urWdFNqeRO2JnYHtKl1tyVZd3nQC0tkezhxF5442L6/Jk+uwWAwGI5YZH4+1mmnYZ1zju1j6830JIxGIlQPH87Y3bsZs3Mn//3mN+lcvnyQenv0onKr6j65biufvq+evUEXpXqgmrLkekj75+quEMpiHHDm+jmOFAvu3hCJBN7Fi/EuXowMBGxf8tmzsU4+GeH1khcMUlpby566OuafdRarFyzgygcfpO6ll6Agma7g4bbktmntQQjE0i4lyvrudkVQ69ncI/yuZbVN99NWqei6teP1kE5bp1vgDwfGkmswGAyGIYf0eJDTp5OcM8cezg30vasIy0IsWYJ3wQLGNTVRP3ascT84hCgNVeRa7q8t23B2tnW3/61u2e0kt9VX33a0IQsL8Z55JrU33YQ8/fRUhTVfUxNFu3YxqqWFaxY8zkUbn6GoMmJbcMcBtdglzDYDYVLW3OTmtGF3U+YmwqR9q90uEXnashLJ+rISuP1Z3d0POgfz4aQ/S64RuQaDwWAYMlijR1P6gQ/gnTuXdimz5rD1rF2LZ8ECvC+9hGhvH4ReHpsoo6BjGKSIdFC/7hZarK33V8UsV+GHJLbgUgK2E+jQ2lS7u+1oJACcXlvLWV/7GismTGDNyJF4N22iKBYjCIgCyPfHOX/LfK7a829GVDamRW5YmzbZ8+3xjFXC2CJ3HWmRm62Es7tND2JTrihKxCrf6/7aDpfINe4KBoPBYBhUpNeLdfrpJC+7jMBppzHcyWFbpuWw9WzbhufFF/EuXIhobBzsLh+z6P6VysdWtVtaexBbiOaTGaikBzSpoXHd51MJXyWg2tCC2cgsR5tHZsT/0cqucJjwd7/L1Pp6Zm3fzq7Jk3nn8svpGVYGXogX5PPkSZfxVPBSZiYWc7VvHsd3r0KUkn7ycD7QQDxtgdU/b4X6PtT3pAtcJWzdy3qlPHdBD1VwIo90INrhxIhcg8FgMAwKsqyM5EUXkbz4YmR5OZDOYSuEIBiPM2H5ctb+4heIjRtN8NggoxcP0FNPZUstplwJgvQd7vZoU8A1KeGVSkemnUeJ2x4yK9ceCZXSDgQvEA2H6QqHGQFMX7GCj//rX6y5ZDbzbryaTXXjwAfSJ3it5HReC53OxMJ1XC3nMWvnK3iDViqpbqC9b9lm/SFCLzKh++CqqYi0yFVz/YHFjfrOVMq3w40RuQaDwWA4bEhATplC8rLLbF9bdxBZRwenWRYnbN1K9a5d3PfLX+LZuHFwOmvIQBezepuKmFciNaotKyGkxBFkWnZ1y6Byh9Ctum4rrjpXnExLpJ4z92hEDwYLAEW9vcx9/XnOa32eZedPY97cq3lrwikpZbqucCI/mnI7v666jZnLVnJtzyOM3L6u34IQbqGrB52p70d9R1o8W6qkszvwUP1WcuXkPRwYkWswGAyGQ47Mz8c691ySl16KNW5cn+2itRXvM8+QfOYZ1peUQH0980wQ2ZBDWebceWrVNhVtr8SNyouqi1E1dK1nR9AFrRJXeqVafVIZGPRUVapfimyFB6ws249E9CpvApi+aRnTFy5jS9to/j39Kl4InktC+okng2wJncCqM2fw7xPfzdd//GXmbHyq32Nns+jqbibZJpXXOE9bdu+jcvOqbbk42N+LEbkGg8FgOGTUnHEGwfe9j40TJhC1+qaC96xciffJJ/EsWoRI2re4zXv2GHE7xNFTQrkFpr6PLo68ZLoYKPHjbrO0SaFEb4i0qFV4nW2q3V2By53VYShXScuF7ous8gen/EKc6Lwxu7Zy2/pf8gHPn3iq+1Ie4n/AK5AIWgqL+Nat32DuiKmc/fvfk2huTh3rYH0O7kIS6oFGff/5pF1NdFcXtGXdau/evj8YkWswGAyGg45VU0PxbbcReO97sYRgrBZEJrq77SCyJ5/Es3nzYHfVMECUSFQWV5UD1U1Sm9wiVx+61gWu3qbcEnQrr3JtiGMPk6NtyyNt3dVdGrIVItCF4pEictVn2UNa4PaALW71nGpOmonS1nZuaPwzZ298mx+M/imL6ybR6/EQiEZ49cwzWXDqqUz5+98Z9uijWIlEnweK/UH3y9WroqkHGd3Sa5FOLecn83vO9p0cyPdkRK7BYDAYDhqyooLe66/HmjsXUVWVCiKTwLDubnruvx/v888jsqQGMxwZKFGUzSKaxBYzynKaLbOC26rrboNMa616nRKzaO3KfUEVjlDBb7oYdBcpUP3U38NQRvVVF+jdQDIB3m7SOdbaMqfRrWv55urbWP3iySwYPZ03x06103jl5fHSjTfiOf98qn/7W3pff/2g9VUvKKFnaNA/b13kuq237jLA+mewPxiRazAYDIYDRpaV0fve92JdeCHSZ99aopEIFZWVjN21iykbNvDvr30Nn3FDOKJR1lm36FDruoVOiRa3FTfbut4GmQUD1DHynXVdPHWTvUqaPuVpy/p7OJyVtw4UPcBPBd51AyGXFZdObJHbbi9XNYWp2hzmnE3/4J3Cyfz45ptZW1uLBDqrqtj1ta/hefttkvffDzt27Fff9GppkGm9zeafm0+myM31wHEwHkCMyDUYDAbDfiOLi0m+5z0kL70UmZeXsa371VeJ/eAHCL+fxxoa2GIE7lFBNjGiKl8pH10lJA+GyFUCSv269CwDSvjpIlfpPn3d3dcjSeDqFtAkmWnaQm53hTbscnN61Qxn+/hta/j8Zz/Lvy66iMc/8AGiRUVIIHLyyXT98peIxx5D/uUv0N3N/qD75OppyNRnrgtZ9ZChXpN0Hcf9/RhLrsFgMBgOGzIUInnNNSSvvLJPyV3PqlX4/vQnPCtX0ohdfMlw5NOf0FACV2Ve8Ljm+ypylahT6NuzBZNZZObmVfrOnb+1RzufZy/vaSigZ65IaJMSujIGQrfktmmTS+hGgR4pOeE//yH/5Zd59v3vZ/UllyCFwPL5sN71LlrPOQfPAw9Q+OKL+9RPXdwq32plxU1iW2+T2A8m+mvUd6m+I/270rN37G+KOCNyDQaDwTBgZCBA8sorSV5zDTIUytjmWbcO30MPIZYsMYUbjnLcqbl0X0rdHUBZYHX/W72iljtfa7b0Uu5cudn6AOmytHohCb2PSmQNVmGC/UUP5HOL3G6gQIlZVee4jbTIddqS8fT+CcAbiTDlvvvwPvMMK26+mdhxxwFglZfT8rnP4b/+eiYvWoR34UIS+zAC47bk6v7Ebl9bFSQIfXPsqvmBBsQZkWswGAyGvTJm0iQKb7yRhmnTiItMCevZvBnvQw/hWbzYiNujnGyuCsrKpgsSd75Vd8owfTg7j0whnK04wUDaQqQLHeQqLxvXXnsk+eW6Ba7yy40BBVHSZux27PQTSux22tuU64by5VXZJQIbN1LzpS/RPWcOkZtuQpaXEwgGCV5wAe+cfz5nrlpF8tOfhn6Erl7BzuuadDcFPX0b7P2zd6ep2x+MyDUYDAZDv1Rdfjkld99NtKCAMVoqMM/27XgfeQTPSy8ZcXsM4Ra6/eU0VdZZPQBsb3lydauu7vaQ59rHPe8kUySrPrlLDmcTwUMZPZuF7oOstG1pHLy6NbedtMB10oxFSb9/dxENC8hbsICCxYvxvve9BD/+cYQQWB4PL59wAsPuuIPaW2+FeLzffrofaNRnr6cJy7V/tvd6MB5CjMg1GAwGQ1ZkXh69H/4wsY98hGhBQSoVWFlvL4mf/QzPCy8gshR4MBwbDCQaXllt3YUg9Dy5Hleb17UfZJaY9buWA4DwQyDRV7zqBSGi2nF0S/CRgC7WVQoxPQCtWFlydQuuM/UkMrNO6DmE9e9MdHdT8OCDjGpoIHDvvewuLUVKSXj8eHb9+Mec9YMfULRjR79WVfW56hk2+ttP4XZDUcdQ8/0Vu0bkGgwGg6EPVl0dvZ//PNbIkalUYIGeHk5Zu5YXP/95vOvWDXYX9xl3IJRaJkf7gYgg3QKpzu0+F6593MULsi2724Y6ei5ddwqsKJmfD6T9NFV6MOVfq9oSpMv9Ws6yhS1w9ch9JX6LyGwPOW2lQDlp0TfQSmmDlVtXt26rogpqCkH6jak3l0yv53VCMJHe3+0H7aZ50SLGve99lPy//0d40iSsWIyOsWN57qc/5bT//V8mvfYakCm6Ldey+q51dH9r93l1P1wljvWAtP3FiFyDwWAwpJAeD8lrryV5/fVIj32LicViNP3rX5zyyissWLr0iE0FpiyFuSL887K07w/u4XV9SD3bsLtqz5bjNVcbHBkiFzIzIOiWXV3sQ1+/U1XhTInaBJmFBXQRCmmxqj7bEOnPSBe9RdgCt5PMAhJ6ZTR93b3tcH/uur+rbtEOOZM3n0yBW+J0UmVdCEKoPVMY6xkm9AcM9Xk2rl1L6FOfomLuXBpvuYWk3088GOTVr3yF1n/8g1MfeoikZfX7IOBOGYa2nM2lRF92uzHsbyYMI3INBoPBANileHs/9zms+vpUm+juxnf//UTmz2fhIPbtQHELhAC2eMrTlpXVMF/bZyAoYaWfyy2cs63rYgMyMz7pwfL6pHK+qnypRwK6KFUCtDvL9h5s0abErFvg6pM7HRWkLYdebZuHdFW0YjKH+LtJB2Kpdf2hQqWY9WvrSfpaKA8H+m9K//0GIVPgqrmF/YNxtgXb7X3Vb165heTKQqEEffC55xi/cSPbv/IVeisrAVj1nvewu76es+6+m9KOjtTrFMksy26Lvce1j5rcgWteDsyaa0SuwWAwHONIwLrkEno/+tGMgg6e1avx//SniKamwevcQUQvIhDU5iFtPeRq17MHqBt0tja9XQkr3WqWbVlv8wJ7sN0pW0gXrdLb1H7Kuqj6MNRRAlZZ59zi3J3eS/9sgmQGSelWv2zlhXXLLaQFr9vtQw2rd5N+eNAfMjpIfzedzrHUMQ43uuDTH5gCQIGHtElXCdxSp6NF6W0iCIFYWhzrllw3uv+vF/CHw4z7zGfY+fnPEznlFDxA09SpPP2znzHzBz+gvKGhj6UW+j74uV109O9dTzOmXFsOhs+0EbkGg8FwDCPLykj8v/+HdcopqTbR24v34YfxPvooQspB7N3BQw3Lqpu8ErZKByhjmLL4qW39oeeH1W/o+nCyLtb0eQBbeKQagepm6IhDM/bU4vShkcwhZd1lYajjznnqzlGrBJWeNUD3NXVbb0PaMXWBrx9Tj/DPZWFU7d2k47TatOV87IcM/bWqf4cTXTC6BW4I0r+fIjItugnsN6N+1AG7OpoardBddnSXBd3qniEyIxFG3Xkne973PnZdfz1SCCLDhvHiXXcx6Xe/Y9xTT+GjryuK2y89m3uEnoGhx/W6A/WNNyLXYDAYjlGSs2bRe8styKK0nPNs2YLvJz/Bs3HjIPbs0OC25LpHePW5mnSLre5f6Lbm6nO3hbgYx28y5Nqgzz3ADihuhOIdUB6HHc6xlEhQLgp625GA8rHscbUlyayMpdKMxUkL26C2r9vP052XN1dgobef7Qnsh4k9pB942shMRaY+924OTHDtL+40arqlO+N3pPvk9jjLLentgZa+owdugavEpru0rvrsS/7yF/IbGtj2hS+QKCwk6fPxzs03s3vSJI6/914C8XjK5xzt2MoKrfuk61Zc9RCjfg8Hw1UBjMg1GAyGYw4ZDNL7iU+QPPfcVJuQEu+//433T39CJI6UFPkDR/fJdY/ulgDDXMslzvr+oAKcRCGZZmE1hVzr6hljG7DV7kDZVgg1pX1LlRCIYYuwtFPJ0Ec9ACS0dd1iqAf7qbRiyj/XHcjkxi0A87VjBVxz4SfTEdsPBQkoboaSRNromU/mg4UKRNOzQRxOlODTLbDKVznjt1RMprtCCxm/OW8+BOKZn0m2IDBc68qKnfqu3n6bUZ/+NDu+8hXiEyYggB3nnkvH+PGc8IMfUL5zZ+rYehCZcuNRIld9r+o9KZ9tr7b/gWJErsFgMBxDVF18Mb2f/SytXi+xmD3oLXbvxn/PPXhWrBjk3h1adEuYrjuHYUfbDwMqnOVyoCC4nydym4n7Mxmrucc5eYmzHoA8L4zekbYidmJbHEMMPPOD9HohGIRQCKnmoRAEg6n5sHHjGDZ6NM0tLbS0t4PPBz4f0ucDvz+1jrNeWFZGSXEx7a2tRFpbwbIgmUzPteXSkhIqSkpo37aNjq1b8cRiePWpqwtvLEZ+LMaIykpGjxzJnmXLaA+H+/jiDiR9l7IW6m4iIkim07W+3GN/3mWNEGjPDMSySFcV66RvkNbhxC0UA4DXj/1e1HCB/lvrJq3atfcfiGeWPXa/n2yld/WHlFS2kOZmhn3xi7TcfDOxCy5AAl3HH8/qP/+ZqXfdRdF//pPhn65EunoQ0UVugrQFV58ry7mHzIekfcGIXIPBYDhGGPahD1H4jW8gPR5KnMpl8SeewHf//YjYkeLluf8on1ylb3TDV4VrEsOdhf0hRNosXIqtmEu1qURbVtsgLXiV+wKQl4SaprQFtxnw5+VBWRmyrIxkWZm9XF6OLCuD0lJkWRmhMWMoqKoiEo+nHmayEQwGGVZbC0JQISVRp5pdf/uPcvYv0qrf5dq32tm3XEo6w2G61IOVtp8ACoJBArW1tAmBSCbZvWQJbNlCQVsbRa2tFLa2UtzaSllrK6WtrQxva2N4aSnJceNINjTgDYdTQ+3KkhtEs6a7Lee676rjPF2wHWp2231Kks7lG6WvC8PhRLfkKmtuHvQV7kWkf1tK5BaTHroI2EJe9+3VxbNCF7rKdcDtVwvgTSTI/8Uv8K9eTdcXvkB5bS1CCMI//zmTPv5x/C++mPE+dHchJVrVulrO5lZyIBiRazAYDEc5EkjecAM9n/wk0uNBCEF+IsG0p55iyf/+72B377CgR6ar1EtKE5Rj69lqYJgfqHJWqvbzZCHSpmElYsu1NrVeUAyMAkYCPpi6AEIxevL9NBZVs7N2BDtPH8HOnhEsqTuecG0tu4EWyyKCrWOyDeEHg0FGO+Jy+F6EaKiwEIRIVbMLFRb2K3L3ZX/3vsEc+wog39kXIbC8Xhg9ms78fLqwA8B8zuR15v5gEH9tLYHeXkojEWqeeopxK1YwbudO6nfsYOLOnRTLqC3y1Heg+6Wo70NP5+C3xWPVbtvAq7IsaBpx0Hyh9WA6ZQ3tI3CVqC3B/nGUau2ONdedJ9dtndYzVSiBq1tQ3e/fCwTnz+eM0aPZ+aUvEQsESPj9LP3615m2di2BnTtTr9MFujquOo+eXs8tcE3gmcFgMBiyIr1eem+9leTcuanKZcM7Orho8WIenDdvsLuXwh0dn609181uIMJDN+Apw547fVgAMs1c2U64t/HyAWIhWNI8k2Wts+mtLKS7NMBOzmNnxXD2hIbBZCACdEK8N0jTuFqkECAlvnAYBihEAYq9Xrp27UJEoxCN2vNYDKJRvIWFzJw7l4CUkEjw+N/+hn/LFkgkEL29oE+JBEU1Nbz3ox/F4/XSKyX/94c/0L59O3g84PXak8cDHg8FY8dy0Y03Iv1+4h4P/37qKbwdHbarREGBPQ8GIRikp7WVwqIievLy6PF6iUYiJOlr8RXOV+B33mN3Xh6NZWXsOv98Vk+dmiGkyiOd1LTsoKZ9B0G/RV6ej1N3vMyJ0cWIXE6+Qxh3EF3WSDr15rOZRL37LtKz+ejqKIG6e8ECLps9m8dmzaLb5yMiJW995zuce/vtFLW29glAg0yf4GzWW+OTazAYDIacyIICEnfcgTV9OmBXLmt87DHGPPccD65cyeYhULlsoFHw2dIRKQYiioOkDavK7VX3bVUR9MEYiHYy0ynsLQ+Vuz1IOrltKcgS2DlqBOuYyLrARNYVTGRl51S2dk+GfAEdkqr8MPm9Mdt8GMEeI3cqE8SKC22B64hWX0EBns2b8bS2IlpbwZmr5VBhITdcfz2hZBLR08Ov77mHthzfdRvw6rx51NXXs76hgd3hcL+Wsx0bN/LIzp2p/XeGwznFyK5ly3jqnXdS+7aEwzlFRxxor62lrr6eDRs3ktfSQlFZGXllZfjLyvCWleFRrhllZXi6u/EMH25bfaXEikTodY4lnWl3YRHthZNYXngSTeNqnc/vU4zfuZIpTcuY2LmOup3rmdCygepNjYgd0LMbmrDdQtpI59BVftGDqYv7ZJjQ6yTr5dn0KZG5XyLLcQ7Gc9uOcJiXv/MdJsydy6vvehe9iQTdlZW89u1vc9GXvwzR6N4PcggQ8hDkQPQKIQN7381gMBgMhwhZVkbim9/Eqq1NtXmffRbfvfcikgfJHHkQcJfR1aPs3YYpZaWDzNRHbstPNmtQgMxYrxLSI7uqTW0v9mgrbqGrj+dmaZPA7pHDWTd1IusmT2Rd/UTWj60jWhhKj7n7od1XSbuoQiIQSErymyjp3QVR8EQtKnfsYsT6nVSs3UkX0HreeRTG44SiUZbdfTdLwmE2kTsYZ6wjGNc3NAyJh5l9RbewK4u7e3lYbS35p55Ke2cnUcuip6aGnhEjiNbUEKmuhrw8fEB3ZSWRqiqkEAgpKWltoiSyK23m64bClghjVm+gYv16fLEYeR4P3jfeYEc4TCN2ruImZ958GD+HADARqHXmddp6Zblrg1qeiJ1/bgOwFggD64D10LUD1jurqllNLfvZR3fCEOvkk9n09a/j9XrxAtWrV3P5179OSU9Pap8EmQU4OnOst2vtuXIUdwNJKUW2bcaSazAYDEcZ1qhRJO68E1mRjpzyPfII3r/8hax3gkFGT3Cvl951l751pz1yi1pd+Lqtv3lkT1Gr/ANVkQUv9kqoBbxRUuYuaWVqWqVxe4Gm6mpWnHgiK6ZNY8mZZ7KnpoZgJEJ+T8y+yyaw79KaY2kgP0LSX8zwjk5KYxEubHmY49YvYcSanVSsbMa3KUlPk51RbDOw+b//pbW+ni0NDexwMg/0Z1XcHA4fkeJWR09fpQSOntorGQ4TCIcJYrtP60KrEJDDhtFVU8PuU07hnfe/n+aSEnYXFxNojWSW1OqB1rxCmqZNI3bGGcQcf+biaJTQ3/6GnD+f5PLl9DguFIOFnnbNcvqdstQqq62y4PaQTjistiUzLbkHy4rrpuTtt6n/3/9lw+c/D8Du447jxS99icu//30788ZhxIhcg8FgOIqwpkwh8bWv2emhAGFZ+H75S7zz5w9yz7LjjhxXNRP0hPf5rvX9cXHIJaLd7goqL2oMyI/3TV+VAJqHDWPV1KmscaYW52EiEQwSrbV9ZzsrKykLhymIxfACJdEOJm5ex8Rt65i4ax11u9eTKC1jx6h6aiINVEXCtvWtEdgBrTHbcrgD2A7sCYfZHg7ThK1dho4t/tCgCzrdbzNGZglYNUqvF5BQFeGCe/YQ2rOHSStWMGXhQnrr6xnW0IA/EqGpro4ddXWsr6tjTV0dXYWFti7UAuA6QiGaLr2UzlNPpVdKWL+e5JIlWEuXItassX2WD9NnkXQt90Bm5JYuZt3uCtqkdncX1TjYbhiVCxbgLS5mw//8DwDbZsxgwW23ceVhDnQ1ItdgMBiOEpKzZtH7+c/b+U0B0d2N/6678Lz99iD3LDfKPUGJWd3SmmuoWq+a5M2yro450OpXkKkX4tq2BLBt6lSWX3ABO0IhNtXUsLumJuX3qcSBBHoLbd/ZvGSSyrY26pYuZdqjjzJx3Tpqmpsp1N5jngcItlIVCDv1WYFmiMbSZX3dUzvpYdujr1xHJkrMqcpbXle7Enoqr6qu65Q7s3o4CoFt8Q2HU3mGy3btYtSrr3IKtu/tpqoqwnV1bD7jDPZcdx1N5eUkPB7ijvW2Vwh6J04kMXEivdddh4jHEe+8Q/XOnUzq6mL7K6+w5RBbzvURBAsyVb7bJzdOpoXXsfi6fXIPpY/xmMcfx1NSwsbrrgNg3XnnsbCjg8v+8IdDeNZMBiRyhRClwO+AE7D/yx+RUi46hP0yGAwGwz7Qe9VV9H70o6l10daG/1vfwjOEh6x1oamX21XDznp2JNWmXAyUddY7wDlkWq6SWdZ7nGUJ7Bw9mlUzZ7L8oosIz53bJ7OBErkS8HZ3M2LFCmp27WLsmWcyPBpFJJP47r2XAsf62k6mC0bAgkDEnvy77X7uIR2v1ua8xt2mfBX1ErlHK0rDKXSBq6ed6iZtlY9if76daJ81rs9eW8bZN9rURF5TE9WvvEL1o48ydfJkGiyLdcOHk5g+nfjEiVgi7ewj8/MpOPtsSmtraRKC4Z2ddPzud7T8/e94nLRZB/uzUJP6DGQChHJZcAecKaGr3Bmc/fTXHyp3BZ3JDz2EKClhy0UXAfD21VczrK2NUx999BCf2WagltyfAf+RUr5HCKFcmwwGg8EwyEghKPnyl5FXXUU0EiEWi+HZvh3/N76BaD6cITL7hx50plepypbyS016jk89IE1f1o/rx76563pAN3xZQNzrpeH441l52mmsnjmT3dXVdn7hysqMzAaJwkJoa2P4qlVUrljB8GXLKNywAZJJeoCOZ59F1tcTb2ggGQ5nlGLVc4Fmc5lQATeqwlYHmYE4eqS/ssgdrejD6Uro6gJXfb/d2nIe9meX7bPOth4g7YutPtcY0B0O0x0OEwMKgOEPPUQwFKJj6lRi06eTnD4dOWJERqq2tqIiOxf1+efjWb8ez8KFeF96CbFnzwF/Fm5XBd1DIc+VPSFD5LotuVb6QU634h7K35EATr33XkRREdvPPBOAFz78YfI6OphwGFyo9ipyhRDFwGzgwwBSSvVMYDAYDIZBRAJF3/kOw2+4wa5YVVnJjmefpev22xGRyGB3b0C4LbkhbXJnPVDL/QmXPMDr0Ro0U24oBtLJ0hUFdgeDLDvlFN6eOZMVp5xCNBTqY+WSkQj+ykqqWlsZ1dyM7557CMyfj9XbSwJSxQpSI8bhMDjVt9xuE24Ls+5mAWnjmy66UsKLvq6WRzvuRBbKdWFvvte6y8revgPIzLSlRvn7PAxFo4hFi/AvsgexZWUleZdcwviPf5xtVVUkPB6izn/OqqvDqquj9yMfwbNyJd6FC/G88gqio+OAPwtl3U5ZYbP54sa1uSaAZSLz9fpxDyVCSs7+yU9YUFTErhNPBOCZ227jos5OKhcv7ve1B5ordyCW3Fpsd6A/CiGmAW8Bn5ZSDk7SM4PBYDDYPqA334w4//yUNWl8YyNjH3+cF44QgQuZVjhlyVUW21L6VsUtJ20B7SNo88g0j+oqOAm0QSwZZNGUM3js0qtZcvLJ0NWFiMVSwTi9zq6yq4uKt95i+OuvM2rPHkpGjqTVySPbSt8UpbrRTL0vyJ7gPts62nF0q7O+rFvwjnaRq4s6D+lyvbp/LuQoN5tjXe2vb1PnUEK6h8wh/YRrXVk/xa5d7HnwQda/9BLjp0xhZUEB8YkTEaeckvKJBzsQ1JoyBfGJT1C2aRMTd+ygdd48tjQ07Ndn4rbkFriDztyiV/vBqN/X4XBVcPv6+hIJLv7ud/nPD35AixOc+Z8vfpELvvENCleuHPBx9pWBiFwfcDJwm5RysRDiZ8CXga/rOwkhPg58HBiSKWoMBoPhaCL5gQ+QvPTSVBWz47Zu5axly/j1qlWD3bV9xk86SEj3yS0lszpuOVDmoW9+MV315tNH7PaE/Lw59lQWjJ/DG7UziOSX0DSqNpU3NRQOI2MxCpubqV68mPLFi/G98w5tySTdwBYgsWJFhnbI5fpwtLsRHE7c1sahKOz1VG1+QAaDWGeeSXL2bOS0abarC1BQWEj1lVfSKQRFN91E2a9+RcsDDwx4xEXP8KFn+uiTRiybu4KznO0YulvIwSSbBTavq4urv/lN/nX33bSMGEHS7+eZr3+dc++4A//GjYegFwMoBiGEqAZek1KOc9bPBr4spbws12tMMQiDwWA4dPS++90kP/Sh1HrFO+9w2sKFbGxoyIjwzlb9q7+KYf1Vuhoo7mNku9mpffxkWmxLsYsz6OtFWdqUkVboFluX74KVJ3jn+BN4ceY5vDr9TKL5oZQgaC+rpK2qCoSgsq2NE596irr778e7aRPtpIO82uibhcnt5qi7RB4rbgSGgSFLSrDOOovk7NkMmzOHiqoqhBBIKWluamL3tm145s/H+9hjeHbsyHqMADDamcY683HAKGc+0q+t6Du2YCdZ3oSdh24rdO22m7Zhp6VTy1udqY2+wZjuZd2ardr68593T8VAb2Ulv7v7btrKy+kNBgkA595xB/E33kj5nmfzR9+fYhADqngmhHgJ+JiUcq0Q4ltASEp5e679jcg1GAyGQ4O8+GJ6brklNWLmf+MNAt//PiKZzCpk3ZXBcqXSgsxh3f3BLZb7E9Lq3O7MCfq6mru3ud1t1bxpQi2vnzuHDVWVLJ1yHC1l5faJBClfhKQFw3bvpqiqirqmJoqiUQrvuYeOcJhO0uK2DfvGmk3M7m3dYHAzcsYMzvr2t1k1fjzRvDw2hcPEYjHA9ln1vPEG3n/9C7FyZcZouJ+0dnVPSvTmVbk2jMJ2FN+OLXCdqaclnXdZz8Gsdukk011DjUq43Tj09iSZIraUTEFbQnbxu2PsWO775S+JTpkCQlCzezenvPe97Nb+h7rAbePQVjy7DXjYyawQBm4a4OsMBoPBcJCQs2fT88lPIrB1m3fFCkJ33YXXqSKUyy9RzyGbLejJXUUsm9BNZml3t2XzM80msvX+5Sr+4Nf2VVZStezuf08gwPwbbuBvn/40u4uLEVIyPBwmX4kIoLKxkVNffJETFi6kcNs2dtXW0lJfT6KhgVbnxqpPMWfS/R/1ZbfvpsHQH9vfeIPXPvUpaidPZmdpKd2nnQZOyW0pBMnTTiN52ml4NmzAO28enpdfzii/rfviquh/FaCYp9fDbcNWkW2kIxa1Jy89VV8RtiuQ+m0H6f8hTnlAKHR/Wf0B2UtmlhO9AIs699jNm7nm8cd5ZMoULCHYMXw4Y979bnw/+lEfv/UDYUCW3H3FWHINBoPh4JKcMYPkV78KHg8C8K1bR9FXv4qvuztneVt3Gi19PVeqrbwD6GO2ymOQ23qsB5156ONx0Ke/bkHeNGoUr156KW/MnUvH2LF0OS4ISEmwqYnKdeuYsXAhMxYsYFRDA12k03DFsIdEY1pbZ5Z13XKlB4Llsm4ZS65hIEhAnngiyauvJjljRsa2YDBIqWUhHnmE9gcfZJSU1AA12IZatTxSzT1ZGjuxkyw3Y7suNEOy3V7Vm9VyM+mRCz2DR7Zld1xbtiwoJfTNiqJbepNAU20t//ztb1laWwtS4lm6lDPf/36isVjGqIoqgpIr28HBsOQaDAaDYZCwTjiB3i9/GeEIXO+WLRR+85spgetOmaQLyP5ys2ZLRqAbKFRke5/+5GjPZjnOJWzdIlg/hrtNiUuApMfDupkzef2yy9g4dWq6T5EIorISXzLJhJ07OeNHP+K4J57Aa9mv3EY6dZgycEVdbVHsrEv6Pu5An/6Cdw5l9SjD0YUAxIoVeFaswFtTQ/Kqq7DmzqWgtJRxtbX2w9o3vkFszhziP/whyTVrUr9BPUtYNxC1IKRbcoOkhyJUQQgHPVWf/nv2Om3ulHVR5zVxre+W9ho1sqL/b3M9ZOtxoj1ASTjMhbfdxvqf/YwOIYj7fDTccANjfve71OvdmTD2+XM2llyDwWAYulgTJ5L43vcgELAFbmMjxV/6Ev7W1r26Iug3l1wVn9zrftf51c1LuSboc307Wc6/NxcJyB7gksyy3F5ayrKLLmLJxRfTOWxY6pzqDla2fTsnvvUWk5qbKVixAk84nOFG4LZE5co/qwSEylPbX59ytRkM+4MsKuK4O+7A96530RUIpALUIrt2UfXCC0x/4AHGtLZSDVRjG2yrgSqg0uNqiGMPVSgzaAfICFn9XVWb+4HPPe/M0t5N36BRPeWf3q6vJ0hbaRedfTbzbr+dBNArJTM+/WmsTZv6VP8zllyDwWA4irDGjCHxrW8hHYErWloo/NrX+ghc93C/LnJ1P7gAfX1flVVHb9sf3EFgueau+gxZsxPoPrg7x47lhZtvZs3s2VhdXUinpC6AlJIxr73G8U8+SdXy5VikS+BCXxHaXypRvSCA3ga5hWy2/KkGw/4iOjvp+t3v+HhJCSsmTuSt2lpiToqx1nPPZfEZZxD7858peuwxupNJoqTFZpcFBW2k/8g9zgaVGNf5gXpJV3pT6+o6obv2uv3iIdMvOI9M6646lnvSR5L0a4/qRxw48aWXePvCC9k4bRoIwZpPfpLJX/pS6pgHgrHkGgwGwxCkZuZMur/7XdqEsEv1dnYS+tKXCGzbltUVwW29VduUuA1py9naQtq2/SGbiO2vf8JRuT2JTKuqumlvHjWKp264gWUXXkhCDd9KSW84jH/nTiY88wwTnn6a/D17MipA5XItcAePZSu2kC24DDJTJrnTJ2VrMxgOhLG1tdTV17Nmzx62nHce3lmzyCedAnrY9u2cd//9zFiyhApsw22FMwm1op7qdL+Gbuixso9cqP+ebtl1W32ztXWSab1Vea1LSOe3dm8vJW3JVZbaDTU1/P6XvyTu85EAan/+c/Lnz09tb2H/LLlG5BoMBsMQY9SJJzLsz3+mMxQCKdm8ahXWZz5D/vr1/Zazdfu/6UJ2X+b7Qy6R3acimdsvwrlTJmP26Or66mr+fv31LDrnHBJCEK+sJOkElFW3tDD+kUcI3XMPyWQyQ5TmErKWa3kg7ga6QFYksyzn2m4wHCz8QOHUqSQ+8QkYPToldPOAyevWceGbbzJ58WJGh8NUAMX52CIX+qZJsOzSvu4MIWo5RmawV5trfU+WbZ2khasStXoBl9Ic6wnneLqIffoDH+D1a6+1XYg7Oph08820RyK0sP8i17grGAwGwxBCAtx+O52hEEIIvJbFyY8/ztvr1/cJxsilHd1Dg0rAunPSFmvLevv+kCFoVUeydUytqzQOzp2zxTecP1/0Pv5z/vnEnQA7AYhIhPFSMmPDBoa3trL+0UdpSSaz5qiN038uW0V/IlUXq7lcEIygNRwuLCB/+XKq/9//Q152GbtvuIFkMIgMBll/zTVsvPpqZq1axfWf/jSBcBh/3HFb0A+g/WCFH/KS4Lfs/7q+WQWZqdEYyHRR0H3Z9X0gdw5uP9kfvr3asrpMzPzb31h1zjm0VVSQKC5m+wc/SMm99x5Q8JkRuQaDwXAQyeVD1l/lL53EddfRWFPDGCmRwLlvv82CZ5+liL5aMVt2BHdl2yBpEZvNJ9d9E1LaU/VXuJPekmM9V76yXP4KzjFahpXxt8uv45mZF9Fr+UhiC30LmPDWW5z88MPkWxZd9fVsamigMRzOELO6n61b6OrbjDA1HKkkASuZZNhjjzFmwQJ2ffjDtFx/PQhB0uNh4Qkn0HnHHXz61lvxxuN4I5lZCYS7OowHhPP/83qcv6IX8rrBG8+8LqkRjWwiV8+SomdQcY8suUd41CBOnuu1+fE4p99/P8989asANF90EXn//S+sX7/fn51xVzAYDIYDIJfeU23ZlnO1xadNY9e3v40QgvxgkMlLl1J0773sCof3qhf1G4puUM02ZQtC09vcx8rpdpBLGef6kDQ6g4X87j238MTsK/DG4vgiMXqxb6Zjly/n9IceonjNmj7Dpe30X1o317oRuYYjES/p7ATDtOW8uXPZ8JOfsLukBKTEHw4zau1abvve96jfsWNgrkPuC0kCaIZoLDOfrntqcS3rLgol2N4Sqr/ubaotoR1HuS3scaYnvvENtpx6KgnAs349JZ//PC1S0pnjMzI+uQaDwXCIyJYyK9uwnW7lyLatd/hw1v/sZySLihBA6YoVTPn61/FZVsZxc6Xm8rqO3V8w2kB8ebOJXxHMsSHgnGyAVRPennISd336a6w98SSkEAgpKQmHqX3rLc5+6CEqV6xICVs9C1Ib6dKj2QStO4hM32YwHIl4ySyiUEK6XG7FpEmsue021k2ejC8WwweEurr44P/+L6ctWtSnmmAQEHpKlXxtYwj7z9IMNKWFbjPQSPZlNQ0j7Wvr9sMtJXvwWS6R2wJsqa7myV/9irjfTxwo/PWv6Xn66f0SucZdwWAwGPaTbLlfB5I6yz0XPh8rv/xl/EVFtptBSwtn3303hY7A1YWtfl5vP+3ubfqy7pOayPI63X9XHTdluPCTrsVbpO0MfUO1Ie1D0A1xK48H3vdhHrv0ctorK5FCgBBUtLdz8bx5HPfLXxIjXX1Jn6JkVltS4tWtqfVMCwbD0YIq5av+Xn6gZe1aJtx6K4XnncfSW27BysvDKijgN3fcwZp//Yt3P/gglmWRxP5/K1/Y1AVJ/YfVXLswhJrtYFB1XuWuENOmTvq6PuWRaSjWr1OQOdiT6z9a2NjI+L//nTU33ABA+wc/SP4rr0BHxz5/bkbkGgwGwwGQyw9tX9bXfvSj9NTXkw94k0kuuOsuatrbM/ZX54LsFcJybdextLlFOg+sm1JtX2XdtdCGO9VNUTcrWaRzEEGmebUb1lXX8aNbP8eWUaPoBYhECJaWMnvVKuq2byf01FM0sfcE9ErkurMquDMmmMIMhqMFt1+sWyiWP/88Z23cyBt33EF3dTVJ4PlrrmHLxIl8/O67Gd3WlkqdWwDpp1b1gFrqTK40I8UJSDjZGPRKgFFnCmH/P93xAe7RJv0BeqCM++c/2XTuucRHjMAKhei66Sb42c/24Qg2RuQaDAbDAaBnPNCH/N1zd6IBNW+aM4edl12WCsKY9cc/Mm3NmoybxkDdv7KJOl0AurwGsrbr25QVOUS60lnGDbIY2wFPjT8qNZ50XhiDpPTwj8vfw8PXXE+315vyu6174QXOfvxxRE0NiYYGdofDGWV13blz9XW3qNWtt7q4NUUaDEc6+n/UT1+Rq9xyAhs3MvOzn2X55z5H84wZWMD6E07ge7//Pdc98wxnzJ9PKBzOrP5QTNp/oILMp2DnwKVN6f9eEX0tuPqU7QHenRFGpz/R600kGPeb37DsW98CoGfuXDz//S+e1asH9sE5GJFrMBgMB4gez5Ht4q9nO9Dd4LrGjGHFrbeS7xzj+Jdf5pLHHkvto++rcIs41UaWdnUDdAtDvV3PSKD2s0gPbwbQRjL1G6Sy5JZjZ6NPOC9SSehjsHN4NT+55fOsHT2JhIReQHZ3M/f++6mZP59WoHv58gw3hG7X5G6Lk73Mrv7ZGCuu4WhC/98q1GiF+t8GgPxolPrvfIfgtdey6f3vh1CI3bW13HfSSay/+GJu+cIXqG0Mp12OgqQjxCq0k2kO7d5uKG0no7pakTO10/ca506w4ha3+2LNLXv7bYoXLWLPGWdQEAxSdtddBD7/ebbsQ7YFI3INBoNhP9F9zvQLfLbYLH05BHgKCnj+jjvw5OfjAyq3b+dDP/85JWTGhKjAERhYIQO3hTPq9C9KZqYBdXPUraRqH/UelFeCsvSCa2MpaSuQppxlDP478UJ+d+7H6JYBrB5b4I5cvZrzfvpTepqa2I4daLIveW51sa4+D3c1MmPFNRxtqP+yu62H7IGjxX//O9MaGlh/zz30CoElBPOnT2fSFVdQ+9ufpUdj1B+8HKh2Dux+Cu6GUAxKE7YFV6UkdF/T9NSFykVBd1XQYwL097C39139298SO/tsqpyqh7N++lMWfuYzbA6HB/LRGZFrMBgMB4I7k4Fb1IbIrCgWwPaLe+7TnyY2ciR5QEF3N5/63vcY293dZ1+h7ipZ/AxkIrcbgrpHebEzFPSQtqgof1xlmVHBXR3YQlM31sa0Y6bUfD5pX75h2DdI54bYHc/nznO+xytjziLQGSG/PYZIJrnskUc4/h//YIuU7AC2A01Z+uyeZ3tfkL5B5rJim1K7hqMF98iEEre5sq34gZplyzjn9ttZ8oc/sKe4GAn84+KLOeOV+ZwQXZm+SJWSflBVGVLUsIky33ZC0W77L1+MbcHVszaoB3I96Ey5X+mTQnjsN7U3q64X8O/ezfFvv82e445DCMGaceOYUF9vRK7BYDAcDtyVfXQ3BT0Bgb687BOfYP3VV+OPRMiPxfjYL37B9G3bUoHOXiUidYWsO+c5lhaRAG8PFOimzyQkrXSZTkhbSfXsCupeplJzqakT+6ZVTDroS7eepgLPgqSTYlbbO7Z1l/ClaT/ltbJzAUF7qJKTNr/CLV/9JiIcJkw6DdFmZ57N+pptPZeYVbittkbcGo4W9N+8Wo7TN3OBO6tK6K23mPOhD/Hi979PPC8PmUjw3S99jR/87g7G529KuxwNw3Y58tJX5DqpFAo6oTiedlXQLbrZij3okz7itS/uCikefhjfe99Lr8/HnsJCtsXjA36pEbkGg8Gwn+ipu/QLvcqwpW4E6sYQApovuID5X/wilsdDb2UlF/3ud1z60ksUA161s15zV60rgZurpJeWW8vbbQtfbzwz9Y8eF5YgbcVtI52nst055TBnmzoskFllwhW0sr2whm9W3ElDYgpIgUQwbfMmbvnrX6kOh1nvnKcZ2AFsdebZMALVYMhEDwrtD3VNysP5ay5dyuU33cT8u+/GKisjGgrxzVvv5O7Hvkh1qCntrlDhvEj3XVIitwMohZIm+z+sV1DU4wb04LNcVlz3exoIzatX0/HXv5I4/3yikQjxiRPxv/DCgF67v+WADQaD4YjBfcHVLa9uC2yItNW1lMwk58poWQ3UONNIbCNIhTOpBOhK1Oo+a8Ln4/FPfxrL4wEhqGpv55ylS1NDjn0cfJUJRA9V1kOX9buKfsdxTpznzxTZatLfl+p3lfa+KpztylLjjC5mKuM9pBTr6qbJ3O79EU1WFYGeCEJKzn1nBee88w7Vy1elijqo7AnufLbuyWAw7B/6f0jNy5uauOmb3yQYjYKA1pIyvvG+b9NaVJp54dOHnJRvgnbBKMhPF3lQ141q7LYS7eXq0gXph+w49jWgDdhj2ZeONqfNnTVF9Vu5DucD8q9/pXXXLnpiMbxz5lDo86W62Z+QNZZcg8FwVKJbDzxZ2tw5Zd0VxNwVzPT1XO4J7mAM3brhAV679lraAwGElPh7e7nkzTepWrNm396Uyu3lxVae/n72T0Io0TcIS3exUDeREPY9rQNbuCuhGyJdtTcVydaWfqOLqk/nx6Ev0NOdBzEo7mjlc49+lqpNcWpebyAeDqfcINw3M4PBcOjQXRdGbdrE7d/5Dj/94bfpEXnsLB/Bt+Z+i+9v+wqhQMy+GPjyINiT+WRcSkZVlmE70v9j9V/Wn7V1f1wlWLtJZxVUPv/dZC/2oizV7kxnyRUr6GxuJllRAUVFBGbMoGDRIsC+HOXCiFyDwXDU4vZVU23ZlnUDqTvX40DXA/20d4waxWvXXosnFqMgHOaiBQs46+GHKR9gAEUKJW6Vs2qea7vL+c1r2dHRlvZydwYIdS9rw76BKStNqbM9ZSlRQ5kt9oGenH4pvznuE8iYgF4oaWnnG/d9m/pF62Ar7Iqny3aq0rwZ7g8Gg+GQogvdSatW8cVf3c33v/oVLI+HcFkt3y39GneKb5LnE0AhhFrST7xZhK63GypaMh9Ws11fdUuuErq6z7B6XtaLv7iPqa5T6oE4+txz7Hnf+wBInn8+pY7I7U/IGpFrMBiOOtwpa/R1d9lbtV23urqXs7WpYfxsFt5s689+6lNYPh8eYNySJVz+3e9SIuW+vTGVh1Z3Y1Ch1uqNJMi86yQhLwml8ez5fJX7r+N2R5R00oQS7T2DHdDm7QDphwev/BD/nPVu6AJ6YcTundz5y28yYnkj7IA9jsBtgQx3BWPJNRgOP+rhe+Y7r3PbY7/gZx/4NHjgrYLT+Gzst3yt6WeMqNoDgZbMYIJS0v65zh841A0Vsb7uBdmCQ7MFjerxs91kWoX164IXe5RJLY96/nnaHZHbc8opBEtL8be19RvMZkSuwWA4qlFi1p2c3L3szmPrzlOrD+vrglc/D2RPfL7kwgvZPmWKvT2Z5F2//CWefRW47oOqO4cudJUATmj7qZd5oTSWtjLr7ncxbEGrrClK+Kp91KF7AF+Pj+/e9m1eOOc8AvEI+V0xJq1fy9d//R1KNnRAI+xyfO6aSFtydXeFjLy7BoPhkOCOQ/A4jee/8xwdbxRz33mfoileS5N3At9dUcE3+F+qqhoh1NPXid/JsqAU6bAEJJ0hmWy5rfXUf3p+bnf+az1VoGqDvnl2/UCwsZGmlStpnzIFPB7i55xDxbx5RuQaDIZjD/3Crgtcf5Z2PSvWvsxTAVnkTnPVWVrKwptuQjhtZ/zrX4zYvHn/3hDaSXQ1rQtc9UZ1i6/TLvy2FSYYT1tPdP86NeklhdUEEPF6ueuuu5l/9dUgBO2ykkue+Bd33vVV8tt6iMbS8WjKituMbclV7goZeXcNg4IECAYhGESGQql5VV0dNePHs72piabmZvD57MnvTy1Ln4/y6moqKivZ3dhIS1MTWBYkk33mFcOHM3L4cBo3bKBp/XpELAZdXRCL2cuxGPT0pP4bhoOHR5tnZDlwlOO71vyLZRPPZt6YCUgEr9VOYlXTCVRVLYOiXfafVaUY0y8USolaUOnkAHRfSzzOXNWVyHat6S8toEX6cqcs0Gp77fz5vOMYDNrmzmWKEbkGg+FYI9sF3t/PXA3f67lsi7VlPQWYvqxErrJcZCtmMO9jHyMeCiGAsp07mfPnPx+cNwdpta7q8GouChnOcipjgzMmKLqhoAcK4nYlIzVU6A780E9pCcGvP/tZXjvzTKQQIAQnbtnCZf95jtiOHnZji9o20j64+tztrmAsuQcPCVBcjCwrg/JyZFmZvezMi8ePp2jkSFp7eogkk1BQYH+HGsFgkOLaWiJCUCIlreEwsVisz7mCwSAVTvWp4VIS6We/stpaYkJQLCUtufYrKKDY5yO2fTuRzZsRra2I1lZoa0svt7YypqSE+hEj2NDQMOBCAMc6+nVQPdSnrgV58PHNv2bhsPNpCRXR6/Py3PhTOZd/Q8FuKLLSzrJxMgWuVqWlshmiVrqyonq+7nbOrefjVtnI1IOu26UMV5s/y/bQK6+w/uabSebnEx87FiZMwLthQ87PwIhcg8FwVJLNNUHP4egOEHPntC2l74idexmypqlNLS87+WTemT07FSt22b334k8cYNiVfjfQo8n0cmbqjqZcGfykw6B7SNfqdQpKFCSgIAnFzpvRK6mp9/THm2/m1dmz8UUiiMpKTg6HOXPVKqw1a1hPumJaJ2kf3HatvR2TXWF/kWAL1poaZHU1csQIZHU1RZMnExw7ljYpiXV3Z31tMBhkhCNKC6VkUw6xGSosBCEQQiCd9UO9XzAYZJzTt/KxY9lUXZ1TMOfV1rJVSoZFozTPn0/HypWIHTvsaedOaG5G7K8L0FGM/pwrdKd8P4zMX8c3E1/kG6XfIhDwsix/Iks5jem0QbDFvk64h3nUn1e79oTawO98bSoWVolddT2MkVl0RiWGcRsbsgUC67ENdHdT98orbDjvPAB2zZ1rRK7BYDh2cQtd94XTbcXV88iWaMv6ulALQF435EUhFLd91Lpxsmzl5/PoLbekLvYnvfACE5ct61Oikyzr/b4ZZaFVKLGrW3H9rmXdvKw6oC+7tokYeKNQ0A15cXjkgx/kuUsuwQJELMZ5f/gDZ7/5Jt6GBvaEw2whM0q6k8zI6U5tWRmEDH2RABUVWBMnUn7mmRSfcAK7PB46gkFkXmYajWAwSI0jEEv3Q7yK7m7bbSAahWiUZDjMhFNPxS8lIplk93//i2/nTujtTU+JBP7hwznryivxejz0SsmTjz2Gr7kZPB7b8duZe6urmXbppST9fuIeD02vv46nu9t2jXBcJQrLyvZJMFseD21FRXjPPJPeurqMfURvL0VdXVT19tK5ZAl7XnkFz/r1tiX4GEb3WMqWIPycgv9wVcl0XuQaII/7uJ5f8Db+wjbo1nwRekgPWalJMxHnNUNRLJ1KW/euUhbcNtJFZyzScQ552rJyk9JdytwxENOfe44tjsjdPmcOvvvvz/n+jcg1GAxHFboF111bQVkD3CnAVJYBvQhEuTZXmQYKgq4NkKHqvDEIRSEQh7/fcAPtlZV2UFtnJ1f9/vd99Oh+v0F92S169Wg4d9iz3pYrJNoiXd+3Df517rt57D3vSW2a/sILXHLPPRnuCMpaq0Y1s03u3JrGkguytBRr4kTkxIn2vK4OWVJCMBhkmCNgR0pJIouAdYvXYq+X7q1bwRniFy0t0NpKfjDIZZdfTiiZxBuP8+DPfmZbQa1Mh5EY0FBbS119PesbGugIh7MKhBZgwfPPp/ZrybFfG/D2vHmp/aLhcJ9sd2W1tXzsc58jGQgQ8fl44O9/xx+NIktLM9wu4mPHkldWRk9eHkhJNBLpc76C4mJGTZ9uW4XPPpuOyy+3xXxrqy12nelYEr76UH/KH9f9dB+Aj/BXXudKYvjYzgj+xTVcxx+heFeme4I72bZuek3aI0LBRGYBGd1doY20v36SvlXLVV/V7yTPtU/AaS9fsYJXd+2io7ISq6jIpBAzGAzHHm5xu7fUYLoFVxe6fQTuMNIl0CwyI7Qcdb15/Hj+c9VVeLCtc+/5/e8p6eig0+mbO5VOPvbNIE/3d9BV+gGp4hy4nd10ceyYo5+aewkP3vAhpGX3efLixVz2859nWGRanClK9krDPfR16TgWfXIl2O4G06ZRfM455J90Em0eD/EBWl+7mpoQjY2InTsRjY3kA1dccgmlPT3kx2L85ic/oS2Lr+pu4LHXXkuJzW3hcM5Ar83h8ID8XQ/WfpvDYX7z05+m+tYUDmf9qfcAXbW1jDvxRBra2kj09uKrqbE/zxEjkDU1hCors1qFZVkZyRkzYMYMwPEVTibpWbyYtueew7N0KaK9fa/v5UhEDc6o/1zqDxh3JictWBmbeT9Pcz9XA738lXM5h79Q6U6D4q4io1sH2ux2r8sbS///6yM7kGmtzddeo7e5T6M49fnnWeikEzMVzwwGwzFFFmNFRoowd1WyEGlXBGWoVa4LQaDAQ6ZC7kd0WkJw95e+Slt1Nf5IhONfe42Zzz+Psj3pNx6lZXHagnHbCixizrk6tQ72dyU/mDiW3BdPmMOv33szPZbd17HLl3PF3XfTlkym/Or0tGC6gFVaXb1XPSjvWLLgyooKrGnTsKZOxZo6FVleTjAYpKofNwMRjdL75ptMnzSJikiEws5O/nb33XS+807GsXcD8159NSUQ9yYmh2qw1v4I5mx/v9LjjuPdX/4ybSUl7Coq4r/r1iHKy5GBQGof3QeYiROJnnkmsVgMz6ZNeJYssQXvypWIniPfocZCc53CfiDdZUHlVmz16Nd2TFhcOvl7zM+rJpwcTU8v3N/5fr4W/l7aBNtOxghPalm1x0DGMq8D+qeoX5OVoA24pvwBtClOe/55XjYi12AwHIu4DQ4DSQlWSmZQmZqHIK2Klb9DP1fVR953E4vmnIcUAt/w4Vz1ta/1sZzp0ceQaen0A4GYPflbQKir/GHkqfOu4a7bb0c4qZ5GrF3Lld/9Lp2JROrepiYtR3zWfJhuwXs0IwsLqbj8copmz2ZbeTmdwWCffXQrrS+ZpKqlha3PPINYt86edu6kC3hLcx3YmkMEDmXxerjZuno1f7vzztRn1hUOkycEcuRI2w2kro6qCy/EP24cvT5fhrXXGjcOa9w4uOYagvn5VLe00D1/Pnv+8Y8j1sqrBoR0N4FinIJmKoOh5kvgbbP4ZMXPub3yR5CExb0zeaPpVGZsejPtkqX+8Ppc26an0s3m4aBG19TlLJuo7W/Srb01jY3UvfMO4RNO6OOvrmNErsFgOKrINqKmhKyyzhZr63rAmXsqBrzqSqwiJFTosEqZoNGdn8+f332DbSkSglM2bMBXWtqnj0nXssrupbtXpCwfcXs6XLx24YV87Uc/otfrRUjJqJde4vI776Sjuzvj3qbub+qmFictbt0p1fRgu2yBd0cy1ogRWDNnYp12GoFTT6W4rg6EYHQOK631yiucWV/PqLY2Strbue+nP8WXRagaAbvvuD8zISVi2zbYtg1efJG855/nw5/7HC3l5WwuK+PxjRsR1dVIny2FdEtvYOZM2t73ProXLcK7YAGeRYvs3L5HCBb2f1IZW5tJP6ePboKQ+rOqP3QbTA6u5YLJz/LsyAuIyyDfH/0dfv7qZxjdvDZzyEY91aq2TkjG0s3KTUn/n+tBZKpK5L4IXLclF+CM555jw2mn0VNVlfNzMCLXYDAcdejBZUqj9pcKTIldd6Uvb5DMqAc9ei0LT5x3OQkBSElRdzenrl9PeUNDn/2UhUPdZ+L0rfnuToF2OGgvK+PHt99Or9cLQlAci3HR448TiUT6ZEzQsyiogDPljqBXMFLvU0/qcCQjhUBOnox12mm2uB01KrUtVFyc4RdalJdH90sv4Vm+HM/y5YhwmKiUvKRZaY2QPXxsDoe5T/MB7gqHycvPxzrxROT06Qy/8spMv96iImLTp2NNn4741KfwvPUWngUL8Lz++pB3aVDpu1TqriCZqb1qdkOZ2tgCNAJF8KG3HuSF/7mALZW1kCf43zPu4osPfp6qneG+vghxZ96Wvia4R3T0gDL14J7vLB+oyJ35yiv8OT+/T85nHSNyDQbDUYeeLkx3V1AFHkrpmxYsRLpsb56HtItCiEwn3hyBYNGCIP+85N3kx2JUbQpz+XMvcO6f/0wgHE4FWsDQFXpJr5eHv/hF2oQAKSno6eHKRYtIvv02jaRvYG4jTpZCSBkZytxCN3W+w/S+DgbS68U66SRKr7wS31ln0W5ZWVNdRTs7mZKXx7jduxmxaxf/vPNO2tet67OfsdIOHn2svfE43jffhDffpOD553n/l7/Mlpoa1lVXs0nL4iB9PpIzZ5J/7rkU5eVhPfss7b//PZ4dOwbjbewV5YnQgX350rMKqiCwihhUbIRQM7AdCEFJsoNZJywjfNWJSCFYNWoMO3z1VIXDOdMORq3+XZegb5xELpG7N79cnUB3N/XLl7O1n/zIRuQaDIajCrfFQOlU3XqrkiSo5VJnP687pFdZb/XlHIFnj51zJZFgIfTC2I1hPnbXXXQlk0Sz9DGbddNt6XTvc6h57YMfpGHKFGQsBhs2MOvRR4k+8wzt4XCf1GAJ13p3P+8l13sd6khATp5M8pxzsM4+m4KqqlSlrzLNFUH09NhBS4sXk3zjDXYOG0aovp5FDQ1sMUL2iGJzOMyDd91FXX092xoaSLa34zv7bKzZs7Hq6jID1266ieicOcQXLMA7bx5ixYohVZ44iW1ojWEbalWbejDdg+3CUA6URqA8ks5ecP6Dj/LQlTcCsKOsjN6Ne4g25T6X7r6krhV6BhW98ppb5LqDgPcmdN1MeeMNXmvK3Tkjcg0Gw1GHXvBLXUiVD24pmUK3HMgrJO0s5s455i6Npqf2ctLldAYLmXfe1faKgBv++gi+ZG5pqgdm6ct6uh19m7KGuoua9TdnH/bZfsYZvHnNNSh7yMT776fj739nD32ruen909v7E+lw5Ahca8wYrDlzSM6Zg6ysTLXrAWPBeJxxa9aw7oEH8CxbhtCq2G1ubzdW2iMY3dIrAN+8eTBvHlZNDfW33Uaoupq2wsJ04NqMGSRnzMCzcSPef/8bz8KFiN7ewXwLQDq7gp62UA9EK8UWuSr2oIh0flv/kiVM+/e/WX3GGfgiEeZPmEDgjTcyUuPqrlTZrLjuYFMP6ZAG/do8EOttLncFgEnr1uHvx3XEiFyDwXDUoVtz9eAzJXKHOVMF4FU5b/Vor1xzdaV28eicdxELBKEXRu3YxpyFC+jvNqeCspRbW39WUrV+qOiqqWHFZz6TEqclb7xB3t//zlatn8kBzN3BZWjrudqHCrK0lPIbbsB/0UXsDoWyuiJ0b93KtEiEuqYmhrW08Ot77sFrxOwxg2fHDrp++1s+XFhIU0UFS8eOzXBnsMaPJ/CVr1B6xx14HnyQ5oceGlTLrp5uW3dRUFkJVSCaCjfQE8jkAVX/+AfLJkygF5g/dy5T/vKXDJGqD2zpfvpudwWFu4KZLnL3Rei6OW7dOpNCzGAwHDtkE7h6ZoUSZyrHEbgVQJXrxfsQBdYWKuHxs65Ird/4z4fx9OMjBumgEJWPXb855Fo+FBZQKz+fHXfcQaKgAABfUxP+n/6UzWS3wA7EncItYN39HioCVwLy+ONJXnYZ+RdcQJmTFaFQd0WIRvG8/DLeF1+kZ+VK3q6tpcMEjB2zbA6H+fU991BXX0+4oYHe7m68V16Jdf75FJSWpl0Zvv1tInPmEPvhD/GsXz8ofVWWXN1FwV3wzD1I5SctevNff53uSASrsJBYVRUvTZlC3cqVGYJYxTHoiRd0/3z9euHOeqNfn3VRG9pLm5sxu3YZkWswGI4t9OwK6mKs++UOw3FRKMcWuNX9HGwvqQ3+Pvta4v586IXxWzcya/Er/e6vx22om08HmdkKdB83te1gi0MJ9NxyC71jx9oNiQQF3/8+W6OZXsT9ieuhIlj3BZmfj3XuuSQvvdTOjUpmVgSvZTF682bCv/kNnrffzhh6NgFjBv034AE8992HfOghJn35y3hHjaIrEEAC/hNPJPGTn+CZPx/fgw8iOjoOaz+VwOwm8xKmC0J3hXA/6QI4xYkE3oUL6bj0UnzA4vPPx7dyZUbaxZgz10ec1MO7PsKj8JO+ZmQLf9ibRderV2XU6WfYzIhcg8Fw1KGXslTDdnraqzYgEAFvG+koiP1gd/4wnpp6aSpJ7Pv/+BDs7psvXc+b7s6hrlJwubMWHGp3hWEf+Qg9730v0UiEWCyG/9e/Jrlx4xEpXAdCzaxZFFx3HZsmTCBqZUr3aCTCCX4/U7ZtY+yOHfzuRz8yrgiGASMiEWJ/+AP/U17O0vp6lo4bRzQSQQpB8oILKLjwQia//jodDz88KMGIuUZaXBV4MzIwABQ89xzNl14KwJZZszj+vvuw4vGMUZ1subF1D1ndw0sJ6YQz19M1ui24eoxvRkIbPbBgABiRazAYjir0C68SjcoPTV081QWzYjfkqYTo+8Ff3/deent8kIQJaxqoe+kNmuibT3Ygcz0qWU/FdSjcFEacdx6hr3wFy+ulorKS5j/9ic758w/BmQYfq7aWwltvJXD11UghGKu7I8TjeF54gd6nn2aHEATr63nWuCIY9oPN4TC//fGPqauvJ9baSvzCC2HGDILBIGNqa4mdcAL1F1+M/NjH2Lp69WB3Nyv6NScBBNetw791K72jR9MTCLDpzDOpe+EFcO2Xy5UJMj298si05GarPqkLXeVKkfIc09M0DBAjcg0Gw1GHLnKj9BW3+vbydijdj8qdjVVVPHPaBfQm7ONd+Kc/sZNMa2wuK22uXLO69fZQ5dOVXi/JT38ay+tFCMGwjg7GvvEGLxyCcw0m1rhxJG+4geTpp+OtrMxI8j+su5ue3/4W73PPpapYbQYjbg0HhO7K4F+8GM8pp1D+ne+kfnvhmhq6f/QjrJtvxrNt2yD3Nje6gC1+/nl2f+hD5AWDtH/843g2b6YzHM6w4OZCt8C6PQ30eAk9AE634h6MQjhG5BoMhqMK/eKrBKQqI6lvd1t695VffOpT7BoxAl8kQt3rr1O4bBk76Js/1p09Idt2dzlMtzX3YJK8+mp2h0IUSonXsjj/zTd5eNWqg3yWwcMaPdoWt7NmpdqikQgVlZWMa2ri+I0b+fdXv5q1lK7BcDDxvvUWwc9+luPuu4/V48aBlOwJBPD/5jec+MILtD766JB7sFLXnB6c0rsvvIDv5pspra0lOmECo77yFbZ8//t0hsOp65QSo7lidrNt31uqMJXJwcM+GW77YESuwWA46lCJ0JXVVFkDVDldJXBVgNeefTz+1jPO4L/vfz9SCERlJVN/9KOUFVevdtndz7KeKsy9rHJMHvRgs6oqktdfTywWY1M4zORXX+XhBx4Ycjfa/UEWFlL05S8j5s4lGo1mpAGLP/ss3S+/DEVFPGaKNBgOI1vWrkV89KOUvuc9vHPuueD3M/a44+g4/nhOu+AC+OQnh9T/T1lx1XXS29JC9a5dJJ3sI9srKwnU19McDvdxAXNnbNDdFLJldHBnWXCnJtN9csV+Kl0jcg0Gw1GHKicbI9NFQVlJVfBXEXYQWqjvIfpl/vXX2/XShWDU7t3kC8FW+i+WoLfrQjdXIYiDbcmVQOKWW5B5dhhI9zvvsPJb30JYh8Lr9/BiTZtG/je+QeVJJ4EQVDh+t/Hnn8f7yCN4Nm1iBzA0C7AajnY2h8NsvvturL/+lcp77025L7xVX0/hBz4Ad9452F3MQF0rFXmLFiHPOAMBNBUVIRsa6MS+huXRt+yunl7cnc5R7asLX13Yuuvu5CgwOWCMyDUYDEcVemaFbjKToSewralB0lkWlE/YQOkJBlk6YQLCyYV70rp17GxoIKqdo7+KZpZrWYlbfVmPXD5YEtSaMwfrpJMAEFLi++Uvj3iBK/1+kh/8IL1XXUWJ5nc7dtcuKh9+mNf++MfB7qLBkMKzeTMFt9/OqD/+kW2VlSAl4QsuYFpXF23/+MegW3ST9CnmCEDs5ZeJXX01wcJCFm/YQFU4nGFpDZJ5nVLCFjKFrAou04WuXp1St/qqZd31IYW7fGM/GJFrMBiOOpSwVOiiN4Cde1ZdZPPJWsQsJ5vPP5/2ZBJvOEx5LMbur32NDsc/TRemeqlb97rqn3tdL66g1g8GsrCQ3o99LLXufeKJQUtSf7AYcfbZJL/wBXaHQvTGYkQjEUaXlnLeihWMbmzk3gULBruLBkMftq5aBR/6EL3f/jZtNTWMqKkh9olP8L7jj+cv3/72oAtdffRIXaO869fTFYvRFYvhKS8n5PXiSyZTgli/TmVbVzlxVRYFVUJY99H151j36gdS6FkW9vKcbkSuwWA4qlDWCFXtJ4l9fVRJ0XULhD4fCFII1l5+uT2UF4tR9KtfscaJNHZX/9LXc1UP25f9DoTem25ClpQAIHbvxvunPx2Eow4elddcQ+GPfkTS601VKIsvWEDHY4+xesQIHjdpwAxDmK1r1iBvuomqRx6BkSOxPB5eOfFEJtTXD4nfrXrA9uJcgyIRrKYmZFUVls9H67hxBDZsANLXTiVIA6TFsQoa0zMpqNLqblGLa121ediLP66x5BoMhmMN3UqqxK1+0cxWsTcJfXy/kq5tsRkz6KiuRgKeSIT2F16gQ9tXYbmOsbf2geyzv1gnnEDyggtS67777kN0H4ryEoeH5EUX0fXFL1LopEDzWhbHL1jAiu98h23AtmXLBruLBsNeEdEovrvvRvzf/yE9HnaUlTFi1izGDvIDmvtapLInsG4dyaoqBNBRV0f3hg1ZK6Z1Y4vZpKtdpQlzi1yFrlUzRK2+k9s9wbgrGAyGYxU9O4G7ss/+0nPFFSkR6nvmGXb39JclcvCRfj+BO+6gpLKSaCRCfP58vK+/Ptjd2i8kkLzxRnrf+16i0SgVUlLU1cXFixfz54cfRgx2Bw2GfWTHK69Q8pvf4H3veyktK6Pj2mv5RFkZv/npTwfdout+CLfWrcM66ywA4hMnYj3zTGq78rFVwbRu/1x9BE1ZdXOW6N0bbvcE465gMBgMB441ejTWtGmAHbjlfeqpQe7R3im/+WbKzjgDhKCmvJzIf//L9sHu1H4gvV56b72V5Ny5AMRiMXa88AKjnnqKPy9ZMuiCwGDYX9p+/nPKL7wQysuJBQLsqKqiboi4LejoPvyyri7rPnqO3VxZY1SqxMDBsjzsBSNyDQaDYQAkr7gitexZtAjR3DyIvdk7srAQ+e53pzIOnN7QwLbKyiNO5MpAgNAPf4h35kyikQixWAzPW2/RddddLIzHB7t7BsMBIbq7sf7zH7jlFiSwuqaG9Q0Ng92tPgjHBxdAjhuH9PsRCVup5ooxcBfeUa4MB9tZqj9j7oEUkjAYDIZjAllYiHXeeal17+OPD2JvBkbymmvo6O0FKSmJRJi8adOQvHn2h/T7Cf70p1RfcQUVVVWMq62lYskS/N/9LsIIXMNRQutf/sKmcJi2lhaW+v0kQ/uaufvQI2IxPNu3EwwGGV5dzYjZs/vsk0vgKmtuf5UfD2QyItdgMBgOgOSFF6aKKHg2bkSsXDnIPeofWVxM8sorU5XNrD/+kfuGgJ/fviC9XnrvuAPfySenrNEzNmxgxqJFiOTBrgVnMAwenm3byNu0idKyMkoqKpj73e8ytrZ2sLvVh/KWFvtBs6qKCz7zmYw+uq252fKEHyqhK/vpsxG5BoPB0A/S4yF52WWpde9jjw35IKfktdci8/MB6F61iiU/+cmRJXCFoPdznyN56qlEIxGQktNXr+bkNWvYcIRZow2GgTBh27bUw1xjRQV19fWD3aU+jOntTfWxrbg4ax/1ssBugasqPR5OS67xyTUYDIZ+sGbOpGDsWEKFhXQ1NpJYuHCwu9Qvsryc5KWXpta9Dz005EW5jgR6P/lJkmefDdhBZi2//CWNq1bxssl/azhK2fPSSwQ/+EEksKuoiJYh+DDX/M47FEmJBGJ+f4b7k9tVIVvAmZ6F4WBiRK7BYDDsJ4Xvfz8jamtBCE7q6ODN0aOHtNDqve46pN/Oz+NZtw7PEZQyTALJD3+Y5MUXp9q8Tz5J629+w3OD1y2D4ZCzc+FCvOvXEyouZlMkQrKxccg9nDatXs2ecJhQYSE7ly+ny7kOuoPO3JbcHmeKYwvc/c0elov+3BWMyDUYDIYcyMpKfKecAkLgEYITt22jbQim91HIykqsCy9Mrfv+9Kchd6Psj+S7303e+99PWWGhndf3ySfx/eY3R9R7MBj2B5FI0L16NbHx4wHIq61FvPPOIPfKRXs7sVjMznAiZUY5dF3o9pApcFU5dX35YGIsuQaDwbAfJM87j2gkQkVlJaObmymIRod0hoLe970P6bMv656VKxFLlw5uh/aB5CmnkPfJTzLOsZqfKiUbHn+cLYPdMYPhMCHWryc4ZQqhwkJ8Z51F6xATuaK9PbWsyoTr6JbcBH3dFfxAHumiEQcLI3INBoNhH5FAcu7cVIaC4qef5t5//WvIWnGtmhryr7iCUFER0UiE3iPIF1dWVND7+c9TWlgIQjCqtZWLli3j2bo6tmhJ6A2Go5nqaJQS5yGv7v3vZ+1//zu0rjednQgpkULYebi93lSmE91FwT1lCz5zl1A/EEx2BYPBYNhH5JQpyKoqALp27WLJz38+tG44LopvvZVxEyZQUVXFrOJixnd1DXaXBoT0+0nccQfScVEIdXVxwdtvIxKJIW01NxgONuPz81PZC2IFBUMuw4KQEjo60g3FxalFXUy6Baw3y+TP0d6f+HWL54FgLLkGg8GQheT556eWPQsXpqr7DEXksGGIc85JVzdbv568Iew7rNP7P/+D5ZQJ7erooPkHP+BFJ3L7SOi/wXCw2P7OOxRo2Qu2DsGHPNHRkXJVkMXFiNbW1DYPtkj1kHZNyHOW/di+uGrSxWzStewh0wXBLWj3xQpsRK7BYDC4kPn5WLNmpda98+cPYm/2TvLSS4nGYlRISU1LC8P37DkirKDJ887LyKTg+/3vaXzuORoHsU8Gw2CxY8UKvE72gi2NjfQOxYe8tjYYPdpe1vxylRXWQ6a1Vhe4+rKy/FquZS+Zotbdtq9uDkbkGgwGgwtr1ixkwI4B9mzdihjCfqHS7yd58cUp3+HSJ57g3sceG/JWUGvsWPJuv53SsjI7k8J//oPnyScHu1sGw+DR2ZnKXiCEIE8I20VgCNFf8JnbHUFZdLNZcnVrrXI/0Kum6fQXWLY3jMg1GAwGF8m5c1PLnvnzh3QAlzVnDrKoCICuTZt462c/G3I3RjdSCIJf/zo1kyaBEEwMBml+4gm2DnbHDIZBRCSTiEjEDuoSAoqKMn1ghwLt7QSDQUKFhfgnTaLlpZcyrKse0tZc5aqQzWVBidyktr/uqqBvPxBM4JnBYDBoyMpKrBNPBOxAC++LLw5qf/pDAskrr0yte594YsgLXIDkZZfhP+EEEAKflFy8ZAn148YNdrcMhkFHOCKyorKSkc51aChREQgwrraWiqoqzr3uOsbW1gJ9XRX0dbcVN1+bu0Ww/jr9uGht+xJ8ZkSuwWAwaCTPOy+17HnrrYzAiqGGPOEELEccingc77PPDm6HBoAcNozkBz9INBIBKTl5/XpKOjqOCB9ig+FQU+zxpETktZ/6VEpEDhVGVFSkAlzxejMyQOjiVhevuj+uLnjzXNv0rAu6RRgyfXEHkolBYdwVDAaDwUECBVdfTaCykmgkQuK5oV1MNnnFFallz/PPI6LRQezNwOi9+WZkIEAsFmPbK68w9i9/4d7Vq4e8D7HBcDioKChIicjevDzqhliWlMadOylzMkBIy0o9nCqLqQdbvLqFrhK0Aa3Ni503V3+9jsq962X//XIHJHKFEJuATmzrcK+U8tT9PJ/BYDAMWaovvpjQaaeBEIwsKyO2e/eQrbglKyqwTj89te59/PFB7M3ASJ5+OsmZM1Pr3T/4AS+sWjWIPTIYhhZ7du+m2hGRVjI55EY4mnftot3JAPH800/TFg5T7mzTLbm60HVbcYP0tda6EzTq/roH4pe7L5bcc6WUuw/gXAaDwTCkCV1xRcqKUt/YSHT8eLasXTvY3cpK8vLL7eAUwLN0KZ5t2wa5R/0jCwoIfOELlDpW8vi8eXiMwDUYMmhva6PbEZH/fOQRdg0hKy4AHk8qA4Rv166UiHT75Cqhmy2zgrLsZkOvnJZN/O4rxl3BYDAYAOnzsWXMGMY4VpQJW7fy6BCzoihkfj6Bd72LgooK263isccGu0t7pfS22xh28skgBKNLS+l88UWTTcFgcCGFSIlI/7ZtB7X87UHH6utE4Ba67sAyJXiFBwJWXzeFpDa3nP31csH7ykBFrgT+K4SQwG+klPfvx7kMBoNhyGKdeioRKdkUDlOeSPDPb3yDLUPNiuIw/LrrKJkyBYRgQmEhLS0tQ9atAkCWlyM1K/lZq1ezYdQotr7zzmB3zWAYWnjSsm9IZkrxZM9XoAeJ6eJWLwqhLLki397gTUDAMdXqgWTZMivox3fTX4rHgYrcWVLKHUKISuBZIcQaKeXCjJMI8XHg43s7ocFgMAxFrHPOASAWi9Hzt7/hG6ICFyBPE4wnbN3Kzvr6ISvIAXqvu45IPM5wKalob6d22zaeGaJWcoNhUBGagspiKR10svRPF7fughBqUiV+A5D2Weh2LLrxviLXY2/OSB+WS+T2lyZsQCJXSrnDme8SQvwLOA1Y6NrnfuB+AK9t8TUYDIYjAhkMYs2YkVr3DOXcuNXVNJWXM05KhJTUbdnCS0NYMMqKCqwLL0xVZCv717/49dNPD6mIcYNhyCBEqthCcORImpYuHeweZaKLXM3S7LbiesgMPMt3Jq+HtMh1XiiAvAR4rfQx3Llx+xO5B2TJFUKEAI+UstNZvhD49t5eZzAYDEcK1plnIv32VdcTDg/pIK7k3LnEHcE4cts2/vjDHw5pwdj7vvchffatpvvNN3nzV78yo30GQw5KyssZUVsLQnDZjTfy2FBLr5dD5EKmFTcvx5QRfaZe5MyV+0K2/LiH0pJbBfxL2G/MBzwipfzPAF5nMBgMRwRJx1UBhrgVl3TJ4Vgsxqb77sM7lG6ALqwRI7C0Esm+hx4yAtdg6IdSrdiC3+MZcnlydUuzr7ISVSrHXenMbclVPrlZRa6XlG+CF1vo9uef26dL/XR3ryJXShkGpu1tP4PBYDgSkeXlSL2M78KFe3nF4CGnTkUOHw6A6OzE88Ybg9yj/im+9VZEdTXRSITuRYvwmEAzg6Ff9iQSjHIyvPi7uoZcntxhVVUMcyzNp116KYueeoqYJsJ1v1x3CrGUq4Jb5OrRZdh+unkJwBqYyD1gn1yDwWA4WknOnp3KNyuWL0e0tAxyj3KT1Kyi3hdfRCQPJE36oaVm1iwC118PQlBRWUnsrrtoHOxOGQxDnE4h2OTkyX34nnvYNpSsuEDFqFFYjqXZJwR19fWsdPqoC1x3qV4/pMVtPulEuboPgivKLK87u5+uGyNyDQaDIQehq64iT5XxHcquCgUFWLNmpdY98+cPYm/2Tv6NN6aGXcfu2oXw+YzINRj6QXq9yMJCYrEYXdEoHStWDDn3nsZYjErH0pynWZrd+XGz5cnNyCOmRK7u25DFATebn66bg5FCzGAwGI46ambNIjBnDghB1fDhxBsbh2yBAmvWLGSefWfwbNqE2LhxkHuUG1lUxJbx4xnr3AynrVs3ZAtrGAxDhqKi9HIkMiTz5Lb09hJzLM1PPPAAu8Jhqp1tusB1F4HICDrT3RWyidturc1juzmoNGPZMJZcg8FgyELhVVfR61gbxzc3Y40ezdaVKwe7W1kpfPe78TkW557nnhtyFh6d5EUXEU8k2BQOU9HRMaQLaxgMQwVZUpJaFu3tg9iTfiguTlVky1u1KmuqL+WmoJf29boj0PoTuapd267SjGVD9JNO2Ihcg8FwTCKBjWPHMlor4/v0YbQ26oEU3izr+nLVzJnELroIIQRUVODftIntznZV8hLSpTBh/0pgHgyk10vy0ksBOwPEjl/8YkhngDAYhgzFxenlQRS5udxkAXpLSlJtRe3t+IEiIIjtaut3vb4HSAA9CciLAZ1AG7b6VRvVlFQ7a+vqguY241pa53pyvxcjcg0GwzGJnDyZzoICNoXDFPt8PPW1rx02a6M+lKdbO/yubSmryNVX0yUECMHY3bsZMWIEctkyLDLvCQltfbBErnX66ekMEO3teF56aZB6YjAcWciSklR6LmvNGqKD0Afd5UBdf3Qf27hjbRZARUcH+cAwoBQo1vYH+1oUw9a0XqC8BfJ6sN0R/KRFrD7Hte7epujPR0HDiFxDBmNqa6mbNIn1DQ12br4cPkFDeajUYBgISa2Mb/yZZ2g7zFZcPQYjn0x3tYBr2+IxY1L/xfqtW2lvaGAk9r0i2wTZ7wuHg+SVV6aWvU8/jejtHYReGAxHHhWTJlHqpOc67rTTeKe29rDnyNUfut0P4N6CAlp8Plv09vRQE4+nLLnKmhvAvr4lSV+POrW2oggUx0i7K+gW2X1lAK81IvcoRwIUFtq+PiUlGXN3W3DkSPzTprHJ48EnJd5wmFgsNuBzBYNBin0+Ytu3E9m8GdHWhmhtBX2uLw/h9EeGoxvp9WKdfXZq3XsYsyroAjcIhLLMi7TlWG0tvUVFWOEwvrw8Ql/9KlY4jBf75hHFtpZESY/oWQyONdeaMAHruOMAEL29eJ9++jD3wGA4chk2ZQpJJ0agqKfnsBeCcKf/0t1nAwDFxSnxG2xvp4L0w7i6XimRC7YlV1mjlejtBNosyItnWojd7ri6C5fQd9QZgDg2IvcoQPr9yFGjkGPGIMeOpXj6dAonTKAlmSTq8SA9A3tMKqisRHo8CCGQQMhJZTIQgsEg45wn0PIxY9hUVbXX14rOTkRbG7S2Uu71UuP307p4MbsWLIBdu4y12HDIsE46CelEMovduxGHOdhMF7pF2lTqWi8CFs+ZQyGQjMWY9OSTjFy7lk7sm0XQmbeTvt4rt7bBIHnFFanhVvncc0RaW/f+IoPBAMAOy6LKiREo6uxk0SBkJNFTfwVIC9d8bH9c5UZV2N5OFelsYLoo9pC+DsWxH7qVwM0jnSbXnUfXvZ7aRxWFUBe5fbD+GpF7BCG9XmRNDXLsWFvQOqJW1tSkktkHg0GqHbFZKCWb9sEaG41EqKisdE4miXZ2plKYSNG/5AwVFqZyYg5UIMuiImRREcFJk6israVXCIre9S72hMN0NTUhNmzAs349Yt06POvXQ3OzEb6Gg4J17rmpZe+LLx7235V+A1HitoS0b1s5aR+3R2fPphDoBc5fsIARQAu2n1sQ+0agbkzKR1dl4DmcYlcGgwQuvpixzvXnmjFj+McgDLcaDEcqrYEAXSo9169+xc5B+O8oFwVd4KZGlYqLU9ebMseSG6JvQgS1ro8muYNp3VZi93IA+/qlljPiztTFzlhyj1xGnnIKlbNnszGZpDkQsAXtyJFIb65McTbZxGbX7t3Q3o5wJlxztZxsb6d3+HAm1tayvqEBKxwmfy/9VB67ZbW1/M9nP0tvIEDE7+eBv/0NfzSKLC2FsjJkaSmyrAzUvKQkJZxzCWQ5fTrW9Ompc4nOTsT69bbwdeZG+Br2FRkIEDjvPIJlZUQjEXoXLDjsfVAX+aAzKYFb4Uzlzrx5yhR6hg0j3w+Ve9q5aNky2rXX6ZHMug9c/1eJQ4N19tkES0tBCCo7OxnR2XnYh1sNhiMVCcjq6lR6ro7Fiw/7vU3Pcau7VBVhi9nekhLyg0F8hYUM8/updtrd8WH6cjzH9jwyXRyCZArqhLOccqGw9i8WyIjcIYL0eJCTJ2OdeiqhuXPJP/ts2oWgXEo69mKNFVJCYyOeLVvwdnVx3qxZlHd1kd/VxYM/+hGd+zDksaWlhS37sL/60W0Jh7nvnnuoq69nfUMDTY7PYC6kEFBcjCwtJXjiiZzzkY/QUVJCU1ERW5qbs7+mqAh50klYJ52UPn9HB2L9eio7OpgYi9E0fz5b1q8fcP8Nxx4V7343xZMmgRBMKiig2etl82E8vyruoywlxaSttxVAlTOvBl68YA6eAiAfZr32ClWFSYrb00OEusWkB9s3V8V0HG6hmzz//NRoUP3WrSSTyVQ1JIPBsBeGDUsVexGdnYjoYORWSAtd5VYQIj3iFJ00iXxnpKbo9NMpqa1lWDhMN+kRJDW3srTpcz31WDFpMZ0gM2hWiW7LWU6lFBugNdeI3EFEFhdjnXIK1owZto9gKARAXmVlzqF/sWsXni1bEJs3I7ZssaetWxE9dqK4NuDZefNSYvNwJmDfHA4P2GojpExZkps2b+a5Vauoq69nS0MDiXCY/OpqrAkTkBMnYtXVISdMSH0+OrK4mIKzzqK8tpY9QhD67Gcp+utfaXvsMTzLliESg+WdaBiq+K+6KvX/qt+5k5JBsDaq4cB80u4KSuCOdOb+Ci8vX3BWytRxTvOLMBEKdsDoHZkWXOX71kl62G9/A5b3B2vkSKxJk4jFYmxat45Rv/89C5YuNVZcg2GAyBEjUstix45B60e2zC9KgG4/4QRwUhkWx+Pk1ddTHQ5nBL920lfUqvS4+n5+0jEInc6yeo0ucJXbQh+Mu8LQQwKyrg7r1FOxTj0VOXFiVl/XaCRC1fDhjGhro7y9nZcfeIC8xYttQdvd3ffALvZFbA4V9D4LgMZGvI2N8MorgOMWUV1tC96JE20BXFeHdIJclGiJ5+XBhReSmD4d0d2N54038Lz6Kp633hrQZ2c4urHGj6epvJxxUuKxLCZu2cIrg2BtVIEduk9uKWmhWzAc3rjgJCLDCyEAldYuJhesgVr7xQKo2WHfDJQFt9M5XqqE5mHEmjs3tRx/8UUWPvroYe6BwXBkkyFyd+4clD64syvocQNFQFTKVCrDss5ORjc0UIUd+KquObolV12b2kjXgFDLftLitpx0jm+9L37nWEHsa53XLWz7qXSmMCL3ECODQayTTkoLW61snxuxezeeN98k8eabxDs6yBs3jqUNDewJhw+rVWYokiF8X34ZcB4aRowgMHs2Uz7xCTaPGEEkP59oJGJvDwRInn02ybPPRiQSeJYswbNoEZ7FixHOPoZji+Tll9MTi7EpHGbMxo08cNddh/2BUL+R6D5v5dh+uQWFQDU8fvm7aS+pJOCLMLt5IWKsehOABaIHhu0mlWmhjbRfm14p81AjhSB53nmpdc9zzx2mMxsMRw+ypiaVmcSbTNI2SP1w++XqaQ27CgoIhMNQWMice+5hYjhMyA9eR52qOg96CrFubMttG9CMHTS7B1sUx+hb2Ew/vxLZunV3IMJWx4jcQ4DMz2fYjTcSuPBCGsvLieewIArLQqxejefNN/G8+abtguBs2wpsXbPmsPX5SERgP/E2//WvLH/jDSbU17Orp4eeUaMQs2ZlPBlLv5/kaaeRPO00+3N/5x28r76K57XXEC0tg/cmDIcNWViINWcOYBeACP/4x3gGccRD+Z2pG0GqkEMMNldM5qnT3kPC56NdVnL8ho22uUQpWmfcT3+dXhnzcBaCkNOmIcvLAafC2VtvHaYzGwxHDyVTplDl+LueO2cO8x9/fEiMyCpN2ev30zl8OP5YjPxIhNo339yn4+S6HmULWNMrN+rXuLz98D40IvcgIocPJ3nFFQTe9S5Kp0wBIRjnSuOlbgKeN97As3TpoDmXH23o7g4+wPt//4ccMwbrjDOwzjwTa/z41L7S40FOnYo1dSrcfDOlTU1M2LaNjr//na2rVg3SOzAcapLnn58K7PBs2IBYu3Zw+qFNeineOLZ27bLgmbOvJOH1IRGURyN4d4egg7TI7QQZs/fvdl6r0vXso6HjwN/P+eenlr0vvmiKvBgM+0HwuONSbnfl3d1DLjNJu2Y0GtbUhO8g/c91gas/qOtCV10fczkc9nfNMyL3IGDV15O8+mqsM89EejwUVFRkBI5Vtrez7R//wPPGG4j1603Kq8OAAMSWLXi2bIG//hVZXU3y9NNtwTt5cmq/YDBIzdy5dAlB8MYbKf7jH2n/4x8RjY2D13nDQUcKQfKyy1Lr3ieeGPT/oX5hVxYLdSFfUz0apEQAx23bysjWBtuS24YtcmP2UJ8ucPUbxGGz4gaDBObOTadjmz//MJ3ZYDh6kH4/ewIBihx/15K2tiGTmUS5SnZoInf4fvgMZ3OfSmpzi7Qfry5u9ZEuf5ZjgBG5hwTp8WCdcYYtbidNytgWjUSoC4WYunkz47Zv54Ef/hDfEHoiOxYRjY345s2DefOQ5eVYM2eSPPNMQnPnph5IEn4/8qqr6Dn9dDxvvon3sccQy5YNuhgyHDjWKadQMH68nTe6qYnEwoWD2x/Sw3I9pMVtN7C9rIz1I8dQtS1MvCjEbY99nSornBa4UXtyC1y3y8LhYPi111LipGObHAiw6zCnYzMYjgbk2LHEurrYFA5THo/z2x//eEhZccFlyT2IgXHZ3BWyCVxlCMiGzNEORuTuMzIYJHnhhSSvuAJZUdFnu2f5chLz5rGnpYVt9fW82NAw5H6sxzqipQXv00/jffppSv72N8763vdYWVtLazBINBKxrX4zZpCcMcPOPfz443heeCGVps1wZCGBwo98hBGOv9u0zk7eHj160P+X2Sy53cDrc+bQKwT5kRgzVr7G8e+8ZecVayPlqtATT2ndlEX3cFtxAfIvvjj1kDh5xw6Kh9gQq8FwJCAdd7pYLEb85ZfxD8H/UHtNTWp5fyy5e8PtnqAEbpC0u0KuYFpjyT0IyOpqkldcQfKCC5CBQMY20duLZ8ECvP/+N55NmwDYAoc1R61h/9i2YgULPvMZJtTXs9XvJ37SSXDqqant1pgxWJ/6FOKDH8T7zDN4n3wSsWfPIPbYsK9Yp5yC7+STQQi8wNRt2+gYZDHmDrBQUxR46bzz6AW8STj3xRfSqRM6SfnlusVttsCzQ+2bK4cNo3H4cMY5Q6y127axcIgMsRoMRxJ6zIjYuHEQe9IXdR3R3RUqDkIeX7cFV7fk6qNceuBZrixTRuTuJxKQU6bYLgmnndYnp61ob7ctgk89hWhrG5Q+Gg4cPWjN//jjeGtqSF5+Odb556ceaGRREb3veQ/Jd70Lz6uv2q4Ma9YYV4YhjhSC5E03pSpxHbd1K8FIZND93dxlLtVFfMvYsWwbN448oCDew5nPvwqF2Ll02khZcVVCdV3o9riOecjfw9lnE3eGWEc0NQ1KOjaD4WhA1tamloeayFXCsr2+nmRlJd5IZL9Ebq5rkqVN+siWHny2N5Fr3BX2A+vkkym47TbyjjuOaCSSUVbXs2UL3nnz8CxYYCpqHYV4duzAc//9yIceInn++bZrSlUVYPtiJ886i/wLL6SiowPrkUfY9Y9/GLE7RLHmzsUaM4ZYLMbm1asZ9Yc/cO+SJUNCjKlCDvqFfPV556UE8LTXXqOgucu+ggewLbnt6apCSuBmSyF2OLBmzwbsIdYtf/gD3iHwmRoMRxqStLsCMKhpDXMyaRLRGTOQQhCvrCSvsHCfD7G3wDP9AV0f3erGvvwZS+5BQhYX0/vxj5N/8cWMdHz4Kior2RQO0/3SS/j+/W/E0qVG1BwDiFgM32OP4X38cawZM0heeSXW1KkEg0HGOb8Npk+n47LLiP3qV3au48HutCGFzM8n8MlPUlpZSTQSIX7//Sz85z8Hu1tApvUiVfpSCFbMmZO64J/8wgu0AWWqnFAHdCUyYs9SKcT0m8LhcFWwamqw6uoAx11r0aJDfEaD4SilqgpZUACA6OyEIZi3PXbmmfZIthAUx2J01dbCPo6G9ZcnN1tKRbfQ9ZPbJ9dYcgeAxLb69H70o8jCwlSpWL+U1G/dSvUDD/DqQw8NdjcNg4CQEu/rr+N9/XWssWMZ96Uv4Rs/nqTHgwTyjjuO9m98A09DA76HH0YsWWLE7hCg7JZbKD/pJBCCsSUltC9fztbB7hRpAaosucqau3nqVDrKy8kDAu3tjF6yhE4gkICCNkjG0mlyY2S35KpjHuoANFVUA7BTI2ojXQaDYeBY48enKp31btlC12B3KAtNvb2pcr4VbW0U7Ye7V38VGHV3BTUpf1xlxe1P5A6KJXdfSkoOdupwWV1N4tZb7eIADtFIhDMTCc5au5a8ri7uffXVQeyhYajg2byZ5I9/zAe9XlbU1bF87NhUGWGrvp6eO+/Es3o1vocewrNixSD39tjFmj6d5HXXpSL/T1u3js3jxg2ZKoL6NU9d3Ldcey1UVmJFIkx57DEsy0pZMQq60xd9d4CZnlXhcBSCkLhE7oIFh+GsBsPRybDTT6fcGRmcOnkyS2prD6o7ldJiHtd6tvYAUIpdwrcIKHbatgYCiHAYb2Eh9X/5C+Xh8GEpG673bX/Pd0hErgf7g+kP/SKv3oiVY/uhQnq9JK++muT116cqIQGIpiZ6f/Ur1nR00Ftfz3qTBsygsTkc5o8//CF19fV0NTbSc+qpiEsuQfrtVNXWccfR873v4VmxAt/DD+MxVdQOK7KigsTttxONRqmQkhEtLUzcvJnnhnDkv//442l673sRPh/JykqO27BhQK8bDAOBnDABy0knJLq68LzxxiD0wmA4OgjNmJF6GK/s7Dxolc682Noqz5l7SVtD/dp2vU2J3FJskVsKlABLx4/HF4vhj8U4btEi8rXXHww8Wl/UlOdMelsuXdlfPw6JyBVAfj/bLewOK8uD11lWc8UhHW6rq6P3ttsyU3dIiXfePLyPPIKIx9kMRtwaspJRRnjpUryPPkrvdddhXXgh0mf/rawTT6TnrrvwLF1qW3aHsMg6WpDFxQTuvpviCROIRiJsXbKEUY88wn1DJNhM4bZKNF17LQmfD4SgPBKhNL+/K2ju4xwOMqy4ixaZ4FuDYT+RQtBYUsJYKe3qqHv28MxBvE/oIjHgWs7L0h7CFrdB0pbcQqCjtvb/s/ff4W1cZ9o//pkBwAKAXSzqEiVRxbZkFctNsi1Z7o5L7BQndpzYSTZv8v7efPfd3fTiJOusk83GKRunb/ImThy3OG5xibvkbsmSZRVTEiSSEkWJIsUCgqgzvz9mDnBwOKAodkpzX9dcUwAMBoOZM/e5z/08Dz4swjh77970Z4ej/fHkmORjFVOuVrE/e+CYKLlieE4no97Ky+I1sTycMPPzSd10kxUxL6UE00MhvD/5yfiMbHQx7qG1t+P7xS8wH3zQIrvr1mF6rCbAOP10vOecw5TmZlK//S0H3eHdEcGUc8+F73yHglmzQNOonjSJ8Gc+w0vjsNSs3K6ZwPb589Oet9P27qVwgA+60VZyTU2j8IorKLCD+ZLutezCxaBhzphBj2GwLxSi1DT5w3e/O2z59YU6KhPEAiwiq26Tt/vtZTGPVVVh+P14geLubqa0taWJ8VBtqbJ1QlaW1Ukmuk6QR+JVjJiSm+tgZIIrlFunHz8SjXdq+XKSn/1sVqUyLR7Hc/fdVt5TYzQcbS5OZGitrfh+9jPMBx4g+eEPY6xdS2EgYGVjmDMHVq0icN99dP/0p+gHDoz14Z4QML1eKm69laJ/+ReSPp819Aecv307+7xeWsb6AB0gPxyOLl1KVzBIfihE0Ovl9C98gfxx2tmuufRSAnYw3/TSUsLd3TSO9UG5cDFBYS5cCNiVzl5+mfZh9uIKkphPRqWVCazTvECZds2ejQ+Ls83au5dCe39i2/EcjxNkq4Igu6pNQSa6TlALdMkYdSVXzYUmk10Vw0U5zZISkp/6FCk7r2P6ON9+G9/PfoZ2+PAwfZMLFxa0Q4fw/fjHGPffz4zbbkObMwc0DRPQL7iAxMKF6M8+i/eee9BaW8f6cCckzIICJn3wg/CRj2BUVpLw+dA0DW8qxUWbNzO9uZlnJoBFpPnKKwEwIhHqHn6YwnESHOcE/9VXp/2D81paCM+dS+Pu3WN9WC5cTEgYNskF0HbsGNZ9C7IoVNoiZSp22Bagry/2bduqoANz9+7Fb28fqlVBKLdOFgXx3SrhzsUrvdFozu8ZM5Ibx/pRuZKXC7V3KIquCVTeeCPJW2+lK5VKF3TQurvx/vrX6C+84KZ6cjGi0JubMe+4g+vz8ti4YAEhe5jX1DRS69ZhXHAB+pNP4r3vPrdq3gBg6jrm6aeTWruWggsvpGT+fCtfsWmCaVIciXDRxo3sefJJHn3ttXHlw3VCrKaG9hUr8GHFBJzy+OPH9fnR9OSaeXk0Tp+e9g/ObWzkgQnQiXDhYrzCWLAgvayPQOdWtisIolsqTSXKup++5LPNJrkaMD8UIiC9RxuuyDPlO4WyK/uGhbXCCb54POd+R92uIBRcsez0Ogy9NKXp81H0ne9QbKcRKjdN9oVCxB5/HO9vfmMlXXbhYhTQEArxl29/28rGEI8TPf98WLoUsIbaU1deiXHxxVS99hqn79nDvi1bxj05G02YWGUvjTVrSJ1/PmZpKQD+srK0qlgQjxN85BH8zz/PvTt3Tpjz13rFFenYgMkbN1LScnzmitH05BpnnklPKsW+UIiKaJT7b7tt2PyDLlycbDBLSjAnTwZASyTQBphRZaAQmRV8ZALJSu2pHKiw52K9HIsIQ3bned/ixUSqqigIh1nUsJc8nWHtXaukWpBbQXQL6N+uYDKGgWdOgWUii4IHS82VIV4Tn/EwOLJrBgIkvvpVtAsuSD8Ei3p7WfbQQ7z1s58d789x4WLIkLMx5D33HMYpp5D82MfSw1WFpaVUfPazHEqlWNrQQPILX+DApk1jechjClPXMevqMJYvJ3DJJeTV1fUpr90TDjO/sJD5zc0s2LeP3/z85xOG3AIY+fm0r1uX9rXNe+yxMT2eYyG1di1g+Qfjf/wj3gl0rl24GG/Isirs2oWWGt4uq5wWTPhti8gQ3EppKgfySsiwXDtYKjTvFLbZKc7CkyaRF/RZO5KzBAzBVyoHnglvrnzcqh/X77CPw5WV6P1Y/kaM5IqDMZTtCY5d+WIoVgVz0iQS3/oWxvTp9ITDVFZVsaixkTO3bePXTzwxiD26cDH80Ldtw/fFL2IsX07qppsInHUWaBoJn4935syh+6c/JXHffXgeegi98eQI7THLyzGWLcNYvhzj9NMxAwH8fn+f8tq9Bw7geeEFks8/T6uuU1JXx4YJmMu6+4ILSAYC5AH+5mYmj+NOjVlairlsWXrd88ILY3YsLlycCDAXLkxXOtPXr6dzmPcvB3QVkPHdlmKR2kqg2p5r1UANFnETHtIEvH7hBVYsiaZR1tPD4QVzmNq8K+M5hSEHT6kqrphksiuruSoOzp49NiQ3l10hF8EVxFbOnyuq+QwUxqxZJG67DbO8HLAUh6Pf/z49+/bx6wn4EHRxYkMDPBs3om/cSMEHPkDp179OR1ERmCbh3l5SF15I6sIL8bz1Fp4HH0Tbtu2E8pCbgQDVF15Iyfnn0zhpEp1lZX3eI8pr5xkGs1paKHvoId76+c/TmVAmai7rJJD86EcJ2hXOZj3++DH/27HM/ZI677y0rUJ/9103WNKFiyEieM45TLE78BefcQZPDHOlM8gO3pI9uYLkVgLaFCy2O8V+kyizmICOMi9gopkwpb2NKS311s4EMVPivfobec+VQky1K6hqruzL1RwS5e6rmw1vvpHzHIy6J1ccfMJ+T5xMpyChLKekbdD3JMnrscWLOfrVr6IXFlobkklK7ryT/PXrEXbuKdIxOB2X2KfqC5YzQjhtmwhQq50MZFnOgiH+p0SObXEm1vkYT9CA1vvvp3DjRiZdeSU7Fi4kMnVq+vXUihXkn3ceVZ2dJP72N4789a9oPT1jd8CDgAmY06ZhLliAsXAh5oIFFMyfT7C2lpSmMdU0SYRCWXYEra0NNm3iolNOYWZ7O554nLueeOKESPVXdtllpFatsrJBVFQwNxRK12sXZXvFcgyIG5n1KNnt5Wi0S4ZtVQDwPPfcMO/dhYuTC6bfj+/UU0HT0DWNaZ2dw1bpTIYoBR4FurGE2g4yvleA6mbQRIMilFx7avZWUN0UIloY5P3/71dUvxWCBKQS2W1VG9ApzTuALvs7e7DaMLn8+LDAfgyEZtf2+7ZRV3Jl8pSrcc71OjiX/m0//3yOfv7z+OxKU3okwtTbbyewdWu/dZpx2CYInPygkYmc/Jr4/olA7NSEyk758NRtKTI3SBSIKOtRrIu3B+scRpkY52K8ojEUovEnPwEgr66O1Pvfj3H22Zk8u5oGS5dy9MYbiW3YgL5+Pfprr6H1kz5lLGAClJVRvXo15WefTaPfz9GqKsxAIOt9QqXV7NRqwcJCoq++ir5xI/qmTWiNjXQDT9bWMvcEKq9tArFbbsGnaaBpzG9upnT6dKLbtvUht4LQRqV1SWjJEgRGqpNpTJ+OUWs9SLR4HP2VV0bgW1y4OHlgnHZauuz4pM5OfNEou4c5U4k8Gt6D9XzvJpP+Sxb2Ko9AnlAe7YbFSGq8N3k+eR0RfB0RTn/8WY5G+vKjBBap7bT332HPu7E4g+ANKm8aMmziNiYk91jZFZyWncirvN1JYTWBfdddR+vNN5Nvr+e1tbHottsoaGjIIrZOy3LtZTkYTn6QqMsxsh86E6WgpYdsX47IiSev+8nOnZfA6o1FyFy0omcmrwuIi9jF0KHX16PfcQfGlCnM+spX8MyejaHrmECgpITIGWeQOuMMtHic8lCIuUeO0Lp+PQdefXVULQ1mfj7mzJnWNGsWxqxZmLNmUVhdTbC2lrimUWOaRBWVFqCnq4uF+flM6ehgyuHDPPrNb9LlkEZHDto7EZA691wOlZUx1TTxGAZLdu+mub6ePLI72bIKI0/qAybFyHa6jTVr0sv6G2+gKf+jCxcujg/G0qVEIhH2hUJ4336bu0YgaFa0C7JI1U0275GFrPJOKOjMtCV7Zs7gaEEhJlDc3k60tZVmnAVAodqqJLeH7HbLkKbhQI/fz6Gq6n7fMyZlfcV7BJxUVfU1VelNahobP/1pmq+4ggIsglvU2MiZ3/wmeW1tGGQIrROxVf0fYi56PaL3IaR2dZv4o+JMDPVSNp+XkkkdIi+LnHkV9rLoobXb8w6yhyREBg3I5D12MbzQm5tJ/fCH3OTzsWfGDHbV1LAvHE6/XlhaSvX119OtaRR85jP4tm0jsmULen09k3t7mZeXR9PmzTQO0s9rejxQXo45aZI1VVRARQUlCxdSuGgR7T4fkd7ePp9TVdpAMEjvwYPoO3ei7dyJvnMnqV27ODRtGkV1dTxeX0/TCURkc8H0eknefDO9kQgtoRCnvvMOO/77vyEUopTMAyRKZuRQKLiqiqsSXPnhMWyFdDSNwquuSpfxTbhWBRcuhgxzyRLAihva+Yc/oI9A2ydbPyNk0nKpr8skWMREJYBXFi6kF4tbzd65k4Nk20tlO6MgtBGyhbAI2UQ3dzbbwf3AfTNnHfNtI6bkOviDgf6Nxk7bVK+sAUR8Pp7613/lwNlnU4j1J1S/+y4X/vu/QySSlarM18++nV4TJFb8QULJFH5VcZGoBS3GO+RcebLpXJ3KgTKfvRIH8wi0kj0JW4M4F6Jj4GYeHhk0hEL8/nvfY25dHS319aQiEbyrV2OsXk1g5cosMllYWUl48WIKzjqLotpaWjQNn2ni2bWL3oMHrYITXV2UezxUlpfTevQoRzs7wevF9PnA6wWfj6KqKvzTp9MJfRRYv99PtW2fKLbzT6vviRw5QrXPR2U4TGVbG09873t0vf56H6J9oqm0x0Lq8ssxamqsduPQIWJf/zrtPT2U0L+Km0/2g0K1Tcm2ruHsdNdcdhmBZcsyZXw7O90yvi5cDAHmpEkYdsyFFo+jjWCFQwOrzfCRsRVCtsoriGkHGTtpHNhkk1yAwPbtNJFpX+R4gBQZMisLgWKbbLMaNruCrWLunTWbmN9PpLg451vHJLuCGuAkJ/4Vy3LtYsic2HAwyKPf+AYHFyygEOu3Lli/nsvuvBMjmczqXcgkVv4OOV2FR9keJVtuzydb4hdqSdTe50QZuBN2hQCWWluJlTFkijSv8NkL1cBUIApaM1S1QMUh63MBez+i8yF6cd24Su5IQiaDGuC9/364/36Kzj2XFV/7GocrKjhcXEyPrfL2UVJLSojEYpjl5fj9fqpsklplmkQUkiqn7SpzILHyvgEqenuJbdiAtncvWkMD+t69JFtbaa6txV9Xx5b6eppDoRMqM8RgYAaDpD784fR6yV/+Aj09WSqsGnwmCK/6oHAiuqqaOxwouO669H9dd/Ag3XPm0Lhr1zB+gwsXJxcMW8UF0LZvR0uMjEwm2pIofRVcMUIkxCk/mZK+oh2pX7CAKJaI6N25kwPkjpsSxFaOHVCnuPT+IcP+QVuWr+TQrFoiJaU53zomgWcirYWc6FdezlO2C6/soaoqfvGtb3Fk6tS0ReH8hx7ikt/9jiTZMnqcvoRZH8C2Hiy1UwzLy1GISPsusN87UYidaleoxOKz0+0pUG4vTJM2RoEmYD94SmFqE/gimRzGYhhE7gW6GF00v/wyr3/uc8ytqyNcX0+quxvfvHno55zDlA99iHAgQMTnS5NfcLYS9EdiS02TaH092pEjaG1teD0e1l50EZMiEYq6uvjVf/0XPgc19mRTaY+F1Ic+hBkMWqnjDh4k8Pe/W9vJJrfiISSUlgKc4wTkh4asrMj7HArMigqapk9nll3Gt66hgXvdMr4uXAwJxumnp5f1zZtH7HvkkaGYsk0ouKJUrhDAhJAXLSnh0OTJmICeSBDZs4cofcmt2KeTlUoQWxHHpHbIYRBtlFJdbOuS0608vv18ZNQDz+QKHAVkn2SnyWMz0dfOXcN3vvJV4oA/EsE0TW74zW+48NFHc2ZEUFNjOanGYrtmf08qZpHbANmKM2R7WJw8LuMZMskVdgVBcgPVQC0wy57XAjOxfmQlmaLWBVC1Bwhb5yKGZecQnYGJQvhPNKgqr6e1lc5XXqHpr39lbl0dR+vrSe3fT35JCWZJCYWLFnHBJz6B5vFAMskj99yDr6EBLZmERILA5Mlce+ONFCWT5EUi/PKHP6RdIqtHgX88/fQJlfFgpGHW1JC64or0euHvf4+WSmVFQMvkViW4PnL7cgXZHe7As9RllxGLRtkXClFz5Aj3fvvb7n/twsUQYAKFq1ZRaHvckyNIcuVRZ9lmIEahZXFR8AORYaptwQISfj++YJDCzZs5YFdj6y8RQK6MVGqK2CG1T9JweiRQyNGAH0xz7Mr6OqGAjDQuLwufZwDw5Esrfti47Fz+f7f/krjXB6bJtFA9X73j25y7/hWLmBrOQ3wyiRWk1qMrG5Q3eLqhqhV8iUzFEMiW/iNkLpCJAg/Z9auFXSEwCYvUzrOnucACe96NFYEm/ix7LKNqF0Rj1stt0ssThfCfLFDJL62taK2tHN69m2fffTdNUltDoawOSsvWrTywe3e/JNZVaY8PyY99DFOkONyxA9+rr2Z5aEX7IuZyTlzRPDkRXDlieTj9uKbPR+qSSwDLk9304x/jcf9vFy6GhCmrV1O4ZAloGtPKyuiBEfW4yx3gXBZO1bppANHzzqOkthZN01gyZw7ttbUclO5/NRvW8aaFFRiUMGYTjfp5deT19lK9N0SisyPn20ed5ApSW6QsBwCPv+8buquD3P75rxL3+jA1jfxkgk88/1fOPfCKJUUmwJOAwgQU2q2/mcj8oZoPSy6WCa0gbKovwkfaiFt2CDz2CK7sYRFmamF1mCjqpazklmCR3Ip8LCl3FhbBXQgsAhbqwCoIHoGi7RkGK+UbqdltZV0otfcp+3RdjH8ci6S6JHb4UHPRRfS8//30hMNEIhHyfvvbtPIg+2hVJVeQXScltz8/7nDkyzVWrcIsKQFAO3IE/fXXh7hHFy5clF5yCTHbCja9rY1UXR2NI9TOyu1Cgr41AvqrHRA86yzy7Tzekzs7idbV0exwnKq/NuWwnCs97EDQn393x4KFAOT3RvB3deV834iQXJPcPyYXo8+CfdaTeR7uuOFLhAvyABNfMsV1r73K6o3PZKLH5KeDLb1qdndEk6VYOYWCnGZBz/2ak9gr+1eEAj1S2RUGqowOxMgtjle2iqR/TD6ZjkAe0saCvufFnuRVFy5cOKdCnD5vHpXf+x6tZWVUVlXRdt99GPX1ffrZ8r2uDivKmV/kgiwyCXbyuw0WJpB63/syv+vxx0+IKnMuXAwUTs+1/p7HTneH0324t6qKKbbHfXpLC8+MgsddtTEdi6+YwSBdxcXMsm0A1a2tPFZfPybZk/o759sXLBrQPkaE5KawApGcIEfbCVW0B5swRiAQgbxOwA//c9ktvFO9mPzOCNW9IT7y5GNc9uQjVIdCWf6EnHYFA3wxewpLdgVZuVVZbARohd6IpVR228cq+52FIiq8LrlU64EgV45gT45lGU69Jujbc/Jg+XCFJSSen09zSQk9ZSV01pTQObmEzrISOvNK6IyW0Hm4hJaCaYS7ywkmj+Iv6ITZWLLtItCOmnQl7Ny5pklXaSlGMEh8716Se/ZARwfa0aNWuiox7+pCS02EjMIuXBwf+kuJWPjZz3KkrAxN09ANg1WbN1NPdv9SLMu+dkF0e8gmvXJqHrmakJxabKgRzOb8+Rhz5wKgJRJ4nn56CHtz4WJiQC6SIAs4usNrAmoAlrwspxtNAWZxMZ3V1cRDIQKBAE9985vsH4ejZcZppxHr7WVfKERVRwe//c//HHejeoam8V7d/AG9d8RIbmeO19T0EqKxlj25BQl4deVFPLL6fWi9gAa3/PbXfOhP9/Zp+NV0OvJ2mbum05UZVoYAdbsmGd+6jEwasS4ySglkDNt+LOKo28c8WKiFKsQ2sa5uE8hlABfbEsXF9MyYQdSemhYvZv+cOTxvGPgSCQqBQsCTZy8U2PN8iMX9HOqtxXJymlR7QuTnR6xyaD6Il2YesL1+Px7buxM480zyHHKmCmhdXRQbBpM8HsJbttD+yivou3dDS8tJn17KxcSE7G/zKcvR1avZe9pp1NiKyPL6erreeINqstMnyu0UZAam5GUncUDeJrd/sg9uMJBVXP2FF9C63QzYLk5sqB1VH84dV3m5Py9qQnqPQPyMMzA1jUgkQvTNN+neunUUftnxQ2R/iEQi7H/oIbzjjOBiQOPsGfQWFgJQ1nGUg/28fURIbpLcSq4Y8hc52gqwyKScbaF54UJ+8b/+l5WfzYAzN2xg1Z/upQnnSj+5tskk1ik/b9brCSvYTJBoNbmxqNQhK7nis9FBnieZ3KrFL5x6j7LKI+bRYJCOGTPomjGD8IwZdM2cSfeMGcRtP50JePx+vHbeU0wTTyiEEYmQtH83uv1GA0hC1AxCnoaJhgZEk0HywxGIQiKZXd7YDAatVFN2uik1HZWMwpqadP7V/LPPpvvii4lEImg9PWh79qDv3o22axf6nj0u8XUxYaBmcCkAjJkz6fr859EiEdpCIWbt34/x7W+jh0JU0veBCdn3u9xxFW2PnPpHJrjDmWzdLCvDOPfczG977LEh7M2Fi4kBNQCrDz9wmKt8Q+YiHrJ9sADGmWdmvu+NN0by5wwJo5XibNDQYcf8henVhTt3sL2ft4+Yktue4zVh/ZRztOVJy/FJk/jDV75C1OvFA0wPhVj34x/TQEbVkHtLYm4o28QwvXpxqhezul2+UOVoZqGKiJy5guwOxZPb3zBnrh5kqqCAxiVL2LtiBU0XXEDP9OkY4TCGTSxN+3359jKAz857Koiolp9PSWMjFZ2dVHV0UNXVRWmyk5JUJyV0kiwJsvG06wAdPZXigr/9nop3mjgMHNY0DgNHgMNAz/TpTP/4x0nk5xP2evnrP/6BNxbDLC3FLC2FsjJrXlycMz+rGQhgLl6MsXhx+txo4TDanj1UdnZSFw5z6JlnaNy9e5Bn2oWLkYGcrCVtOwgEOPCVr+DJy8MDFO7axax/+RfyIhExGJJGLpuRrOaKdeG/jSnLslVhqHaF1GWXWaWcAX37dvS9ewe5JxcuJhb6SbrkuK6OIkfJPKvl8rUGkPT5MJYuTW8br4GcZlUV5uTJAGixGNp7743xETlDBJ2BRXL7w6h7cp0SHKTTceXn84+vfY32khLLBtDZyYW3305LLJYzPYUaXSwvD7SUr/yaagNQU/PIQ5LHDKA7BtQ0Huq6B+sP6pgyhdCKFYRWrKDh1FNJer2k/H4StbXomoZeVWXVvo5EMLHV21iM0qYmShsbKYtGqVmzhrLeXgojEWb84AdUhEIUk53CrQjQ7AwXy+a/Q/PkOqa8XY93T4hW+5g1+/jEPFpfz/a9ewnU1bGtvp6joZDjRWXqOiWLF3PdP/8z4WCQw0VFPLFzJ1pFBWZRUd/3B4MUnn02FbW1tGkagX/+Z4ruvZeORx5B37JlxKrEuHBxvJA7y/nA4X/5F5KTJ1vtWzTKWbffTlUkkr7PRNvhpAKp7ZqqEMmpxeRtgvjKnzlemF4vqUsvzfyuRx8dxF5cuJhYUOOqnQLNVa4i8leLezFOhtxG6RtIymmnYebnA6A3N6M3N4/wrxocsqqxvfuulTt9HGLn/AXp5TEhuceyKwglV/aveYEtn/88LbW11oElk5z/3e9ytLWVLo6dd01dBufh/mMpp/SzLpaFEiPvfzBQSw2LueHz0XTqqdSvWMGuFStomzwZDYtYivPVGwyS0DS8pklZdzfT9+xh+tNPM6mxkbLGRooOHcqqAud9+mmMujr89fUUhkIkyPiNu5F6qRHbs3wkRAUhDmL9l+32XF5Oz0MhOkKhnOo9gGYY7N+8mfu+9a10/tVIKGQp45WVGHPnYs6dm56bRUVZym8sLw8uvpjE6aejRaPob76J/sor6Bs3okUHaxhx4WLoEPdwAdD1kY/Qs2IFXqw2bfmddzJj//6stInqA1JWgcR6yuE9TsG1YhRLfm2wOXONVausURdAa2tDf+2149yDCxcTE+JZ7kRwnSYx8iyn91P5gEj85AGSZ55pR7iMXxUXFKvCli1jdyD9oKOkhIM1ltrsSySo3du/Z3jUlVwnb4sOHPrgB2lctSqtEs75xS+I7dhBA5kExbIX1WldXYa+BDUXeZUv8v5S6jqlFMuV/eBYkM+DF9i7ZAnP3HQT2888Ez0WwxeJWBHaZJRTgBl791L74otEly6lqrsbbzLJkjvvxB8KZT3wZAWIUMiabIiHpxPE+RMEWATgieWIsk0EwQzkoarmXxVFCjytrfDqq4Bts6ispOD88znls5+lYfJkwvn56dK0ZkEBqdWrSa1ejZZIoL/9NpP37eOUnh72bdky7iJBXZy4kNWf6BlncOTDH07fzwseeICFr76aLsBSZE/ioSh8/zFpfwlpLscHyOTXSfmVqwwN1pMb+OhH8dmVmOJ//KObDcXFSQX5XpZThQpSK5ZFRzVCZmTXKWe+4CgxoODCCykSVc7GqR/XJFvJ1d9+e+wOph/snLeAmN9PNBBk8ZbN+I6hNo96dgUn9TS8ciXNN94IWKRn0mOPYTz9NPvom64DnJMLG8q68ORCNqmV1522iYs4oMwhc0Gr7xlsCjEPVmWhTeefz7NXX82+hQtpq63F1DQ006R6b4j83ggF8Sinv7uZFVvfYvm7G5l0qA3icGhqLc21dVS/V0+Zrc6qKo+cfmigczH8qWbBiCnrwhN4PCR3IBDEt/WBB3hn0ybm1NVxOB4nPm0a2rnnpj1D2Ocv/4ILKK6t5QAw9+BBYt/6FgefftoNXHMxKvAAk846i6Y77qAgmYRIhJrNmznrj3+kGKv4Sqk0+bDuGTGC0k1GeZUDz2Qi3E3f7Aly2+c0onU8qL7sMgIXXgiaRvWkSUTfe4/9x7kPFy4mKmTLokgXL4iuygcE4RVClxiRlssRyIVdatasIbZsGWgaU8vKiMRiI1rlbLAwZ8+msKaGQDBI78GDJBoaxvqQ+sKAV887n0OzrAD2yOw51nJ9bmFr1JVcyCaWyZkz6fjXf00HSeW/8w789rc0kVshVcmUui7ntFWh7lNd95NRXUqlfeVJc5FdQTzABpNCrKO0lOcvv5xnL7uM7pISNA2SRZkAsdKeHs7avZX3P/Z7Ttm3DZ+etO6oAFaVsjhUJ0JUbw9Zd9Ikq+qbYKtq7mChwqYctvVIy/K6qh71tyyUpOGGrPx6Ac8f/oA5YwbG2WdjnHMOxuzZaVuDqWnsnTKFnm9/m8Sll+J55BH0DRvGra/IxcSHB6g64wySv/41/mCQQtOEN99k1fe/T7FppgluBVbKwVKs9qODvh34hMO6GE3pIHv0yqlT77R9IDABPv3ptDVo/sGDRKdMYf877xzHXly4mJhQhTfhrZcVXKdKrXLwukhrCtnZnXxA3hVXpKuczW5tJT537rgMoq645BLK7OxHc5JJ6mtrR3xU9LiFMR3ePOvs9PO+prOT5nl144/kCphFRcS/9jXMAksL1VpaMO+4g/1jOExWhKWelJMdbKamECu231MOFPoYMEKzZ/PIlVfx4nnnk/R5MxXaNCjpaWPWvginNjVR0d3Flf/4KdXhEExGis6jb/oHOfLE3uZJWGWOBfHV7adfnMzwZzfQRsZf226vi+VcdoaxHMTUAK2xEb2xEe69F7OmBu8111D16U9zuKwMTJOecBhj7lyM//t/0W65Bc/f/47niSfQOnONL7hwMTgkFyyg5Y47KLI7Wj7D4IInn2RSOJzuKAuCW45VTlvcynKyeKHaesjOjSs6nJ2M3H1nrF1La1ERAdPEYxgs27mTP4xCJSYXLsYT5KAzIWapBFdMfvqOAqsB8QmgF9g7bRqT7Cpnsw8c4PFxem8VXnBBuqM7o70do65uxEnu8Vo9O4PFHCkqAtNEN02mHz7MlGOczxEhuQOB6fHgv+MOik87jZ5wmN72dnz//u9otu9yrCB7WuXk6yLVmewjBuuiLjpGoP+R2lpeeN/72FRXx97p09Pb9RRoKahqbeWqJx7l4heeJjythua5dUxpqqf6cCjzpblIrlM0SgzMRPYmNVhMeGqFv1ZNMC8itcc7tJYWjv7iFxx8+mmmrFrFu7W19J56KuRZ2rtZWkryIx8h9cEPor/0kqXuup5dF8OA1Hnn0fP5z6ObJkGbIK7dtImCF1/Mep8aC6DpmU7nWMPMyyN5000kIhH2hULM27iRP/zyl66v3cVJBfkeVTMsyMquPMmPXdnmILIr6EBy7ly6/X6ioRABr5fHvv51GsfhvWUGg7SUlzPLJuPTRrHkcK7kAaLzL1OcLQsXkx+OUB0KMbm9nWt/8AOqjnE+x4zkln/qU5RddhloGpVVVYR/9jMON469U0UO5JCJbjfO0ZNCGc2FHeefz10/+hGHSkvRTJPiUAivndN27s6dXPzww5z56qsUGAZxIHgkxCmbQxafVe804ZlQiK0gtMLHJ3qS8ts67KlTWpaDxoYrmfxYQbY15BUVkbrkElJXXIFZUQHY6ZHWriW1di1lBw6w8L33OPLII+OywXExvmECqRtuIHnDDXiBWCRCxzvvsPbxx4k/+yyEQmkf/3hH6tpr0/dIb3MzO7/5TTdbiYuTFnIQmZgEeVUDzmWSGyX7MS0+G1m1yiqoFInQ++yzHB2nKq6xfDmxaDRdyvf3d9wxah1dp7SwarpEMb11+umkAG8kwpqHHqIkFMqqY+CEMSG5Znk5xkc+kpbGz9i1i9beXp4di4NxgOyHE0OG4uKH7MITUXB8oMXz8njuhht47p/+iWhpqeUhAWJ+P6c8+STnPPIIs+vr8QGtZKcTE8t5CasKm5yFAXJ7Y3OlFBL2ke4ckxy9LS6WcSI0DQpadzfeBx7A89BDGOecQ+qqqzDmW3Wu/X4/ky+5hI5LL6Xm5puJ3nYbhx5+2A1SczEgmD4fyc9/ntR556W3+ZqamPLtb9Nx6BAeLFvCRIBZVkbquuvS696773YJrouTFrL9QE0n5pRWTCW3cqYFH5a1rnvVqvT+PRs2jMKvGByMlSsBu5TvvfeOWilfNUOWym3kTkQvsOn009PcZP7mzWlLpUlujAnJTd5yC93xOBWmSVk4zOL6en45jno48gkXPjkBudchsg2o2RX2LVnC05/7HB01NZiRiFVK1zBYvHcvZ3/xi5Rt3AhAC8cuHSjPZZKdK52Q09wg25ogfH4RskuExhm5ALKxgJZK4Vm/Hs/69Rjz5pG66ioC739/unN1pLSU3i9/mcS55+L94x/Rx2ktcRfjA2ZJCYmvfS3dYQLwbt5M9R13kJejlPV4RvKjH03HQ+gNDej/+McYH5ELF2MDORNTf4UhZKIbdZjLKm5s3jySVVVWHElPD97NmxmPIdCmx4OxfHl6fbRLDstEVxXs5KmppobDVVUA5EejTK+vT6dfHFdKrnHKKaTOO4+I7QGreOABfvn00+PGAybbFeSoSwG5ZyF8rILkRoNBXrv1VnZdeGHmA5EIU554gvNfeYXiV18lFgrRYr+kFqRQq535pHVBdsUxqumEnHJmyuvy8crzqDSPSfs50aDv2oX+X/9FyXPPseQ//5Nts2eT1DQrSG3BAuK3347+zjt4774bfefOsT5cF+MMxowZJL7xDUy7kQXwPPEE/l/9Cn0C5pM1Zs7EuOii9Lr3f/4HzexPD3Hh4sSGeO4KJVZ9FjsViFAJrqzodkgqbsGrr2KM03bCPOUUTL81Hq0dPow2BqnDROEM1bYguEsUeHfJkjQ3mbd1K8lUKt1pGDdKrunxkPzMZ9LrsSef5M1f/GI0D2FAEKRRVCCCDFkMkE1y8+2p6bzz2PypTxErKUnvJ6+nh8W//S2znnmGMOAUUqcWxfD0s6zaJY5V9U0mvFGHKaKsx6XPnajY//bbeD79aWYsW8aWujp6V6wAr3UbGIsXE//+99E3brTI7p49Y3y0LsYaJmCsWUPev/wLJZMmWUGyPT14fvMbPI8+OmFtLslbbsHUrKPXN20at4nfXbgYLah+XDUcRiW4MtFVBSodOLp6dbpSaf6GDfSO5o85Dhhnnple1t94Y9TaNJW3qDYFWc2NAtskq8KcLVuysj+NGyU3dfnlGDNnAqBFo3h/97vR/PoBQfQoBMmFzB8gTrro0eUBgTPOIPR//g9NkyeTkoYsqzZsYP6vfkV+RweH+/m+XFXY+qvOJhNRldiCM+E9RsaxPoFn47PPOTzIClKbNInkhz6EcdFFmLrVjTCWLye+fDkV773H4q1bad6wYdyMNLgYHZiAuWwZyZtvpuCUU5hp54+cXFFBx7/+K4cffXSsD3HQMJYtw1i6FADNNPH+z/+M8RG5cDG28CjL8giqbFVwyrTgVA21p64OZsygKBgkdvgweVu2jEuSawIp248L4BmDksOqiitzLSHA5WkaO5csSfOeWW+/Pf5IrllaSuqjH02ve+69F62tbbS+/rgQl5bl3oVco9oH5H3gA+z+7ndJeb0ETZP2UAgaG5l+112UvPUWR47xPU4V2fqr0iYrueLYnJLCO21zCkjLFbR2IhNcFdqRI/h+9jPMBx8kecMNGBdcgKlp+P1+qq+7jsPXX0/dgQMk/u3faLbLDrs4sWHMmUPyE5/AWLwYIF1spDgW47I33+SNWGzcBMkeL0xdJ3nLLel1/emnrZzTLlycpFD9uKpFUFVz88gQXZUAi890Xn89JbW1VnGVWIzmmTPpHIdCiTl9OmZ1NQBaby/au++O6vc7cRTVi5sA9s2ZQzgYxAMUHT1KSVMTPdJ+xgXJTd58c9r3oR84gOdvfxutrz4uiJMel9Y99rp8E0Suugr9X/6FMq/XCmQCZm3bRvcXv0g0Gs1ZSEGFU6lhj8Pr8naZhDqVOJaXVUIsK7yqd1d+7WSD1tKC7847Me6/n9RHPpIOUEPT2DN1Kt0//CGJe+7Be889aK2tY324LkYAZk0NyRtvzMqcABBpb2dZZyfLGhrwxGLsHkdBsscL46KLMGbMAOzRtD/9aYyPyIWL8QMngisU2nyyfbkxex4hm+B6PB4Or1uHZj8/5re0kFdXx7ZxSHKNM8/E7/cTCAYxXniBnjHwDadyTLJVYdeSJaT8fpLBIAvfeSdLiIRh8uRqmuYB3gIOmKZ55XH8BowFC0hJwVjeX/4SbZyasCFDEAVRlYmoCSRuvZX41VdTEA5TWlVFaU8PF7z9Nk/++MccHkQKnv6qfjiVJpbRHyFVz7BTyU8nMnwyQ9+/H/373yf4+uvMvOMOGmpqrCpqPT2k1q3DuOAC9KefxnvffWjt7WN9uC6GAWZxMakPfYjUZZdhejNNomYY6E8/TfKee3izrIyjdXXsrq+fsNYVs6CA5I03ptc9DzyA1tExdgfkwsU4gVMMjGpBEEquUHEjymti+fCyZUQMg0LTpCgaZfLhw7w4TjvGwUsuYYptxVpTV8czo1DKNxdUFVdke0oAoTVriNnHWXzKKXTW1pIvHedwKbmfB3ZgVbQdMExNywo287zyCvrmzcezizGBExGM+3wk//mfSdlRk+FIhOZ//IPpTz7Jg1u2TNiH31hCJfhOyrW6fCziLzAURbrrxRc5+NGPMmXNGt45/XTiM2daN4vXC5dfjnHRReT9/e8E7r8fvaur32NT/dKQPUxzMnYw+vvfnV7Ptc3pswJO51p+zQwEKLnlFozrr6c7kSAieeo9r76K5w9/QD9wAICGo0dz3t9Ovnj1OOT3mEa2Nai/zw4nyj77WVLz5lnBc01N43Y0zYWL0YKcLswJueJc1PtVJsmNa9diRCKEQyGmbN7MM3fdRUcolA5ad+IW4jucto8UzIoKfKedBpqGB5jd1sbcYSjlO9C2XbZ5yJ0LyI6N6iospGnp0vTI6rSjR+muqyM5nCRX07RpwBXA7cD/Hchn0l9+6aUYtbXWfuJxvL/97fF8fNzADARIfPWrGKeemt7mefVVen/wA15MHKOu70mK4yGwA02lpmajOJZdA4ZAdkMhOkMhZgKVp5xC20030btokRUx6/OhXX015iWXMOP111kWChHesoXuUCjLPy0H9MkpUdRE17Iv+kRFfwGV/WUWwWHZybMuX1PCiiPm4uES93gIL19OdO1aPGvWUDZvHmgaFabJvlCI6Ftv4f3d79Dfe29QvzFXInM5iAKH96jHqdqIhoqpZ5yB/7OfJeXxUFlVRdfvfseRuDro58LFiYNj2f7Ecj59Y16cqp1C5v4WKThFvvmo/Vo8EODAmWfiAZKRCCU/+hHm/v1MAYrIjoVR03+qBRHEayOF1Lnn0hMOU1lVxZS2NnzR6JCsWP1lhXJq231YhbTkID752S5+//6lS0n09uIxTSq7ugj29BCVcuRC/23kQJXcHwFfwPqfBgyzuJjkxz6WXvfcd9+E9DOakyaR+Na3MKZPT2/zPvoont/8xs0tmQNOJETM1W2C2KopW1RTv/weuQBHfyqp03aDDEHWlW0qxHbPtm1oX/oS4dNPZ89NNxGeNw8N8JaX0/O5z/F6KsWihgZO+cIXKNy0KV2BWZRNVnMTy/mKRUAjnNgkN1dAh9NyrtR66janBlTOJiJS4x2tq+PwmjV0nnceiaIiUkBRSUm6MEhpOEzpI4+w8Sc/GVQKHZWUykGeomPjJ1PXXi2lLd6v5rweDpg+H8mvfIWUx4OmaUzq6mJWWxvPDdP+XbgYb3B6zuR6Jonnikxk5dzyapYlOYWoaMtjWPfrnlWrwOvFA5Tv3s2M/fuJYBEn+Z6Xswc4pc2SU5eOlKprrF6drlcQeO457vrLXwat4h5vu+70TJfXIXOu961cSTISwQyFmLpxIz2//CUp5TiHRHI1TbsSOGya5kZN0y7o532fBj4NpB8SyY99DDMQsF4/eBDPQw8d6+vGHYxZs0jcdhtmeaZYp/d3v8Pz0EMTNkfmaKE/1Q6yyYmIWA2Q3bNT07XIk5o3WB1ackqzNpTfkgfkb97Mqs2baV65krdvvJGjK1diahpxn4/Nc+aw46c/ZcV997H2oYeoaWykm+ySyh3KvEA6PycywRVQ/W1OFYXU19QGUlb75XLY4nUD68HTWlnJnjVr2LdmDV1Tp5Ky3+vFaqNi4TCV+fmc1tjInKYmfvHYY4O6p+VOlRPBVRVdUSkxLs3V9H1OFovBwASS//t/01pURMA00Q2Dc995hwfHqUfQhYuhItczRn0OqcPm8lC5uE97pH2pBNcpU9GutWvT71/w3HOUk63gOuWrF4WY5HWBkUrnaVZWpis39obDvPOTn6CFnTL5DwyygCG33XKbnk9fUptr9M6D9T/ENI39Z5xhnYdIhOCvf02bAxHvr5LcQJTcc4GrNE273D7mYk3T7jZN80b5TaZp/gr4FYBH00xj3rzsijq//jXaBBvWr778cqJf/GLar6clk3h/9CM8L7001oc2rnG8wxY61oUVwFK7BjoXhEb1NR6rSMZgoFa7Of2NN7j2jTfY/MEP8tevfY32oiI00yTY28u+Cy/k9xdeyLKNG1nz17+yeOtWjgJtQKc99wPt9FUexfqJCPF/qwEcuSanRvFY69Hyct696irevvRSmiZNIhmJkLL3lbSn/CNH8D//PN7nnyeRl8eBujr+McSAMtmrJx5+aoRwPpkHmHiwHcuuIO9/MDCuuILUmjVpxWbRiy/y4J/+5MYPuDjhcTzD5qLzDNntsYBMbkXbpOJoTQ0tCxeiAb5UiqUvvUQh2feuOqqnjuiJ4xgNq4KAtnnzkAguZBPcgbbtTlCFqCMLFhAtsgwE+e3taLt30+HwuSEpuaZpfhn4MoCt5P6rSnD7fAbwf/GL+Kqr6QmHib34Ip633jrWV40rTF67lsBPfkLA46HCNGnYvp3EN7+JvnXrWB/ahILawDj13nxYxLXIYcq1vQiL4KjDu6kc24Y6BCz8Q0JpFsvL77uPD7z1Fv+49n28fuoiGqdOhqD14zavXc7mc5czd/tu1j74EPNefplWw8BPpsY5ZBS97kEe20SB/ECRVXun8yqW1VyUqtqreTwcXLSIHcuWUb98OY2LFtFZW4upaWimSUEoRDISgWiUqg0bqHj+efStW2nH6nC0ArtCoSGdezWRuXzN5RqGVFVemeg6BbkM6rgWLSL5yU+m12OPPMLWQdoxXLiYCHAis+ozR475EOuyT1fcuzLpjZLd9jiNMu340IegqgotHGbOCy9Q1dXVJ6YkQWZUr0taFvl3u8huO8RnhhuGVHLYs2HDsOxTnGvRTvfXvgsftPxcllOaiu3NZ56ZJrAlb7xBZ47vHg5P7nHBV1LClLVrQdOonjSJyFe/SvNIfNEIwSwrI/blL1Noe9gC0Sgr77uPV12CO2B4yN2wOA1B++2pFIvAltjLYl0sl0jrWj6QyESrqzeLrKbJ88FA3LRF9nFq/sxKwB/iY+t/zMe2wM5583no/Gt5dcHZVtnUKOxeOpfdC/+NYMf/5tTt21nywANUb9uWFcTQTcaLdCJCfvjIPXpxPsW5FSq9WHZSBSKVldQvX25NS5aQKCjIDFEWBdNRuAB1Bw+y5Fe/ovL11+mKx2nHIrZJstXzwUINcFQDSFSCKyu5qlXBiSwPFmZ5OYkvfQnTY/06fdcuvD//uUtwXZwUcCK4x7I8yXYFEZKZkD4XUfYhK5f+2lp2fepTEAhgVlVx6i9/SRF9FcwoGaua6MQ7+VBFuzSUtikXzMpKjLo6ALRUCv2114a8T/kcO43Kym17sT2HvoG5Yi7Ow8GVK9Mdff9okFzTNF8AXjjW+7SysnRAx6lNTXSXlU0Ykmv6fCS+8hU6NI1S0yQ/keDKV17hT8PU2zkZoEtzp6wJPrIbGHFjCIW2HIvElgMVWMS2wl4v1qUXCoA4aAnIk7q/AbkrbC+njKENARUAHnG3qlNxZnlB0Xt8+cAdNCcn87fZ1/BsyYXE8/KI+f00zjuV7StX8sBNN7Hk4YeZ/vDDFL3+OsWxGJ2c2CQX+j4cRMdGOn19pgJA9/vZvW4d29asYX9lJR3FxelGVdMhT+pNBeOdFB3xMKu1lbr9+7nwjjuIhUK0YpFbOXJaDBEONCVdfzCkuXz5iRLaQgmSSa44DtW/K6u3g+mUmV4viS9/GbO0FACtqwvff/zHhLOLuXAxGMiBZqolIVcwlNwGiHtO3Ku5gqdFxzwFdF58MV2BAGga+YkE83p7+4xG+rHagiIsy5rsBRaB0HKHOJPQcHiRklTc4bAqQF8VVxaFcj0uhUIuAvh0ezmFdR56Jk8mPG2alXYxHsfcssXRqgBjoOQm8vLAzjqwKBTiTxMkyMEEkp/7HMb8+ZaHbfdulv3tb/zpySddD9txwuMwyQRX9VUK/igU3Ep7KrfnFYCnXNpQiXUnqezAaQw4AR57yhuKlFtKtpRcKi2XYN299g+YUnqQz+o/56P7/sRj2pXcPe2ToGmYmobh8fDeuefy3rx5xOJxit56C339ejxvvokej5+wnlw1OEFuCMXpKwaS06bRsGABhxcuZP+CBTTPn89RyYJQ3RDCE4+kL6yqzsOs2PMWyxs3svjQO3TmTaXZV8eUd+up3hfiMNnBfYLgCvV8qGpJSpoLghtXlsX3io6MUHJVtTclfXaw10HyU59KB5Voponve99DO3KsIuMuXJw4kAUWJ4KrWg7ke1jMnbLyyOul0nL9jBlpzlN34AAV27dnjT6WAloJEIWiWN/gaci0BTHp+IajA64iy6qwfv2w7VfEW4iRN/FML8X5MWmQaYNFuyhECA/QYqu4KSDw9tv0JBJEyM6MJP6ToQaeHTcMw2BfKMTU5mb+dPvtE4Ygpq6+mtTaten1+E9/yluPPjqGRzTxITcsTgRXDNcEyJAclctW+OyFanteYy8LkiszhajDNnldjiZQE+32t13cpUJmlpeF1CzmpUBeMeClpLidj+78M6tf2cR/Tfs+706fyZFgEcFw2KrokpfHoXPOIXzOOfRGo8TeeANz/Xr0TZtOOOVNXAvCTxsAfIWFhOvqOLxgAV0LFnBkwQKSgUD6OvECRjDbgpAK5rP87fUsa9jE8gMbmRJrtuwjAWAOFERDVDeFrB1Mh6pmMBLZyoEYLpSHCocC1WYg2xVkgiu+K6FM8mdUX+7xkN3UunWkLrssve753e/cOAIXJx36CzBTI/0h0+TniuNw8oumxOeCQfbMn48vFMIbDLLqttsoC4XSo5LF4vlVCUQh0AK+zuzsQAaZjq+fjGd1uO0KZnU1BUuWEAgG6ensJPX668OyX/X8yha0XI9OYQVxSv0IcGjlSkysc5P/+ut0Y4kTThh1JRcgEonQ8F//hT5BCK6xdCmpW25Jr3ueeQaPS3AHDdGThuyo+lypRcTQtarkVviAKVikdqo9r7G3BehLbJ2WVfMjWHeF3IX3OGyXtxWR8UyUS8vytqAfmGUf6DTAC1OfhfwQM3w7+cq7/x/Nb9ahH+hgZ2oGT5++iu2zZhGzv8osKCB53nkY551HQNeZ3txM96uv0vrSS2j79o3rUtjHggmkKironT0bY+ZMjs6ahbZkCfF589B7evBFIn1qxOcBeMEf6yK/I5/JnR3MPHyITz/+Tab3vpdpPdVxsR4yF5iN6oYMwe0kY4UYDiUXMg8q8SBU+1aySgPZ6YJEX0xWcAfzTxtz55L87GfT6571692qZi5OOqh2BXkoXSW4BfZ7ZXIl243k+1N9vIhnWtuaNSR8PjyRCDXvvMPcF19MN0nFOplnVjVWA+CzLFY17ZnvlvPydjN8nW8V5dddR5ldHnc5sLe6elhESKdROpnoiue6/MhMkE30RXvoA1KBAN1nnEFhcTFGOIz21lvpQD0Z6mPcCSNGcvX9+9G2bBmp3Q8IA4m09ADGlCm0fuEL5NlKUd7OnVTedVefxO5OKapOLK3t2HAiBLryunyhO0XGq6/lYSm4AbIjXVOAmQBNjC23kR0hoNoVnFoltWUabJGniLI/kUQxQiZMtjQC5duhcD/QAHghHLIWG6C6OUT1zhC8B4vffY0l3MeGadN4dvVqNq1eTde0aQD4/X5m1tbCKadQsm4dR0Mhejs70fbuRdu1C33XLrT6erQDB8a0GIl8LcjXgO73Y8yYgTlrFsasWaRmzSI5cyadgUA6eKPQ76eothavplnDfKEQ2GV1g52dLNq5k2U7d7IotJO5LbvpnDGV5nl1TDlST3U4ZLWgsnlNXCOi4sIB4BDWNdOWnau4h8wlMRRbgAyd7CHSPGWbOpohd/jkNkqejgdmcTGJr3wF02s16XpDA143k4KLkwxO8SDimS/uOZngFijv95H9+FDXxSNH6B6FwL5LLknzicVPPQVIiq8BHnnoSKTRiWa3QQJqdgLhXXXy6MvLA/Hwm4D3ssvS8VLzDh3CMwxlfJ3Qn5Iuj2ip7xNof9/78M+di6ZpzM7Lwywvp72jw/H3Hav9HjGS63n00TFvYEX+VZlMiV6c2O71+9n59a/jDwTQsXJonvbd76Ilk45Rf2IulkeyIsl4gROZ8eR4zUNfMitHyMueHZnsiiEaeThXtAfFIqRSdPciWKxFtED9eHEd1wcDv/2d7Vhd0layvbmlSCkhuqxJB3YBu+15yJ72WfyrFaszOOeee0jdcw/bZs5k7+rVlH/kI+mGyAQCwSCRSASzrg7q6tLXmxaNou3eTWVHB7MNg5Z33qH53XfROjuhp2dE7j9T06C0FH3SJIxJk9AqKjDtZbOiAv/cueRNn05vOEw0ErFKIGNdF14kVd+2IGiaRkVXF9N37GDBgw+yaOdO5rS0UGafygLAkw8FkRDV+0L9VwoJ2NtiWCS32Zq6Ipnz3UaG7Ip+y3BVFpMbbNl/XqAs2/GSfciuj75keSBk19R1El/8IuakSQBoPT34br8dLRY7xidduDjxIBMm1ZerBkcJkiseJakcc3WbgaVGeubPJzpjhnUvx2IseumlrGH3LqCsg8yDMw60QTySaYNEvmwBMZolPK3QV1wzcmyH3HzEnDOHtsJCikwTbyrFzAMHeHqM46VytW8tF1+MZlvUZre2Eq+rY9sgyfjIkFzDQH/uuRHZ9fFAPEACOBcTyNc03rv9dgqWLqUgHMbX0cHlt99OYUdHn0TNsmAkHkai6smJTHLlxkKsqw2IvCxI7kCSQcvr6Uh6e38JpJKKCSg6AppgvaKiQh59y0UlHNalwDRzkCRXE9Ub5GHxUvqGjZZI6x4sFXcfFrm1l4+GLQ7WSkZhjAG+hga8DQ34X3mF9992GwcrKzlUXEzT/v1QWNjnmMyCAgpXrqSitpYuTcNvmnhDoXThErq6LMLb2YlmT3R2Uu33M3XyZA60tHC4tdVS/7xe8Pmy5qbXS3lNDWXTpnHYMOj0eKC8HFPX0SFNYLH/t0K/n5raWoucV1XREgoRt4muDuT39FC6bx/lDQ1Mi0ZZsG4dlT095MXjBO68M+1jM8kePvTFrEmL4FwhokDZFrVP7iFoS1iLLfamTvuci3s6ytDvX/mekK05snIkd+7kjrZMdj3SXN1nf0h9/OMYp50GWIFm3h/8AK2lZYi/yoWLiQ11ZEQdURFkUvaDHquQkJxerAhouPhivPa+6156CX9vL6CUBTaguJ20SBOPZNr9HrJHiUXGIdFnly0U/XmFxfM3Lr1fhSEVhZmxZw+//sEPxmW8VCI/n8bJk/GaJhow68ABnhsCGR8Rkqt1dY0LFUEouSJNkeAfIoXFoVtvpevqq/FpGlRVccOXv8zSPXv6lGIVUwfZHj7hyznRLQuqqiSnBZMbEMh+mAfIJrXyup9skivnDIRMkJBO5sYuCFuTR+xMJ5vM2iTWqeqU3CAMBgURKIqA/xBoQbITuxaR6XbL28BSE5sy87aItSiUxU6yVUWAxlCI+2+7jbl1deyurycRCpFfXIw5dy7GvHmY8+ZZ87IyApIimqX6er0WIZXKUYNlhSiprSWsaZSYJkdtUuwEv99Ppe3fmmKaxAWBtl8XJFcQXn8wiKZpeEyT0nCYYChE11NPUbhvH6X79lHa1pa+9/xA4KWX0Orq8NTX45UaW+FPFQQ0PeSYAD2RsQJoskwjL0ehN0w6J66Yq0qu03DhYCHfE04WBXUUQ6QVc1Jy5fvpmAR39WqS11yTXvf8+c94Nm4chl/kwsXERS4/rjyaIveNU/a6PDLrpJgive4rLGTjeefhxSJSS556Kh3AJo9EprBsC4F2a3s3lsIrRDQRMiKOW/AW0TbJJFxoNuI7dGXuwfkZZ3o8pM4/H7DipUJ33TVu46WaVq4kkUgQC4Uo6enhrX//d1qGcKwjo+R2dIzIbo8XQlUUBFcYnkuBwuJiXrjxxnTU9rJQiPM6O5mD9SBsJzM6LeZyLIvw54xULrvxBpnUquRWbVAEmRXEVV1XtwsSLD/c5fiwGJlUI3lklD1wjnhVe+Ryz1c0CGoKEnWbOhe82g8EbLLtPwSFOs7DBAX2D2oBDkG8Pb1ICxllUZAuuaEDaAiFsnrZWlcX2qZN6Js2AZbaSUUFBRdcwNJ/+ieOlpQQ8fnYv28fmq5jFhTghFyk+Hjeq3V24mlrw9vWRv6RI/iOHCG/rY2pBQVccf31lMZiaMkk6++8k3AolJUXVz49eiiEFgqllRCk/0sE44nrwIn0eaSUBPLrUTL3bQd97+UOMqMyQ7UrONl1xINTHSaVH65RaS7IrfwZ+V7IhcmrVxP57nfpjsWIRCJ4Xn8dz733DuHXuHAx8SF3NvtTcWW7nAxHFdRhW8N556GXlaEHg1TW1zOzvj7dHhhYbYxKeMUIpTxKLOwK4jsEERfrQqGVBymFACR+o/i8al1IH//SpZglJQBobW1o77zj8IvGBxrsFGfJSATf3XdzZIhkfGSU3GR/WctGD/LDtZTstFSv3XwzWjKJZpoURyKcvXMnc9vrqZ4E1Ucyyo9QncSDSPbb9DAyeezGE2RLgkxq5QA+VUhTiay6LKyTKh+UCYMgplFpm0oonAIBcw0xqV6m44WTxzgAFBgZhVlsyxNdcaA3klEThaLYRvY20as/nhEBDaCtjdYHH+Stt99mbl0dB+vriYdC5GMVNaGkxGrY7LlZUoI+bx7zr7wSzeOBZJIj//gH3pYWSCQgmcya8iZN4ryrriLfNCmIRHjgxz+m6+238SYSfYbdffa5fXvnTibX1dFZX0/Sth84WVQC0ufke0jOTqBuh76+M6ftMTKxgJ1kl8/sIFvJHQ67kRo4Jt8LcpCLatGxA63T71PvJflhrWLy+edT8fOfU1hYSIVpsv/VV4ndeeeYx0G4cDGW8CjL4n6SR0zkNku0Yeo9po6gqM8eE9jwwQ/isUe6Fra2otfWQijUJ9e16MgK36+wSYlluQ2Sn6Hiu5w+JxNc7M8LRdppdNmQUqN6XnhhTAOWZahtb7yggP0rVqTXK15+maGWqhixwLPxAHHBiNFjQXKTdXXsvOgiiiMRikMhbn76b6zb/HeqK0IQAK0ZqlqgqNPO5QlZPTTRG+um781wIkEltyrBVdUq+QZVSW2uuSDE0FeFFcPVsgqrqrPgTGbBmfAO5VyIhvGYcwPyItb56iDjAxVTNxa5lUmX6M0P5hhV1RewcuweOdKnCEAnsP3BB9NWiC5bSXVCG/D8Cy+k33sgFErbE9SADvGfd4dCJEKhLJ+1GnSoBmMJQif/t04dHtV20l+QSA8ZG0iPMhdeuJj0/uGA03mRia48VCqTXzUx/bFU3NQZZxD5zncoLCxE0zS8qRQrnniCV3Io8i5cnExQRxxVESZX8JlqE3JaF/s/NG8e7aecArY9a35LC0ZdXdoCICuuclvmFMgmW+sEqRXfKY5TJspilMuD1Y6J55uBM8E1/X6MM8/MnJ/nn+//BI4iVP60d+VKUj7rDBSFQhQ2N7sktz+oSm4FUKFp3P+Zz1CIpbid+c7zfPTN/7byrk7HegqWAyVQ2Awz92duEEG8eshWd08GyKqt3Fg4Dc3mIrRFOV4rIjvQKEZ2z1Xt+crrKqEVy9CX8MLgia7aQKpKnbpdNFRO5EpdFkFQo+XtdiLFg3mvSnJl37XaiRGkNte1IyArEaLxFudGlMhVc1aKuayMCM+r0xRR1ofDkysruervdArCFNvkzpFKdOUHqwerqk/q6qtJ3XIL3fE4FaaJL5nkojff5JFXXhmGX+HCxYkB9R5y6mjKk9MopTyiom5bf8UV5IfD9FZVMa+5mcJoFL9tV3AaRZQFGnD2+grI7YecKbHHPn55BFl9/sXpSxyNVauskT1A37MHvbFxIKdwTLB79er0cs2GDcOyzxOa5Ar1TVZyGy6+mMNz55Kvg8+X4JOv/wbmATOx8vhHsQy89hNa88D0huzsVd1kFJgTWckFZ3+TSlLUYSAnJVeOzRLbi6VtQoMSRE8EHjkRQzHcLPt25TlkNxxqwzIY5PIj5+V4TZBcJ4Kea3k4yNZoQX0oyMpIrk5OLi+33FkUSq0gu3KUcn9EVV3PpZYkHNaHmkJMVnycRjvEfSJS5InzFCG3iququabHQ/Kf/onUpZcCVvBI0xtvcMZjj/HIK6+MyyhpFy7GAuoIpCpQOKm5uUYlnbbFiop4b/VqCiMRPKEQF/75z8x44QV8oVC6HRdtjNoRF+2afJxOanGe9JqB9dwTyq2ATKRFW+bER+QqruMh65UM+ZkXKyykYfny9Hr1hg05K5wdD05okisruUVYuTmf/djHyNeAQrjurQepmXQIarGIbi2ZakmCvRigJaC62XqpgwxRE8FSEx2mxwPFxZilpda8pASztJSyuXOpnDmTo4cP093aSsw007lOfUBJZSX+igoSu3YR27mTwo4OPB0daB0dFHR1UWAYfQiuTGzFa0VkK+WQ6VT00He4X2QQE+9F+owThos8OjVK/W0X363aJnIVFhkq2RotqA8PuXOjKvTi/xZqCfQ9TzKZU5UJ1W6Qy4Igd4Tk85vL0oLD+lChklS1I+ikIuUr73PywGt+P/EvfYnU6aenv0vfsYP47bfzSlfXMB29CxcnDuQ2RtxX8r2o3ofy9lwCjlj++8UX4/H58AFztmzh/P/5n3T7I9qeOJmOt9xGQYZaiLk8mqVuE2KJrCQLyPYuX473mDU1FKxYYZXx7eoi9eKLx3MahxVO7az8rKw/80wMu5hN6Z49+Fta+jzjB4MJS3JVculkHJcVxSLg5RtvpLeoiHwvVHUf5gOb77eIbSmZRP4++uYa82cPLcpG9YliVzA1DXPyZPTp061qVDNnEjz1VApmzaI7maTX9vOJwJUCv5+y2lpSmkaRaRIOhYhFIiTs9xT4/QRqazmiaZimSVcohBGJpB/SXtMkaBhUxmJM2byZWa+8wpzduylvbs5qPFTVSjQQsmreQSbjRbu0PBw3gIsM5Huqv0AMJ6VWLMsEVw00zAVDmcu2DVm5j5AJInNS9sXyaNk+nOCkxuba5tR2eJTXEjU1HP3GN0jZ1fAAPC+8gPenP7V81y5cuBgS5Kwo6milainK0zReuuwyPBpgwqWPP54mweJ5JKurcue7235d7Msg238rjkXmGU7tpuiYF5AhuOL71Tal7MMfplwu4ztpEg3H2TEeKNdSn+sy5HOijmKKUbVtq1ZhYAX11WzYkCVUDEWImDAkV344qOu5hkHLsR62+cCh2lpeuewyy2SehE/9/tfktScyV5ksGzWQrkzFPqDZSv0kR8OLP2m8qm9mWRnG8uWUrFmD/9RTac/Ppzcex8AiqYV+P5PtxP1lppmVuF8DSuycp2gaGlBsp48SF69feb0gGCQuk9xAgGRtLQc1jYMrV7Jl3To8kQj+3l5q2tqojkZZ8Y9/cNZTTxExjDSZldM8ddE3zcpEUjwnAnJZB/qzZIiOo+y3lTNmOHndBPrLO+m0TVZwxQNDNJJqHZDxcF2otgjVGiEeRFGyA9+cVP2uRYvY/9WvkiwqSu/f+6c/4bn3XjeLggsXOaB6YUXwl1BSBYeQ36NaFxJkSGSB/d4C4K0VK2ipqkIzwd/dzenr1/eJC5AtV+BM0FSlWZBsQVjlnNpI+/Yp7xHrTjB1Hf3yy9NpIBc2Nw+ojO9guJYYkS2WzqFHOhcxMl5iObBcjNK2+P3Ur15tjSKHw0yyrQpRskfhBoMJQ3KdvG5O3hn5NZnkPvulLxGtrkYLhzljwwbOfOZ1mGrvXHS5OrCeok321EA6gX8L2RWqRPL+8eKjNDUNs64OY8UKjDPOwKitxe/3U2X34oKmSZOtxupAUCGpFZpGrLGRAttqUObzMXv1agpSKUzD4PDDDxNrabGGTzWN/Joayq+6imReHr1eL0feeINIKkWsrIxYaSnJqqp0DmIAIxhEi0QIV1Sw84wz2KFpvHjNNVRs3cqyZ5+l7pVXmLRlCz2JhGOqJ7n3N9SenYsM1GG8XEN1aqEx+YGQa1m+R2FwKd+chvxEUJmYq58dC6jHLhp3p2BJJ5KuRlm3XHABe/7P/0kP32mJBN4f/QjP+vWj+KtcuJh4EPeej0wqQpW4qURYEFpBJMVyPtlq4t+vuCKdBWHVP/6Blkj0uXdVO5r4PhVO2ViEpUm0t0JgkDvJ6iioSjjT7e2yZXToOqWmSUE8zvTmZv4+gMphg+Fa6siePNotd+5lNTdOphjSpmuvxZg3D13TmJ6fTzAQ4CiZdnEo7fqEILnqEIKcgiiXl6aATNXVw1dfzf5160DTSE2axLqvf51EGPIOkBkb78CSEXtI17yn2SoL2kyG5IrUTz2MD5JrVlWRuvJKCq6+msLqanrC4XRyfzWZf5lp0r15M/7GRqYmk1y0bh1l0Sj5vb3svPNOjFAoS6HLr63FU1dHqr6euUrvzwPozz6LXleHUV+PYb+eVu7mzaP3C1/gSFkZh4uKaNu+nSOTJhGuqsK0ya8JdFRXs37dOp5ftw4tGmVqKMSMQ4coe+wxunftylLvZNXLxfBA3FeyR1T1q6kE1ilQQ113ypwA/af+UueyL1sQw5i0riq5YwVZsVF916qKK4Y0ZdIrVZ0mCey88UZ2f/CDmFhDd3pnJ/nf+Q7mGNeZd+FivEP24MsqblR5jxwc5tTeycRWpOc6VFPDlmXLrDbNNDn373/vE+gq7uNcHW81iFuehFVBJbse6bcUkE101X3IMC65JF3Gd86WLfzyZz8bkIo7GK7lJHB4pPMszr9YFs90IWRtsxVnNI05hw5RWFdH1A7kG6qwNSFILvR9GKsPXaeAjlIskrvx+uvTJ/CUpiZSJSW0AqVhCESwuhOH7A/0AK3Q22mRWlF+VUwd9iQu7rFQjkzAPOUUUlddhXHWWRQGAsywFdvKqir2hUL0dneT3LiRs2bNYnJnJyVdXTzy/e/TaSfoLwIOvvQSpk1iy6Tt6UC9UIiUfVOoATyARWzt5NfyewCMXbso/I//oLSujrr6evRQCBPoWr6c5i9+kf1VVYSqqugJhzPKXXk5e1esYK+mEfzUpwj+93+T/4c/EA+H06RmqL06F9mQG9esqm79zH3KZ1U1QX1NTnczkGwHMtGNklsJVRvAsbwu5IehE8GVVV3sZaFEi9ejPh9v/PM/07hqVZrg+hobCX7rW3S2to7mz3HhYsJCtAdCxVUJrmonEuQxQN/2R25fnrj5ZnqqqsgLh1n54osUHT6c1dmW1VynQFcVTsRWJpNCcBAkXRBc4R2Wg1Vl8gy2XfGMMwArE8t7//Vf6M3NAzp/g+Fasrorfpes5Iq5rBILsttaXs6+qioK7AIVc5ua2Fxfn9U+nhSeXNkcLk5urqpa4rUAEJkyhcbJk8E00YAloRB59fXpwKUCA/ztUNAOBQ3WNjXAScxlJXcs7AomUHXddeg33khrURFxRbENxuNMP3yYkscfZ9MvfkFvby8v19Yyt66OQ/X1hEOhdExdKeALhUiGQpTa66Vk4u9KyfbPqFkBZCO5k4KVwiLB8VAo6zPejRuZ/qUvMb2ujuX19Rz0egmdfTZ7zzmHyJIl6c5IuLCQlo99jJ61awk+9xzBRx4huX//mA9Ln2gQdgVx7xRJU671XB6w/qDaENSHjDyENdBcuKoKOlZqrhogoRJclZhDXyW6s7SUp7/2NQ7X1aUJbmDjRoLf/z5dvb2j+XNcuJiwEB3NBBkFVCCF1dbJ7Y8gj2I9QMZPKz/fOxcs4IVbbiGWl0e0qoolP/lJn3ZJHY2S1Uf5eeVkMZDJrhx4JkiuTHCd7Aqqiptatw5Tt2im/u67Aya4MDiulQtyh0NFAotHvXv++UR7e4mHQtQcPsym//gPDoZC6dHyobbvE4LkOuXjlNWlYmm9SFrWgS1XXIHHzmdXe+AAdbffTiIUog1LkVU9JsK50EEmsr9TWRd2hdFUcs2KCoJf+QpF114LmkbANNkXChGJREi98QaXVVczq60NI5XirocfRrMfjCKZfzlWMQxxcZZieZbFdnW5EtB0SBm5Vbb+1Dhx80PGN5neblfFimIFuU2tr6fy//0/elevhq9/nR0zZxLx+YiGwyTy8jhy6aW0XnopZfv2MX/XLo48/ji73bygwwb1nhKdoFJpuQTrPishMwwFx/bUqo2TeAA5kT8nxbY/tVddHwuoDa/aAVRVXNWuEAdaZs7ksW98g87KyjTBnfTYY5T85jd0GW53zoWL44HwzKrESu6AimwEou2Lk1Fy/fRttzZ/4APE8vJA0yiORKiMxx0zBMjPx2P5cSE7uFcNQBME0yMtR8hWflX7g471TE1ddFH6uzxPP93/CVOOazBcSxa35HMA2WKY3AGIAb3ArgsvtArdRCIkfvMb9tvcQG4jh9K+TwiSC9mKk5PqVEQm45c4+dHCQnZcdJHVy4lEOOeHP8QMhejGefg9RXbqqp5jLMsRlCMFEzAuv5zkzTejz5yZ9th6DINZO3ey+3vfI9LUxGO2Yru7vt7RdyMuXHHeSsiQ2UqgRlrOK7E36OCJQmECChXmETf6L2wgOgyiwTGk1yLKPN1jW78e/2c+w+mLFrG1tJTDK1aQqq21Uq34/RRfeSUHNY2KW2+l8rbbOPi3v7lR5kOEOjQlE1zR6SlR5iIQwkmxlIfsZPKZUib5WpGDyVT/rbo/dbRAVU3GUs0Vk3xcMsEVagxkGu93r7uOpz//eSvzSSSCaZrM/vWv8T/2WFY75cKFi4EhRbaKK+5HH1abIobKBUlUlVy1w54ENi5cCPZw+pJQiML6ekc/rmpx6O/+dcpaIJNL2a4g2wZUa4Oc/QYgsXgx1NQAoPX0oL/88oDPHQySa5HdpsfI7ug7CRhRoGP2bI7OmIEJEIvBK6+k00AOV/acCUNyZUnf6eSXkq08FQH/uPBCzIICdKCiqYkZW7akbQZOilEuVUn8aU5q00g+hMzycgr/4z/wLVlCTzhMTzhMZVUVixobWb5jB7/74Q/Rm5qAY5dqlXuDwnNbQYbgTgGqdHuhBqgmU0NQPgn2ep49EckQXtlMDpnGRiwnpF0Iy4cwnqd9jKEQRihEAii9+24ip5xC+KqrKLzqqjTBbyspoedLXyJx7rl4774bbcsWl+wOEvIwmXw/CYJbSaYzVA4UBkn3YMxYbp+sIHOqIqL29JXLKquwg3yP5VKI1W1jAbmTrP4+leAKq0fD3Lk89s//TMNll4GmkWeasH07i77xDfI2baIDl+C6cHG8EPdMnEwKK0EAxTbVKiC3M052uKYVK2gLBvGEQhR4vZz3hS/gUdRGp8622vEVcCK2atlheVnmPRFp7pQ1wgPELrkk813PP3/c+bQHw7Xk7DfivAslXcT2q0JhAjiwdi0JLDHP/8or9ESjfdrQoVrRJhTJVSV0QdZKyShPYrkE2HjllekfeOZjj6XVRHGSVaIlHrTqQyrX8kgGQRnTp5P/wx8yZfnydEDZ/ldeIfKf/0lE0/hdDsU2F8S5k8+ZIC81QJUPi+BOl+Y6zmWlFDaS1wN5EShIZBNc+aEuenXyhd5BJoVIzipV27bh27aNsmee4bQ77mDnzJkkdN0KWJs/n/h3voP+7rt4//hH9B07Bnw+XFhw8l6Vkn19VGL1ebRJ9ooH6AEtBoU9UBiBQCKbqELfQCz5IeLUqRT3o3y5qZYHdQgw5bBtLKA+3FRlRxDdQzU1vHTTTWxevTorzV5Rby9n3Hcfhzdtopu+Pl8XLlwMHHKbIFRdQQR1ZTmPvveb3L68ffXVVn75SITFDz1E3o4dfVRcVdFVn2ViX3LQbq7MCk6ZCgrInepR3keqqAh93TomlZTQEw6TfOqp4z53x8u1SrFy2neSIbhiNFdu6wXP6rDnvbpO6wUXYGCPWD/3XHr0Sv7/1GfA8WJCkFzZtyJkfNGzKCZ7aFV4S/csW8bRKVPwAPk9PZz+3HOEyZzsDjJBZaJMbDt91Vl52cixfbhhnHIKia99jZLp00HT8ABL9+xh5j338PxTT9EyiH3Kw9IBMhenIDBMAWZikdtZwDSsEy73AHL1DvzWPK8bSiOZYVqZ8KgXewfZ570/JS4F7H3zTYxPfYqZS5eyua6O3jPOADuHqHHqqcS/9z30TZvw3n03+u7dgzhDJyfk60I0ZKIxyyK4U+yFGvuDynXg6YHibvBJf6IguHJQhNpJlC0scuEHcamp18R4JXyqaiP/zgTQVVzM6x/6EDsuuwzT67XeGw6jV1ayaP9+Vu7cScOGDS6xdeFiiEgpc1XHVIO0fPRVXwW6Zs6keckSiyiZJvMfe4wY2Wm9jmVVyHUvy1kI+suuoNoX5KwKqjLtu+EGps6bB5rGorw8WjweGnJ8f3/HdDxcq5TsYGT12S+LWx1kAvsjS5cSLSkBQGtvJ/LOO+kR2eFs/yYEyc2F/tj9o+97X3p5xTPP4I3F+gwhyp5A8YAdqwAWgcoPfIDY//f/Ee7tpSccZnJFBZe9/TZTDh3iriEolarCpJKLQDcW6yzCYp5+rCteJba5yG4PpGKZsqtCoZU/pjofjtf2IVsy8ioqSH7oQxgXXYTpsZotY9kyvKtWMXX/fpK//S0H168f1LmaqHBSKtThLPW1aqyGSmTdEI2qnPYrgaXW002mBI+osWv//2akb6ldp8tGJrOqBUg0jmrgwkSAUxofHTDy83n3mmt477rrMAsK8JL5T+Y98wyLX3yRYEkJbfX19IZCOaOlXbg4WSHfC3qO7er94iRU5RKpRIyBGHkUcw/QcPXV6ffOePlltNZWusi0T2KUSizLyJOWZfIqgreE4KSqtrI668EKANcdFCD1N5tA5OqryRPpUg8cIDiACmfHQq5qZ4KYaz7wJfp6g1WoAkd87VrLiwt4XngBwzRzfHJomDAkt7/UVSpxa5g8mZdXryYSDKJ3d3PG44/3yVmpDp+OB1RfeinBO+7A1HUmmSZNmzfT/clP8m5hIX87TnuCCllJ7cHqUYkbzAfUtENASLAxMqYfJ7uCMu81sjd3kJ2VooNsgiMIzVD8NlpbG7677sJ88EGSN9yAsWYNhYEAs2prYc4cfOedR/Dee+n66U+PK33KRIYavOBR5k7bKsikjRMkVzTOQnX3AaWdkCcuIIP0nx1PZAjrMS4Tx7mcC1G+HiZqToH0w8DjYf9FF7H3hhtIlJXhgzTBnb19O+f87neUvPce3ZB+aIrOhRox7cLFyQi1Y66uO20HZ5++6t9X02M6iUBGcTHNF1yQ3u+Mhx9OW4mcLAnys0wmg3nSdhH7oOYeL5Am2YYgk/pjofv002nPz6faNMlLJqltauLZcVpAxvT7Mc46K72uP/fciH3XhCG5Aqp3Rh72FBfnwzffTGttLaamMRvw+v3p1+VE7WpmhbGEWVVF/AtfwNR1NE2jtKeHKffey4YXX+TgMOxf+GSEotZJtmqXAmo6oVicxC4yrnw5DYIUbKaSG3n/HWSUXNXzPJxBe9qhQ/h+9COMBx5g+re+BXPmpCu8aWvWkFi0CP3ZZ/Hecw/aCZxQXzSq8vBWrnkembKRRWRsCqKxFQ8AMcwklI6iiF08hWz/bdRhPTLA98gqrtxxnUhQvXXtZ5/N1o99jPjUqXixzrsGVDU18b7f/55T33yTMJmS1XlkJ3hXya1LdF2crBAkUSa28rrorIt11fevrqvvkyG2xe19tl5+OUmvFx0ofu898uxOqZNqK0O+f33Ka3LsQy4ltz81tD8cueIKYpEIB0IhZmzbxq9//OMhq7gjheS551JYUkIgGCS+YwexxsYR+64JQXJlIqpetPIkKmK9tmZNunTsaY2N9NTVpSP2nQjuWKtGZn4+ia99jU7DoMw0KYzFuPzVV/nDm28O23fIPlkx6ix6i+JcxoDKCFTuBU87GZIbzWRQkKdcaZ+kUewsj6VMfGT/0nBA378fbr+d67xeNi5YwL7KSnrCYUxNI7VuHcYFF6A//TTe++5Da28fpm8dX1CDBeRGVKyrr6lBDgVkromovV+DzP9ZQEbsV68Hp2ujv9d7lG2qmjuRoAPRRYs4+IlPEJ0/P63cakCwvZ21d9/NWc89R7lhUICVlihK3zKduVQqFy5ONsj3gjz6JHtSZR+r/CxT+YEIQJODxZ1UWFElLeL10vGhD1FYVUUiHGbSI4+kA2HFPp08sWr+W/V10dbmKp8uOrw6x6fiRidNomvlSms5EmH3976HOc5GMOU23X/dddTYVVrPPnKEDbW1I0bIJwTJhf6HHuQhho6ZM+nxeNBMk7xEgmmHD+Opr0/ntVWHGcac4ALB73wHfeVKesJh9u3axYoHHuAPzz47rH+6OEciBYlQ7NTXhJWhvDPzmkxCogPYlmtYusueyw3PcJ7/hlCI+771LebW1RFJJIiefz6cfjoAptdL6vLLMdatw/P3v+N54AG0rq5h/PaxhWxVEARWTtot5vIwWZH92VwNtfiPotL75JzHMtmVK5VF+1l2unbkUZaJqOQmp0+n5eabia9cmX7gAuRFIqy4/37OefRRKuPxdIdDKOkywVUf5Mc7VOnCxYkIldj6pHXVxypsAfIzSbYpig6jILIe+nIKMYKV95GPULpkCZqmESguZnJLS3rkRRYFZCuYajPIlQ1BFhTUkTbVk6sNsBFosVMRAuRt3ozR3Dxs7ehwPaPF+U9OnYrn9NPTQfXzW1poGQbvcC5MGJIrIPe4VBU3Aby7ciVaJEJxKMScvXuZ/MMfErVVXPVBOh7S9Ez62Mcouf76dJqwzm9+kzf++Mdh/x41u4E8ZKPaDEqxShjrZCfkV6Pinc5/f0pdruHp4URWcNqzz2KccgrJm27CWLQIADMvj+Q115C69FI8jzyC56GH0Hp6hvkoxgaiYRUpX4rJzpZQpKyLcoxO+WdlRUR9z/FcC8farl5bE0nJnbp8Of5bb6Vp3jxSvb1pW4KeTDLv8cc58957qQ6H8ZOtsud6aKtDr+Jh6ZJdFycj5I63fP/0Z8USbYgcQBYlQ7Dk9kwQWqTX4oCpaRgf/CAF9mjwkoYG9Dlz2LVrV3p/KlEVxysTVPl1YQ9TyaxTeyB3eAeClNdLy8UXp9cLH3+c4XyiDXf7E7n4YmLhMFRVMfPwYfJ7e9k9gt7hCUVy1TQfclSjeHhuW7kSE/BEIpz+xz9ihkJZD9JcpvGxgBkIYHz84+kiB6c0NNDT2sqzI/BdgszKN48gLLKlQFb6PGSrrrKnWT7vTsTnWOrdaPkv9W3b8H3pS5hLl5K88UaMefMAMAsKyPv4xyn+5CcxH32Ujv/5H7SjR0f4aEYWHjIKoVBuRVCZmOT8hkU4q7FRsjtFTv/h8VwPKYflXJ8bLyMsuWD6fBgrV1J03XUUXH01KV1nimlyOBTC7Omh6oUXWHz33UxubSVItuokPxhjZA9RqgqOS2xduMj2uzsN76vD/qKdEvdTlIxYI7cv8v0l1sXzLnbWWSQLCphqmuQnEszft49n6uvTQbgy0RXtlExsIZvE+pW5UyCwasE4njagZdUqEnYqLu+RI+S9+eawktzhhOnxEL3wQqKRCPtCIcoefpi7Hn98RL3DE4bkqr5c0euSH6CdxcU01dXhBXTTZMamTemLXjxI5c+ontzRfrAmP/rRtA832NvLym3b+PUI9WjEb46Q8SULdTVXgyF7mGRTvqrq5VL5ZELjpOiN1vnWAO3tt/G9/TbGypWkbryRgkWLrEwMmgaf+xzdF19M7PHH8fz1r5a/d4JBbixFgyoU2woyOQ3l5TIdeozs9F5dZP5jWeGXM4YJEqxmOVGvj4FeL07BIuMJJmAuWkRq7VqMVasw/X48VVXpIFETmHroEIGvfY3pe/emya38MJNVHdWHqz7wPMoEmZEXFy5OFsh+XPU+kuMKRC5XQXJ7yL6PBPpTcUX7YwKR664jZQdwzd+8mb/ddReHQqEsK4KHjN1LHKvPYV0cm2iPC5R9qPvsc9wDuPEbLr88vVz8xBOYxniVCCB81lkYxcUA9DY28tZ//zfaCKUOE5gwJBeyk63LF6qY9q1YgaFpGMD07dvRw+F07lsnRUlN/DyaMGbNwrjiCiJ2j2bJ44/z64cfHrEejfjtYlnOFKZ6hmRfYa40KWpmCqchb5W45CJGowUN8LzxBvobb7D4X/8V/eMfpzMYxAQCJSVE1q0jtW4dnrfewvPXv6K9++6EKhesenIFyZUrl4kpr8R6IdAO/s7M/x3HuiZS0nIHmXRwbVjXDfT9v6Hv/z/U940ljMmTMdasIbVmDWZ1ddZrosT25PZ2ltXXs/3rXyexd28fb63TEKsaaKISXaHguGqui5MVcudO7cCLSY47EHOh3OYityl7X6JIjS69ngDMU08lUVeHBkQ6O9nz7/+Or6OjTyCoaC9llVl04IXFSBynLDiopBZlXWzTGZgf9+js2XQsWACAlkxS/NRTdB77Y2OGLqnksOcf/xhxggsTjOQKCIVIHuaMArtWrkxfyHPeeKOP109VkcZqeNQEAl/8It7qanrCYaKvvMKmO+8cUUIlfrtT/e7+igdANuEwcmxXVfFc67m2jyY04Ohf/8pnZs6kccoU3p49m33hcPr11IoVpFasQN+9G89DD6G//DLaOO4dQ18fmFq9TBDdGsAzyV6otN6s+aD0SPZQH1hkthuL4LZKk1ByBQZyfTj93wP53GjDDAYxVq8mtWYNhv3wUKG1tBB/7jmie/dSVFbGa/X1xEIhKuirPskkNhe5ldedsiq4GRZcnIxQ/bhipFENnhUder/9HrWzCFJAGdkeXQHR5iSvuy7dFvmefZZ4R0dWeySTULEu7At+aT9OgoNQcuX9yPsCidgO8Kbf+/GPk19VhREOE/z73/GMQDC105NvMG1SrKqKiB0Ijmni+cc/hnBUA8eEIrkyKZW3JYC4x0PTsmXp7bPffDNLtVUJ7ViquNVXX03wkktA06iqrKT3m99kNJJ9yEPEJzsaQiF+ceedzK2r42B9Pcm8PDzvfz/GmWda6ecAY+5cjH/7N7Sbb8bz8MN4nn4aLRY7xp5HDrkaFkGq1IeA3LiW2pMnSIb1lpM22moR8EUyEcfCVtKDZVPowCK4LWSyLZwomFFXx6TLL+e9KVNonzsX09u3WdR6etDXr8fz3HNoO3eiAc1YHQBxKnOlFJK3qUOv6gM5V6YLFy5ONsiBlyK1lmytU9s4P5lCNqo1QYhiouMZo++9ZcyaRXL5cgBLYXzooTSHcIIgsSJOQeYTssIrl8bV8gf4w9VNRrZX1wMkTzuNgx/9KPkeD3lVVUzbupVDA9h9f1+ltj9y/I6TLTEO+BN9bYlOo7qHL7oo8z2bNqEdOXKcRzs4TCiSq3rV5F5e+6mnYhQU4AHKW1qYtn8/YbKjLeVpLKOW8z7wgXSw2WmNjXQXFY0KyXWRDTkTgw7o3/0uxpQppK6+GuPCCzHzrCbTrKoi+alPkfrIR6z0Y489NuJBarmGsHJtD2D5bUvJrmQH2QGG/jBoHfaLBml5tjeSsSR0yw/dLgABAABJREFUkV3gQ264ThSYlZUYy5dTfNFFFFx1FR1eL9WmSW8oRCRiVbzQUin0t95Cf+459LfeQkv03z3sL3+3WBYdBJGBRI4X6M/y48LFyQiZdInJQ1+bjyCc0DfLgiC2QsXNhdR116WX9VdeQT84HGWYckDt2cpztccbhyJppE1M7334w6Q8HiszU1cX8zweVNrotEt1u7ws+53lIHU1jkcmvzEyVjbxDOkkkyc/AvTqOkcuusiKbwC8Tz/NyBsVLEwokgt9S16KC/jQypVofj8Eg8x97TUKySRcF++RybG6PlqE15gyheaaGmbZXpRT9uzh7nFaeu9khN7cjP7zn2P+6U+krriC1JVXYhZZIQZmIEDezTcT/MxnSL38Ml0PP4z+5pto8f7q3xw/xPUokoKrQUlOcz8ZtVY0UnIuSNEwdgPFwrSVAFohHoZ2skswiwZKfG6i5rAVMH0+zFNOwVi+3JqmTQNAr6oi6fWmA8gCwSDRLVvQn38ez0svDTiXsmqDEg8FmegKYgvZ5FYlw2NhoXLhYrwil7Dl5HGHvhkWVIIsLwuYlZXkX3IJgeJiesJhkg8+OLI/yGnYJ9cQUAq0BBR12kIF0OXxsG3BArB5xOI9e2ivr+9jdWIAu5eX87FSTwqSK3iR6LyrBFeO2+gmQ3C7yDxHosChZcuIlZdblUg7OvC88QbJQZ/A48OEIbm5hv7ERd+8di3U1mJoGpWnnUaqthZfKOSYVkRXJgHZhD5SSF15JXE72Gzq/v3c/d3vjtvSeycztK4uvPfcg+fBBzEuvJDkNddQOGdOJiPD9dfTu2wZvUePor/xBvr69egbNx5T7RsojpVIXN4uhsSKsVKGCe+XPHSX1UAlLGVAi1oEt5UMye2236equBORcJk1NaRWrMBctgxj8eK0Mi9DBJAV9fZSu38/r33rW3S//PJxfY/sN5e977L6IYqgCCVJLMvzXEGdLlycrFAVRye7j0x2wblUtipqqUSw5NOfZtLcuVZeXI+HJsOgYaR+lJpKIddckBxbpciLQlHMapt3r15N1OfDDIXIN0344hcJh0JZfCaXWKJ+lfweOahPVnJF3JO6LoSTXFOPPXXdcAPBqioi4TCpBx4glRq9lm3CkFzIltrlPylVXEz37NmgaXhNk8kdHUTr6gjYRSDUdD1jpeKafj/GunUARCIRGn74Q3SX4I5raPE4nieeQH/ySZZ8/vMU3nwzh8rK0qpfJBIhtXo1qdWr0Xp70V9/3SK8b7+NlhxcX1V0vo4Vma+mfJPT6YgADNFxE1HHSOuBsDXEJAiurOaKYaYI2XltxzNMv5/qiy6iaO1amqqq6AoEcr5Xi8fRtm4lvmkT0SNHmFVSwsb6epoHeT/KXv/+lFzZriATXPW9qk3BJbsuTjbIWUbkZ75YdmoXIZOHuj81F2lf8bIysCuGaZrG8r17yR+pClzqELQuLTupGhLJJQrFMattfv3qq/ECyUiEOX/8I8lduxz5jOcYX6E7bC8gmyeB1S55IF3aOG6/3mPPZWtCj7KuLV2Kfs01lOo6JVVV6PX17B36mRwwJhTJhWxFV/wRnbW1aOEwZlUVkzo78SaTVNgWAPlCl43bThf7SCN14YUUlpcTCAaJ7dpF7J13RuFbXQwHNNOk/ZFH+OycOXQWF7OrpoaHW1vBzvkHYBYWkrrgAlIXXGAFKr32Gp7169G2bEE7zp6rrFrIqWjUHJF+sht5uZGS/VRCyRXtZQHZw0sdZHupxDCT6hcdLzABc9o0zAULMBYuxFywgIK6OoJz5mBqGtNMk32SvxZAP3AAfeNG9E2b0LZuTavuzfY0FMhWBafc0LKXDmlZtSvIRFkmzi5cnIzIFbgpj2zJU4q+pE3mCvLzXyB17bWEo1EmmSaVnZ1MPnSIv420hVAciMwoRVk0lcGnSEuinm5onLOI5jlzLIIaj7PoySfpoK8FQ3yNh+xz4vSV8gihqgBDRhgR7Zs6mi5G/nocls0PfhB0HTSNqe3tBEtLXZLrBJWcyuudc+agRyJ4QiFm7djBqXfeSXUoRCe581Hm4XxRjCQC738/U+3h7lWHDvFiba1rVZhAaAiFuMvOyLDbThuVN3OmlXJq9WrMyZPT7zUDAVIXXkjqwgvRurvRX33VIrxbtx4zHZncyMgEV06VE1C2yR5cuSMIfRso2ZclSG0XfYMF5DLMcm7psYBZWIhZV4exYAHGggWYCxZgKkptoKgorcaYQFFeHrEXXsgQ20PHG3t8bKjnRCanxwo8U19Tfb0uXLjoa1WUSauqQIq2rkB5j7oPAaO4mNRll6Xz1Zc++ig/f/TRkX0uq+ZiwTZVxi5H04kGuRuevfrq9O9Z/PzzlHZ3p/Pdq4FkurRd7RQ4dRJyZTBTC2ioo99COVenXo+Hxro6ym3v8MK9e3lplGOQJgTJ9SjLMgnwAUftXo03EuHURx+lwvbiyiquU0/FqVc3UjArKshbuDBtqVjQ0sKBkRoScTFikDMyaIDW0IDe0IDn7rsxZ8+2CO9552FWVaU/YxYVkbr4YlIXX0wwlWJqWxtdb71F2/r1aLt390lLJve8hS1BTpXjNMluU5UgCdKkWg5SpNvNdDUz1UslyjOPpl3B9Pkwp02j6txzKT7rLA4UFdFVWppO7ZYLPV1dLMzPZ9rRo0xtaeHh226jc5QaVDktoehMiHMuK7k++/2qVUF+r7ovFy5ORsiE1EnNlWMSZCW3gEwlT0H+1KF8sZy45hrMfCuvV3TbNjb++McjWwBI9k0Is7Bci10dthMktxsogpbZ1bx5zll4TOs3nP3ww+nUaE5+Y1XJLcjxFWLdQ990YWqsgLyckOaiLRPPjARw9Kyz6PT56A2FKDZN1n/5y+wLhUa1XZsQJFdA7qHIfpL22lo0e73WJrjypNaGd7ogRlrRNc44I1Mlqa0NTzzObjerwgkDDdD27kXfuxfPH/6AOXduRuGdNAkAv9/PDFvJL1u7ls7rr6e3pwetqQlt1y70+nq0Xbsw9+1DTybT16yc+FzkvC0hE2hWar9PTvUlz9XUVvKy7KMSQQSygqsGRQ0nTIDqaoyZMzFnzcpMU6ZQGAxSbJ+rqaZJQrEegBUcqO/YgbZzJ/rOnaR27+bQ1KkU1dWxsb6exlHqQMpBYk4Nv6ziysExMtFV80u6aq4LFxZkQUpWZtVR/Xyc7Qrys18WuIxgkPiVV6a/x/OXv4xOhUuVsTsxT3moDtLqw6MXvg/Tq+FJwGmbNjFt/36ayPYey1+D8jU+6WsCyrLffr9MWCHT4ZbtayqpVds9MW+7/HIMrBik1F/+QveuXaPerk0Ykqua0MUFbxYW0jlliuW3MQxmNDT0IbciCEe+QZy8uSMJ44wz0kMihevXc9cf/+iquCcoNEDbvduqmPa731m+0VWrKP3Qh7KG00XgmjljBsyYQerCCwHoTiZJ7dtHatcutF27CO7aRWFTE37DSBPcUjI1HUqxrusofYeNRIMTzfG6PEVyLIvGbbBKrglMX7yYyeecw55kkkP5+RaZnTkTs6DA8TOBYDD7XAUCRLdtQ9uxA90mtbS09HkoyUr7aEJNH+ZEbsWy/H/I73NSSlyy6+JkhpryyinLgswRDTLCqPq8V4fze666Cuz2R29sRH/11WE/fsd7V/VbyHK0TG7FXAc6oGeSn0cuupbOggryO8Jc9vDD6Y/lCqTXc3yNmFT7m4eMnxayCwMJQisEEflZIX6r3G7Fp08nctppAJiGgfnkk2NieZswJBf69sR0oGP2bHQsYjGlsZHiRMK6wHXIN5yVXNWzONIw8/IwliwBrB7Nu7/4xYj4A12MP2iQVhqDzz3HtbfdRlt5OYeKijiwbx+awzC86fWSmDuXjrlziVx2GS3AzliMmj17mNnRQZXXy+SdO9G3b6eko4NAVxfF4TC9WA2QGBKXlVwReKZGwKqprJyWVQKWdawAxcWYFRWWYj1pkrUsrRfOmEHewoW0aRqlpkmHgyqbdc5Mk9jevcwyDKq7u6lsa+Oh73yH7h07BvEPjA5Ui4Gs6qoZXgTJVRURWSVx4cKFBTXQ3CkBgSC7BtnWRPk9sifX9PuJvO996e/w3HvviKi4fTiGPHQsJFa5VKUgumLYTsirpXD/wptonLoQ0CjP8zO7s5Nu+vIb9evk8yfb3/z0LY0MGZIsMsSIZXnkT9jbxHNEhQHEr7gi/bzQX32VVHv7mHTYxw3JzUU45Qg+J2J6uLYWA+thO3nPnvTDucDIVq1kFUX1mYw0jCVL0jk69aYml+CepGgMhXjgttuyA9fy8zHnzMGYNw9z3jyMefPQJk+2yLE9ARj5+bStWEGHPYSvmSZFoRD+SIQ8wJtKUdjVRUFnJ/n25O3sxNPZidbZCZ2dGB0d6GVlMGsWXY2NtBw4QMLrJe71Evf5iHk8JLxeEj4fCa+XmNdL0uMh4fOR9HopmzqVGXPn0hyP0w4Wia2owPT5cv5mAH9FhaOCDZblQNu3D72hAW3vXrSGBrTGRuKxGHtqa9Hq6nilvp6mcTzq0R+pdRox8pHxP8veZ5n4ypkWXLg4mdGfJ9TJM+qUoUT9TPsVV2DYgav6gQPoGzaMzo+RAyTE8Jsnx+tR0iQ32ebhr5e8H9AwNY3FDQ0019XhCYUc2w3oG6gn2qNc/lzBp0U7Jo8+ZWWjIEN6Rf5vFWZhIcm1a9NVzTyPPz7gUzTcGDOSK/+vThF98rJTL0X8EYfnzMG01yeFQllKlqi6IXob8jCsWl1oJHsYxsqV+P1+AsEg+ksv0Xnsj7g4QaEOp2uxGNr27ejbt6e3BYJBiufMIa+uDm3ePBLz5mFUVKDZQ/jYZDEZDIJNFlMeDx1lZSTLykhiVftL2PMk9jXu9+O1SbJpK6qxSAQT0h1FeS4v5/v9BGtrSWoaVaZJ5BhqrIyecJjJFRWURSKUdXZy9M9/Ju+119D27YOOjpwKylhZD44HahCGeDY5dciFMiLyS6rKukp0xzqjhQsX4wW5gp5ypemTR0X6EN38fCI33khpVRXd4TCx++5DM0epyKzMDpF+iAiIUP0EdjTdi5XnE015wDTxx+MsbGyE+nrayBTx6ZF+rxNUm4eT5QOyz6lQwz3KdKxgfWPNmrQVTW9qQnv33WOempHCmJBc2RAt1p22iWV5+EHtURxZtoxUVRWEw5Tt2ZOWzlNk5/yU87c5DcWOJAKrVzPNJhdXLV3KQ27qMBf9QA+HKdyyhYotWyjH8t0Gy8rgggsIf+YzhAsLifp8BLZuRTNN4iUl9PqtfriZYzIAJJKsAd5gkGgk0ofgiknen1/1yMpqbE8PWlsbHDmC1taGduSINbW1QVsbqSNHiFZXE6yrY0d9PUeVyjwTHU4PXlWgQXqP7Htz8ripHXAXLk5WONl/+stBLcceyO+VC6z03Hor5aedhqZpzAgGOdrURONo/ijhARA/SKSAkHObSl4LMwUPrr2O/I4IlT0hznn9deb99rd0h0J9KlU6kVw1k5SavUwOSIO+9ipdWZbjo5zacRNIXXFFet3z+OOjE9CXA2Om5Ko561RjubxdNVeDdcHq8+fTs2oVmq5jVFWRT8YfYpD588UFID9M5NQ9/fV+hgrT7yd/1qxMNbauLua6qcNcHCcKjx6l4qGHKNuyhYK6OibV1zMtFKICqARSXi+NJSW0FBdzoLSUwyUlHC4pobWkhKP2FJ45E48gq6kUkffeI+/IEcxkEjOVwkgmMRMJzGTSWk4mSdlzb1kZi9eupSCVwh+J8Pivf03eli0WqY1Gj3n8jaHQqGU7GAuIdkQQWHm7PLwXl97TXzCg6oV24eJkg7junewI8qiJXE1QfrarQ/gpIF5YyOHrr6fA7uyvCIXYN3cujbt3j96PEj9CkF01xZNSqerNU86gqXg68QR4u9s597vfpbunh1ZIK7kqt0HZlcyrBLlVi0HIJLeADNFVA/jUNGUqzNNOw5g+HQAtGkV//vkBnZqRwpjaFZyiJp2W5eAxgRQQP+MMDLuSRnFvL8aMGXRv355+4KgE1ynBvTycMRKKrllbm04dVtrdDcmkmzrMRb/orwHRQiECoVDaPyXgSyapaGvD29ZGEJhCdhUzsZysrSWvro6m+nridr5Cp1Rj6vYI8M5f/sJs20986ARTYwcLNTeuk3orp+ApwM7PSf+BfqID7hJcFyczVE4oE1xxr8idRNny4/T+A1ddRdgwyDdNSiIR5jQ28sxoPo8FybCZqGlkNqWUudh+9+evp8e0PrLyiSfo6Omhg0xJdjFinUvJhb7eXFkslutQQIbcFmCdT6eYqP6IbtFNN6FXVdETDhP7+9/Renv7OSEjj1EnuaqfQ43+U1PIqaZp+cQeOXoUbC9NMBIhVl+PBlkkV44EdErbM+J+3NradOows76eu+6801VxXfSL4bge5aFz+YHQEQrRYVcDFIGY/SX5ll9rCIUIudduH8gEN65sty11aS9uVHqfOuSqVj9zlVwXLiyoCq6amcTJsiDuqXQnMxjkwLXXEotEOBQKUf300/z+gQdG93mcsoitzD/UZXnbewsWsGnhQhKAmUwy7eGHOYBFbOUqlSLmKEqmzXCqDquSXVmpFSRXEN6Yw/uOVTxr6ooVFFx3HaauU1lVRXTr1iGXTB8qxlTJVT0iueZOfpAU0N7bS28ohDcYRHvuObpDoayHhpziwsmuMBpDguacOYCVOmz344/jcUmCi2NgsKnt+os+VkvLikkObOovGtlFbgifrRgmVH2EavojoeQ6PehGMyDWhYvxDvVeksmuaMuEEql2FNV7at8115C0YxeM+np2/ed/0jlaAWcSco3iOG277/rrCWP97lkvvEBHe3ua06jcJlfg2bFKIgtSKzhXAX3Ts+UabVfhv+EGUrqOpmlMaWsjr6jo5CS5Th4R1QwtJzGWt8ue3J6KCpKRCKlIBK2+Pi3XR8mOYI5Cn8pOci9vJB8kguQCaHv2jOA3uTiZIRNVeWhPJrhC8ZAbUXVozIn0itddwtUXQjGRhxpFLlwRnayOTIn3Oanmcps0mmkOXbgYbzCkuZjUYDJRoEAMsTtlKEkAvcXF7L/qqnQgbcmf/4wxBgRXqLiyCJdrfmD6dN5ZuZIk1m8v/utf2UfuAj5OnlwBp9FxNeisQHpNFNDKJT6qNmIAMz+fvXV1zDBNTODUPXv4+ziwZo5pnlwn+dyJ2MplfGX0VlRYAWiAp62NHrL/CDktjyC6cuSleKiM1IPE9PkoqKsjUFxMT3c3qb17R+BbXJxoGCqZ7C/NjqocQF9PmLzs9JqLbMhthzj3om0TgWaQ3bl3UtvJsd099y5OVsgd7VwZFkTnXdiBEmQT3RSw67rrSBYUYAL5+/bh37CB8Gj+EBuCcwg+0u0wCRvChve/P63ilrz+Okf27++jUMfoq17L7YVT7JMqKspEV46BkhVdmVfJ2RWyftu6dYRNk32hEOWxGI9/+cvjIth4zJRc9eTnIrgFZEvjsl2ht6IinSOXtjYiyvtkM3pcWpZ7PHLgyHBj8urV+OfOBU1jbiBA+9Sprh/XxaAwkE6YSpDU4T11OE/NieD0HS7BOjb66xA4KR56jvfKy27nwoWLDNRAWNWyIAiummEhDnSXltJ0xRXptIjlf/5zhjeMMsRvECpsN1ZAsEgF1oFFcJsrKmi44go8xcVEw2FiDzxAiL4WMieLlNqOq8FickowtTCEnM1KzaXrlP1KwASSV10FWNbMxC9+MW6smaNOcuVegIfsuspqr0LM5RMqX5hRm+RCRsmVofbo1F6euAnUqMbhQvXy5XTbuUUrwmHK3dRhLgYAp0wykNszK9RCdbvc4xfkVu3kuRge5CKr7jl24WJwkDvqskopBCuZfIl1pzR8jZ/9LL5p0zDDYXxbt1L82muEyaTR6k9AGM5RNbldFvmxBcntwCK6rVhZExr/6Z8oswWyOq+XA4kEDYP4frXugBPRVdOE+chWfo/lwwWr4JU5eTJg5U3Xn312EEc7MhgTJVfYDwrITl9RgFVDWd3mo2+0twEky8vTSYbz2ttBeV1VrdTUPOow43CjMRymzPanBCIRNo8Df4qL0Yc6CqGqe+r2Iqz7QG5swLpGReOo+jvBUgDayE4bJgIT1LQ6Lly4cDHeIRRbWQGVSRdki1TyiJUBsHw5h2+5Bb/HQ2FVFbU//SkGECRjGZCDz3PZheRtasdVfc0pA4R8XP0FyKWAeGkpHZddRpGUy7dwkAJZf7/LKehNdBjUY5M/44SUreICeJ56Ci0Wy/HO0ceYpBCTexCC2PrteYG0LOZqNHIciOk6qbKytILlb29Ply/NdaGJdfXPHqmHfmsiQWcoRCAY5KX77+eoq+KedMjVG1ZzDsrvEXXE5YhX2Ysm23KEsmGQrQrI/i7Zmy5H7rtw4cLFeIRKMAUhk9tP9b1xssWtFLDzk5/E8HhA06jp6OC0WIwmsjmBKoj1xx2gL/EVxyC3rU4xEMJDq4puqoDXfO219MZiBE2Tqs5Ophw6xMNDFMiciHiu3+t0bKpAKIuExuzZGIsXA6AZBp5HHx3SsQ43xtSTK5RaQWaL7OVie15kT6J3kZX6qKwMzS5Pmt/ZiZ5K9fHpqH+QHGwmX5Aj9cA3KyqIRCJEIhF827cPOjWUi4kNObgyV8o8ObhSdPaE8V9AVjLAum6FtwsypFYOYhAFUETQpbg/XDXXhQsX4x2iEy/ayRh9LVyiPUso249Om8auuXPJt7MonLljB9TXU26/R7SBssrqVH1QtkKIfTvZk1TfsFqRTY4NcuIoKSBaXMyhyy8nFolwMBSi8tFH+fmjjw7a5qgG7qkcSI1Vks+HSoSdyD1kq7j6yy9b5dzHEcZEyfWQsSQEyBDcIqBUWhbrIlOC/LDuqKjA6/ejBYP429qyhi5kT458ATml6JHTlAw3zIqK9PJ4++NdjA5kUpsrLZ5q7lejXUWKKmFXkJWNAjKlrEXuxIjDshpt7MKFCxfjGfIzOkGmLZTbQ5mEyUHqHmDrzTdj9PYSC4WY0dKC/xvfwLCrRcojawlypxqV03qhfCf0HwchlmXiLBeuUO0ACaDp6qtJ5edbgVzbt7P1xz9Of/dgofIdmeCqajNkk3BVEFQJbqK0FOP889PrnocfHuLRDj/GzJMrHvxCyRWEttReLpHWxRBut/2ZHsA89VTyamtB05gCBGtriYRCWQRA7rnIN4XTUMNIwCW5LiDTMMt5CX0OyzLhlVVeAflaFo2+bGcQDbVTIy03sq5dwYULFxMBQsmV7QkGVnspE2DR4RfCQc+CBTSfeaYVsxOJsOTrX6dg794+RRB89j5EVVQxAib4hqoa52GRVqfjlDM1OVkBVGKrWiJ6g0Gar7wyvc/gvfdmVVAcDFSV2YmQy4o19CXh8nGq+4hdfjmFxcUEgkESW7cSHYdxR2OSXUHOpJBPtporyG25Pa+wP9NB9tCuNmcO2MZsn2FQUlfHwVAoK/pyoGbykYAJFE6bRqCkhJ5wmJQdGOfi5IJQDHJVmBHLYmRDzQctGlk1Gbr6HU5BBPIwlNpwuSTXhQsX4xkpMlljZCuCeG6LgHTRrgqi6we2fvzjmFhtae2LLzJ97970a2IEWaynsAhtp/S6yOokW8NkX7B8jGraRpXIqu2vvCwTyIb3vY9kYSEm4GtqIu/ll4dEctXc2/LzQya4BdIy5M69qxJ5Iy8P7wc/yBRbbFy3fz9P1daOuwxSY2JXkFWtANn+21IsglthzysBTQefke1P9B48CLbXxpNM0m33IOQ/T80pJ5NbyP7jhhvTFy8mb9480DSmlpXRO23auPvzXYw8xPUup2yRSa3svxXbIHenDIftToEOcgPr5K1y4cKFi/EMJxFKViEFsZULRiWA9hUrOLJoEV5ATyY54+67KSDbBimmYnt/HfZ6OxkBQpBZmfDJVVdllVQmkXIckCCRKsnt0077/TRIFdnK7r132Npp8YwQo3jq80AcS770e2Wia0hzmU+F160jv6YGNI3iWIy5ra3sGYdpUscs8EzNriDbFbIIbrX1mbJ28CQyF1ThkSPooRCpYJDIM88Qta0Kco9LJgXgbFFQ3zNcmLF4MS12jlx/IsHUcfjnuxgdyIFnKsH1Oyw7qQEymVV72U7+c9XrJbzosl3HhQsXLsYz1AAvD5m84HIwmrBAJjWNA7aKawLznnySikOH0iS31J5KsHhGwGftuyiRbRkTkIPZe5TX5ONTSaSTWuokOAjyuOeKK0gEAlZFtuZm/OvXp6udDQVyzJGarUK2UYhnE2QH4cm1BOTqsEldJ/z+96OHw1RUVbF4zx7MZJLdrl0hW9USCpZImSRfhJWANslesFlCcQskDOuP8fp8eCIRUpEI+sGD6f2LPzCGcwSk/L5crw0H9jY1UWjnyPWM0z/fxcgiV0W/PLJT5KlzNRBAJqjy0Jdct9zJL+VkzRlpm44LFy5cDAecCG6CTLsalZaxl7vXrCE8YwZ5gDca5dS//CVLTCslI6DlBUnzi+IW8IUzCq6szPbYk6rwyscmvz+hLMtEUrUrJIBIfj5NN95IYVUVveEw5ffdh2Gaw9ZGqyN+cnEgeVm2K8hBZ/JvEvvqPvdcUlVVxCIRGrdupfE3v+HFbdvGpZA35kqunD5MeHLLAU1ciTX2h+yuROkR++L2+fDam73JpGN2BaRto40DBw/itXPkNm/dSnQc/vkuRgdqoKU8ic5dQJrLvi/RqEN2zXM1g0Ku611VbF1y68KFi4kCeXhctIUJ5T2irTR9Pgo/8xn8VVWY4TCz77mHQFdXmmfI/CKvBItbTLE/7IPCQ1Bjh87IKcBEG9tB35K2MvGTJ1UlFZM6QhcHGm+9lbzTTkPTNKqKiqhoamLfoM5WX6iBZwbZhFzYPcRxQl9yK48KxrEU8s7rr09/R/Qvf+GFcZYbV8aY5slVy5dmbZcj1CA9NpEelvBlBg48iYTjhTam8PnSOXL1I0ey/MQuTl442WWcrl3RyKqRuU7BZKJqjwsXLlycyHB6rottZbfeStmKFWiaRkFpKQs3b+7zfhEEnKU4QFqmFSNtMv1Qi/bIUNdVqLxGFR0ShYXsvf56NKm6WWzOHPbt2tXvPnN9v/yasMWJ36IG0ckqsxhhh+z86nJWHmEB7Vy6lNjs2ZgA8Tiexx7r9xyMNY5JcjVNKwBewjpnXuAB0zS/OZQvVR/m8lCr6OEUqmO29lM+7SXx+TJ5bhOJ9H7HjddQIuHi+FycnHBK2aLWAZfvBWFFUHM2qhG54+p6d+HChYsxgllcjPnhD2fI4p49lM6cibFjx6D4hVo0CnK3t/JInSDJav5zOTWk+I4CYO9VV9FrGBSYJsW9vcxraOC5HNbG/ipl4vCanL1KzkwlfotTajbIfu4IoitXamu97joMLEXX+9RT0N3NeMZAlNwYsNY0zbCmaT5gg6ZpT5im+dpQvlj1CMoSfgL7IhTdB0h3J9JEwedLm8v1RGLslVsFZl5Gu9VckntSQva/isvZqSyl7JsV17+a69YpDZiadcGFCxcuTkYkb7iBrmSSctOkrKeHRXv3sru+niCD4xdq0aj++IVall3OpKNa1AwyFgEzEKD+mmswIxEioRCnPPMMb953H0dDoT62CPU7fA7fmUf280XOyy7mAuKZJCCOC/o+d+TnT/fcufQuXmypuIZB3t/+NuRcviONY5Jc0zRNIGyviv/NHMqXqtkOnOTzYnlcFtLRZGk1y+tNH4Rhk9xxFVDjKrku6Js/UZSohr4pwRJYjZGIbJUVXLk3rQaZuXDhwsXJCmPqVIzLLiMSibA/FGLWo4/yxqOP4g2FKGRw/EIWEuSsAk72BzGXCahacEKQ3BSZvLTvXnstyUAADSjYtQvf979Pp2FkWQdUldanfIfTsiC7alEh2XohpwWTibcc0yROkfwcOnz99elnTt5LL2G2tub4V8YPBuTJ1TTNA2wE5gI/M03z9aF+sZNdIauyhgEeZTjBTEg9LZ8Pw+/HDAbJmzRpfBFcAJ8Pv99PIBjELClJ9xJcnHwQ17jaO4e+NgbRAKp11J2ict2ukwsXLk52pD7xCUzdooWp119n/49/TAorbn2w/EL+jBw3IUO1DQhiKfyvctErmeTGgPaiIrZedVX6cwv//Gd8hnFMv62aflXO2uNT1tXME/I+5WA+kZItQnYKVvW50zNlCuGzz06fj7wHH5wQz6ABkVzTNFPA6ZqmlQIPaZp2qmma78rv0TTt08CnAauUXg6oeWllFUseVogCAXF2bflLGKDjQE9NDanaWnRNo/Kqq0i9+CLYGQzGA9mtmj6dErsSSN2557JjHFYCcTHyENe3qJEutom5SGCeIJPcXPSs1VyLalTuuAiwdOHChYsxgnHaaaRWrgRAM00Kf/tbNIbOL1RLWK50pKqNQLUrqJUuRTv/5nXXkSooQAdKGxuZsX49ncp+cPgeJ4U4j+yKmfnQJ9Dd6fjlEXUB2dIhn6s4EPvUpyiuriYSDpNYvx6toYGJgOPKrmCaZoemaS8AlwLvKq/9CvgVgEfT+rUzqMO0ctoNeQrYQwiCIcgnPllZmS7ri8dDUV0dKbus73jAtJoauu1iEIbXy1y3GMRJC6ferkF2WUo51YyarFsdbpNTwbhE14ULFycjTE0jeeut6XX9uefw2kWhYGj8Qv1sf1mbVHIrE1tBPsWkA/HSUjZdeSU6liC4/E9/SgerCWVXJbny9zgpxOokqpepRF31GQs7hhw7Ij9vxGvFy5aRuukm8jweyqqqMH/wAw4yMexyA8muUAkkbIJbCKwDvjfUL1bztalTDEgl7CEFHcxYtoSev39/uqxvQtM4Wl8/rk74wd27CdrFIOK6zl63GMRJCXFNiqha0ZiIyj1ysIAYYlLVB7nxUS0+Lly4cHEywlizBqO2FgAtHsf7xz9mXmNo/EL15aYzOSnQpblMUuXCPzIh1YGXrr+eVF4eOlAVCjHn1Vc5SrYiDNlE10nJLSBTFj5fWhaVM+VAZqHIyh0ANRgvSm7Sm/+xj2F6PKBpVHd0UATsdzgf4xEDUXInA//P9uXqwH2maQ4pMZpTTlB1KEEEPgbsi1C9+HxNTZh2Wd/9Tz1Foa2Sjhei27JnT7oYxMGNG+l1VdyTFqLhEHkSBcmVLQxqOhi5t+3UA5ff48KFCxcnE8z8fAo+9zlKq6roCYeJ/+UvaO1WJYfh4BdOii5kt7ey31WtbqkSXKHqHq2o4MUPfIBkSQmEw6y++27y6RscJvtx1eA2sW9BdOWKmfK67KeVz4v4HfLrMsFXnz3JkhLa5s9nqi0qLq2v5ylbVJwIQstAsiu8AywdiS/PZQqXL8SAzQJkX2Ic0Ht7MSMRkpEIPR0d5ON8IY4ZotFMMYho1C0GcZJCbgTkRkHtpYNzzkJ5H07X90RoZFy4cOFiOFH2mc9QvnQpaBozSkro2rSJJuU9Q+EXckYFNfBMbn+dUns5BYIJQnrf5z7H0XnzMDWNmrw85rS304UzwZWXVQItyLOwQ8hEt4hM5cxcacPEOYmSnRdXvC4rvrFrryWWSNAQClHZ3c0TX/4yjePIGnosjHrFs/7Sh6kXoxhSgOwLMAposVimh1ZYmLXPcYFoNLNcUDB2x+FiXEAlqhMhKtWFCxcuxhvMykqM668HO+blrF272DdrFk07d/bLL9SgshgQT2TSOqpZBcRnBsIp1Jy1chl3QUTbpkzhuUsvxbRjic7ctQvq6vCFQlkEt7/AM6f8t4LgFpEhuUX2a13SeZD3K58XkSasm77PJbOoiPjll2MCPZEI8TvuwDPBRqXHpKyv0zCsGlwjS+hIyyJXqKe3N50nN1FQMH7IrQ2ttze9bNok3IULFy5cuHAxeCRvuYVwLMYk02RSVxdzGxp4Rop5UStMCmEshqVYqkorWASvm2yOodrDBNF0CvTKlcJLxh9vuom8SATNNJna1sb0w4fx1dfTy8Agk2g5yE3N4CAm7HlMel3NBHEspK6+GtMW6fR9+9BfH3L22FHHmJBcgf4Irp++BUlkk7QWjWLa+4gXFmaR5nGBaJSy8nKKS0roKi8f8IXswoULFy5cuOgL47TTSJ17LpFIhH2hEJPuvZdfPPtsVuYiNUuAyDfeA2n/qyChguh126+Lwgfy6LKAHFCmkls1N62qyu6ZO5dXzj2XvEiEslCI6/78Z6a88IJjrE5/gp1HmZxKB4tjM8hOKaaSe12anAiv6feTuvLKzHffe2+/6WHHK8aE5MoGaDmKXBBYMVcLksgXn24ruSaQzM8fX1YF4Mzly2mbNg2AYFERlatW8dqGDWN8VC5cuHDhwsXEg6nrJD/96fR67O9/541f/zrrPU7CWRSL6EWxyKya0xYySq5cwlYmuaoFIUFuJVdWTHUsjnLvxz+ePsZznn6alf/zP7TBcYlfTtXPnDIuyCRXZPApIFPVTCXKuRTd1Pveh+n3W9+5fz/6K68cx9GOH6hFNUYNcrS4E8FVo/5Un4xpe3LB8uTmStY8VliyeHHW+sIzzxyjI3HhwoULFy4mNoxLL8WYOROwRnK9v/+98/vIkNx0IQMyBDaCRWg7gE6cCa7w78qpw2T1tECZq2quPL13+ulss/mAbhh84O67+/2dTqRTDUATc6dUZbIX2Em9VW0LTjALC0ldc03mmO67D83st/zBuMWY2hXUNB+qbUG1K8hkl95ePOXl+EpKyO/t7eOfGWts3bQJzTQtkznw9t69Y3xELly4cOHCxcSDGQySvPHG9LrnvvvSKcNUyEUO5PLosgdXhk42ARa+XJVPyKqpCCaTCaYafCZU3AckFXfd008zubmZ1oH/9Kzvl4m2OletFCn7dwgVVy45LB+jvN909oUrrsAMBADQDh5Ef+mlQRzx+MCoK7lq0Jla3UkeYhAXp+rHTQD+xYvJmzYNb1ERqTPPZMaqVeOG4AK8tmEDHRs2EO7upnn/fjbt2TPWh+TChQsXLlxMOCRvvBEzGAQs0uV5+GHH98nZa9RcsMJzG8HKOuCk5gpPrqzkQl8VV7UqOKUN8wCbV6+mqbYWDciLx/nQPfcMmaeoxYNyVVcTaq5TiWGnwDgBMz+fghtvpLKqCr/fj/f++9GMcRPtdNwYV0quTHBF70OUpxOkVxDdgoULs/Y1bdkyNm/YMK6I7sEtW0iVlADgq6gY46Nx4cKFCxcuJhaMWbPIv+46AkVF9ITDJH77W7RE7iSMglPEscicGBEWip5a0lYomEL1lcU0mU8IQim2qZYFNfjM8Hh4/Kab0p+/+m9/o/zo0UGpuE4+WjnDQgHOSq76mmyn8Cn7Eij/xCcoW7wYNI3ZRUV0NDTQOIhjHi8YE0+ufJHJUZCqJ1dcdDFpXbzHUIK49m3ePK4ILoDW1pZeNl2S68KFCxcuXAwYJhD4wheYNWcOldXVrCoqYvaRIznf72R9FPxBWBGEmtvtMMm2SHnUWR7Wd1JyxVwmjxs+/nH2L15M0u8n2N3NdX/7KzCw1F25IHtyVWVWra6meobV41PJLWClC/vgB9M5iJeHQsybM2cIRzz2GDMlV42ClJdVL40ofypbF7pffBHjvfdITZlCb2cn9du29VtjekzgklwXLly4cOFiUDAuuADvsmWgaXiA1Tt34quro7GfggSCR4giD332SbZN0oNz6XQ1JalTeV0nIqkDXYsW8ei//RuR/Hx6q6q44YEHCEQiAyouket1OdWXWnRCHIdcXS2BRebVY5T9uGrwWep976PTMCgzTYK9vcxraOA5KQfxRMSYpRATc9WqoPa+xEUTdXiPsWMHnbEYSSBaUZFFKscDZCUXl+S6cOHChQsXA4Lp95O89VZ6wmEqq6pYvHcvxV1d7D4G6VIFNFmtVON+Csi2MchQyaYghgbOuXLl4gxPfuITRPLzQdMIRKOcsn//cfzy/qEGoMlWCdmXK6c5cyqCoVZoM/1+Uu9/fzoH8anPPMMv77svKwfxRMSYenL7g67MZdO3uICL29oI26Zuf0VFVpm7CNlk2lCW1ddGwuqQZVcoLx+Bb3DhwoULFy5OPCRvvBGzpIRIJELTxo3M+MMfuGvbtn5JlyHNhZrr5N5NkfHXyvlnBTwOc/V1UU5XEElBIrsmTWLTqada2ZWAc3bsYMr27aSM7FHrYynHo434NdekMypEd+9my/e/P6EDzgTGhOTmkv2d/CWymVsmscVATVsbR7EujvKKCqbSN9WYmrVBXldz7+a2sg8OguT6/X5KFy+mqLZ2wveKXLhw4cKFi5GEMWcOxhVXpNejP/whL7z66oA+K3toxTNdWBLiDu9XFU2nimVO2/xYfEQmujrw/Mc+hplIEAyFqOns5MZ/+zdKQqF0AJwTN1GJrlwwq8+5IVupVksXO9UYkGOa5KC69Eh6MEji6qsz5+See04IggtjqOSqVTtkwiskfzkXnarkJoDpbW3swzKnl5SXM5++wWuy2Vwu7ye/Jnw7w67otrfj9/uZVVuLpml88v/+X37xwx+6RNeFCxcuXLhwgAkk/9f/SueY1zdtQh8gwVUhCK8sYMkkUWQgEHPZn+qUpkv1wKoBaK1z5/LOBRegA95IhI9//euUhkJ9YopkgS2FM/GEbGVXPW65iJZKdtUCWiq5NZT9hd//fszCQgD0pqYJnRdXxZiQXKdekeotESquILpOFoOZbW1sxLopCisqmE+2LUGOmuyhbyRlnr0dMhfecEJLpSg1TdA00DQigQBz6+pckuvChQsXLlw4wLjkEoy6OgC0RALfL36BdhyfFxYEOcdtXHldzAXZUwOyZBFOBHM5BZrJPMUHPPPJT6IDGnDqq69Su307cTJWB5XoZmWMoi/PUY9ZTX8m5wKWibSq6Koj1oJYG0CypISe970v/V2eP/1pwlY3c8KYenJlgqvWYFZ7SnIPS1ww89rbKbCXvRUVLFBe74T/P3vnHR5HdX7/z2zXqktWsSy5rG25YMBUY0zvPYQvAUIooYQSeodgigM2LfSSHyGBYEJJ6ITeQjPGuGGDm2yvi9xkWbLKarWrLfP7Y/bu3h3NSrKs7jnPM8/cKTszuzvlzHvPe15qSBg+18WGWmmfkDg5LHS9Nrd51SpyRo5EBba7XO2K5k2YMGHChIldEWpWFuHzz49PW998E2XLlh3ejojggkbsHCSIrpw8JpNK2WlAT3CNCi3oI7srJ0+mcvx4FMAaiXDyP/8ZJ67Ckkwf0ZUJrixRMOIh+uX6QloBNAmFTHpbdGN9NDgC1Jx+OqpTq0hgWbMGy/ffp/5h+yF6nOQalb6TazDLRFecWOkkfOEEGbYC0Zoa0mLzIoPyGe4kqY8hUquR3Go0YltN8lsYJE5Ao3J/XYGGpUsJjh5NekYGr3z2GbVmFNeECRMmTJhohawbbgCPhyafj+Y1a7C+/voOfV4mt3JXv7AKg0SUN0JrUitDcA2Zh8g6XJnLqFYrn/3+9yhoUdyD3n+fgs2b46RUEOu2coXkyHJbkN2oZKmDTKDliK5RPlL8s7m5NBx/fHzb1pdf3qGoeX9Ar2tyZcJrRHRFopncNWCNnXmKWoPFBUG3m9VFu7HlUA/Fdd74hqxboLAa8rfBFhInqDiZZRsRocfp8uSzzZvx+/34/X5sitJ37SxMmDBhwoSJXkLx0UfjPvdcUBQKCgvxPfkkW9uobJYK7ZFE4bog+85a0MisPqorormC4GZKbbl3+bsTT2T74MFYALfPx7H//nd8mayhlcmnHF2VC2OlclowisK2pcdNJVeQt191xhnYc3JIz8gg+Msv+H/8sZ1fr/+h1+UKcmk6mejqjY3TAavulSoj3YeabqeqxAMovHX6Tfzfoocoini19QqATWDdCEM2gD2UyLIUXrxCq9tdpd+UTZvibbWkpJv2YsKECRMmTPRPqFYrkauvjlfaGl5VBcEgX3RyezJBFITOIs0XUVxBoe0kl/HVyycF7UhHI7qZ0vYbMzL45OKLaSksxObzcdzf/066z5e0b0iOtMoyAiOdrBHBFWO9VEG4RoiAnRGRFkQ3Ko39RUX4TjuN4lhi/HFr1/L+AHSA6jULMb3/nJ7g6rsJrG4Sr1JZ2ljJhDQlAoqCisL2jEw2jS6nyO7V1s2Pre/WNl64FqLBxJ/ehKbRlfU1XQ1l8+Z42yS5JkyYMGHCRDIip51GTVoamaqKLRJh8s8/81In81f0iWfyfHmeHNhy0Xp9IaN0olEIQT9yYmOxvVevvpqtEyagKgo5GRnss2xZqypqciTXyMI0lXWYvm20TaMCF0ZEVx/J3fC732HPzkZRFAbX1TG8tnZAJsb3aiTXyF1BFnuLsdWOdoblSEO2NvY0VVCBJvZudLsoKa3QIrgxIhxPe4yddcVeCEQTEdxaaV/dgSSSW1SEqigDKnPRhAkTJkyY6CyiJSVEzjorXmlr3Hff8dLMmTtFtvSJW9EU8wX/kImmPF/mI3IUNweNMK4vK+Ork07S7M4UhckrVtA8ciS5K1caygo6Yu8lD6m+m5FcQd6HndZEVya7dSNGUHvYYVh8PrIKC5m0bBnRSGRAJsb3OMk1MlmWrcP0mlw7JL9C5aFFaPO0YTRLWGjdg4CSgWfkVxSlebVlOSREuLLgNgBFGxIEV9bpdodkQQkEULZvJ23IENIzMsjad182zp3bDXsyYcKECRMm+g9UIPzHP6LatUyZwKJF/DJtWpcFgvREUT8t5AqyZEDAKDcoHY1apNshLQSvXHIJTr8fRVUZUlPDqE2byNMRRZl8yolgRsS2I99H1vDK5FWQWzEEaE1uxf7WnnceKhD0+2l6+20qPvuMdyoqBlwUF7qJ5NqA4lhb/uNElZAcEioCYQ+m18napc/n1WsnVJIgJYaSzZtwjvTjdPjx262a/kBEbvVGubEqELImpr3qIl2BnOZmBns8oCiceP31vHf77QPyZDJhwoQJEyY6iugRRxDdYw8AlGgU21NPdWlPp5EEUR/MEnEwORENWid0+ZECbyGYfcAB/LTnnlj9fvJWr+acl15i9Hff4fZ6k6QPetcGPd9IVQxLRI+FNVg6CbKtl1i2kCC2kJBGiB5rP4niV1W77872ffYhCqiqivLYY3xbWRmvGTDQ0C0k1w4UpVjmIpGhmE7yHxUh2c5Lfvso8EP6FlqT3A2btH9YgU3REo3kig3WkVwJIvYvy0bM8gnXXUXsimMFIRRFoT4ra0DqXkyYMGHChImOQs3KInzRRfFp67vvYlmzpku2LbsmyNNGy2SZpJgnywFEt78IvlmBFrud5y6+mDBaNPrw119n75kzkzSzqfarD6jpi2DJkWM/Gk+RawcInbDooJYju36pLYh5EwmC2wx4zz9fI7iA+4svoLLS4BccOOg2klvcxjLxRiISy/RFGeS2GCJAXhByq0gmud5N8T6HzZbBmgZB6CDkSK74t4Ot9TAd8abbGdQvXEjOsceiAtUZGQNS92LChAkTJkx0FOGLLkLN1HwKlK1bsb7ySpdsVyax+gR3o2Wp5IrCtSCIRh/khPnvfv1rqgoLAXA3NnLMK68kVUyVXRrkY5KPUSS2CfIs+JAgt5mxZSGSK7LJUWeZlMs91BYS3MkvtTdOnkxDeblGckMhsl5+mSDGlmUDBT1OcvUaXPnEEfoYcXIJxUETUsQ1BLnVie0NUrZhC4QJKzbqHDn4G9Nw25u1HdWRLFcIQEuotfC7O6UKANtmz6bO6yU9I4ONq1cTNKO4JkyYMGFiF0XRiSfiP/NMmnw+/H4/9meeQQkGu2z7+rwfPcmVp+UCUWK57FogepeFC1R9fj7vn3EG4di6R7/0ElafL85fZLKcyklKn3AvOIlwRhAyhUySvfv1RFzmTjK5FfPk5LNmi4V1550XJ7QZ779PtKZmQBNc6EZNbiq5AhiX6IXkLgJ5mQjBxyGIrgUsFpXiLVvYMKQUFNjSUoyndk2yJlfE6/2txd/67oXugOL1xgtCKDk5OKxWlEh3U2sTJkyYMGGib6Fs7FjyHniAxvR0CgoL2frvf+NbsKDLtt8WwZUKosbniaCbTEhlLtICSXrVzy64gGaH5sc0eM0adv/kE5oM9iNHcfWRVznpXsgQROBNHhvlDunziKIG86MkJ6QFgC1HHYV/yBCNSzU14X799aSSwgMVPR7JNfoz9G108xuNNiRFdAdv3MyGQo3kbqIET90a7SDqaZV8Jkdx5YzKbiW5TU0oW7eiFhai2myopaUo69Z14x5NmDBhwoSJvgfXJZfQmJ6Ooig4QiH2njePb7po2/oAmlEXv77rXx/FFRDRXDm+XDl+PIsPOQQLWvnew//2N5pVtZWmV18uWOxLLkIhClC4MC67GzCYl6ocsBy00yfMhYCgw0HtpZeSUVhIs8+HY+ZMIj5ft3OfvoAeTzwzMkIWmtuIwXxxEoCBx10QsmqhZM0mgnu5CdgzWJq2FwdtmqWdSXUkJZ9Fgsn6lJ4guAKWNWuIxDQ8qscDJsk1YcKECRO7EKLl5azefXeGqyoqcMDSpXy5cGGX70eOpuqrqRrNs5OsyxVkUe5pDisKX918M5HCQiI+H+WffELekiX40fS0UZIs+ePSBAvJXvyCqDpJRGmNqp7JhNaoVG9QWl/WD4skOXkb4YsvJmevvbTCD9nZWH75hQ3SvgYy2e3xSK4shBYqAvEHiT9U5IiJdWULDjn07wCsfkhrUKkq0Cy6vhx1Br9a9iFFdd5WiWepjJhF4ll3SxaYNAmIkdz//a8b92bChAkTJkz0Hag2G+FrrqGluZm1Xi+Dq6r44o47WN/FOSp67atRxFZffEqWGUCCD8gkcPMFF9BwyCEoioJt0CD2+vJLGtEIrL6QhJxvJCzBnLHldml9WS4Q0e1XXkdwokbdMcptYb8q1o2T5qwsms88k+xYwYr9Vq2ievhw1ixfnnQMAxU9TnLFHyUkCKJLABKRXHmdOlKT3ETbqZX2VRRqMrLYpJRrJLeOJI9cQZyNIrnd/RajSBdydMSIbt6bCRMmTJgw0XcQOessomVlADTX1rLh2mtRqqvb+dTOQeYJRolmdt06SccbG0cBf3Y2i887DyVGFPf2enEVFCTlCwlya+SDq5czCDLr1E3LbTEdItn+XxybHGkWRR8CQAMa7RG8qv7ssyEUIktVyfX5KF+3jlkVFa2qvA1UdBvJLUmxrI7kQg8BtD9K9nYT5LaWZNtbvXBbTHtmzQJVRQFqMjIo2rgqIVeIseWWYPIbjl6T292wxEiu2+0ma8oUsjyeLn+DNWHChAkTJvoaoiNGEDn99Pi07Z//7DaCa5UGfcRWT3BFMSowToIXvGTJBRfQFA6Trqrk+P1MXLmSTRUVcVJr0e0vKm1TzHcBVguoBqxSP0vmJEK/65CWCa4k++SKnu9GtHSkCBAqLaX5uOPA72ed10vee+/x3Pvvx336B6pEQUa3kFxFAYfDeFlmMGGVIboQBIxqPIvwvBuNs4rKH3WxsRsoWbyY0fPns3VoGa6wj3BTUHM6biT+WiMKngVpHcntbp9cAKqryVAUhsYqn539pz/x0owZZlEIEyZMmDAxYKFarYSvuQbVotFIy5IlWD78sFv2JSK2eiLr0rXlQY6u6hEBanfbjS1HHAF+P01eL5PefptVH32E4vViIVleYJQAJgfVHNJOZFJtARRphlXKgnNEoCXamjfJiXJGjgoRIHThhURjv3vz7NnMfeIJlNQ/34BEt5BcQPvF9fH/nYRs6SETYT/gWbyYoNMJTvBmeRi6rjIeydUnnBllLXY3FKCosTFe+aw6P9+sfGbChAkTJgY0IqedRtTjAUBpacH25JPdRrTkCK5cBlcExFy6tpuE64FeLgAQtlqZf/nlONDiZqWffUb+008TiW1HFHCQe6flolbytFyK18jazBJNbiv6OsM7iOieexLZd18AFFXF9o9/7HIEF7qchrax5TZCpe39j3K0VR/tFRKE4tWrNXPmEHgHeRJShXotmCsLsuXEs57MLGz68UdQVVRVZVN2tln5zIQJEyZMDFiUTJlC3rXX4na7AbD+619YNm3q1n3KEdvM2JAN5AMFaM5PxUAZMDw2FsMQNKllSWydqpNPJjh0KE4gPRDgkL//nWwghwRRNvLYlaUDdUANUA1siY1rY/Nkl1O985O6E9nwqqIklUy2fP45lrVrO7exfo7ui+TqsZN0WjZn1ltq+IG8NWsIo70BrSkcEbcPaw61KnqWFM1tkbbd3US39uuvaTjpJNIzMvh03Tqz8pkJEyZMmBiQGDpyJCVPPsnW3FwGqSqbvviC5nff7dZ9yrpYd2zIQSO6RuNsNJIqHAZkqcG2/Hx+OfvseBT3oFdeYXhNTVIej76SmpwsFqR1xFau9irrg13SMpGMBgkd7o4icuSRRIcPB0AJBrH961+d3FL/R8+R3DbQUXKZiug2AXler0ZygdVDRqLWA77EG5IY9BZiPaLHjUFZsYLmpiat8lleHg6XCyUQaP+DJkyYMGHCRD9C+gUXsDU3F0VRsESj7PXNN8xW1W7dp+ygIEdy8yEegc2LjUVbFGPQF1v48KKLUFwuHMCg9es54r//jRPhFt1+o9LYKAArpkXym5A5iEHUA5C5iAUtmqvsYIBQdToJnXtufNr65pso27fv2EYGEPqNJlfOdBRWGSKKmw7kVlVh9/sJu91sz8ykxpqPlZpWUVw/ieQzuWJITxBdxe9HWbcOdfhwVEVBHTMGZdGiHtizCRMmTJgw0TOIDh3Kiv32ixd92KuigjmzZnX7fmUng/TYIMsV8mJDQWw6X2SphbTkLsEJ5k2cyPKDDooXeTjnr3+lOBJJKrkrcxI5+UzvryvPFyRX6IQDsbHckyyS5zobxW36v/9Dzc0FQKmtxfr2253c0sBA92lyuxh6Pa4+kusDBsUkCyHg52EjWuldZLmCXpPbU1CWLo23o+PG9eCeTZgwYcKEie6FarUSvv56/MEga71e/AsW8MNVV/VYkrWQADhJyBJySJDbIbEh3w0MAzza2FEC6XmQnm3npZtvJlhYiOJ2c8T//sfkJUvII5koZ6GRVScJSYKcaNZEouhqNVBFQpNbTUKTW0drTa7gJTsafAvn56Oeey6DCgtxu93YZs5ECQbb/+AARs/JFXYy8UyM5ZPIiXYiCT1LrteLd7/9CGRkMHfyZAbNmye7iMVPohZp3NNE17JsGZETTgAgOn58D+3VhAkTJkyY6H5Ezjgj7qbQXF/PpmuuwbJhQ4/sW5YryJHcHBIktwBIz0bLLCuKrSx1Df/9jCtYdMABoCg4c3M588svKUgsTupFbortV64cJviJXIFMkF47GjnOJNluTH/8LSRrczuKluuuo2TMGFAUxrpcVK1dy/pObGcgoefcFdrYW0cIptw1ILoU5DrNfiCjuZlmj4fmoiJ++O1v2eTxJEVxxXpBkk+wnqzbbJEiueqYMajKrmjqYcKECRMmBhqiI0cSOeOM+LT1pZd6jOBCcnKXkAUIkivcFdIz0AhuCZq9wnDi9gqVe5Xyxsm/iVdQPWDlSvyjB5OWAbmWZD1vJhqJliuZQSLpTATX6khEcuUobh3JUVzBTTobfGsaMwb/UUehxGxKpyxfzujy8h3YwsBEz8kV2thTR6zgZG2LTHDlN6osm00jjYrCltxctpeXtzqJ9HIFcTJBDyWgVVej1NbidrsZNGwYJYcc0hN7NWHChAkTJroNqt1O+LrrUGOVDCxLl2LtZjcFPawkHApkgptNTGLgJEFwhW/YMGA4qEPgqd9eic3SDKgM3r6dPdatoaSuQmPHeZDm1rYjEtqEXEHYiAl+InhJHckWYoLo1pKo6CoklbLz047696vAxksuIeDzoaoqIzZvZnB1tWlTSh9xV+goZE2uOJFkc+XM777DHg4TstnwOZ3UbNuGDWP7MLniWU/Wb1aAvC1bKDrkEFAUDrzxRr6trDSLQpgwYcKEiX6LyNlnEx06FNBsq+yPPYbSzW4KRrCQcC0QcgURxaWAZJI7LLZSE3ySfyxLPeNxRvyU+FZx5Sf/Yt+l31EU8WqfcwGNoNghyw+EEtKExti+ZblCU2y+8MStJZ7jltR7LKLPwnHBbbBOe6g66ij8o0fT4vezqaKCIf/8J8/8+KPJK+gukquCmkLrLL+lyHYdgmhGdG0ZVt1g1w2OVaso+eQTNuy7Lzafj21paZSRIMLxaiLS0BsY0dSEP9alsKmw0Kx8ZsKECRMm+i2Kjz6apssuoylmkWl7/nmULVt65Vj0skaZcGbpKzRkaivURnP55wG/10hHGM6ePZMT5/xL+6C+yzcGWRohnBJkLiPWkR0frCQiyyISLObrCbLgJ65ocpJaHcnR30a3mzXnnx/fp/rSS3z/2ms9mlDfl9EtPC9K66ipGGSZgXwiytmE7f05cik80T0hDJaHfv899q1bsfv9VI0fn2S4LAY9WRbEt6dQ+9ln8cpnG3NzWbl6dQ/u3YQJEyZMmOgalI0dy+BHHqGguJjhHg+569dj+eijXjkWvZe+7JHfCAlyK/QCMZHsc6P+QBPp0AKDt23mzE//nZw1JmeqxyB4iJBGiISyHBIJbnLQeHhsXETCwiwTjeQK/iFIuazllR0ZhMShjgRxrzjrLALZ2aiAsm0brjfeMAmuhG6J5KokajfrIZNbcd7ImYmyk4IeIvoqSKmevNqBEUuXMj+2fPO4cfE3KCFtkD/XW9HcjT/8gGPuXFzDhtHk8xG2WvuPl5sJEyZMmDARg/3KK6nPyEBRFOzhMPt8+y3f9eLxyA5MchS3EWiIQlYtSeXG5o7fl+9KDoqb5l/x+tM4tofa1jeSHKGVA72yhZnQBQvJJNJnhHZYBOmIbcNPIqrrj+2nTv4OUrt6yBDWn3xyvAhF1gsv0LKLW4bp0S0kN4oWsTWC/qVIjuSKsVEimFUap5IsuIDhK1ZgVVWsisLWESNQXC7sgUCc6Dp0n4cE0RU+d90NBfB/9x2NaWkA2PbaC8vy5T2wZxMmTJgwYaJrENl/f9aOHRsv+nDgL7/wxdy5vXc8JLiEnJjeQKLMr8sPjphANpDu5K/7Xx4nH0fM/5I9FyxOzkyXyYpEUGSSK7iKHESTCz7IdmP6UsByT7IoThWKrS/WESRZJNE3otUGWPaHPxC2WokCjiVLsH37batqbLs6uiWAKCK5RoMcxdWfR7Im14hsytICEYnVk93s5mZK167FAiiKQtWYMfGXNnk9+bNI456CZeHCeDs6cWIP792ECRMmTJjoPNScHMJXX43f72et10v4yy/5/IYbej2/ROakglwKYliP1uWvxqQKfz3yWlYV7EYQN5l1jVz0r38QryIlfEf1JVJj0BNa4biQQ7JcoRgoJVmukE/Chswd2wYkpJ5NsWNNJVdoANbvtx/b9t5b40uqSvbf/pYUJDShodsiuW3JFeTzRV95TLyJGf1RslxBH8UVvnguYPSyZWwbMQIrsHn8eIYsWhTX7Op1uDLR7UlYpHK+6pgxqGlpKM3NvXAkJkyYMGHCRMehAuGrr0bNygKgecMG1l1zDYrP16vHJbiDLFcQBFcEuwSPWLXHEbx42qWoikJ9ViGXznyBrMrG5CibTEzkaUCxgEOK6ooiFPrAnZ7ryAlx+gqu8rr6oKBwiAoCfpuNyuuvJ72wkGafD+dbbxFds6ZVcQkTvUhy5T9U9sDV63Jlmw2ktiCoslRBtMcuXcqPJ5xAFNg4bhwHkiDC+uSz3tLCKo2NWLxeoh4PqsVCdPfdsf74Yy8djQkTJkyYMNExRI8/nsi++8an7Y8+2usEV0BOPBPkUJ+ArlqtPHzNNaixog9lNTWMWF+jJaV1FNYYsY1q3ELvDKXnxXKU1q9ry5xHljcYefsHgMZLLsE9aRKKopCfm4vru+9YT+pe8F0ZvZp4Jg8y0YXkP0qvx5UJrkx0RTR37LJlWICo283Kww4jPGoU9lWrkghuXyC6loULcU2YQHpGBsrRR9NgklwTJkyYMNGHER0yhPBFF8Wnbe++m9Qz2ZvQa3IFwZVJLsBnv/kNVenpoKrYolGOWLSIvKUVNMeSiYz0sorFYKZFy7Fp1SMcJZlYxCK+kZAmNRCKCLFISCtEtTSRWFZHsotZBPAPGkTdb39LVqzw1f6rVrG9pITVixfvUAGJXQW9KlfQD/o3ICPo7cPkCK0zNi6qriazpYXNEyagKgq/3HEHo6dNw+71JhFc+RzsDcnCkG3bSPd4QFHIPussal99tdf1TCZMmDBhwoQRVKuV8I03ojo0PwDLunVYZ87s5aNKQBBcEfF0oZFEOahVPWwYH59xBha/nwyvl2O++47DZ87E4vVSS3Lej8wzrFFtvgIJ8qDXPRq1SbStfsitAUcwkegukswgEcltJNkbV44QV//hD6jBIJmqSn5jI+PWrOHFiopWHr0mNHQbyfWnWNaWK4esx9X75erPHTl6a6TLLamvZ0XsTWdDQQGe8nLsXm8SwdWfhz2N8YrCRlUlYrFQn5HBkMmTTZJrwoQJEyb6JHKuvZbo5Mk0+Xw0NzRg+8tfUEJ9K34oF4OQq6IChCwWvr76agI2G1ZgxIIFHDZtGi2qSjXJfELmFxFpOs4X9N3I+q5i/TIrWhjXCelVgD9xjA3i+Ei4KNSjJZ3Vyd9rn31omjwZ/H7We70U/uc//P3zz1kb4w2mVKE1+kRZ345EcFMh1WcmffstXx1+OCqwIS+PtIoKorQmuHqSLI5nR/bVWXiXLmVkVRVrBw8GVWVZbm4X78GECRMmTJjYeRQddxzpV1wBikJBYSF1DzxA7bp1vX1YSZADZi0kR3XtgPdXv2LL6NHYAEs4zJFPPEGTqtJCcn6P4AVG3MQR1aK6rTQNMpFwShtxSWMLcT2Cy59MwMXx68sCC1mDarfTcumliELJzf/9Lz/87W8783PtEugWkitqRxtBPpn0LzsOtD/XqEiDONnkNzTZ7Fk+Ma3A3h99RM455xDIyGB7TQ3hdeuSNL/iGINoXnZiWUC3P9GG1mJy2Dniu87rpemJJwheey1NPh+BUaPiRNuECRMmTJjoC1AzMwndcAPEytEPqalh+Lp1fNnbB7YD8JWUsOR3v9PkBsCkV15h0IYN8SitgHj2W6CV56zobXaFwCoTgohuBXlD8nKpC1tOvjeq+KrnFpHTT0ctLgZA8fmwvfBCR7/6Lo1uyblS0F5kjAa9CFxffUzvogDJpfqMiK6wCGkgUfLOVVXFIK8X29attEQirB07NsmpQZBquSpJTmwQ5fky0QiwW3fsDrruh6t+9122bdqE3+/XnBaKirpoyyZMmDBhwsTOQQXC115LnaKAquIKBjlswQJWV1T09qF1GCqw+OqricS0xPmrV7P322/Hl8tSSX1pYCP7ryagJQqq8NAVRESe1g/+5Gn9dvWEN+n4i4uJnH56fNo2cyZKQwMm2ke3kFwRJW1vkCOv+kpkRjpZPcENkrDakEP7Iitx2E8/xU/elRMntorkih6EdJJJrp7g6om5kDl0hZ5XaW5OKgwROfDAndyiCRMmTJgw0TWInHwykf32ixd9cD39NC/ef3+/yh/ZeOKJbB8/HgBLJMKhjz+ONZJMJWWpg5zEJfvaCt4hc1c1aDAz1RAkTmJS1QgQxyKgAqFLL0W1a/Fmy8qVWD75ZOd/lF0E3RbJbYvcylpsMbbQOpork139CaeP5IpBENw6YMhPPxGOfXbNxImtbMkEyRXl9wTRzSY10ZWPt6sS1izffx9vR02Sa8KECRMm+gCiHg+RCy6IT7e8+irzn3iiXxHcQEEB6/74RxyFhVjdbia8/jr5a9caritHc2WnBn3RBv0QSbUgBTNuiSa4jNiHkb8uQHTyZKL77AOAoqrY/vpXFFUoc020hx7X5IZiywLSWNblCg13Kk2uLMyW5Q6NuvUjQMHixURVlaiisKW8HF96OpampiSfXQFRrUTWyYi2EaGVK6vsLCxz5qBEo6RlZJB+8MFk7bMPG+fP74ItmzBhwoQJEzsO1eUifPPNqDaNJlhWr8b64ou9fFQ7BhWovPtu0saNQ1EUctPS2GvevFbrCUJpJUEyW2LTeomtbD8qL7NHwREgQVRcBh+OEQujOgF6lykA1ekk/Ic/xI/T8tFHWFat2vEfYhdGr8gV2qo+1laZXb1ORiSdCcmCHMWtB4I+H3mrVmknjqJQucce8RNYthwTUdtskuUKWWiR3HTdscskvCt+QMXnI6eykuEeDwVFRRw2bRrDPJ4u2LIJEyZMmDCx4whfdhnRkhIAlEAA24MPooTDvXxUO4ZtJ55I4z77oMQS5o785RdcbTxb5eQvHS9NGZiVpbZxnW4wxcoxuYKUf9aqVoDs7uS8+moGjR+P2+1Gqa/H9tJLXfCr7FrocbmCvgSvVdc2KiqiP+lEVRBxzqQiuo1AoaTL3bDnnvFjlDW5guhmoRHdbBIyBVmqIBP0rkw+Axi1ZUs8c7Vi6FBGlpd34dZNmDBhwoSJjiFy2GFEjjgiPm175hksmzf34hHtOFoGD2bjBRcQ8vlQVZW9V62isLaWUIqEOaOkM0E8jWSSbclwI6HUK0RCbUdxxZBx8MFkXnYZBUVFDPd4GPLxxyhNomyEiY6iVxPPZLmBvhKZkTxAnHxCxyK/STXQOvGsEcj76SeigOp2s+WUU1A8nqQqJnLimYjkCncFEcUVRFcm6F1dRKLu3XexRiKoqkpNRgZLdaJ4EyZMmDBhorsRLSnBcdNNFBQW4na7sX7xBdavvurtw9ohqIrCpuuuI+pwEPb7Ub79lrJHH2XLo48SNtATyzpYfQKaXo/bnvy2PZ1ugASHkTW/SYWwFIXt11yDarGgKAol27ezR01Nl/5Guwp6XJMrk1t98ll7FcjEiRdMMV9f6cQKuJYtw2K3Y/N4aFIUlD/9CcuMGaCrfibaId1xWGjdhaFfpyt0uZW//ELmyy/DscfS5PMRnDAB+2efdcGWTZgwYcKEifah2u2k3XcfQ8aNA0VhVHo62z75hMrePrAdRMOppxIYOxYroEQijLr7bmrXrCETUnrR68NKqbzw9cUb9L62suTAHgW7HxQncSN+Od9Hjua2SNurPf54qnJyGKyqWKJRDlq8mFf7kWVbX0K3RHJRwGo3HvRRXNmKK1XZZ2jfXUG2EKtD0+Q2AoFwmKKaGoiV+F07eDD28vL4/p0kIrY5JCK6mSRcF9JJ+OTKGuKuLgdcP3Mm1Vu3ap65Bx+MmpXVxXswYcKECRMmjBG+7DIcY8aAomBTVY796SfKhw/v7cPaIYTLyqg799z4dNlrr5G5Zk2HP6+XDXTEXaE9+YLQ6bZEk1zEkviMCKQF8/LYcv75BP1+Kr1eLK+/zqv33NOvHC36ErqN5KaqBtGeZEHW4uqhj9jKpDdIsoShSWrnf/klqCqoKquLighWVCRlMEJrki2TWD3h7p4fTctetaxcCYBqsxE56qhu2pMJEyZMmDCRQOTII4kcfTRNPh+oKlOWLCG3ro5V/SiCaLFaabz+epSYI0TGypWUvfFGq+CUUdVVOUdHHtINhkySc3QE9EnxIvBWC2wPaeOa2HRdbJmwPxV8ZdWllxJOS0MFgitXsnzqVJPg7gS6Ra7Qll7BGgR7qHVJX3HiyYlnAqLEnrDzENNGMgGjWtNpb72F/7e/xZaZydrGRuprasiFVkRXbvcWrB98QPTaawGIHH881rfeipchNGHChAkTJroa0WHDCF9+OQB+v5+tr7zCuu++48uKin5FsIK/+Q2RkSOxAdZQiJGPPoo9EkkitkZE1iiIZVR9ta1lAnKUVr9NP8kOUKItClptmjSJ2smTUdHsz9KeeopgP3O06GtoNyipKEqZoij/UxRlmaIoSxRFuabdrbZlr+BsHcWVNbFGgx56pwW9rZh+sNTVkTFvHsGtWwk3N7P2gAOS9C96UtybsHz7LYrPh9vtZtDuu1N0yim9fUgmTJgwYWKAQk1LI3zbbaixkreWykoa77mHLz/+uF8R3KjHg+XCC8kpLMTpdlP00kukb9gQ5xftRW2Fm1I6CftQUSBKTkzPkea5SbYVFb3LAZKdnqqBKmBLrC0iunUkor0NaWlUXHYZEWIE99NPUZYs6eJfaddDRyK5YeAGVVUXKIqSCcxXFOUzVVWXpvxEW5lnjoQFlzy0R2whEcEVbaPlDpIjtGJ7g2bNom633VCBdVOmMO6TT/pE5FYPJRSicNEi8i+9FBSFIVOnkvbLL/3qZmPChAkTJvo+VCB81VXJfrj33YcS1Kd3922odjtpd9/NkFGjUBSFIrud7J9/JkqCXwiuIbskCTkCpM4NQjctxka62ohuWr9ckF8hU2ggUal1xbnnEsjPRwWUujqcL7xAoKt/qF0Q7UZyVVXdrKrqgli7EVgGDGnzQ+3U9bXajd+sLLpBhr5wiCwKl0+ogME4AOTMno0a+3zVHnvgz8hIigj3JUxYvz5uXr2xoIDCo4/u7UMyYcKECRMDDJGTTiJy0EHxaduTT2LZsKEXj6hziJx3Ho7yclAU7NEoR/38M4NHj05yT9K7Okmdy/EIrpxsLtr6YlFikHW5IjAnXBKCJMhrHVrkVkRz5UiuILxV5eVsOvHEuDNDxnPPQVNTn+Mm/RE7lEOlKMpwYC9gTrtbbUOuICQLenIrSxaMDs7IKqyF1jWm9XKFEGCtqSFzxQqN6FosVE6aZGj/0RewYc4cRldWosaS5X6ZOBGzUrUJEyZMmOgqRMvLcVx1VcIP98MPsX77bW8f1g4juueehH/1q3jC3ORly8hsbGRbRUWrqGwqTa6QK8hFoOTKp1kWSLODwwnWDFCytWnZQx+S5QpNtCa4Qq5QIy2rtVpZd/vtuIuKsLndOObPx/rtt32Kk/RndDjxTFGUDOBN4FpVVRsMll8CXAIwVPhtGcEFOJK7DGTJgiC8bUkW9GiJjY26FKyx5XYgf9YsGseMQQXWTpnCmC++aJV81hewzuslfMMNND72GL7mZvxDhuDYay+UhQt7+9BMmDBhwkQ/h5qVhXP6dMpGjwZFYZzTyZYvv2R9bx/YDkLNyCB03XWAljBX+8471H36KZ9UVBDyesmhdQTXKJqrL0hlBxRLigVS6DatEaLRhC+/6F0W1qb6AlVy4E2M6y+/nLSDD8atKOTl5+O47TY20LrEr4nOoUORXEVR7GgE92VVVd8yWkdV1b+pqrqvqqr7Fjhot9yZw5J8sslvXAJGPrmibeRfp08+k0v/hoCc77+PZy1WTZxIs9vdka/fK9g4dy41L72E3+8HIHzOOWY014QJEyZM7BRUq5XQrbfiKisDRcEViXDcTz8x2uPp7UPbIahA+MorUfPyAFDq6wlNm8bCjz+m2uttpa/VE10jqzAX4LCDIkK5RnoFORvNndiegF57W4cWva0mEckVkoWtpaVU/fa3KDEf//1XrWJ4fn6fSobv7+iIu4IC/ANYpqrqIx3ZaMhuS+mTK+sU9B65RoJvGYLoyrpcvcA75rmc9MYkiK9161bcq1djcbuxlJSw5Ve/6pOaXAHbf/6D0qLFqaOjRxM94IBePiITJkyYMNGfEfn974lOmBDv3j9y4ULSfb5+5YcLED3iCCIHHhiftj3+OJb6eqB1j24qZwWn1LYKcivbLGSSrFsQBFdUjIoF7PSaXNknV+hvt5Csyd2uKKy/5hoam5tRVZWCujp2W72aVRUV8SS2vspN+hM6IleYApwL/Kwoyk+xeX9SVfXDVB9odGeDK0WdZal/wBFM7gWQq5+1J1eISOuICK/el07uXRAkuGzVKrb86lcoikL11Vczbs4c8Hr7ZLeAUluL9cMPCZ96qmYp9qc/4bruOtavXt3bh2bChAkTJvoZIoceSvhXvwK07v3tjz7K0pUrea+f+eGqRUWEL7ssPm396COs8+YlpjGO3hpFcx0ih0hewWnwQZduntAk+LXSvXoLMdkTV2hyAyQ4TPPJJxMYMwbV76dy5UpKXn6Zv3/3HWtj/4NJcLsG7ZJcVVW/gx2rR1CbUUDVoGyKGgwuGukVS0RrZQ3ujpTKbesk0DswiPbo7dupinUNrC8qIrT33li9XkO/XlkfrI8wd1fVMz2sb7yB8//+j2EeDygKUx57jG+uuaZf3ZBMmDBhwkTvIjpiBOGrropPW3/4gdonn+SLXjymjkLmBarFQssNN6C4XCiAZeNG0p9/HoVE4pgcodVLEuRAbZolNtEWE5YrVhklDUWS5ZOC4IoCD3UkCj8ISzC1uJiW886LSxCbn3+e7/797537kUwYolsqnrXYbHhzyinaakDEhIYglOwrJxPRrg7Tyy9ilh9+YHBNDZvz84kCK0tKOIpEj4Q+oivkEeLk1fv6djeUhgZGL15My/jxKIrCj+PGUbbffibJNWHChAkTHYKakUHo9tsTBR82bMD26KN9upqmkabWArivvBLfIYcQ8PloaWxk8MMP4w4GsZCw98oD8tFUBfnSPP2YHDSSK+8QkiNkerNcYvNi2oPtoYQMQbYF85PIB5L5jAqErroq8V+sXYv1jTc6+SuZaA/dE5BUoCo9zbj8mCSWFeRW1th2pWzAqFZ1yOul+KGHiFRVoXq9rNxrL9wWS/zikLXlsjxHlhPLXr49QXT9L7xATmMjqqoSslhYECv7Z8KECRMmTLQF1WIhdPPNqIWFACjNzdjuvRelubmXj6xtWNACSnI1srIjj8R5zTXkFxVR4vGw2xdfMGLVKsqA4bFhGFAGlKAZ+hfFhuLYuADIt4CSR0JbK7LOxANdkJMmtDCs8AHbCFQCXohsgi0h2ISmt62NDXVoRR6aSMT05MBd9Nhjie6+OwBKNIrt8cdRIqY4obvQLSTXFm5hWfGINkluJJScGKaP5nZVQphel+MChr7xBq6VK7H6/QTy89m0335JCZPyIM592WpEbK+nsL6igk033ED1li2s9Xqp9XiIHnZYDx6BCRMmTJjoj8i54QbyjzkGd8xNyPbww1g2berlo2of4tkdlxm43dTeeCNYLKAoDK6r49DVqxmCRmoFuRVDCQmiW4xGbguALDtaGFeEe3NI1OeVM8iE7qCBuLA2sg2aamF7vcZ1N5KI4laTkCbEpLoESPAbADU/n/CFFya+41tvYTFzbLoV3SJXsESjzB+1D4GoE1eLrjxgjNnqXRFkmUJXRXPlaKvsy5sWibDHJ5+w+IwzsAILTjyRY+fMIZvkyLK+cpqf1glyPYUtn31GePhwwiefDED4D3/AsmABSkMry2ITPQhVUSAzEzUnB7KzUXNy4u1cj4fCggKqN2+mdvNmCIW0IRyGUAglNiYcjs8jHEYJhRg8eDCeoiI2zJlD5fLlvf01TZgw0Q9RcMYZZF5+OSgKBYWF1D7xBHU//tjbh9Uu5B5YF5AG1F5xBUG7nTxVxRkOc9SCBdStWEEJrc0QcmgdsMoBlAwSLglipniYC8GsqDAlAnLBRHxORGflamZ1UrtemhaaXMFvVCB05ZWoaWmApiW2vvpqF/1iJlKhW0guQNDqZMHwvTlw8ezkBTHGKN5wWkgQSr09WFdA1vXI9r17f/IJS3/zG2yKgnfiRJoHDyZn8+b4cegrp8nRXD9tW511F6wzZxI54ADUggLSioooe/hhuO8+U5/bDVDdbkoOOICSCRNYu307Vc3NGonNzUXNzo63ycrSiK4ObrebAo8HVVEYpKr4vN6453F7cLvdpHs8VCkKdlXF/tNPNK1YgbJ5M8qmTdog2v2sxrwJEyZ6BtFRowhedRWZsRLxw7ZuZfjy5XzZ2wfWQYheUyfQctRR+A4+GJvfT5PXywEffUTo7bfJ9npbuXzJ1crEPKuzjZUgWaYAcVISCWqBXKGxFXrbjszzkyzJzPvd70g7/niafD6am5o0mUJI9oQy0R3oHpKrAhGYNX4KB/6gI7kBUIOtizjoI7ldVe1D75EniGpBdTW7zZ3L6v33xwbMOv54Jrz5PI4QZPoTJFyQXDmK2xsEF0AJBrE//TS2Bx9kuMcDI0dyaEEBX15/vUl0OwEVNLJaVoZaVka0rAx16FDU0lLSSktJ83jYrihkqyrbd4CkAqRnZEDs4aLGpjv6ef1nXSUlNNpssNturdZVamuNye/mzSYBNmFiF4Wal0do6lR8wSCDVJXspiYOW7CAf/QjL1yhyVVKS9l62WXY0J7BI99+mxFPP00WxvUZhINCJpLvrbwgXTctIDS4oh1ISHLrpEFMN5FwUQiikdygbr4guoV77YXlzjtpcTgoKCxk23PP0WD20PUIupXk/rjb/rRE7Djkt5WAcaUyeegq6BPPZBuRdOCwDz9kXYzkfnXcUVzwzUs4GkOkByAQTbLBa6XJ7WmCK2BZsIChq1bByJEoisJ3u+9O0VFHse5vf+ulI+r7UAEGDaJo8mQK9tmH9apKjduNWlqKmplp+JkdIamKz4dSXw/bt2vj+nqsDgcHHXUUFouFsKrywYcfYqupAbsdbDaw21FjYzEt5oULCymeNImAy0V9Wppm2p7qu+XlaRV/DAhwZihEQUsLga++ouatt1Cqqzvx65kwYaI/QXU4CE2dipqXh9/vZ/0vvzD4tdf4xw8/9KtgiBWw2u1U3XwzFocDG5BXWclhzz1HPsZuCeloFcviZFaMnbppeSyIh4hkAUSgJZosSxBFHISLglx0ymgQy5sB53XXYXU4UBSFzOZmhv7yC1918e9lwhjdQnLtoRaIQsDu4qdRE9l/4dzEwkByNbJU9mFdKVeQ3RVksrv3ggV8umUL9YOL8WVn8O3hB3PkN19CADLrExocN61Jruyn29OIPPYYgyZPpjYri4iisOCEE1DfeQdl69ZeOJq+A9ViQS0qikdmRVRWLSsjLS+PDI+HZkWhQFVpaicy21RfT3laGpnBIM5AgJr//hfbypUo9fUodXVQVxcntEaZsXXA1++/z6jyclZVVLDd6+3wxdYMbPR4GFVezrZVq4g0NuIoKUEdPBhVHhcXo1qNz0C3201ZzFvZNWkSdb/5DYHFi7F8/7029IPEExMmTOwYVCB87bVER40CtOz9ljvuYNbPP/fugXUCVqD+ootoGT5cq8/Q0sIRDz7IoJYWCkjkjYm2I5tkQitsGeTolrxMLBfaRNldIZII7DaQILdVJErz6pPmxXRQN99/1FH4SkoYpqqowKELF/LOkiVd/4OZMES3kNyMpqa41mDWXlPYf3aC5MpSBSEJMNLkws6TXbmkn+yu4EQ7tzOAEz/6iFcuuYBghpsXzryCCZvXUhTw4giAO6hdD40kE9zekisIVC5fTvTii/Hffz/1qgoZGRQ99xzOP/2Jyl3g4lFtNtSSEoomTSJ/772pVBS2i8iszfiUThWZVQIBlMrKVkOkqoptw4eTU17O8ooK6neApAqs83o7HTmRP6sASlUVLFyYtI5qsUBBQTLxjY3T99ij9fcdNUp7+J13Hpb16zWyO2sWyrp1fdov04QJEx1D5KyziBx0UHza9uyzWPohwbUAwQMOwH/CCTjRnrf7/f3vjFi3Lm6MIBwT8i3ShExqjWr3ytEq0Q6Q/JAHCCV6cuvRIrfCQWxTbJBdoPTteG5PQQH+P/yBqN/PWq8Xzy+/8M4TT/SriHp/R/eQ3EZfnJ3OmTiJcMiKLRbt0lnlptTkdlckV1/55MQvP+dfV19KVYmHKhSe/d09XPqPOyhq8pIeTO7tcJEgy70VxRXYOHcu0SuuwPb44wwfPRoUhZxXXyV68cVs7AfZsx2B6nRqEdnSUi0qK9qDB5OWkUGmx0OLolCkqjS3E5ltrqqi2GYjz+8nu6GBz559Fuf330NNTUqCtzMktSegRKNQVWVIgHNHjeKs226jqqCAVYWFrI3VdBeIDh1KdOhQOOsslM2bscYivMrKlSbhNWGiHyIyZQrhs8+OT1s//BDrRx/14hF1HtFBg2i45pq4NLD0++/Z4+OP4xpcYQeWb0czvy1BI7rpJFspdWQs6u/KFmLRRE9uI8mR3MrY0OqYddNhIHTNNURjbgqBlStZefPNKC0tnf1ZTHQC3UJyncEghdVb2VpQSFN6Oov22JN9Fi6ILzcisF1JbGXoyXOLNA4B+fWN7Lbay4bhY1AVhdljxnJScTlFAW9SF0SU1lKK3rZvtixfzu5ffkljeTmKolCXmUnokUfYf+ZMqj7/vE8TNBlqRkZcVpC7zz5k7bYbVU4njS5Xys+kjMzW1sajsRYRmV2/nlBDAxs9HtLKy/m5ooKtXu+AJnPrV63i5enTGVVeztqKCiJbtmDfbz+iBx5IdJ994tV2ANTBgwn/3//B//0fyrZtWGfP1gjv0qUoqll2xISJvo7Bhx9O05//jC8YxO/3Y1m0CNtzz/X2YcUhFwqzSvMsBm2LxYI6fTqWESOI+nykr1vHEU8+Gbe0zUEyRtCb2csJMyKkKtoOEmVLG0mQWj/JZre10BBKTjYTDgpygYf2ED3xRKJ77AGAoqpahTmT4PY4us1C7MAfvuedk08l6Hbz799fTOn2v1C0tudJl+x5KxcxkWtLn/f8C3x++DFELFY25eRSo9rBn1hPmDqLk1uQ5L6Autdf55j99+eriROJKAoZJSVsv+UW9jn9dKLXXkvl0qW9fYhALPkrNzdOZqNCLzt0qOYri6YjHRTTkZapKmvbiM4G1q6lDMiPRWY/euopGr7/HqWNaG5fj8x2NfSSB+vXX2P9+mtUp5Po3nsTnTKF6H77xX0bAdRBgzQv5pNPRqmvxzJ7NqXr1zM+GsW7fPku9fuZMNEfMGTvvcl9+mnS0tIYpKps+OEHgvff32eqaAkCK/zlBbeUx3I7eP31tBx9NIqioBQUcOQDD1Da1BQnuaJImcOi+zC0NtsX3reQzK4hQYb9aPqDmBahqT6hu62lNbntiOtTdPBgwr//fWLXb76JpR85WwwkdBvJnTJrFv8+82yqhnv4unQoo8JRfvXkI2St6LmHpHy+i4isbOosMifLv5/Lma/8kw9OPAlXk4+PJh3G5Jf/m3Ryi0F4+3aVxdnOYp3Xy6c33UTREUew7vzzSS8tJWqx8NPo0bQ8+ywTPv2U+rfe6hGtrgqQl6clRBUXa/rQ4mIyx47FNXo0DeFwm5KCVtFZt5tARUWyXnb9epSNGwm1tLDW48FWXs78igq2DPDIbFdCCQaxzp6NdfZsVLud6J57aoR30iTUjIz4emp2Ns7TTiPd42FrKMSUVatQr7+e9StW9OLRmzBhQkBNSyN8553409JQFAVHKMS+H3zA901N7X+4ByHnxLQ1btp/f7aefjpuRQFFYf9VqxhvtTII4o4KWWjB27j+VicziFcrk6cjumm53YjGaLfA9mCroG48kivswNp7dVAVhfC116I6nQBY1q3D+sorHf6tTHQtuo3kjlmxAlckAopCs8PBqiFD2DS63JDkdvf7piCmeouPJhK9HH947Gl+nDiRFpuDiuGj+eqAAxj2ww9JkdxUGuLehojYDVm0iIJnn6U6NxdUlfQhQ/BfeCHO88/H/cEHpC1cyGhFYcO8eVT+/HOHSaEKkJGBmpWl+cpmZ2tFELKzyRs9muwxY6iyWGhMS0vqBgctOlsSi87mpYjOKi0tKBs3oi5Zwr577aVFZ+vreWXGDBpXrmz3e5voPJRQCOu8eVjnzUO1WlEnTCBy4IFEJ09GzcmJv3gEnE5+GD+epieeIPLAA1j+9z9TymDCRC9CtVoJ3XIL1RkZpKsqiqpy1Pz5vDd7dvsf7kGIyqNyHpje4MAFKIWFLL/uOqw+HxQWMrS6mn0rKsivqKCAhFQhG3DIGxESBSuJblvZ3kDflduim98ILfUJ3a2wCBPjOpJ7c9t75kdOPZXouHEAKJEItkce0apbmugVdBvJVYATP/yAZ64ajQL8UlZGycqeDdfrI7khNHuPIK39bwtqtnPifz/g7ZN/TQh49ZxzuGLOHJpU1TBZrq9EcmVsnDsX6+mnk3v66Ww94QTShg1DURSiVivOgw4i++ST2aooOFQV29Kl2GpqyHO72V5XR0NDA1itEHuDxmolIyeH9OJi6iMR/IFAq/3J8oLSFARWjs7aw2EK6+qo/PbbeFTWsmGDljylqviAOTHrrFUVFaw3CWyPQolEUBYtwrJoEer/+3+o48ahnHIK7vPOw5+WBqrKdquV0LXXYjntNKwvvohl7lwzgm7CRA9DBcKXXUZ0773xxzL3J3z+Oe/95z998sVfrl6mr8WQCbhsNmbdeiu29HSsfj/Z8+dz2iuvMHjRIgpjVc1yYuum2WMNwY5FhSbQHvjCx6sdE9tIKBHsqkUjtPW6cR0JPW5H5ArRsjIcl11GbnY2TT4fLc89h2XNmp345UzsLLqN5GKB37z6Eu+ccBJNWVmEm3wEomGyum2HxtBrckVEV0RxZXuxE157k/eOOp6wy0Xl0KHMPvhgSr/5Ji5tECe5uI76QhRXj/VeL+sffJCh777LAQ8/jLe0lK1ZWRoRkaQAWYMHkzt+PCgKaapKi46gut1uSmMENrcDBFYkfzVXVaFs2aINmzfjUBROPv54cgMBXE1N/PXRR7G3cRM2o7N9A4qqoixdSsPSpTS8+SaZZ5/NiokT8cd8eaNDhxK94w4sy5Zhe+EFLGb1HhMmegyR008ncuyx8emW559ncR/tEpcdjgTBlYcc4OeLL8Y/apQW6Q2H+ePttzOuogI3iSq86UjleUVFJycJBg2JiJawBdOVH2sJJc9q1A11Bu06Evk7bT33VauVtGnTGBJzOxrndLJlwQLWd/qXM9EV6D6SC+Rt386h//uCWQdOAeCjY47n/JXPtlqvu6y4ZIIrZDoywZWJrh3IaWjgsHff5e0zzyQMfPK73/GbWbMIRCJxgqt/m+tr0VyB9StWMOvqqxlVXk5w2zaYOJFhF11EY0YGDS5XK9Krr+ilJ7BZNhvNmzejNDRoRRAaGrA4nRxw2GFkBYNk+Hz8+4EHaNRpf2uAd2bNikdnTQLb/7B+5UqYNg3V5cJ26qlETjsNNeZ8ER03jpYHH8Q6Zw7WmTOxVBqZ65gwYaKrEDnkEMLnnReftv7vf31a82lUcVSQ2xyg+pBDWH3CCbjQCMnZzz/PlIqKpHoOilP6sF7voE88E9nlEott8acmsw0k8nP0BFhuB2k7khs5+2wcscCRTVU56uefmTNypHb/NNFr6FaSC3DCJx/GSe6Xhx3BGf94EXRd390ZEdVHckUvRhOJKK5sazL57bf570kn0ZyeTvXgwfx0xBEM/uyzVnKFvqLHbQtJUdF58/B++SWjysvZWlGBOyODX994I9hsqJEIr77wAvXr1kE0CtEomaWlnHHxxaRFo9ibm3n2kUeo0xHUemDWm2/GCWxlCgJrRmcHBpRAANtrr2H98EMiZ55J5Pjj48U3IpMmEd1/fyxffIHt5ZdRamp6+WhNmBh4iO62G+Frr41PW37+GdsTT/R5yZBMdIVEIQdQSkuZc+WVONGexQd+9x3nvP8+2ULE2162WirbMFHJoQ6ag8nyA70kQRBZScmQFBCT54neYD2i48cTOf10mnw+CgoL2X/5crLr61llOir0OhS1G5JH9rUo6rxY/pEK/PHxZ9hQWgrARU89w94ff0wtCR1MtdSu1bWrSXYB2RHIOp4cqZ2tmy+PI8D7p5/Op+edR8jtJi0S4birrqKmoqJVF0Y9ibe//ohhkv7ViIS2t9zErg21qIjwOecQOfTQpPlKKIT1/fexvv46is/XS0dnwsTAQsmBB+KfPp2GSETzwq2sxH7zzSh9zElBj0yk4g1SO8fp5KNHHqGxrAwHMHTTJp657joy05pj2WW09h6T59l1bSvag1mQimpo8SV4hMw15OlGjPPSjKZlyaKA6nbT8sQTqIWFAOSuX8/k999ntfnc7DEEgIiqGr7rdR/JtaGdgFH470kn8beLLgGg1LuWW6++mu30DMkVQxYJf70sWuuCxBAFapxOnnrtNZr33BMUhUnLlpF+5ZVs9noNuzs6e3wmTAwEREeMIHzeeUT32SdpvtLUhPXNN7G+955pgm7CxE6gdK+9yH/pJRrT00FVWf/TT4QuvRSlurq3D61d5KCR2iK0omTFwCBgwb33UnHUUaT5fOTU1fHUTTcwPLhOWzGH1NUirCmmIUEoqoAtsDWaNCmcwpLmNdK6LC/StFHpXhmh664jcvjhACg+H46rrjJ7snoYbZFci9HMLkNMvHLEl1/iDAYBWDd8OKvGjm3l2dxduxeD6MXQd0XIfrliCAWD7PXTT3GngXljxqBOnpwkoJe1RenSoC+PLZcA7s0ywCZMdBcsa9bgmDYNx+23Jxmeq+nphM87D8err7L77bczdNSoXjxKEyb6J1S3m5a776YxPV1zqYlG2ef99/sMwbUaDHbdIBLHhKPC+gsvZMnZZxMqKqLR4+Gcd95huH9dIsxbTCL0m0Pyg9ZIhyv7hPqBBmiKasEoOZi2BY3cbkIrzbsuNt5EcgEI2R9XLgShJ7iRgw+OE1wA29NPmwS3j6F7NLmqZs8h4Kr3c8iXX/HpsccSAT498UR+vXx5K8u69t6YOguxTdkZQe6OCKBdM3JEds+XX2blqadSnZNDRFFYePDBHPjyy4RJ1ubKOp2QbplRN4c834SJgQTLzz9jv/FGopMnEznvPKJDhuB2uynzeGjae2/Kfv1ron/4AxsWLuztQzVhol9AtdsJTZ3KtvR0MmJeuEfOn88HX33VK8cjAqhWXdtonuChOSS4awHQMn48sy66KB5EGrthA2O2bdN2IGtqjciAniSgm64BqqDJr5FWQXDrSCSSddTvtj2o+fmE//jHxG/z5ZdYZ83aya2a6Gp0C8mN0roL/4gPP+TjY48lCsybMoXDnnuOloaGVl7NXUluIXHuy9FcUZZXEFsxFvIeAOeqVRx9zTX8+777iDQ3U19Sgv/449n9o49aRZ/1pYLbG4vPmDAx0KAA1tmzscyZQ/Too8m58ca4S8fm/HyaHnqI6LXXYvnll94+VBMm+jRUi4XwTTcRnTAhyQv3g170wpUlsGJobzqTRLUyV14e/73tNqzNzURUlYL6eo5YvDjhoS+7I4gHtTyWCYPRuBa2R5MrltWSnD/TRHICeWegoskU1PR0AJStW7E929o5ykTvo8dI7uA1axixYgXLxowhbLPx/dFHs8ebbxpWEOtqootuuyHdECRZTiC07SO++YaD//pXfjjjDBTgpwsu4Ii5cynYti1J/w7am2IdCb1uHdqFpZ8PJsE1MfChRKNYP/mE9HXr2Pvxx1lYXg6qSj0Qmj4d68yZWN98s89nhZsw0RtQgfAf/0jkgAPi81qefprFb7/dewdFIlIrmxvIlcz08+wk1AaZNhsf3nYboexsnH4/gxYt4o+vvsqe8+ZRVOnVWLAgDxZad7caZYQFQQ0lZtWRHL0VsoM6kiO5O0NwIVbVbI89AM1T3P7wwyjNzTuxRRPdhW4huSrGyViHfvABS8eMIQLMOf54xrz1FhFVTSK6cg9EV+h1IykGcY3YSY7qCuIqNLcn/vvfVE6ZQu2QIVhdLr794x+5/c9/JgNwCLGRFSK1xhmc1bFVqkl+SRUVCE2YGMioXL4cy+WXU3jMMSw89litmISiED7/fNTx47WSl308O9yEiZ5G5JxziBxzTHza9vbb2HqZ4ArIVmBCY+uS2vp5Iqn7q0svpWbMGByAIxrlujvuYL9fftEKRLljG5d1f3ICTUhqB6AlarxIdj6qIzno1ID27BWb7Sy/iA4fjuPyyxNVzf75TyzLlnVyaya6G92SeCZexvTD7rNm4WpsJOx2Uz1hAstPOSUpiqvPbtxZRKRxqiiu7tqJn/iCvxaFQlzx+OO4VZV0oOKAffn59ENwTAAmAQcBh4J1MhQPg92csDswBvAAw0ho6HPQLnpRnMWEiV0B67xe5v6//0fooouwLF0anx/Zbz9aHn+cqJmQZsJEHOGTTiJ8xhnxaeuXX2J94YVePKIErCQHgYRbkWwNVgQMAYajPf/KgA3HHsuyY4+NSxnOff559vvlF62KmYUEExHShCDJBR3qQK3VtLY1UU1vu4XkBDIxVAIbSU4kq6N1ed7OVC1VHQ5c99zD8NGjKSgqYr/8fDxz5uzgVkz0JHqU5EZDISb89BMBj4dIURHz7riDiMeT1Psga2i76ljQbVfsR04IE8fYgvajuEj4505evpxfff4hpAEZ8OwVl1I/JUsjuQcDh6K19wX2hPwSGItGcsvQSK5IEnWTkDiYMLErQamtxX777UkRKbWwkNCDDxI59li63szQhIn+hYIzzyR36lTcbi20aZ07F9uTT/YZWY9eqpCOZs2ZjaY2EBZhJbFhOBAZM4bPLr0UJ5qk4fCvvuL0994jC3CIh62+YplwSZAqltWRZIHLJhIktxJYS8IpoUpaTxR+kCuYCYnvjiJ8ySU4Y2V77arK0YsXM3rkyE5syURPoVtIrpArGA3j16/HoqqgKGzKz2fj8cfHk8HkBDHouqiuntwK/bog1vLxCb2sA+0CzgPSM+D8r19kUGgbpMO24iLuPvdhqiZ6YDJaNPdAYD9gIjAerCM0kluC9mabRyKS66S7vdtMmOibUCIRbC+8gH3GDJRYGWnVZiN0xRWEr7sO1ens5SM0YaJ3UPirX5E1YwYFRUUM93jI2bwZ2wMPoET6jrBNtgcTlctEYpmI5gqSWwZk5+Tw6m23YbfZcAJjvV5ueuopMuxgdcY2ItuBiYez5O/ZHEroa4UMsCo2bCQ5mruWRCRXEF0jOzDxrN8Rohs56CAixxxDk88HqspBv/xCZkODWdWsj6PHEs8E8ubOZfz69fw8fDioKnP22otJJAioPHQF9AltIRLieTHI/n4REheyG8iyAAWQlh/gyjlPcdvvHqTK4aGqdCRp27K5pvxWiorroLhWY7KZxC9cBShbo/W8NKJdbKJ8oQkTuzKsP/yA5dprCd12G9ERIwCIHH446siR2O67D8vGjb18hCZM9Byie+5J4KabyLBYUBSFXJ+Pso8/5us+VkRFH8l1k6gmmodGcsU422rl9gfvZ8P4sbj8PgZVV3H7X2fgymhpHeWRI7liCGgEV19htI5kra08T7bqbM/ac0c4hlpYSPjKKwHw+/1s/fe/WfP113xuVjXr8+i2SG4wxaB6vUy+/nqsGzYQ9nqpKiykctKkVlFc2Hmiq9+WGIx8cvWRXCFXiPfBlME+tgXsXrcaUFBR+GT3vZlXcwlwPgzZW5Ms7E1ClDsS0oq0SK6pyTVhIhnKli3Yb7wR62efxedFhw4l9OijRA46qBePzISJnkN03DhCU6fiCwRAVclqauKEH35g7aJFvX1orWCkyc0kQWzlSO5T0+/g26OOob6giK1DPVz06SsUsTURDBIFHlLIFSLB1olkQoIg9LiyXMErtfXFHepIRHKD7JiFmGq1ErrpJtSYhESpqqLxnnv48uOPTYLbD9BtkVzhIKBHEHAvXMjYF15g4amnogLLzjmHPX78kRZVTZItdBVEdFaO5IqxHoLk2tGuv7iTdQkwDP4YfIofAwfR4HITtll52XMmB9FANvmQkQF7fqNtoAVNAFQHhdVQFdV0S6J3xoQJE6CEQtiffBLLsmWEL7sM1eFAdbkI3Xwz6rhxWJ9/vk9115ow0ZWIjhpF6O67UZ1O/H4/lfPnU/LGG7w4d26fJFCiF1R2V8ghOZJbArx33il8cuxxoCioisKBK5aTZ4/EqkFgHG4V3a2xxDO5GmkdCWsweSy360i255TvGno+sSN3lMjvfkd0zBhAk1vZH3wwLrUy0ffRPRXPYkh1IkWACW+8weLjjiPkctE4bBhbDz4Y9zffdLmtlkyYI2gXqEguM7og5GsvIhZIBzUy7WceybqMP7keRXFn0OjM5V4ymY4bB06NwcplYGJtS+wgzNK+JjoCcZ4YlWc3KucuIN/MI7p5Ed041T717VQ9i0boTNdQFODzzwmvWoXvttuIDB4MQNqZZ1Jw7LGk33MPm3s4qmX0O+rb+vX0MKm5ibYQHTaM0LRpqGlpACh1dQRvvZXvNm3qkf3L9xP9/UW+t8iVzESkVuSY5JBsGWYH5u+9N/84+yJczT7qcwoZu3Ej+6xeRcmmigSh1VcuMyh3qu91TeUuJgY/XX/NRSdOJHz66fFp68yZWFau7OK9mOhOdCvJbQtpDQ2MefddFp15JgBrf/c7xs6aBd0UtREEV47oGqGJZOeSNOE7UpsY9iv+lhm5d3AP96DiYDlpPMlwrmcdiiivUkc8MzQSStYEdWWU2sTAg3igiIIjIi/DnmKe3NNnVBo71MYyeX9GD7q2HnwYtNtbbkS04yR87Voi113H1quvpuWooyjyeFAUhcyZM8k/91xqFy+mO7Ej1UPRtaH1d7OkWG7CRLSkhNC996JmZgKgNDZinzoVSw8RXOh49TKL1BbkVoyz0VQHoneysrSU+2++GTWi4PT5mfLj5/z+s/cYtnYpRRu9ydXL5MitfMH1kQtFzc4mdP318WnLggVY+4hXsYmOo9dILsC4t99m6UknEUlPp3nwYLYdfjhpn3/eZdsX142cYKaX8euvLfFGKLpJChtJLl1Wow37FX3ERbbd+DsXACpfUUIZ+3BGTUWyKZ8/kdEpewKbMJEK8sPHlWIs2g60ZEZILlmt7w00mi9kPPpa8zLB1c9LRX7BmATLy/UEUrTFsgiA30/J/fejpKWx3uNBVRTqsrJQ7rmHwnPOwd7Y2MFfccchXgj0BLe9Z7L4HvrvrifyZgEYExCzzZs+HTU7GwDF78d+551Y1q/vsWMQ2lqjKmVtVTGTpbSiLWwxAxkZPHLHHfjcbmwRKKjZxoy7byInUN/atF605XF3lDrtJFQgdP31qDk5gBZltz/6aJ+xcjPRcfQqyXX4/Yx+6y1+PvdcADb+9rd4vvoKwuEu3Y9sIebAuPtRXHui60PogVqC4KijtYdJNZwyeCaVlPMJk4FmXgr9liGhdUyp+14jxjFTPtG9IsiFCRPtQZ/BbNSWp60kez7rx8JfvYXkXgXZEqijbT3ZlYlsqvmC4OmjyPK0PD/txRcZPWECX+y9N1FVpTE9ndC997LP7bdj9/k696O2A7knVZYJhnRtp26eOG67wfeQYfbgmFDz83E88QRZw4fT5PPRvH079rvvxrJ6dY8fi7jH6CuVCQKrn6e/98iDzWrl2dtuY8vgwdq1Hwxy0133kL2mPlnD1E/0enmXX0742GNp8vnw+/1a2d76+t4+LBOdQI+RXBE10mPke++x4pRTCGdn01JQQO1xx+F+//0u36/+pVHfpWiPjYVZdCNaGcA6YtHcOmmIEV0lfyuXOf7KZjJZTBa0wCMF11PIVkY3rNI24E/Uy5Zt0kyYSAWj5I62Hj6ZsfXFeSYPonCQPM8htVN1U7pSzBfTqaK7Rm0x1hNafUQ0iex6vdhuuon9Tz+db44+GmtzMy0jRrDs3ns59PbbcXRDKWDZbUXWAOo1gWId/XeS7zXivqLX/pvYdaEOGoTzqaco3X9/UBSKBg2i8ZFHqFq+vMePRfRuOkj43WbFxtkp2uI+I/fwWNGsMv996aVU7L47oJ3/Fzz8MHlr1lANWKOJfVqjqfW+AIr8ZtxLKD76aNJvvBHVYqGgsJCaZ56hvg86XZjoGHqM5KbqqrMFg4x8/XV+vvhiALaecQZDP/sMgsEu27d+v+JhJJNbMU8vV2gECuvQIrM1aFHcHOKiJNvQFdzKg9zYcimbWkpoDOVw/QF/5cHFtzCucQGqP0FwO2NAbWLXg+hKFGQzs40hC+1BZCXR+yCPg2gPMf18ATlirJdFpJJK6HXBRrIGeVr4QgsiKEdAZQmPnviGvF5yH3wQx7x5fH3NNaAoBDwe5v/5z5xwxx04uzjDWbYTNKqGKEfFhfRJjvCmuseZulwTakEBLTNmkDV8OCgKNlXlmIULWRaNUtULxyPLFdLR7iOyzjafZO2tGBv1xLx98cV8ft552H0+bH4/J730EuN++IEaEi968j1BHrdaFqVXJQFqVhYtN92EO+ZXXFhXx7ClS/lfLx6TiZ1Dt7srpEpAkTH0o4+o+PWvCefnE87Joe7EE7G/9VaX7L+95XpdopAqiGhuI9AUhfQ6EtpcIVnIAXL8ZGYt4s4Nf+ZK+/9jveqBLIXLL3uRJ7wXM3LZnCRvPjOSa6I9yIbrbhKRlhy0B1CONIhpQXJjMvC4J2Qj2oNMlhvIvYc7qslz6bbVkbEcyZXlAPJYrx2Wk0OLv/ySHIuFj6++GoDG0aP55s9/5jd33omrC4luqiqN4jcQkW8RxRXfS7YlFL+t/BuLtr5XycSuAbWggJb77kMtLKTJ56No0CCOWbiQsi1b+G8vVsuS7zHi/iL73Yp2PpBvic2Ive2pQe18//jkk3nhT38iqigohYUc+tprHPb660mFGcS+9DkFci9RhITsqrcCuaqiELrxRuosFnJUFWcoxJHz5vFSL0TaTXQdupXkdvRktYZCDHvtNZZecQUOt5volVdSsGIFDUuWdMlx6CMpcpKIPsvcrxuEUiG9Di2SK7/aVqPdHQJRhmzexFlVH3LfXhOIWhS2p2dwyy33ceu6q7AtWZKkgzRhoj0IgiibrosIS540Fm0LiZcycc42kiCm+oeHOO/F9mV9ryg9bTRffkgZZV+n0vOKyKc+AU7WvMrTckQX4OjPPyfbYuGdWNWh2vJyPpw2jQvuvBNXc/MO/75GEL044kVXlnr4SRB2vcRQTmiVl0Wlsdl7s2tCJrgAzQ0NNNxwA8uCQf7bi9WyxHkrJ5RlkyC2xSSKGKVlx2YUEH97VvywMXc4T910I1FFgVjU85jvvydIsuxPvpfJL85y4pt8TJZoTLbQw4icdRbRiRPx+/2s9XrZ6513eOnDD/ukX7GJjqNXE89kFH/+OZUXXIBrwgQURaHssccIXHopy3fyBJOlCfp5SPOFdk5EbxpIJgx5QUirR4viitdeEWYLANVw2PpPWWg5ik/32IuIohAJR5l+zz0c+fTT5HzxRVLmtgkTqWBEcHNoHWkRgzJI+1BaHWTGqgS50ToeBCnVuxy0SNs3SjCRx3ptcFt6XasF41ANkBZjuOkSq1VDxppXMS3j1E8/Jddi4dU//hGA6jFjeOPuu7n6rrtwBQI79iPrIJJOhaRDSDycJAiu/neERERXjurqEZGWm2R314Ge4CrhMLbp09k6fz5f9PKxgfE9RhDcktiglKCx3ZLYgjqgHrap+Uy77C6IhlBUlYxAgJPmziV76dL481N0fELrl2Uho5KfhbL0qacRnTiRyFlnxadbXniB+S+/3AtHYqKr0S0kV42NZTKZKvFMwBKJMHHBAlZMmgSKwuKRIyk75BDogrcoWT+kJ7dyFyMkP+hkolsPpNWQMAasJvHkD2rTRVVerlt+M5PmHc4rB55IU8RGk83Gm9dcw8ihQyn65z+TqrqZMGEEWa4gdyfmxwbxIMq3xyaKYh/I1IhuWi24osmRVQFZFxsimehmSu0sg3miLUdzFaGFkAmtEQuWRawSi1WC4GgBRyhBfiOhxKp6nPnxx+RYLDx/2WUAbBw3jhfuuovb7r4b107o+CMkyK2IgIvDd5B4AOuj4am2JfvbpyK/JgYu1MJCWmbMSBDcUAj79OlYFizo5SPTIL+LynIF+f6ilAClQFlsKAGqwV+fxrST7qImJx9ni5/hK5Zy4av/Yfh33xH2eqlGu4ZECgskJ82GSBBccX2Ia0TkyPSkZEHNzyd0442oiqYGtixejPWVV3rwCEx0J7otkqt3MRBt+QGgN1VPe+MNBp9xBpvz84kC8w85BHXmTIh2HSU0iqLK80RGuhgLotuAFs11yLpckf0TIl5XsGi9l19/4+Wgl97l1hvvpGL4cCLAol//mqySEvL+8hciXZhU19vo7pvRQI96G/1+qZLO5O7EfAsauRVhFzvakyTGQrNqwe5vTXL1BSIEcZXH4mGkn5cOpAvbB5npyqTWqfsCYiwE77KXWQq/M2sI0gKQJg5Sh998/CFOu5XnLv4DAKsm7MZjd93JXX+ehrNFH//tOBzR5GQ6SNbTirEL44Iy4p4mNIZ6za7RZ0wMPKiFhTieeoqsoUM1m7D6+j5FcAVkuYJ8nWcDVlm3MATtHlMGYaeV+4+9lbV5wyEI1lCEafdPZcLXi9kIVKGd40LqV0/y/UbfmylyCWTSHUGTLMjr6hPeugqq1aqVEM/KAkCprcX+0EMoqtrOJ030F3QLyY2gndxGEFHSRqktJAJNXi/KVVfR8OCDNAaDNA0ahPXUU6ELktD0ZCJVqVIjzaEczTHMLDFAwbZt3Hnzzdx3443M3X9/AKomTaLqoYdw/fnPsG1b575ID0NOsJHbbdlGdQZtVZXST+tvdvobX3dms+vJj7Wd+anOs1TTFrRoipDAyUO+NG6V9iz6+CStQ1odDKmHzJD24Cog2QmvnoQmTkRo5W5F/fQOdSOmevsROgT5bVJ0n8TmiQqBAVL/fwe8+19qsfDKRRcBMG/C7lzz8KOc8fHHlCxZQl4neoBkHaHcbkqxzMiJQfba1WehD/QXNhMQLS3F+dhjlO29d9wmrOG669jaxwguJC5D0WtZhyRJqoU0+Q2vBVQ//HX85SzM3Sv+wnrVs0+y5/eLaSBBZCGZOItpWToFCYmQflokdtaQuE/VISWCk1xgKcW7cIcQOf98ouPGAaBEoxrBNf1wBxS6jeTWpVgmJ3TItkbihPXPnk30sccInH8+KtBy9tnYfvhhp8od7ggxMcoij2vx9OWe2gljpgUCXDB9Opbzz+er004DwD98ONsfeYTovfdCL2bWdgRyApGcZNReKUh9Yp8M/XwxrX/TT7KSSjGWTfhlEmyUwd4VBKMjhF+xWlGysiAnBzU7m+xx4ygsLaVm7Vrq161DCYWwhsMooRC22FgJhbCGQgwqLaW0tJTIkiW4vN544oc85AFWOQMtJzaWo6pOkvogsxohq04rbCLrzJtI/Mep/lP9/93p0L38thKidVZXE0SCyfeFAG3LevZ5911qrVbe/f3vibjdzD7+eDbsvz+nzJnDhEceIXMHia5+33rbNaN5eg2xftrU4O86iHo8hP78Z7JLS+M2YcctWMCSUKhPaHBliMtQvF82onVGiueeFSjZFutNaQH88PrY3/Dp0GO0D4ThrNdf48h3v6Q5RNxNQdx/hQwim0Tvhv5FOaRrC7mCSFarI0Fy5WRasS8x6F8oO4rI5MmETz01Pm2dORNLFyW7m+g76BaSGyY1yTXKYJZP2BYg7e23sR50EOGRI1EdDsJXXon9T3/qlH+eHF3URxuNlhkRXCsxr099lkkHYFFVDv/nPwlv2MDnf/wj2GzYS0pwP/88ltdeo/bZZ1FCfbcTU58Z6zKY1s/vDOQAX1vEQY6YyV1ZkCDXQtPVlURXBZScHIonT6Zgr73Y3NjI9kCAUG6uVp4zJ4doTg5qZiYKmtej0+0mzeNho6KgqiqNXi+hmOWVOJfFuna3m0BsXXcggP2bb9i6dCkNmzcT3ryZzM2bSdu8mTS1KdlWQY7kOkiEUOQQZANQAI5GyG+CfL8WlRHmW+29/Cn6FToC8fahnyfLFALEQ6PNodbWZ37a/892f+sttlssfBjT1K0vKOC73XYjt7ycnE6QXHE/kiO1/hRtfSRJbgs+L85Tk+wObETHjiV0992objdNPh+D8/M5Yf58BldX824fDGaI81Oc70KHLpRFltg6BfWQG4CvdzuEl/Y6V7swInDEF19y9rOv0BRNkE4RoBDSg3SSAxFyQEDfyyHUTPIzudFgkJ2PhOqphR2/ttTiYhy3307OoEE0+XwEv/oKaxf0GJvoe+jxSK6e1OofFiEgGo2S/sQTBB99FCwWohMmED32WKyffNLpY+pod7scyZIjWBYMPrQDKP/8cxo3b+aHGTPI8HhAUeD66/EdeiiBp5/G8tVXfa4utmwNJSco6dty5r2I9rYXwZXnCzIgzg25LXcHB0j4lIrP6fVa8nyBHbkBqgAFBahlZUTLylCHDkUtLYWhQ7EXFGD3eKhXFNJUle1eLy1+PxYSZFW8AymAOyMDJWavowBpGRng98fXFQOAS1rX73Kh7rknzYMHsxlYiBactVkgM9zIYN9mMiwtuCwKB1V/yUGRz7QEMPFnBIhZ29HaCyvG1JQApDdJf4peByJP6/UinYVge1J0SBBcfaRGDB3ZXfkbb1A1dCg/xOzFfho2jOL8fHbfwcPTKyj09yf9PPGQ1Xv7GvU2mAR34CK6556Epk5FdToBaK6upuG++/jZbuftXrQJaw+yXKGRZP1+BO38DgJfHX4cj193B45gM06/n90WLeb8vzxJdTT5WhChGhEsAuNngYB43ov1ZERJftltINF7Im5lsjRoR6A6nbgefJAh48eDojAiM5Pt77xD5Q5ux0T/QLeR3NoUy+SInJyDoie6ljVrsL/5JpHf/AaA8IUXYpk3D6WmpsPHYURm7aQmt3JOjej1lcluqxTrHYjoAuQvWcLRr73GyhEjqMnKQgVcZWU0Xn89ll/9Cts//oHll186vsFuhviNZFIrJyHpE5My6XwkV46UyV3DsmTTFRuL/1Dc5ETU1iK1U0EsUy0W1OJi1LIyBu27L9l77MEWm436rKz4w0qGnrQSmw7HSG58UFWcDQ046uvJqqxk2J57YrFYiADVP/xAS2Mjqt2OareDzQZ2O6rNhhIIYMvOJuhwEFUUHD4fThLnoC2mG2jMzGRbWRFVedqL0mucyZiWhRzR8CkHbvqe3bYtwdocbZ3UZXSx6S86+cmhXy6X9+osRCRXYpMtEsEV2jsxNNLxB9joRx5hQ0kJ6w86CNXn46PTTkP58UcKVq7s8KG1d28K0PqnMZLVyMRWfj8Q+zExcBA54ADCN9+MatMepUp9PfapU9mybh1bevnY2oI4X1tIvqeKZeL+u/ygg3jh8ccJOhwoqkr5rFmcNWMGmyORlLIypO3Zaf0Onaqtv36MZEL6tnwNdgQqEL7mGhzl5QlJyU8/Mb+0lMo+9Ow10XXocbmC3gzeqEtanPyO116j5cADiQwZgpqWRviPf8R2zz07HPE0Irh2g/lyN7xep2iFZDf4TmoTA3PmcNo337Bi2DDmjB5Nk88HQHTkSFpmzMD6449YX3gBy8aNndtBF0NOlBeENotEpa1M3djdyf1IPdeGiT722FjvNypIrUx2Zah2O5SUEC4rIzJ0KJHSUi06W1KCarPhdrvJjUXWS1SVFq8Xf4oqWoFt2yhwOMj1+0lrbmbJ66+TtXw57vp60uvqcNfVkd7YiDsajZ9DGR4PmeXlBCsqiHq9hudc/Jz0eFDHjkWprsbe0kJk8GACgwdTX1bCluHFbC4bTIvdQSAtAxQFFS1CvCVtCB/knMgHpSeSFWpg0rY5TKmexZ7bFmELRlKXFpNFebKGSH7DEH+ErAPpCIzWE5HcGHNU/Yn/WDYtqUNLOhGZ2R3F6KlT2fSXv9A4dCjY7Xzwpz9x2HXX4aqr69Dn9fcjoffr6P3K6MFtFAw3MTAQOewwwtdei2rR4pDKtm3Yp07dqfyRnoSI1vpJJrji3K8qKODLu+4i6HCAouAOBjn2/fepNrg/WnVtcZ8TlmHydQOpryeZuKbqVdFHj3dEChQ57TQiBx1Ek89HQWEhh/z8M/m1tazqg5ISE10DRe0Gq4xMRVH3SbGsrUQiI21bcNw4Wh54IP55+0MPYf322w4dh0wi7G205Xn5xN1S4obYop2Wp5shxulAJbAWWJcYb/UnTcbHAY+H9PJylq9fz5q99yZy6qmoDkf8uJVoFMvHH2N75RWUhoYOfdfuQDqJKltyPXOjeUIamtl6Mx2CIDvy0N48odkMASGXC39pKc1lZQTLynDsuSe2ceOotdvxNzejot0M9Wd7QWEhBUVFKDHdbHVVFdtWrUJZvx5lwwaU9euxVFZir6wkrbaWUR4PnvJytlVUUO/1GroQ6HXK7Z1z+rZc8CHXnphQC6B2RB4/j9uf90ZfxuacPNYUFZKVvQGnXXrwxL6kO+xn/4YfOXD79+zduABnpKW1HKGRZENo+cc1mt8Y+7wsXJffCkXoWb8cNNPMWjQGWwvN/sQsMVu3yg5HPpuLi5n/6KOE09MByFq2jIm3344lHG73s3p9rVEipNG7ArQmt5BMcGHHHsYm+jbyL7yQlksuocnnw+/3Y9m0CfvUqSj9yDXHqPiLCGbYsrJY/MADtIweTZrHgz0S4dfff0/etGnYvV7DJGT5PqaP5KbSuLeledd3LqXqSZEdCdtCdM89Cf35z3E/3MI5c9hv/nxW9WFJiYmOIQBEVNUw/tktJNetKGp5imWd6bYIXXopkRNP1A64oQHH5ZejNDa23rgO+ovOqOyoPN+CxieGkCC4JdK0YxBJnoHxFXaQ5IpxvOs8P5/wuecSPfzw+AUIkG6xUL5oEY1vvMGGhQvb/b5djUySy8cWSNMFJHKfCqR5Skbn9qX6knWZYlxPonpOI7A1I4OqsjKqysqoKyvDX1ZG89ChtAwaFCexdrebwR5PnLhWxqKzepKr1NSQ4/Nx9G67kd/URFZDA28+8AAbFi9udXwikULWIMttUQZXflDIPE+cZ6ncKWT9s/gts5zSDyz/yAVQle9hU2Y5RYNWsW10Gt/nHshs12RqLXmxL5c49mDIjRp0cErgXS5U/kq6KhHiOhLh07rYDy3CqHUGy+vQLsz2SK4830VCw1SdGGqiSZPxoUZqdyb62TBxIt5p0+KykvxPPqH06afb7QHqaFRWvx4kE1l52iS4AwsqkHvtteRdfbV2fqkqG7/9lsDVV/cr6ymhm9X3XroAu8tF5fTpBEaPxgI4nU6Ofvttcj79lKj0Yi+/1It7oHzvE+uESM6DlYMVRvNE55Hci6IPfqVqp4JaWEjLo4+iZmphGMuyZVoye8S8KgcC2iK5PZ54ZvQw0EdDxHLRtr34ItFJk1AHDULNyiJ88cXYH3203eOQNbeyBteI4MrP61SShTgbEUMXQampwf7YY0Tfe4/whRcS3WMP3G43wzwegrvthuO3v8X1+ef4PvwQ6+zZKFVVXbfzdiBrcoVcQSa9BWierlnO2ESOwUZkHYFo67QFSqNmc5VZr5GcQG4u68vKWD10KOtLS9lYVsaW8eNpHjyYFp+PgN9PmER0ViR9RWmd8JXX0kJo7lyilZWoIkK7YQOK308zsMjjYVR5OasqKtjQzhu9fK6Im7pMcLNIjowYnWPtTecD6eL3FG8WguTGhqI8L0UFXsiDEhfsYfuZS9VnWcEYvrcfyCzrFLYqhQRb3FTVe0BV+LtyBf8bdCTnpv2bE/kKByqUrW/NLMXTS/Z3E+K9nYH0RGqJJpJIxEtNnXQYVbFxe9EZQ/z0E64XXqDuwgsB2Hjssfi9XjI/+qhDh2h0DzKaZ5SLJ7dNLe7Agmq1Er7iCq38q6KgKAqFdXWUvfMOX/cjggsJeXxEalsBm81G3Z/+RMvo0VpirKqSf/fdLJs9GzuJ3IssknMxIPGsgISFWCaJa1hc/sK5Qcgl5HuAGPulddqTAbUH1eEgdPvtcYKr1NZiv+8+k+DuIuhxkiuQKkJjdNopgQC2p58mdNdduN1u0s88kzSvl63vvtvhY9InnxkFnuTgk76tWEgWU0KyEKkLYPF6sU+dSnTffcm/++74jVQF7HvsQbi4WEvA83qxzJ6N5fvvUSoru82VQX4hEG/lQnsreFcxkJURaxQTK5dDMpFNQXI3Z49kyfD9iNCMP6pQmV7G+tyhbMgrpSEtPf4W3wK0uN2EPB5sioKtsJCo10s05lQQBZRIBPumTdgqK8kJBjnioIPI8/vJamjglYcfxuf1puzSWuf1tttdZZSoqHedEDd+uVpYqnMtVSDUDjgySCa2RuHzPBIl0HK0HSqKg7FsZiwfcAFfsIZRvLzlTD5vLma7OwNFhW0tQ3k+7Sre40LOYR6HKx9gKVwFeeu1L+CKHYhAlIRWV1RE6ay4VDyZAsndk0IFUUdysHcLnSS5gPrOO0Q8HsKHHQbAlksuoX79emw74INpdC9q66ubj8yBC9XpJHTrrUT32Seu5yzbto0j587l74sW9fbhdQpCiiOIp6oohK67jvDEiYAWOEh75hmqZ8+mmoSUKkcaC6Is7onpJAdGckj454rrXTw2xb1d3APqSNwD5H5a/XW1Iy+PKhC+6iqiI0Zo3ykcxj5jBkoHdfom+j+6heSqdP7hlArW+fPJXryYwrPPBkUh7f77sW/YwMb589v8nBx4lfWQciUzfc+qYRRXfFAeoMuJrgJY580j7dprOfQvf2FVaSmbcnPjCWqgmY5HPR743e+wbNyYILyrVvWIDZncbRtCasieLrHX7aDFQVVOEZuzB7Mlr5gt+cVszhnMmpJyfh4xiYjFCqgUbfXibPJLPnLJv4makRHPhs1pbKR4zRoCn32Gs7ISR2Ulls2biUQi8Y+vevddCsvLWR/TzmbSMd1WKugdJkRUW5YniMiu4IlGMhmjnEWRjxWJLU8SnvlJhItdtO6WEBsIAPYWcLWAvQHFZsHDNi5Jq2fwFyFWFA5hTvloXC4/EGYbTh7jYN6ihPN5hv0a16PoNbh1GPp6RaJgDZC4YAIYs3cx7SDx5lsHEX/C61Jv6CCwE7mdcdiffBJfWRnhkSPBaqXl1ltxXncdlhS6Sf3DU9fZ0CUuaib6H9TsbEJ33UV01CgA/H4/1f/6F8N++IG/L1/er/Wc8nkevuQSwgcfDMS8u19+GccnnyRdF/pIajTFvIhuCOna8i1O3AP0mtwu+X6nnELk0EPj07Znn8ViJpntUugWTa5VUVRX+6vtMA457TRq7ruPgNOJqqo0/fQTW846CyUYNFzfSH7Q3rSIThbpxlluNP2tPFNMu9gpTW4qDIt1o6/YtIl1BQVEDzyQ6F57xe1qZLjdbrKsVgJeL40VFShbt6Js2QJbt6JUVWnDDhadyKR1xS0x5NrtuLOycGZl4crKQsnNpqE0i/VjR7Nm2BgCVmhMc1GbnWe47fqcQupzi1AVBUVVya6pInvrVghrNz+7309+ZSXZlZVkVVbijEZxnnIKGcEgSiTC+kcfpU6KznZUs7UzJLc9Da5RW/BRoXSRX7T088W0iJZbM2INMeRJ7WxdWx82lohmVbOHTfXlFBauZmFpOa+lnUW9NVt7ksXc1MdtX8YFS15g3MrlxkLZaojUas2W1rvQgrz6bhKZ9MY0uZH6RFKZGKdq17DzjgThQYPY+OijRLOzAXCsXs3gW27B0tLSal2jrlHZIsmo29TEwEZ08GBC06ahFhfH59leew3rK6/0OV/zHYX8rpx19dUEzz6bZp+PoN9P+gcfkP3ss9h06+WQkCiIdjaJXiy5LdYJ0FreX9vGvFp2XhkFUHT88fjvuIMmvx+/34/1k0+wP/10F2zZRF9DjyeedRfJHebx8Kt77+XDAw4gCqz1egn+73/YZsxAMfgeegLrJjXBFUMeyTxWtNOyUyzoRpJrBDUtjei++xKdPJnovvuiuly43W6GiwITqsraFDZYSl0dSlUVeeEwg51OtlZVUbNtG1gsWsKbxaINsbZDUchQFAYVFpJZVkagpYWwqkJ2NhaXK4nLOAHV7WardBxFa704U9hxBd1uqoZ7SAuFyGts5KB332XkwoXkV1aSU1mJtbY2Hu2LJyd4PLSUl9MUi84GSDbgN0oOMkoW6gyENEGO1hoN+uWQXDvEmmKe3BauFuIhoQiyq3+6yG2Z5Mo6E4P052ani3eKT+WtgtMIhF3xKHww7Gb0hg1c/t+nmbBwbhLrbAomyGeonV3pk+sUu/bdmkKtiz7UGUzL464gkr7x41k5fTqq1YrD7WaE10vp/fezXReBk50U5GiTOH9aDNYxMXARLS8ndOedqFlZgKZPtT3zzE4VJepLENds7oUX4pg6NZ6oG/jPf3DfemtSb6d4f9XnHGTS2qFBPy9Ect6q3g/baHpnSe6Q/fYj+6WXCDidoKps+uILmi+/HKUDLism+h96PPGsu7DO6+XdqVPJOusslhxxhEbkJk1COf98bP/8Z5uf1SsNRJGHtgiL/PA2rCzRC1Cam7F++y3Wb79FtduJ7rUXwy68ENfQoQQdDlQgPSPDkOSqOTmklZRQ6PEQURTyY6VmU/nChoCQ243i8dAUuwE2eb1Y/H7saLIUYc0VBUIZGRpZjmW1N7kzsDT4yN+6lcItWyjavJmCLVvibVtaGk3DhpFfUYE7RlrF4JPawg8x4vUS8nqJkpCNRonJSeheCyej4KReTys0t+IU0SctdRTpaDf5dLQbfqZPGxxy5od4moiwiTgQOTyst22IzUuzBPit/TVOSPuQf5edyUcjjqeJLKqyPFSNHMm8P05m2oybOW7euzT7Ew+hGhLetTLBTTWOt2NsULysNJFIOBFEUdb0IbW7JFq6dCmuv/0N7w03kOHx0DByJIWFhQy6/noaJaIruk/1Y0FoxeUfiI1NkjtwEdl/fxzTppEdk4o119Vhe/BBrD/+2NuH1iUQ96jQEUfgu+QS8mP37bJt2xjy7besJLVRiujRkp+TeuUUuuk6km0gm0iWKshBiZ2F6nIRmjqVgNOJoiikBYPs9+mnfGsS3F0S/YrkgkZ0mTGD8ObN8OtfAxA+7TSUDRuwfv654WdkTa78AHaSTFbkQbb6jHfDylpcdO1egBIKYf3xR6LbtnFeKETQ7abO6eSlDz7AFomgFhXFBwoKUC0W0mPaVpHQlooQg0ZgXTqnAktGBiG/HyUSwdnQQHpDA9n19eQ2NJDpcBA8+GDcoRA5jY3s/uijlMybhzXa+tYlomH2ZctoQCNQcrRML/OVZbriP7TotifQkWz3HYUcnZTbrQgdCdIt71e+gRsRb3laPERaRUlCkF4L7lpIs0Arg8u2tBAG87OtDVzS+BynWN7jgXPupeqAkaiKQsDh4N7Lb2NFJJMjXn6ZJlVtFV210prU6nel/5/0Wjzx/wotsoh822PLBOHtChR99BHuk09m3ciRoCh8t/vuHD1lCukSyQ3oBlGERK8RFP+lXrNrov9DBSKnn47j0ksZFjtXSnNz2X7//WwZIARXIDplCoFrrsHi86EWFlJUX88xc+cyZ9kysmk78KPvJBLXuCwJEwQ3QLL9tt4LV+4t2ZneNtCS58I33cS29HQyVBVLNMrR8+bxVju5OyYGLvodyRWw/vOfqCUlRCZNAiB8xRUoW7a0KourD77KD2V9NFd0NesJcBJ72cmKZ92BdV4vf3300bgN1javt9Ufq1oskJ+Pe599OOzSSwm6XKjRKB+/+y62zZtBVVGiUVBViEYhGsWhqmQVF3PYaaeRFo3iDARY+tRTqIsXk+P3k0EiqCi6seweD5HycqwVFYS8XtbtwPfQR2KNkhk6mu+XKtC+M3+bHMzXn1f6tti/LKfQJ1/oNZ9iuYhi6iMmcnJbehRcPm0QVmXyMSjyyd7WwfqhuLGKG5bdR/40Fx/uuy9NTidRn4/XzjiDWWPHcvRDD0F9fTwLOkIrvmz4/WXCK5CK7It17OxcxL0tFD/xBO9NmUJtVhZhReH7o4/m1NdewxYKJWV/i4iz/ECXI1UiqmtiYEG12wlfdRWRww4jNzMTFIXsQIATf/yR2TZbny7Tu6OI7LsvLTfeiFVRCPn9NH77LZPeeYe5ixYR9nrJoXXugXjpNLrPietDflkPxpaL60qO4hoR3a647iPnn09kv/3w+/2s9XrZ/bPPeOv11/t1cqCJnUO/0uTqoTqdhB58MGEP0tiI/cYbsWzeDBhfpG1VeXGT7L0vhnS3wcwiqe2gxzS5XYFhki9sWxe/iHCP9ngYWV5OdUUFTV5v/DeVE7FkQrazkEmRnkwYBdIturZYZjRP/qxMmiMG8/UErCPHpF9mFJUOpJgvBqPeBXs7bT2fBWPSqV9HPIACwDaPh80TJ/LBYYfhHT48/tBx1tYy6YEHcC9bFtdBG22XFPsxUvl0dB3972z03+zIvOopU3jp/vuJBIMofj8TP/6Yo555Bkg2o2/UTTfQutR0I713DZvoWqi5uYRuv51ouVbGyO12Mzknh+MWLsQRCPDMo48OGKIU3XNPwnfeidVuxwa4Nm5k9C23kNvQkOQaI3qSxLS+Z6WtXjJ5mYjkyi+Q8rjRYL7cc9JRRI44gtC118anbW++ie3FFzuxJRP9DQMm8cwIan4+LY88gpqbC4Bl40bsN96I0tSUktQaieX1JFcuduDINpgpD/2M5HYUVhIRbkcH2kLm0Rm05Tyg7/7Wd4+3FU21GmyvMzCSQ6S6ycvLRf11o1rsoRTTcseBvluwrWkwJrmibUQg5WMQbb+isOjMM1n0298SiclaotEow/75Twa9845mc2ewv/b2nUrjl2q8s/9Xqs/+eMwxvHPllfHpMx94gN1nzWpVxbiOVu5p8aGBhD7ZRP9GdORIQlOnoubnx+dZP/2UkZ98wuiRIwdU2dfouHGE/vxnFKdTI7hVVXhuuYW82tqkfFZ5EPOFRl7udWqrR0qM5RdpPZE1asta/Q5/r7FjCc2YEXcesv74I7bp0w0T0k0MPAyYxDMjKDU12O+9l9B996E6HESHDCF0223Y77oLYhVNZAIlkyiZKMiSBflha0f6kJxV1IfkCt0JYbQk+fi36saViVZnSYmsgTaKUsp6TT3B08tQ2ht3BqkspPSSihZpfaR1BMFtIvmm32SwTPweRsQ/1YuATC7BOBpq5PAgR5HFgymkqlhee40hK1aw6sYbacnMRLVYWHrhhaSPG0fR449jj+m49fs12o84PqMXS/n7uAzW6Y7L7ORPP6Vq4kQWHHQQAB9fdRX7rFxJ8datcXKt36/4bQLS97Ngktz+jsiUKYSvuw7Vob2eK6qK9bnnsL7/PuuB9StX9u4BdiGio0YRuusuVKdTe1Hdto2S228ns7YWN9qzTy74I7sUynZgRi/GSNNywqb+xb7JYJ7+HrSjUAsKtIpmMYJrWbsW21/+YhJcE8AAiOQKRKZMIXTLLYlj+Phjsp95Jq4VFW+l6bTuhpGn80guMJVlp3W1qQLdPAdaeLaSARXJhR3rAofOkxIj6YO+rZeeuGhtV9WRyGdnILSY7fnyytP66ESSHVobywTaiowaLZc/p4fR/yK68I1IO7F2S34+1bfeSnDMGACcbje5LS3kTp/O9lmzkrbX1n6tJB6a4oEpt7NTzO8u7WuT281tjz9OdVERACMrKrj6llvwRSJJfp3CUUIei2V1mA4L/RUqkHvNNUR++1uafD78fj9KUxP2Bx7A8tNPvX14XY7osGFapDNW2tZWX0/xLbdQuGlTKwvuPGk6H+3aFGO9O4qYDrTT1vdaGfVkBWLb3RF7PtXl0iSLw4cDoNTX47j+epTq6h36fUz0bwzoSK6AddYs1H/9i/A55wAQOe44WjZsgPfeSwq+yt3eMgkS0cNWhEgOWbYnGByAkLunuhMukrvIxI0uk+SoOyT/fy5dW7byMuoGVzrLciPQEm3tDCDa1uRV45C78OSbv9CiiUGe7lOoqUG99VYiF16I48wzGRLzQVb+8Q8sF1/Mpu++69BmrCS6IYVeVvwvYlpEcsXLZm43Jnjmhvzc8eiD3Hzfg0SsVtaPLeeLc8/lBMmKUO8GESD5HmHFJLn9EWpGBun33kveKaeAolBQWMiGH34gcOONWDZt6u3D63JES0pwPPoo2SUlmh1aVRVpU6fi2LQpft2JYIK4/2aRePkUcZ10O7hC2rriPhUhmZTKjgriZV4mtSK6a5SfEJW20RGoQPiGGxIEV5TsNQmuCQkDhuQCWP/zH9TSUiKxevWBiy7Cv3kz7rlz4xeUnUSXoxwlkjO9xcO3EXD5QRFPXzlUt7NeJyZaQUQRQ2g3QgcJjaqeREZoTWrljHhZ/pAU0e0kK5GJaqqEMX3Xm0xqBZGVpQry6SS8hvsilEgE23PPsUdWFs2XX07YZiPgdNI8bRrR88/HsmFDh7cl/lvxO8gSIYH4i1UUrN34o+QvXclpL7zIyxdeSMjt5qXLLsNRW8uo997TIgMkXrDcJHv6yrcEvUbbqPxvqmX6af18/XZM7Byi5eWEbr2VrPHj41aKpdu2Ufaf//B1Pya4qfIS1JISwk8+SdHEiSiKgj0vD8eMGQTXrSOLZEmC6B2TZWfiPtYYm5BfyMVY75wgorz6qK2e4OodFXb0kRo57zychx9OekYGTT4foRkzsCxbtgNbMLErYECRXAWwPfkkalER0XHjQFGov+km0m6+GfvatXGCKxMmI4sqlzT4gXT91SoGE10OQSZFlFQO5un1r0FS63Pbkix0BkayhLY8fcV0qi48WY/WX0rEbn/7bf5v4kQ+POAAWqxW6lWV0PTp2G+7rUMRMP1/Kx6e+mCt+P2EBVF3Yu933uHrww5j3imnoCoKf3voIS6priZ79uw40RQvTKLwiOh1yCb5JSWVVpsOrJNqOdLnTXQeKhA5+WQiF1yAarPR5PNRUFjIRK+XfZct4/8tXtzbh9hpGPVMWgBlyBC2zZhBxpAhGsGNRjlp/nzqHA4qSci+5ERsNwlNuvxi3xCb1susGlO09fe6VPdI/XXSUUSOPRbHeefFK30e6fOxcO3aHbKsNLFrYECRXNAKJNinT9ccFwoLcebloTz7LBl33knLnDkEDT4jkxe5G1V04bj9oOiv1r4efutnkKO4dlon+QjI3f9Gmlx9gqFRglxnj0/cpHdEnysnlMlRXFHFTSSr9YeOgXVeL2/edRdFRx7J/FNPxR+JQG4uoRkzcNx6K8qWLW1+Xi/daCLxUqL3FRbr9IQK6JBvvmHpccfR5HIRcDh4eepUfnvmmdh8vvh5k07iviCiugGSM8uNMszl+XInkLw8pJsn2iIx0MTOQU1LI3z11USmTInPa66uxvf009Q1N/P/+rl7giznEs8tS2kpm6ZPx5KbS8Tnw5afzwnz51O8bRuNFRWUSevqS5GLQIA4N5tInJNG9l9GeQXiHic/NvX3Sf110FGyG917b8KXX05OrLDRiG3bOLCigsby8n79P5roHgw4kgugNDRg//OfcT3zDKUeD4qi4J85E8c11xD4+OP4evKFJgZReUm81YoLNk3uc+ns66eJNqF/wFsh6aVE6L9aSNyQ9c4JegeCrnRXkG/U7ZEbvZZTn2ghvofYVn95V1rn9bLO6yU6axbKtGmoTidqXh4tM2bguO02lKqqlJ/V/y6y1F1PbgUJ7gmSa/npJ0748UfenjKFsKJQ63Ty3q23ctJdd6FEIkkEQn4ZEf99SNfWv/Ckmq9fZpfakKz1Nm81nUN0+HBCt92GOnhwfJ5l1Srs99/P1q1b+aIXj62rIK4hIaFRSkvZPGMGlpwc7Z5XW8uEhx7CqShUV1QwyOttNzAgnEPES5ZefqUntKnmi8HoZa8zyr/oiBGEbr0V1WKhyedjnNPJUQsWoEYirKqo2OHfzsTAR7vuCoqiPA+cBGxVVXVCRzbaG+4KRtj/iiuou/56IlYrqqpSv2kTjrvuYtDnn7dKWBLjPGAIWq2HYqAkNs53xhpFsRVKpBVcDFh3hZ6CiLLK3rtGiWXyWE4A6ojdll7bu6OQyaye3MrkV//yFDAYy/o0/fL+guiECYTuvjthv1RdrUV0UyR+iC7RdIydMozaPQWrx8P6U0/lsxNOQInZo034+GMOf+aZeCTASPeoJ6tyZ09bWsRAJz5nouNQgUHnnUfoD3/AFwzGS5dbP/wQ29//jhIO9+4BdiGEfCYTsJWWsuW++1Czs7EBzkCAg+++mxFLl8alCZkkJ/EKtFXkRkzLBDZVWz+vM/dNI6j5+bQ8/DBqXh6g3W9GPvUUY4qKBpSXsYkdR4DU7godIbmHAD5gZn8juSM9Hn41bRqf7rcffoeDTV4vLX4/OW+/TdE//4lDVVtpN/PReKsYhkhtpUiaKCNBctMZkMUgehJGujL9tD6RTJ9k0dHiEJ3FjugqO6vh7W9kJrrHHoTuvDNBdKuqtIjutm2t1nXpBrlyXqqu056COP9WnHEGv5xzjpaY6nZz8Hffsf/MmaR5vYYvWhGSX1aMin/o/ULbivC3NW2iY1Czssi46y6Kfv1rUBRQVdYtW0bL/fdj/fbb3j68Lkc6mj7cWVbGthkzIDsbOxrBPfKuu/AsW5ZU1CGHxLm7ozpxfWKZHLEVywK65aEObrutDlLV7Sb0wANEhw0D0Ozebr4ZS2Xlzv14JgYE2iK57coVVFX9RlGU4V19UD2BtV4v7991F6X77svc44+nOT8fBdj+618TLC2l+KGHsAUCSRFBBwkrJ9nuKQCkyYykv7GRfgCR+KcvqhCV5omkCrkIQqpSsdCa5O4M5JuyOLZU020R3lTz+otkQYZl8WLs06cTuuMOVJuNtBEjyJs5E+fUqWxcsCBpXfH7tNBagxvAOGrfU7CikYWh//kP9aWlbDjhBBSPh1kjR+LefXcm33QTOV5vq2IWEVo/7OXBaL7sAiK7vcjQ9waY6Bgi++9P+KqrsIweHXdPyPX5KH71Vb4fgAQXtHMnOnQoVdOno2Rnaz1igQBH3Xkn5cuXJ/nfirFwrknVk4BuWqyX6nxu69w3IrIYzE8F1WoldOutCYIbswozCa6JjmBAanJlrPF6We/1Ynn3XSw33ED4gAOwAE377cf6Bx9k0D334KyuTureziRhi+In8XYa1+V25Mo0sUOIkFxBykKiNKvQKwqNrlFk1ip9TkwbzdvZYwRj26dU89qL9A6EU8mycCG26dOxz5gRz3bOf/55LGedReXy5UnrhnRtuzRuIlmC0pMk1wJxS6WxTz5Jy+TJ1CoKqqLw2d57k3bGGZxy//3JZU5jB9gSam2Qr49myW1B4oXmWH9eygS3G62CBxRUl4vwxRcTOeYYgLh7wm7r1rH/kiU89/33vXyE3Qd12DD8jz1G+uDBRH0+7DU1HH7XXYxavjxe2Ehfx0ixQyRkXNBBvj+JHgqxXF+tTD8YLTcitqItj42iuCoQvuIKohMnxufZnnwSy88/d+7HMrHLoctIrqIolwCXgGbl1RcgXzCRYBDHjBlYzjuP4Omna/OGD2fTI4+QNX06rtjDWJDc7NggIrl+IFf0KQtRkZl81qWQf1JhtC/IbADjqK2AHAmzpmh3RSRXIJKibbROWzf5tm7w/QnW+fOZ+MEHNFx7LaqiUJOdjeXGG1Evvjh+P5B/G/kFRvy3RjKTnoQg4NZQiAPuuYfZ//oX2zMzUVWVz446itJFi/j1Rx9RACiCOQAOPzhiqebNUeMkHJHEKiLUfox7GOSXoJ3VkO8qiI4dS+j661GLi+PzmjdswPf44zSFQjw3gPWa0VGjCD/8MCW77x73wd33/vvxLF8eJ7cF0pDljjXsYG2ErEZI92syoXoSPWayT65wUWgkWUrTUZmN/t7W3v1SRuSMM4gcdVR82vbyy1j/978d+o1M7NroMpKrqurfgL+Bpsntqu3uLGQiYQWYORPrhg2ErrwSbDYi2dnUzJiB8/HHsX39NXa0SI0sWYi/kYbAKvcv92dW0gdhRArlyF97iRFG6C6S0JG/3mgdvSRhIJ1CNe+/z+FHHME3e+4Jqkrl8OFE/u//sL35JpAczRb/a0deTnoSVrQHvnvxYo495xy+nDaN+sxMnH4/b1x+OYV2O7/+/j1Nj18Q+5DkpZTWCGlNkBlMtlhy0TpKrY/SCnKr1533NNnvL1CtVnKuvZbo6afT1NSUSC777jtszzzDVp9vQLgnpEJ0wgRCd96Jq6gIRVFwRCKcPG8ebpuNdBLShAK00zU9g0QeiRWtLnUdWGshpz5BRoVcQZYS+UmUsTZKpG0rsbaz97xBZ59N8Oqr42WXrV98gfXf/+7w72PCBOwCcgUZ4uJSvvwS25YthG6/XavlbbPRfMMN2MrKaPnXv+JaJL0GMw65j1z/xJLGZhSm8zB8q9dNm1rFvoV1Xi//u/56bNddx5px4/D7/SjnnYdlzRoskj43VVSnt/9POfIaBKKLF/Orc87hi2nTqCkvRwWeufpqKg6exO8/+gdFqre1+DvGTu3B5CIS4r3YCPpovqxDl6UL+s8babgH0ktTW4iOHUvabbeRf/DBWmleVWX9kiUEH3oIyzff9JnexLZg9Hwweukzkl217LMPvttuw+5w0OLz4czN5eS5cyncvp3mioq4blwkcNohUeVBQDrJjBJgZYcE8bKm1+jKWl79MnHedua3KDz5ZNz33INqsVBQWEjVhx/S/NRTO/y/7irXg4nUaDdIoCjKq8BsYIyiKBsURbmo+w+r+2FZuhTH9dcnidfDZ5xBwy23EI1lihvw1tau2/Ig2wI4kiMyXZXhb8JEX8Y6r5dV115LYO5cAFRFIXTTTUQln9K+CvFQFg/3RiDY1MQJd9xB8ZIl+N1utno8vHz62Vx/5/NURsdoVimbgC1ANVALEV9y6Wa5J0ncOgQBSSeRyJaJpgvOJCGZEhpgMYhl4jNiO0auIwMRqttN6PLLaXnwQRxjxsSTy4bU1nLASy9h7YME10pyPEQ/yI8QYfMltLQFaK6VwtBnOJA7ZQrq1KmkOxxkAOkbNrDHhRdi/9e/8D36KG6vN+4hHkU7DxuBSC3aeSqcgCq1ocGXOH3FUIsWuW3EuEqjHAiSybH+Ba0zv4Vt9GgCN92EarGgKAr5Ph8HfvYZaZGI4WPX6DFsNMj7NrHroF2Sq6rqb1VVHayqql1V1VJVVf/REwfWE1CqqrDfdBOW+fPj84JTpuC9/35CMS8+OSFN0XtbyX5HdlpdZfJFZXY7mthVoEQi2O+/P24jpqanE546FTUtrZePrG3IbgaCGDQCzc3NHHf33RRXVaEqCigKPw8bxi3X3k9VsBA2QWQbNPugIdSaHMjSDD2hEYTXiOhmkSC32VJbdndwkbgNidvTQLzPqEBkyhRa/vpXIscfD2jJZbZwmClLl3Li7NlUzpvXuwdpAHHfF0F+4eAjHiPif3OSeGkRCZAiUayAhHOl46ijqLv5ZtxWK+lAwdatnHjLLYyYNQvnxx+T7fWSGduOlYT8oBHtvGyuBzYA66CpFrZEtXe0KpLe04SSIX4NyERXJJfJxLYt+68d+S0sQ4YQuPtumlpaQFXJ8Ps5fs4ctvz8M87Y79TeIBNdsX25w9UMNO1aaNcntzPoKz65HYVqsRC58ELCp5wSv9nk1NZy8j33sN/q1QwDRgLFbmAY4InN8MSGbMAbG9Yl2i2bYKU0a7XUXkvvd8+aMNGdiI4cSeiBB+IeutY5c7BNn97nIm0COSRsluS2GLvHjOHjf/yDlUOGoKgquV4vuVu3ctlf/sKEBQtaPej1DhtinkjmMUpQa2vclv2cPJarrw0EqAUFhC+/nMi++ybNt86dy/CPP2Zsfn6fLAbQnr2hkZe3/BLk1k1vPuUUKi6+OL5u7oYNnDp1Knm1ta18xF26sb7QToQEgRUktrGdefpzsKPnY0d/C/LzqXvoIaKDBgGQrqoc9Prr1Hz/PZs6+N+msnOEZPkPtE/KTfQfBKDzxSA6g/5GcgUixx6L5fLLcVssZLndZDidHP3ii5z+wguURyLkZ6P1F3mAUSTIrkxypSGyTiO2BotMkmtil0DksMMIXX99fNr26qvYXn21F48oNWR7MFkmIE9neDysOOccvp8yBVswiAVQVJWj//1vjnv1VSyq2q67h+hCNrJv0luQiXlyYQkj/WSq6f78EB86ejQZ557Lin33pUmqUKbU1mJ79lkss2f32RcmaL8ojb5tJxGhz5TaacC6M89k2e9+hy227mCvl9/feSeFDQ1tJuSmSuyMkNDaduZFK1V5XjmXRS/Vaeu3UDIyqH3gASJlZSiAJRCg6Pbbca5c2eZvrEdHi1p0JPJsov/AJLk7gOw99sA2fTo5u+0Wr5Yz/IcfuPLxxzl65RwUDzCaRBR3FNrTT7DXlSSx2dXR1gRXEF+T5JrYFRC+8ELCp56K2+0mPSMD10MPUR1zXOhLkMmFrH3NNFjWOGYMX9x6K/5YgRnV7aasuppfPfEEw2fPjpMW/ViQDqOqUfpp/XzRVWxUCjrVuL8+xItOPJHSGTPYnpUFqspar5fmpiYsH32EbebMeOnlvgxZB2oxmNYXtHGRkKmI8ywDWHXrraw49VSsPh92vx/PsmVcMW0a+X4/mbF96aOoqdryS5D88iSfY22dfzK5NSKNRsva+y0Uh4O6e++lZexYFLRiD0P+/GfcP/20w7+5vN9QB6dN9H+YJHcHUAwc8rvfsfq226jLyABVJa2qivytW9lj7RIu+vYfjE5blUx080gmt1J7fRBWkSC2ctskuSZ2BagWC+7HH2fwiSeComAPhfCdcw4bf/yxtw8tCbI+tiNtNSuL2TfdxJbJk1FiRTCskQgHP/UURz/9NOmhUFIXsWgL3+e2CIa+rR86asrf3x7i0dJSIhdeSN4JJ1AQs8ZSVRXf4sVsuekmLBUVvX2IHYIcpTR62ZFfesQ54ULXe2Czsfiee1h75plagp2qMvH997nlppsoCgbJBBxuIKQVJGmrN8Co50Bfjrqt0tTyS1N7UVJ00239Fjarle23304wJkWxqCpD/vIXcr/9tlO/u9ivsC4zkk8YySlM9G+0RXJ3KQuxjsI/ezZnfP01v3g8zPd4sPt8ACwZuxvX7/MIh274mvOqZlLorE7tsBBTuxtqj0yY2IWgRKPs/+WX1B95JI1uNyG7ncgtt6CecQZKpO/QMNldQSCEdlkLApGUX9rQwG533kn+Aw+wbORIVEUhYrXy9VlnsXTcOE5+9ln2XLAgyQrKhfE9IFXWudh3kzTPKENcH03rb/cZNSuL8NlnEz3uOFSLJV6xzBaJsFdFBd/feCOWHey67gvQd8/LJM+umxYvUJmA2+3mxz/9ia2HH671KCoKI6qquOCTTxgTDGIVmYh5gB8cjeCoA5c/8d8LotdCIvFMDDsjfzHStHZE76r/LWxA/dVXE9x3X02iABQ/9xyF337b6cQwmbga3VlMPe6uB5PkGqDO62X9ww+zW3k5UzZtYs2kScw/4QSiFiso8PXYQ/l+7wM5pfE9fuN6nXSXP5ng6hwWBrqtjwkT7WHtokWcPm8e702ZQkRR2JqdTeS887C98EJvH1occpEK8bC0kyC3csa2iMKlqyol/+//cXpREd/ssQdV2dlEfT62DR7MzLvvZrdlyzhq/nxGzZtHptcbJzN61xWLbh9iPwESGeMiEiffSwShkQmuvN2+/iBX7XYiJ59M5IwzUN3u+PzmpiaqX3qJiT//zOwFC1jfx5LKOgL5v9UTXf25JM6LdMCal8e3d99N0/Dh2H0+WgoLmbB+PYctXsw47zKsw0guZVaHZongBEessIM4DyJohLYxtoqwCGvAuBtfHwE16uaHtkvzduS3UADLzTfjOO00VJ+PkN9P0X/+w5D3348/LzsDETm2xr6L0TJxjKLd168REzsHU66gQzGazHa0NIwC0gcPZub15/P9wQdqd6IMIB0y0xo52/IKxy37GNvKiKZHWJkYarYlJnWLzK4SE7sUhnk8pJ9/PsunTIlXp3LcfXdSoYjexo4mC7nRAmrDPB6Ky8tZXVzML8ceC+npWN1uoh4PVlVlt3XruOjmm9ln3jzSaV36VO4aNmq30DpRSG43kNxVLWfD90WoVivRQw/FdckluIYPj1e1ArAsXoztH//AsmZNLx9l52EUkXfQmuA6pfluwFlWxqJp0wgPGhRfdsonn3DY6tUM3VJBUbNXM84tQHtYFQM1aD5gm4CN2rgmmLBvlmbHh0aMI69tRWmhNSHsSEESo9/CedVVKNddF5ejWF98kcJp03DCTpNccV3pI9EBg3mmLndgwNTk7gAEyR1LguCOBkbatYklR4znH7+5iJXDR8eJLg4o2b6JCxa/wKQf56CsBFYAK2F7VYLcxmaZJHcXgmqzUbrnnowYOZK1K1ZQuXIlhEIQDqN0w7XX16EC4TvvjNtBKQ0NOK66CmX79t49sE4ik4Rxf16snZ6VhffCC6k86ywoKoonsGZt2sSvX3uN3777BkXrN7eqGiU/nPUEN0THrZ4E6W2k791jVJeLyLHHEjn1VNLKyhge0zKjqmyYPZvmxx7DMndun3ZN6AhkCYI81hNeeXlgt91YMXUqlvR0nEB6JMKlTzzB6f/7H45BJEryFqMR3SGxcTWaN+XaxLhpW6Lmg7yoEi0fpK5bv30y9L9F6JRTsPzpT+TGro0RW7ZQNm0a6z76KOGX28l9yeRV/xJpdI2ZJHdgYJcnufquPatuLC8rJpFPJg8jQesm8oDqgW8PPZgXp5zP1tzCRJ+mHyas/oUL33qe0bNXgRe21qe2EBPav1RdP0bLTPQdqACFhUSHDuX/t3fe8XEU5/9/zzWdTl2yJbnIRbYFNsahGYLpHUJxQhLIlxB+JBC+CSWEhAQIJYSSAIEACZBGQkIgIRBSCAmQb+gdU4zB2Jbtc5NlFVtWOZ1O1/b3x97czY32TpKxLVmez+u1r52d3budnd2d/cwzn+eZcQccQOVee9HS18fWRALKy7HKyykcPz7rQ742GExbrEQyScDno8zrJbxmDT0rViBaWhCtrUz0eJjt9bJm6dJRF//z48IqLSX6059iyQlXlizBe+21uyTpLyITuF+uy7EJb/TEE3n3Rz+irbwcYVkUB4MUhsN4LIu9ly5l/2XLaHj1VQLB4AALk+oZL/PzORPp3vBOIZ+cnIJ2Vkglq7SUxGmnkTj5ZKyiIgDGV1czvqaGwnicAxobWX/vvTz/73/voBLsXKjabX0pcMjrWLCAJZdfjsfjwQcURyL87w9/yKGLFzMeKApgW29VmcJ47AeuHdtUuw57YpLm9GRmNJNJq0vPx7g2OZoh0+r31SmtyjLCJ5zA5osuwh8IUFVfT92WLZz01lssueMOoik5jzqhidNzK9NOlubBrLZOOmTzbd31sVuT3MGGH/VjxmPP9zANexrFqWSmUyyqVHZOhehUL08edAqPTj+D3mgR9JFejnjxRc752YPEmttZiz3JzFoyvem1DPwA6R8fHPINdj4stxurthZryhSsyZPtdV2dnfb5CAQCOYms/JDLYbn21lba29oAcv5O5nssi8mtrSy55x7a//73XSJs0lCRnDuX2M032zOIAZ6HH8bz5z+PcKmGD+kRr85IVqKky+vr2XrSSbw/dy6tkybhxQ431lNfjyUEkzdv5oi772a/xx/H3deX1xM8V5gwp3W+oVmdPCccjtkesABr+nTKv/hFOOEEQv396fcCoDge53N+P3s3NeHp7+e+O+8cMx06L84z2vm1dABoO/983j/vPOjtxRMOU97ZyVevv569gsGsZ0uoD5mabietS0i02ny3lYxEQU1L+cK2klyn8GfeQfKlBbvnyCPZkJIoCKC6uZnj//UvokuXpgmu6oyn64Fz6YT1/OE40RmSOzaw25LcbXkhx5OZQnEi9ohQXSpdVUBmEvFJwGR73V1ZwiOVX+Dfkz5FIupOf2Xilo+5H33EJ/7yF7yvvZZuaGQPW4b4Gc4LbLDjYHm9WJMm2QS2ro6yffYhMHs2W3w+wv39OX+Xl8j6/cyuq8MNxIVgxapVhCMR8HoZV1Pj+Dv9/7Z2dJCIRLD+8x+6f/YzREfHTqqRHYv4WWcR/8IXAHtCBe9VV+H66KMRLtXw4CcTU1cu5Uq6VEn37LUX75xxBitPOIGoImPwtLZS0NTErDfeYK/nnmPK4sVYyeSADnCMbOcgJyKsOw+pw7ROJDjisP1x25nk5MkkDz+c5GGH4Z81a0BHrm/1ajx//Suu555jWl0dMxsaRuWMZR8HXgbGWQ5oeX6Xi1VXXsnK889P10/t669zwWWXMbmtbcBvAoAIOGSmPMr6umxCKzmvulbzW7Gt/Nt6XU7a4sG2Ow4+mBVXXokr1amtWLmSQ665hkBfn2O0Cek4NhzSmmskRN12ejcMdn3s1iRXf9kkuXUK4eLFHv3Rdf01Sto9zmFHAGiF5ugEfjf/XF7f42D6XQFap9nWGmFZVL/6KhOffpri114jsmYNbWRbW9SpOPNZXQw+HqbW1zN97lyWh0JsBJvQTplCcvJkqK1NWxbzWWdViK4uynt6OGb2bCr6+vD39fHE/fez6cMPEZ2d0NPDtPr6AR9yC5g6axYXXHYZscJCthYU8PBTT9FqWZTPmUPDKafQWVIC8v1MlWPdihX0//GPuB9/fJe37FouF7GbbiI5dy6BQICKRILCyy+n6YMPRrpoQ4ZqqVMJjE5oAmSC/G85+mheuflm1tbWYlkWrmAQUvfSAgrjcWatW8fkZ5+l9v/+D3eqg6VanJwkTU77YjhPMqHnqbIHNYTaUGAJwcTDDqP8hBMITp5MV0VFep/aYRvf2Un/gw/y7p137pLSlOHAqfOjdngKiop454oraD/++LRuu3brVs698UZm/fWvjjpeVc/rdmUyra5M5IQtqXWHtt5CdnSF4d5jCVWGkSutb2/df3/eufpqLI8HF1C2di3Hfe97FIZCOWMIu8jviJnPQdPEyd39sNuSXLVXqTYYTt6ucn85GdlTFdkyqEqgwuuQWUSmdWmHpdVz+OF3b+SD/fZLkxN3ayvxtjY7tEtrK6WvvUbp669TsHw5/TgL5p3E8mZoZeiwiosz0oK6OkrnzWPGscfSW1iYl7jCQOtsV2Mjm954A9f69YimJsT69YgNGxCpGMpTHYjsUJDrd1Pr65l08MFE58/HfdRRbC4rS1t7e0MhylwuPL/8Je274BC/CquqCu9vf8uUvfcGIZjU3s66s85i/apVI120IUEOS+tD0U5D1UVk9Jiu+noi++1H47hxNM6ZQ8e0aQCIQAC30rmyVq6kavFiapcsYeKSJdQuX05BLDZAF5kr+oOMkapGXFDXer4kwPlglZaS3GMPrD32ILnnnhTuuy9TZ8927BAWud0cW1rK7I0bqW1v5+djSJKQD7qMRZWwuCZO5PXrrqNv4kTcgQCJ+npmtLZy3Lvvsv8dd1AaDOb0H3HK78YmsJ3KuhPowv4sdSl5cv+2klxJXNXnXeqMi7R9fiC09968dP31JL1eBFC+cSMLr7iC4tR0xLlGVyG709XLwMlTnCZOcRrlMDOejX3s1iR3KD1NNa02RpUMlD+VA0UFZGuj/GS1JFYXNNbX88Ctt7K8ro7148bB2rUkwuE0WY1jv2Cejg7K33iDktdeo+DDD4kmkzlnm5HyBoMMLKBu332pPfhggtEorV5vmtRaZWVZx+aTFYA9ZE5LC64NGxgXifDZQw5hXDhMSVcX999++4h8nKfW13PhZZfRXF3Na3vswYehEBMmTkwTis2/+Q1dt9wyqiZVGC72+8Y36FTCCYl//pPV3/jGSBdrSBiqg5FKBtQPuUTPtGmsPeooNp11FrGZM9P3N97aSiL1jArAW1DAhK1bqfrgA6ref5/qpibGb9xI5ebNFFjWgFGqGJmoC50OaX0tF0sIqKqyteippXzuXPzz5tHh82V1DvX3anNTE1v++U9cL7+M6+23x6wkIR+KcHZI7NtnH9674gqsoqL0PTr+2Wc5fMUK6hobKQ0Gs/wwhkLawgy8f93YnySZVvd1su0WTLXDNtg6tOeePHfDDST9fgRQ1trKmVdcQXlHx6Dh+SDbgVKuexzy1LVTPY2Eo6XBzsVuS3L1j07AIU//EKnz1pdq2+qQU5GLzHhkAekWJNqfsYxsrK+nvaGB2Nq1rKioYMmCBTTOn084EMh60eTLJnp6KH7zTQKvvYZn8WKi8fiAnuru+lKqkQxU56/C2bOZOmfOoLICyEgQ3JZFaSjE8qefpuv9922L7Pr1iOZmRCzT/G+rdXZ7Q5ZjZWMjlaefjvWVrxAKBNJEfcvLL+O95RbEli0jVsaPg6n19cz/+c95t6EhfQ9jP/kJ7l3A095N7mFlda3NEZPT+bVoxgw8N93EutpamioraW5vJ5l6nj2BAD7FyusKBnGHw7gBXyxGdXMzpV4v7ooKxq1eTd377+Pr6yPR10d/JEK4spLwlCl0t7SweetWuvx+ugsL6fb7Cfn9uOvq8NTXs8nlosfvx/Jk5grKJ98JBALMmTSJCZ2dTG1u5plrrmHDsmU7tN5HO4rIHuyrBLaeeiorzj8frxD2CEA0ynl33smxr75KJVDogmhy8Cmce7W8XIQv3/rjkFxdhqHmye9l/4wZ/Pvuu4mPG4crFKJ8wwa+csUVVLW1OTp86+8CZBN0OeIg89TtXiXtRGRxyAdDcscSdmuS6+TRqqcLHPL036rDMeowpB9bH9WXHKh7cxpa6fJ4WDNvHo0LFhD85CcJl5amXzz5IsYB0ddHwaJFeF5/Hd5+m77+/nRPdSzDKijAqq2lZv58xu27LxuAjqKidCQDHfmssyIatQmsstQJwR4VFQSXL98lrUpT6+s57zvf4aV99iFYU5MmG8XJJPs88wztzzyzS17XlPp6xNVXs2HqVMLhMCKZxHv99bgWLx7pouWFOszqpPFX09KCq+sP1Y+8Fyirr6esoYHexkZ6Nm+mc++92bL33vSdcgq9e+2VIbmtrfja2vCkfhuvrKR38uR02aqamiju6LAnkggE6E5FdMCySASDRMPhjNY/FdJJvkd6Z1F9z1yJBKF332XDU08hVqzAtXw508rKRkWHcLSghIzkrcrtpu3rX6f1+OPTM76P37yZi2+6if2CQcYDvjLsD0o3WKGBcZC7cI6R3M1AEqwuunOhPHZbvyO6Y2W5wzpSX8+/7rqL8Ny5WEIQ6O/n21/+MvWvvw44z9inhx5LkLFEd5Jthda31bQTsZVpdW0I7tjCbktyhzO0InugTnpdJ49R1ULjYvBYfE4zr4RdLtbMmcPKgw9m3YIFhKqqsgivXHxeLzVtbXQtWUL7Bx8gWlsRra3Q3r7LDVNbABUVmWHQCROwamrs9YQJWGVlQ3b6AtuK1FBXR2U4TFl3N2/86U9sXrQI1/r1dv3s1KvbOZhaX8+MhgbemzaNlhNPpLC4OG2hPn7RIp783vd2SaJheb3EbrmF5KxZAIhwGO/ll+NqahrhkuWHPuTqJbdGVp/a1SmtkmHVWXZcfT3lV15Ja1UVXYWFRBYtIlJQQNekSfSXldEzfTr9JSXpcvnDPdRsXANR2FpVTbcS0UG0thJta0vLorzV1ZSk9svO4ubGRjtuc0sL4y2Lzxx+OOP6+qjYupVf3nHHLvmM7SyUYPskT583j5bvfY/N48bhDofxA9NXrOCiH/6QmVu3UgMUlmEz4iJsprYFoqGMhlY6jcntjsxhdDC0kHDby4G5nIESvkol3T9jBv++6SYi06cTq6nBH4/z6Tfe4OCHH2bG009nxaZX0y4tP0aG0HaSrSuW21sc9jnFlVeJrZ5nMDawW5PcwTyd9XxZ7lzDiXovVH1R8w2JOPUw5fBRdyq9oaGBtQcfzMYFCwhNmEAce4iyOoeFRVgWbNlik962tjT5TZPgLVsQyVyziW9fWABFRVilpVBWZq9LSxnX0EDVrFlsSibZmrLSOllkVeSyzoqurrTDl0uxzk6tqGDWbmpFSu61F+PuuovymTPTVrayO+7g7fvuG+mibROsigqid9yBNW4cAKKlBd+3v43o6RnhkuVHvg+20/6hdKb9Wn4ZML6+nvKGBgKNjVQHg2m9py8Q4KPTTuOF//kf+r1eom439eveomLreiL9ftqKJrHk0KNIulz4olFKnn2WaFMTfZEIob4+kuXl7HXyyRTG4xSHQvzxllvYsHx51jWOFvnOroByYMZRRxG/5x5CgQBYFslgkP3+9S/OveceJsdi1AKlATKzlwXIive1JZYd9kum27W0qkHFIa2TvI9D8CShrSJ7lr8yID5zJs/ceCPJoiJEIEC8ro6FixZRu3Urx915J7V5nhm3th0lm9hLBzpJ7GVep7Y9lGmGDcYednuSqxLdUm1b1xTpL5uOfC+M/lunj526rQ4/6enWqVNpWrAA6wtfQMybl2Vh2ZIajne6c2qeSCZta6Ykvm1t1Lrd1NXU0NTURMumTbZlRwhwuQamtbzxkyYxfsYMNvX0sCUWG0BoLVe2O81wLLLpMsfjlPT1cfDMmWnr7NP33sum115LRzIwyMakAw6g6ve/T39M161YQezyy3EtXTrSRdsmJKdPJ3bbbVgFBQB4PvwQ37XX4k6NWjh5nOvDn/oHXZ85yemYnYl8et1c+8rJJhYyXa5srz7mUIL770d907vMbnvFvrgUI2ourWdlQwOuxkZ6g0Fa7ew0iUrU11PY0MDSYZDYfHXntC9fl3s0k5F8Rg8c0uKkk+CaayhKOYkKy+KQhx7i1GuvpZpMiEqfOoNZKhQlLWC1ZiZxUO9Ts7bdinO9OX3HBpsqd7Bvn5uBznTy+UvMnMmzN96IVVRkd8h6erjkV7+isrCQusZGaobZKZIkNxeZ1dOSBI/mZ8hgx2G3J7lqHEt9Wz/Gm/qt+rLkGuZQ0/mGJnMNXaqW3FyhfDz19ex1zTX2EKXfz4uLFrHZ4yFZXU2iqiod1xUyBNfS0hLbQjo/zm9zWmRDIcSmTTbx3rQpK82WLQjLMlajYWLS/PlEbrqJrW434XCYIreb/f/+d1qffXaXrL/EQQcR/973QAhcgP+//6X0pz+lgMEDz8PwA8nv7I9jrrIX5Mj3ktE8qsPDque+HEIudSkHAnSA1ZGbIDgNicPQ4vI65edy7hlML6mn851rZ0J3JMyV9gGeggKCF19M2xFHUJByFPQlEhz37rt88qqrqEnNYibvZZG8sWWpP2iHaEfGWqtbbRVDb3pJ4Ey25ffGKa2uIbdBRj9GfkNLU0UuAWKzZvHKDTdgFRXhAUp6evj6Ndewx5o1aQngcJFkYEi0TnLLFOSxBrsndmuSqxJaXX/rpMmVoncYuoAd8juc5EoPFh5Fkt6C+npKGhpY29jIxlSImSTQ7/EQGzeOWE0NsZoa4qklUVNDorqaZEVFFuEdLIRWPgzlt6KvD7q6bFlBdzeVXi/HLFhAUTxOUSjEP++9l+a33kL09g7pnAbDQ3LCBGI/+hGFkyczLfVxPfW113j0Bz/YJYlu/PTTSZ57Lm7sTta8N96g6Le/pTsYdIyYosqNpJONdPxUnT/1tFx2Jpy0tzqx1R3a8jn7OK2LUuLgvv6BDktOjjtqqKnB2rtcw+CqPEsP5eQUvsmpbR1tVnf9m6FL4KT8LTp5Mq9edRXdqRkOXUBNRwefeeYZpr35JlXKc6tH9hH2oAW9/dmTN8gJHLaQmdxBTXdg14mTE2MuLXg+wuuUr+bpMaD7Z83i9RtvJBkI4AaKe3o46+qrmbZ2bbpuBrMQOyGBc3i7TgY6pKlrg90T+UiuxylzLEJvbGMOSz/2Cz0cXa08ximMEGRreN3aMRJquXS4gEgwyKZgkCj2B0xaoQricWItLSRbWhxneun3eklUV5OoqcGqqcE1dy71n/40uFxYySStL7+Me8sWe1atZDJ7raVFVRVzjz4afyKBLxLhmYcewrd8uU1qu7uhuxsRj2eVvQd4T7HIbgoGx6Qj2GiBa9MmvFdfTdmDD4IQxLxe/jN/PlP32WeXJLnuv/4Vz+TJFJx2GpPq6+mYMYOGffel5pJLiAaDA6RHkoC4cQ49pEqCpHOYJGMjgQTZ7Y1qTUuSPaokrXVqeyL3qR70vamlCCiJ2ceq+6TTqzxfIPU/XjJkTXrf6+2fTnCdrLTSSq63RYk8a/36k0q9qNg53gUD4SXzbJWTbUmX2xuOPJJXL7oICgqoxK73w//zH87+5S/xpSbvUKE6K4cB+jPOVnLovZNsS6Y0gMjJg2Td64RU7yQ5RfTwar8Ziu+J/D/5fettaOC1G24gGQggAF9PDyddfTVFa9emJ5zoZttJrnxX5Tss32n5jMtnTX1WDQx0jGlLrhrqK9csRH5tPwxsxPNZIFSSqy+5gsHLPGlRkpZbPeZhPwNjHA427OoU2UFtAD6ODMBICHYNTDz0UEp++1tiXi9YFpueeorwJZfsNCfE7Ylit5vxDz+M66CD0lKZWY88woyrrsoiGuVkhuvdDN8re2e7telWNaewYmqUBtkxdhqBchqpkmsfw5viVK4Ha/Ny7R+KRCRCdtu0LefamRifZyn3enntq1/lvRNPpABwu8Enolz00L0c/cLz9kWnLtjqz75+pzBfuSyU+ayXqvEk16iA0/ZQJHW59nc2NPDyDTcQD9jdpMLubk66+mrGrVuXddy2SBUg2zHbaZQz1z6D3RO7rVxBj3Wrx7cNOBwDmcZUnW1GtVQktGNgaFN7qukCMo2b01zyTnF2VUuM+qHQ8yTRlXN5j5SlymDkUL1wIX1XXklvby/hcBjPP/6B5ze/GeliDRvlwB6zZ+P9wx/YVFUFlkV/MMh+Dz7ISQ8+yDgcpt0GumO5h3f14d92dv5Qp04cvDiTC5WM6B1mp/ZL31ZJhu54lEt7CQNJpU5InbadSOxQ2iYnsjvY+XYmJmIHP6hJpeuwncasgw7iL1deSXdJCYFoGPwwqWcjVz37I6ZuWe+sCemBRHigTESSWCdnZNWS6TQy4aTn9g+y1i29Ts+c3gGTz0jrnnvyn9tvJzFuHMlQiIKWFo69+moq1q3LqreP06VOMPA7qMqPcsWhN9g9sVvLFZyG2KJkv7z9qWPcyrG6VSPXEJyTjkwd2tE/Mqpcwa38Vv5OXbxkDz95yfT4vWQ+FC7lGtRrHcyb1mDsou0f/yBeUED87LMBiC9ciAgGcT///AiXbHhwAZ3LljH77LMJX3stbTU1eMNhVnzuc0z0+fjy/fdTDVS7sJlHjf270nYobYXymG3llI5Bbux3JkqGMGyrtWl7QbYbqnTBraXltlzkNfiwP/R+7GvJ5RTlZNFzsgD6tXIMx+qra5xl+xQhM3Il2zCd5Mv/ytVmJbX1zoQkkOXYTn41QNNZZ/HY9dcTTY2W1GwJctzKp7l4xT0Uzo7YBW0nuyfVDrjBHQNXzK6bbmWXnPBBN3roI31STqLWhW7x158DfRQxF9F1kjWox6z+xCd47kc/wtpzT1xCUFRezrHXX0/RunU5v5Xb0ilJkt0hcrJ6y+1db3zKYGdizJNcyJ46V5JCN5lGVS6yJ6g24HpafYHVF0wnqt7UMQU59qkkF6UM6jFykQ2cSnJVxxkVqiVE/pex5O6ecD/6KFZ9PYkFCwCIX3yxHWN41aoRLtnQ4cZ+V+LLl7Pv//t/NF5xBW0HHYQfeO+005jk83HZw/dlzG0TsV+kZqAcqpoh0JH5aEP20LD+Hu4sqB9+t7atWyxVIijbMB92G5CPxEpy5iRvUK3DTpIup/ZP7eA7tYMqCdPbKFlW1WKtXltUWUP2PZEa3ZHSXaqa3JLiYl648EI+PP10ol4vlhC4rSSnrnyRi9tuR+wPzMRmZhuBDdjPYkHqIqJAL7i77HrrwebAzdhEV+0gOJE8ldzpz5D+3VCdMlW5XBHZz4hqkFHT6v+5gVUHHsgzV15JsrIShKAwFmPhW29RXFxMN5lnQF+2hYTqowP5JC96XRgYqBjTJDehLaolRFoenDCYpkxv/OW5YKC1Vu9t6z1t3Xrr1v5DLrIXLj8kai9bQjqrJMiQbIPdFwLw3HUX1uTJJKdMobCsjIp776Xwu9+l6f33R7p4Q4IkuUVARTzOp2+5hbe//W1WH3oofuD5006E+gIuff1u3JOSMDX1o3LSQtXCdVDXmnlfe8lMlSotlyMFtX2QVls1XzooqUTQydqWS+MryVkZmbZK1qmPjNNeeWrxyQytwUskc8+opRIP1fJYpKR1C7LUT0bIdPDVzri8ZpXs6w7BOwuSMPbutx9//cY3EJWVFIdChKurKesLc9Lidzgj/DDiAGAOUFEPdMLEDtv0K3sVSdKsViW57dgkt5mhh75zGjlUnwMnaYvekdFJbT4N7/tHHMHfLrsMt8uFNxSisLSUhYsWUd7dTV9jI5Dm7wO0sttyv5wkg/lGEYw11yAXxjTJVaGSXWnNhUwDK6FaJ5wamohDvoQ+7KdKGnQrrbSWqGVQyW1ESUtyGyFjEJANmyyzrl9TSbPB7gsRieC96Sa8v/41U1Jxjif85je4zjyT9atXj3TxBoXaMSwBqhMJvn777TwdjfLGCUdDAJ4/8ihis718e8MdeGam3ir5NU8FzvUlYNJm2yrWja2JDJB5X0cCTh9/J6ulHI2R77L+/rvzbBdha5Xl/8m6lP/jx46oUAW45fSylQzwZnXHoDAKhUq+FctuDyXBCZAtBVEtg2p7NBTyo0o3RgqioIA1X/4yXZ/6VDpGrC8Z5swXfs/Rre8yvXopNfsEYW/AtwA4BuiE6hchsCRzQ3uxxeAtmawwGUvuWobvhKdCflvk90cuergzVb7jZPnX818/4QQevfBCvEIggOrVq/nsVVdBVRXRxkYiqbCW8vvYS7az3LYYW5xkhpBdB07bBgY6xjzJ1TVu8mOhWjX04yWBzedAoTpPyP/RSamuF1KP8bnAStp5UqMmyyUbnGgqHSOb6Dp9LNSerz4kaLB7Q7S08Imnn6Zz7lwQgk1VVQTOPx+uumqkizYo3Ay0ONYmk3zvV3dxX3WUp487EQLw7NzjWTttLle4f8S0qmXZcfxSX+CiCIwP2TxDfvRH2pILAz/Q+vZQ5Ea53vUA2W1UETZJk22i7Dy4y8hommtx9hbTevkiYpPewlRjWBKzSU2ADMFVLYZqu5Ug4+gLA++BbM98OIdY21lINjSw4Vvfwj9xYnq+hvE9XVz6+N3ML3wb9gPmAp8APMcBJ6eWFqAYioFZSzIm23LSvQzVkrsRyHbbsjFU8uY0AqhacKVFX4aJC5B9f/RZ92T6qdNP58/nnosPO7jJ1LXr+Pq115Lo7EzH8pX3VD4ePWRPwftx5HKGvBp8XIx5kgvZvV8pi8p3XD7rrap51XuY6vGyRytnaNKJaTI5UOvrpDXS89UhQV2jpQ5lmd6tgYrNTz3Fgaeeyjt77AGWReMBB5Dca69daupf9d0TMbjwD/fhLY3xl6PPpNWqp7VoBueG9+UnW77GfrFXs19YpbeZSxakwslyOJrfp1xlS5Kt6ZQkVI3M4AW8XeBTtRJOsQkdxs8TsYFyBXkuWfWyo6K2SSoJ09s9J4OCvl+FE8HPR4h1S6CelwTibjfRM84gceaZRF0u/NiT6sx+4w2uv+ceaqu7bcvtBjKBcxteJWMn3wI8C31LYCUQBJpSx7dmIn10k9HgqnIV2SlQO2G6s57Md5IkqFIFvSOnjvbJtfp99Kau9bGzz+bJM85AYEufZq1aybev/T6xUIgt5Dei6FZnA4ORwpgnufLF1TVfTsc5aX/U72S+oRH1Aywbe3WYTj1ONtowkMwOtq3r3pwcEqJamQ0M1gWDWBddRPzmm2kZN45wXx/i8svxfeMbiJ6ekS5eXqj6O/kOJGLgDsNX//5rWmtn8ZcDZmAh2Boo5oqCH3Ht5qs5PPxy5iVJvUDqO6HrF2GgRlZd62XaFaC3S1IrqVrtJKo6bGt3OtK+1hBasaG1V7pRADLkqYiMxjXg8Bt1hMyJ+KokVyVubm3ttE/Wh2qgUDWf6agVkycTu/56/HPn0hcKIcJh3H19HP7LX3Lqc8/Z15TEJrYBMgw+FoY9/gmeVmAzbA7CCuCj1LISWAd9HbadtzN1L2SHQJZbd/hSJR+6hlYSYd3XQ02r3yDpHOYESZ7jwGNf/SrPnXoqLmyCu9eHH/L9H91ALBQZdPrcXeXdMNg9MKZJbpLsl1vVxuqEV1o/IbvRVsmu2jjqZFf9AKsOYqpsQCW4MuRXvvOoHxDZAPcr/y2JbVj5T72cBgYS61evxrrwQqI/+xmUlGBVVRH/5jfx3HjjqJ2JTtfSq529ogiIXrjgv7+g2zuT5+bOI+52IdxRfjztOyzv2pOvLP0tnv5ExvKY+l/VUUsO1crzqU5fsg3R3/VdCbIt6SUTakyGU4PstqsqDOXh7BEtVcKVr63KpSOFgU5RusRKjZurW3Jl2kkipls+9bROevMZEiJeL21nnEHknHOonjXLnsK8upr4M89wwPe/z+S2NkKkVAchKNpAppcgva62ALPesit5JbAK24q70l6sdbYxtx3bktuT+lmujpdTWl/nm9VMXcvrd4K0DFsuF7+5/nrePP54CkIh/OEw+y9axDW33EIBsY8lnTEwGAmMaZIroX6opJeyj8wLnyATlQAGNty6NXcollxdE6vLGfpxPofTWo896BRSRn4EnKQVBgYSoqMDz513ErvuOgAS8+cjTjsNzxNPjHDJ8kMSLfn+RICi1HBGTXOQy9+4nCM7D+XRQ0+gI1kCMfjn9FNpXNjAlT+/hXGRLVjJ3Bp5SbzUDqkaLxYtH3aNd0ttk/zYhEofXZLtiuwwd5K77ZH3wamtkshlTZVWR31fPrmCk4xLWiLV4Xt9GN/tcIxaFzqRbt17b5ovuoi+iRMpKitDCIHbspjf2EjBE0/Q19ZGhMxUuxuxI3YUygsIYwtR27G9yMLYnmTrMmtrnb3ZDLRi8+EeMsYJWV6V2KrSg0COfFXOkO8eQPbohFpfLgCvlwd++EMWffazWEIQrq7muEcf5fIf/hBPIjFQ02NgsAtgzJNcdRgIMgRXhuNRw26pvV0n+YKTFTeh/I/aCLux9VY6+ZUfGzlAnCtMitO2PM6pkVY/CA4yRAODNNxvv431j38QX7gQgMS55+JauhTXKI22oEpE1U6dOu91TVuQkwNBjnrjMe7e61JeK1oACVhRvQeXXnw3373tNmY3LUm/F/LDrnqiq++dSox0qdOuQG5VqO2PSnBlO6HKGDrJOKbpbYm67dROqZ0GfYg91z7peDsca65KCPVJDPIRX7Xt7E2dr6ukhHfPO4+1Rx9NEvuDGAuFqPZ6OWrpUsq7unhtxQoKyGiat5Dhe7WtUCozW7DNtMHUwU3YbLgZervSSTakDpWWXClXkOWUz6QaFUFdB7S0hFPkBd2iLu+VbvnuLy7mr9deS/Cww7CEACGY3dTEaS++aBNcA4NdFGOe5EqohE8luLJRUIX8g4VxcWpI1CFV3dKjfmTCZGsA9f92Op/TB0X/KOhDcLJshugaOMH9u9+R3GsvkjNnYnk8xL77XXzf/Cair2+ki5YF/b2Qz3kvEI2BL4zdm0wxtEBnH1e+fgv/KF3IA7O/TDLhottfyrXfuZHPjXuIgx57LP3fqvOZOoQuCZv+aVeJ7q7yXslOubTUOjkgSX1/DxmL4XDbpASZEFTSwijrSDrf+hloiZThEodjzZVGBEls1Rm58uUnyPgz9ALvHn00L593HuGSEnzyGnp7mXzffUxobKS5oYG3GhtJBoNUkiG57WRIfxioDEPVGihqxo7FJg9ugb6QfXxr6nctZGY4k5bciFJX0tot67CITMhnudbTqhEklxwDsi3y8lwuIDR+PE/ccAOdkybhDoUQ1dXss2YNhy5dSvWKFbtcp87AQIWwLGu7/6lbCMs/+GE7Bbk8UvV8GEhywbmx1/NhcM2UjD+oO3zk6nXL/833gdE1cbnSppEycIJVW0v07ruxCgsJBAJMWbOG5I9+xPpgcKSLlkYtUIc9x0OdtkwFSsscMt1ACyx1zeHW465gq68CIhAuCDBx0yZOuvtuEm+/TSsZ61or+d+tXOvRDkmanIa6JZFSialq1XbqyCfz5PvJWBd1y2Opkq/u87kgmswmsarsKhfxdZqZSyW1qk5VppPYpHLNxIk8cuGFNM6bRwLb0SoOTHjlFfb49a+Jbd2ansigVylzqZJ2WsqVdD82ie3EttjKtUxvITvMVkfqusqweXJ5Kl2eWiqVtH6MPsKRS86m7id1P/qmT+c/119Pf0UFbsBjWZz05JPM37CB6sZGJgaDmVnyvNAds8sqy91O9vYWJU9u7wrvicGujQiQsCxH15LdwpKre0xLK65s+OTwjf4blWjK3+p5+v/KoScpg9CH8dTGV/9v/by58vJZU2IMJMoGBk4QLS147rkH7/e/z7T6epgxg8Orq3nxsstYN0qIrvpcqxYqOSpSKk2QcunEfuE6Ya/Wj7j7vUu57fTv8s6cA9k8vZ72GTP46JOf5JA77qDu17/Gl0ikpzuV2n01xKBu+YRdLzxfgoyOVR1VUqcGVjvmTm2T3k451UURGedAGKjBlURaEkJRZmf4ouCLQFEMrP6hWXOdIhDki0IgvNCPl398/es8duaZ0NeHPxwmBlS0tXHoz39O+TvvpB8hte7k90LWofQx6yTbOq1aq2PYAwzq49lL9qMqt+U3A6XMcvpdWVfSQFyppStckEhm/kta5aX2WnW4k/dLWnQ3f+ITvHL11Vh+v01w43FOv+MODn711SyL/q70rBsY6BjzJFdtpCSxlXnq0GSu36prcA4xJPNVGYTaEOdzjBjK/+v7c1mTc1mBDQxywf3yy0xtbIQZMxBC8Nree1N9/PGs+8UvRrpoachnWhIoNcJINAY+VVBagv3Spb74Fe2d3HjTtdx4xY/5W/0MEIKYx8NL555LyV57Mee++/AuW5YmJk6Q75F8t3clJBjo5KXrc3Ur6GBtUyLH/iKyyZq6rVqUywEhWVoJWexVRMAXs4lvUf/AWdVkWiexkuC6XQxgvJYXXjzkcH7+pUtYNmd/e1YDy6Ji1SqO/dOfWPDHPxLu70+HxpLfCnlONxmDgrQi6225rgVWyzsUK6u8T6p8Rlq+y1JLJfaEdHIpLLYT7n4o7YaiUEa5o+quVSOOvIYNRx7JB5deinC77erq7eXzN93EnKVLs4wn6n02URMMdkWMeZILAxtl/WM11OGUfIRRJZZqo+LW1kOZtSffhzTXB0b/nSG3BkNF/Kc/ZcLBB7O5vBwLeO/kk0k+8QSu5uaRLloaknjo5KAX8PVgf91LsImuJLlhe/H0JjjvnnvwVFfz3Lx5dBQXI0IhOqdO5flbb6Xm//6P8b/7He6enixJkwq1Q5krDOFohTq6AwMjD6h5g7VP+dqmErKjA0j+ChneWQSIYjKMrZxsc63mfSZiUBjJTCcsJ59wY0sdsgitaopOFWLZrD25/zPn0zi1ga6iahACSwhqurq48I9/5MDf/S4tIVCvUbV4y23VQViXbuh5Mh1z2JdrBE4PaadavqvIkNtawFdJZna6XqAL3FugogvcqUpXr0Elvcs+9zmWn3OObb0F/Js385nvf5+JGzYQTZ3344wGGjJsMJqwW5BcHTuKADoR0F3lQ2iw+2LD8uUkzzuPvltvpVMIwpaF67rr8F5+OSIUGtGyyQ+1rtOUxtsubIufr4vs6Z06yUTbD0NJMMjJ113HvD335M0pU3ju6KOJ+/24gObjjqP5k59k2gMPUPXf/2Y5MEmCIK1zuo4/X0eTHMeMBFTCsiPbJDnJQxHZFtgBvgGqxgB9pwPcmZU/BkLqH3StRYohttTW8LuF5/LqPofYsxm4wB8LEY2Wc+DKVey9Zg0LXnuJYuXUahF0q6z67EG2pVYdXZDp4dxz+TzJy1A10iVk9MzSCc0XIFuw6yXL86yoK9uKLEmzRwje/d//ZcWnPpWexax87VpO/sEPqNyyJaseJAlXLdre2ECHtlyE38BgtGDMO54ZGBgMDcmZM4ndcguWzweAa8kSvN//PmIEQwiVYxuspAVrvEN6fOqYwuLUDjc2ue0GK5ThulLR0ANsrKriyQsuoPHgg9OOR0mgfNkyZt53HwXr1uX0VHf60A/mrLo7EIASBt6bGrLvk9xXGkglpLk3TwUnkgNnVNM1uFJ321sW4M9nnsk/P3Uqca8nrQHwJmIsfPYfHP7m23RWTGHiskaqlwWzZo/UNa1O06cPxalLyg+GOtIm871aXeVaqlxaRgT7we6y14lw5jnvTC1bCgr4480303jooSRCIRLhMJM/+IBP3XwzpeFwluVYEm3VEVHmqU50cr2FjBOdXKvHGEOPwY5GPsczQ3INDAzSSCxYQOzKK9Pb7qefxnPffSM2I1o5mZFtOWRbmSevIsV4rPBAsuK0/uiAA3j+a1+ju7qaJCACAVyBAFP+/W8m/PKXeNrbc4ZnSmppNXyf0wQK6nD3WIQcVpf3RjpJjdfy5H2rcpEhuTHnaYNz1b3uYCbcbl454QT+9sUvEi4pSVsqhYDDX32J//fI76ne3J45VzJ3ByahnUs6OarrXm1b3zcUB2KZJ7e9ZKImODmZVSlrdzHZ4coUlh7tz4x0hIH148Zx749/zJojjkjrkWc++ignXnMNhfF4VkdBNY47aZ47lUUltnq+um1IrsGOxm4fXcHAwGBocL/2GtZDDxE/+2wAEieeiGhqGrEZ0VRdYQRbeiu1i2qs67QlLWYPq0a036lDzpAZHp7z9tvUXXghb51xBou/9CWorwch2PSVr7D+8MOZ9OSTzPjLXyhrbnYkQTpJimh56kQSujPPWINKSHvJhE/0KsfIeuoHepNQ0uVMLp3Sal6a3Ho8LD7qKJ778pdpq6/HGwrhDYcRwMzlyzn7/vtpaGzEDWzFeVYwaakkx37dqisjIuTrPMkIE/lCrunbLjIKhHIyllT5vMv6i2BLdNLzxqu6CYVR+oCVe+zBz66+mtaGBpvgCsG+a9Zw7AsvUBKPOzrQyXJHlTqX+zvJjhChWrHV92Fb9bwGBtsbhuQaGBhkwf3oo1iTJ5M48kgAEuedh9i4Efc77+z0sqjOOjIsku45HiVDMHrIlijqsgFJlqSk0w14o1GOe+gh9gae/+Y3aRo3DgBPaSmbjj2W5mOOYcorr7Dno49StW5d1v/kGspWHX6kjjPB2P74y3qOkJlCWEYMkNetWj07sbWm+r3SiW3SIS8eCPDBSSfx/mmnEZo0iXiqcxKprqZ60SJO+elP2ffVV3Fjz6qrWibV4XdfanF7yQ5mrqRLu1Oh6npt+YsubZChwlTrqZNedSgylhKy4wjLYriV46PYHTlfj1ZpKWlHInX860cdxa8uuYSox0NBKERs/HgO++gj9l67ltrGxqzZ0mBgB0zWuwpV8iOvXye6Usvr9J8GBjsbRq5gYGAwAJbXS+zmm0nuuScAoq8P73e+g2v9+p1aDumlr3/89bQMt1SKTQwGg5MHeKS+no7LLqOpupq36+vZ1NUF4TAAFvYHe+qbb/KJRx+lauXKNKFTh657yZptOL1fTY/V4VsZ9qqU7Hui3yt1249zpAGdEEoS3FNRwYcLF7LypJOIFxbaPmXV1YiaGgoSCfZftYp97rmHwiefHDADmv4syaVQyibKlYKXKgdIs6Ue+LYH+mIZYisP6cFZrz3YtUFmoo4isnWxar667UuFw7CSCt8VgofOOYe/ffazWNjPbnFPD1/6wx8oByoaGykJBgeURSXmsRz58tL161WrRa+msdqpMxg9MJpcAwODYcMqKyP6k59gjR8PgGhrw/etbyG6u3daGaTVTXqXq2u/Q14RAycJkMOx6kQsbod1Auitryfc0ICvsZFNBQW8eMYZrNp//zRZILWeungxB/75z1QuXZrTcalHS6tkdyxChgjLdW+c8qTV3WkYX83vmjSJ5aefzvqjjiLh8aQ14gIojsU42O9nr40b8fb303HnnSSDwQExbIvI1rZKjXBhgGyxsC6C7WTghCMO273JzKau1dbDiamWaXkMZM+OqWtk/cpa3a8iXFjI3Zdfzrvz56fzJq9fz5U33khNa2s6T5UBybLK6G26vEdN53uucz3/huQa7GgYkmtgYLBNSE6dSuzHP8by22+0a9kyvNdcg4jtHHukOrysLnp+wRCOyfU7OUKtOgWpQ8jrZszguc9/ng8WLABIE95kIEBVVxd7/utf1D36KLFQKIv7qJYuXcc4FiGtpU73IledS72uXueSDPYfdxwbv/hF1k2aRKyvD8h0Noqampjy+ONMfPFFyqZMobyhgVBjI6Fg0HEa9xLs6A4TsaM+TEqtC8tSmTJDHlSb2u7E9qZSwxV0kolh15m9Tzp+DdUxURJJWU7dAj3YtszbXFPDHdddx6a6OsDuAMxftIjv3H47Rf19mQNTPQsrPNBhzmkUQj9GHbHo1n7jNIJhSK7BjoYhuQYGBtuMxAEHEL/2WiwhCAQCTFm9muStt7J+J0z9q4ZTzeXxrW+rlt8SBlp6nfKkPlGf1Uv1gm+uq+Opz3+et484glhRET319VhCICwL78qVTH7pJSY/9xzlixbRE48PCOMkeVLv9queUYVtuVdyanXI1HXv5MlsPfxwek8+mcDBByOEwLIsNgeDRMNhCpcto/rxxyl5662ck+045ZcDdcBUYJqSLqxJbdSnMupSB0zFJrt6uAAZG8sprIAMN6A6gsWyw6Dlclwcjn5VnbTDCwTnzuUXV11FX0kJLmyCe8Zf/sI5j/wBl8caaBZOkja3qtEYdCmCPi2xTn77lbQTYY5gSK7BjochuQYGBh8L8YUL8V1yCdNSDj7zVq/m3Qsu2KlEV7Vi5ZtaVRLZcjLTopam1jK/XDumRDmf/lHWyUdzbS2/ue46XjzhBBJuN1gWvtZWrLY24oDo7aX65ZepfP55xLJldJDNf8YqyYX8lsdcaYBIbS3hww6j97DDiE2bhgWUV1dTUVOTDnslXnqJ7ltuwbNs2QBNtbqtz9om91UCs7C57KzUMhMonJza2EPbMQvwzAFaINqRCjhLdpBYPXCs3K+HHHCIVaZPWbwtzmpx4LVzz+XvX/0q3r4+CsJhfPE43/jpTzn+pRcyOhFd0JsgywodDQ8MAaZ30KTVNpJn0ffLazIw2JHIR3JNdAUDA4NB4f7HP5h2wgkwYwZCCJbMmIH30kuxLr10h8fQ1SMSODmNqcTGjy2nlMY0CWnMSmrbJUDpUObbTqGqrYWr7ridWS4XKyZPZsXEiYRCofT/xoqKWH/iiaw+8UQ8LS1Uf/QRDa2tbHzzTZbuhE7BSELVnMroEk5wAcnx40kceijxww4jOXPmgGO6QiHGVVUxs6WFvVet4rEbb2SLVn/DuG30Yt/rylQ6/WzIh6AKW6JQB8wAPAcChwBN4NsI1U32sjWZmQVBEl2ZLk8tqveZatVVWK2I2NMVF6YEsXqcYHWGYxg43XCvz8fj11zDO2efnR5RqFu8mGuvuop9V6zI6ELkUIXq8SdDMKQq0BezZ5LzZbLS55ERJKSBWr0kXcerhw8zBNdgpGFIroGBwaAQQPzOO5m5zz6snTABLIs1e+1F/OKL8dx7L2IHjAjlgtOHUyfB6vCpkxZXdU5zQZa5djASDVC6Osipt93GPg0NFDY20hqJ8PKRR/LWUUexuaYmE8O3vp7OY49lsRCUhUJU/vnPuJ9/Ht8HH2B1d+d0tnLa3lbkcrRT16pjnrz+4VgUh1JGy+MhXl9P6dFH4z76aFoqK4mFw2nLbtqZLBrFv2gRRS+9RHlHB4Hp03m5sRGCQepTx+iyBD3ttL8S2BPbkjsNW4JbWEwmKK2siASp+XA7gRZgM7Y9MwTRZCas5PEAABzuSURBVHaIBHky+YDJkAiQYaxeMgxQpiNa2meTXl8M3LFM+eU6QfYz2D5xIn+48kqaDjwQKxX/dlx3N+c+8giTV6ywRwv6waeFGMvSECjDC92xgZZcqSdX9ba6I5o+kYbThBcGBiMJI1cwMDAYMqbMmoX47nfZMH064VR4LfcLL+C56y5EcnRExfSSHVS/bJBtKWmAgVpOyK3zhIz+UOoWQ8CK2bN576ijWHHYYUSnT8ejDLmHWlvpbmsjCfjWrcO/ZAkFH3yA+8MPSYZCeSdE2BZIZzB11Frf1vf5cSYwg23rZYxVVRHZc8/00j9jBr7SUqrr69M627ZgkFg4jIjHKX3nHcpffpmKt97CH4kMS/oAzlIWNb+cbD1ubQHZ4txpqbV6kJiDTXI3QyiZO8KCvuiMULfkOoUuUMb4E7GBMZfl8uYhh/DIpZfS5/cTDwSI1dfT0NzMUUuWsM/ttzMuGBxwP30yMLS82Un7GpxkCk7batSIoT4P2twUBgY7DEaTa2BgsN1gCUH8G98gccwx6Tz3a6/h+fGPEYmRt994ycTMLVPSqj5XT5eQTWadHJl00gTZBER3xgl5vaz69KdZ961vsb66moQQ9KZIXQI7SoA0CFqWhXfNGrwffEDtli1MKShgw6JFrAsGs2Zq+zh1UeKwlDvkFZFNqlSHIl1/Ka/Z19CA6/DDWed201pWRmjPPYmmJtVQUVRdTXGK9ItkksJXX8XzwAPUvPEGheFwXmc1NwOd1iSpVbdV67RKkGV0hXREBblRS3bYhVpl33iGNj+0U3gBJ91BLpIrj1MqOJrMru8ej4c/f+UrPH/KKWmLqYjFOO6JJ9i7tZXSxkbKgsEsHzOnUGQ+smPedpLNzztzpLvJ7tDoHRzdic6QXIOdBUNyDQwMtissIP61r5H41KfSee5Fi/DccstOCy+WCzJeq4yiUMpASaLTPp3EDsVamMtTPmu7vp7YnDk0JRKsq6iged482hoaiHk8WRKAOOAJBKhKWTpdiQQtr75K90cfkdi4EdHcjGhqsteh0JDqwk8m5GsZmdCvcu2ULmfgbF7dQHtJCZtqa9lUW0tLbS1bamvpqKmhe9YskvPnQ8o62xsMEk9Z+XWU9fayx+TJTNq6lanNzTTddhsJjZj5tXSuPElgJZFzkZ8Uu72piyxXKkOmy5V9ci0X3ZPKyeNK5kui6iRYzUduo9rvI5kQXxFg/fjx3H3llQRnzUo/M2WbNvGZW25h0po1QwozphJ/SXLV+LZyW5/gQd2XK/ZvvrWBwY6GIbkGBgbbHRaQOO884gsXpvNcixfjvflmRH//iJXLjXOIMNW53GnfYJEbvA77IFtTm3DI0/cngc6CAlbPns36efPYsPfebJk1i7jLhU+xdGJZbGltZXMqaoMK0dOD2LiR6QUFTK+sZGNjIysXL0b09UFfH0QiiEiEQDhMVSRCTV8fe9TWMmnmTDzr1lHS0kKp309ZYSFFfj/Ffj/xmkIi1X76qgvpTxTQXDGdYN0eRBKCDn8hPYWFxLHJeCy1jgOJ1Ixjsszx1lZibW14IhEqGxsZt3w5lStWULViBf7ubnz19fgbGog0NpIIBrNm9hpMWiG3JZn1ST2sbvbVTZle7c+KtLTc57R/MNOlGhBXmjGdJAq6mNVp9gXVbB62ZQsvHXAAP/3Wt+guLk4T3Nmvv85pd99NUulM6KMPap4uv4mRbXQezDgtj1EJbK7pmPVtA4MdDUNyDQwMdggsIHH22cTPOCOd51q6FO8PfoCIREakTFKHqpOnXHmSy0jiqlu/nPLVIXLIJsT5tiU6yR4ibi8sZP2cOWw+5hjcZ55JV3ExfV4vm4JBQuGwo0WsorKSiZMnp7ebm5rY2tGRdYwndW0lgQCVqfBvWBb+YJCicJhCUhZOWRmFdiX1JwO0Buqx3cEsapqDFPSEIQYxK5vv9QcCJOrrKQuHqenoYPwDD1D9wgtUrluHaxCdtgz5lqvjoa5FQMlwMu8OZgrWb2C+m6b2ZnRPqiTOvRm5lvvz6W+dphZTCW4vJCIuHvrc2fz59M9lOlCJBCc/8ADzn3iCqH1YzqLki/nsoI7Iim2bK093NtSJrZNTooHBjoYhuQYGBjsU8c9/nviXvpTedq1Ygff66xG9Oz8qrCSnuXhOLg6UK/JAvqgETkbEwbYh/1wCiZSlc+XGjTT297N14kS6J0/GmjgRa9Ike/H5mDp9OsUlJenrDvX0sG7Nmqy68JCazra6moBibQ20tlLV1oZLsvzC1IGF9tIVqaYrWYOFQGBR1ttKTft6JjRtonZdC7VrWije2IKntRVPSwt9xcX019fjbWzEM4wwaaq0RJeSFHqVDf0APwN7L3qebgJ2k60nUa2zuSyyUZxnlsi3LYlxPv2tkz5XMal2+Cq4/rKbWTxvPwp6QnjCYco2b+bLt93GxOXLB0Q80C2ruSys6mXmUlXoCgx17RRRIxfBBUNyDXYODMk1MDDY4Yifdhrx889Pb7uCQbzXXYfo7t7pZXEimrpG02lfLn1nrmP00W657TQEL7ddZEKrtjMw1KqaVvMkYbAAqqqYe8opHHTGGfR7vcTcbl5/+22Czc3g99vTMAcCFPj9lPr9lFZXE5g7F8vlwhuPM23JEsb1teEPRCgs7sNfGsFfHqGwqg9/VYRocwkfLj+eor5+yvtCnLnpx8xYtwTRih1VqwVohURHZnNb7PbSIaycDH8VZTh7xqlpXXtSgPONUI9JkC0wHYoYNUz2w+DU83HalpKFXPrbXCS3F17Z4xDuOOcKgjPmpjslR/7zn3zjmmtw9/RkFbmXgQZip1Pox+TSkeu8X1doOBFYp7BhxoprsDORj+SaOLkGBgbbBZ4nnkBEo8QuvBAA/9y5VD38MAXXXUfTe+/t1LJIqxVkPty6vlYfnR6ONVZuSxmBJLxqWndsE8WpDBdUtYO/3/4PH87RGsLaPgkBsGULS3//e0pWr2befvux5N132fDKK2lLsUQFMCe1zK6vp7qhgTmNjTT0Bu3MvYHZqQPGA+OmAIdA3Xu0+p6hedVUJtJITVnQLrv0YEsRTbcfJjbb59pWkiv9voQa2y1f3Lcy8msbCl05fhyHwo0wrgmibZkehKy0XjLT3XZi90A6sW+Ck6VYDgHIC/Epa/UCJdTgt7p12A29BQF+8dmv8cLeR9JVUm0TXCE4cOVKznrqKcpTBFf+TI2hKw3H6uIUEUPmq6Q1l+RAJ7YqwZXnVddgLLgGow+G5BoYGGw3uJ9+GqJRvFddlZ4CuOjhh4lfcgktzz6708ohP7IRcse51fMlb1H9lHRiK4+R+QkyvEam5XHpYXjdq99nH1DUDq6uTHnlkLEkIvKc+Wb1euOVV3jjlVdy7pf65CKgIhhkTjBIQwHwCTJT2e6dWkr3A04AjgA+pKZmKTU1S4EW2JS6BoXgysoQLpjYZJd5uHABhQGyIxvooSCc8qWMoVgS2nFkKnickqduR4DlwArwrYAJy8GbKnU/NuGNYV9IB2lrdV6vRVnJkiirxFdeoIuBD6L2ML4/fR53Hf9NNheOgwT4IyGscAnHfPABde3t1DU2Doj0ISHlB6riQUbFyOVMJjskw9Xzqvt0GGJrMBphSK6BgcF2hfu555i3776ELroISwh6CwsJ33ADCZ8P11NP7fBpgCX0D/Rg4YwkeZWzoaqzpUnuEiE79ijaPql5BIX7SCugNO0WkGazhWEoiWXIRw8ZDqVLSvORiFz75G/VEX+qsK2247Fjw04ESidiM9/9gYNShfSQ/kRMWGxfXZKMmVxh5CIMRcOVXyexK0iNY1ZO/thmcrvYhTOZ1Ymtuh0i40612d7vS5FceT3dZAhuM1hNKQu8qgcOp9aqlldCHRpQx/6TDGSHbogmvTx45Dn84xMLs8yln3r1nyz8z//RWTaFicsaqQ4G6VH+2onwqhIFGcNYVV/0kFFkDPYuGBiMFRiSa2BgsN2x9W9/45T583luv/3o93gI9fUR+/rXcc+ebU8DPIIhxgaD5Boy1JKEbkEDm6NJWYFXOUZ19CkPQanKOvykBbe9MTtLeq5Ly6vkUJCRP+jDxfI8arn1feOx+aE0RKavQZanE3tYvrYZCpdik0E/8CGwAlgKLIfNUduquYVMaAhJclUvJLUw+UzQKPulfrWXbNO1NFFKllaulDeQhKI2CLRBUWMeiUKxkhfJXFc0CBuBDUBz7nUrEAhBUQjcPWRbcktwlktIX0CnsX9lO1g5nds/czkbKuvSJLi0p5uL/3QPB7/1Rqrn8xH02DpsVVYjpTJ+7GcsSibamSqn8ZFtRDYw2N1gSK6BgcF2x7pgkCe/9z3qDjyQRSecQLiqCoDEkUdi1dfj+eEPcTU3j3Aps6GSWzVovjriLHmKPFb1NVI1kvKYtBYyBiWboTBFcq2uzIxSvWST3AJsniR5og/bAKx7tJMnT26rCgPp9JbWRshh+XZsYjdjMTZL82AP668GVsHmsM32pJdcJxkTobRU6hgOq5IsLUyGhashAKT5sYNsYpkVRSEJ/g57Ufd5fGSIbgj62uxrld5yzdjXJtPSgtuayU6rFcIQCENhB9nObU5yBj2IMqRvTMLl4vGDPssfjziLhNuNDII8f8UiLvnTz6ho7cxYf5XOg2oklqMHCTLkNkL2s6g+x2hpA4PdBYbkGhgY7BCsCwZZFwxiPf447v/9XxLHHw9AcsoUYnfeieeuu3C//voIl9IZKuFV8yQkuVSd2PR90jgppQgBbItuQX92EH7p9S5JrV85lwwaII+R/697tDttQ3ZQgrQlVxZOsuz21AGBKEx4J3XAKog32/vaySa5XWSiD0h2nqsSXQ5pFbKw/WSbwWXvQFpPO8iOoiBZnuoA5riOgq8DCjrsCpTXoS4t2eu+UPZuNVBDAVCUBH8otWwGt+qUJsmvdD7ThN9LZh/E7V+8nJaKCgpiYUhCQayf8/91Pye89QxC9wpL3UjhstOy0yMPUQmuP1WNqhXXrS0GBrsbDMk1MDDYoRCxGN577sG1fDnxr30Ny+fDKiwkdtVVWH/7G+4HH0QkRofbiiSuMJCTqZZS6WimHqdKMCWBlQoFVWsriYkemlWVK8i1Pn2qSmidPOL1dCm2NVed8CL9h73YhFUyOR+Q7IaJLznHM2tXtqUlV7JvXTchzYgS+Sy7UWW/rEApUVA9/aRYOlfIi3wx4rzYDNDpulLraNfA7C6y+bQkuln8uj+1dGXyRAFZ+oKkW/DQOefz0699l5jHA5ZFTUuQeSve49t/vIMJW1sy+hh1UeBW/lL1bZOyBZXg5rLmyv8wmlyD3QWG5BoYGOwUuP/7X8Tq1Ta5ra0FIP6Zz5BsaMB7222IrVtHuIQ29OF/mVZJrWqYdCv7JTeR1ltp3OtR0l7ldzq1V2epVSGPVUexVd1vrvBPRWSCEaTlCpBh4Z1kyCOpP+vGeaYKNS01uTrBlRcBua23OtSYst5UWo3vpsd7k3n6HMs+Jc8pXlzU+bp6Y7kvtYeBHFt3RtSjcRQAvv7Mvqbp0/nNJZeweMECYh4PlhC4LItj3niTy392LW53MtMDkd6LCWVJQb0clF2S5MqIHOozJK25ep/DwGB3wZAmgxBCnAjcjf2+3G9Z1i35jjeTQRgYGOSCVVRE/FvfIjF/fjpPdHbivfVWXEuXjli5dO2iHkdXz1PDhekWPqdFH2HXjY+SlOgxe+UxTqQ2pq2TWp6fTCCFytTaV6ZsqEuVcqCUI/TkWJz2qb2D4RLd4cJJaKqb4PX8qF3ORH9G5jvYZfXifE+cjMXqth8QBQW88MUv8urChQghSAYCbK2vp6K3l+Pfe4/zbr6emvZg5uHxkXemhkQyc1/VwzrJJucdOJP2LUo6MrRaNjDYJRDhY8x4JoRwA43AcUATsAj4H8uyPsr1G0NyDQwM8sECEp//PImzz8YSdtskkkncv/sd7r//faeFGdMhSaxM69s6p9JJjt8hTx9llxpPfZIuVc6gpwtS55TEJjHEtJeMJrc8tbjVgAPlZAIRqAepAVXVtNRgOKW3JcJCiq1bSWfJhR6UQI8w4SRyySV8kSqIXMXvJRN0Qr10taPhtFaNyDJv8wEH8PrXv07f+PG4sYdMC2Ixjnn+eQ4KBqlbvpy6YJAiF9mOa049l5T53oo5T93bSTa57RhCniG5BmMJ+UjuUOQKBwKrLMsKAgghHgEWAjlJroGBgUE+CMDz2GO4GhuJfec7WKWlWC4XvosvZvLChSTvuoum998fkbJJbqY6crmV/BgZXWOUbEtfhGzSo5MfSXxlxINYau1VziNJb3lqX6krlVBMtVZs8GlZY6lzq4TZJS9QOnVBJrKBdPAKkJkbVsoIIlpaXTtJFnSCm4fwWsmBfxfVtmWeLJZKemGgXEPP1/XS+topT55vMGu+uj9eUcHqCy5g8yGHpO+3B5i+ZAmfvvdepm3alI4w1oltnS1Vo0rkYfTCBa5kRg8uZTNSJqFLkFWHMxNZwWB3xVBI7iTsqIESTdjRwg0MDAw+Flzvv4/v0kuJXXkl/n33tWdJmzED34IFVN16K5sfeAAxBEnV9kIurqbmq447Mi3llDLPiQjJfX5sC2Fl6v9lXpGSlkbVogIyUgJlrFrEwJdailIs1+ofSHwhWy8q1EkKepW16mHlxVkHoXvBqWtZWeBMZnX5gkJ6VaKpTkUrLasyrR7jZL12MH4OsHqqDnxDPdZJBaErIlxA90kn0f7//h/JQCBNcAM9PXzi/vvZ+/nniWAHcFBltwDuJBSp08Wp5FZ78AQ20VVJqyqVUeM169JlA4PdEUMhuU4m4AFfHSHEBcAFuX5gYGBg4ASxZQveK6+k/ic/ITljBkIIoj4f0QsuILbXXnjuvRdXMLhTy5TIkYbBJ4gAZ54nj5W+VbrlVlrnJMktKgBqgZrUWjIy1cQp01EQ/eCLpohvap+VTBFbvbDyd2EGMjbVquhUCbn0ArmkCaoVV18nMhHD1GgU6tS0PVq+JLwOVTAgT88fzuXo9z3Xva457DBil15KW3k5kbDNVj1AxbPPUvfb32L19LAR6NPKKjs4bsAbA99QNARuEO7s8vhj2TIZ1arrZHE2MNidMBSS2wTUKduTscNmZ8GyrF8BvwJbk7tdSmdgYLBbQCQSxO6+m1Orq3l13jy6CgvpDYVIzppF7M47cT/5JO6HHkL09Y10UbOQS//plB9T9qnD8LrONE1GVBGvdHKQkQfUCARyTD3rxzZEjGzy6cTo5DF6XCknicFQZAi6tXaITmiqdVWdolZdJNnNRXKdlBS5gkAMF3r1WMXFlF18MZ6vfhW3y8UUy2JtMEhk1SoK7r2Xsg8+IO5wDREynRrVspyzbvNZyMnuoxgya2CQjaGQ3EXALCHEdOyJEL8AnLVDS2VgYLDbYV0wyD+vvpr6OXNYM2MGfUccAamQS/FTTyVxyCF47r8f1yuvjJnRomEFHnBiaUmHPP0EKklyIpy5SKj621y/z/d/uY7dDlAlIzsblttN4uSTSXzhC1j19VguF0IIXMkks955h+XXXIMntg2l0+vHqb4c5B4GBga5MSjJtSwrLoS4GHgGu235rWVZIxfnx8DAYMxCzpIG4H3sMeJf+xrJffYBwKqsJPbd7+I67jg8v/gFrk2bRrCk2weDcdQsbAuzy0WG8lljt5VIDXaunRFabAfCApKf/CTxL38Za8IEAHpDIcZXVzOho4NDlyzhT7/8JWJbCC4M7V45/cYBH9dqbWAwVjCkySAsy/o38O8dXBYDAwODNFzNzXivu47kYYcRP/98rIoKAJL77kvsnntwP/YY7scf33ZSMQqQy1iXP+NjnkD/X9Xy6mSRdfrdUKyO+X6jW4lHOZIzZhA/7zySc+dm5fetXk3PL36BLxTiT42N6Q7aNmE4dWisuQYGQ4KZ8czAwGDUQgDul1/G9c47JL74RRKnnIIlBJbXS/yss0gcdRTe++7DNULhxgwU6NIG8mzvIrCqqoifcw6Jo47Kyhe9vbgfeQT3v/5FezzOcyNRuF20Tg0MdiaGNOPZsP9UiHZgnZI1Dti83U80dmHqa+gwdTU8jLn68vv9RX6/vyQSifREIpHe7fjXY66udiBMXQ0Ppr6GDlNXw8PuWF9TLcsa77Rjh5DcAScR4m3Lsg7Y4ScaIzD1NXSYuhoeTH0NHaauhg5TV8ODqa+hw9TV8GDqKxtmwMPAwMDAwMDAwGDMwZBcAwMDAwMDAwODMYedRXJ/tZPOM1Zg6mvoMHU1PJj6GjpMXQ0dpq6GB1NfQ4epq+HB1JeCnaLJNTAwMDAwMDAwMNiZMHIFAwMDAwMDAwODMYcdTnKFECcKIVYIIVYJIa7c0efblSGE+K0Qok0I8eFIl2W0QwhRJ4R4XgixTAixVAhx6UiXabRCCOEXQrwlhHg/VVc/GOkyjXYIIdxCiPeEEE+OdFlGO4QQa4UQHwghFgsh3h7p8ox2CCHKhRB/EUIsT7VfB490mUYjhBB7pJ4puXQLIb450uUarRBCXJZq3z8UQvxJCOEf6TKNBuxQuYIQwg00AscBTcAi4H8sy/poh510F4YQ4nAgBDxoWdbcwY7fnSGEmABMsCzrXSFECfAO8GnzbA2EEEIARZZlhYQQXuAV4FLLst4Y4aKNWgghvgUcAJRalnXKSJdnNEMIsRY4wLKs3S025zZBCPF74GXLsu4XQviAgGVZnSNcrFGNFJfYCBxkWda6wY7f3SCEmITdrs+xLKtPCPEo8G/Lsn43siUbeexoS+6BwCrLsoKWZUWBR4CFO/icuywsy3oJ6BjpcuwKsCxrk2VZ76bSPcAyYNLIlmp0wrIRSm16U4sR4+eAEGIycDJw/0iXxWBsQQhRChwO/AbAsqyoIbhDwjHAakNw88IDFAohPEAAaB7h8owK7GiSOwnYoGw3YYiIwXaGEGIasC/w5ggXZdQiNfy+GGgD/s+yLFNXuXEX8F2yJ6o1yA0L+I8Q4h0hxAUjXZhRjnqgHXggJYe5XwhRNNKF2gXwBeBPI12I0QrLsjYCtwPrgU1Al2VZ/xnZUo0O7GiSKxzyjAXJYLtBCFEMPA5807Ks7pEuz2iFZVkJy7L2ASYDBwohjBzGAUKIU4A2y7LeGemy7EI4xLKs/YCTgItSsisDZ3iA/YCfW5a1L9ALGF+VPEhJOk4DHhvpsoxWCCEqsEfJpwMTgSIhxNkjW6rRgR1NcpuAOmV7MsaEbrCdkNKXPg48bFnWX0e6PLsCUkOjLwAnjmxJRi0OAU5L6UwfAY4WQjw0skUa3bAsqzm1bgP+hi1TM3BGE9CkjKT8BZv0GuTGScC7lmW1jnRBRjGOBdZYltVuWVYM+CuwYITLNCqwo0nuImCWEGJ6qjf2BeCJHXxOg90AKWeq3wDLLMv6yUiXZzRDCDFeCFGeShdiN4jLR7RQoxSWZV1lWdZky7KmYbdXz1mWZSwiOSCEKEo5fpIadj8eMNFhcsCyrBZggxBij1TWMYBxls2P/8FIFQbDeuCTQohA6tt4DLafym4Pz478c8uy4kKIi4FnADfwW8uylu7Ic+7KEEL8CTgSGCeEaAK+b1nWb0a2VKMWhwBfAj5IaU0BvmdZ1r9HrkijFhOA36c8lF3Ao5ZlmdBYBtsDNcDf7O8qHuCPlmU9PbJFGvW4BHg4ZfgJAl8e4fKMWgghAtjRmf53pMsymmFZ1ptCiL8A7wJx4D3MzGeAmfHMwMDAwMDAwMBgDMLMeGZgYGBgYGBgYDDmYEiugYGBgYGBgYHBmIMhuQYGBgYGBgYGBmMOhuQaGBgYGBgYGBiMORiSa2BgYGBgYGBgMOZgSK6BgYGBgYGBgcGYgyG5BgYGBgYGBgYGYw6G5BoYGBgYGBgYGIw5/H/txYFgo9QnSwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "track,extent = plot_track(df, track_size=(12, 12), x_offset=0, y_offset=0)\n", "plt.title(\"Reward distribution for all actions \")\n", "im = plt.imshow(track, cmap='hot', extent=extent, interpolation='bilinear', origin=\"lower\") " ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Plot a particular iteration\n" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArkAAAI+CAYAAAC46xLUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gc1dm377NFWu2q2yqWuyzLBoNtijFgsAHTO0kgAdJI8iaEwJdKEtJJJaTwphFCGrwB0olDDcEUm2JMc8NNttfdlixbdXel1WrnfH/MnN2zo11ZrpLtc1/XXDNzZnbmbJv5zXOeIqSUGAwGg8FgMBgMRxOewe6AwWAwGAwGg8FwsDEi12AwGAwGg8Fw1GFErsFgMBgMBoPhqMOIXIPBYDAYDAbDUYcRuQaDwWAwGAyGow4jcg0Gg8FgMBgMRx1G5BoMhiGHEOLDQoiX92H/TUKI853lrwghfncQ+xIRQtQ6yw8IIb57EI99nxDi6wfreNpxhRDij0KIViHE6wf7+FnOl/pchBDnCCG2HYZzni2EWHuoz2MwGI5cfIPdAYPBcHgRQmwCqoAkEAH+A9wqpYwMZr8OFlLK7w9kPyHEi8BDUsp+BbGUsvBg9EsI8WHgY1LKs7Rj33wwjp2Fs4ALgFFSyughOsdhRQghgYlSyvUAUsqXgEmD2yuDwTCUMZZcg+HY5ApHvE0HTgLuGKyOCCGG5MP2UO3XABkLbNofgXuEv2+DwWBIYUSuwXAMI6VsBJ7BFrsACCFOF0K8KoRoE0IsE0Kc47SfK4RYoe03Xx8KF0K8LIS42ln+shBigxCiUwixSghxjbbfh4UQrwgh7hFCtADfEkIME0I8JoTocI45ob9+CyE+IITYLITYI4T4qmvbt4QQDznLASHEQ85+bUKIN4QQVUKI7wFnA7903BF+6ewvhRCfEkKsA9ZpbXXaKYYLIZ513tsCIcRYZ79xzr4+rS8vCiE+JoQ4DrgPOMM5X5uzPcP9QQjxP0KI9UKIFufzqNG2SSHEzUKIdY4bwq+EECLLZ/NR4Hfaue4c4LEz3neW4/5dCNEohGgXQiwUQkzp7zvKhRDiZ0KIrc53/ZYQ4mxtm9dxN1G/nbeEEKOFEAudXZY57+m9brcIIcRxzufdJoRYKYS4Utv2gPN5Pekcd7EQYoKzTTi/xV3Oe1suhDhhf96bwWAYWhiRazAcwwghRgGXAOud9ZHAk8B3gXLgC8A/hRAVwCKgTggx3BFyJwCjhBBFQogC4BTgJefQG7BFZAlwJ/CQEGKEduqZQBioBL4H/AroBkYAH3GmXH0+Hvg18AGgBhgGjMqx+4ecPox29rsZ6JJSftXp661SykIp5a3aa652+nd8jmPeCHwHGA4sBR7O1VeFlHK1c+5FzvlKs7yv84AfANdhfw6bgb+4drscmAFMc/a7KMu5fu861zcHeOyr6f99Pw1MxP7O3mYA7zsHb2A/VJUDjwB/F0IEnG2fA64HLgWKsX8HMSnlbGf7NOc9/VU/oBDCDzwO/Nfp323Aw0II3Z3heuzfYhn27/17TvuFwGygHigF3gvs2c/3ZjAYhhBG5BoMxybzhBCdwFZgF/BNp/39wFNSyqeklJaU8lngTeBSKWW3szwbOBVYDrwMzAJOB9ZJKfcASCn/LqXc4Rzjr9jWwdO08++QUv5CStkL9ADvBr4hpYxKKd8BHuyn7+8BnpBSLpRSxoGvA1aOfRPY4rZOSpmUUr4lpezYy2fzAylli5SyK8f2J7VzfxXbYjp6L8ccCDcCf5BSvu0c+w7n2OO0fe6SUrZJKbcAL6BZ4A/Csft931LKP0gpO53XfwuYJoQo2Yf3p47zkJRyj5SyV0r5EyCftG/tx4CvSSnXSptl6je1F04HCrE/nx4p5fPAE9jCVvGolPJ15zf3MOnPLgEUAZMBIaVcLaXcua/vy2AwDD2MyDUYjk2ullIWAedg39yHO+1jgWudId82Z1j9LGzrH8AC5zWzneUXgTnOtEAdXAjxQSHEUu0YJ2jnAFtcKyqwg2D1ts399L1G39fxO80lhP6E7Y7xFyHEDiHE3Y7Vrz+2DnS7E6zX4vTpQKlBe9/OsfcAI7V9GrXlGLawO1jHzvm+HTeCuxw3gg5gk7NpeK7X9HOszwshVjuuAW3YlnZ1nNHYowD7Sg2wVUqpP+xsZgCfnSOIf4k9mtAkhLhfCFG8H30wGAxDDCNyDYZjGCnlAuAB4MdO01bgT1LKUm0KSSnvcra7Re4CXCLX8VH9LXArMMwZmn8H0P1HpbbcDPRiCxzFmH66vVPfVwgRxLbWZnt/CSnlnVLK44EzsYf7P5ilDxkv6+fcuM5diD3svgNQQV5Bbd/qfTjuDuyHDHXsEPb72r6X1w2EgRy7v/7dAFwFnI8tSsepQ+1LJxz/2y9hu02UOb+Ndu04W9mLP3YOdgCjhRD6PW0MA/zspJQ/l1KeAkzBdlu4fT/6YDAYhhhG5BoMhv8FLhBCTAceAq4QQlzkWO8CToCP8nl9FXto+TTgdSnlSmzxNBNQwUEhbMHUDCCEuAnbkpsVKWUSeBQ7AC3o+Nx+qJ/+/gO4XAhxlhAiD/g2Oa5lwg6WO1EI4QU6sIemk87mJqC2n/Pk4lLt3N8BFkspt0opm7FF1fudz+4jZAq2Jmwf5rwcx30EuEkIMV0IkQ983zn2pv3o48E+dhEQx7b+Bp3X7w9F2A80zYBPCPENbN9bxe+A7wghJjoBYVOFEOoBpr/vazH2Q8YXhRB+YQdLXkFfv+M+CCFmCCFmOhb+KLZveHIvLzMYDEcARuQaDMc4jjj7P+DrUsqt2Ba7r2ALka3YVi2Ps28UO+hopZSyxznEImCzlHKXs88q4CdOexNwIvDKXrpxK/bwcSO2ZfmP/fR3JfApbOG2E2gFchUfqMYWxR3Aamxr80POtp8B7xF2poKf76V/Oo9g+zC3YAfb3aht+x/sz2sPtlXwVW3b88BKoFEIsTvL+3oO27/4n877mgC8bx/6lZODcOz/wx7+3w6sAl7bz648gx3A1uAcr5tMN4mfAn/DDiDrAH4PFDjbvgU86LjAXKcf1PktXokdRLkbuBf4oJRyzQD6VIw98tDq9GkP6ZENg8FwBCOk3NsImsFgMBgMBoPBcGRhLLkGg8FgMBgMhqMOI3INBoPBYDAYDEcdRuQaDAaDwWAwGI46jMg1GAwGg8FgMBx1GJFrMBgMBoPBYDjq8B2KgwohpFHPBoPBYDAMHKFNnhzL7jYf4HXm7skLeEWWHcDOVtyLnRG4F5Iytag3pxJL92Inv5bYNbRljnX3NsOBsz+/C0h/F/19P3rbkYoFSCmzFqY5JCLXAwQOxYENBoPBYDhK8WPfO9U8L0ub37U8DLvknpqXY9fJVuvFPm3DMGcj2NmAW5xpD0TjdmJsVzPN2nLCmbpd8x7sSiE9Wpvabjhw9ud3kaDv96V/P+7vSa+Sc6TR3+/MGFwNBoPBYDAYDEcdRuQaDAaDwTAE8A7iuY9UK96xwP78LgbztzSUMCLXYDAYDAaDwXDUYUSuwWAwGAxDAN2aag1we9JZTmrLyv8yAUjdOVM5Zfa42rKdzEH5eio/UK8z92hzrzZ3T4aDh/55ekh/5mqbPunfi5qy7ec+7tHGIQk8MxgMBoPBsO9YZIpWD7YO1VFiFiBGOthIFy664C1pgYJuZ+eYs1Mb0GlPXQm7WZ3HC+QDRdo5/dj6OE5aJ6tlffJry6of+lx/n+73ZMiN+m7zsL+bQJbJry0nSX8PedjflwpI68b+XSWcub4OR9d3ZUSuwWAwGAxDkMTed8GPrVV1q50SyErQdANFMSiNgbfD2bkbknGIavsksAWNEksWacttyNknpu0fJS24omQKbSW2lWD3k2l99pIWS5Zr3ZCJ/t0qq7ouboPOPKS19Wj7KgN+njNX30+25aPtuzIi12AwGAyGIYKy3qrhZTXsnHDtoyy+7mFrZb3VBW4UKMYWw0WRzBRT7rRf6pwB55hKNBWTFsQxZ1mJ2xj2MaOkBZlCpabSrc8e+oqlI008HS50l4JsqcOC2OJWzVWb/v3rAld3X1DiVj+X+q4g/fvSt+kcCd+VEbkGg8FgMAwBlNBTAlZHF7HK0pZ0bctmwY1hi9t2bPeDILbggb6uBOqcyrrnd9aV20InaVHrHibX/XPd/dZFrhLxev/192/oi+5fq+fD1QVusWtd/Qai9BW4usVdfyDp77vSORLErcKIXIPBYDAYhghKQOSKClfiw21Z031wdYGrhE8+aQGUR2agmDt4zC2ClHANknLjJeAcU4nbPDLFtuor2jGS2rLbz9j9/g2Z6K4Kuu+tLmyLnCmE/TtQLiTK0q4LXOj7QKIErbK+u7+3bO4zQ/37MiLXYDAYDIYhRjarpi5w9eA03YIbIC1wlRDdW5CSPgSuW3HdltpOra2TvhkV9H4qsYSrf0rg5tFXpINxWciGO2uC+7ssck3FpH1ylQtJNku7+zvTg9HUd5Ur48eR8h0ZkWswGAwGwxAgm8+jEh9u9wSv1q5bcJUodftvqjYlenXrX8g5tvLpVL64Rdp+IgihWHofPZ2YO6uDmnq0NiV49YAmfZ7NfcFgo1vYdXeFkGsqAkqdeYL0byCPtNjNleJNt9wmtHk2dLeaoY4RuQaDwWAwDCGy+UDqQ/9KhKhlXXCqoWm3CNXnQTLFkBItKvWUshaGgJAfKLF3zmuHYW3gt9LH090q3FZlJZL0gDZ3AJ0SSx6OHOE0GKjPJ5u7gnpYKSYtdPXfiPt7Uujfl8qeocRvf+4kKoPHkYARuQaDwWAwDBGyBWPpokJZ3xLacraCDP353AawxXC5dkwlfiEzsEmWQLLSS2+Fj94OHzum1rG9up6ytevxbdhAXjJJwLKIJ5MUOPMeKYmTFs2qH27LoLuQhSE7uguJbp1XftbKiqsEbilpt4P+XBR0a/pALOn6Q4nujjKUMSLXYDAYDIYhRjZ/VUgLi2yiccykSYw98UQ27NzJ9t278YRCyGAQGQpBMIgIhZChEP5gkFAoRCAYpHDECAqGD8cTiZDX1UWez0ee14vX74eAj96Qz1ZTeRAXQZqG1YIQICXDw2FELJZKRaYKqfUAvZZFIpnEsix8BQXkBYMkmpuJNzUhY7HUlOzqQsZiWLEYia4uks7yiGHDGF9Zybbly9m2dCkicSRIqkOH7rKQLU+uHnhWSjqbgu6WoKy5urjV09ElXfvr6AJXt8wP9YcTI3INBoPBYBiiSCGguBhZVgZlZUhn6i0rQ5aXI0tLoayMgtGjEccfzxYh8EsJ4TCRWCzrMX1AL5AMBgnU1hJxRKsnHCY/FksFrOXj7OiYgbuDhSAEUggEEC8sJOCcQ3c38AN4PEiPB4JBgrW1CCHIGzeOeDhMTyyWElZKXOnrgWCQwtpamoUgX0q84TBdzc2I1lZobUU4E21t9nJLS6qdjg7EofkqBg3dIu/2y1WTnivXmw/BeKbbiJrc6d6ypQ1zB5vleuA6EjAi12AwGAyGQUKCLV6rq5EjRqSmosmTCY4dS5uUxLq793YYgsOHgxAIIZBAqLCQWA6RK7HFS15hIUII2zILJAsLScRiGf6beXHw9SbxdfVSHmmmJ1CKB5BSUtrYCF1deDwehNeL9HiQXq8tzAEBCO0cAigoLMSKxeh1tvf5LJy+Z3svMhSCUaNyfwbBIKGCAuJbthBZswbPjh2wcyeeHTsQO3ZAczMieaTJtDRu9xR3MJqy8BKwP1t/PC1o9e9UdzfQC4f0uNp6yHwA0Qt76H7iQxkjcg0Gg8FgOIRIIWD48AwRm5qqq5GBQMb+wWCQmlrbLaBUSjaFwzkFqyIaiVA1fDiB3l78iQQ73nnHFnexGESjiGgUolGIxciPRimOxRhbVsa5119v583t7SXy619Tsn49FYkEw3t7qejtpbq3l+HYAWjJBGytrWV7fT0lDQ0UhMMZVbXi2MKoC+j2eIh5vUQmTEB8+tNYfj9xIVj3f//Hrt27iRYUEC0oIBIMEgsG6QoG6Q4G6QkGsUaOZOQ559CTn0/U7yfa0bHXzzgYDDLO+cwYMYJNFRV9PjORTMKuXYgdOzIE8Ci/n8nDhrFhzRo2h8MD/2IPA3rFMX3yZ5nyAa8y8QKBuO177XZXgMwMGLrQ1UWubglWgvdIw4hcg8FgMBgOEtLrRY4Zg6yvx6qro/DUU8mvryfS1bVXoapwWzJLPB66t26Flpb0UL0+bN/aSrK1lZ7KSsbW17O+oYHucDhV2cyNB1sQdQIr165lbH09PQ0N5IXDBIAI6YIRvc56acIRRuEwFeEwFraAUhY9r3NMVRii0LJIWBbda9bQ/qMf0eWco8I5R6fz+g7SBSbUFAW21NZSV19PY0MDyXCY/KKiPi4b+vKwadMI9PYSz8vLacmWXi84DxfWKacAtjgO1NayTUpq2tpo/ec/aX3tNcS6dYht2xBSMti4q5JlC0QL4FSyUw1JEH7wJzILQOguCe7yz+ohxSItfi2tTbfqHikIeQi+QK8QMrD33QwGg8FgOGKRQiBHj0bW1WHV1yPr6pDjxyP9dkHcDOtiPxZZEY0idu5MTdXA+y+5hJJ4nPyuLn7zk58cVAujn8ycqgNdVmQr3etGCTNVVrhNm7e52tqxxW47aZG7r4ytreWWz34WKy+P1vx8/vjEE+y0LGRNjT2NGIEcNqzP6yoqK6moqrIfKKSkuamJ5l27ABDxOCIcxrN+vS16169HbN9+WIWvH6hwTdX9rHvLnYUo0AJdMWixF9njzNtc62o5RqagVdZct9DV24eCdbcbSEqZ1RXbWHINBoPBYNgLEhg5cyYVs2ez0etld2kpcsIEZH5+ztfoFtmCeJyqlha2vPpqhqAVO3dCJJLhn7ob+Nerr1LnWGUPxRC6hS0O9GIO7sISSqCqohDu/LsqZyv0HUJX6+oc7lRWkGlJzJXLdaBsDoe59557Up9ZczjcR+DI/HzbPUSJ3poaeo87juB55xELBEBKopFI5v7HHYd13HGpNtHdjQiHGd7ezvhkkt3z57P97bcPoOcDI1shB7e7QspVIUCq5Jkqt6x//m5Lbg9pa64uXnUfXN2SeyRhLLkGg8FgMGRBVlRgnXgi1rRpBGfNYvTJJ+/VKgsgdu3C09BAZWcnHzj7bKoiEXzxOPfec8+Q8Pn0Ykfiq6h8lW9VpaPSl7PtE3BtD5IZ5R/Q9ncMilktiG5Lotqn81C98RyMra1l7Eknsaa3lx2BgG2Zr6vLavmFvhb6ba+8QmzhQsSSJXjeeQcxgEDBgaIsudWkLbZVzryGTEtucVDb2Ak0g9wNzdifbbMz7dGW1bZGMt1P9CwLVpb2oWLFBWPJNRgMBoNhr8jS0pSotaZORVZXp7YFKiuzRvyLPXtSw9keNaTdacu0VuDfzzxzSC2y+4sqJqFb75Q1T1VNC5Dp81nkmiBtAVZFJlS+1gKPvZDXbWdo0K2Iyt9T+YHGyLQKH242h8Op70YXRbK01Ba7zmTV1SHLy/v4TOdPnEhHSQlccQUimUSsXYtnyRI8S5fabg7Wgdk/3blu9Qp2egW0jCeQhD1XfrnZsivoVns1z1ZmWV8+0qy5RuQaDAaD4ZhEFhbaonbqVOTUqVijR+fcNxqJUFNezoi2Noa3trLw178mf8ECO/CrH3QBNVRQpVnVcLSfdA7VbGWB1VQKDMMWQ5a23V0prUCVAnZ2DjVCMp45TN7tvC6KbfXV3SaGCqKtDe+bb8Kbb6baZFkZBXPmcMonP0nTsGHsKC3NdHHwepHHH491/PFw442IaBTPihV4lixBLF1qu6jsZ3/clev01GF+tJUAaT8RP3gT6ddD5vegC11lf7a0/fR5tm1DHSNyDQaDwXBMIAE5fjzWaadReOGF+I8/nmg0mtvtoKcHsXIlnuXL6V2+nC4p8dbV8UZDA7vC4SO66IAKJgJb5MTJ9NvMVhY4RloYK8ttiLTgzXPWKcIWuBWkzIPFTXYKMt3fV/n8KpF2ID65hwvR2squefN4ffly6urriW/aRG8ggO+kk7CmT8caPz5jfxkKkTz9dJKnnw5AUVcXo5ubiT75JI3/+c+Ag9iyCVz1ufmxLbYpPxE93YIn+8ODss7qVnW3k0U2i+2RIm4VRuQaDAaD4ahF+nzIE08kOXMm1mmnIYcPz8hDW6H514reXsSaNXiWL8ezfDmioQHR25s61hZgy/r1g/dmDiK6z+VAC+bqJYV19wUllj04wU/KZ6GcjLHw4t1pYatK0So9pos23bVhqKJb6D2AZ+lSAGRJie3u4ohe3a83GAwy+oQTQAhCl15K3pIldD39NJ6FC+3fWo5z5XJVUBXQApApbkPYn7uz7o/0Fbq6NVfPlXu0YUSuwWAwGI4qZFER1qmnYs2ciXXyyX2KLSifSi8wvL0d35IlrHnoIcTq1YienuwHNQCZ0fgxbHeDGHbAWD4QSEBxC2kVlsCOdOq099X9PnU/3lIyrcTQt7KWO+BpqAVAAYj2drwLF+JduNAeORg1yha7J51E0QUXZPjyBkaOpPPKK+HKKxGNjXgXLsSzcCGeLVv6HFfPqKA8EkKky/lSTDrnWwn2hxKzd8hrh2Ai84GiP/cQd/EI717aIdN/V1/P1X64MCLXYDAYDEc8NWecQekll7CxspK2ESNSpWXdiGgU+fzzzK2vZ1xLi5314Ne/xjPE/GaHIm6fWj3NmD5C7o1BqFl7UQt0OdW3solcZXhUlkQ/uXOz6nMvfcXUUEIAYts2PNu2wRNPUPKXv3DFt77FxpEjWV9dnenLW11N73XXwXXX4dm8GY8jlGlqSpXl1a3deoyZUGZxPblxgowowVBLX8t5ttRuukuEvqy34Vp3Z1zI9WAyGN+VEbkGg8FgOCKRFRUkZ88mdOWVBM4+m24hGCElcVd6L7FzJ97XX8ezeDFi9WoiyST/dSpqDbWsB0MZt8iNkhZOumjyAMTsgDMs6Eqkizy4xazybujR2lRyAH0YXV9XeXXVcXQBNZTZsm4d877+derq64msX09vYSHe2bOxzjgDGQql9rPGjsX6wAfo/cAHSK5dS8fChVS9/DLe1tYMgZuPY8V1C9xS7A9HJTkOQrAl/Zo80mJZ5dFV6OJVfZ95rrnbZaK/BxG1PfXeDuwj3GdMnlyDwWAwHDHIoiKsWbNInnOOHcFOlqpVjY3sWbgQjxK227Yd0UFiQ4Vy0hkWyp1pGOlECmp7ubauRs2j2MFtUTLdHHLNu7FFbZy01Vi3IGdrO1KRfj/WySdjzZlj+43npQsye7A1bHFBAXU7d3LSn//MKU8/zThgHDDSA4wGxjpztbwb2ApsAjbby3ti9urWdFNqeRO2JnYHtKl1tyVZd3nQC0tkezhxF5442L6/Jk+uwWAwGI5YZH4+1mmnYZ1zju1j6830JIxGIlQPH87Y3bsZs3Mn//3mN+lcvnyQenv0onKr6j65biufvq+evUEXpXqgmrLkekj75+quEMpiHHDm+jmOFAvu3hCJBN7Fi/EuXowMBGxf8tmzsU4+GeH1khcMUlpby566OuafdRarFyzgygcfpO6ll6Agma7g4bbktmntQQjE0i4lyvrudkVQ69ncI/yuZbVN99NWqei6teP1kE5bp1vgDwfGkmswGAyGIYf0eJDTp5OcM8cezg30vasIy0IsWYJ3wQLGNTVRP3ascT84hCgNVeRa7q8t23B2tnW3/61u2e0kt9VX33a0IQsL8Z55JrU33YQ8/fRUhTVfUxNFu3YxqqWFaxY8zkUbn6GoMmJbcMcBtdglzDYDYVLW3OTmtGF3U+YmwqR9q90uEXnashLJ+rISuP1Z3d0POgfz4aQ/S64RuQaDwWAYMlijR1P6gQ/gnTuXdimz5rD1rF2LZ8ECvC+9hGhvH4ReHpsoo6BjGKSIdFC/7hZarK33V8UsV+GHJLbgUgK2E+jQ2lS7u+1oJACcXlvLWV/7GismTGDNyJF4N22iKBYjCIgCyPfHOX/LfK7a829GVDamRW5YmzbZ8+3xjFXC2CJ3HWmRm62Es7tND2JTrihKxCrf6/7aDpfINe4KBoPBYBhUpNeLdfrpJC+7jMBppzHcyWFbpuWw9WzbhufFF/EuXIhobBzsLh+z6P6VysdWtVtaexBbiOaTGaikBzSpoXHd51MJXyWg2tCC2cgsR5tHZsT/0cqucJjwd7/L1Pp6Zm3fzq7Jk3nn8svpGVYGXogX5PPkSZfxVPBSZiYWc7VvHsd3r0KUkn7ycD7QQDxtgdU/b4X6PtT3pAtcJWzdy3qlPHdBD1VwIo90INrhxIhcg8FgMAwKsqyM5EUXkbz4YmR5OZDOYSuEIBiPM2H5ctb+4heIjRtN8NggoxcP0FNPZUstplwJgvQd7vZoU8A1KeGVSkemnUeJ2x4yK9ceCZXSDgQvEA2H6QqHGQFMX7GCj//rX6y5ZDbzbryaTXXjwAfSJ3it5HReC53OxMJ1XC3nMWvnK3iDViqpbqC9b9lm/SFCLzKh++CqqYi0yFVz/YHFjfrOVMq3w40RuQaDwWA4bEhATplC8rLLbF9bdxBZRwenWRYnbN1K9a5d3PfLX+LZuHFwOmvIQBezepuKmFciNaotKyGkxBFkWnZ1y6Byh9Ctum4rrjpXnExLpJ4z92hEDwYLAEW9vcx9/XnOa32eZedPY97cq3lrwikpZbqucCI/mnI7v666jZnLVnJtzyOM3L6u34IQbqGrB52p70d9R1o8W6qkszvwUP1WcuXkPRwYkWswGAyGQ47Mz8c691ySl16KNW5cn+2itRXvM8+QfOYZ1peUQH0980wQ2ZBDWebceWrVNhVtr8SNyouqi1E1dK1nR9AFrRJXeqVafVIZGPRUVapfimyFB6ws249E9CpvApi+aRnTFy5jS9to/j39Kl4InktC+okng2wJncCqM2fw7xPfzdd//GXmbHyq32Nns+jqbibZJpXXOE9bdu+jcvOqbbk42N+LEbkGg8FgOGTUnHEGwfe9j40TJhC1+qaC96xciffJJ/EsWoRI2re4zXv2GHE7xNFTQrkFpr6PLo68ZLoYKPHjbrO0SaFEb4i0qFV4nW2q3V2By53VYShXScuF7ous8gen/EKc6Lwxu7Zy2/pf8gHPn3iq+1Ie4n/AK5AIWgqL+Nat32DuiKmc/fvfk2huTh3rYH0O7kIS6oFGff/5pF1NdFcXtGXdau/evj8YkWswGAyGg45VU0PxbbcReO97sYRgrBZEJrq77SCyJ5/Es3nzYHfVMECUSFQWV5UD1U1Sm9wiVx+61gWu3qbcEnQrr3JtiGMPk6NtyyNt3dVdGrIVItCF4pEictVn2UNa4PaALW71nGpOmonS1nZuaPwzZ298mx+M/imL6ybR6/EQiEZ49cwzWXDqqUz5+98Z9uijWIlEnweK/UH3y9WroqkHGd3Sa5FOLecn83vO9p0cyPdkRK7BYDAYDhqyooLe66/HmjsXUVWVCiKTwLDubnruvx/v888jsqQGMxwZKFGUzSKaxBYzynKaLbOC26rrboNMa616nRKzaO3KfUEVjlDBb7oYdBcpUP3U38NQRvVVF+jdQDIB3m7SOdbaMqfRrWv55urbWP3iySwYPZ03x06103jl5fHSjTfiOf98qn/7W3pff/2g9VUvKKFnaNA/b13kuq237jLA+mewPxiRazAYDIYDRpaV0fve92JdeCHSZ99aopEIFZWVjN21iykbNvDvr30Nn3FDOKJR1lm36FDruoVOiRa3FTfbut4GmQUD1DHynXVdPHWTvUqaPuVpy/p7OJyVtw4UPcBPBd51AyGXFZdObJHbbi9XNYWp2hzmnE3/4J3Cyfz45ptZW1uLBDqrqtj1ta/hefttkvffDzt27Fff9GppkGm9zeafm0+myM31wHEwHkCMyDUYDAbDfiOLi0m+5z0kL70UmZeXsa371VeJ/eAHCL+fxxoa2GIE7lFBNjGiKl8pH10lJA+GyFUCSv269CwDSvjpIlfpPn3d3dcjSeDqFtAkmWnaQm53hTbscnN61Qxn+/hta/j8Zz/Lvy66iMc/8AGiRUVIIHLyyXT98peIxx5D/uUv0N3N/qD75OppyNRnrgtZ9ZChXpN0Hcf9/RhLrsFgMBgOGzIUInnNNSSvvLJPyV3PqlX4/vQnPCtX0ohdfMlw5NOf0FACV2Ve8Ljm+ypylahT6NuzBZNZZObmVfrOnb+1RzufZy/vaSigZ65IaJMSujIGQrfktmmTS+hGgR4pOeE//yH/5Zd59v3vZ/UllyCFwPL5sN71LlrPOQfPAw9Q+OKL+9RPXdwq32plxU1iW2+T2A8m+mvUd6m+I/270rN37G+KOCNyDQaDwTBgZCBA8sorSV5zDTIUytjmWbcO30MPIZYsMYUbjnLcqbl0X0rdHUBZYHX/W72iljtfa7b0Uu5cudn6AOmytHohCb2PSmQNVmGC/UUP5HOL3G6gQIlZVee4jbTIddqS8fT+CcAbiTDlvvvwPvMMK26+mdhxxwFglZfT8rnP4b/+eiYvWoR34UIS+zAC47bk6v7Ebl9bFSQIfXPsqvmBBsQZkWswGAyGvTJm0iQKb7yRhmnTiItMCevZvBnvQw/hWbzYiNujnGyuCsrKpgsSd75Vd8owfTg7j0whnK04wUDaQqQLHeQqLxvXXnsk+eW6Ba7yy40BBVHSZux27PQTSux22tuU64by5VXZJQIbN1LzpS/RPWcOkZtuQpaXEwgGCV5wAe+cfz5nrlpF8tOfhn6Erl7BzuuadDcFPX0b7P2zd6ep2x+MyDUYDAZDv1Rdfjkld99NtKCAMVoqMM/27XgfeQTPSy8ZcXsM4Ra6/eU0VdZZPQBsb3lydauu7vaQ59rHPe8kUySrPrlLDmcTwUMZPZuF7oOstG1pHLy6NbedtMB10oxFSb9/dxENC8hbsICCxYvxvve9BD/+cYQQWB4PL59wAsPuuIPaW2+FeLzffrofaNRnr6cJy7V/tvd6MB5CjMg1GAwGQ1ZkXh69H/4wsY98hGhBQSoVWFlvL4mf/QzPCy8gshR4MBwbDCQaXllt3YUg9Dy5Hleb17UfZJaY9buWA4DwQyDRV7zqBSGi2nF0S/CRgC7WVQoxPQCtWFlydQuuM/UkMrNO6DmE9e9MdHdT8OCDjGpoIHDvvewuLUVKSXj8eHb9+Mec9YMfULRjR79WVfW56hk2+ttP4XZDUcdQ8/0Vu0bkGgwGg6EPVl0dvZ//PNbIkalUYIGeHk5Zu5YXP/95vOvWDXYX9xl3IJRaJkf7gYgg3QKpzu0+F6593MULsi2724Y6ei5ddwqsKJmfD6T9NFV6MOVfq9oSpMv9Ws6yhS1w9ch9JX6LyGwPOW2lQDlp0TfQSmmDlVtXt26rogpqCkH6jak3l0yv53VCMJHe3+0H7aZ50SLGve99lPy//0d40iSsWIyOsWN57qc/5bT//V8mvfYakCm6Ldey+q51dH9r93l1P1wljvWAtP3FiFyDwWAwpJAeD8lrryV5/fVIj32LicViNP3rX5zyyissWLr0iE0FpiyFuSL887K07w/u4XV9SD3bsLtqz5bjNVcbHBkiFzIzIOiWXV3sQ1+/U1XhTInaBJmFBXQRCmmxqj7bEOnPSBe9RdgCt5PMAhJ6ZTR93b3tcH/uur+rbtEOOZM3n0yBW+J0UmVdCEKoPVMY6xkm9AcM9Xk2rl1L6FOfomLuXBpvuYWk3088GOTVr3yF1n/8g1MfeoikZfX7IOBOGYa2nM2lRF92uzHsbyYMI3INBoPBANileHs/9zms+vpUm+juxnf//UTmz2fhIPbtQHELhAC2eMrTlpXVMF/bZyAoYaWfyy2cs63rYgMyMz7pwfL6pHK+qnypRwK6KFUCtDvL9h5s0abErFvg6pM7HRWkLYdebZuHdFW0YjKH+LtJB2Kpdf2hQqWY9WvrSfpaKA8H+m9K//0GIVPgqrmF/YNxtgXb7X3Vb165heTKQqEEffC55xi/cSPbv/IVeisrAVj1nvewu76es+6+m9KOjtTrFMksy26Lvce1j5rcgWteDsyaa0SuwWAwHONIwLrkEno/+tGMgg6e1avx//SniKamwevcQUQvIhDU5iFtPeRq17MHqBt0tja9XQkr3WqWbVlv8wJ7sN0pW0gXrdLb1H7Kuqj6MNRRAlZZ59zi3J3eS/9sgmQGSelWv2zlhXXLLaQFr9vtQw2rd5N+eNAfMjpIfzedzrHUMQ43uuDTH5gCQIGHtElXCdxSp6NF6W0iCIFYWhzrllw3uv+vF/CHw4z7zGfY+fnPEznlFDxA09SpPP2znzHzBz+gvKGhj6UW+j74uV109O9dTzOmXFsOhs+0EbkGg8FwDCPLykj8v/+HdcopqTbR24v34YfxPvooQspB7N3BQw3Lqpu8ErZKByhjmLL4qW39oeeH1W/o+nCyLtb0eQBbeKQagepm6IhDM/bU4vShkcwhZd1lYajjznnqzlGrBJWeNUD3NXVbb0PaMXWBrx9Tj/DPZWFU7d2k47TatOV87IcM/bWqf4cTXTC6BW4I0r+fIjItugnsN6N+1AG7OpoardBddnSXBd3qniEyIxFG3Xkne973PnZdfz1SCCLDhvHiXXcx6Xe/Y9xTT+GjryuK2y89m3uEnoGhx/W6A/WNNyLXYDAYjlGSs2bRe8styKK0nPNs2YLvJz/Bs3HjIPbs0OC25LpHePW5mnSLre5f6Lbm6nO3hbgYx28y5Nqgzz3ADihuhOIdUB6HHc6xlEhQLgp625GA8rHscbUlyayMpdKMxUkL26C2r9vP052XN1dgobef7Qnsh4k9pB942shMRaY+924OTHDtL+40arqlO+N3pPvk9jjLLentgZa+owdugavEpru0rvrsS/7yF/IbGtj2hS+QKCwk6fPxzs03s3vSJI6/914C8XjK5xzt2MoKrfuk61Zc9RCjfg8Hw1UBjMg1GAyGYw4ZDNL7iU+QPPfcVJuQEu+//433T39CJI6UFPkDR/fJdY/ulgDDXMslzvr+oAKcRCGZZmE1hVzr6hljG7DV7kDZVgg1pX1LlRCIYYuwtFPJ0Ec9ACS0dd1iqAf7qbRiyj/XHcjkxi0A87VjBVxz4SfTEdsPBQkoboaSRNromU/mg4UKRNOzQRxOlODTLbDKVznjt1RMprtCCxm/OW8+BOKZn0m2IDBc68qKnfqu3n6bUZ/+NDu+8hXiEyYggB3nnkvH+PGc8IMfUL5zZ+rYehCZcuNRIld9r+o9KZ9tr7b/gWJErsFgMBxDVF18Mb2f/SytXi+xmD3oLXbvxn/PPXhWrBjk3h1adEuYrjuHYUfbDwMqnOVyoCC4nydym4n7Mxmrucc5eYmzHoA8L4zekbYidmJbHEMMPPOD9HohGIRQCKnmoRAEg6n5sHHjGDZ6NM0tLbS0t4PPBz4f0ucDvz+1jrNeWFZGSXEx7a2tRFpbwbIgmUzPteXSkhIqSkpo37aNjq1b8cRiePWpqwtvLEZ+LMaIykpGjxzJnmXLaA+H+/jiDiR9l7IW6m4iIkim07W+3GN/3mWNEGjPDMSySFcV66RvkNbhxC0UA4DXj/1e1HCB/lvrJq3atfcfiGeWPXa/n2yld/WHlFS2kOZmhn3xi7TcfDOxCy5AAl3HH8/qP/+ZqXfdRdF//pPhn65EunoQ0UVugrQFV58ry7mHzIekfcGIXIPBYDhGGPahD1H4jW8gPR5KnMpl8SeewHf//YjYkeLluf8on1ylb3TDV4VrEsOdhf0hRNosXIqtmEu1qURbVtsgLXiV+wKQl4SaprQFtxnw5+VBWRmyrIxkWZm9XF6OLCuD0lJkWRmhMWMoqKoiEo+nHmayEQwGGVZbC0JQISVRp5pdf/uPcvYv0qrf5dq32tm3XEo6w2G61IOVtp8ACoJBArW1tAmBSCbZvWQJbNlCQVsbRa2tFLa2UtzaSllrK6WtrQxva2N4aSnJceNINjTgDYdTQ+3KkhtEs6a7Lee676rjPF2wHWp2231Kks7lG6WvC8PhRLfkKmtuHvQV7kWkf1tK5BaTHroI2EJe9+3VxbNCF7rKdcDtVwvgTSTI/8Uv8K9eTdcXvkB5bS1CCMI//zmTPv5x/C++mPE+dHchJVrVulrO5lZyIBiRazAYDEc5EkjecAM9n/wk0uNBCEF+IsG0p55iyf/+72B377CgR6ar1EtKE5Rj69lqYJgfqHJWqvbzZCHSpmElYsu1NrVeUAyMAkYCPpi6AEIxevL9NBZVs7N2BDtPH8HOnhEsqTuecG0tu4EWyyKCrWOyDeEHg0FGO+Jy+F6EaKiwEIRIVbMLFRb2K3L3ZX/3vsEc+wog39kXIbC8Xhg9ms78fLqwA8B8zuR15v5gEH9tLYHeXkojEWqeeopxK1YwbudO6nfsYOLOnRTLqC3y1Heg+6Wo70NP5+C3xWPVbtvAq7IsaBpx0Hyh9WA6ZQ3tI3CVqC3B/nGUau2ONdedJ9dtndYzVSiBq1tQ3e/fCwTnz+eM0aPZ+aUvEQsESPj9LP3615m2di2BnTtTr9MFujquOo+eXs8tcE3gmcFgMBiyIr1eem+9leTcuanKZcM7Orho8WIenDdvsLuXwh0dn609181uIMJDN+Apw547fVgAMs1c2U64t/HyAWIhWNI8k2Wts+mtLKS7NMBOzmNnxXD2hIbBZCACdEK8N0jTuFqkECAlvnAYBihEAYq9Xrp27UJEoxCN2vNYDKJRvIWFzJw7l4CUkEjw+N/+hn/LFkgkEL29oE+JBEU1Nbz3ox/F4/XSKyX/94c/0L59O3g84PXak8cDHg8FY8dy0Y03Iv1+4h4P/37qKbwdHbarREGBPQ8GIRikp7WVwqIievLy6PF6iUYiJOlr8RXOV+B33mN3Xh6NZWXsOv98Vk+dmiGkyiOd1LTsoKZ9B0G/RV6ej1N3vMyJ0cWIXE6+Qxh3EF3WSDr15rOZRL37LtKz+ejqKIG6e8ECLps9m8dmzaLb5yMiJW995zuce/vtFLW29glAg0yf4GzWW+OTazAYDIacyIICEnfcgTV9OmBXLmt87DHGPPccD65cyeYhULlsoFHw2dIRKQYiioOkDavK7VX3bVUR9MEYiHYy0ynsLQ+Vuz1IOrltKcgS2DlqBOuYyLrARNYVTGRl51S2dk+GfAEdkqr8MPm9Mdt8GMEeI3cqE8SKC22B64hWX0EBns2b8bS2IlpbwZmr5VBhITdcfz2hZBLR08Ov77mHthzfdRvw6rx51NXXs76hgd3hcL+Wsx0bN/LIzp2p/XeGwznFyK5ly3jqnXdS+7aEwzlFRxxor62lrr6eDRs3ktfSQlFZGXllZfjLyvCWleFRrhllZXi6u/EMH25bfaXEikTodY4lnWl3YRHthZNYXngSTeNqnc/vU4zfuZIpTcuY2LmOup3rmdCygepNjYgd0LMbmrDdQtpI59BVftGDqYv7ZJjQ6yTr5dn0KZG5XyLLcQ7Gc9uOcJiXv/MdJsydy6vvehe9iQTdlZW89u1vc9GXvwzR6N4PcggQ8hDkQPQKIQN7381gMBgMhwhZVkbim9/Eqq1NtXmffRbfvfcikgfJHHkQcJfR1aPs3YYpZaWDzNRHbstPNmtQgMxYrxLSI7uqTW0v9mgrbqGrj+dmaZPA7pHDWTd1IusmT2Rd/UTWj60jWhhKj7n7od1XSbuoQiIQSErymyjp3QVR8EQtKnfsYsT6nVSs3UkX0HreeRTG44SiUZbdfTdLwmE2kTsYZ6wjGNc3NAyJh5l9RbewK4u7e3lYbS35p55Ke2cnUcuip6aGnhEjiNbUEKmuhrw8fEB3ZSWRqiqkEAgpKWltoiSyK23m64bClghjVm+gYv16fLEYeR4P3jfeYEc4TCN2ruImZ958GD+HADARqHXmddp6Zblrg1qeiJ1/bgOwFggD64D10LUD1jurqllNLfvZR3fCEOvkk9n09a/j9XrxAtWrV3P5179OSU9Pap8EmQU4OnOst2vtuXIUdwNJKUW2bcaSazAYDEcZ1qhRJO68E1mRjpzyPfII3r/8hax3gkFGT3Cvl951l751pz1yi1pd+Lqtv3lkT1Gr/ANVkQUv9kqoBbxRUuYuaWVqWqVxe4Gm6mpWnHgiK6ZNY8mZZ7KnpoZgJEJ+T8y+yyaw79KaY2kgP0LSX8zwjk5KYxEubHmY49YvYcSanVSsbMa3KUlPk51RbDOw+b//pbW+ni0NDexwMg/0Z1XcHA4fkeJWR09fpQSOntorGQ4TCIcJYrtP60KrEJDDhtFVU8PuU07hnfe/n+aSEnYXFxNojWSW1OqB1rxCmqZNI3bGGcQcf+biaJTQ3/6GnD+f5PLl9DguFIOFnnbNcvqdstQqq62y4PaQTjistiUzLbkHy4rrpuTtt6n/3/9lw+c/D8Du447jxS99icu//30788ZhxIhcg8FgOIqwpkwh8bWv2emhAGFZ+H75S7zz5w9yz7LjjhxXNRP0hPf5rvX9cXHIJaLd7goqL2oMyI/3TV+VAJqHDWPV1KmscaYW52EiEQwSrbV9ZzsrKykLhymIxfACJdEOJm5ex8Rt65i4ax11u9eTKC1jx6h6aiINVEXCtvWtEdgBrTHbcrgD2A7sCYfZHg7ThK1dho4t/tCgCzrdbzNGZglYNUqvF5BQFeGCe/YQ2rOHSStWMGXhQnrr6xnW0IA/EqGpro4ddXWsr6tjTV0dXYWFti7UAuA6QiGaLr2UzlNPpVdKWL+e5JIlWEuXItassX2WD9NnkXQt90Bm5JYuZt3uCtqkdncX1TjYbhiVCxbgLS5mw//8DwDbZsxgwW23ceVhDnQ1ItdgMBiOEpKzZtH7+c/b+U0B0d2N/6678Lz99iD3LDfKPUGJWd3SmmuoWq+a5M2yro450OpXkKkX4tq2BLBt6lSWX3ABO0IhNtXUsLumJuX3qcSBBHoLbd/ZvGSSyrY26pYuZdqjjzJx3Tpqmpsp1N5jngcItlIVCDv1WYFmiMbSZX3dUzvpYdujr1xHJkrMqcpbXle7Enoqr6qu65Q7s3o4CoFt8Q2HU3mGy3btYtSrr3IKtu/tpqoqwnV1bD7jDPZcdx1N5eUkPB7ijvW2Vwh6J04kMXEivdddh4jHEe+8Q/XOnUzq6mL7K6+w5RBbzvURBAsyVb7bJzdOpoXXsfi6fXIPpY/xmMcfx1NSwsbrrgNg3XnnsbCjg8v+8IdDeNZMBiRyhRClwO+AE7D/yx+RUi46hP0yGAwGwz7Qe9VV9H70o6l10daG/1vfwjOEh6x1oamX21XDznp2JNWmXAyUddY7wDlkWq6SWdZ7nGUJ7Bw9mlUzZ7L8oosIz53bJ7OBErkS8HZ3M2LFCmp27WLsmWcyPBpFJJP47r2XAsf62k6mC0bAgkDEnvy77X7uIR2v1ua8xt2mfBX1ErlHK0rDKXSBq6ed6iZtlY9if76daJ81rs9eW8bZN9rURF5TE9WvvEL1o48ydfJkGiyLdcOHk5g+nfjEiVgi7ewj8/MpOPtsSmtraRKC4Z2ddPzud7T8/e94nLRZB/uzUJP6DGQChHJZcAecKaGr3Bmc/fTXHyp3BZ3JDz2EKClhy0UXAfD21VczrK2NUx999BCf2WagltyfAf+RUr5HCKFcmwwGg8EwyEghKPnyl5FXXUU0EiEWi+HZvh3/N76BaD6cITL7hx50plepypbyS016jk89IE1f1o/rx76563pAN3xZQNzrpeH441l52mmsnjmT3dXVdn7hysqMzAaJwkJoa2P4qlVUrljB8GXLKNywAZJJeoCOZ59F1tcTb2ggGQ5nlGLVc4Fmc5lQATeqwlYHmYE4eqS/ssgdrejD6Uro6gJXfb/d2nIe9meX7bPOth4g7YutPtcY0B0O0x0OEwMKgOEPPUQwFKJj6lRi06eTnD4dOWJERqq2tqIiOxf1+efjWb8ez8KFeF96CbFnzwF/Fm5XBd1DIc+VPSFD5LotuVb6QU634h7K35EATr33XkRREdvPPBOAFz78YfI6OphwGFyo9ipyhRDFwGzgwwBSSvVMYDAYDIZBRAJF3/kOw2+4wa5YVVnJjmefpev22xGRyGB3b0C4LbkhbXJnPVDL/QmXPMDr0Ro0U24oBtLJ0hUFdgeDLDvlFN6eOZMVp5xCNBTqY+WSkQj+ykqqWlsZ1dyM7557CMyfj9XbSwJSxQpSI8bhMDjVt9xuE24Ls+5mAWnjmy66UsKLvq6WRzvuRBbKdWFvvte6y8revgPIzLSlRvn7PAxFo4hFi/AvsgexZWUleZdcwviPf5xtVVUkPB6izn/OqqvDqquj9yMfwbNyJd6FC/G88gqio+OAPwtl3U5ZYbP54sa1uSaAZSLz9fpxDyVCSs7+yU9YUFTErhNPBOCZ227jos5OKhcv7ve1B5ordyCW3Fpsd6A/CiGmAW8Bn5ZSDk7SM4PBYDDYPqA334w4//yUNWl8YyNjH3+cF44QgQuZVjhlyVUW21L6VsUtJ20B7SNo88g0j+oqOAm0QSwZZNGUM3js0qtZcvLJ0NWFiMVSwTi9zq6yq4uKt95i+OuvM2rPHkpGjqTVySPbSt8UpbrRTL0vyJ7gPts62nF0q7O+rFvwjnaRq4s6D+lyvbp/LuQoN5tjXe2vb1PnUEK6h8wh/YRrXVk/xa5d7HnwQda/9BLjp0xhZUEB8YkTEaeckvKJBzsQ1JoyBfGJT1C2aRMTd+ygdd48tjQ07Ndn4rbkFriDztyiV/vBqN/X4XBVcPv6+hIJLv7ud/nPD35AixOc+Z8vfpELvvENCleuHPBx9pWBiFwfcDJwm5RysRDiZ8CXga/rOwkhPg58HBiSKWoMBoPhaCL5gQ+QvPTSVBWz47Zu5axly/j1qlWD3bV9xk86SEj3yS0lszpuOVDmoW9+MV315tNH7PaE/Lw59lQWjJ/DG7UziOSX0DSqNpU3NRQOI2MxCpubqV68mPLFi/G98w5tySTdwBYgsWJFhnbI5fpwtLsRHE7c1sahKOz1VG1+QAaDWGeeSXL2bOS0abarC1BQWEj1lVfSKQRFN91E2a9+RcsDDwx4xEXP8KFn+uiTRiybu4KznO0YulvIwSSbBTavq4urv/lN/nX33bSMGEHS7+eZr3+dc++4A//GjYegFwMoBiGEqAZek1KOc9bPBr4spbws12tMMQiDwWA4dPS++90kP/Sh1HrFO+9w2sKFbGxoyIjwzlb9q7+KYf1Vuhoo7mNku9mpffxkWmxLsYsz6OtFWdqUkVboFluX74KVJ3jn+BN4ceY5vDr9TKL5oZQgaC+rpK2qCoSgsq2NE596irr778e7aRPtpIO82uibhcnt5qi7RB4rbgSGgSFLSrDOOovk7NkMmzOHiqoqhBBIKWluamL3tm145s/H+9hjeHbsyHqMADDamcY683HAKGc+0q+t6Du2YCdZ3oSdh24rdO22m7Zhp6VTy1udqY2+wZjuZd2ardr68593T8VAb2Ulv7v7btrKy+kNBgkA595xB/E33kj5nmfzR9+fYhADqngmhHgJ+JiUcq0Q4ltASEp5e679jcg1GAyGQ4O8+GJ6brklNWLmf+MNAt//PiKZzCpk3ZXBcqXSgsxh3f3BLZb7E9Lq3O7MCfq6mru3ud1t1bxpQi2vnzuHDVWVLJ1yHC1l5faJBClfhKQFw3bvpqiqirqmJoqiUQrvuYeOcJhO0uK2DfvGmk3M7m3dYHAzcsYMzvr2t1k1fjzRvDw2hcPEYjHA9ln1vPEG3n/9C7FyZcZouJ+0dnVPSvTmVbk2jMJ2FN+OLXCdqaclnXdZz8Gsdukk011DjUq43Tj09iSZIraUTEFbQnbxu2PsWO775S+JTpkCQlCzezenvPe97Nb+h7rAbePQVjy7DXjYyawQBm4a4OsMBoPBcJCQs2fT88lPIrB1m3fFCkJ33YXXqSKUyy9RzyGbLejJXUUsm9BNZml3t2XzM80msvX+5Sr+4Nf2VVZStezuf08gwPwbbuBvn/40u4uLEVIyPBwmX4kIoLKxkVNffJETFi6kcNs2dtXW0lJfT6KhgVbnxqpPMWfS/R/1ZbfvpsHQH9vfeIPXPvUpaidPZmdpKd2nnQZOyW0pBMnTTiN52ml4NmzAO28enpdfzii/rfviquh/FaCYp9fDbcNWkW2kIxa1Jy89VV8RtiuQ+m0H6f8hTnlAKHR/Wf0B2UtmlhO9AIs699jNm7nm8cd5ZMoULCHYMXw4Y979bnw/+lEfv/UDYUCW3H3FWHINBoPh4JKcMYPkV78KHg8C8K1bR9FXv4qvuztneVt3Gi19PVeqrbwD6GO2ymOQ23qsB5156ONx0Ke/bkHeNGoUr156KW/MnUvH2LF0OS4ISEmwqYnKdeuYsXAhMxYsYFRDA12k03DFsIdEY1pbZ5Z13XKlB4Llsm4ZS65hIEhAnngiyauvJjljRsa2YDBIqWUhHnmE9gcfZJSU1AA12IZatTxSzT1ZGjuxkyw3Y7suNEOy3V7Vm9VyM+mRCz2DR7Zld1xbtiwoJfTNiqJbepNAU20t//ztb1laWwtS4lm6lDPf/36isVjGqIoqgpIr28HBsOQaDAaDYZCwTjiB3i9/GeEIXO+WLRR+85spgetOmaQLyP5ys2ZLRqAbKFRke5/+5GjPZjnOJWzdIlg/hrtNiUuApMfDupkzef2yy9g4dWq6T5EIorISXzLJhJ07OeNHP+K4J57Aa9mv3EY6dZgycEVdbVHsrEv6Pu5An/6Cdw5l9SjD0YUAxIoVeFaswFtTQ/Kqq7DmzqWgtJRxtbX2w9o3vkFszhziP/whyTVrUr9BPUtYNxC1IKRbcoOkhyJUQQgHPVWf/nv2Om3ulHVR5zVxre+W9ho1sqL/b3M9ZOtxoj1ASTjMhbfdxvqf/YwOIYj7fDTccANjfve71OvdmTD2+XM2llyDwWAYulgTJ5L43vcgELAFbmMjxV/6Ev7W1r26Iug3l1wVn9zrftf51c1LuSboc307Wc6/NxcJyB7gksyy3F5ayrKLLmLJxRfTOWxY6pzqDla2fTsnvvUWk5qbKVixAk84nOFG4LZE5co/qwSEylPbX59ytRkM+4MsKuK4O+7A96530RUIpALUIrt2UfXCC0x/4AHGtLZSDVRjG2yrgSqg0uNqiGMPVSgzaAfICFn9XVWb+4HPPe/M0t5N36BRPeWf3q6vJ0hbaRedfTbzbr+dBNArJTM+/WmsTZv6VP8zllyDwWA4irDGjCHxrW8hHYErWloo/NrX+ghc93C/LnJ1P7gAfX1flVVHb9sf3EFgueau+gxZsxPoPrg7x47lhZtvZs3s2VhdXUinpC6AlJIxr73G8U8+SdXy5VikS+BCXxHaXypRvSCA3ga5hWy2/KkGw/4iOjvp+t3v+HhJCSsmTuSt2lpiToqx1nPPZfEZZxD7858peuwxupNJoqTFZpcFBW2k/8g9zgaVGNf5gXpJV3pT6+o6obv2uv3iIdMvOI9M6646lnvSR5L0a4/qRxw48aWXePvCC9k4bRoIwZpPfpLJX/pS6pgHgrHkGgwGwxCkZuZMur/7XdqEsEv1dnYS+tKXCGzbltUVwW29VduUuA1py9naQtq2/SGbiO2vf8JRuT2JTKuqumlvHjWKp264gWUXXkhCDd9KSW84jH/nTiY88wwTnn6a/D17MipA5XItcAePZSu2kC24DDJTJrnTJ2VrMxgOhLG1tdTV17Nmzx62nHce3lmzyCedAnrY9u2cd//9zFiyhApsw22FMwm1op7qdL+Gbuixso9cqP+ebtl1W32ztXWSab1Vea1LSOe3dm8vJW3JVZbaDTU1/P6XvyTu85EAan/+c/Lnz09tb2H/LLlG5BoMBsMQY9SJJzLsz3+mMxQCKdm8ahXWZz5D/vr1/Zazdfu/6UJ2X+b7Qy6R3acimdsvwrlTJmP26Or66mr+fv31LDrnHBJCEK+sJOkElFW3tDD+kUcI3XMPyWQyQ5TmErKWa3kg7ga6QFYksyzn2m4wHCz8QOHUqSQ+8QkYPToldPOAyevWceGbbzJ58WJGh8NUAMX52CIX+qZJsOzSvu4MIWo5RmawV5trfU+WbZ2khasStXoBl9Ic6wnneLqIffoDH+D1a6+1XYg7Oph08820RyK0sP8i17grGAwGwxBCAtx+O52hEEIIvJbFyY8/ztvr1/cJxsilHd1Dg0rAunPSFmvLevv+kCFoVUeydUytqzQOzp2zxTecP1/0Pv5z/vnEnQA7AYhIhPFSMmPDBoa3trL+0UdpSSaz5qiN038uW0V/IlUXq7lcEIygNRwuLCB/+XKq/9//Q152GbtvuIFkMIgMBll/zTVsvPpqZq1axfWf/jSBcBh/3HFb0A+g/WCFH/KS4Lfs/7q+WQWZqdEYyHRR0H3Z9X0gdw5uP9kfvr3asrpMzPzb31h1zjm0VVSQKC5m+wc/SMm99x5Q8JkRuQaDwXAQyeVD1l/lL53EddfRWFPDGCmRwLlvv82CZ5+liL5aMVt2BHdl2yBpEZvNJ9d9E1LaU/VXuJPekmM9V76yXP4KzjFahpXxt8uv45mZF9Fr+UhiC30LmPDWW5z88MPkWxZd9fVsamigMRzOELO6n61b6OrbjDA1HKkkASuZZNhjjzFmwQJ2ffjDtFx/PQhB0uNh4Qkn0HnHHXz61lvxxuN4I5lZCYS7OowHhPP/83qcv6IX8rrBG8+8LqkRjWwiV8+SomdQcY8suUd41CBOnuu1+fE4p99/P8989asANF90EXn//S+sX7/fn51xVzAYDIYDIJfeU23ZlnO1xadNY9e3v40QgvxgkMlLl1J0773sCof3qhf1G4puUM02ZQtC09vcx8rpdpBLGef6kDQ6g4X87j238MTsK/DG4vgiMXqxb6Zjly/n9IceonjNmj7Dpe30X1o317oRuYYjES/p7ATDtOW8uXPZ8JOfsLukBKTEHw4zau1abvve96jfsWNgrkPuC0kCaIZoLDOfrntqcS3rLgol2N4Sqr/ubaotoR1HuS3scaYnvvENtpx6KgnAs349JZ//PC1S0pnjMzI+uQaDwXCIyJYyK9uwnW7lyLatd/hw1v/sZySLihBA6YoVTPn61/FZVsZxc6Xm8rqO3V8w2kB8ebOJXxHMsSHgnGyAVRPennISd336a6w98SSkEAgpKQmHqX3rLc5+6CEqV6xICVs9C1Ib6dKj2QStO4hM32YwHIl4ySyiUEK6XG7FpEmsue021k2ejC8WwweEurr44P/+L6ctWtSnmmAQEHpKlXxtYwj7z9IMNKWFbjPQSPZlNQ0j7Wvr9sMtJXvwWS6R2wJsqa7myV/9irjfTxwo/PWv6Xn66f0SucZdwWAwGPaTbLlfB5I6yz0XPh8rv/xl/EVFtptBSwtn3303hY7A1YWtfl5vP+3ubfqy7pOayPI63X9XHTdluPCTrsVbpO0MfUO1Ie1D0A1xK48H3vdhHrv0ctorK5FCgBBUtLdz8bx5HPfLXxIjXX1Jn6JkVltS4tWtqfVMCwbD0YIq5av+Xn6gZe1aJtx6K4XnncfSW27BysvDKijgN3fcwZp//Yt3P/gglmWRxP5/K1/Y1AVJ/YfVXLswhJrtYFB1XuWuENOmTvq6PuWRaSjWr1OQOdiT6z9a2NjI+L//nTU33ABA+wc/SP4rr0BHxz5/bkbkGgwGwwGQyw9tX9bXfvSj9NTXkw94k0kuuOsuatrbM/ZX54LsFcJybdextLlFOg+sm1JtX2XdtdCGO9VNUTcrWaRzEEGmebUb1lXX8aNbP8eWUaPoBYhECJaWMnvVKuq2byf01FM0sfcE9ErkurMquDMmmMIMhqMFt1+sWyiWP/88Z23cyBt33EF3dTVJ4PlrrmHLxIl8/O67Gd3WlkqdWwDpp1b1gFrqTK40I8UJSDjZGPRKgFFnCmH/P93xAe7RJv0BeqCM++c/2XTuucRHjMAKhei66Sb42c/24Qg2RuQaDAbDAaBnPNCH/N1zd6IBNW+aM4edl12WCsKY9cc/Mm3NmoybxkDdv7KJOl0AurwGsrbr25QVOUS60lnGDbIY2wFPjT8qNZ50XhiDpPTwj8vfw8PXXE+315vyu6174QXOfvxxRE0NiYYGdofDGWV13blz9XW3qNWtt7q4NUUaDEc6+n/UT1+Rq9xyAhs3MvOzn2X55z5H84wZWMD6E07ge7//Pdc98wxnzJ9PKBzOrP5QTNp/oILMp2DnwKVN6f9eEX0tuPqU7QHenRFGpz/R600kGPeb37DsW98CoGfuXDz//S+e1asH9sE5GJFrMBgMB4gez5Ht4q9nO9Dd4LrGjGHFrbeS7xzj+Jdf5pLHHkvto++rcIs41UaWdnUDdAtDvV3PSKD2s0gPbwbQRjL1G6Sy5JZjZ6NPOC9SSehjsHN4NT+55fOsHT2JhIReQHZ3M/f++6mZP59WoHv58gw3hG7X5G6Lk73Mrv7ZGCuu4WhC/98q1GiF+t8GgPxolPrvfIfgtdey6f3vh1CI3bW13HfSSay/+GJu+cIXqG0Mp12OgqQjxCq0k2kO7d5uKG0no7pakTO10/ca506w4ha3+2LNLXv7bYoXLWLPGWdQEAxSdtddBD7/ebbsQ7YFI3INBoNhP9F9zvQLfLbYLH05BHgKCnj+jjvw5OfjAyq3b+dDP/85JWTGhKjAERhYIQO3hTPq9C9KZqYBdXPUraRqH/UelFeCsvSCa2MpaSuQppxlDP478UJ+d+7H6JYBrB5b4I5cvZrzfvpTepqa2I4daLIveW51sa4+D3c1MmPFNRxtqP+yu62H7IGjxX//O9MaGlh/zz30CoElBPOnT2fSFVdQ+9ufpUdj1B+8HKh2Dux+Cu6GUAxKE7YFV6UkdF/T9NSFykVBd1XQYwL097C39139298SO/tsqpyqh7N++lMWfuYzbA6HB/LRGZFrMBgMB4I7k4Fb1IbIrCgWwPaLe+7TnyY2ciR5QEF3N5/63vcY293dZ1+h7ipZ/AxkIrcbgrpHebEzFPSQtqgof1xlmVHBXR3YQlM31sa0Y6bUfD5pX75h2DdI54bYHc/nznO+xytjziLQGSG/PYZIJrnskUc4/h//YIuU7AC2A01Z+uyeZ3tfkL5B5rJim1K7hqMF98iEEre5sq34gZplyzjn9ttZ8oc/sKe4GAn84+KLOeOV+ZwQXZm+SJWSflBVGVLUsIky33ZC0W77L1+MbcHVszaoB3I96Ey5X+mTQnjsN7U3q64X8O/ezfFvv82e445DCMGaceOYUF9vRK7BYDAcDtyVfXQ3BT0Bgb687BOfYP3VV+OPRMiPxfjYL37B9G3bUoHOXiUidYWsO+c5lhaRAG8PFOimzyQkrXSZTkhbSfXsCupeplJzqakT+6ZVTDroS7eepgLPgqSTYlbbO7Z1l/ClaT/ltbJzAUF7qJKTNr/CLV/9JiIcJkw6DdFmZ57N+pptPZeYVbittkbcGo4W9N+8Wo7TN3OBO6tK6K23mPOhD/Hi979PPC8PmUjw3S99jR/87g7G529KuxwNw3Y58tJX5DqpFAo6oTiedlXQLbrZij3okz7itS/uCikefhjfe99Lr8/HnsJCtsXjA36pEbkGg8Gwn+ipu/QLvcqwpW4E6sYQApovuID5X/wilsdDb2UlF/3ud1z60ksUA161s15zV60rgZurpJeWW8vbbQtfbzwz9Y8eF5YgbcVtI52nst055TBnmzoskFllwhW0sr2whm9W3ElDYgpIgUQwbfMmbvnrX6kOh1nvnKcZ2AFsdebZMALVYMhEDwrtD3VNysP5ay5dyuU33cT8u+/GKisjGgrxzVvv5O7Hvkh1qCntrlDhvEj3XVIitwMohZIm+z+sV1DU4wb04LNcVlz3exoIzatX0/HXv5I4/3yikQjxiRPxv/DCgF67v+WADQaD4YjBfcHVLa9uC2yItNW1lMwk58poWQ3UONNIbCNIhTOpBOhK1Oo+a8Ln4/FPfxrL4wEhqGpv55ylS1NDjn0cfJUJRA9V1kOX9buKfsdxTpznzxTZatLfl+p3lfa+KpztylLjjC5mKuM9pBTr6qbJ3O79EU1WFYGeCEJKzn1nBee88w7Vy1elijqo7AnufLbuyWAw7B/6f0jNy5uauOmb3yQYjYKA1pIyvvG+b9NaVJp54dOHnJRvgnbBKMhPF3lQ141q7LYS7eXq0gXph+w49jWgDdhj2ZeONqfNnTVF9Vu5DucD8q9/pXXXLnpiMbxz5lDo86W62Z+QNZZcg8FwVKJbDzxZ2tw5Zd0VxNwVzPT1XO4J7mAM3brhAV679lraAwGElPh7e7nkzTepWrNm396Uyu3lxVae/n72T0Io0TcIS3exUDeREPY9rQNbuCuhGyJdtTcVydaWfqOLqk/nx6Ev0NOdBzEo7mjlc49+lqpNcWpebyAeDqfcINw3M4PBcOjQXRdGbdrE7d/5Dj/94bfpEXnsLB/Bt+Z+i+9v+wqhQMy+GPjyINiT+WRcSkZVlmE70v9j9V/Wn7V1f1wlWLtJZxVUPv/dZC/2oizV7kxnyRUr6GxuJllRAUVFBGbMoGDRIsC+HOXCiFyDwXDU4vZVU23ZlnUDqTvX40DXA/20d4waxWvXXosnFqMgHOaiBQs46+GHKR9gAEUKJW6Vs2qea7vL+c1r2dHRlvZydwYIdS9rw76BKStNqbM9ZSlRQ5kt9oGenH4pvznuE8iYgF4oaWnnG/d9m/pF62Ar7Iqny3aq0rwZ7g8Gg+GQogvdSatW8cVf3c33v/oVLI+HcFkt3y39GneKb5LnE0AhhFrST7xZhK63GypaMh9Ws11fdUuuErq6z7B6XtaLv7iPqa5T6oE4+txz7Hnf+wBInn8+pY7I7U/IGpFrMBiOOtwpa/R1d9lbtV23urqXs7WpYfxsFt5s689+6lNYPh8eYNySJVz+3e9SIuW+vTGVh1Z3Y1Ch1uqNJMi86yQhLwml8ez5fJX7r+N2R5R00oQS7T2DHdDm7QDphwev/BD/nPVu6AJ6YcTundz5y28yYnkj7IA9jsBtgQx3BWPJNRgOP+rhe+Y7r3PbY7/gZx/4NHjgrYLT+Gzst3yt6WeMqNoDgZbMYIJS0v65zh841A0Vsb7uBdmCQ7MFjerxs91kWoX164IXe5RJLY96/nnaHZHbc8opBEtL8be19RvMZkSuwWA4qlFi1p2c3L3szmPrzlOrD+vrglc/D2RPfL7kwgvZPmWKvT2Z5F2//CWefRW47oOqO4cudJUATmj7qZd5oTSWtjLr7ncxbEGrrClK+Kp91KF7AF+Pj+/e9m1eOOc8AvEI+V0xJq1fy9d//R1KNnRAI+xyfO6aSFtydXeFjLy7BoPhkOCOQ/A4jee/8xwdbxRz33mfoileS5N3At9dUcE3+F+qqhoh1NPXid/JsqAU6bAEJJ0hmWy5rfXUf3p+bnf+az1VoGqDvnl2/UCwsZGmlStpnzIFPB7i55xDxbx5RuQaDIZjD/3Crgtcf5Z2PSvWvsxTAVnkTnPVWVrKwptuQjhtZ/zrX4zYvHn/3hDaSXQ1rQtc9UZ1i6/TLvy2FSYYT1tPdP86NeklhdUEEPF6ueuuu5l/9dUgBO2ykkue+Bd33vVV8tt6iMbS8WjKituMbclV7goZeXcNg4IECAYhGESGQql5VV0dNePHs72piabmZvD57MnvTy1Ln4/y6moqKivZ3dhIS1MTWBYkk33mFcOHM3L4cBo3bKBp/XpELAZdXRCL2cuxGPT0pP4bhoOHR5tnZDlwlOO71vyLZRPPZt6YCUgEr9VOYlXTCVRVLYOiXfafVaUY0y8USolaUOnkAHRfSzzOXNWVyHat6S8toEX6cqcs0Gp77fz5vOMYDNrmzmWKEbkGg+FYI9sF3t/PXA3f67lsi7VlPQWYvqxErrJcZCtmMO9jHyMeCiGAsp07mfPnPx+cNwdpta7q8GouChnOcipjgzMmKLqhoAcK4nYlIzVU6A780E9pCcGvP/tZXjvzTKQQIAQnbtnCZf95jtiOHnZji9o20j64+tztrmAsuQcPCVBcjCwrg/JyZFmZvezMi8ePp2jkSFp7eogkk1BQYH+HGsFgkOLaWiJCUCIlreEwsVisz7mCwSAVTvWp4VIS6We/stpaYkJQLCUtufYrKKDY5yO2fTuRzZsRra2I1lZoa0svt7YypqSE+hEj2NDQMOBCAMc6+nVQPdSnrgV58PHNv2bhsPNpCRXR6/Py3PhTOZd/Q8FuKLLSzrJxMgWuVqWlshmiVrqyonq+7nbOrefjVtnI1IOu26UMV5s/y/bQK6+w/uabSebnEx87FiZMwLthQ87PwIhcg8FwVJLNNUHP4egOEHPntC2l74idexmypqlNLS87+WTemT07FSt22b334k8cYNiVfjfQo8n0cmbqjqZcGfykw6B7SNfqdQpKFCSgIAnFzpvRK6mp9/THm2/m1dmz8UUiiMpKTg6HOXPVKqw1a1hPumJaJ2kf3HatvR2TXWF/kWAL1poaZHU1csQIZHU1RZMnExw7ljYpiXV3Z31tMBhkhCNKC6VkUw6xGSosBCEQQiCd9UO9XzAYZJzTt/KxY9lUXZ1TMOfV1rJVSoZFozTPn0/HypWIHTvsaedOaG5G7K8L0FGM/pwrdKd8P4zMX8c3E1/kG6XfIhDwsix/Iks5jem0QbDFvk64h3nUn1e79oTawO98bSoWVolddT2MkVl0RiWGcRsbsgUC67ENdHdT98orbDjvPAB2zZ1rRK7BYDh2cQtd94XTbcXV88iWaMv6ulALQF435EUhFLd91Lpxsmzl5/PoLbekLvYnvfACE5ct61Oikyzr/b4ZZaFVKLGrW3H9rmXdvKw6oC+7tokYeKNQ0A15cXjkgx/kuUsuwQJELMZ5f/gDZ7/5Jt6GBvaEw2whM0q6k8zI6U5tWRmEDH2RABUVWBMnUn7mmRSfcAK7PB46gkFkXmYajWAwSI0jEEv3Q7yK7m7bbSAahWiUZDjMhFNPxS8lIplk93//i2/nTujtTU+JBP7hwznryivxejz0SsmTjz2Gr7kZPB7b8duZe6urmXbppST9fuIeD02vv46nu9t2jXBcJQrLyvZJMFseD21FRXjPPJPeurqMfURvL0VdXVT19tK5ZAl7XnkFz/r1tiX4GEb3WMqWIPycgv9wVcl0XuQaII/7uJ5f8Db+wjbo1nwRekgPWalJMxHnNUNRLJ1KW/euUhbcNtJFZyzScQ552rJyk9JdytwxENOfe44tjsjdPmcOvvvvz/n+jcg1GAxHFboF111bQVkD3CnAVJYBvQhEuTZXmQYKgq4NkKHqvDEIRSEQh7/fcAPtlZV2UFtnJ1f9/vd99Oh+v0F92S169Wg4d9iz3pYrJNoiXd+3Df517rt57D3vSW2a/sILXHLPPRnuCMpaq0Y1s03u3JrGkguytBRr4kTkxIn2vK4OWVJCMBhkmCNgR0pJIouAdYvXYq+X7q1bwRniFy0t0NpKfjDIZZdfTiiZxBuP8+DPfmZbQa1Mh5EY0FBbS119PesbGugIh7MKhBZgwfPPp/ZrybFfG/D2vHmp/aLhcJ9sd2W1tXzsc58jGQgQ8fl44O9/xx+NIktLM9wu4mPHkldWRk9eHkhJNBLpc76C4mJGTZ9uW4XPPpuOyy+3xXxrqy12nelYEr76UH/KH9f9dB+Aj/BXXudKYvjYzgj+xTVcxx+heFeme4I72bZuek3aI0LBRGYBGd1doY20v36SvlXLVV/V7yTPtU/AaS9fsYJXd+2io7ISq6jIpBAzGAzHHm5xu7fUYLoFVxe6fQTuMNIl0CwyI7Qcdb15/Hj+c9VVeLCtc+/5/e8p6eig0+mbO5VOPvbNIE/3d9BV+gGp4hy4nd10ceyYo5+aewkP3vAhpGX3efLixVz2859nWGRanClK9krDPfR16TgWfXIl2O4G06ZRfM455J90Em0eD/EBWl+7mpoQjY2InTsRjY3kA1dccgmlPT3kx2L85ic/oS2Lr+pu4LHXXkuJzW3hcM5Ar83h8ID8XQ/WfpvDYX7z05+m+tYUDmf9qfcAXbW1jDvxRBra2kj09uKrqbE/zxEjkDU1hCors1qFZVkZyRkzYMYMwPEVTibpWbyYtueew7N0KaK9fa/v5UhEDc6o/1zqDxh3JictWBmbeT9Pcz9XA738lXM5h79Q6U6D4q4io1sH2ux2r8sbS///6yM7kGmtzddeo7e5T6M49fnnWeikEzMVzwwGwzFFFmNFRoowd1WyEGlXBGWoVa4LQaDAQ6ZC7kd0WkJw95e+Slt1Nf5IhONfe42Zzz+Psj3pNx6lZXHagnHbCixizrk6tQ72dyU/mDiW3BdPmMOv33szPZbd17HLl3PF3XfTlkym/Or0tGC6gFVaXb1XPSjvWLLgyooKrGnTsKZOxZo6FVleTjAYpKofNwMRjdL75ptMnzSJikiEws5O/nb33XS+807GsXcD8159NSUQ9yYmh2qw1v4I5mx/v9LjjuPdX/4ybSUl7Coq4r/r1iHKy5GBQGof3QeYiROJnnkmsVgMz6ZNeJYssQXvypWIniPfocZCc53CfiDdZUHlVmz16Nd2TFhcOvl7zM+rJpwcTU8v3N/5fr4W/l7aBNtOxghPalm1x0DGMq8D+qeoX5OVoA24pvwBtClOe/55XjYi12AwHIu4DQ4DSQlWSmZQmZqHIK2Klb9DP1fVR953E4vmnIcUAt/w4Vz1ta/1sZzp0ceQaen0A4GYPflbQKir/GHkqfOu4a7bb0c4qZ5GrF3Lld/9Lp2JROrepiYtR3zWfJhuwXs0IwsLqbj8copmz2ZbeTmdwWCffXQrrS+ZpKqlha3PPINYt86edu6kC3hLcx3YmkMEDmXxerjZuno1f7vzztRn1hUOkycEcuRI2w2kro6qCy/EP24cvT5fhrXXGjcOa9w4uOYagvn5VLe00D1/Pnv+8Y8j1sqrBoR0N4FinIJmKoOh5kvgbbP4ZMXPub3yR5CExb0zeaPpVGZsejPtkqX+8Ppc26an0s3m4aBG19TlLJuo7W/Srb01jY3UvfMO4RNO6OOvrmNErsFgOKrINqKmhKyyzhZr63rAmXsqBrzqSqwiJFTosEqZoNGdn8+f332DbSkSglM2bMBXWtqnj0nXssrupbtXpCwfcXs6XLx24YV87Uc/otfrRUjJqJde4vI776Sjuzvj3qbub+qmFictbt0p1fRgu2yBd0cy1ogRWDNnYp12GoFTT6W4rg6EYHQOK631yiucWV/PqLY2Strbue+nP8WXRagaAbvvuD8zISVi2zbYtg1efJG855/nw5/7HC3l5WwuK+PxjRsR1dVIny2FdEtvYOZM2t73ProXLcK7YAGeRYvs3L5HCBb2f1IZW5tJP6ePboKQ+rOqP3QbTA6u5YLJz/LsyAuIyyDfH/0dfv7qZxjdvDZzyEY91aq2TkjG0s3KTUn/n+tBZKpK5L4IXLclF+CM555jw2mn0VNVlfNzMCLXYDAcdejBZUqj9pcKTIldd6Uvb5DMqAc9ei0LT5x3OQkBSElRdzenrl9PeUNDn/2UhUPdZ+L0rfnuToF2OGgvK+PHt99Or9cLQlAci3HR448TiUT6ZEzQsyiogDPljqBXMFLvU0/qcCQjhUBOnox12mm2uB01KrUtVFyc4RdalJdH90sv4Vm+HM/y5YhwmKiUvKRZaY2QPXxsDoe5T/MB7gqHycvPxzrxROT06Qy/8spMv96iImLTp2NNn4741KfwvPUWngUL8Lz++pB3aVDpu1TqriCZqb1qdkOZ2tgCNAJF8KG3HuSF/7mALZW1kCf43zPu4osPfp6qneG+vghxZ96Wvia4R3T0gDL14J7vLB+oyJ35yiv8OT+/T85nHSNyDQbDUYeeLkx3V1AFHkrpmxYsRLpsb56HtItCiEwn3hyBYNGCIP+85N3kx2JUbQpz+XMvcO6f/0wgHE4FWsDQFXpJr5eHv/hF2oQAKSno6eHKRYtIvv02jaRvYG4jTpZCSBkZytxCN3W+w/S+DgbS68U66SRKr7wS31ln0W5ZWVNdRTs7mZKXx7jduxmxaxf/vPNO2tet67OfsdIOHn2svfE43jffhDffpOD553n/l7/Mlpoa1lVXs0nL4iB9PpIzZ5J/7rkU5eVhPfss7b//PZ4dOwbjbewV5YnQgX350rMKqiCwihhUbIRQM7AdCEFJsoNZJywjfNWJSCFYNWoMO3z1VIXDOdMORq3+XZegb5xELpG7N79cnUB3N/XLl7O1n/zIRuQaDIajCrfFQOlU3XqrkiSo5VJnP687pFdZb/XlHIFnj51zJZFgIfTC2I1hPnbXXXQlk0Sz9DGbddNt6XTvc6h57YMfpGHKFGQsBhs2MOvRR4k+8wzt4XCf1GAJ13p3P+8l13sd6khATp5M8pxzsM4+m4KqqlSlrzLNFUH09NhBS4sXk3zjDXYOG0aovp5FDQ1sMUL2iGJzOMyDd91FXX092xoaSLa34zv7bKzZs7Hq6jID1266ieicOcQXLMA7bx5ixYohVZ44iW1ojWEbalWbejDdg+3CUA6URqA8ks5ecP6Dj/LQlTcCsKOsjN6Ne4g25T6X7r6krhV6BhW98ppb5LqDgPcmdN1MeeMNXmvK3Tkjcg0Gw1GHXvBLXUiVD24pmUK3HMgrJO0s5s455i6Npqf2ctLldAYLmXfe1faKgBv++gi+ZG5pqgdm6ct6uh19m7KGuoua9TdnH/bZfsYZvHnNNSh7yMT776fj739nD32ruen909v7E+lw5Ahca8wYrDlzSM6Zg6ysTLXrAWPBeJxxa9aw7oEH8CxbhtCq2G1ubzdW2iMY3dIrAN+8eTBvHlZNDfW33Uaoupq2wsJ04NqMGSRnzMCzcSPef/8bz8KFiN7ewXwLQDq7gp62UA9EK8UWuSr2oIh0flv/kiVM+/e/WX3GGfgiEeZPmEDgjTcyUuPqrlTZrLjuYFMP6ZAG/do8EOttLncFgEnr1uHvx3XEiFyDwXDUoVtz9eAzJXKHOVMF4FU5b/Vor1xzdaV28eicdxELBKEXRu3YxpyFC+jvNqeCspRbW39WUrV+qOiqqWHFZz6TEqclb7xB3t//zlatn8kBzN3BZWjrudqHCrK0lPIbbsB/0UXsDoWyuiJ0b93KtEiEuqYmhrW08Ot77sFrxOwxg2fHDrp++1s+XFhIU0UFS8eOzXBnsMaPJ/CVr1B6xx14HnyQ5oceGlTLrp5uW3dRUFkJVSCaCjfQE8jkAVX/+AfLJkygF5g/dy5T/vKXDJGqD2zpfvpudwWFu4KZLnL3Rei6OW7dOpNCzGAwHDtkE7h6ZoUSZyrHEbgVQJXrxfsQBdYWKuHxs65Ird/4z4fx9OMjBumgEJWPXb855Fo+FBZQKz+fHXfcQaKgAABfUxP+n/6UzWS3wA7EncItYN39HioCVwLy+ONJXnYZ+RdcQJmTFaFQd0WIRvG8/DLeF1+kZ+VK3q6tpcMEjB2zbA6H+fU991BXX0+4oYHe7m68V16Jdf75FJSWpl0Zvv1tInPmEPvhD/GsXz8ofVWWXN1FwV3wzD1I5SctevNff53uSASrsJBYVRUvTZlC3cqVGYJYxTHoiRd0/3z9euHOeqNfn3VRG9pLm5sxu3YZkWswGI4t9OwK6mKs++UOw3FRKMcWuNX9HGwvqQ3+Pvta4v586IXxWzcya/Er/e6vx22om08HmdkKdB83te1gi0MJ9NxyC71jx9oNiQQF3/8+W6OZXsT9ieuhIlj3BZmfj3XuuSQvvdTOjUpmVgSvZTF682bCv/kNnrffzhh6NgFjBv034AE8992HfOghJn35y3hHjaIrEEAC/hNPJPGTn+CZPx/fgw8iOjoOaz+VwOwm8xKmC0J3hXA/6QI4xYkE3oUL6bj0UnzA4vPPx7dyZUbaxZgz10ec1MO7PsKj8JO+ZmQLf9ibRderV2XU6WfYzIhcg8Fw1KGXslTDdnraqzYgEAFvG+koiP1gd/4wnpp6aSpJ7Pv/+BDs7psvXc+b7s6hrlJwubMWHGp3hWEf+Qg9730v0UiEWCyG/9e/Jrlx4xEpXAdCzaxZFFx3HZsmTCBqZUr3aCTCCX4/U7ZtY+yOHfzuRz8yrgiGASMiEWJ/+AP/U17O0vp6lo4bRzQSQQpB8oILKLjwQia//jodDz88KMGIuUZaXBV4MzIwABQ89xzNl14KwJZZszj+vvuw4vGMUZ1subF1D1ndw0sJ6YQz19M1ui24eoxvRkIbPbBgABiRazAYjir0C68SjcoPTV081QWzYjfkqYTo+8Ff3/deent8kIQJaxqoe+kNmuibT3Ygcz0qWU/FdSjcFEacdx6hr3wFy+ulorKS5j/9ic758w/BmQYfq7aWwltvJXD11UghGKu7I8TjeF54gd6nn2aHEATr63nWuCIY9oPN4TC//fGPqauvJ9baSvzCC2HGDILBIGNqa4mdcAL1F1+M/NjH2Lp69WB3Nyv6NScBBNetw791K72jR9MTCLDpzDOpe+EFcO2Xy5UJMj298si05GarPqkLXeVKkfIc09M0DBAjcg0Gw1GHLnKj9BW3+vbydijdj8qdjVVVPHPaBfQm7ONd+Kc/sZNMa2wuK22uXLO69fZQ5dOVXi/JT38ay+tFCMGwjg7GvvEGLxyCcw0m1rhxJG+4geTpp+OtrMxI8j+su5ue3/4W73PPpapYbQYjbg0HhO7K4F+8GM8pp1D+ne+kfnvhmhq6f/QjrJtvxrNt2yD3Nje6gC1+/nl2f+hD5AWDtH/843g2b6YzHM6w4OZCt8C6PQ30eAk9AE634h6MQjhG5BoMhqMK/eKrBKQqI6lvd1t695VffOpT7BoxAl8kQt3rr1O4bBk76Js/1p09Idt2dzlMtzX3YJK8+mp2h0IUSonXsjj/zTd5eNWqg3yWwcMaPdoWt7NmpdqikQgVlZWMa2ri+I0b+fdXv5q1lK7BcDDxvvUWwc9+luPuu4/V48aBlOwJBPD/5jec+MILtD766JB7sFLXnB6c0rsvvIDv5pspra0lOmECo77yFbZ8//t0hsOp65QSo7lidrNt31uqMJXJwcM+GW77YESuwWA46lCJ0JXVVFkDVDldJXBVgNeefTz+1jPO4L/vfz9SCERlJVN/9KOUFVevdtndz7KeKsy9rHJMHvRgs6oqktdfTywWY1M4zORXX+XhBx4Ycjfa/UEWFlL05S8j5s4lGo1mpAGLP/ss3S+/DEVFPGaKNBgOI1vWrkV89KOUvuc9vHPuueD3M/a44+g4/nhOu+AC+OQnh9T/T1lx1XXS29JC9a5dJJ3sI9srKwnU19McDvdxAXNnbNDdFLJldHBnWXCnJtN9csV+Kl0jcg0Gw1GHKicbI9NFQVlJVfBXEXYQWqjvIfpl/vXX2/XShWDU7t3kC8FW+i+WoLfrQjdXIYiDbcmVQOKWW5B5dhhI9zvvsPJb30JYh8Lr9/BiTZtG/je+QeVJJ4EQVDh+t/Hnn8f7yCN4Nm1iBzA0C7AajnY2h8NsvvturL/+lcp77025L7xVX0/hBz4Ad9452F3MQF0rFXmLFiHPOAMBNBUVIRsa6MS+huXRt+yunl7cnc5R7asLX13Yuuvu5CgwOWCMyDUYDEcVemaFbjKToSewralB0lkWlE/YQOkJBlk6YQLCyYV70rp17GxoIKqdo7+KZpZrWYlbfVmPXD5YEtSaMwfrpJMAEFLi++Uvj3iBK/1+kh/8IL1XXUWJ5nc7dtcuKh9+mNf++MfB7qLBkMKzeTMFt9/OqD/+kW2VlSAl4QsuYFpXF23/+MegW3ST9CnmCEDs5ZeJXX01wcJCFm/YQFU4nGFpDZJ5nVLCFjKFrAou04WuXp1St/qqZd31IYW7fGM/GJFrMBiOOpSwVOiiN4Cde1ZdZPPJWsQsJ5vPP5/2ZBJvOEx5LMbur32NDsc/TRemeqlb97rqn3tdL66g1g8GsrCQ3o99LLXufeKJQUtSf7AYcfbZJL/wBXaHQvTGYkQjEUaXlnLeihWMbmzk3gULBruLBkMftq5aBR/6EL3f/jZtNTWMqKkh9olP8L7jj+cv3/72oAtdffRIXaO869fTFYvRFYvhKS8n5PXiSyZTgli/TmVbVzlxVRYFVUJY99H151j36gdS6FkW9vKcbkSuwWA4qlDWCFXtJ4l9fVRJ0XULhD4fCFII1l5+uT2UF4tR9KtfscaJNHZX/9LXc1UP25f9DoTem25ClpQAIHbvxvunPx2Eow4elddcQ+GPfkTS601VKIsvWEDHY4+xesQIHjdpwAxDmK1r1iBvuomqRx6BkSOxPB5eOfFEJtTXD4nfrXrA9uJcgyIRrKYmZFUVls9H67hxBDZsANLXTiVIA6TFsQoa0zMpqNLqblGLa121ediLP66x5BoMhmMN3UqqxK1+0cxWsTcJfXy/kq5tsRkz6KiuRgKeSIT2F16gQ9tXYbmOsbf2geyzv1gnnEDyggtS67777kN0H4ryEoeH5EUX0fXFL1LopEDzWhbHL1jAiu98h23AtmXLBruLBsNeEdEovrvvRvzf/yE9HnaUlTFi1izGDvIDmvtapLInsG4dyaoqBNBRV0f3hg1ZK6Z1Y4vZpKtdpQlzi1yFrlUzRK2+k9s9wbgrGAyGYxU9O4G7ss/+0nPFFSkR6nvmGXb39JclcvCRfj+BO+6gpLKSaCRCfP58vK+/Ptjd2i8kkLzxRnrf+16i0SgVUlLU1cXFixfz54cfRgx2Bw2GfWTHK69Q8pvf4H3veyktK6Pj2mv5RFkZv/npTwfdout+CLfWrcM66ywA4hMnYj3zTGq78rFVwbRu/1x9BE1ZdXOW6N0bbvcE465gMBgMB441ejTWtGmAHbjlfeqpQe7R3im/+WbKzjgDhKCmvJzIf//L9sHu1H4gvV56b72V5Ny5AMRiMXa88AKjnnqKPy9ZMuiCwGDYX9p+/nPKL7wQysuJBQLsqKqiboi4LejoPvyyri7rPnqO3VxZY1SqxMDBsjzsBSNyDQaDYQAkr7gitexZtAjR3DyIvdk7srAQ+e53pzIOnN7QwLbKyiNO5MpAgNAPf4h35kyikQixWAzPW2/RddddLIzHB7t7BsMBIbq7sf7zH7jlFiSwuqaG9Q0Ng92tPgjHBxdAjhuH9PsRCVup5ooxcBfeUa4MB9tZqj9j7oEUkjAYDIZjAllYiHXeeal17+OPD2JvBkbymmvo6O0FKSmJRJi8adOQvHn2h/T7Cf70p1RfcQUVVVWMq62lYskS/N/9LsIIXMNRQutf/sKmcJi2lhaW+v0kQ/uaufvQI2IxPNu3EwwGGV5dzYjZs/vsk0vgKmtuf5UfD2QyItdgMBgOgOSFF6aKKHg2bkSsXDnIPeofWVxM8sorU5XNrD/+kfuGgJ/fviC9XnrvuAPfySenrNEzNmxgxqJFiOTBrgVnMAwenm3byNu0idKyMkoqKpj73e8ytrZ2sLvVh/KWFvtBs6qKCz7zmYw+uq252fKEHyqhK/vpsxG5BoPB0A/S4yF52WWpde9jjw35IKfktdci8/MB6F61iiU/+cmRJXCFoPdznyN56qlEIxGQktNXr+bkNWvYcIRZow2GgTBh27bUw1xjRQV19fWD3aU+jOntTfWxrbg4ax/1ssBugasqPR5OS67xyTUYDIZ+sGbOpGDsWEKFhXQ1NpJYuHCwu9Qvsryc5KWXpta9Dz005EW5jgR6P/lJkmefDdhBZi2//CWNq1bxssl/azhK2fPSSwQ/+EEksKuoiJYh+DDX/M47FEmJBGJ+f4b7k9tVIVvAmZ6F4WBiRK7BYDDsJ4Xvfz8jamtBCE7q6ODN0aOHtNDqve46pN/Oz+NZtw7PEZQyTALJD3+Y5MUXp9q8Tz5J629+w3OD1y2D4ZCzc+FCvOvXEyouZlMkQrKxccg9nDatXs2ecJhQYSE7ly+ny7kOuoPO3JbcHmeKYwvc/c0elov+3BWMyDUYDIYcyMpKfKecAkLgEYITt22jbQim91HIykqsCy9Mrfv+9Kchd6Psj+S7303e+99PWWGhndf3ySfx/eY3R9R7MBj2B5FI0L16NbHx4wHIq61FvPPOIPfKRXs7sVjMznAiZUY5dF3o9pApcFU5dX35YGIsuQaDwbAfJM87j2gkQkVlJaObmymIRod0hoLe970P6bMv656VKxFLlw5uh/aB5CmnkPfJTzLOsZqfKiUbHn+cLYPdMYPhMCHWryc4ZQqhwkJ8Z51F6xATuaK9PbWsyoTr6JbcBH3dFfxAHumiEQcLI3INBoNhH5FAcu7cVIaC4qef5t5//WvIWnGtmhryr7iCUFER0UiE3iPIF1dWVND7+c9TWlgIQjCqtZWLli3j2bo6tmhJ6A2Go5nqaJQS5yGv7v3vZ+1//zu0rjednQgpkULYebi93lSmE91FwT1lCz5zl1A/EEx2BYPBYNhH5JQpyKoqALp27WLJz38+tG44LopvvZVxEyZQUVXFrOJixnd1DXaXBoT0+0nccQfScVEIdXVxwdtvIxKJIW01NxgONuPz81PZC2IFBUMuw4KQEjo60g3FxalFXUy6Baw3y+TP0d6f+HWL54FgLLkGg8GQheT556eWPQsXpqr7DEXksGGIc85JVzdbv568Iew7rNP7P/+D5ZQJ7erooPkHP+BFJ3L7SOi/wXCw2P7OOxRo2Qu2DsGHPNHRkXJVkMXFiNbW1DYPtkj1kHZNyHOW/di+uGrSxWzStewh0wXBLWj3xQpsRK7BYDC4kPn5WLNmpda98+cPYm/2TvLSS4nGYlRISU1LC8P37DkirKDJ887LyKTg+/3vaXzuORoHsU8Gw2CxY8UKvE72gi2NjfQOxYe8tjYYPdpe1vxylRXWQ6a1Vhe4+rKy/FquZS+Zotbdtq9uDkbkGgwGgwtr1ixkwI4B9mzdihjCfqHS7yd58cUp3+HSJ57g3sceG/JWUGvsWPJuv53SsjI7k8J//oPnyScHu1sGw+DR2ZnKXiCEIE8I20VgCNFf8JnbHUFZdLNZcnVrrXI/0Kum6fQXWLY3jMg1GAwGF8m5c1PLnvnzh3QAlzVnDrKoCICuTZt462c/G3I3RjdSCIJf/zo1kyaBEEwMBml+4gm2DnbHDIZBRCSTiEjEDuoSAoqKMn1ghwLt7QSDQUKFhfgnTaLlpZcyrKse0tZc5aqQzWVBidyktr/uqqBvPxBM4JnBYDBoyMpKrBNPBOxAC++LLw5qf/pDAskrr0yte594YsgLXIDkZZfhP+EEEAKflFy8ZAn148YNdrcMhkFHOCKyorKSkc51aChREQgwrraWiqoqzr3uOsbW1gJ9XRX0dbcVN1+bu0Ww/jr9uGht+xJ8ZkSuwWAwaCTPOy+17HnrrYzAiqGGPOEELEccingc77PPDm6HBoAcNozkBz9INBIBKTl5/XpKOjqOCB9ig+FQU+zxpETktZ/6VEpEDhVGVFSkAlzxejMyQOjiVhevuj+uLnjzXNv0rAu6RRgyfXEHkolBYdwVDAaDwUECBVdfTaCykmgkQuK5oV1MNnnFFallz/PPI6LRQezNwOi9+WZkIEAsFmPbK68w9i9/4d7Vq4e8D7HBcDioKChIicjevDzqhliWlMadOylzMkBIy0o9nCqLqQdbvLqFrhK0Aa3Ni503V3+9jsq962X//XIHJHKFEJuATmzrcK+U8tT9PJ/BYDAMWaovvpjQaaeBEIwsKyO2e/eQrbglKyqwTj89te59/PFB7M3ASJ5+OsmZM1Pr3T/4AS+sWjWIPTIYhhZ7du+m2hGRVjI55EY4mnftot3JAPH800/TFg5T7mzTLbm60HVbcYP0tda6EzTq/roH4pe7L5bcc6WUuw/gXAaDwTCkCV1xRcqKUt/YSHT8eLasXTvY3cpK8vLL7eAUwLN0KZ5t2wa5R/0jCwoIfOELlDpW8vi8eXiMwDUYMmhva6PbEZH/fOQRdg0hKy4AHk8qA4Rv166UiHT75Cqhmy2zgrLsZkOvnJZN/O4rxl3BYDAYAOnzsWXMGMY4VpQJW7fy6BCzoihkfj6Bd72LgooK263isccGu0t7pfS22xh28skgBKNLS+l88UWTTcFgcCGFSIlI/7ZtB7X87UHH6utE4Ba67sAyJXiFBwJWXzeFpDa3nP31csH7ykBFrgT+K4SQwG+klPfvx7kMBoNhyGKdeioRKdkUDlOeSPDPb3yDLUPNiuIw/LrrKJkyBYRgQmEhLS0tQ9atAkCWlyM1K/lZq1ezYdQotr7zzmB3zWAYWnjSsm9IZkrxZM9XoAeJ6eJWLwqhLLki397gTUDAMdXqgWTZMivox3fTX4rHgYrcWVLKHUKISuBZIcQaKeXCjJMI8XHg43s7ocFgMAxFrHPOASAWi9Hzt7/hG6ICFyBPE4wnbN3Kzvr6ISvIAXqvu45IPM5wKalob6d22zaeGaJWcoNhUBGagspiKR10svRPF7fughBqUiV+A5D2Weh2LLrxviLXY2/OSB+WS+T2lyZsQCJXSrnDme8SQvwLOA1Y6NrnfuB+AK9t8TUYDIYjAhkMYs2YkVr3DOXcuNXVNJWXM05KhJTUbdnCS0NYMMqKCqwLL0xVZCv717/49dNPD6mIcYNhyCBEqthCcORImpYuHeweZaKLXM3S7LbiesgMPMt3Jq+HtMh1XiiAvAR4rfQx3Llx+xO5B2TJFUKEAI+UstNZvhD49t5eZzAYDEcK1plnIv32VdcTDg/pIK7k3LnEHcE4cts2/vjDHw5pwdj7vvchffatpvvNN3nzV78yo30GQw5KyssZUVsLQnDZjTfy2FBLr5dD5EKmFTcvx5QRfaZe5MyV+0K2/LiH0pJbBfxL2G/MBzwipfzPAF5nMBgMRwRJx1UBhrgVl3TJ4Vgsxqb77sM7lG6ALqwRI7C0Esm+hx4yAtdg6IdSrdiC3+MZcnlydUuzr7ISVSrHXenMbclVPrlZRa6XlG+CF1vo9uef26dL/XR3ryJXShkGpu1tP4PBYDgSkeXlSL2M78KFe3nF4CGnTkUOHw6A6OzE88Ybg9yj/im+9VZEdTXRSITuRYvwmEAzg6Ff9iQSjHIyvPi7uoZcntxhVVUMcyzNp116KYueeoqYJsJ1v1x3CrGUq4Jb5OrRZdh+unkJwBqYyD1gn1yDwWA4WknOnp3KNyuWL0e0tAxyj3KT1Kyi3hdfRCQPJE36oaVm1iwC118PQlBRWUnsrrtoHOxOGQxDnE4h2OTkyX34nnvYNpSsuEDFqFFYjqXZJwR19fWsdPqoC1x3qV4/pMVtPulEuboPgivKLK87u5+uGyNyDQaDIQehq64iT5XxHcquCgUFWLNmpdY98+cPYm/2Tv6NN6aGXcfu2oXw+YzINRj6QXq9yMJCYrEYXdEoHStWDDn3nsZYjErH0pynWZrd+XGz5cnNyCOmRK7u25DFATebn66bg5FCzGAwGI46ambNIjBnDghB1fDhxBsbh2yBAmvWLGSefWfwbNqE2LhxkHuUG1lUxJbx4xnr3AynrVs3ZAtrGAxDhqKi9HIkMiTz5Lb09hJzLM1PPPAAu8Jhqp1tusB1F4HICDrT3RWyidturc1juzmoNGPZMJZcg8FgyELhVVfR61gbxzc3Y40ezdaVKwe7W1kpfPe78TkW557nnhtyFh6d5EUXEU8k2BQOU9HRMaQLaxgMQwVZUpJaFu3tg9iTfiguTlVky1u1KmuqL+WmoJf29boj0PoTuapd267SjGVD9JNO2Ihcg8FwTCKBjWPHMlor4/v0YbQ26oEU3izr+nLVzJnELroIIQRUVODftIntznZV8hLSpTBh/0pgHgyk10vy0ksBOwPEjl/8YkhngDAYhgzFxenlQRS5udxkAXpLSlJtRe3t+IEiIIjtaut3vb4HSAA9CciLAZ1AG7b6VRvVlFQ7a+vqguY241pa53pyvxcjcg0GwzGJnDyZzoICNoXDFPt8PPW1rx02a6M+lKdbO/yubSmryNVX0yUECMHY3bsZMWIEctkyLDLvCQltfbBErnX66ekMEO3teF56aZB6YjAcWciSklR6LmvNGqKD0Afd5UBdf3Qf27hjbRZARUcH+cAwoBQo1vYH+1oUw9a0XqC8BfJ6sN0R/KRFrD7Hte7epujPR0HDiFxDBmNqa6mbNIn1DQ12br4cPkFDeajUYBgISa2Mb/yZZ2g7zFZcPQYjn0x3tYBr2+IxY1L/xfqtW2lvaGAk9r0i2wTZ7wuHg+SVV6aWvU8/jejtHYReGAxHHhWTJlHqpOc67rTTeKe29rDnyNUfut0P4N6CAlp8Plv09vRQE4+nLLnKmhvAvr4lSV+POrW2oggUx0i7K+gW2X1lAK81IvcoRwIUFtq+PiUlGXN3W3DkSPzTprHJ48EnJd5wmFgsNuBzBYNBin0+Ytu3E9m8GdHWhmhtBX2uLw/h9EeGoxvp9WKdfXZq3XsYsyroAjcIhLLMi7TlWG0tvUVFWOEwvrw8Ql/9KlY4jBf75hHFtpZESY/oWQyONdeaMAHruOMAEL29eJ9++jD3wGA4chk2ZQpJJ0agqKfnsBeCcKf/0t1nAwDFxSnxG2xvp4L0w7i6XimRC7YlV1mjlejtBNosyItnWojd7ri6C5fQd9QZgDg2IvcoQPr9yFGjkGPGIMeOpXj6dAonTKAlmSTq8SA9A3tMKqisRHo8CCGQQMhJZTIQgsEg45wn0PIxY9hUVbXX14rOTkRbG7S2Uu71UuP307p4MbsWLIBdu4y12HDIsE46CelEMovduxGHOdhMF7pF2lTqWi8CFs+ZQyGQjMWY9OSTjFy7lk7sm0XQmbeTvt4rt7bBIHnFFanhVvncc0RaW/f+IoPBAMAOy6LKiREo6uxk0SBkJNFTfwVIC9d8bH9c5UZV2N5OFelsYLoo9pC+DsWxH7qVwM0jnSbXnUfXvZ7aRxWFUBe5fbD+GpF7BCG9XmRNDXLsWFvQOqJW1tSkktkHg0GqHbFZKCWb9sEaG41EqKisdE4miXZ2plKYSNG/5AwVFqZyYg5UIMuiImRREcFJk6israVXCIre9S72hMN0NTUhNmzAs349Yt06POvXQ3OzEb6Gg4J17rmpZe+LLx7235V+A1HitoS0b1s5aR+3R2fPphDoBc5fsIARQAu2n1sQ+0agbkzKR1dl4DmcYlcGgwQuvpixzvXnmjFj+McgDLcaDEcqrYEAXSo9169+xc5B+O8oFwVd4KZGlYqLU9ebMseSG6JvQgS1ro8muYNp3VZi93IA+/qlljPiztTFzlhyj1xGnnIKlbNnszGZpDkQsAXtyJFIb65McTbZxGbX7t3Q3o5wJlxztZxsb6d3+HAm1tayvqEBKxwmfy/9VB67ZbW1/M9nP0tvIEDE7+eBv/0NfzSKLC2FsjJkaSmyrAzUvKQkJZxzCWQ5fTrW9Ompc4nOTsT69bbwdeZG+Br2FRkIEDjvPIJlZUQjEXoXLDjsfVAX+aAzKYFb4Uzlzrx5yhR6hg0j3w+Ve9q5aNky2rXX6ZHMug9c/1eJQ4N19tkES0tBCCo7OxnR2XnYh1sNhiMVCcjq6lR6ro7Fiw/7vU3Pcau7VBVhi9nekhLyg0F8hYUM8/updtrd8WH6cjzH9jwyXRyCZArqhLOccqGw9i8WyIjcIYL0eJCTJ2OdeiqhuXPJP/ts2oWgXEo69mKNFVJCYyOeLVvwdnVx3qxZlHd1kd/VxYM/+hGd+zDksaWlhS37sL/60W0Jh7nvnnuoq69nfUMDTY7PYC6kEFBcjCwtJXjiiZzzkY/QUVJCU1ERW5qbs7+mqAh50klYJ52UPn9HB2L9eio7OpgYi9E0fz5b1q8fcP8Nxx4V7343xZMmgRBMKiig2etl82E8vyruoywlxaSttxVAlTOvBl68YA6eAiAfZr32ClWFSYrb00OEusWkB9s3V8V0HG6hmzz//NRoUP3WrSSTyVQ1JIPBsBeGDUsVexGdnYjoYORWSAtd5VYQIj3iFJ00iXxnpKbo9NMpqa1lWDhMN+kRJDW3srTpcz31WDFpMZ0gM2hWiW7LWU6lFBugNdeI3EFEFhdjnXIK1owZto9gKARAXmVlzqF/sWsXni1bEJs3I7ZssaetWxE9dqK4NuDZefNSYvNwJmDfHA4P2GojpExZkps2b+a5Vauoq69nS0MDiXCY/OpqrAkTkBMnYtXVISdMSH0+OrK4mIKzzqK8tpY9QhD67Gcp+utfaXvsMTzLliESg+WdaBiq+K+6KvX/qt+5k5JBsDaq4cB80u4KSuCOdOb+Ci8vX3BWytRxTvOLMBEKdsDoHZkWXOX71kl62G9/A5b3B2vkSKxJk4jFYmxat45Rv/89C5YuNVZcg2GAyBEjUstix45B60e2zC9KgG4/4QRwUhkWx+Pk1ddTHQ5nBL920lfUqvS4+n5+0jEInc6yeo0ucJXbQh+Mu8LQQwKyrg7r1FOxTj0VOXFiVl/XaCRC1fDhjGhro7y9nZcfeIC8xYttQdvd3ffALvZFbA4V9D4LgMZGvI2N8MorgOMWUV1tC96JE20BXFeHdIJclGiJ5+XBhReSmD4d0d2N54038Lz6Kp633hrQZ2c4urHGj6epvJxxUuKxLCZu2cIrg2BtVIEduk9uKWmhWzAc3rjgJCLDCyEAldYuJhesgVr7xQKo2WHfDJQFt9M5XqqE5mHEmjs3tRx/8UUWPvroYe6BwXBkkyFyd+4clD64syvocQNFQFTKVCrDss5ORjc0UIUd+KquObolV12b2kjXgFDLftLitpx0jm+9L37nWEHsa53XLWz7qXSmMCL3ECODQayTTkoLW61snxuxezeeN98k8eabxDs6yBs3jqUNDewJhw+rVWYokiF8X34ZcB4aRowgMHs2Uz7xCTaPGEEkP59oJGJvDwRInn02ybPPRiQSeJYswbNoEZ7FixHOPoZji+Tll9MTi7EpHGbMxo08cNddh/2BUL+R6D5v5dh+uQWFQDU8fvm7aS+pJOCLMLt5IWKsehOABaIHhu0mlWmhjbRfm14p81AjhSB53nmpdc9zzx2mMxsMRw+ypiaVmcSbTNI2SP1w++XqaQ27CgoIhMNQWMice+5hYjhMyA9eR52qOg96CrFubMttG9CMHTS7B1sUx+hb2Ew/vxLZunV3IMJWx4jcQ4DMz2fYjTcSuPBCGsvLieewIArLQqxejefNN/G8+abtguBs2wpsXbPmsPX5SERgP/E2//WvLH/jDSbU17Orp4eeUaMQs2ZlPBlLv5/kaaeRPO00+3N/5x28r76K57XXEC0tg/cmDIcNWViINWcOYBeACP/4x3gGccRD+Z2pG0GqkEMMNldM5qnT3kPC56NdVnL8ho22uUQpWmfcT3+dXhnzcBaCkNOmIcvLAafC2VtvHaYzGwxHDyVTplDl+LueO2cO8x9/fEiMyCpN2ev30zl8OP5YjPxIhNo339yn4+S6HmULWNMrN+rXuLz98D40IvcgIocPJ3nFFQTe9S5Kp0wBIRjnSuOlbgKeN97As3TpoDmXH23o7g4+wPt//4ccMwbrjDOwzjwTa/z41L7S40FOnYo1dSrcfDOlTU1M2LaNjr//na2rVg3SOzAcapLnn58K7PBs2IBYu3Zw+qFNeineOLZ27bLgmbOvJOH1IRGURyN4d4egg7TI7QQZs/fvdl6r0vXso6HjwN/P+eenlr0vvmiKvBgM+0HwuONSbnfl3d1DLjNJu2Y0GtbUhO8g/c91gas/qOtCV10fczkc9nfNMyL3IGDV15O8+mqsM89EejwUVFRkBI5Vtrez7R//wPPGG4j1603Kq8OAAMSWLXi2bIG//hVZXU3y9NNtwTt5cmq/YDBIzdy5dAlB8MYbKf7jH2n/4x8RjY2D13nDQUcKQfKyy1Lr3ieeGPT/oX5hVxYLdSFfUz0apEQAx23bysjWBtuS24YtcmP2UJ8ucPUbxGGz4gaDBObOTadjmz//MJ3ZYDh6kH4/ewIBihx/15K2tiGTmUS5SnZoInf4fvgMZ3OfSmpzi7Qfry5u9ZEuf5ZjgBG5hwTp8WCdcYYtbidNytgWjUSoC4WYunkz47Zv54Ef/hDfEHoiOxYRjY345s2DefOQ5eVYM2eSPPNMQnPnph5IEn4/8qqr6Dn9dDxvvon3sccQy5YNuhgyHDjWKadQMH68nTe6qYnEwoWD2x/Sw3I9pMVtN7C9rIz1I8dQtS1MvCjEbY99nSornBa4UXtyC1y3y8LhYPi111LipGObHAiw6zCnYzMYjgbk2LHEurrYFA5THo/z2x//eEhZccFlyT2IgXHZ3BWyCVxlCMiGzNEORuTuMzIYJHnhhSSvuAJZUdFnu2f5chLz5rGnpYVt9fW82NAw5H6sxzqipQXv00/jffppSv72N8763vdYWVtLazBINBKxrX4zZpCcMcPOPfz443heeCGVps1wZCGBwo98hBGOv9u0zk7eHj160P+X2Sy53cDrc+bQKwT5kRgzVr7G8e+8ZecVayPlqtATT2ndlEX3cFtxAfIvvjj1kDh5xw6Kh9gQq8FwJCAdd7pYLEb85ZfxD8H/UHtNTWp5fyy5e8PtnqAEbpC0u0KuYFpjyT0IyOpqkldcQfKCC5CBQMY20duLZ8ECvP/+N55NmwDYAoc1R61h/9i2YgULPvMZJtTXs9XvJ37SSXDqqant1pgxWJ/6FOKDH8T7zDN4n3wSsWfPIPbYsK9Yp5yC7+STQQi8wNRt2+gYZDHmDrBQUxR46bzz6AW8STj3xRfSqRM6SfnlusVttsCzQ+2bK4cNo3H4cMY5Q6y127axcIgMsRoMRxJ6zIjYuHEQe9IXdR3R3RUqDkIeX7cFV7fk6qNceuBZrixTRuTuJxKQU6bYLgmnndYnp61ob7ctgk89hWhrG5Q+Gg4cPWjN//jjeGtqSF5+Odb556ceaGRREb3veQ/Jd70Lz6uv2q4Ma9YYV4YhjhSC5E03pSpxHbd1K8FIZND93dxlLtVFfMvYsWwbN448oCDew5nPvwqF2Ll02khZcVVCdV3o9riOecjfw9lnE3eGWEc0NQ1KOjaD4WhA1tamloeayFXCsr2+nmRlJd5IZL9Ebq5rkqVN+siWHny2N5Fr3BX2A+vkkym47TbyjjuOaCSSUVbXs2UL3nnz8CxYYCpqHYV4duzAc//9yIceInn++bZrSlUVYPtiJ886i/wLL6SiowPrkUfY9Y9/GLE7RLHmzsUaM4ZYLMbm1asZ9Yc/cO+SJUNCjKlCDvqFfPV556UE8LTXXqOgucu+ggewLbnt6apCSuBmSyF2OLBmzwbsIdYtf/gD3iHwmRoMRxqStLsCMKhpDXMyaRLRGTOQQhCvrCSvsHCfD7G3wDP9AV0f3erGvvwZS+5BQhYX0/vxj5N/8cWMdHz4Kior2RQO0/3SS/j+/W/E0qVG1BwDiFgM32OP4X38cawZM0heeSXW1KkEg0HGOb8Npk+n47LLiP3qV3au48HutCGFzM8n8MlPUlpZSTQSIX7//Sz85z8Hu1tApvUiVfpSCFbMmZO64J/8wgu0AWWqnFAHdCUyYs9SKcT0m8LhcFWwamqw6uoAx11r0aJDfEaD4SilqgpZUACA6OyEIZi3PXbmmfZIthAUx2J01dbCPo6G9ZcnN1tKRbfQ9ZPbJ9dYcgeAxLb69H70o8jCwlSpWL+U1G/dSvUDD/DqQw8NdjcNg4CQEu/rr+N9/XWssWMZ96Uv4Rs/nqTHgwTyjjuO9m98A09DA76HH0YsWWLE7hCg7JZbKD/pJBCCsSUltC9fztbB7hRpAaosucqau3nqVDrKy8kDAu3tjF6yhE4gkICCNkjG0mlyY2S35KpjHuoANFVUA7BTI2ojXQaDYeBY48enKp31btlC12B3KAtNvb2pcr4VbW0U7Ye7V38VGHV3BTUpf1xlxe1P5A6KJXdfSkoOdupwWV1N4tZb7eIADtFIhDMTCc5au5a8ri7uffXVQeyhYajg2byZ5I9/zAe9XlbU1bF87NhUGWGrvp6eO+/Es3o1vocewrNixSD39tjFmj6d5HXXpSL/T1u3js3jxg2ZKoL6NU9d3Ldcey1UVmJFIkx57DEsy0pZMQq60xd9d4CZnlXhcBSCkLhE7oIFh+GsBsPRybDTT6fcGRmcOnkyS2prD6o7ldJiHtd6tvYAUIpdwrcIKHbatgYCiHAYb2Eh9X/5C+Xh8GEpG673bX/Pd0hErgf7g+kP/SKv3oiVY/uhQnq9JK++muT116cqIQGIpiZ6f/Ur1nR00Ftfz3qTBsygsTkc5o8//CF19fV0NTbSc+qpiEsuQfrtVNXWccfR873v4VmxAt/DD+MxVdQOK7KigsTttxONRqmQkhEtLUzcvJnnhnDkv//442l673sRPh/JykqO27BhQK8bDAOBnDABy0knJLq68LzxxiD0wmA4OgjNmJF6GK/s7Dxolc682Noqz5l7SVtD/dp2vU2J3FJskVsKlABLx4/HF4vhj8U4btEi8rXXHww8Wl/UlOdMelsuXdlfPw6JyBVAfj/bLewOK8uD11lWc8UhHW6rq6P3ttsyU3dIiXfePLyPPIKIx9kMRtwaspJRRnjpUryPPkrvdddhXXgh0mf/rawTT6TnrrvwLF1qW3aHsMg6WpDFxQTuvpviCROIRiJsXbKEUY88wn1DJNhM4bZKNF17LQmfD4SgPBKhNL+/K2ju4xwOMqy4ixaZ4FuDYT+RQtBYUsJYKe3qqHv28MxBvE/oIjHgWs7L0h7CFrdB0pbcQqCjtvb/s/ff4W1cZ9o//pkBwAKAXSzqEiVRxbZkFctNsi1Z7o5L7BQndpzYSTZv8v7efPfd3fTiJOusk83GKRunb/ImThy3OG5xibvkbsmSZRVTEiSSEkWJIsUCgqgzvz9mDnBwOKAodkpzX9dcUwAMBoOZM/e5z/08Dz4swjh77970Z4ej/fHkmORjFVOuVrE/e+CYKLlieE4no97Ky+I1sTycMPPzSd10kxUxL6UE00MhvD/5yfiMbHQx7qG1t+P7xS8wH3zQIrvr1mF6rCbAOP10vOecw5TmZlK//S0H3eHdEcGUc8+F73yHglmzQNOonjSJ8Gc+w0vjsNSs3K6ZwPb589Oet9P27qVwgA+60VZyTU2j8IorKLCD+ZLutezCxaBhzphBj2GwLxSi1DT5w3e/O2z59YU6KhPEAiwiq26Tt/vtZTGPVVVh+P14geLubqa0taWJ8VBtqbJ1QlaW1Ukmuk6QR+JVjJiSm+tgZIIrlFunHz8SjXdq+XKSn/1sVqUyLR7Hc/fdVt5TYzQcbS5OZGitrfh+9jPMBx4g+eEPY6xdS2EgYGVjmDMHVq0icN99dP/0p+gHDoz14Z4QML1eKm69laJ/+ReSPp819Aecv307+7xeWsb6AB0gPxyOLl1KVzBIfihE0Ovl9C98gfxx2tmuufRSAnYw3/TSUsLd3TSO9UG5cDFBYS5cCNiVzl5+mfZh9uIKkphPRqWVCazTvECZds2ejQ+Ls83au5dCe39i2/EcjxNkq4Igu6pNQSa6TlALdMkYdSVXzYUmk10Vw0U5zZISkp/6FCk7r2P6ON9+G9/PfoZ2+PAwfZMLFxa0Q4fw/fjHGPffz4zbbkObMwc0DRPQL7iAxMKF6M8+i/eee9BaW8f6cCckzIICJn3wg/CRj2BUVpLw+dA0DW8qxUWbNzO9uZlnJoBFpPnKKwEwIhHqHn6YwnESHOcE/9VXp/2D81paCM+dS+Pu3WN9WC5cTEgYNskF0HbsGNZ9C7IoVNoiZSp22Bagry/2bduqoANz9+7Fb28fqlVBKLdOFgXx3SrhzsUrvdFozu8ZM5Ibx/pRuZKXC7V3KIquCVTeeCPJW2+lK5VKF3TQurvx/vrX6C+84KZ6cjGi0JubMe+4g+vz8ti4YAEhe5jX1DRS69ZhXHAB+pNP4r3vPrdq3gBg6jrm6aeTWruWggsvpGT+fCtfsWmCaVIciXDRxo3sefJJHn3ttXHlw3VCrKaG9hUr8GHFBJzy+OPH9fnR9OSaeXk0Tp+e9g/ObWzkgQnQiXDhYrzCWLAgvayPQOdWtisIolsqTSXKup++5LPNJrkaMD8UIiC9RxuuyDPlO4WyK/uGhbXCCb54POd+R92uIBRcsez0Ogy9NKXp81H0ne9QbKcRKjdN9oVCxB5/HO9vfmMlXXbhYhTQEArxl29/28rGEI8TPf98WLoUsIbaU1deiXHxxVS99hqn79nDvi1bxj05G02YWGUvjTVrSJ1/PmZpKQD+srK0qlgQjxN85BH8zz/PvTt3Tpjz13rFFenYgMkbN1LScnzmitH05BpnnklPKsW+UIiKaJT7b7tt2PyDLlycbDBLSjAnTwZASyTQBphRZaAQmRV8ZALJSu2pHKiw52K9HIsIQ3bned/ixUSqqigIh1nUsJc8nWHtXaukWpBbQXQL6N+uYDKGgWdOgWUii4IHS82VIV4Tn/EwOLJrBgIkvvpVtAsuSD8Ei3p7WfbQQ7z1s58d789x4WLIkLMx5D33HMYpp5D82MfSw1WFpaVUfPazHEqlWNrQQPILX+DApk1jechjClPXMevqMJYvJ3DJJeTV1fUpr90TDjO/sJD5zc0s2LeP3/z85xOG3AIY+fm0r1uX9rXNe+yxMT2eYyG1di1g+Qfjf/wj3gl0rl24GG/Isirs2oWWGt4uq5wWTPhti8gQ3EppKgfySsiwXDtYKjTvFLbZKc7CkyaRF/RZO5KzBAzBVyoHnglvrnzcqh/X77CPw5WV6P1Y/kaM5IqDMZTtCY5d+WIoVgVz0iQS3/oWxvTp9ITDVFZVsaixkTO3bePXTzwxiD26cDH80Ldtw/fFL2IsX07qppsInHUWaBoJn4935syh+6c/JXHffXgeegi98eQI7THLyzGWLcNYvhzj9NMxAwH8fn+f8tq9Bw7geeEFks8/T6uuU1JXx4YJmMu6+4ILSAYC5AH+5mYmj+NOjVlairlsWXrd88ILY3YsLlycCDAXLkxXOtPXr6dzmPcvB3QVkPHdlmKR2kqg2p5r1UANFnETHtIEvH7hBVYsiaZR1tPD4QVzmNq8K+M5hSEHT6kqrphksiuruSoOzp49NiQ3l10hF8EVxFbOnyuq+QwUxqxZJG67DbO8HLAUh6Pf/z49+/bx6wn4EHRxYkMDPBs3om/cSMEHPkDp179OR1ERmCbh3l5SF15I6sIL8bz1Fp4HH0Tbtu2E8pCbgQDVF15Iyfnn0zhpEp1lZX3eI8pr5xkGs1paKHvoId76+c/TmVAmai7rJJD86EcJ2hXOZj3++DH/27HM/ZI677y0rUJ/9103WNKFiyEieM45TLE78BefcQZPDHOlM8gO3pI9uYLkVgLaFCy2O8V+kyizmICOMi9gopkwpb2NKS311s4EMVPivfobec+VQky1K6hqruzL1RwS5e6rmw1vvpHzHIy6J1ccfMJ+T5xMpyChLKekbdD3JMnrscWLOfrVr6IXFlobkklK7ryT/PXrEXbuKdIxOB2X2KfqC5YzQjhtmwhQq50MZFnOgiH+p0SObXEm1vkYT9CA1vvvp3DjRiZdeSU7Fi4kMnVq+vXUihXkn3ceVZ2dJP72N4789a9oPT1jd8CDgAmY06ZhLliAsXAh5oIFFMyfT7C2lpSmMdU0SYRCWXYEra0NNm3iolNOYWZ7O554nLueeOKESPVXdtllpFatsrJBVFQwNxRK12sXZXvFcgyIG5n1KNnt5Wi0S4ZtVQDwPPfcMO/dhYuTC6bfj+/UU0HT0DWNaZ2dw1bpTIYoBR4FurGE2g4yvleA6mbQRIMilFx7avZWUN0UIloY5P3/71dUvxWCBKQS2W1VG9ApzTuALvs7e7DaMLn8+LDAfgyEZtf2+7ZRV3Jl8pSrcc71OjiX/m0//3yOfv7z+OxKU3okwtTbbyewdWu/dZpx2CYInPygkYmc/Jr4/olA7NSEyk758NRtKTI3SBSIKOtRrIu3B+scRpkY52K8ojEUovEnPwEgr66O1Pvfj3H22Zk8u5oGS5dy9MYbiW3YgL5+Pfprr6H1kz5lLGAClJVRvXo15WefTaPfz9GqKsxAIOt9QqXV7NRqwcJCoq++ir5xI/qmTWiNjXQDT9bWMvcEKq9tArFbbsGnaaBpzG9upnT6dKLbtvUht4LQRqV1SWjJEgRGqpNpTJ+OUWs9SLR4HP2VV0bgW1y4OHlgnHZauuz4pM5OfNEou4c5U4k8Gt6D9XzvJpP+Sxb2Ko9AnlAe7YbFSGq8N3k+eR0RfB0RTn/8WY5G+vKjBBap7bT332HPu7E4g+ANKm8aMmziNiYk91jZFZyWncirvN1JYTWBfdddR+vNN5Nvr+e1tbHottsoaGjIIrZOy3LtZTkYTn6QqMsxsh86E6WgpYdsX47IiSev+8nOnZfA6o1FyFy0omcmrwuIi9jF0KHX16PfcQfGlCnM+spX8MyejaHrmECgpITIGWeQOuMMtHic8lCIuUeO0Lp+PQdefXVULQ1mfj7mzJnWNGsWxqxZmLNmUVhdTbC2lrimUWOaRBWVFqCnq4uF+flM6ehgyuHDPPrNb9LlkEZHDto7EZA691wOlZUx1TTxGAZLdu+mub6ePLI72bIKI0/qAybFyHa6jTVr0sv6G2+gKf+jCxcujg/G0qVEIhH2hUJ4336bu0YgaFa0C7JI1U0275GFrPJOKOjMtCV7Zs7gaEEhJlDc3k60tZVmnAVAodqqJLeH7HbLkKbhQI/fz6Gq6n7fMyZlfcV7BJxUVfU1VelNahobP/1pmq+4ggIsglvU2MiZ3/wmeW1tGGQIrROxVf0fYi56PaL3IaR2dZv4o+JMDPVSNp+XkkkdIi+LnHkV9rLoobXb8w6yhyREBg3I5D12MbzQm5tJ/fCH3OTzsWfGDHbV1LAvHE6/XlhaSvX119OtaRR85jP4tm0jsmULen09k3t7mZeXR9PmzTQO0s9rejxQXo45aZI1VVRARQUlCxdSuGgR7T4fkd7ePp9TVdpAMEjvwYPoO3ei7dyJvnMnqV27ODRtGkV1dTxeX0/TCURkc8H0eknefDO9kQgtoRCnvvMOO/77vyEUopTMAyRKZuRQKLiqiqsSXPnhMWyFdDSNwquuSpfxTbhWBRcuhgxzyRLAihva+Yc/oI9A2ydbPyNk0nKpr8skWMREJYBXFi6kF4tbzd65k4Nk20tlO6MgtBGyhbAI2UQ3dzbbwf3AfTNnHfNtI6bkOviDgf6Nxk7bVK+sAUR8Pp7613/lwNlnU4j1J1S/+y4X/vu/QySSlarM18++nV4TJFb8QULJFH5VcZGoBS3GO+RcebLpXJ3KgTKfvRIH8wi0kj0JW4M4F6Jj4GYeHhk0hEL8/nvfY25dHS319aQiEbyrV2OsXk1g5cosMllYWUl48WIKzjqLotpaWjQNn2ni2bWL3oMHrYITXV2UezxUlpfTevQoRzs7wevF9PnA6wWfj6KqKvzTp9MJfRRYv99PtW2fKLbzT6vviRw5QrXPR2U4TGVbG09873t0vf56H6J9oqm0x0Lq8ssxamqsduPQIWJf/zrtPT2U0L+Km0/2g0K1Tcm2ruHsdNdcdhmBZcsyZXw7O90yvi5cDAHmpEkYdsyFFo+jjWCFQwOrzfCRsRVCtsoriGkHGTtpHNhkk1yAwPbtNJFpX+R4gBQZMisLgWKbbLMaNruCrWLunTWbmN9PpLg451vHJLuCGuAkJ/4Vy3LtYsic2HAwyKPf+AYHFyygEOu3Lli/nsvuvBMjmczqXcgkVv4OOV2FR9keJVtuzydb4hdqSdTe50QZuBN2hQCWWluJlTFkijSv8NkL1cBUIApaM1S1QMUh63MBez+i8yF6cd24Su5IQiaDGuC9/364/36Kzj2XFV/7GocrKjhcXEyPrfL2UVJLSojEYpjl5fj9fqpsklplmkQUkiqn7SpzILHyvgEqenuJbdiAtncvWkMD+t69JFtbaa6txV9Xx5b6eppDoRMqM8RgYAaDpD784fR6yV/+Aj09WSqsGnwmCK/6oHAiuqqaOxwouO669H9dd/Ag3XPm0Lhr1zB+gwsXJxcMW8UF0LZvR0uMjEwm2pIofRVcMUIkxCk/mZK+oh2pX7CAKJaI6N25kwPkjpsSxFaOHVCnuPT+IcP+QVuWr+TQrFoiJaU53zomgWcirYWc6FdezlO2C6/soaoqfvGtb3Fk6tS0ReH8hx7ikt/9jiTZMnqcvoRZH8C2Hiy1UwzLy1GISPsusN87UYidaleoxOKz0+0pUG4vTJM2RoEmYD94SmFqE/gimRzGYhhE7gW6GF00v/wyr3/uc8ytqyNcX0+quxvfvHno55zDlA99iHAgQMTnS5NfcLYS9EdiS02TaH092pEjaG1teD0e1l50EZMiEYq6uvjVf/0XPgc19mRTaY+F1Ic+hBkMWqnjDh4k8Pe/W9vJJrfiISSUlgKc4wTkh4asrMj7HArMigqapk9nll3Gt66hgXvdMr4uXAwJxumnp5f1zZtH7HvkkaGYsk0ouKJUrhDAhJAXLSnh0OTJmICeSBDZs4cofcmt2KeTlUoQWxHHpHbIYRBtlFJdbOuS0608vv18ZNQDz+QKHAVkn2SnyWMz0dfOXcN3vvJV4oA/EsE0TW74zW+48NFHc2ZEUFNjOanGYrtmf08qZpHbANmKM2R7WJw8LuMZMskVdgVBcgPVQC0wy57XAjOxfmQlmaLWBVC1Bwhb5yKGZecQnYGJQvhPNKgqr6e1lc5XXqHpr39lbl0dR+vrSe3fT35JCWZJCYWLFnHBJz6B5vFAMskj99yDr6EBLZmERILA5Mlce+ONFCWT5EUi/PKHP6RdIqtHgX88/fQJlfFgpGHW1JC64or0euHvf4+WSmVFQMvkViW4PnL7cgXZHe7As9RllxGLRtkXClFz5Aj3fvvb7n/twsUQYAKFq1ZRaHvckyNIcuVRZ9lmIEahZXFR8AORYaptwQISfj++YJDCzZs5YFdj6y8RQK6MVGqK2CG1T9JweiRQyNGAH0xz7Mr6OqGAjDQuLwufZwDw5Esrfti47Fz+f7f/krjXB6bJtFA9X73j25y7/hWLmBrOQ3wyiRWk1qMrG5Q3eLqhqhV8iUzFEMiW/iNkLpCJAg/Z9auFXSEwCYvUzrOnucACe96NFYEm/ix7LKNqF0Rj1stt0ssThfCfLFDJL62taK2tHN69m2fffTdNUltDoawOSsvWrTywe3e/JNZVaY8PyY99DFOkONyxA9+rr2Z5aEX7IuZyTlzRPDkRXDlieTj9uKbPR+qSSwDLk9304x/jcf9vFy6GhCmrV1O4ZAloGtPKyuiBEfW4yx3gXBZO1bppANHzzqOkthZN01gyZw7ttbUclO5/NRvW8aaFFRiUMGYTjfp5deT19lK9N0SisyPn20ed5ApSW6QsBwCPv+8buquD3P75rxL3+jA1jfxkgk88/1fOPfCKJUUmwJOAwgQU2q2/mcj8oZoPSy6WCa0gbKovwkfaiFt2CDz2CK7sYRFmamF1mCjqpazklmCR3Ip8LCl3FhbBXQgsAhbqwCoIHoGi7RkGK+UbqdltZV0otfcp+3RdjH8ci6S6JHb4UHPRRfS8//30hMNEIhHyfvvbtPIg+2hVJVeQXScltz8/7nDkyzVWrcIsKQFAO3IE/fXXh7hHFy5clF5yCTHbCja9rY1UXR2NI9TOyu1Cgr41AvqrHRA86yzy7Tzekzs7idbV0exwnKq/NuWwnCs97EDQn393x4KFAOT3RvB3deV834iQXJPcPyYXo8+CfdaTeR7uuOFLhAvyABNfMsV1r73K6o3PZKLH5KeDLb1qdndEk6VYOYWCnGZBz/2ak9gr+1eEAj1S2RUGqowOxMgtjle2iqR/TD6ZjkAe0saCvufFnuRVFy5cOKdCnD5vHpXf+x6tZWVUVlXRdt99GPX1ffrZ8r2uDivKmV/kgiwyCXbyuw0WJpB63/syv+vxx0+IKnMuXAwUTs+1/p7HTneH0324t6qKKbbHfXpLC8+MgsddtTEdi6+YwSBdxcXMsm0A1a2tPFZfPybZk/o759sXLBrQPkaE5KawApGcIEfbCVW0B5swRiAQgbxOwA//c9ktvFO9mPzOCNW9IT7y5GNc9uQjVIdCWf6EnHYFA3wxewpLdgVZuVVZbARohd6IpVR228cq+52FIiq8LrlU64EgV45gT45lGU69Jujbc/Jg+XCFJSSen09zSQk9ZSV01pTQObmEzrISOvNK6IyW0Hm4hJaCaYS7ywkmj+Iv6ITZWLLtItCOmnQl7Ny5pklXaSlGMEh8716Se/ZARwfa0aNWuiox7+pCS02EjMIuXBwf+kuJWPjZz3KkrAxN09ANg1WbN1NPdv9SLMu+dkF0e8gmvXJqHrmakJxabKgRzOb8+Rhz5wKgJRJ4nn56CHtz4WJiQC6SIAs4usNrAmoAlrwspxtNAWZxMZ3V1cRDIQKBAE9985vsH4ejZcZppxHr7WVfKERVRwe//c//HHejeoam8V7d/AG9d8RIbmeO19T0EqKxlj25BQl4deVFPLL6fWi9gAa3/PbXfOhP9/Zp+NV0OvJ2mbum05UZVoYAdbsmGd+6jEwasS4ySglkDNt+LOKo28c8WKiFKsQ2sa5uE8hlABfbEsXF9MyYQdSemhYvZv+cOTxvGPgSCQqBQsCTZy8U2PN8iMX9HOqtxXJymlR7QuTnR6xyaD6Il2YesL1+Px7buxM480zyHHKmCmhdXRQbBpM8HsJbttD+yivou3dDS8tJn17KxcSE7G/zKcvR1avZe9pp1NiKyPL6erreeINqstMnyu0UZAam5GUncUDeJrd/sg9uMJBVXP2FF9C63QzYLk5sqB1VH84dV3m5Py9qQnqPQPyMMzA1jUgkQvTNN+neunUUftnxQ2R/iEQi7H/oIbzjjOBiQOPsGfQWFgJQ1nGUg/28fURIbpLcSq4Y8hc52gqwyKScbaF54UJ+8b/+l5WfzYAzN2xg1Z/upQnnSj+5tskk1ik/b9brCSvYTJBoNbmxqNQhK7nis9FBnieZ3KrFL5x6j7LKI+bRYJCOGTPomjGD8IwZdM2cSfeMGcRtP50JePx+vHbeU0wTTyiEEYmQtH83uv1GA0hC1AxCnoaJhgZEk0HywxGIQiKZXd7YDAatVFN2uik1HZWMwpqadP7V/LPPpvvii4lEImg9PWh79qDv3o22axf6nj0u8XUxYaBmcCkAjJkz6fr859EiEdpCIWbt34/x7W+jh0JU0veBCdn3u9xxFW2PnPpHJrjDmWzdLCvDOPfczG977LEh7M2Fi4kBNQCrDz9wmKt8Q+YiHrJ9sADGmWdmvu+NN0by5wwJo5XibNDQYcf8henVhTt3sL2ft4+Yktue4zVh/ZRztOVJy/FJk/jDV75C1OvFA0wPhVj34x/TQEbVkHtLYm4o28QwvXpxqhezul2+UOVoZqGKiJy5guwOxZPb3zBnrh5kqqCAxiVL2LtiBU0XXEDP9OkY4TCGTSxN+3359jKAz857Koiolp9PSWMjFZ2dVHV0UNXVRWmyk5JUJyV0kiwJsvG06wAdPZXigr/9nop3mjgMHNY0DgNHgMNAz/TpTP/4x0nk5xP2evnrP/6BNxbDLC3FLC2FsjJrXlycMz+rGQhgLl6MsXhx+txo4TDanj1UdnZSFw5z6JlnaNy9e5Bn2oWLkYGcrCVtOwgEOPCVr+DJy8MDFO7axax/+RfyIhExGJJGLpuRrOaKdeG/jSnLslVhqHaF1GWXWaWcAX37dvS9ewe5JxcuJhb6SbrkuK6OIkfJPKvl8rUGkPT5MJYuTW8br4GcZlUV5uTJAGixGNp7743xETlDBJ2BRXL7w6h7cp0SHKTTceXn84+vfY32khLLBtDZyYW3305LLJYzPYUaXSwvD7SUr/yaagNQU/PIQ5LHDKA7BtQ0Huq6B+sP6pgyhdCKFYRWrKDh1FNJer2k/H4StbXomoZeVWXVvo5EMLHV21iM0qYmShsbKYtGqVmzhrLeXgojEWb84AdUhEIUk53CrQjQ7AwXy+a/Q/PkOqa8XY93T4hW+5g1+/jEPFpfz/a9ewnU1bGtvp6joZDjRWXqOiWLF3PdP/8z4WCQw0VFPLFzJ1pFBWZRUd/3B4MUnn02FbW1tGkagX/+Z4ruvZeORx5B37JlxKrEuHBxvJA7y/nA4X/5F5KTJ1vtWzTKWbffTlUkkr7PRNvhpAKp7ZqqEMmpxeRtgvjKnzlemF4vqUsvzfyuRx8dxF5cuJhYUOOqnQLNVa4i8leLezFOhtxG6RtIymmnYebnA6A3N6M3N4/wrxocsqqxvfuulTt9HGLn/AXp5TEhuceyKwglV/aveYEtn/88LbW11oElk5z/3e9ytLWVLo6dd01dBufh/mMpp/SzLpaFEiPvfzBQSw2LueHz0XTqqdSvWMGuFStomzwZDYtYivPVGwyS0DS8pklZdzfT9+xh+tNPM6mxkbLGRooOHcqqAud9+mmMujr89fUUhkIkyPiNu5F6qRHbs3wkRAUhDmL9l+32XF5Oz0MhOkKhnOo9gGYY7N+8mfu+9a10/tVIKGQp45WVGHPnYs6dm56bRUVZym8sLw8uvpjE6aejRaPob76J/sor6Bs3okUHaxhx4WLoEPdwAdD1kY/Qs2IFXqw2bfmddzJj//6stInqA1JWgcR6yuE9TsG1YhRLfm2wOXONVausURdAa2tDf+2149yDCxcTE+JZ7kRwnSYx8iyn91P5gEj85AGSZ55pR7iMXxUXFKvCli1jdyD9oKOkhIM1ltrsSySo3du/Z3jUlVwnb4sOHPrgB2lctSqtEs75xS+I7dhBA5kExbIX1WldXYa+BDUXeZUv8v5S6jqlFMuV/eBYkM+DF9i7ZAnP3HQT2888Ez0WwxeJWBHaZJRTgBl791L74otEly6lqrsbbzLJkjvvxB8KZT3wZAWIUMiabIiHpxPE+RMEWATgieWIsk0EwQzkoarmXxVFCjytrfDqq4Bts6ispOD88znls5+lYfJkwvn56dK0ZkEBqdWrSa1ejZZIoL/9NpP37eOUnh72bdky7iJBXZy4kNWf6BlncOTDH07fzwseeICFr76aLsBSZE/ioSh8/zFpfwlpLscHyOTXSfmVqwwN1pMb+OhH8dmVmOJ//KObDcXFSQX5XpZThQpSK5ZFRzVCZmTXKWe+4CgxoODCCykSVc7GqR/XJFvJ1d9+e+wOph/snLeAmN9PNBBk8ZbN+I6hNo96dgUn9TS8ciXNN94IWKRn0mOPYTz9NPvom64DnJMLG8q68ORCNqmV1522iYs4oMwhc0Gr7xlsCjEPVmWhTeefz7NXX82+hQtpq63F1DQ006R6b4j83ggF8Sinv7uZFVvfYvm7G5l0qA3icGhqLc21dVS/V0+Zrc6qKo+cfmigczH8qWbBiCnrwhN4PCR3IBDEt/WBB3hn0ybm1NVxOB4nPm0a2rnnpj1D2Ocv/4ILKK6t5QAw9+BBYt/6FgefftoNXHMxKvAAk846i6Y77qAgmYRIhJrNmznrj3+kGKv4Sqk0+bDuGTGC0k1GeZUDz2Qi3E3f7Aly2+c0onU8qL7sMgIXXgiaRvWkSUTfe4/9x7kPFy4mKmTLokgXL4iuygcE4RVClxiRlssRyIVdatasIbZsGWgaU8vKiMRiI1rlbLAwZ8+msKaGQDBI78GDJBoaxvqQ+sKAV887n0OzrAD2yOw51nJ9bmFr1JVcyCaWyZkz6fjXf00HSeW/8w789rc0kVshVcmUui7ntFWh7lNd95NRXUqlfeVJc5FdQTzABpNCrKO0lOcvv5xnL7uM7pISNA2SRZkAsdKeHs7avZX3P/Z7Ttm3DZ+etO6oAFaVsjhUJ0JUbw9Zd9Ikq+qbYKtq7mChwqYctvVIy/K6qh71tyyUpOGGrPx6Ac8f/oA5YwbG2WdjnHMOxuzZaVuDqWnsnTKFnm9/m8Sll+J55BH0DRvGra/IxcSHB6g64wySv/41/mCQQtOEN99k1fe/T7FppgluBVbKwVKs9qODvh34hMO6GE3pIHv0yqlT77R9IDABPv3ptDVo/sGDRKdMYf877xzHXly4mJhQhTfhrZcVXKdKrXLwukhrCtnZnXxA3hVXpKuczW5tJT537rgMoq645BLK7OxHc5JJ6mtrR3xU9LiFMR3ePOvs9PO+prOT5nl144/kCphFRcS/9jXMAksL1VpaMO+4g/1jOExWhKWelJMdbKamECu231MOFPoYMEKzZ/PIlVfx4nnnk/R5MxXaNCjpaWPWvginNjVR0d3Flf/4KdXhEExGis6jb/oHOfLE3uZJWGWOBfHV7adfnMzwZzfQRsZf226vi+VcdoaxHMTUAK2xEb2xEe69F7OmBu8111D16U9zuKwMTJOecBhj7lyM//t/0W65Bc/f/47niSfQOnONL7hwMTgkFyyg5Y47KLI7Wj7D4IInn2RSOJzuKAuCW45VTlvcynKyeKHaesjOjSs6nJ2M3H1nrF1La1ERAdPEYxgs27mTP4xCJSYXLsYT5KAzIWapBFdMfvqOAqsB8QmgF9g7bRqT7Cpnsw8c4PFxem8VXnBBuqM7o70do65uxEnu8Vo9O4PFHCkqAtNEN02mHz7MlGOczxEhuQOB6fHgv+MOik87jZ5wmN72dnz//u9otu9yrCB7WuXk6yLVmewjBuuiLjpGoP+R2lpeeN/72FRXx97p09Pb9RRoKahqbeWqJx7l4heeJjythua5dUxpqqf6cCjzpblIrlM0SgzMRPYmNVhMeGqFv1ZNMC8itcc7tJYWjv7iFxx8+mmmrFrFu7W19J56KuRZ2rtZWkryIx8h9cEPor/0kqXuup5dF8OA1Hnn0fP5z6ObJkGbIK7dtImCF1/Mep8aC6DpmU7nWMPMyyN5000kIhH2hULM27iRP/zyl66v3cVJBfkeVTMsyMquPMmPXdnmILIr6EBy7ly6/X6ioRABr5fHvv51GsfhvWUGg7SUlzPLJuPTRrHkcK7kAaLzL1OcLQsXkx+OUB0KMbm9nWt/8AOqjnE+x4zkln/qU5RddhloGpVVVYR/9jMON469U0UO5JCJbjfO0ZNCGc2FHeefz10/+hGHSkvRTJPiUAivndN27s6dXPzww5z56qsUGAZxIHgkxCmbQxafVe804ZlQiK0gtMLHJ3qS8ts67KlTWpaDxoYrmfxYQbY15BUVkbrkElJXXIFZUQHY6ZHWriW1di1lBw6w8L33OPLII+OywXExvmECqRtuIHnDDXiBWCRCxzvvsPbxx4k/+yyEQmkf/3hH6tpr0/dIb3MzO7/5TTdbiYuTFnIQmZgEeVUDzmWSGyX7MS0+G1m1yiqoFInQ++yzHB2nKq6xfDmxaDRdyvf3d9wxah1dp7SwarpEMb11+umkAG8kwpqHHqIkFMqqY+CEMSG5Znk5xkc+kpbGz9i1i9beXp4di4NxgOyHE0OG4uKH7MITUXB8oMXz8njuhht47p/+iWhpqeUhAWJ+P6c8+STnPPIIs+vr8QGtZKcTE8t5CasKm5yFAXJ7Y3OlFBL2ke4ckxy9LS6WcSI0DQpadzfeBx7A89BDGOecQ+qqqzDmW3Wu/X4/ky+5hI5LL6Xm5puJ3nYbhx5+2A1SczEgmD4fyc9/ntR556W3+ZqamPLtb9Nx6BAeLFvCRIBZVkbquuvS696773YJrouTFrL9QE0n5pRWTCW3cqYFH5a1rnvVqvT+PRs2jMKvGByMlSsBu5TvvfeOWilfNUOWym3kTkQvsOn009PcZP7mzWlLpUlujAnJTd5yC93xOBWmSVk4zOL6en45jno48gkXPjkBudchsg2o2RX2LVnC05/7HB01NZiRiFVK1zBYvHcvZ3/xi5Rt3AhAC8cuHSjPZZKdK52Q09wg25ogfH4RskuExhm5ALKxgJZK4Vm/Hs/69Rjz5pG66ioC739/unN1pLSU3i9/mcS55+L94x/Rx2ktcRfjA2ZJCYmvfS3dYQLwbt5M9R13kJejlPV4RvKjH03HQ+gNDej/+McYH5ELF2MDORNTf4UhZKIbdZjLKm5s3jySVVVWHElPD97NmxmPIdCmx4OxfHl6fbRLDstEVxXs5KmppobDVVUA5EejTK+vT6dfHFdKrnHKKaTOO4+I7QGreOABfvn00+PGAybbFeSoSwG5ZyF8rILkRoNBXrv1VnZdeGHmA5EIU554gvNfeYXiV18lFgrRYr+kFqRQq535pHVBdsUxqumEnHJmyuvy8crzqDSPSfs50aDv2oX+X/9FyXPPseQ//5Nts2eT1DQrSG3BAuK3347+zjt4774bfefOsT5cF+MMxowZJL7xDUy7kQXwPPEE/l/9Cn0C5pM1Zs7EuOii9Lr3f/4HzexPD3Hh4sSGeO4KJVZ9FjsViFAJrqzodkgqbsGrr2KM03bCPOUUTL81Hq0dPow2BqnDROEM1bYguEsUeHfJkjQ3mbd1K8lUKt1pGDdKrunxkPzMZ9LrsSef5M1f/GI0D2FAEKRRVCCCDFkMkE1y8+2p6bzz2PypTxErKUnvJ6+nh8W//S2znnmGMOAUUqcWxfD0s6zaJY5V9U0mvFGHKaKsx6XPnajY//bbeD79aWYsW8aWujp6V6wAr3UbGIsXE//+99E3brTI7p49Y3y0LsYaJmCsWUPev/wLJZMmWUGyPT14fvMbPI8+OmFtLslbbsHUrKPXN20at4nfXbgYLah+XDUcRiW4MtFVBSodOLp6dbpSaf6GDfSO5o85Dhhnnple1t94Y9TaNJW3qDYFWc2NAtskq8KcLVuysj+NGyU3dfnlGDNnAqBFo3h/97vR/PoBQfQoBMmFzB8gTrro0eUBgTPOIPR//g9NkyeTkoYsqzZsYP6vfkV+RweH+/m+XFXY+qvOJhNRldiCM+E9RsaxPoFn47PPOTzIClKbNInkhz6EcdFFmLrVjTCWLye+fDkV773H4q1bad6wYdyMNLgYHZiAuWwZyZtvpuCUU5hp54+cXFFBx7/+K4cffXSsD3HQMJYtw1i6FADNNPH+z/+M8RG5cDG28CjL8giqbFVwyrTgVA21p64OZsygKBgkdvgweVu2jEuSawIp248L4BmDksOqiitzLSHA5WkaO5csSfOeWW+/Pf5IrllaSuqjH02ve+69F62tbbS+/rgQl5bl3oVco9oH5H3gA+z+7ndJeb0ETZP2UAgaG5l+112UvPUWR47xPU4V2fqr0iYrueLYnJLCO21zCkjLFbR2IhNcFdqRI/h+9jPMBx8kecMNGBdcgKlp+P1+qq+7jsPXX0/dgQMk/u3faLbLDrs4sWHMmUPyE5/AWLwYIF1spDgW47I33+SNWGzcBMkeL0xdJ3nLLel1/emnrZzTLlycpFD9uKpFUFVz88gQXZUAi890Xn89JbW1VnGVWIzmmTPpHIdCiTl9OmZ1NQBaby/au++O6vc7cRTVi5sA9s2ZQzgYxAMUHT1KSVMTPdJ+xgXJTd58c9r3oR84gOdvfxutrz4uiJMel9Y99rp8E0Suugr9X/6FMq/XCmQCZm3bRvcXv0g0Gs1ZSEGFU6lhj8Pr8naZhDqVOJaXVUIsK7yqd1d+7WSD1tKC7847Me6/n9RHPpIOUEPT2DN1Kt0//CGJe+7Be889aK2tY324LkYAZk0NyRtvzMqcABBpb2dZZyfLGhrwxGLsHkdBsscL46KLMGbMAOzRtD/9aYyPyIWL8QMngisU2nyyfbkxex4hm+B6PB4Or1uHZj8/5re0kFdXx7ZxSHKNM8/E7/cTCAYxXniBnjHwDadyTLJVYdeSJaT8fpLBIAvfeSdLiIRh8uRqmuYB3gIOmKZ55XH8BowFC0hJwVjeX/4SbZyasCFDEAVRlYmoCSRuvZX41VdTEA5TWlVFaU8PF7z9Nk/++MccHkQKnv6qfjiVJpbRHyFVz7BTyU8nMnwyQ9+/H/373yf4+uvMvOMOGmpqrCpqPT2k1q3DuOAC9KefxnvffWjt7WN9uC6GAWZxMakPfYjUZZdhejNNomYY6E8/TfKee3izrIyjdXXsrq+fsNYVs6CA5I03ptc9DzyA1tExdgfkwsU4gVMMjGpBEEquUHEjymti+fCyZUQMg0LTpCgaZfLhw7w4TjvGwUsuYYptxVpTV8czo1DKNxdUFVdke0oAoTVriNnHWXzKKXTW1pIvHedwKbmfB3ZgVbQdMExNywo287zyCvrmzcezizGBExGM+3wk//mfSdlRk+FIhOZ//IPpTz7Jg1u2TNiH31hCJfhOyrW6fCziLzAURbrrxRc5+NGPMmXNGt45/XTiM2daN4vXC5dfjnHRReT9/e8E7r8fvaur32NT/dKQPUxzMnYw+vvfnV7Ptc3pswJO51p+zQwEKLnlFozrr6c7kSAieeo9r76K5w9/QD9wAICGo0dz3t9Ovnj1OOT3mEa2Nai/zw4nyj77WVLz5lnBc01N43Y0zYWL0YKcLswJueJc1PtVJsmNa9diRCKEQyGmbN7MM3fdRUcolA5ad+IW4jucto8UzIoKfKedBpqGB5jd1sbcYSjlO9C2XbZ5yJ0LyI6N6iospGnp0vTI6rSjR+muqyM5nCRX07RpwBXA7cD/Hchn0l9+6aUYtbXWfuJxvL/97fF8fNzADARIfPWrGKeemt7mefVVen/wA15MHKOu70mK4yGwA02lpmajOJZdA4ZAdkMhOkMhZgKVp5xC20030btokRUx6/OhXX015iWXMOP111kWChHesoXuUCjLPy0H9MkpUdRE17Iv+kRFfwGV/WUWwWHZybMuX1PCiiPm4uES93gIL19OdO1aPGvWUDZvHmgaFabJvlCI6Ftv4f3d79Dfe29QvzFXInM5iAKH96jHqdqIhoqpZ5yB/7OfJeXxUFlVRdfvfseRuDro58LFiYNj2f7Ecj59Y16cqp1C5v4WKThFvvmo/Vo8EODAmWfiAZKRCCU/+hHm/v1MAYrIjoVR03+qBRHEayOF1Lnn0hMOU1lVxZS2NnzR6JCsWP1lhXJq231YhbTkID752S5+//6lS0n09uIxTSq7ugj29BCVcuRC/23kQJXcHwFfwPqfBgyzuJjkxz6WXvfcd9+E9DOakyaR+Na3MKZPT2/zPvoont/8xs0tmQNOJETM1W2C2KopW1RTv/weuQBHfyqp03aDDEHWlW0qxHbPtm1oX/oS4dNPZ89NNxGeNw8N8JaX0/O5z/F6KsWihgZO+cIXKNy0KV2BWZRNVnMTy/mKRUAjnNgkN1dAh9NyrtR66janBlTOJiJS4x2tq+PwmjV0nnceiaIiUkBRSUm6MEhpOEzpI4+w8Sc/GVQKHZWUykGeomPjJ1PXXi2lLd6v5rweDpg+H8mvfIWUx4OmaUzq6mJWWxvPDdP+XbgYb3B6zuR6Jonnikxk5dzyapYlOYWoaMtjWPfrnlWrwOvFA5Tv3s2M/fuJYBEn+Z6Xswc4pc2SU5eOlKprrF6drlcQeO457vrLXwat4h5vu+70TJfXIXOu961cSTISwQyFmLpxIz2//CUp5TiHRHI1TbsSOGya5kZN0y7o532fBj4NpB8SyY99DDMQsF4/eBDPQw8d6+vGHYxZs0jcdhtmeaZYp/d3v8Pz0EMTNkfmaKE/1Q6yyYmIWA2Q3bNT07XIk5o3WB1ackqzNpTfkgfkb97Mqs2baV65krdvvJGjK1diahpxn4/Nc+aw46c/ZcV997H2oYeoaWykm+ySyh3KvEA6PycywRVQ/W1OFYXU19QGUlb75XLY4nUD68HTWlnJnjVr2LdmDV1Tp5Ky3+vFaqNi4TCV+fmc1tjInKYmfvHYY4O6p+VOlRPBVRVdUSkxLs3V9H1OFovBwASS//t/01pURMA00Q2Dc995hwfHqUfQhYuhItczRn0OqcPm8lC5uE97pH2pBNcpU9GutWvT71/w3HOUk63gOuWrF4WY5HWBkUrnaVZWpis39obDvPOTn6CFnTL5DwyygCG33XKbnk9fUptr9M6D9T/ENI39Z5xhnYdIhOCvf02bAxHvr5LcQJTcc4GrNE273D7mYk3T7jZN80b5TaZp/gr4FYBH00xj3rzsijq//jXaBBvWr778cqJf/GLar6clk3h/9CM8L7001oc2rnG8wxY61oUVwFK7BjoXhEb1NR6rSMZgoFa7Of2NN7j2jTfY/MEP8tevfY32oiI00yTY28u+Cy/k9xdeyLKNG1nz17+yeOtWjgJtQKc99wPt9FUexfqJCPF/qwEcuSanRvFY69Hyct696irevvRSmiZNIhmJkLL3lbSn/CNH8D//PN7nnyeRl8eBujr+McSAMtmrJx5+aoRwPpkHmHiwHcuuIO9/MDCuuILUmjVpxWbRiy/y4J/+5MYPuDjhcTzD5qLzDNntsYBMbkXbpOJoTQ0tCxeiAb5UiqUvvUQh2feuOqqnjuiJ4xgNq4KAtnnzkAguZBPcgbbtTlCFqCMLFhAtsgwE+e3taLt30+HwuSEpuaZpfhn4MoCt5P6rSnD7fAbwf/GL+Kqr6QmHib34Ip633jrWV40rTF67lsBPfkLA46HCNGnYvp3EN7+JvnXrWB/ahILawDj13nxYxLXIYcq1vQiL4KjDu6kc24Y6BCz8Q0JpFsvL77uPD7z1Fv+49n28fuoiGqdOhqD14zavXc7mc5czd/tu1j74EPNefplWw8BPpsY5ZBS97kEe20SB/ECRVXun8yqW1VyUqtqreTwcXLSIHcuWUb98OY2LFtFZW4upaWimSUEoRDISgWiUqg0bqHj+efStW2nH6nC0ArtCoSGdezWRuXzN5RqGVFVemeg6BbkM6rgWLSL5yU+m12OPPMLWQdoxXLiYCHAis+ozR475EOuyT1fcuzLpjZLd9jiNMu340IegqgotHGbOCy9Q1dXVJ6YkQWZUr0taFvl3u8huO8RnhhuGVHLYs2HDsOxTnGvRTvfXvgsftPxcllOaiu3NZ56ZJrAlb7xBZ47vHg5P7nHBV1LClLVrQdOonjSJyFe/SvNIfNEIwSwrI/blL1Noe9gC0Sgr77uPV12CO2B4yN2wOA1B++2pFIvAltjLYl0sl0jrWj6QyESrqzeLrKbJ88FA3LRF9nFq/sxKwB/iY+t/zMe2wM5583no/Gt5dcHZVtnUKOxeOpfdC/+NYMf/5tTt21nywANUb9uWFcTQTcaLdCJCfvjIPXpxPsW5FSq9WHZSBSKVldQvX25NS5aQKCjIDFEWBdNRuAB1Bw+y5Fe/ovL11+mKx2nHIrZJstXzwUINcFQDSFSCKyu5qlXBiSwPFmZ5OYkvfQnTY/06fdcuvD//uUtwXZwUcCK4x7I8yXYFEZKZkD4XUfYhK5f+2lp2fepTEAhgVlVx6i9/SRF9FcwoGaua6MQ7+VBFuzSUtikXzMpKjLo6ALRUCv2114a8T/kcO43Kym17sT2HvoG5Yi7Ow8GVK9Mdff9okFzTNF8AXjjW+7SysnRAx6lNTXSXlU0Ykmv6fCS+8hU6NI1S0yQ/keDKV17hT8PU2zkZoEtzp6wJPrIbGHFjCIW2HIvElgMVWMS2wl4v1qUXCoA4aAnIk7q/AbkrbC+njKENARUAHnG3qlNxZnlB0Xt8+cAdNCcn87fZ1/BsyYXE8/KI+f00zjuV7StX8sBNN7Hk4YeZ/vDDFL3+OsWxGJ2c2CQX+j4cRMdGOn19pgJA9/vZvW4d29asYX9lJR3FxelGVdMhT+pNBeOdFB3xMKu1lbr9+7nwjjuIhUK0YpFbOXJaDBEONCVdfzCkuXz5iRLaQgmSSa44DtW/K6u3g+mUmV4viS9/GbO0FACtqwvff/zHhLOLuXAxGMiBZqolIVcwlNwGiHtO3Ku5gqdFxzwFdF58MV2BAGga+YkE83p7+4xG+rHagiIsy5rsBRaB0HKHOJPQcHiRklTc4bAqQF8VVxaFcj0uhUIuAvh0ezmFdR56Jk8mPG2alXYxHsfcssXRqgBjoOQm8vLAzjqwKBTiTxMkyMEEkp/7HMb8+ZaHbfdulv3tb/zpySddD9txwuMwyQRX9VUK/igU3Ep7KrfnFYCnXNpQiXUnqezAaQw4AR57yhuKlFtKtpRcKi2XYN299g+YUnqQz+o/56P7/sRj2pXcPe2ToGmYmobh8fDeuefy3rx5xOJxit56C339ejxvvokej5+wnlw1OEFuCMXpKwaS06bRsGABhxcuZP+CBTTPn89RyYJQ3RDCE4+kL6yqzsOs2PMWyxs3svjQO3TmTaXZV8eUd+up3hfiMNnBfYLgCvV8qGpJSpoLghtXlsX3io6MUHJVtTclfXaw10HyU59KB5Voponve99DO3KsIuMuXJw4kAUWJ4KrWg7ke1jMnbLyyOul0nL9jBlpzlN34AAV27dnjT6WAloJEIWiWN/gaci0BTHp+IajA64iy6qwfv2w7VfEW4iRN/FML8X5MWmQaYNFuyhECA/QYqu4KSDw9tv0JBJEyM6MJP6ToQaeHTcMw2BfKMTU5mb+dPvtE4Ygpq6+mtTaten1+E9/yluPPjqGRzTxITcsTgRXDNcEyJAclctW+OyFanteYy8LkiszhajDNnldjiZQE+32t13cpUJmlpeF1CzmpUBeMeClpLidj+78M6tf2cR/Tfs+706fyZFgEcFw2KrokpfHoXPOIXzOOfRGo8TeeANz/Xr0TZtOOOVNXAvCTxsAfIWFhOvqOLxgAV0LFnBkwQKSgUD6OvECRjDbgpAK5rP87fUsa9jE8gMbmRJrtuwjAWAOFERDVDeFrB1Mh6pmMBLZyoEYLpSHCocC1WYg2xVkgiu+K6FM8mdUX+7xkN3UunWkLrssve753e/cOAIXJx36CzBTI/0h0+TniuNw8oumxOeCQfbMn48vFMIbDLLqttsoC4XSo5LF4vlVCUQh0AK+zuzsQAaZjq+fjGd1uO0KZnU1BUuWEAgG6ensJPX668OyX/X8yha0XI9OYQVxSv0IcGjlSkysc5P/+ut0Y4kTThh1JRcgEonQ8F//hT5BCK6xdCmpW25Jr3ueeQaPS3AHDdGThuyo+lypRcTQtarkVviAKVikdqo9r7G3BehLbJ2WVfMjWHeF3IX3OGyXtxWR8UyUS8vytqAfmGUf6DTAC1OfhfwQM3w7+cq7/x/Nb9ahH+hgZ2oGT5++iu2zZhGzv8osKCB53nkY551HQNeZ3txM96uv0vrSS2j79o3rUtjHggmkKironT0bY+ZMjs6ahbZkCfF589B7evBFIn1qxOcBeMEf6yK/I5/JnR3MPHyITz/+Tab3vpdpPdVxsR4yF5iN6oYMwe0kY4UYDiUXMg8q8SBU+1aySgPZ6YJEX0xWcAfzTxtz55L87GfT6571692qZi5OOqh2BXkoXSW4BfZ7ZXIl243k+1N9vIhnWtuaNSR8PjyRCDXvvMPcF19MN0nFOplnVjVWA+CzLFY17ZnvlvPydjN8nW8V5dddR5ldHnc5sLe6elhESKdROpnoiue6/MhMkE30RXvoA1KBAN1nnEFhcTFGOIz21lvpQD0Z6mPcCSNGcvX9+9G2bBmp3Q8IA4m09ADGlCm0fuEL5NlKUd7OnVTedVefxO5OKapOLK3t2HAiBLryunyhO0XGq6/lYSm4AbIjXVOAmQBNjC23kR0hoNoVnFoltWUabJGniLI/kUQxQiZMtjQC5duhcD/QAHghHLIWG6C6OUT1zhC8B4vffY0l3MeGadN4dvVqNq1eTde0aQD4/X5m1tbCKadQsm4dR0Mhejs70fbuRdu1C33XLrT6erQDB8a0GIl8LcjXgO73Y8yYgTlrFsasWaRmzSI5cyadgUA6eKPQ76eothavplnDfKEQ2GV1g52dLNq5k2U7d7IotJO5LbvpnDGV5nl1TDlST3U4ZLWgsnlNXCOi4sIB4BDWNdOWnau4h8wlMRRbgAyd7CHSPGWbOpohd/jkNkqejgdmcTGJr3wF02s16XpDA143k4KLkwxO8SDimS/uOZngFijv95H9+FDXxSNH6B6FwL5LLknzicVPPQVIiq8BHnnoSKTRiWa3QQJqdgLhXXXy6MvLA/Hwm4D3ssvS8VLzDh3CMwxlfJ3Qn5Iuj2ip7xNof9/78M+di6ZpzM7Lwywvp72jw/H3Hav9HjGS63n00TFvYEX+VZlMiV6c2O71+9n59a/jDwTQsXJonvbd76Ilk45Rf2IulkeyIsl4gROZ8eR4zUNfMitHyMueHZnsiiEaeThXtAfFIqRSdPciWKxFtED9eHEd1wcDv/2d7Vhd0layvbmlSCkhuqxJB3YBu+15yJ72WfyrFaszOOeee0jdcw/bZs5k7+rVlH/kI+mGyAQCwSCRSASzrg7q6tLXmxaNou3eTWVHB7MNg5Z33qH53XfROjuhp2dE7j9T06C0FH3SJIxJk9AqKjDtZbOiAv/cueRNn05vOEw0ErFKIGNdF14kVd+2IGiaRkVXF9N37GDBgw+yaOdO5rS0UGafygLAkw8FkRDV+0L9VwoJ2NtiWCS32Zq6Ipnz3UaG7Ip+y3BVFpMbbNl/XqAs2/GSfciuj75keSBk19R1El/8IuakSQBoPT34br8dLRY7xidduDjxIBMm1ZerBkcJkiseJakcc3WbgaVGeubPJzpjhnUvx2IseumlrGH3LqCsg8yDMw60QTySaYNEvmwBMZolPK3QV1wzcmyH3HzEnDOHtsJCikwTbyrFzAMHeHqM46VytW8tF1+MZlvUZre2Eq+rY9sgyfjIkFzDQH/uuRHZ9fFAPEACOBcTyNc03rv9dgqWLqUgHMbX0cHlt99OYUdHn0TNsmAkHkai6smJTHLlxkKsqw2IvCxI7kCSQcvr6Uh6e38JpJKKCSg6AppgvaKiQh59y0UlHNalwDRzkCRXE9Ub5GHxUvqGjZZI6x4sFXcfFrm1l4+GLQ7WSkZhjAG+hga8DQ34X3mF9992GwcrKzlUXEzT/v1QWNjnmMyCAgpXrqSitpYuTcNvmnhDoXThErq6LMLb2YlmT3R2Uu33M3XyZA60tHC4tdVS/7xe8Pmy5qbXS3lNDWXTpnHYMOj0eKC8HFPX0SFNYLH/t0K/n5raWoucV1XREgoRt4muDuT39FC6bx/lDQ1Mi0ZZsG4dlT095MXjBO68M+1jM8kePvTFrEmL4FwhokDZFrVP7iFoS1iLLfamTvuci3s6ytDvX/mekK05snIkd+7kjrZMdj3SXN1nf0h9/OMYp50GWIFm3h/8AK2lZYi/yoWLiQ11ZEQdURFkUvaDHquQkJxerAhouPhivPa+6156CX9vL6CUBTaguJ20SBOPZNr9HrJHiUXGIdFnly0U/XmFxfM3Lr1fhSEVhZmxZw+//sEPxmW8VCI/n8bJk/GaJhow68ABnhsCGR8Rkqt1dY0LFUEouSJNkeAfIoXFoVtvpevqq/FpGlRVccOXv8zSPXv6lGIVUwfZHj7hyznRLQuqqiSnBZMbEMh+mAfIJrXyup9skivnDIRMkJBO5sYuCFuTR+xMJ5vM2iTWqeqU3CAMBgURKIqA/xBoQbITuxaR6XbL28BSE5sy87aItSiUxU6yVUWAxlCI+2+7jbl1deyurycRCpFfXIw5dy7GvHmY8+ZZ87IyApIimqX6er0WIZXKUYNlhSiprSWsaZSYJkdtUuwEv99Ppe3fmmKaxAWBtl8XJFcQXn8wiKZpeEyT0nCYYChE11NPUbhvH6X79lHa1pa+9/xA4KWX0Orq8NTX45UaW+FPFQQ0PeSYAD2RsQJoskwjL0ehN0w6J66Yq0qu03DhYCHfE04WBXUUQ6QVc1Jy5fvpmAR39WqS11yTXvf8+c94Nm4chl/kwsXERS4/rjyaIveNU/a6PDLrpJgive4rLGTjeefhxSJSS556Kh3AJo9EprBsC4F2a3s3lsIrRDQRMiKOW/AW0TbJJFxoNuI7dGXuwfkZZ3o8pM4/H7DipUJ33TVu46WaVq4kkUgQC4Uo6enhrX//d1qGcKwjo+R2dIzIbo8XQlUUBFcYnkuBwuJiXrjxxnTU9rJQiPM6O5mD9SBsJzM6LeZyLIvw54xULrvxBpnUquRWbVAEmRXEVV1XtwsSLD/c5fiwGJlUI3lklD1wjnhVe+Ryz1c0CGoKEnWbOhe82g8EbLLtPwSFOs7DBAX2D2oBDkG8Pb1ICxllUZAuuaEDaAiFsnrZWlcX2qZN6Js2AZbaSUUFBRdcwNJ/+ieOlpQQ8fnYv28fmq5jFhTghFyk+Hjeq3V24mlrw9vWRv6RI/iOHCG/rY2pBQVccf31lMZiaMkk6++8k3AolJUXVz49eiiEFgqllRCk/0sE44nrwIn0eaSUBPLrUTL3bQd97+UOMqMyQ7UrONl1xINTHSaVH65RaS7IrfwZ+V7IhcmrVxP57nfpjsWIRCJ4Xn8dz733DuHXuHAx8SF3NvtTcWW7nAxHFdRhW8N556GXlaEHg1TW1zOzvj7dHhhYbYxKeMUIpTxKLOwK4jsEERfrQqGVBymFACR+o/i8al1IH//SpZglJQBobW1o77zj8IvGBxrsFGfJSATf3XdzZIhkfGSU3GR/WctGD/LDtZTstFSv3XwzWjKJZpoURyKcvXMnc9vrqZ4E1Ucyyo9QncSDSPbb9DAyeezGE2RLgkxq5QA+VUhTiay6LKyTKh+UCYMgplFpm0oonAIBcw0xqV6m44WTxzgAFBgZhVlsyxNdcaA3klEThaLYRvY20as/nhEBDaCtjdYHH+Stt99mbl0dB+vriYdC5GMVNaGkxGrY7LlZUoI+bx7zr7wSzeOBZJIj//gH3pYWSCQgmcya8iZN4ryrriLfNCmIRHjgxz+m6+238SYSfYbdffa5fXvnTibX1dFZX0/Sth84WVQC0ufke0jOTqBuh76+M6ftMTKxgJ1kl8/sIFvJHQ67kRo4Jt8LcpCLatGxA63T71PvJflhrWLy+edT8fOfU1hYSIVpsv/VV4ndeeeYx0G4cDGW8CjL4n6SR0zkNku0Yeo9po6gqM8eE9jwwQ/isUe6Fra2otfWQijUJ9e16MgK36+wSYlluQ2Sn6Hiu5w+JxNc7M8LRdppdNmQUqN6XnhhTAOWZahtb7yggP0rVqTXK15+maGWqhixwLPxAHHBiNFjQXKTdXXsvOgiiiMRikMhbn76b6zb/HeqK0IQAK0ZqlqgqNPO5QlZPTTRG+um781wIkEltyrBVdUq+QZVSW2uuSDE0FeFFcPVsgqrqrPgTGbBmfAO5VyIhvGYcwPyItb56iDjAxVTNxa5lUmX6M0P5hhV1RewcuweOdKnCEAnsP3BB9NWiC5bSXVCG/D8Cy+k33sgFErbE9SADvGfd4dCJEKhLJ+1GnSoBmMJQif/t04dHtV20l+QSA8ZG0iPMhdeuJj0/uGA03mRia48VCqTXzUx/bFU3NQZZxD5zncoLCxE0zS8qRQrnniCV3Io8i5cnExQRxxVESZX8JlqE3JaF/s/NG8e7aecArY9a35LC0ZdXdoCICuuclvmFMgmW+sEqRXfKY5TJspilMuD1Y6J55uBM8E1/X6MM8/MnJ/nn+//BI4iVP60d+VKUj7rDBSFQhQ2N7sktz+oSm4FUKFp3P+Zz1CIpbid+c7zfPTN/7byrk7HegqWAyVQ2Awz92duEEG8eshWd08GyKqt3Fg4Dc3mIrRFOV4rIjvQKEZ2z1Xt+crrKqEVy9CX8MLgia7aQKpKnbpdNFRO5EpdFkFQo+XtdiLFg3mvSnJl37XaiRGkNte1IyArEaLxFudGlMhVc1aKuayMCM+r0xRR1ofDkysruervdArCFNvkzpFKdOUHqwerqk/q6qtJ3XIL3fE4FaaJL5nkojff5JFXXhmGX+HCxYkB9R5y6mjKk9MopTyiom5bf8UV5IfD9FZVMa+5mcJoFL9tV3AaRZQFGnD2+grI7YecKbHHPn55BFl9/sXpSxyNVauskT1A37MHvbFxIKdwTLB79er0cs2GDcOyzxOa5Ar1TVZyGy6+mMNz55Kvg8+X4JOv/wbmATOx8vhHsQy89hNa88D0huzsVd1kFJgTWckFZ3+TSlLUYSAnJVeOzRLbi6VtQoMSRE8EHjkRQzHcLPt25TlkNxxqwzIY5PIj5+V4TZBcJ4Kea3k4yNZoQX0oyMpIrk5OLi+33FkUSq0gu3KUcn9EVV3PpZYkHNaHmkJMVnycRjvEfSJS5InzFCG3iququabHQ/Kf/onUpZcCVvBI0xtvcMZjj/HIK6+MyyhpFy7GAuoIpCpQOKm5uUYlnbbFiop4b/VqCiMRPKEQF/75z8x44QV8oVC6HRdtjNoRF+2afJxOanGe9JqB9dwTyq2ATKRFW+bER+QqruMh65UM+ZkXKyykYfny9Hr1hg05K5wdD05okisruUVYuTmf/djHyNeAQrjurQepmXQIarGIbi2ZakmCvRigJaC62XqpgwxRE8FSEx2mxwPFxZilpda8pASztJSyuXOpnDmTo4cP093aSsw007lOfUBJZSX+igoSu3YR27mTwo4OPB0daB0dFHR1UWAYfQiuTGzFa0VkK+WQ6VT00He4X2QQE+9F+owThos8OjVK/W0X363aJnIVFhkq2RotqA8PuXOjKvTi/xZqCfQ9TzKZU5UJ1W6Qy4Igd4Tk85vL0oLD+lChklS1I+ikIuUr73PywGt+P/EvfYnU6aenv0vfsYP47bfzSlfXMB29CxcnDuQ2RtxX8r2o3ofy9lwCjlj++8UX4/H58AFztmzh/P/5n3T7I9qeOJmOt9xGQYZaiLk8mqVuE2KJrCQLyPYuX473mDU1FKxYYZXx7eoi9eKLx3MahxVO7az8rKw/80wMu5hN6Z49+Fta+jzjB4MJS3JVculkHJcVxSLg5RtvpLeoiHwvVHUf5gOb77eIbSmZRP4++uYa82cPLcpG9YliVzA1DXPyZPTp061qVDNnEjz1VApmzaI7maTX9vOJwJUCv5+y2lpSmkaRaRIOhYhFIiTs9xT4/QRqazmiaZimSVcohBGJpB/SXtMkaBhUxmJM2byZWa+8wpzduylvbs5qPFTVSjQQsmreQSbjRbu0PBw3gIsM5Huqv0AMJ6VWLMsEVw00zAVDmcu2DVm5j5AJInNS9sXyaNk+nOCkxuba5tR2eJTXEjU1HP3GN0jZ1fAAPC+8gPenP7V81y5cuBgS5Kwo6milainK0zReuuwyPBpgwqWPP54mweJ5JKurcue7235d7Msg238rjkXmGU7tpuiYF5AhuOL71Tal7MMfplwu4ztpEg3H2TEeKNdSn+sy5HOijmKKUbVtq1ZhYAX11WzYkCVUDEWImDAkV344qOu5hkHLsR62+cCh2lpeuewyy2SehE/9/tfktScyV5ksGzWQrkzFPqDZSv0kR8OLP2m8qm9mWRnG8uWUrFmD/9RTac/Ppzcex8AiqYV+P5PtxP1lppmVuF8DSuycp2gaGlBsp48SF69feb0gGCQuk9xAgGRtLQc1jYMrV7Jl3To8kQj+3l5q2tqojkZZ8Y9/cNZTTxExjDSZldM8ddE3zcpEUjwnAnJZB/qzZIiOo+y3lTNmOHndBPrLO+m0TVZwxQNDNJJqHZDxcF2otgjVGiEeRFGyA9+cVP2uRYvY/9WvkiwqSu/f+6c/4bn3XjeLggsXOaB6YUXwl1BSBYeQ36NaFxJkSGSB/d4C4K0VK2ipqkIzwd/dzenr1/eJC5AtV+BM0FSlWZBsQVjlnNpI+/Yp7xHrTjB1Hf3yy9NpIBc2Nw+ojO9guJYYkS2WzqFHOhcxMl5iObBcjNK2+P3Ur15tjSKHw0yyrQpRskfhBoMJQ3KdvG5O3hn5NZnkPvulLxGtrkYLhzljwwbOfOZ1mGrvXHS5OrCeok321EA6gX8L2RWqRPL+8eKjNDUNs64OY8UKjDPOwKitxe/3U2X34oKmSZOtxupAUCGpFZpGrLGRAttqUObzMXv1agpSKUzD4PDDDxNrabGGTzWN/Joayq+6imReHr1eL0feeINIKkWsrIxYaSnJqqp0DmIAIxhEi0QIV1Sw84wz2KFpvHjNNVRs3cqyZ5+l7pVXmLRlCz2JhGOqJ7n3N9SenYsM1GG8XEN1aqEx+YGQa1m+R2FwKd+chvxEUJmYq58dC6jHLhp3p2BJJ5KuRlm3XHABe/7P/0kP32mJBN4f/QjP+vWj+KtcuJh4EPeej0wqQpW4qURYEFpBJMVyPtlq4t+vuCKdBWHVP/6Blkj0uXdVO5r4PhVO2ViEpUm0t0JgkDvJ6iioSjjT7e2yZXToOqWmSUE8zvTmZv4+gMphg+Fa6siePNotd+5lNTdOphjSpmuvxZg3D13TmJ6fTzAQ4CiZdnEo7fqEILnqEIKcgiiXl6aATNXVw1dfzf5160DTSE2axLqvf51EGPIOkBkb78CSEXtI17yn2SoL2kyG5IrUTz2MD5JrVlWRuvJKCq6+msLqanrC4XRyfzWZf5lp0r15M/7GRqYmk1y0bh1l0Sj5vb3svPNOjFAoS6HLr63FU1dHqr6euUrvzwPozz6LXleHUV+PYb+eVu7mzaP3C1/gSFkZh4uKaNu+nSOTJhGuqsK0ya8JdFRXs37dOp5ftw4tGmVqKMSMQ4coe+wxunftylLvZNXLxfBA3FeyR1T1q6kE1ilQQ113ypwA/af+UueyL1sQw5i0riq5YwVZsVF916qKK4Y0ZdIrVZ0mCey88UZ2f/CDmFhDd3pnJ/nf+Q7mGNeZd+FivEP24MsqblR5jxwc5tTeycRWpOc6VFPDlmXLrDbNNDn373/vE+gq7uNcHW81iFuehFVBJbse6bcUkE101X3IMC65JF3Gd86WLfzyZz8bkIo7GK7lJHB4pPMszr9YFs90IWRtsxVnNI05hw5RWFdH1A7kG6qwNSFILvR9GKsPXaeAjlIskrvx+uvTJ/CUpiZSJSW0AqVhCESwuhOH7A/0AK3Q22mRWlF+VUwd9iQu7rFQjkzAPOUUUlddhXHWWRQGAsywFdvKqir2hUL0dneT3LiRs2bNYnJnJyVdXTzy/e/TaSfoLwIOvvQSpk1iy6Tt6UC9UIiUfVOoATyARWzt5NfyewCMXbso/I//oLSujrr6evRQCBPoWr6c5i9+kf1VVYSqqugJhzPKXXk5e1esYK+mEfzUpwj+93+T/4c/EA+H06RmqL06F9mQG9esqm79zH3KZ1U1QX1NTnczkGwHMtGNklsJVRvAsbwu5IehE8GVVV3sZaFEi9ejPh9v/PM/07hqVZrg+hobCX7rW3S2to7mz3HhYsJCtAdCxVUJrmonEuQxQN/2R25fnrj5ZnqqqsgLh1n54osUHT6c1dmW1VynQFcVTsRWJpNCcBAkXRBc4R2Wg1Vl8gy2XfGMMwArE8t7//Vf6M3NAzp/g+Fasrorfpes5Iq5rBILsttaXs6+qioK7AIVc5ua2Fxfn9U+nhSeXNkcLk5urqpa4rUAEJkyhcbJk8E00YAloRB59fXpwKUCA/ztUNAOBQ3WNjXAScxlJXcs7AomUHXddeg33khrURFxRbENxuNMP3yYkscfZ9MvfkFvby8v19Yyt66OQ/X1hEOhdExdKeALhUiGQpTa66Vk4u9KyfbPqFkBZCO5k4KVwiLB8VAo6zPejRuZ/qUvMb2ujuX19Rz0egmdfTZ7zzmHyJIl6c5IuLCQlo99jJ61awk+9xzBRx4huX//mA9Ln2gQdgVx7xRJU671XB6w/qDaENSHjDyENdBcuKoKOlZqrhogoRJclZhDXyW6s7SUp7/2NQ7X1aUJbmDjRoLf/z5dvb2j+XNcuJiwEB3NBBkFVCCF1dbJ7Y8gj2I9QMZPKz/fOxcs4IVbbiGWl0e0qoolP/lJn3ZJHY2S1Uf5eeVkMZDJrhx4JkiuTHCd7Aqqiptatw5Tt2im/u67Aya4MDiulQtyh0NFAotHvXv++UR7e4mHQtQcPsym//gPDoZC6dHyobbvE4LkOuXjlNWlYmm9SFrWgS1XXIHHzmdXe+AAdbffTiIUog1LkVU9JsK50EEmsr9TWRd2hdFUcs2KCoJf+QpF114LmkbANNkXChGJREi98QaXVVczq60NI5XirocfRrMfjCKZfzlWMQxxcZZieZbFdnW5EtB0SBm5Vbb+1Dhx80PGN5neblfFimIFuU2tr6fy//0/elevhq9/nR0zZxLx+YiGwyTy8jhy6aW0XnopZfv2MX/XLo48/ji73bygwwb1nhKdoFJpuQTrPishMwwFx/bUqo2TeAA5kT8nxbY/tVddHwuoDa/aAVRVXNWuEAdaZs7ksW98g87KyjTBnfTYY5T85jd0GW53zoWL44HwzKrESu6AimwEou2Lk1Fy/fRttzZ/4APE8vJA0yiORKiMxx0zBMjPx2P5cSE7uFcNQBME0yMtR8hWflX7g471TE1ddFH6uzxPP93/CVOOazBcSxa35HMA2WKY3AGIAb3ArgsvtArdRCIkfvMb9tvcQG4jh9K+TwiSC9mKk5PqVEQm45c4+dHCQnZcdJHVy4lEOOeHP8QMhejGefg9RXbqqp5jLMsRlCMFEzAuv5zkzTejz5yZ9th6DINZO3ey+3vfI9LUxGO2Yru7vt7RdyMuXHHeSsiQ2UqgRlrOK7E36OCJQmECChXmETf6L2wgOgyiwTGk1yLKPN1jW78e/2c+w+mLFrG1tJTDK1aQqq21Uq34/RRfeSUHNY2KW2+l8rbbOPi3v7lR5kOEOjQlE1zR6SlR5iIQwkmxlIfsZPKZUib5WpGDyVT/rbo/dbRAVU3GUs0Vk3xcMsEVagxkGu93r7uOpz//eSvzSSSCaZrM/vWv8T/2WFY75cKFi4EhRbaKK+5HH1abIobKBUlUlVy1w54ENi5cCPZw+pJQiML6ekc/rmpx6O/+dcpaIJNL2a4g2wZUa4Oc/QYgsXgx1NQAoPX0oL/88oDPHQySa5HdpsfI7ug7CRhRoGP2bI7OmIEJEIvBK6+k00AOV/acCUNyZUnf6eSXkq08FQH/uPBCzIICdKCiqYkZW7akbQZOilEuVUn8aU5q00g+hMzycgr/4z/wLVlCTzhMTzhMZVUVixobWb5jB7/74Q/Rm5qAY5dqlXuDwnNbQYbgTgGqdHuhBqgmU0NQPgn2ep49EckQXtlMDpnGRiwnpF0Iy4cwnqd9jKEQRihEAii9+24ip5xC+KqrKLzqqjTBbyspoedLXyJx7rl4774bbcsWl+wOEvIwmXw/CYJbSaYzVA4UBkn3YMxYbp+sIHOqIqL29JXLKquwg3yP5VKI1W1jAbmTrP4+leAKq0fD3Lk89s//TMNll4GmkWeasH07i77xDfI2baIDl+C6cHG8EPdMnEwKK0EAxTbVKiC3M052uKYVK2gLBvGEQhR4vZz3hS/gUdRGp8622vEVcCK2atlheVnmPRFp7pQ1wgPELrkk813PP3/c+bQHw7Xk7DfivAslXcT2q0JhAjiwdi0JLDHP/8or9ESjfdrQoVrRJhTJVSV0QdZKyShPYrkE2HjllekfeOZjj6XVRHGSVaIlHrTqQyrX8kgGQRnTp5P/wx8yZfnydEDZ/ldeIfKf/0lE0/hdDsU2F8S5k8+ZIC81QJUPi+BOl+Y6zmWlFDaS1wN5EShIZBNc+aEuenXyhd5BJoVIzipV27bh27aNsmee4bQ77mDnzJkkdN0KWJs/n/h3voP+7rt4//hH9B07Bnw+XFhw8l6Vkn19VGL1ebRJ9ooH6AEtBoU9UBiBQCKbqELfQCz5IeLUqRT3o3y5qZYHdQgw5bBtLKA+3FRlRxDdQzU1vHTTTWxevTorzV5Rby9n3Hcfhzdtopu+Pl8XLlwMHHKbIFRdQQR1ZTmPvveb3L68ffXVVn75SITFDz1E3o4dfVRcVdFVn2ViX3LQbq7MCk6ZCgrInepR3keqqAh93TomlZTQEw6TfOqp4z53x8u1SrFy2neSIbhiNFdu6wXP6rDnvbpO6wUXYGCPWD/3XHr0Sv7/1GfA8WJCkFzZtyJkfNGzKCZ7aFV4S/csW8bRKVPwAPk9PZz+3HOEyZzsDjJBZaJMbDt91Vl52cixfbhhnHIKia99jZLp00HT8ABL9+xh5j338PxTT9EyiH3Kw9IBMhenIDBMAWZikdtZwDSsEy73AHL1DvzWPK8bSiOZYVqZ8KgXewfZ570/JS4F7H3zTYxPfYqZS5eyua6O3jPOADuHqHHqqcS/9z30TZvw3n03+u7dgzhDJyfk60I0ZKIxyyK4U+yFGvuDynXg6YHibvBJf6IguHJQhNpJlC0scuEHcamp18R4JXyqaiP/zgTQVVzM6x/6EDsuuwzT67XeGw6jV1ayaP9+Vu7cScOGDS6xdeFiiEgpc1XHVIO0fPRVXwW6Zs6keckSiyiZJvMfe4wY2Wm9jmVVyHUvy1kI+suuoNoX5KwKqjLtu+EGps6bB5rGorw8WjweGnJ8f3/HdDxcq5TsYGT12S+LWx1kAvsjS5cSLSkBQGtvJ/LOO+kR2eFs/yYEyc2F/tj9o+97X3p5xTPP4I3F+gwhyp5A8YAdqwAWgcoPfIDY//f/Ee7tpSccZnJFBZe9/TZTDh3iriEolarCpJKLQDcW6yzCYp5+rCteJba5yG4PpGKZsqtCoZU/pjofjtf2IVsy8ioqSH7oQxgXXYTpsZotY9kyvKtWMXX/fpK//S0H168f1LmaqHBSKtThLPW1aqyGSmTdEI2qnPYrgaXW002mBI+osWv//2akb6ldp8tGJrOqBUg0jmrgwkSAUxofHTDy83n3mmt477rrMAsK8JL5T+Y98wyLX3yRYEkJbfX19IZCOaOlXbg4WSHfC3qO7er94iRU5RKpRIyBGHkUcw/QcPXV6ffOePlltNZWusi0T2KUSizLyJOWZfIqgreE4KSqtrI668EKANcdFCD1N5tA5OqryRPpUg8cIDiACmfHQq5qZ4KYaz7wJfp6g1WoAkd87VrLiwt4XngBwzRzfHJomDAkt7/UVSpxa5g8mZdXryYSDKJ3d3PG44/3yVmpDp+OB1RfeinBO+7A1HUmmSZNmzfT/clP8m5hIX87TnuCCllJ7cHqUYkbzAfUtENASLAxMqYfJ7uCMu81sjd3kJ2VooNsgiMIzVD8NlpbG7677sJ88EGSN9yAsWYNhYEAs2prYc4cfOedR/Dee+n66U+PK33KRIYavOBR5k7bKsikjRMkVzTOQnX3AaWdkCcuIIP0nx1PZAjrMS4Tx7mcC1G+HiZqToH0w8DjYf9FF7H3hhtIlJXhgzTBnb19O+f87neUvPce3ZB+aIrOhRox7cLFyQi1Y66uO20HZ5++6t9X02M6iUBGcTHNF1yQ3u+Mhx9OW4mcLAnys0wmg3nSdhH7oOYeL5Am2YYgk/pjofv002nPz6faNMlLJqltauLZcVpAxvT7Mc46K72uP/fciH3XhCG5Aqp3Rh72FBfnwzffTGttLaamMRvw+v3p1+VE7WpmhbGEWVVF/AtfwNR1NE2jtKeHKffey4YXX+TgMOxf+GSEotZJtmqXAmo6oVicxC4yrnw5DYIUbKaSG3n/HWSUXNXzPJxBe9qhQ/h+9COMBx5g+re+BXPmpCu8aWvWkFi0CP3ZZ/Hecw/aCZxQXzSq8vBWrnkembKRRWRsCqKxFQ8AMcwklI6iiF08hWz/bdRhPTLA98gqrtxxnUhQvXXtZ5/N1o99jPjUqXixzrsGVDU18b7f/55T33yTMJmS1XlkJ3hXya1LdF2crBAkUSa28rrorIt11fevrqvvkyG2xe19tl5+OUmvFx0ofu898uxOqZNqK0O+f33Ka3LsQy4ltz81tD8cueIKYpEIB0IhZmzbxq9//OMhq7gjheS551JYUkIgGCS+YwexxsYR+64JQXJlIqpetPIkKmK9tmZNunTsaY2N9NTVpSP2nQjuWKtGZn4+ia99jU7DoMw0KYzFuPzVV/nDm28O23fIPlkx6ix6i+JcxoDKCFTuBU87GZIbzWRQkKdcaZ+kUewsj6VMfGT/0nBA378fbr+d67xeNi5YwL7KSnrCYUxNI7VuHcYFF6A//TTe++5Da28fpm8dX1CDBeRGVKyrr6lBDgVkromovV+DzP9ZQEbsV68Hp2ujv9d7lG2qmjuRoAPRRYs4+IlPEJ0/P63cakCwvZ21d9/NWc89R7lhUICVlihK3zKduVQqFy5ONsj3gjz6JHtSZR+r/CxT+YEIQJODxZ1UWFElLeL10vGhD1FYVUUiHGbSI4+kA2HFPp08sWr+W/V10dbmKp8uOrw6x6fiRidNomvlSms5EmH3976HOc5GMOU23X/dddTYVVrPPnKEDbW1I0bIJwTJhf6HHuQhho6ZM+nxeNBMk7xEgmmHD+Opr0/ntVWHGcac4ALB73wHfeVKesJh9u3axYoHHuAPzz47rH+6OEciBYlQ7NTXhJWhvDPzmkxCogPYlmtYusueyw3PcJ7/hlCI+771LebW1RFJJIiefz6cfjoAptdL6vLLMdatw/P3v+N54AG0rq5h/PaxhWxVEARWTtot5vIwWZH92VwNtfiPotL75JzHMtmVK5VF+1l2unbkUZaJqOQmp0+n5eabia9cmX7gAuRFIqy4/37OefRRKuPxdIdDKOkywVUf5Mc7VOnCxYkIldj6pHXVxypsAfIzSbYpig6jILIe+nIKMYKV95GPULpkCZqmESguZnJLS3rkRRYFZCuYajPIlQ1BFhTUkTbVk6sNsBFosVMRAuRt3ozR3Dxs7ehwPaPF+U9OnYrn9NPTQfXzW1poGQbvcC5MGJIrIPe4VBU3Aby7ciVaJEJxKMScvXuZ/MMfErVVXPVBOh7S9Ez62Mcouf76dJqwzm9+kzf++Mdh/x41u4E8ZKPaDEqxShjrZCfkV6Pinc5/f0pdruHp4URWcNqzz2KccgrJm27CWLQIADMvj+Q115C69FI8jzyC56GH0Hp6hvkoxgaiYRUpX4rJzpZQpKyLcoxO+WdlRUR9z/FcC8farl5bE0nJnbp8Of5bb6Vp3jxSvb1pW4KeTDLv8cc58957qQ6H8ZOtsud6aKtDr+Jh6ZJdFycj5I63fP/0Z8USbYgcQBYlQ7Dk9kwQWqTX4oCpaRgf/CAF9mjwkoYG9Dlz2LVrV3p/KlEVxysTVPl1YQ9TyaxTeyB3eAeClNdLy8UXp9cLH3+c4XyiDXf7E7n4YmLhMFRVMfPwYfJ7e9k9gt7hCUVy1TQfclSjeHhuW7kSE/BEIpz+xz9ihkJZD9JcpvGxgBkIYHz84+kiB6c0NNDT2sqzI/BdgszKN48gLLKlQFb6PGSrrrKnWT7vTsTnWOrdaPkv9W3b8H3pS5hLl5K88UaMefMAMAsKyPv4xyn+5CcxH32Ujv/5H7SjR0f4aEYWHjIKoVBuRVCZmOT8hkU4q7FRsjtFTv/h8VwPKYflXJ8bLyMsuWD6fBgrV1J03XUUXH01KV1nimlyOBTC7Omh6oUXWHz33UxubSVItuokPxhjZA9RqgqOS2xduMj2uzsN76vD/qKdEvdTlIxYI7cv8v0l1sXzLnbWWSQLCphqmuQnEszft49n6uvTQbgy0RXtlExsIZvE+pW5UyCwasE4njagZdUqEnYqLu+RI+S9+eawktzhhOnxEL3wQqKRCPtCIcoefpi7Hn98RL3DE4bkqr5c0euSH6CdxcU01dXhBXTTZMamTemLXjxI5c+ontzRfrAmP/rRtA832NvLym3b+PUI9WjEb46Q8SULdTVXgyF7mGRTvqrq5VL5ZELjpOiN1vnWAO3tt/G9/TbGypWkbryRgkWLrEwMmgaf+xzdF19M7PHH8fz1r5a/d4JBbixFgyoU2woyOQ3l5TIdeozs9F5dZP5jWeGXM4YJEqxmOVGvj4FeL07BIuMJJmAuWkRq7VqMVasw/X48VVXpIFETmHroEIGvfY3pe/emya38MJNVHdWHqz7wPMoEmZEXFy5OFsh+XPU+kuMKRC5XQXJ7yL6PBPpTcUX7YwKR664jZQdwzd+8mb/ddReHQqEsK4KHjN1LHKvPYV0cm2iPC5R9qPvsc9wDuPEbLr88vVz8xBOYxniVCCB81lkYxcUA9DY28tZ//zfaCKUOE5gwJBeyk63LF6qY9q1YgaFpGMD07dvRw+F07lsnRUlN/DyaMGbNwrjiCiJ2j2bJ44/z64cfHrEejfjtYlnOFKZ6hmRfYa40KWpmCqchb5W45CJGowUN8LzxBvobb7D4X/8V/eMfpzMYxAQCJSVE1q0jtW4dnrfewvPXv6K9++6EKhesenIFyZUrl4kpr8R6IdAO/s7M/x3HuiZS0nIHmXRwbVjXDfT9v6Hv/z/U940ljMmTMdasIbVmDWZ1ddZrosT25PZ2ltXXs/3rXyexd28fb63TEKsaaKISXaHguGqui5MVcudO7cCLSY47EHOh3OYityl7X6JIjS69ngDMU08lUVeHBkQ6O9nz7/+Or6OjTyCoaC9llVl04IXFSBynLDiopBZlXWzTGZgf9+js2XQsWACAlkxS/NRTdB77Y2OGLqnksOcf/xhxggsTjOQKCIVIHuaMArtWrkxfyHPeeKOP109VkcZqeNQEAl/8It7qanrCYaKvvMKmO+8cUUIlfrtT/e7+igdANuEwcmxXVfFc67m2jyY04Ohf/8pnZs6kccoU3p49m33hcPr11IoVpFasQN+9G89DD6G//DLaOO4dQ18fmFq9TBDdGsAzyV6otN6s+aD0SPZQH1hkthuL4LZKk1ByBQZyfTj93wP53GjDDAYxVq8mtWYNhv3wUKG1tBB/7jmie/dSVFbGa/X1xEIhKuirPskkNhe5ldedsiq4GRZcnIxQ/bhipFENnhUder/9HrWzCFJAGdkeXQHR5iSvuy7dFvmefZZ4R0dWeySTULEu7At+aT9OgoNQcuX9yPsCidgO8Kbf+/GPk19VhREOE/z73/GMQDC105NvMG1SrKqKiB0Ijmni+cc/hnBUA8eEIrkyKZW3JYC4x0PTsmXp7bPffDNLtVUJ7ViquNVXX03wkktA06iqrKT3m99kNJJ9yEPEJzsaQiF+ceedzK2r42B9Pcm8PDzvfz/GmWda6ecAY+5cjH/7N7Sbb8bz8MN4nn4aLRY7xp5HDrkaFkGq1IeA3LiW2pMnSIb1lpM22moR8EUyEcfCVtKDZVPowCK4LWSyLZwomFFXx6TLL+e9KVNonzsX09u3WdR6etDXr8fz3HNoO3eiAc1YHQBxKnOlFJK3qUOv6gM5V6YLFy5ONsiBlyK1lmytU9s4P5lCNqo1QYhiouMZo++9ZcyaRXL5cgBLYXzooTSHcIIgsSJOQeYTssIrl8bV8gf4w9VNRrZX1wMkTzuNgx/9KPkeD3lVVUzbupVDA9h9f1+ltj9y/I6TLTEO+BN9bYlOo7qHL7oo8z2bNqEdOXKcRzs4TCiSq3rV5F5e+6mnYhQU4AHKW1qYtn8/YbKjLeVpLKOW8z7wgXSw2WmNjXQXFY0KyXWRDTkTgw7o3/0uxpQppK6+GuPCCzHzrCbTrKoi+alPkfrIR6z0Y489NuJBarmGsHJtD2D5bUvJrmQH2QGG/jBoHfaLBml5tjeSsSR0yw/dLgABAABJREFUkV3gQ264ThSYlZUYy5dTfNFFFFx1FR1eL9WmSW8oRCRiVbzQUin0t95Cf+459LfeQkv03z3sL3+3WBYdBJGBRI4X6M/y48LFyQiZdInJQ1+bjyCc0DfLgiC2QsXNhdR116WX9VdeQT84HGWYckDt2cpztccbhyJppE1M7334w6Q8HiszU1cX8zweVNrotEt1u7ws+53lIHU1jkcmvzEyVjbxDOkkkyc/AvTqOkcuusiKbwC8Tz/NyBsVLEwokgt9S16KC/jQypVofj8Eg8x97TUKySRcF++RybG6PlqE15gyheaaGmbZXpRT9uzh7nFaeu9khN7cjP7zn2P+6U+krriC1JVXYhZZIQZmIEDezTcT/MxnSL38Ml0PP4z+5pto8f7q3xw/xPUokoKrQUlOcz8ZtVY0UnIuSNEwdgPFwrSVAFohHoZ2skswiwZKfG6i5rAVMH0+zFNOwVi+3JqmTQNAr6oi6fWmA8gCwSDRLVvQn38ez0svDTiXsmqDEg8FmegKYgvZ5FYlw2NhoXLhYrwil7Dl5HGHvhkWVIIsLwuYlZXkX3IJgeJiesJhkg8+OLI/yGnYJ9cQUAq0BBR12kIF0OXxsG3BArB5xOI9e2ivr+9jdWIAu5eX87FSTwqSK3iR6LyrBFeO2+gmQ3C7yDxHosChZcuIlZdblUg7OvC88QbJQZ/A48OEIbm5hv7ERd+8di3U1mJoGpWnnUaqthZfKOSYVkRXJgHZhD5SSF15JXE72Gzq/v3c/d3vjtvSeycztK4uvPfcg+fBBzEuvJDkNddQOGdOJiPD9dfTu2wZvUePor/xBvr69egbNx5T7RsojpVIXN4uhsSKsVKGCe+XPHSX1UAlLGVAi1oEt5UMye2236equBORcJk1NaRWrMBctgxj8eK0Mi9DBJAV9fZSu38/r33rW3S//PJxfY/sN5e977L6IYqgCCVJLMvzXEGdLlycrFAVRye7j0x2wblUtipqqUSw5NOfZtLcuVZeXI+HJsOgYaR+lJpKIddckBxbpciLQlHMapt3r15N1OfDDIXIN0344hcJh0JZfCaXWKJ+lfweOahPVnJF3JO6LoSTXFOPPXXdcAPBqioi4TCpBx4glRq9lm3CkFzIltrlPylVXEz37NmgaXhNk8kdHUTr6gjYRSDUdD1jpeKafj/GunUARCIRGn74Q3SX4I5raPE4nieeQH/ySZZ8/vMU3nwzh8rK0qpfJBIhtXo1qdWr0Xp70V9/3SK8b7+NlhxcX1V0vo4Vma+mfJPT6YgADNFxE1HHSOuBsDXEJAiurOaKYaYI2XltxzNMv5/qiy6iaO1amqqq6AoEcr5Xi8fRtm4lvmkT0SNHmFVSwsb6epoHeT/KXv/+lFzZriATXPW9qk3BJbsuTjbIWUbkZ75YdmoXIZOHuj81F2lf8bIysCuGaZrG8r17yR+pClzqELQuLTupGhLJJQrFMattfv3qq/ECyUiEOX/8I8lduxz5jOcYX6E7bC8gmyeB1S55IF3aOG6/3mPPZWtCj7KuLV2Kfs01lOo6JVVV6PX17B36mRwwJhTJhWxFV/wRnbW1aOEwZlUVkzo78SaTVNgWAPlCl43bThf7SCN14YUUlpcTCAaJ7dpF7J13RuFbXQwHNNOk/ZFH+OycOXQWF7OrpoaHW1vBzvkHYBYWkrrgAlIXXGAFKr32Gp7169G2bEE7zp6rrFrIqWjUHJF+sht5uZGS/VRCyRXtZQHZw0sdZHupxDCT6hcdLzABc9o0zAULMBYuxFywgIK6OoJz5mBqGtNMk32SvxZAP3AAfeNG9E2b0LZuTavuzfY0FMhWBafc0LKXDmlZtSvIRFkmzi5cnIzIFbgpj2zJU4q+pE3mCvLzXyB17bWEo1EmmSaVnZ1MPnSIv420hVAciMwoRVk0lcGnSEuinm5onLOI5jlzLIIaj7PoySfpoK8FQ3yNh+xz4vSV8gihqgBDRhgR7Zs6mi5G/nocls0PfhB0HTSNqe3tBEtLXZLrBJWcyuudc+agRyJ4QiFm7djBqXfeSXUoRCe581Hm4XxRjCQC738/U+3h7lWHDvFiba1rVZhAaAiFuMvOyLDbThuVN3OmlXJq9WrMyZPT7zUDAVIXXkjqwgvRurvRX33VIrxbtx4zHZncyMgEV06VE1C2yR5cuSMIfRso2ZclSG0XfYMF5DLMcm7psYBZWIhZV4exYAHGggWYCxZgKkptoKgorcaYQFFeHrEXXsgQ20PHG3t8bKjnRCanxwo8U19Tfb0uXLjoa1WUSauqQIq2rkB5j7oPAaO4mNRll6Xz1Zc++ig/f/TRkX0uq+ZiwTZVxi5H04kGuRuevfrq9O9Z/PzzlHZ3p/Pdq4FkurRd7RQ4dRJyZTBTC2ioo99COVenXo+Hxro6ym3v8MK9e3lplGOQJgTJ9SjLMgnwAUftXo03EuHURx+lwvbiyiquU0/FqVc3UjArKshbuDBtqVjQ0sKBkRoScTFikDMyaIDW0IDe0IDn7rsxZ8+2CO9552FWVaU/YxYVkbr4YlIXX0wwlWJqWxtdb71F2/r1aLt390lLJve8hS1BTpXjNMluU5UgCdKkWg5SpNvNdDUz1UslyjOPpl3B9Pkwp02j6txzKT7rLA4UFdFVWppO7ZYLPV1dLMzPZ9rRo0xtaeHh226jc5QaVDktoehMiHMuK7k++/2qVUF+r7ovFy5ORsiE1EnNlWMSZCW3gEwlT0H+1KF8sZy45hrMfCuvV3TbNjb++McjWwBI9k0Is7Bci10dthMktxsogpbZ1bx5zll4TOs3nP3ww+nUaE5+Y1XJLcjxFWLdQ990YWqsgLyckOaiLRPPjARw9Kyz6PT56A2FKDZN1n/5y+wLhUa1XZsQJFdA7qHIfpL22lo0e73WJrjypNaGd7ogRlrRNc44I1Mlqa0NTzzObjerwgkDDdD27kXfuxfPH/6AOXduRuGdNAkAv9/PDFvJL1u7ls7rr6e3pwetqQlt1y70+nq0Xbsw9+1DTybT16yc+FzkvC0hE2hWar9PTvUlz9XUVvKy7KMSQQSygqsGRQ0nTIDqaoyZMzFnzcpMU6ZQGAxSbJ+rqaZJQrEegBUcqO/YgbZzJ/rOnaR27+bQ1KkU1dWxsb6exlHqQMpBYk4Nv6ziysExMtFV80u6aq4LFxZkQUpWZtVR/Xyc7Qrys18WuIxgkPiVV6a/x/OXv4xOhUuVsTsxT3moDtLqw6MXvg/Tq+FJwGmbNjFt/36ayPYey1+D8jU+6WsCyrLffr9MWCHT4ZbtayqpVds9MW+7/HIMrBik1F/+QveuXaPerk0Ykqua0MUFbxYW0jlliuW3MQxmNDT0IbciCEe+QZy8uSMJ44wz0kMihevXc9cf/+iquCcoNEDbvduqmPa731m+0VWrKP3Qh7KG00XgmjljBsyYQerCCwHoTiZJ7dtHatcutF27CO7aRWFTE37DSBPcUjI1HUqxrusofYeNRIMTzfG6PEVyLIvGbbBKrglMX7yYyeecw55kkkP5+RaZnTkTs6DA8TOBYDD7XAUCRLdtQ9uxA90mtbS09HkoyUr7aEJNH+ZEbsWy/H/I73NSSlyy6+JkhpryyinLgswRDTLCqPq8V4fze666Cuz2R29sRH/11WE/fsd7V/VbyHK0TG7FXAc6oGeSn0cuupbOggryO8Jc9vDD6Y/lCqTXc3yNmFT7m4eMnxayCwMJQisEEflZIX6r3G7Fp08nctppAJiGgfnkk2NieZswJBf69sR0oGP2bHQsYjGlsZHiRMK6wHXIN5yVXNWzONIw8/IwliwBrB7Nu7/4xYj4A12MP2iQVhqDzz3HtbfdRlt5OYeKijiwbx+awzC86fWSmDuXjrlziVx2GS3AzliMmj17mNnRQZXXy+SdO9G3b6eko4NAVxfF4TC9WA2QGBKXlVwReKZGwKqprJyWVQKWdawAxcWYFRWWYj1pkrUsrRfOmEHewoW0aRqlpkmHgyqbdc5Mk9jevcwyDKq7u6lsa+Oh73yH7h07BvEPjA5Ui4Gs6qoZXgTJVRURWSVx4cKFBTXQ3CkBgSC7BtnWRPk9sifX9PuJvO996e/w3HvviKi4fTiGPHQsJFa5VKUgumLYTsirpXD/wptonLoQ0CjP8zO7s5Nu+vIb9evk8yfb3/z0LY0MGZIsMsSIZXnkT9jbxHNEhQHEr7gi/bzQX32VVHv7mHTYxw3JzUU45Qg+J2J6uLYWA+thO3nPnvTDucDIVq1kFUX1mYw0jCVL0jk69aYml+CepGgMhXjgttuyA9fy8zHnzMGYNw9z3jyMefPQJk+2yLE9ARj5+bStWEGHPYSvmSZFoRD+SIQ8wJtKUdjVRUFnJ/n25O3sxNPZidbZCZ2dGB0d6GVlMGsWXY2NtBw4QMLrJe71Evf5iHk8JLxeEj4fCa+XmNdL0uMh4fOR9HopmzqVGXPn0hyP0w4Wia2owPT5cv5mAH9FhaOCDZblQNu3D72hAW3vXrSGBrTGRuKxGHtqa9Hq6nilvp6mcTzq0R+pdRox8pHxP8veZ5n4ypkWXLg4mdGfJ9TJM+qUoUT9TPsVV2DYgav6gQPoGzaMzo+RAyTE8Jsnx+tR0iQ32ebhr5e8H9AwNY3FDQ0019XhCYUc2w3oG6gn2qNc/lzBp0U7Jo8+ZWWjIEN6Rf5vFWZhIcm1a9NVzTyPPz7gUzTcGDOSK/+vThF98rJTL0X8EYfnzMG01yeFQllKlqi6IXob8jCsWl1oJHsYxsqV+P1+AsEg+ksv0Xnsj7g4QaEOp2uxGNr27ejbt6e3BYJBiufMIa+uDm3ePBLz5mFUVKDZQ/jYZDEZDIJNFlMeDx1lZSTLykhiVftL2PMk9jXu9+O1SbJpK6qxSAQT0h1FeS4v5/v9BGtrSWoaVaZJ5BhqrIyecJjJFRWURSKUdXZy9M9/Ju+119D27YOOjpwKylhZD44HahCGeDY5dciFMiLyS6rKukp0xzqjhQsX4wW5gp5ypemTR0X6EN38fCI33khpVRXd4TCx++5DM0epyKzMDpF+iAiIUP0EdjTdi5XnE015wDTxx+MsbGyE+nrayBTx6ZF+rxNUm4eT5QOyz6lQwz3KdKxgfWPNmrQVTW9qQnv33WOempHCmJBc2RAt1p22iWV5+EHtURxZtoxUVRWEw5Tt2ZOWzlNk5/yU87c5DcWOJAKrVzPNJhdXLV3KQ27qMBf9QA+HKdyyhYotWyjH8t0Gy8rgggsIf+YzhAsLifp8BLZuRTNN4iUl9PqtfriZYzIAJJKsAd5gkGgk0ofgiknen1/1yMpqbE8PWlsbHDmC1taGduSINbW1QVsbqSNHiFZXE6yrY0d9PUeVyjwTHU4PXlWgQXqP7Htz8ripHXAXLk5WONl/+stBLcceyO+VC6z03Hor5aedhqZpzAgGOdrURONo/ijhARA/SKSAkHObSl4LMwUPrr2O/I4IlT0hznn9deb99rd0h0J9KlU6kVw1k5SavUwOSIO+9ipdWZbjo5zacRNIXXFFet3z+OOjE9CXA2Om5Ko561RjubxdNVeDdcHq8+fTs2oVmq5jVFWRT8YfYpD588UFID9M5NQ9/fV+hgrT7yd/1qxMNbauLua6qcNcHCcKjx6l4qGHKNuyhYK6OibV1zMtFKICqARSXi+NJSW0FBdzoLSUwyUlHC4pobWkhKP2FJ45E48gq6kUkffeI+/IEcxkEjOVwkgmMRMJzGTSWk4mSdlzb1kZi9eupSCVwh+J8Pivf03eli0WqY1Gj3n8jaHQqGU7GAuIdkQQWHm7PLwXl97TXzCg6oV24eJkg7junewI8qiJXE1QfrarQ/gpIF5YyOHrr6fA7uyvCIXYN3cujbt3j96PEj9CkF01xZNSqerNU86gqXg68QR4u9s597vfpbunh1ZIK7kqt0HZlcyrBLlVi0HIJLeADNFVA/jUNGUqzNNOw5g+HQAtGkV//vkBnZqRwpjaFZyiJp2W5eAxgRQQP+MMDLuSRnFvL8aMGXRv355+4KgE1ynBvTycMRKKrllbm04dVtrdDcmkmzrMRb/orwHRQiECoVDaPyXgSyapaGvD29ZGEJhCdhUzsZysrSWvro6m+nridr5Cp1Rj6vYI8M5f/sJs20986ARTYwcLNTeuk3orp+ApwM7PSf+BfqID7hJcFyczVE4oE1xxr8idRNny4/T+A1ddRdgwyDdNSiIR5jQ28sxoPo8FybCZqGlkNqWUudh+9+evp8e0PrLyiSfo6Omhg0xJdjFinUvJhb7eXFkslutQQIbcFmCdT6eYqP6IbtFNN6FXVdETDhP7+9/Renv7OSEjj1EnuaqfQ43+U1PIqaZp+cQeOXoUbC9NMBIhVl+PBlkkV44EdErbM+J+3NradOows76eu+6801VxXfSL4bge5aFz+YHQEQrRYVcDFIGY/SX5ll9rCIUIudduH8gEN65sty11aS9uVHqfOuSqVj9zlVwXLiyoCq6amcTJsiDuqXQnMxjkwLXXEotEOBQKUf300/z+gQdG93mcsoitzD/UZXnbewsWsGnhQhKAmUwy7eGHOYBFbOUqlSLmKEqmzXCqDquSXVmpFSRXEN6Yw/uOVTxr6ooVFFx3HaauU1lVRXTr1iGXTB8qxlTJVT0iueZOfpAU0N7bS28ohDcYRHvuObpDoayHhpziwsmuMBpDguacOYCVOmz344/jcUmCi2NgsKnt+os+VkvLikkObOovGtlFbgifrRgmVH2EavojoeQ6PehGMyDWhYvxDvVeksmuaMuEEql2FNV7at8115C0YxeM+np2/ed/0jlaAWcSco3iOG277/rrCWP97lkvvEBHe3ua06jcJlfg2bFKIgtSKzhXAX3Ts+UabVfhv+EGUrqOpmlMaWsjr6jo5CS5Th4R1QwtJzGWt8ue3J6KCpKRCKlIBK2+Pi3XR8mOYI5Cn8pOci9vJB8kguQCaHv2jOA3uTiZIRNVeWhPJrhC8ZAbUXVozIn0itddwtUXQjGRhxpFLlwRnayOTIn3Oanmcps0mmkOXbgYbzCkuZjUYDJRoEAMsTtlKEkAvcXF7L/qqnQgbcmf/4wxBgRXqLiyCJdrfmD6dN5ZuZIk1m8v/utf2UfuAj5OnlwBp9FxNeisQHpNFNDKJT6qNmIAMz+fvXV1zDBNTODUPXv4+ziwZo5pnlwn+dyJ2MplfGX0VlRYAWiAp62NHrL/CDktjyC6cuSleKiM1IPE9PkoqKsjUFxMT3c3qb17R+BbXJxoGCqZ7C/NjqocQF9PmLzs9JqLbMhthzj3om0TgWaQ3bl3UtvJsd099y5OVsgd7VwZFkTnXdiBEmQT3RSw67rrSBYUYAL5+/bh37CB8Gj+EBuCcwg+0u0wCRvChve/P63ilrz+Okf27++jUMfoq17L7YVT7JMqKspEV46BkhVdmVfJ2RWyftu6dYRNk32hEOWxGI9/+cvjIth4zJRc9eTnIrgFZEvjsl2ht6IinSOXtjYiyvtkM3pcWpZ7PHLgyHBj8urV+OfOBU1jbiBA+9Sprh/XxaAwkE6YSpDU4T11OE/NieD0HS7BOjb66xA4KR56jvfKy27nwoWLDNRAWNWyIAiummEhDnSXltJ0xRXptIjlf/5zhjeMMsRvECpsN1ZAsEgF1oFFcJsrKmi44go8xcVEw2FiDzxAiL4WMieLlNqOq8FickowtTCEnM1KzaXrlP1KwASSV10FWNbMxC9+MW6smaNOcuVegIfsuspqr0LM5RMqX5hRm+RCRsmVofbo1F6euAnUqMbhQvXy5XTbuUUrwmHK3dRhLgYAp0wykNszK9RCdbvc4xfkVu3kuRge5CKr7jl24WJwkDvqskopBCuZfIl1pzR8jZ/9LL5p0zDDYXxbt1L82muEyaTR6k9AGM5RNbldFvmxBcntwCK6rVhZExr/6Z8oswWyOq+XA4kEDYP4frXugBPRVdOE+chWfo/lwwWr4JU5eTJg5U3Xn312EEc7MhgTJVfYDwrITl9RgFVDWd3mo2+0twEky8vTSYbz2ttBeV1VrdTUPOow43CjMRymzPanBCIRNo8Df4qL0Yc6CqGqe+r2Iqz7QG5swLpGReOo+jvBUgDayE4bJgIT1LQ6Lly4cDHeIRRbWQGVSRdki1TyiJUBsHw5h2+5Bb/HQ2FVFbU//SkGECRjGZCDz3PZheRtasdVfc0pA4R8XP0FyKWAeGkpHZddRpGUy7dwkAJZf7/LKehNdBjUY5M/44SUreICeJ56Ci0Wy/HO0ceYpBCTexCC2PrteYG0LOZqNHIciOk6qbKytILlb29Ply/NdaGJdfXPHqmHfmsiQWcoRCAY5KX77+eoq+KedMjVG1ZzDsrvEXXE5YhX2Ysm23KEsmGQrQrI/i7Zmy5H7rtw4cLFeIRKMAUhk9tP9b1xssWtFLDzk5/E8HhA06jp6OC0WIwmsjmBKoj1xx2gL/EVxyC3rU4xEMJDq4puqoDXfO219MZiBE2Tqs5Ophw6xMNDFMiciHiu3+t0bKpAKIuExuzZGIsXA6AZBp5HHx3SsQ43xtSTK5RaQWaL7OVie15kT6J3kZX6qKwMzS5Pmt/ZiZ5K9fHpqH+QHGwmX5Aj9cA3KyqIRCJEIhF827cPOjWUi4kNObgyV8o8ObhSdPaE8V9AVjLAum6FtwsypFYOYhAFUETQpbg/XDXXhQsX4x2iEy/ayRh9LVyiPUso249Om8auuXPJt7MonLljB9TXU26/R7SBssrqVH1QtkKIfTvZk1TfsFqRTY4NcuIoKSBaXMyhyy8nFolwMBSi8tFH+fmjjw7a5qgG7qkcSI1Vks+HSoSdyD1kq7j6yy9b5dzHEcZEyfWQsSQEyBDcIqBUWhbrIlOC/LDuqKjA6/ejBYP429qyhi5kT458ATml6JHTlAw3zIqK9PJ4++NdjA5kUpsrLZ5q7lejXUWKKmFXkJWNAjKlrEXuxIjDshpt7MKFCxfjGfIzOkGmLZTbQ5mEyUHqHmDrzTdj9PYSC4WY0dKC/xvfwLCrRcojawlypxqV03qhfCf0HwchlmXiLBeuUO0ACaDp6qtJ5edbgVzbt7P1xz9Of/dgofIdmeCqajNkk3BVEFQJbqK0FOP889PrnocfHuLRDj/GzJMrHvxCyRWEttReLpHWxRBut/2ZHsA89VTyamtB05gCBGtriYRCWQRA7rnIN4XTUMNIwCW5LiDTMMt5CX0OyzLhlVVeAflaFo2+bGcQDbVTIy03sq5dwYULFxMBQsmV7QkGVnspE2DR4RfCQc+CBTSfeaYVsxOJsOTrX6dg794+RRB89j5EVVQxAib4hqoa52GRVqfjlDM1OVkBVGKrWiJ6g0Gar7wyvc/gvfdmVVAcDFSV2YmQy4o19CXh8nGq+4hdfjmFxcUEgkESW7cSHYdxR2OSXUHOpJBPtporyG25Pa+wP9NB9tCuNmcO2MZsn2FQUlfHwVAoK/pyoGbykYAJFE6bRqCkhJ5wmJQdGOfi5IJQDHJVmBHLYmRDzQctGlk1Gbr6HU5BBPIwlNpwuSTXhQsX4xkpMlljZCuCeG6LgHTRrgqi6we2fvzjmFhtae2LLzJ97970a2IEWaynsAhtp/S6yOokW8NkX7B8jGraRpXIqu2vvCwTyIb3vY9kYSEm4GtqIu/ll4dEctXc2/LzQya4BdIy5M69qxJ5Iy8P7wc/yBRbbFy3fz9P1daOuwxSY2JXkFWtANn+21IsglthzysBTQefke1P9B48CLbXxpNM0m33IOQ/T80pJ5NbyP7jhhvTFy8mb9480DSmlpXRO23auPvzXYw8xPUup2yRSa3svxXbIHenDIftToEOcgPr5K1y4cKFi/EMJxFKViEFsZULRiWA9hUrOLJoEV5ATyY54+67KSDbBimmYnt/HfZ6OxkBQpBZmfDJVVdllVQmkXIckCCRKsnt0077/TRIFdnK7r132Npp8YwQo3jq80AcS770e2Wia0hzmU+F160jv6YGNI3iWIy5ra3sGYdpUscs8EzNriDbFbIIbrX1mbJ28CQyF1ThkSPooRCpYJDIM88Qta0Kco9LJgXgbFFQ3zNcmLF4MS12jlx/IsHUcfjnuxgdyIFnKsH1Oyw7qQEymVV72U7+c9XrJbzosl3HhQsXLsYz1AAvD5m84HIwmrBAJjWNA7aKawLznnySikOH0iS31J5KsHhGwGftuyiRbRkTkIPZe5TX5ONTSaSTWuokOAjyuOeKK0gEAlZFtuZm/OvXp6udDQVyzJGarUK2UYhnE2QH4cm1BOTqsEldJ/z+96OHw1RUVbF4zx7MZJLdrl0hW9USCpZImSRfhJWANslesFlCcQskDOuP8fp8eCIRUpEI+sGD6f2LPzCGcwSk/L5crw0H9jY1UWjnyPWM0z/fxcgiV0W/PLJT5KlzNRBAJqjy0Jdct9zJL+VkzRlpm44LFy5cDAecCG6CTLsalZaxl7vXrCE8YwZ5gDca5dS//CVLTCslI6DlBUnzi+IW8IUzCq6szPbYk6rwyscmvz+hLMtEUrUrJIBIfj5NN95IYVUVveEw5ffdh2Gaw9ZGqyN+cnEgeVm2K8hBZ/JvEvvqPvdcUlVVxCIRGrdupfE3v+HFbdvGpZA35kqunD5MeHLLAU1ciTX2h+yuROkR++L2+fDam73JpGN2BaRto40DBw/itXPkNm/dSnQc/vkuRgdqoKU8ic5dQJrLvi/RqEN2zXM1g0Ku611VbF1y68KFi4kCeXhctIUJ5T2irTR9Pgo/8xn8VVWY4TCz77mHQFdXmmfI/CKvBItbTLE/7IPCQ1Bjh87IKcBEG9tB35K2MvGTJ1UlFZM6QhcHGm+9lbzTTkPTNKqKiqhoamLfoM5WX6iBZwbZhFzYPcRxQl9yK48KxrEU8s7rr09/R/Qvf+GFcZYbV8aY5slVy5dmbZcj1CA9NpEelvBlBg48iYTjhTam8PnSOXL1I0ey/MQuTl442WWcrl3RyKqRuU7BZKJqjwsXLlycyHB6rottZbfeStmKFWiaRkFpKQs3b+7zfhEEnKU4QFqmFSNtMv1Qi/bIUNdVqLxGFR0ShYXsvf56NKm6WWzOHPbt2tXvPnN9v/yasMWJ36IG0ckqsxhhh+z86nJWHmEB7Vy6lNjs2ZgA8Tiexx7r9xyMNY5JcjVNKwBewjpnXuAB0zS/OZQvVR/m8lCr6OEUqmO29lM+7SXx+TJ5bhOJ9H7HjddQIuHi+FycnHBK2aLWAZfvBWFFUHM2qhG54+p6d+HChYsxgllcjPnhD2fI4p49lM6cibFjx6D4hVo0CnK3t/JInSDJav5zOTWk+I4CYO9VV9FrGBSYJsW9vcxraOC5HNbG/ipl4vCanL1KzkwlfotTajbIfu4IoitXamu97joMLEXX+9RT0N3NeMZAlNwYsNY0zbCmaT5gg6ZpT5im+dpQvlj1CMoSfgL7IhTdB0h3J9JEwedLm8v1RGLslVsFZl5Gu9VckntSQva/isvZqSyl7JsV17+a69YpDZiadcGFCxcuTkYkb7iBrmSSctOkrKeHRXv3sru+niCD4xdq0aj++IVall3OpKNa1AwyFgEzEKD+mmswIxEioRCnPPMMb953H0dDoT62CPU7fA7fmUf280XOyy7mAuKZJCCOC/o+d+TnT/fcufQuXmypuIZB3t/+NuRcviONY5Jc0zRNIGyviv/NHMqXqtkOnOTzYnlcFtLRZGk1y+tNH4Rhk9xxFVDjKrku6Js/UZSohr4pwRJYjZGIbJUVXLk3rQaZuXDhwsXJCmPqVIzLLiMSibA/FGLWo4/yxqOP4g2FKGRw/EIWEuSsAk72BzGXCahacEKQ3BSZvLTvXnstyUAADSjYtQvf979Pp2FkWQdUldanfIfTsiC7alEh2XohpwWTibcc0yROkfwcOnz99elnTt5LL2G2tub4V8YPBuTJ1TTNA2wE5gI/M03z9aF+sZNdIauyhgEeZTjBTEg9LZ8Pw+/HDAbJmzRpfBFcAJ8Pv99PIBjELClJ9xJcnHwQ17jaO4e+NgbRAKp11J2ict2ukwsXLk52pD7xCUzdooWp119n/49/TAorbn2w/EL+jBw3IUO1DQhiKfyvctErmeTGgPaiIrZedVX6cwv//Gd8hnFMv62aflXO2uNT1tXME/I+5WA+kZItQnYKVvW50zNlCuGzz06fj7wHH5wQz6ABkVzTNFPA6ZqmlQIPaZp2qmma78rv0TTt08CnAauUXg6oeWllFUseVogCAXF2bflLGKDjQE9NDanaWnRNo/Kqq0i9+CLYGQzGA9mtmj6dErsSSN2557JjHFYCcTHyENe3qJEutom5SGCeIJPcXPSs1VyLalTuuAiwdOHChYsxgnHaaaRWrgRAM00Kf/tbNIbOL1RLWK50pKqNQLUrqJUuRTv/5nXXkSooQAdKGxuZsX49ncp+cPgeJ4U4j+yKmfnQJ9Dd6fjlEXUB2dIhn6s4EPvUpyiuriYSDpNYvx6toYGJgOPKrmCaZoemaS8AlwLvKq/9CvgVgEfT+rUzqMO0ctoNeQrYQwiCIcgnPllZmS7ri8dDUV0dKbus73jAtJoauu1iEIbXy1y3GMRJC6ferkF2WUo51YyarFsdbpNTwbhE14ULFycjTE0jeeut6XX9uefw2kWhYGj8Qv1sf1mbVHIrE1tBPsWkA/HSUjZdeSU6liC4/E9/SgerCWVXJbny9zgpxOokqpepRF31GQs7hhw7Ij9vxGvFy5aRuukm8jweyqqqMH/wAw4yMexyA8muUAkkbIJbCKwDvjfUL1bztalTDEgl7CEFHcxYtoSev39/uqxvQtM4Wl8/rk74wd27CdrFIOK6zl63GMRJCXFNiqha0ZiIyj1ysIAYYlLVB7nxUS0+Lly4cHEywlizBqO2FgAtHsf7xz9mXmNo/EL15aYzOSnQpblMUuXCPzIh1YGXrr+eVF4eOlAVCjHn1Vc5SrYiDNlE10nJLSBTFj5fWhaVM+VAZqHIyh0ANRgvSm7Sm/+xj2F6PKBpVHd0UATsdzgf4xEDUXInA//P9uXqwH2maQ4pMZpTTlB1KEEEPgbsi1C9+HxNTZh2Wd/9Tz1Foa2Sjhei27JnT7oYxMGNG+l1VdyTFqLhEHkSBcmVLQxqOhi5t+3UA5ff48KFCxcnE8z8fAo+9zlKq6roCYeJ/+UvaO1WJYfh4BdOii5kt7ey31WtbqkSXKHqHq2o4MUPfIBkSQmEw6y++27y6RscJvtx1eA2sW9BdOWKmfK67KeVz4v4HfLrMsFXnz3JkhLa5s9nqi0qLq2v5ylbVJwIQstAsiu8AywdiS/PZQqXL8SAzQJkX2Ic0Ht7MSMRkpEIPR0d5ON8IY4ZotFMMYho1C0GcZJCbgTkRkHtpYNzzkJ5H07X90RoZFy4cOFiOFH2mc9QvnQpaBozSkro2rSJJuU9Q+EXckYFNfBMbn+dUns5BYIJQnrf5z7H0XnzMDWNmrw85rS304UzwZWXVQItyLOwQ8hEt4hM5cxcacPEOYmSnRdXvC4rvrFrryWWSNAQClHZ3c0TX/4yjePIGnosjHrFs/7Sh6kXoxhSgOwLMAposVimh1ZYmLXPcYFoNLNcUDB2x+FiXEAlqhMhKtWFCxcuxhvMykqM668HO+blrF272DdrFk07d/bLL9SgshgQT2TSOqpZBcRnBsIp1Jy1chl3QUTbpkzhuUsvxbRjic7ctQvq6vCFQlkEt7/AM6f8t4LgFpEhuUX2a13SeZD3K58XkSasm77PJbOoiPjll2MCPZEI8TvuwDPBRqXHpKyv0zCsGlwjS+hIyyJXqKe3N50nN1FQMH7IrQ2ttze9bNok3IULFy5cuHAxeCRvuYVwLMYk02RSVxdzGxp4Rop5UStMCmEshqVYqkorWASvm2yOodrDBNF0CvTKlcJLxh9vuom8SATNNJna1sb0w4fx1dfTy8Agk2g5yE3N4CAm7HlMel3NBHEspK6+GtMW6fR9+9BfH3L22FHHmJBcgf4Irp++BUlkk7QWjWLa+4gXFmaR5nGBaJSy8nKKS0roKi8f8IXswoULFy5cuOgL47TTSJ17LpFIhH2hEJPuvZdfPPtsVuYiNUuAyDfeA2n/qyChguh126+Lwgfy6LKAHFCmkls1N62qyu6ZO5dXzj2XvEiEslCI6/78Z6a88IJjrE5/gp1HmZxKB4tjM8hOKaaSe12anAiv6feTuvLKzHffe2+/6WHHK8aE5MoGaDmKXBBYMVcLksgXn24ruSaQzM8fX1YF4Mzly2mbNg2AYFERlatW8dqGDWN8VC5cuHDhwsXEg6nrJD/96fR67O9/541f/zrrPU7CWRSL6EWxyKya0xYySq5cwlYmuaoFIUFuJVdWTHUsjnLvxz+ePsZznn6alf/zP7TBcYlfTtXPnDIuyCRXZPApIFPVTCXKuRTd1Pveh+n3W9+5fz/6K68cx9GOH6hFNUYNcrS4E8FVo/5Un4xpe3LB8uTmStY8VliyeHHW+sIzzxyjI3HhwoULFy4mNoxLL8WYOROwRnK9v/+98/vIkNx0IQMyBDaCRWg7gE6cCa7w78qpw2T1tECZq2quPL13+ulss/mAbhh84O67+/2dTqRTDUATc6dUZbIX2Em9VW0LTjALC0ldc03mmO67D83st/zBuMWY2hXUNB+qbUG1K8hkl95ePOXl+EpKyO/t7eOfGWts3bQJzTQtkznw9t69Y3xELly4cOHCxcSDGQySvPHG9LrnvvvSKcNUyEUO5PLosgdXhk42ARa+XJVPyKqpCCaTCaYafCZU3AckFXfd008zubmZ1oH/9Kzvl4m2OletFCn7dwgVVy45LB+jvN909oUrrsAMBADQDh5Ef+mlQRzx+MCoK7lq0Jla3UkeYhAXp+rHTQD+xYvJmzYNb1ERqTPPZMaqVeOG4AK8tmEDHRs2EO7upnn/fjbt2TPWh+TChQsXLlxMOCRvvBEzGAQs0uV5+GHH98nZa9RcsMJzG8HKOuCk5gpPrqzkQl8VV7UqOKUN8wCbV6+mqbYWDciLx/nQPfcMmaeoxYNyVVcTaq5TiWGnwDgBMz+fghtvpLKqCr/fj/f++9GMcRPtdNwYV0quTHBF70OUpxOkVxDdgoULs/Y1bdkyNm/YMK6I7sEtW0iVlADgq6gY46Nx4cKFCxcuJhaMWbPIv+46AkVF9ITDJH77W7RE7iSMglPEscicGBEWip5a0lYomEL1lcU0mU8IQim2qZYFNfjM8Hh4/Kab0p+/+m9/o/zo0UGpuE4+WjnDQgHOSq76mmyn8Cn7Eij/xCcoW7wYNI3ZRUV0NDTQOIhjHi8YE0+ufJHJUZCqJ1dcdDFpXbzHUIK49m3ePK4ILoDW1pZeNl2S68KFCxcuXAwYJhD4wheYNWcOldXVrCoqYvaRIznf72R9FPxBWBGEmtvtMMm2SHnUWR7Wd1JyxVwmjxs+/nH2L15M0u8n2N3NdX/7KzCw1F25IHtyVWVWra6meobV41PJLWClC/vgB9M5iJeHQsybM2cIRzz2GDMlV42ClJdVL40ofypbF7pffBHjvfdITZlCb2cn9du29VtjekzgklwXLly4cOFiUDAuuADvsmWgaXiA1Tt34quro7GfggSCR4giD332SbZN0oNz6XQ1JalTeV0nIqkDXYsW8ei//RuR/Hx6q6q44YEHCEQiAyouket1OdWXWnRCHIdcXS2BRebVY5T9uGrwWep976PTMCgzTYK9vcxraOA5KQfxRMSYpRATc9WqoPa+xEUTdXiPsWMHnbEYSSBaUZFFKscDZCUXl+S6cOHChQsXA4Lp95O89VZ6wmEqq6pYvHcvxV1d7D4G6VIFNFmtVON+Csi2MchQyaYghgbOuXLl4gxPfuITRPLzQdMIRKOcsn//cfzy/qEGoMlWCdmXK6c5cyqCoVZoM/1+Uu9/fzoH8anPPMMv77svKwfxRMSYenL7g67MZdO3uICL29oI26Zuf0VFVpm7CNlk2lCW1ddGwuqQZVcoLx+Bb3DhwoULFy5OPCRvvBGzpIRIJELTxo3M+MMfuGvbtn5JlyHNhZrr5N5NkfHXyvlnBTwOc/V1UU5XEElBIrsmTWLTqada2ZWAc3bsYMr27aSM7FHrYynHo434NdekMypEd+9my/e/P6EDzgTGhOTmkv2d/CWymVsmscVATVsbR7EujvKKCqbSN9WYmrVBXldz7+a2sg8OguT6/X5KFy+mqLZ2wveKXLhw4cKFi5GEMWcOxhVXpNejP/whL7z66oA+K3toxTNdWBLiDu9XFU2nimVO2/xYfEQmujrw/Mc+hplIEAyFqOns5MZ/+zdKQqF0AJwTN1GJrlwwq8+5IVupVksXO9UYkGOa5KC69Eh6MEji6qsz5+See04IggtjqOSqVTtkwiskfzkXnarkJoDpbW3swzKnl5SXM5++wWuy2Vwu7ye/Jnw7w67otrfj9/uZVVuLpml88v/+X37xwx+6RNeFCxcuXLhwgAkk/9f/SueY1zdtQh8gwVUhCK8sYMkkUWQgEHPZn+qUpkv1wKoBaK1z5/LOBRegA95IhI9//euUhkJ9YopkgS2FM/GEbGVXPW65iJZKdtUCWiq5NZT9hd//fszCQgD0pqYJnRdXxZiQXKdekeotESquILpOFoOZbW1sxLopCisqmE+2LUGOmuyhbyRlnr0dMhfecEJLpSg1TdA00DQigQBz6+pckuvChQsXLlw4wLjkEoy6OgC0RALfL36BdhyfFxYEOcdtXHldzAXZUwOyZBFOBHM5BZrJPMUHPPPJT6IDGnDqq69Su307cTJWB5XoZmWMoi/PUY9ZTX8m5wKWibSq6Koj1oJYG0CypISe970v/V2eP/1pwlY3c8KYenJlgqvWYFZ7SnIPS1ww89rbKbCXvRUVLFBe74T/P3vnHR5HdX7/z2zXqktWsSy5rG25YMBUY0zvPYQvAUIooYQSeodgigM2LfSSHyGBYEJJ6ITeQjPGuGGDm2yvi9xkWbLKarWrLfP7Y/bu3h3NSrKs7jnPM8/cKTszuzvlzHvPe15qSBg+18WGWmmfkDg5LHS9Nrd51SpyRo5EBba7XO2K5k2YMGHChIldEWpWFuHzz49PW998E2XLlh3ejojggkbsHCSIrpw8JpNK2WlAT3CNCi3oI7srJ0+mcvx4FMAaiXDyP/8ZJ67Ckkwf0ZUJrixRMOIh+uX6QloBNAmFTHpbdGN9NDgC1Jx+OqpTq0hgWbMGy/ffp/5h+yF6nOQalb6TazDLRFecWOkkfOEEGbYC0Zoa0mLzIoPyGe4kqY8hUquR3Go0YltN8lsYJE5Ao3J/XYGGpUsJjh5NekYGr3z2GbVmFNeECRMmTJhohawbbgCPhyafj+Y1a7C+/voOfV4mt3JXv7AKg0SUN0JrUitDcA2Zh8g6XJnLqFYrn/3+9yhoUdyD3n+fgs2b46RUEOu2coXkyHJbkN2oZKmDTKDliK5RPlL8s7m5NBx/fHzb1pdf3qGoeX9Ar2tyZcJrRHRFopncNWCNnXmKWoPFBUG3m9VFu7HlUA/Fdd74hqxboLAa8rfBFhInqDiZZRsRocfp8uSzzZvx+/34/X5sitJ37SxMmDBhwoSJXkLx0UfjPvdcUBQKCgvxPfkkW9uobJYK7ZFE4bog+85a0MisPqorormC4GZKbbl3+bsTT2T74MFYALfPx7H//nd8mayhlcmnHF2VC2OlclowisK2pcdNJVeQt191xhnYc3JIz8gg+Msv+H/8sZ1fr/+h1+UKcmk6mejqjY3TAavulSoj3YeabqeqxAMovHX6Tfzfoocoini19QqATWDdCEM2gD2UyLIUXrxCq9tdpd+UTZvibbWkpJv2YsKECRMmTPRPqFYrkauvjlfaGl5VBcEgX3RyezJBFITOIs0XUVxBoe0kl/HVyycF7UhHI7qZ0vYbMzL45OKLaSksxObzcdzf/066z5e0b0iOtMoyAiOdrBHBFWO9VEG4RoiAnRGRFkQ3Ko39RUX4TjuN4lhi/HFr1/L+AHSA6jULMb3/nJ7g6rsJrG4Sr1JZ2ljJhDQlAoqCisL2jEw2jS6nyO7V1s2Pre/WNl64FqLBxJ/ehKbRlfU1XQ1l8+Z42yS5JkyYMGHCRDIip51GTVoamaqKLRJh8s8/81In81f0iWfyfHmeHNhy0Xp9IaN0olEIQT9yYmOxvVevvpqtEyagKgo5GRnss2xZqypqciTXyMI0lXWYvm20TaMCF0ZEVx/J3fC732HPzkZRFAbX1TG8tnZAJsb3aiTXyF1BFnuLsdWOdoblSEO2NvY0VVCBJvZudLsoKa3QIrgxIhxPe4yddcVeCEQTEdxaaV/dgSSSW1SEqigDKnPRhAkTJkyY6CyiJSVEzjorXmlr3Hff8dLMmTtFtvSJW9EU8wX/kImmPF/mI3IUNweNMK4vK+Ork07S7M4UhckrVtA8ciS5K1caygo6Yu8lD6m+m5FcQd6HndZEVya7dSNGUHvYYVh8PrIKC5m0bBnRSGRAJsb3OMk1MlmWrcP0mlw7JL9C5aFFaPO0YTRLWGjdg4CSgWfkVxSlebVlOSREuLLgNgBFGxIEV9bpdodkQQkEULZvJ23IENIzMsjad182zp3bDXsyYcKECRMm+g9UIPzHP6LatUyZwKJF/DJtWpcFgvREUT8t5AqyZEDAKDcoHY1apNshLQSvXHIJTr8fRVUZUlPDqE2byNMRRZl8yolgRsS2I99H1vDK5FWQWzEEaE1uxf7WnnceKhD0+2l6+20qPvuMdyoqBlwUF7qJ5NqA4lhb/uNElZAcEioCYQ+m18napc/n1WsnVJIgJYaSzZtwjvTjdPjx262a/kBEbvVGubEqELImpr3qIl2BnOZmBns8oCiceP31vHf77QPyZDJhwoQJEyY6iugRRxDdYw8AlGgU21NPdWlPp5EEUR/MEnEwORENWid0+ZECbyGYfcAB/LTnnlj9fvJWr+acl15i9Hff4fZ6k6QPetcGPd9IVQxLRI+FNVg6CbKtl1i2kCC2kJBGiB5rP4niV1W77872ffYhCqiqivLYY3xbWRmvGTDQ0C0k1w4UpVjmIpGhmE7yHxUh2c5Lfvso8EP6FlqT3A2btH9YgU3REo3kig3WkVwJIvYvy0bM8gnXXUXsimMFIRRFoT4ra0DqXkyYMGHChImOQs3KInzRRfFp67vvYlmzpku2LbsmyNNGy2SZpJgnywFEt78IvlmBFrud5y6+mDBaNPrw119n75kzkzSzqfarD6jpi2DJkWM/Gk+RawcInbDooJYju36pLYh5EwmC2wx4zz9fI7iA+4svoLLS4BccOOg2klvcxjLxRiISy/RFGeS2GCJAXhByq0gmud5N8T6HzZbBmgZB6CDkSK74t4Ot9TAd8abbGdQvXEjOsceiAtUZGQNS92LChAkTJkx0FOGLLkLN1HwKlK1bsb7ySpdsVyax+gR3o2Wp5IrCtSCIRh/khPnvfv1rqgoLAXA3NnLMK68kVUyVXRrkY5KPUSS2CfIs+JAgt5mxZSGSK7LJUWeZlMs91BYS3MkvtTdOnkxDeblGckMhsl5+mSDGlmUDBT1OcvUaXPnEEfoYcXIJxUETUsQ1BLnVie0NUrZhC4QJKzbqHDn4G9Nw25u1HdWRLFcIQEuotfC7O6UKANtmz6bO6yU9I4ONq1cTNKO4JkyYMGFiF0XRiSfiP/NMmnw+/H4/9meeQQkGu2z7+rwfPcmVp+UCUWK57FogepeFC1R9fj7vn3EG4di6R7/0ElafL85fZLKcyklKn3AvOIlwRhAyhUySvfv1RFzmTjK5FfPk5LNmi4V1550XJ7QZ779PtKZmQBNc6EZNbiq5AhiX6IXkLgJ5mQjBxyGIrgUsFpXiLVvYMKQUFNjSUoyndk2yJlfE6/2txd/67oXugOL1xgtCKDk5OKxWlEh3U2sTJkyYMGGib6Fs7FjyHniAxvR0CgoL2frvf+NbsKDLtt8WwZUKosbniaCbTEhlLtICSXrVzy64gGaH5sc0eM0adv/kE5oM9iNHcfWRVznpXsgQROBNHhvlDunziKIG86MkJ6QFgC1HHYV/yBCNSzU14X799aSSwgMVPR7JNfoz9G108xuNNiRFdAdv3MyGQo3kbqIET90a7SDqaZV8Jkdx5YzKbiW5TU0oW7eiFhai2myopaUo69Z14x5NmDBhwoSJvgfXJZfQmJ6Ooig4QiH2njePb7po2/oAmlEXv77rXx/FFRDRXDm+XDl+PIsPOQQLWvnew//2N5pVtZWmV18uWOxLLkIhClC4MC67GzCYl6ocsBy00yfMhYCgw0HtpZeSUVhIs8+HY+ZMIj5ft3OfvoAeTzwzMkIWmtuIwXxxEoCBx10QsmqhZM0mgnu5CdgzWJq2FwdtmqWdSXUkJZ9Fgsn6lJ4guAKWNWuIxDQ8qscDJsk1YcKECRO7EKLl5azefXeGqyoqcMDSpXy5cGGX70eOpuqrqRrNs5OsyxVkUe5pDisKX918M5HCQiI+H+WffELekiX40fS0UZIs+ePSBAvJXvyCqDpJRGmNqp7JhNaoVG9QWl/WD4skOXkb4YsvJmevvbTCD9nZWH75hQ3SvgYy2e3xSK4shBYqAvEHiT9U5IiJdWULDjn07wCsfkhrUKkq0Cy6vhx1Br9a9iFFdd5WiWepjJhF4ll3SxaYNAmIkdz//a8b92bChAkTJkz0Hag2G+FrrqGluZm1Xi+Dq6r44o47WN/FOSp67atRxFZffEqWGUCCD8gkcPMFF9BwyCEoioJt0CD2+vJLGtEIrL6QhJxvJCzBnLHldml9WS4Q0e1XXkdwokbdMcptYb8q1o2T5qwsms88k+xYwYr9Vq2ievhw1ixfnnQMAxU9TnLFHyUkCKJLABKRXHmdOlKT3ETbqZX2VRRqMrLYpJRrJLeOJI9cQZyNIrnd/RajSBdydMSIbt6bCRMmTJgw0XcQOessomVlADTX1rLh2mtRqqvb+dTOQeYJRolmdt06SccbG0cBf3Y2i887DyVGFPf2enEVFCTlCwlya+SDq5czCDLr1E3LbTEdItn+XxybHGkWRR8CQAMa7RG8qv7ssyEUIktVyfX5KF+3jlkVFa2qvA1UdBvJLUmxrI7kQg8BtD9K9nYT5LaWZNtbvXBbTHtmzQJVRQFqMjIo2rgqIVeIseWWYPIbjl6T292wxEiu2+0ma8oUsjyeLn+DNWHChAkTJvoaoiNGEDn99Pi07Z//7DaCa5UGfcRWT3BFMSowToIXvGTJBRfQFA6Trqrk+P1MXLmSTRUVcVJr0e0vKm1TzHcBVguoBqxSP0vmJEK/65CWCa4k++SKnu9GtHSkCBAqLaX5uOPA72ed10vee+/x3Pvvx336B6pEQUa3kFxFAYfDeFlmMGGVIboQBIxqPIvwvBuNs4rKH3WxsRsoWbyY0fPns3VoGa6wj3BTUHM6biT+WiMKngVpHcntbp9cAKqryVAUhsYqn539pz/x0owZZlEIEyZMmDAxYKFarYSvuQbVotFIy5IlWD78sFv2JSK2eiLr0rXlQY6u6hEBanfbjS1HHAF+P01eL5PefptVH32E4vViIVleYJQAJgfVHNJOZFJtARRphlXKgnNEoCXamjfJiXJGjgoRIHThhURjv3vz7NnMfeIJlNQ/34BEt5BcQPvF9fH/nYRs6SETYT/gWbyYoNMJTvBmeRi6rjIeydUnnBllLXY3FKCosTFe+aw6P9+sfGbChAkTJgY0IqedRtTjAUBpacH25JPdRrTkCK5cBlcExFy6tpuE64FeLgAQtlqZf/nlONDiZqWffUb+008TiW1HFHCQe6flolbytFyK18jazBJNbiv6OsM7iOieexLZd18AFFXF9o9/7HIEF7qchrax5TZCpe39j3K0VR/tFRKE4tWrNXPmEHgHeRJShXotmCsLsuXEs57MLGz68UdQVVRVZVN2tln5zIQJEyZMDFiUTJlC3rXX4na7AbD+619YNm3q1n3KEdvM2JAN5AMFaM5PxUAZMDw2FsMQNKllSWydqpNPJjh0KE4gPRDgkL//nWwghwRRNvLYlaUDdUANUA1siY1rY/Nkl1O985O6E9nwqqIklUy2fP45lrVrO7exfo7ui+TqsZN0WjZn1ltq+IG8NWsIo70BrSkcEbcPaw61KnqWFM1tkbbd3US39uuvaTjpJNIzMvh03Tqz8pkJEyZMmBiQGDpyJCVPPsnW3FwGqSqbvviC5nff7dZ9yrpYd2zIQSO6RuNsNJIqHAZkqcG2/Hx+OfvseBT3oFdeYXhNTVIej76SmpwsFqR1xFau9irrg13SMpGMBgkd7o4icuSRRIcPB0AJBrH961+d3FL/R8+R3DbQUXKZiug2AXler0ZygdVDRqLWA77EG5IY9BZiPaLHjUFZsYLmpiat8lleHg6XCyUQaP+DJkyYMGHCRD9C+gUXsDU3F0VRsESj7PXNN8xW1W7dp+ygIEdy8yEegc2LjUVbFGPQF1v48KKLUFwuHMCg9es54r//jRPhFt1+o9LYKAArpkXym5A5iEHUA5C5iAUtmqvsYIBQdToJnXtufNr65pso27fv2EYGEPqNJlfOdBRWGSKKmw7kVlVh9/sJu91sz8ykxpqPlZpWUVw/ieQzuWJITxBdxe9HWbcOdfhwVEVBHTMGZdGiHtizCRMmTJgw0TOIDh3Kiv32ixd92KuigjmzZnX7fmUng/TYIMsV8mJDQWw6X2SphbTkLsEJ5k2cyPKDDooXeTjnr3+lOBJJKrkrcxI5+UzvryvPFyRX6IQDsbHckyyS5zobxW36v/9Dzc0FQKmtxfr2253c0sBA92lyuxh6Pa4+kusDBsUkCyHg52EjWuldZLmCXpPbU1CWLo23o+PG9eCeTZgwYcKEie6FarUSvv56/MEga71e/AsW8MNVV/VYkrWQADhJyBJySJDbIbEh3w0MAzza2FEC6XmQnm3npZtvJlhYiOJ2c8T//sfkJUvII5koZ6GRVScJSYKcaNZEouhqNVBFQpNbTUKTW0drTa7gJTsafAvn56Oeey6DCgtxu93YZs5ECQbb/+AARs/JFXYy8UyM5ZPIiXYiCT1LrteLd7/9CGRkMHfyZAbNmye7iMVPohZp3NNE17JsGZETTgAgOn58D+3VhAkTJkyY6H5Ezjgj7qbQXF/PpmuuwbJhQ4/sW5YryJHcHBIktwBIz0bLLCuKrSx1Df/9jCtYdMABoCg4c3M588svKUgsTupFbortV64cJviJXIFMkF47GjnOJNluTH/8LSRrczuKluuuo2TMGFAUxrpcVK1dy/pObGcgoefcFdrYW0cIptw1ILoU5DrNfiCjuZlmj4fmoiJ++O1v2eTxJEVxxXpBkk+wnqzbbJEiueqYMajKrmjqYcKECRMmBhqiI0cSOeOM+LT1pZd6jOBCcnKXkAUIkivcFdIz0AhuCZq9wnDi9gqVe5Xyxsm/iVdQPWDlSvyjB5OWAbmWZD1vJhqJliuZQSLpTATX6khEcuUobh3JUVzBTTobfGsaMwb/UUehxGxKpyxfzujy8h3YwsBEz8kV2thTR6zgZG2LTHDlN6osm00jjYrCltxctpeXtzqJ9HIFcTJBDyWgVVej1NbidrsZNGwYJYcc0hN7NWHChAkTJroNqt1O+LrrUGOVDCxLl2LtZjcFPawkHApkgptNTGLgJEFwhW/YMGA4qEPgqd9eic3SDKgM3r6dPdatoaSuQmPHeZDm1rYjEtqEXEHYiAl+InhJHckWYoLo1pKo6CoklbLz047696vAxksuIeDzoaoqIzZvZnB1tWlTSh9xV+goZE2uOJFkc+XM777DHg4TstnwOZ3UbNuGDWP7MLniWU/Wb1aAvC1bKDrkEFAUDrzxRr6trDSLQpgwYcKEiX6LyNlnEx06FNBsq+yPPYbSzW4KRrCQcC0QcgURxaWAZJI7LLZSE3ySfyxLPeNxRvyU+FZx5Sf/Yt+l31EU8WqfcwGNoNghyw+EEtKExti+ZblCU2y+8MStJZ7jltR7LKLPwnHBbbBOe6g66ij8o0fT4vezqaKCIf/8J8/8+KPJK+gukquCmkLrLL+lyHYdgmhGdG0ZVt1g1w2OVaso+eQTNuy7Lzafj21paZSRIMLxaiLS0BsY0dSEP9alsKmw0Kx8ZsKECRMm+i2Kjz6apssuoylmkWl7/nmULVt65Vj0skaZcGbpKzRkaivURnP55wG/10hHGM6ePZMT5/xL+6C+yzcGWRohnBJkLiPWkR0frCQiyyISLObrCbLgJ65ocpJaHcnR30a3mzXnnx/fp/rSS3z/2ms9mlDfl9EtPC9K66ipGGSZgXwiytmE7f05cik80T0hDJaHfv899q1bsfv9VI0fn2S4LAY9WRbEt6dQ+9ln8cpnG3NzWbl6dQ/u3YQJEyZMmOgalI0dy+BHHqGguJjhHg+569dj+eijXjkWvZe+7JHfCAlyK/QCMZHsc6P+QBPp0AKDt23mzE//nZw1JmeqxyB4iJBGiISyHBIJbnLQeHhsXETCwiwTjeQK/iFIuazllR0ZhMShjgRxrzjrLALZ2aiAsm0brjfeMAmuhG6J5KokajfrIZNbcd7ImYmyk4IeIvoqSKmevNqBEUuXMj+2fPO4cfE3KCFtkD/XW9HcjT/8gGPuXFzDhtHk8xG2WvuPl5sJEyZMmDARg/3KK6nPyEBRFOzhMPt8+y3f9eLxyA5MchS3EWiIQlYtSeXG5o7fl+9KDoqb5l/x+tM4tofa1jeSHKGVA72yhZnQBQvJJNJnhHZYBOmIbcNPIqrrj+2nTv4OUrt6yBDWn3xyvAhF1gsv0LKLW4bp0S0kN4oWsTWC/qVIjuSKsVEimFUap5IsuIDhK1ZgVVWsisLWESNQXC7sgUCc6Dp0n4cE0RU+d90NBfB/9x2NaWkA2PbaC8vy5T2wZxMmTJgwYaJrENl/f9aOHRsv+nDgL7/wxdy5vXc8JLiEnJjeQKLMr8sPjphANpDu5K/7Xx4nH0fM/5I9FyxOzkyXyYpEUGSSK7iKHESTCz7IdmP6UsByT7IoThWKrS/WESRZJNE3otUGWPaHPxC2WokCjiVLsH37batqbLs6uiWAKCK5RoMcxdWfR7Im14hsytICEYnVk93s5mZK167FAiiKQtWYMfGXNnk9+bNI456CZeHCeDs6cWIP792ECRMmTJjoPNScHMJXX43f72et10v4yy/5/IYbej2/ROakglwKYliP1uWvxqQKfz3yWlYV7EYQN5l1jVz0r38QryIlfEf1JVJj0BNa4biQQ7JcoRgoJVmukE/Chswd2wYkpJ5NsWNNJVdoANbvtx/b9t5b40uqSvbf/pYUJDShodsiuW3JFeTzRV95TLyJGf1RslxBH8UVvnguYPSyZWwbMQIrsHn8eIYsWhTX7Op1uDLR7UlYpHK+6pgxqGlpKM3NvXAkJkyYMGHCRMehAuGrr0bNygKgecMG1l1zDYrP16vHJbiDLFcQBFcEuwSPWLXHEbx42qWoikJ9ViGXznyBrMrG5CibTEzkaUCxgEOK6ooiFPrAnZ7ryAlx+gqu8rr6oKBwiAoCfpuNyuuvJ72wkGafD+dbbxFds6ZVcQkTvUhy5T9U9sDV63Jlmw2ktiCoslRBtMcuXcqPJ5xAFNg4bhwHkiDC+uSz3tLCKo2NWLxeoh4PqsVCdPfdsf74Yy8djQkTJkyYMNExRI8/nsi++8an7Y8+2usEV0BOPBPkUJ+ArlqtPHzNNaixog9lNTWMWF+jJaV1FNYYsY1q3ELvDKXnxXKU1q9ry5xHljcYefsHgMZLLsE9aRKKopCfm4vru+9YT+pe8F0ZvZp4Jg8y0YXkP0qvx5UJrkx0RTR37LJlWICo283Kww4jPGoU9lWrkghuXyC6loULcU2YQHpGBsrRR9NgklwTJkyYMNGHER0yhPBFF8Wnbe++m9Qz2ZvQa3IFwZVJLsBnv/kNVenpoKrYolGOWLSIvKUVNMeSiYz0sorFYKZFy7Fp1SMcJZlYxCK+kZAmNRCKCLFISCtEtTSRWFZHsotZBPAPGkTdb39LVqzw1f6rVrG9pITVixfvUAGJXQW9KlfQD/o3ICPo7cPkCK0zNi6qriazpYXNEyagKgq/3HEHo6dNw+71JhFc+RzsDcnCkG3bSPd4QFHIPussal99tdf1TCZMmDBhwoQRVKuV8I03ojo0PwDLunVYZ87s5aNKQBBcEfF0oZFEOahVPWwYH59xBha/nwyvl2O++47DZ87E4vVSS3Lej8wzrFFtvgIJ8qDXPRq1SbStfsitAUcwkegukswgEcltJNkbV44QV//hD6jBIJmqSn5jI+PWrOHFiopWHr0mNHQbyfWnWNaWK4esx9X75erPHTl6a6TLLamvZ0XsTWdDQQGe8nLsXm8SwdWfhz2N8YrCRlUlYrFQn5HBkMmTTZJrwoQJEyb6JHKuvZbo5Mk0+Xw0NzRg+8tfUEJ9K34oF4OQq6IChCwWvr76agI2G1ZgxIIFHDZtGi2qSjXJfELmFxFpOs4X9N3I+q5i/TIrWhjXCelVgD9xjA3i+Ei4KNSjJZ3Vyd9rn31omjwZ/H7We70U/uc//P3zz1kb4w2mVKE1+kRZ345EcFMh1WcmffstXx1+OCqwIS+PtIoKorQmuHqSLI5nR/bVWXiXLmVkVRVrBw8GVWVZbm4X78GECRMmTJjYeRQddxzpV1wBikJBYSF1DzxA7bp1vX1YSZADZi0kR3XtgPdXv2LL6NHYAEs4zJFPPEGTqtJCcn6P4AVG3MQR1aK6rTQNMpFwShtxSWMLcT2Cy59MwMXx68sCC1mDarfTcumliELJzf/9Lz/87W8783PtEugWkitqRxtBPpn0LzsOtD/XqEiDONnkNzTZ7Fk+Ma3A3h99RM455xDIyGB7TQ3hdeuSNL/iGINoXnZiWUC3P9GG1mJy2Dniu87rpemJJwheey1NPh+BUaPiRNuECRMmTJjoC1AzMwndcAPEytEPqalh+Lp1fNnbB7YD8JWUsOR3v9PkBsCkV15h0IYN8SitgHj2W6CV56zobXaFwCoTgohuBXlD8nKpC1tOvjeq+KrnFpHTT0ctLgZA8fmwvfBCR7/6Lo1uyblS0F5kjAa9CFxffUzvogDJpfqMiK6wCGkgUfLOVVXFIK8X29attEQirB07NsmpQZBquSpJTmwQ5fky0QiwW3fsDrruh6t+9122bdqE3+/XnBaKirpoyyZMmDBhwsTOQQXC115LnaKAquIKBjlswQJWV1T09qF1GCqw+OqricS0xPmrV7P322/Hl8tSSX1pYCP7ryagJQqq8NAVRESe1g/+5Gn9dvWEN+n4i4uJnH56fNo2cyZKQwMm2ke3kFwRJW1vkCOv+kpkRjpZPcENkrDakEP7Iitx2E8/xU/elRMntorkih6EdJJJrp7g6om5kDl0hZ5XaW5OKgwROfDAndyiCRMmTJgw0TWInHwykf32ixd9cD39NC/ef3+/yh/ZeOKJbB8/HgBLJMKhjz+ONZJMJWWpg5zEJfvaCt4hc1c1aDAz1RAkTmJS1QgQxyKgAqFLL0W1a/Fmy8qVWD75ZOd/lF0E3RbJbYvcylpsMbbQOpork139CaeP5IpBENw6YMhPPxGOfXbNxImtbMkEyRXl9wTRzSY10ZWPt6sS1izffx9vR02Sa8KECRMm+gCiHg+RCy6IT7e8+irzn3iiXxHcQEEB6/74RxyFhVjdbia8/jr5a9caritHc2WnBn3RBv0QSbUgBTNuiSa4jNiHkb8uQHTyZKL77AOAoqrY/vpXFFUoc020hx7X5IZiywLSWNblCg13Kk2uLMyW5Q6NuvUjQMHixURVlaiisKW8HF96OpampiSfXQFRrUTWyYi2EaGVK6vsLCxz5qBEo6RlZJB+8MFk7bMPG+fP74ItmzBhwoQJEzsO1eUifPPNqDaNJlhWr8b64ou9fFQ7BhWovPtu0saNQ1EUctPS2GvevFbrCUJpJUEyW2LTeomtbD8qL7NHwREgQVRcBh+OEQujOgF6lykA1ekk/Ic/xI/T8tFHWFat2vEfYhdGr8gV2qo+1laZXb1ORiSdCcmCHMWtB4I+H3mrVmknjqJQucce8RNYthwTUdtskuUKWWiR3HTdscskvCt+QMXnI6eykuEeDwVFRRw2bRrDPJ4u2LIJEyZMmDCx4whfdhnRkhIAlEAA24MPooTDvXxUO4ZtJ55I4z77oMQS5o785RdcbTxb5eQvHS9NGZiVpbZxnW4wxcoxuYKUf9aqVoDs7uS8+moGjR+P2+1Gqa/H9tJLXfCr7FrocbmCvgSvVdc2KiqiP+lEVRBxzqQiuo1AoaTL3bDnnvFjlDW5guhmoRHdbBIyBVmqIBP0rkw+Axi1ZUs8c7Vi6FBGlpd34dZNmDBhwoSJjiFy2GFEjjgiPm175hksmzf34hHtOFoGD2bjBRcQ8vlQVZW9V62isLaWUIqEOaOkM0E8jWSSbclwI6HUK0RCbUdxxZBx8MFkXnYZBUVFDPd4GPLxxyhNomyEiY6iVxPPZLmBvhKZkTxAnHxCxyK/STXQOvGsEcj76SeigOp2s+WUU1A8nqQqJnLimYjkCncFEcUVRFcm6F1dRKLu3XexRiKoqkpNRgZLdaJ4EyZMmDBhorsRLSnBcdNNFBQW4na7sX7xBdavvurtw9ohqIrCpuuuI+pwEPb7Ub79lrJHH2XLo48SNtATyzpYfQKaXo/bnvy2PZ1ugASHkTW/SYWwFIXt11yDarGgKAol27ezR01Nl/5Guwp6XJMrk1t98ll7FcjEiRdMMV9f6cQKuJYtw2K3Y/N4aFIUlD/9CcuMGaCrfibaId1xWGjdhaFfpyt0uZW//ELmyy/DscfS5PMRnDAB+2efdcGWTZgwYcKEifah2u2k3XcfQ8aNA0VhVHo62z75hMrePrAdRMOppxIYOxYroEQijLr7bmrXrCETUnrR68NKqbzw9cUb9L62suTAHgW7HxQncSN+Od9Hjua2SNurPf54qnJyGKyqWKJRDlq8mFf7kWVbX0K3RHJRwGo3HvRRXNmKK1XZZ2jfXUG2EKtD0+Q2AoFwmKKaGoiV+F07eDD28vL4/p0kIrY5JCK6mSRcF9JJ+OTKGuKuLgdcP3Mm1Vu3ap65Bx+MmpXVxXswYcKECRMmjBG+7DIcY8aAomBTVY796SfKhw/v7cPaIYTLyqg799z4dNlrr5G5Zk2HP6+XDXTEXaE9+YLQ6bZEk1zEkviMCKQF8/LYcv75BP1+Kr1eLK+/zqv33NOvHC36ErqN5KaqBtGeZEHW4uqhj9jKpDdIsoShSWrnf/klqCqoKquLighWVCRlMEJrki2TWD3h7p4fTctetaxcCYBqsxE56qhu2pMJEyZMmDCRQOTII4kcfTRNPh+oKlOWLCG3ro5V/SiCaLFaabz+epSYI0TGypWUvfFGq+CUUdVVOUdHHtINhkySc3QE9EnxIvBWC2wPaeOa2HRdbJmwPxV8ZdWllxJOS0MFgitXsnzqVJPg7gS6Ra7Qll7BGgR7qHVJX3HiyYlnAqLEnrDzENNGMgGjWtNpb72F/7e/xZaZydrGRuprasiFVkRXbvcWrB98QPTaawGIHH881rfeipchNGHChAkTJroa0WHDCF9+OQB+v5+tr7zCuu++48uKin5FsIK/+Q2RkSOxAdZQiJGPPoo9EkkitkZE1iiIZVR9ta1lAnKUVr9NP8kOUKItClptmjSJ2smTUdHsz9KeeopgP3O06GtoNyipKEqZoij/UxRlmaIoSxRFuabdrbZlr+BsHcWVNbFGgx56pwW9rZh+sNTVkTFvHsGtWwk3N7P2gAOS9C96UtybsHz7LYrPh9vtZtDuu1N0yim9fUgmTJgwYWKAQk1LI3zbbaixkreWykoa77mHLz/+uF8R3KjHg+XCC8kpLMTpdlP00kukb9gQ5xftRW2Fm1I6CftQUSBKTkzPkea5SbYVFb3LAZKdnqqBKmBLrC0iunUkor0NaWlUXHYZEWIE99NPUZYs6eJfaddDRyK5YeAGVVUXKIqSCcxXFOUzVVWXpvxEW5lnjoQFlzy0R2whEcEVbaPlDpIjtGJ7g2bNom633VCBdVOmMO6TT/pE5FYPJRSicNEi8i+9FBSFIVOnkvbLL/3qZmPChAkTJvo+VCB81VXJfrj33YcS1Kd3922odjtpd9/NkFGjUBSFIrud7J9/JkqCXwiuIbskCTkCpM4NQjctxka62ohuWr9ckF8hU2ggUal1xbnnEsjPRwWUujqcL7xAoKt/qF0Q7UZyVVXdrKrqgli7EVgGDGnzQ+3U9bXajd+sLLpBhr5wiCwKl0+ogME4AOTMno0a+3zVHnvgz8hIigj3JUxYvz5uXr2xoIDCo4/u7UMyYcKECRMDDJGTTiJy0EHxaduTT2LZsKEXj6hziJx3Ho7yclAU7NEoR/38M4NHj05yT9K7Okmdy/EIrpxsLtr6YlFikHW5IjAnXBKCJMhrHVrkVkRz5UiuILxV5eVsOvHEuDNDxnPPQVNTn+Mm/RE7lEOlKMpwYC9gTrtbbUOuICQLenIrSxaMDs7IKqyF1jWm9XKFEGCtqSFzxQqN6FosVE6aZGj/0RewYc4cRldWosaS5X6ZOBGzUrUJEyZMmOgqRMvLcVx1VcIP98MPsX77bW8f1g4juueehH/1q3jC3ORly8hsbGRbRUWrqGwqTa6QK8hFoOTKp1kWSLODwwnWDFCytWnZQx+S5QpNtCa4Qq5QIy2rtVpZd/vtuIuKsLndOObPx/rtt32Kk/RndDjxTFGUDOBN4FpVVRsMll8CXAIwVPhtGcEFOJK7DGTJgiC8bUkW9GiJjY26FKyx5XYgf9YsGseMQQXWTpnCmC++aJV81hewzuslfMMNND72GL7mZvxDhuDYay+UhQt7+9BMmDBhwkQ/h5qVhXP6dMpGjwZFYZzTyZYvv2R9bx/YDkLNyCB03XWAljBX+8471H36KZ9UVBDyesmhdQTXKJqrL0hlBxRLigVS6DatEaLRhC+/6F0W1qb6AlVy4E2M6y+/nLSDD8atKOTl5+O47TY20LrEr4nOoUORXEVR7GgE92VVVd8yWkdV1b+pqrqvqqr7Fjhot9yZw5J8sslvXAJGPrmibeRfp08+k0v/hoCc77+PZy1WTZxIs9vdka/fK9g4dy41L72E3+8HIHzOOWY014QJEyZM7BRUq5XQrbfiKisDRcEViXDcTz8x2uPp7UPbIahA+MorUfPyAFDq6wlNm8bCjz+m2uttpa/VE10jqzAX4LCDIkK5RnoFORvNndiegF57W4cWva0mEckVkoWtpaVU/fa3KDEf//1XrWJ4fn6fSobv7+iIu4IC/ANYpqrqIx3ZaMhuS+mTK+sU9B65RoJvGYLoyrpcvcA75rmc9MYkiK9161bcq1djcbuxlJSw5Ve/6pOaXAHbf/6D0qLFqaOjRxM94IBePiITJkyYMNGfEfn974lOmBDv3j9y4ULSfb5+5YcLED3iCCIHHhiftj3+OJb6eqB1j24qZwWn1LYKcivbLGSSrFsQBFdUjIoF7PSaXNknV+hvt5Csyd2uKKy/5hoam5tRVZWCujp2W72aVRUV8SS2vspN+hM6IleYApwL/Kwoyk+xeX9SVfXDVB9odGeDK0WdZal/wBFM7gWQq5+1J1eISOuICK/el07uXRAkuGzVKrb86lcoikL11Vczbs4c8Hr7ZLeAUluL9cMPCZ96qmYp9qc/4bruOtavXt3bh2bChAkTJvoZIoceSvhXvwK07v3tjz7K0pUrea+f+eGqRUWEL7ssPm396COs8+YlpjGO3hpFcx0ih0hewWnwQZduntAk+LXSvXoLMdkTV2hyAyQ4TPPJJxMYMwbV76dy5UpKXn6Zv3/3HWtj/4NJcLsG7ZJcVVW/gx2rR1CbUUDVoGyKGgwuGukVS0RrZQ3ujpTKbesk0DswiPbo7dupinUNrC8qIrT33li9XkO/XlkfrI8wd1fVMz2sb7yB8//+j2EeDygKUx57jG+uuaZf3ZBMmDBhwkTvIjpiBOGrropPW3/4gdonn+SLXjymjkLmBarFQssNN6C4XCiAZeNG0p9/HoVE4pgcodVLEuRAbZolNtEWE5YrVhklDUWS5ZOC4IoCD3UkCj8ISzC1uJiW886LSxCbn3+e7/797537kUwYolsqnrXYbHhzyinaakDEhIYglOwrJxPRrg7Tyy9ilh9+YHBNDZvz84kCK0tKOIpEj4Q+oivkEeLk1fv6djeUhgZGL15My/jxKIrCj+PGUbbffibJNWHChAkTHYKakUHo9tsTBR82bMD26KN9upqmkabWArivvBLfIYcQ8PloaWxk8MMP4w4GsZCw98oD8tFUBfnSPP2YHDSSK+8QkiNkerNcYvNi2oPtoYQMQbYF85PIB5L5jAqErroq8V+sXYv1jTc6+SuZaA/dE5BUoCo9zbj8mCSWFeRW1th2pWzAqFZ1yOul+KGHiFRVoXq9rNxrL9wWS/zikLXlsjxHlhPLXr49QXT9L7xATmMjqqoSslhYECv7Z8KECRMmTLQF1WIhdPPNqIWFACjNzdjuvRelubmXj6xtWNACSnI1srIjj8R5zTXkFxVR4vGw2xdfMGLVKsqA4bFhGFAGlKAZ+hfFhuLYuADIt4CSR0JbK7LOxANdkJMmtDCs8AHbCFQCXohsgi0h2ISmt62NDXVoRR6aSMT05MBd9Nhjie6+OwBKNIrt8cdRIqY4obvQLSTXFm5hWfGINkluJJScGKaP5nZVQphel+MChr7xBq6VK7H6/QTy89m0335JCZPyIM592WpEbK+nsL6igk033ED1li2s9Xqp9XiIHnZYDx6BCRMmTJjoj8i54QbyjzkGd8xNyPbww1g2berlo2of4tkdlxm43dTeeCNYLKAoDK6r49DVqxmCRmoFuRVDCQmiW4xGbguALDtaGFeEe3NI1OeVM8iE7qCBuLA2sg2aamF7vcZ1N5KI4laTkCbEpLoESPAbADU/n/CFFya+41tvYTFzbLoV3SJXsESjzB+1D4GoE1eLrjxgjNnqXRFkmUJXRXPlaKvsy5sWibDHJ5+w+IwzsAILTjyRY+fMIZvkyLK+cpqf1glyPYUtn31GePhwwiefDED4D3/AsmABSkMry2ITPQhVUSAzEzUnB7KzUXNy4u1cj4fCggKqN2+mdvNmCIW0IRyGUAglNiYcjs8jHEYJhRg8eDCeoiI2zJlD5fLlvf01TZgw0Q9RcMYZZF5+OSgKBYWF1D7xBHU//tjbh9Uu5B5YF5AG1F5xBUG7nTxVxRkOc9SCBdStWEEJrc0QcmgdsMoBlAwSLglipniYC8GsqDAlAnLBRHxORGflamZ1UrtemhaaXMFvVCB05ZWoaWmApiW2vvpqF/1iJlKhW0guQNDqZMHwvTlw8ezkBTHGKN5wWkgQSr09WFdA1vXI9r17f/IJS3/zG2yKgnfiRJoHDyZn8+b4cegrp8nRXD9tW511F6wzZxI54ADUggLSioooe/hhuO8+U5/bDVDdbkoOOICSCRNYu307Vc3NGonNzUXNzo63ycrSiK4ObrebAo8HVVEYpKr4vN6453F7cLvdpHs8VCkKdlXF/tNPNK1YgbJ5M8qmTdog2v2sxrwJEyZ6BtFRowhedRWZsRLxw7ZuZfjy5XzZ2wfWQYheUyfQctRR+A4+GJvfT5PXywEffUTo7bfJ9npbuXzJ1crEPKuzjZUgWaYAcVISCWqBXKGxFXrbjszzkyzJzPvd70g7/niafD6am5o0mUJI9oQy0R3oHpKrAhGYNX4KB/6gI7kBUIOtizjoI7ldVe1D75EniGpBdTW7zZ3L6v33xwbMOv54Jrz5PI4QZPoTJFyQXDmK2xsEF0AJBrE//TS2Bx9kuMcDI0dyaEEBX15/vUl0OwEVNLJaVoZaVka0rAx16FDU0lLSSktJ83jYrihkqyrbd4CkAqRnZEDs4aLGpjv6ef1nXSUlNNpssNturdZVamuNye/mzSYBNmFiF4Wal0do6lR8wSCDVJXspiYOW7CAf/QjL1yhyVVKS9l62WXY0J7BI99+mxFPP00WxvUZhINCJpLvrbwgXTctIDS4oh1ISHLrpEFMN5FwUQiikdygbr4guoV77YXlzjtpcTgoKCxk23PP0WD20PUIupXk/rjb/rRE7Djkt5WAcaUyeegq6BPPZBuRdOCwDz9kXYzkfnXcUVzwzUs4GkOkByAQTbLBa6XJ7WmCK2BZsIChq1bByJEoisJ3u+9O0VFHse5vf+ulI+r7UAEGDaJo8mQK9tmH9apKjduNWlqKmplp+JkdIamKz4dSXw/bt2vj+nqsDgcHHXUUFouFsKrywYcfYqupAbsdbDaw21FjYzEt5oULCymeNImAy0V9Wppm2p7qu+XlaRV/DAhwZihEQUsLga++ouatt1Cqqzvx65kwYaI/QXU4CE2dipqXh9/vZ/0vvzD4tdf4xw8/9KtgiBWw2u1U3XwzFocDG5BXWclhzz1HPsZuCeloFcviZFaMnbppeSyIh4hkAUSgJZosSxBFHISLglx0ymgQy5sB53XXYXU4UBSFzOZmhv7yC1918e9lwhjdQnLtoRaIQsDu4qdRE9l/4dzEwkByNbJU9mFdKVeQ3RVksrv3ggV8umUL9YOL8WVn8O3hB3PkN19CADLrExocN61Jruyn29OIPPYYgyZPpjYri4iisOCEE1DfeQdl69ZeOJq+A9ViQS0qikdmRVRWLSsjLS+PDI+HZkWhQFVpaicy21RfT3laGpnBIM5AgJr//hfbypUo9fUodXVQVxcntEaZsXXA1++/z6jyclZVVLDd6+3wxdYMbPR4GFVezrZVq4g0NuIoKUEdPBhVHhcXo1qNz0C3201ZzFvZNWkSdb/5DYHFi7F8/7029IPEExMmTOwYVCB87bVER40CtOz9ljvuYNbPP/fugXUCVqD+ootoGT5cq8/Q0sIRDz7IoJYWCkjkjYm2I5tkQitsGeTolrxMLBfaRNldIZII7DaQILdVJErz6pPmxXRQN99/1FH4SkoYpqqowKELF/LOkiVd/4OZMES3kNyMpqa41mDWXlPYf3aC5MpSBSEJMNLkws6TXbmkn+yu4EQ7tzOAEz/6iFcuuYBghpsXzryCCZvXUhTw4giAO6hdD40kE9zekisIVC5fTvTii/Hffz/1qgoZGRQ99xzOP/2Jyl3g4lFtNtSSEoomTSJ/772pVBS2i8iszfiUThWZVQIBlMrKVkOkqoptw4eTU17O8ooK6neApAqs83o7HTmRP6sASlUVLFyYtI5qsUBBQTLxjY3T99ij9fcdNUp7+J13Hpb16zWyO2sWyrp1fdov04QJEx1D5KyziBx0UHza9uyzWPohwbUAwQMOwH/CCTjRnrf7/f3vjFi3Lm6MIBwT8i3ShExqjWr3ytEq0Q6Q/JAHCCV6cuvRIrfCQWxTbJBdoPTteG5PQQH+P/yBqN/PWq8Xzy+/8M4TT/SriHp/R/eQ3EZfnJ3OmTiJcMiKLRbt0lnlptTkdlckV1/55MQvP+dfV19KVYmHKhSe/d09XPqPOyhq8pIeTO7tcJEgy70VxRXYOHcu0SuuwPb44wwfPRoUhZxXXyV68cVs7AfZsx2B6nRqEdnSUi0qK9qDB5OWkUGmx0OLolCkqjS3E5ltrqqi2GYjz+8nu6GBz559Fuf330NNTUqCtzMktSegRKNQVWVIgHNHjeKs226jqqCAVYWFrI3VdBeIDh1KdOhQOOsslM2bscYivMrKlSbhNWGiHyIyZQrhs8+OT1s//BDrRx/14hF1HtFBg2i45pq4NLD0++/Z4+OP4xpcYQeWb0czvy1BI7rpJFspdWQs6u/KFmLRRE9uI8mR3MrY0OqYddNhIHTNNURjbgqBlStZefPNKC0tnf1ZTHQC3UJyncEghdVb2VpQSFN6Oov22JN9Fi6ILzcisF1JbGXoyXOLNA4B+fWN7Lbay4bhY1AVhdljxnJScTlFAW9SF0SU1lKK3rZvtixfzu5ffkljeTmKolCXmUnokUfYf+ZMqj7/vE8TNBlqRkZcVpC7zz5k7bYbVU4njS5Xys+kjMzW1sajsRYRmV2/nlBDAxs9HtLKy/m5ooKtXu+AJnPrV63i5enTGVVeztqKCiJbtmDfbz+iBx5IdJ994tV2ANTBgwn/3//B//0fyrZtWGfP1gjv0qUoqll2xISJvo7Bhx9O05//jC8YxO/3Y1m0CNtzz/X2YcUhFwqzSvMsBm2LxYI6fTqWESOI+nykr1vHEU8+Gbe0zUEyRtCb2csJMyKkKtoOEmVLG0mQWj/JZre10BBKTjYTDgpygYf2ED3xRKJ77AGAoqpahTmT4PY4us1C7MAfvuedk08l6Hbz799fTOn2v1C0tudJl+x5KxcxkWtLn/f8C3x++DFELFY25eRSo9rBn1hPmDqLk1uQ5L6Autdf55j99+eriROJKAoZJSVsv+UW9jn9dKLXXkvl0qW9fYhALPkrNzdOZqNCLzt0qOYri6YjHRTTkZapKmvbiM4G1q6lDMiPRWY/euopGr7/HqWNaG5fj8x2NfSSB+vXX2P9+mtUp5Po3nsTnTKF6H77xX0bAdRBgzQv5pNPRqmvxzJ7NqXr1zM+GsW7fPku9fuZMNEfMGTvvcl9+mnS0tIYpKps+OEHgvff32eqaAkCK/zlBbeUx3I7eP31tBx9NIqioBQUcOQDD1Da1BQnuaJImcOi+zC0NtsX3reQzK4hQYb9aPqDmBahqT6hu62lNbntiOtTdPBgwr//fWLXb76JpR85WwwkdBvJnTJrFv8+82yqhnv4unQoo8JRfvXkI2St6LmHpHy+i4isbOosMifLv5/Lma/8kw9OPAlXk4+PJh3G5Jf/m3Ryi0F4+3aVxdnOYp3Xy6c33UTREUew7vzzSS8tJWqx8NPo0bQ8+ywTPv2U+rfe6hGtrgqQl6clRBUXa/rQ4mIyx47FNXo0DeFwm5KCVtFZt5tARUWyXnb9epSNGwm1tLDW48FWXs78igq2DPDIbFdCCQaxzp6NdfZsVLud6J57aoR30iTUjIz4emp2Ns7TTiPd42FrKMSUVatQr7+e9StW9OLRmzBhQkBNSyN8553409JQFAVHKMS+H3zA901N7X+4ByHnxLQ1btp/f7aefjpuRQFFYf9VqxhvtTII4o4KWWjB27j+VicziFcrk6cjumm53YjGaLfA9mCroG48kivswNp7dVAVhfC116I6nQBY1q3D+sorHf6tTHQtuo3kjlmxAlckAopCs8PBqiFD2DS63JDkdvf7piCmeouPJhK9HH947Gl+nDiRFpuDiuGj+eqAAxj2ww9JkdxUGuLehojYDVm0iIJnn6U6NxdUlfQhQ/BfeCHO88/H/cEHpC1cyGhFYcO8eVT+/HOHSaEKkJGBmpWl+cpmZ2tFELKzyRs9muwxY6iyWGhMS0vqBgctOlsSi87mpYjOKi0tKBs3oi5Zwr577aVFZ+vreWXGDBpXrmz3e5voPJRQCOu8eVjnzUO1WlEnTCBy4IFEJ09GzcmJv3gEnE5+GD+epieeIPLAA1j+9z9TymDCRC9CtVoJ3XIL1RkZpKsqiqpy1Pz5vDd7dvsf7kGIyqNyHpje4MAFKIWFLL/uOqw+HxQWMrS6mn0rKsivqKCAhFQhG3DIGxESBSuJblvZ3kDflduim98ILfUJ3a2wCBPjOpJ7c9t75kdOPZXouHEAKJEItkce0apbmugVdBvJVYATP/yAZ64ajQL8UlZGycqeDdfrI7khNHuPIK39bwtqtnPifz/g7ZN/TQh49ZxzuGLOHJpU1TBZrq9EcmVsnDsX6+mnk3v66Ww94QTShg1DURSiVivOgw4i++ST2aooOFQV29Kl2GpqyHO72V5XR0NDA1itEHuDxmolIyeH9OJi6iMR/IFAq/3J8oLSFARWjs7aw2EK6+qo/PbbeFTWsmGDljylqviAOTHrrFUVFaw3CWyPQolEUBYtwrJoEer/+3+o48ahnHIK7vPOw5+WBqrKdquV0LXXYjntNKwvvohl7lwzgm7CRA9DBcKXXUZ0773xxzL3J3z+Oe/95z998sVfrl6mr8WQCbhsNmbdeiu29HSsfj/Z8+dz2iuvMHjRIgpjVc1yYuum2WMNwY5FhSbQHvjCx6sdE9tIKBHsqkUjtPW6cR0JPW5H5ArRsjIcl11GbnY2TT4fLc89h2XNmp345UzsLLqN5GKB37z6Eu+ccBJNWVmEm3wEomGyum2HxtBrckVEV0RxZXuxE157k/eOOp6wy0Xl0KHMPvhgSr/5Ji5tECe5uI76QhRXj/VeL+sffJCh777LAQ8/jLe0lK1ZWRoRkaQAWYMHkzt+PCgKaapKi46gut1uSmMENrcDBFYkfzVXVaFs2aINmzfjUBROPv54cgMBXE1N/PXRR7G3cRM2o7N9A4qqoixdSsPSpTS8+SaZZ5/NiokT8cd8eaNDhxK94w4sy5Zhe+EFLGb1HhMmegyR008ncuyx8emW559ncR/tEpcdjgTBlYcc4OeLL8Y/apQW6Q2H+ePttzOuogI3iSq86UjleUVFJycJBg2JiJawBdOVH2sJJc9q1A11Bu06Evk7bT33VauVtGnTGBJzOxrndLJlwQLWd/qXM9EV6D6SC+Rt386h//uCWQdOAeCjY47n/JXPtlqvu6y4ZIIrZDoywZWJrh3IaWjgsHff5e0zzyQMfPK73/GbWbMIRCJxgqt/m+tr0VyB9StWMOvqqxlVXk5w2zaYOJFhF11EY0YGDS5XK9Krr+ilJ7BZNhvNmzejNDRoRRAaGrA4nRxw2GFkBYNk+Hz8+4EHaNRpf2uAd2bNikdnTQLb/7B+5UqYNg3V5cJ26qlETjsNNeZ8ER03jpYHH8Q6Zw7WmTOxVBqZ65gwYaKrEDnkEMLnnReftv7vf31a82lUcVSQ2xyg+pBDWH3CCbjQCMnZzz/PlIqKpHoOilP6sF7voE88E9nlEott8acmsw0k8nP0BFhuB2k7khs5+2wcscCRTVU56uefmTNypHb/NNFr6FaSC3DCJx/GSe6Xhx3BGf94EXRd390ZEdVHckUvRhOJKK5sazL57bf570kn0ZyeTvXgwfx0xBEM/uyzVnKFvqLHbQtJUdF58/B++SWjysvZWlGBOyODX994I9hsqJEIr77wAvXr1kE0CtEomaWlnHHxxaRFo9ibm3n2kUeo0xHUemDWm2/GCWxlCgJrRmcHBpRAANtrr2H98EMiZ55J5Pjj48U3IpMmEd1/fyxffIHt5ZdRamp6+WhNmBh4iO62G+Frr41PW37+GdsTT/R5yZBMdIVEIQdQSkuZc+WVONGexQd+9x3nvP8+2ULE2162WirbMFHJoQ6ag8nyA70kQRBZScmQFBCT54neYD2i48cTOf10mnw+CgoL2X/5crLr61llOir0OhS1G5JH9rUo6rxY/pEK/PHxZ9hQWgrARU89w94ff0wtCR1MtdSu1bWrSXYB2RHIOp4cqZ2tmy+PI8D7p5/Op+edR8jtJi0S4birrqKmoqJVF0Y9ibe//ohhkv7ViIS2t9zErg21qIjwOecQOfTQpPlKKIT1/fexvv46is/XS0dnwsTAQsmBB+KfPp2GSETzwq2sxH7zzSh9zElBj0yk4g1SO8fp5KNHHqGxrAwHMHTTJp657joy05pj2WW09h6T59l1bSvag1mQimpo8SV4hMw15OlGjPPSjKZlyaKA6nbT8sQTqIWFAOSuX8/k999ntfnc7DEEgIiqGr7rdR/JtaGdgFH470kn8beLLgGg1LuWW6++mu30DMkVQxYJf70sWuuCxBAFapxOnnrtNZr33BMUhUnLlpF+5ZVs9noNuzs6e3wmTAwEREeMIHzeeUT32SdpvtLUhPXNN7G+955pgm7CxE6gdK+9yH/pJRrT00FVWf/TT4QuvRSlurq3D61d5KCR2iK0omTFwCBgwb33UnHUUaT5fOTU1fHUTTcwPLhOWzGH1NUirCmmIUEoqoAtsDWaNCmcwpLmNdK6LC/StFHpXhmh664jcvjhACg+H46rrjJ7snoYbZFci9HMLkNMvHLEl1/iDAYBWDd8OKvGjm3l2dxduxeD6MXQd0XIfrliCAWD7PXTT3GngXljxqBOnpwkoJe1RenSoC+PLZcA7s0ywCZMdBcsa9bgmDYNx+23Jxmeq+nphM87D8err7L77bczdNSoXjxKEyb6J1S3m5a776YxPV1zqYlG2ef99/sMwbUaDHbdIBLHhKPC+gsvZMnZZxMqKqLR4+Gcd95huH9dIsxbTCL0m0Pyg9ZIhyv7hPqBBmiKasEoOZi2BY3cbkIrzbsuNt5EcgEI2R9XLgShJ7iRgw+OE1wA29NPmwS3j6F7NLmqZs8h4Kr3c8iXX/HpsccSAT498UR+vXx5K8u69t6YOguxTdkZQe6OCKBdM3JEds+XX2blqadSnZNDRFFYePDBHPjyy4RJ1ubKOp2QbplRN4c834SJgQTLzz9jv/FGopMnEznvPKJDhuB2uynzeGjae2/Kfv1ron/4AxsWLuztQzVhol9AtdsJTZ3KtvR0MmJeuEfOn88HX33VK8cjAqhWXdtonuChOSS4awHQMn48sy66KB5EGrthA2O2bdN2IGtqjciAniSgm64BqqDJr5FWQXDrSCSSddTvtj2o+fmE//jHxG/z5ZdYZ83aya2a6Gp0C8mN0roL/4gPP+TjY48lCsybMoXDnnuOloaGVl7NXUluIXHuy9FcUZZXEFsxFvIeAOeqVRx9zTX8+777iDQ3U19Sgv/449n9o49aRZ/1pYLbG4vPmDAx0KAA1tmzscyZQ/Too8m58ca4S8fm/HyaHnqI6LXXYvnll94+VBMm+jRUi4XwTTcRnTAhyQv3g170wpUlsGJobzqTRLUyV14e/73tNqzNzURUlYL6eo5YvDjhoS+7I4gHtTyWCYPRuBa2R5MrltWSnD/TRHICeWegoskU1PR0AJStW7E929o5ykTvo8dI7uA1axixYgXLxowhbLPx/dFHs8ebbxpWEOtqootuuyHdECRZTiC07SO++YaD//pXfjjjDBTgpwsu4Ii5cynYti1J/w7am2IdCb1uHdqFpZ8PJsE1MfChRKNYP/mE9HXr2Pvxx1lYXg6qSj0Qmj4d68yZWN98s89nhZsw0RtQgfAf/0jkgAPi81qefprFb7/dewdFIlIrmxvIlcz08+wk1AaZNhsf3nYboexsnH4/gxYt4o+vvsqe8+ZRVOnVWLAgDxZad7caZYQFQQ0lZtWRHL0VsoM6kiO5O0NwIVbVbI89AM1T3P7wwyjNzTuxRRPdhW4huSrGyViHfvABS8eMIQLMOf54xrz1FhFVTSK6cg9EV+h1IykGcY3YSY7qCuIqNLcn/vvfVE6ZQu2QIVhdLr794x+5/c9/JgNwCLGRFSK1xhmc1bFVqkl+SRUVCE2YGMioXL4cy+WXU3jMMSw89litmISiED7/fNTx47WSl308O9yEiZ5G5JxziBxzTHza9vbb2HqZ4ArIVmBCY+uS2vp5Iqn7q0svpWbMGByAIxrlujvuYL9fftEKRLljG5d1f3ICTUhqB6AlarxIdj6qIzno1ID27BWb7Sy/iA4fjuPyyxNVzf75TyzLlnVyaya6G92SeCZexvTD7rNm4WpsJOx2Uz1hAstPOSUpiqvPbtxZRKRxqiiu7tqJn/iCvxaFQlzx+OO4VZV0oOKAffn59ENwTAAmAQcBh4J1MhQPg92csDswBvAAw0ho6HPQLnpRnMWEiV0B67xe5v6//0fooouwLF0anx/Zbz9aHn+cqJmQZsJEHOGTTiJ8xhnxaeuXX2J94YVePKIErCQHgYRbkWwNVgQMAYajPf/KgA3HHsuyY4+NSxnOff559vvlF62KmYUEExHShCDJBR3qQK3VtLY1UU1vu4XkBDIxVAIbSU4kq6N1ed7OVC1VHQ5c99zD8NGjKSgqYr/8fDxz5uzgVkz0JHqU5EZDISb89BMBj4dIURHz7riDiMeT1Psga2i76ljQbVfsR04IE8fYgvajuEj4505evpxfff4hpAEZ8OwVl1I/JUsjuQcDh6K19wX2hPwSGItGcsvQSK5IEnWTkDiYMLErQamtxX777UkRKbWwkNCDDxI59li63szQhIn+hYIzzyR36lTcbi20aZ07F9uTT/YZWY9eqpCOZs2ZjaY2EBZhJbFhOBAZM4bPLr0UJ5qk4fCvvuL0994jC3CIh62+YplwSZAqltWRZIHLJhIktxJYS8IpoUpaTxR+kCuYCYnvjiJ8ySU4Y2V77arK0YsXM3rkyE5syURPoVtIrpArGA3j16/HoqqgKGzKz2fj8cfHk8HkBDHouqiuntwK/bog1vLxCb2sA+0CzgPSM+D8r19kUGgbpMO24iLuPvdhqiZ6YDJaNPdAYD9gIjAerCM0kluC9mabRyKS66S7vdtMmOibUCIRbC+8gH3GDJRYGWnVZiN0xRWEr7sO1ens5SM0YaJ3UPirX5E1YwYFRUUM93jI2bwZ2wMPoET6jrBNtgcTlctEYpmI5gqSWwZk5+Tw6m23YbfZcAJjvV5ueuopMuxgdcY2ItuBiYez5O/ZHEroa4UMsCo2bCQ5mruWRCRXEF0jOzDxrN8Rohs56CAixxxDk88HqspBv/xCZkODWdWsj6PHEs8E8ubOZfz69fw8fDioKnP22otJJAioPHQF9AltIRLieTHI/n4REheyG8iyAAWQlh/gyjlPcdvvHqTK4aGqdCRp27K5pvxWiorroLhWY7KZxC9cBShbo/W8NKJdbKJ8oQkTuzKsP/yA5dprCd12G9ERIwCIHH446siR2O67D8vGjb18hCZM9Byie+5J4KabyLBYUBSFXJ+Pso8/5us+VkRFH8l1k6gmmodGcsU422rl9gfvZ8P4sbj8PgZVV3H7X2fgymhpHeWRI7liCGgEV19htI5kra08T7bqbM/ac0c4hlpYSPjKKwHw+/1s/fe/WfP113xuVjXr8+i2SG4wxaB6vUy+/nqsGzYQ9nqpKiykctKkVlFc2Hmiq9+WGIx8cvWRXCFXiPfBlME+tgXsXrcaUFBR+GT3vZlXcwlwPgzZW5Ms7E1ClDsS0oq0SK6pyTVhIhnKli3Yb7wR62efxedFhw4l9OijRA46qBePzISJnkN03DhCU6fiCwRAVclqauKEH35g7aJFvX1orWCkyc0kQWzlSO5T0+/g26OOob6giK1DPVz06SsUsTURDBIFHlLIFSLB1olkQoIg9LiyXMErtfXFHepIRHKD7JiFmGq1ErrpJtSYhESpqqLxnnv48uOPTYLbD9BtkVzhIKBHEHAvXMjYF15g4amnogLLzjmHPX78kRZVTZItdBVEdFaO5IqxHoLk2tGuv7iTdQkwDP4YfIofAwfR4HITtll52XMmB9FANvmQkQF7fqNtoAVNAFQHhdVQFdV0S6J3xoQJE6CEQtiffBLLsmWEL7sM1eFAdbkI3Xwz6rhxWJ9/vk9115ow0ZWIjhpF6O67UZ1O/H4/lfPnU/LGG7w4d26fJFCiF1R2V8ghOZJbArx33il8cuxxoCioisKBK5aTZ4/EqkFgHG4V3a2xxDO5GmkdCWsweSy360i255TvGno+sSN3lMjvfkd0zBhAk1vZH3wwLrUy0ffRPRXPYkh1IkWACW+8weLjjiPkctE4bBhbDz4Y9zffdLmtlkyYI2gXqEguM7og5GsvIhZIBzUy7WceybqMP7keRXFn0OjM5V4ymY4bB06NwcplYGJtS+wgzNK+JjoCcZ4YlWc3KucuIN/MI7p5Ed041T717VQ9i0boTNdQFODzzwmvWoXvttuIDB4MQNqZZ1Jw7LGk33MPm3s4qmX0O+rb+vX0MKm5ibYQHTaM0LRpqGlpACh1dQRvvZXvNm3qkf3L9xP9/UW+t8iVzESkVuSY5JBsGWYH5u+9N/84+yJczT7qcwoZu3Ej+6xeRcmmigSh1VcuMyh3qu91TeUuJgY/XX/NRSdOJHz66fFp68yZWFau7OK9mOhOdCvJbQtpDQ2MefddFp15JgBrf/c7xs6aBd0UtREEV47oGqGJZOeSNOE7UpsY9iv+lhm5d3AP96DiYDlpPMlwrmcdiiivUkc8MzQSStYEdWWU2sTAg3igiIIjIi/DnmKe3NNnVBo71MYyeX9GD7q2HnwYtNtbbkS04yR87Voi113H1quvpuWooyjyeFAUhcyZM8k/91xqFy+mO7Ej1UPRtaH1d7OkWG7CRLSkhNC996JmZgKgNDZinzoVSw8RXOh49TKL1BbkVoyz0VQHoneysrSU+2++GTWi4PT5mfLj5/z+s/cYtnYpRRu9ydXL5MitfMH1kQtFzc4mdP318WnLggVY+4hXsYmOo9dILsC4t99m6UknEUlPp3nwYLYdfjhpn3/eZdsX142cYKaX8euvLfFGKLpJChtJLl1Wow37FX3ERbbd+DsXACpfUUIZ+3BGTUWyKZ8/kdEpewKbMJEK8sPHlWIs2g60ZEZILlmt7w00mi9kPPpa8zLB1c9LRX7BmATLy/UEUrTFsgiA30/J/fejpKWx3uNBVRTqsrJQ7rmHwnPOwd7Y2MFfccchXgj0BLe9Z7L4HvrvrifyZgEYExCzzZs+HTU7GwDF78d+551Y1q/vsWMQ2lqjKmVtVTGTpbSiLWwxAxkZPHLHHfjcbmwRKKjZxoy7byInUN/atF605XF3lDrtJFQgdP31qDk5gBZltz/6aJ+xcjPRcfQqyXX4/Yx+6y1+PvdcADb+9rd4vvoKwuEu3Y9sIebAuPtRXHui60PogVqC4KijtYdJNZwyeCaVlPMJk4FmXgr9liGhdUyp+14jxjFTPtG9IsiFCRPtQZ/BbNSWp60kez7rx8JfvYXkXgXZEqijbT3ZlYlsqvmC4OmjyPK0PD/txRcZPWECX+y9N1FVpTE9ndC997LP7bdj9/k696O2A7knVZYJhnRtp26eOG67wfeQYfbgmFDz83E88QRZw4fT5PPRvH079rvvxrJ6dY8fi7jH6CuVCQKrn6e/98iDzWrl2dtuY8vgwdq1Hwxy0133kL2mPlnD1E/0enmXX0742GNp8vnw+/1a2d76+t4+LBOdQI+RXBE10mPke++x4pRTCGdn01JQQO1xx+F+//0u36/+pVHfpWiPjYVZdCNaGcA6YtHcOmmIEV0lfyuXOf7KZjJZTBa0wCMF11PIVkY3rNI24E/Uy5Zt0kyYSAWj5I62Hj6ZsfXFeSYPonCQPM8htVN1U7pSzBfTqaK7Rm0x1hNafUQ0iex6vdhuuon9Tz+db44+GmtzMy0jRrDs3ns59PbbcXRDKWDZbUXWAOo1gWId/XeS7zXivqLX/pvYdaEOGoTzqaco3X9/UBSKBg2i8ZFHqFq+vMePRfRuOkj43WbFxtkp2uI+I/fwWNGsMv996aVU7L47oJ3/Fzz8MHlr1lANWKOJfVqjqfW+AIr8ZtxLKD76aNJvvBHVYqGgsJCaZ56hvg86XZjoGHqM5KbqqrMFg4x8/XV+vvhiALaecQZDP/sMgsEu27d+v+JhJJNbMU8vV2gECuvQIrM1aFHcHOKiJNvQFdzKg9zYcimbWkpoDOVw/QF/5cHFtzCucQGqP0FwO2NAbWLXg+hKFGQzs40hC+1BZCXR+yCPg2gPMf18ATlirJdFpJJK6HXBRrIGeVr4QgsiKEdAZQmPnviGvF5yH3wQx7x5fH3NNaAoBDwe5v/5z5xwxx04uzjDWbYTNKqGKEfFhfRJjvCmuseZulwTakEBLTNmkDV8OCgKNlXlmIULWRaNUtULxyPLFdLR7iOyzjafZO2tGBv1xLx98cV8ft552H0+bH4/J730EuN++IEaEi968j1BHrdaFqVXJQFqVhYtN92EO+ZXXFhXx7ClS/lfLx6TiZ1Dt7srpEpAkTH0o4+o+PWvCefnE87Joe7EE7G/9VaX7L+95XpdopAqiGhuI9AUhfQ6EtpcIVnIAXL8ZGYt4s4Nf+ZK+/9jveqBLIXLL3uRJ7wXM3LZnCRvPjOSa6I9yIbrbhKRlhy0B1CONIhpQXJjMvC4J2Qj2oNMlhvIvYc7qslz6bbVkbEcyZXlAPJYrx2Wk0OLv/ySHIuFj6++GoDG0aP55s9/5jd33omrC4luqiqN4jcQkW8RxRXfS7YlFL+t/BuLtr5XycSuAbWggJb77kMtLKTJ56No0CCOWbiQsi1b+G8vVsuS7zHi/iL73Yp2PpBvic2Ive2pQe18//jkk3nhT38iqigohYUc+tprHPb660mFGcS+9DkFci9RhITsqrcCuaqiELrxRuosFnJUFWcoxJHz5vFSL0TaTXQdupXkdvRktYZCDHvtNZZecQUOt5volVdSsGIFDUuWdMlx6CMpcpKIPsvcrxuEUiG9Di2SK7/aVqPdHQJRhmzexFlVH3LfXhOIWhS2p2dwyy33ceu6q7AtWZKkgzRhoj0IgiibrosIS540Fm0LiZcycc42kiCm+oeHOO/F9mV9ryg9bTRffkgZZV+n0vOKyKc+AU7WvMrTckQX4OjPPyfbYuGdWNWh2vJyPpw2jQvuvBNXc/MO/75GEL044kVXlnr4SRB2vcRQTmiVl0Wlsdl7s2tCJrgAzQ0NNNxwA8uCQf7bi9WyxHkrJ5RlkyC2xSSKGKVlx2YUEH97VvywMXc4T910I1FFgVjU85jvvydIsuxPvpfJL85y4pt8TJZoTLbQw4icdRbRiRPx+/2s9XrZ6513eOnDD/ukX7GJjqNXE89kFH/+OZUXXIBrwgQURaHssccIXHopy3fyBJOlCfp5SPOFdk5EbxpIJgx5QUirR4viitdeEWYLANVw2PpPWWg5ik/32IuIohAJR5l+zz0c+fTT5HzxRVLmtgkTqWBEcHNoHWkRgzJI+1BaHWTGqgS50ToeBCnVuxy0SNs3SjCRx3ptcFt6XasF41ANkBZjuOkSq1VDxppXMS3j1E8/Jddi4dU//hGA6jFjeOPuu7n6rrtwBQI79iPrIJJOhaRDSDycJAiu/neERERXjurqEZGWm2R314Ge4CrhMLbp09k6fz5f9PKxgfE9RhDcktiglKCx3ZLYgjqgHrap+Uy77C6IhlBUlYxAgJPmziV76dL481N0fELrl2Uho5KfhbL0qacRnTiRyFlnxadbXniB+S+/3AtHYqKr0S0kV42NZTKZKvFMwBKJMHHBAlZMmgSKwuKRIyk75BDogrcoWT+kJ7dyFyMkP+hkolsPpNWQMAasJvHkD2rTRVVerlt+M5PmHc4rB55IU8RGk83Gm9dcw8ihQyn65z+TqrqZMGEEWa4gdyfmxwbxIMq3xyaKYh/I1IhuWi24osmRVQFZFxsimehmSu0sg3miLUdzFaGFkAmtEQuWRawSi1WC4GgBRyhBfiOhxKp6nPnxx+RYLDx/2WUAbBw3jhfuuovb7r4b107o+CMkyK2IgIvDd5B4AOuj4am2JfvbpyK/JgYu1MJCWmbMSBDcUAj79OlYFizo5SPTIL+LynIF+f6ilAClQFlsKAGqwV+fxrST7qImJx9ni5/hK5Zy4av/Yfh33xH2eqlGu4ZECgskJ82GSBBccX2Ia0TkyPSkZEHNzyd0442oiqYGtixejPWVV3rwCEx0J7otkqt3MRBt+QGgN1VPe+MNBp9xBpvz84kC8w85BHXmTIh2HSU0iqLK80RGuhgLotuAFs11yLpckf0TIl5XsGi9l19/4+Wgl97l1hvvpGL4cCLAol//mqySEvL+8hciXZhU19vo7pvRQI96G/1+qZLO5O7EfAsauRVhFzvakyTGQrNqwe5vTXL1BSIEcZXH4mGkn5cOpAvbB5npyqTWqfsCYiwE77KXWQq/M2sI0gKQJg5Sh998/CFOu5XnLv4DAKsm7MZjd93JXX+ehrNFH//tOBzR5GQ6SNbTirEL44Iy4p4mNIZ6za7RZ0wMPKiFhTieeoqsoUM1m7D6+j5FcAVkuYJ8nWcDVlm3MATtHlMGYaeV+4+9lbV5wyEI1lCEafdPZcLXi9kIVKGd40LqV0/y/UbfmylyCWTSHUGTLMjr6hPeugqq1aqVEM/KAkCprcX+0EMoqtrOJ030F3QLyY2gndxGEFHSRqktJAJNXi/KVVfR8OCDNAaDNA0ahPXUU6ELktD0ZCJVqVIjzaEczTHMLDFAwbZt3Hnzzdx3443M3X9/AKomTaLqoYdw/fnPsG1b575ID0NOsJHbbdlGdQZtVZXST+tvdvobX3dms+vJj7Wd+anOs1TTFrRoipDAyUO+NG6V9iz6+CStQ1odDKmHzJD24Cog2QmvnoQmTkRo5W5F/fQOdSOmevsROgT5bVJ0n8TmiQqBAVL/fwe8+19qsfDKRRcBMG/C7lzz8KOc8fHHlCxZQl4neoBkHaHcbkqxzMiJQfba1WehD/QXNhMQLS3F+dhjlO29d9wmrOG669jaxwguJC5D0WtZhyRJqoU0+Q2vBVQ//HX85SzM3Sv+wnrVs0+y5/eLaSBBZCGZOItpWToFCYmQflokdtaQuE/VISWCk1xgKcW7cIcQOf98ouPGAaBEoxrBNf1wBxS6jeTWpVgmJ3TItkbihPXPnk30sccInH8+KtBy9tnYfvhhp8od7ggxMcoij2vx9OWe2gljpgUCXDB9Opbzz+er004DwD98ONsfeYTovfdCL2bWdgRyApGcZNReKUh9Yp8M/XwxrX/TT7KSSjGWTfhlEmyUwd4VBKMjhF+xWlGysiAnBzU7m+xx4ygsLaVm7Vrq161DCYWwhsMooRC22FgJhbCGQgwqLaW0tJTIkiW4vN544oc85AFWOQMtJzaWo6pOkvogsxohq04rbCLrzJtI/Mep/lP9/93p0L38thKidVZXE0SCyfeFAG3LevZ5911qrVbe/f3vibjdzD7+eDbsvz+nzJnDhEceIXMHia5+33rbNaN5eg2xftrU4O86iHo8hP78Z7JLS+M2YcctWMCSUKhPaHBliMtQvF82onVGiueeFSjZFutNaQH88PrY3/Dp0GO0D4ThrNdf48h3v6Q5RNxNQdx/hQwim0Tvhv5FOaRrC7mCSFarI0Fy5WRasS8x6F8oO4rI5MmETz01Pm2dORNLFyW7m+g76BaSGyY1yTXKYJZP2BYg7e23sR50EOGRI1EdDsJXXon9T3/qlH+eHF3URxuNlhkRXCsxr099lkkHYFFVDv/nPwlv2MDnf/wj2GzYS0pwP/88ltdeo/bZZ1FCfbcTU58Z6zKY1s/vDOQAX1vEQY6YyV1ZkCDXQtPVlURXBZScHIonT6Zgr73Y3NjI9kCAUG6uVp4zJ4doTg5qZiYKmtej0+0mzeNho6KgqiqNXi+hmOWVOJfFuna3m0BsXXcggP2bb9i6dCkNmzcT3ryZzM2bSdu8mTS1KdlWQY7kOkiEUOQQZANQAI5GyG+CfL8WlRHmW+29/Cn6FToC8fahnyfLFALEQ6PNodbWZ37a/892f+sttlssfBjT1K0vKOC73XYjt7ycnE6QXHE/kiO1/hRtfSRJbgs+L85Tk+wObETHjiV0992objdNPh+D8/M5Yf58BldX824fDGaI81Oc70KHLpRFltg6BfWQG4CvdzuEl/Y6V7swInDEF19y9rOv0BRNkE4RoBDSg3SSAxFyQEDfyyHUTPIzudFgkJ2PhOqphR2/ttTiYhy3307OoEE0+XwEv/oKaxf0GJvoe+jxSK6e1OofFiEgGo2S/sQTBB99FCwWohMmED32WKyffNLpY+pod7scyZIjWBYMPrQDKP/8cxo3b+aHGTPI8HhAUeD66/EdeiiBp5/G8tVXfa4utmwNJSco6dty5r2I9rYXwZXnCzIgzg25LXcHB0j4lIrP6fVa8nyBHbkBqgAFBahlZUTLylCHDkUtLYWhQ7EXFGD3eKhXFNJUle1eLy1+PxYSZFW8AymAOyMDJWavowBpGRng98fXFQOAS1rX73Kh7rknzYMHsxlYiBactVkgM9zIYN9mMiwtuCwKB1V/yUGRz7QEMPFnBIhZ29HaCyvG1JQApDdJf4peByJP6/UinYVge1J0SBBcfaRGDB3ZXfkbb1A1dCg/xOzFfho2jOL8fHbfwcPTKyj09yf9PPGQ1Xv7GvU2mAR34CK6556Epk5FdToBaK6upuG++/jZbuftXrQJaw+yXKGRZP1+BO38DgJfHX4cj193B45gM06/n90WLeb8vzxJdTT5WhChGhEsAuNngYB43ov1ZERJftltINF7Im5lsjRoR6A6nbgefJAh48eDojAiM5Pt77xD5Q5ux0T/QLeR3NoUy+SInJyDoie6ljVrsL/5JpHf/AaA8IUXYpk3D6WmpsPHYURm7aQmt3JOjej1lcluqxTrHYjoAuQvWcLRr73GyhEjqMnKQgVcZWU0Xn89ll/9Cts//oHll186vsFuhviNZFIrJyHpE5My6XwkV46UyV3DsmTTFRuL/1Dc5ETU1iK1U0EsUy0W1OJi1LIyBu27L9l77MEWm436rKz4w0qGnrQSmw7HSG58UFWcDQ046uvJqqxk2J57YrFYiADVP/xAS2Mjqt2OareDzQZ2O6rNhhIIYMvOJuhwEFUUHD4fThLnoC2mG2jMzGRbWRFVedqL0mucyZiWhRzR8CkHbvqe3bYtwdocbZ3UZXSx6S86+cmhXy6X9+osRCRXYpMtEsEV2jsxNNLxB9joRx5hQ0kJ6w86CNXn46PTTkP58UcKVq7s8KG1d28K0PqnMZLVyMRWfj8Q+zExcBA54ADCN9+MatMepUp9PfapU9mybh1bevnY2oI4X1tIvqeKZeL+u/ygg3jh8ccJOhwoqkr5rFmcNWMGmyORlLIypO3Zaf0Onaqtv36MZEL6tnwNdgQqEL7mGhzl5QlJyU8/Mb+0lMo+9Ow10XXocbmC3gzeqEtanPyO116j5cADiQwZgpqWRviPf8R2zz07HPE0Irh2g/lyN7xep2iFZDf4TmoTA3PmcNo337Bi2DDmjB5Nk88HQHTkSFpmzMD6449YX3gBy8aNndtBF0NOlBeENotEpa1M3djdyf1IPdeGiT722FjvNypIrUx2Zah2O5SUEC4rIzJ0KJHSUi06W1KCarPhdrvJjUXWS1SVFq8Xf4oqWoFt2yhwOMj1+0lrbmbJ66+TtXw57vp60uvqcNfVkd7YiDsajZ9DGR4PmeXlBCsqiHq9hudc/Jz0eFDHjkWprsbe0kJk8GACgwdTX1bCluHFbC4bTIvdQSAtAxQFFS1CvCVtCB/knMgHpSeSFWpg0rY5TKmexZ7bFmELRlKXFpNFebKGSH7DEH+ErAPpCIzWE5HcGHNU/Yn/WDYtqUNLOhGZ2R3F6KlT2fSXv9A4dCjY7Xzwpz9x2HXX4aqr69Dn9fcjoffr6P3K6MFtFAw3MTAQOewwwtdei2rR4pDKtm3Yp07dqfyRnoSI1vpJJrji3K8qKODLu+4i6HCAouAOBjn2/fepNrg/WnVtcZ8TlmHydQOpryeZuKbqVdFHj3dEChQ57TQiBx1Ek89HQWEhh/z8M/m1tazqg5ISE10DRe0Gq4xMRVH3SbGsrUQiI21bcNw4Wh54IP55+0MPYf322w4dh0wi7G205Xn5xN1S4obYop2Wp5shxulAJbAWWJcYb/UnTcbHAY+H9PJylq9fz5q99yZy6qmoDkf8uJVoFMvHH2N75RWUhoYOfdfuQDqJKltyPXOjeUIamtl6Mx2CIDvy0N48odkMASGXC39pKc1lZQTLynDsuSe2ceOotdvxNzejot0M9Wd7QWEhBUVFKDHdbHVVFdtWrUJZvx5lwwaU9euxVFZir6wkrbaWUR4PnvJytlVUUO/1GroQ6HXK7Z1z+rZc8CHXnphQC6B2RB4/j9uf90ZfxuacPNYUFZKVvQGnXXrwxL6kO+xn/4YfOXD79+zduABnpKW1HKGRZENo+cc1mt8Y+7wsXJffCkXoWb8cNNPMWjQGWwvN/sQsMVu3yg5HPpuLi5n/6KOE09MByFq2jIm3344lHG73s3p9rVEipNG7ArQmt5BMcGHHHsYm+jbyL7yQlksuocnnw+/3Y9m0CfvUqSj9yDXHqPiLCGbYsrJY/MADtIweTZrHgz0S4dfff0/etGnYvV7DJGT5PqaP5KbSuLeledd3LqXqSZEdCdtCdM89Cf35z3E/3MI5c9hv/nxW9WFJiYmOIQBEVNUw/tktJNetKGp5imWd6bYIXXopkRNP1A64oQHH5ZejNDa23rgO+ovOqOyoPN+CxieGkCC4JdK0YxBJnoHxFXaQ5IpxvOs8P5/wuecSPfzw+AUIkG6xUL5oEY1vvMGGhQvb/b5djUySy8cWSNMFJHKfCqR5Skbn9qX6knWZYlxPonpOI7A1I4OqsjKqysqoKyvDX1ZG89ChtAwaFCexdrebwR5PnLhWxqKzepKr1NSQ4/Nx9G67kd/URFZDA28+8AAbFi9udXwikULWIMttUQZXflDIPE+cZ6ncKWT9s/gts5zSDyz/yAVQle9hU2Y5RYNWsW10Gt/nHshs12RqLXmxL5c49mDIjRp0cErgXS5U/kq6KhHiOhLh07rYDy3CqHUGy+vQLsz2SK4830VCw1SdGGqiSZPxoUZqdyb62TBxIt5p0+KykvxPPqH06afb7QHqaFRWvx4kE1l52iS4AwsqkHvtteRdfbV2fqkqG7/9lsDVV/cr6ymhm9X3XroAu8tF5fTpBEaPxgI4nU6Ofvttcj79lKj0Yi+/1It7oHzvE+uESM6DlYMVRvNE55Hci6IPfqVqp4JaWEjLo4+iZmphGMuyZVoye8S8KgcC2iK5PZ54ZvQw0EdDxHLRtr34ItFJk1AHDULNyiJ88cXYH3203eOQNbeyBteI4MrP61SShTgbEUMXQampwf7YY0Tfe4/whRcS3WMP3G43wzwegrvthuO3v8X1+ef4PvwQ6+zZKFVVXbfzdiBrcoVcQSa9BWierlnO2ESOwUZkHYFo67QFSqNmc5VZr5GcQG4u68vKWD10KOtLS9lYVsaW8eNpHjyYFp+PgN9PmER0ViR9RWmd8JXX0kJo7lyilZWoIkK7YQOK308zsMjjYVR5OasqKtjQzhu9fK6Im7pMcLNIjowYnWPtTecD6eL3FG8WguTGhqI8L0UFXsiDEhfsYfuZS9VnWcEYvrcfyCzrFLYqhQRb3FTVe0BV+LtyBf8bdCTnpv2bE/kKByqUrW/NLMXTS/Z3E+K9nYH0RGqJJpJIxEtNnXQYVbFxe9EZQ/z0E64XXqDuwgsB2Hjssfi9XjI/+qhDh2h0DzKaZ5SLJ7dNLe7Agmq1Er7iCq38q6KgKAqFdXWUvfMOX/cjggsJeXxEalsBm81G3Z/+RMvo0VpirKqSf/fdLJs9GzuJ3IssknMxIPGsgISFWCaJa1hc/sK5Qcgl5HuAGPulddqTAbUH1eEgdPvtcYKr1NZiv+8+k+DuIuhxkiuQKkJjdNopgQC2p58mdNdduN1u0s88kzSvl63vvtvhY9InnxkFnuTgk76tWEgWU0KyEKkLYPF6sU+dSnTffcm/++74jVQF7HvsQbi4WEvA83qxzJ6N5fvvUSoru82VQX4hEG/lQnsreFcxkJURaxQTK5dDMpFNQXI3Z49kyfD9iNCMP6pQmV7G+tyhbMgrpSEtPf4W3wK0uN2EPB5sioKtsJCo10s05lQQBZRIBPumTdgqK8kJBjnioIPI8/vJamjglYcfxuf1puzSWuf1tttdZZSoqHedEDd+uVpYqnMtVSDUDjgySCa2RuHzPBIl0HK0HSqKg7FsZiwfcAFfsIZRvLzlTD5vLma7OwNFhW0tQ3k+7Sre40LOYR6HKx9gKVwFeeu1L+CKHYhAlIRWV1RE6ay4VDyZAsndk0IFUUdysHcLnSS5gPrOO0Q8HsKHHQbAlksuoX79emw74INpdC9q66ubj8yBC9XpJHTrrUT32Seu5yzbto0j587l74sW9fbhdQpCiiOIp6oohK67jvDEiYAWOEh75hmqZ8+mmoSUKkcaC6Is7onpJAdGckj454rrXTw2xb1d3APqSNwD5H5a/XW1Iy+PKhC+6iqiI0Zo3ykcxj5jBkoHdfom+j+6heSqdP7hlArW+fPJXryYwrPPBkUh7f77sW/YwMb589v8nBx4lfWQciUzfc+qYRRXfFAeoMuJrgJY580j7dprOfQvf2FVaSmbcnPjCWqgmY5HPR743e+wbNyYILyrVvWIDZncbRtCasieLrHX7aDFQVVOEZuzB7Mlr5gt+cVszhnMmpJyfh4xiYjFCqgUbfXibPJLPnLJv4makRHPhs1pbKR4zRoCn32Gs7ISR2Ulls2biUQi8Y+vevddCsvLWR/TzmbSMd1WKugdJkRUW5YniMiu4IlGMhmjnEWRjxWJLU8SnvlJhItdtO6WEBsIAPYWcLWAvQHFZsHDNi5Jq2fwFyFWFA5hTvloXC4/EGYbTh7jYN6ihPN5hv0a16PoNbh1GPp6RaJgDZC4YAIYs3cx7SDx5lsHEX/C61Jv6CCwE7mdcdiffBJfWRnhkSPBaqXl1ltxXncdlhS6Sf3DU9fZ0CUuaib6H9TsbEJ33UV01CgA/H4/1f/6F8N++IG/L1/er/Wc8nkevuQSwgcfDMS8u19+GccnnyRdF/pIajTFvIhuCOna8i1O3AP0mtwu+X6nnELk0EPj07Znn8ViJpntUugWTa5VUVRX+6vtMA457TRq7ruPgNOJqqo0/fQTW846CyUYNFzfSH7Q3rSIThbpxlluNP2tPFNMu9gpTW4qDIt1o6/YtIl1BQVEDzyQ6F57xe1qZLjdbrKsVgJeL40VFShbt6Js2QJbt6JUVWnDDhadyKR1xS0x5NrtuLOycGZl4crKQsnNpqE0i/VjR7Nm2BgCVmhMc1GbnWe47fqcQupzi1AVBUVVya6pInvrVghrNz+7309+ZSXZlZVkVVbijEZxnnIKGcEgSiTC+kcfpU6KznZUs7UzJLc9Da5RW/BRoXSRX7T088W0iJZbM2INMeRJ7WxdWx82lohmVbOHTfXlFBauZmFpOa+lnUW9NVt7ksXc1MdtX8YFS15g3MrlxkLZaojUas2W1rvQgrz6bhKZ9MY0uZH6RFKZGKdq17DzjgThQYPY+OijRLOzAXCsXs3gW27B0tLSal2jrlHZIsmo29TEwEZ08GBC06ahFhfH59leew3rK6/0OV/zHYX8rpx19dUEzz6bZp+PoN9P+gcfkP3ss9h06+WQkCiIdjaJXiy5LdYJ0FreX9vGvFp2XhkFUHT88fjvuIMmvx+/34/1k0+wP/10F2zZRF9DjyeedRfJHebx8Kt77+XDAw4gCqz1egn+73/YZsxAMfgeegLrJjXBFUMeyTxWtNOyUyzoRpJrBDUtjei++xKdPJnovvuiuly43W6GiwITqsraFDZYSl0dSlUVeeEwg51OtlZVUbNtG1gsWsKbxaINsbZDUchQFAYVFpJZVkagpYWwqkJ2NhaXK4nLOAHV7WardBxFa704U9hxBd1uqoZ7SAuFyGts5KB332XkwoXkV1aSU1mJtbY2Hu2LJyd4PLSUl9MUi84GSDbgN0oOMkoW6gyENEGO1hoN+uWQXDvEmmKe3BauFuIhoQiyq3+6yG2Z5Mo6E4P052ani3eKT+WtgtMIhF3xKHww7Gb0hg1c/t+nmbBwbhLrbAomyGeonV3pk+sUu/bdmkKtiz7UGUzL464gkr7x41k5fTqq1YrD7WaE10vp/fezXReBk50U5GiTOH9aDNYxMXARLS8ndOedqFlZgKZPtT3zzE4VJepLENds7oUX4pg6NZ6oG/jPf3DfemtSb6d4f9XnHGTS2qFBPy9Ect6q3g/baHpnSe6Q/fYj+6WXCDidoKps+uILmi+/HKUDLism+h96PPGsu7DO6+XdqVPJOusslhxxhEbkJk1COf98bP/8Z5uf1SsNRJGHtgiL/PA2rCzRC1Cam7F++y3Wb79FtduJ7rUXwy68ENfQoQQdDlQgPSPDkOSqOTmklZRQ6PEQURTyY6VmU/nChoCQ243i8dAUuwE2eb1Y/H7saLIUYc0VBUIZGRpZjmW1N7kzsDT4yN+6lcItWyjavJmCLVvibVtaGk3DhpFfUYE7RlrF4JPawg8x4vUS8nqJkpCNRonJSeheCyej4KReTys0t+IU0SctdRTpaDf5dLQbfqZPGxxy5od4moiwiTgQOTyst22IzUuzBPit/TVOSPuQf5edyUcjjqeJLKqyPFSNHMm8P05m2oybOW7euzT7Ew+hGhLetTLBTTWOt2NsULysNJFIOBFEUdb0IbW7JFq6dCmuv/0N7w03kOHx0DByJIWFhQy6/noaJaIruk/1Y0FoxeUfiI1NkjtwEdl/fxzTppEdk4o119Vhe/BBrD/+2NuH1iUQ96jQEUfgu+QS8mP37bJt2xjy7besJLVRiujRkp+TeuUUuuk6km0gm0iWKshBiZ2F6nIRmjqVgNOJoiikBYPs9+mnfGsS3F0S/YrkgkZ0mTGD8ObN8OtfAxA+7TSUDRuwfv654WdkTa78AHaSTFbkQbb6jHfDylpcdO1egBIKYf3xR6LbtnFeKETQ7abO6eSlDz7AFomgFhXFBwoKUC0W0mPaVpHQlooQg0ZgXTqnAktGBiG/HyUSwdnQQHpDA9n19eQ2NJDpcBA8+GDcoRA5jY3s/uijlMybhzXa+tYlomH2ZctoQCNQcrRML/OVZbriP7TotifQkWz3HYUcnZTbrQgdCdIt71e+gRsRb3laPERaRUlCkF4L7lpIs0Arg8u2tBAG87OtDVzS+BynWN7jgXPupeqAkaiKQsDh4N7Lb2NFJJMjXn6ZJlVtFV210prU6nel/5/0Wjzx/wotsoh822PLBOHtChR99BHuk09m3ciRoCh8t/vuHD1lCukSyQ3oBlGERK8RFP+lXrNrov9DBSKnn47j0ksZFjtXSnNz2X7//WwZIARXIDplCoFrrsHi86EWFlJUX88xc+cyZ9kysmk78KPvJBLXuCwJEwQ3QLL9tt4LV+4t2ZneNtCS58I33cS29HQyVBVLNMrR8+bxVju5OyYGLvodyRWw/vOfqCUlRCZNAiB8xRUoW7a0KourD77KD2V9NFd0NesJcBJ72cmKZ92BdV4vf3300bgN1javt9Ufq1oskJ+Pe599OOzSSwm6XKjRKB+/+y62zZtBVVGiUVBViEYhGsWhqmQVF3PYaaeRFo3iDARY+tRTqIsXk+P3k0EiqCi6seweD5HycqwVFYS8XtbtwPfQR2KNkhk6mu+XKtC+M3+bHMzXn1f6tti/LKfQJ1/oNZ9iuYhi6iMmcnJbehRcPm0QVmXyMSjyyd7WwfqhuLGKG5bdR/40Fx/uuy9NTidRn4/XzjiDWWPHcvRDD0F9fTwLOkIrvmz4/WXCK5CK7It17OxcxL0tFD/xBO9NmUJtVhZhReH7o4/m1NdewxYKJWV/i4iz/ECXI1UiqmtiYEG12wlfdRWRww4jNzMTFIXsQIATf/yR2TZbny7Tu6OI7LsvLTfeiFVRCPn9NH77LZPeeYe5ixYR9nrJoXXugXjpNLrPietDflkPxpaL60qO4hoR3a647iPnn09kv/3w+/2s9XrZ/bPPeOv11/t1cqCJnUO/0uTqoTqdhB58MGEP0tiI/cYbsWzeDBhfpG1VeXGT7L0vhnS3wcwiqe2gxzS5XYFhki9sWxe/iHCP9ngYWV5OdUUFTV5v/DeVE7FkQrazkEmRnkwYBdIturZYZjRP/qxMmiMG8/UErCPHpF9mFJUOpJgvBqPeBXs7bT2fBWPSqV9HPIACwDaPh80TJ/LBYYfhHT48/tBx1tYy6YEHcC9bFtdBG22XFPsxUvl0dB3972z03+zIvOopU3jp/vuJBIMofj8TP/6Yo555Bkg2o2/UTTfQutR0I713DZvoWqi5uYRuv51ouVbGyO12Mzknh+MWLsQRCPDMo48OGKIU3XNPwnfeidVuxwa4Nm5k9C23kNvQkOQaI3qSxLS+Z6WtXjJ5mYjkyi+Q8rjRYL7cc9JRRI44gtC118anbW++ie3FFzuxJRP9DQMm8cwIan4+LY88gpqbC4Bl40bsN96I0tSUktQaieX1JFcuduDINpgpD/2M5HYUVhIRbkcH2kLm0Rm05Tyg7/7Wd4+3FU21GmyvMzCSQ6S6ycvLRf11o1rsoRTTcseBvluwrWkwJrmibUQg5WMQbb+isOjMM1n0298SiclaotEow/75Twa9845mc2ewv/b2nUrjl2q8s/9Xqs/+eMwxvHPllfHpMx94gN1nzWpVxbiOVu5p8aGBhD7ZRP9GdORIQlOnoubnx+dZP/2UkZ98wuiRIwdU2dfouHGE/vxnFKdTI7hVVXhuuYW82tqkfFZ5EPOFRl7udWqrR0qM5RdpPZE1asta/Q5/r7FjCc2YEXcesv74I7bp0w0T0k0MPAyYxDMjKDU12O+9l9B996E6HESHDCF0223Y77oLYhVNZAIlkyiZKMiSBflha0f6kJxV1IfkCt0JYbQk+fi36saViVZnSYmsgTaKUsp6TT3B08tQ2ht3BqkspPSSihZpfaR1BMFtIvmm32SwTPweRsQ/1YuATC7BOBpq5PAgR5HFgymkqlhee40hK1aw6sYbacnMRLVYWHrhhaSPG0fR449jj+m49fs12o84PqMXS/n7uAzW6Y7L7ORPP6Vq4kQWHHQQAB9fdRX7rFxJ8datcXKt36/4bQLS97Ngktz+jsiUKYSvuw7Vob2eK6qK9bnnsL7/PuuB9StX9u4BdiGio0YRuusuVKdTe1Hdto2S228ns7YWN9qzTy74I7sUynZgRi/GSNNywqb+xb7JYJ7+HrSjUAsKtIpmMYJrWbsW21/+YhJcE8AAiOQKRKZMIXTLLYlj+Phjsp95Jq4VFW+l6bTuhpGn80guMJVlp3W1qQLdPAdaeLaSARXJhR3rAofOkxIj6YO+rZeeuGhtV9WRyGdnILSY7fnyytP66ESSHVobywTaiowaLZc/p4fR/yK68I1IO7F2S34+1bfeSnDMGACcbje5LS3kTp/O9lmzkrbX1n6tJB6a4oEpt7NTzO8u7WuT281tjz9OdVERACMrKrj6llvwRSJJfp3CUUIei2V1mA4L/RUqkHvNNUR++1uafD78fj9KUxP2Bx7A8tNPvX14XY7osGFapDNW2tZWX0/xLbdQuGlTKwvuPGk6H+3aFGO9O4qYDrTT1vdaGfVkBWLb3RF7PtXl0iSLw4cDoNTX47j+epTq6h36fUz0bwzoSK6AddYs1H/9i/A55wAQOe44WjZsgPfeSwq+yt3eMgkS0cNWhEgOWbYnGByAkLunuhMukrvIxI0uk+SoOyT/fy5dW7byMuoGVzrLciPQEm3tDCDa1uRV45C78OSbv9CiiUGe7lOoqUG99VYiF16I48wzGRLzQVb+8Q8sF1/Mpu++69BmrCS6IYVeVvwvYlpEcsXLZm43Jnjmhvzc8eiD3Hzfg0SsVtaPLeeLc8/lBMmKUO8GESD5HmHFJLn9EWpGBun33kveKaeAolBQWMiGH34gcOONWDZt6u3D63JES0pwPPoo2SUlmh1aVRVpU6fi2LQpft2JYIK4/2aRePkUcZ10O7hC2rriPhUhmZTKjgriZV4mtSK6a5SfEJW20RGoQPiGGxIEV5TsNQmuCQkDhuQCWP/zH9TSUiKxevWBiy7Cv3kz7rlz4xeUnUSXoxwlkjO9xcO3EXD5QRFPXzlUt7NeJyZaQUQRQ2g3QgcJjaqeREZoTWrljHhZ/pAU0e0kK5GJaqqEMX3Xm0xqBZGVpQry6SS8hvsilEgE23PPsUdWFs2XX07YZiPgdNI8bRrR88/HsmFDh7cl/lvxO8gSIYH4i1UUrN34o+QvXclpL7zIyxdeSMjt5qXLLsNRW8uo997TIgMkXrDcJHv6yrcEvUbbqPxvqmX6af18/XZM7Byi5eWEbr2VrPHj41aKpdu2Ufaf//B1Pya4qfIS1JISwk8+SdHEiSiKgj0vD8eMGQTXrSOLZEmC6B2TZWfiPtYYm5BfyMVY75wgorz6qK2e4OodFXb0kRo57zychx9OekYGTT4foRkzsCxbtgNbMLErYECRXAWwPfkkalER0XHjQFGov+km0m6+GfvatXGCKxMmI4sqlzT4gXT91SoGE10OQSZFlFQO5un1r0FS63Pbkix0BkayhLY8fcV0qi48WY/WX0rEbn/7bf5v4kQ+POAAWqxW6lWV0PTp2G+7rUMRMP1/Kx6e+mCt+P2EBVF3Yu933uHrww5j3imnoCoKf3voIS6priZ79uw40RQvTKLwiOh1yCb5JSWVVpsOrJNqOdLnTXQeKhA5+WQiF1yAarPR5PNRUFjIRK+XfZct4/8tXtzbh9hpGPVMWgBlyBC2zZhBxpAhGsGNRjlp/nzqHA4qSci+5ERsNwlNuvxi3xCb1susGlO09fe6VPdI/XXSUUSOPRbHeefFK30e6fOxcO3aHbKsNLFrYECRXNAKJNinT9ccFwoLcebloTz7LBl33knLnDkEDT4jkxe5G1V04bj9oOiv1r4efutnkKO4dlon+QjI3f9Gmlx9gqFRglxnj0/cpHdEnysnlMlRXFHFTSSr9YeOgXVeL2/edRdFRx7J/FNPxR+JQG4uoRkzcNx6K8qWLW1+Xi/daCLxUqL3FRbr9IQK6JBvvmHpccfR5HIRcDh4eepUfnvmmdh8vvh5k07iviCiugGSM8uNMszl+XInkLw8pJsn2iIx0MTOQU1LI3z11USmTInPa66uxvf009Q1N/P/+rl7giznEs8tS2kpm6ZPx5KbS8Tnw5afzwnz51O8bRuNFRWUSevqS5GLQIA4N5tInJNG9l9GeQXiHic/NvX3Sf110FGyG917b8KXX05OrLDRiG3bOLCigsby8n79P5roHgw4kgugNDRg//OfcT3zDKUeD4qi4J85E8c11xD4+OP4evKFJgZReUm81YoLNk3uc+ns66eJNqF/wFsh6aVE6L9aSNyQ9c4JegeCrnRXkG/U7ZEbvZZTn2ghvofYVn95V1rn9bLO6yU6axbKtGmoTidqXh4tM2bguO02lKqqlJ/V/y6y1F1PbgUJ7gmSa/npJ0748UfenjKFsKJQ63Ty3q23ctJdd6FEIkkEQn4ZEf99SNfWv/Ckmq9fZpfakKz1Nm81nUN0+HBCt92GOnhwfJ5l1Srs99/P1q1b+aIXj62rIK4hIaFRSkvZPGMGlpwc7Z5XW8uEhx7CqShUV1QwyOttNzAgnEPES5ZefqUntKnmi8HoZa8zyr/oiBGEbr0V1WKhyedjnNPJUQsWoEYirKqo2OHfzsTAR7vuCoqiPA+cBGxVVXVCRzbaG+4KRtj/iiuou/56IlYrqqpSv2kTjrvuYtDnn7dKWBLjPGAIWq2HYqAkNs53xhpFsRVKpBVcDFh3hZ6CiLLK3rtGiWXyWE4A6ojdll7bu6OQyaye3MrkV//yFDAYy/o0/fL+guiECYTuvjthv1RdrUV0UyR+iC7RdIydMozaPQWrx8P6U0/lsxNOQInZo034+GMOf+aZeCTASPeoJ6tyZ09bWsRAJz5nouNQgUHnnUfoD3/AFwzGS5dbP/wQ29//jhIO9+4BdiGEfCYTsJWWsuW++1Czs7EBzkCAg+++mxFLl8alCZkkJ/EKtFXkRkzLBDZVWz+vM/dNI6j5+bQ8/DBqXh6g3W9GPvUUY4qKBpSXsYkdR4DU7godIbmHAD5gZn8juSM9Hn41bRqf7rcffoeDTV4vLX4/OW+/TdE//4lDVVtpN/PReKsYhkhtpUiaKCNBctMZkMUgehJGujL9tD6RTJ9k0dHiEJ3FjugqO6vh7W9kJrrHHoTuvDNBdKuqtIjutm2t1nXpBrlyXqqu056COP9WnHEGv5xzjpaY6nZz8Hffsf/MmaR5vYYvWhGSX1aMin/o/ULbivC3NW2iY1Czssi46y6Kfv1rUBRQVdYtW0bL/fdj/fbb3j68Lkc6mj7cWVbGthkzIDsbOxrBPfKuu/AsW5ZU1CGHxLm7ozpxfWKZHLEVywK65aEObrutDlLV7Sb0wANEhw0D0Ozebr4ZS2Xlzv14JgYE2iK57coVVFX9RlGU4V19UD2BtV4v7991F6X77svc44+nOT8fBdj+618TLC2l+KGHsAUCSRFBBwkrJ9nuKQCkyYykv7GRfgCR+KcvqhCV5omkCrkIQqpSsdCa5O4M5JuyOLZU020R3lTz+otkQYZl8WLs06cTuuMOVJuNtBEjyJs5E+fUqWxcsCBpXfH7tNBagxvAOGrfU7CikYWh//kP9aWlbDjhBBSPh1kjR+LefXcm33QTOV5vq2IWEVo/7OXBaL7sAiK7vcjQ9waY6Bgi++9P+KqrsIweHXdPyPX5KH71Vb4fgAQXtHMnOnQoVdOno2Rnaz1igQBH3Xkn5cuXJ/nfirFwrknVk4BuWqyX6nxu69w3IrIYzE8F1WoldOutCYIbswozCa6JjmBAanJlrPF6We/1Ynn3XSw33ED4gAOwAE377cf6Bx9k0D334KyuTureziRhi+In8XYa1+V25Mo0sUOIkFxBykKiNKvQKwqNrlFk1ip9TkwbzdvZYwRj26dU89qL9A6EU8mycCG26dOxz5gRz3bOf/55LGedReXy5UnrhnRtuzRuIlmC0pMk1wJxS6WxTz5Jy+TJ1CoKqqLw2d57k3bGGZxy//3JZU5jB9gSam2Qr49myW1B4oXmWH9eygS3G62CBxRUl4vwxRcTOeYYgLh7wm7r1rH/kiU89/33vXyE3Qd12DD8jz1G+uDBRH0+7DU1HH7XXYxavjxe2Ehfx0ixQyRkXNBBvj+JHgqxXF+tTD8YLTcitqItj42iuCoQvuIKohMnxufZnnwSy88/d+7HMrHLoctIrqIolwCXgGbl1RcgXzCRYBDHjBlYzjuP4Omna/OGD2fTI4+QNX06rtjDWJDc7NggIrl+IFf0KQtRkZl81qWQf1JhtC/IbADjqK2AHAmzpmh3RSRXIJKibbROWzf5tm7w/QnW+fOZ+MEHNFx7LaqiUJOdjeXGG1Evvjh+P5B/G/kFRvy3RjKTnoQg4NZQiAPuuYfZ//oX2zMzUVWVz446itJFi/j1Rx9RACiCOQAOPzhiqebNUeMkHJHEKiLUfox7GOSXoJ3VkO8qiI4dS+j661GLi+PzmjdswPf44zSFQjw3gPWa0VGjCD/8MCW77x73wd33/vvxLF8eJ7cF0pDljjXsYG2ErEZI92syoXoSPWayT65wUWgkWUrTUZmN/t7W3v1SRuSMM4gcdVR82vbyy1j/978d+o1M7NroMpKrqurfgL+Bpsntqu3uLGQiYQWYORPrhg2ErrwSbDYi2dnUzJiB8/HHsX39NXa0SI0sWYi/kYbAKvcv92dW0gdhRArlyF97iRFG6C6S0JG/3mgdvSRhIJ1CNe+/z+FHHME3e+4Jqkrl8OFE/u//sL35JpAczRb/a0deTnoSVrQHvnvxYo495xy+nDaN+sxMnH4/b1x+OYV2O7/+/j1Nj18Q+5DkpZTWCGlNkBlMtlhy0TpKrY/SCnKr1533NNnvL1CtVnKuvZbo6afT1NSUSC777jtszzzDVp9vQLgnpEJ0wgRCd96Jq6gIRVFwRCKcPG8ebpuNdBLShAK00zU9g0QeiRWtLnUdWGshpz5BRoVcQZYS+UmUsTZKpG0rsbaz97xBZ59N8Oqr42WXrV98gfXf/+7w72PCBOwCcgUZ4uJSvvwS25YthG6/XavlbbPRfMMN2MrKaPnXv+JaJL0GMw65j1z/xJLGZhSm8zB8q9dNm1rFvoV1Xi//u/56bNddx5px4/D7/SjnnYdlzRoskj43VVSnt/9POfIaBKKLF/Orc87hi2nTqCkvRwWeufpqKg6exO8/+gdFqre1+DvGTu3B5CIS4r3YCPpovqxDl6UL+s8babgH0ktTW4iOHUvabbeRf/DBWmleVWX9kiUEH3oIyzff9JnexLZg9Hwweukzkl217LMPvttuw+5w0OLz4czN5eS5cyncvp3mioq4blwkcNohUeVBQDrJjBJgZYcE8bKm1+jKWl79MnHedua3KDz5ZNz33INqsVBQWEjVhx/S/NRTO/y/7irXg4nUaDdIoCjKq8BsYIyiKBsURbmo+w+r+2FZuhTH9dcnidfDZ5xBwy23EI1lihvw1tau2/Ig2wI4kiMyXZXhb8JEX8Y6r5dV115LYO5cAFRFIXTTTUQln9K+CvFQFg/3RiDY1MQJd9xB8ZIl+N1utno8vHz62Vx/5/NURsdoVimbgC1ANVALEV9y6Wa5J0ncOgQBSSeRyJaJpgvOJCGZEhpgMYhl4jNiO0auIwMRqttN6PLLaXnwQRxjxsSTy4bU1nLASy9h7YME10pyPEQ/yI8QYfMltLQFaK6VwtBnOJA7ZQrq1KmkOxxkAOkbNrDHhRdi/9e/8D36KG6vN+4hHkU7DxuBSC3aeSqcgCq1ocGXOH3FUIsWuW3EuEqjHAiSybH+Ba0zv4Vt9GgCN92EarGgKAr5Ph8HfvYZaZGI4WPX6DFsNMj7NrHroF2Sq6rqb1VVHayqql1V1VJVVf/REwfWE1CqqrDfdBOW+fPj84JTpuC9/35CMS8+OSFN0XtbyX5HdlpdZfJFZXY7mthVoEQi2O+/P24jpqanE546FTUtrZePrG3IbgaCGDQCzc3NHHf33RRXVaEqCigKPw8bxi3X3k9VsBA2QWQbNPugIdSaHMjSDD2hEYTXiOhmkSC32VJbdndwkbgNidvTQLzPqEBkyhRa/vpXIscfD2jJZbZwmClLl3Li7NlUzpvXuwdpAHHfF0F+4eAjHiPif3OSeGkRCZAiUayAhHOl46ijqLv5ZtxWK+lAwdatnHjLLYyYNQvnxx+T7fWSGduOlYT8oBHtvGyuBzYA66CpFrZEtXe0KpLe04SSIX4NyERXJJfJxLYt+68d+S0sQ4YQuPtumlpaQFXJ8Ps5fs4ctvz8M87Y79TeIBNdsX25w9UMNO1aaNcntzPoKz65HYVqsRC58ELCp5wSv9nk1NZy8j33sN/q1QwDRgLFbmAY4InN8MSGbMAbG9Yl2i2bYKU0a7XUXkvvd8+aMNGdiI4cSeiBB+IeutY5c7BNn97nIm0COSRsluS2GLvHjOHjf/yDlUOGoKgquV4vuVu3ctlf/sKEBQtaPej1DhtinkjmMUpQa2vclv2cPJarrw0EqAUFhC+/nMi++ybNt86dy/CPP2Zsfn6fLAbQnr2hkZe3/BLk1k1vPuUUKi6+OL5u7oYNnDp1Knm1ta18xF26sb7QToQEgRUktrGdefpzsKPnY0d/C/LzqXvoIaKDBgGQrqoc9Prr1Hz/PZs6+N+msnOEZPkPtE/KTfQfBKDzxSA6g/5GcgUixx6L5fLLcVssZLndZDidHP3ii5z+wguURyLkZ6P1F3mAUSTIrkxypSGyTiO2BotMkmtil0DksMMIXX99fNr26qvYXn21F48oNWR7MFkmIE9neDysOOccvp8yBVswiAVQVJWj//1vjnv1VSyq2q67h+hCNrJv0luQiXlyYQkj/WSq6f78EB86ejQZ557Lin33pUmqUKbU1mJ79lkss2f32RcmaL8ojb5tJxGhz5TaacC6M89k2e9+hy227mCvl9/feSeFDQ1tJuSmSuyMkNDaduZFK1V5XjmXRS/Vaeu3UDIyqH3gASJlZSiAJRCg6Pbbca5c2eZvrEdHi1p0JPJsov/AJLk7gOw99sA2fTo5u+0Wr5Yz/IcfuPLxxzl65RwUDzCaRBR3FNrTT7DXlSSx2dXR1gRXEF+T5JrYFRC+8ELCp56K2+0mPSMD10MPUR1zXOhLkMmFrH3NNFjWOGYMX9x6K/5YgRnV7aasuppfPfEEw2fPjpMW/ViQDqOqUfpp/XzRVWxUCjrVuL8+xItOPJHSGTPYnpUFqspar5fmpiYsH32EbebMeOnlvgxZB2oxmNYXtHGRkKmI8ywDWHXrraw49VSsPh92vx/PsmVcMW0a+X4/mbF96aOoqdryS5D88iSfY22dfzK5NSKNRsva+y0Uh4O6e++lZexYFLRiD0P+/GfcP/20w7+5vN9QB6dN9H+YJHcHUAwc8rvfsfq226jLyABVJa2qivytW9lj7RIu+vYfjE5blUx080gmt1J7fRBWkSC2ctskuSZ2BagWC+7HH2fwiSeComAPhfCdcw4bf/yxtw8tCbI+tiNtNSuL2TfdxJbJk1FiRTCskQgHP/UURz/9NOmhUFIXsWgL3+e2CIa+rR86asrf3x7i0dJSIhdeSN4JJ1AQs8ZSVRXf4sVsuekmLBUVvX2IHYIcpTR62ZFfesQ54ULXe2Czsfiee1h75plagp2qMvH997nlppsoCgbJBBxuIKQVJGmrN8Co50Bfjrqt0tTyS1N7UVJ00239Fjarle23304wJkWxqCpD/vIXcr/9tlO/u9ivsC4zkk8YySlM9G+0RXJ3KQuxjsI/ezZnfP01v3g8zPd4sPt8ACwZuxvX7/MIh274mvOqZlLorE7tsBBTuxtqj0yY2IWgRKPs/+WX1B95JI1uNyG7ncgtt6CecQZKpO/QMNldQSCEdlkLApGUX9rQwG533kn+Aw+wbORIVEUhYrXy9VlnsXTcOE5+9ln2XLAgyQrKhfE9IFXWudh3kzTPKENcH03rb/cZNSuL8NlnEz3uOFSLJV6xzBaJsFdFBd/feCOWHey67gvQd8/LJM+umxYvUJmA2+3mxz/9ia2HH671KCoKI6qquOCTTxgTDGIVmYh5gB8cjeCoA5c/8d8LotdCIvFMDDsjfzHStHZE76r/LWxA/dVXE9x3X02iABQ/9xyF337b6cQwmbga3VlMPe6uB5PkGqDO62X9ww+zW3k5UzZtYs2kScw/4QSiFiso8PXYQ/l+7wM5pfE9fuN6nXSXP5ng6hwWBrqtjwkT7WHtokWcPm8e702ZQkRR2JqdTeS887C98EJvH1occpEK8bC0kyC3csa2iMKlqyol/+//cXpREd/ssQdV2dlEfT62DR7MzLvvZrdlyzhq/nxGzZtHptcbJzN61xWLbh9iPwESGeMiEiffSwShkQmuvN2+/iBX7XYiJ59M5IwzUN3u+PzmpiaqX3qJiT//zOwFC1jfx5LKOgL5v9UTXf25JM6LdMCal8e3d99N0/Dh2H0+WgoLmbB+PYctXsw47zKsw0guZVaHZongBEessIM4DyJohLYxtoqwCGvAuBtfHwE16uaHtkvzduS3UADLzTfjOO00VJ+PkN9P0X/+w5D3348/LzsDETm2xr6L0TJxjKLd168REzsHU66gQzGazHa0NIwC0gcPZub15/P9wQdqd6IMIB0y0xo52/IKxy37GNvKiKZHWJkYarYlJnWLzK4SE7sUhnk8pJ9/PsunTIlXp3LcfXdSoYjexo4mC7nRAmrDPB6Ky8tZXVzML8ceC+npWN1uoh4PVlVlt3XruOjmm9ln3jzSaV36VO4aNmq30DpRSG43kNxVLWfD90WoVivRQw/FdckluIYPj1e1ArAsXoztH//AsmZNLx9l52EUkXfQmuA6pfluwFlWxqJp0wgPGhRfdsonn3DY6tUM3VJBUbNXM84tQHtYFQM1aD5gm4CN2rgmmLBvlmbHh0aMI69tRWmhNSHsSEESo9/CedVVKNddF5ejWF98kcJp03DCTpNccV3pI9EBg3mmLndgwNTk7gAEyR1LguCOBkbatYklR4znH7+5iJXDR8eJLg4o2b6JCxa/wKQf56CsBFYAK2F7VYLcxmaZJHcXgmqzUbrnnowYOZK1K1ZQuXIlhEIQDqN0w7XX16EC4TvvjNtBKQ0NOK66CmX79t49sE4ik4Rxf16snZ6VhffCC6k86ywoKoonsGZt2sSvX3uN3777BkXrN7eqGiU/nPUEN0THrZ4E6W2k791jVJeLyLHHEjn1VNLKyhge0zKjqmyYPZvmxx7DMndun3ZN6AhkCYI81hNeeXlgt91YMXUqlvR0nEB6JMKlTzzB6f/7H45BJEryFqMR3SGxcTWaN+XaxLhpW6Lmg7yoEi0fpK5bv30y9L9F6JRTsPzpT+TGro0RW7ZQNm0a6z76KOGX28l9yeRV/xJpdI2ZJHdgYJcnufquPatuLC8rJpFPJg8jQesm8oDqgW8PPZgXp5zP1tzCRJ+mHyas/oUL33qe0bNXgRe21qe2EBPav1RdP0bLTPQdqACFhUSHDuX/t3fe8XEU5/9/zzWdTl2yJbnIRbYFNsahGYLpHUJxQhLIlxB+JBC+CSWEhAQIJYSSAIEACZBGQkIgIRBSCAmQb+gdU4zB2Jbtc5NlFVtWOZ1O1/b3x97czY32TpKxLVmez+u1r52d3budnd2d/cwzn+eZcQccQOVee9HS18fWRALKy7HKyykcPz7rQ742GExbrEQyScDno8zrJbxmDT0rViBaWhCtrUz0eJjt9bJm6dJRF//z48IqLSX6059iyQlXlizBe+21uyTpLyITuF+uy7EJb/TEE3n3Rz+irbwcYVkUB4MUhsN4LIu9ly5l/2XLaHj1VQLB4AALk+oZL/PzORPp3vBOIZ+cnIJ2Vkglq7SUxGmnkTj5ZKyiIgDGV1czvqaGwnicAxobWX/vvTz/73/voBLsXKjabX0pcMjrWLCAJZdfjsfjwQcURyL87w9/yKGLFzMeKApgW29VmcJ47AeuHdtUuw57YpLm9GRmNJNJq0vPx7g2OZoh0+r31SmtyjLCJ5zA5osuwh8IUFVfT92WLZz01lssueMOoik5jzqhidNzK9NOlubBrLZOOmTzbd31sVuT3MGGH/VjxmPP9zANexrFqWSmUyyqVHZOhehUL08edAqPTj+D3mgR9JFejnjxRc752YPEmttZiz3JzFoyvem1DPwA6R8fHPINdj4stxurthZryhSsyZPtdV2dnfb5CAQCOYms/JDLYbn21lba29oAcv5O5nssi8mtrSy55x7a//73XSJs0lCRnDuX2M032zOIAZ6HH8bz5z+PcKmGD+kRr85IVqKky+vr2XrSSbw/dy6tkybhxQ431lNfjyUEkzdv5oi772a/xx/H3deX1xM8V5gwp3W+oVmdPCccjtkesABr+nTKv/hFOOEEQv396fcCoDge53N+P3s3NeHp7+e+O+8cMx06L84z2vm1dABoO/983j/vPOjtxRMOU97ZyVevv569gsGsZ0uoD5mabietS0i02ny3lYxEQU1L+cK2klyn8GfeQfKlBbvnyCPZkJIoCKC6uZnj//UvokuXpgmu6oyn64Fz6YT1/OE40RmSOzaw25LcbXkhx5OZQnEi9ohQXSpdVUBmEvFJwGR73V1ZwiOVX+Dfkz5FIupOf2Xilo+5H33EJ/7yF7yvvZZuaGQPW4b4Gc4LbLDjYHm9WJMm2QS2ro6yffYhMHs2W3w+wv39OX+Xl8j6/cyuq8MNxIVgxapVhCMR8HoZV1Pj+Dv9/7Z2dJCIRLD+8x+6f/YzREfHTqqRHYv4WWcR/8IXAHtCBe9VV+H66KMRLtXw4CcTU1cu5Uq6VEn37LUX75xxBitPOIGoImPwtLZS0NTErDfeYK/nnmPK4sVYyeSADnCMbOcgJyKsOw+pw7ROJDjisP1x25nk5MkkDz+c5GGH4Z81a0BHrm/1ajx//Suu555jWl0dMxsaRuWMZR8HXgbGWQ5oeX6Xi1VXXsnK889P10/t669zwWWXMbmtbcBvAoAIOGSmPMr6umxCKzmvulbzW7Gt/Nt6XU7a4sG2Ow4+mBVXXokr1amtWLmSQ665hkBfn2O0Cek4NhzSmmskRN12ejcMdn3s1iRXf9kkuXUK4eLFHv3Rdf01Sto9zmFHAGiF5ugEfjf/XF7f42D6XQFap9nWGmFZVL/6KhOffpri114jsmYNbWRbW9SpOPNZXQw+HqbW1zN97lyWh0JsBJvQTplCcvJkqK1NWxbzWWdViK4uynt6OGb2bCr6+vD39fHE/fez6cMPEZ2d0NPDtPr6AR9yC5g6axYXXHYZscJCthYU8PBTT9FqWZTPmUPDKafQWVIC8v1MlWPdihX0//GPuB9/fJe37FouF7GbbiI5dy6BQICKRILCyy+n6YMPRrpoQ4ZqqVMJjE5oAmSC/G85+mheuflm1tbWYlkWrmAQUvfSAgrjcWatW8fkZ5+l9v/+D3eqg6VanJwkTU77YjhPMqHnqbIHNYTaUGAJwcTDDqP8hBMITp5MV0VFep/aYRvf2Un/gw/y7p137pLSlOHAqfOjdngKiop454oraD/++LRuu3brVs698UZm/fWvjjpeVc/rdmUyra5M5IQtqXWHtt5CdnSF4d5jCVWGkSutb2/df3/eufpqLI8HF1C2di3Hfe97FIZCOWMIu8jviJnPQdPEyd39sNuSXLVXqTYYTt6ucn85GdlTFdkyqEqgwuuQWUSmdWmHpdVz+OF3b+SD/fZLkxN3ayvxtjY7tEtrK6WvvUbp669TsHw5/TgL5p3E8mZoZeiwiosz0oK6OkrnzWPGscfSW1iYl7jCQOtsV2Mjm954A9f69YimJsT69YgNGxCpGMpTHYjsUJDrd1Pr65l08MFE58/HfdRRbC4rS1t7e0MhylwuPL/8Je274BC/CquqCu9vf8uUvfcGIZjU3s66s85i/apVI120IUEOS+tD0U5D1UVk9Jiu+noi++1H47hxNM6ZQ8e0aQCIQAC30rmyVq6kavFiapcsYeKSJdQuX05BLDZAF5kr+oOMkapGXFDXer4kwPlglZaS3GMPrD32ILnnnhTuuy9TZ8927BAWud0cW1rK7I0bqW1v5+djSJKQD7qMRZWwuCZO5PXrrqNv4kTcgQCJ+npmtLZy3Lvvsv8dd1AaDOb0H3HK78YmsJ3KuhPowv4sdSl5cv+2klxJXNXnXeqMi7R9fiC09968dP31JL1eBFC+cSMLr7iC4tR0xLlGVyG709XLwMlTnCZOcRrlMDOejX3s1iR3KD1NNa02RpUMlD+VA0UFZGuj/GS1JFYXNNbX88Ctt7K8ro7148bB2rUkwuE0WY1jv2Cejg7K33iDktdeo+DDD4kmkzlnm5HyBoMMLKBu332pPfhggtEorV5vmtRaZWVZx+aTFYA9ZE5LC64NGxgXifDZQw5hXDhMSVcX999++4h8nKfW13PhZZfRXF3Na3vswYehEBMmTkwTis2/+Q1dt9wyqiZVGC72+8Y36FTCCYl//pPV3/jGSBdrSBiqg5FKBtQPuUTPtGmsPeooNp11FrGZM9P3N97aSiL1jArAW1DAhK1bqfrgA6ref5/qpibGb9xI5ebNFFjWgFGqGJmoC50OaX0tF0sIqKqyteippXzuXPzz5tHh82V1DvX3anNTE1v++U9cL7+M6+23x6wkIR+KcHZI7NtnH9674gqsoqL0PTr+2Wc5fMUK6hobKQ0Gs/wwhkLawgy8f93YnySZVvd1su0WTLXDNtg6tOeePHfDDST9fgRQ1trKmVdcQXlHx6Dh+SDbgVKuexzy1LVTPY2Eo6XBzsVuS3L1j07AIU//EKnz1pdq2+qQU5GLzHhkAekWJNqfsYxsrK+nvaGB2Nq1rKioYMmCBTTOn084EMh60eTLJnp6KH7zTQKvvYZn8WKi8fiAnuru+lKqkQxU56/C2bOZOmfOoLICyEgQ3JZFaSjE8qefpuv9922L7Pr1iOZmRCzT/G+rdXZ7Q5ZjZWMjlaefjvWVrxAKBNJEfcvLL+O95RbEli0jVsaPg6n19cz/+c95t6EhfQ9jP/kJ7l3A095N7mFlda3NEZPT+bVoxgw8N93EutpamioraW5vJ5l6nj2BAD7FyusKBnGHw7gBXyxGdXMzpV4v7ooKxq1eTd377+Pr6yPR10d/JEK4spLwlCl0t7SweetWuvx+ugsL6fb7Cfn9uOvq8NTXs8nlosfvx/Jk5grKJ98JBALMmTSJCZ2dTG1u5plrrmHDsmU7tN5HO4rIHuyrBLaeeiorzj8frxD2CEA0ynl33smxr75KJVDogmhy8Cmce7W8XIQv3/rjkFxdhqHmye9l/4wZ/Pvuu4mPG4crFKJ8wwa+csUVVLW1OTp86+8CZBN0OeIg89TtXiXtRGRxyAdDcscSdmuS6+TRqqcLHPL036rDMeowpB9bH9WXHKh7cxpa6fJ4WDNvHo0LFhD85CcJl5amXzz5IsYB0ddHwaJFeF5/Hd5+m77+/nRPdSzDKijAqq2lZv58xu27LxuAjqKidCQDHfmssyIatQmsstQJwR4VFQSXL98lrUpT6+s57zvf4aV99iFYU5MmG8XJJPs88wztzzyzS17XlPp6xNVXs2HqVMLhMCKZxHv99bgWLx7pouWFOszqpPFX09KCq+sP1Y+8Fyirr6esoYHexkZ6Nm+mc++92bL33vSdcgq9e+2VIbmtrfja2vCkfhuvrKR38uR02aqamiju6LAnkggE6E5FdMCySASDRMPhjNY/FdJJvkd6Z1F9z1yJBKF332XDU08hVqzAtXw508rKRkWHcLSghIzkrcrtpu3rX6f1+OPTM76P37yZi2+6if2CQcYDvjLsD0o3WKGBcZC7cI6R3M1AEqwuunOhPHZbvyO6Y2W5wzpSX8+/7rqL8Ny5WEIQ6O/n21/+MvWvvw44z9inhx5LkLFEd5Jthda31bQTsZVpdW0I7tjCbktyhzO0InugTnpdJ49R1ULjYvBYfE4zr4RdLtbMmcPKgw9m3YIFhKqqsgivXHxeLzVtbXQtWUL7Bx8gWlsRra3Q3r7LDVNbABUVmWHQCROwamrs9YQJWGVlQ3b6AtuK1FBXR2U4TFl3N2/86U9sXrQI1/r1dv3s1KvbOZhaX8+MhgbemzaNlhNPpLC4OG2hPn7RIp783vd2SaJheb3EbrmF5KxZAIhwGO/ll+NqahrhkuWHPuTqJbdGVp/a1SmtkmHVWXZcfT3lV15Ja1UVXYWFRBYtIlJQQNekSfSXldEzfTr9JSXpcvnDPdRsXANR2FpVTbcS0UG0thJta0vLorzV1ZSk9svO4ubGRjtuc0sL4y2Lzxx+OOP6+qjYupVf3nHHLvmM7SyUYPskT583j5bvfY/N48bhDofxA9NXrOCiH/6QmVu3UgMUlmEz4iJsprYFoqGMhlY6jcntjsxhdDC0kHDby4G5nIESvkol3T9jBv++6SYi06cTq6nBH4/z6Tfe4OCHH2bG009nxaZX0y4tP0aG0HaSrSuW21sc9jnFlVeJrZ5nMDawW5PcwTyd9XxZ7lzDiXovVH1R8w2JOPUw5fBRdyq9oaGBtQcfzMYFCwhNmEAce4iyOoeFRVgWbNlik962tjT5TZPgLVsQyVyziW9fWABFRVilpVBWZq9LSxnX0EDVrFlsSibZmrLSOllkVeSyzoqurrTDl0uxzk6tqGDWbmpFSu61F+PuuovymTPTVrayO+7g7fvuG+mibROsigqid9yBNW4cAKKlBd+3v43o6RnhkuVHvg+20/6hdKb9Wn4ZML6+nvKGBgKNjVQHg2m9py8Q4KPTTuOF//kf+r1eom439eveomLreiL9ftqKJrHk0KNIulz4olFKnn2WaFMTfZEIob4+kuXl7HXyyRTG4xSHQvzxllvYsHx51jWOFvnOroByYMZRRxG/5x5CgQBYFslgkP3+9S/OveceJsdi1AKlATKzlwXIive1JZYd9kum27W0qkHFIa2TvI9D8CShrSJ7lr8yID5zJs/ceCPJoiJEIEC8ro6FixZRu3Urx915J7V5nhm3th0lm9hLBzpJ7GVep7Y9lGmGDcYednuSqxLdUm1b1xTpL5uOfC+M/lunj526rQ4/6enWqVNpWrAA6wtfQMybl2Vh2ZIajne6c2qeSCZta6Ykvm1t1Lrd1NXU0NTURMumTbZlRwhwuQamtbzxkyYxfsYMNvX0sCUWG0BoLVe2O81wLLLpMsfjlPT1cfDMmWnr7NP33sum115LRzIwyMakAw6g6ve/T39M161YQezyy3EtXTrSRdsmJKdPJ3bbbVgFBQB4PvwQ37XX4k6NWjh5nOvDn/oHXZ85yemYnYl8et1c+8rJJhYyXa5srz7mUIL770d907vMbnvFvrgUI2ourWdlQwOuxkZ6g0Fa7ew0iUrU11PY0MDSYZDYfHXntC9fl3s0k5F8Rg8c0uKkk+CaayhKOYkKy+KQhx7i1GuvpZpMiEqfOoNZKhQlLWC1ZiZxUO9Ts7bdinO9OX3HBpsqd7Bvn5uBznTy+UvMnMmzN96IVVRkd8h6erjkV7+isrCQusZGaobZKZIkNxeZ1dOSBI/mZ8hgx2G3J7lqHEt9Wz/Gm/qt+rLkGuZQ0/mGJnMNXaqW3FyhfDz19ex1zTX2EKXfz4uLFrHZ4yFZXU2iqiod1xUyBNfS0hLbQjo/zm9zWmRDIcSmTTbx3rQpK82WLQjLMlajYWLS/PlEbrqJrW434XCYIreb/f/+d1qffXaXrL/EQQcR/973QAhcgP+//6X0pz+lgMEDz8PwA8nv7I9jrrIX5Mj3ktE8qsPDque+HEIudSkHAnSA1ZGbIDgNicPQ4vI65edy7hlML6mn851rZ0J3JMyV9gGeggKCF19M2xFHUJByFPQlEhz37rt88qqrqEnNYibvZZG8sWWpP2iHaEfGWqtbbRVDb3pJ4Ey25ffGKa2uIbdBRj9GfkNLU0UuAWKzZvHKDTdgFRXhAUp6evj6Ndewx5o1aQngcJFkYEi0TnLLFOSxBrsndmuSqxJaXX/rpMmVoncYuoAd8juc5EoPFh5Fkt6C+npKGhpY29jIxlSImSTQ7/EQGzeOWE0NsZoa4qklUVNDorqaZEVFFuEdLIRWPgzlt6KvD7q6bFlBdzeVXi/HLFhAUTxOUSjEP++9l+a33kL09g7pnAbDQ3LCBGI/+hGFkyczLfVxPfW113j0Bz/YJYlu/PTTSZ57Lm7sTta8N96g6Le/pTsYdIyYosqNpJONdPxUnT/1tFx2Jpy0tzqx1R3a8jn7OK2LUuLgvv6BDktOjjtqqKnB2rtcw+CqPEsP5eQUvsmpbR1tVnf9m6FL4KT8LTp5Mq9edRXdqRkOXUBNRwefeeYZpr35JlXKc6tH9hH2oAW9/dmTN8gJHLaQmdxBTXdg14mTE2MuLXg+wuuUr+bpMaD7Z83i9RtvJBkI4AaKe3o46+qrmbZ2bbpuBrMQOyGBc3i7TgY6pKlrg90T+UiuxylzLEJvbGMOSz/2Cz0cXa08ximMEGRreN3aMRJquXS4gEgwyKZgkCj2B0xaoQricWItLSRbWhxneun3eklUV5OoqcGqqcE1dy71n/40uFxYySStL7+Me8sWe1atZDJ7raVFVRVzjz4afyKBLxLhmYcewrd8uU1qu7uhuxsRj2eVvQd4T7HIbgoGx6Qj2GiBa9MmvFdfTdmDD4IQxLxe/jN/PlP32WeXJLnuv/4Vz+TJFJx2GpPq6+mYMYOGffel5pJLiAaDA6RHkoC4cQ49pEqCpHOYJGMjgQTZ7Y1qTUuSPaokrXVqeyL3qR70vamlCCiJ2ceq+6TTqzxfIPU/XjJkTXrf6+2fTnCdrLTSSq63RYk8a/36k0q9qNg53gUD4SXzbJWTbUmX2xuOPJJXL7oICgqoxK73w//zH87+5S/xpSbvUKE6K4cB+jPOVnLovZNsS6Y0gMjJg2Td64RU7yQ5RfTwar8Ziu+J/D/5fettaOC1G24gGQggAF9PDyddfTVFa9emJ5zoZttJrnxX5Tss32n5jMtnTX1WDQx0jGlLrhrqK9csRH5tPwxsxPNZIFSSqy+5gsHLPGlRkpZbPeZhPwNjHA427OoU2UFtAD6ODMBICHYNTDz0UEp++1tiXi9YFpueeorwJZfsNCfE7Ylit5vxDz+M66CD0lKZWY88woyrrsoiGuVkhuvdDN8re2e7telWNaewYmqUBtkxdhqBchqpkmsfw5viVK4Ha/Ny7R+KRCRCdtu0LefamRifZyn3enntq1/lvRNPpABwu8Enolz00L0c/cLz9kWnLtjqz75+pzBfuSyU+ayXqvEk16iA0/ZQJHW59nc2NPDyDTcQD9jdpMLubk66+mrGrVuXddy2SBUg2zHbaZQz1z6D3RO7rVxBj3Wrx7cNOBwDmcZUnW1GtVQktGNgaFN7qukCMo2b01zyTnF2VUuM+qHQ8yTRlXN5j5SlymDkUL1wIX1XXklvby/hcBjPP/6B5ze/GeliDRvlwB6zZ+P9wx/YVFUFlkV/MMh+Dz7ISQ8+yDgcpt0GumO5h3f14d92dv5Qp04cvDiTC5WM6B1mp/ZL31ZJhu54lEt7CQNJpU5InbadSOxQ2iYnsjvY+XYmJmIHP6hJpeuwncasgw7iL1deSXdJCYFoGPwwqWcjVz37I6ZuWe+sCemBRHigTESSWCdnZNWS6TQy4aTn9g+y1i29Ts+c3gGTz0jrnnvyn9tvJzFuHMlQiIKWFo69+moq1q3LqreP06VOMPA7qMqPcsWhN9g9sVvLFZyG2KJkv7z9qWPcyrG6VSPXEJyTjkwd2tE/Mqpcwa38Vv5OXbxkDz95yfT4vWQ+FC7lGtRrHcyb1mDsou0f/yBeUED87LMBiC9ciAgGcT///AiXbHhwAZ3LljH77LMJX3stbTU1eMNhVnzuc0z0+fjy/fdTDVS7sJlHjf270nYobYXymG3llI5Bbux3JkqGMGyrtWl7QbYbqnTBraXltlzkNfiwP/R+7GvJ5RTlZNFzsgD6tXIMx+qra5xl+xQhM3Il2zCd5Mv/ytVmJbX1zoQkkOXYTn41QNNZZ/HY9dcTTY2W1GwJctzKp7l4xT0Uzo7YBW0nuyfVDrjBHQNXzK6bbmWXnPBBN3roI31STqLWhW7x158DfRQxF9F1kjWox6z+xCd47kc/wtpzT1xCUFRezrHXX0/RunU5v5Xb0ilJkt0hcrJ6y+1db3zKYGdizJNcyJ46V5JCN5lGVS6yJ6g24HpafYHVF0wnqt7UMQU59qkkF6UM6jFykQ2cSnJVxxkVqiVE/pex5O6ecD/6KFZ9PYkFCwCIX3yxHWN41aoRLtnQ4cZ+V+LLl7Pv//t/NF5xBW0HHYQfeO+005jk83HZw/dlzG0TsV+kZqAcqpoh0JH5aEP20LD+Hu4sqB9+t7atWyxVIijbMB92G5CPxEpy5iRvUK3DTpIup/ZP7eA7tYMqCdPbKFlW1WKtXltUWUP2PZEa3ZHSXaqa3JLiYl648EI+PP10ol4vlhC4rSSnrnyRi9tuR+wPzMRmZhuBDdjPYkHqIqJAL7i77HrrwebAzdhEV+0gOJE8ldzpz5D+3VCdMlW5XBHZz4hqkFHT6v+5gVUHHsgzV15JsrIShKAwFmPhW29RXFxMN5lnQF+2hYTqowP5JC96XRgYqBjTJDehLaolRFoenDCYpkxv/OW5YKC1Vu9t6z1t3Xrr1v5DLrIXLj8kai9bQjqrJMiQbIPdFwLw3HUX1uTJJKdMobCsjIp776Xwu9+l6f33R7p4Q4IkuUVARTzOp2+5hbe//W1WH3oofuD5006E+gIuff1u3JOSMDX1o3LSQtXCdVDXmnlfe8lMlSotlyMFtX2QVls1XzooqUTQydqWS+MryVkZmbZK1qmPjNNeeWrxyQytwUskc8+opRIP1fJYpKR1C7LUT0bIdPDVzri8ZpXs6w7BOwuSMPbutx9//cY3EJWVFIdChKurKesLc9Lidzgj/DDiAGAOUFEPdMLEDtv0K3sVSdKsViW57dgkt5mhh75zGjlUnwMnaYvekdFJbT4N7/tHHMHfLrsMt8uFNxSisLSUhYsWUd7dTV9jI5Dm7wO0sttyv5wkg/lGEYw11yAXxjTJVaGSXWnNhUwDK6FaJ5wamohDvoQ+7KdKGnQrrbSWqGVQyW1ESUtyGyFjEJANmyyzrl9TSbPB7gsRieC96Sa8v/41U1Jxjif85je4zjyT9atXj3TxBoXaMSwBqhMJvn777TwdjfLGCUdDAJ4/8ihis718e8MdeGam3ir5NU8FzvUlYNJm2yrWja2JDJB5X0cCTh9/J6ulHI2R77L+/rvzbBdha5Xl/8m6lP/jx46oUAW45fSylQzwZnXHoDAKhUq+FctuDyXBCZAtBVEtg2p7NBTyo0o3RgqioIA1X/4yXZ/6VDpGrC8Z5swXfs/Rre8yvXopNfsEYW/AtwA4BuiE6hchsCRzQ3uxxeAtmawwGUvuWobvhKdCflvk90cuergzVb7jZPnX818/4QQevfBCvEIggOrVq/nsVVdBVRXRxkYiqbCW8vvYS7az3LYYW5xkhpBdB07bBgY6xjzJ1TVu8mOhWjX04yWBzedAoTpPyP/RSamuF1KP8bnAStp5UqMmyyUbnGgqHSOb6Dp9LNSerz4kaLB7Q7S08Imnn6Zz7lwQgk1VVQTOPx+uumqkizYo3Ay0ONYmk3zvV3dxX3WUp487EQLw7NzjWTttLle4f8S0qmXZcfxSX+CiCIwP2TxDfvRH2pILAz/Q+vZQ5Ea53vUA2W1UETZJk22i7Dy4y8hommtx9hbTevkiYpPewlRjWBKzSU2ADMFVLYZqu5Ug4+gLA++BbM98OIdY21lINjSw4Vvfwj9xYnq+hvE9XVz6+N3ML3wb9gPmAp8APMcBJ6eWFqAYioFZSzIm23LSvQzVkrsRyHbbsjFU8uY0AqhacKVFX4aJC5B9f/RZ92T6qdNP58/nnosPO7jJ1LXr+Pq115Lo7EzH8pX3VD4ePWRPwftx5HKGvBp8XIx5kgvZvV8pi8p3XD7rrap51XuY6vGyRytnaNKJaTI5UOvrpDXS89UhQV2jpQ5lmd6tgYrNTz3Fgaeeyjt77AGWReMBB5Dca69daupf9d0TMbjwD/fhLY3xl6PPpNWqp7VoBueG9+UnW77GfrFXs19YpbeZSxakwslyOJrfp1xlS5Kt6ZQkVI3M4AW8XeBTtRJOsQkdxs8TsYFyBXkuWfWyo6K2SSoJ09s9J4OCvl+FE8HPR4h1S6CelwTibjfRM84gceaZRF0u/NiT6sx+4w2uv+ceaqu7bcvtBjKBcxteJWMn3wI8C31LYCUQBJpSx7dmIn10k9HgqnIV2SlQO2G6s57Md5IkqFIFvSOnjvbJtfp99Kau9bGzz+bJM85AYEufZq1aybev/T6xUIgt5Dei6FZnA4ORwpgnufLF1TVfTsc5aX/U72S+oRH1Aywbe3WYTj1ONtowkMwOtq3r3pwcEqJamQ0M1gWDWBddRPzmm2kZN45wXx/i8svxfeMbiJ6ekS5eXqj6O/kOJGLgDsNX//5rWmtn8ZcDZmAh2Boo5oqCH3Ht5qs5PPxy5iVJvUDqO6HrF2GgRlZd62XaFaC3S1IrqVrtJKo6bGt3OtK+1hBasaG1V7pRADLkqYiMxjXg8Bt1hMyJ+KokVyVubm3ttE/Wh2qgUDWf6agVkycTu/56/HPn0hcKIcJh3H19HP7LX3Lqc8/Z15TEJrYBMgw+FoY9/gmeVmAzbA7CCuCj1LISWAd9HbadtzN1L2SHQJZbd/hSJR+6hlYSYd3XQ02r3yDpHOYESZ7jwGNf/SrPnXoqLmyCu9eHH/L9H91ALBQZdPrcXeXdMNg9MKZJbpLsl1vVxuqEV1o/IbvRVsmu2jjqZFf9AKsOYqpsQCW4MuRXvvOoHxDZAPcr/y2JbVj5T72cBgYS61evxrrwQqI/+xmUlGBVVRH/5jfx3HjjqJ2JTtfSq529ogiIXrjgv7+g2zuT5+bOI+52IdxRfjztOyzv2pOvLP0tnv5ExvKY+l/VUUsO1crzqU5fsg3R3/VdCbIt6SUTakyGU4PstqsqDOXh7BEtVcKVr63KpSOFgU5RusRKjZurW3Jl2kkipls+9bROevMZEiJeL21nnEHknHOonjXLnsK8upr4M89wwPe/z+S2NkKkVAchKNpAppcgva62ALPesit5JbAK24q70l6sdbYxtx3bktuT+lmujpdTWl/nm9VMXcvrd4K0DFsuF7+5/nrePP54CkIh/OEw+y9axDW33EIBsY8lnTEwGAmMaZIroX6opJeyj8wLnyATlQAGNty6NXcollxdE6vLGfpxPofTWo896BRSRn4EnKQVBgYSoqMDz513ErvuOgAS8+cjTjsNzxNPjHDJ8kMSLfn+RICi1HBGTXOQy9+4nCM7D+XRQ0+gI1kCMfjn9FNpXNjAlT+/hXGRLVjJ3Bp5SbzUDqkaLxYtH3aNd0ttk/zYhEofXZLtiuwwd5K77ZH3wamtkshlTZVWR31fPrmCk4xLWiLV4Xt9GN/tcIxaFzqRbt17b5ovuoi+iRMpKitDCIHbspjf2EjBE0/Q19ZGhMxUuxuxI3YUygsIYwtR27G9yMLYnmTrMmtrnb3ZDLRi8+EeMsYJWV6V2KrSg0COfFXOkO8eQPbohFpfLgCvlwd++EMWffazWEIQrq7muEcf5fIf/hBPIjFQ02NgsAtgzJNcdRgIMgRXhuNRw26pvV0n+YKTFTeh/I/aCLux9VY6+ZUfGzlAnCtMitO2PM6pkVY/CA4yRAODNNxvv431j38QX7gQgMS55+JauhTXKI22oEpE1U6dOu91TVuQkwNBjnrjMe7e61JeK1oACVhRvQeXXnw3373tNmY3LUm/F/LDrnqiq++dSox0qdOuQG5VqO2PSnBlO6HKGDrJOKbpbYm67dROqZ0GfYg91z7peDsca65KCPVJDPIRX7Xt7E2dr6ukhHfPO4+1Rx9NEvuDGAuFqPZ6OWrpUsq7unhtxQoKyGiat5Dhe7WtUCozW7DNtMHUwU3YbLgZervSSTakDpWWXClXkOWUz6QaFUFdB7S0hFPkBd2iLu+VbvnuLy7mr9deS/Cww7CEACGY3dTEaS++aBNcA4NdFGOe5EqohE8luLJRUIX8g4VxcWpI1CFV3dKjfmTCZGsA9f92Op/TB0X/KOhDcLJshugaOMH9u9+R3GsvkjNnYnk8xL77XXzf/Cair2+ki5YF/b2Qz3kvEI2BL4zdm0wxtEBnH1e+fgv/KF3IA7O/TDLhottfyrXfuZHPjXuIgx57LP3fqvOZOoQuCZv+aVeJ7q7yXslOubTUOjkgSX1/DxmL4XDbpASZEFTSwijrSDrf+hloiZThEodjzZVGBEls1Rm58uUnyPgz9ALvHn00L593HuGSEnzyGnp7mXzffUxobKS5oYG3GhtJBoNUkiG57WRIfxioDEPVGihqxo7FJg9ugb6QfXxr6nctZGY4k5bciFJX0tot67CITMhnudbTqhEklxwDsi3y8lwuIDR+PE/ccAOdkybhDoUQ1dXss2YNhy5dSvWKFbtcp87AQIWwLGu7/6lbCMs/+GE7Bbk8UvV8GEhywbmx1/NhcM2UjD+oO3zk6nXL/833gdE1cbnSppEycIJVW0v07ruxCgsJBAJMWbOG5I9+xPpgcKSLlkYtUIc9x0OdtkwFSsscMt1ACyx1zeHW465gq68CIhAuCDBx0yZOuvtuEm+/TSsZ61or+d+tXOvRDkmanIa6JZFSialq1XbqyCfz5PvJWBd1y2Opkq/u87kgmswmsarsKhfxdZqZSyW1qk5VppPYpHLNxIk8cuGFNM6bRwLb0SoOTHjlFfb49a+Jbd2ansigVylzqZJ2WsqVdD82ie3EttjKtUxvITvMVkfqusqweXJ5Kl2eWiqVtH6MPsKRS86m7id1P/qmT+c/119Pf0UFbsBjWZz05JPM37CB6sZGJgaDmVnyvNAds8sqy91O9vYWJU9u7wrvicGujQiQsCxH15LdwpKre0xLK65s+OTwjf4blWjK3+p5+v/KoScpg9CH8dTGV/9v/by58vJZU2IMJMoGBk4QLS147rkH7/e/z7T6epgxg8Orq3nxsstYN0qIrvpcqxYqOSpSKk2QcunEfuE6Ya/Wj7j7vUu57fTv8s6cA9k8vZ72GTP46JOf5JA77qDu17/Gl0ikpzuV2n01xKBu+YRdLzxfgoyOVR1VUqcGVjvmTm2T3k451UURGedAGKjBlURaEkJRZmf4ouCLQFEMrP6hWXOdIhDki0IgvNCPl398/es8duaZ0NeHPxwmBlS0tXHoz39O+TvvpB8hte7k90LWofQx6yTbOq1aq2PYAwzq49lL9qMqt+U3A6XMcvpdWVfSQFyppStckEhm/kta5aX2WnW4k/dLWnQ3f+ITvHL11Vh+v01w43FOv+MODn711SyL/q70rBsY6BjzJFdtpCSxlXnq0GSu36prcA4xJPNVGYTaEOdzjBjK/+v7c1mTc1mBDQxywf3yy0xtbIQZMxBC8Nree1N9/PGs+8UvRrpoachnWhIoNcJINAY+VVBagv3Spb74Fe2d3HjTtdx4xY/5W/0MEIKYx8NL555LyV57Mee++/AuW5YmJk6Q75F8t3clJBjo5KXrc3Ur6GBtUyLH/iKyyZq6rVqUywEhWVoJWexVRMAXs4lvUf/AWdVkWiexkuC6XQxgvJYXXjzkcH7+pUtYNmd/e1YDy6Ji1SqO/dOfWPDHPxLu70+HxpLfCnlONxmDgrQi6225rgVWyzsUK6u8T6p8Rlq+y1JLJfaEdHIpLLYT7n4o7YaiUEa5o+quVSOOvIYNRx7JB5deinC77erq7eXzN93EnKVLs4wn6n02URMMdkWMeZILAxtl/WM11OGUfIRRJZZqo+LW1kOZtSffhzTXB0b/nSG3BkNF/Kc/ZcLBB7O5vBwLeO/kk0k+8QSu5uaRLloaknjo5KAX8PVgf91LsImuJLlhe/H0JjjvnnvwVFfz3Lx5dBQXI0IhOqdO5flbb6Xm//6P8b/7He6enixJkwq1Q5krDOFohTq6AwMjD6h5g7VP+dqmErKjA0j+ChneWQSIYjKMrZxsc63mfSZiUBjJTCcsJ59wY0sdsgitaopOFWLZrD25/zPn0zi1ga6iahACSwhqurq48I9/5MDf/S4tIVCvUbV4y23VQViXbuh5Mh1z2JdrBE4PaadavqvIkNtawFdJZna6XqAL3FugogvcqUpXr0Elvcs+9zmWn3OObb0F/Js385nvf5+JGzYQTZ3344wGGjJsMJqwW5BcHTuKADoR0F3lQ2iw+2LD8uUkzzuPvltvpVMIwpaF67rr8F5+OSIUGtGyyQ+1rtOUxtsubIufr4vs6Z06yUTbD0NJMMjJ113HvD335M0pU3ju6KOJ+/24gObjjqP5k59k2gMPUPXf/2Y5MEmCIK1zuo4/X0eTHMeMBFTCsiPbJDnJQxHZFtgBvgGqxgB9pwPcmZU/BkLqH3StRYohttTW8LuF5/LqPofYsxm4wB8LEY2Wc+DKVey9Zg0LXnuJYuXUahF0q6z67EG2pVYdXZDp4dxz+TzJy1A10iVk9MzSCc0XIFuw6yXL86yoK9uKLEmzRwje/d//ZcWnPpWexax87VpO/sEPqNyyJaseJAlXLdre2ECHtlyE38BgtGDMO54ZGBgMDcmZM4ndcguWzweAa8kSvN//PmIEQwiVYxuspAVrvEN6fOqYwuLUDjc2ue0GK5ThulLR0ANsrKriyQsuoPHgg9OOR0mgfNkyZt53HwXr1uX0VHf60A/mrLo7EIASBt6bGrLvk9xXGkglpLk3TwUnkgNnVNM1uFJ321sW4M9nnsk/P3Uqca8nrQHwJmIsfPYfHP7m23RWTGHiskaqlwWzZo/UNa1O06cPxalLyg+GOtIm871aXeVaqlxaRgT7we6y14lw5jnvTC1bCgr4480303jooSRCIRLhMJM/+IBP3XwzpeFwluVYEm3VEVHmqU50cr2FjBOdXKvHGEOPwY5GPsczQ3INDAzSSCxYQOzKK9Pb7qefxnPffSM2I1o5mZFtOWRbmSevIsV4rPBAsuK0/uiAA3j+a1+ju7qaJCACAVyBAFP+/W8m/PKXeNrbc4ZnSmppNXyf0wQK6nD3WIQcVpf3RjpJjdfy5H2rcpEhuTHnaYNz1b3uYCbcbl454QT+9sUvEi4pSVsqhYDDX32J//fI76ne3J45VzJ3ByahnUs6OarrXm1b3zcUB2KZJ7e9ZKImODmZVSlrdzHZ4coUlh7tz4x0hIH148Zx749/zJojjkjrkWc++ignXnMNhfF4VkdBNY47aZ47lUUltnq+um1IrsGOxm4fXcHAwGBocL/2GtZDDxE/+2wAEieeiGhqGrEZ0VRdYQRbeiu1i2qs67QlLWYPq0a036lDzpAZHp7z9tvUXXghb51xBou/9CWorwch2PSVr7D+8MOZ9OSTzPjLXyhrbnYkQTpJimh56kQSujPPWINKSHvJhE/0KsfIeuoHepNQ0uVMLp3Sal6a3Ho8LD7qKJ778pdpq6/HGwrhDYcRwMzlyzn7/vtpaGzEDWzFeVYwaakkx37dqisjIuTrPMkIE/lCrunbLjIKhHIyllT5vMv6i2BLdNLzxqu6CYVR+oCVe+zBz66+mtaGBpvgCsG+a9Zw7AsvUBKPOzrQyXJHlTqX+zvJjhChWrHV92Fb9bwGBtsbhuQaGBhkwf3oo1iTJ5M48kgAEuedh9i4Efc77+z0sqjOOjIsku45HiVDMHrIlijqsgFJlqSk0w14o1GOe+gh9gae/+Y3aRo3DgBPaSmbjj2W5mOOYcorr7Dno49StW5d1v/kGspWHX6kjjPB2P74y3qOkJlCWEYMkNetWj07sbWm+r3SiW3SIS8eCPDBSSfx/mmnEZo0iXiqcxKprqZ60SJO+elP2ffVV3Fjz6qrWibV4XdfanF7yQ5mrqRLu1Oh6npt+YsubZChwlTrqZNedSgylhKy4wjLYriV46PYHTlfj1ZpKWlHInX860cdxa8uuYSox0NBKERs/HgO++gj9l67ltrGxqzZ0mBgB0zWuwpV8iOvXye6Usvr9J8GBjsbRq5gYGAwAJbXS+zmm0nuuScAoq8P73e+g2v9+p1aDumlr3/89bQMt1SKTQwGg5MHeKS+no7LLqOpupq36+vZ1NUF4TAAFvYHe+qbb/KJRx+lauXKNKFTh657yZptOL1fTY/V4VsZ9qqU7Hui3yt1249zpAGdEEoS3FNRwYcLF7LypJOIFxbaPmXV1YiaGgoSCfZftYp97rmHwiefHDADmv4syaVQyibKlYKXKgdIs6Ue+LYH+mIZYisP6cFZrz3YtUFmoo4isnWxar667UuFw7CSCt8VgofOOYe/ffazWNjPbnFPD1/6wx8oByoaGykJBgeURSXmsRz58tL161WrRa+msdqpMxg9MJpcAwODYcMqKyP6k59gjR8PgGhrw/etbyG6u3daGaTVTXqXq2u/Q14RAycJkMOx6kQsbod1Auitryfc0ICvsZFNBQW8eMYZrNp//zRZILWeungxB/75z1QuXZrTcalHS6tkdyxChgjLdW+c8qTV3WkYX83vmjSJ5aefzvqjjiLh8aQ14gIojsU42O9nr40b8fb303HnnSSDwQExbIvI1rZKjXBhgGyxsC6C7WTghCMO273JzKau1dbDiamWaXkMZM+OqWtk/cpa3a8iXFjI3Zdfzrvz56fzJq9fz5U33khNa2s6T5UBybLK6G26vEdN53uucz3/huQa7GgYkmtgYLBNSE6dSuzHP8by22+0a9kyvNdcg4jtHHukOrysLnp+wRCOyfU7OUKtOgWpQ8jrZszguc9/ng8WLABIE95kIEBVVxd7/utf1D36KLFQKIv7qJYuXcc4FiGtpU73IledS72uXueSDPYfdxwbv/hF1k2aRKyvD8h0Noqampjy+ONMfPFFyqZMobyhgVBjI6Fg0HEa9xLs6A4TsaM+TEqtC8tSmTJDHlSb2u7E9qZSwxV0kolh15m9Tzp+DdUxURJJWU7dAj3YtszbXFPDHdddx6a6OsDuAMxftIjv3H47Rf19mQNTPQsrPNBhzmkUQj9GHbHo1n7jNIJhSK7BjoYhuQYGBtuMxAEHEL/2WiwhCAQCTFm9muStt7J+J0z9q4ZTzeXxrW+rlt8SBlp6nfKkPlGf1Uv1gm+uq+Opz3+et484glhRET319VhCICwL78qVTH7pJSY/9xzlixbRE48PCOMkeVLv9queUYVtuVdyanXI1HXv5MlsPfxwek8+mcDBByOEwLIsNgeDRMNhCpcto/rxxyl5662ck+045ZcDdcBUYJqSLqxJbdSnMupSB0zFJrt6uAAZG8sprIAMN6A6gsWyw6Dlclwcjn5VnbTDCwTnzuUXV11FX0kJLmyCe8Zf/sI5j/wBl8caaBZOkja3qtEYdCmCPi2xTn77lbQTYY5gSK7BjochuQYGBh8L8YUL8V1yCdNSDj7zVq/m3Qsu2KlEV7Vi5ZtaVRLZcjLTopam1jK/XDumRDmf/lHWyUdzbS2/ue46XjzhBBJuN1gWvtZWrLY24oDo7aX65ZepfP55xLJldJDNf8YqyYX8lsdcaYBIbS3hww6j97DDiE2bhgWUV1dTUVOTDnslXnqJ7ltuwbNs2QBNtbqtz9om91UCs7C57KzUMhMonJza2EPbMQvwzAFaINqRCjhLdpBYPXCs3K+HHHCIVaZPWbwtzmpx4LVzz+XvX/0q3r4+CsJhfPE43/jpTzn+pRcyOhFd0JsgywodDQ8MAaZ30KTVNpJn0ffLazIw2JHIR3JNdAUDA4NB4f7HP5h2wgkwYwZCCJbMmIH30kuxLr10h8fQ1SMSODmNqcTGjy2nlMY0CWnMSmrbJUDpUObbTqGqrYWr7ridWS4XKyZPZsXEiYRCofT/xoqKWH/iiaw+8UQ8LS1Uf/QRDa2tbHzzTZbuhE7BSELVnMroEk5wAcnx40kceijxww4jOXPmgGO6QiHGVVUxs6WFvVet4rEbb2SLVn/DuG30Yt/rylQ6/WzIh6AKW6JQB8wAPAcChwBN4NsI1U32sjWZmQVBEl2ZLk8tqveZatVVWK2I2NMVF6YEsXqcYHWGYxg43XCvz8fj11zDO2efnR5RqFu8mGuvuop9V6zI6ELkUIXq8SdDMKQq0BezZ5LzZbLS55ERJKSBWr0kXcerhw8zBNdgpGFIroGBwaAQQPzOO5m5zz6snTABLIs1e+1F/OKL8dx7L2IHjAjlgtOHUyfB6vCpkxZXdU5zQZa5djASDVC6Osipt93GPg0NFDY20hqJ8PKRR/LWUUexuaYmE8O3vp7OY49lsRCUhUJU/vnPuJ9/Ht8HH2B1d+d0tnLa3lbkcrRT16pjnrz+4VgUh1JGy+MhXl9P6dFH4z76aFoqK4mFw2nLbtqZLBrFv2gRRS+9RHlHB4Hp03m5sRGCQepTx+iyBD3ttL8S2BPbkjsNW4JbWEwmKK2siASp+XA7gRZgM7Y9MwTRZCas5PEAABzuSURBVHaIBHky+YDJkAiQYaxeMgxQpiNa2meTXl8M3LFM+eU6QfYz2D5xIn+48kqaDjwQKxX/dlx3N+c+8giTV6ywRwv6waeFGMvSECjDC92xgZZcqSdX9ba6I5o+kYbThBcGBiMJI1cwMDAYMqbMmoX47nfZMH064VR4LfcLL+C56y5EcnRExfSSHVS/bJBtKWmAgVpOyK3zhIz+UOoWQ8CK2bN576ijWHHYYUSnT8ejDLmHWlvpbmsjCfjWrcO/ZAkFH3yA+8MPSYZCeSdE2BZIZzB11Frf1vf5cSYwg23rZYxVVRHZc8/00j9jBr7SUqrr69M627ZgkFg4jIjHKX3nHcpffpmKt97CH4kMS/oAzlIWNb+cbD1ubQHZ4txpqbV6kJiDTXI3QyiZO8KCvuiMULfkOoUuUMb4E7GBMZfl8uYhh/DIpZfS5/cTDwSI1dfT0NzMUUuWsM/ttzMuGBxwP30yMLS82Un7GpxkCk7batSIoT4P2twUBgY7DEaTa2BgsN1gCUH8G98gccwx6Tz3a6/h+fGPEYmRt994ycTMLVPSqj5XT5eQTWadHJl00gTZBER3xgl5vaz69KdZ961vsb66moQQ9KZIXQI7SoA0CFqWhXfNGrwffEDtli1MKShgw6JFrAsGs2Zq+zh1UeKwlDvkFZFNqlSHIl1/Ka/Z19CA6/DDWed201pWRmjPPYmmJtVQUVRdTXGK9ItkksJXX8XzwAPUvPEGheFwXmc1NwOd1iSpVbdV67RKkGV0hXREBblRS3bYhVpl33iGNj+0U3gBJ91BLpIrj1MqOJrMru8ej4c/f+UrPH/KKWmLqYjFOO6JJ9i7tZXSxkbKgsEsHzOnUGQ+smPedpLNzztzpLvJ7tDoHRzdic6QXIOdBUNyDQwMtissIP61r5H41KfSee5Fi/DccstOCy+WCzJeq4yiUMpASaLTPp3EDsVamMtTPmu7vp7YnDk0JRKsq6iged482hoaiHk8WRKAOOAJBKhKWTpdiQQtr75K90cfkdi4EdHcjGhqsteh0JDqwk8m5GsZmdCvcu2ULmfgbF7dQHtJCZtqa9lUW0tLbS1bamvpqKmhe9YskvPnQ8o62xsMEk9Z+XWU9fayx+TJTNq6lanNzTTddhsJjZj5tXSuPElgJZFzkZ8Uu72piyxXKkOmy5V9ci0X3ZPKyeNK5kui6iRYzUduo9rvI5kQXxFg/fjx3H3llQRnzUo/M2WbNvGZW25h0po1QwozphJ/SXLV+LZyW5/gQd2XK/ZvvrWBwY6GIbkGBgbbHRaQOO884gsXpvNcixfjvflmRH//iJXLjXOIMNW53GnfYJEbvA77IFtTm3DI0/cngc6CAlbPns36efPYsPfebJk1i7jLhU+xdGJZbGltZXMqaoMK0dOD2LiR6QUFTK+sZGNjIysXL0b09UFfH0QiiEiEQDhMVSRCTV8fe9TWMmnmTDzr1lHS0kKp309ZYSFFfj/Ffj/xmkIi1X76qgvpTxTQXDGdYN0eRBKCDn8hPYWFxLHJeCy1jgOJ1Ixjsszx1lZibW14IhEqGxsZt3w5lStWULViBf7ubnz19fgbGog0NpIIBrNm9hpMWiG3JZn1ST2sbvbVTZle7c+KtLTc57R/MNOlGhBXmjGdJAq6mNVp9gXVbB62ZQsvHXAAP/3Wt+guLk4T3Nmvv85pd99NUulM6KMPap4uv4mRbXQezDgtj1EJbK7pmPVtA4MdDUNyDQwMdggsIHH22cTPOCOd51q6FO8PfoCIREakTFKHqpOnXHmSy0jiqlu/nPLVIXLIJsT5tiU6yR4ibi8sZP2cOWw+5hjcZ55JV3ExfV4vm4JBQuGwo0WsorKSiZMnp7ebm5rY2tGRdYwndW0lgQCVqfBvWBb+YJCicJhCUhZOWRmFdiX1JwO0Buqx3cEsapqDFPSEIQYxK5vv9QcCJOrrKQuHqenoYPwDD1D9wgtUrluHaxCdtgz5lqvjoa5FQMlwMu8OZgrWb2C+m6b2ZnRPqiTOvRm5lvvz6W+dphZTCW4vJCIuHvrc2fz59M9lOlCJBCc/8ADzn3iCqH1YzqLki/nsoI7Iim2bK093NtSJrZNTooHBjoYhuQYGBjsU8c9/nviXvpTedq1Ygff66xG9Oz8qrCSnuXhOLg6UK/JAvqgETkbEwbYh/1wCiZSlc+XGjTT297N14kS6J0/GmjgRa9Ike/H5mDp9OsUlJenrDvX0sG7Nmqy68JCazra6moBibQ20tlLV1oZLsvzC1IGF9tIVqaYrWYOFQGBR1ttKTft6JjRtonZdC7VrWije2IKntRVPSwt9xcX019fjbWzEM4wwaaq0RJeSFHqVDf0APwN7L3qebgJ2k60nUa2zuSyyUZxnlsi3LYlxPv2tkz5XMal2+Cq4/rKbWTxvPwp6QnjCYco2b+bLt93GxOXLB0Q80C2ruSys6mXmUlXoCgx17RRRIxfBBUNyDXYODMk1MDDY4Yifdhrx889Pb7uCQbzXXYfo7t7pZXEimrpG02lfLn1nrmP00W657TQEL7ddZEKrtjMw1KqaVvMkYbAAqqqYe8opHHTGGfR7vcTcbl5/+22Czc3g99vTMAcCFPj9lPr9lFZXE5g7F8vlwhuPM23JEsb1teEPRCgs7sNfGsFfHqGwqg9/VYRocwkfLj+eor5+yvtCnLnpx8xYtwTRih1VqwVohURHZnNb7PbSIaycDH8VZTh7xqlpXXtSgPONUI9JkC0wHYoYNUz2w+DU83HalpKFXPrbXCS3F17Z4xDuOOcKgjPmpjslR/7zn3zjmmtw9/RkFbmXgQZip1Pox+TSkeu8X1doOBFYp7BhxoprsDORj+SaOLkGBgbbBZ4nnkBEo8QuvBAA/9y5VD38MAXXXUfTe+/t1LJIqxVkPty6vlYfnR6ONVZuSxmBJLxqWndsE8WpDBdUtYO/3/4PH87RGsLaPgkBsGULS3//e0pWr2befvux5N132fDKK2lLsUQFMCe1zK6vp7qhgTmNjTT0Bu3MvYHZqQPGA+OmAIdA3Xu0+p6hedVUJtJITVnQLrv0YEsRTbcfJjbb59pWkiv9voQa2y1f3Lcy8msbCl05fhyHwo0wrgmibZkehKy0XjLT3XZi90A6sW+Ck6VYDgHIC/Epa/UCJdTgt7p12A29BQF+8dmv8cLeR9JVUm0TXCE4cOVKznrqKcpTBFf+TI2hKw3H6uIUEUPmq6Q1l+RAJ7YqwZXnVddgLLgGow+G5BoYGGw3uJ9+GqJRvFddlZ4CuOjhh4lfcgktzz6708ohP7IRcse51fMlb1H9lHRiK4+R+QkyvEam5XHpYXjdq99nH1DUDq6uTHnlkLEkIvKc+Wb1euOVV3jjlVdy7pf65CKgIhhkTjBIQwHwCTJT2e6dWkr3A04AjgA+pKZmKTU1S4EW2JS6BoXgysoQLpjYZJd5uHABhQGyIxvooSCc8qWMoVgS2nFkKnickqduR4DlwArwrYAJy8GbKnU/NuGNYV9IB2lrdV6vRVnJkiirxFdeoIuBD6L2ML4/fR53Hf9NNheOgwT4IyGscAnHfPABde3t1DU2Doj0ISHlB6riQUbFyOVMJjskw9Xzqvt0GGJrMBphSK6BgcF2hfu555i3776ELroISwh6CwsJ33ADCZ8P11NP7fBpgCX0D/Rg4YwkeZWzoaqzpUnuEiE79ijaPql5BIX7SCugNO0WkGazhWEoiWXIRw8ZDqVLSvORiFz75G/VEX+qsK2247Fjw04ESidiM9/9gYNShfSQ/kRMWGxfXZKMmVxh5CIMRcOVXyexK0iNY1ZO/thmcrvYhTOZ1Ymtuh0i40612d7vS5FceT3dZAhuM1hNKQu8qgcOp9aqlldCHRpQx/6TDGSHbogmvTx45Dn84xMLs8yln3r1nyz8z//RWTaFicsaqQ4G6VH+2onwqhIFGcNYVV/0kFFkDPYuGBiMFRiSa2BgsN2x9W9/45T583luv/3o93gI9fUR+/rXcc+ebU8DPIIhxgaD5Boy1JKEbkEDm6NJWYFXOUZ19CkPQanKOvykBbe9MTtLeq5Ly6vkUJCRP+jDxfI8arn1feOx+aE0RKavQZanE3tYvrYZCpdik0E/8CGwAlgKLIfNUduquYVMaAhJclUvJLUw+UzQKPulfrWXbNO1NFFKllaulDeQhKI2CLRBUWMeiUKxkhfJXFc0CBuBDUBz7nUrEAhBUQjcPWRbcktwlktIX0CnsX9lO1g5nds/czkbKuvSJLi0p5uL/3QPB7/1Rqrn8xH02DpsVVYjpTJ+7GcsSibamSqn8ZFtRDYw2N1gSK6BgcF2x7pgkCe/9z3qDjyQRSecQLiqCoDEkUdi1dfj+eEPcTU3j3Aps6GSWzVovjriLHmKPFb1NVI1kvKYtBYyBiWboTBFcq2uzIxSvWST3AJsniR5og/bAKx7tJMnT26rCgPp9JbWRshh+XZsYjdjMTZL82AP668GVsHmsM32pJdcJxkTobRU6hgOq5IsLUyGhashAKT5sYNsYpkVRSEJ/g57Ufd5fGSIbgj62uxrld5yzdjXJtPSgtuayU6rFcIQCENhB9nObU5yBj2IMqRvTMLl4vGDPssfjziLhNuNDII8f8UiLvnTz6ho7cxYf5XOg2oklqMHCTLkNkL2s6g+x2hpA4PdBYbkGhgY7BCsCwZZFwxiPf447v/9XxLHHw9AcsoUYnfeieeuu3C//voIl9IZKuFV8yQkuVSd2PR90jgppQgBbItuQX92EH7p9S5JrV85lwwaII+R/697tDttQ3ZQgrQlVxZOsuz21AGBKEx4J3XAKog32/vaySa5XWSiD0h2nqsSXQ5pFbKw/WSbwWXvQFpPO8iOoiBZnuoA5riOgq8DCjrsCpTXoS4t2eu+UPZuNVBDAVCUBH8otWwGt+qUJsmvdD7ThN9LZh/E7V+8nJaKCgpiYUhCQayf8/91Pye89QxC9wpL3UjhstOy0yMPUQmuP1WNqhXXrS0GBrsbDMk1MDDYoRCxGN577sG1fDnxr30Ny+fDKiwkdtVVWH/7G+4HH0QkRofbiiSuMJCTqZZS6WimHqdKMCWBlQoFVWsriYkemlWVK8i1Pn2qSmidPOL1dCm2NVed8CL9h73YhFUyOR+Q7IaJLznHM2tXtqUlV7JvXTchzYgS+Sy7UWW/rEApUVA9/aRYOlfIi3wx4rzYDNDpulLraNfA7C6y+bQkuln8uj+1dGXyRAFZ+oKkW/DQOefz0699l5jHA5ZFTUuQeSve49t/vIMJW1sy+hh1UeBW/lL1bZOyBZXg5rLmyv8wmlyD3QWG5BoYGOwUuP/7X8Tq1Ta5ra0FIP6Zz5BsaMB7222IrVtHuIQ29OF/mVZJrWqYdCv7JTeR1ltp3OtR0l7ldzq1V2epVSGPVUexVd1vrvBPRWSCEaTlCpBh4Z1kyCOpP+vGeaYKNS01uTrBlRcBua23OtSYst5UWo3vpsd7k3n6HMs+Jc8pXlzU+bp6Y7kvtYeBHFt3RtSjcRQAvv7Mvqbp0/nNJZeweMECYh4PlhC4LItj3niTy392LW53MtMDkd6LCWVJQb0clF2S5MqIHOozJK25ep/DwGB3wZAmgxBCnAjcjf2+3G9Z1i35jjeTQRgYGOSCVVRE/FvfIjF/fjpPdHbivfVWXEuXjli5dO2iHkdXz1PDhekWPqdFH2HXjY+SlOgxe+UxTqQ2pq2TWp6fTCCFytTaV6ZsqEuVcqCUI/TkWJz2qb2D4RLd4cJJaKqb4PX8qF3ORH9G5jvYZfXifE+cjMXqth8QBQW88MUv8urChQghSAYCbK2vp6K3l+Pfe4/zbr6emvZg5uHxkXemhkQyc1/VwzrJJucdOJP2LUo6MrRaNjDYJRDhY8x4JoRwA43AcUATsAj4H8uyPsr1G0NyDQwM8sECEp//PImzz8YSdtskkkncv/sd7r//faeFGdMhSaxM69s6p9JJjt8hTx9llxpPfZIuVc6gpwtS55TEJjHEtJeMJrc8tbjVgAPlZAIRqAepAVXVtNRgOKW3JcJCiq1bSWfJhR6UQI8w4SRyySV8kSqIXMXvJRN0Qr10taPhtFaNyDJv8wEH8PrXv07f+PG4sYdMC2Ixjnn+eQ4KBqlbvpy6YJAiF9mOa049l5T53oo5T93bSTa57RhCniG5BmMJ+UjuUOQKBwKrLMsKAgghHgEWAjlJroGBgUE+CMDz2GO4GhuJfec7WKWlWC4XvosvZvLChSTvuoum998fkbJJbqY6crmV/BgZXWOUbEtfhGzSo5MfSXxlxINYau1VziNJb3lqX6krlVBMtVZs8GlZY6lzq4TZJS9QOnVBJrKBdPAKkJkbVsoIIlpaXTtJFnSCm4fwWsmBfxfVtmWeLJZKemGgXEPP1/XS+topT55vMGu+uj9eUcHqCy5g8yGHpO+3B5i+ZAmfvvdepm3alI4w1oltnS1Vo0rkYfTCBa5kRg8uZTNSJqFLkFWHMxNZwWB3xVBI7iTsqIESTdjRwg0MDAw+Flzvv4/v0kuJXXkl/n33tWdJmzED34IFVN16K5sfeAAxBEnV9kIurqbmq447Mi3llDLPiQjJfX5sC2Fl6v9lXpGSlkbVogIyUgJlrFrEwJdailIs1+ofSHwhWy8q1EkKepW16mHlxVkHoXvBqWtZWeBMZnX5gkJ6VaKpTkUrLasyrR7jZL12MH4OsHqqDnxDPdZJBaErIlxA90kn0f7//h/JQCBNcAM9PXzi/vvZ+/nniWAHcFBltwDuJBSp08Wp5FZ78AQ20VVJqyqVUeM169JlA4PdEUMhuU4m4AFfHSHEBcAFuX5gYGBg4ASxZQveK6+k/ic/ITljBkIIoj4f0QsuILbXXnjuvRdXMLhTy5TIkYbBJ4gAZ54nj5W+VbrlVlrnJMktKgBqgZrUWjIy1cQp01EQ/eCLpohvap+VTBFbvbDyd2EGMjbVquhUCbn0ArmkCaoVV18nMhHD1GgU6tS0PVq+JLwOVTAgT88fzuXo9z3Xva457DBil15KW3k5kbDNVj1AxbPPUvfb32L19LAR6NPKKjs4bsAbA99QNARuEO7s8vhj2TIZ1arrZHE2MNidMBSS2wTUKduTscNmZ8GyrF8BvwJbk7tdSmdgYLBbQCQSxO6+m1Orq3l13jy6CgvpDYVIzppF7M47cT/5JO6HHkL09Y10UbOQS//plB9T9qnD8LrONE1GVBGvdHKQkQfUCARyTD3rxzZEjGzy6cTo5DF6XCknicFQZAi6tXaITmiqdVWdolZdJNnNRXKdlBS5gkAMF3r1WMXFlF18MZ6vfhW3y8UUy2JtMEhk1SoK7r2Xsg8+IO5wDREynRrVspyzbvNZyMnuoxgya2CQjaGQ3EXALCHEdOyJEL8AnLVDS2VgYLDbYV0wyD+vvpr6OXNYM2MGfUccAamQS/FTTyVxyCF47r8f1yuvjJnRomEFHnBiaUmHPP0EKklyIpy5SKj621y/z/d/uY7dDlAlIzsblttN4uSTSXzhC1j19VguF0IIXMkks955h+XXXIMntg2l0+vHqb4c5B4GBga5MSjJtSwrLoS4GHgGu235rWVZIxfnx8DAYMxCzpIG4H3sMeJf+xrJffYBwKqsJPbd7+I67jg8v/gFrk2bRrCk2weDcdQsbAuzy0WG8lljt5VIDXaunRFabAfCApKf/CTxL38Za8IEAHpDIcZXVzOho4NDlyzhT7/8JWJbCC4M7V45/cYBH9dqbWAwVjCkySAsy/o38O8dXBYDAwODNFzNzXivu47kYYcRP/98rIoKAJL77kvsnntwP/YY7scf33ZSMQqQy1iXP+NjnkD/X9Xy6mSRdfrdUKyO+X6jW4lHOZIzZhA/7zySc+dm5fetXk3PL36BLxTiT42N6Q7aNmE4dWisuQYGQ4KZ8czAwGDUQgDul1/G9c47JL74RRKnnIIlBJbXS/yss0gcdRTe++7DNULhxgwU6NIG8mzvIrCqqoifcw6Jo47Kyhe9vbgfeQT3v/5FezzOcyNRuF20Tg0MdiaGNOPZsP9UiHZgnZI1Dti83U80dmHqa+gwdTU8jLn68vv9RX6/vyQSifREIpHe7fjXY66udiBMXQ0Ppr6GDlNXw8PuWF9TLcsa77Rjh5DcAScR4m3Lsg7Y4ScaIzD1NXSYuhoeTH0NHaauhg5TV8ODqa+hw9TV8GDqKxtmwMPAwMDAwMDAwGDMwZBcAwMDAwMDAwODMYedRXJ/tZPOM1Zg6mvoMHU1PJj6GjpMXQ0dpq6GB1NfQ4epq+HB1JeCnaLJNTAwMDAwMDAwMNiZMHIFAwMDAwMDAwODMYcdTnKFECcKIVYIIVYJIa7c0efblSGE+K0Qok0I8eFIl2W0QwhRJ4R4XgixTAixVAhx6UiXabRCCOEXQrwlhHg/VVc/GOkyjXYIIdxCiPeEEE+OdFlGO4QQa4UQHwghFgsh3h7p8ox2CCHKhRB/EUIsT7VfB490mUYjhBB7pJ4puXQLIb450uUarRBCXJZq3z8UQvxJCOEf6TKNBuxQuYIQwg00AscBTcAi4H8sy/poh510F4YQ4nAgBDxoWdbcwY7fnSGEmABMsCzrXSFECfAO8GnzbA2EEEIARZZlhYQQXuAV4FLLst4Y4aKNWgghvgUcAJRalnXKSJdnNEMIsRY4wLKs3S025zZBCPF74GXLsu4XQviAgGVZnSNcrFGNFJfYCBxkWda6wY7f3SCEmITdrs+xLKtPCPEo8G/Lsn43siUbeexoS+6BwCrLsoKWZUWBR4CFO/icuywsy3oJ6BjpcuwKsCxrk2VZ76bSPcAyYNLIlmp0wrIRSm16U4sR4+eAEGIycDJw/0iXxWBsQQhRChwO/AbAsqyoIbhDwjHAakNw88IDFAohPEAAaB7h8owK7GiSOwnYoGw3YYiIwXaGEGIasC/w5ggXZdQiNfy+GGgD/s+yLFNXuXEX8F2yJ6o1yA0L+I8Q4h0hxAUjXZhRjnqgHXggJYe5XwhRNNKF2gXwBeBPI12I0QrLsjYCtwPrgU1Al2VZ/xnZUo0O7GiSKxzyjAXJYLtBCFEMPA5807Ks7pEuz2iFZVkJy7L2ASYDBwohjBzGAUKIU4A2y7LeGemy7EI4xLKs/YCTgItSsisDZ3iA/YCfW5a1L9ALGF+VPEhJOk4DHhvpsoxWCCEqsEfJpwMTgSIhxNkjW6rRgR1NcpuAOmV7MsaEbrCdkNKXPg48bFnWX0e6PLsCUkOjLwAnjmxJRi0OAU5L6UwfAY4WQjw0skUa3bAsqzm1bgP+hi1TM3BGE9CkjKT8BZv0GuTGScC7lmW1jnRBRjGOBdZYltVuWVYM+CuwYITLNCqwo0nuImCWEGJ6qjf2BeCJHXxOg90AKWeq3wDLLMv6yUiXZzRDCDFeCFGeShdiN4jLR7RQoxSWZV1lWdZky7KmYbdXz1mWZSwiOSCEKEo5fpIadj8eMNFhcsCyrBZggxBij1TWMYBxls2P/8FIFQbDeuCTQohA6tt4DLafym4Pz478c8uy4kKIi4FnADfwW8uylu7Ic+7KEEL8CTgSGCeEaAK+b1nWb0a2VKMWhwBfAj5IaU0BvmdZ1r9HrkijFhOA36c8lF3Ao5ZlmdBYBtsDNcDf7O8qHuCPlmU9PbJFGvW4BHg4ZfgJAl8e4fKMWgghAtjRmf53pMsymmFZ1ptCiL8A7wJx4D3MzGeAmfHMwMDAwMDAwMBgDMLMeGZgYGBgYGBgYDDmYEiugYGBgYGBgYHBmIMhuQYGBgYGBgYGBmMOhuQaGBgYGBgYGBiMORiSa2BgYGBgYGBgMOZgSK6BgYGBgYGBgcGYgyG5BgYGBgYGBgYGYw6G5BoYGBgYGBgYGIw5/H/txYFgo9QnSwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "iteration_id = 1\n", "track,extent = plot_track(df[df['iteration'] == iteration_id], track_size=(12, 12), x_offset=0, y_offset=0)\n", "plt.title(\"Reward distribution for all actions \")\n", "im = plt.imshow(track, cmap='hot', extent=extent, interpolation='bilinear', origin=\"lower\") " ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Path taken for top reward iterations\n", "\n", "NOTE: in a single episode, the car can go around multiple laps, the episode is terminated when car completes 1000 steps" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The top 3 highest reward episodes are [2, 6, 7]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArkAAAZ/CAYAAACIoO8OAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3xb53Xw8d/luhec4LwitYetbU3LsuQl7yE7cZzlrGY6b9M0abrTlbZp2uZN346kK2mzm9HsYTue8bY8ZNmW5SFrD4IEB4gNXALkff94LoBLipoWdS/B8/187ocACVJHIAEcPPc852i2bSOEEEIIIUQ5qfA6ACGEEEIIIc42SXKFEEIIIUTZkSRXCCGEEEKUHUlyhRBCCCFE2ZEkVwghhBBClB1JcoUQQgghRNk5aZKradpiTdNecB1xTdN+5xzEJoQQQgghxBnRTqdPrqZplUA3cJFt24eOd7u2tjZ73rx5bzw6IYQQQgghjuO5554bsG27faKvVZ3mz7oK2HeiBBdg3rx5bN++/TR/tBBCCCGEEKdO07Tj5qSnW5P7TuB7x/lH7tA0bbumadv7+/tP88cKIYQQQghx9pxykqtpWg1wC/DDib5u2/ZXbNteb9v2+vb2CVeNhRBCCCGEOCdOZyX3BmCHbdvhyQpGCCGEEEKIs+F0ktzbOU6pghBCCCGEEH5ySkmupmm1wDXATyY3HCGEEEIIId64U+quYNt2Gmid5FiEEEIIIYQ4K2TimRBCCCGEKDuS5AohhBBCiLIjSa4QQgghhCg7kuQKIYQQQoiyI0muEEIIIYQoO5LkCiGEEEKIsiNJrhBCCCGEKDuS5AohhBBCiLIjSa4QQgghhCg7kuQKIYQQQoiyI0muEEIIIYQoO5LkCiGEEEKIslPldQBCCCGEOD4byAJp15FxXQ5Fo4SHhmhsbqYuGGQEyAF5KF4eca4PJZPEEgmaGhpoqq+nAqhErXhNdDkVi5EcGqIzGKQrGCQABADD+VjrfCx8rvIc3B9CnCpJcoUQQohzKAtEgZjzMTrB9Z50msFMBq2uDtswsI/zsyzLIhyPQ0UFxOOYgQC6rh//tpEI2DZEIpjV1ce9bfH2sRho2kl/duH2djpNh2HQGQgQBJqAoHO4LweBBkA77k8T4o2TJFcIIYQ4S0aBCNALhF3H/lSKI9ks+bo6NMM44c+wLIvwwIBKRlMpTNM8bnKZzWbBtrEBzbbJZrNn5bane3vLsgiHw2Db9CUS9J8g5oJcNoueSjHXMFhYV8cMGHM0IkmweGMkyRVCCCFOQx7Y0d/PrqEhRjs6sILBYlLb73zdzbIswoODp5S0wsTJZZOuF0sDal3HSEUFe44coTKfpxK4cPVqWlEv7pVAtfOxCkiMjPDUzp3YIyNolZVcvHkzTajEfBRV0uC+HLFtnt6zh2FNI19dzeLmZqpRpRKFI41amQ6l06eVQFuWRbivD2ybg6kUr1VVHXN7A5Xsms5HfWiImt5e1re2srCj47g/W4gCSXKFEEKI40gDB4F9wAHn455slu5MBnT9lE7jj09a85kMM3WdZo49hd8EjOTzPPvUU9QMD2OMjvLm66+nq6lp4h/e0ED4vPMIhUJ0dXVhBoPH/8+0tHDRhg2l27a0nPg/Hwxy3cqVpds3Nh73puHhYX75wANkKyqwDIMN11xDJaoEIwYMMbYc4+ApJMVZ1H1/ECcpTiSgthayWZZmMiwLBFgAzAcWoBJhWfkVbpptH6/S58ytX7/e3r59+1n/uUIIIcRkCIfDvBoOMzxzJtHW1mJC2zPBbWOxGLFoVCVoQFMwSJMrCW2ktAJpAjVDQ7z28MPUpdPU5/O85frrmWGaJ42nmFye5LZ+cToxh8NhfnbXXcR1nURdHYsvvxyruZkwqtSjF/UGo+Bk9zmold/5lJLehoEBqo4cYe4Uug/F6dM07TnbttdP9DVZyRVCCDHt2MBh4GXgqUSCB2Mxkk1Nqpygvv6EK7OGYWBns7QkEgSzWa5qamIxpdPqx1TcNjcT3rTptJJW0zSnXGJ2OjGbpsmbb7qpdJ80N4/5ug0kKdU2v2bbPBgKMVBfz2BDA8YEdc1Z4FXnsCyLcDpNZTBIZ08Pt+g6m4NBFqNKOMT0IEmuEEKIspdHrcy+7ByvAgnna7HRUZK6PuGp8wpgDmp1cKHzcYGukwoGCaXTdJ133olLBBxTMWmdbCe6TzRU94UG4DzgkmCQmxcsIBQKYQYC5HWd/agSksLHmOv7CyUi+YoKjjY38x1N406gBlgCrARWgCS9ZU6SXCGEEGUnBzw+OMiTiQT9bW0cqa9n+Di3NQyDmKZRnc/TnkxyZXMzq1GnvOegEqPx6iVpPefGJ8VzgCucyzaq7reQ9O6sqODRTIZoIACaVlz5HQZ2OgeUkt4VQOfAALVS3lBWJMkVQghRFnqAHcBzwDPZLEdSKdXj9Tg9YZuA5cAyXcesraXqyBFmn2SDlfAnDWhxjnXA2xoaCDc380o4THTWLLp1nZeA0LjvKyS9zzrlDdVNTcw/dIj3VVdzTUvLsaUnYkqRJFcIIcSUlAVeopTYujeJxS3rmN37c3Sd5VA8unDtxm9rU4coGxOVQwwCu1B/N+6kt1DeMFxZyeumyRcqK/kGsBbYBGwA6s5Z5OJskSRXCCHElGADz/f381AiQXdHBwfq64/pSVtgGAZaJsOsgQFmxWK8/8ILWXougxW+1Apc7hygBnfsAp7QNO7OZokbRrG8YRh4yjmqgFXAxcBG1FkA4X+S5AohhPAtG1Vn+QTwQDrNC5kMVFZOWIKgoxKRdcAaXaeiuZlQJqM2h8nwADGBFuAy4LLGRj6QybB9YIDDs2bxsq5z2HW7POpswXPAv+GUuQwNMfvIEZZKfbZvSZIrhBDCV2xgL/AkKrktlCHEcrljShDO13XWohLbZYzbKS/JhzgNM0yTra6/l25gG+rvcI/rdjbwnGVxdyKB1tjIwsOH+XhVFVe0tsowCp+RJFcIIYTnbOB1VFL7BNA3wW0MwyA9Osqc/n7mDQ7y4XXrWHZOoxTTyUzgrc7RTynhfYVSDe+oprG3o4PPVFWxHLgRuBKp3/ULSXKFEEJ4wkb1rv15PM4juRzZ4wxhCAAXAZt1nZm1tQxUV9O1dq2UIIhzph24xTmiwK9GR/l2NEp3MFis4T0KfAX4Jqq12Y2oNnTCO5LkCiGEOKcSwMPA/cBrlkU4GgXbVtPGTBNd16lDbfDZjKqzLfaqNU1mSwmC8FAQuL25mSuHh3muv5+X58zhWV0n43zdAu51jiWoZHczE/dbFpNLklwhhBCTzgZeRCW221DDGqB02tcGAsPDrO7v5x2zZrEKeYES/maaJjeaJjcCGeAR4C7goOs2rznHfwMXxWIsO3yYlR0dUit+jshziBBCiEkzADyASm4nqrNt1HU6e3tZfPQos2Ix3nTTTcjLv5hqAsD1wHWokdF3oep3Cy3u+i2Lr8Zi0NjI0gMH+AtNY5mU20w6SXKFEEKcVUfDYe6LxXi5q4s99fXYE9xmEXANcLlhkJw3j1BNDV0yTlVMcRqqy8cyVO3ufcCvgH2uMxavdnby2zU1vA+1qU02qU0eSXKFEEKcFVnge9Eo/xWPk9L1Y3rZ1gNbUMntfNf31UmrL1GGgsDbgduA+/J5/j0S4XBLC2galYEAP0LV7b4DVbdbffwfJc6QJLlCCCHekATq9OwvgKOaRqqmZkwv24t0nWtQG8lk842YbiqBG1pbWZvP83AkwkNz5tDtvPFLoOp1fwm8D7gUpNfuWSRJrhBCiDMSBX6GSnCzzucMwyCmadRnsywPhfjk8uWs8CpAIXzENE3eYZq8HXgM+BYQdr4WBr6Aejx9AFjpSYTlR5JcIYQQp6UP+AlqM9nwuK/N0XU+0NDAwsFB5i5ditnefu4DFMLHNNQo4YuBu4H/Ra3ogpqs9ifAhcD7gTkexFdOJMkVQghxSrqBH6J63I6M+9ps4G2oF+/K5mZobj63wQkxxVQDbwKuBn4E/JxSa71nge3ARfE4mw8eZKnUrZ8RSXKFEEKc0DP9/XxneJjX2tqoGTeRbBFqc81GpJZQiDNRB/wGavPZd4Bfo/pKZy2LH0Sj/KyujiuffZbfvfBCSXRPkyS5QgghJpQGvhiP871MRk0kC4eLE8lWoJLb1UhyK8TZ0A78Dmp19xvAQ07bMauqintWrmQkl+NvAMPDGKeaCq8DEEII4T/PAB8D7rbtYn9PbJv5kQifB/4OWIMkuEKcbfOBvwI+k8/TmM2qx5imsbO9nU8Cez2NbmqRlVwhhBBFUeDLwOPO9UK3hHn9/Vy8bx8fvPxymUgmxDlwVWsr8/N5vpTP83JbG7quEwL+ANVu7M3Im8yTkSRXCCEENqoW8L+BpOvzHbrOb9XXM3twkJmXXy41gUKcQwtMk38CHgL+HdWqLw98DdgBfApo8S4835MkVwghprkw8K/AC+M+fxXwIaChpQVa5KVUCK9sAZYA/wC87nzuBeATwCdRLcfEsaQmVwghpqlRVNui32JsgtsB/DVqE0zDOY9KCDGRTuDzwFsplSnEUI/Vr3Bsz2ohK7lCCDEtHQS+iGo+X6ABtwDvQXZwC+FHVah2Y6uBfwQizud/CbwE/CGqZ7VQJMkVQohpJAd8JRbjR7ZNdSCA7vS9nYs69Xm+l8GJE8oDGVRrN/eRAbqHhggNDdHY0kJ9MEjeub37GAEiiQSxeJymxkaaGhqoQJ3SrXQ+uq8nYzEykQidzc10BoMEYMIjEQ4zEArR1dUlNdvnyCrgS6g3qk87nzsI/GY2y9YjR7i1sVF+F0iSK4QQ00YE+JNUim2xmOp7G48zs6OD9xsGb0FeEM6lcDjMgZ4e6mfOpLq9nSgUjxgw5HwMpdP0ZbNU1NaiGROvr1uWRTiRgMpKiMcxXW9ejrnd0JD63Q8NYdbUTHi74m1jMaioOPnPtCyqmpqojUZZUV9PV10dTUAz0AQEnWO4v5/h7m4WdnZKAnYWNAJ/CvwK+CqQsCzCfX38R00Nu59/nj9es2ba38/ynCaEENPAbuBvgQP5fLHvbdfQEJ+Ix7l+xQqPoytPFtCH2tjnPvan07yYSmE1N0Mmg2lZx08gBwZUUppMFgdxjJd1hgbYgGbbZLPZN3S7M/mZucpK4pWVvJzPc3Si+8KyCGcy0NyMkUyypr6eBXV1zIAxRytqFVmcGg01KW058AfxOGHnd/brpUs5L5HgY5LkCiGEKGe/RnVPyKH63iaATbt3s+bIEdZs3eptcGUgDRwA9gMvxuO8nsmQaWwkGwhMePtYLodVWXnaSelwJkOrrlML1KJKBWqBkYoK9nd3U5nPU2XbrF+9upgsVjsfq4DE6CjP7NqFNjqKVlHBhosvJojagDgy7mPEtnlm716sigry1dWc39xMFaqFVaFEIgPU1NSQtG1GNA00DeM4q83u/0u2qopX8nm6J7hdJVCfTtMQi7GitpY1TU3MRyXA0hP2+OYCfz86yv9JJAg3NICm8fPZszkfuNrr4DwkSa4QQpSpUdR40J+6Ptem63y6vp5geztdq1ZN+9OZpyuCSmbdR4/zNcuyCEejauXVso678loYsFE5Okrt8DDLqqropHRav3Dk83m2P/UUumVhjIzw5htvZMZEQTU0EF64kFChLrapaeLgm5u5bP360u1O1BYuGOTGFStKt21snPh2gQC9gQD7C6UXuj5x2UVVFS9mMsQNg9GKiuMmw2nL4oCzev1kLodpGOi6joGaBDYfWOB8nAtMvA49PS0wTf5T0/gzYKCpiRpd54uoGusrPY7NK5pt22f9h65fv97evn37Wf+5QgghTk0K+ALwnOtzc4A/Q7UiEieXB/YBrwBPJ5O8NDxMrq7uuKf4Y7EYsWhUrbwCLU1NLAoGMaF4zEC1aNP6+kh1dzPzJJu1wuFwKdGc4m9IwuEw3aEQgZkzGe3ooBfoRZVwFC4fHHcfNgWDNB0naR+2LNpiMdbrOpc0NbEMqDtH/xc/S6Ae5/ud6xrwu8AVXgU0yTRNe8627fUTfU1WcoUQosx0A591PhZcBPwe6hS3mFgWeA14GZXYvobqPWpZFuFI5Li1sZWotk0dFRX0vf46LfE4wWyWd1x9NV3H+8c6OtRxEqZpTvnktmD8/2X5BLc5nM3yvaeeor+ujsHGRppbWwkD8XG3syyLcDhMr22zK5vlV4aBoessBFY6x3RNehuAv0FtSjuAmmb4j6gV3cs8jMsLkuQKIUQZeQ61gptyfe4dwLuRmsbxLGAX8GgsxnOWxUBjI9UTnEZ315NW5/N0RqNcbJosRJ06n4OqfaWhgfAFF5TNyqsX5pgm77/iitJ9WF+PjSp7KNQ9HwCeSSSKm6zcdc17gb2oEh0NmJFK0TkwwJa6Oi5ra5s2E7Dcie5BVKL7D6hE9xLvwjrnTinJ1TQtiBppvgJ1X33Qtu1tkxiXEEKI02ADPwO+7lwGqEFNLbvUm5B8x0atbj8H7EAluIlCqyzbhmz2mFXaDmB9RQXRV19lRiRCaybDzVu3crz0tZxWXr0y/j7UgBbnWOd8Ljwywo8ffpjuxkZCra3UtLXRQ+lvHyBrWTw9OAjAz9Jpzstk2BIIcDFwAeW/yteISnQ/DRxB3TdfQCW6mzyM61w6pZpcTdO+CTxm2/Z/a5pWA9Tath093u2lJlcIIc6dEeBvEwnuHx3FcDbqtKHq8hZ6HJvX0sBOSolt37ivj6+jXVpby+Xt7SxHne5uc25XTrWx5WL87ySFKjN5CfUG5rlYjOhx6nvrgA2oZG8N5b2BLQr8CSrRBVVe80fAxV4FdJadqCb3pEmupmmNwIvAAvsUd6lJkiuEEOfGCPBXiQQ/LzT51zQuaW3lc3V1BL0OziMR4EnggWSSF/P5MZPdxmtNp7Gfe45ZAwN0xeO89frrJYktE/vDYb721FMcaG1l/4wZNMyePeHfgQ4sSSRY2NPDtU1NzCzD3/8QakW3UKdf6Vy/yLOIzp43muSuBr6CeoO0CvWG+JO2bafG3e4O4A6AOXPmrDt06NAbj1wIIcRx5YH/B9zlWo1cGgrxe4bBhjVrPI7u3BoAnnCOVyltTCok/oUyhACwGljrHB3IKm05K/xuZ3R1ETVNngC2MXZF3/23Ujc8zHs6Onh7U1NxFb9cRFCJbci5PpLN8q5Dh7gmGJzSf/dvNMldDzwFbLZt+2lN0/4FiNu2/efH+x5ZyRVCiMmVR9XXPUnpRXrl4cNcsXu3qhmdwi9apyqM+v8/gZro5uYuQ2hPJLiioYFb585lCeVfiylOzEa1htuG+tt5ZYK2Zc1NTVyEmia2ivLZtDmISnQPOs8ZFaOjvGX7du649NIp+5zxRluIHQWO2rb9tHP9R8Afn63ghBBCnJ488HnU6gOAruu8NxjkysFBZpZ5ghsDfhKN8sDwMP1NTROeftaAdZWV2K+9xrxwmIZcjq0n2CwmphcNWOQc7wV2DA/zHwcO8HJXFynDwDAMRlFJ8DZgJnADcBVQ71XQZ0krarz3HU53ihFN4/7ly7m2p6csnzdOmuTatt2radoRTdMW27a9G/V7fmXyQxNCCDFeDpXgPu363JuADzU2opVpicIoatPY/cCj2SyhePyYbgiVqBW3zag6w6b6esKrV0sZgjipte3t/M3SpRwOhehta+MpXWen6+vdqPZS/5XNsry/n/fqOitOocexX7UBfz06ygdHRrAqK4nV1fFkV1dZ1OeOd6rdFVajfsc1qDZ1H7Bte+h4t5dyBSGEOPtywN8Bz7o+dyvwAcrndKpbLyqxfRB1mhXGliFU2jYbdZ23dnayAdUbVIiz4QjwK9TfXpqxdbuVts17m5v5SFPTlF7Z/cHQEP/qjFg2dJ1/AM73Oqgz8IYnntm2/QIw4Q8QQggx+YZRpxndY3rfCryP8kpwj4TD3BOP83JnJ/vqj00hDMOgNhZj6dGjnNffz23XXy9lCOKsm43aSf8+4GHgm7FYcfjEiKbxU+AZ4O3ATagVwKnmbc3NvAS8gKpT/hfgn3EGm5QJqb8XQgifGwY+hzplX/B24D2UT4KbAL4Ti/H1ZJJsTQ1EIpjV1cWa2ybgSuAaXafGNAmNjNC1bp2UIYhJZQDXA6ttmy8/9xxPLFpEOBjEMAySwNeAO1G1vZcztR6PGvBx4LdQ0/8OAz9ATUcsF6dUrnC6pFxBCCHOjjzwh8kk20dGioMe3gm8i6n1gno8EdSktl8B4XG73IPBIFc1NXENcCGyKiO8FQ6H6Q6FODp3Lne2tNAz7usLgA+iasOnkl+i+sSC6p/7T8B878I5bW+4XEEIIcS5ZwOfj8d5MBoF2yamafxmUxPvdqY2TWVh4MfAA6haY1ClCDFNozGTYUV3N59csYKl3oUoxBiFccNrUa3F7gG+B8Sdr+8H/sCyWBiJ8DuVlSyeIpvTtgKPofpLjwBfBP4BlfBOdZLkCiGET/0cuNe2wakF3LB3Lxc1N8MU7qJwGNWH8hFU1wS383Sd/1Nfz5zBQWYvX445RZIEMf1UoZLDK1Fv1n4GJJzNaWHb5vlcjr+qrOS61lYvwzwlGvBJ4LdRbzj3Aj9F1fxPdZLkCiGEDz2LqvcrrG4u6e5m44EDdC1f7nVoZ6Qf+OdEgsdGR4tlFwXno2qMNwBaSwu0tHgUpRCnpxZVj3sj8Pn+fu513pBmqqv5XFUVh4HfwP8b02aiSqC+6Vz/LnCx8/mprMLrAIQQQox1CPi/qHIFXde5pLWV3zeMKTnJzAbuAj6YzXLn0BCxaJRwOIxlWVwA/A3q1OhFlEeNsZieWoHfq67m1h07qLcs0DQMw+AXwO+jWpL53a3AQudyDtVt4ezv2jq3ZOOZEEL4SAz4XaDPud4B/COqu8BUcxT4Emp6kLu/7YL+fn6jtpZbly3zNkAhzrJwOMzrvb3ctXAhL7ta4NUAHwGuw99v5g4An0LV5oJqo3azd+GcEtl4JoQQU0AO1Qu3kOAawJ8z9RLcPPAT1KacvPM5wzCoSKe5ctcuZsbjbNq61bsAhZgkhc1pl6A6hnwV1QJwGPg34NFEghv37+e8GTN8eVZmPvA24PvO9W+iyoj8F+mpkXIFIYTwARv1IliYma4BfwDM8yqgM7QHtRL0bUoJbiXwPl3n2y0t3LxoEVunYNmFEKdDQ9Xp/iMw1/mcZVncNTTEHxkG33nwQTVBzYfejhqGARC3LP6st5den8Z6MpLkCiGED/wUNUK04AOoFZSpYhj451iMD8di7Las4ufPQ01Reg8w2zRZs2aNJLhi2piLSnS3AtlsFmybhGHw43Xr2NXXd5Lv9kY1qtvCsNMt4hnL4ktPP+3bpPxEJMkVQgiPPQN8w3X9auDNnkRyZgaBT6RSfD0WI+psLLOzWT4IfIGptxotxNlUA3wU+HQ+T6VtowHJQICvLlqEP9NcWAxcGA4X2xfunDmTUCjkdVinTZJcIYTw0GHgs9ks0VgMy7JYBnwMf29OcXsdtVHulXy++II4c3CQT+zZw62UR0N5Ic6GG1pb+XxDA61NTZimSSIQ4E+AAa8DO453GgYa6rnocHs7VbNmeR3SaZMkVwghPJIH/jqd5nBfH7FolMzBg3y4r49qrwM7RQ8Bf4wazWsYBhXAZa+9xlt27GCVDHIQ4hjXtLbyhWCQOqdPdBh8m+iu6Ojg6tZWmoJBTNNkR3u71yGdNklyhRDCI98HXs/lwLapHB3lxh07SHZ3ex3WSY0CX0fVGhZG8rbpOv9YX8+HOjqmZD9fIc6VdajEttDeqgf4U9SbRb95W309TU1N6LrO/ZQ2k04VkuQKIYQHXgd+iFoBRdO4eM8eOtJpurq6vA7thFLAX6NahBXMBv4fsKW1VTaWCXEKLkSdBSmU84SAT6XTPLxzp682eK1HDboA1cN7m4exnAlJcoUQ4hwbBv4JtSKq6zqXt7byofZ237fWeqG/n98YGOBJV/eEDaiJZZ2eRSXE1HQR8EeoRNeyLF4YGOCzFRX8/K67fJPoVqIGWBTc41UgZ0iGQQghxDn2bdQ0MFADH/60rg5zzRoPIzq5bQMD/E48TraqCtJpTNPkvbrOe5g6m+TKgQ1YQBrIOB/dR2hoiPDQEI0tLdQHg+ThmCOaSBCPxWhubCTY2EgFasWr0vmYiMVIDA0xIxikKxjEAAKuoxZI9PURD4WY19nJDB+/MfO7i4E/BP4kkwHbpr+hgWfmzePCUMg3b3ivRZVWjQI7gW5gpqcRnTpJcoUQ4hzaBfzcdf1D+H+a0OvAX1ZWkq2qwgaqRkZ4+6FDvPf8870OrSzYwKt9feweGMAwTSpaW4kB0XFHbybD4PAwumGgOxuX3CzLIpxIQGUlxOOYgcAxt7Msi/DQENg2RKOYuj7mNpZlEY7FQNNO/DOyWWhupiqdZnEmQ2cgQBMQdB2jkQijvb2saGvjvI4OeTN0HJtQfbH/UdPQbJvnFi4kX1vrdVhFrajyiqed6/egnremAklyhRDiHMmiBiPYzvW1jD0V6Ee7gb8A7NpaSCQIDA/zpuef5+bLLvM6tCllfzjMi4ODaDNmkGtpIQzF42g2S3c2C3V1kEph1tdPnFj296vkVNMwTfOY2xSGDdiAZttks9nTvs3p/ox8RQVHh4dJBALHxptMqv9TNsvsbJa5hsEMKB7Vg4NUhEJc0NEx7VeD3xsM8nR1NbvyeQzD4Hu6zlr804LvBkpJ7oPAe1H9f/1OklwhhDhHvoZKagDqgE/g71P9rwKfQZ0W13Wdhe3tfHD/fi687DLfnEr1Gxu1S36/69iVybDLslTCl0xi1tWNSRyTlnVaiWXVyAjVqRRduk4tqnwgAIxUVLDn6FEq83mqgPWrV9OKeqEvHInRUZ59+WVGbButspILL7qIRtSp6FFg0LZ5du9e8ppGvqqK85ubqUb9DRSOSHU1e4aHyVZVMVJZqTZPjjM+WY5bFocNg8PO1y3LIpxKQWMjNakUG1IpVtbVsQCYj5oUNhWSqLOlAvh0XR2fQJWU7EGd8XmLp1GVrAU6gD4gATwBbPE0olMjSa4QQpwDO4Bfua5/lNKuZT96BZXgZp3rjcDnAgHmLV/uXVA+lAVeA56MxXghnSYSDGKNW9WMDQ+fMIk1DIPhXI76TIa6XI71LS3MgTGn/3PDw2x79FFqLItqTVObFMcH09BAeNEiQqEQXV1dmE1Nxwbc3MwV69aVbtPcPPbrwSA3rVhR+npj47E/o7aWcGMj3aEQzV1dGLpeLKkolFkc1jSe7usjZhjE6+qOSYTdSfBwZSUv5fPFBBjUSNmmeJzVus6mxkZW4u/Hy9kwG7gdVbMP8B3U5jQ/1L9qwPXAt5zrv2JqJLmabdsnv9VpWr9+vb19+/az/nOFEGIqSgEfzGToGR7GMAyu0HU+jX9XcXcBf0UpwW0CPodaXZvu4qg3AC87xz4gY1lqN/xxSgksy2Kgp4dgKkUwk+GS88/nvMZGTFQ9dgcQD4dLieVxVsnDp3AbP3HHW2ea9ELx2BOP8/j+/QzU15OtqRlzn1nHuT87gZXACudjm1f/sUmUB34PdQYAYBnw9/jjuSIKvB8Yca7/K/54TtA07TnbttdP9DVZyRVCiEn2xXic16JRsG2Gczne1tiI5tOJYA8PDvI3FRVU1Nai6zpB4G9Rq0zTURa1o/yheJznLItoY+NJ61ztdJqlus5CYAGwUNepCQToHxqia/bsCVdHA6Z50sTVPIXb+Mn4eBc5BwCNjYQ7O+kOhQjMnElK19kPHACeTSQIT7Dy3YManHAfKhFuise5vKaG65uaWIg/EsE3qgr4JGpU9gjwvGXxpaNHeUd9vee/+yCqG8TjqPv/K+Ewn9B1z+M6EUlyhRBiEh0C7rHtYhJ0xcsvk5wzB3yY5D4zMMDvJxLkKiogkeD89nb+LhBg6k2sP3M26ne2A3gOtWqbsizCzpsUMpljVmoXVVczfPQoMyIRZiSTvOfKK5kx/gebJrN8nAx4YXwSXFiKC4+M8NOHHqK3vp6e1lYCF17IEVR/aSit9IZtm9czGX5hGMzWdTahOhUsYWonvAuA24BvO//Pb2oa2n338fZrr/U8obwBeNCJ675cjjkPPMCbb7rJ87iOR5JcIYSYRF8DdGeq2ZyBAc4bGKBr40avwzrGEPA3mkauogIbqM9m+fC+fcxascLr0CZdFnggEuHRdJqDra1kxtXUuldqK0ZHmRGNssU0WQ4sBRpqa8fWwvr0BX+qME2TW2+4oXR/1teTQ7Wyewl4YGiIgZER8hUVxZXePl3nZ8DPACOTYXF/P7cGAqxrb/fwf3Lm3gn8Mh4nbNvkKivZ1dnJJT7onbsSqE0mwbaxqqroq68n5IO4jkeSXCGEmCQ7nEPXdWaYJr+ZSLDeh1PNhlE1t9n6ekil0HM5bt2xg9VbpsLWkjOTAZ5F7RJ/IpvliPPCTX//MSu151VXYx86xKz+frricW698cZjNn1NtVICvxt/f1YDy51ji6bxs4cf5mBLC/tnzMAyzWKdqGVZHO7v53Xb5peZDJenUry1ro5NTK2Epxp4R2Ulf+30zn1l9mw6g0Gvw0ID1tTUcMCJK9zc7OtR5FPpdy6EEFPGKPB11/Wtus5NPuxMYANfRPXDLSTj7ztwgKu3bCm7pC0FPINKbHcAOefz8XEtvLR0mkt0nXXAGqC1tpbw4sWEGhpkpdYHTNPkzTfeWFzpbTUMdgJPAnenUmN+ly/k8xxAbZ7cGIux7NAhlk+RNyQ3t7TwnUCAAWfDareuH1sG44ELGxp4oqaGbDZLcONGzIYGr0M6LklyhRBiEjwIHHQuG8C7vQvlhH4IPOK6/lu6zi1LlngVzlmXB7YDP0smeSafp2qCCV6GYVCZTjO/t5f5g4N86NJLGb82JSu1/jL+97HWOW7L5fjyjh3snDmTA6ZZbF3WZ1n8VyxGRWMjF7z+On+haSz0YV28Ww1wYyDAz53ymXuAdZ5GpCxGvSHWdZ2Q18GchCS5QghxlmUp9boEtYmkxaNYTuRJxsZ5PXCzR7GcbUeB+4FfA2HLIhyJqHKEeLxYjjAf2Axs0nVqWloIZbN0LVsmyewU1mma/OamTYRCIQKBAC/oOvcA+5266hFN44U5c/hYdTUfAW7B30MnbqA0BvwZYBDv+wXPQ91nw0A/aviJH5/fQJJcIYQ4636C2sgF6sn/zd6FclzPDAzwF5WVxVZhK1EDKqbyrvRD4TB3JxLs6uzkcF1d8fPujWMdsRjXjIzw7vnzx67Wykpt2XCv8i4B3gbcOzLCF2MxepqaQNOwa2v5JvCjTIarjh7l5sZGX44Wnona7PUSqgTqftSmNC9VAuej+mmDGoayybtwTkiSXCGEOIsiqCS34L2ocgU/2dPXx6eiUZK6DokEF7S18ena2in7ghABvhmL8d1UiuHqahgcxKyqKpYlzKip4fyDB1l85AgtljXxtDBRtiqBG1taWJvLcU80ykOzZxPR9eImtVdrarjn8GH+r09LGG5AJbkA96KS9krvwgHUmwdJcoUQYpr5H8ByLs8DrvQulAnZwBfzeZK6jg3ouRzv3r+fhinYKqwH+DGq/nkQNR62sOEol8lwha5zDbA2EGBgyRJCjY2ycWwam2GavN80eQ9qRfRLrk1qezs6+FRlJZ9DrZz6ycWojXN9lsW+bJb78nluaPW2aMFdtf+aZ1GcnCS5QghxlhwA7rIsMtkshmHwIV2nwuugxnkU2N3aCuEwmm1z3a5drPFh394Teba/n/8ZHua1tjZqnNVawzCIaRrNqRQrurv55AUXcL7re2TjmCioQq2OLs3l+LPubl6aORM0jWx9Pb9vWVzS08NHAgHflC9UARfGYnwtFgPb5r/6+1mbz3v697zYdXkfaoOnHxNKP8YkhBBT0peTSXqdDU7Ng4N0zpwJPnmhBHVa/z9QO6NN02RtXx+/vXHjlEn+hoH/jMX4ejrNKEA4XNxEdoGuc1VdHebgIDNXrsT04Wln4S/zTJP/B9wbjfKzOXNIAr3hMD/SNF7Zv59/At8kuucfOQINDdhAdzBIt8cDGIKACYRRj8sDwHmeRXN8kuQKIcRZcAR4cmSkePpz4+7dhDTNNwlkoR9uyrk+R9f5zOzZBE7wPX7yKvAvqDG7o1AsS5gXifDbnZ2sALTWVvD4NK6YWkzT5H2myVbgj3p7CTuP35e7uvjLgQH+En8kumva2zGSSbJVVWRraqic5f2w7cWoJBdUyYIfk1y/nUkTQogp6SeoU+ZoGvP7++lIp301Ceh+4DnX9d+BKZHgDgP/EI/zf2Ix9ltW8T6eOTTEO55+ms9WVLCSqd0VQnivBfisprG0p6f4uSfr6/nsSy8RDoeP/43nyAzT5DLTpCkYxDRNIj4YVzwV6nIlyRVCiDdoAHiYUhnA+2pr1Q5+H6wAAfQB/+W6/iZgKmwziwCfSKX4djRKNBolHA5j2DZ/1NDA52ybD11+uW/uYzH1zTBN/mn+fC5KpYqf27ZwIff5JNFdV19PU1MTuq77IqksJLmWZfHkwIAv7qPxJMkVQog36BeojRcAq3Wd23w0UMAG/jaZJByLYVkWM4H3eR3UKdgDfAp4JZ8vloDM6e/nd15/nXc1N7N2zRrf3MeifHSaJn/Z2kpHMglAvqKC77a28ss77/Q8ifPbyul8wM5mCYfD7E+l+NG993p+H40nSa4QQrwBSeBXrutv9SqQ4/jO0BAPRSLEolH6ent578CAryc8gRoz/EeolVzDMKgALnvtNd70wgssl8RWTLKZpsnfmia1TueO7pYWQo2NhELeDrE9j1JZzkHUZEUvVQGBRKL4JjReXe35fTSeJLlCCPEG3E3pxWY2cKGHsYyXwBnb67wIrd2/n9ojR7wN6gRs4EuxGH8ei5G0VLfhVl3n/9XX86GODm72UQmIKG8b2tq4ubYWTdPQgFdmz/a8xr4OKGw3GwX2ehhLQWdtLTj3UdYwPL+PxpPuCkIIcYaGUaUKBbfhrw1Q/wvYtbWQSBBMpbjowAG6brrJ67AmZAN/G4/zA6cXaEzTWNPWxt/V1tIpXROEB97e2Mgjuk4qmaRn0SJSo6Neh8QSYK9lkc1mecq2WREMehrPrLo6zKoqstksF1x+OWZLi6fxjCcruUIIcYYeBGLO5Tbgcg9jGa8HuIvSZrgPVlby5ptu8uVKqA18CbjXtourzvP6+rjj9dfp9Dg2MX0tAuaOjJBMpYimUnxpxw7Pa07NoSHC4TCxaJS79u71PJ4g6jmmqamJCp8luCBJrhBCnJFR4LvpNDFnQ9eb8depsW8ydjPcb5x/vi8T3FFU/9v7KbVgWxoKsfXFF1nYKSmu8I4GLOntLb7x6m5q8rzm1AiFivFEAwHP4wm6Lg95FcQJ+Ok5WQghpow7IxF2JpNg21j5PKvr630z3exV4AnX9Q/hrzKKglHgn4GHnOu6rvO2YJAbBgeZJfW3wgc2NDbyrXQazbbpCwbp8ni1cnF7O2SzaLZNRtfpamvzNJ5m1+WoV0GcgCS5QghxBn42PFxcUVlx+DCRYJC5PkjKbOCrruuXMXbOvF/YwGcTCR4cHcUwDHRd51rg442NaGvWeB2eEABc1NbGzGyWpGVRM2MGdU7HBa8s6ujAdGpyA4ZBm8fxBF2Xox7FcCJSriCEEKfpKHC0uRk0jQrb5oLubt/sKn4c2O1crsK/PXH/MxbjJ0NDxJwhD5vicT6OP1ecxfRVAywxDAzDIJvNsm1w0NN4qoB2pwa2RteJexqN/8sVJMkVQojTdA+lDV2ba2p45zXX+OLUeg74j0ymWCd8C+B9VMd6DPgeFFfClx05wnX79kmCK3xpRjxe3Oz1kxde8MVmrwKvE0u/lytIkiuEEKdhGNVVAVSi+6GuLl8kuAA/GBri5f5+YtEosaNHudxn04dATTL7Z0qbzOYMDnLl7t3M9MlKuBDjVQ4MFN+QpXww8CDouhz1KIaCoOtyDFVn7yeS5AohxGl4AjXlDNQqqV+qR0eAH42MFF+M1+3bR8xn04de6evjdwcHSVgWuq6zuq2NP6ms5BaftjYTAmBeMFgceJDxwcCDoOty1KMYCqqAesCyLKKxGHv7+jyOaCzZeCaEEKfBPcL3evxTQ/oEkGpogHQaY3iYC0Ihulat8jqsou5wmE/299PX0ACpFAs6Ovi72lpfxSjERBa0tGDW1ZHNZpnZ2opZX+9pPM2opDKbzXLQtsHjgRB6Ok3YWe3+6VNP8f4rrvDNm1ZZyRVCiFN0ENWeC9QKwdXehTKGDfyYUp3wm6qquPWGG3zzQgPw9UyGvoYGbEAbHeWdBw4gBQpiKghSGngw7HGCC4CzWTMWjfLYzp2e1wjbiUTxDFK2osLzcg43SXKFEOIU3eO6vJGxpw299AKw37ncoOt8fN48XyW4rwOPz5hRPOV7yZ49XOHD6UhCTCTofLQsiwORiOdJZc5VI5z2QY1wXX198bFdoWmel3O4SZIrhBCnIAv8Kpstdi64weuAXH7kunwt0ORVIBMYBv4JqDYMTNNkna7zZxdc4KskXIgTaUQluOFwmFAiwS/uvNPTRLettbWYVGo+SCpr6+owTZOmYJAtPipVgFOsydU07SCQQO1tyNu2vX4ygxJCCL/5xdAQB53TchXpNB0tLb6YcLYH2OlcrgBu9TCWiXwb1VcYoEnX+bsZM3zZ1kyI46kErGy2uHo6OjpKKBTyLJkLNjdj1taSzWZZ2dyM2djoSRwFNqqcQ9d12j2N5Fins/Fsi23bA5MWiRBC+Nhdrglny44epSebZYYPktxvJhLEnKlh1+o6HV4H5PIy8APLIpPNYhgGv6XrkuCKKUl3Wt5ptk1lRYWnq6ejlJJKb9NbxXZd9stG3ALpriCEECdxFOgJBiEcpmJ0lKU9PXRdcIHXYbGzv58702lsIKZpXBYIQLs/1lJGgC+k0/Q69YPBwUFWz5zpi9VvIU5HYaXSNE2y2Sw3b93q6Sl5vyWVfovH7VRrcm3gPk3TntM07Y6JbqBp2h2apm3XNG17f3//2YtQCCE8dj+lF7lLa2p4+3XX+aLu7MdOgmsDc/r7qT569GTfcs7cD+zP5cC2qRoZ4Ypdu+jx0a5rIU5VIYnTdZ1gU5Pnj32/JZXuARB+iMftVJPczbZtrwVuAH5L07TLxt/Atu2v2La93rbt9e0+WUkQQog3Kg/82rms6zrv88mEs2HgpY6O4gaU1UeOeL4BpSADfIfSVLP1Bw7QlMv5Jj4hTscoauNZLBZjOJv1OpwxSa7fugf4LZ5TKlewbTvkfOzTNO2nwAbg0ckMTAgh/OA5SlOFWoC13oUyxhNALhDANE1qk0k+dvHFvki+AX6Cus90XWdpezsfjESYt2KFb+IT4nSEw2HClgW2TdK2CTuPO6/4bXSu3+JxO2nSrWlanaZpDYXLqA41uyY7MCGE8IP7XZevQu209oNCz15d13lXayudPkkgB1FJbsEdgQAXrV4tCa6Ysg719hY3nWpOZwUv2ZRWlpPxuKexjDcVV3JN4KeaphVu/13btu858bcIIcTUNwQ867rulwlnh4BXnMuVwDUexjLevycS9DvdHpbqOlu8DkiIN6i2qwsyGTTbptYHZTeRaJRwPA62zUtHjhA+7zzPV5YLY4b7h4eZ56OS1ZMmubZt7wdkuLgQYtp5CMg4T96rqqroqqvzOiTg2MlrzV4FMs4L/f3FzXAxTePTdXVora1ehyXEG1LT3o7pPA8sr6rC9Ph54Gg0CpqGDVTncp727AVIpdOEnS4qD23bxpwtW3xz5sZvK8tCCOELNvDzdLo4I15/5BHPx3mCmrz2kOu6nyavfS+bHdPtIXj4sNchCfGGRVFlQU1NTcz0wRvdipaW4obTOh+sLMfT6WI5ByMjnpdzuEmSK4QQE3gNOOBqgbWgt9cXT96PARGnHi+YTuN9t14lArzU3l588b3w0CHPX3yFOBuirstBj2Jwsxsbi2N0r16/3vNV01x9fSnpzud99biXYRBCCDGB+1EtsGKaxvm9vei27Ysn7x+nUoQHB8G2adyzh76VKz1/kQP4JVBpGJimyYxolDs2b/ZFXEK8UUOUak41gKYmT+OJUpp4tsDTSMACcB73+UyG266/3lePe0lyhRBinCxqxbQwAOJtySSbPZ5yBHAYeCWfB9umYnSUxUePEmpt9TyuFHC3c1nXdX7TNJnhZUBCnEVH4nHC0SjYNq/t3k141SpPH3NR1+WgRzEUxJyPuq7Tpeu+e9xLkismxTAQP8mRcD6GMxnimQy1gQBGIDBmYoo27mNBJpMhn0phBgJ01dXRhHqwNzmH+3Ij8ocuTs/jqEQXYJGuc+uyZb6Y5PMApdXl+f391I2M+GJ1+XvRKD2ahmEYLNB1NnodkBBn0aFUqlhzGshmPd/oFXVd9nZN2V8J90TktV+csThwdNyxJ52mx7KoqK1F1/WT/gzLsgj394NtQzKJaZon/T739+xLpzGrqk76PfWoJ4PqVIraSISV9fWsa25mHhA4lf+smFbcvXGvwR+jKkdQG84Kq8tvyWS4xgery0fDYb4Wj5OqqSGmaXy4oQGt2S/9HoR441JNTTAwgGbbtGSznr6xHEZNFASVwNV7FokSdV0OehTDiUiSK05oFOgDjnBsQju+BbVlWcU2IiQSp5SwZrPZUpNt2yabzU7K9ySBQcsq1jLek0hgOol4JzAfWOD62Io/Ehtx7nUztgetX/q87qD0gtKp69y+eLEvBlPc4yS4NlCfzTJvcBAkyRVlIg/EamsxTZNsNsu7Lr/c81XcQn1wZ00NWsDbZZqo63LQoxhORJJcMUYaeAl4EXgmnWb/8DBVgcAprcq6k8/K0VH0ZJJ5uk4jjDkaXJeHczm2Pf44Ffk8FRUVXHvddXQ4P8+e4N+wgT7L4r7HHsPSNCxdZ+2VV1KJqg2KoR507stx5/uOlxz3AD3Ak65/pwGV8M4HmiMRjJ4e1rW1McNHBfVicjxA6UVkc2UlwXqv10qUB1yXt+CfyWsvdnXB4CCabbPy6FHmLl/udUhCnDW9qMUeXdeZpevM8XjT2d6BAcJOy66aZJJwW5vnSXeB16UTE5Ekd5obAV4HXgCedy6PMG5VNh6fcFVWB2YCs4FZQO3ICK8+9RR1qRSGbXPz1q2c9KHX1sb8q68mFArR1dWF2dFxsu+gtaODlmuuKX1PS8sJbz+KWsndOzzMz3fsoL++nsHGRurb2xl0/r/jJYCdwLOWRTiZhPp6AokEN9XWclVDA2uQModyNAz8MpMplsNUvPAC4Y0bPS8JiAPPuK77ZfLaEeBgXR1mVRXDmQyfWrHilB7DQkwV3a7LMz2LouS1SAR0HRuoy2R8VR8c9CiGE5Ekd5qxgRClpPYl1OrteO5Vz1rLYtbQEOtnzGAWpaS2jXGn9FtauOiKK0rJ5yk+8EzTPO0H6el8TwVq1XhtezszN20qxVdbSw71Qr3fOQ44R8r5Xvf9kKmu5v7RUZ5BPXBWABuA9UDnaUUv/OohoG94GGybumyWOf39nr+IADyCOm0KsBj1+PODXzkfdV1ni66zxNNohDj7jrou++Fxl+vogHgczbZpzmToOv98T+OJuS4HvQriBCTJnQb29PXxSDRKeMYM9jU20n+S2xdqU4d27KAtGqV2dJStp7Iqy5klrOfS+PiqUf9fd69BG+hHJb0vAPf299PT1ERG1zEMA1AJxwvO8RVU4n+hcyzFP6eSxamzgZ9S6l6w+vBhqjTNF90LfpFOE8vlMAyDq0+hdOhcGAZ+7brup8lrQpwt3ZTKl2pHRz2vN08Fg5iBANlslusaGzE9jidK6f4ZyefBZ2O8JcktUyPA08CPkkl+nclg6zpEo5hOA2m3NmANsBpYhVNX09RE2L3q6ePE9WzTgA7n2NjUxK2zZ9MdCpFpbuaArvMsKgF2O+IcPwHqgHXAokgE88gRFs6YMa3uv6nqWdQLmq7rzOvo4D2RCAsvuMDz390zAwM849TgpUZHOb+2Fnzw9/QYpTMenajnDiHKzW7X8JW9O3YQ3rTJ0+eEo5QGQaz0LIqS7nS6WNq4/amnWHnFFZ4/Z7pJkltmBoF7nSMCxEZGirPkC5utgrrOBaikdg3QxcSdBPy+KnuuuO+HzcB7gAFgO6pO8kXUqlZBCrjfsvifZJLKxkbOO3CAj1dWcklbm3Rs8LGfuC6/2TDYtHq1V6GM8XPXXPgF4TAxXfdFkvujVIpYPo9hGFyn6/K3LcqODexxypdsoCmR8LR8ycZfNcI2cMR1//ihRng8SXLLgI06bX43KukadX3NMAziwIxolLmRCO9duZJNyOn0N6oNuN45LJxNas4xQKmWN19RwWudnfxpdTUXANcBV6JWe4V/7AZ2OKfc6nSdm52yFK8NAy93dEBfH5ptsyIUomvzZq/D4tn+fp7MZMC2Sdo2F9TWgmw4E2UmBFBbC4kEtZZFYy7naflSlNIemgDe18D2A5WBAMTjBIaHqfXJcBo3SXKnsDjwIGrzR88EXw8C1+o6awIBcpEIXcuWYba1ncsQpwWdUj2uDRwE7rdtfpBM0l9fD84kqEOo+t1vAJeiEuTFSD9eP/haMkk4EgHbprOnh5H5832xWvoEMOLMha9PJPjo5s2+WCX5hZPgFlaXkzU1kuSKsrOH0vCVBZGI6hjk4ePPvYo7C+9fO0KU7p/OaFTt3fHB85ObJLlTjA28hkpsHwdyE9zmAtQmkI04v+CODnkBOkc01Ka9O4JB3mRZPDU4yK5Zs3hB14tjYodRb04eBOahkt0rkNVdrzwHbBsZKSZtqw8cIOQ8cXvtPuejruu8yydz4fPAK+3t0N+PZtssD4Xo2rTJ67CEOOv2Oh91XefSzs5T2nw9mY5S2uTVWFEBDQ2exwPq/llnmp7fPxORJHeKGAZ+NDTEL/J5Io2Nx2weqwOuQiW3fmhzIlQt75tMkzehTjE9DNyDalFWcBD4T+DrwJp4nBVHjrDR4+be00kOtbpe6Kiw7OhROtJpX5xy6wZ2OZcrUGUufvAsMBwIYJomRjLJ//F4I44Qk2Wf6/Iiz6IoeTUWIxyLgW3Ts38/4WXLfLOy7HV98PFIkutzNrAN+NdMhpcTCTWcIZMpDmc4D7gRdfrbH42FxERqUb+nG1CnwO4BHkXV8wLELYsfRKP8oL6eOaEQv1dZyeWyUW3SfTMa5VWnnGR+RwcfGxpisU9Oud3nurwBOPHIk3OnMHlN13Xe7ozFFqLc2JRWcsEnSa5rE6rXm+DAfz2EJyJJro8dQa0yvQDEXDsYq0ZGWN3fzx2zZvnigSdOnQac7xwforS6+6Jr6MThlhb+orqajcDbUe3IJNk9+17q7+c/k0lyFRXENI3fb2jgslX+aISVR5WzFFzrVSDjDKG6ihRc5VUgQkyybiDmlAaYNTW0BLydcWkDg8FgsUzITCY9P+PkXsn1/tzXxCTJ9aEU8H3gl5RGzhqGwXAux7r9+1ne08Nt11/vy/oXcerqgJtQK7xP5nL8czjM66ZZ3Kj2KvBXqBrftwObUKetxRuXAj4L5CoqsIHWRIKlg4OeN3oveAboc15gO2tqWOvxC2zBw5S6tyxHJv2J8vV0JKJGuts2zYOD9M2c6emqaT+lMiEtnebdV13laTzDTkygXpf8+lwgSa6P2KgJQt9g7DxoDXirrnN1YyOx9na6Vq3yxelUcXZowOa2NhaNjPBiXx/Pzp3Ldl0vjnE9AHweVfP0VtQmNXngnrkR4C+SSborKkDTqBoZ4epXX2X2pZd6HVrRD1zdHhYfOMDA0qWeP+ZtSqUKAFd7FYgQ58CzqVTx7FpHNEpI0zx9DLo3wV3gg02oIddlE/++Jvk1rmlnD/BlVL9OtxXAR1G78KVLQnkzTZNrTZNrUb12f4bqolEYNNEN/Avw35kMG0MhbquvZ7a82TktMeAzySQPOQkkmsb7EwnecemlnieRBXuBHU63B822WXLkCKGmJs/j2wvsKezs1nU2+6SXsBCToae1FQYG0GybWdEoXcuXexqP3zbBuTs9LK2shPp6r0OakCS5HosB3wLuR62UFLQCH0RtKJN6zOmnDfgw8DbgF8BdqFPslmVxuL+fV6uq+H4iwYd1nduDQWk/dhKjqDG0/5HJsD+VwrbVo+3Cffu4NBj0PIF0+wmlbg/n9fQQHB72vPYO4CfxOOFoFGybrp4e4vPnE/DR/SbE2RIFIrW1mKZJPpPhgz7oT73HddkPSe7L0SjheBxsm77Dhwmff77n99FEJMn1yAhqQtl3KM1/B/ULuRVVgynrJKIJeC/wFtSq7tdcp9Ay1dV8S9N4ANgK3AI0eheqL8WAO4eG+Fk+z4BhEBkawrZtNODCvXvZePAgXVu3eh1mUS+q/3Whwfr7Egk2+KDbQxZ40NVLeMnRo77pJSzE2VZo3afrOmt1ndmeRuPPTg87XZ0eWuJxzzs9HI8kuR54fGCAf7XtY/rdXgh8BP8WcAvv1KHqcTfkcnxh9252zJ1LMhDAMAxSwP+iyhuuB96MWgmeruKotnuPAc9aFr2F1nvpNDZg5HJcvXMnm3Wd9T5IIN1+TumMzkW6zs0enyIteAKK402DqRSzYjFfrC4LMRl2uS774RHYDyScy3XgeT0uwGBzs686PRyPJLnn2PeHhvh8KqV2KDv9bufpOh9BJblCnMgc0+TPVq3icCjEwY4OHtT1YhsXC5Uk/SSbZWV/P283DNa1t3sY7bkzCDw4NMQD2SyHm5updupFM67WbDX5PKsPHWLVoUPUjo76LsGNM7Y37m1eBTKBeymtLl/b3e35eFMhJtPLrssrPYuiZC+l+teFlZVoHte/xoCU0+lhJJPhvVdc4dvnA0lyz5E88FXgOxUVjKJWa6rzea4OhfjU/PlUexuemEJM08Q0TS5EJUJPAj9AdWGwLItwXx/dts09mQxbkkneUV/PRZRX+7EE8BLwonPstyzChRXbvr7isBTDMKiLxVjY08PScJgrL7yQbHMzXV1dvntSvpvSJsMFgD869qp+3a86l2t1nQ8vWEDQw3iEmEwJYLeTUNbpOkt8sMHyWdeks9ihQ4QXL/ZNp4cluu7bHrkgSe45kQD+HthJaUNJezzO1hdf5F1XXy0JrjhjFcAlwGbgOeBL0ShhZ+VSs212jIywD2hH9eO9DvB22vmZiQBPDw7yTDJJqK2Nnrq6MRs1s64VW8226YxGuc002azr5E2T0MgIXatX+y6xLRgGfpjJEBsexjAM3qLrvtlw6l5dvggkwRVl7VFXf9xAPE6sowPD4+eN51zPbzOGhjyvf/XbJrgTkSR3kh0G/gboca7rus7Nzc1sjUSYf/XVvn3RFVOLBqxH9dP9yvbtvDB7NgdME8NZhegHvgl8I5vlvMFBrgoEuLqlxZebG1OoJ9HC8ToQsizCKWeL5uAgZlXVmHr2Bl2nYWiIuf39nN/Xx+1XX10aluKsfPvZD4aG2OusRI9aFouamsAHMedQvbsL/DJ5TYjJ8qhrc+/MgQFC+bynzx9ZoL+pCSxLtTPzQT283zbBnYgkuZPoWeALQMb1uXcD72hoQFu92pOYRHmbYZp89JJLCIVC6IEA23Wde1H1noVShiO2za+TSf6ztpaNhsHFwAbO/QpvHvXm7zDqlPjLiQSvWBaJhoYxCSwcu1JrZbOs1HVWoU7rLzUMhjo7Cdk2XRdc4Puk1i0BfMe2i/+/VQcP0tfezkwf/B+eRv3tgDobsMbDWISYbDZwsK2tuKFqfiRC17Jlnsb0GlBlGJimSXM8zluvu87z5ze/9ew9EUlyJ4EN/BjV/7ZwStUAfhe42KugxLRhulYulwHvRHUa+GosNqaUIW5ZPG0YPGpZWNksC6qrWVlbywIoHm90e0MWVWoQAV6PRHg1Hifd2spQQwMhSmOrLcsiPDRU7IJQqKktaNR1amMxOqJRZkejfOiii1jQ1HTc//dU8m1gpK4OkkkaMxlWdnfTtcofFbn3ui5fQ3nVdQsx3iEg7Rqd+6FLLvH8OcXdzmxLezteP8NFUcOKAGqAWd6FckokyT3LhoEvAo+4PtcB/DnO1DIhzrEa4CpguW3zjaefZk97OwdMk6oZM1RyGQ6DbbND0+h2JZeWZVGVStFuGMyoraUBpw9vLEZiaIiG5mbqmprIo1Zlc0AkkaA7lSLf2Ei2tpa0E4NlWarOTdNgaAizpmZMEuteqa0YHaUtFmNzRwfnA+cBsw2DgUJtrcebLs6mvcA9lDoXvOfgQa678UZf/P/CwNPOBpyAYXDNuNV1IcrNduejrutc4pMNVe52Zis8i6LE3elhRVUVlXX+HkUkSe5ZNAh8jrFF2SuAP0Y19RfCSzNMkw9cfjmhUIiu1lZGdJ3v7t/Pfckk4aYmsG2y2Sy6ro9JfruTyeLKqmVZapevpkEshmkYY5Li4mrswMCY1djx5QaFf6cdmIN6fBx55RWaEwk6UinefOONx6xYTNWV2uOxgf+kdLZnk67z3sWLfbPh7LuuHd3Ng4OMzJzpizphISbLc67L6z2LomQY2O267oeevc+5Jp0ljxwhfN55vn5eliT3LHkdleBGXJ+7HvgocicL/xifKL63ro7mhx4iq2lEGhuZd9VVDAFPxWL0j44yomljktLjJaswcSJbp+u0AHOqqujt66MxlaI1nea2DRtYDQQKgTQ1EV67ViXgPmzvNRkeoPQCVoV6rvBLgpsCfjU6Wvx9rjh0iJCmTYvfi5ieUsArruvrvArE5XXUWTKAmUCzh7EU7Mhkis8LbbGY550eTkbyr7PgceDvslkSloVhGAR0nTtQLZv88qIlxERM02Tr1q2l5LJZPY2+w7b5xa9/TbqyEkvX2XD11dQAh0ZHeWTfPkZsmypgw7p1tAHVQGJ0lGd27UK3LBpyOd66ZQsLcB4DdXWE58xR/87SpZhtx85kK7eV2hNJAF93Xb8Nf006vAeKE85akkm1AWfTJq/DEmLSvAhknNPwS6uqCPrgNPwuSqUBmzQNGr0d3D4C9DQ3Q19fqdPDej+seR+fJLlv0PPA57JZQn19YNtY+TyfDgbZ0trqdWhCnJKJkkvTNLnlpptKya+TlG5qbubK5ctLnw8GS9/U3Mxl69eXvtbRcdJ/Z7r6H0pjOjuAt3kYy3g54BeU6oTfMjwsE85E2XswkSiWW40eOEB46VLP/+a3pVKEBwfBthnatYvw+vWexrQfsJ1OD0Yyybuuusrz++hkJMl9A/YDfwukLAtsm2AqxdYdOwguXw6S5Iop7nhJ6YmSVUlkT2438DPLIpPNYhgGH9F1/LSl62FKZVedus6HFi2SgTWirOWBJ/L54mn4uX19hJqaPH0uSwM7c7liTF2Dg56XBrg7PVyu68zwLJJTJ0nuGeoD/grVIskwDEYsizdv305jLud5o2Y/ORIO82pfH7WdndS0tRFH9d1MoOZfF66H02kGs1kCgQCBgKrUnKjUI5PJkE2n6QgE6KytpQnGHEHX5Ww4THQa1XgK/xsA/jyTobe/X70xHhxkno82dNnAT1zX3wSS4Iqy9xIw6pTnNGQyzEgkPH8dfxGoDgQgHqc9HqfBB7nFy67LftgEdyokyT0DSeAvKa12tOg6f9vcTOXKldMyobJRierRcceedJpd2Sx2Y6PqfWpZxzT5B2dX/sCA2pXv2sk/4e2c5OBQKnXc2xVva1nU1dXR3t3N1YbBmqYm5qNqH6XfpzjXssBfA73Dw2Db1OTzXPrKK/RoGjN88pzxDOqxC1CLGgMtRLl7glJ5zsZw2BflOdtdMV06OspWj2OyGZvkrvQqkNMkSe5pGkZ1UTjiXK8C/hRY2d4O7e2exXUuhYFfDw3xfCpFqrmZobq6Yn2hWyyXw4YJd+K7nWjH/pnczn3bpK6T0nV+CNznfE1H9SxeAASHhgj09LChtdUXE6ZEeRoF/i9wAHXmJwHc+MILtFiW56szbj92Xb4B8H7rjRCTawTY5lzWdZ3b58zxfOCCTamdma7rvHXePM9jOoha4AN1xtQ/z1onJknuabCBf2Jsc+ZPMXXe0ZypJLATtcnuReCgZRFOJNTK6+AgZlXVhMmmYRjEgYZsltrhYVa1ttIFxaEChWM4l+OZbduoHh6mQtO47rrr6Bj3s2ygz7K477HHyNs2lq6z/qqrqEKVPYw/empqSNo2I5oGmoZhGMWfZaHqIncW/h91deipFNcmElzV0MA6Jy4hzpavocZ8g3rR+nRjI+ctWOCrMz+vOgeoF4ZbPIxFiHPlZUqjq1uAJR7GUnAI1Xcf1BvN8z2MpWD8UIqp0jlKktzT8DVUu7CCDwKXeRTLZMqjXuxecI49lBrWw8Qrqk26ziwYe+g6FYbBQCSiXszrjzMktq2NpVu2HHdXfkFrRwct11xTut2JNvcFAvQEArzY34/V1UVU1zmA2iw4NMH/w6qs5NHRUV5EPXiXABuAC1HDCqbKA1r4z93Az13X3wq8vbkZmv3Q9bLEvYp7BeoFX4hy94Tr8sX447l+u+vyWqDSq0Bc/DZ57VRJknuKfg78zHX9ZuDNnkQyefYAvwLuz2aJOT1/J1qhbdR1goODzBocpD2Z5B2bN7OU4zw5mCazT2Gl6lR35Z/O7v1O06RzgttGUaeNd9g294TDhJqaSAYCxdVem9Kq1jdRLZ4Wx+PMDoW4orl5wp8pxESeQ001K9gEvM+jWE7kKPCo04/TMAzeIiN8xTRgA7/OZIgND2MYBpt98nfvnrzmh6EUNvCc635a7pP76VRIknsKngC+6rp+MfBh/PGO743KAo+iktvCTOqw0/M35kw4MnSdRcAaYDWwxDCIzJxJSNPouuCC4668+lUQ9X9ZEwyyde5cukMhRlpaOKjrPAu8xtiV6yOWxfZoFAIB/j0a5T26ztuCQVnpEid0APirbJao84Zxha7zu/jzeeNfk0nCkQjYNi0DA9TMmuWbjg9CTJZHBgZ4PZ0G22Y4l6OtocHzv/sU8Hw2S9p53ljng4Rye38/e5xJZ1Y+j1Ff7/n9dKokyT2JV4D/RynpWQL8PlN/d/5hVGL7a1Q/voLCKfyGTIY5g4Ncm81y2/nn0zDu+8ulH6r7/3Ehqil/HPVO+hlgBxBzlTXEDYPvaBp3AxehRjevwZ+Ji/DO48Dns1kOO28YRy2LjwaD6D58Q/gs8OTISPFvfP2+fYQqKsri8S3Eidztem5f2NtLbyLh+Zm6ByIRepJJsG30RAKrvd3zhPKRRAIqK7GBmYOD9MTjvukIczKS5J7AUeBPs1kGnXdUC3SdPwdqvA7sDB0Nh7knHufFri4OTjCysBq4uqKCymefpX1oiMqKCm5YtOiYBLfcNQJbnCMPPJbP840jR3htxgyyNTUYhsEoakfuNsBEtVq6BrVKLKavEVSJy0+BmDMkpjqf56bnniO9ZAn4LMkdBr6M2iQa0zSWHT1Kpw96hAox2YaB3W1txRG1S3t76br0Uq/D4tfOimlxKEUu5/kbziOmCYODaLbN/MFButau9TSe0yFJ7nHkgc+k0+x3+rcO53L8VlMTjVOwTZgN/CoS4e+iUeKGcUxHhC5Uu6CrgIaGBsKXXlra3DVF3q1NlipgS2sry847j0M9PXTPmcMzuj6mCD8MfAv4WjbLeZEI76ipYbMzBldMHzFUm7CdznXDMNAyGa5//nk60mlfJo4/Rv396rrOgo4OPjY0xGIf9AgVYrI9A4w6I2rrEwk+fOmlnv/dW8D+1tZi4n1+fz9dy70du5AGDtXVYVZVkc1m+ci6dVOqRFGS3OP4CbDHGalXOTrK1ueeI3/++VOuF+5R4CvAw5WVxA2j2BEhl8lwpa5zA3ABY0+3l0spwtnkvk9uRfVJvhd4ENVirVDLHLJtHsnn2ZJM8oH6+mPuW1GedgN/j5poVnCJrvOe5mZiS5b48g1jL/BD1/U7DIPLVq3yKhwhzqmHnI+6rvNWn4yo3QHgJN6NiQTvu+IKz583XkCdodJ1naW67osWa6dDktwJHAW+R+kU3sV79tCZTPpyJeZ40sD3gV+g/kAL/5fA8DCrjxzhU8uXT7k/Vj+Zjdp8+D7UxsRvRKOEXW3VdoyMsA/V3/DtqHZkkuyWHxv1ZufLqLM/oH7P7wLeAWim6Xk93URs1JvfnHP9PGS6mZg+YoztYLDFq0DGedL5qOs6b/JJ4u2+n9Z7FsWZkyR3HBv4EuoFS9d1Lm5t5YPt7cxatcrzd1Snwka9Q/0GpX6wAIau865gkM0HDnDesmVT6nSDn9WgniCXAd986im2z5nDnq6uYjuy14G/AeaiNrVdgj96Hoo3Lg78SyLB/aOjxXZ79aiNqX5o+3Miz1AaTqEBv8nU30wrxKl6DLX4A2ozeaeHsRTkUI/Lgs1eBeLinrwGkuSWhV+hOiqASkb+uK6OeWvWeBjRqXt6YIB/GxmhNxgc0992GfBRYEFjI8jpyElhmia/ccUVXBMKUV1by2O6zv2UVsoOAf8A/Hc6zcZQiDc1NDBrCrxpEsdKoDaW/TCb5fDQULHd3oa2Nj5bW+uL1ZcTsVCruAXXoVZyhZgu7kyliOXzGIbBFh+06AJVFlDodDQDmO9dKEXuyWv1+GPy2umSJNdlALUCWnAbMM+TSE6PDfxXNMq/p1Kq1Vk4jGmadOo6HwAuR06Vnwvuut0VqNPVP0O9ccqi6nZ3Dgyws7qa78Zi3KHrvCMYxDjuTxR+kkD9Pn+B+n0WuifYwJLubj4ciTBj9WoPIzw1PwL6nMsN+HM4hRCTZUd/P9ucDgZJ22Zxba0vup64J69twh+v2e7Ja2uYmmchJcl12MB/ABnn+kxUkuJ3FvAvwJ2aho36f1SOjrK5t5c/nDuXgLfhTWstqNHPbwN+CXzLaTpuA0ld56uaxn3Am4CbUDPKhf8kKSW3GdfnDcOgKpViw549LBoYYN7WrZ7EdzpCqCS34Ddg2rUIFNPbz1wtuub19RGvrvY8yc0Dj7gmjfpl8tqjrhXv9T6J6XSdcpKraVolKrHvtm3b/8/mp+kJxtbD/Db+74c7AHwONamssLFsZiTCVa++ynuvvFISXJ9oQG1E2jQ8zP/ds4cdc+eS0XUMwyAOfBvVyukmVMLb5GGsomR/Xx/fS6d5ZsYMRo2x6+2zgXfpOotaW+mxLLo2bvR9zb7N2A1y5wPXeheOEOfcMLCrvR36+9FsmxWhEF0XX+x1WPx6cJD9qRTYNiOWRWNTk+cbVvf39fFYJsMoENM0ZhmG528GzsTprOR+EngV1Su/rCQYO1/+BsDbznQn9xoqwY0613Vd5/ZgkKsGB5lz5ZW+f8GdjuaZJp8BDvX0sKetjV/revG0cRrVzunnwMXxOGsPHmS5tHI757Kod/K/SiS4J5UiX1EBfX2Ypomu68wGbkdtCqkAMM0pM/nnSWCbZZHNZgkYBr+p6744JSrEufIUkAsEME2T2mSSj118sS+eY3/lmry2qLeXnlTK8+eV+2IxRmtqsIEZ0SipkZHyTXI1TZuFWmj6HPC7kxqRB76KaikC0Io6hednDwL/SmlFphK4A7ixsRGmyCa56apQt7sBVQ7zKCq5Pep8PWFZfDsa5TuNjZx38CCfqKxkc1ubJCOTaBiV2D6OOptjAbHRUfIVFcWWcE3xOL/d3s4lTM0uBIdQY4bDzpjhOUeP0rBokeerRUKcS/c6H3Vd550+adGVAfa4BkAs7e2la/Fir8Nif2cnRCJots2ivj66Vq70OqQzcqoruf8M/CEnKN/SNO0OVK7FnDlz3nBg58oLqKSx4Dfxb23kKGpj3E9dn2sA/hg10EFMLVXAlcAVqBWG/wWed97Rj2gau2fM4E+qq1kL3Axciv9LaKaKHKrx+uOo+z477uuF8p/2eJx1hw7xqfXrfdFm6EwMAX8FRJ2NcnXZLBft2UOottYXq1hCnAs9lKYRasDVHsbi9iSgOQMgmuNx3n/55Z4/LtPAnvp6zOpqstksv7lqFeYUG4RVcNIkV9O0rUCfbdvPaZp2xfFuZ9v2V3A606xfv94+WwFOpizwhUyG2PAwhmFwla5zkddBHUcO+NNkkqdGRoo9OecCfwa+eDcqzlwFajftxcD9+Tz/FI0SCgZB0zAMg32od5lfRbV7ugGYeieNvGUD3cCLzvF0NsuQs8lDH7ehYjZwma6zOBCAwUG61q/3/EXnTFmoPs39qMQ9PTrKzTt2UDsyMqWG2wjxRt3nurwe8Mvgdffktbe3t/vi9fxZSrMCluo6U3MNVzmVldzNwC2apt0IGECjpmn/Y9v2eyY3tMn3jViMXbEY2DZWPs+tDQ2+rDmxgc8mEtzr6sl5Q0sLn6mvl81lZUQDrm1tZVU+z9MDA7w0ezY7dJ1h5+sJ1M74HwPLk0lWHz3K5c3Nntdu+dUApaT2RSDifL4wgrnwWDJNk/m6zqWo1fK5hR/Q3j7lxni72cA/ogaSgBoI87nGRjp8OmZYiMmSB37pWtC63iedAgYZu7p8uYexuLnbmflhKMUbcdIk17btTwOfBnBWcn+/HBLcLPDzkZFisfem3btJdXb6Msn9FvDw6Ggx1rUHDvD2wUECUn9blkzT5BbT5BZUYnsfcDel3qZZy+LuSIS7AwG+GItxSyDAdY2NrGD69gS0UauVT0UiPJVK0d3aSqS2dsLbZp2SkMZ0mkXhMG9JJNi6fHnZ1T1/i9KYUFADYa5rbYXWVo8iEsIbd0ci7EkmwbbJDw8zq7HRF/Xoj6Ceu0CVHPphdTnL2ClnZZ/klqv7gZG6OkgmaUqnWdbbS9c6/w3jvAu1eleoEVx5+DCX7N3LzCnQk1O8cQ2ooSS3ok4h3Ynqp+jut3uXbfM4qpZ8A7ARWAtlPWQihlqh3OM6+iyLsPNCxsBAsSNCQR1qSMfc0VF6t22jKZGgsqKCDUuXll2Cez9j++HejNo5LMR09NNcrvicuezIEcLNzXT5IMl9yHV5i2dRjLUdimcP56JmBkxlp5Xk2rb9MPDwpERyDuVRzd11Xcc0TbYePcotN93ku9N3T6H6WoKK9bqWFt4+OMjsrVt9F6uYXBXARc6xY3iYfzp6lNdNk2xNDYbTwzWFetJ8CLVBbQ2weGgI8/BhFs+YMSX/ZmzUxqnnBwfZEY8TbWujp6GB/glum3Ul/5ptM5LJsErXWQWsAhbiTOxpbia8ZQuhUKgsT9u/CPyb6/qFwIc9ikUIrx0AuoNBCIepGB1lZXc3Xcu9bxJ6ANjttPRr1HU2Gf5YlnCf/dnkWRRnz7RcyX2C0qnfdl3nowsX4o8KnZLdwBconco4D/jr+noMKVGY9ta2t/MPo6McCYVIzpnD67rOUzAm8RsGHrUsfphIQDBIfSzGJXV1XFBfz0JgAdCOP0ZHgvo7HwAOA0dcH48AEcsinEpBRQUMDWHW1ByzWQygWddpGBrCHBpiztAQH9q8mdnH+ffMMu1BfAT4O2DEub4A1RZnKrY9E+Js+CWlBa1lAwO889prffHY/2k8TjgaBdvGDIeJz51LwOO4hoHHfDh57Y2Ydkmujdq4U3Az+C7BDQF/TemUwQzgM5T36WdxetxJ2hXAR4D9qNX/bai+qNlxZQ3bRkZ4xfUz6lFJ0EIgGIlQ0dvLwvZ2Fra3E+DsJsBZ1MavwjGIWqE9mEiwP5Mh1tgIx1nJGL9Cm81mqdd1FqCmdp3nHDMNg77OTkK2TdeyZb54ITuXYqhWYSnnegvw58jzhpi+Eqi6V1CJ7kdnzsQPzwrDqE46hee1JUePEqqu9vw5675IhMNOyVdFOo3e0uKL2uU3YtoluS+gThOASm79VqcWA/4oneZILodhGLTpOn+FjHoVJ6ahktWFwLtRPSHvsW1+EIsRbmhgpLKyWNZQkETt7H22UMtaVweZDKZlUafrNMIxx2gsRjISoaGlhbqmJkZQ5T85KF7OA9FEgnAqRb6xkUxtLZkJYrYsi7DTMYRs9pga2oJmXScQj9OSSDAjHuf29etZy8RPXuW6Qnsyw6hJPWHnug78Bf7YyCKEV+6ntFi0AFjiYSxu2yjtCWrMZJg7NETXZu+3eN3jWlBY2NtLTzY75bv3TLsk170Z41pOMN3CI59PJNjpvPCnRkf5TEMDXW3yUiVOTyfwgWCQGy2LI6EQzJpFQtfZh1rx3U9pxW+ilVJd14urrgWWZRGOxVTZQCyGOUGP2eLtCsnrBBvACsb/u5WpFMud0blzUP1qZwMthkFfRwehfJ6uhQsx5fEwhg38C2rmOqg3PH+AesMjxHQ1itq4XXAz/inPupdSCcWVoRA3+2CfTQLY39IydvLasmWexnQ2TKskdw+lnnQVwJu9C2VCTwKPu1qFXbtzJ7Vz5oC8qIszNH5ls7CDt9Byax/wPHDfwADJmhqyuk7jceqwjpcMn8rt6nSdFtTY7BbnqLBtdr/8MrXpNG3pNG+77rrjNkKfriu0J2MDX4zF+CUUB1t8CHw71EaIc+VZ4IizsautpobLAv7oKh8CXnIuG7rOR+bPxw9N/R4HKp3Jax2xGO+98sqyeM6dVknuT1yXL8VfU6NSwH9SahW2/MgRFg0M0LVxo9ehiTKkof7+O4CLm5q4bdYs1W2gowPTMBgG4uOOQ6OjPLZ/P3nUE8f6NWtoR3UsqHId8ZERnt65k8pcjoZcjrdu2cICJlhFCQYJr1tXtl0OJlsa+Gwyyd3OQJuYpvGuYJBbGhu9Dk0Iz30vmSQciYBts+jgQYaWLPHFc4x78toG8EWCC2Mnr72jo8MXtctnw7RJcnsYO8XjLV4FchxfR23E0XWd89vb+e2hIRb64BSGmB7Gr5TWoOo5x5xDaG7m2mXLSklpMDjxD2tp4eING0q3O8GAFVmhPTNHUDW4r7gG2szr7+eqwUE06cAiprn9wA7nsaHZNisOHybU2Oj5c00eeMB1/TqvAhmnh1K5UyVwmYexnG3TJsn9VjxO1LYxDIONzs5sv3gJVaNT8KlAgE2rVnkVjhDHdapJqSSvk+dxVA1ultKZn9UHD3LJ3r3MvslvW2mFOPd+Sumxsai3l6bhYbq6urwOi2dQQ2uy2SydNTWs9UkJxcOuy2spr43u0yLJ3dPXxw9SKfIVFcQ0jSvq6nwz2nIY+JLr+sWURwPmiQyj6pF2RSIcGBqiprUVLRgcc0q8L5MhkU4TqK0lMO4JIJPJMJpKYQYCdNXVEUTt+G8CRiMRKnt6WNvWxkxJrkQZGgG+iXoBL2jUdT5WX8/chga6fDjQRohzbQB4lNLGrvcmEmz0yVnRH7lKKBYfOMDA0qWex2UzdvLalV4FMkmmRZJ7TyJBvqoKG+iIxQgODvomyf0e6lQBqLGj/8fDWM6WEeCpgQGej8Ww2ttJNDZyBLXRKVtoV1VVBfE4ZiBQ3LxkWRbh/n61Kz+VGrMr3/21Pek0ZlXV2K8lk1BfT2Umw5p0mhW1tbREoxg9PWxqaWG2D57ghDhTMeDzlDasgOqg8SfAvJYWaGnxJC4h/OYXqM4KAOt0nTf5YLoZqAWe7U4JBcCSI0cINTV5nuTuppSD1KLqhMvJtEhy95smRCJots3yUIiZq1d7HRKg6oa+l82SdqaLfNzZgT7V2KgH8AuonfrPZrMcTKdVIhuNYup6MSE90Q79s/G1EU1jTy7HEcsiHI9DbS1V6TRXJ5NcWV/PevxT6C/EqdiNmmI26PrchcDvod4YCyGUNGNL//y09+YuSiUU8/r6CPqkhOIh1EJRNptlo6ZRU2YbV8s+yU0A++vrMauryWaz/OaaNSfcCHMufTGZpMc5dVEfjbJqxowpNV1kAPWEclcmw9Hh4WILo5hlTZiQasDc6mrig4PUZTLU5vNcumoVs1FlB8O5HNueeILKfB5N07juuutod/6tPsvi3scew6qoIGsYrLniCqpQK1yHNY2nBgYYqKsjXluLYRhjEt98RcWYaV+dqRRz+/vZWlfHqvZ2hPAjG7gH+ApqwwqoDhXvAt6Bf3p+CuEX96ESXYCZwHoPY3HLojacFUoo3pFOc5UPSiiGgfuyWcJ9fWDb5J97jvDmzZ7HdTaVfZL7NOrUha7rrNJ130w82cPY3Z9X7NpFz+io76eL9ITDPBiN8tLMmbxaX6/KD5wygpimYZomhmEwYll0RSK0ptNsXb2aC1CnV6trawnPnDnxDv22NhZeddWEu/JbOzpoueaa0tfcp2cbGwk7LbCampvJ6Do70mnuDoUIBYNE6+qK074sy+LpwUGe1jR+kMlwZTLJW+vruYhp8GAQU8Yw8O/Ag67P1QO/D6zzJCIh/G0E+N9Mhpiz4PJmZ2HFD35NKfleoOvcvmSJL2J7Ehh0FqUaMhk6BwcJhUKS5E4lT7ou+2lD148pnbo4v6eH1mzWF6cujscG7hkc5O+HhogGAhCJFFfHsW2q83lmDQ2xJZfjrQsXUtnURE8qRdf8+WMTUk688/5sfW15czPXLlhAKBSisq2Ng7rOs8ATmcyYVebnRkbYCwSBa1AtXcrn4S2moj7gb1GDOgoWAJ+G4w7LEGK6+3kkwivJJNg2w7kcyxsafHFm1AbudF2/Cf+chbkXV2/+7m4qKyp8nYecibJOctOoGtGCi70KZJweVPJdOHXxG4kE631w6uJ4uoH/An5dVUUsEBhThrCushL9pZeY19tLtaaxdetWlSSapuer0u7E9wLgFuCAZfHll17i1RkzONTeXlzhjQI/BL5jWcyPRLi9uprLZdKcOMfuHxzkHzWNkbq6Ys35lcDHgInn0AkhbOD7rp7RKw8dYsAnG45fQvW1BjCAqzyMxa0b2IXKQzo7Org9GmXpihW+zUPOVFknudsp1bItwD+rID9FPSgBNuk6N/lk9+d4I8B/xGL8xLapCgSK7/j0XI4V3d38Tm0tq9rbCV944ZSZWjXfNPmUE68eCPC8rnMfEMHp0hAO02vbbMvluCyV4gN1dazBP++8RXnaC/xXMsk9qZTafZ1MMrOjg48bBjcgf39CnMgzQLSxETIZqvN5Vnd307VihddhAfBL1+WrUB0M/MC9Qe8Sw+CKCy7wLJbJVNZJ7jbXZb+s4kYZO/HET7s/3ZLAXySTPOiMDCUeZ4ZpcnswyCUHDnDe4sWYzqatqdb43x3vMuCdqDnnX49ECLtKGV7M5/kMsAh4G+pvSJINcTbtQ7URfBqIuVai6rNZPrx/PzcuW+ZtgEL4nI06C1c4M3pxby9vve46X7wm9QGPWhaZbBbDMLhJ98f5mDyqTrjAL5PXJkPZJrnDqJXcgs1eBTLOL4Gcc/k8YKWHsRzP8/39/I2m0atpxRfdzqEhfiuR4Jbly6HMprFVAhuB+RUVfPvJJ9k+dy67Z84sljLsRbVwmg1cFYkw99AhZk+BVWvhX/uB76KS2wLDMIgDi3p7ufz119l87bXeBCfEFPISqs0eQJ2u88m5c33TivN7sRi9zkJRUyRCTVeXL+qEn0J1JgI1ur2cN7OWbZL7PKptB6hWIrM8jKUgC/w4myXm9MW9zUe7Pwu2DQzwyUQCq7ISNA00jQ1797LxwAEu2rrV6/AmlWmavPfKK7kqFKImEOAJXede1BsmgL2WxRPJJI2BAOteeIHfW73aFzVfYurYj1q5fWqCr12l61xVW0tlTQ1d114rb6KEOAU/dF2+BnyT4GaAu0dHiwtFKw4dIgS+eFy7SxWuBiq8CuQcKNskd3xXBT8kk/8bjXIgHldtwzIZFjQ3++JdXUEv8NmKCqzKSmygamSED8XjbGpupmv5cl88OCebu5RhOfB24OeoRt4xp5NELBDgoSVL2FdVxQeBG1AbCoQ4noOoldttE3xtM3A7MBegvV0dQoiT2oMaQgTqNd5P5X/3A3ZtLSQSBFMpFgwO0nWx94WTYeBpZ/hDwDC4xiclFJOlLJPcPPCIa8V0k09+ib/K5Yrv6lYdOEBvJkOnTxLHBPCXQL6uDpJJAsPD3LpjB2+9/PJpkdweTxD4DeA24Du2zdfyebJVVaBpWPX1fA21knALsBXVy1SIgoOoldsnJ/jaJlRyO+8cxiNEOfl6IkFsdBTDMLhO132zuXwEtThSqBO++ehRbvFJB6UfxmKEnRKK4OAg9syZvlpsO9vKMsl9fGCAA+k02DajlkV9U5Pnv8QQEHF2f1aNjLA0HKZr7VpPYyoYBv44leKVfB7DMJjV0cEH9+/nkmme4LrVAx8NBrnesvhJKsW2zk4yzpunBPAd4CeoHohvQiXHYvo6CHwfeGKCr21CbXacfy4DEqLMPNvfz11O3/OYpnF5IOCbsyDbUJvOANp0nTsWLvRFC8AccLdrg+uyI0cIOUOcylVZJrnb43FwTrnPGhigJ5XyvGfrNkrv6s4bHOQtN9zgmz+sr8RiPO68s4sDf9PQwFbZ1T2huabJp4CPo6ZR/Qh1+gdUDdaPgB9ms6zq6+OdgQArffKkKyZfHngR+GkiwaPO6pLuOou0EbVyu8Cj+IQoJ99ynRld0NdHZWWlL5JcG7XgUXAT/ulx/Tils7UNmQwLBwfp2rjR67AmVVkmudH2dhgaQrNtOuNxuhYu9Dqk4ulKXdd5S1eXb6ZqHQR+bNvFJ4vNr7/OzLY2aPFL+b4/VQPXozY6PIoqWTiC02u3r48jts1d6TTXJpO8s75eeu2WqRFUQ/XHUI/xAcsiPDQ0Zsz1ZbrOu5DkVoiz5SCwu7UVwmE022bj/v10XX6512EB8AqqVhjU68RNHsYy3i8pLbZdHQpxy003+WaxbbKUZZLb09CAWVNDNpvl9vXrMT2eXDUAvO5crgQ2eBiL2yjwJaA6EIB4nJmRCGsPH6arTJtCT4ZKYAtwBWrH/L/GYsVeuwBPjYzwKtCJerK7GqjzIlBx1oyiXsgeQ5UjxFxfK4y5LqwufbDQdk8IcdZ8j7FnRj/go9K6n7oub8E/pWuvU0q+63Wdj86fT5OXAZ0jZZfkxlC1MLqu06Dr+KHq1b2jeiXQ4FUg49wJvOTssmxvbuaT8ThrfFIcP9VoqGER822b/3j+eXbMns1h19jgHuC/gW+jnvhuQjYcTSU28BqlxDZynNt11dSw4PBhzu/uxkylyr7tnhDn2gHGnhn9PR+dGe0GHnMNf3izTza9g3q9L7gMpkWCC2WY5L7uujwff/wHx7cz84M08LVslnBfHzine9YsWyYJ7hs0wzT52MUXEwqFqAgEeFbXeQBIOV+3gHucYwUq2d2IP/5OxVjDqMT2wViMh/J5svX1Y2psC5qBS4BLgSWBAH3nn0+ovn5KjLkWYqr5vuvyxfirDOhb8Ti90SjYNi0DA9TMmuX5pndQk1Yfc133UwnFZCu719Y9rsvnexZFSQzY4byzCxgGG33yzu5eIGJZYNs0ptOs2bePUDAoL8pngbvX7irgPcDDqF67B1232+UcgUyGNeEw19fVscYHGyemq1HUmN0XUBvIXgUSllVst0MqhWma6LpOE6q/7SWofsruZupTbcy1EFPFfsYuGt3uVSATiAD3u4Y/rDpwgFBFhS+eC+5FbYwFWIyatjpdlHWS64df5D1DQ/QmEmDb1MViDJum5+/s8qgefoZhENM01h48SLWm0dXV5Wlc5cpAbVK7DngZlew+iUqqLMvicH8/uzWN72cyrE6nubK2lo2oN2myWW3y2MBRVEL7Imo8aGrcbdw1toHhYdb09XH77NmsRNVjCyHOnf929cXdouu+asP3M6DK2d/SOTTE7FjMF6+peeBu1/WbvQrEI2WV5Nr4byX3Sadfrw3M7+0lNDLi+Tu7R4BBVD3T+e3tvLuzk7lr13oeV7nTUCUKK1D3/z3Ad1Op4t+HZtscyOX4EaoVWQuqlGEjqpa7rB6sHrCBnf39bItGCc+Ywf6GhuPW1hbMr65m5OhR5vX1MWdoiDfddJNv6v+EmE62DQxwl/N6GtM0rvJRX9wE8CtKm+Hek8lwrU/2tzwF9Dh7b8yaGjYHAl6HdE6V1etmP6WdznWA9++hoL+lBfr70Wyb2dEoXatWeRqPDfxPOk0sl8MwDN4XCLBh9WpPY5qOWoF3A1fkcnxx1y5e7+jgcFtbcaMaqNNfdztHHbAelfCuR8YIn4pB1JvePaha/ZeyWQ5kMlBTA0NDmDU1x9TYtqBKTApHW20t4UWLCNXW0rVpky9etISYjr6WzxcXBBb19lJdXe2bJPeXQNa5vFjXec/ixb45C/fdVIrw4CDYNosPHGBw6dJp9TxWVkmue9PZIrw/1RsDEoEApmmSz2R4nw/anDwxMMAO591wenSUdXV10NHhaUzT2UzT5HfXrycUCtFaW0uPrrMNeAa1OlCQQq3AP4LqvbgaWDI0RPDoUS7o6PB82InXEpQS2sIxfpU25tSgF1bNs9ksLbrOSkpJ7SyOfd6QGlshvLUTONTcXOyLe/G+fXRdeaXXYQFqCNAvXdffhve5R8GrwC7nzUHF6CjLDx8m1NQ0rZ7PyirJ3YOqccxms3QANHnbJGOv81HXdS7QdWZ6Go1yf0pVHdrAop4eYoGAJLkecydRc4CLUEMGXkW1n3uK0ohIUKMZH7csfpxIQGMjNakUF6VSXFBXxwLUbuM5lNmD25FC1dEeRg3fOAy8nslwdHj4mAlj4xmGgZXP0xGNMisa5X2rVnERYzeNCSH8xQa+RakUYHV/P++78krfJGr3AEnn8gzUhlS/+BmlvTeLe3poyOV8USd8LpXV6+CLySThSARsm96dOwlv2ODpA8Fvm+BsYG9HR7F84ry+ProuvtjrsMQEKinV734Y1RuykPAeZOyGqOHKSnbm8xxyfX8VMBeV8C50Ps5napQ59IbD7O3tZWTmTDJtbcVk9giqBMHNsizC/f1jJowVEl0DdUbnvMKh61BfT088TteKFZ4PiRFCnNwzwG7ncp2u8wezZuGPIgW14PC9TIaY8yb7Nl33zYbUHtRrRuHNwXvjcdb7pE74XCqrJPeg63RkMB4nFAp5+gt1l0/4YRPcASDulE+QTvPRiy+edn/wU5EGxRXad6OevO61bX4cidDX0EC2pmZMLS+oHbX7nON+18/pAjoSCfTBQeY0NTG3uZlGKB4NTO6c9SwqUY0AQ67LheNoOs2r6TS5YBDSaUzLOuHqbCHZrxgdpS2ZZL2mcdXs2ZyHKj04ZpXWNKd9aYcQU8UoahW34CbwTYIL8KOhIXY73ZPyw8OsaGz0vHtSwS+gOHnzYl3nphUrvAzHM2WT5NrAcF0dpFJotk3j8LCny/I2Y5NcP6zkbqNUzrGlqopZzc1ehyTOQCfw/mCQG7q66A6FMGbOJKnr7EcltfsZW95QYAP7LYttQ0OgaZBIYNbWHpNE1sCYxLcRNR3HjkZJRCI0tLRQHwwygkqm86jyipzz0f25aDJJJJlkpLGRTG0tmZP832K5HLmKijF1s+74qlDJ62xUSUbtyAivbdtGYzJJtaaxdetW6X4gRJn4aSTCS5WVGIZBk67zNq8DcskD33f1xV198CD9bW3M8kGSm6C0uAFwq1eB+EDZJLlDQKVhYJomlakUt954o6erlAOUOj3Ugi/qcR9IpwkPDIBtM+yDcg7xxozfELXB9bUEauW+kPTuQ9WyusscJkoiQU36GnCOAsuyCMfjUFkJ8ThmIHDCFdbi9zjlQwwMjCklOJ5C/Vh1Pk9zJsMlLS0sQyW0s1E1b2NOB7a0cNGWLYRCIZkwJkQZ6Q6H+edolLjznPDmpiaaPN5n4/YAkKmvh1SKwPAwF3R303XBBV6HBah2ZpZzeR5qU+10VTZJbuEFWdd15uu656s57k1wCysr0errPY0nDuzL5Yqndmf393teziEmTwNwgXMUWMD2XI4fvfoqiZoasrrOvJYWbNTfR+HIH/vjTik5PpXvqdd1WuCYo7VwWdfJ6TrRwUFmdnVhNjSc9P8q3Q+EKD8/SKWIG0ZxEMvqgwfB4xacBXngB5TqXa/t7ubWG27wxfNQDrjTdf1W/NPtwQtll+QC+GE7yY5YrDgONH7oEOHFiz3fBFdYJWtPJNBte9rtspzudGBzWxuL1qwprXyOSyJtVN1sfNxx2LZ59OBB8qgnjfWrV9OKWlWtGncUPhcfGWHbCy+g5fPU5/PctmULCziFJ1wfTAUUQngnCTzW2VncJH3hgQMs9MkqKahV3H7ncoeu8/EFC3yzqfcRoNdZYJtRU8Nl02z4w3hlk+T2uy77oTD9gFOMbgNNyaTnq6Z7KL3rvBBU7aIkEtPSiVY+NSDgHGNuEQxy/ZIlpeT4VE4btrSwbuPG0vdIqzohxCn4AZBzNknXJxL88QUX+Ob1Kg/8r+v6bfina01h2FOhLHH53r0Mrljhm/vOC2WT5PptJTfX3AyDg77YBAeldma6rnPlnDmel3OIqedMygKklEAIcTrClIYr6LrO7+o6s7wMaJz7KeUbTcANHsYy3tPAfqcssTqfZ9nhw4RaWqb1c7AkuZMkU1eHWVVFNpvlTZs3Y3o4ftAGdrp6+Z1/klpKIYQQwgvforQvYDH+Gq6QQ60yF/htFfcHlMoSVx45Qu3oqOcLbF4rmyTXT+UKNirp1nUdXddZ5nE8r/b18bqzCSgzMkJ1XZ3UPAohhPCVPcCjrusfwl+bph4AugtTVWtquMFH9a47KZUlzuro4P3RKEuWLp3Wq7hQRhMt/bSSG6P0TrQO79/pPe+0cbKBtnicnlDI44iEEEKIEhv4UipFLBbDsiw2AUu9DsplGPhGJkM4HCYWjWI+8QSxcNjrsIrcK8xbDYPLfVTH7KWyWMkdAXosi0w2i2EYtHp8Ot5Pq8oAFaYJiQSabRPMZumaP9/rkIQQQoiiX0UiPJJMgm2TAG6srQUPy/zGuwvoGR4G2yYwPMzyw4cJtbb6IpHcjVrJBbVyeZuHsfhNWSS5u/v66HVOx+dyOSINDZ4PgijwelUZIN/cjFlbSzab5dJg8NR2xgshhBDnQA74b9f0sOWHDzNaX++bJDcN/JBSveuF+/f7qg3nD12XLwekj01JWZQrHOrrKz44anI5Qh6fjh9ADYKIxWLUxOOexlKIR9d1mpqaWCQJrhBCCB/5OZBsaABNw8jluPjAAd8kkAA/RU2R1HWd5e3tvK+jwzdtOA+huioU+Gn0sR+URZLbOmMGaBoaUOWD3YT7YrFi3c6h7dsJe1y3415ZbvUsCiGEEGKsCKrvbKGP+7s1jbded50vEkhQe2x+5rr+4UCAC9es8U18X08kinXMG1Hjz0VJWZQrNLW1YTo7Hs9ra8Osq/M0nt54vLSybFmeD4I4kk4Ty+UwDIN2aR8mhBDCJ76FmrIIcJ6u8/GFC6n0MqBxfkgpvjnAFd6Fcoyd/f38PJ1mFIhpGltqa6HND0WS/lEWSe4wpXZdzV4HA9QFgzA0hGbb1Hhct9MbDvNyOk2+ooKYpjGi69I+TAghhOf2AA+6rn8EfJXgDgB3u66/F3+d/v6WZTGK6kwxZ2CAgKZJkjuOn35fZ2zYdbnasyhKdGfjW1MwyCUbN3q6inu4p4d8RQU2UDkyQlTahwkhhPCYDXzZdf0iYLU3oRzXl+NxBpxSgMWoGP2iB9jV1lYs1bzIZ3XMflEWK7l51+Uaz6Ioca8sz/A4lrbOTrAsNNumyke7QYUQQkxfjwA7nTLDel3nQ4bXHeXHer6/nx+m09ioUoCb6urQWv2zq+V/gWrDwDRN5g4Ncccll/imTthPyiLJ9dtKrjvp9jqeZtMs1iubNTWYPprQIoQQYvrJAP+eyRDu7wfbZtHBg1QsWeKrUrr/zuWwKZUCBAcHwSdJbgj4tXNZ13V+d8YM/HPP+ctJyxU0TTM0TXtG07QXNU17WdO0vzoXgZ2OnOuy10kl+CvpzlFqH9YgCa4QQgiPfRfodQYr1FoW6/bt87z1p9suYE9ra7EUYPPevb46C/q/qOQbVImHnybD+c2p1ORawJW2ba9C3Z/Xa5q2cVKjOk3upNIP5Qp+SrrdsfjhvhFCCDF9HQR+gRqsgKaxefduDB+V0tnA1yi1NLu6spIPXn65b0oBuoGHXNff5VUgU8RJyxVs27aBpHO12jns43/HueenpBJU0m05JQLxXM7T3Y45Vywd1dVQW+tZLEIIIaYvG/hPYBSVRF7R2sq7Zs1i5oYNvkkiH0N1fQCo13X+eNYs/DF3TXGv4q5BVnFP5pRqcjVNqwSeAxYB/2bb9tMT3OYO4A6AOXPmnM0YT8qdyKUBPJ7qFUunCQ8MgG3zyLZtzNuyxbMHcGhggHA6DbbNkUSCcHu7b55MhBBCTB8PAy87lyuB36+rY/aaNd4FNM4w8E3X9TeBrxLcbuBeyyKTzWIYBrdL3/uTOqUWYrZtj9i2vRqYBWzQNG3FBLf5im3b623bXt9+judND0SjxQlju154wfMJY0knqbQBe3TU01qj/nC4GMuobfuq7kkIIcT0kAK+6rr+Jvw3netOoM+53Ai81cNYJvJfiQS9Tq6jv/IKLR7nOlPBafXJtW07inozdv1kBHOmkpFIMZHLaZrniVxLIFAsWB+prva01mhuR0cxlpzHsQghhJievoMakQtqvPztHsYykQTwA9f12wFvZ6eOdRB4aHS0mOtcuGeP57nOVHDScgVN09qBnG3bUU3TAsDVwOcnPbLT0NncDIkEmm2T90Ei11pXh1lVRTab5eIrr8T0sO3I7Pb2Yguxjo4OaSEmhBDinNoP/Nh1mv3Duo6/uuLC94GI81o5r7qa6322f+XbgO5s1pvf18fMRMLzXGcqOJWa3E7gm05dbgXwA9u275zcsE7PzOZmzNpastksC1taMBsaPI0nQGkYhNcPE3csQgghxLk0CvzfVIrewUGwbZoiERZ1dfmqJ+5R4CfZLOG+PrBtZr34IoMXXeSb/SuvAs+gXstnmCZ3JBKs37rVN/H52al0V9iJ2sTnW+5Ezg/TLdxrpRnPolDc75azqF2ZmkexCCGEmF7uAl7J58G2qRgd5dJXXqEHmOGjBO2/gZRlgW3TFYkwLxwmFAr5Iom0gW+5rl+j69y0fLlX4Uw5p1WT61fuRM7rpBLGJrlZz6JQCr/gZCJBOBzmhdde8zQeIYQQ08MAKkEr9MRdv38/rdmsr06zb0e1jjIMAw24dPduKisqfBPj86jhFKA6Urzbw1imIj8sfL5hflo5Bf/Fk0wkGIxEAHjg2WcxbJulS6W7nhBCiMnzn6iFHl3XWdPWxh2Dg8xZscIXK6QAedQqLqgY39HczPWLF9PV1eWLGMev4l6Lqh8Vp06S3EngXllOexZFSSpdisKqrmb//v2S5AohhJg02wB3Q/0/rK1lmY964oJqGdbtXK4DPtbYSJOPYnwC2OdcrgHe6WEsU1VZlCv4LcmtpFQe8LwP+titq6wsXk4aBgsWLPAwGiGEEOUsDXzZdf06YJlHsRxPFPie6/rtgLdjpMYaAf4rnSYWi2FZFjcDLV4HNQXJSu4keLqvj8GMiuQ+4NVXX/V05XR5Wxuv6TqpdJo569axdLbfWnALIYQoF/8Wj7PftjEMA1PXeb/XAU3g25TOtM4CbvIwlon8aGiIFxIJsG0yIyNcWl8PHR1ehzXllMVKbqE8IJlIcDgc5uVXX/U0nrb9+4uXa/J59ruue6EdqG9owDRNApLgCiGEmCRPDAzwnaEhYs4k0tsiEeq9DmqcfcCdllVcJf0w/lrxywLftu3i4Ic1Bw4Q7+4+2beJCZRFkqtR2lyVzWZ56MknedXDRHd9W1vxcn0263l5QJvr8oBnUQghhChnw8C/FEbaA3P6+5lz6JDHUY1lA/+YShXH49bu2sUsH5QVuv0UGK6rA02j3rJYe+SIb7o9TDVlkeTC2M1VKV33dPV046JFtLa0YBgGgdmzPd/k1e663O9ZFEIIIcrZ/wLRxkbQNKpHRrjytdeY6bPk7EHgJVff3k2vvear8bgR4Meobg+mafK+igpuveEGX3R7mIr8tEL/htQ5E88AsjU1nq6eNgItDQ3UO5PX0uDp5LPCSq5lWexOJgnn8/KAEUIIcdbsA35EKTm7+ehR3n711b56rUkAX0f1xI1pGmsOHfJd397vApZzebGuc8eiReWzGumBsrnvrmloKK6eLtiwwdPVUw1odV33ukSgDZXghsNhDiUS/OLOOwn77PSMEEKIqSkP/AtqhC/AOl3n4wsX+irBBfgfII5KxJe1t3NHMMhWH43HPYzarF7wQcooSfNI2azktqE2V9U3NFDndTCoEoEe53I/MMfDWGqA6lQKbJtRTSOm674ZWSiEEGJq+zFwwLlcA3wC/42P3wP8ynX9E4EAG1ev9iiaiX0dVTMMsMY5xBtTNm8S3HWnXq+cgv82ey3UddA0NCDW0OCr0zNCCCGmpsPA913X34P/pnLZwH9QSiDXARu9C2dCL6JGDIN6g/BBD2MpJ2W1klvgh81VhRKBbDarJpY0edtmenFdHa9VVZHNZll0+eWYwaCn8QghhJjaRoC/TaUYzOcxDIOVus6bvA5qAveiVnIBqoGP4q+VZhv413SaWC6HYRhs1XXmeR1UmSjLJNcPK6dVQ0OEnUbOj/b0cNv8+Z6WB8xE1SHpuk7SsyiEEEKUi69Ho2yLx8G2Sdo276qro6K9/eTfeA7Fga9kMsSGhzEMg3fquu9Wmn88NMQzTr6QGh3lmro6GfxwlpRNuYLfklw7HC42co4GAp63KJnlunzUsyiEEEKUg4OoTgCF17kL9+2j4qj/Xl2+GI+zr7+fWDRK5uBBLvPZpus08PVxgx+yMvjhrCmbJLeF0umHKJDzLhT4/+zdd3xb1f3/8df1uvKUtxJnkhDCSICEMAIUwi6zdG9avvCje9JvS/dedNH9LS3dew9aKIVCywiQwUgIJCE7cXw9JS9JHrq/P44ky46dOInteyW/n4/HjS1Zdo5l2Xrr3M/5HODk6up0DWy4tNTzGthZGe/r10dERI7UAPBVoKC4GCyLUGcnK3bt8vx5bqQNwD0ZAfK8TZto9VFPXIDfAf0ZGz+s2L3bd/djNsuZkJuPCbrx5FZ9z7V4W5l7Un09c+rrCVZWUjFnDiUedzIIYWpT4vE4OyMRdvjs1ayIiGSHX2O6Kdi2zZz6em62LK658kpfdezpA76N6YmLZXGs47Cgvd1XAXI/8GeGegtfb1na+GGC5UzIBSju6cFJbtX3xwcf9LQXrAUcEwgQDAaxbdvzEoE8oLK3N33//NLj+0dERLLPFszsY8r/CwR44ZIlvgtmv8OctbRtm/n19bwjEPBVT1yAOzCz4gCn2DY3Llrkq/HlgpwKuYFwOH1aosNndbB+KBEIdnSk7x+nrMzz+0dERLJHH/A1hjZ9WAJc491wxrQHs/taypsCAS44+WRfBcgngccyLt+Evzo+5IqcCrnHJ+taLCDigzpYv4XcUzLun5Zg0PP7R0REsse3Ojt5JhIhHo8TAN6N/4KZiylTSM2QLgYu9244oxoAbs+4fDGwyKOx5LqcaSEGcGJlJaHiYmKxGHU1NYTKyjwdT+Zirz2ejWLI6Rn3T0ldHaGSEq+HJCIiWeCBtjZ+2t2NC0Qsi+vLywlVVXk9rAP8C3gm+X4+8Hb8F8TvYigTBIDrPBxLrsupkDuboV6wYa8Hw9BMbjwe56nOTpxEwtPTJQuAQPL+aQXigO3ZaEREJBt0Y7opuMljXksLi9vawGchNwx8JxYjEo8TCAR4rQ83VegCfpgxxjfaNv66F3NLTpUrZJ58dxg6XeGVWZiA6zgOz/f08Je//93TxV4lDM0uJxjaa1xERGQ0LvAdIFZWBpZFcX8/F2/axCwflrt9pauLHc3NRMJhYjt3cqEPF1d/q7OT7ckxxnfs4EwfjjGX5FTItYHUXisJTHsOLxUDge5ucF0GLYt2HyyGy6z72TrmrUREROAB4EGG2ly9ZXCQV116qa8WcQGsBv6TSKQXV6/auNF3PXG3AHdn9O09+7nnaPHZGHNNToVc8N9irxNtO73Yq9UHi72OZaiX8BNdXZ6ORURE/KsZ+L+My1fZNm9cvNh3Abcb+C5DPXFPaGxkXjjs+fNtpgRmjHZyjMe0tHBsW5uvxpiLcqomF0zIfSL5vte9aQGWlZWxvrCQWCxG/bnnEqqo8HQ8Va2tOL294Lr8u7eXN1VX++4PloiIeCsBfAWz7SzATEybKz/6AdCBmW0+rq6Od3Z0cKzPeuLeDTzP0AYab49EONlnY8xFORlyU/wQco9laDFcs9eDAey9e8kPBhnIy6OjpITnHEe/ZCIiMswPwmFWWxaBQIBi2+ZmTCcAv1kH3Jdx+X3FxZx5yileDWdUEeCnGZdfFwhwydKlXg1nWsm5coXUYq9IJMKWnh6vh8OxGe9vx/vFcPNmzmRGZ6dpqWJZRGbPPtSniIjINLK6tZXvRiJEwmEcx+GKcJjFXg9qFL3AtzIuvwA406OxHMyPgVQamQm8xLuhTDs5N5Nb2NyME4uB67J2cJCm0lJmeDhTGQTqMbVN/cBuTCsvr4RCIa4KBPg1pn5pn60mYiIiYvQCX8KUK7jAzI4OTmtrg2XLvB3YKH4CtCbfrwDe5OFYxvIscG/G5TcBRR6NZTrKuZnc2L59BPr6cIF4fj5PN3tfJJA5m/u8Z6MYcm4wSDAYxLZtNng9GBER8YXUbmHd5eVgWdgDA1y2cSNzfLg4agPwp+RZ23g8zpswk0p+Mgh8ubc3PcaVwGleD2qaybmQO6uhgVDG6fjorFmH+pRJt4ihEop1nZ1eD4fFDE3h78HUC4mIyPR2H/BfhtqFvXlwkNdefLHv1m3EgC/29uI4DpFwmNKNGznOh/1mfxEOs7a1lUg4TFtjI9f4YNJtusm5kBsKhbh04UKClZWEQiHaqqu9HhJVbW3pX8Z/797t6YYQYPoJZ9ZXaTZXRGR628uB7cJuOO443wVcgB8Bu/v7wXUpGhjg/GeeYb/P+s22Aj/L6Im7Yts2+vf5obHp9JJzIRdgRcbpeD+UBwT27k0/0FvKytix3+ttKmAJQ7PLj/hgdllERLzRB3wRs9U7wBz82y7sCeAfDPXEPe/ZZynv7/dVv1kX84LBKikBy6K6p4flu3f7aozTRc4tPIMDa2BdMOULHjl2xgxq2tpoKy3FzcujZ84cD0djNLS14fT0gOvyj95e3hCN+vIVu4iITK4fATuT7xcC78ef7cJ6gK8n37dtmyurqnjZrFnMOv10Xz1/rQYeY6js4009PZx75ZW+GuN0kZMhtwaoBMJAFGjEtBbzSigU4vLiYv7mugQCARp90NGgbM+eYf1yn2pu5lL9AoqITCuPAX+Ix4nFYgQCAd5i28z3elBjuB1oS75fAXygvJygz7o+9ADfy7h8jW3z0hNO8Go4015OlitYDJ/N3eLVQDKcXVHhq44G82bOZG57e3qBnqN+uSIi00oz8PlYLL1mpGzDBpb7cAEXwKPAvzMuvw3/dVMA+BnQnny/EnijZyMRyNGQC/5r27Uk4/2tDNU+eSUUCvHyBQvSC/S2VVV5PCIREZkq/cAXgPZ4HFyX0liMCzZu9N0CLjAdgDI3fVgFnO3NUA5qM6ZeOOUmoMyjsYiRsyF3UfJtPB7nIcfxvKNBEFPMD2bXs+c8HEvKJVVVw2aXvQ7eIiIyNX6ImXAJBALkuy6XP/UUJYODvlsc5QK3dnWxO9lrthp/bvowgAnibvLyacC53g1HknI25B6LCbiO47Cxp4e//v3vngfdzJ2q/VCyUM9Q8O7DH2MSEZHJ9SBwZ/J927Z5d2UlVy1axFVXXeW7xVF/bG/nzo6O9BbDr21r8+Xs6I/DYZ5KBnEbeCveLngXI2dDbjUQ6O4G16U/P5/m0lIaPT4N47eQC7Ai+TYej/MnH/TwFRGRybMP+EbG5bOB11dWsmzZMt8FXAf4nmWlW3CetGcPdbt3ez2sAzzV0sJ3M4L4leEw9V4PSoAcDrkApxYVgWVhAY01NZ6fhknV5cbjcdaEw+z2QaBcwdCM93+iUf52550KuiIiOagPU4cbS16eCbwTf844DgJfAUj2mq3s7eW8rVs9fx4fyQVuSyQYyMvDBWo7O1m6Y4fXw5KknA65Z5eXEwqFCFZWUnbWWZ6/Sq0EapJbEbZFIvxg9WrPA+WJAL294Lp0BgI4PpjxFhGRifelzs70KfVC4Bag1OtBjeH3wLOYcoqZ9fW813V58eWXe/48PtI/gH2VlWBZ5Lkul2zaxByfBfHpLKdD7lLML0gwGGRXWRkJrwcEzGltTZ962Vld7XmgLADOKShIz3g/39Dgu1fKIiJydH7T0cFvw+H0KfVXdHSwwOtBjWEL8MuMy28MBLj2xBN9F3CbgR8ztOnDS4Hrzz/fd+OcznJyM4iUBqAK6MA0aN4BLPR0RHB+aSl/7enBcl121dfT4IPWXVeVl/NwURGxWIye+nrqiou9HpKIiEyQLQyvbT2+sZHjbBt88PwzUgz4MqQnpU4AXu7dcMbkAt9kqPTjWNvmlvnzKfRwTHKgnJ7JtRi+2GujVwPJcF5NDXPq6wlWVmIfcwyDPnjFdwpQn5zxjhYX84zXAxIRkQkRAT4PFBQXg2VR293Nhc89xyyfnrH7AbA/+X4xcDOQ791wxnQv8GTyfQt4Fyjg+lBOh1zwX0eDIuDMQCDdn3ad1wPCTOdn9vP7j1cDERGRCTMIfBFoxZxSP6a+nlsSCV/WtoLZYviv8TiRZN3wmwD/jdLsaHZHxuUXAYs9GoscXM6H3Mydxp5hqFGzl1ZkvL/Gs1EMd37ybTwe586ODvapw4KISFb7CUOTOxbw0UCAS5cu9WXAbQW+GI2mtxiuePppTvLh85ALfLG7m8ZkEJ8JvM7rQcmYcj7kzsJ0NQDoxtTlei0z5G5gqKbHS8cD5ck/MPs7O/n2Y4953vlBRESOzIPAnzIuvxazC5cfJTDtwlr7+tJbDJ//zDO+3GL4z+3t3N3enl7A95rWVmyvByVjyvmQm6rLjSdPgTwUDns8IqgD5iXfHwCe9nAsKRZwguOkFyY8OWeO550fRETk8O0CvhiLpU/7nwm8wutBHcRvMWtmAoEAFnDphg2+3GK4neEL+Jbs3k1wzx6vhyUHkfMhF2BWR0f6FMgft23zxQxlahOGSCTCvzs7vR4OAC8tKSEPE3j31dTQP2fOoT5FRER8pAv4cG8ve5qbiYTDxHfs4DWO48sNH8CE21S7MNu2eXNlJS9auNB3WwynuikkkptTVMRinPP8874L4jLctAi5dXv3pl957a6uZtf+/Yf8nMk2v7U1Hbz/6jjs90HwPrG+nqurqwlWVhIKhXiottbrIYmIyDgNYHY0293fD65LweAgl69fT8SnZ+W6MGUKqbUyS4CbgkFfbjF8L7CWoZ6470wkeKlPF/DJkGkRck+pr6eqtxcLGMzPJ+KDGcqyPXsojsdxgZ6iIv7b3u71kAB4XXl5uvPDfzGnZ0RExP9+gCl/CwQCYFlcsmEDddGoL2cbXeDrmAVnAOWYdmF+DCXNwO0Zl19u27zihBMUcLOAHx9PEy4UCnHNrFnpGcodNTVeD4k5DQ0clzqFZFk8P2uW10MC4DiSW/0CvfE439650xflHSIiMra7gb8n37dtm7dWVPDKuXN9d9o/5RcdHdyTrBkG02fWj+cOXeA2hhaIzwKu82w0crgOGXIty5pjWdb9lmU9a1nWM5ZlvWsqBjbRLqyoSM9QrvV6MJjgfdPxx6eD94aKCvq9HlTSizD1wo7j8LeBAf54110KuiIiPrUR+L+My+cCN1VW+vK0P8DjLS18NRJJdyg4v7OTM70e1BjuZHgbtveAuilkkfHM5A4AN7uuewJwFvA2y7JOPMTn+M5JQCD5/n5gn4djSTmntpZFyeDdA6z3ekBJZwFlXV3gusQKC1kzb546LYiI+JADfA6z8QPAAuDd4NuFZr3AFy2LQcvCBWo7Ozlv+3avhzWqfcCPMy6/HG36kG0OGXJd193vuu765PtdwLOYGfusUojZvjbFD7O5FrAq4/ID3gzjAHnAa/PywLKwgKfmz8f2STmFiIgYUeCDvb3sTZ72rwQ+in9nGlMdCrrKy8GyKBwc5PING5g3c6bXQzvAIPCZnh5akvftfOBVHo9JDt9h1eRaljUfWIbZfW/kx26yLGutZVlrW1paJmh4EytzEwY/hFwY2mkM4HHMHy0/eEl1NWfV1BCsrKSmoYG76+u9HpKIiCQNAh/r7mZdayuRcJjW/ft5U2urL+taU+4EHmKoQ8FbBwZ4/YUX+rKk4gfhMI+0taXv29e3tFDo9aDksI075FqWVQb8AXi367oHNHZ1Xfd213VXuK67oq6ubiLHOGEyQ+5G/LHT2FxgPqYGtiUS4R8+6bJgAe8oLU3XMd8PbPV6UCIiAphOCo8NDqbbY6565hlKfbwxwRbghxmXX2zb3HDccb4MuJuBX0H6vj192zYK9+71dlByRMYVci3LKsQE3F+4rvvHyR3S5KllKFC2RSLc39bm8YiMU5LF95FwmJ/4qJvBEkgvBojH43y+qYkmn4xNRGS6+htmVjTVKmzFjh2c1NTky1ZhYPrhfhGzwAfgWOBG74ZzUDFM796i4mKwLGaGw6zYudO3960c3Hi6K1jAHcCzrut+dfKHNLkWRSLpQPnTLVt8ESiP2bMn/YpxV00NTzU3ez2ktOuBgVgMx3FYF4/z5XXrfHGfiYhMR48B30++b9s2V1dV8fZg0Letwlzga5heswClwC3g21P/38csTrdtm3n19fxvXh7X+PS+lUMbz0zuOcDrgQsty3oyeVwxyeOaNHP27UsHyufr69nlg64BS+rrmdfWlu6Z+/S8eV4PKW0WcHpzc/o+e+D449ngoxAuIjJdPA98iaEdwo4HPlZeznKftgoDuCMc5t6MfrjvAfw5UlgN3JNx+T2BABcvXerb+1YOreBQN3Bd9yH8243ksK2sqaEiHKYzEKCvsJBWHwTKUCjEuwoK+GRBAYFAgMeSLcVKvR5Y0g22zX86OggXF9NfUMBfFizgQqbJTiIiIj7QCnwaiCcvzwA+AhR5NqJDe6CtjW93d5MAIpbFG4NBzgwGvR7WqNoxnR9SXsDw7keSnQ4ZcnPNjFCIVwYC/BZTz7TBtvHDtPSFNTX8CdiFqQn6J/ASb4eUNi8U4vP5+XyooICi4mJ22jZ/Al7q9cByWB/QmTwiwI72dhrb25lRU0NdVRUFkD4KM94febm9uZnIvn3Ma2jQbIRIluoFPtDby47+fgKBANW2zccBf8ZFoxW41bJIYGaeZ3Z0cG5bGyxb5vHIDpTa1awrebkWeCs5NLs3jU27kAvwomCQfybffxzzB6TEw/GA+WW6FrOXN5iFBdfgnx/Q2bW1vAn4JWYR2rejUeYMDHBGrZ8b1vhLD/B0aytb29oI1NeTV1U1LMhGMt7P7PwRj8dxuruhsBC6ugiVlGDbh+6EGY/HcWIxqK6mLBLhtLIyFpaWMgOGHRXoj7mIX/UDH+7uZm17O7guXcAHy8qY7YPt6cfSh9mgYqC0FLq7KYnHuWLDBuZeconXQxvVzzs6eCAvj0AgQMC2eQ9Q5vWgZEL4JUNNqTnAMcAOzC/jo8CFno7IOB/4CRDGvAp+BDjPywGN8HLgPz09rG5rA9fl5liMHyQSLFYP3bQBoAmzU07qaAT2Ak48jtPbC4HAYYXVWCyWrom2XJdYLHbYn9dt2zw5MMCOUW4XwITdEMPDb35LC/1792oWWMQjqRnGdRmtwi7YuJHKhgbwcci9HdNy0rZtGurruWHHDl5wySW+/DuypqWFr/X0MGhZRCyL64NBTvZpSYUcvmkZcsEEytQT/gP4I+QWAlcCv0he/jOmLsgvs2wFwEu2b2dNaSn9+fl0BgJ8EtN6o9jjsU0lF1O/lQqwmzo72drTQ3cwSGdJCYkxPu9wwmo+5lRkBZCfn89ex6FgYAA3L4/F1dUUY2Z4Bg5ylBYV0dffT7SwECzLtBsabVzAzuSREo/HcaJR8isrmbt3L68sKuKyqiqqx30vicjRugP4L6a0LmJZrNy61bQKW7HiUJ/qmX8mj5S3BgJcfcIJXg3noGLArZDeYrius5OzfVpSIUdmWofcHyfffxIze1rpzVCGuRz4LdAdj7M2FuO//f2c76OSgFPq67n80Ue585RTcPPy2F9czDubmviEZTHLh6/Sj8YOx+HptjYSM2bQW12dnpFtZKicIB6P44TD4LrQ2kooFBozuJbbNgU9PZRFo5T093NmZSVzGAqzwYz3S8h4cVNWhjNvHo2NjTQ0NBAqLx/fN1BcjFNezu7GRopmz2bQtmnCzDQ7ybdNmHKdkVKBfCAvjx21tXw3L49fYvpbng6cASzEPy/ARHLNn4C/JN+3bZvXVFZySXU1s5Ys8eWMKJgNH/4v4/Iq4CpvhjIutwORigqIRikcGOCFGzYw70I/THnJRLFc1z30rQ7TihUr3LVr/bJx7tg+iNn5DOAm4GoPx5Lpc52d/CYZnOa3tXH7rFm++qPmOA5/6Orid6EQ7R0d4LrM7ujgtoYGFmVZ6cIAJvDtG3E8H42ypaXFhFfLGjO8RiIRIuGwmZ0FgpWVHBsMMgsOOOqAFscZCqs++Jm6QDcHBt9t3d2saWyky7bH/P6rGQq8pwCHLqAQkfF4ALMhQcrZwAfwd0ebCPBuTKkdmJLAL+HfvwsPYmZxwUxWvGTPHl5cXu6Lv8tyeCzLWue67qinN6btTC6Y2dxUyP0P/gm5y3bv5jfl5bjAzpoaHmhv55U++sULhUK8NRSic8cOfpWXhwvsrariXYkEN23axMqaGl/9oXCBDoYC7LORCFt6e+kJBomMUV4Q6es7aGlBKTAbqMjLo3HbNoLd3VRHo7x61SrmHqSeKxQK+eq+sYDy5LEo8wNlZTjBIE81N9M0Zw5bbJuNwGDGTdoZOjVZhAm6Z2CCr3+rBUX87b62Nj6bn09BcTG2bXMScDP+DrgDwMd6etg2MJDu/vAh/Btwm4BvZVy+xLZ507HH6sxUDprWIfcczKmV3nicx2MxNvT1sbSuzuthsbyujuN37OC5mTPBsrh33jxegf9ODb+xpIQdmzbx6IIFYFns6+vjEyUlnLh9Ox+2LE6awlnd1IzkM62tbGxvpz8UojsYTAfbYeUFkcghywsCgQDdrktFby9Vvb1cUFnJCZhg20BGR4LycpyTTvLV7OxECYVCXJrx/fQAT2A6kqxlqN0OmAWca5IHmFKG4yIR5u/Zw2l1dTl1v4hMltWtrXygq4v+vDzo7GR5bS0fKSnxdS9cgK92dvJA8uxjJ/C+sjJm+HRh3ABmhjlVpjUDeBv+e36ViTGtQ245cFx3N/9Mtmb5xo4dfOaEEzx/Qg6FQnzcsnhHURH5xcU02Tb/Bi7ydFQHmhEK8Sng3o4OflhTQ2tvLwnL4pmGBt6Sl8fyffs4v7iYi6urGWcV6Zj6gW3NzWxtaSFv5kz6q6tpxpxiT70Np7oX2DZEIoQCgQMC7GiLv2bZ9oHlBbaNW1xMU0cHDXPmEMqi2dnJUgqcmzwSwHOYwPs4sGfEbTfF49wfiUB5OQv37OGW/Hy1mxM5iN3Ap/Ly6E+eHSuPRnn9889TdvLJXg/toO4G7nTd9N/VM59/nrrqat92f/g5pnYYzALf/8X7FqIyeaZ1yAU4obGRf9o2LvD07Nns2r/fF4HlxPp6rgd+k7z8M0y48Nvpn1AoxGtDIU5uaeGWjg72VlWBZRHp7eV+1+X+7m6+WVhIZTzO3ECA2kQCt72d6qoqKoJBEpBuFh7u7KQtHCa/qgq3vJwuzGxhJxBJ9XwtK4PubkKlpeMKsKnblGLC62jlBfPGCrChEDN98FjwozzgxOTxRsxe72swgXcjw38W2+rqeF9hIZcBrwYWeDNkEd9qAj4KDCb7yhb39XHtE09w0gUXeD20g9qIORua6v6wqKmJM3bupGHJEq+HNqp729r4YXJnUdu2eQNwnNeDkkk1rReeATQ6Dq+IRNILbD5YXs6rqqq8HhYAUcyCuHDy8muBV3k2mkNzHIcH2tv5c3k5mwYH0/urp08DWcn3RlnMFY/HcRxnzIVeoy3wCo4Mp7EY3Tt2EOzpoaq3l8uXLuWkqipTO5sxDsdni79yTQ9wX3s7P9qxg+21tQf8PM/EhN2FXg5SxCfagfdjzkYBWLEYN2zfzlk+W9swkgO8h6GypRm9vdy4ZQvzZ8705bifa27m+s5OepMtFS+urubLZWUqU8gBB1t4Nu1DLsCPw2F+mOwjeqxt8238U5/zT4YK5APA98D3vUqbHIcf/+c/bK+pYWddHU4wyMhH2cigeqgQ2x+LEd67l+J4nGAsxtmLFrGoooJ6oB6zkUE50KwA6xuO4/B4ayuPzp3L06O0PTsDE3aPnfKRifhDF6ZrQqrcpwj4JODPedAhUUww35m8HMRsWuHXgqRB4P81NbEuHscFSvr6uDUa5Tyfl4LI+CjkHkIPcD3mFxfgE8Bpno1muATwTmAXZrbz1JYWbi4s9H2AS82WBgIBHnjsMSJFRfQUF9NVXExPYSF5eXmctmwZ1ZWVWEBnOMy6NWsgkaB4cJBLzjyT+TU1VGDCawkKsNlsJ/ArzC5+I52OCbuLRvmYSK7qBT6C2RkMTH3ohzG/D37mYrbsfTR5uSB52Z/bPRg/A36WcbbwxevX85azz9bzSI5QyB2HHzDUePtU4NPeDeUATwAfyPgFffVjj3H9+ednzS9oZnkAMGZQVRlB7tsJ/Bp4eJSPKezKdNEHvK+nhyeTLbcCts378Nc27mP5diTCbyBd1/pu/LcoOtM6zMQVmImiCxsbub6kRM8xOUQhdxyagRshfVr9m8B8z0ZzoDft38+jfX24QG13N1/o7+eMU0/1elgiR2QXQ2F35F+g47u7OWf3bt/1WxaZCH3ALd3d3Jfs6oNlcUt5Oa/2yVqQg/lTezuf6O5Oj/uNwSDvOUjnGa+1AO9iqG54GaYcxC/liDIxDhZy/dxfekrVY/rmpvxlrBt65C0FBRQkElhAW3k5Dx9zjNdDEjli8zC1iN8CXsDQk048Huee9nY+XlrKzdu2sdtxxvwaItmmH3Nqf+3gYLr7yNmbN3P8zp3eDmwcNgHfzMtLj3tuSwsv2L7d62GNaQD4IkMBtwazqYYC7vSikJvh2oz3H8DskuUXp9bV8Z7KSoKVlYRCIe4PBnna60GJHKW5mAUs38acqo1ntB7bMGsW783PZ5unIxSZGAPA5zGnzwOBAFgWZz7/PCt2706XcvlVI/AZoKC4GCyL6p4eLt+4kTk+HvePgc3J9/MwL6r9O+csk0UhN8Ni4Pjk+wPAPzwcy2heW1XFBcEgdrKv79cwi+ZEst0cTFP2r/X1saC11cy2WBad5eW8D/gDB5Y1iGSLAeALDO0IaNs2bwoGeWt1NVdddZWvy3K6MKf4uzDjXlRXx0cHB3npC1/o23Hf2d7OTyMR4vE4YHp5+3lhnEwe1eSO8DDmj1E8Hie/p4fb+/uZ46Nf5Hbg7QydglmFOQUjkiuaHIc/d3Xx99mzIRBIX38ypi+nX9sUiYwmtY1sZmeRVwCvw/+nzvsxm1Q8k7xchCm3WOzZiA7t6ZYWbujqoi8/HyyLy6ur+bz64eY01eQehrMw2yk6jkNjVxe3PvWU6WrgE9WYkJvyAPCgN0MRmRQzQiHefOyx3B4IDNuN6GngHYzemUHEjwaBT3R1cVfGrOJLyY6A62IWYD+Tcd3N+DvgxoDPAn35+emtka/ets3397VMHoXcEfKBMxob03WBjy9YwLamJq+HNczZwIXJ9+PxOJ/t6ODZ5mYvhyQy4WZiFo68kqFA0I050/J1hvpai/jRAPDxri7+1tFBJBzGcRwu6OzkDfg/4AJ8LxLhzxnh/HrMc49fucA3gI6KCrAsChIJrnj6aY6dMcProYmHFHJH8dKyMipiMSwgVlTEY/Pnez2kA9zE0Izz/s5Obt6/n70+mnEWmQgFmFmvL2A6oKTci2kNtHm0TxLxWD/mMfvfRCI9YXLyrl2sypJZxT+0t/Pd5C6UjuNwdmcnL/Z6UIfwF8xZTdu2CYVC3DQ4yA3nnefbumGZGgq5o5gTCvG+urp0J4P/BoP4ay4XSoEX79yZ/gO6r7KSWwcHSXg8LpHJcCJmlub8jOv2Yzoz/BpzWljED/owp8wfY6iLwim7d3P+li3M8nE3gpT1wLcyWoXNaW3lYp+H86eBH2Vcvta2efOxxyrgikLuWK6pruaMZCeDAeAnXg9oFOdVV3P288+nV6I/V1PD7WgVuuSmUuB9mLrAkuR1CeCH8Tj/4zg8o5Id8VgM04lgXfKybdv8TzDIe8rKuNrnXRTAbDH8eaAw2SqstrubKzZsYK6Pw3krcCukJ3gWA//Pu+GIz6i7wkE8h2lrlHIr/mtD0uQ4fDse57FQCNu2AXN695XeDktkUjUDXwaezNjuuiwe51tVVSyrq/N6eDIN9WIC7qaM614FvIbsqMHdj3m+iyQvl0Wj3LR1KyeGQr4N533ALZhwDlAJ3IbZ+EGmD3VXOELHA+dmXL4D/82SzgiF+NTcuVySDLgAPwf+6d2QRCZdPWbG6cLGRqxEAhfotm0+rM0jxAPbHYc3Ow5PJBdpAbweeC3ZEXDDwMfJCLjArcXFXHDyyb4NuABf7uxkbXJxXD4m8CrgSiaF3EN4I2bxC5hFLg95N5QxWZj+oadmXPdt4FFPRiMyNfKB60tKuHb9egoHB8GyGCgt5UMMn00TmUxbm5u5qbWVp2IxHMchHo9zA6YXbjaIYmag9ycvFwEfw2zQ4me/6ujgN+FwenHcSzs6OMnrQYnvKOQeQgi4JuPyjzGnSPymAPgQsCh52QU+HYvxu2ef9VWfX5GJFAqFeMs55/CRWIwF9fXYtk0vpoH9eq8HJzmvGbglL4+WsjJzls91uXrv3mFbxPtZaqvh55OXLcxiTr+V5Y20EbjdstKL445rbOSknTs9HpX4kULuOLwCKE++3wz8zcOxHEwx5pRTA6Z/7t7mZm4tKuI7jzyioCs5KxQK8eITT+RrgQCVyev6gE8zfJcpkYm0G1PD2lVeDpaFBVy0aROvKCvzeGTj4wKf7erigYxeuG8DzvR0VIfWzPDFcXVdXVz07LNZ0blCpp5C7jiUYhYPgAmP3+voYKtPV3IHgU8BRT094LrECwr48/Ll/Li313f1xCITaT5m84jUsrMBTK/S+7wakOSszcAHMNus27bNrPp63hOL8YHly31dw5riAl/p7OSPGRtVXBmJcJnXAzuEGObFayfmfl9UV8eHXZcXX3FFVtzvMvUUcsfphUB1by+O4+B0dvKR7dt9OzsaAj4+OEhpX1+6vdh9DQ18Fujxdmgik6oB0wVlVvKyi1lt7dezL5J91gMfxuy+B+YM2hcCAd64eHHWBK1fAn913fTp/pP27OGM7du9HtZBucBXgZ3JywXAp4uLuXDp0qy532XqKeSOUwFwyZ496T8Kz82cyV2RyKE+zTOn19Xxw2CQ5YEAoWR7sccwC9R2ejw2kclUi5nRXZBx3e2YTSN0NkOOxl/a23lfOExn8vR+BfA54GRPR3V4/oT5XUhtVLHIcbjgued8f7r/l8DqjMtvw/+1w+I9hdzDcEllJYubmtKzo3+dM4d2rwd1EMfX1/P9UIhXZrQX249ppn+/Z6MSmXxBTPjIfBL8BfBDFHTlyPyso4OPd3XRFongOA6l0Si3Asd6PbDDcA/mdwDM6f5Lqqu5pbCQa3y+UcVDmGCe8iLgYo/GItlFm0Ecpu2Ow7sLCoiVlWHbNqdhFnv5vRfiQ8DXMTVNKed2dnLBtm3Ma2jw9R+46WoA6ML0ruwEdrS3s7+tjRk1NdRXV1MA6aMw4/2OlhbC+/dzQijEzGn+c41htlh9Mnk5Ho+zvLmZdxcVMWOa3zcyPi4mGP4kEiESDuMC1T09fGxggAtPzp453AeBLzH0Im8J8AnAHusTfOKx1lY+VFBAfnExtm2zHNPiLN/rgYlvHGwziILRrpSxLQiF+AymJgvM9o13AVd4N6RxOReYh5nd2ot5sv9lOMw/i4pY+eijvOOss/SkP4WiQCOwD9gUibCjsxOrqopEWRkRTLDNrJ+Ox+M43d1QVATd3YRKS9M73DHydtEoBIPkR6Oc1NvL/JISQsAMTL126qjA/y/OjlYA84T4ZeD+5O5od7kuHZs28SnQizs5qD5MHejDmNP7EctiRjjMNU8+yUmX+X2Z1pC1wFcYCrjHYtrs+T3gPtfczHvDYbptGzo7ObW2lveXlCjgyrgp5B6Bk4FrgT8nL98BnMLQYhe/moP5g/0N4O+xGLgurWVl3HnqqewB3ov5PnI9+EyVfY7DM83NJBoaiNXUsA/SR6rMJR6P40Qi4LrQ3k6osHDU8BpL/rxcwHJdYrHYIW83aFns6u8nPNYAYzEqOjs5y7a5JBjkOHKzfqkQ0/uzpbUVJ3nfPLpgAX/q7OTNCrkyhk7gM8Czycu2bXNlVRUvam9n/mWXZc0LpI3AJ2IxOuNxAoEAx9o2nwRKvB7YIaQ6KXTbNi5g9/fzmu3bKV2yxOORSTZRyD1Cr8ecAt2JebX/Fcyqbr/focWYJ/wZrss3EgkG8vLAsmiqrOSjmFNYrwPtHDNOLmZLzH0jjud7e3k6FiNRUQE9PYSS5S0jHSy8Wpj+zEFgfkEBjc3N5A8O4ublcVx1NTampCHziBQWsq23l1hBAVHbNotLRhGPx3Gam8F12RiL8bdAAGu9TfdPTQuud19nZnl++lNz++uuM29Tl5ctg7Y2qKmBJ54Y33UjP3bddbBy5RHc6UcgH7i5oICtzc3srq4Gy+Ivc+awEvPCTiTTfsyp/MaM664BbigvJ+/UU70Y0hF5FvhgLMae5O+6G4vxjqoqKurrvR7aQSUwZ19agkGIxchLJLhiwwZOnao/GJIzVJN7FHZiuhUMJC+/CrNXebbY3NzMz2Mx1tXXkz8iDC3HhN1Fo37m9BMjo7wgHGZzTw+9lZV0lJbSO8rtIxn1exYQrKwkGAymP16AKR8IdnfjrF9PeW8vJf39vHDlShbW1lKBCbiZM6uO49DY2EjDIWqoU7erbmjACoVwgCYY9nZzRwfb74/R/sdSLBeqzyhg+wdKSMSHBphnQaI/ebEALAv6+4f+n+SGQ8Mc7LqRHysqggcemLqgC7DDcfhgXh7tFRXYtk0J5sXpvKkbgvjcw62tfDYvj4FkSZAF3IBZ7JRNNmNKEpqSf4tK4nFe8vjjXHzSSSxbtszr4R3UD4C/JN+Px+Ncs2cPLy8vz5rZc5laB6vJVcg9Sn8EfpR838I8YR7v3XCOSCvwG+BfwGDG9fF4nEVtbbzItllVU0ORN8ObMo2Ow8bmZtxRygvakreJJ+s6U6kt1Z5tpNTtSmMxqnp7ecGCBZxQUUEDMBuoZ2jhxHjD63itXj18xjVz5hTMx3buivKve4oYHDQx2soHN2EdpPVA6gMTW8xyxhmwfPnUzuq2YjqMpEpGajFnYqqn5r8XH/tzezufjkTSZ7jm1NfzoUCAs70e2GHaCnwE6MX8Lercs4cXP/44tdEoV/m8k8I/gO9mXH4JcL1HY5HsoJA7iRKYRWgbk5dnYmpeRz9J7G9NmDYt/wZiI8Lc3Pp6zgoEOAM4jewNBC6m1m4vZmZ2LybEbu3tZUNzM4OWddDwOtoM7YxgkNmQDrCpt/mOQ/sEhtexrF5tZkRTpQB33DF8xjXlwNnY1Hdh5OfDYOpVTvK2bn/y70OBi2VZuP2kPycvDxKJ4f/HaDO5qduN9rHMsV11FcyYMTWBdwdmx6po8vICzO5oxZP734pPucDPge9n/H4X9/fzgb4+XnLiiR6P7vBswzwnpRauVgDvbWkhb+/eSf9bdLTWYnbsTP2ZOBu4Ba0TkYNTyJ1kzcA7GHrVfEpLCzcXFmZtt4K9wJf27eOBgYExT7cvAk5PHgvx1x+hQczMazPm1PzWSIStXV30VFURLi0ddde3Q5UX5DNUXtC8fj3Bnh6qo1Feee65HFdf79n3v3o1XHQRxOOHDpIHU1QE3/zm0KzvNdfBJuCO7/bQPDhI8KU9WEDPndXYts3CZbC4DU49wprc9ethzZrRxzpVZQzrgU9iXqiCefH2UdSaaLqJYmbyH2PoDExVdzdXP/UUr7vwQl+HwpG2M3w3tnJMR535Xg3oMOzArBdJtblcBHwe/3eAEO8p5E6B+4HPZ8x+rty2jU+edFJW/YHM5DgOP37gAZ6ZOZNd9fXYxxwz6swmQHE0yuz2dhaWlXFsMEgdpI+JnNF2MX8AuzCzsTvb2vjRdwd4+M819EQK6A2DPQsqVsLs66BqJTj/6WPb9+PgulS9rJcFV1SNq7zg3GR5wSxM14x6hhYVTnR5weHKnLn9wx/g3nsPnFEdzciZ3PHMnjqOw6/vuYd18+bxzJw51DQ0DLv/FgCvAc7g8F7orF4NF1xgwvloLr0UXvpSE4xXrZq8wPsvzJmXlMswOyn56UWbTB4Hs4J/V8Z1i7u7ecm2bSycMSOr/n7vBD6E+fsIUIbpEb1grE/wkWebm/lAfn66/3wd5oVHldcDk6ygkDsFXOB9e/dy7+Bgejbwpv5+3nZsNu2HM1xmmBsIhVgDrMGUZqQy1aFqVMvJCLydnfS1t1NZVUVFMIib/DqZb10g0tlJcyRCQWUlifJyuhgKtgMZ/++mr3Wz74OZhRMZ0SQPqs+FjtVu8hQ7kO8y6+19VIUC1NdA7xOmjc5Lr4NLV0KB49DhYXg9mFSdbVMT3HWXCaqZM7epkoC8PBNer7jChNexanJTl8cTHlOPg+JZs3iovp67MB1FMs3o7WXV7t1cXFU17vsu83v6+99HX9Q28vuZjFKGnwG/Tb4fj8e5pLGR60pKfPcYkIm1ETPL2ZVx3YuBN5J9rfR2ATdHozT39REIBKi2bT6LOcvmdzsdhxtbW2kpKwPLYn59Pd8IBLQYVMZNIXeK7HUc3rx/P3uqqsCymBEK8QnbJteanvRgTvWuAf7V3k5jV9eYp/lTDnfB1qFuF4lEeOLqIrofDHDwebfMulPzWLcs64BV/pmn6kc7xZ75dqJmFjMXiI0MbyMXj73znWPPeublwcUXT83MJ0AHZsHlPzBhN/NntnTfPj63cCFzDzMgpr7f9eth7dqxZ6YLCuDGG0cvjUiF+NQs93hblrmY/tH/zPg+rn7ySd5x1lkKujnIxWzg881YjJ5k79hS2+btwEUej+1IbAfeF42yraUFXJeiwUG+UVHBytpar4d2SAPAW5qaeDwexwXyXJdbYjFedXy2Ld8WLynkTqGdjsOHLYuWYBDbtinEFNLnavvq/Y7DDx58kLaSErpLSph72mnEystpwaxiT828HqrmlXHerggzO1zQ28tjn29l42fmZHz2WGH30J0Bhi264sC2VwebWYSD95Mdq2Y1c4FYZngb+bH8fBP6Mn9VM8dj23DffVPbigtMf+A/Ar8Ih2mNRNI/s+NKSvhiXd0RnSYdT43xWC3JCgrMfTVyljtl5IuZzNDbD7ypqYl1ySdbe2CAz/b2cunSpUfwXYhfxYBvAfdkvKAp6e/n1spKXpAFoXCkrZg68sbk383CgQFetG4dVy1a5Ps2YS6mJCHzZ3HRpk18YPlyvbiUw6KQO8UiwP9iGoqDOSX+BeAYz0Y0ucaqUXUxs34twOb2du5ev56+vDzyLIvTli2jqrISC9JHHhAJh1m7Zg15g4OUDAxw6cqVzK+pSfeNtUf8v9/8Zox//GMmXV1FhMNQWQnbtw/NBBYUwNlnw8MPm8AzWvgZLUSO12h1riP7yWYaK6Ad6mOZIXzkbOZkz9weypbmZj64axfP19enZ99LbZvrMDsDHm5963i7RYzmUAvvMu/HkQvctjY388bUFqKWxfLaWr5bUpKVnVLkQHswC5n2MPRiurazkyufeIILli71fSgc6Vng45iFc/F4nPC+fVyzdi0zu7p83yYM4IfAn5Lvx+NxLmxs5HqVCckRUMj1gIMJuh3Jy1XAl4Dp/Ot7uJsZHGlt7GhlAJnBabQOACPLAUa2vRpPG6zJcrAZSL9ochz+1NXFP2bPhoyNRU7BbJhScxRf+1D1yCmHmskd+WLGsuBNb4K5czMeF6eG+fVKKCguxrZtzsWs+NZCtOz2X+CbDK3cj8fj1K5fzws2baIIsiIUZtqAOUOY+n7KgXe3tlK4Z48v1xSM9GfgjozLlwNvQb9ncmQUcj2yA9PjL7Uj1kxM0D3wJL14bWQN7Fg1uaOVGRzOTO5oC8RgeHibisVWk6URsx3n1ozryjEt9ibiWzjYi5VD1eSOfDEzMhSn7vcVV8C+GUMdOq7HNKSX7NOPCVN/z7iuCHgrsMTjLilH6gngMwwt/gxiuihky0Kt/2KeB1POAj5I9i32E/9QyPXQRuBjmD+2AMdiVvSq6Xz2GjlTDIdfkzuyzGBkePO6BOFoDAC/An7HUDV0PB7ntOZm3lFURIOHgSLzZwfw/e8Pr8UepgDm3QgVy+D8NnjNquz9mUxHDvDxnh42DQwQCASwbZuZmDZb870d2hG7u62NW/Pz02caqjEBd7bXAxunp4BPMLRW4wRMYM/13TRlcinkeuxRTLBN3dOnYGqpCj0bkcjk24hZWLIvY2HJsc3NfH3uXGb7YOZsXBtpWJBc9o1d5PKH34e58sps3e9venAxuzZ+PRZjV3NzutD9qqoqPlReTqnXAzxCf21v5xOdneldGU+sq+OrxcXM9Hpg4/R4aysfyc+HkhJs22YO8EXMmR6Ro3GwkKszBFPgLEyD+ZSngK8xFHpFctESTB3kCa2t4Lq4wPP19XwqkUjXEnpp5UrTleIzn4Hvfc/U5xaOfOXpJv9JWMTjFh/6aCcf/nAXq1d7MGA5pC7gVuA2IBw3m8BYrsu5zz3HS59/PmsD7t3AV/LzGbQsXKCit5cbn38+awLuUy0tvCscxunsxHEcSqJRPoUCrky+gkPfRCbCZZiWSz9PXr43Hqe9uZl3enz6VmQylQEfLCggsn07T8ydC5bFzupqPoY5m+F16Fi5cngJwnXXjb7IDVxw4ekn5rHhSfja17xp2yZjexrT77gteTkQCGBFo1zy9NPM7Opi1imneDi6I+Niyn5+BtiBAFgW1d3dvHj9epZcconHoxufVuBjeXn0Fhaa9nz9/Vy3bRu1S3K1sab4icoVppAL3A78IeP07eyODr7W0MBx9fVeD09k0jQ5Dj/u7eXfGdsCL8CsEPfrQsxUnfSfHupjzV2F4KZqFyzy8mDFCli+PLsWBuaifkwI/DPDz45dBlztOLRn4eIyMN/LHcBfMq6b1dPDa59/nuOyZMvhCPABYHvyOS9/cJAXr1/PTeeemxXjl+xwVDW5lmX9ELgKaHZdd1wvvRRyx+YC7923j38PDKSb588tK+NLNTVojxfJdX8BfpBxeTZm4cnRtBibbKtXw/kXufTHMftPW9awNDWy365Mne3A53p72dLfn15cVg68E1Mmlq0GMKU+/8647hTgw2TPouUezCK/7cnLg7EYr9u5k4sOY+tvkfE42prcHwMvnNARTWMW8IGCAs7avt30BLQs4mVlfBC4E9XpSm57ESaApPph7gXeEY1yz4YN5uyGD61cCQ/cZ/Hiz1gs/Z5F3SWANfSb2tcHt94Kn/88qtWdIn2YJ6a3xmKsaW0lEg7jOA7HdXfzLbI74PZhNq3IDLhnY8p7siXgxoFPMhRwLeDDgQCvOf54BVyZUuMqV7Asaz5wp2ZyJ47jONzb0cEf5s2jv3joT9f5wNtBuyxJTnsI00+3N3kaszQW4+Vr1vCaiy/27ZOgixnz7/7Tx9pLC3H7Mj9qZXV/42yyATPLuZ+hncvyEwnO3rKF/6mvZ3mW7VyWqQf4YE8PT2a0PbsM09c3W1aJDwCfBtZnXPdOIDsqiCUbHXULsfGEXMuybgJuApg7d+5pu3btOrLRTjPNmFftz2dcNw/THHuWJyMSmRprgQ+Ew7RGIrhAdU8Pn+vv52wfLxAaAN7S1MT9j7js+1QVsadsxtqnSWUME6sHsxXsPRnXxeNxCp99llXPPEN1LJZ1O5dlagXe39vLumQ3EiyLG4NB3h4MZs1OYIOYjR4ezrjuRswZHJHJMiUtxFzXvd113RWu666oq6ubqC+b8+oxvQIvy7huF/BeQGc+JZetAD4yOEi+62IBHWVl/HbhwnSjeD8qAD5mWZwyZy+zPtaBFXAhz0wUWCOSSF8fvPvd8Ja3qIzhaLjAne3tvKqtjb9l7L1dCtxs29wxcyYXn3hiVgfcHcDNwPP9/el2e+ds3sy5qbK2LOACn+/s5B+RCPHkz+nVKOCKt1Su4CP3At9haHc0gJcCrwfyPRmRyOT7Y3s7t+Xnp0/PXgC8B3/vY7/fcfhWPM6/dsyg65EirGA/8cf72f3LYgb6Dxx5fj7cfDNUVmb3bnZTbQ/wte5u7mtvT89uhkIhVtk2bwZyYVuOJzBn86KYmenW/fu5YONGTnScrAnuLvCFzk5+HQ6nf05vqKzkPRUVvv49ltwwJeUKmRRyj9w2zO5ozRnXnQz8L1DpxYBEpsBvMW2gUl4FvNajsYyXC/wBuD2jJWDfmgLm/b2Gjk0B1qw5cAe1vDywbfXYPZRu4JfA34GOZN2tC5T29fEm1+WNxx3n7QAnyL3AtzCn+cHMTr+prY3K3buzpu2ZC3wP+GXGz+nEfft4f3FxVtdHS/Y4qnIFy7J+hTlzvtiyrL2WZd0w0QOUIQsxu/Vk/rSeBt4FPOfFgESmwMuBSzMu/xoTAPzMAl4GvGz3bqxEAhcoOn2A3tvinHWbqckdKZGAWMyUMaiE4UAJzO5eNwF/S14OBAJYwNI9e3jdI49wedCvnZXHzwV+AXydoYBbiyldu6CmhmXLlmVNwP0B5sVIILlZxeL9+7no2WeZ1dDg8ehEtBmEb7nAbzCzGS7mNFZ/NMrLLIs3BoOe7xQlMtFGrsrOBz4BnOrReMbLcRx+8OCD3L1kCZ0lJYRCIWzbpu/+GJHP9LH2P+W4rpXcOW1IQQFcdZU6MaQ80NrK7YkErcFgesMQMGeyrm1poWDv3qyZ3TyYfY7D1/r7ebqubtjGKB8nu8ovXOBHwJ8yrlvW1cU1zz/PnBz4OUn2OOpyhcOlkDtx1gGfjUbZ1tKSrnU6pr6e1wQCXINajUlu6cXskLQT88KO3l4+NzDACp8vZnUch23793PvwoWsKS8nnixhsBIJZt4d4aQ9C9m2qYw//3n0z5/OnRh2AN/t7uafI+pu59g2NwAr8Xd99uHY1tzMOxsb2VtVlf4+V9o2t5A9PXDBBNyfAr/PuO5c4H1o/YhMPYXcLHffhg18AXCSRfzBykqCwSAVmNO8VwCjnBkVyUqtwNuiUZ5LvrCrjEb5UXU1C7Jk6+v/AJ/t6MDp7EzvajijooILn6vi4xdARoOAYa69Fs44Y/osTNuHOWX/IEP9bl2gIJHgFcB7jzkmp/6u7QHe1drKtp6e9OPisvx8Pjd7NgUej+1wuMDPMXX0KSuB90NWfR+SO6akhZhMniX19bzi8ce59OmnqYxGTe0T0InZ2/z/YWqi+g/yNUSyRS1w3fbtFCS3vg4XF3Pr4GDW7AZ4PvDVgQFmd3SkdzV0S0p4aCVceFeMC1/ZwQsvj1JYOPzz/vxn+MhH4KKLcrtetxn4BvAWTMCFobrbxfv3c90jj3B9SUlOBdy1mBZh3eXlYFlYwMpt23hvYWHWBcPvRSJ8P6NN2Bko4Ip/aSY3SziOQ2NjI6GGBp4JhfgV0DLiNnWYvoQXoD84kt0cx+Fra9Zw19Kl6dO6b7Bt33dcyNTkOPwzHObeOXMIl5SkSxhwXWZ0dnJx4zx+97EK1o7owmBZcPrpcNttuTWjux/4WWcndycSFBQXD6u7PRO4LIfqblNcTM3qjxnast2NxXjZ7t1cHgxm1ffpAv8XifB/kUi6rOTS6mo+V1ZG4SE/W2TyqFwhB/UD/8IsTmsf8bGZwGuA89BUfbZzMe2UOoEIsL29nabWVmbU1lJfXU0BUIh5UdPZ2kq0sZHjQyFmZNGT51gcx+H/YjEenjEjHYg+gglE2aQfuBP47ogShmBlJcFNQe65CAbiHLAwLRfqdF3gSUynhIfjcZqSIT/1wuVM2+b1QG40BBuuD9Me7P6M6+qAjwLHeDKiI5eqwb0jo6xkblsbH8vL44xTT/V2cDLtKeTmsD7gLuB3mBCUaQ7wOnJr4UYuigONmBrF1LGlp4c98TiDJSUUJstTMmcCUyEhFf4yP5bvupxUX09NIoHd0cHK0lIurq6mzKPv72gkMKvOn0xeLga+RnZueb21uZlPbt3KM7NmkcjLS//8OlZD+739JB7qY/M9JaR+Wy0L3vSmoc/Ppg4MuxyHv3Z3s27mTNpKSoDhdbczw2FuKCriFSec4O1AJ0k7pt/55ozrTgQ+BGRbA7RUm7C/MvR3Zm5LC1c9/TTXXnFFVs1GS25SyJ0GYpjZkj9g9njPNKO3l/P27OGSysqcmOHLRglMLeI+4JlwmOe6uohWVREuK6N1xG3HCrOZISFzASJwwMfKysro7ulJf42Z9fUcNzjIcfv3c215ObOz6HHQBbyboQ1S5gBfIbtWo6c4jsNzjsPGefN4OBiki6Gfd8/aQra/egZuH4BFQYEJuv3JYnu/txyLYbrB/LOri7taWujLzx/2+I3H45Rs3MjSXbuY19HB1Vmym9fh2gJ8NBplf19fehe/SzA1yNl2Wt8FvouZSEk5sbubl27dyrwcKiuR7KaQO430AH8G/sLQNpGpwFTc38+VoRAXlZezjOwMCX7W5DhsaWrCmjWLWG0tjcBeTLDdj+kDe7DZ2JSRgTVUUcH8qirye3rY/9xz5A8MQF4eC084gUBZGf1ApKeHzTt30m3bxIqKKCstpbu7e9TQWxaP89a6Ol5RVZU1T7rbMbv+9WHuw8VtbXw4Pz+rX7TFgX8Dd7S2sjW54r53XRE9d1anHxO7vueCe+B5GL+UMjzX3MwDkQg7Z85kS+qxOMrj9+VVVVwJ5CfXFuRS3W2Ki1kA/J1YjH3NzeC6WMB7g0FeX1mZdWfTEpgFgvdlXHcOpk2Y1nyInxws5OqxmmNKMduhXg38EfhZNAquiwtECwv5VyLB45gf/BLMytgzgNx6uplcfYxeXrC+u5tYZSX09hKKxw8IrwCxWCz987Bcl1gsRrFtMxNoAGYDxYkEW9eto6y7m9KBAa698krz8yktxZk9eygklGUUIJSW4tTW0tjYSFVDA22JBH9+8kmaysrYVV9PT1lZ+v/ttm2+k0jwm7Y23gq8sKZmUu+vibAAeDvw+eSLBMd1iW7Zwmcha8OSDVwOLBsc5JtPPsmzM2eya1kdC640W/86/+lj9w8LcfsyJyJMVOrvh3sfmNqQGwGeB7Ymjw3RKJtjMZO429sJFRZi2zaBQICIZVHV08PJe/bw3lNOGapBDYWy9ud1MDHgm8B/ge54HFyXooEBXvjUUyw95hisLNvedhD4Kub7STkfeA/qgyvZRTO5OW5zczOf27yZzTNmELXtUWcOwZwCPhM4HViM/pAlMP1a9wLPdHSY8oLqasJlZQd0tYADZ68ySwlSqoDKnh7annqKYE8PVb29vPzss1lSV3fAq01nAma8Mr9G2LL4xtNPs27ePKKpn39yNvm1lZW8u6IiK1o2fWT3bv6WepEA3DAwwDsXLvR6WEct9bOqbmhgVyjEg8B94TC7/x2l/Y+lDDTn0/1ACW5/cj6wAGa/cYDQ8b2Udtmcc5nNuSvNC6XOLVsIb93KogULOOEwal73Og6bmpspaGhgsKaGZkgfO6JRGjNOv8Poj/lTgkFWAscmOyXMysEZ25H2YOpv9yYvx+Nx3K1buezJJ6mKx7kqy8oyBoAvAY9kXHcx8A60kFn8SeUK05zjOOxrbCQ2Zw7ba2tZgzn9O5ZyYAUm8C6HnN5CuIvhM7KpoxGzKn485QVk3K5gYICqaJSz585lcXk5szHBYxZQkrztRATYI+E4Djv37+e+wkL+WlREb1FROpwsLCzkZTt2sKK21tdPyPsch7fs28eumhqwLGaEQnzUtjnX64FNgh2Ow3fWrWNHTQ37q6ro3z+f5l8XEW8C5y4Xtx/zaiwP8mxYeZ9F4ZIu2tpNv5WCRIJZ1dXUB4MUY3ZHHOjuJtzTQ2F5OfklJcQws5CRWIzG5Cn2gy1qHFlj297YSF0kwjGtrbz5lFM42ec70020/2BmcDP393ghcI3j0JqFZRl9wEe6u3l0cDD9guZyTD1xtpVbyPShkCsHaAXWJI+nMH/cRpMPzO/uZk5zM0uDQU6oqaGO7NlOOAY4mNmokW93RaO0jpidGmm02aqqYJAQJrhmHoXNzUT37fP97JXjOPz+n//k3hNOYHsoRHVVFe0dHeQPDnLZxo28+4wzfD3+XY7DR4Gmykps26YA+CRwssfjmgypF0QzGxrIC4XYBHz18/C3j7owaEHqkWm5zHiRRf6JXdindVN6mvmNDgQC6Z/lwV6wjWdRY34iQV1nJ6dXVXHh3LksAgoch6YsDHNHqx/TceAfGdcVAW8DLvRkREevB7ilp4f/trWlHyNvqKzkPcmdNkX8SiFXDiqOCbprgMcZ3nd3rCfGMkzPx9RRP+JyFZN3aiuzd2xX8ugE9oTD7IhEGKyupqe8HCf5sdGMZ4Y2CFT19ND69NNUdndTHY3yspUrWTpKeUG2Sc3ub54/nx9YFq2RSDrgvK2vj5sWLfJ6iAfVhdllKXWKuBj4AqZ2N9etXg0XXugSj7u4wxalWZDnklfkMv8XDqWn9VFTXU1ZeTlw8CAbj8dpaWqiJBajIh7nzGOOYWF5OfVAQVsbT9xzD+U9PRRYVtadfp9o+4FP9vSwaWAg/QK5AfggMN/boR2xMPAx4MmMx8iKHTt4ezDI8iyrJ5bpRyFXxs3FlDKkAu/acdSajqYAqGEo9BZFInS3t1NZXU1FMIiLOdPqZhwjL4c7O2nq7CS/spJEWVk60HYztHtQynjLClIyZ6eqenpYUlXF6bNmDZuZTZVpeFVeMFWeaGnhPa2tdJSUpO+79yRPU/pZC2ald+pFWSVwK2YzlFy3ejXceWcXjzwywH/+Uzks7FqWy5lnNrFiZT5Xv7yek1eaMxp7W1v514MPYg0OUpRIcPkFFzCnrg4bc2amzXHYP8bjPNd/B8bDBe4FvhGLsTujtOPqqio+VF6eLkfKNs2YTVb2M/R39JzNmzlt9+5p/4JGsoNCrhyx55qbuX3dOvZVVtJdXEz1ccfRXVLCwGF8jcMNoEfyOWPNUhVgZpnrMR0kUm/zWltZf/fdFEej5OflTfs/5luam/mYZdFeUZGut7xs3z5eV1rq6/tlF/ABhnpDV/b28v+ef57FObqKf6TVq+GiiyA+yo5plgX5+fDe90JlJaxaBQsWKKweiU7M7mWrGfpbk5dIcPbWrdxQV5e1s527MDO4qReKFvD6jg6O3blTjxHJGgq5clRGzuK4mHZCzZjZtNGOzN3XxtN5YKRDfU4pZoFcOVAB0NXF9qeeojgeJxiLcfWZZ3JSbS1VjL1gQrNTw3UBnwA2ZLzAWPXcc3zo1FN9ff88g3mi7kqOu6arixetX8+rLr3U1+OeKKtXm565jz8Of/mLeV04Ul6e2Uziiiv8u5mEXz0B3MZQEIzH4/Rt384lTz3FjJ6erH2B/Bymlr07ebkQUwJ0lmcjEjkyCrky5eKYxW0twJaODu598kkGgTzLYvmyZVQFg1gw7MjLeD8SDrN2zRoK+vspGRjgsrPP5pjaWiowAXe0mliF1qMXBd7W1MS6eDz9AuN/YzFet3ixxyM7uMeA90cihJMvjCpiMT7S388LlyzxemhT5mCzuiP5ffc0P+gDfoLZzjbTFcCVjkNbFv+tWY9pe5bqClGMKVnIxcWbkvsUcsVzRxJAFVq9sdtxuLG5GaeiAiyLOfX13BYIcKzXAzuEP7S385muLhIAlsXCujo+W1zM+DvFZr/UrG44DF/7GgwOmsBrWaPP8IIC72jWtLTwZaAjWb4DZiHquzCtFbPZf4EvxGJ0x+MEAgHqbJtPgu9/v0XGopArIodlS3MzH8jLo6e8HNu2qQK+jKlp9rN72tq4NS+PvJISbNumCHMK9kyvB+aBVOCtqYEnnoA77jA7pR1MZuBdtsx8Hkyf8DsA3BEO871wmEHLSq8HONe2eSdmcWO2cjG7YH4voxypLB7n21VVnDrN+htLblHIFZHDthfTvSC1qGsOZickv28OshVTa5iqC7fAbF/s2Yj8YfVq+OlPoakJ/v73QwfeTNNhtnczZmOHpzPWAxQkElyfSPD2hQuzulfsIHA7pq9var1DVXc316xbxwVLl7IsSxfOiYBCrogcoY3ARzEzXPF4nDkdHXzKspjl8/KR/cDHk29TXgm8Fu3cBEcfeG+80cz0trWZrg3ZHHpjwM8xtbcuQ51dQuEwlzzzDNddeGFWl0vFMK311iQvx+NxCp57jsufeIKSwcGsXTgnkqKQKyJH7AHgcxmnOE/dvZtbjzvO90+MEcyM7tbk5Xg8zsktLbyrsJA5Ph/7VDqSwJuq8c3LA9uG++7LzqD7BKY1WHPGdTZwdTjMkh07mJ3l6wE6gE8z9DsAcB7wasehResdJEco5IrIUfnCjh38Ki8v3XHhHX193OjzXdHAzGJ9AXgkI6TX9PRwa10dK1SHeIBU4IWhmtxDhd+8PLj4YnjpS7NnZrcLsy3vv0dcvwx4O/6vPR+PvZizGZkB/mXAdehshuQWhVwROSpNjsNb9u5le21tuuPCNwKBrNhGdwC4Ze9e/jU4mA7pNcEg762s5Er0hD8embO9d91lAm9m14bMtyM3oPBT4HUxwfa70SjNfX3pbXnLgRuBC8iNx8MzwGcY6oFrAW8B3+9iKHIkFHJF5KjtcBz+Nz+fzmTHhRDwNcyGHH7X5Dh88Ykn+M/ixQzm56d30Dsd0xbq0BtVS0pm14Y//AHuvXf0vrx+24BiM2bx1YYRuyleU1XFzeXlWd05IdPIFmEVts0HyP7WZyJjUcgVkQmxB3gvpgwAzOndT2A28vA7x3FY39LCHxYswCkpSV9fBbwH873I4cmGDSjaMZs6pEoTUt0FSmMxVj37LC+fNy8nugu4mAV0P8sI8SX9/Xy1spKVtbVeD09k0ijkisiEWY3ZLSnl5Zg6v2zRjwk9fxlx/bWY76NwqgeU5Y5kA4qiIvM5kxl0+zE/498w9KIMIBGLMfOxx1i+bRu26+ZEd4EY8BXgUYZCfGVPD9esX8+FJ52UEyFeZCwHC7mj7Y4qIjKmlcArgN8mL/88HiexaxeXB4NZERYKMfWXy4DbgHDy+t/E4/yrs5M35+WxqqbGo9Fln5Urh8LqtdeObwOKvj649VY444yJr9t1Me2yfsDwFnIAZwE3BAJYxx9PY0VFTnQXaMZ0UNiZvBwIBKhsa+PSp56iOJGgoaHBu8GJeEwzuSJy2BKY9lyrk6dGCwYGeOm6ddxw3nlZFRoimKD78Ig6zSurqnhHeTkzPR5ftjtUe7LUQrUbb5yYEoatwHe7u1k7OJheVAZmI5ObgFOP7sv7zkbg80BnxnXXApc7Do5ahMk0oXIFEZlwXcAbWlvZ1tODCxT39/OpWIzLlizxemiHxQW+vm0bP83LYyAvDwsIVlZSEwxyDWbW2u+7vGWD1avh3e+GNWtGL2MoKBjqypCaCYYDtxeGoTZnqcvf/qkJuO6r+ogf05R+sXJMfT03BAJcTu6dtvwn8F3MbmZgvr+3ARd7NiIRbyjkisikeKKlhTd3dhIrKADL4qS6Or5VXEy11wM7TI7j8Kt//YuHjz2WLcnZr9QsYBB4HXAJkO/lIHNAaqFaLDZ2ve7BanmTD7P0jHBBAbgWDKZmiAtcql/ZRfFJfQQe62dmZzFLFld63tlhIg0CdwB/y7guCHwYOMGTEYl4SyFXRCbNw62tfDw/n7ySEmzbZj5mA4Zsm/10HIfGxkZ658zhT7W1bB7x8breXi7dvZsLqqp0CvgopEoY7rgDBgbGDrRHZrQvZk3JQrep0Al8YkQ5xgLgI4C2NpHpSiFXRCbVOuBTmFpdgCWYmt0iz0Z0dFzgQeBHQCtmS+BUze6scJh3zJ7NC2tqcmLjAK8cSVeGggKXhAWJfgALkjO77gGL21Lbfgw54wxYvtz7fr1HajPw8WiUZ1ta0uUYV1dV8ZHycgJeD07EQwq5IjLp/o3ZHCJlJXAL2dFDdyx9wJ+B73d00NzZmY5OwcpKTgwGeRFwIWB7OMZckLnBRFvbgTW59z8Bz/f10XllG4NAxx/LKC4uZv7/FLAA6PspxEfsxjaWbJvVdYE7gR8Cbcn2YC5w5rZtvKWqiuVqDybTnEKuiEyJP2JmP1NeCLyV7N8q9bnmZj65fTvPzpiBm5c3rGa3HLgCuBKzsYRMjAHgEeCvmFnMSEbAs4CTi4u5ub6eUxh6fGWG5SeeMF0dGhsPXOyWLbO6UeCbmLMKYM4ohPft45KnnmJBe3tO9PgVOVoKuSIyJVzMjNOfM657NfAaT0YzsRzH4RnH4el583g0GKRnxMcLgNM6O1m2ezcr6uoUPo5QGLgbuAuzW1lKqmRkRkcHK3bt4h1nnsmMcdzHq1fDBReYXdlG8vOs7m5Me7C9GdcdC9zQ0kL/3r1qDyaSpJArIlPGBb4KPJBx3Vsws525Igr8C7OjVnPyusy63ZmRCK+ZO5crKyvRthKHlgAeam3lL7EYz9bWkh8YXmVaAJwHnNXaSmDPnsMOeKnFbuvXZ8es7gPAt4DMXH45ZhOTbK1zF5ksCrkiMqUGMLswrU9e7ovHeeWuXVyZJbuijdcgZivVPwGPjzidHqysJBgMciLwAuBsyLrWapNpAHgKc/89EI2yJWNBVaocpArz4uiFQOUE/J9+n9Xd6zh8p6+PtfX16XIYG9P/9gLvhiXiawq5IjLlYsCHgI0ZM5wXPfssH1i2LKeCbspDra18bccOttXVHVC3Cyb4nsRQ4K30ZpieigFrgdXJt73J60fW254SCHBDKMQ5TPwmDgeb1b322snZang8nmxp4X8dh+by8nTQX2DbfBCYN7VDEckqCrki4okIcENrK1uTu6JZwKtcl1vmz8/6xWijcRyHLU1N7Js7l41VVTzN6J1b++JxGsJhVgQCrAwGOR4omeKxTgUXU1O6uqODB6JRdlVXkxc4sOFVPB6nc88ejmluZkljIze+4AWT/kJorFldy4K8PLj6anj/+yc/7LqYGuQvh8O0RiLp35NVBQV8YdYsiif3vxfJegq5IuKZzc3NvK2lhZaysvQM1dW2zVvJ/R3EIsDDwEPARkygyazdTd0fAdvmGMxM74nJI9tKG1zAAZ4HtmC22d0GhEf5flMz3PWYVnNnA1WOQ1Nj45QuqDrUVsOTXcIQAb4BPM7Q4yIvkeDcLVv48CmnjGthnch0p5ArIp7a6Th81nXZVVWVDjinA++HadPIvgMTeP/gOKyPxQ6o3R1pBjCnq4vylhaODwZZUlNDCO8XHrlAF2bB3bPt7TzZ2UlHbS1NZWV0jXL7kaUIJ5SUcHVdHSuBY/C+vVxqq+F4/MD+upYFn/0sfPCDE///rgVuwwTdlNreXl66Ywen19bmZEmPyGRQyBURzw1gZq3uz7huMfAxoMKTEXnDcRx+c8897A0Gaaquxl6+HKek5ICyhrFmfGuAmRnHDKD3+edp3b6d4+bO5dTjjz+iOlYX8zOKAXuam9nc2kr+jBn0V1fTDMOO2Bjjy6xBTglEo/Rv2kRDezsLW1p43UUX+S7AZe6+9pWvmN3XAPLz4eabobJy4up045he0n8fcf01wBvw/kWMSLZRyBURX3CBnwK/z7iuAbMlsL9iz+RyHIfGjFPzPZgND54BNmFO97eM0a1hpO6uLtrahzrK1lRXU1lejg0UQ/ptAOjv7ibS3U1ReTn5paUmrGJCawzTymu84XXkDG2wspJZwSDHAosyjhqgecT362erV8Ott8Lf/mZmdl3X1OjaNtx339EF3e3Al4E9GddVAe8Glh/NoEWmsYOF3IleuCoiMiYLM1tVA9yOCb2NwPuATwALPRvZ1AqFQsPCXikm5KSCzgDwaH8/v966lY5AgM7SUsrr6+nmwIVsPb29B1wuKy9nAIZtWBGPx3Ha201q6+sjVFAwaniNxWLguia8ui6xWOyA2wWA2sJCOlpbCfb0MKOri9eecQZLGb38YOT362crV5oOC3/721CdbiIBfX1HXp+bAH4UDvMLoKC4OH1/ngW8g+l1JkNkKinkisiUuwozg/UVoB+zy9UtmJZjy7wblm8UAOfW1rJo6dKhGdDiYgYwi7uaMC8OmoCn8/LY0N1NvLCQ/vx8ykpG79MwnvCaD1TbNgN9fRTH41TE45xTVcUioA4z214PlAFWSQnO7NlmfIsXE6qrm6R7Y+qtWmUWnaXqdPPyzOVVqw7/a+0EvtDTw+rOTpOaOzuZW1/POwMBLsb7mmSRXKaQKyKeOAcIAp/BzDjGgA/FYlyzdy8vLi/XynIOnAEtAGYlj9NSV9bV8WxrK9u3bmXBggUcX15OP8PLEGLA3oEB7nvySUgkKEokuOz885mNKWcIJI8CgEAAp6LChNfZswlVjD3PmE0ztIdj5UpTmvDAA1BTA088AU1Npr9u6uOH0gf8BvgD0D4wkH6BMSMc5h2RCJcsXTpp4xcRQzW5IuKp3cDHgX0ZtaDHOQ5fnDePBTkYoLw0shZYDm1kP93xtBXbhFlkuS95OR6P07p/Pyu2bWPFrl286Mordf+LTBDV5IqIb80FvgS8rbMTJznbtSUU4r0FBXweOMHb4eWUXJ15nUwPPGDqcVP6+kxv3eXL4brrhofdXuAnwD9GfI1lts2rSkuhupqGJUv0MxCZIprJFRFf2OU43LJ9O5saGoa1zHoN8HJyf+MI8aexdkaD4bO6a4DvAK0ZHy8G3ghcjmpvRSaLWoiJSFZwHIe/RyL8de5cBjO2fz0B04Gh3rORyXS2erWpx12//sDd0U5e1oe7pI/ADUWEzh/qcns68FagdspHKzK9KOSKSFZpwXReeCbjulJMaDjPkxGJjDarm/H8WeBSd4VLsCGf914Hb16p2VuRqaCQKyJZJwH8Dvhl8v2Ui4A3YU4Fi0y11avhKz+FB9dD8xoX3FSUTT2XWhQVwTe/aboywIG1uyIycY465FqW9ULg65iyuB+4rvuFg91eIVdEJspmzMI0J+O6mZjyheM8GZFMV/uBO4DHgI7V8MgFLu6wWt2hudv8/KHtgcfTkUFEjsxRhVzLsvIxu0xeAuzF1Ne/2nXdTWN9jkKuiEykXuD/gPszrhuIxTi3qYnXFxczV6vVZRLFMD1v/4zZjS6ldzUkvh/H3dHLIw9X0t9vQm5+/tCWwClnnDF6RwYROTpHG3JXAp9wXfey5OUPAriu+/mxPkchV0QmwwOYFezhjJ66ZfE4N9fW8uLqatVAyoRyMY+5HwPtIz52MXAdZuc+GFqcBrBsGbzznYfuyCAiR+9o++TOAvZkXN4LnDnKf3ITcBPA3Llzj2CYIiIHtwo4Hnh/OJzuqdtt29yWn88jwP8DFns5QMkZm4Gv9/SwcWCAQCCQ3gJ5MeaJbmSpzMqVw4Pr0qWjd2Q4WJ9dEZlY45nJfTlwmeu6NyYvvx44w3Xdd4z1OZrJFZHJtN9x+NITT/DIwoVEbZtQKJQOIedjepOqdZMcie3Az4GHMs4WYFkcV1fHW4qLuYDD65pwsD67BQVw441m5retDVatUugVOVxHO5O7F5iTcXk20DgRAxMRORIzQyE+sGwZ2/bvZ219PffbdrpW8j/AauAlwEuBwJhfRWTIPpLhNnk5FouB65KXSHDqrl3c1N7OylNPPeyvu3Il3H//6LO6AwPwve+Zy3l5YNtw330KuiITZTwhdw2wyLKsYzB/B14FvGZSRyUicgipLWrPBl6BqZt8OPmxPuDXwD2YuskLUc9SGV0zpk3dvxnW9ZbiQICQ43DGli1Ux+MsuOqqI/4/UqUMo83qpgJvImFKGVSvKzJxDhlyXdcdsCzr7cA/MS3Efui67jOH+DQRkSkzA7gF2Ah8H3PKGcxioduA3/X0cMnu3ZxbXU1InRgE89j4DeaF0MCIj50FvNa2KZ43j8bCQhoaGibkcZM5q9vUBHfdBf39JuDm5ZlFaatWHfV/IyJJ2gxCRHKKi5mV+wnQAcQzaivntbXxrnnzuLCmRjO709S25mZ+Fo2yNhTCCgwvZlkGvB5YNEVjWb3azNzW1KgmV+RIacczEZl2osDvgR+Fw7RFIriYkoVgZSWnBINci9kiuNDDMcrU2Q/8srOTX7e20pefD5aVXrB4AqasZYnHYxSRw3e0C89ERLJOMWZWbllfH590HLaEQmBZBAIBdmLKGH4MXAVcAZR7NVCZNC7wBHAnsBYIuy59+fnmBY/rUhuJcHN9PctRzbZILlLIFZGctqS+nm+5Lk81N/PUvHk8Ztuk1v2EMSvqfwtcBLwI0xhcslsUU7LyN8xq6ZRAIEDEsqju7mbltm2864wzmOHNEEVkCqhcQUSmlW7gbkwAGrmLFcAZwLWYU9ea3csu+4G/A//CbAWdyQJWAGe3tVG9ezezJmgxmYh4S+UKIiJJZcDLMEH2QeDPDHVjAHg8eczs6eHU/fu5rKKChfX1Uz1MGScXeBLzomUtw9uAAZQAlwBXAjPBrPKqqZnCEYqIVxRyRWRaKgAuwGwVvAETdtckPxaPx3msrY3HCgv5fjTKRd3dXF5WxpmYkCzecoFdwKPAXb297OjvH7b1Lpiyk2swP+NiT0YpIl5TyBWRac0CTk4ee4G/AH+MRsF1cYEE8PjgIJsxfzCXAS/AlDWUejPkackFnsPsZvcopjQhHo/jtLaC6xKxLGaEQpxj21wNnIrKTUSmO4VcEZGk2cDbgMv6+rhtyxa2hEI4lZUEkv1UBzCzvWswfzxPYyjwarZw4g0AT2FC7aOYhYKZUlvvFg4McOK+fbwuEuHSpUunepgi4lMKuSIiIxxbX89HTz6ZxsZGCgMBttg2DwFbM24zADyWPIqA47u6WLB/P6sqK1XDexRimNra1cm3IxeQpRQDy/Ly6NuwgbnNzdiuyylHsfWuiOQedVcQERmn/cDDmAVrmYvVMndVw7JYXlvL6SUlnAicCNShU+dj6QN2AI93dPBILMbuqiryRuxElhLEbLm7ElNeUgg4jkNjY+OEbb0rItlF3RVERCbATExnhpdh+q+mAu9TydPmqU0GtvX30wrclfy8WkzYPSn5dh7TM/QOArsxM+JbgS2YBWS98ThOV5d5kdDcnN6JDCCECbUrgeOBvBFfMxQKKdyKyKgUckVEjsAs4BXJY31fH/+3fTs7a2poCQbTNbwprcB/kweYBWsnYAJvfWsrRXv3smDmzJwKay7QiAmyz2NC7TbMzO1IsREvEqo7O7mmro6VwHym5wsCETl6CrkiIkdpeV0dnz7xRBobG6kOBIjYNpuAZzAdAWIjbt+DqTd9OB7H6e2FqiqKu7pYXlbGsaWlzIRhRzn+DHp9QAvQDDjJ9x1gR08Pz/f14ZaUDGvrNZZjCguJNjVRHw6zoK2N1150EbkT90XEKwq5IiITYORp85OTbwcxNaebksczDHUJyJzBjBYWsnFggD2jfO0Shofe/t276d21i4UNDZy0cCHFgI1ZjFXIkQdiF+gH4phgHgP2trayvbUVQiH6q6qGhdnwKF8jHo/jtLWZ0oOurmGlB2BKN44DFiWPY4HSkhKc+fNNbe2pp+bUjLaIeEchV0RkEuVjgtyxmM0JXKAJE3gftSzu7e0lXFxMIi/vgDKHlF7Mqf5tQHdXF22uC3PnAlDT1UVZeXn6thYQGOMY6Ooi0tWFXVFBQVlZOsjGgWjybSLj/42nZpqLi01gHcfMbGZwL4nHWdDeznkzZ6ZDbeUYn6faWhGZaAq5IiJTyGJoRvaiigpujEbZ29iIPWsWg7bNfkwI3p9xZJY79PQOb6rV09s7LOS6mMAaHfH/xuNxnI4OM8Pa3k6osPCwAqvlusRisWGfk4eZma3HLBCrA4oSCZ5Zt46Knh4q+vq4+qqrVHogIp5QyBUR8dDIGcxTRnzcBSIMBd61AwM8vn8/PbZNf34+dRUVBBiajR0Y4/85VGBNKcCUPgSA6sJC9nV3Y/f1URGLsSoYZBFDobYaM1M9TFUV551zjtp6iYjnFHJFRHzMwpzir8R0ZLhw1iye7exk+/btLFiwgBOqqobdfpChetrMY9/AAP9++mlIJCh0XS4+91xmM7ycwWbEk0JJCU5trQmsCxYQqqwc15hVeiAifqDNIEREpgltnCAiuUabQYiIiGZYRWRaGbl5jIiIiIhI1lPIFREREZGco5ArIiIiIjlHIVdEREREco5CroiIiIjkHIVcEREREck5CrkiIiIiknMUckVEREQk5yjkioiIiEjOUcgVERERkZyjkCsiIiIiOUchV0RERERyjkKuiIiIiOQchVwRERERyTkKuSIiIiKScxRyRURERCTnKOSKiIiISM5RyBURERGRnGO5rjvxX9SyWoBdE/6FJ18t0Or1IMRX9JiQ0ehxISPpMSGj0eNi8s1zXbdutA9MSsjNVpZlrXVdd4XX4xD/0GNCRqPHhYykx4SMRo8Lb6lcQURERERyjkKuiIiIiOQchdzhbvd6AOI7ekzIaPS4kJH0mJDR6HHhIdXkioiIiEjO0UyuiIiIiOQchVzAsqwXWpa12bKs5y3LusXr8Yj3LMuaY1nW/ZZlPWtZ1jOWZb3L6zGJP1iWlW9Z1hOWZd3p9VjEHyzLqrQs6/eWZT2X/Jux0usxibcsy3pP8rljo2VZv7IsK+D1mKajaR9yLcvKB74NXA6cCLzasqwTvR2V+MAAcLPruicAZwFv0+NCkt4FPOv1IMRXvg7c7bru8cAp6PExrVmWNQt4J7DCdd0lQD7wKm9HNT1N+5ALnAE877rudtd1+4BfAy/yeEziMdd197uuuz75fhfmSWuWt6MSr1mWNRu4EviB12MRf7AsqwI4D7gDwHXdPtd1w54OSvygACi2LKsAKAEaPR7PtKSQa4LLnozLe1GYkQyWZc0HlgGPeTwU8d5twPuBhMfjEP9YALQAP0qWsfzAsqxSrwcl3nFddx/wZWA3sB+IuK57j7ejmp4UcsEa5Tq1nBAALMsqA/4AvNt13U6vxyPesSzrKqDZdd11Xo9FfKUAWA5813XdZUAPoLUd05hlWVWYM8LHAA1AqWVZr/N2VNOTQq6ZuZ2TcXk2Oq0ggGVZhZiA+wvXdf/o9XjEc+cA11iWtRNT1nShZVk/93ZI4gN7gb2u66bO9PweE3pl+roY2OG6bovruv3AH4GzPR7TtKSQC2uARZZlHWNZVhGmOPyvHo9JPGZZloWpsXvWdd2vej0e8Z7ruh90XXe267rzMX8n/u26rmZnpjnXdZuAPZZlLU5edRGwycMhifd2A2dZllWSfC65CC1G9ESB1wPwmuu6A5ZlvR34J2YF5A9d133G42GJ984BXg9ssCzryeR1H3Jd9x/eDUlEfOodwC+SEyXbges9Ho94yHXdxyzL+j2wHtOp5wm085kntOOZiIiIiOQclSuIiIiISM5RyBURERGRnKOQKyIiIiI5RyFXRERERHKOQq6IiIiI5ByFXBERERHJOQq5IiIiIpJzFHJFREREJOco5IqIiIhIzlHIFREREZGco5ArIiIiIjlHIVdEREREco5CroiIiIjkHIVcEREREck5CrkiIiIiknMUckVEREQk5yjkioiIiEjOUcgVERERkZyjkCsiIiIiOUchV0RERERyjkKuiIiIiOQchVwRERERyTkKuSIiIiKScxRyRURERCTnKOSKiIiISM5RyBURERGRnKOQKyIiIiI5RyFXRERERHKOQq6IiIiI5ByFXBERERHJOQq5IiIiIpJzFHJFREREJOco5IqIiIhIzlHIFREREZGco5ArIiIiIjlHIVdEREREco5CroiIiIjkHIVcEREREck5CrkiIiIiknMUckVEREQk5yjkioiIiEjOUcgVERERkZyjkCsiIiIiOUchV0RERERyjkKuiIiIiOQchVwRERERyTkKuSIiIiKScxRyRURERCTnKOSKiIiISM5RyBURERGRnKOQKyIiIiI5RyFXRERERHKOQq6IiIiI5ByFXBERERHJOQq5IiIiIpJzFHJFREREJOco5IqIiIhIzlHIFREREZGco5ArIiIiIjlHIVdEREREco5CroiIiIjkHIVcEREREck5CrkiIiIiknMUckVEREQk5yjkioiIiEjOUcgVERERkZyjkCsiIiIiOUchV0RERERyjkKuiIiIiOQchVwRERERyTkKuSIiIiKScxRyRURERCTnKOSKiIiISM5RyBURERGRnKOQKyIiIiI5RyFXRERERHKOQq6IiIiI5ByFXBERERHJOQq5IiIiIpJzDhlyLctabFnWkxlHp2VZ756CsYmIiIiIHBHLdd3x39iy8oF9wJmu6+4a63a1tbXu/Pnzj350IiIiIiJjWLduXavrunWjfazgML/WRcC2gwVcgPnz57N27drD/NIiIiIiIuNnWdaYmfRwa3JfBfxqjP/kJsuy1lqWtbalpeUwv6yIiIiIyMQZd8i1LKsIuAb43Wgfd133dtd1V7iuu6KubtRZYxERERGRKXE4M7mXA+td13UmazAiIiIiIhPhcELuqxmjVEFERERExE/GFXItyyoBLgH+OLnDERERERE5euPqruC6bi9QM8ljERERERGZENrxTERERERyjkKuiIiIiOQchVwRERERyTkKuSIiIiKScxRyRURERCTnKOSKiIiISM5RyBURERGRnKOQKyIiIiI5RyFXRERERHKOQq6IiIiI5ByFXBERERHJOQVeD0BEREQmngsMAgPJYxDY19zMfsdhZijEzPp68iB95I943/Jm2CITRiFXRETEBxJAFxAGtre1sbu1lbK6OuzqanqBKNA7ytHe20skGqWopISC4uJhoTZTPB7HicWgogJiMULxOLZtjzkeCxiIxRiIRqkKBKguLqYYxjzi4TDR1lbmV1WxsKaGSiAIFE3M3SNy2BRyRUREJlEU2NjSwub2duz6eqyqKsKYMBtJvk2975IMoz09EAhAdzeh0tIxw2g8HsdpbQXXhZ4eQqHQmLeNxWLguriA5brEYrGDhtxYPI7T3Ayui9PVddCvHY/HcTo7obDQjKOsLH3bEkzYrUweqffdjg4Szc2cWF3Nkro6AmOOROTIKOSKiIgchT6gBWgCnFGO1ngcJxo1obWri1BJycHD5WGE0UPdNj95FAJ2UREDfX1YiQRuXh6hoiIKMTPICczMbyLjmKhxpGac92fcPh6P43R1mfskGiUUjxOybWYAM4BQ8m3qqEHlE3L4FHJFRETGIQbsALYDT3Z2sjUaJVpRQW9x8cE/7zDCYhlQXVhIczhMUX8/9uAgp1VVMQNTElAy4ujp7+fhRx4hr7+fQsviyssuowHz5H5AXW1xMU5FBY2NjTQ0NBA6yLhdoCkW46/33UefZTFYVMQLLr2UMobKJqLJI4YJ+I/v2UOsoICobTOjro4+zAx1Ypz3Sdi2CQPPjXL7AqCit5fycJglpaUsCwY5Bqgb+T2KZFDIFRERGaEDE2Yzj/1klBOEw6ZEIB4/6Gl8gDLbJq+3l7JolNL+fs6qrGQew0/hVyYvFwCUlODMmGHC6Jw5hCoqxh5obS0LLrxwKLjW1x/0+wqFQoRCoUN+/xYwMxTi2iuvHPradXVjf0IwiLNo0dBtS0oAc391c2Bpxm7g4X37iAQCdJWUUHKIMfXE42xPlmU8GIkQCgSwbZtS4JjksSD5di5m5lrEcl13wr/oihUr3LVr10741xUREZloncBD7e2s6+oiUlNDc1kZHQe5fSQSIRIOm1lIoLKykoXBICGGTrOHMo5qoNlxhgLgOELmdOBk3Cd1oRBtmBnhzMNJvt094j4PVlYSDAZH/br5wBygtquL6uZmzqmoYFldnWZ8c5RlWetc110x2sc0kysiItNKM/AMsCn59vl4HKe723ywvZ1QYeGoM7N5wGygPi+P5q1bqYlECMbjvOqii5g1RuBKGe8M6nQy8j6pSx5LR7ntrliMXz32GC2lpbRWVFBVU4ODmSUeaRDYHI/z344OKCjgB9Eoi6JRTi8uZmny689GZQ7TgUKuiIjkLBfYgwmzqaN1xG1Gqw+tsG3mAwsxp8AXAvNItsMqL8dZulQzs1NoXijE9eefP3Sfl5XhAm0MlZPsSB77OfBn2tzXx0PFxTyU/HpBSAdehd7cpZArIiI5pRlYB/y3u5sn+/oYPEgLLoBS26a4s5MZ7e3M6O7mVWecwSkcfEtQzcxOvZH3uQXUJo8zMm7XC6zr7+e3W7awt7KSxupqAoHhDcoiwEPJA0zond/VRYPjcElFBYsOUdss2UEhV0REslofsAFYjwm3+0guDmtvN4vDuruHLQ4LAMcDJwEnAosDAcL19TQODNBw/PEHX2AlvlcCvKC2luNOPpnGxkZmlpURs202ABsxj5WuEZ/THI+zoaMDCgu5PRrlvJ4eLiktZSUmREt2UsgVEZGs4gKNmEC7DhNc+kbcJvN0dXFfH4va2rikoYGTMOUHI5/8NDObe0b+TOcDV2MeP7tgWOiNZDxeAJ4cGGAHcDuwGFgJnA3MnLLRy0RQyBUREd8bwASSf3Z2srq/n96MHbVGKgLOyM8nvnkzs1tbqYlGufqqq1CEFTBlDvMZHnrX9vXxk61beb6ujqbKymHlDZuTx4+Tn3N28piL6nj9TiFXRER8aQB4CngYeJTkzmGp/rQjtrCdAywHTsOUIRSVleGccooWh8khWcDpdXXMTS4mLCkuZrtt8whmlncw47Y7k8cvgareXhY3N/PikhJOVA2vL6lProiI+EY/8CRDwbYn42OZ/WmLBgc5KxDgqoYGlgOKGDIZuoDHgdWYmu/+5PXxeBzHccB1yQMur67mFeXlnIJmd6ea+uSKiIhv9WECxMPAY5itYkfTUFTEMbt3c4zj0NDZyYuuvFIlCDKpyoGLkkcUUwP+CPCv3t50DW8CeCiRYAMwC7gcuBgo9WbIkkEhV0REppwLPAvcA9wXixGJxwkkt2rNVA+ckzyOKy6m+bjjaCwrUwmCTLli4Nzk8eq+Pr799NM8PXs2+2pq0jW8+4AfAD8FVgFXYHosizdUriAiIlOmA/g38C8yWn0lT/tiWYRCIebbdjrYLkSnf8WfUtsSu7Nns7aujvswPXpHWgxciXk8F03pCKcHlSuIiIhnBjHlCP8E1mBO76akWn1V9vSw0HF4SVcXV550koKt+F5mi7LlwHXAf4C/Y3ZeS0l1Z/hmNMopzc28qriYxVqoNiUUckVEZFLsx8zY3ge0j/LxYuBsyyLx+OPUhcPk5+Vx+oknKuBKVgoAlwGXAs8B/8DsqDaAOWOxu6WFbcDfenq4IRLh+mCQwNhfbtxWr4af/tS8f911sHLlBHzRHKFyBRERmTCDwN/a2/lrXx97q6pG7WV7EnAJ5vRtgKHTvqqzlVwTwbzQ+3lbGzu6u3Ex5TfBykrmBYO8BvO7cKQzjqtXwwUXQDxuLhcVwQMPTK+gq3IFERGZVP2YWtuf9/bydHe3qbF1nHQv20rMCvVLMCvQM2m3MclVQeBlwDkDA3zrqadYvXAhbeXlBAIBwsB3gL8AbwTO5PDrzx94APoytvvr759+IfdgFHJFROSIxTC1tn8C2oBIf3+6tVJeIsGxbW28oaGB09ATjkxfM0Mh3nnmmbyksZEd5eX83bZpTX5sH/BZ4ATgf4DjD+PrrlplZm9TM7mFheY6MfQ3R0REDlsPZoHNX4DOjOsDgQDxgQGW7trF0n37eNWll6qXrQhDZyxOA64B/gr8jqGODM8C/4vZMvgNQMM4vubKlXD//XDrrbB5MyxePBkjz14KuSIiMm4RTLD9Owe2S6oEXmzbLC8ro6OqioaTTlIZgsgoijBlDJcCv8X8Pg0kP/YIZlOUFwKvxpQ8HMpdd5nZ3GefhX/8QyULKQq5IiJySK2YkoS7MTuUZarDPGFfTLIPaCjEfIVbkUOqAG4ErgJ+Bvw3ef0gJvj+PRbjvP37eV1JCTPH+J1SXe7YFHJFRGRMEeDbnZ3cm0hQUFw8rFvCLODlwPnoyUTkaMzAlCpcC/wQ2Ehyo5TmZn6el8f9TU182bI4cZT+uiPrci0LamqmauT+luf1AERExH9cTLeE66NRfhMO0xaJ4DgO8XicBcAHMCvDL0IBV2SiLAI+B3wMqOzsTC/i3FdZyXsLC3lklM9ZuRK+8Q3ISya6RALe8Q7TXmy6U8gVEZFhmoGPA18DWvv60k+0Mzo6eMOOHdwGnIueQEQmgwWcDtyWSHDW9u2mrZhlkSgp4fPAt4H4iM9pazNd+1JSJQvTnV6Ai4gIYLbb/RumNjD1JBoIBHBjMc7ftIn57e1cfNVV2pFMZAo0hEJ8CniorY3fH3MM3clSobsx5QzvB45J3latxEanHc9ERISdwDeBLRnXWZhWR5c4Du3akUzEMz3AtzDbBKcUANcDV2N+V1Pb+zY1mY/PmDE9tvk92I5nCrkiItNYP6aF0e8wK7pT5gHvANR2U8QfXOA+4HuYTVhSTgPeg2k1Nh23+T1YyFVJlYjINPUs8E7g1wwF3ALgtcBtKOCK+ImFadN3G7Aw4/p1wNuBJxi7ndh0pZpcEZFpJgr8BPgHZnYo5QTM7O0cLwYlk8bFbDQwADQ2N7OvqYmGGTOYUV9PHpAP6bdW8hD/mgV8Gfgppnc1QBjTkWHBim4KCkvo7zM/yelem6uQKyIyjTwNfC4apbGvj0AggG3bBIA3AleggOMHLmar5Aiwra2NHW1tlNXVYVdV0QvDjmjybWtvL+3RKEUlJRQWF6dD7QBmQSEk+67GYhAMQixGKB4f1vc4xcIE3v5YjERvL9WBANUlJRTDqEdfOExfayvzq6pYWFNDJebUedEk3T9iwtv/AMuAr2JCbjwe54HF7Sz7/n5iXy8k323gkkuK0jO5uVyyMBaFXBGRacAF7gS+HYuxv6UFXJeIZXFpdTXvLyujzusBTgMu0AE4wKb2drZHIuTX1JCoqCCCCSphTLh1SYbSnh6wbejqIlRSMmoojcfjOK2tpodUTw+hUGjU28VisXQ7OMt1icVio97OBXqSGxHguuzr7h7za8bjcZzOTrOcv6eHUFlZ+nYlmLBbmTyszk7y2tpYHAxyYnU1M4By9MLqaCzDLEi7Dbgv+fNtLStj5zMh3D6LJ54w/XNtG+67b/oFXYVcEZEcNwB8F7gH6I3HwXUJ9PVx3nPP8erZs6lbtszjEeaOnY7DU21tWDNm0F9dTTMm1DZh+g/3kwyG3d0mfYTDhGz7qELpeG5XAARtm9jgIFYiAZZFlW1ThJnpTWDqst3D+JqHul1qtnl/6nsOh8333N1NqLQ0fRZhRsYRAgrb2ihobOSk+npmqJvHIQUxpQqzXZdvWBa9jwZIDFjgmpcPiYSp0831BWijUcgVEclhEeCzmEVmYPreBrq6uGL9esr7+5l1xhkeji67dQDbM46Nvb08HY9DaemwIDfSeAJkGVBdWEhLOEwgHsdOJFhRVcUMzAxp5tHb388jjz5KQX8/BcAVl15KA+YJPp+hWlsCAZzSUhpT7eACgQPG5mICb2Msxp3330/cshgsKuLcSy6hFFMekXk0AY/u3k1vYSGxoiJCdXX0YR53md06xvqeY5j2dTuTt0vPXldUYPf0cFZPD0tLSzkGWICpFy8c589nOrGAGyorKXJdvnJJIc3fgkQcSJjXFUVF07M2VyFXRCRHbQc+DbRmXPdC2+bldXW0Ll2qvreH4ZnmZh4Lh+kJhWgLBtmOCbmZIv39hwyv5cDMggLampspi0Yp7e/nwuXLOYah0/pBkk/OJSU4M2YMhdKKitEHV1vLcatWDd2uvn7M7yMUCh30Z56qx50TCvGSyy8f+pq1taN/QjDIi487buh2JSVAsuSBoRKMHYOD3LN5M52BAF0lJVTX1RFheCssGB6G4/n5PDkwwI6Mj+djgu4xQHU4TLCxkTNqapilxzEAr6+qouIS+NJ90PYAFNZAwRMwp8n00IXpNZurPrkiIjnoIcy2vKluQhZmcdmLUQ3kobjAXuAZzM5Sa6NRnk3WMWNZB61PbWlqItjTQ2U0yrmLFrGoooIQ5jR8PVCavK3jOEPBcJoEtJHfswt0YWaDU8fWzk4e3rGD1tJS4kVFB68FdhxwXQoTCc6vq+OssjKWAseiGbw/AT8EOlbD6guSs7rkZt/cg/XJne6PAxGRnOICvwB+k3FdCfC/wKjPAsIAsA3YhAm2mzDhKyXS1zfqDK0N6dPoC4AFtk0gEKC1vZ2G2bPHnnnl0DOquWjk92wBFcnjuNSVFRU4M2awr7ERe9Ysum2bHcAOzJmJ5GZew2Z8+/PyWDM4mN6tL4Bph7c0eUzH0PtiTLnIRx+AxCh9c3Mp5B7MdPu5i4jkrCjwFeCxjOtmAR8BZnsyIv/aj2mivw5YE4vRGY+nW6qNFAgE6E0kCIXDhDo7uWbpUk4HZjLKjkqhEHOmWXidaCPD8JkZH+vF1O+uSyS4c/9+9lVV0VVcTCCjvjiG2RjhCcyMr9vby5kFBVxaXs4KzIu+6eBlwHOr4ONFQzO5rgWPPm52RpsOQXdc5QqWZVUCPwCWYCYK/sd13dVj3V7lCiIiU2tDSwufBsIVFemgthwzg1vm5cB8IgZswITa9ZiQC8NPe2eWIlQAJwInJY8Sx6F5mpUX+F2q/KFw1iyc+no2YH7GzcmPj/azLbVtlgFnY8JzuVeDn0KfWg3fuRWcv5JumpxLZQsTUa7wdeBu13VfZllWEdPnhZCIiO+tbWnh7ZEI0cJCiEYJhUK8yrZ5A2ahznTkAk+0tHB/Vxd76+vZWVbGwCi3S532Lo9GaQiHOa+vjxcdeyyzGVG7HAppcZPPZM74LgEuSl7fjAm7d7e0sDoapTMQGFZmsgZYg5mFX4oJvGcB1VP+HUyNj62EZ86A3/5l6Lq+fvj3A7kRcg/mkCHXsqwK4DzMmgVc1+1jaC2DiIh4aCfwsfx8ooWFuEB+IsFLd+/mfxYt8nhkU8/F1G4+DNzb28uT0Sjk50N7O6HCwmGlCAHgZGBBIkHTww9T0dNDXl4eV111FYqy2a0eE3iXFBZy50MP0VpczPYZM0icdVa6phfMpOZTyePr8TizOjp4UVERV1ZX51wt57tWwR+LYCBZtkAe/GU3nLcaXpDDQfeQ5QqWZZ0K3I6pxT8Fc7bnXa7r9oy43U3ATQBz5849bdeuXZMxXhERSdqOqbdtTZ6WLRwY4EXr13PTC14wbU6pu8DzwCOYcJsqQ4hEIkTCYbNYDAhWVnJKMMhy4DTMwqRUv9Xp2Olguhj5s20CVmMeL88lbzOyrOG4ujquKS7mhZBTOwHefju85a2QSDUwznMpKHL5w+/DXHNl9s5jH6xcYTwhdwXwKHCO67qPWZb1daDTdd2PjvU5qskVEZlc2zABtzt5OS8W443bt3N2TU3OB7Umx2F1Wxs7Z81iYzCYrsHMFI/HaW9sZG5LC8e01uQy7AABAABJREFUtXHjaadxwkH6x8r0044JN39oamJdLEbCstIviILBIBZwBnAlcCrZ33rv85+Hj34UBgeB1Mu/fJcV1+/gzs+UZu3fjaOtyd0L7HVdN7Vg9/fALRM1OBEROTxbgY9imu2D6b366UCARSee6N2gpkAr8IdwmF+Ew0RKSyESITSiI0IxZkHRubZNQ0kJrYWFNCxfftANEmR6qgauAE6zLH794INsbGhg05w56U4NLqZTyWOYThorw2EW7drFohkzsjIQrlplFpzF42arX/JcrEKX8OXFPN7aytVZ+D0dyiFDruu6TZZl7bEsa7HrupsxpS6bJn9oIiIy0hbMPvWpgFuG2dXsWM9GNLkGMCHjX5iuCGHLIhIIDOtZW23bnAWcg5lxS2/7qnZeMg6hUIhXXXopjY2NhIJBdtk2/wCezLjNznicxzo7ya+oYPlzz/Fh4Jgse2ytXAn33Wd2Ptu5K8b6WJyBmXm4lsVfjzmGy8m9vrLj/X7eAfwi2VlhO3D95A1JRERGsxkTcHuTl8uBz2A2Isg1u4F7gPuBzozrA4EAEcvC7u/n2OZmri8r40Jy78lZplZmp4YGYCWwD7gLuBeIJLtwDOTlsWb+fN5WWMhbgReSfY+9n/wE4vFiEokA5EH4T+XMuM/iTyvh5V4PboKN62fjuu6TaLMcERHPPAt8HLPhA5iA+1nMjlu5oh/4U0cHd/b10VRZOerGDGfYNivKymjYvZt5CxYQqqmZ+oHKtDALuBF4HfDXRILvdXfTWlYGlsVAaSnfA/4KvAHThiwbanYfeAD6+pLlCliQMBtFtD0Av1ppWqnN8XSEEyvbXoCIiEw7/21t5dP5+VglJemNCj4LzPd4XBMlBtwN/DIaZXNXl1nl7jjpjRlqgYuTRwigutocIlMgALyiqorz+vr4a2cn98+eTXfyBdh+4AvAYswp7pO8G+a4rFoFBQWpxWdJCSisMS8yvwF8kVF28stSufJ9iIjkpMdbWnhvVxfNnZ04joMdjfI5ciPgdgO/Bv4HuANo6usD18UF8hIJjm9r4xPJj70W1L9WPDUjFOKmRYv4SXEx/4NZ8JmyGbMi/5bubu7euNG0JPOhlSvh+lEKTgfbzNvngDundESTSyFXRMSnwsBn8vLoz8vDBYrjcW7Yto15Ho/raHUAP8bMfP0C6EpeHwgEKO3r4+wtW/if//6XD+fncxp6ohJ/KQJeDHw/+TZ1Sjwej3NXezsfKi3lM089RZNPg+5110Fh4dDl/HxYmVH181MYtmlGNlO5goiID/VhShJiZWXQ00PRwAAvWb+e5atWeTyyI7exuZlfxuM8VVdHXrJNU0o98DLbZklFBa21tTScfHJWtmmS6aMccxbiKuBnwF8yFqf99/+z957hbZxn2vY5YJkh2MA6IqlerV4tW26R3GRZcklcUje9bupm8yabLd9md7P7bvJussk6u0m8qY4Tp9lxHDvutmI7pi3LXbZl9UKRBEl0EMCwYL4fzwAYUpRESQBnCD7nceDgDAgStyACc80913PdixYxlE7z70Cto1WOjWIzEKfT8IvPwdXLwdgABnALYlHrZPAZnwx5giyRSCQuwwS+g7h0qKoq03SdvxoY4H0bN05K4TcEfD8c5r2JBPel03T09GAYYr7oDODziLGaW4AZus7q1asn5b9TMjVpBv4a+H+DgzTF40IYKgr76+v5NPCio9Udz/btIz25pikWo83anhO1ryDSTSY7UuRKJBKJy7gTEZ2V4S9VlXefc86kFH57gb8Cfq4oDCsKJoBp0hyJ8HfAfwObgBIHa5RI8sF5jY38pLGR6yG7aDKEiP37EWJhlxvIDIXwWArQ4xH7N26Et9ke90PEAJbJjLQrSCQSiYtoB35q278SuNahWs4GA+G3vRvRmc7k2+qRCBfs28cnLriAaY5WKJHkn+m6zj8hBpf8J8JXD/A74GXgi4hoMifZsAG+9S24805oaoLeXrjhBnH/WsRnUCcirvB/ENMVJ6ttQTFNM++/dN26debOnTvz/nslEomkmDmAOAga1v4yxDSzydaNeAXh6bMvXlGBa8Jhlh08yPTW1knZlZZITocIQug+b7vPTKXYdvQob62pcew90N4Ol12WG+/r8YCqimloGzbAa4ikCBCL6W46coRrHaz3VCiK8rxpmmPOcpB2BYlEInEBIYSgzQjcFuBvmVwCtx+Rs/l3jBS4KxEe4/f5fKyVflvJFKEWMcDlo4j3sWEYHO3p4bvl5Xz1lVccixkbORBCfB0YEPeDyPrdZtXr9/v5gaLw6wcfdG0s2smQIlcikUgcJpOkkPG/eRGXCKsdq+j0eRn4QDLJbyOR7KKySuCzCPEurQmSqYgCXAN8E/BFo9kc6CcWLuSX8bgjNY325IIYEGEPbnkf4I3HwTRJlpXxalsbnZ2dE1zp2SNFrkQikTiICfxrLMYOSxwqCMvCZBmtaQJ/AL6USvFmby+RcBi/38+KWIzvIqaUTVY/n0SSL+YAX0+naYlEsukL902fzh8dqCXjybXHiI2YgIaY8vY+RQFFQQFemzGDaa2tE1hlfpAiVyKRSBzkZ+Ewd4dCWXF4UyjEWqeLGidDCBvCrUDCMMA0qRgYYMuLL3Ljvn3UOVyfROImZus639V1VmpaNn3hu4iR1hNNIJCzK4AQuRm7QoZt9fXMb2qi1uejctYsOiahzUiKXIlEInGIDqwkBesS5tKjR1l66JCjNY2XCMJ7m8nS1DQNPRbjHe3tLOjro3USdn0kkkIzxxK6y1U1e99/M/GZtBnLQoayspF2BYAyYFtFBbW1taiqyv0TWF++kCJXIpFIHGAYsfK6pKICFIWmWIyNb75J2yQQhwcQ2bev2+67SlX5YVMTb1m+nG3btsnFZRLJCagE/hlYYLvvO8AjE1jDhg3w+ONw/fWweDFcffXYj7vKtr0T6J2A2vKJFLkSiUTiAHcCexATzdqam/m8onDd1q2uF4dPITzDmYOdAnwAIXrltDKJZHxkhO48a98E/p9hcOvevROaYnD//fDGG3D33aKT294+8vstwCpbjZNtCpoUuRKJRDLBHATusO1/UNPYunSpq8WhCXw3EuFvIxGiVnqCFzHN6W3IxWWTgTQiyeOQ388zL73EUb+fIcT/rWTiqUIkj8xFxHV1+/18r7SUnz322IQI3UyUWIbBweN9uSDGbWd4COHFnyxMpghGiUQimfQMIuKEMgeKRcBbnStnXJjAf0aj/DQSAdMkoiisbGzk37xepjtdXBFjAjHE1KwwcCAY5GgoREVDA6rPRwKRTZxATKdKAIFEgnAyier1UlZRwRBkbyZW9qlhQF0dGAa6YaBa/tASROdrIJViMJmkTtOor6hAAyqsm9f6OhCJMBAMMsvnY05dHT5ELqwPsFk9JaegGvgq8KFoFL9pMuTx8PCSJWzq7Cz4SW/Gl2uds6IosGOH6OZu2JB73HqgDpHlHQR2ABcUtLL8IUWuRCKRTCC/BA5Z2+WIy/wljlVzakzgf4G7TTO7QG5mXx8fC4WYvnKlw9VNXgYQlg8/0APsiUQ4FI9DbS2DVVVEEIv7MgvgDcPAH4+LQNNoFL2iIitOsT+mrw9ME/r7syv47aRSqez/o2KapFKp7GOGESkZ/p4eME26Y7Exf4dhGPgjERG0Gouhe70jHlOBELtl/f2UhcPMr6piUW0tOiIvuRF5GdlONfAF4GOI/+/uujper64ueMpKxpf79a/DPfeItIW774Y//lF0dDNCtxS4Avi19XMPIEWuRCKRSEbxJvAb2/77cX6O/ckwge8D9yHSEyKKwoLubjbv2sX8rVsdrm5yEEQs1HshHGZ3fz+Gz0e8spKg7TFZ0WiaEAyil5Wdljgd72MUoFpVSaTTmKaJ6fFQWYDnSQJhw8AfCIBp8ngkgq5p2ceUAk1AVTxOZTDIyupq1tTVMQOxon8qsr6piY9EIvwS8V77vapyJVBoA9OGDbB+Pfz+97n7MrYFezd3M+KzywReBLoQfl23I0WuRCKRTAAGIk0h439cjhid6VZM4LuQjQ1SVZVr6+q4LhBgxiRYIDfRdPv9vNLTQ6qtjVB9PQeB/QibgWEY+K1pVwQC6KWlI0ThyURjJaIrOru0lM6eHtSBAdThYc6vraWVnH3ACyQGB/lzezuewUFKga2bN9OKONCXYnVPNQ2/10tnZyetra3omgaI/+9hoCuV4r7HH2cQGCor4+Irr6SanB0iCXSm0zy9bx+J0lJSqsr0hgaGINt9HjrFv2kIOGQY+INBME3usbrBXlVlBmJwQn04TEVXF+fX1zNrivytfbS2lteAI4jPi+8gFqcV2u8+2rYwVpxYM7AWkbAA8CDiJN3tKKaZf8v5unXrzJ07d576gRKJRDJF+AGQaZZoiGzMZufKOSkm4gBrX0n9FtxvrZhIhhAd2teAZ+NxHvf7SZWWgqIcd4k/EokQCYeF4ANqfT58tbU0If4GvLEYHTt3UplIUDk4yLaLLmJeYyM+Rnai/H5/TpyeQPiN5zGn4myex0T4hPf29vL7J58koqrEKitpW7uW/upq/AjhP9ZrUltbC1gnBX4/mCYe4PzGRs6vrGQ5sATx/ilW9iCsCxll9hmEVaDQtLcL20JnpxC4Pp/4au/m7kAslAPhv/4x7ui8K4ryvGma68b6nuzkSiQSSYHZBfzaMEilUmiaxqdV1dUC9xbgYdt9m4DPMbV9lEf8ftqDQUKtrXTU1vImkLK+FxkeJlVaOmbXUgNmlpYS7eigIRrFl0xyw8UXsxjbAbi6Gv+SJTnR2Ng4Zg26rp9SuI7nMafibJ5HQaQGrG5qovXCC3P/purq7GNSwK6BAe56+WV6KysJ1NbibWoikvm+rQucBl4bGqID+C3ib3ABMDMSQe/q4qK6OtqKqNO7ELge+J21/wNgDdAwAc/94IOim7tjh7Bbqyo8+mhO6K5D+Kn7EB37duCSCajrbJAiVyKRSArIMPCNRCK7IMgXCLCirQ1ceGA2gX+NRnnINNEsD+VliG7SVBO4JmIi3QvAn+JxtieTDHu9MMpfCjm/csXAAM2xGFf4fKxGREO1AJ7KSvzz5+cEX1PTcc+XD3HqNk70b9KAdU1NzDjvvNxr4vWSQCzKfD6d5o+dnfhraghUV6Npud5tGnjFMHg4EoGKCrR4nG1eL1dVV7OS4kh2eDfwDML3GjIM/iEQ4P8rKWFaAf8+MnFimVG/6bTYt3tzPQhv7s8R3fafhEIssq5cuBUpciUSiaSAPALsHxwE06R0eJhNu3bRpSgFPWCdKbeGw/zG8o5GFIWbfD4+U1MzZQRuAngZIWyfJzfwIjI8zLCiHNepbQaWAktUleaKCggEaGttRbcuu9spRhF7tox+TbwIO8KSujqunDuXzs5OajSNHlXlVcQVkYOM7PSmSkt5OJ1mB0I8nwucEwzSfOQIc1paJuVrriJOLD9v2Tb8psmt7e187KKLCvbvsfty02kRJ+bxQMOoFvIVwE9SKfw9PfhNk18/8QQ3X3mla19nKXIlEomkQCSB28l1+tYePEjN4CCtLhzd+xTwc0XJioclHR1cHQjgWb3a6dIKShB4Gni4v59XBgcpGyOaK/P/Vx+PMz0c5obqai5GXLrN0tQkbpK8YBfA84CMNTQGPDk8zC+PHmV/UxPxiopspzcFPGIY/Dwep7SmhsX79/NZj4dzJ+H/yzJgRW8vD1vvx1fb2ugsYHbuhg3wrW/BJz8pRK5pwtAQfO5zsHx5rpvbAOiRCF1WXZ3V1QWt62yRIlcikUgKxF2IRTaqqnJOUxMfCgaZvWyZ6w4IexHJDxkxN7Ovj0t376atSGPCehHC9s/AG1gLnay4K6LR7MIxL2Kk6VpVZbqmYQQCtM6bh15f72D1U5tq4Or6etYuWMCxzk5SDQ3sUVWeRlzez3R5B0tKeLWtjb8uL+d84GrgQtyxUGq83KxpPJxIoJgm+6dNo9rrLejzZd4CGUzzeMsCwCpN4yXDQDFN/HV1rjxpzyBFrkQikRSAPoTIzfDRigrOW7XKoWpOTAAxcWkAIcZXNTby0VCI+UUWE7arp4cH4nH26zodlZUjvme//N0ciXBxOs3bZs9mEbaDZHOzuElcgb3TewHwPuAwIvLuV4kEIa8XFAVN03gDcTLznWSS1X4/76yoYO4k+Nte39jIhv5+Xh8aQtM0XlVV5hfw+TZuFLNGMp1cEPuj48TOq63lfk0jlUpRtW4d+qj3k5uQIlcikUgKwO0I4QhiAdKlDtZyIgzgXyE7mKAS+Devl7YimWQ2gFgB/rt4nMdTKSgpOS6nVgHWlpRg7t7N7O5uqoeG2LZtW8FD+CX5RQFmA5+oreWtqRRPBoO8Mn06r6oqw4hu/ZHeXvYqCvfE43xSVXmXz+d6EXRDZSXHrO0HEMkLhczNtXdyLffScZyDOCFWVZVjiMW1bo0WdPv/r0QikUw6DgCP2fY/ROED3U8XE/gWwqoAYuX0l3H3BLbxsh8RgbYdkdkaGR4eMZhgMJlkg6pyIXAeUFtVhX/VqrPOl5W4g2m6zk26zk1ACPG3cHs8PmKx2g8UhSeBvwAuxn3vzwwXAz9E/B13Aq8CKwr0XNu3g/VWAcTX4eHj7Qr1iIl1vYgTyUMI37QbkSJXIpFI8oiJOChlGiDnUriD0tnw/UgkO65XVVU+Dkzm/m0KuDMU4r7BQfpqa4+L+IoCM/v6WOT384l16447KMv0g+KkDrgZuHhoiP/ctYun588nZi1W6wa+ahhMC4f5a4+HlS5coKYhcqrvtfbvp3CfJ+O1KwAsIpc+8iZS5EokEsmUYCfwirXtAT7gYC0n4qFAgO/292ejwt7j87Glpsbpss6IGHAf8Otkkv2xmDg6p1LZxWPTgCtUlWUVFRgeD61r16JLb+2Uo0XX+et167ixs5M3dJ0HVZU+W0TXh9Jpvlhayk11da7r6l5FTuS2Ixaz+gr0XOOxK4CwLDxlbe9GLOxzI1LkSiQSSZ4YBr6TSBAZHETTNN6qqsxwuqhRxBATzTKXbmf29bEpEIBJFhUWAO5G+BRTQGRgIPtvKh0eZllfH+9va2M51qVouXBsypPp1q8HbgS+0d3N70yTYUVh0OPhOx4Pr8RibDlwgPnTprmmsz8LWAy8ZE1N/I1p8hGfL+/PM167AgiRm2F33ivJH1Ml41sikUgKzq9DIV7q6yMSDhM6dozLe3qcLuk4bgWMqipQFLwDA1y1axczXBwBNJp+4GvRKDeFw/zKMLKjdTVNoyaV4pLdu/nwE0/wpdJSVuBer6XEWSqBj2kab9+xg/r+flAUSjwe/hAK8UVN42ePPYbf73e6zCznBYP4/X4i4TC/7ugoSG2ZgRAemzI8kV1hLrkuaRdkRzK7DSlyJRKJJA8MA7+yzGwmsObgQeLHjp3qxyaUpxGLsVRVRdd1/jKd5qbNm13TsToVO4APJJP8IhwmEIng9/sxDIPZwN+pKr/y+fhQczM3XHXVpPk3SZxD13U+8Ja38LWBAd7h8zFsvX9jmsZda9fysotOUluOHs1+tvRWVXGoqyvvz5EZCKHYzgyHh8d+bBmMiDN7M+/V5AdpV5BIJJI88BSQqKqC/n4qBgZYffQorcuWOV1WlgjwP7b9LarKexctcqqc0yKK6ED/iZG2hJZQiL9IJnn3okWiY6vrtEpxKzkNMhaG84AVwSD/mE4z6PHQr2n8Z20tbT09LHWBzWXetGnUB4MEvV5Mj4fU9OkFeZ5AQCw8y3AiuwKIxWcZq8KbwPqCVHR2yE6uRCKRnCUmcCe5Dul1paW8dcsW13QTTYTAzVxSbAA+6lw5p8XLwAeTSe6JRDAMA03TqBgcZMvLL3PTzp1c4fNJS4IkL2ytr+c/amrwWcMNOlMp/ubYMbpdYFvQdZ3L2tqo9fnQdZ1AY+Opf+gMyFgWMpSVjW1XgJwv1zAMtnd3u8rekUGKXIlEIjlLXgAOWtvVqsqnZs92jcAF0QF92rb/WYQn0c2YiBXlX0ql2NvbSyQcxu/3c+HAAD+vqeEdM2ZwzbZtrnqdJZOfjQ0NfKKvL3u14HB9PT88eNAVAu7cmhpqrXi8QtkDNmyA//ovWL8eLrkEPvjBEz/2HKyR2H4/LyUS3HPffa54nexIkSuRSCRnyZ227c2Am8K4AsC3UikiVid0C+D2HIUhROf5+0DCMMA08RoG255/nmv37WNeczOrV6+WAldSEDbV1bH6yJHs/u8bG7nr/vsdF3B2c9Fuclnc+aS9HT73Odi5E554Am69FS67TNw/mkag1IoiHCwpIVpWRmdnZwGqOnOkyJVIJJKzYA9iChGID9TrnStlTL4Zi3Gwp4dIOEzy0CG2uqzTMpoI8A+IaDAQqQl6LMbNzzzD3GCQ1kmUBCGZnOi6zj8vXEiLtQIrVVbGm7ruuICbiRgOAWIUd18BnmP7dhgYyPly02mxv3372I+frqqgKChAqqLCde9PKXIlEonkLLB3cS8BnF+ikuM14Elb4sNlr75K0GWdFjtdwCeSSf5sdZ0BrlRVftjUxMbly9km7QmSCWKmrvPumhoUS+i+Nn06mqad4qcKiwdYaNsvhGXhdGLEAForK9F1nVqfjzWbNrnu/SlFrkQikZwhxxATiDLc4FQhY5AZL6xpGigKi7q6mBGJuK7TkuEY8Nlkktcs/21PdzfXhcP8NTBD16U9QTLhvNXno9la2OivqeHuV1913LKQ8cFGIhF2RKN5//2nEyMGYvKaqqrU1taiNDTkvZ6zRYpciUQiOUPuIueLWwfMdq6U43gS2Is4AE1vbubjlZWu7YR2AH8LdFvxYCXpNFe/+CJrDx6UyQkSx6gGlsdi2f39jY2OWxaaAoHsUIiHDx0qiOg+UYzYWNTZtsN5r+TskSJXIpFIzoAgcL9tQZeburgDwE9t+zdrGpctX+5KgXsU+DLi9dQ0jbJ0mmuef555gYBru86SqcPFFRVZz2mPz+f436TS1ZW1H8XLywsiuk8nRsxn2w7nvZKzRw6DkEgkkjPgjkiEY5EImCYV0SiNzc3gEhH5ByAzq6kGuNHBWk7G8729/ENJCUOVleKSp6ryt9XV1M6bR2trqytFuWRqsaG+Hr2yklQqhUfXaXbYl7ugqQkMA8U0SaoqrXV1p/6h02TDBnj8cfj61+HNN+FkM2Pszx7KeyVnjxS5EolEcpoMAfcPD2c7KqsOHqRraIhpLhBlEeDXtv134c5M3Nd6evhUNEqirAzicWY2N/MVTWNpYyMUKOheIjlddKBJVekFgqkUL8dirGpqcqyeObpOWypF3BqMUquqBXuu++8Hw4A33oA//nHsyWc+23a4YJWcOdKuIJFIJKfJDmCgshIUhSrDYF5fn+OXMTPcGo3SZVko2hC5vW4jBXwVSJSVYQJlQ0O8/8ABljpcl0QyGgVoi8ezPtjbn3vO0cVnCqBrWnYoRLhAz5OJEsswODi2L1d6ciUSiaTIuJ/cCN+ry8u5butWV1xaf7m3l1+EQtnpYNcFAq67XGcC3wACtbWgKHhMk2teeomLXLgyWyIBqLFNQAtVVDi++GwihOVoX66iwFhvUZ9t2412BSlyJRKJ5DToAl6ytjVV5WMuGuH7c8MgjRCSbYEAum1qk1v4GfAMuZOEjw0N8fELL3TNayiRjGaOdUKmAClVdfyqjc+2XShhmRnvm8nLTafh058+fvJZFTnfaxKx6NVNSJErkUgkp8GDtu11gHPuvJEEgV2NjdmD8fkHDtDmEgtFhjuDQX5gG/Rws6ryifnzpcCVuJo5dXXZgQczVqxw/O/VZ9sOF/B5AgEwbbODx7IsKEAtuezePT09uAm3XcmSSCQS1zIIPGzb3+JUIWPwe6BE09B1nWnhMB+96CLHD8Z2Xujt5d/icYY8HiKKwpX19XywqsrpsiSSU+JDXHlQVZUhp4tB2BUMwyCVSnEYoLa2IM+TsSxY56QnjBIr7+/Hbyni3z/3HE0XX+yazx7ZyZVIJJJx0g5kZgw1AmsdrMVOP8InDOJg/Eldd0XSQ4Zh4JumyZDHgwnUxeO8dd8+eQCSTAoyEtIwDPb39Tk+9YxQKLsQ7qlduwpWTyZK7PrrYfFiuPrqsR9nxONZz/KQaTruWbYjP2MkEolknNxv296Mez5A70f44QBmAOsdrGUs7gR6LF9jiWmy5dVXmdfS4nRZEsm48CEErt/v50g0yr333uuo0O23LYQb8HgKLirvv1/EiN19t+jkjvblVlZVZW1SHkVx3LNsxy2f0RKJROJqOoDnLd/ZYCrFlU4XZDGAsCpkeBu4ahTuQeAOcgvN3mWavH/jRtdczpRIToUXMFIpME0GS0oc71bW27z3JQUWleOJEvNWVmY9y5tc9t4elydXUZRDQAxx1WnINM11hSxKIpFI3MZvIhH81oSzpp4eBmfOdMWEs8fILT5pADY6VsnxDAFfTSQIDA6iaRorVJXPz5lDidOFSSSngQKomiaEpWkWXFieCl9dHbrXSyqVYlldHXpNTcGeazy+XJOcZ9ktC3EznM7Cs02mafYVrBKJRCJxKUPAw7YJZ4s7OugsLXW8Y5EGfp5IELFE5HWq6qrVxLdGIuy0Tgz602neU1VFiYPToiSSMyEj4nRdJ5VKsW3bNkff+2lyorJw8lYwnhG/tgAG19kD3PR5KJFIJK7kOWCoshLicaqTSWYFg7RecIHTZfFAMMgr1qKP1PAwqysrXdFdBugF7jTN7InB+Xv2YDY3gxS5kklKRlhOK1CawZkwUaLyZCN+0xNUw5kw3tfHBB5SFOV5RVE+OtYDFEX5qKIoOxVF2dnb25u/CiUSicRhHibXydmiqlzrcCcnw92GkRWRS48cIeSiVc0/A0oqKkBRaI5GWd3R4aoFKRLJeLGLODf43Se6nlP5ct3cyR1vPReaprkGEQv5SUVRLhn9ANM0bzVNc51pmuua5Jm6RCIpEoLATmtbVVU+5JIJZ93Aofr67AKUFceOuUZE7gcexzbVrLSUa1xyYiCRnC4muWEHg6mU0+WMEJUTIXJPNeJ3ous5HcYlck3T7LS+9gC/w30JNRKJRFIQHiP3Ib4ccEvw1YPkROT55eW86/LLXSEiTeCHtv1LVJWbFi92RW0SyZnQ5fdnc2n93d2O5+SmyYnuWDR6ysefLaca8TupRa6iKJWKolRntoErgV2FLkwikUicxmTkhLMrnCpkFEPk6lJVlQ+2tLhGRD4QCPCUNbrXA3zA6YIkkrNkv9+ftQWVDQ05PuwgbBsGseuVVyZEdJ9sxO+kFrmADjylKMrLwA7gPtM0HyhsWRKJROI8bwCZw5kXcH6pmaAdiFjbDYBbMh27/H6+1tMjOl5+PxdGo7Q5XZREcpZ4W1qytiDv4KDjtiB/KJQV3aTTEyK6R1sW7FFi9s5yn8vWZJ0yXcE0zQPAygmoRSKRSFzFQ+RmxF+gKKgFzKM8HUZPXnNL7uz9kQghrxcTKB8a4vyDB2GlPHxIJjdlTU3o1ufAyoYG9KoqR+spaWiASATFNKmcINGdsSz88IegabBkSe57iUQCvzWF7bH2dmZs2uSaK0syQkwikUjGIAk8kkrh7+kB0yS9Ywf+Sy5x/MO7A3jV2vaAayavmcAzbW0QCKCYJquOHGHR4sVOlyWRnDVhcvFhrrgyUVuLrmmkUik2rVmDXldX8Kdsb4fPfU7EiKXT8NRT8NOfwqOPQmBhMttZLh0cpLOz0/HPyQxuS3uQSCQSV/AUELUiuuricZrCYce9eAAPkLs0uDgep+GUPzExvAx0WeM9G2tr+dKSJa450EkkZ0PYtu1zqAY7YYTorq2tZc4ECFzIxYilrfyydFrsP77dyhC37ByVQ0OO2znsSJErkUgkY/AQoFmjPJceO0aJx+P4h/cg8MdkMrvopOyRRxxf6Z3hTuurqqrc6POxoLnZ0XokknwRJndiaYbDDlfjjOjOeHIzCQsej9hfvxFKNQ1d19Frarj+6qtddXIr7QqSCScNxIEoEAMOBQJ0BQI0NjZSX18PjFyhOdZqzWAwSKSnh7mNjcxrbMQHlI/xOInkTDgK7EYIttbmZt4eCrFo5UrHP7yfA/oGBsA0qUqlmNHb64pLg/uAl6xtBXirc6VIJHnnaCyWXey1+/XX8a9Z4+h7LmzbnqjZaxs2CGvCbbfB669DKgUf+hAssqaeqapKq6riHnkrkCJXkhfSiDGeLwcC7A+FKG9spMTnIwrH3eLkIkcMw8Df3w+qCvE4emUlqqqe9LkMw8Afj0NFBSQS6IaBqqpoiDe8z/paO8b+YG8v5rFjzHZR5JLEfTxi275E07jEJYunHkF0lyOKwmKXdJcBfhKLEUmn0TSNK1SVaU4XJJHkkf2JRNZzWplMOnpiaZJLVoGJt0/8+MfClwvw0kvww+WAJXTdM+w4hxS5ktPCAI4hFr90IDpeHYiYpVhGsJaVQTSKXlFxSsGaSqWyHx6KaZJKpc74Z1JACjjRxVvDMPAnk1BXR10wyMVeLyurq5kDzAHqcF/Gn2TiGQIete27JRs3CDxPbgDEzZEIK5cudfxkbVdvL/cmEuLgqyi8xeuFxkZHa5JI8km8pgYMA8U0qU8mHT2xjAPD1raXib2COdZ43ye3kxW5E+MOPj2kyJWMyQDQ3tfHq+EwA83NRGtqOIro1pon+JnTEayVQA0wvbSUrr4+PMPDKIrC4vp6Kk/w+zPPG/d42N3by4DHQ0pVaWhuZgAhTk6Gvb6Q18uf0unsJVYQZ6FzgLnWbQ7QhnvimSQTw/NAjxUXNK28nNUVFU6XBMB2cjPr16oqVy5f7mA1OX5nCVwTmNnXR5miSJErKRpiwEBFBbquM5xM8k6HJwuGycUa+srKwOudsOfeuBFKS4W4BbE9f2MuS1x2ciWuxQQOAi8ivHUvplIcTSREVzYcRrfiU05Gc3k5VeEwVckk3sFBLqitZSZCzNYg3gA1QBU24VhZiX/6dDo7O2ltbUWvrj51sdXV+GfMED/T2IheUYEJJBAfAFHra2TUfmdJCS8lEoS8XlAUsajIRsT6t79ku68caOrvpzYY5ILKSi4/iQiXFAd3xeP4g0EwTRYcOkTfOec43i01GWmhuNypQkYxBLzc3Ay9vSimyYqODlrPO8/psiSSvHHM+qqqKrNdYMXZFwiIK6amSW8kgl/XnbNOmOIkIIPPkSpOjhS5U5g+cqL2ZUb6fDLRSaO7sgrQAky3bjOsr21AdUUF/mnThPicMwfd5xtXHfoZvElH/4yC6A5XWrWMSVUV/vp6DnV1MTx9OlFV5SBkb6kxfiRmGOyz5hk+EI/zXa+XNZrGucB6oBVpcSgmuoBnhoezf/vndHTQWVPjuMjdi7AGAWjAhQ7WYucZwLC6XGo8zqfOO8/x10oiySfHbNvTHasix2uhEJSVYQLVicSE+oO3b4ch2yXT4WF4aTtZu4JvQqo4PaTInUIkECHyLyHE7bGTPFbTNDyJBM2RCPWJBNtWrWIlMA0oO8nPnYlgnUhOVJ+JEDgHyIneA8CBURaMhGHwqqbxKvAjhOBfD5wLLEW+oSY7dwOqFRs2q7eX+lTKFQu77opGiZgmmqZxubXI0g1k5rurqso7VBXnXymJJL902LbdMAhisKkpO+2sPpmkdc6cCXvusewK0zbCIcs+kR4eBishyS3IY3KRcwz4QyRCeyqFv7aWMu3Eh8caYJV1W62qDNfX05lKia6sy/5w842C6Mq2AhfZ7t9nGNz+wgt01NZypLkZpo28WNUF/N66VQBrEIJ3He70J0lOTARhCcgs7HpPfz8bt21z/KTtqN/PXf39GCUlRBSFVS5Z2NWJuAIE4v2z2cFaJJJCcYycB9brAhEXs00727pypaPHZtOE3mQSv78XTJMXd+7k3Isucvwz044UuUXIEOIy4v3Ac4aBPxIRf42GIS4rWt7acmAJsBohbOcw6tK7y7uyE8H85mY+ccEFwoLR1ESZqvI8sAPREbdbHJLAn62bArT19zPf7+faqioZjD8J+CNiwSXAYlXl5sWLXWFFeTAaxSgvxwR8/f1UBwKuELkP2LbPBZyvSCLJP28mEvj7+kRGrgtGe3eQGzE80UtPx7Ir7H48Tfk8cbVTS6VckdttR4rcIqIXceB5GAhZ941OPGiMRLiyuZlVCIErByicmtEWhyus2wCwCxHQvwPosf1MyjB4OhDg6ZISfp5IsC0W46bqapYhPbxuZAC417Z/A+75f9rV0gLBIIppsqSri7alS50uSbxeySSRgQE0TWPLKRalSiSTkSRwaHBQNIkAXzTqqIgbYmRE5kTbgxoaQFGyLwdlZVB9eRmGouBJp6k1DFfYu+xIkTvJMYEXEF2o5zg+3qtC02jo7WV+VxczQyFu3rzZdRNJJivlCHvCGuCjiIVBOxD/D8/YTi6GFYXt6TQvIjxdm4HLEPYQiTt4FOi1Lkm2lZdzoUtiw7qA/VVV6GVlDCSTfG7ZMnQXXBX4YzDI/ngcTJO0YdBWWwsu6t5IJPngADmPfn0shgqOirhucjGCTcBEnlq2t8NnPgNpqwCPB/7xFmh/SzmGoVMdi3Hd1q2u6uKCFLmTlgiiY/sAYw8/qAeuBDarKsMzZtBZUkLr+vWu+wMsFhRgpnW7EdhvGPz366+zq60Nv8+XjSs7hliwdhtihfxViAVrbukaTkWSwI+TSfy9wle2Ys8e+lascMV75SHrq6qqXKKqnONoNTn+aEtfWXz0KN39/bS44PWSSPLJPnIe/RUeD9sc9ujbF4tP9CK40YMgTBMOB8S2qqqsdOFIX5Aid1JhAq8jurZPM/bwg1XAFsSK/+x/rvTWTjjzmpv50po1dHZ2MlhRwfOqyuMIQQXi/+5P1m0Gort7KTCOlGBJnvkV0D0wAKaJ1zBYcvQonY2Njr9nRk9eu9KpQkbRBxyurwe/H8U0WdrdTeuyZU6XJZHknX3WV1VV2Th9uuMiroPcIrgaRYGaibseOFayQtvG3CAINyRPjIUUuZMAE7GY6UeJBPsGB9E0bcRghipEOPxVuPcPbSpi9/KuBz4APIlYELjX9rijwA+AW1MplvT18S5VZXVT00SXOyU5hkjG0DSNiKJwwZ49qKbpCl/ZTnLe+npgrYO12HkMKLe6W7NCIccnQEkkhWKfbXu+Y1Xk2B2N4g+HwTQ5+uab+FeudHQQRJ9t363aQ4pcl3MIuBXYaRjZFZ4RRRGXT1SVqxGRV3IBmfvRyC1aO4CwmjyOSGgwDAN/Tw8dpsnD1kK1D1ZXM9fBeosdE/hmPE5geBhN07iooYF3t7XRdu65rhBtD9m2L8cd46Xtk9dUVeXd06Y53t2SSApBEjhgGCRTKSo0jTkuWFz5mm2tR10s5vggiBe2Q501CMINgzLGQopcl9IP/By4D2E0z6QklA4Ps6iri3fGYlzjglXWkjNjLvCXwAcRloXbIhH81ocXwBPpNC8junc3I5IwJPnljlCIR2IxME2iwFcrK1mzerXTZQGiQ/Jn6wCraRpXuOAAC/AGYjEcgJfsoCOJpOh4tq+P7kRCHHf7+wk3NDh68jsIhGtqIJVCMU30eHzCrji1t8ORI1BSkhO6ZWWgbsw9RnZyJePCRCwo+ykQtd3vVVXmHDnCufv2UZFOs37bNmcKlOQVDeHHXWWa3Prcc+ycPZtDzc3ZhWrPW7elCLG7GrlILR+8BNxqZeGYwLKjRymrrHRF/izAneEw3dEomCY1oRBKS4sr0gsesW1fwsSu7pZIJpKd0SiUlGACTZEInVbOvFMcAko0DV3XqYrFuOGqqyaknvZ2uOwyMIxcskJJCfz7LfCYdZbrxZ0jfUGKXFfxJvB9Rvo1AVYAH9M01IUL6ayqorW11RWXUyX5Q9d1PnrxxWzr7GTQ62W7qvIUuUi414B/BOYBlweDtB4+TJv8Ozgj9gJfSaUYHB4GRaE5EuHiffto3bLF6dIAkUF7Tzo9Ir2g0zQd/79OAQ+nUkQMA03TuMwl3WWJpBD0NDdn86nbIhFa5zprHrMvgjt/ApMMMqkKGYGb4XAgtwiurbQUpbJygio6PaTIdQFhROf2kVH3NwIfBi7A6t7JlISiZvRCtXcDdyIW+gxbj3ndMHg8HqdOVVn3/PP81dq1tMm/iXFhAr8Ohfjv4WEi1mXISsPgc/E4527Z4pr31nZgsLIS4nGqUikW9PbSun6902VxXzDIESsb15NI4Kuvd0V3WSLJN2ngiJVPnUqleN/ategOLwZ2ahFcQ8PIfY8Hysuhfk0Uvz8Mpkmwuxv/7Nmu+Qy1I0WugwwhPLe/ABK2+8sQE5duRF4OnMq0AZ8B3gn8DngQiFje7GBlJQ8vXcq+0lI+iliYJBcfjk2338/joRAPNzXxfH8/pjWuRx0aYusLL9C2aJFrPpxN4C5y2Zybjx1zTcD6fVbMmgmcc+wYXakU01xQl0SSbw4h1sWoqso0VWWFw/WAMyI3MwBi2OqylJTARz4C730v3NcWzn4e+OJx143zzSBFrkO8grAmHBl1/3mI7u20Ca9I4laaEBPV3o4YInHb8DADJSWgKCSqqvgucAfwVkRGsjtmdTlPB3BvJMKvgkGCXi/E41n7R0MsxtUvvkj9wIAr4sIy7CAX+F6nqnxi7ly8ThZkcQzoqKsDvx9POs3iri5aly93uiyJpCDssm27YRT7AHDYtj9vgp539ACIdBpmzoQNG+D2/gYIBHKL4FyalS1F7gQzAHwtFuPhdHpE3m0b8BHck4UpcR+1wKdra9maSvGbRIId06YxYP39hIEfA78BLo5EWHHoEAumTXPlmXUh6QSeQuQRH0JMBox4vVlxW2KaLDt6lAv27mXZggUsXLjQVa/RnbbtLeAKgQsizizTXV4QCPCOK6901esmkeST0SLXaQ4DCcv/OqusjErvxHwybNworAmGIfbLysR9w4C/shK9tJRUKsVfbNjginHjYyFF7gQSAP6uv5/2UCibdzuzuZkPaBrXIv8zJONjrq7zJcRCoIcQl7et6YoEDIPvRyKUVlezeP9+Pu/xsKaIB0sMIGKtXgaeTCR4c9SwlMyQh9LhYZZ0dvKXTU1UVFXR6hILgJ03rBuIz4JrHazFjn3ymqqqvL+1VWbjSooWE9iZTBIZGEDTNJa7YIHljlAIvxV3mPT78c+aNWGfX1u2wJ49sHAhfPGLoot7GDAQnwetqsrCCankzJC6aoLYA/wrcHBoKOtjWdjVxafCYTaucIPjRzLZ0BBCaAtiqMRvgd2WZ3ewpIRX29r4XHk5FwPXIBazeZwrNy8MI7xpL1u3NxD5kcYYw1KqVZULVJUlVVXoR44wZ/581wlbO3fZtjcippy5gR2IjjhAA7DGwVokkkLzQm8v+5NJME0GBgcpq652fIHlC/39Wd3QHIlMiP+1vR02bcp1cfftEyIX3DcJ7mRIkTsBPA7cgjgYa5pGDLjojTdYeewYi2XereQsKQOuBC4D/jA8zC3xOH1VVaAoaJrGKwgPeDNwQTjMwsOHWThJrAxBxAniXuDFeJxdg4Pg9Y4Yaw25YSmedJpZgQDbUinevXCh8CfX14ubizkGPGEb/vA2F3SPMtgnr12BOyavSSSF4olYLJuP2xoM0hWLObrA0gSONTRAby+KaTI9HKZ1Ahpjo/24g4Pivg0bYL/tcVLkTmHSiIVCdp9dg6ryN1VV1Ok6ratXTwqhIZkclADX19dz/uAgTwSDvDx9Oq+qataPetQw+K9oFKW2lrauLt5RXs5VdXW4xcywr6eH54JBYtOm0ePzsRchcsHq1AaDYmB6LIau61mhOx24WFEIv/IKrX19VKTTbNu2bVItwLs1FqPbsjHV9/VRPn26490jgB7gBWtbQYhciaSYOWrLx50VDNLq8BTEHqC/ogJd1zETCd5/ySUTohsaGsCalwPk/LggO7kSRCTYfwDP2e6bAfwD0NLQcHz4nESSJ6bpOjfrOjcDvcAfGRk/llYUOurq+F+Ph18Drf39zOnp4fyaGs5taKCQkd4mYpHcUUSySObr3mSSvakUVFRANIpeUTGiW5uyzWyvTiZZ0dvL1unTWYG4hE5NDf716+ns7Jx0w1J2AY/bhj+sPnCATo/HFf+Gh8kNJFmFuBogkRQrKeCgLR/3I2vWOL6gKrMITlVV1qgqE5EFk4kOywyA8HjglltEF3cY2cmd8nQB/4I4gGc4F/gC7lktLZkaNAHvQ2Tt3pNO84NIhK7a2qyVwTAMngkEeMbj4Y7+fvSqKmaqKvOA+nCY0p4e5jQ0MKehgWqghuPzeE3EB98Q0NHTw96eHspbWlAaGghC9na4v5+DAwOkx7AbRGwZrIppkkqlUFUVDRGXowPdu3bRFArhMwyu2bbtuMVP9mEak4Uh4LvkFsgt6OpiejTqilizNPAH2wKczS6yUEgkheBVxHtSVVUWqipLnC4IZ5IeRlsVTBMC1urmDsSCXxADq3wTVNOZIkVunnkJ+BoQt913I/AXTP5FP5LJSzlwY10dFw8MsNvvp3PGDHarKk+Gw8eJS7+qcsQw8EejoKpgid+sME2lGEwmKauooFTTGLKewzAM/KkUVFcf9zOGYeAPBMa0G4AQeYl0mrp4HD0a5bqaGtYjrn54AGpr8a9bNyk7tSfjPkQnW1VVZjY386lwmCXbtrni3/dQIMAb1oKXgcFBZrtgAY5EUkh22rbXOVbFSJwQuRs3Qmmp8OGC2LZbFTLjfJeWlEBV1QRVdWZIkZsnTOBe4AeIDggIYfEZ4C1OFSWRjGJ0t/OAYfC9Xbs4UldHX20t5db37PYAe2fVMAz8PT1jitUT/czo75UPDTEtHGatrjMTIWRnqippr5eucJjW+fPR6+pOWftkJwj83Lb/AU1jk4uSVn4zOJj9P1t07Bg9NTVyhLSkaDEZKXLdkFnfB3Rb2+XAAofqyPhyAV6IRvFbzZHQgQP4lyxx9eeyFLl5YAj4WjTKg6aZzeisB/4e5/4oJZLxMFfX+etMh7SxkQZN4wjwfDrNH44eJV5ejlFejt7UxBBw1IrWGS1kS4FaVcUYGkIdGKBqYIB19fXMxorCGh7mleefpyoep2ZwcEy7Abo+pcbE/hhIWtszcE8uLohuzVHbhLNVHR20Xn6502VJJAWjA7E4N5VK4VNVFmua0yXxGrmu6ZqSEkonqGu6fTsMDeX2h4dzyQrPG0YuziwUcu043wxS5J4lQ8DfxOM8bJ3ZRBSFDQ0N/FtlpWtyLiWSkzG6QzoXmFtXxyULFgjx29KCbk3Y6TYM7tq+nWHTpAy4ZssWWmtrxdhLTcNfVZWzFFRX556kvp4NF15YdHaDM2UXsN22/3Hc9WF8F7kJZ0v7+njX5ZdP+f8zSXHzaDgsLFqmSVNPD4GZMx3/m3/a1jVNTGDXdLRdweMRa+VjQKimBpJJPOk0bS5ZP3Ay3PS5Oukwge8AO4aHs2c253R28sFgkPpVq5wtTiI5S8ayB0zTdW646qoTitWTWQqKzW5wpgwB30gkiFjT2S5XVdxjUhCXR5+ytlVV5dNtbXLCmaTo2W7rUM7s7aWztNTRzysT2GFbkNsSCExo11RRctvpNHzuc+BZDuUbxMnvtHCYt27Z4vrPdClyz4JfIMZdZlZGr9u/nwsOHGCWHPAwLgaAqHU7GAhwJBCgsbGReiu4XxnjZ4LBIIHeXmY3NDCvsZFaoOoEj5UUBilWz47vRSK8EImI7kw6zbbKSnDR3Pe7ycWGrUZ09iWSYiYIdPl84PejmCZz+/poXeusK7cT6K+uhkSCsqGhCe2abt8uLAoZTFOkLdy/HdggTn436fqkOPmVIvcMeRD4pbWtqio3+3xs8floc8nKaCdJI/JZO4Bd4TB7o1FK6uowq6uzojaKmH0N1sr7/n6xkj8eR6+sPC5iKvu4eBw0DRIJdMNAVVU8QO0YN8Jhyv1+1tbXs6ypSQphieM8Cvwast2Zdfv2YTQ2ukbkRhDZuBlucKoQiWQCeQYot+w5M0Ihbt682fHj+E5ylqEFgQDXbd06YTU1NAiLghXfjaJAeTmUbszFh01U0sPZIkXuGfAc8D+2/bXAl2pqKHV4MspEk0KcbXYgMoE7rFsn4o1gZGKoTBNCIfTy8jHF68lW5Y/ncWkgZN0yZJ9b0yCZZHYqxWJNYw6iMzUbmMXxma8SSaHYhbA3Za78zOrtZe3RoxMyonO83EfuIDYPXGWjkEgKxZ+tr6qq8rZp01zRocwkPaiqyrWtrRNWU3u7sCYMDeVSFUpK4Gvfgoc3iH0FXJEhPB6kyD1N9iJycDMxYfOAv2FqvJApxGrPF4GnEwn2WZ7CsQQpnFq8liKGCzSXldEdClE+OIgHOKe+ntFrSE0g7vGwu7eXYcAoL6epqYkBxHS5Uz13yDB4TdN4zfYYD1CXSFAfCrHB6+WKujrXB1tLJifHgH8lFzS/rrGRDwWDzJvA7sypSCFiEDO8DWkDkhQ/EcQQiAwbnCrERoqR+bgTaZzIDIKwx4aZJrwZyNmY5kBBJ2Pmk6mgzfJGN/BP5C6zNwP/CDgfNFIY0ogooZcQwnY34iBtGAb+vr5smsToYH8QU1DmlJYSOHaM2v5+KgcHueK885iDELY1iNdNAfB68be0jL0q3051Nf4ZM8TjdD274j/j7Y3YbodNk8ePHKGvqoq+mhq0MeJgkobBIevf8Wgsxg+8XparKuciJtTNQR7kJWdPDPhncgNifMC/e700uWxx6iOIWkF8tl3oYC0SyUTxDDnxthhckYr0CmSH7MxCTBabKE5kVajbCIetxyyfwHrOFilyx0kUIWgj1n414sB1fGT95CYG3BsK8XQySUd9PUNjiMNMl1QxTWoTCRYEAqxvbWU6MB1oQywGo7IS/7x5OfHa0HDC5x3vYqaxHleO+BAY8UHg87Fl4UI6OztpqaqiTFU5ABy0bgeAN0Z1e5OpFG+qKm8CtwMNCLG7HnHZVg41lZwuQ8C/ISw8IP5W/z/EuGU3MQz8wjbC962qSonTRUkkE8BD8TiR4WE0TeNCl4yudmry2omsCt/6Fry4op9IZAhN01jqktdpPEiROw4GgH8hd6AqA/4BIeaKARN4E/gj8GgqRUcsJv7Ce3qO69LOAuYqCqEXX6QlGEQ1TbaNFexv4eRK/NHPnRGtGQ6lUvzsuec4VlvLkeZm0qPqDAAPWDczlWJmMMg1qsqVDQ1SAEhOiQn831iMP6fTWVvPX+POATF3B4O8Fo+DaWIMDbG8qkqO8JUUPft7engsmSQNRBSF+Zrm+CJQE3jKdsK5dgIF5YmsCvsOx3imL5h9nZpc8DqNFylyT0Ea+A/EpXoQl6+/gLisMdlJIgLp70d0NwFitqxAxTRR43EuVVVWASuxLuXU1ODfsGHSB/vP1nU+evHF4t8xbRpeTeNFYAfwPLnLy5lRtkdNkz8PDfETr5drKyrYzMReRpJMHoaBb0ej/NY2JObTNTVc4PM5XNnxJIGfmGb2fb/88GGCdXXMmqTva4lkvNwfjZIuK8ME9EiEgUDAcfH2Ym8vr1mTJZPDw9RXVk7YCeeJrAoVy4XANYGGWIyYC16n8SJF7kkwgW9EozxgG9f7EeACpws7Sw4huraPIwzudjRNQ4vFWNDZyaxgkPdu2sS0MX5HsWSljv53XGLdhhEnNs8Bf4xG8duEf9fAAL+sqOBXiEtJWxALAzwTXr3EjUSArwNP2oTjko4O1lRUgAsTWO4AjKoq6O+n0jBYc/QorUuXOl2WRFJwdre0QCCAYpqc093tiqSTR+Jx8HgwgRl9ffREIrRNwLH2ZFaF0NV1EA6jmCazAwFaFy0qeD35Qorck3B7KMTt1qX7iKLw/tparqmtdbqsM8IE/hgM8qvBQbp9vuMWipUDbwG2qCo1TU10Dg7SunJlUQjZM6EEWGrdtqTT3P7nP7OrtZU3pk/PLmIzESL4OURH9/xwmIVHjrCkSE4AJKfPHuD/An3kosLm9PRw6e7dtG3d6nB1x3MY+D25PM6bjhzh2quukn+/kqLHDxyurEQvLWUgmeQzK1eiu6A7ua+5OSu8503gUIoTWRX6ArC/pgZdVUmlUry3quqk62vchhS5J6AT+LGiZDsxC7q7eUsg4MpOzKk4CnwzHucxy3OH35/12s5AdCIvxRYJIkXaCHRd5z2XXUZnZyfN1dUcVFUeAF62PeaYYfA/0ShKTQ0LDx3iix4P65rctrxIUkgeBL5HblW0pqp8oraW9YEAbS6KCstgIurNxCGuVVU+vGCBTBSRTAket76qqsqFquoKr7wf6LKE91AyySfWrnV8AMTSjdCOeJ1qVZWLJ6Sa/CFF7hiYwC1AaUUFRKM0RyJc+dprtF19tdOlnRb9iEuRfwBCw8NZwV6STrOkr48Pt7WxFBmTNR7stoY24CLEidCDiOilo1ZSQ1pReHPaND5fXs5m4GbcudBIkj8GEGLRPimsEuHdX1db69oT4z+Ry+L0AJ9AfhZIpgYmOZELsMmpQkbxtPU1I7wnaqT2yawK9uDg1Uw+0TjZ6p0QHkJ8+KuqSktzM5+MxVh/9dWu68ScCBMxPvQn5CLPNE0jBiw7coT1Bw+KsYVOFVgktAIfAN4D3Dc8zK3hMMd8PlAUNE3jGUQG4yqE2F2GFBHFxq6eHv4d6KmtzVqAZgN/C7Q4WNep6Ad+ZNu/DpjpUC0SyUSzh1xaUgVwnoO12PmzbXsic6pPZFUIBMSV4AwTOZQiX0iRO4og8GPb/js1jWsm0SKMvcD3EZFgdtaqKm/zeimtqqLVBXO5i4ky4Pr6ejYMDtIeCPDszJnssnmeX7Jui4GbEIvVpNid3BjAHeEw343FSJWWQiqFrutcpap8EvdnKt9Bbgx2PfBOB2uRSCaa30ejRKwF5Zepqiver33kjtslTKzw3rgRSktheFjsZ6wKGzbCt22PkyK3CPgeossBolM3WT78+4FvRaM8ZJqotlG7jcAHEZfXlaYmkD7RgqHrOtfrOtcjFvT8FnFJOHNy/Abwd4ZBQyTCO0tL2VZfLxMZJhkGInLvt8ARRSFVWooJeNJptnZ08Jl581x/AnMIYWHK8CFEN0simQoc8/u5KxYjWVZGRFFYWVkpDKkO87Rtezli4NREkk7ntj0eYVXwbsitMZjN5IzMlCLXxtMIg3WGTyNSB9zOMeBvEwlesjI5URTampt5p6ZxE8U7dtjNzAL+GngXcBfCt9tvGPj9fvymyT8oCndqGn/h9bIR+UZ0OwMIcXsnuQ5oJj2hOpnkqldf5R0XX+x6gWsC3yW32GwFTLqFJBLJ2fBQJEJSVTGB6mSS2kDAFSL34f5+IkNDjkxe275d+HEzpNPCqvCYreO9bhJNObMjj60WcUQXN8NmhIfS7bwIfA3oHBzMLiyb09PDJyMRrlw+mSZMFyctwCeBdwDf9vu5b2iIwZISFNPk4OAg3wZ+DrwN8Tc3GU6qphIDiIl3vyUnbjO0qSrvq65mQSDArIsvnhQWoMeB163tEuDjSOuMZGrxamsrBIMopsmSri7aFjs/2unNnh6eTCYxgSgwr6JiQoctbNwo7AmGIfbLymD5iiBf6+olap3Mz/J6oXHy9XLHLXIVRSlBjFQ+ZprmtsKV5Aw/YqRH7QMO1jIeTOAe4IfWtqZp9KfTbNq1i8U9PazcVnT/RZOaBuCTqkrz9u28OGMGr86alc3b7QNuBX4FXA9cDXidKlQCiJHO94TD3DU8jFFVNSJXugGxkPAKoKyuDurqHKry9OgH/sc2LvRdVoSgRDJV8AP7qqrQy8owUik+u2SJK7Jx/xiPY5aUYAJtwaCYtjnBdW3ZAnv2wMKF8MUvQqCmi6hWhQmog4NUHj1a3CIX+CzCVlhToFoc4xVGxv98HFtmrAsZRFxytNfcqqr8U3U12vTptK5fPym6SlMNXde5afNmLuzsxFdZyfOqyt3kEjAiwE+B21Mp1nV3c5PXyyIXfABPFUKI1c1PAi8aBv5oVNh/+vvRdZ0WVc2K28nWcTeBb8Ri7A2FwDQZNgw21dZO2LhQicQNPIR4L6iqygWq6pqrtW/oenYAxCK/n9YJjB1sb4dNm3Jd3H37hMg9PH06RCIopsmcvj5mzp49YTXlk3GJXEVRpgNbgX8FPl/QiiYYA/iObf8CRsTCuY4w8G+Is40MixCRRfWNjZPyTGsqYc/bnQNcgzhZuRPR0TUMA39PDwcVhbsSCa6JxXhndTWLkJeVC0EE4cV/CniV3CLBlJV7bAJVqRRbOzr4xLx5k07cZvgt8IiV8m4CF+7eTXDGDGZJkSuZIgwj1kZkuNKpQkZxlJEDID69evWENqky8WEZBgfFfUc21KJrGqlUivdVV6PX109YTflkvJ3cbwFf5CQL/hRF+SjwUYCZMydP4uIdQJe1XQl8zMFaTsWOvj6+qiikbJdPL0V4PifrwXeqowLbgKuA7cD3YjH8lhAZVhQeT6d5AZiHEMQXI/+vz5Yg8EgoxMOGwVGfjzLt+KWZFZpGTSjE/M5OFvv9XH/11ZP2dX8KuI3cQrklHR0s7O2l9Ty3pINKJIVnJ+K9D+AD1jtXygjsk9cuncABECC6uDt2iMiwTEZuWRks3ihO/lVVpUZVuXwCa8o3pxS5iqJsA3pM03xeUZSNJ3qcaZq3IqyFrFu3zjzR49zEAeCXqRQJw0DTND6jqrj1XOXZvj4+GYsx6PFAfz/TdJ1PqCrXITt8xUApcDmwdHiYb7/6Ki/OmEF3XV3Wt7sfcab5Q8QCtS2ANDKMjziiS/uyddtvGPhjMfGp3tOTHXGtAEsRJxIXqiqplhY6TZPWCRytmW/eBL5pbauqyqb6et4dCDBz27ZJ+2+SSM6EO+NxIsPDaJrG5arqilX3JqK5kWEiJ6+Ntil4PHDttZZVwXY5+1zcn/t9Msbz/3whcK2iKFcj0qhqFEW53TTN9xS2tMLzvXicrmAQTJPqUIjlLS2u9Kj1AP/i8TDo8WRN4O89eJDrzznH6dIkeaZF1/mrc8+ls7OTQa+XZ1SVPyFW+QPEEJeef2EYzA8E2KJpXF5fL2PibBgIO09G1O4jZ0OAkVYExTRpCYe5Ude5EEac5NbarCWTET/wLwgPP4hx1F+tqqLKpWOGJZJC8XpPDw9Z6QURRWF1RYUrMuN3Ab3WdjUTN2whM8Y3I3BBnPOvXw8bNsAvbI+9YIJqKhSnFLmmaX4Z+DKA1cn9QjEI3CPAM8PD2R79Ja+/TpdpMs1lB7UY8BVgoLIS4nHUwUFu3LmTyzdudLYwScGw+3bXI5I+HgbuQ5zwGFbebrdp8tTQEN/zejlf09iAOOsuupWhJ8FEvCZ7EaM6X+rvZ9fgIKUVFSMSEexUqyrVoRCzenpY2NPDO6+4ouhGXPcD/0RuUWM18I9AlWMVSSTOcWcigakomMD0QIBhcIXIfdy2fTETk+k6uoOboaxMRIl1IgbGgLDGrZuAmgqJGzr2jnAXOY/aHL+fxmSS1tZWp8sawQBipd9RxKXGtuZmPnDwIJds3DipO0yS06MakaN7PfAc8INQKOvbVUyTqGHwrKbxLMK6sgw437oVm6UhhBC09lvU+p5hGPgDAXHiGo2OsCHMB1ZatyWaRihjRVi5sujeS0PAv5ObOV8K/D0is1kimWoMAi/rOvT2opgmKzs6aF3vvCN3AHg0lSJi2SUvnaBhC6MXmoHo4H7rW6KL+1vb/auZ/NMQT0vkmqa5nZEWkklJH2Lcqqqq6LrO++JxLnCZR80E/hN4zXbflzWNi10QXC1xBg9invlsReG2p59m97RpHNR1SqdNyz7GRPhPXwX+F2jp72dmby9rampYV19PE5PDw20AHYgrLkeB1+NxXjeMEYsuR2O3IdTH45wLXDNzJss5PhJQn+RWhBNhIobavGS773PAEieKkUhcwFOAUVGBruto8TifdknE5gPBIIficTBNlGSS2rq6CbFLjh78UF6eE7jg7OS1QjAlO7n3kJvHvEZVeesS9x0CfoR4c2b4IHL8pkSg6zrvvfRSOjs7aW1oYFhVeQZ4BthNzn9qGAbPBgI8qyj8Jh5Hr6ykUVWZg0hrmGt9bUMI6InGBA709PBKXx9DLS3E6uqywrZn1L/Db3nnM5m1dqFbiejUNgNdr7yCHgpRPTjItm3bis6GcCruBh607b8beIszpUgkruAP1ldVVfkLVcUt12v/MDCQPSlf2NlJVzI5YXbJ0YMfMgJ3V08Pz1jNgrhpMquiwpXrlE6HKSdy+xEz6DPc4FQhJ+G2cJifKgqapqGqKtcgLlVLJBlGdyLfZt1CwLMIwftEMjligVUqlSKmqryCGICSoRxo7u/HGwrRVlPD9JoaauC4WxVjf2CYQBpx4pi5dfX0cLCnh/KWFpSGBoKI+J6A9TUIdKVSHEuloLISYjF0r3fMLq29Q1s6PExLOMzFus4CYAHiMrwCUFuLf/16If5bW13RrZlI2oEf2/Y3AW93qBaJxA3sQViaAMpwTzauHzhcVwd+P4ppsrSri9alSwv+vCca/JDhj/39YC1wbwsEiHg8UuRONu4HUtb2DNxnqn4wEOCb8Xh2FejWujo+XF09KS4xS5ynDpG5exVw0DD4/quv0llTQ6CmhjJdFwsuRhEzDPZlvKzhMLqqntASUJJKMZhIUO71UqppWVFrxzAM/KkUVFeLzusJLAZxwzhOhGce50GI15kIgX1k1y7qolEak0mu3br1hB3aYrUhnIq9wH+Q634vBT7N5LCmSCSF4l7b9iVArVOFjOIhcnbJOcEg77z88gn53DrR4IcNG8Rnx+u6Dn19KKbJOX4/rWsnKu+hcEwpkTuAsCpkuAF3HQT6EdPXTOvWEgpxfTCIZ9UqR+uSTE7m2OLIWltaaNY0ehCZuwes237g4KhILbvYtJOZxoZpQjx+nG0gw+iIrhP9Pk3TSA4PU5VM0pBIcJnPx3LEyWcrovMCiA7tunVTtkN7Kl7r6eFLpaUMVFaiqiotwN9he/0kkilIGHgklSJuLeza5hJ/qX3ymqqqvL+lZUJsVe3tcOQIlJTAkNWZyCQqgDgWBLxedF3HTCT41CTOB7czpUTu44jLuQANuM+r9lPAqKqC/n68hsE1L7/MrM2bnS5LMokZ3dnUrZs9+3CvYXD7iy8SKyvDUFUWnXsuIFILRtxOIl4VhKgqAcrKyxkaGKB0aIiqgQHW1dczG5FBO+KmqkQqK+mMRGidORO99sR9lqnaoT0VL/T28lfBIOGKCojHmdvczD9q2olHU0okU4RfhcMci0bBNPFGIlTruisuvdsnr9UhYh8LTXs7XHaZsCmk0+K+khK45ZacH9c+eW2TqjJrAuqaCKaMyE0Dv7PtX4e7/vGvIawUmUsY7zx8mKs3b5YHdknBWdDczF9u2JDrlJ5AbHalUtz5pz8xhBC0V2/eTFttLaWMWrhWUYG/pib3+6pPLLk0KV7PmD8DXyktJVxRgQmUpNO86+BB2mQCi2SKMwjck05nT8qXHT5M5/CwKz5r7AtDL2didEjGppARuBkCAfF1GJE4lWEiJ68VGjfpvILyLHDM2q5EjEZ1CwPALbb9S1SV9y9c6CorhaS4GU+ntEXXuWnz5nHZBmTntXAMA7chsr4VrxdiMUqHh9m8axeXuCD/UyJxmu3AoDVAqSqVYmFvryuycfsQndwMV0zAc2ZsCh6PELmmKbbLy3NWhZfIDY6pR+SJFwtTQuSawG227LcbVRWv00XZ+BU5Ae4FPoG7vMKFxATiiMluUeBgIIA/EKCxsZH6+voRjw0Gg8R6epjX2MjcxkZqkb7DiUaKV2eJAF8nl46hqiorGht5x8GDrHNJ/qdE4iQmIkovc1X0ymPHuG7rVle8Nx4BUoZBKpVibUkJLVWFnUE42qagKFBaCh/+MLz3vTmrwmO2n3kLzkRKFoopIXKf7uvj6UQim/12ntcLze6YBXUIuNO2/36EX7hYSCPiUjoQQr4D2NvfT1ciQbqqigHrUitYC5v6+0FVxcImayFN9nvxOFRUQCKBbhio1slKLVDW309lKMTyykrW1NUxm+MHAEgkk5k9wP9FdIMynAt83uulagLihySSycALiKxtgFpV5RNz57riWDAM/D6ZxN/bC6ZJ+auv4j/33IKK79E2BdMUt5kzcwI3iYiczFBMVgWYIiL3of5+QJzhLejqIqlprhC5aeDf+/sJWh3m1arKVU4XdZb0AS8CT8VivJFKEa+upkTTst8fMXo1mRyxQv9kq/JP9L0EELL9zgdteau1iQR14TDnVVRwZV1d0Y24lUwNTISP7/vk4toU4F2IHNypctVHIhkP9rU3m3FPs2MHcMwaAKENDDC7u5vOzs6CiNz2diFww2FhTTBNIXRH2xQAnkbESKZSKeaXlTHb66br3GdP0YtcE9jb3JydW73Q76c1cwrjMD8PhWiPxbId5ndUVqI0NTld1mkxBDwSCPBUfz9HGxsJer1CyIZC4xaydapKDdBWWkpnIEDp0BCKonBOfX32Ayru8fBGby9GSQkpVaWhuZkBxInCWL8T4NW+PjBNnhga4javl0WqyrmI7tciiuuSjKQ4GUCM6X3Ydl8l8AXcl/EtkTjNAeBla1sBrnWwltHci4hNjCgKSzs6KFcUWlvzP39tLItCSQl84Qvg8wmBa5dAf4jHsxMltX376Fm2zBXWjnxR9CL3ABCz5lYriQQf37DBFf+BA8Ad1rUDE1i3fz/U18MkEbl+RHfpnmSSvf39QtD29aHr+nGiU43HWa6qTAcqTZN9L76IN5nEOzTEjVdeSVtmNX9lJf62trFX5VdX458xIzvKVrdsDnFg38AAv3/hBXorK+mrqaG6qYn9Y0z7OqSqHAJuNwxK+/u5tLSUt9fUMGNCXzmJZHz0IOwJ+2z3zQG+jBiUIZFIRvKzWIxIOo2maVyuqq65encE4aNXVZWW5mbeEw6zdMmSvGqRTPd2xw6wDsFAzqLg88GXvzzyZ7qAF4aHsw+ef+wYnfX1rtBI+aLoRe7T1tdM9lubo9XkeAwYslZ/VieTrDt8mNZly5wu66SYwMOBAHcODHCovp5yVSVim7+tmCbDySTrSktJ7dtHSyBAQyLBDVu25MKufT789riqUW+mky1sGv09BagGVjc10XrBBbnf6fXSEYtx+7PPcqy2lsNNTQxZP2cYBn6/H0yTnykKD6kqa1SVLYjsWLmQTeIGXkIsMIvZ7tsEfBJwR6S9ROIuXu/p4e5kkjRiWujFXi80NjpdFjBy8tpbNI1LV6zI6+8fKwc3w1gWhQwPk+suz+rtpXZwsCDdZScpepHbbtt2h0lBXGK/i9zqzy0uWv15IjqAb8bjPJrp2vr96LqOpmkMDQywoLOT2cEgH77gAmb4fPiXLTsjIXumjP6d03WdD7zlLdkaajWNl4G7enp4wjDoLy/PdnhfU1VeQwjmcyMRlh45wsrmZlf/f0iKExP4LfAzciN6S4APA1uR/luJ5ET8MpUijXjftAWDaIGAK0RuPyPTC64pwHOMlYOrKHDddbB+/fEWBbCshuR0yA3JJFdt21Z0x72iFrlHrRuI7scaB2ux8wziMgGIqU8fnzuXCicLOgkH/X5+kkqxQ9fpty5rZLq2c4JBPtjSwoyaGvzxOK3nnJN9g7ghamp0DecBs8vLWfDQQxzx+Xht5kz6bd/vMwx+EolATQ0LjhzhiyUlrHfBh6RkatAFfDse5+nhYTRNQ1VV6oG/AeR4B4nkxESBF5qboacHxTTFldHzz3e6LEAIScPangUUIgdl40bRrc10cj0eEVL0xS8eL24z7CQ3AXaaqvLuRYuKUhAW478pi72LuxZ3XObLdGoybAXXCtxn+vr460iEuKpCTw/1dXUowLKjR1l7+DDvvvxyYUPQdVonydmfrutcs20bnZ2dfLK1lTJN4xHgAWCfzUu8t7mZL5SVcTlwE1JkSApHNyIr+/5Uii5rAUhEUbikoYF/rqykzukCJRKX8wdA0TR0XachEuGT55/veJMFxPH+Ptv+NvJ/Naa9HW67DTZvhmnTYPVqMclsrO6tHScmrzlBsf67gJwfF4Tf0g3sAvZa22UU5tJFPngC+KfSUuKqmu3czk4k+JrXS1llJa2XX+6KD5EzYXSH92bgRuDhoSH+OxDgcEMDKAqapvEc8Byw3HrcSuQlY0l+8CPE7aMIC1PCMLInWasOHeK9gQB1q1c7WqNE4nYSCJEL4tL7XzY3M83Jgmw8Dxyy4rnqVZWNtjjNfNDeDps2iQ4uiG7u9u0nF7cAvVZtGSZi8ppTFK3I7QH2W9uliNgoN2Af/HAZ4HOojhNhAv8difBroKSkBBQFdXCQTbt38/l165jW1DRpEiBOBw+wuaGBVUND7Ojr49mZM3nFEvgAr1q3tv5+Lujo4Eqfj2mTVORLnKUH+CXCpzdsu1/TNKpDIdbv3cv0aJSZ27Y5U6BEMol4AOF7BZE6cqGDtYzmF7Z4rrlHjhBZuBAtj8eNjBc3w+Dg+ETuw+Q8/6so7rSWohW59i7uKnDFGN9DwNPWWV2FpvFW1Q0GipH8VyTCjyIRsbhMUTinupoPHjvGqnXrJm3n9nTQdZ1rdJ1rEIvtfgs8jui0GYZBeyBAu6bxk0CAT5eVcW19PSWOViyZLPQAv0Z49IZHfW8F8E5VpamlhU7THHPBpkQiGckAYoRvhhtxT/75IWCnLZ5r2eHDdFZV5e193d4u4sIUJRcXVlY2doqCnTQjc7c356Ua91K0Ivfh/n4i1iSxC1wiJm+PRvGHw2CaNPX0UDJzJrjoQHYfVqfZumQ6q7eXz4ZCXLBypbOFOcR04HOIyVJ3Ar+xZe8GKiv5z5IS7gduAC5Fxo9JxqYH+A3iwDJa3C5H/H1lwwNdsGBTIpks/DYU4pDHg6ZptKqqq0bS3k0unmtedzd1hpG3eK7RNgWPB6699uQLzTK8AByzmm1N5eWcV+HWVUH5oShF7ps9Pfw5mcRErLqcXVHh+BjfIeBJWzrByoMH6Swtdc0B7f5AgK+XllLi8YCiMLenh62vvMK8rVudLs1xmoFPAJsGBvja4cO8Mn06Q6WlaJpGF/Ad4A7grYiz4vy6riSTlV5ynduhUd9bhhC3yye6KImkSDjm9/PdcJioJSTfXVNDmc/ndFkABIE/kYvn+ot4nAvyGM812qZgmiIqbDzDXH9js1DMO3yY4KJFrtEhhaAoRe5T4TCm5adsDYWIB4OOi9xXANPrhViMmmSS1ljMNaHLO3t7+ft4nCFL4K6prOTjpaXMdnl270RzTnMz/26a7O3u5tXZs3lCVYlb3wsAP0CImusQqRlumZkumVhe7+nhZ4bBy01NlIxaaLKUnLiVCxglkjPnnliMqKZhAhUDAyw6dAhWrXK4KsEfyJ3YrlJV3rpkSV5/v7U2+rRsCiAWuz5ja7YtPnqUzurqoj7OF6XIjeo6RCIopklbJELrOec4XRLt5M7qzvf7ucYloctp4L/SaYY8HkzA19/PB0IhznPJh4XbyCQzXAS8H7gf+B0Qtr4fBX5gGPwgkWCLx8M7amuL2tQvESSAZ4H743EeSSQYVhTo6UHXdVRVZQnwbqS4lUjywRDwVFsb9PaimCZrDh9mjksmhqYQx4UMb83z729vh898Jjf4weOBW24ZXxf3PkDVNLAmnDWkUq5pthWKohS5PbW16JpGKpXibcuXo9fXO1pPmlxmr6qqvGPmTJyXt4L7gG6fD/x+StJprnn5ZRZtcpOzyb1UAG9DZB8+gvDtHrWNDf6JovCApnGhqrIVMYxECpziIQXsAJ5ExPEMApHhYYYVJRu71xIO83ldZwXy/14iyRePA9GKCnRdp6S/ny8tW+aKphEI77097eG8PP/+sawKgcCpf86wass0296eTHKFS5pthaToRG4a2If4j1RVNe9/YGfC60DE2vYBzveVBb3ArakUKcOgvq6OKwMB3rtpU9H/0eebcuBq4ErgB0eOcMfQECGvF8U0SaZSPKeqPIf4wNuKCN6WVobJiYGYFPQkIj95YNT3MwtNWkMhzjtwgE9ccIFrMjslkmJgCBHBB+I4/z5VZbaD9dhJA79MJokMDKBpGterat7THuzTzWD8VoU/QdZeN0tVedeiRa5JoigkRSdyjyI6LAD1QIODtWSwT17bgHsiTr4Rj3PEMqDXJxL8RX29FLhnQSnw1poaSu+9l4P19bw6axapaTmJ04Xw7f4M2IQQvLOdKFRyWgwALyIGpOwg9/kymrnAxarKoooKhgIBWi+4QL6fJJI88xgisQSgGvE56hbuDQbZFY+DaWIMDbGsqqogCUpbtsCePbBw4fgSFUxyAzNAvGZu0SGFpuhE7l7b9gLHqshh4s7JaweAp20G9E27dtE7fz7T5UH5rLCPDf5MaytpVeU+hJ0hcwnLQASYP4BYZb8VOJ8ifDNOUkzgGPCydXs2lSJkGGiahjoqjnAWcBFwMdCWubNIB6ZIJE4zhJgSmOFtCNuYGzCBXw4NZY+pS48cIeDzMTOPx9TR0WH79gmReypeQ+T2AqiIq4lThaI7rtpF7kLHqsixj1wmXYOqsizPY/3OlLvIXVpd0N1NWzRa9Ab0iWL02OAPA+8BtiM80Idsj90FPG8YqPE4F5eVcWVNDcsowjemy+kjJ2pfRkQAgRgA4u/pAdMkoijous5cVeVihLCd6VC9EslU5M5QiL1WLm6jquKmmYAvAX21tZBKUTo8zOqjR2nNc6rCmU44u8+2vQmoymtV7qbojqV7bNtuELkPRiL4rQlirV1dBObMcfwSZg/CU5gxoL83Huf8KWBAdxINuAqRo/s6cC+iw5+0LVT7uaLwiKpSr6qsR3R31yBzdwtBDDGmOSNqj53gcalUCkyTmkSCBX4/b4vF2Lp0qVxEJpFMMMf8fr5jy8W9uaYGzSW5uCDiIzPH1HP9fm7evDmvx9QznXDWBzyeSpGwrkZtdclwrImiqETuICO7ZPMdqsPOC7YpWbN6eui03gROcls0Ssg00TSNc1WV6/J8tik5MQoiK3UpIlv3e11d/GFwkER5OYppkkql6FdVHkesIC5HjKXeAJwL1DpU92QmYz/YCzwfjfJiKkVfbS3lJ/mwr0RYSWal03S3t1Mbi1Hi8XDu4sVS4EokDvDbeHxELu4yF+XivoG4KgfgVVU+O3Mm+UzmP5sJZ7+MROiyGm3VoRAVLS2umrRaaIpK5B4kF8DcgvMt+TTQ6/NBT4+IE3KBJeCA388vEwkGPR4iisLGykqRLC2ZcBqAD1dU0PzYY3TU1HBw2jQGm5uzK2BBLHraYd0yAvl8hOh1dryJOzERnYu91m0PwjKUwLIeWGO1SaWyGbYgRjIvAVZat3lACUBdHf5Nm+js7KS1tdXxE1SJZCqSAp5qbc3m4p576BBzlrtnXuBvbNsbyf9n85lOOEsB99nW3iw/fJhO05xSn2NFJXL3Ig5kqVSKNR4PVFc7Ws8xAE1D13XK+/t5xxVXOP7H9Ug0ymB5OSbQEIvREAhIkesguq5z7datWRHVXFHBAeAZ63bI9lgT0S3YhUhpmJZIoPf1saq6mrV1dcygyN7QpyCNsN68GAjwUixGqLGRzqqqbFzfaDLWg0yGrR6JcGVzMysRsX7lJ/i50R5riUQysdwDpKxcXC0e50vLl7vmPXkIEScIohFxQ55//5naFEAkUQxXVkI8Tm0iwby+PlrPPz/PFbqbojomPh+L4Q+FwDQJ7NmDf8UKR98IGX+wqqqcp6quyMs82NICwSCKaXJOdzdtLpkSM5UZLaLmWbd3I2LHnkHE0O1GCF0QJ3M7+vrANPlDLIbu9VKpqsxCRFnNt77OZvJ7eoeBbuAIIiIw87UDiBkG/v5+cQQIBtHLyo5LQABh8zinpITIgQM0hcO0RaPccNVVrhnKIpFIxiaGWCgN4lj6KVVlhpMFjcLexd0Aea3tbGwKaeBucj7hqzs6uHYKrr0pKpG72+Z/bYpE6OzsdIXIBXfEmaWAPVVV6GVlpFIpPrZiBbqMOnI1LYixkG9FjA5+FiF6/2T7W894eVVVZT+wHzHZBkRnoQ0heOfZvjp7jWMkJiKkPIBINdgfCrEvEqG/oYFwdTXHyNmQRjO6O5tKpfCpKgtgxK0JUKqq8C9ZIq0HEskk4i5y8YttwGUO1jKaLuARwyCZSqFpGjfleVHXmdoUQBwruqztelXl4/PmTfqGx5lQVCLXqK6GVArFNPG5YCaz2zJ7X0B4PFVVZYGqssrheiSnhw+RzrAZOGQY/OCll/BXVdFXW0tFczOxMX7GRHQ8OxDDDEB0gUv6+2nWNHSvlxrI3qpt2/ZbFScfS2siFn4OIwTpkLXd1dvLEb8fraUFpaGBIELIBoAQOWGbEbGGYeCPxURnNhRCLy8fszObQS8vpzoUoi4WY1osxrvOPZfVJ6lVWg8kkslDEGFVyPAeLK+8S/hRNEq35fOvDQapbm3N66KuM51uBvA72/YWJv8VvTOlaETuADBgeXYGk0ludtj/OoRYCJfBDSL3aXKe5aUAtXKt/mRltq7z6fPPz3UlKyqIIf7m9iOGfexHiFvT9nOGLbKsMx4fsfjqZChAeTLJQCKB6vVSVlGRFbNDo55jxHMlk8Ib39+PXlV1yucaqzOrqiqNwHRELu0M29fqigr8LS10miatCxfKKxMSSRHxv9EovVYS0GJV5UKnC7LhBx5Jp7OfV2v376cT8qY72ttFJ/eznxVfW1vHZ1MAeBOR+ABC5F2Tl4omJ0Ujcvusr6qqMl1VaXG0GiE2+i1BOausjGqv19F6TOCpVCobbB999ln8b3mL7GpNYkZ3JauBFdYtg4FYGHHAurVHIvQNDzPk8YwQkaciZRgc7u0V18v6+8cljk8kWMeiEqgD5pWU0NXdjTeZpD6Z5G3nnssq6/snQnZnJZLi45XeXn6ZSJAGIorCFyorUVy0SPpXQFlFBUSjTA8EmBGJ5O3qcXs7XHaZ6OCm08KLq6rjm24GI7u4bwHq81LV5KToRC5Ao2NV5NgRConLrqZJyu/HP2uWowfiDiBoGGCaVAwMUO8Cz7Kk8KjAIusGcKNpcs9jj5EoKWFA01h/+eWUA9ExbjHbdmQcgrXUdisBvOXlmKkUJcPDeAcHWVdfz2zEB27m1oAQt9lLaVVV+GfPFh3qxYvRG93wbpZIJBPN/w4OkkY0aNqCQRpdlATUDTxKblHXB/r7uSSPi7oyXtx0Wuyn02J/PNPNuoHHbT7h66fY8IfRFI3I7bVtu+GC5RuWwDWBBhcIyj3kxvjqkQglHo/jnmXJxKPrOtdu25azOYxTRB5LpfjtE08whPjQ2Lp5M63kBK2HMXywFRX4fb7cc40z0k92ZiWSqc0bwJsNDeD3o5gmF+3dS9sllzhdVpZfI9ILAM5VVW5avDivv3+0lvd4hDd3PH7c20f5hCvy7BOebBSNyHVbJ3e4vj4b1eUzDMcF5V5yZ50bhofZNgWjRCSCMxGRbbrOO668MidYm8cXdy4Fq0QiOR1M4IfkjldL+vr48CWXuOZzJNPFzfDOPP/+9nb4zGdgeFjsl5TARz4C733vqbu4EeB+m0945cGDefUJT0akyC0QKVtU17bzz3f8smsm6UFVVa6YM0fmg0pOGylYJRJJofkzYuEUQKWq8uW2Nlcdr35Frou7AjH+O5+Mjg1Lp2HmzPEtOLsHKLF8wk3RKLNDIVovdNNyvYmnaESu2+wKvQhBqaoq5zhcyxDwRipF3DDQNI0FU9yjI5FIJBL3MQT81LZ/DbhK4HYB96dSJKxj6TsLcCw909iwBHAfuQ74O1IptsortsUjct3UyR2E7GhRD86vbHy+r49jiYS4hJFKkfT5qJnif/gSiUQicRf3IewAILK5b3awlrH4QSxGlzVVtToUoqmlJa9+1/Z2uO022LJF7E+bNj6bAsAfyQ3NmKuqvH/hQjx5q2zyUjQityOVImKdXTU53Km0C+56cPwPbVcwCKoqFsHFYnQmElP+7E4ikUgk7iEO/DSZJDIwgKZpfFhVqXK6KBtHGZmLu37fPjpNM6+5uPYRvuXl40tTADEn4G7b/g04rzvcQlGI3EN+PweteKy4aZKsqKDWQRFnF7lusE54mpshGkUxTWpSKVoXuGE0hUQikUgkglujUfZbqQCkUqz1+VyVCnA7oGoaKAoz+/qYnsdcXDjeizs4OH6R+wi5q8eNwKa8VTX5KQqxv8cacGACXsOgq7PT0XrcZJ0AGPL50HWdWp+PjcuWyS6uRCKRSFxDB/AHW5f0/DffpNfh47idvYiJoRm/60dUNa8JRe3tcOSISFLIMF4v7hBwp23/rRRJ9zJPFMVrUT9tGiSTKKZJWTrteFxXL7nxuWXg+PjcPnKL4OY7WolEIpFIJCP5AbnpYW3BIAt7e2k97zyny8pym237UlXluqVL8/a7R083AyF2b7llfF3c3weD7C0pyVo1r8xbZcVBUYjc2qYmdEtULmhsRK882RDQwnM4GsVvXXbZv2cP/hUrHO2eui15QiKRSCQSgJ3A84hGzDRd5y9jMda7KBXgFeAla1sB3pPn3z96ulmGQODUP9vt9/OdYJCI10tEUbixpgbN58tzhZOborArDCHeILW1tfgcFrgAvdFo9rJL6eAgnQ5fdulIJolEIhiGgTuGIkokEolkqjOE6OJmuFZVuWbpUtcIXJORXdzLgel5fo5MZJjHUmOnM93sj5EIQa8XEygbGmLZ4cN5rm7yUxSdXJtXW9gDHMZbWwuhkLBPgKP2iS6/nz2pFCYQBQY1zVVmfolEIpFMTe4FjlnbleS/S3q27CA3mKKUwkw3274dPv1peOklWLUKfD4hcE9lVTCBJ6dPh74+FNNk5dGjzDvH6VR+9yFFbgHQqqvRy8tJpVJcfP756PXOJeUe7urCrKsTXeXhYXo6O2mTIlcikUgkDhIBfmyL/vywquLs6pWRpIHvJRJEBgfRNI1rVTWvdr/RXlyPB558Eh59dHxe3D8DfV4vuq5jJhL87eLF4x63PpUoCpE7aNsud6yKHAPkFnpNc7iWptZWSKVQTJNS03R8UZ5EIpFIJN+JRjlkrV3xJBKsq6931VXGu0IhXojFwDRJpNNsrKyEPIrI0V7cdFrsjyc2LA38wtpWVZWbVZV5eausuDilyFUURQOeAFTr8b81TfMfC13Y6WAXuW7o5LqpHl9zc3ZR3rTycvSKCocrkkgkEslUZg/wkGlm165ctHs3PbNnu+YqowHcZos0W3XwIPG6uryJ3PZ22LFDbHs8uU7ueL24f0YMpwCoAK7PS1XFyXg6uQZwqWmacUVRyoCnFEW53zTNZwpc27hxm13BTSJ3kFxXucbhWiQSiUQytUkD/0NusMKcnh7mBIO0XnCB06Vl+T2QqqqC/n68hsG6I0dozVNs2OjJZiUl8MUvjt+LmwbusO1fA1TnpbLi5JQi1zRNEzFxD4RmK0N4nl2DG+0KGdwgcjO44bWRSCQSydTlAWA/ovkyo7mZT0UirHBRZFgE+C25wQ/XHj3KW7dsyVt9oyebpdNC4H75y+P7+aeQXdzTYVyeXEVRShBRdvOB/zZN89mCVnWaDJIbvpBSFKhxtmdprycyMABNzqXTDthqmVZWBl6vY7VIJBKJZOoSYWQk13s0jSuWL3eqnDH5BZC0tuerKp+YP5+Sk/3AaZKJDMt0csc72QxEF/eXtv1rkV3cUzEukWua5jCwSlEUH/A7RVGWmaa5y/4YRVE+CnwUYObMmfmu86T0hsP4rWzaXYcO4T/nHEfPCqOJBP6+PjBN/vT008y69FLH6unu68OfSIBpcjgWw9/U5JozZolEIpFMHX4M9FvbLcDbHKxlLDoQneYMH4C8Ctz2drjtNtiyRexPmwbvfe/40hRAdHH3WU2rOlXlOk3LY3XFyWmlK5imGVYUZTtwFbBr1PduBW4FWLdu3YTaGYKhEHg8mKIOOjs7HRVyyf7+rGF9CBytJ+z3Q1UVJjCoKI6/NhKJRCKZerwBPGrb/xjus9D9BNEtBVgBrMvj7x7txS0vH1+SQoZh4Ie2BtqigwdJLF5MtTyen5RTTjxTFKXJ6uCiKEoFYujH7gLXdVq0+HygKCjAUFmZ4zFZDV6va+qZ2dycq6W01PHXRiKRSCRTi2HgPxKJ7OTNDcBap4saxS7gCcPI1vhBxBjffDHaizs4KO4bL48CBwcHwTQpHxpixcGDjk9TnQyMp5PbAvzU8uV6gF+bpnlvYcs6PVrr6tC9XlKpFAvq69GrnXWpNFZWopeWkkql2LBpE3qDc8N0ZzY1ZSPEGmWEmEQikUgmmNvDYXZalsL+dJpr85w5e7aYwHf6+/EHAmCatHR3UzV7dt5ye9vb4cgRkaQwNCTuOx0v7gAiUUHTNCKKwppDh/Cm07JpNQ7Gk67wCrB6Amo5YzRyMVlumG5RQa4ep5d52WtxVSSGRCKRSIqeXuB2Wybuuv37GWxocJXIfQx4fWgITJOSdJrz9uyhs7w8L9a+0ZPNQIjdW24Zv1Xhj0Af4li+sKmJDwSDzFm2TFoPx8Ep7QqTAXtvMnnCR00cbqqnDHHJJR6Lcczv59U33nC4IolEIpFMBUzge4BiWfjq+/tZe+SIqzqQCYQXV7Nye9ccPEjtwEDeahw92SxDIDD++n5t239fRQXnr1olBe44cUPj86xxk6gE0VnOkHCsCoECxGIxAsEgAI8/8wylwOLFix2tSyKRSCTFTTuwg1zm7MficS7autVVAu3XQBhR4zlNTXw4GGTO0qV5q9EeGXa6k80A7gZi1nYzYtW/ZPxIkVsA7BaFlGNV5OhP5KR2XFU5cOCAFLkSiUQiKRj9wPdt+9epKjcsWeJUOWPSiZhuluEvrS5pvmhvF53cT38aXnoJVq0a/2QzELnCv7Ptv5siEW0TSFG8XnaR6wZRWYGwB/QnEuwfHgaHL81UWovyAIyyMubOnetoPRKJRCIpbm4DgtZ2HfB+50o5IT9CxHwCLAYuyePvHu3F9XjgySfh0UfH78X9DTlNMxPYmMf6pgrSk1sA3uzqIhAMkkqluDca5Q2HfbBXVVfTUF+PpmnMWb9ednElEolEUjB2A/fb9j8KVDpUy4l4EbCPbv0IhYkMy3hx02mxP97YsD7gd6lUNtLsLygSwTbBFMVrZvfAukHkHg0Gs9vRigoOHDjgYDXQCFRVV6PrOpWzZjlai0QikUiKlyHg64kEYUucrQMudLqoUQwB37bl9l4OLMjzc2S8uB5LZZ2uF/e7sRgdPT1EwmGUPXuY7ffnucKpQVHYFcqsrxmLwCvBICsc7FZeVVHBM9Z2fTzuuD2g0bbd51gVEolEIil2fhgO87yViZtIp7mhshLFRXFhAHeEQrwYi2VrvCrPub1n68U9ADySTmdj187fs4euoSGmuWjB3mShKERuJiIrkyDw6I4dlOFcgsB5c+fSYAnuhtpaFvt8jtSRocm23etYFRKJRCIpZo4Av4KsOFu/dy+DTU2uysQNAT+DXG7vvn0kGhvzVuPZenFNhFdYtSLN5vT0MDMcdlXs2mSiKOwKMDJBIFVW5qhFwG4PGPb5SJ/yJwpfTwYpciUSiUSSb4aBbwGlFRWgKEyLRFh99KjrxNmPAazc3rpEIu81nq0X9wXgZUSkWUtzMx/XNLZt2+aq2LXJRNGI3AVlZdntflV11CKgApnBwsOIDD4nyYhcwzDYGwrhl94eiUQikeSRe4C9CHHW1tzMX3k8XOsycbYLeJxcbu8nFIXr85zbezZe3GFEFzfDNZrGFjnZ7KwoCrsCwNr6ejrLyuhPJJh97rksnjnT0XqayAU49wL1DtZSBwynUvh7esA0uevxx3nbli3yjSORSCSSs6YTuN22/35LnLmJIeC7tv3LVJV3nHNOQZ5r82bo7BTC9nS8uI8iLB8gFtS/qyDVTS2KRuQ2ISwCVdXVIyLFnKIRYR4HsdhrkYO1KEClZbI3gWBFBZ2dnVLkSiQSieSsMIH/Agas/bnA25wr54Tcy0gB+aECPEd7O2zaJPy4IBadbd8+PoGbAn5u278R0aCSnB1FY1dwW4KA2+qZZ/mkFCBSVeU6n5REIpFIJh8/D4V42ori8gCfxX3dswAjBeQ7GXmMzhcZP26GwcHxe3F/Eolw0Hod64Hr81/elMRtf4tnjNtEZRPCA5tKpdivKFBT42g9i6uqeKGsjFQqxeyLLkKvrXW0HolEIpFMbnb19vKteJxBj4eIovCR2lrmuvDY8q1YDH86jaZpzFdVri3Ac7S3w44doChgmuK+srLxeXF39/Twg/7+3OtYXY1aJ/u4+aBoRK7bYrJKgkH88TiYJk/19vLuGTMctQe0Icz2qqpmvcISiUQikZwJJvDN4WEGPR5MRCb8+kAAVq92urQRPBYIcE9/P5gmEUXhbysrKW1oyOtzjLYpeDxw7bXwxS+Oz6rwg4GB7OvYGIsxNxAAKXLzQtHaFUynCrFQuruzHtiQ5YF1kjbb9jHHqpBIJBJJMXAP0FFXB4qCxzS54rXXmOUyG9wA8N+mmT0WL+zspPbIkVP92Gkz2qZgmrB+/fgE7l7glaamrJ3w4j17mO6y13EyUzQitxIR3WUYBj2RCAd6ehytZ0VDQ84DW1nJNIf/aKdbXw3D4LVwmG4ZIyaRSCSSM6ADuI1cFNeNwIcvucR1i5l/DcSqq0FRUIeGuGjv3oKsR7EO91nGa1Mwge+Tex0vKivjLy+4wHWv42SmaESuAlQmEvj9fiLhML95/HFH82Dn6joLm5qo9flobGkBh/9oq4HyZBK/309fJMIdjzwi83IlEolEcloMA98kl6ZwjqryN7Nnu06YHQHuJCcg3we848or815nezt85jO54Q8eD9xyy/i6uH8C3rS2K1WVv29tdd3rONkpGpELUG7NyzaBiKo6bhGYX1FBbW0tqqq6wiJQbXt9+rxex18fiUQikUwu7kRcYgexqOfzuG9xjwl8B5GNC7BKVfnkvHkFEZBjWRUCgVP/XApr+prF9UBLXiuTQJGJ3PnWqD63xGRNt213OFZFjmW2GLFen8/x10cikUgkk4cDwB22/XcDs50p5aQ8CLxhbZcAn0Rc7S0EZ2pV+A0QtLbrgJvzX5oE952AnRVLamrQVZVUKkXb+vXoDsd22UWuGzq5a2tqeMh6fXznnoteVeV0SRKJRCKZBAwC/5pIEBgcRNM0Vqgqb3W6qDEIAj+x7d8AzCrQc52pVcEP/M62/z5wxRCrYqSoRO50cjFZEaeLYWSigRs6ufPJvT7diEs6hTq7lUgkEknx8J1IhJ2RCJgm/ek076mqoqSp6dQ/OMH8L9BvbbcAby/gc52pVeG/YjH6rNzeZarKpQWrUFJUdgW3xWRl6jEMg1eCQccXerUhxhkChMhdKpFIJBKJ5ES8AtwN2TUdG/bswexwQ+tmJDuBRw2DiDU57JNAeQGfb+NGKLc9wXisCo8HAtwbChEJh/H7/bytr082mwpIUYncJnJ/0FFwfOiBDgynUvj9fjpiMX77wAOOCl0PopubYZ9ThUgkEolkUhBDpCmomgaKwqy+PlZ1dLhuTUcC+A8rQSgSDlP34otMK+Dxtr0dbrsNtmyB66+Hj39cdHZPZlUYAr6bTo/I7a08erRgNUqKzK6gILqVB639DmCxc+XgAXzRKMesP+ieqio6OzsdjQiZDzxvjRveCZznwhGMEolEInEeE/gfIICwus1vauLT4TCLt21zXdTVT4DOgQEwTbSBAS7cvZtOKz4s34yecFZefmqBC/B7IFxTA8kkZZnc3iuvzHt9khxF1ckF9y32Wmad/bol0aDBsk1EwmEe3L/fcQuFRCKRSNzJ48BTtv3/U1HBxhUrXCdwXwHuBzTrePuW3bupHB4u2PF2tBd3cFDcdzL6gF+Sy+19N4XJ7ZWMpKg6ueA+X+6amhq2W4kG9evXo1dXO1qP99gxqKnBBLpqa+lwuLMskUgkEvfhB75n278SON+hWk5GCrjF2lZVlS319dw8fbpIWCpQF3fHDhEbZprivvF4cX9g1QqwUFX5zNy5xSfAXEjRvcbTEQu9UqkUb5SUgMMxWQsYmWjgNCuam6mMRukvL2egrIyhGTOcLkkikUgkLmIY+Of+frqHhtA0jdmqykecLuoE3A7ZY2sl8MWqKupXry7Ic422KXg8cO218MUvntyq8CLwZ9v+xylC8eVSiu511vr68CcSYJo8k0jgr693tFM5C/EiDyHOjGOIEbtOMU3XudzrZbsVX9Klqg5WI5FIJBK38b+RCE9ZcWEx4CuVlWiNjU6XdRy7gXts+x8G6gv0XO3t8LnP5QQuiE7u+vUnF7iDjOyIbwKWFaZEyRgUnSfX7OjIrlwMV1RwqKvL0XpKgTm2fTckGlxQXZ0dN7zL6WIkEolE4hp2YU01s46j5+7bR4ULEwAGgG8jFscBrAYuK9BzZTq4O3aMvH88NoXfAZ3Wthf4YP7Lk5yEohO5c1paqE8kUADT42Fw+vRT/kyhWWDb3nvCR00cy23bu4C0U4VIJBKJxDXEgG+QiwtrC4U499AhxxdMj8Uvgf1WJi6pFJ+icMONRi80A9HBPVWiQg9wWyqVze19D+ArUI2SsSk6u4Ku62z0ennUuhwfcsHl+PnkfMIveTzc7PDis1bErOwQYjLMIWCukwVJJBKJxFFMRGe0D7GOZF5TE58Kh1nqwriwN4GfG4ZIBzJNVu/ejblqFUzQQrPycvjWt04ucE3gG/E4R4NBME3K43HWNjYWpEbJiSm6Ti7AGtvleDfYA3y9vdnYrj91dTke26UgurmGdRb8ZDjsaD0SiUQicZb7gGdt+1+qqOBSF8aFDQD/CSRTKTBNWoNBlh45Qmdn56l+9LTJ2BTuvhvSabHQ7Prrx5eJ2w60Dw9nbR+XvP46/gLUKDk5RSly7VO93GAPUDo6KB0awgTiqsqunh6nS6ItFMoK77tlXq5EIpFMWQ4CP7LtXwOc51Atp+I2RDyopmmUpdNc/tprlHg8BbFUjLYpjGehGYgrpN8nl9u7rKODtmjUlbaPYqfo7AogLr0riMsFHYhsOs3Bema0ttJ27BiHGxpAUQi5wCfccOwYVFdjAkfr6jgi83IlEolkypECvpJI0Dc4iKZpLFZVPuB0USfgVcTUMBCWii/4fCxaupTW1ta8H7/a2+HIESgpgaEhcd94FpqBEOJBq8aFTU18KhRingttH1OBohS5KiK66xBC6O7D2cgOXde5VlW5TVHQNI0OF/iEVzY1URMOE9U0BktLic+c6XRJEolEIplg/iMa5aVwGEyTRDrNB6qqKGtqcrqs40gC37LtrwXeXleHUleX9+dqb4fLLhNxYWlrZXZJCdxyy6m7uLsR09cyfLaiggtWrsx7jZLxUZR2BRhpWXCDL/ciny/rE37V6WIQebnXtLRQ6/Oh6zoHGxqcLkkikUgkE8gjwEOmOcI3anZ0OF3WmPwIkVYAUAV8hsKnKaRHRQ8FAif/uSHgO+Rizc4FLsx7dZLToWhFrttiu+YjOswg3qjOu3Lh0pqarPDe6XQxEolEIpkwDgHfJecbPaeriyXd3a70jT4UCPArK4YLxMSwQg59yOThejy5r+Xl48vEPWxtq4g6CyXEJeOjKO0KAPOsr4Zh8Ewshn942FE/TCmwGHjJ2t8FXOpYNYLlQDlitepRxEQ26RiSSCSS4iYB/Dvis19VVVY3NvLxYJA5LvSN7u/p4SuRCP3l5UQUhWvq6rikQDGco8f2lpSIkb0+nxC4J7MqvNLby/fKyiipqEBVVd4DNBekSsnpULSd3DnAUCqF3+9nX38/v33wQccTBOxDGNxgWVAZWdPzThUikUgkkgnBRFxSP2bta8C/eL2cv2qV6wSuCfzX4CD95eWYQIVhcOWBAwXpjra3w1e+MnJsbzotBO6Xv3xygdvt9/N3HR30RSL4/X5a+vu5pgA1Sk6fohW55UBDNJr1GnXU1BQkR+90yAhKwzDY3tfnuOgGWGd9NQyDP7ggw1cikUgkheOPwJO2/U8BMxyq5VQ8BrzR2AiKggJc9sYbLJo2Le/Pk1lo9vDDI+8vLR1fmsLvYjGO1NcLL65psvXQIUryXqXkTChakQuwTlWzb47OhgbHvUYLANPqLh/o7+eORx5xXFSuQwhcv9/Ps6kUv7v/fsdrkkgkEkn+ae/r4xvhcNbbehXwFmdLOiHdwPcQdgpd19ni8fCZ884rSLc5s9AsM9Esw4c+dOo0hSDw4PTpWa2x+sgRzm9szHuNkjOjqEXuhbW16LpOrc+HumaN45diSoEWK6rFBA7V1zveXZ4G+KyO95DHw/6GBsdrkkgkEkl+2d/TwxcDAQLWJfVpiQQfcbqoEzAMfBOR4QswR1X5yowZBTmGZ/JwPR4xuhfEdkUFvPe9J/9ZE/hvYFjT0HWdeZWV/PPChY5rDUmOol14BrAE0FQVVVXpRkwhqXS4pos0jR0DAyimyeGmJse7ywCXlZXxpqKgmCZ7W1tdUZNEIpFI8kMa+NrwMFFNwwTUwUFu2r+f8uXLT/WjjvAb4A1ruwT4AoUZ6DQ6D1dRhEXhwx8WAvdUXdwnASuIAVVV+WdVRSbOu4ui7uRWkktZMIHXHKwlw+VWLm2tz8fQsmXUu+CM71pbTcbSpXhdUJNEIpFI8sPPEVcOM5fUr3jtNVY2u3Pt/5vAHbb9dzEyEjSfjM7DtSKDmTnz1AI3grBTZLgaZ4dOScamqEUujEwP2OVYFTlagdmqSm1tLWiaK4R3C7DCqqlU0/iz0wVJJBKJJC88A/yanLf1RtPkswXytp4tKeCriQQhKxN3MXBjAZ9v9Ayk8ebhghC4MWu7CXh/XiuT5IspJXLdENulkEs0AFwzhMG++OBPjlUhkUgkknxxDOFtzbBBVfm72bNdKXABvhGN8kpfH5FwmNCxY7y3t7dgIqW9HT7zGRgeFvslJfDRj8Kjj566i9sOPGXb/xRQUaA6JWdH0YvcJeQmjuxH+HKdZq1t2y0i9yLE62QYBk9HIrze44aZbBKJRCI5E5LAv1pfQQz6+QLuPeg/CTw4asTwYAFHDN922/GZuOOxKcSAbyaTRKxu8+XAmoJVKTlb3Pr3njcqgbkI8RaORHjyVMOnJ4DMpDEQZ9pdDtaSoQ6YH4/j9/sJh8N8+7XXZJSYRCKRTEJM4KuxGLssIVYO/C1QmDlhZ083YkBFZsTwwu5uFvv9BVsE3d4OP/zhyPvGm4n7zViMPb29RMJh4keOcI1sCLmaohe5ADOjUfx+P5FwmF+5QLyVAysRwjsSifBIKORoPRmWdHZmz6Jfnj6dwzJKTCKRSCYdPwyHuTcUIhIO4/f7eVcwyFynizoBQ8D/Q4waVlWV5Y2NfF5VuaZAI4bb2+Fzn4PBwZH3jycTtx14NJ3OHiff8tprRI4dO/kPSRxlSojcpq6u7B/lYZfkwM4LhbLC+zcHDzouvAG21NZSZRgoQFJVOTJ7ttMlSSQSieQ0eA74maJkj3krDh9m7uHDTpd1Qm4H9ljbJcA/er1cUKARw+3tsGkT7Ngx8v7y8lNn4kYQmbiZbvM5XV3MDwRk5KbLmRIi9xKfjxLTRAEC1dWobW1Ol8S0jo7sh9CR+nr2dnc7XRJtus4Hm5uptSLF/lRXh3nqH5NIJBKJCziK6IqqlhBrC4W4eO9e1wqxF4E7bfvvo3BxYZCLDLOzfr24/2RdXBP4H4TQVVWVc5qa+GxFBdsK1G2W5I+iHgaRYZauszEeZ+fwMJqmcURVWeJwTcuam5nW00N3TQ2mx8PRme6IkH67z8f9gAEcAl4GVjlZkEQikUhOSQz4F8RCM1VVWdrUxMdDIRZt3epKIRYCvmHbXwNcX6Dnam8XQjYcFjFhmUSF8nL41rdObVP4E/C0bf9LFRWsWbmyILVK8sspRa6iKDOA2xATYNPAraZpfrvQheWbjVVV7LW2dyJmdjuJruu8p7yc//V40DSNV1SVdzpcE0AVcAVwL8Iz/N1gkH/2eFz5ISmRSCQS4Wv9d3KLmDXgXysqmONSIWYC/xKPc8RqPE1TVT5PLgkpn4w11aykBK65Br74xVML3AAjhz5chUxTmEyMx64wBPy1aZqLgfOBTyqK4nQj9LSxZ9O+BAye4HETyTV1dfhqa1FVlV1An9MFWVwLDBgGfr+fZwYG+OETT7jCMyyRSCSS4/kh8Ipt//PAHIdqGQ8/DId5NBgkEg7T093N+wIBavP8HO3t8H//L3z965BKjZxqBsKmcCqBawL/RS56VAc+lOc6JYXllJ1c0zS7sE4QTdOMKYryBtAGvF7g2vJKK2KyVxfiUvxrOH8Z3mfV8KK1/wTwNqeKsdECLAoE6LY8w08uWMBVnZ2ymyuRSCQu445QiJ9bVwRVVeXdwCm0m6PsYuTCuDUHD1JfW3v8+LGzYHT31s7pTDX7ZSjE49Zrq6kqn0N0ySWTh9NaeKYoymxgNfBsQaopMOfatt0yhMGtk8Y+WFaGB3H5qLO+nu5Zs5wuSSKRSCQ2tvf18fVoNBsVtjIW4+1OF3USwoxcGNcaDrPhwIG8LozLRITZu7cgbArXXw9f/er4ppq92tvLN8Lh7Gu7KRJhWd6qlEwU4xa5iqJUIRZCfs40zegY3/+ooig7FUXZ2dvbm88a84Ybx+luIDcY4gBidawbWNXUxLvr6rJJC7+vr2fI6aIkEolEAohBQv9eUkIacVm9MRpl2/79BfG15oM0QuAGEQvjFjQ18SVF4bo8LoyzR4SZtmggjwc0TXhwv/zlUwvcYeD/pdMMejyYQF08zoUHD+alRsnEMi6RqyhKGULg/tw0zbvGeoxpmreaprnONM11TU1N+awxbywFVMSCqtcjEV5xgRj3AuvJDYa4JxJxuqQsH6upodXyDB80DL6zf7/05kokEonDRICvAGmvFxSFyoEBrnn5Zea0tDhc2Ym5g5xvWAH+vqKCTStW5EXgtrfDJz4hOrijI8JOp3ub4TdAt88HioLHNLnytdeY5eLXVnJixpOuoCB87W+YpvnNwpdUOMqBefE4DwSDYJr875tv8vcrVzruNV0eDPKLeBxMk1+mUrwtlaLFBf7XauDtwHetRWh3mCalDz7ITZs3O/6aSSQSyVRkAPhXxChcVVWZ0dzMR/bv5/zLL3ft5/ILwK9s++8gf2tiMt1bwzj+e+Xl40tQsPMmQpCrqoqu61zW2cn7L7nEta+t5OSMp5N7IfAXwKWKorxk3a4ucF0FY0Z3d9bwvq+52RXTzxoPH0YdGMAEoprGQ+Gw0yVl2QZUxWJgmiTLynjsnHM45oLXTCKRSKYaJvBt4A1rXwH+QdO4bulS14qwPkQebsY9sAohcvNBxn87WuCuXw8f//iphzyMJomoNWPlXaOq/J85c1z72kpOzXjSFZ6iMPF1jnBlTQ0/TCZJIxZUlWvOr5Wc1drKst27eX72bFAUdk6fzvucLsqiDPioovAlRUExTfZPm8bBqiqZEyiRSCQTzM8RKTwZPgSc51At42EI+Mf+fo4ODaFpGi2qyhfIz6jVE3VwxzvgYSz+l1zWsBcRxTYlxsIWMVNi4pmdhc3NXBqP85wVQr1bVVnqcE26rvN/FIW/LC+nrKKCQ6rKXgo73vB0uKqhgRfLyrjfNNE0jV+rKhcDzU4XJpFIJFOE34b+f/buO7yt8vz/+PvI48iWbXnLcXZIyCCMhBDK3pQRKN0Lukv5du9Cd/uje++Wbro3bWlZZbSlhJEQSIAAWWTZlresYR0Pnd8fj2TLjp04iW0Nf17XdS7rHMvyY1uW7vOc+7nvLm5KKxV2GaameTb7ek8P93d3g+sSBj7s8+GvrZ2Uxx6vRe+RBrjrgbvS9q9D73H5YMYFuQCXl5XxbPL2v4EXZ3IwScvr67kCuDe5/1fg/Rkcz2jvqahgF+YsNwZ8DZMXprPco+MCccxCkhDQk9zS90NAczRKVyyGv7SUCp+PQsw/b1HyY/qWfiwaCtHf0cEyv58VNTUEUJ1HkVxzd0cHnw2HGbQsQpbFRdXVXFtWltWXWO8F/ua6Q+mBp27bhr+mBo4yyD3aFr1j6QS+lbZ/NnDuUY1SssWMDHKfh1mE1gfsAvYA8zI6IuMFDAe59wOvAybnnPfoeYH3AR8Eeh2H/8Xj/Nh1eXNlZWYHluUczInBPqAJeDocZm80ChUV9JeW0sOhu+85jkOwo8PUxOntJVBYiG3bh/7ejkMwFDI9LKNRAmVl2LZNJaZHdwOmg09D2lZDHuUmieSBncDnPR4GLcuUCguHeXFnJwUnnZThkY1vJ/BtwOv1ErIsFre0sGb3bhqPP/6oHvdoW/SOxQVujETYl7y6O9u2+T/0OpgvZmSQmyrbdX9y/9+YlXWZdgxwPLAFU6fvVkygmy2WAs8PhfhBKASuy7cti7pEgquqqzM9tIxqDgZ5srWVRGMjTk3NUEC7H0gvUuc4DsGuLhOstrcTCAQmFKzG4/Gh2RDLdYnH40f1dd2YouxPj/E1hQwHviU9PZS2tXFeeTkr63XhTmS6tQCfAKzSUgiHKe/t5cpNm1h00UWZHtq4wsBnMZNItm1zUm0t13V2smjduqNawJXe5CFVA/dwWvSO52fd3dzd0wOuSw/w4bIyyiax+5pk1owMcsFcikgPcq8mO87crsIEuQC3Y1ahZtPl5VN27uRvHg9NlZVYrss3PR4WASdkemBTzMW8eO8ftW2LxXi8t5fBiooRs6VjGS/oLAb8QEXyY+p2an9wcJCNGzZQ2N+PW1DAWeedRyVmUccAZiZ4YNTWD7S7Lg/v3EmkqIgen4/KujrCmBOo8Qwkf66djkOwuxsKC/lRPM7JsRjnlpayFjgWpamITLUQJsDtxgSLC+vruXb7dk6+6KKsXe2fAL4MpKqplwCfKS1lzlHOOo+3yOxwWvSO5VngZhjRYtg/yS2GJbNmbJC7GvABUcw/5DPAsoyOyDgFaAR2OQ6heJw/JBJcU1WV6WENmdfYyBV33MEf1qyhq6wMt6CA93d18YnBQc6YpAUFmdTH8Czsk93dPBOJEKuqotvnIzLG/UP9/UOXEceaZfVgZkZnA+WWxZ6nn6YsFqN0YIArzzmHxUzgJKa6mpPPPJOmpiYaGxsJTPT3XFnJuhUrhr+utJQEpqRPC+Z53zJqS7UyHB2Qb+/vpw1TJN2P6R64FtPju2RioxGRCYoDn8K8FoHJs7/R62XFyuxuLPsrTE3clPcAc47i8davh5tvhkcfHbvJw9q1JsA9klncGKYDW1FJCfT00JBqMXz55UcxYsk2lpve+26SrFmzxt2wIVsa547vW8CdydvrgLdkcCzpftXVxReTtWnLHIff+P3My6Iz92Dy8vy35s5lZ/IyT4Hr8iG/n5dnUUA+nuZgkKeS6QXxmpoRM7PtmFlbJ9kAA9cFyxo3tSB1vxLHoSoW48yFC1leUcFsTGDbwMgzyWAwOBx0ZtHfNKUXE/w+1dnJrY8+yt6qKvbX1FA7a9aYP38hJsXmFEwpIyU1iBydAcyi3tQ7qAXcgGkBn83+2dnJ5wsKhqo/vIyjSwM8VJOHw62Bm87FzDinyrF54nHevm0bJ9TXZ+XrshycZVkbXdddM9bnZuxMLsA5mCDXcRz+Go1yRX8/jVnwBD9m925KfD5ixcVEbJtfx2Jcn+lBpQkEAgQCAXqfeIJPeb3Ei4oYtCy+mUiwYd8+3lJczOIsyOEMw4j82FR6wWMTSC8YK7WgwraHgtfZmBn3ObZNgW0T6ugwgWtFxUHHlPrdZasSYAGwoLqak48/nqamJqpLSmi2bR4GHsFcPk0ZADYlt5uA+ZgZ3lMwOdxKaxCZOBf4fE8PdyfLNdq2zXVkf4D7aFsbnwiH6SsoIGRZXFhdzavLyo748Q7W5GH1anjNa448wAW4m5H1ht/v9XLWUS6Kk+w0o4PclUBJby972trAdfnepk28/bTTMh6ELJw1i9M3beLu5cvBsvjfrFl0Atm2vGtNXR0vv/tu/nHiiXSUlxOJRrnTdbk3GuWl+/dzWns7Sxsapuz3mQA6MDOPQaAV2B4Osy0WI1JRQX/JgRfSD5VeYGFmX5cWFNC2Zw/+aJTqWIyXnXkmyxknbzsQMFueSQ/I52OqkrjANuDh5LZr1NfsTm5/AOzeXo5tb+dVtq2FayKH4AJfD4X4Q3Jhb8iyuNbv5zK/P9NDO6gwcKNl0VdQgAv4YzFe2NWF58QTD+txUqkJLS3wj39A/6iyM0dTIizdXuD7afsXAWcd3UNKFpvRQa4HWN7ayjOYF5gtc+bQ1NSU8SA3EAjwgVWraPJ46KyoANvmV8A7MjqqAwUCAa6+4ALObG7m5oEB7k++yPV5PPx6YIBfV1YyKxjk4v5+GiIRltXUsKKu7qA5qAlMnnQP5sUz/eO+UIi94TB9lZVEyspoZ+QiqhHVCxxnzBSDVEmbUsehqreXM6uqWIbJG2sEZpH8pygrI3jsscOpBQrSABPkH5vcrsakd6QC3s0Ml0NzHIc9bW1sc11u6+3lpT09vKmiQukMIuP4PfAXGLqCtGLfPk7r6IBVqzI7sIMYBL4ARMrLIRajaGCAyzdvZsk55xzW4xwsNQGOrslDuj7gi5jSjmBe9689uoeULDejg1yAq0pLuaW3F8t1ea6uzpRqyQKzAgE+BHw8uX8XcAXmUnI2Sc32zQ8G+ebDD7N+0SI6y8qG+pQ3+f38fHAQSkqgt5fqcJiigQFKS0oo9npJYE4wEkBvPE7McYYu06UbqvnqutDZSaCo6ID7jE4xGOztZeGoFIPZtk3hBNMLsj21IBvUApcltzjwOPAQcEc0OvS3SAC3uy4PA+cDL8csxhMR4+/ALxk+CT8mGOSCp59mdpYvgvox5n/etm0CgQCv2r2bS88557BfN8fqXpYyWTO4AN/o6eHxZCpImW3zIbKrepFMvhkf5K6qq+P5kQgPJgtBr7dtTsr0oJJWAScDGzGB4I+BT5Mdpc5GawgEeNfatby4qYkngN+EQjQnL7MNLW10XTo7O83tcHjETKvjOARbW4cu042ehR2v/FYlJmAKADaw8+mnqYhEqO7t5RUXXUTDWIPN0/SCTPNiFp+dCrysv5/vPfooDy9cSFN1NV6vl0HMydo9mGD3ZTD230dkBrkbk88OJli8oLqaV3R0MP/yy7P6JPsOTHCe8nrb5pXHHntYj5GeolBYOJyiUFgI69ZBQ8PR59+m3NrZyS8jkaH3mNeWl7MgBxZKy9GZ8UEuwNVlZWxN3v4X5jJseQbHk+4NmJIsLvBY8vbJmRzQQaRmPk8GLgkG2dbSwo7KSm5vbiZk24RLSojYNoMezwH5sOlBrN3fT1k4zALbHqoX61oWz+7ciR2P43ccXnTGGazABLZD/H6CJ52U1dULZoqGQIC3nn46VzU1EfL5uMO2eSL5uVSwezfDwe6sTA1UJIMeAL6Rtr8c+HRZGd4sTlEAeAL4Xtr+GZia7odjdIpCYaEpCzaZgW1KM/BNyxp6jzkmGGR5RwcoyM17CnIxJZAWYhbR9GGaMLw0oyMaNg94PmZMjuPwhZ4evp5IZEUViINJBbxnApd4vTQ1NeF1Xf53zz30ejwUeDxcesklzPL78QCt8Tj/vPtu3MFBCj0e1q1bN/KSdkUFwfSar3V1B/2+knnpf4tzMU1OfsNws5ME5qTyHuA8TBqDgl2ZKe7u6OAzBQUUlpSYZg+Y5g/Zfvm8Ffgcw+shFgHvZuJXGMerfTs4aHJvb7hhEgeLeU//PECya5w/FuOip55i9iWXTO43kqw0o+vkprsH+FrydjUmNSBbzgC6gWvicfYkL+efuW0bHz/++JwM5g5WJzbba8jK5HgCE+xuHnXcgwmGX45ZBCiSr/7d3s77wmH6PR6wLE6qreUbpaVUZnpghxAH3haLsa2/H6/XS71t8zVg7CmHYYeqnABHX/t2PN/BTBIBDMbjvGXHDp5XW6v3mDxysDq5CnKTBoA3AsmMUd6LmV3KFl/ctYtfeTy4QIHrcmM0yuXHHZfpYYkcsScxwe7jo473OQ4r29p4c3Exy1TVQvLMVuCdXV209vTgAuXxOP+vr4/zs7xOawK4PhLhjs7OoQZA3ygr46xDdGCcSOWEyah9O5Z7ga+m7f8fZpGs5JeDBbmq1Z5UCKSvY72FtAVTWeDVpaXUh8NYQMLj4c8LFzLGybBIzjgOuBFTguik5DHHcWgJBvnX4CCvDYe5raMjY+MTmWzPYFISrNJSsCx8fX288NFHOS4HTuZ+BDw4ODiU13rOU09RtnfvIb9uIpUTvve9yQ9w92JmcVPOBi6d3G8hOSBbrshnhUuB32FyeHZiLqtmy7n17ECAL3g8fKCoiIKSElptm18Cr8/0wESO0grg/2FmuL7a1UUw+SYaLyzkc4WF7MRcZcn2XEWRg9mGKQnZi6misKSujjfu2MHq88/P+kvnf09uqRJnJ+/cycrmZhpPHnsZ9Pr1JritqYE9e6a+csJocUzecGryeDbwdrKzMpFMLQW5acqBC4F/JvdvIXuCXIDVdXW8m+FyM3/BtE9dmbERiUye5ZjOSd999FHuOu44ol4vXq+X2zGL1d4PLM7sEEWOyA7gY0AsuV8BfK6khHkrs//V+2Hgh8nbtm1zRVUVL/L7mb1u3ZjB+fr1cMEFJj0hkQCPZ2orJ4zmAp8Ph3kikcDr9VJu29yAaVkuM4/SFUa5MvnRcRzuCoV4rK0to+MZbR2mfi6Yf+avYjqEieSDQLL02Bd7e1lXVTVUYm4/Jsj9IyY3UCRX7MIEuKnX6XLgM5jKOdluB6ZDWCp1bynw8fJyVq9aNW6A++53QzxuAlwwH1OVE6YiLWG0X3d18ZeuLkLd3QSDQV7Z1cX8qf2WksUU5I4yG1gRiRAMBgl1d3Pjc88RDAYzPawhFvAuoCy53wb8IHPDEZl0gUCAM088kRvLy3kXw2kKg8DPgY9i2gmLZLvngPf39rIvFMJxHMoweegLMjqqiWnHNB9KXfKvxwTrxePcP7XA7OGHTWPKFI/H5N6ee+4UDjZpK/DjtHq4y/ft45jnnpv6byxZS0HuGE7ds2fon2RbfT3/y7LFLzXA25K3HcfhllCIv6U6iYnkCQuTPvRNIL2P0hbgHcD9mRiUyATtAN7b28v2tjZC3d1079/Pu9rbWZTpgU1AL3B9LMauZHDuAz4J+Me5//r18MlPHlhB4aqr4MYb4e67p34GtwtTD7ewpAQsi/qeHs575hkaG1WQcCZTTu4YzqipYcmePWyrrwfL4q7583kh2ZW0fiZwdzjMn7u6wHX5dCJBXSLBaYco5yKSa2ZhKjD8Lrm5QCR5bCNwLcq3k+ySqqLQ3tcHrkvRwABXbtyIvWQJZPlr9ADw0UiER5KlwsLADWVlzK2pGfP+qRzceHzk8aIi+OAHpz64BTPmz2NKgNq2zTF1dbwtFGLlZZdl/aI+mVqayR1DIBDgEwsWUOP3EwgE2OfzZeWs0UU7d1Le24sL9Hs8/D+Ph6ZMD0pkChQCr8a8kaUXW/oXJn3nmUwMSmQMT2JSaqKYagTegQGu2rCBWeFw1s8qupgrJ4+klQo798knqdyzZ9yvSZUIG11y/41vnJ4AF+AnwFPJ2xbw8ZISLsjRhkkyuRTkjuP4ujqurqwcWvjyM0xpsWxyTEMDL9i0iZL+frAsBnw+PsZwQwuRfLMC8yZ8btqx5xyHt3R384uurswMSiRpM2YGNzWpWWfbfKuigsuPPda0Ks/yoOtmTAMFr9cLlsXaHTtMqbCDBOfnnmtybj3JaMLjgZISU0VhOtyLKW+W8hqG626LqOPZQUSBNwPh5P7rgRdlbjhjCgaD/K+jg58sWoTlNUt0FmBmvHyZHJjIFLsP+Fo8znPJdtdYFtf5/Vzn92dVapHMDBuBzzI8GVKFqaIwN2MjOjx/Z7g8JcBpPT1csmMHsw/SZj1VD7e7Gx57DE46CSorTeA7HbO4O4EPMPw7Px24nuxKLZSpp7a+R+FWhqsXlGJeBMZLvs+kRzCrdlPllVYCn2L8lbAi+eDuLVv4guvSkgxs/ZWVvMbv543ojU6mz20dHXypoIDCkhJs26YGE+DOzvTAJuh+RpYKWwt8GCg4yNeMVQ/XtqdnkRmYyae39Payr68Pr9fLYtvmKyg/fyZSW9+jcAnDL1Qx4DcZHMvBnAK8M23/CeArqKao5LeV9fW8aONG5re3g2Xh9Xr5K/At9NyX6fGnzk4+HInQEQoRDAYp7+3l8+ROgLsZ816RCnCXAR/k4AEuwM03H1gPt6/PzOxOtUHgE5EITyYrV3Tt38+1bW0KcOUACnIPoZCRrXNvA/ZlaCyHcgHwurT9ex2HD+/dS0sW1fkVmUyBQIAXXnYZH/N4RjSPuAv4EmbVtchU+SvwjYICEpgg0R+N8qbt22nI8Lgm6pG2Nt7f1UU0WftrDqb1sH2Ir1u/Hn7ykwMXmxUWTk893B8DG9IWx124ZQvuvmx9Z5ZMUpA7AWuBE5K3E5iVnNnqRcALMPVzg8EgtyUSvG3PHnYp0JU8FQgEWLtqFZ8uL+eCtOP3Y1J4nHG+TuRIucAvgB8xvEirNhLhxRs2cFx9/SG+OjtsaWvjXd3dBHt6CAaDlPT28ilMR7ZDue8+08UsnWXB618/9akKd2Lyh9MXxy1ub8/6yhWSGQpyJ8CCoRw/x3H4VyjE3VnWICIlNdaV7e1DZ7nb6+v5QEEB4xeBEcl9BZhyYlekHduIWe2u1tcyWRLAd4HfJ/dt2+bMmhpuHBjgFRdfnPUVFMBU4Pm4ZREtLsYFivv7ee3OnUw0PB+rooLXO/UVFZ4Cvpe8bds266qqeGtVVU5UrpDMUDOICVoEnBIO88dk84VPxuMsGhhgYRb+Y1nA+woLad+1i8fnzgXLoqe8nPdi8nbPzvD4RKaKhamI4gN+mzz2JPARTIvSigyNS/JDPyZ/9X9px9YA1/t82CeemJlBHaYwyTq+5eUQi1E4OMgVjz/OmjPOOKzHef7zoanJBLzTUVGhFVO9IpWCtAj4WHk53lWrpu6bSs5TdYXDcN/mzXzA58MpLMQCLi4o4Etz5mR6WOMKBoP8vaeHW+bOHSovBnAlJs9YZziSz27B5O6lzAX+H6Yttsjh6gU+EomwYXAQr9eLbduci7l6kCuvpTFMgLstuT8Qj/Pq3bu5qLJywjOh69fDeecNt/AtLjbpC1MZ4MYxpcKeS+77ga8BdVP3LSWHqLrCJFkeCHD+00+b0kSWxeN1dTyQ6UEdRCAQ4E1LlvAdr5f0bKW/YcrDqGmE5LOrgHcwXEpsL/CO3l7u3LKFoHLU5TB0Au+Mxbi7s5NQdzfBYJBzenp4L7kT4PZhTvJSAa4F3OD1cvXSpYd1qT/V4Sylv39qKyq4mID2ueR+IebKjAJcmYhc+f/MCoFAgPeuWYMzMMBTtbXYts23MSVXqjM9uIOYD3wV+DrwYPLYVkyNwRfv3s15VVXKZ8qwfiAE9CQ/pt9OfWyKRumORvH7fPh9Pgox/8BFyY+pLdbTQ7yri8UVFSyrqqIB84YwE2smX4ypm/kVIOY47Glr41PFxbzsrrt4xUUX6Xkvh7QH+CSwvb9/aJ3Dqdu2cX51NVaOXCofwDQIeiLt2Fs5stS1VD5uaia3qGhqKyp8PxTiNhiaPX8rsHzqvp3kGQW5hykQCHAjZoaoHZPf9E3M4pZsLj7vw8ze/gnTujGefMP/XEkJv2pq4oaCAk6vrc3sIPNcH9CCKUHXBOxPbjt6e2lLFjRPlcAazXEcgh0dpmZPPE6gsHDM+zqOQ7C72+yEwwRKS4fuVw0EgIbkR7urC09zM8+rqaExj4O9swAvcH1vL7guYa+Xv510EmubmxXkykFtxuSBRjFBVhg456mnOL6pidkrV2Z2cBOUAD4dDnNfIjH0GvN6TA34w7V+vamPe+mlZr+hwSw2m6pUhVs6O/l+JAKuS8iyeG1lJRdVKLNeJk5B7hEoA96DuWQCZgX3bcBlGRvRxFjAS4Bjgeuj0aFZiT3V1VxfVMTFwKuBhZkcZI5zMSc/+4Enurp4Ohymt7qaUFkZrQwXXE9xHIdgW9vQi3ggEBgzeI3H40N/L8t1icfjh32/zuS2NfV9w2Hw+bCjUS4Jh7mwvJzVmOd3vjkFuGFwkA9g3vTbKyr4Y3U1p6AXQRnbvzFXv1ILnfy2zfvLyqhraKBx9eqcOEFygc/19PDX7u6h15g3+/28yH/4fTunOxf3KeCbHs/Q69m89nbO7uiAHJk9l+yg1/cjdAKmHu1fk/s/Bk4kN7rcnAB8ZWCATzU3s3XWrKFOUQ8BDwFnAq8id3quT7dgMMiOlhbc2bPpq60dmplNfewjLYh0XejsJFBUdNCg1HJdSvr6qO7p4Zi6OvyYSgD+5DYwOMijGzdSODCA6/Fw5nnnmeNpWz/Qlkiw/plniBUUEPH5qK+tJQK0MTLATg+GnYIC7ksk2IRJ0l+BqQ29ltx4Pk/UhTU1fNjj4VseD16vl2dtm+8Bbye7r8LI9HKBP2KueKVUYVIWFtXUQE1uLF10MeW27nDdof/1E/bs4XSf74gCxfFycaciyG3G1LguLCmBnh6qIxEu27KFuZccyfyzzGQKco/Ca4BNmJytPkze3xfJjV/q8vp6vuG6bGpr44H589mUFoDdjymRcx7wCmBWhsaYaf2Y9IL9DAewz0ajbAiH6a2shFiMgONMeEbVa9sEMIFjI6a7kD0wwJb//pfS3l4KPB5T73GswVRXc+oZZ9DU1ERjYyOB8d5oq6o478QTh+/n8wEmCG5P/jxB4Fng38EgzX4/kZISU1gdM8v5RHL7SXKcy0IhFu3fz/NqanJi9upgXlpVRR/D5cXuxKRuvCxzQ5IsMgB8qaeH21x36NL+XEyAmxstHgwXuAmGcllDlsWy/fs595lnmL1u3WE9VipFoaXFdDTr7zfHpyoXN4z5fYcxtXCX1NVxXSjE8ZdckvOvPzL9VELsKO0C3svwJa1XYC7555rngF9iZnJTHMehv7eXNYWFnF9WxilAvmXtukAHY6cXBDkwvSAUChHq7jbBK+CvrMQ/6tJfBVAZjdK5ZQv+SITq3l5e8rznsbKubszFX8FgcDgoncYX8WAwyP6mJgbmzmVnbS2PYILfdKnOebgu8zo7+dDcuZyZ47nbLuYy9D1px94HnJuJwUjW6AE+Fo1yXyr33bI4t6aGz/p8+DI9uMPgYjqx/S3t2MnhMFds386cw3yNGZ2iUFgI69ZNXS5uP6atcGqBXDEmJ3rp5H4byTMHKyGWC5OOWW0hcDXws+T+L+JxSnfu5PQcm/VawHD9xF8C69OCmzsti8eTl9sXYvIb12Jye3PlMm+UkSkF6Yu/HCaeXpCaFSkcHKQqFuO06mqWYmZnUzO05QA+H8GFC4eD17rxC94EAoGMPFfSv+9azAlaF7ABeBhzlSKUNiO9p7qaDxcVcQ4mnSVXVzhbDC8c3Zw89g1M/dzjMzUoyajdmPJazw4MDD3flzU18eqODnw5lAPqAj9lZIB7FvC+8nIKDuPnSM3ePvroyBSFwUFYuxZuuGGSBpzGBb7FyAoQ70UBrhwdBbmT4IWYwGCj4xBsbeUrBQXsvfNOXp4jLR7TLQE+Bfxx505+7Djsr6oasYBpF2b2+veYXNE1wOLOTqr37uWYhoaM/bxxTEec4KiPrcDuCVQvGC+9oA6TVpAKYmfbNoVeL3379zO7sZFA+fid3jMVvB6NKuCi5NYH3DcwwI9aWnimoWEod/sx4DHgJHI32C3EVBv5ICbdaAD4DPAllIs+0zwEfBnzGpI6iT3t2Wc5Zfdu5h/mpf1McjF5xH9JO3YG5ipFwWE8zujZ23RTWS7sd8C9afuvw4xf5GgoyJ0EHky1hatjMXBderxe/rpqFWtaWnIuyEk5q7qa0K230mXb7K6vp+j009nFcFoGmNqt/3QcgpEIVFZiR6McH4sxv7SUOkwOW13aVs3Eu4/0Y3KyepIfx7rdHImwPxajt7ycvpKSMR9nItULyoG5hYV0NjcPpRe8+HnP4wTGqS1bX2+2PFcMXFxTw4kDAzzW1saD8+ez0baHUjgeYzjYfSVmwVou8WFy/96PqToRBT7U28tbtm1jWQ6eoMjhSS0w+wXDaUl+2+Y9Ph8NNTU0Hn98Tj0HvhcK8VuG68mehnluH06ACwcuMAMze7t69dSVC/tzZyffLSgYGvvFwIsm/9vIDKSc3El0e0cHN0QiJAAsi3Nqaviyz5ezRfhH54r2Yi5hP5LcQkwsRzVlIB6HWIySkhKKS0pwMQud3OSWut3rOPTG44euG5tMp+AgpbdS4/MkElTGYqysquKUxsbhmVmS6QVj/LxyoP2YWfx7GZmv7DgOx3R28q6CApbl2AnATuBDQCj5nKoPhXjJhg1cddlleh7kqT7gM+Ew96bVjq0HPoZJ3colLvDdUIibQqGh18NLqqv5TFnZhGexUukJYAovvPOd01cq7J6ODt4fDjNoWWBZXFBdzRcPY+wiysmdJpfU1BBOK1G0y7b5CuYNNBf7J4++3F4CnJ7cXMwipX8Bf4lE6CwtZTB5Jj4WJ5nKgetCJDJuUJoevB5O3diB3l4WJKsXBDCzyAHA09/Po//5DyXx+MGrF4zx88qBZmOuWryc4WC3N/k3C7oum/r7+URBAZfmSJklgEWY/9H3J5tFBCsquHfpUk5patLzIQ81Ax+PxXi4q2vodeacmhpu9PnItTYDqRzc38HQ6+GCtjZe3NFB4QRzcMeqf/utb8GmTWZ/Kps97AQ+7/EwaFm4QHUkwku6uig88cSp+YYy4yjInWQvrarCAn6e3H8AU6vwreTOIq2JsDALApb6/bwkHmd/UxPls2eDbdMGB2xPpzWfmEgzA8t18fb1UdnTw8K6OsoxVQvKk1sikeCxxx/H6zj4HYeXX3QRDWMNtLaWYy++WDO0k6wReDcm2P1KWxt3Jf+2vUVFfK6wkF3AG4Gx5+Gzzxrgja7Lly0Ly3XZOmcOW5PNMSR/PAR8DWhKa9G7cu9erunooCKHFpjBcJmwWxnOJV7Q1sblmzcz/7JDtyYab3FZfz90dMD3vjdVIzeCmHQhSkshHKYsHueqTZs45sILp/Yby4yiIHcKvBjoZrhRxO1AJblZWmwiRs+ALhnjPsH+fm655x7ilkWhx8Oll1xiZloxAXPqY2s8zj//9S/cROLgM69VVZxz6qkTCl41Qzt1ZgEfKCqi7OGHuXPlSqJeL16vl9uALcAHMDOlueDqqip2FRbyr+Ql7D/YNqvJzYV1MtIgJvf2T8l9r9dLxHU58+mnOWH/fubl0AIzMAHud4A7kvu2bXN5VRUv7Ohg3gTSbDK1uCylB1MqrAsz9oX19bx5xw7WXHihXqtlUiknd4q4wFeB+9KO/R/Z3/p3Kk0051W5sbknGAyyraWF2xYtYnNaxYlCTNOUq8iNKxl9mIoLO5L7VZiautWZGpActU5M1Yz00lR1wJvb2/Hu3ZtzrzMJTMm79DrPZ2HKbR1s1mr9epNbW1MDf/oT3HWXyR5LmerFZSlxTLnKZ5L7RcCngZVT9y0lzx0sJ1dB7hQawNRefDS5b2HeQM/M2IhEppaLydO+CfNmlrI4EuHKnTtZkQOz6q2YVIxwcn85piC9Lnvlnvva2/mSx0O/zzeUHnUypqzW+MX/stcAJt3iP2nHzgfexcHXfaxfDxdcYGZuEwmwrJEB7lQvLksZxJTqeyS5bwHXY9Z5iBypgwW5ubgeKmcUAjdgmiaACQC+AjyesRGJTC0LU2P3GwynrTiOwz2dndxQUsJP77vPLCzMYvWYN97UzPNW4IeZG44cgUHg+6EQ74lG2RcOEwwG6XMcrgE+Qe4GuB8Ph/l7KISTzDN4PuaE7FAB7rvfDfG4CXDBBLgej5m9ve666QlwUykWj6QduxYFuDK1FOROMS/mRXV2cn8AuBHYnrERiUy9RuCLwMsAJ7mYMFZczJ/WrOF/HR0ZHt2hnQC8Pm3/L47D97Zvz/oAXUz1hA8Bv2a4LGGJ4/CGXbt4GbmRNjNaHPhgJMI/uroIdXcTDAY5p6eHt3HwnyeVe/vwwyNnbj0esG34+tfNArOpDnABvhMK8ce0AP1lQG5lQksuUpA7DSowaQupokpx4PreXu7cskVvmpK3CoFrgE8ODGAPDmIBfUVF/HTRopy4mnEVJtcxVdbupsJCvvvAA/qfzVKpVJl3YvI9vV4vWBazu7p45UMPcW5VVWYHeITCmBzWDYODQxUhTtq1i/N37Bg3wF2/Hj73OfjiFw9cXHbVVXDjjXD33dMT3AL8rLubHyZrlgeDQdaGw1w9Pd9aZjjl5E6jPZic3M7km2ZZby+Xbd7Mm84+O+vzFEWOxsPt7XzS42EgmRtZhJltOzXTAzuEOPC6tja2xmK4QNHgIB+Px3nBilzr75bfwsC3MSUbUwqAy7u7Wb1rF3NybHFZSgemQcVehk+21m7bxqnPPccV69aN+TONzr9NN125t+nuBG5Maxo0v72dj3s8nJJjJdskex1VTq5lWT+xLKvVsqwnDnVfObh5mNSFwWTR+bDXyx9POYU/hMNM/qmGSPZYW1vLTdXVNCYX//RjFnP9O6OjOjQv8HHXpcxxsICBwkJ+sXAhTZkemAy5p6ODV3V0cG/alOVsTEWFN1dWcvKqVTkZ4O7HTIrsTe57bZsPlpfz1urqcQNcGG7Lmx7gWpbJv53uAPd+zMlH+qz65Zs3M6+xcfoGITPaIWdyLcs6G4gAN7uuO6EqH5rJPbi7Ozq4IRTCKSgYakl7mW3zf+RO8XyRI9GKufTanNy3MI1SLsnYiCbm0bY2PlJQwGByJrqit5c3b9vG8hyoFpGvosA3e3r4bXf3iPbeL7Bt3og5QclVOzF1ZEPJ/QJMibCzD/I1qRJh3d3wta/B4KAJdFP5t9OZngCwEbP+ZCC5Pysa5XXbt3NMQ4P+Z2RSHXUJMcuyFgC3KsidPFva2vis69Lh9w+VtlmIqcYwK6MjE5lanZhLsHuS+47j8Pz9+7na58vqN7+ngY8A4eRl4+pwmKs2beIVF12U1ePOR+uB7wO70i6Dl/T387bBQV6zdGmGR3d0nsCs4Ygl923M+8LJB/masUqEFRTAe98LlZWmucN0BrhPYK5aphqpzQE+D/inbwgyg6iEWBY6vq6On9fXc1laa9tdwHsYWWJFJN9UY97wljCcZ3hzQQFf2LQpqxd1LcOUFutLpht1lJXx+1NO4dG2tkwPbcboAj6HSXXpZPgy+KK2Nl69fj3Pr6zM6PiO1oPAh+JxmpNVCMows6HjBbjpC8xGlwhzXRPg3nDD9Aa42zHNHVIBbj3mZ1CAK5kwafXNLcu6FlP2jnnz5k3Ww+a1YkwR72XADzCXdaKYF4iXYdoA6yxE8lE55o3v7V1dBJMrxu9Ztow1XV28KotnRU8B3pVI8GlMeapISQk3zZ/PAtT+dyqlKif8GPMamRKwbd5RVsbsjg5mX3xxTs+o/x34tuPQ0toKrstAXx+fraxkWV3dAfddv94Etn//uwlsR1+Q9XjMIrOpbs872qNtbXy0oGBogWkV5v+85lBfKDJFJi3IdV33JkyjI9asWaN1VBNkYfIRj8HMUKTmhH4PPAt8AFOCTCTflAIftyzeFInQVlaG6/HwmwULOA2TupOtXlhdjc91+ZLHg1VayoBt84F4nJfu3s0llZU5HWhlo93A1yIRHh0cxOv1DqV3XYSpZVxeXQ3Vudt42QV+AtwC9CZrSlfEYly1cSMFxx0HySB3/Xq4+WZoaYF//AP6+w98LMuCF7zALDKb7hSFzW1tvL27m2hxMUQiLKqv59Ner9LvJKPUqTJLLAG+DnwZ2JQ89himm80NDHePEsknCwIBvm1ZfLCggHhZGdg2n8L8H9RmenAHcXFNDYuATwKtjkOwtZWver088NRTfBKYpUD3qIUxDR3+Eo/T3NkJrkvIsji+tpYPlJZyYqYHOAn6MF0wU6XPvF4vJT09XLZxI2WDgzQmqxCkmjqMrnmbLrXA7IMfnN7gFqAF+KjHQ7S42JTaGxjgtTt3skCl9iTDJlJC7DeYPP+llmXtsyzrjVM/rJmpAvOm+fK0Y22YMjK3g8qMSV5aVl/Pt2pqqErO0HUAn2J44U22WowJxsvC4aEi/Q8uWsSHGb4iI4cvAfwTeAtwKxBznKHr8Sft2sU7nn02LwLcHkylkfTavufaNj+qr+fsE09kXbJMWKot73gBbkGBCWynu8FDSivwYTAnqZZFYSLBFY89xmk1SlKQzFMziCz1COYMP5V/5jgOJ7S18c6iIuZplkjy0OMk60gn909K7mf75aZtra28s7mZpsrKoTJW1bbN24EzMz24HPMEZn3Cc2nHHMehaOtWzty6lfpYbCj4y2XNmAmN9HrLVwJvZHjmKZV3+7e/HdjUobAQ1q2DhgZ4zWumP7BNaccsxkwtF3Xjca5+7jnOq6rK+b+R5I6jLiF2uBTkTo4WzCrip5Mr0HFdfH19vK22lpdVVVGU6QGKTLK7MWk7YIKbk9raeG9REQ1Z/obZFAxycyzGfbNmUeQ1FVpTJ6b/V1zMMfX1GR5hdmsGvhMO859EYkTebT0m8FsUDNLc1ERjjnYuS/e/9nY+k9b9z8L8jC9Iu8/B0hPWroWvfz1zgW1KByaVLlXzuhBTGnB1xkYkM5WC3BzWB3x43z7uGhzExSxU81dWssTv5xXA+ZhC4SL54tfAz9JO7M7Yvp1PrFyZE8HNVkwKw9608XsHBnh7dTWvrKrK+lnp6dYO/Ba4NR6nOVlVAMtibn0913i9vBBThSZf/Lmzkxt7ehi0rKGf88pNXjrug5oa2JRckNHSArfccuDXZ6It71g6MQFuaia6EFNDeswoQ2SKHSzI1WtulisG3l9UBJs388DixUS9XrxeL63AN4E/AK/CdMJRuTHJB6/ElCK6K5nn+r/Fi7m3q4tX5ECQuxzzf/nR9vah0mjxwkJ+6PHwAPAGTCBgZXKQWSCEee36J6bFcyrv1gWWNjXxf93dnH/CCRkd42RygZuBHxcUMGhZpnlFXx9n/LmZd79p4VATh/F4PHDllZlZVDZaNyagTQW4BZiAVwGuZCMFuTmgIRDgAyefzO7mZrbW13OXbQ+1e2zG5O7+HrgaOA29gUpus4D3FBXxZGcnTX4/WBa/nz+f84DsD3PBB1xfWEjJo4/y3yVL6Cktxev1sg/4iOMwv6uLNxQWclptNtePmBo7g0F+1dvLww0N4B1uvOv1einv6uLUZ59ldjjMcevWZXCUkyuGeY1+GPNzhiyLgvsHqflrhP+Gl5GsGjYmy4JTTsmO9AQwJyfvjsXY2d9vKkHYNh8C1mZ6YCLjULpCDopjCof/iZGF0QEWYYJdzRZJrnumtZX3FxTglJVh2zaLgC9i2pzmgmAwyO6mJp5YuJA7KivpSkthwLI4p6aGV/t8rCX//1ebgd/09PCb9nb6CgqGFujZts1S4BqgIRikKU/yblNaMC16Uy2su9ZD8LP97LytEDcBrjv+Xz5VEiwTFRPG0gm8JxbjsfZ2cF08wKfKy7kyh2sUS35QTm6eimIKiN+CCXzTLcUEuyeS/2+g+SYKPN7eztOdndh1dXiqqghhZlGaolG6IhEqy8rw+3wUAUWYSzLxcBg6O1lcUcGxVVVYbW3079/PglmzcjZoeBpzKXQguX8epvV1rj2nQ8Dn9u7ltkRiRG693++nEbPo6AJyJ4CfCBfYDPwNUy2mOxQi1N099PMvLy3lPXV1eRvkb8a0rw4n97vWw0PnwcAYi8lSTRwaGsz+qlXQ0TH9DR3G04ZJUXg6+TcEuHjzZl41Zw6rVq3K5NBElJObr3yY1r9XAH/GzO6m+oU/g1npuhIzS6KS3NllADO71QTsA/anba2OQzAWM9M44TCB0lJs28ZxHIIdHWYm0HEIFBYOrUJ3HIdgV5d58HCY6sJCOnt7oaqKWcEgL7ZtVvX349m3j9k5NFO2DFMv9TvJ/XsxjVGuyNiIjowfeE9xMdX33ccj8+ezfdYsvMnL9U3A1x2Hb0WjnFtYyOUVFawgd3PsQ8CtXV38dWCA7oqKoedo6lJ9VTTK83bu5D1r1tCQ2aFOmV91dfEjy6KopITYozb7bwbvozDYd+B9M9nEYSKCmDq4rZi/YRi46PHHWdrWRuNaJSpIdtNMbh7pwizmuI3hmS8wAdCCzk4ut20urK7Gl5nhzTgu5hLf/lHb9liMPf392GmlktKFRs14pWb8xjs+1tfYXi9OPD60X1ZWRiQapToc5tRdu3j3KadkfVmuFBf4FnBXct8DfAZzApdrgslL8vbs2TxcX8/tQOeoNIZAIMAs2+YMTJ3d5WT/TGcbpmPQeuBRx6Fl1M9j2zYnA6d3dFC7Z09OnWgdjj7gSz09/L67G1yX6KM2u14ZIOEc+BcsKID3vQ8qK7Nnxna0/ZiGFe3J/ULg2o4OGvbsyau0EsltSleYYdqB32GCgtioN9BZ9fWs9npZC5wCzM7oSPNDDPNmsKWzk609PcRraugpL6eJA9NInDECmtGBbiIep3fnTipiMXx9fZx23HHM9fsZ7Ozk8f/8B09/P25BAWeccw7+mhr6gdbOTv7z8MOEi4uJlJbiX7yYrR0dhLxesCzKfD4ikchQ0LuoqIgrIhEu8/tzItjtwxSd34b5HRZGo3x5YIAVOV5/Ng58f8cO/tTfT6ik5ICTF8dx8EYinFJczPPKy1kBNJLZoNfFvMZsAzaGQjzoOLT5/UPP4/QTrqLBQS4pLOSt8+bl/WtNMyY9YVPazx/7qs3ObwVG5N6uXQurV2e2icNE7MWkKCSvD1GU3D85YyMSGZvSFWaYWuBtwIuBL6eVYrJcl5jjsMXrZQvwY8wb5imY1bEr0BNiPAOYy3ajZ2X3Y94EHMchGImY5LquLgLFxWPO0saTS6ldoLy3l/ldXZzc0MBszAnHHKDW66WtpoYmx6HxmGMIJAMeqqs547TThhfnpLfNrK7m9FWrhj9XW0twcJBnW1ponTuXTUVF3J5I0O/xgGWxc2CAb9g2t+zfz5cti2OzPFgsxlwyva63lz1tbeC6vC0W40eQ040WvMAry8rw3Xor+/1+ts+aRby+HoeRJ0S7LYv/Jp9Tfsz/amN3N6XNzaysqWF5ff2UBL4xzGXqpzo72dTTQ1dtLS1lZYRS4wuFzAlbPD50wlbi9eILhTimuZkVLS28+JJLcqIqxtF4ENPEJMpwWkbtHT10/tfFsoarJxQXZ0+lhIPZhZnB7Unu25j0t3xopywzi2Zy81wwGOQX99zDM/X17A4EYMmSMYMvgFJMt5q1mOoM5dM4zmzgYgLWVJ5s6uOOWIw9fX0UlZSM+7sbL5XAhwlcU0FsSWcnT911F+WRCDZMa4vSHa2t/DoW4x6fj85YbGiss8vL+XR1dU7UufzD1q18tqSEQcvCAk7yerkpEMj5BVvBtMoCtYEATwC/2buXex2H3qKiMWd4068IzKmvZ77XyyyA5mb69u9nQX09x86bhxeGtnBbG/tbW6kMBCirrSWOmU12gObubnb19NBfXU2srIxWIDLG90oFs+nP+QLXZa1t88JZs3ge4ORhpYSxDAI/B/6SdqwQOOmOHj57ZRl9fRZgZVWd20NZ397OpwoKSCTXAngxLYiPy/C4RMajmdwZLBAIcM3555s3nLo6imybjZiajZswb24pMeD+5GZhFv2sTW5zyf68wIlwMcXMW4Gto9IL9gO9o+7vOA7BZMkcenrGTC8oxFz+D7W1URmJUNXbywtPOYUTgApG/d6qq1l77rkZCQCOqa/nY8CrWlv59J49PDZvHlgWAz4fH3Yc1gaD/J9tMzuLg5Kzq6vZsGEDt69cCZZFc2UlX8TM8uZy579AIDDiuXAi0FBczKK77qKlvJzm6mrKTz2VvZjAM/2KgOW6hB2HvV4vW8NhOvr6oK4OXJeacJiycnO66jgOwd5eKCuDWIyA44xcuNjTY57nnZ0EioqGPjf6e8Xjcapsm2MKCgjt3k19dzfzu7pGztiO+nnyUSempN2TacfqMWk1f3y0gv7+4eOua9IUsj3Ava+9nQ/09Jgyb+EwC+vrudHrZWmmByZyhBTkzgCj30AvSm59wBZMeZ+HMYtHUlxMi9KtwE2OQ2kkwmLbZmFZGfVAXdpWQ/YEGOlBbHCMj22Yn/tI0wvmjUovmI15Y/OUlhKcO9cEr8uXEzhIof/Rf4/pdkx9PV90Xe7t6uLP8+fTjZlJ/Lvrsnn/fr4DzM3SACUQCPDeNWtoiEa5bfZsbNvmYUz1hXeQHydiKYFAgBdcfvnwCVFZGS4mV/L+RIK/NjfTVVo61GwCIBqLjXiMaCw2FOSOFaweLJC1bZsiYGFREZ2dnVSFwzSEw7xq7VpTmrCsjODSpWZ8p56a90Ftuvs6OviSZdHv8w39Dk/BlLd7Yj08/DAj0hSKiszismz2EPDpwkL6CgqGOrK9fscOlh6nOVzJXUpXEMAEh7sZDnifSR6byEIpCxPopoLe0UFwHRxRRQcXM7MaxuSGhQ9xO9jbS9BxKDhIWkHKeOkFpQznxjYCpZ2dPPWvf1ERiWC77rSmF0yHHuCGpibu7+8f+l2cbNt8p6GBkgyP7VB+Dvwxbf9lmHJ5M0V6ikNZIEALsP655/jvtm1EvF76CwqYs3gxFfX1xIHOaJRn9+zBk0hQlEiwYuFCasrKsIG+nh6e3byZkngcfzzOlc97Hitqa6nEPCeCMyT94FAGgO+HQvwo+dqBZdEQCPAm2+YlwIPr4bzzwEleIsuVNIW7Me2oe5Ov9754nBds2sTrzj13Rv+9JTeouoIcthCwEbilqYkH4nH6CgoOyAs8HFY8zkAshrekBG9JCQlMEJv6mL6ljsUdh3g8jnecUlvpJhKMp5QBZbEY7U89hT8apbq3lxesWcOJtbX4OXA2MN/f4FuCQT66dSuPLFw49Ls7wbb5JOZ3la1c4BuYN+iUa8m9GrqTbevWrezcuZNFixaxfPnyEZ872HM535/nR2s/pj3vhrQT5NK+Pt4zMMDLly9n/Xp497vNLG6KZcFnPgM33JCZMU/ELZhFyCmVsRiv2bGDE+rr9TyQnKAgV45YMBjkr//4B22lpURLS1l+1ln0V1XRirn038ZwiZnxHE4AeqRfkz4z6+3vZ3FFBSvr66kHAjD0MX1WWW/qw4LBIL+IRrkzmQLgOA41oRA3kt3VCwYwNXNTrzZ9jsNLd+/mCr9/xv9NZXK4wB3Aj2BE1YvZHR0c+5cWunafQ09PKf/4ByPycMFUU7jvvuycxXWBX2Bqq6csBD4FVGVkRCJHRkGuHJVDBYP9mLqZbWlbehC8rbub9lBozCYG40kFrQWJBCV9fcyrqmJRfT0VmKoP5TDidl97Ow/edRd2PE5JIpF3aQXT5Z+Y7lupE4zZ3d3c1NDAnCz+XcYx5Y42p437/K1buX7VKj0H5KiEMI1IHko7VgisuDPMA58b4D//qSSRGDsTfO3a7C0XlgC+B9yedmwF8HGOLLVMJJMU5EpGtQSD/OmOOxhIJCjweLj0kksIJOt6WpgOVtaorS0Y5B+33oqbSODxeCYUtGpmdnJ8f9s2vldcPHRScl5hIV+bPTurF3WFgTe2tfFMWmm0l7kuH16wIKvHLdlrIyYdJv1KVdF6iHwR7v4bJBLjf202z+D2A58Kh/lPIjGUCnYK8CHI+VJ8MjMpyJWMO5IAVEFrZgSDQT69ZQv3L1kylCpyjW1n/aKuZ1tbeVtrK63l5UPjXmfbvI3sqf4h2e++9fDF2+NsDkH4f0UUlhZQvgKWVsDdX4HBwbG/rrAQ1q2Dhobs7WYWBT4SiXBvZ+dQKtiLqqr4SHm5Si1JzlKQKyKHpSUY5Jt9fWyorx/KhX4HcHFmh3VIu4NBPpNI8Fx19YjSTh/ENEMQOZjLrobbfjXWe+L41wNypYJCO6apw+a09Qsn7d7Nu8vLWb1qVWYHJ3IUDhbkeqZ7MCKS/RoCAf7f3LmcmbbY76vxOL95+mmT95ql5gcCfHfWLC5LG/cjwEcw+ZUiYwkDF3wIbvtV6oiV9nHsANfjgauugvvvh7/8JbsD3J3A+zBlIr1eL1gWp23fztnbtjG7sTHDoxOZOgpyRWRMBZgZ0EWYFeXNra18pbiYm++5J6sD3ULgXZi6uSnPAu+Ixbhry5asHrtMLxf4L/B/wEN/Th21Rt1jeGbXsqCgIHeCW4BHMfm2ncl9n23z8bIyrquu5got0JU8pzQcERmXF/gE8LpIBFyXvoIC/nHiiZzR3JzVb44WpjFEDfB9TM3lx9vbedbr5aL163n7aadl9fhl6rVjKgykytoGXgQ7v5j6rAls6+sTLFtWwIoVsGoVdHSYzmXZHtim3AV8G1NNAUzlhA8DJ1RXQ3V1xsYlMl0U5IrIQVUDH00k+L9EggGPh66yMm6tquI0sr+N7mWYmp8f7e0F1yVWXMzfVq3Cchw+BhRleHwy/Vzg111d/BygtHQod/vML8AZwN9vArC49lr4whdyc8miC/wa+G3asVpMDdx5GRmRSGZo4ZmITMifOzv5ekHBUNmhaxiZEpDN/tvezoe6uogWFw9VXlhm23wAmJvpwcm0eRr4ejTK+o6OEY1mrrJtXkt+1IgdAD4bDvOvtBJhizBXZDR3K/lIC89E5Ki9qLqaa/z+oZmvX2JqieaCs2pr+bnfz+nFxUPd83YB7wZuIz3rUvJRJ/BV4APAUwMD4Lq4QGU0ypt37uSt5EeAGwbeH4nwp64uQt3dBINBlkYifB4FuDIzKcgVkQl7PbAyedsFvgy0ZG44h2VJfT3fnTWLd9k2xcljfcB3Ma2BezI3NJkifZi2tW8B7k0e83q9FLgup+zcyasefJCz8yQ3dQ/wXuDRwcGhIH7Fvn28fNs2SjI8NpFMUZArIhNWiFmpXZPcj2ACxHjGRnR4LOByzKze/LTjDwFv6u3lt1leIk0mxsX8Td8G3MzI5+d5ts3NPh9vr6zkqssuy4sFiI8A78eccKaXCLtg61bmqUSYzGDKyRWRw/YsJtgdwJQXW9HezvWFhTTkUMDQB/wM+DvmZwgGg+C6LG5t5VMLFrCyri6zA5Qj8mhbG98bHGR3VdVQag2YBVfXAidmbGSTzwX+hAnkU+/kXuD1nZ3M2r1b3SJlRjhYTq6qK4jIYTsWU1v0y8ngMOi6hHbs4POQM2+qxZigZzXw8Wh06BLv9vp63llUxGuBlwKlmRykTFgQuCkc5k+xmAn4gkECgQA1ts2rgUvJr/bOfZjyYPemHasHPgYsUIkwEUDpCiJyhC4G1rS2DgWHj86fzy+j0UwP67CtAb42MMDSlhZTEs2yKCwp4Y+YIPgOhuuMSvbpxNS7vQ64K5EYbt/guqxpbeUHwDryK8DtBG5gZIB7HCYNZ0EmBiSSpRTkisgRe3txMYva2oaCwztmzx7xxpsrltbX860FC/hkNMrpNTVDl7lDmNmydwGbMzlAOUAP8BPgzcA/MakzqXzU+e3tvPLBB3lXcTEVGR3l5Fvf3s5rOzrY4jhDx54P3Aj4MzYqkeyknFwROSp7g0E+DuyvrMS2bQowl0xPzvC4jpQL/AeTr9uedtxxHJZ0dPC6oiJOUb5uxsSAW5Jb76jPrQAubW/Hv3dvXuaj/r6riy90dzPg8YBlMau+nrd5vawj+xuziEyVg+XkKsgVkaMWBa4Hnkvu25iqC0szNaBJ4AB/Af4I9KQtTMOyuKC6mqvLyliFgovp0g38rrubWxIJBn2+EYvKjsG0cV5Nfv49+jApGX8KhQh1d+MC9sAA7+vv5xXLlmV4dCKZpYVnIjKlfJiWoR8AWjEB4qeALwGzMziuo2EDrwAuAj7b1kYwmXtsuS4bBgfZhlmxfxVwLmoRPFW2Yypg3BWPs7+nx5xoRCIEAgEW2zZXQ060mD5SzcDngF2YdIyQZVETDrNu82bOO//8DI9OJLspJ1dEJkU18GmgPLkfxqQtdGRsRJOjBvhgUREvf+ghFgeDWCRzPzEF+L8JvAH4LWooMVkGgP8CHwTeA9wDRBxnaJFjRSzGS/bs4dvA6eRvgLse05VvV3Lftm1eVFXF5/r7ufr88/MuHUNksildQUQm1bPAhzGzuWCaLnyB3G+bGgwGaWpqonDOHNbX1XEXBzbBcONxVra1cVVJCafW1uZt8DVVQphqFv/AVBBI5zgO1rPPcvxzz3FsWxsvuPzyvA3yBjC1b/+SdqwQ07nt+eRvUC9yJJSTKyLTaiPw/4DB5P6CaJRrtm1j/qxZeROYRIHbMZfSOxjZUALL4oTaWi4qLeUsTFknBSZj68U8X+4Ih/nf4CCFJSUj8m0LgbMwZcD8yRONfFxUltKJOSl8Ku1YPaZk2OKMjEgkuynIFZFpdy+mbmcq+Jvf1sZlmzfzwjxppZoyANwP3NTaypO9vSZvF/BXVuL3m6JOszGB2pmMbCc8U4WAhzGX4x/DpCKknyAEAgECts1lwCVAVQbHOp3u7ejgS5bFQNrCulOA9wJlGR2ZSPbSwjMRmXbnYYKZr8bj4Lo8V1vLX1avZmVLS14FuYWYhWfLXJcfbNzIk42N7KqvH8rbBdiPydn9LTAXOCEUYu6+fZxcW5tTrZCPRismqH0QeJLhNrQA8eRzxAUaurt5qePw+iVLZswb1ADwnVCIn0Yi5vcSidAQCPBm2+bF6CqAyJGaKa8hIpIBV2ECvJssC8t1aamq4oe1tRyLuQSbTxoCAa474wyampqo9flosm3+g5mxTM/d3e44/C8UgrIyvJEI5/h8rC0r4zjM5eh8qNKQAPZiKiM8Czwai/FMfz9er3dEKkLKsUVFeHbuZGFLC/WxGOvWrZsxb057gS8Dm2CoW1up4/DGnTt5yfLlGR2bSK6bKa8jIpIhb/P7qUgk+JHHg+310mnbvB/4JLAow2ObbIFAYGiWei5wKqbG6QZMtYBHgFDarGW8sJAHBwfZmvz6IuBYTIvWFcAysn/Bnospc5UKaLcBOxheeOg4DsH2dnBdQslUBK9tsxxT+ut5QENpKcEVK2iqrMzrfNt0LnAb8GPMcyRVHmxeezsXPfkk51x8cWYHKJIHlJMrItPif5gZq4HkfgmmCsNJmRpQBsSBOzs7uXnHDvZVVtJr2wQCgTFnNwH6HAdfOMwCr5clZWXMgqGtASiepnEPYBbXtSa3YPLjzmiUZ/r6cEtLx/0ZQskGBp5EgjmdnTzf7+fqxYupnKaxZ6Nu4BuYk5+UIuCq7m5W7trF7BkS6ItMBuXkikjGnQH4gRsxlQl6MbO578bktM4EXuDK6mpO7e9nf1MTBZWVtNo2T2FW0zel3Te9WsOOWIwniooOCCRrMAGv1dJCbzDInNpajpk9G2/ye5VgmlqkPobb2mgKBqlqaKCstpY4JvB2kh9Tt4OhEHvCYfqqqoj4fHQwMod2aHwdHWaxWDh8QLBeDSwB6lyX/Zs2Ud/VRUkiwbp162Z0gPsIJsANpR1bALwPWFBZCatWZWBUIvlJQa6ITJuVmPJInwTaMSXGvoIpm/RCZs4Cm/S0BjBd1QC6gK2YgPfeUGhEl7V4PH5AkNsB7A6H6XAcqKyEgQFqwmHKyssZzXEcgr29UF4OsRgBxxlz9tVxHIKhkAleOzoIFBaOeb/0xWIlfX0s6Ozk7FmzWIIJbqtTd6ysJHjaaXlf+utQHExqwm2jjr8AeA3TNysvMpMoyBWRaTUf0+73E5iOYQA/xQRsb2LmBLpjqcJ08DoduMJ1ueWee+iybcJlZSw5+2x6MfmvzZh0gQQQjcVGPEY0FhszyE0PSscLmg92v2rMYsHUVpRIsHXTJiojEfyOwxXr1jFe+Do6qJ9ptgKfj8XYlbb4rhrTze2kzA5NJK8pyBWRaVcLfBGTuvBE8tjfMLOSV+7YkVdNI45UIBDgqssuG54Brawc8fkBoA14IBbjvqefpq+wkP7CQhYuW0Ylw+kHqa2jqIgd8ThWIkFRIsHS2lpqMGkM3rQtDjy5fTu24+B3HF505pksZ4yZxqoqzdAeQgz4OfCXUYvv1lVVcX15OQeeiojIZNLCMxHJmD5Mw4j/MZyDGuju5pItW3j1hRcqcJqgrVu3snPnThYtWsTyg5SdCk6wY9hE7yfjewT4LiYtJ7X4rnBwkLO3buWaxkZWK/dWZFKo45mIZK0E8CPgl8lAwAXsgQHekkjwpiVLMjw6kcMTAm4C/pN2zHEcSp94grOffBJ/fz/r1q3TyYPIJFF1BRHJWh7gzUCx6/INTNDbV1TE7wMBeoDrgNJMDlBkAlzgPuCHQDjteAXwFtvm2DlzaPZ4NDsuMo0U5IpIxlnA6yorWTIwwFeASHk5tm1zL6bSwAeApRkdocj4WoHvAI+OOn4eZjFlBUAgMGNaOItkCwW5IpI1zqitZTXwA+Du5LEg8EHgVcBLMTO/ItlgAPhldze/cl2stIYY9cBbgZMzOTgRUZArItmlBNMgYjVmdiyGSWH4JbAJUzS/LlODE0l6FPhGLMZjPT1DDTEaAgFeYttcg6lUISKZNaFJEcuyLrEs6xnLsrZblnX9VA9KRORs4FtAeq2AJ4F3APdnZEQipkbx/8PUed7V3z9UU7g6HOa6HTt4MwpwRbLFIYNcy7IKMBMqlwIrgFdalrViqgcmIlIPfA6TqpBqEhHFdE27saeHBx97zLS+FZlivcDPMGkIDyePeb1eigcHOfPZZ3nlQw9xek1NxsYnIgeaSLrCWmC767o7ASzL+i2mE+FTUzkwERGAAuCVmM5QX8Ys8nEchz90d3NbSQlnbtjAe9as0aIemRIucA+mqUNX2nELWGfbXFJWRrS2lsYTTlDVBJEsM5EgdzawN21/H3Dq1AxHRGRsy4FvYgrs/z3Zejbs9XL7ypU0Ax9BFRhkcj3Q3s73Bwdpqawc0QJ5GXAtsASgvt5sIpJ1JhLkjtVK/oAOEpZlXYv5v2fevHlHOSwRkQP5gPcDiwYH+VJ/P71FRWBZtFRW8n7gXOC1mLbBIkeqGfh+OMwtsZhZVBYMEggEmGXbvA7zPBvrjVFEsstEFp7tA+am7c8BmkbfyXXdm1zXXeO67pq6Oq19FpGpYQEvrq7m1+XlvBCYXV8/NMt2H/AW4NdAPGMjlFzVjlnseB1wbyIxtKjMk0hwVksLP8DUvlWAK5IbJjKT+wiwxLKshcB+4BWYdSAiIhmzKBDgk5hZt58BDySP9wG/Ae7EzOqei4ISObhu4PfAbZjat2AWlYUsi0WtrZz17LNcfcEFqpogkmMOGeS6rjtgWdbbgTswa0B+4rruk1M+MhGRCZgF3ABsAX4E7Ewe7wC+Cvwd0zZ4+ZhfLTNZGPgz5jnijPrcKbbNpaWl+AoKaLzgAi0qE8lBlusekF571NasWeNu2LBh0h9XRORgEphOaTdjZudSHMdhRXs7rysu5iSlU814vcBfgVswJenSLQWuAU6c5jGJyJGxLGuj67prxvqcOp6JSN7wABcBZwJ/wAQxEcchGAwSdF3uGxjgkkiEq8vKOA6lMcw0vcDvurv5fSLBgM83omLCAkxwewp6XojkCwW5IpJ3SoDXAJcAn2lvJ5hcQATwwOAgTwKLgauAM9ALYb5rBv6BKT33XKoNbyRCIBBgkW3zasyJkYJbkfyi13YRyVv1wIcLC6ldv54NCxbwXH09Xq9ZPrQd01ziZ8AVwPMxJcokP7jAY5h82w3J/ZDjDFVMqOjt5UV79/LmxYspyOA4RWTqKMgVkbwWCAS49qyzWNfUBCUlPGDb3IOpwgCmbNRPMRUZLgauBLTEKHf1YjqU3Yqpf5nO6/XiicU4Yfdujmtq4qrLL1eAK5LHtPBMRGacEKZc1K3J2+ks4HTgzPZ2fHv30tjYqJX1OSCVknAXEBvj82swM/aNwSDNTU36u4rkCS08ExFJ48cU/H4R8G/MArU9yc+5wD2Ow29iMWqLijj2iSf4P4+HE1SVIeskgHs6OvhTXx87q6spTltIBiY3+0JgHdCYOhgI0KDgVmRGUJArIjNWMaYaw4XAJuAvmDzOeDwOrktbeTnt5eU8WVzMyZjFSWdhcn0lM/qBzcB64L7eXrZFoyNa79q2zWxMYHsBJtAVkZlJQa6IzHgWsDq5PQf80rL4s+syaFlgWXi9XrZjFqv9DDgWE/CeCWh+d+r1Ahsxge0jyX2AUF/f0EIyy3VZ2NnJtbNmsRpVShARBbkiIiMsAD5aUcGre3u5q6eHHbNm8axtD7V7BXg2uf0EWMZwwFsz7aPNXyHgYUxg+xhmBnc0r9dLf38/i5ubOXHfPq45/3wtGhSRIVp4JiJyCFHgQeB+TFrD4Bj3cRyHxu5uTrNtTq+s5FjAHuN+Mr5WTFD7IPAkMN67UwNwWnKrDAZp0UIykRlLC89ERI6CD5PfeQEQZjjgfQyz+MlJ66q2yXH4U0kJPtvmGGAFcBywHKjIyOizUx+wA5MCsg14PBZjV38/Xq93RCeylIUMB7bzSUtHCASYpeBWRMagIFdE5DCUYxarXQT0YGYe/9jVNdRVzXJd4vE4tm3zDPAMZkEbwFyGg94VmAVsMyF3dABTveJZTEC7DdiNOUGA5ElCezu4LiHLIhAI4LVtlmOC2udhZm9FRA6HglwRkSNUgemUdpJl8ft//5vnqqtpqa6mqK6OjjHuvze53ZHcrwbmhsNUtLezzO/nuOpqGsjdzmsuJrXjqfZ2NnV10RMIEKyoYCdj59SmpKpZeBIJ5nR2cklfH69evJjKaRm1iOQrBbkiIkcpEAjwsuc/n6ZUbmhpKT3AVuApTH7pDhixeA2g2XF4rKsLPB6IRAj4fNi2TQUwa5ytgszN/rqY2evWg2xdjkMwFoPiYujuJmDbY6YfWMBsYAlQl0iw+5FHqAmFKAbWrVunAFdEjpqCXBGRSRAIBEYsfKoATk1uAA7mMv2TmMB3KxBKzmCOTnPowQSTz4zxfUoAu7MT2tporKxkXiBgjiU/503bRh/raW2luaWFqlmzqKirIw4HbM6o/fZwmH2RCI7fT6S0FOcQv4f4OD9TPab02mJMYLsYKE19UVUVwbPOGj5JUI6tiEwCBbkiItPABlYmNzD5qBv6+/nV00/TVVJCj89HZV0dPRz80n5bOExHOAxeL4/H49SEw5SVlx/y+zuOQzAeB78fensJOM6YM6wHfE1Xl2m20N4+1GzhYCpsm4JYjIpolIZwmBefcAKnYrrMHczokwQRkaOlIFdEJAM8wNraWuafdNKINAcX6ACax9mCsdiIx4nGYhMKcsebYT3cr6m0bQKYRXNjbRVeL63V1TTF4zSuWEGgRtWDRSQzFOSKiGTQ6BlMC6hNbsePuq8LPNLdze2PPUbU66W/oIBjTziBeg5MOxi9dRUVsSPZIawokWBJXR3VmBnm0SkOqdu9iQSbnnoKu68Pv+PwsnPPZSGHzgnWrKyIZAMFuSIiOcIC1i5dSnkiwc6dO1m0aBHL582b2BeXlhKsqBgxa3xIVVVcvHr18NfU1x/V+EVEppM6nomIiIhITjpYxzPPdA9GRERERGSqKcgVERERkbyjIFdERERE8o6CXBERERHJOwpyRURERCTvKMgVERERkbyjIFdERERE8o6CXBERERHJOwpyRURERCTvKMgVERERkbyjIFdERERE8o6CXBERERHJOwpyRURERCTvKMgVERERkbyjIFdERERE8o6CXBERERHJOwpyRURERCTvKMgVERERkbxjua47+Q9qWW3A7kl/4KlXC7RnehCSVfSckLHoeSGj6TkhY9HzYurNd123bqxPTEmQm6ssy9rguu6aTI9DsoeeEzIWPS9kND0nZCx6XmSW0hVEREREJO8oyBURERGRvKMgd6SbMj0AyTp6TshY9LyQ0fSckLHoeZFByskVERERkbyjmVwRERERyTsKckVEREQk7yjIBSzLusSyrGcsy9puWdb1mR6PZJ5lWXMty7rXsqytlmU9aVnWuzI9JskOlmUVWJa1ybKsWzM9FskOlmVVWpb1R8uynk6+ZpyW6TFJZlmW9Z7ke8cTlmX9xrIsb6bHNBPN+CDXsqwC4DvApcAK4JWWZa3I7KgkCwwA73NddznwPOBtel5I0ruArZkehGSVbwC3u667DDgRPT9mNMuyZgPvBNa4rrsSKABekdlRzUwzPsgF1gLbXdfd6bpuH/Bb4AUZHpNkmOu6za7rPpq8Hca8ac3O7Kgk0yzLmgNcDvwo02OR7GBZVgVwNvBjANd1+1zX7c7ooCQbFAIllmUVAqVAU4bHMyMpyDWBy960/X0omJE0lmUtAFYBD2V4KJJ5Xwc+CCQyPA7JHouANuCnyTSWH1mW5cv0oCRzXNfdD3wZ2AM0AyHXde/M7KhmJgW5YI1xTHXVBADLssqAPwHvdl23J9PjkcyxLGsd0Oq67sZMj0WySiGwGvie67qrgCigtR0zmGVZVZgrwguBRsBnWdbVmR3VzKQg18zczk3bn4MuKwhgWVYRJsD9leu6f870eCTjzgCutCzrOUxa0/mWZf0ys0OSLLAP2Oe6bupKzx8xQa/MXBcCu1zXbXNdtx/4M3B6hsc0IynIhUeAJZZlLbQsqxiTHP63DI9JMsyyLAuTY7fVdd2vZno8knmu697guu4c13UXYF4n7nFdV7MzM5zrui3AXsuyliYPXQA8lcEhSebtAZ5nWVZp8r3kArQYMSMKMz2ATHNdd8CyrLcDd2BWQP7Edd0nMzwsybwzgGuALZZlPZY89mHXdf+ZuSGJSJZ6B/Cr5ETJTuD1GR6PZJDrug9ZlvVH4FFMpZ5NqL1vRqitr4iIiIjkHaUriIiIiEjeUZArIiIiInlHQa6IiIiI5B0FuSIiIiKSdxTkioiIiEjeUZArIiIiInlHQa6IiIiI5B0FuSIiIiKSdxTkioiIiEjeUZArIiIiInlHQa6IiIiI5B0FuSIiIiKSdxTkioiIiEjeUZArIiIiInlHQa6IiIiI5B0FuSIiIiKSdxTkioiIiEjeUZArIiIiInlHQa6IiIiI5B0FuSIiIiKSdxTkioiIiEjeUZArIiIiInlHQa6IiIiI5B0FuSIiIiKSdxTkioiIiEjeUZArIiIiInlHQa6IiIiI5B0FuSIiIiKSdxTkioiIiEjeUZArIiIiInlHQa6IiIiI5B0FuSIiIiKSdxTkioiIiEjeUZArIiIiInlHQa6IiIiI5B0FuSIiIiKSdxTkioiIiEjeUZArIiIiInlHQa6IiIiI5B0FuSIiIiKSdxTkioiIiEjeUZArIiIiInlHQa6IiIiI5B0FuSIiIiKSdxTkioiIiEjeUZArIiIiInlHQa6IiIiI5B0FuSIiIiKSdxTkioiIiEjeUZArIiIiInlHQa6IiIiI5B0FuSIiIiKSdxTkioiIiEjeUZArIiIiInlHQa6IiIiI5B0FuSIiIiKSdxTkioiIiEjeUZArIiIiInlHQa6IiIiI5B0FuSIiIiKSdxTkioiIiEjeUZArIiIiInlHQa6IiIiI5B0FuSIiIiKSdxTkioiIiEjeUZArIiIiInlHQa6IiIiI5B0FuSIiIiKSdxTkioiIiEjeUZArIiIiInlHQa6IiIiI5B0FuSIiIiKSdxTkioiIiEjeUZArIiIiInlHQa6IiIiI5B0FuSIiIiKSdxTkioiIiEjeUZArIiIiInnnkEGuZVlLLct6LG3rsSzr3dMwNhERERGRI2K5rjvxO1tWAbAfONV13d3j3a+2ttZdsGDB0Y9ORERERGQcGzdubHddt26szxUe5mNdAOw4WIALsGDBAjZs2HCYDy0iIiIiMnGWZY0bkx5uTu4rgN8c3XBERERERKbWhINcy7KKgSuBP4zz+Wsty9pgWdaGtra2yRqfiIiIiMhhO5yZ3EuBR13XDY71Sdd1b3Jdd43rumvq6sZMjRARERERmRaHE+S+EqUqiIiIiEgOmFCQa1lWKXAR8OepHY6IiIiIyNGbUHUF13VjQM0Uj0VEREREZFKo45mIiIiI5B0FuSIiIiKSdxTkioiIiEjeUZArIiIiInlHQa6IiIiI5B0FuSIiIiKSdxTkioiIiEjeUZArIiIiInlHQa6IiIiI5B0FuSIiIiKSdxTkioiIiEjeUZArIiIiInmnMNMDEBERkYlJAL1ALG3b29FBU3s71XV1lFdXMwgMAP0wdDu1dYRCdHZ3U11ZSbXfjwcowMx4jXU71NVFuL2dOTU1zK6upgQO2DRbJtlKQa6IiMg0c4EoEAK6kh+707amcJhgNEpheTn4fEOBbXzU4ziOQzAaBa8XIhECPh+2bY/5PR3HIRgKmZ1QiIDXO+59h+4fDkNx8UEfuxgT7FqxGIORCI2lpcwuK6MShjZ/2u0KFHzI9NDzTEREZBK5mKA1mLZt6+lhdzSKW1FBn89HCDOzOhbHcQh2dYHrQl8fgcLCcYPReDwOrosLWK5LPB6flPsezv37gLDjEGxvB9flyXicQFHRQR+7HCiKxSju6WFRaSlLKipogKGtbNyvFJk4BbkiIiKHaXcwyJb2djyzZtFfXU0QaElurYCTdl/HcQh2d5ugtaPjoEErHDq4LAFKk9ucwkL2dXZSMDhIgeuysrqaKsybewFQlPxYCMRcl8e2b8dNJLA8Hk46+WTKMSkQCUxqQ/rtbstic1MT/ZZFf1ER82tr8WDSJVJbHBPUH24A3Z4WFD/c10fAtkfc38dwwBtIfizq6KBg/36WBwI0BAIH+euIGApyRUREDiIE7EzbnojFeDwexy0rO2SKAIwfAJYw9uV8N5HgiS1bKOrrw5tIcOk55zAPE9SWAFb6g/t8BBsbaWpqorGxkUB5+fg/SGUlwZUrh+9bWXnwH7yiguCiRcP39/kOuIuLCeh3Ow63PvAAvQUFxG2bE84+G4vh9Iv0dIyeg/xOUqLAjuQGaWkZfj/eSITTfT6OLytjIbAQmIMCGjmQnhMiIiKYgC3IyIB2B9A56n6h/n7c5P3Hm7UsZXgWsgTY9cwzlMVi+Pr7ecE553AsJpd1TFVVBE85ZTi4rKs76LgDgQCBCc5sHs59J3J/C/ACS+vrqTz//OExV1WN+zUJYIfj8OcHHyRk24R9Puafeiq9DM+G9436mvSgOF5YyMbBQbanfb4QmI8JeBclP5YGg4RS49HM74ykIFdERGYkB3gGeBJ4OBLhyf5+KC096KwsgNfrpQeojMXw9/ZyRlUVSzABbWorI23G1e8neOKJwwFgff0hx3a4wWg2mOiYPcCS+nped+65w7+Tioqhz7uYGd9UwBsEtnk8/C8Uor2sjP7CQrxe74jHHGCMmV/Hocq2mbN9Oy8rKuLs6moqj/7HlByiIFdERGaEMPAUJqh9CtiOyT11HIdgZ6fJmQ2HCQQCIwLdYmABZoZwEbDItinxeuno7KRx9uwRAdp4cjFonWrj/U4soCq5LU8dLC8nGAiwv6mJojlzCNs2u4BdmBn3tlGPkZr57fT56PL52FNQwA8xaQ3HJ7eVye8h+UtBroiI5KWnWlt5IBSiPRBgb0UFe8a5X/ql8JK+PuZ3dXFaQwPHYILaRszirRECAeYpaJ1Wo4Pi09M+FwaewwS8u4Ani4rY6LoMWhZY1tDM777kdlvy6xT05jcFuSIikhf6MDO0jwL/jcV4NB43NV67uw9YvZ8yD5hrWXQ+8QSBzk78fX1csW4dCl9zSznDwSoApaXsLSnhgc5OOhob2WvbPM2BZdvSg17Hcaju6eHc4mIu8fuZz6hFfpJzFOSKiEjOagY2YgLbzQyX7gr19x+wer/UtlkMrACOS34sB1NFYM2a4fxQzdDmhbmBAC9P+1v2AU8DW4AnkrdTQa/jOASDQYKuy9beXv7s9bLQtjkdM2O8GAW8uUhBroiI5IzdwSD/7e6madYstldU0DzO/bxeLxHXpaGriznd3bzyhBM4DVMJYCzKmc1/xcAJyQ1M0PsMJuj9V1cXbYkEg5Y1dFLUZNv8EfgjUIsJdk/DnByplXFuUJArIiJZLQo8DNwRiXBnby+DXu+4KQiNwMnAatumrqSEzq4uGlesIFBTk4GRSzYrZjjF4QLL4i/33cfO6mp2NjTgjDrhaQf+ltz8mGD32I4OKvfsYZ5m/7OWglwREck6YeAh4H/AY5jLyqHBQQYta0QKgt+2OQET2K4CZqU/SCDAfAUfMgGBQIAXXnrpUMpKldfLY8ADmOdhJO2+IeCvyeYUJWVlrHz6ad5jWRw3gdJwMr0U5IqISFYIAQ9iAtvNmPJe6bxeLyHLoiYcZkFHB68pK+NMTOtakaM1OmVlbXIbwOTwPgCsx9TwTVXkiBUX88iCBbzVtrkIuBw4CeXvZgsFuSIikjFh4G9dXdzjOOyrqqJ4nEYMS4DTbZtjS0oY7OigcelSpSDItCjEBK4nAddhFqzdbln8sa+PaHExWBa218tDmFnfWcBlwAUkFzZKxliu6076g65Zs8bdsGHDpD+uiIjkPhd4HLgD+Hc8zv7WVtOIwbJGNGJYCpyR3HQhWLJNUzDInd3dbJ49m21lZQd8vhg4GxPwLpnuwc0glmVtdF13zVif00yuiIhMizbgX8mtNXks4jgjSn01dnfzokCA0zEr2kWyVWMgwOuS6Q37MbV2/4VZKAmmekPq+b4Ek8pwFib4lemhIFdERKZMP+YS7p2YBWSjrx16vV684TDH7t/PktZWXnHxxWrEIDlnNvAm4Grgv8CtmO5rKduALzgOX45GeZHHw2sqKxk7MUcmk4JcERGZdLuBu4B7MHm3o5UD5wEX2TYldXU09ffTeNJJKsUkOc0LXARcCDwL/BMT9EaSzSZwXb5tWfzLtnlzSQnno5q7U0lBroiITAoX2AD8LBply8AAXq93RB1bC7N452LgVNKqIqgRg+QZC5NTvhR4I3DT/v38ta+PUEkJluvS3NfHN0pK+CvwOmA1qsgwFRTkiojIUUlgyiv9HnjacQh2dIDrEkouJJtr21yIWW2uBWQy01QA1/h8+O+7jydmzeLhJUvwek3vveeATwInAq8HjsnUIPOUglwRETkiA8B9mLan+5PHUvVDPYkEi1pbeWksxsuXLdMslcxogUCAKy+/nDVNTby3vJwHbJs/A/Hk5x8H3g2cC1yDTgYni4JcERE5LH2YhWR/wrQ7TVdh2yzas4cTd+2ior+f89atU4ArwshmE/OBS4DfYErpJZL3uQ+4H7gCeCmqs3u0FOSKiMiExDALaW7BdCdL5wPWAVd6vfQeeyxNZWU0NjYq11ZkHFXAW4ErgZ9juv2BuULyF8yJ5PO7uznuueeYP2uW/peOgIJcERE5qB2trfw2FuORhgYGk7mEKX7gKkzB+9LksQotJBOZsDnAR4CngJ8AzySPdzoOX+/pwW/bPP8//+FNZ5+t/6vDpCBXRETGlAB+0d3Nt6JR+j0eaG0d6khWC7wIUylB9T5Fjt4K4EvAeuBnwNPJ/Pbu0lL+cMopFMdivB9VYTgcCnJFROQAzwHfAh6xLPo9nqGOZOXhMNfZNuehNxCRyWYBpwNrgd8kEnxzcJC+ggJcj4e7AgG6gfcB1ZkcZA5RDWIRERnSD/wKs9L7WUxHMiyL6miUS554gm8PDnIRCnBFplIhcE1VFT8pL+dEr3foCspm4O2YLoJyaHqdEhERALYC3wT2pR3z2TZvrahgdUcH89asUU6gyDQ6vq6On2CqMPwB03AlDNwIXA68ASjO3PCynoJcEZEZrhezuvufmDfRlGXAO4G5lZWwalUGRiYihZjauauArzBctu8fwBPABzAlyeRASlcQEZnBHsGUMfoHwwGuF7gO+CIwN0PjEpGRVmKutJyWdmw38F4OPEEVQzO5IiIzUAi4CfjPqONrMEFv3bSPSEQOpRy4AdNA4oeYxix9wPeARzFXXioyNrrsoyBXRGQGcYE/d3byI2DQ58O2TQGwCuAtwFmoRFG2czELBHsxDTpiwN6ODva1t1NVV0dFdTUDMObW2d1NW3c3NVVVVPn9eIACGPExdbunq4twWxtzamqYU1ODFyjB1EMuAYrQcyUTLEy3tOMwV1ueSx5/CHhTby8vfe45zq6uVv48CnJFRGaMOHBjOMzfIxFwXYhECAQCXGLbvAnNAGWCC0QxM+tdQHfydndy2xeJ0BKNUlBeDqWlxDDB7UDaYziOQzAaBa/X/E3TTl4Yfb+eHrAsCIUIeL1j3m/ovuEw2DZEowTKyg64rwcT7NLbiyccZlZpKXPKyvADlclt9G0FHZNnLiZH92fA3zF/sz1tbXzO62XL+vW87bTTZnygq+ebiMgM0IZZkb0pkQDXxQXKe3t57a5dvHrZsgyPLn8NYH73wVHbzmiU/fE4Az4fBaO6yKU4jkOws9OckDjOUBmp0eLJpgGpWsbxePyo7jfR+yYwXbmCbW3gujwZjxMoKjpo4FwcjTLftjnG5yMANKRt1Whm+HAVA9diFqV9IhoF12XA4+HWE09kRVcXr1CQKyIi+ewp4LOYGUKv10vIsli5dy9nb9vGhZdemuHR5YcQsAN4tLubpyMR+qqqCPt8dHDggiDHcQh2dJjgNRo9ouC1EJM2UAo0FBWxv7ubwoEBClyX46qrqcakHBSmbVFgy65dMDiI5fFwwurVlGOC1QQwmHa7y7LY0txMn8fDQGEhc2tr8WBmkVNb/yHGeMDPHAyC67I3EmFbYeEB9ysC6oGySARfRwcnlJezprqa2ShYOZRTgC8ODHCd4xC2bQYLCvjlggWsAE7I9OAySM8bEZE8dgfwfYYvb/tsmxvKy1laWkrjpZfO+MuZh8sFWoBdmKB2Z3LrJC0dwHWho4PAGIEcHBgYurEYs2x7xKX9SiCRSPDkli3YjoN3cJDLzzuP+ZgUgRG1UUtLCTY00NTURGNjI4Hy8rEH7/cTXL58+H5+//g/aEUFwYULh+/r8x1wlwFgt+Pwt/vvJ1pYSNzr5YSzz8bDcLpFN+YEYGdylvFgwXA/sDM1ew3ckky98Nk284GFwKLkx4XAgSOa2VbW1/M9y+IjHg/xsjIs2+ZTwKcwlRlmIst1J7/oxJo1a9wNGzZM+uOKiMjEDAA/Bm5NO+YHPgysyMiIclMY0yTjgVCIzb29dFRWkhgnvSAUChHq7jaBHOCvrKTS76caCKRtxV1dPHXvvZTFYvj6+3nhZZeNe7IRDAaHA80sPSGZyBiDwSB/+8c/6CkuJuzzsfzcc3GqqmiBoS3M2L9D/zjBeHlvL4HOTk4tLeXsqipmoXQHgGZMBYaO5L6NCXSPy9iIppZlWRtd110z5ucU5IqI5Jcw8Hlgc9qxRcBHUWmwQ2kHnkxuT2HqkKZfaseyxkwvKAbqo1HCjz9OdU8PlfE4LzrjDI6rq6NojO+TC8HrZDvUzxwFnmxv58/r19Pu89Hu91OyYgWRkpID7jvW32SWbXM8DG0zOehtwgS6ncl9L/BpYHnGRjR1FOSKiMwQuzELzFrSjp0JvAvzRicjBYF7u7p4JBqluaaG8BgB1ejZxcZkrugiGNpmY6oNzMTgdbKN/h2GMekh6duW7m46QqGDzvhWA/PDYQLBIBdUVLCsvn6af5LM2o8JdLuS+17g/2E6GeaTow5yLcuqBH6ESetwgTe4rrt+vPsryBURmX4PAV/GlApLuRp4GTN3Rms0B9MKdSOmeP7OQ8zSFgAN0SjOxo00dHURCId5xUUX0aAANqP2B4P8/D//YV9lJU3V1bjHHXdAGkn6bK8FnFFby4U+H6dj0kZmgn2YQLc7uV+CCXSXZmpAU+BgQe5EF559A7jddd2XWJZVjFnQKSIiWcAFftzdzc2WhTdZ+9QLvA94XobHlmkuZkYrFdQ+gekQlTJ6EVgiFuME2+Y4TA7jUsDr8xFculQztFlkdiDAG88+e+hvUuf1mhne5PYkEEr72wJsGRhgD/ATzOz7GZgWufncunoOprLKDZgFgL3AxzFXe5ZkcFzT5ZAzuZZlVQCPA4vcCeY2aCZXRGR6uMB3QyFuCoWGZiNX1tXxmZISFmR6cBkygAlmb+/p4cH+fmJjNDJIceNxPE89xZyODmaHQrzurLOYrSA25yWAR9rbufmxx9hVU0NTdTX1DQ1jPg/mAMeFQizct481tbV5eRKzG7PotCe57wM+AxyTsRFNnqOdyV2EqWX9U8uyTsScEL/Ldd3oJI5RREQOkwv8AvgdDM1Yzeno4LquLhaceGJGxzbdBjCzMf8DHgTaHYdgd/eYtWjnAicntxVeL12zZ9NkWTSecEJeBjgzkQc4tbaWBccfT1NTE+UlJeyybR4AHmNkx7gdjsMDoRCUlTErGOQtRUWsq64ec8FgrpqPCWo/jFmYGsUsRP0MJsjLVxOZyV2Dec04w3XdhyzL+gbQ47rux0bd71pM4w3mzZt38u7du6doyCIi4gI/B/7EcO7h/LY2Lt+8masOUpIqn/RhApb/YfKR02de0heL2QMDPK+khHWNjaxGFSZmuiiwAXgAM2vXOkbZsnl+PxcBl2IaVOSLnZjgNox53SiIRvnc4CAn1eXuf8VRLTyzLKsBeNB13QXJ/bOA613XvXy8r1G6gojI1HGBnwJ/STu2IhLhxdu2MT/Pc0YHgbs6OrgjHmdHTQ3uODVrfb292Bs2sDAYpLGnhxdcfnle/17kyDjAvzo7+emOHWyvq8P1eEbM+lvAGuByYDX5sYBzB/C+eJxdra3gujT09PCz+npm5ej/x1GlK7iu22JZ1l7Lspa6rvsMcAGmfKCIiEwzF9Pk4a9px04Fri8ro3DVqswMaho0A3cBt/b28kyyexatrSMCknrMYqIzgGNLSmg99liaysq0WEzGZQOXV1ezpr+fp4NBnpk3j/W2TXvy8y7wSHLzx2KsamnhJT4f83P4+XQM8PqdO/lkaSmDlkVLRQW/jUZ5T6YHNgUmWkLsJEwJsWLMbPfrXdftGu/+mskVEZl8LvBD4O9px04DPkh+9mh3MJeU78QsJIMDa9Ye4/PxgtpaTgcWkx8zbZJZg5h0hn8Am5LH0suR+fr6eFdtLS+pqqIgc8M8KsFgkI8/9RQPLloElsXc+np+6PUyK9MDOwJHXULMdd3HMDP2IiKSAS7wA8wbb8oZwPvJrwDXBbZjZm3/DcRGfd7r9dLX38/S/ftZHgzyunPOoWHaRyn5rABzdeRUTOew24A/xGJDizujxcV8x+Ph38DrMcFRrp1cBQIBPg68z+Ohs6ICy7b5FmYhWq79LAeTT6+NIiJ5yQW+h3mzTTkTUwc3X17EE8D9wC9iMZ7p7x+q95uSyo282LaZW15Oa0UFjcuWKQ1BplQj8Ebg4r4+vrp1Kw8tWkTU68Xr9bIX0yp3JfAGcq/u7OxAgBsxryMJTH3hO4BLMjqqyaW2viIiWcwFPt/Tw22uOxT4nQ28F3L2Umm6fuBe4I/Ac2N0H1tg21yEWQxSndGRykwXDAbZ1dzM4wsW8K/KyhGdBQHOAq6BnLvk/3PM/x+YjmjfBWozN5zDNhkdz0REJANu6u7mtz094LqELIsXVlXx3vLynA9w45hZo78AHaljyQ5VBYkEi4NBXhqN8pLly/Pq8qnkrkAgQCAQ4HnAK4DfALdjcngB/gvcF49zSjDIm7xe5ubIVYZXAusxnQF7gW8DnyA/0hY8mR6AiIiM7X/AryxrKBdwaVMTV2zfntMBbgTTvOINmNXMHWmfq7Zt1u7axev+/W+e/+STnF1dnRdvtJJ//MB1mFnPM5LHHMdhf2srtwCva29nY1tbpoZ3WIqBdzEc1G4E7svYaCaXZnJFRLLQduCrmIVWIctiTkcHFz71FHMuH7dEeVaLAz8KhfhbIgGlpSPybSuBq4BLvV7Cy5fT5Per7JfkhEbgeuAZ4HPd3QSTJ6TtZWV8sKiI92EaSmT7ydpyYB3DlVtuAk4CqjI1oEminFwRkSzTicm5Tc1yVsZivGXbNpY0NORk4PcY8KXeXp5oaxuRbzvXtnkxcCFmNkkkl7UEg3z+scf4z7HHMlhQMFTD+VTgnUBFpgd4CHHgbUBrcv904IbMDWfCDpaTq3QFEZEs4gA3Mhzg+oDPl5Zy5okn5lyAGwG+AXwM2NvXN5R2URWJ8JI9e/gBcBkKcCU/NAQC3HDSSXwmGmVNbe3Q1YqHgHcAmzM6ukPzYsaZ8gAmZSqXKcgVEckSLiYo3Jbc92Auhc7O2IiO3APA/wH/Su57vV68AwNc8MQTXL1+PS+oqFC+nOSdQCDApStX8r3SUq5IO94JfBT4ZijEI5s2mSoiWegk4OK0/e8B4cwMZVIoyBURyRK/w6zQTrkW86aTSzqBzwKfA7rTjl9g29xcXs5rGhu5Yt26nJuVFjkcxZj/349jFqkBxB2HH4dCfKSggD/efnvWBrpvYLhcX6vj8Ml9+7J2rIeiIFdEJAvcD/wqbf8yIJeWmLnA77u6eGVXF/c5ztDxauAjwIeApfX1rFq1SgGuzBinAN8EVjFcIq/F7+eW1avZ0dKS4dGNzYfJzU21Mv7X4CA/uP/+nAx0FeSKiGTYNuBrafsnAW/OzFCOSBz4WDjMZ8JhWnp6CAaDOI7D8zEllp6X4fGJZFI18CngtclFlxbQ6vdz8+LFRDM8tvGsBVa0tw/l0T8+Zw5NTU2ZHtZhU5ArIpJBncBHentpC4VwHIfZmFnPXMlXbcOM9z+JxNAboj8a5Y07d/J2zKyQyExnAW+srOT68nL8lZUEAgH2+3x8AohlenDjeHVx8VBQvisQwDc791YH5MrrqIhI3nGBGyMRnunsBNclPjjIdeXllNXVZXpoE/IUJv82xHA93+P37OGsbds497LLMjw6kezzyqoq/JgFXWDq634SM9NbkqlBjeOUujrOiEZ5YmAAr9fLZtvm2EwP6jBpJldEJENuBzYMDprascAlmzbh7tuX2UFN0J2YXNtQcr/Utrm+vJz3+3y88LLLlHcrMo7LgLek7W/FBLrxjIzm4F7i8+H3+7Ftm9sxJ+a5RDO5IiIZ0Az8hOEZ0FW7djG/u5vGxsZMD+2gBoEfM9wZCUyR+w8Dx1VVQVWu90gSmXrrgATww+T+U8AHo1FetW0bC2fNypqTxDMxY4wAQWATsDqjIzo8mskVEZlmCUw93Dhg2zaramt5q9/PuiwvrbWjtZW3tLTwx7TqCQswi+aOy9SgRHLUlcAbk7cdx+HfHR18ZnCQv996a9ZUMigGLkjbvz1TAzlCmskVEZlmfwOeTN72AB8tLWXxSSdlbkAT8GRrK2/t7KS7pASCQQKBAOfZNu/BdEqS6ecCvZiFS6mPezs6aGpvp7qujorqagZgxDYItHd3093VRU1VFdWVlXiAAsxz0QOEurrobm9nTk0Ns6ur8QKlmJzR1KYZsslxFeak9+vJ8mK7a2vZ0tjIyU1NWXPCewnw1+TthzDdGGsyN5zDoiBXRGQa7QVuTtt/ObA4Q2OZqFbgIwUFdJeU4AKW63JeczPXL1iAlenB5YmWYJAdLS34GhsprKsjhGmmkdpCwB6ShKUAAM6ySURBVP5olLZYDKusDLekhN5Rj+E4DsFoFLxeiEQI+HxDrWVH3KenBzwe6OkhUFIy4j6O4xAMh6G4eNzHAHDjcaxolIaSEhpLS/EDlcktdXuwvZ2+/ftZ3NBAQ5YEbNnoRcBu4GeWheW6PLB0KW8pK8v0sIbMAY4HtmAC8ruAV2R0RBOnIFdEZJoMYi7t9yf3FwEvy9xwJiQI3ADEysogGqUgkeD5W7bwhrVrFeAehmAyiC2cPZvB2lqCMLTtisXYEovRX1kJvb0EHGfs4LSjwyxS7O0lEAgccJ9Us4HUiUg8Hj/s+0zkMRzHIdjaCq7Lnmh0zLE4jkMwFoPKSuxolBNjMRaVlhIAGpJbQVsb/fv2MbexMWtmLTPlbX4/m4qKeK6/H6/Xyx9sm49D1vyPXYIJcgHuAF6Kmf3PdgpyRUSmyR8wjR/AvPi+l+x+EW7GLChrx+QOz6mv51XPPceFa9fO+KDkYFygBdiZ3B6PRHigp4doZSXEYgcEsaH+fvo9niMKTtNTCWYXFrK3q4vCgQEKgOOqq6nCPMdSWxTY8txzuK4LHg/HV1VRhjkBSwDdlsWW5mYGLIuBwkLm19biwaRDpFIiQocZTDsFBTzT3096fy/HcQj29lJQWUlNWxvnlpRwQkUFizB53jOtvnIx8KHSUq5P7m8A7gPOy9iIRjoNM0MfwrwebMQ0jMh22fz6KiKSN3YCv03bvxqYn6GxTER6gAtQBHzU62X1smWZG1SWagfu7+xkQyRCqKaGVp9vRIH/0OAg0eLicYPCVIWNooEByvr6OK62ltmMvPyfGBzksY0bKXYcvIODXHnRRSzw+0fmxvp8BGfNoqmpicbGRgLl5QcO1u8nuGzZ8H0qKkZ+vqKC4MKFw5/3HRhutsTj/OXee4kVFOB4vaw+/3wKGZVaUVDAY9EoIa+XgcJCvN6RmdupIHjA46G1vJw7XJcH04fR20tVVxcnl5ZyVmUli8j/PODjMFUXbk3u/xDTDrgyUwNKUwRcCPwpuX87uRHkWq47+VXP1qxZ427YsGHSH1dEJBf1A2+JxdievBR5om3zBbL3TXs/JsDtTO4XAx/DtBue6VxgH6bk05PJba/jmNXwybatoy/fO8nPFwwO4o/HWTN3LseUlREAAkA9YLW2Etq/n9kHuXQfDAaHg88Mz6RPZCzBYJD9TU2Uz55Nor6eFhjadkSjbNy/n4htH/A7c8b4fVbZNsdhckNXYlJ9cuFy+eGKA2/D5MGDKeH1ocwNZ4Rm4NrkbQv4Eea5m2mWZW10XXfNWJ/TTK6IyBT7YSjExlAIXJdoIsHVZWV4srSr2aa2Nj7u8eCUlWHbNsXAx4ETMz2wDHGBJuCeri4e7O2lpaqKvpKRvanGSiWos20WAccAi2ybipISBvftY05jI4GxFhXV15vtIAKBQMaD25SJjGX0fZamf9LnI+j3s62lhf45c+ixbXYCu4Atvb0H/D5jts0jwCPJL/fE48zp7OR8r5fnV1eTPcu0jo4XeDvmfw7gbschsHs3l/r9Gf/bz8LMLG8C4o7DD5qbubakJOPjOhgFuSIiU6gd+JPrDr1pn/bssyTq6yELg9ynWlt5WyhEtLgYolHm1tfzCa+XEzI9sGkWBx4HHsXkHu5JVRxwXWhrO2CmtsK2Ke/qYlZnJ4FwmFefdhrLGbVoqK4uK//mmTReoLzPcfjlQw/RXF5Oc3U11NePqCSRWvj2nOty/8AAPyotZa3Xy2nA88iOy/tHYxUmNeAfyRnt71sWvbfdxosuvTTjAeUlwIPJcf2zv5+Gu+/myiyu760gV0RkCt0MFJSUQE8P9aEQJ+3bR2MW1sSNAzfCUO5o0cAAr921ixOWL8/wyKaeC2xsa+O+cJh99fXsLitjIO3zo2dqC6JRTk1ePl8BHOP10jFrFk2uS+NxxxE4xIysHNycQIDXn3POUDpEfUkJzZjV/U8A90UiI/4eUcfhUa+XR4HvAguiURa3tLCurIxFWRp8HcobgX8lf85YcTFbGxpoyoLauWuBwmjUXJUqLqbd58uKcY1HQa6IyBTZAdyLqUwQCAR4UzTKOVk46+FiSpu1+/0Qj+NJJLjiscc4+4wzMj20KeNiLo3/D/hXLMZjvb1QUACdnQSKikbM1Pptm5r2dua2tTGnu5vXnHceDaMeL5tSCfLB6N9nY3J7PvDqgQF++cADbK+rY2dDAzQM/zXiyc5h/y4s5OZYjBf19PCKZNWGXFIGvMzj4cvJ2rlPzp3LrNraTA+LQmBVURH7k+MKVlVldStyBbkiIlPABX6ctn+2bfOyLJ0V/RXwAMPB+Av27uUlZ5yRd0GbC2zHBLb/g6GSVqH+/gNyQJfaNicDJwPLvV465syhyeOhcdWqvPu95JqGQIBrzj/fzPTW1eGxbdYD64EH0mbd+z0ebndd1mPygU/r7GTunj3MnzUrJ/6GL6qq4nclJfQ4DgUNDYRs+4CTq0xYU17OI8XFxONxak4/fewqHllCQa6IyBR4mOHi6R7gdZkbykH9G/hd2v7LbJs3Lc72HmyHZy/wp1CI+wYGiCUX1KXzer3EEgnmtbWxsKODN598MqMLpWmmNruM/ntcmdyedRy+8/TTbJkzh47y8qHSZZsdh7siEUp8Pk7btIkPrFpFY5b/PX3AxV4vdyV/htsYtXgvQ5ZhToht22Z/pgdzCApyRUQm2QDw07T9SzGtMbPNM8A30vZPBl6fobFMtl7gv5gWpI87DsFkdQvSOnSVAqcCp9s2s0tLaS8qonH1auXU5rBj6+v58Eknsb+piWhpKQ/bNvcz3MAiVlzMPcuXs7eggPdj/v7Z0lVsLJdgnsNgns9vgoxXkjgGEzwOYMoNhoFsnctVkCsiMsnugKEZjlLglRkcy3jaMAvNUi2G5wIfILdrj7rA08CdwP2YxXQwcuGY3d/PCW1tvHzOHE7CFLkHIBBgbpbP7MnEpM/ynoUJDP/guvzUcYbq8vaUl/MZYF40yoW7d3N6TU1WztQvwdQE3gn0YXL8r8joiEzd7EXAs8n9Z4Axi9RmAQW5IiKTKAr8Om3/pZiOVdnEAT4ci7E72Zyi1rb5GLnbSrUf8+b/q1iMXcmfKT0locy2qWttZdm+fczv6uIFl19O9oUzMlX8wJsqK7nYcfhdLMb9s2aRsG0cx+H+jg7u9/k45emn+RQwO8sCXQtzJeg7yf3bMF3RMj37vBQFuSIiM84fgZ7k7TpMnmC2+VZPDw93d4PrEnFdPlxWlhUrtw9XHNNe9C9As+MQbG8H1yWU7JK12La5GDjP6yU+bx5NhYU0nn56Vs7YydSbFwjwAeAtmDz036Q1nXhkwQKutyy+iGl6kE3OwSxiDTkOT8Tj/Ke/n3My/P+6DPh78vbTmRzIISjIFRGZJK3A7+Nxwo6D1+vltcmOYdlkM/C3tOYUZ23dir+hAXIoyN3R2spvYzE2NDQwkFyUk0pJKBwc5NiWFl4WiXDVihVDM15+LRyTpArgzcCp/f3c0NXFvqoqsCyCfj/XxuNcvncvL6yoyJrnSwmwuqeH3yZPTL/b0sKywcGMji99YeYzQILsbFOejWMSEclJP+zpYV9rK6Hubti2jaXBYKaHNEIMs9DM6/WCZbGwrY3jkwX3c4EL/KGri1dGIvzestjZ2orjOAAEios5Y/t2Xn/ffVy4dSun19Rk/JKuZLcT6ur48axZXDM4SGNyseGe1la+V1zMJ594gmAW/f8u37dv6MR0b1UVTU1NGR1PHVCVvN2LqWCSjTSTKyIyCdqBuxOJoTei059+mub+fhqyZDYIzCXPVkz5n2Pq6nhndzfLs7A5xVhagW8D93k8OAUFQzVty8JhrrVtzi8p+f/snXd8HPWZ/9+zKrOSVlr1keRuYxvjjo2NTTOmmGICBEIaIUcKSUgjubuUu/TcXXK5XI7US/ilknpJCBBK6DFVYAy4Yht3q67a9qrdnd8f39ndkSzZsvFqRqvv+/Wal2aklffxanfmM8/3eT4P3kWL6KytpaWlZUL8nyTW06Rp/BNwHfC5vj48xuf3+TPO4Hvt7XwCbPFeWl1XR0kkwqDDQdjpRK2utjQeBZHNbTWO9wIzrAtnVGQmVyKRSE4DfwWKy8pAUWj2+Zjm99sqQ7oF4TqQ4VNlZaxbssQWF/DjoQO/9Xp5t9fLi0YZCIqCOxrlip07+UEqxRWIjm9N01guhzVIToEzgP9OpZjq9Wa/90B9Pd/ZssUWGd1mTeP8hgbc1dVomsaADWzuzJ69dq3LlSJXIpFI3iQhRNdzZmLYzU4nG22UIQ0C3zcdn4+wVrI7ceCLwSDfCgbpCQTweDwowHurq/mvWIxPr1xpe0N/ycRhhqbxo+ZmzhwczH5v0/z57O3uPs5vjR9nu1y43W5UVWWv1cGQq8uNx+M819tri5uB4UiRK5FIJG+Sh8l5sp6hqtw8f75tBC7AT4ABY98NfMTCWMZKH/AZ4BlTCUhNKMSHDhzg01VVnLtsma1eY0lhMEPT+FZlJVXxOAoQKy3lD5WVthBw5sypHUTuGUAyFsPj8bA3EuGev/3NFq+TGSlyJRKJ5E2QQJQqZLgB6z0szbwAPBaP4/f7icfjfBzRXW5n9gCfQhjgZ8oTlrS18c6XXuK8ujqLo5MUOjM1jS/X1eFyidlizxcV8au//91yAWd2NNiPmDhmJSpQFgplb0KDpaWWN8QNR4pciUQieRM8CfiN/XqEp6VdSADfi0bxeDz4fT5qX3uNmTbLtAznz14vt/t8eAzXhHJV5XOVlfxjRQXXXXWVzN5KxoXL6upYHo9nBdzOlhbLBZwbaDL2BxE3gVbTYvQhKEDU6bRVHwJIdwWJRCI5ZdKIQQQZrsNeJ9X7gc5EAnQdZyLB+bt302nUDduRn/t8fDcYBF2HQIA5DQ18rayMRTU1UFNz4n9AIjmNXK+qPJtMgq6zp6UFh6lW1yrmA0ficWKxGC+l08yz+HMxpaICrbiYWCzGsnXr0GprLY1nODKTK5FIJKfIC0CXse8CNlgYy3D8wJ/ILfevPnCAsnTadpmWDH8Gfqko2cxZXTDI7fv3s8jqwCSTlvV1dcyrrBS1uSUl/O7gQctLFjSvN7sy89d9+yyPpxrRcOt2u1FsJnBBilyJRCI5JXTg7nA4W+t6NeC0OigTv0OYtKuqyrL6em7RNFs5Ppj5I/ArcoJ8itfL215+mcU2sEmSTF4U4Gy/P3vcVl1teclCRVdX9kZwoLzc8njMeWSfVUEcBzutrEkkEsmE4e/9/bwUDoOuE06nWV1RATYRZW3AI6bjj5WXs3L5cqvCOS6/RwhyEIL84tpa3jEwwKwrr7SlIJdMLs6trOQP4TCKruOprqbF4vHX8+vrIRZD0XWiqkpLQ4Ol8VSb9n0WxXA8pMiVSCSSU+AeU1PKmR0dhGwkcn+BqBcGWAKstDCW4/Fjv5/fITK4qqqyDPiCy4W6bJm1gUkkBqvr6mhyuYjGYhQ3NeFWVUvjmdfYiGbU5JarKo1Oa9ePzJlc76iPsg5ZriCRSCQnST9woLY221W8vK3NNrWu24GXjX0FeD/2sjTL8Gevl//1+/H7fHg8HuaGQnwRYUskkdiFcmCuquJ0OonGYrzY12dpPCVArVEDW+J0ErA0GvtncqXIlUgkkpPkcaDE6UTTNFaoKu9Zv94WS+s68P1IJFsnvB6YbXVQI/A68CNTk9m0vj7esX8/pVYHJpGMQLMxbc/v8/HnrVtt0eyVwWdRDBnsXpMrRa5EIpGcBCngUWNfVVVubWqyhcAF+OvAAJv7+vD7fPR3dnJ5T4/VIR2DB/h3oNjw16wPhbh6+3ZmNDdbHZpEMiKl/f25gQclJbLZy0S1ad+HuNG2E1LkSiQSyUmwBTFyFoQ5+xoLYzGjA/9neHrqwNIjR4h3dFgd1hAiwNeBAOIGYW5DA/+aTvNW2WQmsTGzqquzpUkxGww8qDbt+yyKIUMpoqQjHo8z4Pdz0GY31lLkSiQSyUlgdi24DPt0724D+txuUBSK02mWHz1q+cXYjA58NRRiu1FKUQx8vayMSxYvlgJXYmtm1dSgaRru6mqmLFxo+fvVbs1eaiSSLef4y1NPWV7OYcYu52eJRCKxPT3AK6ZjOw1/+BMiO6ppGud4PNy0YYPlF2Mzv/N6ecSYZuZXFL7kcrHAhubxEslw3IjPlqqqWD/zTGRy44bDwhEAt9vagIzPtQ5Eioro7Oy0zblHZnIlEolkjDxKruZsObk58lazD+GqAFCmqnxi+nTbXGRATIX7BeRKKQ4fZvaRI9YGJZGMkWrjazwe5+DAgOWZyrRp6tmLu3dbHk+ly5Ut53Aoiq1WkKTIlUgkkjGQBP4ajWadC660OiAT95j2zwfsI2+FX+93AUd5OSgKteEw5x04YKsLoURyPKoRAtfj8dAeDPLAgw9aKix9pka4tK5b3ghXVlGRLee4eN06W91gj6lcQVGUw0AQ0Vic1HXdrt7iEolEkhceGRjgjVAIdJ1kIsH0qiqwwcm8E3jBdHyDVYGMwl+BXYjl3ubGRj4SDHLuVVfZ6kIokRyPYiAei2WFZSqdtnRJvrauDoJBFF3HAZbfMOrkyjmsnb92LCdTk3uxruvWuiBLJBKJRTxgmnB2VlsbPTU1TLGBUPtVIIBP13E6naxVVVv54rYB/y8WIxiP43Q6ea/TybULF1odlkRy0qhOp1iS13WKHA5LhaW7pgatvJxYLMaimhq0qirLYoGhtmF2GzwjG88kEonkBPQBh2trweNB0XUWdnXRYgOxtrenhz9FIqQUBb+isK6iAurqrA4LEBe+b4XDtBtLq6WhEOvq622R/ZZIToZMplLTNGKxGBs3brR0JcKcObW45Qywt8gda02uDjymKMoriqLcNtIDFEW5TVGULYqibOnt7T19EUokEonFPAWUZpwLVJV3XXqpLZbb7w2HSSkKOqD5fFQdPWp1SFleArYZvr2KrnPJ9u30WFw7KJGcChkRp6oq1W43TRZ/9u0mKu0Wj5mxitzzdF0/G7gS+KiiKBcOf4Cu63fpur5S1/WVDQ12q8qQSCSSU0NHjPEFcZF7j00mnKWBrU1N2a7m5W1tTLFJM1cS4abgNJZ4lxw9SmMkYnntoERyKqQRjWd+v59ELGZ1OLYTlXaLx8yYyhV0Xe80vvYoinIvsAp4Jp+BSSQSiR3YBXQb+xXYZ8LZK0C4rAxN0ygOh/n4ypW2EN8Af0M0xKmqyqzGRm7zeplr8RKvRHKqeDwePEZNfkjX8RifO6tIm/btICrtLHJPmMlVFKVCUZTKzD5wObAz34FJJBKJHXjMtH8RYoylHfib8VVVVd5WW8tUmwjIMPB70/F7nU7OX7pUClzJhKWtqyvbdIoNLLt0cpnlUCBgaSyZeDLYzZd2LJlcDbhXUZTM43+n6/ojx/8ViUQimfiEgedNx5dZFcgweoAtpuMrrApkBH7q99OOKFWYpqpcbXVAEsmbpGLKFIhGUXSdssFBy8tuvD4fnkAAdJ0dbW145s61PLOcmcDWm0gw00YlqycUubquHwSWjkMsEolEYiueBYLGyXtuSQlzysutDgkQ2eVM9mQZ0GxdKEPY09PDr0xuD7e7XJTK0b2SCU5JQwOacR44q7gYraLC0ng6vV5wONCB4mTS8jG64UgET18f6Dp/b21l+sUX22blxm6ZZYlEIrEN94XD2fGZ5c89R4/F4zNBNHU9bjq20+S1P0ajWbeHRr+f6XJ0r6QA8CHKgtxuNy0WC1wAR11dtuG0wgaZ5UAkkivnMAZl2AUpciUSiWQEjgCvGxZYjnSaeZ2dtjh5bwa6jHo8ZzTKKqsDMggDr2ha9uJ7zuHDtnF7kEjeDD7Tvh18adNVVdkxupesWGF51jTtcmU/9+XJpOWi24wcBiGRSCQj8ASirtSvKMzu7aU8lbLFyfvPoRCegQHQdeYdPkz/mWdafpEDeARIO51omkZVMMgnVq2yRVwSyZvFZ9qvtigGMz5ywyCsnnA4CKSMz30iGuXGDRts9bmXIlcikUiGkUQMgMhMOXprJMKlNrDA6gVeSaVAFxW5C44epdPI6ljJIPBXY19VVT6kqjRZGZBEchrxkWusQtehutryeDJYnVn2G19VVaXJhp97KXIleSUBBI6zBYGuUAhfKISrspKKEeqdlBH2w6EQ0WCQKS4XUysrqUZ82DNb5tgudk+SicVmxPsTYIqq8s4zz7RFbddTgGoMWJjW10d1ImGL7PLfgQFjvxZYZ10oEslp52gwiMfrBV3n9Z078VjsSe0z7VdbFEMGn2nfasE9ElLkSk4ZHSEE2k3bnlCIjkiEdGUlybIy4if4N+LxeHbplUQCrbgYVVXH/jteL1pp6ai/44QhAtgRCODs62OZ2805dXVUndT/WDJZeMK0fwn2aF7QgSfJZZevi8XYaIPschr4bSSCf3AQp9PJtapKiaURSSSnl/1GBlcHKsNhS90Mkoj6dxBJH6uvYT7TfrVFMRwPKXIlJyQNeMgJ2TbTftD0uCHiMxZD07QTCtaY6eSh6DqxWOy0/k4MMa2qOxOfzwdFRdwdDqO5XLSoKrOA2cAsY2vBflNbJONHP0M9aC+1KpBhvA50Gfu1qsot8+bZYqXi8f5+tobDoOvEUimWV1SAjWryJJI3QxoIV1ZmfXJro1FLV0985EontNJSlLIyy2KBXLkCSJErmQDoiHGcW4HWYJB9sRjBykqKnM4T/u5I4rNCVamCY7ZK42syleK1116jKJnE4XBw4YUXUjcsnuH0J5M8/corJBwOYqrKWWvEoNUA4gTgN23JE8TXr6rHiBonMJOc8K3s66O4vZ2Zzc2WZ80k+ecpIGZcRM4uKqLJ5bI6JGBodvkC7FOKc78x7lQHFrS14auqkiJXUjD0AA6jsao0HOaGK66w9DpwoK8Pj2HZVRIK4amvtzQer2m/2qogjoMUuRL8wDaEsH0N6MPIeho1SESjo2ZlncBUY3PpOoe2b8cViVCRTHL9pZcyw+0+fla0tpbz1qyhs7OTlpYWtPr6EwdcV8dZ552X+51RmgB0IEJO8B5MpXh07156Kyror6qidJQTQwzYY2zxeFycUGpqaPZ4uFFVuay6munIbG8hkgbuNxmbl+zahccGFj0x4DnTsV2yy33Agbo68HhQdJ0lnZ20nHmm1WFJJKeNDuOrqqosUlWsvn3b098PTic6UBaPWz4IQmZyJbYjgVj63IoQtQdHeMzwrKcaCrFEVbOCdprxtQ6T2KuuxrNqVU58jvGDp2naSX9Ix/I7ClBhbC3AgtpaVi5dKuJrbKTe6aQTOGRsB43NZ/o3zK9Dl9vN3YrC/UAjcA6wCliEfbJqkjfHi8DRwUHQdUqTSWZ1dVl+EQExWjhm7E8D5lkYi5lHgVKjRni618vN69db/lpJJKeTdtP+VMuiyDGoaRAIiNKJSISWuXMtjcdn2q+2KIbjIUXuJEBHiLjXEML2dYTQHY0yYGFREZG9e2nw+aiLRsUSzRie61QE63gyPL5pxnah6TFecqJ3u8PBs5EIA+XloCg4jbKNHuAhY3MiRquuAlYgusslEw8d+As5b9zFR4+igi3cC+4Ph/EnkzidTi5VVVusIqQQ44VBZLn+oanJ8iyXRHK66SBXA1thA/uwSHU1WlkZsViMy6qq0GpqLI3HR+71SSWTUFd3ol8ZV6TILWCOAg8DT0Sj9CQSOJ3OEUsOHMB8YDlCrM0DilwuPJms50lkZQuBGmM7G7ixshJPbS17u7vpnTaN/arKq4gyiAwxRAbwReN4LiLLO6uvj9K2NqZMstdvorIb2IsQbFMaG7nF52PBWWdZ/rfb0dvL09Eo6DpB4KyyMmhstDQmEHXsGduwauBc60KRSPLGG6bhK/u3bsVz7rmWnhPayQ2CWGxZFDk6TeVdW156iaUXXWT5OdOMFLkFxiDQihC3uzBqSnt7QdfxK0q2tnYKOVG7GCgf4d+ye1Z2vBj+OiQR2fDNxtY17PH7gJ1GLW9leTmLdu3iDkXhTBsIE8no/MW0f4XTybolSyyLxcx94TAoCjowvbeXaFGRLUTun0Ih/KkUTqeTy1RVXkwkBYcO7E0ksiVr1cGg5eVLHab9KZZFIdCBNlPjaXk0avnrMxx5XioQPIixmo8ztBA8U1PqTCSYNjDApYkEN55xBmNo75KMQjGwxNg+gDjpvGxsuxDLuJnXPeB00jpnDntLS7kcuAJxY2GH5WZJjg7g2XicaCyG0+nk+hPY2I0XKWCHpkFvL4qus7Czk5bVq60Oi509PTwRjWa9ss8uL4eGBqvDkkhOK71AqqICQiHUwUGq43FLy5eC5IbUlILl13EvQHk5BIOog4O4kklblHeZkSJ3ApNGLBk+DLzKsXZbRcCFDgfFr7xCS38/RQ4HGzdutPyDUWhMMbbrECbdrwFPOhw8nEwSKy4GRaGkrIwXgBeAJmADokO+2pqQJcP4RSBAt88Huk5tXx+lU6fawgbrFSBaVpa1L/ro6tW2yJLcH4mgZ7LLfX0MOhxS5EoKjv3khq9M83q5xuLhK+Ysrh383DvIvT6Nfr/lr89ISJE7AfEiGj4eQVj4DKceIaIuB2orK/GY7bZs9gYsNCqA84HzKyt5XyTCI4EA21taOGzKDHYDvwJ+g6hjvAJYivUnrMnKPuBxXc8uuS07dIhOh8MWn5VHja+qqnKjUWZkNTqwy5RdXtTZScuqVVaHJZGcdvYbX1VV5XwbNFaaRa4dnB7M9mpnNzZa/vqMhBS5EwQd2NTfz32xGG/U1VE8bDiDgmiUuhJYicjiZpC1tdYwTdP4oPG6tyFuSp4kN5IxhbCGeh5oBlb7fMw9coT5TU3y7zVO6MBPANXpBEVhVk8P0/x+Wyy59SNKYDJcZlUgw9gOBI3sclE4zEdXrZLvV0lBst+0f4ZlUeRoJ+dk4AJwuy2Nx071waMhRe4E4BDwP+EwTxujM+npyTaQVSEuflcglsEl9mQa8EHgvQhR+zdEN3+Gw/E4LwUCFFVVsWjfPj6rKCy0QXNRofMUQx0VPur3s9QmS25PkitBWoxYnrQDTxpfVVXlGsM7WyIpNHTsJ3J3m5weDttgUI0UuZI3RRD4LaLm1pdMDhnO0OLzcaumsRYosTRKyclQClxsbEcQy9FPAX6jUS3pcLBt2jQ+VlrK9cAN2PfkMdEJAv8bjeI37PXe43Ry+WI7mPKIC+xjpuMNVgUyjDDiJi2DXSavSSSnm16gz8ia1qoqTWMYbZ9vXjc5GdT5/ZY7GZgHZdj1OiVFrg1JIy5wdyMuxCAM6oPAgvZ2lra38w/r1tmy/kUydmYAtyGyuw+k0/w4FKLX5co2qj0OPAGcB9wEzLIw1kIjCXwxFGKfkRVJxeNc6HbbotkMREnAUeMCW6eqrLHBBRbEaOHMIJmZyPekpHB5aWAATygEuk6l10tPc7OlgtIHxFwuCIcpTqWoi0YtLatKIlydMthlpWk4UuTajN2IGsEDw76/WlW5vrwcpbyclnXrbLGcKjk9qMCNNTWcn0jwpNfLi9OmZRvVdISweA4xYOJtwALLIi0MdOBbgQAvRKPouigIuPD11xmYMYMZNvlc/TEYxOP1gq4zs60N79y5tvjMP2HavxTZLCkpXF42BK4ONPp8dOq6pZ9Bs9NDs8/HW66+2tJ4uhEJOYAGxHXMjkiRaxMGgF8Cfx/2/UaEF+u5gNLQIG16CpgmTePdmsa7EX67f0JYSGXIePHOCodZ29bGupoammwgfCYSg8C3AwH+z+fLCtxz9+3jjP5+WtassTY4gy7guXQ6e4E9q62NzooKy0VuB7AtM95UVVlnk+yyRJIPuurroa8PRdeZ6vfTssDa9ILZ6eE8TbN8Jdc87nhuURG4XBZHNDJS5FpMEngA+D0QNX2/FLgRUZNZakFcEmtZaGwHgT8i/HV1xEnl6f5+ni4r4+e9vXyypISramtlRm0M7AP+OxzmVVMGd35nJ2+JxznHJs1mAPeRc3uY0dtLQyRiC7eHe/x+PH4/6Dp1vb3Epk3DbZPXTCI5nYQBT3k5mqYRj8V4n8WjfGFoE9wcy6LIscPnwxMIgK7T19aGxyarTcORItdCXkOUJnQM+/5a4P2ILK5kcjMb+ByiwP/PwP3RaDbD56ms5D+LingIUcZwIUOt4yRiOe3p/n7+FI+zu7KSAa83K3DndnVx6e7dnGPxsp8ZP6IkILMseXM4zDobCPAk8FgqlX3vndneTmdRkeVxSST54HVEUkFVVRaqKrMstuoC+zk97DDcnuwy7ng0pMi1gJ09PfxvMsm+ujpU05CAqcCHEGNfJRIzU4E7gEsTCf6zvZ1dLS2kiopwOp20Ad9BOHHcAFzC5M7+pxEXqeeAJ6NR3shY7w0MoAMOXee8PXu4MpWylcAFeJBcY9dCVeWmBQtskaXfAiSM8aauWIzZAwO2Ke+QSE43O037iyyLIocX4ZsNovbVDrZ9AzU12XKOplDIFqtNIyFF7jjzVH8/nw8GxbhXjwdN06hWVd4FbET+QSTHZ1FjI9/WdfZ4PGybMYPnVDVb5uIBfgT8IhpldVcX11dUMNtGAi6fpIHn+vp4LBLhjYYGomVlAPgTiZz1HjDX4+Gc/ftpiEZtVaIAEAMeMh2/Ffs0dj1GLrt8QVeX5U0vEkk+sZvI3U+u/nVxcTFFFRWWxhMGfEY5RzIa5ZYLL7Tt+UBqqnFCR1zAvl1URKy4OOt3u6S3l3+dOpUai+OTTBwyE+wuAt6HyP79FWE3F4/HOdrby96iIn4fiXBjIMC7q6qYZmnEpx8dMUVum7FticU4FImIjG1vb3ZYitPpJJlIMNvjYUlHB9csWUJswQJbjrh+gpxlYCOibMkO9CEyuSCE7gdmzrS86UUiyRcxYFcsRiQep8zp5CzVet+ALaZ6+KAN6l8z7k+qqrLA5gNhpMgdB5LAjxHG/6VlZRAI4IrFuGLHDj50/vlS4EpOGRfwDuA6xPvrpybbm0GHg4d1neeBJcA1wCrAYVWwbwId2Nbby4t+P12axqHKSrymn/tNJumKrlMcDnOVqnK+qlJfVUV3KGRr670U8HvTYIrrVdU29dVPkJu8thQxgloiKVSe7e+nyyhxKgmFiNTXU2nxeWOLqRej0eu1vP7VbvXBx0OK3DzjB76BsIQCceezpq6Odxw4wILzz7ftRVcysXAC1wIrkkm+s3s3r02bxkBlJU7D5mm7sVVGoyzp7uYyl4uzGxpssxxuRkfUn72BcETYB+yMxTgUjUJJCXi9aKWlQ+rZnU4nqXic6b29zO/p4ba1a3Pm5JpGs80/Zw8MDLDTuEGJJ5MsdrlsMZgiM5gmg10mr0kk+eJZU0PVlP5+OhMJS6/Tg4Cnuhp6elB0nWl+Py2rVlkWDwwVuXMti2JsSJGbRw4B/wb0mL63Dvh4RQWlS5ZYEpOksJmqaXx2+XI6OjsJVFTQqqq0krMfO9rbyy6Hg99HoyyNRFhfXs4aYB7W1H8OItxF2oAdfj87IhH6qquJGTW1GYZnajOTwJYgsotLVZUit5uucJiWtWsn1M1jAviVyRd38ZEjDNTU2GIwxVbEeFOASoRft0RSyBwx+ePOHBigZf58S+PZDyhOJ5qm4QoGecdll1l+frObndnxkCI3T7yA6HiPG8cKYnyrnZpJJIVJpmYXxE1VL/Aw8AdThkLRdQ4PDnIP8Lt4HDUUYklpKUsqK5mNOHHVcHreq2nEisaevj52er3EGxvxu920IQYfpBECPFNzZq6pzeB0OkkMDtLg9zPN5+OWpUuPLb3QtAk5HOPPQLiyEiIRyhIJlre307JwodVhAUOzuOuBEqsCkUjGgW5gwGioSkWjfHDNGssF5Q7jq6qqXKSqltfDhxHnbRACcqZ1oYwJKXJPMzrwfwg7pwxlwD8jxrJKJONNA+IGa/3gID/YuZP9DQ0caWjA6XQKcenxgK5zVFF42VQGoEajVAQCNFdU0OJyUQVUASmvF19fH9X19VTW1JCE7Nbr99MWCJCuqSHhcjGAsL+JxuN4IhEoLQW/H83pHCJiY7HYEAFOJMJiVWUuYjlsnqqSrqykKxikZdEitPr68XwJ80Y3QuRmnAve0tbGjRs2WH5hBXFj8kwsRigex+l0ssEGDTgSST7JTJhUVZVzVNUWDbu7TPt2cHo4QM7p4cziYkosdno4EVLknkZiwJ3A86bvNQNfBFt8WCSTm2maxqdXrqSzs5P68nK6VZU/tbfzdCJBtKQkWwagqmq2tAFdZ2s8jlZSkv2+JxgUYjUYRCsvz4rVIdnYgYHs78CxIjbzPArCSWBBURF9R45QEwzSFAzynosvpmn4f2CCZmqPx/9DlGwALFJVbj/jDNs0Bv7R56PDmGhU7vdTqmm2qBOWSPLFFtP+SsuiyJFCeH5nWGxVICa2mCadhTs68MyZY4ub8tGQIvc00Yuovz1o+t5S4LOIWjaJxA6YSxmmAdNLSpj72GP0lpfT53bTfN559AKvGXZcw0XpaGIVRheyAPWlpRSHw1RFItSFw1y1eDHLgCmIpjlcLjzz59PZ2WlLe6988DKw2dhXgA9jH+eLBHC/qU544dGjdKZSk+LvIpmcJBDNuRlWWBWIiQOI5BmIFTk7TEE1Xxvq/X7LnR5OhBS5p4E9wBeiUXoM+x9VVbkG4WEqX2CJndE0jbdcfXVOXFZVAdCdSPDbF14gWFJCXFVZcv75FAHtisJL3d2kgGJdZ0lNDbWI93kE2HHoEGo8jiuR4Oo1a5gPVCOs8zx1dXTG47SceSZabe2Isdj5ZHk6SSBGeme4HNH8Zxc2MXTC2fyeHlrOkQVXksJlBxA0luFnlZSglZdbHRK7yJUGrHQ4oNLalJkOdNbUQG8viq4zxe+n5eyzLY3pREgN9iY5DHw2FuOwsbQb0nU+43bzjhrpfiuZGIwkLps0jZvXr8+J38z7uaoKz8yZx4hiANxuPAsW5H42rG52MonYE3EPYkIdiJWeWyyMZTg68BdydcIbOjq4Vk44kxQ4TwUCeHw+UW519CieefMsf8+3hkJ4BgZA1/Hv3o1n+XJLY2oHEmVlaJpGUTjMLRdfbPlrdCKkyH0T9AFfAbyGvZEzkeCqbduYP2cOSJErmeCMJkqPJ1alkD0xXcBvYzECRkPXR1WVqhP+1vjxEsLWDaBWVfnI7NlYn9OSSPKHDjwzOJhdhp/Z00Ony2XpuSwBvJJMZmNq6euzvDTA7PSwRlWP7ZuwIVLkniJhhMDtR9gbRVMprtuyhcZIhJaWluP/8iRDB0JAwLQFhx13hkL0hEK4KiupMLo1h9tXKUA4FCIUCtFUUcHUykqqER3/5q9uxCQwadUmsRsR4F8jEdr6+kDXUYNBljY02KahS0e4PWS4EqTAlRQ8e4G4ywXhMGWJBFP9fsuv47uAImNCak04TE08bnlMO037dnB6GAtS5J4Cg8B/AEeM43JV5XNuNzVnnjlpmmaGoyPEahtiSSOz7YtGaU8kUIdZRpmJx+PZJRkSCbTi4hEfe8zjhk29MuMASqNRqvx+FpaXs7SqitmIZiv5ppdYQQr4FrDfyBg50mku2rWL7nnzbDORbTfigg/ic3KNhbFIJOPF8+TKc5b39PAWG5TnbDHFtNrjYePGjZbGpCNF7qRAR9iEmbswPwlcXFcHdXWWxDTeJIHn+vrYEggQq6/HX1VFOyJbayYej+MxapVRlGMM/jMcryv/VB4Hwpc1Uye9JZFAU1VUVaUYIXRnA7OAqv5+StrbmdvUZPlJTVK46MBdCB9Op9OJX1FY//rrNIdClmdnzNxj2r8YOLY9UCIpLHTE8CYQovKmadMsH7gAQz173zp9uuUxdSE8zwEqsP8QiAxS5J4kdwPPmI5vQVwMChkdkaF9DTHmc0ssxtFIBIqKwOfLCsjhmEWpOjiIKxhkllF/WIVouKkCUuk027dvpzSRwKEoXHTRRSNeXPuTSZ5+5RWSQEJVWXjeeTgAH8K4fsg2iiBOIsYtH8IQ4eEwVFfT0NfHW51OLnO7OQNZ6iA5vTyImDoH4qJ1m9vN2pYWWlautM3NVRs5SzMQ0xklkkJnP9Bj7FcgrD+tpotcXbwK2GH+oTmLexb2sTs8EVLkngQPcWy92o0WxZJvBoBtCGG7zTjO4Dca7YYLSCcw1bSVp1LsfvFFKkMhSkEst4z0ZDU1rF+1KteVP1pGvK6Os847L/e46upR42+Pxfjj88/TW1FBf1UVdeecQw+5kxkMFeG9Lhd/AP6GqOs9x9iWISbWSSSnysuIoQ8ZLgBud7tRli+3KKKR+YtpfzXiMyyRFDovmPZXYw9R9IppfwlQalUgJiZiqQLY4+85IXiRob6Wq4APUVgZPz/wBPBwJMK+wcGs5+9wnE4nxGJM6eujIRzm2hUrWArUMez1qK1l1bp1YzL4H2tX/lgfN1XTePcll+Se2+UCRMNgJpO7XVHYFAzS63KhOxzi/4XIDD9ubMWIKTNzvV5a2ttZ1Nhom8ybxP4cRNTh6sbxfOAO7Hfe6AceNY3wvUGO8JVMAnTgiUgEv3G9O88m73u7TV7Tgc3RKH5jFsAim7xOY0GK3DGwB/gvcheqecA/A0WWRXT60BFjA/+GKL4Px+N4jM5vv6mO1oW4o1wOLFNVlOpqOiMRWs44Y/TMK9ZaSo303BWIu9BFwDVVVXygoYED3d30T5vGAVXlZUQDXYYk8GI8zv3BIFRVMa2ri9tKSriqtlZ+eCTHZQD4fDSKx7gwTFNVvoA9sjLDuSsQoMPwCC33+6mVI3wlk4CX+/rYbkzwiqTTNJeXW/6+TyBKAjMWgytsICh39vayOxrNvk4VNnidxoq8Tp+ADuBriDceQDPwJYxRpBOYMPB3hLg9avp+ZgnfkU7T7PNxUSrF9bNmcQbDanAKxA91uBBOA/sQtYkvIzK+5rKGtpoavl1UxJ+AS4ENMCG8AiXjyz7gi9Eoe4zmx2gqxTcqK6luaLA6tGN4A3hE17Pv8RUHDsgRvpJJwYOmEbWzPB76VJVpFr/v/97fT1s4LK7DkQjU1louKP8eCEBxMTrQPDBAj8/HlAlyfpAi9zj4gc9GIrQbSxkNqspXET6sExGPx8NLfX3smDaN16qqiI/wmIXFxVTs2sXs7m5UXR+9jrZAcSCWlOcD70EM/HgsneYP/f0cqasDRcHpdOJD1Gffg6jbvQJRwiI/UJLHgP8F+hMJ0HUUXeeKrVtxzJoFNhO5aUSsqtMJisKsnh5mDwzQsnat1aFJJHklBexuaMiOqF3Q3U3LmjVWh8WTRsZUB2b09NAZi1l+w9muaTAwgKLrzOrvp2WpHdrzxoa8Jo+CDnwlFGKH4csaTqf5cmUlzcNGlU4UXu7t5StdXbTX1BzjiOAE1iEa6WZXVOBZsWJMdbSTgXrgXTU1XJJIsMvjYc+MGbykqtlGPB3RnPcaUBaNstjj4W3l5ZzZ2GhZzBJrSCDq9h8zjp1OJ7FUisu2bWOm10vLeedZGN3IPIroLldVlamNjXzM72eJxX6cEsl4sBWIGSNqS8JhPrxmjeXv+ySwv64uK7zn9fbScuaZlsaUAA64XGglJcRiMT6wfDmazW7Wj4cUuaPwBPBKKiU8XoHLt22jfMYMmGAiNwT8FvhdaSm+mpohjgjzVJWrEALXPNVIjmY9lsxrsh7RcLgFUerxKkLoxuNxjvb2sldRuDcS4aZAgFurqiZVFnwy0wt8A1GmkGG+qvLBykpSM2fSsnat7T5TfoQlYoabnU4uW7zYqnAkknFlk/FVVVWuVVXs4Fa9Exg0hLczFOL9F1xg+XljJ0LoqqrKbFVliaXRnDxS5I7AAPAzcqbtyw4d4oz+flssZYyVNMId4G5EI1VmOdKRTjPP4+HjFRWcj/26vCcCRQirmdUIS7JHgf8zaqh0IKUoPKzrtAIXAW9DDKCQFCbbEA4K5obFi4CPAc6GBtuVKGT4FbkBLk3ADRbGIpGMJzGg1XS83qpAhmEeSrFRVW3R72G2M7OD08PJIkXuCNyFaMxSVZXF9fXcPjDAzAm0hLcX+DFiGTKDqqpcXFvL5YcPs2LmTLQJlpG2K42I2t31g4P8YPt2XpkxA091NU6nkzSiuW8TsAYhds+wLlTJaSYF/MLn49eKkh1bXQS8H9iIvW8g9yJugjPchj1dHySSfPACZHtSpiOmX1pNmqGevXapijfbma2wLIpTR4rcYbyIsNLK8M/l5SxdtsyiaE4OLyI78+Sw7zcgLrxrXS6URRPJxnniMEXTuGPVKjo6O/FVVPCkqmZHP2fGRr4AzAuFOLetjQtrayfMTZNkKCngaeAXkQjbA4Hs2Op5DQ18tayMs6wO8ASkgR+ZjlcjBp9IJJOFB0Mh/KkUTqeTi1XVFjekryNKiEAMJLLDeaQL6DT27TJ57WSRItdEGNFpnOEy7DHibyw8D3wrFsNreOupqkoJYgnyRsQbVJJfzLXM6xHZsj+SG5Uaj8d5YmCAJ8rLafF4+FRxMZfV1dniBCs5MSnESO8/IE78/sHBbIlKi9fLR30+zlpi/4q1vyGGVIDI3t5mYSwSyXjzek8PT0Wj6IgSo7PKysAGjcLDs7h2GJtrzuLaZfLaySJFrolfkhtfWw28z7JIxo4O/A74VTyOp6cnO8Thytpa7nC5bFHTM1mZD3wROAz8CXjQ5Lfb6Xbzb8XFPATchChnsMNJTXIsaUTm9v/IzZOHnHvC8kOHWHHkCAuuvtqaAE8CP/Br0/FNiJIbiWSycH8kgq4o6MDUgQFRtmCxyNUR1mGZiWJrbTAAAuBpU8Z7pU1iOlnGLHIVRSlCCPsOXdc35i8ka9gJPGI6/jDgsiiWsRID/gdxB5gZWFAViXDR7t3cMGsWTcuXWxyhBGAmYkLe5YkE3+zsZE9zM2ljjPBB4JvAVETG/SLknaddSJPL3HYM+1kF8G5VZVVFBf7aWloWLZoQ5Se/QKxYgRhsc72FsUgk400a2KZpWYuuxR0dtJxjfbHOc3197DEGU8STSRpcLssHQBz1ePh7JELS4cCvKEx3Oi2/GTgVTuZ6+klgN1CVp1gsIwF833S8GvsUfY9GD/B1RJYQRFbJPTDA5Vu3Up5O29KTc7KztKGBO9Npdnk8vDpzJq2qmp2k1w7cicjK34CYpjYRl4YmOjriM/Uc8GgkwlFjEEzGU7oCuBZ4i7HPBBp/uxt4OB4nFovhdDr5kKrK95hkUvEaEDYsuorDYT52zjm2uDl92DQAYnZ3N57yclosjuspv5+kqqIDtaEQg/39hStyFUWZClwN/Dvw6bxGZAGZGjsQfrEfwd6d0buA/2CoZdFNqspVLS14QA5xsDFmv10/cD/wEBAxft4D3BmP88NwmLc4HNxUXU2NVcFOIo4CzxpbB6J+2tPXly3/mdnYyNudTq7FELcTjAHgq9EoHmPMcH1vL1OnTZswAl0iOR08anxVVZXrVZWplkYjGAT2NDRAT4+YvObx2CJJdbC5GbxeFF1nbk8PLQsWWB3SKTHWTO6dwGeAytEeoCjKbRg9DNOnT3/TgY0XhxCjWTPcCtRZFMtYeBTRHJcyjouB2xFNcmia5Xd/krHjBm5BZG4fQgje3ngcj8cDus6PFIX7nU4udjq5BlHja+ebr4lGBzlhe3TYzzLlP6XJJEuPHOFWr5fzJtAoSzMxxKpPpzFmuCSZ5Lzdu+ksKpI3w5JJwwDwkun4cqsCGcYrQNLpRNM0ykMhbjvvPMs/lwlgd2UlWmkpsViM2xYunFBTzsycUOQqirIR6NF1/RVFUdaN9jhd1+9CWMyycuVK/XQFmE9SwDfDYbzJJE6nkxWqygargxoFHfhOIMD9up5dPnUD/wpMzPsrSYYKRAPQW4Aft7fzx1SKkKqi6DqheJxnnE6eAeYg/FcvRJYynAoJhE3PNuDZSIQ3hpUiZHACyx0Oktu2Ma23l1LgjIUT0TxH1CD+N8Iz2+l0EgSu2LaN6kSClhY7zHiSSMaHJxGfBxBWWHbI4oLwUgeRXb7BJgMgtiJujlVVZaaqTsghEBnGksk9D3iLoihXIc7/VYqi/EbX9ZvzG1r++b3Xy4vBIOg6IV3n7RUVKDa9W/mh38/dfn92+XRVfT3/UV6OPaOVnApO4J0uF+UPPcS+hgZ2zJhBuil3yjsAfBf4ObABuBLZGX88Ughxt83YdiOWBoeXImiaRqWqsgq4AGF4rlZW4lm9ms7Ozgld/vNLhPc3iAvWP1dVsWDWLFpskC2SSMYLHeGq4DdubDfYxCkgRM5iEuBiqwIZhnlWwHlM7BXEE4pcXdc/D3wewMjk/lMhCNwk8Kd0Olvsfc6BA+i1tbYcwfkIwm81E+sZ3d28f2CAhgkypEIydjRN49qrrxbiStMIqSoPISysMk1qQeC38Tg/j8VYVlzMpRUVnAuT/oYnDbzS28vzgQBdmsZhlytb62wmU4rgSKeZ2dfHxliMd8+bh3PY48y+xxORR4B7TcfXAe+qqYEaWeUtmVw81d/PDmP0eiyV4oyKClvUoz+H0CIAc7FHdjnJ0LIOuzfhn4hJ61b0HBB1uSAcpjwe5+yjR2mx4TSwlxHTiZxOJ35FYUZvL1fs3MmsCeDJKTk1zOJKAz6BqBV/HFG722aq292kKOwuLuYuVWUOwm/3XMSoyol8930idKAb2Ae8YXzdFYvRFo1CcTEMDKCVlBxTijAVuEBR8G3bRktfH2W6zsaNG48RuBOd1xg62GY14j0kkUxG7onHs0mi+R0d9LlcTLOByH3KtG+XLO42cjaDjUz8UfQnJXJ1Xd8EbMpLJOOIjmg2U1VVdLp3dnLdVVfZLmuzD/hPRLyqqrK6ro73DQww6+qrbRerJL9UAm9FZON+c/gwfwyHaaurE5mJWAxVVTmAKGn4DcIDNSN4z2RiC14dMaVoi9dLsKkJj9vNfsRSn5mA6UKmGK/LFFVlKWJy4RKMptKqqoIoRRiNowjv5Uz94Rzgn5DDRiSTEw9woK4OPB4UXWdpezst69dbHRbdwFbD0q9cVbnQaY9b7UIqVYBJmsl9lZy/bJWq8tFZs0a3jbCIbuCrIKaxIO6o/rOighpZojCpcQAbqqsZfO45giUlHGlsxHH++Rwkt+wFYub4X4Dfx+MUhcOcWVrKYpeLOcBsYAr2Ez06wkLtKNBm+vpGLMbRWAycTvD70UZoFgOx2pFMJGjyepnm9XLr2WezlJFP0hO9FGE0fIjzRqZMox74EhRcploiGSsPAaVGQmvmwADvWb/eFp/9e/1+PEafTW1fH7GpU3FbHFcK2GTDyWtvhkkpcv9i2t/AcXzRLCIAfBnhowoivq+B9EuVAEKgbdy4MZeJdLkII6xoWhFjCWMYDVZGWUOnorDLtHyvIiaxZURvVV8fekcHs5uaaMrTiTaNeE8PmLZDfj/7gkGCNTX0V1Rk647N+EfI0KqqigtRxzYXmAfMVVUGq6roDIVoWbZswlrenCoJ4N8QNwoghO2XgFrLIpJIrCWOKPMCsRr6weZmrJe34lz4t2Qye16b19FBp8Nhufje1N/PAaN2ORWPU+1226J2+c0w6UTuPmC7se9ATC+yEwngc+Ewuw1bM5eq8kVE5k0iyTA8E1mBsBa7EPEe2gb8uaeHp+NxIqWlQ8QhiJP/XmOLx+N4IhGorsYRi3FGNIpWVkYVHLMNDgwQ6Oujur6eqtpakjBkSyEcDAb8froCAdI1NSRcLgYAL7kldDLPa2Qy6O9HKy4eNUMbS6WoCwTQgkGuq6xkNdDECFnaAs3QnggdMeJ7r3GsIIzNZ1kWkURiPU+TK2tqAttYYb0KxEw9QWf09dGyerXVYfE38+Q1j4eucDhvSY/xYtKJXPPghwuxnwXT/wQCPO/zga4TAD5RWcmCWpmLkYydUuAcYHppKXMfewyfqtLvdjPlwgvpBw4isqgZMm4DOkKEehIJYmVlx/y78XgcTygEqgqhEFpFxYiidIh4HaUBbPjzZkR4o6oyHZhmbNOBaapKvKKCLr+flnnz0OTn4Rh+jWimzfBBxHtAIpnotLbC3XeL/VtugTVrxvZ7OvCA6fhq7FNf+ii5nqA13d1ca4M+mziwt74+N3mtu5uWCy+0NKbTwaQSuV3AC6bjt1oVyCjsBh7S9eyF//w9e5jS2Ajyoi45BTRN4xpzWYPbnf2ZDyF2DwJbHQ6ei0QIqirJ4mKcozRAjCRKxypeM4+rRDR/1QIlisLhw4epiESoi0R41wUXjN7Jq2kTPqOQL/7P6+WnDkd2sMU1wDVWByWRnAZaW+HiiyFuNKf8/OewadPYhO7rwF6jsatKVbnMJo1dA+S8cVVV5bYZM2xRQvEigDF5rSoY5H0XXmi58D4dTCqRey/i7g6E4budlvIGge+Rswqb1dPD8vZ2WmSjmeRNMFqDVTVwtrHdWFmJp7aWzs5O6ltaKFNVgojacPPWrihs9nhIAUXA4tpaahAnkWLjeyWI5cFtBw5QPDiIK5Hg6jVrmG8855BJbVVVeM48MyfCG+22rmJvUsAP/H5+bgy08SsKG2pr+YDLZXVoEslpYdMmSJgK9QcH4Y474OyzT5zV/V0wiMfrBV1nWkcHoTlzqLCBaDNPXluEfUoRzZPXbrLJ5LXTwaQRuT7gCdOx3bK4fwTaEW+w6Y2NfNLnY+HGjQVxJyWxP8PFcP1ID6qqwjNjRk6UVo7Ssul241m4MPe4+hH/tRGfVzI2/MC3gGchmzVvCAS4fmAAh7wxlhQI69ZBaWkuk6vrsHmz2I6X1e0CnjMNe1p85AidZWWWn2t04DHT8eVWBTIML6JOOMM6i+LIB5NG5D6IyJaC6MZebGEswzkC/Nl0/GGnk/VLllgVjkQyKmMVpVK85o99wH8AfeRWfmb29rJh505mX3GFxdFJJKePNWvg738XNbmvvirEbYbjZXX/CqhOJxgDlBoiEVpaWsY7/GPYhrAHBXAhfGjtwDPkVrkXYb9epTfDpBC5MeCeWAx/PI7T6eStqmqbAvQ08H1yHqdnAldZF07eSQA7envZ39dHmaZRXFs7ZEm8MxTCFwpRWVlJRUUFkGsWCIdCJAIBprhcTK2qwg24EV3/yb4+9PZ2ZjU3S3ElKVgeBX5M7nzhVFU+4nazqr+fKVdcId/7koJjzRqxDa/PNWd1f/YzuPpqaGqCG26Bx9fkGrveHYlwsU1WRR9FNObGYjEuUhRKq6qsDgkYOnltnVVB5IlJIXIfGhjgYCgEuo4SjTKnpsY23m8PkbP9KUaMcLWLAH8zHOjpYUt/P8mmJiI1NXQgjP3b43G6o1EoLz+mQz8ej+MZGBBnr0RiiKXUkJ/5fGiqOvRnkQjU1FAzMMD55eUsqazE3d+P2tHBAplVlExwEghx+7jpexWISWYr3W5YvtySuCSS8eJEWd377hP7P/05rN4ENWtgvqry9jPPtMU11Qs8HYvh6ekBXSf94ot41q2z/Np0FNGADKKn4nwLY8kHk0LkPmXq9l7Q3k53NEqzDURPD3CXKcP8blVlmtVBnSIJRDfrVuD5SITNsZgQssEgWnl5VpBGj9N5f7yu/LH+zFtezjPpNJvjcTzhMLjd1A4McK3TyaVuNwsQDVISyUShF/gGokwhw0zgXxDjmyWSycJoWV0zyQTsugMW3gmfWmOfpNEjQMgYbNPk81ETCNDZ2Wm5yP07uezyhQ4HFaP1WkxQCl7kxoAjtbVZ77e5vb20LLZHRe73gkGOGt2fxeEwF9TV2SbDPBYGEZZsfw2F2JpMUlRWhqqq+AcHRxWkZU4nSjRKeSxG+eAgK2tqmIpRcpBKsXXrVhzJJIqicNFFF1FnPFd/MsnTr75KzOEgrqqcee65KIgGnM6iIl6LRPCWl4OiiOEBJuE7UF7OXxBdrRXAvGCQ6d3dXFZVxYwJ9HpLJh9bEQ1mQdP3LgY+iphaJ5FMRsxZ3e5ueOghkc3N4NsMreugZBMwRl/dfJIE/kauhn7p0aM4HA7L64RTwMPRKJ7eXnG93LYNz+rVlgvv00nBi9xXAMXwfqsNBLjZJnOrO4BnTd2f63bupGfuXKbYILYT0Ym4K30S6DWXEQQCaJqG0+kkCNQHAtSGw1zqdrMQmAo0qyoDNTWi8376dDRzTVJtLeefe26uK7+uLvezujrOWrs297Pq6tzPXC48tbUc6eoiNXUqQVVlazzOU34/PZWVpIqKst6vA/E493u9UFrKT8JhbgwEeHtVFTPz/JpJJCeDjhhccze5hpAi4APYy9ReIrGKTFYXRGb3jjtg82adzKcjnYB/ugPuvHPsAyTyxQuIcgVVVZnf0MDbpk5l+qpVlmuRV4GuRAJ0HWciwbSeHltkl08nBS9yM8MfVFXlLQ0NtjBdBriPXPfnzN5epgSDlt/VnYijwPdCITanUlnjeXPGtCYc5hyPh7dMn06j04lvYICWWbOGClKO33l/un52eVUV79U0Dnd14Z02jYOqysvAAVO8iaIiHtJ1nkM0/F0BXMAwL1eJZJyJAN9l6OCaWuBzwAJLIpJI7M2aNfDOr/p5+doq9ISe/f7mzQrr1o19gES+eNC0/9ayMs6xSQ39o+Syyws6OylRFNvrkJOloEVugtxkEYC1VgUyDC8iC5rp/nxPOMyFNun+HIkw8DuEQ0WXkbX1KwqapjGltJQFBw4wr6OD6kSCjRs3ihsJTbO89GK48NWBlxMJfnbgAHuam/FVVGQzvHuM7fuxGEt6eniH08lZcjiBZJx5tbeXbwD+qqpsic9ZwGcRQlcikYzMtuUxZv8+QsfXaohtU8lkdBMJkeW1KqN7ADHNFITg2jD+IYzIAPAyOR3yzkCAZWeeaVsdcqoUtMjdhqjJBdGgMcPCWMyYPXsXqyo3Llhg2+XHewYG+BmQrKggZhTNA8zs6eFt0Sjvmj+f3oUL6aypEWUENv6AKMCqhgZmLFxIR2cngcZGNqsqrYiaqXg8jqenh0O6zoORCDcEAryvqko290jyjh/4hd/Pr0Mhkg4HRKNomsbbVJVbKfATtUTyJnkd6KiupmKlh6lf8nL47Y0kkw4yQnfzZizL6JqzuOcBNeP79KPyBLnJaytUlQ2LFlkZTt4o6HOneblvLfaoY4sibMMy3IA94hpOEvjvQIDfGdZrhELU1tQw1evl/N27aYxEuGzjRhxMPON/c7zrEALjcYwxkEYpQ0pReFTXeQlRwnAT9rlJkhQOfuAviHNCD5B0ONCB4lSKm44e5QNz51oan0QyEfgTuYzkslW9XHSfn699rfYYm7HxFrkB4LFYjKDhoHSNao92UR1RqpDBLtnlfFCwIjcFvGQ6tkGDJSDeWGFjvwU418JYRiMAfBN4Ttez9auV0SjvicW4qrmZLl23fdb2ZHADNwLnp1L8cOtWNs+cSXdNDU6nEx0xDeYZYDVC7M6zMFZJYRAA7kVkeTKrTZnauIZAgMt37eKadessi08imSgcBLYY+05V5ZNTpzJlKtTWDrUZKy4WGd2PfOTYCWn54o8+H+2BgGjsCgZxNzRYXsYHwrWlx9h3YZ9SznxQsCJ3FznbnXrsIUySwP2m4+sBh0WxjEYP8KlolLZEgiKHAxSFud3dXPb661x95ZVomkaTDT6k+aBJ0/jYueeKUobycp5SVV4z/fwl4Jl4nBleL+8qKWFdXZ0ts/AS+zKSuM0wX1X5pMtFc38/U2xgEi+RTAT+ZNo/D5hi7I9kM5YZGPHzn+c/q5sE7k+lsomiRUeO0DU4aIvrpzmLezGF3WxdsCLXXKqwBnuUBDwDdBimy42lpawvK7M6pCEEgX+ORNjZ1ydKFBSF9zocrCspYYohcAud4aUM+xAn0VaMml2PB4+uszmR4Dynk1srKliJPd5fEvsSRIjbBzhW3M4E3olxnqqtFSkoiURyQjqA503Hbxv284zN2De+AfebMkzjUbrwLBB3uSAcpiIeZ77HQ8vKlfl7wjHiB56JxQgZJRQbbFJCkS8KUuTqwFPRKP5EAqfTyRqb/BHvCYfx9PeDrnPWgQN4Fy60jXBMAP8GHDIGOTjSaa7Yvp2Lp09nuU3sTqxgLmKy1FHgu7299KTTpBUFRdfZmUzyNWAWooxhLfbLzEusJYiwC/wrx4rbGcC7sM9NuEQy0fhlIIBP13E6naxVVWaP8rh166C0dPxKF3RErX2mTviSzk6uu/pqW1zv7/H56DBKKMr9fpw2cELKJwUpcl/s62NvJAK6TmJwkLrKSsv/iAPAjmQy606w4OhROmtqbPGm14GvBYO0ptPZEoXLduzgjL4+Ws61Y9Xw+DMd+ExJCVOeeYYtM2awZ8qUrP3YIeA/EctkNyIywAX5wZKMmYy4fQDRbGpmOkLc2qUZViKZiOzs6eGeSISUouBXFC4uL4f6+hEfO96lC9uAw8Z+lapy+6xZ2GFYbhp4wNAhOrCgrY3OVMoWOiRfFOS1+CW/H4qL0YFpfX14gkFaLP4jvkiusWRKfz+uVMo2psu/8Xp5IBjMlih8wOHg/GnTaCmw8X5vFk3TePcll3BxZyfO8nJeUFX+BmTGp3cgTPx/Fo1ybmcn17tcTJev36TCA/zJ7+ev6TSUl2e9bgGmIcTteUhxK5G8WX4Tj5NSFHSgxeulqr9/VJEL41u6cJ9p/1KwhcAF0aAXrqyESARnIsH8nh5blFDkk4IUuf7GRvB6UXSdpmCQllmzrA6JF8gtXVwxOCiGJthAAPUhRodm7uyWHDnCeS7XpC5ROB7mmt0FiBqwB4wtjKjbPdrby+vFxfwuFOIdTifvcLul124B04eov3sW2BmP4/H7xQ1jMIimaZyhqrwTOB8pbiWS00EPsL2hAXp6UHSdcw8epGXt2DwChpcuKIooXWhtPT1C9wjwirGvANe++X/ytPEgOR2ytrub66+6yhY6JJ8UZAlhV2Ulmqbhrq7m7cuXW/5HDAI7jH1VVXn3nDmWxwSiTOFHgFJeDopCbTjMBfv2McUmGeaJQBXwbuDnwHuB4nA4e8MQKy7mXuBDwNcQJz591H9JMpEYQNTZ/jNwK+Lvvw+GjrkOhbjpyBF+gPBalgJXIjk9/AkocjrRNI2znU4+vHbtmK+pmdKF664DhwPSaVG6sG6dELpvlvvMzwW2SXB0QNYtyKmqfGTGDFvokHxTcJncMOKPqaoq5arKKqsDQlhPZSaLzAfqLIzFzPPAc4bbQ21NDR8LhznfJsXxE41yRD3uqsFB/mvvXrZNm4bfGBusI8Ynvow44V2NWMKqsC5cySngR3xmnkVYFI50w+JSVWr7+pjX0cHc3l6uMQamSCSS00MPYngPiOv8pzSNppP8N9asgVWrTn/ZwgDwqMm54DqbNL3D0CFUq4DJcpUvOJF7wLQ/A3v4v5ntzM6zLIqhDALfj0bx9PaCrrO4o4PzbZJhnshM1zS+sHQpHZ2d9DU20qqqQzK4XcBPgV8j/AmvRlhISexJP/C418sT8ThtNTWUjnDRcgBLEdnaNU4n4alT6XQ4ZE27RJIH/ogY9gSwEFh8iv/O8LIFhwOOHn1zZQu/8fvpMMqVyv1+am3iXBBFjPHNsNGqQCyg4ETuG6Z9OwyAiMCQgQJ28Sp4GuhKJMQklkSCc/fupbOsTF6UTwPmut3LEcL2YUT2ITPtLg48YmyzwmGWdnRwmdstG9UsJoQoLdqK6JA+GI/jyTRlejxomoaqqiiIi+sFiCVJt+nfcE2wMdcSyUShh6Fi7V2cehnQmjXwve/B7bdDKiW2u+6CX/0Knnzy5IVuGHgwnc6WKy07dMg2zgVPknN5mYq4KZ8sFJzI3Wfat8PU9y1A2CgJmFdSQnN5udUhZT38Mm4Py48coSydto3bQ6HRDLwfuBlxc/EAOXuZeDzO0/39PK2q/CgS4bJQiMtcLlZhn47cQiYBvI4QtNuA/QwtQzDX2Cq6zhSfjxs1jbVAzfiHK5FMan4aCDBg+OKuUNVTzuJm6O8fepxOQyJxamULDwGUl0MwSG0oZBsLTh3RcJZhI5OrP6DgRK45k2sHkbspGMTj9YKuU3TwIJ6zzrL8zu5loA1RzzSjsZFbvF7mLF5seVyFjorI7F4G7EaceP4WjWZFVNLh4IVUil2IJfCFiCzhaqDRopgLjQ6Ph839/fS2tHCkuprXEeM3R6NSVan0epnZ08O8nh7ecdllk6aWTSKxE9t7e/lTJEIa8CsKl1dUoNS9uQ4Xc8lCOi1KFkpLxfdPhjiiETXjXPDWeJxrbOKglFmRisViVKsq6w1/98lCQYlcL8LOB0Qt7nQLY8mww5QJmtLXR2dnp+Vv/LvDYfzJJE6nk3c4naxdOpkWL6xHAc4ytrckEnzn4EHe0DS8Lld2wEQasWy+A7gLmI0QvOcias0n0534qaID7YjVnX3A1nCYl6JRUhUVEAiglZUN8bEF8brORSznLQUWOJ14m5vp1HVali61/LMrkUxWfpFIkEZ8rqcMDFDd3w9vUuSuWSNKEzZtAp9PfD2VBc3HEI2pAFNVlQ/MnWsbcfXbUAjPwADoOjPb2gjMnUvZJDqP2eXvcFowlyrMAYqsCsQgAgSqqiAaxZFO0xgKWV4SsKW3l2eN7GFI11lTXg6NMk9oFWc2NvJ1XaezsxOloYGDqkorsGfY4w4a228R5Q/nAnP7+nC2tTG9pWXSiy8d6EWs5GRE7X6GThvzJ5NZ83hF14nFYqiqyjRyonYxx7peaLLGViKxlMPA6/X14PGg6Drn7d9PywUXnJZ/O1OWcPHFuSa0hx8ee8lCElH+l+Gt2EdYtQEvpVLZSauLjhyhs6JiUp3P7PK3OC3sQ9Q4xmIxmhQFqqosjWc/UGosX9T5/bYwXn48HAbjQj+rp4dYSYkUuRZjFlHLECfJAWAzYlLeNoYuqXcBf4jH8UQiFFVXU9fby7qyMpZXVTEb4dZQyAtSIcTJ+6jx9fVQiD2JBMmKimMys2YyNehV0ShTvV7eVlnJxUDt+IQtkUhOkbvJXUvP6O/ngxdccFqvpZs2iVrcDIOD8JWviO1EQvdpcivIbkRJml24j9x5b1ZPD3WxmOWJtvGmoETua6a0fPfOnXhWrrRUVGYyy6qqsrax0Ra1fPsbG6GvD0XXmdvTQ8s551gdkmQEaoErjC2CaGB80fgaJdcQlXQ46Kms5FFd50XjdxVgCqLEYY7p60RqZNOBADkhaxa1XtPj4vF49jNPKJR1P8hQjSg/mAfMVVWqnE5C/f20zJqFVivlrURid3Yj+khADDH4TEvLab+WrlsHxcVC3II4nTz+ODz77PGdFtLA3ZEI/sFBnE4n16qqLWxLAXzAU+TqhG8Oh7nAJnXC40lBidxD5mlDgYDl9a92szPrAnrKy9E0jWQ0ykfOOWfSveEnIuXAhcY2CGwHHlMUHo7FCDidoCjZWl7I1aK2A8+Y/p16hNit8/sp6elhZm0ts+rqqEJMbhsv2/I04gTsRWSs+42vma0tEqE9FiN1gswsDHU/UAcHme71ckFTU1bY1jGsfrmxUa5cSCQTBB1j7LzBReTHV3zNGnj/++EnP8mu7KPrJ3ZaeGhggK2hEOg60VSKFRUVtvDFBeH2kFkBXKyq3LBgwaTs5SgYkasDcZcLIhEUXcedSFielrebndkL5Mo51hYXM6O62uqQJCdJCbACWFFVxfuiUfZ1d5OYOhW/qnIAUbfbzsjTuPqAjngcj98vWojDYTSXKyskSyEreDOb27SfHBjA19tLTUMD7tpakjBkSyFEeMr0PW8gQI/fDzU1JFwu+hHidrTxxvF4HE9f36iZ2UycU4FpQKWuc3j7dmoCAWpjMdHRfPIvq0QisSGvAjuN/SKEL26+uOUW4ZGbcVoAkd0dzWlBB35r1LvqwOIjR/BXV9tC5MYZOuHseiZvs3LBiNwgoBizrIlEuOGKKyzNUvoRjTBgH6eHJ8JhPP39Ypl71y48K1bITO4EZrSGqBhwBLKi9yCicWOQY31fM81XIDxj+8jVl5mJx+N4QiFwOoX4HEOWNR6P4/H5hGAdGEArKTmpzGxJMkmj38+KxkamIT5D0xDjKLOjcqur8axaRWdnJy2yAU8iKRh04MemUoDrVZXmPD7fmjVw551iOESGVGrUh9MKDBiN5SXJJMvb2mg566w8Rjh2nkJoIhD2k29iUvGEp2BEbubCrKoq01TV8mzOG+SypouKiymuGN6zPb5EgdeTyexazIyeHsvLOST5wQnMN7YMSUSG95VUir8ePUqotJS4qtLU0EAScVN2PL/Y44njU/mdSkQpQe2wjVSKrS+/TFkkQtXg4Jgys9L9QCIpPO4bGGCzUQoQTqe5uKIi76VG/f25LC4IkTtSuYIO/J5cvet53d3ctGGDLc5DOqLhLMO1WO80ZSUFI3J7TfsNlkWR41WfD08gID6gbW145s619AOwH1CN+s26YJDyVMrycg7J+FGMqGWbWVvL+fPmicxnczOaMYFPRyxxBRCCNzBsa1cUtvT0kFQUinWds2prqTH+3SJEGUWRcZz5XkjX2bpvH0oyScXgIFevWcN8RDPYqM0ZtbWsvOACmZmVSCYxCeCXup69SV565AhRtzvvIreuTgyEyGRwRytXaCU3tdKtqtwxY8aQ0d5Wshk4ZCTYalWVyybZ8IfhFIzINS+x1lsWRY59xh2oDlQHg5ZnTfeRu+tc5nCwcRJ2WUoEI2U+FUQG2Mko09WqqvBMn54Tn5Vj8GqorsazeHHud+rH9smUmVmJZHLzIBB1uSAcpiyRYOWRI7RccUVen7O1Fe64Y2gmVxmhkFUHfmc63gi2Ebgghj1lyhLPOHyYwJlnTqrhD8MpSJFrh0xuqroaBgZQdJ0qGzXBqarK+qlTLS/nkEw8TkV8SsEqkUhOhgDwR3JJmY3t7ePSY5PxytVNXbEjlSu8gOh5AJEUuD6vUZ0cu4AdRlmiI51m8ZEjdFZVTepzcMGI3B7Tvh0yuVGXC62khFgsxlvWrkVrsFZ6m+3M7OD0IJFIJBLJcP4AhI392arK7XPmjItQyXjlZkoVFEWY0JjLFTK1uBk2Ipxn7MKfyA1/OLOri6rBQcsTbFZTMCLXTuUKOiIeVVVRVRWr+y39QJtRo1OpqsyY5DU6EolEIrEfncDDpuN/YHxFirlUweEQbgvmLO7zwBvGtdStqlxvo2vpAeAVhO5o0jRu9ftZKssSC1PkWl2uEEI08YBYzii3MBaALf39eMJh0HXKAgH6Gxsn/RtfIpFIJPbih8EgA+k0TqeT5arK6nF87k2bIGmymEmnhdtC9hj4aSSS9fE+4/BhomeeSZVNrqV/Nu1foqpcvnixZbHYCceJH2J/0kBnLIbf7ycej1ueyR0uuK02YX7D6802wbnDYTo7Oy2OSCKRSCSSHM/29fGg14vf58Pj8fCWvr5xvXauWyfKEzKUlAwtVdgEHBwcBF2nOJVi2aFDtrmWdiCyzBneZlUgNqQgMrlv9PTQaXhyxpNJfC6XpZlKO5VOANDQAH4/iq5TGY/TMmuW1RFJJBKJRAIYgx/S6WwyZm5XF+WlpTBGR5bTwZo18L3vwc9+JmbemOc6JIHfkqt3XX74MBU2suH8M7kpkisBeYXPURAi93BPD1RWivn1iYTldl295AZBqIoCVdaWpg+63WhOJ7FYjPVLlqDV1Fgaj0QikUgkGZ4Eet1uiMUoTqU4f/9+Wi69dFxjyFiIZcb6PvecGPP75JPQv0Y0t6uqypyGBt43MMCchQttUfbXC/zddHyTVYHYlIIQubWaBtEoiq5Tkk5bfnd1wO/H4/eDrnPk4EE8Z51leWY50wQ3z7IoJBKJRCIZSgT4FTnLsAu7unjXpZeO+zUzYyGWaT5Lp8XxE5vgDVPz2S1lZaxdtmxcYzsevwoEGNB1nE4nK1SVBVYHZDMKQuS6GxrQjMzp3Pp6NItH6HYYk850wBmPW55ZPmqa/11/glGsEolEIpGMF38EfMZ+i6ryTzNnYoVnQcZCzKiaAMSxsi4XXz1wlQWxjcYbPT38Phwm6XDgVxTWV1SIsW2SLAUhcgfJZSqrrQ4GqKiuBq9XZJZ13dLMcrfHw85IhEHjQ5B2OvM+GlEikUgkkhPRCdxvOv4HsETgZjAPglAUcbwJKDO+9w6OM5LcAn4bjZJ0ONCBhkCAuv5+KXKHURDuCoOm/RLLosjhrKxE0zTc1dVcsHq1tVnczk4GjQ+BI53G39FhWSwSiUQikWT4OaKpC+BM4CILY9m0SQyCyAhdXYdkSufAIzHi8TgtwPhWCR8fL/CKpoGioADnHjzIFJs0wtmJgsjkJkz7dhC55syy1TnT+pYWiMdRdJ3idFp+CCQSiURiOa8Bzxhlhk6nk9tU1VK7zYyFWKbxzOHQ0Ut0ipZ68XgG+ajLRVFtrYURDuUvgOJ0omka9X4/H7c4oWZXCkLkmjO5dlhKMItuq+Op1bRsvXJjaSlaWdmJf0kikUgkkjyRBL5rGqwwpauLqlmzwEKRtmaNmHCWsRDzTw8Ruj5E+YoE9YEg0/r7wSYi10tuMpyqqnyysZEmKwOyMScUuYqiOIFnANV4/J91Xf9yvgM7Gewmcu0UjzmrXGlxLBKJRCKR/JWhgxVW791Lp+GuYBWtrfCJT4hMLoBS6mL2W8MowPn79zPFPN/XYu4hl0ybA6yyMBa7M5aa3DiwXtf1pcAy4ApFUc7Na1QniTlzaofUtJ1qhO1WyiGRSCSSyUsf8HvEYAUUhdX791OZTFpu/ZmxEMugDyooO+tZXVrK7WvW2KYUwAv8zXT8LqyfqmpnTqgJdV3XgZBxWGJs+ui/Mf7YKXMKQlhmhkH4BwfHdWrLcAZNsTSUlEB5uWWxSCQSiWRy81MghlhhXFFfz60NDUxfutRyEZmxEBs0BIVSDNqlxfxLczP2kLeC4VnccyyMZSIwJncFRVGKFEXZihj68biu6y+N8JjbFEXZoijKlt7e3tMc5vHJCDm/30/U7x/X5x4JfySCx+PB7/PxzJNP4vF4LIulq68vG0v7wYOWxiKRSCSSyctrwPOm40+Xl3PO8uWWC9yR0HUhIGdaHYiJAeC+WAy/3088HpdZ3DEwJpGr63pK1/VlwFRglaIoi0Z4zF26rq/UdX1lQ0PDaQ7z+PT6fFkht3PrVsuFXDASyQ6DIJWis7PTslh6enqysaR13dJYJBKJRDI5GQR+bDq+GDhGSFjIpk2QTJq+kQLXJouCGYVfBAK09fTg9/nQ9+1jukxanZCT8snVdd2H8Ea+Ih/BnCrBgYGskEsqiuVCrqa8POtdlyoutrTWaFpDQzaWpMWxSCQSiWRyci9i+ANAOfA+C2MZibXrQDHVOyoKTLPRXIUe4CFjHJsOrNq3jy6ZtDohJxS5iqI0KIpSbeyXIfyQ9+Q5rpOiuabGVkKurrw8Owxizfr1li7FTG9oyMbSOHOmLZeFJBKJRFK49AB3m5bZbwZbTCc141kD878zCA4d0NHT8PGPC9cFO/B7oLisDBSFZp+PWQMDlmudicBYzAiagV8pilKEEMV/1HX9wfyGdXK01NSglZcTi8WYU1uLVmmtWVYZOduuCksjGRqLRCKRSCTjiQ58OxSizVhxLQ2FWFFfb6kn7nAGgF/HYniPxEB3k6l0HRwUZQxWu4e1AU8iruWapvH+cJiLNm6USasxMBZ3he3A8nGI5ZQxCzk7WIiZZ29HLYtCYI4lhjjhyEJ1iUQikYwHzwMvmublXrhrF565c2mxkUC7G/DH41SsjqKUVKEb9gWKolBng5KF35CztDpXVblpwQIrw5lQnFRNrl0xz/CyWlSCveIpMr6GgkG6PR627bFVpYlEIpFICpQwcBc5T9xFbW1MCQZttcz+BiJL6nQ6qVg5yFW3voaiCEmZtkHJwj7gBdPxe6wKZIJScCI3ZlkUOcxOtFaLXBACt39ggFgsxhObN7N7926rQ5JIJBJJgfMrxPACVVWZ39DARysr2WijZXYdIcJBxHhlbS2zSpoR651DSxas4tem/bXAXKsCmaAUnMi1g6i0U7kCQDgSye7HS0o4ePCghdFIJBKJpNDZzdDJXJ8sK2OtDYY+mNkE7DX2i4FPuly8610tlJbmivpKSsSgCCvYgfAWBiG5b7YmjAlNQYhcu4nKUkT21OPxsKu72+pwmF+SG+gbdjqZPXu2hdFIJBKJpJBJAj8wHZ+DyELaiRjwS9PxdYgu+zVr4Hvfg7POggUL4Pvft6bxTAd+FA5nHSkuAaaNfxgTHjv0ab1pzJncyKiPGj9e6umhPyrk9l+Bd+/ezQILC8VX1tbSXlJCOBJh+ooVLJg+3bJYJBKJRFLY/NznY4ei4HQ6casqH8F+Dc9/QrgqANQANxn7ra3wiU9APC6OP/5xWLx4/IXuI/39vBAOg64T0nUuLS+HxsbxDaIAKIhMrlnkxsl1IVpF+dGj2X0FLC8PqAdclZVomka5FLgSiUQiyRPbenv5sc+H35hEutHnY3xnoJ4YD/AHk2/ve8npiE2bIJHIPdaKmtwk8DNdzw5+WHT0KImOjvENokAoCJGb+U/YxUFgbU1Ndr8+ELC8PMB8gumzLAqJRCKRFDI6cGc6TUpR0IEGv5+Fhw5ZHdYx3BkK0W6Mx2XfPhaaxuOuWwfFpjXu4uLxr8l9DAhUVoKioCaTrDp82FaOFBOJghC5MNRB4PGXX7bUQWD1nDnU1dbidDopmz7d0lIFEJncDL2WRSGRSCSSQuZhoKO6GhQFh65z6e7dTLOZONsCPG/49urA+a+/ftzxuPo4Lw1HgN+RG/xwk8PB2zZssFXD3kSiYESu2UEgVlpqaYlANeA2ygMUt5u4ZZEIMpnceDzO3r4+PKa7VolEIpFI3iw9iEaujDi7Abj1ootsJc4SwE/I+fae1dFxjG/vpk2QTOZ+J5Ua33KFewC/sT9VVfnkrFm2eg0nGgUjcs915P4rIYsdBByAeUiK1SUC9QiB6/F4OBQK8cCDD0qhK5FIJJLTgg58n5xP/RmqyudmzrSdOLsH6EYI8dmNjdxeUXGMb++6dVBamvud8bQQ6wPuMx2/B+HWJDl1CsJdAWBBQwM7gkHCkQjTzj6bBdOsNduoR9zZgnjjTrEwljKgyOjSTCkKgZISOjs7bXcCkkgkEsnE4wlgq7GvAJ8ESkZ9tDV0IxwVMtzmdHLh0qUjPvbWW+H11yEWg/e/f/ycFX6DyDYDzAHWjc/TFjQFI3IzDgKuysohbgtWYa6DtTqTCzBTVekMhVB0HX9lpSxil0gkEsmbph/4men4OmC+NaGMSmay2aBxPBfYMMLjWlvhkkuEfVg6DQ4H7NgxPhZiB4GnTMfvw362axORgilXsJuobECUCPj9fvb7fFaHw/yKCjRNw11dzdx162QWVyKRSCRvCh34VihEp2HF1Qy82+qgRmAz8LKxrwAfYWTxk7EPS6fFcTotjvNdk6sDPwiF8Bmv4znAkvw+5aShYDK5ZpssOzgIFHm9eIJB0HWe7uzkutmzLRWWUxF1SKqq2mJghkQikUgmNn8ZGOCRUAh0Hb+i8C/l5aj19Sf+xXEkDnw3GsWfSOB0OrlWVZk7ymPr6kT2Np0WrgqKIupz812T+1h/P08aJYVBYGN5OTTYzV14YiIzuXlC6enJWpT4nE46j2NRMh5MNe23WxaFRCKRSAqBPuAuRRkysMDd1mZ1WMfw//x+dvX24vf58Le3c0VPz4iPa22FO+4QzgoZ27CiIrjzzvyWKiSB/2ca/LCgvR2lXV6lTxcFI3LNbgYDQMqqQAwW19aCoqAAPpfL8hpYc+Ob/PhIJBKJ5FTRge8Cenk5KAruaJQL9u+3/Do3nCPAPSYBuWbvXgKjTA7LlCqYfXF1Hfr78xvjgwwd/LDmwAHbvY4TmYIRuSUIf9p4PI7P72fPKHdr48WihgamNDbirq7GNX06VRbXwDYj/tjxeJz9fj9HpYWYRCKRSE6BRxBuCqqq0qRp3KHrXH/llbbq9dCBHwIlZWWgKDT7fCzq6hpVQGaswzJupA5H/ksV/MDvyXkLv0tRuEkOfjitFExNLkBFOIynvx90nb+8/DL1F1xg2ZulCJjhdNLudAIiezpaHdB4UAy4IxEO9/WBrvO7l16ynVG3RCKRSOxNF/Bz0/HbVZUbLJ7qORKPALsRAnJKYyMfDwQ4e5gn7nA2bIDOTiFsq6vF13yWKvwasj0ys1WVj8+eXViizAYU1OtZ6vdnlyW8ZWWWe8FOJVca0IG1Iheg0ufLvj6eigrLXx+JRCKRTBzSwJ3khj5MA262LJrRGUBMX8vwLqeTKxctGvXxra1w8cXCOgxg61ZRvpBPgXsQeMx0/EEKTJDZhIIpVwCYV1GRrYP126AO1tzsNXIV0Piy1KifUoDe6mrLXx+JRCKRTBx+5fPRathcOYBPYc+JXHeRy5C2ADed4PGZetwMg4P5tQ3L+PZmyn9XAivy93STmoK6cVjodqM5ncRiMZrOPhutstLSeOzW7LWyuhqtrIxYLIarvh6tosLqkCQSiUQyAXilt5fvh8OkFAW/ovBht5u5brfVYR3Dy8DzpuOPcnwh3toKR48KJ4VkUnwv36N8nwd2GftFwAfy91STnoISuWYvWK/VwZDL5MbjcV4LBPCk05aWB5xB7vXpQViXFNQbQCKRSCSnnUHgv4CUoqADDYEAK/v7YflyiyMbSgz4jskT9ypVPe5QheETzkCI3e9/P3+lCnHgh6YY366qQxJiktNLQZUrmN8oXYj6ISuZghC4Ho+HN0IhHnjwQTwWuhpUAY3G/iBw1LJIJBKJRDJR+DUwUFUFikJxOs0VO3cy3Yblbj8KBHjd8MQNtLVxzQlcloZPOMuQT9uwn/n9Q2K8WDod5ZWCErnlQI2xnwSsfutUAsXGFJOkw4HXBkMhzM1v+yyLQiKRSCQTgW3AveRsrt6bTnPLxRfbrml5D3C/yRP3vD17RvXEhVyZgsMhJptB/m3DuoA/m2I8d98+/BZrgkKnoEQu2G+y14LS0myzV58Nmr3OQGSX/X4/rwYClsYikUgkEvsSBP7HdLxWVfnEnDm2E7gJxHAK1ekERWFGXx8LPJ5Rr7eZMoW77hJNZgDFxXDbbfDkk/kpVdCBnwDFhm9vk9/Pos5OyzVBoVNwJZlTgB3GfgdwjoWxACxzudhRUiKa4c4/H83iQv3a/n48Rnb5yVCI99XX2+6EJZFIJBJryQxTyKzcVwGfBBTLIhqdPyCSWqqqMr2xkU/5/SwcwRO3tVWUKGzeDLFYbrqZkVxl+vT81eK2Aq+QG6BxezDIuSfw7ZW8eQpO5NrNtmsuQ5u9rMbZ1gY1NehAr8vFge5u+SGTSCQSyRCeYqhLwSfIlQPaiQPAPabjjzidrF+8+JjHjdRkliHfZQox4P+Zjq9TVa5duDA/TyYZQkGK3Hg8TiwWY29xMVhsk3WGaX8/4u7YyjvhOc3NaL29eIxZ2f6pU0/8SxKJRCKZNHQDd8Zi+ONxnE4n16oqq60OagSSiOEUGc26CLhylMeO1GSmKHDttbBqVX6nm/0f0Gfsu4H35OdpJCNQcCK3tLcXTzQKus7mwUG6KytpsjBTWQdUAz7E3VwHQ7PN442maVzpdHIv4HQ66VJVC6ORSCQSiZ1IAl8Jhzna3w+6jiMSYWNtLdhwxe/PwGFjvxSRbR4pidTaKkoUQGRt02nxVVXhM5/J72SzduA+0/GtgCt/TycZRsGJ3MH2dkrcbhJFRURLStjt8VgqchVEycLLxvE+rBW5AOe73Txl7O847iMlEolEMpn4DfB6Mgm6jqLrXLp9OwPz5jHDZiL3CHB3LEbIyDa/X1VpHuFxw0f2FhUJYVtdnd/sLYiV2/8OhehPpXA6nSxTVdbn7+kkI1BwIndKSwuN3d10VFeDohCbYr3N8hnkRO5+4GILYwE4CyG+dUQ9UxiQs88kEolkcvMaor7V6XTiVxTWvvEGzaGQ7RwAUsA3wmE6jGxzWSDA6sbGEbPNw0f2ptNC4H7+8/mP868DAzwVCoGuEwBuLC9HaWjI/xNLshScyNU0jctMy/H9NliOn0uuTnirDeqEK4A55GqEX8d6FwqJRCKRWIcX+G9jX1VVLqut5V319UxZssR2zcl/JpdtdqTTrN+xg+4FC2gewU1h82ZRe5txUsj3yN4MYYxmM8MTd8nRo5S4XCBF7rhScCIXYIVpOX6/pZEIqnp68Bh+JS+m03SUlzPF4pPGYmCXIbyfA86x4QxyiUQikeQfHfgO4DeOa4Avuly4bTa2F+Ag8Hty2ebVBw5QH40ek20eXqbgcMBb3pL/GtwMvwQSFRUQCuGKxVhz8CAtV1yR/yeWDKHghkHA0KlebyA+wFYS6eigKhJBB5IOBy/mc2bgGGnu78fj8eD3+Xi4rc3SccMSiUQisY6/AFuNfQX4NMIFwG4MIoZTpBDZ5rV1dXywro6NI/jNDi9T0HXhojAeAnc38Ai5KXG3ATdccYXtMuKTgYIUuU3kakyDQK+FsQC0tLQw1esVXZ+KQr8N6pvcbW0o6TQ60FNZyR4pciUSiWTSsRf4aSyG3+8nHo9zA7DM4phG43cMdVP4YkUFK5YvH3How9Gjosksw3iVKSSB75uOL1BV3jtvnhS4FlGQ5QoKotlrm3G8D2i0Lhw0TePGkhK+W1SE0+mkzQZ1wnOam5nS1UV7TQ0oCj3TplkdkkQikUjGkSDw1WiUzt7ebAPXpaM0cFnNHoYOfbgVGCldNNLQh6Ii+P73xyeL+xegzdh3Ah/GnlPiJgsFmcmFY4cwWM2FtbW43W5UVWU34m7PSjRN48aZM3FXV6NpGgdq7DjLRiKRSCT5QEcs/bcnEqDrlCaTXL51Kz2dnVaHdgxxRKyZ0sMlwNWjPHakoQ8A41El2IEYMZzhZkC2mVlLwYvceDzOs93dltecNgCZe+M4IrtsNZdWV2eF92tYL7wlEolEMj78BWFt6XQ6QVG4dOdOqhMJ29mFAXw/EGC3UU5RBnyS0bOj69ZBsWmNWlHyO7I3gw78CFE3DKI36Jr8PqVkDBSsyM3Ydnk8HraFwzzw4IOWC91Fpv2dlkWRYyq5Mo4IYjlIIpFIJIXNLuBuY19VVf7B7eam6dNHbOCymif7+/m1z4ff58Pj8XCj13vC8kNzFtfhgDvvzH+pwj1eL88aQtwBfIwCFlgTiIL9GzQCReEw6Drx4mL6y8rotHgZZrFp3w6TxhRgpel4i1WBSCQSiWRc8APfAjI68Ezg4243y0do4LKaIHAnZL1mZ/b0cMbhw8f9nU2bIGlalkyn81+qsK+nh/8aGMgK8XV+P7Pz+5SSMVKwIlcBlpWWgqKgAJ11dZYvw2REbjwep9XrpcMGjgYZkRuPx/lbb6/l2W6JRCKR5Ic08G1gwDiuBD6LPTvQdeAHQNzlAkWhbHCQS3bvZsoJruN1daJEIcN4uCr8YHCQWHExOlAZjbLm0KH8PqFkzBSsyAU41+VC0zTc1dVUrl1r+V1qI+ID4PF46AkE+Pmzz1ouKhcD6VgMj8fDnkiE3zz1lOUxSSQSieT0c5ffz9PGkroC/CNQb3VQo/AU8AI5r9mPpVK8/fLLj3sdb22FT3wiV67gcOTfVeEFYHd9fTahdsnu3cxqbs7fE0pOioIWuYsRHxC3282RykrLh0IATOvryy69HKqrs7yEwgnMHBjIxrSnsdHymCQSiURyenmsv58fm2pbN/j9rLA6qFHoAn5sOr5WVXnP/PknTFSNNAAin6UKQeB/yQnxy4uKuH3NGssTapIcBS1yZwEuY9+HsPewmgsrKrJ3fEcbGy0voQDYYHTXKsC+lhaabRCTRCKRSE4P3cB3HA50RBnAlP5+zj140OKoRiaFGDEcM46nAO8f4++Od6nCzxDaAqBZVfny1KlS4NqMgha5CrDQdGwHR4OLa2uZ0tiIu7oaxxlnUGyDD8SG2lqmGzGVzp5N2AYxSSQSieTNEwf+A0iXl4Oi4IrHuXLHDqbaNJnxJ3JOP0WIkgrnGH5vvEsVXgGeNB3fTi6pJrEPBS1ywX6OBuXAcqcz60/7qtUBASpwsSmmp60OSCKRSCRvmkzz1iHEkvqUxkb+OZnkpg0bbJlx3Av80jRi+F0IO9CxMJ6lChHE65rhQmB1fp5K8iaZdCLXDnW5drTtusj4Go/Hube/ny7ZfCaRSCQTmgeBTabjTzqdXH/WWbYUuBHg65EIXT09+H0+ivbu5YIxXodaW2Hz5vErVfgl0GfsVwG35edpJKeBghe5M4EKY98L2KGlyixy7TJpbCmgGs4PR0MhfvL889JlQSKRSCYouxA1oxkuBzZYFMuJ0IEfAkcHB0HXKUkmuXTbNrrH0ATd2goXXwz33SdKFRwOuO46kdnNR6nCduC+eDybbf4w4D79TyM5TRS8yHUg6nLjxpvyGa/X6pCGTBqLAq9bGEuGYmB+b2/WZWH71KnSZUEikUgmIAPAV6JRBgwhNhf4kNVBHYcngWfIjRhe//rrYxox3NoKX/kKxOO57+k6rFqVH4EbBb5pJIP8Ph8VO3cyVyaDbI0dPaBPO9N8PjyBAOg693g8rJ8xw9LlmsyksXvjcWKxGE8CS9zW3wu+tayMB6NRFF3noKZRVF5udUgSiUQiOQkSwL+Gw7zR3w+6TmJwkA9UVVHaeKJhuNbQRs4uTFVVbqqu5qqpU2lZteqEnriXXAKx2NDvFxfnr0zhZ0B7IgG6jjo4yEW7dtHlcNBkw/IPiaDgM7kADR0d2Qzlkbo62myQoZzd35+9G7yvq4tuG9wNrmho4NLaWtzV1TQ2NfFiQ4PVIUkkEolkjGQazXYlkyKlCWzYto14hx0MNI8lgRgxnEnETgP+sarqhCOGW1vhjjuEwNWHNdq8//35yeK+AjxKLtt80e7dVA4O2sIGVDI6k0Lkrqivx2VMeEmUlBCZNs3qkKhpa6MkmUQHfGVlvNTXd8LfGQ9udrmyLguPA2GrA5JIJBLJmLgP+Ds5IXb+nj1M9/lsK8R+ARw29kuAz3Biu7BMDe7mzUMFrsMBZWVwyy2nP84g8D1jX1VVrqmp4Z1Tp7Jx40ZbNvFJckyKcoUmTePqsjIe0XWcTieHVZULLY5pRnMzcw4dYk9zMygKB6dOtTgiwTJgOnAU8Mfj/Lijg5srKuQHWSKRSGzMFoRohNyy/5WNjUxZtsyW5++XEO4PGT6AaBQ/EcOtwkA0mq1aJcoU8pHF/QmizhlEk9lnKiupWr789D+R5LRzwkyuoijTFEX5u6IouxVF2aUoyifHI7DTzfqqqmyG0g62XZqm8YG5c3FXV6NpGlvdbtJWB4WoF74O0ajn8Xj4y+Ag9z/0kHRakEgkEpvSBvwXOYvMBcBnqqo4+wTL/lbRB3zT5Ie7BrhyDL83klVYaSl85jPw+c/nR+A+D0O84z+OsA2TTAzGUq6QBP5R1/UFwLnARxVFOSu/YZ1+lpFLWx8C8jjOesysr6tjuiG8B7DHRDYQnrnF4TDoOkGnk21TpkinBYlEIrEhQeDrCJ9ZgHrgXxHL/3YkCXwpHOag4YcbPnKEt/f0oJzg98bbKgzEyN4fmo4vQQ59mGicUOTqut6l6/qrxn4Q2I0YJz2hcAKLTMevWBWIiSLgAtOxXSaNlQJvczhAUVCALWecgXvKhPuTSyQSSUGTAr4cCrHHyIiqwBext2/rr4CdRmOcoutcvm0bgTE0xo000SxfVmEgsuLfDIVoN17beuCD+XkqSR45qcYzRVFmAssR5TTDf3aboihbFEXZ0tvbe5rCO72YhzC8bFkUQ7nItP88MGhVIMO4ubqaxfX1uKurcU+dyt9taj8jkUgkkxEd+HYgwJMDA/h9PjweD/8wMMBsqwM7Dq2I5rhMY9yaffuYGgiMyQ93PCeaAfzZ6+Vvptf25v7+7GApycRhzCJXURQXcA9wh67rgeE/13X9Ll3XV+q6vrLBptZTZpG7FXsIyvlApmIqjD0yzCCWuj5cXp6tY34Q6LI6KIlEIpEA8FfgIV3P2mOes38/U44csTqsUekGvmvsq6rKFbW1fLC+/oQOBVaUKXQBd0H2tV109Ci1R4/m58kkeWVMIldRlBKEwP2trut/yW9I+aMFaMZoqvL7ebbf+spcBZHNzUxkezAYtDqkLOchGhgAwvE43+jslA1oEolEYjEvIgYTZDKi87q7OffQIdtahSWAb5KzpGwEvuhyHbcxrrUVvvEN+Na3xm+iGYgSkP8GlPJyUBRqIhEu2LfPtq+t5Pic0EJMURQF8Xnarev6d/IfUv5QgHmBAC/5fKDr/KqtjYVz51refbqwtxdPNAq6zsO6zi3RKPNsUB6gAO8HPm44LXh0nZrNm7l9zRrLXzOJRCKZjOwj56Sgqirn19Xx3oEBZtjYs/WnwAFjvxj4HOA6zuMz08zicZG9NZPvMoX/A/YiXtuWxkY+fOAA5151lW1fW8nxGUsm9zzgPcB6RVG2GttVeY4rb0zt7MwuQexrbKTdBq4BSns7ms+HDqQUhT9HIif8nfFiPnBWX1/2NXv8rLPY191tdVgSiUQy6ehBOClk+q+agf+oqGCVTb1wAe4dGOAPRvMWCD/cuSf4nUyTmVngKorI4OazTGEPQuRmeJ/TybULF9r2tZWcmLG4Kzyn67qi6/oSXdeXGdvD4xFcPriwpoaywUEUIOx0Epg+3eqQaGlp4eyjR4WFiqLwqqaRONEvjSO3l5QMec0emT0b/YS/JZFIJJLTRRj4GuA1jl3Al7G3k8Krvb38u9+fbd5aGgxyogxZpskMRP1t5qvTCXfemT+BG0WUKWR09SLghvw8lWQcmRQTz8y0aBo3lpXxV2P62Q5V5WKLY9I0jU+ccw67i4uJulzEVZVNwOUWx5VhXmMjXy4q4hvFxTidTrapKk8D66wObBIQB/zAgb4+2nt7aWlooKm+nmLEh7fE+FqMsKTLHE+Ked0SySQhCXwpFGJ7KoXT6aRCVflX7O3lGQb+Q1EYdDjQgZpwmKsHBlCWLRv1dzJNZpka3KIiMeihujp/08wy3IVojgOoAD6FPI8WApNO5AJcU1WV9aR9AfgI1htnt2ga/wD83Di+D7gMTmiQPV5cWVfHfuAxRJPcNyIRGgYHWWiD2uGJxGGPh729vZQ3NVFSX48fCMCIX/2IZcl4PI4nEoHycohE0OJxVFU97vMoiPd0MhajKBRiptPJHJeLJhiySUscicTe6MA3gkGe8HpB1/ErCl9yuVhUW2t1aKOiA/8DBCorIRKhJJnkqu3bmT1KMW1rK9x9N7z66lAv3HRaCNzPfz6/8T44MMA9RUU4nU5UVeUjiOY4ycRnUorceYgLfDfibnMLkMcbxDFzOfA7IIYY0/gqsMLSiIbyAeClSIQdRo3upwMB7tJ1Zsh6pSEkAQ/QMWzbH43yRjwOxol/LGIVIBaLZWuiFV0nFoud8Pd0IBiP4+npAV3nQCTCzpKSY36vAo4Rvk0IW7sGJukJQiKxEb8BHk+ns+eAVfv3M7umBmwscv+EMNNXVRVN07jpyBGuWbduxNrW4dlbM/luMgN4vaeHrweDxIqL8SsK19bUcFFlZX6fVDJuTMprWMa2K1Ng/jT2ELkVwAbgfuP4PuwlcsuAtx4+zI6KCnSgu6qKb6bT/ACxVD6Z0BG1cR3ATq+XPYEA0bo6/C4X3eTqusz4E4mTFqvFQHNpKaWhEMXJJLrDwfSGBkoRYjqzDQ7bh7GJ4zCi6/kAx5KIx3EHAqwpLeUyt5sFTL6/s0RiJQ8Cf0RYhfkVhbPa24VV2MKFVoc2Kq8ghHmGt6sq758375jHjZa9BdFgdvbZcMst+S1RSAPfTqeJFRejA5XRKFd4vbB0af6eVDKuTEqRC0NF7mbE3O9y68LJcg3C5DsWj/N0LMbLiQTn2Gi4xnl1dazbto1N8+eDorDH5eLz7e18uqSEpgLL6Ho8Hg50deGYOpV4ff0xmdkYRilBxtt4YABthGxpBqfTSUjXcUWjlCWTLK2rYwqicaTK9DWz70aMo1bKyvDU19PZ2UlLUxNa+fHfqTri5N0Ri/HA008TLC4mWFHBmRdeSAyxgpHZRmtwjBu2cd26zt5olL85ndSqKisQs9vP5vgWQBKJ5M3xPMZAAkRGdENtLTf19zPNxlZh3cC3IduYvBj4hxEed7zsbWlpfhvMzPwf0F5TAx4Piq6zYedO5px/fv6fWDJuTFqROw2YDRxEZL5agUssjUigAUuCQR4w6q++3dXF99Jp25zUNE3jX5YupT4W46maGga8Xh7Vddrb2vgWMNUmcZ4MI5UXvBEOsyUQIFxTc9zSgtGypfXAVMQAkuxXVSVdVka310tLSwuaa+wyUdO0Mb8HFETGdbqmceOGDUIct7Sg1dQMeZwO+MgJXo9p//VQ6Jj/V1hVeQZ4BtGQcRawytjs3AAjkUw0diI6/TNicR7wNZcL5/Ll1gV1AuLAvwMh47gO+CxDV39aW4UF2ObNxwrc8creZtgJ/J5cScX6zk5uPf9821xrJaeHSStyQWRzDxr7T2MPkQtwdlsbDxglAXuam9nS18fVNvrgaZrGFwB/ezuPG0JoV0sL/zg4yIe2b2fhSQiy8SJTXtAJ7DCVFwSM8oLUsMf7k0nCpaXHXeqvAKYWFzPQ3Y07FKI2GuWtq1ezFBi1CEHTaB7H1+Z44lgBaoxtwbCfeZJJ7n3qKdqqqznS2EiysTE7rQhEpninsf0cIXLPQQjeBUzyE4tE8iZ4ubeXLxQXo5eXo6oqUxBWYU6rAzsOmea4bel01v3h8wy1NzvegIfxzN4CBBmacV6hqnxm1izpplCATOpr0YXALxBLs0/HYrwRj9ti0th5dXXM6OjgSF0dKApPzpjBVdjHaQFELJ8qKeFoRwd7m5pE6UI6zefLy1m5YwefA6ZZIHQPezxs7+sj3dxMtLaWdoSw7UD4II61vCBTA1eUTlMdjXJuXR3zEWIus1UBSkUFnpkzc9lSG5WWvBk0TeP6q67K/r8ay8o4hCjt2YyYumQmkwG/DyH+VwBnDAygtbUxp6nJdjc9Eokd2dnTwx0+HyFVhWCQeQ0NfLWsjCqrAzsBv/T5uDcQyLo/fL6ykvnGypG59na4wFUUOOec8RW4OvBdoN84rgT+EWkXVqhMapFbD8wKh3m6vx90ne/t28cXFy+2/IKsaRpfdjj4dGkpqtPJPlW1ndMCwBRN43vAH0Ih7nG7CYTDREtKeG7uXD4IXHT4MBe7XKyurz9tAj2GmPrjGfa1BzgSjbI/HgeXC0IhtIqKYwTs8coLMuI1U1pQUlZGor2daScoLTiZUoKJxPD/12xjewciK74F0UG9FbFUmSEMPB6P85tQiOLKSpbu2cO/KApn2OAGUiKxK17gSw4HIVVFB0qTSW45eBDNxk1mIBrNfqko2fPqwvZ25peVQU3NiLW3DocQug4HqOr4ClyAhxDnrQx3ILSApDCZ1CIX4MyuLp4uKUEHtk6bRntnpy0Ey4qGBm4CHjGOfwYsw37d7U2axh2axtl9ffxrLEbA6QRFoSse5w+Kwh8iEWb5fDRHo8ysqKAunSbV20t9XR01tbWkyTVK9Xu99AwM4KyvR3G7CSCWlYII79ieWAx/PJ71MhzOidwLyoEpxcV4u7upCoWoi0Z567nnsoRRlgIbGsQmOYYahI/zZYjmte3Ay4gsbx+5m4nBoiJemTmTj5SUcDNwHfae0CSRWEEI+BIQMuwFi9JpNm7bxqq1a60O7bi0Ad8CVOO83+z1sm7PHlquvhrIjec1c+mlcMMN0N+f/wEPw9nc18d3iospLitDVVWuQZRYSQoXRddP/4DWlStX6lu2bDnt/24+OOrx8LZQiFhxMSgK/+5ysdEm/oM+4IOI7CXAR4ErLIvmxHR4PPwlFOIhl4uuWCxb75TN4irGnq6DoqBpWlaEZrr5R/rZWH6eeUxfVxdVkQg10SgXnXEGZ7nd2Qyt24jF4/HkygtscENTSOjAIeBxn48/dHUxUF4+5O/lBK4GrkeKXYkExPn9C8Be43gwFuOdR45wRXW1rc9PIeDTQJdxXBGNcvu+fQTbprJ9ey11dfDaa/Czn8Gg4WtYWiqE73gK2wxHPB7eOzCA1zgnraqv50fl5ZYPgpK8eRRFeUXX9ZUj/myyi1yAH/r9/B+iDnOZqvItqwMy8Ufg18a+G2EpYwers+PR5vHwgy1bOFRXx5H6eqIlx55GFMBdXY3bLaSO35hvro/wM/PPFV2nKhplXk0NS5qa0CC7NQKDHg9dUsDagm6Ph4f9fp6dOpW+YbZnKnAVYja8FLuSyUoC+BqwzfS9T4Plo+ZPRAr4CqJUCcTn+VuAZ1hzmcMBxcVw1VXQ1DR+zgnD0YFPd3TwVDKJDpSkUvxHJMKGRYvGPxjJaed4InfSlysAvMvt5gmEldRuxB31fGtDynId8DfEErAf+DNwi5UBjYFpmsanV66ks7OT0sFBHnj1VXyqSqisjKDTSaS0FEVRWFhbixtR8B9UFF7v6IB0mrJUiguWLmUaormrEognEjy7aRMliQRFDgcbN25kRAmraQXn1ztRadI03qdp3IoYn/0H4LDxszhwL/AwQuy+Fai2IEaJxCpSCGFoFrgfwv4CF4SjylbT8WWt8F8jNJel05BKCXuwfI/mPR6PArvq67N+uOv37GHZCrt1uUjygczkGtwJPGnsn4/w97MLfwe+g1iOT0ajfC+RYNEEauIxlwcAo5YKnKiMQJYZTGx0hB/178mJ3Qyl5MRuDRJJYaMDXwsGedKw3FJVlfcAN1kd2Bj4o9fLDxyObNwrW+EbJ2gue/JJazK4IKY5/hMiiRWPx1ne08OnS0vlNaSAkOUKY+Aw8HFjXwF+ilj+tgM68JFwmFbDBWKq18vPmptlxlIyIdGBFxGZ3YPDflYKnBcIsOLwYc4sUNcKyeRGB/4jEOCPPl+2x+BWt5tPut22sokciU19fXw6FCLwqkr4pTKWT1FJPVTG44+L/0qGyy+3rrnMTBjhntBtHM9C+OOWWhOOJE/IcoUxMBPhXrAVcRJ6AHi/deEMQQEuP3KEVmNARHtNDb8Ph/mU1YFJJKeAAqwBzkW4MfyOnNgNxuP8yufjN5WVrN2+nS8sWSJv5iQFgw78GHhU13OWW21tXNjfj2LjaWYgfLC/WVRE4FWVg+/W0BMKf0uLfmKzwC0tha98xTphmyHjh5sRuGXA55ACd7Ih/Y9NXGvafxSIWBXICJxXV8fKw4fFnb6i8ERLC0esDkoieRMowGpEqdAXgDnkrMeSDgfPzpvHl9JpBqwMUiI5TejA/0PUoTsNy60zOztZv2cPU4xSLrsSAG5vhQM/qKT3rir0uAJpkXfWdVGWsGoVfPjD1rknDOeviPKoDJ9AeKBLJheyXMGEDtwOtBvHH2Co8LWaDo+Hf1YU+txuVFVlFmK+ubRAkRQCOvBIfz/f7u6mz+XKWo/VqyqfRAhiiWQioiO8zu83fe/sYJC37N/PVJv3GCSAW1vhD5dAOg6kzZpBsUXd7XD2ILK2mXHt1wC3WReOJM8cr1xBZnJNKOREbTwe5xf9/XR6PFaGNIQpmsZ/NjZSafjDHkIs9UokhYACXFlXx9319dyAcGdQVZUg8G/AD8l5RkskEwUd+CVDBe4FwJcqK1mxfLmtBa4OfA94dROkE4ipPSiAgqIoXHcd/Nu/2UvgBoCvRKMM+P3E43HmAe+zOiiJZUiRO4z1QEk0isfj4VAoxHe3bBFDCGzCNOAfTMf3ADutCUUiyQtTNI0vzZjBfxnjljM8gmgi2W9NWBLJSaMDP/D7+YUhuADWIrxw7Ta9ciS+2go/+wYkfKA4xAaiPMHphM98RliD2UXgpoAvh0Ls7u3F7/Phb2/n1p4e2Xw0iZEidxilwApjspYOvDBnDke6uk70a+PKRkSTHEAsHucL/f0cspEQl0hOB0uA7yMs/TJ0IOyA/oyRVJJIbIqOGDT0U2OQjcfjYVEoxD8zMTq+v98KX78E9nwBDn4L9CQUOYSwtVv2NsNvgFdSqez1+9Lt2xns6LA6LImFSJE7Au8sK8OZTKIAgfJyds6caXVIQ1AQGa3iWCybcf7MkSN0S6ErKTBcwGcQ73en8b0U8CtEs1qfNWFJJMclU4P7R8gKrpk9Pbx13z7bC9zWVvjkN+DfvpEkHdNzd5PCEILqantlbzM8j7j5zTT1rTpwgNkDA1l/dsnkRIrcEZitaXystha3MTv8sepqAlYHNYw6YOPRo9kT6Buaxl0xWbEoKTwU4BJEbaB5EuEOhLf1c1YEJZGMQsYm7H5ygmtWby9Xbd/OdJsLrtZWWH8JfO8LOj0PFIn/DDqg43AIe7B166yNcSTaEC4tAKqqcnltLbfX1IjJmDaueZbkHylyR+GdNTWcZbgYhBFTmuzGRrebRR0dWVux55qahjQ3SCSFRDPwTeAdkDXNDwFfi8f5p/Z2DsuVDInFpBElNg8bx6qqsrGmhi8UFXHd1VfbWnC1tsJH74BYjKw9GCig6Kxb57NtiUIY+HdyTanNwJddLs62eVOfZHyQFmLH4SVEVzeIu4EfAlOtC2dEOj0e/j2VYl9dHarhuvCPwDpLo5JI8stuxOSitnhcNIbqOg2hEP/b0MDcCTTyWlI4pBDZxE2m713IxGgya22Fi4eM5jV0gaJTUpzm3nsDXH11rVXhjYqOELgvGccq4rww06qAJJYgLcROkVXAYmM/DfzCwlhGo0XT+J+WFpYbAhfEifZVyyKSSPLPAkT5wuLe3mzJTq/Lxb8oiqzTlYw7HR4Pn+rs5NGcSuQSRMJhIgjcL33FLHABFM67KsHHPtptW4ELoub5JdPxJ5ACVzIUKXKPg4IY7ZtZuNkMbLcunFEpBb4IzDCOU8A3gDcsi0giyT8VwGdKSli/e3e2ZMdfVcVnAXv5oUgKmTaPh4+2t/P04CAej4d4PM4VwCex/wW2tRUuuQSeeHzo94tK4L++oPL977fYVuC+Avw8Hsdv2LNdh8icSyRm7P4ZtJw5CO/cDD/DntZFLuCrQINxHDOOpXmKpJDRNI3PLV/OJ+NxpjQ2oqoqPcBnQY69luSdMPBlXedQfb3Ro6Wz2uPhdnLJEbvS2gpf+QpEY2SrEzJ88P32q7010w58LRaj2+PB7/NRsns3V8qafMkISJE7Bt6DyJYCHAT+bmEsx6MO+BpQaRz3xuN8tL+f13p7LYxKIskvmqbxvnnz+LrTmf2ceoHPI1czJPnDB/wL0F5TA4qCAqw4fJiPquqEELiXXAKPPW74gmVrcKGsDG65xdLwjksI+DrgjcdB16mIxbh861Y8nZ1WhyaxIVLkjoE64K3Gfjwe587+fo7Y9K5xKvBlQDd56H4wFOLBgQGrQ5NI8soKxE1emXEcBP4Ve5YYSSY2PQj/5oMIBwVN07glleIbZ55J0wTo6L/7bohGddCHuihcfpk9HRQypID/BDoR9mzF6TQbX3sNVyol/XAlIyJF7hi5AXAa436PhkJ8dc8eW437NTMfeNfhwxSlUujAoMPBt4qK+DniJCGRFCoLgf8gt5oRA76CqKeXSE4HR4B/Jlf3rQCfUVX+cfbsCWFZdddd8JOfZI5yLgpqqc5XvmJfgQui+Xursa+qKl92u7ly/nzphysZFSlyx4gTWN/Rke3kfmXmTJ7r77c6rFG5pKaGmzZvxh2NgqLgdDq5FzElymt1cBJJHjkDke3JtMsMIoTvM5ZFJCkUnuvr40NeL12GFUEJomThUkujGjs33wwf+pBRoYBCpnJ4wVmd3HOPz9YC93EY4gP/DuAttbUsl364kuMgRe5JcH1lJVO93mwn970zZxK1OqhR0DSNW9et45vxOBtqa7MeujsRI1J3WxmcRJJnpgHfApqM4xTCP/MRyyKSTHQe7e/njmCQrkAAj8eDEovxFeBcqwMbI5/9LPz2t8O/q+Mo0vmv/yyzrYsCwOvAj0zHa4B3WRSLZGIhh0GcJK/39PCpkhL08nJUVeUyhDefndERfoK/JddEW4SwR9uI/buAJztJwA8c6Oujo6eHlsZGmurrKUZkkoqHbSXIv2mGAYS93lHjOB6Ps6Gjg5srKmT2RzJmHgG+4ffj8/nQgbLBQf4lHufahf+/vTuPj6usFz/+ebKdyb7nJOm+l1K6A60oooCAVAEvchFQryK4ccEV0evKdUFxV64/N9yuV3FHUFFBFBCUUmRrS2mbtmkz7ZnMJDOZmWROlnl+fzyTySRN23RJzszk+369zis9J0u/k5yZ+Z7nfJ/vc6rXoU3YnEXQvvPQ49/8Jlx//dTHM1GdwLsxr4Fg+uDejrm7KgQceTGIoqkOJtcta2riQ5hRITC3UM4gu6/mFfDvwGLMi0MUM7L1NdflvlCIa4uLWdPYeKQfISZBAjOB4tmuLnaGwxTX10N1NRHMC3pP6mMvJjlzenuhvBx6e7FdNz06P5brugz19TGrpIR5ZWXYgI0Z1Rz+d/kUPL5sUIdZCvhjwHOp1dF+WFjIwc2bed/atZLoiiPSwI+AnwOWzwdKUdXXx6VPPsn6l7/8KN+dPXYDZa/B3N7IcPXV2Z3gJoAP9fbSPjCAz+ejybL4CJLgiomTJPc4nI1ZZeXh1P7XMJO9aj2LaGJWY1ZDu42RN3xHa/4+MMBl0SjXV1bS4m2IeWcIMxO7Y5wtRCp5jcWgsBAiEWyfb9zkNZFIpOvBldYkEolxv87NWOY2qBR+2x736yqAqnicsnCYs8rKOL+2luqT+LizSSVmee4burtxUr/D+5ctY11XF/8uSa44jAHgK8DfUvuWZXFmfT1X79rF0pe/PGcukDqA9/f10fihfvqGyvF/t4hS4G3Xw2c/63V0h5cEPhaL8XhXF2hNTGs+XFFBU0OD16GJHCJJ7nFQwDswdUIhzIjb1zC3RbP9NnETZlLORwMBfp96wwd4IJnkX5gJFP/OyKIS4ug0ZsR1bBK7o7eXff39FJWWHnbUdSLJawHQVFJCUTxO0eAgycJCZjU2UoIpZRjEvCEPAPG+vgklwyHXZWsoBFrzl2iUb5eVsdKyOAM4HZhN9p/Lx6IM+LBSXBeLEayoIFlQwE/mzWMD5rEKkSkGfAozh2HY6cDN5eX4VqzwJqjjcAB4d18fO1LLXze9I8TPbqnijBxIFL8LPDY0lH49e+nWrVS2tEAOxC6yhyS5x6kCM4HrI6n9TcAfgQu9CugYFAPvKimh8qGHeGz+fNobG/H5fAxhHsMDwEXAa8n+0empNFxe8FxXF1sjEdyGBiKVlfgxKx9lcl0XJxg005h7erDHGVEtBOYVF9MTDFLR20v5wAAvXb2auUB1aqvCnGuqtBSnvh6/30+rbWOXlY0bo+O63HP//fQVFBArL+e0885jADgIOKktAETGJNd9iQTbLIttwA8wF0NnYt7Yl2POmVw337b5mlJ8oLAQt6KCIcvi45jSo+ydciOm2nOBALcqRbiqKv2cvRB4G+Y5myscTOeHg/39oDVFQ0Ns3LyZ4oULsz5RvAf4LaYXbkQp1ra1sfzAAVrXrvU6NJFjZOLZCfo25skIYGFub83wLpxj4jgOfr+f6KxZ/KGhYdSoBZgFJdY5DpeXlbF8mtTsJjFvDn7M0pGZH4OMLgdAqXGTV4BIJEIkNUmlwnVZWlXF2uZmZkB6szFvmsN/h9bW1pNyC/RoP08D2wMBfv7QQ3RUV7PXtkkuWULJYUabSSRYHAxyjWWxOg/OgzbMsr+J1P58zN0NqfMTjwSDvD8cpre4OP38vt6y+Ddy685GALPiXwDzmhXy+9n45JPMDoezvqfsJsyKZsOZycpolNfs3MmMk/T6KPLPkSaeSZJ7gvoxI7r7UvuLMbX9uXTFD+YF5RnMJIvtHJrMrWlo4JyyMk7H1B/n2uPLpDElJuOVF7QfpbwgM3lVQHVNDdXV1ZTCqAS2tKuLbfffT1Ushk/rrHxjyUyGS22bzZhFE57ETHaD0eeBAi6pq+O6ykpmehb1ybEZszpaMrW/DtNDOpfPa3FiHgA+FQ4TikTQQKHWvLO/n7csXux1aMckCNyCuVgHsyT9O0Ih6trbT9qF9GQZewG6BNPjuuSw3yGEJLmTrg14L6Y20nVdzjlwgGtLS7P6xeRwNPAE8KVAgC19fYckc2Am8qzD3MpeQ3bO1NeYteUDwLauLp5PlRf0VFbSwWHKC44yQlsIVPf2Etm2jepYjLq+Pi5Zt44VDQ3UcuhIz8keoZ0qg8AWTML7h2CQXfH4qPOgprqal2Casc/yMM4T9SdMLf2wCzG19rk0YidOXBL4PvBrRl4HfP39XPzMM7z1rLNy6rkbwozgDq/GVoQpqVvjWUQTF8S8jw4vQN8EfAGo8SogkTMkyZ0CvwC+lZEoXfDcc7x33bqceoHMdNBx+Mrjj7OltZX99fU0tLSMO7pZAMyNx2kJBFhcXc2SujoaMTWOk1XwrQEX2BUI8EIwSEFzMwN1dQQYqTvtxIyyn2h5QSswE2jFlBcUkbvJ6/E46Dh85+GH+ee8ebQ3No76/SnI+WT3R5ge0sPeCFzuUSxi6sUxbRU3Zxxr6O3lql27WNHUlFPP7y5MgutP7RcB/4UZkMh2exyHDylFsLoay7Iox/xdcvV1RUwtSXKnQBJ4y8GDbHZdNFCgNR9IJHjd0qVeh3bchpO5utZWHNtmE2Z0ryvjaw6XRCqgHtOlYXgr6u4m0dlJfUMDNXV1aEzCmhzzsau7m4Pd3ZTU11NQXU0PprdvFNL/jh1H8po5Iu3j8OUFpVlaXuCV4fOgd9Ys/tzQMCohAPN7XRmNctbevaxOJcK5QmNGi4bbRLmuyxV79/Kq6uqcehzi2PkxtZ/7M46dgRlNHH9aZ/bqBt7V28vuVD/ZMsvig5jJo9nO7zi8vaODPfX1oBStTU3c5vOx0uvARM6QJHeK7AoEuC4YJFReDkoxu6mJL/h85FZF15FpTHnGcML7xGGSyLEmOqJ6PCOvh/t/K4CK3l5CW7dS2dtLXW8vl5x+Oivq6/OqvGCqvQD8BFPWAiN/s4JkkrN27ODDK1bQnEO/vwHgo8Dm1OMoHBri8k2buPalL5XzIE89BXwikSDkuvhSvalfC7ye3CtXCQHv6e3lqVQ3lwLgk5WVXFyX/T1DNPCB/fv549BQ+rX8bQMDvH3hQo8jE7lEVjybIguamvg6cEthIYmKCki1KLqd3Om4cDQKWJDargS2uy7f2rqVYFkZ8bIyGhsa6GX0aC9MfDGDiX5dlWUx5Lr4+vupSiR4SW0tCxlZ0auRVK1wWRnOrFkmeV2yBLu+/rCPzbZtSWomYDFmBbEdmGT3/tTfbEgpHl68mI8mk9xG7rTlKsbc1n1TTw+O1gwWFPC7lSt58cGDcj7kGQ3cBXzPdTkYCKQXGfhIVRWX5UBSOFYAc+7uHhgwk0O15vxnnqF11izIgcfzY+CpxkZwHJTWnL5nD6/J4bufIvtIknuSLWtq4n+Amxm5xf4RTKJ7+PQqdy1pauLmNWtGRkDLzTS0AcwIQwBTH7tTa/7q99NfWEgBsKyujmpM0qwwtb0KiCnFlo4OCgYHKR0a4uxVq5iNmexWlfHR8vlwqqvN/ztrFnZV1WFjlOR1cizCjICePzDAR2IxOisqQCn21NXxn8CN5MbtUjCj/v8FXDc0RH9hIbHSUn41YwZnIR0X8kUPpjTlSaAvdWFW5rpc/NRTzF20KCeSwkwHMOdsJ6afbExrXvH00ywKBmk9M/ufeb/HXHBYloVt26zo7OR9S5fKa7U4qaRcYZJsx7wAuan9OZjldCs8i8h7Ey0HkLKB3NPhOHwnkeDR5uZR/XYvAq7F9JDOBfeFQny6qCh9C/sy4M1eByVO2HbM628wte+6LsXbtnH+009TOTiYczX4HZiFHobvmBUBbw2FsHOgTRjAo5i/x3D2sRbTwk9G3cTxkJpcjzyJ6cU5lNo/Bfgk0vNP5K9nMKNlmeUqM4H3YxZdyAX/hynDGHYzpouEyD0auBe4E9Mab9hrgfMcBycHL6b3YhLCcGq/JLW/2quAjtEWzN3NgdT+IkwvXFmMRRwvSXI99FfMm/6wMzBX4HILVOSrKPB1zGjNsKFEgvP9fl5XXp71k9I0Ztb9ptS+hVn6d65XAYnj0gt8Jhrlb8lkemS+HHgP5nU4F7VhEtpoat+HKRk6zbOIjk075qJxuE95C6aU79CpykJM3JGS3IKpDma6OQd4S8b+48AdjNymESLfVGJWXLoRkyC6rktHIMD3Cwv54PbtHHScI/8AjylMG6nW1L4LfKS3l78//bTp/CGy3jbgur4+ftvdTSQcxnEcWuJxvkLuJrjbgfckEuyPRHBdl1LMncJcSXC3BgLcEArR5ZoivhpM/JLgiskkSe4UuITRDeb/DPzQo1iEmAoKOB/4CtAUiaQ7Zjw5Zw5f6e/P+ou8ckxNvQ+TpD8TDHLb4CB3/+53kuhmsUHgfzFLw+7r70+fd6fu28dbduwgu+8hHN6/gPclEuwOBIiEw4Q7OnhXMMgpXgc2QTsDAd4ZCrE3FjPPn0SCjwPNXgcm8p4kuVPkDcB5Gfs/dl2+0NYmb5gir80APqM184NB039UKTY3NfEFRtdIZqPZwLsYaWu3t6GBB045hQ6//yjfKbzgxyS3d2HulPl8PqyhIS545hnOff555rS0eBvgcXoEM+IZcV3QGl9/P5c+/jil+/Z5HdqE9AIfB7rKykxryGSSq/fsYYG3YYlpQpLcKaKAG4DTGWme/8PCQt6zaxf7JNEVeWyWbfP1mTM5t6govbjH3zCzq/u9Du4ozsL0g0YpFPD8jBk8PD9XptBNDxr4E3ATZqGSYWsti+9VVHDVzJk51z1h2B+Az2EuCH0+H5Wuy789/jh2PE5ra+tRvtt7/Zj69kB1dfo5dMGWLbysttbjyMR0cdSJZ0qpO4GNQEBrvXwiP1Qmnh2eC1zvODyVSKRXeFleWsqXmppo8jg2ISaTBr6BeeMethIzkSabZ1Zr4NM9PfxR6/QEpmuBSz2OS5jlbD8Xi/H3oaH036YIuAa4jNwdxdHAz4EfZRybBdwQCOB2dORER4hBTNeE4Qmcruvy6n37eG1lZdbHLnLLCXVXUEqdDcSAH0qSe3LsdRzev2cP25ub00vXNlgW7wPWeB2cEJNIAz8AfplxbFY8ztU7d7KwuTlr3/yGgM8A/0ztu67L5e3tXFJVlbUx5zMN3A/ckapTHV4GfFVDAx8tK8vpW+Ea+C5wd8axRZhb/odf8ia7JDFdhR7KOPYm4DXehCPy3Al1V9BaP8Shq7SKEzDHtvnq3Lm8eXCQ1qYmLMsiinkR+ynSeUHkLwX8B6ZGHUyy+PdQiI8WFvLL++7L2hr1Qkzro2WMlBvdUVLCZ556KmtjzlcHMKP/XwUzUz81uWx5ezvveOGFnE5wB4Fbo1F+mOqgALAK+BS5k+AO37HJTHCvQBJc4Y2TdjdHKXW9UuoJpdQTnZ2dJ+vH5q1m2+amBQv4ks/H8GKSGrOW962M9EEUIh+9FngrI5O6OisruXfFCtqzeFJXCaaJfW1PTzqxenDpUr7V1ycXplNgCPg1Zm7DM6ljPp+P6kSCS594gpdv387cHJ1cBtAH3BKL8auMtmcro1E+CpR6HdwEaeD7wH0Zx16JKR8RwgsnLcnVWn9La71Oa72usbHxZP3YvLcU02Yps9fhE5hZ3W1eBCTEFNkI3JBMpiekdNTX84eFC7M6YawAPqk1djSa7hbxcEsLXyX7u0Xkssc7O3ljIMA3XDc9WVEBV1oW/1tTw2Xz5+fs5DIwt0pvAR4fGhrV9uyynTsp9ji2Y/HtcJjvZYxCvwx4G+ZvJYQXZKnoLFCDmYH6I0ZqFQPA+4B3MLr1mBD55IraWrqV4sdK4fP52GRZ/AS4yuvAjmBRUxPf1ppPJ5PsrqvDsix+57ps7erigwUFzM3RRCsbRYFv9PTwf7295uInkcC2bZZYFjdialWxbWbn8O+8HVOq1okZmY4oxem7drGhrY2ZGzd6G9wx+H44zB2puxwRpbioro6bKiokwRWeytXJp3mnEFOr+CFGbk0NYEZ5v072t1oS4nhdX1PD5dXVWJYFwE+AB7wN6ajm2DZ3tLRwsWWla3T/0d/PG7u7eTQY9Dq8nDcE/B5T0nJvamRTA4VDQ5zn9/MlUglujnsGU+s9XOBXaln8V2UlN9TU8KocGpm+B7hTqfQo9IxQiNfs3CnL1wvPHTXJVUr9BHgMWKKU2q+Uunbyw5q+NgBfAuZkHPsjpsl5wJOIhJhcCnPHYnXGsa8BT3kSzcQVYZYuPvvAgfSbe7i0lP8qKuJnmBnm4tg9iynX+gZmJNfn84FSzOrq4qp//IM3lpXlxS3IvwIfA+KpfV9q/4raWlavXp0zCe7vgG8x8nea0d3Nq59+OmcX3xD55agtxI6HtBA7cQnMCO7fUvuu61IYj3MdcGldnQzBi7zTi7mY25PaLwM+C8z1KJ6JchyHLz7xBH9ZupT+4uL0ghfz4nEu3bWLU207ZxIWLz0XCPCtwUGer69Pj+oD2MBrurpo3ruXGTnQH/ZoxuuBW4dJcHNtmZH7gDsy9mfH41yzYwfzW1py/u8kcscJ9ck9HpLknhwac5V8RyKBP6MX5JqGBq4rK2MDUtAv8ksQU4sewlzY+WIxPjc0xNKm7F4qxXEcng0E+NX8+ewrL0+XMJQMDLBh1y4+sHIlM+RNf1w9wHcjEf63q4vBgoJ07/Aqy+IKzKIbJd6GeNIMAp/r6eG+jIVFZmNqcnNtuvafMW3chi3BdAYq8yYcMY2dUJ9c4R2FmYF+XVsb5akV0tCaXQMDfAZzS28T0ldX5I8GzIiWSiRwHIe9sRg3OQ77s7wXrW3bnHfaaXytvJwrATfVGs0tKuJvS5bw7oICNnsdZJaJY1omXotpDTZYUJB+jTs1GOT/Yfqr5kuCGwHeE49zVzicbhG2IBbjc+RegvsApqRo2CLgE0iCK7KPJLk54Kz6eq557DHO2LWL4mTS1D5hWozdCrwfeBpJdkV+mAdcuWcPKplEAwerqvh6f25MvSwErgb+e2CAqkQi3WYsXFXFxzEjdvu8Cy8ruJguMtdhFr9JMFLPaff0cPmmTdxSVESDp1GeXHuA9wBPDQ6m67eX+P1cvWMH5d6Gdsx+2dXFrZEIiVSbsAWY96FcexxiepByhRzhOA5+v5/KGTN4pKmJezi048JpwOuBU6Y+PCFOKsdxuPXZZ3lk0aL07ev3Wxbnex3YMdjnOPy0t5eHW1rQqQtT13Xp7+vj3MJCXl9ZmfX1xidTAvh5dzd3aU1/efmouttZwMVdXbTkSd1tpn8Cn8c8ftd1CRw8yPodO1i3d29OdVAA+FVXF7dGo2ZARSlOb2jgS2VlVHodmJjWpCY3D3VjJi/8gUOb0K/FjCblQ4sdYSQxM813dnbSEQjQ2tRES2MjxZhZ/sVAl+MQ8vvzJkk46DjcNjjI1oYGLMuiCDMRbbHXgR2jMPC/wD2uy0HHSdfW27bNmZbFpcAa8re+/iBmbsE9iQS7M+YW2LbNHMviKuCl5N9txfEmmPmAN4dCNLe305pjz9M/A5+MRAiHw2igIRbjE4ODvGTlSq9DE9OcJLl5LAjchXkBGhrzufWYZHfuFMckjp0L+IGO1PZ8NMreeJxkVRUDZWVEgURqMlNmkjA8GjY80al4cJCqRIJ1s2dTn0xSFAzy4qoqzmhoyMkkKoEpx9mT2m8AvgxUexTPibh3yxb+p7+f/XV1KKC6pobqavNI6nt7OdPv55WVlczJocTncDSmFdhvgcdT+5FIhEgqQapwXa4qKOBtCxfmRTuwsfoxPc4fyjjWjFkWerYnEZ2Y32Naug2/ztRFo7xm82auuOCCnErURX6SJHcaOICpb3uQ0bW5ClgVjXLW3r2samyUFyQPJTG9jp8JhdgaDuM2NhKrqmI/5mJlmHuYZDYzSRibJI39XEVFBbF4PP0zljQ2snpggAUdHZxdV0dzDp0HB4B3M9JPdDlmhcBcS44cx+Hee++lo7KSZ+bNI7piBSUZi0mgNUXJJBc1NHBhZSWnA9ZRf2r20MBeTFP1P/b20jYwkO4gAOa8dnfv5rS9eznN7+fSV74yL1+PgsCH43G2Dg6mH/9pwAchJ2/r3w18J2O/ubeXN+zYweLm5rz8+4ncI0nuNLIP+D/gkdR+5htoayTCv82ezStqaphF/t4e9VoPIyOyw9t+TLIWP8Jo7LDDJbNFiQTdu3dTODSELihg5ty5FJeVMQDE+vrY4zgMKQVKUVFeTiwWGzfpbQ2HuXnmTM6pr8+Zc2AzZva2xpzT6x2Hd1pWzr3JDtfWt7a2gm1zD3BXdzeBnp5D/t4WcEo0yoIDB3hpdTXzsvCxHnQcHg2FaJ8xg63V1Rxg/Iu0DZbFq4EZjsOB1OPPtb/dRPwL+O++PnZ1dqYf/1U1Nby3qirnLsoAfgH8IGN/CeZ5KJPMRDaRJHca2o1pz/OnwyRMNnAGcDpmZKzYu1BzUj+jyws6gBficfa4LkNjJtVkOlwCW4C5nTkDqIxEaH/sMSrjccoHB7n0ZS9jQVMTRYxOksYmCQcdhx0HD1I8YwbBggLu27wZp7KS9sZGimpqDkl6Fw8O8o6CAk5vzI0GRj8DvpORQJ27dSsfWLMm55OlNsfhC88+y9aWFroqK9MXPpnJogJOb2xkXVkZpwLLMAsITCUNOMBO4AXg6XicRx2H/sLCce84FA0NcYrfzzU1NVy4fPkURzu1kpiysZ8A4dTjV1pz9vPP8ybbZvXq1Uf5CdlFYx7LTzKOLcO095M2YSLbHCnJzcWLSzEB84APAy8fGOC2UIi99fWgVLr9mINZb/wezGSINZiEdx1Q40nE2Udj1pR/JhTiuXCYgcZGeqqq8KeOZ14euq6LEwqZ0ZtYbNwRWgC7pISKcJjqWIy6vj42rl7NCsyqTuknY3U1zurVI8lsxkII9hFWz2q27VFlCKevWIHf78euqGCn1nyzo4Otra0kCwqIxeM8qTVv1Zp3FxVxTW1t1o/qvhb4WyiEk2rB9JdTTmFNOMw1OZ7kzrdtPgr4/X50aSnPWxYPA1tSvXaHz7PtAwMcBO5N7Vf19VHX3c3C8nKWVlfTArRg6paP92+ZBLow57eDKa8JALtiMbYNDJAsK0uf15HBQfoLC82Fk9YkEglqLIvVBQX0P/ssswIBfFqzeuPG44wmN/Rguif8K7Xv8/kY7O/ngqeeYmZPD605mOD+EDOKO2wFpp7Y50lEQhw/GcmdBhzHYfvBg3TOmsXOujqexCyhOh6Fmb1+emqbR/6XNUQ5tLygA1NeEJ1AeQGMHqEtHhpiSUUFq5qamAHprRVzm+9Io7GTyXEcngsEuLe0lL8WFTGkVHo0+dzqat5F9k/o2u04XBcM0llRAUoxq6mJ232+vGubp4EnOjv55tat7K6vJ1RZSVNz8yETDcc7L/uiUYq6u2msqKC1rg4fJjkpBdyeHkI9PfiqqymurCQB6a27r4+DrktRaemoc/xw/9fw8VLXZV4wyH8sXszL6+spxrtzfKptB25jdE39CuCNgQDxjo6ce/wa+GJPD3dnrMi2FvgQ+bMoh8g/Uq4gRhkEtmBWS3sck8wdTgOwpKeHGQcOsKqujlMaG3Nu+H8AMzIVYGR0ygHa4nF2H2d5gWKkvGAGUNbdzQsPPkh1LEblwEBW9790HIcfPvgg9y1fTrCqKh1ncTzOh5NJNjRkdxv+7YEAtxQUEK+sxLIsKoDPYXqt5pvhZLGmtZWwbbMV2Ar8IxwmGIkccl7GolFCXV3p76+vq6Oi0kx3OlJifKTPZT4HfAMDrKyo4CXNzSwEqgMB3I6OvGlbN1EaM6J+J6NbOF6B6WiTi+3QBoFPR6P8srs7fR5cWFfHJysqpJxNZDVJcsVhacyo5XDCuxVzy3LY2De/Ztum2bJohFFbU8a/K5ia0V8NxDAjsVFgdyhEW3c3ycZGEtXV6WS2m0NXgzvSm3omq6+P+I4d6fKCV61axfL6elo4tNYnl0avHMdhr9/P3+fP5w8+X/p3UTI0xO1VVZyT5YmuH7gZs1QqmIux21Mfp4MOx+EHDz1EV2kpPeXlzFi3jlhlJU90dBAaHEm7fD5f+lycaHeO0oEBFlVVcWpTEzZQ3N3N8w8/TG1PDzWum9UXcFMhDtwWjfK31OqTwxda78Hc/cpF/Zge1H/OOA8WOg4fLC7m9BwrtxDTj9TkisNSwMzUdhkmaXwSk/BuBiIZdYFKa/oSCbosiy7Mrbrx+Dg08S3s6iISDFLX0EBdXR1JTOI5/FGPsx/q7sYfDlNSV4eqrqaHkYS2JxXrcPLqui5OPA7FxRCJYGe0LhpPIuNxFQ0NUR+JjFteUFFaimPb+IeGaF2wALu+/rA/80j1stlmONYzgObnn+fLRUX0FRfTX1jIfxcVUYWp085WrZglcj+IudUeBD6KeaPOxTZNx2qGbXPt2WePXFSlRmu39fTwwKOPErcsBgsLOe3MM2nF/I4OJJM8vH07amiIkmSSl69fTwvm+Rrt7+ehv/+d0kQCS2s2btxI+kyurcU588ycuYCbTM8Bn+rrY2tqtDOiFBvq67m1vJymo353dopjWvJtwVwURZTi1P37efm2bczO83pqkf9kJFcc1hDwcDDID7ZuxV9dTay0lIo5cyg5QvI4nomOmp7I9xxplEphRvhsTOLdBJR0d7PlwQepisWoyvLygsnmOA4/ePBBfrNmDfHUyF+R1lyxdy8X1dRk9e/lKUxLo+Gxy1nxOG/csYO5LS1ZHfdk2rZtG21tbcyfP59TThldrXykuw25dCdiqg1iutX8kpHuCRo4bd8+biov54wcHe0MYy4Od2ccOz8S4cVtbdOuBEXkLilXECck882v3rbpwtS1do7Zho8lxnz/kRLQw5no95RhRu6K4nH827fjc12qXZdXrFzJktpabKCe8W9ZyJv6CMdxeDoQ4HsLFxIqKMBxHFQyycann+Y/16/P6t/PQ5hSheELo9mdnVz87LNcdtFFWR23yA37Md0TdqX2Xdclsn8/L3vuORYFg2bUOwfPMwfTMSFzTsabMXf0hMglkuSKKaMxt78yk96dkQh/376dJCZhXXbKKVRVVqYnZxSkjg9vBUC0p4fnnn2WosFBygYHOWfNGmbX1lIJVGES2wpGJ6+StJ64IPDWYJCd8Xi6U8RH+/q45NRTvQ7tiO4Bbs+4MGqORPiw1py9cqXXoYkcpYH7MKt99WccXwVcFQiQyMHuCcP2YkZwh6coKuBG4DzPIhLi+EmSKzx3PAmoJK3e2B4I8Jbubnp8PlCKxY2N3FFamvU1h9+IRPh/kUi6xGVlQwOfKyuj2evARM7ZEQjwxaEhdtXVpcukioD/AF5NbrdV3AZ8MJGgy3Xx+XxUWBY3A+u9DkyI4yRJrhDimPyrs5NbiorQqeb/szFturJ9Oc8fdXfznYICrNTEwxrMBLUF3oYlcoQG7unq4tNdXfQVF6fnAyy2LN4HzPU4vhP1KPDpRIJ9gUC6m8rnqqt52REm1AqR7Y6U5OZiOz8hxCRb3djIF2prKU+NYrUDn2Z0T9Bs9PraWj5TXU1FKu4wcAsjq1EJcThB4JPA5wsL6SsuNp1btOZMx+GL5H6C+1vMwhU9rgta4+vv59JNm6hpb/c6NCEmjSS5QohxLQduytjf5Lrcsn8/Bx3Hq5Am5EWYlkjDo84JTAeGBz2LSGQzDfwBeAemdaIvVaZT4bpc+q9/cYNl5fRqX0lMXfG3MY/V5/NR09fH5f/8J82xGK2trd4GKMQkkj65QojDOgczgfA7qc4Ff9aaxLZtfGTFiqyukz4VU17xMcwI3RDwGddlk9/PG8rKaM7i2MXU6QC+hukRO8yyLF5XU8PZu3ezYMOGrD7Pj6Yf+AKmTGHYCsvirXV1xE49VeY7iLwnNblCiCPSwM379/OnoSE0UKA1H+rr44oxPVizURBTk/tCRt/lecEgt8+axaKmbJ9KJybLIPAr4KeYZb+HzQBuwNzFyHU9mDsaz2cc2wC8D3J6ZFqIsaQmVwhx3BRwU3Exdk8PCtAFBfxs7lyCXgc2AQ2YVdBmplao0sDuhgbeXVQkdbrT1PPA23p7+XokQsx1ASgErgC+Sn4kuAcwyWxmgnsJpj5dElwxnUiSK4Q4qpm2zZdtmxmVldi2jVtayqcZ3T80W5UDtyrFqvZ20/pJKfrLy/ko8F1Gj+SJ/BXC3Lq/0XXZFAwSCYdxHIfWeJwvAa8nPxLA54Eb+vp4PhLBdV0UcB3wFuQNX0w/cs4LISZkWVMTn6urozTVuWAH8P8w5QzZbqZt87nFi7m5r4/FjY3p3qe/wYx47fcyODGp+oGfAW8D/gokEgnQmsJkkrO2b+e6F15gnqcRnjwPAu9NJNjZ2UkkHCbk93N9Vxev9jowITwiSa4QYsKWA9dm7P8Z+KNHsRwr27a5eulSvlNaSmbxVhumi8R95EbCLiZGA/8A3gn8iJHlxn0+HwsDAa5+5BHWtrczKw+6CySB7wFfBKIZLcIu2bSJGXv3ehydEN6R7gpCiGPyKswo7l9T+19NJOhta+Os+vqcmKldjVnS9F5MYjCAGe37outyTyjE24uLWd7Y6GWI4gTtA74FPDXm+BzgesvCnj0bf1FRXnQX6AU+D2xK7ft8Pgp7e3nl5s3Uua60CBPTmiS5QohjojAz0NuBba6LEwhwe3Exe++/n6vOOy8nkgaFSdZPw7Qa25nqvuBozWP9/byppIS3VFdT6m2Y4hiFgW/39PC7ZJKS0tJ0WUoFcA1wIWaSGbadE+fp0RzAdFDYl3HsxZbF6+vqCEuLMCEkyRVCHDsL+BDwH/E4aE28pITfrFnD2oMHc+pNdS7wZeATjsO9qe4LQ0rxc8zCAG8AzkXqurJdFNMS7OeJBPvCYdAaenpotm0utSyuASq9DfGkewb4DBDLOHY5ZgJdgW1DDj0PhZgs8tothDguNvCBZJJCrVFAuLyc/1u4MF37mCtKgBsti8s3baI5EgGl8Pl8hDEtpd4NPOtphOJw+oC7MN0DfsHIkrUamBEKcePOnbyd/Etwfw98hJEEtxh4L/BG5E1diEyyGIQQ4oTc29XF7YWFWD4flmWxGlPzmmu3iRzHocPvZ/ecOdxTV0dozOc3AG8CWjyITYzWj0n0fo5Z9GCY67oM7dzJ+hdeYF5XF6/auDGn7iwczQDwhZ4efq81vtTzrQ74L2Cxx7EJ4ZUjLQYhSa4Q4oT9AfifjP1zgPdgal9zUQL4NWZ0cLgXsOu6DPb1cX5BAW+oqmKGd+FNWx2Ow6+jUR6eMYPe0tEV0zMwdbcLHYcDfn/e1aN2Ah+Jx3ksFDLlGEqxob6eT5WXU+91cEJ46EhJbq4NtgghstBFQDfwk9T+XzFdDK4lNxNdH/A64Hzgh8B9GcsC/1QpHrQsXmxZXIZpq5aLjzGXRIC7wmG+39NDvKQEOjuxbRvLsmjC/K1exsiksuY8Sm4BNmMWstg/OJgux1h84ABv7uqiftUqb4MTIotJkiuEOCleh0l070vt3w3UAa/xLKIT14AZkZ6/axffGBjgQE0NSmsSiQSbLItNwALgUuDFyAvqydYG/BZ4CAgqRbykBA0orSmJx3mbZfEKTE1qPkpiLhzvwvT99fl8RIEXbd/O6n37mLNxo6fxCZHt5DVZCHFSKODtmBrJR1PHvocZ0T3Xq6BOkg319QTvvZf91dU8PW8evc3N6c/twoyyfR/YiGlTVeFJlPlhELOIwz3A1ozjPp+PiFKUuS5r2tu5ZflyZnsT4pSIYPrfPpVxrMWy+Eh5ORWNjbSuXJlX5RhCTAapyRVCnFT9wMeA51L7BcCHgdM9i+jkcBwHf6rWc9C2uRt4gJGaXTB1u7q3l7OLinhlZSUrkZGEiXohEOA38ThPNjcTLz20Q/Fi4KyuLmbt3cvsPKu3HWsb8FkYNflxJfB+zEWjEGKETDwTQkypOHALsCe1rxMJ3pxDq6JNVA9m0t29gJNRt4tS2LZNg2WxAXgJZuGJQi+DzUIO8BhwfzzOI8GgWVY59buzLIsiTBnIRmCJh3FOFY0pz/geMJRx/EpMOZC0BxPiUDLxTAgxpcqBT2BGnvalVkX7tM/Hxkcf5e0velHeJLpVwL9j6o6/u28fd7kuoYqKdN1u1LL4E/Cn1Ne+CJPwLmd6Jiwa2IspR3gU2J06HhkcRKc+r7SmKB7nSsviIkxd93QQBW6LRnk4mUy3B6vE9L9d63FsQuQqSXKFEJOiDrgVuC61Klp/YSF3r17NzJ4e3pInSe6wYuCyykqK/vY3DlZWsqu5mb6mJuIZX9ODmZR3H+Dr62N+MMgZ5eW8pK6ORvK3Q0M/8I9gkAficdoaGwmXlR3yNT6fjx6gtbub5X4/N61dy8wpj9Q7zwCf6uvj+e5u0JpIqj3YreXlNHkdnBA5TJJcIcSkmQF8YmiId7kuMcsiWVDAz2bPph7TkSCfEjvbtnnVxo3put2m0lK2A4+ktuH6Std1ae/s5AWtuS8Wwy4vZ4ZlsQw4FVgGzCY3R3qHgHZgR8b2QiJBR2+v+YJgMF2KAOYNaBXwIstibmkpsa4uWteuzZuR/qMZAH6E6ckc6e9Ptwdb0d7Om0Mhmlav9jZAIXKcJLlCiEl1emMj39aajytFuKoKy7K4E5P05Wof3cOxbXtUgrY0tV2LmUz0CPDb1Mj28K35RCJB0LJ4CNMqC0y5x1KgNRym/OBBltfXc2pjY1a9YCeA5zo7eTIcpse2caqqaGP0RDyAWMZSu0pr6O3lJala5bVAely3qcls00Q7pnvCcMmGz+ejf2CAlz33HAtDIWkPJsRJkE2vmUKIPLWsqYk7gU8CW1LH7sYkuu8GSrwKbIoozAjtMuBVAwN8+4kn2FdTw8G6Ohhn1DIOPOq6OD09UFoKfX00uy6zLIsWGLU1pz5aJznmOBA4zOYAQdfF6euDkhIIh7EtKz1Cm8nn86H6+mjt6mJhZydvXb9+WpUijKUxExW/z+gLghdZFq+rqqJ3zhxaN2yYNqPZQkwmSXKFEFOiAlOj+wVG+ug+AoQxLcbKvQlryrXYNm998YvTZQ0NPh97MD1ht6Q+dgOJRGLUCGhfIoFjWTiM7p0KEItG6Y/FqCsrw66uxgfjbv09PYTCYUpraiiuqsLFjMgOb8P7kUSCHtdNT4Aaz9j4EokElmXRCCzK2BZYFvHaWvx9fbSuXz+tk7du4CuYFcyGlQBvAi4G1DQbzRZiskkLMSHElEoC3wJ+l3FsLvBxoN6DeLKNBg4Cf+/u5tfbttFdWkqkvJzyOXPGTThj0Sihrq70fn1dHRWVlYd8nTtOi7Pxft5Ev24okSC+Zw81sRh2NMprVqxgfX09NSfy4PPYH0IhvqYUg+Xl6d/nPOB9kNeLWggx2aSFmBAiaxQAb8UsmfuD1LE9mDf7TyBv+ApTfnB5bS0vWbDAjPhWV1ObGsU9kLEdBP7R3U2B1iSVqW6O9/aOm+QebuT1cF9XmExS1dfH3OJiVra00ATYQGPqY63PR2B4hHbZMux6uUQZTwT4YjTKb1K12MRi2LbNlZbF68nfJYmFyAaS5AohppwCLseM3H4FMys/CNyYSHD17t2cXVc3rW9rDxs7kW1Wasu0LR7noYcfZrCwkP7CQtaedRazbDtdftCHKUE4kEzy9x07YGgIS2vOPuMMWhgpZbBSH3tcl788+CAFAwMUFhSwceNGDveXGBufGKGBvwLfBvYnk+kLjIpEgmvb2vj3U07xND4hpgNJcoUQnnkZZpnSzwCR1KIRnywrY/3WrXwMaJUE6qhOSSVLbW1tzJ8/n1MWLRr/C2trOfe009K1wHbd+MssNDc1UX3RRSNfJ3+DYxYA/oeR2lufz0dEKZb4/Zzzwgucc8EFHkYnxPQhNblCCM/tBG7s6qIjGjW304FVPh+327Y0wxc5I4mpNf8hZvR8WCNwZShEY3u7XDgIcZJJTa4QIqstBG4fHOR94TD+mhpQigM1NdwIvAM429vwhDiqduCrwPaMYwrYCLwB8NXXg9QtCzGlJMkVQmSFU5uauFNrftDby19bWii2LOLA7cCTmMlqpd6GKMQh9jsOP+zr45HmZgp9vvTx2cCNwBLPIhNC5OLKkUKIPNVi29wybx5f8flGTXZ6ALgJeMGjuIQYz59CIa7p6uIupegIBHBdlyLgKsyESklwhfCWJLlCiKyzBHPr92UZxw4ANwM/x9Q+CuEVP2Zhk08WFdFdVoYG0JrmcJivAq9DbpMKkQ0mlOQqpS5USm1XSu1USt0y2UEJIUQZ8B7gvYyUKQxhJvV8GNNyTIip1At8D3gnsAnTNQGlsAYHOXv7dj7LoS3ehBDeOerFplKqELgDOB/YD2xSSv1Wa711soMTQohzgKXA5xmZ1PMscF0iwcX79rGxqopmma0uJpEG/oJZvKQ747jPsriipoaX7N7NkpUrpWuCEFlmIndUzgB2aq3bAJRSPwUuwSyxLoQQk64Z+CzwU+AuIOG6tAcCfK2khF84Dh8rLGRDQ4O3QYq8tB2zDPXYevBTgOuBhVVVsHLllMclhDi6iSS5M4B9Gfv7gTPHfpFS6nrMc57Zs6f7wpxCiJOtELgaWAV8MBZLryB1oLqaDxQXcynwRswqakKcqC7gjmiUPyeT+Hy+9BLIdcCbgJdiWoQJIbLXRGpyx3seH7KChNb6W1rrdVrrdY2NjScemRBCjONU4MuDg6zZu5dCrUEpfD4fD2LajP0Us5ytEMejB7gTeEMiwS+6u4mEwziOw1AiwRXANzElNJLgCpH9JjKSu5/RtfQzMZNLhRDCE/Ntm9uApwMBHpw3j+dSo2wu8GPgj5hRXRltExMVB36T2hJAj+um7xbMdxzeGYlw/mmneRihEOJYTSTJ3QQsUkrNAzqAKzFtAIUQwjO2bfMK2+YVwDPAd4Ddqc8FgS8A9wLXIf1KxeElMOfJL4FYxnGfz4cVjbJh+3bmhMOs2LjRmwCFEMftqEmu1npQKXUDZnCkELhTa71l0iMTQogJWgF8Gbgf02Iskjq+HXgfZlng/wCkkEoMGwDuA34GhMd8bjZwjWUxr7GRAwMDtLa2SucEIXKQ0vqQ8toTtm7dOv3EE0+c9J8rhBBH04tZMOI3wGDqmOu6DPX1cVFBAa+vqkLSlelrCNMO7CdA55jPtWBuU56NrJQkRK5QSm3WWq8b73OyKIsQIq+UYepxLwC+D/zFdXEcB7TmR0rxZ8viHMviMkz/XTE9JDDJ7U97e9kzMDCqY0IDpg7vXORNUYh8Is9nIUReagZuARa0tfHNwUECVVUorelLJHjUsngUU6t7GbAeU4sl8s8B4HeYUpYu18UJBkFrIkqxqLGR15eWchFQ4m2YQohJIEmuECKvnV1XR+Tee9lTW8vT8+bhNjenP7cduA1owqxwcz4jSwiL3KWBp4F7MDOnh4vyEokEaE3J4CBrdu/mTV1drF+1yqswhRCTTJJcIURes22bV23ciN/v5z9bW+mzLO4G/spIzW4A+Dbwf5gyh1dhbmGL3JIAHsQkt/vG+fy84mKqtm9nyf79lGrNPGkJJkRek4lnQohpqRtzG/v3QHTM5wqBldEoK/bv56y6OpplZn1WO4j5W/4Z0+92rLWYC5c1QMBx8Pv90jFBiDxxpIlnkuQKIaY1FzMh6W5MI3Aw3RiGJ6tVuC7/1tzMK6uqWIIsLpEteoHNwL2xGP8YGsLKmEgGpuzkPOBizNr0Qoj8JN0VhBDiMCzgIuBCTP3mb4BHUrWbGohZFr/RmgcxfXZfnNoWIQnvVIsA/wAew9Tcxl0Xp6sLUss727bNPMtiI6ZTQpmXwQohPCdJrhBCYBLWM1LbPwcG+GpHBzubmkiUlODz+QDTV/XXqa0JeAkm4V2AJLyTxcEktY8B2xiZRAYjE8k0MKezkyt7e7lq6VL5WwghAElyhRDiEGc2NPDFoSH2+f1EZs9mi2XxGKOXfQ1gloL9JWYRgdMiEebu38/pDQ1Sw3sCNLCXkcR29xG+dklxMQVtbSzw+6lPJDhv40ZJcIUQaZLkCiHEOGzbTk9MOhd4B+YW+cOYW+aZE5z2uC7/jESgooLSaJRzy8o4o7KSZcB8pAfv0cSAf4ZCPBSLsauxkUjZ+IUGCjgV09d4A9BUVoazbBn+mhqZSCaEOIQkuUIIMQFFmFn6a4EB4ClGEt5Ixm3zvuJiHk4meSb1fT7MohOnAstS//ZNcezZJAHsAnZkbHtcFyeeumwIBrFtOz2JrAhYjUlqzwCqx/y8zIsRIYTIJEmuEEIco2Lg9NTWDzwwOMidjsOe+nr6i4vTNbxgkrqnUxtAAaaGd1nGVjN1oU+pAWAPoxPadkbX1cLo2lqlNfT2crZlsQFzUSELdAghjockuUIIcQJKgIvq61kzOEiH38/QzJl0WhZbgS1AcMzXJxlJ+O7GtCuzYjHm+nwsKC+nFbMkcUtqq5i6h3JchoAQpkZ5eNvV08O2RIKuqioKfUcft66wLKxolKZwmPnBIG/dsIGZkxu2EGIakCRXCCFOgrG3zV+Z+tgJbE1tWzCTqoZl9uNtj8fZXlQ0qtcrQCWjk94WoHfXLqK7drFk9mxWLl06aS/kSaDdcXghEKCotZWh+vpRyWwAk8Qnxz6mcNi09UokRpUegKmrnYVpwbYYWAjM8/noamzEPzBA66JFUn4ghDgpJMkVQohJ1Ai8NLWBmWS1DZP0/iUcpjOZZEgplNYkEolDktxoatsx/P3RKKGiIliyBID6aJSaykp8kN5KMf1/xx5LRCKEw2FKa2spqaoigVkMIzHO5gJR18VxXaiqgngcu6LikPjGGlt6UBGNst6yWIRJbBcyfk2y1NYKIU42SXKFEGIKVTBSz3shcPdf/kKkpIRYRQWLX/pSEsCB1HYQU/ObKd7be8h+RWUlMUa3OBvLdV2cSMTshMPYlnXMCet4SThALaZvcBMmuW57/nmq4nGaYzEuv+ACJHUVQnhBklwhhPCIbdtccvHF+P1+0wKrtnbU5zXQxUjSewB4Wime6umh17IYKCyk4jDttsaaaMKayefz0ZtMYvX3U+m6rK+rYwEjCW0TZqS6JPObqqtxVq0aeUwyOiuE8IgkuUII4aEj3aZXQH1qWz58sKmJbaEQbTt2MH/+fJZWVjLA+CUHmdtBrXl01y601pQkk7x43TpaGClnGFveYAGWZREoK8MfDpuEtbLyhB+TEEJMFaX12GYuJ27dunX6iSeeOOk/VwghxPFzHEdGWIUQeUUptVlrvW68z8lIrhBCTBMywiqEmE4KvA5ACCGEEEKIk02SXCGEEEIIkXckyRVCCCGEEHlHklwhhBBCCJF3JMkVQgghhBB5R5JcIYQQQgiRdyTJFUIIIYQQeUeSXCGEEEIIkXckyRVCCCGEEHlHklwhhBBCCJF3JMkVQgghhBB5R5JcIYQQQgiRdyTJFUIIIYQQeUeSXCGEEEIIkXckyRVCCCGEEHlHklwhhBBCCJF3JMkVQgghhBB5R5JcIYQQQgiRd5TW+uT/UKU6gb0n/QdPvgYg6HUQIqvIOSHGI+eFGEvOCTEeOS8m3xytdeN4n5iUJDdXKaWe0Fqv8zoOkT3knBDjkfNCjCXnhBiPnBfeknIFIYQQQgiRdyTJFUIIIYQQeUeS3NG+5XUAIuvIOSHGI+eFGEvOCTEeOS88JDW5QgghhBAi78hIrhBCCCGEyDuS5AohhBBCiLwjSS6glLpQKbVdKbVTKXWL1/EI7ymlZimlHlRKbVNKbVFK3eR1TCI7KKUKlVL/Ukrd63UsIjsopWqUUr9QSj2fes3Y4HVMwltKqXen3jueU0r9RCnl8zqm6WjaJ7lKqULgDuAiYBnwOqXUMm+jEllgEHiv1voUYD3wTjkvRMpNwDavgxBZ5SvAfVrrpcBK5PyY1pRSM4AbgXVa6+VAIXClt1FNT9M+yQXOAHZqrdu01v3AT4FLPI5JeExrfUBr/WTq31HMm9YMb6MSXlNKzQQuBr7jdSwiOyilqoCzge8CaK37tdZhT4MS2aAIKFVKFQFlgN/jeKYlSXJN4rIvY38/ksyIDEqpucBq4J8ehyK892XgZiDpcRwie8wHOoHvpcpYvqOUKvc6KOEdrXUH8HmgHTgARLTWf/I2qulJklxQ4xyTvmoCAKVUBfBL4F1a6x6v4xHeUUptBAJa681exyKyShGwBviG1no1EAdkbsc0ppSqxdwRnge0AuVKqWu8jWp6kiTXjNzOytifidxWEIBSqhiT4P5Ya/0rr+MRnjsLeLVSag+mrOnlSqn/9TYkkQX2A/u11sN3en6BSXrF9HUesFtr3am1HgB+BbzI45imJUlyYROwSCk1TylVgikO/63HMQmPKaUUpsZum9b6i17HI7yntf6g1nqm1nou5nXiL1prGZ2Z5rTWB4F9SqklqUPnAls9DEl4rx1Yr5QqS72XnItMRvREkdcBeE1rPaiUugH4I2YG5J1a6y0ehyW8dxbweuBZpdRTqWMf0lr/3ruQhBBZ6j+BH6cGStqAN3kcj/CQ1vqfSqlfAE9iOvX8C1ne1xOyrK8QQgghhMg7Uq4ghBBCCCHyjiS5QgghhBAi70iSK4QQQggh8o4kuUIIIYQQIu9IkiuEEEIIIfKOJLlCCCGEECLvSJIrhBBCCCHyzv8HGsqZUt8CTpUAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "action_map, episode_map, sorted_idx = episode_parser(df) \n", "fig = plot_top_laps(sorted_idx[:], 3)\n", "print(\"The top 3 highest reward episodes are {}\".format(sorted_idx[:3]))" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Path taken in a particular episode" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "## Evaluation RUN\n", "def plot_episode_run(df, E):\n", " fig = plt.figure(1, figsize=(12, 16))\n", " ax = fig.add_subplot(211)\n", " print_border(ax, center_line, inner_border, outer_border) \n", " episode_data = df[df['episode'] == E]\n", " for row in episode_data.iterrows():\n", " x1,y1,action,reward = row[1]['x'], row[1]['y'], row[1]['action'], row[1]['reward']\n", " car_x2, car_y2 = x1 - 0.02, y1\n", " plt.plot([x1, car_x2], [y1, car_y2], 'r.')" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArkAAAGsCAYAAADZrb8BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAADVEUlEQVR4nOydeXwcd3n/37M6Zla7uo+V5duO7cS3E8eJ7ZzOnZgcHOUolELLWVqgtP21BXpCW0pPaEuhhUKBchMIgZBAyEVCDudwbCc+5UOWrJV2V3vvjLS78/vjO6tdyfKV2J7R6nm/XvPaGe3s6tlr5jPP9/l+Hs22bQRBEARBEAShmvC5HYAgCIIgCIIgnG1E5AqCIAiCIAhVh4hcQRAEQRAEoeoQkSsIgiAIgiBUHSJyBUEQBEEQhKpDRK4gCIIgCIJQdZxS5GqatkzTtBcqlqSmaR86D7EJgiAIgiAIwitCOxOfXE3TaoB+4DLbtg+faL+Ojg57wYIFrz46QRAEQRAEQTgBzz77bMS27c6p7qs9w+e6DjhwMoELsGDBArZt23aGTy0IgiAIgiAIp4+maSfUpGdak/sm4Bsn+Cfv1jRtm6Zp24aHh8/waQVBEARBEATh7HHaIlfTtHrgduA7U91v2/YXbNteb9v2+s7OKbPGgiAIgiAIgnBeOJNM7i3Ac7Zth89VMIIgCIIgCIJwNjgTkftmTlCqIAiCIAiCIAhe4rRErqZpDcANwPfPbTiCIAiCIAiC8Oo5LXcF27azQPs5jkUQBEEQBEEQzgrS8UwQBEEQBEGoOkTkCoIgCIIgCFWHiFxBEARBEASh6hCRKwiCIAiCIFQdInIFQRAEQRCEqkNEriAIgiAIglB1iMgVBEEQBEEQqg4RuYIgCIIgCELVcVrNIARBEARBmJ4UgYKzDITDDAwO0tPdTXcohA8mLJqzCEI1ICJXEARBEFykCGSAVMVyOBbj2MgIgfZ2jJYWcoAFE25NZxnJZknkcugNDdT5/eOCtrTYzv+xLIuwZUFLC1gWIctC1/Xj4tEoi95R06SQzdLs99Pi92MAOhx3qwNWIkEuGmVuaytzW1tpAoJAo7PUn+X3TRBOhYhcQRAEQTjL5ICos0SAA/E4R5JJaltbobFxgqDNUBai4IjRdBpqayGZJOT3TylGx/eNRMC2IZMhFAqdcF/TNMG2sQHNtjFNc8p9bZQ4zloW4aEhsG0G0umTPrdlWYQTCaipgVSKUEPDcfvWw7jwbQJIpWBkhIVNTSxuaaED6ADaEUEsnB1E5AqCIAjCGTAKbB8e5uVYjJquLoqtreOCtiRqcxX7W5ZFOJlUQnRkhFB9/QnFIpy+GD3dfTWgBmjSdcxCAYpF8Plo1nXqUaK26Cz2GT73mew76rw3kdJ7MjKi3pMphHwjTBC97UDNyAja4CBr2tu5oKtLyiqEUyIiVxAEQRAmYQNJ4OgUyxHLYjCXA8M4YdayktMRgAHKw/paTQ1HwmHqxsaoLxbZ0NJCCFUaMHnJjI3x6BNP4MvnqQFuvekmelCitrSMzzA3DMKBAAMDA/T09BAyjClfd0n0HjNNfvzQQ4wChbo6rr7xRhpR5RIWqlSidBu2bZ7s7cX0+RjVdea3t2MzsQSjcAbvSekxB51ty7IIp1LQ0ACmyULT5ALDYA4wG5jjLN1A3Qk/CWGmISJXEARBmNEkgKejUbYnElgdHSSamjiKEllTkTsN0VpHOQNZ7/PRd/gwftOkIZ/n+ssuYwFlURtAidFxgkHC8+eXxWhz84mD7+hg/pYt5X27uk76WkOhEKFQ6IT3lyae+YC5oRB33XJL+bk7O0/8xC0t3Lp8eXnfYHDC3TZKDJfE66F8ngd27iRdV0fG72dOW9t4pjfGREEMx4vimGWxxzDYM0X83SjB25hI0DA0xKUtLazr7JTM7wxEs2371HudIevXr7e3bdt21p9XEARBEF4pNjACHHCW/c5tv2URDofV0LmmnbT2FGDUssgdOkRzOk1wdJQrly9nUXPzhKH1Ria6FITD4bIAPInInEmc6D0pAnHKpR9RoDeR4LE9exjx+4kHg7T19Jz0M7Imfabzu7pYYRgsAZYCFwAhxEmiGtA07VnbttdPdZ9kcgVBEISq5KWhIZ4eGSHT3U2kuZn9KPE0mRMNneuUh8Erlx5dZ6SlhYFslp5Fi06eaXU4VQZ1JnKi98QHtDnLktIfm5t5o5PdntXQQJ2ucxTohwm3wzhZ40mfadyy2GkY7Kz4P43O85eW5qEhcv39ciFSRYjIFQRBEKY9ReAQ8DLwEvBsLsfLpqnqZhMJQoZxwsxfk67jTybpSCRoy2a585JLWIPKyJ4o0yei9fwz+T1vB9ZM2mcUGABeLBS4t7eXcGMjQy0tGFPUH6eA55zFsizCpkljQwPzent5Y10d17S1cerLF8HLiMgVBEEQph0msBclaF8CdjPR0SAxOjpldtYAFgGLUUPWi4E5hkGkq4uBfJ6eJUsItbef3xcjnDXqgQXAgrY2LnNqhGc1NlKr6+yDCUum4nGlzG/SMNjV08M/1tTw36jvyhpgLbAcNdlPmD6IyBUEQRA8jwnsAB5LJnnONIk0NVE3RXauhGEYZItFuuJxQqkUtzc2sgGYxdT97CUzW31M/kw7gI3Oug0MUha8L9TW8qtikTGfDzRtPPPb6yx3owTTRSjBuwZ1kTRhwqDgOUTkCoIgCJ6jiJoY9jzwAipTm7EswvG4mkxkmsdNEGtDZduWAxfpOg0NDYTjcXqWLSPU1nbeX4PgXTTUBc8s4CqAQID+hgaejMUY6unhoK6zB/U9LJFHXWjtAL4K+EyTBdEoN/j93NjWJg0sPIiIXEEQBMETDKIE7fPAi0B60v2TJxO1JZNc1dk5Lmw7mVRDGwrRI9lZ4TSZHQrxuorvSxbYhfpOvgAcqdjXcrrBHbJtHk6n+XxDA9cYBlcB6xBx5RXkcxAEQRBcIQ9sB36eTPLU6CjpxsaT2kItraujcPgwPdEos5NJXnfzzYiEFc4VDcClzgLKv3e7s/winZ5wwZWwLB42DB5G+R5vAq4EViMlDW4iIlcQBEE4b5jAs8CvgGeAkcoShGx2QglCGyorttZZWhoaCC9bJn6zgiu0Adc6y5vyeb7y5JPs7epi/6xZ6N3d4/tlgJ85SxOwGSV4VzB1Pbhw7hCRKwiCIJxTUsDTKGH7PMrmqURlCUJdPs+iWIxbZs1iHTCX4y28ZIKY4AW6QyF+85prlHtDaytZXedR4DFgqGK/JHCfs/hzOZYOD/M6v591J+seJ5w1ROQKgiAIZ50Y8CTwBGqiTvEE+82tr2fRkSPMHxqiJ5HgzttukxIEYVow+YJrEfB2lLXdY84Sc+6zLIsjw8PssW1+lMtxUzrN24JBViJd184lInIFQRCEs8Io8Evg7kyG7fk8xgkaMMxHWTltBBb6/QwtXcpAMCglCMK0RwOWOctvoSauPQb8KJOZUMP7ZKHAyyif5teianhFkJ195D0VBEEQXhWHgPuBh4CYZRGORsG2SWjaeI3tMsrCtmfS46UEQahGNGCls9wxNsbnn3uO7XPncqizc9yH9wDwaZSH7x3AjagJb8LZQUSuIAiCcMaYwKMocbu38u9Oja1m2/TEYtw8NsavL16M9BATZjI9oRDv37SJgYEBtIYGntB1HqRcnx4Bvgh8A7gJuB0lfIVXh4hcQRAE4bSwUQ0a7gceQQndycyvqyO4fz/Ljh6lMZ9n69atInAFgYkjFmuBX0dNSLsXSDj7ZFHd1e4BrgDuQpU0CK8MEbmCIAjCSekNh7k3nebFWbMINxw/mFqLqim8CVjV0MDQypUMtLVJja0gnIRm4E2omtyHUOK237mvgLqQfMCyWBiL8d7aWnFkeAWIyBUEQRCmJAP8TyLBl7NZxmprIRKZ4GM7ByVst6D8QEtIja0gnD71qN/RjcA24PvATpyuauEwYdvm6dFR3p5I8J7mZvxuBjvNEJErCIIgTGAUNYT6HVRmacznG58VXsjl2KLr3ARchNgfCcLZQqPcYW0f8O+RCGHHkaGIEr/Po1wbrkR+e6eDiFxBEAQBUG12f46a/FLy9zQMg4Sm0Z5Ksbq/nw+uWcMi90IUhBnBEuBPamvpfvxxHlq2jMHWVgzDIIZyY7gPeA+wwM0gpwEicgVBEGY4Nsrf9mvAwKT75us67wsGmR+NMnvNGilDEITzRCgU4h1XX82NAwMcDAb5ga4Td+7bCXwQ2Aq8BQi4FaTH0WzbPutPun79envbtm1n/XkFQRCEs4eNGv78CtA76b5W1KSYG5FsiCB4gSxqlOUeJnYQbAbegaqNn4klDJqmPWvb9vqp7pNjlyAIwgxkD0rc7pj09wDwOuA1gHG+gxIE4YQ0oOpxbwA+D7zo/D0B/AvwU+C9iOVYJSJyBUEQZhDHgH9Np3miUJjQdrceZUD/WqDRxfgERR5IAQeHhzk4PExzKESgvR0TJiw5wAKGUimiqRQNTU34g0HyqGxfHmVHVSg9ZzZLOpsl0NBAsKEBHxy3aEANkEunsVIp2oNBOhobMQAdjrvNxGJkh4ZY1NHBgo4OGp37ZmJW8XwwD/gE8DiqgUTE+ftu4P2WxeWDg7zHMOiR0iIRuYIgCDMBG+WY8HnTpC8WG2+729PVxWsMgzcBbS7HWM0UgTgQdZb9IyMcSiSoa2tDa2oiBROWHI6FVC4HgQBkMoSCwfGLkkosyyI8MgK2DbEYobq6E+8Xiaj9stkJdnBT7ut8TxgZIVRff+LnTKfB71fPaVnouk4tEERdMJUWkknsWIxFzc0saW2lA2hH2c+JID4zNFSziPXAt1EeuxnHcuwHwPP9/fwLsGiGC10RuYIgCFVOGPhXVGlC0rLAsSVaeuwY704kuHHVKncDrAJGUZP2XozF2JNIQHs7Y01N46J2hHIdpWVZhFMp0DSIxwnp+pQCstQiuWTfZprmednvbDxnHiXq45WvOR5XrzmVItTQMP58dSixWxK9dYkENcPDrGxpYU1HBy2ICD4RBvAbwHXAX8Zi45Zjh9vb+X8+H58BZrkaobuIyBUEQahSbFQL3i9SbsFrGAa1mQxbduxgVjrNmq1b3QtwmmEDSeDoFEsYMEtZTZ/vVYtXDeisr8eXzVI/NoZeKLCivZ1OlLCpXHLFIi/s2oUvn6cWuGrzZrpQJ/iaimVkbIyHf/UrKBbRfD6uve462lHiu3KxgaGxMR5+7jlGNY1CbS2XbN6MH1UaYaG+TxYw7POxfXgYs6YGq76ezq4uxlCi/3Rf8xgw6CyWZRFOJKCubjwz3KbrzAZmoxqQlG5nocpsBPWe/JXPx8cPHuTphQtB00g0NfER4E+AmXoZKyJXEAShComgsrcvVPxNA96m61zb3s7w0qXSdvckFFGZ2QPAfuDFTIa9lkUhEHjF2c8mVKZSr6lhoL8fv2niz+e5dv165lMe1m9CTTLS/H7CbW0MDAyozyoYnDrY1lZuuOSS8n7t7VPv19HB/GuvLe93kjaxyzs6uGjTpvK+ra1T79jYSHjuXLVfRwchv+rHNUq59CINHCoUePDll0nV15Px++lx6oujqM56J3sPM7rOXmDvpH89alk0J5OsMgzWNTayBFjIzBW+3aEQnwB+lEhw97x5+HSdFPBx4H2ormozDbEQEwRBqCJs4EHgv1CWQyXmAB8GlroRlMcpAH0oQVsStQcpZ79L7VWxbdC0KWtZNaA5myX18ss0ZTI0jo5yw8UXs7StjXZUvXNdxf7hcLgsIGfIhcaJXnNJ7EaAfSMj/OyFFxjx+4kHg/gvuICicbzPx4k+kxpgPup7vgS4ADVRa6Zl9PYAn0SVyZS4A2U1VuNKROeOk1mInZbI1TStBfhvYCXqGPpO27Z/daL9ReQKgiCcf2LAvwHPVPxNA+4E3srMzXBNJg287CwvATtNk6RlTXCbqCSRSJCIx7GBukKBZcEgF3d1MQfGlx7U+zsTxevZpvI97AqFGEG1l+6nXB7yYiTCgUxGZXyB5pYWmpubj3suy7Io5HKsqa3limCQtahs70yo8Y0Af81ED+xLgD+kuppHnA2R+xXgMdu2/1vTtHqgwbbt+In2F5ErCIJwfrknFuM/NI1ixYSeWajs7UWuRuYuNqpetiRoXwKOVNx/sixtCyoT2JFI0P/II7QnEjSPjvKarVtFwLpMOBzm7vvuIxwIMNzSQvvllzPY2DihY9+JPttGYA2w1lmq+ZM0gX8CKrOSc1ElDNUyIe1ViVxN05qA7cAi+zRrG0TkCoIgnB+KwGcSCf4nkZhwMn+9rvMbzMyGDkOoTm6PpVJsHx3FOoH1FpSztAHTpCuV4vL2dq5buJDFTLRUkwyt95jqM8mgyk32AY8MDPBcKkXKME6a7e0GFiaT9Bw7xnUtLcytss/XRrXs/nbF3xqBP0UNz093Xq3IXQt8AXUBvAZ4FvigbduZSfu9G3g3wLx58y45fPjwq49cEARBOCEZ4NPALyqG05tMk98rFvm1i2ZO/jaD6v70AkrcHuPkGdoaYBGwHOiOxej98Y/xmyY+n4+tkqWtGsLhMPfeey/x+nr6OzoIXnEFvY2NJCbtV/ldqS8U2NrZya2Njayjump5HwI+i3KzAMibJrcfPcprGxun9Xf+1Yrc9cCTwGbbtp/SNO1fgaRt2x8/0WMkkysIgnBuOYrqetRP+SS9YGiIm3bu5HW33DKtT1qnYiAc5lfRKOHZsznY3Mxeyh60JSrraPV8nnUNDVw3axYXoSYlVWa4JUtbvUz+bG3gMOqC6AVgJzBU8V2pzPgGgY3AVSgLrmqYsLUbddwYqhD2W15+mT9et27afvdfrcjtBp60bXuBs30l8Me2bd92oseIyBUEQTh3bENlcCvdE25KJNjU28vsKhVqoyhRcn8qxb1DQ5i1tSd0OqgHFqbTmE8+yexIhI5MhtslQytMQR74ZSTCV3ftYl9XF4lAYMrvVDOwMpnkgv5+rmhro3saf5eGgN8bHublbBYbqLFtPp7N8trly90O7RVxMpF7yky8bduDmqb1aZq2zLbtPajGGi+d7SAFQRCEk2MD3wP+11kHJeg+DFzR3Azr1rkV2jkhixL0v3JuTSBRLGLW1k7wUTV0ncWoSUTrUBPt6oJBwqtWSYZWOCm1wDUdHVx04YX0Dwww2tnJy7rOY8BwxX5DlsU34nFoaKAzEuF9dXXc0dY2LcsZuoBPFYv8VjrNcDBI0efjmwsXcg3V19r7dN0V1qIsxOpRbhTvsG175ET7SyZXEATh7GIBnwEerfhbJ/AxVH1ptbBvaIifJZP0dndzIBgkP+n+UmlGwDSZH43y5mXLuKatjSZXohWqFRvVfOJR4JfAwSlKGhY3N/MaVJOF6WjJtXNoiD+srR1vcHIR8DdMvzrkV20hdqaIyBUEQTh7vDQ0xCeASHPz+DDqSuCPUcOo050iasLY91MpfhKLqfraKUoRZqNqJJdEIhh9fVVbmiF4Cxt4JBLhv/bu5eVZsyjU1Ez4bhoooXs7Kks6nXgB+DPKI0O3Ae91LZpXxqsqVxAEQRDc49nhYX43kSBTXw+mSSgU4k5d591M/wP4MPBz4GfOeqJYpAgTShGW6zobgU2opgsaQEeHWgThPKDhlDQUCuwdHOSl+fN5TNfHXRpM4IfAj4DVqRQbjhxhQ0fHtLgAWwv8BvAVZ/vHqE5x17kV0Flmuh8jBUEQqpZDwMdrasjU12MDvmKR248e5f2LF7sc2Ssnj+rIdj/wHOUMEoBhGCQ0jVkjIywZGuK9a9ZUhY+nUB2EQiFCoRBXotrjPgLcjWoJDZCzLO4ZGeGeYJCVBw7wl5rGBV3ez+2+DuUt/Liz/e+o1sgXuBbR2UNEriAIggc5iKq3zQcCkE5Tl89z+wsv8IbNm90O7RWRAr6SSHBfocCYUwNYSRNwna6z1u9Hi0bpWb2a0DQQCMLMpB64Abge1TzgbuAx0wTbxgZ2zp7NB+rq+D3gZsDnXqinRAM+iOoE2Ify0f0b4J+Z/uVQUpMrCILgMXpRAjflbPtMk7f39rK5vX1aDIFWYqKGcb9umhwcGjquOcNaVD3jZUCdm4EKwqvk6UiETx45wqH29gnf8UWoOlevt2cZAH4f1VwFYDXwV3jfH1gmngmCIEwT9qP6yqed7QDqRLPUtYheGXngAeCbwAgTmzMELYtb6+t514IFTC/JLggnJxwO87N4nJ/OnUuioWHCfVuA3wRa3QjsNHkGdbwpcRfwTpdiOV1k4pkgCMI0YB9K4JYyKQHgr1ETQaYLNvAY8DVUe90ShmHgy2bZsG8fSyIRbr/tNhG4QtURCoV4ayjEr6FKGL6NamQC8AvgIdPkuv5+3hgMerKhxKXAW4D/c7a/aVnYhw+ztbl52o0igYhcQRAET7AH+HPKAjeIar85XaaY2cDPolG+XChMsDoDZTD/Fl1nVVsb4blz6bnssml5whSE06UeeCNwLfBF4Akcj+ehIb5UW8sTBw/yj8AcD/4O3oQaUXrM8aT+j9pa4g8+yFuvu27a/W5F5AqCILjMbpRXZc7ZbkQJ3OnS5CEBfDqV4keZjKq5dazO2nSdNwBbAR0gFKJnmp0kBeHV0AX8CcqP9pPJJGFnYtruWbP4KKrBi9cmd2mo2twXUinCts1YTQ1PL1zIloGBaSdyvTzhTxAEoerZB/yhaTKYSGBZFk3AJ5k+AvdXwO8AjxaL4zPLawoFrhwc5L9R9kT6SZ9BEKqftcC/FIssHxhQXs+axrGWFn4fZRXoNQLAhwA0DQ3Y29ND7Zw5rsb0SpBMriAIgktEgY/mchwZHgbbZnRsjL9pbmZhZ6fboZ2SFPAF4GFnu+Rxu/zoUTYeOMCbbryRoHvhCYLnmB0K8c/ANzIZfjp7NvW6zhDwh86ywd3wjuPKjg6uTad5rlDAMAwe1nVWuR3UGSKZXEEQBBcYRWVsB0dHwbbRx8a48+mnqTl61O3QTskzwAcoC1yAWbrOpwMB/p/fz5tuvHHaDWsKwvmgOxTiw4sW8Qldx+/8zUSVJ32Pic1RvMBvB4M0OzX2vwCG3A7oDJFMriAIwnnGBv4VVapgGAYp4Jbt2+nM5ejp6XE3uJPQGw7zubExtnd2TphYtgV4FxBsb4f2dtfiE4TpwqXAP6DsusKoY8LnLYttQ0N8sL7eM84LK4EVwC6ULeD3gPe5GtGZISJXEAThPPMd4FFnXdd1PtLUxIpFi+jp6fFsBvTpSISPxOMkDQPCYdXiVNf5AKqRg3Du6QuHORgO0zJrFo2dnZhw3DIYjzM0MkJzWxvB5mYKKHFScJY8EE+lSCYStDQ10dLUhA9l+K+hhndTiQSpeJyu5ma6W1rQUXXVRsVtOhIhfuwYF4RCLOzqUnWmwhkxD/hH4G+B5xwng5/YNunt2/nYmjWeORa8CWVtCMr7+g1Ah3vhnBEicgVBEM4jTwFfrdi+Gfj11la0Vu9axP8S+PPaWpKGgQ1ots1FkQh/PXs2TW4HN43Joeqyo8D+WIyD8Tj17e34mptJwYQlYpr0WRY0N0MuR8iyjmuNbFkW4WQSfD5IJAgZxtT7jIwoF4x4nJCuT9jHsizCiYTaSCYJ+f1TP0c2C01NYJp0Wxbtuk4jTFjsZBI7EmFxSwtL2troQNnJ1Z+1d3D604wqVfhIJDLuvPDY0qU8Fovxeo+I3DXAhSgXmDzwfeDdrkZ0+ojIFQRBOE8cQg1RllgJvAc8mwWzUU0dvg3U+P2QTKKPjXHdyy/z4UsvFYF7CkZRrVKPArvicfam0xRbWjCDQaKULeMsyyKcTkNNzQnFadKyxt0rNNvGNM3j9jFN81Xv80qeI2eapHR9vA31+GuKx9VrSqcJBQLjz9OEygTq6TR6LMaFjY2sam1lDqobmFd/D+eKWuAPamt5eWSEcGMjts/HtxYs4FrAC8U/Giqb+xfO9v3A61EXLF5HRK4gCMJ5IIHqXmY62yGUf6ZXD8JZ1FDq0862ruus7ejgzb29rLv0Us8MpXqBUWBbJMLz8TijnZ0km5vpQ03SsanIsNo2xGKE6urOWFgahkHatqnL56kvFLigro42VOlAaRnTNHYfOYKvUKAWWL92LW2o75jPuU0Wizzz0kvYtg0+H+svu4xmJ84iELNtnt6/X5U31NayfN066lHfW8tZorW17EmnsWprserqMAzjuPfkZK8pCQxbFuFYDGybe1IpQg0N6M5krNlAUyqFPxJhbVMTl7e303IWPicvMzcU4p81jT+srSUfCGDqOn+LKmWoczs44GJU58V9qO/73cBvuRrR6eHV46sgCELVkAc+nsmwL5/HMAyadZ2Pg2czoQOoIdS+ir9dAvxhQwOBlSvdCcojmMBBVEeoA86yzzQ5ls1CXd2UmdgTCb46VKZufm0tg+EwDaZJQz7PlevWMR/V9a6pdKvrxP1+jg0MqNrthobjg2tqIrx0KQOlfVpajt+ntZUtF19c3mdymUxLC7euXFm+v2mKb2kgQLijY3yfdl0nw8TyiiPFIg/t20eqvp6M309XRwcmEEOJ6RO9JzlgV6mkwufjG5kMoWCQ2brOEhhfLnDel2piRVcXf4eqfy2iuiB+AeVD7TalbO5fO9s/QWVzvdbIYjKabZ99w4r169fb27ZtO+vPKwiCMB35p2SSr8TjYNtowN8Gg9ziUReCB6NR/t7nw3YyawCvBd7OzPOctFGlBi8BT6dS7DBNEk1N1E/KsiYSCRLxuBJsQHNLC83NzWhAN9CSTjP83HM0ZTI0WRa3b97MhZ2dBCkPzYfD4bKwrJIs+VSvqQjEgd2RCPf86leMNDQQDwRoW7WKkUCADCd+PyuxLIuWZJINus6VTU2sRDUwqAZ+gGoFDOp13tXXx2sbG13/XtioBhG9TlxXDA7yHsNwPS5N0561bXv9VPdJJlcQBOEcshP4oW2PZ6027ttHt0ettu6Nxfh4Ok0RIJViblcXf2AYXONyXOeLUVSG9iVn2Y3KSk6YrJXLEQqFJmRqDcPAl83SnkzSkc1y25o1rAZ6cCZZBYOEly0rC74pmn2EQiHXxcLZZqrX5EPVcm7q6GDxhg3l9yQQwEaV9bwwNsYPX36ZSCDAcHMztZOew3KcCMK2zZ5cjgd0Hb+usxTVWWx2JEKgr4950/SC4Q5UWcDPnNf5XzU15H7+c379+utdfT0a8EbgL5y4flgo0PWTn3DXrbd69n0WkSsIgnCOMIF/AXTDAE1j/vAw6w8fpmeV9/oG/RL4B5+PIipjEzRN3tXbyzXLl7sc2bmjAOwFXgAez2R4aWyM2incBCYPrbckk1ze2cliYDGwSNdJtbUxYJr0LFhAqO34KTnVKGJfLZPfEw1oAa7p6OCideuUAA6F6DAM+lDCby/wRCLBcLFIQdMmlDrsBrY7zg/1TU0sOniQd9bWcl17+7QSOxrwu8CzySRh2ybv8/HMggVcOzDg+ndoI9CYShG2bcZqajja3MyAB+I6EdPpcxcEQZhWfAll9K7rOgu7uvhQPM5FW7d67oTwGMr1od5xUGjNZHjts89y+Q03uB3aWcUGjqFE7XPADtQEO8uyCEejKlObTE7I1DYBK2pqSO7bR/fICF2ZDHfdcguTP8EGEbFnlckCeIGz3AC83rb5wUMP0d/UxNGODurWr+cY6vMtXZBYtbXsnjWLT9bW8mWUOFsRjdJ85Ahzp0GG1wDe6/PxQUfI75k9m/qp6rDPMxqwqb6e/dksmm3T39Hh6QY2InIFQRDOAS8A91Vsf9AwuGb1apeiOTGPoFwUbMoOCu+Ix7nohhs8LwROhzzwInB/MslTY2Nkg8GTZmpbMxnWDA9z45w5LEeVHGjBIOFVq6quZna6EgqFuPPWWyeUOqRQn/OjmsZPTFM1LdE05UoB3GtZfDGTIRAIsGbnTv5Q01jU1eXyKzk5V7e3c6Vh8KIzYfVRXWeF20EBVzU1cb+uY5omNZ2dU0+C9Agy8UwQBOEskwE+AESc7cuBP8V7/p8PAf+MErgAc4FPorxKpzMmKlP7BLANiDk1hNg2aNqETG0HcEEySfKxx+gZHiZYKLDVg9l24fQZDId5Khqld/ZsdjQ3M8zxk9m6mpp4Q2srd8BxWXkv8QLlbmO1wH/jvnduDngzqtwHlJe2my4LMvFMEAThPPLflAVuI8oCyGsC97sjI3zW50N37K7mowSu1y2BToQJ/DgW4xemyeG2NrQK79bKTG1dPs8F0Si39PSwDuXJqjU1EV6/XjK1VUJ3KMQdzmdoo+p4f6xpfGdsjGxdHWgaWkMDPwK+Z1lcFInwrro6Vngws7sGWIayEyt1G3uXqxGBH9UBbZezvR24yr1wToqIXEEQhLPIM8DPK7bfD54zsr8vGuUT6bTK4Goa6zs6+GRDw7QTuDZqMtIDwAOmyeF0WmVrh4YmZGvn1Nez8MgRFobD9CST3HHbbcdl72RiWHWioUTisqYmfi2X495kkqdnz2ZY18ddGgZtm8dGR3l3PM47Wlo81Xa45GjwV6ja8W/mclw1OsoylwX5Wsoi93lE5AqCIFQ9KeDvczkSo6MYhsH1us4Vbgc1iUPAP/l82CiR2JlM8psjIzSvWeNuYGfAgaEhfpRKsWPWLIacesDEpLa3Lckkd3R2shFY6PcztHQpA8GgZGpnMHNCId4bCvEelDD73MgIYec7k/f5+Lqm8Vg2y819fdzQ0uKZ78l6YFYmw1PO5MhPHT7M39q2q/GtBb7urL8A42UgXkNEriAIwlnis8kke52mD2NjY7yuqQk8NASaRHUs0hoaIJWiOZvlzueeY+lNN7kd2mlhAl+Jx/nvdJrR2lqIRMYztiWv2mX9/SwZHuZtW7ZMyNZKplYooaHa1H5C0/j8tm08smwZkaYmanw+dkQi7DAMfrF7N58EZnngO6MBm44e5SnDUOUXoRD9Ltt2LQEaUO4kEVSXxNmuRXNiZloDG0EQhHPCQeD+iqYP1+zcSbK/3+2wxskDfwsMoVwU5nV18cf5PL92002eF395VBvRdwFf1zRGa2pUqYVtU8xmuQ74F13nm21tvLe9XQlcj78mwX1CoRDvueIK/n5sjD9qbETP58d/v9sWLOCP4nGOhMNuhwnADS0t1BWLaEDK76d2zhxX46kBKt2+n3crkFMgmVxBEIRXiY1qw1nZ9OGCaJSejRvdDg1Q8X0e1X0NVGboo4bBZStXuhfUabID+HQ2y6GxMQzDwDAMEppGWzrNuiNH+L1161hY2jkUolvErXAGlDL8lwCXDw3xkUiE3o4OALYbBn9w6BCfAde/V7NDIbak0zxZKGAYBgO6jtuGhOuAp1C1wvdFo1xaU+O5i0vJ5AqCILxKtqFmGOu6zqyuLt6v656yofoJ8NOK7bcBl7kUy+liAf8FfMSy2B6JkIjHCYfDtBaLfLSxkX+wLP543ToWeuQ9FqY/i7u6+NycOVwbj4//bXd3N/9x5IiyoHOZzcEgzc3N6LruiczpWsotlp/O5bjnxz/2xPtUiWRyBUEQXgV5VBa3xB2GwS0eypC+CHzWNMlaFoZhcKOu83q3gzoFe1D+vf2U7b/q83ku6e3lnbEYG9auhdbp7uYreJFZoRB/CkQOHGDHbFVl+qOODtp+/nPefP31rk/2KvEiUMTdTGUPUJ/JjHeYi9fXe67Fr2RyBUEQXgX3ocQYqIkYb3ExlsmkgU/kchwbGiIRj8O+fbwxHPbkLGhQFwyfTSR4dyJBr2UBYBgGC6JRfv3xx7n0yBHmz5rlbpBC1RMKhfjU4sUsLBYBKPh8bJs3j4GBAVfjmke5UUsaOOBiLKDKnubpuvIdBnINDZ5r8SuZXEEQhFdIGvhGxfYb8VYzhf8CBkdHwbYxRke59bnniKxaxVwPZVpKpICPp9M8lEiMdyab39XFHxoGq2bP5pimif2XcN6YEwrxu9EoH8lksG2bl+bMwRoddTUmDZXN/allYZomD9s2S1paXI1pfiDA/tpaTNNk5TXXEGprczWeyYjIFQRBeIV8EyXOQLUGfY2LsUzmKeAXMD5R69qXXqJxbMxzmRZQ3r2fAPYWCuOz2+dEo3wwkeC6VatkQpngCte1t7MOeD6dJu/z8ZWjR1nosn/u/FiMsNP05J5YjNtdvvDrQM1F0HWdomtRnBgpVxAEQXgFDADfN00SiQSWZfEOoM7toBxSwL8567quc1drK2+cN89Tk+FK/Ar4QyCMEuRoGpft389rn3uOlR7yGBZmHhpw+cjI+HZfa6vrJQsNAwPjF4IJw3A9no6K9cgJ93IPyeQKgiC8Ar6QStE/MgK2TSCRYHEoBB4RkP8JxJ31NuAjjY00rlvnXkBTYAP/FY/zNU3DMAx0XadZ1/lwIEB3Wxs9K1d6TpALM4+rmpr4nGmi2TbHWlvpcDrsucVFnZ1gWWi2TdrvZ5bL5QHtFesicgVBEKqAAeChYnE8o7Jp926OFQqeGFL/USzGj2pqxoXjB4BGt4OahI2aYPbFZBJsm4Smsaqjg082NDC/vR3a20/5HIJwPlje1cWabJYDuRwA+4G5LsazIBRioWkSc9xS/LruYjQTM7lR16I4MVKuIAiCcIZ8m3Ljh3nRKD2plCdqXfcNDfHJWGzcU/ayZJJL3Q5qEjbwZeC7MH6RMDsa5b379jHfzcAE4QRclM+TzmRIp9N8+4UXXPeCnW0Y4365bgvLSpE77FoUJ0ZEriAIwhkwCDyEqnUNhUK8wzA8U+v6JcsiV1eHDQRzObYcPOh2SBOwgS8B36dcf7tweJg7nn+eJd3dLkcnCFPjHx4evyBL6rrUwVbQCuOWhAlgzMVYpkJEriAIwhnwXRifRXyprvO65cs9IXCPAM91dY17Vl67ezeLPSQcbeBfEgm+4kzU03WdW9ra+FhNDXfedpsn3kNBmIoLWlvHf1cZv9/1URsv1cHWoOr+LcsikUiwZ9hb+VypyRUEQThNhoAHK7bf5FYgU/BFoN7JLs8fGeEDl1/uKeH49ZERvpxKjdfgbm1t5S8bG6n12IQ4QZjMkrY2QoEApmnS2dlJyOXJZ50oUWmapmoI0eyuO7eRyRCORsG2ufuZZ+i88krPHHskkysIgnCafA/VlQtgOeCV5r3PAs8564au89Hubk9MgiuxHfhvTRsf8l08OMid+/dLlkWYFrSjypMMw6DfNF2vydVGRgiHwyTicZ54+WXX48k5vr02YNu26+UclZyWyNU07ZCmaTs0TXtB07Rt5zooQRAErxEFflThi/tm8ER73AIqi1viJmCBO6FMyTHg74B6vx80jVAyyU27djHPAxP1BOF0aEVlTsPhMP2pFPfce6+rwjLuZE1toOgBUdkQDI6Xc/iczoRe4UwupK+1bdvt8g9BEARX+EoySX88DraNP5mku6vLE7649wN9zrof+HUXY5lMFviTbJb+sTEMw2BZZyfvi8dZfuutnhnOFIRTUQNYplkWlsUiAwMDrn2HW9vbIZVCs2184LqobAgECDmtfa+95hpCHR2nftB5QkaLBEEQTkEKuK+i5ez6/fs5ls+7XhKQAb6Yy5EYHcUwDN6u67S4GlEZG/ibVIrnnYYZadvmL4JBNq1e7XZognBG2JQtAzXbpsbnc1VYNre2EmpowDRNVrW2Empqci0WcN4fp7Wv13oUnm5Nrg08oGnas5qmvftcBiQIguA1fgJoDQ2gabSn0yyMxVzPngB8NZFg//AwiXic3KFDXOZybV4ljwGPVjTM2LJzJ/6+vlM9TBA8R0nEhUIhWlpaeI3LloGleJqbm2l2WeBC2W0GvFHCVcnpitzNtm1fDNwC/I6maVdN3kHTtHdrmrZN07Rtwx6zkBAEQXilWMA9lE9yb66vd/0kB6oU4O4KEblh3z4iHpnwMYJqLVzywl3R389F4bAnLgwE4UwpUnYz8DvHATexK9a94B7gtXgqOa14bNsecG6HgLuBDVPs8wXbttfbtr2+s7Pz7EYpCILgEj8Hks76HF3nnUuWuH6SA7gXsJ3scks2y4VDQ54QkTbw76gSD13XWd7Zye82NHimYYYgnCmD4fC4m8HQ4KDrbgYl0Z1IJEglk6fc/3zEU2LaZXI1TQtomtZYWgduBHae68AEQRDcpoDqzlXiLrwxkcEEfkA5u/yW2lpu90hDhe/HYjzgOFAA/LHfz6a1az0RmyC8Eg6Ew+MjJnX5vOtuBiMVFmI7X3zRddFdmcn1msg9neN1CLhb07TS/v9n2/ZPz2lUgiAIHuBxoM8Zpuyor+cGv9/tkABVI5xy1ufqOr+9ZIknxPeBoSH+PpXCrK0loWm8paWFNR6oGRSEV0N9Tw9ks2i2TdCyXB8xORaPg8+HDWiFgqtODzCxnCMyOsoCD43mn/K4aNt2L7DmPMQiCILgGWzgf7NZwpEI2DYX9vaSWL4cw+WMpMXE7PKv4Y3sMsCXTBOzthYbaM5muToWg7Vr3Q5LEF4Vvo4OQo6IW9feTigYdDeg9naIx9Fsm8bRUddFd6riOPnQE08wd8sWz4zceK1GWBAEwRM8B+wdGwPbpqZYZOXhw64PUwL8FBhy6vECuRzXuR2QQx/wbFfXuCn8VXv3snDWLLfDEoRXTYSym8ECtwUuMNbURCgUormlhRsvucR1p4dByxov5zBM0xPHyRIicgVBEKbge1S4Axw9SqBQcD1jkge+nsuN1+OFHn2UqEdsw/4HqDMMQqEQ63Wd373sMs9kcwTh1RClPNGrNpFwOxyilEX3krY2V2PJUrZXrCsU8BeLrh8nK/HKKJdQhdioodU0yrQ+U7FeeTuYTDKSTNLU3ExjY+Nxz6NNsZ5KpcjE4/Q0NTG7uZlGIAg0OktpvR7vFcIL3mcvsAN1IpnV1cVvJhKs9IA7wCPA4Ogo2DYNlsWFR48y0NXlelwvAM8464au89HubrpdjEcQziYHUynCTlOTvS+9RPjii139zUUr1ttdi0IRozwBtjGV8oS9YiUicoVXRAE1hBN2lkHntjeTYTCXQwsEKPj9FE7xPJZlEXZapTIyQqi+Hl3XT/0Y54BDIkHIME74mDqU2A04t1o6TX0sxoWNjaxqbWU2qi+5CGGhku9VrN9oGFy3apVrsZSwKWeXE5rGmiNHqMf9lp5F4DPZLAmnde9WXWeRqxEJwtllTy43PhzfmMm4OtErj/KhLuFuHlfpAFBCd5mu4x15qxCRK5yQfUND7IxEoLubsba2cSEbBoaZ6I0HjviMRpX4zGYJhUKnFKxmRT9wzbYxTfOsPmYMdaUZK8UXi4Ft88NUilBDA7qu0wDMBuY4t6X1HlQmWJhZ9AMPWxY508QwDF57iu/j+WIbqu5V13XmdXXxGyMjLF61yvWsyQ9jMZ5Np8G2yRaL3BgIQJfXmnsKwisjD8SbmsA00WybrkzG1QvLOGA6k+BC9fXUuuz44qWs8lSIyBUA9UM+AOx2ludzOV42TQgEIJ0mFAi8IvHZqOsEUZnU0m2gYjtv2+x4+WW0fB6fz8fll19Oa8Vz2sf9FxgpFnly1y5GfT5G6+tZdskl+FCWSumK26Tzuk4Wn67rZIF9zlKJBnQCLek0DbEY64NBrmxrc/3KWTi3fDmZZNAZXWiLRPDPmQMeGH6rdFS40zDYtMZ90xsb+EahMP67WnvwILnWVhG5QtVwFKhxas396TSvv/lmVy8sd0cihLNZsG30VIpwZ6dnSic6XIvixIjInaFEKQvaPcB+VNazRMKp+ztZtrQVZaLc7dzWF4u89OyzNJgm/kKBu268kTnNzScPpKWF8Lp1DAwM0NPTQ+h0iuhbW7nykkvKjznB/7CBUcqi99DYGD/dsYMRv594MEhrRwcjqML5Ez2+z7LY5mR/73HE/kJdZyWML95xBBReLUeBn1W0yl138CADPp/r2dK9lDvw1AB3uBhLJY/jZLlyOerzedb19dGzYoXbYQnCWeOgc6vrOpd6YDh+RzwOdXWqdCKbdd0jt1LkejEBJCJ3BjAG9FIWtbsp19GcCMMwyBSLtGQyNJsmV7a0sIRJonbyg1pbCW/eXBafp/nDC4VCZ/wjPZ3HaIDuLB3Ago4OLrr00nJ8gQA2avinHyVwjjrr/ag646myvwO6zgDwgPN/uoBVwAqU6O1GanynK18G6v1+SCaZE40yO5FwveYV4H9TKRLFIoZhcLOueyJjYgPfojzp5Mpjx1zPcgnC2eYg5UYHbQCnStycYzJdXeMeuZ3ptOsXlRHK749WKIDLbg+TEZFbpWSBp4DHgKdMk5RlYZxkghYocXZhadF1jIYGhuJxeubOPWG2dDKvRLCeTybHp6Ey0q0ogVrJGLBjdJTvvPgiw4EAA+3taFO8tiHgQWcBVZe0ApgzMkLH0aOs9sDsd+HU7ET9Zkqi7T2pFJd7YKbwi8PD3JvNYgMJTeNKvx880FHoKeCQs96s63xwwQKkt5lQbexIp8fncvS9+CLhDRtcPSZEmpoI6TqmaXLnmjWE2t2thO2raASx/ZlnuPTKK10/ZlYiIreKyAFPo4TtcyiRZlkW4aEhsG0SmjY+GUwHllAhaoHjZGwoxGwPfVnPN3XAxZ2dzN6wQWV/u7tpNQz2ArtQouhllE1aJVHgZ5ZFOJWCpia6hod5o65zW0sLYo3vTWzgSxXbN+s6d3hk2P3rpomNinH+8DC1Pp/rItcGvljhqPBaXReBK1QdRWCX0xDGBtoTCVfLA2zUhaWu66p8wpUoyhSBgxWNIILptOvlE5MRkTvNMVH+lL9Ezb4enXy/M9zelM0yK5HgyrExblu8mPmo2j7h1EzO/pZqcd9IecLeDpTofQl1sVFZ5jDU2Mj/aho/BBYBm4ErUO4Ngjd4DNjpDLk16jpvNQy3QwLUBdOOzk4YGkKzbS49fJiezZvdDoufRaM8ncmAbZMpFtksjgpCFXIQoKEBUimCpkmLZblavjSM8pcHNXHbbTeDY4DPeX8aLIugBxrmTEZE7jTEQgnaX6Iyt5OFbYlFwCrbJvn44zRmMvh8PrZu3ep64Xw1UQssc5bXo/yDDwK/tG2+H43S19ZG0edTnbNQtdG9wFeBBSixewXKtkxwhxHgM7kc4eFhsG0uOHQI+8ILPeGo8APKM7tnxeO8e/NmT2RJvlmR3VrR10emsVFErlB17KRcvrQ8EnG90cHBivWFuD/34yDl92dBLKb0hQeOT5WIyJ0m5IEHYjEeyOU40N4OJ8g0LQCupCJT2NJC+LrrzngymPDKqAEuAC5oaeGW2bM5MDjIsblzeUnXeY6JlmaHnOVrqM9tZTzOwr4+1kgN73nDBv4ZGKroInZxby8DTm94N0kB9znruq7zgVDIE13E9gFHW1shHMZXLHJxXx8911/vdliCcNYpOZrous5Ns2e7niCqnATXrmnQ5G6RUKXzxMZZs1x/f6ZCRK7HGQV+Dnwtl2OXY7jO0NCERgvzKAvbOVM8h9cng1Urle/761DDTE+jbJdKNdMl9lgWjyaT0NTE7MFBfruujq1tbdKM4hzzv/E4D2saNT4fGnDDjh2e6b1+D+V67wXAevdCmcD3KWdvVkYivPn66+X4IlQdNmruRYnJE5Pd4PmKSXADHmgvXJlZ9mqXQxG5HsUCfoo6ocQ43re2KZXiLl3nSpTIFbxPALjWWbKoWurHgWeBREUNb39LC/9SU8N3nH1vRIkc4ezyYDTKv6ZSFDQNNI031tVxy6JFnhjxyAHfNU0SjivKG3Td9aFJULZ6jzvruq7zux7IbgnCuaAPiDhZ0876eua43FnMBrZXlAmFRkZcn+Q1uXzCi4jI9Rg54MeoWrxExd8Nw2B0bIzlR4+yLBzm7ddc44mhS+GV0QBc7Sw54P5CgS9HIhxqb8d2anjTwI+cZRlwEypj740pUdObB6JR/mJsjLympGNXIsEN+Tzr1q1zOTLFN+JxepNJsG20XI4LWls9UyNc6kK4Du+e2ATh1fLIyIhyyLFtOoaHGZo711VBeRgoVkzyasvlXB1xSlH226/Du/NKROR6hAxKzPwQ1Z2rklbgtbrOusZGYs3N9Fx0keuZJuHs4QfubGtj49gYL4fD7J03j6d1nXDFPnuc5QvAumSSFUePcll7O93yPTgjiqgShc+kUuMCN2ia3Prii8zzSF1pCvi2bU/ouhbO5ehx+bNOAveaJkknu/zaU7T5FoTpzGMVo2tzIhEGampcPe/uolwmtCwa9cQkuFJ98IW1tdQEAq7FcjJE5LpMEiVs7+X49rIdqBn7N+B0FwuFmC+ipmop1fBeA7wL2A7cDzxJecJawrL4VjwOgQAdkQjvqK/nrtZWvHl48Q4FVD30VzIZnrOscYHblMvx3r4+bvBQXem3KGdsWjIZlh87Rs/FF7sdFv+XSNCXSIBtU59O093R4YnssiCcbXI4kysd675F0Sg9Lo/yVE6Cu7Gnx/UyoefjccLOaFPq2DHCCxd65hhaiYhclxgB7gZ+wvHNBLqBNwBbkA9opqIBa50lAfwC1UZ4V0V2IRIM8gWfj7tR3rs3Actx31bGK4yish8PJxI8lM+Tqq8nNjKCbasB9/ZUiju2b/eUwD2GKlcqZWzecvgwt9x2m+vxmcAPC4Xx797a3l6OjY7KSIJQlbxA2bqvLZl0fXKlTVnkgjcmwW3LZsePBx3xuOv1wSdCNNR5ZhT4fCLB3bZNrd8/oc3ubFSDgauQRg1CmWbgLuBO4LGxMf792DH2hUIUampUrTbwkLPMATbE4yw+fJhl3d2ePOicK2zgKMq54jnUSSFlWYSd7GNpn5pikUsPHGDr6CiXeUjgAnyFctZ+ra7z9qVLPXHR8lOgEAhAOk1zNsuy4WF6NmxwOyxBOCc849zqus5tnZ2uZ00HgLBTGtCm68x3uVmNDRxrbYXhYTTbZk4i4Xqm+0SIyD2P7Ac+kc3yfOmkm0yq+hpd543AJsDncoyCd9GAqzo6WFYocGBwkINO7W5vxT4HLIsnkkm05mYWHD3Kb9bVcXNbW1VOVhtFdZvbi6pXfi6XY2B0FMMwxi8eKzvP+UdHWXH0KCv7+mgeG+MyjxmXv0zZuQDgt/BGVn4MNepUyi7f3tfH7R7ILgvCucAGHsvlSDjHkg0eqD1/rGISXFskwvCcOa7+/voBy+8nFArhy2Z5+zXXePZ4ICL3PJBH1dl9GxipsADpSiR4ay7H25Yt88TJTJgelGp3NwFvQV08PQA8TNmKrKhpHOzo4J9qavgacDnKyWEd0/NHnweeHx7m+XickVCIwaYmDqJqbUFNgCh1LEto2riP9MK6Ouy+PuYODzNvZISrNm7EbGnxhE1YJTbwmUyGRD6PYRjcoOssczsohwdRNoYAs3Sd91xwAXVuBiQI55BfRSLsdYbiR8fGaGpsdL32/PFcblw39MRiDPh8rh6/KuuDL9N1Tzs9Tcfz3bTiEKqjUinbZhgG2WKRjXv2sKa/n5u2bhWBK7xiNGCJs/wWcE+xyJcSCY41N4OmYRgGFvCIs9TlciyKRtnY0MC1bW20uRj7VBRQXqyHgSPO7WHgoGkykMtBfT3E44R0fUKpTyljW5fPMy8aZcvoKL92wQV0NTQQXrKEgUCAnk2bPCVsK/lBLMYTTrOXtG1zS0ODJ9rkFoDvVWzfBSJwharm/kwGUBee84eHGUylmOXicWMMONTWNj4JbmE0Ss/q1a7FA95rknEyROSeIwqoIb6vM7GV61pd563BIIVQiJ516zx70hWmHwbwa62tXD06yvahIQ7NncsLuk6fc79lWRwZHuaAbfOzdJrPBwIs1nUWJpN0DQ5ycWsrKzs7z3nJTB4YQk2yGnSWY0BvNsuh0dHjatUBMpY1oRmKaZrous5slIdwV7HI4aeeoi2ZpE7T2Lp1KyWJ6PWOf8PAf2ra+OtbffgwY01NnhC5v0R9PgCNwM0uxiII5xob2NPVNV5rujQcpmfjRldj2gXgTIILplK87dprPTUJboVbgZwmInLPAf2o7O2eir/VAW8D7gB8nZ3Q2elGaMIMIBQKcaNzELRRowmPAN93MoWVQvEA8EQ8DroOuRxzTJNFhsEcoDGRgOFh5ra1Ma+tjQCqa1t2aIjwwAChnh7au7rIoy7q8sCx4WEORiL4QyF8bW0kgTjKIaI/k+GIaZILBqmfJGItyyIciUyoVa8UuoZhYJsmbakU3akUr1+9mo1AsLRDayvhq69mYGDAc6UIJ6MA/ANgO5ZhjbkcGw4doudm9+WkDXwlmyUxNoZhGPy6rldlbbcglNgFZJxa05pMhvdu3Oj6seRp51bXdW72QGnAMOUmEAbebedbQkTuWcRG9Zv/X9SkmBJLgA8Dc90ISpjRaKiuVAuBm/N5vvjMMxxpbeVoezuEQqQqJmZptk3KsjhkGOwpuRLU1UE6TSgQQNd1JUZNE1pbwTQJWda4GLUsi3AuBw0NEx4zfl80qkRsJnOciK2cIBY0TRbEYmyYNYv5wHxgnq6TaGlhIJulZ/lyQu3tx71Wr2dsp+JbwEuoE9isri7e1dvLFTff7InX8ZNYjGedC6NsscilgYAnssuCcK541LnVdZ1bnJEiN7Epi1wAL/iZ7KDcBGJpTQ01weApH+MmInLPEoPAvzIxjV8LvBl4HWIJJrhPdyjEb195pcp2zppFq2Hwy0yGrx86xLGmJkYaGzEcaxpzkvgtlQec6O8ne8xU9xnpNCucrMQsoL5QYNfTT9OUydBQKLB169bjbHuMaShiT8ZO4JsV2+8wDF63fLlb4UwgD/xPsTj+ma04coSkR0ooBOFckEeV55S42q1AKjgK450vDbxRGvB4KkV4ZERd/O7fT3jlSk8fl0XkngUeBv7RNEk47S51XWchKnsrvd0FLzE527mlvZ0VF16ohG9jIwFdpx/YUSzyk0OHyNbVYdXXM6+jQzWgqK8nVyhQRF24ddXXE0AdSFrq6jiazVI/OkpDPs+lra3MBZqAYqHAC889RyCXo9myuPPWWyeK2LY2Nl511bQrN3ilpIB/RGVqQE3eeIN74RzHfUCysRGyWfSxMS49fJiem25yOyxBOGe8AEScDGVPfT3L/X63Q+IZylnT1T4fdY2NrsZTBJ6scIiaHY16tglECRG5r5J7gH+zLMJDQ6q9HfDbLS28p7lZ3lxhWjBZ+C4DlrW2cmVJ/Pb0ECr1Jff7CQcC5b9XnggaGgi3tan75swh1NRUvq+tjU2bNp1UxE7HcoNXgg38TTrNgUIBwzDo0HU+gnc8sjPANyj74t7Y388bbrppRnw2wszlnooM5eLDhxlatsz17/yDmcx4mZf50kuEL77Y1Zj2AXmnKUyDZdGdStHT0+NaPKeD6LBXiA38H2q4sTQU25LJcMOOHWxaupRaj3b/cBsbyAJp1Mk07SxHR0YYiMVoa2+npaUFmNoIPz4ywkgsxuzWVua3tdGImnxUWqQs5OxxItF5MjH6Su+bKdjAfyQS/MRpCJPQND4cCNAxRY2xW3wLlWkGVQv9e4sWUe9mQIJwjkkCv6xoW720v5+BxkZXj1dDwI58HmwbzbaZFw67njV9mvLF79rhYV7jsYY6UyEi9xVgA/8F/MjZNgyDhkSCrc8+i79Y9PyVzbkig6ofqlwOpNMczWahsZGi30+W8hBtCcuyVDeX2lo1s34KC6nj9ps0salEA2XB60unqR8Z4cLGRla2tDAH6EKEsOAONvBllIistAvrDgbBIyI3TPm4BvCbIAJXqHp+AdT6/ZBM0h2P05XNun4efxSlLRKaxtxIhGCh4HpMle2O75ozx/V2x6eDiNwzpAB8BvWjKLFJ13lnKER07dqqrye0UZPsnojFeDGVIt/WRqaxkTAqI1uJZVmEYzE1o940j5tRX+JkE5bOdL+ss/RV/O+fVgjnWtREpznAbCAwMkLNsWNc2t7OnCr+3AR3qbwwLp245g8Pc+X+/fTceqvL0ZX5MmVf7wuBze6FIgjnBRu4n3KG8q7RUTXx1eXzwaMVMW21LNdjigAHnfVaYK1rkZwZInLPgFHg74GnKv52BfARoDYUYl4ViiQT2AvsdpY9wLBlEU47knZkhFB9/RmJUj8q0xpwbu2aGg4dO0bt2Bg+TWN1aytNk57LBpKaxo6+PgrAaH0989rbsSmXPKQpZ4lP9L/zQJ+zjGeGAwFqcjmuyGS4LBBgJeoE737HcqEasIF/R51IwbEnamvjtdEo82+91fWTaYndTJxd/ltMXTIkCNXESygXA4BmXecdF1zguh90H2VB2ajrvG3JEhrcDIhyFhdgFeD+tLzTQ0TuaZIDPgG8WPG3m4D3450JI2eDJPCzWIxtmQyR9nbCDQ3HlRecSEDWo8oBQs6i2zZ7X3yRYC6HP5/nzuuvZwFTlAsEg4QXLixPSmqaLHEdmppUi9bSfpP8+WzKdb4Hx8b48QsvMOL3kwgG6WhvZwSIneB1FDSNF/L5CVeqS1Cz3lcAy5k+P2rBOxRQ1oIPVfztSuD3g0FP1e3bwL9mMiTyeQzD4Dpd50K3gxKE88B3UykSxSKGYXCzRxqePFKxvh5cF7gAD6XTJJzJspdOkdTyKiJyT4MU8OeomYUlXge8nerIdKSAJ4HHgKdNk2OOATyRyJQlBm26Tks0Slc8Tmsux+2XXcYKoJVJ70dLC+ENG8qi9CQem6c7Kelk+2mU63G7OzpYdPnlxwniLKoj3VHUFfxDQ0MMBYMkAoFxj1hQQ7YvO8t3gDHTpCuR4BpdZ2tLC+IWKpyKPPAXqRSPOidQXdfZAnwQ710Yfz8W4wnnd5+2bW4LBKQro1D1HBga4p5MhrzPR0LTuKShATo6XI3JBu6v6DR4tQcE5ZFwmAez2fH3aYHfP22ODyJyT0EU+Dhq+KDE24HXuxPOWSONKrt4DOUPWHD+nrWsCVlayzRZ6mR1LkTZS80xDIZmz2ZA0+hZsYLQSQ4Kbs6on+p/N6AytEuAa5ubef28eQwMDOBvb2dY19mJMuk/UvEYy7GIO2bbbLcsvun3s1LX2YyqWXS7zaLgPfqAv8lkeMKxJEpoGm9saeFDTU2euzA+Bvynpo3/7lcdPsxYU9O0OYkJwivl7nSafE0NNtCZTKJHo66L3F9FIryYzYJtkysUmBsIgMslTT9PJMjrOjbQlk6Tj0anzfFBRO5JGAR+P5fj6OgohmFg6DrvA25xO7BXyKFwmPuTSQ7MmsW+YHB8gkklJaeIucPD9CSTvH3TJhY1Nx+3X7XYQVW+jgtRQ8kACVQf813AQ4kE4UnlGft0nX2oiTqLUbXZm1GT2oSZSx74LspBIerY/9jAmsOHuTkaRfNQiQKoeD8NaA0NkErRkslw+cGD9NwyXY9ygnB65IFts2bB8DCabbO2r4+eiy92OyzuyeXGjxuLwmEihsFcl8+1+3p6IBZDs22WhsP0eKQz4+kgIvcEZIH/l82yKxIZb/Lw542N3NLW5nZoZ0wa+Foiwf+k05j19RCLEaqrm1CGsAxHqOk6xVCIgUKBHo+36zuXNAObnOV22+a7jzzCgfZ2Dsyaxdik9+SAs3zBsuhIJLilro47W1txtzeNcL7Zi3JeOexsG4ZB2ra5dP9+Lj18mNlbt7oY3dT8L6oMS9d1Znd18Z4DB7j8lltm7O9emDn8Csj4/YRCIWozGT7kcqMFUBO9d3V2wtAQmm2zcmCAniuucDWmDLA7GCRUV4dpmrx/5UpC0ySLCyJyp8RGTRY56LSvqykWueWFF5i/YAFMI5GbAH4I3IvKSpu1tROykSt1nStRGcgJNaZVkqU9W4RCIV5/003j9b0Bw+Ap4HHgeVRGwLIswuEwYdtml2nyTb+fLYbBjajJa14bohbOHibwddRvrXKS5mpd582BAL72dnpWrfLcb+pZ4O6K7fcYBnesWOFWOIJwXvmhc6vrOm/Wdea6Go3iMQDDIBQK0ZJM8q4rrnD9uPEE6hyn6zordH3aWIeVEJE7BT9AfbAlP8stO3eyKBajZ9MmlyM7PWLA94GfApbzt9JraclkWDEwwPtXr2aVeyFOOyaXZ1znLBlUbfN3YjGGi0UKmoZm26Qsi4cNg4eBHuBG4HpUhlioHh6MRvl32ybd2Dg+MqIDbwNeA/g6Oz1ZuxYD/rliez1wu0uxCML5pmSHCUoEecWp+qfOra7rvKWz0xPzPR6tWL/KtSheOSJyJ7ED+B9nXdd13tbSwnVz5tCzYYPrV1SnYtfQEF+3LLZ3duIzJhqhXKDrvDcYZF40ytxpNtzgZQLAFmCFz8f3HnmE3V1dvDx3Llp3+fA0gKrd/SqwIpViRX8/W1pb6fb490mYGguVcfluJsOvMhnlRJLNEgqFuEzX+QB4uhOQjRK4CWe7DfgQMtogzBy+VmEbdp2u0+J2QMAhVMkTKGG2xb1QxhkBtjvrGuU5K9MJEbkVRIFPUR5yvBD4UFOTp/wspyIPfDEe5/PZLAVNg6GhceuvhcAbUbWlWlvbtCq3mE6EQiFed/PNqqShs5O0rvMA8DCqvhuUc8W9IyPc6/fzuXict+o6r2tpwd25vMLpMgDcB/wcVeeeqJhYpo+N8dq+Pt5zwQWeF4vfQzmqgDpxfQQZYRBmDjuGh/lxNksRSGgamzxih3V/xfomOK4hkhv8krIeWgHT8lx12iJX07QaYBvQb9u292ZQvErywN9Rzm40A3+M968CjqCyMs9qGgVNG6+57Uok+L2uLi5FMjTni8qShhDwPuAdqNrd+4EnK5pPJA2Dr2saP0YNFd/k3B7XKENwlQLqoPdjVP11JaWJZUsHBth04AB33Xij539re1AjCiXeAKx2KRZBcIOvmyZFlHibG41SB66L3FHgPtMkYVkYhsFNHvDGBbivokHMVR6J6Uw5Ew33QZQ3vhcuMM46X0TV6YAyav9/QLt74ZySIqp2+KsogV6que2Ox9nY28v7Nm70RD3PTMegXL/77OgonzlyhN2zZmHW12MYBjaqXeIzqGHj61H1u14e7q52iqhhw18kEvw0n8cMBo9riBICbtV1Vjc0kPL76bnxRs+XM2WAv8zlGHEsEdfoOm92OyhBOI/EgBcr3AsuPXiQns2b3Q6Lu0dGOJhKgW2j5XJ0tba67o37wvAwjzt2Zilgid8PJ2no5FVOS+RqmjYHuA34JPD75zQiF3gY5UBQ4u3g6UlZA8C/oK44SgR0nQ82NbEmGmXOxo2eP+HORC7p7OTvi0UOHzvGwLx5PKPrE9pEx4BvA1+1LOaPjHBzfT23tLV5oqVjtRMFnnOWF4CoZRFOJFS9bSZDKBTC0HXWow6EF+OMkHR1TYsDvwl8NJ1mVywGto1ZKPD2YJDaaRC7IJwt7gZqHPeC7nic927e7Pq50ga+V1H6tKKvj2O5nOtzNn6QzY7HN394mFRNzbQ41k3mdDO5/wL8EVSf9ech4LMV25uAu9wJ5ZTYKDH+ZdTwRokLgA8D81pawOP1wzOdypKGO1Hdph5A1XnGmWhF9vToKP/T0MBmw+BqVDlDvTthVx2jqLbOJWF7eNL9ZkVpiX90lCsGB3nv/PnTsp1zBvhL4LlCYfw1XbNzJ2Nz507Lk5YgvBKSqJp6UJPKPxAKeWK0czsQb2qCXI66fF554652t4goD+zs6hpvlLGyv5+eyy93NaZXyilFrqZpW4Eh27af1TTtmpPs927g3QDz5s07W/GdUzLAx7NZhp0e0Yt0nQ/izRrWLPCxdJpthQKGYaDrOjXAm1Athr1eOyxMzSzUyMGvo0oWvhyLTeiulrQsnjAMnkC1JN6IsnFZg9TvngkRVAnCHmfZaZoknfq3yaUIAN319cw+doy5Q0MsjkS487bbpqXATQF/jmr4UCpp2rR3L8uGh+m57DKXoxOE88fXEgmGUL+DZbrOpW4H5PADlOgOhUJsCId53c03u55dfhKwnEYZRjrN71x+uesxvVJORxttBm7XNO1WVIlhk6ZpX7Nt+62VO9m2/QXgCwDr16+3j38a7/FvySQvxuNg22SLRf42GKTBA7MsJ5MA/jCT4SlnqDGhaazv6OCjDQ0scjs44axQixKwi3w+vvHLX7I7FGLfrFnUVFiRZYEHnUXP5Vg2PMzVgQBXtbdjTP20MxIT2I8Ss3tRtfaxivstyyI8NDT+WwqFQgR0nRWoMoSLgfl+P0MLFzKg6/Rcdtm0PMAngI8DB51tXdf5/aYmVnu0OYUgnCt6w2G+nMlg1dSQ0DR+JxhUbkMucxTVlAXA0HV+Z948T8zHKDk96LrOG3V9WrerP6XItW37T4A/AXAyuX8wWeBOR/qA+4rFCcN3vjlzXJ9lOZkI6kS1u6Jm55LeXt4TjbJIShOqjlAoxJuvv15ZkXV0MKrrPIIy5D7m7GNZFkeGh9ln29ybydATCLDKMFiDyvAuAzVjuMqxUZ38jqDKDQ4Du7NZ9o+NoZ8gQwvlUoTmbJZ5kQg353K8ftmy4y4UJjcAmU7EgI+hjnMlfge4WUqahBnIt3I5rJoabKAlk2FONOoJO817KtY3gCfEZJiJFoM3uhfKWWHGjnJ/Caj3+yGZZE40yoVDQ/Rs2OB2WBMYQAnc0hBLErj2pZdYNTDA/K1V5+ImOEwWV29FlTPsBx4BfphOj1/waLZNxrJ42TB4Gfgmqm53OUrwzo5EqO/rY05Pz7QVbEXgpaEhtsdijHZ3k2hp4QhK3FoV+1mWRTgSUZPFnAxtSegawBLUBUBHocD+Rx+lwTTx+XzcsHRpVWXCI8CfUr4o0lDWONe5FpEguEcKeLK7e9xRYcPBg8y55BK3wyIF/KSibOoOj1h0PVCxfjHgrbTfmXNGIte27YdRZgTTmhdQ3pe6rtMdCvG+VIoNW7d6SgQcQgncuLMd0HX+qrGRud3d9Fx8sadiFc49GkqkLQFuy+f5/LPP0tvRQX97+4SSBlCTql4AnrIswtksNS0ttEUibGpoYHljI3OAOah2w16ZyGaisrKDKHFWuX7UNOk3TXAuSkN+/5RZ2lKGFqAtlWKtz8d1c+awDJiHsgZUd7YRvvFGlS2fxuJ/KgaBj6IujEG95j9genYqEoSzwd1A0XFUaE4m+cgll3jiN/+NeJy+ZBJsm/p0ms6ODtdtw/LAj3I5Eo7NoFf8el8NMy6TW0R54pa4Vdd5zYoVboUzJb+MRPjrmhrshgZ0XacelZm5RDqWCcCsUIj3bd48XtJg6Do7ULN0t1PO4JVEX97nYzgY5OFicUJDAw3l9zoHaEok0CIR5ra2MqetjSCqZXHQWXTObEKmjcqyJk6xHMtkOGpZjAUCJywvSFvWhMy1aZrj+zYD852lsVhk/zPP0JpM4rdttm7desL6tulcinAi+lECN+ps16IscTa6FpEguEuCckmArut8sLPTEyUBJnB3RbnkmkOHODY66rpt2E9jMfY4I4X50VHmNTW5LrxfLTNO5D6IypKCOnG/zb1QpuSxSIQPp1KM+XyQSrGwq4u/NgyWux2Y4Ckmi7QrnAVgGHgR+KXPxwOWRVrXQdMwjImD8qWa1sMlT9jaWkinCU0hOGtQoteXzWJlMhiBAPUNDRRQV/+FSUvGsjBN84TuBeCUF0SjKvuaTk8oL6jEMAzGxsZoymToyGS4uamJtajs7IR2tK2thK+8sioztKfiMKoGN+5sj18YuxWQIHiA71AuaVqAmkXvBe4HCoEApNM05XIsC4fpWb/e7bD47tjYuPC+8OhRhlpamD3Nj6MzSuSaTGxp+TpUlymvEAM+5fMx5vNhAw2WxW8dOMByj2WaBW/TidNlrbGR92az7BscxJ49G1PX6UPN6D2KErg2Ez1hJ2dKSxSA4cqa11zuhKK05PVb6V5wsvICG6gpFmlMpVip63QD3ahJGN1At66TaGxkIJWiZ/FiQq2tJ3zt1ZihPRVPRSL8hc9Hwbk40YE/Q9r1CjObKHC3aZJyal7fquuesAcdA75P2TbsNUePcsdtt7l+3NoHDLS0QDiMr1hkzdGj9Cyf/um1GSVyvweMOOtteKvpQx74FDDqXN01WBav37aNDVu2uB2aMI05megbRZU2bC8U+HFvL5naWkbr61nQrhpap1Fe0mln39MRw1Ts5ysWaRgdpSORYElXF80wYcnn8zz3zDMYuRxNo6PcfpLyAmMGitdTkQe+FI/zn+k0BU2DdJr5XV38lYz8CAJfSCY56liEGqkU8zs7PTH0/iBlS8NuXec9ixd7Ym7EPZSF98pIhDdNg1blp8OMEbkR1NVTid8AT82o/jKqA1NpMtw7e3u5ZsuWqviSCd6kHqeeta2Ny5YvLw/zB4PH7TsGHLIsfvjEE+Rtm1pN46brr6cbVcpQgzqY1AAR0+S+n/8cikV8Pt+Ja2Pb27l4hpYXvFr2A/8KbNc0CpqGDehjY7yzt5flVZB9EYRXw1Hg/oqa1w1793JsbMz1mtcCKtlW4i68Mfk3BjzmrOu6zvtnz/aEX+/ZYMaI3P9IpRguFjEMg4t0HS/lR38J/LBi+126zusvusitcM47ecoZw8ORCMeGhujq6qKjo2PCfpFIhHg4zKLOThZ1dWHgze5005FTDfPXAUu6unjbli1lUXoCT+k5oRC3b916WuJ1JpYXvBpGgf9DXbDblLuYhRIJbty1i43XXutugILgAb5C2SJ0bjTKgpEReja7X5H7KGoOhGmadNTXc4vf73ZIAPwYJcBB2U9e4GIsZ5sZIXK3DQ/zvVxuvEbwTwIBNGdI1m36UBmZEpehaoWrgQKqLmoQZWkUdpZDmQyD2SwEgxT9/vGJAZZjeUUgANksIcsaHw4fvy8YBNMkZFk06Pr47H9fJoMRj7MsEGBFS4vnLLKqhdMVpSJezz47gM9Sds8AaNR13tzUxKpolLnXXivvuTDjeQnVlrY09P6eVIrLPGARWgS+ks2Oz2u4qLeXxPLlGC7HZQH3VWzf4VYg54gZIXJ/4AhcG1g4NERLTQ14QOTmgI9ls4THxjAMgwW6zoeZntnJIsqcf7ezPJ/Ncnh0lPpJnqYTZtRPmrx0sprPE92XAIYqnvPBCh/VUcvCn06zur6ejY2NrETZZU3H91eYuWRQ5Uw/nfT3VcDvArOki5kgAGp040sV2zfpOrd7ZOL2o0Cv415QWyiw8vBhBlpaXBffDwERJ7s8p76eyz2SXT5bVL3IHQV2dnWNdztZ19dHz6ZNbocFwD8lk7zgFMZnikU+GQwS8Fhb4ZMxAvwK+Hk6zc6xMXB8fSd0nkomTylk/bpOAGipq2MwlcJXKKBpGos7Omhw/lemtpYDySSjPh+jdXU0VQjnqZ4TGJ/hf1DTeLK+Hl3XaQYWpFJ0Dg1xfWMjK7q6zt8bJghnyNPAf1D2vgVoAN6JarcpF2yCUOZXwB5nvRbvWIQWUGVGpfKidYcO0VAo0NPT42pcNvCNiuzy6r17GV692nXhfTapepH7K6DgdDsJpFK8d9MmT3yAB4D7bXtcnF2zaxe1s2eDx0XuvqEhfppKsb+7m4OBAKZlEY7FlKBNpQiFQhNEZ8Cy6I7HWRUK0Q3UFYu8/NxzGKaJv1DgzhtuYH5zszpZNzQQ7uws13IGAuV/HAgQ7uoab4AQMgzGUHW8B0dH+dGzzxLz+0kEg3S1t7M/lSI8ReZ3yLLYMTICtbV8yTTZlMlwYyDAZkDkruAVEsAXUNmfSi4D3ge4Pw4lCN4iD/xnNkvCGRm9S9c9c0z/BarMSNd1FnZ18c6RERavWOG6FnkCOOhkl+vyeS48epSBjg7X4zqbVL3ILfVh1nWdNzsenG5jo7qula7qFg4NsTwcpufSS90O7YQMAf+TTPKtbJZCbS1Eo4RqaycI2qBpsiwaZV1DA/3bttGeSKBP7jzV2kp406YTTko6WS3n5PvqgFagtbOT2aUOYI47QDiT4QcPPkgkEOBYWxvBjRs5AiQmZX135fMcRQ1xLQNWxOPM7+tjRVdXVf3QhemBDTyCEripir83A+9FmdlL9lYQjuf/4nG2O21yzUKBq4NB8MBI3RjwjYrttxgGm9ascSuccWzg25R1yOq+PvzFouvZ5bNNVYvcY6jOT6BODNe5GEslT6Mmkei6zqyuLt6XTLLOA4XxU7FjeJivWhY7OjrI2Pa4XZFm21imydraWrQ9e5gXDtM8Osprtm4l1NJC+IorXpGQfaVMfs5QKMSdt902QfjawLbRUb66Zw8H29s52tExoQvYi5bFz5JJaGpifn8/766r4+a2tur+kQiewEa1ZP7fdJpthcKETnFbgN8GGl2MTxC8TBL4esXI6PoDB0h2dHhC5P4M1YUSoAm43cVYKnkW6EXpkLldXfzmyAjLPKpDXg1Vff7+ecX6erwxxJcH/qdi+y7D4OaVK90K54QUga/E43w2k1FG80NDtLW2gmNXtPzYMd63di0XNjcTXrPmOEHrhdn1k2PQgEs7O5nnxNvk99Or6zwOvMDE2t7D7e38fU0N3wRuQNU/eqHnuVBdpFHm8PcBvRWlPwlNY3lnJ3/g90trXkE4BV8H7IYGSKVoyWRY29dHz2r3e/6NAl/O5UiMjmIYBm/QdU/485eyuCXuMAyu8kB2+VxQtSK3wESRe6NbgUziPqDfWQ8Ab3YxlhPx4vAw/1gssr+2dkLmdmEmw8cCAVqjUWavWUPIuUr2gqA9EyrjXYwSsSngp8Ui/xuLcaStDTRNDeMA33WW1cClsRg9R44wf9asafWaBW9xAOVN+QjqRAjliyyAVYcP8zuxGJesXetOgIIwTTiEOq+WLMN+49AhbvBAm1xQJRR7nBKK/OgolzQ1eaLr2i7gZWe9Fm91fz3bVK3IfZZy67wWVCbXbdLA/1Rc1b1T12lyO6hJ3B+N8tF0mjGfDzQNNI3OZJKr9+7lPZs3E2pv94T92tmmEXhDaytXjY6yc2iI3fPm8bSuj3+HAJ6xLO5NpzGCQS7cu5cP+nxc7PGJgoJ3GEU1fvkJ5RnglbTqOgv6+lh55AjtuRyLtm49vwEKwjTDBv7LuQW4XNf59WXLPFG3nga+WVFCccmBA0RCIeZ6QOR+q2J9C9Bxoh2rgKoVud9Pp0k4tW3X67onXuiXEgkOJBLqS2+aXNrS4omruhKPAX9XU8OYz4cN+IpFbjdNXjM2xrzNmz1xZXyuKWV5r0NN9HkWuB94hnKmLVdXxwvz5vGh+nouB24CrgD0Ez+tMIMZRGWafsbEyWQlFgK3AVcbBoklSxgIBKTNsSCcBj+OxXispgbDMPDrOu/COxMzvwsUnRKK5myWVQMD9HjAz3of8JTji+s3DF6vV/eZywva76yzZ2iI+3M5ikBC01jr97tuzTUG3FcojF/Vbdyzh+G5c5njkRPZN0dG+JzPh6+mBjSNplyO27Zv551XX03owgvdDs8VaoANzhIFvmvbfM00SRrGeDnDy6hhny8A16AE7yK3AhY8QxF1gfRj4DnKmaYStcCVwK0oV4/SidmYZqU/guAWfeEwn4rHSTruAG9raWFukzfGRoeBeyiXULzp8GFu80gJxX+l0+O1/92Dg/gWLPBUsu1sU5Ui96FEgmJ9PTbQMzJCMRp1XeQ+CRQCAUinacrlWDo8TM9ll7kaU4kfxWL8bTqt6gE1jeWNjbw7Hmf51Vd74kfpBdqB97S0cIdl8dDICLtmz2anro/3+86ihqF/AvRkMqw6doxbGxtZJO/fjMEGjgL3xeP8pFAgGwxO6PYHyov5FlQdePP5D1EQqob/zeVIGgY24B8d5fKDB8Ejk6e+hkpsAazUdd6xdKknMsx7gCedZBvAxQcOMFBfX9Xn+aoUucPd3TAygmbbLIhG6fFAW78HKF/VbRkYUFZbHvhi9QOf0bTxDHNXIsH7R0a40iMHC6/RHQrxZudzS6Bmxt8PDDj3W5bFk9EoT9bV8aVcjhvTaW4LBtmAlDNUIxmUM8dzztJvWYSdiSZkMoRCIQxd5xJU1vYSwOdeuIJQFQwAj3d3j3cy3bR/P0s8UAoAcBDVKrfEO/BOCcXXKPviLjl2jM5crup8cSdTlSL3UGMjofp6TNPkratXE+pwt6w6jDoRAhi6zm8vXOiJQm8T+Gg2S7ZYBE2jOZvlrueeY+nNN7sd2rSgGXgtambqLpTY/XEuN37BUNA0nigU2AUYqG5VVwPrqNIf3gygCOynLGr3OH8rUWlD5x8dZfPgIO+ZP98TTWgEoRqwgf8EapxOpqFEgv+3bp0nkkYA/5ZOE3fmA12h66xyOyCHnSgdous63aEQ70omWeuRZNu5pOrOtWFUdy5d12nWdS53OyDUhJMSF+OdmYyfTqV4fmQEbJvaYpEPpFJcc/PNVf+lP9towEpnuXN0lH/Zs4eXZ81iuLl5vNmEibKLegTl5LAJuMp5jGT2vM3uoSEeTiQY6O5mf2PjlJPHSrTpOp1DQywIh1k6PMydt96K/JoE4ezxBPC8s27oOn/R1eWZi8gHo1F+nsmAbZMEbmtocL1UEtSFwdcqtm/VdW7yoD//uaDqRO6LFesrcP8FFvGmX+/LwM+KxfGs09UvvcRSmdH9qlnc1cXHnGYTmt/Pbl3nEVStZokUKut7P9AGrE4mWXj0KBvb25kl77+r5FFdgPYAe4EXslleNE2or4eREUL19RPqbDXgAlQZwsXAUsMgMm8eA7W19Fx6qfyeBOEskkNZhpW4DeV17gUKwOcrzqnL+/vxeWDSO6gM7i5nvRZv+vOfK9zWgGedHRXrXrhOeQ4YcOw6uurr2eD3ux0SNvBFKmpzBgdZMThIz3ovuAlPfyqbTawF3oiq03rUWYYr9j1mWbwQj0MggJ7JsCWdZnMwyBpgLt6p5apGbNRnsRslaHejBO5YxT6JsbHxk5Zm25imSUjXuRglbNfCcV7X0605iiBMF/4zkaAXde4K6TpvdTugCn4KxJuaIJejLp/n8gMH6LnR/bTW5CzujagJsDOFqhK5NhNFrvtN/eAnqRRhpyRg8eHDRJctc/0E+MNYjKcdb8HZXV28L5Fg1QyozXELDWUrtgh4O0pMPYJqDHCkoobTqqkZr+EFVfO7BvU9XgOEENH7SikJ2uejUV5IJhnp7ORoMEjiFI8zDIO0bdM9MsL8WIx3rFnDpcjnIAjnm6cjEf43kxm3Bn1PMEigrc3tsAA1Ovd1ypPLrx8Y4E033uiJc+ozwA4n0dao6/ya4YXGwuePqhK5g0DEWffj/jCGDWwbHR0XMYsGBxlobHT1i98fDvOPFd6C72hu5vpVXimNr3404CJneRfwcD7Pfx87xuG2NjKGMV7DC8q9oZT9BXX1XRK8q1GlDsJEbGAEOAIcdpYjzhK3LMKZDPh8EIsRqqs7zuILoBvlXbsMWKrrBPx+hkdG6Fm50vVJrIIwEykA/1IsUkT9xudEoyyMRsEjIvcblBu9zNN1PrRwIfVuBuRQBD6XzRKORMC2WXjkCPmlS6vaF3cyVSVyX0RZOJmmyUU1NdQEg67GMwiYwSBkMtTn83Sn067bdTyQSEzwFtxw6JBnvAVnGjXAde3trMzn6R8YwNfayoCusx01IjF5gtMQqr67VOPdls3SNjLChYEAK1tamAvMAurO2ytwjzHUJNNB4OWREV5Op0m3tREJBE44MazS+aBUetCq6yylQtQyhX9tKOSZpi2CMBO5B4g0N4NpUlsocN3u3czessXtsADoQzV9KfFb4AmBC8ri8oBTclVbKHBxby8DwaAnMszni6oSuU9UlAZk9u0jvGqVqx/mDsrDF4tiMW73QMeTnT09EIuh2Tarjx5l8UUXuRqPcHwN762obMVBYDvq4m0nyqGhhGVZvOBcnf8imSTk96PrOhoqEzkXmFNxOwdw95LvzLBRvd+PoYTs4KT1qLOPZVmEUynlSxuNEqqtnTI7C9BRX08wHqc1laI7leLX169nHVJ6IAheZhBVU1o6l94wMMBbt2xx/VwK6hj0z+k0I45l2KUecXQCsJjoi3vxwYME83nXE23nm6oSuS9XZGq6YzEGBgZc/SGUnB50XeemWbNctxIaAvYFg4Tq6rBMkw8uX06oayaVoE8fKut470LN+t9PWfT+qsKPt5SV1HUdGyUGjwFPT3rOFpTYbU4m8UWjzGlpYU5rKwGUAC4tAc7NgSEPJJ0lcZJlMJvlmGVBQ8MJBWuJqbKzLbrOPGC+s5TWW/x+hrq7GSgW6VmyhJAHZj0LgnBibODfgVFn+0Jd58MLF3pGuPw0GuXBCsuwOxsa0DxyXPkhEEPpj6WdnfxWLMbClSs9cXFwPvHKd+VVYwOZxkbI5dBsm3aXO3lMngTnBaeHBwHTKedYX1PDShG404Za4EJneSPQZ1l8eds2og0NjASDdLa3M4KaXGWf4DniQNiyCMfjqi41lSJ0AiGpo8RupQC2UykyiQTB5mb8jY0UUbVyeVTtV97ZrlxS2SzxbJZiMEj+NCY8WJY1Xj9GKkUoFJoyPg3oBBbX1DDc309jJkNnNsubNm5kOSfOzorzgSBMH743MsIjPh+GYWDoOr+Ld0TLKPAF2x6/yF7Z10dtIOAJy7AE8N2K7d/2+7l87VqXonEXr3xfXjVRwOd0QKnJZHidy00NBlD2UKZp0qbrLHZ5RqMN/CiXIzw8DLZN/Y4dhMXHc9oyNxTi3VdcwcDAAD09PYSc+nML9d3rQ3nzHnXW+1F1rFNlPqcSkZazxErbljVeCjSVX+xUTBCs2ewJBWsllfHV5fO0JZOs6uykG1Vv3O0sXTgHr2CQ8OLF5fdBLtwEoSrYMzTEp1MpzNpaEprGbzY3s6T5uIp51/gOTmItm8U/OsrG3l56brrJ7bAA+BbKUxhUydr1LsbiNlUjcgedW13XWarrrpcGPDoyMl4r2BaJMDxnjuui+6jj9FCXzzN/cND1cg7h1TFVVlIHFjpLJUVUucr2fJ4f7dtHpraW0fp6Fra1oQEZVA1s6bY46fGnK45P9hjLNOnUdZphwtKEKqVoBsbyeZ751a/QTZNAocBrtm495W9ZsrOCUF3YwGfyeczaWmygKZdjYywGHslG9qMypaU64Tv7+njdTTd54jh0DLjbNMlYFoZh8Ju6To3bQblI1YjcYxXrs1yLosyOdHpifbDP5/okuFIB+uyREeo1bcYVoM9kfDhZ0PZ21q5aVc58NjYet6+NyuKmKQvfI/k8D+7aRQHlCrHp8svpcp63BnUgqXG2S+sjY2M8/OSTaIUCDfk8r7/pJmadKhPT3s7ya68tx+eBk4YgCOeXR4B97e0QDqPZNte/9BILN21yOyxAHR//E1WeBbBa13nfBRd4ZgLrv6dSDDijbsF4nHnd3TPKMmwyInLPEWZr67iLgdv1wTDR6eGafJ6t0vxhxnKqzKcGGM5ScoVd0d7OxZdcUhafp+NP2dHBwmuuOWPBKplZQZi5xIDPUz5frR8a4n2bNnnmmPA4qk0uqGPl+/GOQ8tO4NGK1sIb9+zhWLFIt0feOzeoSpHb7VoUZdKOi4Fpmty1caOrM7lt4OlcjsToKIZhcMeiRa6XcwjTj1ciPkWwCoJwutjAv6FGkADm6jp/NncuXunRlQM+U3Eufb2us8jtoByKwBcoj9guGxigJ5VyPcHmNlUjcgcr1t3O5BZQ9Y+6rqPrOm73E9s+PMxex3LKLBTwBwIzevhCEARB8B4PodrQlvgQeEbgAnwumWRPPA62TX50lOubmjxzLn0A5a2u6zpzu7p4XzzOChmxxed2AGeLg6ZJIpHAsizXRe4wSuiCar168uk5557nnPocG+geGWFwYMDliARBEAShTBT4TMV5fCu4niCqZB/wwwrLsE27d5PwyLk0g2r8UOKthsGW1atnvMCFKsnkHhga4qAzkztbLGI1NLh6dVWZVfZC6UShqwuSSTTbpjWbpWfpUrdDEgRBEARAlSl8Mp3mYCymLAdNk5tbWjyTJc0DnwV0wwBNY240yoVDQ/Rs2OB2aAB8E+WNC8o//LUuxuI1qiKTu39oaPzqqsE0Oeby1dUxlEdoIpEgmEq5GguA2dJCKBSiuaWF62dgxxNBEATBu9wDbCsUlMAFrtuxg5hHsqQAP2BiKcAHa2uVvaEHzqX9wI8qtt8J1LsUixepikxua3c3ZLNotk1dseh6ofWeRIJwIgG2zdEDBwivWOHqj2GQcn3wcteiEARBEISJHAa+QnnC1MW9vcxJJFw/j5cYAL5Rsf1bhsGNq7xTSPGv6TSxQgHDMLhY19nsdkAeoypEbmNHByGnu9jSjg5CgYCr8RxLJsczy4Zlud50obdiNmj3KQz8BUEQBOF8MAb8g3Or6zobOjp4dzTKPI9kSUtuD6PO9mLgdvfCOY77olHuz2TAtkkCdwUCaB0dp3zcTKIqRO4o5Uzlabh3nnP8LS0wMoJm29TbtqtXpAPhMC+bJjaQBGzD8EydkyAIgjBz+SpwyFmvB/6soYG569a5F9AkvjMywi99PgzDwK/r/C54pnuYhfITLiXUlvf3U+/3g4jcCVRFTa5Vse6FPGV9Y+N4DexVl1/u6hXpoWPHsFFXpDWFAsMeqnMSBEEQZiYvAt9y5q5YlsU7gLluB1XB7qEh/mFkhEQ8TjgcZksiwWK3g6rg20A2GARNwz82xhX793umxMNLnFLkappmaJr2tKZp2zVN26Vp2l+ej8DOhNGKdS8UXJcyy83Nzcw6nc5Q55COnh7QNDTwRL2yIAiCMLNJAX+TyzEYDpOIxzF27WJ9OOx2WOPYwGfyeayaGmygKZvl8oMH3Q5rnH7g+5S7wv0m8PqbbvJEiYfXOJ1yBQvYYtt2WtO0OuCXmqbdZ9v2k+c4ttOmMpPrBZHrpXiau7rG65Vn19cT8vtdjkgQBEGYqdjAvwIDo6Ng2+hjY2zZuZNjmuaZ9rMPA/vb2yEcRrNtrnvpJRZs9saULhv4HMrWDGCNrvPeCy7wTGthr3HKTK6tKHXZq3MW+5xGdYZ4rVyhMrPsdjwTsty2pz42QRAEYYZxL/AUyk0BTeP6nTtpHBvzzChjFFXrWsqSbtU03rd5s2eypI8B2511DXifcytMzWlNPNM0rQZ4FrgA+Hfbtp86p1GdIaMoX1rTNLE0DZqaPBNPYnQUOjtdi6U/EiGczYJt059OE+7o8MyPVRAEQZg59AJfctZ1Xec3WlrYMn8+PRs3euK8VHJTyDjb83Wdj8+b55nWwlng3yrckt6g6yxyOyiPc1oTz2zbLti2vRaYA2zQNG3l5H00TXu3pmnbNE3bNjw8fJbDPDlDTmF4Ih5n5/PPE3a5tieZzY7H88jPf+5qPMcqGmVoxSIDMvFMEARBOM+YwN9THmZfBPxeUxPr1q3zhMAFeBDYVrH9QfCMwAX4j2SSPcPDJOJx0keOcJ2H6pi9yhm5K9i2HUeVq9w8xX1fsG17vW3b6zvPc+Yy5bQCtIGCprku5MbS6fF4Rn0+V+OZ39k5PvFsrLbWM0NCgiAIwszh06kULzlOCgbwR6jaR68QAT5rmuNuD68Bjsvmucge4Ee2Pa4tNu3eTUKSVqfklOUKmqZ1AmO2bcc1TfMD1wOfOueRnQFzWlshlUKzbUbr6lwXcp2BAJgmmm0zVl/vajwLOjvHJ551dnXJxDNBEAThvPK9WIzvOsmfhKbxnmCQ2S47D1ViA3+TTnPISZhpuRw3tbZ6xlM+D3wW0J065nmRCBcODdGzYYPboXme06nJnQV8xanL9QHftm373nMb1pkxu7WVUEMDpmmyqK2NUGOjq/F0BQKEamsxTZP1V19NyMUfc4Byo4yia1EIgiAIM5EjwOc0bTwDeeHAAIt0HTwkcu8FthUK4EzO3rJjB7ELLmC+R0Tu91Dtj3VdZ25XFx9KJFjlka5wXueUIte27RcB77QgmYJKIeeFWYaV8bjtrlCyMEunUmSyWV6MxVh90UWuxiQIgiBUPybwt4CvoQFSKVozGa7dvZueW25xO7Rx+oAvo9weEprG2oMHmZNMuj4iXOIo8M2K7XcZBtevWuVWONOOqmjrG6hYz7oWRZmGinW349FQAjcaiwHws2eeoQ64SISuIAiCcI6wUUPsRylnIN+/fz+X3HKLZzKQeeAfKDdwurSjg3dHo8z3SJa05PZQmqy3BHiNe+FMS6pO5KZPuNf5I0A5c7onn4fZs12NJ5MtS+1sfT29vb0icgVBEIRzxn3AoxXbHzEMrl3ppalc8HWUrRmoSXAfb2hg/jrvDFzfD+xy1muA3+UM3QKE6ni/vJQ5Beg9doxoLIZpmtw3MsLLL7/sajyra2rG11N+P4sWibOeIAiCcG74VSTCP8TjWJZq1XQTcK27IR3HTlSta4nfBOa7E8qURIHPVbg9vA5Y6HZQ05CqELmVmdwM7rdjOzwyMr4ebWykt7f3JHufey7v6KC9rQ3DMJh1ySWSxRUEQRDOCQeGhvijaJRoIkE4HKY7m+Xdbgc1iQzwyVyOuCMg1+KtMgAb+FQ6zaGhIRLxOKO9vVwjnriviKoQuZWTq/rDYV50OXP6GqNsH91omq5nTmcBwcZGQqEQNXPmuBqLIAiCUJ0UgU8VCiQNAxuoHxvjDQcOjJ+jvYANfCqV4iWnqULi6FHeMjTkiUnrJX4BPOm4PdjANbt2ERFP3FdEVYhcKE+uMk2TB7Ztc7VE4IpFi8Yzp63d3a5nTrsr1o+5FoUgCIJQzXwVONTWNt6A6IZdu1jT1eV2WBN4EHi4WBwXkFfv2oXZ3+92WONEgC+g3B7QNNYcOcLcRMIzbg/TjaoRuZWTqzKG4WqJQBvQ5mROtebm8T7YbjHLubUsi13RqOttjwVBEITq4pfAd1EuBaFQiDfYNh+87DJPuBSU6AP+k7KAXN7fz7LhYc8IyJIjRRb1Pq7u6OB3GhvZ6hG3h+lI1YjcqyrWEy5PrtKAyq+j29nTLmDMNAmHwxxOp7n7Jz8RoSsIgiCcFQ4D/1qxvVnX+dMFCzwlzEaBvwcslIBc19HBhxoaPCUgfw4856xrwJ80NHD52rWeiW86UjUid00oNF4i0L1uneslArMq1gddi0JRCzSmUuPDM5FAgAGp7xEEQRBeJRngk6jGD6DOfR/Be+LiS8AhZ70O+AuPCchh4L8qtm8HlrsUSzXhte/hK6ab8uQqn8u+tKB+6JZlkUgkeDkedzscLnSGZzQg2tTkmeEZQRAEYXpSBP4ynWa341JgAB8Fgi7HNZkngR9XbP82sMCdUKbEBv42nWbQeR9nA29zO6gqoSqaQYC3MqcAxsgIYSd7+ouBAW5ftMjVK8Y1jY08VV+PaZp0b9pEqKnJtVgEQRCE6c+/JRLcn0iAbZPQND4QDDK/rc3tsCYwDHzKNElYFoZhcK2u452mwor/GxnhQUcvJIGPBwLoHR1uh1UVVKXIdbsGFqA2HAa/HxuIOuUBborchag6JF3XiboWhSAIglANPISaaFYqg7ukt5e5zc3gIZGbB/4sk6E3GgXbpmhZvLGlBc1Djg99wJc0bfx9XHvoEMGmJhCRe1aomnKFNpRfrmVZHE0k6HV5YtUlFTYq0cZGQi6XB5Q6pViWxfMjIwzKxDNBEAThFbAH5QJQcilYODzMpgMHPFcG92VgVz4Pto1m29y4fTsJD9mF5YF/BGr8ftA0OtJpNvX2eu59nM5UjcjVgMZslnA4TCIe51uPPOKqg8CSri6WdXbS3NJCe08PBZeL21sBPZcjHA4zlEzytV/8QhwWBEEQhDMigppoNkbZpeD/1dZyu4dcCgAeB35IWYhv2reP2cmkpwTkN4ADqPdxdlcXHwHuvPVWT72P052qKVcACMTjZQeBhgbXSwRW+P3k/H4ADgJzXYtEXQS0x+Psc96fgaYm198fQRAEYfpgoQRuqXF9I/C3DQ3MWrvWtZimop+ypZmu69za1sYbOjqYvXq1Z855u4DvVGy/2zC4bcUKt8KpWqomkwuwIhAYLxGIecBBoNKp96BrUZRZ7wyJaMCx9nbX3x9BEARhemADn0ileNZxAPABf8zE+TBewAL+Dsg5293Ax4JBLl63zjMCNwP8E+o9BVgN3OFeOFVNVWVy1zU3EzIMTNOkpb2dUNBdI5OFFevu9V8rc0VLC9/x+zFNE19XFyEnyywIgiAIJ+NziQT3VDgp/FFjI6tbW90O6zg+nUyy3bYxDIOgrvPHQMDtoCbxj6kU+4pFDMOgTdf5MGq0VTj7VJXIrXQQCKOuktz84lRO9tqWyRAeG3P1SnIJ0Oi8P0lUbZXM3xQEQRBOxi+Ab8J4OeCqI0dYHgiAx0Tut0dG+I5jxZXQNN7R2Mhij8X4w1iM76XT4zH+TjBIh4ccKaqNqipXCAENznoKiLkYC0APgNNO92gqxTd+9jNXJ3vVApV94Ha4FYggCIIwLdjJRCeFedEoV+/d67lyt33Af1ZYcS0bGGDZoUMuRzWRQeDfK2JcOjDAvMOH3Q6rqqkqkavhrRIBDeiqmAx3tLnZ9Xa6Kyl3YnsimXQ1FkEQBMG79KMmmuVRo6SXdHTwpzU13HHbbZ6pbwVIAH8D1DrzTtrTabbs3s1sDwnxPPBpgIYG0DSaczmu3bPHcxcL1UZViVzw3mSvDRXtdL0w2WtWJDJus/bTY8fEL1cQBEE4jiTwl0Da2W4B/q6hgU1r1nhK4OZRE80iKCG+sKuLPykWueuWWzwV59eAvagYe7q6+EixyOtuvtlTMVYjVVWTCyqTa1kWpmnyos/HrzU2uhrP5pYWvudM9qrt7CTU0HDqB51DGvr6qG9qwqqtJWkYPDs8zG3yIxMEQRAcxoA/zWTYnc9jGAaNus6fAd7pE1bmy6iSClCjpx83DC5Ztcq9gKbgeeB7FdvvMgzuXL7crXBmFFUnchsjEcLZLNg2j+VyhFtbXb1SWgoEncleMVSdsJsl5vN6eph/5Aj7urpA0xiYM8fFaARBEAQvYQN/mUrx2MgI2DZJ4IONjSzx4OSoh1ENH0q8FbjEnVBOyAiqq1mJi4G7XIplJlJ15Qq+o0fxFYvYQNzvZ4/Lw/H1wLKK7V1uBeIQCoV48+LFNLe0EAqF2NPS4nJEgiAIglf4EvBosTg+l2TT3r30eHByVC/wD6ZJwvHtvRx4g9tBTcIG/jqd5ogTYyvw+4hd2Pmk6kTu/Fmz6E4k1JdI04h7IFPptcleN7a10dLcjK7r7EUV7QuCIAgzmx8CP6DspLC6r4+LjxxxfS7JZBLAx3I5+oaGSMTjjPb28pZw2HPi8b/jcR6MxUjE4wwNDvL2aJRmt4OaYVSdyA2FQmxdsGA8UznggSGWWdFoebJXf7+rNmKgWjFehBLe8USCB0ZGTvUQQRAEoYr5JfDfzrqu69zW2sqHAwFes3WrpyZH5VFOCkdHR8G2qcvnufX554m77Fw0mR3A1yrswi4+eJC2I0fcDmvGUXUiF2BzczPNTqZy56l3P+cE+vrGSyhiDQ3sHBpyOySWxuPjwvv/DhxwXXgLgiAI7rCTiXWjFwF/0djIJR5qhQtq+P8/gJdQ2WYNuOnFF2nP5TyVbY4Bfw/oTkZ8VjzO5b29nopxplCVIvdCoMZZP4yyQnGTBbNmMTcWGy+hOOaBEoo5R4+OX2Eebm/nwOCg2yEJgiAI55kjwMdMk6hTNzob+DhqPonX+BHwM2dd13V+t7mZ1y9YwFYPZZsLKD/cOCrGJZ2d/LGmec5beKZQde4KAAaqhe1uZ3sXsNG9cAiFQvxafT1f8PkwDIN9uu5iNIq1nZ10RiIMB4MUamoYmDfP7ZAEQRCE88gQ8Ie5HAeHh8G2yY+O8oHmZhq7vGcW9hzlcgqAa4F3trSgrVvnUkRT83UmWpp9zO9n7erVLkY0s6nKTC6oyV4lvFCycFNr63gJxYtAzuV4QqEQb5k9e7x2ebvH+nsLgiAI544E8GfAMae2tbZQYOuzzzLW3+92aMfRjxr+t53tZcAH8J5LwTPAdyq23wKsdScUwaHqRa5lWTw0NOR6zWkn5ZbDeZQ5tNvc3tIyLry3o/z8BEEQhOomC/w5SjwahkGNbXPb888TymQ8VzeaAv4km2XAKafoAD6K98opdg4N8fGRESzLApQf7hvdDUmgikXuRcCoZREOh9mVy/Gd++93XehuqFh/2rUoynRQvhiwUbNrBUEQhOplFPgEcMDZNnSdv2pq4q5FizxV2woqIfSxTIbtkQiJeJzowADvjUTw2rhjXzjM7w8NcSyZJBwOE8jl+AjeyzTPRKpW5DYAoXh8fHLVwbY2Bly2GCmJXMuyeCAW45gHHA2udm4ty+I74bDrFwKCIAjCuaE0KWpHxd9+B9ja1sY6Dzop/BvwfD4/fh6/bscO6vv6XI5sIjbw2bExwo2N2IBWLPLGgwdpcjswAahikQtwla6DpqEBh0Ih14dhlgBGLkc4HKY/leK/Hn/cdVG5GcibJuFwmO2myVceftj1mARBEISziw38XTLJ/c6wP8DbgZtcjerEfAd4kHJjio379rFseNj18/hkfgq80Nk5rjWu3LuXTe3tboclOFS1yL3RmVTV3NLC2KpVtLt8laoBSyKR8avS3aGQ69nlRuCCWGw8phfmzHE9JkEQBOHsYQP/mEzy7XichOORviWR4P+3d+fxbVTn/sc/I8mWvMq2bCuJsy9kYckCoYQQCGEPaYGWQoFC74/SnfbS0o1uFChL6QIttxuF0ktL6UJbWpbQctmXUEhCSAIhJHbiJHY8tiVblixrbEnz++NIsuzYjpM4mZH9vF8vvWyNtyNblr4685znfMjqgQ3iReB3qffdbjeXlJXxKZ/PduUUW4B7UWP0+/2c6XTyzfnzbTXGsW5Uh9xJwGS3G6/Xi+nx2KLLwrkFBZlXfLXjxlFtg1elH8rPz4zpvQkT8NbUWD0kIYQQI+R3wD9NMzOZMaehgdPq6mxZM7oFuDvr+nHA10pLWWSzcoogcDuqbhhgrtvN7RMnMs5GYxSjPORq2G+x17LKSuZVVeEtK8M7cSKNNviHOK2ykhMqK/GWlVExYQIbbdgjUQghxIH7M+rUf/q0/yxd58wtW6ixwQRLf3uBb3V10ZoqqZgI3ID9GvrHgTvo7UhUgj07PohRHnIB3pf1/n/o7bNnFQ01m5tu3fW8xeMBNaZLCwvxer0APNjaaotFcUIIIQ7eP+h72v+cigq+npfHB2y4+1YH8PVolO0tLYTa2+nYvZvPtrRQbPXABvCjjg5eSwVxDfgaIFND9jTqQ+7RqE4LhmGwLRRibUuL1UPi1Kz3/wPErBpIltMAV2oBWm1nJ/e8/rosQBNCiBz1FH13CFsAfK+4mMU2O+0PYAA3Azt6esA0cSSTrFy/nviePVYPbR9/bmvjD1m1zRe1tzPf6kGJQY36kOsCZoXD6LpOqL2d+zdtsjy8TUXVCxuGQXMoxOpg0NLxALiBBbqeqdl6dcYM9sgCNCGEyDnPAncZBqHUbOM87Hs6PYlqa7YVVVKhAeds3EhNOGy7TgrvAL/UtMzz5My9e5m/Y4fVwxJDGPUhF2BKU1PmTrmtutry7gEasCD1KjDU3s4DO3daHrwBLi8oID+RQAPaioupmzrV6iEJIYQ4AM8B3zcMmlLPL2zbxqd1HY/VAxuACfwKdUYTVEnF9aWlXDp5su06KTQDtwGu1OLxqnCYs2xa2yx6jYmQe2ZpKU7TRANaS0sxJ060ekhM2707E7zrfT42NjdbPSRmVVdzTUUF3lTrtSfLy+m2elBCCCGG5TngLqArFgPTpCIc5v1r19Ju07NyjwBPZl2/CLiyvNx2G1PEgFuAECqIz6qq4humyUXnnWercYp97Tfkapo2SdO05zRN26Jp2tuapv33kRjYSJrm97PS58uEt3eqqqweEsdVVzMlEFAtXDSNzZMnWz0kAD5WVsaU1KK4BsPgp3V1tphlFkIIMbh0wDVRp/0rIxEuWruWwkTCdqf9Af4aDHJP1sYUpwL/z9ohDcgEfgTsTF13AbcUFHDGscdKwM0Bw5nJjQPXm6Y5FzgJ+JymafMO77BG3vklJZmOBi9gfZcFv9/P56ZMyQTv/3i9tliA5gEuQ9UL67rOn0yTP/373xJ0hRDCprIDLsBst5tfVVWxbP582532B/i/QIDvhcOZxVszIhGuA1v27X0IeC3r+ueAuRaNRRy4/YZc0zT3mqa5PvV+GNWrOed2CzgeKEq93wS8Z+FY0s72+ZiTCt6dYIt2YgBnAyXhMJgmhsvFs3Pn0mDT011CCDGW/TUY5LuhELHUjOhU4FZgZnW17U77g1pgdofDQRIVyn3hMJfU1pJn8bgG8o9gkHuzZpsvBM60dETiQB1QTa6maVOBhfTWieeMfODkrOsvWDWQLBqwKuv6Y1g/wwzqdMznNC2zC9qO6mpZhCaEEDbz12CQW8Jh2lMzotXRKLcCpVYPbBC7gO8CjsJC0DRKYjE+8OabzBg3zuKR7evV1lZuDoUys82zIxFbllOIoQ075GqaVgz8FbjONM2OAT7+SU3T1mqatrbFBr1oB3Ja1vsvAQmrBpLlDFSJgGEYbAqFeD4QsHpIAKzw+biirCxTTvGX8nJarR6UEEIIAFYDP3E6MemdEf3Ytm22DbjNwLeBCL2Lt77T08NlZ51lu9nmZuBWh4O4w4EJlEcifLC2dmys1B9lhvU30zQtDxVwHzJN828DfY5pmveapnmCaZonVNlgYddAjgXKUYGy3iaBsgg4oaMj007spzt22Kb+9QulpZlyijbD4IamJppsMjYhhBir/gH8nN6teqvCYS5at47ZNpwRBWgHvgWkO8IXAHcUFHDOMcfYLuB2AjcBPUVFoGkU9PTw/rfesuVss9i/4XRX0ID7gS2maf748A/p8HEAC7IC5S9ra20RKI/btSvTTqyuqorXW+0xZ+oBrgO6U4vQXjcMvr1liy1+Z0IIMRb9md6dzNxuN0t8Pm5KJLjknHNsFxhBhcYbgb2p63moGd2Zlo1ocHHgDlRZhdvtpqa6mq/09PDRFSts+bsV+zecmdylwJXACk3TNqQuKw/zuA6bWVn9abdVV7PFBoFtUVUV01taMu3EnpsyxeohZcwDlmRtpvH6tGn8s2OfahUhhBCHkQn8LnVJmwf8uKiIU+bPt2UI6wZu6OzkzdTiLQ34Kuqsqt2kN6bYkHXsKx4PF8+da8vfrRge1/4+wTTNl7FnZ4+DcmJlJRN0nUavF9Ph4J0pU1hu8Zj8fj/fdjj4Yn4+bo+HbW43G1B7jdvBJz0e1jc0UO/zgabx90mTOAVpo3IkdKNq2Ha0tLCnpYXxVVWMr6rCifrndWZdXFlvpXZMiNHDBO7q6OBR08Tj8eB2u1mA2qrXjjuZAfQA34hEeCEYBNMkpGl8q6SEk8rLrR7agB4Fnsq6fhlwujVDESNovyF3tPH7/XwmL48fOp14PB7WuN18Eut/EYuqqrgY+Hfq+m9RfQ/t8Opigt/P3cDXHQ7aS0tV4+RgkDsTCY6xaf213ZhAG7CltZW6QICC6mryysuJoE7nRQa59JDqWdzVBUVF0NWF3zBwu91D/jwNFXjjsRhaZyc1Hg9TioqoBHxAZeriAyqw/v4vhBhYArgtHOaR9vZMWDynooJvFxeTb/XgBpEAfgi8nkhkzgIu3bqVmZWVYMOQ+3gwyN1OJ+7UC4jTUSFX5L4x+dy2sqKCvwEBVEH8y2D5bC7A5aheud1ALaoDxKlWDijLdL+fe4DPdXWxraUFTJPPxGLcAywY40FX13UaGhspqKmB6mqaAR21Qjf7EjEM9GgUPB4Ih/EXFu43rALEUlt0moBmmsRisf1+nQl0GgZ6czOYJvWdndS6XAN+nQaUQZ8A7AMcwSCOpiYW+3zUyOk6IY64buBO4OlkMvMYMLOpiQ8HAuQvXGjx6AaWRE3QvIpaGBfSNE7cvp0Tdu1iwnHHWTy6fb3S2sqN4TBxhwM0jVN9Pj5fVGSLCSZx6MZkyHUBK+mtbXoMe4RcH/AB1H7eoMZ3Mvb5I/mBy3bs4NaCAuIOBx0eD99wOvkp9lxEMJKSqJXB6fCafrsjEmF9Wxsd5eUkY7EhZ1kPJqy6AH9+Po5oFFc8julwMKmqinzUbEl8kLfmAfy89CxzG7AtdcwwDPRIBIqKyItGOTUS4aTiYo4FZmGf+6QQo1Un8D1gM71hcd6ePZzx7rtMPv98i0c3MBP4Gb196N1uN//l9XJaeTk1Rx9tu9rWBuB7Wa3Cyjo7ubStjbz5860emhghY/a56hzgYVQoeA+1C8tsS0ekXAz8C2g1DLbGYjycTHKljU7vnOLzcf6aNTx53HHEXS668vL4bFsbXzBNVlVUWD28g5ZAzexnz8BuD4fZ2dlJzOuls6BgwL7KoUSCUEHBsIKrz+0mPxKhMBbDE4+zuLycCUDxEJd8QCsoQK+ooLGxkQkTJuAvLNzv7UkCDbEYjz33HFGXi2hhIccuX04ydTtbU5cAKtz234QkOyD3OBysTSQyATgfVY99TOoyG2y5W5EQuaoN1ZFgR+q62+3maq+XZYEANeefb7uwCOox5Nf0ltyBmkz6tNeLZsNZ5/TvOFFUBJEIBd3dXLBhA7NWrLB6aGIEaaY58ntsnXDCCebatWtH/PuOtLuAZ1PvLweut24offy2vZ27OjrANMlPJHiguJhjqqutHlaGruu8Eghwf00Ne0IhME3QNE73eLiwqYm5fr/tHoTjqFDXDLzb1sa2UIiEz0dXSQnNqY8lsz7fSLVNS982v98/YHjN/ryCnh7mjx/P1KIi/EB1v0sh6neXCatH4Hc0nJ8XR5XtZAffulCIl997D720lHBBwaC3H1TAnUNv6J0Dtq0VFMLuNrW0cKOmESkpyfzPXQ1cZO2whmQC94RCPAKZhXFnAP+NPdaV9BcDbgC2p66bsRgfr6vjZJ/Pds9dYv80TVtnmuYJA35sLIfc7cAXUUEl3tXFL7q7mW2DMPn6hg182e2mvbAQDVjsdvPrceNs92Dx5ObN3JqXR9ij1vdqgCuRYO7evXzpqKNYdIRqdU0giioneC8QYGtbG8mqKgyvNzMrG0h93nDDayi1naOZul3esjIme719wmv6fa2lhZ6GBqaNHz+qHiDTATmvpobm6mo2oU6dNu3n61zAUcDkUIgJDQ0s8fkYN4p+L0IcLq+3tnJdWxud+fmgaYyvruYrHg9nWD2wIZjAL0IhfpU14fH+8nJuKinBafXgBhBHlYGsS13XUH17F1s2InGohgq5Y7ZcAVQd6aTOTl4JBMA0+f7OndxumpYHlSnjx3PWSy/xyOLFoGnsKi9nNerUj50cX1XFFU89xUszZ/LOxInq1LbTyaaJE/m8w8GU5maO93iYHY/jbGxkdnU106qr9xvWTaALVZOWfdkdDLKrvR18PuJeL0FUeA0CBqkA29kJeXkQCuFPzShkG6pOtQKoQoVXN1D37rsUR6N4YzEuXbGCyV7vwAOuqlKXUcbfb0Y+fRKvFRV206G3sd/XxYE3DYOnQiEoKqKytZWP5+dzUXk5BUdi4ELkoHXAN51OOvPzMVETBpfX13PGbDsU0g3MBP4A/BEyj6vTmpu5IBDAacMShXTN8LqsY59FAu5oNqZDLsDihgZecbsxgQ2TJ/O2rlsecv1+P59ctoxkLMYrqZnG3wALgfGWjqwvv9/Ph849lyWNjdQnEvw0FiOQ2gox0tnJ26bJ27GY+uSSEojFqO7ooKCnh6LCQjwFBSRRDzxJoKuri0gsBoWF5PcLp5mFUE7nQQVYDRViJ7tctDQ1qfBqGKxavJg5qHDb5xS714u+YMERLS3IFZWo8p7lqetB+obePfT9W7QWF/NLh4O/o4LyecDUIzxmIezsaeB/AK2wEMJh3KmtZM9ZutTqoQ0qO+CmF8ZNbWlh5aZNTF5ptykZ5RehEH+lt6TiI8C5Vg9KHFZjulwBoEnXubKlheaSEtA0Likr45ulpVYPC1DtY76I2mIQ1GKfO7Bvo/8mXeeFYJD/KyjgDSCp7TtnmznSr1Rgf2UEA5UPeLNmVvOBwmiUwLZtFHd14Y3FOGv+fGaXl1ONCrHpV3RHui52rGkDXgoGefi993ivupq4y7XP33Mu6szEUmTRmhi7+syEphR3dXFlbS3HV1XZ+vHpIfqOe04kwoe3b2eKTcu2ft/Wxg/C4cxzzIdTz/V2KwMUB05qcvfj2UCA77pceDwePG43PwMmWT2olO3Al1Gr/w3D4JyGBj5aVGTLB5E0Xdf56+rVNHq9NFZU0OT1EnG76XS76XGqKq3+QbV/iK0uLaWmvJwioAgwIxHq336b/J4eiru7OXPhQmaWl2c2MyhMfZ0EWPvQdZ3apiZqJ09mTXk5uwf4nFLgLNRsyrgjOzwhLBVHzd4+k3VsOmrFv9371PwB1Z0o7XjgG9h3wemLwLdDIdpTzzFTWlv5jsPBYhuWVIgDJyF3GL4DvJl6/33AtywcS39/AH6bmul0JhJc+vrr/Nfy5bYOcdlhE6CxsRGPx8ML//kPnU4nDoeDc846C3+qRre1uZl/PfUUJJO4k0kuGKBNjgTY3GUCbwNPAmtQT/D9LULN7p4AtlywIsRI6QS+HYmwNpHInDpfBHwdbF+3/otQiIfpPeVv94C7DrgFiKaeQ/3t7Xxw/XouOu88eR4ZJSTkDkMdqt1J2p2oU6p2EAeuam7m7a4uTKAkFuM2w+A0G+4esz9DBVUJsWNDO6qX5lNAywAfL+rqYkFTE5cWFjJN7gdilNkLfD0aZUNra+bU+SVlZXyttNTWi2RM4H9CIe7L6qJwVkUFt9l4e+EtqAmr7tR1XzTKNdu2MWvcOHmOGUWGCrl2Le884qbTd9ezB9i3Qb5VXMCXNY38RAINiBQU8McZMzL/uLnE7/ezcOHCAR9ghvqYGD3KgEuA+1BnUE6gt1bbMAy2tLTwsMPBFR0dPNLWZpv/QyEO1WZUP/YdPT2ZhZknbtvGebW1tg+49wF/gcy4J7e0cMn27bYNuDuBm+gNuNXAjwoLOWX+fHmOGUMk5Gb5KL2Lk7YAr1s4lv4WVVVxq9dLWVkZfr+fPUVF3IV9grgQB8qBat1zI2qnpIsBV2dn5km0Mz+fnzocfIXe7YaFyFVPo/qxhlGn+p2myTkbN3LSzp3UpMq67MgEfg78EzVuNI1pLS2s2riRKePt1O+nl456XOlMXfcCNwM+y0YkrCLlCv38GvXPbBgGZR0d3J1MMsFGr/oeB36Vdf1SVDgXYjTYo+vcvW4dr86cSafH06crw1nAVaiZYCFyRRL4LfD3rGNlwKdbWyncvdvW5VkJ4CfAc1nH5ofDXLB9O5NtOu424AvRKPU9PXg8Hsrcbm4HZlg9MHHYSE3uAegAPhqLUd/cDKbJqVu38i2bnd74FSrspn0JON2isQgx0nRdZ8fevaydNo1nvN4+i9QKgcuB85Em38L+uoDvRiKsyVpgNg01o2v37WPiwA+BV7KOnY5au2LXhaEdwH9Ho6xP1Ts7TZMfl5Sw3CdzuKOZ1OQegFJg6d69mVOmr8yaxVvNzVYPq49rUC1bQM0439LezgutrVYOSYgR4/f7OWnBAq71evk5qttJWhRVG/h5eruhCGFHDcBnolGeCgYJtbej6zpHRyLcif0DbjfwjUiEJ0MhDMMAVJu/L2LfgNuJevFQm6p31kyTczZswLtr1/6+VIxiEnIHcEVhIZWRCBqQcDp5dPp0klYPKosT+ApQGY2i6zqBUIjrw2GeCQSsHpoQI2o8anX0TUBN1vE9qEVr3wOaLBiXEEN5A7XArC5rgdmiujou2bYNj8Vj258o8NVIhH9lhfPlHR18Fmy7cUIM+C6qS5LH40EDztq0iZmBQKaNpRibJOQOYKLfz+1+PxVeL36/n91FRX3qqeygCPhobS0FhoEJ9Dgc3Op08rLVAxPiMFiEapz/cfr2Ef0P8PFYjFt27mSXrlsyNiHSTNQuYLegZhY9Hg+uZJKzNm3ilNpaWy8wAwihet6uTyQy4fz42lpOr621bcDtRi0qezd13e12843SUi6fOJFVq1bZqtRQHHkScgdxYmUlny4ryyx6+T1Qb+2Q9nFMdTUfXLeOYsMATcNVUMCd9K3XFWK0cAEXomrSz0wdMwyDPc3NPKJp/FcgwIaWgTrvCnH4RYHbUNvdple6THS7+XlJCR+tqbF94GoGvgrU0ttF4eRt21haV2fbcN6D+p1vyjr2KeCS8nJpRykAWXg2pAT0aV80A1WIb6cFL7qu83ZzM/87YwbBwsLM8UuBK7Dv6SUhDtVW4HvNzWxMbZKiAf7SUr5bXs7JFo9NjC0bWlq4FQiVlmYmRo5DhUavlQMbpl2oetZg6roGXNHWxlE7d9q2+0MC+HY4zMvJZGZR38dQrQjF2CILzw6SE1Von5e6XkuqGbaN+P1+Vhx7LP9TWMjsrON/An6GeiAQYjSaDfzANFmxZQuuZBI0DQoLuR34DXLfF0fGP4NBPhEO815qjYRhGFyAOoWeCwH3XeBr9AZcF2p74UttPBuaAG4Kh3mirS1TN3xeKCQBV+xDQu5+TAKuzLr+J2C7RWMZSglqEc7xWcf+aRh8obGROqlVFKPUOL+fry9cyE3RKMdUVWVm0f6OWrDWZunoxGjWgyqd+aHTSbfTiQk4Ewku3rWLa7BvF4Js/w4EuLatjUCqg4IHtcjTzmdCEsCPgeeTyUzd8IIdOziprs7ikQk7kpA7DBcA81LvRw2Db7S0sNuGwdGDemI/HVWrqOs6L/f08NGODp4IBvfz1ULkJr/fz/uPPppfFRSwOOv4ZuA64B1rhiVGsWbU7Ofj9NavlkWjXPLGG1xQWmrx6IbnkbY2vhaJ0NLRga7r5Hd1cTuqzMKu0gH3RXp/78ft2sWy7dttWzcsrCUhdxgcqCdLMxZD13W2RqN8vbaWJhsGXReqxGJJU1Of7VG/73RyO72npIQYbYpRdYVX0luLHgRuAP6BbIEtRsYbqA0R0ms13G4355eXc0d3N//vtNNseXo/mwk8DPzU4SCZul7c1cUna2uZae3QhpQdcEH93q8oK+NLxcW83+aL+oR1JOQO03jgnIaGTHDcXFPDHyMRq4c1IA34rMfDyo0bKeruBk3D4/HwKvBZ4N/IE74YnTTgElQ9ZHo+LYnaQOJO1A5UQhyMOPDTUIjrQ6HM6X0nanOeW0tKONlmO2MOJA78FPgDvTOhlZEIl7zxBguq7LtFRf+AC2rXw6+UlrLIpnXDwh6ku8IBaNJ1Pl9fz3t+P2ga4/x+vud29zlFaie6rrO9qYnnp03jtX6n0I4FrgXkBI8YrVqB24H3so5VRKN8pK6ORVVV8sQohq0JuKmzk1cDATBN0DTmVlXx3YIC5lg9uGGKAnfQd6fAWZEIF2/fzozx4237/5AA7gJeyDq2Evg00j1IKEN1V5CQe4B26zrfBJpSPXQ9wA+AqdYOa782oprp7806ZsZinNTUxMWFhcyprrZoZGNXHBXEtgQC1AaDeCorySsvJwIDXlpjMcKxGMUeD4UeDy7UTFL/t93RKN3hMJMKC5laUoIPMpdKoILejiGjXQ9wP/AEvXXq+T09fODNN/nksmW2fWIX9vECqlNNUyhEqL0dE5jS2spXXS6WzZ9v8eiGJ4jaEWxH1rEzUBMddmqJ2V8CuDkc5rmsNmEScEV/EnJHWAj4EmrxAajg8CNUeLCzblQt1t+ArtQTPqaJA3h/RQWXl5QwG3nwGCl7dJ13mptxTphAwudDR91n0pcAEMv6O6Bp+P3+TIeAbMYIf14pUBiN4m5v5/jCQk4pK2M6ubEi/GA8D9zS3k5rKIQJ5CUSfKW7m4/MyZV5OHGkdQG/AJ5LXTcMg5amJt63bRsn1NfnTB1oPfC1ri4au7szQfEy4DLs/VgfB24Mh3m8rS3zeHZ5WRlfLS219bjFkTdUyLXzizjb8gLfQW0U0YWajfse6tTovnHCPvKBjwGnAN8OhdBT9cVJVDuWN1EbXrwfWJb6fDG4bqAF+oTX9Pv1XV1sNQwoLYXOTvzFxQOGzVgslqnz1kyTWCx2RD6vxTDQW1vBNHmpo4OHCwpYvH49Fz74IBWA66qrqAFcDz6ovuCqq9Tb9PWFCyEQAJ8P3nxzeMf6f+yqq2DJkv3/okfAcqAwHucLPT105eURd7l4cMIEpgHvOyIjELnkPdTGP9lnvqa63dxUVITH52PCscfmRMBdC9wci1Hf0gKmSRi4obSUS8rLrR7akLpRpRUvZbUJO3bXLs4KBNAWLrR4dCKXyEzuIViH6imY/g0uRbWVyYVXmY26zk/eeIMNkybRVF6+z4xfKXAOcB5g3+UIh5dB3/CaDrQ7OjvZZRj0FBUNGCABQlmnNjXAW1aG19u3NbwGFHR1Edq2jaJYDE88zvuOPpqJXi/F0OcSbW7mxSefxBGPg9PJ2StXUun3E0ed0ku/3dvSwv899xwxh4NoQQFzli4lUVZGADVz7F2zhuMffJBuw+CtWbOY8/bbYJrUn3gi133ta+SlFtTEXS61VXRPDwBJlwuHpqGlrqsboKkZlj43aohj/T/mcsGqVTBu3BELvBtaWviOw0Es9aLDgepGsvyw/2SRC5LA/e3t/AHIKyjI/H+vQJ0iL7BwbAfCBP6JKtVpTz0WuRIJztuwgQ9Nm8ZCGwfFGHArsIHeM1Pzd+7k1G3bcmb2XBxZUq5wGD0B/DLr+iX03TzCznRdp7GxkZ5Jk3itspIXUK+g0wzDwIjFmOdycVJREccAc4HCgb9dzonRdxb2vVCInZEIRlkZkaIiQgN8zYGUDTQ3NVEUi1Eai3HS9OnMLCmhGjKXKtSplPTfYX/bZw7384JPPEHigQcoLCqiaOnSvrOqX/gCZirIZks4nTiSSRypx4MkKoSnX7D1vz7ijmDgbUb1k07P0mmoriPnHrafKHJBA/C9fovLplRXc73Hw2lWD+4AxFHPSf9KXTcMg2h9PeevW0d1NMoqGwfFKGriKLu39TmhECfX1VFj0+2FhfUk5B5m9wKPpd43DIMP7trFRaWlOfcPGUY9MD4J7BkkzGmokoZjUpejUTONdpNA7XYVBLYHg7zX1oZZWUnM683MzIazPn+44TV7htZhmkwtKWGez5cJrn5UePUDcV2neRih9JCtWQPPP99bCnD//ZA945rmdELq9B+QmWVOv4/TCQm1GW7/mdwelwst6zoADgdaMtn3Zww0k+twqJ870McGkp+vbs9hDLpBVMlRfdaxq4GLDttPFHZlojZ1+C3QkvX/PS4U4iuaxlnHHmvp+A5EGHWaf2PWsTnAJ5qb6WxoOPyPRYcgDNxIb/9hUBNGl1gzHJFDJOQeZgngFuDVrKB0+rvvcsOCBbZ9QBlKAvj91q38KRplT0XFoKfbQYWk6mgUXyDA1NJSpnq9VADlqIV4ZYxM4beJepXfmXXZHQhQ8MtfMvdvfyO/o4O89nbaa2rYO20acaBt3Di2HnssNa++immaPH7xxegrV+43vKZvb4XXSxW94bUayAsGefv55ynq7KS0p4cPnH/+kf8b9w+1DzygQu1wgmRWkO0jPx/uuadPvWwQaLv3XraHQvzhox8lqWlcsno1TqeT2oULKQ0EKPP5eN+bb1INOA6kJrepCZ54YuAwDnD22fChD6mvWb78sATegZ5UPwJcTm6UHIlD1wz8hN5QmF5ctnj7dk6or+cCK/6/D1IDqj90Y9ax5cDnsf/6im3NzXwHCHi9mcfna1C7jQqxPxJyj4AocHVLC1ui0UxQ+ohp8vWpU3PyCVPXdR5//HGiTid7KyqoXL6c+tJSdtB3I4nhzICWoAJvfiRCT0cHpSUlFJaUYKa+V/9LOBKhPRJBKy2FwkI6Ub/f/j936V138Z0bbhj2bUo4nfzx2mtJ+P10+HzMevNNCoCtV11Ffmcn037yE1yJBFtPOYWTrrmGOdXVA+6WMtyygRG1Zo1a9NXUBKtXDz/UZusfZBcuHNYiMF3X2drUxHtTprCmrCzTVSRbUVcXi/fu5dKiIiYO93eSfZv6B9707XI4VCnDypWHpZQhinqBujl13TAMTtJ1Put2My5Hwo04cCbwl7Y27gMoLMw8Zk0FrmxtJW/3blvPevb3JnBTLEbQMDIdFK4EPoz9X7C93dzM5wIB2goLM88hX3K7pXxIDJuE3CNkW3Mzn2tuRi8pyfyzXuh282lyc2u5gcJcJ6peanPqsq69nbZUW6ahZnxHugVWKBTi9ve/n5NfemnIB/F9TslDn2CogQpRmoaZDlkuF9o11ww8CzlQhwDo7TowUBeC4XQa2N/HvvAFGKCWNmOwUDjMIDtcSdSCy9Woldsmff9mZV1dfLOqirN9vgP7xunAu349rF2rAvxAXC7o/7fp/7dIz3IPs5uDgeqMkn0m5vidO7ltzhwJuqNQE3BnJMIzwWDmcWac389H3W4+Qm71kDaBvwK/Ngy1zbxp4komucnrZVWF3Ztawm7gc4EA9ZFI5rH6s93dfGrWLItHJnKJhNwjqF7XuTWZZGdFRSacnQxcj/1PGR2MnbrOA2vWEPR46CooYNrChcRLS9WpbqAd9UA8nG4D7OfzCoCi1IXOTubedhufve22QcfWP9we0IxG/44AQ3UI0LTeWcj+1/f3fYfzsX61tH0+Nx1qr766N/gdptP7/TUDTwF/DAZpCIf7/M3O9Hr5BGo77AOyZg2ccYYK9IPNVA/1t3A6B5/lHqAkI/17igNfbGzkxZ6ezO24LJnk69OmHegtEDYVB/6B2tI2u/a2PBrlOtPkonnzrB3gAYqhSi1epvdxsygW4/wNG1h51FG27qAAqk3bd4HW1ItLRzLJOZs28cUTT8yZGXRhDxJyj7A4cDd9tyE8BrWiu8iKAR1mQ52+T6A2z9jW2spjr7xCt8OBAzhl6VJ8FRWZGW4HKlgEAwFefukltESCgkSCVaefzpSqKgrZd6MCXdeJ3XMP4598kvxwGNrboaYG0sEkPZO5ejU89pgKPAOFn/0FUzvIrqXtP5t5hELtYBp0nTs2buS16dPpzsvLzL67gAuBSwHPgXzD4S6kG8iB1CSnQ29qxjdUX89tM2fy1IoVmbMIn3G7ZTHaKLANuIfeHb/S3U+Oq6/n5NpaLlq5MqeC1V5Um630wknDMHC++y7nbthAcTxu6w4KoNqD3YoK6gDEYlyxcyenp9pZCnEgJORawET1KPxH1rFpqFeu9j+JdHiMdKusA5IdnIYqORis5nWwDgEHOpM7VKeBwT42xAykXaTrdl+aNo3/lJb2qZ+uAC4IBplaX39wbYCGW4+8v5ncgWbE8/JU6E0mweEg6XKxYcUKGiZO5IWrr2brkiV8Gjj/IH4nwnpdwO9R3W+y75PTgMtaW/HkWO0tqHKhH6BKx9JWAauOVDeXQ/QyaofQeOp6Cep58SirBiRynoRci5ioLXR/m3WsGrXQZYIVAxLDM1AgtrIm14ahdijbgF8BW1PX0zW7NYEA52zezEfOPvvgn4SH82JlsI/3r212Ontn97OkHxHjLhdPX3MNtQsXcm4gwCyLZ8zF8JnAK8D/9NvONh+4AvgAubfdpwn8ur2dhzQNd+r25AGfA86weGzDtRq1VXL6f6wS1RFikmUjEqOBhFyLPQP8FLVoB9S2wDcCUlovRisTeB54ANiZVf9Y1N3N9fE4F8+da83A0rPCoELvddcNWv9rAqamoZkmSU0Dp5PYpz5FUU2N5SUiYnA7US+y1vVbxHpGRQVfLS5mnMXjOxgR4HuRCKuzFsvNqariewUFOfE8YgL3pgJ6+gXHRNSET6XFYxO5T0KuDbyBatKd2VEsFuMjO3dyptQgiVGsC/hlKMT/pkIumsb46mo+4/HwAWzQ3miI+t/0ArTst4DaBMPthmeekaBrI2FUacJq+i529XR3c8rWrVxRU8Mimy/GGsg21HPHtqwXizVtbdzgcHDqccdZPLr9iwPf7+jgz+3tmYC+xOfjzqIiSq0enBgVhgq5+z1jo2nab1AlP82maR4z0oMbKxYDt6G2LGw1DPTmZu4sKGB1bS03A9Ml6IpRqAD4otfLcfE4P9I04kVF5Lnd3Ae8C3wh9TmWWbKkb1C96qpM/a+2erVqK5dM9g28ySSmYaBddx0sWpRz5SSjTQIVbB9CzXimFbrdTNu9mxO2baMwmaRm8WJrBniQTNTt+jUqKHo8HkKaxoKdOzll+3Zmn2//SvEYKqA/a5pgmpjA5NZWPhYMUrpggbWDE2PCfmdyNU07FfXY8eBwQ67M5A5uoL6Ak4uL+ZbPx/ssHpsQh1ML6gnvvaxjk4AbsGlNXmqWN9jQQOmvfoWWSOAwTRKahjO7z/IR2IZY7MtEnSH7RTRKbU9P5jQ4wALgk0C+FRu3jIAu4H+AF7OOFQJXBoPU1NfnxO0Joupta+mty5/d0MCZW7bk1E5ywv4OuVxB07SpwOMSckfGu83NfH33bnZUVvbZ8GAp8CnUlrhCjEY9wH3Ak9kHYzE+uGsXK71e2z7x7X3iCV575RV2TpzIqf/4BwuffhpH9mPnhRfCiSdKre4Rshl4ENjQr+722MpKPl9YyInYoBTmIO1EvRhsyDo2Hfg6B9F32iK7UR0TsndHPC8U4qS6uoPrsCLEECTk2lCTrvNkKMSTkyZhFPSesC0CPg6cSe4+SAuxP8+hZqrCWSFl+datfGP+fNs+AcZRC0jrX3iBO88+m/zuTIW9+l89zFsQC6hDhdt1qevpultXIsEJdXV8vLKSE3P0NLgJ/B/wk1iMjqztec8FPkHubCa0GfgevS3OHKgOEGdbNiIx2h2RkKtp2idRZ4iYPHny8fX19YN9qsgSRq1Af7rf8eOAa8mdV+5CHKgdwPWtrdR2dmZKd65IJvmqjXcZM4Gb6uupXbeOr9x8M8e89RYO+m4fneFywapVEnhHwMaWFn7T3c07lZV9tvlOxGJUrl3L8du3U5xI2H4ThMFEUC/6ns160ZeXTHKD18uHcmB73rRHg0F+6nDgKijA7XbjQc1AH2/1wMSoJjO5OeAt1INcU9axfOAy4CL23e1LiNGgrrmZz+g6TaWlmdKdK9xursK+ZzJ0Xecnr79OUyzGz666ivzubhzJZKbd2IDjdjrh+uuhrExKGg7ALuA34TCPBoOZ7hx+vx+P280K4HLAzNG627R3UJs7tNI7M10eiXDeW29x9ty5tt+eF3pbhP28oyNTOnJUVRV3FBQww+rBiVFPQm6OMFD7qv+dvrvzTEetQpcHCzEa1es6N5smu8vLM7N056Pq0+0cdDc3N/NmSwsVr7zC7rw85mzaxAf/8hdcqRZkA47d4QBpP7Zf24C/AGvoDX7p2fJT8vL46oQJTLF0hIcuAfwJ+CO9j/eGYVC9bh0nb9mCG3JiZrob+AnwWNbfqaKzk28nEpxx7LEWj06MBYcUcjVNexhYjurZrAM3mqZ5/1BfIyH30NSiav/qso51GwYnNTXx/zweptr8QU+IA9UNfB94PevYGcDnsfdZjARw286dPKJpmMD8dev40OOPM6mtjYVPPIHW07Nv2NU0WLwY7r5bgm4/m4E/A29mHUuvzJ8YCLCktpZPLFtm++C3P83AD4EtWcdKUPf36Tk0Mx0EbkV1TEn/nSa1tnLepk1cfO65th+/GB1kM4gcFAf+gZrZzV6ck59IcGllJZeVllJj8RiFGElx4C562yYZhsHsQICvO53U2PjJUtd17n3pJZ6fM4fW0tJMt5TpL7zAx+64gwXpTgz9tg+Wml0lAfwHeKizk03xeJ9WYADvA05vbaVw9+6cCH7782gwyC80DbOwMHM7jwGuJ7d2/6pD7VjWmnXslI4OVtTWMnkU/J1E7pCQm8P2At9qamKtYWRO13nLyvB6vSxC7dJxAvY9rSvEgUgCPwMey3phN6OlhXsmTbJ90N3T2MjWqVN5vLxcbfiSGv9x69dzycaNnLJhA2WPPio1uylh4F/AE0BDv1Zg4/x+znS7+TAw1dJRjpwO4M5wmMfa2jK3c3x1NVd7PFyM6kKQK15DzUQbqesaatX5KstGJMYyCbk5rknX+eG6dbwxbRrtRUWZmaK0cagaxrNQLciEyGUmcOOuXfwjtUOSBpzucvHjmpqcCAJh4Lbdu3kya6c0b1kZJ77zDreffjouQ0WDsVqzuxN4DHie3m3O03W3jmSSOXv38v9KSjh7FNVz/ge1sLg+q27V29XFl5JJLpo3z+LRDZ8J3N/ezu80DXdqxr0Q+BqwyOKxibFrqJCbC88ZY944v5+vHH88d8Vi/LioiGVud58nyCbgfuBjqFkwad4mcpkGfNbtZlF9vbqfaxrvVFbyU/ouyLSrEuC6/HyuWLOGOXv34kBtybpx0SKufvhh/nLFFbxw1lkk8vL2vT3JJMRicN11ase1USKCmrX9fGcnV4VCPGYYdGd9vDo/n8U7dnDVSy9x5pYtzK+utmikI6sTuBvVN7YddT9A05jX0MBlr73GyT6flcM7IAZwYzjMPR0dtLe3o+s63miUHyIBV9iXzOTmqCbUrlH/prfpdrZjUaeO3oe9F+6IvrpQi1K2BAJsb2vDU1mJq6yMCCooNEUitHV2UlZcTGlRES7U39cFxMJhkm1tTC0tZVpZGWYgQM/evcyvqmKcjU/1D6ZJ17nHMHgj68zFSuDT5EZ5jp5aQJRXU8Or1dX8qb2d1lAoM7t78nvvceXPf877HntMtR5L1exmbluObxfcjdp293lgLdDZryTB7/cz1+3mA8AyoC2HFlwNxwZU14HsmtUK4LJAAP+uXTl1O3XUArMNWTPRNW1tfEPTWDZ/vsWjE2OdlCuMYgbqSeRx1GnA/ipRweAcoPSIjUoMphN4u6WFd4NBtOpqjPJymiFzCdO7Sjk7DLjd7kGPM8DXVJSXE0zV/nnicVb4/cyJxxm/ezfzq6tz5snVBO6h72YpFwJXkxtBN9v25ma+/847vD1hAp0eT58FatOffJJjNmxgxb//nbldpqahfepTvd9g4UJ4M9V3wKYL1dqAjcCL4TAvxeOQtbgqXZKgmSYzmpu5vLiYD86bl3N/x/3pAn7a0cETptlnEd1pqLZ4JVYO7iBsAO6k72PT0bt3s3zrVi44//yceSwRo5eE3DHABN5Ghd01qAU8aYZhEO/q4pi8PN5XVMQxwBzAPcD3EQevSdepbWoir6aGRGVlJrjq9IbY4BBBNa1/X9D0QsPBjg/0NW6PByMWy1wvLi4m0tkJpsnkYJBPTZnCeRUVOTHLnwR+DLyQum4YBqfu3csnCgpy7gk2vUAtOHkyb/l8rAFaUn+7Y9et4/7LLstsFxx3udA0DWeq7y7Yb5Z3W3Mzr7W10Tx+PHWlpexi8BdpNZ2duF59lZl791LS05MTPWAP1OvAj7u62NLSkrn9M6qquL6ggKVWD+4AmcCjqB050ynBBVzS1sacnTtzaiZajG4ScseYVmA1qgaueZAnHBcwC9W65hhgHuCxbsg5wUTNZmSH15bU253RKBubmuh2OgcNrzB4gE1zASXRKG1bt1LU1UVBPM6S445jUlkZ3cEg6194AUcigelwsPS00/D6fMSBlmCQl157jUheHl0FBVQedRTv7N1LW2EhXW43xUVFRCKRPqHXB1zpcHBxebntZ9MSqNmk57Luz8fv3Mltc+bkZClGWhR4vK2N3+7aRUNZmerEsHo1TqeTRCLB+ffdp9qP0Xfr4CTQsXw5baecQmUyScmqVYct8JqoWegNgQDd48bRUV7ObuC9ri62ZYW59H0++z5eFo1yTkEB/zV1KjX0lnCMtoAUBO4FXqHv//j0lha+lJ/PqccdZ+0AD1AMdQblxaxjFcANqAkSIexEQu4Y1Q38dts2/hKLoZeWDhiq0hzATPqG3rHWqcFEtfnJnnnVgR2RCDu7uugqKQHPwC8F9hdeMz8jFiOyYwcl0SilhsHyefOYXVZGNVANlKe+frAwMFRI6P8xXddpaGyEiRPZ4nLxl7o6dlRWqs0IIBNOTvb5+FJREbMO7dd32MWBa/fuZU13d+b3fI7Tye0TJ+bEjPRQdF3nvaYmApMmsbOigvVA0dNPc/eqVZmZ3f7S2wgnNI2kx8NDzzyDsWQJsT176NqzhynjxjF76lTcqC3C3UCopYVGXad83DhKKysxUI8TBtDU1sbO9nY0n4+e0lKCqPC2Nxajobl5yDCbvs/7vF4mdXZivP46k1paGBcO8/5ROGObZgJPAf9L79oIwzDo2L2bU959lzm6nnO3f3NLC98DgqWlmRfqc4Gvo4KuEHYjIXcM03Wdxx9/nHBeHnt9PiqWLaO+tJTd+/k6DZiGWsA2IRikdPduZo0bl1MP1tlMVK1cEAik3ta2t1MbDtNTXk60uBgd6B8nhqqDHejzXPE4pYbB8ZMmMaO4OBNeqwE/4AWaLZrN0nWdt5ubeTY/n/9zOIjm52fCSYHHw4LmZj6dn880G/+Nd+s6n9+zJxPW/X4/p7rdfBUV5EYLE1jb0sLzDz/M0S++SCwvj/ply5i9aRMz1q9n5tq1OLNalMWdTh665RZ+e+21BILBzPfxVVRQXKKqQA+kpjv7Y4O9gDMMg2BjIxXhMDXt7Vx+9NEs8/nwMHpnbLPtQrUF29Lv+JnAquZmOhoacu72rw4EuDEUwsg6I3Wh280nUWeZhLAjCblj3EBPOCFUDe9mYBOq7dhA9wSj325r88aNo6awkHLUq/oK1Oxjedb7RRyZRUFJ1OneKKrzwK5AgLpAAFd1NYmysj6BNoA6BTfQ7TqQ8oLq0lJml5f3Ca5Vqbc0NxNuaKDG5k9suq7z99WreX3KFDZMm4bX58ssUiuPRvlxZSWLqqqsHuagGnWdH/f0sLGqKvM3mwd8Gyi2dGQjL/t/N9/vpw5oX7OGZWecgdMwcCSTJDQN0+nk0S99iWaXizXHH8/G448HVMuqzP/8AdR0Z3/MMAzaGhrwdnbii0Y5a/Zs5peVMRkwdZ29ozzM9mcA94VC/NU0cRUUZO6D44FrgdwqTFASwO+A32TdD5ymySficT47c6bFoxNiaBJyxX6FgXdQoXczUIsKvcM9DZ8tHyijbwjW2tsJB4OUVVTgLSvDTH3/oS7toRB6KER+eTmOkhI6oc8lmvUzhxta0wa7XQWowJoOsPnt7Wx96SWKo1HKDIMPnXNOTteApqXDk3PiRH7Z08MrPT19gvyN5eWcYvUgh2ACDwKPZB2bAtzMGDmlumYN4ccfJ9LQwLiHHoJEAkwTU9NIOhz887LL6CwpoWnVKoIrV2IAbdEo23fvxpFMkpdMctTUqZQXFeEGusNhtr3zDh7DoLi7m7MWLWJmRUXmfzg0BmZm98dE1dz+T7+FZROqq7nc4+FScvNsQgD4AWrSI/04WtzVxcpNm7hm2bIx+/cWuUNCrjhgnajTcK+EQjy5axfNJSUkHY79hseBHGgAPZivGU4Yz0c9YfuAvHCYXRs2UNzVhTcW48KTT2ZeZeWAs9Cj/dSrruv8cO1anpk3j4TTmbmNS5qa+LTHw3gb3+Z/APdlXS/p6uJjtbUsqKoalX+rfdx+O3z72yrkpmQ/omsuF3zpS5ntgvXp04dd0y167UAtLNtM38eacaEQ/+1wcP4xx1g7wIO0AbU9byjr2OxIhAtra3O6PE2MLRJyxSFJL2AqranBVV1NG6oEoC11CfZ7G+v39QczGzzcrylMXRzRKI3btuHu6aHYMDj16KOZXlaGj94Z5WL6Blh5Uu+l6zprW1v547Rp6E5n5gXGUbrO3VOmUGPj389zqKb70dQLo/yeHs7YsoUvLl48+v+ua9bAGWeAYajd0gbjcIDLBStXwrhxtu2zazcdwEOobjXpZ8r0wrKTtm3jmMbGnFtYBqrU68/AH+i9XRrwUeDD5F4PajG2ScgVR1QXfUNvXXs7L7z1FgnAqWksmD+fMq8XDTIXUB0e0tdD7e2sX78eZ08PBYkEK046iUkVFRRB5lJI332pJbQeuk7gy3v38mpWB4OleXncPWGCrU/FrgO+1tZGS0dHZtznORzcPGmSrcc9ItasUT1z29vhrrvUrO5QgRdU4F21SgXeHNhk4khLoILtQ6h6/zQnaifJFbpOKEcfa0LATZEIaxOJzGYVZcBXyM16YiEk5ArLHUwAldBqjSZd58vbt7Np4sRMqciJbjffwt69lNe0tvLVQIAOjycz7qPcbr4GTLJ6cEfKYIFX01Tpz/6M8fBrorYi/kU0Sm1PT58dyxYCnyC370sbgNu6utiaVVO83Ofju0VFlFs9OCEOkoRcIcQBadJ17o3FeHncuMyT/OTOTq7Yvp0ZNq7Vq9N1fhKPs6WyMjPufODTqNZOY+o0bDrw+nwqrN5/P2TtnnZAssPvKA28m1H9bt/qtx7guMpKri0s5ERy9/4TR3VP+Bt9S8FOqKvjs2VlnLBwobUDFOIQSMgVQhwwE/gL6skxvRCwKhTiovXrufjcc20bdE3Ubn+/pm/f44XhMOfW1jJj/Hjbjv2wWrMGHnwQmprgiScOLfBec42a6Q0EYPnynA69dahOHetS19Mh0JVIsLiujqt9Pk7M4RDYiOqesD11PV1TfOamTUwLBkfl9spibJGQK4Q4aP8EfthvRflNySRLFiyweGRDqwe+D+ymN6SXdHVx2rvv8vmTThoVreAOWjrwQm9ZwoGE33T5Q3pB29VX51zo3Qv8nr5b1wIkYjGq1q5l0fbtFCcSORsCTeBZ4Jf0XQy8ELiiuZloDm5WIcRAJOQKIQ7Jn9rauC0czpzCPc3n4wepHqt2ZqBaP/2lX7eOk/LzuXH8eCZYOzz7Odjwmw69mgZOZ5+2ZXYLvC3AfR0d/DuZJC9rMwcNWAFcjtrkIpfXA3QCP6dvgHcBHwMuIHfLLoQYiIRcIcQh+31bG/c6HJnFOAtQu4zlQveCR4NBbm9rI+ZyZRalFbndXAhcir0X1NlCdqnD6tUq8O5vQZvN2pY1oDYPeSoWo7G5uU8P7tPcbq4EJls2upGzBbilq4s93d2Z/9Ua4KvAdIvHJsThICFXCDEi/g78Juv6YuAb5Ma+9tubm7nPMHizupr8rI1FfMDVwDJkhmtY+i9oe+CB3tA7FIsWr+1E9YR9mX13cZwYDPIJt5uL5s07ImM5nLpRLc/+aBg0ZS2cu6SsjOtLS+WFnBi1JOQKIUbMH1FPpmmnAF9G9RDNBduBXwHv9js+rbOTs3fuZHFlZU6eorbMwbQtczrh+usPa0nDVlS4fb3fccMwcL77Lou3b2dye3tObubQ33bgx6j683SIz4/HOf3tt7ls0iQW5vDCOSH2R0KuEGLEmKiOC39JXTcMg2NaW7ne5bL1zmjZTNROaQ8A7fTdRnp6ayvXT5nCKZWVlo4xJx1o2zKHA9xueOaZEQm6JvBsIMAfenrYXV6+z1bgx6N29KrM8ZrbtDgqyP8JtYsZqPuy+513OH3zZrzd3Tm7cE6I4ZKQK4QYUSZwH/CXrHA4rbWVn06cyOQcekLtRM1M/769nWAo1Gcb6aVeLxcDi5AyhoM2nLZlmgaLF8OiRb0dGtIhGfbdlAJ6F8elrscffJAG4MFLLuGRGTP61Nu63W5ORoXbmYfzth5h9ajZ27qsY25U6c0iXWfvKAjxQgyHhFwhxIgzgW/u3s0TyWQmHM73ePiZ30+JxWM7UOtbWrilvp66qqo+4QhgGnAxsJTcKcmwpTVr4M474bHHVDnDYM89Q5U5pBYOpsOy6XKR1DQcqes9LhePXnop7xx9NPM2b2ZOIMC0adMoGUUbWCRRtfG/R83kps0DrgPGWzAmIawkIVcIcVg06Trfevdd3pg6NRMOZ7rd3Azk2sl+XddZ39LC2ilTWFdSQqLfx0u7ujipsZEPFBczRWbHDt6aNfDd78LTTw9vq+F+0i+oQAU+Leu62e/jpN/Pz1dlFDkedHcBd3R2sjkez3ROyAOuRLUGc1g7PCEsISFXCHHY6LrOw5EIT06cmJn9rARuBiZZOrKD1wo8CjyF6rWbXbObl0xyQWUlF5SUcCxSynBQ1qyBM84Aw9i3K8MgM7kmkHC5MDUNV2rmNp6a2XVllUFo7Bt0ATjxRFUSkYOzut2oGviHYjEastqfLfH5+GZRUc7+nwkxEiTkCiEOuxeBu+g9hVoC3AjMtmxEhy4MPAb8LhikMRzuU7Pr9XqpRG0gsAKosXCcOan/IjXYpya3B9i2cCGRN99Ej8f588qVYJq8/29/o6CggBeuvprZwAUPPkhVUxNadg/fwVjUyuxgbQJ+hurzm+6coJkmi2tr+WRFBYulc4IY4yTkCiGOiDeB2+jdRtQN3IBa1Z7L6nWdH2zcyOaaGtqKi/vU7KbNRoXdZZBzNcl2EgfWAc+j2n91p45n97fNSyQ41+XiM5MnMzH7i/sH56YmaGyEN94YuDTCxmUMYVT3j6ezjhmGgWPrVpa//TZV0ah0ThACCblCiCNoG/BdoCN13YlaELPcmuGMGF3XaWhsxJg0iY2VlbyACiLZDMMg3tXFApeLZcXFHI8q2ZCShqHFgBcDAZ6JRnmvqoq4Z9+tCwzDwPXuu8xqbGR2czMfOvfc4QW8NWvg9NNVacRAbFbGYAIvobajDmUdL0RtyyudE4ToS0KuEOKIagC+AzSnrhuGwVmNjVxZWMi4UfLEHAfWAs8CbwCdWXW72R0afKg2ZIuA+cgsL6jf3XvAW6nLxn61ptkz5VNRL5BOAxIH2992OK3MjsAGFfuzuaWFe+JxdlRU9DlTcDLwKaDiiI9ICPuTkCuEOOICqJrc97LC35RAgB9NnMis6mqrhzeiwsBva2t5rLOTJq+3T91uNg04CpgRClHZ2MjiigqmjpLQPxQT2EFvqH2b3pIW6FuKoAHTiov5oM/HacCUkR5MOvCuXz9wGcMIb1AxHAZwfyjE/cEgcYcjE/QnuN18BnjfERmFELlpqJCbC1vOCyFykA+4A7i2vR3dNDGBep+PLzmd3AocZ+3wRlQJcElxMYXPP08oL4891dUULl3KdtSGE2kmsNEweDoUgsJCtFiM+dEoRxcWMgMyl1ye7e1AtbqqT73dBWyJxQgaRqbtVX8ejwdXZycTW1uZ1dzMJ5YtY9zhGuCSJeoyWBlDMgmxGFx3Hdx992ENuibwMvAboBaIOxwq6JsmJ+o635g8mcLD9tOFGP1kJlcIcVg16Drf2rqV9VOmZGaoPG43lwIfYXRtsKD3O52eQNUor0MtynsPaO83aznQjG8VKuxWtrfjam5mdkUFcyorqcAevVBjQBuwtbWVze3txKqraSstpZ6+daTQt/1adilCNap8YwHqBY9hxVa72RtUmOa+XRkO48K0OuDXwObU9fTvqSoU4vStW7lm2TKpuRViGKRcQQhhKV3X+b+2Nv42ZQrdBQWZ40cDXyb3No44WGHguWCQh7duRS8tpa24mKpx4wac3RwoHBa43VSgQnAV6vdWBUR27CCwaxfTa2qYN3MmbiAf1d3CjXoh0X/xmwn0oE6Vd6cu6fcbW1vZEQziqqoiWV5OAAhmXToHGd9AtyNdiuDp7mZSMMgKn48PzZyJreJbuivD66/Do4/2/diFF6rFaSNUp9uB2q3sKdTfIM0LvL+tjZk7dzJRFpUJMWwScoUQthAEfgRszDpWguq+cKIVA7JIesa3csIEYn4/tZC57ESFz/51qgPN+AJEwmECwWDmuq+iguKSvgUPGirsml1ddHZ14SwsxOHxMNCj/4GG1/7jy0d1lJiMqqctCgTY8tRTFEWjOB0Oe7e9GqyEYQTqdBPAk8BD9C1hcQKrgMuAooP6zkKMbVKTK4SwhQrgFlK7N6FmssKpYx8A/gvIs2pwR5Df7+8T9GZlfSwO7AHWJpM8tmsXIY+HzoICvNXVDNQEqzMa3ed6/5BrAiHDQG9pUeE1Ehk0vMZiMUjVUGumSSwW2+fzXMDE/HwKQyGKu7qo7OzkgvnzWQD46VdS4fOx8Mwzj3wpwsFYsgSee07V42YvSksmobv7oEoXTFS/319Go9T29PSpS14EXEPu7gwohN1JyBVCHFEO4FLgGOCHqC10Af4JvB6NcnFdHQuqquwdhg4jF6pt1tTycpYddZQKh1VV+AsK6EZ1rWhJXVqBzabJhpYWelwu4g4HVaWlFNFbemCgZhEHCq9FbnemtCF9meBysSsUwt3dTbFhsMzrZTrqBYov9bYE0AoK0P1+Nb6pU/H7fIPepv6h3taWLFELzrK3HdZSxR6vv65me4cZdDcD/wu8ZRjora1gmoQ0jeMqK/l8YSGLkR7KQhxOUq4ghLBMGPgJ8B96T5M7kkkW1dfznTlzmJIrwchiW7Zsoa6ujunTpzN37tx9Pp4Adus6j/3735iJBPnABeedx/hBfr/9F9CNSek63fZ2+NGPIJFQx4exGK0OeBC14BB6SztciQSL6+q42ufjRNmOV4gRITW5QgjbMoHHgbva2wmEQpkazynFxXzZ52MZMts1UiS8HoTbb4dvfrNvP91Bdknbi1pU9mK/b5GIxah64w0W1dZSnEjYuy5ZiBwjIVcIYXuvt7Tw7aYmmkpL+yx4Oga129NUi8cnxqihtgV2uWDVKmLjxvH4VVfx+yVLSGR9WANWAJcDprzAEOKwkJArhMgJTbrOox0dPDNxIrGsVmMO4HzgCmQFurDAILukZT97dufn883nn2dramZ3CXAlsqhMiMNNQq4QIqd0Ag8DjwHZ7fm9wMeAM5ESBmGB1KyumTWrm74fJoD3TjiB0AknMP6qq5hyhLYEFmKsO+SQq2nauaj1IU7gPtM07xjq8yXkCiFGwm7gV8Bb/Y7PAj4NHHXERyTGsj3AK2vWUPrgg3ibmlj8xBO4enr2+TwtPx/uuQfefFMd6Fe7K4QYOYcUcjVNc6J2ozwL9T/+BnCZaZrvDPY1EnKFECPFBF4F7qO33RiobgxHt7ZyeX4+i6uqrBmcGBPqgD+j7ofZz5jTX3iBs372M47bsIFJ27b1PbvgdPZ2ZEjV7jJunAReIUbYoYbcJcB3TdM8J3X9BgDTNG8f7Gsk5AohRloMeAT4GxDptyvXORUV/FdxMfMsHqMYXV5qbeWhnh7qKir22RDjOOASwK/rhFav5qhPfQqtu1t90OlU/XUHen6VwCvEiDrUkHsxcK5pmtekrl8JvM80zWv7fd4ngU8CTJ48+fj6+vqRGLsQQvSxF7ilsZFXenr22VJ2LvBh4ASkZlccnDiwBvhjZycvBwL7bG+8GBVu5/T/wvTiNICFC+ELXxi4I0M2lwuuuUZ9fiAAy5dL6BXiAB3qtr4DPVfsk4xN07wXuBfUTO4BjVAIIYZpPHCj08l9r7zCuilTqPP78Xg8AGwBbgamABcDy1ALCYTYnxDwFPAkEARC8XifHeLmtrby3zU1TB/sGyxZ0jegHnusCr1NTfDEEzBA7S7xOPzqVypIOxzgdsMzz0jQFWKEDCfk7qFvF5SJQOPhGY4QQuyf3+/nmlNPZWVjIxQW8pLbzXOoWTiAeuBHwO+AD6K6MbgH+V5ibNuO6uLxIr33HwCPx0PENJm1dy+Ld+7kyhUrOKDuttmhNz3LO1DgTZ9NTSbVzO911w240YQQ4sANp1zBhVp4dgbQgFp4drlpmm8P9jVSkyuEONJagX+gZuNi/T7m7upicVMTHywqYlZ19ZEfnLCVOGoR2eOo2f/+yoGVwMLmZqINDSO7gUN24F29WgXeZBI0rW8N7zC2DxZCHGK5gmmacU3TrgX+hTrz95uhAq4QQlihEvg4ql7yCeCfQBjVhWFXSwvbHA7+2NXFWZEIFxQXsxjIt3C84shrBv7e3s7jiQRGcfE+i8lmA+8HlpJ6cqyuVpeR1H+G9/nnweeDv/4Vnn66N+j29EjIFeIQDadcAdM0n0SVKgkhhK2VAB8BLgSeBn4diWRqK5PAa4kEW1A7py1DnaKajSxUG606gJeBF4A3DQO9o0MFyc5O/H4/RW43y4BVWNB3OTvwHnssvPBC72K1vDy1EE0IcdCGFXKFECLXeFCzcovice56+2021dTQVF6eWaTWiSpteAq1mG1F6iLFDLkvBvwHFWzXo3YjA4jFYpkXPEWGwYrGRj41bRrlVg0025Il8NxzvR0apCZXiEMm2/oKIUY9XddpbGzEOXEim6uqeBbQB/ncY1BhdylQeMRGKA5VHNgAPA+8BgzUvKsnFiP/nXeY3dDArJYWLjj//JGrtRVCWOKQt/U9UBJyhRB2ZgLvAM+iTmVHB/qcWIwpwSCnFBRwRnm5zPDaUBJ4ubWVp7q62FpZSXdBwYCfNwdYDpwCxFIveEZ0MZkQwjIScoUQYhDdqJm/Z1Gntk3UYrXsHdX8fj/T3W4WAYtQs70e64Y8ZpmonpYbgLeAtbEYO5qb99mwAVTfy+XAqcA4a4YrhDgCDnUzCCGEGLXyUUHoVNQmAC8Af+roQM/aCCAWi9HgdtOA6qnqAo6GTOidgixcO1yaUYH2LWAj0Jb1sZBh9NmwwROJcJHbzWnANORvIsRYJyFXCCFSKoCLgJOTSR589VV2VlSwu6qKZL/T2nF6g9cDqa+bGQ4zfu9eTior4+jqaglYBymECrPp32/TEJ/r8XiId3czpbmZubrOJ5culVlbIUSGhFwhhOjH7/dz1YoVmdrNco+Hd1DlDOtRO6pl22sYbGhrA7ebe2IxZnR1Ma+ggBmQuUxAZhb7C6F+l/XA5o4O3jIMgqWl+/SvzVYMHJe6zHe7cZWWsjcSYcLSpVJjK4ToQ2pyhRDiALUCb6IC7wagIRQi1N6uTpsD3rIyvF5vn6/xANOhT/CdyNiYaYgAu1BhNvttKPXxgWqg00HXjSoNOQ6Yj/odOo7w+IUQ9iU1uUIIMYIqgbNSlySwpqeH/62rY09ZGa1eb6YXb7YYqqPDO1nH8oDqzk4K2tuZVlzMTK+XytT3r0LNWubC7G8CaEfVNAeB7W1tbA2HiVRUECguJrifr8/uX+tIJpnQ3s5Zfj/zURt15B3W0QshRisJuUIIcQgcwNLKSmbOm0djYyPji4rQ3G5qIXPZTu+sZbaIYVAbCKgZzFAIv8fT51S9m97Am35bBXTU1dGxcyczJk7kmKOOwp36XCcjE4oTqK4T3cDu5mZ2tLSQP24cms9HEAikLulQ247qfACpWdlwWN2mYBB/Xt6g5QduYDJQ7nDQtG0bFR0d1HR0cNF55yGFB0KIQyUhVwghRoDf7+9TE+oHTk69b6K6AtT2u2zPmsFMd3HIDoQG0JC6pEXCYQJOJ8yYAYAvHKa4pARQgTsfMqE3v9/bnkiEjo4OPKWluIqLM0HWoDfUdqMW1kEqsMZiUFystsEtLh6yXhb6zsqmb1Ox281EVBeKyVlv/aRCeUkJ+rHHSv9aIcSIkpArhBCHmYbqwFABLM46XmsY/G7dOkJuN52FhUw5/ngMVM1vC6rEob/OaHSf6+mQm0x9zUBfZxgGejA4rBnWtIEC62Bf4wV8QL7TSUNjI0XRKJXRKJeedBLHomaZh9L/RYIQQhwqCblCCGGRGdXVfGbp0t4ZzNLSzMdMoJPewNuSev9tYGMwSNTtJuFwUF5Whgc1A5sc4mcdSGDVSM0A5+eTMAzye3oo7u7mxIoKptIb2CtQwbaMrCeT4mL06dPVbTrmGPxVVQf1uxFCiEMlIVcIISw02Aymhlp4VgxM7fsFbAkGqaurY/r06czN6uIQp7f0IPutAeyNx3lu40bMZJI802TFKadQQ285Q3Zpgyv18ykoQPd6e0N4asb4YG+TEEIcSdJCTAghxghd16XuVQgxqkgLMSGEEDLDKoQYU6SnthBCCCGEGHUk5AohhBBCiFFHQq4QQgghhBh1JOQKIYQQQohRR0KuEEIIIYQYdSTkCiGEEEKIUUdCrhBCCCGEGHUk5AohhBBCiFFHQq4QQgghhBh1JOQKIYQQQohRR0KuEEIIIYQYdSTkCiGEEEKIUUdCrhBCCCGEGHUk5AohhBBCiFFHM01z5L+pprUA9SP+jQ+/SqDV6kEIW5H7hBiI3C9Ef3KfEAOR+8XhN8U0zaqBPnBYQm6u0jRtrWmaJ1g9DmEfcp8QA5H7hehP7hNiIHK/sJaUKwghhBBCiFFHQq4QQgghhBh1JOT2da/VAxC2I/cJMRC5X4j+5D4hBiL3CwtJTa4QQgghhBh1ZCZXCCGEEEKMOhJyhRBCCCHEqCMhF9A07VxN07ZqmrZd07SvWz0eYT1N0yZpmvacpmlbNE17W9O0/7Z6TMIeNE1zapr2pqZpj1s9FmEPmqaVaZr2iKZp76YeM5ZYPSZhLU3Tvph67tisadrDmqZ5rB7TWDTmQ66maU7gZ8B5wDzgMk3T5lk7KmEDceB60zTnAicBn5P7hUj5b2CL1YMQtvIT4CnTNOcA85H7x5imaVoN8AXgBNM0jwGcwEesHdXYNOZDLnAisN00zTrTNLuBPwIXWDwmYTHTNPeaprk+9X4Y9aRVY+2ohNU0TZsInA/cZ/VYhD1omlYKnArcD2CaZrdpmu2WDkrYgQso0DTNBRQCjRaPZ0ySkKuCy+6s63uQMCOyaJo2FVgI/MfioQjr3Q18FUhaPA5hH9OBFuCBVBnLfZqmFVk9KGEd0zQbgB8Cu4C9QMg0zX9bO6qxSUIuaAMck75qAgBN04qBvwLXmabZYfV4hHU0TVsFNJumuc7qsQhbcQGLgF+YprkQ6ARkbccYpmlaOeqM8DRgAlCkadpHrR3V2CQhV83cTsq6PhE5rSAATdPyUAH3IdM0/2b1eITllgIf0DRtJ6qsaYWmab+3dkjCBvYAe0zTTJ/peQQVesXYdSawwzTNFtM0e4C/ASdbPKYxSUIuvAHM0jRtmqZp+aji8H9aPCZhMU3TNFSN3RbTNH9s9XiE9UzTvME0zYmmaU5FPU48a5qmzM6McaZpNgG7NU2bnTp0BvCOhUMS1tsFnKRpWmHqueQMZDGiJVxWD8BqpmnGNU27FvgXagXkb0zTfNviYQnrLQWuBDZpmrYhdewbpmk+ad2QhBA29XngodRESR3w/ywej7CQaZr/0TTtEWA9qlPPm8j2vpaQbX2FEEIIIcSoI+UKQgghhBBi1JGQK4QQQgghRh0JuUIIIYQQYtSRkCuEEEIIIUYdCblCCCGEEGLUkZArhBBCCCFGHQm5QgghhBBi1Pn/keN54CirfusAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plot_episode_run(df, E=2) # arbitrary episode" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Path taken in a particular Iteration" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArkAAAGsCAYAAADZrb8BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAADWtElEQVR4nOy9d3wcd53//5xVmVntqpeV5W7HduLu2HFiO70Xk0I54A6OckcCHBxwXOe43xXgvsc1yt0BuaPD0QmEQBJIiJNAnOIUt8RVLrJlraTtdaTdnd8fn9nVSpZs2ZY9I+n9fDzmodnd0eq9qy2veX/e79dbsywLQRAEQRAEQZhKeJwOQBAEQRAEQRAmGhG5giAIgiAIwpRDRK4gCIIgCIIw5RCRKwiCIAiCIEw5ROQKgiAIgiAIUw4RuYIgCIIgCMKU47QiV9O0qKZp1oitcCGCEwRBEARBEISzofJ0B1iW1VDc1zRtEbAPOH6q32lpabHmzZt3rrEJgiAIgiAIwpi8+OKLWJaljXbbaUXuCPYAWJY1+1QHzZs3j23btp3hXQuCIAiCIAjC+NG0UfUtcOY1uR5g1BFpmqYViuUMfX19Z3i3giAIgiAIgjBxjFvkapr2env35dFutyzLY1mWZlmW1traOiHBCYIgCIIgCMLZMJ7GsyWapr0C/NC+apGmaR8+n0EJgiAIgiAIwrlwWpFrWdZey7JWAxqqVCENPHCe4xIEQRAEQRCEs2ZcjWeapv2NvftrwGtZ1pHzF5IgCIIgCIIgnBvjqsm1LOsTtj3DUeA7ox2jadq9mqZt0zRNbBUEQRAEQRAERzmTxrNq4E7gB6PdblnW/ZZlrbMsa91EBScIgiAIgiAIZ8OZWIjdBrxkWVbwfAUjCIIgCIIgCBPBmbgrfA24WNO0uLgrCIIgCIIgCG5mXO4KwEagAKxC3BUEQRAEQRAElzPexrO0ZVnNwGXAQXFXEARBEARBENzMmY71fQtjuCsIgiAIgiAIgluYMHcFsRATBEEQBEEQ3MKEuSuIhZggCIIgCILgFsY18czmrUipgiAIgiBMKgpA3t66g0G6e3roaG+nPRDAA8M2zd4EYSow3rG+NcBNwH3nNxxBEARBmF4UgBSQKNuOhMOciETwNTdjNDSQAUwY9jNrb5F0mlgmg15TQ5XXWxK0xc2y/45pmgRNExoawDQJmCa6rp8Uj8aQ6B3IZsmn09R7vTR4vRiADif91AEzFiMTCjG7sZHZjY3UAX6g1t6qJ/h5E4TTMS6Ra1lWGmg+z7EIgiAIwpQgA4TsrR84GI1yNB6nsrERamuHCdoUQ0IUbDGaTEJlJcTjBLzeUcVo6dj+frAsSKUIBAJjHpvNZsGysADNsshms6Mea6HEcdo0Cfb2gmXRnUye8r5N0yQYi0FFBSQSBGpqTjq2GkrCtw4gkYBIhPl1dSxsaKAFaEGJDRHEwkRwJuUKgiAIgjDtGQC29/XxWjhMRVsbhcbGkqAtitpM2fGmaRKMx5UQjUQIVFePKRZh/GJ0vMdqQAVQp+tk83koFMDjoV7XqUaJ2oK9WWd432dy7ID93PQXn5NIRD0nowj5WhgmepuBikgEraeHVc3NXNTWJmUVwmkRkSsIgiAII7CAOHBslO2oadKTyYBhjJm1LGc8AtDH0LK+VlHB0WCQqsFBqgsF1jc0EECVBozcUoODPPXMM3hyOSqA22+5hQ6UqC1upQ5zwyDo89Hd3U1HRwcBwxj1cRdF74lslp8/8QQDQL6qimtuvplaVLmEiSqVKP4MWhbPdnaS9XgY0HXmNjdjMbwEI38Gz0nxdw7Zl03TJJhIQE0NZLPMz2a5yDCYBcwEZtlbO1A15n9CmG6IyBUEQRCmNTHg+VCI7bEYZksLsbo6jqFE1mhkxiFaqxjKQFZ7PHQdOYI3m6Uml+PGyy9nHkOi1ocSoyX8foJz5w6J0fr6sYNvaWHu9dcPHdvWdsrHGggECAQCY95ebDzzALMDAe657bah+25tHfuOGxq4fenSoWP9/mE3WygxXBSvh3M5frlrF8mqKlJeL7OamkqZ3jDDBTGcLIrDpslew2DvKPG3owRvbSxGTW8vlzU0sKa1VTK/0xDNsqzTH3WGrFu3ztq2TexyBUEQBPdgARHgoL0dsH8eN02CwaBaOte0U9aeAgyYJpnDh6lPJvEPDHDV0qUsqK8ftrRey3CXgmAwOCQATyEypxNjPScFIMpQ6UcI6IzFeHrvXiJeL1G/n6aOjlP+j8wR/9O5bW0sMwwWAYuBi4AA4iQxFdA0DcuyRv1XSiZXEARBmJK82tvL85EIqfZ2+uvrOYASTyMZa+lcZ2gZvHzr0HUiDQ10p9N0LFhw6kyrzekyqNORsZ4TD9Bkb4uKV9bX82Y7uz2jpoYqXecYcByG/ezDzhqP+J9GTZNdhsGusr9Ta99/cavv7SVz/LiciEwhROQKgiAIk54CcBh4DXgVeDGT4bVsVtXNxmIEDGPMzF+druONx2mJxWhKp7l77VpWoTKyY2X6RLReeEY+583AqhHHDADdwI58noc6OwnW1tLb0IAxSv1xAnjJ3kzTJJjNUltTw5zOTt5cVcW1TU2c/vRFcDMicgVBEIRJRxbYhxK0rwJ7GO5oEBsYGDU7awALgIWoJeuFwCzDoL+tje5cjo5Fiwg0i2PmZKUamAfMa2ricrtGeEZtLZW6zn4YtqXKfq+Y+Y0bBrs7Ovi3igr+F/VaWQWsBpaimv2EyYOIXEEQBMH1ZIGdwNPxOC9ls/TX1VE1SnauiGEYpAsF2qJRAokEd9bWsh6Ywejz7CUzO/UY+T9tATbY+xbQw5DgfaWykq2FAoMeD2haKfPbaW8PoATTJSjBuwp1kjSsYVBwHSJyBUEQBNdRQDWGvQy8gsrUpkyTYDSqmomy2ZMaxJpQ2balwCW6Tk1NDcFolI4lSwg0NV3wxyC4Fw11wjMDuBrA5+N4TQ3PhsP0dnRwSNfZi3odFsmhTrR2At8EPNks80IhbvJ6ubmpSQZYuBBxVxAEQRBcQQ9K0L4M7ACSI26PxWLEolFVggBcUlPD1a2tJWHbinTLCxNHGtiNek2+Ahwtu22ke8OctjauNQyuBtYgGcQLibgrCIIgCK4jB2wHHovHeW5ggGRt7SltoRZXVZE/coSOUIiZ8ThvuPVWpMBAOF/UAJfZGyj/3u329utkcljNd8w02WIYbEH5Hm8ErgJWIiUNTiKZXEEQBOGCkQVeBLYCLwCRU3jUNqGyYqvtrQHxmxXcQU8wyNe3bGFfWxsHZsxAnz9/1BO0OmATSvAuY/R6cOHcOFUmV0SuIAiCcF5JAM+jhO3LKJunIuUlCFX5PJd5vdw2YwZrgNlI+YHgXoonXDM6OkgHAjwFPA30jnG8N5NhcV8fb/B6WXOq6XHCGSEiVxAEQbighIFngWdQjTqFMY6ry2So2raNub29dMRi3H3HHZKhFSYtFsra7ml7C9vXj6zhvaWpibf7/SxHTuTOFanJFQRBEM47A8BvgAdSKbbnchhjDGCYi7Jy2gDM93rpXbyYbr9fShCESY8GLLG3P0A1rj0N/CyVGlbD+2w+z2son+bXo2p4RZBNPPKcCoIgCOfEYeBR4AkgbJoEQyGwLGJlNbZLGBK2HSN+XzxqhamIBiy3t7sGB/nSSy+xffZsDre2lnx4DwL/gvLwvQu4GdXwJkwMInIFQRCEMyYLPIUSt/vKr7cnR2mWRUc4zK2Dg/zewoXIDDFhOtMRCPD+jRvp7u5Gq6nhGV3ncYbq0/uBLwPfAW4B7kQJX+HckJpcQRAEYVxYqAENjwJPooTuSBrSafxbt7Lk2DFqczk2b94sWVpBGIUY8DDwkL1fTgVwJXAPqqRBGBtpPBMEQRDOms5gkIeSSXbMmEGw5uTF1EpUTeEtwAqgV2y+BGHcDKBKfR4Ajo+4zTRN5ofDvLeyUhwZxkBEriAIgnDGpICvxmJ8LRxm0OM5ycd2FkrYXo/yAxUE4eyxgG3Aj4FdDHdk8ADvaGjgvvp6vI5G6T7EXUEQBEEYNwOoJdQfoDJLgx5PqSs8n8lwva5zC3AJYn8kCBOFxtCEtf3Af/X3E7QdGQoo8fsyyrXhKuS9Nx5E5AqCIAiAGrP7GKr5pejvaRgGMU2jOZFg5fHjfGjVKhY4F6IgTAsWAX9VWUn7b3/LE0uW0NPYiGEYhFFuDA8D9wHznAxyEiDlCoIgCNMcC+Vv+y2ge8Rt7cDt4TBzjxxhptTYCsIFJRgMcry7m0Nz5/KTpiaiZbd5gM3A7wI+R6JzB1KTKwiCIJyEhVr+/DrQOeK2RuAtKN9OWfITBOdJo1ZZHmT4BMF64F2o2vjpWMIgNbmCIAjCMPaixO3OEdf7gDcArwOMCx2UIAhjUoOqx70J+BKww74+BnwGeAR4L2I5Vo6IXEEQhGnECeCzySTP5PPDxu5WowzoXw/UOhifoMgBCeBQXx+H+vqoDwTwNTeThWFbBjCB3kSCUCJBTV0dXr+fHCrblwPy9pYDEuk0yXQaX00N/poaPHDSpqF8WjPJJGYiQbPfT0ttLQagw0k/U+Ew6d5eFrS0MK+lhVr7tumYVbwQzAE+AfwWNUCi375+D/B+0+SKnh7uMww6pLRIRK4gCMJ0wEI5Jnwpm6UrHC6N3e1oa+N1hsFbgCaHY5zKFIAoELK3A5EIh2Mxqpqa0OrqSMCwLYNtIZXJgM8HqRQBv790UlKOaZoEIxGwLAiHCVRVjX1cf786Lp0eZgc36rH264RIhEB19dj3mUyC16vu0zTRdZ1KwI86YSpuxONY4TAL6utZ1NhIC9CMsp8TQXxmaKhhEeuA76M8dlO25dhPgJePH+czwIJpLnRF5AqCIExxgsBnUaUJcdME25Zo8YkT3BuLcfOKFc4GOAUYQDXt7QiH2RuLQXMzg3V1JVEbYaiO0jRNgokEaBpEowR0fVQBWRyRXLRvy2azF+S4ibjPHErUR8sfczSqHnMiQaCmpnR/VSixWxS9VbEYFX19LG9oYFVLCw2ICB4LA/h94Abg78PhkuXYkeZm/sLj4XPADEcjdBYRuYIgCFMUCzWC98sMjeA1DIPKVIrrd+5kRjLJqs2bnQtwkmEBceDYKFsQyBazmh7POYtXDWitrsaTTlM9OIiez7OsuZlWlLAp3zKFAq/s3o0nl6MSuHrTJtpQX/AVZVtkcJAtW7dCoYDm8XDdDTfQjBLf5ZsF9A4OsuWllxjQNPKVlazdtAkvqjTCRL2eTKDP42F7Xx/ZigrM6mpa29oYRIn+8T7mQaDH3kzTJBiLQVVVKTPcpOvMBGaiBpAUf85AldkI6jn5B4+Hjx86xPPz54OmEaur46PAX6EmEU5HxF1BEARhCtKPyt6+UnadBrwJuC4YpE/G7p6SAiozexA4AOxIpdhnmuR9vjGzn7FYjFg0qoQcUN/QQH19fen2OlSmUk8m6d6xA282izeX47p165jb1FRa1q9DNRlpKAup8YxInujjzvU+BxgqvUgCh8NhHn/+eRLV1aS8XjpWrCDr9xNCTdYrcrrnsJwB06Q+HmeFYbCmtpZFwHymt/ANBoP8LBbjgTlz8BiqdbQCeB9qOuFURCzEBEEQpgkW8DjwPyjLoSKzgI8Ai50IyuXkgS6UoC2K2kMMZb/Lx6uOHG1cRAPq02kSr71GXSpF7cAAN116KYubmmhG1TtXlR1/JmJzqjDWY86iSjr6gf2RCL965RUiXi9Rvx/vRRdRME72+Rjrf1IBzEW9zhcBF6EatabbsvVe4JOoMpkid6Gsxiociej8cc4iV9O0HwBvLLsqb1nWmK8ZEbmCIAgXnjDwn8ALZddpwN3A25jeGa5yksBr9vYqsCubJW6aw9wmyinPLlbl8yzx+7m0rY1ZUNo6UM/vdBSvE035c9gWCBBBjZc+zlB5yI7+fg6mUqfN+JqmST6TYVVlJVf6/axGZXunQ41vP/CPDPfAXgv8GVNreMREiFwLsCzL8mia9nrgrZZlvWms40XkCoIgXFgeDIf5b02jUNbQMwOVvb3E0cicxULVyxYF7avA0bLbT5WlbUBlAltiMY4/+STNsRj1AwO8bvNmEbAOEwwGeeDhhwn6fPQ1NNB8xRX01NYOm9g31v+2FlgFrLa3qfyfzAL/Dmwtu2428HGmTkPaOYlcTdO+DLwb8FjjrG0QkSsIgnBhKACfi8X4aiw27Mv8jbrO7zM9Bzr0oia5PZ1IsH1gAHMM6y0YytL6slnaEgmuaG7mhvnzWchwSzXJ0LqP0f4nKVS5yX7gye5uXkokSBjGKbO97cD8eJyOEye4oaGB2VPs/2uhRnZ/v+y6WuCvgeWORDSxnKvIzaL8nsv5lGVZHxtxXAF7BWDOnDkcOXLk7CMWBEEQTksK+Bfg12XL6XXZLH9cKPA7l0yf/G0KNf3pFZS4PcGpM7QVwAJgKdAeDtP585/jzWbxeDxsliztlCEYDPLQQw8Rra7meEsL/iuvpLO2ltiI48pfK9X5PJtbW7m9tpY1TK1a3ieAz6PcLABy2Sx3HjvG62trJ/Vr/lxFrokqNcqjTpCWAGPeIUgmVxAE4XxzDDX16DhDX9Lzenu5Zdcu3nDbbZP6S+t0dAeDbA2FCM6cyaH6evYx5EFbpLyOVs/lWFNTww0zZnAJqimpPMMtWdqpy8j/rQUcQZ0QvQLsAnrHcHTwAxuAq1EWXFOhYWsP6nOjt0zYX//aa/zlmjWT9rV/riL3FVT5ynssy/pfTdNyQIWIXEEQBGfYhsrglrsn3BKLsbGzk5lTVKgNoETJo4kED/X2kq2sHNPpoBqYn0ySffZZZvb305JKcadkaIVRyAG/6e/nm7t3s7+tjZjPN+prqh5YHo9z0fHjXNnURPskfi31An/c18dr6TQWUGFZfDyd5vVLlzod2llxriK3DogBMcuyGuwmNMnkCoIgXGAs4EfAN+x9UILuI6gRn1ONNErQb7V/ZhndR7Whvp6FqCaiNahGuyokQyuMn2AwyPHubgZmz+a1lhaeBvrKbi8vaWhNJnnfjBnc1dQ0acsZjgSD/EF/P31+P2gaS1pb+aLXOylHe5+ryF2NcqQp/18+ZFnW68b6HRG5giAIE4sJfA54quy6VuBvUPWlU4X9vb38Kh6ns72dg34/uRG3F8WGL5tlbijEW5cs4dqmJuociVaYqljAPtT77TfAoVFOrhbW1/M61JCFyWjJtau3lz+rrCwNOLkE+BSTrw75XEXuOuBZYJNlWc9pmvZZIG5Z1sdHHHcvcC/A2rVr14rIFQRBmBhe7e3lE0B/fX1pGXU58JeoZdTJTgHVMPbjRIJfhMOqvnaUUoSZqBrJRf39GF1dU7Y0Q3AXFvBkfz//s28fr82YQb6iYthr00AJ3TuBNgfjPBteAf6WoZWhO4D3OhbN2XGuIrcdeNayrHn25auAv7Qs646xfkcyuYIgCBPDi319fDAaJVVdXRJ+d+s69zL5Mi4j6QMeA35l749WinBpfT0bgI2ooQvTwcRfcCfBYJB9PT28OncuTzc0nOTS4AFWJhKsP3qU9S0tk+YE7IfA18sufxi4wZlQzopTidzTfkZaltWjaVq3pmmPAPNQo7d/ObEhCoIgCCM5DHy8ooJUdTUW4CkUuPPYMd6/cKHDkZ09OVT926PASwxlkAAMwyCmacyIRFjU28t7V62aEj6ewtQgEAgQCAS4CjUe90ngAdRIaICMafJgJMKDfj/LDx7k7zWNi9rcn9t9A8o667f25f9CjUa+yLGIJo7xJgL6gZVAHHgG5SEsCIIgnCcOoeptcz4fJJNU5XLc+corvGnTJqdDOysSwNdjMR7O5xm0awDLqQNu0HVWe71ooRAdK1cSmAQCQZieVAM3ATcCL6LE7tPZLFgWFrBr5kw+UFXFHwO3orK8bkUDPoSaBNiF8tH9FPAfTP5yqPG6K2wHFsjEM0EQhPNPJ0rgJuzLnmyWd3R2sqm5edIsgRbJAj8Dvp3Ncqi396ThDKtR9YyXoxwRBGGy8nx/P588epTDzc3DXuMLUHWubh/P0g38CWq4CqjM5j/gfn/giXBXuB818nsV6qTlQ5ZlpUYcJ41ngiAI58gB1Fz5pH3Zh/qiWexYRGdHDlXX9l0gwvB6W79pcnt1Ne+ZN4/JJdkF4dQEg0F+FY3yyOzZxGpqht12PfBOoNGJwMbJC6jPmyL3AO92KJbxckHcFcqRTK4gCMKZsx8lcIsZBB/wj8AixyI6cyzgaeBbqPG6RUzTZKCzk/X797Oov58777hj0mWlBWG8DKBKGL5v7xfRslluOH6cN/v9rh0o8R3g/+x90zR585EjbK6vd+379VQidzxlIseAY5ZlPWdf/iFw6UQFJwiCIMBehgtcP/BJJo/AtYBfhkL8Xm8vnzDNYQK3CfiorvN/TU28dfZsEbjClKcaeDPwBZQzCCjBeKS3l69UVvKhQ4c4Fgw6F+ApeAuwniFP6v+urORbjz+uhmFMMk4rci3L6gG6NE1bYl91A6p0QRAEQZgA9jBc4NaiBO5k8VCIAR9PJPizVIrdmQzBYBDTNPGhlmfvR9XddgQCrFmzRgSuMG1oA/4KtSJTH4+XGtP2zJjBx+AkGzI3oKFqc2sTCbAsBisqeH7+fLq7u50O7YwZb8PfB4Fva5q2AzU58VPnLSJBEIRpxH7gz7JZemIxTNOkDiVwJ8sUs63AHwFPFQqlL/CKfJ6renr4X5Q9kX7KexCEqc9q4DOFAku7u5XXs6ZxoqGBP0FZBboNH8ovF01DA/Z1dFA5a5ajMZ0N47IQsyzrFWDd+Q1FEARhehECPpbJcLSvDyyLgcFBPlVfz/zWVqdDOy0JVIZ2i3256HG79NgxNhw8yFtuvhm/c+EJguuYGQjwH8B3UikemTmTal2nF/gze1vvbHgncVVLC9clk7yUz2MYBlt0nRVOB3WGuNm6TRAEYcoygMrY9gwMgGWhDw5y9/PPU3HsmNOhnZYXgA8wJHABZug6/+Lz8RdeL2+5+WYpSRCEUWgPBPjIggV8Qtfx2tdlgU8AP2L4cBQ38Id+P/X2OPFfA71OB3SGTPapkIIgCJMOC/gsqlTBMAwSwG3bt9OaydDR0eFscKegMxjkC4ODbG9tHTbM4XrgPYC/uRmamx2LTxAmC5cB/4qy6wqiPhO+ZJps6+3lQ9XVrnFeWA4sA3ajbAF/BLzP0YjODBG5giAIF5gfAE/Z+7qu89G6OpYtWEBHR4drM6DP9/fz0WiUuGFAMKhGnOo6H0ANchDOP13BIIeCQRpmzKC2tZUsnLT1RKP0RiLUNzXhr68njxIneXvLAdFEgngsRkNdHQ11dXhQhv8aank3EYuRiEZpq6+nvaEBHVVXbZT9TPb3Ez1xgosCAea3tTGqf5NwSuYA/wb8E/CS7WTwC8siuX07f7NqlWs+C96CaowF5X39JqDFuXDOCBG5giAIF5DngG+WXb4V+L3GRrRG91rE/wb4/yoriRsGFqBZFpf09/OPM2dS53Rwk5gMqi47BBwIhzkUjVLd3Iynvp4EDNv6s1m6TBPq6yGTIWCaJ41GNk2TYDwOHg/EYgQMY/RjIhE1eS4aJaDrw44xTZNgzO75j8cJeL2j30c6DXV1kM3Sbpo06zq1MGyz4nGs/n4WNjSwqKmJFpSdXPWEPYOTn3pUqcJH+/sJ2o2bTy9ezNPhMG90ichdBVyMcoHJAT/Gnvw1CRCRKwiCcIE4jFqiLLIcuA9cmwWzUEMdvg9UeL0Qj6MPDnLDa6/xkcsuE4F7GgZQo1KPAbujUfYlkxQaGsj6/YRQIhds0ZhMQkXFmOI0bpol9wrNsshmsycdk81mz/mYs7mPTDZLQtdLY6hLjykaVY8pmSTg85Xupw6VCdSTSfRwmItra1nR2Mgs1DQwt74fzheVwJ9WVvJaJEKwthbL4+F78+ZxHeCG4h8Nlc39O/vyo8AbUScsbkdEriAIwgUghvLKzNqXAyj/TLd+CKdRS6nP25d1XWd1Swtv7exkzWWXuWYp1Q0MANv6+3k5GmWgtZV4fT1dqCYdi7IMq2VBOEygquqMhaVhGCQti6pcjup8nouqqmhClQ4Ut0FNY8/Ro3jyeSqBdatX04R6jXnsn/FCgRdefRXLssDjYd3ll1Nvx1kAwpbF8wcOqPKGykqWrllDNep1a9pbqLKSvckkZmUlZlUVhmGc9Jyc6jHFgT7TJBgOg2XxYCJBoKYG3W7GmgnUJRJ4+/tZXVfHFc3NNEzA/8nNzA4E+A9N488qK8n5fGR1nX9ClTJUOR0cagLYIlQfQXGa2x84GtH4OO1Y37NBxvoKgiAMkQP+JJXilVwOwzCo13X+FZjrdGBj0I1aQu0qu24tyubI50hE7iELHAIOAAftbX82y4neXiViNY1AIDBMpMZiMWLRqBJ8QH1DA/X19VShMnV6KkXP7t3UZLPU5HJctWYNcxsb8aOynsWf0WCQE93dp6zdDgaDdJ/jMWd6H82BACmGl1ccjUR44sUXSVRXk/J6aVu6lKzPRxglpsd6TmBo0lb58zlT11kEpe0i+3mZauxA1b8W7Mu3onyo3cDzqBN1UCUnX0GVWzjNqcb6isgVBEE4z/x7PM7Xo1GwLDTgn/x+bnOpC8HjoRCf9niw7MwawOuBdzD9PCctVKnBq8DziQQ7s1lidXVUj8iyjiXYNKAdaEgm6XvpJepSKepMkzs3beLi1lb8DC3Nj0dYTjZGe0wFIArs6e/nwa1bidTUEPX5aFqxgojPR4pTC+AipmnSEI+zXte5qq6O5UydE7CfAF+2903T5J6uLl5fW+v468JCDYjotOO6sqeH+wzD8bhOJXLdulImCIIwJdgF/NSySku3G/bvp92lVlsPhcN8PJlUWaREgtltbfypYXCtw3FdKAZQGdpX7W0PKis5rFkrkzkpU2sYBp50muZ4nJZ0mjtWrWIl0IHdZOX3E1yyZEjwjTLsIxAIOC4WJprRHpMHVcu5saWFhevXDz0nPh8WqqznlcFBfvraa/T7fPTV11M54j6Kmd6gZbE3k+GXuo5X11mMmiw2s78fX1cXcybpCcNdqLKAX9mP838qKsg89hi/d+ONjj4eDXgz8Hd2XD/N52n7xS+45/bbXfs8i8gVBEE4T2SBzwC6YYCmMbevj3VHjtCxwn1zg34D/KvHQwGVsfFns7yns5Nrly51OLLzRx7YB7wC/DaV4tXBQSpHcRMYWV/aEI9zRWsrC4GFwAJdJ9HURHc2S8e8eQSaTm7JmYoi9lwZ+ZxoQANwbUsLl6xZowRwIECLYdCFEn77gGdiMfoKBfKaNqzedw+w3XZ+qK6rY8GhQ7y7spIbmpsnldjRgA8CL8bjBC2LnMfDC/PmcV13t+OvoQ1AbSJB0LIYrKjgWH093S6Iaywm0/9dEARhUvEVlNG7ruvMb2vjw9Eol2ze7LovhKdRrg/VtoNCYyrF6198kStuusnp0CYUCziBErUvATtRDXamaRIMhVSmNh4flqmtA5ZVVBDfv5/2SIS2VIp7bruNkf/BGhGxE8pIATzP3m4C3mhZ/OSJJzheV8exlhaq1q3jBOr/WzwhMSsr2TNjBp+srORrKHG2LBSi/uhRZk+CDK8BvNfj4UO2kN87cybVNTVOh4UGbKyu5kA6jWZZHG9pcfUAGxG5giAI54FXgIfLLn/IMLh25UqHohmbJ1EuChZDDgrvika55KabXC8ExkMO1czzaDzOc4ODpP3+U2ZqG1MpVvX1cfOsWSxFlRxofj/BFSumXM3sZCUQCHD37bcPK3VIoP7PT2kav8hm1dASTVOuFMBDpsmXUyl8Ph+rdu3izzSNBW1tDj+SU3NNczNXGQY77IbVp3SdZU4HBVxdV8ejuk42m6WitZWAC8T3WEjjmSAIwgSTAj4A9NuXrwD+Gvf5fz4B/AdK4ALMBj6J8iqdzGRRmdpngG1AeJRu/aLQbQEuiseJP/00HX19+PN5Nrsw2y6Mn55gkOdCITpnzmRnfT19nNzM1lZXx5saG7kLTsrKu4lXGJo2Vgn8L85752aAt6LKfUB5aTvpsiCNZ4IgCBeQ/2VI4NaiLIDcJnB/GInweY8H3R48MBclcN1gCXQ2ZIGfh8P8OpvlSFMTWpl3a3mmtiqX46JQiNs6OliD8mTV6uoIrlsnmdopQnsgwF32/9BC1fH+XNP4weAg6aoq0DS0mhp+BvzINLmkv5/3VFWxzIWZ3VXAEmAvQ9PG3uNoROBFTUDbbV/eDlztXDinRESuIAjCBPIC8FjZ5feD64zsHw6F+EQyqTK4msa6lhY+WVMz6QSuhWpG+iXwy2yWI8mkytb29g7L1s6qrmb+0aPMDwbpiMe56447TsreSWPY1ERDicQldXX8TibDQ/E4z8+cSZ+ul1waeiyLpwcGuDca5V0NDa4aO1x0NPgHVO34dzMZrh4YYInDgnw1QyL3ZUTkCoIgTHkSwKczGWIDAxiGwY26zpVOBzWCw8C/ezxYKJHYGo/zzkiE+lWrnA3sDDjY28vPEgl2zphBr10PGBsx9rYhHueu1lY2APO9XnoXL6bb75dM7TRmViDAewMB7kMJsy9EIgTt10zO4+HbmsbT6TS3dnVxU0ODa14n64AZqRTP2c2R/3zkCP9kWY7Gtxr4tr3/CpTKQNyGiFxBEIQJ4vPxOPvsoQ+Dg4O8oa4OXLQEGkdNLNJqaiCRoD6d5u6XXmLxLbc4Hdq4yAJfj0b532SSgcpK6O8vZWyLXrVLjh9nUV8fb7/++mHZWsnUCkU01JjaT2gaX9q2jSeXLKG/ro4Kj4ed/f3sNAx+vWcPnwRmuOA1owEbjx3jOcNQ5ReBAMcdtu1aBNSg3En6UVMSZzoWzdhMtwE2giAI54VDwKNlQx+u3bWL+PHjTodVIgf8E9CLclGY09bGX+Zy/M4tt7he/OWAX6BqEb+taQxUVKhSC8uikE5zA/AZXee7TU28t7lZCVyXPybBeQKBAPddeSWfHhzkz2tr0XO50vt327x5/Hk0ytFg0OkwAbipoYGqQgENSHi9VM6a5Wg8FUC52/fLTgVyGiSTKwiCcI5YqDGc5UMfLgqF6NiwwenQABXfl1DT10Blhj5mGFy+fLlzQY2TncC/pNMcHhzEMAwMwyCmaTQlk6w5epQ/XrOG+cWDAwHaRdwKZ0Axw78WuKK3l4/299PZ0gLAdsPgTw8f5nPg+OtqZiDA9ckkz+bzGIZBt67jtCHhGuA5VK3ww6EQl1VUuO7kUjK5giAI58g2VIexruvMaGvj/bruKhuqXwCPlF1+O3C5Q7GMFxP4H+Cjpsn2/n5i0SjBYJDGQoGP1dbyr6bJX65Zw3yXPMfC5GdhWxtfmDWL66LR0nV72tv576NHlQWdw2zy+6mvr0fXdVdkTlczNGL5+UyGB3/+c1c8T+VIJlcQBOEcyKGyuEXuMgxuc1GGdAfw+WyWtGliGAY36zpvdDqo07AX5d97nCH7r+pcjrWdnbw7HGb96tXQONndfAU3MiMQ4K+B/oMH2TlTVZn+rKWFpsce46033uh4s1eRHUABZzOVHUB1KlWaMBetrnbdiF/J5AqCIJwDD6PEGKhGjN91MJaRJIFPZDKc6O0lFo3C/v28ORh0ZRc0qBOGz8di3BuL0WmaABiGwbxQiN/77W+57OhR5s6Y4WyQwpQnEAjwzwsXMr9QACDv8bBtzhy6u7sdjWsOQ4NaksBBB2MBVfY0R9eV7zCQqalx3YhfyeQKgiCcJUngO2WX34y7hin8D9AzMACWhTEwwO0vvUT/ihXMdlGmpUgC+HgyyROxWGky2dy2Nv7MMFgxcyYnNE3sv4QLxqxAgA+GQnw0lcKyLF6dNQtzYMDRmDRUNvcR0ySbzbLFsljU0OBoTHN9Pg5UVpLNZll+7bUEmpocjWckInIFQRDOku+ixBmo0aCvczCWkTwH/BpKjVrXvfoqtYODrsu0gPLu/QSwL58vdbfPCoX4UCzGDStWSEOZ4Ag3NDezBng5mSTn8fD1Y8eY77B/7txwmKA99OTBcJg7HT7xa0H1Iui6TsGxKMZGyhUEQRDOgm7gx9kssVgM0zR5F1DldFA2CeA/7X1d17mnsZE3z5njqma4IluBPwOCKEGOpnH5gQO8/qWXWO4ij2Fh+qEBV0QipctdjY2OlyzUdHeXTgRjhuF4PC1l+/1jHuUckskVBEE4C+5PJDgeiYBl4YvFWBgIgEsE5BeBqL3fBHy0tpbaNWucC2gULOB/olG+pWkYhoGu69TrOh/x+WhvaqJj+XLXCXJh+nF1XR1fyGbRLIsTjY202BP2nOKS1lYwTTTLIun1MsPh8oDmsn0RuYIgCFOAbuCJQqGUUdm4Zw8n8nlXLKn/LBzmZxUVJeH4AaDW6aBGYKEazL4cj4NlEdM0VrS08MmaGuY2N0Nz82nvQxAuBEvb2liVTnMwkwHgADDbwXjmBQLMz2YJ224pXl13MJrhmdyQY1GMjZQrCIIgnCHfZ2jww5xQiI5EwhW1rvt7e/lkOFzylL08Hucyp4MagQV8DfghlE4SZoZCvHf/fuY6GZggjMEluRzJVIpkMsn3X3nFcS/YmYZR8st1WliWi9w+x6IYGxG5giAIZ0AP8ASq1jUQCPAuw3BNretXTJNMVRUW4M9kuP7QIadDGoYFfAX4MUP1t/P7+rjr5ZdZ1N7ucHSCMDrevr7SCVlc16UOtoxGKFkSxoBBB2MZDRG5giAIZ8APodRFfJmu84alS10hcI8CL7W1lTwrr9uzh4UuEo4W8JlYjK/bjXq6rnNbUxN/U1HB3Xfc4YrnUBBG46LGxtL7KuX1Or5q46Y62ApU3b9pmsRiMfb2uSufKzW5giAI46QXeLzs8lucCmQUvgxU29nluZEIH7jiClcJx29HInwtkSjV4G5ubOTva2updFlDnCCMZFFTEwGfj2w2S2trKwGHm89aUaIym82qgRD1zrpzG6kUwVAILIsHXniB1quucs1nj2RyBUEQxsmPUFO5AJYCbhne+yLwkr1v6Dofa293RRNcke3A/2paacl3YU8Pdx84IFkWYVLQjCpPMgyD49ms4zW5WiRCMBgkFo3yzGuvOR5PxvbttQDLshwv5yhnXCJX0zSrfDvfQQmCILiNEPCzMl/ct4IrxuPmUVncIrcA85wJZVROAP8PqPZ6QdMIxOPcsns3c1zQqCcI46ERlTkNBoMcTyR48KGHHBWWUTtragEFF4jKGr+/VM7hsScTuoUzyeQ+aVmWZlmWGz7XBUEQLihfj8c53ttLLBpF27ePdoezJ0UeBbrsfS/wew7GMpI08FfpNMdjMQCWtLby15bF3bff7prlTEE4HRWAmc0OCctCwVFh2djcPCQqwXFRWePzEQgEqG9o4Lprr3XVe1tWiwRBEE5DAni4bOTsugMHOJHLOV4SkAK+nMkQGxjAMAzeoes0OBrREBbwqUSCl+2BGUnL4u/8fjauXOl0aIJwRlgMWQZqlkWFx+OosKxvbCRQU0M2m2VFYyOBujrHYgH7+bFH+7ptRuGZiNxr7FIFy7IsqeUVBGHa8AtAq6mBRILmRIL54TAdGzc6HRbfjMU4EIsp8Z3NcnlDg2umrj0NPFU2MOP6XbvwzpwJLS2n+1VBcBVFERcIBDCzWV7nsGVguah0tuVMUSjbd9tS/3jFahbYBSQBTdO03MgDNE0rFGt2+1xmISEIgnC2mMCDDH3JvbW62vEvOVClAA+Uicj1+/fT75KGjwhqtHDRC3fZ8eNcEgw6vqwqCGdDgSE3A6/9OeAk5Y1Rbsg4ui2ecsabyQ0C11mW1W9nc096HOXZ3XXr1klzmiAIU4LHgLi9P0vXefeiRa6o83oIsOzsckMqxcW9vXRc5vx8Mwv4L1SJh67rLG1t5YPhMAtdcGIgCGdDTzBI0DRLZTdBr9fR13K56E5oGjhcrjCpM7mapn0Se/S5vQ/DhbsgCMKUJI+azlXkHtzRyJAFfsJQdvl3Kyu50yUDFX4cDvNL24EC4C+9XjauXu2K2AThbDgYDJZWTKpyOcfdDCJlFmK7duxw3EKsXBBOOpEL/AFqoEUf8NeomtyKkQdpmnavpmnbNE3bNsExCoIgOMJvgS57kk9VJsNNTgdk8wtUphRgtq7zh4sWuUJEHuzt5dORCLFolGAwyJXxOKucDkoQzpHqjo6Sm4HfNB0vuzkRjZZEt5bPOy66i5nlWCxGv8vKVU8rci3LageOoWpydwNZTdOuHuW4+y3LWmdZ1rqJD1MQBOHCYgHfSKdLGZOWZ58l5gLbMJPh2eXfwR3ZZYCvZLNkKyuxgLp0mms6O50OSRDOGU9LS8kia83cuc6fUJZZiNUODDguuhNln5NPPPaY45nlcsZbI5xH1eQuBz4NrD9/IQmCIDjPS8C+wUGwLCoKBZYfOeJ4xgTgEaDXzpr4MhlucDogmy7gxba20pfv1fv2MX/GDKfDEoRzph9VGlRfX888v9/pcBisqyuJ7pvXrnXc6aHHrle2ACObdcXnZJHx1OT6sMss7P2bUVldQRCEKcuPKHMHOHYMXz7veMYkB3w7kyllTQJPPUXIJVmTrwJVhkEgEGCdrvPByy93PuMlCBNAiKHl+Ep7sInT8RRF96KmJkdjSWPbK2oaVfk83kLB8c/JcsazyhUA2oGjKLH7iGVZj5zXqIQpgYVaWk2iTOtTZfvlP3vicSLxOHX19dTW1p50P9oo+4lEglQ0SkddHTPr66kF/KgOyfL9atxXCC+4n33ATtQXyYy2Nt4Zi7HcBe4ATwI9AwNgWdSYJhcfO0Z3W5vjcb0CvGDvG7rOx9rbaXcwHkGYSA4lEgTtoSb7Xn2V4KWXOvqeC5XtNzsWhSLMUANsbSLhCnvFck4rci3L6tQ0bb5lWd2aprUBv9I07WrLsp4qP07TtHuBewHWrl17fqIVXEMetYQTtLce+2dnKkVPJoPm85H3esmf5n5M0yRoF9ETiRCorkbX9dP/jv2BQyxGwDDG/J0qlNj12T+1ZJLqcJiLa2tZ0djITNRcchHCQjk/Ktu/2TC4YcUKx2IpYjGUXY5pGquOHqUa50d6FoDPpdPEBgcxDIPNus4CRyMShIllbyZTWo6vTaXo7u52TMjlUD7URZzN4yodAEroLtF13CNvFePqV7Asq9v+2atp2gOomtynRhxzP3A/iE/uVGF/by+7+vuhvZ3BpqaSkA2irDYKI443TZNgKKTEZzpNIBA4rWDNls0D1yyLbDY7ob8ziDrTDBfjC4fBsvhpIkGgpgZd16kBZgKz7J/F/Q5UJliYXhwHtpgmmWwWwzB4/WlejxeKbai6V13XmdPWxu9HIixcscLxrMlPw2FeTCbBskgXCtzs80Gb24Z7CsLZkQOidXWQzaJZFm2plKMnllEga3vkBqqrqfR6HYsF3JVVHo3Tily7DtdjWVairCb3H857ZMIFJQccBPbY28uZDK9ls+DzQTJJwOc7K/FZq+v4UZnU4k9f2eWcZbHztdfQcjk8Hg9XXHEFjWX3OdrZUqRQ4NnduxnweBiormbJ2rV4UJZKybKfcftxnSo+XddJA/vtrRwNaAUakklqwmHW+f1c1dTk+JmzcH75WjxOj7260NTfj3fWLFeMyi13VLjbMNi4ynlzLgv4Tj5fel+tPnSITGOjiFxhynAMqLBrzb3JJG+89VZHTyz39PcTTKfBstATCYKtra4pnXDjwO7x1uQ+oGla8fj/k5rcyU+IIUG7FziAynoWidl1f6fKljYyVLAdAKoLBV598UVqslm8+Tz33Hwzs+pPM1m7oYHgmjV0d3fT0dFBYDxF9I2NXLV27dDvjPE3LGCAIdF7eHCQR3buJOL1EvX7aWxpIYIqnB/r97tMk2129vdBW+zP13WWQ2lrPX3EwiThGPCrslG5aw4dotvjcTxbuo+hbt8K4C4HYynnt9hZrkyG6lyONV1ddCxb5nRYgjBhHLJ/6rrOZS5Yjt8ZjUJVlSqdSKcdLZ2A4SLXjQmgcdXkgvh5T2YGgU6GRO0ehupoxsIwDFKFAg2pFPXZLFc1NLCIEaJ25C81NhLctGlIfI7zjRcIBM74TTqe39EA3d5agHktLVxy2WVD8fl8WKjln+MogXPM3j+OqjMeLfvbret0A7+0/04bsAJYhhK97UiN72Tla0C11wvxOLNCIWbGYo7XvAJ8I5EgVihgGAa36rorMiYW8D2Gmk6uOnHC8SyXIEw0hxgaodsEcLrEzXkm1dYG0SiaZdGaTDp+UtnP0POj5fPgsNvDSNziIS5MMGngOeBp4LlsloRpYpyiQQuUOLu4uOk6Rk0NvdEoHbNnj5ktHcnZCNYLycj4NFRGuhElUMsZBHYODPCDHTvo8/nobm5GG+Wx9QKP2xuouqRlwKxIhJZjx1jpgu534fTsQr1niqLtvkSCK1zQKbyjr4+H0mksIKZpXOX1Qqvz6wfPAYft/Xpd50Pz5lHnYDyCcD7YmUyWejm6duwguH69o58J/XV1BHSdbDbL3atWEWh2thK2K50m2N8PlsX2F17gsquucvwzsxwRuVOIDPA8Sti+hBJppmkS7O0FyyKmaaVmMB1YRJmoBU6SsYEAM130Yr3QVAGXtrYyc/16lf1tb6fRMNiHGv23C3gNZZNWTgj4lWkSTCSgro62vj7erOvc0dCAWOO7Ewv4StnlW3Wdu1yy7P7tbBYLFePcvj4qPR7HRa4FfLnMUeH1ui4CV5hyFIDd9kAYC2iOxRwtD7BQJ5a6rqvyCUeiGKIAHCobBOFPJh0vnxiJiNxJThblT/kbVPf1wMjb7eX2unSaGbEYVw0OcsfChcxF1fYJp2dk9rdYi/tmhhr2dqJE76uok43yMofe2lq+oWn8FFgAbAKuRLk3CO7gaWCXveRWq+u8zTCcDglQJ0w7W1uhtxfNsrjsyBE6Nm1yOix+FQrxfCoFlkWqUGCTOCoIU5BDADU1kEjgz2ZpME1Hy5f6UP7yoBq3nXYzOAF47OenxjTxu2BgzkhE5E5CTJSg/Q0qcztS2BZZAKywLOK//S21qRQej4fNmzc7Xjg/lagEltjbG1H+wYeA31gWPw6F6GpqouDxqMlZqNroTuCbwDyU2L0SZVsmOEME+FwmQ7CvDyyLiw4fxrr4Ylc4KvyEoc7uGdEo927a5IosyXfLslvLurpI1daKyBWmHLsYKl9a2t/v+KCDQ2X783G+9+MQQ8/PvHBY6QsXfD6VIyJ3kpADfhkO88tMhoPNzTBGpmkecBVlmcKGBoI33HDGzWDC2VEBXARc1NDAbTNncrCnhxOzZ/OqrvMSwy3NDtvbt1D/t+XRKPO7ulglNbwXDAv4D6C3bIrYpZ2ddNuz4Z0kATxs7+u6zgcCAVdMEdsPHGtshGAQT6HApV1ddNx4o9NhCcKEU3Q00XWdW2bOdDxBVN4E16xpUOdskVC588SGGTMcf35GQ0SuyxkAHgO+lcmw2zZcp7d32KCFOQwJ21mj3Ifbm8GmKuXP+xtQy0zPo2yXijXTRfaaJk/F41BXx8yeHv6wqorNTU0yjOI8841olC2aRoXHgwbctHOna2avP8hQvfc8YJ1zoQzjxwxlb5b39/PWG2+UzxdhymGhei+KjGxMdoKXy5rgul0wXrg8s+zWKYcicl2KCTyC+kIJc7JvbV0iwT26zlUokSu4Hx9wnb2lUbXUvwVeBGJlNbzHGxr4TEUFP7CPvRklcoSJ5fFQiM8mEuQ1DTSNN1dVcduCBa5Y8cgAP8xmidmuKG/SdceXJkHZ6v3W3td1nQ+6ILslCOeDLqDfzpq2Vlczy+HJYhawvaxMKBCJON7kNbJ8wo2IyHUZGeDnqFq8WNn1hmEwMDjI0mPHWBIM8o5rr3XF0qVwdtQA19hbBng0n+dr/f0cbm7Gsmt4k8DP7G0JcAsqY++OlqjJzS9DIf5ucJCcGnJDWyzGTbkca9ascTgyxXeiUTrjcbAstEyGixobXVMjXJxCuAb3frEJwrnyZCSiHHIsi5a+Pnpnz3ZUUB4BCmVNXk2ZjKMrTgmG/ParcG9fiYhcl5BCiZmfoqZzldMIvF7XWVNbS7i+no5LLnE80yRMHF7g7qYmNgwO8lowyL45c3he1wmWHbPX3u4H1sTjLDt2jMubm2mX18EZUUCVKHwukSgJXH82y+07djDHJXWlCeD7ljVs6lowk6HD4f91HHgomyVuZ5dff5ox34IwmXm6bHVtVn8/3RUVjn7v7maoTGhJKOSKJrhiffDFlZVU+HyOxXIqROQ6TBwlbB/i5PGyLaiO/Zuwp4sFAswVUTNlKdbwXgu8B9gOPAo8y1DDWsw0+V40Cj4fLf39vKu6mnsaG3Hnx4t7yKPqob+eSvGSaZYEbl0mw3u7urjJRXWl32MoY9OQSrH0xAk6Lr3U6bD4v1iMrlgMLIvqZJL2lhZXZJcFYaLJYDdX2tZ9C0IhOhxe5Slvgru5o8PxMqGXo1GC9mpT4sQJgvPnu+YztBwRuQ4RAR4AfsHJwwTagTcB1yP/oOmKBqy2txjwa9QY4d1l2YV+v5/7PR4eQHnv3gIsxXlbGbcwgMp+bInFeCKXI1FdTTgSwbLUgntzIsFd27e7SuCeQJUrFTM2v3vkCLfdcYfj8WWBn+bzpdfe6s5OTgwMyEqCMCV5hSHrvqZ43PHmSoshkQvuaILblk6XPg9aolHH64PHQjTUBWYA+FIsxgOWRaXXO2zM7kzUgIGrkUENwhD1wD3A3cDTg4P814kT7A8EyFdUqFpt4Al7mwWsj0ZZeOQIS9rbXfmhc76wgGMo54qXUF8KCdMkaGcfi8dUFApcdvAgmwcGuNxFAhfg6wxl7VfrOu9YvNgVJy2PAHmfD5JJ6tNplvT10bF+vdNhCcJ54QX7p67r3NHa6njWtBsI2qUBTbrOXIeH1VjAicZG6OtDsyxmxWKOZ7rHQkTuBeQA8Il0mpeLX7rxuKqv0XXeDGwEPA7HKLgXDbi6pYUl+TwHe3o4ZNfudpYdc9A0eSYeR6uvZ96xY7yzqopbm5qmZLPaAGra3D5UvfJLmQzdAwMYhlE6eSyfPOcdGGDZsWMs7+qifnCQy11mXP4aQ84FAH+AO7Lyg6hVp2J2+c6uLu50QXZZEM4HFvB0JkPM/ixZ74La86fLmuCa+vvpmzXL0fffccD0egkEAnjSad5x7bWu/TwQkXsByKHq7L4PRMosQNpiMd6WyfD2JUtc8WUmTA6Ktbsbgd9FnTz9EtjCkBVZQdM41NLCv1dU8C3gCpSTwxom55s+B7zc18fL0SiRQICeujoOoWptQTVAFCeWxTSt5CM9v6oKq6uL2X19zIlEuHrDBrINDa6wCSvHAj6XShHL5TAMg5t0nSVOB2XzOMrGEGCGrnPfRRdR5WRAgnAe2drfzz57KX5gcJC62lrHa89/m8mUdENHOEy3x+Po51d5ffDluu5qp6fJ+H03qTiMmqhUzLYZhkG6UGDD3r2sOn6cWzZvFoErnDUasMje/gB4sFDgK7EYJ+rrQdMwDAMTeNLeqjIZFoRCbKip4bqmJpocjH008igv1iPAUfvnEeBQNkt3JgPV1RCNEtD1YaU+xYxtVS7HnFCI6wcG+J2LLqKtpobgokV0+3x0bNzoKmFbzk/CYZ6xh70kLYvbampcMSY3D/yo7PI9IAJXmNI8mkoB6sRzbl8fPYkEMxz83BgEDjc1lZrg5odCdKxc6Vg84L4hGadCRO55Io9a4vs2w0e5rtZ13ub3kw8E6FizxrVfusLkwwB+p7GRawYG2N7by+HZs3lF1+mybzdNk6N9fRy0LH6VTPIln4+Fus78eJy2nh4ubWxkeWvreS+ZyQG9qCarHns7AXSm0xweGDipVh0gZZrDhqFks1l0XWcmykO4rVDgyHPP0RSPU6VpbN68maJEdPvEvz7gi5pWenwrjxxhsK7OFSL3N6j/D0AtcKuDsQjC+cYC9ra1lWpNFweDdGzY4GhMuwHsJjh/IsHbr7vOVU1wy5wKZJyIyD0PHEdlb/eWXVcFvB24C/C0tkJrqxOhCdOAQCDAzfaHoIVaTXgS+LGdKSwXigeBZ6JR0HXIZJiVzbLAMJgF1MZi0NfH7KYm5jQ14UNNbUv39hLs7ibQ0UFzWxs51EldDjjR18eh/n68gQCepibiQBTlEHE8leJoNkvG76d6hIg1TZNgf/+wWvVyoWsYBlY2S1MiQXsiwRtXrmQD4C8e0NhI8Jpr6O7udl0pwqnIA/8KWLZlWG0mw/rDh+m41Xk5aQFfT6eJDQ5iGAa/p+tTsrZbEIrsBlJ2rWlFKsV7N2xw/LPkefunruvc6oLSgD6GhkAYuHecbxERuROIhZo3/w1UU0yRRcBHgNlOBCVMazTUVKr5wK25HF9+4QWONjZyrLkZAgESZY1ZmmWRME0OGwZ7i64EVVWQTBLw+dB1XYnRbBYaGyGbJWCaJTFqmibBTAZqaob9Tum2UEiJ2FTqJBFb3iDmz2aZFw6zfsYM5gJzgTm6Tqyhge50mo6lSwk0N5/0WN2esR2N7wGvor7AZrS18Z7OTq689VZXPI5fhMO8aJ8YpQsFLvP5XJFdFoTzxVP2T13Xuc1eKXISiyGRC+AGP5OdDA2BWFxRQYXff9rfcRIRuRNED/BZhqfxK4G3Am9ALMEE52kPBPjDq65S2c4ZM2g0DH6TSvHtw4c5UVdHpLYWw7amyY4Qv8XygLGuP9XvjHabkUyyzM5KzACq83l2P/88dakUNfk8mzdvPsm2x5iEIvZU7AK+W3b5XYbBG5YudSqcYeSArxYKpf/ZsqNHibukhEIQzgc5VHlOkWucCqSMY1CafGngjtKA3yYSBCMRdfJ74ADB5ctd/bksIncC2AL8WzZLzB53qes681HZW5ntLriJkdnO65ubWXbxxUr41tbi03WOAzsLBX5x+DDpqirM6mrmtLSoARTV1WTyeQqoE7e26mp8qA+ShqoqjqXTVA8MUJPLcVljI7OBOqCQz/PKSy/hy2SoN03uvv324SK2qYkNV1896coNzpYE8G+oTA2o5o03ORfOSTwMxGtrIZ1GHxzksiNH6LjlFqfDEoTzxitAv52h7KiuZqnX63RIvMBQ1nSlx0NVba2j8RSAZ8scomaGQq4dAlFERO458iDwn6ZJsLdXjbcD/rChgfvq6+XJFSYFI4XvEmBJYyNXFcVvRweB4lxyr5egzzd0ffkXQU0NwaYmddusWQTq6oZua2pi48aNpxSxk7Hc4GywgE8lkxzM5zEMgxZd56O4xyM7BXyHIV/cm48f50233DIt/jfC9OXBsgzlwiNH6F2yxPHX/OOpVKnMK/vqqwQvvdTRmPYDOXsoTI1p0p5I0NHR4Vg840F02FliAf+HWm4sLsU2pFLctHMnGxcvptKl0z+cxgLSQBL1ZZq0t2ORCN3hME3NzTQ0NACjG+FHIxEi4TAzGxuZ29RELar5qLhJWcjEMZboPJUYPdvbpgsW8N+xGL+wB8LENI2P+Hy0jFJj7BTfQ2WaQdVC//GCBVQ7GZAgnGfiwG/KxlYvPn6c7tpaRz+veoGduRxYFpplMScYdDxr+jxDJ7+r+/p4ncsG6oyGiNyzwAL+B/iZfdkwDGpiMTa/+CLeQsH1ZzbnixSqfqh8O5hMciydhtpaCl4vaYaWaIuYpqmmuVRWqs76USykTjpuRGNTkRqGBK8nmaQ6EuHi2lqWNzQwC2hDhLDgDBbwNZSILLcLa/f7wSUiN8jQ5xrAO0EErjDl+TVQ6fVCPE57NEpbOu349/hTKG0R0zRm9/fjz+cdj6l83PE9s2Y5Pu54PIjIPUPywOdQb4oiG3WddwcChFavnvL1hBaqye6ZcJgdiQS5piZStbUEURnZckzTJBgOq476bPakjvoip2pYOtPj0vbWVfa3HykTzpWoRqdZwEzAF4lQceIElzU3M2sK/98EZyk/MS5+cc3t6+OqAwfouP12h6Mb4msM+XpfDGxyLhRBuCBYwKMMZSjvGRhQja8Ofx88VRbTZtN0PKZ+4JC9XwmsdiySM0NE7hkwAHwaeK7suiuBjwKVgQBzpqBIygL7gD32thfoM02CSVvSRiIEqqvPSJR6UZlWn/3Tqqjg8IkTVA4O4tE0VjY2Ujfiviwgrmns7OoiDwxUVzOnuRmLoZKHJENZ4rH+dg7osrdSZtjnoyKT4cpUist9PpajvuCdn1guTAUs4L9QX6Rg2xM1NfH6UIi5t9/u+JdpkT0M7y7/A0YvGRKEqcSrKBcDgHpd510XXeS4H3QXQ4KyVtd5+6JF1DgZEENZXIAVgPNteeNDRO44yQCfAHaUXXcL8H7c0zAyEcSBX4XDbEul6G9uJlhTc1J5wVgCshpVDhCwN92y2LdjB/5MBm8ux9033sg8RikX8PsJzp8/1JRUN1Li2tTVqRGtxeNG+PNZDNX5Hhoc5OevvELE6yXm99PS3EwECI/xOPKaxiu53LAz1UWorvdlwFImz5tacA95lLXgE2XXXQX8id/vqrp9C/hsKkUsl8MwDG7QdS52OihBuAD8MJEgVihgGAa3umTgyZNl++vAcYEL8EQyScxulr1slKSWWxGROw4SwP+H6iws8gbgHUyNTEcCeBZ4Gng+m+WEbQBPf/+oJQZNuk5DKERbNEpjJsOdl1/OMqCREc9HQwPB9euHROkpPDbH25R0quM0hupx21taWHDFFScJ4jRqIt0x1Bn8E7299Pr9xHy+kkcsqCXb1+ztB8BgNktbLMa1us7mhgbELVQ4HTng7xIJnrK/QHVd53rgQ7jvxPjH4TDP2O/7pGVxh88nUxmFKc/B3l4eTKXIeTzENI21NTXQ0uJoTBbwaNmkwWtcICiPBoM8nk6Xnqd5Xu+k+XwQkXsaQsDHUcsHRd4BvNGZcCaMJKrs4mmUP2Devj5tmsOytGY2y2I7q3Mxyl5qlmHQO3Mm3ZpGx7JlBE7xoeBkR/1of7sGlaFdBFxXX88b58yhu7sbb3MzfbrOLpRJ/9Gy3zFti7gTlsV20+S7Xi/LdZ1NqJpFp8csCu6jC/hUKsUztiVRTNN4c0MDH66rc92J8Qngi5pWet+vOHKEwbq6SfMlJghnywPJJLmKCiygNR5HD4UcF7lb+/vZkU6DZZHJ55nt84HDJU2PxWLkdB0LaEomyYVCk+bzQUTuKegB/iST4djAAIZhYOg67wNuczqws+RwMMij8TgHZ8xgv99fajApp+gUMbuvj454nHds3MiC+vqTjpsqdlDlj+Ni1FIyQAw1x3w38EQsRnBEecZ+XWc/qlFnIao2exOqqU2YvuSAH6IcFEK2/Y8FrDpyhFtDITQXlSiAivdfAK2mBhIJGlIprjh0iI7bJuunnCCMjxywbcYM6OtDsyxWd3XRcemlTofFg5lM6XNjQTBIv2Ew2+Hv2v0dHRAOo1kWi4NBOlwymXE8iMgdgzTwF+k0u/v7S0Me/r/aWm5ranI6tDMmCXwrFuOrySTZ6moIhwlUVQ0rQ1iCLdR0nUIgQHc+T4fLx/WdT+qBjfZ2p2Xxwyef5GBzMwdnzGBwxHNy0N7uN01aYjFuq6ri7sZGnJ1NI1xo9qGcV47Ylw3DIGlZXHbgAJcdOcLMzZsdjG50voEqw9J1nZltbdx38CBX3HbbtH3fC9OHrUDK6yUQCFCZSvFhhwctgGr03t3aCr29aJbF8u5uOq680tGYUsAev59AVRXZbJb3L19OYJJkcUFE7qhYqGaRQ/b4uopCgdteeYW58+bBJBK5MeCnwEOorHS2snJYNnK5rnMVKgM5rMZ0imRpJ4pAIMAbb7mlVN/rMwyeA34LvIzKCJimSTAYJGhZ7M5m+a7Xy/WGwc2o5jW3LVELE0cW+DbqvVbepLlS13mrz4enuZmOFStc9556EXig7PJ9hsFdy5Y5FY4gXFB+av/UdZ236jqzHY1G8TSAYRAIBGiIx3nPlVc6/rnxDOo7Ttd1lun6pLEOKyIidxR+gvrHFv0sr9+1iwXhMB0bNzoc2fgIAz8GHgFM+7riY2lIpVjW3c37V65khXMhTjpGlmfcYG8pVG3zD8Jh+goF8pqGZlkkTJMthsEWoAO4GbgRlSEWpg6Ph0L8l2WRrK0trYzowNuB1wGe1lZX1q6Fgf8ou7wOuNOhWAThQlO0wwQlgtziVP2I/VPXdX63tdUV/R5Ple1f7VgUZ4+I3BHsBL5q7+u6ztsbGrhh1iw61q93/IzqdOzu7eXbpsn21lY8xnAjlIt0nff6/cwJhZg9yZYb3IwPuB5Y5vHwoyefZE9bG6/Nno3WPvTx1I2q3f0msCyRYNnx41zf2Ei7y19PwuiYqIzLD1MptqZSyokknSYQCHC5rvMBcPUkIAslcGP25Sbgw8hqgzB9+FaZbdgNuk6D0wEBh1ElT6CE2fXOhVIiAmy39zWGelYmEyJyywgB/8zQkuPFwIfr6lzlZzkaOeDL0ShfSqfJaxr09pasv+YDb0bVlmpNTZOq3GIyEQgEeMOtt6qShtZWkrrOL4EtqPpuUM4VD0UiPOT18oVolLfpOm9oaMDZXl5hvHQDDwOPoercY2WNZfrgIK/v6uK+iy5yvVj8EcpRBdQX10eRFQZh+rCzr4+fp9MUgJimsdEldliPlu1vhJMGIjnBbxjSQ8tgUn5XjVvkapq2CPtEw7Ist3+OnzE54P8xlN2oB/4S958FHEVlZV7UNPKaVqq5bYvF+OO2Ni5DMjQXivKShgDwPuBdqNrdR4Fny4ZPxA2Db2saP0ctFd9i/zxpUIbgKHlgG/BzVP11OcXGssXd3Ww8eJB7br7Z9e+1vagVhSJvAlY6FIsgOMG3s1kKKPE2OxSiChwXuQPAw9ksMdPEMAxucYE3LsDDZQNirnZJTGfKmWi4vac/ZPLyZVSdDiij9r8Amp0L57QUULXD30QJ9GLNbXs0yobOTt63YYMr6nmmOwZD9bsvDgzwuaNH2TNjBtnqagzDwEKNS3wBtWx8I6p+183L3VOdAups/texGI/kcmT9/pMGogSA23WdlTU1JLxeOm6+2fXlTCng7zMZIrYl4ipd561OByUIF5AwsKPMveCyQ4fo2LTJ6bB4IBLhUCIBloWWydDW2Oi4N+4rfX381rYzSwCLvF44xUAntzIukatp2gFUQrCA+4b1nDNbUA4ERd4Brm7K6gY+g5rGVcSn63yoro5VoRCzNmxw/RfudGRtayufLhQ4cuIE3XPm8IKuDxsTHQa+D3zTNJkbiXBrdTW3NTW5YqTjVCcEvGRvrwAh0yQYi6l621SKQCCAoeusA+4ALsVeIWlrmxQf/FngY8kku8NhsCyy+Tzv8PupnASxC8JE8QBQYbsXtEejvHfTJse/Ky3gR2WlT8u6ujiRyTjes/GTdLoU39y+PhIVFZPis24k483kLkT1W1Sdx1gc4TDw+bLLG4F7nAnltFgoMf411PJGkYuAjwBzGhrA5fXD053ykoa7UdOmfomq84wy3Irs+YEBvlpTwybD4BpUOUO1M2FPOQZQY52LwvbIiNuzZaUl3oEBruzp4b1z507Kcc4p4O+Bl/L50mO6dtcuBmfPnpRfWoJwNsRRNfWgmso/EAi4YrVzOxCtq4NMhqpcTnnjrnS2iCgH7GprKw3KWH78OB1XXOFoTGfLaUWupmnFia9/jRqOM9ZxBezkxpw5cyYkuPNNCvh4Ok2fPSN6ga7zIdxZw5oG/iaZZFs+j2EY6LpOBfAW1Ihht9cOC6MzA7Vy8HuokoWvhcPDpqvFTZNnDINnUCOJN6BsXFYh9btnQj+qBGGvve3KZonb9W8jSxEA2qurmXniBLN7e1nY38/dd9wxKQVuAvj/UAMfiiVNG/ftY0lfHx2XX+5wdIJw4fhWLEYv6n2wRNe5zOmAbH6CEt2BQID1wSBvuPVWx7PLzwKmPSjDSCb5oyuucDyms2U82qhYnvBvxSs0TbNGNp9ZllUqY1i3bl25J7pr+c94nB3RKFgW6UKBf/L7qXFBl+VIYsCfpVI8Zy81xjSNdS0tfKymhgVOBydMCJUoAbvA4+E7v/kNewIB9s+YQUWZFVkaeNze9EyGJX19XOPzcXVzM8bodzstyQIHUGJ2H6rWPlx2u2maBHt7S++lQCCAT9dZhipDuBSY6/XSO38+3bpOx+WXT8oP+BjwceCQfVnXdf6kro6VLh1OIQjni85gkK+lUpgVFcQ0jT/y+5XbkMMcQw1lATB0nT+aM8cV/RhFpwdd13mzrk/qcfWnFbmWZWmapv0Q+CfgecAzmruCpmn3AvcCrF27dqLjnHC6gIcLhWHLd55ZsxzvshxJP+qLak9Zzc7azk7uC4VYIKUJU45AIMBbb7xRWZG1tDCg6zyJMuQ+YR9jmiZH+/rYb1k8lErR4fOxwjBYhcrwLmEK1hWNgoWa5HcUVW5wBNiTTnNgcBB9jAwtDJUi1KfTzOnv59ZMhjcuWXLSicLIASCTiTDwN6jPuSJ/BNwqJU3CNOR7mQxmRQUW0JBKMSsUcoWd5oNl++vBFWIyyHCLwZudC2VCGE+5wmagF/W4x1zJtyzrfuB+mByZ3K8A1V4vxOPMCoW4uLeXjvXrnQ5rGN0ogVtcYokD1736Kiu6u5m7ebOzwQnnjZHi6m2ocoYDwJPAT5PJ0gmPZlmkTJPXDIPXgO+i6naXogTvzP5+qru6mNXRMWkFWwF4tbeX7eEwA+3txBoaOIoSt2bZcaZpEuzvV81idoa2KHQNYBHqBKAln+fAU09Rk83i8Xi4afHiKZUJ70fVlhVPijTgQyiHD0GYbiSAZ9vbS44K6w8dYpYLEnEJ4BdlZVN3ucSi65dl+5cC7kr7nTnjKVfYhJr4+BbUd0q1pmnfsizrbec1svPIKyjvS13XaQ8EeF8iwfrNm10lAg6jBG7UvuzTdf6htpbZ7e10XHqpq2IVzj8aSqQtAu7I5fjSiy/S2dLC8ebmYSUNoJqqXgGeM02C6TQVDQ009fezsaaGpbW1zAJmocYNu6WRLYvKyvagxFn5/rFsluPZLNgnpQGvd9QsbTFDC9CUSLDa4+GGWbNYAsyhzBamqYngzTerbPkkFv+j0QN8DHViDOox/ymTc1KRIEwEDwAF21GhPh7no2vXuuI9/51olK54HCyL6mSS1pYWx23DcsDPMhlits2gW/x6z4XxlCv8laZp/wV8HdXc/5eTWeAWUJ64RW7XdV63bJlT4YzKb/r7+ceKCqyaGnRdpxqVmVkrE8sEYEYgwPs2bSqVNBi6zk5Ul+52hjJ4RdGX83jo8/vZUigMG2igofxeZwF1sRhafz+zGxuZ1dSEHzWy2G9vOmfWkGmhzohjp9lOpFIcM00Gfb4xywuSpjksc53NZkvH1gNz7a22UODACy/QGI/jtSw2b948Zn3bZC5FGIvjKIEbsi9XAn+OqvUWhOlIjKGSAF3X+VBrqytKArLAA2XlkqsOH+bEwIDjtmGPhMPstVcKcwMDzKmrc1x4nyvjbcr/DOrzcsyEwGSpyX0clSUF9cX9dudCGZWn+/v5SCLBoMcDiQTz29r4R8NgqdOBCa5ipEi70t4A+oAdwG88Hn5pmiR1HTQNwxi+KF+saT1S9IStrIRkksAogrMCJXo96TRmKoXh81FdU0MedfafH7GlTJNsNjumewHY5QWhkMq+JpPDygvKMQyDwcFB6lIpWlIpbq2rYzUqOztsHG1jI8GrrpqSGdrTcQRVgxu1L5dOjJ0KSBBcwA8YKmmah1qWdgOPAnmfD5JJ6jIZlgSDdKxb53RY/HBwsCS8Lz52jN6GBmZO8s/RcdfkWpb1oqZptSino5OYDDW5WYaPtHwDasqUK7j/fnKf/Sxzcjle98538qPf/V1qTJM/OHiQpS7LNAvuphV7ylptLe9Np9nf04M1cyZZXacL1dF7DCVwLYZ7wo7MlBbJA33lNa+ZzJiitOj1W+5ecKryAguoKBSoTSRYruu0A+2oJox2oF3XidXW0p1I0LFwIYHGxjEf+1TM0J6O5/r7+TuPh7x9cqIDf4uM6xWmNyHggWyWhF3z+jZdd4U96CDwY4Zsw1537Bh33XGH459b+4HuhgYIBvEUCqw6doyOpZM/vTbumlxN025H9W/UTdaa3B8BEXu/CRcNffiLv8D69KepQGWn/vav/5qqfJ7qhQtZf/31TkcnTGJOJfoGUKUN2/N5ft7ZSaqykoHqauY1q4HWSZSXdNI+djximLLjPIUCNQMDtMRiLGprox6GbblcjpdeeAEjk6FuYIA7T1FeYExD8Xo6csBXolG+mEyS1zRIJpnb1sY/yMqPIHB/PM4x2yLUSCSY29rqiqX3xxmyNGzXde5buNAVvREPMiS8l/f385ZJMKp8PIyrJhf4KwBN064F/nQyCtx+1NlTkd8Hd3RUb90K/6JmbBTPMi3g3u9/n/yvfjUlXmSCO6nGrmdtauLypUuHlvn9/pOOHQQOmyY/feYZcpZFpaZxy4030o4qZahAfZhUAP3ZLA8/9hgUCng8nrFrY5ubuXSalhecKweAzwLbNY28pmEB+uAg7+7sZOkUyL4IwrlwDHi0rOZ1/b59nBgcdLzmNY9KthW5B3c0/4aBp+19Xdd5/8yZrvDrnQimzaCs/04k6CsUMAyDS3Qd1+RHv/ENLMtCQ4nbotBtWbjQFWedF4IcQxnDI/39nOjtpa2tjZaWlmHH9ff3Ew0GWdDayoK2NgzcOZ1uMnK6Zf4qYFFbG2+//vohUTqGp/SsQIA7N28el3idjuUF58IA8H+oE3aLoSlmgViMm3fvZsN11zkboCC4gK8zZBE6OxRiXiRCxybnK3KfQvVAZLNZWqqruc3rdTokAH6OEuCg7CcvcjCWieaMRK5lWVuALeclkvPItr4+fpTJlGoE/8rnQ7OXZJ0m1dNDjb1fFLp4PPDnf+5cUBNEHlUX1YOyNAra2+FUip50Gvx+Cl5vqTHAtC2v8PkgnSZgmqXl8NJtfj9kswRMkxpdL3X/e1IpjGiUJT4fyxoaXGeRNVUYrygV8Trx7AQ+z5B7BkCtrvPWujpWhELMvu46ec6Fac+rqLG0xaX3+xIJLneBRWgB+Ho6XepruKSzk9jSpRgOx2UCD5ddvsupQM4T0yKT+xNb4FrA/N5eGioqwAUi19y6Ff3nPwdscQvg8aB94QuwYXIZ/xRQ5vx77O3ldJojAwNUj/A0HdZRP6J56VQ1n2PdFgN6y+7z8TIf1QHTxJtMsrK6mg21tSxH2WVJ9leYTKSArwGPjLh+BfBBYIZMMRMEQH2PfqXs8i26zp0uadx+Cui03Qsq83mWHzlCd0OD4+L7CaDfzi7Pqq7mCpdklyeKKS9yB4BdbW2laSdrurro2LjR6bAAeOaRR7hmcHBYLa52771w771OhjVuIsBW4LFkkl2Dg2D7+g6bPBWPn1bIenUdH9BQVUVPIoEnn0fTNBa2tJSy3KnKSg7G4wx4PAxUVVFXJpxHu0+g1OF/SNN4troaXdepB+YlErT29nJjbS3L2tou3BMmCGfI88B/M+R9C1ADvBs1blNO2ARhiK3AXnu/EvdYhOZRZUbF8qI1hw9Tk8/T0dHhaFwW8J2y7PLKffvoW7nSceE9kUx5kbsVyNvTTnyJBO/duNEV/8CDwAtNTVxLWRYXXJ+R2d/byyOJBAfa2znk85E1TYLhsBK0iQSBQGCY6PSZJu3RKCsCAdqBqkKB1156CSObxZvPc/dNNzG3vl59WdfUEGxtHarl9PmG/rDPR7CtrTQAIWAYDKLqeA8NDPCzF18k7PUS8/tpa27mQCJBcJTMb69psjMSgcpKvpLNsjGV4mafj02AyF3BLcRQfoxPjbj+cuB9gPPrUILgLnLAF9NpYoODGIbBPbrums/0X6PKjHRdZ35bG++ORFi4bJnjWuQZ4JCdXa7K5bj42DG6W1ocj2simfIitziHWdd13mp7cDqNhZq6tmHXLiyGxo1amgah0Ni/6CC9wFfjcb6XTpOvrIRQiEBl5TBB689mWRIKsaamhuPbttEci6GPnDzV2Ehw48Yxm5JOVcs58rYqoBFobG1lZnECmO0OEEyl+Mnjj9Pv83GiqQn/hg0cBWIjsr67czmOoZa4lgDLolHmdnWxrK1tSr3RhcmBBTyJEriJsuvrgfei/BwleysIJ/N/0Sjb7TG52Xyea/x+cMFK3SDwnbLLv2sYbFy1yqlwSljA9xnKLq/s6sJbKDieXZ5oprTIPYGa/ATqi+EGB2Mp53lgYOtWbv3614eazQCtogKuvda5wEZhZ18f3zRNdra0kLKskl2RZlmY2SyrKyvR9u5lTjBI/cAAr9u8mUBDA8ErrzwrIXu2jLzPQCDA3XfcMUz4WsC2gQG+uXcvh5qbOdbSMmwK2A7T5FfxONTVMff4ce6tquLWpqap/SYRXIGFGsn8jWSSbfn8sElx1wN/CNQ6GJ8guJk48G3LKiUw1h08SLylxRUi91eoKZQAdcCdDsZSzotAJyoBOLutjXdGIixxQYPeRDOlv78fK9tfhzuW+HLAV4E7v/ENKsrqcQH4wz90TcNZAfh6NMrnUyllNN/bS1NjI9h2RUtPnOB9q1dzcX09wVWrThK0buiuHxmDBlzW2socO946r5dOXee3wCsMr+090tzMpysq+C5wE6r+0Q0zz4WpRRJlDv8w0FlW+hPTNJa2tvKnXq+M5hWE0/BtwKqpgUSChlSK1V1ddKx0fubfAPC1TIbYwACGYfAmXXeFP38xi1vkLsPgahdkl88HU1bk5hkucm92KpARPAz4t27lxq9+9SRvXLfU4+7o6+PfCgUOVFYOy9zOT6X4G5+PxlCImatWEbDPkt0gaM+E8ngXokRsAnikUOAb4TBHm5pA09QyDvBDe1sJXBYO03H0KHNnzJhUj1lwFwdR3pRPor4IYegkC2DFkSP8UTjM2tWrnQlQECYJh1Hfq0XLsN8/fJibXDAmF1QJxV67hCI3MMDaujpX+N/vBl6z9ytx0fTX88CUFbkvMjQ6rwGVyXWaJPDVTIZbHnmEilxueBbX43FFPe6joRAfSyYZ9HhA00DTaI3HuWbfPu7btIlAc7Mr7NcmmlrgTY2NXD0wwK7eXvbMmcPzul56DQG8YJo8lExi+P1cvG8fH/J4uHSMgQiCMJIB4DfALxjqAC+nUdeZ19XF8qNHac5kWLB584UNUBAmGRbwPwyV/F2h6/zekiWuqFtPAt8tK6FYe/Ag/YEAs10gcr9Xtn890DLWgVOAKStyf5xMErNr227UdVc80K/EYhyMxfjNqlW8s6JCWWWBEpO67ng97tPA/6uoYNDjUQ1xhQJ3ZrO8bnCQOZs2ueLM+HxTzPLegGr0eRF4FHiBoUxbpqqKV+bM4cPV1VwB3AJcCehj360wjelBZZp+xfBmsiLzgTuAawyD2KJFdPt8MuZYEMbBz8Nhnq6owDAMvLrOe3BPY+YPgYJdQlGfTrOiu5sOF6zW7gees31xvYbBG/Wp/c3lBu034ezt7eXRTIYCENM0Vnu94HDGbRB4OJ8vndVVFApDN3o88JnPOFqP+91IhC94PHgqKkDTqMtkuGP7dt59zTUELr7YsbicpAJYb28h4IeWxbeyWeKGUSpneA217HM/cC1K8C5wKmDBNRRQJ0g/B15ihE0g6oP3KuB2lKtH8YvZmGSlP4LgFF3BIP8cjRK33QHe3tDA7Lo6p8MCVKPZgwyVULzlyBHucEkJxf8kk6Xa//aeHjzz5rmihOJ8MSVF7hOxGIXqaiygIxKhEAo5LnKfBfI+HySTvOH73x9erlAoOFqq8LNwmH9KJlU9oKaxtLaWe6NRll5zjSvelG6gGbivoYG7TJMnIhF2z5zJLl0vzftOo5ahfwF0pFKsOHGC22trWSDP37TBAo4BD0ej/CKfJ+33D5v2B8qL+TZUHXj9hQ9REKYM38hkiBsGFuAdGOCKQ4fAJc1T30IltgCW6zrvWrzYFRnmvcCzdrIN4NKDB+murp7S3/NTUuT2tbdDJIJmWcwLhehwwVi/X6LO6q49dIg7f/zj4Tc6aB12HPicppUyzG2xGO+PRLjKJR8WbqM9EOCt9gdCDNUZ/yjQbd9umibPhkI8W1XFVzIZbk4mucPvZz1SzjAVSaGcOV6yt+OmSdBuNCGVIhAIYOg6a1FZ27UM+WILgnB2dAO/bW8vTTLdeOAAi1xQCgBwCDUqt8i7cE8JxbcY8sVddOIErZnMlPPFHcmUFLmHa2sJVFeTzWZ528qVBFqcLasOor4IAdY+8wyekU1nDlmHZYGPpdOkCwXQNOrTae556SUW33rrBY9lMlIPvB7VmbobJXZ/nsmUThjymsYz+Ty7AQM1reoaYA1T9I03DSgABxgStXvt64qU29B5BwbY1NPDfXPnumIIjSBMBSzgi0CFPck0EIvxF2vWuCYb+Z/JJFG7H+hKXWeF0wHZ7ELpEF3XaQ8EeE88zuop6Is7kin3XRtETefSdZ16XecKpwNCNZwALNm6lUuOHkXzeCBvL3RXV8Pv/74jcf1LIsHLkQhYFpWFAh9IJLj21lun/It+otGA5fZ298AAn9m7l9dmzKCvvr40bCKLsot6EuXksBG42v4dyey5mz29vWyJxehub+dAbe2ozWNFmnSd1t5e5gWDLO7r4+7bb0feTYIwcTwDvGzvG7rO37W1ueYk8vFQiMdSKbAs4sAdNTWOl0qCOjH4Vtnl23WdW5YvdyqcC8qUE7k7yvaX4fwDLKD8epds3conb7iBatNUNbigyhQ+/3lHsrivAb8qFEpZp2tefZXF0tF9zixsa+Nv7GETmtfLHl3nSVStZpEEKuv7KNAErIzHmX/sGBuam5khz7+j5FBTgPYC+4BX0ml2ZLPqZDQSIVBdPazOVgMuQpUhXAosNgz658yhu7KSjssuk/eTIEwgGZRlWJE7UF7nbiAPfKnsO3Xp8eN4XND0DiqDu9verwTe6lwoFxynNeCEs7Ns3w3nKS8B3abJhkceoXJgAK3cVQEcaTizgC9TVpvT08Oynh461rnBTXjyUz5sYjXwZlSd1lP21ld27AnT5JVoFHw+9FSK65NJNvn9rAJm455arqmIhfpf7EEJ2j0ogTtYdkxscLD0paVZFtlsloCucylK2K5GjeosZ7INRxGEycIXYzE6Ud9dAV3nbU4HVMYjQLSuDjIZqnI5rjh4kI6bnR9DNTKLezOqAXa6MKVErsVwkev8UD/4RSJBMBJR3riVlXgsSwldj0dlhxxoOPtpOMzztrfgzLY23heLsWIa1OY4hYayFVsAvAMlpp5EDQY4WlbDaVZUlGp4QdX8rkK9jlcBAUT0ni1FQftyKMQr8TiR1laO+f3ETvN7hmGQtCzaIxHmhsO8a9UqLkP+D4JwoXm+v59vpFIla9D7/H58TU1OhwWo1blvM2QZdmN3N2+5+WZXfKe+AOy0fXFrdZ3fMdwwWPjCMaVEbg/Qb+97cX4ZwwK2DQywcts2Nv/4x3SuWEHL3Lm03nyzyuBee+0FL1U4Hgzyb2Xegu+qr+fGFW4pjZ/6aMAl9vYeYEsux/+eOMGRpiZShlGq4QXl3lDM/oI6+y4K3pWoUgdhOBYQAY4CR+ztqL1FTZNgKqVOMMNhAlVVJ1l8AbSjvGuXAIt1HZ/XS18kQsfy5Y43sQrCdCQPfKZQoIB6j88KhZgfCoFLRO53GBr0MkfX+fD8+VQ7GZBNAfhCOk2wvx8si/lHj5JbvHhK++KOZEqJ3B0oC6dsNsslFRVU+P2OxtMDzN+1i0+/9a1UD9gT6nfsgI9+1LHBD7+MxYZ5C64/fNg13oLTjQrghuZmludyHO/uxtPYSLeusx21IjGywakXVd/9mH25KZ2mKRLhYp+P5Q0NzAZmAFUX7BE4xyCqybQHeC0S4bVkkmRTE/0+35iNYeXOB8XSg0ZdZzFlopZR/GsDAWZNoy8FQXAbDwL99fWQzVKZz3PDnj3MvP56p8MCoAs19KXIH4ArBC4oi8uDdslVZT7PpZ2ddPv9rsgwXyimlMh9xi4NwLJI7d9PcMUKR/+ZO4FbvvtdqgYGhpY3BwdhyxbHRO6ujg4Ih9Esi5XHjrHwkksciUMYYmQN7+2obMUhYDvq5G0XyqGhiGmavGKfnf86Hifg9aLrOhoqEzkbmFX2cxbg7CnfmWGhZr+fQAnZnhH7IfsY0zQJJhLKlzYUIlBZOWp2FqCluhp/NEpjIkF7IsHvrVvHGqT0QBDcTA+qprRYCnBTdzdvu/56Vwg1C/iPZJKIbRl2mUscnQBMhvviXnroEP5cbsr74o5kSonc18oyNe3hMN3d3Y6+Efq2buV3vvxlNNSbQQNHBz/0Avv9fgJVVZjZLB9aupRA23QqQZ88lNfx3oPq+j/AkOjdWubHW8xK6rqOhRKDJ4DnR9xnA0rs1sfjeEIhZjU0MKuxER9KABc3H+fngyEHxO0tdoqtJ53mhGlCTc2YgrXIaNnZBl1nDjDX3or7DV4vve3tdBcKdCxaRMAFXc+CIIyNBfwXYK+DcrGu85H5810jXB4JhXi8zDLs7poaNJd8rvwUCKNODha3tvIH4TDzly93xcnBhcQtr5VzxgJStbWQyaBZFs0OT/KwgOotW4aP7wXHBj+AWrrI2uUc6yoqWC4Cd9JQCVxsb28GukyTr23bRqimhojfT2tzMxFUc5U1xn1EgaBpEoxGVV1qIkFgDCGpo8RuuQC2EglSsRj++nq8tbUUULVyOVTtV86+XL4l0mmi6TQFv5/cOBoeTNMs1Y+RSBAIBEaNTwNagYUVFfQdP05tKkVrOs1bNmxgKWNnZ8X5QBAmDz+KRHjS48EwDAxd54O4R7QMAPdbVukke3lXF5U+nyssw2LAD8su/6HXyxWrVzsUjbO45fVyzoQAjz0BpSKV4g0ODzXoBn6zcSN3VVdTZZoAaA4OfrCAn2UyBPv6wLKo3rmToPh4TlpmBwLce+WVdHd309HRQcCuPzdRr70ulDfvMXv/OKqOdbTM52gi0rS3cPGyaZZKgUbzix2NYYI1nR5TsJZTHl9VLkdTPM6K1lbaUfXG7fbWhv3h5fcTXLhw6HmQEzdBmBLs7e3lXxIJspWVxDSNd9bXs6j+pIp5x/gBdmItncY7MMCGzk46brnF6bAA+B7KUxhUydqNDsbiNFNG5PbYP3VdZ7GuOz5laPejj7Lg17/mm+96F1c+/TRz5szB+/GPO5bF7QaODQyAZVGVyzG3p8fxcg7h3BgtK6kD8+2tnAKqXGV7LsfP9u8nVVnJQHU185ua0IAUqga2+HOEm/O4xfGpfsfMZmnVdeph2FaHKqWoBwZzOV7YuhU9m8WXz/O6zZtP+16W7KwgTC0s4HO5HNnKSiygLpNhQzgMLslGHkdlSot1wnd3dfGGW25xxefQCeCBbJaUaWIYBu/UdSqcDspBpozIPVG2P8OxKGy2buXau+/mhoEBPIUCBU1DO3AAPv5xx0LayVAB+sxIhGpNm3YF6NMZD3YWtLmZ1StWDGU+a2tPOtZCZXGTDAnfo7kcj+/eTR7lCrHxiitos++3AvVBUmFfLu5HBgfZ8uyzaPk8Nbkcb7zlFmacLhPT3MzS664bis8FXxqCIFxYngT2NzdDMIhmWdz46qvM37jR6bAA9fn4RVR5FsBKXed9F13kmgbW/0ok6LZX3fzRKHPa26eVZdhIROSeD77xDSpNE4+dxaqwLKxczlFXhZ0MnXVem8uxWYY/TFtOl/nUAMPeiq6wy5qbuXTt2iHxOR5/ypYW5l977RkLVsnMCsL0JQx8iaHvq3W9vbxv40bXfCb8FjUmF9Rn5ftxj0PLLuCpstHCG/bu5UShQLtLnjsnmJIit92xKICtW+HLX0azX2QAlqapelyHXBUs4PlMhtjAAIZhcNeCBY6XcwiTj7MRnyJYBUEYLxbwn6gVJIDZus7fzp6NW2Z0ZYDPlX2XvlHXWeB0UDYF4H6GVmyXdHfTkUhM+xXbKSNye8r2Hc3kbtmCVeaoUNA0rJtuouLv/s6xLO72vj722ZZT2Xwer883rZcvBEEQBPfxBGoMbZEPg2sELsAX4nH2RqNgWeQGBrixrs4136W/RHmr67rO7LY23heNskxWbPE4HcBEcSibJRaLYZqmcyJ361Y4ehQ8HizUWWmuqspRgQvwkl2fYwHtkQg93d2OxSIIgiAIIwkBnyv7Ht8MuGng/H7gp2WWYRv37CHmku/SFGrwQ5G3GQbXr1w57QUuTJFM7sHeXg7ZndzpQgGzpubCn11t3Qo33ACmCYWCErkVFTz4+c/zRgcFLkC+rQ3icTTLojGdpmPxYkfjEQRBEIQiFvDJZJJD4bCyHMxmubWhwTVZ0hzweUA3DNA0ZodCXNzbS8f69U6HBsB3Ud64oPzDX+9gLG5jSmRyD/T2ls6uarJZTjhxdvWNb0A2CwVlvuRBvXGbXHCml21oIBAIUN/QwI3TcOKJIAiC4F4eBLbl80rgAjfs3EnYBd+dRX7C8FKAD1VWKntDF3yXHgd+Vnb53UC1Q7G4kSmRyW1sb4d0Gs2yqCoULnyhtd1sVnyDAuQ0jcGqKl5obmZZMOjom6EH9ebUdZ2ljkUhCIIgCMM5AnydoYapSzs7mRWLuaZhqhv4TtnlPzAMbl7hnkKKzyaThPN5DMPgUl1nk9MBuYwpIXJrW1oI2ONqF7e0EPD5Lswf3rpV2YI9/zwMDpautoDnrrySL3z4wzR7vY4PXegs6wZtP42BvyAIgiBcCAaBf7V/6rrO+pYW7g2FmOOSLGnR7WHAvrwQuNO5cE7i4VCIR1MpsCziwD0+H1pLy2l/bzoxJUTuAEOZynG4d04M998P738/5PMn3VSoruaLH/kIOy+9lJt373b0jLQ7GOS1bBYLiAOWYbimzkkQBEGYvnwTOGzvVwN/W1PD7DVrnAtoBD+IRPiNx4NhGHh1nQ+Ca6aHmSg/4WKp5tLjx6n2ekFE7jCmRE2uWbZ/QfKUW7eOLnA1Ddav59tbthC8/XbqGxq4+oorHD0jPXziRMnpoSKfp89FdU6CIAjC9GQH8D3TLLkpvAuY7XRQZezp7eVfIxFi0SjBYJDrYzEWOh1UGd8H0n4/aBrewUGuPHDANSUebuK0IlfTtPdpmmaVbxcisDNhoGz/vBdcb90KH/7w6ALXMOAzn+HQhg3ouk59fT0zxjMZ6jzS0tEBmoYGztQrC4IgCEIZCeBTmQw9wSCxaBRj927WBYNOh1XCAj6Xy2FWVGABdek0Vxw65HRYJY4DP2ZoKtw7gTfecosrSjzcxngyuV8E/t2yLA24CUDTtMFT/8qFpTyTe15F7tatcN11qga3nIoKuO8+ePxx2LDhwsUzDurb2krOCvNnzpQ3gSAIguAYFvBZoHtgACwLfXCQ63ftcsYVaQy2AAeam0sJohtefZV5MxwdM1XCAr6AsjUDWKXrvPeii+S7fQxOW5NrWZYFfNS+eEXx6vMW0VlwwcoVtmyBgYHh161fD5/5zLBhD+VHON3mNSzLbbnq3yYIgiBMMx4CnmPITeHGXbuoHRx0zSpjCFXrWsySXhYM8r5Nm1wjIp8Gttv7GvA++6cwOqcVuZqmGcAzQKka3LIspxOUwxgATNtdwdQ0qKs7P3/IPrMrWYVVV58kcEfGExsYgNbW8xPPODje308wnQbL4ngySbClxTVvVkEQBGH60Al8xd7XdZ3fb2jg+rlz6diwwRXfS0U3hZR9ea6u8/E5c1wzWjgN/GeZW9KbdJ0FTgflcsZTrmACV9vlCj8C0DQtPfIgTdMKxZrdvr6+CQ7z1PTaheGxaJRdL79M8HzU9mzdCn/8x6VhD3g88PnPjzquN55Ol+J58rHHzk884+RE2aAMrVCg20VLQoIgCML0IAt8mqFl9gXAH9fVsWbNGlcIXIDHgW1llz8ErhG4AP8dj7O3r49YNEry6FFucFEds1sZj8jVgV9rmrYdSrMETvq/W5blsSxLsyxLa73AmcuEPQrQAvKadn6E3MhSBcuCUGjUQweTyVI8Ax6Po8Jybmtrqa5osLLSNUtCgiAIwvThXxIJXrWdFAzgz4Eqp4Mqox/4fDZbcnt4HbDc6aDK2Av8zLJK2mLjnj3EJGl1WsYjch9HDf2wgPn2dScVd2qadq+mads0Tds28rbzzazGxpKQG6iqOj9C7tprobKsuqOiQl03Cq0+35CwrK52VFjOa20tNZ61zpvnmjNmQRAEYXrwo3CYH5bZcb0lHGam00GVYQGfSiY53NtLLBrFPHSIW1yUJc0Bnwd0wwBNY04oxMW9vZK0GgfjGQaxBvCOuO5tIw+yLOt+4H6AdevWXdAOp5mNjQRqashmsyxoaiJQW3v+/6g2dql3m89HoLKSbDbLumuuIeCgjZiPoUEZBceiEARBEKYjR4Ev2L0sFnBxdzcLdB0cttcs5yFgWz5f6re5fudOwhddxFyXJIV+hBp/rOs6s9va+HAsxgqXTIVzO6fN5FqWVYMSw9tR9di/BVedhJWEXH19Pdr5ErhbtkAuN3Q5l1PXnSYe3eE3crFDMJlI0BUMsuO11xyNRxAEQZgeZIF/Ajw1NaBpNKbTXLdnj6sykF3A11BuD2gaqw8fZlY87poYjwHfLbv8HsPgxhUrROCOk/EMg2gFai3LWg1chCpTGa3xzLFyBV/Z/kmBTRTNzarZrMgpyhVqLkQ840RDCdxQOEw2m+VXL7zAayJ0BUEQhPOIhVpiP8ZQBvIv8nlef9ttrhFoOeBfUY5Iuq5zWUsLf1RXx2aXZEmLbg/F9Noi4HXOhTMpGU+5wgzg65qmVaBE8UsM13GAs+UK5SI3eT7+QHHKWaFswb9i7AnWPpSwTKXT7M3lYKazie9Uekhqp6ur6ezs5JJLLnEwIkEQBGEq8zDwVNnljxoG1y13UysXfBtlawaqCe7jNTXMXbPmFL9xYXkU2G3vVwAfZHyNVMIQ43m+TgDXWZa1ErgM9VrYc16jOkPOe+a06KxQPkzhFOUKnSdOlDKnD0cijmdOV5YJ8oTXy4IF4qwnCIIgnB+29vfzr9EopqlGNd0CXOdsSCexC9sT1eadwFxnQhmVEPCFMreHNzDU+S+Mn/GI3BnAE5qm7QBeAH5lWdZD5zesM6M8k5viPIxju/ba4ZlbTVODIMYoVzgSiZT2Q7W1dHZ2jnrcheKKlhaam5owDIMZa9dKFlcQBEE4Lxzs7eXPQyFCsRjBYJD2dJp7nQ5qBCngk5kMUVtArsZdZQAW8M9lbg8DnZ1c6yK3h8nEeMb67qBs2pkbKW+uSqXT7AiHWTXRQq48i+vxjDrprMjrDIPn7f3abNbxzOkMwF9bi7+2lrGLLARBEATh7CkA/5zPEzcMLEAfHORNBw9SvWKF06GVsIB/TiR4NRIBy8LM5fjd2lq0tjanQyvxa+BZ2+3BAq7dvZv+hQuZ7YI64cnGlCnvKG+u+uW2bRNbIjDSWaFQGHMQBMCVCxaUMqeN7e2OZ07by/ZPOBaFIAiCMJX5JnC4qankE3/T7t2scpF4BGX8v6VQKAnIa3bvJnv8uNNhlehHNTcV3R5WHT3K7FjMNW4Pk40pI3LLm6tShjGxJQJn4KwA0AQ01dYSCATQ6utLc7CdYob90zRNdodCjo4ZFgRBEKYevwF+iHIpCAQCvMmy+NDll7vCpaBIF/BFhgTk0uPHWdLX5xoBWXSkSKOex5UtLfxRba1r3B4mI1NG5F5dth+byOaqM3RWAGXbVf5ydDp72gYMZrMEg0GOJJM88ItfiNAVBEEQJoQjwGfLLm/Sdf7aZRM2B4BPAyZKQK5paeHDNTWuEpCPoeyrQOmIv6qp4YrVq10T32RkyojcVYFAqUSgfc2aiSsR+MY3IJsdt7NCkRll+z0TE8lZUwnUJhKl5Zl+n49umXktCIIgnCMp4JOowQ+gvvs+ivvExVeAw/Z+FfB3LhOQfcD/lF2+E1jqUCxTCbe9Ds+adlRzVSAQwDNRvrRbt8JXvzpc4MJpyxVAvdFN0yQWi/FaNDox8ZwDF9vLMxoQqqtzzfKMIAiCMDkpAH+fTLLHdikwgI8BfofjGsmzwM/LLv8hMM+ZUEbFAv4pmaTHfh5nAm93OqgpwniGQUwKzkvmdGTDGSj7sHe/e0xnhSJGJELQzp7+urubOxcscPSMcVVtLc9VV5PNZmnfuJFAXZ1jsQiCIAiTn/+MxXg0FgPLIqZpfMDvZ67Do+xH0gf8czZLzDQxDIPrdJ3bnA5qBP8XifC4rRfiwMd9PvSWFqfDmhJMSZE7YTWwRX/cfF5d1jQwDPj93z/tr1YGg+D1YgEhuzzASZE7H1WHpOs6Y/tCCIIgCMLpeQLVaFYsg1vb2cns+npwkcjNAX+bStEZCoFlUTBN3tzQ4Cq7sC7gK5pWeh5XHz6Mv64OROROCFOmXKEJ5ZdrmibHYjE6J6qx6gz8cctZW2ajEqqtJeBweUBxUoppmrwcidAjjWeCIAjCWbAX5QJQdCmY39fHxoMHXVcG9zVgdy4HloVmWdy8fTsxF9mF5YB/Ayq8XtA0WpJJNnZ2uu55nMxMGZGrAbXpNMFgkFg0yveefPLcHQS2bIHBwaHL+Ty8/PK4fnVRWxtLWlupb2iguaODvMPF7Y2AnskQDAbpjcf51q9/LQ4LgiAIwhnRj2o0G2TIpeAvKiu500UuBQC/BX7KkBDfuH8/M+NxVwnI7wAHUc/jzLY2PgrcffvtrnoeJztTRuQC+KLRIQeBmppzdxBobj75uq9+VTWkjYNlXi/19fXous6hc4vknNGA5rLnp7uuThwWBEEQhHFjogRucXB9LfBPNTVsdJFLAcBxhizNdF3n9qYm/rClxVV2YbuBH5RdvtcwuGPZMtfEN1WYUiJ3mc9XKhEIT4SDQCik6nDLGYd9WJFyp16nRS7AOntJRANONDe76oxWEARBcC8W8IlEghdtBwAP8JcM74dxAybw/4CMfbkd+Bu/n0vXrHGNgEwB/456TgFWAnc5F86UZso0ngGsqa8nYBhks1kampsJ+M/RyKS5+azsw4rML9ufwPlrZ82VDQ38wOslm83iaWsj4PU6HZIgCIIwCfhCLMaDZU4Kf15by8rGRqfDOol/icfZblkYhoFf1/lLwOd0UCP4t0SC/YUChmHQpOt8BLXaKkw8U0rkljsIBFFnSef0wgmN4kMwDvuw8nhANXttS6UIDg46eia5CKi1n584qrZK+jcFQRCEU/Fr4LtQKndbcfQoS30+cJnI/X4kwg9sK66YpvGu2loWuizGn4bD/CiZLMX4R34/LS5ypJhqTKlyhQBQY+8ngPC53uFoNblr1oz71zsA7HG6xxIJvvOrXzna7FUJlM+B2+lUIIIgCMKkYBfDnRTmhEJcs2+f68rd9gNfLLPiWtLdzZLDhx2Oajg9wH+Vxbi4u5s5R444HdaUZkqJXI0JLhEYLZM72nWniKetrNnrWH29481eyxmaxPZMPO5oLIIgCIJ7OY5qNMuhVknXtrTw1xUV3HXHHa6pbwWIAZ8CKu2+k+Zkkuv37GGmi4R4DvgXgJoa0DTqMxmu27vXdScLU40pJXJhgpu9RsvkjnbdKVhfNk7XDc1eM/r7SzZrj5w4IX65giAIwknEgb8HkvblBuD/1dSwcdUqVwncHKrRrB8lxOe3tfFXhQL33Habq+L8FrAPFWNHWxsfLRR4w623uirGqciUqskFlck1TZNsNssOj4ffqa09+zsruisUm8807YwyuQCbGhr4kd3sVdnaSqCm5vS/dB6p6eqiuq4Os7KSuGHwYl8fd8ibTBAEQbAZBP46lWJPLodhGNTqOn8LuGdO2BBfQ5VUgFo9/bhhsHbFCucCGoWXgR+VXX6PYXD30qVOhTOtmHIit7a/n2A6DZbF05kMwcbGsz9Tam5WU86KY33PwFmhyGLAbzd7hVF1wk6WmM/p6GDu0aPsb2sDTaN71iwHoxEEQRDchAX8fSLB05EIWBZx4EO1tSxyYXPUFtTAhyJvA9Y6E8qYRFBTzYpcCtzjUCzTkSlXruA5dgxPoYAFRL1e9p7tcvzWrfDhD0OhMHRdRcUZ3001sKTs8u6zi2bCCAQCvHXhQuobGggEAuxtaHA4IkEQBMEtfAV4qlAo9ZJs3LePDhc2R3UC/5rNErN9e68A3uR0UCOwgH9MJjlqx9gI/AliF3YhmXIid+6MGbTHYupFpGlEzzZTuWULDAwM98k9g0EQ5bit2evmpiYa7Els+1BF+4IgCML05qfATxhyUljZ1cWlR4863ksykhjwN5kMXb29xKJRBjo7+d1g0HXi8X+jUR4Ph4lFo/T29PCOUIh6p4OaZkw5kRsIBNg8b14pU9l9tkss1147PHOraVBdfcblCgAzQqGhZq/jxx21EQM1ivESlPCOxmL8MhI53a8IgiAIU5jfAP9r7+u6zh2NjXzE5+N1LhqFC6rR7FPAMTsJVZXLcfvLLxN12Zj6ncC3yuzCLj10iKajR50Oa9ox5UQuwKb6eurtTOWu0x8+NuVZXI8HPvOZcQ+CKMfX1VUqoQjX1LCrt/dcopoQFkejJeH9fwcPOi68BUEQBGfYxfC60UuAv6utZa2LRuGCWv7/b+BVVLZZA27ZsYPmTMZV2eYw8GlAtzPiM6JRrujsdFWM04UpKXIvBoo52CMoK5QzZssWVZ5QpFA4Y2eFIvNmzGB2OFwqoTjhgmavWceOlc4wjzQ3c7Cnx+mQBEEQhAvMUeBvsllCdt3oTODjqH4St/Ez4Ff2vq7rfLC+njfOm8dmF2Wb8yg/3CgqxkWtrfylprnOW3i6MOXcFQAM1AjbPfbl3cAZ5V+3boWjR4c7K1RVnVWpAqgSit+pruZ+jwfDMNiv62d1PxPJ6tZWWvv76fP7yVdU0D1njtMhCYIgCBeQXuDPMhkO9fWBZZEbGOAD9fXUtrnPLOwl/v/27ju8rfJs/Pj3yEOyLVu2JVtJnD3IIJABYYVAWA0jLaWl0EJp3x9tKd19SwelpbRl9e1u6dsB3bulfVsKBTrZpEACIQmEDDvTjo9tyZJlyTrWOL8/HkmWHcdxEjvnSL4/16XL1rFl37Zlnfs8z/3cz0A5BcB5wPW1tWhHsAvp8fArBrc0+2xFBUtPPtnCiCa2ohzJBbXYK+uIShbWrYMLLoB77x3cOuyee46qVCFrTV1droRiE9B31F9pbPj9fq5pasrVLr9ss/29hRBCjJ8w8DngQKa2tTSVYu2GDSRaW60O7SCtqOn/bAHhfOCD2K9LwQvA/Xn3rwGWWhOKyCj6JNcwDB7r6Bh9zWm2q0J+6zA46lKFrAYGthxOoppDW+0NtbW5xPtlVD8/IYQQxS0G3IZKHl0uFyWmyWUvvYQ/GrVd3WgE+HQsRlumnMIHfAb7lVNs6ejg1u5uDMMAVD/cq60NSVDESe5CoN8w0HWdV/r6uP9vfxtdouv1qk4KWcfQVWGo0/Lef/6Yv9qx8zFwMWCiVtcKIYQoXv3AHUBz5r7L6eSLNTVcMXu2rWpbQQ0IfTYa5eWuLsKhEIG2Nm7s6sJu8477dJ2PdXRwoKcHXdep6uvjJuw30jwRFW2SWwn4Q6Hc4qpd9fW0Ha7FSHYDiGyZAkBp6VF3VRgqm+QahsHfg0EO2KCjwbmZt4ZhcL+uS5cFIYQoUtlFUZvzjn0AWFtfzzIbdlL4DvBSMpk7j1+weTPl+/ZZHNlgJnBPIoFeXY0JaOk0V+/aRY3VgQmgiJNcgHOcTtA0NGC333/4aZif/xzi8cGtw46hq8JQ8wBXXx+6rtMaiXDfM89YnlSuBJLxOLqu83I8zs8ef9zymIQQQowtE/hSTw9/y0z7A7wTWGNpVId2P/AvBjamOHPHDuZ3dtqunOJRYGNDQy7XWLV9O2d5vVaHJTKKOsl9XWZRlae2lsRJJ+Ed6Sp13Tr4yU8GJ7igFp2NQakCqKmLeV1duavS1/z+w48uj7NqYG4wmItp49SplsckhBBi7JjA13p6+H0oRDjTI/38cJg3Wx3YITwJ/CLzvtPp5KraWt7r9dqunGIrcC8qRr/fz4UlJXxmyRJbxTjRFXWSOw2Y7nTi8XgwXa6RuywM7YsLqh73+uvHpFQh6+KKitwVX/OkSTTa4Kr0zeXluZi2T5mCp6nJ6pCEEEKMkV8AfzHN3GDGgtZWzm1psWXN6Fbgm3n3TwY+VVPDcpuVUwSBu1F1wwALnU7unjqVSTaKURR5kqtxBIu9hk4vOBzgcsE73jGmMa3y+VjU0ICnthbP1Km02eAf4lyfj1N9Pjy1tdRPmcImG/ZIFEIIceR+j5r6z077z9N1Lty6lSYbDLAMdQD4bF8fXZmSiqnAp7FfQ/8k8CUGOhJVY8+OD6LIk1yA0/Pef46BPnuDrFsHH/7w4L64N9wA//rXmI7igkq8L66oyLXuenxMv/rR0YCrKyvxeDwA/LyryxaL4oQQQhy9Bxg87b+mvp6by8p4gw133+oBbo7F2NnZSTgUomffPt7f2Ynb6sCG8bWeHv6TScQ14FOADA3ZU9EnuSeiOi0YhsGOcJj1nZ0Hf1K2N25WOg3Tp495gpt1Tt77zwHxcfkuR+ZcoDSzAK05GuWe55+XBWhCCFGgHmXwDmFLgTvcblbYbNofwAC+COxKJMA0caTTXPriiyT377c6tIP8vrubX+fVNl8RCrHE6qDEIRV9klsKzItE0HWdcCjEjzZvPjh583pVeULWGC42G85MVL2wYRh0hMM8EgyO2/caLSewVNdzNVvPzpnDflmAJoQQBeffwDcMg3BmtHER9p1OT6Pamm1DlVRowJpNm2iKRGzXSeFV4PualjtPzj1wgCW7dlkdlhhB0Se5ADPa23NPyh2NjYO7B2R74+bvcFZSMq7xaMDSzFVgOBTiJ7t322LU9JqKCspTKTSg2+2mZeZMq0MSQghxBB4D/scwaM+cX9ixgxt1HZfVgQ3DBH6AmtEEVVJxU00NV0+fbrtOCh3AXUBpZvF4QyTCRTatbRYDJkSSe2FNDSWmiQZ01dRgTp068MHHHwfDGNw6LJFQx8fRrH37con3Hq+XTR0d4/r9RmNeYyPvrq/Hk2m99nBdHf2Hf5gQQggbeAz4BtCX6fdeH4nw+vXrCdl0Vu4PwMN5968Arqurs93GFHHgdiCMSsTnNTRwi2lyxSWX2CpOcbDDJrmapu3WNM3Mu6UP9xi7meX3c6nXm0veXm1oGPig1zt4FBfU/XFu5nxyYyMzAgHVwkXT2DJ9+rh+v9F6Z20tMzKL4loNg2+3tNhilFkIIcShZRNcEzXt7+vt5Yr166lMpWw37Q/wx2CQe/I2pjgH+H/WhjQsE/gasDtzvxS4vaKCC046SRLcAjCakdxewDBNUwO+B2iapkXGN6yxd1l1da6jwRPkdVkIBFQ/3HwOx5jtcnYofr+fD8yYkUu8n/N4bLEAzQW8DVUvrOs6vzNNfvf3v0uiK4QQNpWf4ALMdzr5QUMDq5Yssd20P8A/AwHuiERyi7fm9PbyUbBl395fAf/Ju/8BYKFFsYgjN5ok9xJgnaZpW1GL8EE1LCgopwBVmffbge3ZD3i9B+9yVlo6rgvPsl7n9bIgk3hHwRbtxABeB1RHImCaGKWl/HvhQlptOt0lhBAT2R+DQT4fDhPPjIjOBO4E5jY22m7aH9QCsy85HKRRSbk3EuGq5mbKLI5rOA8Eg9ybN9r8RuBCSyMSR2o0SW4SuMk0zYVAfebYn8ctonFSDpyVd/+J7DvDjeSO8S5nh6IBa/PuP8gh+vgeZ6XABzQttwvarsZGWYQmhBA288dgkNsjEUKZEdHGWIw7gRqrAzuEvcDnAUdlJWga1fE4b3jpJeZMmmRxZAd7tquLL4bDudHm+b29tiynECMbTZJbCnxN07ROYBIqD/v+0E/SNC2drdvtHK4XrQ2cm/f+U0AK1EhufpJbXj7mu5yN5AJUiYBhGGwOh3l8nMskRut8r5dra2tz5RT319XRZXVQQgghAHgE+FZJCSYDI6Lv3LHDtgluB3Arqv4xu3jrc4kEb7voItuNNncAdzocJB0OTKCut5c3NTdPjJX6RWa0I7n3Az7U/1IKCA3zeTcCG4ANDfkLu2zkJKAOlVDuCYd58dFH4YMfHFh4pmlwzz3HZRQ3qwo4tacn107s27t22ab+9cM1Nblyim7D4NPt7bTbJDYhhJioHgC+y8BWvQ2RCFds2MB8G46IgkoYPgtkO8JXAF+qqGDN4sW2S3CjwBeARFUVaBoViQSvf/llW442i8MbTZLbDvxv5v2XMrfaoZ9kmua9pmmeaprmqWMX3thyAEvzEsrgvfdiJhIDn2Ca8NJLxz2uk/fuzbUTa2lo4Pkue4yZuoCPAv2ZRWjPGwa3bt1qmyRcCCEmmt8zsJOZ0+nkTK+XL6RSXLVmje0SRlBJ423Agcz9MtSI7lzLIjq0JPAlVFmF0+mkqbGRTyQSvP388235uxWHN5okNy8LZDmwArVj4CCapt2gadp6TdPWj1Vw42FeXn/acKU91s8tb2hgdmdnrp3YYzNmWB1SziLgzLzNNJ6fNYu/9PRYHZYQQkwoJvCLzC1rEfD1qirOXrLElklYP/DpaJSXMou3NOCTqFlVu8luTLEx79gnXC6uXLjQlr9bMTqjSXLLUP9X3wVeBN5smuZBW4IVwkguwGk+H1PCYTRg6+LFB3/CsmXHPSa/38+tM2ZQm6l/3eF2D/pHs9oNLtegnr5/mjaNrVYHNUH0o6b4NnR28sCrr/J8Zyf7gDZU3VgANRUYAfoyn19wjayFECMygW/09HBf3kr/pahpdXsM1RwsAdzS28sTgUBu8dZ13d2cYXVgh/BnBo/evQ04z5pQxBgqHcXnrASuQ9WL9wCf0zQtbprmwyM/zJ78fj/vKyvjqyUlLG9uxmRIbz6LFn4tb2jgSuDvmfs/RfU9tEPfwCl+P98EbnY4CNXUqHYbwSBfTqVYbNP6a7sxgW5ga1cXLYEAFY2NlNXV0Yuazus9xC1BpmdxXx9UVUFfH37DwOl0jvj9NKAESMbjaNEoTS4XM6qq8AFeVIF99v16RvdCIIQ4/lLAXZEIfwiFwDQJaxpr6uu51e2m3OrgDiEFfBV4PpXKzQKu3LaNuT4f1NVZHN3BHgoG+WZJCU6XC6fTyXmoJFcUvtGc255BjeQGTdP86PiGc3xcWl/Py+vWseYXv0CDwYnuOO90NpJrUL1y+4FmVAeIcyyLZrDZfj/3AB/o62NHZyeYJu+Lx7kHWDrBE11d12lta6OiqQkaG+kAdNRIa/6t1zDQYzFwuSASwV9ZedhkFSCe2aLTBDTTJB6PH/ZxJhA1DPSODjBN9kSjNJeWDvs4DVVkn58AewFHMIijvZ0VXi9NMl0nxHHXD3wZ+Ec6nXsNmNvezlsCAcotmHUcjTRqgOZZ1MK4sKZx2s6dnLp3L1NOPtni6A72TFcXt0UiJB0O0DTO8Xr5UFWVLQaYxLE7kpHczZqmbcwcu6VQR3JB/dBv+/nPKe3vzyW5wHHZ6WwkXuANqP28QV1ZnIV9Rtn8wNt27eLOigqSDgc9Lhe3lJTwbey5iGAspVFlA9nkNft2V28vL3Z301NXRzoeH3GU9WiS1VLAX16OIxajNJnEdDiY1tBAOWq0JHmIt+YRfL/sKHM3sCNzzDAM9N5eqKqiLBbjnN5eznC7OQmYh32ek0IUqyhwB7CFgWRx0f79XPDaa0y/7DKLoxueiVqlnu1D73Q6+S+Ph3Pr6mg68UTb1ba2AnfktQqrjUa5urubsiVLrA5NjJHDnqtM03wae8yaj51165jzk5/kEgDIjOYep53ORnIl8DegyzDYFo/zm3Sa62w0vXO218tl69bx8Mknkywtpa+sjPd3d/Nh02Rtff3hv4BNpVD1rfkjsDsjEXZHo8Q9HqIVFaqv8hDhVIpwRcWoElev00l5by+V8TiuZJIVdXVMAdwj3MoBraICvb6etrY2pkyZgn8UCybTQGs8zoOPPUastJRYZSUnrV5NOvNzdmVuAVRyO3QTkvwEOeFwsD6VyiXA5ahtLRdnbvPBlrsVCVGoulEdCXZl7judTq73eFgVCNB02WW2SxZBvYbcx0DJHcClwI0eD5oNR52zv+NUVRX09lLR38/lGzcy7/zzrQ5NjCHNHLql7Rg49dRTzfXrbdxk4e674dZbIZXKlSqkNQ3He98L3/ue1dHx01CIb/T0gGlSnkrxE7ebxY2NVoeVo+s6zwQC/Kipif3hsGq9pmmc53LxxvZ2Fvr9tnsRTqKSug7gte5udoTDpLxe+qqr6ch8LH/BlpFpm5b92fx+/7DJa/7nVSQSLJk8mZlVVfiBxiG3StTvLpesHoff0Wi+XxK1eC0/8W0Jh3l6+3b0mhoiFRWH/PlBJbgLGEh6F4BtawWFsLvNnZ3cpmn0Vlfn/ueuB66wNqwRmcA94TB/QI06O51OLgA+gj1HyOLAp4GdmftmPM67Wlo4y+u13blLHJ6maZimOexTbWLOOq5eDSUlmJk6p5SmkSwro33tWuzQvGvR7t14nE5ClZX0l5TwzXSa+7DPi4Xf7+dNfj+uLVu4s6yMiMsFpsljfX085XazcOdOPuZwsPw41eqaQAxVTrA9EGBbdzfphgYMjyc3KhvIfJ5hGOiRiNr4o7sbf3n5sMnbcFP9jU7noOTVDzQ6nWgVFSRaW5k1eTL+qqoRY/Uf5wuA0Xy/UgYWouV4PFwzfTptbW2U1dXR4XSyGTV12j7k8Qlgc+aW/XonANPDYaa0tnKm18skOXEIcVjPd3Xx0VCIaHk5xGJMbmzkEy4XF1gd2AhM4HvhMD/KDHiENY3X19Xxoepq25yz8mV74WYTXA34nMvFikWLrAtKjJuJmeQCaNrAorPMaPYv9+zh3bpu+ZXcjMmTueipp/jDihWgaeytq+MR1NSPnZzS0MC1jz7KU3Pn8urUqWpqu6SEzVOn8iGHgxkdHZzicjE/maSkrY35jY3Mamw87AufiWqHFR1y2xcMsjcUAq+XpMdDEJW8BgGDTAIbjUJZGYTD+DMjCvlGqlOtBxpQyasTaHntNdyxGJ54nKvPP5/pHs/wATc0qFuRGZogZyfxulDJbjbpbRvyuCTwkmHwaDgMVVX4urp4V3k5V9TVUXE8AheiAG0APlNSQrS8HBMoTaW4Zs8eLpg/3+rQDskEfg38FnKvq7M6Org8EKDEhiUK2ZrhDXnH3o9q/i+K08RMch9/HJJJNRWNahZckkxSs2sXr9ggyfX7/dywahXpeJxnMtPEPwaWAZMtjWwwv9/Pmy++mDPb2tiTSvHteJxAZivE3miUV0yTV+Jx9cnV1RCP09jTQ0UiQVVlJa6KCtKoF5400NfXR288DpWVlA9JTnMLoUpKjiqB1VBJ7PTSUjrb21XyahisXbGCBajkdtAUu8eDvnTpcS0tKBQ+YHXmBuoiIz/p3c/gv0WX2833HQ7+hEqULwFmHueYhbCzfwDfAbTKSohEcGa2kl2zcqXVoR1SfoKbXRg3s7OTSzdvZvqldhuSUb4XDvNHBkoq3gpcbHVQYlxNzJrcdetUyUJ//6AFN1+8+25K3/9+PlNTY1Vkg/QD/43aYhDUYp8vMbodPKzQrus8EQzyz4oKXkDVOQ+VOzKkzvVwNbDhcJhwKJSrofbU1uLJG1ktBypjMQI7duDu68MTj3PRkiXMr6ujEZXEZq/ojndd7ETTDTwVDPKb7dvZ3thIsrT0oL/nQtTMxEpk0ZqYuAaNhGa4+/q4rrmZUxoabP369CsGx72gt5e37NzJjMmTbRn3L7u7+UokkjvHvKW2ls/U1NiypEIcGanJHerMM+H66+H73889wdOaxrREgj/X1LAPmGZlfBnlqCT346jV/xsNg2+0tvL2qipbvohM8vu52u9nta7zx0ceoc3joa2+nnaPh16nk6jTSaJEbZY3dKR16CisGYvhdTqpAqoAs6SEPe3tlCcSuPv7uXDZMuYysJlBJWoURJ80SSWws2bhP0RXiuNdFzvR1AFvqK/n9FmzaG5vp3n6dNY5nezL+5ytmdt9wEWo0ZRJFsQqhFWSqNHbf+Udmw3cVlFB/XC7cdrI0MT8FOAWt5vypUutCegwngTuczhy55gZnZ2sCQRs2fVBjK2JOZILajT33HMhkQAgWVrKzU8+ybYzz+R04LPWRjfIr4GfZkY6S1Iprn7+ef5r9WpbJ2r5o6UAbW1tuFwunnjuOaIlJTgcDtZcdBH+TI1uV0cHf3v0UUincabTXD5MmxwZgS1cJvAK8DCwDnWCH2o5anT3VNRubUIUqyhwa28v61Op3NT5cuBmsH3d+vfCYX7DwJT/KcAt2LejygbgdiCWOYf6QyHe9OKLXHHJJXIeKRIykjsKjryp9edQo0wLLYtmsKuAh8JhdNMk6XDwl6VLOcMGtcMjGTpamn2/Pr/fa15btPrGRjxr1oyYxMoIbOHSGGgxFkL10nwU6Mz7nBczt6q+Ppa2t3N1ZSWz5O8tiswB4OZYjI3BYK4bwVW1tXyqpsbWJ2QT+E44zA/zuihcVF+vRnCtDu4QtgJ3oWZCnU4ny3w+3t3dzTxJcCcMu5Z3jr/s4rMMRzLJ5Y8/nrv/Ew5ukG+VUuDjmkZ5KoUG9FZU8Ns5c+i3OrCj4Pf7WbZs2SGT2EN9TBSPWtSF2w+Bz6FGbrOXmIZhsLWzk984HFzb08Mfurtt838oxLHaAtwE7EokclPnp+3YwSXNzbZPcH8I3A+5uKd3dnLVzp22TXB3A1+A3HmyEfhaZSVnL1ki55gJZOImuV6v6pWaVVbGiatX515otgLPWxHXISxvaOBOj4fa2lr8fj/7q6r4BvZJxIU4Ug5U657bULW5VwKl0WjuJBotL+fbDgefYGC7YSEK1T+AW4EIaqq/xDRZs2kTZ+zeTVOmrMuOTOC7wF9QcaNpzOrsZO2mTcyYbKd+PwN01OtKNHPfA3wRtYZDTCwTsyZ33To47zwwDHXf4VA7nd1wA/eh/pkNw6C2p4dvptNMsdFV30PAD/LuXw283aJYhBhr+3Wdb27YwLNz5xJ1uQZ1ZbgIeAdqJFiIQpEGfgr8Ke9YLXBjVxeV+/bZeo1BCvgW8FjesSWRCJfv3Ml0m8bdDXw4FmNPIoHL5aLW6eRuYI7VgYlxIzW5Qz3+OPTnTfabJgQCgEoaH4zH0Ts60E2Tu7dt47M2mt5YC7Sikl2A3wFNwHmWRSTE2Jnq9/OJU05h14EDrPf7+ZfTmVuk9g/gGeAa4DIm6ouXKCR9wOd7e1mXt8BsFmpEt8HnA5/vMF/BOkngq6j/uazzgI9UV9tyoweAHuBjsRiburrANOk1TW6prmaOV8ZwJ6qJWa6wejWU5p0iS0rUMaAGWHngQG7K9Jl583i5o8OCIA/t3aiWLaBGnG8PhXiiq8vKkIQYM36/nzOWLuWDHg/fBU7P+1gMVRv4IeAlS6ITYnRagffFYjwaDBIOhdB1nRN7e/kyqm+3nfUDt/T28nA4jJGZ8bwY1dLSrp1PoqiLh+ZMvbNmmqzZuBHP3r2He6goYhMzyR1qyKYF11ZW4uvtRQNSJSX8efZs0tZENqwS4BOALxZD13UC4TA3RSL8KzMaLUSxmIxq5/cF1IxF1n7UorU7gHYL4hJiJC+gFpi15C0wW97SwlU7duCyOLbDiQGf7O3lb3nJ+eqeHt4Ptt04IQ58HmhB1Q1rwEWbNzM3EMi1sRQT08RMcod0ViCZVMcypvr93O33U+/x4Pf72VdVNaieyg6qgLc3N1NhGJhAwuHgzpISnrY6MCHGwXJU4/x3MbiP6HPAu+Jxbt+9m726bklsQmSZqE0SbkeNLLpcLkrTaS7avJmzm5ttvcAMIIzqeftiKpVLzk9pbua85mbbJrj9qEVlr2XuO51Obqmp4ZqpU1m7dq1tSg2FNSZmkjtMZ4VsuULWaT4fN9bW5ha9/BLYc/wiHJXFjY28acMG3IYBmkZpRQVfZqBeV4hiUgq8EbXw8sLMMcMw2N/RwR80jf8KBNjY2XnIxwsxnmKonqy/YqDrzVSnk+9WV/P2pibbJ1wdwCeBZga6KJy1YwcrW1psm5wnUL/zzXnH3gtcVVcn7SgFMBG7K4zQWWGoFAxqXzQHVYhvpwUvuq7zSkcHP5szh2BlZe741cC12Hd6SYhjtQ24o6ODTX19ajtowF9Tw+fr6jjL4tjExLKxs5M7gXBNTW5g5GRU0uixMrBR2ouqZw1m7mvAtd3dnLB7t227P6SAWyMRnk6nc4v63olqRSgmlpG6K0y8kdwROisMVYIqtC/L3G8m0wzbRvx+P+efdBLfqaxkft7x3wH/i3ohEKIYzQe+Ypqcv3Urpem0mp2prORu4MfIc18cH38JBnlPJML2zBoJwzC4HDWFXggJ7mvApxhIcEtR2wtfbePR0BTwhUiEv3Z35+qGLwmHJcEVB5l4Se4InRWGMw24Lu/+74Cd4xPZMalGLcI5Je/YXwyDD7e10SK1iqJITfL7uXnZMr4Qi7G4oSE3ivYn1IK1bkujE8UsgSqd+WpJCf0lJZhASSrFlXv38m7s24Ug398DAT7Y3U0gM7PpQi3ytPNMSAr4OvB4Op2rG166axdntLRYHJmwo4mX5A6lHX5C/3JgUeb9mGFwS2cn+2yYOLpQJ/bzULWKuq7zdCLB23t6+GsweJhHC1GY/H4/rz/xRH5QUcGKvONbgI8Cr1oTlihiHajRz4cYqF+tjcW46oUXuLymxuLoRucP3d18qreXzp4edF2nvK+Pu1FlFnaVTXCfZOD3fvLevazaudO2dcPCWhMvyf35zyGRGLg/pLPCcByok6UZj6PrOttiMW5ubqbdholuKarE4sz29kHbo/5PSQl3MzAlJUSxcaPqCq9joBY9CHwaeADZAluMjReAjzCwVsPpdHJZXR1f6u/n/517ri2n9/OZwG+AbzscpDP33X193NDczFxrQxtRfoIL6vd+bW0tH3O7eb3NF/UJ60ysJHfdOvjRjwYfO0y5QtZkYE1ray5x3NLUxG97e8cjymOmAe93ubh00yaq+vtB03C5XDwLvB/4O3LCF8VJA65C1UNmx9PSqA0kvozagUqIo5EEvh0Oc1M4nJveL0FtznNndTVn2WhnzENJAt8Gfs3ASKivt5erXniBpQ323aJiaIILatfDT9TUsNymdcPCHiZWkju0Py7Au98NZ545qoe/xe3mBF1Xo0SaxiNTp/LCWMc4Rvx+Px897TS+GotxVV4rtChwD/AZoM3KAIUYR0uBbwEn5B17GrgxFuORLVvQbTgLI+yrHfhQNMqPwuHcQqeqvj6+hCpnK4QuNjHUxd8/M/edTicX1NdzRyLBWy+6yLaJYgr4BoMT3EtRrcIK4fcurDWxWogNbR9WXq4S31EmuQD7dJ3PAO2ZxNEFfAWYOfbRjqlNqGb6B/KOmfE4Z7S3c2VlJQsaGy2KbOJKAl3A1kCA5mAQl89HWV0dvTDsrSseJxKP43a5qHS5KEWNJA192x+L0R+JMK2ykpnV1Xghd/MB9Qx0DCl2CeBHwF8ZqFMvTyR4w0svccOqVbY9sQv7eALVqaY9k+CawIyuLj5ZWsqqJUssjm50gqgdwXblHbsA+CD2aok5VAr4YiTCY3ltwi4FbkQSXDFgpBZiEyvJBZXo/vzn6v13vOOIEtysMPAx1OIDUInD11DJg531o2qx/g/oy5zwMU0cwOvr67mmupr5yIvHWNmv67za0UHJlCmkvF501HMmewsA8by/A5qG3+/PjbrnM8b482qAylgMZyjEKZWVnF1by2wKY0X40XgcuD0UoiscxgTKUik+0d/PWxcssDgyYVd9wPeAxzL3DcOgs72d03fs4NQ9ewqmDnQP8Km+Ptr6+3OJ4tuAt2Hv1/okcFskwkPd3bnXs2tqa/lkTY2t4xbH30hJrp0v4sbHmWceVWKbzwN8DrVRRB9qNO4O4G7g4HTCPsqBdwJnA7eGw+iZ+uI0qh3LS6gNL14PrMp8vji0fqATBiWv2ff39PWxzTCgpgaiUfxu97DJZjwez9V5a6ZJPB4/Lp/XaRjoXV1gmjzV08NvKiqodTpZBJwELEY9F4rlBWI1UJlM8uFEgr6yMpKlpfx8yhRmAadbHJuwn+2ojX/yZ75mOp18oaoKl9fLlJNOKogEdz3wxXicPZ2dYJpEgE/X1HBVXZ3VoY2oH/gS8FRem7CT9u7lokAAbdkyi6MThaRYzmHH3QxUC5kvoBZx7UDVDX0Ke18dQ2bnNtPkW5s3s3HaNNrr6tQiBNSGF99ENdNfA1wC2Hc5wvgyGJy8ZhPaXdEoew2DRFXVsAkkQLi//7DJpgZMLi+nMhymKh7HlUxyem0tU1GdAvJvMcPgyccew5FMQkkJr7v0UnweD0nUlF727YH+fv753HPEHQ5iFRUsWLmSFGrUOIC6IAsyfDLc53SyAdiQic8FLASmhkI0tbZyqs9XECf2QznN5+P7psnnHA7ibjclTid3obqRrLY4NmEPaeBHoRC/BsoqKnL/s+ejpsgrfD7w+SyMcHRM4C+oUp2QYYBpUppKccnGjcybNQtsnOTGgTuBjajFcWFNY+nu3ZyzYwdNa9daG5woOBOvXGGM/RX4ft79qxi8eYSd6bpOW1sbiWnT+I/PxxOoK+gswzAw4nEWlZZyRlUVi1FJT+XwX67gxBk8Crs9HGZ3by9GbS29VVWEh3nMkZQNdLS3UxWPUxOPc8bs2cytrqYRcrcG1FVm9u9wuO0zx+rzUsD2jg7+74kn6HC7OVBfj3byycQqKkb8eSf19HBDUxOvr68v6FH+DlQ/6ewonYbqOnKxZREJO2gF7ohGeTYQyP1/z2hs5CaXi3OtDu4IJFHnpL9l7huGQWzPHi7bsIHGWIy1Ni6ziKEGjvJ7W68JhzmrpYUmm24vLKwnNbnj7F7gwcz7hmHwpr17uaKmpuD+ISOoF8aHgf2HSOY01Ejw4sztRNRIo92kULtdBYGdwSDbu7sxfT7iHk9uZDaS9/mjTV7DeYtPHKbJzOpqFnm9ucTVj0pe/UBS1+kYRVJqlfxkuNHvpx21gcLmzNtOBv+8GuCprWWqx8OFqFH+yZZFf2yCqJKjPXnHrgeusCYcYSETtanDT4HOvOf7pHCYT2gaF510kqXxHYkIapp/U96xBcB7OjqItrba9rUIVOy3MdB/GNSA0VXWhCMKiCS54ywF3A48m5conffaa3x66VLbvqCMJAX8cts2fheLsb++PpfceDwH78SuAY2xGN5AgJk1Ncz0eKgH6lAL8WoZm5oYE3WVH8277QsE2N3djcPnI1lbSxCVvASAUOYxR5O8Zn/eeo+HBgaS10agLBjklccfpyoapSaR4A2XXVaQf+PR6ACe7O7mtzt20NzYSNrhOOj3twzVzmcFhbdobbiT6luBa7B/yZEYGx2oVnPZpDC7uGzFzp2cumcPlxfQ/3crqkVYfmvI1cCHsP/6ih0dHXwOCHg8udeXd6PaswlxOJLkHgcx4PrOTrbGYrlE6a2myc0zZxbkCVPXdR566CFiJSUcqK/Ht3o1e2pq2MXgjSRGk0RWoxLe8t5eEj091FRXU1ldjZn5WkNvkd5eQr29aDU1UFlJFPX7PdLvC8Mnr9lkvZSB0gFXTw/71q+nKhaj1jB486pVLGhsHLaR9GjLBoqFrutsa29n+4wZrKutzXUVyVfV18eKAwe4uqqKqQX0O4mhLlC3ZO4bhsEZus77nU4mFdDPIY6MCdzf3c0PASorc68dM4Hruroo27evoP6/XwK+EI8TNIxcB4XrgLdg/wu2Vzo6+EAgQHdlZe61/GNOp5QPiVGTJPc42dHRwQc6OtCrq3P/rG90OrmRwtx1Y7hkLoqql9qSuW0IhejOtGUaacR3rFtgjZS8ZnmAiliMzq1bqYzH8cTjrFm2jPn19fhRo835/xUTLXk9GmnUwrRHUCu3h46W1/b18ZmGBl7n9Voa55EwUJ1R8mdiTtm9m7sWLJBEtwi1A1/u7eVfwWDudWaS38/bnU7eSmH1kDaBPwL3GYbaZt40KU2n+YLHw9p6uze1hH3ABwIB9vT25l7L39/fz3vnzbM4MlFIpIXYcTKvsZH7TJM702l219fjdDp5BNVX9ybsP2U0lN/vPyjZq0JNTa/I3N9tGPzkpZcIulz0VVQwa9kykqiygW4GygbGogVWReb7VwGUlrK/q4vyRAK3YXDeySczB7XhQbZcohSgshJ96lSVvM6di3+EF/7hfl4xmIOBv38H8Cjw22g09zcLVVRwR2kp/wHeQ2HU7DpRC9H+OxDItdXbMHMmP43FuNni2MTYSQIPoLa07Uylcs/ZumiUG5ubuWLRImsDPEJxVKnF00Bf5nWzKh7nso0baTrhBLB5krsdtUFF3O2GaJSSdJo1mzfzxtNOszgyUUwkyR1jM/x+votqw/VE5tizQA/qRFplUVzjZabfz/vPPHNgBLSmZtDHU6gkf0ciwYMbN9LvcOAAzl65Ei8DI9wO1FV8MJnk6ZdeQkulqEilWHveecxAdXQYVPNZVTWQvM6ahX+EljiSvI6PRuAdwAWJBF/avp3/zJ5Nf1kZLpeLF1BTqG8Erka1I7OzUuDmkhL2HTjALp8PNI1/T5nCfGQxWjHYgdrOPLvjl8vlogdYsmcPZzU3c9all1oX3FE4gGqzlV046XK5qAqFuHjjRtzJJFOmTLEwusPbiIo/jtpeeHpjI9fu3s15p50mr9ViTEm5wjgxUT0KH8g7Ngt15Wrv6+vxM9atsoR9ZOt2n5o1i+dqagbVT9cDlweDzNyzx/ZtgPbpOrfnzcSA6o96mbVhiaPUB/wS1f0m/zk5C3hbVxeuAqu9BVUu9BVU6VjWWmCtzbu5ZD2N2iE0mblfjTovnmBVQKLgSU2uRUzUFro/zTvWiFroYu/rbCGO3g7gB8C2zP1szW5TIMCaLVt46+teZ+uTsIE66W7JO/Zh4CJLohFHwwSeAb4zZDvbcuBa4A0U3jSmCdwXCvErTcOZ+XnKgA8AF1gc22g9gtoqOZt1+FAdIaZZFpEoBpLkWuxfwLdRi3ZALYi6DZDSelGsTOBx4CfA7rxFglX9/dyUTHLlwoWWxnc4fcCtDCTq/YbBm/fu5fIC7H890exGXWRtGLKI9YL6ej7pdjPJ4viORi9wR28vj+QtllvQ0MAdFRUFcR4xgXszCXr2gmMqasDH/vvHCbsbKcktxEX/BecCVD1uduFZGPhYPM6vXntNvQgLUWQ04DxUsnFF5r4GxJxOfjhrFg8wePrYbipQOy/NQY1Et+s6/1tezl0vvyz/szYVQY0Sfhg1Cp9dxOrq7+fCTZt4+44dBZng7gA+Ajybt1huSjDIB3bsKIgENwnc1dPDd3t6CIdCalYnGuV/kARXjL/DJrmappnZ2/EIqFitAO5C1R8ZhsHejg6+XFHBTc3NtMhJUxSpCuC/PR6+5nbTVF2N3++nzOXih8CXUSOmdlWFGmmq6+nJJRePz5/PD/v6bJ2gTzQp1I5lN6B2a8z+bSqdTpbu28fbn36aRbpOk80XYw1lon6eT6I6mbhcLtA0lu7ZwxUvvsj8AphRiAN3AH8zzdz/0LSuLt65Ywc1h3msEGNhNGVJKdQgjIz6HqP5wP8AH+jtzf3Db25q4iOlpXwWON3a8IQYNxd4vZyM2nJ0e+bY06jV4Z/GvjV51cBdpsn7e3por6kBTeOJSZOoBd6HvChayQReAL4Xi9GcSOSmwQGWAje4XJTPm0dbVZXtF2MN1Qd8B3gy71id08mHMxeLUwpgJ7Ygqt62GZWghzWNBa2tXLh1K7Mvk6Wc4vg4bE2upmnnAH8AGg5V8zCU1OSO7LWODm7ety/Xqii74cFK4L2oHq9CFKME8EPUCFVOPM6b9u7lUo/HtifuPbrOXek0uzJdFwzDYG4gwMdLS5nd2Gh1eBPOFuDnwMYhdbcn+Xx8qLKS07D/Tl+Hsht1Mdiad2w2cDOF0Xca1CYPn4dBuyNeEg5zRkuL7TusiMJzTAvPNE37MXAdUCpJ7thp13UeDod5eNo0jIqK3PEq4F3AhRTui7QQh/MYaqQqkpekrN62jVuWLLHtCTCJWkD6aF7M1YbB3fX1rPJJdeHx0IJKbjdk7md3PixNpTi1pYV3+XyctnSpdQEeAxP4J/CteJyevO15L0ZtrFIomwltQZUoZFucOVAdIF5nWUSi2B1rknsOqhOWd6QkV9O0NJm8bPr06ezZs+dQnyryRFAr0P8x5PjJwAcpnCt3IY7ULuCmri6ao9Hclp7XptN8ctYsiyM7NBP4wp49/CnzvgbUeTx8oLaWK5EL0/GyqbOTH/f386rPN2inxFQ8jm/9ek7ZuRN3KsXatWtte5E0kl7URd+/8y6gytJpPu3x8Gab71yW78/BIN92OCitqMDpdOJCjUCfYnVgoqgd07a+pmk+OcpFZzeiav9paGiQ5/QoVaNWA5+LepFrzxzfhEpy34ZanV4y7KOFKFyzgK+m07wvr971n1Om4EftpGbHhFED3udy0f/88/xj0SL6y8oor6jgPsPg793dfMThYLGUL4yZvcCPIxH+HIupBWW6jt/vx+V0cj5wjcuFWaB1t1mvojZ36GKgI0Rdby+XvPwysxcutP32vDDQIuy7mfUm9PRwQkMDX6qoYI7VwYkJrdD6YRetJagk99eQGyXqB34GPIVKhOXFQhSb2Y2N3GuafNE02VdXh9Pp5A+ohTfvxZ6Jrt/v5yOnncYFHR383+zZ7EDt+KabJu9Mp7khFOL/1dYWzPSyHe0A7gfWAeF0GpPMyLlpMi8Q4JNTpjAj+8kFum13Cvgd8FsGOkK4XC6mt7Zy1tatOMH22/OCOk99C3hQ03ILqut7e7kxHGbOSSdZHJ2Y6EZTrjD0E0zTNEdcVCw1ucemGVX715J3rN8wOKO9nf/ncjGzAF/QhRhJP6rzyPN5xy4APoS9ZzFSwF27d/MHTcuVL3hqaznB4+E9UNALoKywBfg98FLeseyOeVMDAc5sbuY9q1YVZFKbrwP4KrA171g16vk+u4C2NQ8Cd6I6pmT/TtO6urhk82auvPhi28cvisOx1uT+BnW+aUAt+LzNNM0fjfQYSXKPXRJ4ADWym784pzyV4mqfj7fV1NBkcYxCjKUk8A0G2iYZhsH8QICbS0posvHJUtd17n3qKR5fsICuzI5o2Q4MM4NB3llWxkpZmHZIKeA54FfRKJuTyUGtwEC1Vjyvq4vKffsKIvE7nD8Hg3xP0zArK3M/52LgJgprc4QWVB/prrxjZ/f0cH5zM9OL4O8kCscxb+uradpM4CHTNBeP5htKkjt2DgCfbW9nvWEMGinyeDwsB9YCpyKjRaI4pIH/BR7Mu7Cb09nJPdOm2T7R3d/WxraZM3moro6uIa2tVnu9vLOqimXI/2pWBPgb8Fegdcjva5Lfz4VOJ28BZloa5djpAb4cifBgd3fu55zc2Mj1LhdXUlg9l/+DGok2Mvc11IKctZZFJCaysRjJXY26yNSRkdzjrl3X+eqGDbwwaxahqqrcSFHWJOAy4CJUCzIhCpkJ3LZ3Lw9k6vs04LzSUr7e1FQQiUAEuGvfPh7O1JLmX5hOisU4ff9+LvV4mGLjpH087QYeBB5HlanAQCswRzrNggMH+H/V1byuiOo5n0OtudiT+TlNwNPXx8fSaa5YtMji6EbPBH4UCvELTcOZGXGvBD4FLLc4NjFxHfNI7pGSJHfs6bpOa1sb3dOn86zXywtw0NaiTuA81NX0jIO+ghCFo13X+fS2bbw4Y0Zuw5RLnU4+QmGMhOq6zs8ee4z1M2eyY/JkGiZNyh3HNKlMJHhLYyNX1NRg34ZpY6cXeAZ4KBrl5WFKEpx9fdQ+9xwn7t1LTSJRsK3AhooC9wH/ytzP1q0u3L+fc7Zv582XXFIwP6cB3BmJ8EDeSPRJPh93V1badsdCMTFIkluE2lG7Rv2dgabb+U5CJbunY++FO2KwPtSilK2BADu7u3H5fJTW1tKLShTae3vpjkapdbupqaqiFPX3LQXikQjp7m5m1tQwq7YWMxAgceAASxoamFQgJ9J87brOPYbBC3kzF5eiehUWSqLb1tZGWVMTzzY28rtQiK5w+KDR3ZnAKaEQs/buZUGBdgoYTj9q293HgfVAdEhJgt/vZ6HTyRuAVUB3AS24Go2NqK4D+TWr9cDbAgH8e/cW1M+poxaYbcwbiW7q7uYWTWPVkiUWRycmOklyi5iBOok8hJoGHMqHSgzWADXHLSpxKFHglc5OXgsG0RobMerq6IDcLcLAaE9+MpBdyDTccYZ5TH1dHcHMiIsrmeR8v58FySST9+1jSWNjwZxcTeAeBm+W8kbgegoj0c23s6OD/3n1VV6ZMoWoyzXs33VyOMwV06ezuraWeRRWnSZAN6rH95ORCE8lk5C3uCpbkqCZJnM6OrjG7eZNixYV3N/xcPqAb/f08FfTHDRifS6qLV61lcEdhY3Alxn82nTivn2s3raNyy+7rGBeS0TxkiR3AjCBV1DJ7jrUAp4swzBI9vWxuKyM06uqWAwsQJU3iLHTrus0t7dT1tREyufLJa46A0lscIRENSucN1qSP+J3qOPDPcbpcmHE47n7breb3mgUTJPpwSDvnTGDS+rrC2KUPw18HXgic98wDM45cID3VFQU3Ak2u0AtOH06L3u9rAM6D/F3rQZmRyI06TqnezwsbWiwXdK7o6OD/3R30zF5Mi01Nezl0BdpTdEopc8+y9wDB6guopKEfM8DX+/rY2tnZ+7nn9PQwE0VFay0OrgjZAJ/Ru3Imc0SSoGrurtZsHt3QY1Ei+J2TDueicKgodrQLEZNjz2CWrnckXfCeULTeK20FKfTSSkwL+8xiwCXRbEXChM1mpGfvHZm3u6OxdgUjdJfWwuxGH7DOCh5hYEdjbKN7ePx+KDPKwVmlpXRHQxS1ddHRTLJmR4P04D+VIoXX3wRRyqF6XCw8txz8aBab3WmUjz1yiv0lpXRV1GB74QTeDUUoruykr7s189837319dxtmtwbCHCdw8GVdXW2Hk1zAP8NJIDHMs/n+zWNltde4y4oqFIMf145wkVADHgoneanoRCttbWgabhc6j+xyzB4pbsbysr4fl8f0+JxFrlczEZtDOPp6oL9+5kxefK4JhsmahR6YyBA/6RJ9NTVsQ/Y3tfHjngcXC4IhfA7nTidzkHP8dpolHMPHOC/Zs6kqaoK/eSTafP5ii5BCgL3ouqOw/39uZ9/dkcHHw2FWHnyydYGeITiqBmUJ/OO1QOfBhbU1UFdnSVxCXGkZCS3iPUDP92xg/vjcfSamoNG//I5gLkMTnonWqcGE9XmJ3/kVQd29fayu6+PvupqdUIfxkijrIO+RzxO765dVMdi1BgGqxctYn5tLY1AI1CXebx+iPrEQx0f7mPZxYpMncrW0lLub2lhl88HWialzYw0neX18rGqKuYd269v3CWBDx44wLr+/tzveU1JCXdPnVoQI9Ij0XWd7e3tBKZNY3d9PS8Cu0d4TuWPllYkEpw0ZQozKivxAfH9++nbv58ZkyYxf+ZMnEA5auYm3NlJm65TN2kSNT4fBup1wgDau7vZHQqheb0kamoIopK3A/E4rR0dB43MDvec93o8TItGMZ5/nmmdnUyKRHh9EY7YZpnAo6idKbNrIwzDoGffPs5+7TUW6HrB/fxbOju5AwjW1OQuwBcCN6MSXSHsRsoVJjBd13nooYeIlJVxwOulftUq9tTUsO8wj9OAWagFbFOCQWr27WPepEkF9WKdz0TVygWBQOZtcyhEcyRCoq6OmNuNzkBLo6yR6mCH+7zSZJIaw+CUadOY43bnktdGwA94gA6LFtjous4rHR38u7ycfzocxMrLc8lJhcvF0o4ObiwvZ5aN/8b7dJ0P7d+fS9b9fj/nOJ18EopqG10TWN/ZyU9efpn9dXV01dTgnj79oPrWoQlwbyRCIBjMfR1vfT3ualUFeiQ13fkfO9T3MgyDYFsb9ZEITaEQ15x4Iqu8XlyMfDFWLPai2oJtHXL8QmBtRwc9ra0F9/M/EghwWziMUVKSex680enkBmTaV9iXJLkT3HAnnDCqhncLsBnYw8EtyWDwya88lWLRpEk0VVZSh7qqr0eNPtblvV/F8VkUlEZN98ZQnQf2BgK0BAKUNjaSqq0dlNAGUFNww/1cIyWvQ0/wjTU1zK+rG5S4NmTe0tFBpLWVJpuf2HRd50+PPMLzM2awcdYsPF5vbpFaXSzG130+ljc0WB3mIbXpOl9PJNjU0JD7my0CbgXclkY29vL/d8v9flpQ236/HInwdGsrYZcL0+HIPX91XVflAhmuzAI3GHm2YaSPGYZBd2srnmgUbyzGRfPns6S2lumAqescKPJkdigD+GE4zB9Nk9KKitxzcDLwQaCwChOUFPAL4Md5z4MS0+Q9ySTvnzvX4uiEGJkkueKwIsCrqKR3C+pEajL6afh85UAtg5NgLRQiEgxSW1+Pp7YWM/P1R7qFwmH0cJjyujoc1dVEYdAtlvc9R5u0Zh3q56pAJazZBLY8FGLbU0/hjsWoNQzevGZNQdWAHko2eSqZOpXvJxI8k0gMSuRvq6vjbKuDHIEJ/Bz4Q96xGcAXmThTqtlFbFVNTWiNjXQBL+3bx/MtLcScTpIOB1NmzcLT0IABdMdi7Ny3D0c6TVk6zQkzZ1JXVYUT6I9E2PHqq7gMA3d/PxctX87c+vrc/3B4AozMHo6Jqrn9zpCFZVMaG7nG5eJqCnM2IQB8BTXokX0ddff1cenmzbx71aoJ+/cWhUOSXHHEoqhpuGfCYR7eu5eO6mrSeSNGR+JIE9CjecxokvFy1AnbC5RFIuzduBF3Xx+eeJw3nnUWi3y+YUehi33qVdd1vrp+Pf9atIhUSUnuZzyzvZ0bXS4m2/hnfgD4Yd796r4+3tnczNKGhqL8W43G1q1baWlpYfbs2SxcuHDQx46kplsM2IVaWLaFwa81k8JhPuJwcNniUe14bzsbUdvzhvOOze/t5Y3NzQVdniYmFklyxTHJLmCqaWqitLGRblQJQHfmFhzyNj7k8UczGjzax1Rmbo5YjLYdO3AmErgNg3NOPJHZtbV4GRhRdjM4gZWT+gBd11nf1cVvZ81CLynJXWCcoOt8c8YMmmz8+3kM1XQ/lrkwKk8kuGDrVv57xYoJ/3cVx6YH+BWqW032TJldWHbGjh0sbmsruIVloEq9fg/8moGfSwPeDryFwutBLSY2SXLFcdXH4KS3JRTiiZdfJgWUaBpLlyyh1uNBg9wNVIeH7P1wKMSLL75ISSJBRSrF+WecwbT6eqogd6tkcLN8SVqPXRT4+IEDPJvXwWBlWRnfnDLF1lOxG4BPdXfT2dOTi/sSh4MvTptm67iFPaVQie2vUPX+WSWonSTP13XCBfpaEwa+0NvL+lQqt1lFLfAJCrOeWAhJcoXljiYBlaTVGu26zsd37mTz1Km5UpHTnE4+i717Ka/r6uKTgQA9Llcu7hOcTj4FTLM6OFEQTNRWxN+LxWhOJAbtWLYMeA+F/VzaCNzV18e2vJri1V4vn6+qQjrfikIlSa4Q4oi06zr3xuM8PWlS7iQ/PRrl2p07mWPjWr0WXedbySRbfb5c3OXAjajWTjINKw5lC6rf7ctD1gOc7PPxwcpKTqNwnz9JVPeE/2NwKdipLS28v7aWU5ctszZAIY6BJLlCiCNmAvejTo7ZhYAN4TBXvPgiV158sW0TXRO12999DO57vCwS4eLmZuaM8w5horC0oDp1bMjczyaBpakUK1pauN7r5bQCTgLbUN0TdmbuZ2uKL9y8mVnBYFFurywmFtnWVwhxxDTgKlSJwlczW7V21NTwwLJlLD9wwLYnRg24GLVL0/8A+1An9ge6u/l3RQXn/uc/fOiMM4qiFZw4egeAXzJ461oAt9PJrH37WL5zJ+5UihknnWRBdMfOBP4NfJ/Bi4HPcDq5tqaG2MyZTDnrLNv+HwsxFiTJFUKM6A1AXzrNXZqGZprotbX8xutlOWqrWLuaAXwD1frp/kyS3uNy8dDSpXSl09wGTLE2RGGBTuCHPT38PZ2mLG8zBw04H7jG5cKcN4+2qqqCXQ8QBb7L4AS+FHgncDmgNTZCY6MVoQlxXEmSK4Q4rKvr6kgA9zocuFwudjmd3IHaZczO3QucwIeAaakUdyeTxEtLQdPYVV/PB4A3Aldj7wV1Ymy0ojYPeTQepy0UUjW3PT34/X7OdTq5Dpie/WS/vyCTW1D9zW/v62N/f39u4VwT8ElgtsWxCXG8SU2uEGLU/gT8OO/+CuAWCuNqeWdHBz80DF5qbKQ8b2MRL3A9sIrCXVgkDm03qifs0xy8i+PUYJD3OJ1csWiRlSGOiX5Uy7PfGgbteQvnrqqt5aaaGrmQE0VLanKFEGPiCsBAnUxBtVv6GvBxVA9RO5vb2MiXUAtwfgC8ljme3db0D9Eor9u9mxU+X8GO4okB21DJ7fNDjrtcLqpCIVbs3Mn0UIiz1q61ILqxtRP4Oqr+vC9TmlOeTHLeK69w6bRpuAp44ZwQx0KSXCHEEbkaNWp0f+b+vwwDvauLm0pLbb0zWtZc4MuondJ+AoRQC9OeCAR4wu1m9v793FRSwtk+n5VhiqNgAv8OBPh1IsG+urqDtgI/BXiL04lv0iTa0umCrbnNSqIS+d+hdjEDlcR7gkHO27IFT38/U04/3boAhbCYJLlCiCOiAdehRnTvz7QW002TlvZ2vg1ML4CkIbvI6HTgt8Av+/rANDGBFp+PW8rKWAlcCSxHyhjsLo66aPldLMZL0aiaqtd1/H4/TqeTs1Db1c7NPqCAa26z9qBGb1vyjjmB9zmdLJ8yhQNQ8Em8EMdKklwhxBHTgHcDuzo6+GsmOdzl8/FZ4H+BakujG70q4F3AskSC2zs7aWloAE3D5XKxBbVBwCxUsrsS+5dkTDQ68Ffg76iOAuFEInex4kinOamzk49OnVrQu5QNlUbVxv8SNZKbtQj4KDAZwO+XFnlCIEmuEOIoacCHy8vpeO01Xpg5EzSN9tpaPgV8ESikyf7lDQ18P53mxc5O1s+YwQank1TmY7tQNbs/6OvjjLY23uB2M0MSCMuYwGbgL6h62/yl0y6Xi1g6zYLWVpbv3cu1F1xAMf2l9gJfikbZkkzmOieUoWZWLgcc1oYnhO1IdwUhxDHRdZ3f9Pby8NSpuRpIHyrRLdQRtC7gz8CjqLIMI2+r17J0mst9Pi6vruYkpJTheOkGHuru5sFkklBNzUH1tpOBtcBiXSfc1lZUU/XZGvhfxeO0dnTkOiec6fXymaqqgv0/E2IsyLa+Qohx9yRq84XsFGo1cBsw37KIjl0EeBD4RTBIWySCiUpqPbW1eDwefKja3vOBJgvjLFYxYB3wBPDckNZY2Xrb5cDrUYvKivGCYzOqBKiVgfZnmmmyormZG+rrWSGdE8QEJy3EhBDj7hxUYnsXaiFQBPgM8GlUAlKIqoFrgJWJBF/Zvp0tTU10u924XKrraBdqdfvvUcn8+ah+u4VSk2xHSWAD8DiqHKE/czzbGssEypJJVug675s+nakWxTneIqjuH//IO+ZyuagMh1n9yis0xGJMX7zYouiEKAwykiuEGFM7gM8DPZn7JagFMautCWfM6LpOa1sbxrRpbPL5eAKViOQzDINkXx9LS0tZ5XZzCqpkoxhHGMdSHHgyEOBfsRjbGxpIug7eusAwDEpfe415bW3M7+jgzRdfXDTlCPlM4CnUdtThvOOVqG15l+s6B4qsHEOIYyHlCkKI46oV+BzQkblvGAYXtbVxXWVl0az6TgLrgX+jNsWI5tXt5k+ne1FtyJYDS5BRXlC/u+3Ay5nbpiG1ptnfHcBM1AXSuUBK12kr4gRvS2cn9yST7KqvH1RzfBbwXqDessiEsC9JcoUQx10AVZO7PS/5mxEI8LWpU5nX2Gh1eGMqAvy0uZkHo1HaPZ5Bdbv5NOAEYE44jK+tjRX19cwswmRtKBPVpSKb1L6CGr3Nyt9qVwNmud28yevlXGDGcY/2+DOAH4XD/CgYJOlw5BL9KU4n70P1cxZCDE9qcoUQx50X+BLwwVAIPVNLucfr5WMlJdwJnGxteGOqGrjK7aby8ccJl5Wxv7GRypUr2Ynq35plApsMg3+Ew1BZiRaPsyQW48TKSuZA7lbIo709qFZXezJv9wJb43GChpFrezWUy+WiNBplalcX8zo6eM+qVUw6vmFbwgSeBn4MNANJh0Ml+qbJabrOLdOnU2lphEIUNklyhRDjxg3cCXx2zx5enDEDNA3D7eazqO2B30rxbLDg9/tZu3btwHR6dTUpVI3yBuAl1BR9PG8BFcCuRIIgqg4zqwGV7PpCIUo7OphfX88Cn4967NELNY5q6bWtq4stoRDxxka6a2rYw+A6Usi0X8uUIoTzShEaUeUbS4GTnU4Mr5c2w2DK/PlFWYowVAtwH2rDEVCJfljTaAyHOW/bNt69apUkuEIcIylXEEKMO13X+Wd3N/83Ywb9FRW54ycCH6ewNo44FhHgsWCQ32zbhl5TQ7fbTcOkScOObhrD1PhWOJ3Uo5LgBtTvrQHo3bWLwN69zG5qYtHcuTiBctQ2r07UhcTQuTwTSKCmyvszt+z7bV1d7AoGKW1oIF1XRwAI5t2ih4hvuJ8jW4rg6u9nWjDI+V4vb547t6g2aTgSPajdyh5l8EYWHuD13d3M3b2bqUVacyzEeJCaXCGELQSBrwGb8o5Vo7ovnGZFQBbRMwuofFOmEPf7aYbcbTcq+RxapzpcjS9AbyRCIBjM3ffW1+OuHlzwoKGSXbOvj2hfHyWVlThcLoZ79T/S5HVofOWojhLTUfW0VYEAWx99lKpYjBKHg7Vr107IBC4FPAz8isElLCWoTSzehtpmWghxZKQmVwhhC/XA7WR2b0KNZEUyx94A/BdQZlVwx5Hf7x+U6M3L+1gS2A+sT6d5cO9ewi4X0YoKPI2NGMN8rWgsdtD9oUmuCYQNA72zUyWvvb2HTF7zyyk00yQejx/0eaXA1PJyKsNh3H19+KJRLl+yhKWAnyElFV4vyy68sKi7IozERPX7/X4sRnMiMagueTnwbgp3Z0Ah7E6SXCHEceVA1eMuBr6K2lAB4C/A87EYV7a0sLShYcIlQ1mlqLZZM+vqWHXCCSo5bGjAX1FBP6prRWfm1gVsMU02dnaSKC0l6XDQUFNDFQOlBwZqFHG45LXK6cyVNmRvU0pL2RsO4+zvx20YrPJ4mI26QPFm3lYDWkUFut+v4ps5E7/Xe8ifaWhSP1FsAX4GvGwY6F1dubrkk30+PlRZyQqkh7IQ40nKFYQQlokA3wKeY2Ca3JFOs3zPHj63YAEzJmBidDS2bt1KS0sLs2fPZuHChQd9PAXs03Ue/PvfMVMpyoHLL7mEyYf4/epF3o92vLUAP0ctOISB0o7SVIoVLS1c7/VymmzHK8SYkJpcIYRtmcBDwDdCIQLhcK7Gc4bbzce9XlYho11jRZLX8XUAtajsySHHU/E4DS+8wPLmZtyp1IStSxZiPEhNrhDCtjTg9YA/keDWnh7aa2pA04i73XwFeAS129NMK4MsEhO1bGC8BYHfAP9AjZpnacD5wDUuF+YJJ9DmdssFhhDHkYzkCiFso13X+XNPD/+aOpV4XqsxB3AZcC2yAl3YRxD4WTjMQ6ZJSUXFoAV6ZwLXIYvKhBhvUq4ghCgoUdTI2INAOu+4B3gncCFSwiCs0wH8EXgoHmd/ZqOLbLu1FU4n7wDmWxyjEBPFMZcraJqWYqArjGmaph023RFCFKkqVGulNcAPgJczx8PAt1ElDDcCJ1gSnZio9gN/AB5DXXxFDCPXsaIxHOb6WIyrFyyQCzAhbOKwSa6maQtRCW4Q+CDwa03TYqZpyo6DQohxNQ3VQ/dZ4IcMtBvbAXzQMDixq4trystZ0dBgVYhiAmgBfo96HubPfbpcLip6ejiluZnZgQDnrV0rCa4QNnLYcgVN05JASXYoWNO0NMBIo7lSriCEGGtx1Cja/wG9Q3blWlNfz3+53SyyOEZRXJ7q6uJXiQQt9fUHbYhxMnAV4Nd1DkjHCiEsc0w1udlShSFJrjb0C2aPA0yfPp09e/aMRexCCDHIAeD2tjaeSSQO2lJ2IfAW4FSkZlccnSSwDvhtNMrTgcBB2xuvQCW3C6wNUwiRcVxaiOWP7J566qljv5pNCCGAycBtJSX88Jln2DBjBi1+Py6XC4CtwBeBGcCVwCqgxLJIRSEJA48CD6Nq88LJ5KAd4hZ2dfGRpiZmWxqlEOJIjCbJHS5hlSRWCGEZv9/Pu885h0vb2qCykqecTh5DjcIB7AG+BvwCeBOqG4PzEF9LTGw7UV08nmTg+QOq3rbXNJl34AArdu/muvPPR4oRhCgsoylXWIX6/w8AHwJ+DcRN06w41GOkJlcIcbx1AQ+gRuPiQz7m7OtjRXs7b6qqYl5j4/EPTthKErWI7CHU6P9QdcClwLKODmKtrVJvK4SNHXOf3CNtISZJrhDCKhHgr8BfMu8beYvUHMBFXi+Xu92sAMqtDFQcdx3An0IhHkqlMNzugxaTzUftvrcS2Q5UiEJxzDW5pmlKWZsQoiBUA28F3ojaZvW+3t5cbWUa+E8qxVZUL95VwAWo5EYWqhWnHuBp4AngJcNA7+lRi8miUfx+P1VOJ6uAtUjfZSGKjVysCiGKkgs1Krc8meQbr7zC5qYm2uvqcovUoqjShkdRi9nOz9ykmKHwxYHnUInti0Aqezwez13wVBkG57e18d5Zs6izKlAhxLiSJFcIUdSa/H4+ccoptLW1UVJRwRank38Det7nHAB+lbktRiW7KwHZ8aZwJIGNwOPAfwBjmM+pdDqpDQSY39rKvM5OLr/sMklwhShio6rJPVJSkyuEsDMTeBX4N2oqOzbc58TjzAgGObuiggvq6mSE14bSwNNdXTza18c2n4/+iuHXQy8AVgNnA3Fdp002bxCiaBzzwrMjJUmuEKJQ9KNG/v6Nmto2GbxYLbsRwGynk+XActRor8u6kCcsE9iPGrF9GVgfj7Oro+OgDRtAbQm9GjgHmGRNuEKI4+C4bAYhhBCFqByVCJ2D2gTgCeB3PT3oeRsBxONxWp1OWlE9VUuBEyGX9M5AFq6Nlw5UQvsysAnozvtY2DAGbdjg6u3lCqeTc4FZyN9EiIlOklwhhMioB64Azkqn+fmzz7K7vp59DQ2kh0xrJxlIvH6SedzcSITJBw5wRm0tJzY2SoJ1lMKoZDb7+20f4XNdLhfJ/n5mdHSwUNe5YeVKGbUVQuRIuYIQQgxDz6vdrPP7eRVVzvAiake1fEPLG+Y0NLCoooI5kLtNQUYWhwqjfpd7gC09PbxsGARrag7qX5vPDZycuS0BSnWdA1JjK8SEJTW5QggxhrqAl1AJ70agNRwmHAqpaXPAU1uLx+MZ9BgXMBsGJb5TmRjTab3AXlQym/82nPn4cDXQ2UTXiSoNySa1sxnYmUgIIaQmVwghxpAPuChzSwPrEgl+1tLC/tpaujyeXC/efHFUR4dX846VAY3RKBWhELPcbuZ6PPgyX78BNWpZCKO/KSCEqmkOAju7u9kWidBbX0/A7SZ4mMfn9691pNNMCYW4yO9nCWqjjrJxjV4IUawkyRVCiGPgAFb6fMxdtIi2tjYmV1WhOZ00Q+62k4FRy3y9hkFzIKBGMMNh/C7XoKl6JwMJb/ZtA9DT0kLP7t3MmTqVxSecgDPzuSWMTVKcQnWd6Af2dXSwq7OT8kmT0LxegkAgc8smtSFU5wPIjMpGIupnCgbxl5UdsvzACUwH6hwO2nfsoL6nh6aeHq645BKk8EAIcawkyRVCiDHg9/sH1YT6gbMy75uorgDNQ24780Yws10c8hNCA2jN3LJ6IxECJSUwZw4A3kgEd3U1oBLucsglveVD3iZ6e+np6cFVU0Op251LZA0Gktp+1MI6yCSs8Ti43WobXLd7xHpZGDwqm/2Z3E4nU1FdKKbnvfWTScqrq9FPOkn61wohxpQkuUIIMc40VAeGemBF3vFmw+AXGzYQdjqJVlYy45RTMFA1v52oEoehorHYQfezSW4685jhHmcYBnowOKoR1qzhEtZDPcYDeIHykhJa29qoisXwxWJcfcYZnIQaZR7J0IsEIYQ4VpLkCiGEReY0NvK+lSsHRjBranIfM4EoAwlvZ+b9V4BNwSAxp5OUw0FdbS0u1AhseoTvdSQJq0ZmBLi8nJRhUJ5I4O7v57T6emYykLDXoxLbWvJOJm43+uzZ6mdavBh/Q8NR/W6EEOJYSZIrhBAWOtQIpoZaeOYGZg5+AFuDQVpaWpg9ezYL87o4JBkoPch/awAHkkke27QJM52mzDQ5/+yzaWKgnCG/tKE08/2pqED3eAaS8MyI8dH+TEIIcTxJCzEhhJgg8nv/ShIqhCgG0kJMCCGEjLAKISYU6akthBBCCCGKjiS5QgghhBCi6EiSK4QQQgghio4kuUIIIYQQouhIkiuEEEIIIYqOJLlCCCGEEKLoSJIrhBBCCCGKjiS5QgghhBCi6EiSK4QQQgghio4kuUIIIYQQouhIkiuEEEIIIYqOJLlCCCGEEKLoSJIrhBBCCCGKjiS5QgghhBCi6GimaY79F9W0sf+iQgghhBBCDGGapjbc8XFJcguVpmnmoX5RYmKS54QYjjwvxFDynBDDkeeFtaRcQQghhBBCFB1JcoUQQgghRNGRJHcwqd0QQ8lzQgxHnhdiKHlOiOHI88JCUpMrhBBCCCGKjozkCiGEEEKIoiNJrhBCCCGEKDqS5AKapqU0TTMzt7TV8QjraZrWlveckOeFyNE0bWH2eWF1LMIeNE3765DXi6TVMQlraZqWHvKc+G+rY5qIJnySq2naQtTvIQhcow5pMWujEjYQBRKZ/oY/Q54XYsArVgcgbOdSINsP9RrgbxbHIyykadoeQANuzeuR+zULQ5qwJvzCs8wVd0n2iZgdsTNNc8JfAIgBmVG7tGmaJVbHIqyjadpeYBqQBhzS5F1omvYb4K2o58PEPqEKIJfkTgceA24DnkTOH5aQJFfTUuSdrDJJriYnL5GlaVon4AN+a5rm26yOR1gnc7GTAEqQJFcAmqb1A2VDDn/TNE2Znp7AsrlE9r68VlhDRiuFGIGmad9DJbhpSXAntswFMaZpllsdi7CVbPKSyktkPmpRLMIGNE37G+p58SJwWeaYrOuwgIzkSrmCOARN0y4F/oqqtZPnwwR3qIVmMkIzsWma9howP+8cMuicIiYemSG2Dzlxw3kAmqZ1aZr2NtTVl2FtSMJqmqZpqARXLngEoJLZ7A1VkysJrsA0zQUAmqb1Zg5J3aUwATRNuzNzLtGQnc8sMeFHcmHgqitzV0btRG40ZshhWTgggINHasTENkxd7t9N01xjVTzCesPM/NxgmuZ9lgQzgUmSK4QQQgghio6MWAohhBBCiKIjSa4QQgghhCg6kuQKIYQQQoiiI0muEEIIIYQoOpLkCiGEEEKIoiNJrhBCCCGEKDqS5AohhBBCiKLz/wE2M0VAowfz3AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "iteration_id = 1\n", "\n", "for i in range((iteration_id-1)*EPISODE_PER_ITER, (iteration_id)*EPISODE_PER_ITER):\n", " plot_episode_run(df, E=i)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Action breakdown per iteration and historgram for action distribution for each of the turns - reinvent track\n", "\n", "This plot is useful to understand the actions that the model takes for any given iteration.\n", "\n", "Say you want the car to go at higher speeds on the straight line. This will give you an idea what actions the car is taking along those segments" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "# The actions plotted on the tracks may become noise. Use this to clip the low reward values action.\n", "# Anything with reward < 0.8 is clipped. This is based on the reward function you trained on.\n", "\n", "REWARD_THRESHOLD = 0.8" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['ST-24.0 SP0.56',\n", " 'ST-24.0 SP0.69',\n", " 'ST-24.0 SP0.81',\n", " 'ST-24.0 SP0.94',\n", " 'ST-12.0 SP0.56',\n", " 'ST-12.0 SP0.69',\n", " 'ST-12.0 SP0.81',\n", " 'ST-12.0 SP0.94',\n", " 'ST0.0 SP0.56',\n", " 'ST0.0 SP0.69',\n", " 'ST0.0 SP0.81',\n", " 'ST0.0 SP0.94',\n", " 'ST12.0 SP0.56',\n", " 'ST12.0 SP0.69',\n", " 'ST12.0 SP0.81',\n", " 'ST12.0 SP0.94',\n", " 'ST24.0 SP0.56',\n", " 'ST24.0 SP0.69',\n", " 'ST24.0 SP0.81',\n", " 'ST24.0 SP0.94']" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Track Segment Labels\n", "action_names = []\n", "for action in model_metadata['action_space']:\n", " action_names.append(\"ST\"+str(action['steering_angle'])+\" SP\"+\"%.2f\"%action[\"speed\"])\n", "action_names" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "**Define track labels**\n", "\n", "This hash defines the labels for track segments on various tracks. Analyzing new tracks will require adding a new entry to this hash." ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'reInvent2019_track'" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "track_segments_hash = { \"reinvent_base\": [(0, 'straightaway'),\n", " (20, 'hairpin'),\n", " (46, 'slight right'),\n", " (61, 'left'),\n", " (76, 'slight left'),\n", " (90, 'straightaway'),\n", " (103, 'left'),\n", " (113, 'straightaway') \n", " ],\n", " \"reInvent2019_track\": [(0, 'left'),\n", " (18, 'sharp right'),\n", " (33, 'gentle left'),\n", " (82, 'left'),\n", " (93, 'slight left'),\n", " (107, 'left'),\n", " (117, 'right'),\n", " (137, 'left')\n", " ],\n", " \"arctic_open\": [(0, 'straightaway'),\n", " (24,'left'),\n", " (36,'right'),\n", " (52,'left'),\n", " (67,'hairpin left'),\n", " (84,'right'),\n", " (98,'slight left'),\n", " (107,'straightaway'),\n", " (125,'slight left'),\n", " (134,'straightaway'),\n", " (156,'hairpin left') \n", " ],\n", " \"caecer_loop\": [(0, 'straightaway'),\n", " (14,'slight left'),\n", " (34,'straightaway'),\n", " (42,'hairpin left'),\n", " (70,'straightaway'),\n", " (80,'sharp left'),\n", " (93,'straightaway'),\n", " (103,'slight left'),\n", " (115,'straightaway') \n", " ],\n", " \"red_star_open\":[(0,'straightaway'),\n", " (29,'left'),\n", " (41,'straightaway'),\n", " (67,'hairpin left'),\n", " (78,'straightaway'),\n", " (94,'s-turn right'),\n", " (107,'s-turn left'),\n", " (119,'s-turn right'),\n", " (130,'s-turn left'),\n", " (140,'straightaway'),\n", " (155,'sharp left'),\n", " (163,'straightaway') \n", " ]\n", "}\n", "trackname" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of steps in iteration= 938\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6sAABEuCAYAAAAP3hgJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5xU1fn48c+ZslO3l2ELS++9KiAKoiCwoiYmGvVrSywptnSTH0ZNjCYaY4w9RRNLTKIxWBGjgg1FQDrCUhbYXZjdnZ2ZnV7P7487LLuwLGVnC3Der9e82Llz59wzs8POfe55znOElBJFURRFURRFURRF6Ul03d0BRVEURVEURVEURTmYClYVRVEURVEURVGUHkcFq4qiKIqiKIqiKEqPo4JVRVEURVEURVEUpcdRwaqiKIqiKIqiKIrS46hgVVEURVEURVEURelxVLCqKIqiKCcZIcRfhRB1QogNLbblCSHeEUJUpv7N7c4+KoqiKMqRdFqwKoQYIoRY0+LWJIS4tbOOpyiKoihKs2eA8w7a9lPgXSnlIODd1H1FURRF6bGElLLzDyKEHqgBTpNS7ur0AyqKoijKKU4I0Rd4XUo5MnV/CzBDSrlXCFEMLJVSDunOPiqKoihKe7oqDXgWsF0FqoqiKIrSbRxSyr0AqX+Lurk/iqIoitIuQxcd51LgH0faqaCgQPbt27fze6MoiqKc9FatWtUgpSzs7n6ciIQQ1wPXA9hstglDhw5NT8NuN8Tj6WmrsxkMkNuDpvWeSO+dcmRd+fnqCZ+dzn69PeE1Hq+e9remkx3rd3OnB6tCiAxgAXD7YR5v/kIsLy9n5cqVnd0lRVEU5RQghFDZPK05hRDFLdKA6w63o5TyKeApgIkTJ8q0fTc//jiUlaWnrc5WXQ3f/nZ39+KAE+m9U46sKz9fPeGz09mvtye8xuPV0/7WdLJj/W7uijTgucBqKaWzrQellE9JKSdKKScWFqoL4IqiKIrSSV4Frkr9fBWwqBv7oiiKoihH1BXB6jc4ihRgRVEURVHSQwjxD2A5MEQIUS2E+CZwH3CuEKISODd1X1EURVF6rE5NAxZCWNG+EG/ozOMoiqIoinKAlPIbh3loVpd2RFEURVE6oFODVSllEMjvzGMoiqIoiqIoinJyisViVFdXEw6HD7/ThAmg13ddp9LJ4YDNm7u7F2lnNpspKyvDaDR2qJ2uqgasKIrSI0kgClTX1bF73z4Ke/WioKiIJJAAkoCzoYF9Tie9HA6KCgoQaHMoBOCqr6du3z56OxyUFhWRARjpunXBFEVRFOVkVl1dTWZmJn379kUI0fZOdXWQkdG1HUuXaBSKTq6VxKSUuFwuqqur6devX4faUsGqoignLAkEAC/QlPrXC+z2eNjr9WLKzcWQlUUACAFBwBUM4gmHMVit6MxmYkAkEsEZDkN2NoTDOCIRTCYT7H8sGAS7HYLBQx8LhSAr65DnGYBEOEw8GCTfbCbfasUKzbd4UxORxkbKc3Lok5NDNjTfstACXkVRFEU51YXD4fYDVaXHEUKQn59PfX19h9tSwaqiKD3SPqeTrfv2kVFaSrKggHpovlUFAlRHIiSsVoxmc6vnRSIRnE1N2h2PB4fJ1Dq4bGgAKcHvx+FwYDKZtNQiKZGAkJJwONz8nON9LBCJ4KyrAympaXGs5n54PCAENDXhsFiaH9v/uAgGKTGZ6GO1UgitbtTVEa6poXdJCQ6HI+3vvaIoiqL0JCpQPfGk63emMtUURek2TqeT5WvW8GlDAx+glQ2/H7ghEOD8QICbcnK4IRjkzkiEP6Ots/F+JMKnLhfVPh976+qIRCKt2mwZQJIKII/0WKbJhCmRwBaNYo9EKMvIoBgoBQYYjRT4/RT6fBT4/QwyGikHyoB+RiM5oRBZ4TC2aJQ8k4mMDvQDUoGs08m+piZWNzTwSSTCYuBZ4EHg+5EIl4fDXJebyzdcLn7u8/EssBTYBrQzo0dRFEVRlONwzwMPMGLKFEZPm8bY6dP5bOVKLrriCsZOn87A8ePJLi9n7PTpjJ0+nU8++6z5eXuqq5l5/vkMO+00RkyZwh+eeOKQth947DGEEDQ0NLR57MWLFzNkyBAGDhzIffe1XcR9y5YtzJgxg7FjxzJs2DCuv/56AJYuXUp2djbjxo1j2LBh3HXXXc3Puffeexk4cCBDhgzh7bffbrPdO++8k9LSUsaOHcvYsWN58803mx9bt24dU6ZMYcSIEYwaNar9OcUdoEZWFUXpEnGgGtgFVAEb/H4+8Xrx5+Yekl7rjceJ6vVHNZpJMEgvk6k5fVYnBNt37SIjGsWcTHLmxImUARYgGIvx0SefoI/FyADOnzOH3tnZCLMZp81GbW0tJSUlOCyWAx23WnEWFBx4zGpt/Vhu7oHHUqO8EqgJh3l16VKiQhA3Gpl27rlY0VKRa5JJlm3ZQlivJ2Iy0ScvjyRaCvPOQOCwo7UtX39CCFw2Gx8mk6xr8T5HIhEsfj8jMzIYk5nJIGAgkJmW36KiKIqidK++P30jre1V/XRau48vX7GC15csYfXSpZhMJhpcLqLRKK889xwASz/6iAf++Ede/+c/D3muwWDgd7/6FePHjMHn8zFh5kzOnTGD4UOHAlow+86yZZSXl7d57EQiwXe/+13eeecdysrKmDRpEgsWLGD48OGt9rv55pu57bbbuOCCCwBYv35982PTp0/n9ddfJxAIMHbsWCoqKrBYLLz44ots3LiR2tpazjnnHLZu3Yq+jSJVt912Gz/84Q9bbYvH41xxxRU8++yzjBkzBpfL1eFCSoejglVFUdIuBuxEG+nbCqwPBtkZjWJoke7qTSTwm0xtBmVmsxmvEGTE42SHQkzIz6cfWgqsIZFg/eefYwsGscXjXDh/Pq0SYbOycA4ZciCAzMs78FhBAf3OPvvAYy1SaB0Ox2FTao/1MQGUORx89bzzDhyroODADrm5TB8z5sBjmQdCSWcsxo++9z3CbjdxvZ68khKkyUQYbdTUEosRCoWI67TEmLjFgjv15ZJMJAiFQgDsBt63WNClHjOVlzPlRz8ip76eKVlZnF5QwAlaN1FRFEVRusxep5OCvLzmc5SC/KNf6KS4Vy+Ke/UCIDMzk2GDB1Ozd29zsHrbz3/Ob++4gwuuuabN569YsYKBAwfSv39/AC699FIWLVp0SLC6d+9eysrKmu+PGjXqkLZsNhsTJkxg+/btbN++nUsvvRSTyUS/fv0YOHAgK1asYMqUKUf1upYsWcLo0aMZM2YMAPnH8J4cKxWsKorSIRLYB3zkdrPa76cxL486m4146vFW80Sbmprnbu4PSPXJJDmhEKfl5zMULfW2xGQiw2zGV1NDaUkJDrv9wAHz8pgyfXqbAed+xxt4ptvx9MPhcFBstXJrSQmZmZnYW772FL/fj9vvh6ws4lYrTWgFpvYFArhiMS29GC3oN6VGex/Zvp3X3G7Q63k2GKRvOMwks5nRwBigHC3IVhRFURTlgNkzZ3L3b3/L4IkTOeess7jkK1/hrGntj8a2pWr3br5Yt47TJkwA4NU336S0uJgxI0Yc9jk1NTX07t27+X5ZWRmftUgz3u+2227j7LPPZurUqcyePZtrrrmGnJycVvu4XC4+/fRTFi5cyAcffMDpp5/eqt2ampo2+/DII4/w97//nYkTJ/K73/2O3Nxctm7dihCCOXPmUF9fz6WXXsqPf/zjY3k7jpoKVhVFOSYS2ANsADam/t0bieD0+bSA1OXCYTC0mbabFQoxoLGRqcXF9DGZsFksJKurKT84IAWtjPthSrl3ZcDZHSwWC8XFxYd93G63tx3ESsmWnTsJGgwEzWZs5eUEADdaKlHL9GJ3JMJnZjP7v/JygH4+HyX79jE7K4v+J/H7qyiKoihHy263s2rpUj5cvpz3P/yQS669lvt+8Quuvuyyo27D7/fz1Suv5KF77yUrK4tgMMg9Dz7Ikpdfbvd5UspDtrVVuOiaa65hzpw5LF68mEWLFvHkk0+ydu1aAD788EPGjRuHTqfjpz/9KSNGjDjqdr/97W+zcOFChBAsXLiQH/zgB/z1r38lHo/z0Ucf8fnnn2O1Wpk1axYTJkxg1qxZR/uWHDUVrCqKckRe4HPgfZ+PL2Ix4jZbm/MoW6b09jWZGAQUSsnuVavI83qxJJNUVFQcSNstLNRuSlrY7XaGDBqEz+fTRmVTv6Mk8GEyScbmzdRkZ1OTn4/5oCrKzkiEdW43ZGTwVCjEbL+feXY7kwHzoYdSFEVRlFOGXq9nxhlnMOOMMxg1fDh/+8c/2gxW91RXc/43vgHAjddcw43XXkssFuOrV13F5V/7Gl85/3wAtu/cyc5duxgzfToA1bW1jB8/nhUrVtArlTYM2ojnnj17mu9XV1dTUlLSZh9LSkq49tprufbaaxk5ciQbNmwADsxZbelo2205MHDddddRUVHR/PyzzjqLgtQUp3nz5rF69WoVrCqK0jUkWiGkFanbViAcieB0uw9Z9gUg9pvfkLV+PZZIBEs8zoDCQrIsFgJo66CGQiHqg0GsViuPf/hhh/qWU17OrXff3aE2TkR/+PRT/rR6NRK4bvx4bj39dBa+9x6LtmxBJwRFNhvPXHghJW2kDuuAQrOZb48bR21tLcXZ2SRMJtYCa4H1gLfFBYeEEHySSLARyAAmA2cCE1L3FUVRFOVUsaWyEp1Ox6ABAwBYs349fVqk5rbUu6yMNS3Oc6SUfPOmmxg2eDDf/+53m7ePGjGCuspK7U40St/Jk1m5cmVz8LffpEmTqKysZOfOnZSWlvLiiy/ywgsvHHLcxYsXM2vWLIxGI/v27cPlclFaWsqXX37ZZj8XLFjAZZddxve//31qa2uprKxk8uTJh+y3d+/e5kyvV155hZEjRwIwZ84cfvvb3xIMBsnIyGDZsmXcdttth3sLO0QFq4qiAFqA+nFDA4uDQXYUFuJrWRGX1qOnlmiUwS4X55aUMAr4W20tPxoy5MCIXhspqulyZ1VVp7XdU22oq+NPq1ez4rrryNDrOe+555g/aBA/mjaNX559NgAPf/YZdy9bxhOpq55tOTh9uhSYh/a7/zwW4+lt26gsKqI+O7t55DUKfAS8G4lAMMi5ej1XZGVx+CRlRVEURTl5+AMBbvrxj/E0NWHQ6xnYvz9PPfTQUT33408/5dl//pNRw4czNjWK+uuFC5k3e/Zhn1NbW8u3vvUt3nzzTQwGA4888ghz5swhkUhw7bXXMqKNOa5Llizhlltuaf7uvv/+++nVq9dhg9URI0bw9a9/neHDh2MwGHj00UebKwF/61vf4sYbb2TixIn8+Mc/Zs2aNQgh6Nu3L08++SQAubm5fP/732fSpEkIIZg3bx7z588/qvfkWKlgVVFOcUG0NTpfDgZZGQxqI6f19a1GTgUwxmAgUVlJeX09BcEg57dI5xUcfh6l0nGb6+s5vawMa6os/Fl9+vDKl1/y4xYFHgLR6HEXSBLA5IIC+owcSW1tLTqLhS9NJj5Aqyq8f+1XpOQ5IfifycRMk4mLgCEdfG2KoiiKciyq7msjKKqrg4zOyf2ZMHYsnyxZctjH96cHt+WMKVOQbvcRj1HV4kJ8SUlJq/VM582bx7x589p9/oMPPsiDDz54aN9mzGDGjBltPufnP/85P//5zw/Z/uc//7n552efffawx7ziiiu44oor2u1XOqhgVVFOUZXAYuADtCVRvLHYIeuXnmEyMRmYCGTabDhHjWq3Cq/SOUYWFfHz997DFQxiMRp5c9s2JqbScn7+7rv8fd06sk0m3r/qqg4dp+XI6xjgErR08Gf37mVJKITHakVISSgc5mOTiY+B4cBX0FKFVTVhRVEURVHSSQWrinIKiQP/cbtZFItRn53dqkiS2WwmmEwycO9ehjqdXDd1KqUHPf9YqvBeu2gRr2/dSpHNxobvfAeAxlCIS156iSqPh745Ofzr4ovJtVh4ft067v/kk+bnrnM6WX3DDYxtUWTgeCWBUOoWQBtJ3uNyUe1ykV1QgC0vjyhaumud10uDx0NmTg6Z2dkkUs93NzXhaWoiJyuL7KwsdGiBmQ7wNTURcLspzMmhMDsbI2AEAm43/vp6eufn0zs/HytgAXxOJ+7aWm1JnqN8L4cVFvKTadM499lnsWdkMMbhwJBaZ/WeWbO4Z9Ys7v3wQx5ZsYK7Zs7s8HvWUh/gOouFXu++y+6cHNb060e4xe9lU+qWFwwyraaGBVlZ9FIXMhRFURRFSQMVrCrKKSCBlur7l1CIjfuXmAmHm1N9+wBzTSaGWa14LRZKpk7t8Mjp1WPH8r3Jk7nylVeat9330UfM6tePn55xBvd99BH3ffQRvzn3XC4fPZrLR48GYL3TyQUvvnhIoLpnD1RVwZYg/PpemDwD+k2BOqDS46HK60Wfm0syK4smtArGdeEwjZGItt5oKjCPRCI4AwEwmbRCUanKxpFIBKfXqx3M68WRek4kEsHp8WjvmceDw2Rq3ZbH0/ZzfD7tGIEADrv9wPZIBJGbi7WpiWGZmRRbrWQDoqmJqnf8eNfkIOog2FerwqtLvf5vjh/PN8ePB+Bn775LWVZWq/fnslGjmP/CC2kPVkG7SHF+RQW1tbV8t6SEkMnEf4FlaBdAIpEIaxoaWJORwat79/JrnY7RqsqzoiiKoigd1KnBqhAiB/gzMBKthse1UsrlnXlMRVEOkMCHwAtADeCNRptTfQ2JBKPq6/lWWRlDSaVwOhzaLQ3O7NOHqv2BXMqiLVtYmkpVvWrMGGb87W/85txzW+3z5CcbOCN7JHv2QH5vqNwDG9bC9i8gmZQsR/LiConOJJjyLljHR3A2NWlPbhFMRiIRnHV1ICVeIZoD87aW2Tme7dD2kj1H01ZSCAIZGVTGYtShBXs73g2y44peyJigr5S8WAyW3mCMxTBGIuiiUQbn5dHk9fLS5s18+s1vUulyMSg/H4BXt2xh6EFVBNPp4FH1W4H/A14HXkjNdZbAntxcbjMa+TZwIeqKqKIoitJxUso21wFVeq621nI9Hp19HvEHYLGU8mIhRAZg7eTjKYqCFqS+1djI3xIJ3FlZzcGV2WwmEo8zbudORtXWcvGcOXRlwqbT76c4MxOA4sxM6gIBQJsz6wG27YEX1m3kUi7hr3+XFMxO0rBEj4zvf1WpL6qkIBmVuJYKdMOPHDBmxOOY/X7KTCbKDAaqGxsxxOMYk0nG5OZSgJYmvHHnTnTxOHrgtIkTyQO8ySSrNm9u/qKcdNpp5KR605hM8tnWrcSFIKnXM3L8eCxAgxCs2bePqE5HzGikLBVEWjIyCCaTxHQ6EKK5al84HCaw3ISMCkgKJBCsAmNxHE8qEPzdyy8TikYx6PVcPm8ei41G/vj22zjdbjJ0Ovrm5PCnTqrEdzj5wFXAmdEod+/axeo+fUAI9BYLf0ObD30TMKhLe6UoiqKcTMxmMy6Xi/z8fBWwniCklLhcrkPWdD8enRasCiGy0JbmuxpASrl/WpiiKJ2oBrjf7+d9v19LXQ2FcDgc5JlMXGEycZrdjjs/n5JRo7qlSFIIcAGNaCmkz4dCJI1G9AYDq9dWY8RIEQ5kQuLdkEQm9s8QBS1EBHQSXQYMnwH99Xr2VldjC4exxmKcM3kyfYFoNMony5ZhiEQw6HRU7K9ebLPhLCk5UChqfzptdjbOYcMObM/J0bbn5nJuan3SkpISHLm5B15Mbi6zR48+8Fh2trY9Kwtn377a9uJiHDabtt1iwWm1smvvXmwlJZhMJrxAVSLBC2XbWWQcTyKuQ0jI7gvxeFz7HQI/+NrXtHRms5lEPI43EODKefNACOw2G3qDgU8AezSKPRikd0YG5VZrl4xs9nM4uA/4tKGB1/v1Y1/q4shO4AfAjKYmpu7YQb/iYlWYS1EURTkmZWVlVFdXU19ff/idfD5ILb1ywkkkwOXq7l6kndlspqysrMPtdOZ5TH+gHnhaCDEGWAXcIqUMdOIxFeWUFQVeAv4NuBKJ5lFFYzzOmXv3cmvfvtgBHA76dlHAkESbL7sZqIlGsVqt/NntJj83F5fbjdVioSkSgWgUu83GuvAGRupGgJQIHVgHRInXGJBJEDoo6uulXDQweuxqrr+6HxVT8gA7zoEDDwSMeXnawQsLKZkzp83qxYcrFHWs29PV1oS8PM64JMb5WduorCzB/YXg/3qD1x9n4549hAwGwiYTmaWlRABnqnIzAFISj8fRGwxE43F2h0IAbIrFyIrHcRgM5ITD7PJ42Od0dlrxI4fDwQUOBxXAIuB5tM9kOBLhbx4Pr2ZkcOE77/CNc89VAauiKIpy1IxGI/369Wt/p8cfhzQERt2iuhq+/e3u7kWP1ZnBqgEYD9wkpfxMCPEH4KfAwpY7CSGuB64HKC8v78TuKMrJax3wKFCbum82m/EBo3btYlJVFV+fM4euWAE1CewJBtkTiRCw2agE/MDKeBx/KMSIfv14d9UqvjpjBsvWrmV0//4A6JJJLOEwa3Zv4vcVlxPfWY8jx0OR3Y/968NwOi307SvIzTWwcYuO//dIGQ5HXvNxjyfI7GkcDgdXX6319c6rtW3Zdjuj+/XD5/ORmZmJPTVi6U8k2LhrF4GMDAJmM5bSUvyAu8VILFISjcfZC1RGIqwxGPiq18vFZjMV2dkMpHOWmtGjLWUzFe0zuSyVjt1os/HyxImMqqs7YX4niqIoiqJ0r84MVquBainlZ6n7L6EFq61IKZ8CngKYOHFiembiKsopIgQ84PPxTjLZquLtKJOJS2w2jJmZlMyZk/bgYPlyWLoUZsyA0VPACXwC7InFaIzFQAj++vLLVNbU4A+FuOUPf2Deaacxe+JE/vLmm/zk0Ucpyc7m9gkT6LV7N5Z4HKfFQv+sLC4f58A/yI/PlyAzswS73cLgwfuPbCc/P/+UCnbsdjt2u/2QbSMGDDgQxKYWQm9IJFjrdOI1m2myWtHb7a1Sif0mE68A7wE5wSCD6+q4yGplZFFR2vvdC7gb+Hcyyb1oFzKarFb+VFjIMKAk7UdUFEVRFOVk02nBqpRynxBijxBiiJRyCzALbTk+RVHSoAr4RTDIGre7ueJt36IibjCbOQ/QFRRAJ1SHXb4cZs2CSFQijDDxrSiGVH8iqfRjgGvnzsVsNpNnNpMdiRDeswd7QwNnjxvHkMGDsdvt+P3+5oBrvN3O3GHDgLYDNKW1tt6jApuN00pLtffUYkFvMFAVi7HR70efTJJMFXWKRCKsa2hgnRD8JxSiwufjyszMtBdCEsDXc3PJSib5rV6PwWIhYDLxU+BXgMqlURRFURSlPZ1de+Mm4PlUJeAdwDWdfDxFOelJ4B3gSaA+NXdRAoP27uUmj4cZqfVKO0MVcN9SCEUlJAQg2fVWiH6JBAAGg4GMRILsYJCscJixJSUUAZhM+Hv1OjASmAqyVFCafge/p8MsFnrn5LDU6WSBzcZGk4m3Uhc4JNqI57JkkjVAv0CAydXVnJOTQy+Ho9UI+pQpx9+n8/Lz6QX8Em0eqxu4NRTimh07mFxQcEqNlCuKoiiKcvQ6NViVUq4BJnbmMRTlVLLL6eThWIz1hYWYTCbMZjPBZJIZGzcyzOlkWEVF2o8pgTcaG/l3LMbenByCM0zoMiAZlQijxHZaCPM/o4wGSg0GjCYTvmiUzOJi7Pur4KIC02ORU17OnVVVaW1z4LhxzM7PZzZwcTTKY+vWsa6sjOr8/ObR1mUuF8vMZl7cu5dLVmVww8W5RKOQkQHvvtuxgHUsWlrwnYA3EmF3fT13m818/f33uXLmTBWwKoqiKIpyCLVeu6KcIDbW1fG9xkYarVZwOnE4HAw2mfim3Q6lpZRMmpTWE34JrASeCgZZsX8ZHKcTx3gHE94SNPzXw7g+OzkzsJVaYOT+J6qgtMNuvfvuTm2/t8PBrZMnU1tbS8xq5UOTidc8nubR1j25udz5HzORKCQTEI1qI6wdCVYBRqCl/96cWjs2YjDwzvDhnF1bq4JVRVEURVEOoYJVRTkB7AFu1+tptFqRgJCSsfX1/LKsDFNhIRQWpvV4f1zs5a8f6jDONmEeeyDVWJdMMqyhgW+eVUrRUMne2gxKSmbz+LvvpvX4PY0EapxO9tbWUlpSQrHD0SmVdLtSy0rJk4G50Sj37dnD2t69QQjyZ+mpekAiomAwwowZ6XnFQ4C7Egm+IyUJIXDm5LApM5MJaWldURRFUZSTiQpWFaWHqwR+AYTtdggE0CeTzNq0iR9MmIApzcdqAG57N8jzF2UiowLxoGTsawYMA5KM3rWLcXv2cMns2TgAHI5OW7OzIySws66OrXV1WHr1IqOgAC+w2+Nhn9eLKTcXfVYWQaAhEKAxEMBst5NhtRIHmkIhfKEQRqsVg9lMHAhGIjgjEcjLg0gERySCyWQiGokQD4XINJvJMpsxAvFgkJjfT6HNRqHNhhWINTURdbspz86mPCeHHCDW0ECwtpahPeR9HF5UxP1S8mlDA6/368cuh6Tf804Cy03kTg4iB5mA9BTsOr2ggOuMRv6BtszSqyYTc4D01yRWFEVRFOVEpoJVRenB3ne5+LVOh7BaMZlMlBcVcXlVFTMnTEhr2mQCeA14Hlj5gQ4ZFZAUyBjkvBPj8dE2gtnZlAwb1uZxO2OO5eHklJcTA/YBNcBGj4dKn494bi5Bu5094TC7w2HIzIRgEEckAoCzqUlrwOPBkVrix+lyaenN4XDz63LW12vb/H4cDgcmk4lwaq3Q/aPa4XBY29fpBClpaGo68PyGhgNtGrQ/sU6PRzt2UxMOi0XbFgxCdjb6UIhhoRDlFgtmnw+Dy8WIrCxG5+VRCmm/INEeh8PBBQ4HFcDvd+zghbEC6/gIArhTb+UhYHiajvWt7GzWo2UNhIHH0C7KnOgj1icCIcRtwLfQru2sB66RUoa7t1eKoiiKcigVrCpKD7XE5eKnPh8JIcDnY0BhIfdZLAweOjStx9kB3BsMsiUWw2w2U3i2jl2/lRCVGPRJfnBmkiFFRdDOWpydNccyjrZgcxWwC9jg97MuHOatSIQMk4lIJKIFoVJCYyMOo5FwJNJmYHm82/YXsvKntsvU8i+HC2CPdVtCCPZEo9TrdDjdbhBCC5RTxamsfj/DTCbG2e0MBLLq6vDV1FBSUtJp8zz1wP/ZbMSXLeOV8eMJZ2QQMxi42e3m58kkM/PzO3wMI3Az8GMgHInwXjjMqESCr+bldbht5fCEEKVob/1wKWVICPEv4FLgmW7tmKIoiqK0QQWritIDVQK/1elICIEE7OEw123fzuCRI4/01KMmgcXAI+Ew1anRQK8QjJ9UwNX/CbL5zSDnnWdm/vyuCR7iaEFpZeq2NhhkRzSK0WLBtD8wbWzUAtNgEIfD0WbAuL9CsjUcxhqLMSY/n8xkku27dpERi2FKJDhr4kSsUvLZqlXo43GMwLkzZ2IA3v/oI4jHMQpBxZw5lGZnozeZqLNYqK2t1YJEk4l9Hg+vvfsucSlJGgzMmjuXmBAsXr6ciE5H3Ghk0llnEQaWbdlCSK8nYjLRJy8PnxCsCwQIZGQQzshoM/gN+P34AwGQkp2BAKuMRgCc4TA5ZjO9t21jbihEH6+XQb16pT1wdTgcXHPWWYyqr+fJwkJ2pZa7+Ukiwd8TCYa2c/HiaA0Fzmxq4tlUcacHIxGmxmIU94C06JOcAbAIIWKAFajt5v4oiqIoSptUsKooPcw+4C5AZ7WCz0dWKMRXV65k/DnnpO0YIeAR4APAlxqJ1CeTTN6+nW+6XEyaOw7m5qTteG0JApuBDcCKQIDNsRiGloHp/nTaVIrtwcGc1e9nlMlE/Z49ZAYCZEciXDh1KsOyswlYrez1eLTAMlWZ2DlkyIFgMzV6N37atAPbUkWqep1zzoFtLYKmlgWJAHo5HCyYP//AvqngrWjmzEOOc8aYMQe2ZWZq/cnPp7a2lvySEvQmE1/6/byxeTNusxlPZibJjAwCySRJIQ4ZkXVbrbitVtYD5ORQtncvF0QiDHe70xq4OhwO5jscGDZs4K6MDPwmExG9nsficR5OyxHgjB07eMlmI5hq/8PGRr6ugtVOI6WsEUI8AOxG+1OwREq5pJu7pSiKoihtUsGqovQgXrR5e17AZDLRv6iI67dtY/w556QtAKkBfhYMsjOV9ms2mzH6/cxZs4b8cJjyUaPScpyDSWAbsAL4MBBgczyOyWwGWswdbSMwzQqFGOhyMdxmY8/69eT6fOSGw1w4bx6O/HycgwYdCAQLtAJAmW0ULTo42DyWbYfTkTYP3laan8/IceOaXwvAovfew2Wx0JCTQ9G0aezU61mRqqK7/z0FbamZR6VEZGczuKqKH+r1TC5ITzEkgLGFhcz+5BNeGT8ehGB9ZiZ/27KF83JyOvy57FdczODKyuYqxNtKS9PUa6UtQohc4AKgH+AB/i2EuEJK+dxB+10PXA9QXl7e1d1UFEVRFEAFq4rSY8SAn6aCOLPZjN1k4h6zmWFpTP3dDvw4FGJbi7TfS3NyuKKggIbhwztlHmQ18K+mJt6Lx4mm5mE2B6dCYLfZmgPT7GCQYQ0NjLXZ2L1qFfkeDxYpqaiowJGdjXPSpENGPY8luOzpDn4tF7Qcuc3KAmCP388njY1UZWXxXmMj+1Lb98+n3dKrF7cJweBdu1iwdy9T+/Xr8PvjcDj49tSpfH7vvbjq6/FEIjySSLC4ro7ysjIsqaJRxyOnvJzrbr6ZnxuNmM1m1ptMxNDmtCqd4hxgp5SyHkAI8R9gKtAqWJVSPgU8BTBx4kR5cCOKoiiK0hVUsKooPcTDTU18kpq71wTcnJnJsDQWm1kP/BKoj0ZBSgyJBDM3beK80lJ6jxtH7zQHfOuBv/j9fB6JNM+9xO9vDk4BCr1eJoTD6LZsoZfLhT2R0ALTnBycLVN0T8LA9Gi09Xp7Oxxcktp2tcHAZqeTjbm5vOrxaIGrEPj9flYBax0OZi9fzlVDhjBs2LAO92Wsx8PwsjKaUhWWB5lMjMjOpri4+LjbvbOqijMKChgE7IlEqPF6+V88ztw0FHFS2rQbOF0IYUVLA54FrOzeLimKoihK21Swqig9wGfAIimbRxinbd1KaUGBtq5nGnwO3BkO44tE0Ot0mONxKlatosTno2TSpLQcY7+PGxp4Jh5nm81Go9uNlAcGZSzRKONjMWybNlHW0IAlmaSiogImTz7lA9Pjsf89mgFcnJHBpy4Xb5vNfKzXAxDX6Vg8diymVav4Tl5eh99PIzBICFYJAVLiyswkMzUHtyMEMNbrZaXXC1LyV6eT8fG4+v13AinlZ0KIl4DVaHXNviA1gqooiqIoPY0KVhWlm9UDDwFmsxmvEPSvq2P87t2UjB6dlva/BO4Kh6muqwMpsUWj3APkDxqU1rRfL/AHn4+Xg0Ft5DQS0YohAf3q6hi5ezd9PB4WtBOcKsdv/xqppzud/GXZMt4aNQqv1UpSCN4dMYIzKyvT8h4PMZvZYjAQjUYJZmQQSybT0HvoXVMDNhsSqLfbqa2tVZ+JTiKl/AXa9HhFURRF6dFUsKoo3SgJ3BkIUJOapzqssJDvud0MqqhIy4l6DXA3aGmbUpIVDHLhqlXkjxjBuHHjOtw+aHMl/+1287SUNLUYHdZJybDaWiZt3052JMKQIUMYfMYZKjjtZA6Hg2+edRaDN23it717EzYaabJYeL2piZFOZ4ff92wgW0pqYjGQklVOJyv37ePZjRsRwCiHg6cvuICF773Ha1u3kqHXMyAvj6cvuICcVEGttozJz4dIBCElTVYrvVQasKIoiqKc8lSwqijd6FmPh4+amkBKfMBCm40zxow54vMeuuMOPLt3t7tPFPg0HieQTCKEICMUwlFfz6pEgrrevVl0lEVxcsrLufXuu9t8LADc6/Pxms/XXDAJIRi4bx/Ttm9n3tixhEeO7JTCTcrhORwOLnY4WPvFFyxKpZJv7dWLrVu3puX3kBkINP9cHYvx2KpVbLnpJixGI1//9795ccMGzh0wgHvPOQeDTsdP3nmHez/8kN+ce+5h2+zncDA4FMIZjWI2m9GZTB3up6IoiqIoJ7ZODVaFEFWAD0gAcSnlxM48nqKcSJzAsy1GIidu3449NxeOYskRz+7d3Nm372Efl8DiaJTeoRBIiU5KzpYSe2EhmZmZ2FNrjx6NO6uq2ty+E7gjGGRLMNg8LzUrFOLqYJAJRiMlZ5+tAtRuNjkcZlHq59rcXJItgsyOKDCZIFWoK2IwkJSSUDyOUa8nGItRkpnJ7AEDmvc/vayMlzZvPmK7/S0WvDod4XCY9X4/DjW6qiiKoiintK4YWZ0ppWzoguMoyglDAr/x+wklkyAE+T4fk6qqKBkxIi3tbwD2JZPNVXcHOp3YO1i19eD2fx4OU9XQ0Byojtq9m+nbtnH+vHkqSO0hJvfvj9XnI2g0ktDp0Kfp92JrUTTLlpvLzZMmUf7732MxGpk9YECrQBXgr2vWcMlRfLYzm5pwpipiv/bll4waO1Z9lhRFURTlFKbr7g4oyqnoP42NvNvYiN/vR0jJt0IhLpg/Py0n5lXBICvDYUQqJbfU7SY3GExL1VaAxS4Xt3g8NKSWo8mIx5mzdi2XNTVxkQpUexSHw8GI3FxE6v7/NmzA6XR2uN2k3998IcQTjfLqli3svOUWar//fQLRKM+tW9e87z0ffIBBp+PyUaOO2G4kFahKIC4EtbW1He6roiiKoignrs4eWZXAEiGEBJ5MLTKuKKc0P/AXaD4pH7NrF8MzMzsc5F27aBGvbdlChsXC//u//wMhqNqxg4c+/JBKt5sV113HxFT67/Pr1nH/J580P3ed08nqG25gbK9e7R5jaUMDP/P7SaQCYWs0yoKVKykKBpmYpqJQSnrpYjH2j4PGpUxLlV27zQbxOEjJppoa+uflUWizAfCVYcP4ZM8erhg9mr+tWcPrlZW8e+WV2sWTI8jKyQGPByElOqCkpKRD/VQURVEU5cTW2cHqNCllrRCiCHhHCPGllPKDljsIIa4HrgcoLy/v5O4oSvf7OxC32cDvJzMUYuqOHZTMndvhdq8eO5ZJw4fzy7ffBsCQSHCOxcK1l13GDa+/3mrfy0eP5vLU0jjrnU4uePHFIwaqq+rruSMWI54KOrKDQX7g8dBn6FBVQKkH0xkMEIkAIKTE3E5F3qNlsdmwRCLEYjF6Fxby3OrVBGMxLAYD7+7cycTiYhZv28ZvPv6YZVdfjdVoPKp27VlZ5AlBIBhkxLBh6jOlKIqiKKe4Tg1WpZS1qX/rhBCvAJOBDw7a5ylSC5JPnDhRHtKIopxEtgKLIhHC4TB5ublcFQoxd+7ctJyUlxcWstzrbb7fr6GB08vKjlhM6R8bNvCNkSPb3Wd7XR23ut14U4GOLRLhK6tWMeWcc1RA0cP5WqyDakwkCIfDHW7THwgQSo2sFmdlsWDAAMY/+SQGnY5xxcVcP2ECIx57jEgiwbnPPgtoRZaeqKhot11PUxONqVTgzV9+iTMjQ32+FEVRFOUU1mnBqhDCBuiklL7Uz7PRlnxUukAS2OV0smffPoqLiykqKjpkn7q6Our27qVfr16UqBPCTpcEHggE2OdygZT0dbk4r7Q0LSfjXr+f98NhYrEYAKXA6SUlR1X1958bN7Lo0ksP+7gEHozHaUoFqsZEgm9VV1OhAtUeTwJusxkRCiGB3Gg0Lam1rlAIDNrXhyGR4ObRo7l3zpxW+2y7+eZjbrchtYyTBHSJRFpSlhVFURRFOXF15siqA3glNU/JALwgpVzcicc7aUWARsCd+nf/z7t8Pmr8foxZWehsNsJAEAgDTZEIzkgEcnIgHMYRiWBqsW5hJBLBGQ5rj0ci9A6HyTWbsQDW1C3h9xP3eOibmcnA7GwKgUKgALB13cs/abwJfJkajdInk0zftIm9QtArDSfj6+JxwqngQUjJqEgEe07OEZ/3WXU1VqORkW1czNivGtiRmQmNjQDM2bCBitNOU0HECWBbXR214TAS7SLDrIkT0/J7kzZb89I15liMzNzcjncWCOfmgsuFkJLsSETNWVUURVGUU1ynBatSyh3AmM5q/2QjgQZgF7A7ddscCFAVjSKt1laBJqSCTbdbq8jpcuEwGFrtEw6Hm0cohJSEw+F2H2+KRBBmM56W7Tc2au17vTjM5lbPt6IFrha/H0tjI2Psdsbn5dGbrlkP6UTTCPwpHCYRj4MQTNixg9w0nYz7gN12O6TW0DQmEs3Fbo7kxSOkAPuALYkEPrdbKwa1ezf/N2iQClRPEMvdbkiNiOf7/UQSibS0G9AdKCRvTo3mp0OTzYbDYCAcDnPxtGk42rmIoiiKoijKyU/FFd1AAjuBjzweNvj9+HJzcdlshFrsE4lEcKbSRfH5cDgcxxSMms1mgskk+kQCARRlZGBOHRsgIyODaCxGQghiBsMhRVeO1H4Q2NoioF3k9+Ow2bCZTJQD/YD+QFZDAxnV1QwoLj5lAxwJ/Mrvpyr1XuUEg1xmMjE8DdVzJfBJNEo0mcRiNlMQCGA1GI4q/TcpJf/etIkPrrnmsG1/BsQSCZCSAp+PqVu2ED6KtpWewdWrF3i9ICWlbjclQ4empd36WKx56RpzNIrP5zuqz1x7QoAzNZ/bbjIxPDs7DT1VFEVRFOVEpoLVLiDRUinXpW7rgYZIBGdqftaRRkb1ySRmv59BJhN5QB6gk5ItmzZhCYcxScl5Z55JGWBJ3UwmE3VWK7W1tVqlVouldacsFpyZmdTW1lJcUkKOyUQQ7YQxCFTH4/z+xz8m7nIR1+ux5eeTyMgggpZmnABi0Si6aLS5SW9GBsGMDOqBVUAykSAU0kJwSyxGmc1GUUYGORz6wcspL+fWu0/OKc3PeDx8FIkgUyf3MzZtIqd//7QE71tDIXak0jH/+tZb7K6poTEUouzBB7lrxgzyLBZueust6oNB5r/wAmN79eLtK64A4INduyjLyqL/YVI4twN743FkMokAztmwgQwhVGrmCWRTiyq8JW53WtpMAgGzWRvJlxJ7NJqWNXzXNjTgDAZBSnTBIPV5eafsBa6Tnf3rX8f/r3+1u8/Dr73G42+9xfgBA/jatGkMLilhuFoxQDnJ2O12/H5/u/s8/PDDPP7444wfP56vfe1rDB48mOHDh3dRD09s8+66ixd+8ANy2rmYOuNnP+OBa65h4qBBrbav2bGD2sZG5k2c2NndVI7gsMGqECIDiMnUGbYQYiYwHtgkpXyri/p3wvqyro73m5rY53CwMzOTg08T2xq5zDeZ6AOUA1nJJNtXrSLH58MWj3N+RQWtTttycnCOH38gGC0oOKQPDoej3ZO9gx9vObY6KD+fxcCtAwaQmZnZatREos2jbQgG+XLPHoIZGQRNJoyFhURanBxHwuFWlUfNZjMmsxkB5APZ4TA2v59ys5kHd+8+bD9PZItdLh72+9mffDl+507KPZ60BHwxYJWUzSNct0+dypSMDIqLi1vtd9GwYW0+f0bfvnz6rW+1+VgYWBmP4w8EiMXjjK+qYnppKYMHD1YBxAmiHtiSGgHVJ5MUu91pKVjkQrtYlWE0Yk0kGNm/f4dHVQE+9XrBYEAC+T4fteGw+qydwh57803e+sUv6NerF1c/9BAVkyapYFU5JT322GO89dZb9OvXj6uvvpqKigoVrB4FKSWvL1yIrsW0lWOxZudOVlZWqmC1B2hvZPVzYAbgFkL8CLgIrUbM94UQZ0opb++C/p1QosCnwCK/n3dDIaTRCG43joyMQ+acFmVk4HA6KfJ4KAgE+Ma0aQwBxP4dcnNxTpt2IBht46TtSMFoR1kslkMCH1J9NANlVis5paX4fD4toDUaiQIetAJQTiHYGY0SzMgAITCkCgBJwBmPsz0SAYMBfSzG6liM/wGTgJMl+W8VcK+UzYFqkdfLV4JBTktD+i/A55GIljouBMZ4nN5uN5kDB3a4XYAvoHlpEmM8zqRt27CPH6+ChxPIckCf+pIubWzEkkx2+CJJTnk5N2/dypepjIqcUIg1djuWgzM3jrFNgIaiInC7EVJS5vFQMkaVPDgV3P+f//Cvjz4iEotx0ZQp3HXZZdz42GPscDpZcM89XDp9Oq+uWMGyDRv41b/+xcs//SkD2vheUpQT3f3338+//vUvIpEIF110EXfddRc33ngjO3bsYMGCBVx66aW8+uqrLFu2jF/96le8/PLLDBgwoLu73aNUOZ3MvesuZo4axfIvv2TNzp3UP/ccBVlZ/PLFF3l+2TJ6FxRQkJXFhIED+eFFFwHw748/5jtPPIEnEOAvN93EaYMHc8fzzxOKRvlo82Zuv/hiLpk+vZtf3amrvWBVL6XcPyB4CTBdShkSQtwHrAZUsIoWeG0G3gU+Qkuh9SYSyNRj+0dN80wmRgGj0apO9bZYqOvTh1qjkZIxY9osJNLZwWg62O32VqMqGUBR6jbEZGK81Uqj308kKwufwYATLZCNpwIhgIQQOKXkD2iBcGkgQN+6Os6225lYWHgggD9BfFlXx1+8Xj7Mzm5Og84KhahYu5bTZs9Oy+/UGQ6zLrUcCUIwKhZj2MCBaRnhcgLb4nGSySQIQS+vlwxQ6b8nmLcDARpThbEG1NUxderUDn/2br37bq6oqyOZ+uyNX7+eS0tLGTduXIfalcAWgwF7qjDYFePG4Sgs7FCbSs+35IsvqKytZcXvfoeUkgW/+hUfbNjAE9/5DotXr+b9e+6hICuLytpaKiZN4uJp07q7y4rSKZYsWUJlZSUrVqzQ/i8sWMAHH3zAE088weLFi3n//fcpKCigsrKSiooKLr744u7uco+1paaGp2++mce+/W36prLHVlZW8vLy5Xzx0EPEEwnG33YbE1pc3I8nEqz43e94c+VK7nrxRf73y19y9+WXs7KykkduvLG7XoqS0l6w2iSEGCml3IBWqNaMNqXRABzfmPpJZFNdHa8GAmx0OPBYra0eM5vNeIWgtLGR/g0NXDl2LJM49E07EYLRg127aBGvb91Kkc3Ghu98B4CF773Hoi1b0AlBkc3GMxdeSElmJs+vW8f9n3zS/Nx1Tierb7iBs3v1YpeUbGxqwmOxEM7IQK/XAxCORPjE5eITnY4XQiFGhEKcZbEwGRgJGNvoU3dzAVtTtw9cLlaGQsiMDEgFqvZwmAs+/5wJffum5fcdADaiXfgAyAoGKYe0BKpJ4JNYDH9q7mBeIECp2UxFmkaDla5RDaxPXRDSSUn/ujrCvXp1uN0GoMZigVBIa9flomTSpA63+0V9PVtDIW0pnHic3qqI1ylhyRdfsGTNGsbdeisA/lCIytpazmynQrminIyWLFnCkiVLmi/8+f1+KisrOfPMM7u5ZyeePoWFnH5QMcGPNm3igtNOw5LKcjx/8uRWj39lyhQAJgwYQJXT2TUdVY5ae8HqjcDzQoi1QB2wUgixDO0c+ddd0bmeyA38pamJF4JBEjodNDS0qtRbDJxtMjHSbCYmJSWjRrU5n/REdfXYsXxv8mSufOWV5m0/mjaNX559NgAPf/YZdy9bxhMVFVw+ejSXj9ZCqvVOJxe8+CJjUyfMgy0WSvLy8Pl8YLXymV6PA/j0oLm81dEor1ssvByJIINBxhmNnGG3Mw4ogy4bdZXA9ro61jY0EC8uxpebyx5gcyjEvmi0uZqy0+9vrrgM0Nvl4tx168hMJBg8eHBa+vEbn48wgBDoEwn619eT2b9/h9sGLUvAk6r+q08mKW9owGAwqED1BPMOB1KA+9bVYY/H0zIy/pbbTaPPhwR6NzZy9uTJaflsvOv3g06HBEoaG9nb1JSW9YeVnk1Kye0XX8wN553X3V1RlG4lpeT222/nhhtu6O6unPBsB61uAbQ6L2uLKVVvRa/XE08mO6FXSkccNliVUq4TQowHZgODgbVoF+y/L6X0dE33eg4f8B/gNaBOShJCNAdUBIPMMZmYBQwlFUAVFWm3k8yZffpQ5fG02pbVYj5uIBptM4D8RxvrebZMIe5bX8+dwPZIhCc2bmRHQQG7Cwowm83aMj5OJ0jJ20KwJvVHJSMQYGRGBmPtdnJcLnS1tYwoKqL0OE5yo2gXIlxoa6Ju93jY3tRENC+PgN1OVTjM7nAYbDZtKaHUaLqzvh6kxCsEdptN+0ygnXCPraqiX0MDw4YOTVthohfcbhb5fOjicQDGRqMMT1OBGz+wAbS5xanMAFMigfWgzAGlZ4sCb4RCzSnAI2pq0pICDLCkxZI1/Z3OtIzWAmwvKgKXCyElA+vrKZkwIS3tKj3bnPHjWfj881x+1lnYLRZqXC6Mej1FOTmt9su0WPCFQm03oigngTlz5rBw4UIuv/xy7HY7NTU1GI1Gig46j8zMzNQu8ivH5Izhw7nh0Ue5/eKLiScSvLFyJdfNnt3uc9TfnZ6j3aVrpJQJ4K3U7ZQUABYB/4XmdVD3p/n28ngYt2cP35s4kd7d1sOe4efvvsvf160j22Ti/auuOuTxf27cyKJLLz1iOwOKivjhhAnU1tZSZLPRYDLx0u7dLA0G8VosCCkJ+P34U8tm7BGCz6SkMRCArCxEOExfjwdrNEqBzUaBzUbM56OpqYnMrCwsmZl4/X4a/H50WVkkrVZc4TDuSESrVmwyacHx/mWFGhtxGI2EI5FDqjcDICWGRIKipibGhsPILVsobmjAGo9TXl7O2AUL0jYq+QHwlE4HUhIqKeFfW7awSa8nPz8fGho61LYEVsVi1EuJXq/HJiVDvF5sVivFQ4akpf9K13gPqEstZ5QZDlPe0NCqKvfxqgKc2dkQDqNPJhlSX0/J+PEdbrcB2JGar6qTkm9PnNjmHH7l5DN73Dg279nDlB//GAC72cxz3//+IcHqpdOnc92jj/Lwa6/xkiqwpJyEZs+ezebNm5mSSke12+0899xzhwSrl156Kddddx0PP/wwL730kiqwdJQmDRrEgsmTGXPLLfQpLGTiwIFkH+FC/MxRo7jvpZcYe8stqsBSN2tv6ZrzpJSLUz9nAw+iFWvdANwmpTypk7oTwN89Hv4pJUmrtVU132EmE9+32ShyuSidOFGlSAL3zJrFPbNmce+HH/LIihXcNXNm82OfVVdjNRoZeZQnoC3n8pYCvUwm+rzzDm6TiZrCQkKDB7M6mSRiMGjBa2p+5f6iVju9Xq2hcJi8ZJJGt1sLPN1u8uDA/YYG8nJzm+97hcDhcLS5rJDZbCaYTJIVDJIfCHBOdjalySSbly8ny+fDoNNRUVEBkye3W8H5eH0G/A4wmc0gBGXXXcfFq1Zx0dy5aTnOv9xu/uvzgZQI4H6bjWknUfr6qSIJ2hSFeByEYOyuXRh0urSkAC9J/Wu32Rjd1MTFc+ak5bP3psfTfHGovLERmyrkddJrucbqLQsWcMuCBYfsU/XnPzf/PG34cDY9+miX9E1RulLLNVZvueUWbrnllkP2qaqqav552rRpbNq0qSu6dkLq63Cw4ZFHmu+3/Dvyw4su4s7LLiMYiXDm7bfzgwsvBGDprw/MbCzIymp+Tl5mJp8/+GDXdFxpV3sjq78GFqd+/h2wFzgf+ArwJHBhp/asGzmBuwMBPto/uubz4XA4GGgycTkwFRD5+ZCf38091YIzP/BlfT1VDQ1kFhVhy88njFaZeJ/HQ73HQ25uLtnZBxaF8Xq9NLndFOfkUJyTgxWwAMGGBnz79jGssPCIOf5tuWzUKOa/8EKrYPXFNlKAj4XD4eD8iormIBDg1ddfx2W10pCdTea4cXzq9dJkMuE3m5v7fXAg2959ISXWSASH10uZ1Up1dTXWUIiccJgLTj+dEdnZhKxW9no8lPTpgyN15X/SzJmHBKfpvnjxEfDrcBh/avR3fEEB17rdDE5ToLoHeFKI5vdl5J49WG02UMHqCef1xkbW+v0gJaZ4nItsNkaloThWGHgrHMZZVwdSUrRmDUyd2uH+SuDNVGqxBPrv20ct6f8/dCITQnwNWCyl9Akh/h/aeue/klKu7uauKYqinDCuf/RRNu3ZQzga5aqzz2a8GpU+YbSbBtzCRCnl2NTPvxdCHJrneZJ4H3gc2JeqpCmB7GCQi3fv5luDBnVLGeQAsBvYBWxsamKH308yO5uIzYYbCEQiOEMhsFohEMBht7dOZxUCvF4cLdNcvV5te1MTDovlwPZgEDIzIRIhK5FgMmAD9JEIumAQh8lE7KD+VbpcDEoF7q9u2cLQFkFOUkr+vWkTH1xzTYfeg4MrJy9oEbw6HA6cOh21tbUYkkneWb2aoMFA3Ghk6LhxrN60CZlMoheC0SNHsnHdOgyxGOZEgjPGjmXd8uUYotHm0VGH3Y5z4MAD7adeT7bDcUjRl86s6BwF/gz8NxJpDhJEKMRP8vIYmqY1KKPAbwG9xQJNTeT5/UyvrKRk3ry0tK90nSTwbKo41v6LDvnZ2Wn5fL4DuFKp8FnBIKUNDdTW1na47W1AY1YWhEIYEgmG1NWlJbX4JLNQSvlvIcQZwBzgAbSvqdO6t1uKoignjhd++MPu7oJynNoLVouEEN9HqxeTJYQQUsr9g1Yn3dI1AbRv/2Wp+2azGR8weds2JuzaxQXz53fai16+HJYuhRkzYPwUrSLrh14v64NBvDk5BC0WACKRCDveDRJYbsE2xUf/eQZMJlObaavp2B5NJPACjfE4/nAYhOCvixZRWVODPxSi8MEHuW7aND7bupVarxejXk+fnByemD+/+bV9sGsXZVlZ9M/NTet7dnCQ2PJ+UV5eq0B2ptXaOrC1WFrdH5yd3eboaHeO7nxRX89v0E7k9/9esoJBFqxcSWjkyLQV7/p9UxNrpcRsNtO7qIhvNzUxcd48NbJ1AnofaDCbIRgkIx5nwu7dlMyZ0+F2E8A/QqFWqcX6NKUWv9TURFhK8nJzmeD18tXzzlOfvUMlUv/OBx6XUi4SQtzZjf1RFEVRlC7TXrD6JyAz9fPfgAKgXgjRC1jTyf3qUh80NPCgEARTI5IAfU0m7rTZsOTlUTJyZKedQL36RiNfuziHWEygzxBMfRdM41Mjn1JCfX3z0jh1H8TYcVkRMioQGRL7q0F6n2si12RCFwxiikYxJRKMzsujEIgJwZdVVYh4HJ1Ox/hx48gGvFKyescOElISMxoZnJuLHqjX69no9RIyGvGbzc1rn8ZTo8wA186dqxUiMptJxOP4AwF6DxkCQuCwWikzGomjFaOyADP69uXT1KLMXaW9QPZo7nenRuBvXi/P+f3EdToIhcjLzWVQXR0zNmzAkkymJUgA+JvHwwupVHevEPw0M5P5an3DE1IU+EuLCsDjqqo4e9KktHyuX2tsZGMqtdgci3Gh3c7INKQW73Q6+U8gQFSvByE432o9qZb5SqMaIcSTwDnAb4QQJk7CC8aKoiiK0pb2lq656zDb9wFXdlqPutiixkbuDARIgpZC63BQYTJxPWAuKOi0eXs7gVeamvj9+5JoVEBSEI9K6pYKCoe3HuGMh0IMMZkIfGzUzkqTAqKSs5bBb8/Viu44948mlpbiyExdY8jKwjl06IFRw/0VFnNycA4ffmB7Vpa23W7H6XBQW1tLcV4eD+v1nAe4pKTS5SJsNBI0mdDb7UhaB7FIiTeRIGw0sg1IxOOYIxHK9Xr6m80U0HVrop6IXMDLwNtAPRBPrTlpSCT4qtPJxeXl7DUY0la46S3gLy3mqQ7ct48hLhekeQRc6RqvANWpCsCWaJQxu3YRzsvrcLtJ4IUWqcWjdu8mLzc3LZ/B/YGqBPL8fjJdLjVPum1fB84DHpBSeoQQxcCPurlPiqIoitIljnbOaitCiPFHW9xBCKEHVgI1UsqK4zleZ3kfeFCvJ4lW6MMcjfKNXbu4ZvDgTjnetro6XvP72dirF06rFa+UmKZGEY9KZAx0GZA/A/objST37KFXYyOFgQCXn302JcDyOSbO/o0kFpMYjYJL59vZX6P4cKODHdmeAeQBeRYLxQ4HPp+PTJsNm8FAAKiVki89HnypwkYGg/Zx2j/i6peShnicrQYDNoOB/EiEbL+fviYTOWlYF/REFwG+AN72+ViWSGBIzR3evzRSkdfLuZs28bUZM3C0MV/2eL0LPMaBJZhK3G5mb9pE6dy5aWlf6Vou4NlwuDlN97Rt27BImZYR+KWAJzWnNCMeZ1x1NSUjRnS43TiworgY6usRUjJ+925Kx43rcLsnIyllUAixCHAIIcpTm7/szj4piqIoSlc5rmAV+DZw3VHuewvaNMys4zxWp/gf8DAHlgLJ8/u5cPVq5p17btqP5Qee9nr5WyBATK+HhgYcDgdmsxnbRC8jnqlG/77k0otyuWFKFrlYcQ4adMg8yilT4L33RPP81tRyXF3CbrdjbxFg2oHBFgslBQX4fD5sRiNhgwEnsCMcJpAaiUFK4vE4AcAZDoNez2fxOH2jUfplZFCKVsDpVLG9ro7/eb1UFRez1W7HF4ng3L+UTlMTDoeDkS2XRkoFqunyamMjv9PrMaWKbU3Jz+fKxkYGpKmysNL1HvL52JP6DOX7/XzVbmdoGtJ042ipxeFolLzcXM51udK2XM0HgFunw26zYY/HuW3cOPX5OwwhxE3AL9AK1SdTmyUwugNt5qDVbxuZautaKeXyjvVUURRFUdLvuIJVKeVRBapCiDK0ohD3AN8/nmN1hsXA/hXbTCYTEwsKuMrtZsi556b1hCkELAL+C9QCsVRqp5CSRCjEeTk5jLXZyB28m94zSnA4DsTzhxv5nDKla4PUI2kZxGYBRUA/4MuqKjxmMx6bjaTNRqBFynASqE0mcaENudtiMdb4/bzrcjE9P5+M7nkpaRdHS/feAmwF1gaDrAmHISMDGhtxGI2tilr18ni4KhjksqFD0740kgT+7XZzr8+nne0KwcSCAu632cgcOzZtx1G61ipgWTLZ/Bma/uWXZPXvn5a/Y/9wu9mQWnvXHI/zDbs9Le0mgb8HgzgbGkBKRm3fTkYaRmtPYrcAQ6SUrjS2+Qe05XAuFkJkANY0tq0oiqIoadNusCqEEMBkoBTtfLcWWNGiKvCRPAT8mAOFmrrd8243T+p0WpEgk4n+wK+sVjLTtBQIaG/UUuCRUIj6aBSz2dycclng8zF2zx6+N24c/UELSHrAeq3pZLfbGTpwoJY2nJmJzWikOhbjC48Ht9VK0GRqlTJcGwyyC7jhgxj6DTFOP8fIGcM8FNTWMik/n7IePuKSBPahrVe6O/Xvl4EA22Kx5tReAG+L9ST3V2HubzRiqKqi77599PL7OaeiIu1ze4NoF2de0+maU97z/H6ucrvT+rlXulYY+F2LKr1Da2sp93jSkv7bBDwHzZ/XCTt24CkogDT8X1wK7Ej9XzDG44zYvZvaNM2DPUntAbzpakwIkQWcCVwNIKWMolVDUBRFUZQe57DBqhBiNtrUtkqgJrW5DBgohPiOlHJJew0LISqAOinlKiHEjHb2ux64HqC8vPxwu6XFsoYG7g8EkIBXCKbk53OPzUY6Z08G0N60dyIRnPX1zZVWxxYU8F27nd4uF6UnSMpbTnk5d1ZVdayRSAQaGgAIhUIEXS50VisBi4UGYF80SiQapUn0ZudlRciYYNu9ko+fD2Mbb0MXDjMxGGSU1cpAIKehAX11NX2Li7vsPZTAjro6NtXXoysuJpqXhxMtJ29HMMieaLRVUBqJRHC6XK1Se/fPRfUBhV4vA+rruWH0aMZmZ2tFsLKy0lY8qaVK4H5gLwfmqOb5/Vy0ejVDOiHlXek6jzU1sdHjaa7Se00yyfg0pP8CPN7UhD+ZBCHICQQYs2cPJaOPO+u0WRx4gQOfxbG7dmFNJNJW4foktQNYKoR4A22qOwBSygePs73+aHXcnhZCjEEboL9FShnocE8VRVEUJc3aG1n9A3COlLKq5UYhRD/gTWDYEdqeBiwQQswDzGhrtT4npbyi5U5SyqeApwAmTpx4tCO2x8wH/E4IJFrw4fB6udLtxp7GkaVlqSVwQnZ7c3pnZijE5O3buaykhInjxkEaKnR2lVvvvrvTj7HL6eSpzz7jzTdGIVNVkZNRSWC5Cev4CElgSyzGPuD1SARnMAi5uVh8Psba7fSx2SgCjB4Psbo6yvLzKcvPx4K2dE5TXR0Ne/dSVFxMQVERSbRFC5319VQ7ndh79cJcUEAA7UJDjcdDdVMTydxcopmZNAJ7w2Gqw2Gw28Hvx2GzYTKZtKA0lcrYMihtmdqbEwgwoqGBmaWlDDGZsJrNNDQ2asshFRYCnbN0jgReBZ5BCxBAS3n/ek4O5zQ20jfNKe9K19oILJKy+XM2dcsWeqXpYseKhgb+kbqohxBcHolw4fz5aWn7f8DuSIRwOEzv7GyuzctjwIgR6rPYvt2pW0bq1lEGYDxwk5TyMyHEH4CfAgtb7tSVF5IVRVEU5XDaC1YNQHUb22sA45EallLeDtwOkBpZ/eHBgWpXkWiRd9huh0AASzTK/LVrGZDGkaUX3G5+u/8ELxAgLzeXEbW1nLF5MyYp6T1xYtqOdTLp43Bw82mnMajRw7f/DrEY6DNg+OBaYkEdXpsNs9kM0CoIDBmNbIrHqSE1ktnUBCaTtvxQar3cSCSiFXXKyYFwGEckcmB7KASZmRAMtt6eWncUtxtHRgYmkwlfJHJI+u7BQak9HKaP282kXr3ITCbZtnIlOT4f1kSCiooKmk/FHQ56d/KJuRu41+/n00SiOd3dAnwPODMrC9Qc1RNaGLg3GNSWjhKCPvX1jNi3j5I0/I1JAg8nk80X9cobGpgkRFqCySBawab9GScjt21jQCeuYX2y2L+MnBAiU7sr/R1sshqollJ+lrr/ElqwevBxu+RCsqIoiqK0p71g9a/A50KIF9HmzAD0Bi4F/tLZHUun59xulqTmqTocDv6vqorZaRxZeg14IlU8af8SOFft3cvc/v2pNZs7Jb3zZOJwOLj6agdDhpCqdCzo37+A2tpasvPy8JtMbAe+0On4IBjEY7EgU79PaB3EHi6Y7Mh2s9lMKJHAFg6TFQ4zLTeXwYAxkWDDZ59hDwSwJJMHgtLcXJxnnHFINefO1gj8B/hvOMyexsbmFPQp+fn8wmajuEt6oXS2B5uaWJ9K/zXF41wfjTI5Tem/z7vd7NTrQQj0ySQztmyh9OyzO95p4F+AM7UWrC0cZmRVFbV5eepv4xEIIUYCz6KtJIYQogG4Ukq58Xjak1LuE0LsEUIMkVJuAWYBm9LWYUVRFEVJo8MGq1LKe4UQ/wUuAKYAAu2K7OVSymP6YpNSLkWrq9HlPq+v5/eBAAkh8ArBlTk5/N+QIWlr/2mPh6eFQK/TgRA4vF7mr13L3FQw3JknYnG0uYhrGxvZ5najLyggkZ1Ntd9PfSCAITMTYbXiCYXwhcNYLBbMZjPhcJhIMEiuxUKexUIyECDR1ERfm40BWVnoGxvR7dvH+Px8+nThiWTrSset37vRwEWZmTjz8qiurcVSWoowmagDKqVkaU0NQYOBuMFA74IC9ECj0ci2WIyEEOgAR0YGVsCekYEMh9EnEpgSCUbl5+MAkkKwtaqKjGgUezTK/NNPZxCQZzLRZLNR6/VSUlqKIytVtTkvj0lnndVmUNrZv/uWXMDLaFWuY0BTi5HgcTt38k2Xi2K1huVJ4UNgcYv03+lffklZmi6IbKqr4w+BALHU37ILwmH+7+yz09J2LfCvFmvBTt26FROouapH5yng+1LK96E5U+lPwNQOtHkT8HyqEvAO4JoO9lFRFEVROsWRlq4xA9uARVLKzV3Qn7T7czxOIjVXtbCpiekuF6TpxP1Zt5uHUks7IAQTbTa+2djIgE6aD7ilro4PPR6qsrKo1OvxZWYSFwKn3w8GA3i95Ol0NO5ftzMSIS8398B9n6/V/Vq/v9X9T2Mx8oSg0e8Hmw0RDjPE7aZXMMhEq5Uzc3Mph7RXqz0WBweBw4CzcnI4f8CAA0GjLbVyq9WKMzPzwHaLRdtuseDMyTmwff/6sVlZWrGj/dtbVGm2HCb47Mqg9GD1aPl7SzgwLxW04jUmn48pW7bQx+OhvKKiW/qnpNc+4IEWAd+gvXsZlqb0Xwk8lEg0L6+V5/czLxLBMXRoh9sG+IPfT01qtL/Y62VBTg5DJk9Wo6pHx7Y/UAXt4q8QokPLU0sp1wBqboqiKIrS47VXDfgO4Aq0SoG/FULcK6X8U5f1LA02Azvz8sDpREjJnA0b6DNzZlrargT+KkTzCEdpYyPfamxkSprnA1Y5nbzl87E6J4cV4TDSZNIq7AIiFMJus7VKXQ0Eg2m7L4Evm5r4Eljq8/Gs1UpWMklpYyNnWK3Mzs0lO62v9vgdLmhM1/aeQgJVwItNTbyTTLaqQgwwCPiGyUTvwkL2xmIqBf0kEQfuDASoSlWZzg6FuCEeZ0ya0n/fBqpa/K2ctWkTfaZP73C7AMuB5YlE89+VMzZvJnPwYPW5PHo7hBAL0VKBQfte3tmN/VEURVGULtPeyOolwFgpZVAIkY+WZXhCBavPoVVAdTgcjKqv56qZM9NyghQAfgsYLRatCqzXywVr1tB/7twOt73fLqeTZxobeSMjg4jRCPuLN7UkJTmxGPkuF5nBIPZYjIkDBlC1Zg0Z0SgmKZk6bhxrP/0UEY+j0+k47bTT+Oyzz4hJSSIjg1GTJ/Pp2rUE9XoCViuOkSP5oq6OBpsNt83WfEwhJQG/H2cgoKXd+nz82WpllMnEYI+H0poaJhQU0EudgKZdEu3Cy6doJ/67IxGcqTmL+6sQjzaZ+AZaiU8B4HCo38VJ5O/ApngcpESXTDJ77VoK0xTwOYFHw2HCqUyMMxsbuX769LQVVXqSA0vVjNizh2K/X6X/HptrgbvQpqQL4ANU2q6iKIpyimgvWA1LKYMAUkqXEELXRX1Ki/XA56klEqwmEz8sKyNdp+6/8fnYkkxiNpvpW1TE97xeRs+dm7aRgqUNDfzc68VntbbarpOSYreb0sZGShsbcQQCfHXuXCgtbTVv0mkytbo/JCur1f2y3NxW90e3TJV1OHDq9dTW1qITgjc2bGBvVha1eXk0WSz4W4zChsJh1gHvNDWB3U6Wx8MCi4VzsrIYyVGUjFYOKwasRQtOPwO8LR5rWQiq2O3mmmCQS4YO7db0bKXzLHG5eMZgaJ4XP6WyMm0BXwK4OxBgd2rENjcY5FtpLHr0aFMTO6TEbDYzuLCQ77ndDEzTaPCpQkrpBm7u7n4oiqIoSndoL1gdIIR4NfWzOOg+UsoFndqzDvqL348zNUeqtLYWXf/+kIYTpPddLhYFAs2VVu+22zl31Kg09FjzEvB7IfC1SO3MDgYZU1PD//XuTQZgLikhnJfXKsWzveI+HbnfKy+vOZCVUvK3Tz+lKi+PqqIikr16EWoRODWZzbwmJR+gTXYe7PPRe98+zszOZnhRUdreo5ORRCu5/ZnbzUfBIDvz85GpascHyzGZcDidDNuzh3KPh5kVFSpQPUltqKvjjqYmQkYjCMF0i4VrCwspHTMmLQHfv4H1qRFbISWz1q+nYdCgtCyv9GFDA8+nMkK8QvAdu51paVzX+mQnhHhISnmrEOI1aCuxpmd/ByuKoihKOrQXrF5w0P0HOrMj6dQArE7NkRJSMnHbNmpTy9Z0hASeSZ3YSWBobS3lJhPk5XW4zxJ43Ovl+Xgcv19bRs8cizFt61YuyMxk2KhR3TIacXAge/WMGVrw2qsXVpOJJYEA/6irY1deHlGjsXk5GW8kwutuN2Rk8Hg4zNhgkKlWK2OAUUCHqoOcBBqBrcCW1L+VgCcSwbm/YFddHQ6Ho3k+ag5weuo22mymsU8fao1GNSf1JBYGfiUEIaOxeS3fS9xuxqepQNxm4JkWBZsmbdtGic+XlhHbMPB7aJ773qe+nnKXKy1/K08h++eonjDfvYqiKIqSbu0tXbOs5X0hhBEYCdRIKes6u2Md8TEH5kiVuVzkRKNpOQH7AthttUI4jD6ZZMr27ZScc06H2wX4h9vNkz4fUmoX0EsbGzl33Tom9e/P9DQVOkmHg4PXr+blcUYsxu7aWnzl5Ww3mVgBbDlozdKdsRiNwOtow/SlgQAlDQ2My8xkcl4ehXRvleHO4kcbMd3d4t8vQyH2RaNa1d4WI+gHr/Nq9/moMJmYAgwBWubh9/RCUErHSOCXPh97Uqm/+mSSuevWMThNfwt8wC9DIfbW14OUlHg8XJGRwdA0pej+HfBnZkIwiCkWY9bmzZSee26H2z2VSClXpX4cK6X8Q8vHhBC3AMsOfZaiKIqinFwOOw9VCPGEEGJE6udstCl0fwe+EEJ8o4v6d1w+5kBhpblZWVSk6QTsL4EAjW43EhheU8N548enpd0q4IlEojlQ7dPQwPmrVpEdjzN48OAOt9/ZHA4Hk8aN4+z8fK5DWxTwoWiUqdu20buxEX1qztp+4UiET1wuXgJ+7vdzRSTC5cBC4G/AR2jLdByS99YDSaAJbWT0I7Q07keB2/x+zne5+Eokwo+BR4BFwKeRCFvq6/F6PDidTiKpys6grQPbv6GBKZWVXPbppzyWSHAt2vI8J9SEcaXDnvJ4eN3tbs6y+D+fL21Fj5LA74DqaBSkJCMe55x168iy29PS/jrgpVS9gLzcXL4pJd/opOW8ThFXtbHt6q7uhHJA3759aWho6PLj3vHaa/xvzZp297nzhRd44JVXDtnu8ft57M03O6lnyolqxs9+xsrKSgDm3XUXntR3ztHs39KaHTt4c+XKNp+zdP16Ku6++4h9+cY3vsHo0aP5/e9/z0MPPUQwGDyKV3DysO9fRrEdDz/8MMOGDePyyy/nv//9L5s2beqCnnW/9tKAp0spb0z9fA2wVUp5oRCiF/AW8I9O791xaADWtCisdMXAgWlZXmUf2tyuwEojweUmCixNhC/qeDKrBO4LBPCm/lPm+3zMW7OGkUOGMPgEXd5BAOMLC7lz5Ehqa2spsFhwmUysRbviseqgEcRwOIzPZGINsCbVRiQSgWCQcpOJvlYrRUBh6laUumXTuaOxMWB7XR1b6+vJ6NUL8vNxoaXwuoA9wSB7IhGwWluNkEYikeb50gQCrdJ594+eGhIJipqamCwl5/bpwxCgwGKhrqyMWp2Okm5K+1a63yfA8y2WxRqzaxcz0xRIAjzl9fIeNBdsOmfDhrRln3iBX4VCOFMjtv0aGriwrEx9lo9D6qLwZUC/lvUigEy0P0HKCSgej2MwHGmJ+0MlEgnuPv98KCs7ruN6AgEee/NNvjNv3nE9Xzn5vfmLXxz3c9fs3MnKykrmHee63/v27eOTTz5h165dgHZB6IorrsB6UKHRU91jjz3GW2+9Rb9+/bj66qupqKhg+PDh3d2tTtfeX8xoi5/PRavFgZRynxA9N2HzHbe7ed5flttNuLiY7DScKH0ChNdY2HF5JjIqeFw/m9mnNdHR6WMrgPXhMFJKDMkk561dy8jBg3tU6u/xapmq2hsYm9q+PRLhz+vWUZuVRUN2NkaHg0SL50UiEZxOJ0iJUwh2twj2WpLhMIZAgFyLhXyrFQtgQSvutP/niMdDo8dDdm4u9uxskmgjS4nUv+6mJpw+H4bsbLDbCaAtTeQHfJEIznAY7HYt6LTbm/sRiURwNjRoAanP12ZAKgFDIkG+18v4oiLKAVsiwZeffEJmIIBBCG3U/zDvmXLq+by+njsMBvQGAwhBeUMDZ1ZWUjJ/flraX+Jy8YTfr2UtCMGlBgPnlZdTcvrpaZnT/xCwLzVia45GmbFxI3t1OrWM0vH5BNgLFKANhu/nQxvAVjpZIBLh6/PnU11dTSKRYOHChVxyySUA/PGPf+S1114jFovx73//m6FDh7JixQpuvfVWQqEQFouFp59+miFDhvDMM8/wxhtvEA6HCQQC3HHHHdxxxx3k5+ezZcsWzjzzTB577DF0utY5NH379uXaa69lyZIlfO9732Px3/9OxVlncfG0aby5ciXf/8tfKMjKYvyAAezYt4/X77gDgE27dzPjZz9jd309ty5YwM3nn89P//53tu/bx9hbbuHcsWO5/xq1+tGpJBCJ8PW776a6oYFEMsnCSy7hkoPOM/t+61usfPBBCrKy+OWLL/L8smX0LiigICuLCQMH8sOLLgLg3x9/zHeeeAJPIMBfbrqJ0wYP5o7nnycUjfLR5s3cfvHFh7Td3I9AgJtuuon169cTj8e58847ueCCC5g9ezZ1dXWMHTuWiy66iNraWmbOnElBQQHvv/9+p78/Pc3999/Pv/71LyKRCBdddBF33XUXN954Izt27GDBggVceumlvPrqqyxbtoxf/epXvPzyywwYMKC7u91p2gtWPUKICqAGmAZ8E0AIYUCLA3qktX5/c6DQu76eWimP+yTsoTvuwLN7NwDLYzF8n+koD+sAgUhK/rJQ8Pm/D31eTnk5tx5FygPAXwMB/IEAACN37yY/FDohUn87YkBREbdOnqwVaioupshsZh+wPXX7yO3GG40SMhqbR14PDlYjkQjOujqQkp0HjV622qepCYQArxfHQXNEIy3XK21sxGE0tjuHtGU/Wj5mjMfJa2piZGEhDsAkJVvWriXH5yMnEmHB/PkHAtK8PCadfXarpYIUBeDLujpu83i0SuBCMCQzk5vdbgbNn5+Wz0kd8KBO11z0qMzl4lxgXJoKNv3N4+FdIVqN2GbGYmpN1eMkpdwF7BJCXA7USinDAEIIC1CGNoNE6USLN22ipKSEN954AwCv98AiYgUFBaxevZrHHnuMBx54gD//+c8MHTqUDz74AIPBwP/+9z9+9rOf8fLLLwOwfPly1q1bR15eHkuXLmXFihVs2rSJPn36cN555/Gf//yHiy+++JA+mM1mPvroI60/f9CmLoejUW547DE++PWv6derF9+4//5Wz/mypob377kHXyjEkG9/m2/Pnct9V17Jhl27WPOHPxxyDOXkt3jTJkry8ngjdUHDmzrvbMvKykpeXr6cLx56iHgiwfjbbmPCwIHNj8cTCVb87ne8uXIld734Iv/75S+5+/LLWVlZySM33njYdgHuuecezj77bP7617/i8XiYPHky55xzDq+++ioVFRWsSaW5P/3007z//vsUFBR0/MWfYJYsWUJlZSUrVqxASsmCBQv44IMPeOKJJ1i8eHHz+1JZWUlFRUWbfzdONu0FqzcADwO9gFullPtS22cBb3R2x46XNy8PXC6ElBQFApSMHn3cbXl27+bOvn1pDATI2y1x77Q1z6PU6wRXj4PevQ993p1VVUfVfg2wITWqqk8mmbBjB0OGDDklApiDRxCLU7czgPOE4LVlywgYDPitVkbNmkUCqEc74a4DtgSDhw0k92sv2Dyax60mE9FYDEskQmYkwuTcXPoA+YCIx/lixQpsgQC2RILzW46Q5uTgPO20wwakavRUOVgAuDO1ZNX+CyBX19RwxnEu9bJ8OSxdCjNmwJQpWprMvUDSagWfD3s4zNz16+k9Z05a+r+8oYGH/X4SQoAQfM1gYH7fvpRMnao+6x33L2Bqi/sJtEynSd3TnVPHqJISfvi3v/GTn/yEioqKVhlPX/nKVwCYMGEC//nPfwAtmL3qqquorKxECEEsFmve/9xzzyWvRTXsyZMn079/f0Cbq/fRRx+1edK5fyS3pS+rq+nvcNCvVy/t+WeeyVNvv938+PyJEzEZjZiMRoqys7WLssopbVRJCT9ctIifPPMMFZMmMX3EiMPu+9GmTVxw2mlYUudD50+e3Orxr0yZAsCEAQOocjqPqR9Llizh1Vdf5YEHtCLn4XCY3bt3Y7H02DGwLrdkyRKWLFnSfCHZ7/dTWVnJmWee2c096z7tVQPeCpzXxva3gbcPfUb3k0C1Xo/dps0lvXzqVBxpWN+zNhQiWm1DJgEEAsm4wwSqx+INj6d5VLVPfT22ROKkH1U9Gg6Hg/MrKg4Ee20sd+GMRnn5/fcJGQzEjUamzpqFHQi1uO2Tkk937oRkEr0QTBg3jjxAj1awqCmZZOWWLRiiUcyJBLOnTaMv2rI6dsBkNlOXmUmtz0dJaSmOrKwDHcjPZ/yZZ6qAVOmwKHB7INBc+VeXTDJv3TompE4IjtXy5TBrFkSjkJEB/3sX3h/RxKpUobPSoiK+tWMH0+bMSctnNADcDySEQAIOr5c58XjaRmwVDFLK5mk5UsqoECKjOzt0qhjscLBq1SrefPNNbr/9dmbPns0dqZGp/Rc29Xo98XgcgIULFzJz5kxeeeUVqqqqmDFjRnNbNlvrGhcHT6c63PSqg58HNBdjPByT0dj8s16nI55ItLO3cioY7HCw6ve/582VK7n9739n9rhx3HHppW3ue6Tilvs/X3q9nngyeUz9kFLy8ssvM2TIkFbbq45ykOdUIKXk9ttv54YbbujurvQYxz7LvwdbX1/P7lAIpMQSi5GdmdnhNvfsgU3bstFZYgg9kJDo9ZCOte0/TY3sAQxwOk+ZUdWjcaRgz+Fw8NW5cw8Ei22liuTkcP6wYQf2yclp/XhuLrPHjGm3jfb6oQJSpaOSwN0+H8vcbu1vgRBc3dTEN6ZMOe7P1tKlWqCaSGj/PvhWiMpSD0iJVwh+mJnJV9JUkEGiVb9uuUzN3PXrKZ81Ky3tKwDUCyEWSClfBRBCXIBWS1DpZLUeD3lWK1dccQV2u51nnnmm3f29Xi+lpaUAR9x3xYoV7Ny5kz59+vDPf/6T66+//qj7NbSsjB1OJ1VOJ30dDv6ZShNuT6bFgi8UOupjKCeXWo+HvKIirpg5E7vFwjPvvnvYfc8YPpwbHn2U2y++mHgiwRsrV3Ld7Nnttn+0n685c+bwxz/+kT/+8Y8IIfjiiy/avLCZmZmJz+c7JdOA58yZw8KFC7n88sux2+3U1NRgNBopOmjwbf97dCrotGBVCGEGPgBMqeO8JKU8/lJjR2GjywUWCxLI9fupTRW+OV5btsDTn0FSGhB6A/azQmQ3hiB7H+csep9EMsm3xo/np2ecccxtS6DOYoHU0iVlTU0MPijVQmnf0QSLRxP0qoBT6Q4SbZmnD5LJ5nT0qVu3clZ+foc+kzNmaCOq0SgYMmD79ERz+0NraxlhMkFublpewxLgfy2Wqbli714qZs1S/6fS60bgeSHEI2gF0PcAV3Zvl04N62tr+dHkyeh0OoxGI48//ni7+//4xz/mqquu4sEHH+Tss89ud98pU6bw05/+lPXr13PmmWdyUap4zdGwmEw8duONnHfnnRRkZTH5KDKy8rOymDZsGCO/9z3mTpigCiydYtbX1vKjJ5/UPst6PY9/+9uH3XfSoEEsmDyZMbfcQp/CQiYOHEj2Earyzhw1ivteeomxt9zSboGlhQsXcuuttzJ69GiklPTt25fXX3/9kP2uv/565s6dS3Fx8SlXYGn27Nls3ryZKansKrvdznPPPXdIsHrppZdy3XXX8fDDD/PSSy+d1AWWxJHSSY67YS2nxSal9AshjGjLUN4ipfz0cM+ZOHGiXHmYdZqOxuuNjfw8VWBpQH09j/fufdwnTcuXw+XTruZK2Te1RWKfGmZMyQ6ue/tt3rvmGsqyspj0pz/xj69+leGFhc3PvbOqijuPcFX1y7o6LknNVzXF4/wtGmX4sGHH1VdFUU48f/J4eDZVkKjR7WZMVRVnVlZq8587GOwtXw4vLYVPp0RglB9/IECx281Fq1dz4bx5aQkmNwM/CIepSRU6G1lTw4MDBvSoQFUIsUpKeXxrKfQwQgg72nd2l19K7+h3cyuPP37cy690uepqaOek/ngtXbqUBx54oM2T9Ha1eO/8oRB2iwUpJd994gkGlZRw2wUXpL2vSifqpM9Xm47x/93+z1cwEuHM22/nqe9+l/EdDYY6+/WeSH9bDtaVn4Ue4Fi/m9sdWRVCDAUuAErRBgJqgVellJuP1LDUouD9qwsbU7fOiYxTLHl5OGw2wuEwY/LycHQgDXjp0uYMXUCCgIyyOJUNjQzMy6N/amTi0hEjWPTll62C1aNRWV+vLYkCZIVCRFoUYlAU5eT2nNvNI6klthCCc8xmLs/MpDQNgSrAgCmwa2wIf309+CXZoRC3BgKMS1Og2gD8GvBHIiAleT4f0zZvptZi6VHB6slCCDEfGAGY989tlFIeXcl55aT0pyVL+Nt77xGNxxnXvz83nHdIiRFFOW7XP/oom/bsIRyNctXZZ3c8UFWUDjhssCqE+AnwDeBFtOVAQSuX/w8hxItSyvuO1LgQQg+sAgYCj0opP+t4lw8v3OJncwdHjGfMgD/rQCQBnSBvdgxzb0HUZ6Jvi4I/ZVlZfFZTc8ztZzkckKpoa0wm1fIOinKKWAw8pdM1p+aWuVxcAoxPU0GiAHAnUJda79QUi3H+qlU4hg9PSyAZAX4eCLArHkev02GJxaj44gtMoP6OdQIhxBOAFZgJ/Bm4mAPfycoJaMaMGa2KLx2P2y64QI2kKp3mhR/+sLu7oCjN2htZ/SYwQkrZashPCPEgsBE4YrAqpUwAY4UQOcArQoiRUsoNB7V3PXA9QHl5+bH1/iB7PR5tXU0p+XLXLpwdKFg0ZQrMmQNnR6Cqdxx/bpB4XOJ2uVqVowdtEtGxirao/GdQlfoU5ZTwL7ebR3S65rVIe3k8VKxdS5+5c9PSfhxY6PezIZFAr9Ohl5L5a9aQFw6nJZCUwD0+H5+mCkLpgLt0OnqPHKnWDe48U6WUo4UQ66SUdwkhfgf8p7s7pSiKoihdob1gNQmUALsO2l6ceuyoSSk9QoilaEvhbDjosafQ6owwceLEDg2H+l0uMBiQQEwIamtrO3TyVFQE0/vCvkAEf0zrWr7Fwv9qa5v3qW5qouQ40o19TicyVZI+rNd3uK+KovRsL7nd/LqpSZsLIQTjbDaud7sZMHduWv7vS+CXPh/vtqgs/H0hGD1gQNoCyZeBpS0KQk3fvJneDodapqZz7S+xGRRClAAuoF839kdRFEVRukx7weqtwLtCiEq06oMA5Wgpvd87UsNCiEIglgpULcA5wG861t32lefmgt+PkJKIyZS2lDS70UhDajR1UEEBu9asYafbTWlWFi9u3MgLqcXBj0VGOAypYLUuO5vovn1p6auiKD3PMuCPOh0SLagsbGriOrebqelYAyvV5uPA+y0CydO2bWN0bm7aAsnFLhd/NBiaR4VH7d7NmJoaSlSg2tleT2Un3Q+sRvt1/6lbe6QoiqIoXeSwwaqUcrEQYjAwGa3AkgCqgc9T6b1HUgz8LTVvVQf8S0p5jKXvjk2/vDwyhSAUDGIvLU3bSGVji0WPI2Yzvz7jDOY89xwJKbl27FhGHFRO+mhE6uogP7/5vtPlSktfFUXpWRY1NvKgXo8uFeQV+Hx8ZfVqBs6Zk7Zj/NHr5SVoFUietnMnJSNGpKX9z+vrWejzEdXrQQgmW61cb7NRnqaCUMrhSSl/mfrxZSHE64BZSuntzj4piqIoSldptxqwlDIJHHapmSM8dx3QpZfc67Zto8loBLSqTps3b2ZYGpaDCcbjzT97bDYmJZNsvemmDrU5vE+fVvdlcXGH2lMUped5ye3mVz5fc+rvCLudG91uhsyZk7Yg708eD39JzdVHCOaYTFxqs6WtsnA9cLdOR1SvR6JVL/8/t5tJakS1y0kpI2g1rhRFURTllKA7nielru72OPU7d7a6v33HjrS0O6LFyKohkSA3tWxNRwwbNozT9frm+x/X1uJ0OjvcrqIoPcNrwMMtUn9z/X5urK7mzDFj0haovgk8K0Rz6m+/ujq+VlvL+HHj0nIMH3AHELHbQQgyEgnOX7OGIb16dbhtRVEURVGUIzmuYBW4Lq29SJPxBy0GnD9oUFraHZSVha7RSmiVhYAvG4vFkpZ2e8fjzZWE92ZlUduicJOiKCcmCTzp8XC/19ucllvo8/HVlSsZksaU2ZcbG7mvxTF6NzYyd/16ytM0Vz8C/CQQYKNXyzgtLSriR5EIV8+YoVJ/u4AQYlrqX1N390VRFEVRuku7acAHE0IUSSnrpJR7O6tDHTF82DAmNzSwNhZDr9fjs9vT0q5/D+z7hxGZAJ8ug+VTKplyWgn2DrZ/WmYmLwUCICW1ubmYW4y0Kopy4pHAQ14vz7RIy51os/FNt5sBaUz9XdTYyK98Pq0suxCMt9m4obGRfvPmpeUYCbQlcD5ubAQpaQLuzsxkQRqmVShH7WFgArAcGN/NfVEURVGUbnHYYFUIkXfwJmCFEGIcIKSUjZ3as+M0KCODz4NBiEZ5Zds2xowc2eGTt+oqkAlACmRSUuvJxufzdThYPSM/n/yMDFyNjTRkZvLe0qXk5eWpUQtFOQEl0SryvgLNabnlDQ1c19jI6WPHpu047wMP6vUk0YLjAp+Pb7rdaTuGBB4FPk0kDixR8+WX9C4qgryDvxaUThQTQjwNlAohHj74QSnlzd3QJ0VRFEXpUu2NrDZw6BqrpRwond+/szrVEba6OjAakcC+VGptR4O/vn1Br4dEQiJ0kFGWIDMzq8N9tQIloRAutDe0Ki9PrbeqKCegGHC3z8eyZLI5LXeA08l569fTb/78tB3nJbebP+p0zZWF8/x+Lly9mkGzZ6ftGI8fVFl4wo4djKuupiSNAbdyVCrQlnw7G61moKIoiqKcctoLVn+M9kX5IynlegAhxE4pZY9ejHxKdjZ/CoUQUrI3N5fizMzjbiunvJw7q6oAWDcjyua9YCiMk20IsWaP97BzV3PKy4/6GNMzMlgfDoOUbHc4MJvNx91fRVG6nh/4WSDAMre7OfX3PJOJrxkM9J4/P20Xn/7hdnOfz9d8jJF2Oze43QyZPTttx/ibx8OTLVKY52Vk8LXs7LRVFlaOnpSyAXhRCLFZSrm2u/ujKIqiKN2hvXVWHxBCvAj8XgixB/gF2gBgjza+sJABoRDOYBCAmmSS461beevddzf//N769dyWlYUEgskkF3q9TEnDSMPcnBxe1OtpbGxkV0EBy5YtU6nAinKC2FBXx91CUKPTNafMjt61i0vsdsancWmXN4DHWxyjsKmJG91upo8Zk7ZjvAb8pUVl4T719XxFp0vr61COi0sI8QowDe07+CPgFilldUcaTa2BvhKokVJWdLybiqIoipJ+7VYDllJWSym/hjZN6h20zNUeTQBD43H8gQB+v5+/r16dliVhRhQVUeD3I4CEXk/dMYyetqc3UBAOAxDT66ksLFRVgRXlBLC8oYHrmprYEgziDwRACKZt3cqMrVspTVNFXtBGO3/Touqvo6mJr6xezeA0Lh/zgtvdqnpxicfD/DRWFlY65GngVaAEbSrOa6ltHXULsDkN7SiKoihKpzmqasBSyteEEP8DBnRyf9KisL4eUgvYV+Xnp2UeqMPh4OsmE49/bqDpYyPPj2/i9NOcHW5XAHOMRramRjQ29u6NOSOjQ20qitK5PgcW6vUEU/Pj9ckk3/R6mVZQQMno0WnJjJDAnzweHm2RljveZuO6NFcW/qfbzW9apBdPsNm4rrGR/nPnqgyPnqFIStkyOH1GCHFrRxoUQpQB84F7gO93pC1FURRF6UztjqwKIYYKIWYJIexSypCUckNq+3ld073jMyszE4RAAHsKCshN0+hA0eYc1l9gY+evMnjpknx+98eVaRm1/WpODgW5uQigNieH19euTUu7iqKk3/NuNz/0ekkYDCAE5liMi1at4mu9ejFu3Li0BapPAc+1SMvt5XZz3Z49TB0zJm1B5LvAYy3Six0eD9/as4cpY8eqQLXnqBdCXCGE0KduVwCuDrb5EFpdimSHe6coiqIoneiwwaoQ4mZgEXATsEEIcUGLh3/d2R3riNGFhUwsKMBut2PJzGSt0ZiWdjcvhWQUSAhkTPBx9cC0pOzmAsN9vub7q3v3VqnAitLDxIEHmpr4rc+Hx+Oh0e1mUFYWvwyHueGMM9IW3MWAhT4fz7dIyy1rbOSiL75gQHFxWo4B2tyOPwAmsxmEoKipiQvTfAwlLa4Fvg7sA/YCF6e2HRchRAVQJ6Vst8KwEOJ6IcRKIcTK+vr64z2coiiKonRIe2nA1wETpJR+IURf4CUhRF8p5R/Qsld7tEmxGCsDAZCSZ+vqOD0W6/DJ5MwZkJEB0ahEGCXRcwxpq957cUYGH8TjICVflpYSiUTS0q6iKB3XBPwG+FDKA6OQXi83ezycOXp02o4TBH7u9/Nei8rC55jNXAL0SWNa7gfAfZEIoXAYs9nM5IICrnK7GXTeeWpEtYeRUu4GFqSxyWnAAiHEPMAMZAkhnpNSXnHQcZ9CG+Bn4sSJPb64oqIoinJyai8NWC+l9ANIKauAGcBcIcSDnADBau89e5pPKncUFLBt374OtzllCrzxrmDA/4vS/3knkekGFq1fn5aU3TMLChhvs2kFnITgqX37VCqwovQAVcCNoRAfthjpHOh08tVVqxiSxsDOA/wMWJVINP/tGrV7N5fV1DA5TenFAEuAeyIR9jmdeD0eEtu28RO/nzPSmF6s9FxSytullGVSyr7ApcB7BweqiqIoitJTtBes7hNCjN1/JxW4VgAFwKhO7leHTSgspLBF9d4daaree84UqLiuAduEKJC+lF0BnOU6MA1pTXk5G1Wwqijd6mPge+EwG+vr8aZSf6/S6fh/RiMXpXGkc319Pdc2NLApEtGyNYTg9G3bmLFlC2VprMj7X+CPQCi1tnOu38+Czz/HV1OTtmMoiqIoiqKkS3vB6pVoc2SaSSnjUsorgTM7tVdp0Mvh4JqSErJzcsjLzeWNeJx9aQr+vmYyNRdwqiwpwVRampZ2z8vOpsjnaw6wX7HZ1OiqonQDCTwH3Ac0RSIgJcZ4nHmrVzOzvp7xaRzp/Lihgeu9XrYHAjidTgRwe2Ym387L4/yKirQVbHrM6+VBr5dIKiAu8vn4yuefY08kKFFL1JySpJRL1RqriqIoSk922GA1tcZqq2BVCHF96rGPj9SwEKK3EOJ9IcRmIcRGIcQtHe/usbkwN5csk4lGt5vNwSB/+fDDtAR/0woKODM/H7vdjtVu522TKQ291QLsnxcXY7fbAfjAYOCxTz5RAauidCEf8BO/n6daBHY5oRBf++wzBrpcaQ3sPgQWGgwHlsBJJLisqopLc3PTWln4waYmnvR68Xo8OJ1OhsTjPFlYyPQxY6hIU0CsdA4hxP9r8XN6vmyUU16V08kLy5Y131+6fj0Vd999TM8f+b3vHXG/Hz39NCO++11+9PTTPPPuu9S6OlrIWjmR7T+/bc/DDz/MsGHDuPzyy/nvf//Lpk2buqBnSk/W7tI1bbjxGPaNAz+QUg4DTge+K4QYfozH6xAbMLShoXn+1xdprLI7PxzGHwjg9/t5vrGRf7zRyL33wvLlHWt3Rn4+41IjORJYMmIEa7ZvT0ufFUVp3xbg+lCItxsbmwO7kbEYT+flMXvYsLQFdhJ40uPh514vUq8HIbDEYly4ejXn5eR0uP39ksDDwKIWhaHK6+u5orKS/g5H2gJiJf2EED8WQkxBq/67Xwe/YRRFU1VX1ypY7SxPLl7M6oce4v5rrtGC1cbGTj+mcmJ77LHHePPNN3n++edVsKoA7VQDFkKcLqX89ODNR9uwlHIvWpl9pJQ+IcRmoBTo0k/d18xm3gkGEVKyrVcvjFZrWtot2r2b/IwMGux2PF+YufLyHGRMqxb87rtaMabjdZPBwOfBICGjkYDJxKNmM6OcTkrUSaWidAoJPOPx8Hcg2qLA0bidO7nc5aL/uHFQVJSWY0WBX/l8LGpqaq74OzQzk29WVzMmjUvgxIE7fT4+SCYPFIbat4/zNmyg7/z5aTmG0qm2AF8D+gshPgQ2A/lCiCFSyi3d2zWlu/zyxRd5ftkyehcUUJCVxYSBA/nhRRf9f/buO76t6m78+Odoy5K87evYzt6D7EESRiBAGAE6oKXQlkJboANK+/C0tDy0lLY/6HjoLpROWiiUQnmglFkg7BUgJCF7x5Et27K1t3R+f0h2nMQJIZFjO/m+Xy+9bN17de/3XsuSvjrnfA+bm5v50h130BYKUWK387svf5kJjY185mc/o7SkhOWbNtHS2cmPPvMZLli4kOvvuou1TU1M/8pXuPTUU5kxalT3MaKJBFf/9res2r6dTDbLTZ/4BOcff/x+Y8pms1z/l7+wbNUqkuk0XzrnHK4880zO+/73iSaTzLvuOr55wQUs37SJS267DafNxqs/+hHOIvVKE4PTj3/8Y+6//36SySQf/vCH+e53v8tVV13Fli1bOO+887jooot45JFHeP755/n+97/Pgw8+yOjRo/s7bNEPDjR1zW+AmXstO/dQDlKY+mYG8PqhPP5wzKuuZnEkwvJsFrPJxL2dnVzj8x32B8KG+npOfPVV/m/GDKKvO8mkFWQhlYJlyw4vWR1fW8vlu3bx68pKALZVVXFzezs3ke8qLIQonjDwvUiEJ3skj/ZMhsWrVjHG76dxafGG9AWAHwCv53LdCfFQv59rOjtZOG1a0Y4TBf5nrylwzrHZ+IjVytBzzpHW1MGhk3yB6EWF20RgCXB9IWFd0H+hif6wfPt2Hnz1Vd752c/IZLPM/OpXmTVmDABX/PrX3PHFLzK2vp7X16/ni7ffzrM/+AEAzR0dvHTrraxrauK873+fCxYu5NZLL+UnDz3Eo9/+NpDvBtzlB/ffz6lTp/LHr3yFQCTC3Ouu47Tp03HtZ6q+Pzz9NGUlJbx5220k02kWfuMbnDF9Oo/8z//g/tjHWPHznwNw++OP85PLLmP22LF9eZnEIPDUU0+xceNG3njjDbTWnHfeebzwwgvccccdPPHEEzz33HNUV1ezceNGli5dygUXXPD+OxVHrQMlq/vQWjd90AMopdzAg8C1WutQL+uvAK4AGFakir17+7TbzepkEp/Px+PZLHVPPsnHliw5rA9shmHwxfnz2ZFI8OLxCZS1FA1YrbBo0eHP7POh+nreXLeON0aMAOAVt5vrN2zgViRhFaJY1gI/Ajb3aE2tCwT4cizG0OHDqZ8/v2iJ3fK2Nr5vMhFzu3E4HASVYsrOnSxav54xRWzpbAduAlb2OKfp27ZxgcfDzBkzinYc0efOBL4DjAZuA94Folrry/o1KtFvXtq8mfPnzetukTx37lwAIvE4r6xbx4U//GH3tsl0uvv3Dx1/PCaTiUnDhuELBt/3OE+tWMEjb7zBT/7v/wBIpFLsaGtj4tCh+91+5bZtPPDKKwAEo1E2Njczsq7ukM5THP2eeuopnnrqKWYU3pMikQgbN27kpJMGfP1W0Q8OlKyOUko9sr+VWuv3naRcKWUln6jeo7X+53720+cTj08DqoNBfFqTMZl4bdQoTvB6D/tDqGEYXLh6NW/PhJH3+Ii95uCCuTHmzz/86sCGYfB94Ea/n9ddLgDeHjaM//H7+S7QMMgSVg1sbm1lc2srZXV1uKqricMetxjQGgwSCASoKi+noqwME2DucQsFAkTb2xlZWcnIykrKgDKghEEw+a8YMHLAHwMB7gZsTmd38jhj61YWbt7MvCK3Pv6ro4PvRiKkTSaIRqkzDP6rtJQpJSU0FPFYb7S18T2TiWSPhPj4jRuZu20bDUVsIRZ9T2v9LQCl1Lvki1PPAGqUUi8BnVrrQ+rpJAYvrXv/iJTTmnKXq7sFc292q/V997H3cR68/nrGNzYedFy/vOIKlszcuzOeEL3TWvPNb36TK6+8sr9DEYPAgZLVNuB/D3XHSikF/AFYq7W+7VD3UwwK+LTZzDeUQmnNmqFD0UUauzqrpoY569bx5qwRuGenWVtRwb/ee4+51dWH/QG0zjC4Cfjyzp1srqkB4A2Xi8/6fHxh61aOHzmy37vzJcj3Vet52xYMsiMchvJy0m43nYAvkcCbSIDHA7EYRjKJfa/xKslkcve3vsEghsOxxzbJZBJfKJRvvo5EMFyu7vUWoJR84mqJRDAFAhzndjOzvJyRwPvXnxPHimbg+9EoL3V1+w2FGFVby60uF3WlpdQXMXnMAncBfzabSZtM+d4XmQyf2raNT44fD0Vs6fyP3883w2FSZjNEo9TX1vJtt5tRlZXUT5nS768V4pA9qbV+E3hTKfUFrfUJSqnq/g5KHHknjB7NlQ88wDcvuIBMNsu/ly/n82ecQWlJCSMNg3+89BIXnnACWmtWbtvGtJEj97svj9NJOB7vdd2SGTP45aOP8ssrr0QpxTubNzPjAGMFl8yYwe2PP86pU6ditVjYsGsXDVVV+3QbPtAxxbFlyZIl3HjjjVxyySW43W527dqF1Wqldq/aEB6Ph3A43E9RioHiQMlqRGt9OKXiFgKfAlYppVYUln1La/3YYezzkC2pquIJu523s1kcDgeP2u37DMg9FIZh8F3gG0qxy+mkrbOT/1WKjz3+OB8966zDHxtrGPwa+F5bGy97PAB4y8q42e1mxpo1XLh5M9NHjy7qB9EU+bF1AWCL38/Wzk7M1dXo8vI9ktLmRIJgYWqPrqSxO+HUGjo6MKxW7HY70R4VjpXWJBKJfZLVRCJxwG0OtD4DdADNySS+jg7QmqdDIQynE7vdTi0waq9bNdIaeyzRwL2dnfwJiPUYM1oXCPDlYJDFxx0HVVVFO14n8J1olBWZTHeBo/JolHNWruT0RYuKdhyAp4EfmM2kzGY0YE+n+cy2bXx0wgQojH0Xg5PW+us97n6msKy9f6IR/WnOiBGcN3cu077yFYbX1DB7zBjKCl+83/O1r/GF22/n+/ffTzqb5aITTzxgsjp1xAgsZjPTrrmGzyxevEeBpRs//nGu/f3vmXrNNWitGVFb2z22tTefO+MMtrW2MvOrX0VrTU1ZGf/3rW/ts91nFi/mqttvlwJLgjPOOIO1a9cyv1Dgxe12c/fdd++TrF500UV8/vOf5xe/+AUPPPCAFFg6Rqn9dQlRSv1Ta/2RIxnM7Nmz9fLly/ts/1uAa4FEMkkikeDbmQynFenDqRf4dGcnbaFQfnoIv5/vKMWcIrWctPh8fHf1al4dPZqc2p1imbSmsaODuaWlNOZyjKqqoiSXo621lZraWqpramhrb6eptZVSw8BVVUUc8HZ2siMYxFRZSa60lCDQHIvhSyahpAS73Z5PPH2+7gIthmHsmZT2si5YmMtRk08Ey8rLKSsrI5lMEti1C0cyiS2XY+KIEdS4XDih+5YKBln95ptordEmEzNmzcJTXk6WfAtVZzDIOytXkjSbSdjtDJkwgYzLRYB8Cy+w3+P3xpJIUN/RwSlOJ2dUVFBalL+UGIj8wC2RCE8XvshAKUy5HLO3bGHOtm2cX+Ruv2uB78TjrG9r6z7eyU4nF3m9jK6rK9qxNHB7MMh9gNlkoqOzE3c8zvkrVnDpokXHfGuqUuotrfXs/o5jsCvqe/Ptt8NBdi/td01N8IUv9HcUu91+O5GqKtxOJ7FkkpO++U3u/NKXmCkf4AenI/n8Ggj/d319vgPhHA/VQHut6WMf9L35QC2rtyil6rTWLYUdfxr4KLAduElrPegmyxoFzA2F+EcgAFrznWSSUZkMo4rwga4e+ILW3Fzoaryzupo7NlTx9C1wyqLDqw4Mu7sEP7NjB79zufAXxrHmlGJHVRU7CtupaDT/i9sN8TiV4TAdsRi4XBCNYhQmZPaFw6AUBAIYhQTUV5iTlnAYwzAO2JLZtc6Uy+FKpagLBBhnGJiVYuuWLTgTCdzpNGcvWMBYoNxup9PlwhsMUl9fj1GIfw9lZfiOOw6v15vfZu/5JsvK8I0bt3t9j32kgBCwKZ3m3++8Q6fTib+0FE91NW3kW157SiaT7GhtZYvWvJTJ8LuSEmba7RxPflLgY/sj/tFDAy+SL23u7VFwqDIS4cpolAkVFdRPnlzU5PFfwB+BjlQq//8EjHzYR25DA+riaRQrf0wB/y8c5qGungxKMdXt5rOBABMlURXiqHTFr3/Nmp07SaRSXHrqqZKoCiGOegdKVn8LnAaglDoJuBW4GphOviDSoKwjfeK2bfyrpIS41UrEbucXmQw/pTjdQT9aWUm7ycQ9SpFY4eTP51nRSY3dBs8+qw47YTUMg4sNg1N8Ph5oaeFfStGyV6thz5ZypTXRWGyfhLOw4X6XmXM5HJEIw51OfH4/Hb/6FQ6vl7rKStw2G3Ygl0jQ1tSEyuVQwJChQ8k4nWSAinicWCxGpqSEp//5T57u5VzKhw3j2ptv7vUcD/Qhe3/rbeS79VZXVzNy/vw9EtoM0ES+Zb3r9tZe1yWeSLDabmc18HtgJDAxGKSxqYk51dVSgXkQ6gT+tzDPqMPhwOFwECJfGXfBli2cevbZRU3o4sAt4TDLehwvmckw6f6d3POdE8jlzPzxD4c/DzPkK/7+AHirR3fm4W1tfLGjg/nTpx/2uQghBqa/XXddf4cghBBH1IGSVXOP1tOPA3dqrR8EHuwxBnXQmWAYLH7jDf49dSooxZrqapYBpxRp/1eUl5MBfvZChlwKyCmSKc0jj4aZP99TlGMMMQyuNgxOW7uWx154gaaKCvweD8GSEpI2GymLBQ2YgDqPh5b2diyZDLZcjuMqK7EDG5uacCSTuDIZTps9G08ux/JXXsGeSODM5Th36VKMkhJ8DQ18v62NW6ZMwe3es0xRpLGRcDiMx+PZZ937uWnbtqJci97sndBagBGF26mFZS2pFHe/8gqbq6vZahjovUrsr0smeT4YBLeb2rY2vmS1srSy8oPN9ST6hQaeBO5IJNhamGc0qBSTa2r4lstFWWkp9UVOVDcA34vFWNnjePOrqviyx8NvvePI5cxks6oo8zCvBf4f+THlXRV/J+/cySnr1zOqiFPgCCGEEEL0twMmq0opi9Y6AyymMBfqQTxuQDMMg6/MnUsmnWZFocLuLZ2dVGcyHFe4fzgUcBXw3LRONlur0ABWzbrjkyTxUMxyAhMnTqSyshKv14vD4SCRSFBfSLq6WxYrK/Gl07vvF4o0+caM2WMbgImnnrp7WeGDvGEYVFVV9ZqMut3uD5ykDhR1hsGnus7XMLDZ7bwBvAasAII9ukC3ejzcZjbzMHAecAbQSydmMQC82dbGL3M5WsrLSfQo6jW5qYmru1odq4tXSDVHYW4uoCOd7j7elJ07ubyjgynTp3PxxfCHP0AqBTYbHE5tpSeBnycSRAqFzUrsdv7b42FSkafAEUIIIYQYCA6UdN4LPK+Uaiffw+1FAKXUGOD9Z5UewAzD4Gbg87EYKwvjNK+Jxfi91ozeqxLZoTADP5+XI/iLNaze2IBrfpLAIhef9/n4ulJMKcIxuuyvW2zPZb1tc7DLjmZ7n++Swi0OPJ3N8lefj801NWTNZhwOB+3kxyL+jXzCeh4ytnWgSAK/DQb5UyxGDsDno7KigvJ4nJPfe4/hgQCjijzPaDtwc6Hab1e333g2y0lr1jDJ52N44Xjz5+e7/i5blk9UD6VVNUO+e/o/k0l8ra2gNal0mm9VVLCoqgoqKop3YkIIIcRBGPGyCYBtC3P9HIk4mu03WdVa/0Ap9QwwBHhK7x4MaSI/dnVQcwAf3baN1SUlZJWio6SE72nNneTHPx6uBsPgr+fB7+JBnq2qoqOzkw6tuSyb5XqLhY9UVg7qaVMuf/hhHt2wgVqXi9Vf/CIAK1pauOrRR0lkMlhMJn5zzjnMbWjo50g/OCdwXmUl84YPZ31LC2tGjOAlu737G5oE8AjwQDLJpPZ2Pm+1MqmIX0CID+Yt4HbyXXFz0D3uerHfz6UVFbSPGrVHb4FieBn4SSLBFr+/u9vvgqoqvujxkGlooH7OnD2ON3/+oXf9DZIvGLCa3YXNqsJhznnnHcqmTCnqdDtCCCGEEAPJAbvzaq1f62XZhr4L58iaX1XFGcuX88SUKaAU3vJy/hf4BvmM/HDVGQY3AqWbN/PHwjjSlNnMz81m3g6HOXPLFsYVcRqLI+kz06fz5blz+fRDD3Uv+/rTT/Odk0/mrLFjeWzjRr7+9NMs+8xn+i/Iw9TV8noScDnwPPAQsJPdU/e0aM2LqRRXBAJcVl6OtV8jPra0AL8Mh3mxR0GjoFI0dHRw6rp1fPqUUzAMg6FF/P/a7vPx68IQgq5uxgBzNm3is34/x82YAUUYTtBlI/kpcJpSqe5zrG1t5dRVq7BrTX19fdGOJYQQQggx0AzasafFYBgGX5s9GyMa5YmGBux2O88lk0R8Pq6224tWAXbMugpq/7aLtqUe9EITZpOJRzs7+Y/LxfT33uMbUJTpc46kk4YPZ1sgsMcypRShZBLIj/ms9xSnoNRAYANOJ18e+23gjs5OfIXxiWmTibuVYjnweWBOP8Z5LIgC9wP/SCTY1aOg0eiaGj7n8TDG76ehkKgW0/Pt7Xy7s5OA09ndzdiTTHL6u+/SGAoxdPLkoh2rawqcOxIJdhXmag0BXyor49xhw2i2WIreWiyEEEIIMdAc08kqFBJWoBS4v9Ba9qjWbN+8mR+Tr7x7OF59FS68sJJUqgLLg5rLHo3z3pwMaE3cauW10aP5gs3Gp8mPgRzM6d3Plixhyd13c93TT5PTmlcuv7y/Qyo6BcwCvq8Uv33rLZaNH4/f48HhcNAM3AxMiEQ4fetWptXWSjJRRFngvs5O7tGajMu1RwGlCbt28eXOTk6aNq3o4zcTwF3APVYrQaeze7qjaaEQ15SVERwzpqiJYwT4OfliX5HCOVozGZasXMnsESOomzFDplISQgghxDHhmE9Wu3wWWNXe3t1atqqhgR9ks9zG4Y1hXbYsXwU0m1WAYtibLj40w8/3EwlCDgcohS4p4a5kkj/HYiwymzmztJRpDL4/zu3Ll/PTJUv46KRJ3P/ee3z2kUd44CMfoT0Ww+J2YyopIU7+w/+7qRRf8nqxlpZicruJkS9s1JlIEEkkKHE4KHE4MJPvkp2Kx0nHYtQ6HAxxuSgj/wXDsp9FeftBOPfDOW7+WnGrLR+IYRhcuXAhZ3u9rPN4eNRuJ0q+e/BTHR38x+PhhJUruWHqVEksiuAt4JexGO+Ew/mut5EIlRUV1IVCnLB2LfXhMOOLXEAJ4Bm/n18CMbe7u5uxLZNh0bp1XDdrVv5vW+QpcG7aq9uvIxzmjBUrqEgmqV+woGjHEkIIIYQY6AZbPtRnFPB1i4XmpibW19WBUmyoquLbwP8AhzpBy6JF+ekqek5bMb+qiimZDP8KhXiloYEWwOfzgdbcrxTP2+1U2u3MBSb6/VTs3MnIIUMGTCtdjnzC2Um+SukmIJBI8IcVKzjvlFN4GrBPmsTLjzzCvdls/sTTadyZDGaLhWwmw7ZUii3pNHR0YFit2O32/DjQQqVTfyiEYRi7lxe6Qm6NRjEsFux2O5t/k2btV0sAWPsS/MuRZtEXrYwCKgMBXM3NnFBZSUMfXbeuMa2zgXOBv5LvmorWZJXihXHjSOdy/BAo65MIjn7L29r4XSbD1spKEj2mhvHE41ySSLC0tpbmTKboXWKjwM9CIe6PRvPJcTSKYRgsqazkzC1bmDxrVlGPp8kX7bojkcBbeK4HleJT5eVcVFND2+TJ0u1XCCGEEMccSVZ7aDAMfgHcnkjwaiFRejuZ5PJQiJu0PqSKr/ubtqLBMLjKMLgC+OOGDdydydDhcqG0JpFIELXbeSKZ5K5oFCoqqOjo4KSSEqZ6PIwEXK2txHbtoqEIH2A1+VbNIBAo/Nza2cn2QABzVRWrgP+Qnx4kkk4Ty2axWCx0kP9Q/2omQySZxONy8e9Nm5g5YQJrd+zAqKjoLkCD1mQKyWomk+k+btf52u327kqnB7u8+cGuM1CApvlB2PlF2JRM4guFoKQEWzTKWeEwZ3g8zCJf6bcvlAFfBmal09wYidDmdoNSbKms5MvAV4GZfXTso5EX+G04zMOxWH6u4sIYUWsux6zNm5m5cyfnnn02hmEUveX6deA3wFatu593zlSKC3fs4HNjx6KmTi3q8cLku/2+DkQL3X5tmQyLV69m8bBhNM6YQaMkqUIIIYQ4Bkmyupc6w+C75Ku+3l4Yw+rTms9ks3zLYuFDlZUfeJ8HmrbCBJxbVgaPPoq3tJTNdXWka2sJwx5JWmdJCctyOd6hUIk2kUBVVOAIh5ng8WCUlOTHu4ZChINBSsvK8JSWAvmkMBQO0x4KYS8rw+x2k6DQ7TYepz2ZxOx0YrfnO9Emk0l84TCYTBAI4MpmaQWymQyRWAy05o+PP87GXbuIxON85ec/5+x587hk8WL+8cILPPDCC9htNi4/5xxMWmPNZrFlswxxOikln1oOCQaZumIFjlyOM048kaFAOJlk2bJlqEwGZTKx5OyzqS4royWZ5LEXXiClFCmHg1mnnIIVqDg3xV+ftRTOEIZ8NH9Ne163lNncfd0swJhIhAleL2eVlVHfBwnA/Opq/pzN8rseX3gEgOuTSea3tHCFw9FnLb1Hg9WtrfwllWJldTWxXA7N7i815gYCXO5yEauqov6444reytgB/CwcZtle1YXHtLRwyvr1nHfGGUWfbuo94PvxOLv26va7ZMUKypNJ6o8/vshHFEIIIYQYPCRZ3Y8PA+07dvBrq5WcUiTNZm4zm9kAfIHiFkIyDINzly7F6/VSX19PrdPJZuBx4KFoFL/LBUrhcDiA3clYTiniVitb0mn8FJLMQCDfmhkIYNjtu7vRFqqm7tPtttDlkB7dbvduycxmswD5FtFCS+mVZ5xBhcNBlcuFSiYJNDdjyWQ4c/FixjY2UllSghNIRiKEEwk8Hg/uQjKMw8FxlZV8fNiwfNfG6ur88tpaqs48s/s6dCUjntpaLjrjjN3LC/NKLr7WxdRMiAcfhI9+FL78xVK2A8tzOR7btYvtVVWEnc7u6xYtjCd9ym7nT8Egn7Xb+Vh5Oa4i/i0BGgtfeLwN/BTwFb70+D/gzZYWfqYU42Re1j14gT+GQjwYj5MDaG2lsqIClGJkayvzN2/mskWLMGprocjXLgM8CvwxkWB7j+rC42pquMbtpsFqpf6MM4qaHKeAu4G/J5O09Oj2e2l5OR+vqaFVuv0KIYQQQkiyeiDnlZbS8tJLPDllSnfS8yL51pCvUNxunV3jH7uMAa4uK+NjiQRbm5vJNjYSttvZCqyyWHgzmyVlNveaxB5K91pLNktJJMJoux2L2cwOrxdnMklJOk1Ma04FstksTdu3Y85kMCnFuHHj8mN57XYi1dWEw+F8UlpS0n0eVrcbt3vfEb9Op5MZM2a873V4v+XXXVfKddftvj8eGF9RwWmjR7PL6yVTWclmu53XgHd6nG/YbudPSvFQIsH01lYudjiYUOQkaCbwK+AbHR3dhbt2lZdzndnMT4BxRT3a4PRmWxv3pFKsra4mrjU5drekjo5G+V5JCS6zmfpFi/okcXvW7+eOXI5Aaek+1YWv6ezkhGnT4BB6UxzIJuA28vP1xgvPSVsmw2mrV3PKsGE0zJghre9CCCGEEPRhsqqU+iOwFGjVWk/pq+P0JcMwuOKEE1jc3MxzQ4bwWqFlsIN8t845Ph9X2O0M78MPlr0maS4XPpeL7c3NeOrrcdrthIDt2SzPrl1LVmvMSjFv3jwqgUAux2tr1mDOZLDlcpx2wgk0ApFUiudffBFbKoVda5YuXYoB4HbjGzWquyXzdrudusJxy0aP3p2U9khC3ftJSvtLz+s2F/gEsDqZ5BdbtvDu0KEkbDbMJhPbW1vZrjWPRaN8MRDg0+XlRf2nKANuMpm4afNmXh09GpQibLNxVSDAZ7Xm4oqKonctHeg0+VbneyIRnonH8631hTGpKEVDRwfztmzhCwsX5lvdu1rei6idfJfff3UVUIrHqayooCIW46Q1axgeCDC2yNWFM8ADwF2JBNFksrvbb1lHB6euWkVpOi3dfoUQQggheujLltU/k29Y+ksfHqPPdSU9C8gXQPkl0NpjPtZnwmGusNu5uLwcRz/E1dPUykrmzpixu7ts13yTFRWcPHPmPt1oqamh/vTT9+l2u7/9w8BLSj+IKbW1fE9rtjc3s2X4cB5MJOgotKSlTSb+rBRvAFcB04t43K5x0P/p7ORvQ4bQVOhq+iOleCWT4cLmZibu53ofTeLAQ52dPJTJECwtJZHN7tHiPzYS4ZKSEkr9fuoXLuyT65EmPx79fqA1l+s+vjWTYWlbGxdVVtI6alTRu+A2kW9NXd2j4nUsl+Or5eUsrq+nGaTbrxBCCCHEXvosWdVav6CUGtFX++8P84AJwLf8/u5unXGrlT8rxX+ADwHnQNHHQH4QH7Qb7f6WH626zncusMjn41crVvDS2LF0FubR3AV8PZlkYns711itjC5S12DDMLjEMKhdtYpbTCba3W7QmpdiMd4sKWHuypV8c+rUo7L75xby46+fSCTY0TVPaqElUwGjfT5mb9/OZ086qc9aUjXwJvm5Wren03sUUJrg9bJw40YuKoxLLebfoMXn495olGfq61EOR3fX+7pAgNNWrWLS5MnUzZghc/EKIYQQQvSi38esKqWuAK4AGDZsWD9H8/7KgBvNZn6yYgWvjh5NpDCWNUx+ns1/AucVboOz/fHYUWcYXH388Zzv9bKmvp5/2+0EelSAXh6N8gOzmUVdLdFFMLW2lo8/9hivjB7NiuHD0UDCauXFcePYkctx/oYNfVap+EgKAS8C/4pGWZPJ4HA49hgTastkOKmjgwudTtJWK/UnndRnX5psBP4IvJVM4mtv7y5mNLu6mhtKSii124teQAng3bY2vtnSwq7ycmhtxTAM3HY7kzdtYvqWLVhMJurr64t6TCHej1JqKPkeT3Xkp82+U2v98/6NSgghhOhdvyerWus7gTsBZs+erfs5nINSZxj896xZbPd62Vxby3/sdloL66LAvcB9iQSzfT6WlpQws6amH6M9fOXDhnHTtm1F3+dA0NXSOof8Fwzfb2vrbjWP2O18x2LhwmCQeVu2MKwI3TQNw+BDZ5/NXK+XHdkst6VSBJxOUIrt6TS/sNv5cyDARakUM/1+Rg0ZMmhavlPAUx0dPJ5IsKWykqxS+Pz+7uSwsqKCyliMSTt2MLm5mY+edVafVPftsrq1ld+n06yprt6joJgtk+H4TZu4tLaW2TNmFL0lN0Nh6iurFX95eXc356pgkFtqa3FOmYK3slK6/Yr+kgH+S2v9tlLKA7yllHpaa72mvwMTQggh9tbvyepg1bM76YXA8+THwXkpTCHT2sp24MF4nBmxGKeVlLAAGAmDrqDOtTff3N8hHBEVwNetVhxvv81/Jk0iYbNhMpn4XWcn/zKZOPupp7q7ir6fn3372wR27Hjf7ebG42zLZGiyWklkMgBEgN+TT3A8iQQjHA48qRR1Y8fyP7fddngnWWRJ4C3gZeCFRIIdkUi+m29rK26XC7TGlMsxxufj49EoJ1RW0pxIUD99ep8lah3AH0Ih7o3FyCoFPh+GYeCy2xne1MTsjRtxZ7MMnT696Md+tb2dn2tNR2kpFqcTQiFMuRyzt2/nuxMm0ABwjHW9FwOL1roZaC78HlZKrQUaAElWhRBCDDiSrBaBBVgMLAJeAn4dCnW3zimt2ZJO83fg7+T7Xc0HFpKfumSwJa7FpIEYsLGtjc1tbXgMg5KqKrydnbT7/dRWVVFVUUGwo4Noaysjq6vxaE2yqYmhfdQqZRgG18ybx2k+Hw/X1fF2oQhQc3k5f583j0a/n48exHEDO3Zw04gRB33cjmiUl9ra8JWWkjGZ9llvzuW4Z8MG6nbsYFQgwOR+Sng0sAt4B3gxEuHtdBpTSQl2u51gj26+SmuGxuMY69YxprmZkmyWE5cuxTCMPhufGSZfbfdRoE1rskp1xzLe7+f6+nosY8bgLSkpeqtmFLg9FOLuaBQNEI9jGAbzqqo4d9s25k6YIAmqGHAKdSVmkK8fKIQQQgw4fTl1zb3k87dqpVQT8B2t9R/66ngDgRk4GRify/GLlStZZxjsqKnpngcVoIV8F8GHgJJ4nNHt7cxyuZhVWUkjR8e3B2lgQ2srG9vbsRsGqqqKALA9FGJHJEKurIyUy0UACCeT+OJxcLkgGqXSZqMjHAarFcJhKi0WOiIRcDohFgPAXF5OVWsrs4JBFprN1IdCNBYx+ehqNV8E/CEQ4FeF5VGHg9srKvBu3syFbndRk65Kl4tTtSYQidDidPJeMknMZutenzWZCDkc/FJrKCujNBDg5JISRmezuJqbmVZVxbja2qJ++ZED1rS28m5HB9G6OtrLy3k3Hqc5lcJsMtFRqGpMOIxhGDgcDlQ8zpjmZia1tPDJU0+F6dPx1tb2aZfXEPAw8I9EgkCPKWGCSjGks5MTNm7kihNPzE/LVOQkX5PvVfEHYHshUe+at3jJrl1cO2oU5smTi3Y8IYpFKeUGHgSu1VqHelk/qOpJDBQjrv83ANtuPaefI+k7I17Of6G6bWGunyMRQhRL12tXl4H0GtaX1YA/0Vf7HujqDIOvzJ2L1+ulqqSEJrudV8hXI40Vtkkmk+xoa2Od1vw7EsFwuXDZ7QwDRhVuIwu3/qwu3CUFBIFAj58BYGcwyI5IBF1WRsrtphPwJ5P4EonuBNQoTHXjCwTyyY3fj2Gx7DGOsKsFLBqL7fc+Oj+kOWMy4Sst5THgMcBTUsKMd9/lQy4Xx40ZU7RkRAGfKy9nVDbLj5UiYbXS1tnJ7y0Wnt+xgx8qVbRqwbB7WqBGYEIkgjcWw+d0sjGVImk2A/lECCDkcPBcKpWfJ7SkBBIJhicSDMlmsQWDNLrdDCstJbRjB4Fduxg6ZAhjR4wg5Pfja2ujoqYGT1UVrR0deDs7sVZVYSovZ1c4TFM0SqK0FL/JhDeRyH9REApRaTbvTlB7xFIZiXByLsclI0bgqKigOR6nftKk7r9DX3b3fYh8peFQoet9dLmV6OuauUvs/Hiai2q/n4YTT+yTGN5ua+NX2SxNFRXY7fbuBHlYezunrlvHJYsXYy76UYU4fEopK/lE9R6t9T9722Yw1pMQQghx9DkaGvIGpJ5TwgwDFpBvcXwXeAV4PBrdIylLJBLY7Xa2kJ/qo6fSeBxXIEC92029x0Mp+UrDpYCncCsFYj4fbV4vQ+rrqS0cu6ulB6DZ52NnSwsV9fV4amqIAwny8182d3Sws7MTa3U1lJXtkZS29Gixstvt3XElk0l8wWA+eenowLBae01AE4lE/gG9nG+p3Y6Kx7GnUtizWcY2NOBtboZcDkwmho0cyZbWVhJmMwmbjZjNRqRHDABhh4MXxo/n9UyGeStX8q2pU4taTffUqiqmANe2tnbPy7qxtpZrzWZuAmYd5H4SmQwn/elPJLNZMrkcF0ycyHdPOYUbn32Wh9evx6QUtS4Xf/7Qh6j3eBjndjMOmBGJ0ByLsUwpYh0d7CovJ1tIXnteU380yvbC84pAAE82S0hrKFScLe3sJByN5pPPrlbsSAQsln2T0fb27jGne39xYM1kaOzoYJjfz1C/n8pEgqVLl3a3XPb1NCzNwF9CIZ7M5bA4nd3PuehyK1svMdApePLncP1zTmbOL14l5y5R4LehEH+NxchB95jYIXY7X3a7afT7aVi8WLr9igFJKaXIdwZYq7UeWIPghRBCiL1IsnoEWYHZhdsF6TR3vv02u8rKaC8txVlbS7iXxySTSVa3teUTiM5ODJttj4Sx53a+ZBIqKyGZxEgm900sk0koL8+Pp+uxPplM4utKWoJBjB5JaVexqK6KroZhdK/rLSm12+04HQ4yqRTOZBJ3KsXcigrKtGb9+vU4Ewnc6TTnn3QS4wGHw4GvogKv15vvKlpbi0/r3fcNAx/k7xeqKq/YvJkXW1vZXF3N5ro6ElZrPlaLhRfGjWNbPM432ts5sYhVXmuBH2rN9bt2sbqhAZQi6XbzzWSS2a2tfM5mY9T7JCd2s5lnL70Ut81GOpvlhD/9ibPGjuW/Fy7ke6eeCsAvXn+dm59/njuWLu1+nNvtZqzbzcRYjC/U17PD6yU3dCibTSYeaW7G73IRcBXa33v8PeKx2B7Hjx+g1bq3+wDOdJrSWIzacJhThg6l7fXXqQiFsCjFggULSBjGEalqq8lXf/k/4IVkkpauVvpQCMMwGGu1oh4OsCVpoLWJTEazbBnMn1+8GHLAU+SnqNqpNblCXKZcjvktLVw/fDjOysr8/6AQA9dC4FPAKqXUisKyb2mtH+u/kIQQQojeSbLaT+oNgy8sWLA7KXM6iQJbobt1dSuwKh7vNSHc2/4Sx4NZfzDrlNaUJJNUB4OMqa2lnHw32Q2bNlFSSECXLlzIOMBjt9NWWpo/t4YGjNJSAHzTpu0+3x7T+Rh7jSN8v/tLDIPpPh9erxdTOs3TiQSPWCz5KWCAHUpxdTTKFywWPl9ezr7lig7NUMPgNuDpQID/GzaMEODz+fi31jwbDnONzcbHKyr22/VTKYW7MA41ncuRzmZRQGmPv1M0lTrguNOe12IesHjkSLxeL0NcLkLZLPctX07YZiPhcFA1ahTrWlpIWyxkTSaqhwyhubMTlcth0ZqRQ4fS5PNhyWRwptPMGD2a7e+9hz2ZpDyZ5GOnnILD48EbDlNf6F7ts9v3+CKhr734Knz/zgRbcjkqLrdgnGwj3uP5WhcI8Ol4nEvGj+exjxm8/nfIZDQ2m2LRouLFsRr4eSzG+nR6jzGxDR0dLFq/ns8sWoSzeIcTos9orV/i2K7tJ4QQYhCRZLUf7Z2EuYAphVuXXckkf33tNcI2G0m7neMWLMBEvvJpmHxxmTDQarMRzeXIKoUJcNvtWNn9iaTMbieWy2HOZrFls4yxWqkEnEDGbGZLSwuWdBpXOs3J06czEigD0qkULy9bhrVQVKe7uydAWRm+KVMOKgHd37JiXLtpwCd8Pn7V1MRTFRWkzWY08JdsltdbWrjOZGJSkcaWGobBJw2Dc4Fveb3dVZ/bV7q44V0nD5wJV47z4/f7iVRX4y6M1+2SzeWYdeedbOro4Etz5jCvsRGAG555hr+sXEmZ3c5zl156SNehDrjyhBP2SCbXplJs2bKFUaNGMbGxEZ/VuvtLhJ6t2KNH55PRrvU9ktEDfXHQV5qBX70Kty7S5FL5ZF7dB7OfSlF+vIMKv59pW7cyLBDg9KVLUcA551Ty3HOwbBksWlScVtWdwJ+Al5JJfO3t3T0MJtXU7O7yu2iRdPkVQgghhOgDkqwOcA2GwWWLFu1OIMrLe9/Q6cRXUrJ7ux4ViAFwOPZcX1Kye53bjW/EiN3rKip2r6upYciZZ+63Ne1IJS/vp8EwuBYw/vMfnpw8GW9lJZFolLe05vJ0mltNJhYVsVtwGXCj2cxP33mHx8NT2HKZgU4rdvxYs/KeNIZSvL5rF/MaGvZIWM0mEyuuuopAIsGH//53Vre2MqW2lh8sXswPFi/mlhdf5FdvvMF3TznlkOLa++8xceJEJk6cuN/173f/SEoDT3R08EgqxfaKCnYus5NLQ9dXLjqtcT4W4w8nl2NraMCr1D7Pyfnzi5OkdgJ/I9/tN8fuHgbmXI5ZW7bwuY4O5k2fLl1+hRBCCCH6kCSrg8DBJhDvt92B1h/quoHEMAw+cdppnOj18q9YjIecTjQQt1q5yWLhq8B5FK//W51h8LXZswl/P8vqtIKsIpfSRF+1E7PZ2GAY+E0mZpCv7tyze3C5w8Gi4cN5YtMmpvRo9b34uOM4529/O+RkdbDRwHrgWeDpRIItkUh+LKrPh2dBHcpqRafy42ct5hxfPynHUCj6FDRdouTHxd6XSBDsUVTM6XAwpLmZeRs2UJZOM2LKlPfZkxBCCCGEOFySrIqjSldi3ejzYXr5ZR477jjidjs2p5NfJ5Msa2/nKxYLI4rYHflTF8Of/wCpFJhs4Dk+kR90rBRJm43XMhneSKepSCSY6HQywuEgkU7zn61b+cbChWz0+xlbla9a+8j69UwoYgvwQLULeDQQ4MlMhojHg91uJ5hM7jF2etY4P1cuG8Lzd0SJRWNcdpmZc87pm5bMBPAI8E+gY6+iYosrK/my241r5Ei8dvsRG68rhBBCCHGsk2RVHJUMw+DKhQs5wefj/vp6tpAvhuTTmuWRCD8wmzmpSEnh/PnwzDNdYyUVZaPNfOtvUOFykQYi0Shpr4m31oe5auffMVs0Fq358NixzPJ4uOrJJ9kcCGBSiuHl5dxxzsCZiLlYNLADeLlw25hM4guF8q2osRiGYeBwONCJBON37WJKczOfOO00jPnw2fku+mq24RRwbyDA33M5Mi7XHlMvVYbDLNy4kY+MGMGoGTP6rDVXCCGEEEL0TpJVcdTqamU9EfifnTt5otBqF3I4uNFq5XLgYvJTCh2uPcdK1jLd7eajFgtvdXTwjtdE5/+5Kc26+azlSoZ+WmEdkiESjfJUMsnlCxYwrbaWYSUlRatcPBCkgPeAZcEgL6fThAotqLBnBWp7Os30tjY+3dhIdXk5zbEY9ZMn92limAAeB/4Wj7OhK2mORDAMgxFWK0NWr2aU14vFZKJhwYI+i0MIIYQQQuyfJKviqGcFvmazwfLlPDthAimrFbvDwQPAW8B/AcP76LhTbDa2vxekNVsGKHRWE9sGrpoMaE3MZiNms9FhMuEGKlIpPJEIDQ4H9YMsec0Ay9vbeTEcxltTw3a3m0gyiS8Y3KMF1W63U2q3U93WxujmZsa0t/Ohs8/OV5k2DOr6MEmNAv8i3+U3DARTqe6k2ROP8+GdO7lizBjaZ88+olP0CCGEEEKIfUmyKo4JRqEY0hKfj0dHjWJjoYVvXTLJZfE4FyjF5WVlON5nPx+U2+1mxgwzGzdCLqcxmxXzRkDAZGIz+e6xKIXFYiGRybAxHgeTibfTacoyGaotFqoAVzxOU2cnTT4fjQMgeWry+Xi7vZ1YfT3+igo2A+sSCXbFYmAyQUcHhtW6RwuqNZNhYns7FzY0MNvhIDh0KF6zmfq5c/s8IfQD9wSDPJrLQUlJdwuvw+Egm0wyY+tWjtu1iw+dcw5mBk9RMSGEEEKIo5kkq+KY0ZWAnAI8Cvw2kegupPNbpVhms3GF08mpUNQWzXHjnFx6KWzbBiNGwNChADZmp1LsSCQIezz4LRY6CokdAFqTzGRot1jwZTJEUineslpZmkgwJRZjdEkJDYCzsxPd2sroqipGV1dTDoedcKfIz98bArb6/Wzs6CBXW0uirAwfsC0eZ30igXa7IRzGKCR/kb0KJCUSCUZZreR27qSxvZ1hnZ18uKsFFXAcgYRwE/Aw8J9EAm9XC284jGEYDLPbucBuZ0pZGW21tdRPny4JqhBCCCHEACLJqjjmKOBcwLJpE7dpja+0FKU1LakUP3c6+RfwWWBqEY85dGhXkrpbhdtNRWEOVg34slne9vsJOxxE7XYslvy/ZyaT6U5iNbAjnSYIvJpM4guHweHId7FNJrHb7dgBHQiQCgSo8niorarCSr5bcjISIRQK4Swtxe52kyY/v+nG5xJseTZLxWILlYvyrY7JZBJfNAo2GwSDGIVpXIKpFLoQS1dSarfbuwskGYEAwzs6+OysWUwqK8M3dixel4v6+fOPSDKYA570+/lHOk1TRQV2u51oj0S6MhLhgmSSz44dm59OyDAGRGu1EEIIIYTYkySr4pg1s6aGjz36KGvq6nh93Dgcjnyb5BbgumSSMX4/n7FamVtT0+exKKDO5eIkwyAcDuNxOLBYLPjJT/OyOR7Hms2Sgu44e3ax7Zk0+sNh/MEgKMX2SIQqmw23x5NPPjs68olvoZuu3W7H93yK5Wfb0CmF+olm9hMpjJNt+92/w+EgBJTG4xjhMGeWlTEbGG23EysvxxuLUT9zJkZh/tgj1aW2A3ga+L94nDXRaPd8rV2Vht2BANO2bWN0ezvnLl26x7y3QgghhBBi4OnTZFUpdSbwc8AM/F5rfWtfHk+ID8IwDM5bupTZXi/Xlpbyst3Og0A4meye5ublTIbFkQiXuN3MJJ9UHozyYcO4adu2Qw8umYT29u678XicU2tq+JLDgbbb2QW8pzXPeL3ErFbiDgdVtbUkgWgstseuorEYbo9nv8ln27M5dEpBTqHT4H8my8STocZqxdfZiSOZpCyR4PSpU5kIGHY7OYeD1o4O6ocNwygv7z6W5wiP9dTAu+Qr+75GvlW1Z9EkUy7H5PZ2vtjQQGldHd5cjvrjj5fuvkIIIYQQg0CfJatKKTPwa+B0oAl4Uyn1iNZ6TV8dU4gPqmer33BgCXBLWxtP90jqlmezbCys/xBwMu8/3c21N9/cd0EDw4D55eWcO2pUvmptTQ2G04kG3uns5Jk33yRtsZA1mZg2ezbDDIOWTIbnV65E53JYgVNOOIE64KXjE3zZYiGTMWEx5/j5vDhLcUJJCb4hQ/L7HzECo6JidwCGQUM/Jnw+4Dng0ViMHek0jkIXZci3PCczGSbt3Mm0piY+cfrp3ZWGJUkVQgghhBg8+rJldS6wSWu9BUApdR9wPiDJqhiwqoD/tlqpfuUV3hw+nM11dd3dbreT7ybw23ic2S0tnOtyManQ1bW/7N3FVgEzJ0zAqTVbtmxh1KhRTBw9Or+yqooZc+funpKlqgqASWeV0/DPDp54IsGZZzo455zK/e6/P0WBl8gnqe9RGFPb3g5aE1QKwzCYabdzlt3OKLeb9rIy6idOHDDxCyHyRrycL2G3bWHugMs+6PYH2sdgNOL6fwOw7dZzCr8PY1vj4Z9bX1ynvrr2R+pvOpieOz2fFx/ocX18jgez/95iP9TzGQz65H/tGLuG0LfJagOws8f9JmBeHx5PiKIwDIPLTj6ZJV4v1pISXrXbeQpIkE+QdrS1scFk4t54nJOjUZa6XCwAXP0cd08TJ05k4sSJ+yzfX/J5zjmVnDMAX+MS5OfCfTwc5pVsFovT2d2C2tWt2ZbJMHHXLj4RCnHWlCn5BxoGQyVJFUIIIYQY1PoyWe1teJ/eZyOlrgCuABg2bFgfhiPEweuZ1E0BLgaeAP4ciXSPhwR4J5NhC3A7MAdYBMzm/bsJi/2LA28CLwPLKYwh7uzMF0wKhTAMA6fdzjyzGdOqVYzw+bABM5cu7de4hRBCCCFEcfVlstoE9JysoxHw7r2R1vpO4E6A2bNn75PMCjEQuICPAsdnMvxs9WrWDhlCU1VVdxfhNPAK8FwyiYrFmGOxsMjjYSZQuf/dioI24LnOTp6Px9lWWYnJsXu22J6FoWpCIc7KZLhs1CjK3W58c+bs7tYsLalCCCGEEEeVvkxW3wTGKqVGkp994yLyDVRCDFoNhsF1s2fj9XpxOp2st9tZBmyiMIbS5wOt+ZdSvGGzYbfbGQHMBGYBE5FWV8iPP10NvAOsALZ0zRmrNbS2YhhGd3ffUVYr1q1bGd3cTE0sxtKlSykv7GcgjakVQgghhBDF1WfJqtY6o5T6MvAk+alr/qi1fq+vjifEkdIzQZpAvmpYE/Dn5maeSCYJORx7TA2zDdgG/BMgkaAuEGCa08mcsjLGARW9HuXooQE/+YR+eTDIm4kEvrIyrPtpPVVaUx0Mcn5tLQuAoSUl+CZOxFtWJi2oQgghhBDHkD6dZ1Vr/RjwWF8eQ4iBoBH4vNNJ3TPP0F5Sws6aGmzHH882IFPYJplM4mttZYfWvJFK8UhhupUaYBxQGwjgbm5mRlUVY2prD3pO14FEA+3kE9NNwObCzyCF8w8G862nyeQeraeldjtlHR0MbW9ndFsbn1y8mJ4pqbSgCiGEEEIce/o0WRXiWGIYBucuXbp7DKXbTQJYRb6i7VPhML4erYddLa9tQFMyiS8UgpISSCQYmUgw2uGgAagnX1rb1t5OrqmJUUOG9GviliE/xrSF/Hynvh6/b00k8CeTe8x72qW31tMltbVMByY6HHTW1+MF6qdOlcRUCCGEEEJIsipEMe3dAuggXyV4DvDhbJZ7XnqJltJSWsvLcVdX0wyk2DeR60gmyTocbCjsJ5lM4ovFoKICayzGhFiMISUllJHvRlxWuAW2baO9qYnh9fWMHzUKK+xx62xtpaWlheohQyivqSFNvjhUpvCzxe9np9+PvaYGU0UFISAEhAs/W+JxfKkU9l6S0a6W457znnZt4wRGWiyEduygtrOTYYEAFy5ZIq2nQgghhBBivyRZFeIIMQyDS047bXfLq8tFFtgOvJ7L8YjXS6vHQ9Dl6q4y3KVnMps2mdiRThPca/+RcBi/UjA0X4S7KhzG7fF0r08mk/gSCSgrg3gcI5ncI+FMJpP4olGw2yEcxigp2Xd9W1u+G+9eyWjPGK2ZDLWhEHO0ZvHw4Ywm3zqsXC5848blz3/ePElMhRBCCCHEAUmyKsQRtHfroRkYBYyqqODUUaPwer0MKSnBZrfjJV9GexewwWzmtViMoNNJzmTaJ5kFiMZi+9zvmazu3Xrb1Q35g64HcMfjNAQCTDMMDMAAzOk077z4IiXxOGaTiaVLl7J3Oiqtp0IIIYQQ4mBJsirEALF3IlcJTOm643bjq6xkl9dLeX09drudAPnCRYHCbX0ux0qfj4zJRNZsZsiwYZRBd1dfj81GOp0GrbHkcoy0Wikl/yJgBVJmM1v8fqyZDM50mgXl5QwFSgu3VDrNKy+9hCMex6bUvslodTUTTj9d5j0VQgghhBBFIcmqEIPE3slsw94bDBnC2kCALVu2MGrUKCZWVe253unE5/HsTiZLSvZc73bja2jIrx8+HKOsbM/11dWM6NmNuZdkVFpOhRBCCCFEsUiyKsRRZOLEiUycOHG/698vmTzc9UIIIYQQQhSLqb8DEEIIIYQQQggh9ibJqhBCCHEMUUqdqZRar5TapJS6vr/jEUIIIfZHklUhhBDiGKGUMgO/Bs4CJgGfUEpN6t+ohBBCiN5JsiqEEEIcO+YCm7TWW7TWKeA+4Px+jkkIIYTolSSrQgghxLGjAdjZ434TvRQXF0IIIQYCpbXu7xi6KaXagO1H6HDVQPsROtbRSq7h4ZNrePjkGh6+o/UaDtda1/R3EAOJUupCYInW+nOF+58C5mqtr95ruyuAKwp3xwPrixTCYH+uDeb4B3PsIPH3p8EcO0j8/am32D/Qe/OAmrrmSH6oUEot11rPPlLHOxrJNTx8cg0Pn1zDwyfX8JjSBAztcb8R8O69kdb6TuDOYh98sD/XBnP8gzl2kPj702COHST+/lSM2KUbsBBCCHHseBMYq5QaqZSyARcBj/RzTEIIIUSvBlTLqhBCCCH6jtY6o5T6MvAkYAb+qLV+r5/DEkIIIXp1LCerRe/edAySa3j45BoePrmGh0+u4TFEa/0Y8Fg/HX6wP9cGc/yDOXaQ+PvTYI4dJP7+dNixD6gCS0IIIYQQQgghBMiYVSGEEEIIIYQQA9Axmawqpc5USq1XSm1SSl3f3/EMNkqpoUqp55RSa5VS7ymlvtLfMQ1WSimzUuodpdSj/R3LYKSUKldKPaCUWld4Ps7v75gGG6XUVwv/x6uVUvcqpRz9HZM4+gy29939vc8ppSqVUk8rpTYWflb0d6z7s/f7yyCLfZ/X9kEW/z6vqwM5fqXUH5VSrUqp1T2W7TdepdQ3C//L65VSS/on6t32E/+PC8+flUqph5RS5T3WDZj4e4u9x7rrlFJaKVXdY9mAib0QT6/xK6WuLsT4nlLqRz2Wf+D4j7lkVSllBn4NnAVMAj6hlJrUv1ENOhngv7TWE4HjgS/JNTxkXwHW9ncQg9jPgSe01hOAaci1/ECUUg3ANcBsrfUU8gV3LurfqMTRZpC+7+7vfe564Bmt9VjgmcL9gWrv95fBFHtvr+2DIv4DvK4O5Pj/DJy517Je4y38H1wETC485jeF//H+9Gf2jf9pYIrWeiqwAfgmDMj4/8y+saOUGgqcDuzosWygxQ69xK+UOgU4H5iqtZ4M/KSw/JDiP+aSVWAusElrvUVrnQLuI39BxUHSWjdrrd8u/B4m/ybS0L9RDT5KqUbgHOD3/R3LYKSUKgVOAv4AoLVOaa0D/RrU4GQBnEopC1BCL3NuCnGYBt377gHe584H7ipsdhfwoX4J8H3s5/1lsMS+v9f2QRF/QW+vqwM2fq31C0DHXov3F+/5wH1a66TWeiuwifz/eL/pLX6t9VNa60zh7mvk55SGARb/fq49wE+BrwM9iwsNqNhhv/F/AbhVa50sbNNaWH5I8R+LyWoDsLPH/SYk0TpkSqkRwAzg9X4OZTD6GfkXolw/xzFYjQLagD8Vurr9Xinl6u+gBhOt9S7y33juAJqBoNb6qf6NShyFBvX77l7vc4bWuhnyCS1Q24+hHcjP2Pf9ZbDEvr/X9kER/wFeVwdF/D3sL97B+P98OfB44fcBH79S6jxgl9b63b1WDfjYC8YBJyqlXldKPa+UmlNYfkjxH4vJquplmZREPgRKKTfwIHCt1jrU3/EMJkqppUCr1vqt/o5lELMAM4HbtdYzgCgDq1vVgFcYg3Q+MBKoB1xKqU/2b1TiKDRo33cH4/vcUfD+Mqhf24+B19VB9f+slLqBfLf+e7oW9bLZgIlfKVUC3AB8u7fVvSwbMLH3YAEqyA+h+G/gfqWU4hDjPxaT1SZgaI/7jUi3tw9MKWUl/wZ+j9b6n/0dzyC0EDhPKbWNfJe4U5VSd/dvSINOE9Ckte5q1X+A/AcccfBOA7Zqrdu01mngn8CCfo5JHH0G5fvuft7nfEqpIYX1Q4DW/T2+H+3v/WUwxA77f20fLPHv73V1sMTfZX/xDpr/Z6XUpcBS4BK9e67OgR7/aPJfdLxb+B9uBN5WStUx8GPv0gT8U+e9Qb6HRzWHGP+xmKy+CYxVSo1UStnID/R9pJ9jGlQK3478AVirtb6tv+MZjLTW39RaN2qtR5B/Dj6rtT6avnntc1rrFmCnUmp8YdFiYE0/hjQY7QCOV0qVFP6vFyNFqkTxDbr33QO8zz0CXFr4/VLg4SMd2/s5wPvLgI8dDvjaPijiZ/+vq4Ml/i77i/cR4CKllF0pNRIYC7zRD/EdkFLqTOAbwHla61iPVQM6fq31Kq11rdZ6ROF/uAmYWfi/GNCx9/B/wKkASqlxgA1o5xDjt/RdnAOT1jqjlPoy8CT5Cm1/1Fq/189hDTYLgU8Bq5RSKwrLvqW1fqz/QhLHqKuBewofgLcAl/VzPIOK1vp1pdQDwNvku0m9A9zZv1GJo80gfd/t9X0OuJV8l7bPkk9KLuyf8A7JYIq9t9d2E4Mg/gO8rroZoPErpe4FFgHVSqkm4Dvs5/mitX5PKXU/+S8QMsCXtNbZfgm8YD/xfxOwA0/nvzPgNa31VQMt/t5i11r/obdtB1rssN9r/0fgjyo/nU0KuLTQsn1I8avdreJCCCGEEEIIIcTAcCx2AxZCCCGEEEIIMcBJsiqEEEIIIYQQYsCRZFUIIYQQQgghxIAjyaoQQgghhBBCiAFHklUhhBBCCCGEEAOOJKtCCCGEEEIcAUqpm5VSp73PNouUUguOVExCDGTH3DyrQgghhBBC9Aet9bcPYrNFQAR4pW+jEWLgk5ZVIYQQQghxTFBKfV0pdU3h958qpZ4t/L5YKXW3Uup2pdRypdR7Sqnv9lj3UI99nK6U+mfh94hS6n+VUm8rpZ5RStUUlk9XSr2mlFqplHpIKVVRWP5npdQFhd+3KaW+W3jsKqXUBKXUCOAq4KtKqRVKqROP4OURYsCRZFUIIYQQQhwrXgC6EsDZgFspZQVOAF4EbtBazwamAicrpaYCzwITuxJR4DLgT4XfXcDbWuuZwPPAdwrL/wJ8Q2s9FVjVY/ne2guPvR24Tmu9DbgD+KnWerrW+sVinLQQg5Ukq0IIIYQQ4ljxFjBLKeUBksCr5JPWE8knqx9TSr0NvANMBiZprTXwV+CTSqlyYD7weGF/OeDvhd/vBk5QSpUB5Vrr5wvL7wJO2k88/+wR14hinKAQRxMZsyqEEEIIIY4JWuu0Umob+dbRV4CVwCnAaCAOXAfM0Vp3KqX+DDgKD/0T8C8gAfxDa53Z3yE+YEjJws8s8rlciH1Iy6oQQgghhDiWvEA+KX2BfGvqVcAKoBSIAkGllAGc1fUArbUX8AL/A/y5x75MwAWF3y8GXtJaB4HOHuNNP0W+i/DBCgOeD3RGQhyl5BscIYQQQghxLHkRuAF4VWsdVUolgBe11u8qpd4B3gO2AC/v9bh7gBqt9Zoey6LAZKXUW0AQ+Hhh+aXAHUqpksK+LvsA8f0LeEApdT5wtYxbFccyle+GL4QQQgghhNgfpdSvgHe01n/osSyitXb3Y1hCHNUkWRVCCCGEEOIACi2nUeB0rXWyx3JJVoXoQ5KsCiGEEEIIIYQYcKTAkhBCCHGUUUr9USnVqpRa3WNZpVLqaaXUxsLPiv6MUQghhHg/fZasKqXGK6VW9LiFlFLX9tXxhBBCCNHtz8CZey27HnhGaz0WeKZwXwghhBiwjkg3YKWUGdgFzNNab+/zAwohhBDHOKXUCOBRrfWUwv31wCKtdbNSagiwTGs9vj9jFEIIIQ7kSHUDXgxslkRVCCGE6DeG1roZoPCztp/jEUIIIQ7oSM2zehFw7/ttVF1drUeMGNH30QghhDjqvfXWW+1a65r+jmMwUkpdAVwB4HK5Zk2YMKE4O+7shEymOPvqaxYLVAygYb2D6dqJ93ckn18D4bnT1+c7EM7xUA2015o+9kHfm/s8WVVK2YDzgG/uZ333G+KwYcNYvnx5X4ckhBDiGKCUkt48e/IppYb06Abcur8NtdZ3AncCzJ49Wxftvfn226GxsTj76mtNTfCFL/R3FLsNpmsn3t+RfH4NhOdOX5/vQDjHQzXQXmv62Ad9bz4S3YDPAt7WWvt6W6m1vlNrPVtrPbumRr4AF0IIIfrII8Clhd8vBR7ux1iEEEKI93UkktVPcBBdgIUQQghRHEqpe4FXgfFKqSal1GeBW4HTlVIbgdML94UQQogBq0+7ASulSsi/IV7Zl8cRQgghxG5a60/sZ9XiIxqIEEIIcRj6NFnVWseAqr48hhBCCCGEEOLolE6naWpqIpFI7H+jWbPAbD5yQRWTYcDatf0dRdE5HA4aGxuxWq2HtZ8jVQ1YCCGEEEIIIT6QpqYmPB4PI0aMQCnV+0atrWCzHdnAiiWVgtqjayYxrTV+v5+mpiZGjhx5WPuSZFUIcVTQQBIIAlva29ne3o67thZnZSUx6L61hEK0h0I4y8qweTykgBTQGYsRjEZxuFzYS0rIAVkgB0TjcWLxOCVOJ06nExOgyA/6T8TjJKJRykpKKCspwQbdt1Q4TDwUwvB4qCstxQmUFG6Jjg7CPh+jq6sZU1ODBxik3wkLIYQQfSaRSBw4URUDjlKKqqoq2traDntfkqwKIQa8OPk5NtoKPzcFg2yLRKCsjJzbTRAIkU86k8kkvlgMnE6IRDBcLux2O3StCwRAa+jsxLDZsNvt+eXt7fnl8TiGYez5mLa2/LpIZP/rYrF913V25tcFAhh2+57rIhEoKckfL5nEYbfjBsoAazQKwSAj3G5Gl5ZSA923MvKJshBCCHGskER18CnW3+xIVAMWQogD0uSTzbXAf4C7gBvCYT7R2sqHEgk+BnwZ+C7ws2SSPwSDPJPJ8ExHB2uSSdrJJ6qQ/wYWrdEAWu8xxmV/6w7lMcVep4EwsDmZ5Hm/n+fTae4KBPh1MsktwNeATwEfBT4Vi3FlczO3hUI8AawGAoXrKIQQQoji+sFPfsLk+fOZunAh0088kdeXL+fDn/wk0088kTEzZ1I2bBjTTzyR6SeeyCuvv979uJ1NTZxy7rlMnDePyfPn8/M77thn3z/5zW9QStHe3t7rsZ944gnGjx/PmDFjuPXW3ou4r1+/nkWLFjF9+nQmTpzIFVdcAcCyZcsoKytjxowZTJw4ke9+97vdj7nlllsYM2YM48eP58knn9zvuf/yl79k/PjxTJ48ma9//esApFIpLrvsMo477jimTZvGsmXL3vcaHippWRVCHFFBYFvhtioUYkM8TrisjIzD0b3NHq2SicQeLZY9Ez1VSPS61tmAepsNWySCLZXCns0yo7ISg3zX26TWrFq3DnMmg1VrFs2fzxAglE7z0htvYMpksABnnHYadeS/zWtPJnn6+efRuRzKZGLJmWdSTT4x9CWTPPnSS2S0BouFE087jTLyiXNzJsPzK1eSMpnIWK1MmTsXG/muyK0mEyva20mYzcTtdipra0kXzv1A5wcQSSbZXGgFfi2d3qPF1g1URKO4OzuZ7nIxp6KCEcDhlTYQQgghBo4R1/+7qPvbdv3CA65/9Y03ePSpp3h72TLsdjvtfj+pVIqH7r4bgGUvvcRPfvlLHv373/d5rMVi4X+//31mTptGOBxm1imncPqiRUyaMAHIJ7NPP/88w4YN6/XY2WyWL33pSzz99NM0NjYyZ84czjvvPCZNmrTHdtdccw1f/epXOf/88wFYtWpV97oTTzyRRx99lGg0yvTp01m6dClOp5P77ruP9957D6/Xy2mnncaGDRsw71Wk6rnnnuPhhx9m5cqV2O12WltbAfjd737XfZzW1lbOOuss3nzzTUym4reDSrIqhOgTGmgGNgJvB4OsiccJlJWRcDqBvbrkJpMHTEgz8Tgj7XZqAYdS7NiyhZJYDHcmw9kLFzKKfPdYO6CcTnzV1Xi9XuqHDsXweHYHVV6Ob/r0/Lr6eoyqQrHy6mrGn3TS7uU1Nd0Pqa6tpWLJkt3rehRBqKqtpeq003avq67uXjetqooZc+fuXldevjsOjwdfY2N+XWUlhtNJlnzL6qZUih9cdx2pjg4yZjPu6mpyNhsJIAHEUilMqVT3roI2G9ZCUQl/Nsu6eByApwGn04nFbM4nscOGce5Xv4rL62V2dTVDDOPQ/rBCCCHEMaTZ56O6srL7M0p11cFPdDKkro4hdXUAeDweJo4bx67m5u5k9as33MCPvv1tzr/ssl4f/8YbbzBmzBhGjRoFwEUXXcTDDz+8T7La3NxMY2Nj9/3jjjtun325XC5mzZrF5s2b2bx5MxdddBF2u52RI0cyZswY3njjDebPn7/HY26//Xauv/767nOvLXwGWrNmDYsXL+5eVl5ezvLly5k7d+5BX5uDJcmqEKIo1rS28kYgQMgwaC0rYxMQpZCUBoP5pLStrTsp3Tsh1bEYo+x2Gsi3EG5dvZrSaJTyZJILzziDuq4DlZbimzSp1wSxi2EYGPtJxva37lAeU8x1ZqAcmF1TwziTiWvHjMHj8eB2u/d4XCAS4b1t24hbLCTsdtz19STtdoJANJHYo7uxw+HAXmix/tXmzdwSDoPbjT0aZXEkwgK3m+lAIzIOVgghhOjNGaecws0/+hHjZs/mtJNP5uMf+QgnLzxwa2xvtu3YwTsrVzJv1iwAHnnsMRqGDGHa5Mn7fcyuXbsYOnRo9/3GxkZe79HNuMtXv/pVTj31VBYsWMAZZ5zBZZddRnnPL8kBv9/Pa6+9xo033sgLL7zA8ccfv8d+d+3atc9+N2zYwIsvvsgNN9yAw+HgJz/5CXPmzGHatGk8/PDDXHTRRezcuZO33nqLnTt3SrIqhBgYNNBCfqzkauDNeJz3Egmw2yEYxHA49ttKmovFGGe3U6kULRs2UBkKURmL8fGeCWlZGb7Zs3cnpHslfAdKAo8GTqeTIUOG9Lqu3O1m2ogRhMPhfDJbuM4aaM9mWd3cTMxmI+pwYHG56Epds9ls998haTbzcjbL6sK6CmAqMKyzk+qdO5l8lF9fIYQQ4mC53W7eWraMF199ledefJGPX345t37nO3zm4osPeh+RSISPfvrT/OyWWygtLSUWi/GD227jqQcfPODjtN63GkVvhYsuu+wylixZwhNPPMHDDz/Mb3/7W959910AXnzxRWbMmIHJZOL6669n8uTJB73fTCZDZ2cnr732Gm+++SYf+9jH2LJlC5dffjlr165l9uzZDB8+nAULFmCx9E1aKcmqEOKgtANPdXbyeixGc2Ul8UJ3XoBgKtXrOMtSYLzZTHDrVqqCQWqiUS5ZvDiflJaW4ps69ZhNSA+H2+3ep8VVATUuF3OGDt2dyFqtpIAO4FEg1dqKt6yMqMOBo8cY4U7gqWQSXzgMZWUM8fm4xGZjaUUFFUfwvIQQQoiByGw2s+iEE1h0wgkcN2kSd917b6/J6s6mJs79xCcAuOqyy7jq8stJp9N89NJLueTCC/nIuecCsHnrVrZu3860E08EoMnrZebMmbzxxhvU1XV/dU9jYyM7d+7svt/U1ER9fX2vMdbX13P55Zdz+eWXM2XKFFavzn8l3TVmtaeD3W9jYyMf+chHUEoxd+5cTCYT7e3t1NTU8NOf/rR7uwULFjB27NgDX8RDJMmqEKJXmvx40zcKt3Vdycxe3XkBYj/8IZb163GkUjjTaYZVVFBjt+Mgn0SZ43GisRi6pIQ7nnrqsOIqHzaMa2+++fBObhD6+Wuv8bu330YDn585k2uPP54bn32Wh9evx6QUtS4Xf/7Qh6jfq+uwDagDxtlsfGHYMHZ5vaiKCrx2OyuBlUCEPVvAm8vK+J3JxD+A44CTgAWAZ++ghBBCiKPc+o0bMZlMjB09GoAVq1YxvEfX3J6GNjay4sUXu+9rrfns1Vczcdw4vvalL3UvP27yZFo3bszfSaUYMXcuy5cvp3qvoU1z5sxh48aNbN26lYaGBu677z7+9re/7XPcJ554gsWLF2O1WmlpacHv99PQ0MC6det6jfO8887j4osv5mtf+xper5eNGzf22oX3Qx/6EM8++yyLFi1iw4YNpFIpqquricViaK1xuVw8/fTTWCyWfcbRFoskq0KIbjt9Pp4LBNg5ZAjrS0vp7LFu7+68xGLMsduZDLzk9fLdkSOJdrXo7dXqV0w3bdvWZ/seqFa3tvK7t9/mjc9/HpvZzJl33805Y8fy3wsX8r1TTwXgF6+/zs3PP88dS5fudz89W6tnAOcAOWAL8ILWPNTRwc6KCrTJhMPhQEN3QvuzRILhnZ2cb7NxZlWVjHEVQghxTIhEo1z99a8TCIWwmM2MGTWKO3/2s4N67MuvvcZf//53jps0iemFVtT/d+ONnH3GGft9jNfr5XOf+xyPPfYYFouFX/3qVyxZsoRsNsvll1/O5F7GuD711FN85Stf6e419eMf/5i6urr9JquTJ0/mYx/7GJMmTcJisfDrX/+6uxLw5z73Oa666ipmz569R0utzWbjrrvuQilFa2srS5YswWQy0dDQwF//+teDuh6HQpJVIQS7gPuDQe6LREg4HBAI7DElCoDbbqeso4NhbW0MDQS49OST6RpVuQoodbsp7cMk9Vi2tq2N4xsbKbHmJ6E5efhwHlq3jq/3KPAQTaUOKYE0AWOAMeXlnFNfz/qWFpqGDWOV3c575FvYk8kkvtZWvFrzajrNfU4nnygp4VTyLbdCCCHEkbLt1nP2XdjaCra+eUeaNX06rxygV1hX9+DenDB/Prqzs9d1PW3r8UV8fX09jz32WPf9s88+m7PPPvuAj7/tttu47bbb9o1t0SIWLVrU62NuuOEGbrjhhn2W//73v+/+3WazcXdhip6eRowYwfr16w8YU7FIsirEMSoDvAo8Qb7lLAgkLJY9xp1W2+3MAeYCMxwOwvX1eIH6adNkPOkRNKW2lhuefRZ/LIbTauWxTZuYXSjAdMMzz/CXlSsps9t57tJLD+s4e48T7gBeAh4IBPD1aFXfmk7za+BuYClwNlB6WEcWQgghhNiXJKtCHGNWtbXxUCzGytpakj2KJDkcDoJKURqPM66lhcsmT2Yh+Za3LiVHSdEjr8/HtpYWKocMoaK2lhSQBLzt7TS3t1NZU0N5VRU5IAu0d3TQ2t5ObXU1VZWVKPLXRQGdfj+Btjbqq6sZUl2NjXxrY2drK4HmZkbW1R32nKYTa2r4xsKFnP7Xv+K22ZhmGFgKE2//YPFifrB4Mbe8+CK/euMNvnvKKYd1rJ4qgfOAecA9L73EqoYG3hs2rLubURC4B/gHMDcUYub27UytrT0qniNCCCGE6H+SrApxjPABd4bDPBiLoWGPIkkKOMluZ67LRZXfT+OECb3OX/pBXP7wwzy6YQO1Lherv/hFADricT7+wANsCwQYUV7O/RdcQIXTyT0rV/LjV17pfuxKn4+3r7yS6T0q4vXm1VfhP8tg6LROHKN8OGprMVdWEiKfSO0Kh2mJRrF6POByEQM6Egl2JpNQXg6JBEYyid1uz3d1jcXA6YRoFMPt3r08EslPyxOJYLhc3d2jk8kkvmg0/5hYbM99JRL5YySTDEskqHQ4KAF0NIoOhWhwu2n0eCglP79qxu8n1dLCpJoa9i0oD5+dOZPPzpwJwLeeeYbG0j3bMi8+7jjO+dvfipqsdjEMg0tOOw2v10uFy8W7djsPA22F9eFkkr8FAvzd7Wbe6tX8D9AgCasQQgghDlOfJqtKqXLg98AU8kOfLtdav9qXxxRC7Kkd+DvwNNCRy6GhuzunIxLhE3Y7pwPVAFVV+VsRfGb6dL48dy6ffuih7mW3vvQSi0eO5PoTTuDWl17i1pde4oenn84lU6dyydSpAKzy+Tj/vvu6E9UcEAXCQGsiwduRCNdHImxZ5eafiyGb0ihrGaPuSeAq2Z1MJpNJfJ2d+erFqRSGxYLdbieUTPY6zc7eBaTebznsW3Rqf48JJpPgcNCcTOLz+/MxdXZi2Gy7Y41Gwe2GRAJPNsscoASwJJOYYjHM2SyTqqvpDAb559q1vPrZz7LR72ds4e/1yPr1TDjMLxgOpGcX4RHkizO9AjwIvFM434zJxCtjxvBfJhM3A+P6LBohhBDHEq11r/OAioGrt7lcD0Vft6z+HHhCa32BUspG/rOXEOIIWN/ayt2JBG/X1mIqdNvs6uo71O9n+s6dfGnePHqfrevwnTR8ONsCgT2WPbx+PcsK4yovnTaNRXfdxQ9PPx3IJ6Uh4I7Vqzlp4kT+HQ6TcjhIWq357riZDJFkkp3A9o4OYv9xkE1ZIKvQQOQ1B65ZqfdNMh0OByHAms1izeVotNkoA+qsVnYGg5iyWczA+KoqyoCY2cyG1lYovFGOr6zEVYg3bDaz1u8nqxRZs5nh1dVYgJDVyuZUipTZTNpi6e42e7DJbTqbJQR0ZjJEEglQiv996CHiqRQWs5krzj6bt8xmvvf44zQHg9hMJkaWl3PHOb0UnegjFvJT2pwILMtk+EEkQpvbDUrRUVrKdcC5wKcAx4F2JIQQQhyAw+HA7/dTVVUlCesgobXG7/fvMaf7oeqzZFUpVUr+s8xnALTWKSDVV8cTQuRlgD8GAtwZjZI2maC1tbu770y7nTNLSijz+6mfN++Iji3cuRO8wQiZgIe0B8weD82RCE+EQiSdTuKFpPSB1au5YulSdmSzEIvhdrkwWyxkMpl8iySA1riOT2CyucmlNCarZsTkNhpag8ytqKARyOVyrF69GlsyiSOX46yTT2YEUGK3E3A4aPZ6qa+vx+gat1tSgs8w8HYt76ps7HbjGzZs93JPj9lG3W58DQ35dYaB4XLt3ldpKV6vlyH19ZTa7cSAHakUj735JnGzmbjDwaT58zEBO00m3vL7CdvtRJzO7vLxPc/5vy68EIfDgd3hIJvJsDEa5aKlS0Ep3C4XLouFTYA3kcAZiTDU4aDsCFRnVsApVVWMz2S4Nxrlufp6lN2OBh4hX8Tri8DsPo9ECCHE0aixsZGmpiba2tr2v1E4DIX3zkEnmwW/v7+jKDqHw0FjY+Nh76cvW1ZHkR/S9Cel1DTgLeArWutoHx5TiGPae8CvgdVKkTaZulvqjGCQ/6qtZRqgqquhD7uL9mbNTnjwL5p0Bv70F03jpxXWIRkywNZcrjsp3drSgtViob6rK7LWZDIZ3BYLFSYTsXCY2lCIGatWce7xxxN5xs1byxTTpnZSXx+lvn4YRtdYzooKfLNn704ya2q646kzDOp6SdT3rob7fss/yGNKgOqaGhpOPHF3TOXl+ZUez+6kt7qaX5jNnA2053JsbG8nYbWSsNmwuVwkYZ/EPZPJkLBY2FFofcZiwZTJMDyVYqjNhicWo93vx+fz9dkXFPWGwX8Bl5B/Dq4oLG8DvpVMMq2tjWutVhnLKoQQ4gOxWq2MHDnywBvdfjsUITHqF01N8IUv9HcUA1ZfJqsWYCZwtdb6daXUz4HrgRt7bqSUugK4AmDYsGF9GI4QR68w8Cfy41Jhd3ff6nCYBZs28eXjj+fApYqKJxSJsCseJ+7xsIF8197/bMmRzSrcuAlmwpRvcZN1BvB0tWoWEq7lq1dzxuTJNAQCOJJJnJkMxw0fTjmAzUakooJlra18dc6cfAGoalgyH/J1ayv3ieVASWZ/OZjk1kq+6FJ5SQl1dXWEw2E8Hg9uq5UM4MvleK+1lajdTsxuRxVaUHsmsTmgOZejLZMhkk7zqtXKV7Zu5bMWC6dUVe3x4v/qq7BsGSxaBPPnH9751QE3A8uA3wHtySQ+n4+ntGZTSwu/BBoH2N9ECCGEEANTXyarTUCT1vr1wv0HyCere9Ba3wncCTB79uzijMQV4hihgX92dPAHINOjSm2Z3c4lpaVM9vsZevzxfZ6wpYAtwNZkks3pNFmrFZJJ4pkMGrA1ZlAmK+Oy43hXvcvYxnm88t57HD90KCPa2ylJpZgydCg3rlnDC5ddRq3VujtB69GV1e12U1VVNeAS0L7kdrv3uAYWoKGkhLL6+vw1crtxWSyEgSatWRcKEXI6idtsWHp0n86ZTKwdMoTvWSz8GTguFGL0rl04txh87MJKUqn8fOrPPHP4CasCTgFmAd9ub++eo3VLTQ3fy+X4JfnpfYQQQgghDqTPklWtdYtSaqdSarzWej2wGFjTV8cT4liTAH4UDvNgJJJvTYtEMAyDk+12rgSqy8thxow+O/6qtjYei0TYVlvLavIlv5Naky0UP/jjY4+xcdcuIvE4Nzz8K86fMouPZSfxp13/5sePvs2Iigr+dNZZWDMZPHV1LG9vp7G0lFEVFQB7JGhiX3snsaXAJKeTYZWVhMNhLCUlRCwWdmSzbMpm8xsphcPhoC2Z5N5AAEpKCP8nQzKlyWUVqVS+hfVwk9WeMV1vsRDcvJm3hw8HpdhaWcl3yXexkcJLQgghhDiQvq4GfDVwT6ES8Bbgsj4+nhDHhB3ArcDqXK67iqwnHueT27bx6fHj++y4WeBN4B+RCP+Jx8FkAr8fVyEZslgsoBS2dJqvn3gik6qqGOZ04gaikQjhcJjPeS7pNRFd5Hbz2uc+12exHyt6JrE1wEi7nVnpNC9nMhxXVsa7djtbgsHu543pxCz8FlQKTDZNRcMmfL7SorVe1xkGtwB/jMdZVleH3W5nJflk9SbAVZSjCCGEEOJo1KfJqtZ6BVIEUoiiega4HUiye2zqxF27OGX9epacdVafHPPef3fw5+cVmbNLKFlkJ5jN7jHVSjabpQZosFiosFggFsNTXo67a0wq+7YEiv0rHzaMm7ZtK+o+p06dyrVlZWjghXSa3zU1sW7IENTsNLMeT9P5ggk9pZ3fTTPz7urV/A8UrRhSnWHwLfLzrt5VWPZuMskVwSDf05pRx1C3biGEEEIcvL5uWRVCFEkG+GEoxJNa56cwsdvx2O1c4fEw2uGg/qyzij6WMwh8++kIv7ygHJ1SqF9qZj+Rovz4/Fylw9rbmeDzkc1mOb3rQS5X/iYO2bU339xn+1bAydXVTMhm2dzSwvrhw3n+ZBtbpgcJBpKkMfPKmDH8l8nEzeQTzGK5ALADvywUXfJpzQ1eLz+DY2ocshBCCCEOjiSrQgwCCeB/IhGeDgRAa4JKMb26mptLShheUQGFcZ7FEgF+9Co8tAzaN1rRKQU5hU5D8D8Zrj65hBlOJ2mTifpZs7j9/vuLenzR97qqDy8APgU8nM3y62gUv8sFStFRWsrVySRzfT4+Z7czvEjJ5LnA9p07+Z3VigbW1NezrKODj0uyKoQQQoi9SLIqxAAXIT8VyBs9ut5O8Hr5QkcHw6dPL+qxcsBjwI+WJXn5bBu5FCiLDSwasmAx5/jx8QnOowRqa/O3AUyTT/RDwJb2dna0t+OurcVRWUkM8AYCtAYCuCsqcJWVkQE6QyE6QiGcZWU4PB4y5Fu1g9Eo0UKFYo/LhQJikQjxUIhKj4dKjwcbkAiFiHV2UldWRn15OSVAoqODsM/H6OpqxtTU4AEG0tTlFuCjlZXMT6e5Nxrlufp6UkCLz8cjWvN6Wxu3K8XoIv29L/R4eG7HDjbV1oJS/Gv4cD5EvtVVCCGEEKKLJKtCDGAdwLeB7ewenzp30yaO37qVkUuXFvVYW4BfAauTSTY+HieXtEFOAZqzPpVilLuDs850cM45+85n2hdjLPenvMd8zHFgZXs7azo6ULW1pMrLaQO2R6O0JBJkXS5MDgfJZBJfLAZOZ75qcqGbsi8UAqUgGMRw5GvT+gqt13R2Yths2O32/OP9/vzyVArDkn/p9HV07LFt9+MBQiGMwphdXyQCJSUQj2MkkzjsdizxOJZIhKFOJyPdbmoAS0cH2udjWlUVY/vhi4B6w+C/gEuAG1tauqec8Xk83KAUvwXKinAcwzD4f0pxjdWKLikhaLdzD3B5EfYt3p9S6qvA58h/n7MKuExrnejfqIQQQoh9SbIqxADVCnwtFmNHOt09RvU6j4cpFRXUT55ctDF+CeA3oRAPa43d4SCRSOCaF8dkK0WnNDYL3HiFg/nz6/e7j74cYwkQALYB7wYCrA2HuSYaJehy0dyVhNrteyaHXYllNIphGCQSiT0KQiUShc/lB7HMbrcf1uP3t8zX1gZasz4ex7Ba88u6ktpEgtHxOENyOVydnUxzuZhTUcEIjsz8pHXA95Ti/61fz/Pjx4NS+BwOPtfWxve0ZkIREunxtbVcB/wCSCaT3JVIMDGdZn519WHvW+yfUqoBuAaYpLWOK6XuBy4C/tyvgQkhhBC9kGRViAEoDPx3LMaq9nbQmjBwo8fDRyorizo+dRvwnViMFV2tiUpRW17O4op1lF77Jls2DOHyy0czf/6+ral9QQMtwEbgrWCQ9+JxAmVlJJ3OfOtmKJSP0+/HsFgOKonMxuPU2+3YIhFsqRT2XI4ZlZU4tWbdtm1YMhnMWnP87NmYteatNWtQ2SwW4OQFC6gFgpkML7/1FrlcDkwmTjz5ZDTw/DvvkAG0xcKcBQtIKcUr69eTMptJWyyMnzGDhFKsaG8nYTYTt9uprK2l/SDi9sVibI5GQWueDIcxSkoosdupicWobW9nvtvNyZWVeProb1FnGNwwbRqTQyH+XleHv7OTDq35YjTKX7SmsQhflpwG/DsS4blCC/VNoRB/yWal2FLfswBOpVQaKAG8/RyPEEII0StJVoUYYFLkx6huTadBa0y5HGevWMHIESOgsjhJowaeBn4LtBWOo4Ghfj9fCQaZNmkS3nIv9fX1GEbfJaoJYD3wcjDIO/E47eXlZLq67RbmAqWtbb+to267HXMsRmk0SmkyySllZVTncqx6800c8TiuTIYPn302Rnk5vupqvF4v9Y2NGJ58iuebMCG/rL4eo7wcgNNmzty9rOt6V1UxZeHC3curqgA4bv78fbY9ddq03ctKS/PHaWzML6usxHA68YZCPPjCC4StVqJOJxNPOgm/ycSLPh8Bp5NA1xQ/vSS0bxS+wHg0EqHKamVIPM7JNhvnlpczpMh/H8MwuNIwsG7YwC9sNnJK4Xe5+Gs8zjeLsH8FnL11Ky+43WRMJlpKS3m7rY2zJFntM1rrXUqpn5CfrjkOPKW1fqqfwxJCCCF6JcmqEANIDvgxsI78GNUQcMaqVYzq6KB+wYKiHCMJ3BoO80wuh8PhwOFwEMvlOGnNGia1tDBt6dLuSrHFliWfnP4nGGR5IkFbWRlZpXYnpq2tvSamuViMSTYbIa+XinCYyliMCxcuZHJZGe2VlXgTCerHjOlOOOedeOLuhLFwHr2d08EuO9zH772s3jD42Bln7I6x0Fp+0fDheL1ehpSU4M9muf+dd2hzuWgrK8NZU8O2HtcFrfF3dOAHVicS3Gs20xCP8yGrlfMrKrAe1F/k4JxTVsY7777LC4Uuwc9UVjJ99Wpm1tQc9vNkWm0tI3sUW9o6dGiRoha9UUpVAOcDI8n3sP+HUuqTWuu799ruCuAKgGE9xokLIYQQR5Ikq0IMIP+71zyqXy0rY+rQodTPm1eU5DEKfCMa5cXOzu4pcGZWV3Or242qr6d+9uyiJ6k54Cm/nycTCbZXVhIxmXYnp8kkbpdrj8TUFIsx22oltG0b1YEANdEolyxeTF1FBb5Ro3YneDU1wAdLOAeS94u7Dvhiz5bbkhK2+Hzc9fbb7Cwvp6mqCl9ZWXfi2tHRQQewKpHgr0pxUkcHF7lcNBThOhiGwbemTWPVD39IwufDn0zyvVSKEe3tDB06FGdhrPChKB82jMuuvZYfmc04HA5W2O3558JhRy324zRgq9a6DUAp9U9gAbBHsqq1vhO4E2D27Nn6SAcphBBCgCSrQgwYD3Z0cHck0p1EfqasjEvLy2HGjKLsv5N8ZeGVmUx3cjipqYmrOjqYOX06FJK/YokC9wYCPJRI0JRKdXfp3Ts5rU0mGdnUxJCODoaEw1zclZj27KJ7gNbRo9ne5zvKMPjiggV4vV4cVivPLVvGlqoqNtbVsaOqiqzJBFqzLRhkq9nMv9vbuSkU4qSxYw87liGGweyODo4bOpRYoUvyJLudceXlDBly6B2Qb9q2jTMqK/kr0JlMsi4Y5NV0mgVSaKmv7ACOV0qVkO8GvBhY3r8hCSGEEL2TZFWIAWAXcIdS3Unc2JYWTvb7i5ao+oDrYjG2p9OYTSZQihPXrWPmzp2MKPIUOAngUeCeRIItoRBa726UUVrjyWQYsWsXQ9vaaAwGuXDJEhgz5phPTA9Wz+tSWVmZT1wdDp598UVW1dezctgwIvb8jKXtbjffSCb58YYNnDBu3GEf2w2MVIr3Cs/VDo8Hj+fwSzzZgONCIf5RKPT12507GT12rPz9+4DW+nWl1APA2+SnEH6HQguqEEIIMdBIsipEP0sBtwKqpATCYSqiUU5fs4aGs84qyv4DwH/1qCxsAr4CzKipoX7atKIlBBpYBvwmHseXSpEttOACONJpJu7axUSfj8+cfDJq9Gi8Tuc+yan4YPZOXBd4vViyWW7fsIHXxowhYzIRtdv5f34/P1m7lkkTJx72Mcfb7Ww3m0mlUkSqqvb4MuJwjPJ6welEA7vKyvB6vfKc6CNa6+8A3+nvOIQQQoj3I8mqEP3sp6EQ7xbGqTbW1vKFzZuZc9ZZRfmgniBfWXhHj8rCZ777LjOGD2dGkVptAVa0tfHLbJYtLhcdhfGwKEVZPM6szZsZ7/MxeexYxp18siSnfaRn4no1UPXWWzwyZw4aaKqq4m9vv83VlZWHfd1rAYfWRNJpUlrzVnMzr7W28tf33kMBxxkGfzr/fG589ln+tWEDNrOZ0ZWV/On88yl3OPa739mVlZBIoLQm6HIxxOU6rDiFEEIIMfhJsipEP/qP38/fCnNpBpXi6x4PSydPft/H/ezb3yawY8cBt8kBb6XTtGuNUgpzMklDRwfbEwnuGzqUhw+yKE75sGFce/PNva7TwH2dnfw4GiWrFCSTaMCdSDB3yxbOd7sp76PCTWL/Jk6cyMXAlh07WFWo5Lq+rq4orZUKKI/FaC+0qG7PZPjNW2+x/uqrcVqtfOwf/+C+1as5ffRobjntNCwmE994+mluefFFfnj66fvd79jaWoYnEgSSyXyV6kJXZiGEEEIcuyRZFaKfJIBfQfc41dE+HxP9fihMY3IggR07uGnEiANu82oyyZDCVCcoxRygoaoKj8eDu2sez4Nw07ZtvS6PA7eEwzyRSpFR+dqtJq2ZvmMH8zZtwq41kwrT4Igjb+LEiXxkxQpWFe5vq63FnkoVZd81djubkknQmpTFQk5r4pkMVrOZWDpNvcfDGaNHd29/fGMjD6xde8B9KmCUw8EapUgkEqwMhzlJiiwJIYQQx7Q+TVaVUtuAMPnpFTNa69l9eTwhBpPfhEIU5o7AkUpx6rp1NJxxRlH2vQtYp3X3mNH6jg4aHI7DqtraUwD471iMNzo7u8csVoXDLFmzhvOPO46Ex7PHeFTRP0ZqjS2TIWWxkLRY2O7zMakI+61xOHAqRTqdZsjw4fz3woUM++lPcVqtnDF69B6JKsAfV6zg4wfRY8ATDuMrdCN/eM0axs+cKc8hIYQQ4hh2JFpWT9Fatx+B4wgxaLzS3s5fotH8HJlKcXE8zsfOOKMoH8zbolGeM5lQhaq/5dEoQzs78RShGizA6tZWvm0y4StUhAWY3NTEx4NB5vcYkyr6X0N9PeVtbbQWKvYu93qZ6fMdflfgaJR4oYDW9nCYf65Zw9avfIVyh4ML//EP7l65kk9OnQrAD154AYvJxCXHHff+Oy4kqhpImM1SZEkIIYQ4xkk3YCGOsCzwq1wOTX7M57D2dk5S6rA/lF/+8MP8a/167A4HN3z606AU67du5bEXXmBTZydvfP7zzC50/71n5Up+/Mor3Y9d6fPx9pVXMr2u7oDHWNfaylWBAGG7HZRCAae89x7HNTczX7r8DjiGYdCQTNJa+FIhaTIVJQGMRaNgswHwXlMT9SUl1BQKIn1k4kRe2bmTT06dyl0rVvDoxo088+lPowpdxQ+krLwcAgFUoWp1fX39YcUphBBCiMHN1Mf718BTSqm3lFJX9LaBUuoKpdRypdTytra2Pg5HiP73GNBeVgZKYcnl8t1/i/Ch/DPTp/OT884jZ8r/WyutWex08q+LL+ak4cP32PaSqVNZcdVVrLjqKv764Q8zorz8fRPVrT4fX49GCdntaMCUy3FlZyeXDhnCUklUB6yKysruRLFYCaDL5YLCPis9Hla0txNLp9Fa88zWrUysruaJTZv44csv88hFF1FitR7cfktLMQyDsvJy5s6ZI88pIYQQ4hjX1y2rC7XWXqVULfC0Umqd1vqFnhtore+kMCH57NmzizNhnxADVAfw+0SCRDJJZUUFS9rbuWTx4qJ8KJ81fDjvtO/ucV8fCHBKQ8P7FlO6d/VqPjFlygG3afb5uMbrZXtlJZAvpLR0xQo+Mn++JBQDXKpHi6a5SHOi9tzLGMPgQ2PHMvO3v8ViMjFjyBCumDWLyb/5DclsltP/+lcgX2TpjqVLD3q/ff1NqhBCCCEGvj5NVrXW3sLPVqXUQ8Bc4IUDP0qIo9fPwmG2FcblVcRifLII815C/kP+y6kUqWwWk1JUW60sqq4+qKq/f3/vPR6+6KIDbnNXLMaOQqIKcGFLC5+TRHVQ2BKJdBfBcsfjRekG3BmLQaG11JzLcc3UqdyyZMke22y65poPvt9QCF8gAFqzfO1aTpsxQ55jQgghxDGsz5JVpZQLMGmtw4XfzwB6n6xRHBQNRIFO8i10mzo62B4I4KqsxFpeToL8dCJdN380SiAWw+VyUVJSss/+YrEY8UiEapeLGpeLEsAJlBRuyc5OYu3tjKusZEJVFVWA7cic6lHpXWBZLtddQOakNWtoGzWKxiJ8GN8Qj7M5lSKZTJLTmnlKUVoYQ3ggrzc1UWK1MqW2dr/bdAKrqquhowOAudu28bkJEySJGAS2+3w0J5NAPqn0JJPFGQfqdkMqBVrjSKfxlJcf/j6BbbFY9/+HM5GQAktCCCHEMa4vW1YN4KHCWCkL8Det9RN9eLyjQgpoArYDq4JBNkaj5MrKSLpcdBbWAySTSXyRCJjNEAphOJ3Y7fbu/SSTSXx+f75aazyOYRj7rm9vz69PJDAsln3Xh8P5IirRKIbbjd1upxyo6XGzBgJYWlqYVVnJ+Npa3r+EyrEpDdwWi5HNZEApxjU3MzwQKErikAbe6jFNjSWbxRoMQi9fUOztvvfpApwGVmYydHR2ooGGzk6ura2VBGKQeKOjo/t5UBaLMXHcuKL87dJOJ06TiXQ6TX1p6Qeat/dAomVl0NaG0pqKREIKLAkhhBDHuD5LVrXWW4BpfbX/wU4Db7e18U5nJwnDIFhWxg6gubAumUziCwbzCYjfv08ymUgkulsglNYkEokjsj5Afo7NjV0xhkLgdEIiwdh4nIlOJ6OAkcAooAEw98kVHFxuDwZZUfh7WrNZLsvlmF2kokTLk0nikC/YlM1izWbxFKYqOZCc1vxjzRpeuOyy/W7zLhArtAY70mnOWLmS9MFMQSIGhI4hQyAUAq0ZEgwyrkjTF7WnUsQLrxHRtjYiJtNhJ6wZwG8y4S70CLjolFPkSxEhhBDiGCdT1xwhGvACKwu3N+JxNsXjYLdDMIjhcBxUsugAKoCRFgtenw9nMok9m2X+9OkMId+N1wHEMhlee/NNVCaDSSlOPfVUanrE05ZK8exrr5EBMlYr804+Of+4wq0FeOCmm6C1lYzZjLm0lIDFskcBlHQqhSmV6r6/02ajxWbjuZ4nns1iT6WoNpsxbDbK6D15LR82jGtvPjp7iT/j93NPJtM9bvD4jRupL1Lr5K5YjHdTKTTwx8cfZ2tTE8FEggl33sl3Fy2i0unk6scfpy0W45y//Y3pdXU8+clPAvDC9u00lpYyqqKi1323AWszGXQuB0px8tq1lKbT0to1iKy37H6Jb+jsLMo+NdCSzXa35JckEoTD4cNOVle3tdES///snXl8VNX5/99nlsxMMslM1iEBwr7KLrKIoCCiSFzo17ZaW7W27m21rV1oq1Wr3VxqbV2qVdv+tLXWva7UDXcBAQHZAkkgC5lsM5NZ72zn98cdQkAIS25IwPN+veaVzL13zj13cmdyP/d5ns8TBSlxahpZLpcBs1UoFAqFQnE0c0CxKoSYCgxEv/FdKaXc1OOzOgbwer2sb2rCN2AAO/LzWQu0dlofyNR77S1GBdAPGGc201xTgzsYJDce55zZsxmFLkYByMnBO2gQDQ0NlJWV4dm7ZqywkHGzZ+9eX1y8x+ohxcUMOuWU3esLC/d8vctFXSTCdQMGkJubi9PpJI1eCxtBr51ti8Wobm4mYrUStdlw5OZi7nRxnEomCYXD+kWtEDhzcrBaLBSi54jnRiJktbfjcjq5Y8eObr3ffZX1zc3c4PcTzfSkLG9pYVJdHWWTJnV7bAksz/RrBbjulFOYB5SWlu6x3eIxY/b5+lMGD+ajb397n+vSwPuJBKFIhEQyyeDmZs5yuxk1bZqKdh0lhIE1yWSHqCxrbTWkBrQdSGbaI1nSaWJNWWxoKiCZhIEDD3/c5X4/ZGUhgfxQiIZwWJ1rxyjOr3yF0JNPdrnNPf/9L/e/8gpThg3jy7NmMbKsjLHl5UdohgrFkcHpdBIKhbrc5p577uH+++9nypQpfPnLX2bkyJGMHTv2CM3w6ObMm2/mnz/8Ie4ubqae8rOfccc3v8nUESP2WL6mqoqGtjbOnDq1p6epOAD7FatCiJOBO9GzPo8H3gfyhRAJ4BtSytojMsOjjDbgeb+fx1paaMnLg2AQT3b2HlFTALvdTjyRwOP3UxgOs2j8eCYDA8iYGDmdeEeP3q/YBPB4PF1ezHV3vcPh2EP4mICczKMYGGy3MzI/n2AwSK7VirRY8KGfMD6gISPIAZCSZDKJ2WKhGWhMJgklEphsNvKCQbZpGi1A0X5nc/TRCixJJgllhKojHucbLS2cYlD67/polDaTCYRASMmQlhZyhwzp9rgAmwBfJnpmkpKTP/uM3PHjlXg4ivgEkGY9j6G4vR2XAVFxd3k53928mXWJBABZDUlaPnaRTu/E9AGcfjp04dW13zEBWjwe8PsRUtLf76fsuOO6NVfF0c19L7/MK7/8JUP69eOSu++m4oQTlFhVfCG57777eOWVVxgyZAiXXHIJFRUVSqweBFJKXrzhBkymw2uEtqa6mpWVlUqs9gG6iqzeDSyQUjYLIYYAd0kpZwkhTgMeRnf3VaCbHn0MvAGsAvxCEHA6Pxc1zQHGAROACTYb9txcdgaDlI0ejadTW5BdHEhM9gWcTuce6X+5wK7LiVA6zWfbtxO02QhmZyNycohk1iUzEZ+0EPgdDrYEg3wTvc51VCBA//p6phcW0q+PH/++kMCrra3cnUzSmEmTNqfTLFy7llNOOsmQv2kgGuWjaFSPcAnByGSSCUOGGGJ0sysil86k/xoldBRHlteCwQ5jrGFNTZx44ondPveuu+UWrtq5k3Qm9VzcHKfm4+GkEZgFDJwNS5Yc3tibLZaOetULJkzAU3Qs3bpS7I/bn3mGJ997Dy2RYPHMmdz8ta9x5X33UeX1cvZtt3H+7Nm8sHw5y9av59Ynn+Tpn/6UYXtljygUxwK33347Tz75JJqmsXjxYm6++WauvPJKqqqqOPvsszn//PN54YUXWLZsGbfeeitPP/00w4YN6+1p9ylqvF4W3nwzc8eP58NNm1hTXU3zY49RlJfHr554gseXLWNgURFFeXkcP3w41y9eDMB/3n+fqx94AH84zMPf/S7TR47kxscfJxqP897GjSw57zy+Ont2Lx/dF5euxKpZStmc+X0HMAhASvk/IcTdPT2xvk6j18v7ra1sGTCAT/PyCHdaZ7fbCWTMbgb4fJzjcjEHGMZeje49nqNOjF36/PO8uGULJTk5rL/6agBuePNNnt+8GZMQlOTk8Ldzz6UsN5fnq6r43fvvk0qnMZtMrG9u5sMrrqC0Xz92CMHWRIKo1QpCYM5EgDZqGm8HApCTQ057O4scDubn5TERvRa3rxIGtgIfBAK8GghQLXdX95qk5Iw1azjVoDpVCXwmJSMzdwttiQSjkknDHFk/iMcJZGoHc+JxBlssVBgUDVYcGdqBDzvVlQ7zeont44bYoRIBtufnQ1MTQkqmlVfxadZwEgndOPyUUw5v3C1NTazJ1OmbpWSYw3HgFymOepauXk1lQwPL77wTKSVn33or76xfzwNXX82rq1bx1m23UZSXR2VDAxUnnMB5s2b19pQVih5h6dKlVFZWsnz5cv2zcPbZvPPOOzzwwAO8+uqrvPXWWxQVFVFZWUlFRQXnnXdeb0+5z7K5vp5Hv/c97rvqKgZnSp1WVlby9Icfsvruu0mmUkz5/vc5fvjwjtckUymW33knL69cyc1PPMHrv/oVt1x4ISsrK/nzlVf21qEoMnQlVlcKIR5GDxieA7wNIITI5gts8LoranZnSwvNTif4/Xhstj3SfI+32Zicm8uA7dsZ1r//5+tJj2IumTSJ70ybxkXPPtux7EezZvGrefMAuOfjj7ll2TIeqKjgwgkTuHDCBADWeb2c88QTTO/XD4Bym41JDgdN4TDBvDxeMZsxA4FOxlLhrCxek5KPgHQsxgCfj1kOB6e43QyEXmmTI9GNh3YAtcC6YJB1sRiBvDwAvIFAh5ESQHY8zmmffsrgQICRJ55oyByeBUI2GwgBUjKkuRlXd4oFO1EH1GXcfwEGNTezwmJRQvUo4y12pwB7AgGKolFDIuOfAMlM/XlpLMbPr5rEBacL3n5bF6ozZx7euG+0t4PVigQ8fj8tPh8D1Tl3zLN09WqWrlnD5OuuAyAUjVLZ0MCcLtppKRTHIkuXLmXp0qVMnjwZgFAoRGVlJXPmzOnlmR19DCouZsbo0Xsse2/DBs6ZPh1H5lr9rGnT9lj/pcw/r+OHDaPG6z0yE1UcNF2J1SuAy4ATgdeBRzLLJXB6D8+rzyHR23g8Biy3WD6X5jvIZmMeMA/dPIj8fP1xjDFn0CBq/P49luV1EurheHyfIvJf++jn2TmFeArwY+CNVIrHd+6kuqiIWFYWdrtdb5HT1ESdlHyUSPCYw4E7nWZgayuTcnKYmp/PUMD2ub0eOhIIAZubm9nU1oYsKSGen08jUB2JUKNpmDI1yJqm4fX5OnrZOnNyOoSqJZ1mbG0tJ1RXM2XoUEbOnm2I4NsMPBSLkUqlcNjtDIlGOX7gQEOiqklgJWCxWEAISgIBcjWN7IPo16roO0jguUikIwX4uPp6Q1KAAR56I8Inj6YAK8UzauDLA5g58/BF6i6q+/WDtjaElAxtaaFMtUf6QiClZMl553HFGWf09lQUil5FSsmSJUu44oorensqRz059s/n4cl9bNcZm9UKgNlsJplO98CsFN1hv2JVSpkA7uu8TAhRKKVsBbb39MT6EhuA/weszzzfleZrTSYZ6fVyVU4Os+mdSF9f4edvvME/1q7FZbPx1sUXf279vz/7jOfPP7/LMbKBswoKmDZkCHUNDUQGDqTKZuOl5ma8nZyTw6EQ3nCYzVLyesbASgCOUIhyu52idBrZ1kY/l4tSt5uYz0drayvuwkJc+fm0+nw0+P1kFRRgdrnwBoM0RCIkcnOJZmcT1DS80SjY7R0GWQDelhZdmAaDeDyePdoLmdJpSmMxBtfV0b+lhfKWFrJSKWbPns2Y/bjxHiq1wJJolIbmZuJFRTy4YQOz7HbecjigpaXb42+Ix9mO/mVtlZKx7e3kORyUjhrV7bEVR45VwLZEoqOn7/CdO4llMhq6w2sfwmNnOpCZblUv/XsSrzi3cskl3RPBUWB9p3rVKydO3KehnOLY4/QpU7jh8ce58OSTcToc1Le2YjWbKdkrGynX4SAYjfbOJBWKI8Dpp5/ODTfcwIUXXojT6aS+vh6r1UrJXo51ubm5BIPBXprl0ctJY8dyxb33suS880imUry0ciWXLejaekd97/QdunID/i1wh5SyJdO+5kkgLYSwAhdJKZcdqUn2Fh+1tPBIIkFNQcEeab45NhsXud2cUFPDqKFDlREIcNupp3Lbqafym3ff5c/Ll3Pz3Lkd6z6uqyPbamXcQdqEdjaWmg2ckU7z+HvvUVNQQH1REf7sbEJ7idddLXKqw52qh9vbKTCbaQsGwWqFYJACi0V/bjJBIECByUTbruiopn1OhO6KnAMdyxzxOAN8PkZlZ1O3eTPFgQAloRCLzzwThg9nSzoNBQWMHDnSsPTZncAvgJaMw3Lu977Hlz76iFOPO64jbag7fNDSwvPhMGkAIbghN5fzjsHMgC8Cj4VCpJJJEIKx9fU4pDQkBfgfb4NMwK7bcsmkicrK7o+7tK2N+lAIpKQoFKJEfZ9+YVgweTIba2uZ+eMfA+C023nsBz/4nFg9f/ZsLrv3Xu757395ShksKY5BFixYwMaNG5mZSVNxOp089thjnxOr559/Ppdddhn33HMPTz31lDJYOkhOGDGCs6dNY+K11zKouJipw4fjOkDW2Nzx4/ntU08x6dprlcFSL9NVGvAiKeVPM7/fDnxVSrlCCDES+CdwzHo5J4EHAgH+Gg7rqQNeLx6Ph2ybjdOArwJFeXmQqcfsSyTRIxVRIAbUtrTQ0NxMcXExRZ0uAltaWmhtaqK8uJhBxcU40Hu4HrDx7gH42vjxLPrnP/cQq0/sIwX4UPB4PFw4f35HG590Os0jy5fT4HLR4nIRHziwQ7zSqV5USEk4EtlDeB7oeSwWw2WzYYpEyI7FcMdinOJyUZJO89mKFThDIZyplG44lJeHd+LE3e2FMsLU6PpOL/DDaJS6eByzyYQ1nebsVavI1zRDREgY/QOeRk+V6d/WxtDW1mMyjf1Y58OWFt7MnNMC+LLVynQDzLEk0DYjBtYs3f4cyMqSVFTkdnvOr2hax2dwaGMjDfG4qpHuhBDiy8CrUsqgEOIX6FUTt0opV/Xy1A6bzj1Wrz37bK49++zPbVPz1792/D5r7Fg23HvvEZmbQnEk6dxj9dprr+Xaa6/93DY1NTUdv8+aNYsNGzYciakdlQz2eFj/5z93PO/8PXL94sXc9LWvEdE05ixZwg/PPReAt3/9645tivLyOl5TkJvLirvuOjITV3RJV9rEKoSwxdZL5wABAABJREFUSCmTgENKuQJASrlFCGFEeWCfpAG4A712T2YeQkomNDdz/YABdD+Z7vCQQBOwurWVSr8fU1ERKZeLNjI9TaNRWjUNi8PREQXWNA1vJALZ2RCJ4NG03bWWkQjk5EA02rEcQMZiEIkwwGajCT2lMBsQ0SgyFKJ0Hy6dla2tjCgsBOCFzZsZ3UkUp6XkPxs28M43v9mt49+7jc+358zpEIkAz732GgGbjaDDQdDhIGqxkLRaKR85kk07dyLTaczA8CFDqK6txZJMYk+lmDxiBNvWrcOmaTjjcb48bx6DXS68BQX6+EOHdhhkzZw9e5/CtCcvrD8Afh+LUd3cDFJiSaf5pZQMHDFij3kcLhK4Fwjn5kIkgi2R4LTPPqP//PlGTF9xhPlbJv1XAiMaGxlosxlyfi4HwlM0hv3LR+CpbEY3NPCtS0zMnNm9FPEWoLqgALxehJSMaWykTJnr7M0NUsr/CCFOQveLuAO4H5jeu9NSKBSKo4fL772XDbW1xOJxLp43jykqKn3U0JVYvRd4OZMO/GqmXc0zwKnAmp6f2pFFortIPYgekdxVlzqgtZW5mzdz0dy5HKl7/XHg/dZWVgUCRIqL8eXmUgsENA1vOAwWCwQCeOz23eIzI2Zob8fj8WCz2faZztrV8l1GRkhJbShETirFJiCVTBKKx8Fq5ZH//pet9fUEo1H63XUX1554Iu9s2cL29nYsZjOD3G4eWLSo41je2b6dAXl5DDU4Sre3SDz3zDP3EK+dRaXXZOr6uc12UCL0SPa9jaM3M34Z/e+OlJjSaRauXs3AIUMMSf0F+I/Px4smE3a7HY/Hw/nbt7No/nwV2ToK2QhscTp1oyJgenU1ZZ0yHLrDM+jfiTlTA5xUuIbZW7eycGFFt8d92u8nKgQF+fkMD4e5UJ17+yKV+bkIuF9K+bwQ4qZenI9CoVAcdfzz+ut7ewqKw6Qrg6U/CSHWAVcBIzPbjgSeA249IrM7QmxrauKPySSbCgs7Iow5NhvX5eUxsbWV/nPn9ugFVBLYAqzNPD6NxagLh8FsBp8PT1bWQYtPUzqNiEQostkotFppCAYxpVIIYHhRETlA2GJhq99PSgiSFktHTUT7XuOnUvo1UjKZ7EivvXThQux2Oza7XRex4TBnjx6NI5FgeF4e5TYbhZ2O7ZTBg/ko0+eqJ9lbSO79+6E8700kejT7vkiEykQCu92O3W5HxmIs+PRTyoJBygzqNfhuSwu/CwZJmkwEhOCrbjeXjhxpyNiKI4sE7guHOxyAR+/cScXEiYY5UK/WNGKxGEX5+Vzk93OcAanFO71eHvP7abfbQQgqnE48BvSCPQapF0L8BZgP/C6T2WQ6wGsUCoVCoTgm6LJEUUr5Npn+qscqq5ub+Y7fr/etzNSmDrPZ+BEw1O0GgyJYe5NCD08/FwzyUTKJyLRDAQh2quHqLEqLs7LI9fnIC4dxJhLMnTiRYUAqkWD5u+9i0zSswFkVFXoUODsbb3Hx7qhhxm2TnBy8/frpyz0ePJnU3sZYjOfefJOI2Uw4O5tqKZkE+ISgNhIharWiWa16axP2FLFRq5VKKdmROb7sRAJXJMJgq5VB2dnqyuoASGAF8ASwXtM6nIcDQnBWfj6Xut0EDEr9BagEfmU2kzSZkEBBKMSpbW0waVK3x1YceT4APs18Hk1ScsLWrcSOO86QsR8KhfC2tYGUjN65k+OGDDHkHHw1EKDdbu8wLSvdvh2UWN0XXwHOQDc89AshSoEf9fKcFAqFQqE4IhyWn44QYsrBmjsIIczoJaD1Usru540ZyA7gF2YzIZutQxhObWrilwMHGtKzc2+8Xi8rm5vZMnAgq10uGjv36cy0Q7HZbNjtdkyRCKU+H0WhEF86/nimAC6HA29p6W7xuSu1tqiIYaed9rlUVth/1HBfy/t5PCzulE57/4svMhbAZiOUl0cwGMThcJC0WPADjUJQrWmEbTakEB0iNpVMsjMSYaeUbEokcCeTDLRYKIhGcQYCFHTqr/pFJwS81tbG08kkLS7XHpFyczrNSZs38yWPh6GTJ4NB0d8a4EbQa5mDQbI1jYpPP2XwvHmGjK84ssSBe6PRDgfgCdu3U2CQ+dZGYHkq1XFTanJVFQ0G1MFK4OP+/aG1FSEl4+vqGGRQi6djDSllRAjxPOARQpRnFm/qzTkpFAqFQnGkOFzz16uAyw5y22vRr3nyDnNfPUI1eiuQRE4OhEJYk0nOWL+e702f3iNC9a3WVn7n9bLT5eqoN+2cvuuKRJjU3MyZAwYwwWYjUVBAQyxG2bBheAp3J9Yeivg8HPY3jnMvgVkEDLfZmJSTQyAUIp6XR9BiwQs0dIq4IiWxZJJqYF08DnY7uaEQx1ksDLPb+9ZJcYRoBT7KPFbGYjRk2nYQi+HxeMiz2RhcW8vkqiryEgn6Gxjdr0M/70OAzWZjWHEx39q2janz5vWZVGjFofGo389n7e0gJfZEggvNZiYZ5AB8fzjcIYJHNTRQHI0aIoI/A6oyvVXNUvLjsWPxHGRrqy8aQojvAr9ENwbf1a1eAn3Pjl6hUCgUCoM5LLEqpTwooSqEGIBuCnEb8IPD2VdPsA24AQiiX7APKinh4qoqTpo+3fAL9k3A/wPetVgIuFx7pPZ6srIYtn07I+vrKYlE9HYou17Yh+oou2JvEQvgTyZZ3diIz+HAn5ODxWLZI2U4aLezBv0ORi5QpGlUBwLUer0MPAqO+VCQQD16TfIWYFU4zKZkUq/7tdkId0r5tqRSzPB6ua68nMSIETTk5BiW9gtQi94CpzEex263k2+zcZvDwXDlvnrUUg/8GzrOoemVlZT062fIOfO/1laWZfoXm6TkAuBEA0QwwN86pRaPq6/HpVwZu+JaYJSUstWoAYUQbuCvwDj0r6lLpZQfGjW+QqFQKBRG0aVYFUIIYBrQH/0fWgOwXMpOzSy75m7gx+iapE/wYUsLN5nNyEyNaA5ws93OqLFjDd1PA3B3KMRHqVSHSU5ACMzpNMOam7nM6WS+y0XLqFE05OYaKkp6G7fTyQkDBhAMBsm120laLGxLJtmgaXptcKeUYX8ySV0sxlqzmXOiUU4OhZjldDIRGMbR5SISQxeEO4D1gQDro1Ga3W5SdjuQaSXU2tpRi+rxePRzo72dIV4v43bu5CsLFlAAht6s2OV0/cdYjNqMa3QkneaG3FyGd2ozpDi6kMDtoRBaKgVC4AkEGN/QQNmUKd0eOwk8lE53iOAx9fUMzs425JzcO7V4YnU1DQ7HMfP91wPUAgGDx/wjeu/W84QQWegdyhQKhUKh6HPsV6wKIRYA96F7sdRnFg8AhgshrpZSLu1qYCFEBdAkpfxECHFKF9tdDlwOUF5evr/NDGFjUxPfb28narVCMMjQkhJ+ZbczwsB97CEMMpGDgBCUlpTwFbebGdu3M668vCO1ty850e6Nu7ycmzo1oz4sNA1aWgCIRqMEolFiOTm022y0ArF4nHg8TrSsDJsQfJJKsRXwLovjeyPFlJMlZ5yazXB08VoKiO7NqFtE0XPxGjM/K9vbqQyHaXe7CWWMqjRNwxsI6BfjTU2fayUkpKR/WxunJxJ8bdgwUiUlNCSTlI0fb/i5EEH/EC8D2jNRXHM6zaJVq3AOHQpKrB61POXz8VYwqJ9TwLdjMU4xKPL5L5+PBpMJhCArmWRmVRVlCxZ0e1yJnmmy6+bdqIYGCmMxQ1KLj2GqgLeFEC8B2q6FUsrD6lYvhMgD5gCXZMaJo5c+KxQKhULR5+gqsvpHYL6UsqbzQiHEEPT2jwdyw5gFnC2EOBOwA3lCiMeklF/vvJGU8kH09qZMnTr1YCO2h0wauD2dJmq1drhPXrptGyMMcswEPa34z+jOnLuEAcDIhgYuCwRYMH48jB9v2P56mutuuaVHx48Db7e28tjGjewoKMAnBHa7He+yOCvPsCDjVrbdLql+NY7n5CwATLEY7kCAQdnZDMvNpQQoAWhuJtrQwJB+/eh/iBfrCSCcedS0tFDd2oqlpIR0fj5t6DWmdZEIdbEYqZycDtdmTdPw+v3637m5eb/9bS3hMCfYbHikpGH1aop9PhzpNBUVFRRBj6V8VwK3Azszz+12O+ZIhAVr1lASiSiBcBTTAjwEHefZpJoaRublGeMU3dTEn0IhNLMZhODcWIyvLFhgyNhrgZWd2uB8OxBgokEC+xhmR+aRlXl0l6FAM/CoEGIi8AlwrZQy3HmjI3kjWaFQKBSK/dGVWLWg+7HsTT1gPdDAUsolwBKATGT1+r2F6pHkSaAuPx+8XoSULFq7lmkG9asEXRj8IhplZ6YecJej72mffkq/cJiJFX3KCLlPkAUsKCxk4ogRNDQ0YCsqYqfNxk2vBJDxPEgLZAKa30zjOTkjDpuaQErWaFpH/1lN0/BGo+B2g6bRPxbDbbfjANKRCFoohMPpxJ6dTRq9bVA4GqU9EkHm5CA6p+lGImC36+7MmVRxrVMrGUKh/YrSRDTKcJuNiSYT3upq8tvb6RcM8rX58+kH4HbjnTlzn67NRiKBf/j9/B2wOBwd4rrCZuOcggLaRo8+ptLOv2hI4NehEOF0GoTAHQ4zs7qasoULDRn/gXgczWxGAu5wmAWaZsi5sqsX7K5U+HH19UwcNkydhwdASnkzgBAiV38qQ90c0gJMAb4rpfxYCPFH4KfoVg6d93tEbiQrFAqFQtEVXYnVR4AVQogn0GtmAAYC5wMP9/TEjGQ98E90MyWPx8PcnTu5dNYswy6SNgM/jsWoydQDBoTga243FxQU0DpqlBIGB6BzKvRYIDY7xeK7UiQxYTZLvnRSEiewImP2snf/2b1FY0jTMNvttHQWmRmn3Q7xmflbEQ7vV3zua3xzOk1eMMhxNhsOIdhRWUleOExhNMrX5s6lP0BuLt4xYw6plZARSPQQycPhMB9k3GFpb2dQSQnX2+3M0SfAIHUuHtX80+fjjU7pv5eFwyxYuNCQ82oNsK64uOOm3slbtjBoxoxujwvwBrAxY7RmTqc5futWVat6EAghxqFnTxdknrcAF0kpPzvMIeuAOinlx5nnT6GLVYVCoVAo+hz7FatSyt8IIZ4DzgFmopcK1gEXSik3HMpOpJRvA28f9iy7QRD4VTSKPxPxPN5m4yeDBxtm3LMRvaeAL5P2a0skOHX9ehYMGkT55MmUH4ELsWqvl03NzdhLSxGFhVT7/TT4/TgKCsjKy6MpGMQXDJKXm4szN5dQMEiovZ2S3Fw8eXnEAwG01laGu92MKihANjURrq+nfy+J7EWLCnj22TZefTXGGWfYWXRaAQCNiQRPvPsuPoeDUHY2w088kThQbTazOholYrWStFiwZyKlByM+hZTEo1GKbTbcViveYJCseBxnPM5JbjdDAJFKsXr5crKjUXITCc7a5dqcl4d3/PgjLkr3RgIrgCfQI/yBjCCQQEkgwHcCAeYcRenniv1TAzwixB7pv+MMSv+NA3dGIsQSCQry85nQ3s53ZswwZOwI8Hd216pOqa7GlUioVPSD40HgB1LKt6AjU+kh4MTDGUxK2SiEqBVCjJJSbgZOBQ7pf7pCoVAoFEeKA7WusQNbgeellBuPwHwM5/72djZl6gq1ZJKLcnMxGdTPbyN6RDWgaZhNJhyJBOesWKHXA86cacg+9iYALGtrY2UoRKiggDqzmc2aBrm5EA5TkJVFW3s7CAF+PwVC0Obz6VE2n48C2P181/pAAMxmCIUosFppi8WwulwUeb1MT6fxhMPMcLmYXFx8xMyNFi0qYNGiPZf183i44LTTdotDl0tf4XTizc+noaGB0rIyCmw2okBtPM5LH31EArAIwalz59IPaI3HefP99yGZJDud5tyFC/U03exsvMXF+vhDhuwev6CA4+fM6XVRujcS+Bj4F7oDyy7sdjshKZlYU8PMqiom7v1GKo5KYsBNkQixjPtvUTDIiVVVlJ15piHj3xsIsDZjDGZLpbja6TSs9+mTgDdTqzo0L49vFxQw5LjjVFT14MjZJVRBv/krhMjp5pjfBR7POAFXAd/s5ngKhUKhUPQIXbkB3wh8HT2z8PdCiN9IKR86YjMzgGbg1U7tF+auX0+svBwMuADzAzdGo+zIpJNmJxLcJiUFPVAP2AS8CSyNRNgcjRLKpMPS1oYzJ2ePKGE4EjHkedxspsHl4rl4HKxW/hKNMjIaZUwySYnXy7y8PMYadCF7KOxPHO69PAtwFRdTfMopu0VmcTEAA4uLKT311EMSn33JtVkCL7W18VgqRVteXkdNKujHfZbNxuzsbGIuF2WLFvWZeSu6x53t7azO3HizpNNcHQox+8wzDfn7bgCeg47vgpmbNxPp18+Q78rtwL9jsY568xnr1zNk6lR1Xh48VUKIG9BTgUH/v1zdnQGllGuAqd2cl0KhUCgUPU5XkdWvApOklBEhRCHwKhkDyqOFf6MbzNDeTqnPx/CWFsoMqL+SwB8AbzwOUmKPx1m8YgUFY8YwefLkbo+/iy3Ag6EQy1MpzCYTbT4fnVvciszvZilxRqPkxOOMLS2lubaWrHgcWzrNxJEjqVy/HlMqhRCC8ePHs27dOlJA0mpl6LhxrK2uJmqxEHY4cA4ZwpZQiFimD6rstK+GSIQt4TBYrTwUi3FCJMIp2dlMA0bQuy1l9sfRID4PhiTwKfAR8HY0ypZQSL9hEY3i8XjItdlYCHyJTGFbSYkhQkPRN3gHeE3KDjE5Z8MGhhl0UywG/CYSIZlMghCUt7QY1q9VAvcC4UyZRD+fj+ENDTQ0NBxVn79e5lLgZuAZ9K/Zd1CRUIVCoVB8QehKrMaklBEAKWWrEMKoMs8jQiPwUixGTNMoyM/n0kjEsB6Ej/r9vCUE5kwfwgXr1lEYjRpWfxUEfhcM8lY8vjuKCh0GPyWBAP3b2ugXDvPVGTMocTho9Pn0KGFJCV4p94gaem22PZ87HHs+t1p3Py8ooDGRYJPXS0tuLm9UVbHT5aKhQK8b7RyF3ZJI4AX+oWlkhcPMtFiYn5fHJMC2zyNTHApR9LSGD4GV6HV/AIHMTRIJWJNJZjY28v1Bg3D30jwVPcva5mZutVgwWyyQ6U16XGMjZVONCYz9sb2dtZmIbVYqxRWaxjSDviuf8Pn4yGTCbDJhlpJ5GzZgNplUreohIKX0Ad/r7XkoFAqFQtEbdCVWhwkhXsj8LvZ6jpTy7B6dWTd5KBikIVOb2d/v5+R+/YzpE9jczJ/DYVJCgBCcb7FwxpAhlBnkLvwZ8HO/n+pAYHdUEyhvaWFMQwODm5vJSqcZNWoUI6dN60htLe0ilfVQn/fzeOiXeT47O5uGhgb65eSwQ0r+UVnJ9oICGgoKsNvturOu1wtSUisEy2w2cm02JgIjfD761dYy9iiLYvYmG5qaWNbeTnW/fmx1OknsYxu73U48kWBMXR1TduzgK6efroTqMUqt18sPm5tpys3VhWpuLt+32xlqkJj8GHipU8T2pI0bGWBQxHZjUxN/6NSv9WtWKwvGjFHu6AeJEOJuKeV1Qoj/sjvJpYO+/j9YoVAoFAoj6EqsnrPX8zt6ciJGEgXeSqU6LsCmVVayM53uEGDd4e+aRkoIJOAJBJifTBqW+vt6ayu/khJfeHdv9hGNjUyrrKRI0zjxxBOJDRhwRC/2OgvZUmBwxv3W7XDQYLPxTF0dgXicqNW6h+Pue5rG08EguFwUtLWxyOFgdl4e44DuOoMcK0TQ3cu2oLc/+jQaZXMsBlYrtLXhsVr3qEf1oNtyz7TZyM/NpdHlouz009WF/zGKBO5OJGjKze3Iqvh6QwMzJ00yZPw24PfRKKlM+u8wr9ewiK0E7k6l9ujXOlfTDC2T+AKwq0b1qPnfq1AoFAqF0XTVumZZ5+dCCCswDqiXUjb19MS6wwp216oWBYMMDAQMSTurA1a7XNDWBsCczZspnz272+MCvNvSwo9DIZJCr/x0xOOcun49Q1paGD16NCNHjuwToqSzeB0CDLdaGf3aa+zMy6OmpIT0CSfQyp5tY9qys3lBSpYBJvT61iGBAEUNDUwrKGBIHziunkSim33tQG9YvD4YZF0sRiAvj6xOYrRzeu8u4T/aZtMFKjCITnXBHs8e0XTFscejfj8fORwQDiOkZM7mzUw3SKimgVtDIba2tYGU5GgaVyYSTDIoYvs/oLqgoKNf6/yNGxk0a1a3x/0iIaX8JPPrJCnlHzuvE0JcCyz7/KsUCoVCoTi22G8dqhDiASHEcZnfXej+Lv8AVgshLjhC8zss3gNsNhsej4cF2dlUGHQB9mAwSKvPhwQGtbRwnkGtF4LAb5LJDqGaG4tx3kcfMaSlhZNOOonZs2f3CaG6LzweD2dXVHDW8OH8ZvRo/padzUPAt6VkoM+HWUoQoqP3aRpYq2k8GAjw6+xsztU0LopEuB3dPWQtEOq9wzlsJPrfcSv6+fdXv58f1tVxRTjMl4FvoTuk3K9pPOXzsTkSodHrRdO0jjHsdjvWdJoBbW3Mrqzk3nice4ALgMH0TQMrRc/wWmsr9wQChEL6p2FuIsGSSZMM+x74J7Ayk30CcNq6dZQ4HIaM3wT8ORYjFotRkJ/POUJwhUFlEl9QLt7HskuO9CQUuxk8eDAtLS1HfL83/ve/vL5mTZfb3PTPf3LHs89+brk/FOK+l1/uoZkpjlZO+dnPWFlZCcCZN9+MP9T1FVjn7TuzpqqKl1eu3Odr3l63jopbbjngXC644AImTJjAH/7wB+6++24ikcgBX3Ms4XQ6D7jNPffcw5gxY7jwwgt57rnn2LDhi9Eiu6s04NlSyiszv38T2CKlPFcI0Q94Bb29Y58jBnwQi9Guadjtdr4xZAhGXCKFgPc6XdxN37aN2IgRBowMdwaD1MfjANgTCRavWMH0wYP7TDT1QHyu5hW4yO3m9NJSanbuJDRwIHU2G2uAbewZdRVSUpNI4EO3uNyFKxIh3+9naE4Ow10uSqDj0RtpxHH0tMnWTj+rAwG2hcNobjft2dkdBkiapuFtb9fPldZWPBZLRzpv52M3pdMUBgKcVFLCSGCkzUZWdjaNfj9l48d31CMrvljUAXeaTEj0myBlPh8XptP0Gz7ckPFXoDul2+12AkIwdds2yv1+Q7JPUsAt4TDbW1tBSvIjEb5dUHBUfI/1NTI3hb8GDOnsFwHkon8FKY5CkskkFsuBWtx/nlQqxS1nnQUDBhzWfv3hMPe9/DJXG9SXWXHs8fIvf3nYr11TXc3KykrOPMwyksbGRj744AO2b98O6DeEvv71r5OdnX3YczoWue+++3jllVcYMmQIl1xyCRUVFYwdO7a3p9XjdPWNGe/0+2nAfwCklI1C9N0Yz9K2NmozbT0s4TCWwkIwyIhkV2qxJxCgNBg05OKuBvhfPN7RkubUdeuYPmgQsw1KL+5N9haxF6NHH5elUjxRX8/OvDzacnM7oq670DSNdS0tICXvBAJ47PY9ajezgWIgOxQCvx9PXh6evDzsmXV2wJF5BFtaaGpqorCkhIKiItLoF9TpzKO5rY26tjYcRUVY3G7C0PEIAd5IhMZYjFROzh5z0DQNbyCgC9KWFjwezz4F6a503hKbjYGAWwgaNm+moL0dTyjE4oUL97yZotJ7v9BUNTXxY5OJhM0GQpAbjbLo008pP/10Q8ZvBG6LxQhkbuadWlDAha2tDDAo++RfwNpkEqRESMm8detoHTGCcnVOHw4fADuBIuDOTsuD6Ekoih4mrGl8ZdEi6urqSKVS3HDDDXz1q18F4E9/+hP//e9/SSQS/Oc//2H06NEsX76c6667jmg0isPh4NFHH2XUqFH87W9/46WXXiIWixEOh7nxxhu58cYbKSwsZPPmzcyZM4f77rsPk2nPZLfBgwdz6aWXsnTpUr7zne/w6j/+QcXJJ3PerFm8vHIlP3j4YYry8pgybBhVjY28eOONAGzYsYNTfvYzdjQ3c93ZZ/O9s87ip//4B9saG5l07bWcNmkSt39TdT/6IhHWNL5yyy3UtbSQSqe54atf5at7XWcO/va3WXnXXRTl5fGrJ57g8WXLGFhURFFeHscPH871ixcD8J/33+fqBx7AHw7z8He/y/SRI7nx8ceJxuO8t3EjS84773Njd8wjHOa73/0u69atI5lMctNNN3HOOeewYMECmpqamDRpEosXL6ahoYG5c+dSVFTEW2+91ePvT1/j9ttv58knn0TTNBYvXszNN9/MlVdeSVVVFWeffTbnn38+L7zwAsuWLePWW2/l6aefZtiwYb097R6jK7HqF0JUAPXALPRMRoQQFnQd0Cf5JBgE9IjEYK+XBk0z5CLstVCIWCpFQX4+pyeThqUWPxQM6u1pgCFNTQxrbWXkiSd2e9y+Si5QUVDACcOG0dDQQJHdTsxmYyt61HUrsDYa/ZzY6ywUI8AWTcObqbfD78djs+2xDWQEZSQCOTkQieDRtM8LzlBINzRqb8fjcHx+fUY0EwodUJDm2Wx4gByzmcbaWtyhEEWRCBecdBIdMfi8PLwTJ+7ROkihAKj3erm2oYEdBQX6+ep2891gkGkGmWjFgRsiEaoz53RK07ja7Wa4QaZHb7W28pDF0tHSa/rWrfQ36KbeFxEp5XZguxDiQqBBShkDEEI4gAHo9zoVPcirGzZQVlbGSy+9BEAgEOhYV1RUxKpVq7jvvvu44447+Otf/8ro0aN55513sFgsvP766/zsZz/j6aefBuDDDz9k7dq1FBQU8Pbbb7N8+XI2bNjAoEGDOOOMM3jmmWc477zzPjcHu93Oe++9p8/nj3rpciwe54r77uOdX/+aIf36ccHtt+/xmk319bx1220Eo1FGXXUVVy1cyG8vuoj127ez5o9//Nw+FMc+r27YQFlBAS9lbmgEOhl57s3Kykqe/vBDVt99N8lUiinf/z7Hd8rsSaZSLL/zTl5euZKbn3iC13/1K2658EJWVlby5yuv3O+4ALfddhvz5s3jkUcewe/3M23aNObPn88LL7xARUUFazJp7o8++ihvvfUWRUVF3T/4o4ylS5dSWVnJ8uXLkVJy9tln88477/DAAw/w6quvdrwvlZWVVFRU7PN741ijK7F6BXAPelbndVLKxszyU4GXenpih0uwsBDa2hBS4gmFKOtGePzuG2/Ev2MHoWiUN1Opjt4BtRYL9+8VDeyMu7yc6w4iP78deL9zavHWrYwaNeoLIWD2jrp2Tqiu1zT+8fHHtGRnE87OpnzqVGLoJkVN6Bfd+xKLe4vVA21zKOtN6TT2UIiRNhuFgEUIqrZuxRmJ4NY0vjJnDsPJ1JU6nXhHjNgtSEtKujx2hUICdyUS7Cgo6Dgfz29s5KzjjjNs/PuAzYkESIkpnWbhmjUER4yAvc7Pw6GyqYmfBwKEs7JACGZkZ3N5QQEDxo1T53r3eRLofAczhZ7pdELvTOeLw/iyMq7/+9/5yU9+QkVFxR4ZT1/60pcAOP7443nmmWcAXcxefPHFVFZWIoQgkdjdfOy0006jYFe/cmDatGkMHToU0Gv13nvvvX1edO6K5HZmU10dQz0ehvTrp79+zhwefO21jvWLpk7FZrVis1opcbnw+v3deBcUxwLjy8q4/vnn+cnf/kbFCScwu4v/Le9t2MA506fjyFwPnTVt2h7rvzRzJgDHDxtGjdd7SPNYunQpL7zwAnfcoZucx2IxduzYgcPRZ2NgR5ylS5eydOnSDvf8UChEZWUlc+bM6eWZ9R5duQFvAc7Yx/LXgNc+/4q+QZPTicdqJRaLccGMGd2q+/Pv2MFNgwfz3jof/RrtWAckySuKcUYySWlp6X5fd1NNzUGN/zEgzGYASv1+PJEII0eOPOz5Hiv093i49OSTd4u9vLyOdRJd5G9IJHhh7VoiFgspq5VxJ5xAFnrboljmZ4vZzMb2dkinMQnBiKIi8tBdxcxAxGxmS3Mz1kQCeyrFDLeb/oATvS42lkzy0Ucf4YjFyEkmOauiYnfKbl4e3nHjlCBVGMI9gcAezr/Tq6pYZGAdyhM+H8+YTB1Rz9mbNhlWyiCBO1IpwllZSCBb07jA7+d41abGKCxSyo6yHCllXAiR1ZsT+qIw0uPhk08+4eWXX2bJkiUsWLCAGzORqV03Ns1mM8lkEoAbbriBuXPn8uyzz1JTU8Mpp5zSMVZOzp5uC3uXU+2vvGrv1wEdZUP7w2a1dvxuNplIplJdbq849hnp8fDJH/7AyytXsuQf/2DB5MnceP75+9y267Nr9/llNptJptOHNA8pJU8//TSjRo3aY3nNQV43fxGQUrJkyRKuuOKK3p5Kn+HQq/z7MD6gSdM6UjLHu1zdHrO2Ft56wU0qBcIErjNj5I7M7f5kgTdCIdoy7sLDvV5OPPFEJXAy7E/sCcAFzCwqYui0abvF4r7+1k4n3pKS3dvs/U/f6cQ7cOD+xygsZMwpp+w3ZVcJUoUR/N3v55FdhlxCMDeR4Kdjx3br3PrwQ3j7bTjlFNBGtnJ7MEhKCBCChTYbX+nXj/5Tphhy/j7Hnm1qTvvsM8Zk7rwrDKFZCHG2lPIFACHEOcCRt6L9AtLg91OQnc3Xv/51nE4nf/vb37rcPhAI0L9/f4ADbrt8+XKqq6sZNGgQ//73v7n88ssPel6jBwygyuulxutlsMfDvzNpwl2R63AQjEYPeh+KY4sGv5+CkhK+PncuToeDv73xxn63PWnsWK64916WnHceyVSKl1au5LIFC7oc/2DPr9NPP50//elP/OlPf0IIwerVq/fZfzs3N5dgMPiFTAM+/fTTueGGG7jwwgtxOp3U19djtVop2Ssosus9+iJwTInVT1tb8YbDICX29naaSkq6fTFWUwPpFCAFMi1J1JrBoODnulCo4w7pgNZWYsr99ZA4GLF4oG26u16h6A7vAA8L0ZFuPrSpia+bzd1y/v3wQzj1VIjHwZoFE5+1khotkEBxezuLk0mmGBT13AI8GIsR0zQK8vM5pa2NK2fOVJ8ZY7kSeFwI8Wf0+3W1wEW9O6UvBusaGvjRtGmYTCasViv3339/l9v/+Mc/5uKLL+auu+5i3rx5XW47c+ZMfvrTn7Ju3TrmzJnD4ox5zcHgsNm478orOeOmmyjKy2PaQWRkFeblMWvMGMZ95zssPP54ZbD0BWNdQwM/+stf9HPZbOb+q67a77YnjBjB2dOmMfHaaxlUXMzU4cNxHcCVd+748fz2qaeYdO21XRos3XDDDVx33XVMmDABKSWDBw/mxRdf/Nx2l19+OQsXLqS0tPQLZ7C0YMECNm7cyMzMTV+n08ljjz32ObF6/vnnc9lll3HPPffw1FNPHdMGS+JA6SSHPbAQdvRrMRu6KH5KStmlL/bUqVPlyv30aToY/rF5M3fa7UhgSHMzN5nN+7xjc7DcdMklfMs8mEf/Lkmn9cjqhFO2E81q4ubly0ml03x7yhR+etJJe76upoabDnBXtcrrZbGmIaXEnE5z5Ztvcq5Bpk0KhaLv82ZrK7eazUizmTafj34+H4tXrWLxmWd263vgN7+BG25AzwYxSwYuieC+rJVsTeOry5dzwfz5hnzP+ICrolE2NjeDlPRrb+eRkhL696HvMCHEJ1LKw+ul0McQQjjR/2cf8Vvp3f3fvAf333/Y7VeOOHV10MVF/eHy9ttvc8cdd+zzIr1LOr13oWgUp8OBlJJrHniAEWVlfP+ccwyfq6IH6aHza58c4udu1/kV0TTmLFnCg9dcw5TuiqGePt6j6btlb47kudAHONT/zV1GVoUQo4FzgP7oaewNwAtSyo0HMbYGzJNShoQQVuA9IcQrUsqPDnZyh0pOcTGEQggpyUqnKRs4sNtjDhwIoy5MUrs1RdaABK50mB/+7wNev/hiBuTlccJDD3H2qFGMPcSo6MaWFsg0AHZFIow9SnqqKhSK7vNBSws/aW8nbjaDEIzNzeUan48R3RSqoKf+ZmVBLC7BKrFObseSSvE9v595BgnVBPBroCEeBynJSiZZ8OmnNB13XJ8Sq8cKQohFwHGAfVdto5TywC5+imOWh5Yu5e9vvkk8mWTy0KFcccbnLEYUisPm8nvvZUNtLbF4nIvnzeu+UFUousF+xaoQ4ifABcATwPLM4gHAv4QQT0gpf9vVwFIP2YYyT62ZR8+EcTNkFxRQYLUSjkQYXV5umPjLHWKlqCxNIiFo3Q4jiooYmp8PwPnHHcfzmzYdsljN83ggEgEpsaVSylhJofiCsBW42WwmbjYjAWcsxmWBACdNnGjI+DNmwjffgJdf1TBP9JFzfJwFqz9l9KBBhnwnSuB37e18LCVmkwkBnPHpp7g1TbWp6QGEEA+gt5CeC/wVOI/d/5MVRyGnnHLKHuZLh8P3zzlHRVIVPcY/r7++t6egUHTQVWT1W8BxUspE54VCiLuAz4AuxWpmWzPwCTAcuFdK+XE35npAGv1+2jJGJbU7duAVwpCLs1giQTTTxmRLbS39OllsD8jL4+P6+kMeU+vk/GdRTn0KxReC5S0t3Gg2E7dYQAgc8Tjnrl7Ncd28cO3MvYEA68bC4HEm2nwJTtq0meGtrZQZZHr0//x+/tPJEOrbJhMnDRlC2axZKjukZzhRSjlBCLFWSnmzEOJO4JnenpRCoVAoFEeCrsRqGigDtu+1vDSz7oBIKVPAJCGEG3hWCDFOSrm+8zZCiMuBywHKy8sPctr7pq2tDTLRirSUNDQ0GJPylulNSGbczr3TINNb8xDxNTUhMwXrSSEMm6tCoeibrGhu5rvt7cQyQnWAy8WVdXVMO+UUwz77//L5eCgY7BCS51qtnFNcTP+JEw3Zxxr2NIQaXV/PLLu9W94AigOyy2IzIoQoA1qBIb04H4VCoVAojhhdidXrgDeEEJXo7oMA5ehR0u8cyk6klH4hxNvofVvX77XuQeBB0E0cDmXcvRmUnw/BIEJKNJvNsJQ0p8VCW0awFjqdNHVqglzX3k5Z7qG3ssmKxSAjVnfm5xNvbDRkrgqFou9RC/zSbCZmsSABWyLB5XV1nNVFY/ZD5R3gAZOpQ0gObm7mLJPJMOffncDvAJvdDkLQz+/n1E2b6H/mmYaMr9gvL2Zu+N4OrELPxH6oV2ekUCgUCsURYr9iVUr5qhBiJDAN3WBJAHXAikzEtEuEEMVAIiNUHcB89GudHmNQfj6e7GxisRgDCwvxZAyMuovMysKWSpFIJJg4ciR3rFpFtc9H/7w8nvjsM/75pS8d8pixpiYoKOh43tyi2uYpFMciq5ub+YXZTNRqBSGwJRKcu2oVM+bMMWwfr7S28juzGVPGsMkTCLBw3ToGLlxoyPhhYEkkQn0igd1uZ1RxMVf7/YwxwBBK0TVSyl9lfn1aCPEiYJdSBnpzTgqFQqFQHCm6dAOWUqaBw3XvLQX+nqlbNQFPSikP0af90MgDEvE4sViMTw7QE+pQaNE0NE0DYFs6zW2zZnH6Y4+RkpJLJ03iuL16Hx0M4/dKeXaPGGHIXBUKRd9hRXMz1/r9hLOy9Gik280VdXXMmjPHMJH3VmsrPw8GSQkBQnCc08nVPh8jFi40zPn3Z+Ewq1tbQUpCUnKz08nMCRO6P3nFISGl1NCd9hUKhUKh+ELQpVjdH0KIF6WUFV1tI6VcCxzRQqaGykpas7IAiMVibKyrY8yYMd0eN7+9XY+KoJshTc7LY8t3v9utMceOGcOMlhZWJxKYzWaCBkWBFQpF32ALcIPFQjgrCwlYk0kuq6/nS2PHGraPzcCvTSZSQiDR22Bd7vcb5iycBu4CVieTHenF89avx96/PxQVGbIPhUKhUCgUiv1hOszXXWboLAwiWFm5x/MN2/f2hjo8Rlh2a/q4xUK2QVHbkVlZxBMJotEoz6xbh7dTLaxCoTh6eau1lWt8PrSMmVJWKsU5q1czu1Pqf3dZ0dzMtT4fycw+nJrG4k8+YYxBEVsJ3NnezkuBAGaTCYTgxMpKxni9qkXNEUAIMSvz09bbc1EoFAqForc4pMiqEKJEStkkpdzZUxPqDiOGDKG4vZ3mvDwArAal1g7Jz+ejaBRN04jYbDQ1NOB2u3F2Mxrq9nohE3Wpd7mUI7BCcQzwyl5puQNdLi6rq2PGSScZ9vlevVd68UCXi2va25kyf75h+3jY7+exTi1qvmS1clZhIf3Hj1ffU0eGe4DjgQ+BKb08F4VCoVAoeoX9ilUhxN4hAAEsF0JMBoSUsq1HZ3YYjBkzhhO8Xt5IpzGbzbRnUne7ix2woRcKpYUgbLUSDAa7LVZPdLn4U6Z/a6PbjSUWM2K6CoWil3gH+L3Z3JGW64zFuKa9nYXjxhm2jx3AL8zmjvTiXc7CRu7jDeAfnVrUjGhs5Cyr1TBnYcVBkRBCPAr0F0Lcs/dKKeX3emFOCoVCoVAcUbpKA24BPun0WInuCrwq83ufZJTN1pFa+9KmTYak1gqgXyYNDiCUnU3uYbSr2ZuxJSWMzM1FAEmTiac3blSpwArFUcq/fD5uCAQg48jrikY5b8UKphQXG7aPGuBnQCInB4TAmkpx1po1TDewfvS11lZ+5fd3pP4OaGtjwfr19Fepv0eaCuA1IMae/4t3PRQKhUKhOObpKg34x+jtZn4kpVwHIISollL26WbkeTt3Qna2nlrrdhuWWjvAZqMWSCQSmPr1w5mT0+0xAUYGg2zJ/L61pESlAisURxkSuDcQ4KFgsCNldmxuLlf4/YwxMC23Crg+GqUlHsdutzOopISLq6o4ycD04ndbWvh5MEgiI1THZ5yFhy1apL6XjjBSyhbgCSHERinlp709H4VCoVAoeoOu+qzeIYR4AviDEKIW+CX6dVmfZnpBAZZIhKTJRCAnB0dh4WGP5S4v56aaGgCaYzE+SCYBMKfTvGG1ku1w7Pd1B8v8nBxeDIdBSqpKSrClDtjCVqFQ9BGS6IWFz0FHymxJIMDVPh+zDXLkBagEfhSLUd3cDFISTaW4Oy+PWQY7C//KbCZhMiGBvGiUb/v9nGjgcSgOi1YhxLPALPT/we8B10op67ozaKat3Eqg/kDu/gqFQqFQ9BYH6rNaB3xZCHEW8D/AuOalPcQAj4eTwmFWZuo/NwnB6MMc67pbbun4fdXq1azOycG7PpfIR3ZyJwe44YLB3Z7vnMJCBlos1Pr9hGw2nvzkE64qKFBRDIWijxMGfh4KsSqV6kiZHdTczKJ16xi5cKFh+9mEfqewTdNASrKSSc5ZuZLskSMNax9TCdwIkJ0NwSDZmsa5q1YxZt48Q8ZXdItHgX8CX848/3pm2WndHPdaYCN6i3KFQqFQKPokB9W6Rkr5X2Auelpwn2d0MkkoHCYUCvHvzZsNqQPtX1ZG3lsxqi/00HiXm1suLeell7rvMWUGJgYCHc/X9+9PQ0NDt8dVKBQ9RzNwTSTCW21tBPx+2nw+zsrK4pcmE4sXLjTsZtN69Ijqzkz7GHsyyeIVKygNhQxrH7Ot0z4ARhQXc6Om8Y1589RNs75BiZTyUSllMvP4G9CtQmghxABgEfBXIyaoUCgUCkVP0WVkVQgxGt1U6WMpZQj92gkhxBlSylePwPwOi5L6esjJQQJVxcXUGlAH6vF4GFjnRCYEpARJ4OFHtjF1aqLbY5/rcPBiNApSss3jIalp3RpPoVD0HMtbWviVELRBR+rvzC1b+FJhoaFuuR8Ct8Zi1DU1gZQ4EgluAwpHjaKsrMwQIVkN/Cga7Ugv1pJJbsvL4wQDnYUV3aZZCPF14F+Z5xcArd0c8250X4ruOwUqFAqFQtGD7DeyKoT4HvA88F1gvRDinE6rf93TE+sOswoLyYnHEUAsK4vgIdSQdsXFZ+ZgygLMEmGV5J0QMSQKekJxMVNychBASggerq9XrsAKRR/kldZWrg4G2REKEQqHMUnJgrVrmbZ9u6Fuua8CvwGCmdTfbE1j8fLlFAaDTJ482RChuh34BdASj+9OL16xAktdt0ohFcZzKfAVoBHYCZyXWXZYCCEqgCYpZZeOwkKIy4UQK4UQK5ubmw93dwqFQqFQdIuuIquXAcdLKUNCiMHAU0KIwVLKP6J3c+mz9PN4OMfh4IVEAoAVVitzDRj3pJnwnefDPPl6kpzpUQLlOYal4s1sa2NVVhYAawYOZPvOnSoFT6HoI0jg38B9FkuHAZEtkeAav5+JAwZQNm2aIZ/XXft5RNOIxWKYTSbc0Shnr1yJW9MM+76pBX4YjdIUj2M2mbClUpy9ciWecNiwfSiMQUq5AzjbwCFnAWcLIc5EbyOeJ4R4TEr59b32+yDwIMDUqVP7vLmiQqFQKI5NuhKr5kzqL1LKGiHEKeiCdRB9XKwCTEsk+GfGZffZRIILo1H6G3Ax+aPTnGycoxEOpWhmCL5UCiMk5aK8PP4eCBC02YhmZbHGZmOaAeMqFIruEQN+FQzybjrdYaTkikQ4e80aFs6da9hNpTTwF+BZTdMzK6SkJBjkNqsV63HHGZb6WwX8OBqlMpP6m5VKcbOUlI4cadg+FH0XKeUSYAlA5v/69XsLVYVCoVAo+gpdGSw1CiEm7XqSEa4VQBEwvofn1W1yd+wgJxZDAhGrlf/5/YaMOwAYlTFwalwW5xs/DxlitNTf4+EChwOBHl35eyzGDpUKrFD0Ko3oRkov+nwdRkozsrP5jaZxkYFCNQH8HngZiMViICUDWls5d/lyrJGIYam/G4GfAU2Z1F9LKsVZn3xCaXu7YftQKBQKhUKhMIquxOpF6NdqHWScCC8C5vTorAxgYFkZY3fu1EPAQrC+f3/Dxp5UX094pZWqCz2sfGQI//d/bj78sPvjTm1txRGPAxC02bhP1a4qFL3Gp8APgMpEosNIaWJNDZfV1nLSxImGCbsQ8KNQiJcDATRNw263M9Lr5axVq7BLaVha7hutrXzX56Mtsw9bKsU5n3xC//Z2lfr7BUVK+bbqsapQKBSKvsx+xaqUsk5KuYdYFUJcnln3/oEGFkIMFEK8JYTYKIT4TAhxbfene/B4PB6uHTsWl9tNQX4+K1IpPmtqMmTshS4XyfcsyLiAtCCRFLz9dvfHHVJaysxt2zqe/8/t5vHXX1eCVaE4gkjg734/1/r9tGSEnVlK5q9fz8mVlQw0UNg1sGcLHK/XywJN40+DBjH9+OOpqKgwRBS/3NbGj4JBmtvb8Xq95KXT/Dkvj7OGDzdsH4qeQQjxi06/23pzLopjhxqvl38uW9bx/O1166jo1Fv+YF4/7jvfOeB2P3r0UY675hp+9Oij/O2NN2ho7a6RteJoxul0HnCbe+65hzFjxnDhhRfy3HPPsWHDhiMwM0Vf5qD6rHbiykPYNgn8UEo5BpgBXCOEGHuI++sW44uLmWo20+bz4ff7uXPjRkOEX5nHw1fmpBFZEswSrJIxE7qfCuzxePjR5MmUS93LImE289q4cWzcsqXbYysUigMTBn4RDHJXezu+QACv14s7neZPTiffKCszVNitB64HqjtFbmdu2cK8bdvo5/EYlpb7FvB7k4mUEEjAGY1y2bZtTCsqUqm/fRghxI+FEDPR3X93YUAOj0IBNU1Ne4jVnuIvr77Kqrvv5vZvflMXq23dv1ZSHNvcd999vPzyyzz++ONKrCqALgyWhBAzpJQf7b34YAeWUu5Et9lHShkUQmxE79l6RM+6ifX1vGG3I4F1AwawzSCX3f8bvJMX/5GgbUUOzhkxto6JAgXdHrfM42FJSwvXhMOkgZ1uN4+1tTHG61UXlQpFD/JhSwu/B5qE6BCP/fx+rvb7mTVhAhQVGbav/wF/iMUIaRpmkwlLOs2p69YxqrmZ/uONswR43OfjLyYTZrMZhMAdDrN41SomzZ9v2D4UPcZm4MvAUCHEu+glx4VCiFFSys29OzVFb/GrJ57g8WXLGFhURFFeHscPH871ixezbedOrnngAZrb28m22XjoO99h9IABXHL33eRlZ7Ny61YafT5+f8klnDdrFj/9+9/ZWFfHpGuv5eJ585g8dGjHPsKxGN/9y19Yt307yVSKmy64gHNmzNjvnFKpFD/9xz94e906tESCaxYt4oozzuDsW28lrGlMv/56lpx3Hiu3buXCu+7CkZXFh7//PQ6bShT4InP77bfz5JNPomkaixcv5uabb+bKK6+kqqqKs88+m/PPP58XXniBZcuWceutt/L0008zbNiw3p62ohfoyg34PmDKXsvOOpydZFrfTAY+PpzXd4fT3W4ebWvDl51N3Gpl8+DBnGjAuINLS5nf9CnLrhkFQvCyI5dzmpoYUVLS7bFnFRVxbksLzzgcAKwYOpRn29u5UolVhcJwJPD//H7uDoVICQGZx8Tt2zmpspIxixYZtq808HfgX5qGt6lJ76GaSHCrEPQbOJCy6dMNa4HzoN/PfcEgSAlCMM7p5HK/n9Hz56sbX0cHPnQ/rFMyjzHA6cBPM4LViH9liqOIldu38/SHH7L67rtJplJM+f73OX74cAAuv/deHrj6akaUlfHx5s1cff/9vHnbbQDsbGvjvd/+lk11dZx9662cN2sWv734Yu549llevPFGQE8D3sVtTz7JvAkTeOTaa/GHQky7/nrmT5pEjt2+z3k9/L//4crOZsVdd6ElEsz6yU9YMGkSL/ziFzi/8hXW/PGPANz/yivc8c1vMnXEiJ58mxRHAUuXLqWyspLly5cjpeTss8/mnXfe4YEHHuDVV1/lrbfeoqioiMrKSioqKjjvvPMOPKjimKUrsfo5pJSH3C1eCOEEngauk1K272P95cDlAOXl5Yc6/AHp5/FwZVYW95lMmE0mno3HWeD1druNjcfj4ScTJ7I9naYmkaA1EuHm+nrulNKQC8HL8/NZuXMntfn5IASPFRQwqLWVhYWF3R5boVDohIA/Aq8J0ZEma0sk+GYwyEynk7JFiwwTdtu9Xn6fSlFZWNjh+FsQDHLW6tX0GzeOyZMnG7KfJPqdxqf2ihBf5fNx0sSJhuxDcUQ4A/glMAy4C93zKyyl/GavzkrRa7y3bRvnTJ/eEZE8a5re4C4UjfLBpk18+Xe/69hWy/SZBzh3xgxMJhNjy8vxBgIH3M/SNWt4Yfly7njuOQBi8Tg7mpsZM3DgfrdfW1PDUx98AEAgHKZy506G9Ot3WMepOPZZunQpS5cu7fi/FwqFqKysZM6cPu/fqugFuhKrQ4UQL+xvpZTygE3KhRBWdKH6uJTymf2M0+ONx7+Un8/T0Shbmptpk5LfbtnCLyZM6PZFaH+Ph/M2b+aOXWnG/fvzps/HBQZc3JZ5PNwD/CiVYmsySTAU4mdAyGTiy/n53R6/t5Ho7TqiQCTzMwrUt7bS0tyMp7iYksJCzOiF1ebMo7W5mUBjIyNKSij3ePp+w19Fn+X9lhZuF4KI04ndbicgBJ5AgIXr1vF/p55qaPRxXXMz17W00OJ0gtdLQX4+Q1paOO3TTw11/I0AvwVWQ8cxlbe0sGjtWkYsXGjIPhRHBinlzwCEEJ8Cj6FnJxULId4DfFLKw8p0Uhy9SLnvS6S0lLhzcjoimHtjs1oPOMbe+3n6pz9l1IABBz2vP11+OadP2TsZT6HYN1JKlixZwhVXXNHbU1EcBXQlVpuBOw93YCGEAB4GNkop7zrccYwgCzhx5062mM1I4OMhQ6hsbDTkYvQ0t5un6+qoLioCIXh20CAWAXndHhmGejx8Z+1abszKIuBwkAJuj8fxBgJc6XIdWli8h5HoF8p+oLK1la2trVhLSsDtxoeez1YfidAUjWLKyUHa7aT3GkPTNLzhMDgcEA7jcTqxdapp0TQNbzQKeXmgaQyMxSix23HBHo+0349sbmay282k4uI+9T4pep8k8GAgwEOZunDCYTweDxe53cxubWWQwUJ1JfBzi4UWpxMJCCmZ09bGlQMG0GgyUVZWZsj+WoEfRyJUJhJ6axqbjfPy8zmjtZXyhQtV6u/Ry2tSyhXACiHEVVLKk4QQxhVQK44aTho2jCueeool551HMpXipZUruWzBAvKysxni8fCf997jyyedhJSStTU1TBwyZL9j5TocBKPRfa47ffJk/vTii/zpiisQQrB62zYmd1ErePrkydz/yivMmzABq8XClvp6+hcWfi5tuKt9Kr5YnH766dxwww1ceOGFOJ1O6uvrsVqtlOxVSpebm0swGOylWSr6Cl1dx4eklN2xipsFfANYJ4RYk1n2Mynly90Y87D5ck4Oz/r9BOx2tKwslpeUcJIB4/bzePi9EFxnsZDMycEPLGlo4AazmX4GXByO9Xg4b+lSnp88mZbcXGKxGA9pGu8Gg1xtt3OygaYv+6LW66WyqQl7aSnmoiJ86IK0DagNhagPh0nm5aE5HMTpJDhtNmhvx+NwYLPZ9OUtLXr9XEYc2PYyV9iVGrnrgj4Wi+2xzd7r2zUNYbfT3GkMTdPwtrdDVhZEowyIxRhptzMEPZduKDAYcPTge6bou+xAz6dchV4/uivt92s1NVwyahQYlIpLZvwHAgGeAMwWCwiBOZ1m7qZNXJ1x4S01SEDWAD+NRtmY+YwFhOBKl4srXS6EgcekOPJIKX/c6eklmWUtvTMbRW9ywuDBnD1tGhOvvZZBxcVMHT4cV3Y2AI//4Adcdf/93PrkkyRSKc6fPbtLsTph8GAsZjMTv/c9Ljn11D0Mlm746le57q9/ZcL3voeUksElJR21rfvi2wsWUNPUxJTvfx8pJcUuF8/97Gef2+6SU0/lyvvvVwZLChYsWMDGjRuZOXMmoLe0eeyxxz4nVs8//3wuu+wy7rnnHp566illsPQFRewvJUQI8YyU8ktHcjJTp06VK1eu7LHxX2xr4/dmM2aTCZFK8YdEgonFxYaMvRL4mabprXGk5ISaGm4bPdqQaIbX6+W91at5pKSE2k41q0IIhqfTTI5EmGizURAKMaxfv/2K5DQQyzy2NzeztaUFu8eDqaAAP1Db3k5dKIR0uUjm5NAYi1GTMYFBiD0EptbpWDuvCwQCBPx+XVACLrcbl8u1z+WFLhcOdOGYDaTDYXZs2YKUEmkyMWzECOw5OaSBFBCKRNhWU4NmNhO12SgqLf2c4N3f/jsjgFKgOBikpKmJ+bm5jDXAGEvRd0kDzwN/jcUIZhx423w+ytraWPDZZ3zNYNOhIHBzKMT/2to6PiND8/KY/rKP4GdFVFTkkvkf3W0+BX4N7Myc+0JK5n72GReVlRlWB3u0IoT4REo5tbfncbRj6P/m+++Hg0wv7XXq6uCqq3p7Fru5/35ChYU4HQ4imsacJUt48JprmKIu4I9OjuT51Rc+dz19vH3hGA+XvvZd08Mc6v/mriKrvxFC9JNSNmYGvgj4P2A7cJOU8qhrlrWooIBXw2HebW0FKVni9/NwOm1IdGMqMM3r5b+ZyN+KwYP5TyjEdwwY2+PxcNLkyfhefJFPBg7koxEjSJlMSCmpFILKnByeBHC7McdiDAgESKdSOBwObA4H0WiUgKZh7hzljEYhOxtCITw5OQB4/X79wrq1FY/FQkzT9hvp3FcUNM9mY5DVSnMgQHYshjMe5ySXiyFAKplk1ccfY9M07FJy7umn038vEUlODt6yMhoaGigrLe2YVwfZ2XgLC2loaKDU7cZlsxGAPR7bpeS9HTvwORy05OVh34d7oQSqNY2PfD6wWHg4FmNmOMy8nBxmAAM5hB5Nij5PI3A3sKqTA69ZSr5tNjNLSvobLFS3oYvHylSq4zMyoLWV097WuP7KEcTj8Ic/wBtv0G3B+jpwZyxGOCPAs1IpFq5ezSC/n7KpSqMpFMcal997Lxtqa4nF41w8b54SqgqF4pinK7H6F2A+gBBiDrpvx3eBSeiGSEedj7QATtu+nXdzcpBAvdvNY5EIPzJo/KtsNtbV11NTWAhC8ExJCbmbN3OG293ti2GPx8NZFRWM2rKFYR98wMrBg9nUvz9psaesSgE7/H79SShEQX4+bT6fLkLb2/F4PPsUmsDnltntdoJA6ve/J7uujlynE4fVig1waxr+pibMqRSWdJrBpaU4M612yqJRIpEI2dnZNDgcNGTmFu20/D9bt3LdLbfs8zi7eq/2Xu8A9vAbdLs5a+RIXfC6XGTbbFQBVUB15mctnxfbG5JJ6oH/hx51nQHMBEahGzwpjj4k8ITPxyOAyM7u+JsXtbezYN06ThozxvDI4398Pu4XAovD0WFwdHxVFSdWVVGz7cvE45BKQTwOb799+GI1BTwC/KeTAHdqGr8xmSgcOtSwOliFQtG3+Of11/f2FBQKheKI0pVYNXeKnn4VeFBK+TTwdKca1KOOGYWFTNu4keVDhoAQvFVaypfQ6xm7S/+Mg+/PhaDe4aDV5+MPNhvrV67k+qlTDRGsHo+HkV4v07dsYc3bb1NVXExdQQEtubm0Z2eTzJhIgS7CwpHIHqKMSIR+djsiGsWuaWQnEkzLz8clJZs3b8YWi+FMJjlr9myGu1yE7XZu27GD34wahdPp3GM+of79CQaD5Obmfm7dgbippqZb70VX7C1oJ2Yeu4gDnyQS/GvzZqqKiqgvLNwjArsTeBZ4QtOwhMOcYTZzocuFahp09FAL3B4Os2xXn9FgkML8fKZXVTFl2zasQhjmwAu6udjtwSDP7NpfezuDS0r4bU4O/VwuyhYtoqoqlz/8QReqWVlwyimHt68g8Dv09N89WuCsWkXh+PFf+NRfhUKhUCgUxw5dilUhhEVKmQROJdML9SBe16fxeDzcBPxUCLwuF0ngJy0t3JVKUW5AJGKQx8O9wDdbWmiTkuAqG499dCJaNMI9BsWiO0TryJFs2bIFkkmKzGZigQAmu51lK1eSTqcxC8H06dNZ/vHHmBIJsoCzKirw5Ofjzc/Xo48DB+LJ072LvRMn6svKyvBkanlzPR4KCwv3KUadTuchi9S+QBYws6iIoZnjddnt1NpsfIReexxjz5rch4XgFZuN0+x2zkU3aVL0TWq9Xv4ejfJBv36EksmOGzUFoRDXhkLMGDuWBrfb0MjjJuAOYEs63bG/wmCQawIBFowfD5k6c49HT/19+21dqB5OVLUG+Hk0Sm08jt1ux263U9TczPy1a7EZ2AJHoVAoFAqFoi/Qlej8F7BMCNGC3gLzXQAhxHD08sCjlv4eD78HLo/F2NHUhFdKftDUxJ/BEAdfF3BrOs033k9T/S0PMiG4N8tNyLSTW2eZKDPoInl/KbP9Cgp2i06Ph0Fu9x7P9/faA6XgHmt0Pt6hwMnoUde1wH+amlimaUSysvQItabxlt3OW8AE4Fz0OmVV29p3eKO1lVt8PvwOBzQ1UZCfjwmYVF3NjOpqZpx5pqHneBp4yO/nX0BWp7TfMfX1zN28mYn76Gs6c+bhp/5+APwmFmNHc3OH4+/VeXmcM3AgO81mlfqrUCgUCoXimGO/YlVKeZsQ4g30Er6lcrdtsAm9dvWophQ4s66OB6xWJFBZUsJ9msbnqygPj7ElJcz7LMSqhICUIB2XvPKRnfoRdfzOZGKSQS7E+2LvC/KeEKGXPv88L27ZQklODuuvvhqANY2NXPnii8SSSSwmE/ctWsS0/v0N3W9Pk4UuQgdmZTF86VKqiopYM3gwqX67K2PXZh4FkQgzGxo4JzfXsBYkikMnAPwVeN5iIeBwdKS8D4xE+H12NhaXi7KMUDWKJuCWcJh329s70n6HlJRwi9NJud1OmYF9TSXwT+AJIJAxPbOkUixYt45p5eX0mzzZkJtsCoVCoVAoFH2NLr1jpJQfSSmflVKGOy3bIqVc1fNT63kW5+YysbZWj44JwUceD88ZOP6XKpw4sgTCLBFWSfaMGI15eVxvsfAydNSWHo1cMmkSr37963ss+/H//scvTz6ZNVdeyS1z5/Lj//2vl2bXfTweD2dXVPCV8nL+1q8ff7bZmMPuD4ymaaxpaeF+q5WLm5t5v0W1PTzSpIB/+nx81efjNU3T646FwJZMMm/jRn4PnFBczORMT1OjeAf4HrC2U5pxqc/HdysrOaegwND9RYCfhUL8JRBAyxyjKxbjyx9/zPCWFpX2q1AoFAqF4pjmqK09NYJ+Hg+/A36dSrG5sBCbzcZ9mkbL9u2c5XJ1+4Jz5ky9Ru2/L4bY2G8TNVOKSQsTpuxs7tY0nvH5+KbFwqyiImMO6AgyZ9Agana5DmcQQtCuaQAEYjHKcnN7YWbG0Tki7QF+BFwMvAg80cm4ypubyxKrlf/LrHf30ny/SKwG/hSJ8EknAyWPx8M5+fmcWl3NaIMFKkAIuCsY5PV0uqNeNAicsHUrJ9TUMK6iwtD9bQNuikRYm+nVGhCCUwsKuCY/n/bRo1Xar0KhUCgUimOeL7RYBSj1eLgT+AWwJmOqc29WFltXrOD7J5xgiGCdOTMXr7ec5S0tPD1kCA2A1+vFKyUr4nFODYX4ltPJcUYcUC9y9+mnc/pjj3H9//5HWko+uPTS3p6S4ZQAlwJz43F+XV3NJ4MGkTKbsdvtvI5eV3ghcCbqw9UTrGpu5sFkkqqCAmKJRMcNA1ckwiXV1Xxt9GiYMMHw/X4M3BGNsiXTBiogBOOKi7kxJ4ecggLKxo0zNO33ZfTU5tZOxzi5poavtbYybPJkKCkxZF8KhUKhUCgUfRl1PY1ep3gDcGl7O14pSQnBK+PHUxoKca2BZkhneTycDty2fTvPQUdt3cpUivWaxgCfj3OzslhQUIC96+H6JPevXMkfTj+d/xs7lic/+4xvvfACr190EaAfawLdqSsG7NA0/rhtG47CQmxuN9HMuuZgkLZQCHduLnlOJ2b01NtIMEjE76d/Xh4DXS5c6EZW8ZYWog0NjPV4jmjd3hCPh1uBdU1NvDFkCOttNkBP2/yzpvF4ezs/FIJpR2HUvC/SDjzQ3s6/IhHSAF4vBfn5WNNpjq+qYsqOHZx65pmG77eyqYk/JxJsLCoiFo93CMfRDQ1c09bGiZMmgYF/4zDwm2CQdzpFb6OpFHM/+4xRTU0MNDh6q1AoFAqFQtGXUWI1Qy5ws5RcHYngy84GIXhpwAAKgK9jnOtrFnC13Y7zrbdYMXgwW0pLMZtMHZHWT+JxHszOZobdzixgGpBj0L57ijDQGonw6Jo1fPvkk1kHDBo7lg9feIEX43GCySTprCyERT/dUskkqxMJPrFYoL0dj8OBzWbT28VkIle0teGxWj+/PBDAY7fvXh6JgMtFVjjMzHCYcTk5DAXyWloQtbU0NQxi7dqCw24V0hW70oTnA6uAB4GqTHTeKyVXSsm1FgsXud3KNfgwqfd6+Xc4zDtlZbRJSZrdN3lOCAS4NCeHqMGRTTL7eL6tjd+2txO1WjvEcU48zpwNGxjR0sIwg4XjVvS033WdorfTioq4PTeX9IABlE2bptJ+FQqFQqFQfKFQYrUTY0tKeBhdtDa63dhsNv6fprG2uZnvW62Gtpy5aO5c5jc0YMrO5rFAgP+l06SFQEhJu6bxsd3Ox0AqFqMkEGCcw8HEvDyGAgPRRW9PIAENqGxuprK5GYfHQz3wGXpENKBpBBMJ0jYbO9GdWJ9JJgklEuTk5PBoVRVTRo9m444dlBQUUBuN6iIzkcCZk4PZYiGZTHbsS0hJLBbDZrMRi8U6IleHujxuNrMmmaQaOkRsrMrD1gvdkJTYsgRvvGG8YN3FFODPwN319fwLSJjNpITgYSGoBq5D1bIeCingWZ+PP/r9tNvtHa1oEIIBra3MqazkmyefjKekxPCU2DbgPmCp2Uw04xYupOT4QICrXS4C5eWUzZhhaNrvi8Aj7Jn2O37HDi5ra2PipEnQg+7hCoVCoVAoFH0VJVb3YlhJCQ8Cvwfey0TJlkrJ+rY2bjeZGGfQRWNn855+Xi9ly5axobSUKo8Hc6ZNiqZpeJuaqJeS1ZrGUpsNm82GGb1tijUQoNTppCw3lzz06HCirY22lhaKiopwFxQA+sVwa1sbjW1t5BQVYXe7ibE77bYhFELm5ZHIycEPBDUNbzQKOTkQDpOTSvEpekQ0lBGIj/z3v1TW1xOKRrn2j3/kzOnTufDUU/nPO+/w1DvvYMvK4qLTT9eFKugX4IkEuRYLbpOJvFiMAbW12FIpZkycSCkQS6f5ZO1azMkkmM3MPOkk3EBzKsX7n31GQgg0m40RU6cigQazmbWhEEGbjVhWlu4GCx0iNvCxg3RCQFoQjcOSt+GbY/wM2rGDMT3QzscCfCMnB/Hmm7wybhzNLhd2u51PgG9Hoyzevp35+fkqOtYFjV4vLwUCvDNgANUmE+12e4dYLNA0fpyTg6e1lf4nn2z4+yiB//h8PAzI7OyOvqm50SjzNm7kOzNnGi6OQ+hpv+/unfa7fj2jmpsZpNJ+FQqFQqFQfIFRYnUf2IGfAUuam1maiXI0uFx832Lhx8B8jEsLBl24fm3+fBoaGigrKiJps/Eh8FwggHcfEcWIplHd0qILQZ8PT1bW7rTYUAhsNgiF8OTk7Lncat1/2m1rKx6LZZ+RzFQqBaBHRDPi89KFC7Hb7TjsdsyJBFGfD2syycyKCsqLi3Hb7RCNsrO6GksyiS2dZvTw4TgBsrJYlpPD+Tk5uqOp262/Efn5zJk2TX8fysrwZMQ2BQWcePzxu5fn5enLnU68RUXUNzRg79+fkM1GFbDOZOKdWIzwjCyasiQyAaYsQeTEOHe1t2PKy2NkdTU/NJmYZnDEyuPx8PV585jT0MD7LhdvZN7nHc3N/N7hYNmGDdwCqi/mXqSBF9rauKe1ldacHGhp6YikOuJxTqiuZsmECfT3eKCw0PD9VwF3hsO8t5e78Nfcbma3tTFs5kzDxfEq4LfRKJs7pf1OLyzkjtxcUgMHUjZ9urqxoVAoFAqF4guNEqv7wQL80GoluGULHw0dijSZENnZ3AN8BHwXY9M6PXtF+s4DZkvJE++8Q5PTSavLRdEJJ9AEbOpGuuzBLM+12UhrGg5NIzuRwASMzcyrqbkZSzJJVirF2CFDyAeE1UooO5tgMEhufj7OTIQTh4Oy8nJ9eW4uTqez4/gcDgeTJ08+4PtwqMunAefn5uJ1u/l0RBPLnnfy3ie5pE4B09goml830NpUWsr1WVkcHwoxta6OU/PzDROQu+Z0AnAK8ItwuON9/njoUG5Op7mDvl+LfCSo93p5IRjkg7IytpvNBHJyOs5HazLJ1Xl5TKipYeiECT0i3ILAY8ArgL9T31R3OMxlVVV8ecwYmDTJ0H3G0FN+XwECnUybJm7fzrdbW5kwebJK+1UoFAqFQqGgB8WqEOIRoAJoklKO66n99CT9PB5uBj5qbeWZwYNpyzi+Lge+FY1y1o4dLHS7eyz64fF4OH/Bgt0RxUzf0ppYjMdXrCBiNqPZbIw78UTMQJ0QfNLURFpKTEIwuqCAPCBkMrHR68WcTJKVTjPN7caDnna7esMGbPE42YkE55x8MsMBh91Ok8ul77d/f+7PymISgN1OqLR0t/jM2S23nE7nHmL0QMt7Go/HwwKPhwXjgQXgB5b60jwSCLDT5QIhMJtMvNnWxpsOB/9oauJms5kZBrv3TgL+kEzyfZ+P2kykcJPTyTdaWlgiJSd8QUVJCHjC7+fRQICQzbZHJNWaTDKxtpafjxnDsJISw8Ui6JHcpcCD0Sgt8XhHCm5ISibW1DC9upo5PeAuvAH4dSTCjkSiY5/xRIK569czvLVVpf0qFAqFQqFQdKInI6t/Q/ec+UcP7qPH8Xg8nOPxcAbwd+C/0JHW+Qe7nedra1liNvdYi5J9RRQHezx8e/bs3SJ2VxptXh7e8vLPiVtyc/EOGrR7uculL8/PZ8GUKbuXdxJO+4tk9pb47C5u4Cv5+Zwcj/NBayufDBzIu+l0R1SrMS+Pn1itfAW4CL3+1yhGlJTwoJQ8GIuxLD+fNp+PNim5Qkq+a7VyyRfILfjT5maejEb5tKSEdiEI2WwdkdSsZJIrXC4m1NQwYvRovT60B9gM/AVYr2l4m5s7UnDnFxTwjZwcpMtF2ZlnGnoTKg48DjyhaTRmUvgDQlCRn88leXmEBg2irAdSjRUKhUKhUCiOZnpMrEop3xFCDO6p8Y80NuBy9DTTG0OhDpFTVVzM9VYr84GvAqOO0Hy6my57oOXHKh6Ph8UeD4uB9U1N3L5jB2sHDiRtMmGz23kVeD0W49S6Os7LzTUsNbjM4+Em4JEtW7jXYulwC/5rKsW7jY1cZTYfs1HWJPAx8FQoxJu73KE7uftmaxqTd+zgx+PGMcTjgYkTe2QeAeDP7e28JiV2u70jDT43GmX2pk18edAgJvVACm4VcBewHYhm9pmVTDJn40b+r39/RkyebLijsUKhUCgUCsWxgKpZPUQmAXenUixpbGRTv34gBHa7nRXACmAycD67azwVfZdxJSX8Xko+bWpi6ZAhbN5lhtTURJXVyht1ddwuBMMNFBKLXC5a33qL1447jmaXi1A4zCdSchmwqLGR05qaesSpuDeoA54NBHg1lSKRk0MsldqjRtoTi3FNbi7lra0MMrhPamc04DngsViMHX5/R1SzxO1melUVk6uqyAL6G9zXKAk87PfzBGDNmJrZ7XZcbW3MXbcOVyJB/xNOMHSfCoVCoVAoFMcSvS5WhRCXowctKS8v7+XZHBxDS0q4R0pWtrTwYXk5azOpjACrM4+h4TAn1tZysoHGPb2Fu7ycm2pqDB+zL7CrtvU09JsNv8m4wUqgqqiI75vN3AZMMHB/F82dyykNDbwQifBfu520EHqvTU3j5bw8RldXc73JxPFHYaS1HXgHeAtYp2l4AwE9khoKUZCfjwAGNzczubaWK088kX75+ZCf3yNzSQNvoBsotaH3CN71tx3a1MQ1gQATxo6lwe3W0+AN/JxuBn4XifBJe7t+/O3tDCwp4Tq7nSllZewEw/epUBwMQoiB6OU5/dA/Jg9KKf/Yu7NSKBQKhWLf9LpYlVI+CDwIMHXqVHmAzfsMHo+HRR4Pi4Ba4ElgGXqvRk3TeLu1lbcdDu4JBFjscHBGXh5jAVNvTvowue6WW3p7Cj2OQE/xvieV4ue1tXw6cCAIgeZ08iNN46SdO/m2w0HpQYqLu2+8Ef+OHV1uE49GGdbYiDc3l/AuB2VgE3CVxUKelPQ3mRhgs2FFF/h98W8RRHfIfh9YHosR0rQ90mwl4IzFmN/ayuLsbDSzmbITT+wxoSbRTdD+EomwNWNktCuqaY5EmLVpE0Pa2phQUWF4GnwU+H/Ai4A/keg4/lKfj+8FAiwYPx48nqP+BpbiqCYJ/FBKuUoIkQt8IoT4n5RyQ29PTKFQKBSKvel1sXosMBD4IXAB8B/guUxdngRCNhsvSMkywAXMAE5Ej9SpN39PkugX+9ubmvB6vZR6PJSWlNDa1ISvvp7yIxCJGujxcDvwP7+fZ8vLCQKNXi9PCcHyhgbuFkJ3qD0A/h07uGnw4ANuFxo4kGAwiM9u55N4XHfGFRm7JSlBCHLsdgrjcf5dWUkT0NvVjRI9xfctv593YzFq3W6sdrvet7epqSPNtjg/n2HNzYyqr2doaytnL1qkmyb1UH2mBNagi8X1moa3k5HRyOJivuNwML6gAO/gwT0ilj8G7o5Gqe/kLhxJp5leWcmk2lomKqdfRR9ASrkT2Jn5PSiE2Aj0RzerVigUCoWiT9GTrWv+hd5mskgIUQf8Ukr5cE/try9QBlwLnBqP89u6Oio9HmJZWdgzUbMA8FrmkQOMDQYpb2hgRn4+o0pKjklHWA3wZR7b2tqo9vkwFxWRcrnwobeUaYhGadY0zA4HAN5YDPLyIBajIBikLRaDggKywmEG+3wUxGIMlpLy9nZOzs9ngMGiw+Px8HWPhzOBnzQ24s3ceNhRUMAPzWbuAoYatK9d7sqlQHkoxI5olG0WC3WdBGs4GiUMrEsk+GowSFEsxiSbjal5eeQ3N2Oqq2NgDwr5OFADbAU+CQZZEY8TzMqibVeKa1MTHo+nI5Lq8fsZvXMnXyktZcTAgTSYzZTNmNGjkdT1wIPhMJ8mk3tEdS2pFFNqavhWWxszJk0Cj4cyg+fhRU8NeXcf7sLfzMkhUVxM2cSJKuVX0efImCBORr/Xsve6o65ER6FQKBTHHj3pBnxBT43d1xlXUsKdUlLb0EB7eTmbbTY+RBdsu2jTNJ72+cBuh1iMEdEoYxwOhkLHowww98YBHIAEuvAOANtaW6lqa8NSXEza7d4tQCMRdmoaZGdjyxgXeUMhsFggEMCTSc3UOl3g096u927tZMITjkQ6nmtmM1va25HAhwAOB38Ihzlx2za+kZdnuJtuAXCLENxQU8OKwYNBCAJZWVzm9/NtKTk/U4NpFE6nk7FOJ+WhEOu3baPV6aTV6SSc6e8L0NbWRhuwJRrldSFoi0Yxu924W1uZmZ2NJ53G1NzM0IIChhQU0FxZSWNVFcMHDWL86NEdH/hE5tHQ1ES110tOaSlZRUVs9/mo9vtJFhYSzcujJhKhNh7HuutGgs+n/62go05bSEk/v595Nhu+997DGYlgMpkYMXlyj7pNS2AV8G9gjabhbW3dwzxp8o4dTN62DWcqxZDjjjN8/3VeL49HIrxbWoroJJBtiQRzNm3ia/37M045/Sr6KEIIJ/A0cJ2Usn3v9UdriY5CoVAoji1UJmoP0fkifR5wBXot4geZx9ZO9XxCSpricTSHgzWdxsgCBgFF7e3YWloYlJ9PeX4+uUAe4ETvB9qdOtg0EAN2NDVR3dSEo18/LEVFBNBFZwCoDwapj0SQublo2dmEM6/VNA1vOAxZWdDejifjeKp1SsEkGNwj6rbreGOxGDab7XPL7ek07DLCMZkodLvxhsNoZl22733FFDebeRtYFo0yeccOrnY4mGagaC31eLgNeNXv51+lpezMiLXfCsFqq5UlTicHaw8USyaZ8+ijaKkUyXSa88aM4ea5c7nhzTd5fvNmTEJQkpPD3849l3HDhhEMBrGYTFTW1uJzOMiJxYik0yRNpj2EfNJkojUnh7fjcULhMFitEAqRKwTtWVkwejQAhcEg1qwsYrFYR7S/I4odiehR7GAQTCbw+ykQgrZd4nSvGwm2ZJIBbW0MbG1laEsLF5x2Gh63G+/8+bv79vagSH2prY1/JpO0uFx7nEdCSo6rreXbfj9jR46kwenskbm81trKb9ra8GVnd0SW7XY7A+vrmbFlC9mplHL6VfRZhBBWdKH6uJTymd6ej0KhUCgU+0OJ1SOECb2dzVjgW8BHiQQP1dRQ73bTmpfXIR46EydTe+f3g9msC79MpLIzOeji1RQOo4VC5DidZOfkAPqF/S6BFwqH8UcimJ1OhMNBNLMPTdN00ZKbC5EIHk3r2IemabujaZqGx+PpWHcwAtScTmMPhRhqt+NtacERi5GTSHDKxIkMBdKJBMvfew+bppElJWdVVIDLtVvwuFx4YzHqGxpIZ2fz1urVNGVn43W5qPJ4aM9E/KSUrAIuj0Q4rbKSq/LyGGqQQPF4PFzs8eBZv57fmky05eQgpOSjVIpvRaOcXVvLQpfrgILIZjbz5sUX48zKIpFKcdKjj7JwxAh+NGsWv5o3D4B7Pv6YW5Yt44GKCpxOJwAOh4NgMMjUUIgxb79NQ14ezW43tvHjWa5pn6tz3fX3iEYie+w/GAqRyJj+BIToMoq993N3OMy4ZBJRVYWnrY3SUIiTZs4kZrFQlomg7nqvekqkxtDdfZ+IRFib6XVMLIbH48FpszGwvp7JVVXkaxpje8A8CaAe+CvwhsVCIDu7470qCgT4ZUkJ7mHDaHA4lNOvos8ihBDAw8BGKeVdvT0fhUKhUCi6QonVXkAAM4uKGDp6NA0NDZRmZyNtNqqAKqA687OV/QvCzoTR04p3pUGiaXgslj220zqvj0YPSnTub53DZsMFlFiteH0+smMxcuJx5rhcDAHSySSffPgh9lgMRyrFWRUVeHJy8A4YsFuE7mpXUlTE8H1E4zpf6HcWHQPdbhoaGrDb7TQ3N/NOYyOrysvZ1q8fEj1S/FpWFh8GAvzabGZOUZFhf7fJxcVc8PLLvD9sGJ8OHozZZGJbczN/sNl4rq6OG00mpnQR1RVC4MzKAiCRTpNIpRBAXqe/Uzge/1xq8a66Vremce6ZZ+5+r0pK8ErJtsZGRP/+7BSCV6qrCWZlEbPZyC4rY0c0StxiIWUyYTOZSGT+lpZUCls6TSqRwJJKkZ1IMDw7m5bGRuyahkvTmDV8ONuXLyc3HMYmJRUVFTB+fI9HTvdmQ1MTf3gvxQefFZE/34pp7G6XXUsqxTSvl+vKy0n1oFAMAw8GArwgJVaHA7vdTkAIbIkEM7ZtY8nEiZQBHCM9chXHNLOAbwDrhBBrMst+JqV8ufempFAoFArFvlFitRfZO/JTin4VsYsAsDKZ5JnKSoJZWWg2G+WFhUj0fpZBIJTZ9kCitqv1LpuNRCKBNZEgO5FgSkEB/QE3kE6n+WzdOmyxGM5kksXz5jEMXXCTnY23tFQXL0OG4HG79Z0VFnLc3Ln7FKD7upA/lAhY523HAKO8XrZs2cKH77/PstGjqS0sBCBos7FECCpqarjY4TDEVMfj8XDumWcyraGBtpwc/hiP05Z5T6uLiviB1cr56K7Q+yOVTnP8gw+yta2Na044gekDBgDw8zfe4B9r1+Ky2Xjr4osP6vj39XzWmDF7vO8b/X6qNm9m6NChFOTk8N/XXyedTmM2mXTxmZu7e/viYrzptP581Cg8Hg/e7OwubyT0FLucfZ8KBvnPeym2XuhBJgSm30iOf8WBbWArx+3YwZTaWr6yYAFF+sQMn1sSeAV4NBpl266ese3t9PN4ON/tZlZ1NaOUeZLiKEJK+R4ck35+CoVCoTgGUWK1D+MCTi0sZFznaFYmNXQXaXTBWhWP898VK0gBJpOJk+fMoZjdVyRtiQRvr1iBKZkkK53mrPnzKQdsgLDb8XYWLbm5u3eQn4/3hBP2iOZ1xggB2h127Wek18uMLVt4sb6et8eMQcvKIhQO84QQvLdzJ3cLwQgDjG46H9eQpiZ+3tDAhrIyEIIsh4OXgFdiMcyhEG3hMAWZdOxdmE0m1lx5Jf5YjMX//jfrm5oYV1LCbaeeym2nnspv3n2XPy9fzs1z53Z7fgBjxoxhzJgxHc/Pqqg46Cj2vp73NJVNTTwXDvOpx0MgO5tAOk3wIzsyLiAtSMclYz7I4pZLc2hzuSgbM6ZH5ifRa8v/jt7jIxCPd9zs6d/WxtXBIGcddxxMnGj4vhUKhUKhUCgUOkqsHgV0JRhM6PWqk4qLKZ09e7cQ2Tv9taiI4Z3XH6ToPNC6vsKuOY7yejnD6+URm4116bTeEzQ/nx+azdwJjDBwn0NLSrhbSpa3tPDGoEFs22Uu1dSECfhPPM5xFgsTbDby9nqt227nlEGDeHXrVsZ1+lt8bfx4Fv3zn4ctVg9EX/xbJoAVwAuhEK9Fo6RNJmhp6TAtypnpw2SVyITEZhVceQoM8ngY1EPHsR64LxxmfaYNjs1mw263I2MxZm7ZwsimJqapnqkKhUKhUCgUPY4Sq8cQBxIifVGoGM2uYxzj9fLLDRv4eOhQEIKY08l1sRhn1dWxODfXsPfB4/FwlsdDBbrg+n0wiDfT2iUtBJVSUp1MUhCNUqRpjHA6KbDbiSYSvF5dzU9mzaKytZURmfTlFzZvZrSBdbZ9FQm819LCy9Eom4qLSdrtBFIp0pl1QkpEJMJ5+fkcf5KZtQ9UUllZRkVFLjNn9syctgD/D/h4rzY4Q0tK+JbdzlS3m+YBAyibNu2Y/xwpFAqFQqFQ9AWUWFUck5R6PPwK+J/fz1ODBhEB6pqauN9q5Y3t2/mtEAwzsP+lAKYBf0yluGf9et5JJEAIhBCEwmFCUvKB388/n3oKi5RYpOT8446jYuRI/u/JJ9nc0oJJCAa53TywaJFh8+pLSPT2Te8Dr0ejbMy4DXdu/RIQglKfj/H19Vx7/PEMBCguZsolxvbQ7czy5mb+nkhQWVi4h5u1KZ1mwo4dXO7zMWviRPB4GKBEqkKhUCgUCsURQ4lVxTGLx+Ph6x4P84DrmpvxZmoOt3g8XGc28ytgksH77O/x8IOpU4k88ABnWK18Fo9Tm4m0Digq4sZLLsGWaVNkTyR4y+/njooKyrOzMRs8l76ABrzT2srb4TCVxcVEM62GOteACinJDoX4cmEh4xwO0q2tlB1/fI9HL6uAh4NBXoxGddHs9eLxeHDY7fTfuZOplZW443GGq5RfhUKhUCgUil5BiVXFMU8ZcHs6zU937mRDaSkIgeZ0cgNwFnAxutGUUXg8HgoLCxmSnU1xKMSndXU0O5205uZisegfuVQyiTcSwQtsSiRwJZP0t1jIj0bJaW/Hk5PT0Wf1aEIC29CdfFcDa2Ix6sJhXQw2N3e0TLLb7WjJJEO8XsY2NnL5rFn0Aygu1h89yCbgSfS07UA6vYdoHtvSwo/698cyZAgNNpvql6pQKBQKhULRiyixqvhCMMjj4W7gNb+fF8rL0TJte57SNJYGg3wXOLkHakWdTicTBw8mGAzy/9m77/i2qvPx458jyZZkS962bMfZe+8wQkLYy0BpaUuBXymjjLYU6IS2UKDl236/tJTSMkoXbaEFyiiU1VD2DgFCyCBxdmwn8tbeOr8/riw7TuwMyyt+3q+XXrbuvbr3kXwt6bnnnOc4rFaCFgvbgI0xY65QALQmEo+zA1gXjYLViiUaZXQ0Snl2NiVAUcYj6z0NNACbOt3WhMM0RyLpwkS+SGSPZNASCHCq1cpiq5VSh4MGr5fKxYv7PCHUwCvNzTwUi7GzsDA9bVN71+NxDQ0ctXkzX1m2DBfIfKlCCCGEEIOAJKti2HC5XHzZ5eIs4DfAG5EIbrcbt9Z8UymqfT6+4XRSkeHjOhyOdCupE3ABUxIJVu7ebUzPkpODxWIhHo+nE9i4yURdMklTah+JeJz/hsO0BgJMys2lEhgBZDU2EqmrY2xFRZ8kV7vdbta73ZgrK0mUlLAbcANbAgE2RqMkc3LSiV97JeT2wkTt41DNwSBVTU2Mb2zk8sWLqWzfucvFiD5OCGPA68Dfg0FWtrfwprr72qxWTrBaOS4nhyyzmcplyyRBFUIIIYQYRCRZFcNOAfAj4N6dO/mjyUTMbEZpzRvJJOuAauCLQF92ws13ODiiqgqfz4fTZkNbLGyJxVgfDOKz2YibzXt0GfYHAgTicV5tbma9xYK1fZqcUAgKC8kKBpkcClFht1MAhHbvxtfQQEVJCaMrK8kCsgB/ayvNLS3kFReTW1BAHCOha/Z62e31YiooIOlw4AMaQiE2h8Po/HwIBnFFIh3HTVXLxedLd+1tL0xki0YZ1dzMCZEI506cSKKoiPpwmMpJk/otGfQCzwPPAq2AJ9WSrQFTMsnMxkauq6qiCqCkxLgJIYQQQohBRZJVMSwp4HNOJ9H//pe3xo9nY2UlNpuNOPAv4NlQiKX19Xze4eiz1r/OLa4As+12xicS+Hw+THl5hCwWmoEd4TDBZNLYSGvC4fAeyaEGYiYTO6NRvHY7fp+P5kgE8vMhFqPY58PhdBpJps8HFgt4vbjs9o7ks63NSD5bWnBlZWG1WvFEo2g6ppLZ13GtsRijWls5prycokSCmrfewhkIYDaZqK6upgT6rUutxph+5gXgxXAYb6fuyDabjWAyyeS6OuZv384FJ56ItKEKIYQQQgxukqyKYcvlcvGlE0/k2Pp6gjk5PGW1sh6jO+uOxkY2Wyw86vVyidXKlwoKyD2IfReMGsXN27YdenCNjcYNCIVC7KytZWJpKZM/+oiJy5YRAGrMZt4Ph/FbrSRNJmypKsOBYHCPXQWCQRxO5x5JZnfJZ+fl7eM57dEo+eEwi4qKmABkJ5N8+tFH5Pn9FEQinFldbSR+RUW4TziB+vr6fi1MFAJexUhSt7B3d+TJpaVcZLczNzcXb24ulSeeKN19hRBCCCGGgD5NVpVSpwK/BszAH7TWP+/L4wlxsFydWv2OBt4GfuHzpZO3QHY2f1WK/wAnA2cDBzI767W33prRON1ud0cSWFBgLHQ4cBcUUFdfT0FlJTarFQ/wUSjEu+vXEzObSZhMTJg6FRfQpBQf1dWhk0ksWjO/oIBiIKA1H9fUYInFyInHOeWooxgH5FmtBKxWGpqbjeM6ncZxCwtxH3XUPpNSVz+2om4AnvR6eTmRQHUaO9uefJd4vczdvp0vjhjBwrlzoazMuAkhhBBCiCGhz5JVpZQZuBs4CagF3ldKPa21XtdXxxSiNxSwGBidSPDzmho+GD2aYKqFMQw8DfwbmOXzMX/nTo4qLqa8n1rouksCuy6vBKaOGcPcUIgtW7Ywbtw4po4YYazMy8M9fnxHkpmfbywvKMA9c2bH8k7jNwu6KYLUX0lpV27gFeBlYFvn7supsbNOq5WTlUK9/z6lra2YTSZGLVzY73EKIYQQQoje68uW1UXAJq31FgCl1MMYDVOSrIpBrcrl4kZge309O0pKeMVqZUdqXTgS4d+trfw7N5fClhbOt1o5u6Bg0I1/nDp1KlOnTt1r+YEmvYOJD3i2tZX/RKPUFRTs1YKqgWKfj9NjMb46fjy5eXm4lyzp9+7IQohDN+YtEwDbFicZ85aJbYuTB/24wWbM9c+y7ednDHQYGdefr3lfHquv9t2+33bt53SmjzXm+meNfQ7AOXagz6en7drjb3c4/a8czHvYYDOQ51V3+jJZHQHs7HS/Fjii60ZKqcuBywFGjRrVh+EIceDak7dFwOeAj4Angdc6JUitOTk8qBT/BqYCxwHHYExPI3qnDXgXeAt4PxxmV6prdvu0M1arlUKrlar6eibX1jLC6+XM6ur0uOLBnHwLIYQQQogD05fJqtrHMr3XAq3vB+4HWLBgwV7rhRhoCpiXuq2Ixbhj1y5qysqIWyzpokbrU7ffhMOMaWlhqd3OCYWFlA5c2EPO2oYG/uvzsbm8nG25uek3i2Aksse0M+NaWrigooIjbDZax42j3maTFlQhhBBCiMNQXyartcDITvergPo+PJ4QfW5RSQm/TiTYumsXu0eN4mOrlQ+BJB1VaOu05q14nD/l5DDBamUeMB+YDmQPaPSDSwBYg9Fq/U4wyKpw2JhWp7kZV2ouWQCbzUaOx8P43buZ4nbzhZNPTne7lhZUIYQQQojDV18mq+8DE5VSY4E64Dzg/D48nhD9onOC9BnAA7wBPNrWhrvLFDA7rVZ2Ak9hJKpj/X7KGxpYkJ/PEcXF2AfoOQyEEPBeUxNv+/3UlZZSm5tL+4gOTyy2x/Q5kXCY+VYrRwNHWa0kXC7qEwkqZ8+W5FQIIYQQYpjos2RVax1XSn0D+A/G1DV/0lqv7avjCTFQ8oFqYCHw4FtvsaWkhJ0lJSS6JFW+SIQXW1rAbOZvgQDlDgcTrVYmQfo2GuOfZagLYsx5uqnTbWskwu5gEJTaZ+tpIJmkorWVCY2NXDV3LpM771BaUIUQQgghhp0+nWdVa/0c8FxfHkOIwcLlcnHhCSekq9AW2GysAT4EPgDWdSrOpLQmFA6z3WplO/AiRjfiRCjE2OxsJubkUIkxFc2I1G2wFW6KA40Y08m03zb6fHwaieB1OtOJaLtQl+cfCYeZZrUyF5hjtVKUk0NTWxuVc+bgkvlQhRBCCCGGvT5NVoUYbrqOoZyfun0VWBON8sf169mdl0dDfj6W8vL0dpFIBLfbDVrTpBQ7UhVvO8sKhcj1+ajKyaHK4aAAo1W3IHXLB9wbNlC7eTOTxo5l2j6mrumJBurdbjbv3o2jshJraSlewIsxfYwXqPX52BYIEM7Px2+371ExLRKJ4G5tNar2BoPpqr3tcqxWsvx+yjweRrW08NVFi5iw54vHSGk9FUIIIYQQKZKsCtFPZpSWcv3cuUbLa0kJ+VYrm4Aa4JXmZgKhED6bLT3etXOiF4lE2NHYCFqzOhzGlZW1VzLr9/lottlg+nQAynw+ipxOsiB9iwWDBAMBsnNzseTkEIP0LRCJ4I5EoKAAQiFckcheMaST0cbGvZLRzvOempJJij0ejiwrYwIwARhjs9FWUkJ9NErlwoXSeiqEEEIIIXokyaoQ/ahry+uM1O1os5ln3nyToNmM1+FgyvHHE8Qon10PrA0G9+hC2zWZBQgEg3vc9waD2J1OQqn7kUgEd1OTkWyGQj0mm/s6xr7WV1qtuAAXYAO2rF1Lgd9PaSDAZ04/na7tpFK9VwghhBBCHChJVoUYBFwuF9XV1enxrq6ioj3W745GeeSNN2i12Qhbrcw45hgURiXittTNnp3NVr+fuMlEwmQiNydnj33sLxm12Wz4AEs8Tk4sxvSSEiqAvNQtqTVr160jJxymIBzmi8cfz8j8/I4D5Ofjnj+/4zlIUiqEEEIIIXpBklUhBomeWh3LXS7OO+mkjkSwsHDvjQoLWb97N1u2bGHsuHFMGD2aGEYhpBhQH43ywrvvkkwkyFKKU084gRF0dBG2WK002mwdx8jN3XP/BQW4583rMRmVllMhhBBCCJEpkqwKMUQcSCI4depUpnYqrJTdaV1JaSmuZcs6ks19jBnd3zEkGRVCCCGEEP1FklUhhhFJNoUQQgghxFBhGugAhBBCCNF/lFKnKqU2KKU2KaWuH+h4hBBCiO5IsiqEEEIME0opM3A3cBowDfiSUmrawEYlhBBC7Jskq0IIIcTwsQjYpLXeorWOAg8DZw9wTEIIIcQ+SbIqhBBCDB8jgJ2d7temlgkhhBCDjtJaD3QMaUqpRmB7Px2uBGjqp2MdruQ17D15DXtPXsPeO1xfw9Fa69KBDmIwUUp9HjhFa31Z6v7/AxZpra/ust3lwOWpu5OBDRkKYaifa0M5/qEcO0j8A2koxw4S/0DaV+wH9dk8qKoB9+eXCqXUSq31gv463uFIXsPek9ew9+Q17D15DYeVWmBkp/tVQH3XjbTW9wP3Z/rgQ/1cG8rxD+XYQeIfSEM5dpD4B1ImYpduwEIIIcTw8T4wUSk1VimVDZwHPD3AMQkhhBD7NKhaVoUQQgjRd7TWcaXUN4D/AGbgT1rrtQMclhBCCLFPwzlZzXj3pmFIXsPek9ew9+Q17D15DYcRrfVzwHMDdPihfq4N5fiHcuwg8Q+koRw7SPwDqdexD6oCS0IIIYQQQgghBMiYVSGEEEIIIYQQg9CwTFaVUqcqpTYopTYppa4f6HiGGqXUSKXUK0qp9UqptUqpawY6pqFKKWVWSn2klHpmoGMZipRSBUqpx5RSn6bOx6MGOqahRil1Xer/eI1S6h9KKdtAxyQOP0Ptc7e7zzmlVJFS6kWlVE3qZ+FAx9qdrp8vQyz2vd7bh1j8e72vDub4lVJ/Uko1KKXWdFrWbbxKqRtS/8sblFKnDEzUHbqJ//bU+bNaKfWkUqqg07pBE/++Yu+07jtKKa2UKum0bNDEnopnn/Erpa5OxbhWKfV/nZYfdPzDLllVSpmBu4HTgGnAl5RS0wY2qiEnDnxbaz0VOBL4uryGh+waYP1ABzGE/Rp4QWs9BZiNvJYHRSk1AvgmsEBrPQOj4M55AxuVONwM0c/d7j7nrgde0lpPBF5K3R+sun6+DKXY9/XePiTi7+F9dTDH/wBwapdl+4w39X9wHjA99Zh7Uv/jA+kB9o7/RWCG1noWsBG4AQZl/A+wd+wopUYCJwE7Oi0bbLHDPuJXSh0HnA3M0lpPB36RWn5I8Q+7ZBVYBGzSWm/RWkeBhzFeUHGAtNa7tNYfpn73YXyIjBjYqIYepVQVcAbwh4GOZShSSuUBS4E/Amito1rrtgENamiyAHallAXIYR9zbgrRS0Puc7eHz7mzgb+kNvsL8JkBCXA/uvl8GSqxd/fePiTiT9nX++qgjV9r/TrQ0mVxd/GeDTystY5orbcCmzD+xwfMvuLXWi/XWsdTd9/FmFMaBln83bz2AL8Cvgd0Li40qGKHbuO/Cvi51jqS2qYhtfyQ4h+OyeoIYGen+7VIonXIlFJjgLnAewMcylB0J8YbUXKA4xiqxgGNwJ9TXd3+oJTKHeighhKtdR3GFc8dwC7Ao7VePrBRicPQkP7c7fI559Ja7wIjoQXKBjC0ntzJ3p8vQyX27t7bh0T8PbyvDon4O+ku3qH4/3wJ8Hzq90Efv1LqLKBOa/1xl1WDPvaUScASpdR7SqnXlFILU8sPKf7hmKyqfSyTksiHQCnlAB4HrtVaewc6nqFEKVUNNGitPxjoWIYwCzAPuFdrPRcIMLi6VQ16qTFIZwNjgUogVyl14cBGJQ5DQ/Zzdyh+zh0Gny9D+r19GLyvDqn/Z6XUDzG69T/Uvmgfmw2a+JVSOcAPgZv2tXofywZN7J1YgEKMIRTfBR5VSikOMf7hmKzWAiM73a9Cur0dNKVUFsYH+ENa6ycGOp4haDFwllJqG0aXuOOVUg8ObEhDTi1Qq7Vub9V/DOMLjjhwJwJbtdaNWusY8ARw9ADHJA4/Q/Jzt5vPObdSqiK1vgJo6O7xA6i7z5ehEDt0/94+VOLv7n11qMTfrrt4h8z/s1LqIqAauEB3zNU52OMfj3Gh4+PU/3AV8KFSqpzBH3u7WuAJbViB0cOjhEOMfzgmq+8DE5VSY5VS2RgDfZ8e4JiGlNTVkT8C67XWdwx0PEOR1voGrXWV1noMxjn4stb6cLry2ue01ruBnUqpyalFJwDrBjCkoWgHcKRSKif1f30CUqRKZN6Q+9zt4XPuaeCi1O8XAU/1d2z708Pny6CPHXp8bx8S8dP9++pQib9dd/E+DZynlLIqpcYCE4EVAxBfj5RSpwLfB87SWgc7rRrU8WutP9Fal2mtx6T+h2uBean/i0Edeyf/Ao4HUEpNArKBJg4xfkvfxTk4aa3jSqlvAP/BqND2J6312gEOa6hZDPw/4BOl1KrUsh9orZ8buJDEMHU18FDqC/AW4OIBjmdI0Vq/p5R6DPgQo5vUR8D9AxuVONwM0c/dfX7OAT/H6NJ2KUZS8vmBCe+QDKXY9/XebmIIxN/D+6qDQRq/UuofwDKgRClVC/yYbs4XrfVapdSjGBcQ4sDXtdaJAQk8pZv4bwCswIvGNQPe1VpfOdji31fsWus/7mvbwRY7dPva/wn4kzKms4kCF6Vatg8pftXRKi6EEEIIIYQQQgwOw7EbsBBCCCGEEEKIQU6SVSGEEEIIIYQQg44kq0IIIYQQQgghBh1JVoUQQgghhBBCDDqSrAohhBBCCCGEGHQkWRVCCCGEEKIfKKVuVUqduJ9tlimlju6vmIQYzIbdPKtCCCGEEEIMBK31TQew2TLAD7zdt9EIMfhJy6oQQgghhBgWlFLfU0p9M/X7r5RSL6d+P0Ep9aBS6l6l1Eql1Fql1C2d1j3ZaR8nKaWeSP3uV0r9Uin1oVLqJaVUaWr5HKXUu0qp1UqpJ5VShanlDyilzk39vk0pdUvqsZ8opaYopcYAVwLXKaVWKaWW9OPLI8SgI8mqEEIIIYQYLl4H2hPABYBDKZUFHAO8AfxQa70AmAUcq5SaBbwMTG1PRIGLgT+nfs8FPtRazwNeA36cWv5X4Pta61nAJ52Wd9WUeuy9wHe01tuA+4Bfaa3naK3fyMSTFmKokmRVCCGEEEIMFx8A85VSTiACvIORtC7BSFa/oJT6EPgImA5M01pr4G/AhUqpAuAo4PnU/pLAI6nfHwSOUUrlAwVa69dSy/8CLO0mnic6xTUmE09QiMOJjFkVQgghhBDDgtY6ppTahtE6+jawGjgOGA+EgO8AC7XWrUqpBwBb6qF/Bv4NhIF/aq3j3R3iIEOKpH4mkO/lQuxFWlaFEEIIIcRw8jpGUvo6RmvqlcAqIA8IAB6llAs4rf0BWut6oB74EfBAp32ZgHNTv58PvKm19gCtncab/j+MLsIHygc4D+oZCXGYkis4QgghhBBiOHkD+CHwjtY6oJQKA29orT9WSn0ErAW2AG91edxDQKnWel2nZQFgulLqA8ADfDG1/CLgPqVUTmpfFx9EfP8GHlNKnQ1cLeNWxXCmjG74QgghhBBCiO4opX4LfKS1/mOnZX6ttWMAwxLisCbJqhBCCCGEED1ItZwGgJO01pFOyyVZFaIPSbIqhBBCCCGEEGLQkQJLQgghhBBCCCEGHUlWhRBCiMOMUupPSqkGpdSaTsuKlFIvKqVqUj8LBzJGIYQQYn/6LFlVSk1WSq3qdPMqpa7tq+MJIYQQIu0B4NQuy64HXtJaTwReSt0XQgghBq1+GbOqlDIDdcARWuvtfX5AIYQQYphTSo0BntFaz0jd3wAs01rvUkpVAK9qrScPZIxCCCFET/qrG/AJwGZJVIUQQogB49Ja7wJI/Swb4HiEEEKIHln66TjnAf/Y1wql1OXA5QC5ubnzp0yZ0k8hCSGEOJx98MEHTVrr0oGOYyjqs8/m1laIxzOzr75msUDhIBrWO5ReO7F//Xl+DYZzp6+f72B4jodqsL3X9LGD/Wzu827ASqlsoB6YrrV297TtggUL9MqVK/s0HiGEEMODUuoDrfWCgY5joGSqG3BGP5vvvReqqjKzr75WWwtXXTXQUXQYSq+d2L/+PL8Gw7nT1893MDzHQzXY3mv62MF+NvdHN+DTgA/3l6gKIYQQok89DVyU+v0i4KkBjEUIIYTYr/5IVr9EN12AhRBCCJF5Sql/AO8Ak5VStUqpS4GfAycppWqAk1L3hRBCiEGrT8esKqVyMD4Qr+jL4wghhBCig9b6S92sOqFfAxFCCCF6oU+TVa11ECjuy2MIIYQQQgghDk+xWIza2lrC4XD3G82fD2Zz/wWVSS4XrF8/0FFknM1mo6qqiqysrF7tp7+qAQshRL/SQBgIdrnVtrRQ39xMXkkJuYWFRIEI0Ojx0OTx4CwowJGXRwJIpm5tPh8er5f8vDzynE5MgErdAl4vPo+Hkvx8SvLyyAKyUzd/ayu+piaqioupKioiB8gF7EAOYE3tQwghhBD7Vltbi9PpZMyYMSjVzadmQwNkZ/dvYJkSjULZ4TWTmNaa5uZmamtrGTt2bK/2JcmqEGLIiAFNwPrmZja2tGAtLcVUUIAH0jcv0BAO0xqJYLXZsFqt6cdHIhHcfr/xgebz4crJwWq1Gss9HtAa2tpwWa3px0UiEdytrca61lZc2dl7rmtr6/5xPp9xLL8fV27uXrHEQiFKrFbK7XbygPzUjbY2Yk1NTCgsZEpxMaUYSa4QQggx3ITD4Z4TVTHoKKUoLi6msbGx1/uSZFUIMWhooBmoA9a0trLR6yVRVETI6aQRaCWVBAYCRhLo9eKy2/dOSBsajARSKVwuV3p9OBwGrdGA0ppwOIzVau12eU+P6c26SCSC2+0GrWlRCk+nGCORCG6vF7KyIBDA5XBgtVrJAUpTN6vXS1ZTE9Pz85ldXIyL/qmWJ4QQQgwESVSHnkz9zSRZFUL0uzhGQvpRSwtrvF7CxcV4nU7qMbrkplslYa/WzJ6SwK7rs+JxrH4/ValkT5vNbGtsxBKPY9GaeYWFlAAhYPWmTZgSCSzAEQsXUoKRAHoSCd5bswadTGIymTjiqKMoxOge3JxM8u769cS1RlsszF64kFwgCjQrxYd1dURNJmIWC6OLizEBAaA2EMCcSBA3mQ44yQ0C24GN7a25ZnM6mXVYrYwAqgCnx0O2282iwkJmlpZKN2MhhBCil277xS/4++OPYzaZMJlM/O5Xv+Lnd97J1u3b8QcCNDY1MXb0aADu+cUvOPqIIwDYWVvLl6+6it0NDZhMJi6/6CKuufLKPfb9i3vu4bu33EJjYyMlJSV7HfuFF17gmmuuIZFIcNlll3H99dfvtc2GDRu44ooraGtrIxKJsGTJEu6//35effVVzj77bMaNG0c4HOa8887jxz/+MQA/+9nP+OMf/4jZbOauu+7ilFNO2Wu/q1at4sorryQcDmOxWLjnnntYtGgRzc3NnHvuubz//vt85Stf4be//W2vX+PuSLIqhOhTHuC95mY+9noJlJTQ7HRSCwTau+QqdcAJqQkYkZ1NrsdDbihEbjTK4vx8RtHRhTYajfLWa69hiUaxKEV1dTWu9mAcDtwjR1JfX09lZSWuvDxjeX4+7hkzOpYXFnY8gaIijlmwoGNdUVHHusJCjp07t2NdQUHHurw83OPHd6xzONKr3LEYz7z8MlGtidhsHH3qqWSlXqvtWvOXG29ENzURM5vJys/Ha7GQSD02Fo1iikY7Xt/sbILZ2TQAHyQShEIhAO4GnHY7BWYzeUDZqFF8/9ZbKUPGyQohhBi6xlz/bEb3t+36xT2uf2fFCp5ZvpwPX30Vq9VKU3Mz0WiUJx98EIBX33yTX/zmNzzzyCN7PdZisfDLn/6UebNn4/P5mH/ccZy0bBnTpkwBjGT2xddeY9SoUfs8diKR4Otf/zovvvgiVVVVLFy4kLPOOotp06btsd03v/lNrrvuOs4++2wAPvnkk/S6JUuW8MwzzxAIBJgzZw7V1dXY7XYefvhh1q5dS319PSeeeCIbN27E3KVI1fe+9z1+/OMfc9ppp/Hcc8/xve99j1dffRWbzcZPfvIT1qxZw5o1a/bzCveOJKtCiIwJAJuAmtRtI1DX3m3XZNojKe0uIXUCIy0WWnbtIj8QIC8cpvqII5gGFAFmux23y2UkgWPG7JkgApSWUnHKKR1Josu1x2qXy7XXsp6W98U6l8tFdXV1R4ydr6QWFLAuEuHakSNxOp04HA40RmttAGgOhaipryeUlUU4O5us4mLiqUp7kXB4j2qJNpsNq80GwD3btvH/IhHMgQBzs7JY7HQyGxiBJK9CCCFEd3a53ZQUFaUvqJcUH/hEJxXl5VSUlwPgdDqZOmkSdbt2pZPV6374Q/7vpps4++KL9/n4FStWMGHCBMaNGwfAeeedx1NPPbVXsrpr1y6qqqrS92fOnLnXvnJzc5k/fz6bN29m8+bNnHfeeVitVsaOHcuECRNYsWIFRx111B6PUUrh9XoB8Hg8VFZWpvd1zDHHsGnTpgN+LQ6VJKtCiEPWCKxJ3VYGg2yNxYwEqZtuuZ2T0hHZ2RQ1NVHo81EcDPKZRYuYDTgBcnNxjx2772SOnhPEA1k/GPQUo91up6KiIn1fYVQOtgJFdjsVLhc+nw+nw4EjK4soqcJSWlPT1kYgO5uAzYbF0vEWn0wk0uNk65ViZeqiQREwu9Nt7w5IQgghxPB18nHHcev//R+TFizgxGOP5Yuf/SzHLu65NXZftu3YwUerV3PE/PkAPP3cc4yoqGD29OndPqauro6RI0em71dVVfHee+/ttd11113H8ccfz9FHH83JJ5/MxRdfTEGXi/nNzc28++673Hjjjbz++usceeSRe+y3rq5ur/3eeeednHLKKXznO98hmUzy9ttvH+zT7jVJVoUQB2x1YyNveTw0ulxsdzppSC2PRCK4m5pAazxdihrlWa3YvV5KPB5KAgE+N38+84Fcux13VZWRkE6detAJ6XDmcDhwdOpWnI2RZJbY7YwqKTES2exslMVCC0bRqtxolFgsRsRi2eOiQQvwSuoWiUTI93o5PjubM/PzqdrXwYUQQohhxOFw8MGrr/LGO+/wyhtv8MVLLuHnP/4xXzn//APeh9/v53Nf/jJ3/uxn5OXlEQwGue2OO1j++OM9Pk5rvdeyfRUuuvjiiznllFN44YUXeOqpp/jd737Hxx9/DMAbb7zB3LlzMZlMXH/99UyfPv2A93vvvffyq1/9is997nM8+uijXHrppfz3v/890KedEZKsCiG6lQDWAyuA14JBVoVCRpXabsaYKq0p9vmYpxTHjxzJBGCUzUZzWRn18TiVEyfukZRKQnrgfv3uu/z+ww/RwFfnzePaI4/kxpdf5qkNGzApRVluLg985jNUproOt8sFRgLzgImvvkqz3U5tSQmOo49mK0bXYuioUOzWmo2hEE/abEyxWlkKLAHkrySEEGK4MpvNLDvmGJYdcwwzp03jL//4xz6T1Z21tZz5pS8BcOXFF3PlJZcQi8X43EUXccHnP89nzzwTgM1bt7J1+3ZmL1kCQG19PfPmzWPFihWUp7oNg9HiuXPnzvT92tradFfcriorK7nkkku45JJLmDFjRnosafuY1c4OdL9/+ctf+PWvfw3A5z//eS677LL9v1gZJsmqEGIPAeAj4D3gAyBVkxdPLLZXd958q5UpwLbbbsO3YgW2aBQToEeO5G27nb7oLFIwahTX3nprH+x58FrT0MDvP/yQFV/9KtlmM6c++CBnTJzIdxcv5ifHHw/AXe+9x62vvcZ91dX73IfdbufMzuNkHQ6SwGbgY2B5SwtNXSoUb7Va2Qr8BRgRCDDZ7eZMh4MJh9nk5UIIIUR3NtTUYDKZmDh+PACrPvmE0Z265nY2sqqKVW+8kb6vtebSq69m6qRJfOvrX08vnzl9Og01NcadaJQxixaxcuXKvaoBL1y4kJqaGrZu3cqIESN4+OGH+fvf/77XcV944QVOOOEEsrKy2L17N83NzYwYMYJPP/10n3GeddZZnH/++XzrW9+ivr6empoaFi1atNd2lZWVvPbaayxbtoyXX36ZiRMn9vxi9QFJVoUQJDES1H/6/bwXj5PVZe5SMIr1BJJJRrS0UNXaygVz5nAExpvIzQ0NfGfBAqP7aZeWvUy7edu2Ptv3YLW+sZEjq6rISRVSOnb0aJ789FO+12nMTCAa3W+hpK4t2SZgYuq2xGTiyVdfZWtxMZsqKgh32i4SifBOczPvmM08GAjwBa+X/5eXx76v7QohhBCHD38gwNXf+x5tXi8Ws5kJ48Zx/513HtBj33r3Xf72yCPMnDaNOalW1P+58UZOP/nkbh9TX1/PZZddxnPPPYfFYuG3v/0tp5xyColEgksuuYTp+xjjunz5cq655hpsqaKKt99+O+Xl5d0mq9OnT+cLX/gC06ZNw2KxcPfdd6crAV922WVceeWVLFiwgN///vdcc801xONxbDYb999/f3ofY8aMwev1Eo1G+de//sXy5cv3KvyUCZKsCjGMtQIvAv8BdkYiuFtaQGvwetPjTouBhcAiq5XynBya2tqonDlzrzGmXcdRisyZUVbGD19+meZgEHtWFs9t2sSCVAGmH770En9dvZp8q5VXLrrokI/hcrk45/TT0y2vTpuN94A3gFdCoXSretxk4lmteQs4EjgHmNr7pyiEEEIckG0/P2PvhQ0NkJ3dJ8ebP2cOby9f3u369u7B+3LMUUehW1v3e4xtnS7EV1ZW8txzz6Xvn3766Zx++uk9Pv6OO+7gjjvu2Du2ZctYtmzZPh/zwx/+kB/+8Id7Lf/DH/6Q/v2YY47hgw8+2G/MfUmSVSGGGQ2sBp4H3oX0/J2dq/aWeTwcl0zyhTFjGEenqU1cLkYe5mNMdeqWxHhtksCuhgbqd+2isqICV1kZCqNVUgENbjeN9fWM2Mc0OZkytbSU7y9ezEl/+xuO7Gxmu1xYTCYAbjvhBG474QR+9sYb/HbFCm457rhDPk7XltfjUrcLolF+u349n4wYQWN+PjabDQ28k7pNAY5taaFi+3aq+vB1EEIIIcTwIsmqEMNEEngd+HM3U8yUZGczfvt2pu7cSXE4THV1da+K6lzy1FM8s3EjZbm5rPna1wBoCYX44mOPsa2tjTEFBTx67rkU2u08tHo1t3cqh77a7ebDK65gTqciA/ujMcbXejCmcfEA21tbqW1rw1ZURFZ+PkEgCDQGAjQFAmQ5HGTl5BAFIoAvHMYXiezx2kQiEdzhMBQUQDiMKxLZc10kAkVFmEMhRoXDOG02soF4MEjC76ckJ4dSh4McIAeIeTxEmpsZU1DAmKIi8oECIA+jqm93Lp03j0vnzQPgBy+9RFVe3h7rz585kzP+/vdeJavdGV9WxvVz51JXX48nN5fXrVZWdlr/cSTCcr+f4uxsTnjjDS5bskQSViGEEEL0Wp8mq0qpAuAPwAyM75KXaK3f6ctjCiH2pIG3gYeATfuYYmau1cppwNF2O62TJ1PvdBoFeHqZbHxlzhy+sWgRX37yyfSyn7/5JieMHcv1xxzDz998k5+/+Sb/e9JJXDBrFhfMmgXAJ243Zz/88F6JagJwBwJs9nj4W2srscJCGjHmet0RCuGORrF2TTJ9PjCZwOPBlVoXiURwNzcb3Z3D4XR350gkgruhYa/pd7qbJxb2bI1OKEVLJELCZttjKh/CYVxZWR3H8HjAbAa/H1du7h7xmoJBqqxWmoGVGMmtKRQCvx+T1kwqK2OHx8MT69fzzqWXUtPczMTU5ORPb9jAlJK+myW1c6vrccAO4F8YU954Uq9Dk8PBowsXEopE+CFg77NohBBCCDEc9HXL6q+BF7TW5yqlsjG+ewkh+oHGSHgeBLaklrUnV1nxOFPr6/mS18vpM2akH5PJqWSWjh7Ntra2PZY9tWEDr6bGVV40ezbL/vIX/vekk/bY5m9r1nDalCm829JCIjeXqNWKF/DG4/jjcdaYzaz2+XDl5HQkgI2NRmJ4AEnmgS6Ph0I4rVbyrVbCiQQkk2AyUWi1pltAtdWKX2sSSoFS6cIGB3vs9mlj0JpdSpGbSLARSMTj+KNRyMril//8J+FIBKvFwrdOP50dwHeee45aj4css5nRBQXcd8Y+xvH0kVHAN4ELMS6E/CWZJGYygVKscLn4GvA1jPHOQgghRG9orfc5D6gYvPY1l+uh6LNkVSmVBywFvgKgtY4C0b46nhCiwwbgzkCAtanqbe2tdwVWK5O3bmX21q3Yk0nmdzPNSV9x+/1UOJ0AuJxO3H4/K5ubiTkchKxW2oC/rFnD5dXVfGQyQTiMw2zGbLEQj8eNhBSgmwTQGovh9PkYZ7ViNpvZXl+PNRrFlkiweO5cRgDhRIIVH3yAJR4nW2tOPf54RgBtkQgvvvwypngcs8nU0Q3aZsOdm9sx5UsqIaV9nd1OXX09pZWVFFmtRIG6SITn33mHiMlELCuLhcceiw2o15q3tmwhaLEQtlqpKi4mDmzz+1HJJEmlUFqTSBgjiTs/529//vPG39JmIxGP83YgwGfPPBMFuHJzcWVl4QO2B4NYvF7y+6ngVRFwdX4+x0Wj3BWPs62oCKvVShNwK3AMcDlQ2OeRCCGEOBzZbDaam5spLi6WhHWI0FrT3NycvojfG33ZsjoOo4fen5VSszGmbLxGax3o+WFCiEMVwJgT86lIhN2prq4epRhZVsa5NhuftdkITZ1KfX5+Rrr6HiiN0YU3oTVvRyL4rVaa4nGiwPtmczop3bp7N1kWC5Wprq1oTTwex2yxYLFYsMXj5EYijK6r49j8fCYCKhbjozffxB4KkaVUR5LpcOAeN64jySxMpUtFRcxfvLhjeWkpAMVlZTg6VcPt/Nr01OLcdV0uUFhWRulxx3Xsq6jIWFlQwCnTpu0x1ymAOx7n3y+9RMBiIZCTw2atmQe0KsWOYJCQxUIkOxuLxXjL7pzEaqAtkSCUlcXmeBx/LIbJasXp9zPZYmG0zUZRr/+C+zejtJTfYYyLvh9j3DDAm8A74TDVO3dyZl6ejGUVQghxUKqqqqitraWxsbH7jXw+Y4jNUJRIQHPzQEeRcTabjaqqql7vpy+TVQswD7haa/2eUurXwPXAjZ03UkpdjnHhnVGjRvVhOEIcvjTGFCO/B9qAUKq10ZRMMnPnTi5ta+PY1JjQvAx29e0pnjZgM0ZBo0djMVricXJycni9uZkRZWU0tbXhtKdGNaaS0nfWrGHxjBk4IhHs0Sj2WIxJFRWUAQ6LhZDNxofAj8aPx1VQYDy2pISpJ554UEnmwS4/FAdzDJfLxZnV1enncO+zzzIFwGplZl4ePp8Ph8UCFgteoAHY7PcTyM4mtI8kNqkUHpuN1Rit7Coe591gkCdaWjitqKjPxpIq4FiMN/4/Ai9Beizwb7KzWbV6NTfOmiUJqxBCiAOWlZXF2LFje97o3nshA4nRgKithauuGugoBq2+TFZrgVqt9Xup+49hJKt70Frfj3EhngULFmSmc7MQw8jqxkZ+26n7JRhXs4qamliyfj0FkQhT+qi77zvvwKuvGtObBcdAHbAtGmV3IgFZWbQAMSCYSIDWzBo3jnfXruXsoiLeWbeOuWPHUhgIkBuNMtHl4kfr1vH6xRcbXVqTSZyFhTjsHamVw+GguLh4n8neUE+AunsOXeevdQIjbDYmFhTg8/nIsViIWSw0A7uVYks8TthiAaWwWCzGuNdAAHcyyS1+P3/KyeEYm42lwAI6KhC3/y2XLYOjjurdc3EC1wLLgFt9PtypbtpvTJrEA8Eg3+/d7oUQQggxTPRZsqq13q2U2qmUmqy13gCcAKzrq+MJMRw93tLCz/x+o7CN243L5aLCauUKq5VxVVXsMpn6rLvvM8+28LlzC4jFFKM1LKiArIo4/lAItOZP//oXNXV1+EMhvn3PPZy5cCGfnz6du198kVvWrWNsYSF/Oe00suJxnKWlrGxoYGReHuNT3XX7Y7zlUNY1iS0BJlutzI/FaAwECOXl4bVY2BoM7jHW1xuJ8JbNxsuRCASDnGQ2M3VtHl84AaJRY071O+80eiT1NnGdA/wykeBrHg/1+fmgFC9VVlKJUZhJRh4JIYQQoid9XQ34auChVCXgLcDFfXw8IYaFKHAf8JjZTMxkSleXXeR284NRo4yy2y4X5X2QpHqBx9vauPWlONGogqRCowlug9zSjrGUV558MiOyshifl0cZYPb78fl8nH/BBftMRJc5HLx72WUZj3e46ZrEzkgmWb1zJ6U+Hwm/H3N5+R7Vhx9UiuB/cwhHLegERCLw9a8bf8bsbHjppd4lrGNdLu4DbtWanYWFWK1WHsU4hy9BElYhhBBCdK9Pk1Wt9SqMnmZCiAypA34ObMPo7utRisJAgFPWrOHSpUv7ZH6o3W43b7W08ElVFR87nTQrhfmYBOpejY6B0pA7BipNJhLNzeQHAtjjcSZNmkQ6beqn6rSHg4JRo7h527aM7S9ksTBvzBiuKykhYrXyt23b+E8oRFtODkprco8Mo7Id6KhGK0gkQScV0ajRNbi33YJHu1zcC/wMYzolgEciETY1NHBNdnafXFQRQgghxNDX1y2rQogM+ldLC3crhUrNMWq1WvlMYSGntrQwbunSjHf31cB/m5u5vbERt9MJra24srOx2WzkLvAw+a/1ZL2cZNKmGBeOhCyy8btc+Hw+nE6nJKeH6Npbb+3T/V9mt+N66SV2FBTw0bhxRJaWM//5KDufC2IuiFN/axEqBtnZimXLMnPMbOCHwO3AK6mW3ee0xidFl4QQQgjRDUlWhRgCNPCHtjZ+6/cb/TN9PqrKyrjaZuMUpxM1Z07Gj7kG+BvwjsWCx+lMdzUOh8MszM/nq04noyZuZ8zSCu79fjZZqcd17YYqBp/O1Ye/XllJyGrlt+NreemqOAmlsE2Okfi4kPHHKTYXbWOcuyAjyaQF+B7Q0NSULrr0zvjxfNLQIMmqEEIIIfYiyaoQg5wG/gz8TSlIfcEvCAS4avNmTp0+PePH2w782u9nZSKBzWZLdzW2JBJM3bWLb+bmcgRAYaFxG0I0EMaYjzYE7GhqoraxkaKyMvKLi4kDDS0t7G5uJr+kBGdhIXEgDjS3tdHa2kpRYSFFBQUowNvWhqe5GVdREa7CQrIBX3MznsZGRpWUMKqkhBwgB7AyuMZndq0+/N2sLCpfe41Xpkxhx4JSik6K0djayu3axvKaGv4PMtJd1wx8x2LhY4+H5txc4hYLz40dywkMrtdHCCGEEANPklUhBrEE8Fvgv3SMT61qbqZ69WoWnnpqRo8VBh4GHgmHqW9pAa3xKMWIsjLOLyhg0bZtTBs/HldJSUaPmwkBoBFj/tFGYJPHw06fD1NBAQmHw5ibNBymLRLBarNhtVqNIkPBIOTkQCCAK9Ua7Pb7jcpCPh+uVHfrSCSC2+sFkwm8Xlyp6XTcXi9YLOltAdyBANjtEAziikTSj4+GQpRarbjsdvIBk8+Hbm1lfF4eEwsKKAV0QwPBujpG9FEF5564XC4uOPFEltXXs93h4PexWPriyMcjR3JHLMbPAVMGjjXC5eKnZjM3ZGVhtdmosVp5GaNkvOh7SqnrgMswrt98AlystQ4PbFRCCCHE3iRZFWKQigI/9vt5K9XCabVaOb2oiHNaWhh96qkZTWZeaG7mPiDocBCOREBrlNZMqavjqx4PJ8ycCbNmdfv4TBcE2pck0BIO4ysu5v62NgIFBdQBW0IhmqLR9GsUiURwezxGd+mWFlxZRgdld0ODsUwpXC4X4XA4nYy1d28G9lpmtVoPeNvulrVX3m1VCk/q7+ZubTXi6Zz8hsOYCwoobGpicU4OlckkWW438wsLmV1a2uctj+2trfOAWQ0NfK+hgU1lZaAU7+fn8+26Or5rsVCZgXPv6JIS/h/wFBCJRLg9GGRkLMaksrJe71t0Tyk1AvgmME1rHVJKPQqcBzwwoIEJIYQQ+yDJqhCDUBK4xefjuVRC41GKLxQUcH1eHuYMjk8NA7f7fDwWCBiJUyBAUWEhlW1tHLt2LaWhEDOqq/e7n0wXBPIC7zY387HXi7+khBank83hMHWphHNV5wSvsTH9Gh1IEpoVj2P1+6mw29nl82GOx7FozdTiYixaU+N2oxIJLMDswkKKgSCweutWtNZgMjF7zhySwKodO0gASbOZSUVFxIA1TU1ETSZiWVlUlJbSEghgiceJmc0HlOjGTSaaHA5eikbxBwJgtUIoxJhwmBk2GyUeD0W7d7OkoIBxfdj6Or6sjN9qzS9jMT7Iz6eltZWXtaautpa7yEyX4AuBl0MhdqT+hj/avZvfaC3jV/ueBbArpWIYvdTrBzgeIYQQYp8kWRVikNHAH4A3ksl0QjN361ZOy8vDPHduxo6zE2MqkTWdjmOPRvmC28055eXsSiap7IfuqDHgnaYmVni9tJWWssvpZGckYnSnNZnSFYjbW3z3leCZk0mc4TCjW1sZk5PDji1bsIdC5MbjnHr00Ti15q3XXsMSjWJRiurqalw5ObhLS6mvrzeeZ3s34NGjO5bl5RnHyM/HPXVqx/L8fGPbSZM6ljmdxrKqKmNZaalxDJ+PZ155hajWRG02jjr1VLxK8Z81a/BnZxOw26ksLqbZZGJ1PE7YYgGl0s+t/fm2RiK8r5TRamyz8atwmDnNzYzz+zkpN5cjS0oy3vJa4XJxO/DDnTt5NhXLhvJyXvB4+EoGzgsbcOb27ay129HARpeLDbt3S7Lah7TWdUqpXwA7MIZuL9daLx/gsIQQQoh9kmRViEHmX8C/6RijOmfbNpZs2sSIA2jhPFCPt7Rwr1KYcnLSx5lcX8/SjRv57Cmn4HK5+mzuyzjwRnMzb/t8uEtL2Ww2UxsMgtnckZjuo3XUZrOhw2EK/X4Kg0FOzcujPJlk9RtvYA+FMJtMRhKal4d72rSOJDI1xrbilFM6lqWeW9ciQ90tO5htuy5zuVxUpyrvdo5n5oIFeyfKDgc1u3ejR4xgl8nE89u305SbS2N+PjabbY/XRQMf+f18BDweDDKptZVZHg/n5OQwI4NdaRXwzexsNm/dyqcVFaAUz44cyblAJmo+H19YyF/dburz89EmEztHjcrAXkV3lFKFwNnAWKAN+KdS6kKt9YNdtrscuBxglPxNhBBCDBBJVoUYRP7V0sKvzOb0+MszCwv5bHMzI6qrM9LapIHfeDz8sdMUOCPLyviR08kEq5XKVKKaaVsaGlju8VBbXs7qrCy2BwJG62FzM47c3L0SU6fVit3rpcTjoczv57MLFjA/Px9fQQH1wSCVkybhSlUinnbSSb1KQvvDoSa6x06eTH19PRVOJ2arlfcCAR7fvp3awkIa8vLQ7RtqzUavl41K8UQoxAluN8c2NbGopCQjz7nc5eJnwPm3347J7aYOOC8cZrrJhD3VHftQFYwaxYXXXcfvTCZsNhsfW61c0OuIRQ9OBLZqrRsBlFJPAEcDeySrWuv7gfsBFixYoLvuRAghhOgPkqwKMUi819TErX4/CaXwKMXS4mJucjrJzlDX3yRwN/AYpJPDIr+fq7xezpgxo0+moXm3qYl/eDy8aTIRz86G1ta9klOAglCIipYWKrxezkslps1lZdTH41ROnJhujcwZZEloX+v63KqLiliYSmAToRBPbNzI5tJStpSVEbEYb+cJ4MVwmBcdDmZt3Mh3WlqYPXVqr2MZ53Ixr6mJo0aPNsbSas2cnTuZWVLSq3l1b962jYsLC3kU4xxdj1HVWcos9ZkdwJFKqRyMbsAnACsHNiQhhBBi3yRZFWIQCAL/CySUSieRX2xtJXv27IzsPwbc7PPxRjKJ2WQCpRjX0MCpa9aw4LTTMnKMzmqA3/n9vBgMoi0dbzPtyWleOMyoxkZGtrXxlUWLKCwspD4UorLT1DiHcxLaG51fl5GFhdTX12OKRnlk7Vo+HjmS2qKidIvrx6NG8YPmZv5n/fqMJKxlQH44jD/1d2zKzcXn8/UqWQXIB+YCb0cihMNhntaaywoKehuu2Aet9XtKqceADzF65X9EqgVVCCGEGGwkWRVigGmMFk+/0wnBIFnxOGd+/DETjz8+I/tPAD/y+3mhfaoUpTg9O5vPmc2MPO20jCaEu4G7fD7eTCZJxOPG8VJKvV4mu91cNns2lQUF7AoGjVbT1PhKSUwPXufEtbyoiPr6ehpjMe7yetlRXAzAzuJibt++nR8CUzOQsE4ym6lLJEBrmp3OjH2IzGxp4clU9/TH29o4MxKRc6KPaK1/DPx4oOMQQggh9keSVSEG2D9bW/l3aryey+XiCzt2cObxx2dsjOp9wDup5EIDc7Zt4/NOJ/MyWFk4DjwB/DUcZmenpFgBk3btYvbOnSwtL2fyzJm4SkuBzEx9Ijp0Tlyr1q/nV5s28d6ECQB8Mno0T739NkVFRb0+rybY7bxvMuEPhQhlZbGhtha73d771tW6OkiNw23NyaG+vl6SVSGEEGKYk2RViAG0urGR//X7iZtM6blUL5s4cb+Pu/Omm2jbsWO/222IRtkCKKUwRSIU+/3EvV4eGTmSpw+wME7BqFE9zqO6Hbg5GGRzLJZuTdXAxN27+ZLWjLdaqVy6VBKPfjRt6lSuA77b3MzO4mI0sL6yMiMJoAUoiUTwp+77rFZ++dZbPLp5MwqY6XLx57PP5saXX+bfGzeSbTYzvqiIP599NgU2W7f7nV5WhjkUIqEUIauVgvZpg4QQQggxbEmyKsQA0cCvEwniJlN6nOqJLS0wZ85+H9u2Ywc3jxnT4zafhkK8Eo2yNNXKOcFsZobPh9PpPKhWsJu3bes2/n+2tnJ3IkFbMJhuTS31+Vi2bh0VPh9LMlTFWBy8aVOn8vk1a7gjdX+zy4VNZ6aoa2l2NttS897Wx2L8ed061n/jG9izsvjCP//Jw2vWcNL48fzsxBOxmEx8/8UX+dkbb/C/J53U7T4rXC5mBoNsCoUAaNCasRmJVgghhBBDVZ8mq0qpbYAPY9hcXGu9oC+PJ8RQ8l9gZ2EhuN0orTl57VrGLF2akX17gRWQHjOaFwwyDaioqMjI/pPA/3m9/MPnQ6eOkZVIcOSmTXzebid/4sQ9ppIRA2N6LIY5mSRhMuG126mrraX3o1ah1GbDrhSxWIzsoiISQCgeJ8tsJhiLUel0cvL48entj6yq4rH16/e73/JkklWpSsNPfPIJYxYulHNICCGEGMb6o2X1OK11Uz8cR4ghoxW4OxwmHIlQVFjI0pYWLs1QV9kE8BagsrIgGsUWjTLJ7SY/NX6xt+rcbv4vHmelzZZOhov8fk5dtYrScJip0po6aIyqrCSvpYXWnBwA3q+tZabb3eu/jzkYJBSLgdYkzWaunj+fUb/6FfasLE4eP36PRBXgT6tW8cXp0/e7X0tLS7obuT87W8atCiGEEMOcaaADEGI4+pXPx9aGBjxtbSTq67k0VVwpE96NRNgdDgOQl5vL0VozdcKEXhfAASNRvaqujlfjcWOuTaWYtHs3X1yxgsWjRlEtieqg4nK5GJObm74fyMqivr6+1/uN+HzpCxW+cJinN2xg6zXXUP+tbxGIRnlw9er0tre9/joWk4kLZs7c734LCwrShblMSlFZWdnrWIUQQggxdPV1y6oGliulNPA7rbXM5SaGvVXAq8lkugVp2Zo1NI8bx6heJnmXPPUUT2/cSLbdzo0XXghKEdiyhc++8w7rGxtZ8dWvsiD15f+h1au5/e23049d7Xbz4RVXMKe8vNv9a+BXsRjbUwV7lNacHI3ypexsRpx+uiSpg1RRURGqpQWtNSbISAKY43BAqpjWutpaxhUVUZpKij87dSpv79zJhbNm8ZdVq3impoaXvvxllFL73a8jLw+X1Uo4HGbRggW4Cgt7HasQQgghhq6+TlYXa63rlVJlwItKqU+11q933kApdTlwOcCoUaP6OBwhBlYM+FUwaFTNVYrJ9fWMbmvLSALx/+bMYdKsWdz17LMAFAYCTLdaOfMLX+CKZ57ZY9sLZs3iglmzAPjE7ebshx/uMVEFuNfj4R27HQIBlNYs3LaNb0+ZQvkBVC8WAyfRKUnMVFeazmWaip1OXtm1i2Asht1i4aWtW1lQUcELmzbxv2+9xWtf+Qo5WVkHvV/p9iOEEEKIPk1Wtdb1qZ8NSqkngUXA6122uR+4H2DBggWZKVUpxCD1p7Y2Vnm9oDXZiQQXa838DHWdtbtcqNZWAMzJJGMaG5kxfvx+u//+Y80avjRjRo/bvNDczO9ShW9QimXxODdMmSJzpQ4BWzoVwbKHwxkZB+oJBiGVgE4oK+O00aOZ97vfYTGZmFtRweXz5zP9nnuIJBKc9Le/AUaRpfuqq3vcb5vXi7utDbTm/U8/5cQ5c6TFXgghhBjG+ixZVUrlAiattS/1+8lA95M1ioOSBGoaGtjU2Eiey0VuSQlhINTp5vZ4aGxro6CggLz8/PRj29tZPB4PvrY2yvPzqSgoIAewAzmpm7+xEe+uXUx2uaiQL4y9tht4FNLdf4+sqaGirCwjX8brgkFWRaPEYjEAZsZiB5SoAjyydi1PnXdet+vDwC8TiXTCM7qxkQtNJsq7FNERg0+d201tJAIY//f54XBGWvGVwwHRKGiNLR7n1uOO444u59qmb37zoPdb6/en/z+yo1EpsCSEEEIMc33ZsuoCnkyNU7IAf9dav9CHxztsaKAN+Ki5mXWtrZhLS0nk59OCUUW2BXCHw+wKh8HhgGAQVySC1WpN7yMSieD2eIw7Hg8um6379V4vLrt97/WhEOTnYwqHmRoKMdpupwQo7XSjsZFkXR2jKyrkS2UPNPBLv59wIgFKUebxMKu2lsoDmFP1QPa9IplMd6E0J5OMSSYPKFF9r7aWnKwsZpSVdbvvj2MxGlIFmxzhMCevWcOoU0/tddyi761qakKnzoPccJjpEydm5P80brdjN5mIxWJUHOS8vT0JFBRAUxNKawpCISmwJIQQQgxzfZasaq23ALP7av+HCy+wI3Xb3ulnUySCOxAwutrtI9kMRiLpFgilNeFweI/14XA4Y+uTQG00is9u3yP2dEJbWEhRSwtLcnKY7XQyDhgLFGT0lRranmppYXmq1UgBl0QinJCh7r9rQiFaTKZ0FdWsRAKn03lAj314P12ANwEtWqfjPnn1auaMGycXJoaIlspKSFXurfB4mDRpUkb22xSJEEq9RwSbmvAr1euEVQONJhOOVKGm8449Vs4zIYQQYpjrj3lWRYrG6Aq6OnV7PxRidzSKrUsiCvtPJm02G5F4HHskgjWRYHpxMSUY3XhtQBRYt3kz5kQCpRQLFizYI3ls05qVNTXElSJmsTBl7lwsGN2Hg0CzxcKnwSChrCzC2dnYbLa9nk/nGFtycng1meSjTusLgTK/n8KmJo52OllcXEx2b1/EIcgN3KNU+rWaXlvL1JycjHwRbw4EeDcSIZ5KVsfG49iysg4ocUhqzT/XreP1iy/e5/ogsDIeRyeToBTzt2xhpNfLpKVLex236B8bLB1v8ZVtbTB6dEb2604k0lPX2CMRfD5fr5PV9Q0N1KbeU+yxGLkHeMFFCCGEEIcvSVb7WBMdyenHqfuQapVsbASt8SiFy+XaIxnNt1qxe70U+P04o1GOmzWLcUARRhJYaLXS4nBQ7/VSWVmJq+sXxfx83NOnU19fb6wvKNhzfUEBp8+c2bE+L2/P9bm5/PT3v8ddU4MtJwfsdiIY4xfbb4lYjEgwSNRsBoyuga2p3wGaEwk+CYUAeAzIsdspMpuN+IF8Oip+FowaxbW3Hn5DmqPAzYEAgVTClx8MckxNDZWnnZaR/X+QSBiJKvDAs8+yra6OlnCYqjvu4JZlyyiy27n6+edpDAY54+9/Z055Of+58EIAXt++naq8PMZ1Mz3I29EobaEQsXicgkCACy0Wpss8qkNGHONiQ3tSWdnSkpExoCEglPo/N2lNbjR6wC35PfmwtRVsNjSQHwhQ7/PJuXaYcnzhC/gffbTHbe7697+59/nnmTd+PJ9fvJhJlZVMkxkDxGHG4XDg9/t73Oauu+7i3nvvZd68eXz+859n0qRJTJs2rZ8iHNpOv+UW/v7tb1PQw8XUZT/4Ab+4+GIWdJnZYNWWLdS3tHD6ggV9HabYj0NKVpVSU7TWn2Y6mMPFNuBJj4c3YzF8TuderabQ0SppTiYp8vuZaTJxdFUVo4FRQKnNRkNZGfXxOJXjxu1zvkGXy9Xjl7nero+3tPCb+fN7eKbg9/tp8/tJ5uURycmhFWO8bRsQCIeN55lis9mwdm6hjcdxhMOMslj4+44dPR5nKIoD321o4O1QCA2YteZKv58TTzstI1/CGwB3Tg6kqvT+bN48Fp111l4tXOdMnbrPxy8bM4Z3L7tsn+tqgZ2puWABjlu7lsLx4yV5GELWAJFUy6ojHKY0EOj1GNCCUaP4+oYNfJQq5GXZneCpFhtjYk2UlTXt59Hd7xOgubwcPB6U1lR6PFROntyrWMXQds9zz/H8j3/M2PJyvnLnnVQvXCjJqhiW7rnnHp5//nnGjh3LV77yFaqrqyVZPQBaa5658UZMpkObCG3V1q2srKmRZHUQONSW1eUYOZVI8QCvAi8Bn7YXL9LaKH7UqdXUDswARmnN7vfeo9DjwWIyUV1dTdc0YH/J5GDgcDj22f1PY3QV/KShAa/Nhs9ux9xpu0Q8jj8QwKM1dYkEbyYSXAUsxJjfaCpg3muvQ8fGhgZuC4f5SHfMxnTkxo1MKy3NyN80CbwdixFPJLDbbJRFoyyqqspIoZs48AFgsVhAKQqCQUZ6PFLsZoj5j9dLS1sbGhjf0MDio4/u9bl37a238t3aWpKJBP4Pstl+fhk6ZsK6TfHSS3DUUYe+708tlvR41S9Mn46ruLhXsYqh4fYnnuDRN98kEotxzlFHccv553PlPfewxe3mrNtu47wlS3h6xQpeW7OGnz76KI9ffz3jKyoGOmwhMu7222/n0UcfJRKJcM4553DLLbdw5ZVXsmXLFs466yzOO+88nn76aV577TV++tOf8vjjjzNeqvLvYZvbzWm33MJxM2fyzqefsmrrVhoffJCSvDx+8vDDPPTaa4wsKaEkL4/5EybwnXPOAeCfb73F1+67j7ZAgD9efTVHTJrETQ89RCga5c3167nh3HP54pIlA/zshq9uk1Wl1F3drUJq5wAQA1ZgJKgfYCQQsOdYTksiwejWVk4uL2cWMIFUElZQgPvYYzu64Q7ypPRgKaA8NxdHZSU+nw+n3Y7ZYjFaA4Ft0Sj+9kROaxKJBLUYLXoPRyKYAwGOyMriBKeTeUDuQD2RgxAH3mlq4gm3m9ftdmKdukTP27qVudu3Uzk7MzXHPo1GqQgGjdZ5rVmYnZ3+ot9bawBvPE48HiffamWKxWJcTDnMztHDWQx4tVMX4HENDYQzcCEjAWwuLobGRoLv2kjGFDqpiEbh1VcPPVnd7nbzbjhsvIcqxaR9jJEXh5/lH31ETX09K375S7TWnPXTn/L6mjXc97Wv8cKHH/LKbbdRkpdHTX091QsXcu7ixQMdshB9Yvny5dTU1LBixQrjf+Gss3j99de57777eOGFF3jllVcoKSmhpqaG6upqzj333IEOedDaUFfHn7/5Te656irGpHqPrayp4fF33uGjO+8knkgw77rrmD9hQvox8USCFb/8Jc+tXMktDz/Mf3/yE2694AJW1tTw2yuvHKinIlJ6alm9GPg2ENnHui/1TThDgwf4k8fDf5JJkjk5e3XzzbNacbndTK6rY2RrK58544y9Wk1haLScdnXJU0/xzMaNlOXmsuZrXwPgxpdf5qkNGzApRVluLg985jNUOp08tHo1t7/9dvqxq91uPrziChaVlzMtmWTNjh202e205eaSlUrsIpEIbrcbtOZJpXg7O5scq5Uxfj+jGxo41ulkbmlpeq7YgRIF6oAPW1r4yO+nubiY7WYzdcFgeqoQMJL2BZs3c8TmzSw55piM/L1XYVSMbk9ERrS0EM/JgQwkq23AmlSrN1ozorGRPLt9yJ2nw917QDgrCzC6AFe1tWWkZXwt4E9V7LUfq2n7jSIWg+xsWLbs0Pf7RlsbydR41WKfD29zM3QznZI4fCz/6COWr1rF3GuvBcAfClFTX8/SHiqUC3E4Wr58OcuXL2fu3LmAMcSqpqaGpVLQ8KCNLi3lyClT9lj25rp1nH3EEdhT39fPXLRoj/WfTV1pnT9+PNvc7v4JVBywnpLV94E1Wuu3u65QSt3cZxENYn7gSeDRcJgd7d18U0VArFYrU4ETgGNsNvyjR1OflUVlBrreDSZfmTOHbyxaxJeffDK97LuLF/OT448H4K733uPW117jvupqLpg1iwtmzQLgE7ebsx9+mDnl5YDRfXjGuHFGq6vTydpolLOAxxsaeD0cxm+1pqsgA7zS0gJmMw+EQkwOhZgej1O+ezeLCgqY00fJaxRoxKjg7AY2eDxsCgTwFhTgyckhHIngTk1HQ3MzjtxcdKduv0V+P0s//ZSTysqYdNZZGTkP2oDbQqF0hd78QIAKjwdnBvatgZVALNUi5wyHKfZ6CfZ6z6K/PeH309Laigam1dVxTIbeh573enG3tYHWzM7fyY2PTWP16iKWLetdF+DtFRXQ1obSmrHNzTJedZjQWnPDuedyhczbLIY5rTU33HADV1xxxUCHMuTl7qNnjt7Hdp1ZUxd3zWYz8WRyP1uL/tZTsnouRtHXvWitx/ZNOINTCHgaI1ENAJ5Oc5zmhUIcu2sXl4wZQ+dRNLlDsNX0QCwdPZptbW17LMvr1LIciEb3mTj+Yx/zeXYe72puamIhMCo7mwnLl+POzWW7y4VatIj1XabxqQsG2RAIQHY294RCjAqHGZNIkNPSwnink+JkklhDAyNLShhZUoK3oQG3201ZeTlFpaW4GxvZ3tiIw+XCWlxMbWsrO9ra0MXFxPLyaAHqQiHcnaYVinQeh9zUhMvl2mt6IYCCUIjK5mbGu92Mampi6ZIlTO2mwNHBCgE3BAJsbG4mWlbGn7ZvZ3Y4zMdOJ/amJmg6tAI37bZFIqxXCqUU0UiEsQ0NPBePM+3IIzMSv+gfO4GVqallFDC1ro5wNxWfD0YUeDm1Xw2M272byvG5nHFGUa/2mwA+yMpKd2O/dNo0XCUlvY5XDH6nzJvHjQ89xAXHHovDbqeuuZkss5myLtXrnXY7vlRleSEOR6eccgo33ngjF1xwAQ6Hg7q6OrKysijr0sPE6XTi8/kGKMqh65hp07ji7ru54dxziScSPLtyJV89+eQeHyPvO4NHt8mq1rqlPwMZjHa43fwzEOCtigpidnt6uc1mwxIIsKimhglNTZy5j+JIw80PX3qJv65eTb7VyisXXbTX+kfWruWp887b735cLhdnVld3jOXNzeXThgZ+t34924uKqG3/EtspSWwJBNiR6raK12ust9shGKTI56MlHIa8PAiFjPuhkNFlNhCgKDubFp8PTCZoa8OVSry7TivUNTGNhMOMzsrC19REqcdDudfLRUcfjbOwkI2NjVBayqTFizN2wSIK/ARYm2r1zPr2tznlgw/43Nix6W5DvbGxoYEve71G11Gl+KLFwmlu92E5nvpw91evl0Q8bsy729BAQTSakS7AbwHRVHXh/GCQqgwV3XqjuZnNqf/f3GiU8V2n0RKHrZPnzmX9zp0c9b3vAeCw2XjwW9/aK1k9b8kSvnr33dz173/zmBRYEoehk08+mfXr13NUqouKw+HgwQcf3CtZPe+88/jqV7/KXXfdxWOPPSYFlg7QwokTOWvRImZfcw2jS0tZMGEC+Tk5PT7muJkz+fljjzHnmmukwNIA66nA0gLgdoyheTcAf8Io1LoRuFxr/VG/RDhAXmlu5kceD36rFRob0119RwDnW61MKi5mVyRC5ZFHypd54LYTTuC2E07gZ2+8wW9XrOCW445Lr3uvtpacrCxmHOAYtK5jeaeUlXH93LnU19dTnpvLNq35y+bN7MrLo6H9S00qkaRTN1ylNYFUESJ9gPfTU+2k9uMMhahqbWVcTg47N2/GGQhQEgpxwbHHMjI/H3dVFfUmE5XTp+NKPb9Mnw9x4Ad+PysSCcwmEyjFsnXrGNvaSmUGCo5o4BeJBKGsLDTGcz4+FMpIEiz616cNDTweDJJQCpTic8DJGSqO9WQgsEfX4kxUFwZ4vtP/4Fi3m11+P+XynpqmlPo88ILW2qeU+hEwD/ip1vrDAQ7tkHWeY/Was87imrPO2mubbX/4Q/r3xdOmse7uu/slNiH6U+c5Vq+55hquueaavbbZtm1b+vfFixezbt26/ghtSBrjcrHmt79N3+/8PvKdc87h5vPPJxiJsPSGG/j2Zz4DwKv/8z/pbUry8tKPKXI6ef+OO/oncNGjnroB3wP8GKPy79vAdVrrk5RSJ6TW9WKE0uAVBx4E/myx4Lda00lMjt/P1VYry0hV83W5BuQL1Q63m/WNjVjLyzGVlNAKtADbfT52+/1k5eVhys0ljNFttDUcJhAO7zXHaSQcJhIOU2i1UmS3YwdygITfT6KtjdFOJ7UYVypyU+uyDyC+82fO5Iy//32PZPXhfXQBPlidE9gKYNz06dTX11PhdNKaSPDQqlV4UlPk+Gw2QllZxLOyKM7LS48vNgEVeXk0tLSQFY9ji8eZNGIEu+vqyI5GcUSjnLJgAYXJJO+/8Qa2cJgspYxKuHl5uFPH7Nza2NdFshqAmwMB3mppMRJopbjEZGKpy0Xl3LkZOfYTwLaiInC7UVpz4rp1jD366F7vV/S/v4XDJJRCAxWtrcwwmzNyjmwBVqVa9U1aM7W+nnAGppYJA+tKS6GhAaU1U3fvplKuXnd1o9b6n0qpY4BTgF8A9wJHDGxYQggxdFx+992s27mTcDTKRccfzzxplR4yekpWs7TWzwMopf5Xa/0YgNb6JaXUL/olun5Wi/EtYDMYiZ1S2KNRjty8me/NmcOI/ozF7WZVUxPRigr8RUXsAD4NBlkTDqOdTmP+1kikYzxla2u60I/LYulY3tCQ7h7b3jrceXlTqptrenl7UuTxkJtI8FoqnkQ8DrEYxWYzCYxuqS1APrCluZmJqS+uT2/YwJRO482SWvPPdet4/eKLM/r6dE4Sy4GrjzwynUgCxu+lpbgKC3FHox1JZtf7ZWW4te64X2SMv5tw0kn9nph29TZwF1CfShI0sGjTJpYWFmas1fOtpiZ+a7GQlar4e8zu3VxxmBUFGy4agPcKC6HFGMGxcNs2KjM03vhJjOEPHqUY73bjjMUy0gX46dZWPCYTRYWFlIbDXLZkiZx7e0ukfp4B3Ku1fmq4FjkUQohD9ffvfGegQxCHqKdkNayUOhkjH9FKqc9orf+llDqWjg/Pw4IG/gP8HiMJA7BarZxYVMRZW7YwZc6cPv8ClQA2AR8D7/j9vB4MEnc4wO/HlZuL1WrFE4uhU/G2d1m1Wq17jafM1PJEwvgzJzpNZXLX889TU1eHPxRiwh138NmlS1mzcSMNra1YTSbGFRRw/xlnpJ/X69u3U5WXx7gMFHjpSddEsuvvB3O/u2X9xQfc4/XyrNbYbDZsNhs+4MiNG5m/YweV06dn5DgbGxq4vrUVr80GXi9HFxfzg9Gje3xTEIPX771eGtvajFbVtjbOnzQpI+dwI/BiOEw4EqGosJAv+/0cmYGuxW63mz+53Xjy80EpLsrLo7zLWEUBQJ1S6nfAicD/KqWsgGmAYxJCCCH6RU/fS68E/g9IYnQ9ukop9QBGz9DL+z60/hEGbvX5eDOZTFd+tWBMMnumw4FKTb3SFwLAs62tvBwOU1dYCKluup5EgrjJtFcyabPZ8ALOcBhHJML8oiJGpbbZsG4d1kgEazLJKUuXMhLwRSK8/MorqHgcs8nEGWecgSs/H3c4zLMvvUQciGdlsfTUU8kFauNx/vvxxwQtFgJ2O40YrZZN0SjBZJKkUlxy2mnpLsXtSez8CRNAKRy5uZgtFj4GtkciOHw+5paU8G5qUmbRMy/wL+Cf4TA7UtODeJRiemkpN+XmkltSQuWsWRlJQHzATUrhTc1taY3F+NyWLVhmzuz1vkX/2wIs1zo91vrITZuIjBuXkX3/xetlV+p8HNHWxpHl5Rk5B99tbmZXfj4aMCeTjNu+HSRZ3ZcvAKcCv9BatymlKoDvDnBMQgghRL/oqRrwxxhJartrUreDopQyY0zfWKe1rj7oCPtQCPh+IMBrqS60HqWYV1LCj3NyGNNHx0wCq4CXgNfCYXb6fMYXzIaGdHfc9u52eaEQpX4/xxcUMBMYbbVisdloamkxuqc6ncZOCwpwz5vX0W21vRtuWRmFp522V3fWES4XZ59xRsfy0lIAJhYXM+2II9LL783O5njAn0yycetWImYzIauV/DFjCAF10WhHQSOticfjmC0WmuNxtofDYLHwTizGuGiUsdnZjAA6aiqLdusbGngkFOIDlwtstj2mRpqwezdfb21l8ezZkKHpPAIYg9FbUhWSldacvHYtM4+QIXBDkQbuDASIpyoAj25sZFRbW0a66TYCzyWT6fNx7pYt1CeTGUlW3x85ElpbUVozye1m8pgxvd7n4UhrHVRKPQW4lFKjUos/HciYhBBCiP5ySD3+lFLzDqIS4TXAemBQzUcQBG6mo2iIBmZt385VLS2MmTMn48cLAH/zeHg2HificGC1WvF2SkqU1tj8fo63WplltVJusxFpbqayqgpXfn7HjlwuRu7ji2J33VYzsdzhcDBp0iR8Ph9OpxNHqgXYn0yyfts2/NnZeHNyMFdW4gPjS3MqiU0qRW0ySSNGd+LcSIRRZjPjbTYKYJ9zsg4HdcA7wEuBAG+3VyBOXbBonxppwaZNTGpsZEJ15q7xhIFbgBqMru7lLhef27GDs484QsYKDlH/bmnhNb8/XfzoonicJRmqAHy/10skkQClKG9rY2xLC5UZKL61G3g/Ozs9t+q3x41LXzQTe1JKXY1xfcmNcb0TjGsUfdftRwghhBgkDnV42lXAV/e3kVKqCqMoxG3Atw7xWBkXAG7CmIOnvRXzmA0bmL9jB6MzmBiAkRw8AzwUDrMlVZWWQCCdlGT5/Uyuq2N8UxMXnHAC5e0PLCszboOEw+HA4XDstWzqhAkdSWx2NjFgRzLJJx4PrTk5hLOzsVgs6S7Dfq1xx+Ost1hwWiyMAAqDQRpbWnC73YdtwtSCcb695/HwVjRKW16eMQ6508USpTVFXi/fLC1lXPvUSBlMIqPADX4/HyQS6S7v11mtnDpxYkb2L/pfAPh9qvuvBmbu2MF4pzMj58yqxkYeCwaN7Egpzo/FOC1DSfBfvF52p7oWj2ppYXQGWoEPY9cAk7XWzZnaoVKqAPgDMAMj8b1Ea/1OpvYvhBBCZMohJata6/0mqil3At8DnIdynL6wuaGBm4DG/HysVitWq5XvOJ3MyOB4QDCmwHmorY1HkkniubmEO7Wi5kQiHOl2c/GoUeSUlFAfjVI5e/aQTNS6JrFZwPicHFzFxfh8PlRODm0WCxv8fgKd5kKNx+MELRY+jcfxx2K8k5XFpbt28RmrlWMLChjP0KwgojES01XNzXzo9dJWUkKd00kzGNWW2y9YhELpCxY+oLKlhdk7d/LNI44wLlhkeGqkncDNwSArU9WePUrxrbw8TpUxgkPa34CIwwGBADmRCEds3UrlqadmZN+/i8dJYpzTVc3NzDaZMlaw6T9duxaT+fmJDyM7AU+G9/lrjLlbz1VKZWPMTiaEEEIMOj0mq0opBSwCRmB8Z6kHVmjdPlCxx8dWAw1a6w+UUst62O5yUgWbRo0a1d1mGVHrdnNVYyNupxPCYVwuF9darZxeWAgZrFa7E7g1GGSF12skJn4/RYWFFIRCLNi0ickNDZx9xhm4AAaw6mxf6pzElgNVwLpt22iz22lzOEg6HCTp6DKslWJnYSF/VYqnAEs4zIiWFmbn5LCgoIAJDKIrHhgt5m5gXXMz6z0eQiUltOblsRNojURwBwJgMkFrK67s7L2qLVsSCSY2N/O5ykpG2+14IaOtqO00xvjo+4CGWCx9/KNqaphVVAQZmgJH9L8NwJORCOFwmKLCQi7YtYszTz01I+fQB8DmTnPvHlNTQ+Wxx/Z6vwAPAxa7HbxeytvaMja+9jC2BXhVKfUsEGlfqLU+pNnqlVJ5wFLgK6n9ROkohC+EEEIMKt0mq6lpa+7BGN5Wl1pcBUxQSn1Na718P/teDJyllDodsAF5SqkHtdYXdt5Ia30/cD/AggUL9psE98bvIhHcTme6y+Vndu7k9AkTMrZ/DbyA0beqsVNi4AyF+Hw0ytmFhTSMGEHlwoVDIkEtGDWKm7dty9j+QlYrQb+fnGQSayyGB6iPRtkZDBIeNYpspbDZbEQiEXY0NLBFa97wenHZ7VitVkqBcp+P3OZmJubnM7mwkDKgBKNFN1NiQCvQ3Om21eNhm99PpKAAX24uHlItpYEAmM3Q1oYr1VK/r6mB8qxW5lgs+LZvp7y1ldEtLZxz+unGBYs+6vIdwvgHfjV132az4deaY9avZ3Z9PZUzZmT8mKJ/RIH/CQbZ3dQEWjO6uZnqESMy8r4SB+4KBgnHYhQVFrLQ4+HSY4/NyL7rgWc7TYNzaSDAsgx1LT6M7UjdslO33hqH0cD9Z6XUbIxrE9dorQMZ2LcQQgiRUT21rP4aOFFrva3zQqXUWOA5YGpPO9Za3wDckHrMMuA7XRPV/vQe8J7LlW4pWLJxI5/L4LQ0fuCnfj9vp8YDticGR9bUMHvnTj5zxhm4XC5GDKEvZdfeemu/HMftdrPW7abF6WSH1crLqa6qXafuqY1E+KC1FZQCnw9XTg5WqxUAWyhEls9HcW4uJbm52DAqD8e8XvytreQVFODIzyeJMadtm9dLs9eLpaAA5XAQwPgbNofDtEUi6TGd0KX7bnMzLoulx/lqi6xWcjweCn0+yn0+zp8/n3mAOTcX9+TJRrXlI4/s0y/om4H/BXZ1WjbBauW23Fws5eVUzpsnCcIQ9iCwNXVBzJJIcOzatexSKiNdxx9oa2NVqldIdiLBpQ4HrgxdTLnP52NXqvp6VWsryyoq5DzcD631LQBKKadxV/t7uUsLMA+4Wmv9nlLq18D1wI2dN+rPXk9CCCFEd3pKVi1A7T6W15HZhqw+14SReVutVlwuFxObm/lRBseneoFvB4Os6DQecH5JiZEYZHgs7OGoawXi82Mx/vruu9Tn5dGUn4+jpIQGwNNNchiJRNjR2Ggkk+FwOpmMRCK429qMnXo8uFIJaHq51tDSgisrq2N5Q0P6b9g+ldC+ktJcq5XRWVm0tbTgDAYpDgT4zPz5zAUKbTYaXC7qEwkqJ0zYo8ppd1WYM8WHMVfrP8Jh/J2S7pMwvnXaSktBqq4OaeuARyIREqmpao7ZsIGCaDQjXWl3A/+A9Pm+cPNmgiUlGWn5Xwe82mms6pEbN1Kvtbw37odSagbG8OSi1P0m4Mta67WHuMtaoFZr/V7q/mMYyeoe+rPXkxBCCNGdnpLVPwHvK6UexhiGCTASOA/448EcRGv9Kh29EftVArglEKA2HsdmszHCauXnlZUZG//oAX4EbOjU7Xf29u1c2dLCwjlz+jUx0BiJ88bGRnY0NeEsKyOnuJhdra24m5spLi6msLCQ1tZWWpubqSwqYkRREcGmJvxuN1NLShjrcg34dDLlLhcXLVvWMQ9sbi5x4MNolEfWraPVbsdvt1NaUkIQ2NJNEttdy+f+liutyYlEcHk8TCkrw6IUWzdvJicUoiAS4XPHHMNUwJSTg7uy0ohzwgRcxcXp59DXSWlXHowk9RnA0ynpDiaT/Cg/n88UFfVbLKLv+IGfhELsTl2cGdXczOccDiZnoCutBv7P7yecmqqm1Otlzs6dVGagB4oGfk9H9fWJu3dT6fPJWNUDcz/wLa31K5DuqfR74JDmENJa71ZK7VRKTdZabwBOwLiWIIQQQgw63SarWuufKaX+BZwNHIUxJWYtcIHWesh8sD3U1sbrqS5tXuCHubk4S0oysu824NpgkC2xGGaTCQUcv2YNM3bvzvgUOJ1tbmjg3ZYWwuXleAsK2BAIUBcOE8vNJakU7lAIcnIgEKAoO5sWnw+yssDno8hi6bjv91OUlUVLMAgOB0QijA6HKU4myWlrY0ZuLqMTCax1dUwvK8toddr96ZrsWYBFpaWMnjdvjyQWoC4c5tE33yRgsZDIymLRsceSC9Qlk7xVU0MMMANHLFhAEeBNJlm5fj0qkcCWSHDy4sWMBgKRCK+/+iqWaBSzyUR1dbUxpjQvD/f06R3H7dTK1N9JaVdtwJMY/fJTs7Wmk+5Sj4dTVq9m9PTpIMnqkKeBu4C6aNToohuPc9yaNThnzszIOfhESwsvpeZrVcCl4TAnpIYv9NZLwNpUMShXQQFf83iYIWNVD1Rue6IKxsVfpVRuL/d5NfBQqhLwFuDiXu5PCCGE6BP7m7rGBmwCntJar++HeDIqDDzcqdvZok2byCsqggwkq3HgB4EAHzU3p7/cXQvMrqykcsGCjH4J0xiVP5/zennb52NTPI5OVdMsMptpSY0BIxDAkZu7R6thIBg8qPvNgQDbAwHQmjc9qdkS8vJweDycnJPD1HicotpaZpaVDcgXzX0lhyNcLs4/8cSOZLK9hbOwkONnzuxY3j5NS2EhJ86du/f2ZWWUnnpqx/JOxxnopLSrFuAJ4Hn2LuM5PisL1yefMHbXLiwmk7ReHSaeB17t1P33hDVryI/FMvL3bQbuVyr9XjBrxw6mOhwZOed9wH2hEO5Ua/DkrVuZMXXqoPp/GuS2KKVuxOgKDHAhsLU3O9RarwIW9DIuIYQQos/1VA34JowPxQ+A/1NK/Uxr/ft+iywDngHiubng9+MMhViwfXvGKqD+HViTmnZFac1Jn3zC7Koq5mZwKpAI8Pe2Np6Jx2mxWmlpa6PzrEH7SjbtiQTZwSDZ0SjZySQTRoxg165dmBIJlFKMGzeOLXV1JIB4VhauMWPY7PEQysrCb7MZO+40H2o7v9XK8miUJwIByMujsKWFs202TsrPZypGy+VA6i6ZzNTywSAMrATeAV4Lh/F2KQQ1BvgScFRODg0LF+4z6RZD01bg7nA43b175s6dnFFUxKQMFOrSwM/8fvzJJChFfjDI4s2bqTzttIzE/megIdUanBsOG/Oq5ufLeXngLgFuwbg+pYDXkZZQIYQQw0RPLatfBOZorYNKqWKMWVmGTLIaxPhkby+qdFaniry99VJzM3+0WDCbTKAUR9bUMKWhgcpFi3q9bzC+PD7S2soD0Si7IpF0q2l76mjSmjKPhzK/n2NGjsT9wQc4AgEc8TifOf10KCrao8uqW+s9Ehe3Uh33S0txJ5PU19dTUVREIJHgkffeozk3l6a8PJqcTtx5ecQsqVMllci25uTwJPAykBUKMaalhWPtdk4sKqK3/dNEBw+wAiNBXYUxrU7XQlCLSkq4NCeHIyA93ngwJ93i4IQxKjv7Uu8FJV4vizdswJGhis4Pt7byos+X7iFyWSDAqaedlpF9v9rUxGNZWen3ymPXr8eqtbT2HwStdSvwzYGOQwghhBgIPSWrYa11EEBr3ayUMvVTTBnxNNCUGiM1MjubKydM2G+f5wOx1e3mRq+XQHY2KMXROTl8tbiYERkaN+YBftTYyOvBILrT8ux4nIluN+Pdbirb2pg5YQKTJk0ykk+rda9WtJ66sO7v/qXHHpveH8DO+npiI0eyzmzmqeZmagsLSZjNHXOiNjayWWte8vu5LyeHeTYbi4BFQEWvX5HhpwEjOX0XWAt7nAfQaUyq18uizZs5d/Ro5mWwRV8MHhq43edjXTKJ2WQiK5nklNWryYaMJHx1pKrldSoON8vpzMh72U63m5tbWvDk5IBSHGez8YXRo6k86ii5kHIAlFJ3aq2vVUr9m73fBtBanzUAYQkhhBD9qqf8bbxS6unU76rL/UH9QZkAHus0RmrR2rU0z5+fkS9IjwSDBLKz0UBOJMKX2toylig0AdcFg6zulKg6wmEWbNnC9N27WXrkkYTt9j4fT7mvZBaMKlvVI0awfdcuWkaOZLPVyn9SY3bTY2AjEVbbbKwG7o5EyPd6OcJqZUleHjNAWl27iGN08dyIMS7542CQrbHYHt17OxsDTAM8771HkceD2WRixFFH9WfIoh891NrKY6lWT5TiWpOJOdOmZaR7dwz4P4yq1vh8FPn9HL15M5Wnn56R2P8UDtOak4PGuNh29u7dGR0mMQy0j1H9xYBGIYQQQgygnpLVs7vcHzIfmGvoGCOVE4kwsb6e+gxMPu8D3qmogIYGlNYcU1PD5PnzMxJzC0Zl4Y0+XzpRnb19O0fX1DBj0iQmnX76oGiN6JrIfi4e58/vvceWkhK2lZWhysuBVFdVtxu31mwMhVhutWK3WpkEzAaqmprI2bmT0cNoTGUUo5z2Ry0trPL7aSouxp2bSyy1PhKJ4G5q2mOeV5vVyhSMCwVHkmqpzs/H3an1e7i8fsPNauAPnYoeTa2rY47NlrGE72/A+lTvk9LCQq71+ViYofeZT4G3y8vB7UZpzeKaGqbNmdPr/Q4nWusPUr/O0Vr/uvM6pdQ1wGv9H5UQQgjRv7rt2qu1fq3zDXgbYxrP9an7g9ZbGPP5oRTj3W4sSmWky9y/gJBSOHJzGZOdzbcz1FqbBK5vauKTxkbC4TDmZJLTVq1i6YYNLDv6aJYsWTJoE5Jyl4tLjj2WrxUW8mBpKQ9brXwdGN/SgjmRSBdqCofDJDG+xP41EuGaYJArCwr4fw0N/K/Xy3KM+RPiA/hcMiUAvNvUxP01Ndzl8fAT4HLgXODKSIRb/X6e1pq3m5vxRyLpx7V37zUlk4xqbOSsnTv5C0br1zns2aXa5XIxd+7cQXteiN7ZDdwcChFLzXnq8no5/tNPMzbW8z3g4dQFJU9bG1PefZeFJSUZOZ8iwP8Eg4TCYYoKC1lotXLDnDlyrh66i/ax7Cv9HYToMGbMGJqamvr9uDf9+9/8d9WqHre5+e9/5xdPPrnX8ja/n3uee66PIhND1bIf/ICVNTUAnH7LLbT5/Qe8fWertmzhuZUr9/mYVz/5hOpbb91vLF/60peYNWsWv/rVr7jzzjsJBoMH8AwOHw6HY7/b3HXXXUydOpULLriAf/3rX6xbN2RmEu2VnqoB3wf8Rmu9VimVjzGMLgEUKaW+o7X+R38FeTCSwMuhEOFolKLCQs4OBFiaGtvZG3HgiU7VOI9ZswbTgsxU/v9jWxvvpQooKeDUVas4JjubBWedNSS+4HVtbT0VmGsy8eSrr1Kfl0dtaSmWkhJ2Ywy8ak/K4iYT7rw8ntWaN1OPtWB0dS3zenE0NjKloIApxcWUAXt3iu1/GvBjTPWxsbmZDW1tJEpKCOXn4wbcQHMkgjsYhOxs8HhwderS2/7c27tNh8NhRlmtTAbKtGbH++9T4vGQDVRXV1M4QM9TDJwQcEMwyOZUK3tuJMI1fn/GWj3rgTvoOBdHNTUxa9s26jOUrP7a6+XjtjZjLthEguscDso7zU0sDoxS6kvA+cDYzkNwACfGW5AYguLxOBbLwVfQSCQS3HrmmVBVdUjHbQsEuOe55/hahrr5i8PPcz/+8SE/dtXWraysqeH0Q/xevHv3bt5++222b98OGBeELrzwQnJycg45psPRPffcw/PPP8/YsWP5yle+QnV1NdOmTRvosPpcT++YS7TWV6Z+vxjYqLX+jFKqHGPKv0GZrL7W3ExNap7Q3GiUY4qKMvIF7GOMJAStcYTDjK+vp76+vtf79gCPtk8VAyzctIlxTU1DJlHtjsvl4pzTT+/oqpqbiw+ja+PrSvFCKESb3Q5KGa3gKXFgbSTCy21tYLFAIIDL4cBqtZIHlKVupUBWWxuxhgaqioupKi7GjjExsD11s9FRHbedTt0SGBc26t1utrrd5FVUkFNaih+jZbT9Z53Xyw6fj0RBAeHcXFroVJE3EDBiPICE1Gq1ooDRWVn4m5oo9ngo9/m46KijmNgeXEEB7iVLpHvvMKaBXwKbY7F0K/tpq1YxYuLEjJwPYeDGYJBdsRhmk4m8cJiTP/kEc4bm430beEbr9Pm/+NNPiVZUgCSrh+JtYBdQgnFatGt/KxV9LBCJ8IUzzqC2tpZEIsGNN97IF7/4RQB+85vf8O9//5tYLMY///lPpkyZwooVK7j22msJhULY7Xb+/Oc/M3nyZB544AGeffZZwuEwgUCAm266iZtuuoni4mI2bNjA0qVLueeeezCZ9uzsNmbMGC655BKWL1/ON77xDV7461+pPvZYzl28mOdWruRbf/wjJXl5zBs/ni27d/PMTTcBsG7HDpb94AfsaGzk2rPO4ptnnsn1f/0rm3fvZs4113DSnDncfrHMfjScBCIRvnDrrdQ2NZFIJrnxi1/ki0uW7LHNmMsuY+Udd1CSl8dPHn6Yh157jZElJZTk5TF/wgS+c845APzzrbf42n330RYI8Merr+aISZO46aGHCEWjvLl+PTece+5e+07HEQhw9dVX88knnxCPx7n55ps5++yzOfnkk2loaGDOnDmcc8451NfXc9xxx1FSUsIrr7zS56/PYHP77bfz6KOPEolEOOecc7jlllu48sor2bJlC2eddRbnnXceTz/9NK+99ho//elPefzxxxk/fvxAh91nekpWo51+Pwn4J4DWerdSXVOAweMdnw+UQgNj3W52+/1UZOBL3gteL4l4HJRigtudsS93jwNxiwUFFPl8LNy6lWOOOeawSFS6trg6gcXA4rw8LgmF2LB7N5GqKlqtVjYDmzAq4XaX7Hkx+qFvIpUser1gte6R0Halw2FC4TBWmw2LzbZHSc1IJII7EoH8fAiFcEUie+wjEongTrUQ0dyMy2LZb0IKkGe1YgoGKfT7KQ4GqZ45k9nACCA7Jwd3VRX1JhOV06fj6vIlXqacGd7u9nhYDumpXo5ft45Kny8j7zUa+F+fj5WtraA1Zq35H7MZ1+zZGbk40gDchTEEw5MagjFj1y4qMzSuf7jRWm8HtiulLgDqtdZhAKWUHagCtg1geMPCC+vWUVlZybPPPguAx+NJryspKeHDDz/knnvu4Re/+AV/+MMfmDJlCq+//joWi4X//ve//OAHP+Dxxx8H4J133mH16tUUFRXx6quvsmLFCtatW8fo0aM59dRTeeKJJzj33HP3isFms/Hmm0bfoxd+bQxdDkejXHHPPbz+P//D2PJyvnT77Xs85tO6Ol657TZ8oRCTr7qKq047jZ9/+cus2b6dVb/+9V7HEIe/F9ato7KoiGdTFzQ8gUC3266sqeHxd97hozvvJJ5IMO+665g/YUJ6fTyRYMUvf8lzK1dyy8MP89+f/IRbL7iAlTU1/PbKK7vdL8Btt93G8ccfz5/+9Cfa2tpYtGgRJ554Ik8//TTV1dWsSnVz//Of/8wrr7xCSUlJ75/8ELN8+XJqampYsWIFWmvOOussXn/9de677z5eeOGF9OtSU1NDdXX1Pt83Djc9JattSqlqjNkNFgOXAiilLBgNV4OSr6QEWlpQWlPh9VI5ceL+H9SNO2+6ibYdOwiGQrwci5EwmTAByXCYjbm53PvGG/t8XMGoUVx7AP3zo8C/wmFaWlvRwJGbN7N08WKmTp16yDEPFd0lZT5gRTzO45s20ZyTg99up6CsjABGa2i7npLFdp3nI8XrxeVy7bHN/vbR3Xo7UJSVRVNrK85gkPxIhFNmz2Yq4AIKbTYaioqoD4epnDIFV1HRAT13Mbz9o7WV33eq/Pt5i4UzKiupXLAgI+fL88BLyWT6nF66bh2uioqMFGyKAzcHAtTH49hsNqaXlvL11lYmVFfLud57jwJHd7qfwLh4vHBgwhk+ZlZW8p2//IXvf//7VFdXs6RTa9FnP/tZAObPn88TTzwBGMnsRRddRE1NDUopYrFYevuTTjqJok6fBYsWLWLcuHGAMVbvzTff3OeXzvaW3M4+ra1lnMvF2FRBwy8tXcr9//lPev0ZCxZgzcrCmpVFWX6+cdFVDGszKyv5zlNP8f0HHqB64UKWTJ/e7bZvrlvH2UccgT31fejMRYv2WP/Z1AwE88ePZ5vbfVBxLF++nKeffppf/MKo2RoOh9mxYwd2+6BNK/rd8uXLWb58efqz2e/3U1NTw9KlSwc4soHTU7J6BcaF8nLgWq317tTyE4Bn+zqwQ9XkcODKyiIcDvOFRYtw9eKqTNuOHdw8Zgw1DQ2Mzc4GICuR4IxolIqK7mcQvXnbtgPa/yqgORBAa01+MMjYhgbCo0YdcryHAydwQnExM2bMMLrDVlTgsttJAq0YrTeNwEatebWujpDFQsxiYVRJCWaM8X7tN08P3XHNGC2gwWSS7FgMayLBtJISXBjT6+RifAFfX1ODPRzGEY3ymSVLmEzqSk1ODu6KCiPG8eMlIRW98h5wn8mUPl9HNzZymsmUscq/bzU18QuLBbPZDEoxrbY2o62e93o8vOXxgNb4gJtyc1k8e3ZG9i2waK3TPZ201lGlVPZABjRcTHK5+OCDD3juuee44YYbOPnkk7kp1TLVfmHTbDYTjxulAW+88UaOO+44nnzySbZt28ayZcvS+8rN3XPitq491Lrrsdb1cQBa7zXt7h6sWVnp380mE/FEooetxXAwyeXig1/9iudWruSGv/6Vk+fO5abzztvntj2fXR3nl9lsJp5MHlQcWmsef/xxJk+evMfybQf4vXk40Fpzww03cMUVVwx0KINGt8mq1nojRq2crsv/A/xn70cMvBCwPTUVQ47Vytz8/IzsN+F0QmoqHEckgjMvLyP7/Y/Phz/VFWPC7t2YMlS1+HDQNdkzAcWp21RgaUEBZ44fv8eY2K52hcM89corJBMJzEpx5hlnUJGf3zGO1WbDnZPT/T7y83HPnNmxvrS0xxiFOBTrgZ+Ew8YXXqVweTyc8cknVJ12Wmb239DA99ra8FutoBSzHA6uzslhdIZaPVcBj0E60T6ipobc4mIYht23+kijUuosrfXTAEqpszGm5RZ9rL6tjaKcHC688EIcDgcPPPBAj9t7PB5GjBgBsN9tV6xYwdatWxk9ejSPPPIIl19++QHHNaWqii1uN9vcbsa4XDzy5pv7fYzTbscXCh3wMcThpb6tjaKyMi487jgcdjsPvPRSt9seM20aV9x9Nzecey7xRIJnV67kqyef3OP+D/T8OuWUU/jNb37Db37zG5RSfPTRR/u8KOt0OvH5fMOyG/App5zCjTfeyAUXXIDD4aCuro6srCzKugwba3+NhoODL0k3iH3Y1GRUYdUaSyBAS3FxZqZisNuxm0zEYjGqnM4DKi99ID5JtfwBjGlsZPLkyZL8HIT9JYsVLhfnnHZajwWL9rcPSUhFX9oB/CAcZmequ3p+KMS3fD7mnXZaxgoq/QTwW61owBqL8eW6OhZlaM7TNuC2UCidaI9qamLB9u1UzpyZkf0LAK4EHlJK/RajZtxO4MsDG9Lw8El9Pd9dtAiTyURWVhb33ntvj9t/73vf46KLLuKOO+7g+OOP73Hbo446iuuvv55PPvmEpUuXck6qeM2BsFut3HPllZx6882U5OWxaNKk/T6mOC+PxVOnMuMb3+C0+fOlwNIw80l9Pd/93e+Mc9ls5t6rrup224UTJ3LWokXMvuYaRpeWsmDCBPL3U5X3uJkz+fljjzHnmmt6LLB04403cu211zJr1iy01owZM+b/s3ff8W2V1+PHP48k+2p5Dzl29t47hBEghE0CdJeWFgoFCqWsFii0pVDa/koLHfAtpVAKHay20BYKlEKBQJhpSALZe3nJtmzL2vP5/XFlx04ckyHHdnLer5desa6ke48UW9K5z/Ocw/PPP7/X/a644grOPvtsBg0adNQVWDrjjDNYt24dx2WmW7vdbh577LG9ktULLriAyy+/nPvuu4+nn376iC6wpD5uOslB71gpO/AmZscRG/C01rrHutizZ8/Wy/bRp2l/PLZhA3dniugMa2rizkOcRnfHV77CHcOH8994nE2RCGjN6IYGgrEYt7zxBql0mstmzuSWefO6Pm77du74mLOqCeDMQABfczMa+Prrr/PJLH1BFUL0f03ATcAWvx9/ayv2eJzPvP8+p02alJXpv2nglmCQt2MxgqEQKp3m/BUr+Prxx2flfSYJ3BgM8npzM2iNMx7ntsZGZo0a1W/ex5RSH2its9NjrI8ppdyYn9mH/VT6oX42d/HAAwfdfuWwq66GHr7UH6zFixdzzz33dPslvUedXrtgJILb4UBrzdW//S1jKiu54fzzsx6r6EW99PvVrQP8u2v//QrHYpx06608dPXVzDzUZKi3n+9Aem/Z0+H8XegHDvSzuTdHVmPAAq11UCmVA7yllPq31vq93jqgu6wMgkGU1hjpNJVZ+qUNZaYAA1gSCW545RVeu+QSBufnM+d3v+O8ceOYuMcU0Y+zqrERXySCBvKjUU6eO7fffMETQvSuAHBTOMyWTAuZnHSa85YvpzgWy9pSgF+0tfGf9mrWSvHlQIAvZSlRBXgYWJ5Kdbw3nv7RRwwaOVLex3qBUmohMAmwt69t1Fp/fBU/ccT63csv88fXXiOeTDJj5Ei+dtZeq7aEOGhX3H8/a3ftIhqPc/GCBYeeqApxCHpMVpVS44HzMbtuaMx+8s9prdd93I61OWQbzFzNyVx6Zxg3w1FcTHFODqFwmLFDhmTtS5MyDMh8Kdvo8zG6uJiRRUUAXDBpEs+uX3/AyeqOxkZ0Zo2kPRYjKgUQhDgqBIFvhsMsb2oye6kCt2nNiLFjs9Zf91/Ac536nc7aupUFBQVZe098CbPKXnubmmM3bWJYa6usue8FSqnfAk7gFMxzBJ8BlvZpUOKQzJ8/v0vxpYNxw/nny0iq6DVP3HhjX4cgRAfLvm5QSn0beApzjcxS4H+Zn59USt2yPztXSlmVUisxi7i+orV+/5Aj7kF9ayvNLS3EolFqNm/Ge4AltfelcxrpC4epysvruD44P5+ag1ngbLd3/JibSmHvdF0IcWTa6vVyZUMDazPLCgBO/egjRvj9zJgxIzstanw+7vH7O3q1jvF6OWHLlqwlkmuAe6PRjp6T5xUV8bXiYhZJm5recrzW+iKgRWv9A+A4YEgfxySEEEIcFj2NrH4VmKS1TnTeqJT6Beb3lbs+buda6xQwXSlVCPxDKTVZa716j/1dAVwBMPQQ27Y0tLSAxWIO36ZS1NbWZqfAUiLR8cVSa92ldxpA9wXnP2af8Thk+kppMj09hRBHrG1eL1c1NFCfnw9KgVIsWL2aCQ0NVO7Rx+5gvdvUxG2BAIlMojrT5eKq3NysVf5tAG6PRKhtbAStyQ0Guby0lKFZarEjutVeYjOslKoEfMCIPoxHCCGEOGz2ObKKWZ+ju1PxgzK37TetdSuwmO5b4TyktZ6ttZ5ddoBTafc0pLAQlEIB8dzcrI0kuG0288slUOJ209Apsaxua6Oy00jr/hpZWtqR5NYWF8v0OSGOYBHgDqA+P988maY1X25r46JBg7I2IrkTuNNiIZE5YZcXiXBJdTXHTJ+etcrCPwYaMmv47fE45yxfjq+29pD3LXr0fOaE793AcmA78GRfBiSEEEIcLj2NrF4PvKqU2oRZKh9gKDAa+MbH7VgpVQYktNatSikHcBrw00MLt2fDiorwOJ1Eo1GGlZTgyVKLGSM3FyOVIpFIMHPMGO5ZvpxtLS1U5efz1Jo1PPGpTx3wPpPNzehMU3ENNDc3yxQ6IY5AO7xe7gB2Op0Qi6G0Zv6GDXx52rSs/c3XA7cBKZcLgkEc8Tjnr1jBuFNOycr+NfCjQIAV6TRWiwWr1pyzciUF8bicaOtlWusfZn58Rin1PGDXWvv7MiYhhBDicNlnsqq1fkkpNRY4BrPAkgKqgf9lpvd+nEHAH5VSVswR3L9qrQ+wTvuByQcS8TjRaJT1mUQwG2piMWKxGABbk0l+fMIJnPnYY6S05tLp05m0R++j/eHbtAkmT+64vnrHDiZMmJC1mIUQfW+718vVdXVUFxVBLEZxURHnNzTwhSwmqj7gW5EIu+Jx7HY7w8rL+erWrRx7yilZO8b/+f38y+/vqCx8jcXCrNGjs1YQSuwfrXUMs9K+EEIIcVTosRqw1joNHFSrGa31R8BhXchUt2kTvtxcALZGo6yrq8tKApgbiXQsGtJKMSs/n43XXHNI+xw9ciRlbW005ucDEJPRCSGOKAHgNqWoLipCA0prFjU2cn0WWwC0Ad8Kh1mdqSwcSqf5eV4e8ydOzNox/gU8DR2Vhafu2MEstzsrvWCFEEIIIXrS05rVfcpMRep3/Js3d7m+Ydu2rOx3cqef00rhdDoPeZ8TJkxgWqe1ru81NGSterEQom+tb2jgssZGqh2OjnX0J2zezJcy7aqyIQzcDmzNFIBTWnPWypUU7Nr1cQ/db882N3epLDyisZGTN22Sqb+HgVLqhMy/2ZsmJIQQQgwwB5WsApdnNYosmTh8OPZOlXqdY8dmZb/DCwsxMtOKw4ZBQ0MDwWDwYx718UakUruLLOXnUyuFSoQY8FY3NPC15mbWh8M0t7RQUlTEZckkt0+enLUpszHgllCIDzKJpALOWLWKkc3NWUskX/f5+EFbG62ZlmCzXC6+Y7Nx3sKFMvX38Lgv8++7fRqFEEII0Yd6nAa8J6VUuda6QWtd11sBHYoJEyZwQkMDb6VSWK1WAgdRpbc7eZgvVAxIWK3ErFYCgQDuQyzgdFx+Pg9n+i3WFBdj7NESRwgxsFQD37FaaXU40IAlneaC+nquGDMma8eIAjeHQrzh83WsIf2GUswePJjKY47JSiK5FfiJxUJKKTRQHAxyaUsLc6dPP+R9i/2WUEo9ClQppe7b80at9bV9EJMQQghxWO1zZFUpVbzHpQRYqpQqUkoVH8YYD8g4wyCeSBCJRHhuzZqsTK1VQLnV2tG+JuBwkJeFRHhWWRlDCgpQQCQnh3999JFMBRZigFra1MQVzc0EcnNBKaxas/Cjjzg/sy49G8LA94GVyWTHGtITNmxgts/HjBkzspKoejHb7OB0glK4YzE+sWIFYyoqDnnf4oAsAv6DeX7ig24uQgghxBGvp5HVJmDHHtuqMPu8aWBkbwV1KNz19WC3o4HawkJqa2uz8gVucG4u9VqTSCSwVVYe8qgqmEnwqGCwoy/Q5tLSrMUrhDh8XvX5uKWtjXjmpFZFYSGX1tYyf+7crP09h4AbQyHWJJMda0jnbdjArJ07qZw6NSvH8AM3hcNsTySw2+2MKC/n8s2bmX3aafK+dJhprZuAp5RS67TWH/Z1PEIIIURf6ClZvRmzN+pNWutVAEqpbVrrEYclsoN0fGEhKhoFoCk/nyK7/aD3VTh0KHds3w5AfTTK+8kkALmpFPNzc3E4HPt83P5a4HCwOBgErdlSUYHdcrDLiIUQfeFV4EdWK3GrFQ0YiQRfq67mU1msyBvATFTf6zT192tKcVxpKZVTp2YlkWwDbgiH+TBTWTioNb9wu5k/efLHPlb0Kp9S6h/ACZgnit8CrtNaVx/KTjNt5ZYBNVrrRYcephBCCJF9PfVZvUcp9RTwS6XULszCk/qwRXaQRno8zAmHWRsxm81sBIYf5L6uv/POjp+XrlzJ//LzSVitRIGTAwHOycKXuDOKi/m1zUZDSwtNbjfPv/suxcXFMoohRD+ngQf9fp4ArJkR1bxIhPNWruSE+fOzdpw24DZgXaepv/PXruU4jydr7WMCwPeAzZnKwgBnfPghBUOHQmlpVo4hDtqjwBPAZzPXv5TZdvoh7vc6YB1mi3IhhBCiX+pxGE9rXa21/izwOvAKcOg9Ww6DcckkwVCIYDDIU1latzps0CBG+Hxm9V6lWGqzZWW/DmB8p8rCqwcNkqrAQvRzSeBHgQAP+P34M9VyJ7vd/CgW4yvz52ftZFMrcH04zIpOVX8XrFnDtJqarFX9DQLfCoVY2ekYp69axZimJmlR0z+Ua60f1VonM5c/AGWHskOl1GBgIfBwNgIUQgghest+VQPWWv9LKfVfIHvd7HtReV1dx7rVLWVl1GRhHajH4+FLOTncrTXBUIg3UymGPP88ixYtOuR9n2sYvJkZNVlfVYVVqgIL0W+FgLuAN9LpjpHOoU1NXN3czPFZrJZbj7l+9KPMtFwFXAvMGDSIylmzspIQt6+DfT8zvbjjGFVVVM6ZIzM8+odGpdSXgCcz178A+A5xn7/CXOqTnZL5QgghRC/pcWRVKTVeKXWqUsqttY5orVdntp91eMI7OKcUFpKTTqOAVpcLPXhwVvZ7ZnExhtUKWtPkdtPgcmVlFPS0khJG5ed3VAX+87ZtUhVYiH6oAbg2HOaNzCgkSjGxpobzVq5k1KBBWTvOVuAmYEenabmnrVrFjObmrFX9jWBW/V3baXrxKWvWZPUYIisuBT6Hef6iDvhMZttBUUotAhq01j1WFFZKXaGUWqaUWtbY2HiwhxNCCCEOSU+ta64FngWuAVYrpc7vdPP/6+3ADsUQj4ezSktxu924XS6W5eRkZb8OYF5mbZoC1g4ZkpVpchZgbktLx/UPhg2jRqYCC9GvrAauikRY1tTUMfX3IquVmx0Ozl+4MGvJ3UfA9dEoOzIJsS2d5pwVK5jg9WZtWm4UuCkU4v1OSff8tWuZXFcnU3/7Ga31Tq31eVrrMq11udb6E1rrPSv1H4gTgPOUUtuBp4AFSqnHujnuQ1rr2Vrr2WVlhzTrWAghhDhoPU0DvhyYpbUOKqWGA08rpYZrre/F7LrSr81OJPhXKARa85dQiPNjMSqy8GXyM3l5vJebSygYpHbsWGLpdBaihc+4XPwtFCJuseBzu9mWTjMzK3sWQhwKDTzR0sLDShFPpUBrLOk0C9auZUFlZdaKHAG8Dfw4GqWmoQG0xkiluF1rhgwbRuVxx2UlIQ4D3w6FWNKpsvCVSnFsRQWVM2fKiOoRTmt9K3ArgFJqPnCj1vpLfRmTEEIIsS89TQO2aq2DAFrr7cB84Gyl1C8YAMmqZ+dOrKkUGvC5XGbLhyyYAnhSKYKhEE3hML9avjwrU3ZHlZdzrt2Owvxy/LtAgHqZCixEn0oCd7W18bNAgGa/n2AohCOR4JPLljGxvj6ro5AvAj8FgrEYaI0zFuOT77/PkLa2rE3LbQO+C3zYaervvPXrObapSab+CiGEEKLf6SlZrVdKTW+/kklcFwGlmDlbvzZy0CDGer0d1XvXZGndqgKm1dd3fNFbnsUpu/OamrBk1qfVFhTwpy1bZO2qEH2kFfgO8G+tO/7ey/x+vtvYyLmjR2eluBqYJ6d+4/dzl99PNBbDbrdTFA7zmfffpzwczlpCvK6hgcsaG1mTOQZKMW/DBmbu2iVTf49SWuvF0mNVCCFEf9ZTsnoRZkGHDpmy+RcBJ/VqVFng8Xi4evRoCgoLKS4qYnEqxfYsJX6fcrnITaUAaHG52FhYmJX9Ti4vZ/rOnR3Xnysu5h8vvigJqxCH2btNTVzk87GyU2I3rq6Ozy5bxjEjR2ZtFDIO/CAQ4MFMCxyv18vIZJKHS0pYMHly1hLiVY2NXNHSwoZwGG/mJN6teXlcXlaWtWOI3qGU+l6nn42+jEUcObZ7vTzxxhsd1xevWsWiTr3l9+fxk7/xjY+9302PPsqkq6/mpkcf5Q+vvkptlma5iYHJ7XZ/7H3uu+8+JkyYwIUXXsg///lP1q5dexgiE/3ZPpPVTI/VLsmqUuqKzG1vf9yOlVJDlFKvK6XWKaXWKKWuO/RwD8y80lJG5uTQ3NJCQ1sbv1y5MiuJ30iPh090mrL7hyxN2fV4PNw2fjzFNnMpcZvDwZIxY6TvqhCHiQYeb2nh6mCQHcFgR2J3fX4+txoGnzjnnKwldn7MKbmvdW6B09jIVzZtYnR5edYS4p3AdywW2jLtvFQ6zWd37OCCoiKZ+tuPKaVuVkodh1n9t927fRWPOLJsb2jokqz2lgdfeonlv/oVd19yiZmsNjf3+jHFwPab3/yGF198kccff1ySVQF8TOuablx5APdNAt/SWk8AjgWuVkpNPMDjHRIFTK+r6/giuGLoUKqzlPgd32nKbl1BAf9pbc3KfkeWl3O104lS5rLg1UOGZG3kVgixbyHgZ8CDFgsppdBAbiLBRdu2cUlhITOzmNjtwKws3Lka7+Tqas798ENGZLEFzmbgFiDmdoNS2NJpFn34IecWFGTtGKLXbAA+C4xUSi1RSj0ElCilxvVxXKIP/fCppxh/1VWcftttfOHuu7nnH/8AYEtdHWfdfjuzbriBE2+5hfXV1QB85Ve/4tqHHuL4m29m5OWX8/Tb5ljDLX/8I0vWrmX6ddfxy2ef7XKMUDTKpffey5xvfpMZ113Hs++912NMqVSKmx59lDnf/CZTr7mGB196CYDzfvQjQrEYc2+8kb8sWcKyzZu58Be/YPp11xGJxbL90ogB5u6772bOnDlMnTqV22+/HYArr7ySrVu3ct555/HjH/+Y5557jptuuonp06ezZcuWPo5Y9JV9VgNWSh2rtd7zHWq/Cytpreswe8KhtQ4opdYBVcBhPUXySbebJ4NBojYbfpeLWo+HWVnY70SPhymbNvHhkCGgFK8OGcKF9FxeeX99pqiIdxIJXotE0MA9WjOiqYljSkuzsHchxJ42A3eEw+xMJDqSx7K2Ns5ZtYrTFizI6rE+AH4QjbKjsRG0RgGXWywc73RSlcUWOKuB70SjtGamMg8tL+fL27Zx8rHHymjqwNCCuWx6fuYyATgTuEUpNU5rfXzfhSb6wrIdO3jm3XdZ8atfkUylmHnDDcwaPRqAK+6/n99+/euMqazk/Q0b+PoDD/Daj38MQF1zM2/ddRfrq6s570c/4jMnnMBdF1/MPf/4B89///uAOQ243Y//+lcWTJ3KI9ddR2swyDE33shp06fjstu7jev3r7xCgdPJ/37xC2KJBCd8+9ucMX06z33ve7g/9zlW3nsvAA/8+9/cc8klzB4zpjdfJjEAvPzyy2zatImlS5eitea8887jzTff5Le//S0vvfQSr7/+OqWlpWzatIlFixbxmc985uN3Ko5YPeVWv4G9uqecezAHybS+mQG8381tVwBXAAwdOvRgdt+jYR4PX7bb+StgtVj4SyTCHK/3kNvYeDwevq8UV+fkELfZ2J5I8GRLC18uKjrkmBXw6bo6ltrtBOx2YlYrt0Sj3NfQwOTy8kPevxDCpIEXgN9Eo9Q0NXW0cjk/N5dFySTDFizIWmKngeeB3wGtmYq/tlSKsz78kBOGD89qC5w3gJ92aoETSyb5ZUEBx0+YkLVjiF53FnA7MAr4BfAhENJaX9KnUYk+89aWLZw/dy4Ow1y6fO4xxwAQjER4Z/16PvvTn3bcN5ZIdPz8iWOPxWKxMHHoULx+/8ce5+WVK3lu6VLu+ec/AYjG4+xsbGTCkCH7vP9H27fz9DvvAOAPhdhUV8eIioqDep7iyPfyyy/z8ssvd3zuBYNBNm3axEkn9fuSOKIPHNBAoNa6+kAPoJRyA88A12ut27rZ50PAQwCzZ8/WB7r//fGlggL+HY1S3dBAs9bcv3Il38jC6MLo8nIuaG3lVy0toDX3pVJMTyaZkoUG6mMqKjhv8WKenj2bmM1GUyrF11pbuVcpZh/BDdprvV7qamupqqzMSl9cIfZlq9fLL1MpNpSUEM0kjznJJAvWrOGTQ4ZkNXlMAve0tfGi1tjtdux2O+lYjIUffGBW/D0+O4NkGvPN9o90bYFz/gcf4Bg/HmR2xoChtf4OgFLqQ+AxzBO+ZUqpt4AWrfVBnTwWA5fW3X9FSmtNocvVMYK5JyMn52P3sedxnrnlFsbtZxcFrTX/d8UVnDlTusOL/aO15tZbb+VrX/taX4ciBoCektWRSqnn9nWj1vq8j9u5UioH87vT41rrvx9EfFlRCExrbKQ6s3Z1yZgxnF9bm5URk0nbtlFot9PidBK3Wrk7neZRwHqI+/V4PHxl/nzcGzbw8JAhpCwWAobBNxMJ7vD5WFBScsix95Z6r5dN9fU4KiuxlZXRgtkGZLvfT20ggFFQgDUvjwgQAcKZf1ujUWpiMSguhliMQdEoTrsdC+braQXikQjpUAiPw8Egl4tCoADIx/x/zgcSTU3Ea2oYV1Eh0x1Ftxb7fNzW2kqb3Q5eL8VFRZQFg5y5YgXFsRiVc+dm7Vg+4LZQiLdbW0Fr/EpxfEkJ1xcWEh4/nsrKyqz8nqaAn7W18e9OCbE1HGbRsmUUxuPSnmbg+o/W+n/A/5RSV2mt5yml5KzDUWjeqFF87emnufUznyGZSvHCsmVcfsYZ5DudjPB4+Ntbb/HZefPQWvPR9u1MGzFin/vKczgIRCLd3nbmjBn83/PP839f+xpKKVZs2cKMUaP2ua8zZ8zggX//mwVTp5Jjs7GxpoaqkpK9pg33dExxdDnzzDO57bbbuPDCC3G73dTU1JCTk0P5HrMH8/LyCAQCfRSl6C96SlYbgZ8f7I6VWSHo98A6rfUvDnY/2fIVw+DlUIiExUKL283GQYOYnYX9Dqus5Mw33+Svc+agLRZ2OZ3cvW0blzidh/wF1OPx8Bmg8e23eX7aNOI2G62JBN9MJDjL5+OqggKGHcZkLIa5iKr9srWlhe1+P6q4mFR+Pq1AbSTCxkiEVGEhRCJ4YjEMwyAWi5nTj7SGlhY8ubkYRtcuDO0jQRpQWhOOxcjp9GEXi8XwZtb5bQmH8dhse+0jFovhDYehsBBXWxvHu1xMcbsZCYwEBnHgVcXEkSMO/An4k822uzqu1hzX2spVpaU0TZqUteQR4CPMok07k8mO3+2xdXVc0tzMuOnTIUvT+qPAbcEgL3dKiOeXlHBdcTH+yZOz+pzE4aW1vrnT1a9ktjX1TTSiL80ZPpzzjjmGadddx7CyMmaPHk2B0wnA49/8Jlc98AA/+utfSaRSXHDiiT0mq1OHD8dmtTLt2mv5yqmnMmPkyI7bbvv857n+4YeZeu21aK0ZXl7esba1O5edcQbbGxqYecMNaK0pKyjgn9/5zl73+8qpp3LlAw/gyM3l3Z/9rGM6szj6nHHGGaxbt47jjjsOMFvaPPbYY3slqxdccAGXX3459913HzUEeycAAQAASURBVE8//TSjejhpIo5cal9TQpRSK7TWBz0PTik1D1gCrALSmc3f0Vq/uK/HzJ49Wy9btuxgD/mxHmpt5TGlsFosOBIJ7k8kGJGFL3Ber5c/hMO8VFpKc2ZK8LkrV3JNlgqZeL1enl+zhocHDybU6c3dkUhwUjjM7FiMk4YOZdABHktjjmq2Zi7bmpvZ1tKCrbQUCgpoBWpCIeoiERJuN3rPxNHr7Vjj5/F4MAwDf6ZfpMZce1tQWEhBQcE+t3cWi8VoqK9HQ5d9ttuffXzcfezAcMzEtbClheKaGqaXlckX+aPAJuDH4TBbM0WUmltaMOJxFqxfzw1z5mT1d0AD/wAejMWIRKNYLRZam5s5buNGZu7cyblZ7G3aDNwJLO/0uz+uro6bDINjsjiVeSBSSn2gtc7GecmjWlY/mx94APZzemmfq66Gq67q6yh2e+ABgiUluB0OwrEYJ916Kw9dfTUz5Qv8wHQ4f7/6w99dbz/f/vAcD1Z/e6/pZQf62dzTyOq2QwlEa/0WB1A9+HD4SmEhr0UirMuMzt2+axd3Q1ZGQG8C1nu9NGdGT/49ZQqzfT4+kYUvpB6Ph0VA8OWXeWXiRHZm1p1FcnL4T0EB/wF+FgoxqqaGoQUFOLUm2NaGOz+fvLw8/IEAzYEAufn5WNxuooAvEqExFsPmcOwe+QwGwWYDvx9PJjH1+nxmQhoOd0keo9Fol1HQaDSKYRjY7Xb8SmEkErjicaaWljIYsCrF5s2bMeJxjHSaU449liGAI3NxAg7DoNlup662lkGVlZQZBinMMx0poD4W44U33yRqsRCz25l5yilYMftVtl9qrVY+CgZpdThI2mzY95iGFAXWAx/GYngDAcjLo6i5mU/Z7ZxZUMBY+tkvrThkSeCvwJ+iUeo6FVGa53Dw2dZWJmQ5UQ0D9wKvdzqh40gkuMNiYWhpKZVTp2bteLuAmyMRauLxjirGs7ds4fitWxm2aFFWjiGE6D+uuP9+1u7aRTQe5+IFCyRRFUIc8XpKVn+ilKrQWtcDKKUuAj6N2SLwDq31gOvsnAucVl3NutxcNPDhkCG82tLCF7PwxdEC3KIUl0WjtNntJG02Hq6qwrlqFdPKy7OSEF9wxhnM2LiRf65Zw9KRI2lzODpuT1itrE8m2dDecDsz3bYYOkZ7aW7Gkym00D6dlrY2PB5Pt8ln+35iP/85jtpa2nJzcefmYgAFiQS2lhasqRS2dJrK0lLyDYNcIBWJEAuHcTqdOBwOwpkY8yMRwuEwOJ2sf/99zrrzzr2eZ4XH06WwUue1v6PKy/n8GWdQW1trTmssLt77hXK78ZaWUl1bi3XwYIKGwRbMMy9bMacvQ9dku8Xp5GngFaAYmIvZGHgq2WlFJPrO8sZGfq41jQUFHUWUbKkU8zZs4OKKCmZmeeRxeWMj/08p2vLyOn7HPK2tnP3hhwydMiWrRZuWAj/q1ALHAnxDKWYXFlKZxZFbIUT/8cSNN/Z1CEIIcVj19F38QeA0AKXUScBdwDXAdMzqvQOy6dGi/Hyer65mW2kpKMU/hg1jIWaRnkM1rryc/1OKW61Wojk57Gpp4Qe5uXzitde4KAstMDweDx6Ph3FeL2s3buQ/zc1s9nioLikhnJsLdK30p7QmFA7vMwnVQE4yiTsQYJTDQX1TE/ZoFFcyyclTp5KvNSs/+ICPVq7k2yUlTKysxO12d+w/GAwSCATIy8vrsn1/3LF9+yG9Bgdyn3mdbmvBTFpXaM0LTU3sKC4mZbV2jMA2A//OXCzRKCN8Ps6z2zmlpERGXAeQBPBIaysPhkKklIJolOKiIipbWzl11SqKYjGqsli5UgPPtLRwVzBIwmKBcJjioiKm7drF8evXk6NU1gocaeBvmOVhO7fAOfvDD5md5RY4QgghhBB9qadk1dpp9PTzwENa62eAZ5RSK3s9sl5S4fFwt1Jcb7ORcLnwA9+preU2qzUrrVKml5XxK+DrmUInAbudp+fMYbTPxyezNNLRnoxN9HrZuHEj4a1bWe/14rfbieXmEsvJQWuNRSmmTJ7MmtWrsSQSGFpz+oknYteaN996CyMWw9CaRYsW4XG58A4evHvUMtMv9tgTTuBHjz7KxFGj9kpI3W73ASepfa0ImAXMKizk3MGD2V5XR/OQIWw0DN4H2mvOxWIxvA0NbNea10Mh5jgcfNHp5CRktLW/Ww38GlirFCml0IA1nWZRYyNfrKigPp3OasGhEHA/8LzFQusKO8H37BQcE+bCafWcO2YMtS5X1o4XBX4UCPBmOt1R8VdHo5yzYgXloVDWWuAIIYQQQvQHPSarSimb1joJnApcsZ+P6/fGlJdzJ3BrZk2ZV2t+tGYNt2VpLdk44DupFN9Op0lYLERzc3mgvJzQhg2cXliYtS/JnUcQp3u9HYkmsDvp9Hjw2u27r2fWuw4+7bQu99lzf52PUVJSMuCS0v3R+fmejbkudh3wHvBCINBlRHpjIsEvMftXLszcP69vwhb70Abc19bGy51at/iVwuP3c/qaNXzplFPweDwHXIisJ282NfFzpYi43URXOth6YR46rmi25THo7214FhZn7e/dC3wnHGZZZlq/XylOKS7mG0VFBMaNk4q/QgghhDji9JR0Pgm8oZRqwmyDuQRAKTUas5bNgDYLmOP18nx779WxY3nR7+eSLH3ZO7WkhP/Tmh9aLERycvC2tHC33c5r69fzQ6Aqy18q90w09/y5uyT0UL7YXvrsszy/cSPlLherv/51AFbW13Pl888TTSaxWSz8ZuFCjqmqOuhjHG5WYHLmsiiV4o/vvceqqirWV1V1mSb8Z8yCPXPa2pixY0dW1iSLg6eB14D7IxG2dGrdMqy8nBvz8pjo8zE4k6hmSwp40O/noVDIrF4dChF+sxISCtKKdMrKRx8Vs3Bhdo73EeY6jOpEouMkyrQdO7jQ52P0jBlZa4EjhBBCCNGf7LPlpNb6x8C3gD8A8/TuxZAWzLWrA96VhkFFW5u5FlEpnh46lNVZ3P9xpaU8XFxM+q0UDb/OI/hBLh8MH86NSrEji8fpC1+ZPp2XvvSlLttufuUVbj/5ZFZeeSV3nnIKN7/ySh9Fd+gqPB6+Mn8+33K5+IvLxeWGQedyTm2xGE+0tvLtvDxu3bCB7V5vn8V6NFvR2MhX6+v5aSxGUzzekciNqq/nmxs38uWiImbNmJHVRNUL3AI8hZkoa8CIx/n82FrsuQqrFXJzFfPnH/qxNPDnlhaubW2lKRbDbrdj1ZpT16xh/saNDM3SOlghhBBCiP6ox+m8Wuv3utm2sffCObyGeDzcrxS3WCy05eVhMQy+F41yxebNzMpS780d78LSTxUQjYPK1Yx8ogHfOQVcFY1ySl0dn3c6GToAR+VOGjaM7a2tXbYppWiLxQDwR6NU5g3sibKdR59HAZ8E3sTsn/lhptJrSik+GDaMa2w2bgROQlrfHA4B4MG2Nh4Ph80mzl4vxUVF5EejnLR2LSObm5mQ5dYtGvh7czMPKgVOZ8c048E+H2esWcMXTj+dha/C4sUwfz5kep0ftAjwk0CAZzNT0mlrY2xZGd93u3ENGkTlrFkyoi+EEEKII9qAXnuaDaPLy7kfuBHwZorq/Dgnh0+99hpfykIF38WLIZFQkAaVANvqEjgnTU1DA49ZLDwTCHC5YXBhYSH2j91b//arM8/kzMce48ZXXiGtNe9cemlfh5RVNmABcArwejLJz/x+6goKQClibjf3YFYR/howoi8DPYLVeL38NRTijcpKmrUmjZlEWtJpTm5u5pLCQpqHD6fy+OOzmsj5gJ8Fg7wUDJqJYyBAZXk51+TnM8PnY/Dpp2dObhx6kgpmq6W7gHXpdMdoscfv5+utrcybOhUya8+FEEIIIY5kR32yCuAB7gCuzLR5Cdjt/G32bEb7fJx/iF9458+H3FyIx82pgXedlsNf/Q14M19AIzk5/FEpXohEmFtfz6dcLsYM0PVnDyxbxi/PPJNPT5zIX9es4avPPcd/L7por/tpoC0S4aXVq8mvqMBVWkoEcySptqWFhpYWSouKKCkqwoK5lrStuZnWpiaGl5QwsqSEAiCfvvkFVsCCkhImJpM819bGK4MHEzUMANYAV8ZizPZ6ucIwGCYjX1mhgZd8Pu5qaaHV4YCGBoqLikApqpqbOXnDBi6ZPx+Px5PV11wD/wV+D9SmUh2JY2EoxJVbt3L+xImQxVYxGniqpYXfKYXN4egYvZ1UXc38DRuYeM45WTuWEEIIIUR/J8lqxijglnSam9NpkhYLEcPg4SFDGAIcSjfG446DV/eYGjjHq/nZhg0sGzaMoMOB1WJhS2MjWywWnoxEODkU4nSXi+OAkmw8ucMgGAzyh5Ur+c6JJ9IIzJ04kUufe46l0Sj+eBxtt5POzSUChJJJXk+leDUvD8JhPLEYhmGY7WICAbBaIRDA43Tu3h4MgmFAKITH7cbIJIeWaJScYJBxhoGxOg/vYlg0H846rven41Z4PFzh8fAlzPWLzwHhTIXp57XmrZYWfmq1cqyMgh2SrZjJ4hKbDb/D0VGhuSgW4ya3mwqfj6pMoppNDcBdwSDLUqku1YWn7NzJvM2bOfbss7N6vDDmtN/nOk37HVpezu1uNyMcDirPOUem/QohhBDiqCLJaienlpRwr9b82GIh5XKBYXAncB3m1M+DddxxXacGVnk8fGfaNHbW1rKlvJy/xGI0Z0ZsAFYkk2wFHgSGhEIMaWxkel4es0tKKOXwromMYo54NgExoCUSoTUaRTmd1AJB4O+JBE2JBE6Xi59u387M8eNZt3MnZcXFfBCLmV+8IxHcFgtWm41EMgnQkXREo1EMwyCaWQe6v9vbe6GiNSuXJNl2oZt0XPHbXJj3Yoxx45o50W7nrKIiynrxNXIClwJnAD9oaekYNW91OPiOzcY1wCeQtawHqh54KBDg1XQao1OyaCQSzN26lVunTqWqtBSKiz92XwdCAy8AD0aj7Gxu7qguPLW0lO84nRS4XFSefXZWE8etmNN+13ea9lsaCPCNtjbOnDw5689RCCGEEGIgkGR1D/NKS3kI+D5mghaOxbg9GmUt8LWCgqy9YO3Fe+YAJ3q9/HLNGlZXVVFfWNjRJiUWi/G2zwdK8VRmRLHEMBgBlLS1QVMTw4qKGFpURB7mtNhwQwMNdXVUDBpEeXl5R7VSb0MDu7xeCioqyCsrI4KZiNY0N7OrpQVbaSnpggL8mH2J6iIRvNEoFqeTMDANSCWTBONxUIpH/v53NtXUEIxEuOy++zhn7lwuPPVU/vbmmzz95psYublcdOaZZqIKoDXJZBKrzYbNZsOaTpMXDmOkUkwsLaUUSFgsbKmpwZJKoZRiYlERLqDVYmF1fT0JpYgaBuVlZSSBXZ2S2NC7Buk4kIJ0XLPx3xFaR8R5P5Hgz04nEw2DY4FRjY1Yq6up6oWelIOBHyrFz9es4bXx40nabNgcDh4BlgSDnLd1KxMOsWXQ0cCHOVL9fDRKbaanKEoxqLycLxUWcuy2bYzNUk/kPa1sbORX6TS1hYVE20+0ANO3bePrzc3MnT49q+tFNfBESwu/32Pa7+Rduzh540amy7RfIYQQQhzFJFntxhDgHuCmcJgPmppAax5SilU2G99zuRic5eNVeTzcNGsWtbW1OBwOthoG7wBvRSJ7jSgGDYNlsRje1tbup8tGo1BYCNFo1+m10Sjk50Mk0nV7MAg2G/j9eOz23dsbGzsKybhSKQCSyWTHl/dLzz4bu92OYbebSWwohCWd5o7Pfpby/Hzyc3OxxGK01NZiSybJTacZM2QIJYDdZmN1Tg4XRKNUVlbicbnMFyIvD++oUdTW1prb8/N3bx8+3NxeUYHH6QSgPhrlmTfewJ+by6qKYTyTeyzJOKhccM2NdHndthgGa2MxvJEIpTk5zPzgA66fNSvr/W4rPB5unDWL0xsa+PvIkdRkXs9Xm5t5x+Hg7Lff5soTTpCEtRtNwB/b2nghncbmcHQkixoY3tjIVW1tnD15MkyblvVjx4Df+/08HAqRUqqjunBxOMyCVauoDAQYnuXqwi2Y04xf2mPa7w/cboY5nTLtVwghhBBHPUlW96EEuGzTJurTaaqLi1FaszaZ5DrgK8Aisjuts3OblPHAOcDmeJwH16zB63bjy88nx+MhBQc8XfZQtlvTaayJBMWAxWKhLRg0k89UipGVlRQBDpuNlNVKNBwmLy8Pd26u+aQMg2BZGYFAwNyeSTIBHA4HM7opTOPZx8hjd9srPB4+c+aZ1NbW8tVTKrn2OMXixTBlagsb/K+zY20R2z0ekpnHtT+vxrw8Xp40ifU2GxcDZwHuQ/i/6y7WMzweFgBPAL/PHDecm8s/Zs4kPxTiemRacLt64GngxWiUmtbWjsStuKiIytZW5m7axBC/n5lZThbBHNl8D3gY2ASklOqoLnyqz8dXiotpHDPGPHmSxcTxbeB+oLpT0aaytjaZ9iuEEEII0UmvJatKqUcwc7oGrfXk3jpObxpVUcEnn3+e5UOH8v6YMdjtduLAQ8D7wPVAb5bOGV1ezo2ZEdfKQYMot9tpBD5IJnl2yxbCNhsxw2BISQkaaMjJYWMySRqz52mJYeAAcnNziScSWFMpctNpxpWWUgKkrFa2eL0Y8TiuRIKTp09nOJBKJFj6zjsY0Sj2dJpNWnMWQG4uwcLC3cmnw7E7WLfbvOzB7Xbj7mZ7tnROYne3DSlmjvfUjhFat93OB8ArFgsvZgpotbebeSgW48FwmPMtFi4rKMhq+yAbcBEwJJnk1kSCSE4O2mLhuZISdtTUcIPNdlRXC94M/DkQ4I1Uitw9RlI9fj+XhsOcUlFBXTqd9WQRoAb4eTcFlDx+P6euW8clJ5+Mx+NhcBaPGwTuCQR4LZ3ucsypO3Zw4ubNMu1XCCGEEKKT3hxZ/QPwa+BPvXiMXuXxeDhv0SJm19ZyqcvFnwyD7ZnblsZiXBgO82Xgc0VF5PZiDJ2/pJcDZ5eUMHPSpN3TZduTQacTr9u9e3tm7SsOB968vN3b26fdut14hw3bvb2oyNxeWsrYBQs6tj+wZEnH8Xs7+cyWPV+3k4CT8vK4OBLhmVCIZRUV+AGv1wta8zuleCs3l2scDo4nu6Oep5SU8GgqxU+0ZpfTSXNLC69rzcq2Nn5itXLcUVQtuM7r5ZXWVpYNHsx6mw1v+5rUzEjqIL+fWVu2MKK5mQWLFuHxeKjIcpIaxVwT+9dolJpOBZRGl5VxWV4eo30+qjKJajatAO6KRFifec5+pZhQVsa3XS6K3W6Z9iuEEEIIsYdeS1a11m8qpYb31v4Pl85Jz3TMaZ1PZNqToDV3K8VzdjsXOhycBRh9ENfh3D7QjS4v59tAAvj9pk38JR7H53ajtKY2Hucuh4PRwSBnbN/OzLKyrL0GE8rL+T1w265d/DszetjidHIzsHDbNi50OhlyBL7e7fzA31pb+VNrK367HXw+3C5Xx0jqEJ+Pi0MhTvJ4qEulqDz++Kz//mng2eZmfq81Mbe7SwGlKTt3cmVLC/OmTYP2kzZZEgUeBV4E/PF4x3MeX1PDtS0tHD9tGpQMlCZVQgghhBCHj6xZPQA5wMWAe+tWfqUUfocDpTX18TgPOxz8DfgU5nrTbE4nFdmXA3wyPx/b88+zpqKCd8eNw263E4vFeK25mTdcLk748EO+O21a1kb2coAbcnNJLF/O4nHjSNpstIXDPGmx8EJrK1dEIkxqaemVSsV9QQOLfT7+GY2yqaSEoFL47faONdIWrRlXX8+07dupCAY5uZdGUgE2AP8XCrEkGDQT1FCoYyT3pLVr8YRCjOmFNbFLmpr4JRDMy8MwDHMpQSLB/DVrGNPUxKheOKYQQgghxJGiz5NVpdQVwBUAQ4cO7eNo9s+84mIaX3yRVVVVrBgxoqPVjB9zBOVpzL6aCwFXn0WZPYVDh3LH9u1Z32df83g8nLtoEbNqa7kmL4//GgaP+/1mmx2LhTfHjSOZTnMXUJDFY948cyZnNjTwh8JC1qTTaMBvt3MPUJqTw6xly7hu9uysVyo+XKqB14EXIxHWhkJmctjQQHFREWT6pE6prubGCRMoGT6c2tzcXlmTClCHuQ7hLcCfqWatAVcsxhfq6zmvfSQ3y8cPA79ua+OJUMjsnxwO4/F4ONkw+Fx+PsGhQ6k89tgj4qSEGFiUUkMw/ywqgDTwkNb63r6NSgghhOhenyerWuuHMGsWMXv2bN3H4ewXj8fDJ885h7m1tZTm5/ORYfA0ZusNgADwcCzGw+Ew82w2zszLYwb02rrW3nb9nXf2dQi9pvN05yuAGfE4twaDNLrdoBRbiou5PBLh0zt2ML+oaL+Ti199//u07tzZ430GRyK0NDfTmJdHymIBoBl4BXj7T3+iIplkcE4ORZmTIYVDh/bb/4sG4B3gpVCItckkdrudaKcpr0prhoTDfMPtZsjOnQwbPx5PeTlAryRsfuDhTm1w2kc1g1ozZedO5m7dyvlnn90rI7n/A34DbMk8dw0YiQSf3rmTK8aMQZWXQ+a5C9EHksC3tNbLlVJ5wAdKqVe01mv7OjAhhBBiT32erA5UnZOcIcAZwKvA34Bdnda0PpMp3FNgGMwBjgdmI9OE+6s5ZWX8IZ3moViM9zL/vxsaG/l/DgdvrF7N92G/kpvWnTu5Y/jwj71fMBikJRhkm8vFumSStFKgMuWdtAalqMzJwRON8sTGjYfwzLJLA8sbG3ktGGRLeTk1LpfZn9fn6ygeVFxUhD2ZZHRdHVNqarhk/nw8xcW92pYlAPwDs3jSrtZWQstyCL0PQ85RfPpkg7NdLlJ5eVRmEtVsagZ+GQjwxh6Vfoc1NnLq+vV84rTTpF2R6HNa6zrMSQdorQNKqXVAFSDJqhBCiH6nN1vXPAnMB0qVUtXA7Vrr3/fW8fpaDma/ztOAh3fu5Mlkkhans0v/0iXAEswR1pnA+OZmBu3axaiKiiN+OqAGdni9bGhsxKiowFZaSgvQAuxsa6M2GMRWUIDF5aI5HCYYDpPndJLndBILh0m1tTHI5cKtNUZTEyOBirY2RgwalPXXbrDHw53AB8BtmWqxGnh79Gh+nErxM8DR8y72W3t15SHApFCIdfE423JyCCYS5h0yhZ9qLRaWJJN8rqWFMYEAx7jdHFdcTBmHp1+rxvx2+15zM++Ew2x2u9kWiYDFAj4fHputo4+tJZ1meFMTn4hEOK2wkAaXi8r583v1dzwM/Lm1lWe0BqeTaCxGaFkOWy/0oOOK5vs0974GU48rg7KyrB47hVk86eFolO2dKv2OKSvj6243Q30+qk477Yj/GxcDT6YI4gzMbmxCCCFEv9Ob1YC/0Fv77s9s7C7cU+92s7WigsScObR2uk8ceCMW46/BIBQWUtzczIlOJ9Py8hgJjCR7ayR7W43XywavF0dlJbbSUpoxE9AdbW1UB4OkCwqIu1zURaPsisUgL89cvxeLYRiGORrX2mqOIvp8FKfTNLe3MwmHKS4q2n09HgdAW60AWAsKGFpdzWleL5/yeLK+xnMW8Mtkkuv9fmoLCkApVuflcXFjI98GZmU56SlxuZjncjElGOT9hgaa3G7anE46z43f0NbGBuD5YBCPy0V+Ok1JayvjXC7G5+dj9/lI1tYyrrycoR7PASWyCWBzQwMbGxuxDBpEoriYTW1tbAiHaS4sJKwU3vYCRX5/R1xKa5KRCMfYbKTXrmWE14szleKsTMGk3lx7GwCeA/4WjbKtrc2MLRCguKgI/abF/GNLK1IJWLy4vQ9v9mzAnPK7FfB36hM7oaaGa9qrC/fiSLIQB0sp5QaeAa7XWrd1c/uAqychhBDiyCPTgHtBe+Ge9j6l5U4nOzDX9L0D7ICOUSgNNDudLE6nWdFpH8XACMzEtbC5GVVXx6iyMkaXl/fq2leNOUrVirnurxXY1tLCTr8fS3ExOj8fP2ZC6o1G2RqLQUFBjwmox2braBPSvn6xfbS58+ugtCYUDu/zenubkXYpi4VtpaX8DnjK7+ccn4+LSkqy2gJmXHk5D2vNb2Ix3skkzs1ac7nWXJeTw0WFhfudEEaTSU569FFiqRTJdJrPTJjAD045hdtee41nN2zAohTlLhd/+MQnOL6ykkAgQDqZ5KPWVlqdTixak8rsS2lNKBjEGwqxSWveSyQoVormUAjy8yEWY0g0ihGNkmhpoTg/n4qSEuLBIP5gEHteHrkuF23hML5IhJTLRUwpvNEouN0QDFKck0Nz+/9jQ0OXVjMARjLJEJ+PkU1NfH32bEYWFuKdOXN3395eTFI3NjTwZCTCMo8H7PYuiWJRKMSXo1HKTy/lM7+FZFKTm6uYPz97x/djFlD6j9bY7faONbGWcJiT1q5lWGtrr1QXFiIblFI5mInq41rrv3d3n4FYT0IIIcSRR5LVXrJnn9LhmcsXgRrgRa35ayBAQ14eKNVRUbhdc+byTixmjma53RCN4onFyDMM8oG8zKX957TfT7C5maKiIvILCzuKu5D5t9Xvp7G1FXtRETn5+USBCGYfSF84THMkQtLlwtopllgshjcQMNdRtrbiMQwMw+wm69/PBDQajWK32wml0zhjMVzxODOLixkCWLRm/bp12GMxjFSKuVOnsvp//4N0GqxWZsyezdLly4larcRycwkbBo0uF97CQnxud0ecAcPgL4bBS62tfKmujvMHDcpa4Zwqj4cfAw9u2sSDNhtJi4WUUvxeKTYCNwCl+7Efw2rltYsvxp2bSyKVYt6jj3L2mDHcdMIJ/HDBAgDue/997nzjDX67aBHuzPMrsNsJBAK8m0pRvHw5OwsLaSwsJOx0Euwh0W9qayOcmaq7PRgk32IhEAh0jFJ3GcUOhboko93tz5lKUeLz4WlpYXhLC+dPmkQiJ4fKWbO6FEvqzSR1F/BYWxtPh0IkLRZoaMDj8WC321GRCLO2bGGC18vChQvxLCzm9dfNEdX587MzqpoEXgAejUbZlknk/UoxpLycy+12jisupnHkyF5P1oU4WEopBfweWKe1/kVfxyOEEEL0RJLVPlAFXF5YyHmxGNvq6kgNHkybYbAV2Ja5xDP37S7xMwyDJnZXH4ZMUun3m2sI29rwZCqg7nU77JV0xmIxvE1NHUmLx+PpuG1fxwew2+20Ac54HFc8zvSSEgYDFmDTxo04olHciQTnnXgiYwsKaHM6qWttNb/I5+WZsRQW4p0xo8to3My8vC7Xp3S6DlBbW4vdYmF9XR3/Dof5aMgQwrnmeLPfbud+u52Xd+7kZ0oxKotVVz+Rn49/8WL+M2kSTfn52O12/heLcWE4zIVK8cXCwh7/oJRSuDNxJtJpEqkUCsjv9P8Uisf3GqltX9daHItx1fHHd7wWOp3mz++8Q5PLhd/tpmjiRFb4/QQMg4hhkEqluuwn0sOodXvfU2cigT0WoyAaZUZlJY0bN5IXCuEJhbjgtNNQVVXUKkXl5MmHLRnTwIfAs8AywJ9pLdQed2FbG98oK2N0URHeykoqZ8/uiO2447I39fdln4+HtKYtL6/LTIERDQ1c6/dz6pQp4PEwWJJU0b+dAHwZWKWUWpnZ9h2t9Yt9F5IQQgjRPUlW+9C+RqHSQC3mOriVwH99PgKGQSw3F3enxKaznpLKj7t9z9sIhxlkGBQAVquVXTU1GLEYrkSCU2fPNqcmAwWGQdhup7652Uws20c6CwrwTp26O+HMrO107qNNyJ6vw/5cB5gAHO/1smbTJp4NBnl39GiiOTkAbC4v55p0mkvWreOk4uKsJFYej4eL58/nlNpa3iso4HmgPlP1+edK8cQKOyPes/Pl+fveRyqdZtZDD7G5uZmr58xh7uDBAHz31Vf500cfUWAYvH7xxT3G0Pm5XLRgQZfE3qsUtbW1DCospLalhf8uW0bCaiVlsTB6wgTWb90KqRQ2YM706Xy4bBnWRAJXKsWnzjoLlZdHbSBA5eDB5v4slr2m9R6uJDUMLAaeCYfZlEh0mW7rV4pyv59jtm3j2rlzqTADo7IXYtsO/DoY5JX2nrGZtdRF4TAnrF/PyOZmJsuUXzFAaK3f4vDUZRNCCCEOmSSr/ZAFGJy5nFRQwOerqsyEobSUcrudKGZhmbbMvwFgRzrNkq1bSQIWpZg5YwYFmN9IFNCmNcu3bMGaSpGbTnPinDlUYbbQCSUSvP3ee1jjcVzJJJ885xw6vvK73XhHjdqdsOxRLKbA42HQfiSgvaX9OJO8XlZu2cIfgLVVVaAUNfE4P3I6OXbNGn7A/rWc2d/jzQEq167lXqVodToJL8vhlS8ZpOPwcK7m3NkBgqXBjqm87awWCyuvvJLWaJRP/uUvrG5oYHJ5OT8+9VR+fOqp/GTJEn69dCk/OOWUA4qnu+sVHg8Ordm6dSsjR45kwoQJeD2erqPYbnePyejh+n/sbAvwb+ANzKnm7aP+fqWo8Hg4yTCY53SS7/NRNXdur8XnAx4H/gu0plIdJ3SMRIJzGxv5fHExDcOHU3n88TLlVwghhBCiF0iyOgDsmTA4MpcuE1yLijhj4sTdiUfBHvWECwvxTprUfdJZWsro+fP3WRinLxKWA+XxeDjT42G618t/Wlv5c1ERDZEIGnhv1Ch+mGk548riMeeVlND0wgt8OGQIz707i3QcSEEyDuuac/lnKMQxVitjHI69hjEK7XbmDxvGS5s3M7nTVOUvTpnCwiee2O9k9eNMmDCBCRMmdFz/uFHrvtKG2dbpX6EQa5PJjlHU9lF/WyrFhNpaLvL7OWPKFCgtNS+9IAw86vfzd62xZqbTt095n1BTwwlbtvC5M87o9UrHQgghhBBHO0lWjyAfl3j0dHt/SVoOlcfj4SKPhzkNDXyrtZWawkJQik0lJXw9HOaCrVuZWVaWtWnBn1i4kGNqazllPlx4vyIR16gcja0sRcAweFspVicSVAYClCSTlOXnU2i3E0kk+O+2bXz7hBPY5PMxpqQEgOc2bGB8LyVh/U0C+B/wGmZP21Ashtfn6xhF9Xg8jMzJIW/DBsbV1OBIp5nWi9NtY8DzwOORCFv8fnPKb1sbHo+H4w2DhU4nNoeDykyiKoQQQgghepckq+KINCHTcubBaJR3M4nFyqYmVjudnLx8OTfPnJnVacEzZsDgV+GJF0KsH7Yd33/SoBRKKbzhsLn20+/nqWeewQZYteZzkyaxaOxYPv3Xv7KhqQmLUgwrLOS3Cxceclz9VQKzWNLbwN8Xx9j5uqZsgQXPybkdo6iWdJrRXi8XhEJ8asIEGqZNo7asrNcq7CaAl4C/kmnZFI93TPkta2vj0nCYC8aPh7Iy8yKEEEIIIQ4LSVbFEavS4+EHwJvADzJtRhJWK69OnEgsleL/AQU97+KAmJVn3Xi9Zdz+rzizDION6XRHf9jKsjK+c8klGHY7uYAnFmNVUxOPnHMOBXusbT2S7PR6WdzayrbKStbm5REGvG/EWXZ2Djqu2PEzzeyX4syabSN3/XpG19XhTKWYt2gRit4b9U8ArwJ/jESoice7FHDS0SjHbNrEBK+XU6R4khBCCCFEn5BkVRzxTgLuSiS4KRymxensmBZ8NXANMDfLx/N4PFQUF3OM3c7YYJB3fT4a8vIIGwY2m/knF0kmWR2Ngs2GJZFgRDzOsNxcBmH2zB3IpTo1ZpGklcBbwSBvRiKk7HZoacGTm4thGDS+lkbHFaQVxDWT/97MAydX4J0+ndry8l7tUxrDHEn9O1AXi+FtbOyYejy+rIyrHQ6mFBbSUFVF5Zw5MuVXCCGEEKKPSLIqjgpzysr4UzrNg7EY/8v0kfUDt8ViTG9s5KqcHEb0QlJS6HZzIhAIBMBmo8FmYzvQnEx2jLimlaImnaYJSCWT2OJxPFYrgwyDEqCY/v2HGsRss7QZWB4I8EEiQcrlMl/jVIqUUl1aJg0zDEbNS/Ibm41U0oLVmubTZ5j9Z3tz7fQ2r5e/hcMsragg5nAAu9s22eNxZm/bxsXNzRwzfTpI8SQhhBBCiD7Xn78DC5FVQz0efgwsB+4lM6rm9fIfrXkzGuW63Fw+V1SENcvHdbvdHS1sBgFTgZ3pNMvb2mh1OIjm5mKz2UglkwQzvTxblaLGasVqs6EAVyLB/0IhHmptZWJhIVVAJdB9193s00AL4M1cNrS2sjYUwldUhN/pBCAWi+FtaTGT8GAQj8fT0RO1OBhkdGMjV0yaxBxAne7m9L8389JLUc46y87ChcX7PvghagAe9/t5IhQibrVCYyOezAkLT24uUzZtYtLOnRhaM2zatF6LQwghhBBCHBhJVsVRZybwa+B7TU14M4V0Ijk5PGCxsAT4KjCrF4+vgGFOJyXFxQQCAaxOJ36bjY2BAOF0mrRSoDXJZBKrzUYymaQmHKZWa+5va8OTaacC4IpEyG1ro8rlYrDbTQFQCLRu345v1y6GVVUxbuRIbEAO0NrYiNfrpdjjobCsjATm2s16n49dPh9GWRnWoqKOPr51wSC7IhEieXkoux3IJKVtbWZS2tTUkfi1j1JqwBmLMbmpiYVVVVTa7UR9PirHj8fTqdLxwoXF9GYtqQ3APzGLObUCcau1Y4TXEQzyNcPgNIeDlilTqC0p6dWpx0IIIYQQ4sBJsiqOSnnAd2w2HCtWsGTMGIIOB3a7nV3AHcDYYJAF27czO0ttbrrTecS1HBikFBu2byeUk0PYbscxZAhBoKHTlGEyU2kNwyAWi7Ezs97yw1gMT04OhmEQDATwKQVDhwJQEgjgzsszk8xIBPLyIBLBE4t17McbCoFhQCCAx+ncvb252Tx2JNJtUqq0JhmJMNEwKFeKxnXrKG9poSwc5txFi/AAlJebl8MgAbwD/CUUYnWnfq3tI7xFoRCzt2/nmzNnUpV5zJHStkkIIYQQ4kgjyao4ank8Hm6YM4dP1dWx0uPhFcMgijly+N/mZv6bl8fYHTv4ltXKsQfY+7Rw6FDu2L79gGOK2O2Ew2GcViuOujoAApEIWxoa8AwahGfnTjwlJfiBDZFIl6SxPYkNhcNd9hkKh3Hn5e2VZLbff3+3W8JhRhkGLouF2h07yA+F8AQCXHTyyQwGyM/HO2MGtbW1h32UshazaNJ/gaZu+rXONQzmuVyU+XxUzZwpyakQQgghxADQq8mqUuoszOWBVuBhrfVdvXk8IQ5U+6jaMcDngMeBv3ZK0jZ6PNyck8M84JPAbPavUu/1d96Z1Ti9Xu/uJDAzGlsTi/HUO+8QzMkhYhhMmTcPBazXmlVeLwmrlZTFwqChQ8kH/Dk5bI1E0Fpj05oxpaUUYE6P3erzYUsmcSaTHFdYyBAgmUqxcsUK7NEohbEYnz7rLHOkNC8P77hxZjx7JH6Hc5QyAfy7uZnn4nF2FhV1TI3u3K91bH09FwUCLJw0CUpKzIsQQgghhBgQei1ZVUpZgfuB04Fq4H9Kqee01mt765hCHIpC4GpgbjzOnT4fO0pKQCnsdjurgFXAYOATwClA7mGMrbsksMrj4UsLFuxOYouKzBsqKljX0sLWrVsZOXIkE9oTNKcTb1HR7vu7XOZ2txtvVZW5fdgwPAWZ7rPFxZxw3HHdjpT21dRZjbkW9TXglWiUrcGgOU3Z6+2Ypjw4N5eJW7Ywftcu8pJJZkufVCGEEEKIAak3R1aPATZrrbcCKKWeAs4HJFkV/drssjJ+l07zflMTHwwdykrDIJ25rRr4eSzGvaEQp9hsnJefz1j6ri/qvpLGCRMmMGHChP2+/4FuP9xWNTbyQjDIGo+H1kz1YX8s1mWa8hifj0sqK5npcNA4aRK1RUVSNEmII9zwty0AbD8h/TH3PPyG3/IC2+86+Cpyw295AeCQ9pENB/oaD3/bckj/H/35//RgZfM5tf9etOvr348D0V9+p8XA0pvJahWwq9P1amBuLx5PiKzxeDyc5/FwHtAI/AtzTWRrpt0NWvOYUrxiGAw3DOYD8zHbyYjsqMOs5PvfUIh3IxGwWLpUH7bb7eholHE1NUyureULp59Oe1raX5JsIYQQQghx8HozWe1usEnvdSelrgCuABiaqV4qRH9SBlwKfB74bU0Nf08kCNjtHcWI6gyDJ4EngapQiPH19Zyan8+UsrI+jXug8Xq9rGhsZMfgwawpLGRbZrs/Uw25fQSVcJgzDINTDIPSwkLqwmEqJ02S5FQIIYQQ4gjTm8lqNTCk0/XBmEU7u9BaPwQ8BDB79uy9klkh+gsX8CWXi/znn6e6sJCNVVWEPJ6OMzCxWIx3fT7etdl4NBJhejjMCU4nM4EpgNF3ofdbIcy1wG+0tfFiSwuteXmwRy9Zu91OUGuGNDUxvr6eb8yZs/uNxeOhQpJUIYQQQogjUm8mq/8DxiilRgA1wAXAF3vxeEL0Oo/Hw3mLFnUUHSqy21kKLAZe3aOVzLZEgmbMKcQ5wCRgVGsrxTU1zCotpeooTLJqvF7ebW6mobKSrQUFbMScbuHXGr/D0aV9jtswmAmcYBgMczjwW61UzpkjI6hCCCGEEEeJXktWtdZJpdQ3gP9gtq55RGu9preOJ8Thsud6yHmZyxficf5v/Xq2lpZSU1yM3W7vuE8CeD8W47m2NnC7sYXDzA2FmOlyMRYYC3jou0JNvSGFuWh9c+byYSjE0nCYpNMJfj8eu73L6KlfKWypFCOamvhyXh5nAM72nXk85kUIIYQQQhw1erXPqtb6ReDF3jyGEP3FqPJybp0+ndraWkqdTnyGwQfAB5hJW7RT/9akxcLqZLJLBbKcSISy1lbGO51MKCigCrNKWRH9O4lNAU2AF1jb0sJHwSAtxcU0uFzEO93Pn0yStFi6jJ7aDYNRwHTDYKjLhWvnToYNHYqnuLgvnooQQgghhOhHejVZFeJo03nUdQgwHfgqZkXhV9Npnm5ooD4/n4DD0WXkNRaLsbOxkS1a814i0XXUEbPKcF4ggOHzMbKggOFFRRRCx8VJ9hNaDcSAtk6Xbc3NbPb7SZaUEM7Px5t5bunMc/AGAmbfU58Pj83W8Rxg9+hpfiTC0OZmLsjL4xQgr/0OJSXmRQghhBBCCCRZFeKwKAMuKCrilKFDqa2txVVUhN8w2ABsBN4Ph7usd41Gox2JXhRYF4vhbWkBpSAQwON0dkkEbUABkGpuJtLSQmlBAYNKS8mBLpdIWxutra24Cgtx5OeTAJKY05QTQGsoRFMoRDovj4TDQaLTc4jFYniDQbOFTGsrHsPoEkPnkeP251BlGIwG82IY5NnthHw+KkeOlNFTIYQQQgjRI0lWhTiM9lzvOifzb308zuPvvIPX7cbvclE5Zw4BzJLaIbpPBDsniklgRyCALxAAm42NoRAlhoE7r2Pc0kw2W1vNkc9uks1YLIbX5zNvj0Y7+pm26ymGYmCozUZjfT1FwSCeQIAvH388Y/Z8AcrLzYsQQgghhBAfQ5JVIfqBCo+HLy1Y0FFl2JNJMjUQAD5MJHh2zRpaHA6ihsGQkhJSgB9owRx9DYXDXfYZCoe7JKsfl/B2d3ueYZAP5ANWq5WdXi+uaJTCaJRzZs1iImZhqFwAlwvv8OHmc5g8GY8kpUIIIYQQ4hBIsipEP7HnqCuY61DzgRNLSxk7a9buZNbt7nK/GPA/v5/Xly8nabWSsliYMnMmg9k9xbchnebdjRvRWmPTmhOOOYZyzDeBHKAtmeSdDz7AlkjgSib51GmnMbSgYPdB3G68w4aZMYwbh6eb9aXdPQchhBBCCCEOhiSrQgwQPSWCBjBv7FhKUim2bt3KyJEjmTBiRNc7FRVx2tSpuxPeoqKut5eUMPWEE3bf3s2xJBkVQgghhBCHiySrQhxBJkyYwIQJE/Z5+8clm5KMCiGEEEKI/sLS1wEIIYQQ4vBRSp2llNqglNqslLqlr+MRQggh9kWSVSGEEOIooZSyAvcDZwMTgS8opSb2bVRCCCFE9yRZFUIIIY4exwCbtdZbtdZx4Cng/D6OSQghhOiWJKtCCCHE0aMK2NXpenVmmxBCCNHvKK11X8fQQSnVCOw4TIcrBZoO07GOVPIaHjp5DQ+dvIaH7kh9DYdprcv6Ooj+RCn1WeBMrfVlmetfBo7RWl+zx/2uAK7IXB0HbMhSCAP9d20gxz+QYweJvy8N5NhB4u9L3cV+QJ/N/aoa8OH8UqGUWqa1nn24jnckktfw0MlreOjkNTx08hoeVaqBIZ2uDwZq97yT1voh4KFsH3yg/64N5PgHcuwg8felgRw7SPx9KRuxyzRgIYQQ4ujxP2CMUmqEUioXuAB4ro9jEkIIIbrVr0ZWhRBCCNF7tNZJpdQ3gP8AVuARrfWaPg5LCCGE6NbRnKxmfXrTUUhew0Mnr+Ghk9fw0MlreBTRWr8IvNhHhx/ov2sDOf6BHDtI/H1pIMcOEn9fOuTY+1WBJSGEEEIIIYQQAmTNqhBCCCGEEEKIfuioTFaVUmcppTYopTYrpW7p63gGGqXUEKXU60qpdUqpNUqp6/o6poFKKWVVSq1QSj3f17EMREqpQqXU00qp9Znfx+P6OqaBRil1Q+bveLVS6kmllL2vYxJHnoH2ubuvzzmlVLFS6hWl1KbMv0V9Heu+7Pn5MsBi3+u9fYDFv9f7an+OXyn1iFKqQSm1utO2fcarlLo187e8QSl1Zt9Evds+4r878/vzkVLqH0qpwk639Zv4u4u90203KqW0Uqq007Z+E3smnm7jV0pdk4lxjVLqZ522H3D8R12yqpSyAvcDZwMTgS8opSb2bVQDThL4ltZ6AnAscLW8hgftOmBdXwcxgN0LvKS1Hg9MQ17LA6KUqgKuBWZrrSdjFty5oG+jEkeaAfq5u6/PuVuAV7XWY4BXM9f7qz0/XwZS7N29tw+I+Ht4X+3P8f8BOGuPbd3Gm/k7uACYlHnMbzJ/433pD+wd/yvAZK31VGAjcCv0y/j/wN6xo5QaApwO7Oy0rb/FDt3Er5Q6BTgfmKq1ngTck9l+UPEfdckqcAywWWu9VWsdB57CfEHFftJa12mtl2d+DmB+iFT1bVQDj1JqMLAQeLivYxmIlFL5wEnA7wG01nGtdWufBjUw2QCHUsoGOOmm56YQh2jAfe728Dl3PvDHzN3+CHyiTwL8GPv4fBkose/rvX1AxJ/R3ftqv41fa/0m0LzH5n3Fez7wlNY6prXeBmzG/BvvM93Fr7V+WWudzFx9D7OnNPSz+Pfx2gP8ErgZ6FxcqF/FDvuM/yrgLq11LHOfhsz2g4r/aExWq4Bdna5XI4nWQVNKDQdmAO/3cSgD0a8w34jSfRzHQDUSaAQezUx1e1gp5erroAYSrXUN5hnPnUAd4Ndav9y3UYkj0ID+3N3jc86jta4DM6EFyvswtJ78ir0/XwZK7Pt6bx8Q8ffwvjog4u9kX/EOxL/nS4F/Z37u9/Erpc4DarTWH+5xU7+PPWMscKJS6n2l1BtKqTmZ7QcV/9GYrKputklJ5IOglHIDzwDXa63b+jqegUQptQho0Fp/0NexDGA2YCbwgNZ6BhCif02r6vcya5DOB0YAlYBLKfWlvo1KHIEG7OfuQPycOwI+Xwb0e/tR8L46oP6elVLfxZzW/3j7pm7u1m/iV0o5ge8C3+/u5m629ZvYO7EBRZhLKG4C/qqUUhxk/EdjsloNDOl0fTAy7e2AKaVyMD/AH9da/72v4xmATgDOU0ptx5wSt0Ap9VjfhjTgVAPVWuv2Uf2nMb/giP13GrBNa92otU4AfweO7+OYxJFnQH7u7uNzzquUGpS5fRDQsK/H96F9fb4MhNhh3+/tAyX+fb2vDpT42+0r3gHz96yUuhhYBFyod/fq7O/xj8I80fFh5m94MLBcKVVB/4+9XTXwd21aijnDo5SDjP9oTFb/B4xRSo1QSuViLvR9ro9jGlAyZ0d+D6zTWv+ir+MZiLTWt2qtB2uth2P+Dr6mtT6Szrz2Oq11PbBLKTUus+lUYG0fhjQQ7QSOVUo5M3/XpyJFqkT2DbjP3R4+554DLs78fDHw7OGO7eP08PnS72OHHt/bB0T87Pt9daDE325f8T4HXKCUMpRSI4AxwNI+iK9HSqmzgG8D52mtw51u6tfxa61Xaa3LtdbDM3/D1cDMzN9Fv469k38CCwCUUmOBXKCJg4zf1ntx9k9a66RS6hvAfzArtD2itV7Tx2ENNCcAXwZWKaVWZrZ9R2v9Yt+FJI5S1wCPZ74AbwUu6eN4BhSt9ftKqaeB5ZjTpFYAD/VtVOJIM0A/d7v9nAPuwpzS9lXMpOSzfRPeQRlIsXf33m5hAMTfw/uqm34av1LqSWA+UKqUqgZuZx+/L1rrNUqpv2KeQEgCV2utU30SeMY+4r8VMIBXzHMGvKe1vrK/xd9d7Frr33d33/4WO+zztX8EeESZ7WziwMWZke2Dil/tHhUXQgghhBBCCCH6h6NxGrAQQgghhBBCiH5OklUhhBBCCCGEEP2OJKtCCCGEEEIIIfodSVaFEEIIIYQQQvQ7kqwKIYQQQgghhOh3JFkVQgghhBDiMFBK3amUOu1j7jNfKXX84YpJiP7sqOuzKoQQQgghRF/QWn9/P+42HwgC7/RuNEL0fzKyKoQQQgghjgpKqZuVUtdmfv6lUuq1zM+nKqUeU0o9oJRappRao5T6Qafb/tFpH6crpf6e+TmolPq5Umq5UupVpVRZZvt0pdR7SqmPlFL/UEoVZbb/QSn1mczP25VSP8g8dpVSarxSajhwJXCDUmqlUurEw/jyCNHvSLIqhBBCCCGOFm8C7QngbMCtlMoB5gFLgO9qrWcDU4GTlVJTgdeACe2JKHAJ8GjmZxewXGs9E3gDuD2z/U/At7XWU4FVnbbvqSnz2AeAG7XW24HfAr/UWk/XWi/JxpMWYqCSZFUIIYQQQhwtPgBmKaXygBjwLmbSeiJmsvo5pdRyYAUwCZiotdbAn4EvKaUKgeOAf2f2lwb+kvn5MWCeUqoAKNRav5HZ/kfgpH3E8/dOcQ3PxhMU4kgia1aFEEIIIcRRQWudUEptxxwdfQf4CDgFGAVEgBuBOVrrFqXUHwB75qGPAv8CosDftNbJfR3iAEOKZf5NId/LhdiLjKwKIYQQQoijyZuYSembmKOpVwIrgXwgBPiVUh7g7PYHaK1rgVrge8AfOu3LAnwm8/MXgbe01n6gpdN60y9jThHeXwEg74CekRBHKDmDI4QQQgghjiZLgO8C72qtQ0qpKLBEa/2hUmoFsAbYCry9x+MeB8q01ms7bQsBk5RSHwB+4POZ7RcDv1VKOTP7uuQA4vsX8LRS6nzgGlm3Ko5mypyGL4QQQgghhNgXpdSvgRVa69932hbUWrv7MCwhjmiSrAohhBBCCNGDzMhpCDhdax3rtF2SVSF6kSSrQgghhBBCCCH6HSmwJIQQQgghhBCi35FkVQghhDjCKKUeUUo1KKVWd9pWrJR6RSm1KfNvUV/GKIQQQnycXktWlVLjlFIrO13alFLX99bxhBBCCNHhD8BZe2y7BXhVaz0GeDVzXQghhOi3DsuaVaWUFagB5mqtd/T6AYUQQoijnFJqOPC81npy5voGYL7Wuk4pNQhYrLUe15cxCiGEED05XNOATwW2SKIqhBBC9BmP1roOIPNveR/HI4QQQvTIdpiOcwHw5MfdqbS0VA8fPrz3oxFCCHHE++CDD5q01mV9HcdApJS6ArgCwOVyzRo/fnx2dtzSAslkdvbV22w2KOpHy3oH0msnPt7h/P3qD787vf18+8NzPFj97b2mlx3oZ3OvJ6tKqVzgPODWfdze8YE4dOhQli1b1tshCSGEOAoopWQ2T1depdSgTtOAG/Z1R631Q8BDALNnz9ZZ+2x+4AEYPDg7++pt1dVw1VV9HcVuA+m1Ex/vcP5+9Yffnd5+vv3hOR6s/vZe08sO9LP5cEwDPhtYrrX2dnej1vohrfVsrfXssjI5AS6EEEL0kueAizM/Xww824exCCGEEB/rcCSrX2A/pgALIYQQIjuUUk8C7wLjlFLVSqmvAncBpyulNgGnZ64LIYQQ/VavTgNWSjkxPxC/1pvHEUIIIcRuWusv7OOmUw9rIEIIIcQh6NVkVWsdBkp68xhCCCGEEEKII1MikaC6uppoNLrvO82aBVbr4QsqmzweWLeur6PIOrvdzuDBg8nJyTmk/RyuasBCCNHn0sB2r5edXi8lgwZRUFZGHIgDdT4ftU1NFJeVUVhcTCpz/xTga2mh0eejrKSE4qIiFOYaCgW0NjfT3NTEoJISBpWUkAPkAjmAv7ERX10dIzwehns8qL552kIIIcSAVV1dTV5eHsOHD0epfXySNjRAbu7hDSxb4nEoP7I6iWmt8fl8VFdXM2LEiEPalySrQogBp9brZYPXi6uyktzSUtoAf6dLbSBAQyiENS8P5XIRBsKAPxbDG4tBQQFEInhiMQzDIBaL4Q2FwG6HYBCPy4VhGADmbYEA5ORAIIDH6ex6WzAIhgGhEB63u+ttkYh5rFgMTyxGoWHgAhyADoVItbVR5XZTlZdHIVAA5APJpibCdXWMLy9niMdzWF9bIYQQoj+JRqM9J6qi31FKUVJSQmNj4yHvS5JVIUS/kwTWNDay2ufD4vGQLCqiEbPPxs5IhHXRKOmCAgiHOxLOdrFYDG9LC2gN8Tgem63j9mg0ClqjAaU10WgUwzD2ub2nxxzMbRHDINIeo89nxtjSgic3t2uSGw5Dfj7EYoyNRBjicFAGHRdrczPU1TGttFSSWSGEEEc8SVQHnmz9n0myKoToM5saGljp85GsqCBSVEQNUAPsiEapjUTA4dhrNNMfj5OGbhNE6DmBtNvthNNpbMkkOek0I3JyKASSNhs7WlqwJpNYgInFxRRgTvUNWyysq6tDp9MopZhYXIwbc4qw32JhrddLGkhbrYzITANOAK05OWyNRIhbrSRsNux2+37FuOdt3nicqMPBpsxjO0Zz3W5UNMrESISxDgeDgcGAo6kJa00NYyoq8EgiK4QQQhyyH99zD0888wxWiwWLxcKDv/wld/3qV2zbsYNgKERjUxMjhg0D4Df33MPxc+cCsKu6mouuuor6hgYsFgtXXHwx1115ZZd93/Ob33DTD35AY2MjpaWlex37pZde4rrrriOVSnHZZZdxyy237HWfDRs28LWvfY3W1lZisRgnnngiDz30EIsXL+b8889n5MiRRKNRLrjgAm6//XYAfvKTn/D73/8eq9XKfffdx5lnnrnXfj/88EOuvPJKgsEgw4cP5/HHHyc/P7/j9p07dzJx4kTuuOMObrzxxoN/gXsgyaoQotft8npZ0dREvLISf1ER24H1kQgbo1FwOvdKSEOxWI8Jp18pnLEYzkSCqSUlDMKcPlsApNNpVq1aRW48jj2d5uyTT2Yo4AQchkGD00ltbS2VlZV4nE4zQJcL76BBu7fn5e0OPi8P74gR+75t2LDdt7ndu29zOvEWFXXcVmoYRDGnI++Ix/n3//5H1GolZhhMPP54ANqAGquV13/yEyxeL0mrlaTDQUunohGJeBxLPN5xfUtuLjsz63TSqRSRSASAnFSKCqeT4pwc8oHBQ4dy8513HtL/oxBCCNHXht/yQlb3t/2WE3q8/d2lS3n+5ZdZvngxhmHQ5PMRj8f5x2OPAbD4rbe45//+j+f/8pe9Hmuz2fj5j37EzGnTCAQCzDrlFE6fP5+J48cDZjL7yhtvMHTo0G6PnUqluPrqq3nllVcYPHgwc+bM4bzzzmPixIld7nfttddyww03cP755wOwatWqjttOPPFEnn/+eUKhENOnT2fRokU4HA6eeuop1qxZQ21tLaeddhobN27EukeRqssuu4x77rmHk08+mUceeYS7776bH/7whx2333DDDZx99tk9vn6HSpJVIURWJYHtwKbM5cNwmOXRKGm3u0tS6o/He0xIU7EY+eEwBdEoJxUWMobMNFjDIJ35sNgrQQQoKsI7Z87uBLKsrMvNHo+n2xHHfW3P5m2uzKWsrIwhJ564O8bCwt0Pcrv5dksL15eX487Lw+p2E8JMckNAcyxGtc9HJCeHWE4OLrcbq818K49Fo12qJdrtdozMiO5vtm9nVThMcUsLxzidzC8qohKk6JMQQgjRgzqvl9Li4o7vKKUl+9/oZFBFBYMqKgDIy8tjwtix1NTVdSSrN3z3u/zs+9/n/Esu6fbxS5cuZfTo0YwcORKACy64gGeffXavZLWuro7Bgwd3XJ8yZcpe+3K5XMyaNYstW7awZcsWLrjgAgzDYMSIEYwePZqlS5dy3HHHdXnMhg0bOOmkkwA4/fTTOfPMMzuS1X/+85+MHDkSl8u136/HwZBkVQhxSJqBNcC7bW18FI3SnJ+PtdOUV38i0e20XbvdTiidpjgYpDgcZkFBAROBKqDSMPAXFFAbClE5YgSegoKuB/V4elyr2VMC2V/0FKPD4WDQoEEd152dbzQMgvn5BAIBXA4H2mbrKDDVpBQ743EiOTmkLRZstt1v8elUio+amkBrFgcC/NHppMowmApMA6YCe08+EkIIIY5uZ5xyCnf+7GeMnT2b004+mc9/6lOcfELPo7Hd2b5zJys++oi5s2YB8NyLL1I1aBDTJk3a52NqamoYMmRIx/XBgwfz/vvv73W/G264gQULFnD88cdzxhlncMkll1DY+UQ44PP5eO+997jtttt48803OfbYY7vst6amZq/9Tp48meeee47zzz+fv/3tb+zatQuAUCjET3/6U1555RXuueeeA3odDpQkq0KIA9KAmZyuyvxbS2YdZWurWTAoGsXj8XQZJW0DCsJhyoJBTissZBow3DBQTif1ra1UDh/edXQRsA+AhLOvuN1u3J1GlAuAIWAmsk4n/kAACgqI2mz4ME8opFOpvUaymwyD14DXMvspDocZ3NTEmU4nJ5aWyqirEEKIo57b7eaDxYtZ8u67vL5kCZ+/9FLuuv12vvLFL+73PoLBIJ++6CJ+9ZOfkJ+fTzgc5se/+AUvP/NMj4/TWu+1rbvCRZdccglnnnkmL730Es8++ywPPvggH374IQBLlixhxowZWCwWbrnlFiZNmrTf+33kkUe49tprufPOOznvvPPIzSw7uv3227nhhhu6fBfpLZKsCiF6lMBMTJcCb0YiVMfj5vTSHooauQIBjjUMxgJjDAO33U5LczOVQ4d2HSX1eBgkCWlW7ZnIjsr8+2oqRdH771NbUEBNaSlpj4d0p8fFYjFWNjWxUmueD4eZEIlwhsPBicBoZLqwEEKIo5fVamX+vHnMnzePKRMn8scnn+w2Wd1VXc25X/gCAFdecglXXnopiUSCT198MRd+9rN86txzAdiybRvbduxg2oknAlBdW8vMmTNZunQpFZlpw2COeLaPZoLZc7aysrLbGCsrK7n00ku59NJLmTx5MqtXrwZ2r1ntbH/3O378eF5++WUANm7cyAsvmOuF33//fZ5++mluvvlmWltbsVgs2O12vvGNb3zMK3ngJFkVQuzFDyzDTFCXA1Eyo6eNjaA1fqU6Rk9zAOdPfoKxciWOWAxHIsHwqioiDgcfAh9mObbCoUO5/igsFHTve+/xu+XL0cDlM2dy/bHHcttrr/Hshg1YlKLc5eIPn/gElZ0LQHXicjj46skn7y74ZLezBTr+j96NRLqccKiNx/mHw8E/gEHAVL+fEbt2MbusTEa8hRBCHDU2bNqExWJhzCjz9O/KVasY1mlqbmdDBg9m5ZIlHde11nz1mmuYMHYs37z66o7tUyZNomFTps5/PM7wY45h2bJle1UDnjNnDps2bWLbtm1UVVXx1FNP8cQTT+x13JdeeolTTz2VnJwc6uvr8fl8VFVVsX79+m7jPO+88/jiF7/IN7/5TWpra9m0aRPHHHPMXvdraGigvLycdDrNj370I67MVDJe0uk53nHHHbjd7l5JVEGSVSFERgj4e0sL/43HqS8sJLfTyCnsHj21pVIMam1lXirFuSNGMAb4f/X13Dh5MoFAgLy8vF6dFnLH9u29tu/+anVDA79bvpyll19OrtXKWY89xsIxY7jphBP44YIFANz3/vvc+cYb/HbRon3uZ891smMzl88Cu2IxHl6+nE3l5WypqOjSamd7LMb7fj/k5THI6+UbOTmcU1yMpZeerxBCCNFfBEMhrrn5Zlrb2rBZrYweOZKHfvWr/Xrs2++9x5//8hemTJzI9Mwo6v+77TbOOeOMfT6mtraWyy67jBdffBGbzcavf/1rzjzzTFKpFJdeeimTulnj+vLLL3Pdddd1fHbffffdVFRU7DNZnTRpEp/73OeYOHEiNpuN+++/v6MS8GWXXcaVV17J7NmzefLJJ7n//vsB+NSnPsUl+ygE1ZskWRXiKKaBzcC/gZejUXYFAua6U6+3y7rTCmC+UgSWL6fC5yNHKRYtWkTn8bU9p5+K7FnX2MixgwfjzMkB4ORhw/jH+vXc3KnAQygeP6SpukM8Hr5+/PHU1tZS7nZTbxgsAd4F/J2medcVFPAzq5XngE8ApwJGD/sVQgghsmn7XQv33tjQAJn1lNk2a/p03slMhe1O+/Tg7sw77jh0S8vHHmN7pxPxlZWVvPjiix3XzznnHM4555weH/+LX/yCX/ziF3vHNn8+8+fP7/Yx3/3ud/nud7+71/aHH3644+frrruO6667rsdj33HHHT3efqgkWRXiKBQB3sBMUrdmtrXt0dt0UGsr53o8zAUGAyo/H28mmamsrJSpoIfR5PJyvvvaa/jCYRw5Oby4eTOzM9WCv/vqq/zpo48oMAxev/jiQzpO55HXKmAW8HXgv6kUjzQ0sKWsjHRmXUod8ADwGLAwcyk8pKMLIYQQQnQlyaoQR5FG4JG2Nv6bSqEy/U7b2e12coJBJu3axdiGBj575pnsmY4eSEuYS599luc3bqTc5WL1178OQHMkwueffprtra0MLyzkr5/5DEUOB49/9BF3v/NOx2M/8npZ/rWvMb1TkYEDoTET8s2NjWxrbCTf48FRUkIYs19pbWsr9X4/rqIi7Pn5xIE44AsGaQkGcbnd2N1u0kAKcwpQIBTC7XLhdrlQmAWHLEA4FCIWCFDkdlPsdpML5ADRtjaiLS0MKiigsrAQB2YLmojPR6i+ntFlZYwuL6e9/fa778LixdDdCdAJZWV8+4QTOP3Pf8adm8s0jwebxZyE++NTT+XHp57KT5Ys4ddLl/KDU045qNdsX3KBc4qLmZVIsM7rZfWwYbxtGAQztweAp4AnolFmNjRwqWEwQk5kCCGEECILJFkV4ijQDDwN/DMapaa9xUwggMfjIc8wOBE4yzAoLC2lLh6ncsaMQx45/cr06XzjmGO46B//6Nh211tvceqIEdwybx53vfUWd731Fj89/XQunDqVC6dOBWCV18v5Tz21z0Q1BVRjttBpzPy7NRCgOhRC5+eTcDppA0KxGN5IBFwuCIXwuN0YhmEWimprM3fW2orHMHZvb242X5t4HE9Ozu7tPt/utjw2W0eS3+W2PR/T2moeo60Nj8Oxe3soBG63ua9YjBLDIPIuvHCqJhUHWy6cNx+qh4ML0KEQsbY2Pj92LF+dOROA77z6KoPz87u8Ll+cMoWFTzyR9WS1XfuJivnAZcArwD8zr38sFsPb0EC11rzm9/M9m42zD6BpuhBCCCFEd3o1WVVKFQIPA5MxBzsu1Vq/25vHFELs5geeAV7AHDkMdprqWxwMck4iwWWjRtGx0tTjoSJLo2InDRvG9vaELePZDRtYnJmqevG0acz/4x/56emnd7nPk6tX86lx49jc0IB2u0lmks8A0JxI8HI8zvuxWNeEsaXFTBibmjrW2u7ZTicajWZ1O+zdsudg9hU0DNb/N0kyboWUIhHXbKhL8yaQSiYJJpNYDYNEUxOTc3JIRKP8dd06/vWFL/DW+vVMHzwYt9vNcxs2MH6PKoK9xQ6cC5yDuab1t34/3szzChoGP7HZ+Ai4HCg+LBEJIYQ4kmmtu+0DKvqv7nq5HozeHlm9F3hJa/0ZpVQu5iw4IUQviwCP+P38M53uMt3Xbrfj9Ps5ZtMmhra2cu6iRRzOkkjeYJBBmdYqg/LyaAgG2eb1ks7LI+Z00go8sno1VyxcyCu5uZBI4E4msdpsZuIWDhOPx/F2KgC1r8Qw3zBIx2IY8ThGKsWUkhI8QEIpNmzfTk4ySU46zfGzZ+MBgqkUSz/8EEsyiRWYf9JJeDAT5DeWLkWnUiiLhVMWLKAY8+xbYyLB6x98QFJrUjYbc088kTzAm07z9saNxC0WEjk5jC0qwgY0WK2sam0lkpNDNDcXR6Zqn+vYKCrHaT6HHE1OWQqAZDIJWpOyWPjlK68QjsXIsdn4wplnsthm43fLltHw8svYbTaGFRXx64ULzX0cpv9PKzAPGK01v1i9mjfHjiViGNjtdt4CVgCXAGccxpiEEEIcWex2Oz6fj5KSEklYBwitNT6fr0tngYPVa8mqUiofOAn4CoDWun1ZmBCil2jMka57IxHW+/1dpvtONAy+bBhUeTzUpVJ9ViSpBvAB9fE4ceAlw+hISrfV12Oz2RjUPkKoNclMstqeuCkgPxxmcEsLUyoqyAW2rFuHMxLBmUxy3sknMxrzw81bULC7IFR7peL8fLzjx+/eXlRkbi8u5ti5c3dvb4+htJTRJ52093ZgfGkpY084YfdtxZlxxKIiTpk6dff29im7bjfeigpze0kJZYZBANg8PcJvvr+Mjes9lMwOYXlXUwm0Wq00aE1KKb71uc/hdrmw2mzEolGi0SiXZ9rU2O12DLudFcCKZBJ3NMpgm41hdjvF9H6iWOHx8K3Zszmvvp7XKypYmjk5EgJ+DbwQCrFw2zamS49WIYQQB2jw4MFUV1fT2Ni47zsFAmC17vv2/iyVAp+vr6PIOrvdzuDBgw95P705sjoSc0nZo0qpacAHwHVa61DnOymlrgCuABg6dGgvhiPEka0B+C3wP8Afj3eMNpYEAlwYiXDRuHFm0pLFqb490UAb5hmqt4G6RAK7y8XfW1ooKSrC29aG2+HI3NlMSt9dvZrjJk8GpchNJHAkEgxzOCgFbOk0DTt3Mq6+ntPefnt365yCArwzZuxODMvLO2LYV0GobG3Pxr4KgFllZfy/SydknsMQHvggl/kAOTkEc3JoCoXQeXkkbTbagCaLhepUirjVCkphs5lv5alkkmAohF9ralIp1thsOGw2CuNx1ra1sb6hgfGdXp9san9e84CVwP1APeY07Td8Pt51OPjEkiVcduKJkrAKIYTYbzk5OYwYMaLnOz3wAGQhMeoT1dVw1VV9HUW/1ZvJqg2YCVyjtX5fKXUvcAtwW+c7aa0fAh4CmD17dnYmNwtxFKnxenkyFGJxZSUqM93CbrcTTyQ4Yf16Jni9nLVo0WGZhhkAtkYi1CSTBOx26jGnJG/NTOGdMnw4r37wAZ+eP593165l6qhRWNNpnIkEQ+12Vqxdy78uuYTRVivRcJi8vDzc7RWLnU48I0dSmkiYiWqnhOdAqhT3V/t6Dt32r83NJWgY+EIhEnl5RG02moHqzEkKoOMEQARojETYZLFwQSTC/GCQs9xuTgDyeum5TMccUX0KeDQSAa2J2Wz8feZMxjY389kB/n8lhBBCiMOjN5PVaqBaa/1+5vrTmMmqECJLVjY2cmNTE41uNzQ0dKzjPN8wODs/H39VFZVz5vRaIpcC1gGbgOeBlmSSYCZheuTpp9lUU0MwEuG6e+/lnLlzOWvWLB554QVuXbOGYUVFPHzOORTGYuTl5bGsvp7h+fnMaZ+Wu2eChpm4lZSUDPjENBu6S2KD6TSrd+7Eb7fT5nSCy0UwM30azNHu5akUW4B7o1GGtrTwidxcziopyfrJDAO4GBibTHJDIkEkJ4ekzcYfKysZDczI8vGEEEIIceTptWRVa12vlNqllBqntd4AnAqs7a3jCXG0WQLcabPR6HZ3FBcqbmvjjrIyxgOUl5uXXrAN+EtbG28kk6RcLsKYU36TnRKjS88+mzzDYJjDQX40StuWLTjq6zll1izGjh27V6I13+3mvcsu65V4jxZut5vJI0cSCATIy8vDlZODNx5nhc+HMxYjhDnq3t5qplZr3kskeMrh4AtOJwsw+6pm03GlpfxGa263WIi53SjD4E7MM5dzs3wsIYQQQhxZersa8DXA45lKwFsxC0MKIQ5BHLMf1L8B5XRCIIAtleLYLVv47pQpVPXicZdkjvtRex9RrSEYxJUyq9caNhuOcJiCcJj8aJRpw4eb1YbtdoLDhnUkUXtNaxVdFA4dyh3btx/aTmIxaGoCIBKPc+KgQXzF4WCTYfA3r7ej1YzSmm2JBPcDD0cizPJ6+YLDwfAsjl7PLCvjIeC7mIUMksAd0Sif3bmThQUFMlIuhBBCiG71arKqtV4JzO7NYwhxNPmosZG7tKapoADDMDAMg6mlpXxu2zaOmTKlV770B4A/+P28kE6TzrTB6dwuxh2NUhKNcjLgsdmI5ucTUIq8ioouSWm3ay9Ft66/885e2/d44Bjgibfe4qOqKlYPHdox2rqzsZFNSvG838/3bDbOLinJ2nEHAXcB3wO2Z0Z27zUMdr7zDlcdf7wkrEIIIYTYS2+PrAohsuSNpiZuCgSIWa0QjeLxeDjVMLjG6cQ5aVLWjxcGngWeikbZvkcbHLdh4PF6mbRzJ4P9fjZZLB0jupKU9n8ej4cvnnYa82trKXS5+MgweMTn6zgBETQMfmKz8RFwOVCcpeOWYyasX2tr6xjZ/e/EiZxVVyfJqhBCCCH2IsmqEAPA/zDXp8asVjRgTac5t7qab4walfXCOHHgT62tPJNOk3K5iMZiHUlMQTjMGTU1XD5yJNFhw6jNyaGyspIHlizJchSHlwYSmNNTaxoaqK6vp2zQIIrKykhkbqtvaqKxoYGK8nLKSkuxAL7GRnxeL0M8HirLysgFWrxeGmtrqeqjPrb7q3P14RHA7GSSX65Zw1tjxhAxDOx2O6/GYrwWDnOt1iwszk7KWgz8UGsuTiaJ2mwEHA7eGTSIY7OydyGEEEIcSSRZFaKfex34FWB1OKCtDVcsxrkrV/K5k0466ET13Xdh8WKYPx+OO2739pXAz8NhPmpr61iPWlxURFE4zDGbNjG2sZFzFy2iACjoh+1i4phrItf7fGxtbsYoK0MVFtIG1AYCNIRC2PLyIFMUqjkaJRCNkutwYBiGWXgoGoWCAohE8MRiu7eHw+ByQTiMJxYDwBuJQF5ex30BvLEYFBeTGwoxKhKh2OFAh0Kk2tqodLsZnJdHAaBbWog3NDC2uJiJZWW44LC0F9qXKo+Hm2bN4hP19bxeUcESwOv1gtZ8F4gCn85Swjq+vJybcnK4z2LBbrez2DBYBIzNyt6FEEIIcaSQZFWIfuzPLS38LvOF3jAMppSWctGWLUw76aSDThTffRdOPRXiccjNhVdfhQnHwe+BxYA/kegykvqFWIxzi4upHzKEyrlzuz1uVgoC7Sfn0KFsAGqBGmB9IMD2SIRoXh4xh8NMLEMh88m1teFxOADwtrSYCXg8jsdmvvV5GxrMbW1teDyeLmtxldZEo9G91ui2bwd63Ba3WqmNx2m2WPBmptjS0oIn16y36w0EwG7vSHQLDANXOIzD72es08nkggLsTU2omhrGVFQclhMD7aOt84C/rF/PrwF/5vX70Qe5PL8Mrpjf9QTHwfp0UREfASswR7bvwzwpIx9KvU8pdQNwGeZLvwq4RGsd7duohBBCiL3J9wIh+qk/trbyi0AAtMavFLNKS/n/7J13fJXl3f/f1xk5Ozs5IWFPAUG2IMpUEEGsLY4WH6s+ddTW0T526K/Oam2rtY46aoe2VWsdtW6LC3HgQEE2BEIIJORknL3X9fvjnBwCQkByhxC43q/XeSXnHtf1PSd3zrk+93fdbbVSPGpUp8ZdujQjVFOpzM+/LoXmsVHcsRhmsxmz2Uw0leLEzZsZ1dDAWfPn43Q66dWBWOqKgkA7XC6+aGkhXlmJr6iI7cDGSARXPM5b7T2ebSI0m8d7KMJSSEkyEqHQbCaWTKJPpdBLyQCjEQcQNxjY7vcjpQSdjgGlpaSFoCYYJCUEKb0eZ14eCSEIpdMkdToQIvNefg17Nre0gJR8lEhQrNPhDoehsBCHz8d0q5UxDgdFra1Yd+5kUBcL2BlFRTQtWcIL48ZRt7mEbYttrIpLnsqDpW+LTgtWAfwQuBLwx2Ksjkb5i5RcXljYeeMV+0UIUQVcDYyQUkaEEM8A5wOPd6thCoVCoVDsAyVWFYojkPeBvwiREzS9PB7+1+Oh+IQTOj32jBkZp2M8Dro8+PKkOLGsh9EnBGcVFbHYbifsdFI5duxh8ejVZ4VpsLKSlqIivgyH+TwaJW23Z4o6Wa0AuJqbc3buS5gmIhF6m0zYvV4s0Si2RIKTCguxp9OsWbMGYzyOOZ3mjOnTMUvJ0qVL0ScS6IXgzAULcBYW4rLbaWhooLKyMjcvNhuu8vLMdqcTp82Wsae0dPexbR5cq5UdDQ0UV1biMJnY7vfz+mefEdXriZlMjDjpJHxC8MmuXQTz8ghaLNidTvx7vZZQOJx7HjCZeD+d5rM2r3FhIc6mJmalUgzw+zm5qIgqjf9OTqeTc+fMYWxjI1d/4SAdB1KCeFzyxKtBpkzpfBGtcuBMr5d7smHnf06lOCMWo88RFl5+FGIALEKIBGAlE6igUCgUCsURhxKrCsURxlrgHsBsNuMTgl4eD2evXMngefM0GX/KFHj4OQ+/+8iI+bQ8zGMixLyS/HCYGRs2cPaAAQwbOxbKyzWZb1/scLn42O3G3asXmwwGloXDJNoJ02giQRr26Y3Up9MUhsMMMxgYZrNRu24djlCIgliM8047jV6FhbgqKjIisn9/nAUFALgmTtwtLMvKACg5/fTd27ICybmfXNx9bT+YbWVlZfQ55ZTd82Q9h64BAzLbiospN5up8ft59pNPcJvN+BwOHCNGsCoYxG21ktLrv+KlbczP55+JBFgsmINB5kjJ8R4P04uLqdBI7LW9liu+rOb7xkGkAWGUbJ0SJw3oNJjj+G3bKDCb8VqtxPV63vb5uEiJ1S5DSlkvhLgbqAMiwBIp5ZK9jxNCXAZcBtC3b9/Da6RCoVAoFFmUWFUojiA+b27mBoMBme1nOqa0lEs9HobMm6eZh3NJaysPDPcjRuqICYFNV8RQl4sZa9dilpLKqVM1mac9LpeLdS4XjX36sMpo5O1wmKTVCn4/dpuNhE63hzBtE+qFoRBlwSCnFRbSO5Vi04cfYg+FMOh0LFiwAGdBAa7x4w9KcB7stq7gYOYeVF7OxdOn7/FaXMCOhgZk7954TSa+iMV4MxikOdsaSGbPjRgMvBSL8ZLVyiNuN4tjMUa73fTr1UuT13fW3HxWX/82/w5OwDolRmyajftqaviOzdbp8XtXVjJswwY+HTAAhKC6V69O26vYP0KIIuAsMkWgvcCzQogLpJRPtD9OSvko8CjAhAkT5N7jKBQKhUJxOFBiVaE4QtjS1MTVXi9BkwkCAYaWlXGX1Uq5BqG/bbwH3KnX58ShIZXiWy4Xi/r1Y1e2DY2W4i0BvOJ282hjIw2FhRAIYLfZSLYTpwAIgSMSocLvZ15BAZNMJuwmE77WVir79s15RyfOnn3QntCeyN6vZe/np+Xnc1FpKVsaG6krKOC1+npqSksJms054dpqtfKAlNgsFmYsX87/DBvG8OHDO23XjZePxnX7Tex4zo33yRhPSMnHLhf9q6qwZEOgD4XCvn258qqr2JSXh9lsZoPJRAiwdcpiRQecCmyTUjYDCCH+DZwEPNHhWQqFQqFQdANKrCoURwAS+F0qRdBkQgLGZJILa2ooHzlSszmeyFYW1un1IAT5kQgLvvySc6ZPx+l0ahY6CpkWMq8CT0Yi1CUSRLOhr+3FaWEoRG+vl28NG8Yws5lEmzBtK7DjdGYe7TiahOmh0vYeTAVmWSzUNzRQbzDwr8ZGNvbqRSLbizdoNvPK2LE0b9nCj4ARGgjW4YEA51RW0ppIADDAbOYEu51enfCG3lJby9iyMsYCG2IxWnw+Xk+nWVRU1Cl7FfulDpgshLCSCQOeDazoXpMUCoVCodg3SqwqFEcA/wG2FheDy4WQktPXrGHS5Mmajf9Xr5f7spWFEYKRdjuXer2MyApVrUgBT3s8PJ1OE8zLw+3xZCroAjop6ePxcG5+PidYLKRaW6kcOBBnW+/OLsyRPVppE67jgEl2O1sbG/m8pIQnIxHC2RY5nwwezKNr13I5dNrDqgOG6vUsTyZBSlodDhz2zhdaAhjj9bI0W2jpiZYWTund+5i/MdEVSCk/EUI8B3wBJMl0D3q0e61SKBQKhWLfKLGqUHQzH7W0cL/BgNFiwel0MqWxkSsnT9Zsof4O8Hi7ysIVXi9XejycrGF4McAm4K5wmM/aRDEZj7E9GmXkzp3MTqWYecIJONs8ZtkiRwptaBOuJwFTNm3ilpYW6kpLAfjwuOMY8P77FBcXd/q6GmY2s8ZgIB6PE83LIyolWsjV8p07weFAAq02Gw0NDUqsdhFSypuBm7vbDoVCoVAoDoQSqwpFN7Ld5eJnXi9+sxn8fqaUlHBjv36a/WOuAu5nd2Xh3q2tLPzyS4ZoVFkYIArc5/fzmpQksx43CdhiMSbW1DBi506MQjBzwQIlPg4TE4YN444NG/hhOIzPaiVmMLCxslITAWgBStNpahMJkJIvmpv5oqGBf6xbhwBGOZ08dtZZ3PjOO7y8eTN5ej2Diot57KyzKDSb9zvu6LIyRLbqc8BioVyFASsUCoVCccyjxKpC0Y38KRbDny2OY0okWFRTg2HUqAOed+9NN+Gtq+vwmCDwSSpFPJVCr9dTLiX9/X62WSw8vHTpQdtY2Lcv19522z737QBuDIdZ6fXmQowN6TQTtm5l3I4dTJs8majTqXnhJsWBOWH4cM7ZsIE/Z59XV1RgNho1GdsaDud+r4/Heejzz9l01VVYjEbOffZZnl67ltMGDeLOU0/FoNPxszff5M733+c3p5223zH7OJ0Mj0Soj8cxm81Ik0kTWxUKhUKhUPRculSsCiFqgQCZVLaklHJCV86nUPQkNgKfOZ25PNUZmzYxavz4gzrXW1fHLf3773d/Ang5kWBQOAxSkpdKsdBspmzw4K9t5y21tfvc/gHw62iUpkAgl5fav7mZ/00k6FtSQuWoUUqgdjMT4nH+YrUigeaCAoJutybjlppMEI+DlMQMBtJSEkkmMer1hBMJKh0O5gwalDt+cu/ePLdhwwHHHWSx0KrTEY1GWRMM0rukRBN7FQqFQqFQ9EwOh2d1ppSy5TDMo1D0GBLAr8NhIokExUVFDA0G+b/x4zURdxL4DPClUiAlOikZ2tBAsrQUbNo0BHkduDcWo7GpCSklhnSaaevXc3xjI5NVuO8Rw6CKChw+H/6slzKkUTEku9zddtNaWMjVEyfS9/e/x2I0MmfQoD2EKsBfV63ivIOobG3z+3FlvfSvbdrEuBNOUNeSQqFQKBTHMLruNkChOBb5q9fLypYWfF4vgZYWrtLrNWsdsz4SYVM0ihAChGBAczO2RAKHw6HJ+H/2ernT5yMYDIKUFIbDLFq+nNOAM5VQPaJwOp0MLy5GkLmJ8e7atbhcrk6Pm2xXRMsfj/PSpk1su+YaGn78Y0LxOE+sXp079o5lyzDodCw+iPD2UFaoSiANNDQ0dNpWhUKhUCgUPZeu9qxKYIkQQgJ/lFKq8viKY55dwL8gtyifvHkzifLyTrduueTFF3lp0yZMFgu/+J//ASHYtWUL9374IdUeD59eeikTsp61J1ev5q6PPsqdu9rl4ovLL2dMRUWHczzt8fBAuxY45X4/Z37+ObZUigmzZyuhegQik0na/KDpdFqTIks2ux2yxbQ27NzJwOJiyrJe+28OH85HO3ZwwejR/G3VKl6prubtCy/M3Dw5AAWFheD1IqREB1RWVnbKToVCoVAoFD2brharU6WUDUKIcuBNIcRGKeWy9gcIIS4DLgPo27dvF5ujUHQvEvhdMEgslcqIPZ+PE3bupHLMmE6P/d0xYxg9ciS/feMNACzxODOtVhZ/5ztc/sorexy7ePRoFo8eDcAal4uznn76gEL1jdZW7k0kcvmpvVtb+XE4TMkJJ6gCSkcwOoMBYjEAhJSYO6jIe7BYbDYssRiJRILe5eU8sXIl4UQCi8HA29u2MaFXL97YsoXffPgh7110EdaDLOxkz8+nWAhC4TAjhw9X15RCoVAoFMc4XSpWpZQN2Z9NQogXgEnAsr2OeZRsQ/IJEybIrwyiUBxFvOp282Y2fFYAl0SjzNYodLasvJyY15t7PrC5mXF9+2I/QJ7iP9eu5dvHH9/hMV82N/OLYJC4LpM5UOb3s/DLLxk1b54SFEc43nb5pcZkkmi2PUxnCGbzrZGSyvx8Fg4axLg//hGDTsfYXr24bPx4Rj70ELFUitP+8Q8gU2TpkQULOrbV78edDQXeuHEjrrw8dX0pFAqFQnEM02ViVQhhA3RSykD29znAvvtfKDpNGoiQ6XkZyT7qW1upb26mrKyMkn1U1WxtbcXd3Eyf0lL6lpZiJdND0QIcOGBP8XWJAo9KmQv/PX7HDobbbJosxltDIT7MeroABqdSByVUAf61bh0vnn/+fvengN9ISSIrVPMjES5raGCGEqpHPBLwmkyIcBgJFMdimoTWNofDYMh8fRgTCa4ePZo7587d45gtV1/9tcdtzIaYS0CXTGoSsqxQKBQKhaLn0pWeVSfwQjZPyQA8JaV8owvnO+qod7lY19SEuVcvdKWluAEP0Jr9uTMcxhWNorNaEXuF9sViMVyhEFgsEArhtNsxtetbuMf+cBhnLLbHfgtAJALBIL0tFgbY7ZTBHo9SQJuujccGD/t8tAIIgTUW46StW6k8/XRNxv48lSKZFZNCSoYnEtgPou3HJzt3YjUaOb6DfNktQKPFApEI+nSaBatXM2P6dCUiegDrmppwRaNIwJJIMGvSJG0qTtvtmdBiKTEnkziKiztvLBAtLITWVoSUFEWjKmdVoVAoFIpjnC4Tq1LKGuCErhr/aCJNpuhOHbA9+3NjOMyqSIRUfv4+xWQsFsPV0pIpdBMM4nQ699gfjUZzHgohJdFo9Gvt98ZiuJqbQUo2RSI4jcY99rdhjkRw+HyMsFoZk5/PQKAPSsTuzafNzfw9HCYNIATfjkRYdPrpmgiHJsBltUIoBEBeMknhQbYoefoAIcBNwPZUipDHgwRO3ryZs1T/1B7Dcp8P8vIAKAkE6HwAcIZQu2JJ5qw3v7NIwGez4TQYiEajnHvKKTg7WXRMoVAoFApFz+Zw9FlV7IULWA18FAiwKRLBl5+Pbi/PqC+RICXE1xKbBSYTVsAMVBiN1Hu96FIpdMCQkhLay5egXk91aytJIUgajfQqKwMgTCZc9UBiFjKCuS4raD+Px1liMmEymdCTEawDgGKvF/uuXUwuLqb3MSpwYsDdZG5KSKDK7eYUKTURfGngo0SCZCqFxWymKhDAYjQeVPhvWkqeXb+eZRdfvM/9KeDDRIJ4PI6Ukv7NzYyqqyOqBESPocXphGwOaG+Ph8qD6HV6MDRlKwEDmOJxAoHAQV1zHREE3LFY7rNsaEGBBpYqFAqFQqHoySixehhoJSNO2x5NZD2jHk9mwReNfsUzajab8QmBPRrFHosxvqSEvkARUEymHcXKTz7BHI1iTqf5xrx5VLRf3FmtuCoqaGhoyFRq3XshabfjqqrK7C8rw2m15nalgdpolP93zTXEPB6Sej0FTifSZMoI2ewjEI+ji8dz5/ny8jBmvTgtZEJTI5EIADopcZrNlBmNFAH57Nnkt7BvX6697ehMab7H76depwMhMKRSzNqwgapZszQZ+8tolF3ZcMzHXn+d7fX1uCMRet9zD7fOmEGxxcJVr79OczjM/KeeYkxFBf+94AIAlm3fTu/8fAYWFe1z7M+jURpjMVKpFHnJJDPWrUOv06nQzB6CBNYbdn/EV3k8moybAEImU651jSMW06SH7xctLbjCYZASYzBIU2mp8uAfpdjPPZfgM890eMz9L7/Mw6+/zrhBgzhn6lSGVlYyQnUMUBxl2O32TM/yDrj//vt5+OGHGTduHOeccw5Dhw5lxIgRh8nCns0Zt97KU//3fx1Gm8244QbuvvhiJgwZssf2VTU1NLjdnDFhQlebqTgAX0usCiGulFI+1FXGHC2kgLdbW1kaDlNfUoK7nRBsY2/PpSkYZIzJRD+gL9DPZCLPZMLb2rpvsVlSwpjp03eL0X0s6pxOZ4eLvf3t1wEDnU76mkxce9xxOByOfXpNAsEga2tqCBuNhM1mrJWVhE0mAtn9sWh0j8qjZrMZU9aDbAAK4nHsoRD98/J4tK5uv3b2ZO7fuZOnU6nM31kIFgeDXDBrliaL8BCwJluwKb5Lz2XWOUw4VTJmTOkex509fPg+z5/Rvz8ff+97+9znA9ZDznt20ubNDCstZcKECUpA9BC2A9uzFXvzkknKPR5NCha1ZH/mGY04kklGDB7caa8qwCeBAOh0SKDM56MhHlfX2jHMQ6+9xus338yAigouuvdeFkycqMSq4pjkoYce4vXXX2fAgAFcdNFFLFiwQInVg0BKySs33ohOpzvwwftg1bZtrKiuVmL1CGC/YlUI8eO9NwHXCyHMAFLKe7rSsJ5ILfAO8HokwuZQKLPQb2n5qtcUGKbXE6muptzrpTQUyuQv7j2g05l57IcDidHOYrFY6NWr1373O+x2Rg0cSCAQyAja7GtMAF5gl5RsDgQImM1E8/IwtPPyxJJJaiIREILVySTLkkkeIdPbaBQ9P+e10eXij243z7e7UTFo1y5matiKY3k8TkJKErsMeJ+34U1B4xooKYE+fQ59XAl8BugNBhACSzzO6IYGJmjUYkdxeFgO6LNf0v1aWsgTotNe8cK+fblm82aqsxEVxaEQn+fnY7FYOjUmQFNZGbjdCCnp7fVSOWhQp2xV9Azu+ve/eeaDD4glEpw9ZQq3fuc7XPHQQ9S4XCy84w7OP+UUXvr0U95bu5bbn3mG53/+cwZ18L2kUPRU7rrrLp555hlisRhnn302t956K1dccQU1NTUsXLiQ888/n5deeon33nuP22+/neeff55B6nNyD2pdLubdeiszR41i+caNrNq2jeYnnqA0P59fPv00T773Hn1KSynNz2f84MFcd/bZADz74Ydc+cgjeEMh/nLVVZw4dCg3PfkkkXicDzZs4PpFizjvlFO6+dUdu3TkWb0VeA1Yx+5OJnqg8/FeRxE+4D3gbaCmbVs8vofXNBmJMNFk4gQyQmwIYLDbcY0a1aFntCdgt9u/4lUxkq0YbLEwsKiIQCCAwWolaDBkigEBre1y3pCScDrNq8CrANEo/d1uplssnFZURE/KXEsC/962jb/4/ewqLMxtr3K7OW3tWqoO0GfyYKmLxaiORDJe1Z1mSIFEkE5DbW3nxGotsCuZJJlMYjWbGS4EZyqh2qOQwBvhMO5sYaxBLhcnnXRSp/+G19x2G8taWkiHQgQ/z6PgBTfDZxu46KJhnRo3BWw2GLDbbABcNHEizmweveLoZcnKlVQ3NPDp736HlJKFt9/OsrVreeTKK3njiy949447KM3Pp7qhgQUTJ7Jo6tTuNlmh6BKWLFlCdXU1n376aeZ/YeFCli1bxiOPPMIbb7zBu+++S2lpKdXV1SxYsIBFixZ1t8lHLJvq63ns6qt56Pvfp382emxFdTXPL1/OynvvJZlKMe5HP2L84MG5c5KpFJ/+7ne8tmIFtz79NG/98pfctngxK6qr+cMVV3TXS1Fk6UisjgTuAWzArVLKsBDiu1LKWw+PaUcuEnirtZX/xGLUFBdj2Ks4ktlsJhmPM2TXLga0tPC/U6eyL+3Q1Z7RruCSF1/klc2bKbfZWHvllQDc+M47vLhpEzohKLfZePwb36DS4eDJ1au566OPcueudrn44vLLWVhRQVMqxarmZjxWKz6rFb1eD2RzeZuaqJOSZckkf7JaGW0yMdTrpbK+nvGlpVQcQe/ZpqYmPvF48FdU4Coo4DO/nwadDtoJ1V4eD/NXrmSGBmIBMmJ/IzAxK/bLi33U6ctJp0Gvh/79D33sGPBZIkEwmzvYy+ej1Gzucdfpsc5GYFs2BNiYStG/pYVoZ+5gZKkDPCYToWUJti12si3m5JPnBMOGwZQphz7uxy0tbM9ec/ZYjFJVXOmYYMnKlSxZtYqx114LQDASobqhgWkdVChXKI5GlixZwpIlSxg7diwAwWCQ6upqpk2b1s2W9Tz6lZUx+bjj9tj2wfr1nHXiiViyEYBnTpq0x/5vZr/Axg8aRK3LdXgMVRw0+xWrUso6YJEQ4izgTSHE7w+fWUcua4BHQiE+aAvzbWrKhfkagcnAbJOJXvn5uIJBKocNO6oW+heNGcMPJ03iwhdeyG37ydSp/DJbMOj+Tz7htvfe45EFC1g8ejSLR48GYI3LxVlPP82YigoAym02TurVi0AggM1oZK1ezyjg9UAAVzuvdCQa5Utgid8Pdjs2v5+5VivHJxKU7NzJ8MMg+BNkimKtb21lnddLtKwMX34+myMRtkSjYDaDz0exToe7XREbnZSMra3lQr2eEfPna2JnErglFCIpJQiBKZFguH4Xk8/Nx+Wy0L9/57yqXwKhVCqX51jldhNOpzttt+LwsoTdIcBDd+3CJKUmhbHe8Hpx+/0EP3Yg4wKkIJGApUs7J1bfzrZdkkDv1lZ2hUJH1E0pRdcgpeT6RYu4XKN+0wpFT0VKyfXXX8/ll1/e3ab0eGx7OZAg893SESZjJvlMr9eTVGueI44DFliSUr4ohHgLuAXY2eUWHaFsAp4AVgG+bAhrm6Dq5fXybaeTU8i4oQFwOqk8Chdb0/r1o9br3WNbfrt83FA8juCr/HMf/TzbhxAXt7RwKXBmKsU/li9na0kJ251O0hUVRNoVowrl5bEkHuffoRAUFGD3+TjFZmNAMomxqYlhxcWUptOE6uupOkB4dYpMq55tzc1saW7GWFEBxcW0AtsDAWrDYSL5+YQtFqKxGK5QCAwG8HpxmkxE9wr3DoXDSCA/EmGQy8Wo7duZP3Eiw/dT4OjrIoHf+f185PWiSyYRUjIxHmfA4MHY7RaGDu3c+C3AVsjkFgtBv5YW9FJi3UeBMMWRix94MxrNhQCPrK/XJARYAv/NfvbZJkcxGNLIlI68PMGMGZ0bd0tZGbS0IKRkcFMTlZMnd8pWRc9g7rhx3PjkkyyePh27xUJ9aytGvZ7ydpEpAA6LhUC2srxCcTQyd+5cbrzxRhYvXozdbqe+vh6j0Uj5Xq3iHA4HgUBgP6Mo9sfJI0Zw+YMPcv2iRSRTKV5dsYJL58zp8Bz1uXPkcFDVgKWUIeAnXWzLEUkNGZH6WbttZrOZoJQM37mTsTt28D+zZn21ONIxxv97+23+vno1BSYT7373u1/Z/69163jx/PMPOE6F08mFM2dmcnmdTiwmE2+GQvyzqYntxcXEs3e/2kRi0GTi/ViM10MhMJkgHM7sLy7GGA4zIBLBnBWSFpuNPIuFUCSCJxpFZEWYKxIBmw2CQZzZnLlcW6FYDKfTuc++s2azmXA6TanfT4Xfz+w+fWj+8ENsoRA6ITj55JM1E6oA/wBezVb/jVRW8sL69awzmSiJx6Gl5YDnd0QaWJ5M4k+n0ev1FKfTDAiFsFqt9BrWuXxExeHlNcCfbWdU5vdT7vPtUZX7UFkDBB0OCIcpPiHMoutex8B0FixwdMqrugNo1Oux22zkpdNcMXnyURWNotg/c8aOZcOOHUz56U8BsJvNPPHjH39FrJ5/yilc+uCD3P/yyzynCiwpjkLmzJnDhg0bmJL9MLXb7TzxxBNfEavnn38+l156Kffffz/PPfecKrB0kEwcMoSFkyZxwjXX0K+sjAmDB1NwgBvxM0eN4tfPPceYa65RBZa6mY6qAduBnwLfAnoDcTKOl0eklI8fFuu6ER/wu0CApel0puVK1nuoAxaYTMyyWknYbFRq1Iakp3PH7NncMXs2d77/Pn/49FNunTkzt++TnTuxGo0cv9eH7v7YO5f3W8XFnJxIsLOhgVifPqzV63nR42FXQQGpbK5rm5DMFW0CEjodDeEwwbaQ7XCY4qKiTKiulBAIZAq67CVC248npCQWjVKZl4fd6yU/FKIkHOassWMZYzKRtlrZ5fVSOXQoTqcTl8XSJUWzHvV6eUKITGinEIy84ALmrVmjWeGj+30+mnw+kBJDOs2vbbaD/nspjhziwHORCKlkEoRgbG2tZr1xl2R/2m02prjd/PjqiTidna+394rPhyt77Q1paiJPtSfZAyHEOcAbUsqAEOIXwDjgdinlF91s2iHTvsfqNQsXcs3ChV85pvbPf879PnXECNY/+OBhsU2hOJy077F6zTXXcM0113zlmNra2tzvU6dOZf369YfDtB5Jf6eTtX/4Q+55+8+R684+m1u+8x3CsRjTrr+e//vGNwBY+qtf5Y4pzc/PnVPscPDZParxyZFAR57VJ4EXgLnAuWQiXJ8GfiGEGCqlvOEw2NctrAR+FYmwOStqfEJQ4XRymsnEt4EqgPLyzKObkEAAcGcfNR4POzwerMXF5BUWEgUiwKq3w2x8O0lhrzxSQTP9Z0DfKZkPyLDfT6nDgdPhwAJYgZjXS7i5maHFxYTJhMrqv4Zd3xk1ivlPPbWHWH16HyHAX5f2AvYk4KxevdjR0AC9e1Or0/Hyjh34zGYCFgsBs5lYNpQ182btGarb/rkllUIXjWKOx7HH40wuKqIwnWbz+vVYIxEKo1HOnz2bqoICXBUVGSE6aBDOkpI2w/bIrdO6aFYSeMjn4y9+f0ZgC8F0i4X/MRrpq5FQXQk8B7n35cQtW0iUlnbr9a04NJ72eqnOXiuOaJT5hYWMmDSp09eJB3gnGsXV1ARSUrpyJUyf3ml708Ab7dIqBu3aRYPBoG4A7smNUspnhRAnk/k+vht4GDixe81SKBSKnsNlDz7I+h07iMbjfHfWLMYpr3SPoSOx2r+dB/UeIcRnUspfCiEuBtYDR51YjQN/B15kz/Yzg1wuvuf3M78bKhT6gO3ZRx2wIRSiLholabOhzyaRx2IxXIFAphSs34/TYsFkMuF6L86KBeZMIZQ0oJPoTILxr8eJDXBnxI/HgzMvD5PJlBnH74e8PAiFsKVS/ItMX9i8eBx9LEaZ0UiCzHCSTE+j6tZWhmTF20ubNnFcaWnO/rSUPLt+PcsuvljT96W9KJwAnDJkSEZIZufe2dBAUWUlsVSKVz/6iHQ6jV4ITpwwgRWffoohkcCcTnPmggVQWJg5t3dvnPn5ALjGjfuKh/RwV29uIrMq/Rhy12Kf1lYuEIKJ2YqBncVLpuS32WzGJwT9mpsZV1dHZbYwlqLnEAWeTqdz18qY2loKy8s1uWZfAYLZ0OJyn48Sn4+GhoZOj70SiNrtEAphiccZ1NJC5YlKg+1FKvtzPvBwto7ELd1oj0KhUPQ4nrruuu42QXGIdCRWQ0KIk6WUHwghziTjwENKmRZC7KuGTo+mDriLTI9JyCzeE4kEs9esYYDbzQSN+mN2RIpMjuyXwPJgkI8+TNPyqRXnqQaKpmRFaWtrRmSGQrkqxPvKpzSZTDS/k84KVQFISAvScWh+J03+JV89fu9xUqnMGimUTGbyOqXkpldeobq+nmAkQuk99/A/p5zCF5s20ejzYdLp6F9YyCPz5+de07Lt2+mdn8/AoqIufe/2FpLtfy+eNWsP4TmkoGCfQrSj8Q43r7rd3C8E0mrdQ0jOX7OGfvPmaTJHCrgtGGR7KoXZbGZoWRlXeb0MUz1VeyQvA5FsTrc9GmVUfT2VY8Z0etwo8O9oNBdaPK62Fp1GocUvBAJE02mKi4qY5nZzlkZVs48y6oUQfwROBX4jhDCRyUhRKBQKheKopyOxegXwZyHEUGAtcAmAEKIMOGqSRyTwlMfDX4VAn/VIApxsMvHt/HyC/ftTqVF/zH2xtrmZNwMBGsvLqbXbCZMRpTVvBqn5TjkyIai5UzLlbYFuxJ5iUoTD9DaZGKTX09DYiCkex5ROM/mEE+gFfHlSnJsNRlIJgZQCoZPk5QmunhKjddUqUkDSaOSEKVMwA7uAz3bsIGw0ErJYiOp0CCCZDdMDuGTevEwOr9lMKpkkGAoxbMgQEAK7zUaZwUATEAmHMfn9TCgt5eNsU+buYl9C9khcEEsyRWz+HArxXjCYy6vtVV7OVfn5jGttpWrePE1sl8AdgQBvZ0Pd/cDP7HamKY9qj8QHPNmuAvCkrVuZNmWKJtfKv7xearKhxQWRCGcUFXHciSd2euz1TU28GomQBhCCs6xWnGVlnbb3KORc4HTgbimlVwjRi2O04KFCoVAojj066rO6Gpi0j+3NwP1dadThQgJ/8Pn4cyCQEQZ+P33Ky7nSbGYeILooLzUMfAi8HArxXiSSCd91u3EajTkPZ2i5KecVlXFJ4VL41nBJzcqV5AeDOBIJzj7jjEwVYrsdV//+u72F2UqK8+fmc8K/3bzxRpR+/ewkEvnMmAFTphTgck3efXyb17OgAFdbOK3TycMGA+cBrakU6xsaiBgMRMxmzFYrISDQTsQiJclkErfBQHMySTCRQJjN5AcCjNTrGWyx7G7ro9iDRpeLdz0ePujThzqbbY/WSPmRCJfV1PDNESNAo9BfSSbh7a12IaPja2ooLiyEtlxcRY/iCcCdDdMtCoU4rqGBqAYVU6PAv/YKLc7X6GbPv7JCVQJVbjdCSlBi9StIKcNCiBcBpxCirfrUxu60SaFQKBSKw8VBta7ZGyHEuIOtRCiE0AMrgHopZdfH0h4kEngMeBZyC7Eyv58f+P3M66Lc1PdbWnghFmNzSQnCbP5Kv9ZoNEqlycQEnY6qivU8b5hIKqkjzyj4fzNgSmEhrilT9lltdn/ewvnzi2kXlXvA4/fergPKbDbG9+1LIBDA4XBgz8tDAs2pFGtcLgImEwGrFbI9U5PtXpfPYuELIVgH2BIJCkMhBuTl0cdq3Wc/1mMFSSbk+w2fj+fcbtxWK7S24jQYMJvNBIDj6us5ubqaqaefrum8fwVeZ3ee6sidOzmppobKwxDqrtCeGuClWCwXpnvypk0YhdAkTPcVIJlt6+SIRBi5axeVGtw0CQErnU5oakJIybjt21Vv1f0ghLgKuBlwkSkXAJl/ZRUGoVAoFIqjnkMSq8D3gUsP8thrgA1A/iHOpTkS+BOZHK+2BfuApibOWLOGcWecofl81cAjwSBvZSvR0tSE0+nEbDbjB/q2tDC4uZmLxo9nNCAcDlyLBzK3eCvV1ZV79DHsrhBWu92OPStGIVNYqdxm48SqqoyItVrJMxhoJpP/uzkeJ5yXB0JgMBhIJZM0hMM0AOsTCUoSCfoajVQBFYf91XQPYWB5ayvvhkJsLSsjaLHgA3xWa+6GRTIS4VuFhUy3WEhYLFSefrqmf++HfT6ehlw7prOLijiztZXeKk+1RyKBu0MhGrO57P1aWzm9tJShGqQuhMiEFkdjMYqLilgUj/ONM87Q5Dr5LxBtSx2Ix7lK9VbtiGuAYVLKVq0GFEIUAn8GjidzGV0ipVyu1fgKhUKhUGjFIYlVKeVBCVUhRG8yFQzvAH58KHNpTVsI5OvZ5yaTiflFRZzd2kpfjRZibXzW3MzjiQTVJSVEU6k9vKjFfj/nlZUxwmIhrNNROXbsHvlaTqeTiy468hdve4vYKqDKbGZUMklzKEQgPx+3wcD2bPEmAKQklEpRYzRSA8hkkg8jEf7s9TK9sJBB9PzqIfUuF5+3tBCsrKSpqIjNwNZYjMa2nq/NzbkbFj4hMKRSjGho4AaLhRGgeWukOPB7v5+nsv0sfUKwoKiIGx0O9BqFFysOP28Aa7ORDLp0mpM3bsQ+fLgmn2OP+nzUZK+XwkiEbxQVaTJuFHgqEsHV3AxScuKGDQh1DXbEDjJpyVpyH5nerYuEEHlkOpcpFAqFQnHE0aFYzVb9nURGg0igAfhUyjbVcUDuBX4KdL5zvEb81u/nVSlznqWTgf9zODBouFiKAw/4/fwjHEYCuFwUFxUhgGENDYzbsYOLpk/PeBS7uV9rV7G3iPUmk3zucuGxWvHabBgMmUuvrUhTSyrFA34/z1gslJhMDAwEqGhqYkJBARNKSzF21ws5AHUuF2taWkj06kWouJg6YFM4zJfRKGm7HQIBnFYrJpOJSPSrBbLmFhUx1G6ntK6OAYMH4+yCa2En8BvgSylz8/dvbuYbra1KqPZg3MAf21XpHb9tGyWRiCbhv/XAy+2ul0nV1TT17k2VRm1wmrKtwWzRKEPq62k4QoueHSHUAEuFEK8CsbaNUspD6lYvhMgHpgEXZceJk/naUigUCoXiiGO/YlUIMQd4iEwUa312c29gsBDiSinlko4GFkIsAJqklJ8LIWZ0cNxlwGUAffv23d9hmvC8281T2SqrPiH4RlER1zkc6DWcYzuZFjirs4u8NmEy2u/nIqsVzGYqp0/vEQuzwr59uaW2VrPxIuk04aYmrFYrcb+fFmBnJII3lSJSWYkpm7fbCqz3eMBg4M/hMJXRKEPNZgYBJR4P5sZGhpeUcFx5eZd6YCWZUMhWMr1kqz0eUmVlRAsKcAG1kQibY7FMrm4wiNNmw2Qy4UskdvehbdcayGoykRcMUuHxMKi5mctOOokqgOLizKML7H+HTCRBjN0h74MbG5m7bh19uyDkXXF4kMBvg0G2uTP9kgvDYb6Tl8dIjcK57wsGiaVSIAS9PB6GNTVROekr9fa+Nm2hxW0Ce2JNDXmgicA+iqnLPvKyj84yEGgGHhNCnAB8DlwjpQxpMLZCoVAoFJrSkWf1PuBUKWVt+41CiAHAa8DwA4w9FVgohDgDMAP5QognpJQXtD9ISvko8CjAhAkTDtZj+7WpBx4RIucpGLJrFws19CxJ4AmPh8eEwGCx7NEbc+qWLVw8Y0YmzLcHVbu89rbbunwOl8vFP998k7qiIuobG0mXl+PaywMZisWoMZvZEIvhCgTAaoVolMpolEqzmXLAHAgg3W56FRRQUViIBbAAodZWvM3NFJeVUVRSQppMf9EWt5vG1lYspaUYi4oIkllIuwIBdoXDJB0OwlYrcbL9bUMhMBrB58OZ9cr7st6hvUVp298+PxKhwu9nfkEBk4BBZjO+0lIa4nEqhwzp0hsWETJ3mpa222Y3mbjI4eC41laqNA55VxxelgIftUstmLF+PUUDB2ryN32jtZX/ZsPVBXBRPM4sjUTw39qFFhdEInzDbmeEypfuECnlrQBCCEfmqQx2ckgDMA64Skr5iRDiPuDnwI3tDzqcN5IVCoVCodgfHYlVA5kIwr2phwNHZUoprweuB8h6Vq/bW6geLuLAbwFhtUIgQFEoxGkbNtB73jxNxpfAnX4//9qrBc5PHQ6Gt7ZSNWOGWoztB6fTybdPOy1X4bjcYuGLYJDHNm9mV0EBLfn5mCoyJZii+xCxTWYzO2IxXB5PZkC/H2e2X25OZFosEArhtNt3bw8GIS9vjzDdWNs4UkIshtPpzLUS2p8oDQCOcJjicJhZhYUcD/QxmcgzmXC3tlLZt2+ulRCA+TCEO64B7gqHqU0kcuHuvYGfAf2LiqCtVZGiR9IK3NfOOzmqro6+Xq8m3skoGU982/U+vL6e4ywWTa7ZFuD5dqHFE7dsobCqSn02HgAhxPHAP4Di7PMW4EIp5bpDHHInsFNK+Un2+XNkxOoeHK4byQqFQqFQdERHYvWvwGdCiKfJFHgA6AOcD/ylqw3Tkvv9flZm81R7l5dzxdatTJo3T5NFUppM09k32i3C9miB043CIElm8VnX1MROl4uKigrKyspobm6mubGR/k4n/crLD7kktFbsXeF4fFkZvUePzgjYoiLsJhNbgc+l5DWXC6/FQiDrvYavitg2ManF9gKTiWKjkRaPB2s0SkE0ypwTTmA44DSZSJrNuNxuKnv3xllQ0P5F0e8wLsIlsBp4Gvg8FsPV0pILdz+nsJDr8vMxHzZrFF1FGvhlu/DfgkiEi4FRGnknH8qG5yMElnick7dsoXLu3E6PC5lWYXqLBfx+yvx+jnO5qJw4UZOxj3IeBX4spXwXcjd//wScdCiDSSkbhRA7hBDDpJSbgNnAeo1sVSgUCoVCU/arU6SUdwoh/gOcBUwh061kJ7BYSvm1vtiklEvZMyLxsPFmayv/yIa0+YTgJw4HZ44cqcnYKeCXgQDvpNPodToQguMaGpi9fj3j9tXcVEPiZO4g1AFrfT5qAwFkYSEJu51dkQjuWAyDxQKQCavNz4dIhOJAAHckknkejeKMxTBKCeEwvU0m+tlsmPx+DM3NjM0WN+qOMpF7C9jRwOjCQs7o1y8jYh0OCk0mWoANySSvbthAxGAgaTRy3NixGIFmnY7Vra0khUAPDCspoQAI6/VsbmpCl0phSqWYXFhIFRBPp1m5ejV58TiORIJFM2fSv6AAYbXi6tUrM++AATjb34BwOqnsRs+QBFYB/yTTHwp2i3dDKsXM9euZX1WFWRVSOip4DvgiG/4LMGvtWkoGDdJEqC5vaeHvoVCmKJwQfDsc5py5czUZez3wZixGNBqluKiI74dCnKLCfw8WW5tQhcz3qRDC1skxrwKezFYCrgEu7uR4CoVCoVB0CQdyqpmBLcCLUsoNBzj2iEMCf22X1zXI5WJEa6tm3s67/X5e8HozC0chmJ+Xx7dMJnrPn6/5IiwBvNPaykfBINscDrbr9ZiynkVXNgcMt5tiKXG3hbL6/dhttj1DZ7O9XnPPg0GCWTG/MxhkczqN2+sFgwHCYYoDAYpiMcaaTJzkcDAa6M6s271FbBVQVVLCqLFjc6HEzvxsS1+HA1dV1e7tbdWJ7XZcffvu3t7mES0qYsakSbu3t5unu/rb7g8JfEFGpG7aa5/NZKJ3QwPjt2yhMB5X3qujhPXAX2Kx3cWJtmyhj8+nSfhvHPh9u6JwfVpbmQaaXPMp4PfhcM7bP6SpiVP69j2i/p+OcGqEEDeSCQUGuADY1pkBpZSrgAmdtEuhUCgUii6no2rAN5H5Uvwc+K0Q4k4p5Z8Om2Ua8BHQWlAA0SjGZJJZGzdSNWeOJmN/ALzaLvT3+B07WGS1Mk5jD9anzc38Jxrly/x8drZ5PQIBAIQQBxSj5nQaYjF06TRCCJz5+bi8XlJAwmhEwH7PR0rcbjduYGs4zPt5mUKU9kCAyXl5nJqfzygOIoH5MLA/ManV9iMFP/Ap8FwoxPpkMpeTCpl/5lOBc8xm5MCBNJjNXxHdip5JALgtEqEx25u00uvlAqOR4Rp5J58CvNnoC2MyyawNG6iaPbvT40KmVc2mRAKkRJ9OM2XjRhoMBnVdHjyXALcC/yYT4bQM5QlVKBQKxTFCR57V84AxUsqwEKKETP/5HiNW08CTgMlkwul0MrWxkXPnzNFkgeQC/sDuViBDGhszQnjBgk6P3cbK5mYeCQb5WK/PeEm9XtpXuBBAQSjEcek06e3bsYdC2BMJThk5ko3Ll5MXj2MEzlywAAoKdnsLi4pwxeO55zKZ5MV33iGk1xO2Wuk3YQIfbd1Kq81Gi8OB22YjLcQeXliXlGwNh3nLZKLAZGJoIECfxkZmFxQw5CjsGdvdNAPLs491QDQWw9Xamgttryov50yzmXOA0raTjnDRrTh4JJnS7A3Z6tOmRILTvvySglGjNPkbbwT+2S5E95tNTZw7e7YmYzcDT7D7s3JiTU3G269a1Rw0UkoPcHV326FQKBQKRXfQkViNSinDAFLKViFEV7a01Jz3gS3ZBViBycSP+vUjX4Nx08AtoRANWa/WyLIyfujxMEgjD4cEHt6xgz8nkyR1ulxuGkB+NMrAxkZ6u9308niwSsmCBQvguOP2CF0d43B8JZS1o5DWb5xxxh7Hz7FYaGhowKzTsezdd3HZbOwqKSE8ZAhrUimSOl2uABHAKx4P5OXxSCTC1FCImTYbk8hU4xKdfkeOPSSZfOQ2gbp1r/1tOan6dJqRO3dyidfLzNGjD7udisPDEx4PS3S6XF787LVrKUgkNBF8YeD2cJjGbIhuH4+Hc3r10uyz7O5gEFcqhdlsZlxpKd9rbaXv8cerGykHgRDiXinltUKIl2GPe5UASCkXdoNZCoVCoVAcVjoSq4OEEC9lfxd7PT+ivygl8Ld2OVJDt20jMnw4+RoskP7jdvNRMAhSEgButtk46YQTOj0uZKr33hII8HI6jdTtvjcwyOVi7M6dLBo+nFh+PubycqLR6EGL0QOx9/HtnxcXF+eELMCLr75KfUEBteXlpMvK2N6ugi7AmmSSOuBvQH4kwoDmZqbabEwvKemWQk09AQk0AJuBFX4/H8fjBByOXHhvewQwymCA6mqGNDTgSCQYoaFHX3Fk8X5LC78PBkkJAULwLaORM/v1o3LKFE0E3yNAXTZE15hMMnPNGnZJSYVGn5VvZD8rfUJwo9XKRFXo6+vQlqN6d7daoVAoFApFN9KRWD1rr+c95guzDtiSXYAZUilO2LaNhoKCTi/uUsCT6XROnI2tqcFaWAilpQc488AkgRuDQd4Oh3PCr8zvZ9a6dUyrqmLo1Knd4o3YW8ieNX/+7p6oVisrm5v585Yt1JSW0lhYmGsnE4vFWNvczFopeTkUopfNxiizmTHACcAwjoxc18ONBDY3NfGZx4OvogJXQQGbgRCZ98zVVrArHM71eTWQec8mAycCRTYbrlGjaCgpUTmpRzEtwJ06HSkhkEC5z8fpySRjNRJ8y4A32hVsmrl+vWYhum7gj0LkPitH1dVl8us1+Kw8VpBSfp79dYyU8r72+4QQ1wDvHX6rFAqFQqE4vOw3tFdK+V77B5l6RX5gQ/b5EcsHZHKkEIL+LS1Y02lNFmDvAu6st8uUTDKhrk6z3Kv7/X5ec7tzobWj6upY9MknfPOEEzjllFOOGEHidDoZO3YsTqcTAYwrK+Pm44/nznSa5ywWfm4yMRVgr0JN4ViMjWT6gF4PnB2NctmuXfzB5+MjoIl9xLn1YCSZBfuXwMvAg8DPgW9FIpwbjXKX2cyjPh8fx2KEsue07/NqSCYZ3tLCT8jk/N0CnA601bFu/3dQHH3EgBtCIXzZSuOWRIL5q1fTT6PPm3rg7mgUl8tFMBjkuIYGFhYWskCDdAYJ/DoYJJBOgxDkR6OZfq0qT/VQ+e4+tl10uI1Q7KZ///60tLQc9nlvevll3lq1qsNjbnnqKe5+4YWvbPcGgzz02mtdZJmipzLjhhtYUV0NwBm33oo3GDzo49uzqqaG11as2Oc5S9esYcFttx3Qlm9/+9uMHj2a3//+99x7772Ew+GDeAVHD/a2jhUdcP/99zN8+HAWL17Mf/7zH9avPzZaZHdUDfgR4AEp5TohRAGZ9LkUUCyEuE5K+c/DZeTX5UN2F1aaH40yX6MF2N/DYdweDxIYV1vLzEmTNBELnwHPJxLIbH7q2NpazgkGmXjmmT1CjLT3vg4GZgH/E4/z6BdfsL24mJ2lpegrKnLHx2IxXE1N7JCSTxIJnNmKtg5gUHaMIrcbc309I8vLqTpC34N6l4t1TU3oKitJlJTgIlN8qxHYFo3ijsX2qNYL4MsWyWmrvhyNRjGZTOQDx+n1+GtqKPd46O3z8Y0zzuDIfOWKrkQCtwcCfJJtQaWTkit9Pk4/9VRNPg+iwB2ANxYDKckPh5m2fj12jW5+POvx8N9AINfS63vBIPPmzesRn2VHEkKIbwPfAQa0T8EBHEBr91il6CzJZBKD4UBdA79KKpXitjPPhN69D2lebyjEQ6+9xpVnnHFI5yuOfl67+eZDPnfVtm2sqK7mjAmH1hGrsbGRjz76iO3btwOZG0IXXHABVqtKIGvPQw89xOuvv86AAQO46KKLWLBgASNGjOhus7qcjj4xT5FSXpH9/WJgs5TyG0KICuB1Mi0ejzjq2F1YKd9k4jtDh2LWYNwaoDYbWpyXTDJ6+3aixcWdHjcJ/D4SyfQ6BQY0NXFydXWPEar7o8rp5MqTTsqEDJeWYjGZWE3G0/h2IIBrH4ItAKwCPonFcAWDkJ+PiEYZFonQz2KhDCiH3E/R3EykoYH+FRX01ui9igNBMmG5QWB7aytbPR70ZWUkCwpwk1kl1kcibIlGkfn5EArhtNtzorRNjLfl6rWF80LG4x9Opynx+6nw+znb4WAy4ASE3Y5rxIh99nlVHDs8B7zXLt1g2oYNjK6o0Kzo0a8CAdam0+h1OgzpNPO+/BKzlJp4PncAj0LO9hO2b+cEu11dy4fGR8AuMkW+f9duewBY3S0WHWOEYjHOnT+fnTt3kkqluPHGGznvvPMAeOCBB3j55ZdJJBI8++yzHHfccXz66adce+21RCIRLBYLjz32GMOGDePxxx/n1VdfJRqNEgqFuOmmm7jpppsoKSlh06ZNTJs2jYceegidbs9gt/79+3PJJZewZMkSfvjDH/LG3//OgunTWTR1Kq+tWMGP//IXSvPzGTdoEDWNjbxy000ArK+rY8YNN1DX3My1Cxdy9Zln8vO//52tjY2MueYaThszhrsuVt2PjiVCsRjn3nYbO1taSKXT3HjeeZx3yil7HNP/e99jxT33UJqfzy+ffpon33uPPqWllObnM37wYK47+2wAnv3wQ6585BG8oRB/ueoqThw6lJuefJJIPM4HGzZw/aJFXxk7Z0coxFVXXcWaNWtIJpPccsstnHXWWcyZM4empibGjBnD2WefTUNDAzNnzqS0tJR33323y9+fI4277rqLZ555hlgsxtlnn82tt97KFVdcQU1NDQsXLuT888/npZde4r333uP222/n+eefZ9CgQd1tdpfRkViNt/v9NOBZAClloxBHbo3Xt71eXH4/SElZUxO+vn0xa7BQes3ny+V2DWxu1mxxtwTYHg4jpcQSjzNr7VqOGzbsqFjc7Z3venL2sSiV4skPPmBXfj4tBQUUlJTQCPsMhwXYFY8TtljY0G7sWCyGKxKBwkKIxaiKRikwm7EAZsCa/ZkMBvH7/djy87HY7aTJVHROZX8GQiFaIhGEzUbKYiGx9xyhEBiN4PPlPMCQ8ZBK+Irgbm+/MZmkOBRijE7HlN696Qv0NZlIWa3s8nqpHDoU5143PI70Pq+KruX11lb+YDDkKv+OqqtjdEMDlePGaTL+Ex4PL7bzel6j0zF22DBNbo7Egd8COqsVAgGKg0GmbtlCpfLkHBJSyu3AdiHEYqBBShkFEEJYgN5AbTead0zwxvr1VFZW8uqrrwLg8/ly+0pLS/niiy946KGHuPvuu/nzn//Mcccdx7JlyzAYDLz11lvccMMNPP/88wAsX76c1atXU1xczNKlS/n0009Zv349/fr14/TTT+ff//43ixYt+ooNZrOZDz74IGPPfZnU5Wg8zuUPPcSyX/2KARUVfPuuu/Y4Z2N9Pe/ecQeBSIRh3/8+3583j19feCFrt29n1X33fWUOxdHPG+vXU1lczKvZGxq+UGi/x66orub55ctZee+9JFMpxv3oR4wfPDi3P5lK8envfsdrK1Zw69NP89Yvf8ltixezorqaP1xxxX7HBbjjjjuYNWsWf/3rX/F6vUyaNIlTTz2Vl156iQULFrAqG+b+2GOP8e6771J6DNY5WLJkCdXV1Xz66adIKVm4cCHLli3jkUce4Y033si9L9XV1SxYsGCfnxtHGx2JVa8QYgGZ9KapwP8CCCEMgOUw2HZIrM1Wn5RAZWtrp5rP33vTTXjr6ohEIiyNx4nr9egAfTzOZouFh99/f5/nFfbty7UHEZ8vgSfaeVXHbduGLZVi6NChh2RvT8HpdLL41FN3exDtdiSZENotwBfAm243rTYbYZMpV7SpPe0FrZCSYCyG3mymfbZFLBbD5XZnFuZuN06jcY+Q3Fi7fqXtCxrtb472gtRsNuMH7NEoBdEoU4qLGULGQ6pPJFj5/vtYIhH0Ol0mD3DPN0CTaquKo4vlLS3cGAiQyArVE61WLrXZ6KtRW6wNwF/bFT06fscOxlqtmhVsusfv50spMZvN9Ckv5/uBABPOOEPdfOk8zwAntXueInPzeGL3mHPsMKqykuv+9jd+9rOfsWDBAk5p5y365je/CcD48eP597//DWTE7He/+12qq6sRQpBI7L79edppp1Hc7ubkpEmTGDhwIJDJ1fvggw/2uehs8+S2Z+POnQx0OhmQTa/59rRpPPrf/+b2z58wAZPRiMlopLygIFO4T3FMM6qykutefJGfPf44CyZO5JSRI/d77Afr13PWiSdiya53zpw0aY/935wyBYDxgwZR63J9LTuWLFnCSy+9xN13Z2q2RqNR6urqsFiOWFlx2FmyZAlLlizJfTcHg0Gqq6uZNm1aN1vWfXQkVi8H7gcqgGullI3Z7bOBV7vasEPFW1wMLS0IKSkLhTrl/fTW1XFL//5sc7non/2n1UnJgliMqnY5mHtzS23tQY1fzW6vqjmR4Pi6OoYdJV7VA7G3B1GQudAqgJMLCjivspKGhgbKCwrQm0w0Ac1kCjE1Adv0elZGIoSNRpIGw0EJ2vZic3/7bSYTNsAOVBkMNLS2YonFcMTjzBg9mkFACVBsMhE3m3G53RnB7XDsnri0lGGnnabCeRUHzS7glzodCZ0OSabt0/94PJq1etnc1MRP9XrIywMhcPp8TN+8WTOv58tuN/9s16bm5w4H8ztYDCm+FgYpZS7SSUoZF0LkdadBxwpDnU4+//xzXnvtNa6//nrmzJnDTVnPVNt3iV6vJ5lMAnDjjTcyc+ZMXnjhBWpra5kxY0ZuLJvNtsfYe0eo7S9ibe/zgFx9i/1hMu6uta/X6UimUh0erzj6Gep08vnvf89rK1Zw/d//zpyxY7np/PP3eeyBil22XV96vZ5kOv217JBS8vzzzzNs2LA9ttce5Lr5WEBKyfXXX8/ll1/e3aYcMexXrEopN5MpQLr39v8C//3qGd1PEtil02VaJAAXnHyyJkIh5XBANl/VHotRcBAVuw6G13y+PXJVTXDUe1UPlr3F7FduDdjtuIqKaGhooFdlJcUmE1Eg0u5Rn0zyzurVyFQKvRBMO/lkysmUwNYBnkSCZZ99hiEex5xKcfacOfQpKCC3ZLDZcFVVZUTnwIE4i4r2tMHppHI/15cK51UcLB7gJ+Hw7sq/8ThnrVzJ0JkzNRm/3uXi2sZG6gsLQQj6FBTwI5+P4zXyejYBf2jnsR3S2Miw1lbY+/9Fcag0CyEWSilfAhBCnEWms5Gii2nweim2Wrnggguw2+08/vjjHR7v8/moqqoCOOCxn376Kdu2baNfv37861//4rLLLjtou47r3Zsal4tal4v+Tif/yoYJd4TDYiEQiRz0HIqjiwavl+Lyci6YORO7xcLjb7+932NPHjGCyx98kOsXLSKZSvHqihVcOmdOh+Mf7PU1d+5cHnjgAR544AGEEKxcuXKf0T0Oh4NAIHBMhgHPnTuXG2+8kcWLF2O326mvr8doNFJeXr7HcW3v0bHA1y9JdwSzsrmZ+kgkU+EyGsVWWKjJuDGrFUssRiKRoMpmO6jy0gfDF1nPHsAgl+uY8apqxd6CMA/Ib7d/eEkJoyZN2u3hLCnZc4DSUoaeckqHHlAlOhVdSQT4aTjMmpaWTF/odJqrvF5OmzlTs4JKv08kqC8szEUQfGfXLmaPGtXpsSFzg/DmUIhgW5uaSITZGzZQdfpX7nMqDp0rgCeFEH8gE4SyA7iwe006NljT0MBPJk1Cp9NhNBp5+OGHOzz+pz/9Kd/97ne55557mDVrVofHTpkyhZ///OesWbOGadOmcXa2eM3BYDGZeOiKKzj9llsozc9n0kHc5C7Jz2fq8OEc/8MfMm/8eFVg6RhjTUMDP/njHzPXsl7Pw9///n6PnThkCAsnTeKEa66hX1kZEwYPpuAAVXlnjhrFr597jjHXXNNhgaUbb7yRa6+9ltGjRyOlpH///rzyyitfOe6yyy5j3rx59OrV65grsDRnzhw2bNjAlGy4td1u54knnviKWD3//PO59NJLuf/++3nuueeO6gJL4kDhJIc8sBBmMn3nTWRE8XNSyg7rYk+YMEGu2E+fpoPhyY0b+a3FggT6trbySyE6lY91y0UXcUv//rwbi7ExKywHtrQQjkT4+XvvkUqn+d64cfz85JP3PK+2llsOcFdVAqf7/TRmW+Fc+t57nDt3rhJGCsUxQhK4FXjP58OXzSmbv3Il5/Trp1ke6TPAn2MxXC4XSMlJW7Zwy/HHa/Y583ufj8d9vlyLnetaWji1T58j5nNMCPG5lPLQeikcYQgh7GS+sw/7rfTOfjfvwcMPH3L7lcPOzp3QwaL+UFm6dCl33333PhfpHdLuvQtGItgtFqSU/OCRRxhSWcmPzjpLc1sVXUgXXV/75Gv+37VdX+FYjGnXX8+jP/gB4zorhrr69fakz5a9OZzXwhHA1/1u7krPagyYJaUMCiGMwAdCiNellB931YSO8nIIBhFSYkqlqOzbV5Nx/dkQYAB9LMaP3nyTdy6+mN75+Uz8059YOGwYI8rKvtaY65qbaYxEkIA1HufUiROPmAWeQqHoWiRwWyDAe9kWMgjBzLVrGdTaSmX2bmpnWUZGqEajUYqLipjg8/F/GgrVd4EXIBf+O7m6mhGlpepzrAsQQswHRgLmttxGKeWBq/gpjlr+tGQJf3vnHeLJJGMHDuRyFc2g0JDLHnyQ9Tt2EI3H+e6sWZ0XqgpFJ+hQrAohjgPOAqrIrK8agJeklBs6Og9AZly2bcVZjdlH17hxs1iLi3HabESjUcYUF+9Z9KYT6PPyIJUCKdnc2srg4mIGZvOxzh85khc3bvzaYnVrczMym1tri0aJZgs0KBSKoxsJ/Mrv50WvN9dC5rs6HTN79aJy/HhNxN5Ty+HWtxKkjvdgGxejt8fDtb16aVaFejPwAJmq2D4hGNjUxPi6OipHj9ZkfMVuhBCPkOnGNRP4M7AI+LRbjVJ0ihkzZuxRfOlQ+NFZZylPqqLLeOq667rbBIUih25/O4QQPwOeJpMj8ynwWfb3fwohfn4wgwsh9EKIVWRqcLwppfyk0xZ3QPvUbrOW4c15eVjMZgwGA9Jkon+78vO98/OpP5QE53bVa/OSyX1Ws1UoFEcXEngE+K+Uu1vI1NUxo7mZsWPHaiJUX14OF86GzbcaqPlOOboPUsxbuZKmhoZOjw3gBn4RidCS7Tk5trSUnxoMnKlRix3FVzhJSnkh4JFS3gpMAfp0s00KhUKhUBwWOvKs/i8wUkqZaL9RCHEPsA749YEGl1KmgDFCiELgBSHE8VLKtXuNdxlwGUDfTobturxeXH4/SMn67dtxaVSwKJZIEMnmrHrc7j16pwHsu+B8x4Tjccj2lWprm6JQKI5eJPA7v5+XpMyF/h5XX8/MTZuoWrBAkzkCwM1L4qTiRkgJJNDrRR+WuelOtfFqIw7cEAqxKdufOJZMcnd+PqPHjOn02Ir90nYfNiyEqARagQHdaI9CoVAoFIeN/XpWgTSwr9VNr+y+g0ZK6QWWsu9WOI9KKSdIKSeUfc1Q2r0JZxdQEojrdDRo5EmQ8XguZ7XYamV7uwbbO/1+Kg8h3Lh/aWlO5PptNk0WkgqF4shEAvf6fPzD68Xn9eL2eJhjMvEzs1kzj2QE+EkohH+0G2GUoJfkGSXnnmFlgQZzSOAPwPpkEqRESMncVatI7dzZadsVHfJK9obvXcAXQC3wz+40SKFQKBSKw0VHntVrgbeFENVkSuUD9AUGAz880MBCiDIgIaX0CiEswKnAbzpnbsf0KyrKFViKmkyaCUC70Uhz1ps6pLSU7StXss3joSo/n6fXreOpb37za4+ZdLuR2abifrMZt9utQugUiqMQCfydPYsRDWls5DyjkfEaVf2NA78kIyRt42IMfNJF1X88XDxLz0UXDTvQ6QfF414v/xEi5xU+eeNG+nm96kZbFyOl/GX21+eFEK8AZimlrzttUigUCoXicLFfsSqlfEMIMRSYRKbAkgB2Ap9lw3sPRC/gb0IIPRkP7jNSyq9Zp/3rMaC4GIcQRMJhzL17ayb+Gtvlv4asVn518snMfeIJUlJyyZgxjNyr99HB0Lp1K4wYkXu+qbaW4cOHa2KvQqE4MpDAgz4fz0BO5A1ubGTu2rX0mT9fkzmSwC+CQT5OpXJzzLesYvT0BubN0ya8+PXWVu4LBjMV8oRgfl4ei8rLqRozRt1kO4xIKWNkKu0rFAqFQnFM0GE1YCllGjikVjNSytWANm6Dg8S1ZQt+oxGANcCGDRs0EYDJdjmqYZOJCfn5bL7qqk6NOax//z2eJ3r16tR4CoXiyKItR/Uf2T6kCMEMs5kLjEb6zp+vichLk2mB81+PJzfHJTod0yoqqBw3TpM5NgB36/VIMq+pl8fDN9JpxmnkFVYoFAqFQqHYHx3lrO6XbCjSEUdrTc0ez7fu9fxQGZNKEd+lJ/SZiVijkaJs25rOMHz4cE4Ru0szLW9sxOVydXpchULR/aSA+4CX2lX97d/UxOL6eiZqVPVXAg8DS9Pp3Bzja2qYpmFl4R3AbYDeYgEhKAyHWbB6Nf1U6G+XI4SYmv1p6m5bFAqFQqHoLg5JrAKXamqFRpzQZ89q/vlDh2oyrsVfgPffdoLLzdS9VorHY9dk3L6pVK7IUkN+vmYFoRQKRfeRAG4KBPi3z5cLyx3icjFfQ5Engft8Pv7Vbo7RO3Zw0tatmuWQtgA/iUSoz7aoGVJWxi+SSc6dM0eF/h4e7s/+XN6tVigUCoVC0Y10GAa8N0KIcillk5RyV1cZ1BmGDx/O1JYWViQS6PV6/IdQpXdftNaCTAFSINOSz1d5qKxMYbd3TrROdjh4KhwGKWkoKkJ1WlUoejYx4IZgkLfaheXOz8vjW0YjvTUK/ZXAH3w+HmsXXny6ycR5NhtVGlUWDgI/CYfZ0NICUhJOp7nN4WDyqFGdHltx0CSEEI8BVUKI+/feKaW8uhtsUigUCoXisLJfsSqEKN57E/CpEGIsIKSU7i617BAZajTyUTgM8TgvbtvGxOHDO714G9AfdDpIpyVCB+bKOIFAoNNi9aTSUsr9fpo8HrxWK0vef5/i4mLltVAoeiA1Lhe3AdUGQy4sd0xtLYscDs3yOyXwGPAs5OYY6HJxjsGg2Rxx4HZgayKRa1Ezb+VKTAMGQGmpJnMoDooFZKrozwI+72ZbFAqFQqHoFjryrLYA2/faVkWmz5sEBnaVUZ3B1tQEeXlIYFc2tLaz4q9PH5j4nQTrtqYx9k4gLODQwGtrBPqGwzRln28tKdHEXoVCcXjZ2NTED1taaLbbQQgQghO3bOHEbduoWqBNRV4J3OP386KUudDfAU1NzFuzRrPKwmnglkCAj9Lp3BynrllDf4+HyqlTNZlDcXBIKVuAp4UQG6SUX3a3PQqFQqFQdAcdidWfkrmr+xMp5RoAIcQ2KeWAw2LZIXJSQQEPRqMIKWksKqLcaj3ksQr79uWW2loAdiZifN4rASmweBIsj0SwWCz7Pe9gmWEysSIeBympcToxm1UwsELRk6gDfqrX02y3IwEhJecFg8wrKqJy5EjNQn9/6/fzlNebC/2daTazWK/XtLLw7YEAr7YLYf6eTsfJVVVUTpyobqJ1H61CiBeAqWQuhQ+Aa6SUO7vXLIVCoVAoup6O+qzeLYR4Gvi9EGIHcDOZL8ojmuPLyxkZibA9HAagVkqqDnGsa2+7Lff7B19+yWeFhUggBJzh8zF99OhO23tGURF/NRhwu93sLC7m7WXLVCiwQtFDeLe1lV/rdMTz8kAIdOk0szZs4H81ahsD2RxV4NV2lYWHNDay2GhkoobhxX8A3mpXWXhsbS0nOxyMVS1qupvHgKeAc7LPL8huO60zg2Z7oK8A6qWU2rj/FQqFQqHQmA6rAUspd0opzwHeBd4EDt1NeRgZlkwSDIUIBoM88eWXmrSEGVJRQZXXm6neKwQNe1UePlRKgD5ZYZ0Wgg0VFaoqsELRA3je7eb/AgEa/X7cHg8VhYX8NBrlZxoK1TZv57Ptqv4O27WL09eupa+GlYV/7ffzXLs5RtbXc0p1tWaVhRWdolxK+ZiUMpl9PA6UaTDuNWTa6CoUCoVCccRyUNWApZQvCyHeAgZ1sT2aUO5ygdGIBGo1ygN1Op18Oy+PP+l06HU63gmFmOVyabIonZ+Xx5exGEjJut69MbXrv6pQKI4sJPAM8KBeT0oIJGCPRvnhjh2cOXKkZvMkgFsDAV5uF5Y7z2TiHJNJ08rCd/n9PN0uvPiMvDzOsVg0qyys6DTNQogLgH9mn38baO3MgEKI3sB84A7gx50zT6FQKBSKrqNDz6oQ4jghxGwhhF1KGZFSrs1uP/3wmHdonJqfjyBTvnhXURHWqkMNBN6TeUVFmM1m3B4Pn0Wj/GvJEk28tmcVFVFRWIgA3DYbz23YoMm4CoVCW5LAr/x+HmznhSwJBjn3s8+YpGGl3DBwC7CsXVju8J07ObehgfFjx2omVP8MvNIuvHhYQwOLdu1inEZzKDThEuBcoBHYBSzKbusM95KpS5He3wFCiMuEECuEECuam5s7OZ1CoVAoFIfGfsWqEOJq4EXgKmCtEOKsdrt/1dWGdYYh5eVMKy3Fbrdjs9v53GjUZNxSoCrrgUgLwfpevTQJ2TUDY32+3PMv+vZVocAKxRGGD/hxKMQzXi8+rxe3x8Nkq5U7kkm+feqpmok7D3D+u1GeujlK8DMDCMEJdXWcumEDVRqG/j4GvASZom5CMLSxkdPWr6e3Cv09opBS1kkpF0opy6SU5VLKb0gp967Uf9AIIRYATVLKDtvhSCkflVJOkFJOKCvTIupYoVAoFIqvT0dhwJcC46WUQSFEf+A5IUR/KeV9ZJyWRzQT43HeC4VASv7pdjM7HtdkMbnAaOSL9iG7UpuaU+eZzbweiYCUbCsrwxOPazKuQqHoPDVkeo9uSSZzXsjj6uv5ntmsWZEjyLjNLno3yptn5CHjgu15kqufNnNhX7tmYbkS+BvwdCxGNBrFbDazoKiIs1tb6aNReLHiiGYqsFAIcQaZe6X5QognpJQXdLNdCoVCoVB8hY7CgPVSyiCAlLIWmAHME0LcQw8Qq1U7duQWlXXFxaxrajrgOQfDmcXFVBUUIACfxcK/Nm7UJGR3bFkZM8xmBJnF5B/dbhUKrFAcAbwPXB2NsiUb+iuAKVu2MGf9es2KHAFsBX4CbF4KMi4gLSAOqbeSmoXlSuAR4KlYDJfLhc/rxbZ2LVeGw0xQob/HBFLK66WUvaWU/YHzgXeUUFUoFArFkUpHYrVRCDGm7UlWuC4gEw07qovt6jQjnU76ut256r2bvkbv047IA8Z1UcjutJaW3O8bKyr4tN1zhUJxeEkDfwd+GYuxo6kJn9dLsLmZG9Jprigu5kwNCxC93drKFR4PTbEYZbN0iDyJ0KUx6NOcfro2vZdTwO+B14BoNApS0r+piTkrV9Kk0g4UCoVCoVAcgXQkVi8kU9AhR7Zs/oXAtC61SgOcTieX9utHQWEhxUVFvJ5MsksjT+W5FkuugFNdWRmJ3r01GffkkhIGtLTkBPazDgeNyruqUBx2alwufrBrF09kQ2WRkoJwmEUff8wQr5exGnohn/V4+EkgQJPfj8vlovLENA/+288PrmzkhRf8zJ9f3Ok54sD/Cwb5j89HLBbDbDYz1OVi3pdfkieEalFzBCOE+EW7301aji2lXKp6rB6b1LpcPPXee7nnS9esYUG73vIHc/7xP/zhAY/7yWOPMfIHP+Anjz3G42+/TUNrpwpZK3o4drv9gMfcf//9DB8+nMWLF/Of//yH9evXHwbLFEcy+xWr2R6re4hVIcRl2X0fHmhgIUQfIcS7QogNQoh1QohrOm/u1+OM4mLK8/JwezxsDwZ58OOPNQmtHV1WxoLiYux2O3abjVfN2ng+nE4nN/ftiyP7z/yllPxm5UoVDqxQHEY+a27mErebj+JxXC4Xep2Ofq2tnPvxx5RGIpoJOwk8Djyg0+Va4NiiUS7bsoXvzyvkgQcqNRGqUeBnwSCvu934vF5cLhczYzHu79ePE8ePZ4FqUXNEIoT4qRBiCpnqv20s7y57FEcXtU1Ne4jVruKPb7zBF/fey10XX5wRq253l8+p6Nk89NBDvPbaazz55JNKrCqAg+yz2o4rgEcP8tgk8H9Syi+EEA7gcyHEm1LKw3bVGYDjm5qoJrMwbAvZ1aQ3aizGy+EwSMmLwJnRKBM0qJg4tqyMWXV1vJjNt102dCin1NbyTbWYVCi6FAn8F7jLaMRjtSIBISUz3W4uraqiMeuB1OLzIwrcGgzyYSqVa4FTGgiwcNUqxp96aqfHbyMI3Ap8nkrlcvjHbdvG3Px8eo0dSy/1uXIkswk4BxgohHgf2ACUCCGGSSk3da9piu7il08/zZPvvUef0lJK8/MZP3gw1519Nlt37eIHjzxCs9+P1WTiTz/8Icf17s1F995LvtXKii1baPR4+O1FF7Fo6lR+/re/sWHnTsZccw3fnTWLsQMH5uYIRaNc9cc/smb7dpKpFLd8+9ucNXnyfm1KpVL8/O9/Z+maNcQSCX4wfz6Xn346C2+/nVAsxonXXcf1ixaxYssWFt9zD5a8PJb/9rdYTJoGCih6GHfddRfPPPMMsViMs88+m1tvvZUrrriCmpoaFi5cyPnnn89LL73Ee++9x+23387zzz/PoEGDuttsRTewX7EqhJgspfx4780HO7CUcheZ4pZIKQNCiA1AFXBYb5GcY7HwYiRCGqgvKSFqtWoyrnnHDvqm02zP9lZ8NJkksRyWLoUZM2DKlEMf+1KTifdbW2m12Ujo9TzgcDCmqYmB5eWa2K5QKPYkAtwZCLA0nUav14MQGJNJTt2wgcsnTMDpdGom7FqA68NhPnW7QUoQgmkWC99xuxmoYQscL3BdOMzmRCIniKdUVzOxtpaqBSryswfgAW4gU9xwBjAcmAv8PCtYT+o+0xTdwYrt23l++XJW3nsvyVSKcT/6EeMHDwbgsgcf5JErr2RIZSWfbNrElQ8/zDt33AHALrebD379azbu3MnC229n0dSp/Pq73+XuF17glZtuAjJhwG3c8cwzzBo9mr9ecw3eYJBJ113HqWPGYNtPFNlf3nyTAquVz+65h1giwdSf/Yw5Y8bw0i9+gf3cc1l1330APPz669x98cVMGDKkK98mRQ9gyZIlVFdX8+mnnyKlZOHChSxbtoxHHnmEN954g3fffZfS0lKqq6tZsGABixYtOvCgiqOWjjyrDwHj9tp25qFMkm19Mxb45FDO7wwjy8v5RiDA2+k0ep2Op/1+BrpcnV4QVlZWcvLSpdSVloIQfPyllb+fLUkmBHl58Pbbhy5Y+zidXLF9O7+2WEjpdLTabPzM7+ceKemjPCEKhaZsA24Oh/nS48mJx+Ptdv6noYGxWaGqFdVkWuBsSyRyns6xtbVc5HAwXsMWOPXATyMR1ra05F7T5UIwpbiYyuOPV2G/PYPTgZuBQcA9wJdASEp5cbdapeg2Pti6lbNOPDHnkTxz0iQAgpEIH23cyDm/+U3u2Fgikfv9G5Mno9PpGNG3L652BSL3x5JVq3jp00+5+z//ASAaj1PX3MzwPn32e/zq2lqe++gjAHyhENW7djGgouKQXqfi6GfJkiUsWbKEsdnvvWAwSHV1NdOmHfElcRTdwNcKA5ZS7vy6Ewgh7MDzwLVSSv8+9l8GXAbQV6OKvXtzocPBh9lWDUulpPeyZVw4a1anFmxOp5OLZsxgVyDAu3l5NL+TJhYH0hCPZzysnfGuzujXjxUrVvDf448HYJPRyJUNDfwB6KcWmgpFp2kL+30UaGknHkfu2ME1NhuTxozRdL5X3G5+r9Oht1gwm80EgOnr1zOqoYHeGno615MRxDvj8YxQBWavWcOUysrcwkBx5COlvAFACPEl8ASZG75lQogPAI+U8pBuHit6LnI/fd3TUlJos+U8mHtjMhoPOMbe8zz/858z7CCLR0opeeCyy5g7bm//hkKxb6SUXH/99Vx++eXdbYqiB9CRWB0ohHhpfzullAsPNLgQwkhGqD4ppfz3fsZ5lGwe7IQJEw78KXoIDAAGuN24sovRD4YM4VQNcledTidnu1x8oNNhnRxF5ElIQF6eYMaMztnsdDq5bsIE8nbu5OVsqPH24mKuCYW4q6mJIT0kJDgN+MnEs21pbWV7ayu2sjLMRUVEYI9HGGgNhQgGAhTa7TjsdvRkqoDps49QIEDM66VPfj59CwoogD0e+dnjFIqOCAC/CQRYlk5jNpsxm82E02lmrF3L8KYm+mkoHlPAgz4ffwkGM+LR72dAeTn32O0UVlRQOW6cZp7Ol9xu7tXpMGQFcTidZs6XXzKotZXKCRM0mUNx2PmvlPIz4DMhxPellCcLIUq72yjF4efkQYO4/LnnuH7RIpKpFK+uWMGlc+aQb7UywOnk2Q8+4JyTT0ZKyeraWk4YMGC/YzksFgKRyD73zR07lgdeeYUHLr8cIQQrt25lbAe5gnPHjuXh119n1ujRGA0GNtfXU1VS8pWw4Y7mVBxbzJ07lxtvvJHFixdjt9upr6/HaDRSvtfa1uFwEAgEuslKxZFCR2K1GfjdoQ4shBDAX4ANUsp7DnUcrbjEaOSTeByA2vJyvDabJuMe53Qy/YsveGv8CAY+1UT6yyIuOK4Rt9vBnXcWdyp/1el0chXQvH49H2eLH9To9Vzo8/G/9fWcqVGxl6+LJCMuNzc3U93SgsnphOJiPGRE6c5gkIZwmITDQcxiQQKxWAxXKAQmEwQCOK1WTHsVV4jFYrhaWzML+ngcp9G4xzGxWAxXW6imz4fTbP7KGACGaBRTIMBws5nRDgcDgYGAo+veEkUPYgXwm0iEzdlryScEE0pL+a3djuzdm8pJkzT7v/IBdwHLIOe5LQyF+P6WLcw8/ngoKdFkHgk85vVyXztBPKSsjFsdDsz9+lE5ZYoK/e2hSCl/2u7pRdltqgn3McjE/v1ZOGkSJ1xzDf3KypgweDAF2TocT/74x3z/4Ye5/ZlnSKRSnH/KKR2K1dH9+2PQ6znh6qu5aPbsPQos3XjeeVz75z8z+uqrkVLSv7w8l9u6L743Zw61TU2M+9GPkFJSVlDAf2644SvHXTR7Nlc8/LAqsKRgzpw5bNiwgSnZBbLdbueJJ574ilg9//zzufTSS7n//vt57rnnVIGlYxSxv5AQIcRKKeUhx4wJIU4G3gfWkHGwAdwgpXxtf+dMmDBBrlix4lCnPCC/DAR4M5u72isS4XdSalI0pdHl4lepFGscDtweD4lPdGy5oIJ0Sk9enuhU/iqAy+Xij9u387zTSfu/1oCWFs4G5vbu3enXIYFtLhdbmpow9+qFobQUL1Dn81Hn90NhIQmHIydIA9mw6rZ8OKfTiclkygjKfWz3+Xz4vN5MhVWgoLCQgoKCPWw40DEHM8b+5gcohZxwHQg4mpuJ79xJVTeJfsXhJQL83u/nDSlJJZMEg0EkcPzOnVzbBWG/m4GbIhEa4nH0Oh1uj4e+zc2cvm4di+bO1eyaSwN/BP7Z7v+jKBzmxmSSU0eN0mSOnooQ4nMppXIpdxJNv5sffhg06k3e5ezcCd//fndbsZuHHyZYUoLdYiEcizHt+ut59Ac/YJxawPdMDuf1dST833X16z0SXuOhcqR91nQxX/e7uSPP6rbOGCKl/ICvUT34cHClw8En0Sg7mppwS8lvN2zg52PHdnrRWOF0cgewuLUVt5S4P7ORSOohLTTJX3U6nVwOJJYvZ8nIkUTy8gDYVlrKPcAjfj+jEwl6p1L0KSjAJiXulhaKS0spKiqi1eOh0e3GWlKCubCQKOAKBKgPBiE/n5jNRlM0ys5YDPLzIRzGGYsBZIoxSAkeD868vJzwi0ajOU+RkJJoNIrJZNrn9lKTiVKjkWaPB1M8Tl4qxcSiIpyApd0jkkzyyeefZ3JqdDqmTptGIZnFeApoTqX4cN06YjodUZOJQePHI8l4r9oeO/djF2SqsLYAn5IVtZEIdquVQdXVXGwwcEpJydfu5aToGawF7oxEWOv15m5kWONxZq1dy0C3W9OwXwm8ATwQjVLf3AxSIoALDAZm63RUaShUo8DNwSDL27XAqXK7WbB6NaPmztVkDoVCceRw2YMPsn7HDqLxON+dNUsJVYVCcdTT0dr8TiFEhZSyEUAIcSHwLWA7cIuUssd1di4BpjQ2skOIXA/TeU1NzNFg4egAfiIl10iJfXKUpmz+qsEgGT3aCxR3anyn08kPp0zhpK1b+atez+aKipyXNZyXx8epFADCn61hlZcHgQDFBgPuQAAMBvD7cVosALvDaVtbcRoMRGOxr4g8AKQk9rvfYWlowJeXhzErlEmlMAeD6FMpjOk0pfn52PPyKI7F8Lhcue39KiuxZecsj0QIh8NYrVZ0w4ax+Lbb9nyRJSWMmzqVhoaGTD/LvUMki4uZMn787v35+V95n3ZFozz33nt4LBZaCwoonzyZVqAWSLQ7rk1UB8xmvuzTh5sNBqqAicBkMmWw912kX9GTiAP/AF4EvNmCQxIY3NjIZckkzv79qTzpJM3EY4xMGfV3gGD2fyovmWTO6tWc2r+/pgWOmoEb9mqBc5rJxLlAPw0FsUKhOHJ46rrrutsEhUKhOKx0JFb/CJwKIISYBvwauAoYQ6YgUo9sevQ/Fgtvut14rFaSBgMvDBzIbLQpynNKaSm36XTcNVtP/ssRdr2ZYNBxjexoWo7LdYYmBZ3mOZ2Mc7l4v7aWFxIJtjqdhNsEJHtW+hNSEgqH9ytC229rK8ZiicWwJhKMLSnBkU6zrbaWnRs2cF1ZGYN796bYasVC5sIJBYMEAgEcDgd2uz03b7Cqap/b23NLbe1+X2NH79OB9vdyOjl37tyvCNoUmXYeW8mEDKzR6/kwlSKW7alpNpsJAu9mH3nA4GCQ/o2NnO5wMEAt/HscG4DfhMPUJBK5IkrRVIpp69ZxXFMTYxcs0FTQ1ZNpgbM5kSC6yoJnmY3Cga2cJ5dTFItReZJ2bTHXAXcCde2qGI+vqeE7BQWMUxV/FQqFQqFQHCV0JFb17byn5wGPSimfB54XQqzqcsu6iL5OJ7/W67neYMBosbDTZOJfwHc0Gn9BccaD+tuJPsqH+Nj1eQG/W3o66P1ccaE2C2On08kip5ORGzawbOlS3DYbLQ4HfquVWF4eMaMRKSU6IRjYvz/bGhrQJ5PkpdNMPuEEzMCq9esxxWLYk0nOmj6dwQUF+KxWGrzejMjLikzXccdxu9nM5MpK7NlCDm3Y7fZ9itH9bT9c7EvQ6oG+2cdMALud+lCID9xudlRVsc5kon3FkkAsxhtuNxiN/DUU4js+HxcUFFB22F6F4lAJAo8DL8ViuLJ9Rn1CcGpxMd+z24lqXERJAm8B90Wj7GhpIbTCSM1iByQEJuMAfvBwgnkLCjWb758eD48KgbFdC5xp69czuqGBKg3DmRUKhUKhUCi6mw7FqhDCIKVMArPJ9kI9iPOOeCaXlvID4G9kchf/GI1SlUgwvVSbbgALgB3A774wse3b5ciE4Ad5kNBt5dzT7JotWocPH05xcTENDQ0Zr1E0SmVlJcBuz6LTiUuI3c8LCwGYO27c7m1lGQlm3ofIczqdlJSUdKv47CqqnE7Oy75eCdQAH2cfX7bLfY3r9bwALAVOBr4BDOkOgxUdIoH/uN38CUjabLlQb0MqxdRNm1hcUcHwsWNBw7ZPW5uauDeZZFNJSS6UPrzcBHGQaUEC2LVrGFr8yyeBu/1+/hkI7FHx9wabjQKNW+AoFAqFQqFQHAl0JDr/CbwnhGghU0jzfQAhxGAytWx6NN8EloVCvJdtlfLTZJJHpGRsmTa+s+8XFPDsSya2xgUgSMckN/+tnBbbW1ypYY7c/sJi22/b1zEHCqc91hDAoOxjMbA6HueP1dWsrarCa7NhNptJk2lBsgwYAUx3u3Fu305vVU2429kF3BUM8nZb65ZgkOKiIga2tHDK+vUUxONUadywfmlrK//P6yVoMoHLRXFREcXhMFMcm/mrfiZpITTpuQyZD9xfAculzN1EKfP7udLnY8aoUaDRjTaFoqfR/0MdALVT0wc4UqFQKBQ9kf2KVSnlHUKIt4FewBK5OxlSRyZ3tUejA75RU8OnZjPhvDyiBgO36nT8lc6WQtrNMLOZd9s997xr58nvTyYVi3ETmbzInsolL77IK5s3U26zsfbKKwFY1djIFa+8QjSZxKDT8dD8+UyqqupmSw+N0WVl3DRqFPUNDTSVl/O+ycTqdvtXxmK8EQxSZDIx/aOPNL0BoTh46l0ungiHWdarF4FUKifk7NEoFzU0cHrv3jTodLkoAy1IAk8BfzEYCJpMudzvyV4v3y8upvXMKGeO97N6def6LLfxSUsLdwhB1G7HbDbjE4Khu3Zx6vr1jDzjjM6/IIVCoVAoFIojlA7DeaWUH+9j2+auM+fwMrK8nIXLlvH8+PEkDQbCdju3kilcYj3QyQfBhRfCn/4EqVS2M6iUhD6x8On8Yi4Nh/lmbS2TS0p6pMi5aMwYfjhpEhe+8EJu20/ffJObp09n3pAhvFZdzU/ffJOlF13UfUZ2kvbe59PJhAn/h4xntS3E1G2z8Z9x43CnUtwIaBdgqugICbzR2spvssXSaGqiuKgIAZywfTtTamo4fd48zSMIVjc381spaSoowGQ2gxBY4nFOXb+eq088EafTSV+nk7FjYf78zs0lgec8Hn4dCJDU6SAUosLp5Or8fMa2tlJ1RueLtikUCoVCoVAcyei624DuxOl08r/TpvHjeJxe5eWYTCY2xGJc09jIDper0+NPmQIPPQRGo0Cnk+jzJH3OyMjgVS0t3GSz8f0dO/i0peUAIx15TOvXj+JsS5o2hBD4s/1ZfdEolQ5Hd5jWZQwEfgz8hUwp7LxUKtNIWAg2lZTwfTKx8/HuM/GYYBvwC+BOgwGP1Zpp4SQlvSIRHrHZ+JHDwTezQlUrJPAPj4dLgkHWRCK4sp8Ps4qL+U04nBOqWhEFfg88oNOR1OmQQF4iwYXbtvG/hYWM06A/tEKhUCgUCsWRTo8ulKQFTqeTxU4n5cBdsRgulwuXlFzm9fKgEAzsZDGWyy6DUaNg6VLB9BmCwJQ87s72OJXA1rIyrjMamRwMMqWujpN6qKcV4N65c5n7xBNc9+abpKXko0suOajzJJn+lBGgrrmZnS4XvZxOKsrK0JO5o9La1ETLrl0MqqigVze/PyXA1QUFzInF+FM8zpqyMkwmE3Ey4aEvRyLMravj9ELtKsAqwAM85PezREpM2VY0PiEwJRJMrqnh+tGjqSwt1Tx/sx64D/hYpyORFY76dJq59fX8eOBAxOjRms63ormZ3wC+/PzcaywOBlnw5ZecOmuWpnMpFAqFQqFQHMkc82K1jdOAzxsa+Gd2MdpQWMj1QvAg0Nml75Qpe+at9Uomubm5mZqyMhACvU7Hf91u/muzUd7czDkmE/MLC+lp2Z4Pr1jB7+fO5ZsjRvDPdev47ksv8fiiRbgjEXQ2G5jNRMmI0g+TSRa2tiJsNqTZnBGssRiuSAQcDohEcMZimEymzPZoFAoLEdEogyIRnBYLBYAuEACPhxEOB+OLiugPmIHly2HpUjTJGdwfx5WX8zsy/TwfIRMmHIvFqGtuZp3ZzGvbtvEboL8SrJ0iTib8+h/RKHVeb6aAkhD0Ki/nO4WFTNm2jWGjR2t+YyAFPOb18hRgyLaJ8QlBSSDAaevWccH06RnPukZI4FmPh98Eg5mw30gk06aqqIjT3G4GzJqlbn4oFAqFQqE4plBitR0XW63sWLOGD4YMASHw5OfzE+A2oI+G84wuK+ORdJoVLS0s79uX99PpnKe1yeHgCSF4OTvn8T4fzvp6JpSU0K+bF6opoDUUwh0Oo7fZqCfjEf0M8MXj/GXVKqbNns0zgBwxgk9eeonXEwnQ6yEWw24woDcYSCWTtESjpINBCIVwOp2YTKZcHmhbwZpoNPqV7QDN8Thxi4UtsRiurJf6lUAAp9WK2WRCtxxenS1JxSAvD955R3BSFwlWgOFkQjaXAPeFQjlbN/bqxY/1en6DanVzKKSBF9xu/i4lEbs91xpGAv2am7nS72fe8cfDCSdoPnctcGcoxMd+f65NTGV5OZcXFDChtZV+06drHvb7EPCfdmG/xmSSb9bVccWQITBmjGZzKRQKhUKhUPQUlFhth9Pp5CbgRb+fF/r0wWAyUR+LcWk4zM/SaWaWlGg613ynk/nAF83N/Kaxkc1OJ2mdDrPZDMCWWIwPfT6w2RDRKKPDYUZarQwA8ltbSTU2MrCsjEHl5V+7snBb6G1dUxOvLAmwYVMF486w0XtKpk3Gh2+FWPl2isrTjASBZ4FoMkkwmQSjERIJIskkUWBjMkkwEsFhs/Hh5s2MO+44NtTV4Swqyiz0AaQkmUyiNxhIJpM5G9pEqcNkojwvD6JRdKkUCEGfsjLyAFteHsl4nIROR9xozL0/+xO3695KkozrIS2IJSQ/XBLn6il5TAGGgqbesDZ0ZIowDUkmuaGxkY0VFSAEQYeDnwAXAN/qormPNiSwHHg0HGZlWyuaUIjioiJKQiFO2riRAR4P4xYs0HzuJPBM9uFOJnPXV7nPxw8CARaMHAljx2o652fNzfxGCPwOxx7e2zPWrOHsmTM1nUuhUCgUCoWiJ6HE6l44nU4uczqZANwcjeJqagIp+RHwXYOBHxQUaN5yZlxZGfen02xtbKSxTx82mkx8TqZIUXuPYm0igQd4OxbDFQqB3Q7RKM5YjHyTCQegD4eJBIPYbDYsNhuSzOI/HA7jyXpEsViIAdFYjJoP09RcOgCZEIjfSvpeIrCOSrDx/yzIuEDcKxk3PUVAD/4toKvQYeyV4q+vvUZ1fT3BSIRr7ruPM048kcWzZ/PssmU8t2wZ5rw8fnDGGThiMYzJJHmpFH3NZgoBmU7zcnMzU5ctw5xO843TT6eqoAAsFlyFhTQ0NGRajVizNZktFlz5+TQ0NFBeWYnFZMIP1CST/HftWnx5ebjz87GWleEGbJOjCGOm8I4wStInxXmePJ4HzJEII5uaONdiYUQn85H3xaDycu6Xkpf9fl7q0wdpMpECHo3FeMPj4Wc6HUO6YN6jAQn8t7WVv6dStBQUEE0kcte/NRbjW01NfLOkBNeAAVROnap5SOxa4HfhMFsTCczZnNiglEzasoXxdXVM7Gx5372QwBMeD/e2hf2GwzidTs4tLORUt5v+M2eqsF+FQqFQKBTHNEqs7odxwPdqarjTaCScl5GnLwBbyVSEHajxfHu32IgCb6ZSPLFrF00OB95sj0XYv0fRH4vhamnJeKKiUZwGw+6cz7bt2QVxW3htaLkJGReQFsiUZPsfQegNyDSZbQkIbYEdb4NM6RE6O70WevjxjBlUFRdTYDJBJEJzXR2GZJJvnXwyIwYMoNBuByAYDBIIBHAUFGDP2o/VypCKCmYdf/xX+l/ur9XI3tuLgf4lJYycMGEPcRsDPh8b5b5frWVtdRWp2XrKp2U84m35pJuBFyMRzgwEuNDhYLCGf8c2W7/ndLIAuBtY3a5w10WxGHfrdEzRuAhQTyYNfAQ8Hg7zWTaMmmiU4qIi8lIpTqitZdyOHXzr9NNxOp1Uaizg3GQqPL/Z7v/EJwQnl5TwG5sNSkqoHDVKU+HYDNwLvL9X2O+iujouU2G/CoVCoVAoFEAXilUhxF+BBUCTlPL4rpqnK5lcUsK333yTt4YPp66sDLPZzHbg/4DvkAnr7KreP2bgzOJiJg0YQENDA6VmM1GTiVpglRAs9XgI5eURy8vDZjIB+xex+9uebzJRPLGFprwC0jHIuWHToBMSqZPo9WnKkYgUSCkQaUnvnUamDczDnp0Xi4VgVVVGlDoc2LNCFcBut+/xvA2LxcJYDcIp9xaxJuCk0lIGfSeVed8qK2k0mVgOvNEunzQNLE2n+TgWo7fHw4VGIzM0DPMGqAB+Ddy5axfPCYEEgiYTPwO+vWUL33Q4jmnPWQJ40ePhX8kkvvz8PTyphlSK6W43F9jtBIqKqBw5UvP3Kgn83evln1IirNbc/4khlWJKdTUXl5dnrtGyMs3mlMDzHg+PAlitubDf0kCAeatXc5aq9qtQKBQKhUKRoys9q48DfwD+3oVzdClOp5PzTzuNUxoa2OBw8O9se5Ik8KdYjFe8Xq7R6Rin4WJ2Xza0X6QPAU7Lz+fCXr0yHsWSEsrNZiJATTzOS598QlpKdEIwe9YsyoCWRIJ3Pv4YXTKJKZ1m4Zw59CsoQGc245pm5PWHq3n33d786182kknIyxPcdluA7duDnH66mVcfNKDfDqRArxeMGuVgb/25P1HaXbR/3/oAE4FzEgn+sGoVK/v2pb6kBL1Ol/N4fh6PszAvj2scjk5Xf26PAbjMYiH+8ce8cfzxxI1GfOEwjxiNLKup4U6OvWrBfuB14LlIhM2BQMaTGolQXFSEMZ1mxI4djN++nfPnzMFZXg5dEDa9Cvh9OMyqtgJKgQDFRUUMcbk4aeNGChIJemvs3fQBdwaDvN72mgMBKpxOvldQwImtrfRT1X4VCoVCoVAo9qDLxKqUcpkQon9XjX+4aBM944AZwD3AmnZhnZcAZwYCfM/hoF832NWGFTi+rIyy6dN3h8VmQ00HlpbSb8aM3dv3Cru96CInF10EV1zRvt1LPpAPwGfPwoUXQm0t9O8PfbQsjXwY6eV0cvXkyTQ0NBCzWnnG7+eddJq0EAgpeS+dZgNwutfL6G3b6LfXe3WoOJ1Ofjh5Mqc0NfFISQlbEwkksL6ykh9KycUbNnBycfFRL1S2AP/Kvud6i4VoPJ7zpJoSCWa1tnK+zUbQ4aByzpwueT+ayIT8fgT42nlyi4NBrgiFmNGvHw1G41f+TzrLcjJ37nakUrk5C0MhLt+6lW+OGKF50SaFQqFQKBSKowGVs/o1qAJ+C9zV0MDTQpAWmdqu76XTrAJOAs5D+3zWr8PB5nzui737wbanT5+eK1Lb0/59GOBy0XfpUj4YPJjqXr0wm834YzEe8PspMpk4/b33uFijFiVOp5M5TifDXC5+smMHm7LVgnfE49xmtXJcbS03C9ElRZ+6k+0uF68GAqzu1YsagwFXW59Uv5/ioiJs8Tijt29ndH19Jie1izypUeDfwFPRKP5YLFdAKZJKMWnLFk7YuZMZ8+cf1P/J16HG5eLBRII1ZWWYTKZc2O/ourr/z959x7dV3osf/zySrKPpbcuxjbMTsgchjDACCTuslpbZUmhZ97aFjtt5uS3c9nbPH120pe0ttJRSuFDKLHuVFUhIyE6cxHEiD8my5tF6fn8c2bETZ5DIsZ1836+XXrbOOTrnq2NZ0vc83+d5OGn9ehacc07RjiWEEEIIcbgZ8mRVKXU9cD1AU1PTEEezb3as+Vh5/nleGT+ezYW+rGC11ryCVXJ6GdY0KYeD8qYmvt7cXPR9DrVAIMDlixdzamsrEY+H+w2D5ZEIaE3I6+Uv8+djxOPcQvGmnBkdCPBT4JHubv5cXk5HImHNyVpXx002G6dt3sylbjdTRnDSqoF3gYe7u3koHiddUgKdnfi83n5TwVxqmpxbWkrbIAxg1CMHPAX8Cdhhmr2je0eU4oMVFVzq85GoqaF+1qyiH/+xzk6+EYkQMwwIBq3BoQyDL3q9VHq91J9zzmHfmi6GH6XUUVjdc+qwuu/fqbX+ydBGJYQQQgxsyJNVrfWdYI03Mm/ePL2PzYeFQCDANaeeylmFctJ/Ggav9Vn/BvCSaTI6HOZsp5OzKyvxDlWwRXDL7bcPdQiDpm9L2snAPVrz03yejM1G3mbjsVGj2BaLccGGDUyuq9vv5OLH//VfdG3ZstdtZiSTLI3HiRYudnQDDwEPA/V2O7WmSY1h4Ha7ASvBH65/Cw1sBv4eifDPbJakz0dKa9J2e+/AXnatOXrHDqZu2UJDdzfnL1lCIBCgYRASNg083tnJ7/J5ukpL+w00Vt3dzamrV3P+hAlMnjOn6C25Iaw3tEcdDmKG0fv8Z7S3c3tjI96qKijyYF5CvA9Z4HNa66VKKT/wllLqKa31e0MdmBBCCLGrIU9WR6q+Sc7xQDPwF+BlrPlLe/q0vp5O81uPh/kuFwuA4+jpCSqGGzvw0fJyZmYyfFdrOsrKAHgqFOIVt5tzX3yR604+eb8S1q4tW/j6mDH73C4Wi7E5mWSlYdCZz++23pXNMtnppDaV4tdr1rzfpzSodgSDvN7RwebGRlaUlbHJNAkWWqaJx6msqAClqIjHmbFtG5+ZORPfmDG0Op1F7xPa13Lgl/E4L/dMg5NMEggEqHM6Ofa995jU0oLDZqO+vr6ox9XAfeEwdwG6z0i/HtPktNWruWX+/BF90UocHrTW24Hthd+jSqlVWL1cJFkVQggx7Azm1DV/xhqTqFop1QJ8TWv928E63lAbA3wR2Ar8qKODYJ+pYmKmyVsuF29hlZPOwOrfegLWfKFHGg3EgC4gDGwIhdgcDuOuqsIoLyfY3U1XJEJlWRkVpaVEIxHMUIijysvxa419+3ZmV1cPSoscwOyaGv4A/BH4fSH5ihkGf5s3j/JolH8PBIpWFuzz+Zjm8zE6FuO17dvZXlbW29IKkHI4WJbPg9PJs+k0/7VjBxMiEU6sqGDCEJQKr21r4/lIhI1+P89Ho8R9PohECLhc/aZIcqfTnBgOc67Hg7uzk4YZM6z+qDBoSepLHR38Lptla0UFqWy2NxZnNsui1lZuGTuWrrlzaa2rK3qy3Ax8Lx7npT4j/QYCAT5cXs6pmzYxcf58KfkVw05hEMQ50K84SAghhBg2BnM04MsHa9/D2VHAFx0OGp9/njW1tWysq0PV1fWu11gtP8uBn5omga4uZrrdzC4tZVzh8SVDEvnBS9M/Ad0YDmOrrkaXlREGWuJxtqdSZLxe7IWEzDRNgrEYOBzWoDt2O6GeQXi6uqhUilAkAjYbRKPWgXw+bMkk07ds4XilmBoOM7XIA+OUANcCjdkst2azpBwO8jYbfwsE2NLSwqdKSjiqiMfz+XwcV5irNpbPsyyRIOT1klM70+KM3c5DpgkuFz9IpZiZSDA2l6O8vZ1pZWXMrKqiFquF+GDFgSCwKhRiRSRCd3U1mxwOVqZS4HSCaaKdTmDn3L1lhkEgGGTC9u2M7ezkwvPOs0akri7mZEC7ew+4KxbjqUTCet0Eg1RWVGDXmmlbtzJ/0yY+fNZZGOzfQGPvRxKrP+zDQLhPglwej/PxjRu5dMoUmDWraMcToliUUj7gb8AtWuvuAdaPqPEkDsaYl60Z05sX7F7dIoQQQ2nMl/4BQPO3zxviSIaOlAEPgkAgwJWLFllTxdTUoAyjd/Cl1VgJq1koFd6hNctMkycNA8MwsGMlrOMKt7GFm38InofG+jK+vr2dde3tuOvqsFVW0oU1Z2QX0BqP05pIkPH7yQ2UgBZa3QCCnZ29JaKBQKBfP8KeVuh4IeEY6D56Z5fmnFIs05plWmMrLWVSczMf3LKFhU1NRU1Gzqyqoj6f53+0ZrvbTSgc5gmteSMa5Tt2O/OLmIj1nat2lNNJJBaj0+XivUSCSKHfas8ZUFqzMZlkeTwOdrt1Tn0+7FrjisWoc7tp8HpJ7thBLBikvrqa0Q0NxLq6CIXD+Csr8ZSVEYpE2NHdjb28nLzfz45Egu2mifZ4AKy/o80G4XC/AZLAqhJwZrOM6+jgYz4fi8rKCPdM/XL88YPakqiBZVil9yuASJ8pYWz5PPO7uviox0Pa56P+rLOKHosG/h4K8WutMX2+3pF+Y1ozq7mZ4zdtYuG55xb1mEIUi1KqBCtRvUdr/cBA24zE8SSEEEIcfiRZHSS7tuBcVLiFgH8BfwuHaeszx2cqlcIwDHJYJYXNwDOFx5qmiSMep8blIuDxUAr4sPq++gu3UiDd2UkoGKSmtpbq6mo09N4A2js7aW1vx19bi6eykiTWlB4pINjdzY7ubigvJ+fz9SakMdMkmEyC1wuxGAGvF8MweuPqTUAL/QIHSkBTqZQVQJ9lJBLUGwZjHQ5a29pwmSZGLsf08ePZuGYNKp9H22xMmjKF99avJ2W3YzqdxA2DTq+X7kLyBpBXitV1dXwTeKC5mduVYnIRS2Sn19TwO+ArLS38s/AcQh4PX3Q4uAn4IPvXmpnKZjnld7/DzOXI5vNcMmUKt512Grc+8wwPrVmDTSlqvV5+f9FF1Pv9+Hw+GoBxDgeRaJTXtIbmZrZWVtLp9+92TuOxGLFCP82NiQT+dJpu04TycshmKQ2HiUajVvIZiVBps1mt1lpDOEwlEAqHe8tY+yanqnChwK41ga4umkIhLhw9mkB3N41jxhAoDBhU7JbLXeWw/n/+GI/zXjaLy+XqTRS7gUnbt3P8pk1cdfrpgzYNzkbgx/E4z8di/S6+HGsYfNDrRZWVUX/uuVL2K4YlpZTCmm54ldb6h0MdjxBCCLE3kqweYpXAucAxSvHXF16gtbSUzrIyqufNow3Yscv2PS2waM22WKw3IdyVaZoE43ErqUwkCJhmv+1617vdAyedPaW3oRCBkpLedQMlnntal0kmqTcM6h0Ogh0duE0TbzrNwlmzKNeat994A3cqhS+b5eJzziEA4PUSbGqyWqEL/QiDJSX97zudvfcB1q5dy9LmZjZUVbG2vp7Wiore57mqro7rslluDIe5vKKiaH1LDeA/SkrIr1jBC5MmkXU4KHG7+Y1p8khXF5+y2Ti2pmbv+7Dbeebqq/E5nWRyOU763e84Z+JE/mPBAv779NMB+Olrr3H788/zyyVLeh/X0+LaZJrcdPTRtLa2UuN2s1Vr/rxmDR1eLxGvl3yhZa/n75FMJPodP7mXVutd7ztyOWrSaao6OylNJKiNRrns2GNpcLtpC4epnzbtkCZjCawpaB4Gtva5SBJRivraWs5zuTjV40EbBvWnnz4osUWAu4EngK4+Jb8e0+TDW7bw8YkTUTU1sI/XgRBDbAHwEeBdpdQ7hWVf0Vo/OnQhCSGEEAOTZHWIBAIBPnTWWTuTskJLWRyrVXUjsAn4VyRCez5PbpcW2F3tLanc1/q9rSs1DHQqhds08WQyHFtRwVFAGZDP5Xhn6VIrAc1kuOSss6gDKwFtbLSe2/jxBArJ5LEnn9wvCe17Lt7v/UmTJtHa2orLMHi7rY2/AhsKrWhdmQzfyWZ5t6SEr/h8RSuhrgsE+NKcOZzT1saD48axAXpHfb4O+FB3N/9WWkrFHh6vlMJX6OeZyefJ5HIorHPcI55O7zXB7nsuGoFxs2ZZ53TUKAAefPZZuktKMF0u6o4+muVbtpCx28nZbDSMGcPm1lbI53EAUyZMYMO6ddgzGTzZLCdMm8aaN97ASKXwZrOcv2QJNDRY+5840ep/CoM2sNVAWoF7u7t5PJcDj6dfy70tn2fqtm1cG4mwaMYMK0kchEQxA/wD+H0qRcg0cblcuFwuosCMzZs5ftMmzj/77KJdGBFiMGmtX6J4U0cLIYQQg0qS1SE0UMmkF5hWuAFcqjUPP/MMcbudtGEwf/FiDCCKNS9ntHBrtdtZFomQw0qKxldX4yvsQwFJh4P1XV3Ys1mc+TyzKyupAdxASmveXbuWkkwGTybDuQsWMAErIXW5XATLy62EpbGRQGmfiXcqKznxxBP3KwHd07JinLspwKJgkPvWruX+qirChfLVF0yTlabJ57Tm1CL1LQ0EApwZCLAI+N6mTdyrFPnCIEhPaM07wOKuLtpDIWLV1b19UHvk8nmOufNO1odC/Puxx3JcYyMAX336af53+XLKDINnr776fcXT95xefM45/f4eq2w2Nm7cyLhx45gyYQJBv3/vrdhe725/z0NdzprFKvV9DHijb6t/YYTdaqeTSZs2MX3LFvyZDNP7tEIXkwZeBP5AoTW3ra23NfeMykqu9HjA76f+7LOl5FcIIYQQYhBIsjrMBQIBLjjvvJ0JxJ6SLp+PYCCwczvvLjM6er0E6+p2Jp3+Pu2N5eUEZ87c4zH2lmQOdh/F/RUIBPgw4Hz0UV6aMIHlo0cTi8eJac0twGftdq4qYlmwHbjG48H27LO8OHEiW2pqrHk1TZOfd3dT4nDwTEcHC5Siqs/fwm6z8c6NN9KVSnHxX/7CirY2ptfW8s1Fi/jmokV868UXueP117nttNMOKK5d/x5TpkxhypQpe1y/r/uHUgvwQCTC47kc2UKZet9W/8pYjAvSaa6bMIGuKVNoLSsbtPlan+vo4Df5PG1lZf3iKEskOHn1aj44Zgxz5syRkl8hhBBCiEEkyeoIsL8JxL62GwlJ58EIBAJcdO65zG9t5fXOTu7y+0mWlJAHfm2z0Q78O1b/02Id7+rTTuOM1lY6vF7+zzB4tzBgUc5mY1t5OY/Y7YwzTUZFItR5PL0treUuFwtHj+bx9euZ3mcQoCtmzOC8P/3pgJPVkaYbeAFrMLEVpkmwZ8CnQv9st8tFVUcH07ZsYUwoxPlLlgzKFDQ9NgC/jMV4smcanFSqtzV31po1TNuyhRKlaDjxxKIfWwghhBBC9CfJqjis9CQx9cEgyaee4h+zZtFWVobL5eJx0+TNSIT/UIo5RWoR65s0nQ7cl8/z81SKGIBSaKVYkUqxwulEt7czK5NhXkUF+UyGf27axBcXLGBdZycTC6PpPrxmDUcP8rykQy0BvAE8FovxWjZLidu9WyuqL5Vi4fbtXD9mDLnGRlptNupPPHHQLqhsAe7Bml6q7zQ4jlyOk3bs4HOjRxObNYvWmppBa80VQgghhBD9SbIqDkuBQIDLzziDE7dv56nycp5n52BIn8jnucXhKGpZMFilwZdXVHBqOs1/5HIc5XbTns/3zg+7LZvlO/feayVBWrNk0iRml5by7088wYauLmxKMbq8nF+ed/hN/BwDXsNKBpcCcdMkGAqB1sSfTaFWVFN9sosJ3jYmbdvGuFCIC847j2qAQWz13wb8Ohrl2XweY5dpcCa3tnLixo1cvngxXsB7GFQfCCGEEEKMJJKsisNWT6vnsUDZ+vX81uEgpxRZm41f22ysBW4Bqop83PpAgIllZZzndLI5keBfiQRhj4fG2lq+cd112B0OctkssXicf+TzXHraaUytqGCsy0Uph8cwnRpYD7wDvByLsTybxVFoQYWdI1DH3nLSfEUtOqPYZjj4z7+Op360g/oTThjUxLAZ+CvwT9NkR8/cskoRCAQ43TA40+NBuVzUL14sCaoQQgghxBCRZFUc9hTwIb+f+HPP8cT06XT6/bhcLt4BPp5KsWTLFs4vKyt6UqKAMR4P1fk8nfE4XaWl7HA46ASyhXk680oRcbt5G3gPcGYylCWTjCopodHtphSwFTWqwZHFKqV9LRzmX4kEWysrybjd1hy+hRZUurt75wmeXFKCfcMGNv+lkk3pAFor0mlYvryS886rHLQ41wF/wWrlBUj2KT0e097OJ6JRLpg2bdCmwRFCCCGEEPtPklVxRAgEAnxs4UJOa23l1bIynjYMUoXpSP6fYfBISwtfs9mK1pe1L5/Ph8/nYzQwC2tQoTXAykyGZEkJKIWj0NrankjQrjXr02l8JSUYDgeVgDeVYk13N690dDCruhrvXo84eDQQAVZ2dPBOVxfdtbW0lZbSTKG0Nxq1EtP2dgKBQL9+qIFIhDOzWa4cN45RHg/BadN47JwunntYkcmA0wkLFw5OzEuBe2Ix3szlcBXKfcGamqm8s5N5GzbQ0N3NcYM0DY4QQgghhHj/JFkVR4yesuD5wCLgP2Ox3kRqU3U1nykp4TLgCqB0r3s6OKXAsS4XU7JZ2uNx4qWlhB0OmpPJ3v6taE02m8XucLA9myVmmqy22bgpkSBgmtQaBvWAPxrF1tnJ6LIyxlRUUA6UAzvWrKF1wwYmjB3L1D5T1wxEA63BIBt37MBXX4+rpoZurKR6S1cXm7q7SVdWEvf5CALdpkkwkYCSEujqImAYuw2QpLSmJB7nxJISYitX0tDRQWkmw5IlS+hpvw4EAnzsYwEmT4bnnrMS1RNOKN55TgPPAg8B6/u08EYK5b4LDYMPGQalDQ20KiUDJwkhhBBCDDOSrIoj0nTgR9ks/7ltGysaGkApnG43/wCeAy4FlgAlgxhDT4trj1m5HG+3thJ1uYgbBnavlzRWyXCm1UZqdQmZN0tILUoRMQzaTJNgOAxKQTRKwOPBMAxi0SidLhdMm4YCAt3dVJaW4gCyySSJRAKnx4Pd7SYDtDyfZuujBt7javFWJAmYJoZhWCW83d1WAh0KESgpGTApTaVSGIbBUU4nNW1tBLq6GB0KcfXChdRVVhI85pidc/gOkAyecEJxk9QQcG8kwiMDzNcKMKm1lY91d3Pe9OnWA2TgJCGEEEKIYUmSVXHEGhsI8EPg9Y4Onh49mg2F0tA48AvT5H+jUa6w27moouJ9J63lTU18vbn5fceUVIpEOIzH48GdyWAC67aleesZB5H8BCJXBgg8loGF7DFpjCcSvfvTQFcyiVFaaiWf7e1W0haPEwgESCw1eOucEvJmGcpZyrh7gqQWpfaalFYaBs5YjLJ4nNpolEtmz2Y+4He7CTY10epwUD9zZm8CeCjm8NXA28DjwAupFNt3ma+1zDAYu2ULMzdvptw0mSflvkIIIYQQw96gJqtKqbOBn2DN6vEbrfW3B/N4QrxfgUCA8wMBlgCvA78DNpomwWAQtOYbSnGfy8WH3G7OAfz7ud9bbr+9aDF+61vwf89qcijsGc15rxpctxCWZ7M8vHo18ZISki4XoysryQJup5ONsRhZu528Ung9HmDg5LbzOYN8GsgrdAZyL9mZdpaDUYCy2di4eTMu06QsleKiE05gOuBzuQhWV9OaTlM/fTqBqp3jKR+KxLSvtW1tPBSP805dHd1uNwAJ0+x9nv5kkrO3beOGceOITZpEq88n5b5CCCGEECPEoCWrSik78DPgDKAFeEMp9bDW+r3BOqYQB0oBxwHHAHe0tPBnrUmWlKC0JphO80e3m/uAxcCFwKhDGNvCheB0WqPlOp2K0xZCDbCoqorps2fvLLH1F1LpigpW7djBxo0bGTNuHBNGj7bKfU2Tx156iXw+Twmw5Kyz2LoQznEq0mmNw6G5Y5GD87yF4Zv8foKTJ+/cf3V1b0yHOintKwO8ATwci/FEMkneZusd0KlnnlRfVxfTN29mYkcHF5x3nsyTKoQQQggxAg1my+p8YL3WeiOAUuperO/5kqyKYcsBXO7z4Xz8cd6tr2f56NG4XC4ATOAfwIOmycTOTs4zDM6oqhr0WvoTToCnnx54EKI9JY1TpkxhSp+BlQzg6NpaKhYv3pl81tYyrrZn34qFCxUnnNB/2pihTEr70lgjKD8DvAjEgEguR76wTmmNLZHgQsPgbMOgpK6O1nye+uOOGxbxCyF2GvOyNSFX84L8+97+/T72QGLbeZwmmg9mX1/6B83fPq9Ike3lOAdxPgdj+4N1uDyfYhxnzJf+Ye2jCK+jQ/13PBAH+z8zEp5jMRXz9TGcDeb37AZga5/7LViNV0IMa4FAgA+efTYntLZSW1bGWsPgQWATWP0+g0F2aM2L2Sy/9nhY7HZzGnA0VgvtYCjWIEQDJZ/FHuCoWDSwEXgZeCqRYHMms9u0MxGlGBUOM2PbNm4+5hiO6nnwMEmyhRBCCCHEgRvMZHWg7+16t42Uuh64HqCpqWkQwxFi//VN6hqAhcBy4OehEME+/T470mkec7t5DAgAsyMRxm/dytyaGkmWDoAG1mIlqC8DbRQuEHR09Jt25ijD4HTDYLrbTb6zk/pjjpHzLYQQQghxmBnMZLUFdjZ0AI1A664baa3vBO4EmDdv3m7JrBDDgQJmAbfbbPzvq6+yqq6OtfX1vSXCAFtMkzciEfD7KQ+HOc/t5rTSUmYArj3tWBDHuhDwQnc3L2cypHy+3tZT2DkwVEk2y8RgkA/G43xwyhTralhNjXUTQgghhBCHncFMVt8AJiqlxgLbgMuAKwbxeEIMukAgwEdPO43W1lZGlZXRaRg8h9WPMtJntN0ut5tHtOZFrH+yqViDNx3V3o69pYWGI3hE2iywGnincFsLpEyTYFdXv2l1DMPAC8yz2UgvW0ZjeztO4OQlSwat3FoIIYQQQgwfg5asaq2zSqlPAk9gTV1zl9Z65WAdT4hDpW+JcB0wDauO/alcjt+2tdFcVUXW4ehtdc1itRy+YZoEk0lcfj+Bbds42+Xi2LIyJgFlQ/NUBp0GOoENwHrg7ViMZZkMyuMZsPVUA+50mtnt7Vza2MgswOH3EzzuuJ0DQx2hSb4QQgghxJFmUAcy1Vo/Cjw6mMcQYjgoAc6trOSYTIbNra3Em5rYbBi8Bb2jSfYkZMmSEjZXVXEv8FhhXQAYFY1S3t7OjLIyZlZVUQvYDv1TOWB54L22Nt4Kh4nV1dFeVsZ6IFJYb5omwVDIaj2NRntbTxUwxeEg09zMUR0dNEQiXHjeefRNSYfLqMRCCCGEEOLQGexZN4Q4ouyaVH0Mq2XxbeA5m42nsllSDgcotXt/13AY7HarDNbnw2sYjALqsQZ5cofD2HbsYFJ1NRNravAweKMPDyQLbGhrY1VHB6qujkxlJTuAYOHWkkqxLZUClwsiEQJ9Ru6F/q2npckkc9raOP+oo5gF+L1egkcfLa2nQgghhBCilySrQgyyKmAxsNjv55OJBMvb2og1NNBhGKzFmp6lb39XpTWpVArDMNiKNf+TaZoEo1HweCCZJGCaeA2DcqAcq4y4HIi3thIJBqmvqWFsYyMl0O8W7eykvaOD8poa/JWVZIAMViKaATq6umiNRHBUVqL9frqh9xYyTYKpFHi9EIsR8Hr7JaMx0xzwObiB8UCNUmxfsYLacJgK0+T8JUuk9VQIIYQQQuyRJKtCHEJ1gQB1uyRkWeCNTIZ7V68m6PfT7fXira0l1Web1B6S2Q6go7BNLBqlM5OBykrI5aiKRvH5/b37ME2TYDxutXwOkGyapkmwu9u6Ew4TcDr32DLaN4YeLpeLdCZDZTRKIBrlAr+f+VgtwwqgtJTgvHnSeiqEEEIIIfaLJKtCDDEHcEJ1NeNmz7YSubo6Am43Cay5nlqBVVrz9I4ddLndpAyDsj5JYo94IrHb/b7J6r6SzX2td7tcmNks3lSKslSKkysqmIg1yFQAqDUMIn4/rdEo9ZMnE6is3C1GaT0VQgghhBD7S5JVIYaJXRM5DzChcDulvJyLxoyxktnycgIuFyms8tww1iBG75omr69dS9ZuJ2uzMW7yZKqht9S3y2ZjRWcn5PM4tGZaZSWV7CwRjgMrm5txZDJ4MhnOmD+fMUBp4eY1DNp9Plq7u6lvbCRQWrrbc3BJMiqEEEIIIYpEklUhRohdk1lX4VZbuD+/qYkT43E2btzIuHHjmDJqVP8d+P0EGxp2luH2aXUFoKys/yBHVVX7jEEIIYQQQojBIsmqEIeRKVOmMGXKlD2u31eyKcmoEEIIIYQYLkbSNI5CCCGEEEIIIY4QkqwKIYQQRxCl1NlKqTVKqfVKqS8NdTxCCCHEnkiyKoQQQhwhlFJ24GfAOcBU4HKl1NShjUoIIYQYmCSrQgghxJFjPrBea71Ra50G7gUuHOKYhBBCiAFJsiqEEEIcORqArX3utxSWCSGEEMOO0loPdQy9lFLtwOZDdLhqoOMQHetwJefw4Mk5PHhyDg/e4XoOR2uta4Y6iOFEKfUh4Cyt9ScK9z8CzNdaf2qX7a4Hri/cnQysKVIII/21NpLjH8mxg8Q/lEZy7CDxD6WBYn9fn83DauqaQ/mlQin1ptZ63qE63uFIzuHBk3N48OQcHjw5h0eUFuCoPvcbgdZdN9Ja3wncWeyDj/TX2kiOfyTHDhL/UBrJsYPEP5SKEbuUAQshhBBHjjeAiUqpsUopJ3AZ8PAQxySEEEIMaFi1rAohhBBi8Gits0qpTwJPAHbgLq31yiEOSwghhBjQkZysFr286Qgk5/DgyTk8eHIOD56cwyOI1vpR4NEhOvxIf62N5PhHcuwg8Q+lkRw7SPxD6aBjH1YDLAkhhBBCCCGEECB9VoUQQgghhBBCDENHZLKqlDpbKbVGKbVeKfWloY5npFFKHaWUelYptUoptVIpdfNQxzRSKaXsSqm3lVKPDHUsI5FSqlwpdb9SanXh9XjCUMc00iilPlP4P16hlPqzUso11DGJw89I+9zd0+ecUqpSKfWUUmpd4WfFUMe6J7t+voyw2Hd7bx9h8e/2vjqc41dK3aWUalNKreizbI/xKqW+XPhfXqOUOmtoot5pD/F/r/D6Wa6UelApVd5n3bCJf6DY+6z7vFJKK6Wq+ywbNrEX4hkwfqXUpwoxrlRKfbfP8vcd/xGXrCql7MDPgHOAqcDlSqmpQxvViJMFPqe1ngIcD/y7nMMDdjOwaqiDGMF+AjyutT4amIWcy/dFKdUAfBqYp7WejjXgzmVDG5U43IzQz909fc59CXhaaz0ReLpwf7ja9fNlJMU+0Hv7iIh/L++rwzn+3wNn77JswHgL/weXAdMKj/l54X98KP2e3eN/CpiutZ4JrAW+DMMy/t+ze+wopY4CzgC29Fk23GKHAeJXSp0GXAjM1FpPA75fWH5A8R9xySowH1ivtd6otU4D92KdULGftNbbtdZLC79HsT5EGoY2qpFHKdUInAf8ZqhjGYmUUqXAKcBvAbTWaa1115AGNTI5ALdSygF4GGDOTSEO0oj73N3L59yFwB8Km/0BuGhIAtyHPXy+jJTY9/TePiLiLxjofXXYxq+1fgEI7bJ4T/FeCNyrtTa11puA9Vj/40NmoPi11k9qrbOFu//CmlMahln8ezj3AD8CvgD0HVxoWMUOe4z/JuDbWmuzsE1bYfkBxX8kJqsNwNY+91uQROuAKaXGAHOA14Y4lJHox1hvRPkhjmOkGge0A78rlLr9RinlHeqgRhKt9TasK55bgO1ARGv95NBGJQ5DI/pzd5fPuYDWejtYCS1QO4Sh7c2P2f3zZaTEvqf39hER/17eV0dE/H3sKd6R+P98LfBY4fdhH79S6gJgm9Z62S6rhn3sBZOAk5VSrymlnldKHVtYfkDxH4nJqhpgmQyJfACUUj7gb8AtWuvuoY5nJFFKLQHatNZvDXUsI5gDmAv8Qms9B4gzvMqqhr1CH6QLgbFAPeBVSl01tFGJw9CI/dwdiZ9zh8Hny4h+bz8C3ldH1P+zUuqrWGX99/QsGmCzYRO/UsoDfBX4r4FWD7Bs2MTehwOowOpC8R/AfUopxQHGfyQmqy3AUX3uNyJlb++bUqoE6wP8Hq31A0Mdzwi0ALhAKdWMVRJ3ulLq7qENacRpAVq01j2t+vdjfcER+28xsElr3a61zgAPACcOcUzi8DMiP3f38DkXVEqNKqwfBbTt6fFDaE+fLyMhdtjze/tIiX9P76sjJf4ee4p3xPw/K6WuBpYAV+qdc3UO9/jHY13oWFb4H24Eliql6hj+sfdoAR7QltexKjyqOcD4j8Rk9Q1golJqrFLKidXR9+EhjmlEKVwd+S2wSmv9w6GOZyTSWn9Za92otR6D9Rp8Rmt9OF15HXRa6x3AVqXU5MKiRcB7QxjSSLQFOF4p5Sn8Xy9CBqkSxTfiPnf38jn3MHB14fergYcOdWz7spfPl2EfO+z1vX1ExM+e31dHSvw99hTvw8BlSilDKTUWmAi8PgTx7ZVS6mzgi8AFWutEn1XDOn6t9bta61qt9ZjC/3ALMLfwfzGsY+/j/4DTAZRSkwAn0MEBxu8YvDiHJ611Vin1SeAJrBHa7tJarxzisEaaBcBHgHeVUu8Uln1Fa/3o0IUkjlCfAu4pfAHeCFwzxPGMKFrr15RS9wNLscqk3gbuHNqoxOFmhH7uDvg5B3wbq6Tt41hJyYeGJrwDMpJiH+i93cYIiH8v76s+hmn8Sqk/AwuBaqVUC/A19vB60VqvVErdh3UBIQv8u9Y6NySBF+wh/i8DBvCUdc2Af2mtbxxu8Q8Uu9b6twNtO9xihz2e+7uAu5Q1nU0auLrQsn1A8audreJCCCGEEEIIIcTwcCSWAQshhBBCCCGEGOYkWRVCCCGEEEIIMexIsiqEEEIIIYQQYtiRZFUIIYQQQgghxLAjyaoQQgghhBBCiGFHklUhhBBCCCEOAaXU7UqpxfvYZqFS6sRDFZMQw9kRN8+qEEIIIYQQQ0Fr/V/7sdlCIAa8MrjRCDH8ScuqEEIIIYQ4IiilvqCU+nTh9x8ppZ4p/L5IKXW3UuoXSqk3lVIrlVK39Vn3YJ99nKGUeqDwe0wp9QOl1FKl1NNKqZrC8tlKqX8ppZYrpR5USlUUlv9eKXVJ4fdmpdRthce+q5Q6Wik1BrgR+IxS6h2l1MmH8PQIMexIsiqEEEIIIY4ULwA9CeA8wKeUKgFOAl4Evqq1ngfMBE5VSs0EngGm9CSiwDXA7wq/e4GlWuu5wPPA1wrL/xf4otZ6JvBun+W76ig89hfA57XWzcAvgR9prWdrrV8sxpMWYqSSZFUIIYQQQhwp3gKOUUr5ARN4FStpPRkrWf2wUmop8DYwDZiqtdbAH4GrlFLlwAnAY4X95YG/FH6/GzhJKVUGlGutny8s/wNwyh7ieaBPXGOK8QSFOJxIn1UhhBBCCHFE0FpnlFLNWK2jrwDLgdOA8UAS+DxwrNY6rJT6PeAqPPR3wN+BFPBXrXV2T4d4nyGZhZ855Hu5ELuRllUhhBBCCHEkeQErKX0BqzX1RuAdoBSIAxGlVAA4p+cBWutWoBX4T+D3ffZlAy4p/H4F8JLWOgKE+/Q3/QhWifD+igL+9/WMhDhMyRUcIYQQQghxJHkR+CrwqtY6rpRKAS9qrZcppd4GVgIbgZd3edw9QI3W+r0+y+LANKXUW0AEuLSw/Grgl0opT2Ff17yP+P4O3K+UuhD4lPRbFUcyZZXhCyGEEEIIIfZEKXUH8LbW+rd9lsW01r4hDEuIw5okq0IIIYQQQuxFoeU0DpyhtTb7LJdkVYhBJMmqEEIIIYQQQohhRwZYEkIIIQ4zSqm7lFJtSqkVfZZVKqWeUkqtK/ysGMoYhRBCiH0ZtGRVKTVZKfVOn1u3UuqWwTqeEEIIIXr9Hjh7l2VfAp7WWk8Eni7cF0IIIYatQ1IGrJSyA9uA47TWmwf9gEIIIcQRTik1BnhEaz29cH8NsFBrvV0pNQp4Tms9eShjFEIIIfbmUJUBLwI2SKIqhBBCDJmA1no7QOFn7RDHI4QQQuzVoZpn9TLgz/vaqLq6Wo8ZM2bwoxFCCHHYe+uttzq01jVDHcdIpJS6HrgewOv1HnP00UcXZ8fhMGSzxdnXYHM4oGIYdesdSedO7NuhfH0Nh9fOYD/f4fAcD9Rwe68ZZO/3s3nQk1WllBO4APjyHtb3fiA2NTXx5ptvDnZIQgghjgBKKanm6S+olBrVpwy4bU8baq3vBO4EmDdvni7aZ/MvfgGNjcXZ12CIHGvRAAEAAElEQVRraYGbbhrqKHYaSedO7NuhfH0Nh9fOYD/f4fAcD9Rwe68ZZO/3s/lQlAGfAyzVWgcHWqm1vlNrPU9rPa+mRi6ACyGEEIPkYeDqwu9XAw8NYSxCCCHEPh2KZPVy9qMEWAghhBDFoZT6M/AqMFkp1aKU+jjwbeAMpdQ64IzCfSGEEGLYGtQyYKWUB+sD8YbBPI4QQgghdtJaX76HVYsOaSBCCCHEQRjUZFVrnQCqBvMYQgghhBBCiMNTJpOhpaWFVCq1542OOQbs9kMXVDEFArBq1VBHUXQul4vGxkZKSkoOaj+HajRgIYQY1nYEg2zZvp3aUaOoCQTIAzkgD2xva2NHMEhdIECgthYboLD6UbS3tRHcvp2mujoaAwHUUD4JIYQQ4jDT0tKC3+9nzJgxKLWHT9m2NnA6D21gxZJOQ+3hNZOY1prOzk5aWloYO3bsQe1LklUhxIiWB6JANxAp3DaHw2zr6sJdWUlJWRkJ6L11xuOEEgmcXi92jwcTiKZStJimNXS8aRIwTQzDAMA0TYKpFJSWQio18Lry8t7HeQ0DJ+AEcskkmViMKo+HGq8XD+AGPEAmEiHV2cnoigrGVFRQBr0349CdPiGEEGJYS6VSe09UxbCjlKKqqor29vaD3pckq0KIYSsLdADtWHNs9PxsjsXYmkyS8/nIut3oPo8xTZNgNAo2G0QiBFyu/sllZydoDckkgUAAwzCImiZojQaU1qRSqd7HpFKp970uC4RNk2B7+85jORz944hErJKlaJSAx9O7rrBjHLEYjW43Y7xeaqDfLR8M0tXaSn19PYFAYJDOvhBCCDE8SKI68hTrb3YoRgMWQog9ygNB4C3g78AvgVuBK5JJFkUifNQ0+QrwY+Ae4BHT5OlQiLWJBBva20mZZr/99U0gKSSQ+1rncrlAKexaU5LPU2EY+LFaOeucTnymiT+VwmeajHI6qQTKgVqnE1c2i5HN4sjnrf0cRBxgJbJb2trYGI/zQmcnT5gmfwV+DtwGXGeaXGSa3OTz8bEdO/if7m7+D3izcB7zB/6nEEIIIcQAvvn97zPthBOYuWABs08+mdfefJOLr7qK2SefzIS5cylramL2yScz++STeeW11/o99tpPfpLaiROZfsIJ/Zb/x623cvT8+cxcuJCLL76Yrq6uAY/9+OOPM3nyZCZMmMC3vz3wIO5r1qxh4cKFzJ49mylTpnD99dcD8Nxzz1FWVsacOXOYMmUKt912W+9jvvWtbzFhwgQmT57ME088MeB+v/71r9PQ0MDs2bOZPXs2jz76aO+65cuXc8IJJzBt2jRmzJix9z7FB0FaVoUQh4QGQkBz4bYZWJlIsCmdxuF292tZNPu2SirV2wIKA7dmVhpGbwmtzW5nc2srznQaVz7PgjlzaMAqv01ms/zrjTewZzKUaM25ixfTCBiGQcgw2N7TWtkn6cTtJlhWRmvPOre7/zqfr3ddrWGQATJAi2ny6EsvYSpFzunkuNNOw41VityqNS9v3EjKbidlGDRWVZHDKmHekkzusSW37/NPOJ0knU4e15pX+57nVIrS7m6muVzMLS1lAjAGOLjhDYQQQojhYcyX/lHU/TV/acFe17/6+us88uSTLH3uOQzDoKOzk3Q6zYN33w3Acy+9xPf/3//jkb/8ZcDHf+zyy/nkddfx0Rtv7Lf8jNNO41tf+xqOfJ4v/uAHfOtb3+I73/lOv21yuRz//u//zlNPPUVjYyPHHnssF1xwAVOnTu233ac//Wk+85nPcOGFFwLw7rvv9q47+eSTeeSRR4jH48yePZslS5bgdru59957WblyJa2trSxevJi1a9diH2CQqs985jN8/vOf77csm81y1VVX8cc//pFZs2bR2dl50AMp7Ykkq0KIotPADmBd4bYsHmdtOk2+T7mraZoEOzqshLS7e8CEFMCbSlHX1cWMQIAaoCSfZ9U77+BNJvFmMnzwzDNpKCvbeXCfj+C4cTuTy/Lyneuqqph+8sk71/UZ0KAuEKBuDyW1gUBgj+W2u67r6a86ubaW8sWLdx6rqs/A6OXlnD116s51Pl/vqh2myec+/WlSoRA5h4PyujryhkEKSAEl2Sz2VKq39DnrdhMufLjkczmSySTbgFXAP9xubHY7NsDb1MQpn/88ZW1tLCgrY2ZNjQwGJYQQQuzD9mCQ6srK3u8o1VXvb6KTUxYsoHnLlt2Wn3n66dYv6TTHH388999//27bvP7660yYMIFx48YBcNlll/HQQw/tlqxu376dxsbG3vszZszYbV9er5djjjmGDRs2sGHDBi677DIMw2Ds2LFMmDCB119/nRN2af3dkyeffJKZM2cya9YsAKre5zl5PyRZFUIctCjwUmcnb0ajhKur2e7zESus69dPNBrtTUr7tpB6TZPGcJg5dXVWK2g2y4pXXsEXj+NUiiVLltCbDlZUEDz++J2J3gBJ5PtJLgfTgcRRFwjQ6HJxy9Sp+P1+fH0S2R6xWIy2eBzt95PxeOjGGmAqmEzS3acs2uVyYRRaie/YsIF7u7qgpIRfJZNMSSY53u1mFjATmWNMCCGEGMiZp53G7d/9LpPmzWPxqady6Qc+wKkL9t4a+37dddddXHrppbst37ZtG0cddVTv/cbGRl7bpcwYrNbP008/nRNPPJEzzzyTa665hvK+F+uBzs5O/vWvf3HrrbfywgsvcPzxx/fb77Zt2waM7Y477uB///d/mTdvHj/4wQ+oqKhg7dq1KKU466yzaG9v57LLLuMLX/jCAT77vZNkVQjxvoWAlcCKws+1pkkwHgelIBQiUFIyYNmukckwqquL4wMBSvN5Nr75JhXd3bjz+f4JaVUVc08/fY8J6aFMOIeC2+1m1KhRe1zv8/kGTmJzOd5rbibudJJwuXA3NBDHupiQy+X6lRe3ptM87XbzdOGxDcDY7m5Gbd/OaeXlHHUYn18hhBBif/l8Pt567jlefPVVnn3xRS699lq+/bWv8bErrijK/r/5ox/hcDi48sord1untd5t2UADF11zzTWcddZZPP744zz00EP86le/YtmyZQC8+OKLzJkzB5vNxpe+9CWmTZu23/u96aabuPXWW1FKceutt/K5z32Ou+66i2w2y0svvcQbb7yBx+Nh0aJFHHPMMSxatOhATsFeSbIqhNinFLAMeLq7m7fSaaJ+/4D9KPv2s6w2DCYCtUDrsmVURSKUptOc35OUVlQQPOmkIzYhHQw+n4+pEyYQjUatVtnC3ygNPJ/PY1u/ntayMlorK/sNBgWw0TR5tasLXC7+XzzOBdEo5/r9zEI+KIQQQhzZ7HY7C086iYUnncSMqVP5w5//PGCyurWlhfMvvxyAG6+5hhuvvXav+/3Dn//MI089xdMvvDBgstjY2MjWrVt777e0tFBfXz/gvurr67n22mu59tprmT59OitWrAB29lk9kP32/R523XXXsWTJkt7Hn3rqqVRXVwNw7rnnsnTpUklWhRCHTgfwBvA6sByImibBri6rnDeR6NfHNPmd7+BbsQJXOo07k2F8TQ3lLhcKa7qZbDLJpkQCj8fDL1588aDiKm9q4pbbbz+ofYxEP/nXv/j10qVo4Lq5c7nl+OO59ZlneGjNGmxKUev18vuLLqJ+gNJhJzDK5eKm6dNpbW0l4PUSNQyWYV2EWAVE+lxwSNvtPJXP8zrgBxYApwDTkCHkhRBCHFnWrFuHzWZj4vjxALzz7ruM7lOa29dRjY28s5/fcx7/5z/5zk9+wvMPPIDH4xlwm2OPPZZ169axadMmGhoauPfee/nTn/60+74ef5xFixZRUlLCjh076OzspKGhgdWrVw+43wsuuIArrriCz372s7S2trJu3Trmz5+/23bbt2/vrfR68MEHmT59OgBnnXUW3/3ud0kkEjidTp5//nk+85nP7Nfzfr8kWRVC9Hq7vZ3H4nGaa2rY7vX2W9e39dSRy9EYDrOoro7pwP2trXxx0qSdLXoDlKgWy9ebmwdt38PVirY2fr10Ka9fdx1Ou52z776b8yZO5D8WLOC/CwM0/PS117j9+ef5ZeGq50B2ba2eDHwYq+X15WyWPzY3sy4QoNvj6W15jQKPAw+ZJkYsxjkOB1eWlVE2wP6FEEKIw00sHudTX/gCXd3dOOx2Jowbx50//vF+P/7yj3+c515+mY7OThqnTeO2L32Jj3/kI3zyC1/ANE3O+PCHweHg+OOP55e//CWtra184hOf4NFHH8XhcHDHHXdw1llnkcvluPbaa5k2bdpux3jyySe5+eabez+7v/e971FXV7fHZHXatGl8+MMfZurUqTgcDn72s5/1jgT8iU98ghtvvJF58+bxhS98gXfeeQelFGPGjOFXv/oVABUVFXz2s5/l2GOPRSnFueeey3nnnfc+z+z+kWRViCNcBngVuD8e5/lk0up32tlJwOHoV+o7vqQE1dxMU3s7o7q7uei883r7mD7InvtRioO3qr2d4xsb8RSGhT919GgeXL2aL/QZ4CGeTh/w6L5O4LSqKqYefTTbWlsxq6t5zzB4EeikMEhWMAha8yul+IdhcK7LxUVYfV2FEEKIQ6X52wMkRW1t4HQOyvGOmT2bV558co/re8qD9+TPv/3tgMvXL11q/ZJOQ5/ZCerr6/vNZ3ruuedy7rnn7jXGH/7wh/zwhz/cPbaFC1m4cOGAj/nqV7/KV7/61d2W/+Y3v+n9/Y9//OMej3nVVVdx1VVX7TWuYpBkVYgj1HasFrN/Yo0kG8lm+/U7zSaTHGcYzAfmAwGPh+DRR9NaWrrHUXjF4JheW8tXn3mGzkQCd0kJj65fz7xCWc5Xn36a/12+nDLD4Nmrrz6o4/RteT0BuBZ4D7inrY1nTJOE04nSmqhp8rjLxePAccDFwFSQqXCEEEIIUVSSrApxBNHAo6EQ/5dOs7miol/LqcvlIgqMaWtjcjDIDccey9hdHv9+Bj269qGHeGTtWmq9Xlb8278BEEomufT++2nu6mJMeTn3XXIJFW439yxfzvdeeaX3scuDQZbecAOz6+oO8hlbNGACicJtS0cHWzs6KKupwV9VRbqwvq2ri7ZQiNLKSkrLy8kBeSAcidDZ1UVleTnlZWXYsBIzBUQjEaKhEIGKCmrLyynBaqmMdXbS3dZGU00NTdXVeABPYd37Teqm1NTwxQULOOOPf8TndDIrEMBhs3qPfnPRIr65aBHfevFF7nj9dW477bSDP2EFCquf6s1OJ2Ofeop11dW8M24c9Pm7vFa4NcTjnNTSwhnl5XIhQwghhBBFIcmqEEcAjTVQ0p2JBG/GYtYgScFg7yBJ1cBZhsFst5ukw0H9sccedMLxsdmz+eT8+Xz0wQd7l337pZdYNHYsXzrpJL790kt8+6WX+M4ZZ3DlzJlcOXMmAO8Gg1x47737TFSzWFPotAFrQiE2dXVhr6pClZVZLcXAjmSSjlQKPB6chcTcNE2CiQS43RCPE/D5MAzDWt7dDXY7dHcTcLt3Lo9ErINGIgRcrt4kv3edzbb7Y+Jx8HiswahMs/cxmVQKWyJBwOVilMdDGVj9PyMRcu3tTKqoIF54fn3foD8+dy4fnzsXgK88/TSNpaX9zscVM2Zw3p/+VNRktUcgEOCC886jtbWVz9bU0GEYPIj1muo5D692dvKqy8WDW7bwTaU4uk9JkxBCCCHEgRjUZFUpVQ78BpiO9X35Wq31q4N5TCHEThp4G7gbWAdEMpl+pb7jQyGuHTWKYyiM8lpb26/fxME4ZfRomru6+i17aM0aniuUql49axYL//AHvnPGGf22+fOKFVxeGG0uizXATxSrVLnDNHkxmeSyZJKE2221mJomwVjMSjL7JJOmaRJsb7cS82i0NzEfaJqdA1kOA0/Zs7fHmKZJsK0NtGZbLNYbU2/SW1IC8TjeXI77AAMoyWRwpFLY0mkmV1XRHYnwt1Wr+NfHP866zk4mVlUB8PCaNRxdGEJ+MPRtVa/DelNvAf4PeCCZ7H2+62trubmkhM8AZyGlwUIIIQ6e1nrAqV3E8DXQXK4HYrBbVn8CPK61vkQp5cSqghNCHALPdXTw+1yO1vLy3uTK5XKRyOeZsXkzs7Zt4/LFizmUBZvBWIxRfj8Ao/x+2uJxAHJYLaFdwP+uXMmtH/wgf04kyDqd2B3W21QumyWWShHK5ehob3/fyWcumaTCMKgsKWF7NIojk6FEa6ZXVlIJpJRizdatqFwOO9aACpVAt9a8s349Op9H2WzMPeYYyrDKg7uANzdtIgfkHA6mVFTgAjptNlZ0dJC22ciUlFBXU4MGtvdJ6vYaay4HQCKbJZZIgNb84IEHSKbTOOx2rjz3XP7pcPCjxx8n2NWF02ZjbHk5vx6kkfj2pBH4JHBmOs3Xtm/nvVGjQCm0x8PPgOeBfy9sJ4QQQhwIl8tFZ2cnVVVVkrCOEFprOjs7d5vT/UAMWrKqlCrFmprvYwBa6zTWDAlCiEHUAfwoGuWRQpLTU+7rMwwuNAxO8XqJl5VRP2XKkPQt7CnfDQFZrbkvkcAsJKXrW1pQDgd5n4+udBoyGXxeL3aHg2xhACgAConeKMOg0eGgPRjEm0rhyWQ4be5cRgPpTIbXX3kFp2li5PNc2DN6scdDsKaG1tZW6hsaCBSSZ0pLCU6caC2vrydQVpicpbycYGF+0vr6egLl5TufTFkZwSlTdq7rKc31+wk2NlrLa2oIFOZPC5omDz39NAmHg5RhcOzixZQAzVrzQnMzUaeTmNtN0mbDBph9nvPnPvQhXC4XhstFLpulIx7nI+edB0r1nqPXAV86jTcep8kwaPB4DknL5qTaWn6sNc+FQjwyejRdhYsjK4BPAWd3dTF30yaaZGAuIYQQ71NjYyMtLS20t7fveaNo1KqwGolyOejsHOoois7lctHYePCXqwezZXUc0A78Tik1C3gLuFlrHR/EYwpxxMoDjwB/BIL5fG9LnT2fZ15bG5876iiqoKilvvuiC3FtALaZJh6Ph1+Ew1RVVNAZDuPxeOjsk5S+umIF86dM6U3QlNYY6TQBhwMnEOnooKmjg1NefplLFy2isawMvF6Co0fvTBgrKqyDV1cz6fTTdy7vkyTtaaCo97v8/T4mEAhwYaHvZ319PYFCCe8p5eWcdfTR1vJRo/iFw8GlQGcux3utrSQdDkynE++oUaSAjl0S92w2i93hIJbNsqMw/dCyTIaKbJYGh4PSZJJt4TDBwoWLwRAIBLg0EOBi4F7gAawW87hp8vPubmodDi584gk+dNZZkrAKIYTYbyUlJYwdu+uQj7v4xS+gCInRkGhpgZtuGuoohq3BTFYdwFzgU1rr15RSPwG+BNzadyOl1PXA9QBNTU2DGI4Qh6/1wB1YSSFYV7MiSnF0aysnbNjAFYsXW4nqINPAjnicLaZJ3OtlHVZ/01cKJbzTxo7l6bfe4oMLF/L8smXMHDeu8ECNwzR56733uPOKK/AFg7hNE1cux+SJE/FZT4pYXR3/iES4atGig0o+h9L+xqqAaq+XuU1NRKNR/H4/vkKLZXc2y7tbtxJ3Oom7XBgeDzH6t8SiNclslmYglk7zZkkJV3R0cKlhcH55OaMG6fk5gY9ildX8FHizUOIcLC3lb8ccw4xBTJiFEEIIcXgZzGS1BWjRWr9WuH8/VrLaj9b6TuBOgHnz5hWnJ64QR4g0cEd3Nw9pjdFnlNrxhsFXPB7KDIP6xYsHNTnIYJX0vgU0ZzK0ZbNgs3HXAw+wbts2YskkN//kJ5x73HGcOW8ev330Ub7ws59RX1bGF+fPJ7BtG95MhnbDYFxpKRfV1RHz+XYmaD5f77F8Ph9VVVVHVLLj8/n6nQOAUp+PWWPH7jxHTqd1oSCXY3l7OxG3m6jbjWOX8ukOn4+7leLvWFPNTAoGucDnY8IgtLSPAb4P/EFrflJYFvL7uau6mmnA4A0FJYQQQojDxaAlq1rrHUqprUqpyVrrNcAirPnlhRBFsB34WjzOa11dVjKiFI21tXzU5eIDQEl1NQzS6LBZ4PFQiCdSKZorKwkDxwNmLtebGF17zjm4XC78Lhdl6TRmSwu+cJjTjjmGoydMwOfzEYvFehOueT4f50yZAgycoIn+dj1HChjl9eIfNco6p4ZBzuGgOZNhVSKBKrxGXC7Xzqlm7Hbuicf5cHc3Hyktpb7IMdqAa8rLKc/n+YnNhtPtJmQYfBH4Hzikg3sJIYQQYuQZ7NGAPwXcUxgJeCNwzSAfT4gjwitYQ21vL7SaaaCpo4NPRyKcOWPGoB23HXgCeCiZZG3PfK1tbXgLo9c6HA7sWlOaSFCaSjFr1CjqAeV0Equt3a21VJLS4tv1nM5yuxmfy/HCjh0s9vlYaRg8W7jAoYGszcY/tOZlYHo0yjFbt3JSkVuvL66sJAB8D+tCRxvwReCbQEPRjiKEEEKIw82gJqta63eAeYN5DCGOJFngLuDvhfsul4uY1py4Zg2zW1qYtWTJoBz32c5O7kun2VhZidMwiKTT/aZacWQyTAYaHA48JSXEbTb8gQA+z87ZqiQx3X/lTU18vbm5qPucNHs2H6is5APAlek0d7z3HssbG2kvK8PlcpEyTf4RDvMPr5cJW7bwTaU4uojlwScCX8VqUc0ArabJ9fE438nlmF5TU7TjCCGEEOLwMdgtq0KIIokAX4zHeS+btaYwMQyaDIPbfD5ctbXUz55d9L6cq4BfxWI8G4/3mwbH5XKRTaeZ0tLC0cEgHVpzTM+DfD5KJSk9KLfcfvug7n9cbS1fnDuXba2tRLxeXjAMno5Eei9ArK+t5eaSEj4LnAlFm/5mHvA14KupFMG2NtCaL4bD/Dafp+4I6ocshBBCiP0jyaoQI0Ab8PlEgmWdnaA1EaU4r6KCr/r9eAehb+qrHR38PpNhU2UlqUI/1J5W1NHhMNfU1TG6tJS28nLqp07lF48/XtTji8HXd/Th04Dz02m+s2MHq+vqQCm0x8MPTJO/hMN8xm5nRpFaP2cBV2/axDc8HjTQUlHBg9EoN0myKoQQQohdSLIqxDC3FWu+p+ZMpnfwopNWr+aSmhq8c+YU9VjdwE+iUe5PJHpbUisrKrABR7e0MG/zZmvaGIBAgIZhmmC0BoOsDwbxjhqFs6aGbmBzOExrOIyrqoqSsjISQFssRmc0isfvx+nzkQW6Ewm643GcXi8lHg8ZrPLrWCqFmUzidrvxuFzYADOZJJ1IUOZ2U+rx4AQy8TjpaJRar5cavx8PkIlESHV2MrqigjEVFZQBZlsbidZWRo8aNSxGN55bU8NP83meC4V4ZPRogkAwGCSoNTek09xR2KYYTqmsZO6aNSwdPRqU4onGRi4FKouydyGEEEIcLiRZFWIYWwt8HWuu0p7+qWcuW8bEjg4aZs0q2nE08DRWf9iWfL5fS+rcSISrPR5yHg/1u8xv2mMw+ljuSXlTExoIA63AinCYtd3d5CorSfr9bEkmWZ1KocvKIJkkYJoABKNRsNshEiHgclnLQiErKQ+FCJSUWMs6OqxlySSBQADDMDBNs7dslWi09xwE29utZfH4zmWF1m/SaQJOp7UsErGOHY0SKPTjDaZSUFGBOxplps/HaK8Xo7sbe0cH08vKmFVVRQ3FK8HdH4FAgEsDAS4GvrN5M3/TmrxSxJ1O/tNu5w5gXJGOcxtwi91OzO8nZxj8CvhyEfYt9k0p9RngE1j/+u8C12itU0MblRBCCLE7SVaFGKbeA76YShExTVwuF2WGwZf9fsqbmqg//viitcZtB74Vj/NOoS+sy+UiohTj2tpYsH49Hz3tNAI1NbCXVrXB6mOpgU5gM7AJWBGN8kYyyYWpFLowBUswGrU2DocJOJ2k0ml04bFKa1KpwnfwPgn4+1lmGIa17gAfv69lyZISVmezNJsmwa4uK6mNxwn4fDi1prS7m2kuF3NKS5mINX9pSbFP9C6cwPUuF/rll3lo9myyDgfJkhJuCof5r1yOBUUoO28KBPg61qBLpmnyWCrFzFyO8yqlfXUwKaUagE8DU7XWSaXUfcBlwO+HNDAhhBBiAJKsCjEMbQW+kkqxpdCaZ2az3FZWxgnV1VBVVbTjvAR8N5Vic5++sFNravis10vAbqf+tNMOWYmqxuqbuw6rRXlZPM6adJq8x7OzdTMctlotUykCgcCASWRPsu1Op3FnMkyrrqZUaza3tlKSTuPK5zlp9mzcwFvLl2PPZnFozemnnIIDeOG111DZLA7gnMWLqQdCpsmTzz5LPp8Hu52zzzkHDTz6/PNkgbzDwcIzziCjFE+98QamzUa2pIS5J51EUile2biRpN1OyjBorKoiarPxnmkSdzrRNps1Gu8uzyUeixEsDGy1MpXiecPAMAyyqRQ1kQjzXS6mZbN4t24dlFLiQCDADQsWMKOzk183NLCtcO4/l8lwTz7P+CKMFDwTOL67m/sKU+l8J5XimExGBlsafA7ArZTKAB6sIgUhhBBi2JFkVYhhJoQ1YmrINEFr3Ok0F7/xBq4pU4o2kFIa+C3wKBApHEdpzezmZm4MhTh+9uyiJsUDyQIbgJXAv2Ix3k2nyXm9OxPTnnLaQtntrskciQRTnU5CO3ZQGo9TaposmT+fKYZB1jDo6Oykvr6egNcLQHDcOFpbW61lFRUAnDx//s5lhXM7/tRTdy4rJGTltbVcfM45uy3/8Fln7VxWaHkee/LJux3n7KlTdy4rjJQcLCujpbUVT0MDyjBYE4/zxPr1hN1uunw+sm43sQFaZINtbbRqzbJCebO9rIyxW7bwsZISzqqsxFnEv1EgEODiQADHypV8wzBIlpSQLCnhF+k03y/SMRZu2sT/+XyYDgcRl4uXOzv5oCSrg0ZrvU0p9X1gC5AEntRaPznEYQkhhBADkmRViGEkgZWotmP1UU3k85z/1ltUJ5PU19cX5RgdwFficVb3KftVySRnLltGXSzG2EGaqxWskuM3gOdiMZZnMth6+m/29B2NxXZLTI1MhvquLqa43WxfvZryaJSqZJIPnXkmdRUVBMeM2ZkI9iTYgQBH7ZLw9B399v0uO9jH78+yoysrOX76dOu5BAKgNX99/nnaPR46ysupOu44VkSjBAvnpWewrazNxvraWr6tNT8NhznTbueq0lJG7fYMDtz86moWv/Yaj8yaBUrxVlkZ965ezWkVFQfdojuhro5JGzawoqEBlGJDY2ORohYDUUpVABcCY4Eu4K9Kqau01nfvst31wPUATU1NhzpMIYQQApBkVYhhIwf8ZyzGslwOl8uF2zD4n9JSaiZPthKxIrQ2tQCfTyZZ1afs9/yKCq6tqCAyaVLRjtNXCPhrVxdPZbN0+/1An+Q0GsXn9fZLTEeHw8x0u9m+fDlVXV2UpdOcv2QJgdJSgrNn70xMC3HuKbkciXZ9Lh/q23Lr9xNMJPjr88/TUlZGS3U1Wysr6fJ4QCli8TgxrblbKR5TiqPb2zkvGGTeuHEHfX4CgQCfPu443vrWt+hqb6fLNPlhLsdDbW00NTbidrsPeN/lTU1cd/PN/JfDgcvlYrlhkEU+nAbRYmCT1rodQCn1AHAi0C9Z1VrfCdwJMG/ePH2ogxRCCCFAvg8IMWz8MhLh6UikN4m81e/nzKqqopXjrsNqtW1Np0FrbPk8J61dywdqaxk3Zw4UOeHbCNwVjfJcOk200PeSRKJfclqaTDInk6Fk7VrqQiEqUykrMS0rI9i3RPcwTEz3x67PNxAI9EtgAZa2t/Oqw8HzWhP2eEBrOkMhXrLbeaO2lrNffJErpk1jypQpBx3L3K4upjY2Ei2UIE9yOplaXs6oUQfejvv15mZOqapiHNBqmmyJRHgmm7Ve+2IwbAGOV0p5sMqAFwFvDm1IQgghxMAkWRViGFgG3Ae9Sdz89esZX1EBhT6PB2sF8OXCyMJ2m42SfJ5zly5ldFcXDbNnF+UYPZa2t/OHdJrlpaWEwmG03tko48jlmBKN4l+9msb2dsrTaZYsWQJz5x7xien+2vW8nBMIMDcYpOmRR9hSXs7bY8awudD/1nQ4eOSYY3C+8QbXV1Ye9Pl0AhOU4m2lQGtCfj/+Qmv5wbABsyIR3i5crLlr+3ZmZbPy9x8EWuvXlFL3A0uxuo6/TaEFVQghhBhuJFkVYoh1Ad8HDJcLlKKxs5PjNm2iftq0oux/E/DVPiMLu7JZbgdGjRtX1LLfJPDz7m7+mEhYfSpDIXrS1IZQiGlbtzKxs5OLzj0X5swZMDkVByYQCHD+kiW0trZyucvFX956iyenTSPmcpGz2fjn9OmctG5dUc7xZJeLdQ4H6XSaeEUFWV2cCtGmbdvA60UDQb+f1tZWeU0MEq3117AKLYQQQohhTZJVIYaQBm6Pxdhc6Kc6saaGT3Z1MWXJkqJ8UW8Hvg6ECyP+ekyTC998k1FTpjBnzpyD3n+Pf4RC/EprOqF3jlOA8W1tzF+/npp4nMmTJzPpuOMkOR0kfVtcb6qsZPKqVXy/qYmM3U7Y6+WRjRuZGgwe9HkvB/xasz2TAa15KxjkjR07+OPKlShgRiDA7y68kFufeYa/r12L025nfGUlv7vwQspdrj3ud05VFZgmSmu6PR5GFWnkayGEEEKMXJKsCjGE/hIO83Q02ttP9QteLwtnztzn4378X/9F15Yte90mA7yWzRLN51FK4UilGNXezvJslvBRR/HQfg6KU97UxC233z7gujTw/e5u/hKLWX1SlQKlOKqzkwXr1nHxjBmkjj56UAZuEnsWCAS4PBBg+bJl/KO8HIC1dXWsXbv2oP8OCihNJNheaFFtyWT4+VtvseZTn8JdUsKH//pX7l2xgjPGj+dbixfjsNn44lNP8a0XX+Q7Z5yxx/2OCwSYkEzSnk7jcrmwG8ZBxSmEEEKIkW9Qk1WlVDMQxRroNKu1njeYxxNiJAkBv4PefqpzNm2iqrR0vwZU6tqyha+PGbPH9Rr4ZzpNYzJpDaYEnKo1ZdXV+P1+fIW5PvfH15ubB1y+Hbg1kWB5MtnbL9VjmlyZSLAAaDj1VElQh9jxyWRvsrqtqgrd0lKU/VY7nawpDNSVcjjIa00ym6XEbieRyVDv93Pm+PE742hs5P5Vq/a533FuN1GbjVQqxbuxGKfLIEtCCCHEEe1QtKyeprXuOATHEWLE0MD3YjFi+TwoRXk8zokbN1J/7rlF2f8aoCWf752Lc2wwSFlp6UGN2trXBuCLySTrOjp6E9WJ27dz+po1XHL22ZKkDhPHjx2LOxolWVJC1mbDUaS/i69PP1VveTmfPvZYmn70I9wlJZw5fny/RBXgrnfe4dL96IPtj0YJhsOgNX9ftYppc+bIa0kIIYQ4gtmGOgAhjkT/CIV4NBQiFosBcG0iwUXnnluUL+ZbEwleS6VQhZLcukiE6ni8KKO2AjzX0cFN4TDbEwnQGns+z8KVK7mms1MS1WEmEAgwtaICVbj/1IoVBIPBg95vvqfsG+jKZHh4zRo23XwzrZ/9LPF0mruXL+/d9psvvIDDZuPKGTP2ud9MIVHVQNpmo7W19aBjFUIIIcTINdgtqxp4UimlgV8VJhkX4oiWBO7UuvdL+bStW5nl8Rx0knftQw/x9zVrMNxuvvqRj4BSbNy4kR+/+CLrwmFev+465hXKf+9ZvpzvvfJK72OXB4MsveEGZtfV7fUYr3Z08PlolIzNBkphZLMseestGqJRji3SoFCiuByZTO+AVxmtizLKrs/rhWwWtOa9bdsYV1lJjdcLwAemTOGVrVu5auZM/vDOOzyybh1Pf/Sj1sWTfSgtL4euLlShdL1nLlkhhBBCHJkGO1ldoLVuVUrVAk8ppVZrrV/ou4FS6nrgeoCmpqZBDkeIofdnIOXzQTyOxzQ5af166s8++6D3+7HZszluyhRue/JJAOy5HIvdbj5xxRXc8Mgj/ba9cuZMriwM5PRuMMiF9967z0T13fZ2vpJOk7ZZBRm+VIrPdHUxYeJEGUBpGLM5HGCaACitce1lRN795fZ6cZsmmUyGo2pquHvpUhKZDG6Hg6c3bWLeqFE8vn4933n5ZZ7/2MfwlJTs1359paVUKkU8kWDalCnymhJCCCGOcIOarGqtWws/25RSDwLzgRd22eZOChOSz5s3rzgT9gkxTDUD96VSpEyTyooKLt+xgwuLVDo7bfRo3uzY2T18TGcnJzY27nMwpT+vWMHl06fvdZvNwSCfCoUIeTwAuDIZLn7rLU45/XRJKIa5eD7f+7sjnyeVSh30PmPxOMlCy+qo0lIuGD+eub/6FQ6bjTmjRnH9Mccw7ec/x8zlOOOPfwSsQZZ+uWTJXvfb1d1NqKsLtGbV6tUEnU55fQkhhBBHsEFLVpVSXsCmtY4Wfj8TGHj+CzEodgSDtLS27tbq1VOMFwwG2d7aSoO0ih0SGvhePM72zk7QmoauLi6oqyvKuc8DL2Uy5HI5bErR4HBw4qhR+zXq719WruShyy7ba9w/zWQIFxJVez7Ptdu2cbEkqiNC2DBQySQaKDfNopTWhpJJcFgfH45cjk/PnMm3zjqr3zbrP/3p973fju7u3vJ4lcsVpWRZCCGEECPXYLasBoAHC/2UHMCftNaPD+LxDlsaiANhrOlOem6bu7vZGo1ilJVh9/lIYvWHTAHhVIrNqRT5ykowTQKmidFn3kLTNAmaJlRW4ozHGZdMUul24wHcgAfIRqOkw2HGlZYysbycGqAGqEBG5joQTwPvFlqjlNacunIl2/N56orwZXxZKkWraWKaJjqf53ilrH6F+/BaSwuekhKm19bucZvtwLqyMgiFAFi8ahUXH3OMJBEjwIa2NlpSKTRQkstxxrx5Rfm7aa8XClPXuDIZ/BUVBx8skK6ogM5OlNaUpdPSZ1UIIYQ4wg1asqq13gjMGqz9H44SwFZgC7AZeC8WY1MqRcbnQ+3Sz8w0TYKFcjlCIQIlJf2S0YhpksdKdJXWpFKpfutTqdTOUTftdran0yTc7v77L4zMSXc3Abe79/F2oAqoBVzRKEZHB7NKSzm2qooqdrbcip2iwM+TSXLZLCjFnE2bqE4mi/JlPA68WxiwCayWrlx3N+xHsnrvPkqA48B7uRzRcBgNTGlt5dqxYyVRHSH+FQpB4f+6Ih7HzGaLst+4beflKiOTKco+Abq9XgIOB6lUiksWLCBQU1O0fQshhBBi5DkU86yKAbQBL4ZCLI9GiVdV0enz0XcyWtM0CYZCVgKSSBAIBPaYbA6UjLpcLiJK9Y6q6TEMbNA7Kqjb5aK7Z2Oldht0ZW/7zxXi39qT0Nps/DkeJ+DzUW0YjAXGAuMAf3s7tLTQdASXGmvg29EoGwrJvz+V4kqHgxlFGj331XSajNbW3zGdxpHP79c0NXmt+et77/HCNdfsMe43gEwuB1pTEY9z6qpVpObMOeiYxaHRMWoURCK9Zef1kyYVZb/tmUzvxRFXJkM0Gt2vkvO9SQHbTZNUKoXXMJhaVlaESIUQQggxkkmyeoiEgXeBZcByYLNpEizMsTlQy+iuyaJOJKg3DCqxynAdSrF+3TrcpomRy7F4wQIasMp3XYDbMIgYBm09fVZ3HQHUMAi6XGxtbaWyvp5SwyCBVUacAFpyOX7x5S+T6+gga7fjqawkV1JCCkgXdpFJp7Gl0727jDidJJxOtgDPA/lcjmQyiU1r3Ok0TX4/AacTP7uXEZc3NXHL7Ydnl+Z7w2GeSqfRhS/3p773HlVjxhQlUV2fSLCukDjc9dhjNG/dSpdpcvSdd3LbwoVUut186rHHaE8kOO9Pf2J2XR1PXHUVAC9s3kxjaSnj9lDCuQXYms2i83kUsGjlSgytpTRzBFnl2PkWX18o4z5YeSDmckE8bl18Mc2izOG7vL2dYDJplcknk3RUVByxF7gOd74Pf5jYffftdZuf/v3v/OKxx5g7fjwfWrCASfX1TJUZA8Rhxufz9c63vic//elP+cUvfsHcuXP50Ic+xKRJk5g6deohinBkO/e22/jT5z5H+V4upi78ylf4/jXXMG/ixH7L39m4kdZQiHPnzRvsMMU+7DFZVUo5gYwufMNWSp0GzAXe01o/dojiG7E2BYM839VF+6hRbCotZesu6wdqufQaBg1AE1CmNZuXL6c8GsWfTvOBc86h39e20lKCM2bQ2pOMVlXtFoMvEKBhL1/2AoHAHr8Mzqms5KVcjlvGjsXv9/drNcliJbQdiQRrW1tJlJSQNAxs1dXoPl+OzVSq38ijLpcLw+XCgVVCXJZK4e7uptHj4ftbtuwxzpHsuY4Ovt8zLykwY8sWxoVC1J944kHvOwu8Cb0tXF886SQWOByMGjWq33YXT5ky4OMXjhnDvz7xiQHXpYHXMhliiQSZbJbpW7dyWl0dk045RRKIESIEvFfoI23TmvpwuCgDFoWxqiucJSW48nmmjxt30K2qAK93d4PDgQaqurtpTSbltXYE+/mjj/LY177G2Lo6PvbjH7Pk2GMlWRVHpJ///Oc89thjjB07lo997GMsWbJEktX9oLXmkVtvxWY7sFFW3tm0iTfXrZNkdRjYW8vqG8BCIKyU+g/gYuBR4LNKqVO01l8+BPGNKHngHeChaJRHEgmyLhd0dREwjH6tpgClhkF5Zye1XV1UJxJ8+LjjmEmfP0h5OcH583cmowN8adtbslkMbrd7t8SHQoylQKnHQ21dHdFoFL/Ph9fhIA50YX2hDdpsbM7lSNvtoBSOQiKbxWqxW2Wa4HTiNE2WpdO8htXJ+eBngRweVgG3a92bqFbGYnwoGuWEIpX/Lk2liIN1bnM5mkIh/OPHH/R+waoAiBfKfx25HCesXYtvzhxJHkaQfwH2wmuvPhzGk8sddKt4eVMTn1q7llWFioqyZJLlPh/uPv3dD2SfAG21tRAOo7SmIRKhvjAPsDi8fe+BB7jvpZcwMxkuPuEEbrviCm78+c/ZGAxywTe/yWUnn8zDr7/O8ytW8I377uNvX/oS4wf4XBJipPve977Hfffdh2maXHzxxdx2223ceOONbNy4kQsuuIDLLruMhx9+mOeff55vfOMb/O1vf2N8kT7zDxfNwSDn3HYbp82YwaurV/POpk2033031aWl/Pe993LP889zVHU11aWlHDNhAp+/+GIA/vryy/zbL39JVzzObz/1KY6bNIn/uucekuk0L61axZcvuYRLTz55iJ/dkWtvyapdax0u/H4pcLLWOqmU+jawFJBktWAr1kivz2K1ZkTyebI2226tpkdjJWMzgUkuF50NDbQqRf20aQMOJDLYyWgx+Hy+fq0qvsKtEZjhdBIzDNricVKlpUQcDoJYrbLZQosPWAM8tQLfAJzAuFiM0cEgp/v9TN3LKLXD1cZgkN+Hw/yzooJ4oWXZa5oseecdTli8uCh/045UirdTKfIASjEtk2Hq+PFFaeHqBFZns+TzeVCKukgEl5T/jjhPxmKECgNjjW9r48QTTzzo194tt9/O1cEg+cIIw3NWrOCy+nrmHGQ/Zg2scTh6R7C+as4cAtXVB7VPMfw9+fbbrGtt5fUf/ACtNRd84xu8sGIFv/y3f+PxpUt59pvfpLq0lHWtrSw59lguWbBgqEMWYlA8+eSTrFu3jtdff936X7jgAl544QV++ctf8vjjj/Pss89SXV3NunXrWLJkCZdccslQhzxsrdm2jd99+tP8/KabGFOoHntz3Tr+9uqrvP3jH5PN5Zj7mc9wzIQJvY/J5nK8/oMf8Oibb3Lbvffyz//+b26/8kreXLeOO268caieiijYW7LarZSarrVeAXRgNXglC4854mcu2dDWxt+jUVbV1dG6y6irPYMbVUejjO3o4Irp0zkJMHbZx0hIRnd17UMP8cjatdR6vaz4t38D4NZnnuGhNWuwKUWt18vvL7qIer+fe5Yv53uvvNL72OXBIG/dcAMT6+rYrDXvxWJ0eTxk7XbsdjsAUdPkyVAIHA5+nUoxP5FgocfDfGACw3Ok4RSwDlgLPNfezsuJBFm3GwqJqiuT4YI33+S4pqai/L1TwApgWuG+L5lkrNZFSVTzwMuF8l+0pjyRoMEwWFKk1mBxaOwAlhZaxhUwLhgkVYQLP2Fgq8cDqRQKGN/ZSX0RSqTebW9ndaG/qjOXo2k/RrIWI9+Tb7/Nk++8w5xbbgEglkyyrrWVU/YyQrkQh6Mnn3ySJ598svfCXywWY926dZxyyilDHNnIM7qmhuOPPrrfspfee48LjzsOd6HK8fz58/ut/8AJJwBwzPjxNAeDhyZQsd/2lqzeCNyjlFqGNfjrm0qp57EaBv/nUAQ3HMWB/41EuCsWI+1wQGcnAYejt8y3DFhoGMx0uynp7KT+6KMH7E86Un1s9mw+OX8+H33wwd5l/7FgAf99+ukA/PS117j9+ef55ZIlXDlzJlcWSvneDQa58N57mVNXB8A0t5vR5eV0R6Nkysp42W6nDHh3l768azIZdgB/ME2MWIxjnU5O9vuZBVQe2qfOtmCQ5e3t5OrriVdWsgVYlUiwIZPBKAxgFUwk0H36R9R1dXHmsmVUZDJMKtJIrL8B0iUloBS2fJ5xHR34x4wpyr7XAZ2FJMemNaM7OihxOCRRHWH+yc4S4Kb2dkozmaK0jD8eDtMZjaKBxlCIRcceW5TXxj+jUbDb0VgDQe2IRBglr7nDntaaL19yCTecffZQhyLEkNJa8+Uvf5kbbrhhqEMZ8by7DijKzpkw9sQoKQHAbreTzecHISpxMPaYrGqtlyul5gJnApOwurG1AJ/VWncdmvCGjxTwCPAA1klIF75YKa3JJpOcbhgsAuZQOKk1NdbtMHPK6NE0d3X1W1bapz9uPJ0esPXzzwPM59m3hHgC8HVgRTrNr9asYVN1Na2VlbhcLmsan2AQtGaLUrzkdAJQ3t3NDJeLOX4/5R0dqG3bGF9XR90BfMnVWOXJIawy2A2hEOsiEbJVVcRLS2lOJlmVSqH9fojFCBRafoIdHVY5s1L4vN7eN8SqaJQ5zc1M3rGDqZMnM2nSpKJ8qX8OeNg0yeVyuF0upsXjTBkzpiitqkmskaodDgcoRX0ohCubxePxHPS+xaGTBR5OJntLgKdt21aUEmCAJ9Pp3vL9cW1tRWmtBdgYCEBnJ0prxre3Uz93blH2K4a3s+bO5dZ77uHKU0/F53azrbOTErud2vLyftv53W6iyeTQBCnEIXDWWWdx6623cuWVV+Lz+di2bRslJSXU7vIe6/f7iUajQxTlyHXS1Knc8LOf8eVLLiGby/GPN9/kujPP3Otj5H1n+Njr1DVa6xzwWOF2REoDjwP3AZHCsp4y38pYjFlbt/LpOXM40ru4f/Xpp/nf5cspMwyevfrq3db/ZeVKHrrssn3uZ3pNDf85axatra2Uu920GgYPtLQQSadJlpSgtCYeixGLxwlqzZpkkmeAUCIB5eU443EmhkJ40mlqfD5qfD4y3d1EIhH8ZWV4S0vpikZpi0ZxlJaifT7ak0naUilsHg+GYVjJcSwGNlvvAFmpdBoN/fohA71f3KuiUWZkMtjWraO+vZ3yVIqmpiZmn39+0Vol3wC+k0oRbGsjXV3N75Yv5/iewW06Ovb5+H1ZmskQ1Bq73Y5ba6ZEIng9HkZNnnzwwYtD5gVgRyGp9JomY9rbSRVhFNVtwLbycggGseXzTGpro3727IPebxewrk9/1ZuOOYbACOyrLt6/M+fMYdXWrZzwhS8A4HO5uPuzn90tWb3s5JO57mc/46d//zv3ywBL4jB05plnsmrVKk4olKP6fD7uvvvu3ZLVyy67jOuuu46f/vSn3H///TLA0n46duJELpg/n1k338zomhrmTZhA2T4uxJ82Ywbfvv9+Zt98swywNMT2NnXN2Vrrxwu/lwE/BI7F6i73Ga31YV3UrYG/hsPcnc+T8vn6jeY72jC4wedjTGcnjbNnyxcr4JuLFvHNRYv41osvcsfrr3Pbaaf1rnutpQVPSQnT9/M89e3LOxaYUFLC0U88QdDnY1t1NfGJE3k3nyenlJW8FvpXasC021nZc9UxnaZSa0JdXVZS2dVFpVKEwmHrfihkre+5H40SCAQGnFbI5XLRDfhSKaricRZWVNCQy7H2jTeo6u7G0JolS5bAnDl7HcH5QC0HvgXETRO0pvbGG/nQa6+xYPbsgx7cBuChUIgHY7HeVuJver2cdhiVrx8pNHBPIkEumwWlmLllCyVKFaUE+MnCT5/Xy7RolEvPPLMor/FHw2F2RKOgNQ1dXZQWugqIw1ffOVZvvuACbr7ggt22af7Nb3p/XzB1Ku/97GeHJDYhDqW+c6zefPPN3Hzzzbtt09zc3Pv7ggULeO+99w5FaCPSmECAFXfc0Xu/7/vI5y++mK9fcQUJ0+SUL3+Zz110EQDP/c/Ono3VpaW9j6n0+3njhz88NIGLvdpby+r/YDUqAvwA2A6cD3wA+BVw0aBGNoS6gG/EYjxV+AJFPE4gEKDBMLgMWAQ4Kiuh8lD3mhxYDljb1sbGtjbK6urwVVeTxCrr3B4O0xYOU1lZSXmfq9VdXV2EOztprKykvqICD+AG4u3tdG/fzuQD/BJ6xYwZnPenP/VLVu8doAT4/QgEAlywZElvEgjw4KOPEvT7aS8rwzNzJm8kEkRcLnKFUZiB3RLZfd135HL4olGOdrvZHgziTSYpS6VYMm8eUw0D7XLRHgpR39BAoLQUgODJJ++WnBa7f+c7wK2pFBHTxG6zUZpKcdGbb+LO54uShASBnynVex6O3raNcpcLJFkdcZ7o7OTNeBy0piSX4wNuN7OLMDhWGvhHMkmwvd26WLJsGRx/fFFifiyT6X3tjduxg9Z8XvpI96GU+hDwuNY6qpT6T6z5zr+htV46xKEJIcSIcf3PfsZ7W7eSSqe5+vTTmSut0iPGXsuA+5intZ5d+P1HSqnd6zwPE28APwG2FAaZ0YDHNDm3pYV/Gz8e5xDElMO6UrAZWNHVxYZYjHx5ORmfjxDQZprsSKXA74dEgoBp7ixnLQxcQnc3Abd75/LubnA4rNbEvuWvySSUlWFLpSjPZvkn4AHsqRQqkSDgcpHdJb51nZ1MLCQ2D69Zw9F9ppzIa81f33uPF6655qDOwa4jJ1987rn9ksQgsK21lZzHw1PLlpF0OMiWlDBx5kyWrVlDPp/HAUybOpVV772HI5PBlctxwowZrHz9dQzTxJXPc/6SJQS8XoKjR1v77ztAViBA4y5fogdzROcccA9wj2myo60NtMZnmnxbKXwzZhSl9TYLfA/A44FolLJEgoVr11IvA56MOBr4Q5/3raktLdT6/UV5fT4LtPWUFqdSHNXeTmtr60HvuxkIlpVBKoU9n2dKMFiU0uLDzK1a678qpU4CzgK+D/wCOG5owxJCiJHjT5///FCHIA7Q3pLVWqXUZ7FmCylVSimtdU+j1WE3dU0auAv4R+F+T7/UOc3NnLBxIxefc84hSVTzwEbgxa4ulsXjRCsqCHk8ZGFnklkoYQ2UlGAYBskBylYNwxiwnHV/l+eBRD5PG5DLZomZJths3PXQQ6zbto1YMkntD3/IDQsW8OratWyLRCix2xldXs4vzzuv9/m8sHkzjaWljKuoKOp52jVJ7Hu/qby8fyLrcvW/bxj97s/x+wdsHR3K1p2VbW18V2u2l5f3/l08psmFb7yBb+rUopT+Avw8EuF1rNd7fW0tN2zcyAlnny0tWyPQy8AOtxuSSUpyOY7dvJn6fQwgsT808Kc+pcWzt2zBUaTS4vu7u0lpTWVFBbO6u7nkrLPktbe7XOHnecAvtNYPKaW+PoTxCCGEEIfM3pLVXwP+wu9/AKqBdqVUHVZl4mHj9fZ2vg90lZb29k0dZRh80eul0u+n/pxzBu0L1I5gkLfa2wk1NLClooJ3gVDfpLSjg0AgsNck0+Vykc5kcKXTOHM5plVVUQXkbDbWbduGLZtFKcWsigpKgW6lWLZlCzmlyDgcjKuqwg50OBysTiRIORwkDaN37tNsNts7kNC155yDy+XCcLmsJDYe54OTJ6OARo+HRqcThdVi5wAWjhnDvwqTMh8qe0tk9+f+UIoDd3d18dtYDNNuh2CQyooKmkIhFi9fji+bLUqSAFaf7N8WSt0jSnFLaSkXTZ1alH2LQysL/DqR6B0BeOaWLSyeN68or+vHOzt5p1Ba7MzluNjjYWYRSos3B4P8NRYjVRh9+nyv97Ca5quItimlfgUsBr6jlDI4DC8YCyGEEAPZ29Q1t+1h+Q7go4MW0SH2ZGcnX47FyNpskEwSCARYaBh8CvBXVQ1av7024MGuLv4UDtPl9/crxx0oKW0wDCbZ7YQ2b6Y0HseXybDkxBOZCJQbBp19Wwd7pjHx+wmOH79zeaGfJaWlBCdN2n17r5dgZSWtra1Ul5by/+x2Tgc6tWZjOEyypMRKYgvb901iNdCez9MNvAfks1l8qRSjHQ7Gu1z4YcApbYQlBjxcuLUqhVmYGsmWz3NuRwcfqa9nOxRt4KYXgDtstt7X2ej2dmZ1dkKRWmzFofUIsKnQ99OZzTK3uZlUWdlB71cDf+xTWjxt61aqS0uL8hr8v0KiqoGyRIKKzk7pJz2wDwNnA9/XWncppUYB/zHEMQkhhBCHxP72We1HKTV3fwd3UErZgTeBbVrrJQdyvMHyOvBtu51sYVCekmyWi7Zu5aYJEwYlsdocDPJYdzerR41ig89HRCkibvduLaUBp5O6HTuoC4Woice58uSTGVdWBj4fwcmTdyaZffqG7ql18GCWe4A6oM7tZnRNDdFoFL/bjdvhIAJs15o13d1EXS6STqc1Pyf0trhGtWZ7LscKh4Nyh4Nq08Tf3U2T201pEeYFHelywCrg8e5unszloHCxoqcEvTwe54yVK/noyScTCAQOaP7YgfwLa8Q0w+UCpajp7uacFStokH6qI1IE+H0q1VumO3/DBjy5XFFa4F8GOgp9Sh25HHO2bClKaXEOeL2+HtrbUVozZ8sWGmbNOuj9Ho601gml1ENAQCnVMwfR6qGMSQghhDhUDihZBW4CrtvPbW/G+k5eeoDHGhSvAN8FHG43dHdTmkxy0dKlfPD004ueqJrAn7q6+GUsRsrp7O1v2pOUOLNZRnd28oHSUk4FGtxu2saModXp3K0lbahKVn0+H74+CWYlUOl2M7qykmg0ilFSQsLhIAhsMk1iPd2btSabzdIFtKRSUFKCI5Nhgmky1jCohyEZtGqobA0Gea6ri82jRrGqtJR20yTYM7VOYeqcsYWpkUZ3dnJUIVEtlreA72D1STYMgznV1Xw8HGaS9FMdse7o7mZT4TVUnkjwIbebqUUo081jlRanMhkqKypYGApxWZGmq3kVaLfZ8Hm9eHI5Pjdrlrz+9kAp9Snga1gDd+cLizUw8yD2WQ78Bphe2Ne1WutXDy5SIYQQovgOKFnVWu9XoqqUasQaFOKbwGcP5FiD4UWs4RR7vrDPrK7mmg0bmHb66UX9wpTBmpvwPmCTUr0lb0przFSKhWVlzPb5qN+yhTFNTQT6DEI0nPpR7k3fJLYSaAQma83KzZsJu91EfD5yPh9mn5LhrFI0a812rNLg8nSaFdEo/+roYH519WHTGUsDO4A1wFrg7Xic15JJci4XdHUR2KXkuzIW48OmybUTJ2IbhKmRXgH+J5Wi2zRxuVyMMQy+7fFQKS1aI9YK4Amte19DJ61eTfmYMUV57/hrOMw7hT7NzlyOq3y+oswprYE/JBIEOzpAa6Zs2oRrypSD3u9h7GZgsta6s4j7/AnWdDiXKKWcWIU0QgghxLCz12RVKaWA+UAD1neMVuD1PqMC78uPgS+wc6CmIfd/oRA/stsxXC4Mw6AB+KbHQ9WMGUU9zhvAD5NJtqXTuFyu3lbU0mSSmS0tfGrGDKaAlZAMk/lai8Xn8zFt/HirbNjvx+1w0JxOs6y7m7DHQ7qkpLdkOJvN0pxMskEpbkgkGJ9MMt/tZnQ4TFVLCzNra4tW/jqYuoEtwNbCbVUsxup0mpzX2ztoVySbJadUv7LvOqeTppYWxgaDNIXDnL9kSdGT9TTwW+BB0yRYmAJHp1LcXFFBZRGSDzE0MsD3+ozSOz4YZFwoRP2JJx70vuPAH/okwbM3baK7shKK8Hp5BVhT6F9rz+eZsXkzrWVlI+Li3BDZilXtXRRKqVLgFOBjAFrrNNbbhBBCCDHs7DFZVUqdCfwcWAdsKyxuBCYopf5Na/3k3naslFoCtGmt31JKLdzLdtcD1wM0NTXtabOi+FdHB7fHYuSUAqWYU13N/3g8FDNVNLGmwHnQNAm2t/eOtDq5poar/X4mdXbSNH16UVooBlt5UxNfb24+uJ2YJnR0AJBMJkm0t5P3eom5XHQAHek06XSaZH09htZ0pNM8Y7NZ88OWlmLE45wYizHL52M8UNbeTq6lhYYiDTS0v1qDQVa3tWEbNYpsdTVBrJq8DfE4m0yTbJ+k1DRNgqGQ1ZIci/WO5txzwaIiHmd8ezsf93o5sayMtgkTaPV4qF+woOjPqQWr7LcZeltx/ckkF7z5Julp04qSfIih8etIhHciEdCaklyOj2ezHFuE8l+AOyMRIlqDUviTSY7ZsoX66dMPer95rLmDe/4XZm3eXNQRrg9TG4HnlFL/wPqIAUBr/cMD3N84oB34nVJqFlbvgJu11vGDjlQIIYQosr21rP4EWKy1bu67UCk1FngU2Ffd1gLgAqXUuYALa67Wu7XWV/XdSGt9J3AnwLx58/a3xfZ9S2L1Ue1p2aqKRrk2HC5qCeTrHR18X2u6Skt7EwNXOs28TZu4OhRi/uzZUOT5RgfTLbffPujHWNvWxp1vvsnmykpaMhlcLle/0ljTbmdpLscGCklgMom9vJzSUIi5Xi9jfT5qAUcoRLqtjaOqqzmquho34MZ64TmwviT33HLAjrY2tuzYQemoUbhraohjtSa1hMNs7epCV1WRLS2lE9iWTLIulUKXlkIiQcA0MQzDiqezc7ektG/87nSasaEQp4waxSTDoNzlItbZSf3kyb0DZA1GybcGngF+wc5vty6Xi5q2NhauWIEnn5cEYQRbB9zXp+XzhLVraSjS6+jt9nb+GI/3XtS7LJXi4nPPLcq+nwPWmyapVIr68nI+XlHBxCIl2IexLYWbk+J08XcAc4FPaa1fU0r9BPgScGvfjQ7lhWQhhBBiT/aWrDqwGmZ2tQ0o2deOtdZfBr4MUGhZ/fyuieqhorGaiGN+PyQSlGSzLFm2jMmLFhXtGP8XCu1stU0mqayoYHx7O6etWIEnl2O09Asc0KTaWv7jmGNobW1llN+PaRg8n0zyQEcH28vKSDmduFwuYGfLYNZmI+zx8GYuxzoKSWwsBm53v2SSwrpUKmXNDdu35TOVgrIya7qivslnNAo2W2+fUsMwiKTTaNht1Oa+Sakjl6M6EmFebS1+rWletozy7m4qTJPzlyyh96t4be2gt2bGge9Hozydz/c+7xLgJsNgblMT2x2Ook2BIw69NPDNRIJMLgdK0RAKMWvbNuqLMO2QBv5fLtd7UW9UOMyCfL4orxUTuDOZ7K04OXrjRiZOnSqvw33omUZOKeW37urYQe6yBWjRWr9WuH8/VrK663EPyYVkIYQQYm/2lqzeBbyhlLoXq88MwFHAZVhd4EaMZ7Cu6BuGQSAQ4MNbtnD+okVF+5L0DPAju733C15JNsuHg0EuPuoottvtkhjsw64tix8tL+esxka2tbbibGig2zDYALxjt/NyJkOypASU2i2J3TWZNE2TYDDYW4o9UMvnnpLPvst7ShY9pklZKsVxlZVMBJz5PKuWLsUfj1PWNyktLyd43HE7pxg6RH/7OPB34C+pFBvD4d7nPbu6mts8HsZYJ3tE9AEWe/azSIS3+5T/3pBKcUKRWif/CbRUVEAwiC2f5/TVq2lYuPCg9wvwANCaTvdWnMzctInW8nJ5b9wHpdR04I9YY9ihlOoAPqq1Xnkg+9Na71BKbVVKTdZarwEWYU2PLYQQQgw7e0xWtdbfUkr9H3AhcALWwK0twJVa6/f1waa1fg4rXzzktgE/6jMC6hLD4BMTJxZt//eFw/zMZsNms4FSVEWjnLd8OR8ojCw8mImBBrqAdzo7WRcK4aipIV9eztZolLZYjJLSUuxeL6FEgu5EAo/Xi9vtJplMkozHqfJ4qPJ4yMdiZCMRxvh8TCgrw9bZidq+nZk1NYwaoi+SuyawJwIf8fkI+v1s2LGDkvp6tGHQjlUS+VJbGwmHg6zDQX1NDQpoTSRQ+Tx5pVBak00m8RsGZYZBKpfDlsvhymY5urqaAJC32di4bRvOdBpfOs1Z8+YxEag0DNKGQVtnp5V8+gvjhVVUEDzxxAGT0kM5mnMMeLhwiwMR0+xNuqds28ZNoRBjZs8+JLGIwfUG8CD0/n1PXLuW0UV6rXUBP0+lSJlm71Q1H1u4sCj77gDu6TMX7Anr1uHWWkrR98+dwGe11s9Cb6XSr7HeFg/Up4B7CiMBbwSuOcgYhRBCiEGxr6lrXMB64CGt9apDEE/R/SwaZWuhlcmWSHBhZSUUKYn4WyjEN2Mxq8+iUszw+bghHGZSkafA6bE5GOSlcJgtpaWss9noKisjZrMRjMfB6YTubirtdkKF50tnJ5X5/M77iQSVFRW99zfscp9IhEqbjVA8Dn4/JYkEMzo7qUskONbrZWFlZVEHozoQAyaBZWVc3tRkJY21tQQ81iwMwXSavz/9NPl8HrvNxpKelk+Xi6DXuzPJ9Hqt/fj9BMeP37m87yjNgQANA/xNh3KKoSjwEFZraqLPcpfLhUomOW7tWia3tzN2yZIhiU8UVyfwrWSyN+Eb29bGzCKW/343Gu1tkS9NpbimiK2eP+3zPlwTjXKx3///2bvv+LbK6/Hjn0eyLcmyvG05znL2XiQEkjAyICEQZmmBQstoWYUy+qMt0EKBQksLbRllFFrWF1pKgQJlhgJhlEBIQsgkZC/b8tDe6/n9IdmxHcdZcmwn5/166WXr3qt7j2RZ0tFz7nkYPnGijKruHWtTogqpL3+VUtYD2aHWehkw6UADE0IIITpbR92AbwUuINUp8PdKqd9qrR8/aJFlwAbgk2SyeRTihOXLcQ4dSv8MfEDaAjxsMDTvu9zj4QqXi2MyfG7qDoeDdz0eviws5ONQiLjFArEYAKq+njyrtVXpaiAYzNj1qMHAUn/q9Kg3/X4etVrplUjQq7GR43NzmVFSgjmj93b/tZc02u12Tp03b59GPnvC/Lb1wD88Hv6TTKJyc5vPxQWoBM4xmRheVISjb18qjzqq298fsWdJ4PZAgA3phl7WSIQro1EmZKj890Nav1ZOX7WKxgED6JeBfS8FFrTY97Fff03+oEHyvNx7G5VSt5AqBYbU+/KmLoxHCCGEOGg6Glk9BxivtQ4qpUqAt0mVHvUYLadIGFxbSy+/PyNlZxFS04EYLRbweinx+Thz6VKGnHTSAe+7yQ6Hg7/X1/PvnBwCJhOEQmilWm+kNTnJJHavF1soRF40yoSqKravWkV2NIopmeSosWNZuXgxKh7HYDAwadIkFi9eTFxr4tnZjJo0iUUrVxI0Ggnm5lIyYgTLXS4arVaCOTk0ddVQWhPw+1kWCLBMa94KBOhrtXKk2cwQl4uKbdsY1Q0TvZ6QfO6JJnXS+GfAQmBVJIIjfc4iPh92u51BJhPnkJo80QBgt1PZw++32OkFYFk8nvqbA7OXL8eeoYTPCdzXokR39LZtVLlcVE6bdsD7jpBqbtf0Ojysupo+Ho+U/+6bS4DbSZ32q4CPkLJdIYQQh4mOktWw1joIoLVuVEoZDlJMGbEW+CTdCbakqIgfer1MzNAoxB+8XlZqjdlspm95OVd5vRxx0kkZS4oWNTTwc6eTxqZzI9MUUOzz0dvppLfTSUUgwHknnIAqL0+NHvbvj91ux5Gd3Wo08QibrdX1YQUFra4f3bIk1m7HoRTV1dVEc3N5c80aqm02qktK8LUZxfVGIvxPKV72+aCggLKGBs4ymzmxoIDB6XjF/tHAN6SS04VAdYt1LRtBFfv9fCcc5pKhQ+lR/6Biry1oaOCR7GyM6fPiJ69fT98MJXwauNPvZ1N6XmBbOMwlwJgMvVb+xePhG1LJ6sDycn7scjFMpqrZJ1prF3BNV8chhBBCdIWOktVBSqnX0r+rNtfRWp/WqZEdoMf9fhzpD2BDHQ4mphO5A/W/hgb+mS6V9SjFL2w25o4enYGIU94GfgO40+ddAuRGo4zesYPv9e5NfiyGuayMsM3WqrS1oxLXA7leVViYSmR79SKaSPDEkiVsLi5mS3k5WRUVrRKn+rw8ngfeItW2cpjXS5+aGo4tLGSAfDjdIxfwWWMjHweDrC8tJWSxtLud1WSiwOlkxLZtDK2v59R58yRRPUStravjZo+HQE5OKlHNzeWKoiL6jBqVkdez14DFiUTziO2slSspGTgwI/te1NDAk4EASWh+rTxOpvDaa0qp+7TW1yml/gPNRS7Nuvt7sBBCCJEJHSWrp7e5fm9nBpJJLuCLFh/Ajly3jurs7Ix8AHsqXYqngcG1tQxubISiogPeL8DTbjePJRL4AwEAshMJJm/YwNkWC6NHjOiS0Yi2iewV06alkteSEjCZmB8M8oLTyfaiIpIGQ/N0MjWRCMvcbjCb+VM4zNRAgKlWK+OA4ey5s9ehLkyqc9k36ctaYEckkmqWpTXU1zdPtQOpTmcTSbXlnmQ246+spBrknNRDWAy4S2sC6XJ8SzTKd91uJmagoRKkWsD+pUX57xEbN9LP7c7IiG0M+IPWJEllWb2dzoy+Vh4mms5R7THvvUIIIUSmdTR1zYctryulsoHRwA6tdV1nB3YgFgImsxmUotLppCQczsgHsJXAeqsVIhEMWjNtwwZ6z5x5wPsFeNnp5I9+PzqdYJd5vcz56ium9O/Psccck5FjZELb5PV7RUXMjkbZUFNDQ79+rDeZWAx4Woy4JoEV8ThbgedJJV79/X561dUxsaCAI0tKOKDWlt1YHKghdc7p1vTPNcEgG2IxTGZzq+ZIbed5NQYCnGAyMQUYD+S02K/1EDgXV+yeBu72+diQlQXpqZdOWrmSkVOmZGT/IeD2YJAdDQ2gNeVeL983GhmZoRLdfwCu/HwIhciOxzlh9Wp6z5p1wPs9nGitl6R/Ha+1vr/lOqXUtaT6YgkhhBCHtN1WDyqlHlVKjUr/XgB8BTwDfKmUOu8gxbdfPgFMJhN2u525NltqypIMfAD7q9+P0+VCA8Orqzl5/PiM7LcaeDCRaE5Ue7lcnLloESWRCEOHDj3g/Xc2u93O1PHjOa24mJ8AzwJ3xmJM3LKFMp8PlGoecYXUPKDvOp08YzRybSDAmZEIlwO/J9VB5CtSc4f2FE0J6TLgHeBp4Jc+H9+pr+e0cJgfAb8l1fDr3UiEJQ0NuN1uHA4HkUikeT/5JhOVHg8TNm/mW0uW8LdYjGuBybROVMWh7xm3mxddLvzpbtzn+P38aMqUjLzeaOB+YFMsBlqTlUhw4vLlFOblZWT/a4Hn0v0CiouK+L7WXDBrlny5sv8ubGfZRQc7CLFTVVUVDQ0NB/24t/7nP/x32bIOt7nt73/n3n//e5flbr+fh998s5MiEz3V9JtvZvG6dQCcfPvtuP0df/pquX1LyzZu5M3Fi9u9zYIVK5h3xx17jOW8885j7Nix/OlPf+K+++4jGAzu8TaHkry8vD1u88ADDzBixAjOP/98XnnlFVavXn0QIut6HVVjHqu1viL9+8XAN1rrM5RSFaROS/xHp0e3H9zAkkiEUDiMxWzmgkGDMjI3aAOwNF1abNCaIzduJDxq1AHvVwN3BwI4QyEACoNBTlu6lLFDhzJ06NAe+QHPABxXWsqwYcOorq4mz2zGYTKxjFQiurbNCGI4HKbaZKIa+Di9j0gkQq7fT5XJRFVeHmVAeYtLKZB9EO7LdoeDtXV15PTqhSotxUmqe2ojsDUQYEs4TCgvj5wWI6SRSARH09y1oVCrct6m0VNINcsabzAws08fhgL9zWYa7HaqEwkqhw/vkX97ceC+BJ5Qqvl/ZMSOHZxkNmfs+fC0282bSjU3bJq+enXGqk8CwB2hELX19aA1fVwuzunVS57L+yH9pfB3gQEt+0UANlIvQaIHisfjZGXt+4kwiUSCO049Ffr02a/jugMBHn7zTX508sn7dXtx6HvzV7/a79su27SJxevWcfKk/Zu+uba2lk8//ZQtW7YAqS+ELrjgAnJb9G8R8PDDD/PWW28xYMAALrroIubNm8fIkSO7OqxO19ErZrTF7ycC/wLQWteqtlOodCPzXS5qfb7UXIRuN7GKCshEYyV2Tr/Qp7GRwkgkIx/ulgFLwmG01hiTSeYsW8bYIUM49thjD3jfXa1lyfAQoKmYeUU0yhNr1lCTn099QQE5bf4+kUgEh8MBWrMpEMCend2qXLaJORQi2+ejxGqlxGrFAs0Xc/pnyOWi0emkqKSE/MJCEqTKkpNAAnB5PNR4POQUFaFsNvykPnAHgIZwmG2RCOTnQzCIPRJpjiMSieBIz3lJINBuQtqUjFv8fiaYTPQFbMkk33zxBYVeLxatU6P+u3nMxOHnq/p6bszKwpAu/61wu5m5Zg29TzklI/v/sKGB+9NNj1CKM7KzOaN3byqPPPKAn3ca+DOwLRoFrcmOx5m5YgU1WlMhz+n98Smpoo1S4A8tlvuA5V0S0WEmEInwnVNOYfv27SQSCW655RbOOeccAB588EH+85//EIvF+Ne//sXw4cNZtGgR1113HaFQCIvFwpNPPsmwYcN46qmneOONNwiHwwQCAW699VZuvfVWSkpKWLt2LccddxwPP/wwBkPrYreqqiouueQS5s+fz9VXX83bzzzDvOOP5+xp03hz8WJ+8re/UZqfzxGDBrGxtpbXb70VgNVbtzL95pvZWl/PdaedxjWnnsqNzzzDhtpaxl97LSeOH889F8vsR4eTQCTCd+64g+0NDSSSSW455xzOafM5s+qHP2TxH/9IaX4+v37+eZ778EP6lpZSmp/PxMGDueHMMwH41//+x48efRR3IMDffvxjjho6lFufe45QNMona9Zw09ln77Lv5jgCAX784x+zYsUK4vE4t912G6effjqzZ8+mrq6O8ePHc+aZZ1JdXc2MGTMoLS3lgw8+6PTHp7u55557eOGFF4hEIpx55pncfvvtXHHFFWzcuJHTTjuNc889l9dee40PP/yQO++8k5deeolBgwZ1ddidpqNk1a2UmgfsAKYBPwBQSmWRygO6pWV+f3Oi0K++nupkcr8/hN136624t24F4LNYDI/WWJTCGgrxTXY2j3z8cbu3K+zXj+v2ouQB4K+BQHNDpZHbt2MPBHpE6e+BGFNWxo0TJqQaNZWWUmQ2swXYQKrp0EKPh/pkkkT6XL1wOLxLshqJRNiaHr0hHMaeldXuNg6fD7KywOvFbrG02ibScr5Slwt7Tk6r9d5IZJcR4N0lpGa/nxEmExWkEuUNq1ZR6PdTEgxy1ty5OxPSoiIcxx7baqogIQA21NVxbWMjrtxcUIqB+flc63Yz4pRTMjaf6j0GQ3PTowq3m1MSCSZkqGHTCy4XbxgMzSO2M1etojAalTlV95PWeguwRSl1PlCttQ4DKKUsQB9gcxeGd1h4e/VqKisreeONNwDweDzN60pLS1m6dCkPP/ww9957L3/9618ZPnw4H330EVlZWfz3v//l5ptv5qWXXgJg4cKFLF++nOLiYhYsWMCiRYtYvXo1/fv356STTuLll1/m7LPP3iUGs9nMJ598korn/tSpy+FolMsffpiPfvMbBlRUcN4997S6zdc7dvDBXXfhC4UYduWVXDl3Lnd///us3LKFZfffv8sxxKHv7dWrqSwu5o30Fxqe9OfO9ixet46XFi7ky/vuI55IcMT11zNx8ODm9fFEgkV/+ANvLl7M7c8/z39//WvuOP98Fq9bx5+vuGK3+wW46667mDlzJk888QRut5vJkydzwgkn8NprrzFv3jyWpcvcn3zyST744ANKS0sP/M73MPPnz2fdunUsWrQIrTWnnXYaH330EY8++ihvv/128+Oybt065s2b1+7rxqGmo2T1cuABoAK4Tmtdm14+C3ijswPbX57iYmhsRGlNud9P5Zgx+70v99at3FZVhSsQwJ7uAqyAb2dnU2LdfUug2zZv3qv9O0g1HiI9qjpx40aGDRt2WCQwbUcQh6QvAN/Wmlfffx+X2Yw/N5eRxx9PDKgH6tKXje2UErdNVtsmlG232dN6s9mMD7BEIuRFo0wsKaEfUAKoZJIVX35JXiBAQTTKGSefvDMhLSjAMXHibhNSGT0VbUWA27XGlZuLBrISCS6qrmb62LEZ2X+c1DnhUasV/H4s0SgnL19O/xNPzMj+l9TX83u/n3g6UT0tJ4ez+vaVbtWZ8QIwtcX1BKlKpyO7JpzDx5jKSm54+ml+/vOfM2/evFYVT2eddRYAEydO5OWXXwZSyeyFF17IunXrUEoRi8Watz/xxBMpLt55UtLkyZMZOHAgkDpX75NPPmn3Q2fTSG5LX2/fzkC7nQEVFanbH3ccj73zTvP6UyZNwpSdjSk7m/KCAhxu9wE8CuJQMKaykhtefZWfP/UU8448kmM7OI3tk9WrOf2oo7CkPw+dOnlyq/VnpRv9TRw0iM0Oxz7FMX/+fF577TXuvTfV5DwcDrN161Ysu5mq73A0f/585s+f3/xFst/vZ926dRx33HFdHFnX6agb8DfASe0sf4dUH5luRwPbjEby0onkd6dOxV5efsD7rQ4GITt1hqQlGiUaCkEHyere+hRSoxBA38ZGCuLxQ35UdW/Y7XZOP+WUncleO9Nd7AiHeeGTTwhmZZHIzmby8ceTS6rLaTj9sxZYvH07JJMYlWJ8YSFFpM6pNZKqpftywwayYzHMiQSzjjqKfoAVyCM1n6nHbKbG6UzF0fLk96IijpsyRRJSccASwC1+f6vOv7NXreLoIzOXizzg9fKp1pjNZirsdi7ZtInpJ56YkedoBPgdEDcY0ECJz8e8WCxjI7aCLK1182k5WuuoUkp6rh0EQ+12lixZwptvvslNN93E7NmzuTU9MtX0xabRaCQejwNwyy23MGPGDP7973+zefNmpk+f3rwva5vPDG1Pp9rd6VVtbwc0N2PcHVP2zo4ORoOBeCLR4fbi0DfUbmfJn/7Em4sXc9MzzzB7wgRuPffcdrft+Nm18/llNBqJJ5P7FIfWmpdeeolhw4a1Wr55Lwd5Dgdaa2666SYuv/zyrg6l2zikprtcVV/PllAItMYcj1O0F5219kY8Lw/S52FZIxFsGZor8OMW3YUHORxMnTpVEpy0PSV7ve12vnvCCTuTxZKSXTcqKMAxePDObQoKdl0/alSH+7DY7bs9304SUnGgNHC318s7bneqHF0pzvP7uTgD55A2ed7l4un0efwepbg6P59zhg/PyL4BHgfc6WlqshIJTl6xgqoZMzK2f0G9Uuo0rfVrAEqp00n1/BOdrNrtpjg3lwsuuIC8vDyeeuqpDrf3eDz07t0bYI/bLlq0iE2bNtG/f3/++c9/ctlll+11XMP79GGjw8Fmh4Mqu51/psuEO2KzWPClGzmKw0+1201xeTkXzJhBnsXCU++9t9ttjxk5kssfeoibzj6beCLBG4sXc+ns2R3uf2+fX3PmzOHBBx/kwQcfRCnFl19+2e4XmzabDZ/Pd1iWAc+ZM4dbbrmF888/n7y8PHbs2EF2djblbQbfmh6jw8EhlayubGwEiwVNqtNqjdebkcYenhZND3Kj0Q623Dcrg8Hmb0grXa5UWarYa3uTLO5pG0k4RVd6DnhH6+Zy9EkbNzKnoCBjz8llwKMtOgsPrKtjYmMjZGjU8yPgtRbT1HzH4eCsGTPkfyqzrgCeU0r9GVCkpmv+fteGdHhYUV3NTydPxmAwkJ2dzSOPPNLh9j/72c+48MIL+eMf/8jMPczBPmXKFG688UZWrFjBcccdx5np5jV7w2Iy8fAVV3DSbbdRmp/P5L2oyCrJz2faiBGMvvpq5k6cKA2WDjMrqqv56V/+knouG408cuWVu932yCFDOG3yZMZdey39y8qYNHgwBXvoyjtjzBjufvFFxl97bYcNlm655Rauu+46xo4di9aaqqoqXn/99V22u+yyy5g7dy69evU67BoszZ49mzVr1jAlXW6dl5fHs88+u0uyeu6553LppZfywAMP8OKLLx7SDZbUnspJ9nvHSplJfZYxkUqKX9Rad9gXe9KkSXrxbuZp2huvO538It1gaWB9PY/27XtAH5puu+gibquq4jW/nx3pMp9hNTXU+nzcvmgRiWSSHx5xBDcec0zr223ezG17+Fb1m7o6vp3uApydSHDF++9z2qmnyoc8IQ4Tz7lc/CXdkMjpcjF8xw5OXL2aUzM0L/QW4JpwmIZ0E7cyj4ezlyzhzLlzM7L/jen9b6urA60Z6nDwYP/+3arzr1JqidZ6/+ZS6GaUUnmk3rMP+lfpB/re3Mojj+z39CsH3fbt0MGH+v21YMEC7r333nY/pHeoxWPnD4XIs1jQWnPVo48ypLKS608/PeOxik7USc+vdu3j/13T8ysYiXDcTTfx2FVXccSBJkOdfX970mtLWwfzudAN7Ot7c4cjq0qp4cDpQG9SFWvVwGta6zV7se8IMFNr7VdKZQOfKKXe0lp/trfB7avc4mLsVivhcJjxxcXYbbaM7NeQkwPpOVZJJvnlp5/y3wsvpE9+Pkc+/jinDRvGyLKyfdrn2vp6SJcp5weDDD9MGisJIeAlp5N7fL7UuUFKcYzFwkVmM/0ylKi6gBtDITanO2bnRSJc7/czKUOJqge4k50dswuCQY5fuZKa7OxulaweKpRSpwCjAHPTuY1a671rOS8OSY/Pn8/T779PNB5nwsCBXH7SLi1GhNhvlz30EKu3bSMcjXLhzJkHnqgKcQB2m6wqpX4OnAc8DyxKL+4D/EMp9bzW+u6OdqxTQ7b+9NXs9KVzhnHTWhbRmjI4YqxycrBoTSwWwwkMKS1lYPq81XNHjeLVr7/e52S1wG6HYBC0xpRMSmMlIQ4THwEPGI1oUi+Ido+H7zmdHJmh0twI8GtgR/o8+6xEgnlLllA5fHhGEtU48MtAgPXxOEaDgZxEglO+/BKL1jJNTSdQSj0K5AIzgL8CZ7PzPVn0QNOnT2/VfGl/XH/66TKSKjrN32+4oatDEKJZRyOrPwBGaa1jLRcqpf4IrAI6TFbT2xqBJcBg4CGt9eftbHMZcBlAv3799j7ydtS43Ti8XtCatVu24MjQaGU4FiOUnuZk7bZtVLRosd0nP5/Pd+zY531GWnT+y5JOfUIcFv7jdPIHgwGD0QhKUeLzcfqXXzJgzpyM7F8Dt/t8LE4mMRoMGIC5X31FeTCYsUTyHq+Xj9INoRTwC6UYPGKEzBvceaZqrccqpZZrrW9XSv0BeLmrgxJCCCEOho6S1SRQSerUp5Z6pdftkdY6AYxXShUC/1ZKjdZar2yzzWPAY5A6L2Yv426X1+mE9IhFXCmqq6sz8uEpmR6hAEikR1hbar/h/B5idTjQ6Zb0UYMhY7EKIbqntxobudXvT714KsVIm40rXS6GzZmTkf99Dfze6+WNFp2Fr1SKo6qqqMxQp/E3gbdaNISasm4dg0tKZJqaztXUYjOolKoEGoEBXRiPEEIIcdB0lKxeB7ynlFpHqvsgQD9So6RX78tBtNZupdQCUvO2rtzD5vutX2Eh+P0orQmbTBkbSbBmZ9OQTlCL8/KoazEJ8navl8r9ODc2Jxxunqu1trCQaG1tRmIVQnQ/XwD3GI0kSSWVRYEAV7jdHDduXMaO8X/AGy0SyQmbN3OUzZaxRHJBYyP3GI0Y06PCw6qrmbRlC5VjxmRk/2K3Xk9/4XsPsJTUU+jxLo1ICCGEOEh2m6xqrd9WSg0FJpNqsKSA7cAX6RHTDimlyoBYOlG1ACeQmju+01QVF2NTilAwiK1374yNVLpbTHrcv7ycdYsXs8nlond+Ps+vWsXfzzprn/cZqauDFvN6Ohpk2jwhDkXzGxu522hEp5O8wkCAsxYvZvge5q3bF391u3lGKYwGQ3Miecy6dVTOm5eR/S+vr+fnXi/hrCxQivFWK1eZzfTPUEMosXta61+nf31JKfU6YNZae7oyJiGEEOJg6bAbsNY6Cexv995ewNPp81YNwAta633s075v6tavx5udDcBiYM2aNYwYMeKA9xtIT1sD4M3P55cTJjDn2WdJaM0l48czqs3cR3tjVP/+ra4raUwixCHnDaeTW3w+EkqBUgzJz+dHbjejZs/OWJL3nMvFgz5fc+nv8RYL3zOZMtZZ2A3cphThrCw0kBuJcKHbzeTx4w9432LfaK0jpHpoCSGEEIeFDpPV3VFKva617vAre631cuCgnsjUuHkzDBnSfH3Dxo0ZSVaHa91cu5yVSHDGqFFceoCd/EaMGMHk7dtZlG6u9MmOHUyWBiVCHDLeB+4xGEgohQbyQyGu9HiYOXZsxo7xAfCYwdBc+tunsZELlMpYZ+EQcBvgt9kgGEx1Fv7qK0btZsJ3IYQQQohMMuzn7S7NaBQZckTv3q2ulw4enJH9DrPZsFgsGI1GdF4elhbdgA9Ev0SiuTlTrc1GdXV1RvYrhOhaz7pc3ObxoJpKf4NBzl68mNH7UYWxO281NnK7240hXfpb4fFw6ldf0b9Xr4zsPw78wu9nqSdVcVpht3NdNMqlxx4rX6odBEqpaemfpq6ORQghhOgq+zWyqrWuyXQgmTByxAgmNTayIhrFaDTiz8vLyH4LAaPRSCKZxA2sXbeOYUOGkHeA+z8yL4+XAgHQmuriYsxZ+/XnEEJ0Exp43O3moRZluaPz8rjc7WbYCSdkLMmb39jIL1qUF4/Oy+NKl4shc+dmrLPwr30+3nO5QGs8SnGzzcY5w4YdePBibz0ATAQWAkd0cSxCCCFEl9htdqSUygduAvoAb2mt/95i3cNa6x8dhPj22ZDsbJYEAhCN8u916xgzZswBf3jLAeKb4gQ255DdJ44/Jwefz3fAyeqxJSWU5OTQ6HRSb7OxYMECiouLZdRCiB5IA08DzyrVXJZb4XbzI5eLaRns+rsIuNtobC4vLgwEuMzt5pgMHuMJ4INksvl+HLVuHUOLi6GoKGPHEHsUU0o9CfRWSj3QdqXW+pouiEkIIYQ4qDoqA36SVAfgl4BzlVIvtShHOrrTI9tPefX1zR+wavPzM1Jau20bbHvBhH+hGfdLedT4C7Htx3Q1u8QK2EOpKfSSSrGlqEhKgYXogRLA3V4vT3g8zR15+zidnLV0KYMrKjJ2nNedTn7udjd3Fs4Phzlz6VKGZ/ALrifdbp5ucT/GbNvGUZs3Z2wqMLHX5gHvAGFgSTsXIYQQ4pDXUd3pIK31t9K/v6KU+gXwvlLqtIMQ1347Kj+fv4ZCqHRpba8DSCoL+/Xjts2bWb4cvoxrNAoSmoJNQb7M9+723NXCfv32+hjHmEysDodBazbY7ZjN5v2OVwhx8IWBW/1+3nG7m0t/p5vNnK8U/TNUlgvwqtPJbT4fSUhNT2OzcYXHw6gMlhe/4HJxX4sS5plmMxdYrfSRKWoOOq11A/C8UmqN1vqrro5HCCGE6AodJasmpZQhPX0NWuu7lFLbgY9IDQp2S5PKyhgQDlMfCABQm0yyv+Ma191xBwALF8KMmUkiMYXK1gy5q5azBtVxVAambphbUMCLBgNOp5NNZWV89OGHUgosRA+xtq6OO4DNRmNzRcew6mouMJky1pEXYAHwR6ORJKly46JAgCvdbmZksLPwe8BDLToL93Y6OQ+YmMH7IfZLo1Lq38A0Un/+T4BrtdbbD2Sn6WnlFgM79tTdXwghhOgqHZUB/weY2XKB1vpp4P8B0c4M6kAYgGHxOP5AAL/fz9NLluBwOA5on1OmwEsvuhnw43oGPufAfGSc+n0YPe3IAKAokpo2L5qVxYbSUikFFqIHWFpfzw9dLlaGQvgDAVCKSZs2MWfVKvplsGT2RZeLX3k8zV1/iwMBzlq8mJEZ/ELrQ+B+wGQ2g1KU+XzMy2BnYXFAngReAyqB3qTem5/MwH6vBdZkYD9CCCFEp9ntyKrW+me7Wf42MKS9dd1FeV0dGI1oYEtxMdXV1Qc8UnnKKcVsOsbDC4DRYOB9r5cjHY4D3q8CZmdn80i6KcvqPn2kFFiIbm4lcFNWFl6zGQ0orfmez8esggIqM1gy+5zLxT1eLxp2dhZ2uRg2e3bGjvEJ8JtIhFA4jNls5sjSUi5yuRhy0klS4dE9lGutWyanTymlrjuQHSql+gCnAHcBPzmQfQkhhBCdab/mWVVKXZzpQDJphs0GSqGArWVllGRolOPkggLMZjNOl4uPw2FeefPNAx61BTi7oICSoqJUvCUlvPnllxnZrxAi815xOrnG7SaalQVKkZ1IcOqyZXyvrIwJEyZkbOqY54C/GAzo9PVSr5crtm3juHHjMpZEfgrcGQ5T63DgcbuJb9jAz/1+jsngMcQBq1dKXaCUMqYvFwCNB7jP+4CfQeoUaCGEEKK72q9kFbg9o1Fk2BFlZYwvLaWgsJDiykq2Z+hD1wAgL918JJKVxTdlZRkp2S0Fhvn9zdeX9e0rpcBCdDMaeMTj4Vd+P40eD06Xi6r8fG4Nhfjx0UdnLLlLkuos/JcWHXntXi9nLV3K0Ax2Fv4c+D0QjERAawoDAU7/4gv8O3Zk7BgiIy4BvgPUAjXA2ell+0UpNQ+o01p32FFYKXWZUmqxUmpxfX39/h5OCCGEOCAdzbO6fHergG7/lfsJubn8XyRCOBxmfjTK1AxMNaOAk7OyeDBdsruqb1/MOTkHHizwrZwcPo3FUvvt04d4tNueFizEYScE/JHUPCJNDYiK/X6u8XiYNWZMxo4TBW73+Xi9RWfhaRYL33c6GTBnTsYS4i+A28Nh/JEIRoOBomCQMxYvJi8elylquhmt9VYgk134pwGnKaVOBsxAvlLqWa31BW2O+xjwGMCkSZN0Bo8vhBBC7LWOugHbgTmAq81yRap6rFsb2tCAIxgErXk9meSiYJCqDHzQ+1ZhIf8wGmlwOqkuLOT1hQsz0r13VkkJY5Rihc9H3GDg8epq+hUWSimeEF2sBrg5GGRDLNY80tmvoYG5K1Yw+qSTMnacAHAn8L9ksjkhHl5dzcUZ7iz8CfCbcJgddXWpEdVQiLuNRsxjxlBZWSmvOYc4rfVNwE0ASqnpwA1tE1UhhBCiu+ioDPh1IE9rvaXNZTOpmRS6text2yjy+9FAzGDgDZ8vI/stAka22NeXGSrZVcD0xp2nIS3p35+1ct6qEF1qGfCjcJilDQ143G6cLhdnZ2dzm1KcncEGRF/X1fGD+nqWRCKpBmtKMWHLFmZnuLPwu6RKf/3p0l9bKMTpX3yBORDI2Pm2QgghhBCZsttkVWv9A631J7tZ993OCykzeldWMnrHDhSAUnxkNmesadG3TKbmBk5f9+6NtXfvjOz35Px8ioNBFBDPyuKV3FxptCREF9DAq8CtQGM6sTMkk5ywYgXzamuZlMHEbkl9PZe6XKwJBpv/36/Nz+c6m41TM9hZ+Gm3m197PITTCXFRMMhZixZREI1K6e9hSmu9QOZYFUII0Z3tU4MlpdRl+7BtX6XUB0qpNUqpVUqpa/c9vP1nt9u5ftw4CqxWAL5OJHjyww8zkvwdX1LClJIS8vLysNhszDeZDnifAJV2OzeWl5OXlwfAe9nZPP7xx5KwCnEQhYE7fD7+0CKxs0ajfOuLLxhZW5vRxG4JbabASSb51tatXFJYmNHOwn9xu/mj14vH7cbhcNA/keDxkhJmjBnDvAwmxCLzlFK/bPF7Zt5sxGFvs8PB3z/8sPn6ghUrmHfHHft0+9FXX73H7X765JOMuuoqfvrkkzz13ntUNx5oI2vRkzV9vu3IAw88wIgRIzj//PN55ZVXWL169UGITHRn+9oN+Ip92DYO/D+t9QjgaOAqpdTIfTzeARlUXs4R6VERDSzr0ydjJbunRCL4AwH8fj/PNDayvq7ugPcLMLukhFHRaHPMb48ezfL16zOybyFEx7YCVwSDvOxyNSd2g+Jxnigo4JQhQzKa2P2fy8VPPB5iLafA+eorzsjPz8j+IZWoPgE8l24Kp4EKl4uL161jSHm5lP52Y0qpnymlppDq/ttkYVfFIw4tm+vqWiWrneUvb7/N0vvu456LL04lq05npx9T9GwPP/wwb775Js8995wkqwLouBvw0Vrrz9ou3tsda61rSPUmQWvtU0qtAXoDB/VZd7bJxAeJBEprvqmsxJSbm5H9Vm7ZQqHZjCs3l4jRyFPhMHdmYL8KuNZo5OJ4nHBWFl6LhUezsxnjcFAhHyqF6BQa+JfLxV+UIpxINCd2I7dv5+LGRoZPmADl5Rk5VgL4g9fLc+lpsFCKgfn5/GDHDo7M8BQ4v/V6eUfrVo2h5i1fzqC5czNyDNGp1gLfBgYqpT4G1gAlSqlhWuu1XRua6Cq/fv55nvvwQ/qWllKan8/EwYO54cwz2VBTw1WPPkq910uuycTjV1/N8D59uOi++8jPzWXx+vXUulz8/qKLOHvaNG58+mnWbN/O+Guv5cKZM5kwcGDzMQLhMD/+y19YsWUL8USC2847j9OPPnq3MSUSCW585hkWrFhBJBbjqlNO4fKTTuK0O+8kEIlw1A03cNPZZ7N4/XrO/+MfseTksPD3v8eSoao00TPdc889vPDCC0QiEc4880xuv/12rrjiCjZu3Mhpp53Gueeey2uvvcaHH37InXfeyUsvvcSgQYO6OmzRBTrqBvwwcESbZafuz0GUUlXABFJT+x1Ux5SWcmwgwPJ4HKPBwD+dTn7kcBzwB8I+lZVM+/xz3hg3DpTiw9xcltXXM76s7IBjHlVezvdqani8sBCAdXY7v62t5WaQURAhMiwM/M7n4+UWyWNWMsnxq1czqraW/vMyd0pfAPgdsEDrnSOdbjfXud0cP3Zsxo7T3hQ4M8xmvqsU/efOldeRnsEF3AxMT19GkOrQf2M6YZ3adaGJrrB4yxZeWriQL++7j3giwRHXX8/EwYMBuOyhh3j0Rz9iSGUln69dy48eeYT377oLgBqnk0/uvpuvt2/ntDvv5Oxp07j7wgu599//5vVbbwVSZcBN7nrhBWaOHcsT116L2+9n8g03cML48VjN5nbj+tu771KQm8sXf/wjkViMaT//ObPHj+e1X/6SvO98h2X33w/AI2+9xb0XX8ykIUM682ESPcD8+fNZt24dixYtQmvNaaedxkcffcSjjz7K22+/zQcffEBpaSnr1q1j3rx5nH322XveqThkdZSs7kJrvX1fD6CUygNeAq7TWnvbWX8ZcBlAv3799nX3e+X7Viu/jERwOBy8kUhQ/vbbB9zJ0263c81RR7E1GmWF1ngDAW5tbOSxZDIjI6Dfqajg8/XrWd6nDwAfFBYSWbWK20BGWIXIkM2kksdVLaaLKfb7udrvZ1BlJZWTJmUssVtRX8+vAXd+PmazGY9SDKmtZfaqVQw/+eSMHAPAQ2oKnM9bToGzYwcXmM1MyuAUOKLTnQT8ChhEaprfr4CA1vriLo1KdJlPNmzg9KOOah6RPHXyZAD8oRCffv013/7d75q3jcRizb+fcfTRGAwGRvbrh8Pj2eNx5i9bxmuLFnHvK68AEI5G2Vpfz4i+fXe7/fLNm3nx09Sshp5AgHU1NQyoqNiv+ykOffPnz2f+/PlMSL8n+f1+1q1bx3HHHdfFkYnuqKNkdaBS6rXdrdRa73GScqVUNqlE9Tmt9cu72U+nTzx+JFDo9eLQmqjRyKKqKqZWVx/wh9AKu51vr1rFirw8NLClpIQX/X6uzsCHW7vdzj3Az91ulqW/zfx00CDucjj4BT0zYd3hcLChtpaiykryysoIQatLEHC43bhcLkqKiigpLMRI6sRqY/ricbnw19czoLiYQaWlFAA29qE+XQhSZb/Pu1z8VSmMFktz8jhy+3amf/MNx2Z49PG/jY38wuslnJUFoRB2u53LCwo4urGR3iefnLFjLa+v5zal8Ntszfdp/ObNHLduHX0zOEIsOp/W+mYApdRXwLOkqpPKlFKfAC6t9X5VOomeS+v2PyIltabQam0ewWzLlJ29x320Pc5LN97IsPSX5Xuz/YOXXcacI9oW4wnRPq01N910E5dffnlXhyJ6gI6S1XrgD/u7Y6WUAv4GrNFa/3F/95MJCrjAaOQWpVBas6J/f4zpLsEH6ujSUsatW8dXffuCUrzduzdnAHv3Et+xXnY7dwFX1NSwragIgA8LCtiyYwf3KMWwDJ1DdyA04AfcpGrWXMBGt5vNHg+G4mLiNhsuoCYUYn0kAoWFqQ/rkQimNuerRCIRHF4vGAzg9WK3WFptE4lEcPh8YDJBMNi8DwXkAwXpi8Hnw+h0MtZmY2JxMX3YxxICcUhzAnf7/bzTVPbr9dK3vJxbbDYGWSxUZjBR1cC/gIeysghnZaGBrESCb2/dyqVDhkAGRzo/aWjg/zUlxMEgFXY7N9hsjLbZqJSOvz3ZO1rrL4AvlFJXaq2PUUqVdnVQ4uA7ZtAgLn/xRW46+2ziiQRvLF7MpbNnk5+bywC7nX998gnfPuYYtNYs37yZcQMG7HZfNosFXyjU7ro5Eybw4Ouv8+Dll6OU4ssNG5jQwbmCcyZM4JG33mLm2LFkZ2XxzY4d9C4p2aVsuKNjisPLnDlzuOWWWzj//PPJy8tjx44dZGdnU97mc63NZsPn83VRlKK76OgzvF9rfSCt4qYB3wNWKKWWpZfdrLV+8wD2ud9OLS7mbZOJlfE4ZrOZN00mMnGGmD2dUP4/gwF3fj5R4Gd1dfxOa/pm4MNhX7udvwC3OJ0sSTeH2lxSwuWxGGdv28aRjY1U9eqV0Q+imtR5fG5gfUMDGxobyS4vh6KiVknpjlCIukiErBZJZXPCCeByYc/JwWQy4WnR4VhpTTgc3iVZDYfDHW6zu/WaVOmjp+n4LhcAr/j92K1WrCYT/YCBLS5VQGa+rhA9yWtOJ48A3hbnjJb4fFzl9TJ39GhIfymUCQHgDr+fhYlEc4OjvHCYk5cv57Rjj83YcQA+BX7VJiE+b/NmvjdsWEbvkzj4tNY/a3H1ovSyhq6JRnSlI6uqOG3yZMZdey39y8qYNHgwBenPBc/95Cdc+cgj3PnCC8QSCc499tgOk9WxVVVkGY2Mu+YaLpo1q1WDpVvOOYfr/vpXxl5zDVprqsrLm89tbc8PZ89mc10dR1x/PVprygoKeOXmm3fZ7qJZs7jikUekwZJg9uzZrFmzhilTpgCpKW2effbZXZLVc889l0svvZQHHniAF198URosHabU7kpClFIva63POpjBTJo0SS9evLjT9r8WuIFUQhMOh7kzFuO40sx8Qb0Z+FE4zI66OtCagfX1PNy3L70ylETWOhzcvHYti/v3b7U8Jx6nf0MDUwoL6as1A0tKsGqNo7YWe0UFZeXlOOrq2FZXR2FFBdbSUsLAdqeTLW43xpISdEEBHqA6EKAmHCZhtaLM5lTi53A0N2ix2+2tk9J21nk8HjxudyqhBAoKCykoKCASiVBXW4spFiMnkWBI376U5OZigeZL3OtlzZdforVGGwyMHTcOa0EBCVKdTd1eL8tXryZiNBI2mSgfPJhobi6BFo/H7o7fnoJgkF5OJzMtFmaVlJCTkb+U6I58wD0+H6+6XM3PWYCxW7Ywbf16zsxgKS6kXg9uCQZZ3tDQfLzJublcUF3NcLs9o8d6lVQJSzj9P2mORjlt2TJ+eOyxh/1oqlJqidZ6UlfH0dNl9L35kUdgL8tLu9z27XDllV0dxU6PPIK/pIQ8i4VgJMJxN93EY1ddxRHyAb5nOpjPr+7wf9fZ97c73Mf91d1eazrZvr43dzSy+lulVIXWuja94+8D3wK2ALdprXvcZFnDgAktPrDeEgrxTCJB/wx8oKsC5u7YwV/TIxsby8p4MBrlLjJzPmWF3c5vgRfWruUfdjv+dHlNNCuLdRUVrEtvp5pKbAoKIBym2OfDGQ6DzdZcOgvg8PvBaASPB3t6X47GxtQH60AAu93e4Uhny3U58Tj5Ph9DTCaMBgNbt23DEg6TF4sxZ/JkBgNFJhMhsxmH00llZSX29qYQys/HMXw41dXVqW3aJpn5+TgGDEitt9ub9xEHvKRGVjfG47yzciUui4WG/Hws5eW0V0ASiURY0dDACq2ZHwjQ12plqtnM0aTOcbbtzx9JdEtLgAeATS0aDtlCIS71+xmXl0dlhhPVD4A/A/WxWPPxJmzaxGX5+RyZwbLfOKkk9aX0l29ms5lxpaVcsGED4yRRFeKQdNlDD7F62zbC0SgXzpwpiaoQ4pDXUbL6F+AEAKXUccDdwI+B8aQaIvXIPtLHb97Mm1YrUaMRt8XCw9Eov9vzzfbKd/LyWLp2LUv79welWFhYyO82beLi3NyMfHC02+18B8h5801WVlSwrKoKT5ukr+VIudKaQDC4S8KZ3rDDZYlQiD4mE2avF9/992Ourqa8sBBbTg45QJ9wmIbqaoyJBAat6du3LyaLBYBeoRDBYJCs3Fw+/ec/+bSd+1LYrx/X3XFHu/exo8eqvfVZQHH6MqCkhNGTJu1MeC0W/MAmYGP65wZgZSjU6v56IxEWms0sJNXQaTQw3OWicvt2RpeXywf/HigAPOD18pbWmM3mVk2Ujlu3jrkH2BG8rRjwR6+XN1ocL5hMMmvFCobW19Mvgw2OvKS6GH/RosIh1+Ph1ooKBo8Zk7HjCCG6l7/fcENXhyCEEAdVR8mqscXo6TnAY1rrl4CXWpyD2uOMLi9n+pIlvDtqFCjFl+XlLASmZGDf9vTo593xOF/l5+N0ufiHwcDatWv5LZnp4Gu32znj5JOZXF1NxOvlg6++YltREQ02G97cXCI5OUSyUn9WBZQXFFDn8ZCVSJCTSDCitBSz1mx0ODBHIljjcaaPH0+B1iz94gtM4TC2eJwz5s6lorAQR3k5dzoc/HbkSPLy8lrF4u/TB5/Ph81m22Xdnty2efMBPxa70zahzQPGpC9NtkciPPXFF2woLWWT3U5Oixb7SVJJwOs+H+Tn06+6mh9nZXFiSYl0He4BNPA/4P5QiG/S84x6lGJIWRnXW61UWCxUZjhR3QbcEQyyqMXxxpeWcndeHqpvXyqPOipjx9sM/BqoY2eFw6DaWk5cuRLfEUdAN2i8JoQQQgiRCR0mq0qpLK11HJhFei7Uvbhdt2a327lh4kRi8Thr0uer3uF08qd4nOEZ+JBXkZ5y5sraWpzpkbul/fvz+3ic35OZB65lMjagqorq6mrMZjPhcJjKkhKAnSOLhYU4IpGd19NdkB39++9clm7AMvHYY3cuS+/fbrdTUlLSbjKal5e3z0lqd9HHbufSpvtbXEzMZOIz4DNS5za3LHPeWlzMnVlZvAKcCRwPcn5rN7Wyvp4H43E2FRcTbtHUa3BtLde4XBw3bhyk/0cyQQPvAI/Tuux3SG0tVzidHDF+PJSVZex4/wN+Gw7jjUSaR29HbNjAxA0bMBoMVFZWZuxYQgghhBBdraPc6R/Ah0qpBlLTYH4MoJQaTOr0wB6rIt3B94ehEGvq60Frfuzz8VetM3L+ajbwK6W4tr6eDWVlqRHc/HyurK3lZwYDQzI48rG7stmWy9rbZm+XHcra3t+z0xcn8E4yyT8aG9lSUgJKYTab2Ubq3MengXnAXFJT5YiuFweedrt52O8nbjCAw0FxURHWaJRj1qxhaH09wzI8z6gX+I3fz6eJRHPi6NeaqWvXMn77dgZm8HgaeA54JhLBkW7iFkokuKOggCNGjaK6qKjVl0xCCCGEEIeC3SarWuu7lFLvAb2A+XrnyZAGUueu9mh5wFmbN3NXbi4aqLPZ+E0yyUNkZvSzr93OQ8D90SifFxbidLlYpDXfi8X4ldHI3AyO7nSFS159lde/+YZyq5WVP/oRAMtqa7ni9dcJx+NkGQw8fMopTO7du4sj3XfFwHlFRcyMRllRV8dX/fvzmclE+sxePKQSh2fDYcbV1XGJ2cwgKb3sMl8DDwFfKUXcYGg+D3mqy8UP8vPxZLgMF+Ar4K5QiLVOZ3PZ78TSUu6yWskqL6dy/PiMHS9IasLrRewc8c8PBpn35ZdUjBiBfcIESVKFEEIIcUjqMC/TWn/WzrJvOi+cg+v44mIWfvkl748YAUqxqbiYPwPXkpkOvr3S57D+btMm/pH+EB3Kzua3WVks9XqZuXEjAzM8R+rBctH48Vw9eTLf//e/m5f97N13+dXxxzN3yBDeXLeOn737LgsuuqjrgjxATSOvJ5Bq1jMfeA1oID11T10d27Tmvz4f12Rnc15REYYujfjw4gYe9np5R2tMLRoolXm9zPz6651Tt2Tw/ysO/B/wb8Ddosx43JYtXOF0cmSGy363kZoCZ2Ms1jx6W9jYyIlffUVuMillv0IIIYQ4pPXYc08zwW63c+OECZSGQnxYUYHJZOLNSAR/TQ2XWiwZSSIVcHFuLsGFC/nvyJEEzGaMBgMvuFy8abEwadkybhg/nr49LGE9rn9/NrvdrZYppfCmp8bxhMNU2g6dCWCspM5XPRX4FPiLx4MjnaiEs7L4i8HAIuAKYEQXxnk4iJL60uCZcJgt6YZGKEXf8nKuy89nTGMjfTth6paXF8Ld86NEp0YpPy4bs9lMNBZj1ooVDHQ66Z/hMuP3gT+Gw2xLz9XqUYqLCwo4p3dvapWSsl8hhBBCHPIO62QVUgnrzaTKgt9ITwPxL6XY/PXX3EnmOvheNWUKs2trebtXLz5Kz/foM5tZMHw4G7OyuBSYA5gO+Ghd5745c5jz7LPc8O67JLXm00su6eqQMi4LOA4YqjUPfvUVHw0dijc3F7PZzEbgZ8Akn4/jN21ixGF2DnBn08BrTidPak0wL49wJNI8sjmgro5rPB5mjRkDGZzLFFKjqXcuhF/P0iSj2ajsLAb+vY4zTszj0vx8glVVVE6dmrG/dQR4FPgvpL780RpjMsnMVas4vndvek2YQC95XgkhhBDiMHDYJ6uQGv28CljtdDaPln1RVcUfYjHuBowZOEZTSek04BWnk9/FYoSys0EpInl5/DkS4dFAgDlGI3MLChhCZkqRD6ZHFi/mT3Pm8K2RI3lh1Sp+8NprvHLWWTT6/WTbbBisVkJAGFgVjXLD9u2YCgow2GyESHXxcoZCeEMh8iwWrBYLRlKPfzgYJOr3U5GbS6+8PApINTdKuFzE6uoYX1zM2LKyg/aYVdjtXHPUUZxeU8OXFRXMN5mIkioPftnl4j95ecxYsoQbJk6UhDUD1gL3BwL8z+9PjaQGAhQXFVEcDDLt668Z4HQyOsMjmwCfNjRwn9Z8+d8iklEjJBQaKP2Pj+9W1TBswoSMThWzDbg1GGRDi7JfQzDInGXLKA8GqTzyyIwdSwghhBCiu5NkNS0L+IXBwDUNDWwqLQWl+KqsjLtIjZaZM3QcBZxZXMwRsRgvBwJ82qsXHsDhcIDWPKEUb5jN9DaZmAoMbWggb9s2+nSzkr84qfM4E6Q+YLtCIZ5YtoxvzZjBh0D+yJF8+tprPBePkzSbIR4nLx7HmJVFIh5nfTTKN4kEuFzYc3IwmUyp80DT3Znx+7Hb7TuXp0shV4XD2LOzdy73+cBshlCIfuEwI8xmBgLFLheW6mqOLC3NyOh4e5q+gJgMnAX8DXgz3QAnajQyf9QoEvE4dwK5nRLBoW9lXR1/i8VYVVpKOB5vHkm1RKOcVVfHt4qLcWR4ZBNSpcYPeTw8HQigAT06gSHHTjKqyTYmmFnxNb0rJ2fseADvAX9qU/Z7VlERFxUX4xw+XMp+hRBCCHHYkWS1hX7pDr73xWJ8VVaGyWTik0iE9W43tyrF4AyOoPS327me1Ijuoxs28M94HJ/ZjNKacDhMg8nEvyIRHMEgWQUFlDkczLBYGJ+fz0CgP5md61MDflJNazzARqeTzS4XWaWlrCE1b1EY8MViBOJxyM7Gmb7NgngcfzRKntXKK+vXc8Tw4azZupXyoiKSzQfQxNPJajwebz5m0/01mUyt5jZtb7l/SQ7Bz8yoE2P0PXHX7T2RCGvMZpY1JbF5eeR5PJxusTA7P5/RdN4Tvgy4EZgcj3N7KITbYgGlWFlayjXAT4FhnXTsQ5ET+JvXyz+CQRJKNU9FY9SaMVu2cNTmzXzrpJOw2+1UZjiBW0VqiqI1pJ6jGigYF+THT+8gd1kBQ4dUM3fu5IwljmFSZb/v0brs9/g1azi1Vy/6T5iQkSm1hBBCCCF6GklW2+htt/N74Fng/9LnsDq05vvRKLcZjczO8JQzOcA5eXmY33iDLUVFbOjVi4jdTpyd01TEjEZqCgp4Q2s+Sd8uGolgDAQoM5ux5+aSD9iApMeDz+2moLCQ/IICmuYbcnu9NHg8mAoLybLZCJMuuw0GqQ+FiFutZJlT48eRSASH3w9ZWeDxYE0k2AYk4nH8wWBqBPiVV1i3Ywf+UIhr77+fk486ivNnzeJfH33Eix99hCknh0tOOQWUwphIkJNINMdpUIpyr5eRq1ZhSiaZOWUKfQF/NMrHn3yCIZFAGQzMmj2bEsARjfL409/w2F0zSMQNOP+sOPc9yB0JC6ur8ZlMNOTnY07H3zKJ9ZtMvK41H5NqkjTc52PYjh3MKCrqlBHXmSUlDIrH+XOLLzwcwLXhMDNqargwN7fTRnoPBevr6ng2FGKx3Y5XaxJKNX8ZMdrn41KrlUR+PpXpRDWTAsCfvV7e0Lq5BNejFH0bG5m1ejXnn3AC9m/byOTXDpuA29t0+zUEg5y0bBllwSC9J07M2LGEEEIIIXoaSVbboYDvAc7t23kiKwsNBHJyuDMriw3AxWSuLBhS5aSnn3IK1dXVVFZWUmI2sxJ4Syn+E40SyMkBpZqTsUg6iUZrdrQtl/V4Ujv1eLCbzTuXN3VNbVt2my45JBBo3k/bEctEIgGQGhFNT7f7g7lzKcjJoTg3F2M0isfhIDse54QTT2Rw794UWSxYgLjfTzAYxGazkZeTHgs2mRhfVMS5vXqlShubvgAoK6PfCSc0Pw729Eh2r7IyCiNHk4wb0UlFIgp6AVwzpYBzBg6kurqaXjYbOSYTG4GlWvNOXR3bi4oI5+Q0P27OSIR/u1xgsfB4YyNX5uRwRlER2Rn8W0Jq1PweUqPRD6WP66ir4+8GA59t384fgIGSsLbiBJ72eHguECBmMEBdHcVFRaAUvVwupm3YwOXTpmEvK8vo1DCQGjl9D3g0FGJd+v/EoxRV5eX8wmZjcGMjvU84IaPJcQJ4CXgqHGZHi7LfbxUVcaGU/QohhBBCAJKsdujcvDzqP/uM/44cSchkwmw28yawDPgJmS3rbDr/scl4YHx+PpeEQnztcBDp3RtvOhlb5PM1N4LalzLaPS0nGKSXyUS/rCxq6usxRyJYYzHCWnMMkEwm2bF9O1nxONnJJEOHDiUPICcHf1ERPp8vlZRaLDvvWF4eBXl5u9xfi8XChHa6trZ9HJrMm2fjT3+CaBRycmD69Pa3LwYmFRZyer9+bKuuxt+vH+tMJj4D1rW4v41WKw8aDLwQCjGxtpbv5OZmPIE8ltRz5Kdud/Pfa2NpKT8zGvkT0DejR+uZVtbV8fdIhK/KyvABsfR8xEpreoVC3Gi1UtbYSO9p0zolcVvY0MAjiQS1hYWEW8ybOqCujuvcbmaMHQtFRRk95g7gT6SaRvlblP1OX72aUysrpexXCCGEECKt05JVpdQTwDygTms9urOO05nsdjs/PvpoZtfW8lavXqw0pSaWqQauiUQ4tqaGiy0WenfiB8v2kjdHIsGr771HMCuLqMnE5FmzyAG2JpN8uH49Sa0xKMXEiRMpArxas3jdOgzxOKZkkulHH00lEIjF+N9nn5ETiWBNJDjj5JOxA1itOPr2bR7hfMRkoh9Abi6lVVU7k9IWSWheXl6r65k2ZQq89x4sWJBKVKdM6Xj7lo/bdOCHwBexGH/eto1VlZXEs7IwGgx8U1/PNwYDr/h8/CQnh28XFWW0o3A58FvgF1u2sLR/f1CKRpOJS1wurtKaM4qLM3i0nuNr4Fmfj9dDoVSpeouR1FKfj8kbN3Ld5MlUlJRAhkvvAbzAQ14v/0w3UGo6JzYvEuGYr79mSH09IzPcXVgDbwCPhsN4I5Hmsl+L18us5cspCYepnDQpo8cUQgghhOjJOnNk9Sngz8AznXiMTteU9BwLvA/8BXC3mI91vtvNVTk5fKuo6KANU7ctG7aXlgIwtaiIGaNH71xeWJi6QWEhJ48Zs3N5U4JUWsrQ6dN3Lm+RFO9uhLOzk9KOTJmy5yR1dxQwubSUe4YMYUNtLWv69+fVaBRneiQtlJ3Nnw0GPgOuAIZmLmwq7XbuBl73eHihooJalwu05ldK8Uksxpm1tQyuqDjkSz7jwBtOJy/FYqmRzGSyuYGR0po+oRA/s1qxNzbSe3LmGhi1lATeAf4P2J7+22tIzWPa2Mj3Cwpw9u1L5VFHZfT4DcD9wOfpknC0xq81VxQWMq+8HMfIkVL2K4QQQgjRRqflV1rrj5RSVZ21/4NNAbOAMcCNLldzWafHbOYhg4F3gLOBE8hsl97d2V0ymanlh6qm+zsVOMnh4L5Vq/h00CD8Fgtms5l1wNWRCEfU1XFlTk7GyjHtdjs/sNupWLWK3xkMuHNzQWveDYf51GJhanpO1kOx+ZIDeBv4TyjEuqZ5UtMjmaQbGE3avJkrp07ttJFUgNXAn4JB1rZoZuRRiqr6eo5fu5YLZs3CbrdntARXAx8Aj5Fq4NRUel/s93PiihUcOWwYlRMmZLyjsRBCCCHEoUDOWd1H5cBvlOKub75h0YABzQ186oFHgH8C3wLmAKauDFTsUW+7nRsmTmRzTQ2LKyp4z2TCnx41f0trPnM6+Z3RyFHpketMmFRayrlvvcVHQ4eypnfv5o7F744axZZ4nG99/TXTO6lT8cEUAT4HXvX7WZxIYDKbW50TakwmmejxcI7FQhZkfJ7UlnYATwMLWjQU8yjF6LIyrm8ayU0nqpnkBO7x+/lfIoE53ezMYjYzeMsWjvzmG3KUorKyMqPHFGJPlFJ9SVU8VZAqNnhMa31/10YlhBBCtK/Lk1Wl1GXAZQD9+vXr4mj2ToXdzi/HjmVjTQ2rq6r4wGQi3YMXJ/A48EwoxNE1NczLy2N4Budn7QqF/fpx2+bNGd9nd9A00noUcBZwh9PZPGruys3lpqwsvud2M27TJnpnoEzTbrfzrblzmVJdzdpkkgfi8eZuz98kEvzWYuHxhgYuCIcZ7XTSrweVhiaBDxsbeTMUYm1pKWGlcDidqZFUpZrPCR2xfTtjduzg3NmzO6W7b5N1dXU8GYmwtKyMbLO5eVTTmEwyceNGLnU6mTx+fMZHcjWpkeRHw2E2p++/RynGlJZyc24uJcOGUW2zSdmv6Cpx4P9prZcqpWzAEqXUu1rr1V0dmBBCCNFWlyerWuvHSFXJMWnSJL2HzbuNpiRnCnA+qfPgXgJcpKaW2VpfzzqjkWdDIaYFApxotTKV1MhsT3PdHXd0dQgHRS/gVwYD965axQfDhxPPykIbjdznctEvmeSkd97h7Dlz9irBuO/WW3Fv3brH7aaGQmxIJKjOyiIajwOpLzweIDX6mB8KMayggHKzmaJ+/brd3yIBrAL+B7wfCvFNIJBKTuvqyLNam6c66ldfz7dDIU4oLMQRCFA5alSnJWoBUtPgPOn3EzUaoa4Ou92O2WymoraWo775hsJolP6jM9/37cv6eu5PJqkuLCSc7vSrgTFbt3K108nI8ePhMCu9F92L1roGqEn/7lNKrQF6k6qUF0IIIbqVLk9WDwVm4HRgLvAu8Jf0eXlNmfeKeJytwN+AwcDU9KV3VwTbzWhgfV0d6+vqyK+owFpayg6nk/qGBuwlJZSVlOBubMTncDCorIy8ZBJ3dXVGRjnbU2G389OJE5ldV8fLAweyOj237JbSUp6fPJn+DQ3M24vjurdu5baqqr0+bn0gwCeNjdTZbCRV637EOTk55AL/Wr+eycA4wLpP9yqzXKSmb/rI5+PzWIy41YrJZMLTosxXaU1pNMqYDRsYsmMHhdEoc+bNw263d9r5mWHgP8DLpEp/o0bjzuZNLhc3VVSQX1VFdU5Oxkc1o8BfPR7+GgiQUKr5nNzCUIjpK1fSz+NhQIa7CwtxoNJ9JSaQqtoXQgghup3OnLrmH6RmDSlVSm0HfqW1/ltnHa87yAFOAcbF4/xx9Wq+rqigurgYs9ncvM369OUZoCwYZGBdHZNsNiaVlFACGZ02pSttcThYW1eHuVcvjKWluIDNHg9bfT50YSGxvDxcgCMcpiYcBpsNgkGKfT6cfj+YTBAIUJyTgzMQAKsVQiEALHl5lO3YwSSnk2Ozsij0+zOavNrtdmbb7cwE/uzx8KRSKK3x5ubyQGEhtd98w6kFBRlNdsqsVk7UGqffz47cXFbHYqlRQaWIxmJEtWZTNMovfD50IsGQnBzG5+ZS5nJhra5mbGkpfTshCdzscLCssZFAr140FhWxLBhkfSyG0WDAme5qjN/fPHIZjcUYVFvLyJoafnDccahRo6guKurUktcw8BbwXChEXTTaqnlSic/HtPXrufroo6mAThnVXAI8Smre1IRSaMCQ7i58UVERDYMGScmv6HaUUnmkCoKu01p721nf407REUIIcejpzG7A53XWvru7PnY7Pz/iCKqrq7FZLGwymfgf8BWpk4UgVSq8pKGBJUrxr0AAe14epSYTA4CB6csAoA/dY/hbk2qa405fPOmfW9xutni9qKIiYjYbLqAmHGZrJAL5+RAMYo9EAHB4PKnkxunEnp2NyWQi2KJUUmlNIBjc7fWmktJgTg5bSkrYQuqTVkl2NhOXLOG6iRPpk8GEIAu4rqCAwYkE9ytFPCsLh8vFgyYTH2zYwG8go51jm6YF6geM8fvZEgqxzWhkK5AwGABwOp0ALFKK9UVFOH0+yMtDhcOMDIWoSCTIdrnol59Pv4IC3Js349y2jf69ezNs4EA8DQ046uooKi+noLQUR2Mj2xsbMZWVYSwqYrvXyzafj0hhIXUGAxsikdQXBT4fxVlZOxNUaK4cyAuHOdLh4Lx+/Six2aj1+ag87rjm5Kwzy31fB14FGiIRHPX1zeeHji0t5Yq8PPo3NtLn6KM7JYbVdXU8Eo+ztqQEk8nUnCBXuN3MWrOGi6ZPx263d8qXCEIcCKVUNqmXz+e01i+3t01PPUVHCCHEoaU75EGHpJZTwgwGTiT14XoR8Cmp8/taJmXhcBifycRyYHmL/WQBZYEAuW43vW02eufnY4PmS36L33PZ88hsgtRIVKjNzx2NjWx1OskpK0MVFrZKSGtDIRyRCEaLBZNpZ4/jSCSCw+tNJS8uF/acnFQ5aJsENBwOp27QZlnTB/xIPI45GsWUSDDAaqWuoQGSSbTBQO9+/djichE2Ggnn5BDKySGWTtyaNNpszB81ii9jMX7kdHJWcXFGR6jnFRczDri+oaF5XtaVvXtzvdHIb4Dhe7mfcDzOcU8+SSSRIJ5McvaIEdw+Ywa3vP8+r65di0Epyq1WnjrjDCptNkbl5dHf72ftunX4cnIo8fnA66UuP3/XRB7YEgyyqumcUY8HWzKJVylIj4rku1z4gsFU8tk0ih0IpEaxm5JRtzt1+8bG5nNO235xYEgmqXC76ed00rexkQqfj1PnzcMOYLfTq5OTMzfwrMfDa8kk5OZiMpmamydZw2Emb9jA+b16ceSECdA0p3AGRYEn3W4eDwRSz0WHA7vdTonJxMU2G8MaG+mdTlSF6G6UUorUWSlrtNZ/7Op4hBBCiI5IsnoQWYEZ6csFkQiPrFjBjoICGvPzybbbSbZzm0AkwsbGxlQC4XZjN5laJYwtxcNhYqEQZosFk9mMZufolyY1x2MwEmmeRqNJJBLBEQhATg54vdhbJKWRFiNWeL3Y7fbmdU0JQnsJqF9rciMRrNEoR5SUUJBMsnHjRizhMHmxGCdPncpQoMBkwpWXR3V1dapUsrQURyKx83pZGY5kMnW9vBwNLNy0if81NrKxtJQtZWXEjEYA6hMJ7vD7eSkQ4CdmM5My2GW2L3BPIsFP6+pYV14OSuG32bg2EuGYmhouslj2OIJmMhp5/8ILycvJIZZIcMyTTzJ3yBB+Om0av545E4AHPv+cOz78kEfT5zfm5eUxbMgQfD4fo2MxxixaRMhgoL6wkIIjj+TjhgYarFZ8FkvqIC3+HqFgsNXxQx2MWrd3HcCoNbZQiHKfj+MqK2lcsoRytxuT1kydOpVwcfFBK3HdTGoU9Z1wmB1No/Q+H3a7nT45OUxcs4ah27eToxT9Jk7M+PE1qS+angDWKUXMYGh+rMbV1/PLPn0oKCqCoqKMH1uIDJoGfA9YoZRall52s9b6za4LSQghhGifJKtdpL/dzvVHHplKwioqKDebqQM2pi+b0j/X7yYhbCsSieCoq2v1AX6XhDS93qPUXiWdbddlJRJY/H4GmUwUAgal2LhlS3MCOvfooxkMFJlM+CwWalyuVCKTlweAY+TIVklpE3ub8wj3dP1Mu52pDgfV1dUkolFeCgRYYLMRMJnQWrNSay4LBPhJVhbnFxVlbJR1gN3On4HXvF7e6NuXEFDrcPCiUsx3u7khO5vTOhjVVUqRl5MDQCyZJJZIoID8Fn+nQDS6y+2byoMLIxHmzZu38zG02zk/O5vq6mrKioqoTyZ58auv8OXkEDaZKKyqYl19PTGjkYTBQHFFBQ6/H5JJsrSmv9VKTWMjWfE4lnicsf37s+2bbzBFIhRGIpx97LEUNf0d+/fHbrfjSB/vYCWoGpjf2MiLsRhbioowpefCDSzOxv+ZmV7j3XzryK38YMgQGidMoNpu75TYNgL3BwJ8GY+3Oie2zOtl+tq1XHbMMRRk9IhCdA6t9SccOu0RhBBCHOIkWe1CuyRl6cuUFttsiER4dskSvDk5RE0mRkyejAJ86Ys3/XNbm1GxtkltU9IJkBOLYfL76W0yYQaSWVlsaWwkKxbDGotxTEEB/YFCIBaL8fn//oc5HMak9c5yT4D8fBzDhu1MXlrMV2m126lokzC0vb8HouW++joc9H/rLT6rquKr/v1JGAwklOKRZJKF1dX8JCuLQRma67bCbucyu50zgZ/X1jbPyeo1m/mD0cgnwA86uH0imWTiY4+x3unkqiOP5Kg+fQD4xXvv8czy5RSYTHxw4YV7db/bXu8DVB51VKtkck04zMaNGxk4cCAjevXCYTC0P4rdlIxmZe1cn37MKjr44qCzuIH/Ao8tiLDiLSPWo6JYJ6XKbcPLLGw634aOgtNoo8+/vWQN6ZzYGoD/A96ORKhNVzh4lGJQWRkX22wMbWykzzHHSMmvEEIIIUQnkGS1mxtUXs4V06btTCAK2h+/cUSjvPLeeyQAg8HAyXPnUpHeVgF14TBvvPceJBIYDQbmtUw6rVYcvXunjlFVhb2wcOeOS0sZMmvWbkfTDlby0hG73c6Zc+cy6ptvWPjZZ7wzZgwN+fn4AwE+0ZrlPh/3Ggwc1WI090CVAb9Rit9+/TWfDRpEOCcHs9nM18A1kQgqGGRzMEj/3NxWQxhGg4FlV1yBOxzmzH/+k5V1dYwuL+euWbO4a9Ysfvvxx/x50SJunzFjv+Jq+/cYMWIEI0aM2O36PV0/mDSwoLGRV8Jh1pWU4P3SzMKTc0hGclA5+Qx8zsHwoxvJ+rSSpTFNMqlIKsXy5cWcckpmYwkALwKvkTpHNZT+skdpzdgtW7jc5WLauHFS8iuEEEII0YkkWe0B9iaBsNvtnHHKKbtNKnvb7ZzewfqOjtEdEtI9aYpxqMPB9JoaXoxEeCcnp3nU8+asLH4BzMzgMSvsdm4eP54NtbUsKivjQ5OJQCSCw+HAkEzyVixG32iUsTk59AFatoUqNJuZ3r8/b69fz+gWo77fHTOGU/7+9/1OVnui7cAHwJuhEKubGkTV1RH8byXJqBGSCqKaYf908Itpvdg4HR7NUUSjkJOjmD49c7FESU2D80woRH16Gpym87CLGxqYsnYtpaEQg2XOVCGEEEKITifJ6iFkT0llT0g6D1TTfezvcJD9+efMHzWKaHY2RouFuyMR3nM4uMJkyth0Ik3HmwqcC/y2oQFHutwaralPJvkwHic7GqUkHGZ4bi59zWZCsRj/3bSJn0+bxrrGRoakS6hfW7uW4RkcAe6unMAbLhfvxGLUFRSkukhHo61K2Ycc4WVbTjHxqCYrC370/X7Y7cXY7fDee7BgAUyfDlOmdHysvREH3gX+CVS3mQbn6JISrrZaKe/Th2qDQeZMFUIIIYQ4SCRZFYcku93ONUcdxXH19fyjVy+qAYfDwetas7CxkbsNBiZnsFswQAVwc1YWfT7+mDcDAQykmir506OFK5xOfvjCCxi1Jktrzh01inlDh/KtF15gbUMDBqXoX1jIo5muae0mGoCFwP+ALyMRan2+1ChqOIzdbm+exmhITQ1jduzgounT2fgeLFigmD5dMWXKzmlopkzJTJKaBF52uXgukSBgs7WaBscWCnH0unV8t08fxkyYAIfBlz1CCCGEEN2JJKvikGW325ljt3M88LPq6uZmSI1WKzdmZ/Mj4Cxal+dm4pjfnzGDrc89x9nZ2awKhVibTBI3GOhTWsptF12EyWwGIBmP86rfzy9PO40BZjMFHFotOpPABuADt5tPIhFqCwubm36FWnSZNiaTDGts5PzKSvrm5VFntVKZnqfUbs9MUtpWnFTp8TPBIMubkuZgMHXMnBzGr13LiK1byVGK3pMnZz4AIYQQQgixR5KsikOeGbjZaEStWMHHQ4eSMBrJslh4GvgC+AmQyfEyu91OSUkJJVYrR/j95K5bhys3l0abjXh6Gp9EPI4/EMCnNdWJBCuzssjLyqIkEiHP76eP2UyZ1dqjklcNrKyv5yOPhxq7nY02Gw2RCA6vN5UMOhzNUyZZzGZsLheDamsZVlfH2XPmpP4Gdju9O3H0Mkqq3PdFUiO9nlisOWm2RKPM3rGDHw8ciHvcOKrLyqTkVwghhBCiC0myKg4LTc2QltXX8+8BA9iRHuH7MhLhgmCQ7ynFdwsLM/4PkZeXx/AhQ/D5fNhsNrKzstgKLNoYI7Alh+w+cXJ6JYjH4/iB2nAYjEY+j8cpicWwZ2dTAliCQWqdTmodjl2mBOoKtQ4HK+vqCPXujbO4mPXAqlCIDaEQZGeDy4U9J6fVPL2GZJL+LhffqqhgislEuFcvqrWmcsKETk8IA8DzbjcvJ5PErNbmEV6z2Uw4kWDc5s1M2LqVb82di4nD4/xuIYQQQojuTpJVcdhoKgueBfwLeDocxlFXB1rzB6X4b04OV+XmMpnMluPm5eWRlx5RBTBvg00vmEkkQBk0/U5pxDw2j1A83jwXLloTSCTYkZ3N1ngcfyzG5zk5nBoIcEQgwGCrld6A2ekk4XAwpLSUwWVlWDMUe4TUHL4bGxpY29gIdjuRwkJqgU3BIMuDQWL5+eD3Y08nf20bJIXDYew5OfSqraVPQwMDGxt3jqACBQchIawB/gP8Jxxma9MIr9+P3W6n3GTiDJOJiVYr7qIiKkeNkgRVCCGEEKIbkWRVHHaygPMAy8aN/EkpXLm5KK3ZHItxJzAa+CEwqJOOv3kzJJMqndRBX1c+M7Ky2B6N8pXLhc9sxuWy4qvPQQ8EVbYziY0ajayJx6kGIpEIDr8fcnMhFMIeiWA1mSgAEk4nYaeT0sJCepWWkgNkA2GvF7fXS25BAWabjRgQAzyBAA2BAEmbjZjFQrRp/8EgmM3g9WK3WFJJaSxGzGBolZQ2Te8STiSwu1z0d7m4cNw4JhUUUFdVRXVODpWTJh2UZFADHzU08EI0yvqSEnJMJjyRSHMinRcOc/L27Vw5aBAmALs9dRFCCCGEEN2KJKvisDWlpATHG2/wVZ8+LB48GHO68dFK4EeRCKPr67nYZGJ0hrsGV1WB0QgkwGhUDB1qwgD0y82luKyM9evDvP66jWRS4f0EJpxnwGmNYEgmSSrVHGfLEtuWSeMWn49Gnw+ys1kbCFBiMpFns6WST7c7lfimy3RNJlNqeWNjq868LbvitpeUepTCFIth9/k4sbCQicAgkwlltVLj8VA5Zgz29ON2sEpqg8AC4KVgkMXBYKvzZM1mM1mBAOM2b2Z4bS1nnHJKKlEVQgghhBDdVqcmq0qpk4D7ASPwV6313Z15PCH2hd1u54xTTmFydTU/ycvjfZOJN4FgJILD4aBWa94LBpnn8/E9m41h+7Dvwn79uG3z5t2urzsRamuhogL+lgBabLp8K3yZ8KeSxDhMWAlDhoQ4obSUH5rNxEwmdgBrgA/r6vDn5BA2mSiw29FAIBhsdaxAMEiezbbb5LO95XkmE71ycsj2+7FEIhSEw8woKGA4YDeZUGYz3sZGeldWYi8oaPmgHvRzatcDbwEfAWFaN01SWjPA6eTKXr2oKCmhJhKhcuJEKfcVQgghhOgBOi1ZVUoZgYeAE4HtwBdKqde01qs765hC7KuWo36DgVOA3zQ2Nk9zA/BRMslXwEjgTGAye57u5ro77tjvmBYuhFmzIBqFnBz46UO7Tt8yEjixoIBz+vWjurqayqIi7GYzUWCRx8MHS5cSNxpJGAyMPuII+gCORIL/rVmDTibJAo49+mjsgDce59MlSzDGYljjcc464QT6FRSgLBYcpaWp/Q8ahL2wcGcA5eWpSxfxAh8DrwUCrInHMZvNrZomBZNJhlRXc8S2bXx/xozmTsPdoTmVEEIIIYTYO505sjoZWK+13giglHoeOB2QZFV0W72BW41GHv3sM76oqmJbaWlz2e3q9KUoGOTImhpOsdkY2AkJ25Qp8N57sGABTJ/e8TyjbUtsc4Bjhg6lJJFg48aNDBw4kBEDBqRWFhdzzIQJqeSzshJ7cXFqeUkJY6dN27m8xf66U1fcGKmpht4HFpMeAU+XL3uUwm63M9RkYq7JxIjcXDy5uVTOmNFt4hdCCCGEEPumM5PV3sC2Fte3A0d14vGEyAi73c4V06ZxWnU1MYuFT0wmPgISpJoOfdXQwFdZWTwZDHKSz8c8m41JpBLFTJkypeMkdU9GjBjBiBEjdlm+u+SzOyWlLSWAVcAbXi8fJhIkc3ObR1CbypcNySRDHA7O8fs5a+TIVDdkaZokRLdV9b9UbcrmackujiRzqm58A4DNd5/Sucdp57E72I9ny+Md6LEPxeeCECKzOjNZbW8GDb3LRkpdBlwG0K9fv04MR4i91zJ5mwxcCLwO/D3duEcDCaX4JJlkBWAFpgHTSXUTzuTUN4ebOLAc+BRYCNS3bAzl8zU3gBqVlUXO118zuKaG3ESCY+bNk8ddCCGEEOIQ0pnJ6nagb4vrfYDqthtprR8DHgOYNGnSLsmsEN1BCamE9fholD+sXcvXvXpRV1DQXCIcAOYD/4lEMPv9TMnOZkZ+PmOB3K4Lu8cIAAucTj4IBtlQWko8/bhC667H+aEQx9fUcHFVFZVWK47x46kuL9+lfFkIIYQQQvR8nZmsfgEMUUoNAHYA5wLf7cTjCdHpqux2fjluHNXV1SiLhVUmEwuAWtLzkjocoDVblOIDk4lck4kRwBHARGAAMuoKqdHTr4Fl6cuKSIRavz81elpX1zx6ClCRk0PVtm0Mqq2lt8fDqfPm0ZSWdtfyZSGEEEIIceA6LVnVWseVUlcD75CauuYJrfWqzjqeEAdLywRpPKlvYNYC/+dw8N9olFB2dqupYVaSmrv1GcAcClHpdDLeamVyYSGD4bCY7zMEbAAWu918HgqxvagIWoyehtpMn2P2+znNZGIaMNxioW7IEKqtVhlBFUIIIYQ4jHTqPKta6zeBNzvzGEJ0NQUMB64xmej/3/9Sk5/PtrIyDJMmUdNiu0gkwtb6er7RmgVeL3aLBYvJRH9gGFDmcmGtrmZcaSl9enBCFgQ2kpr/tOlSDYQjERxeb7ujpxazGbPPR5+GBgbX13PJccdR0WKfMoIqhBBCCHH46dRkVYjDid1u5/RTTtk5BYzVihv4ElgCvBcItBo9bBp53QR8HYng8PkgLw8VDjM6GGRwbi6VpNpq9wYqgTK6voxYA35Spc+O9KXp903BIFtisVbznjYJtxk9zfX7OcFkYjwwzmQiWFZGdSxG5YgRkpgKIYQQQghJVoXIpLYjgIXAjPTl/FiMpz7/nBqbjfqiIkxlZThJJX8tEzmArbEYHlJJbpNIJEI8FMJuMtHLYqEQKEgfoyB9cW7cSP22bVT17s2IwYPJhlYXp8NBTU0Npb16UWK3E4NWl5qGBrY2NGAuLyeruBgv4AV86Z81wSDbIxFoMYVMy/gcDQ2t5j1t2sYADMnOJlBTQ7nLRX+Xi/NnzWo1emqT0VMhhBBCCNGCJKtCHCS97HYuOf74nSOvubkESZXJLtKaN+vrqbPZ8JvNzV2Gm7Rs3tSoFI0tEsEmfp+PRqMRqqoAKPH5yLPZWu8jEoGiIohEsEcirfYRiURwBINgsYDfj91q3XV9OhltOYVMk6aEW2lNic/HeIOB4/v0YTCpxlI5ubk4Bgyg2mSi8ogjJDEVQgghhBAdkmRViIOo7chrLjAWGFtYyKl9+1JdXU1pYSHaZGIHqTba1cBStxtvJEIwJ6dVCXFLgWBwl+stk9W2Zbht97Ev67PjcYq8XkaXlWEHKtLLln/2Gfl+PznAvBZde3d3/4UQQgghhNgdSVaF6CbaJnL9WqxzAK9/9BERpQibzRw1ezZZgBvwpH9+A6x2OokbDCQMBsrz87EBUVIlvspkwp9ONrOSScpycrCRehHIBuzZ2Wz1esmOx8mNxZhcVERvID99icXjfPH551iCQayJRKspZAAoKeGI6dN3jhxLUiqEEEIIIQ6AJKtC9AB2u5158+btTARLS9vbiDVOJxs3bmTgwIGMKCpqvd5sxmGx7NyHxdJ6fW4ujvLy1Pr+/bHn57deX1LC6JZlzO0kozJyKoQQQgghMkWSVSF6iL1JBEeMGMGIESP2ex8Hul4IIYQQQohMMXR1AEIIIYQQQgghRFuSrAohhBCHEaXUSUqptUqp9UqpG7s6HiGEEGJ3JFkVQgghDhNKKSPwEDAXGAmcp5Qa2bVRCSGEEO2TZFUIIYQ4fEwG1mutN2qto8DzwOldHJMQQgjRLklWhRBCiMNHb2Bbi+vb08uEEEKIbkdprbs6hmZKqXpgy0E6XCnQcJCOdaiSx/DAyWN44OQxPHCH6mPYX2td1tVBdCdKqW8Dc7TWP0xf/x4wWWv94zbbXQZclr46DFiboRB6+nOtJ8ffk2MHib8r9eTYQeLvSu3Fvk/vzd1q6pqD+aFCKbVYaz3pYB3vUCSP4YGTx/DAyWN44OQxPKxsB/q2uN4HqG67kdb6MeCxTB+8pz/XenL8PTl2kPi7Uk+OHST+rpSJ2KUMWAghhDh8fAEMUUoNUErlAOcCr3VxTEIIIUS7utXIqhBCCCE6j9Y6rpS6GngHMAJPaK1XdXFYQgghRLsO52Q14+VNhyF5DA+cPIYHTh7DAyeP4WFEa/0m8GYXHb6nP9d6cvw9OXaQ+LtST44dJP6udMCxd6sGS0IIIYQQQgghBMg5q0IIIYQQQgghuqHDMllVSp2klFqrlFqvlLqxq+PpaZRSfZVSHyil1iilVimlru3qmHoqpZRRKfWlUur1ro6lJ1JKFSqlXlRKfZ1+Pk7p6ph6GqXU9en/45VKqX8opcxdHZM49PS0993dvc8ppYqVUu8qpdalfxZ1day70/b9pYfFvstrew+Lf5fX1e4cv1LqCaVUnVJqZYtlu41XKXVT+n95rVJqTtdEvdNu4r8n/fxZrpT6t1KqsMW6bhN/e7G3WHeDUkorpUpbLOs2safjaTd+pdSP0zGuUkr9vsXyfY7/sEtWlVJG4CFgLjASOE8pNbJro+px4sD/01qPAI4GrpLHcL9dC6zp6iB6sPuBt7XWw4FxyGO5T5RSvYFrgEla69GkGu6c27VRiUNND33f3d373I3Ae1rrIcB76evdVdv3l54Ue3uv7T0i/g5eV7tz/E8BJ7VZ1m686f+Dc4FR6ds8nP4f70pPsWv87wKjtdZjgW+Am6Bbxv8Uu8aOUqovcCKwtcWy7hY7tBO/UmoGcDowVms9Crg3vXy/4j/sklVgMrBea71Rax0Fnif1gIq9pLWu0VovTf/uI/Um0rtro+p5lFJ9gFOAv3Z1LD2RUiofOA74G4DWOqq1dndpUD1TFmBRSmUBubQz56YQB6jHve928D53OvB0erOngTO6JMA92M37S0+JfXev7T0i/rT2Xle7bfxa648AZ5vFu4v3dOB5rXVEa70JWE/qf7zLtBe/1nq+1jqevvoZqTmloZvFv5vHHuBPwM+Als2FulXssNv4rwTu1lpH0tvUpZfvV/yHY7LaG9jW4vp2JNHab0qpKmAC8HkXh9IT3UfqhSjZxXH0VAOBeuDJdKnbX5VS1q4OqifRWu8g9Y3nVqAG8Git53dtVOIQ1KPfd9u8z9m11jWQSmiB8i4MrSP3sev7S0+JfXev7T0i/g5eV3tE/C3sLt6e+P98CfBW+vduH79S6jRgh9b6qzarun3saUOBY5VSnyulPlRKHZlevl/xH47JqmpnmbRE3g9KqTzgJeA6rbW3q+PpSZRS84A6rfWSro6lB8sCjgAe0VpPAAJ0r7Kqbi99DtLpwACgErAqpS7o2qjEIajHvu/2xPe5Q+D9pUe/th8Gr6s96v9ZKfULUmX9zzUtamezbhO/UioX+AVwa3ur21nWbWJvIQsoInUKxU+BF5RSiv2M/3BMVrcDfVtc74OUve0zpVQ2qTfw57TWL3d1PD3QNOA0pdRmUiVxM5VSz3ZtSD3OdmC71rppVP9FUh9wxN47Adikta7XWseAl4GpXRyTOPT0yPfd3bzPOZRSvdLrewF1u7t9F9rd+0tPiB12/9reU+Lf3etqT4m/ye7i7TH/z0qpC4F5wPl651yd3T3+QaS+6Pgq/T/cB1iqlKqg+8feZDvwsk5ZRKrCo5T9jP9wTFa/AIYopQYopXJInej7WhfH1KOkvx35G7BGa/3Hro6nJ9Ja36S17qO1riL1HHxfa30offPa6bTWtcA2pdSw9KJZwOouDKkn2gocrZTKTf9fz0KaVInM63Hvux28z70GXJj+/ULg1YMd25508P7S7WOHDl/be0T87P51tafE32R38b4GnKuUMimlBgBDgEVdEF+HlFInAT8HTtNaB1us6tbxa61XaK3LtdZV6f/h7cAR6f+Lbh17C68AMwGUUkOBHKCB/Yw/q/Pi7J601nGl1NXAO6Q6tD2htV7VxWH1NNOA7wErlFLL0stu1lq/2XUhicPUj4Hn0h+ANwIXd3E8PYrW+nOl1IvAUlJlUl8Cj3VtVOJQ00Pfd9t9nwPuJlXS9gNSScm3uya8/dKTYm/vtd1AD4i/g9fVPLpp/EqpfwDTgVKl1HbgV+zm+aK1XqWUeoHUFwhx4CqtdaJLAk/bTfw3ASbg3dR3Bnymtb6iu8XfXuxa67+1t213ix12+9g/ATyhUtPZRIEL0yPb+xW/2jkqLoQQQgghhBBCdA+HYxmwEEIIIYQQQohuTpJVIYQQQgghhBDdjiSrQgghhBBCCCG6HUlWhRBCCCGEEEJ0O5KsCiGEEEIIIYTodiRZFUIIIYQQ4iBQSt2hlDphD9tMV0pNPVgxCdGdHXbzrAohhBBCCNEVtNa37sVm0wE/8GnnRiNE9ycjq0IIIYQQ4rCglPqZUuqa9O9/Ukq9n/59llLqWaXUI0qpxUqpVUqp21us+3eLfZyolHo5/btfKfUHpdRSpdR7Sqmy9PLxSqnPlFLLlVL/VkoVpZc/pZQ6O/37ZqXU7enbrlBKDVdKVQFXANcrpZYppY49iA+PEN2OJKtCCCGEEOJw8RHQlABOAvKUUtnAMcDHwC+01pOAscDxSqmxwPvAiKZEFLgYeDL9uxVYqrU+AvgQ+FV6+TPAz7XWY4EVLZa31ZC+7SPADVrrzcCjwJ+01uO11h9n4k4L0VNJsiqEEEIIIQ4XS4CJSikbEAEWkkpajyWVrH5HKbUU+BIYBYzUWmvg/4ALlFKFwBTgrfT+ksA/078/CxyjlCoACrXWH6aXPw0ct5t4Xm4RV1Um7qAQhxI5Z1UIIYQQQhwWtNYxpdRmUqOjnwLLgRnAICAE3AAcqbV2KaWeAszpmz4J/AcIA//SWsd3d4h9DCmS/plAPpcLsQsZWRVCCCGEEIeTj0glpR+RGk29AlgG5AMBwKOUsgNzm26gta4GqoFfAk+12JcBODv9+3eBT7TWHsDV4nzT75EqEd5bPsC2T/dIiEOUfIMjhBBCCCEOJx8DvwAWaq0DSqkw8LHW+iul1JfAKmAj8L82t3sOKNNar26xLACMUkotATzAOenlFwKPKqVy0/u6eB/i+w/wolLqdODHct6qOJypVBm+EEIIIYQQYneUUn8GvtRa/63FMr/WOq8LwxLikCbJqhBCCCGEEB1Ij5wGgBO11pEWyyVZFaITSbIqhBBCCCGEEKLbkQZLQgghhBBCCCG6nU5LVpVSw5RSy1pcvEqp6zrreEIIIYRIUUo9oZSqU0qtbLGsWCn1rlJqXfpnUVfGKIQQQuzJQSkDVkoZgR3AUVrrLZ1+QCGEEOIwppQ6DvADz2itR6eX/R5waq3vVkrdCBRprX/elXEKIYQQHTlYZcCzgA2SqAohhBCdT2v9EeBss/h04On0708DZxzMmIQQQoh9dbDmWT0X+MeeNiotLdVVVVWdH40QQohD3pIlSxq01mVdHUc3Ytda1wBorWuUUuW721ApdRlwGYDVap04fPjwzETgckE8npl9dbasLCjqRpXSPemxE3t2MJ9f3eG509n3tzvcx/3V3V5rOtm+vjd3erKqlMoBTgNu2s365jfEfv36sXjx4s4OSQghxGFAKSXVPPtJa/0Y8BjApEmTdMbemx95BPr0ycy+Otv27XDllV0dxU496bETe3Ywn1/d4bnT2fe3O9zH/dXdXms62b6+Nx+MMuC5wFKttaO9lVrrx7TWk7TWk8rK5AtwIYQQopM4lFK9ANI/67o4HiGEEKJDByNZPY+9KAEWQgghRKd6Dbgw/fuFwKtdGIsQQgixR52arCqlcoETgZc78zhCCCGE2Ekp9Q9gITBMKbVdKfUD4G7gRKXUOlLvzXd3ZYxCCCHEnnTqOata6yBQ0pnHEEIIIURrWuvzdrNq1kENRAghDlAsFmP79u2Ew+HdbzRxIhiNBy+oTLLbYc2aro4i48xmM3369CE7O/uA9nOwugELIYQQQgghxD7Zvn07NpuNqqoqlFLtb1RXBzk5BzewTIlGoXy3zdl7JK01jY2NbN++nQEDBhzQviRZFUIcMjQQBDbU17O5ro78igosJSUE08uDQI3HQ53Hg7WwEFN+PlEgCjj9flyBAJa8PCxWK0kgASQBfzCIPxgkLzeX3NxcDIAidR5FOBgk6PdTaLVSZLWSA2QDOUDY6yXodtOroICKggJyASuQCwQaGvA7HAwuK2Nwebm8GAshhBDtCIfDHSeqottRSlFSUkJ9ff0B70s+Hwkhuj0NuEi1Lq0HvnG72eT1YigqQttseAAP4AUCkQiOUAjy8iAQwJ6Xh8lkAiASieDweEBrcLuxm0yYTKbUcqcztTwSwZ6V1fo2DQ2pdcEgdru9/XXh8K63c7tT6zwe7GZz63XBYCrGcBh7JEKxyUQ+UAAY/X60y8VAm43BhYWUAWWkzqnood8bCyGEEPtNEtWeJ1N/M0lWhRDdQgyoBXakL197vWwIBonm5xPIzaVpqu9IJILD600lgS4X9pyc5iQQUt/AojUaUFoTDoeb1+9u3f7cJtPrAiYTAWBzy8TZ68VusbS6f4WANRDA7HYzwmplVGEhfYBKJJEVQgghxKFFklUhxEEVBbYDm4DlHg9fB4MECgrw5uai09u0GpVsaGg1mtlREghQYDKhw2FyYjFMiQSjS0ooJ1V6GwNWb9hAVjxOttYcM3kydsAfj/PZ0qUYEgmygJnTp2MnVebrjEZ5/9NP0ckkymBg1gknUEqqRLguGuX9zz8nrjU6K4up06djS99HRyLBJ2vWEDUYiGdnM/yII8ghVYpcZzSy0uMhbDQSMpmwmM3N8e/p/jkiERyNjaA1H7RIZhVgBwr9fnIbGznCZmNycTEVpEqWhRBCiENB1Y1vZHR/m2+ctsdt7rr3Xv7+0ksYDQYMBgN/+dOfuPu++9i0ZQv+QID6hgYG9O8PwMP33svUo45qvu0lV1/N6++8Q3lpKSsXLmxe/tNbbuE/77xDTlYWg4YN48knn6SwsHCXY7/99ttce+21JBIJfvjDH3LjjTfuss3atWu5/PLLcbvdRCIRjj32WB577DEWLFjA6aefzsCBAwmHw5x77rn86le/AuC3v/0tf/vb3zAajTzwwAPMmTOn3fv+4IMP8uc//5msrCxOOeUUfv/73xONRrn88stZvHgxBoOB+++/n+nTp+/xcdwfkqwKITqNB1gPLHa7WR0I4C4qwp2bS5I2Jbl7kZCWmUyUAbkGAzu2bcMaCmGNxZh91FEMIFU+mw+YzGYchYVUV1dTWVmJPS9vZ0AFBThGjdq5rqgotbykhCOmTt25vLS0+SZVZWX0njlz57qyslbr+h9//M51JS2anxcXc8yECTvXFRTsXJeXh8NuT60rLaXcZMKXfrw2xGL84ec/J9bYSNxoxFpSQiI7mzAQAaLRKIZodOdjnJNDdrqpREMiQSgUAlITalosFkxGIzagpF8/zrruOnJ37GBUeTkVdvv+/2GFEEKIw8TCRYt4ff58li5YgMlkoqGxkWg0yr+ffRaABZ98wr0PPsjr//xnu7e/6LzzuPrSS/n+FVe0Wn7ijBn89le/IiuZ5Od/+AO//e1v+d3vftdqm0QiwVVXXcW7775Lnz59OPLIIznttNMYOXJkq+2uueYarr/+ek4//XQAVqxY0bzu2GOP5fXXXycQCDB+/HjmzZuHxWLh+eefZ9WqVVRXV3PCCSfwzTffYGzTUfmDDz7g1VdfZfny5ZhMJurq6gB4/PHHm49TV1fH3Llz+eKLLzAYMj8rqiSrQoiM2ORwsMjpxN+rF/WFhawjdY5pq7LdFklp24Q0Eg7T12SiN2BTim1r15IfCFAQDvOdmTPp35Ts2Ww4hgxpP0FMs9vt2HeTjO1u3f7cJpPr8tOXvqWlvKU11w0ciM1mI69Fsp0EGgIB1mzZQig7m3BODtZevQjn5OAnleS3bO1vNpsxpUdt/7xhA7/0+yE/H5vHw0kWC8fk5zMWKG43QiGEEELUOByUFhc3f6Fe2s7njo4cN20am7du3WX57JkzU79Eoxx99NG8+OKLu2yzaNEiBg8ezMCBAwE499xzefXVV3dJVmtqaujTp0/z9TFjxuyyL6vVysSJE9mwYQMbNmzg3HPPxWQyMWDAAAYPHsyiRYuYMmVKq9s88sgj3Hjjjc33vTzdtXj16tXMmjWreVlhYSGLFy9m8uTJe/uw7DVJVoUQ+8ULrEpfPg8G+SIcRufm7nKeZXtJaZXJxBiDgfpNmyj2eikJhThv+nT6NiWk+fk4xo3bmZC2Sfg6SgIPBRaLhV69eu2y3ACUW63k9uuHz+dLJbPpUdUEqdLj1XV1BLKzCZrNGKxWEunbJhKJ5r+Dz2RivtZ8nl7XFxgH9HU6Kdy2jUEVFYf04yuEEELsrdkzZnDH73/P0EmTOOH44znnrLM4ftqeS4f3xRNPPME555yzy/IdO3bQt2/f5ut9+vTh888/32W766+/npkzZzJ16lRmz57NxRdfvEtJcWNjI5999hm33HILH330EUcffXSr/e7YsWOX/X7zzTd8/PHH/OIXv8BsNnPvvfdy5JFHMm7cOF599VXOPfdctm3bxpIlS9i2bZskq0KIrhMA3nM6+SwQoKakhIbc3OZ1nlgMDbucZ5kNjMrKwr99O6UeD6WBABccd1xqlNRmwzFixGGbkB6IvLy8ViOuAEag0molv7KyOZG1ZmcTBBqBV4Cgy0VNfj7xrCzMLc6T3Qasj0Rw+P0YCgrov30738/OZm5xMZaDd7eEEEKIbicvL48lCxbw8cKFfPDxx5xzySXc/atfcdF3v5uR/d/1pz+RlZXF+eefv8s6rfUuy9rrsnvxxRczZ84c3n77bV599VX+8pe/8NVXXwHw8ccfM2HCBAwGAzfeeCOjRo3a6/3G43FcLhefffYZX3zxBd/5znfYuHEjl1xyCWvWrGHSpEn079+fqVOnkpXVOWmlJKtCiN2qARalL0vDYar9/nbPMTWbzXiBEr8fu9fLafn5TAb6A1lWK47Bg9tNSiUh3Xv3f/YZjy9digYuPeIIrjv6aG55/31eXbsWg1KUW608dcYZVLYpHbamLyNzcriyVy+2VlcT7tuXHSYTy4E1QJydI+AJpdhUWvr/2Tvv8LbK649/Xg1rWN5Djp04e++QhAwICSEJgRCgpTSMsspuaWhLW6CFMn8dtJRCGaWDQoFSZqGshhVmIGTvxNkesTxkbelqvb8/pCjOcoav44z38zx6rLvOeyRfSfd7z3nP4SGjkeeAMcAkYDSq2rBCoVAoTkyMRiOTTzmFyaecwtBBg3j6X//ap1itrqnhnIsuAuD6K6/k+quuatPu0//6F2++9x4ffPLJPsVi165dqa6uzizX1NRQXl6+T1vl5eVcddVVXHXVVQwZMoRVq1YBu+asHo7drl278o1vfAMhBGPHjsVgMNDU1ERJSQl/+MMfMvtNmDCBvn37tvlaDxclVhUKRYYdLhdfuN3UlJezLi+Pmlbbgpq2WzpvLBxmuMXCEGD1/feTWL+eaCiE3W5nvc3G+g7yMb+ykpvvuaeDrB+drGpo4C9LlrDwmmvIMho589lnObtvX34ycSL3pue8PPzVV9zz8cc8MWvWfu3seXNgDqmiTWuBT4D/+v005OSAEFitVqLA5+kHkQj9mpqYbbUyqbhYVRhWKBQKxQnB+qoqDAYDfXv3BmDZypV0b5Wa25puXbuy7NNPD8ruu++/z2/++Ec+fvVV7K2y1VozZswYqqqq2LJlCxUVFbzwwgs8//zze9t6912mTp2K2Wymvr6e5uZmKioqWLdu3T7tzp49m4svvpgf/ehH1NXVUVVVtc8U3vPOO48PP/yQyZMns2HDBqLRKMXFxYRCIaSUZGdn895772EymfaaR6sXSqwqFArcwMseD894vfjtdvB6cVqtu7VMsVqtWP1+Khsa6OrxcNXEiVSmt921fTt3DRx4RHy9a+vWIzJOR7BgAcyfD5Mnwx41DNpkbWMj47p2xW42A3Ba9+68tm4dP201ZyYYjR6WgLQAI4AReXl8OxJheUMDW7t1Y6XFwtb0Ppqm4WpoYLuUvB8KMT4Y5NLsbMaTSj9WKBQKheJIsfXXZ++9sqEBsjom/ycQDHLTT3+Kx+fDZDTSp1cvnnzooYM+/qLvfpf5n39OU3MzXQcP5u5bb+W73/kO3//pT9E0jWkXXggmE+PGjeOJJ56grq6Oq6++mrfffhuTycSf/vQnZsyYQSKR4KqrrmLw4MF7jTFv3jzmzp2bmeLzwAMPUFZWtl+xOnjwYC688EIGDRqEyWTi0UcfzVQCvvrqq7n++usZPXr0bpHarKwsnn76aYQQNDQ0MGPGDAwGAxUVFfzzn/889Df2IFFiVaE4QZHAcuAd4CvALQR+i2W3eac5FgsjgLHAGIuFWEkJdbEY5YMHq/TdQ2TBApg6FaLR1O/pBx8cvGAdUlrKzz/8kOZQCJvZzNsbNzI6XYDp5x98wDMrVpBnsfDR5Ze3y0en08n0Vv/XalIR11f9flytoupr4nF+Q6qv67nANMC6L4MKhUKhUBzjnDRiBF/Mm7ff7TvTg/fHv/72t32u37hkSepJNArpKruQSud9++23M8tnnXUWZ511Vps+Pvjggzz44IN7+zZ58n77n/785z/n5z//+V7r//rXv2aeZ2Vl8Wy6RU9revTowfr1HZVDtztKrCoUJxhVDQ28HgiwvKwMT6u0E6vVilcIbNEofRoa+I7DwensMU/xOJpjKoFY+qEBUaC2sZHahgaKnU4Ki4tJkGoX09DcTENjI6UlJZQUFSEAQao6b3NTEy0uF11LSykvKSELMANul4vmujoq0vN0589P/R4lEqm/8+cfvFgdWFLCzyZOZNo//4kjK4vhTiemdC+z+6dO5f6pU/nVp5/yp4ULuXvKFN3eo27AJcDURIKnvvqKFRUVrK+oyNy5dQFPAs8DE71ehm3bRv/j6BxRKBQKhULRuSixqlCcIHiBv/l8PBsKkTAa9yqSdJLFwskOB+XbttG9d+999i89FK56/XXe3LCB0uxsVt14IwDucJhvv/wyWz0eeuTn8+IFF1Bgs/HcihU88MUXmWNXuFwsue46RpSVHXAcCaxvaGBDYyO2sjJMRUX4SLXWqfb5qA8EMOXmYnA4CAEhwB2J4NU0LK1SnTVNwxUOg8MBoRBOTcNisaTWB4Ngs0EwiNPh2P2YUCh1TDi8+zGaBoWFWIJBeoXDxCfbEFkgohJhltSNCfMi2eQBeUCsqQltxw4Gtrq72prvjhrFd0eNAuD2Dz6ga27ubtsvHjqUs59/XlexupMyp5OrTjuNuro6su12vrZYeAvwp7c3axp/8XrJys5m4rJl3DpiBGVKsCoUCoVCoWgnHSpWhRD5wF+BIaSuKa+SUi7oyDEVCsXu+IHXgDeAhnS1153pnCIUYrbFwpmkomgUFqYeOnDFiBF8f+xYLnvttcy6X3/2GVN79uTWU07h1599xq8/+4zfTJvGJcOGccmwYQCsdLk494UXdhOqWvp1NITDrAgEuNfvJ5KTQyNQE4lQG4mkBGMrMalpGi6PJ1W92O3GaTbvWt/QkFovREaw79kPdmf7nf2th717yO7rGM1opC4aJW+8jZHvRKl+O0T2yWE+6RdjvWba5VMoBLm5iEiE/HiceYAdMEYiGEMhDIkEg0tKaPB6eXXtWhZ897tUNTfTN31T4Y316xlQXKzL/25ftC7O1A/4JvAhqZY469KvVzOZ+GjAADzAfUDX/dhSKBQKheJQkFLus1qu4uhlX+1xDoeOjqz+EXhXSnmBECKL1LWXQqE4AoRICdTX0s9hV6pvqdfLiOpq5p50EvuuZ9d+JnXvzlaPZ7d1r69fz/z0vMrLhw9n8tNP85tp04DU3aww8OSqVUwZOJB5Ph8xq5VIVhYakIjHCUSjbAE2tbTgzMrCYrEQ2KNK8YFEZuv1xmQSQiHyLBZysrIwhEIYEwmMQO/iYnKAiMnEppYWRDIJBgN9ioqwpf31m0xs9PmIC0HSaKS8tBQTYLJYCKRvDOysrAtgHRGmtIcXmX7B+/IJIJxM0rTzNWsaGAz8/pVXCEejmI1GbjjrLFYYDNz1zjvUeb1kGQz0yM/nibP3UXSig7ACZwFnAm8nEjwQDuOx2UAI6vLzuQm4ELiAVFq0QqFQKBSHg9Vqpbm5maKiIiVYjxGklDQ3N+/W0/1w6TCxKoTIJdWe7woAKWWU1LQwhULRgUjgXeAv4TBN0SjWVqmu/S0WfpidjbO5mYqTTjricwtdgQBdcnJIAracHOoDAT7weonabASzsogCL65axbWzZrEpmYRwGIfBgNFkIh6Pp6KhAK3Ep9VqRYvHyY5EsMVijCosTEX0pGTNunVYolEsiQTTTzmFSiCgaXw8fz7GWAyTEMyaNQsngM2Gq7BwVz/Y7OzUWNnZuLp0Sa3v0gVnqx6mZGfjKi1NbSspwWmzpdZbrbhsNrbX1VFYUUGOxUII2B6LMW/ZMsImExGLhX5jxgBQazSyzO8nkJVFyGLJVORr/Zp//K1vpf6XViuJeJw1wSAXzpoFQuDIzqbAZGI70BSJYPX5qLDbd+u32lEYgFmFhQyPxfhHOMwXTicmi4U4qbmsnwI3AUemVrRCoVAojje6du1KTU0NjY2N+9/J7wfjMVqfPpGA5ubO9kJ3rFYrXbu2P8eqIyOrvYBG4CkhxHBgMTBXShnswDEVihOarcCfgBWahquxEaTEKwQjiou5xm5nIiCKiqCd81EPlSBQHQ4Tl5K3o1ECWVlo8TgxYIOUGVG6pb4es8lE+U7/pCQej5NlMlFoNKIFgxQFAgxdu5aZY8YwECi2WPA5HNT5fCmRmZOTOjY/H9eIEbvE584U2dJSis88c9f6VoJ9zz6kB1p/qMf0KC6m/7hxu8bOy0ttcDhwlZRQV1dHaV4eDxuNnAE0ScmmlhYiaXFrcjiQsJdwj8fj+EwmWnZGYrOyMEWj9NI0Ki0WnIA+yTj7p5vTyR2kzsFHgA3p9dXAXE1jfH09N1itai6rQqFQKA4Js9lMz549297p8cdBB2HUKdTUwA03dLYXRy0dKVZNwCjgJinlV0KIPwK3Ane03kkIcS1wLUBlZeVeRhQKxYGJkIpivU6qeu3OtNKccJiTN27k4ooKTho58oj4IoEA0ECqNY4feDWdwpttt7OiqYmK0lKaPB5ydkYi04Lrq1WrmDp4ME6/H6umYYvFGFJZSTEgzGYCeXl8Wl/PrSNH7lYAynaIIrMt8dnRHIxPNqAUKLXZqCwpwe/3k2O3k20yEQHqk0nWNTcTzMoiaLFgSEdQW4vYuMHAdilxkUon/jASIc/nY1ZuLn3hsHqyHgw9gAeAt4BnAK+m4XK5UnNbt2zhD0C5EqwKhUKhUCgOgo4UqzVAjZTyq/Tyy6TE6m5IKZ8k1f2A0aNHd/TNf4XiuOPd5mYeB8KtqtQ6LBb6b9nCqE2byAK6ptNNO4oEqQ98LalU10Aigclkwk1KPO8UUcN69eLL1as5t7CQRatXM7aykq5uN9nRKIO6duWONWv45MorKTWbUwItJwfHznRcwOFwUFRUdEK1RnE4HLul89qAnnY7JU5nRsRaTSY8QK2UrA8G8VmtxEwmTCZTat5rMEggHudpj4d3LRYqLRaGe730qqlhdHGx7u+nATgHGAf8wu3O9Ghd16ULv4nH+T2qFL1CoVAoFIoD02HXC1LKeiFEtRCiv5RyPTAVWNNR4ykUJxpx4I8+H88Eg6loWjCI0+lktMXCjVYr5oEDqcvL2yvVVS+qGhr4n9/PNqeThaTmJCbicQKhEEjJ3995h6raWgLhMD9+7DEuGDmSy/v04cH587l3zRp6FhTw1MyZmONxckpLWdTURNfcXHoVFAAckfmWxzJ7ithioNhmo3deHn6/H2m1pgpA+f2EE4nUTum5vtuBr71ecDjo4nLxfbOZswoLMejsYwlwl8HAj+vqWF1eDkKwtriYXwE/Y48evgqFQqFQKBR70NE3t28CnktXAt4MXNnB4ykUJwQNwG+Ar6XMVJG1RaN8c/t2ru3bN5Xi2QGprhJYDbzo9/NmKETCZAK3m+y0GNoZQTUmk/zotNPobrPRv6CAAiAUCOD3+znvO9/ZpxCd7HDw5dVX6+rvicieIrZCCNZv20Y3nw/7jh2EnU5aWlUf3pGXx2+NRt4AziN1V9Gioz9dnE4eBP6kaSxMtwlaSKq1zc91HkuhUCgUCsXxRYeKVSnlMmB0R46hUJxofAX8gVTRop2taHo1NDBtzRrOmzGjQ+Yibna5eCMQYGmXLrjtdrzJ5G79WhOJBHmkonuRujqyw2EMQtCvXz92yqY9RZRi/+RXVnLX1q262QtbrQxyOvlhz54UWq28HwzyN5eLTaWlJA0GrFYrO4CHNI1HgkEuE4I5BQW6nUtlTif3kprD+nJ63Zeaxg0tLdwlBJUnUFq3QqFQKBSKg0dNG1IojhGSwMNeL69Cph2N3WLhh7m5DGtupmLGDN0jqRHgl/P8PPeeGet4O9nmJpxOZ0Ykl3k89K+vx5BMcjaA1UqgsnLXfFMlTg+Lm++5p0PtzywqYlQ8zlqXi5Xdu/O5xYI7XQgJKfm1EHyRlcXPsrPRq7aiAC4jFUn9e3osl5T8orqaB+CEmoesUCgUCoXi4FBiVaE4BogDd/v9vOH1ZtrRDCop4S6bjf75+aBzpd8o8Dbw+AJ4/zwHSQ1ElqTXcy7klBDnFxQw2mbD3NxM+fDhPN6q6bOKoB4b7Kw+PBm4BniipoaX43F8VitCSpbH41wbiXBqfT2X2WxU6CAmBTAHqK6r41mDAQks79aNz5ub+YYSqwqFQqFQKPZAiVWF4ignAvwK+DiZzMwz7NnQwPdaWug/fHi7bC9YAPPnw+TJMH48fLEA/jEfNo3XiI2MsOP9bJJRIyQFMgbO//r5y0QDPQBKSlKPoxwJhIBNjY1sbWggt6wMW1ERIaC2pQVXSws5hYU48vOJA81eL81eL9n5+dhyc4mTulngCQTw+3zk5eSQm5ODAIJ+P0Gvl+LcXIpyc8kCQl4vQbeb8vx8KgoKsAOhpib8Lhd9SkroW1p61H3xWoGLHA5sb7/NVz16sLRXL4wGA7UNDbwgBJ/t2MFjQHedBOV37HY+ra1lW1ERCMEbPXpwDmDWxbpCoVAoFIrjhaPtmkmhULTCD9wDrGPX/NRh27YxecMG+s6a1S7bCxbA1KkQjUJWFtz9ENx+M8SjEmE20+s5NwwJY8xyIqMSs0ly+wXF9HAWtv+F6UQSWNPQwOrmZoxlZcQKCmgEtgYC1IXDJBwOYjYbIU3DFQ6Dw5GqmpyO/Lr8fjAawefDme756kpHr/F4cFosWCwWNE3D5Xan1re04MxK1bF1tbTstm/meIMB/H6cdntqXSiUGjsSwalpFFosmEMhDH4/3e12eufkUAIYmptJ7tjBsJISuh7hSKPT6eS8s85ibF0dcbudh8Nh3OmbIzUFBdwJPAZkH8DOwVDmdPJ/QvBDsxlht9NssfAScLEOthUHRgjxQ+BqUvdyVgJXSikjneuVQqFQKBR7o8SqQnGU0gL8OBRiYyyWmaN6Q14eYx0OKmbNavccv/nzU0I1kQAtKvnVC3HiURMkUoWTop+bOG/aYoY/1pOGHf2ZPFkwfvy+hareBYH2JEGqoJRb0/CWlHC73483J4etkQg1kQjY7buLw53CMhzG6XQSaVX9VqTbtwAHtc5isbTr+H2tcwOupiaQkmWatkv8BoOQk4MhEmFoKESXZBJbczMjcnIYW1hIF+iQAlo7cbaqIP1bl4u7Nm/my169QAi22+1c29DAPUDv0tJ2jzWktJQfkGqyrWkafw2H6R+LcdIxEK0/lhFCVAA/AAZJKcNCiBdJZWf/o1MdUygUCoViHyixqlAchYSBn4ZCLE4LGq8Q3JKTw3cKCnSbnzp5MpizIBmVSLPEPs2LZ0EhEjCaknzL8iWDahuYNWskB9LFehYE8gNVwCKPh9XBIJ6CAlrsdiKtCgBtTkc3I5p2UOIwz2JBRiJkxWJkJRIMLSrCJiUba2sxxeMYpWT0iBGYpGR5VRUikcAETBg7lhLAn0jw5fLlSCnBYGD8xIlI4PNVq4gD0mhkxLhxxICFmzejGQzEzWZ6FxYSFoJVXi8Ro5GwxYLNaiV8APGbBDaFwywPBgF4LRDAmZ1NocVCWSBAcVMTp+TkMKGoqMN6lXZxOrkH+FcgwOulpbhbWnBLyY0+H09JSbkOkd+zgbeDQb5obgYpubOlhb8nk6rYUsdjAmxCiBhgB+o62R+FQqFQKPaJEqsKxVFGnNQc1fWxGEiJkJIzVq5kSEUFFBToNo4cDxM/gE3vahiHt2A/KUqXbl4GLHIwZ5qZ8vKulJeP7VDhkAS2Ap95PCwOBmkuKMBrt6fSbn2+VHS0qWm/0VGr1UosFiM3GCRX0zg1P5/iZJK1y5ZhC4exx+N8c9o0uuXl4crPp66ujvLy8l1pwL1771qXl5daN3TornU73+/CQk4++eRd6wtTEeZxo0fvWpefD8A5gwbtWpeTk7LpdKbWFRdTarGwyevltQULCJjNBG02+k6YQJPBwJduNy12O4GdBav2EZFd63aDELwUDOI0m+keCjHFYuHsggLydP7/OJ1ObnY6MW/cyJNmMxKoz83lX8EgP9bBvgGYvWULCxwOkkJQU1DA8oYGpiux2mFIKWuFEL8DtpO6LzZPSjmvk91SKBQKhWKfKLGqUBxFSOARYCm75qhOWb2agS4X5WPG6DJGHHjI5+MNKbGOstJ3lKBph8a49RsYqVUz+7ZZOJ2FgP5zUyVQA7zn8bAwHGZHQQFhIQ4oTLVIhO5mM6GGBgr8fgrCYb5x8skMy8sjkJNDnd9PeffuuwTnuHG7BGNa+LROcd3Jwa5r7/F7rutTWsplU6bsJXRd5eXU1dVRlJ9PfTLJKytX0pidTVNeHubSUhpbvS9IiaulBRewMBrlryYTfQIBzs/K4syiIl3ThS/IyWHl6tUs6N0bhOCj8nIuBrroYHtUSQk9amrYUlwMQrClWzcdrCr2hxCiADgX6Al4gJeEEJdKKZ/dY79rgWsBKisrj7SbCoVCoVAASqwqFEcVj3m9vMauPqrX5+UxrksXyk86SZcIpwb8PBDgPY8nk148uKSEuxwObCUllA8frnskVQKfNzXxTijE1pISGg2GXeK0oQFHdvZuwjQeDjPIbCZQU0OJ10tJMMglkybRPS8PV2VlSuANHoyzuBiA7EMQnEcTBxK1lUD3MWMygrbUZmO1388/V66kJj+f6qIiPOk5ukhJs9tNM/BVLMY/DAamNDdzXk4OZTq8D06nkzuAOb/9LYmGBtzAZdEoowBbujDV4ZJfWckVN9/Mg0YjVquVZRZL6lxot9eK/XAGsEVK2QgghHgVmADsJlallE+SmlLM6NGj5ZF2UqFQKBQKUGJVoThqeMvt5slAICMiL8zP5/q8PIROc1SDwN3AwkQiIw57pVvgTBg+HNLiTy+iwCstLbwSClGVHpPGxr3EaU48TheXiy5uN138fi6bNImu+fm4+vQ5qOjo8cyer3dIaSk/SgtYK/C/Tz9lY0kJVWVl7EhHZ5GSdT4fa81mXt+xgzs9Hsb3799uXyqcTsY0NzOye3cCwSBIyZDaWkYWF7err+5dW7dyZmEhzwFeTWO118vXsRhjdT4fFRm2A+OEEHZSacBTgUWd65JCoVAoFPtGiVWF4iigAXhYiIyI697YyPTmZt2EagtwSyhEVSyG0WAAIRizaRPjN2+mTztb4OxJHHgf+Ec4zFq/P1WUKI2QEksySVlDA5WNjXT1eLhk6lRE9+7Umc2Ujxx5wgrTg6X1+1JYWJgSrllZvPvZZyzv2pXVXbuimVJf7bUFBfw0FOK369frIlhzgdJQiED6f9rkcOD3+9slViHV53Ww389r6VZAj2/bRvf+/dX/vwOQUn4lhHgZWELq47qUdARVoVAoFIqjDSVWFYpOJg78FpDp9is54TBnrlpF5Zln6mI/SKoFzs7KwgjBtUIwIT+fch1a4LTma+DhUIhtsRiJeDw1HmBKJulXV8eAhgaumTABU2UldSbTbunNSpgcOnsK18l1dRCL8Uh1NUt69CApBF67nV83NPCrtWsZNHBgu8fsYzKxOV38y+1wYEwm220ToE9dHVitmb6udXV16pzoIKSUvwR+2dl+KBQKhUJxIJRYVSg6mUe9XhaSmqfapbSUazdvZuKZZ+pyoR4D7gM2tqosPHXlSiZUVDBSp6gtwNqGBh6Lx1mVk4M7HR1DCGyxGKO2bGFQbS3De/em34QJSpx2EK2F60+k5Olly3g7/T/eUlrKv7/+mhsLC9v9vve028mLRPBGIkSNRta6XPx9zRr+uXo1AhjqdPLUuedyx4cf8t8NG8gyGuldWMhT555L/s4qx/tgdEEBRCIIKfFmZ9MlO7tdfioUCoVCoTj2UWJVoehEPmlq4u+hUGae6k25uXxj0KADHvfQnXfi2b69zX0ksDQWwyUlQggMmkZ5Sws7wmFe6NaN1w+yME5+ZWWbfVTfcLu5NxAgajSC240ErLEYo7Zu5QKrlaLiYsqHDVPi9AgycOBALge21NaytqICgPVduugSrTQAxdEo3vTy1nicxxYvZv1NN2Ezm7nwpZd4YdUqpvXuza/OOAOTwcDP3nuPX336Kb+ZNm2/dvuXllIZieDVNKxWK3aLpV1+KhQKhUKhOPZRYlWh6CSiwCNSZuapVjY1Maq5GQ4i4unZvp27evRoc5+vIxHKNC0T5RwpBN2LisjJyTmkOYZ3bd26z/Ux4EGfj1diMTSjMbN+YF0dE9evJzuRYKjOacaKg2fgwIF8c/ly7ksvbyktxRKP62K7JCuLTelzK2Y2k5SScDyO2WgkFItRnpPD9N69M/uP69qVl9eubdOmAHparawTgkgkwgq/n1NUkSWFQqFQKE5oOlSsCiG2An4gAcSllKM7cjyF4ljiRcCbmwvhMOZ4nDPWrqXijDN0se0CVkFmzmip10t3s5kuXfTojJmaB/uzYJBPPZ5MAaW8UIgz1q7lwoEDiQwfvlsVX0Xn0CeZxJxIEDMaCWdlUd3YyIHj9gemxGrFJgSxWIwulZX8ZOJEKv/wB2xmM9N7995NqAL8fdkyvj148AHt5vr9uNJp5P9ZvZq+OrVsUigUCoVCcWxyJCKrU6SUTUdgHIXimGEr8FwkQkTTKCwo4PyGBr59xhm6XJg3B4N8YDAg0lV/c0MhejQ1kdOvX7ttA2xoaOCXwHajMSOGe7tcXOp2c8rEiUpcHEVUlJeT39REYzqS/nVtLSNcrnb/j0QwSDhdQGur38+ra9awZe5c8q1WvvXSSzy7YgWXDhsGwP2ffILJYOCSoUMPbDctVCUQNplUkSWFQqFQKE5wVBqwQnGEkcADwSB1zc0gJV28Xi7UoU3LVa+/zn/Xr8dqtXL7ZZeBEKzbsoV3PvmEjS0tLLzmGkanRctzK1bwwBdfZI5d4XKx5LrrGFFW1uYYmxoauLa5mRa7HYQAIZiwfj2jt2/nFJXye9ThdDrpqmk0pm8qRIxGXQRgOBiErCwAVtfUUG63U5IuiPSNgQP5orqaS4cN4+lly3izqooPLrsMIcQB7ebl54PHg5ASA1BeXt4uPxUKhUKhUBzbdLRYlcA8IYQE/iyl3KuXmxDiWuBagMrKyg52R6HofN4HVqajUoZkkimrVrEjkaCsnQLiihEjOL1/f376/vupFVJyut3OjRdfzHVvvrnbvpcMG8Yl6cjXSpeLc1944YBCNQrcIyUtdjuSVM/UK30+TlMFlI5qCgoLEW43UkcBmJ2dDelzuDAnh4+amgjFYthMJj7YsoXRXbrw7saN/Obzz/n4iiuwm80HZdeRm4vTYiESiTB2zBicBQXt9lWhUCgUCsWxS0eL1YlSyjohRCnwnhBinZTyk9Y7pAXskwCjR4+WHeyPQtGp+IHHw+FUD1IhGLltG8XhsC4CYkz37ixv2pVxX+b1MrW8/IDFlP61ahUXDRnS5j4SuMfvZ6PJBEIgpGTmypVcNGaMEqlHObFWEU2D1OcrtrWVPk4n5/Xty6g//xmTwcDILl249qSTGPzYY2iJBNP++U8gVWTpiVmz2rTbumOrQRdPFQqFQqFQHMt0qFiVUtal/zYIIV4DxgKftH2UQnH88rDPxyaPB6QkJxLhEpOJITqlzy7QNCKJBAYhKMzK4vSiooOq+vvv1at5fc6cNvd5xuPhvz5fprLwnECAq5RQPSbYFAhkimBlh8O6pAF7QiFIR0sNySQ/GDaMX82Ysds+G3/wg0O22+Lz4Up/PhatXcsZI0eqc0yhUCgUihOYDhOrQohswCCl9KefTwf236xRcVAkAQ/QAlQ1N7O1pYXsoiIsBQVEgHCrR1MgQEsggCMnJ5W2l2ZnnCUYDBLy+ynJzqY0Jwc7YEs/7EDY7Sbc2Ei/oiIGFhfjaHWs4tBZC/yvVauaSWvXUti9uy4X4xtDIdbHYmiaRlJKxgB5ByFUv6qpwW42M6S0dL/7+IC/xeMZwTNs2zbOdDiUiDgG2O5ysUPTgFRUNU/T9JkH6nBANApSYo3HycnLa79NYFswmPl8WCMRVWBJoVAoFIoTnI6MrDqB19JFNUzA81LKdztwvOMCCTQC24HlHg8b/H5kQQFRh4MWUiJVApqm4QoGU9ENvx+n3Y7FYsnY0TQNl9udioRFozhNpr23pwv8EI3izMrae3sgAFYrhEI4NY08i4VioKTVw9TSgnHHDkYVFdFdXVTulwTwu1Aok/7bq6GB3s3NlI8f327bcWARZCrzmhIJbF4v2O0HPPaFA6QAx4Fl8TjeUAhItcA5dcMGyg+Qzqk4Ovi6uRnSN6ryQiEG9uuni/iL2WzYDAZi6Z6qh9K3ty3CeXnQ1ISQkgK9hLVCoVAoFIpjlg4Tq1LKzcDwjrJ/PLCuoYGlbjdaWRm+/Hy2A9uACGmxuDPt0u3GaTbvJiYjkUgmAiGkJBKJHJHtNUBNeh9N03D5/ZCdjYhEGB4KMchupxfQC+gJFKCisQB/9XhYlP5/mpJJrorHOVmn9N8lkQhBACEwpvtq5uTkHPC4pJS8tGYNn1x55X73WQUEk0mQkqx4nBnLlzNIJ8Gj6Hhaysshfd518Xrpp1P7oiZNI5z+jgg1NhIwGNotWONAo8GAIy2u50yerM4zhUKhUChOcFTrmiOIF1iRfnwVCrE8EgGbDXw+nDbbQYvJHKDUbKbB7camaVgSCcbk51NGKoXXCoQTCb5euhRDeg7jaaedRhG7CqM0x+N8vHgxcSBuNnPSKadgIZU+HALqheCtu++GhgbiJhPJnBxajMbdXk8sGsUQjWaW12VlsSndzmInxngcazRKscmEMyuLHPYtXvMrK7n5nuMzS/yzpiaeapVGO2bTJroVFelyIb4jGGRpLEYS+Ps777ClpgZvJMKAJ5/k7smTKbTZuOmdd2gMhTj7+ecZUVbG/y69FIBPtm2ja24uvfZTcdUNrIrHkckkCMEpGzZQGI3qJngUHc86066v+PKWFl1sSqA+fQMDwKZp+P3+dovVNY2N7AiHQUocmoZFp9RihUKhUCgUxy4HFKtCiNFAN1I3vquklOs63KvjhCCpyNRyUgJ1W6tt3lisTTHa02TCXVNDfiBAbjTK2ePH05dUpNIMYLfjKi+nrq6O8vJynHte2BUWcvL48bu2FxXtvr2oiEETJ+7avqdgyc3FEwxyc0UFOTk5ZDscxNKvKZT+645E2N7cTCgri4jZTLbDgbHVxXEiHieQnoOGEDiys7GZTJSQyhF3AvmkxOtdW7ce3pt8lLOuoYHbWloIWa0AdPF4OGn7dsqHDm23bQkslDJTQfUHU6ZwhpR06dJlt/3OHzhwn8dP7tGDL6++er+2P49G8YfDxOJxKtxuvuFw0F/1Uj1miABL0+1lACrcbl3mgPqBmCFVq9eYTGKPRg8qkn8gFra0gMWCBPKDQeqCQXWuHac4LryQwIsvtrnPw//9L4+/8w6jevfmWxMn0q+8nEGqvZ3iOMPhcBAIBNrc5+GHH+bxxx9n1KhRfOtb36Jfv34MGjToCHl4bHPW3Xfz/I9/TH4bN1Mn3347v7vySkb37bvb+mWbN1PndnPW6NEd7abiAOxXrAohTgN+T6qez0nA50CBECIGfEdKWX1EPDzGCJN6o94IBlkej2OxWneLmO7EarUSTCYp9vkoDgaZkZfHcKCStIDLzsbVp88uMVlcvJcNp9PZ5sVce7fbbLbdhE9W+pGRtVYrQ/Ly8Pv92G024iZTZl6tB9iRFuQASEk8HidqMlEL1JISsyIWo6vBQD0pAbyrDNSxjx+4PR7HmxaqlnicyxoaOOPss3W5CN8G+KxWCAYRUtKzqYmcHj3abRdgA9CUjp4JKZmyahU5gwcr8XAMsRhIprMhigIB8nWYA5pfWclN69ezIhYDwBGJsMZkIr+pCVq1TTpUmwDNZWXg8SCkpMLjoVxdjJ3QPPb227zzy1/Ss6yMKx56iFljxiixqjgheeyxx3jnnXfo2bMnV1xxBbNmzVJi9SCQUvLmHXdgMBxeI7RlW7awqKpKidWjgLYiqw8B06WUjUKInsCDUsqJQohpwN9IVfdVkKrQuwL4EPgC8LUuXiQETqcTi8WCCegHDAOGWyzk2+00ejyU9+6NMz9/L7sHEpNHAw6HY7f0v9bx20AiwYrqanxWK36bDbKziaW3tY66rhWCFYkElwCDgX4eD12qqxleWnrUv/798UlTE7+Jx6lJX9QbpGT6ypWcMX68PgVugIWxGPFEApvVSvdwmBE9euhS6CYMLInHSabTf4v9fgpVsZtjjv/5/bhbWpBAb5eLCRMmtPvcu/mee/heXR3JWAwJDN2wgcuLixk5cmS7/V1nMmXmq140bNje2SCK45IHXn2VFz/7DC0W4/zx47n74ou5/rHH2OxyMfv++5lz6qm8sXAhH69axX0vvsgrt95K7z2yRxSK44EHHniAF198EU3TOP/887n77ru5/vrr2bx5M7Nnz2bOnDm88cYbfPzxx9x333288sor9O7du7PdPqrY6nIx8+67mTJ0KAvWrWPZli00Pvssxbm53PvCCzz38cd0Ky6mODeXk/r04Zbzzwfgpc8/58YnnsATDPK3m27i5H79uPO55whHo3y2di23XXAB3z711E5+dScubYlVo5SyMf18O9AdQEr5nhDioY527GjH5XKxtLGRDd26sTQvj9YxhZ3zTSFVPfUUKTmne3cGkppPmsHppOsxKsYOBofDwbCePfH7/alUYrMZP9BAqtWKFo8TMxpBShKJBAnga03jTZ8PcnMpcLs5z2plWl4eAwBj28N1KnFSH5LPW1p40+Nhbas7eQKYunIlZ+o0T1UCK2MxuoZCqcJHiQQjLRbdKrIu0DQ86XPYGovR02hklkr/PaYIAp8nEpnvoV4NDUT2Mzf5UIgA2woLoaEBISW9mpooHzas3XY3NjSwJH3OGYDeVusBj1Ec+8xbupSqujoW/v73SCmZfd99fLJqFU/ceCPvLlnCR/ffT3FuLlV1dcwaM4YLJk7sbJcVig5h3rx5VFVVsXDhwtRnYfZsPvnkE5544gneffddPvroI4qLi6mqqmLWrFlccMEFne3yUcv62lqe+sEPeOyGG+iRnuq0qKqKVxYsYOlDDxFPJBj1wx9yUp8+mWPiiQQLf/973l60iLtfeIH3772Xey65hEVVVfzp+us766Uo0rQlVhcJIf4GfACcC8wHEELYObp1Q4fzaVMTv96xg5qCAvB6ce6R6tvHbMZWVUXfujpyYrHUhX4n+qsnV73+Om9u2EBpdjarbrwRgDs+/JDX16/HIASl2dn847zzKM/J4bkVK3jgiy8yx65wuVhy3XWMKCujzGBgw7ZtBLKy8GZnk5dqcbRbYakWu51XSZ2A5nCYHm43E202phQWUnjkX3qGIKmKyNuBlT4fy8NhmvPyiAqBy+9HthKqWfE4U1etol9TE/3GjtVl/HcBV7pfK0D3xkbCeXltzsk4WOqBba1s92hsZInJpITqMcbH7EoBLvb7KQ0GdYmMLwGi6fnnpZrGd04/XZdz40OvF7KykECpx0NzMkmlOueOe+YtXcq8ZcsYefPNAATCYarq6pjURjstheJ4ZN68ecybNy+TpRIIBKiqqmLSpEmd7NmxR/eSEsYNGLDbus/WrOHck0/Glr5WP2eP67FvpNsIntS7N1tdriPjqOKgaUusXgdcA0wA3gf+nl4vgRkd7NdRyUbgWeBDsxlvQcFuxZFKLBYmA1OBnnY7DUOHUldUlJpvehxddF0xYgTfHzuWy157LbPuJxMncu/ppwPw8Fdfcc/HH/PErFlcMmwYl6SjLitdLs594QVGlJUBqahrv379MlHXxU1N/AD4XzLJv5ua2F5YSMJoxGq1omka2xsb2SQlHwQC/Dk7m4pEgoqmJkY5HIwtLKQC/VrkJIENDQ2saWpClJURKyykHtgcCLBZ04g4HFgsllTrHo8nJew0DUd2dqbirwD61dUxbuNGxvboQb9x43Q5D7YCj0YimQq9pV4vhaEQOV27ttt2AvgaMJlMIARFfj95kQj2g+jXqjh6kMB/gsFMCvDg2lom6pACDPCO34+rpQWkZOCWLbCf4l2HytayMmhp2RWtVWLlhEBKyW0XXMB1Z57Z2a4oFJ2KlJLbbruN6667rrNdOebJ3kdmjtzHfq2xmM0AGI1G4snkAfZWHGn2K1allDHgsdbrhBBFUspmdi9se9yzDXgOWJBetlqteIXAkEzSu7GRqx0OprH7m3kszDc9HCZ1785Wj2e3dbmtosrBaHSfovFfq1Zx0R4XoLvNd21qohC4qKCA07t2ZeuOHbR068Ymi4V30/N/d94cCAYCLAkGWSIl/w0EcGZnY5GSHJ+PHjYbxVKSaG6mPD+fLgUFhNxumpqaKCwuJr+wkEa3m7qWFixFRZjz89nh81EbCJDIyyOcnU29plEfiUB2NqTtA7jc7pQwTVcp3bO9UH4sRpnLRUVzMz0bGsjWNE499VQG6nRB7wJ+Fg5T3dhItLSUpzdvZng0Sn5uLrZ2FLjZyfpolM2kvqxNwCCvl8U2G13699fDfcURYjWwLl0F2JRM0q+ujkhpabvt+tmVWiyB3jt2UJeX1+7vOQ1YYTZn5qteN2wYzpKSdvurOPqZMWoUdzz3HJecdhoOm43a5mbMRiOle9RwyLHZ8IfDneOkQnEEmDFjBnfccQeXXHIJDoeD2tpazGYzpXt8d+fk5OD3+zvJy2OXUwYN4rpHH+W2Cy4gnkjw1qJFXDO97dI76nvn6KGtasC/Bn4npWxKt695EUgKIczAZVLKj4+Uk53F8sZGnopGWVtcTFYrQWa1WPhGQQHjt25leGWlKgQC/PyDD3hmxQryLBY+uvzyvbb/e/VqXp8z56Bs7Sn0vxmP8/evvmJbURE1RUX4s7P3Eq+udLGm1ZFI6iCDAfx+Ck0m3IEAWCwQCFBoNqeWTSbw+Sg0GnHvjI42N+M0mfbZ4xbIrDMmkxT6fPS1WnFt3kyJx0NZIMCF06dD9+5s0DRIR471umHRDPwC2BGNgpTYb76Z87/8kukDB+pS3ObrxkbeCAZJCAFC8NOcHC7RYY6j4sjzTCBAIh4HIRhQV4c9mdQlBfgjQKZTi51eL6WhkC5233e7qQ4EQEoKQyG6FHZmkr/iSDJ95EjWVlcz/qc/BcBhtfLsj360l1idc+qpXPPoozz83//ysiqwpDgOmT59OmvXrmV8Oh3V4XDw7LPP7iVW58yZwzXXXMPDDz/Myy+/rAosHSRj+vZl9tixDJ87l+4lJYzu04e8A2SNTRk6lF+//DIj5s5VBZY6mbbSgM+WUt6afv4A8G0p5ddCiH7A88BxW8tZAk97PDy88+Ld5cpU9D0FuBjolpMDOvTK7AgkqUIoYWB7YyO1DQ2UlpZS0ipa0djYSJPLRffSUrqXlmIDDq+4d4r7p07l/qlT+dWnn/KnhQu5e8qUzLavamqwm80MOczoTpnTyXdPOy3VxqdLFyKJBH9dupQdubk05ucTsVoJpIVkplUOaSGbLkIkD3I5EolgtVqJxmJkRyLkh8Ockp9PSTLJ+qVLyQkGKdA0Zp99Ns6cHFyDBu1qL5QWpnpH1FuAH4VCbInFMBoMGKVk1tKlFIfDuoiFCKkPeEIIJCkhMqC5GZRYPeZY1NjI/8LhVMsh4AKTiYk6FMeSwGuh0G6pxXpUFwZ4u9XNoZ719dRFIsdlVsrhIoT4FvCulNIvhPgFMAq4T0q5pJNdO2xa91idO3s2c2fP3mufrX/9a+b5xEGDWPPoo0fEN4XiSNK6x+rcuXOZO3fuXvtsbdWHfuLEiaxZs+ZIuHZM0sPpZNWf/pRZbv09csv553PXxRcT0jQm3XYbPz7vPADm/9//ZfYpzs3NHFOYk8PXDz54ZBxXtElbYtUshDBJKeOATUr5NYCUcoMQYu/GoccJbuAPwMdCZC7ehZT0aW7mlvJyenWib0FgSVMT691uTKWlJPPzaUn7XBMK0RSJIOx2RDpfX9M0XOEwOBwQDuPUtF1zLcNhyMmBSCSz3gqIcBgCAbrabNQAqwA7IEIhkn5/JiV2f1w8dChnP//8bmL1hX2kAB8qe0Zbvz9+fEYkSuDfn3yC12IhYLfjt1oJm83EzWbKe/emqqkJmUxiBHpWVrK9vh5TPI41HmdY795sW7uWrGgURzTK+ZMm0T8vD3dODnV+P+WVlTjz8gBwtRqztTDtyAvr5cB94TAbmpoylVJvk5K+vXrpNh/6L4AnNxfCYczxONNXr6Zrq/+f4tjh6XRvYwn0bGigZ1aWLufIMmBT2rY5kaDPjh1E0vPP20MLsLlVdeFB9fWqv+re3CGlfEkIcQqpehG/Ax4HTu5ctxQKheLY4dpHH2VNdTWRaJTLTz+dUSoqfczQllh9FHg7nQ78brpdzaukaggt63jXjjxfAg+Tmpu1c15qqdfLlPXrufrUU3Wt6LtgAcyfD5MnQzrrI4MEvm5qYrHHQ7i0FE9uLtuBOk3DFQqlUlp9Ppw22y7xmRYzBAKZKPC+0lnbWu/VNFyNjSAl68NhshMJVpDuiRqLgcWCMRbDFIsRJlVwyhIKsbW6mpEVFTgcDt5Yv54BxcWZ15KUkpfWrOGTK6/U8d3bWyTOmT49IySB3USl60DLZvOu5XT0d18i9EjOQ06QSl94CfCkU38Bpi1fTt9u3XRJ/QV43e3mpXQhK6fTyfnV1XxjyhQV2ToG2QisyskBtxuAcVu2UH7aabrYfpVd34kDa2uxSalLVP9Vj4egEBQWFNAjFNKtuvBxRiL992zgcSnl60KIuzrRH4VCoTjmeP6WWzrbBcVh0laBpUeEECuBG4B+6X37Af8B7jsi3h0htrlcPB6NsqS0NNOCxmqxcHVeHuOam6k89VRdL6AWLICpUyEahawseP8D6DYeVpB6fB0OsykUArMZPB6cFsshi888iwVrVhYiHMaQSCCEoEdJCXYgZDazNZ3iHDOZyEu/5j3tJBKpa6R4ulgLwF/efZeq2loC4TBjH3yQs04+mdVbttD4v/9hM5noWVDAX84+O/NaP9m2ja65ufTq4JTSPYXkns8PZbmzWQ88HAyyMh7HarVm0pKnL19Od4+H8pP1CagsbGriPp+PqNGIVwjOLSjg+j59dKuqrDiyPB4IZNJ0+7hcnDt0qC7n9WbgK00jEolQVFDAFV4vQ3VILa53uXimpQWvzQZC8H2HA6ear7ovaoUQfwbOAH6Tzmxqz6wNhUKhUCiOGdqKrCKlnE+6v+rxyuqGBr7ndtNit2fmplZYLPwYGJKXBzpFsFozf35KqCYSEIlKrno7TOUoY0Yoe9ORtD1FqcNiwRwIkBcM4ohGOTUvj15AMh5nyZdfYtE0LMkk58+cSVleHthsuAoKdkUNd04mt9txFRXtWm+1IoGtkQivf/opYZOJoM3GNikZBLQIQa2mETGZuOqss3BkZ2M0mdAiESKRCBMHDwZSkReLwLyARgABAABJREFU1coCYHU0Sm4wSN/SUhakmzIr2mYt8C/gS03Dla6A7BWCqYWFXJebS0jH1N9q4C6DgajRiATyQiHOdLsRI0a027biyLMI+DpdqVcAJ2/cSESnKtR/a9Wupm9DA0MrK3U5B9/3ePDYbEjAEovRdft2UGJ1X1wInEmq4KFHCNEF+Ekn+6RQKBQKxRGhTbG6P4QQow62uIMQwkjqWqpWSjnrcMbrKFzAz41GWuz2jDAc2NTE/RUVODpozCYgMRnIAqISzJL4SC8uVyyTvrszklbudlMSDHLO8OGMALpYrTQVF1MXjVLevTvOnRUTi4oYNnnyXvMpYf9Rwz3XC6Cn08lF06Zl7Dz+2muMALBYCGRn4/f7MVutRE0mPEC9EGyPxQibzSBEqj8nEIvH2RYOgxCsjMUoicXobjZTEAph8/nIa92y5gQnCnzY3MxLsRjVBQW7RcqFlJy8cSOXFhbSf+RI0KH9CMAOUpWF4+nWPJZYjLOXL6f35Mm62FccWeLAI6FQpgLwoOpq3YpvbQI+TSYzN89GbtpEncmki1hd2LUrNDcjpGRIbS09VIukfSKlDAkhXgecQojK9Op1nemTQqFQKBRHisMSq6RSg685yH3nkgoa5R7mWB3CDuB2IORwQDCIMZlk6po13HLSSR0iVDcDfw4E+DKRwDLKyrgPLNS+q2Ec3oL9pCiWaIx+zc2cWV7OMIuFrJwcdvj9lA8atFtq3MGKz8Nlf3YcewjMcmCQxULAZqM5EEDLy8NnMuECGlqlDSMl/kSCdUIQiMUwWCzk+XwMNRrpZbNha7fHxx4hUndvFgCfRSJsT7fd2RnZt1mtdKmv56RNmygKh6loZ3Gq1jQAPydVlMtisVBZWspVmzczYfLkoyoVWnHw/NPjYZnPB1KSlUhwmRCM0iFNF1KpxTtFcJ/6esqCQV1E8HpgncmEIzsbg5T8ZMCAzHxxxe4IIW4Cfknq/urObvUSGNZpTikUCoVCcYQ4LLEqpTwooSqE6EqqKMT9wI8OZ6yOoIbdL9i7lpZy8datnHHSSbpfsFcDzwEfahoutzslSoTAOcrJ0JGQvXQr/b+upcLrZfasWbuKODmdlB0D4mFPEQvQnEiwpKGBFrsdr92OyWTKzHtNCkGL3c5CIVgOFAFFkQjbW1rY4XLR5Rh4zYeKF9iQfiwOBFgWj2NKF8fyalomamVIJhnW2MiPunbF2KMHdVlZuqX9Qkqo/jgUYlsshtVqJcdi4W6rlSGq+uoxSyPwvJSZc2jMxo2UlZTocs7Mb2rivXRrJwFcLCWn6iSCn26VWjygvp6iHj3abfM4Zi7QX0rZrJdBIUQ+8FdgCCnhe5WUcoFe9hUKhUKh0Is2xaoQQgBjgQpSP2h1wEIpWzWzbJuHgJ8COe3wUVcWNzZyp9FILDsbi8VCFnCH1cqIAQN0HacZ+JPfz4fJJBarNZPaCdCtqYlzNY3L+vbF06sXdVarrqKksynKzmZ8eTl+vx9HVhZhk4lN8Tjr95Ey3BCPs1nTWGo2c14gwDS7nVNychgOlMExVewnSSr0UQ2s8HhYGQzSWFiI35aKH2utb1j4fDidTqxWKyIcpqfLxdDaWi6dOjV1w0Lnok8LgN9EImxJV40OSMlPc3IYUlSk2xiKI4sEHggECCWTIARFfj8jamooHz683baTwJOt0n/779hBb4tFl3NyE/BZK9sjNm+mTqcWO8cp1aTueenJH0n1br1ACJFFqkOZQqFQKBRHHfsVq0KI6cBjQBVQm17dFegjhLhRSjmvLcNCiFlAg5RysRBichv7XQtcC1BZWbm/3XShqqGBH3g8BCwWCASoLC3lLquVoTqPswB4IBxmUzpyQLo1Q5+GBsZUVVESDjNr1iwsHH2VaFuTX1nJXa2aUR8WmgZNTQCEw2HckQih7Gx8WVl4gGg0SjQaJVxeTtJk4pNkkuWkhJ0tEGBoVhbDc3LoA/Sh8+96SFI3IupJCdP1Xi9VgQCBggLcdjtR0qI0nZZJY+M+WwmVer2cnkhwUc+eWAoK2BEOUz5ggO7nQhT4O/AWZKK4QkpmLFtGUffuoMTqMct/3W7+FwhkvmOuCoeZfvbZupxDL7W0sM1oTN1YSiSYsGkT5WecoYPX8Cy72uD0qa+nNBTSJbX4OGYzMF8I8Rag7VwppTysbvVCiFxgEnBF2k6U1FeFQqFQKBRHHW1FVv8InCGl3Np6pRCiJ/A2cKBSkxOB2UKIswArkCuEeFZKeWnrnaSUTwJPAowePfpgI7aHjAR+n0gQsFiQgDke54otWxiqU8VMgAjwF2Aeu1f07dHYyHf9fsZVVlJnMh0zUdSb77mnQ+0HgPfdbp6vqmJ7YSFhIbBarSmx53KBlGwVgoVZWZlKyTnhMHkeDz2zs+mTm0spUALIhgZCtbVUHOZ7GweCwNbGRjY1NpJVVoYsLMRNSpxuDwSojkQIOxwYrVYgLUq93pRYaGrab3/bRDjMQIuFMiFwrVqF0+0mLxpl1s607w5K+a4FfgNsSS9brVaSmsb05cup8Pko37PBr+KYwQs8AZnzbOj27QzJztanVY3LxR/8/kwWxDmaxkVnnKGL7bXA563a4Fzj8+k2v/Y4Znv6kZV+tJdepDLInxJCDAcWA3OllMHWOx3JG8kKhUKhUOyPtsSqidT0zj2pBcwHMiylvA24DSAdWb1lT6F6JHkD2FxYCC4XQkrOWrmSU8aN081+NfCLUIgt6fmAVquVhKZxxsqVVHo8jEtfkKmLsl04gPMKCxnfowe1dXUk8/OptVh4d8cOmuNxYkbjbq17NE1je2MjSMkXsVim/6ymabgiESgsxBwK0TMcpiBdvCkZDBLx+7Hn5GDLziYJJIBAMEhLKIRwOEjYbGikxWc4DOkquc50qvhu6buh0H5FaSQSocxiobfRiLu6mgK/nzK/n8tOO40KgNxcXKNH77Nqs9684nbzhBAIuz0j9CdbLMzJz8fbp88xc8NEsTcS+I3fjzcdUc0Jh5m4aRPlZ56pi/2/RKOEzWYkqZtDZ0UiupwrEng0GMy0ZRpQX8+oHj3UeXgApJR3AwghclKLMtBOkyZgFHCTlPIrIcQfgVuBO/YY94jcSFYoFAqFoi3aEqt/B74WQrxASosBdAPmAH/raMf0pAr4B6liSk6nk/H19dw4bpxuF0lbgVvCYarS8wG9QjC7oIAr8/Lw6tgb83iltYgfDYwzGHh9/nwa7Xaa8vNxTphAA7AsHN5n/9nWojFmMOCKRonYbCmRmb4wJhrFaTLtEp8714fDbYrPfa03BYP0s1iwGwzUbt1KbihEUTDIxZMm0RvA4cDVt29KlI4adVCthPRiPfCXQID3dqaH+v10LS3le1YrMwFRWqpbCxxF5/Cq281brdN/g0FmnXmmbpHPxaWlmZt6p1ZV0WPMmPY7DXwGrEgXWjMkk4yuqlJzVQ8CIcQQ4J9AYXq5CbhMSrn6ME3WADVSyq/Syy+TEqsKhUKhUBx17FesSil/JYT4D3AuMJ5UrZsa4BIp5ZpDGURKOR+Yf9hetoMQcHcoRHM64jnEYuGO7t0Pu2fPnmwm1bOyIZ32a0okOG3tWs4vL6fXyJFwBC7EkqTSAlvSj80tLdS63diKirDm5+Py+Wj2esnLyyM3Nxefz4ff68WZm0tZXh5Rj4dQYyP9CgsZUFREMfrkmh0uTqeTc88+e1cEMjfV9ahW0/jnl1/SYrMRtNvpMXYsEWCb2cyKeJyIyQTpVGLgoMVnJBLBZrFQnJWFCIfJisVwRKOMKyigByCSSVYuXYo9HCZf0/jGzJmp9N2cHFwDBuzys5UIPNJR9LXA88AywJtIZF5fQTDIDZs2cdbgwUfMF0XHUQc8IUTm/zukuppRdrsu51oc+G0oRCQWo7CggAGBADePGaOLbY3U3c+dc1WHbd9OoaapuaoHx5PAj6SUH0EmU+kvwITDMSalrBdCVAsh+ksp1wNTgUP6TVcoFAqF4khxIM1mBTYCr0sp1x4Bf3TnSa+Xlel5heFEgitzcjCVlOhiezPw40iEZk3DaDCQlUhwzuLFVPh8VIwercsYe6IBnzU387XPR6C4mJacHDZHIgQ1LSPSXH4/mEzg81FoNOL2eFJRGI+HQiF2LXu9FBoMuH0+yMqCYBBnug2NNRBggMVC90SCbJeL8fn59D+CEbl9ib0Kp5MrJ0/eS8Rit+NyOKitq6OwvJxci4UwUB2LMW/xYmKAEZg8aRJOwB2L8fHChYh4HFsiwXnTptE9Lw9hs+EqKEjZ79p1l/2CAk4bP36f6budndq9CvgXsKLVOqvVig8YVFPDaVVVjJk5s3OcU+hKDLgrGMxU/80PBjm1qopynf6/f/F6WZL+rjQnk3wvO5synT7zr5K62RSJRKjMy+O6/Hx6q7mqB0v2TqEKqZu/Qojsdtq8CXguXQl4M3BlO+0pFAqFQtEhtFUN+E7gUlLFF34rhPiVlPIvR8wzHWgB/tuqB+GkNWuIV1SADmI1APwiHGZzeg6lJZHgHikp64D5gD7gE2BeMMiycBhvKAQGA7S0UAi401WHvULgyM7eLWoYTPdJPOjlQIBAMAhSsi2YrrdhsfCHSISRoRAD43FK6+s5LS+PXp1wobk/cbhPcVtcTM+JE3eJzOLi1IbiYvpMmnRI4rOzRWlrJDC/uZl/xmLUFBRk5qRCKv3hTIuF0+12pN1O+cyZR43fivbxiM/HV+kbTQYpuTEQYIpO/99NwIutvitPrqoiVlKiS8r4DuDZSARXQwNIyUlr19J75Eh1Xh48m4UQd5BKBYbU7/KWNvY/IFLKZaRmXSgUCoVCcVTTVmT128AIKWVICFEEvEsq9eiY4SXAaLOBz0eJz8dAl4tyHeZfSeARoCad+psVj3PuokWU9evHyJEj221/JzXAk34/nyUSSKMRd0sLrVvcthablliMbE2jEojU15MVjZKVTDKkd282r1+PIZHAIAQDBw1i7dq1xIG42UyPAQNYXV1N2GQiYLNhsFgIJpMk06mGrceqCodZGgyCxcLDkQinBQJMcTgYC3TR7VXry7EgPg8GSWru9QLgw1CIZekbCrhcOJ1ObBYLpwMXkv5flJToclNGcXSwEPhPKzE5cf16+peW6nIOx4D7QyGiiQQIQZeWFkZUV+vSr1UCjwL+dNukYp+PAdXV1B1jn79O5irgblIBakHq3qWKhCoUCoXihKAtsRqRUoYApJTNQgjDEfJJF5qA/0QiRDSNwoICrgyHmaZT2tm/Wlp4x2DAaDCAEExdtYqyQEC3+VcR4A8+H2/GYpkoJ6Qu/AAKAwEq3G6cgQBn9OvHtk8/xRSLYTAYmDVrFvTosVvU0GU2775ssey+bDKllsvKAHj9ww9xW6005+XRmJODKzcXV35+avD0xXISWJJIsAl4VNPI8/mYmJXFtLw8BpBKu1W0jzipNN8FwFekWugAeGOxzP/BkEwysqGBH3brRllnOaroUNY0NPBLkwljupVMr4YGRtTUUD5ihC72H/N6WZxO/zUlk1wfiTBBp+/KV91uPjEaMRoMCOD01asxGQxqruohIKVsAX7Q2X4oFAqFQtEZtCVWewsh3kg/F3ssI6Wc3aGetZO/+XzUplPmynw+ztApCrGmoYHfB4PE00L1PLOZ8yorKdepuvBm4NaWFtb7fMhW68s8Hgbs2EFvl4vsWIz+/fvTL11p1uVw7JXS2lZq64GWWxc3Aqirq6PIZmMj8PzWrWwrLKQhL2+3nqguKdkQDvO21UqxxcJooI/bTXF1Nb3LylQU5SDZ4nLxsdfLti5dWJuTQ3Af+1itVkLJJP3q6hizdSsXn3EG6t09Pql1ufhxfT11+fkpoZqby49bWuirk5hcTipct/Pmx/gNG+ih03dlVUMDD/h8mX6tF2RlcVb//qo6+kEihHhISnmzEOK/sNvPAXD0/wYrFAqFQqEHbYnVc/dY/l1HOqInGvBeq4qoY6uq2BGPU6bDBdIzmkbcYEACRX4/Z8diuqX+ftbUxJ1S0hQKZdZ1a25mXFUV5YEAEyZMIOJ0dniRn32JWYBKYHC6+q3NamWbxcLrdXU0JRLEDYZMZV2/xcK7moYrEEDk5VHmcjHbauW0vDz6c+CqXicKCWAbsIFUy5mloRDLIhGkxQItLTizsnabj5oDnAyMs1got9tpstspP+MMdeF/HPNoNEpdfn5mTvmlO3Zwig7puQB+4P5wmHg8DkJQ2dSkW8RWAo/E47v1a53mdus6TeIEYOcc1WPmt1ehUCgUCr1pq3XNx62XhRBmYAhQK6Vs6GjH2sNiwGC3g99PYSBA95YWyidObLddF/B1fj643QBM2rCB7hMOq3vAXixsauJmv5+oIZVtnRWPc9qaNQyor2fAgAH069fvqBAlrYXsAGCE0chr8+dTnZ/PVqeTWGkpYXa1jUkKwY68PF4A3iFVXnow0MPjoai2llHFxVQcBa+rowmSalZcDaz0+VgeDtOcl4dIV3CGVHqvhN1a6nS1WBhHqnfUIFqlVzuddDsB3rcTmX+1tPCx3Q7BIEJKJmzcyClDhuhiWwL3BwKsd7tBSqyxGDdoGqN1ith+CqwrKsr0az197Vp6jh/fbrsnElLKxemnI6SUf2y9TQgxF/h476MUCoVCoTi+2O88VCHEE0KIwenneaQyxp4BlgohLjpC/h0WnwEWiwWn08k0u51zdLoA+4vPR1NLCxKoaGnh2wMG6GI3DNwXi2WEqi0a5ZtffcWA+npOOeUUTj311KNCqO4Lp9PJ+WedxQU9evBg797822bjQWAOUBIIIGD33qfAF5rGH3w+fuFwMDsU4vpgkMeBeaTSoOOd9FraS4LUDY3lpITGHdu386NAgMtJvR8/AR7QNJ72eFgWiVDd0ICmaZnjrVYrAijx+xmzZQu/jcX4G3AtMBQ1D/hEYn5TE7/1+QgEAgBMSCb55ZAhun0PvAp80Sr75IyVKym3WnWx3wI8FA4TiUQoLCjgTIOB748ff9R+hx0DXL6PdVccaScUu+jRowdNTU1HfNw7//tf3l+2rM197nr+eX732mt7rfcEAjz29tsd5JniWGXy7bezqKoKgLPuvhtP+jfnYPZvzbLNm3l70aJ9HjN/5Upm3XPPAX256KKLGDZsGH/4wx946KGHCLXKMjwRcKRbR7bFww8/zMCBA7nkkkv4z3/+w5o1J0aL7LYyMk+VUl6ffn4lsEFKeZ4QooxUkOxfHe7dYRAFPo1E8Kb7jl7So4cu8/nCwIfJZKbY0ckbN6L17q2D5VQxpW2xGADmRILzv/6aid26HTXR1AOxZ9pwX6BvXh7fjERYX19PS7duVFssLAUa2BV1lUDcYGBNPE5tK3smoDQYJK+lhT4OB/3y8ykFSoAi2rjD0oFIUtFRd/rRDGzyeNgYCBDNz8fvcNBEqvCUpmmpXrdSgtuN02zOpPO2fu1CSqyBABMsFvoDfS0WcqxW3G435QMH7mq1ozihaAB+azCQJHXelfh8XBGPU9azpy72VwJPk7o54hWC4du20cvtplyHLBEJ3BsIsCkdsc3RNK7PyzsmvseONtI3hS8GerauF0FqRkDzvo9SHO3E43FMpkOfDJNIJLjnnHOga9fDGtcTDPLY229z41lnHdbxiuOft3/5y8M+dtmWLSyqquKs0YfXEau+vp4vvviCbdu2AakbQpdeeil2u/2wfToeeeyxx3jnnXfo2bMnV1xxBbNmzWLQoEGd7VaH09Y3ZrTV82mkOsEgpawXQnSoU+3hfbeb7YFAqhdhKIS1sBB0uFD6GjCl2+AU+/1083p1qWhZC7wVi2Va0kxevZqJ3bpx6qmnttt2Z7OvubT1wPxkkpcbGtiRm0vAZstEXXcS1DS+bG4GKfmfz4fTZsuIPQNQDJQCVr8f6XbTJS+Psvx8rICt1cMK+BsbqXe5KHE6KSwpIUlKUCbSfxuam6luasJeWkpWQQEBUqI0SKqXbn0wSF04TNTh2C1lV9M0XD7fQQnSSCRCtsVCVyDfYKBh82YKvV7K/H7mTJ+++80Up5Pu6sL+hGWby8XPDAbCVisIgV3TOGfZMnpMm6aL/Wbg7nAYTzSK1WplYlERVzY3U6lX9V9gUauI7ekrV+Lp1UuX7+ATkC9ItaktBn7far0fWNEpHp1gBDWNC88+m5qaGhKJBHfccQff/va3AXjkkUf473//SywW46WXXmLAgAEsXLiQm2++mXA4jM1m46mnnqJ///784x//4K233iISiRAMBrnzzju58847KSoqYv369UyaNInHHnsMg2H3W7E9evTgqquuYt68eXz/+9/n3WeeYdZpp3HBxIm8vWgRP/rb3yjOzWVU795srq/nzTvvBGDN9u1Mvv12tjc2cvPs2fzgnHO49Zln2FRfz4i5c5k2YgQPXKm6H51IBDWNC++5h5qmJhLJJHd8+9t8e4/rzB5XX82iBx+kODeXe194gec+/phuxcUU5+ZyUp8+3HL++QC89Pnn3PjEE3iCQf52002c3K8fdz73HOFolM/WruW2Cy7Yy3bGj2CQm266iZUrVxKPx7nrrrs499xzmT59Og0NDYwYMYLzzz+furo6pkyZQnFxMR999FGHvz9HGw888AAvvvgimqZx/vnnc/fdd3P99dezefNmZs+ezZw5c3jjjTf4+OOPue+++3jllVforVMA7WikLbHqEULMIqWnJgLfBRBCmEhpgaOSr/1+IHWHv6fLxY5IRJfCSu/6/USSSQoLCpieSDBLp4u7J/3+VHsaUsWUBrpc9Bs7tt12j1bKgDkFBUyprKSurg5HQQF+i4VNwEZgE7BhH2JvpxBMkoo8VWsarpaWlNE9BO1ONE3DFQ5DTg6Ewzg1bbd9NE3DFQyC1Qp+P067fe/tadFMKITT6WxTkFosFgqBSpOJxvp6CgIBikIhLhw3blcab04OrkGD9qrerFDscLn40fbtbCwthXCYkoICbqiu5pRp03Q5T+LAncEgVelzOhqLcVNuLgN1Knr0eVMTfzKZMBqNIAQnbd5Md49Htak5TKSU24BtQohLgDopZQRACGEDugJbO9G9E4J316yhvLyct956CwCv15vZVlxczJIlS3jsscf43e9+x1//+lcGDBjAJ598gslk4v333+f222/nlVdeAWDBggWsWLGCwsJC5s+fz8KFC1mzZg3du3fnzDPP5NVXX+WCCy7Yywer1cpnn32W8uePqanLkWiU6x57jE/+7//oWVbGRQ88sNsx62pr+ej++/GHw/S/4QZumDmTX192Gau2bWPZH/+41xiK459316yhvLCQt9I3NLzBffUaSLGoqopXFixg6UMPEU8kGPXDH3JSnz6Z7fFEgoW//z1vL1rE3S+8wPv33ss9l1zCoqoq/nT99fu1C3D//fdz+umn8/e//x2Px8PYsWM544wzeOONN5g1axbL0mnuTz31FB999BHFJ2CG2bx586iqqmLhwoVIKZk9ezaffPIJTzzxBO+++27mfamqqmLWrFn7/N443mhLrF4HPExKX9wspaxPr58KvNXRjh0uvqIicLsRUuIMBCgfOPCwbT105514tm8nGA7zYTxOMh1RrjOZeHyPaGBr8isrufkg8vODwKfpKATAyVVV9O/f/4QQMHtGXUe12rZJ0/jnkiU02e0EbTYqCgsJAY2AJ73P/sRiaw60z6FuT4ZClFssFAFmg4Ht27bhCIXI1zS+MWECg4EsgOxsXDt73Q4ZgrOkpM3XrlBI4E+axsbS0sz59k2Xi2/qmN7zd2BlPJ75vpmxfDmRXr2gtLTdtje7XNzq8eBLR4RHZWdzY16ebhHbE5wXgdY52glSmU5jOsedE4eh5eXc8vTT/OxnP2PWrFm7ZTx94xvfAOCkk07i1VdfBVJi9vLLL6eqqgohBLH09B6AadOmUVhYmFkeO3YsvXr1AlJz9T777LN9XnTujOS2Zl1NDb2cTnqme6NfNGkST/7vf5ntZ48ejcVsxmI2U5qXh8vjace7oDgeGFpezi2vv87P/vEPZo0Zw6mDB+9338/WrOHck0/Glr4eOmePAMo30sXyTurdm60u1yH5MW/ePN544w1+97tUkfNIJML27dux2Y7aGNgRZ968ecybNy9TPT8QCFBVVcWkSZM62bPOo61qwBuAM/ex/n/A//Y+4uigyeHAaTYTiUSYc/LJewmFQ8GzfTt39ejBuoYGemVlAWCNxTgzHqdLly77Pe6urVsPyv5XgDSmyuaUer1UBAL069fvsP09XuhdWsoNEybsij7m5GS2RUmJ1nXxOG+tXUvIZCJuMjFw1CjMpOYWR9J/m81mqkIhJGCUkp4lJThIRTgNQNhkYovHgzkWw5pIMLqggHIgO/3QEgkWLV6MLRIhJxrlGzNnUrbTkZwcXP377/JRCVJFO/irx8P87OxM5d8R27fzDR2/C/7jdvOs0Ygx3R96/Pr1VOoU9ZTAHxIJfFYrErDEYlxaV8cY1aZGL0xSysy0HCllVAiR1ZkOnSj0czpZvHgxb7/9NrfddhvTp0/nznRkaueNTaPRmGr/BNxxxx1MmTKF1157ja1btzJ58uSMrezs7N1s7zmdan/Tq/Y8DshMG9ofFrM589xoMBBPJNrcX3H808/pZPEf/sDbixZx2zPPMH3kSO6cM2ef+7Z9du06v4xGI/Fk8pD8kFLyyiuv0L9//93Wbz3I6+YTASklt912G9ddd11nu3LUcFy1vPQCOzSNSCRCrsXCsLw8XewmcnIgGgUpsUej5Ohk9wO/H3e6unAfl4sJEyYogZNmf2IvC6gAKoqKGDJy5C6xmJu7txG7HVdh4a599pyon52Nq6wstb1bt71tFBYyZuLE/absKkGq0IOXW1r4086CXEIwPpnkLh2Lqy1oauJev594WqhOsVq5rLiYimHDdBnjXWB9qzY1Z6xZw5DjeCpDJ9AohJgtpXwDQAhxLnDkS9GegNR5PBTa7Vx66aU4HA7+8Y9/tLm/1+uloqIC4ID7Lly4kC1bttC9e3f+/e9/c+211x60XwO6dmWzy8VWl4seTif/TqcJt0WOzYY/HD7oMRTHF3UeD4WlpVw6ZQoOm41/fPDBfvc9ZdAgrnv0UW674ALiiQRvLVrENdOnt2n/YM+vGTNm8Mgjj/DII48ghGDp0qX77L+dk5OD3+8/IdOAZ8yYwR133MEll1yCw+GgtrYWs9lM6R5ZUDvfoxOB40qsLm1qwhUKgZRY/H4aS0p0uRiL2GzYDAZisRjdcnIOqrz0wbAiEMjcIa1sbiZyAn4o28PBiMUD7dPe7QpFe1gE/EmITLp51+ZmrgLdKv82APcbDMQNBiSQHwxyYUsLo3SKem4F/hSJENE0CgsKGO/xMHfsWPWZ0ZfrgeeEEH8CBKl2zZd1rksnBivr6vjJ2LEYDAbMZjOPP/54m/v/9Kc/5fLLL+fBBx/k9NNPb3Pf8ePHc+utt7Jy5UomTZrE+eniNQeDzWLhseuv58y77qI4N5exB5GFUZSby8SBAxny/e8z86STVIGlE4yVdXX85M9/Tp3LRiOP33DDfvcd07cvs8eOZfjcuXQvKWF0nz7kHaAq75ShQ/n1yy8zYu7cNgss3XHHHdx8880MGzYMKSU9evTgzTff3Gu/a6+9lpkzZ9KlS5cTrsDS9OnTWbt2LePT6dYOh4Nnn312L7E6Z84crrnmGh5++GFefvnl47rAkjhQOslhGxbCCnwCWEiJ4pellG3WxR49erRctJ8+TQfDM+vX8/t0KlrPxkbuMhr3ecfmYLnriiu4q0cP5kWjbAqHQUr6uVz4olFu/fhjEskkV48axa2nnLL7cVu3ctcB7qpudbk4V9OQUmKQkus/+IDz1fwuheKE4fOmJn5pNJIwmXC3tFDs8/HNxYv55pln6vI9EARuCoVYHw4TCAaxRKNc+PXXfOf003Wx7wduDIVY0dQEUlIcCPCP4mK6HUXfYUKIxVLKw+ulcJQhhHCQ+s0+4rfS2/vbvBuPP37Y7VeOODU10MZF/eEyf/58fve73+3zIr1NWr13gXAYh82GlJLvPfEEfcvL+eG55+ruq6ID6aDza58c4udu5/kV0jQm3XYbT37ve4xqrxjq6Nd7LH237MmRPBeOAg71t7nNyKoQYgBwLqnMSwnUAW9IKdcehG0NOF1KGRBCmIHPhBDvSCm/PFjnDhVHSQkEAggpyUomKe/WTRe7wXQKMADxOD987z0+vPJKuubmMuYvf2F2//4MOsS5saubmiAdoc0LhRh8jPRUVSgU7WdxYyM/8vmImEwgBH1yc7nJ42GgTkI1DtwRCLA43e/UICXf83o5UyehmgB+C6n+0FJiSiSYvnw5TQMHHlVi9XhBCHE2MBiw7pzbKKU8cBU/xXHLX+bN4+kPPyQajzOyVy+uO3OvEiMKxWFz7aOPsqa6mkg0yuWnn95+oapQtIP9ilUhxM+Ai4AXgIXp1V2BfwkhXpBS/rotwzIVsg2kF83pR8eEcdPYCwspNJsJhkL0r6zUTfwZLRZIV+3d0NREn8JCehUUADBn8GBeX7fukMVqntMJ6ZRlazyuCispFCcI1cAdRiMRkwkJ2KJRrq2pYfKwYbrYl8AT7NHvdNUqhlVU6Pad+Eefj4+lzBRsmrZyJcXhsGpT0wEIIZ4A7MAU4K/ABez6TVYcg0yePHm34kuHww/PPVdFUhUdxvO33NLZLigUGdqKrH4XGCyljLVeKYR4EFgNtClW0/sagcVAH+BRKeVX7fD1gOzweHD7fCAl1du34xJCtyjFTtzhMBWtqtN2zc3lq9raQ7aptar8ZzrEamoKheLYZFljI78wGgmbzSAEWfE4s5cuZYSOJemf8nh4UYiMkBy7cSODXC7Kx+jT6eSllhaeblUQ6lKjkTMqKykfN05lh3QME6SUw4QQK6SUdwshfg+82tlOKRQKhUJxJGhLrCaBcmDbHuu7pLcdECllAhghhMgHXhNCDJFSrmq9jxDiWuBagMrKyoN0e980u91gNCJTY1NXV6fLxVMsneoGkJRyt95pkKp4cci+NjRAesJ6EnTzVaFQHJ2saGzkey0tBCwWEIKy/HyuranhlEmTdPvs/8ft5o+BQEZInmmx8O2CAioGD9ZljHXA460KQvV2uZhqMrWrNoDigOwssRkSQpQDzYA+FbgUCoVCoTjKaUus3gx8IISoIpW5BlBJKkr6/UMZRErpEULMJ9W3ddUe254EnoRUEYdDsbsn3QsKwO9HSImWlaVbSlq2yYQ7LViLHA4aWjVBrvH5KG8VaT1YehUXp9KAgbqCAsqtVl18VSgURx8u4BcGAwGLBQmY43Gurq3lm4MG6TbG18AfDYaMkKxwu/mmlLpV/m0C7gdMNhv4fBT7/cxYvZqKmTN1sa/YL2+mb/g+ACwhlen9l071SKFQKBSKI4RhfxuklO8C/YC7gf8B84C7gP7pbW0ihChJ/8AihLABZ5C6Md9hdC8owOl0kpefT+WQIbpFKwxZWViysjAYDJzUty+bvV62tLQQTSR4YfVqZu/R3PhgiLvdmQm8knRUWKFQHHesamjguuZm/FlZIASmZJJzli1jUmGhbmPMb27mVo8HjEYQgsJgkFkrVtBdpxt2GvDzYJBtXi8AvUtKuD2Z5PyZM1VGSAcjpbxXSumRUr4CdAcGSCnv7Gy/FAqFQqE4ErRZDVhKmQQOt3pvF+Dp9LxVA/CilPIQ67QfGrlALBolEomw6AA9oQ6FBk1D0zQANiWT3D9xIjOefZaElFw1YgSD9+h9dDA0bdwIQ4ZklpdVVzNo4EDdfFYoFJ3PztRfn9UKQlCan8936+qYMnGibiLvi6YmbvH7iaXnqPbNzeX7Hg8DZ8zQrfLvnYEAX6YrC/uB2x0OJg8d2m7bikNDSqmRunegUCgUCsUJQZtidX8IId6UUs5qax8p5QrgiE5kqquqojkrC4BIJMLamhoG6iAA8/x+wqbUW2VMJhmZm8uGm25ql83evXrRpaWFHemqwlFVRVOhOK7YDvzcYMCX7v1sTCa5oq6OOQMG6DbGNuBeg4GYwYAEHJEI13m9ulYWfgxY0Kqy8Klr16aqmRcV6TKGQqFQKBQKxf7YbxrwAbhGVy90IlBVtdvymq1bdbHbz2jMPI+ZTNh1iNoOHDiQEXl5meUFjY24Ws2FVSgUxy4Lmpq4zu0m0Cr1d9by5ZyRvjmlBzuAO4BEdjYIgS0W4/wlSxh2GJke++Nxr5eXvN5MZeGTtmxheG2talFzBBBCTEz/tXS2LwqFQqFQdBaHJVallDv0dkQP+vbsSVEgkFm26NS7tGdBARZL6nohlJVFQ0MDgVbjHC694vFMJeHavDzq6urabVOhUHQu85ua+IHPR53fj7ulhbL8fG6LRPi+jq1dGoEfh8NsTc8h7V5ayu2axmVTpug2xnMtLfzZ68Xr8eBuaWGmxcJNeXnMmjVLzVM9Mjyc/rugU71QKBQKhaIT2W8asBAiF7gN6Aq8I6V8vtW2x6SUNx4B/w6JgQMHMsbl4qNkEqPRiM9s1sWuDcgiNVEoYTAQMpvx+/04HI522Z2Yl8djkQhIyY78fEyamoqkUBzLLALuNZmIplto2aJRbqyp4Vwdq/66gB+Gw6xubAQpCSaT/D4nh8mDB+s2xhfAk60qC3dvbOSbBoNulYUVB0VMCPEUUCGEeHjPjVLKH3SCTwqFQqFQHFHaiqw+RaqF6CvAHCHEK63SkcZ1uGeHSX+LhWgsRjgc5q21a3VJrRVAWbrKJkDAZiPnMNrV7MmQ0lJ65+YigJjRyGtr1qhUYIXiGOUNt5ufeDwk098VDk3jm4sXM07HuZ07gFuBmmgUpMSQTDJz2TLyqqsPdOhBM7+piV94PBjSqb9On4+zV66kUqX+HmlmkarEHwEW7+OhUCgUCsVxT1sFlnpLKb+Zfv4fIcTPgQ+FELOPgF+HTc6OHWC3I4Ha/Hzq6up0SVnrmpVFjZTEYjEMZWXtjqrupK/fz6b0840lJbr5q1AojgwSeMbj4Q9+f6odlRD0yc3lOq+X4ZMn6/Z5riUVUa2PRjEaDBil5Kxly+jpdlM+YYIuYyxsauKnPh9aWnD3z8nh+y0t9Fctao44Usom4AUhxFop5fLO9kehUCgUis6gLbFqEUIY0u1rkFLeL4SoAT4B9FFqHcD4wkKM4TAJIWhxOMguLj5sW/mVldyVLtLUGInwRTwOgCmZ5H2zGbvNtt/jDpYz7HbeDQZBSjY5nViSycP2V6FQHFmSwF+BZ4VAkhKuhYEA3/d4mKJTRV6AauBH4TAb0qm/pmSSX0hJzx49KJ8wQRchuRX4pcGAlk5hztY0rvV6mTR8eLttK9pFsxDiNWAiqVPsM2CulLKmPUbTbeUWAbUHqu6vUCgUCkVn0ZZY/S9wOvD+zhVSyqeFEC7gkY527HDp5nQyIRhkaSQCwHohONwySzffc0/m+eKlS1nscBDKyiIJnBwM8k0d5qFNKSqiwmSi1uPBb7XyyqJFFBUWqiiGQnGUowG/DAT4IpHIVMvt0tLC7OXLGTRjhm7jbAV+AbjSqb+mRIJZS5bQs3dvRuo0h7Q6PUYiOxsCASyxGOcuXcrQ007Txb6iXTwFPA98K718aXrdtHbanQusJdWiXKFQKBSKo5L9zlmVUv5USvn+Pta/K6Xs27FutY8B8TiBYJBAIMAL69bpMg+0a3k5vRsbU9V7hWChyaSLXRMw1OfLLK8sL1dVgRWKoxwvMDcY5B23O1Mt9wyrlXul5IIZM3S72bSRVER1e7p9jDmZZPaSJVR6vbq1j6ltNQZAj9JSfq5pXHnaaeqm2dFBqZTyKSllPP34B1DSHoNCiK7A2aQSAxQKhUKhOGppK7K6X4QQV0opn9LbGb1w1tVl5q1uLimhVod5oE6nkytMJu4CAsEgn0lJ3zff5Bwd2jicZ7PxbigEUrKxrIykqgqsUBy1LGts5B4hcAmRqZY7cssWLsnN1bVa7tML4Nfvx4gN8ZI9SiMrkeBuKSnv3Zvy8nJdhOQOUvNgd6YXh5JJHsrJ4RQdqxcr2k2jEOJS4F/p5YuA5nbafAj4KdD+SoEKhUKhUHQgh9VnFbhbVy905pTCQmyxGAIIWSwEu3XTxe6UoiJy0u0c/FYr1ekCTu1lXHExwxwOBBA3GPh7TY2qCqxQHIXMb27mOp+PTcEggWAQAZy2di2TNm6kQsdquU8sgKumwrq7TWy+uJToQiPnLlpEuc/HyJEjdRGq9cDtQH2r9OJzFi0iW8fKwgpduAq4kNS/bAdwQXrdYSGEmAU0SCnbrCgshLhWCLFICLGosbHxcIdTKBQKhaJdtNVndcX+NgFHdW5YF6eT2TYbb8ViAHxtNnOqDnZNwFSjkWeFQEjJmm7duFGHC1QBjHO7WZHuC7usWze2q6rACsVRgwTeAn5nNBIxmZCAKZHgOq+XsU4n5ToJSEgVC/j9+3GSUSMkUoWbur/cRJfpft1SfxtIRVRr05WFTckk5yxZQlefT7cxFPogpdwO6FmFfyIwWwhxFmAFcoUQz0opL91j3CeBJwFGjx4tdRxfoVAoFIqDpq00YCcwA2jZY70g1TP+qGZ0LMa/01V2X9E0LgqH6aLDxeS3cnN5z2IhGAjgys7Gn0zqotxn5+TwrN9P0GwmYLWy0mpljA52FQpF+4gBv/X5+J+UGNMtXbI1jXOWLeO8SZN0E6kSeBb4p6Yhh7QgzKVIwGKWzJlpY+bM9k85AKgDfhwOs2aPysI9dEwvVhy9SClvA24DEEJMBm7ZU6gqFAqFQnG00FYa8JuAQ0q5bY/HVmD+EfGuHRRs3441GkUCAYuFD1v21NyHRw+gV7qAkzcY5HerVumSstvN6eRCqxVB6qL16XCYWpUKrFB0Km5ShZRe9HgyhZRGZmfzf+Ew39VRqCZIlVh/EYhEImSP0hj9503MOm8JTzxexRVX9NetPc3PgNp06q8hmWTm0qX08Hp1Sy9WKBQKhUKh0Iu2qgF/V0r52X62XdxxLulDZXk5g+rqMtV7V3XtqpvtEXV1mcIqy7p1Y9uOHbrYPbm5GUs6dbnFZuOJ6mo1d1Wh6CSqgB8Bq+LxzOe9f10dN1ZXM2XYMN2EXQT4eSDAy14vmqZhtVrp3tzMFfFPOW/mMmbOzNdlnM+bmriupQVXegxTMsnZS5fSs6VFpf6eoEgp56seqwqFQqE4mjmkAktCiGsPYd9uQoiPhBBrhRCrhRBzD929w8fpdDJ34EDy8vMpLChgQTzOuoYGXWyfk5uLI12xN5yVxfLCQl3s9i4rY+yWLZnldwsKeGHePCVYFYojzCtuN9d5PNSlhZ0ATl2/numrV9O9SxfdxmkGbgqFMi1wXC4Xp0SjPF5RwfiRI5mlQ7VxgI+am5nr91Pv8+FyubBJyR9ycvhmz566jaHoGIQQv2j13NKZviiOH7a6XDz/8ceZ5fkrVzKrVW/5gzl+yPe/f8D9fvLUUwz+3vf4yVNP8Y8PPqCuub2FrBXHMg6H44D7PPzwwwwcOJBLLrmE//znP6xZs+YIeKY4mjnUasDXH8K+ceDHUsqBwDjge0KII9oPYURJCSNMJtwtLbR4vTy4erUuwq/C6WSO3Z5J2X02FNIlZdfpdHLbsGGUCwGAZjLx3uDB1Kq+qwrFEUED7vf5uCcQoNnrxeVykS0lv3c4uLqkRJdWVTvZSCpyuz4W260FzqyNG6lwOnVLy10I3Gs0EjMYkIA1GuW7mzYxqbhYpf4exQghfiqEGE+q+u9OFnSWP4rji60NDbuJ1Y7iz+++y5KHHuKBK69MiVW3u8PHVBzbPPbYY7z99ts899xzSqwqgLarAY+TUn655+qDNSyl3EGqzD5SSr8QYi1QARzRs25YbS0fWyxIYHm3bmzdsUOXi7OTmpp4JicHzWTCY7PxciDAXB3sVjid/Ky5mR8GAiSB6qIiPjcaGdVuywqFoi2qgd8AK6TMiMfCQIAbvF6mDh0KRUW6jfUF8H+RCD5Nw2gwYAAmrVnDsLo6Kmbpl5X5mtvNHw0GRLowlCMS4fwlSzh5yhTdxlB0GOuBbwG9hBCfAmuBIiFEfynl+s51TdFZ3PvCCzz38cd0Ky6mODeXk/r04Zbzz2fTjh1874knaPT5sFss/OX732dA165c8dBD5NrtLNq4kfqWFn57xRVcMHEitz79NGtrahgxdy6Xn346I3v1yowRjES46c9/ZuW2bcQTCe666CLOHTduvz4lEglufeYZ5q9ciRaL8b2zz+a6M89k9n33EdQ0Tr7lFm674AIWbdzIJQ8+iC0riwW//S02i0oUOJF54IEHePHFF9E0jfPPP5+7776b66+/ns2bNzN79mzmzJnDG2+8wccff8x9993HK6+8Qu/evTvbbUUn0FY14MdgL410zuEMIoToAYwEvjqc49vDWXl5PO3x4LNaiWRlUdW9OyfrYLd3ly6MWbWKz/v0ASH4uLycq4FsHWxPKSriQk3j37EYEvhbIkFPt5tZOqUbKxSK3fkQeLCVeEQI+tfVcfq6dQyfOVO3cSTwCvCkpuFqaAApsSQS3AH0LCujfNQo3SKdz7a08Du/Hwmp15OTw3VeL0OmTFHR1GODFlKtcCenHwNJVei/NS1YJ3Sea4rOYNG2bbyyYAFLH3qIeCLBqB/+kJP69AHg2kcf5Ykbb6RveTlfrV/PjY8/zof33w/ADrebz379a9bV1DD7vvu4YOJEfn355fzutdd48847gVQa8E7uf/FFTh82jL/PnYsnEGDsLbdwxogRZFut+/Trb++9R57dztcPPogWizHxZz9j+ogRvPGLX+C48EKW/fGPADz+zjv87sorGd23b0e+TYpjgHnz5lFVVcXChQuRUjJ79mw++eQTnnjiCd59910++ugjiouLqaqqYtasWVxwwQUHNqo4bmlLrO6FlLLmUAcQQjhIXZ/dLKX07WP7tcC1AJWVlYdq/oCUO51cm5XFXwwGjAYDr2gap7tclLfzYs3pdHIbcJPJhDcri6ZolCejUX6Yl6eL39NcLuYbjdTn5ZEE/i8axdHczGQdozsKxYlOBHgCeLuVeDQlk/zAaGSkxULFzJm6CbsY8CjwAamKv0hJbijEOUuW0HPQIEaOHKnLOBJ4CvhHOu1XAkV+Pzd6PEweNkyXMRRHhDOBXwK9gQeB5UBQSnllp3ql6DQ+27SJc08+ORORPGfsWAAC4TBfrFvHt37zm8y+WrpYI8B548ZhMBgYVFmJy+s94Djzli3jjYUL+d1//gNAJBple2MjA7t12+/+K7Zu5eUvUl0NvcEgVTt20LOs7LBep+L4Z968ecybNy/zuxcIBKiqqmLSpEmd7JniaKQtsdpLCPHG/jZKKQ/YpFwIYSYlVJ+TUr66Hzsd3nj8WwUFvBYOs6mxEbeUPLB2LbfqMFerm9PJlW43d7a0gJQ8DZwUizGpuLjdPleWl3PO//7Hi2PG4LXbCWgaP4pEuFcIzj6OIqwJIAyE0n9rmppobGigS2kppcXFGAEjqcnVRqCpoQHPjh30KiujTEWHFO1gcWMjvwE8ubkZ8ZgfDHLm8uWMGjBAN/EIqRDZHcEgK+JxrFYrVqsVh8fDzKVLsScSulXjjQJ/AD4DrFYrXiEo83g4d9kyBs6YocsYiiODlPJ2ACHEclIteEcCJUKIz4AWKeVhZTopjl2k3PclUlJK8rOzMxHMPbGYzQe0sec4r9x6K/0PsouClJJHrr2WGaPUhCXFwSGl5LbbbuO6667rbFcUxwBtidVG4PeHa1gIIYC/AWullA8erh09sAIn19ezKR1pWNC7N5t1mrvabds2KoCatIB8UAhOov3pwE6nkwtnzCB/5Uoeq6wkaLEQF4J7YjEaPB6uyM8/+AnERwgJ+IANjY1sbG4mq7QUCgtpIXWxXhsI4AqFMDocYLcTJnVxvRNN03CFQpCdDaEQTk3D0mpOi6ZpuCIRyM/HGA7TJxymi81GLpAH5AO5QLKlhYTLxUmFhfQvLT3q3idF5yKBZzwe/hgMkhACwmEKCwoYUF/PaatXY5FS11Yua4C7wmHWNzeDlHiF4ML8fK4oK6Nh+HDKy8t1+S7yA7cGg6xMC2KLxcLMwkLOd7vpMWOGSv09dvmflPJr4GshxA1SylOEEO2/I6o45jild2+ue/llbrvgAuKJBG8tWsQ106eTa7fT0+nkpc8+41unnIKUkhVbtzK8Z8/92sqx2fCHw/vcNmPkSB55800eue46hBAs3bSJkW3MFZwxciSPv/MOpw8bhtlkYkNtLRVFRXulDbc1puLEYsaMGdxxxx1ccsklOBwOamtrMZvNlJaW7rZfTk4Ofr+/k7xUHC20JVYDUsr2lIqbCHwHWCmEWJZed7uU8u122DxsLrLbecPrJWCxELZYWFxayngd7FaUlzP9vfd4bvx4omYz3qws7qyp4Sdmc7sjf06nk+lA4/vv859Ro/DY7YQjER7SND7y+bjJZmNMSYkOr2L/1LtcbNmxA3tFBaaSkozw9ADbfT6qg0ESeXlE7XY8QFjTcIXDYLNBIIAzOxuLxZISmm43SAmRCE6nczchCrtSIyUgpCQSiey2T+vtCSGoj0YJ22y72dA0DZffnxo/EqFvOMxAm43eQC+gJ6kqX4daBltxfNAAPAR8JgQJIZCAKZHgQpeL83v0YEdWlm7iUQL/9Hh4CogmEqlzH5iwfj0zi4upGDmSCp0E5A7g1lCIZa0E8Xfy8/lRbi6GESN0GUPROUgpf9pq8Yr0uqbO8UbRmYzp0YPZY8cyfO5cupeUMLpPH/LsdgCe+9GPuOHxx7nvxReJJRLMOfXUNsXqsB49MBmNDP/BD7hi6tTdCizd8e1vc/Nf/8qwH/wAKSU9Skszc1v3xdXTp7O1oYFRP/whUkpK8vL4z+2377XfFVOncv3jj6sCSwqmT5/O2rVrGT8+dSXucDh49tln9xKrc+bM4ZprruHhhx/m5ZdfVgWWTlDE/lJChBCvSim/cSSdGT16tFy0aFGH2X/F7eaPRmOq+mYiwSPRKIP2+GAcDi6Xi7e8Xv7ZpQvudErwKVVV3Dl0qC4XvS6Xi4+XLeOvZWXU5+dn1gshGBqNMjIcZkpZGcNLSjAewJYkNXduW0MDGxoasHfpgrGoCA+wzeul2u+H/HwSDgc7wmHW19cTTxecaS0wNU1LtQGScrdtXq8Xr8eTEpxAXn4+eXl5+10vADtgA2QoRN3mzUgpkQYD3Xv2xGK3kySVLhwMh9laU4NmNBI3mfYpePc3TmuySInWIp+PEpeL03Nz6aWiTsc1EngfeCQSwZMuouRuaaHY52PGqlVcrnPRoQjwf34/r6e/DxACazTKjOXL6e7x6NrbdD1wL7C91bl/yvr1XF1SwigdU5mPRYQQi6WUozvbj2MdXX+bH38cDjK9tNOpqYEbbuhsL3bx+OMEiopw2GyENI1Jt93Gk9/7HqPUBfyxyZE8v46Gz11Hv96j4TUeLkfbd00Hc6i/zW1FVn8lhCiTUtanDV8GfBPYBtwlpTzmmmV9o7CQecEgX6ajD7c1N/NnKXWJgF7ldLKmpob30pG/z/r25b8+H1frcEHqdDo5bcQIPG+9xYKePVnSq1eqcIqUrDCbWWE280woRE5zM2V2O9lSEgoGsWdnY7XbCYVCeMJhDNnZSKuVyM502pwcCAZxpps0u7ze1IW1243TbCYSjRJPp07vGencXxS0yGLBGAphi0RwRKOMz8+nOyATCVYsWUKWpmGVknOmTqU7KeGYSdO123GVlFBXV5eKbqXvGGew2XDl5lJXV0dxeTlWiwUv7PbYDny5YwctNhvNOTlY91G9MAqs0DRcHg9kZfFoJMKUQIAzHA7GAiq/7viiBXgE+KxVESUBXGwycXosRqXOQrUWuB9YlUxmPiNOr5cfBIN07dVLt8gtpJpu3t+qirFRSqatWEG/xkYqhg/XZQyFQnH0cO2jj7KmuppINMrlp5+uhKpCoTjuaUus/hk4A0AIMQn4NXATMIJUQaRjro60AKZt386XdjsS2FpUxEuBADfpdOE412xmTXMztfn5IAQvlJWRs24dkwsK2n1x6nQ6Offssxm4YQP9vvySr3r1YnOrqLAEfIEA/mAwvUJm5uLtjPYSDOJ0OvcpNHce03rdzgIt8QcewFFTg81ux2Q2YwEc0SiOxkaMiQSmZJJKp5M8mw0DEA6HCYVC2O12vDYbK9I+RsJh3On1b69dy8333LPP19nWe7Xn9r2SoPPymNOzJ3V1dXTJzkZaLGwGNgNb0n+b2V1sJ4FFiQRVwONAX2AcMB7oyiE0F1YcdfzX7eYxIJGdvVsRpTNWrWJ63766FlECeNPt5mEhwG7PfH6GVFdz2vr1jD37bN1EqgT+Dfy9lQC3xuPcA1R060b5ySerOaoKxXHI87fc0tkuKBQKxRGlLbFqbBU9/TbwpJTyFeCVVnNQjzlOLSxkxIYNLKusBCH4X0UF5wH7Lsh+aHRzOvmTENwqBI1WK40tLfzGYmHll19y07hxughWp9NJP5eLUzZsYOEnn7DR6aSmsJDmnBwCVutulf6ElARDob1EaI7FghaPY9M07LEYowoLyZWSTZs3Y41EyI7HmTl+/P+zd+fxcVV148c/ZzL7kj25TZqme0v3lUJpgULBstTigoriAgiKK66I+vCwqI/6qKD8FBA3fARBRBRERLBA2akFSqH7lqZZOkkmyexzZzu/P2aaJm26QCdN0n7fr9e8krn3zr3fuZnMzPeec76HCSUlmA4HP2lo4PuTJ+PNt8DuFamtJRwO4/P5Dlh3ODc2NBzVuTiU/RPaGnIDqPcKAmvSaR7YsYMdlZW0lZT0aYHdmr/92jTxhcNcYLVySWlpQebQFcdGB/DjSIR/RiK5CzWRCOVlZczavZtTN2/GAQUtopQEbguF+MPe44XDjKqu5nqfj/FuN7UFTFQT5Cr+vsiBU+CMLOAUOEIIIYQQg+2QyapSyqq1TgNLyc+FegSPG9IMw+C7wNctFjqLi0kC32hr43+1pq4AXybHVVdzO3BFIECn1qQtFh6dNYu6cJirC/RltSdpnTSJLVu2EAsE2L12LSkg6XBgWq1orbEoxcnz57NmzRosqRROrbnovPMYWVKC3+ulJRTKdUn0+QDwT526rwvu3ul3DIOKiop+k1Gv1/u2k9ShoARYWlHB9PzzdTid7HQ4eBl4k9z42L1jcv1ac5tS/M3p5N1OJysAmTlu6MoAj5Kb58OfL2qkAV88ztWxGEsmTqTF4yloV9xdwI+AdVr3HK8kFuPT27fz7mnToKysIMcB2AN8KxZjWyrVMwWOr6uLZWvX4ingFDhCCCGEEEPBoZLO+4BVSqkOclNgPgeglJpArnFq2BplGPwQ+GwiQVNbG36tubalhVugIHN3VgLfyWb5fCJByOlEWyz8yTAI7tzJJ9zugs0P2rsF0e/39ySawL6k0zCYkh/n2fsLen/dbQ/XBfd40/v5TgUuBCLAGuChQIBAOk2qqAilNUHT5O9OJ4+S6x78HmDKIMUt+rcV+N9YjM29ErmgUkzbvZvTt21jyXnnFfQ1roF7urr4nVJYXa6e441ra+PcDRtYUOB5Td8AborH2d7R0VPx9+OlpXy4pgZ/frqdE+n/VwghhBDHv4Mmq1rr7ymlVpLrRfmE3te/1EJu7OqwNho4t7mZ31mtaGB9bS13x2JcV6D9z6qq4tdacxPQ6nLR2dXFHy0Wnm9p4X+VYkoBqhD3tv+X8P1/L/SX2CsefphHt2yh2uPhrc9+FoC1e/Zw9aOPkkinsVos3H7hhSwYObKgxx1oXmAJMKWoiL+tWsUmw+CNMWOwjsi1p2py3S9fBOqiURY2NfGu0tKCXYAQb1+MXEvqX0yTPb0SubmVlVzvduN1u6nNJ6qFEgQ+uzLGU08oPKfE8cwPMaq6mm/4fJwUCDCygPOaauDv5Cat7komQWss2SxLNmzg7NpaaufMoVZef0IIIYQ4Dh2yO6/W+uV+lm0ZuHCOrUu8Xl7auZNNNTWgFE/V1jIPOLdA+59cXc2vgS/s2UNnvntgY3k5X7bZ+DZweoGOMxgumz2bzy9YwMf/+teeZdc++SQ3nHkm50+cyGNbt3Ltk0/yzGWXDV6QR8EwDN5zwQW5Qk0VFbQ4HPwNeD2/3jRNXgwEeNHp5M8tLdxksTB3gOe8FX1pcgWUfqU1ptfbM36zKJvl5O3buTIQ4OQ5c6CysPWdXwO+9RI8+W4XWdOFshcz91c7+dzsbZw/fXpBu/0mgR+GwzyZzfa0FqeTSc5//XVqw2Fq58usLEIIIYQ4fg3bsaeFMMIwuAW4KZulobwch8PBTxIJ/Lt2cW5paUFaRtzAzUrxX7t28dro0aAUWbeb75gmJwUCXG6zMWcYJjlnjB5NQ3d3n2VKKUKmCUAwkaA2PxZ2uOrdIj0CmAs0AA8DD8fjPeMTG8vL+arNxkeBD5P7m4uBtQX4WTTK83sLGkWjlJeVUd/ZyRnr11NumtTPmFHQY5rAL0Ih/qY1rf/2kE0WQVZBUjPqr13MPbcQZdr2aQZuiMX4T76ad1ApTquo4JqSEuITJ0q3XyGEEEIc907oZBVgpGHwM+A6YGN+GohbbTa2vPQSn1u4sCBfBkcaBj8Anu3s5K9jxtABPcV7nk2lWB4Oc6XPx5ijPtLg+umyZSy75x6+9uSTZLXmxSuuGOyQCm4McA1wXjLJ93bv5o1Ro0ApbC4XfwOeAS4HzkKmvBkIG9ra+HUqxVuVlSTS6Z4LBm7T5NLWVpbX1tIKBU/k3gJ+GIuxrrs7d8zpcYrsBjqpsVnhyivGYRjlBTves+TmhvWnUj3PcUpzM5d3dnLS7NlQ4GEEQgghhBBD0QmfrAK4gBuBy/OtNKmiIh6ZPZu6UIhPFbAY0gcMgwuB/25q4sn8F1CAZ7NZVpsmkwIB3utwcGZFxbD8w9yxZg23LlvG+6dO5YH16/nkI4/w749/vGe9JjftRgJoTiT41dateCorcZaVESdXxcsfCtEZClFaUkKJz0cRuUHS0VCISFcXdSUljC4tpYRcVV+zvZ1YczNja2r6TU5eegmeeQaWLIGFCwv3XCdXV/MjrVnT0cG/xoxhp8MBQDfwA9Pk993dfMViYdYwbDUfihLAb4NBfhONkrZYwO+nvKyMIq2Z0djIgp07eXd+XGohxw83+P3clUyyprqaRK/EcdqoJr5yZ5hg80SWLFEsXFiYRDUJ/DgU4nGte7r9RrRm8aZNzGxuZvTy5QU5jhBCCCHEcDAcc6IBUQbcmM3yedMk7HCgLRYerK+nCnhvAY/jBr5us1H28su8MnYsu6qqKLJYelpan0unGe92c4bLxSJgNmAr4PEHQhLojEb53dq1fObMM9kMTJw6lZceeYQnkklCqRRZu52MzYYGMuk0a9JpVtvtEA5juN04HI7cdDH5liu6ujDs9r7LAUIhDJdr3/J4HMrKKO7uZpHHwyyvl3HAWGDbS3DOUkgmwW6HlSsLm7AahsGFhsEF5Epl/wZo7TXlzSezWa6zWnl/WZm0sr5DrX4/D4fDPDVyJHuAtMXSM2fwtHCYqzwesj5fwQsoATwZCHBTMEjY4ehJjh2ZDIs2bWJaayvvXr6cQh6yiVy33zX5/4GgUsysrOS7Xi82w6B2zhzp9iuEEEKIE4okq73MrqriV1pzo1J0FRfjcDi4wzR53e/nsw5HQaecufL007mgpQXT7eYP4TDP51tslNZ0JJOsdLlYCahEgrrOTqZ7PMwpKWEcUM3AdjHVwM62Nra2teEcMQI/uWlBEkDQNAklk2iHgxZyVVH/lE4TSafxeDzctWMHc086iY2NjVSXl7M9P7aTdBqvx0OR1Uo6ne45jtKaRCKBw+HoKZCz//K2Z1O0PenDfWoC77xkv9uHnE5ezGRYn38Opmmy67EMiaQLnVEkk7kW1kImq3sp4AxgAfC/e/bwV63JKEXKYuE2i4WdwGcBT+EPfdzSwOOBAD/u6KDD64X2dsrLykApqkIhztiyhasXLcKoqoICt15HgF8DD1mtuQtX5F6PU8JhvuD1kqipoXbevIImjk8Dt9O32++k1lY+09nJgtmzC14kSgghhBBiOJBkdT9Tqqv5LfBd4NV8K9nDWrOuqYkfKsXkAo0V6128Z6zfz93PPcdbtbXsMAycTieQS7j8bW3s0poXgkEMpxOHw4EbqI5GKeruZqTPx8jiYnxAMZAMBOhsb6eyqoryigo0uS/+gUCAlkAAX2UlrvJy4uSST38oRHMoBKWlpL1egkBbIkFzIgE+H8RieDIZ/kOuRTSSTxB/+5e/sLW5mUg8zjU/+xkXnHIKly5dyp+ffZYHn30Wh93Ox5ctyyWqAFqTTqdxW614iorwmCYj9uzBkckwv7SUEUBCa9Zt3Iglk0EpxckLF9L8EnzzIg8pU2OxFfOuW9/klI+Wo4E9VivrEwkiDgdZi6XvefP7ycyxgS23DLuiYQk82NVFbWMj40eMKHgrlRP4tNOJfdUq/jljBt0eD06nk2eB1+Nx3r9zJ4srKqR17BD2+P083dXFqlGj2GC1EvR6e5JFbzLJ53w+xgYC1C1aNCDn8bHOTm4Hkvm/XVApXMkkSzZv5svz5zOiurqg40UTwE9CIf61X7ff0zduZEZLC+Ol268QQgghTmCSrPbDA9wEfDUQwJ9v5dhZWcmXrFauB04r8PEMw+CyJUty06SUlBB0OHgJeCQc7jl+75bGLtNkUyCQSwS7uzEcjn3dYqNRcLkgGsXwevsudzggEsHweA7sdtvZiWGz4XA4iJhmnxbOTCYDkGsRzSefV5x/Pk6nE4fTCek0Znc31nSaBStWUFdZSYnDAfE4bbt2YU2nsWezTB03jmIAm40X3W4usdtzhXBKSnInorQU/5w5tLS05JaXlfH9ZyCTVOisgrRmTtN4bthbZdjjwV9aSmNLC9TVEXY42AG82NVFVyqFnqcZd6+fzBtljDzPyc65Jt/xh7H6fEzfsoWvWyxML3CrnGEYXH7mmSxpbWXlyJG8nD/Pje3tbHC7Of2NN/j2rFkyL+t+NLlut7f6/bSUlEAg0NOSakunmdvYyH9NmcJowyjo1DB7tQK3RiL8a2914UgEwzBYUVbGuTt2MHn+/IInx5uA7/Uq2hRUitmVlXzX48E2YgS1c+fKhQ0hhBBCnNAkWT0IO/CtoiLC27fzen09KEXG4+H7wNnApyhst879p0mZDJyXyfCHl15ij9dLoKSE0ooK2shNC9Nfd9mDdaN9u8udTifxTAaXaeJOpbApxYR8nB2BALZ88jm5vp4KwGq1EnU6CYfD+EpK8OaLDeFyEamryy33+fB6vT3P1+VyMWfOnEOeB8gVRrLb9447VSxf7jvk9mcD71aKvz/zDHu8XhpGjCD9jZMJuCEYTPQU0FpbX8/n7HZOD4eZt3s3pxWwxXNvTKcCLwA3x2KgNVmleHbyZOypFP8DOApytOFtj9/Pv7q7ebGujo1WK8GSkp7Xo8pk+ERpKfN37mTylCkDkrglgD8DDwGBTKbn/8Fjmlza0MAnJk+GWbMKeswUcB/wINDdq9vv5JYWrt7b7VcKcwkhhBBCDFyyqpT6LbAcaNNaTx+o4wykGsPgh8DTXV38bfRoovkk7CngTeDLQGFncuxrhGHw8bPO2tfSmO8SudE0ue/114nZbJh2OyctWIAFaLFYWNvVRVZrLEoxqaICDxAtKmJbIIAlk8GRzTKnrIxqIKU167ZuxW6aeNJpLly0iPFAqcNBl8dDSzBIbW0td9hsLABwOokYxr7k07MvXfd6vX2S0cMtP1ILF+YKI72dir6GYfDu5cv3nTe3m2bgX1rzh1iMTrcblMJisfD3ri7+7vEwurmZmy0WZhc4SVgE3JJK8eVQCH9xMSjFayUlXN7WxjeVYsYJmpQkgYe6uvhlZ2fu79GrJbUom2VqSwvfdrmYWl1d8GQRci25LwL/Lx6nJZns6YIbAqY1NbFo2zbOO++8gh+3AfhOLMbWVKrnmPFMhtM3bmTqnj2Mk26/QgghhBA9BrJl9W7g58D/DeAxBpxhGFxiGLwbuJPcPJoATabJ5xIJlinFFcXF1Azg8Xu3KClganU1n1+4cF8ytrcbrc+Hv6Ymt7ymBmNvkuj14h85ct/2xcW55aWl+GfM2Le8VxGX/Y+719Emn+/EwoVvvzDS/vGPBK4oLeUC02RlVxev1tWxpldL2q6KCr5is/EJ4EPkxp8WyrTqan6jNT9PJlldWkpnVxedWnN5Nss3rFYuPoGqBW9ua+PBWIzXDIN2i4Wg293TkmrJZPhYaSlzGxqYNn48xgDNJbob+CWw2jTxt7f3dME9raKCmzwenG53wasLZ8m13v42kaC5o6PnmGeVl3OV10uytpbaAehqLIQQQggxnA1Ysqq1flYpNWag9n+seYCvAqcAt8TjNOa/5D6gFM/Z7bzL6eRD5JKiY+FgyWShlh+vRhgGlxoGlwL/aW/nx62tbKqpAaWwulw8CDwWj3Pe7t1cUFJSsHMzKt9K//Nt2/iN1dpTLfin2SzPtLTwGZut4ONnhwpNrifCA+Ew/4jHySrVp7qvLZ1mVlMT1510EpOqq2HmzAGJIwb8MhjkEa2xuVw93eCdySSnbdnCx2prmTtnTsEr77YCtwIboWc8eFE2y2lbtvDx6mqmzZlT0KJNQgghhBDHCxmz+jYtBtJbt3JrMsnOqiqU1sRMk6edTp7Jr/8QMHpQoxRH4uSqKm7LZnmlo4PHx4xhd69iSJscDv61cyc/AMYUMJn/gM9H6Nln+df06XR7PESiUZ7XmpeSSd6fSnFWe/uAVCoeDJ3Aw93dPJpOE/b5SGSzZNk3ZVFJMskniouZtGsX4ydPHrCW1DTwBPDbeJytwWCugFIoREVZGbN27+bkrVtxZ7OMnD+/oMfVwL1dXdwNWPJzCTudTpyhEOe8+SYV8TgjZ88u6DGFEEIIIY4ng56sKqU+Ra5eEfX19YMczZGZYhisePRRdpeU8Or48ZgjRgC5L6fP5W8zw2FObWxkQWXlsE88SuvrubGhoeD7HAoMw2BFvpv3U8BPotGersEba2r4SlERPwQmFvB4nzzjDJa2tvJnq5Un7XY0kFaKB1Ip/urzMWPzZr6uVG685jBjAi+TO5cvmyZ7QqFcchiL9bSk1nR1MWf3br548snUVlRAaemAxKKBV8iNR2gGgslkz992ZGcnnw+HmT9xIi0eT64bfAH/T3cDP4hGeT4czj3/cJja6mo+6XRyenU1/ilTCn5MIY6EUmoUueE5I8j1UL9La/2zwY1KCCGE6N+gJ6ta67uAuwDmz5+vBzmcI2IYBsvzBXw+U1tLl8PB/cCr+fWmafJoVxePer1UBAJ8wOnk/JISRsOwHJv4pZtvHuwQBpwClgJjUym+uWcPm0aMAKWI+Hxck0hwTksLH/F4jnjKmZ/+93/T3dh4yG2K4nHG+f34i4uJ2+0AZIC1wGVWK+XZLCOLihjpcGAhl+APxb9Fktxr/wVgVSJB0DRxOp19qk07UilO6+rivS4XRYEAtSefPKCJ2nrgjmiUdel0boqlfKtmxjRZuGULJ/n9zF++vODd4FPkqvw+AATyUz1poCIc5jPhMCumTQPDoFaSVDF40sBXtdavKaV8wKtKqSe11hsGOzAhhBBif4OerA5Xvb/kGsCNwFbgT8ATvb6kBzwe7gMeA2rJzdF6GjCB4Zm4DjQN7PL7aWltpa6mhlrDoMPvp3VvEagB/pI/zjC4DXg4FOLRUaNIAM1tbfy+qIgXGxv5CeTm+jyM7sZGbhwz5rDbRUaNIhwO0+Zy8XoqRdxmA5V/ZWgNSlHscFCVTHL/1q1EgGNb3qp/ncDTnZ08G4+zo6ICnM7cvL1tbT3Fg8rLyhjZ3c3k5mYmt7Xx3vPPx6iqGtBpWbYCfyDXquvPz0UcVIox1dV8yunklJISOkaOHJBkeT3wo1iMHb0q/YaBuTt2sKChgVMuuKCgxxPindBat5IbSo3WOqyU2kiu3IIkq0IIIYacgZy65j5gCVCplGoCbtBa/2agjjcUTAT+C3hXMsn/+v3sqKoiU1SE05mrLdtCrtXlQaAKmB4KMaq5mQXl5UeUAA1Hmlxhmy5gWyDAtkAAW3U1urSUrvzy5liMtngcPB5MpfCbJpSVgWlSHg7TaZpYS0pwd3czzmqlPJFgrNbUh0KcWlFxxK2dR8owDD6V7xp8bVsb/vyFh63V1VxrsfBTKFj1573VlWuA8ZEIOxIJttls+HW+k4HWhBIJQsDrqRQrwmHqYjHmOp0sKClhElDBwF740OS+2W4D1oRCuSq6TiedkUguoW5rwzCMnpbU0miUk1pb+WB1NdNHjKAlm6V23rwBvdCwE7grEuGFTIbEWhftT2mKZtnwzjWZ0djIp7q6OH3WLDAMRhU4jiDwW+Cfpom/V6Xf0yoq+B+3m6LSUmovuEC6/IohJ18EcQ65HvNCCCHEkDOQ1YA/PFD7HuoWVFXxi2yWna2ttNXXs8nh4D9Aotc2TabJq93d4HajEglmxWJMc7sZB4wFxgFlgxH8ETLJfUnf1tHRk4BSVtaTgDZFo7QmEqQ9HtTeVrdoFBwOCIUwXC4c+YJGe7/gE43m5m7NJ4dKa6KxGGhNqqiIYFERayMRevqKezx4g0FODwb5WGkp0ws8xrMG+IHWfKOpiTfr6kAp2pxOLuvq4vNa8+7y8oIez+v1MtPrZVwkwhs7d9Lh9RLw+TCt+/5NA52dBIA3TJPH8hdBrNEoExwOJno8eLq7oa2NceXlTKisZM/mzbRu28aEceOYMmVKn+NpoMXvZ+eePXhra3FUVdEQCLC9q4tsVRWJkhJ2RKPsTCbRbjcA/u7unjGoe/8OSmuKw2EustkIv/wy5aEQRRYL06dPH/Bq05vJdbl9zjTxd3YSXWNjx6U+dEpRZK3mM994ktn1zUwagPlLW/1+HoxEWDlyJJle3Z6tmQynbd3KZdXVzJszZ0BbkoV4p5RSXuAvwJe01qF+1g+7ehJCCCGOP9INeID0/pK+gty4vrXAi+QuYQd7dRUG2JlK0UmuONNepeSS1opgEFt7O2PKyhhTUYEP8JHrDlpUgFg10OT3s9Pvx1VTg72qiiDQTS4hbQyFaIlEyJaUkPJ4CJJLvE3TxB+LgdMJ4TBGvuKp2asLJtFon1a3vUloIpHA4XAcsBzAls3mlilFsdtNu2n2rNt/UHPE4eCfwL/icU7bsYPP+HzMKGByMNIw+Anw11CIvxgGbV1doDX/pRSv2Wx8zefDc4T7SqTTnPG732FmMqSzWS6eMoWbzjqL6596ioc3b8aiFNUeD3e/5z3MGjuWcDiMVWs2trTQ7XLhSiaJsq+abjQSIZIvCNUcifBmNktnKJS7IBCL4evqIuR0wvTpWLTGCIVw2+3E4nFsLhcppdhjmrkCR/F4rhU7GgWbDYJByi0WOvPPl3C4z4WEomyWEcEg9YEA4zs6+PiSJYyorMS/ZMm+eXsHKEnVwKpAgHtTKXaVlfV5HUVedqKTCrIKsEDnTJZ/dk7BY3muo4Ob29tp8/l6WpadTidVbW0s2riRklSKOqn0K4YopZSNXKJ6r9b6of62GY71JIQQQhx/JFk9RuzAgvwtDTyTTvO75maaS0vp9nh6ugr31g28ZJr4g8FcAhGNYni9OByOnm080JO8WiIR4qEQvuJiPF5vT2Kn87dwJEJXJILN50N5PCTIJZ3diQStpgklJRCPY5hmzzFM09zXmhYIYFitPeuONAHVsRijHQ46gkFciQTeZJLFJSWMBbLpNK+98gqORAKn1rz3vPOwuN37Eh6fjz2xGDv27CHtdrPqjTdo83jwl5bSUFVFwmYDciUtny8q4uVolAsDAT5VVlaw7p6GYXC1YVCzYQP/W1RE2OlEac3KbJaN8TjvbWhgSXn5YRMiR1ERT33iE3jtdlKZDIt/9zvOnziRry9axHfOPhuA2155hZtXreLO5cvxenOjU10uF+FwmAUWCxNXrWJ3SQltpaWkx45lfTpNqqioTyv03vMej8V6jp1VikA0yp69f8v9ks/+Ht/7viuZZCJQ1NDAiM5ORgWDnHnKKSTKy6nNt6DuPVcDlaSmyV3s+WM0ykv5JB2/H8MwcOUTxYXeLfy26Cyyqgi7XfGRj9RSyHA6yFUXfsRmI+jz9ZwrbzjMtysrqauvp8VqlUq/YshSSingN8BGrfUtgx2PEEIIcSiSrA4CK3BORQUzxo+npaWFyooKEg4HO4Ad5Mbf7SSXSB4sIdwrmr/tyneDRGvo7MSw2fpsZ/Zen0z2STpjpnnQYxzs+Fag1m7HEQ7jTiRwp1IsKi1lDKAzGdauWYMzHseXTucK65SV4TeMXBI6ejTG3ulKKiqYfeaZB7TG9f6iP8IwesalTi4upqWlBafTib+1lX8HArxWX09TRQWQmwLmYZeL5zo7+V+LhQUFbGU9taKCSx9/nGcmTWLzyJEUWSxsbG9no9vNQw0N3HCY6WaUUnjzVX9T2SypTAYFFPf+eyaTB4w/3TuutdQ0uXjZsp5zBfDIk08ScjgIer2MmDePl3fvJuRwkHA4cI4YQVMiQcpqRQNWq5VUMtmnFVsB9nQaVzrNOK+XrkAAp2lSkkhw6rhxNL36Kt5IhOJUincvXw4nnTTgLaf729HWxkORCGtqaoi6XAR7VdlVWjOjvZ0v1dVhr6+n5d1W3j0vxLp15SxZAgsXFiaGJHB3dzcPaI3F7cbpdBJUCmsmw/yGBq6fOpVRAAPc7VmIAlgEfAx4Uym1Nr/sW1rrxwYvJCGEEKJ/kqwOov1boXrP5bm3qM2aTIZHGhoI2e0k7XZqKivJAmEgwr5usYdLag+13ul0EtEaWzqNO5ViZmUlteS6IaM1mzZuxGGaeFIpVpx5JhMAN6BcLvxVVbnkZdQojJKS3MHKy1mweHG/CWh/X+TfTmtc722nAFP8frZs2cKq7dt5ZvJk2vIxdLndfE0p3rd9O5d4vQUpwmQYBu8/7zwWtrTQ5PVyeyrVc043jRjBF+x2rgDef4h9ZLJZ5t11F9s6O/ncySdzSl0dAN9euZL/W7eOEoeDpz/xiSN6/gAr8lMo7T3P77fbc/cNA6O6mo2BANs3bWL0uHEUO538fdUqdCaDDbjogguwOJ37Hl9RgT+dzt0fNw7DMPD3Xt/PhYSBtBV4IBTir9EoqaIiaG/v6W4b0ZrJzc3M37WLjy5dipELDMMwmDMHLrywMDFo4BngrnicDXvnjA2HMQyDd5eVcVZDA9OnTpUEVQwbWuvnkWL0QgghhglJVocoRW6qmxXl5ZzSuzXLs2+EZJZcq2qI3JjXx9euJQ1YlOL0RYsoz+9HAZ3pNM+//jqWTAZHNst5S5ZQDzgBp8NBwOXq9xiUluKfM2ffuv1aKguRgB6NvceZ5Pdz+pYtPNTSwvOTJpG2WgnGYvzOamXV7t3cAowtUMJqGAZzgIltbXyzvZ0dVVWgFEUuF/cDf4vHUaEQ3ZEIpd6+E80UWSysvfpquhMJ3vunP/FWWxvTq6v53tKlfG/pUr7/3HP8fPVqbjrrrLcVz8HuT5kypU9hpQ/0apntL/k83P4G2i6/n0fDYdbV1NDi8RDUmpTF0nORxRqN8vHycua53UTcbmqXLh2w+NaRq/K7HQgmkz0XJirDYT4ZjfKhKVNgxowBObYQQgghhJBkdVg4WMJgYd941ZGVlUw89dQ+rWR9VFQwe+HCt510Hm7dULE3xpP8fta2t/OrsjK2ptNoYEdVFddaLNwK1BXwmCdVV3On1qzq7OTJ0aPZky8u1djejsVi4c/JJLMSCWY4nbj2e2yp08mS0aN5fNu2PlWMPzJjBhf+8Y9HnKy+XUPxb6mBN4FHQiH+FouRstl6xkfv7W5bGQ4zp7GRL82dm+tuW12duw2ABuAXkQivZDI4nU4cDgdOp5NkKsWCbduY0dLCkkI13QohhBBCiIOSZPU4crhEZCgmKoVmGAbLDINpfj/f2rmTN0aNAqUIFhfz2USC9+/axXmlpQU7D4Zh8EHD4APAU8BP9849CqQtFtYDW9NpqmIxqpJJxni9lDmdxFMp/r1zJ99YtIitgQAT8xcXHtm8mZMqKwsS21D3ens7j0ajbDAMIi7XAa2o6Xic5aWlnOx24wkEGDl37oC+fpuBe4F/9xrfHVSKUdXVfMzpZLHPR7dhUDun8NWFhRBCCCHEgSRZFcelOsPgR+Ra6x4eNYoksKutjVucTp7cto3vAaMLmHAoYCkwMZ3mJ5s381ImA0qhlCIUjRLSmlXd3dz34INYtcaqNZdMm8bySZN4/wMPsLmjA4tSjC4t5c7juNVuN/AC8GQsxpp4HJTqMxY1qBTlkQjTm5v58qxZjAeorMzdBogfuI/cxQbNvvHdAFOamvh0dzdnzZwJhkFBSwsLIYQQQohDkmRVHLcMw+Aqw2Ap8NWOjp4xh2/W1fGVoiL+B5hc4GPWGwbfmjWL76TTLLXbWZ9KEc8nPnWVlVx/2WU48tMUFSeTvNDVxW3Ll1Prdh+XFU+ywMsdHTwdibC1upqA2w1AsFdxKqU1RdEoF5WXM9PtxhkIMHLmTIwB6ua71x7gQeCxRIKIafbp8lvR0cGCLVuojsWYunz5gMYhhBBCCCH6J8mqOO6NA36czfK1XsWQwj4f1wIfAj5IYf8RDMOgsqKCSS4XtZEIr7W00Obz0eX1YrXmjpRJp9kdj7NbKdalUlSkUoyy2SiLx3EFg1Tkp6sZjvzA68Ba4JVEgh2xWK4FtaMDwzB6EsKI1oxub2dqayufPeUURsKAt6JCrnX3z8AqIG6a+Nvaerr8Li0v5zNeL8V1dbRYLDJfqhBCCCHEIJJkVZwQxldXc4fW/C0U4rFRo9AOB1ngbtPksWCQa5Ti5ALOybqX1+tlbn094XAYt81GyGqlAdiRnysUAK2JZjJsU4pIMglOJ85EgjE2G7UOBxVAWcEjK4wIubmBt+Vv62IxGlOpnlbK4H5z+GbicRY5HCxyOBjlctFltVJ7yinHJCF8paODe5JJtlRUYN9vHuERXV0s3LaNi8aPZ+KcOTJfqhBCCCHEECDJqjhhjDAMrjYM3gfcArxmmvj9fvxacxXwwVCIzxQXFzwx9PZqJS0BRgHTMxn+095Ot8tF0O3GarWS7pXAJqxWGrSmNb+PbDrNM4kE3w6HmeTzMRIYCVjb2gg3NzNyAFsATaCNXLfZPeRaTrdHImxOJIj4fD3z9ZqmiT/f3TqoVM841HQySV0gwPj2dq5esIDRe3dsGIwZ4IRQA6uBe6NRVsViufPr9/e08M4vKqLk1VepCQQoyrekCiGEEEKIoUGSVXHCqQb+B7iluZl7LRYyKjda9HGteR34APAewD6AMZR5PJxWU0M4HMZrt5O0WtmZTrPJNIk4HGil+nQZjkSjBNNpHu3qwrDbceSnyfEnEhSVluIKBpnu9VLj8VAKxFpaCO7Zw8jqasbW1WEDbEC4s5OOQICSykq8ZWWkgBTQ0d1NSzCItbwcfD5C5ObvbY/H6Ugme1pKIZ+U5qvlEov1JH57WymtmQy1XV2cnU7zvnHjcBQX0xqJULtgwTFrrUyQK5j0MNACBPMXAva28E4IBLimtpbJXi/+RYsOmHtWCCGEEEIMPklWxQnJAnzM40E//TTPTpxIY1UVTqeTBPAH4KF4nLObmlhRXMyIAUpgvPuNS61wOjkpnSYYDpMtKSFutRIAdieTRHp1GU4kEn2Sw7TFQsThYGM6TQsQCYcJpFJQUQGZDBXhMF6fL5dkRiJgt0M4jOF270t6Q6Hc/vdPhtvb+7SU9j6uBoqyWSqDQU6rrqYim2Xn6tWUBYPYlWL58uUYAIYxYOdwf83A48CjiQSB/YomhYHxe/Ywv6GBy5csYW9EJ8KUTkIIIYQQw5Ekq+KEZRgGHz/rLM5paaHD4+FvDgeN5FoOG9vb2Wi388fOTq6223lfWdnbamktra/nxoaGdx5cW1vPr/F4nF3NzYw1DMa/9RZjFy8mCmy1Wnk9kyFZVARK4cxXGY7GYn12FY3F8Pp8fZJM1U/Se7DlSmt88Tj1XV3MHjECh9Zse+stiiMRKqNR3nPhhbnEr6wM/xlnHPNWyjTwMvBPYB35lt9eRZPGVlfzEaeTBS4Xpt1O7ZIlkpwKIYQQQgwDA5qsKqXOA34GFAG/1lr/YCCPJ8Tb1btV7WzgSeC2aLQneetyu7ndYuFRYDlwAVB8BPv90s03FzROv9+/LwksKckt9HjwezzsbG3FO3IkNoeDILDONFm9dSvpoiIyFgtjJ02iEui0WFjn9+e66mrNrLIyKoAosL6hAWsqhTud5pwFCxgDJJJJXli1CrtpYrVY9rWUlpbinz+/36T0WLZSNgEPBYM8nsmQ9nh6uinvTbKLYzFmNTby0c5OTp09G6qrczchhBBCCDEsDFiyqpQqAn4BnEvue+V/lFKPaK03DNQxhTgaRcB5wORUiu81NPBGXR1Jmw2n00kQuJfclCcnh0LMaWxkdlXVMUvMDpYE9rd8QX09i6JRduzYwbhx45hSU5Nb4fPhHz16X5JZnE+7S0rwn3TSvuXl5bnlVVWMXLZs0JPS3kLAs+TGo75lmviDwdzY2UgkV9DJ4eC0oiJsr79OXXs7VouFsbNnH/M4hRBCCCHE0RvIltUFwDat9Q4ApdT9wEWAJKtiSBtrGHwP2N7aypYxY1jlcNCRXxc2Te7r7uY+n48av5+P2e2sKCvDN5gB92PKlClMmTLlgOVvJ+k91PJjyQSe6Ozk8USCHeXlWPPdnXt3X/bF45zV2spVY8ZQ6fXiX7hQiiYJIY6ZMdf9A4CGH1zYZ1nv+8ezMS9YAGhYlB30fRzN408EhTjPBYkj/z+zV8MPLjyh/mcKqb/3n+PJQCarI4Hdve43Aafsv5FS6lPApwDq6+sHMBwhjtzeJO004KPAi8BDwGu9EqTWkhJ+abHwZ2AecBa5KzQDWUX4RJEA1gAvAM8lEuyORHItqG1tPYWevA4HVW1tTGpuZlxnJysuvJDK/OOHQpIthBBCCCGOzkAmq6qfZfqABVrfBdwFMH/+/APWCzHYrMAZwOnAqnSan3V0sLOiAm2x4HQ6yZCby3M1oBIJJnV0sMTt5qzycjyDGfgws6OtjZXBIDtqatji9ZLMLw+ZZp8CUCO6u/mwYbDY6SRWX0+L1UrtwoWSnAohhBBCHGcGMlltAkb1ul9HbspDIYYlBSypqGBKOs3mPXtorK/nDYeDTfn1e6vQ7tKaJyMRatxuZjqdzAPmAhPo/wrOiSoNbALWAi9Eo7wUj6PtdujsxLDZegomOZ1OLLEYE1pbmeL389Gzz+6ZdsYnLahCCCGEEMetgUxW/wNMVEqNJTf94SXARwbweEIcE727mH4UaAVWAQ+Gw/h7tQDGTJONTicbgXuAEmBCOEy138/JJSXMraqiaLCexCDIAK+1t/NCKESLYbDT6yWRXxdMp9HQZ/qcyQ4HpwGLHA7s5eW0JhLUTpsmyakQQgghxAliwJJVrXVaKfV54F/kCq3+Vmu9fqCOJ8RgqSF3JWZJJsNvV69mR0UFjdXVqBEj+mzXZpq82dUFNhu/jMcZlUgw3elkEvTcqjg+Wl8z5Aasb+t125RIsDseB6u139bTEFAdCjG+vZ2rZ8xgdu8dGgYjJEkVQgghhDihDOg8q1rrx4DHBvIYQgwVIwyDT55xRq4KbVUVToeDtcCrwGtAY6/iTEprQqbJeqeTvVdwTNPEGo0y0eFgksdDLbkqZSMBgwH+Z32HIoAf2JP/uTkUYmM8TmdJCSpftXev/ceeJhIJ6h0O5gCzHQ5GuFyEOjtzradVVcf8uQghhBBCiKFlKH7/FWLY2r8K7Zn5mwZWp1LcvW0bfp8Pf2kpzl7JnGma+P1+0JrmSISNVmtPqyOABSiOxXAHg9R7PNQVF1MKPbeS/M/i/LZHI00uCQ31c2sKhdgZiZAoLSXsdhPt9TjTNPF3d+eq9ppmT9XevZxOJxnTxOjupr6riyvmzmVm7wNXV+duQgghhBBCIMmqEMeEAk6prGTM9Om5lteSEmwOB1uALcCzXV10pVKYVmtPq2PvRC9umjR0dIDWvJxKYTgcfdbvFQ2HMSMRSt1uKkpKsEGfWzIaJRyJ4PJ6sXk8pIAUuQQ1BYQTCYKmidPpPGD/fZLRjo4DktHEfi3HzkiEUxwOJpArLjXe4cAsKaElGqV29mxpPRVCCCGEEIckyaoQx9D+La+n5m/LlOLvzzxDl8NByOtl4pIlRMmVz24Gtu2XCO6fzAJEwmECnZ0AhJNJYhYLXp+vZ71pmvgDgX0tn/u13u6tZozWBJU6bDKaSCTwORwYwAjApRS7tm6lNBzGCIf54LJlHDDKVKr3CiGEEEKIIyTJqhBDgGEYvHv58lyra20tRmlpn/WNiQT3vfwy3U4nCYeDk049FYDu/C0IbAiF+jwmGov1SVb7Szb7S0YBnMkkJaEQY6uqKCbXvRhg09atuONxSk2TD5xxBpPoVRCquBj/jBn7noMkpUIIIYQQ4ihIsirEELF/q2tv9YbBZUuWHDSZBdgYCrHq+efJWCxkLBZOPu00xhlGT1ff1lSKf7/6Kjqbxao15y5ZQi25NwEb0GWaPPn001hSKawWC8uXL+/bMlpS0jcZ7Wd86aGegxBCCCGEEG+HJKtCDBOHSwSnTJkCwI4dOxg3bhxTJk/us35sZSXjFy3al2zuN2a0oroa3/nnH7JlVJJRIYQQQghxrEiyKsRxZMqUKT1Ja38Ol2xKMiqEEEIIIYaKo53lQgghhBDDiFLqPKXUZqXUNqXUdYMdjxBCCHEwkqwKIYQQJwilVBHwC+B8YCrwYaXU1MGNSgghhOifJKtCCCHEiWMBsE1rvUNrnQTuBy4a5JiEEEKIfkmyKoQQQpw4RgK7e91vyi8TQgghhhyl8/MqDgVKqXZg1zE6XCXQcYyOdbySc3j05BwePTmHR+94PYejtdZVh9/sxKGU+gCwTGt9Zf7+x4AFWusv7Lfdp4BP5e9OBjYXKITh/lobzvEP59hB4h9Mwzl2kPgHU3+xv63P5iFVDfhYfqlQSq3RWs8/Vsc7Hsk5PHpyDo+enMOjJ+fwhNIEjOp1vw5o2X8jrfVdwF2FPvhwf60N5/iHc+wg8Q+m4Rw7SPyDqRCxSzdgIYQQ4sTxH2CiUmqsUsoOXAI8MsgxCSGEEP0aUi2rQgghhBg4Wuu0UurzwL+AIuC3Wuv1gxyWEEII0a8TOVktePemE5Ccw6Mn5/DoyTk8enIOTyBa68eAxwbp8MP9tTac4x/OsYPEP5iGc+wg8Q+mo459SBVYEkIIIYQQQgghQMasCiGEEEIIIYQYgk7IZFUpdZ5SarNSaptS6rrBjme4UUqNUko9rZTaqJRar5S6ZrBjGq6UUkVKqdeVUo8OdizDkVKqVCn1oFJqU/71uHCwYxpulFJfzv8fv6WUuk8p5RzsmMTxZ7h97h7sc04pVa6UelIptTX/s2ywYz2Y/T9fhlnsB7y3D7P4D3hfHcrxK6V+q5RqU0q91WvZQeNVSn0z/7+8WSm1bHCi3ucg8f8o//pZp5T6q1KqtNe6IRN/f7H3Wvc1pZRWSlX2WjZkYs/H02/8Sqkv5GNcr5T6317L33b8J1yyqpQqAn4BnA9MBT6slJo6uFENO2ngq1rrKcCpwOfkHL5j1wAbBzuIYexnwONa65OAWci5fFuUUiOBLwLztdbTyRXcuWRwoxLHm2H6uXuwz7nrgJVa64nAyvz9oWr/z5fhFHt/7+3DIv5DvK8O5fjvBs7bb1m/8eb/Dy4BpuUfc3v+f3ww3c2B8T8JTNdazwS2AN+EIRn/3RwYO0qpUcC5QGOvZUMtdugnfqXUWcBFwEyt9TTgx/nl7yj+Ey5ZBRYA27TWO7TWSeB+cidUHCGtdavW+rX872FyHyIjBzeq4UcpVQdcCPx6sGMZjpRSxcAZwG8AtNZJrXX3oAY1PFkBl1LKCrjpZ85NIY7SsPvcPcTn3EXA7/Ob/R54z6AEeBgH+XwZLrEf7L19WMSf19/76pCNX2v9LNC53+KDxXsRcL/W2tRa7wS2kfsfHzT9xa+1fkJrnc7ffZncnNIwxOI/yLkHuBW4FuhdXGhIxQ4Hjf8zwA+01mZ+m7b88ncU/4mYrI4Edve634QkWu+YUmoMMAd4ZZBDGY5+Su6NKDvIcQxX44B24Hf5rm6/Vkp5Bjuo4URr3Uzuimcj0AoEtdZPDG5U4jg0rD939/ucM7TWrZBLaIHqQQztUH7KgZ8vwyX2g723D4v4D/G+Oizi7+Vg8Q7H/+crgH/mfx/y8SulVgDNWus39ls15GPPmwScrpR6RSm1Sil1cn75O4r/RExWVT/LpCTyO6CU8gJ/Ab6ktQ4NdjzDiVJqOdCmtX51sGMZxqzAXOAOrfUcIMrQ6lY15OXHIF0EjAVqAY9S6qODG5U4Dg3bz93h+Dl3HHy+DOv39hPgfXVY/T8rpb5Nrlv/vXsX9bPZkIlfKeUGvg38d3+r+1k2ZGLvxQqUkRtC8XXgAaWU4h3GfyImq03AqF7365Bub2+bUspG7gP8Xq31Q4MdzzC0CFihlGog1yXubKXUPYMb0rDTBDRprfe26j9I7guOOHLnADu11u1a6xTwEHDaIMckjj/D8nP3IJ9zfqVUTX59DdB2sMcPooN9vgyH2OHg7+3DJf6Dva8Ol/j3Oli8w+b/WSn1CWA5cKneN1fnUI9/PLkLHW/k/4frgNeUUiMY+rHv1QQ8pHNWk+vhUck7jP9ETFb/A0xUSo1VStnJDfR9ZJBjGlbyV0d+A2zUWt8y2PEMR1rrb2qt67TWY8i9Bp/SWh9PV14HnNZ6D7BbKTU5v2gpsGEQQxqOGoFTlVLu/P/1UqRIlSi8Yfe5e4jPuUeAT+R//wTw8LGO7XAO8fky5GOHQ763D4v4Ofj76nCJf6+DxfsIcIlSyqGUGgtMBFYPQnyHpJQ6D/gGsEJrHeu1akjHr7V+U2tdrbUek/8fbgLm5v8vhnTsvfwNOBtAKTUJsAMdvMP4rQMX59CktU4rpT4P/Itchbbfaq3XD3JYw80i4GPAm0qptfll39JaPzZ4IYkT1BeAe/NfgHcAlw9yPMOK1voVpdSDwGvkukm9Dtw1uFGJ480w/dzt93MO+AG5Lm2fJJeUfGBwwntHhlPs/b23WxgG8R/ifdXLEI1fKXUfsASoVEo1ATdwkNeL1nq9UuoBchcQ0sDntNaZQQk87yDxfxNwAE/mrhnwstb66qEWf3+xa61/09+2Qy12OOi5/y3wW5WbziYJfCLfsv2O4lf7WsWFEEIIIYQQQoih4UTsBiyEEEIIIYQQYoiTZFUIIYQQQgghxJAjyaoQQgghhBBCiCFHklUhhBBCCCGEEEOOJKtCCCGEEEIIIYYcSVaFEEIIIYQ4BpRSNyulzjnMNkuUUqcdq5iEGMpOuHlWhRBCCCGEGAxa6/8+gs2WABHgxYGNRoihT1pWhRBCCCHECUEpda1S6ov5329VSj2V/32pUuoepdQdSqk1Sqn1Sqmbeq37a699nKuUeij/e0Qp9ROl1GtKqZVKqar88tlKqZeVUuuUUn9VSpXll9+tlLo4/3uDUuqm/GPfVEqdpJQaA1wNfFkptVYpdfoxPD1CDDmSrAohhBBCiBPFs8DeBHA+4FVK2YDFwHPAt7XW84GZwJlKqZnAU8CUvYkocDnwu/zvHuA1rfVcYBVwQ375/wHf0FrPBN7stXx/HfnH3gF8TWvdANwJ3Kq1nq21fq4QT1qI4UqSVSGEEEIIcaJ4FZinlPIBJvASuaT1dHLJ6geVUq8BrwPTgKlaaw38AfioUqoUWAj8M7+/LPCn/O/3AIuVUiVAqdZ6VX7574EzDhLPQ73iGlOIJyjE8UTGrAohhBBCiBOC1jqllGog1zr6IrAOOAsYD8SBrwEna627lFJ3A878Q38H/B1IAH/WWqcPdoi3GZKZ/5lBvpcLcQBpWRVCCCGEECeSZ8klpc+Sa029GlgLFANRIKiUMoDz9z5Aa90CtAD/Bdzda18W4OL87x8BntdaB4GuXuNNP0aui/CRCgO+t/WMhDhOyRUcIYQQQghxInkO+DbwktY6qpRKAM9prd9QSr0OrAd2AC/s97h7gSqt9YZey6LANKXUq0AQ+FB++SeAO5VS7vy+Ln8b8f0deFApdRHwBRm3Kk5kKtcNXwghhBBCCHEwSqmfA69rrX/Ta1lEa+0dxLCEOK5JsiqEEEIIIcQh5FtOo8C5Wmuz13JJVoUYQJKsCiGEEEIIIYQYcqTAkhBCCCGEEEKIIUeSVSGEEOI4o5T6rVKqTSn1Vq9l5UqpJ5VSW/M/ywYzRiGEEOJwBixZVUpNVkqt7XULKaW+NFDHE0IIIUSPu4Hz9lt2HbBSaz0RWJm/L4QQQgxZx2TMqlKqCGgGTtFa7xrwAwohhBAnOKXUGOBRrfX0/P3NwBKtdatSqgZ4Rms9eTBjFEIIIQ7lWHUDXgpsl0RVCCGEGDSG1roVIP+zepDjEUIIIQ7JeoyOcwlw3+E2qqys1GPGjBn4aIQQQhz3Xn311Q6tddVgxzEcKaU+BXwKwOPxzDvppJMKs+OuLkinC7OvgWa1QtkQGtY7nM6dOLxj+foaCq+dgX6+Q+E5vlND7b1mgL3dz+YBT1aVUnZgBfDNg6zv+UCsr69nzZo1Ax2SEEKIE4BSSnrz9OVXStX06gbcdrANtdZ3AXcBzJ8/Xxfss/mOO6CurjD7GmhNTfCZzwx2FPsMp3MnDu9Yvr6GwmtnoJ/vUHiO79RQe68ZYG/3s/lYdAM+H3hNa+3vb6XW+i6t9Xyt9fyqKrkALoQQQgyQR4BP5H//BPDwIMYihBBCHNaxSFY/zBF0ARZCCCFEYSil7gNeAiYrpZqUUp8EfgCcq5TaCpybvy+EEEIMWQPaDVgp5Sb3gfjpgTyOEEIIIfbRWn/4IKuWHtNAhBBCiKMwoMmq1joGVAzkMYQQQgghhBDHp1QqRVNTE4lE4uAbzZsHRUXHLqhCMgzYuHGwoyg4p9NJXV0dNpvtqPZzrKoBCyHEMaeBJBDrdWsKBGju6KCkqgpveTlmfpu27m7aurspLivDV1JCFsgAWaArFKI7GKS0pITS4mIUuTEUCggFg4S7u6kqLaWqpAQbYM/fIp2dBNvbqa+sZFRFBW7ADbgAW/7xQgghhDi4pqYmfD4fY8aMQamDfHK2tYHdfmwDK5RkEqqPr5nEtNYEAgGampoYO3bsUe1LklUhxLChgQiwoaODzYEAzupqLGVlhIBg/hYC9sTjdCYS4HJhczp7Hm+aJv5oFJxOiEQwPB4cDkdueSgESkEwiOF04nA49j2muxu0hu5uDIej77pgMLfz/h4XieSOFY1ieL096wAyiQTEYlQ7ndS43ZQAJUAxoLu6SLa3M6m8nCmVlZRx7CbFFkIIIYaSRCJx6ERVDDlKKSoqKmhvbz/qfUmyKoQYUhJAC/BmZyebgkGyFRWYxcW0Ae1A0DTxx2K5JDAcxnC7+ySBpmnib2/PJZfhMIZh9KxPJBKgNRpQWpNIJHA4HAddfqjHHM060zTxt7WB1jRHIrT0itE0TfzhMDgcEIthmCZuh4MKoBqoAuzBINb2dqaXljK7shLvgP5FhBBCiMElierwU6i/mSSrQohjTgNdwJpAgLeCQczKSiLFxTQBnfRqlbRYDmjNPFQS2N/6dDxOtcOBG6ixWmnq7saaTmPLZplRXk4FYCrF+l27KEqnKVKKeXPmUEGuNTOsNWs2b4ZsFmWxMP/kkynJP4dOrfnP1q1kAF1UxLS5c3EBKSBgsbCurY2UUqRsNkbmp+aKAa3x+NtOctvITYrZ05prs/Uks9UOB6OAOsDb3Y19zx4WlJcz/jjrViSEEEIMhu/9+Mf88S9/ochiwWKx8Mtbb+UHP/0pO3ftIhKN0t7RwdjRowG4/cc/5rRTTul57BWf/zyP/utfVFdW8tZLL/Us//r11/P3f/0Lu9XK+MmT+d3vfkdpaekBx3788ce55ppryGQyXHnllVx33XUHbLN582Y+/elP093djWmanH766dx1110888wzXHTRRYwbN45EIsEll1zCDTfcAMD3v/99fvOb31BUVMRtt93GsmXLDtjv2rVrufrqq0kkElitVm6//XYWLFhAIBDg4osv5j//+Q+XXXYZP//5z4/2FB+UJKtCiAGVBP7T0cHa7m7i1dUEiovZBXTs7ZJbVPS2EtISh4OiWAxvLIY7leLU0lJGsa8LbSqV4pUXX8RmmjiyWd5z4YUYe4PxePCPGEFLSwu1dXUYPl9ueXEx/smTc8trazF6f1iUlrJs1qx968rK+qy7YMaMfetKSvat8/nw19fn1o0YgeF296zymyZ/W7mSeFERptPJgnPOoYhcN+bdwP033gjt7aSKilA+H13WfW/VqWQSSzLZcz9otxOz22kAspkM8Xh8X3hOJ+VWKz5gRH09/3XzzdIKK4QQYlgbc90/Crq/husWHXL9S6tX8+gTT/DaM8/gcDjoCARIJpP89Z57AHjm+ef58f/7fzz6pz/1+/jLPvxhPn/VVXz86qv7LD/3rLP4/g03YM1m+cZPfsL3v/99fvjDH/bZJpPJ8LnPfY4nn3ySuro6Tj75ZFasWMHUqVP7bPfFL36RL3/5y1x00UUAvPnmmz3rTj/9dB599FGi0SizZ89m+fLluFwu7r//ftavX09LSwvnnHMOW7ZsoWi/IlXXXnstN9xwA+effz6PPfYY1157Lc888wxOp5PvfOc7vPXWW7z11luHPH9HS5JVIUTBpIFGYAuwFdgGbEkkaInFci2BvZLSgyWkVmCszUaoo4PiaJTiRIIL5s1jMrkusF6nk7bycloSCWrHju2bIAJUVjLx7LP3JZCG0We1YRgHLDvU8oFYZxgG77nwwn0xVvQqml5Swq5YjC+NHInP58Pr9ZJmX4GoQDzOdr+fuNVKwm7HVl4O+WTWTCT6VEt0Op048mN2b29o4H2miTccZp7dzunFxcwAeqXeQgghhNhPq99PZXl5z0Xzyoq3N9HJGYsW0dDYeMDyd519du6XZJJTTz2VBx988IBtVq9ezYQJExg3bhwAl1xyCQ8//PAByWprayt1dXU992fMmHHAvjweD/PmzWP79u1s376dSy65BIfDwdixY5kwYQKrV69m4cKFfR6jlCIUCgEQDAapra3t2dfixYvZtm3b2zgT74wkq0KIdywKbADWA6ujUTanUhS5XH265UZNs9+ktNThwB0MUh4OUx6L8e65c5lJblxmkduNv64ul8xNntw3mePQCeKRrB8KDhWjy+Wipqam576VXKtxMTDC5WJ0ZSXhcBif243HaiVKrrBUG7A9HCZmtxNzOLD2apHNZjL4/X78WrM9FmNV/qJBPTArf5sOeAbo+QohhBDD0bvOOoub//d/mTR/PueceSYfet/7OHPRoVtj367f/va3fOhDHzpgeXNzM6NGjeq5X1dXxyuvvHLAdl/+8pc5++yzOe2003jXu97F5ZdffkCX4kAgwMsvv8z111/Ps88+y6mnntpnv83NzQfs96c//SnLli3ja1/7GtlslhdffPEonuU7I8mqEOKIbWtr4/nubgIjRtBYXMxOcmM3TdPEHwjkihqFQn2KGjmdTiyxGJWhEJXRKBfNmsU8oMrppM0waMlkqJ0w4W0npCcyr9eL17uvQ683f6t1OplQVkY4HMZjtZKxWgmQGwfsTCaJZ7NklOpz0aCRXGv434GkaWJ0d3OOw8Hy0lLKB+PJCSGEEEOI1+vl1Wee4bmXXuLp557jQ1dcwQ9uuIHLPvKRguz/e7feitVq5dJLLz1gndb6gGX9FS66/PLLWbZsGY8//jgPP/wwv/zlL3njjTcAeO6555gzZw4Wi4XrrruOadOmHfF+77jjDm699Vbe//7388ADD/DJT36Sf//73+/kab5jkqwKIQ5KA7uA1cDT0SgvxeNoh+OQY0yL43FOCgQ4s7aWicAEh4Pw3m67Y8b0SUolIT1yP3v5ZX712mto4Kq5c/nSqady/VNP8fDmzViUotrj4e73vIfafNfhvfZ28z0ZGPfUU/h9PporK3EsWMBucl23IX/Bwe9nj9a8YZrc63Ixz+HgDOA0cq26QgghxImoqKiIJYsXs2TxYmZMncrv77uv32R1d1MT7/7whwG4+vLLufqKKw6539/fdx+PPvkkK599tt9ksa6ujt27d/fcb2pq6umKu7/a2lquuOIKrrjiCqZPn94zlnTvmNV3st/f//73/OxnPwPgAx/4AFdeeeUhn89AkGRVCNFHCniLXIK6mlzXUoBgOo2GPt15nQ4H44HW732P0jVrcCaTWLNZXKNG8abLxZv9H+KolNbX86Wbbx6APQ9db7W18avXXmP1VVdhLyrivHvu4cKJE/n6okV8Jz/m5bZXXuHmVau4c/nyfvfhcrn6jpP1eDDJdeN+A/h3MIi/V3fteCLBmw4HbwJ3ABMjESa0tnJ+cTGj5QKDEEKIE8TmrVuxWCxMHD8egLVvvsnoXl1zextVV8fa5547ov0+/u9/88Of/YxVDz2Eu1cRxt5OPvlktm7dys6dOxk5ciT3338/f/zjHw/c1+OPs3TpUmw2G3v27CEQCDBy5Eg2bdrU735XrFjBRz7yEb7yla/Q0tLC1q1bWbBgwQHb1dbWsmrVKpYsWcJTTz3FxIkTj+i5FZIkq0IINLmiSA+EwzyXTsN+c5dCrjtvCDCCQeq6urhk+nQWA27gxrY2vjZ3bm4c5X4te4V2Y0PDgO17qNrY3s6pdXW4bTYAzhw9mr9u2sS1vcbMRJNJDjej2f4t2Q5gTv52vtb8edUqtlVVsbWmhvSIET3bxU2TJzs7edJu53eRCB9zOrm0pESKMwkhhDjuRaJRvnDttXSHQliLipgwbhx3/fSnR/z4D3/ykzzzwgt0BALUTZvGTdddxyc/9jE+f+21mKbJuR/8IFitnHrqqdx55520tLRw5ZVX8thjj2G1Wvn5z3/OsmXLyGQyXHHFFUybNu2AYzzxxBNcc801OPNFFX/0ox8xYsSIgyar06ZN44Mf/CBTp07FarXyi1/8oqcS8JVXXsnVV1/N/Pnz+dWvfsU111xDOp3G6XRy11139exjzJgxhEIhkskkf/vb33jiiScOKPxUCJKsCnECiwPPAP8ENpkm/q6u3LjTcLhn3KkLmAcscDiod7kIdXZSe9JJB4wx3X8cpSic6dXVfPuppwjEYrhsNh7bto35+QJM3165kv9bt44Sh4OnP/GJd3wMwzD4wLJluZbXmhpsDgcvAM8BL/fq5p2wWnkAWAmcBbwX6P/6shBCCFF4DT+48MCFbW1gtw/I8ebNns2LTzxx0PV7uwcfzH2/+U2/y7e99lrul2QSes2LXltby2OPPdZz/4ILLuCCCy44ZIy33HILt9xyy4GxLVnCkiVL+n3Mt7/9bb797W8fsPzXv/51z++LFy/m1Vdf7ffxDceo8UCSVSFOQNuBx8klqnsnOuk97rQkFmOB38/F9fVMp9cbRXV1nzfUE8Uev7+n++yIAneBfekleOYZWLIE9qsY32NKVRXfWLSIc//wB7x2O7MMA6vFAsD3li7le0uX8v3nnuPnq1dz01lnveNY9m95fXf+9pZpcvu2bbxVW0vQ48HpdJIGnszfTgbOCAQobmxkZD/TBQkhhBBCvBOSrApxgtDAa8Cvo1HW57tz9O7qW+xwMLK1lamNjdSEw7x7+XKOJuW44uGHeXTLFqo9Ht767GcB6IzH+dCDD9LQ3c2Y0lIeuPhiylwu7l23jh/1Koe+zu/ntU9/mtm9uqIeiQwQJjeNSxDY2dlJY2cnnspK7KWlRMnNVdoeDtMWjeLw+bDnx24mgWA8Tjgex+52Y3M6yQKxRIJW04TycjBNRpgmTocDC6CAZCJBOh6n2Omk2OXCDtiAVDRKOhSi2uul2ufDDbiAZHc3ZkcHY8rKCG6p4LKlkErmLgivXHnwhPWTc+fyyblzAfjWypXUFfctefSRGTO48I9/PKpk9WCmV1dzw/TpNLW00GoYPONwsLnX+udNk79Eo9RYLCx9+mk+ftZZkrAKIYQQ4qgNaLKqlCoFfk1u+j4NXKG1fmkgjymEONA64A/AG72mmAkqhWEYTHA4OB842+kkMnYsLQ5HrgDPUSYbl82ezecXLODjf/1rz7IfPP88S8eO5brFi/nB88/zg+ef54fnnsulM2dy6cyZALzp93PR/fcfkKhqoCMapaG7m4c6O8mUl9MGtAO7YjH2JBJkPJ6eBNw0TfyRCNhsuel08vO/mr27OyeTGFbrvuXt7bnlkUhPN+jYfvPExhMJ7A4H2b3HaGsDrWnt1XW6z1Q+XV0Ydvu+5aFQLqZolNi/S0gkrZCBeFJz5T9inDtD05L/m3kAYjEIh1FKMa66msZgkIc2buSlT36SrYEAE/PdsR/ZvJmTKiuP6m92KL1bXZcDG4GHgFfY1yrfUlrKH089lVQ8ztfJJe1CCCGEEO/UQLes/gx4XGt9sVLKTq4WixDiGNkI3EMu8YF9SYUlm2WC388l0SjvmzKlpzCPp4BTyZwxejQN3d19lj28eTPP5MdVfmLWLJb8/vf88Nxz+2xz71tvceFJJ/FqIEDW4yGZL+zUlU4TTKd5w2rl9UgEI5+YmqaJv6PjgCSzd7fm3vOKvt3lTqeTYH5uUpTqKV7Q+3y+02N4Tk1gsXvJJjXKpjHnhni6M4Unk+EtIJNOE0mlwOHglj//mYRp4rBa+cYFF7AH+NI//sHufMGH0aWl3HlhP+N4BsgU4NtAM/B/SvEAkAWyFgvPGAZNwOeBwpdaEEIIcaLRWvc7tYsYuvqby/WdGLBkVSlVDJwBXAagtU6S62knhBhgu4GfRSKszmT6dPf1OhyM2b2buTt24EulWLx8+WEryBaSPxKhxucDYITPhz8S4Y2ODlJeLwmnk27gd2+9xaeWL2d1URGYJl6rlSKrFTOdziWkAIdIAIuiUUY6HIy2Wmlpb8eeTOLMZDi1tJQawMxmeW3dOqzpNHatOeeMM6gFQskkTz33HJZ0GqtSXHjeedSUlGBxOOhwOGhtaaGmthYj36qqgdZEgn88/TQpIFtUxNnnnUcp0JJK8cSaNZgWC2mbjTmLFuEAWoGXGxuJ22wk7HZGnFbJyJWw6Z8J1Oxu3POSoCGTyQCQ7vWcv/KBD+T+lk4nmXSaZ6JR3rNiBRatqfN4GGG3kwRao1EIhQa8KvNeI4FvFhdzjmny/7JZ9pSW4nA42A18Azgf+AT5VmIhhBDibXI6nQQCASoqKiRhHSa01gQCgT4X+N+pgWxZHUeuh97vlFKzgFeBa7TW0QE8phAntCTwJ+C+RILmzs6e7r411dVc6HTyIacTPXEiLR5PQbr6HolUCp57DsqNOFmtWZNIEHU68adSJIEXrdaepHTnnj3YrFZq91Ya1pp0Ok2R1YrVasWqNc5Uitq2NhaXljIesGYyrHvlFVyxGO5slhUXXpgba+vx4B81at+8oiUluX2WlXHmggX7lu/tOltVhXHuufuW9zo3IwyjT2GlovzPUYbBe88/f99jqqpyyysrGbN48b7lZflJXkpKeN+kSX3mOmUh7BkX4qF//ovwC3aibje7tGY60KUUTYkECZuNZP4cQN8kNqsUbdksQfItsek0VoeDkmCQKUVFjHG5OBY1mk+uquJu4DHg9+wr3PVP4Jl4nBWNjZxbWipjWYUQQrwtdXV1NDU10d7efvCNwmEoKjr4+qEsk4FAYLCjKDin00ldXd1R72cgk1UrMBf4gtb6FaXUz4DrgOt7b6SU+hTwKYD6+voBDEeI49trwB3AHiCSH2cJMLmlhSuDQd41Y0ZuwwJ29T2UKPB6C3R3w8qnNcrixOX28O/OTkZWV9MRDOJzuXIb55PSl956i4XTp+NMp3GZJq5UigmGQTXgs1pJ22ysy2b5r/r6fclneTnzzjyz3yRz/+q273T5oRTiGCMMg/f3Snrv+NvfmAngcBDxegmHwzgdDrJWKyGgDdgZixG120nabAcksWmLhYDHwxqleBOwp1L8JxrliUCAsysqBuyN30JuPOup5F6Lq8mN621sb+dHTidrX32Vr8+bJwmrEEKII2az2Rg7duyhN7rjDihAYjQomprgM58Z7CiGrIFMVpuAJq31K/n7D5JLVvvQWt8F3AUwf/78wnRuFuIEsqmtjTtSKTZWVvZ093U6nbiDQc5cv57qWIxZy5cPeBxJct1cG0yTlkyGtN3OjqZcd1m0Qmc1U3wTeHn9ei4qL+elDRuYPW4cvkQCTzLJBLudb2/YwDOXX06tzUY4lcJXWYl3b0IL4PVSUVFxQLLzTpLMoeZgz2H/+WsrgLFOJ9OKiwmHw9hdLkyrlU6g1WJhVzZLymIBpbBarWTSadpjMVq05uvRKOPdbpa6XJxOrvKdZQCeSyXwX8ALwPej0Z5u2k9Om8boSIQvDPO/lRBCCCGOjQFLVrXWe5RSu5VSk7XWm4GlwIaBOp4QJ6LHAwFuCIdJWK3g92MYBuUOB593OJhlGLRmMgPW3dfv9/NGWxuto0bxGrnKsKl0mkh+DOlvH36YLbtbiBDjFm7hLJZw0exZ/O71f3Djhg2MKSvjD+efjy2dxldezpq2NuqLi5mU7zJ7LMZbDmf7J7G1wHS7nYjdTkssRqy4mKDVSmM83mesb0cyyeMuFw+bJo5IhPOtVi4tKaGkwPEpYDHw03Saz0QitHu9oBR/r6ujHriowMcTQgghxPFnoKsBfwG4N18JeAdw+QAfT4gTQhr4P+Buq5WE1dpTXGhGezv/XVeXSzz2G2dZKAngka4uft3ejr+4GEIhPJkMWfqOpbzyvPOotVop6fYRa4AxRpwSXzdXTflIv4noEq+Xl6+8suDxnmi8Xi+Tep3fcCbD6y0tlEciJEwTp9OZq6Ds94PW/FIp/uFwcIHTyXvIFUwqpInV1dwF3AD4S0pwOBz8GjCBDxb4WEIIIYQ4vgxosqq1XgvMH8hjCHGi6QD+l9y0NHunVfHF45yzYQOfPe20greQQa4V9dX2djbU17OmuJgWi4Wgz9eTJO+tXltpsUBXF8WxGN5kkskTJ+IdBYwCcOVv4nBK6+u5saGhYPuLK8XJ9fV8qaSELoeDexobWWmaxOx2lNaETZPHnU4eNk0mBgJ80mZjbr5YVCGMq67ml8DNwPr8sl+bJptbW7nK5RqQiypCCCGEGP4GumVVCFFATwQC3KoUmfwcow6Hg3eVl7Ni+3YmnXbagHT3faGjgx+0tNBYXg7d3Ri95h4tymYZHQhQrDXvAdx2O5GqKsLh8DGbOuV49KWbbx6wfY8AvuhwMObf/2ZrZSVrx42DESN6Wlv9WvNSMslVdjtXlpRgK9Bx3cCNwPeAV/LHelApul5/nW/MmTPsxxwLIYQQovAkWRVimLivq4sfRiK5gkWRCDXV1VzpdPJ+rxc1a1bBj7cDuBd40mYjWF7e04qaSCQ4qaSEDxcXM2HXLibV1XGHw4E7/7j9x1KKoccwDFZceCEtLS18paqKDoeD21ta8OcLIWWU4j7g5ViMFbt2sbi8vCDJpJNcOfhrOjt7jvXcxImsyI+3FkIIIYToTZJVIYY4DfwZuMNiQefvexMJrtq5k/dPmVLw47UBt4XDPJvN4nQ6e1pRldZMaGvjc14vZwGqtBRKSwt+/IGmyVUujgG72ttpamujwjAorawkBfgDAfZ0dFBaVUVxeTlpIAW0d3XR1dlJRXk5FWVlWIDuri66OzqoqahgRHk5NiDU0UG338+Y6mpGV1XhAmzkCg4NJb2rD48Abigq4u7nnmPllCn4S0spslhY29HBWrebUzZs4GYoSHddO/Ati4WPxuN0u1wkbTb+NW4cZzL0zpEQQgghBpckq0IMYRr4LfA39o1PNYJBVrz+OouXLSvosdL549ydSLC7qwu0zh3PMLiorIxFu3Yxu74eo6KioMcthCzQCbTnb1u6u2kMhSgqK0P7fISAPfE4XfE4uN1Y9xYZisfB64VYDMM0AfBHo+B0QiSCke9ubZom/nAYrFYIhzHcuXZkfzgMdnvPtgD+WCy3z3gcwzRxOBxkEgmIxah2OqlxuykBVChEtrOT8SUlTCorowqoIpfMDQbDMLhsyRLOaWlhg8/H/+WLZWnglXHjuCOR4EYKk1COMgxuKiriv202nE4nbzkcvAScVoB9i8NTSn0ZuJLcW8ybwOVa68TgRiWEEEIcSJJVIYaoDPA/4TBP5ls4HQ4HZ5eX88HOTsYtW1bQbpPPdXTwc63pKi4mYZo9Sco4v5+rwmEunDYNpk8/6OMLXRCoPxoIxuNEKiq4t6uLWFkZzcD2WIymZBKby7UvsQyFclWJu7ow7Ln0z9/enlsWiWAYBon8FDu9uzfnDtR3mcPhOOJtD7bM39YGWtMcidCS/7v5u7tBqZ7kd2/s9miUCXY7k71evF1d2Px+5peXM6G6ekDPL+xrbZ0HzGtr49quLnaXlYFSPFtWxrd37+aLdntBWliXVFbyQeBfgGma/E80ym3pNOOOwfM8kSmlRgJfBKZqreNKqQeAS4C7BzUwIYQQoh+SrAoxBGlyieqDvVo4l5eVcaPPh2327IIdJw38v2CQu2OxXCIXj1NeVkZlJMKZGzYwMhRi/vLlh91PoQsCJYE1HR281t1NvLqazuJiNiUS7Mgnff/p3brZ0ZGLPRQ64iQ0E49T7XCg4nGKMhmsWjOxshIrsKOzE0t+2bTycsqBmFJsaGpCaw0WC9PKynJNUq2tZIBsURHjKypIARuDQVIWCymbjSq7Pdeae6RJbX46md1K8YbWdIbD4HJBIsG0eJwZLheV3d2UtrZyWnk5IwdwnOfU6mru1JofZDKs9/no7OriH1rTuG0bP4GCXCy5HHg2HqcxfyHh+uZmbtFaxq8OPCvgUkqlyNW+ahnkeIQQQoh+SbIqxBD0R+DJbLYnoZna1MR7AwFsc+YU7Bht5KbAWQ09x7Gl0yxvb+eSykraJkygtrZ2wBMHDbze3s4rwSDd1dX4i4vZkkjQHIuBzdZTgbh3i29/SZ/bNKkOBhntctHU2Ig7kcCTSnHOKafg05qXX3gBWzKJM5vlogsvxCgtxV9WRktLS+557u3GW1u7b5nPlztGcTH+CRP2LS8uzm07duy+ZfmiUn7DyC2rqsJwufCHQvxt5UriRUWYTicLzjmHoFKs3LyZqN1O1OXCqKykMRJBZbNk8+ODo/kLCHufb1MySYfFkms1druxxmKc0t7OuHCYd/l8zCzgVDN71RkGPwO+1tzMU/lY3qyr499dXVxagNeFB7iwsZHNTica2FBby7Y9eyRZHUBa62al1I+BRiAOPKG1fmKQwxJCCCH6JcmqEEPM48D97BujOrWpiXM2bmTUEbRwHql/BgL8zGIh63b3HGd0eztnb9rER845B8MwBqzVTgP/6ejghVCI9qoqNlutbIvHD5uYOp1O4pkM5eEwZfE4S0tKqMlm2fDyy3gjERzA8uXLMXw+/JMm7Usi82NsJyxdum9Z/rn1LjK0V3/L3s62+y8zDIP35Cvv9o5n4axZfRJlfyTCIytX0u1wEPT5MObN48WWFgIeDx3FxTidzj6tximLhRdiMV4oKuIP8TizAwFmBoNc5PUWtMtwEXCt1UpjSwvbqqtBKR4dPZr3k6vue7TOKy3l3vZ2/D4fWYuFpvr6AuxVHIxSqgy4CBgLdAN/Vkp9VGt9z37bfQr4FEC9/E2EEEIMEklWhRhCHg8E+L7ViiM/RvXc8nI+FAhQv3x5wVqbft3dzf+LRnNdZ8Nhaqur+XJxMTMDAUbmE9VC2+3383R3N001Nay12dgci0FREXR14fV4+k1MVTxOZTBIVTTKe2bNYq7DQdbjoTUYpHbsWIx8JeKTlyw5qiT0WDjSpHbF8uV9nssHbTZaWlqodrkwHQ7WxGL8raWFptJSgm53bhojAK1ZG4mwtqiIP0ajXLhnD4vb25lVXV2Q51xjGPxAKT7yox9h27OHXcAH43GmFBXhcrmOat+l9fVc+pWv8BulcDqdrHM4+NBRRywO4Rxgp9a6HUAp9RC52lZ9klWt9V3AXQDz58/X++9ECCGEOBYkWRViiHitvZ3/ikRIWSygFKdUVPBdrxdngbr+anIVVP5PqZ7k0BePc9WOHbxv6lQoYBfjvd5ob+ePXV08Y7GQcDqhu/uA5BTAmU5T09lJTSjExbNnc4rDQbSsjJZ4nNoxY/ZVIDaMA4r7DGYSWmj9JbC9748rK+PMceNoaWkhWlTEX7dvZ3tVFbsqK8moXJ3elMXCw6bJ371e5q9fzzWdnUwvwBRHE6urmdvezuLRo4nkL3bMaWxk+qhRRzWv7o0NDXy8tJS/sK80bQAYejWnjxuNwKlKKTe5bsBLgTWDG5IQQgjRP0lWhRgCksAPySUaGiiOx7l0+3acM2cWZP8Z4AehEP/SmqJ8Mjyys5Pl69axqMBT4ECuWsud4TCPxGJkHY6e5b2T01EdHdR1d/PxuXOp9XppDYWonT69JzH1HkdJaCH1TmAnlpTQ0tJCNpHg3p07eWPUKDp8PjSQsVh4Zfx4rvf7uXnjRmYUIGEdAfgSCSL5v2OHx0M4HD6qZBWgHJgJrDZNEokEf9eay4bhHL7Dgdb6FaXUg8Br5GqsvU6+BVUIIYQYaiRZFWII+BXQVVwM8TjWTIZ3r13LSUuWFGTfGvhOOMxfu7tzXX+VYonTyaXA6AJPgdMF3B4K8WQ2SyqToXffweJ4nEl+P5dPm8YEr5c9oRC1s2dj5AsDFWI6lBNN78S1rqyM5pYWGjMZbo9E2FNSAsB2w+DWHTv4OjDlKBNWBUwqKqI1kwGtCfh8WFUhZl6FmV1d/D0cBq35c1cX59fUyMWKAaK1vgG4YbDjEEIIIQ5HklUhBtkjnZ38qagIp9OZG7e4ezcfWLKkYF/U7wae6lVZeEpzMx9zOplfwG6/mtx8mXcmEuzslRSTL9w0a/duzq2o4KSTTsKorARy4yBF4exNXOcCEzdu5IcNDawdMwaA18aO5e8vvEB5eflRv64muFyssViIxuPE7Ha27N6Ny+U66tbV0qYmKC5GA11uNy0tLZKsCiGEECc4SVaFGEQb2tr4TiRCsqiIoFK8u6yMz02YwOHaqn763/9Nd2PjYfe/3TTZohRKKSymSWk0SlEwyJ9HjeLRIyyMU1pff8h5VPcA34lGeTOdJpNO9yTF9R0dfDibZWpREbULF0ricQxNmzKF64Avd3XRWlZGVik25afkOdq/gx2oSCaJ5u+HnU5+8sILPLB9OwqYYRj87qKLuP6pp/j7li3Yi4oYX17O7y66iFLnwesHT6+uxpJIkAWiTifl+ZZhIYQQQpy4JFkVYpBo4OfpNMmiIjRQEotxQVcXataswz62u7GRG/OtZgezNRZjZTLJaQBKMcZqZVYoRLHP97ZawW5saDjoun90dnJLJkNHPN7TmloSj3Pmhg2M6erinAJWMRZvz9QpU/jg+vX8LH9/24gRBZlqBsCw2WjMt9Y3p1L8bsMGNn7+87hsNj745z9z/1tvce748Xz/nHOwWix848kn+f5zz/HDc8896D5rDYOZsVhuGiPAn80yukDxCiGEEGJ4GtBkVSnVAITJ1XdJa63nD+TxhBhOXgC2VVSA34/SmnPXr2f84sUF2XcUeFmpnjGj3kSCGVpTW1NTkP1r4BfBIL+KRND5YjtF2Szzdu7kI3Y7ZWPHUrtokSSqg2xGMolFa7JK0e1207x7N0dfZgkqnU5cSpFKpXCUl5MB4uk0tqIiYqkUtT4f7xo/vmf7U+vqeHDjxsPu18hmWZuvNPzQunWMXrBAXkNCCCHECexYtKyepbXuOAbHEWLYCAM/jcdJJJOUl5Vxanc3n168uCBfzLPkEmFsNkgmsadSTNqzh9JeycPR7v924AHItaaSK5607I03qI1EmCatqUPG6NpaSjo76XK7AVjT1MQMv/+o/z5FsRjxVAq0JmOx8IV586i/9VZcNhvvGj++T6IK8Nu1a/nQtGmH3a+ts7OnG3nY4ZBxq0IIIcQJzjLYAQhxIrotFGJrezvB7m6Sra1cZbcX7Ev5fxIJmhMJAHweDwu1Ztr48UddAAdyieqN4TAPBIM9U+CM7ujgkpdfZkltLcslUR1SDMNgtMfTcz9it9PS0nLU+03mq/YChE2TRzZvZuc119Dyla8QTSa5Z926nm2/9+yzWC0WLp0x47D7LSstBaVQgEUpamtrjzpWIYQQQgxfA92yqoEnlFIa+KXWWuZyEye8jcC/tO5pQTpjwwaCo0fDUSZ5Vzz8MI9s2YLd5eL6j34UlCK0cyfff/FFNra3s/qqq5if//J/77p1/OjFF3seu87v57VPf5rZI0YcdP8auCUU4uFe1X7Pczi42GKh/vzzJUkdoirKy1GdnWitsUBBEkC31wv5YlobmpoYV15OVT4pft+UKby4ezcfnTmT369dy6Nbt7Ly4x9HHcEUN97iYgyHg0QiwYL58zHKyo46ViGEEEIMXwOdrC7SWrcopaqBJ5VSm7TWz/beQCn1KeBTAPX19QMcjhCDKwP8OBbLVc1VinFtbUwIBKhduPCo9/3x2bOZPGMGP3vsMSBXsGma3c57PvhBPv3oo322vXTmTC6dOROAN/1+Lrr//kMmqgB3d3fzgGn2jFGd0djIhzwe5hZwChxReJleSWKhutL0nj+3wufj6dZWYqkULquVlTt3Mr+mhse3beOHL7zAqssuw22zve39SrcfIYQQQgxosqq1bsn/bFNK/RVYADy73zZ3AXcBzJ8/Xx+wEyGOI/d0d7MmFAKtsWazXJFOc0qBus56DQO6ugCwaM3Y9nZmjBt32O6/9731Fh+ePv2Q2zwdCPCzSIRs/v6EPXs4a/NmRi5fftRxi4HVtLdSM+AwzYKMAw3FYrkx0cCE6mrOHz2aub/8JVaLhTk1NXxq3jym3X47ZibDuX/4A5ArsnTnYV4v3aEQ/nzL/X82beKc2bOlxV4IIYQ4gQ1YsqqU8gAWrXU4//u7gINP1ijetia/ny1+P2U1NXirqogDcSCR/9na3U1bVxdlZWWUlpYe8Pju7m5CnZ3UlJUxsqwMF+CGnp/htjaCLS2MrqmRL4wFEADu6dX99+Tt2xlVUVGQc9sajfJqKkUqlQJgWip1RIkqwJ/Wr+fhSy456Pok8MN0uidRrenu5uOBAAtlfOqQlwaCDgdEc7OilplmYcaBer2QTILWONJpbj7rLG7Z77W27YtffNu7bYpEev4/bMmkFFgSQgghTnAD2bJqAH/Nj1OyAn/UWj8+gMc7riSB1zs6WN/ZibW6Gl1aSgDoAjqB1nic7aYJJSUQj2OYJg6Ho+fxpmniD4XAYoFQCMPl6n99URGEwxhu94HrEwkoK8MZiTDT52O02001UNXrptvaiDU3M7K2Vr5UHsat4TCxbBaUojwSYW5jI7VHUHTmcDSwWuueZNKSzTIukzmiRPWVpibcNhvTq6sPuu83UilaTRMAVzLJBevWsfBd75K/9zCwrr2djngcDXhNkzNPOaUgf7eMy4XLYiGVn6amEMW7AOKlpdDRgdKaskRCCiwJIYQQJ7gBS1a11juAWQO1/+NFCmgGGoFd+VsjsMs02ROLgcPRb7IZzLdqaEBpTSKR6LM+kUgUbH3CamVzKsWe/WLfm9DaSkqo9Ps52+VidnExY4HRgL2gZ2p4ezwQ4O/5+SNRisvjcc678MKCJA6b4nE68pV5FWDPZCj2+Y7osfcfpgtwA9CRbw0GOOfNN5k7ZowkqsPEi8EgOt9dtyoYJGEtzFt+h2kSz79HRDs6iCh11AmrBtosFrz5Qk2XnHkmxkEuogghhBDixHAs5lkVvYSAN4F1wCuxGA3JJPb9ElGg54vgwZJJp9NJGHAmkzjSaSZXVlJOrguvC0gqxZbGRooyGSxKMXv2bErYV8AkCKxtaCANpG02xpeXYyXXfTgGBGw2tqVSJKxWtMWC0+k84LnsTWiTRUW0lpTwqNY8l1+ngDqgKhymtL2dRcXFnFxZyeHrgR5/OoHblOr5e57U0sJMh6MgCV9XJMILySSpfLJan8ngtNmOKHHIas2fN2zg2csv73d9AlidSqHzrcGzdu1iXFcXkxYtOuq4xbHR4PNBfhqjkZ2dOAtUxM6frwQMudb2cDh81Mnq5rY2duffU5zpNJ4CtdYKIYQQYviSZHWAxYD1wBvkEtSd+eWmaeLv6Mh94QuFMAyjTzLqcjpR8ThlkQhe0+T0khLGAWVAOVDucBB3OtnT2UltbS1Gr7kUASguxj9pEi0tLbn1JSV915eU4D/ppH3r92+Jc7v57u23s2frVmxuN7hcJKDPzZFOY4vFyFhydTvTLhddRUU9u+jIZIjH4wD8H+BzOqm0WinLPw8P9CSvpfX1fOnm429Icxr4TiRCMN+i6k0kOGPLFmqXLSvI/l/LZHKJKnD3P/7BzuZmuhIJ6m65hZuWLKHc5eIL//wn7bEYF/7xj8weMYJ/ffSjADy7axd1xcWMO8j0IC+ZJp2JBKl0Gl88zieUYoaMUx02ssAGm60nWa3t6iJRgJbKBGA6HJBOo7TGa5r4jrAl/1Be7ewElwsNlESjtOTfF8Xxx/vBDxJ54IFDbnPb3//OHf/8J3PHj+cDixYxqbaWqTJjgDjOeL1eIpHIIbe57bbbuOOOO5g7dy4f+MAHmDRpElOnTj1GEQ5vF9x0E3/86lcpPcTFzyXf+hY/vvxy5k+c2Gf52h07aOns5IL58wc6THEY7yhZVUqdpLXeVOhgjhdtwN+6u3neNGkrKcF2iFZJTW6KkfGdnZxaU0M9uS60dQ4HXWVltMTj1E6YgNFPgaRSw6DmEF/mDMM45Je9w61Pd3by83nzDv5EgUgkQkc0Strnw3S76SI3rjaSf46J/BdlyLUGO3qdi6JUiuJ4nNE2G/c0Nh7yOMORBr7t9/NUIoEmNxXHp8Jhzl+2rCBfwgNAi8eTK56jNd+bN49TV6w4oIXrvVOm9Pv4JWPG8PKVV/a7bg/Q0Kv775L166kYO1aSh2FkAxC32VCA2zQZEY0e9RjQ0vp6vtLQwNpMhnQqhSeTYafTiaujAzo63vE+AbpqaiAYRGlNTShE7X5fHMSJ5fbHHuOfN9zA2BEjuOynP2X5ySdLsipOSLfffjv//Oc/GTt2LJdddhnLly+XZPUIaK159PrrsVje2URoa3fuZM3WrZKsDgHvtGX1CUA+NXpJAC8AK4E1e4sXaQ2m2afVtAiYRC4hbX/1Vaq7u3FozfLly9k/DThcMjkUeL3efrv/pYGWbJb1gQAhp5Owy4W113i5TDpNMBajU2sakkmeyWT4Orm5jRaQe3EN5y7DO/x+fhiL8VKvN8l527czq6ysIH9TDbyYTJLOZnE5nVQkk5w6cmRBCt1kgDWQ+3spRXE8ztiuLmql+++w8kQoRGd3NxoY19bGotNOO+rX3pduvpnvh0K8kJ9eZkZDA1856aSCvKZ3l5RgOJ0kEgk+4PNhlJcf9T7F0Pejhx7igeefx0yleO/Chdz0kY9w9e23s8PvZ8X3vsclp5/OI6tXs+qtt/juAw/wl+uuY3xNzWCHLUTB/ehHP+KBBx7ANE3e+973ctNNN3H11VezY8cOVqxYwSWXXMIjjzzCqlWr+O53v8tf/vIXxo8fP9hhDykNfj/n33QTZ82YwUubNrF2507a77mHyuJivnP//dy7ahWjKiupLC5m3oQJfO297wXgzy+8wGfvvJPuaJTffOELnDJpEv99773Ek0me37iRb158MR86/fRBfnYnroMmq0qp2w62CigdkGiGGU2ua+9K4EXAzC/fv3hRVTDIOdXVzASmkhtTSkkJ/kWL9nXDHeJJ6dtlBerdbsoNg3A4jM9uJ2O10gb4gV2pVE+rHVqTyWTYBGwCfmWauCMRFtlsnFNczHTANlhP5G3QwOvt7TzY2spKl4u4fV+JqWm7d3PK9u3UrlhRkGNtSSYZkZ8/0wIssNl6CtMcrY1AVzpNOp2m2OFgSlFR7mLKcfYaPZ5lgKd6jSsd19ZGogCvjyzwfH6/Gqhva6OluPioXxtJ4M1EgoRp4nQ6OX2/Mfzi+PTE66+ztaWF1T/5CVprVnz3uzz71lvc+dnP8vhrr/H0975HZXExW1taWH7yyVwsF8zEceqJJ55g69atrF69Ove/sGIFzz77LHfeeSePP/44Tz/9NJWVlWzdupXly5dz8cUXD3bIQ9bm5mZ+98UvcvtnPsOYfO+xNVu38peXXuL1n/6UdCbD3C9/mXkTJvQ8Jp3JsPonP+GxNWu46f77+fd3vsPNl17Kmq1b+fnVVw/WUxF5h2pZvRz4KvtysN4+PDDhDA9x4A/d3TyayZDweg8ojuRyOikNBJjU3MzYzk4uPu+8A1pNYXi0nO7viocf5tEtW6j2eHjrs58F4PqnnuLhzZuxKEW1x8Pd73kPtT4f965bx49efLHnsev8fl779KdZPGIEszMZ1jY10e1y0e31UpQf62qaJn6/H7Rmp1I86XBQ4nAwKRxm1J49LCkp4aQhUCFUAx3Aq4EAr4bDdFVWsqOoiO3xOHq/8cEzGhs5Y9MmTl+8uCB/743kxj6foTXJ1iLcW1K0jo5jzD76ZCQMvJFOE8l3LR4RCFDicg271+mJbg0QzVcB9pgm9d3dBZkGZhMQy+/XlUxSGwoVZL+rAgGa8685SyxGorycEnnNHfeeeP11nli7ljlf+hIAkXicrS0tnHGICuVCHI+eeOIJnnjiCebMmQPkhlht3bqVM844Y5AjG35GV1Vx6kkn9Vn2/IYNXHTKKbjy39ffvWBBn/XvW7gQgHnjx9Pg9x+bQMURO1Sy+h/gLa31i/uvUErdOGARDWFJ4B/APfE42/Z2841Ge7r5jgKWAmc5HKRGjqRFKWoXLDiuvuhfNns2n1+wgI//9a89y76+aBHfOftsAG575RVuXrWKO5cv59KZM7l05kwA3vT7uej++5k9YgSQ6z48e8yYXKurx8OGeJxzgb91dNCVSmFarT1VkAEe7eoCu507EgnmxGLMSKcxWls5payMiQOUvGpy1Zv3kGsN3tTdzZZIhEhZGQGPh6Bp4o9GQSno7MTr8aD3thYD3kSCxZs38+6yMiatWFGQ10EEuDkeJ5vNkmq10v0XD90ZePRNqKiAUaPe+b41uSQnmW8585gmVd3dxI46anGsPRSJ0NnV1VN9evHChQV5/f0z37U48qodntB4z1xakP2ujMX2tda2t9OSSBxX75uif1prvnnxxXz6vPMGOxQhBpXWmm9+85t8+tOfHuxQhj1PP3VidD/b9ebIX4QtKioinc0eZmtxrB0qWb2Y3FDMA2itxw5MOENTmtwg3T+Rm4ak9xynrmSSk/1+LquvZwK9xlkOw1bTI3HG6NE0dHf3WVbcq2U5mkz2O9b0vn7m8+w93tXe0cFZwFSrlYdXraKppIRdhkGmqorG/bpVb43HeT0aBacTEglOiscZm8ngCgSYUFxMRTaLuWcPo6urqa+qIuT309railFTQ6Vh0NrWxi6/H19NDc7KSnZ3drKzqwtLZSXpkhI6gd2xGM2miXK7cTgcuRbfvRcoAgEMq/WA7t4AznSakYEA4/1+xu/Zw5LFi5lykAJHb1cS+O9IhA2dnSSrq7lzZRPxjAONQmXgtddhZuad77/RNFmvFEopkqbJ6PZ2Hk+lmHrqqQWJXxwbrcDLmUxPF+Cpzc0k9q8G/g6kgJXpNNE1NnZeakASLr8bxoyB/EXpdyQLbK+shPZ2lNZMaG+ndvLko45XDH3L5s7l+nvv5dIzz8TrctEcCGArKqJ6v4KCPpeLcL6yvBDHo2XLlnH99ddz6aWX4vV6aW5uxmazUb3fxXifz0c4HB6kKIevxVOn8ulf/IJvXnwx6UyGf6xZw1XvetchHyPvO0PHQZNVrXXnsQxkKGrx+3k4HOa5kSMJu1w9y51OJzqRYP727UzZs4eLLryw326+J5Jvr1zJ/61bR4nDwdOf+MQB6/+0fj0PX3LJYfdjGAYXXXhhz1jeareb19vb+dW2bewqL2fP3mlWeiWJTbEYm6LR3PK9b+JeL8TjlIfDdJomlJWBaebuJxJQXAyxWO5+JAJWKwSDGPkrcj3TCoXDGIZxQGKaSCSotNvxBINUdXczIhzmowsWUO31srWlBUpLmVTAVvU08ENgTT4JsX31q8wauYs/37CYdNqC3Q5f/8U7Txp2tLXx0WCQhN0OSvEem4337NlzXI6nPt79XyhEOp0GpRjd3k55IlGQrrqvkKsuHH1ZoZMKsop0WvPMM0eXrG4GghYLXo8HTybDVQXqLi+GvnfNmcPG3btZeO21AHidTu75ylcOSFYvOf10rvrFL7jt73/nQSmwJI5D73rXu9i4cSML82+mXq+Xe+6554Bk9ZJLLuGqq67itttu48EHH5QCS0fo5IkTWbFgAbOuuYbRVVXMnzCBErf7kI85a8YMfvDgg8y+5hopsDTIDlVgaT7wI6AZ+CbwW3KFWrcAn9Jav35MIhwkL3V08K3OTjrdbmhv7+nqWw58yOFgVmkpbTU11M6bJ1+sgO8tXcr3li7l+889x89Xr+ams87qWfdKUxNum43pR9hdd/+xvHOrqrhx+nRaWlqocLnYDPxx1y5aSkroKC7ObZRPJOnVDVdpTbRX98Ijud8z1U5+mSOVoiIYZIzbTWtjI75olIpYjEsXL2ZCSQlthkFLJkPt5MkYVVUAjCjw6yEL3BQOsyqbpchiAaVYuHUrCyobuOQv01m3rpwlS955wqCBW9NponY7mtw0J8u6unrGzojhY1tbGw9Eo6Tzr5P3KcUFBSqOtbdrsftUG0W2LKQt2O2KJUuObr9/D4Xw56sLj2luxiJfvvpQSn0AeFxrHVZK/RcwF/iu1vq1QQ7tHes9x+o1K1ZwTT+F5xp+/eue3xdNncqGX/zimMQmxLHUe47Va665hmuuueaAbRoaGnp+X7RoERs2bDgWoQ1LYwyDt37+8577vd9Hvvbe93LjRz5CzDQ545vf5KvveQ8Az/zP//RsU1lc3POYcp+P/9xyy7EJXBzSoboB3w7cQK7y74vAl7XW5yqllubXHcW19KErCzwE/MJqpdPt7klirNEon3Q4uACwAxgGIwchSd3j97N1zx6ctbUUVVXRRa5r8q5QiJZwGHtJCVavlzi5QlBd8TiheBy3y4WzV+twIh7HjMUoc7mocLtxk6tSnAmHSXZ1Ma64GD+5IkJ71x3JVDIfmTGDC//4xz7J6v39dAF+u3onsPXAzMmTaWlpwXC7aclm+dP69XQ7HETcbkJOJwmbjbTVSklpKS2xGFprioBqp5OOcBh7KoUjk2GC5/+zd95xclV1/3+fKTszO7O9zGY3vW96hxASQigJJDRFqoqgNEXBRxTwJzyA8vg8iogooCiCChYEQXonIDUEEkL6JptN2+xsmd7utPP7485ONptkU/ZuSXLer9e8dm6Zc75z987M/dxvc9Lc3IwtkaAgkeCUKVMozmRY8eGH5MdiONJpzlqyBLfLhWf06N3Vm7PCu6eLZAWAH4fDvObz6UJcCC62WFhYWkr1hAm43aUsXty9OV4CNpSVgceDkJIF69Yx4rjjjDBf0cs8HouRMpmQQEUwyGQhjGkrw26vvmt6gmt/8Cr4JnPJJdXd8qomgDey40pg5K5dNKqCXp25VUr5TyHEicBC4G7gQUB9SBUKheIguer++1m7fTvxRILLFixgmroxesTQlVi1SilfAhBC/J+U8kkAKeUbQoi7e8W6XqYV+AWwGrA6HBAMYk2lmNnQwM3jxzO0F21p8nhY29xMqrqaSFkZW4H1kQjLo1GSxcUQi+HWtN35lFnPBF4vbqt19/qWFn19OJzzDndcv7VDgShN0/C0i6JgEGc6zatZezKpFJZEgnKLhSR6/loYcAKb2toYVVYGwLMbNjC2vDz3PjJS8s+1a3nn8ssNPT4dRWI1MGj69JyQBPTnFRW4i4rwxOO7RWbn5fJyPOm0vjxyJO5smPHk+fP3aivU29WbV6FflTZ0uJifvHUrp7tchnk9G4A/ADabDbfbzUyPh+8cd5wSC0cgXuBjtxuamxFSMnPLFmo6VTw8XJ5GT38ICMHQ5mamDGlkybem0d3T5H1A5udDKERxJMIgg6oWH2W0Z6IvBh6UUv77WC1yqFAoFIfLX2+8sa9NUBwmXYnVuBDidKAIkEKIc6WUzwghTmL3j+dRw7vAb4Bs5iM2m40Tyso4r76eyePH9/jFuwQagc+AJ16P8MbLFmwnlOMsiuDOtscJpFIks16T9pBVm822z3xKI9an0/q/Od2hlckv/v1v6nbuJByLMfieezh/3jw+37iRZp8Pm8nE8OJiftfB1ffO1q0MLCxkeHuuaQ/RWUh2fn4oy/tb11vEgT8EAvwTsNntOZEwo76eEzZvpmbJEkPmiQC3R6O0JpPY7XbG2Gz89+DB5B3wlYr+yD+BhBC4nE4GxOPcYFDOtBd4OdsDtbSkhK9EIsw1KLT46UiEeCpFaUkJZ7RHMagbJZ3ZKYT4HXAq8H9CCBtg6mObFAqFQqHoFboSq9cAP0OPjF0IXCuEeBQ9h/Wqnjetd0gB/xcM8oqU2O12bDYbArgIuNDpxDxxYo/NnQRe8Xp5MxZjR2kpMYcD3wfwwdn5ZLR8xP2S4Y97iJ+ii8l20WJLJnEmEkwpK2MgYAY21dVh0zRsmQynnnACNUA4keA/776LSKcxCcHChQupBJo1jVfeeYeUlKTz8jjh1FNxAjvSaZauWUPUaiXicOAVglKgLZnM5YJeccYZ+nGy23MidurIkZC9SM6zWFgP7IrHcYZCTC8v58NsU2ZF18SBF4G/xmLUBQK5sN9RFRV83+mkvKiIaoMu5mPAjZEIK9raQEqimQyXu1zkZfNuFUcWO4Bn4nE8zc0gJbUrVyIMquL8l0CAndnzsSoY5MTKSkPOwY9bWlgai+m9VYGznc5ceL1iDy4AFgF3Syn9QogBwPf72CaFQqFQKHqFrqoBf4YuUtu5Pvs4akgC/y8c5pVsCG1ACMZXVHCrw4ExzUb2RgKbgDeAV2MxNofDuijJFnFqW2ojkwAyApkE09tw5qmCCcCQrGANt7Xp4anZti8UFeGZOHF32Go2JJeKCgadeupeeZYllZUUn376HqGwAFNKS5nZIZz2QauVRUA4nWb9li3ELBZidjsFgwYRAxo7iFikJJVKYbZYaEyl2KhpYLViTSQYpWkMt9moAqw9dFyPZOo9Hp6KRvmwqoqEw7FHa6SBbW1c5/czf9IkvZGqAWjAj4E12X6qEpi/Zg2ipgaUWD0i+QMQ0TSQkmqvl0HNzXpOdzdFpRd4VsrceTK1vp5dqZQhRcT+nrVXAsM8HmJWKyixuhdSyqgQ4t+AWwgxOLt6fV/apFAoFApFb9GVZ3W/CCGmHWwlQiGEGVgO7JRSGhO/aAAJ4H/Y3Y9QAmMaG7nO56N28uQeme8fPh/PpVL4Cwv1sN4OokRIiYhGmTvfRn2eIJ2QWCySX55uY3F7xVvQL+b2cUG3v7BVI9a7XC7GjhpFKBSioKAAV7a9SzidZvW2bYRsNoL5+ZicTmKgt83IitikyUS9lOwEZCpFYSzGEIuFEQ4HzoM+ekcffvRWIK+Fw7wZi5E2mXI3LOx2O2lNY/rmzUxsbKTWoLBf0G/Q/A/wObtzEE9au5Zaj4fqmTMNm0fRe3wMvK9ppFMpBDB3wwbMJpMhuZ8PB4PE02kQgopgkJGtrVQb4LFtBVYWFYFX75A2fetWqufN6/a4RyNCiG+jFzv0oEc6gX7fc1KfGaVQKBQKRS9xWGIVuBa48iD3vR5YBxQeaMfeot2z9Bm7L9hnbN7MCfX1jDBQGIAeZvw68GgsxrpQSBdxsVhOlGQ0jTE7dzKitZXL581jwGy4/A1YulQwf75g9uxSQ+05XFwuF652T26HdROGD98tYq1WYkCDlKwJhfDn55O0WLBYLLmQ4aCU7Mhk+MxqpcxioQYoiUZpa2vD4/EctflqcXSP+od+P//RNJqKi8mz2Qik06SFyN2wyA+HubasjAlFRTRXVVE9bZqhvVpvC4d5L53Ohbx/p7CQaW431VOnHrXH/mhGA+6NxXIF0ybs2MHcmhpGjx7d7f/n6uZm/haNkhYChODCZNKwnNK/BAK0BgJIoMbn4wsTJqjzb/9cD4yRUrYZNaAQohjdIT8BXfheIaX8wKjxFQqFQqEwisMSq1LKgxKqQoiB6BUM7wL+63DmMpqtHg93SMmOkhJsNhs2m41ri4qYVVxMjYHFPTLA014vj2cyhAsKiHfwolpTKSa1tPDVgQOpLCpiVyRC9bhxublnzz78npm9TWcR6wBqHQ4GlZQQCoVIORz4LBY2RiKEO4UM+y0W2lIpwskkH1itfGvbNr6Yl8fJJSVU9c3bMYQ4sLK1lU/8fvyVlTQVFrIViGsanmBQv2GRFebtN0sqgkEmb9/O96ZNowYMb43UAtweifCu15sLeb+6qIivFxeD6qd6xPJ3YHv2u8WWTDKrrg7X5MmGfI/9PpnM3UgZ4PMxAwwZ1wc8nw0tBpi2ZQvxoUO7Pe5RzHb0LlZG8iv03q3nCyHy0DuUKRQKhULR7+hSrAohBDALqGF3wdplUrarjgNyL/ADoKCLOa4iW7Bp8ODB+9vNEBo9Hr65axc7SkpyYuEbNhsXFBUZesHeAvw4EuHt9nzUaJTSkhLyk0mmbd7MxF27OO+MM3ADuN2G5H/1NzqK2EHAcClZvW0bvvx8/E4nmey29pDhtMlEXWUlD5pM/BUojMWoaWtjqtPJjJIShtK/8l0l+kX36tZW1vp8xCorCRYVsQ3Yrml4olGwWsHvx529KdK52vJAn49zqqoYYbeTbGsz1IvakQ/RP4iNHXJUp27ZwvGFhUqoHsE0AH+Lx0mnUiAEczZuxJVOGxL+uxpYV16e6717Yl0dNXPndntc0KsWm7OtwSqCQYZ5vVSfcIIhYx+l1ANLhRAvoDvTAZBSHla3eiFEITAP+Fp2nAR6popCoVAoFP2O/YrVbNuaB4A69ArAAAOBkUKIb0opX93fa7OvXwI0Syk/EULM399+UsqHgIcAZsyYcbAi+LB4JBZjR0lJTiycvnMnFwwfbugc7S1wOgoDRyLB4pYWvlRQgLeykuopU46IkLfiwYO5vaHBsPFiVivRQID8ZJI8TaMN2JVIsCMeJz5wIHlCYLfb0TSN1S0trJaSV0Ih3Pn55NtsDAEqg0GcLS2MLilhbGkpFYALEIZZqQvRKHpxGS/QBtT7/dSHQiRKSgi7XDQD4XZRmpcHgQDubGjtvloD2W02RlqtxBobqfJ6Gd7WxgULF+o3LPaTh9xdEsAjwPPZZbvdTgiYVVfHzK1bDWuBo+h9UsBd0Si7WltBSmp8Ps4rKGDM9Ond/m7JAL+KRoknk5SWlDA5GOSquXMN+c5qQa9a3N4G5/JYjNNUu5oDsS37yMs+ustw9H/FI0KIycAnwPVSykjXL1MoFAqFovfpyrP6K+BUKWVDx5VCiGHoHTYOVDB3DnC2EOJMwA4UCiEek1J+uRv2HjargHcGDMh5Co6rr+cr48YZNn4c+HkoxGuZDPZsb8wgMH3LFmY0NPDFM87A7XYz5Ai6KLvhzjt7ZZ4mj4dPWltpLSxkq83Gf3y+ffaBXadpLPX7wWKBcBi306m39AGc0SjmYJAKl4tKlws7ekhywu8n6PNRVFJCYXExafSLcV8gQEsgQF5JCaKggAgQBlpjMVricUz5+dhsNgC0juG7Xi9uq7XLfrX5NhumaJTSUAh3KMSFU6ZwHODIz8czfDiNdjvVM2b06AX6TvS+U/Ud1g202bjV6cRVVkb1xIlKIBzBPAFsyFbjNmUyzF+zhoIOqQTd4a8+H8uy+fWWTIYrDWwp87tgkJ3Z6usDAgFO7cN+xkcKUso7AIQQBfqiDHdzSAswDfi2lPIjIcSvgJuBWzvu1JtRTwqFQqFQ7I+uxKoFvX1fZ3ZyEBGZUspbgFsAsp7VG/tKqAaAu4E8mw23281gn487DLqwA71n5fcjkZzIyrXAcTpxFRVRnRWqin1T5XazuMPx2ZlI8PDy5TQWFtJaXIyjogI/7FccBjSNjVkPE4lETkzmRKbJBMEgbodj9/r2PqY+H+68vN3rs4VqCIVwu91ditLyvDzsoRAF0ShlkQhLJk9mMlBtt+MtLaUxHqd6woTdrYTYfxVmo4gDLwF/jMcJaFqukNJs4NtAQXk5ZFsVKY5MNgN/6RD+O3vTJsricUPCf9uAP0PufJ9WX0+itNQQz/9m4LUObXCOq6tjVzp9VKZBGIkQYgLwF6A0u9wKfFVKueYwh9wB7JBSfpRdfhJdrO5Bb0Y9KRQKhUKxP7oSq38EPhZC/B29wAPo6YcXAQ/3tGFGIYEfh8M0ZCugVtps/KyqCqNq7EbQewqs6hD2OzbbAueEyZN7XRikgI3NzTQ0N1NUVYWzvJxGr5em1lbKy8spLS3F6/XibW1lYFkZA8vKiLS0ENy1i7FuNwP6wYVjjdvN1SeeuLsPbH4+EWBZKsWTdXX4HA7CDgelFRWEgcB+xOT+RObBrLek07hCIcbYbFhNJrZv3Up+PE5RPM65s2czAch3OPBUVOh2jhuHu3T3WdXTorQzceAF4GmgWdPwNDeDlISl5L+Kiri0pMTQUGlF3xAH7oxGaczenBkQCHCh3c5Yg0JpfxEKEclkQAhKIhFmbN1K9YQJ3R5Xoqsem90OQjCsuZnBfr8hAvsY4CHgv6SUb0Hu5u/vgcNK9JVSNgkhtgshxkgpNwCnAGsNslWhUCgUCkPZr1iVUv5UCPEMcA4wGz0tcAdwqZTykH7YpJRLgaWHbWU3+IfPx2vZkLaAENzodFLawdPVHcLAjZEIa1MpzCYTCMHc9euZtn274S1wOrLd4+HjtjYSAwYQKilhfTjMjliMpMtF2GTCE49DQYFe2CkUwhsOg80G4TClVuvu5UiE0rw8vLEYFBVhisepjcUoy2Sw+3xMcjoZlE6Tt3MnI6qqelV8dRZ7TuDksjLGTZy4h4iVQL2m8cRHHxEzm0nm5TFjzhzswC4p+XDLFlJCYAamTZlCKRCUkpWbNiHSaezpNAuOO47BQDyZ5N133yUvkcCeyehtOgAKCvCMGbN73oqK/drZ28TQc1KfBkLZde2iuzgSYeGqVYwfMwZRUtJnNiqM40FgSzb815JOc8rnn1NoUJTI814vL7QXhROCK6JRFi1ebMjY7wIrNI14PE5FSQnfDAaZonJVDxZnu1AF/fdUCNHdNtXfBh7PVgKuBy7v5ngKhUKhUPQIB2pdY0dvD/lvKeW6XrDHUBLAXzOZ3SFtW7ZQUVgIBojVDHBrOMwH2VYgCME1QnB8RQXVBrWO6MgO4AW/n3eDQdZkMqSdTgiFKLVY8GbDj4nFcDmde3gNI9HoQS9ngK3RKGsiEZCSV0NZ+VNcTFlbG2c6HNSmUhRt386oXhav7XQWhwIYUVnJFSedtFtMtns4i4s5q7Z29/qiotx6z4QJe+9fXs6QU0/dvb7DPH0tSjsTQRep/2a3SG2nJi+PaevXM2b7dvKEUN6ro4Q3gZc0LRf+O3/tWkoNCv8NoFfTa/8uGLdjB5McDkPO+Rhwf4desNO2bmXKmDH96vPUz6kXQtyKHgoM8GVgS3cGlFKuBGZ00y6FQqFQKHqcrqoB34b+o/gJ8DMhxE+llL/vNcsM4BUg7nJBJIJT0zi+vp7qM880ZOwngU/S6dzF3clr1nB8VRVTDWwFkgKe9vl4Nplkh8OBNxhEZoUx7Ft8AjgTCfKSSfIyGYY5nTS3tmJKpxFCMGTIELY2N5MCUlYr5YMG0RCNErdYiGULCrWP194HEaDN6eTpZJK/RCJQXExVczNftNk4vbiYIRhbjfdw2J+YNGp9fyAFrAE+AF6Ox/F2yEkFqAQuAE5xOGibMoXGysq9RLfiyGQn8Mt4PBfePXbXLs4tKmL0zJnd/v9K4GehEIHsd4srHmduXR3VixYZYvtfgMZsL1h7IsH0zZtpLChQ5+XBcwVwB/Av9K/ad1CeUIVCoVAcI3TlWb0QmCKljAohyoCX0fNkjgg09IqZtmxRpTN37OC8M8805ALpP62tPGCxYDabQQhmbN7MpMZGqqdN6/bY7Tzv9fKQprE1G/JHLEbHChclkQiV4TCzq6tpXbUKVySCK5nkS6efjqmwcLd3sLwcTzq9e7myEo+U+vKAAbjLyvCkUjQ2NlJeWIg3k+Ffn35Ka34+bYWFtBYU0OpyIU0mfeKskG0qLOQxIXgOKIjFGN7SwslOJyeVlR3QXa84eDTgU3SB+jF66LnWISc1IAQTy8u5LD+fk9n9ge7PoltxaCTQKzsHNC0X3n3S2rW4pk415H/8b6+X5zuG/0YinLVokSFj16FHANjtdgLZNAlHJqO8/YeAlNIHfKev7VAoFAqFoi/oSlfEpZRRACllmxDC1Es2GcKLgCebIzUgL49vjhhhSIO6bR4PtwQChGw2Xag6nVxbXMwgg/KvYsAdHg8vxeN7iFNzJsOwlhaGezwM8vuZNnQoo0ePxu1247Fa9wpd7SqEtavlQUDVCSfkxgPYsmsXoUGDWGex8HwwiKewEDr0RN3W0sIaKXkuEmGI08kJdjuz0GPMCrt9RI49QujC9AN0oZrotL09J7UwGmVmfT0XV1cz00CPvqJ/8atgkBVSYjaZMEvJwlWrsElpiOBrBh4UIncTavyOHUw3KPw3DfwsGsWfTGK32zmltJRLBg6kZtYsdSPlIBBC3CulvEEI8Rzs8XMAgJTy7D4wS6FQKBSKXqUrsTpCCPFs9rnotNyvfygl8LcOOVJT16/HN2WKIRdIT0QihGw2JGBPJLg0EGCGQUIhAHwvGuXjDkLVlkoxdcsWJjc2smDmTOJWK9WdLvaM9qLtS8wCnAZcWFlJXVMTnkGD2GSz8Uannqh+TeM9u533gISmUeX3c7zdzklFRYzmwEnSxxoS8AAbgQ3AikiEtckkedk2O50pB04SgvAnnzCgrQ2LycTgGSr17GjlKa+Xxzp4Pa81mzluzBhDwrvT6C29ZH4+hEIURaPM3biR6jPOMMT2P/j9LMv2J45kMlzucjFR3VQ5FNpzVO/uUysUCoVCoehDutIO53RaPmJ+MNcCTR1ypGq3b6exsrLbF3cx4P0BA6ClhehyKwXPacTOr4GJ3bc5BHw3GmV1KJQTqmMbG5m3fj2TR45k9MKF/cIb0VnIfjmR4KFPP6W+vJyGykrsdjuQDVX1eGiSkpWaxtN2O0U2GxOBydlHf8h17U0k0Ap82tbGimCQtooKGl0ugtntmqbhaWvThUkwmOvzOgi9HPfxwEhAFBbimTNnn4WgFEcPG4D7TabczaCRTU3MsloNy4v/J7AyG31SVlLCdeEwcwzqCV0P/ANyts/atIlUeTl0qKSt6Bop5SfZp1OklL/quE0IcT3wdu9bpVAoFApF77Lf0F4p5dsdH8D7QBBYl13ut7yHniOFEIxobsZqUEXU54CwyYRcW8SWS6v46C+j+NKXSvngg+6N294L9pPWVuLxOAJYsHo1p61ezSnHH8/cuXP7rSCpcbv55gkn8F8uF/8sLuYPNhuXAQP8/j0KNcXjceLo4a1/AK7SNBZ7vdwYDvMX9JDXZvYR63YEkgY+b2nhsQ0beNjv517gv9CLH12qafwgEuFvJhOver20aFrudR37vLr9fk5rbOS36FVavwKMYre4d7vdTDUoZ1HR//ACt8ZiaOk0CEFZOMxpa9dSY1Cu52fAI9kbSgG/n1Eff8ycsjJDzqcUcFc0mrN9gN/PtG3bVJ7q4XPZPtZ9rbeNUOxm6NChtLa29vq8tz33HK+vXNnlPrf/9a/c/fTTe633h8M88OKLPWSZ4khl/g9/yPK6OgDOvOMO/OHwQe/fkZX19by4fPk+X7P0889ZcuedB7Tl4osvZtKkSfzyl7/k3nvvJRqNHsQ7OHpwuVwH3Oe+++6jtraWSy+9lGeeeYa1a4+NFtldVQP+LfBrKeUaIUQRup5IA6VCiBullH/rLSMPBQm8HosRTyQoLSnh7GiUkw3IJ00DT2RDi1veLEAmJJmMiUQCli6F2bMPf+zngfc0Ta/0C5y6ahULTCZmnH32ESFGOntbBwNzgSfefpvtJSXsKC+Hyspci5V2rytSslMIVlmtuZDXAmAEUBEI4PR4GFdaSm15OUX0Hy9sGvABG1pbWef1IisriRcX40EP6d0Rj9MYi4HdrntIO4T0dhSkIiviy2w2RgNuoHHlSip8PlzpNEva+7wqjikSwA8jETZkvez2ZJLrQyFmG+T1bEUv2BTLnovVXi/TNm+msaTEkPEfCARYHgjovWAzGa6Ox5mjeqoeMkKIi4FLgGEdU3DQvybb+sYqRXdJpVJYLIeeEJNOp7nzrLNg4MDDmtcfifDAiy/yTYM6IiiOPl787/8+7Neu3LKF5XV1nHmYaUlNTU28//77bN26FdBvCH35y18mPz//sG06GnnggQd46aWXGDZsGF/72tdYsmQJ48aN62uzepyuvjHnSimvyT6/HNgopTxXCFEFvAT0S7H6bmsrG7LtXBzJJPMMugBbAzRnQ4vLpodoMxeQEYK8PMH8+Yc/bhh4OB4nHIkAMKWhgVqPhxlnnXVEX9y53W4uWLhwd6iqw0ETsBJ4qbWVQCJBzGrNCbZ2MRcCPtI0PIEA2GwQjeLWNApsNiqACvQWLRWA1esl0dzMoPJyBpaXk4/eGNiBfmIfjLiV6BV3Ix0e4Q5/d/r9NIRCZEpKSLhctAF+IK5peKJR3cZOgjSSrdraUZC2byvPy8Pl91MaDDIgFOLSmTOZ3G5rURGe449X4b3HMBL4DbA2lQIpEVKy6LPPGDJ8uCHnQxK4NRJheyqF2WTCmUiw8PPPsZhMhng+V6C39Wo//4+vq2NYRYU6lw+P94Fd6Knqv+iwPgSs6hOLjjEimsYFixezY8cO0uk0t956KxdeeCEAv/71r3nuuedIJpP885//ZOzYsSxbtowbbriBWCyGw+HgkUceYcyYMTz66KO88MILxONxIpEIt912G7fddhtlZWVs2LCBefPm8cADD2Ay7RnsNnToUK644gpeffVVrrvuOl7+859ZctJJnD9nDi8uX85/Pfww5YWFTBsxgvqmJp6/7TYA1m7bxvwf/pBtLS3ccPbZfOess7j5z39mc1MTU66/ntOmTOHnl6vuR8cSEU3jgjvvZEdrK+lMhlsvvJAL587dY5+h3/gGy++5h/LCQn7897/z+NtvM6i8nPLCQqaPHMmN550HwD/fe49v/va3+CMRHv72tzlu9Ghue/xxYokE765bxy3nn7/X2Dk7IhG+/e1v8/nnn5NKpbj99ts555xzOP3002lubmbKlCmcd955NDY2cvLJJ1NeXs5bb73V48env/Hzn/+cJ554Ak3TOO+887jjjju45pprqK+v5+yzz+aiiy7i2Wef5e233+YnP/kJTz31FCNGjOhrs3uMrsRqxyKkp6GnOCGlbBKiv/i49ua9UAhMJiQwtLkZTyhEtQEXSi8Gg6RTKRCCqdVbOfvGzxBiPkuWFHTLq/oM0BKJIKWkJBJh9saNjBk79qi4uOvsca0CFgFTLRaee/ttvHY7bcXFVJ14Iq3AZnSRuC/vo81mYyd6v0nIemfDYXA4coK2Y0EiM7polbEY0WgUW34+eQ4HGXTPaPvfqKYRi8f36FdKxzmyBWLwenF38ADvz0bQQ9CTySQloRCl0ShnFBYyCd3jXORw4KmqojGToXr0aNydcvhUy5ljm0f8fp4RArPJBNlWL4P9fsNCaO8JBnk/G6JvAu4wmRg0caIhN0d86IqqvU3N4NZWpm7fTvXkyQZYfuwhpdwKbBVCXAo0SinjAEIIBzAQaOhD844JXl67lurqal544QUAAoFAblt5eTmffvopDzzwAHfffTd/+MMfGDt2LO+88w4Wi4XXX3+dH/7whzz11FMAfPDBB6xatYrS0lKWLl3KsmXLWLt2LUOGDGHRokX861//4vzzz9/LBrvdzrvvvqvb8ys9dTmeSHD1Aw/wzv/8D8Oqqrj45z/f4zXrd+7krbvuIhSLMebaa7n2jDP4369+ldVbt7LyV7/aaw7F0c/La9dSXVrKC9kbGoGsg2RfLK+r46kPPmDFvfeSSqeZ9t3vMn3kyNz2VDrNsl/8gheXL+eOv/+d13/8Y+689FKW19Xxm2uu2e+4AHfddRcLFizgj3/8I36/n1mzZnHqqafy7LPPsmTJElZmw9wfeeQR3nrrLcrLy7v/5o8wXn31Verq6li2bBlSSs4++2zeeecdfvvb3/Lyyy/njktdXR1LlizZ5/fG0UZXYtUvhFiCrg/mAF8HEEJY0HVAvyRcXg4+H0JKqgMBqrtxp+He227Dv20bsViMN5NJUiYTJkDG46SdThyOp3jld/DK7/Z8XfHgwdxwEPH5KeCpDl7VmZs2YRWC0aNHH7bNRwJut5uzlizZ7UEsKgJ0r1IT8HE6zTMNDbQ5nYQdDgrcbtKdxuhKLIIuRNs0LVcRmkgkV7ConY7hyAEh9tre1RyVeXnkhcO4olGK4nFOLSxkLLogr7TZ8BcU0BgKUT1yJO6Skr3evxKkis484/Xyqw6Vf5fk5fHFykpqDKpk/hbwgpS5c3r2hg0MqqgwpGBTe979tnQau93O6IoKvu33M0aF/xrBE8AJHZbT6DePZ/aNOccOE6urufFPf+Kmm25iyZIlzO3gLfrCF74AwPTp0/nXv/4F6GL2sssuo66uDiEEyWQyt/9pp51GaWlpbnnWrFkMHz4c0HP13n333X1edLZ7cjuyfscOhrvdDKuq0l8/bx4PvfJKbvviGTOwWa3YrFYqi4rw+P3dOAqKo4GJ1dXc+O9/c9Ojj7Jk5kzmjh+/333fXbuWc447Dkf2euesWbP22P6FrIdm+ogRNHg8h2THq6++yrPPPsvdd+s1W+PxONu2bcPh6Leyotd59dVXefXVV3O/zeFwmLq6OubNm9fHlvUdXYnVq4H70K+/b5BSNmXXnwK80NOGHS4tBQW48/KIx+NcMHMm7m7clfFv28btQ4eyqbmZoXl6l1ZLJsNiTaN6wID9vu72hoaDGn8V0Jz1qhbE44xsamJMbe0xcXG3L8EmgAHA2aWlHDd2rC5my8tx2+1EgJbsoxmoA95tbiZmsZCyWBhQUYEJvWJzDP1q7kCCtn27OZPBlkpRFAwytKICJ+AEMkJQ19CAPR6nIJFgyezZjAZKAIvDgae8XLdx9GglSBXdYhVwX4fKv9U+H+dmMkwzqPLvxy0t/MRqxWw2gxCMbGpimoFez4f9ft7IRiEEgZtcLuZNmmTI2AosUspcpJOUMiGEMKJtuOIAjHa7+eSTT3jxxRe55ZZbOP3007kt65lq/y0xm82kUikAbr31Vk4++WSefvppGhoamN8hR8jpdO4xducItf1FrHV+HZCrb7E/bFZr7rnZZCKV7ny7V3GsMdrt5pNf/pIXly/nlj//mdOnTuW2iy7a574HKnTZfn6ZzWZSmcwh2SGl5KmnnmLMmDF7rG84yOvmYwEpJbfccgtXX311X5vSb9ivWJVSbkSP2uy8/hXglb1f0ffEgYZsKwaH3c60rMeuu6QLCiCbr+rSNAoLCgwZ9+VgMOdVHdHUhMVkOuq9qgdLZ7HXLiCHtq8oKuLiwYN1sVhZibtTEn4S2KZpPPfuu2TSacxCcObChVShl8A2Ay3xOC+98QYincZkMu1d0KiwEE+7aK6u3uvGhxKkCiOoB34Uj+eq55aGw5z12WcMXrjQkPE3NTdzo9eL3+EAIagtKOB6r5fhBnk91wGPQU5oT6+vp7S4GMrKuj22AoAWIcTZUspnAYQQ56DXyVL0MI1+P6X5+Xz5y1/G5XLx6KOPdrl/IBCgpqYG4ID7Llu2jC1btjBkyBD+8Y9/cNVVVx20XWMHDqTe46HB42Go280/smHCXVHgcBCKxQ56DsXRRaPfT2llJV8++WRcDgePvvHGfvc9cdw4rr7/fm45/3xS6TQvLF/Olaef3uX4B3t+LVy4kF//+tf8+te/RgjBihUr9hndU1BQQCgUOibDgBcuXMitt97KpZdeisvlYufOnVitViorK/fYr/0YHQscekm6fsyK1laassWVTNEovtJSQy7GNIcDh8lEMplkoMt1UOWlD4ZV2UI8AMOamxkzZowSP4dAV2LRCoyorOTiU0/dLTY7fdAHud2cs3hxlwWNlCBV9CQe4KZYjK3ZcHWnpvG9YJBZBvVVTgA/lhK/w4EErKkUl+3cyewpU7o9NuhFyO6MxUi2t6nx+Zi9ZQvVixcbMr4CgGuAx4UQv0EPQNkOfLVvTTo2+Lyxke/PmoXJZMJqtfLggw92uf8PfvADLrvsMu655x4WLFjQ5b6zZ8/m5ptv5vPPP2fevHmcly1eczA4bDYeuOYaFt1+O+WFhcw6iJvcZYWFzKmtZcJ113HG9OmqwNIxxueNjXz/d7/Tz2WzmQevvXa/+84cNYqzZ81i8vXXM6SighkjR1J0gKq8J0+cyP8++SRTrr++ywJLt956KzfccAOTJk1CSsnQoUN5/vnn99rvqquu4owzzmDAgAHHXIGl008/nXXr1jE7G27tcrl47LHH9hKrF110EVdeeSX33XcfTz755FFdYEkcKJzksAcWwg68A9jQRfGTUsou62LPmDFDLt9Pn6aD4bENG/i53Y4EhrS2cqfJ1K18rNu/9jVuHzqUNzSNjdmQ0REtLUTicW5++23SmQzfmDaNm088cc/XNTRw+wHuqqaARaEQLV4vErhm6VK+uGiREkYKxTFCAPgBsC4QIOD3k5dK8cVly1g4dqxheaT/HQrxRiKhR3BIyeJVq7h+1ixDvmckcHM4zMteL0iJLZXi1pYWZg0b1m++x4QQn0gpD6+XQj9DCOFC/83u9Vvp3f1t3oMHHzzs9iu9zo4d0MVF/eGydOlS7r777n1epHdJh2MXjsVwORxIKfnWb3/LqOpqvnvOOYbbquhBeuj82ieH+LlrP7+imsa8W27hoW99i2ndFUM9/X6PpO+WzvTmudAPONTf5p70rGrAAillWAhhBd4VQrwkpfywpyYsqKiAcBghJbZMhmqDTtpwMpnzgJoSCb772mu8efnlDCwsZObvf8/ZY8YwrlNV1wOxuqWFllgMCRTE45xs0AWkQqHo/8SAmyIR1mVbyJilZPGKFVREo4ZV/n0wEODf2X6nCMGFkQhfN/B75jHgg3Q6F/57yurVDBw8WH2P9QBCiMXAeMDentsopTxwFT/FUcvvX32VP735JolUiqnDh3P1or2ythSKw+aq++9n7fbtxBMJLluwoPtCVaHoBl2KVSHEWOAcoAb9Rnoj8KyUct2BBpa6yzacXbRmHz3jxs3iKC2l1GolEo0yetAgwy6aTHl5kL0o29jWxsjSUoZnC+pcNH48/16//pDFakNLCzJbOMGhacRVAQSF4pggDnw/EuGDtja9lypwEzB2xAjD+uu+AfwdckJy4rZtLHI6DftOfAe9RG17m5ppW7YwsrWV6uOPN2R8xW6EEL8F8oGTgT8A5wPL+tQoRbeYP3/+HsWXDofvnnOO8qQqeoy/3nhjX5ugUOQw7W+DEOIm9Osdgf7D+HH2+d+EEDcfzOBCCLMQYiV6AdfXpJQfddviLtjl9+P1+dDicXZs2qS3JTGAVIcqfd5olJoOBZYGFhay83ASnO323FNrtt2DQqE4utGAO4FVqVROSM5bu5axPh9Tp041REyuAn6DLiQRgiGtrczfuJEagzy2m4CfxeO5npOnl5by7cJCvUCZ8qr2BCdIKb8K+KSUdwCzgUF9bJNCoVAoFL1CV57VrwPjpZTJjiuFEPcAa4D/PdDgUso0MEUIUQw8LYSYIKVc3Wm8q4CrAAYPHnxo1nei2ecDk0lvVZJO09jYaEyBpQ5hwFLKPXqnga7gD5V4IgHZvlKCbBsVhUJx1JJAz/H8JJ3GbDKBEMxdv57JjY1UT5tmyBzbgdvicbyaht1uZ0Z5OV/3ehmxeLEh34U+4EexGNuzBaFM0SjXlpYy3KAWO4p90l5iMyqEqAbagGF9aI9CoVAoFL1GV2I1A1QDWzutH5DddtBIKf1CiKXorXBWd9r2EPAQ6EUcDmXczgwsLoZQCCElybw8w3K/nBYLvqxgLXM6ae7gsd0RDFJ9GK1shpeXIyIRPba6pIRq1RBZoThqSQC3hMO8mS1GhBBcYTIxr6KC6smTDRGSHuB7sRhbskIylUjwvaIixhlU+TcJ/BRozLbxykulOPPTTwmMGwfKo9qTPJ+94ftz4FP0dJrf96lFCoVCoVD0El2J1RuAN4QQdeg37AEGAyOB6w40sBCiAkhmhaoDOBX4v+6Z2zVDSkpw5+cTj8cZUlaG26AWM/l5edjSaZLJJNNHj+buFSvY4vNRU1jI39es4a9f+MIhj5n0epHZpuIZIfB6vSqETqE4Ctnh8XBXJsOqvLxc6O/sujrmlZYaUvUXwAv8CGjKCklLOs3iTz5BGzMGOpW7Pxwk8LNgkA+lxGwyIYCFn31GWTxu2E1Bxb6RUv44+/QpIcTzgF1KGehLmxQKhUKh6C32K1allC8LIUYDs9ALLAlgB/BxNrz3QAwA/iSEMKPnxj4hpTzEOu2HRiGQTCSIx+NszsszbNztmoamaQBsSSa5a84cFj72GGkpuWLKFMYfxsVg26ZNMH58bnnt1q3U1tYaZrNCoeh7tns8fHvHDraUl0MyCUIwa9MmZjU0UD1hgiFzhIDvRaNsTiYxm0xYMhmWfPopVZGIYULyYb+fJ4LBnFf4G2YzJw4bRvWcOeomWy8ipdTQU58VCoVCoTgm6LIasJQyAxxWqxkp5SqgVxOZmurqaMuK1PXxOOuamgwRgOYO+aQpk4nphYVs/Pa3uzXmqGHDKIlE8GUrAmvKO6FQHFXEgTukZEt5uZ5HLyVnxeN8oaSEmvHjDRF5UfTKwp9mKwubgFuAUQZXFv6zEDmv8NjGRubYbIZ5hRUKhUKhUCj2x36rAXdFNhSp3+HfvHmP5botWwwZd5LcnUorhSA/P7/bY9bW1jI1K1QBPmhqMqx6sUKh6Fvqm5u5yuNhs9MJQiCA6Q0NXFdczDSDqv4mgB8Da7OVhQFOXbWKUX6/YZWFX2lr48d+f64g1ECvl1PWrTOssrBi/wgh5mT/2vraFoVCoVAo+orDEqvAlYZaYRDjhwzZozJv/ujRhow7tLgYWza/NJaXR3NzM+Fw+ACvOohxU6mcvY3FxTQ2NnZ7TIVC0bdsbG7mypYWPovH8fp8lJaUcEkmw/+MHUuVQSGzKeD/hcO8FwjkhOT8tWsZ29xsWOjve62t/L9gEF8ggNfnY4LLxY9MJs4980wV+ts73Jf9+0GfWqFQKBQKRR/SZRjw/pBS7jLaECOora1lfnMz76fTmM1mgodRpXdfFADmbK/VhMVCwmwmFArh6mYBpxOKingkGgUpaSwpwZZKGWCtQqHoK1qAW0wmWl2uXOjvuc3NXD9ihGFzJNGF6qsdKgt/w2TixKoqqqdNM0RI7gR+YjKRzLYCK4zFuNLv54TJk7s9tuKgSQohHgFqhBD3dd4opfxOH9ikUCgUCkWvsl/PqhCiUAjxUyHEX4QQl3Ta9kDPm3Z4jLbZSCSTxGIxnlu92pDQWhNQmfVeAIQcDgoMEMIzysupKSpCAJG8PF747DMVCqxQHKGsbGnh621teG22XOjvaWvWcJFBVclBD/29C/gwnc7lkM7YvJkTW1oMC/31ArcB6WwIsyOZ5NxPP6VWeVN7myXAK+jpz5/s46FQKBQKxVFPV57VR4A64CngCiHEF4FLstUIj+8N4w4HV1MT2O16/9KiIhobGw25gKvJy8MjJclkEsuAAd32qoIugodFIuzMLm8qLzfMXoVC0Xu819rK9wIBYlYrCEFFSQlfbmzkjOnTDfs8a8DN4TCfpNO50N8Zmzczu76e6iVLDJkjAvwgGqUumcRutzOospKv19dzwoIF6nupl5FStgJ/F0Ksk1J+1tf2KBQKhULRF3QlVkdIKb+Yff6MEOL/AW8KIc7uBbsOmzklJdwTjyOkpLm4mFK7/bDHKh48mNsbGgBojMf5OBuma0ulOMlmw+Fw7Pd1B8sCu513swVS6t1u7JbDisxWKBR9xIfAbRYLMasVCVhTKb6xcycXjR1r2Bxx4AeRCG93CP39itnMguJiapYsMayy8I2RCB9nKwuHgP91uVg4bly3x1Z0izYhxNPAHPSWt+8C10spd3Rn0GxbueXATimlMXc7FAqFQqEwmK6UkU0IYcq2r0FKeZcQYgfwDmBcXJvBjKysZFo0ysZYDIBNwJDDHOuGO+/MPf9o5UqWFxWRMpmIAQtCIRYa0CdxUWkpD1qttHi9eAoLefG99ygtLVVeDIXiCOAvPh9/MJkwmc16yGwiwVkrV3Ly3LmGzREFbgdWZm9qSWB2XR2nlJYa1j4mnp1jTYc5Tl69msrqaigrM2QOxWHzCPBX4EvZ5S9n153WzXGvB9ahtyhXKBQKhaJf0lU14OeABR1XSCn/BHwPPXWq3zI2lSIciRAOh/mbQXmrQwcMYIjXq1fvFYJlZrMh4zqBUR0qC68ZMEBVBVYo+jkSuCcY5O5QCL/fj9fnY0xBAT+Oxbhy7lzDbjZFgO9FInzYoervnI0bmdXQYFjV33avbcc5Tlq3jvFNTYbNoegWlVLKR6SUqezjUaCiOwMKIQYCi4E/GGGgQqFQKBQ9xX49q1LKH+xn/cvAqB6zyAAqm5rAZkMCmw3KA3W73XzZauUeKQlHIryTSlH9/PMsMSAE7+y8PN5PJkFK1g0ciEVVBVYo+i0J4BfAS1LmvJBVfj/X+XzMM7Barhf4fjTK8mxYLkJwpRDMKS+netIkQwRxex5sx/Diq4TgBLebaoMKNim6TYsQ4svA37LLFwNt3RzzXuAH6MXuFQqFQqHotxxWn1UhxOVGG2IkC4qKsGQyCMBbUIAYONCQcReVlmIzm0FKPIWFtDkchnhBTy8rY1hhYa4q8OObN6uqwApFPyQA3BCJ8FIHL+SI5ma++MknjKmqMmyeRuD7QF32JpYE5q1dy5zWVsOq/iaAnwCfdqgsPGfDBk4wcA6FIVwBXAA0AbuA87PrDgshxBKgWUrZZUVhIcRVQojlQojlLS0thzudQqFQKBTd4rDEKnCHoVYYzBC3m9MqKnC5XLicTpZbrYaM6wSOz+amCWDtoEGGhMmZgZl+f275kyFD2KlCgRWKfsVm4OpYjPfa2ghkQ3/Pt1r5kcXCuWeeaZi4qwO+E4tRlxXEJuDU1auZsnOnYWG5SeCH4TBvdxDds+vqmL5tmwr97WdIKbdJKc+WUlZIKSullOdKKbd2Y8g5wNlCiAbg78ACIcRj+5j3ISnlDCnljIqKbkUdKxQKhUJx2Ow3DFgIsWp/m4B+f8t9ZiLBS5EISMk/QiHO0jRDLia/WFDA8rw8IuEwO8eMISmlAdbCl/LzeSoaJSUEzYWF7EinmWbIyAqFors84/Xya5OJeNYLCXDi+vUsqagwrMgRwErg1nicbS0tICWWTIZbgFHV1VTPmGGYR/X/hcO81iH096tmMwvKyqieOFF5VI9ypJS3ALcACCHmAzdKKb/clzYpFAqFQrE/uqoG7AYWAr5O6wXwfo9ZZBBV27djKioiLQTNBQV83NrKEgMuwqYCZZkMnkiEsJT8avVqbjTgInJ0ZSWLm5p4VtOQwO+CQWZ5PFSpC0eFos/IAL8JBHg4HM4JO1sqxWmrVjHc66XawBzVd4BfAgFNAymxJZMs+fRTRo0aZZggjgI/Bj7qEPo7c/NmFhQXGyq6FQqFQqFQKIygqzDg5wGXlHJrp0cDsLRXrOsGI6uqGNncnKveu3bQIEPGNQGTm5pyF3qfGhiyO7elBZH12mwvKeFvdXUqd1Wh6CMiwJ3Ak5D7vBdHItzc2sr5Q4caUlytnT/7/fwoECCiadjtdlyaxheXLaMmFDIsLDcE/AhYDdjtdhCCGfX1zK6vV6G/xyhSyqWqx6pCoVAo+jP7FatSyq9LKd/dz7ZLes4kY3C73XxzxAiKiospLSnhjXSabQYJv/OdTiyZDACtBQU0FBUZMu7kykom7NyZW36mtJRnXnhBCVaFopdZ0dLCZa2tvJ8VjwjBsJYWLly2jDlDhxpWgCgN/DwY5BfBIAG/H4/HQ3U6ze+Lizm9ttYwQewFvhONsjwQQNM0bDYb3yks5NvFxZxloOhWGI8Q4kcdntv60hbF0UODx8Nf3347t7z0889Z0qG3/MG8fsJ11x1wv+8/8gjjv/Utvv/IIzz6xhs0tnW3kLXiSMblch1wn/vuu4/a2louvfRSnnnmGdauXdsLlin6M4dUYEkIcdUh7DtICPGWEGKdEGKNEOL6Qzeve8wvK2OI1YrX56MpGORXn35qiPAbWVnJWXY7Ar3f4sPBoCHjut1u/nvUKIqyBaF8TicfjBih+q4qFL3IM14vV4bD1EUiuc/1N4qKuM1s5ouLFhnaQ/VO4LmOLXB8Pr5RV8e4ykrDBHEzcH00yqetrQT8fpqbmrjY5+Pr2dBfJVT7J0KIHwghZqNX/23ng76yR3F00dDcvIdY7Sl+9/LLfHrvvfz88st1ser19viciiObBx54gBdffJHHH39ciVUF0HXO6r64BnjoIPdNAd+TUn4qhCgAPhFCvCal7LWzTqCH7K4ym/WQ3cGD2WlAz1WAE1tbebqwEIAdJSW86fNxsQHjjqqs5Cqfj7tTKaSUrBg6lK3pNCqbTKHoWRLA74F/mM0kTSYkYEmnuXDrVr4+ejQYmNPpAW6KRqlPJnPVeEc1NXHamjWMOvNMw+bZgR76uzXbAkdIyamff07twIFQUmLYPIoeYQPwJWC4EOI/wDqgTAgxRkq5oW9NU/QVP/7733n87bcZVF5OeWEh00eO5MbzzmPzrl1867e/pSUYJN9m4/fXXcfYgQP52r33Upifz/JNm2jy+fjZ177G+XPmcPOf/sS6HTuYcv31XLZgAVOHD8/NEYnH+fbvfsfnW7eSSqe5/eKLOef44/drUzqd5uY//5mln3+OlkzyrcWLuXrRIs7+yU+IaBrH3Xgjt5x/Pss3beLSe+7BkZfHBz/7GQ6bChQ4lvn5z3/OE088gaZpnHfeedxxxx1cc8011NfXc/bZZ3PRRRfx7LPP8vbbb/OTn/yEp556ihEjRvS12Yo+oKtqwMdLKT/svPpgB5ZS7kLvCYeUMiSEWAfUAL16i+QLTid/j0ZJmkx4CwpodjoNGXdiZSXj6utZW10NQvD64MFcyOH3AurIl0tK+CCV4r1oFAn8VEqGtrQwRbUPUCh6hJ3AbdEodR3EY3Ekwpmff86Sk04ydK61wK2xGJtaW3NFmy41mznVaqXGwBY4m4CbYjFaEgnMJhNmKVm0ciUj2tqonjXLkDkUPYoP+CEwP/uoRS96eHNWsJ7Qd6Yp+oLlW7fy1AcfsOLee0ml00z77neZPnIkAFfdfz+//eY3GVVdzUcbNvDNBx/kzbvuAmCX18u7//u/rN+xg7N/8hPOnzOH/73sMu5++mmev+02QA8DbueuJ55gwaRJ/PH66/GHw8y68UZOnTIFp92+T7sefu01ivLz+fiee9CSSebcdBOnT5nCsz/6Ea4LLmDlr34FwIMvvcTdl1/OjFGjevIwKY4AXn31Verq6li2bBlSSs4++2zeeecdfvvb3/Lyyy/z1ltvUV5eTl1dHUuWLOH8888/8KCKo5auPKsPwF7dU846nEmEEEPRC+l+tI9tVwFXAQwePPhwhu+S4W43lwYCPA2YTSb+EY0y1ePp9gWh2+3mv4Xg21YrKYuFumSSf/p8XGiAt0IAF+zaxacOB9G8PGIWCzfFYtzX3MyYyspuj69QKHbzNnB3PM62DuLxNJuNL3i9jDjpJEPDZN8C7gPaEgmQElMmwylr1nBaTY2h1XiXA3d0aIFjzWS4TUqGDBlC9ezZKvT3yGAR8N/ACOAe4DMgIqW8vE+tUvQZ727ezDnHHZfzSJ6VvekUjsV4f/16vvR//5fbV0smc8/PPf54TCYT4wYPxhMIHHCeV1eu5Nlly7j7mWcAiCcSbGtpoXY/hSpfXbmSVQ0NPPm+3igiEIlQt2sXw6qqDut9Ko5+Xn31VV599dXc7144HKauro558+b1sWWK/sghhQFLKXcc6gRCCBfwFHCDlDK4jzEfIhtaPGPGDGOalnbiK0VFvBqP09jcjFdKHvzkE66dM6fbF2xjKys53+/nAZ8PpOSeVIpJySS1BgjKWrebs/7zH56aPp2UycQuKbnK6+U3QjBReVgVim6z3ePhN4kEKyoriWfbxZgyGeauX88lVVVMM1A8ZoAHAgGeQK/Ea7fbSSSTnLliBTXBINUzZxo218vAg+zZAuesTz9liIEtcBQ9j5TyhwBCiM+Ax9Bv+FYIId4FfFLKw7p5rDhykfvp656RkmKnM+fB7IwtWwejqzE6z/PUzTczZuDAg7br11ddxcJpqju84uCQUnLLLbdw9dVX97UpiiOArsTqcCHEs/vbKKU8+0CDCyGs6EL1cSnlvw7DPkMoBya0ttKYLWLy7qhRnG1Q7uqUhgZcDgchu524xcI9mQwPcQjx0vvB7Xbzjblzya+r49FBg5CAz+Hgek3jrtZWZpeXd9v2niQNBNDj2NofW/x+dgYC2EtKsBQWEoO9Hv54nHgshtPhwGm3Y0YPrTYBZkCLRkmHw1Tl51PjclEEez0SLS1Ed+5kyIAByoOk2CfLWlu5ua2NNqcTPB5KS0oojsVYuHIl7kiEGgMvukLA7eEwrwcCICUBIZhWXs49hYUkR46kurrakPNUoveE/Se7BbGMx1nyySeUx2KqPc2RyytSyo+Bj4UQ10opTxRC9O8fAEWPcOKIEVz95JPccv75pNJpXli+nCtPP53C/HyGud388913+dKJJyKlZFVDA5OHDdvvWAUOB6FYbJ/bFk6dyq+ff55fX301QghWbN7M1C5yBRdOncqDL73EgkmTsFosbNy5k5qysr3ChruaU3FssXDhQm699VYuvfRSXC4XO3fuxGq1UtnJ2VNQUEAoFOojKxX9ha7Eagvwi8MdWAghgIeBdVLKew53HKO4PC+PNyMRUiYTLUVFbHG59opxPhyGDhjAwvfe46np00EINjmd3FtfzyVOpyGhxpcALR99xEsTJ5I2mWhNp/lmOMy5LS18o7SUml4UYxKIogtPL1Dv9bLF78dUVkamqCgnSndl8+Rsdju2bLiSpml4glnHut+P22bLbWtH0zQ8zc16KGYohNvt3mMfTdPwZEM1P4/HcVut+x4jFoOSEkq9Xubm5zO5oIDhwHB0Mas4dkkD/wR+Z7HgdTqRgJCSycEgN5SU4BszxjDxCHre6E+BunQ6V/F3SEsLV3q9TJgyBQwK608CPw6F+HcHQXx8WRn/VVJCtLbW0Pek6F2klD/osPi17LrWvrFG0ZfMHDqUs2fNYvL11zOkooIZI0dSlJ8PwOP/9V9c++CD/OSJJ0im01w0d26XYnXS0KFYzGYmf+c7fO2UU/YosHTrhRdywx/+wKTvfAcpJUMrK3O5rfviG6efTkNzM9O++12klFQUFfHMD3+4135fO+UUrnnwQVVgScHpp5/OunXrmD17NqC3tHnsscf2EqsXXXQRV155Jffddx9PPvmkKrB0jCL2FxIihFghpTzsmDEhxInAf4DP0aPgAH4opXxxf6+ZMWOGXL58+eFOeUDuDwT4B3ruakEiwW9SKQYbcAHn8Xj4XTzOW6WleH0+TJkM5376KdcYEGrcPv6/1q/njwMHoll2318o0DROiUSYoWkcN2zYYc0lgSC6F3RzWxub29qwVVRASQl+YGc4TGMkQqqwkLjDQXsWjKZpeluPbI5fu7Dc3/pAIEDA79fFAVBUXExRp/60B9rHiDFKISdci71einbsYIzbrS7kjwF2Aj+ORFibSmE2mfD6fFhSKeZt3MhNU6dSZfA58BpwbzxOSNNy802vr2f25s2cbWBv0zBwF/Beh3N/WEsLt1gsHD9liiFzHKkIIT6RUs7oazuOdAz9bX7wQTjI8NI+Z8cOuPbavrZiNw8+SLisDJfDQVTTmHfLLTz0rW8xTV3AH5n05vnVHz53Pf1++8N7PFz623dND3Oov81deVa3dMcQKeW7dD8a1lCuKCpiaSzGxpYWvFJye0MDPwVDPKA/BDZkc2LTQvD85MnMaGlhsQEXpG63my8A0Tfe4JXx42kqLgYgZLPxjM3GM4ArEGCUpjG0pASnlAT9fgqLiykoLCQQDNIaDGIrKsJSUEAMaItGaYrHSTmd5LWLzEgEbDbdq5m9W+vxenXhqWl7eDrj8XjOUySkJB6PY7PZcusBHJpGaTDI6IoKLCYTDVu3kqdp2DIZ5s2cyUDA0eER0jTeWrqUTCaDMJs5fdEiytC9YWnAk0jw6gcfEDeZiNvtTJ47FxPgZ7fgbrRaWatphG02EAJ7pzAkb/bxnqbhCYehqIgBHg8X2GwsKi5GBUoefUjgeeB38Tjb29pyN1JmOJ1c2NjIZIN7jSaA3wHPdYgUyEunuUUIxhQVUW2gUG0GftCpBc7EbduYv3EjwxYvNmQOhULRf7jq/vtZu3078USCyxYsUEJVoVAc9XQlVn8qhKiSUjYBCCG+CnwR2ArcLqU84jo7O4CTd+5ko9WKBD4ZOpT/eL2cb8CFowW4BbgqkSCSl0fCauUPZWU4Vq1ivAGeO7fbzZdPOYXpGzfyz+Zmlg8dSiwvL7c9bLOxQkpW+nz6CinB76dUCLx+v77s8+HOvqY9nJZwGLfbvU/x2T6O9otf4GhsJJCXhz0vDxuQn0wiAgHM6TTWTIaq0lIKbDZkPE7Lzp2Y02kEMGjQIEwOBxmgIhYjGo1iz89n+3vv8cU779zzTVZWUrpoEY2NjXrYYqdwkKqKCqpOPnn39n1VXs7Px1NUxJZdu0gPHEjQZqMeqAca0IUE7Cm2dxUV8agQPA0MAmYDxwMj6Wd3WxSHzOrmZn6ZybC9pGSPIkrHbd7MlWVlTDe44FAzetjvJnafY6XhMGeuXMmYceMMLXC0GvjvTi1wrjCZmOt0UrN4sYoWUCiOQv564419bYJCoVD0Kl2J1d8BpwIIIeYB/wt8G5iCXr33iGx69IWCAl7YtYsdJSUgBP8aOpQzACO6r06orORek4kfmc0kLRbqfT7usFo59/XXueTUUw0RrG63m1qPh8/r6ng+GGSz283O0lJSJr3Da9CSpbYAAQAASURBVMewbiElkWh0vyK0fZ0pGmWYzUaz349D08hPJjmxuJjCTIbPV61i3apV/KCsjHHV1RS7XLnxw+EwoVCIgoICXB3XDxy4z/Udub2hocv3eKBjcDDHqTNpoBFduK4AXvH7aSwu3sMDuz37eALIj8UY0drKuQ4Hs/p5QSvFnmSAx30+7guHSZjNuSJK5eEwp65aRWU0ysCJEw2d8yPg/2IxWhOJXIGjqqYm5q9Zg01KwwocSeAl9C9hb4cWOKetXs28gQNVxV+FQqFQKBRHDV2JVXMH7+mFwENSyqeAp4QQK3vcsh6iyu3m50LwX1Yrmfx8WoFbd+7kJovFEE/ErPJyfgZ8N+vN9OXn88+ZMxnd2mpISDDsFmMTPR42btxIqLWV1V4vAbudeNarK6XEJATjamtZt3495lSKvEyGBSecgF1K3v/oI2zxOM5UinMWL8ZdUoKnqkr3Wg4Zgjub5+mZNYufFBQwadiwvYSny+Xapxjd3/q+xozuOR0EnFRUxMVVVWxsasIzeDDrbTZWsNvzqmka21paWC8lL0SjzI9E+LLTyQyUt7W/Uw/8BlhuMpEwm3M3ZRa0tXFFeTnNY8caWnBIA/4IPK1peLJ9TUPA9woLOXXoUHbl5Rk2Xwr4WTDIy1Lu0QLnjBUrGBgMUp3tu6hQKBQKhUJxNNClWBVCWKSUKeAU4KqDfF2/Z1xlJT8C7swWA/JICatWcdO0aca0swG+l8lwWzZ/NWK3c7/bTXTdOuaVlhp2kdzRgzjd48mFxwK7Q2Xdbjx5ebuXy8oAGHPSSXvs03m8jnOUlZX1S/HZXTq/Xw3d4/oh8Eoksof3eUUqRT1QA5wDLABUHcP+RRx4MBDg31KS53Bgt9sJCEFJJMJpa9Zw5dy5uN1uQytoP/yij3vft+I4LQ/7FD3s1xmPs2jVKsaPHEmVgYWb/MD/i0R4N3sjrL3i7/WFhWgGtsBRKBQKhUKh6C90JTr/BrwthGhFb4H5HwAhxEj0WjZHNCcCk1paeC0rSN6srWWGz8clBl3sLSktxSklPzWZaP0kjxWvJdl0XDGnFn7OrcAAgy8qOwuvzs/3JUK7c2F7xb//zfMbN1LpdLL6m98EYGVTE9c8/zzxVAqLycQDixczq6bmsOfobWzouarHAxckkzz0ySesrqlhc1VVLkx4J/AA8BdgTiDAxK1bVTXhfsAy4J5YjHXZ1i0EgwysrOSbhYVMbWtjSFaoGoUEbns1xF1fLEImBOIXkinPWRhZ1Mz8NWvIT6cN7WtaB/wPsDmVyt1EGdPYyNe9XsYZ2AJHoVAoFAqFoj+xX7EqpbxLCPEGMAB4Ve5OhjSh564e8VxntbIiEKDV5UKaTPxt6FBmoRfWMYKTy8po+wAuPFuS0cCTV0jmcV35/y9wJMubr02ZwnWzZvHVp5/OrfvBa6/x3yedxBmjRvFiXR0/eO01ln7ta31nZDeodru5ds4cGhsbsTkcfGiz8Qp6n1mAVk3joUAAi8vFrNWr+X/AQCVYe521zc08mEqxoayMeDZ/UwID29r4TjDIwgkTwOAcTj9wL/DYe1ZkQkBGIJMw6OU4939/MLssFkO9nE95vTxgMmHOeouDwJyNG5m2bRtDliwxZA6FQqFQKBSK/kiX4bxSyg/3sW5jz5nTuwx1u/mNENxkNhN3ucBm43bgbqDKoDnqlqInQmYvaCMfOdi52ME34nEW7tjBFwoKqD4CRc68IUNo8Pv3WCeEIKhpAATicaoLCvrAMuPo6H0eB1yM3jvz30BdttJr0mzm/ZEjud5s5ofA9L4z95giDjwSCPBwJELSZMoVUHIkk8xZv55aj4cpPSDkXm5r4z4hSDmdVCwwsfVnEpkEqznNVScLqtxuw8J+E8C9wSCPh8M5b/Gwykp+7nJRXl5O9aRJyqOvUCgUCoXiqOaIzj01gtrKSu4Hvg9EgGZN41uhED/OZBhnQGjd/PlgyxMkEhKTVTLkDAcA25qb+b3Vyj/8fq7Ly+OLJSVH/D/j3oULWfjYY9z42mtkpOT9K67oa5MMxQGcDSwGXkyn+WUkQpvTCUIQKijgduA44BsYd7NDsSdNHg/PBIO8OXAgTUDSZMrlFc8MBLi6sJBgTQ3VM2caKuRCwL2hEE9mc5kJh3Ef7+Y7z0ZJPhvkzEV2Fi8uNWy+XejRFyukzHmLS8NhvhkIcNrEiZDNPVcoFAqFQqE4mjnS9ZEhDAJuBX4Qj+NpbsYjJVdqGr8WgmkVFd0ae/ZseOMNWLpUMH++oGy2jVtaW/FkL0CDdjv3m0w8E4txQmMj57hcDD5CvSUPLl/OLxcu5IvjxvHEmjV8/dlnef2rX93nvpFYjHc++4zi6mpcFRVE0cOjd3q9NLW1UVlWRnlpKWb0Kr7+tjb8LS0MKy9nRHk5hUAe8MEHsHSpflNg9uzeeZ9m4KzSUqYnkzwRDrO0poa0TS+39BHwQTzOCU1NXOZwqNBgA1na2spdLS00FxRASwul2fZTFcEgJ23cyNVz5ui9eQ3O3/wAeBBoyGRywtEVj3PFli1cdNpYOM3Y4mPPer38RgjIz88ViRrZ1MSpa9cy+YwzDJ1LoVAoFAqFoj+jxGqW8cCXtm7lXpuNjBCEbTZ+aLHwS6C2m2PPnr2nkLonneZ/Nm9m5eDBxPPyMJtMrG1pYa3FwqPRKItCIU4vKGAmkN/NuXuTP332GT9btIgAMG/cOL7+7LOsiMfxx+MIh4OMzUYcCCWTvJ5O82pxMcRiuDUNm82Gpml4wmHIy9M9V07n7vWRCDgcEI3m9o98AO+cIkknwJoH//OGYPFsGIruBe1pqt1ubnC7uRz4E3qIsKZpeJqbeUIIlra08HOTiSndvOFxrLMLeBR4yWolUFCQ86Q6k0muLShgRFsbA+fMMTwkNgD8PBTinUwm1yYmIASjd+1i/oYNnLxwoaHzJYBfBoP8tT3sNxSiprKSGwsKGN/WRs0ZZ6iwX4VCoVAoFMcUSqx24IziYuo/+IAXJk0iZbGQyc/nR8BNgJHdC4e43dwJ1O/axdqhQ3kqmcx5bFImE//JZFiF/s8ZFQ5T7fEwraiIGeXlvS5eJZBED4OMA75YDF8shik/n53oBYdeQRegTqeTO+vrmTBiBKu3bKG8tJQPszmsxOO4zGbMFgtaOp0bW0hJPB7HZrMRz+aBHmh98ztJtOU2QltSpBNmSAuSCcnvXk/x9mwLAiiORin1+ZjncHB6aSk92XinCPgOsAi4MxDIec2bCwq40WLhJuBUVH/WQyUAPBwM8nwmg6VDKxpLOs20rVu5tbaWIW43lJQYOq8E3gF+FYux2efLtYkZU1HBd51OqvLyqF640FDh2Aj8H3uG/RZFo1y9eTPnjB9v+HtUKBQKhUKhOBJQYrUDbrebb82ezfS2Nv4ybBiazUZI0/hBLMblwFeLiw0THO3Fe2YDp3o8/HzjRlbX1OBzuXJtUiKaxiteL1gsPJL1KA612RgGlPr9yNZWhpSUMLSsjAKgAHChh6mCftHd/neXx8O2Xbsoqa6moLKSONmw27Y2tnq9WCsqoLiYAHq1012RCLvicdJOJwF0z3M6lSKcSIDJxB+ffpq6nTsJx2JcfM89nHnccVy8YAGPvfoqAHlWK19duFD3EAFISSqVwmyxYLHogtKRTJKXTjPKaqUMyJjNNDQ3Y0qnQQjGlJaSDwTMZta3tpIwmWheW8TKK52kEyDMZoQ5K2KtEufxccBFXNP4rLUVpOStcJjf5+czw27neGBYczPazp090pNyNHC3lNy1cSPvjhpFxmTClJ/PfcDboRBn1NczsqpKeccOQBh4GngiHmdbtqcowSBut5vzSkqY19DA+NraHjmO65qbuS+dZnNp6R7Vhcft2MF3fD5OmDzZ8HzRZ7xe7hcC0SHsd1RTE6esW8fxixYZOpdCoVAoFArFkYQSq51wu92c43YzE/h+LMbqlhaQknuEYKXFwv9zuSg3eM4hbje3TppEY2MjVFRQZ7PxHrBiH57GXTYbDZqGJxgEqxUiEdwuF7ZszqSmacTjcex2+x7rPJqme2fi8T3DbiMRPew2GMTtcOxe39ami4RIBGfWE5rK9ngEuOKMM/Q57HaCmxOE69NYS1P86KKLKLbZKM3Px6RpBDweLKkUeek0I2tqKAXsFgufm81cHArpojE/6y92ufAMHkxjY6O+vr2asMuFZ+BAGhsbeXJtBSsTAtJ6D6WZ8zfjcGuUHhdj4vFjaQFWx2J7HLeIprHSbucjTcMTj1MDTPvwQ647/njDKre2U+V286NJk/i4tZUnhw2jLXs8n/P5WGq3c+bbb/P1k05SgnUfhIHH/X7+JSUyP5+4puX+jwN8Pq4Jhzlv3DiYONHwuVPZuX8TDpMwm3PVhQvjceavWcNQn48RBlcXjgD3hEI82Sns9wcFBdS2tVGzaJE6TxQKhUKhUBzTKLG6H6qBq+rq+IkQeAoLEVLySTrNdcDVwHyMDevs2CZlKnAB8HkiwUMbNuApKKCtsJC87Pb9hctqmobH48mFLbrd7kMKr93feplK4QIKTSbC0SiWdJq8dJqhbjfJ7fDS36yk01ZMJsmEE+o47rgaPezWZiNcWkooFKKgoABX/u4g5nyHg6n76H/Z8Tjsa308Dr/8JSQSkJcn+NF3y6iu3kp19eCcuN2uafxl2TK2lpSwxe2Gqqo9jtuO0lJ2lpaywWTi68AC9GJNRuF2u1nidnMa8AfgH9l5g3Y7T86cSWkwyDVKhOQIAM8AT8XjbA0Gc8KttKSE8nCYWXV1jGhr44Qe6in6OfA7YJUQJMzm3Hl/gs/HlcXF+IYNo9rgnNjP0Hu1bu5QtKk4EuHazZs5S4X9KhQKhUKhUAA9KFaFEH8ElgDNUsoJPTVPTzLW7eZLL7zAh8OH8+mwYdjtdt0bgl719ZtAYQ/OP7Gigh9Nnqx7GsvLKbXb2Q58ksnwwrZtRK1WtLw8qsvLSQPbotG9xKfdZsNhtxMCTOk0tnSaIVYrpUDaYmFbWxt5ySTOZJI5RUUMRQ/3/fTjj7HH4zhTKbZkMpwNkJdHuLBQF58lJbgcDv7TAJmMQNLudB2Ky2XLvQeXy4XLZVzG6O7qyu0VgEuBPVuGDHK7+fq8efpxq6zEYrPxEfC62cxbQAZACAKFhdyjadwXiXCBycSXi4sN/UDYgG8BQ9Jp7kyn0cxm0mYz/ygvZ/u2bXzTZqPmGBatu4DHgkFezmQwOxx7eFJLIhG+HI+zuLycXYkE1bNnG+5lbAXuC4VY2qmAUkkkwinr1unVhd1uhho4rwb8OhjkWSn3mHNMYyMnr1/PLFXtV6FQKBQKhSJHT3pWHwV+A/y5B+foUdxuN+csXszMxkbCTid/ttloym57U9N4NxLhG8DZpaWYetCGjhfpw4HhJSXMGz16d7is0wmAJ5HguddfJ5PJYDKZOGvJEtxFRWCz4bHbd+/f7uF0OvHU1Ojrhw7FXVysry8rY9rcubn9H1y6NDd/Z/E5dCiYzUAazGbB6NG7hWpP0bm68r7ofNzOBM50uVgdjfLPWIwV2bzddk/0L4VgaV4e383PZ7LB9i4pLWVQOs1dQIvdjtfn43kp+bilhZ8dY9WCJbAG3ZP6H02jqUNOamlJCaXRKNM2b2ZsczNLFi/G7XYbHqqdBP4N/CkeZ1uHAkqDKyu5vrCQiW1tDO6B6sIbgP+JRlmZfc8BIRhRUcG3XS4G2mxUq2q/CoVCoVAoFHvQY2JVSvmOEGJoT43fW3QUPTOBh4F/dwi3/W8heNpu57L8fE5id3Gj3rSr47qzlizZLUo7bD9QeO3Bru/MoEHw1a9CQ4MuXAcNOuS30qtMqKxkAnoV49/V1/NUMknQbkdISX0yyY+AyaEQCxoaGF9ZaZh4mFxRwZ+Bm3buZGnWe+gpKOB6IThv82YudLkYcBQLlTiwFHgqGmVDMondbt8j3LwiGOQr8TiLSkvZFY9TPXNmjwi319ra+J2UBAsK9vDkjmls5Jt+PydPmgT7CE/vDingb8A/AX+Hyt/Dmpu53u/npEmToLS060EUCoVCoVAojkFUzuohYEcP6yxqaOA3JhPRvDyElGxJJvkl+gXpBcDJ9N2BPViRaSSDBvV/kdqZfOASpxPnCy+wctAglo0cid1uzxVDetnp5ORPPuHG6dMNO5524BaLhfS6dbw3ciQZkwl/NMojFgvPtbbyQ4uFUwyuNNvXLGtt5elYjDUVFcSFwJOt0hwQgtKSEoa0tTFlyxYG+/2csWRJj3hSAbYDvw6HeSUS0T250WguJ3buunUMCgQY1wM5sR+3tPBLKWktKsJms2G324ml05y4bh3jm5oY20N5uAqFQqFQKBRHA30uVoUQVwFXAQwePLiPrTk4TisuJvDyy6wYNIhVQ4fmWs00Afehi9bzgdMAa9+ZaRjFgwdze0OD4WP2NR3DvL/jdPKizcYzgQBIScJs5tXx48kkk/wYDOtvW+V2cyvwcWsrj5SUsCmZRAKtLhe3AX9rauICq5XTysqO2L6sXuBt4PlolOXZPGqam3E5nSAl5kyGsY2NfCUYZFpNDY1C9EgrIQAf8Ff0XsD+dDrn1bQlk5zT3MwF5eV4RowwfP4k8PtAgD9EIqSF0Ktwu93MsNm4xOUiWV1N9YwZKuxX0esIIQahp+dUoafwPySl/FXfWqVQKBQKxb7pc7EqpXwIeAhgxowZ8gC79wvcbjfnL1rECY2NFDmdLLPZ+Dd66w2AFuBeTePBcJiTrVYWFRZSi7HVg3uTG+68s69N6DE6eqLHAtOTSW6LxfA7HCAEn1dUcFU0ypcaGji+rOygxcW9t92Gf9u2LvcZHosR8vtpc7nICEEU+CT7+KnVSqWmUWO1UuhwALrA76//ixCwDHgxHGZ5Oo3NbifeIeRVSElFIsG0jRsZvXMn+ek007Ke1J4QbFHgz4EAT2UyiPz8nFczCIxtbOTETZu44PTTcbvdVBs8/1rg1+i5uWmhFx+zpNOcuWMH148YgaishMpKQ+dUKA6BFPA9KeWnQogC4BMhxGtSyrV9bZhCoVAoFJ3pc7F6pNLxIns4cA7wAnrhmOYOOa1/EoKXbTaqbDZmA7OBifRebqvi0DipvJw/pdP8JplkVbbw0eetrazJz2f+ihXcPHXqQYkr/7Zt3D506AH3C4fDtEYirLNaaTDtXaZLAEOsVirjcR7fsOFQ306Psr65mTeCQeqrqtjschHVNDxer+5JzYb5WjIZhjU3M2nnTq6aMwcxaRKN5eU95knV0D+Hj8VibM56yQmFcLvdHGezcZbTidVupzorVI0kgl7p98VOlX4H+Hycum4dF5988hF7w0px9CCl3IVejBspZUgIsQ6oQb/PolAoFApFv6InW9f8Db0dabkQYgfw31LKh3tqvr7GgR76uwR4cOdO/plKEbbZci1kfDYbLwIvAgXAccAJwBSOjlDhg6HJ46GuqQlHdTWWigp86GGaWwMBdoRC5BUXY3a5aI1ECEciFDqdFDqdxMNhksEg1S4XBVKS19LCcKAkFGJwD4ieoW43dwPvAD/JVotNC8GbtbXkJRL8BOP+Z+3VlcvDYYrr62kqKqK5sJCM0GWNBBqSSRrMZpam03ytrY1RoRDHFxRwfFkZToPsOBhCwPttbbwXibDZ5WJ1PA5WK3i9uK3WPQomDWxr4+xEgoUFBfjz8vboU9oTIjUJ/N3n4x9SknA6iScSOVvKQyEui0a5ZOxYRHk5lJcbOrdELx51fyxGXYdKv0MqK/lBQQG1bW3UnHyyCvlV9DuyRRCnondjUygUCoWi39GT1YAv7qmx+zN2dhfu2V5cTH1VFVplJVqHfULA68ALmoaMRhmdl8dEp5PhwDBgCJDXB7YfLhp6nqIfcgK0IRBgWzCILCkh6XLRGIuxMR4nU1wMsRhuTcNms6FpGp52D5jXS6mUeLMCkXic0kxm97LfD4C06lLRXlDA0C1bOL2xkSXV1YYX5pkH/CKV4oZwmFaXC4RgWXExVzQ3cxN6ZWGjcLlcTBw+nKGhEDKdZmUgQJvLRdi2uxWQBFaEw6wQgiciEdwuFwPSaUp9PsY6nYwrLsbW2kpy505GVFUd1vHY7vGwvrkZS3U1qbIyNgQCbIhEaCspodVkwtNeoCgUoj1mv/2GzHiLBVNdHcN37aI4kWBJNsyXHhRpGvAquid1fSik2xYOU1pSQmE8zsxNm6htauLUJUt6xKu5HXgAWA0EOgjk9kq/CyZNgpKSHphZoegeQggX8BRwg5QyuI/tR1w9CYVCoVAcfagw4B6gvXBPewuZCoeDtcD72Ucb6CItGyrcLAR1Fgu2rDAxAQPJ9lQFCtvaEI2NjKysZHAveGcy6II6gC5At3i9bPH5sJaXQ1ERvuy2ANAUj+PXNOx2e87+zgLUbbUSTyTIQC5/MR6PY7PZ9vDGCSmJZAvy7GsZuWdKc9xqZf2AAawHHm9r46zmZi6qrDQ0B3FiRQWPZDL8MpViZWEhXp8Pr5Rcnk5zs8XCF0pLD1oExVMp5j3yCFo6TSqT4fzaWu44+WRuffNN/r1hAyYhqHQ6efTcc5nndhMKhUik06wKBvUc2uzxg+yxCYdZmRWPbwaDlJrNeKNRKC7GHIsxKhYjLxZD83opLyqiuqKCeChEIBTCUViIzeUiEInQGokgCwoICcF2TYPCQohEKM3Lw9v+f2xpyRVIarfBLCUDfD6Gt7Zy7eTJjC8qwjNxIo1lZT0W5ttOFD1K4Rmy52IHoeiKx/liczPnFRfT3EOFjGLAQ4EAz0iJ1eHI5cSmNY0T169nVEsL41WlX0U/RQhhRReqj0sp/7WvfY7EehIKhUKhOPpQYrWH6Fw4ZkL2cSWwEfhrUxNvxmIEHI49xBvoYnFb9vGKpunerMJC0DQGxeOU2+0UQO5RmP2b9vsJtrVRWlpKcUkJkt3iRgI+vx+Pz0d+aSl5RUXE0S+640BrJEJrNEra5SLhcORep2kannAYLBYIBHB3FqXNzbmwR7fbvU8BGo/Hc/l7tmQSZyLB5PJyBgJmIdi0aRO2eBx7JsOM8eNZ++mnkMmAycTkadP45LPPiJnNaHl5RG02Wp1OPEVFhLNVmAHanE4eBZ5vbeVrO3awcOBAwwTKYLebe4Bfbd7Mo2YzGSFImM38ymxmI3o7o8KDGMdmNvPmZZfhyssjmU5z4iOPcMaoUXx/zhx+vGABAPd99BF3vv02v12yBJfLBUCZzUYoFOKjdBrX55+zvbiY5uJi4h3EY2dhnxaCraEQ0VhMD9WNRin0+Qi1ex/34cV2dTGekBKzlLhDIaq8XoZ4vXxx7FgkUD1pEu6sl7mnWye1Ac8DT8fjeDvcJLHb7SSTSabW1zN5507OPfNM3G43NQbbIoE3gd/GYmxsF/LBIAMqK7nIbmdBURG+QYOoPu44Ffar6JcIIQR6y/B1Usp7+toehUKhUCi6QonVXkYAY4Bv2u0Mev11wlYrbUVFDDrpJHxAPXrli3ax2Fn4BTUNYbfT1mlcTdPwBIO6qAyFcGcroO613WTat+hsa9MvvGOxnOjc1/wdRXX7NlMmQ34igTsQYExlJWYh2FJfjz0ex5VMsviEExhVVIRms9Ha1qZ73ZzZbMvCQjwTJuS80G63mxOdzj2Wj+uwDNDY2Igtk+Gz5mZejsdZU11NwqKfyq0uF3e7XLxcX89PgSEGCQYBXOxyEfnPf3hl/HgCTid2u523NI13IxGugAN6WYUQuPL0AO9kJkMynUYAhR3+T5FEYq8xcnmtmsa1M2fqx6KigkQ6zZ8+/phWp5OA00nh2LF8Fo0SstlIWSyk0+k9xol14bUWWa+1WUrsiQSF8TiT7Ha8W7ZQEIngjkT4ykknYamooDGZpHrMmF4VY5vRvaj/Ab2QU4ebJLUVFVzjcDCpoIDWigqqJ0/uEdvea23lt5kMnqKiPXJiq30+vh0KsXj8eHC7GapEqqJ/Mwf4CvC5EGJldt0PpZQv9p1JCoVCoVDsGyVW+wi3281ZS5bsFmXFxbltMaAB2AKsFIKlwSBhm414Xl6up2tnuhKVB9q+r21lNhtFwFCLhcbmZuyahjOZ5KQpUxgKFAPJRIL33n4bq6ZhNpn0HEXQBei4cbvfW3tBG7ebQfu4kO/sjTuYZYBxwAKPh882beKpeJzlw4aRNOt1ltdUV/M9s5mfoYdSG4Hb7eYbc+dyyq5dLK2p4U3IhXLfKQSv2Gx8x+lkQhdjpDMZpj/0EJu8Xr41cybHDRwIwP974w3+vGoVRTYbb112WZc2dDwWV86du/s4V1bikZLGxkbKqqvZFgjw1ooVJM1m0iYTw8eMYWNDAzKdxgpMmziRz1eswJJMkp9K8YVTT8XucLDL58vdKPDAHjcO2m3oDVLAB8A/IxFWplI5L2r7+VoYjTJjyxYuGTCAmVOn7vf86i7NwAOhEE+394yNxyktKcGZSHDChg2M9XiYoUJ+FUcIUsp3OXI7qSkUCoXiGEOJ1T5kfyGTDqA2+zizsJCvV1bS2NjIgKIiim02Qug5pcHs3xCwXUre376dFGASgkklJRRlxxNASAhWbduGKZXClslwwrRpDEAvCBVJpfjok0+wJBI4UynOP+00aoqyr3Y68QwevFuwdCwWU1HBgIUL9xIzXb03o3G73ZzudjPZ42FZfT2PWCxsrqwEIWiz2fiG38/XpeSSkhJDrs7a39fxwMANG3hAiFzV5/WpFLcAE8JhWnw+wuXluVDedswmEyuvuQZ/PM55//gHq5ubmVBZyV2nnMJdp5zCT//zH36zbBl3nHzyIdmzr+XBbjdl6TT19fUMHz6c2tpaPOXle3qx8/P3+v9V9cH/sSNNwCvAa2TbQGW9/u2h5pMtFgo++4whHg8Wk4nB06f3iB1h4AngOaAtk8nd0LGk0yxoa+OrhYV4a2qonjlThfwqFAqFQqFQ9ABKrB4BdBYMdqCi807FxZw7atRu4VHYKYuysBDP6NH7Fp1lZUyZM2efonNf8x/stt7E7XZzltvNTI+HZ4JBnna7acrmY/5MCOotFm4qKDC0yvJpxcWEXnqJj4cM4bOhQ7Hb7WiaxoteLyarleeDQY4zmRian7+XUC6225k/ZAgvb9q0R1XhSyZOZPFf/3rQYvVA1NbWUltbm1s+kNe6r9DQe2c8Ew6zPJ3ey4sqpGTUrl18ORzmnHHj8Bx33H7P1+6SBP7q9/M3Kclkw+nbc65HNjVxYl0dl556Km6327Awc4VCoVAoFArF3iixehRxIOFxJIjO7lLldnON282w1av5GdBSUICQktcyGbZHIlxYX8+EykpD3qvb7eYLZ5zB8Y2N2JxOXrbZeKa96A7gy89nqclEeSJBTShEcTpNaWEhxXY7sWSS17ds4aY5c6hra2NUWRkAz27YwFiD+4D2VyTwOXrBovcBv6bh8Xr38KJW5+VRW1/P2O3bKUwmOT4bbtsT52sqa8sfYzHWBYO5Fj1ut5tJNhtn5+dTYLVSnRWqCoVCoVAoFIqeRYlVxVHJlIoKLnjxRd4cO5b1NTWYTSY+amvjM4eDBcuWccOsWYYJ1o45tLOTSX7W0kIDgBAIIdgRi7HDbKaprY2/PfUUFsAkJReMH8+S0aP54hNPsKG1FZMQDCku5reLF3fbrv6KBDYA7wGvxWI0JhJ7eVEBhrS08KVYjEvGjKF13Dgai4t7rB1OBngH+Ct6cbOObXCKolEu2rqVy0ePRpSXwzFyI0GhUCgUCoWiP6DEquKoxO12c+6ZZzKzsZF1BQU8nE6DlMSsVl6cNIlkMskdgNPgeWeXl/PbdJofJZNMtNvZLGVOgFVVVnLL5Zdjs9txAlXxOOtbWvjTmWfuldt6NLHL4+E9r5eGmhpWFxbu7jPc0rKHF3WY1Ypj82ZG79xJUSLB6UuWYKbnvP4ZdI/uw9Eom5PJPdrgJJJJpm/ezOSdO1m8eLGqRqNQKBQKhULRByixqjhqaRc504DBra3crGmEbTYQglUVFXwH+C50Wb33cOetKSnhRJuN2kiE930+WgoK0KxWLNkWO8FUikZNA6sVayLBSE1jiM2WK3p1pNMErAT+EwrxejhMPD8f/H7cNtseXlRbMsnoXbs4P5uL2jx+PI0lJT3mRQU93Pcd9OJJ9ZqGp7U1J5qHVVZypd3OrIICvJWVVE+ZokJ+FQqFQqFQKPoIJVYVxwRzy8v5SybDr5NJ1pSXY7PZaAa+p2kc39TEN+z2Hml7UuZ0cnJFBaFQiER+Ps0WC1uBUCqV87gmTSa2SEkjkE6lcGgabouFGpuNMqCQ/t1nIgVsRe+F+kkwyMeJBOGCAmw2G4FMhrjFskdbpHKbjeOFIL5iBTWtrViFYPaSJQh6Nnd6h8fDM6EQ79fUEHI4gN1tmyzpNFMbGrjC5+OEyZNBFU9SKBQKhUKh6HOUWFUcMwyvrOSXwH+AB4A2TcPj8fAM8Kbfz41WK2eXlhouDF0uVy7MdwgwHdicybAyHCbgcJC0WLBYLKRTKcKRCGEpaUmlaDCbMVssWIGCRIIV4TCP+3xMKCmhBiijd0VsAvBkH+t9PlaHw/hKS2l2OkmRDe31+3URHo3idrtzVXRd8TjDW1u5wuXiJMBcWIhn9uweq+jbkRDwN7+fR4NBInl50NKC2+3GZrNRYrMxuqGBSVu24EynGTF+fI/ZoVAoFAqFQqE4NJRYVRxzzEUvhnSL14snW0gnaLfzC7OZd4FvAGN6cH4TMCo/nwGZDKFQiLTDQcBioS4cJpK1BylJpVKYLRbiqRStsRjbgJ+FQriz7VTygOJoFGsgwECnk0GFhRQBxYC3vp6WbdsYNnAgtSNHYgWsgK+5mcZduygfMICSykpS6K1adrW2sq21FXtlJZbSUoLofXx3hkJsj0aJFRYSy3ojNU3DEwrporStDbfFskdorwSsqRTDvF7OHDCAGocDU1sbNSNG4M5WPYaer0C9A/g3eoXfFiGI5OXlPLzmSISv2GwsttsJjx1LY2Fhj4tmhUKhUCgUCsWhocSq4pikDLjTZOL/1q3j/ZEjieflYbfbWQ/cCMwDLgMquxyle3T0uA5E97qua2ggnJdHxOHAXlNDCPB3CBkmG0prs9kIaRqbsvmWJJO5fNBwKESb2QzDhunvNRTCVVCgi8x4HIqLIR7HrWnYbDZ9fTQKDgeEw7idzt3rs71q0bScN7KjKI0ut1L3mWTCIpg7wYR30yYqfT6qg0HOXbwYN0BFhf7oBSTwKfCPcJgPO/Rr7ejhnbZtG9+fOJEh2dc4j5K2TQqFQqFQKBRHG0qsKo5Zqtxubp46lc1NTXxUUcE7Nhup7LbXNI2XYjEWmkx8tbCQAYc4dvHgwdze0HDINsVsNqLRKPlC4GhsRAKBWIzNra2UVVdTvmsXZeXl+IHtHUSj6CBiI9HoHmNGolFcBQV7iMyO+x/s+kQsxiCbjRFmM57GRmIfW3jh+1PJpM14fg4/fKOA4RMm9Epob2f8wGvAy8D2ffRrrbXZuNrlYnBbG4MnTlTiVKFQKBQKheIIoEfFqhBiEfArwAz8QUr5vz05n0JxqLSHop4AXAz8CXgjm8uKlPxVCN602TjJZuM8oPYgx73hzjsNtdPj8ewWgU694c5mTePvy5YRtlqJ2+3UHn88ABuBtV4vSbOZtMlEZWEhLsCRl4eW9dKapWRQXh6FgNtqZVswiCWVIj+VYmZJCQOBTCbD6tWrscfjFMXjXHTqqVQDuFx4hg/nJ39NI9NmMmlBIgFLl8Ls2b3npZTAW21t/DseZ2NZGRa7Xke5Y7/WYc3NXBqJcH5tLaK0FEpLe8U2hUKhUCgUCkX36TGxKoQwA/cDp6Gnj30shHhWSrm2p+ZUKLpDFXATMHLzZn6XStFUVISQklg8zgc2Gx+g57J+ATgePfe0t9hXfueIykq+MW/ebhFbXNy+M+u8Xurr6xk+fDi1JSX6eocDj8u1e/9sDir5+XgqK/X1gwfjLizU15eU4JkxY5+eUrfbzSWXwMMPQyIBeXkwf37PHoN2dgBvAS/GYqyNRHRh2tycC1Muz8tj+LZtjN+2jdJ4nHnZSsMKhUKhUCgUiiOLnvSszgI2SSnrAYQQfwfOAZRYVfRrTiwrw/f882wrLmblsGHEq6py2zYAt2sa+eEwp1ssnFNURE3fmbrfIkW1tbXU1u7tB97f/oe6HmD2bHjjDd2jOn++vtxTbGpu5oVQiHVVVezMepYDicQeYcrVfj+Xud3McTjwjR5No8uliiYpFEc5Q9/Tbxs2zMn0zPg3v6CP/7+LD2q/dg60f3+ip4/hkWaHUfS399MX9vTlMehvx78nONjvp556fW/Rk2K1BtjeYXkHcFwPzqdQGILb7easJUtobGzkW9XVaDYbz6B78yIdQoR/JwTP2O1MsNk4Gb3KcHFfGt4HzJ7dcyI1AHwIvBIO81YsRsZi2aP6sN1uR0ulGNXYyKTGRi6bP592WdrTlYYVCoVCoVAoFD1PT4rVfUXeyb12EuIq4CqAwYMH96A5CsXB01nsfAf4CvCbXbt4LpUibrXmihHV2WzUAX8ARoXDjN61i1OKihhR2ZO1hI9OvOgC9T3gc/QvjEA6TSb7XEhJKhbjZJuNk202BrlcNLtcVM+fr8SpQqFQKBQKxVFGT4rVHcCgDssDgcbOO0kpHwIeApgxY8ZeYlah6C+UAFc5HFS++CL1ZWVsrKlB6yCQYprGa14vr+Xl8UAsxuxIhHlOJ9OAUfRujuuRQgpYD6wE3otEWJtKYcu2m2mnve3MAJ+PsU1NfGfqVEa0b3S7qVEiVaFQKBQKheKopCfF6sfAKCHEMGAncBFwSQ/Op1D0OG63m3PPPDNXdCjfbuc9YCnwfodWLwBrUil2AH8FCoApwHCfj5IdOxhfWUnVMSiyJPpdrBXoAvVzIA56T9e2Nr1YUrbdjN1moxaYY7Mx0m5Hy2SonjIFt/JYKxQKhUKhUBwT9JhYlVKmhBDXAa+gt675o5RyTU/Np1D0Fp1DhBdlH6s1jfs3baK+vBxPcTH2bCsVgBDwuqbhCYWgsBBHKKR7XV0uRgOjAVcvv4+eRgJtwGZgU/axOhbDk0hg7+Q97dhupqatjUXJJF8eMYJco5nKSv2hUCgUCoVCoThm6NE+q1LKF4EXe3IOhaK/MKGyktsnTKCxsZFCh4NdNhufAJ+i52LGO3heY1YrH6bTrOvw+pJolDKfj1qnk/HFxVQDAwD7Pubqb0QAD3p/15XBIP7ycppcLgId9tE0DU9LC0hJIOs9tdlsuIEThCCwahU1bW3kp9MsWbIE1RFVoVAoFAqF4timR8WqQnGs0dHrOgI4Ed3DuBV4Q0qe8XppKiwkYbXu4XnVNI3PWltBSt4MBnE7HDnPYzlQDRQEg1hbWxlRXMyw0lKK0asPF9Bz+bASiKJ7hoNAfVsbdX4/6fJy4kVFNKGL1HD2PXjCYRACvF7cVus+vad5qRSD2tpYkEzyxREjGABQWIhn1qx99nRVKBQKhUKhUBybKLGqUPQwAhgKfL24mCXV1exsbMQ0cCBem42NwEZgZSy2R8/QeDyeE3qtwE5Nw+P3g9kM4TBupzO3XQCF6MI12dpKpK0Nd0kJNZWVWABrh0csEMDr8+EqKSG/qIgkkEQvdJQEfOEwzeEwFBaSys8nCKSz70PTNDyRCFgsEAjg3k8ob8f3UGyzMQJduJem02x+/30Kw2EsJhNLliyhoyRV7WYUCoVCoVAoFB1RYlWh6EU6C7IF2b/bNY0/f/wxHpeLgNOJu6yMANAEZNi3EGwXihK9J+nOUIi2SATsdojFKAuFcBUU5ObSNA1PIKB7PvchNjVNw+P16rmjra25MN12urIhDxhmteJra6MkFKIqHObiWbOYTIceVqWleBYsUN5ThUKhUCgUCsVBocSqQtEPGOR28425c3cLOZdebikFNAOrUime37gRv8NB3GajurycJLpIDWXHiESje4wZiUb3EKtdic2uttvQPbcDLBZ2eb3kx+MUx+OcPnky4wA3elsfkZ+Pp6ZGfw9jx+KuqNjrfSrvqUKhUCgUCoXiYFFiVaHoJ+xLyFnQ81Wry8qYOmnSbjHrdOb2SaHnky4PhXjns89Im0ykzGbGTZ5MNeRCfVuk5OMtW5CZDBbguGnTKGd3iHAonWbZqlVYEgny02nOnj+fkeheUwCcTjzV1boNw4fjLt27BJISowqFQqFQKBQKo1BiVaE4QtifELQApcDpI0cyKJmkvr6e4cOHUztkyJ47FhdzTm3tbsFbXLzn9tJSZncscrSPVjFKjCoUCoVCoVAoegslVhWKo4ja2lpqa2v3u/1AYlOJUYVCoVAoFApFf6GnOl4oFAqFQqFQKBQKhUJx2CixqlAoFArFMYQQYpEQYoMQYpMQ4ua+tkehUCgUiv2hxKpCoVAoFMcIQggzcD9wBjAOuFgIMa5vrVIoFAqFYt8osapQKBQKxbHDLGCTlLJeSpkA/g6c08c2KRQKhUKxT4SUsq9tyCGEaAG29tJ05UBrL811tKKOYfdRx7D7qGPYfY7WYzhESrl3w99jGCHE+cAiKeU3sstfAY6TUl7Xab+rgKuyi2OADQaZcKSfa0ey/Uey7aDs70uOZNtB2d+X7Mv2Q/pt7lfVgHvzokIIsVxKOaO35jsaUcew+6hj2H3UMew+6hgeU4h9rNvrrrWU8iHgIcMnP8LPtSPZ/iPZdlD29yVHsu2g7O9LjLBdhQErFAqFQnHssAMY1GF5INDYR7YoFAqFQtElSqwqFAqFQnHs8DEwSggxTAiRB1wEPNvHNikUCoVCsU/6VRhwL2N4eNMxiDqG3Ucdw+6jjmH3UcfwGEFKmRJCXAe8ApiBP0op1/SiCUf6uXYk238k2w7K/r7kSLYdlP19Sbdt71cFlhQKhUKhUCgUCoVCoQAVBqxQKBQKhUKhUCgUin6IEqsKhUKhUCgUCoVCoeh3HJNiVQixSAixQQixSQhxc1/bc6QhhBgkhHhLCLFOCLFGCHF9X9t0pCKEMAshVgghnu9rW45EhBDFQognhRDrs+fj7L626UhDCPHd7Od4tRDib0IIe1/bpDj6ONJ+d/f3OyeEKBVCvCaEqMv+LelrW/dH59+XI8z2vb7bjzD79/pe7c/2CyH+KIRoFkKs7rBuv/YKIW7JfpY3CCEW9o3Vu9mP/T/Pnj+rhBBPCyGKO2zrN/bvy/YO224UQkghRHmHdf3G9qw9+7RfCPHtrI1rhBA/67D+kO0/5sSqEMIM3A+cAYwDLhZCjOtbq444UsD3pJS1wPHAt9QxPGyuB9b1tRFHML8CXpZSjgUmo47lISGEqAG+A8yQUk5AL7hzUd9apTjaOEJ/d/f3O3cz8IaUchTwRna5v9L59+VIsn1f3+1HhP1dfK/2Z/sfBRZ1WrdPe7Ofg4uA8dnXPJD9jPclj7K3/a8BE6SUk4CNwC3QL+1/lL1tRwgxCDgN2NZhXX+zHfZhvxDiZOAcYJKUcjxwd3b9Ydl/zIlVYBawSUpZL6VMAH9HP6CKg0RKuUtK+Wn2eQj9R6Smb6068hBCDAQWA3/oa1uORIQQhcA84GEAKWVCSunvU6OOTCyAQwhhAfJRPTcVxnPE/e528Tt3DvCn7G5/As7tEwMPwH5+X44U2/f33X5E2J9lX9+r/dZ+KeU7gLfT6v3Zew7wdymlJqXcAmxC/4z/f/buO76t6nz8+OdIsjW95KHYMc7ee5JBQghkQNJQWijzW0bL6KCBfvttof3RAi2FFkopLbNltGWV1UIZaVhhlBFCyF7OcBLbsWzJtvbW+f1xZUfOcIbllZz36+VXrKurc48UWbrPPc95Trc5VP+llMullPHUzU/R1pSGHtb/w7z2AL8HfgykV8LtUX2Hw/b/O8BdUspIap/61Pbj6v/JGKz2Bfam3a5GBVrHTQjRH5gAfNbNXemN7kP7IEp2cz96q4FAA/BEKtXtL0IIa3d3qjeRUtagXfHcA+wDPFLK5d3bK+UE1Ku/dw/4nnNIKfeBFtACJd3Ytfbcx8HfL72l74f7bO8V/W/nc7VX9D/N4frbG/+erwLeTP3e4/svhFgC1Egp1x5wV4/ve8pQYJYQ4jMhxPtCiCmp7cfV/5MxWBWH2KbW7zkOQggb8BJwg5TS29396U2EEIuBeinlF93dl17MAEwEHpJSTgAC9Ky0qh4vNQfpXGAAUAZYhRCXdW+vlBNQr/3e7Y3fcyfA90uv/mw/CT5Xe9XfsxDiZ2hp/U+3bDrEbj2m/0IIC/Az4OeHuvsQ23pM39MYgAK0KRT/BzwvhBAcZ/9PxmC1Gjgl7XY5Ku3tmAkhstC+wJ+WUr7c3f3phWYCS4QQVWgpcXOFEE91b5d6nWqgWkrZMqr/ItoJjnL0zgJ2SSkbpJQx4GVgRjf3STnx9Mrv3cN8zzmFEKWp+0uB+sM9vhsd7vulN/QdDv/Z3lv6f7jP1d7S/xaH62+v+XsWQlwOLAYulVK2BEU9vf+D0C50rE39DZcDq4UQfej5fW9RDbwsNSvRMjyKOM7+n4zB6ufAECHEACFENtpE31e7uU+9SurqyGPAZinlvd3dn95ISnmzlLJcStkf7T34rpTyRLry2umklHXAXiHEsNSmM4FN3dil3mgPME0IYUn9XZ+JKlKlZF6v+95t53vuVeDy1O+XA690dd+OpJ3vlx7fd2j3s71X9J/Df672lv63OFx/XwUuEkIYhRADgCHAym7oX7uEEAuBnwBLpJTBtLt6dP+llOullCVSyv6pv+FqYGLq76JH9z3Nv4C5AEKIoUA24OI4+2/ovH72TFLKuBDi+8B/0Cq0PS6l3NjN3eptZgL/A6wXQqxJbfuplPKN7uuScpK6Hng6dQK8E7iym/vTq0gpPxNCvAisRkuT+hJ4tHt7pZxoeun37iG/54C70FLavoUWlFzQPd07Lr2p74f6bNfRC/rfzueqjR7afyHEs8AcoEgIUQ38gsO8X6SUG4UQz6NdQIgD35NSJrql4ymH6f/NgBF4S7tmwKdSyut6Wv8P1Xcp5WOH2ren9R0O+9o/DjwutOVsosDlqZHt4+q/2D8qriiKoiiKoiiKoig9w8mYBqwoiqIoiqIoiqL0cCpYVRRFURRFURRFUXocFawqiqIoiqIoiqIoPY4KVhVFURRFURRFUZQeRwWriqIoiqIoiqIoSo+jglVFURRFURRF6QJCiNuFEGcdYZ85QogZXdUnRenJTrp1VhVFURRFURSlO0gpf34Uu80B/MDHndsbRen51MiqoiiKoiiKclIQQvxYCPGD1O+/F0K8m/r9TCHEU0KIh4QQq4QQG4UQt6Xd98+0NuYJIV5O/e4XQvxOCLFaCPGOEKI4tX28EOJTIcQ6IcQ/hRAFqe1PCiHOT/1eJYS4LfXY9UKI4UKI/sB1wI1CiDVCiFld+PIoSo+jglVFURRFURTlZPEB0BIATgZsQogs4DTgQ+BnUsrJwFjgdCHEWOBdYERLIApcCTyR+t0KrJZSTgTeB36R2v434CdSyrHA+rTtB3KlHvsQ8CMpZRXwMPB7KeV4KeWHmXjSitJbqWBVURRFURRFOVl8AUwSQuQAEeATtKB1Flqw+g0hxGrgS2AUMFJKKYG/A5cJIfKB6cCbqfaSwD9Svz8FnCaEyAPypZTvp7b/FZh9mP68nNav/pl4gopyIlFzVhVFURRFUZSTgpQyJoSoQhsd/RhYB5wBDAJCwI+AKVLKJiHEk4Ap9dAngH8DYeAFKWX8cIc4xi5FUv8mUOflinIQNbKqKIqiKIqinEw+QAtKP0AbTb0OWAPkAgHAI4RwAGe3PEBKWQvUAv8PeDKtLR1wfur3S4CPpJQeoCltvun/oKUIHy0fkHNMz0hRTlDqCo6iKIqiKIpyMvkQ+BnwiZQyIIQIAx9KKdcKIb4ENgI7gf8e8LingWIp5aa0bQFglBDiC8ADXJjafjnwsBDCkmrrymPo37+BF4UQ5wLXq3mryslMaGn4iqIoiqIoiqIcjhDiT8CXUsrH0rb5pZS2buyWopzQVLCqKIqiKIqiKO1IjZwGgHlSykjadhWsKkonUsGqoiiKoiiKoiiK0uOoAkuKoiiKcoIRQjwuhKgXQmxI22YXQrwlhKhM/VvQnX1UFEVRlCPptGBVCDFMCLEm7ccrhLihs46nKIqiKEqrJ4GFB2y7CXhHSjkEeCd1W1EURVF6rC5JAxZC6IEa4FQp5e5OP6CiKIqinOSEEP2B16SUo1O3twJzpJT7hBClwAop5bDu7KOiKIqitKer0oDPBHaoQFVRFEVRuo1DSrkPIPVvSTf3R1EURVHa1VXrrF4EPHuknYqKimT//v07vzeKoijKCe+LL75wSSmLu7sfvZEQ4hrgGgCr1Tpp+PDhmWm4qQni8cy01dkMBijoQdN6e9NrpxxZV76/esJ7p7Ofb094jserp33WdLJj/W7u9GBVCJENLAFuPsz9rV+IFRUVrFq1qrO7pCiKopwEhBAqm6ctpxCiNC0NuP5wO0opHwUeBZg8ebLM2HfzQw9BeXlm2ups1dXwne90dy/2602vnXJkXfn+6gnvnc5+vj3hOR6vnvZZ08mO9bu5K9KAzwZWSymdh7pTSvmolHKylHJycbG6AK4oiqIoneRV4PLU75cDr3RjXxRFURTliLoiWL2Yo0gBVhRFURQlM4QQzwKfAMOEENVCiG8BdwHzhBCVwLzUbUVRFEXpsTo1DVgIYUH7Qry2M4+jKIqiKMp+UsqLD3PXmV3aEUVRFEXpgE4NVqWUQaCwM4+hKIqiKIqiKMqJKRaLUV1dTTgcPvxOkyaBXt91ncokhwM2b+7uXmScyWSivLycrKysDrXTVdWAFUVRegQJxFI/ESCa+qlxuahtaKCwpISCwkKSQAJIAg2NjTS4XBQXFVFktyMAgTaPosntxt3QQFlREaVFRWQDWUA20Fxfj6u2ln6lpfRxOLrh2SqKoihK71ZdXU1OTg79+/dHCHHonerrITu7azuWKdEolJxYK4lJKXG73VRXVzNgwIAOtaWCVUVReh2n08nuffuwlpVhKinBA3gAb+rfaq8Xp89HVl4eOpuNABAEQkBTJEIoHMZkMmE0GgGIRCI4g0GwWCAQwGGztb3P7wejEfx+HFZr2/sCATCbIRjEEYm0vS8choICdOEw/cNh7CYTFsACJP1+Yh4P5Tk5nJKbSx6QC+QBsYYGArW1DOrTRwW5iqIoykktHA63H6gqPY4QgsLCQhoaGjrclgpWFUXpkXbU17Pe5ULfpw9xu50GtHU2dgeDrPP7CRcUQDjcJkCEVJDY3AxSQmMjjqystgGk0wlS4hECh8OB0WjUUoukRAJCSsLhcOtjMnFfEnBHIsRNpv39aGzU+tjcjMNobNvHUAjy88kKBhkVDNLPYqEYWn90bjeypoaRDocKZhVFUZQTngpUe59M/Z+pYFVRlG5T7XSy1uUiWVpKyG6nFqgGdoZC7AiHwWo9aDTTE4sRNhgOGSDC0QWQumQSQzJJViBAidFIYVYW1X4/+ngcPTC0sJAcQA8E9XoqXS5IJkEIhhUWaiOjgE+vZ1tjo5YurNdTUVSEAS3F2JydTSQeJ6bTkdDrMaUC1aPtowRiOh27YjEa016z1tHcvDyygkEmBgIMtVopB04BjA0NJKur6VdWhkMFsoqiKIrSYXfccw/PvPQSep0OnU7HI7//PXfddx+7du/GHwjQ4HIxoF8/AB685x5mnHpq62Ov+v73ee0//6GkqIgNn3zSuv3/brmFf//nP2QbDAwaNownnniC/Pz8g469bNkyli5dSiKR4Nvf/jY33XTTQfts3bqVa6+9lubmZiKRCLNmzeLRRx9lxYoVnHvuuQwcOJBwOMxFF13EL37xCwDuvPNOHnvsMfR6Pffffz8LFiw4qN21a9dy3XXX4ff76d+/P08//TS5ubmt9+/Zs4eRI0dy66238qMf/ei4X9/2qGBVUZROJ9FGRauA3cAuYHMwyNpwmKTNdnBAGo0eNpgzmUx4hECfTGKOxRialUUftPTZPLR5Epu2bCE7GsWUTDJv5kwq0FJv/ZEI77zzDiQS6HQ6Fi9ejAPAYsFZVERtbS1lZWU4bLb9nbfZcJaXH/6+sjLtPocDh9W6/z6zGafNRm1tLSVlZeQajQSBALAnFuPtNWsI6fVETCaGTpmiPW+g1mBgYzhMICuLuMHQJsiFg4PZLfE4+1L3tYzKioICilwu5prNTMzNZTDQH/WBryiKovR+/W96PaPtVd00s937P1m5kteWL2f1ihUYjUZcbjfRaJR/PvUUACs++oh7/vhHXvvHPw75+CsuvpjvX30137zuujbb551xBnf+4hcYkkl+8rvfceedd/Kb3/ymzT6JRILvfe97vPXWW5SXlzNlyhSWLFnCyJEj2+z3gx/8gBtvvJFzzz0XgPXr17feN2vWLF577TUCgQDjx49n8eLFmM1mnnvuOTZu3EhtbS1nnXUW27ZtQ39Akapvf/vb3HPPPZx++uk8/vjj3H333fzyl79svf/GG2/k7LPPbvf16yh17qIoSkZJwAlUpv1sDIdpjkTazBP1xGIkU/sfKiANJpPkBoPkhcPMKChgMKk0WKMRaTIRrKmhb1kZDoulbQfy83GOH78/uCwqar2rpKQE66JF++9LG3l0OByHHYnM1H05qX8HFhUxYtq0/f3Iy9v/IKuVXz3yCM7KSrItFjCbCQNhtIJQuliMhM9HxGAgodMRN5tpSn25xKJRdNEoAG7glexs3kgVnEhUVDDuJz+hoLGRU61WzrDbSTuqoiiKoiiHsM/ppMhubz1HKSo8toVOZs+cSdWePQdtnz93rvZLNMq0adN48cUXD9pn5cqVDB48mIEDBwJw0UUX8corrxwUrO7bt4/y8vLW22PGjDmoLavVyqRJk9ixYwc7duzgoosuwmg0MmDAAAYPHszKlSuZPn16m8ds3bqV2bNnAzBv3jwWLFjQGqz+61//YuDAgVjTL9R3AhWsKorSIWFgC/Cxx8OaYBBXfj4xs7n1/kgkgrO+/qB5oi0jpHnBIPZgkNMLChgB9AXKjEbiFgv7mpspKy/HkZZyAmhV89qpnHe8wWVXaq8f8cZG/jhp0mEf6/f78fl8ZOfmkrBa8aIVl3JFo1R7vUQMBhACm9WK3qB9zP9pxw4+cbtBSt7w+3nQamWY0cg4YCwwGm30WVEURVGU/eafcQa3//a3DJ08mbNOP50Lv/Y1Tp/Z/mjssXr88ce58MILD9peU1PDKaec0nq7vLyczz777KD9brzxRubOncuMGTOYP38+V1555UEpxW63m08//ZRbbrmFDz74gGnTprVpt6am5qB2R48ezauvvsq5557LCy+8wN69ewEIBAL85je/4a233uKee+453qd9VFSwqijKMQkAm4ANwEZgOxCMRHB6PFrBoIaG1oAU9qetGmMxinw+JgKzKyroZzRiMhppdLsp69v34IBUFQ86LJvNhi0tHbk1bM/Oxm8y0eT3E8/NJWww4AYa0VKJDkytrjIaqQJeQVuGpywQoLyhgbOtViYWF3ftk1IURVGUHshms/HFihV8+MknvPfhh1x41VXc9YtfcMUll2Sk/Tt+/3sMBgOXXnrpQfdJKQ/adqjCRVdeeSULFixg2bJlvPLKKzzyyCOsXbsWgA8//JAJEyag0+m46aabGDVq1FG3+/jjj/ODH/yA22+/nSVLlpCdytb6xS9+wY033tjmXKSzqGBVUZR2SbSAdCXwfiDA1ngcY1o6LxxcMEgEg4w3GhkCFCYSVH74IZZQCH36PFEAh4N+KiDNqAMD2RYrEglyVq+mJi+PmqIibRHyNKFIhI/dbhCC50MhJgeDLLBYmAWUdlHfFUVRFKUn0uv1zDntNOacdhpjRo7kr88+e8hgdW91NV+5+GIArrvySq676qp22/3rs8/y2ltv8c4HHxwyWCwvL28dzQRtzdmysrJDtlVWVsZVV13FVVddxejRo9mwYQOwf87q8bQ7fPhwli9fDsC2bdt4/XVtvvBnn33Giy++yI9//GOam5vR6XSYTCa+//3vt/t8j4cKVhVFOUgEWIMWoK5CG5mLRCI4U2mkpKXzAhjuuovCNWswR6OYYzEGlZaiN5vZCewEQqEQwWAQi8XCQx9+2KG+5VdUcMPtt3eojd7oD59+yp9Xr0YCV0+cyA3TpnHLu+/yytat6ISgxGrlya9+lbKcnEM+Ptds5jszZrQWg8ozmdgIrAPWAl8ecMGhMhajHvg7MAQY29xMxZ49jOohadSKoiiK0hW2Vlai0+kYMmgQAGvWr6dfWmpuulPKy1lzlOc5y95+m9/84Q+8//LLWA6sv5EyZcoUKisr2bVrF3379uW5557jmWeeObitZcs488wzycrKoq6uDrfbTd++fdmyZcsh212yZAmXXHIJP/zhD6mtraWyspKpU6cetF99fT0lJSUkk0l+9atfcV2qSNSHac/x1ltvxWazdUqgCipYVRQlJQa81tjI8kiEvQUFiMNUoQUo8XiYLiXn9OvHSOB3+/bxo1Gj8Pl85OTkdGpayK1VVZ3Wdk+1ob6eP69ezcqrryZbr2fhU0+xaMgQ/m/mTH6ZKtBw/2efcfv77/Pw4sWHbefAebKTUj8AOyIR/rx+PZUlJVQVF7epQrwhEuEdrxfy8hhQXc0NBgOnFxaiVr1TFEVRTnT+QIDrf/xjmr1eDHo9gwcO5NH77jvqx1/8rW+x4r//xeV2Uz5qFLfddBPf+p//4fs//jGRSIR53/gGGAxMmzaNhx9+mNraWr797W/zxhtvYDAY+NOf/sSCBQtIJBJcddVVjBo16qBjLF++nKVLl7Z+d99999306dPnsMHqqFGj+MY3vsHIkSMxGAw88MADrZWAv/3tb3PdddcxefJknn32WR544AEAvva1r3HllVce46vXcSpYVZSTXC2wDHg9FGK7368FpPX1bUZOc4EpOh3Bdesob2jALGXbdF4On36qdNzmhgamlZdjycoC4PR+/fjnli38OK3AQyAa7VDwOKikhBunTKG2tpYCi4XdRiMfAKsBT9qo666iIn5uMDAJOA+YibYeraIoiqJ0haq7Fh28sb4eUvMpM23S+PF8nEqFPZSW9ODDefaxxw65ffvq1dov0WibopFlZWW88cYbrbfPOecczjnnnHb7eO+993Lvvfce3Lc5c5gzZ84hH/Ozn/2Mn/3sZwdt/8tf/tL6+9KlS1m6dGm7x7711lvbvb+jVLCqKCehOPAZ8CZaCigcvLZpvtfLouJipgLDAF1ODs6pUw+57IvSuUaXlPCzd9/FHQxizsrije3bmVyqzST92Tvv8Ld168gzGnnv8ss7dJz0kdf+wOmAH3gjmeTvjY3ssdtBCEwmE9uBu4G/AkuA+YD50M0qiqIoiqIcFxWsKspJxAf8zePhjUSCmNXapkiSyWRChsOMrK5mmNPJpWeeyYHh6LEs+3LVK6/w2rZtlFitbPjudwFoDIW48MUXqWpupn9+Ps+ffz4FZjNPr1vH3R9/3PrYdU4nq6+9lvF9+hz3c5XArvp6djid5JWWYikqIggEgZqmJvY1NWErLMScl0cUiAIun49Grxdbbi7mnBySQBLw+v14/H7ybDasNhs6QKBV0A34/YQ9Huy5uRTm5JANZAEhj4eg203fggL6FhRgRlsaJtDQgH/fPoY4HJxylK/liOJifjJzJvP+/nds2dmMczgw6HQA3HHmmdxx5pnc+eGH/GnlSm4744zjfs0OxQZ8o6CA06NR1jQ08GVFBZ8bjURT99cDfwGeCIeZtm8fl1kslKsLGYqiKIqiZIAKVhXlJBAA/gX8Ixxmd8sSM34/DocDk9HIVGCh0Ujf/HzqgkHKRo/u8MjpFePH8/2pU/nmP//Zuu2ujz7izAEDuOm007jro4+466OP+M28eVw6diyXjh0LwHqnk3Ofe+6wgaoEPGhBUkPq3x1eL3t8PkReHtXrbexYAcbpEUIDw5CbC8EgjkgEo9GoFYry+UCvB48HR6qycSQSwdnUpL02TU04srP3b29s1LZHoziyslqD/Db3HfgYj0c7hs+Hw2LZvz0Ugrw8iEToFw7jMJnIA/R+P6KpiYE5OexLPS8r2milDvjWxIl8a+JEAH76zjuUH7DUzyVjxrDomWcyHqy2cDgcLHA4WJB6/d8AXkNb37VlLd1dOh3LGhu5Ta/n9KKiTumHoiiKoignj04NVoUQ+WgX3UejnWNeJaX8pDOPqSjKfmHgVeBltIDVE4m0pvrawmHm7NvHNf370xpWOByUZmhUbHa/flQ1N7fZ9srWraxIpapePm4cc/76V34zb16bfZ7dsIGvDxvG7ro6yM0lbrHgQwuKGmMxlkejfJIKPCEVKDU3g5QE3vKz61IryahAl53NgKeysEyKtq4rajQaD1pm53i3w8FL9hxrW82RCNJkYnd60Ov1Yk0keDv1eiTicbKiUUQkwpCCAvweDy9s3syyiy/mv1u2MK68HJvNxqtbtzK8iwLEPOBi4OvAu8CffT6cqefVZLFwS1YWFwJXoAXciqIoitIRUspDLu2i9FyHWsv1eHT2yOofgGVSyvOFENloWXCKonSyGPB0czPPJ5PE09J9TSYT+mCQKZWVDHG5WLJoEV05/uX0+ylNLa1SmpNDfSBAHGhO/XiAJzZs4NpzzuENkwliMWzxOHqDgUQ8jj8YJByNEnQ6WwtApQeAgU+MJKNAApJRCH9ipM8oL8Z4nBFFRRQDCZ2OHTU1GOJxspJJpo4fTwkQSCb5cuNGRCKBHpg9cyZFQFM8zsdffolMJBA6HafNno0d7eqbKx7ng7VriQNJg4FJ06djA+ql5LOdO4nodMSzshhot6MHGgwGNgcChLKyCGdnt1btOzCITSQSgBao+gMBkJLfvfgioWgUg17PxQsWsNxg4C+ff0798uWYDAb6FxTw0KJDFJ3oRNnAQmBcIsFdW7fy38GDiRkMmEwmlqEtfXQtMB1U5WBFURTluJhMJtxuN4WFhSpg7SWklLjd7jYrCxyvTgtWhRC5wGy0i+tIKVumhSmK0onWAb8LBlnj9bZJ9+1vNHKJ0cgwu526U06h7NRTu6VIUgPauq1utKD67+EwBoMBvcHA9upq9AYDjuJibWcpiaeC1Xg83rp0TnYsht3rZWRxMSYhqKqsxBIK0WjP5Zms2cSB7GzBI3OgLBjUCkJZU2N8OTk4Bw3aXygqP1/bXlDAWZMm7d9ut2vbCwsZP336/u2FhfufTGEhE049df99BQXa9vx8Fo8cuX97y9qnVivOwkJqa2spLSvDajTiBXbEYry5bh2+7GwCZjNuISgCXKmiVwD/e8EFmEwmjCYTkXCYcDjMt7/yFYDW7SuBL2MxbKEQ5VlZ9DebsdH5gWKpw8FPx41jo9PJ8oED2Zi6ONII3AmM8vtZsHMnI9UarYqiKMoxKi8vp7q6moaGhsPv1DK9pzdKJMDt7u5eZJzJZKK8vLzD7XTmyOpAtPPSJ4QQ44AvgKVSykD6TkKIa4BrACoqKjqxO4pyYvMAjwHvAZ5YrHWkLicU4ry9e7lm8GBtiZEMpvoeSRgtIP0c2BeLYbZaea6picKCAtxNTVjNZm1UUQhsViufbNjA9NGjQQh0ySTmWIxTzGaKAIOUuGpqGLpvH/NXrNi/dE5uLs4xY7TAcGoZV58uWLEC5syB6dPtgP2gfh2uUNSxbs9EWzlA36IihqVVWn4oK4v5gD+ZZMuuXYQNBsLZ2RT060cUcOt01EpJQggQAoNB+yhPxON4gkFcUlIVjbImK4tcg4H8SIRtXi+7nE4GdNL/fcvzOgP4BHgYaEJL036zsZEVZjPnrVjBFXPmqIBVURRFOWpZWVkMGDCg/Z0eeggyEBh1i+pq+M53ursXPVZnBqsGYCJwvZTyMyHEH4CbgFvSd5JSPgo8CjB58uTMJDcryklEAm8Dj6MtMwLa1axQIsHUykrG1tTw1UWLumQtzDCwMxSiJhbDbzazB6367pZUCu/o/v1554sv+PqcOby/di1jBw5EAKZoFDvw5aZNvHzllQw2GEh4veTk5GBrqVhsNuPv14+ScFgLVNMCnvQA0OGA6dO74Mlm2KGCW5vNxvAhQ/D5fNpr0ZJOk52NPxqlLhgklpNDyGDAjXZBoGUktmVU2gvUhsNs1un4eijE2T4fZ+fkMAUwknkCmAGMA55EK+qFlASzs3l50iSGu1ycq4JVRVEURVGOQmcGq9VAtZTys9TtF9GCVUVRMsQF3B4IsCYe11JBU4HdmUYj59pshEpKKBs/vkMjWZ98QtpIZdv7JLAHqALeAuricfyp1NXHX3yRypoa/KEQS//wB8459VTmT57ME6+/zk0PPEB5bi63TJiAY+dO9IDTbKZ/bi4zWlJprQeX5rHZbBQWFp5UI3M2mw2bzXbI7YMP2O5LJFhbU4PHZMJnNpO02YikpU8nhODDZJJ1AOEwg91uzjMamVVUlPFUYSvwPWBEPM5PEgmiej3h7GweLy9nKDAiw8dTFEVRFOXE02nBqpSyTgixVwgxTEq5FTgT2NRZx1OUk80XwK9DIba73SAlHiEYVVzM/5rNTAIoKdF+OuCTT+DMMyEahexseOcdLWCtB573eHgnFiOQk0MQLec/fV7pVWefjcVkotxkIjccxr9rF9a6Os6cOJGhQ4dis9nw+/2to4YTbTbOHqFCmI7IsdkY369f62tqMRiojkZZ29SEKRYjKAQmk6l1qZk9UvJuIsH0QIDLrFamQ+sIfHsXKY7F3MJC7peS2/R6khYLSaORn6Ol2Izt6BNWFEVRFOWE1tnVgK8Hnk5VAt4JXNnJx1OUE14CeAZ4HvCkFeCZuHMn1zU2Mmn8+Iwda8UKLVBNJLR//74C/jMdPolEqGtZrzUYxJqqXmswGMiJRMgLBMgNh5lQUUEugMmE/5RT9qezpkYEDzdqqBy/A1/TCosFe3ExyxsbudJsZovRyMsuV+tSM0JKNsXj/AbIDYWYUlvLgC0FXHyB/aCLFMdrelERDwP/D21udRj4aTjMxVVVnFVQcFKNlCuKoiiKcvQ6NViVUq4BJnfmMRTlZLKlvp7fJpNUFxRgNBoxmUzEo1Hmr13LKR4P/Rcvzujx5szRgpVIVCKzYNWMGA6yCaUttWKMxcgLh5kOlBkMxKxWfMkkOSUlbYImFZgevfyKCm6tqspom4MmTGBicTETgbmJBE9+9hlry8vZWlbWOtq6oaGBDQYDvrfjRKKSZEIQjWoXLTo6D7g/cBfwM2BfamT3HpOJXR9+yNWzZqmAVVEURVGUg3T2yKqiKBmy0uViqddLMCsLUuuMnmo08s28PPyDBmlLpGTwhD8GuKbDtDcibH4zhPXUEJEBMSIRB2aTiXy3m1F79zLA7WaHTkdLnT6jCko77Ibbb+/U9vs4HFx5+unU1tZitVj43GjkqcbG1gsQulkJeAREBISA9NV6OqIcLWD9jt8PqWrGb48cyfx9+1SwqiiKoijKQVSwqii9wAbg/+n1BLOyWlM359bW8pMBAxAZmJuaLgG80NTEM8kkYZuN+IQwJQM8SMAciXJaXR3X9OuH6NuXWiEomzaNhz74IGPH7277nE727ttHUWkphQ4HMSAO7GtooN7ppI/DgaO4GB3QUF+Pq66OUxwOyh0Osuj8NU0zJb368FDgtFiMu7dt49NBgxCTYwy7J86WpQbiSfjBUhgzRmSkynIp8KtkkiuSSWI6HU02G5/n5TG1400riqIoinKCUcGqovRwK4HfAFgs4PNhjMVYtHYtV86cmfHAqBL4bTDISp9Pm48aCGAvKMAWiTB5xw5G7tvHVxct0tY3bWft0e4iAS+w2eVih8uFqaQEnd2OF6j2eqn3+cjKy0PYbAQBdyiENxQiy2LBYDLhj0Soi0SgoAAiERyRCEajUStIFApBTg6EQjgiEQCc4TDk5bXZNxkOkwiFsJtMFJrNmIGk30/c46E8J4fy3FzygXhjI5G6OkYUFTGspKRLlhZqTz+Hg1vGjmWj08nygQN5yS206dBJQSQmeeSNANOnH1yh+XiMLi7mBoOBR3U6TCYTbxmNLEJLFVYURVEURWmhglVF6cFeamzkjzod2WYzRqORocXFXLFzJ5NnzsxooBgA/g68ATSn1uqUgCUS4dz6er6el4erTx/KJk485HE7Y47l4eRUVFAL1AC1wGavl52BAJG8PPwWC75IBGcwCGYz+P04UkvgOJubtQC8sRFHVpa2raFB2+b343A4CKfNxRVSEg6HMRqNh9wOHHKbs74epGSfz9f6WjlTKbY0N+NILS/k9Pu15XnCYUrDYcpMJiyBAMamJobZbIzJz8fY0ECiupqKDKd4H07LaOsZgGHoHu7MKicJiCzJJ4Vw7Z1wxZzMrGN7aUEB64DNaKP59wP3ALqON60cgRDiRuDbaNd31gNXSinD3dsrRVEURTmYClYVpYd6oamJX6Xm9uH1MqaoiHssFvqMGpXR46wCfhsKUReNYjKZMJlMBJJJJu7cyaS9eznv7LNxOByc0k6w1BlzLOucTtbX1xMvK8NbWEgVsCkYZE80yn/SRzxbglCX67ABJ3BU20wmE15An0yil5Li7GxsQG52NrpgEAkgBOUlJUggEYmQEIKkXo/NaMR/nMcORiJUC4EztQzR214vdr2exlAIUVBAocvFXLOZibm55LtcGPbu7dQAVgDXzzHi+8lbvOqZQMyhZ/tP7WyLSp7MhhXvdDwlWAA/QCsZH4hEWBUO8zcpuSI/v8P9Vw5PCNEX7aUfKaUMCSGeBy4CnuzWjimKoijKIahgVVF6oFXAA0K0BjRFPh9XNzfTZ2zmVqaMA08Bz0QirSOMHiE4y27ncpuNhN1O2ejRXTKiV+d0srG+nmDfvrjtdtb4/fw3ECCamwuBAI5UwSany9UavB8uMM03GjEEAljCYSyxGFMLCshJJtm8ZQtZ0SimZJJ5M2dilpIPP/oIfSxGlhAsXriQvnl5uEwmamtrtYJVZrPWQbMZp91+0HZnXt7+bSYTdR4Pr7z7LmEhSGRnc9r8+YSAt9asIaTXEzEaGTZ1Kl4hWOVy4c/Oxm82YzKZDnougWAQpCQpBC6bjf9IyfupUWNDXh59a2o4KxZjgMfDlKIi+mT4/8nhcPDT74znq846lr44hJookBBEo5JnX/czfXrHi2iVAwubm3nQ6wUpeSgeZ14kQt8ell5+AjIAZiFEDLCgJSkoiqIoSo+jglVF6WEq0SqmZpvN4PVS7PXy9S++YPjChRk7hgv4LVoKZkuQZIlEmLV1KxeVlzN2wgQoLs7Y8Q4kgT3ARuATn493vF4CubmtabvhRIKoXn/Y0cicUIhTmpoYYrFQvW0bOYEAeZEI35gzh4F5eTgLC7Ugsn9/HLm5ADjHj98fWBYVAVBx1ln7t6UCJMdh5uIeavuB2/o4HHz1nHMOOs7wadP2b8vL0/pTXq5ty8mhwGhki9fLy6tX02gy4cnJwTpsGOvDYbwmEwjRJqCN6fVUFRbyWCIBNhu5zc2ck0gwpqmJKUVFGbvA0PL8rltTyfVZg1pTgndOiyCxZWTO9MRdu7BZLPhMJsIGA+81N3OZClY7jZSyRghxD9qfYAhYLqVcfuB+QohrgGsAKioquraTiqIoipKiglVF6UHWNzTwE72euNWK0WhkVHEx1zQ3M2LhwowFIJuA/xcK4UpL+813uzlr3TqsiQR9p3ZOXdYA8CXwOfDfUIj61PHDySSB7OyD0nE9QmCORiny+5lbUMApiQTbV64k3+fDKCWLFy/GkZuLc+zYowo4j3ZbRx3vsccWF+OYMWP/cykuxplMsqOujmh5OU1GI6ujUVa0BLBoQT+Ax2TiuViM52w2Sp1OvhkKMaypifIMpQp/fUEu63/2Hv/yTsQ6PULgdCsPbd/O13NyOtx+RVkZw7Zs4Yv+/UEItpWVdbi/yuEJIQqAc4EBQDPwghDiMinlU+n7SSkfBR4FmDx5sjywHUVRFEXpCipYVZQeYqfTyfebmmhOFQYaWFLCb81myjOY+vs5cFs4zN5U2q8P+F5eHov79mWfEBlfq1UCq4EX/H4+i8fJakmfTUs7thcUgBAYYzEcPh/z8/OZbDSSZzIRcbvpW1a2f3R09uyjHgntjQ58LgfePi8nB2d+Puvr69mdl8eyujqqCguJGgytgWttXh6/AQqysznjww/5xqhRjBgxosP9uvVqqLvjF+x70U3z0xEeSyb5oL6efn37Ym5Jlz4O+RUVfOf66/nf7GxMJhObjEbCgKlDPVbacRawS0rZACCEeBmYgTYrQFEURVF6FBWsKkoPIIE/xOM0m81IwJBIcNnOnZSPHJmxY6wAfg94IxGQElM0ytlr1zJp0CD6TJiQ0TmPCeA94K/BIDtDIfyBQOtcU5vV2nr8vk1NzI7FmJGXh37vXm0kMJUmyyHWjz2RAtPjlf4aLDYa2V1by678fF5saGB7SQlJIZBAo83GS1Om0LB5M9+DjASso71eLuzbl6ZoFICBJhNjc3IoLS097nZvrapicnExY4DKSIR6j4c3EwnOs9s71F/lsPYA04QQFrQ04DPRpskriqIoSo+jglVF6QH+A2wuKgKnEyEl8zZt4rTJkzPW/jLg3kiEcDiMXqcjNxxmyeefY49EKMtg2qUEXmls5O/JJI1GI41NTUi5P4PQ4fEwIxjEuG4dRR4Pep1OS+ctKoLU/E7l6LUErlOBORYLm51OPi0q4oVwmJheW7n1gxEjMK9dy1V0PGDVA0N1Oj5LFf9qzMkhJyenw89DAOOam/koVWjpbw0NzIjFTvoLE51BSvmZEOJFtKSHOFp2/qPd2ytFURRFOTQVrCpKN/u8oYG7s7LQm804HA4m1tdz4+TJGTtR/xT4fSSC0+kEKSkMBPitXo9p1KiMpv3uBX4bCPBBy3I7gQASMMViDK+pYdTevRRFIixevBhOP/2gdF6lY1oC1znA7G3buNXnoy61DMwHI0ZQ8dFH2O32Dr/ew0wmNhoMRKNRQtnZRKSk43WBoaymBmw2JOC2WqmtrVXvjU4ipfwF8Ivu7oeiKIqiHIkKVhWlG+11OvlxYyONFgt4vUwqKuL2U04hO0PtbwHuBkKpKrLFHg/nrl6Nadw4JkyYkJFjxIFHPB5ekpJIItFasdcYjzOxqoqxu3djTCYZNmwYQ4cObTPXVOkcM4YO5a4tW/h+OIzfZCKUnc2W0tKMBIBWwJ5MsicWAylZXV/PF/v28feNGxHAGIeDJ849l1vefZd/b9tGtl7PILudJ849l3zT4Weiji0qgkgEISU+i4USlQasKIqiKCc9FawqSjd6Mhym0WJBAlnxOBfs3En26NFHfNx9P/85zXv2tLtPEPg0HieSTCKEwBQMYm9o4JNkkupTTuGVoyyKk19RwQ23337I++qBXwQCfOzxaKOpQqCTkrG7dzO1qoq5U6cSttvVCGo3mDh8OBds2cITqduVpaWYsjNzGcQWDLb+Xh2L8eAXX7D1+usxZ2XxjRde4LkNG5g3aBB3nnUWBp2On7z1Fnd++CG/mTfvsG1WOByMCIWoTVWJxmjMSF8VRVEURem9OjVYFUJUAT60eitxKWXmJuEpSi+3E/ivwwH19QgpOa2ykonjxx/VY5v37OHW/v0Pe38CeC0WY0AwCFKSlUwyz24nu6SEnJwcbLajT9y8tarqkNu/BG4Ph6nx+1vnpZY2NfGtSIQhubmUZXC5HeX4TI5EeCJ1UaI+Lw9/U1NG2i00GiEaBSmJGAwkpSQUj5Ol1xOMxSjLyWH+oEGt+08rL+fFzZuP2O4gs5lGnY5wOMx6v5++hYUZ6a+iKIqiKL1TV4ysniGldHXBcRSl10gAvwkECMbj2AsKGBAIcPP48RkL7lYDjamUXCElQ/ftI9tu71DV1nQfAHeGw9TW1yOlRCcl07dtY9LevZy+eLEKUnuIoX36kOPx4DMakUIQPIaLFO2xpRXNsuTn84MpU6j4/e8xZ2Uxf9CgNoEqwONr1nDhqFFHbNfq9eJsbgYpeWPrViaMG6feS4qiKIpyEtN1dwcU5WT09+ZmPnW78TQ343G7+YFen7GlY7aGQmwIhxFCgBD0c7mwRSIZqdoK8GxTE7d4PHhTy9HYwmHOW7mSxbEYX1GBao/icDgYabcj0Co1v7thg1Zoq4PiLUW0AG80yqtbt7Jr6VJqf/hDAtEoT61b17rvHR98gEGn49IxY47YbjAVqEq0Czq1tbUd7quiKIqiKL1XZ4+sSmC5EEICj0gpVXl85aTnAp6WsvWkfMqOHUi7HYqLO9TuVa+8wr+3biXbbOb//c//gBBU79jBfR99RGVTEyuvvprJqZG1p9et4+6PP2597Dqnk9XXXsv4Pn3aPcYrjY3c1RKoCIE9EGDJqlXkxmJMPv10Faj2RPE4LeOgyWQyI0WWbFYrxOMgJZurqxlot1NstQLwtREj+HjvXi4bO5a/rlnDa5WVvPPNb2oXT44gLz8fmpsRUqKDjC6rpCiKoihK79PZwepMKWWtEKIEeEsIsUVK+UH6DkKIa4BrACoqKjq5O4rS/f4CCIsFfD7sfj+Tdu+m7CiKKh3JFePHM37UKO5atgwAYyzGmWYz37zkEq597bU2+146diyXjh0LwHqnk3Ofe+6IgeoKl4u74vHW+akOj4cf+XyUjBmjCij1YDqDASIR7YaUWvGiDjJbrZgjEWKxGOUlJTz15ZcEYzHMBgPv7NrF5NJSlm3fzm/++1/ev+IKLFlZR9WuLTcXuxAEgkFGjRih3lOKoiiKcpLr1GBVSlmb+rdeCPFPYCradLf0fR4ltSD55MmT5UGNKMoJ5Avg3UiEcDiMvaCA7wYCzF60KCMn5X1KSgg1N7feHtjQwORTTjliMaVnN2zg4iMEyxvr6/mJz0fIoH1kFAQCfPXLLxm/YIEKKHo4T9r80uxEgnA43OE2/YEAodTIalluLksGDWLiI49g0OmYUFrKNZMmMerBB4kkEsz7+98BrcjSw4sXt9tus9dLYyoVePOWLTizs9X7S1EURVFOYp0WrAohrIBOSulL/T4fOPT6F0pGSCAKhNGWLdnb0EBNQwMlJSUUFRW17teSjOdyuXA5nfQrKaFfcTEWICvtfiWzosB9wSBOlwukZPi+fcweMCAjJ+NNfj8fpka6AAYkk0cVqAL8Y+NGXrnoosPenwR+KyXhVKBqjUS4pqaGs1Sg2uNJoMloRASDSMAeiWQktdYVCkHq/ZAVj/ODsWO5c8GCNvts/8EPjrldp8/Xmh6vj8czkrKsKIqiKErv1Zkjqw7gn6l5SgbgGSnlsk483gmnzulkR10d5rIydMXFNAGNaT/VgQD7QiH0ViuYzYSgdW5aJBLBGQqB1QrBII5IBGPauoWRSARnMAg2G4RCrffrAEvqRwaDJH0+KiwWBubkUAwUAcWpHxsqsD0Wj3k8bA2HkVJijMeZsWULtUZjRk7GVycSRPV6AISUjIpGsdntR3zcZ9XVWLKyGF1Scth9dgHVFguEw+ik5Jx16zhr1iwVRPQCm+vrqQuHkYApFmPulCkZ+X+TNpuWWiwlxliMnKN4rx2NcH4+uN0IKcnPUGCtKIqiKErv1WnBqpRyJzCus9o/0XiBPcDu1L+bAgFW+v3ayVtaMNkiEongdLu1QjfBIA6Ho8394XC4dYRCSEk4HD6q+5OAH3BHIq0jgF9GIjiys9s8HsAEWINBrM3NjLZamZCXx0C0QFYFsW2taWjgz4EA8VSRmenbtmFLJDJyMu4Gaq1WCAQALdWz4CiXKHnuCCnAbmBHIkGgqQkJTNu+nfNHjVKBai/xSXMzpP5uC/1+wjIzMy38acWSTKnR/EzwWq04DAbC4TAXnHYajnYuoiiKoiiKcuLrinVWlQP4gA3Ax14vm4JBPHl5RMzmNvt44nHCBsMxB5vZaEFkbnY2WX4/umQSAQwsKsLK/pHXoMHATp+PBBDLyqIkO5skEDtC+236GImwLRXQfuTx4DCZMBqNWIEBqZ+CpiYsNTVMKi7O2NIsvU0cuFtKEqkT/BKPh3nJJFMzsMyLBD6ORoknk5hNJvr4fJgNhqNK/01KyQubNvHBlVce+n7gMyCRWq+1vLGRSbt2ES4s7FCfla7j6tMHUnNA+zY1UTZyZEbabYjFWpeuMcVi+Hy+o3rPtccPuFLzuXONRobn5WWgp4qiKIqi9GYqWO0CIWAjsA5Yi5ZWGY5EcKZOImloOGhk1GQy4RGCrHgcWzTKuKIiTgEKADtAIsG6L77AFA5jSiZZMm8eFXl5+/9DzWacRUXU1tZqlVpTy0q0slpxFhdr9xcX40gFy/FUf3dHo9x2441EGxuJGwzklpSQzM4mDPt/olF00Whrk57sbLKys2kCqoH3EwlCoRAAhmSSUrOZkqwsCtDSjNNHX/MrKrjh9hNzSvMfPR6q9HoQAn0yyVlbtjA1Q8u8rA+FqI5GQUoef/NN9tTU0BgKUX7vvdw2Zw52s5nr33yThmCQRc88w/g+ffjPZZcB8MHu3ZTn5jKwoOCQbW8G3PE4MpnEkEwyd+NG9DqdSs3sRTYZ9n/ElzU1ZaTNOBAwmbSRfCnJydAavmtcLm1qgpQYAgHqCwvVCP4JyvaNb+B//vl297n/3//moTffZOKgQVwwcyZDy8oYqVYMUE4wNpsNv9/f7j73338/Dz30EBMnTuSCCy5g6NChjMzQhccT3Tm33cYz//u/5LdzMXXOT3/KPVdeyeQhQ9psX7NzJ7WNjZwzeXJnd1M5gmMKVoUQ35VSPthZnTlRSOBjl4t3/X72FRdTY7WSPGCfA0cuE6EQg41G+gEVQIXRiNlkIlJTQ99DBZt2OzNnztwfjB7ipM7hcLR7sneo+w1ADjC6uJiBWVncMGwYOTk5B42aSKApEGBjVRXBrCyCRiPm0lL82dm0hK+RcLhN5VGTyYQxtWyGCciPRLAFAgwwGnlgz57D9rM3e66piSdTRWMQggsCAa7MUKAaQrv40TLCdcuppzLFbKa0tLTNfueNGHHIx8/p359Pv/3tQ97nB9bG4/gDAWLxONO3b+fUfv0YOnSoCiB6ib3ArtQIqCGZpE9TU0YKFrnR/v6zs7KwJhKMHDSow6OqAJ96vaDXI4Eir5faSES9105iD77xBm/+4hcM6NOHK+67j8VTpqhgVTkpPfjgg7z55psMGDCAK664gsWLF6tg9ShIKXntllvQ6XTH9fg1u3axqrJSBas9wGGDVSHEDw/cBNwshDABSCnv7cyO9UYu4F3g9WCQNcEgCAFuNw6Doc2oqQBGGQxEq6ooaWqiKBjk0jPP5KBVLktKtJ/DOFIw2lHmQwQ+LQRgt1qZ0K8fPp9PC2izs5FoQVQTsA/YHgziM5mI6/UY0kZ5AvE4znAYdDq+iMf5bzzO02hrGw2m9895lcAy4I/JZOu6pP0aGlio02Xs/+yzSIRoKgg2RaOUeTzkZGCOnwRWAZHU0iSmWIxxu3djmzRJBQ+9yCeAPvUl3a+hASN0eFQ8v6KCH2zbxrZURkVBIMCXubmYD5jGcKxtAjSUlEBjI0JKypuaKJs4sUN9VXqHu19+mec/+ohILMZ506dz2yWXcN2DD7LT6WTJHXdw0axZvLpyJe9v2MCvnn+el266iUGH+V5SlN7s7rvv5vnnnycSiXDeeedx2223cd1117Fz506WLFnCRRddxKuvvsr777/Pr371K1566SUGDRrU3d3uUaqcTs6+7TbOGDOGT7ZsYc2uXTQ89RRFubn88rnnePr99zmlqIii3FwmDR7Mj847D4AX/vtfvvvwwzQHAjx2/fWcOnQoP3/6aULRKB9t3szN55/PhbNmdfOzO3m1N7J6G/AGWgZrS+ygRxt4U1LCaCeF76Cl+UrAkxrNSJ/vOcJoZCwwFhgJWK1WnMOHtzsy2hvYbLY2oyqC/dWE+5pMDM/NxefzkczNxW8w4ATqAV8qEAJASrzJJM8BzwHmUIgBLhdzLBbmFhZiPPCgPZgE/uty8UQgwEazuTUNusTrZeG6dfQ955yMHKcmHGZzanQeIRgfjzNkyJCMjHDtBfbG4yRT8537NDdjEEKl//YiEvhPMEhjqjDWwPp6ZsyY0eHPmRtuv52PGxpIppbCmbpmDRdWVDBhwoQO93erwYAtlUFy+eTJOIqLO9Sm0vMt//JLKmtrWfm73yGlZMmvfsUHGzbw8He/y7LVq3nvjjsoys2lsraWxVOmcP7Mmd3dZUXpFMuXL6eyspKVK1dqfwtLlvDBBx/w8MMPs2zZMt577z2KioqorKxk8eLFnH/++d3d5R5ra00NT/zgBzz4ne/QP5U9tqqykpc++YQv77uPeCLBxBtvZNLgwa2PiScSrPzd73hj1Spue+453v7lL7n90ktZVVnJn667rrueipLSXrA6CrgXsAK3SSmDQojLpZS3dU3XerZPXC5eCofZWlQEqdTWFiaTiWAyyaC6Oga6XHzr1FMZfIg2OntktDNc9corvLZtGyVWKxu++10Abnn3XV7ZuhWdEJRYrTz51a9SlpPD0+vWcffHH7c+dp3Tyeprr2VWnz7UJpOsbWyk2WzGZzajTy27EolE2NPQwFYpWRYIcIrVylSTiSFNTfTZu5eRPew12+N08nljI77SUurz8/mkuZmdgYBWyCoVqBb5fHxl1SrGDh6ckb43ApuEYGIq2Lf7fPTR6zMSqMaAz2Ix/Km5gw6vlz4WC4szUAxK6Trbgcq0FOABDQ2E+/btcLs1QIPJBMEghmSS/k1NlE2b1uF2V7pc7Eq95yyxGI4MzIFVer7lX37J8jVrmHDDDQD4QyEqa2uZ3U6FckU5ES1fvpzly5e3Xvjz+/1UVlYye/bsbu5Z79OvuJhpw4e32fbRpk2ce+qpmFNZjl+ZOrXN/V+bPh2ASYMGUeV0dk1HlaN22GBVSrkHOF8IcS7wlhDi913XrZ5rJ/CI38+y1IkV9fWtxZEE2lo9c41GBlosNJpMlE2dekItv3DF+PF8f+pUvvnPf7Zu+7+ZM/nl3LkA3P/ZZ9z+/vs8vHgxl44dy6VjxwKw3unk3OeeY3wfLdm5r8VCXkkJPp8Pk8HAGr2eIcBbqaItLaPS3kiEj4TgJZ8P8vIodLtZZDYzKhYjb+9eBpaWdnoQJdEqOG90udjQ1ESkpARPXh7bgkHWhsNIiwW8Xux6PY0eT2vFZYBRe/dy2pYtmIRg6NChHe5LErjd7yeWGlHNjscZ4HaTk6FUoPWAP1X9NyuRoNztxmAwqEC1l3mL/SnAg+vqMCeTGRkZf7O5mUavFwlUuFycfuqpGXlvvO33gxBIoNzlYp/Pd9JWDz+ZSCm5+fzzuXbhwu7uiqJ0KyklN998M9dee213d6XXsx4wgAS0OS87FGNWFgB6vZ548sAqM0p3O2KBJSnlK0KIt4Fb0Yq8npT2As8AHwGe1Ml8S0CV6/NxodHIGUBRywMcDvqdgCdbs/v1o6q5uc223LT5uIFo9JDzTZ89xHqe6SnEDpeLHwIXx2L85fPP2VlURJXDQVafPm2KUbmtVl6OxfhbIIDIz6cwlS7cPx4ny+lkRGEhI4qLyT7K55MEdtXXU1lfj7G0FAoLcQNVXi+7Uuvc+iwWmiMRrVJpdjaklukJx2JIaH0fBFKpkaZYjAH19YyrqqI4EGD48OEZK0z0oMfDex4PungcISWTIhEGZ6jATROwFbS5xUJQ4XZjkBKLxdLhtpWuEwCWhcOtKcCjamoykgIsgeVpS9YMcjoJGzJTUH5HSQm4XAgpGdzQQNkBV72VE9OCiRO55emnufT007GZzdS43WTp9ZTk57fZL8dsxpfKVFGUE9GCBQu45ZZbuPTSS7HZbNTU1JCVlUXJAYMdOTk5+Hy+bupl73XayJFc+8AD3Hz++cQTCV5ftYqr589v9zHqc6fnOKozDSllAPi/Tu5Lj1QHPAu8x/4rMyaTCS8wpK6OCXv38q1Zsw4ujnSS+dk77/C3devIMxp57/LLD7r/Hxs38spFFx2xnVKHg2tmzdLm8trtSKOR5aEQzzc1UZOfT7KlqpuUJIXAZbOxLBrFHwiA2QyhEHafD2M8ToHJRIHZTDIQIBAIYLFaMVqt+IJBGkMhpNVKWAit0FNODgQCOFJBX+uyQi4XDofjkOvOtrwPCgIB+ni9zCkro/Gzz7B7POiBiooKxp95ZsZGJV8Cnk8991BZGS9t3szG7GwKo1FwuTrUtgQ+jcVolhK9Xk9+Mskgnw+LxULpsGEZ6L3SVZYBzZEISInd76e0qalNVe7jtQVozs2FUIiseJwhLhdlU6Z0uN1aoFqvx2a1YpCS66ZOVSP5J4n5Eyawee9epv/4xwDYTCae+uEPDwpWL5o1i6sfeID7//1vXlQFlpQT0Pz589m8eTPTU+moNpuNp5566qBg9aKLLuLqq6/m/vvv58UXX1QFlo7SlCFDWDJ1KuOWLqVfcTGTBw8m7wgX4s8YM4a7XnyR8UuXqgJL3ay9asA24MfA14FyIArsAB6WUj7ZJb3rRiHgfq+XZckkWWZzm2q+c4xG5lksGLKzKZs1S51YAXeceSZ3nHkmd374IX9auZLbzjij9b7PqquxZGUx+ijToQ+cy/vN/HwWlJaya98+fKecwgaDgdf8flw2m1ZxGVoDSaSksbERgH0+H/aCAhqbmrTAMxzGnkzuvx0IaAVdDghC09tr2ZZnNJLl95MTClEYCLBozBjGG40YTCbcjY2UDRiAw+HAaTR2StGsp5uaeESn01I7hWDI5ZezZO1alixalJHjPNrcTJ3XC1Kil5I7rFYmqAI3vU4c+EcoRCIeByGYsHt3xtbGXZ7612a1MqW5mfPOPjsj773Xmptxpt57A10uTOXlHW5T6dnS11hdumQJS5csOWifqr/8pfX3mSNHsumBB7qkb4rSldLXWF26dClLly49aJ+qqqrW32fOnMmmTZu6omu9Un+Hgw1/+lPr7fTPkR+ddx63XnIJwUiE2TffzP9+9asArPj1r1v3KcrNbX2MPSeHz+9VC5/0BO2NrD4N/BNYAHwDrdDSc8D/E0IMlVL+tAv61y22Ar8MBlnfMrrm9eJwOJhhNHIpMASguFj76UYJoBmt4M52t5vdjY1Yi4owFxQQQgu4G7xe3D4fubm55KQVLfH5fPg9Hhy5uThyc7EAZiDc2EiwoYFhhYXESKW4HkOfLhkzhkXPPNMmWH3uECnAxyo9gJ0HXBIOs3PfPiLl5ezW63mjrg6v0YjXbCZgNJIUojU1Nz3wPPA2gDGRwBiNYotGmWy3UyAlOyorsYRC5IfDfOP00xmcl0d9UZEWiA4fjsNub+kYFWkn7JkumiWBx5qb+WPaWq2nWix8W6+nX4YC1c1oKe4tr8uknTuhoKDb39/KsXuhqYmtqfeKNRJhSW4uIzOw5JAPeCscxllfD1JS/OWXkIGrzBJYlqoMLoFB+/ZRm8HlnU4EQogLgGVSSp8Q4v8BE4FfSSlXd3PXFEVReo1rHniATXv3Eo5GuXzuXCaqUeleo71gtX/aCOq9QojPpZS/FEJcCWwCTrhgNQG8gJb225S2/Ey52823/H6+3g2LMEfRJgrvAXYDm/1+dgeDxHJyiJrNSLQKus5AQJtP6fPhsFgwGo3a9paAu6kJR3b2/u0to4vNzTiMxv3b/X6tunEwiDWR4AW0ZWiyolH0oRDF2dnEaTtZvdLtZkhhIQCvbt3K8KLWmbskpeSFTZv44MorM/q6HBgULuzfn9raWkzJJB+9+y5hnY54VhZjpk7ls7VrSSaT6IVg8oQJfPnFFxhiMUyJBF9buBCd1Uqtx6ONhqYCeueYMftHSFMjwl1dvdkD/B54V4jW92Kf5maubGxk6vjxGTmGH7gbyDabweulrKmJqVVVlI0alZH2la4TBZ5NJlvfK2N37ya/qCgj79nXAW8qtbjQ56O4qYna2toOt70e8OfkQDCIMRZjSENDRlKLTzC3SClfEEKchnbx+B7gIeDU7u2WoihK7/HMj37U3V1QjlN7wWpACHGalPIjIcRX0AbwkFImhRDHMtjWK9SjnQFsTt02mUyEEwlO37iRYfX1nLZ4caf3QaLNkV0LfOzzsSkSwZeTQ3YqBTkSieBsbGxNaTXu6oPv42yMk2MwtG3aqtFoPOQ8y2PZnkgkiANN8Tj+UAik5OZ//YvKmhr8oRBF997LFaedxqpt29jn8WDU6eiXn8/Dixa1PqcPdu+mPDeXgQUFnfrapQeSdru9TSrumNzcNrfH5eQclKp74El3dy8r9J7bzb1AxGbDZDLhEYLSpiaWrFnDwAxVzpTAnT4f25NJTCYTA0tKuL65mVEZGrFVutabgC9bKy1miUYZX1NDWaoad0dEgRfTU4urqjKWWvyyz0c4mcReUMCMpia+es456r13sETq30XAQ6mih7d2Y38URVEUpcu0F6xeB/xFCDEU2ABcBSCEKAZOqMkj/2ps5EEhIDUiCTDRaOQym41Yebm2/EwnnUDtqK/nLY+H+j592JWTgwvajnwGg61L46QHk8FVWWy4LItkFPTZVqY9WEPZ8CayEwmm5OfjACJSsnbzZkQ8jk6nY9q0adiBxkSCTzduJC4l8awsRk+dSjbgFILVdXWEDAb8Fgux1Nqn8VSaHsBVZ5+NyWTCaDKRiMfxBwIMGjoUhCDPaqWPwUAzEA8GMXg8TC4q4tPUosxd5cBA80i3e5KdwJ/9ft5ILeFDIIDD4eCqvDxmuN1ULFyYkb5L4HdeL6+lRt49QnCnzcbcDAQ3StfzA38LhVorAE/euTNjy8q82NREZSq12BaJsDgvj5FTpnS47W319bwaDJIQAoTgXIsFR1pWhtKqRgjxCHAW8BshhBHQdXOfFEVRFKVLtLfO6jrgoPUDpJQNwP2d2amu9HhzM3/w+7XAwOejtKSEq0wmzgd0JSXQCWukxoFVwCt+P/8JBklkZ7dJ0z1whNPm8zHRaCQf2LNhA7l+P5++NJSqaB/tmntUcHplGeePC2qjhXl52oHy83FOmLB/FLFlnqXdzmmTJu3f3lJ5MTcXZyqdtsxu50G9nvOBhkSCrXV1hLKyCBqNZFuthIBIWhCLlETiceoMBmricfyxGHqjkXyPh9F6PYPMZvaXqFIOVIk2IXwlbZdGskQiXL5rF5cOHw6pxcI7SgJ/A16VsvU443bvptRmg5b3iNKrPAc0RKMgJbmhEKP27iWcgc+uKPBcWmrxuKoq8ouLMxIEP58KVFvS27PcblDB6qF8A1gI3COlbBZClHKSVudXFEVRTj7HtUieEGLi0RZ3EELo0WKzGill5+fSHoPngSfT5gPmBwJcu3Mn53XS3NQvGhr4ZyjE5uJiomYznkSi9WStJR0332hkhF5PsLKSPm43RcEg551zDg6AvDyckydTW1vLhMv78e5rgmhUm6q6eHEOEw4RzBxuFPFotgsgG+hrtZJXXo7P5yMnJwdbVhYJoC6ZZENDAz6TCZ/ZrK3Pyf6R2IROh9tq5TMhWAvkRaPkBwIMzM6mj9WaqZe113ICnwBvBwKsi8e1EWujsTXtd3BdHadv3cpZR1gL7Fg9D7wIrccZUlfH7MpKytLSt5XeYy/wUjjcmqY7Y9s2soXISJruMiBss0EggCUSYWxtLWXjxnW43TCw2uGAhgaElEzcs0fNVT0MKWVQCPEK4BBCVKQ2b+nOPimKoihKVzneFd2/A1x9lPsuRZsKmnucx8o4iVZE6Vn2n7D3bWxkyZo1zDj77IwfrwZ4xOfj1WBQK0zU0IDD4Wg9dp/mZgY1NHDZuHFMA/Q2W9sCP4dIYZ0wAd55B1asgDlzILU0V6ex2WzYUmuQAuiBvhYLeaWlWhBrMqEzGHACe4RgeyJBVK8HITAYDMTjcXaHQuwWgrXxOH1iMfplZdEXOFlqzsaBVS4X7/n97CgpwWmxaCnfbndrKm4fh4MzjUbmms0YsrIomz8/oynLTzY387gQrYHxQrud891uKtQ81V5JAvf6/dSm5rL3bWpicUEBwzKQAhxGSy0OR6PYCwo4t74+Y8vVvAX4dTpsVisFsRhLM5BWfKISQlwP/ALt+lYytVkCx52zL4TIB/4CjE61dZWU8pOO9VRRFEVRMu+4glUp5VEFqkKIcrSiEHcAPzyeY2WaBJ5CG10CMBqNnGm3c2FjI/0zdCLWYkN9PX+NRllXXEwomUSmji+kxOT3c0FhIWPMZqTbTdno0W3max3NvMrp0zs/SD2SA4PYAcAAo5FJsRi1wSC+3FzcBgM1qdRmAKSkOZEglJXFFkAXj/NZIMCzTU2cUVBAn255JplV53Syob6eQN++NNjtbAM2hcPsDQa1tWFdLhwOR2vKN8CQffu4yuvlnNGjM740UgJ4yOPhz6n1LD1CcKbdzi9tNrIzlF6sdL33gC9SaeMAp23ZQs6wYRn5HHvc46HS42mdq/r1vLyMtBsFng6FcDY0gJRM2roVXQZGa09gS4FhUkp3Btv8A9pyOOcLIbLRir4riqIoSo/TbrCaqvo7FeiLFmfVAiulbIk6jug+4MdAzhH26zJ/8nh4AVpHliYBP7XZyM7QUiCgBQZ/aW7mkZbiIU4n9oICEIIB9fVM2LuX62bM0IKyHrBea2ew2WwMTQti3YkEqxoaaLJY8FosrSnDiXgcTyBAnZTc5fPxhMVChdHIQK+Xkro6phYUMKa4+JjWeu1KdU4nm5xOEn37EiwsZA+wJRDg80CASG4u+P04rFaMRmPr0h8tFyzioRDTDAbimzbRz+nElkgwqROqTjegLU/zKbQev6ypiW80Nmb0fa90LS/wp7QqveOqqnAEAhlJ/60HXkqb0zx1+3ZcpaWckoFgdRlQm5pfa4pGGV5dTW2G5sGeoPairWSVEUKIXGA2cAWAlDKKdg1BURRFUXqcwwarQoj5wINotV9qUpvLgcFCiO9KKZe317AQYjFQL6X8Qggxp539rgGuAaioqDjcbhnxemMjf0kVU/IIwQK7XQtUM3gMJ/A74FMh2sxHHRwIcIXFgkWvp2zGjF5xYpZfUcGtVVUZay8UjxOsq8NksRDyeHABNeEw/nicUFkZxtS83T3A583NYDRCKMSAcJhRJhODAHtjI9m1tYwqLqZfF7yGSaAZ2OpysdXtBoeDcH4+TmBXMMj6YJB4Xp5Wtddmw2g04onHiej1By0NZDKZSEYi9GlqYnBDA9dNmUL//HycEyceMuU7Ez5Du2LkZ3/Ke4XLxTnr1jGgE1Lela7zO5+PHamq4TnhMN/U6RizeHFG3kP3+3yEEwkQghKPh1H79lE2aVKH221JLW4JsCfv3IlRyowE2CewncAKIcTrQKRlo5Ty3uNsbyDaNawnhBDjgC+ApVLKQId7qiiKoigZ1t7I6h+As6SUVekbhRADgDeAEUdoeyawRAhxDmACcoUQT0kpL0vfSUr5KPAowOTJk492xPaY1QP3pxVT6t/QwAVud0ZTIF9qbOSR1BI46fNRT9u+nWtnztTSfHtRtcsbbr+9049R53Ty1xUr2FNQQLXbTdLhwHNANeTGSIR1JhOfRyI4/X7IyYFIhEGhEKeYzZQAJq+XpNtNaX4+ZQUFmNDy2vwuF41OJ0UOB/aiIhJoI98Nbjf7XC7MxcUY7XYCQADY5/VS6/eTyMsjZLXSBIQjEZzBIJhM4PXiMJu1oDQWI67THTIo9QiBMRajj9fLgvx8pgBDjUaieXnUBgKUpc3R64yldGLAE8C/07aZjUa+l5vLJLeb8gynvCtd62PgvbQqvadv2kRh//4Z+T99z+3m3y1LJwnB5dEo8zMUBD/V3ExlKhXdFonwdauVURlq+wS2J/WTnfrpKAMwEbheSvmZEOIPwE3ALek7deWFZEVRFEU5nPaCVQNQfYjtNUDWkRqWUt4M3AyQGln90YGBaleJo6VBSosFfD5yQyEWbNhAxcKFGWlfAvd7PDyetgROWUnJ/sBg5kx1MnYYfRwOrpgzp3VksdBk4r9+P0/t2sW+3Fwa8vIwmUwABy3p44pGiZnNbI5EcDY3g04HPh+O1Hq5kZYg02bT1quNRPZvDwS04DMtTTfS0o6U4HbjMBgOuZTQgUGpORqlIBhkdkEBo4B+RiNGk4mQ203f9KWEALpgjdddwK+DQbbGYq3p7kVo+fgj8vMztgSO0j08wL1po5PDa2oY2NhI2YwZHW47CvwpLf136L59jM7Ozsh7thl4Pq3tKdu3U1Baqj4bj0BKeRuAECJHuyn9HWyyGqiWUn6Wuv0iWrB64HG75EKyoiiKorSnvWD1ceBzIcRzaHNmAE4BLgIe6+yOZdLDHg+foaVBlpaUcM3OncxcuDAjJ0kS7cV4CQ5aAuerI0d2e2AggT1OJ9V1dZSWllJSUkJ9fT11tbUMLC2lTw84UTxwZPH0oiKGjxhBbW0tpTYbOqOR7cBqYLnbTbPZjN9sPmwQ2xJMZmp7cXY2WX4/lnCYvHCYM/PyGAb0MRrBaMTjdmspvLlpBa87aY3e9uxAW2/z/UgEp8vVmu5+TirdvcdMHFeOmwR+7fdTmar+a41E+HYyybgMjU7+2eOhTghIZQbM2raNsgwtnfQ3gNQFQ7vfz8i6uoykFp/ohBCjgb8D9tRtF/BNKeXG42lPSlknhNgrhBgmpdwKnAlsyliHFUVRFCWDDhusSinvFEL8CzgXmI627GY1cKmU8pi+2KSUK4AVx93LDljhcvGXQAAJeITg+txcvpahdVQlcI/Xy7+lRK/TgRAMrK9n4YYNTO/k+YASbdLRbmBDczO7vF4oKCCWk0NtMEhjKARWK1EhqItEID8fwmHsPh+N4TAUFEAkQkU4jElK8Ps5xWymv82GsbkZfX09EwsKGFdcjL5Tn8mhHRjAlgAz8vK4oG9fLYi128k2GmkAtiQS/Gf7doIGA3GDgSF2OwbApdezyeslLgR6YFBRETlA2GBgR1MTukQCUyLB5IICyoCYlKzfvJnsaBRbNMp5s2czDMgym3EWFWmjv4MH48jPT++o9tONKtGWYfo8dbsl6NYlk5y2bRsXlJSQo0ZTTwivAZ+kqv9KYO7GjRRnKP33i4YGHgsEtKJwQnBBKMRFGVo6aTvweiRCOBzGXlDA1cEgZ6rlko7Wo8APpZTvQWum0p+BjgylXw88naoEvBO4soN9VBRFUZROcaSla0xo5xmvSCk3d0F/MkoCjycSrUvGVLhcTHS7Mzba+UePh6dSSzsgBHNNJi7R66nohPmAEvjY5eIjn4+qnBy26/UIi7bagDM1B4ymJuxAY6roCoEANqu1zWhhIBhsOx80EMCfmp+2LRTCLiWNXm9rcSOH10tJOMxEk4nTcnMZBVgz+syOzYFBrB0YZrczbfTo/UWKclJjiDYbzpKS/dutqZ5brThLS7Xt5eX7R0Tz83FOmLB//7SR0c6YV9pRW9GC1C8O2G4ymSiur2dKZSXFoRB9VcXfE8IO4KFwuDX9d3xVFQMylP4bB+6VsrUoXGlTE2clkxnLPvl9IEBdaj3hAS4XZ5aX97i/px7M2hKognbxVwjRoY9hKeUaYHJHO6YoiqIona29asA/By5DOxf+rRDiTinln7usZxmwCqjLzwenE30yyVmbNtF33ryMtP0F2kSflsBvyL59XJKdzZQMj2BtaGjgn4EAq/Pz2RkMInU6CGhFG4XPd8RgFMCQTKJLJhFCUGQy4QoESADx1PIxh3s8UuJsasIJrA+HWWY0IoBij4cZRiPz8vIYDD1iWZnDBZOZ2t5TRIAvgef9flYlEq1zUkH7f5gJXGg0Yq6ooNZg6JQKw0rXCwG3BoPUpNK7i30+rtTpGJmh9N8XgYa8PAiH0SeTnLl5M33POKPD7QL8B1gfj7eO9s/YsoVanU69L4/eTiHELWipwKB9L+/qxv4oiqIoSpdpb2T1QmC8lDIohChEWx6v1wSrEngaMBqNOBwOpjqdXDxvXkZOkBqBe9m/FEi/hgYWbtxIxaJFHW67xab6eh71+VhhMCCFAI+HAytcmKJRBggB1dXYgkFyYjGmDx/O9s8/JysSwSgl5y1ciM5i2T9amJeHMxzWUmnLygjF47z64YcE9XoCFgvlEyawcvdu3BYLDbm5+FsCISkJ+P34U2uirg+H+ZfJRB+jkWFeL6fs28ec/Hwq1AloxvnQUnw/RbtI4otEcKbmLHqEoI/DwVlGIxcCrTU7e3jQrRw9ibaG2O5YDKTEkEiwYM0a8keNysj/8U7gr+Ew4UgEe0EBixoa+J8zzshI203Ak+z/rJxQVUVhOKyWqjk2VwG3AS+jXZP6AJW2qyiKopwk2gtWw1LKIICU0i2E0HVRnzLiU2BTao5UrtHIDysqtOoUHSSB2/1+9qZGtYYVF/P9piaGZWj+lQSe3L2bPyUSxAxt/3vMsRj96uspb2ykb2MjebEYX1m8GAYPbrNOp9NqPWjdzvS+HTh6eNG8eW32P89opLa2FlMiwdvvv09dTg61hYUEBg1i6wEFiOqAtc3NYDLxh2CQM/1+5tpsTAEKO/xqnLzcaO/hT4D1aOu9tmiZkwowrLaWq7xeFo4e3fWdVLrES01NvKLTtc6LP2PjRuyRSEYCvghwezBIbWrEttTj4dIMXuj4vc9HbTKJyWRibFER1zU20k8tVXNMpJRNwA+6ux+KoiiK0h3aC1YHCSFeTf0uDriNlHJJp/asg54MBHCm5kgN2r2b2LBhGSmE83pjI++llqjxAjfbbMweN67jHUYLSH7j9fIcIPX7yxqVNzYyfu9eLh4yhLjZjGnQIMJ9+x51MHokB+6ffttut7cGsgAvvf02uwsKqCopIV5SQkNaBd24TseniQQtk5tLAwH6NTQwy2ZjRlHRESdIn8w8wDbgc4+HTyIRnHl5rem9BxqQlYWhqorh1dXYw2EmLF7cpX1Vus5Kl4u7fD5iqUB1UXY2F5SXUzZ1akYCvseBnWkjtnPXr6cukaA0A22/6XbzSmo+vEcIbrJamarmTx81IcR9UsobhBD/hoMSa3r8d7CiKIqiZEJ78cO5B9y+pzM7kkk1wOa0OVLjd+6kNienwyd3Evh7WiXOcbt3k5+TA4UdH0NMAr/y+XgtFGo9K8kPBpmzaRPzSkoYeuqp3TIacWAg+/WFC1uD12Kzmf8GAjxRVcXO4mKabLbW5WQikQifud18JgTPB4NUhMNMMZkYB4wD+tEz5rp2h71OJyvdbvxlZTjz89kGONFeM2dLwa5wGIfD0RqwDkUryT0NKLdYcA4fTm1urpqTegLzAHcIQUynQwJ2v58l0SgTMjQv/jPgn5FIa8GmWVu3ZixF1wv8UYjWz8rhtbUUGI0Z+aw8ibTMUe01372KoiiKkmmHTe2VUr6f/gN8jHYOsjl1u8f6L9ocKYSgn8uFLZHIyAnYh0B9KhjLSiSYWlWVsblXD3s8vNTUpKV4ohVsuuiTT7h45EhmzZrVYwISh8PBhAkTcDgc6IBZRUXcOXw4v49EeMps5vtGI+OAWCjUplCTJxLhc+AvaGsmfCMU4oaaGp5obmY9EOi+p9RpImjzAd9DW2PyV8A3g0G+Eg5zu9XKvV4vb0ciOFP7t1nnNZmkX1MT1wFPAL8DzgfKU/um/z8oJ5448LNAABdoa57G4yxau5YBpaUZab8e+E0ohNPpxO/3M9Dp5Gs2G4szlKL7W58PT6pKui0S4fStW9U81WMkpWwp9D3+EN/H47uxaye9/v3743K5uvy4P//3v3l7zZp297n1mWe455//PGh7s9/Pg2+80Uk9U3qrOT/9KasqKwE457bbaPb7j3r/dGt27uSNVasO+ZgV69ez+Pbbj9iXiy++mLFjx/L73/+e++67j2AweBTP4MRhs9mOuM/999/PiBEjuPTSS/nXv/7Fpk0nxxLZ7VUDfhj4o5RyoxAiD236XAKwCyF+JKV8tqs6eaw+Yn9hpcWRSEZOwCTwZDBIY1NT66jqmVOmZOTEbj3wdDyOTM1DHFldzWXNzUzpJesQpo++jgGWADsjER5dv57ddjvVhYWtI66gjSDuaWhgm5S85/XiMJsxGo2UAoOBQUCB2012dTVD+vTpsa+BBPxAHdrIaPq/u4JB9sZiGNOq9QJ4YrHWpZRa5v0ajUaygNEGA4G9eylpaqJ/YyPnL1xIz3zmSmeSwG+9Xj5sbgYpEcA1Xi9L5s7NyN9CFLgLcEWjICXWcJi5GzeSM25cRtp/pbGRf6emSiAEVwQCnLtwYY/9O+4FLgf+cMC2Kw6xTekF4vE4BsOxT4pJJBLc/pWvQHn5kXc+hOZAgAffeIPvnnPOcT1eOfG98YtfHPdj1+zaxarKSs6ZfHwrYtXV1fHxxx+ze/duQLsgdNlll2FJLdGoaB588EHefPNNBgwYwBVXXMHixYsZOXJkd3er07X3iTlLSnld6vcrgW1Syq8KIfoAb6It8djj1AJbUoWVcoxGLhkyhEy81fcA21Nzu7ISCSZUVRHOz+9wuwng7mBQW+sUbX7q3M2bmfKVr/Tqk7uBDgc3TpmiVR3Oz0cajawF1gDvp+axHRiw7QP2gTbaGAhAfj7ZgQBjgkH6WywUAyWpn2KA+noCNTWUZzgVNoY20usHdrlc7GhsRF9cTLKgADdaNWg3UBMO0xyJtFk+BlLpvKmCNQjRJp3XZDLhRUvx7uPxsCQ3l6nAAMBgteIcMkRLs87QnESl93kDWCZl69/I9G3bmFxUlLH3w++8XlZJiV6nQwcsXLcOS4ayT5zAA2npvyOrq5liNqv38nEQQlwMXAIMSK8XAeSgfQQpnSwQifCNRYuorq4mkUhwyy23cOGFFwLwxz/+kX//+9/EYjFeeOEFhg8fzsqVK7nhhhsIhUKYzWaeeOIJhg0bxpNPPsnrr79OOBwmEAjw85//nJ///OcUFhaydetWZs+ezYMPPohO1zbZrX///lx11VUsX76c73//+yz7299YfPrpnD9zJm+sWsUPH3uMotxcJg4axM66Ol77+c8B2LRnD3N++lP2NDRww5Il/OArX+Gmv/2NHXV1jF+6lHnjx3P3laqg9MkkEInwjdtvp9rlIpFMcsuFF3LhrFlt9un/7W+z6t57KcrN5ZfPPcfT77/PKUVFFOXmMmnwYH503nkAvPDf//Ldhx+mORDgseuv59ShQ/n5008Tikb5aPNmbj7//IPabu1HIMD111/P+vXricfj3HrrrZx77rnMnz+f+vp6xo8fz3nnnUdtbS1nnHEGRUVFvPfee4ds60R299138/zzzxOJRDjvvPO47bbbuO6669i5cydLlizhoosu4tVXX+X999/nV7/6FS+99BKDBg3q7m53mvaC1Wja7/OAFwCklHVC9NzZhm83N+P0ekFKCl0ufOXlWDJwovSGx9M6t6u/y4UlmczIyd0KYEcohJQSYzzOvHXrGDFs2AlxcnfgfNdSYCFwRSzGE599Rm1uLq68PKzFxbjQAndomw4b1evZHovRcEDbkUgEZzgMdjtZwSD9QyHsZjMmwJz2E/X58Hg85OTlYcnJIYk2PziR+tfj99MQCKDLySFpsRBg/xs/EongDAbBaASfD4fF0hp0RiIRnPX1rcVj0gPS9Gq9+YEAQ9xuppWVcQpQYTSSZTLhamykbMAAHAUF7b5mysnlPbebu/V69Ho9CMGw2lom79lD2dixGWn/xaYmnvP5Wi+kXKvTMX3w4IzMfY4DvwWwWMDnIy8YZHZlJWULF2ai6yejj9Gu3xWhzQRo4QPWdUuPTjLLNm2irKyM119/HQCPx9N6X1FREatXr+bBBx/knnvu4S9/+QvDhw/ngw8+wGAw8Pbbb/PTn/6Ul156CYBPPvmEdevWYbfbWbFiBStXrmTTpk3069ePhQsX8vLLL3P++ecf1AeTycRHH32k9ecP2mB6OBrl2gcf5INf/5oBffpw8d13t3nMlpoa3rvjDnyhEMO+8x2+c/bZ3PXNb7Jh927W/EENyJ+Mlm3aRJndzuupCxqewOEnX62qrOSlTz7hy/vuI55IMPHGG5k0eHDr/fFEgpW/+x1vrFrFbc89x9u//CW3X3opqyor+dN11x22XYA77riDuXPn8vjjj9Pc3MzUqVM566yzePXVV1m8eDFrUmnuTzzxBO+99x5FRUUdf/K9zPLly6msrGTlypVIKVmyZAkffPABDz/8MMuWLWt9XSorK1m8ePEhPzdONO0Fq81CiMVo9YpmAt8CEEIY0OKAHmldKv1MAmUuV4cWn7/v5z+nec8eQqEQ70ciRAwGdIAhGmWb2cxDH354yMflV1Rww1Hk50vgb2mjquN37SInFmPo0KHH1d/eoo/DwVWnn75/uRyLhSiwG9gBfCkE7/p8uK1WEnp9mxTiFukBbUynoz4aJWJu+7aMRCI4m5q0E/OmJhzZ2QePgKbWKyUSaRNwHniM9BHg9PsMiQS5oRBDDAbGl5XhALLicdZ9+im5fj/ZoKWhp3fM4eAUFZAqB/iioYGbvF7CBgMIwQSrle+aTBlb6mUn8FDaqOfQffuYlp2dsYJNf/J4+Bzt5LqspIRrd+5kukr/PW5Syt3AbiHEpUCtlDIMIIQwo01fr+rG7p0UxpSV8aO//pWf/OQnLF68mFlpo0Vf+9rXAJg0aRIvv/wyoAWzl19+OZWVlQghiMVirfvPmzcPu33/AnpTp05l4MCBgDZX76OPPjrkSWfLSG66LdXVDHQ4GNCnj/b42bN59D//ab1/0eTJGLOyMGZlUZKXh7O5uQOvgnIiGFNWxo9eeYWfPPkki6dMYdaoUYfd96NNmzj31FMxp853vjJ1apv7vzZ9OgCTBg2iyuk86PHtWb58Oa+++ir33KPVjQuHw+zZswezuceGFV1u+fLlLF++vPW72e/3U1lZyezZs7u5Z92nvWD1WuB+oA9wg5SyLrX9TOD1zu7Y8fIWFIDbjZCSkkCgQ6OfzXv2cGv//lQ5nfRP/dHqpGRRJEJ56kviUG6tqjqq9ncB21OjqtnxOON272bYCTKqeiQHjiBmA0NSPwtzc7mquJia2lpy+vYFo5EGoAGtMEw9UJWVxbp4vPXE/kgB7YHBZnv36wEbUJCVRZ3PhyUcxhaNMisvj4GAHUhGo3z2/vtkRyLodbq2AWlhIRPnzDlorVtFORwXcJtOR9hgQALWSITLm5szttTLzvp6fqTTkTQaQQjsfj9nbd5M37PPzkj7y91unkhbpuaG3Fy+ehLMo+kizwMz0m4n0DKdpnRPd04eQx0OvvjiC9544w1uvvlm5s+fz89TI1Mt3yV6vZ54PA7ALbfcwhlnnME///lPqqqqmDNnTmtbVqu1TdsHZqgdLmPtwMcBrfUtDseYldX6u16nI55ItLO3cjIY6nDwxe9/zxurVnHz3/7G/AkT+PlFFx1y3/bfXfvfX3q9nngyeYS9D2hbSl566SWGDRvWZnvVUZ43nwyklNx8881ce+213d2VHuOwwaqUchta1uaB2/8D/OfgR3S/BFCj12NLfbhfdtppOEpKOt5uTg6k5qtao1Hyj6Ji19F4w+NpHVUdUF+PScoTflT1aB0YzA45cAeLBafNRk1tLYVlZeQYjYSBUNpPbSLB+5s2IZNJDEIwY9o0igA9Whnspnicj9eswRCNYk4m+coZZzAAMJJaVsdiwVlcrAWdgwbhSJ+jXFxMxYIFhw1IVTqvcrT8wP8Fg9okRCHIisf5ypdfMvL00zPS/j6nkx9WV7OrqAiCQfrk5/NDr5fxZ5+dkfdoI3Bf2ohtv4YGxrndkKERWwWDlLJ1Wo6UMiqEyO7ODp0sapubsVssXHbZZdhsNp588sl29/d4PPTt2xfgiPuuXLmSXbt20a9fP/7xj39wzTXXHHW/hpeXs9Pp1C6kOxz8I5Um3J4csxlfKHTUx1BOLLXNzdhLSrjsjDOwmc08+c47h933tJEjufaBB7j5/POJJxK8vmoVV8+f3277R/v+WrBgAX/84x/54x//iBCCL7/88pDZPTk5Ofh8vpMyDXjBggXccsstXHrppdhsNmpqasjKyqLkgHim5TU6GRx7SboebG1DA9WpJVNskQi2vLyMtBuxWDBHIsRiMfrq9UdVXvpofJ42t3Gg03nSjKpmyhEDQrudaRMn7g8o01KwAG0EdNq0/fcf4sJGe8dQAanSUVHg5kCA1W63ti60lHyvuZlFp5+esffWQ5EIu4qKWjMILqqrY8Ho0RlpOwnc7vfvX6YmHGb+xo30XbAgI+0rADQIIZZIKV8FEEKcizYYr3Sy9bW1/N/Uqeh0OrKysnjooYfa3f/HP/4xl19+Offeey9z585td9/p06dz0003sX79embPns15qeI1R8NsNPLgddex8NZbKcrNZepRXOQuzM1l5ogRjP7+9zl70iRVYOkks762lv975BHtvazX89B3vnPYfacMGcKSqVMZt3Qp/YqLmTx4MHlHqMp7xpgx3PXii4xfurTdAku33HILN9xwA2PHjkVKSf/+/XnttdcO2u+aa67h7LPPprS09KQrsDR//nw2b97M9FS6tc1m46mnnjooWL3ooou4+uqruf/++3nxxRdP6AJL4kjpJMfdsBAm4AO0gSoD8KKUst262JMnT5arDrNO09F4essWfms2I4FTGhv5FXRoPtatV1zBrf37814kwpZUYDnA5SIUCnHT+++TSCb59sSJ3HTaaW0fV1XFrUe4qiqBs71e9qWWwvnWBx9w0fz5KvhRlJNEEm0JmWUeD57mZiQwf/16Lu3bN2PzSF8D7o9EcDqdICWTqqq4c/jwjH3OPNLczIOpgnYCuMHl4uzy8h7zOSaE+EJKeXxrKfQQQohBwNNAGVrSx17gm1LK7V3Vh45+N7fx0EPHvfxKl6uuhnZO6o/XihUruOeeew55kt6utNfOHwphM5uRUvK9hx9mSFkZN557bsb7qnSiTnp/HdIx/t21vL+CkQizb76ZR7/3PSZ2NBjq7Ofbmz5bDtSV74Ue4Fi/mztzZDUCzJVS+oUQWcBHQog3pZSfdtYBc0tKwO9HSIkpHqesoiIj7XpTKcAAhkiEG996i3evvJLy3Fym/PnPLBk2jJHFxcfU5sb6evaFw0jAHIsxb/LkHnOCpyhK55LA3V4vy1JLyCAEp23dygink7IpmZmK+Dnwx9QyXvaCAkb7fPwsg4HqZ8DTaem/U3bsYFxBgfocyzAp5Q5gmhDChnaB+eTI+1La9efly/nru+8SjceZMHAg16qq20oGXfPAA2zau5dwNMrlc+d2PFBVlA5oN1gVQgwHzgX6op1f1QKvSik3H6lhqQ3Z+lM3s1I/nTOMm2Kx23FYrYTDYcbZ7ThycjLSrj47GxIJkJJtjY0MttsZmFpy5KJRo3hly5ZjDlZ3NDQgU+nEtlCISKpAg6IoJzYJ/MHj4RmPp3UJmQsMBhYVFVE2dmzGKv/eHg5Tl1peqY/Xy49LSuiToUByN3APWuVfjxCUu92cWlVFWTsVJpXjJ4RYBIwCTC2FeKSURy45r/RIc+bMaVN86XjceO65aiRV6TTP/OhH3d0FRWmlO9wdQoifAM+hpR2tRLtQL4BnhRA3HU3jQgi9EGINWgHXt6SUn3W4x+0Ipv1uymB6s8jOxmwyYTAYkNnZ9E+b+1iem0vNcUxwFmllurMSiUNWs1UU5cQigb8DL8P+JWRqaznH6WTChAkZCVRdwG2AJxIBKckJhThn9WpctbUdbhu0RT5/GgrhTK05OaaoiJ/qdCxZtEiNqnYCIcTDwIXA9WjfwRcA/bq1U4qiKIrSRdobWf0WMEpKGUvfKIS4F9iINt2qXVLKBDBeCJEP/FMIMVpKueGA9q4BrgGo6GDarrO5GWdq/tTm3btxZqhgUTgWI5Sas9rU2Nhm7TRIVY49Rv5oFFIBqz6Z1JZRURTlhPaQx8Nz0Jr6O7C+nnmbNtF30aKMtB8Cbg4G2RWLodfpMCYSfGX1amzxeIeW8WoRB27x+9mQWp84mEzya5uNyePGdbht5bBmSCnHCiHWSSlvE0L8jtT1DkVRFEU50bUXrCbRCjrsPmB7aeq+oyalbBZCrEBbCmfDAfc9CjwKWhGHY2n3QAG3G1LrFEZ1OmprazMSrMpotHXOaqHFwttpIxTVXi9lx5Fu3K+oCBEIIAG/2UzZgZVqFUU5oTzS3MwjqYtpCMFss5lv6vVUZGhEMgrc7PezMhVI6oBbgAEjRmRsvd/HgNWpKRESmLd2Lfp+/eAYp0Eox6RlPYigEKIMcAMDurE/iqIoitJl2gtWbwDeEUJUolUfBKgABgPfP1LDQohiIJYKVM3AWcBvOtbd9vUrKGgtsBQxGjMykgBgy8qiITWaOqSwkN1ffsmupib65uby3MaNPPO1rx1zm4mmJmS2tlRek8VCY2OjSqFTlBPUi7QtRtSvoYH/0emYkqGqv3G0D9f0QHLOxo0MKC3NWGXh55qaeFqnax0VnlZZyWC3m7JUeX2l07yWyk66G1iNlk3+527tkaIoiqJ0kcMGq1LKZUKIocBUtAJLAqgGPk+l9x5JKfBXIYQebW7s81LKY6zTfmz62+3kCEEoGMTat2/Ggj9n2vzXoMXCr087jQVPPUVCSq4aP55Rh1if80jc27fDyJGtt7fu2sWIESMy0l9FUXqOJ5qbeUKI1iCvwuVi8bp19DvnnIy0L4Ff+ny8l0y2HmPGtm2M3rePskmTMnKM99xufuvzkRAChOAsk4lL7Xb6jh6tLrJ1MinlL1O/viSEeA0wSSk93dknRVEURekq7VYDllImgeNaakZKuQ7IzCX9o1S/fTverCwAvgQ2b96ckQAwmjZH1Wc2MyU3l23XX9+hNof379/mdjJDo8CKovQMEnjY4+HhtNTfaRYLV+l09D/nnMxMUQB+4/Xyr+bm1mNcZDCwsLCQsjFjMlZZ+E6djoQQSKDY6+WCxkYmZmjEVjl6UsoI2rJwiqIoinJSOGw14Pakru72OK6dO9vc3nHA7eM1LrF/IFmfTFKQWramI0aMGMFpuv0v/8e1tTidzg63qyhK95No8zufhda03LLGRq6srubU8eMzNhr5N+ANKVuPMXrPHhZksLKwE7gVwGIBIbBFInxl7VoGlJZ2uG1FURRFUZQjOa5gFbg6o73IkPGnnNLmdt6QIRlpd1BeHmazGb1eT9Jmw5y27ExHVMTjrZWEa/PyqM3Q0hKKonSfJPBrr5e/eTytabn9XC7O/fLLjAZ5f25u5rG0Ywzft48ztm6lb4ayNDzA/wWDVKWWqBlQUsLPYjEuPusslfrbBYQQM1P/Gru7L4qiKIrSXdpNAz4cKeW+THckE0aOGMF0l4vVsRh6vR6/zZaRdvMAvV5PIpnEIyVbtm9n+ODB2DrY/qm5uTwbCICU1BYUYBLHswiOoig9RRy41efj32lpuXNNJi7W6eiXodRf0ObB/iktvXiOycT/GI2csnhxZpbrAn4SCLDW7QYp8UvJvTYbc0aN6njnlaN1PzAJ+ASY2M19URRFUZRucdhgVQiRC9wMlANvSimfSbvvQSnld7ugf8dsWHY2nwaDEI3yr507mThyZIdP3gyAORLBnyq05DUa8fl8HQ5WZxQWUpydTUNjI41WK29/8AF2u12NWihKL7TH6eSOZJIN2dmtabkjamq41GRicgbndz4PPJFWWfgUt5tLhcjYMeJoi2hvisdbl+yav3YteRUVUFSUkWMoRyUmhHgC6CuEuP/AO6WUP+iGPimKoihKl2ovDfgJtArALwEXCSFeSktHmtbpPTtOFqez9SRuX25uxlJrSw0GSI18+sxmco5jbdUDGYFTgsHW2zsLC1UqsKL0Qjvq67nW6eTTaBR/IABCMG7PHuZt2sQpGUrLlcBDHg9/Skv97dvUxFfWrqVfhtKLJXCnz8e7acc4ffNmhrhcGVsKTDlqi4H/oA10f3GIH0VRFEU54bWXBjxISvn11O//EkL8DHhXCLGkC/p13Gbk5/NQKISQkn0FBfSxWo+7rfyKCm6tqgJgbyTC6lRVYEs0yseh0GHnruZXVBz1MWYbjayOREBKdjgcmEym4+6voihdzwn8RKejNi8PCQgpWRIKcZ7NRt8MpeVK4AGPhz97PK2pvzMsFq5obKT/2Wdn7Bi/83p5MS2F+RK9nvkOB2UZKtikHD0ppQt4TgixWUq5trv7oyiKoijdob1g1SiE0KWWr0FKeYcQohr4AMjMZNBOMKa4mOGhENWpEcvdUnK8Yw433H576+8frF3Lqvx8JBCQksUeD7PGjetwf8/Jz+dvej2NjY3stdt5T6UCK0qv8YnLxS91OkJGIwSDCCmZVVnJ98eMwTF8eEaOIYEn0dJ/W7JG+jU0cKVez9Tx4zN2jMeBV9MqC4+srmae2cwEtURNd3MLIf4JzET7r/oIWCqlrO5Io6k10FcBNVLKxR3vpqIoiqJkXntpwP8G5qZvkFL+FfhfINqZneoIAQyLx/EHAvj9fp5asyYjS8IM69OHUo8HAUidjn3HMHraHgdQFgoBkNDp2OJwqFRgRekF3nS7ud7no8bno7GpiZL8fJZGItySofVNQYtM7vV6eSItLXdAQwOL163LaOrvHz0e/pp2jCFOJ2du2ZKxysJKhzwBvAqUAX3RvpufyEC7S4HNGWhHURRFUTrNYUdWpZQ/Psz2ZUBm1oTpJCVOJ2RlIdk/D7SjJ48Oh4MLjUaeEAK9Tsd7fj+nO50ZOSk9OyuLDeEwSMnG8nKMen2H21QUpfO8AfzGYCCm0yEBczTKdTU1fH3EiIwdIwHc5fXyfFpa7hyTicv0eioyWFn4QY+Hx9LSi+eaTFySlUXFokUqw6NnKJFSpgenTwohbuhIg0KIcmARcAfww460pSiKoiid6bjWWRVCXJnpjmTSmbm5IAQC2Ge3k9O3b0baPSc/H5PJRGNTE59GIrzwn/9kZNT2vIICHPn5CKAhJ4d/btyYkXYVRcksCfzB4+EujwddahQyLxTigs8/5zS7PWPHiQJ3Av9JS8sdXFfHZTU1TMng/NHngH9A6zH619dzSYaPoXRYgxDiMiGEPvVzGeDuYJv3AT9GWxZYURRFUXqs4wpWgdsy2osMG1FSwszCQmw2GxabjdVZWRlp1wH0SY1yJIRgU58+GUnZtQJjvd7W26srKlQqsKL0MEHgZr+fxz0ePM3NNDY1McFq5Y5IhP+ZOzdjwZ0f+GEgwPK0tNzhtbUs3LCBigym5T4PPA1aUTch6O9ycc66dRk9hpIRVwHfAOqAfcD5qW3HRQixGKiXUrZbUVgIcY0QYpUQYlVDQ8PxHk5RFEVROqS9dVbXHe4utLitR5sSi/HfQACk5Gm3m9Oj0YycTC7KzmZtqnrvpvJyjKnlbDrqG0Yjb4VCICXbHQ580R47LVhRTjq1wK+ADYlE6yjkwPp6rjMYmJahIkegDZf9XzDIF253a1ruNwwGzjaZ6JvBtNwXgb9EIoTDYUwmE2fa7VzU2Eg/lfrb40gp9/D/2bvz+Liq8vHjnzMzyZ01e3LTNE33vXSjLYWyl70F3BAUZVUUFREVdxFRfqK4f1UQEVBBAdlFVgtlp6ylUEr3tE3STJZJZp+bWc7vj5mkaZuUlk6ahD7v12teydy5c88zN5OZeeac8xzIZxX+RcAZSqnTACdQpJS6XWv9mV3avQm4CWDevHk6j+0LIYQQe21PPasmcB5weh+X/R2CNOBGbdvW86FyS1kZa/I0rPbM0lKqc0N2Ax4P96xZk5chuwsqK1nkcmULOAF/bm2VocBCDAFvAF9KJHinV0/nnPp6lrz1FmPzVOQIoAG4EtiQTPa8di167z1O8/uZm6dhuRr4B3CTZeH3+wl2dlK4Zg1XRKMsmD1bEtWDgNb6u1rrWq31GOAc4KldE1UhhBBiqNhTsvow4NVab9nlUg8sPyDR7YdDqqqo6ezsqd67Pk/Ve53AnGCw53o+h+we09bW8/vqmhrekKFXQgwaDdwPfNey2NzSQrCzk2B7O1dozdeKijgjT2uoArzQ1sbnAwEaLAun04kNOPHttzl02zZq8jQsV5PtJrsbSOQKutUEApz2+uu0ybQDIYQQQgxB/SarWuuLtdbP93PbpwcupPwwTZPPjRpFcUkJZaWlPJpK0ZynnspP5uZ4KWBzVRXU1ubluMeUlTGqo6Mnwb7H55PeVSEGwTa/n280NnKDZRHPJXaeRIKPrVjBrECAOXksQPTfQIDLw2GawmH8fj+G1vzc6+UzI0eyNE8JcRr4STjMHcEgVi4hHtvWxhlvvIEBeUuIxfCitV4ua6wenOr9fv75zDM915e//TZLe60tvzf3n/GVr7zvflfeeivTv/xlrrz1Vm5btoym9iE/ME8MIK/X+777/P73v2fq1Kmce+65PPDAA7z77rsHIDIxlO1TgSWl1CX7sO8opdTTSqk1SqnVSqnL9z28/XN6WRllhkGgo4ON0Sg3vPhiXpK/uZWVnFJWhtfrxevx8Ihh5CFaqDZNrho5suef+TXg16+9JgmrEAfQqtZWLmptZVkqhd/vx26zMSIY5JMvv8yISCSvPZ33AD+323uWwHF2dXHxpk2cVF6et4Q4CVwVDnNvRwfBzk78fj+HdXXxx9paFs6dm7eEWAwMpdQPev2enzcbcdCrb2nZKVkdKH9+7DHe+O1vuf7CC7PJaiAw4G2K4e1Pf/oTjzzyCHfccYckqwLYQ4GlfnyRXMGFvZACvqG1fkMp5QNeV0o9qbU+YM+6QmBGSwubc/O/uofs5qXQUiLBY7EYaM09wBLLYnZl5X4fd0FlJUdt28ajuZifmjKFRZs3c4Z8mBRiwD0PXONw0OLzoQGlNQs6O7nMNGmdOZOampq8vH6kgJ+FwzyZyfTMgy2JRjlj5UoOP/74/T5+twTw/4DnMpmeebDTGxr4SHs7I+fMYaS8rgxZSqlvAc+Rrf7709zml4C5gxaUGHQ/ufNO7njmGUZVVFBRVMShEybwzY9+lI3bt/PlG2+kNRTCbRj85StfYUptLRf89rcUud28tmEDzR0d/OKCC/jEokV8529/Y01DA7Mvv5zzjz+eOePG9bQRTSS47M9/5u0tW0il01z9qU9x5sKF/caUTqf5zt//zvK338ZKJvnykiV84ZRTOOOnPyVqWRz2zW/y3U98gtc2bODcX/8aV2EhL/3iF7jy9EW/GJ6uv/567r77bizL4qMf/Sg//vGP+eIXv8imTZs444wzOOecc3jooYd45pln+OlPf8q9997L+PHjBztsMQj2VA14odb65V037+2BtdbbyZbZR2sdVkqtAUYCB/Qrkk+6XDwciwGwtbKSlMuVl+N6t22jRikaS0vJAH9JJvljXo4MXyws5MWODjpdLiyHg//zeJjl9zNaPlgKMSC6gN+EQvxXa+wOByiFPZPh6LVruWL2bKpNk9o8/f+FgB9EozzT0dFT8XeB2835HR1MzOMSOFHgW9Eob6dSOxWGOmr9emqXysjPYWAtcBYwTin1HLAGKFdKTdZarx3c0MRgeG3LFu596SXe/O1vSaXTzL3iCg6dMAGAS/74R2780peYWFPDirVr+dINN/DUtdcCsD0Q4PnrruO9hgbO+OlP+cSiRVx3/vn88v77efiqq4DsMOBu1959N8fPnMktl19OZyTCgm9+kxNmz8bjdPYZ11+ffJJit5tXf/1rrGSSRd/+NifNns1DP/gB3k9+kpW/+x0ANzz6KL+88ELmTZw4kKdJDANPPPEE69ev55VXXkFrzRlnnMGzzz7LjTfeyGOPPcbTTz9NRUUF69evZ+nSpXziE58Y7JDFINpTz+qf2P0b3NM/SCNKqTHAHGDFB7n//phZWcmScJjncj0YdwaD1Pn9+/2BcGRNDUc9+yx3LVgASrHSMFje1saxFRX7HfMY0+SSbdv4pdNJRin8RUV8LxjkeqBGElYh8mo7cFUsxiu5NZRRiolFRXy2qYmFea6Q2wBcA7yXSvX0dE5raOASl4v5c+bkrZ024Fu7LIFznt3OcT4fI2XY73DRAXwPODZ3mQqcDHwnl7AeMXihicHw/MaNnHnYYT09kqcvWABAJB7nxffe46yf/7xnXyuZ7Pn9IwsXYrPZmFZXh79Xgcj+PLFyJQ+98gq/fOABABJdXWxtbWXqqFH97r+qvp57XnwRgGA0yvrt2xlbXf2BHqf48HviiSd44oknmJN734tEIqxfv56jjz56kCMTQ9E+DQPWWjfsawNKKS9wL/A1rXWoj9svAS4BqMtTxd5dnefz8WpuqYZlmQwjn3mGc084Yb8+sJmmycVHH01jNMrzDgeRSISfRCJMSKfz0gNz4qhRvLZyJU9NmQLA24bBV7du5beQtx4eIQ52zwH/BzT3Wi5mQnMzX+/o4IhZs/La1rL2dn5hs6HdbpxOJyHg8HXrmLd1K3V57OncBPwY2NzrMR21Zg3HV1X1fDAQw8IpwI+A8cCvgbeAqNb6wkGNSgwarfte7jajNSUeT08P5q6MgoL3Pcau7dz7ne8weS+LR2qt+b9LLuHkuTJCXewdrTXf/e53+cIXvjDYoYhhYE8FlsYppR7q77I3B1dKFZBNVO/QWt/X1z5a65u01vO01vMq8zDnsy+TgdrckLuMUrwwYUJelpsxTZOPR6PY02k00Ob18pdEYr+P233s786ezYkdHT3b1lVV8fVwmE3DrOBSimxPz0ttbfzzvff4TyDA/4D/kF1G42/ADWQ/jX0vHOaypiZ+EA5zfW7bb8kmFH8CfhEKcc2WLdzW2cnTZNfA3Jg7fnLXhoXoRwL4WSjE94NBOnPVce1ac8yaNZz29tuMz2OPgAZu6ezkG5EIzaEQfr+fQq251ufjCxUVnJ7Hns4n29v5QkcH23s9phPffpu5DQ1S8XeY0Vp/T2u9GKgHbif75XKlUup5pdR/BjU4MSiOHD+e/7zyComuLiLxOP997TUAitxuxpom/34+u4CD1pq3Nm/e47F8LhfheLzP206eM4f/e/jhnsT2zY0b93isk+fM4YZHHyWZSgGwrrGRaB+fhfbUpji4nHzyydxyyy1EIhEAGhsbaWlp2W0/n89HOBw+0OGJIWZPPautwK8+6IGVUgr4K7BGa/3rD3qcfLnQ4eD1ri6U1mwYMYKo252X406vqmLRW2/x7OTJoBTPlpZy13vvcWxp6X5/ADVNkyuB1vXrWZkbfvNeQQEXdHRwybZtnDhq1KAN59PAxpYW1ra04BwxAlt5OR1kx61tDYdpiEZJFxXR5XYTBizLwh+LgcsFkQimx4OxS3EFy7Lwd8/j6+jALCzcaR/LsvB3dmavhEKYLtdux3ADhbEYBaEQ09xuZhcVMQ4YBRQgRHbi3/+LxViVG/YbVIpDKiq4xuvFME1q8rgsTQz4HfCoUmiy/zfeRIIvbNzIkunToawsL+0A3N3Rwc8iETIA4TBjq6r4lc9HyciR1MyfL0N/h6/HtdavAq8qpS7VWh+plNr/+SZi2Jk/ZgxnLFjArMsvZ3RlJfMmTKA491nmjq9/nUtvuIGf3n03yXSac446illjx/Z7rJljxuCw25n11a9yweLFOxVY+uHZZ/O1m29m5le/itaaMVVVPXNb+/K5k06ivqWFuVdcgdaayuJiHvje93bb74LFi/niDTdIgSXBSSedxJo1azj88MOB7JI2t99+O1VVVTvtd8455/D5z3+e3//+99xzzz1SYOkgpfobEqKUelNr/YHHjCmljiQ7yu5tyH5+Ar6ntX6kv/vMmzdPv5b7pnAg/CAc5tnc3NVRsRi/ILtczP5q9vv5USbDOq+XQEcHnkSCs1es4JyTTsrLB8Rmv5/fNTTw317zYRUweft2Pm6zcczo0Xl5HBoIA0GgM3ep7+igPhjEVlZGuqioJyH1JxI0tbT0zIczTRPDMLIJpd+/2/ZgMEiwszNbYRUoLimhuLh4p/bfb5+9OUZ/7dvJJqzjgbHAuNzP91/xS3xYJIE/BYPcB6RSKSKRCBqY6PfzDcPI+7DfrcAPYzE2J5PYbTYCHR1Ud3Rw2qpVeXttgOz/7R3ATb3+P3yJBN9PJjltxoy8tDFcKaVe11rPG+w48kUpNUtr/daBbjev78033JC3tckHXEMDXHrpYEexww03ECkvx+tyEbMsjv7ud7npy19mrnyAH54O5PNrKPzfDfTjHQqP8YMaaq81A2xf35v31LO65zEk70Nr/Tz7UD34QPiKz8cbiQSNLS0EtObX77zDN+bN2+8PjdWmyXXAuYEAaE3EMHhw7lzmb9+elw+k1abJ14DMq6+ybOpUuhwONPDeiBFcC/wxEGBuIkFtOs3o0lI8WtPW2kpFZSWlZWW0BwI0tbfjrajAVVpKHGgOhWgIh6G4mKTXSxBoSSSI5YYP9iSe4TAoBZ2dmIbR05MZtaye+XBKaxKJBIZhkEgkdtvuNAyqCwspjERwWhaFmQyzy8owAVevSyKT4fVVq9CZDNpuZ+ERR1AMpHOX9kyGl9euxbLbSRgGY8rKyJBNrrsvfbVvGAZpsmPp6nudV8uyKAuFOLqwkFOKixnLEHvCirzZBFwbi/FaMNjzRUZhOs3Ra9YwtbmZ8Xmujvsc8ItEgq1tbT3tfayggNMyGerymKimgGvDYZb1WgKnMhTijDff5NCTTspLG2LoGIxEVQwtl/zxj7y7bRuJri7OP/54SVSFEB96e0pWf6aUqtZaNwMopc4DPg5sAa7WWg+7lZ2rgfl+P41keyOWT57MKXmoDAxQCnxDa75Jthu53efj32VlLGDfF7Pti2mafH3+fBZt3szNhYXUl5f33NbpdvMUgN2O6h7b73RCJEJZQQGBSAQKCyEcxswNGfJ3Vz4NBDBzxRf8uZ7SYK5Hsjvxs371K1xNTQQLCykoLAQgk05TEIvhSKdxZDKU+nx4CgrwdXXha2nBnk5TkMkwuroan8uFAuLxOLFYDLfbTdHkyXzhmmt2OYmlHLVgAU1NTdn1LHcdIllaygmzZu243efb6WYNbLIs7n/xRTqcTtqKi6mYP58WoHmX89ndA+vXmjXxOA84ndQaBguBhcB0wP6B/lJiKEmTnTT/L6C9V8GhurY2vmBZ1NbUUJOHL6y6pYDbgAeBYO4LHUc6zfGrV3NGbW1eCxwFgR/usgTOkS4XnwkEGJfHhFgIMXT885vfHOwQhBDigNpTHvVn4AQApdTRwHXAZcBs4CayC5UPO+c7nTzV2UnI6cQqLOSh6mqOIz89aovLy/m+zcbvbTacTiergW80NvIth4ORefjgaJomZ5gmh/n9/G/bNu5Lp6mvrCRp35FW9R7WrbQmGovt1tOY27HPbYWpFK6uLmo6OxnpdrOloQH/2rV8o7KS8SNHUupy4QKcQDwSIRwO4/P58Hp3DKiN1NT0ub23q+vr+32Me/qQvafbFTC+qorPHn/8bgltlGyv6qbcZUUwSGsmQ1qpnnPQahj8h2zhJx8wJRymrqmJE0pKpALzMFQP/DwaZXUqhdPpxOl0Es1kOGLtWmY1NrIgz0u4tAFXR6Os6tWeisc59c03qYzFqMktM5EPm4CfAht6LYEzfds2LnS7mScVf4UQQgjxIbGnZNXeq/f0bOAmrfW9wL1KqZUDHtkAGWea/NRu56qCAgynk42GwQPAR/N0/E+UlpIBbu7Vc7eppYX/I7t+aj6Ypsm5psncNWtY/vTTNBcV0ebzEXa5SBhGzzBhm1LUjRrF1tZWHKkUhZkM80pKMIB31q/HaVl4UimWLFpEUSbDc8uWYUunsdlsLF26FNPnwz9hAj8tLOTI6mq8LtdOcXi93j6T0f62Hyh9JbQesr2l03PX/Vpz3/Ll1JeVsdk06TJN0r32b7Ms7u3oAKeTm0IhLjAMPlVSws59uWIosoA7gTsTCZpy64wGleKI8nJ+4fWi81xECeBF4PpEgk292jutrIzPl5YSnDIl+8VJntp7MBDg9zYbdpdrxxI469czb8sWRuV5OLMQQgghxGDaY7KqlHJorVPAYnJroe7F/Ya8Yyoq+BzZZVMsy+L/4nFGpFIsrMhPgcWzgFV+P//J9XhsLSvjW6kUX3nrLSZXV+ftQ+vUqVMpKyujqakJp9NJIpHoWZ6ip2exqgq/1juu5woS+Q85ZMe23OMuX7Jkx7ZcjKZpUl5ePqjJ50AwTZOPnXpqz+Mtdzp5B3g5d9nUa+5rtLCQ25XicbJDDc4ARg5i7KJ/T7S3c4PWRH0+ErlhuLZMhgWbNnFxezuz58yBPC6RlQBuBh5nx7BfyK6felZ5OePmzIE8/b9ngD8Gg9wciWTbCYUYU1XFdV4vZnk5NYccIkN/hRBCCPGhsqek81/AM0qpNiBOtmYISqkJZKdLDWufAl6IRnkp1xPy9a4ubspkmLFL2ewPQgFfMQxa332Xl8eNA6VYm07zfcPglGef5XNHH523D5X9DYvtva2vffZ224fZro93du7yBeDlZJK/1tfz7ogRRHNDOruAR4BHgQXAR8j21EpRpsEXAH4dDvOfaDSbyMVilJWWUtPZybGrV1MRjzMqz5VxNwLX5Kr9dg/7zVgWJ65aRW0wyMhDDslbW1Gy64j9D3q+RCmNRrl0wwZOmTEDes1hF0IIIYT4sOg3WdVaX6uUWgaMAJ7QOyZD2sjOXR3WHMBHN2/mdZcLy+EgWljIj5XiFsjLUM9q0+Qa4N/hMP8qLSUSiRB0ufj3/PmoeJxvMby7py968EEeXreOKo+Hd770JQBWNjfzxYcfJpFK4bDZ+NOSJSwYOfz6IBVweEUF46ZMYWtTE1srKnjWMNiUu10DK4BnLYvqzk4utds5PE+98mLfNPv9/DsS4X8jR9KRyfQkcq6uLj7p9/PR6mq2ZzJ5HYargQeAvyQSNOaq/QaV4vTSUi4qLiY4fnxe21vZ2spPlSLk8+F0OgkqxejWVk595x3mnHJKXtoQQgghhBiK9pgvaa1f7mPbuoEL58CaXVnJ0hde4IG5c8nYbASLivgJ2cIlhXk4vmmafMU0Gd/ezg8zGZI2G9pmY7lpsjUa5aObNzO7snJY9mZeMHs2X1mwgPPuv79n27eefJIfHXMMp06cyCPr1/OtJ59k+QUXDF6Q+6m753U+8DGyCwY/ALzKztWELwXOKizkK0VFFO/heCK/nm1r46etrfh9Pmhpoay0FJRiSmMjR61fz8dOPhnTNPOyBnG391pa+FUmw5bS0p5hxo50mmPWrOFjNTV5HfYL8EggwNXhMJbdDrEYpmlycXExi9rbqT3llGH52iGEEEIIsbeGc+fefjNNky8uWkRtMMhdo0djGAYrLYuvt7fzPbudmjx9EDy1vJzaTIZfZTI0lZQA8FJ7Oy97vUzdtInv2mzMzOM8ugPh6NGjqe/s3GmbUoqQZQEQTCSo8X14yhEpYGbusg34Y0sLj+eqCQM8rjVvA+cCpyHL3gykZrLLwzxSUEDQ5+upal1mWVzl8VDidFKTS1TzRQP3BQL8Ihwm4XCA309ZaSlmOMyJK1dSZlmMnLfX61u/rxRwK/APux3LbkcDjnSaT27ZwucmTQKp+CuEEEKIg8BBnaxCNmG92DSpAP7Yq7fsS9u38ztgdJ4+8B5SWcktwP3AH3NrnGaU4t2aGi4rLORM4JNAbV5aGxy/PflkTr79dr755JNktObFiy7ap/sngS0tLWxrbmZkdTXVVVXYySZ+rX4/LU1N1OZxeOUHNQq4orCQymXLeHbSJOqrqrLLopBd0+mBWIxTtmzh6LKyQY/1wyQK/CUY5CGtceQq4QaVwpFOM6++nh9Om8Yo08z7/M024E/A/+x2ErlK20prjg8EuKiykpbp0/M67LcZ+AWwHnoeY1E8zpK33uL0Y47JSxtCCCGEEMPBQZ+sdjsTeKO5mQfI9qJsrqjgh8AfgKI8tWEDPg6MSia5urOTxpISUArD6eQxy+LBRIK5djsner0cDpTmqd0D5YbXXuM3J5/Mx6dN467Vq7nwoYf4x8c/TiAex+7xgMtFgmy1rhXJJOe0tmLzesHlIg5ELQt/IgHFxZBIYFoWhmFkh9xaFpSV4YxEmOLzYbrd2SG3oRA6EOCQoiLmlZUxgux5HmimafKZxYs5vqmJFo+Hew2D7WSHB7/W1sZrbjez16/nWpA1WvdTmmy13b/G42wIBnsq4ZqmyZmlpRxTX8+MadPy/sWABu7q6OAWALd7p8TxhNWruWTRIkzTzMsayt1eBH6RSBCwLJxOJ4ZhcGpZGadv3MiEY46RLz+EEEIIcVCRZLWXS51OGt97j1fHjAGlaC4p4VvANcD+1wjeYUFlJbdmMjwbCPDSqFG8A/j9ftCap5RidUEBNxoGU4FpnZ1UNTQwu7KSEYP8QVUDnZEIgWgUu89HI9AFvEV22Y6/rlzJ4sWLuR9IT5vGSw89xEOpFDgc0NWFt6AAu8NBOpWi2bJoisUgHsc0TQzDINFruRilNYlEYrftCYeDzckkAXLzRjs7QSn+HYlgejwUGwZjgIpQiKKWFo4rKmJKHio896V3NeHjgQeBP8diPbGuHDWKK5XiF2R7Y8W+0cDj7e3cksnQWVREoqur59xWd3ZyaSTCR6dNgzxW3e3WDFwXifB0OJxNjsPh7BcUJSUcFQgwNpeo5ksSuAW417Lwt7SA1kS05vKSEs4rKUHNmpW3toQQQgghhgtJVnupNk2uBe6MRHiktpZCw2CTZXFxJML3tc7bOqyQTXTOMk3OAu57911ui8epr6jYKUl707J4LBQCnw9HLMaCaJQZHg9jAV9bG8mmJiaYJnX78aG50e9ng9+Pa8QICisr6QQ6ga3BINvCYVRJCe+QTcSiqRTBdBoMA5JJ4qkUcWBVKkUkkcDn8bB83TrmTpnCmq1bMUtLe9adRGtSqRR2h4NUKpXdxM5JqdswSKTT2NNptFJUFBZSAGjDIKJ1dn6oUjidToB+k9u3upPYggJuTCQ4IhplscfD4Qzc+qgFwCeAackk32trY3NFBShFe3ExXwM+D5yMLHOzt1YBN0ajvNC9FE08TllpKT7L4vC1a5nc0sIRS5fmvd0M8DDwd6Alne55fpVEo1yyaROfmDoVZs/Oa5vbyQ773cCO57QvHueUVauYOXEiSuanCiGEEOIgJcnqLkzT5HLT5FDg/yUSPb0cX9KaLzocXFxSkvfiOYvKy+l4+GFCBQVsrq5GLVrEZnZOxlI2G6tTKRrI9SjGYtnhspbFqESCCqcTH2CLRomFw3i9XtxeL5BNCiPRKB3RKHavF5vbTQLoTCRotKzsceLxnYfddg+3DATwpNNEASuV6kk+b3nkEdY3NhKJx7n8d7/jtMMO49zFi/n3s89yz7PPYhQW8oXTTsOVTFKQSlGYTlPrdFICaK2pa2/nsJdewpnJcPoJJzAaKHA6afF4aGpqys4BdLmyJ8jpxO9ysa2pieKRIzEMgxCwOZ3mf++9R8gwaC8qwqiqIsHuSWz3efsbUBaLMd3v5+MeD+MHoMd1WlUVN2rN3ZEIj48cic0w6AJ+bVn8t72dr9vtjJWhnP16rq2Nv6VSbC0tJZF7vmmgIJXilLY2Pl1cTFttLTULFuR9SOxm4JfRKG+nUj3rpoaAOfX1HL5pE0eddlpe29PAcuC3iQQduWG/TqeTitZWjn/7bVy5JXeEEEIIIQ5Wkqz240jggs2bub6wEMvhIK0UtyvFeuDrZBefzRfTNFm6dClNTU18uqYG0+MhCDyayXBnWxstPh/R3AdZ2D0ZC1kWyumkybLwt7dnE8quLsyCgh3JZ/f2RKJn2G0kt/TGnobdKq1Jp9MAOBwObFpTkE7z1eOPp6akhCLDQCUStDU04EilOPPoo5k6ZgxlHg92IBKJEA6H8ZWU4M3Fj8vFlKoqTp08OZuU9koaew+t3fUc7bp9RlkZC2bP3im57QBeTaW4f8MGtpSVsb2srOe8WZbFyrY2Vtps3B2N8slQiM8WFeX1bwnZHvqvmiZnANcD63sV7no7GOTXNhtzh1n154Gkyfak3hqJ8HRuGHV3tV271kzbto0F9fWcfdJJmKaZLaKURxHgDuA+y6I5938SVIpDKyr4sceDs6iImtNOy2tyHCRbtOnpXYb9XlFczImjRrHdbs9r0SYhhBBCiOFIktU9OKasjG1PPcXj06fjLynB6XTyHnAZ8DnyO6xz12SsGDintJTjamtpamrCW1JC1DDYBLxls/F8JEK8oIBEYeH7Dovtb7vT6SQMGF1duJNJZpaXUwPYlGLDxo04LQtPMkkgk+EMwOlwkCgoIJxI4PP58BpGNlink0h1dTYp9fnwejw9j8Pr9eLN9fD25nK5mJOH4Y27nrdS4KTycmbNmEFTUxNFLhdbDIOXgWXxeM95SNpsPKw1yyyLCe3tnF9YyII8DvMGGAP8Bri6pYX/5trtcLv5tsPBj4Ej8tra8KOBx9rb+VcqRXNJCYlew25tmQzzg0HOc7tJer3U5BLVfLf/744ObtOalMfT83+itGbexo18ob2d+XPmQJ6fF4+2t/N/Su3UZlEsxsmrVjFj0iSq58zJ69qwQgghhBDD1YAlq0qpW4ClQIvWesZAtTOQTNPkM8cfzzFNTbxeVMSjhkEasMgO67w/EOByu51pA1TApzuG3h/SZwMf8/nwV1TQ1NTEiOJiSrqHxSaTPPLGG2S0xqYURx99NBVAIJXi2ddfx5ZKYWjNaccdRx3gMgzanU62BwLZXpzupLKoCP/06T09ljfcdx/d6WZ/yWd/2wdL7/M2nmwBpM9YFr9fvZo3Ro+m3efDbrPR7PfTrDUvJJN8qrCQLxUVkc/VYQuBywsLSb32Gv+bNo203U7K4eA7wSAfBb5SXExBHtsbDhLAU8CdsRhvdc9JzfWk2oBJTU0sqK/nM8cfn+11H4D/r/XAr6JRXuouoBSJUFZaSl0gwFFr1lAej1M3fXpe24wCvw6Huaf7MefanNHYyKL33sPQWob9CiGEEEL0MpA9q7eRXfnl7wPYxoDrTnrmAYuBXwMbeg3rfFVrPhkKcVFRUV4rBu9tXN2cQFVFBWOOOGLHsNju9SbLy5m2aNGO7b0+/FebZp+9OP0Nxx3O6kyTKw89lMamJjo8Hu6ORHg515MH8F+teQs4vaODSfX1eVvT1TRNvjFvHke3tXHbyJGs7+gArblNKV5Lp/n09u3Mq6j40J3vXTUDdwWDPJrJkHG7SSSTPT2p9kyGhZ2dnOt2k3Q6qTn++AE5HyGyL0hPAJ295sT64nHOj8c5paaG7ZD3IbirgN8CGzKZnja9iQSfa2zkhPHjaXK5ZNivEEIIIcQuBixZ1Vo/q5QaM1DHHwwTyH7g/Knfz4O5D5xppXhEa14m23t3Fvmdz7qv9mXO58Go93mY4ffzt5df5tmJE9lWUYHT6aTNsrguHMa02zl52TI+s3hx3hLWpaZJyVtv8fNUii0VFaA174TDfN/jYdb69Vyl1IAUfRpMKeAV4DHg5d6Fu8JhykpLMdJppm3bxpytWznnpJMwKythAObzpoBHgVsSCdp7FTOKaM3cTZuYt2ULp+bmpeZzCO5Wv5+bLItXcvPEu9dqnbR9O8etXcsJJ58s/5tCCCGEEP0Y9DmrSqlLgEsA6urqBjma91cIfNkwcLzwAs9PmNAzlzUNPAksA44BPgnUDmageVRSV8fV9fV5P+ZgM02T8489lhOammj2ernXMFifS6aai4v558KF+EIhLsljIjGxupozH36Yt2preWHSJFI2G1opVo4axSVKccrmzXzc7WbcME9eNgNPA4/G4/i7unA6nTvNnS6JRvlIMslHvF4CRUUDMicVsvNSXyRbCbq+VzGjoFIcsr6CqU9XMGeCxamnTc97+8vb2vhRRwedLhf4/ZimSYVh8BWvl1GFhdTkElUhDiSl1CiyAwyqya7WdJPW+neDG5UQQgjRt0FPVrXWNwE3AcybN0+/z+5DgmmafGHRIpbmhpP+zzB4J3dbhuyH9MctiyltbZzqdLK4vHxYz0v82jXXDHYIA6Z3r9YJwF+Bv+TWdE05HNwzciRN4TAnbdzI+BEj9jq5+O1VV9G5dWuft8XjcYjFWFBQwNupFLHCQgACwD+BO7VmlN1OpWVR5nTiyi3hU1JXN6T/Fm3Afzo7eTyZJFBUBIC/tbUnOSwvLWVMezvTtm5lXHs7ZyxdimmajB6ghO25tjb+kk7TXFKyU6GxoliMcQ+2cNfVtaRSNgoLJ7NsGeQrjChwK3B3QQFBl6unsNm4QID/N2IEZWVlUFaWn8aE2Hcp4Bta6zeUUj7gdaXUk1rrdwc7MCGEEGJXg56sDle9k5zFwDvAncBb5NZBzRXuWR6NMsbj4SinkyOAQwFj0KIWe1IIXFpczNxkkuuBkC9baun+jg6eMgyWLl/O+cceu1cJa+fWrVw9Zsz77heJRNiQSLDGMOjMLRHUm9eymOJ0UplIcMPatfv4iAaW3+/n7ZYWto0axeqSElZZFv5QKDvMNx7PVoXWGrdlMbWxkXMrKpgxciRNSlFz+OED1qu4CbghEuGJXsvgmKZJuWEwc/16ptfX879XZ5FKKdJp6OqC5cvh8MP3r10N/DcQ4Eagy+PpGfJrJJMctX4935ozB0lRxWDTWm8Htud+Dyul1gAjAUlWhRBCDDmSrObJDOCnwHvAbwIB/L2WiumwLJ5xOnmGbKJ6KLAImAe4By3iwZUhu9ZkB7ChvZ36QABPRQVGaSnNwSAdHR2Ul5ZSVlxMuLOTRHs7daWl+LSGxkam5XluYW+HVVRwO9nu/ntyw4I73W7umj+fimCQi/LYrtfrZbbXy7hIhJdbW2kqLiae62kFiBgGr2kNhsGziQQ/b2xkfCjEYWVleV9vdG9s8ft5vqODTcXFPN3RQXtREYRCmC7XTsN8Hek0s4JByletoratDYdSzJg2bUDnZ24Dbic77DfYaxkceybD4c3NXDl6NNFDDqGpvJy6EaN59FFFVxcUFsKxx+5f237gV5EIj0ciPZV+TdPktLIyTtq0iWlz5siQXzHk5OpKzAFWDHIoQgghRJ8GcumafwHHAhVKqQbgR1rrvw5Ue0PFFOAam41bV6xgjWmyqbq6Zx1UyC5782Lukk4kGNXRwRy3m9nFxYwDKsnf2q0HmgZiQCewvq2NjYEABVVV6JISOoBtkQhNsRgpnw8rNzzSsiz80Wg2YwiHKXM4CASDoBQEg5TZbARCIXA4IBLJNlRcjDMcZnYsxuE2G5M6OxlfXZ3XZMAJfBUYnU7zk0yGpM1GyuHgH5WVbNmyhS84ndTksb0ir5cjRowgHA7ToTWr4nE63W56j4tPFBTwz1QK3G7s8TgLolHGpdMUtbQwo6SEWRUVeVt2J0N2WO+77e283dlJqLKSeoeD1xIJMi4XdHWhc+vpdq/d6zYMigMBJmzfzsSWFj5+6qlw+OE7qlAPULK2Bbgb+J9lEU8keoonhYDJ27ezcONGzj3hBLyAN5csz5kDy5Zle1SPPfaD96omgfty7bf2SpA9lsWnt2zhgkmTYObMfDxMIfJKKeUF7gW+prUO9XH7sKonIYQQ4sNpIKsBf2qgjj3UmabJhccck10HtaSEmGHwAtkEtSG3j5Ur9tKoNS8nk5hOJ4Zh4AHGAuNyl7FAHYPXBa6BTS0trGtpwVVdjaOigiDZhLQTaAyHaYjFSBcVkXC56CL32GIxMIyeXjcAfyCQ7XVKJDBz1VF798YprYnmhm72dR29I3WLFxTwEvASUODzMX3dOj62eTOHjx2b16TozLIyatNp/p9SBAyDQEcHDwAvt7TwC5uNWXmsXNu9Vu0IoK6ggEAkQqvLxXvxOOHcFx7dZyCtFG8nErwUjUJBAcRimJaFN5PBGQ5T43ZT6/USa2oi1NzMyKoqxtbWEunooC0QoKi8HE9JCW2dnTQHgzhKS9FFRWyPRtkejxP3ekkrlf0iweGAzk68Hg+ZXjEowKY1dYEAnykq4hSnk1hNDU1AzaGH9vwdBipJXU82SXyZHUPvu+fHLi0t5WNuNzbDoOaEE/qM4fDD92/o77L2dv6kNWGfr6fSbwiY3tDAkRs2cOopp3zwgwsxgJRSBWQT1Tu01vf1tc9wrCchhBDiw0eGAQ+QXYc7jgM+S3ao4ovAg8HgTkOFE4kEhmEQJTv/9Z1ex0onErgiEUyXi2qPhyLAl7v0/t1qbSXg91NlmlTkkijd69LS2kpjayvFpomnvJw4kADigD8YpCkYxFZaStrn60lIWxIJticS4PP1JESGkZ11a1kW/tyaoVhWvwloIpHIPpBdtlUaBpUFBbQGAhhdXdllTMaMYeumTZDJoG02xk+axNotW0jY7SQKC4kZBm0eD12OHU/dpN3Oyro6VmnNzPXruRryWk330MpK/g58c/t2Xsw9huaiIr7hcPAN4BT2rjc8kUpx9K23YqXTpDIZPjF1Kj8+7jh++NRTPLh2LTalqPJ4uO0jH6HG58Pr9VIHTLbb6YhEsr3xjY1sKy0lmOvV3Cmxj0SyyaXWrE4k8CWThJJJKC+HdJqijg7C4XA2+QyFKLPbs73WAJ2dlClFoPvvGYv1zDntPj4ASlEeDlMXCHB6bS21wSBjR47ELC0FwDfAy7BosmuW/j0S4dV0GmfuS57u51xdWxsLN2zgtEmTmDNnzoAsg7Md+F0kwqO5c00shmmaTDUMfuTx4Ha7qTnlFBn2K4YkpZQiW0tujdb614MdjxBCCLEnkqweYKOAs4FjteaOF16gsbiYtqIiSsvL8QORXfa3ei23sSEWw3Q4epLF3faLx7NJZTy+U1K50+0eD0SjmF7vzkln9/qXHR2YhYU9t8Usa7cks/u2vpJSn2FQV1BAWzCIO5HAk0xyZHExJVrz9sqVOBMJvMkkZ514IiOLi8Htxl9Ts9NQUb/dvvN1h6PnOsDadet4uaGBjRUVrKupod3rBSCTWwLm4lSKrwUCnJnHiqse4Ec2Gz/esIGXx48nY7Nhc7v5jWXxQCDAZQ4HM94nMTLsdp46/3y8hYUk02mOvPVWTp04kSsXLeInxx8PwO9XrOCaZ57hxqVLe+7X3eM6LpHg0vHjaWpqoqi8nE3APZs20ebx0OnxkN4luYzHYju1H99Dr3Vf172pFN5QCF8sRlU4zFlz5jDaMAi2t1MzadIBTcaSwLPAA8Bay+rppQ8qhWmaLLLb8b3yCpWdndhstp7nSj7FyfbkPgC09xryaySTLGlo4LLx47FVVEBFRd7bFiKPFpH97vRtpdTK3Lbvaa0fGbyQhBBCiL5JsjpITNPk3MWLdyRlXi+a7DzBTWTXqdwEvBoO95ss9tZX4th7vz3dvqfbnE4niXQap2XhTiaZW1bGSKAE0JkM77z9Nq5cAvrx449ndHExyu3Gb5rZxzZ6NGZJCQDHLlzY5/zFXXuh9+b6ZL+fpqYmDJuNl9vbucdmoyHXu9eeSnFVJMKqggKu9PnYMWN4/1SbJlcDr7S1ce/YsTSRrYjr15pXLYvzCgv5fHExnn7ur5TCmyuelMxkSKbTKKCo198p2tW1x17a3udiPDBz2rTsOa2oQKfT3PXcc4QKC0kYBubkybzT0EDSbidts1FdV8e25mbIZCjQmknjxlFfX489mcSdSjF/yhQ2vPEGRiJBsWXx0dNOg6qq7PEPOQSzvLw7iP07kfugA7i7s5P/ZDJ0eTw79aICTNy+nQvDYZZMn47/6KMHZH5s93JUf47Hac6tGdtd6XdqYyNHbNjAOSedhC1vLQoxcLTWzzN8SyMIIYQ4yEiyOoh2TcIU2QJLlcBhuW3+dJp7ly8nXFCAZRjMO+44CoAQEO71s9nh4J1YjDRgA0ZXVuJmxyeSyoICtkQi2DIZCtNpZpSXUwG4gC6lWLN5M45kEk8yyUmHHcZ4oBgoNgwCHg9NwWA2CfD1KuFTWop//vy9SkD725aPczcNOM3v5+8bN/JAeTkRpxO05rGuLla2tfFtYEGeertM0+R00+Rk4NotW3iA7NDUtFLc9oqd216DM+eGaG9vJ1JRgTfX69stnclw6E03sSEQ4Mvz53NYbS0A31+2jL+vWkWxYfD0+efvUzy9z+k5J564099jjdZs2rSJcePGMXXsWPxu9557sV2u3f6eB3o4qya7BNRjwDOJBE3dy+HkKuwWGQZ1DQ3Mqq+nLJFgXq4XeiAqDb9Bds3UtZa105qxR5SXc7XbjcvppOakk2TIrxBCCCHEAJBkdYgzTZOPn3LKjgSiv6GtHg/+srId+7l3WRTH7cZfUbFTT26PoiL8U6fuuK27B61XDP19GB/IpUj2RbVpcj7gffRRnp4yhXU1NUSiUTZozaWZDN+z2fh4HocFFwJfcjopeO45np00iU0bq9h8rodMl2ZVgZdZCwye9fs5Aijpda7tNhsrv/hFOhMJPnrXXbzT0sKMqiquXbyYaxcv5mfPPccfXnmFHx933AeKa9e/x9SpU5k6dWq/t7/f9QMpADzQ2cnDqRSRXNGiaK9h6N5EghObmvji2LHEJkygye0esCrDr7S28pd0mi2lpTv15rotiyPWrePckSOZO2eODPkVQgghhBhAkqwOA3ubQLzffsMh6dwfpmny8VNP5fCmJp7t7OTvXi9Ju52Uzcbv7HbagYvI35PeNE0+f9RRnNbUxG/eKGJTl4J0tmcw0V7AljnltNvtTEwkMINBKj2enp7WEqeTY0eP5rENG5hRVdVzzE8fcghL/vnPD5ysDjcW2Wq+TwEvWxbN3b2ouaJFTqcTTzDI9K1bmdTSwplLlmQLig3Q83U78OdwmAdisWzVY7+/pzd3yqZNzN68GUNrRs6fn/e2hRBCCCHEziRZFR8q3Ul3jd9P8qmneHjWLDq8XpxOJ/dYFi91dnKlUkzrlSDmo70vJeDeX4HVpaFA46hMg1KkbTbeTCRQhoHN72dOMsnc0lK6kkn+t3kz3160iPXt7UzM9WY/tHYtUz7kvXUpssN8HwmHeTaVQrndGIZBvNfcaSOZZIHfzyV1dRimSVM6Tc38+QP2hUorcCfwP6Ajk+mpoK20Zk5LC98eNYrktGk0lZQM6JqxQgghhBBiB0lWxYeSaZp89vjjWbR9Ow+XlvIqO4ohXZBO812Hg4+UleWtysjhh8OyZbB8uWLKzA7u/GuKarebznSaZJONrgYHrV7FtU/cCYBDa86YNIm5Ph+XPv44Gzs7sSnF6JISblyyJE9RDR1dwErgBWAFEOi97FE43NOL6uvoYFJjI5NbWvjoaadhAgxgr38AuCUU4pFMBofL1bNealApxra0sGjDBs4/7jjKBjgOIYQQQgixO0lWxYdWd6/nQuD6zZu5w2ZDA5bdzm/sdtYBXyK7Rm0+HH549gJlvPXvIj5SUMDLW9I8ca8XnQa3fSw/+MwleMbYSadSRKJR/ptOc+4xxzCjrIyxLheuPMUyFDSTTVCfC4d5NZWCXA8q7FyBujQaZXFTExeOHYseMYImramZN29AE8MW4F7g4USChs7ObNIcCmGaJvMNg1Pcbrx2OzXHHScJqhBCCCHEIJFkVXzoKeB8txvrued4YsYMQm43TqeT54HX43E+smULi0tL856UKCC13YnKaDQKMhq22WEMpFIp0JqUzUa7x8MKpVgJeJNJfNEoIw2D2lzyOhzWmNBkh9KuCAR4IRqlobycoNudXcN3lx5UwzCoLSxk/JYtjG9upjoc5vSlS6mCAe+9bATuIbsUTRoI9yrgVN3ZycXRKGdPnZotnPQhH44thBBCCDHUSbIqDgqmaXLJUUdxwvbtPFVTw8uGgWVZbG1t5ecuFw/W1/OjPM5l7TZmDNjt2cJLdrvilDHZ5YLWKcWadJouux2UwuFwkE6laIzFAHivqwtvQQFeh4NywJNIsDEY5K3WVqZXVg7qP24SWN3aysqODsKmSWtxMRuANsvCH4lkE9O2NkzT3KkHtSQa5cjmZj49ejTjXS5aJk+myec7IHNA1wL/CId5LpPBcDp3WkfYGQoxf8MGxgYCHJtbBkcIIYQQQgw+SVbFQaN7WPDhZOdN/jga7Umk3quu5rLCQi4CPg4489TmqFFw3nlQX59NXEeNym6vMAxmJpM0xWJEiorocDhoyCV2QLbXNZUi7nCwJZUiYlm8Y7dzXjxOTSLBaKeTGsAXDEJ7O2NLShhbVkYxUEp2aLNtH2NNAxGya/d2X7Z0dLAxGCRVXk7M58MPbLcsmuNxMAwIBjFzyV/vxFRpjY7FOKyggPi6ddS2tlIRj3P60qV0p6UDXYE6TbbS8IPAyt49vEphmiaHGgZnGwbVVVVsT6WoOeIIGfIrhBBCCDGESLIqDkqHAb9LpfhOSwsbqqpAKewuF3cCjwOfBRaz7wlfX0aN2pGk9ub1epnUaw3WzlSK1/1+woZB1OlE5W7rHjIMgNZELYtGp5NNloU/GAS7HSIRTI+np8cwGg7TFYlQ4nZTXlxMAVAAJGMxItEohseDw+0mRbanNJxIELQsnL16HS3Lwh8Og1LQ0YFZWLhb1V6lNYlEAsMwKDMMfB0dmB0djOno4OJFixhZWop/5swda/gegGQwCtzT2cn96TQxr3e3RHp0aysXRKN8vHv9WdOkWpJUIYQQQoghR5JVcdCaWFXFn7RmeSDA/0aPpjmXpHUA11sWfw2FOM9u55Sysn1OWkvq6ri6vn6fY4pnMsTa23G73TgTCaJAq2WxLRikoLaWglxCCezWk9mdNEbCYdoDAQBCXV1EbTa8Pl82+Wxryya+8XjP/FHLsvC3tIDWBHO9jn31lHYf3+V0krEsiqNRzHCYj/h8zAeqnU5augskTZvWk5geiDV8NbABeBR4IpFgW/d6rdEopmniNQxqtm9nVn09VdEoR8pwXyGEEEKIIW9Ak1Wl1CnA7wA7cLPW+rqBbE+IfWWaJmebJmeRLbrzd7LDXLuXufmuUtzpdHKO281iwNjL437tmmvyGqff78/2ThYXU2wYNAHvpNM8snEjkYICEk4nNRUVpIB3Q6Gd7huNxfD6fP0mn4lew4+dXV0UhcOMMwyU3c7W7dtxJhKUJBIsnT+faUClYdBeXExTNErN5MmYZWU9bR2IxLS3OPAM2SR1U25bqFfRJFdXF0dt386Xx4whOXYsTYYh66QKIYQQQgwTA5asKqXswB+BE4EG4FWl1ENa63cHqk0hPigb2WG/i4DfbN/OPZkMSbsdpTX1ySQ3ALcDS3KXkgMc365J4DhgXFkZh02fvmOIrccDwJpQiOXPP0/aZiNtszF/0SLGmibbu7p4YsUKMpkMBcApixdTA3RYFk8+/TS2ZBKHzcbS7nmlXi/+sWOzx586FbO8vN94DiQNvA08BSzrY/iy0+mkIBJh+tatTGtu5qOnnSbrpAohhBBCDEMD2bO6ANigtd4EoJS6EzgTkGRVDFlO4CKXC/cTT7By1ChW19X1DLsNA3cC/0wkmN7WxhKnk6MrKgZ1aZm+ksapubmYmzZtYty4cUydNAmAEZWVjDzmmB3JbWUlAOVVVfhOPbXPeaWDmZTuqoFsgvo00Aa7DV8eVVXFYqeTUw2DkooKtnd1UTN37pCJXwgh9sWY7/wXgPrrluR+r6O+NjO4Qe2DMS9kJ9DULxo+MQ813c+BbjueC9nfB0s+/rZD4XEMRwfjeRvIZHUksK3X9QaydW2EGNJM0+Sck07i6KYmSj0eVhkGDwIt7EiQGrTm8ViM6fE4p7hcHAf0UUNp0EydOrUnae2tv+RzKCWlvTUDLwJPRKO8m0rt1IPaPXy5JBplxrZtfKqjgyNnzcreUYomCSGEEEIMewOZrPbV4aR320mpS4BLAOrq6gYwHCH2Xu/kbQzZob8vAX8OBvH3mvfZ0NXFv10u/k12aO7szk7Gbt3K1CGa/A0HjcALZJPUjeS+IGhv36kAVIVhcJRSJF95hcrOTuw2GxNnzx7UuIUQQgghRH4NZLLawM6dTbVA0647aa1vAm4CmDdv3m7JrBBDgR04EpigNX959VXWjBjBxurqniHCAGssi+WhEBQXY7a2cqbTyXHFxUzO3V/0LQW8BywPBnm+q4tAUVFP7yns6EG1ZTKMbW3lI/E4n548GUdREf6jjz6gy+IIIYQQQogDZyCT1VeBiUqpsWQ7S84BPj2A7Qkx4KpNk0uOOoqmpiYqvV4aDIPlwCtAsFe1Xb/Px13AY4AHmAUcCswFKgYr+CFCA1uBlcCbwDtkK/j6g8HdltVxAAvtdjKrVzO6pQV3Os3JS5f2vHAN1eHLQgghhBBi/w1Ysqq1TimlvgI8TrZj6Rat9eqBak+IA6V3glQLLASiwH8zGf7W0UFjSQnaZuvpdY2SHdL6Itkhrd5wmBmGwaE+H5PJDh8uHIwHcoDEyQ7n3Qi8EQ7zRlcXltfbZ++pBhzpNJPa2/lETQ3zAY/Xi//QQ6UHVQghhBDiIDOg66xqrR8BHhnINoQYCjzAJ0tLOaari43NzQRGjWKzYfAG2cq1kJt7mVu/dWMsxsuFhRiGgR0YC1SHQhS3tDCzpIRZFRV4Bu3RfHCb/H5eDwSIjhhBW0kJG8iO/dfkHn9HR7b3NBrt6T0FqCsoQDc2Mqq1lTEdHXz01FPpnZJKD6oQQgghxMFnQJNVIQ42uyZVmmxJ7NeBRzo6aM1kSCuF0ppEIoFhGKSB1ZbFU52dUFAAsRimZVFlGNSQLas9EnAGAqjt25lcWcn4qqpBWTKn0e9ndUsL9poakuXl+MlW7PUD9fE4Gy0L3G4IhTBdrn57T51dXUxub2dJTQ2zgWq3G//48TS5XNQsXCiJqRBCCCGEkGRViIGkgLrc5QileOCpp2j1emkpKaH88MPZTnZCd+9ErjuRDRoGQWANuV7JSAS8XkgkGJFIUOV0UgyU5C7FQKShgcD27YwyTcbX1VEAO12CbW20tLRQZpoUlZeTBJJkixwlgZaODho7OykoL4eiIkJAiOwasy2JBPWWBUVF2Z7RXYbyBru6dnsMhmFgyz3+KpuN1rVrqerowIxEOGPpUuk9FUIIIYQQ/ZJkVYgDxDRNPrJkyY65lz4fABFgRSrFvzdupMXrJejx4Nolads1mY1ZFh1OJx299omEw7Sn01BVBVpTHg7jzbUBuYQ3FgOPp89k07Is/OEw2GzQ2YlpGDsno5bVZzLazel0Esmte2qGwywpKmI+2aV/DACfD/+sWTL3VAghhBBC7BVJVoU4gPrqPfQCi8vLmTF9ejaRq6igyumkjWyvaxOwRimeaW8n6HIRN4ydlszpFo3FdrveO1ntq/e2v2G6/SWjIcCbSFCUSHB4WRkTAbP7YhikXC62d3RQM3YsZmnpXj1+IYQQQggh+iLJqhBDxK6JXGXuMhs4raiIz4wcmU1my8ooyw0RDgKducvqZJLX6+tJ2WykbTZGT5hAGfQM9e10OHgvFIJMBofWTCkvp5Tsi0ABkFCKNQ0NFCSTuFMpjjv0UOqAou6LYRBxOtkeCOzUM7zLg6BaklEhhBBCCJEHkqwKMUzsmsxWsPOarYtra1kTDrNp0ybGjRvH1F2TRo8Hf1XVjmG4Xu/OtxcV4Z8wYcftffSMeiUZFUIIIYQQB4gkq0J8iEydOpWpU6f2e/v7DcOVYbpCCCGEEGKosA12AEIIIYQQQgghxK4kWRVCCCEOIkqpU5RSa5VSG5RS3xnseIQQQoj+SLIqhBBCHCSUUnbgj8CpwDTgU0qpaYMblRBCCNE3SVaFEEKIg8cCYIPWepPWugu4EzhzkGMSQggh+iTJqhBCCHHwGAls63W9IbdNCCGEGHKU1nqwY+ihlGoFthyg5iqAtgPU1oeVnMP9J+dw/8k53H8f1nM4WmtdOdhBDCVKqbOAk7XWn8td/yywQGt92S77XQJckrs6GVibpxCG+3NtOMc/nGMHiX8wDefYQeIfTH3Fvk/vzUNq6ZoD+aFCKfWa1nregWrvw0jO4f6Tc7j/5BzuPzmHB5UGYFSv67VA0647aa1vAm7Kd+PD/bk2nOMfzrGDxD+YhnPsIPEPpnzELsOAhRBCiIPHq8BEpdRYpVQhcA7w0CDHJIQQQvRpSPWsCiGEEGLgaK1TSqmvAI8DduAWrfXqQQ5LCCGE6NPBnKzmfXjTQUjO4f6Tc7j/5BzuPzmHBxGt9SPAI4PU/HB/rg3n+Idz7CDxD6bhHDtI/INpv2MfUgWWhBBCCCGEEEIIkDmrQgghhBBCCCGGoIMyWVVKnaKUWquU2qCU+s5gxzPcKKVGKaWeVkqtUUqtVkpdPtgxDVdKKbtS6k2l1MODHctwpJQqUUrdo5R6L/d8PHywYxpulFJX5P6P31FK/Usp5RzsmMSHz3B73+3vfU4pVaaUelIptT73s3SwY+3Pru8vwyz23V7bh1n8u72uDuX4lVK3KKValFLv9NrWb7xKqe/m/pfXKqVOHpyod+gn/utzz59VSqn7lVIlvW4bMvH3FXuv276plNJKqYpe24ZM7Ll4+oxfKXVZLsbVSqlf9Nq+z/EfdMmqUsoO/BE4FZgGfEopNW1woxp2UsA3tNZTgYXAl+UcfmCXA2sGO4hh7HfAY1rrKcAs5FzuE6XUSOCrwDyt9QyyBXfOGdyoxIfNMH3f7e997jvAMq31RGBZ7vpQtev7y3CKva/X9mER/x5eV4dy/LcBp+yyrc94c/8H5wDTc/f5U+5/fDDdxu7xPwnM0FrPBNYB34UhGf9t7B47SqlRwInA1l7bhlrs0Ef8SqnjgDOBmVrr6cAvc9s/UPwHXbIKLAA2aK03aa27gDvJnlCxl7TW27XWb+R+D5N9Exk5uFENP0qpWmAJcPNgxzIcKaWKgKOBvwJorbu01p2DGtTw5ABcSikH4KaPNTeF2E/D7n13D+9zZwJ/y+32N+AjgxLg++jn/WW4xN7fa/uwiD+nr9fVIRu/1vpZILDL5v7iPRO4U2ttaa03AxvI/o8Pmr7i11o/obVO5a6+THZNaRhi8fdz7gF+A3wL6F1caEjFDv3Gfylwndbayu3Tktv+geI/GJPVkcC2XtcbkETrA1NKjQHmACsGOZTh6LdkX4gygxzHcDUOaAVuzQ11u1kp5RnsoIYTrXUj2W88twLbgaDW+onBjUp8CA3r991d3udMrfV2yCa0QNUghrYnv2X395fhEnt/r+3DIv49vK4Oi/h76S/e4fj/fBHwaO73IR+/UuoMoFFr/dYuNw352HMmAUcppVYopZ5RSs3Pbf9A8R+MyarqY5uURP4AlFJe4F7ga1rr0GDHM5wopZYCLVrr1wc7lmHMAcwFbtBazwGiDK1hVUNebg7SmcBYoAbwKKU+M7hRiQ+hYfu+Oxzf5z4E7y/D+rX9IHhdHVb/z0qp75Md1n9H96Y+dhsy8Sul3MD3gav6urmPbUMm9l4cQCnZKRRXAncrpRQfMP6DMVltAEb1ul6LDHvbZ0qpArJv4Hdore8b7HiGoUXAGUqperJD4o5XSt0+uCENOw1Ag9a6u1f/HrIfcMTeOwHYrLVu1VongfuAIwY5JvHhMyzfd/t5n/MrpUbkbh8BtPR3/0HU3/vLcIgd+n9tHy7x9/e6Olzi79ZfvMPm/1kpdT6wFDhX71irc6jHP57sFx1v5f6Ha4E3lFLVDP3YuzUA9+msV8iO8KjgA8Z/MCarrwITlVJjlVKFZCf6PjTIMQ0ruW9H/gqs0Vr/erDjGY601t/VWtdqrceQfQ4+pbX+MH3zOuC01s3ANqXU5NymxcC7gxjScLQVWKiUcuf+rxcjRapE/g279909vM89BJyf+/184MEDHdv72cP7y5CPHfb42j4s4qf/19XhEn+3/uJ9CDhHKWUopcYCE4FXBiG+PVJKnQJ8GzhDax3rddOQjl9r/bbWukprPSb3P9wAzM39Xwzp2Ht5ADgeQCk1CSgE2viA8TsGLs6hSWudUkp9BXicbIW2W7TWqwc5rOFmEfBZ4G2l1Mrctu9prR8ZvJDEQeoy4I7cB+BNwIWDHM+worVeoZS6B3iD7DCpN4GbBjcq8WEzTN93+3yfA64jO6TtYrJJyVmDE94HMpxi7+u13cYwiH8Pr6tehmj8Sql/AccCFUqpBuBH9PN80VqvVkrdTfYLhBTwZa11elACz+kn/u8CBvBk9jsDXtZaf3Goxd9X7Frrv/a171CLHfo997cAt6jscjZdwPm5nu0PFL/a0SsuhBBCCCGEEEIMDQfjMGAhhBBCCCGEEEOcJKtCCCGEEEIIIYYcSVaFEEIIIYQQQgw5kqwKIYQQQgghhBhyJFkVQgghhBBCCDHkSLIqhBBCCCHEAaCUukYpdcL77HOsUuqIAxWTEEPZQbfOqhBCCCGEEINBa33VXux2LBABXhzYaIQY+qRnVQghhBBCHBSUUt9SSn019/tvlFJP5X5frJS6XSl1g1LqNaXUaqXUj3vddn+vY5yolLov93tEKfUrpdQbSqllSqnK3PbZSqmXlVKrlFL3K6VKc9tvU0p9Ivd7vVLqx7n7vq2UmqKUGgN8EbhCKbVSKXXUATw9Qgw5kqwKIYQQQoiDxbNAdwI4D/AqpQqAI4HngO9rrecBM4FjlFIzgaeAqd2JKHAhcGvudw/whtZ6LvAM8KPc9r8D39ZazwTe7rV9V225+94AfFNrXQ/cCPxGaz1ba/1cPh60EMOVJKtCCCGEEOJg8TpwqFLKB1jAS2ST1qPIJqufVEq9AbwJTAemaa018A/gM0qpEuBw4NHc8TLAXbnfbweOVEoVAyVa62dy2/8GHN1PPPf1imtMPh6gEB8mMmdVCCGEEEIcFLTWSaVUPdne0ReBVcBxwHggDnwTmK+17lBK3QY4c3e9FfgPkAD+rbVO9dfEPoZk5X6mkc/lQuxGelaFEEIIIcTB5FmySemzZHtTvwisBIqAKBBUSpnAqd130Fo3AU3AD4Dbeh3LBnwi9/ungee11kGgo9d808+SHSK8t8KAb58ekRAfUvINjhBCCCGEOJg8B3wfeElrHVVKJYDntNZvKaXeBFYDm4AXdrnfHUCl1vrdXtuiwHSl1OtAEDg7t/184EallDt3rAv3Ib7/APcopc4ELpN5q+JgprLD8IUQQgghhBD9UUr9AXhTa/3XXtsiWmvvIIYlxIeaJKtCCCGEEELsQa7nNAqcqLW2em2XZFWIASTJqhBCCCGEEEKIIUcKLAkhhBAfMkqpW5RSLUqpd3ptK1NKPamUWp/7WTqYMQohhBDvZ8CSVaXUZKXUyl6XkFLqawPVnhBCCCF63Aacssu27wDLtNYTgWW560IIIcSQdUCGASul7EAjcJjWesuANyiEEEIc5JRSY4CHtdYzctfXAsdqrbcrpUYAy7XWkwczRiGEEGJPDtQw4MXARklUhRBCiEFjaq23A+R+Vg1yPEIIIcQeHah1Vs8B/vV+O1VUVOgxY8YMfDRCCCE+9F5//fU2rXXlYMcxHCmlLgEuAfB4PIdOmTIlPwfu6IBUKj/HGmgOB5QOoWm9w+ncifd3IJ9fQ+G5M9CPdyg8xg9qqL3WDLB9fW8e8GRVKVUInAF8t5/be94Q6+rqeO211wY6JCGEEAcBpZSM5tmZXyk1otcw4Jb+dtRa3wTcBDBv3jydt/fmG26A2tr8HGugNTTApZcOdhQ7DKdzJ97fgXx+DYXnzkA/3qHwGD+oofZaM8D29b35QAwDPhV4Q2vt7+tGrfVNWut5Wut5lZXyBbgQQggxQB4Czs/9fj7w4CDGIoQQQryvA5Gsfoq9GAIshBBCiPxQSv0LeAmYrJRqUEpdDFwHnKiUWg+cmLsuhBBCDFkDOgxYKeUm+4b4hYFsRwghhBA7aK0/1c9Niw9oIEIIIcR+GNBkVWsdA8oHsg0hhBBCCCHEwSvpcNBQWUmioGCwQ9l3pglr1gx2FHnndDqpra2lYD//JgeqGrAQQgwrGkgDGaDJ76epuZma6mqqTRMboHIXe25/NUhxCiGEEAe7hgkT8I0YwZiiIpQaZu/IXV1Q9eFaSUxrTXt7Ow0NDYwdO3a/jiXJqhBi2EsDISCY+1kfCLAtEMBdUUFhSQlxIJa7tEQiBKJRnF4vdo+HLqALCCYShBMJCp1OCpxOdO7YlmXhtywoKQHLwrQsDMPoaduyLBKJBEWGgdfppBAoAAwgGYvRFQ5T6fFQ6fXihp5LV2cnsbY2xpSWMq68nGKgGHAiia8QQgixLxIez/BMVD+klFKUl5fT2tq638eSZFUIMWRpcgkm0Nrr58ZwmG2xGNrnI+l2E+l1H8uy8EciUFAAoRCmy9WTXFqWhT8QAK2ziafDgWEY2e0tLdntoRCmafbcJ5FIgNZoQGlNIpHY+Xh+P2hNUKmd7mdZFv62th1tFRTsfFsolI0xGsX0entuKwAK43Hs4TCj3G7Geb1UQs+lAijlwFTHE0IIIYYLSVSHlnz9PSRZFUIMuijQuMtlQyzGFssCt3u3nkx/R8eOJLBXggh7Ti77u62/7TbAZxjEMhm01iilKDIMCsgm0uF4fJ/ber/bIpaFv7UVtOadRGKnJLdbKpHAE4kwwelkitfLKKA2d/Hk8w8jhBBCiL1y7S9/yT/vvRe7zYbNZuPPv/kN1/32t2zesoVINEprWxtjR48G4E+//CUjqqs55+KLCQQCzJ0/n3/84x8UFhbudty//e1v/PSnPwXgBz/4Aeeff/5u+7z88stcfvnlWJaFZVmcffbZXH311dx2221ceeWVjBw5kq6uLq644go+//nPo7Xm8ssv55FHHsHtdnPbbbcxd+7c3Y57wQUX8Mwzz1BcXAzAbbfdxuzZswFYvnw5X/va10gmk1RUVPDMM8/k61TuRJJVIcQBkwC25C71wOpolPWWRcrj2T0h7e6VDIfft6fTaRj4yA6jHetw0NjSQkEyiZFOs7CkhBFkh94m0mleffNN7KkUBVpz0rHHUgt0WhZPPfMMKpXCAZy+ZAnVxcXZ4bhOJ363m6amJmpqajCdzp44/ZbFw//7H+lMBu1wcMKSJZSSHVbc1NXF4ytW0GWzkSoo4NCjjsIJxIHtwIpt24jb7SQMg5qKiuxQZLLDkftLZHvOTa4XeH0sxhu7JLPOeJyiYJCZLheHFhczATCRocVCCCEOHmOueyGvx6v/zqI93v7SK6/w8BNP8Mby5RiGQVt7O11dXdx/++0ALH/+eX75f//Hw3fd1XOfT154IVdceinnnH46X7zqKv76179y6aWX7nTcQCDAj3/8Y1577TWUUhx66KGcccYZlJaW7rTf+eefz913382sWbNIp9OsXbu257azzz6bP/zhD7S0tDB9+nTOOOMMXn/9ddavX8/69etZsWIFl156KStWrOjzsV1//fV84hOf2GlbZ2cnX/rSl3jssceoq6ujpaXl/U/iByTJqhBiQISB9cAGYGU4zHuWRdTno7D3UNj29mxCGon0m5A60mmKwmGmGQZVQIHWbFi9GncshjeV4qPHH884eg2L9Xjw19XtSC5z3wYCUFbGYYcfvuO2ykoARlRVUXbyyTu2m+ZOj8U0zd22dW9funTpjvv1KpBQXVnJyGOO2XFbWdmOOxYX8/GJE3fc5tnRH7olkeDbX/saViBAyuGgyDTJFBaSACwgalnYksnf4i9qAAEAAElEQVSe/YOFhRTkvonNpNPE43EA3gDucrmw2e0UAEV1dZzwjW/g8/tZVFLCxA9ZMQchhBBisGz3+6koK+v5HFNRvufFULTWPPXss/zzL3+BTIbzzz+fq6++erdk9fHHH+fEE0+kLPcZ4sQTT+Sxxx7jU5/aeXWylpYWRowYAYDdbmfatGm7tVlVVcX48ePZsmULDz74IOeddx5KKRYuXEhnZyfbt2/vOcb7+ec//8nHPvYx6urqeo49UCRZFULsty7gxbY2Xg+F6KisxO/z0Zy7badhu7FYT1K6a0JaGgoxu7KSGsCTybDm1VcpikTwpNOcvnQpPaliSQn+Qw/tM0Hs1l9yuafb9nSfPfkgbe3pttGmyejCQr42ZQo+nw+v17vT7ZFIhPc2bCDucJAoLKSkrg7L6SQEtCYSxBKJnn2dTidGrif4Dxs3cnMwCIbBbxIJ5sdiLHS7mQXMAFz7/MiFEEIIAXDSccdxzS9+waR58zjhmGM4+2Mf45hF/ffGtgcClBQX43A4oKuL2tpaGhsbd9uvsbGRUaNG9Vzvb78rrriCyZMnc+yxx3LKKadw/vnn4+w1Egxg06ZNbNq0iQkTJvR73L6S1e9///tcc801LF68mOuuuw7DMFi3bh3JZJJjjz2WcDjM5ZdfznnnnbdX52pfSbIqhNhnCWAN8A6wGliVSNAYi4HdDh0dmIWFffaS2jIZSkIh5lVWUqI1W956i7JQiCLL4ozeCWlpKf6jjtrnns4PC5fL1e+3m16vlykTJhAOh7PJbK83o3AqxdvbthErKCDqdOKsqSFM9suEdDq90/DidckkfuBBsr3Sk4AxwSBmUxNHlpVR/SE+v0IIIUQ+eb1eXl++nOdeeomnn3uOsy+6iOt+9CMu+PSn+9xfa73btr4KEu3tfldddRXnnnsuTzzxBP/85z/517/+xfLlywG46667eP755zEMgz//+c+UlZXt9XF/9rOfUV1dTVdXF5dccgk///nPueqqq0ilUrz++ussW7aMeDzO4YcfzsKFC5k0aVKfj3d/SLIqhHhfabLJ6bJgkNcsi9aiIgp6JUkRy9ptnqXHMBgLmErR8u67lAeDlMfjfOS007JJaUkJ/sMOO2gT0v3h9Xp363EF8Hm9zBw7dkciW1iIJlvA6n9aw5YtNBYX01JSstM3rhngLcviiWAQ3G68wSAfd7lYWlTERGS+qxBCCPF+7HY7xx55JMceeSSHTJvG3/71r36T1YrycjqDQVK5WhkNDQ3U1NTstl9tbW1P0kluv2OPPbbPY44fP55LL72Uz3/+81RWVtLe3g7smLO663G3bdu203H7ar/7i3PDMLjwwgv55S9/2XP/iooKPB4PHo+Ho48+mrfeekuSVSHEgRMlO+/xFeB1oM2y8AeD2eG8icROc0xjP/85rnffxdXVhTOZZGx5ORVOJzayBYUc8TjbYzGCbjc37Ge1uJK6Or52zTX79+CGod+9/DJ/eeMNNPD5uXP52sKF/PCpp3hw7VpsSlHl8XDbRz5CzS5DhxXgBeoMg0snT6apqYlSp5M2w2AV8BawiZ17wCOGwQNa8zTZ4kxH5y6jkcRVCCGE2NXa9eux2WxMHD8egJVvv83oXsNsd6WU4rijjuKeBx/knNNP529/+xtnnnnmbvudfPLJfO9736OjowOAJ554gp/97Ge77fff//6X0047DaUU69evx263U1JS0m/7Z5xxBn/4wx8455xzWLFiBcXFxX2O6Oqex6q15oEHHmDGjBkAnHnmmXzlK18hlUrR1dXFihUruOKKK/Z4jj4oSVaFED3ea2nhsXCYetOk3usl3eu2XavwloVCHFdZyXTgv01NfL/30NQ+ev3y5er6+gE79lD1TksLf3njDV75/OcptNs55fbbWTJxIlcuWsRPjj8egN+vWME1zzzDjUuX9nuc3r3VY4B5ue0h4Jl0mjsbG9lQVUWisLCn59UP/Bu43bIoCYVYUlDAJ0tKZI6rEEIIkROJRrnsW9+iMxTCYbczYdw4bvrtb/d4n59ffTXnXHwxP/jpT5kzbx4XX3wxAK+99ho33ngjN998M2VlZfzwhz9k/vz5QHa4b1nvgo05//jHP7jiiitwu904HA7uuOMO7HZ7v22fdtppPPLII0yYMAG3282tt966020333wzNTU1nHvuubS2tqK1Zvbs2dx4440ATJ06lVNOOYWZM2dis9n43Oc+15PI5pskq0Ic5DTwJnBPOMyj8TgZhwMCgd3W96wuLGRUYyN1ra3UBoN84uSTe+aY/o/+h6aK/bemtZWFtbW4CwoAOGb0aO5/7z2+1at4Q7Sr6wP3ehYBp5eVsWD8eLY2NdFZV8dqw+AlIEauSJbfj19r1irF/U4nH3U6WQrsud6hEEIIceC931Iz+Xbo7Nm8+MQT/d7ePTy4t3FjxvDKsmXQ1QW9ikXOmzePm2++uef6RRddxEUXXbTH9u+8884+t19wwQVccMEFu21XSvHHP/6xz/s88sgjPb8/9dRT/bZ55ZVXcuWVV+4xrnyQZFWIg1Qn2STzcaAZCGYyZGCneafTDIMFwAJgvMtFy/jxNLlcfc4xFQNnRlUV33/qKdpjMVwFBTyyYQPzcsN1vr9sGX9ftYpiw+DpPhYK3xe9e15PBL5Mdij4v9raaE+lSNrtKK0JWBb3OJ08ABwDfIRsT60QQgghRD5JsirEQUQDz7S1cb9lsb68HHuvIjtOp5OgUowMBJjS3Mwlc+cydZf7D+eiRxpIkp1Du6W1lS0tLZSYJsUVFVhkK+Y2BwL4AwFKysspKi0lQ7a4VKCzk/aODspKSykrKUGRraCrgGBHB6H2dqrLyjDLyigECoFgWxshv58xVVWMrqzEzQd/wZ1aWcm3Fy3ixH/8A29hIbNME4ctu7LstYsXc+3ixfzsuef4wyuv8OPjjtuv89RbAXAYMMbhYMqTT7LGNFk5dixGdTUAKWBZ7jIpEuGIrVs5srx82D5HhBBCCDG0SLIqxEFiNfDnaJRnYrFskaSWlp4iSV7gTMNgrsuF0pqaOXP6XL90X1z04IM8vG4dVR4P73zpSwAE4nHOvuce6js7GVNSwt2f+ASlLhd3rFrF9S++2HPfVX4/b3zhC8zOJUX9iQKtwHvt7Wzs6KCgogJbSQkhIAhsj0ZpjcdRHg/a5SJFbkhrPA5eb3bdV8vCMIzs9kgECgogHMZ0u3dsD4XAZoNQCNPl6hkebVkW/nA4e59IBNPj2XGfWCzbRjze00YBYIvHIRplhMtFjcdDEVACZDo6SLe2MrmsjC5yPdy9HuvFc+dy8dy5AHxv2TJqi4p2OhefPuQQlvzzn3lNVruZpslHTz2Vw5qaGFFayhbD4F6yFaK7z8P/AgH+5/EwY+NGfgKMk4RVCCGEEPtpQJNVpVQJcDPZNec1cJHW+qWBbFMIsbN1wO1k56UGU6mdiiSN6OzkfNPkSLK9gVRWZi95cMHs2XxlwQLOu//+nm3XPf88i8eO5TtHHsl1zz/Pdc8/z89PPJFzZ87k3JkzAXjb7+fMO+9kdnU1muycyTDZIkBtlsVLsRgXx2JE3O4d8ymj0WzC2CuZtCwLf3t7NjGPxXoS810LRSUSiQ+0HXYvOvV+94lYFv7WVtCa9bEYpsOxI9ZwGAwDYjE86TR3A26goKsLezyOLZViSnk5wWCQ+9as4aWLL2Z9ezsTy7OzRh9au5YpFRV5+dv1pXevejXZHtf3gPuBx3o93ndGjuSrBQV8B1iEVA8WQghxYGit+1wrVAyOvtZy/SAGumf1d8BjWutPKKUKyX72EkIcAK+0tvK3ZJL15eU9yZXT6SQMTGlsZPa2bVxw7LEMVP/X0aNHU9/ZudO2B9euZXluXuX5s2Zx5M1/Y6nzRMaMgdJR2Xm0v3/nHQ6fOpV7olG6DAMc2ZepdCpFJJGgJZOhua3tAyWfHsOgsrAQEgkcqRQFmQxTy8spAZI2G+ubm7Gl09iBWaWllAARpXh7yxbIZFA2G4eUlFBE9tu3TqVY2dBAWikydjsTc8OAO+123g0G6bLbSTocVBQWkmbvk9t0Ok0a6EyliMTjoDW/uu8+4l1dOOx2PnvaaTzrcHD9Y4/R3NlJoc3GuJIS/rxkyQD9Nfs2BfgusKSrix+1tbGpogKUosvj4edk5zpfCgxcCi2EEEKAMxqlPRSivKhIEtYhQGtNe3v7Tmu6f1ADlqwqpYrILs13AYDWuovstDAhxAAKA78Phbg7l+Tg92OaJk7D4DTDYLHbTcrloubYYw/43EJ/JEK1z0cQ2NrpoykUZdnTGmWHUecpnKPgoXfe4ZKlS2lNJiGVwuvxYHc4SOV6hQHIJXo+w2BsQQGBQAB3IoE7meSo4mLqgFQqxeuvvkqhZeFMp/nIySczqrgYXC78JSU0NTVlC0V1VzD2+fCPGbNje/cw26Ii/Ln1SWtqajCLi3c8oKIi/BMm7LjN58tu93rxm2Z2e0UFpsuFBhoSCe5/9llidjsJp5O5xx6LHdgCvNjYSLiwkIjLRTJXbr73Y/7GWWfhdDoxnE7SqRRN0SjnLlkCSuH1eHA4HKwENlgW7miU0YZBlcczoH/PbjMrK7khk+GxYJD/jhpFIvflyCvAKuCMjg6m1ddTK4W5hBBCDIDaDRtocLlobWsb7FD2XToN7e2DHUXeOZ1Oamtr9/s4A9mzOo7sdLJblVKzgNeBy7XW0QFsU4iDlgaWA38Ftmq9U0/dtLY2vjlyJLWQ16G+exvXNrKJWhL4VyoFDgdtmzK5HRQ6rYlsytCgmihwOKjJDW1Fa2zJJJUOB4ZShAIBagMBDn/lFc465hgmAMrtxl9Tk00Mx43D7F4Eu7ycOUcdtSOR7JUk9Vcoal+378t9FDDKNDn7pJN2xNS9VlpxMR8fP74nub3BbucsoC2dZk1zM3GHA8swcLndJMj2uPZO3FOpFHaHg0AqxdZEAmw2XkulqEomqS0ooCgezxaPyn1xMRCqTZMLTJOzgNuAx3Lbg5bFL8NhRgKnP/ooHzv1VElYhRBC5FVBKsXY1tbBDuODaWiASy8d7CiGrIFMVh3AXOAyrfUKpdTvgO8AP+y9k1LqEuASgLq6ugEMR4gPr0bgT2R7sWBHZd+xLS0csXHjgA733VVbNMrWRIKY18s6snNNl6dSRCwLr8vF1pYWRlZVES8L4cEDSqNs4B6Z5Jl33mHJtGmMa2vDaVm4UimmjR+PF8AwiFRV8XhHBxcfffROBaA+SJI5WPY21gJghMeDr7aWcDiMz+fDW1gIQEc6zaqmJqKFhcScTgo8HmKwW+9zKJ1mnVJEurpYUVjIhc3NfKawkCWlpRTvFkF+eMgueXMs8AdgdW6Ic0NZGffPncus5uYh9zcRQgghxNA0kMlqA9CgtV6Ru34P2WR1J1rrm4CbAObNm5efmbhCHCQywF86O7kLcPSqUjvSMLjC46Habh/w4b6abEK6CqhPJmlMpcBuh0SCeCoF7EiiZo4bx8urV/PJkhLWB97m8LEjGeNtpbo0yBFmNVc/9C7PXnghVQUFOxK07mG6gNfrpfwgWxrF6/XudA4ASj0eDq2r23GOCgpIAY2ZDO8EAoScTsIuF45dhk83lpRwo83GXcCESISJ27dzalERowfgfE4Hfg/cCNysFEpr/CUl3FpRwQygaM93F0IIIYQYuGRVa92slNqmlJqstV4LLAbeHaj2hDjYBIAfR6MsD4WyyUgoxIiqKs5yOjkXcJaXQ/dw2jzTwPL2dh6LxdhcUUETMA+w0umexOiWRx5hfWMjkXicK//0J8455BAuravj/z3/PFe9+y6jS0u59dRTKUil8PlG8FpbG7VFRYwrLQXYLUETO9s1iXUAo91uyquqCIfDeAoKsBwOtqRSrE0ksjsphdPpJN691ExhIbdGInzW6eTc4mJK8xxjAXBZcTFlmQx/ttlwOp00GwbfAX4KlOW5PSGEEEJ8uAx0NeDLgDtylYA3ARcOcHtCHBTeAq4HtvZaiqa6s5Mvh8OcPn36gLUbBp4C7ovFWBmNZhPT1lY86TQADocDBXgTCa5auJAZpskotxsHEIlECIfDLD///D4T0WO9Xl7+3OcGLPaDxa5JbKXTyRSvl+eamljk8/G2YfByMNjzvEk4HNwNLAPmhULM2bqVQysr89p7fW5pKSbZntbuOczfBa5FKgULIYQQon8DmqxqrVeS7XARQuRBBrgzd9Fk56aGgAUbNrCgvp4FS5cOSLuvtLVxVyLBexUV2JxOgsnkTgWcVCrFWGCkw4HP4SChNb7KSrzuHatV9TWcVfStpK6Oq+vr83rMKbNn89lcr/Vqy+KP69fzdm0tIbcbp9NJ1LK4u7OTu30+ZmzcyE+AcXlMWE8gu5bvr8g+jzdbFp+LRLgunWZKr/nHQgghhBDdBrpnVQiRJ1Hgh5EIr6XT2SVMDAPTMPiu10tJWRk1M2bkfS7nFuCmcJiHY7FsL2pLS3YZHKeTeDrNpKYmpvj9hDMZDu++k9ebvYgP7GvXXDOgx59eVcWPDjmEhqYmtldVsdwweKVXb+s7I0fy1YICvgscQbaScT4cTTZhvSaRwN/SAlrznbY2btSa6oNoHrIQQggh9o4kq0IMA53AlbEYrwQCoDVBpTiurIwfeb2UDsDc1LdaW7mtq4t3KyqIZzI79aJWBINcUFXFZI+HgMdDzZFHcsN//pPX9sXA6119eAnwfDLJL9vbqS8vB6Xo8nj4sWUxsb2dyxyOvPV+LgQ+vWUL1zudaGBzRQWPBINcJMmqEEIIIXYhyaoQQ1wL8ANgba+ht/M3buSz7e2UzpmT17YSwA3BIH+PxcgA+P2UlZaCUkxobmbeli3ZZWMATHNAqsjmS4psleLuS30gQEMggLuigoKSEuKAPxSiNRzGU1SE0+cjBQQjETqiUVxeLwUeD6ncscLxOLFYDK/bjcflQgFWLEYiGqXU7abY46EQsCIRrGCQKp+P6qIi3EBXZyextjbGlJYyrrycYqAYcJK/Xsv9oYCjKiqYmE7zWDDIf0eNIgj4/X78WrMqHOYGpZiRp/V5Tywp4bENG3i7thaU4pFRozgL8OXl6EIIIYT4sJBkVYghbBvZRDXAjvmpx7/zDjOam6nN8/zUFWSXGdlIdk5hd0/qlEiEC91uCgoKqDn66D6HGg/EHMv+lOTWY+4CmoB3AgHe6+xEV1SQKCqiFdiWSNBuWT3DpS3Lwh+JQEEBhEKYLhcA/s7O7PDmjg7M3Bqm/lzvNZaF6XDsuH9ra3Z7NNpzDvxtbdlt8Timw7Hz/Ts7MXNLCflDoWzb0Sim19tzzHQ8Tm1hIXVuN5VAYTCIamnhkNJSZldU4ObAqjZNLjBNzgJ+sm0bj+a+HAk5nXzPZuMGYGQe2jFNk58AlzscJLxeLMPgr8DX8nBs8f6UUlcAnyP7b/42cKHWOjG4UQkhhBC7k2RViCFqE/DNeJy2ri6cTicew+Ban4+amhpq5s3L2/zUAHB9JMILubmwTqeToFKMDAQ4csMGPnfUUZgVFVDRf93WgZxjmSA7d7YeeDsUYnUsxqficaIuF4nuJNRu3zk5zM2HDCqFaZokEomdhjInupdy2YtthmHs1/372+b3+0Fr2pRie3fyGwxCYSHEYpiWRUkmgy8YZIbLxbziYiYA1Qx8b6wHuKKwEMfLL/PIzJmk7XbChYVcEgjw43SaeXnoYR1rmvwA+AlgWRb3JRLMSKU4YYCWWxJZSqmRwFeBaVrruFLqbuAc4LZBDUwIIYTogySrQgxBfuDb8Tgbc715sUyG7xYVcVx5OZTlb3XKN4Br43E29JoLO6Gyki94vYxtb2fkUUflvWjTnkSADcA6YGU4zHuWRcTn29G72d0T2tr6vkkogMuyKAmFqHa7aWxpoSCZxEinWVhSgktr3lqzBnsyiQM45ogjsAMvvv46Kp3GAZx47LGMADq6unjq+efJZDIom40TTjoJDTzx4oukgIzDwaLjjiOlFE+tXEmXzUaqoICZCxcSV4oV27YRt9tJGAYjKipojkSwp9OkbLZ+k9poJII/tzzQa11dPJrrJbYnElR3dHCYy8UxJSWMZWCSV9M0uWzhQg7p6OCWmhqaOzoIaM3llsXtmQxj8/C8WADMDod5qKMDtObaWIwZqZQUWxp4DsCllEoCbrKDFIQQQoghR5JVIYaYMPAjwN/VBVpTmEpx5muvUTJpUt4KKaWBfwJ3A8FcOxqY3tDAlzs6OHLWrLwmxX3RZD8hrwZeCod5a9fENJfAEIv1mZhaiQSjCwoItbdTFI1SZFmcMncuFZkMrz37LEYigd1mY+nSpZgeD/66OpqamqipqcEsLgbAP2fOjm25cztr0aId23I9iKMqKzFPOGG37ebxx+/Ylut5nrFw4Y5tJSUAfHzixB3bPB78kQgPP/UUcZuNmNvNrBNOoN1m43/19XS6XHR6vaQ8nr57ZFta2Kw1LyWT/N1ux5lMcqTDwdKiIg4BbHn8G5mmydmmiWPNGn5mGHTZ7UQMg5sti2vz1MaJmzbxqM9Hl91OwO1mRXs7Z0qyOmC01o1KqV8CW4E48ITW+olBDksIIYTokySrQgwhXcA1QCPZOaoRrVn65puMiESoqanJSxtB4IfRKCtTqZ5hv6muLk5ctYq6zk4mDtBarZAtdPQ68FQ4zJvJJF0eD8AeE1NbJkNJKMRkp5PWjRspDYUoi8f59PHHM7K4GP/IkdlEcNIkzFyCPe6kk3Ykh7nEp3f12257u21/77/rNtM0Wbp06W6J8uIpU7LbystJp9P864UXaPV4aCspofjQQ3k319OqAbQmEAgAcLdS/E8p3MkkS+x2zi0upvh9/xp778iyMha/9hqPzZgBSvFSaSn3vvsuR5aX73fP++TqaiZs3syaESNAKTbW1uYpatEXpVQpcCYwlmyh8X8rpT6jtb59l/0uAS4BqMvNExdCCCEONElWhRgiNHB1OMyKTCabRBoGPy4qonb8+J2Srv3RQnYJnJXt7T3DfheXlXFpcTGRcePy1k5vUeC+jg6e7OrCX1KCpldyGong7dWDaMtkqAgGOcTppPXdd6kIBimPxfjIkiWYPh/+6dM/cBI61OxN3J9ZvHjH4/V6afb7ueOFF9hWUkJDeTnbysqIFxb2JK4B4M9Kcb9SLOjs5GLDYFwezoNpmlwxbx5vXHcd4ZYWOiyL61Mp7m1tZVRtLa5cwaoPoqSujs9dfjnXOBw4nU7eMgwy5LeHWOzkBGCz1roVQCl1H9nldHdKVrXWNwE3AcybN08f6CCFEEIIkGRViCHjls5O/hsK9SSRXy8q4vSysrwNx90GXAVszi2BA7Bg/XrOLStj4pw5kKd1NLs1A7eGQjze1UVHLJZt0+/fKTk1kkmmRCIY69czIhCgKhrlI6edhllUhH/u3L1KTD/Mdn281abZk8A6nU5eePZZmoqKWF9dzQbTJGoYoDUtHR38B3gqFOJz69axdNKk/T5v1abJoR0dTKutJWpZAEwpLGRKSQkjRoz4wMe9ur6e48rLuQ1osSw2B4M8k0pl52eLgbAVWKiUcpMdBrwYeG1wQxJCCCH6JsmqEEPAe+S6NXJJ3Oz6emb6fJCndVQ3AN/KVRa222zYteakt95iYlsbtTNm5KWNbu+2tPB3y+LVkhLaOjvRekenjNKa0bEYxRs2MKq1lcpolDOWLoVDDjnoE9O91fu8lJWV9SSuzz//POsrK3lzzBj8RUUARAsLuaGmhpann+ai447b7/PpBCbYbLylFGhNe1ERPt/+r45qB2aHQvwjV0DrL01NTBs3Tv7+A0BrvUIpdQ/Z+mop4E1yPahCCCHEUCPJqhCDLAL8AihwuSAUorqzkyM3bKBmyZK8HL+JnSsLF2Qy/EBrxtbVUbNwYd4SgiTZ3uE/x2KklYJAgO40tTwSYcbWrUxubeWsk0+GGTP6TE7Fvukrcb3A4eDvK1fy1PTpJAoK6HI4+N/06Ry+bl1ezvFkw2Cj3U5XVxfR0lLSOj8jREc3NoLbjQaai4poamqS58QA0Vr/iGwdNyGEEGJIk2RViEGkgZ+Fw2zIzVMdW1XFZcEgM5YsycsH9U6yn0hbcxV/jWSSM954g7ETJzInT722AMvb2/mD1mxXirRSPUnqyI4OFmzYQG1nJ1MmT2bS3LmSnA6Q3onr+UDxq6/y74ULSdlstBYV8Vh9PVP9/v0+72WAR2siySRdWvN6czOv+P38Y/VqFHCIaXLrmWfyw6ee4j/r1lFotzO+rIxbzzyTEqez3+POLS+HRAKlNUG3mxF7WNdXCCGEEAcHSVaFGEQPBAI8HIn0zFO91utl8SGHvO/9fnvVVXRu3brHfdLAK8kknVqjlMKRSDCyrY13k0nCo0bx4F4WxSmpq+Nr11zT520p4E/BIH/NValFKVCKqmCQRRs2cPaUKVh5LBAl9s7UqVMpKyujeds2ns4ts/Oeaealt1IBxbEY/lyP6rZkkj+9/jprL7sMV0EBn/z3v7nznXc4cfx4fnbCCThsNr795JP87Lnn+PmJJ/Z73PFVVYzPDVV3Op04DGO/4hRCCCHE8DegyapSqp7sspFpIKW1njeQ7QkxnISAv0DPPNVDtm5lpMezVwWVOrdu5eoxY/q9XQNPWxY1uSVgFHCk1pRXVODz+fB6vXsd59X19X1ubweuikZ5NZHomZdamEpxVjzOCakUtUccIQnqIDJNk4+GQjydu76togIjVxhpf1UUFrIu11ufKCggozXxVIoCu51YMkmNz8dJ48f37L+wtpZ71qx53+OOc7mI2GwkEgnejkSkyJIQQghxkDsQPavHaa3bDkA7Qgwrvw6HCeZ6I33xeHae6qmn5uXYG4EtWvdU/R3d1ka5x7NfVVt7awS+EY+zpr29J1Gta2vjxHff5ZyTTpIkdYgojkRw+nwkCgpI2u1s6uxkWh6O6+01T9VbUsJX58+n7je/wVVQwEnjx++UqALcsnIlZ0+f/r7H9YXDPcsaPbRmDdPmzJHnkhBCCHEQk6XshBgET7S3c39HB5FIBIALYjE+duqpeflg3hSN8kIigcoNya0MhTBDobxUbQVY0dbG5wMBtuWWo1HA4evW8cXmZklUh5iamhpK4vGe6683NeH3+/f7uJnc0HWAjmSSh9auZfPll9P09a8T7eri9lWreva99tlncdhsnLsXw9tTuURVA102G01NTfsdqxBCCCGGr4HuWdXAE0opDfw5t8i4EAe1LuDGXK+nBiY3NTHPMPY7ybvowQf5z9q1GC4X3//sZ0EpNmzaxG+fe471HR288vnPMy83/PeOVau4/sUXe+67yu/njS98gdnV1Xts443WVi4Lh7HsdlAKRybDqW++ydiODuYvXSqJ6hBjmiYjLIvmXGKZhLzMW/V5PJBKgda829jIuLIyKj0eAD42dSovbtvGZ2bO5G8rV/Lw+vUsO++87Jcn76O4pAQ6O1FaYyObbAshhBDi4DXQyeoirXWTUqoKeFIp9Z7W+tneOyilLgEuAairqxvgcIQYfP8GIj4fxGI4u7o4et06ak4+eb+Pe8Hs2RwxdSpXPfEEALZMhhPcbi759Kf5wsMP77TvuTNncu7MmQC87fdz5p13vm+i+l5LC9+2LBJ2OwDOri4u7+xk2tix1CxaJInqEOV0uyEaBbLr3Dr3UJF3b7k8HlyWRTKZZFRlJbe/8QaxZBKXw8GyzZuZN2IEj23YwM9feIFnLrgAd0HBXh3XU1SEaRgkEgkWzJ+PWVq637EKIYQQYvga0GRVa92U+9milLofWAA8u8s+N5FbkHzevHn5WbBPiCGqEbgjkSBhWZSVlvJxv5+zTj45L4nezNGjeb1tx/TwukCAo0aOfN9iSv965x0+NWPGHvfZ5vdzWWsr/txQ4oJ0mo++8QYnHHOMJKlDXCyT6fndrjWJRGK/jxmNRonnelZHFBVxxvjxzP3zn3HYbMwZMYJLDj2U6X/6E1Y6zYn/+AeQLbJ049Klezxu7zcAmaMihBBCiAFLVpVSHsCmtQ7nfj8J6Hv9CyEOAhr4VSRCYyAAWmOGQnyiqiovyZ4Gnu/qIpVOY1OKaoeDo0xzr6r+3rV6NQ+ec84e97mhq4uWXKJq05rzGhs5RxLVYaHDMFDxOBoosay8DK0NxOPgyL592NNpvjpzJj/bZXTAhq9+dZ+P296rwNJra9ZwghRYEkIIIQ5qA9mzagL35+YpOYB/aq0fG8D2PtQyQCfQAQRyl/rOTraGQjhLS3H4fMSBBBDPXTrjcUKJBE6Xq8+hf4lEgq54nFKnk3KXCzfggp6fqVAIKxBgfHExk0pLqQQqAFn98IN5AXgtne4pTHPM6tVsT6WozsOH8bfjcbZ1dWFZFlprFiqFNzeHcE9WNDTgLihgRlVVv/v4gfdKSiAQyMa9bh3nzJolScQwsKmlhW2JBBpwZDKcdOih+flyxOOB3NI1rlQKX0nJfh8TYHNuvV4NeOLxvMyvFUIIIcTwNWDJqtZ6EzBroI7/YZQGmoEtwFbgnXCYTfE4KZ+PhMu10xA5y7Lwh0LZxKejA7OwEMMwdr69tTV7eziMaZq7397SAlqzvb/bOztBqez93e6e24uAytzFCIUwWluZXVzMvIoKXAN2doa3GPD7eJx0KgVKMXPLFqqj0bz0csWBt6AnCXak0xAKwV4kq3e+zxDgBLA6nSbY0YEGJvj9fGHUKEkghokVgQC4sv+VpdEoVjKZl+OmXC5cNhvJZJKRRUX7tG7vnvx/9s47vK3q/v+vI1mWZGvY8pBjZ+9NEkIgBEJYGSSE2ZYCLaMts4y2tIW2bGj7LZRSKKOUFtoftJRRIGWmrIQRCAFCJomzEw/Z1t7z/P64suM4iRPi6zjjvJ5Hj32HzvlIupbP+35WzOmE5maElJTG46rAkkKhUCgUhzn7o8+qYhdEgfe9XpaFQkTLy/Hb7WxDq9YJebGYD4cjkdhJTCYSiTYPhMjnoe2v46H8Y1WroC0ogFgMdzJJf7OZgcAAYCBQ3NREoq6Omurqw1rg/D4cZk3+8yxKpfiOwcAROlXP/SSZJFIniG60IOwhCrLZvWpTk5OS51atYuEll+z2nCVAMu8NdsTjnLRyJclx47pss2L/4O3VC4JBkJLqQIDqIUN0Gbc5lSKe/46INDURMRi6LFhTgM9gwFZcjADOO/nkw/o7Q6FQKBQKhRKr+40EsBJYBiwHViaTNEajYDDs0jO6K7FYbjbjAkqBQoOBjZs2YU0mMWezTDv6aGrQwnctQCSVYsHChYhMBoMQzJo1C7fT2Ta+J5Hg9XffJQNkTCaOnz6dYjQPYAyoz+X42y9/Sa6lhYzRiLWkhITJRBItJBkgnUphSKXaxgwWFrKqsJBV+e1cNks8Hqcgl6MomaRfvtJnEdCxiUVJ375cf8ehmdL8os/Hf9NpZN7zefxXX1HRu7cuC/GNsRjLNufwv1DM89kX2MRmEiLG8Mce4/Zp03BZrVzz+us0x2LM/uc/GVdVxZsXXgjAws2b6e1wMHA3FVe3ARszGWQuB0Jw0sqVWHM55e06iFhdsP0rvsbv12VMCXjahbMXJRKEw+Eui9Vlzc144nGQEmciQYFOocWKAw/bN79J5NlnOz3ngf/+l0def50JgwbxjSlTGFpdzUjVMUBxiGGz2dr6re+OBx54gEceeYQJEybwjW98g6FDhzJy5Mj9ZOHBzWm3384/f/ITSjr5/zTtF7/g3ksuYWKHm7lLN2yg3ufjtIkTu9tMxR5QYrWbqPN4+NDno6W6mk1OJ2vRwnxbie/Gc+kC+gKlQrBt1SpKIhHsqRTfOOUUercTm9jteIYPp76+nurqatwu144GVFTgnj59+/EOwmiA2805s2ZtP15RsePzS0v5Ip3m+n79sNvtbQtRiSa8o4A3HmddQwOxwkJihYUYXS4M7RbHyURih8qjFosFs8WCFS2h2RGPYw2FcBcXc++WLfvyNh/wfNzSwt3hMCmDVtt0WH09w5qaqJ40qctj54BPgdQ2IzIL53AuBiE58UTB8cdvP++sESN2+fxp/fvz8fe/v8tjGeDjdJpILEY6k2FEXR2nVlYy9LjjlLfrICEIrMhX7BVAL69XlxxQP5DNX8+mbFbLWd0LT/6eWBwMgsmEBFzhMPWxmLrWDmMefu01Xr/1VgZUVXHx/fcz56ijlFhVHJY8/PDDvP766wwYMICLL76YOXPmKLG6F0gpeeXmmzEY9q22/NKNG1lSW6vE6gGAEqs6IoFa4KVQiBciERJFRRAM4rZYdvCaAlgtFizhMJV+PxXRKGdNnMgEoO3ej8OBZ8KE3YpNALfb3elirqvHrVYrvXr12mGfQPPeWoFyq5WaykrC4TD2oiKsBQUE2V4IqslgYKuUZIUAISjIC9k4sD6TIZJKgdmMNR5nVSrFCmAEYNytRQcXm4Cbc7k2oeqMxfh2IMAUncJ/v0gkCAOFvbMII5CVGAzQv3+Xh2Y5EM57z4y5HFPWrMGmiiodVHwCbf+kq/x+bNlsl73iJX37cu3atazMR1Q44nFWmEyUtLRAu7ZJX3dMgGa3G/x+hJTUBAJUjxnTJVsVBwf3/Oc/PPvBByTTac6aPJnbzz+fKx5+mA0eD3Pvvpvzjj+eeYsXs2DFCu569lleuPFGBnX4v6RQHArcc889PPvssySTSc466yxuv/12rrjiCjZs2MDcuXM577zzmDdvHgsWLOCuu+7ihRdeYNCgQT1t9gHFJo+HWbffzoljxrDoq69YunEjzU89RbnDwZ3PPMPTCxbQp7yccoeDIwcP5oazzgLguQ8/5KpHHyUQjfLXa67h6KFDueXpp4mnUnywejU3nXsu32rvBVDsV5RY1QEv8C7wDrAVCEpJoqBgJ69pf2Bs/jHabCZSUUF9Ok310KG4y8t3GndPYvJAwGaz7RD+58o/ACgsJJxKUR+LEXc4CBYU0IyWm5bJe3wA4iYTm4GbADswNBymT0MDJzqdDDzAX/+u2Orx8FRLC6+WlxPOe5Yt6TRzvvySKSeeqMtn6kskWBKPkxMCU7XgyLkBrM1FDB1qpk+fro0dAFZmMuTy4b/uYJAiHYSOYv/yZiSCL18Ya1BTE8cee2yXr73r77iDSxsbySWTSGDcqlVcVFXF+PHju2zvmoKCtgrWF4wbt8vvRMWhxfwvvqC2vp7Fv/89Ukrm3nUXC1es4NGrruKNzz/n3bvvptzhoLa+njlHHcW5U6b0tMkKRbcwf/58amtrWbx4sfa3MHcuCxcu5NFHH+WNN97g3Xffpby8nNraWubMmcO5557b0yYfsKypq+OJa6/l4SuvpH8+emxJbS0vLFrEF/ffTyabZcKPfsSRgwe3PSeTzbL497/ntSVLuP2ZZ3jrzju544ILWFJby5+uuKKnXooijxKr+8hWj4c3QiFW9+rFOptth0q9FouFoBDY43EGeL18027nBMDZYYzig0CMduTSl1/mlbVrqSwuZsVVVwFw8zvv8PKaNRiEoLK4mCfPPJNqu52nly3jno8+anvuMo+Hzy6/nL5VVWwBvorHCVks5AwGjEbNn9qSTLLS7wezmT8lEpwQiXCizcYk4EC9l55Fu0mxFnjH4+HdcJi4zQZ5oWrKZjn9s884tqZGl887AyyXkhFaWyiKkkkmVGSpHrvr3NOvgwQ+TKUI53MHHYkEfQoLmaOTN1ixf2hhxzZJgzweEh1D/feBEFBXWgoeD0JKBra0UD1hQpfHXdHUxMp8aoQpl6NfUVGXx1Qc+Mz/4gvmL13K+OuvByASj1NbX8/UTiqUKxSHIvPnz2f+/PltN/4ikQi1tbVMnTq1hy07+OhXUcExw4fvsO+DVas44+ijseajHE/vkIp19uTJABw5aBCbPJ79Y6hir1Fi9WuSAv7t9/NwOEyssBB8PtwmU1uYrwU42WzmiOJinF4vNYMG7ZxPehBz8bhx/HDSJL774ott+346ZQp3nnQSAA988gl3LFjAo3PmcMHYsVwwdiwAyz0eznjmGcZXVQFQZrEwxG4nEImQcDh4z2jEAmxsl8ubAz7PZlkPPJRM4gyFOMZsZqrDwWjY721yGj0e1no8ZGtqiJWVsQVYFY2yOpXCkF9cexIJpMnU9hxXJMLMpUupSCQYOnSoLnb8HUgWFoIQmmBobsbRr58uY28AmnI5Lc9RSvo3N/NxQYESqgcZb7E9BLi310tJKqWLZ/wTtBsatuJi+sVinDd9ui7XxtvhMOSjUXr5fDQFAtSoa+6QR0rJTeeey+UzZ/a0KQpFjyKl5KabbuLyyy/vaVMOeootlp32yV2c1x5zft1mNBrJ5HJ7OFuxv9lrsSqEGIzWN3W1lHLVns4/1MigLQD/Daw3GIjlC4EIKUkmEkwymzkZmIwmWCkr0x6HGFP79WNTILDDPke7fNxoKrVTpV+Af+2in2f7EOIRwK3AJ+k0f9uwgQ3l5TQ7nVgsFq2Nj8eDR0rWxuO8aTZjlBJ3MMgRFgvjnU6czc1kt22jTxda5OTQitJ4gVqvl7WBALnycuJOJxtiMb6MRkk5nRCN4s7b7fF623rZ2oqL274QbYkE4zZtYsy2bYweOpShQ4fqsqhfDPw7mSSbzWK1WBgWizGmXz9d+lwmgaWg5RYLQS+/H2s6TZHych1UZIF58XhbCPCoujpdQoABXo9E8Ph8ICWltbWgU17pRrcbfL7t3lrVHumwYMaECdz89NNccMIJ2KxW6rxeTEYjlR0qQdutVi3aQ6E4RJkxYwY333wzF1xwATabjbq6OkwmE5WVlTucZ7fbCYfDPWTlwctxI0dy+UMPcdO555LJZnl1yRJ+MH16p89R3zsHDrsVq0KId4FvSClbhBDfAW4GFgK3CSEek1I+uL+M7ElywALgn0Bjfl9rmK8tkWDstm1cM3o0o3rOxAOCX779Nv9Ytgyn2cy7F1200/F/r1zJy+ed1+kYAjimvJwBI0dSX1+PxWJhs9nMyw0NtGSzZAwGhJREIxEi0Sj1UvJFMsk8gwFfPI4oLcUWDDLCaKQomaTSbqfS4SAZDOL3+3GWlmJzOgmEQjSGQpicTrDbaY5GaUwkSBUXY2oVx9Go1j82XyArkU6TMhp3yEMG2rzA9nic0dkshg0bqG5uxh0O069vX8bpGD67ArgjkcDT1ESqvJy/LV/O5OJi3rRa97m4TXu+TKWoR7uzaJaSkaEQNquVXsOGdXlsxf7jI2BbKgVSYkmnGdjURKJ37y6P66FDaHF9PfVlZV2+vkPAV+3yVa8cPx53hwWa4tBk+vjxrN66lck/+xkANouFp378453E6nnHH88PHnqIB/77X55XBZYUhyDTp09n9erVTM6Ho9psNp566qmdxOp5553HD37wAx544AGef/55VWBpLzlqyBDmTprEEdddR7+KCiYOHoxzDzfiTxwzht8+/zzjrrtOFVjqYTrzrFZIKVtXwNcCk6WUXiFEEfAxcMiL1Vd9Pv6ezRJwOHao5ltpNnOhw8Fwn49+o0aphRVw98knc/fJJ/Ob99/nT4sXc/uJJ7Yd+2TbNopMJkbv5fvUvrDUCGC8wcCL773HNqeTuvJywoMGUduu7U80FgMpyQlByGxmcTSqDRQI4BICXzAIQkAwiMtgwBcIaAtuvx8X4PP7te1oFLfbvcset603KEyZDGWxGMe7XNRks2xYupTyYBB7Os2cOXNg9OhOKzjvK2uB24FQMglSUnbVVZzz8cdMPeIIXYrbvOn18mI0qr0PQnBLcTEzD8HIgEMdCTwVjZLNZEAIxm7ZQiHoEgL8P8CYDy3u29yMM53WZdw3/H4awmGQkl7BIKUq/PeQp32P1evmzuW6uXN3OmfT44+3/T5l5EhWPfTQfrFNodiftO+xet1113HdddftdM6mTZvafp8yZQqrVh12wY17TX+3mxV/+lPbdvvvkRvOOovbzj+fWDLJ1Jtu4idnngnAe7/+dds55Q5H23Ncdjuf3nff/jFc0SmdidW0EKJGSlkHRNBaa4IWLXiodBfZJVHgd+EwL0Ui2uI9HsftdlNmNnMOMAewlJTAARSqttXjYZ3HQ0mvXtgqKkigtYip9/lo9HopLy+ntHR7AR6/34+/pYXeLhc1ZWVYgSIg3NREqL6efvt45/r8MWOY/c9/7iBWn9lFCPDXwe12c9Zpp7WJQIBn33mHerudlpISzKNG8XkqRbSwENiem9BeyHYUtrvbNkajDLFYaPZ6KUokKEkkmDluHCPMZgwWC+G6Omqqq3Hn+0p6jjlmJ3Gqd37nGuDGRAJvMonRYKA4leKMJUt0aUUC4AP+KETb+zC4sRG3yXRIhrEf6rzj9fJx/qZDQS7HORYLE3Tw7mfovtDi1/JeYAkM9Hioz2ZVjnQ7hBDfAN6QUoaFEL8CJgB3SSk/72HTFAqF4qDhsoceYtXWrSRSKS466SQmKK/0QUNnYvVHwHwhxAvASuAdIcQbwPHAE/vDuJ5gFfB7oDZfZEYChZkMJzY0cG3//hT3gE0SLZdyC/Cl38+6UAhcLjJ2Oz6gIZFgYzIJTqcmrJNJzGazFs4aiUBhIYTDuIuKtu8Ph7X9+fzLtv2JBJSWYolEcGQyLEQTscZEAqJRqiyWnRLVa71ehuSFzbw1axjeruVETkqeW7WKhZdc0qX3oGMbn29On75dJFZU4Mnl2NzQQKy4mHdXrCBWUEDGZGLQqFEs37ABmcthBEYMG8ba2loK0mks2SyTRo7kq88+w5xMYkunOfO003C7XHhqarTx2xfIqqzUHp3YpScSeAl4LJGgvqlJC+vMZPgNUDpqlC7e2xza9Z4pLoZIBFsiwUlffUX1jBldtl+xf5HA3/MtoSQwvK6OquJiXa7P94HGvKgsSqXo39xMIt8ftSvUAfUlJeDxYMjlGN7YSHW+KJuijZullM8JIY4DZgD3Ao8AR/esWQqFQnHw8M8bbuhpExT7yG7FqpTyPSHEscD5aO0vP0Pzql4jpfxqP9m338gAzwDPoi36WsM+R27bxvHr1nHujBn7Tah6gAV+P1+Gw4TLyvAWFxOC7SITwO/HXViI2Wxm6/sZmv5np+iYBLYjU219XXcVzrq3+xMFBZDLsQ3IZjJEkkkwGvnbvHmsq6sjHI9Ted99XDVlCh+tXcu2YJACo5F+JSU8Ont222tZuHkzvR0OBpZ2va1KezqKxB1Chx2OHbydnsLCHbdNph23i4t36R3tSe9OEPgD2h9dNB/6W5jJMPfTTykdNkyX0F+AxwMB3hcCi8VCldvN9zZs4IQZM5Rn6yBkCbC1qAgSCYy5HEdt3kz1Kad0eVwJPBWLtYUWH7FlCyYhdPHqPxcMkgBcpaWMCof5lk7VhQ8xsvmfs4FHpJQvCyFu60F7FAqFQqHYb3RaDVhKGUS7g3tIs6y5mXtzORpLStpyU8vMZq6x2ehttVLdjYt3j8fDKo8HX+/ebHO5WAZsbRWlUoLXi7ugYLciM/a5meVnFJNLgqFQMvZvWxg+t4AyIGs0ssHjwZDNYhCCUS4XNiBsMLCyoYGsEGQKCuhbXo4AfCYTtek0iYICZLvep5m8twbg0lmzsFgsmC0WTcRGo5w1bBhGKelXXEyfwkIsaB47AzCtf38+zjdl3l90JmT3ZrsnSaFVnX4iHseTSmGxWLBYLFhDIaZ/+SUlyaQuIgHgvz4fD4fDmudeCC53OvnmiBG6jK3Yv+SAR2OxtjDd0du2MWPCBF2u67e8Xpa0Cy0+22rVpXDYVo+HZ8Jh4iYTCMHpxcW4Vej5rqgTQvwZOAX4PyGEGe3rVaFQKBSKQ57OqgGPlVIuy/9uAn4OTEIrSnqXlDK2f0zsXha2tPCTcJiU0QgeD263m6PMZn4ElLtc0E09UsPAPL+fvzc14XE6IRLBXVy8W1HqNJupKSgg2NCAIxLBnkox8+ijmf8efJwSkAORhtNWlHH3t/M+YJsNT79+272G+TxL7HY8AwZs35+vwklRER67nbr6eopqaviz0chxaK1cNoVCxAsKiJvNWmsTdhSxWSGoz+Xw5l+fyGRwxOP0KyhgkNW633uiHmykgDeB54GGZBJPczNISVAILnE6+UZlJU06hf4CfArcZzAg0Txn1X4/k7xe0Mljq9i/zAdq02mQElM2y5EbNpDQoZ2RBP5fu9Dikdu2UWmz6XIN/jcvVFuraZd7vSpPetd8E5gJ3CulDAghegE/7WGbFAqFQqHYL3TmWX0SrZADwG+BMrT0tjOBR4Hv7s0EQggjWoRanZRyzr4a2h0sB+4wGttakhhzOabX1fHjgQO75bZ1ncfDO4EAX1VXs8pux2swEHQ4dgrHdZrNlHi99PL7qYhEOG/yZEYBorh4R5FZVkbxNPhTIaRSUFgomDPHvsOcu/Ma7s1+J9AX6GuxMMTlIhwOY8+L1QDQANRGo0TMZpImU5uIbfW4BqRkSy7HFyYTlQUFlCUS2EMhaoqKdOkLerAjgc3AG8Egr2SzpDrcrChKJjl55UpO6N+fmvHjqdHJ+/sl8BvAZLVCKERpNMrsZcvos4eeY4oDkwjwWDzeFqZ75MaN2DMZXTzwS4DGfE6pMZfjyC1bdAst/qS6GlpaEFIybutWeuvUs/VQQ0oZE0K8DLiFEK2JwodcKo5CoVAoFLuiM7Eq2v1+MnCUlDIthFiItt7dW64DVgOOfbCv21gK3AkYioogHKY4meT0L77gOyecoLtQzQIv+P08GAgQslja8k1b82KNuRzVgQBnOJ0cDwyxWPDW1FAvBNWjR+/QGqejyJw8Gd5+G957D6ZN07a7A5vNtoPArAKqLBaGOJ2Ew2GMVivhggKagE35QiwASEkmk6EJ2JBMQmEhhckkw0wmBprNuDnES0t3QKKtMheh9X/alEziCQa19ysS0T7fwkLGrl3LyC1bMAPVxx6r2/yr0K77NGA2mxldUcH3AwFGqlzBg5ZHQyHW59sx2RMJzjObGaVDmK4E/hyLkUincZWWMsXv59unnKLLdbIYaDAasRUXY87luGHMGHX97QYhxDXArWjlDHL53RLY50pUQogS4HFgdH6sS6WUi7pmqUKhUCgU+tOZWHUKIc5Cy40xSynTAFJKKYToWBB2lwgheqMVhbgb+HFXjdWLz9AMal2wD6uo4Hvr1zPuhBN0XTBJYCHwT2C1wUAoX0m31Yt6lNPJd+12+m/ZwpBevXC3a4T+dfIoJ0/uPpG6J9qL2EpgEDAml2PZ1q34i4oIFBcjbTbS7UKGU0YjtVKyBe0CdKVSrA6FWN7czJiKip55Id1EGK1Hauvjy3iclnwuaseQb1siwWnbtnHVoEH4x46lvrxc136ty4BfJRIEkkksFgs1ZjO/tVpxq+qrBy21wH+lbLuGjl2zhtI+fXS5Zl70+fg0376rIJfjO8XFuvSUlsCT0SgerxekZOjmzRQNG9blcQ9hrgOGSSm9ezxz7/kjWjucc4UQhWhF3xUKhUKhOODoTKwuAFo7dX8shHBLKT1CiCqgZS/Hvx/4GVo14QOCN7xefmc0UmC1YjabKQd+bbXSqwt9QHfFSuD3sRjr0um2IjlBIbCmUoyqq+OHI0dqMdalpdrjEMJmszF2wAAtbNhmo7CggA3pNMuiUQJWK1mjsS1kOJnJUBuPs9Zg4MJ4nNHxOJOtVvr6fJRs3cqwqqqDwuOSBuqBrWgthlaFw6xKJonY7W1Fu5IdclHdbjclZjOVHg8DPB4Gt7Rw5mmnUYi+RZ+ywL+A/5dM0phvgZNKp/md04n7ELs5cDiRBX4Xi2m540LQr7mZoc3NVB/d9Y4mCeDJdiJ47ObNxJzOnVo37QtLgJX5m1eGXI4xmzZRb7cfFH/nPcRWtALhuiCEcABTgYsBpJQptLR5hUKhUCgOODprXbPLxphSyka0sOBOEULMAZqklJ8JIaZ1ct5lwGUAfXXo29cZnzc386tIhLTBAKEQoyoqNM+SjnNk0ITBU8kkjS0tbcJkQGUlVzscjN20iQHDhx8UIqGkb19u27Spa4Mkk9Ci3duIx+NEGxvJFBcTslhoAYKpFKlUinh1NWYp2ZpK0WwwaP1hS0pwBAJMLSpinN3OYGAwPXPnw+PxsKGhgYKaGnIVFTSixeSti0TYGI+zdaWD4CIzZdOgaEISj9+veZJjMdxu9w5eVEsqxcDmZubEYnxz+HB8/fpRbzJRPWmS7gv2FuAetPDfeLv5z1iyBDl8OBwE16Fi1zwZCLA4FGrzfH4vnWayDuG/AH8LBrViaUJQlExy1KZNVM+a1eVxJfAU21uDjd62DWc6rVuF60OUDcB7QohX0drHASClvG8fxxsINANPCCGOQAs2uk5KGe2ypQqFQqFQ6EynrWt2hxCiKi9aO2MKMFcIcRpgARxCiKeklBe2P0lK+RjwGMDEiRP3Krx4X0gBvwPS+QqozliM769bh1vHoh7Lmpu5R0o8TmebMCnIZhm3eTPf8/s59ogjYNw43ebrbq6/445un2NpczOPL13KFpeL+lwOi8WyQ2hsyGLh/VyOZfnzk8kk5kiE3hYLA4qLqUQLPzZ4vSQ9HvpVVNC3ogILYGXHxOv2NHo8bKmvp6SmhqLKSqJohWq2+nxs9vsxlJeTcTrxAVtjMVZFoyRLSyEex51MYjabNU+pz0d0iYkNF5iQaYmhUDDm5TQMlW1Fu9zBIMdXVlKWzbLpo4+wRyIYDQZOmTMHE93XOucTtNCGSH7bYrFg9/s5ddky7EogHNRsAZ6Gtr+To9avp19ZmS7X0YqmJv4ajZIxGEAIvplIcM6sWbqM/RGwOpkkkUjgLinh+4EAw3US2IcwW/KPwvyjqxSgFU+8Rkr5iRDij8CNwM3tT9qfN5IVCoVCodgd+yRWgb+i5aLuFinlTcBNAHnP6g0dher+5HHA53BAPE5BNsucL79k1LRpuo3/hte73WubSOAqLaW338/Jy5bhTKcZNHKkbnMdSoyrqODmsWOpr6+nsqiIgNnMgkSCecEgHoeDnMGAxWIB8mG0Hg9IyZZolPX5/rPJZBJPNArFxTuISQCZSJCJxym0Wim0WMgBsUSChmRSa0uUSOwoPiMRKCiAYBB3Pq80mE6TzFeMbl+1uVVURz62IFMCcgKZgpoPChiRXklJOExFNMqZs2dr3nuXC89JJ22v5txNC/QU8EAoxDwp23JjDcD3zWaO79WLRim7dX5F95IB7o5GSWazIATuYFCr0qvDjTcJPJjNksnf1KsMBpmWyehyrWTQesF68hEngzdtYvjw4eo63ANSytsBhBB2bVNG9vCUPbEN2Cal/CS//TyaWO047365kaxQKBQKRWfsk1iVUnYqVA80PgReRyum5Ha7mbt1K9+YNk23RdIi4HdGY5vX1pjLMbu5mQt79aJBCYM90t6zWAOMcjo5x+1mS309uT59CJrNrAM+CgZpyS+kdyUaO4rJZDKJJ5+jSTjcFo4bSyZ3ef7uxmlftdkZj3NkWRmDALOU1C5bht9m4YmCE8lljRQWCn4108LAgUfuUpR2lxcVNJH6P+D/xeOszleHDQrBiIoKbrFaGakZQC91LR7U/CUY5ON8BWmjlFwei3H87Nm6XFfvAxtdLvB4EFJy4po11Bx/fNeNBv4LbM73gi3MZBi/cSP1Dof6btwDQojRwP8DXPntFuC7UsqV+zKelLJRCLFVCDFMSrkGLa1nlW4GKxQKhUKhI3sUq0IIN5qGkEC9lNLzdSeRUr4HvPd1n6cHTcA9iQTBfAXUk81mrh48eLfhoV+XD9FyAgvyPSsd8Tizv/yS7+QrC1d180IshRZKW+v1YnK7kaWlbA6F8IRCFJaUUGCz0RKNEoxGsRUXU1RcTCwaJRaNUl5URLnNRjYcJu33M9DhYEhJCaKlBVlXx9AeLG7UUdRNB86RkpfffZdwYSGRoiJGnXgiGWC9EHzs8xEzmcgUFFCZLwIT3IP4NORyWDIZ+plMVAAYjWxpaqIwlcKWSnHyuHEMAsrMZjIWC+G6Omqqq3G3tvApKcEzaRL1veuZe2SIZctc7doHdZ8o7UgKeBPNPeJDywNufd0Dm5r4od/PyCOO2C+2KLqXFcAz0Pb5Hl1by6Dycl2utQjwYDxOIpXCVVrKsX4/3z/+eF3GDgBPJBJtvWCPXreOomxWhaLvHY8BP5ZSvgttkUp/AbrS0+oa4Ol8JeANwC5rVCgUCoVC0dPsVqwKIcYBjwJOoC6/u7cQIgBcJaX8vNut04GHwmE25ovdyESCb5SUIHT0qN6ZSBDLC+Gx5eVcsm4do3RugdNKFlgPLAwE+CIWI1RSQpPRSGM8DlYrhMO4Cgrw5b1q+Hy4pMTXWuwnkcCVy+243f54KITLaMQXi0FJCcWhEBMMBtzRKJPsdqaWlWHV/VXtPW63mzNmz97usWytouxw4Kmu1vZXVOC2alY2JhK89O67pAGjEMyeOZNeTicGs5kWs5mG1nGK8l0bbDY8fftq4wwevH180Kqg7qISaquoHj8eZu/neIMk8AbwAuBvt99isZBKp5lUW8vY+nqGzJmzfw1TdAsh4I54vK36b2+vlwlbtlCtU+uh34fDrM1/FxSnUnxfR6/nQ6EQm/PfS65olHOKihipclX3luJWoQrazV8hRHFXBpRSLgUmdtUwhUKhUCi6m848q08Cl7fLawFACHEM8ARwwLtqtgDv5XJtXohTli8nOGgQ6LBAagB+k0jQkA8zNcRi/LKsjOE696xs9HhY6POxpndvlphMtESjRKJRTVy2tGArLt7BexiNxXTbjhQW8n4sBkLwfDRKr+JiBmSz9GppYWpxMceXl2PU9dXumd2F0e5qf5XbzVmzZu0yHLdqN17v7gzT1Yso8GwgwHO5HJni4rb8XIBS4ByzmfF2O96qKqonTDjgX49iz0jgrkiENT6fVtE5nebqRIKJOgm+T4C3231XnrBqFYG+fXX5rlwJvNmuDc6Ur76iZMAAdV3uPRuEEDejhQIDXAhs7EF7FAqFQqHYb3QmVos7ClUAKeXHXb2ru7/4J2C2WEAIBjQ10TsY1CXsLINWWTiQz310xGKcuXgx8bFjdelDCJpIfaGxkecKC/EXFYFf851Jub3Ohcj/XhKPY4/FKE6lGNe3L3Vr11KYSmHO5Zg4ahSrPv8cQzaLEIIJEybw+eefkwUyJhPDxo/n81WriBUUELVacQ0bxopwGG9xMdl8Dm7rXOFolI+iWneDF2IxBsXjTLFaGeLzUb51K4MOwJ6oB4P43Bt8wMdo3vwliQT1+ZYlRCK43W6qzWbORQuXLgRwu+l7CLxuhcY84ONsdocbb9X9++tybYeAe+LxthDdYfX1DG5pofqYY7o8dhp4iO2tagY2NTHA76d6ypQuj30YcSlwO/AftALnC1FhuwqFQqE4TOhMrL6e7+v2D7Sm5AB9gO+iRR8e0GwA3sm3SHCVlnJpOMwxOnkhHgwG+QwwGgwYpWTmsmXYMxnd8q++bG7mZ01NNJSUbN+ZF6a2RIIan48an4+qaJQLTjiBwtJS6uNxqvPeCo/RuIM38bji4h22x9vtO2yfbLVu366sxCMl2+rrCdlsvLF2LQ12O3VlZSRsth28sC2pFG8aDPwjEkE4nfRuaOCbZjPTS0qo0uWdOLypQxOnHwNr2u2PtisQZY/HOX3bNq4YNAhTj1ip6G4WtbTwx4ICjEYjCMH4jRsZ6PNRfWxXUhY1JPB/4TC1reG/ySTfz2YZp1e/1kCAFUJgsVjoW1nJtYEAo1T479dCSukHru1pOxQKhUKh6Al2K1allNcKIWYBZ6AVWBJoJe8fklK+tp/s22ceD4fx5BdgA5ubOaZPH10WSItbWngyHyqLEPzAaGTK0KG6Vfx9H7gF8DocbfsKMxmGNzYyoq6OimAQgxAMGzaMoRMnts3ZWcXZrmyPdDg0IVteTiSb5a/LlrHJ5WJzRcUOPVFzQrC1tJTHheA5tLsaw4NBaurrOcblokYtTvdIAvikpYWFkQjrKyvxtubSdsBisWAJhxmxdSujGho4Y/ZsJVQPUdY3NfFzv59gPkJkfHExVzsc9NVJ8P0PeL9d+O+JK1dSqZPH9vPmZv4cjZIVgqAQ3GC3c5LOaRKHMkKI+6WU1wsh/gvIjsellHN7wCyFQqFQKPYre6oGvARoBtZJKQPdb44+hICP2oXMTaqtpd5o1GUB9mS7Sqv9mps51mBg/PjxXR4X4Hm/nz/kckRiMUBrgTNu82bOKyxk3ODBMHhwt/fo7Eh74eoGrps0ifr6eno5nUTNZv6XSPBCOEyT3Q55DwrAumSSD4NBKCrCFItxUiTCFJuNcUBf0K0a88FKDi2nuhbNa7oWWJtI0JDPEaalpa3VDoABGANMBo42m8lWVFCfTquc1EOYLPDbXI6gxYIEzOk0F9TXc5RO3zd1wAPtKvSO2bJFN49tFrhPSrJCIAF3MMhIrxfaFy1T7InWHNV7e9QKhUKhUCh6kM6qAX8f+DVaAdoBQojLpJTz9ptlXeBjoDDfSqaX309lLKZLiO5aYLXdDj4fAjh+3Tpqpk3r8rgAr3u93BWJkMtvl0ajTP/yS6b27s3x7RaPPS1MOnphBzmdnJVIsMrjobFPH2rNZr5kx7YxaYOBj7NZVuefUwIMDIep8ng40ulkQkXFvjX8PQiQaG07tqKJ063AqmiUr1IpRFHRDsWROvZ/zcbjHGM2Mxk4CrC3H/gQycVV7J77QyFWmUyQSiGk5NRVqxg7aZIuY6eA22Ixtra0tFXovRQYrZPH9gWgyemERAJjLsepq1bRW6fvysMFKeVn+V/HSSn/2P6YEOI6YMH+t0qhUCgUiv2LoZNj1wOjpJST0fq53bRfLNKBDwCz2Yzb7Wam3c4cnRZgf4lE8Pn9SGBIYyOnjx2ry7jNwO+z2TahWhEKcc4nn1AVizF06NAuj9/duN1uThw7lm+XlnILWmGrmzIZRtXXY08kdvC4AniSSV7y+3nUZOIH8ThnJBL8BHgYmI92dyTTI69k35BAGFiH1nf3BeA3oRAXezycE4/zXeCXwJ+BF5NJFnq9NIVCeDwekslk2zhWi4WyaJSRdXXM/vJLnkgm+SVwEh2EquKQ51m/n38EAkQiEQDOjMe5btIkXb5vFi2Cc34Dn36ohf8acjmmf/klruJiXcbfBDyZSLTVCzhfSi6aNk3dXNl3LtrFvov3txGK7fTv35+Wlpb9Pu8t//0vby1d2uk5t/3zn9z74os77Q9EIjz82gGfwaXYz0z7xS9YUlsLwGm3304g/z9nb85vz9ING3htyZJdPue95cuZc8cde7Tl29/+NmPHjuUPf/gD999/P7F8lOHhgs1m2+M5DzzwACNGjOCCCy7gpZdeYtWqVfvBsp6nM4dWSkrZDCCl3CCEMHdy7gFDGFjcrvfphQMHUqHDuH5gcT60WACT1q8nMWKEDiPDbyMRmhMJAOyJBGd+9hnjBg9m6NChB+UCzwzMKitjwsCB1NXXU+ByUW82sxRYxo5eVyEl4WSStRYLa9uNkU0kKAmFGGC1MsBupxKoACrzDxv7J5RYAjG0arze/M/W3zeHw2yKx4k6HOTaifFkMomntddtMrlDOG+i3Wu3JRIM8Xo5sbqaocBgs5lwWRn1ySTVRx99UH72iq6zGnhUiLbrZHBjI2eYTLiHD+/y2IsWwbSTJakUGAqLGfB0hNOsS3WLPkmieWzr8h5bdyjEBZWV6lreB4QQ3wbOR4tsah/VZEf7ClIchGQyGQoKvn4sUTab5Y7TT4fevfdp3kA0ysOvvcZVp522T89XHPq8duut+/zcpRs3sqS2ltMm7lv75sbGRj766CM2b94MaDeELrzwQop2U7vjcOXhhx/m9ddfZ8CAAVx88cXMmTOHkSNH9rRZ3U5n35i9hRAP7G5bSnlAViec7/PREImAlFhDIXKVlbr0ClzE9jY41T4fZfG4Lou7lcDHySQyL4Knf/kl4wYN4vjjj+/y2D1N+5DhscBMNPG3OJ3m7+vW0eBw0Ox07uB1hbzYa2qiTkpWJhK4Cwt3CJcFsADFsRjGUIgKm40Kmw0LYG33sAAxn48WrxdXeTnO0lKyaPmirT99gQD1gQBmlwuDw0EErY9pFIgALYkEofyNj/Y2JJPJtgJeJBK7FaRCSmQsxlCzmT6AQ0o2Ll1KaTCIM53WvP7tXleRCu89rFnV1MRPCwqQJhMIQXk4zPRVq6iZNUuX8f/xapRUsghyglxKUrOkmIvPdVMzfrwu191jwIZ0GqTEmMtxyvLleEaMoFpd0/vCR2gtvcuB37fbH0a776foZqLJJN+cPZtt27aRzWa5+eab+da3vgXAgw8+yH//+1/S6TTPPfccw4cPZ/HixVx//fXE43GsVitPPPEEw4YN48knn+TVV18lkUgQjUa55ZZbuOWWWygrK2PNmjVMnTqVhx9+GINhx2C3/v37c+mllzJ//nx++MMf8sY//sGcE07g3ClTeG3JEn78179S7nAwYdAgNjQ28sottwCwassWpv3iF2xpbub6uXO59vTTufEf/2B9YyPjrruOU8eN455LVPejw4loMsk377iDbS0tZHM5bv7Wt/hWh3Vm/+9/nyX33Ue5w8GdzzzD0wsW0Ke8nHKHgyMHD+aGs84C4LkPP+SqRx8lEI3y12uu4eihQ7nl6aeJp1J8sHo1N5177k5jt9kRjXLNNdewfPlyMpkMt912G2eccQbTp0+nqamJcePGcdZZZ1FfX8+JJ55IeXk57777bre/Pwca99xzD88++yzJZJKzzjqL22+/nSuuuIINGzYwd+5czjvvPObNm8eCBQu46667eOGFFxg0aFBPm91tdCZWf9ph+7NdnnWA8XleqEqgb1MT9ZnMPi/C7r/lFgJbtgCawApKiVUI7PE4a00mHnn//V0+r6RvX67fi5AHgMcjESL53qXD6uqoCYUYesIJ+2TvwYAAji4vp//o0VqxKKcTi9nMBrQw2vXAJ+HwDmIvkUjsJFaDySRr894bUincJtNO5ySTSTyRCBQWQjiMu0OOaDKZxBMKaQWNAgHcZvPOx5uaQEqCQnQqSHOxGH3NZtxAkRBsWruWkkiE8liM8045ZXsrn5ISPMccs98LZSkOfDZ5PFzb0kKzzQZC0Mfp5EfBIKNnzdLlOgkDK4/LIAolMg0Gk+Q7QxuYoFPBppd8Pp4zGjEaDCAEJ6xerdtNvcMRKeVmYLMQ4gKgXkqZABBCWIHeaBHXim7kjVWrqK6u5tVXXwUgGAy2HSsvL+fzzz/n4Ycf5t577+Xxxx9n+PDhLFy4kIKCAt566y1+8Ytf8MILLwCwaNEili1bhsvl4r333mPx4sWsWrWKfv36MXPmTP7zn/9w7rnn7mSDxWLhgw8+0Oz5o5a6nEiluPzhh1n4618zoKqKb99zzw7P+aqujnfvvptwPM6wK6/kylmz+O13v8uKzZtZ+sc/7jSH4tDnjVWrqHa5eDV/QyOYX3fuiiW1tbywaBFf3H8/mWyWCT/6EUcOHtx2PJPNsvj3v+e1JUu4/ZlneOvOO7njggtYUlvLn664olM77r77bk466ST+9re/EQgEmDRpEqeccgrz5s1jzpw5LM2HuT/xxBO8++67lJeXd/3FH2TMnz+f2tpaFi9ejJSSuXPnsnDhQh599FHeeOONtveltraWOXPm7PJ741Cjs9Y1f++4TwhRCgSklDuV0T9QCJeVgdeLkBJ3JEL16NH7PFZgyxZu698ffyTCvzMZTZgA55pMlBcX7/Z5t23atFfjtwCf5UOLDVJy1Pr1DBs27LAQMB0LNY3PPwA82SzPv/ce3qIiokVFDJkyhRTQlH80s3Mo8a4EbUdB2fGcvT1uzOWwJRL09vsZUVVFGWCQktUrVmCLRilJJvnG9OnbBanDgWfs2N0K0o6vXaHIAHdLSbPNhgQMuRwX1ddz8pgxuowv0VxzlhMtDPxnE4kPTZxl/4zTZx6hy/jLmpu5Oxwmle8Fe6rZzPm9elFz5JHqWu86z6LVjWglCzyHVndN0Y2Mqa7mhr//nZ///OfMmTNnh4ins88+G4AjjzyS//znP4AmZi+66CJqa2sRQpBOp9vOP/XUU3G5XG3bkyZNYuDAgYCWq/fBBx/sctHZ6sltz1fbtjHQ7WZAlfZf59tTp/LYm2+2HZ89cSJmkwmzyUSl06mlpSgOa8ZUV3PDyy/z8yefZM5RR3H8qFG7PfeDVas44+ijsebXQ6d3KOx39uTJABw5aBCbPJ6vZcf8+fOZN28e996rFTlPJBJs2bIFq9X6tcY5lJk/fz7z589v6zQSiUSora1l6tSpPWxZz9FZNeBbgGellF/l81VfB8YBGSHE+VLKt/aTjXuNBLYYjdjyQvLbkyfjrqzs8rgN8bgWlgdYUynS8Th0Ilb3lkWgeSGAGp8PVyp1UBRU6m7cbjfnzpy5XeyVlOxwXAIbkkme/eQT4kYjmcJCjpwyBStafmkCiANNQrDU44FcDoMQjHa5KEGrKmYEIkKwfMsWTOk0lmyWaRMn0gcozj+iySQL332XgnQao8GwY8huSQmeiROVIFV0GQncGQ7vUPn3pNWrmTphgm5z/DkY5B00L83A00q5cOQmZpQcocs1mgF+JyUpoxEJlESjnO3z6eaxVVAgpUy1bkgpU0KIwp406HBhqNvNZ599xmuvvcZNN93E9OnTuSXvmWq9sWk0GslktJKAN998MyeeeCIvvvgimzZtYlq7CtjFHdYMQohOt3f3PIA9+QvMpu2dt40GA5lsttPzFYc+Q91uPvvDH3htyRJu+sc/mD5+PLecd94uz92TN6r1+jIajWRyuT2c3WFsKXnhhRcYNmzYDvs37aWT53BASslNN93E5Zdf3tOmHDB0Fgb8LeDO/O8XoTkVK4ChwN+BA06srmpqYmPeG2bOZinTQVACZGw2yPdXLUqlsHcQT/vKgnbVhQd7PBx77LFK4OTpTOwJYFBlJZeecMJ2sdjujnUbDgeefv22n2O373x86NDtxzv2gKyspGLWLCVIFd3K/cEgLwWDWki7EJwVi3Gljv1zX/b5eCSfHhEUgu85nXy3w0KhK/yDHdvUzFyxgkGH8R3gbqBZCDG3tXWcEOIMtMAcRTdTHwjgKiriwgsvxGaz8eSTT3Z6fjAYpKamBmCP5y5evJiNGzfSr18//v3vf3PZZZfttV3De/dmg8fDJo+H/m43/86HCXeG3WolHI/v9RyKQ4v6QABXZSUXnngiNquVJ99+e7fnHjdyJJc/9BA3nXsumWyWV5cs4QfTp3c6/t5eXzNmzODBBx/kwQcfRAjBF1980eZB3GE8u51wOHxYhgHPmDGDm2++mQsuuACbzUZdXR0mk4nKDs631vfocGBP1YBbb7DMAJ6RUmaB1UKIA7It5gqfD6xWJFAaDtMQDFKlw4Iv2K7oQVG7ViNdZUU02naHtMbnI1FVtYdnKNqzN2JxT+d09bhC0RVezD9aw9HHbNnCXJ1ayIBWWfiPBkPb+L29Xo71ekEnr+enwDPJZFubmrnNzZw/dar6m9GXK4CnhRB/QrtXtxX4bs+adHiwvL6en06ahMFgwGQy8cgjj3R6/s9+9jMuuugi7rvvPk466aROz508eTI33ngjy5cvZ+rUqZyVL16zN1jNZh6+4gpm3nYb5Q4Hk/YiIqvM4WDKiBGM/uEPmXXkkarA0mHG8vp6fvrnP2vXstHII1deudtzjxoyhLmTJnHEddfRr6KCiYMH49xDVd4Tx4zht88/z7jrruu0wNLNN9/M9ddfz9ixY5FS0r9/f1555ZWdzrvsssuYNWsWvXr1OuwKLE2fPp3Vq1czOR9ubbPZeOqpp3YSq+eddx4/+MEPeOCBB3j++ecP6QJLYnfhJEKIj4HvAx5gDXCklHJj/thXUspO+ygIISzAQrROJgXA81LKTutiT5w4US7ZTZ+mveFVn49f5D0IA1taeLR37y4tmm67+GJu69+feZEIdfkwn6ENDXjCYW5fvJhsLsf3J0zgxuOO2/F5mzZx2x7uqq5rauKcRAIpJQW5HFe8/TZnnH66WuQpFIcJL/h8/DFfkMjn9zOosZFZy5czV6e+0A3AD+NxGmMxItEoJdEo31y8mHNnztRl/Drg6kSCjfkiZAPy37l63CDUCyHEZ1LKfeulcIAhhLCh/c/e77fSu/q/eQceeWSf26/sd7Ztg04W9fvKe++9x7333rvLRXqntHvvIvE4NqsVKSVXP/ooQ6qr+dEZZ+huq6Ib6abra5d8zb+71usrlkwy9aabeOzqq5nQVTHU3a/3YPpu6cj+vBYOAL7u/+bOPKTXAc+jhf7+oZ1QPQ34Yi/GTgInSSkjQggT8IEQ4nUp5cd7a9zXpcjlwl1cTCKR4AiXa+ewz33EWFgIrT1Wczl+9dFHvHXRRfR2ODjqL39h7rBhjKz4et1cVzc3Q74BsDMWY8RhUlhJoVDA614vd0Ui5ACEYFJRET8oLKSfTkI1DNwYi7EuXzHbmk7zo2CQyToJ1ShajogvmQQpKU4kOGn5choMhgNKrB4qCCFmA6MAS2tuo5Ry70rOKw5J/jJ/Pn9/5x1SmQzjBw7k8pkze9okxSHEZQ89xKqtW0mkUlx00kldF6oKRRforBrwJ8BO3lMp5WvAa3saOB9CHMlvmvKPbq0i3D5a3qxjwWJRWIhVStLpNF5gSHk5A/P5jeeNGsXLX331tcWq0+2GWKwtv1YVVlIoDg+WAPcYjeTQvhDLwmEu8fuZNG6cLuNngF8DG/P9Tg25HKd9/jn9hgzRRajmgFsjEVZlsxgNBgpyOWZ/8QXF2axqU9MNCCEeBYqAE4HHgXOBxT1qlKJLTJs2bYfiS/vCj844Q3lSFd3GP2+4oadNUCja6NbcUyGEEa0/62DgobwA7njOZcBlAH379u3SfI2BgNY3U0rWbt6MRydvZTydJp4v3LR261aq2pXY7u1w8Eld3dceM9Wu8l+BqtSnUBwWvOX18mujEZlv8VISjXLmF18w6NRTdRlfAr8Oh3n9Y0HoQwuGI8ycbVxMTTism5B8IBjkf+0KQt0gBKOHDVN9g7uPY6WUY4UQy6SUtwshfg/8p6eNUigUCoVif9CtYjVfkGmcEKIEeFEIMVpKuaLDOY8Bj4GWF9OV+YI+H+TbJ2SEoL6+XpfFUzZfCRggl/ewtmfXBef3YGtTEzKfsJ4yGHSzVaFQHJi84/Xy81CIjMEAQjDY4eDqYJBRp56q29/+n4JB/vFOnA3nVyLTApOpkpGPDGPWnKN1meNd8iopX7Bp4vr1jC4p2WU1R4VutAYNxYQQ1YAXGNCD9igUCoVCsd8w7PmUriOlDADvAd2aVNG3pASEQADJwkLdPAm2dj3LSm02mhKJtu1toRDV+5AbW9hujMaSElKpVCdnKxSKg5kVwN1GIxmDAQnY4nGu2rqVk8aM0U2oPg88B0QXmZEpAVlBLi1oaNAnwmQt8CBar1aEYEBzM8du2KBCf7ufV/I3fO8BPgc2Af/qSYMUCoVCodhfdCpWhRBOIcS3hBA/FkL8KP97yd4MLISoaD1XCGEFTgG+6qrBndHf5cJut1NQUIC9pka3RWCoXdPjARUV1Pr9bPT7SWWzPLNyJXP3oWdhwuPZYbupRbXNUygORRa2tPAjv59cPvTXlkxy9mefMbpDGfqu8E+/nweCQYwGA8WTkxhMOQyGHCYTdDE1DtCaev4qHqclGARgfHk5Py8o4HSdCkIpdo+U8k4pZUBK+QLQDxgupbylp+1SKBQKhWJ/sNswYCHEd4FbgfloXQpAK/DwayHE7VLKf+xh7F7A3/N5qwbgWSnl16zT/vVoWreOUN4L+imwevVqRowY0eVxw/m2NQABp5NfjR/PjKeeIisll44bx6h9WHSO7tdvh23Rq1eX7VQoFAcW73i9/CwcJp0P/R3gcHBVMMgRJ5+sm8h70efjd+GwVr1OCE46voij/7yeDWt7MWeOnXyrtn0mAvwsFmNNvrJwMpPhXoeDsToVhFLsPVLKJFqlfYVCoVAoDgs6y1n9JVpv1UD7nUKIUuAToFOxKqVcBuzXRKbmTZtgyJC27Q0bNugiVodIyer87wXZLGeOGsUPuuiuGDFiBEdt28an+eJKH9TVcZSO3mCFQtGzfALcZTSSzof+FiWTXLltG9PHjNFtjsXAH/PjS8AdDHKJz8fki8bpMn4KuAtYl68sLKRkxtKlZAcOhK9ZAV2hUCgUCoXi69JZGLBg161mcuxbTaFu58iamh22KwYP1mXcEXY7VqsVo9EINhvWdtWAu0LvbLbtjfTY7dTX1+syrkKh6Fn+4/Px80CgreqvPZHgnCVLGKejwHvX6+XGQACRn6MsEuHML75goE5RGjng9nCYj/LhxQjBKStW0C8QUHmq+wEhxJT8T3NP26JQKBQKRU/RmWf1buBzIcR8YGt+X1/gVLR+8Acco0aMYILXy8pUCqPRSMRm02VcJ5BuKCBUK0nWwJpkLcOGDMHWxfGPstt5KRIBKakvLcVSWKiLvQqFoud42u/nnnZhucPsdi4PBhl90km6RU4sbGnhp+3Ci4fZ7VwVCDBixgxd5pDA70IhXgkE2lrUfN9g4LiaGqqPOkpFgOwfHgCOBBYBE3rYFoVCoVAoeoTdilUp5d+FEPOAGUANmjf1PeAmKaV//5j39RliMvFFNAqpFP9Zu5ZRY8d2eWHVvBXqnzIgs2aiRjP1xzupDoe7LFaPd7lwmUz4fD48TicL3n0Xl8ulFoIKxUHK88Cf24XlloXDXBUIMG3sWN3mWA7c2S682JZIcHkwqOsc/wZek7KtRc34TZs4zm5XLWr2L2khxBNAjRDigY4HpZTX9oBNCoVCoVDsVzrts5oXpc/sJ1t0obi5GQoKkGwPre2q+Nu0CS0mDoHMSTyBEuz2rntBnUBFIoEPyAnBltJS1W9VoTgIkcCDwSDPQ1vIbFUgwBlLlzJixgzd5nnb6+XXRiO5ggIQgqJkkrM+/5zRJ56o2xz/9vt52GBoex3D6us5vraW6jlzdJtDsVfMQauifxLwWQ/bolAoFApFj9CpWN0dQojHpJSX6W2MHhztdPJELIaQknqXi15O5z6PVdK3L7dt2kSTGd4UkJUSBPQrS7GtxQy7aTdT0rfvXs8xpbCQNfE4SMl6t1vrYahQKA4aMsBd4TAvBoNtIbNHFxVxic/HQJ3CcgHme73cGA6TFaKtsvCV27Yx7sQTdZvjFZ+P37QLYT62qIhLzWb6qhY1+x0pZQvwjBBitZTyy562R6FQKBSKnmCfxCrwZ12t0JFJ5eX0SyQIJJOa8DPve22K6++4o+33v7/m58YFguKj40THJ/heURF9dFi8zXI6eclgwOfzsbGigvcXLlShwArFQcIGj4e7peQrk6ktZHZAUxPfLyhgkk6tXRYtgqfeg4+PLCQ7TCABezzOVcGgrpWFPwF+3y6EuTIY5Ls+H0ep0N+exiuEeBGYgvbRfABcJ6Xc1pVB823llgB1UkrlNlcoFArFAUln1YB3i5TygA1JMgITLBYsFguJRIL3/fqk147ptYkhFzdQdGSKtMHAgkBAl3GHAPZUCoCEycRGl0tVBVYoDgJWNDXxPZ+PJckkkWgUhGD0tm3MWbaMfjpV5F20CKadLHn4ZsnSM21EPzfjyFcWPmIf+jvvjk+B3wImqxWEoDQW44ylS3WrLKzoEk8A84BqtPoR/83v6yrXQVtXNoVCoVAoDkh2K1aFEAVCiMuFEG8IIZYJIb4UQrwuhLhCCGHan0Z+XXoHAng8HoKBAM/W1uLxeLo8Zk11NYObm7VWM0KwuKBAl3EFcGo+/wxgZZ8+KhRYoTjAWQ/cWFCAr6hIC5mVknOjUW4oKmLu7Nm6RUY8/FqMVBLICnIpsH7h5PZUigtOOUW3OT4Dbk0k8AaDAIwtL+f2dJpvTp+uIjwODCqllE9IKTP5x5NAl3ogCSF6A7OBx/UwUKFQKBSK7qIzz+r/A8YBtwGnof1jux04Aniquw3rClV1dW0heRvKy9nc0NDlMd1uN98bObKtAvAnUvLSq6/qIli/4XTiKi1FAJvLy3nz8891GVehUOjPm14vV/j9RE0mEAKjlMxYsYLLXC4mjB+vm8CbByyfmkMUSjBKDCbJZUPqOHnMGN3mWArckkhQ19REMBAgvmkTN0UiTNOhirpCN5qFEBcKIYz5x4WAt4tj3g/8jHzpQIVCoVAoDlQ6y1mdIKUc1mHfNuBjIcTabrSpy0wsL8cZCBC0WMgUFODr00eXcY8tL6fC6yUiJXGTifXl5bpU760CBkejLEZLSFrauzcnqKrACsUBhQT+XyDAHyKRfHFwQY3TySX19UydOFG3v9f2lYVLjzEw8J9N5BYK5to/55vT9Wu3uRytYXY4mQQpscfjnPnppyRHjwYdQ4wVXeZS4E/AH9Auj4/y+/YJIcQcoElK+ZkQYlon510GXAbQ92sUDVQoFAqFQk86E6t+IcQ3gBeklPm1mTAA3wAO2D6rAFVuN2dbLDyXyQCwxGRipg7jCmBmQQGPCAFS6hqye7bJxOJUCqRkRZ8+5PJ5rAqFoudJAQ8D/xGCHJpicMTjXBMKMWv0aN3myQK/CYV4rl1l4ROmFnPJwG0MqZqgmyBeCdyUSBBKJjEaDNiSSc5csoSSVIrq6mpd5lDog5RyCzBXxyGnAHOFEKcBFsAhhHhKSnlhh3kfAx4DmDhxotRxfoVCoVAo9prOwoDPA84FPEKItXlvaiNwdv7YAc1R6TSRaJRIJMK8lha26BRWe67TSVk+ZHery8VrX3yhS8juzLIyRtjtCCBlNPJ4XZ0KBVYoDgB8wHXRKP8JBrf3UA0G+cbixUyo6FLq4A4kgbuB+VK2pTH0b2risq1bOe6II3QTqp8DP08k2JoP/U02NvIbITh51CjmqBY1hzxSypuklL2llP3R/pe/01GoKhQKhUJxoNCZWK2SUn5LSlkBTAaOlVJW5vdt3E/27TPWrVtxRqNIIGk08noopMu45cDQSKRt+8vevXWp3iuAE7zb05A+69eP2sbGLo+rUCj2nTXAFfE4H3m9BAMBfH4/pxUWclcux3k6FiBa39TEZR4PH7S23BKCkXV1zFm2jP46VuT9CC30N5QP/S1KJjlz8WLskQjjdcy3VSgUCoVCodCDzsTqw62/SCm9+QblBw011dWMqq9vq967XMfQtrMLC0EIBLCqTx8cNTW6jDvXbqckHkcAycJC/mu1Ku+qQtFDvA3cCDTmw/OFlBy3ejXfaGhg0rhxugm7FU1NfN/rZWki0fb3/j2nk59ZrbpWFn7e7+emYJBoXhDbk0nO/vRTyhIJFfp7mCKlfE/1WFUoFArFgcw+9VndG4QQfYQQ7wohVgshVgohruuuuXaF2+3m+jFjcOUr7S7LZPi8uVmXsU8tK2NieTk2mw2zw8FbhYW6jFvjdvPTysq2isPzCwt5YsECJVgViv1IBrg3FOL2dsLOkskw97PPmLBtGzU6CrvVwM86tMCZVVfHtU6nrpWF/5/fz53hMIF8W69e2Sx/LinhlJEjVejvAY4Q4lftfjf3pC2KQ4dNHg//XLCgbfu95cuZc8cdX+v5o3/4wz2e99MnnmDU1Vfz0yee4Mm336be29VC1oqDmdb1bWc88MADjBgxggsuuICXXnqJVatW7QfLFAcynRVYGiiEmLe7g1LKPRV8yAA/kVJ+LoSwA58JIf4npdxvV92wykqODYd5xe8HKblv2zZ+n8t1eWEmgNMSCZZEoyAlf8tkODWZZKAOC77ZLhfPezx8ISVZIXhj1CiOqq1Vi0mFYj/gAW6NRlkUCICUBIXgyPJyfu9wkBk4kOrqat3+Fv/j8/EngwHZ2gInl2P6ypWcP3GiLuODVgjqWeAvBkNbHmxFKMT3AgFGjR2rqv4ewAghfga8j1Y74q787kWAfiWhFYctm5qa+OeCBZx/wgndOs+f33iD5qeewmwyMe0Xv2B0375Ul5V165yKg5uHH36Y119/nQEDBnDxxRczZ84cRo4c2dNmKXqQzsRqM/D7fR1YStkANOR/DwshVgM1wH69RTJ22zZeyXstVlVXs6axUZfFZt/Nm7EXFRGyWEgUFPBUIsEtXTcXAVxvMPC9XI60wYDPZuPxUIhRHg9VSrAqFN3Gqz4fDwhBJJdrE3aDGxu5zOdjzLhxoFMxJQk8Egzy50ikreJvH6eTS+rqOE7nFjj3B4O8CG2FoXr5/cxdupRhM/Woj67oZtagVd8fKIR4H80RXyaEGCalXNOzpil6ijufeYanFyygT3k55Q4HRw4ezA1nncX6hgaufvRRmkMhisxm/vLDHzK8d28uvv9+HEVFLFm3jka/n99dfDHnTpnCjX//O6u3bWPcdddx0UknMX7gwLY5ookE1/z5zyzfvJlMNstt3/42ZxxzzG5tymaz3PiPf/De8uUk02munj2by2fOZO5ddxFNJjn6hhu46dxzWbJuHRfcdx/WwkIW/e53WM0qUOBw5p577uHZZ58lmUxy1llncfvtt3PFFVewYcMG5s6dy3nnnce8efNYsGABd911Fy+88AKDBg3qabMVPUBnYjUipVzQyfG9RgjRHxgPfKLHeF+HE1wu/trcjMduJ2s08j+zmWEeT5cXhH2rq5myZAlvjB4NQvBWURFnNzUxWgdPxbiKCs5vbOTvDgcAK6ur+UNdHT8G5WFVKHQmA/wxFOIf7cSjQUqOXbuW8Vu3MmCOfil9SeB+4FVoE8SuSITrgkFOHTNGt3kywG87tMA5tqiIi3w+Bsycqb5HDg78wC+AafnHCGAGcGNesB7bc6YpeoIlmzfzwqJFfHH//WSyWSb86EccOXgwAJc99BCPXnUVQ6qr+WTNGq565BHeuftuABp8Pj747W/5ats25t51F+dOmcJvL7qIe198kVdu0W6zv7d8eds8dz/7LCeNHcvfrruOQCTCpBtu4JRx4yjeTau+v/7vfziLivj0vvtIptNM+fnPmT5uHPN+9Sts3/wmS//4RwAeef117r3kEiYOGdKdb5PiIGD+/PnU1tayePFipJTMnTuXhQsX8uijj/LGG2/w7rvvUl5eTm1tLXPmzOHcc8/taZMVPUhnYlWXir9CCBvwAnC9lHKnkrzd3Xi8yu3mhyYT/yclkWiUNwsKqH79dc6eNatLCza3282PJk5kUzrNV7kcwWiUW5uaeFhKXRaCF1RW8smmTXxVVQXA62VlJJYu5Rc6FnZRKA53GoHfAUvatYtxxONcGQ4zsqKCah1bxnzV1MRdQJPTicViISgE/ZqbmbViBWN19HTGgN8AC9q9poEeD5eYTEwaN063eRTdzkzgVmAQcB/wJRCVUl7So1YpeowP1q/njKOPbvNInj5pEgCReJyPvvqKb/zf/7Wdm0yn234/85hjMBgMjOzbF08wuMd55i9dyrzFi7n3pZcASKRSbGluZkSfPrs9f9mmTTz/0UcABKNRahsaGJBfvygUHZk/fz7z589n/PjxAEQiEWpra5k6dWoPW6Y4EOlMrP5GCFElpWwEEEJ8FzgH2AzcJqX07WlwIYQJTag+LaX8z67O2R+Nx+e4XDzZ0kJEShImE5/17csx9fVdXoRWud18c9Uq7iguRgLrKiuZFwrxAx0Wt1VuN38AfhIKsSpfwOnd4cMx1ddzQ/74wUgOiLd7xDr8bPT78fl8VLhclJWWYoS2hwEIer2EmpoYWF7O4IoKHPljCsXX5b8+H38SAllU1CYeBzY1cerKlZyis/fxw5YWfhYIEDGbIZHA7XZzYUkJJ3q99NFxrtVNTdwuBD6Ho+01jair45TVq+k3e7Yucyj2D1LKXwAIIb4EnkKLTqoQQnwA+KWUp/ekfYr9j5S7XiLlpKSkuLjNg9kRs8m0xzE6zvPCjTcyrHfvvbbrwcsuY8YElU6t2DuklNx0001cfvnlPW2K4iCgM7H6Z+AUACHEVOC3wDXAODRx2alPXgghgL8Cq6WU9+lh7L5iAM43GrlTCISUfDFgAObiYl3GPq6sjJEbNrCquhqE4JU+faheBMveg2nTYPLkfR+7xu3mN8DlTU005kOC57tcbN68mf8DXQo66UEWCAIBtLi1DX4/GwMBDGVlZB2Otv0NiQT+fHVV8y5yVZLJJJ5wGAoKIBzGXVS0w3nJZBJPNApFRRCP404mMZvN2AEHUAI4AUIhhNfLEQ4HR5WVUYaWC6xQAESBe8Nh/tMa9hsOU1NZyU8cDkZ7vdToKB4l8Dpwb0EBEbMZCRhyOeZs28a1gwZB/q6yHnza3Mz1rYI4HsftdnOl08kkr5caHVvgKPY7b0opPwU+FUJcKaU8TghR3tNGKfY/xw0axOXPP89N555LJpvl1SVL+MH06TiKihjgdvPcBx/wjeOOQ0rJsk2bOGLAgN2OZbdaCcfjuzw2Y/x4HnzlFR68/HKEEHyxfj3jO8kVnDF+PI+8/jonjR2LqaCAtXV11JSV7RQ23NmcisOLGTNmcPPNN3PBBRdgs9moq6vDZDJR2SGVzm63Ew6He8hKxYFCZ2LV2M57+i3gMSnlC8ALQoilezH2FOA7wPJ25/9CSvnavhrbFc4pLeVNs5k16TQWi4U3zWb0qC3mzgvKHxuNROx2Gj4WnDFTQhoKCwVvv901wTrA7eYvwE3BICvywm2N283lqRTnb97MGJ+PPjpWKG1FAhGgtrmZdS0tFLrdCJerTXj6gbpYjIZEgkxxMYV529oEp8EAgQBusxmz2aztb2pqq7Dqdrt3EqyJRKItbFFISSKR2OGc3R0PA2GgrnX+QAAMBv4VjeK22Sg3mxmAFks3ABgI9EZ5ZA9H3vZ6+SPghR3Cfi/fsIEzRo7UVTwmgf8Lh3krl8NoNIIQWFIpZq5Ywbe68qWwC5YCv+wgiM/esoUrhgzR9TUp9j9Syp+127w4v++g6nuu0Iej+vdn7qRJHHHddfSrqGDi4ME4i4oAePrHP+bKRx7hrmefJZ3Nct7xx3cqVsf270+B0cgR117LxSefvEOBpZu/9S2uf/xxxl57LVJK+ldWtuW27orvT5/OpqYmJvzoR0gpqXA6eekXv9jpvItPPpkrHnlEFVhSMH36dFavXs3k/P9Cm83GU089tZNYPe+88/jBD37AAw88wPPPP68KLB2miN2FhAghVgDjpJQZIcRXwGVSyoWtx6SUo/U2ZuLEiXLJkiV6D9vGMuCXaIImkUjwu3SaY8r1uUG9BrgukeDLWxM03uuEnMBolNx5p+Cmm7o+fp3Hw083bGBFhx6PxckkA5uamFJWRu9cjsEVFRRLSWNDA1W9elHpdtPg8bDV46G0Vy9sFRUkgG1eLxt8PgorKqCkhACwLRKhMRYjY7eTslqJJZNaj9d8gZb2AjO5m2PBYJBgIKAJSsBZUoLT6WzbD2DKZunldFJTVkYRYM0/MuEwtcuXa2FKBgMjRo+m2G4nixY+HAyHWbV2LUmjkYTZjKt/f9JWK+2v4N3N3xETUBmN4m5p4eTiYo4rL+++psOKHieBVkTpn/mWNAjN1z6svp5pa9Zwjs5hvw3Ar2IxlrS0tM031mbjoro6xlRW6jrX28CD0Pb3aspkmP3ll1x17LGHvTdVCPGZlFK/XkCHKbr+b37kEdjL8NIeZ9s2uPLKnrZiO488QqSsDFv+//PUm27isauvZoJawB+c7M/r60D4u+vu13sgvMZ95UD7rulmvu7/5s48q/8CFgghWtDSCd/PTzAYLerzoGMsMCoS4XWfD6Tkl5EIT2az9NFhQTcMOLmhgXVHWxCFDmQahEkybZo+Aag1+RzW/7d+Pc9WVpLI56BEzWaW9+lDax0/kUhov5SWQjKJKxzGl0yC09kWOgto4bSFhRAK4bZatX3596U1p64zT2fHYwXRKP3MZgqNRuoaG7EkEtjTaU6eMIFBQCaVYtGCBZiSSYwGA3PmzGGnd91uxzNoEPX19Vo/S7t95+O9e2vHXS7cVis5NK9qAO2i3JTN8taaNfitVrwOBya3m9wu3s9IMsn6fHPyl2IxhsTjTLVamQwcARTuy4ekOCBZDfwB+KpdwaGiZJKLolGOMZup1lmoforW86s+nW6bb0RdHddYrboWOJLAP4G/52++WSwWhldU8N0NG5iohKpCcUhy2UMPsWrrVhKpFBeddJISqgqF4pBnt2JVSnm3EOJtoBcwX253wRrQclcPSk7auJH5NhsZg4EWm42/JJPcodPY3ykq4vNeG+BpiH5ipdepJhZXNjLQY9Nl4eh2u/kOUPTGG3xRU8Oyfv2IF+4oq9p7yoWURGOxnQRn/sQ97is1mxHxOLH77qOovp5yhwNbYSFmoCqRwNvQgDGbpUBK+vbujTUvek3xOLFYjKKiIr60Wvkyb0+83f5/bd7M9Xfs/M673e5O36uOxw1oeaqtvtOxLhdHH3GEJmirqqi0WGgCNnR4rO8gtptSKf5ntfI/wAJMAIb6fFRt3crgqiq18D8ISQGPBoO8AJgtlh2KKJ28ahVnz5ih6+eaQ+uf+m/Akp8vIiXHr17NmPp6+unYAieOJogXtotwMEUi3FpRwchRo3SbR6FQHFj884YbetoEhUKh2K905llFSvnxLvat7T5zup8jKis5fulS3hs+HITgY7ebpWhVo7pKldvN74E7+udYc6oRn9/L32QBq1eu5Db0qeDrdrs5Z+ZMJtfXk/D5eGPrVra5XLTY7QSLikgWFpIqKNDy1oBSqxVvLEZBJkNhLscQkwmLlGzx+bAkkxSl0xzvdOKUkmVLl2JOJLCl05xz6qn0cTrxlJZyV0MDvxk+HJvNtoMtkd69CYfD2O32nY7tids2berye7E7Ogpad/7RPktwfTLJk0uXsr68nE2VlVjaFYJIAO8mkzwTiSCcTgZv2cKPjUaO1SlkXNH9LAV+H4uxrF2f0f6VldxstzPQ66VGZ6HaDNwZjbIgP19QCEZUVHC7zYalqorqCRN0m68BuAvYwvYIhz4tLcz88kuS48eDDr2eFQqFQqFQKA4EOhWrhyJut5ubxo0jlcux3uUC4Gavlz9kswzWYZFX7XZzP3CZx4Mv77lbNGgQDyaT3Am65EW2F2MD+/envr4ei8VCIpGgOi+o2kJpHQ488fj27XwxBk91tbZvwADcJSUATD3mmO3n5cd3u92UlZXtUozabLavLVIPFAZVVvLD/Ovt5XAQNJv5GFiEVqipVQTkhKC2spIbTSaOAc4EjkGfz1GhP7VNTTySTrOivJxEuzDcPl4v1wWDnDRmjBYiryMfAH8C6jOZtvn6trRwtd/P5COOAB1vciwFbk8k8OaralssFgZs2cKxa9ZQIATVHXLaFQqFQqFQKA5mDjuxCpqH8zfA9+NxapubQUquDQT4s5S65K9agNuBH/r9bCstBSH4qLSU6+rr+bHRyAAdPTq7C5vdwbO4i3P2dt+hTPvXW4WWd3wRsA14Q0qeDYXwOBxaFVeLhdVo+Y9VwFzgVLTPWtHzSOBZv5/7wmESBQXg8eAqLcWczXLMmjWMra9nlI5huKB54O8NhZgvZZtwDAGT1q9n0saNDNVxPgnMAx5OJmnMV9WOSMkvHQ6OGzqUeptth5tMCoVCoVAoFIcCh6VYBa0n55lbtnCPxYIE6kpKuDeT4X706ck5wO3mz8A9mQzLHA58fj8LpWRpOMydRiPTDvKQ0ktffplX1q6lsriYFVddBcDSxkaueOUVEpkMBQYDD8+ezaSamh629OvTG/h+SQmnJ5Msbmnhi759+cJsJpM/3ojWaPiviQRHNTZyodVKPyUSeowtaJ7Njw0GEvkQeCElR4RCXGmzEdM5DBegFrgjFmNZvrpwUAhGVVRwc3ExttJSqkeN0m2+FPAQ8A4Qz3v8i5JJZi9dysAhQ3CPH69EqkKhUCgUikOSw1asApxaUsJHy5fz4ZAhIASry8t5HPg++gjW3vmQ4Fu2bGFePjwwZLFwq8nEWcEgx27YQL+D1Bty8bhx/HDSJL774ott+372v/9x6wknMGvIEF6rreVn//sf7118cc8Z2UXcbjenu92cjtaX81XgdbT+s619YzcKwWvBID8zmZjrculy3Sj2jhjwl2CQl6TEZLW2FVByxmKc+NVXXD15Mu7KSl1zOD9cBA+/B1unASO3hxkPq6/nh34/x+oc9tsM3ByNsiqTafPeFgWDzFy6FHs6rcJ+FQqFQqFQHNIc1mLV7XZzC/CnZJLF+T6hzyWThOrquLC4WBcRKYAfms2klizhneHDSZlMGAwGnvD7ecls5uglS7h+4kR6HWSCdWq/fmzK901tRQhBKN8aJ5hIUN2x9cxBTBnwXeCbaH0t/xoO48kLlYjZzO+NRj4BLgf69aCdhwNZ4H/A4/E4ta0FlEIhqisr+YHTySSfj36TJ+t+E+iex+DGqyW5HBjMcOTrVgr7eJm6ahUjPR4G6RxmvBj4TSLBBq+3zXv7zZISLnK7aR4zRoX9KhQKhUKhOOQ5rMUqaPmrdwD/h1YB1uPx8A+jkQ3Ll3ML6LIYdLvd/HjiRGZ4PLwycCBLslmQEl9xMW+MHs16o5GrgamAscuz9Rz3z5jBjKee4ob//Y+clHx06aU9bZLuWIDZwIRslt+vXMkHQ4YQN5uxWCwsB64FpoZCTN64kUGq5Y3uvOX18pdcDr/DQSKVavNs9vL7uSYU4rTRo0HHXqagtaS5ZxHcdLVEZgAEuaREvAd/vcpOpqaG6qOO0u2zzgD/AF4EgskkSImQkuO/+opZlZX0Hj+e3uq6UigUCoVCcRhw2ItV0Cq7/gRYGwi0ecs+GDKEhxMJbkOfkODWYj4nAk/5/fwxlyNtMIAQhOx2fpNM8mA4zGkFBcwuKaGXDnPubx5ZsoQ/zJjBOSNH8uzKlXxv3jze+u53yQFJtN6QifzPNakUt27eTGFpKSaHg3h+vzcWIxiNYisuxl5UhBHt84lHoyTCYXoVF1Njt7f1Vs36fCx/M4R/RTnnzLExefJujNOZXm43Pz3ySM5ubORjt5sFZjM5IJ5M8o9AgOeKijjl44+55phjlGDVga3AA5EI86NRzZMaj+MqLcWWTDJ5zRqGNzVxpM6eTYDPm5u5P5dj0VtlyJwR7dtAIoTk8n4bGVMxDCoqdJuvCbg1GmVlu7DfbDLJjC+/pCYUokZnIa5QKBQKhUJxIKPEap5C4Gbg6kCA+pISEIJF+b6p16PfGyWA75SWcmw6zTOxGJ+63cQAj8eDR0oeFIJnrVaGmc1MQesN2hd9BLOeSLTCLznAA/jjcf62dCnfnjaNRUD5yJF8NG8ez6bTRLNZCgoKMBZo72I2k+GrVIpVAIEAbrMZs9ms5YG2tLSJEXc+NDuZTOLJh0KSSuEuLGzbv2FBig2X9kWmBff/QXLJ24Jpk6HE58NaV8eoyspuE4utNyCOBc4F/gy8ny+AEyss5L/jxkEyyS1o15fi67OuqYknEgk+q6wklo9IkIApk2FGSwvnO514e/emetIkXT/nDPC3QIBHo1GyQiBHt2Awu8klJQaR44LzFzF71hDd5gP4BPhth7DfGS4Xl5eUEBo8WIX9KhQKhUKhOOxQYrUdA91uHgP+L5tlbVkZZrOZ+ckka/x+fikE/XVcKA6qrOSXQBR4cONGXsxmiZtMCClJJBJsMpvZBPwtmcQciTDCbGaMzcZAYCBa+xS9BWwWCAMBYIPXywafD1NFBevQFtIJIJxKEclkyBYW0pI/f34mQySVwlZczLPr1zNh+HBWb9mC2+XCG4tpIlMIbMXFGAsKyGS0urqtVVsTiQRms7mtt+nX2R9dZEamBOQE2ZTkg/dg84QknkgEHA7KvF7OsViY4XQyqBves1b6AncBr2Sz/CaVIlpYCEKw2O3mJ8BP8+co9o4o8PdgkCciEVJGIzQ14SotRQAj6uqYvH49502fjtvtpq/OAm4D8EfgCyE0oQrYxye47KlGSj6zMWxIPbNmDdE17PdJ4GV2DPs9du1azisvZ9D48boWiVIoFAqFQqE4WFBitQN93G4eAB4FXsrnsHqk5KJ4nF8bjUzRueVMMXBJURHO119nXUUFG6qqSOUXwcn8/EjJlmiUpSYTZrNZe2IigTkSwW21UlVcjB1wAJlAgJDPR4nLhbOkBJmfxx8I0BQIYHW5KMyH3SYAbzRKYyxGzmYjZbXiWwSetzLI0WmKJxRCKERxNst6NI9oJB4HKfnbyy9TW1dHJB7nuj/+kdOOPpoLTj6Z5xYu5PmFCzEXFvLdGTM0oYrmCbMmk5QVFGAQgrJIhCFr12LJZpk6aRI1QCyT4aNPPsGQySCMRk48+WRKAU86zTtLlpAWgqTZzOgpUxDANiEQwxtpKnSSS4OhEMqmsYO49RYX82/gDaAcGBUKMWTbNo4pK9PdSyWA010uRmYy3JfJUJu/4bEJuCqRYGZdHefabFQp79hu2ezx8Gwsxke9euEFUkZj202KgdEolxcXY7Jaqc4LVT1JAY8Fg7zQobqwOxjklFWruHjaNNxn29E68upDA3B7h2q/2WSSGUuXUhMOUzN2rG5zKRQKhUKhUBxsKLG6CwzAlUCovp5/GQxIIGC18guTie8D30bfN87tdnP2rFnU19dTXV2Nw2JhCfB8SwveTIa00biDR7G1bQpSUhuL4S4o2L4/FAKjEUIh3FbrjvuF2DnstjW8Nh7HvLGKz2YVkksZEaZKBjztwXZkimw2C6B5RPPi89JZs7CZzZRYrRhTKSLNzRRkMpw4cyYDqqootVrJxWJsq62lIJvFAAwdOhQbgNnMa04n55WXa6GNLpf2RpSVMeKEE9reB3f+xsCQ8nKGHHfc9v0lJdr5DgeXzo7zuqGWNbXVHDXHTulkWBqEt/x+GpxOskYjFosFgLpkks8DASguprqxkWtMJma6XBh0/CxB85r/CU0gPw6E85/XXwoKeH/jRu5Fuymi2E4UeDoQ4G/hMHGTqc2TihC4IhGmrFvHNUcfTVV5ua6tYUDz8H8CPBCPs7JddeE+lZVc53Aw1uulz7RpuopjiXZ9PJxIsKVd2O9Ml4vLSkoIDRmiwn4VCoVCoVAc9iixuhsEmsfTu2QJ7+VbzpgtFp4FlgA3AH10nK81/7GV44GhBQXMe/NNfBYLXqeT6uOOwwcsyReZ0SOMtv3+5ndy5FJAVgt9tL6V4YjKraSBSYCUkvr6egoyGcy5HMMHD9bEZ2EhEaeTcDiM3W7HZrVqL6KoiJJBg7bvt9naXp/VamX8+PF7fB/2Zv/FF++4/0Snk/N79WJjQwMtffuy1mxmMVo7ndbXW19Swm+NRv4Vi3FUQwNn2my6hpMKYBYwCvhZKNRWuOurXr34uRDcD6jATi0n9ZlYjCVVVfiEIG4ytV2Ppckk19hs9PN66X300d0i3JY2N/NIJsNGl2uH6sLV+erCM0aPhl1cp13BCzwAfM6OYb9T1qzhWxUVKuxXoVAoFAqFIk+3iVUhxN+AOUCTlHJ0d83Tnbjdbm6YOJGZTU3MGziQDfkQ3A3AFYkEp9TX8+3i4m4L63S73cydPXu7R9HpBKAxnea5BQuIFhSQslg4cto0TMAWKflo82ayUmIUgnElJTiBEPDlpk0YMhkKczmOnziRXmhht5989hmFySTFmQz9J83mvEILqRSYTHDDpBizhgzhkcJCBgNYrfTq23eX4tNms+2wvaf93U1HcZsB3s9keLSxkTVuN9JgwGgwsKylhWUFBTwbDHKjycRsl0vXvNa+wD25HD9raGBVr14gBA1WKxf5fPxISqaXlek428HDNuD/hUI8H42SMRh28KQ64nGO2riRG8aPp6a8HFo97zqSQAv5fTJfQAmPB1dpKZZMhmPWrmVMfT3jdK4uLIGFwB8SCXzJZFvYrzEW45Rly6iKRKg54ghd51QoFAqFQqE4mOlOz+qTwJ/QWgYetLSKnpOAecDfgUg+rPNJo5FXW1q4vhtETsf521PldvPNGTO2i9jWxXxJCacPG7aTuMXpxDN8+Pb9paXa/rIyxk+Zsn2/28Xbb8N778G0aYLJk3fOzesp8dlVCoATy8oYmcmwyuNheb9+vJoPa5ZA2Gzmd0YjnwCXA711nLuP280fgOciEV6urKTZ7wcp+akQLDWZuM7hwKzjfAcqEnjH6+W5VIoNLhcJKcnkw+yFlJQlk1xtt9PP66Xv+PHd4kmVwIfAX0HLw84XUBJSMjkQ4Ht2O6GqKqonTNB1/hDwMPBOuxD+EHBRSQnnuly0DB2qwn4VCoVCoVAoOtBtYlVKuVAI0b+7xt/fCOAMYDxwYzDYFtbZbLPxO6ORN4BvAVNA9xzIXbEv4bJ7s3/yZPZbr9KeoH2/2zM8Hu5ds4bFAweSKCzEYrGwFPhBIsFkj4fvWSzU6CQeqtxurnG7qV61it8XFBAxmxFS8nI6zSctLfxACGaUlR1wLYr0IAi8DbwYi7GstU9q3pOJEFSEQhy1aRPXHXUUvcrLofVmis5sAu6PRPg8m23zagaFoJffz7Q1a7j0hBNwV1bqHoL7KVrYb4Dtxb/s8TinrFjBtEGD6DN+vMphVigUCoVCodgFKmf1a9IXuEdKbtu4kc/69Wsr4LMZ+B1QgyZapwLGnjRUsUf6ud386ogjqG1s5KPKSj4wm0nkPV8vAO83N3OPwcC4igrd5jyurIz6N9/k7ZEj2VhZSSQaZZ2U/FwIXpKSWR4Px5SXH/QetiywFHg5HOaDbJYCq5VEOr1DjvTIcJhvFBXh8HqpOeqobnvNXuBp4NVkkkafr62Y0ZCKCi6z2xno9VJzwgm6zx8B/hgK8aaUWCwWzGYzFouFPnV1HPvVV1ikpLq6Wtc5FQqFQqFQKA4lelysCiEuAy4D6Nv34OhEWeN2cxewprGRpf37877ZTCJ/rA64D/hbLMbk+npm2e0MOMiFR0nfvty2aZPuYx4ItHpajwO+AdweCLR5zZvsdn5aUMDPgZPRp0erOx/CPaW+nveCQf5VVESyoACkZFE0yiKbjd4NDVwUizE4EKDmIAoNlcCnLS28Go2yqrKSoMGAJx/yTCiEq7QUczbLsLo6xm3bxoUnnaRVfNa5um8rmzwenorH+biqCmGxEM97NYWUjN28mSv8fo494gjdPbmtocZ/jMdZGwi0ieNhFRXcarXSZ9Ag6q1WFfar6BGEEH3Q0nOqgBzwmJTyjz1rlUKhUCgUu6bHxaqU8jHgMYCJEyfKPZx+wNAqcqYClwAvA/8FYmj9UZe1tLDMZOLxeJxTIhFm2GxMAuw9afQ+cv0dd/S0CfuFAcBvgbvWruXDIUPIGQyIoiJ+l0xquckFBfTbS3Fx/y23ENiypdNz4vE4A+vqaLbbCRQXt/XErQd+A5iyWZzxOMNLSiizWCjp2/eA+ywksBFNnL0Vi7E0FtMONDdjKy5u86RWBQKcnUxymsOB12aj+qSTuk2opYB/BQI80q4NjtvtxmKxkHs3ge2NBL0HBhl0nX79UltZ1dTEnzIZ1pWV7VBdeEhDA9f6/Uw84gjYTUi+QrGfyAA/kVJ+LoSwA58JIf4npVzV04YpFAqFQtGRHherhwJ24ELgLDTB+mQs1rZIzQrBx9ksq9FyWccCxwLHAN2TmXfwUefxsM7jwdmrF7aKCrZ5vXiamqiqqMBdXo6/pYVQYyODKysZWFnZrXmdVW43N48dy+KWFp4fMIAGwOPx4JGSZYEAfzAYGLsXYcGBLVu4rX//PZ4X6dOHcDhMorCQJfE4XpuNjndsCgsLcUrJs+vWcTIwgp79w00AK4AFoRAfplJE7HbMZjPBDmG+9kyGIVu2MKyujspolDlz5uB2u3VtEdSeDPAW8AywQQhalhUT+diC7ZgE5ccFmbG+kiuuHEoqBQsKx3L66QK9TMmi9Yl9MBIhZTS25eQWp1KcsGoVg1taGKJzdWGFYl+QUjYADfnfw0KI1WgZLEqsKhQKheKAoztb1/wLmAaUCyG2AbdKKf/aXfMdCBQD5wFHp1LcU1vLmqoqWhwOLBYLoMVbLc0/HgH6RaMM8Hg4yuFgYnk51h6yuzuQaDl7/naPjYEAm4JBhMtFxm7HDzTE46xPJsHphHgcVziMLxqFoiKIxbTtWAzsdkgkKAuHcSWT9M9m6ReJcIrdzgidC+K43W5Od7s5Fbhl2zbezAuwFpuNHwGXfvUVp5SW6uIda19duSISoTkaZWtREWsyGTJCgBCk0mmapaQ2leLacJiCTIbRJhPjbTbKfT4s27Yx0u3ulhZKjR4Py5qaiNfU4HO5+CIaZUU6jTQa8eVDXInF2jyXsVyO/k1NjGxo4IrJkzEOHUq9zdatIa8Z4D3giXicrakUFouFxFIrGy6wI1MCb0GO+/8TZPkySKcFuRyk01rVaz2KiX2FVul3qRCkjMY2sX5MIMAPHA6CfftSfcwxypuqOODIF0EcD3yyi2MHXYqO4uCj/4daScpNU3I9bIlCoThQ6c5qwN/urrEPdAa43dwK1NfXY7RaWWc28xGwpt05iWSShV4vC41G/h6L4U4m6W82MxAYiBaSOhBwoU+upB5ItDDnQP4RBDb6/WwKBjG4XGQcjjZh6kkkiOR7SZrNZpLJJJ5QSBvI78ddWKh549qFSgopibbzSnfcRkq8Ph8twFqAggIeTyQYs3UrFxQVMVPnaroW4CcmE5nly3l3xAhyBgMt8Ti/s1p5+6uvuBN0qxYM24XrAGBcJMKGRIKtRiP1QE5or8zn8wHwjhAslRJfJAJOJ6ZYjPGxGFXZLCafj35OJ/1KSvBt2EDLli0M6N2bEYMHE2hupr6xkfKqKkoqKmhoaWFrSwuWykoKXC62BoNsDoVIlZbSYjCwIh4n63BAJILLZMLXmoMKbR7gwkyGUS0tfLOmhpqiIryFhVRPntwmzroz3Pct4AVgazKJp7m5LT80t6AXIi2QOYHMGli+zMW0aVBYCKmU9nPatK7Nv76piceSSb6orGwrnhQUAlckwkmrV3P5ccdpr12JVMUBiBDChvbnc72UMtTx+MGaoqNQKBSKQwsVBtxNtG8JMxY4G2gBFgEfAR/li720irJEIkGD2UwDWv5fKw7AHYlg8fvp7XDQx+nEDjs8HEARey9qJZBEC+eM539ua2lhS0sLZrcbUVpKkO2CtD4WwxOPkykuxpj3EoOWm+sJh0EICARwm83bhWm+l2RQCNxud1vLjvavt3WBHwKsqRTmbJa+djstHg/kckiDgV42G1sjEZJGIwmTSStG1P61SMkyKVkejfJoKsWVhYXMLCvby3diz7jdbn4+YQIneL382eWiLplEAp/1788NQvBboN9ejpXIZJj6xBMks1kyuRznjhjB7SeeyM3vvMPLa9ZgEILK4mKePPNMqu12xtlsDI5EWL1uHUGLhdJolFQ8Tshq3UnIpw0GVsXjLI5GtclCIexSEjIaYcAAABx+P+F4HByO7V7sWAys1u1iNBjUxKjPh624eIc+pO3nKwuH6evz0cfrpU8gwJmnnYZbe8O6Lcy3lTjwTCDAC7kcqeJizGZz2/VlTqeZsHEjE/sluLZwaF6YCqZN07yo2/sI77tXNQv8y+/nwXCYREEBeDy43W7sZjPfdDg4wuulb6tQVSgOQIQQJjSh+rSU8j89bY9CoVAoFLtDidX9SDlwev5Rm0zy8OrV1JWU0OJwULibhW1zMsmKfLsNgkHceU9lRwyAKR4nFYthLSrCYtWCimW7RzweJ5RIYCgqorDdGMlkEk+raAmHcRcVtc2RTCbxtLRo80ejuN3utmO7E6Ct+02ZDMWpFL39fqqLi9m6dSvWRAJbKsX0o49mMOAym4lbLDT6fFqoqMuFJ52mvr6earcbd1kZnkyG+vp6LFKyYOFCmouKaHQ62VhZSb3LRU4IpJRsTKX4eTrNc5EIP7JaGa1TeLDb7eYMt5uRTU382Odji8sFQuB1OrkykeDk+nrOLy6m1x7Eidlo5J2LLsJWWEg6m+W4J55g1pAh/HTKFO486SQAHvjkE+5YsIBH8/mNNpuNEYMHEw6HGZtIMPrDDwkWFtJcWoptwgQ+DARosdlImUzaJO0+j3hrsaM88U681rvaBkAIipJJKiIRprjdBJctw+33Y0+nOfbYY0nY7futqm0T8ArwciLBplBIuyYjEdxuNxWFhYxat45RmzdjlZI5c8YyahfCtKt9hJehuZqWGQwkCgra3qshXi+3VldTWVIC48d37YUqFN2IEEIAfwVWSynv62l7FAqFQqHoDCVWe4ghlZXcOH68JsrKyii1WNiCVll1Q/6xEQjuRhB2JJ5MsikfBtlRVEJedLYeD4f3SnTu6hixGL3MZpyA0WhkS309RfE4xek0px51FIOATCrFh++8gzGTwWAwaIV17HY8Q4Zor7e6Gnc772eJ272D0Gvvle647XK5NOFqsdDS0sKSlStZ2qcPK/v0IVVQgJSST4FLIhF+UVDAWS6XDp+WxpDKSv4iJc9EIrxVU0MKqGtq4h9GI6+1tPCLggJO7sSrK4TAVlgIQDqXI53NIgBHu88pmkrt5CFvDQ8uSSY5fc6c7e+h243HaKSuvh5HTQ0NUvLyypWEzGYSZjOOvn1Z7/ORNhrJGgyUVlTQFI0icjmMUtLbbqepuZmCdJqiTIaRffpQv3EjlmQSZzLJmZMnU2E24/d6d5iv/fzdjQQ+amnh2WSSNWVlmCwWtr6foel/doqOSeAeHWZWXR1XDhxIcPRo6l2uNtvcbn1yUgEagQfDYd7P5bBYLG0hv85YjKlr1nDtMcegb+a0QtFtTAG+AywXQizN7/uFlPK1njNJoVAoFIpdo8RqD9JRlA3OP1qRwPJUin8tW0a4sJCk2cyQCRMQQAgI5x8h9ixqO4rObDyO02zGAlSaTNQFgxRkMhSn0xxTUkIfoATIZjJ8tngxlkSC4kxme7gngM2GZ+DA7eKlVRhWVFB52mk7iZqOr1eP92zo0KFMXLuWpR98wEeDB7Oqd28kkDIauVdKPti2jWtMJvrrJKyq3G6ud7s5B/h5U1NbT9YWm43bCwr4ALi0k+dnczmOfOwx1vl8XH3UURzduzcAv3z7bf6xbBlOs5l3L7pot8/vTMgPBoYeeeQO7/vqaJQNGzYwcOBARrjdeGCHz6vNi923ryZGhdh+PF/1uH8nNxK6iziwAHghFmNx3uNLUxPmjVUsP6OYXBIKCnKc+5MlnH/dJCyApRtsCwP/Bv6TSFCXz9cNCkHfykqucTgY6/PRTxVPUhxESCk/4MAphaBQKBQKRacosXoAI4CxFRW4J03aLiAcjl2euy2R4IWFC8kCBiGYPn06bravSFqSSd5csACRyWCWkrlz5mwXnUVFeNxubY7+/XE7ndsHLitj3NSpu/Wm7U687C9R0zrP0KFDGbd2LQsWL2b+6NEEi4uJRKO8JSWfh8P8wWBg3F60nNlb+gD3SMmd69fzaf/+ZAoKsFgsLAEWJRIYo1Hqo1Gqi4t3eJ7RYGDpFVcQSCQ469//ZkVTE6MrK7n75JO5++ST+c377/OnxYu5/cQT98muju/7iBEjGDFixG6P72l7f7O4pYX/xOOsrKgAi2Wndji5N5OQKoQcyKyBAjENt1v/7sUptJDjZ4EoEEkm2+wYXlfHVYEA08aOhXHjdJ9boVAoFAqFQqGhxOpBwN4IiN5uN+dNn75dVHbI13RVVuKcMeNri869nb+naROtHg8nNzTwtNnM+/k2Ir6iIn5WUMCdwNE6zlnjdnM7sNrj4cP+/fnEbCaRLy5lkJKXMxkGplIcUVi4w40DgBKLhWn9+vHGunU75NaeP2YMs//5z30WqwcjPjQv6iuxGEvaeVFb2+FEczkGNzYyfssWxkw5lW+0VfQVzJmjr1DNorXB+Ws8zrZ8G5zWQmBFwSBTvvqK6nCYEapnqkKhUCgUCkW3o8TqIcSeROXBIDq7SutrHOjxcM9nn/HOiBFkjUYoKuLmZJITGhq41GrdYzGkrzvfNLQc47v9fjytxYmkpD6XoymTwZpMUpZIMKK4mCqLhXg6zVsbN/LzKVOo9XoZks91nbdmDcPLy3Wx7UAmDrzu8/FGMslml4tCs3knL2pJKMSFFRWMLi4maLFQPW0abrdLl4q+HZHAB8DTwIYObXDGlZdzRVERA9xuGrLZ/Zavq1AoFAqFQnG4o8Sq4pDE7Xbz0yOPZGpLC88MHEgL4PF4eFYI3vd4+J3BwFgdw4JB6417txD85dNPmR+PI9CKKkWiUSJS8oXfzyXPPYdRSgqk5NujRjFn6FDOefZZ1rS0YBCCfiUlPDp7tq52HQgsWgTz34OyaVpF3QVvpcmOTlE8IdXW+qXVizrQ42FMfT2XTZlCFUDl/2fvzsPjLKvGj3/vWTL7ZM+kaZqm+0IppXShlELZt1JE8WWVTUFQEfBVX1FBQFHfn7jxKiCigAoiq4AsVtmRpbRQSlfSvWmayTrJ7Ov9++OZpNM2XWgmW3s+15WrmWeeeZ4z08nMnLnPfe4K4yertx19c2ngpdZWHspkaPN6d+pmbU8kmL1+PV/w+Zh55JHg81EpSaoQQgghRL+RZFUctHw+Hwt9Pk4AvtHY2N0MaXthIf9tsfBN4FTy22nE5/Nx1bx5+B96iHOtVlbEYqzLZMgoRXVZGT+4/HJsXWvVplK8EAxy29lnM9rhwJnHOAaL7cB9/+zkh59xk04qlFmhFGRSFpS1glEP+3EfZSxvdFFlJWOcTgI2G1Vz5/bp6KUG3gUeDId5Nxw2So+jUXw+H8U2G5M2bGDqxo3YtaZGlqIRQgghhBgQkqyKg54HuF0pbl2/nvdGj0abTCink98A7wHXAcV5PJ/P56O0tBSfy4UrFMKzaROtLhetHg/a7QaMLsuhcJgOrdmcyfCh1UqpxUJxLIY7FKLabqc4u+9Qsr6piTcCARorK1nv9bIlHufjVzKkEwoyCp3RaBRohQZKnw9zYfQ9Ljr5ZKPhl89n/PSRNEa572PAFqAjleouPbamUsxrbOSGkSOJTJ5MQ1GRlPwKIYQQQgwgSVbFIWGYz8ftwLstLTw1ahRt2WV93orHeTcc5ovAZ0tK8r6eg9vtZvKYMQSDQTwuF1gsbAZWxuOEcua2plIpWoHN8ThYLJBOU5lMUmm1Ugo4IhGa29rwZ0tmB4MQsB5Yl/1ZEYmwPBYDmw0CAXzZklrX7CiqwItOgskMZgWZFFit8JV5ac44+eQ+v08J4On2dv6WThPyeLqXdeoqPT5s61Zmbt7Mf516Kh7AcwjM7xZCCCGEGOwkWRWHDJ/Pxzk+H2cADwJPxOP4/X7QmtuVYpHNxnUuF1PyfF632407Z5T0MGCk1nxUX0/A4aDD6SQScNOxEUyVJqzD0qA1gXSaqNXKulSKUDLJ2wUFnBcIMNPlYrzbzXDA1tpKcvt2xldUMKaiAlOeYtZADGOkdG1rK/h8JEtKaAT8wMZolIacbrnAbg2SYrEYhTYbxbXrOeInW4i9Y+Mrl9ZQUlKSbZCkmDNnQp4i7lkAeAF4KhqlLhg0yn0jEXw+H4U2G5+z2TjG5SLs8VB16qmSoAohhBBCDCKSrIpDTgFwNeDduJG7TCZCNhtKa1anUtwEzAEuB6r6MAa3280RtbUEg0GCwSIef9xCKq1RJheVCwNkakxYLMafZypbqgrQabezJJ2mDojH4/jDYfB4IBajMh6n3GajGEi2tBBpbaWiqIjhPh9WwApEOjoIBAK4iotxeL0kgSTQHgrRHAqB10vK6aQTCMfj+GMxcDohFMLncmGz2Yzz5nTL9fl83cu7BIHyjg5q2tu55LDDOLawkNbhw2k4voGqC4fh85UA+WuQtCdLmpt5LB5nRVkZZrudjkSiO5G2JZPM376d62pr8cBuDZyEEEIIIcTgIMmqOGSdUFxM+4sv8v7IkXxUW4s92/joHeCtWIwZTU18wW5nXB8lMl0jruvWQToNWitUBqrrrcwdrUhaLLQCDUqxKZUybqRUd5xdXWu7RjKjsRgdNhvbgkFaw2Gw2yEWozQYxO3xGElmR4dxnGyZbnfy2dZmJMQtLd3J567Hj8ViO203ZTKUhkIcqRQnjBjBGJsNh91Oc1sbVRMn4ssuwdNfSyYlMf7vngyHeS0a3W291nQ8zhGbNzNl2zY+d8YZ5HeFViGEEEIIkW99mqwqpU4Hfg2Ygfu11j/ty/MJ8Wn4fD4+e8YZHN3QQIHLxT9tNl4lO2LZ1MQ2rXk+HOa8zk4u9XoZ/imOXVRTw62bNu3Xvk02+KeCjAaTgsYyWNwCtLR07xONRjm5pISLHA4SNhsNwGql+E97O+GCAqLZkU2AcCSy0/HDkQhuj2efyeeu2702G+l4HGc8TmEsxryiIiYAllSKj95+G1c4jFUpFixYQHcq6vNR3c+ltNuBfwL/AjrZuWmS0hpfRwdXV1QwprAQf1kZVVOnSrmvEEIIIcQQ0GfJqlLKDPwWOAWoB95XSj2rtV7VV+cU4tPKHfU7DDgb+HEg0L3MTcpk4kWteQeYBXwmu9++GjHdcPvtnyqOd94hO49z/0tkz/V68Q8bRkNDA1WlpZTabHQCS4JB3vjoI5IWC2mlmHzEEVQBTVrz7rp16EwGi9YcM3MmFUAwnea95cuxJJM4UykWzp/PWMBmt+MvLDSOX1ODr7DQOHFpKYefeKKxfYC65cYxlp55JhRiSTq909zZrnLkUX4/R27ZwlXz5hnrtfp8VEmSKoQQQggxZPTlyOosYJ3WegOAUupR4BxAklUxaI0DfgLctXw5i2traS4sxG63ozGWuXkPGB4OM2PbNk4rLGREnpKfOXMObB7nriW2JcCpY8cyIplkw4YNjB49mkkjRxpXFhVx2pQpO5LM4uyCPSUlzJk1a8f2nLLnPZXw9ldpby4NfAy8CvwHCOSUL3fNnR1us3GazcY0h4Oo1UrVvHkyiiqEEEIIMUT1ZbI6HNiac7kemN2H5xMiLyp9Pq6fNYttDQ10Op28YbPxfva6eDzOO62tvGOzcV84zDmdnSz0epnCvkdb+9OkSZOYNGnSbtsHU/K5PzSwEXi+o4N/p1JE3e7uEdSu8mWA2qYmPh+NctGECUZHZGmaJMSgVfsfo2/5prmZfr3t/h6/N8eu/c7zAGz66Vn5Cqnn8/TD49B1/L2dq6fruh7Dvo6xJ/vz//dp74/4dAbk//07zwM1bKru/TkH63Ogv15bBqO+TFZ7+uyud9tJqasxmrNSU1PTh+EIsf9yk7f5GN+6PIOxBErXfMi42cw/teZdoAw4Prtv7UAEfBDRGOu2/gd4G9jU1RhKawiHuxtAjbJacaxfz/ht2yhMJDhlwYK8Ld0jhBBCCCEGXl8mq/XAiJzL1UDDrjtpre8D7gOYMWPGbsmsEIPBCOBrwKmJBHdu2MDqYcPodDq7mxq1AE8Cj8TjFHd2cmxBAScUFjIRabm9P5LAf1pbeSUcpq68nJDD0X1dbgMoRyLBTL+fy2pqGOd00nTYYTQUFw/Y3FkhhBBCCNF3+vJz9PvAOKXUKGAbcAFwUR+eT4g+N76igh9qzbaGBiJlZayw2XgDCJLtIuz349eaNdEoz9ntFNlsHAEcBUwHpDDVoIHNwLLsz5JYjK3hsDF62tzcPXoKUGSzUdnYyJjt2xnV1sY5Z53V3X14sJYvCyGEEEKI3uuzZFVrnVJKfQ1jVQkz8Eet9cq+Op8Q/SU3QToW+BLwIfBwSwst6TQpk6l7CZiozca7GJ1rAUoiEapaW5nudjO7uJhqOCRKV9NkW4K3t/NOOMyW0lJiOaOnnfH4TsvNqEiEk2w25gJH2O2019bSUFBA1Zw5kpwKIYQQQhwi+rRCUWv9AvBCX55DiIFmAWYCNRYLE/71L7YUFbG1ooJMRQXBnP3i8TjLWlpYpjUvBIP4nE6KbDbGAeOB0rY2nPX1TPb5qBzCCVkaY47veoy5p+uADUAwHscfDPY4emq32yEWo7qlhbHNzXx5zpyd1rWVEVQhhBBCiEOPTKcTIk98Ph+fPeOM7iVgKhwOGoClwAfAmznNmXJHXpcD78fj+EMhKCykIBxmejjMWJeL4RhttauyP64Bu3c7S2HM020E/Dk/68Nh6pJJzA5HdyLaJXfuqdIaUyTCMTYbRwLTbDZUURENkYiMngohhBBCCECSVSHyatcRwK5kcyGwNR7n/g8+oNHrpamoCEtFBbHsfrmJXMJsZnUqtVs3sng8jiUcpspuZ5jTSTFQCBRlfwqB5nXr8G/ezJgRIzhs/HisgBXjD93MjhbdGmMENIXR3CiZ/b2huZlNzc04fD6spaV0Ap0Yc3I7gYZwmK2xGFG3m4JdktF4PI6/tdUYOe3s3GnkFGBYQQGlLS1UBALUtLVx5XHHMWznB0+SVCGEEEII0U2SVSH6yQifj68cc8xOI6+twCfAYmBRIECTx0PSYunuMtylq3kTWrMtFNotEQQIBYO0Wq0wdiwApcEgbo+n+3oFZGIxorEYFoej52QzGgWXy1giJmdN0+7ru5LRnCVkuuQm3J5olHGtrcyrqmIsMBYocjjwV1fTYDJRNWWKJKZCCCGEEGKvJFkVoh/tOvJalv05prCQCysr2dbQgHv4cJI2Gw0YbbQbgGWdnbs1b9o1WQ1HIrtdzk1WY/E4/qamPY587lqmu+s5dr3eFgox2WbDB/gAWybDqqVLKezsxJ1Os2DBAnZNR2XuqRBCCCGE2F+SrAoxSOyayB2Wc50/k+HZV14haLUSs9s56qSTsACB7E8HsM5kYm1nJymzmbTJRGlhIU52lPnummwmolG8NhsWjFJhd0EBKhrFmkziTCaZXlJCFeDN/qTSaT5YuhRnNEphIsFnzjxz52S0uBj/3LndI8eSlAohhBBCiN6QZFWIIcDn87FwwYIdiWBp6e47lZezuqWFDRs2MHr0aCYVFe109fZYjGdefZVMOo0VWLjryKfDgb+42DjH8OH4ckZlASgpYfY+klEZORVCCCGEEPkiyaoQQ8T+JIKTJk1i0qRJPV43zOfj3JxuxQeSbEoyKoQQQggh+oskq0IcQiTZFEIIIYQQQ4VpoAMQQgghRP9RSp2ulFqrlFqnlPrOQMcjhBBC7Ikkq0IIIcQhQillBn4LnAFMBi5USk0e2KiEEEKInkmyKoQQQhw6ZgHrtNYbtNYJ4FHgnAGOSQghhOiRJKtCCCHEoWM4sDXncn12mxBCCDHoKK31QMfQTSnVDGzup9OVAS39dK6DlTyGvSePYe/JY9h7B+tjOFJrXT7QQQwmSqnPA6dprb+UvfwFYJbW+rpd9rsauDp7cQKwNk8hDPXn2lCOfyjHDhL/QBrKsYPEP5B6iv1TvTcPqm7A/fmhQim1RGs9o7/OdzCSx7D35DHsPXkMe08ew0NKPTAi53I10LDrTlrr+4D78n3yof5cG8rxD+XYQeIfSEM5dpD4B1I+YpcyYCGEEOLQ8T4wTik1SilVAFwAPDvAMQkhhBA9GlQjq0IIIYToO1rrlFLqa8A/ATPwR631ygEOSwghhOjRoZys5r286RAkj2HvyWPYe/IY9p48hocQrfULwAsDdPqh/lwbyvEP5dhB4h9IQzl2kPgHUq9jH1QNloQQQgghhBBCCJA5q0IIIYQQQgghBqFDMllVSp2ulFqrlFqnlPrOQMcz1CilRiilXlVKrVZKrVRKXT/QMQ1VSimzUupDpdQ/BjqWoUgpVaSUekIptSb7fJwz0DENNUqpG7N/xyuUUn9VStkHOiZx8Blq77t7ep9TSpUopf6llKrL/ls80LHuya7vL0Ms9t1e24dY/Lu9rg7m+JVSf1RKNSmlVuRs22O8Sqmbsn/La5VSpw1M1DvsIf6fZZ8/y5VSTyulinKuGzTx9xR7znXfVEpppVRZzrZBE3s2nh7jV0pdl41xpVLq/+Vs/9TxH3LJqlLKDPwWOAOYDFyolJo8sFENOSngv7XWk4Cjga/KY3jArgdWD3QQQ9ivgZe01hOBI5DH8lNRSg0Hvg7M0FpPwWi4c8HARiUONkP0fXdP73PfAV7WWo8DXs5eHqx2fX8ZSrH39No+JOLfy+vqYI7/QeD0Xbb1GG/27+AC4LDsbe7O/o0PpAfZPf5/AVO01lOBT4CbYFDG/yC7x45SagRwCrAlZ9tgix16iF8pdQJwDjBVa30YcGd2+wHFf8glq8AsYJ3WeoPWOgE8ivGAiv2ktd6utf4g+3sQ401k+MBGNfQopaqBs4D7BzqWoUgp5QWOA/4AoLVOaK0DAxrU0GQBHEopC+CkhzU3heilIfe+u5f3uXOAh7K7PQR8ZkAC3Ic9vL8Mldj39No+JOLP6ul1ddDGr7V+A2jbZfOe4j0HeFRrHddabwTWYfyND5ie4tdaL9Jap7IX38VYUxoGWfx7eOwBfgl8G8htLjSoYoc9xn8t8FOtdTy7T1N2+wHFfygmq8OBrTmX65FE64AppWqBI4H3BjiUoehXGC9EmQGOY6gaDTQDD2RL3e5XSrkGOqihRGu9DeMbzy3AdqBDa71oYKMSB6Eh/b67y/ucT2u9HYyEFqgYwND25lfs/v4yVGLf02v7kIh/L6+rQyL+HHuKdyj+PV8JvJj9fdDHr5RaCGzTWn+0y1WDPvas8cA8pdR7SqnXlVIzs9sPKP5DMVlVPWyTlsgHQCnlBp4EbtBadw50PEOJUmoB0KS1XjrQsQxhFmA6cI/W+kggzOAqqxr0snOQzgFGAVWASyl1ycBGJQ5CQ/Z9dyi+zx0E7y9D+rX9EHhdHVJ/z0qp72GU9T/ctamH3QZN/EopJ/A94Jaeru5h26CJPYcFKMaYQvEt4DGllOIA4z8Uk9V6YETO5Wqk7O1TU0pZMd7AH9ZaPzXQ8QxBc4GFSqlNGCVxJyql/jKwIQ059UC91rprVP8JjA84Yv+dDGzUWjdrrZPAU8AxAxyTOPgMyffdPbzP+ZVSw7LXDwOa9nT7AbSn95ehEDvs+bV9qMS/p9fVoRJ/lz3FO2T+npVSlwELgIv1jrU6B3v8YzC+6Pgo+zdcDXyglKpk8MfepR54ShsWY1R4lHGA8R+Kyer7wDil1CilVAHGRN9nBzimISX77cgfgNVa618MdDxDkdb6Jq11tda6FuM5+IrW+mD65rXPaa0bga1KqQnZTScBqwYwpKFoC3C0UsqZ/bs+CWlSJfJvyL3v7uV97lngsuzvlwHP9Hds+7KX95dBHzvs9bV9SMTPnl9Xh0r8XfYU77PABUopm1JqFDAOWDwA8e2VUup04H+AhVrrSM5Vgzp+rfXHWusKrXVt9m+4Hpie/bsY1LHn+DtwIoBSajxQALRwgPFb+i7OwUlrnVJKfQ34J0aHtj9qrVcOcFhDzVzgC8DHSqll2W3f1Vq/MHAhiUPUdcDD2Q/AG4ArBjieIUVr/Z5S6gngA4wyqQ+B+wY2KnGwGaLvuz2+zwE/xShp+yJGUvL5gQnvgAyl2Ht6bTcxBOLfy+uqm0Eav1Lqr8B8oEwpVQ/8gD08X7TWK5VSj2F8gZACvqq1Tg9I4Fl7iP8mwAb8y/jOgHe11tcMtvh7il1r/Yee9h1sscMeH/s/An9UxnI2CeCy7Mj2AcWvdoyKCyGEEEIIIYQQg8OhWAYshBBCCCGEEGKQk2RVCCGEEEIIIcSgI8mqEEIIIYQQQohBR5JVIYQQQgghhBCDjiSrQgghhBBCCCEGHUlWhRBCCCGE6AdKqduVUifvY5/5Sqlj+ismIQazQ26dVSGEEEIIIQaC1vqW/dhtPhAC3u7baIQY/GRkVQghhBBCHBKUUt9WSn09+/svlVKvZH8/SSn1F6XUPUqpJUqplUqp23KuezrnGKcopZ7K/h5SSv1cKfWBUuplpVR5dvs0pdS7SqnlSqmnlVLF2e0PKqXOy/6+SSl1W/a2HyulJiqlaoFrgBuVUsuUUvP68eERYtCRZFUIIYQQQhwq3gC6EsAZgFspZQWOBd4Evqe1ngFMBY5XSk0FXgEmdSWiwBXAA9nfXcAHWuvpwOvAD7Lb/wT8j9Z6KvBxzvZdtWRvew/wTa31JuBe4Jda62la6zfzcaeFGKokWRVCCCGEEIeKpcBRSikPEAfewUha52Ekq/+llPoA+BA4DJistdbAn4FLlFJFwBzgxezxMsDfsr//BThWKVUIFGmtX89ufwg4bg/xPJUTV20+7qAQBxOZsyqEEEIIIQ4JWuukUmoTxujo28By4ARgDBAFvgnM1Fq3K6UeBOzZmz4APAfEgMe11qk9neJThhTP/ptGPpcLsRsZWRVCCCGEEIeSNzCS0jcwRlOvAZYBXiAMdCilfMAZXTfQWjcADcD3gQdzjmUCzsv+fhHwlta6A2jPmW/6BYwS4f0VBDyf6h4JcZCSb3CEEEIIIcSh5E3ge8A7WuuwUioGvKm1/kgp9SGwEtgA/GeX2z0MlGutV+VsCwOHKaWWAh3A+dntlwH3KqWc2WNd8Sniew54Qil1DnCdzFsVhzJllOELIYQQQggh9kQp9RvgQ631H3K2hbTW7gEMS4iDmiSrQgghhBBC7EV25DQMnKK1judsl2RViD4kyaoQQgghhBBCiEFHGiwJIYQQQgghhBh0JFkVQgghDjJKqT8qpZqUUitytpUopf6llKrL/ls8kDEKIYQQ+9JnyapSaoJSalnOT6dS6oa+Op8QQgghuj0InL7Ltu8AL2utxwEvZy8LIYQQg1a/zFlVSpmBbcBsrfXmPj+hEEIIcYhTStUC/9BaT8leXgvM11pvV0oNA17TWk8YyBiFEEKIvemvdVZPAtbvK1EtKyvTtbW1/ROREEKIg9rSpUtbtNblAx3HIOLTWm8HyCasFXvaUSl1NXA1gMvlOmrixIn5iaC9HVKp/Byrr1ksUDyIKqWH0mMn9q0/n1+D4bnT1/d3MNzHAzXYXmv62Kd9b+6vZPUC4K89XZH7hlhTU8OSJUv6KSQhhBAHM6WUVPIcIK31fcB9ADNmzNB5e2++5x6ors7PsfpafT1ce+1AR7HDUHrsxL715/NrMDx3+vr+Dob7eKAG22tNH/u078193mBJKVUALAQe7+l6rfV9WusZWusZ5eXyBbgQQgjRR/zZ8l+y/zYNcDxCCCHEXvVHN+AzgA+01v5+OJcQQgghevYscFn298uAZwYwFiGEEGKf+iNZvZA9lAALIYQQIv+UUn8F3gEmKKXqlVJfBH4KnKKUqgNOyV4WQgghBq0+nbOqlHJivCF+uS/PI4QQQogdtNYX7uGqk/o1ECGE6AdJi4X68nJiVutAh/Lp+XywevVAR5F3drud6upqrL38P+nTZFVrHQFK+/IcQgghhBBCiENX/dixeIYNo9brRSk10OF8OokEVOyxOfuQpLWmtbWV+vp6Ro0a1atj9Vc3YCGE6Bca2NDUxEa/H29lJa7yciJAFIgADYEA/kAAV3ExjsJCEkAcaAsGaQ2FcHk8ONxuMkAGSAPBcJhgOIzH5cLtcqEw5lAoIBoKEQ6FKHG7KXG7sQIF2Z9IRwfh9naqioqoKirCCd0/oeZmgo2NjKuoYITP198PkxBCCHHQiLlcQzNRPUgppSgtLaW5ubnXx5JkVQgxJMSBFoz2pWvb21nf0YGlpAS8Xjqg+6clFmN7LAZeL0Sj+OJxbDabcYx4HH9nJygFHR347HZsNpuxvb0dtIa2NnxW6863aW01rovF8FksO1/X1mZcl0jsfruODuNcnZ34HI6dr4tGjRjjcWpiMXx2O4VAIWDq7CTT3s4or5fxxcWUA+WAGyNBFkIIIcTOJFEdXPL1/yHJqhBiUNBAANgGNACrOjpYHw6TKCwk7HLRkd0vHo/jDwaNJDAQwGezdSeBAJF4HLRGA0prYrFY9/WxWKzH6/a0fW+3yed1HfE42O34u+5fIGDcmWAQn9PZfTs7RtLqCIWwt7Ux0ePh8OJiqjHmW8jbtBBCCCEOJpKsCiH6lQaagU3AskCA1eEw0aIi2l0uItl9ukcltYbW1p1GM/eWBIIxoT+aTlOQTGJLp5lUVkY5RultSik+2bIFSzKJBZgzfToVQDiT4f2PP8aUSmFRiuOOPZYKjFLf9mSSN95/H53JYDKZOG7+fEoxSoRbUileW7qUNJAxm5k9bx5uIAE0ZzK8s24dCaVIWq2MLy7GAoSBZouFNZEIcbOZqM2G3W7vjn+vSS6wLmc09x85yawdGAEUBoM4Wlo4yutlVmkpnj74PxRCCCEGs9qf/ievx9v0nbn73OeOO+/kkSefxGwyYTKZ+N0vf8lPf/UrNm7eTCgcprmlhVEjRwJw9513Mqyykgu++EXa2tqYPnMmf/7znykoKNjtuA899BA/+tGPAPj+97/PZZddtts+7777Ltdffz3xeJx4PM7555/PrbfeyoMPPsi3vvUthg8fTiKR4MYbb+Sqq65Ca83111/PCy+8gNPp5MEHH2T69Om7HVdrzfe//30ef/xxzGYz1157LV//+tdpb2/nyiuvZP369djtdv74xz8yZcqUT/uw7hdJVoUQfSYBbASWtLfzcShEsKSEZpeLKDklufuZkDptNkqBURYL/sZGXJEIrmSSk2bMoBbwYpTQem022lwuGhoaqKqqwudy7QjI68U/fvyO64qKjO3FxcybOXPH9tKcvnBlZUyYN2/HdWVlO64rLWXS3Lk7risp2XFdcTGnTpmy4zqvd8d1Lhf+khIaGhoYVliIx2brLmPemE7zfzfdRLqlhZTFgqO4mITVSgxj/mwykcCUSHQfqqOgAGv2zW1bOk00GgWM9cIcDgcusxkvUFZTwwXXX4+tvp4xlZX4ZJ6sEEIIkRfvLF7MPxYt4oPXXsNms9HS2koikeDpv/wFgNfeeos7/+//+Mff/tZ9m/+64gpuvPZaLjj7bK655Rb+8Ic/cO211+503La2Nm677TaWLFmCUoqjjjqKhQsXUlxcvNN+l112GY899hhHHHEE6XSatWvXdl93/vnn85vf/IampiYOO+wwFi5cyNKlS6mrq6Ouro733nuPa6+9lvfee2+3+/Xggw+ydetW1qxZg8lkoqmpCYAf//jHTJs2jaeffpo1a9bw1a9+lZdffjlvj2cuSVaFEHnR4PfzQUsL4aoqWoqL+QTYjFGW6w8Gd0tKe0pIi202hgNek4ntGzbgCYUojMf53HHHMZHswtAuF/7a2p4TxCyfz7fHZGxP1x3IbfJ5nQuoAiaVlPB6Os0No0bh8Xhwu92AMSKdBJrDYdbU1xO1WIjZbDgqKogWFBiNomIx43HNstvt2LKjtr9Zv553w2EoKqK8pYWz7HbmFRYyBaO8WAghhBAHZrvfT1lJSfeX7mWle18MRWvNK2+8wSO//z1kMlx22WXceuutuyWr//znPznllFMoyX7WOeWUU3jppZe48MKdVydrampi2LBhAJjNZiZPnrzbOSsqKhgzZgybN2/mmWee4dJLL0UpxdFHH00gEGD79u3dx+hyzz338Mgjj2AymbqPAbBq1SpuuukmACZOnMimTZvw+/198kW4JKtCiAOSAD4BVgDvhUK8GYmQdLt3m2fZU1JaZrMx2mKhfetWSoJBSiIRLpg3j3Fk5116PPgnT96RkO7S0n1vSeDBwOFw7PaGoTA6DA93uSgcPpxgMGgkswUFaIwGVI2ZDGtaWggXFBCx2zFlE12AdDrd/f/Q7HbzNPAKYAbGA0cAw1tacG7dysiqqoP68RVCCCHy6dQTTuD2//f/GD9jBicffzznf/azHD93z6XDrW1tFBUWYrFYIJGgurqabdu27bbftm3bGDFiRPflPe134403MmHCBObPn8/pp5/OZZddttMUI4ANGzawYcMGxo4du8fj7vrZY/369fztb3/j6aefpry8nLvuuotx48ZxxBFH8NRTT3HssceyePFiNm/eTH19vSSrQoiBkwTeaG3l7WCQpvJy6l0uUtnrOtJpkiZTj/MsR1mtRBsbKevspCwc5qJjjmECoFwu/OPGHbIJaW+43e7uEVcwElk7UOt0UlZZaSSyTidOi4UA0AYMBzpDIVpcLrTJ1P0mlgZWA8vicfyRCNbCQsZs2sSVFgsnlZbKm4QQQgixD263m6Wvvcab77zDq2++yflXXslPf/ADLr/ooh7311rvtq2n7rn7u98tt9zCxRdfzKJFi3jkkUf461//ymuvvQbA3/72N9566y1sNhu/+93vKCkp2e/jxuNx7HY7S5Ys4amnnuLKK6/kzTff5Dvf+Q7XX38906ZN4/DDD+fII480Eu8+IJ9DhBB71AEsARYDb8dibAmHjS68u8wxtdvtdCiFJxqlsrOTMwoLmQmMBVxO546y3alTd0pKJSHdf79+911+/8EHaOCq6dO54eijufmVV3hm7VpMSlHhcvHgZz5DVU7pMEBJ9mdqQQHXlpWxfvt2OkeMoN5m4yOMRlewYwQ8YTazprKSOywWHgKOAY4DppAtwxZCCCHEbsxmM/OPPZb5xx7L4ZMn89Bf/7rHZLWstJRARwepVAoLUF9fT1VV1W77VVdXdyedZPebP39+j8ccM2YM1157LVdddRXl5eW0trYCO+as7nrcrVu37nTcPZ3/c5/7HADnnnsuV1xxBQBer5cHHngAMBLqUaNGMWrUqJ4fmF6SZFUI0a3R7+fD5ma2VVfzSVERazDmSgLG8iq7lPOOsdmYAtTdcQeT164lHYngdDqpdzio76MYi2pquOH22/vo6IPTiqYmfv/BByy+6ioKzGZO/8tfOGvcOL41dy4/PPFEAO567z1uf/117l2wYI/H6enLgQ7gY+BNpXghFqPTbgelsNvtBIF/Zn/s0SgTmpv5jMPBjPLyvrqrQgghxJCztq4Ok8nEuDFjAFj28ceMzCmz3ZVSihPmzeOJZ57hgrPP5qGHHuKcc87Zbb/TTjuN7373u7S3twOwaNEifvKTn+y23/PPP8+ZZ56JUoq6ujrMZjNFXU0ke7Bw4UJ+85vfcMEFF/Dee+9RWFi4WwkwwGc+8xleeeUVrrzySl5//XXGjx8PQCAQwOl0UlBQwP33389xxx2HN7eRZB5JsiqEIAz8vb2dP7a00OLxQGcnPodjtyVhiMWoaW6mur2dK2fPZnz2ulu3bOHWSZP6JdZbN23ql/MMJqubmzm6uhqn1QrA8SNH8vSaNXw7Zz5MOJE4oHVWC4FjgWO9Xq6IRnmvpYUN1dUst9loye4Tj8fZ0tzMJ1rzXDTKKaEQX3C7mYqs7SqEEGLw2Z+lZvIpFA5z3be/TaCzE4vZzNjRo7nvV7/a623+99ZbueCLX+T7P/oRR86YwRe/+EUAlixZwr333sv9999PSUkJN998MzNnzgSMct+SHhpL/vnPf+bGG2/E6XRisVh4+OGHMZvNezz3mWeeyQsvvMDYsWNxOp3do6Rd191///1UVVXxne98h4svvphf/vKXuN1u7r//fgBWr17NpZde2t3M6Q9/+MOnfcj2mySrQhzC6oCXgNeBJpOJDrd7p5FTu83GRGAWMNtmw1pUxPZIhKpx43abYyr6zpSKCr73yiu0RiI4rFZeWLeOGdlvQL/38sv8aflyCm02Xu1h7bVPo9Ln45zsyKsG1gBvAM+EwzuNqi9Op1kLjAbOxUh25c1ECCHEoeqoadN4e9GiPV7fVR6ca3RtLYtffhkSCcj5TDVjxozupBDgyiuv5Morr9zr+R999NEet19++eVcfvnlu21XSvHb3/62x9u88MIL3b8XFRXx/PPP77bPnDlzqKur22tM+SKfL4Q4xGz2+/lHMMhHw4axPWcN0q55p5Z0mlEtLVzk8XAKxvql3Xw+Kg+yOaYaSGF0N97a1MQ2v5/yykpKysvJYDQgamppobGpCV9FBRVlZSiMEUUT0NLcTFtjI9U+H9UVFRQAVvI74jipvJz/mTuXU/78Z9wFBRzh82HJtpG/46STuOOkk/jJm2/ym8WLue2EE/JyTgVMyv6cnUzyuw8+4OPhw9ng83U3Z9oA/Bx4CDguEGDCpk2MGTZM5iELIYQQIi8kWRXiEBEF/hQI8IdwmLjVuluTpPE2G5d6PIzesoUxNTU9rl/6aVz5zDP845NPqHC5WPGVrwDQFo1y/hNPsCkQoLaoiMfOO49ih4OHly/nZ2+/3X3b5X4/H3z5y0yrrNyvc231+/mkqQnnsGFYy8roxJiLubWjg4bOTgqKijB7PISzj0NrNEp7NIrZ6cRktxtLv8Tj+GMx8HohGsUXj2Oz2YztkQi4XBCJdG+n6zbRqHGbWGyn69KxGDoSocThoNThwAk4gVQwSLq9nRqvlxFFRRRilOImmpuJNTQwZg/3+YvTp/PF6dMB+O7LL1O9y9yQiw4/nLMeeSRvyWquKp+PrxxzDA0NDZidTt622fgXRoIPsC0e51ednThcLua//z43zJx50H2pIYQQQoj+16fJqlKqCLgfo5GkBq7UWr/Tl+cUQuwsDjwPPAHUK0XcbO4u50xFo5xus3EGMBFQxcVQXJyX814+bRpfmzWLS59+unvbT996i5NGjeI7xx7LT996i5++9Rb/e8opXDx1KhdPnQrAx34/5zz66E6JagYIAf5IhFWdnfyyo4NYYSHNwJZolLp43EgYc5LJeDyOv6MDtIb2dnwFBTu2Nzcb20MhfD4fNputx/Vg97Ydel5DtvscTU2gNQ0554jH4/jb241z58wL7k56i4ooCIcpTKV4DXABplgMFQ5jTqeZUlHBto4Onlq9mne++EXqWlsZl114/Nm1a5lYVpaX/7ue5DZnmgpcDLwAPAdsyT4OkYICXjz8cDoyGX4I9F00QgghxM601j0uvyIGRk/L4xyIvh5Z/TXwktb6PKVUAcbAghCiHyQx5qM+BgSy27pKfYvCYabW13PjEUcwpo/Of9zIkWwKBHba9szatbyWnVd52RFHMP+hh/jfU07pvj4F/GHFCk6eOJFXOzpIORzECgoIAalUilAySZ3JxNqODnx2OzabjY5E4lMlmT1td9lsFNtsJJJJzOk0Zoz1YV1AhdXK5lAIMhmUUtSWl2PH+PYtZLWyKRIhZTKRMZkosdkwAx2fMvHN3Z4wmwlmMjQA6VSKUDwOZjM/f+opookEBWYzXzvzTNaYTHzvhRdo6OigwGxmZFER9551Vh/9b+7OA5yPMWf1qUyGuxIJwgUFoBTrS0q4FrgUOAtZ8kYIIUTfsofDtHZ2Uur1SsI6CGitaW1t7Z421Bt9lqwqpbwYy/NdDqC1TrCjakwI0Uc08Bbw22iUhkQCezapAxhhs3G1x0NtaysjdlnztD/4QyGGeTxooNDjoTEU4o1AgITTSSSblP51xQquXrCANVpDNIrbZMJssZBKpYwRSYCcRK9riRVnLIYjlWJqaSlVGM0D6tavpyCRwJ5Oc+LRRzMCo2vuW2+9hTmZxAacc8YZDCssBLsdv8djrAdbVYXPmf1uzenEX1a2+/au60pKdlyXfVFujMV45pVXiClFqqCAeaeeihPYmkrxysqVRMxm4nY7o488Eg00WCysiEYJ2mykzebuDn659/m/P/954//SbiedSrEsHObzZ58NSlHoclFusdAIdESj2Ds7qXC5dlpvta8UABcUFzMrkeD3iQRLKyqMBBy4D6N519eA2j6PRAghxKGqet066h0Omlta9r3zYJNOQ3ZN1IOJ3W6nurq618fpy5HV0UAz8IBS6ghgKXC91jrch+cU4pDWCNwLvJ1T6tqhFBPLy7nc4eAUwJLHUt/9lQC2RiKkteZfiQShggJCqRRJYCV0J6UbGxuxWixUZUtb0ZpUKoXZYsFjNmOLxSgKh5m4bh2nHnkkE4AKm42k3U5jW5uRMHYlaF4v/sMO25FIdh2zvJyRJ5+8Y3vO3Mqe1iHd2/Y9XVfp8/GZM8/ccY5see6U0lKmH3XUju1d805dLvzFxWxraMA7fDh3m80cB7RqzcaODqJWK7GCAiwW4yV718Q9nkrRbLHQmEoRSiTAZsMeizHGamWkzUZ/zB4d7fPxE2AV8Buga6nxtcC1sRjzt2/nMqdT5rIKIYTIO2sqxajm5oEO48DU18O11w50FINWXyarFmA6cJ3W+j2l1K+B7wA35+6klLoauBqgpqamD8MR4uCVAp4C/oaRGHaVldoTCWZs2MBlbW3Mmjat3+KJYXxT9THGXNO/ZUt4nU4nS1taGF5RQUsggMfhMG6QTUrfXbGC+YcdRmk4jCMex5FKMWn4cHyAxWol5HbzjsXC96dM2bkBlM/HsE+RZO4t+cyXT3vu3O1eoBqodjgYU1pKMBjEY7fjsFgIAY1a80l7O2GbjbDN1mMSG7NYWK819RjlxK/HYvwuEGBhURG7L/udP5Mx5n88gVGCHs7O333EZGJlXR3/DyRhFUIIIcR+6ctktR6o11q/l738BEayuhOt9X0Y1WLMmDEjPzNxhTiEvNnSwv9pTcDr7S73ddjt1G7dyqy6OhyZDCP7OFHVGMnpNmBzMklbOo3FYqENY+mXriRq6ujRvLtyJeeUlPDeqlXMHDmSyo4OXIkEk6qquHnVKt644goqrFYjQfN4cOcsr+N2uyktLT2klkZxu907lfMWAoUOB8PLy43HyGbDnH2stwOfRKME7XYyJhMWi8WY9xoOE0iluLuzkycdDg6z2ZgaCDBy61YOq6jI++NpBS7EWH/1+4EA/ux83I9GjOCXiQQ/Jb9L+wghhBDi4NRnyarWulEptVUpNUFrvRY4CaNCTAiRBxng94EA94TDaDCWW/H5mGSz8TWbDe+4cTS4XLuVuubLZr+flzs62DpsGG8AE8g2BIpEQGv++OKL1G3bRiga5b/vvptzjzqKSyZM4FevvMIPV61iVHExD5xxBtZUCk9pKUuam6n2ehmdLVHuj/mWQ9muSexwYLjdzkSPh45gkGRhIUGLhfWhEOFd5vquBF7p7ASvl1H19dxgsXB8aWneE8gRwI+B65uaqKuoAKX4sKKCXwLXA+Y8n08IIYQQB5e+7gZ8HfBwthPwBuCKPj6fEIeEDuBO4HWl0Bgjm9ZUijO2bePro0cbSUAflbpuAv7W2ckT4TAJmw3a23Gl08COEVSlNV8/4QRq7HbGFRVRDsRDIYLBIJ+75JIeE9H5bjfvfulLeY/3ULNrEjsKWLNpE88FgxS0tBD3+QjldB/eWFbGLRYLR2F09p1LfpPI4T4fdwE/Tyb5uLwcm83Gqxjl6t9EFvsWQgghxJ716ecErfUyYEZfnkOIQ80K4GdAGzuWohne1sZpK1Zw4Smn9Mlo1Va/nxc7O/moqootLhcdWpPIWa81nU7jAEYoRaKxEW8kghkYP348XWmTdZckSuxZUU0Nt27alLfjRW02Dq+o4Mbqatx2Oy9GozzU1saWkhJQCrvdzjrgR/E4zlCIK5Xi7JKSvI20Vvl83AncjbGcEsAr8Tib29r4vsnE8EOorFsIIYQQ+0++1BZiiNDA/YEAf1EKW3Y5GrvNxlWFhRzd2sqIU07J+0hqCrjjn538cZEJ61w3LlsrPoulO0kuDoeZ0NiINZPhM4Cy2QhVV++YbyrJ6QG54fbb+/T45xUXMy+RYFlzMx/W1PC+zUYwHsfv94PW3KwU/yko4FtuN2V5OqcCvoIxn/WJ7Ln8WnPLpk38GA6pechCCCGE2D+SrAoxBGSA/+3s5NHOTqPbq1KMLS/new4H0wsL4cgj83q+NPAa8Kt34IVzPWTiHtTdmtEP+0mdGOX0oiJmuVx4W1sZPnky99jt3aNwu5ahisHJ5/Nxms/HaRhl5Xdv387fUymiVitKa95Jp7kiFuOkbds43+3usdvyp6WAq4DGxkaexPgCZunIkSxuaeFsSVaFEEIIsQtJVoUY5JLAL4AXte6eZzi8rY2vBQJMnzo17+dbCtwVibAxmWT7v11kEmbIKHQSSp8Pc++xZsYDlJYaP0OABjY0NbHJ78dbWYmzvJwIsK2tje1tbRSWluIpLiYFNAcCtAQCuIuLcRUWksIYYW4LBuns6KDI66XI60UBwc5OwoEAZYWFlBcWYgUigQDBlhaqS0qoLinBCYSamwk2NjKuooIRgzApKwSudDgofOkl/jNmDCtqajCbTGxpauIBi4XX6+v5P6A6Twnr1XY77zY2sq2oCG0y8Y/aWs5EGi4JIYQQYmeSrAoxiMWAO4Bl7JifOrGhgZNXrWLyWWfl9VxtwO+Bl+Nx/C0tRmI8JYq5wIdOaKwWzS2fLWF8Rcm+DtWvNvj9rGxpwVJZSaq0lGZgQzBIQzhMxusl5XTSHI/TGIuB12t0TY7HAfCHQmC1QjCIz+k0tnV2glLQ0YEvW24dj8fxt7cbo9qBAL7sEkH+QMDYlt23+/ZWK4RC+LLL7vijUePc8Tg1sRg+ux1LOIypo4Nat5sxXi/lgGppId3QwESfr9/XIvX5fHzu9NOZ09BA0OnkN7EYbdkvRzaUlXF7JsP/AbY8nKvS5+PHJhPfsFqxOBw02Gw8i9HgSfQ9pdSNwJcwvsf5GLhCax0b2KiEEEKI3UmyKsQgFQK+FQ6zMpXCnk2aLi0q4oTWVoafdVbe5vhlgEfa2/kTgNNJLNsptiCVYrZ3HTPu6aS1YTzz5yvmzOk5Uc13Q6BdaYzEvTUWo7O8nDs6Owl6vayPRvkkHge3G8JhfNny4+7EsqUFn8/XfZ+6GkLFYtnP5fuxzWaz9er2u27riMeJK4W/tRW05j+5yW8kAoWF2MJhjgqHqcpksLe0MM3rZXZpKd4+e4QNvpwO0qP9fr63ZQvLampAKercbq5tbOQHSjEyD8+9aeXlXAv8CYjH4/wmGmVMMsnU8vJeH1vsmVJqOPB1YLLWOqqUegy4AHhwQAMTQggheiDJqhCDUAL4TjjM29mEpkMpvuL1cnVRESqP81PbgdtCIV4NBo3kLhikpLiYiY2NHLN6Ne50mgULprCv3CSfDYGSGMvjLG5v5+NQiM6SElpcLgI5DYDWZhO8WCKxXwmj3W4nmk5TkExiS6eZVFaGQ2s2NTVhTqWwaM204mIsWrNi0yZUOo0FmD19OmVAKJPh/VWr0FqDycSs2bPJAO+tXUsayJjNHD5jBklg6datJEwmUlYrI0tLiSrFmnCYmMVCrKAAu92+z+Q3bjazPBbj7XAYTCb+kk3ER9hsVAaDlDU3c6zHw4zy8ryvjdql2ufjf4EHolEWlZTQ1t5Om9Z8tb2d+yEvI7/nAosiERZnR/K/39rK7zMZabbU9yyAQymVBJxAwwDHI4QQQvRIklUhBpkM8HNgeXbNUg3MX7WKWT5fXhPV5RhL4GxOp7vPUxwOc004zPzaWhoKCqiqqurzxKEJeLOtjaXhMG0lJfhdLsLxOP6uBLrV6EDcU4Jnt9sJaY03EsEbizGnuJjSTIa6lStxRKO4UinOOeEExhYW0upy0dDQYNynrvLcmpod27zGuKV/4sQd24qKjCCLizlx+vQd24uLATj5iCN2bCssNG4/btyObV0jvaWlNDQ0MKywEI/NxrrOTp59/31CBQWEHQ5Gz55Nq1IsDgYJOBwkrFbjvLvc363AkvZ2MJt5MBqlpqOD0aEQJzkcnFZSkpcS3VyVPh83AdYNG/hzdqmircXFPBEK8bU8PC8swIKNG1nsdqOBzaWlrGxqkmS1D2mttyml7gS2AFFgkdZ60QCHJYQQQvRIklUhBhEN3A+8zY45qvPWrOGIbduoylOiqoHfdXTwV8Bmt2O32+kEjtqwgdmbNjH/zDN3KgfNt1bg3+3tLA6HaSgtpdVkMuaO7iMxLSsowNPeTnEoRHEkwjlHHcVUm420w0FjeztVw4fvSDiPOmpHwlhRAdDjfdrfbb29/a7bjigvp3LevN0T5fJytjU04Bw+nO3A39esocXlormwEIvPRyjncUFrtgQCbAFeC4X4rcXCpGCQz9pszCsry+uI6xdcLlatWcPS2lpQikXDh3MhkI/2WkeXlTFy2zY2l5aCUmwcMSIPRxV7opQqBs4BRgEB4HGl1CVa67/sst/VwNUANTU1/R2mEEIIAUiyKsSg8kB2HdWuOaqXFRVxQnk5VUcckZfkMQXcFgzybEdH9xI448rL+Y7bTXFREVXZRDXfPmhu5sVwmM3l5WyyWHaMmjY343a5dktMR1qtxPx+yjo6KA+HueiYY5hQWEjTsGFGgjduHL6uTsQ+327LqvRlsp0v+0pqJwKTp00z7m9FBaV2Ox+EQjy8Zg31xcXUl5QQzRmBbWxvpxF4NZ3myNZWTmhp4bSioryU6/p8Pm4DLvjZz9B+Py3AxfE4RyiFw+Ho1bGLamq47IYb+LXZjN1u5yNbvseHxS5OBjZqrZsBlFJPAccAOyWrWuv7gPsAZsyYofs7SCGEEAIkWRVi0Ph3ayt3hUJooEMpzi4u5kavN2+lvzHgJ8DrmUx3cljd2srXAgHmT52a92VoMsA/2tp4PBRiORgddltbd0tOCzIZatraGNbWxrDOTi6dO5cxhYX4R440ErWpU/c6Onow2/X+ziorY2Q2gbUlkzy7dCnry8upq6ykLVvajNZ8GArxgd3OU1u3cnMgwIwJE3odywifjxktLcwYOZJQOAxac3h9PdPKynq1ru6tmzZxdUkJjwDBeJxlHR0sTSQ4Shot9ZUtwNFKKSdGGfBJwJKBDUkIIYTomSSrQgwC7cAvlEJD9zqqC9vaUNOm5eX4IeDb4TArUinMJhMoxdQtWzh+7VomLViQl3N00RhlzL+PRPgwFDKaEmUprTFpzYj2dmqam6kOBLj8uOMwV1XRAFRNmXLIJqb7K/dxKS0pMRJXpXj23Xf5aMQI1g4bRspkAmBjeTnfCgb52dq1eUlYi4GyaJRQ9v+0xe0mGAz2KlkFo8PPpGCQ57JdnO/ZtIk7Jk6U//8+oLV+Tyn1BPABRrHFh2RHUIUQQojBRpJVIQZYBrgTSLlcEArhjMc58+OPGXnqqXk5fgz4ZjjMO9nOwijFJWYzJ7lcDF+wIK8JwWrgF5EIa5NJ0tkGUQAmraltamKi38/Vs2bhGjaMBq2NUdPs+SUx+fR6SlwTiQS/bmlhRXU1AK0eDz/dvp0frl7NpEmTen3OsWYzm7Kj821uNxadnwrRsdu3g82GBrYUF9PQ0CDPiT6itf4B8IOBjkMIIYTYF0lWhRhgvw8EeDM7T7XS5+PKjRuZf+qpefmgngb+H7Aqp7PwcatXc3JFBUfmsbPw+qYm7ovHWVxURFvXGqdKYU2nmbp5M1Pr6zmqtpbxs2ZJctpHchPXmzMZ7vv4Y14+/HAAPhk2jMffe48vl5T0+nEf43SyOBajMxYjbrGwuqGBP6xaxZ9XrkQBh/t8PHDOOdz8yis898knFJjNjCkp4YFzzqHIbt/jcWcVFUEsZqxF63JR1cvRWiGEEEIMfZKsCjGA3mtp4d5wmAzGPNWrCgs5f+LEfd7uV7fcQmDLlr3uo4GPEwm2AUopTPE4lR0dtIXDPDpiBM/sZ2Ocopqava6j+u/WVr7f2Wk0+2lrQwOWTIYjNm/mgoICKoqKqJo8WZLTfjRp0iSuBrY0NlJXWQnA2mxzqt7+P5iAskSCzuzlTakUdy9dytrrrsNhtfJfjz/OoytWcMqYMfzk5JOxmEz8z7/+xU/efJP/PeWUPcdcUcGIWIzOeBy73Y5TGi0JIYQQhzxJVoUYICng15kMGYzEclh7O0e3tsJ+jHgGtmzh1trave7zYSxGZTzePco5xWRibCiEx+P5VHMMb920qcftGeCejg7+lErt6EoLjG5u5rjVqylMJJiW5zJjsf8mTZrE55Yv56fZyxt8PuzpdF6OXV5QwIbscythtZLRmmgqhdVsJpJMUuXxcOqYMd37H11dzROrV+/1mAoYZbezVilisRjLg0HmlpXlJV4hhBBCDE19mqwqpTYBQYxqxJTWekZfnk+IoeTvQEthIcRiWNJpTl25khEnnZSXY7cAH0H3nNGyYJCxZjPDhg3Ly/HjwPdDIRZ1dHQ3UHLF45ywZg1fGDeO2JQpxvqhkqgOqInpNJZMhpTJRNhmY0t9Pb2ftQrldjsOpUgmkwyrqeFbc+dS88tf4rBaOXXMmJ0SVYA/LlvG+Ycdts/jeoNB/Nky8r+vXMnYo46S55AQQghxCOuPkdUTtNYt/XAeIYaMBuDBWIxYPE5JcTFnNTdzyUkn5eWDeQL4D2C2WEAp3LEYo5ub8Ywb1+tjA2zw+7kNWGexdCfD1a2tXNbczPzZsyW5GESGV1VR1NJCS3Yk/f1t25jm9/e+FDgcJpqdB70pGOSpVavYeP31FNntfP7xx/nL8uVcMnUqAHe88QYWk4mLs/Nn90ZlE1UNRCwWabIkhBBCHOKkDFiIfqaBO0Mhtra1gdaUh0JcVFbW6w/lVz7zDP/45BNcTie3fPGLWCwW1m7Zwguvvsq69nYWX3UVM7JJy8PLl/Ozt9/uvu1yv58PvvxlpmXnN+7JJr+fLzc30+TxGOumKsVRGzZwzPr1zJeS30HH5/MxIh6nJfulQixPCWA0HIaCAgBW1tdT5XRSnl3n9bOTJvH21q1cMnUqDy1bxj/q6nj50ktRSu3zuEVFRRAIGEscKUVVVVWv4hRCCCHE0Gbq4+NrYJFSaqlS6uo+PpcQQ8JbwJJ0untU8oSPP8bf0NDr414+bRr3nnceca2JxWKEwmFOKy7muYsu4riRI3fa9+KpU1l2zTUsu+Ya/nzuudQWFe0zUU0BP85kaPJ40ABac34wyNcLC1koieqgVVxS0p0omiAvCaDL5TK+rABKPB6WtbQQSSbRWvPyxo1MKivjpXXr+N///IdnL7gAZ86c5r1xe734fD4Ki4qYNWOGPKeEEEKIQ1xfj6zO1Vo3KKUqgH8ppdZord/I3SGbxF4NUFNT08fhCDGwIsD/RaPGGqRKMXXzZirD4bwkELNHjuSexsbuy+UdHUyzWhm2jyY1f12xggunTNnrPhr4385OVhYUQDKJ0poTV6/mi0ceKQnFIJfKGdE05WlN1NyjjPX5+My4cUz/3e+wmEwcOWwYVx91FIfdfTfxdJpT/vxnwGiydO+CBXs9bibn977+JlUIIYQQg1+fJqta64bsv01KqaeBWcAbu+xzH3AfwIwZM/LzSUqIQeqezk7WBgKgNc5Egi+YTByRp1HJd+Nx4tlkpCCdZmRbG56xY/d5u7+tXMkzF1yw130eb2/nsWCwu7PwudEo10qiOiRsCAZ3NMGKxfJSBhyIRCA7WmrKZPj61Kn85LTTdtpn3de//qmP297ZiT/79/H+mjWcPG2aPMeEEEKIQ1ifJatKKRdg0loHs7+fCux5sUax35JAO/BJSwsbWltxl5fjKCkhhjFyFwOiQFMwSFswiNfjwe3xdN++a5wlFAwS6uykwuPB5/XiAJzQ/W+ktZWw38+EsjImVlTIBOde2gA8q3V3A5lj16yhvLo6Lx/GN0YirEomSSaTAByRTDJx7Nh9LlHzXn09TquVKRUVe9wnBPw2ne5OeCZt28ZCux3ffqwHKwbWVr+fbYkEYPzde2Ox/MwDdbshkQCtsadSeAoLe39MYEs43P33Yc9TYi2EEEKIoasv8w8f8HR2rpQFeERr/VIfnu+gEQG2Asva21nb2QklJSQ9HtowktQgEI/H8UciYLdDKITP5cJms3UfIx6Pdy8BQXs7voKCPV8fCOCz2Xa/PhwGlwuy63VW2WyUw04/ptZWTNu3M7W8nGHyoXKPNPCzcJhUtvx3RGsrE5qaqJo1q9fHzgDvZ5NgAHMmw3Ct92st1Uf3UQKcAT5KpYyRNKAkFGL+6tUMP+usXsct+t4Hra3G3zDgjUSYPH58XpK/lMOBw2QimUxS5fV+qnV79yZaWAgtLSitKc5XYi2EEEKIIavPklWt9QbgiL46/sFgs9/PstZWksOG0VlczBZgM8YamfF4HH8waOzYQ7IZi8W6RyBUtqFOX14fjcVosdloAVZn9+lOaD0erJEIM8NhDne5GA2MAkYC9vw/bEPSnwMB3u7sBK0xac0XEwnm5qn898NYjGC2M69JawpSKTw5I+l7ktGax1et4o0rrtjjPquAzkwGtMaSyXD6smVMGTdORruGiLaqKsg+74Z1dDB+/Pi8HLclHieafY0INzcTUqrXCWsaaDGZcGeT6wvmz5fnmRBCCHGIk8rOfhTHSPSWA++Ew7wbi5FxuSAYxOd07ncyaQKGFRRgDwZxxGIUZDJMLy6mAqOE1wFEMxk+XLECcyqFMpmYO3cuJTmxtKXT/Gf5clJAympl6tFHU4BRPhwBmkwm/v2jH6GamkiZzaRcLtrN5p3uTzKRwJQtMUwDHxQU8HF2OQswyg4LUins8ThlFguVNht2dpQh5yqqqeGG2w/OKvHFLS3ck0p1l9FO37iRUUVFefkg3hQOsySRIKMUf3zxRTbU19MZizHxvvu4bf58ShwOrnvxRZojEc565BGmVVbyz0suAeCNzZup9noZXVzc47E7MEZVdSYDSjGnro7yWCxvCY/oe2ssO17iq9rbYdSoXh9TA/6cbtaOeJxgMNjrZHV1czPbolHQGlcigd3r7XWsQgghhBjaJFntQylgLUZyuhxYk90G0JFKkYEek1ELMM5qpdPvpygYxJNIcPqsWYwFSgAvYHI48JeX09DQQNWIEfh2/WBXXMxJM2YY11dV4Ssp2fn6khJmzpq14/qiop2v93hIdnZyQ2UlHo8Hh9tNBCORDWf/bYvHqW9rI1JQQNJiwe1yYc75cJxOpQhl56ChFG6XC6/FQgVGjbgPcGX3vXXTpgN7kAe59U1NfLu1lbDTCUB5ZyezNm6kKg9ltBpYnMmQyXZ7/dpJJ3FKOk3VsGE77XfupEk93n5+bS3vfulLezz2fxIJOqNRkqkUvo4O/svhYKIsUTNkJIAPksnupLKqrS0vc0DDQDz7xZU5k8GVTO7XSP6+vN/eDjYbGigMh2kIheS5dpBy/9d/EXrssb3uc9dzz3HPiy8yfcwYPj93LuOrqpgsKwaIg4zb7SYUCu11n7vuuot77rmH6dOn8/nPf57x48czefLkfopwaDvzttt45L//m6K9fJk6/7vf5c4rrmDGuHE7bV+2YQMNbW2cOWNGX4cp9kGS1TxLAUuBZ4JB3kunMTscO42YdrHb7XQCxeEwpeEwJxcVMRWoAYYBFqcT/8iRO5LJ0tLdjuHz+fb6Ya631zscDoblJD6e7E83m42Qx0MwGMRqt5O0WGjHmFcbAJpSqe4PymhNKpUibLGwEdiIkcwWJBKMMJtpw2gctX+rMQ4NUeB7iQRt2UTVmk5zqd/P6WedlZcP4duAdocDsl8IjGppwZunD3MbAH+2/FcBJ6xYgXfiREkehpAPgVT2y6PicJiSPMwBLaqp4Wtr1/JRtpGXKxZjlcVCUUsLtLQc8DEBWisrIRBAac3wjg6qpIHXIe3uF17gxR/8gFGVlVz+q1+xYOZMSVbFIenuu+/mxRdfZNSoUVx++eUsWLBAktX9oLXmHzffjMl0YAuhLdu4kSV1dZKsDgKSrOaBBtYDrwCvA825zYs6O/H5fN0Jaw3GRN6pNhsVDgcdbW1U1dTg66Gb5r6SycHA7XbvVP6XO6bXkUrxUUMDnTYbQacTnbNf7qhrm1IsSae5GDgSGNfeTsWWLUyorBz0939P3m9u5ifJJOvT6e5tJ61axekzZ+anwQ3wbjJJKp3GYbdTHYsxvaYmL41u4sCSZJJMtvy3JBSiIhKRZjdDzKJgkLb2djQwuqmJuccc0+vn3g23387127aRSaXQwGF1dVxWWsqRRx7Z63jXZqszAC6YMqXHL+jEwednTz3FY2+9RTyZ5Nw5c7jtoou45u672eD3s/COO7hg3jyeXbyY11es4EePPcaT3/kOY3apHhHiYPCzn/2Mxx57jHg8zrnnnsttt93GNddcw4YNG1i4cCEXXHABzz77LK+//jo/+tGPePLJJxkzZsxAhz2obPL7OeO22zjh8MN5Z80alm3cSPNf/kKZ18sPH32Uh19/nRFlZZR5vRw1dizfPPdcAB7/z3/4yr33EgiH+cN11zF7/HhuefhhookEb61ezU3nncf58+YN8L07dEmy2gttwGvAy8CWnO25802LwmGObGrirBEjOBzYaXZgRYXxc5AqdLuZXlNDMBjE4/HgtFhoA5qA9dEoka4SVq1Jp9NEgVfjcR4NBqGoiGF+P+fZbJxaVMQIep7rOlhooBl4s62N51pb+bCggNxFg49ftYqzCwvzlnyvTCYZHomA1lgzGabbbN0f9HvrvXictuxz2JZKMVopFkj575ASA97IqWwY09RELA/LyySADaWl0NSE0poxra1UHX54r4+7we/n/VjMmBYBjLVLa7ZDwaIPP6SuoYHFP/85WmsW/uhHvLFiBfd+5Su89MEHvHrHHZR5vdQ1NLBg5kzOmzt3oEMWok8sWrSIuro6Fi9ebPwtLFzIG2+8wb333stLL73Eq6++SllZGXV1dSxYsIDzzjtvoEMetNZu28YDX/86d197LbXZqU5L6up48p13+PBXvyKVTjP9xhs5Kmcd+lQ6zeKf/5wXlizhtkcf5d8//CG3X3wxS+rq+M011wzUXRFZkqwegM3AfcEgb2Uy2Oz23cp8qwoKGL9pE+O3baM0GjU+6A9MqHl35TPP8I9PPqHC5WLFV74CwM2vvMIza9diUooKl4sHP/MZqjweHl6+nJ+9/Xb3bZf7/Xzw5S8zrbKSGqVYu2kTnTYbAbcbV7ZMIzfR315YyJ+U4hnAG40yqrmZY10uji8txTEA971LGmjEWF7oo0CAZdEozUVFdJpM+EMhdE6TKUsmw3GrVnF4YyPjFyzIy/lfAxpylqqpaW4m7vV2L1HSG83A+pxjj2xu5kOLRRLVIeZNdi4BrgwG8zIy/hEQz84/L00kuDRPHXtf6+hAZ+erVnR20t7WRq085w56iz78kEXLlnHkDTcAEIpGqWto4Li9LKclxMFo0aJFLFq0qLtKJRQKUVdXx3HHHTfAkQ09I8vLOXqXaSRvrVrFObNn48h+Xj97l2UDPztnDgBHjRnDJr+/fwIV+22fyapSqhyoxqg83Ki13vtM8IPYNuAR4N/xOI1dZb5K4fP58NpsHAOcBEx1OGiaOJEGr9eYb3oQfei6fNo0vjZrFpc+/XT3tm/NncsPTzwRgLvee4/bX3+dexcs4OKpU7l46lQAPvb7OefRR5lWWQkY5cMTxo3rHnVd1tLCl4B/as0THR1sLywEpbDb7cTjcVY0N7NCa54Lh6lyuRibTlPV3MxRHg+zS0vp/ZjRzrb6/axqbkYNG0aqtJRGYH0wyPpYjE6PB3M2Ln92WRCam3G7XN0dfwFqm5s5pq6OudXVjJ8xIy/Pg+3Az2Ox7g69ZcEgZeEwnuHDe33sDPA+YLFYQCmKQyGKo1Gc2Tm3Yuh4OhzuLgE+bNu2vJQAA7wYDHZPcZiweTNqwoTeBwtsHDYM2ttRWjO6pYUqmY91SNBac9N55/Hl008f6FCEGFBaa2666Sa+/OUvD3QoQ56rh8oc3cN+uWxWo2OK2Wwmlcn0QVSiN/aYrCqlJgN3AbUYUy0/BCqUUq8D12utO/olwkGgCXgUo9w3A93rC2qgurWVhfE4l40bt9No31CYb3ogjhs5kk2BwE7bvDkjy+FEosdy3b+uWMGFu3xbnjvfVbW0MAL4UlERZ8fjfNLYSNOIEdTZbLyS/XDc1Tm5MxzmjXAYlOLRcBif201JJoOno4Nap5OyTIZkSwvVJSUMLykh3NpKU1MTZRUVFJWW0tTaSn1rK87ycqzFxTR0dLA1GCRTVETc7aYhFmNDPA4eD2SPD+yYhxyN4vP5dlteyJbJUNTWRnVLC6P9foojEebNm8ekPXTj/bTagG9HImxpaSFRUcGDmzZxRCzGEq8XRy8a3HSpSyRYh/FibQIO6+zkQ4eDYXlKSET/WAusyJYAmzMZJmzbRqysrNfHDQOvZ5es0cDo7dtp8Hh6/TqXAJZZrd1l7F+aMgVfeXmv4xWD32nTp3Pzww9z8fHH43Y42NbaitVspmKX7vQeh4NgNDowQQrRD0477TRuvvlmLr74YtxuN9u2bcNqtVKxy1QxT7appfh0jp08mS//9rfcdN55pNJpnl+yhKtOPXWvt5HXncFjbyOrfwQu01qvVUrNAr6qtZ6tlLoK+ANw0BfMr2lq4k/xOMvKyzHnfFNjt9spaWlhVl0dvnCYBQsWDGhZ6mDwvZdf5k/Ll1Nos/HqZZftdv3fVq7kmQsu2K9j7ZrofyGR4L4PPmBTSQn1ZWXE3O6dksRwKIQ/26xpcXbdV6xWCIUosVppC4fB6YRwmJKCAuOyzQbBICUWC20dHUYS2taGz2olFo/vtsYtsNM2eyjEFJuNlq1bKe/ooLKzky+ceCKqqopPQiEYOZLx48fn7QuLTuBmYHN2KRL7jTeycPFizhw/Pi/NbT5qbuaLoRBJkwmU4nqvlyt3Xc5IDAl/CgZJp1KgFOMaG3Gn03kpAX4DyGSXrCkLBqkMhfJy3FdaW9mS/fstikYZsYd1f8XB59Qjj2T11q3M+fa3AXDb7fzlG9/YLVm9YN48rvrtb7nrued4QhosiYPQqaeeyurVq5mTLUd1u9385S9/2S1ZveCCC7jqqqu46667eOKJJ6TB0n6aOW4cC2fN4ojrr2dkeTkzxo6lcB9VYyccfjg/feIJpl1/vTRYGmB7S1YdWuu1AFrrxUqpe7O//14pdWO/RDdANPBkezs/DYeND+9NTd0dfacBl9hsFFVX02AyDdoyX42xFMyWpia2NjZSWVm504teU1MTzY2N1Pp8jPD5et286I6TTuKOk07iJ2++yW8WL+a2E07ovu69+nqcVitTDrCZ1HCfj68cc4yxjE9ZGZ3pNPevWME2r5fmoiJiLld3IklOGa7SmnC2CZHez8uxWAy73U4QY1mOwmiUY4qLKctkWLdiBd5wmNJolM+dfjq+0lL848YZceWU+eb7+RAGvhkOsyaVwmwyYQJO/+ijvCULSeB/tSZpMqGB0mCQw1tbIQ9JsOhfHzU383wkYvwtKMV5ZjPH56E5lqYPS4tzKhRG+f1sj0apHISvqQNFKfV54CWtdVAp9X1gOvAjrfUHAxzaActdY/X6hQu5fuHC3fbZdP/93b/PnTyZVb/9bb/EJkR/yl1j9frrr+f666/fbZ9NOevQz507l1WrVvVHaENSrc/Hit/8pvty7uvIN889l1svuohIPM5xN93Ef3/mMwC89uMfd+9T5vV236bE4+H9X/yifwIXe7W3ZHW9UupmjOrXzwLLAJRS1n3cbkgLAncDz5tM3R/eldYMCwT4ps9Hd9/LASjzTQEfNzezurWVAp8PXVxMO0Z56NZwmOZIBJPbDQ4HMSASj+OPxaCwEGIxfPE4NpvNmGvZtT0eZ1gsRpHdjhPQkQiZYJAap5MNwCeAE1CRCOnOTkr2sTTKRYcfzlmPPLJTsvpoDyXAn1buaKsP+MaMGUaSWFFBOp3mL++8Q4fNRsjhoNPhIGq1krJaqaytZUMggNYaE1BTXW2UmqVS2FMpDqutZeu6dRQkEngSCRbOncv4wkJidjvb29qMLyO8XgD8XefM+YKir8u964DbIhE+bm3tXvP0v7VmysiRVM2Zk5dzPwS0ZJ8j5kyGU1eupOb443t9XNH/Hkok0BjJ5cjmZsZZrXl5jqwE1uSUFo9vaCCWh07mQaAup7vwpMZGWV91dzdrrR9XSh0LnAbcCdwDzB7YsIQQYui4+re/ZdXWrcQSCS478USmy6j0kLG3pPNK4LvZn4+Arq97nMClfRzXgFgO/BJowSj17VCK4nCY49au5atz5lDZj7GsbGpiSXs7MZ+PzqIitgDrYzG2RaPgcEAwiM/p3JF8ZpOZrvmUNptttzmVsVisx+2ReByr3U5bPI6/pQW0Zlk8jiudZgnZNVGTSbDbKYjHKUiniWEs11MMbG9tZXx2TcRn165lYs78uIzWPL5qFW9ccUVeH59dk8TLTjihO5EEdiSV5eX4M5kdl8vK8KfTxuWRI/H5fPjN5p2uz55gt9Gd/pyHrIFnMBLJ1mzprwZOXLmSKcOG5aX0F+Cfra38yWLBbrfj8/k4s76eC48/flBWC4i92wws83qhrQ2A2Rs3UpWnsqWn2PGaOLGhAWcmk5dR/acDAUJKUVJcTHU0yuV56i58kOlarPks4B6t9TNKqVsHMB4hhBhyHvnmNwc6BHGA9pisaq0DwLd72N4BvNuHMfW7FPAw8CQ7OobZbDYuKCrixLY2avM0grU37cDHGN8KvBeJ8HEsBnY7dHbicziw2WyEephLubek1G2zEU+lMKfToBSVBQU4AEdBAalEggyQzCYqwG7HSaeNz0ipnPUa7120iLpt2whFo0z7xS/47HHH8VFdHc1tbdhMJkYVFXH/WWd13683Nm+m2utldB/PQ9s1kdz1909zeaDVA78OhXgvncZut2O324mm05ywYgUTmpupOuqovJxnWXMzP+joIGq10qEUp5WUcP2YMYN6PVuxZ/eGQrRmy3RHNTfzucMOy8vzeivwVjxOLBajpLiYyzo7OTIPpcWNfj8PtrbS4XKBUnzZ48En81V7sk0p9TvgZOB/lVI2wDTAMQkhhBD9Ym/dgL8GPKq1blFKjQEeAKZiNJv8ktb6436KsU91AP8TDrMqlcKeXTPVgzGMPNvrhWnT+uzc24CnOzp4I5Eg4PV2r9fakTOSlpt82u120vE4heEw7kSCOUVFjAJIp/lo6VJs8Ti2TIaFp5zCSMBit+N3u3eMGjqybaAcDvxeb/f2UpuNKLA5Huf5d98lYjYTcTqpB8YCAZOJhmSSuMXClWeeidvlwmyxGCOu4bCxsHJ27UWzxcK7QFEigTsUYnJ5Oe9mF2UWe7cF+BvZpZHa2kBrOpRiTmkpX/V4SI0YQdXs2XlJQJqAW0wmolYrGnDHYpy9fj3qiCN6fWzR/5YD/8l26gWYvW4dsTx1cf5jznI1o1taOLK6Oj9rq7a30+pyoQFrKkXN5s0gyWpP/gs4HbhTax1QSg0DvjXAMQkhhBD9Ym9lwNdqrbtmKd8F/FJr/bRSaj5wLzB3f06glDIDS4BtWusFvYg179qAb0QifJgtoe1QipNKSvi+201JH50zBLyJMRF4eTyOv6sTbU75rt1uJ5zJ4AsEKA+HOcPr5QigxmYjVFhIQzhMVW0tvsLs6qIlJcyZO3dHUpozl2xPo4a7bvcAUyoqKJ8/v/s49zz2GLMACgqMuaDBIMrrJW6xEAC2RqPEUymSZjNoTSqVwmyxEE2laI5GwWTiw1SKqmSSWquV4UApyMhdDg281dLC44kEa0pLsdlsOy2NdOTGjXyxtZXDjzwS8rScRytGbX/M7YZwGGsqxZnLlzNeOt0NSRng15FIdwfgCQ0N+MLhvJTpbgFeyWR2PB83bKDBZMpLsrq4uhra2lBaM3n7dsaMHdvrYx6MtNYRpdQzgE8pVZPdvGYgYxJCCCH6y96S1dzrKrTWTwNorV9TSnk+xTmuB1YD3gOIr8+0At8DNmRHMQHmrlnDJeXllPRBF9TtwP3BIK+m01iyZb25ZbfmTIbq9nZOraxkqs1GodNJUyBA1bhxO5XGufYz+TxQezpO7pqoXcYqxSebNxO1WAg6ndhGjCAABHLKhtGatnSasNXK8lQKUzLJCJOJUTYbwziIO3XtRQpjJOwd4LVolE+yHYnx+/H5fN1LI81Yv55hwSA1C/L3HU8A43nvxyh1r66o4NJNm5g/b96gKoUW+++v7e0sCQZBayyZDJdqzaw8lOkC/C4YNKYBKMXI5maGd3bmJQneCKzIWVv12+PHy9qqe6CUug74Acafbddq9Rqj0kkIIYQ4qO0tV3hCKfUgcDvwtFLqBow+GydhfOG+T0qpaoymEHcA3+hVpHnUjPGBfTt0L1NyykcfMaG5meF5LoNswSjt/EcsRkO2lI7OTnw+Hy6bjdKWFibU11Pb1sa5Z55J98dLn4/hgzx5cLvdjB8/nmAwiMfjwW2zoYHGdJplra20OxwEnU4sOSXDaM1KpdhsNmO1WPABpdEoDe3t+LPJ2sEmDt2dld8PBlmcSkG2OVZHIrFTyfe41lZurKrC0wdLI3UA/x2JUJdMYrfbcdlsfNduZ6Z0Xx2y2oE/Qfdz6KgNG6guKcnLc+adlhb+0fVFilJcnMlwQp6S4AdzSovHNTVRUVOz7xsduq4HJmitW/N1QKVUEXA/MAUj8b1Sa/1Ovo4vhBBC5MveGix9Tyl1OfBXYAxgA64G/g5cvJ/H/xVGk6ZPMxLbp1Y0N/N9k4mI243NZsNps/FDj4fheZwPCMaSDL/r7OSFTAaLw0EspzlSRUcHZyaTXDlmDNGupOToo4dkorbriKsChrlceHw+gsEgDouFoMXC6s7OHkuG61Mp1iQSvG+18vlAgDMcDuZly54HzZPmUwhiNKT5qL2dj0IhWktLaXI6yYDRtbnrC4tgsHsUNZFMUtvUxLT6eq44/njjC4s8N31aDvwoGmVttttzJ/BDj4eZJX1V8C76wy+CQUKZDChFUTjMUVu2UNXLZaLAyF7uyc6B1cDYxkYm5GkZnC3AazmlxdM2bKDBYhmSr3/9ZCvGd0359GuMtVvPU0oVYHT5F0IIIQadvVZhaq0fBB48kAMrpRYATVrrpdl5rnva72qMJJiaPv52fYPfz1fb2wk4HBAOM7yigpvtdmaVlEAeP7QvB+6IRlkTCHSPpJYUFzM8EGD2J59Q3dnJggUL8ALeQdaJNldRTQ235ixGfUDicWhpIRqNsnXrVqJWKyGHA8rKiFosJBMJEokE0aoqMnY7L2rN20AiHqe0o4MpdjvTvV7GALWAtdf3qvdiGPV4fmBNIMDazk7CJSW0ut0EyCal2bJMWlp6XErIG41ytN/P+TU1lHg8NAaDVPXBkjFp4FGM0f1AdhQX4KSPP6Z6+PC8Pu9F//pnayvPZqsVUIorolHOPPPMvDyH3gAai4rA78ecyTB33TqqTjqp18cFo/O6zW7vLi0eFgrlpbT4ILYBeE0p9TxGoQYAWusDWq1eKeUFjgMuzx4nASR6H6YQQgiRfwc0ZVApVam1btzHbnOBhUqpMwE74FVK/UVrfUnuTlrr+4D7AGbMmKF3P0x+aODXqRQBhwMNWNJpLt60iVl5LIFMAX/BqJUO5JR3VgYCfDES4fjKSrZn1yccrAlqrhtuvz2vx/P7/TuaQPl8NAGL2tt5bONGthUVkVIKu91uJHt+P41aszIW4zWbDZvNhhkoj0TwtrUx2uNhXGEhFUB59qegl/GlgE1NTaxrasI2bBiUltKGMb95SzDIlkiEiNdLPNtVOR6P4+/sNJKFtjZ8VuselxIaY7Mx02Sidc0aKtvbKQ+HOXvBgu5R1GF98HxoAe4EVmYvd43invzxx4xqa6Nq5sy8n1P0jxDwG+h+nk3cto1p2bVyeysG3B2NEkskKCkuZn5bG5ecdFJejr0eeDVnGZyrgkFm56m0+CC2JftTQO9f5gBGY8yGeUApdQSwFLheax3O3ak/v0gWQggh9uRA+9v8AWMu6h5prW8CbgLIjqx+c9dEtT/9C1hdVgZ+P0prTl25kpPz+GG9bgI2/wABAABJREFUCfh+OMya7BI4XYnB/JUrGdvSwvzsB7LKQ/hD2a7NmyqAS4qLOSWRYEtDA+ERI9hms7HI76cpkyGj1E5L90TicRZny1jp6MCXXWoIjMRRRSIU2+2UOBzYAQeQDoWIdnTg8npxejxkMEYbg6EQbeEwJo+HjNNJGOiIx/HHYuDxQDiML1sqvlP5bjze40hpV5wem40JVisdjY0UB4NUBoNcdswxjC4sBI8H/7RpOyXsfeXF1lbuUoq0y9X9GM202fiC10u0tpaqY46RBGEI+3kwSBuAUjjjcY6rq6PqtNPycux7OjpYk+1S7kwmudTjyctzRQO/DYXwZ5dlGtvUxOyaGnke7oPW+jaAbGNDrbUO9fKQFmA6cJ3W+j2l1K+B7wA373LefvkiWQghhNibA0pWtdZ7TVQHmy3A7zC6n/p8PqY3NXHjzJl5+5C0HfhGNMqqXZbAudrrJVpTM2Tno/aXXZPYk4EnX3uNRo+HlqIiSmfNMkpue0gOu5NJvx+0pjE7F7R7e/aDMe3t+AoKdt++j+Rz1+2RJVbWLctw+Bkw43Az/m3b8EQilIbDnH/MMUwBTE4n/tpaIyk9/PCd7lu+ujbvyVbg98Egz3SVh4ZCVPp8XGmz8XnAVFEBOUsbiaHnhbY2ngqFust/LwuH+expp+XlebUBeEbr7uf7nLVrCVRVQR6O/T6wJGct2Fl1dTJXdT8opaYAfwZjRTWlVAtwqdZ65V5vuGf1QL3W+r3s5ScwklUhhBBi0NlnsqqU8gHDMb4Yb9Ba+z/tSbTWrwGvfdrb5UMC+EEkQnO2A+o4m43bRozAlqfjN2CsWbktW/ZrymQ4pq6OS8rLmXjkkf2WGCQxOoO2AxtaW9nS1oa7rAx7cTH+jg5aAgGKioooLCyko6ODjvZ2KouKGFZURLytjXBzMxNLS5lUVoabgV0L1efz8bkzztgxAukxWi1tiMX489KltDschJxORkyfTgxYHQqhehiJ3Z/kM3e7w24nnkpRkEziTiSYUVLCSMCsNatXrKB1mYM/334cmbSZxjvhOy+7GT1mzI6kNGfpjb5OSne1GWNu6n+AQE7zGk80ylUbNnDepEn9FovoOy3A/0H3/++EhgaOzn4J11sZ4P+FwyTTaVCK6tZWJjc2UjVjRq+PncRoPWu32+lQiilbtlAWjcpc1f1zH/ANrfWr0F2p9HvgmAM5mNa6USm1VSk1QWu9FqPD/6o8xSqEEELk1R6TVaXUNOBeoBDYlt1crZQKAF/RWn/Q59Hlwf0dHXyQLWkLZzL8xO3Glqf1/LYBN0ajNCYSmE0mLJkMZ374IbXt7XlfAqdLBni/pYX3OjqIlJcT8Hqpi0ZpTiSw2+0A+MNhKCiAYJASi4W2jmwjyY4OSkwm47JSRuMns5m2UAjsdohE8MXjFGiNOxhkst3OyHQa+/btHF1Swsh+TL56SvZG+3xcM3fubkmsP5Xi2VdeIWYykbJamXfqqXiA+lSKl5cvJwmYgePmzqUMYx3Y/3z4ISqVwp5Os+CEExgNOGw2mtzu3Y5PURH+GTP40UtpMmkz6bQikYDXXoM5cwa2QdZGjCT17ZxtXQnB2MZGTlqzhnl5Kg8VAysN/AxIu1wQCuGJRpn/ySd5K/99KBDgnewcbLPWfCmRYG6e5pM+B2zKzlUdXljINR4P42Wu6v5ydSWq0L3WuauXx7wOeDjbCXgDcEUvjyeEEEL0ib2NrD4IfDmnVAgApdTRwANA32RjeRQE/p4zyjR3zRpMlZWQh2Q1Bnw3EuleCsSayXCz1owcNYqquXPz+iEsDrwLvBgK8X40Sks0ChYLBAKUKEVbdj5lh1K4Xa6dRg3D2XUS9/tyKGQku1qzOho1AnA6MUejzAmHmZxKUdbQwNySEqoH4INmT0msz+dj4Vln7Ugys/+/E0pLmTJr1o7tXZ1vS0s5Ys6cHdtzRr/3NCLq8/m46CL4wx8gkTC+C5g/v8/u5j6919LCnxIJ6kpLu+ekdjnWZuNkpxOH1UpVnspDxcB7FPgwm/CVFhfz1XCYY/P0/7sVo860e73W9esZlaf1WluAB2Ix/E1NoDVHrF3L+COOkOfl/tuglLqZ7H8RcAnG91QHTGu9DOj9kLkQQgjRx/aWrLp2TVQBtNbv5uFb3X7xFIDTaYwwhkIc3tBA1fTpeTn274CNySRojSWdZsEHHzByzBiOPPLIvBwfjC60f+js5N/pNEmLhbb2drTe0eciN9kEcMViVJnNJFpbKUgkKMhkmFRby5YNGzCl0yilmDBhAmvXrSMNpKxWRowbx+rGRqIWC2GHA+10dn9gJedcaaVYFovxVjgMTifWSITTgkFO9HiYgTH8PpD2lmR+mu17M2cOvPyyMaI6f75xuT81AO8A/w6Hebvr/93v755zOxu4ABgLUFZm/IiDwnLgTzlzs+esX8+xhx2Wl4QvDdwRDhPPlv+Wd3Yyc/PmvK3Xei9G8zK0pjgU4rAtW2goL5dkdf9dCdyG8ZamMFYWkpFQIYQQh4S9JasvZtd1+xPGF+8AI4BLgZf6OrDeCmCUnnU1VbogFuOsPJWdPdXWxpNmM6H3LTT9q5D55SsZUdyRt/lXSeDejg6eSCYJ5CSjXamjKx6nqq0NXyjEiWPGsPXtt3FGIlhMJhYsWADDh+/UcdZvNu982Wrd+bLJZFwuLUVnMjz5+uu0OJ20eL20eDw0er20dZXEZhPZpMnEm5kMyzHWRK0MBJhns3FqUREjGNg5r31pzpz+S1I1xlIf72R/uv4IO1KpnUbDx7e28o2qKkb3T1iin3VgLEEUzc61Ht7WxpHr19NQXJyX17P7c8p/TVrz5UiE4886Ky/HfqGtjUVmM2aTCZTihFWrsColc1U/Ba11O/D1gY5DCCGEGAh7TFa11l9XSp0BnIPRYElhdBH8rdb6hX6K74A9CXRmS+bGWa1cMX58XhKoT5qa+EkoRPsyBxsu9kHSydOWOVzy5CR8vpJeH38b8J22NpYHg+ic7cXhMBO3b2eM309xJMLECRMYn+0063c6d1sOZW8daPd1+bzTTus+HkBDQwNuu53VSvFYfT2bS0vpdDp3WxN1WTzOYw4HNTYbs4Axra14t2yhZoisKzsYNPj9vNXWxpbhw1nl9dLcwz52u50gMMrvZ/bGjVw+fz7y6B6cMsAPQyE2pdOYTSYcySSnfvwxFpMpLwnfGuCv0P3lx6x16xhXWpqfzsJ+Pz/u6CBks4FSLCwoYOHYsUNmnemBppT6ldb6BqXUc7DT2wEAWuuFAxCWEEII0a/21Q14Ccbi4eu01oG+Dyc/EsCzOXOkKj/6iKbZs/PyAekvsRgJs5nQu3Z0QkFGkUKxfHkJZ/VyQZ9NwH9Ho6zLSVQrOjo4uq6O2kCAucccQ6ykZLcPe/nuPNtTMgswDpg9dizbGhqgtJQNNhvP+f34d+ms67fZeCIexx8OYyksZER9PZ+12Zh/kI+6floa44/rk+zPB+Ew70QipJxOCATw2Ww7zUctAI4E5ths1DocdFqtVM2fLx/8D2K/7ejgX9kGcSjFzWYzYw4/PC8JXwT4YTTa3f13WHs7M7Zsoerww/MS+93JJCGbDQ0443FOb2/P6zSJQ0DXHNU7BzQKIYQQYgDtrRvwl4AfY1QijlJKXa21frbfIuuFZUB7do6UNxJhpN9PQ0NDrz/ctQJLKyqgqQn30TFaLWl02kxBgep1s516jLVa6zs70YA5k+GYtWs5YutWJk2cyPhjjx0USUluIjsdmAc8/vrrbCwtZVNFBUmfDw3dy8MkzWY2lpVxv1I8DhRjdOYa2d5OSX09kysqqBwE96uvpYFGjDV/lwcCLI9EaCouJuZwdO/TkUqRMpl2SvxLsqPUR2M83vaunWW91IPeG8DjsKPp0YYNjCkszEvCp4H/FwyyItuczZZK8dVolNl5Kv99H1heXg5+P0prTlizhrGzZvX6uIcSrfXS7K/TtNa/zr1OKXU98Hr/RyWEEEL0L9NerrsBOExrPQdjPbeb+iWiPHgLo1QSpRjr92POU8ncY0Ay23H3qFlpnn6qkx/+UPHyy72bx5gA/qetjfVNTcaan6kU5y5ezLStW5l37LHMmzdvUCSqPfH5fHz+tNO4pKqKu2tqeMpu54fAQqXwxmLGKKpS3cvqtAP/jMf5YTDIjV4vnwkG+WYoxJ8xll9pood6tyEkjLEOxHNtbfx040ZuDgb5GnAecA3wg3icuzs7eSuZ5JPmZuLxePdtu56znliMw+vr+UEqxV+Ab2D8Adp7OJ84OK0D/l8sRjqVAqWobWnhmPXr8zbX8yXglZxO6cevWsWIPK3XGgT+XzRqfNlSXMwJFgs3zJo1aF/DhoDLeth2eX8HIXaora2lpaWl3897y3PP8e9ly/a6z62PPMKdTz+92/ZAKMTdLwz6GVyin83/7ndZUlcHwJm33UYgFNrv/XMt27CBF5Ys6fE2r338MQtuv32fsVx44YVMnTqVX/7yl/zqV78iEonsxz04eLjd7n3uc9dddzFp0iQuvvhi/v73v7Nq1aGxRPbeyoATWutmAK31BqWUbS/7DhpJ4PVYjFg8TklxMZ8pL+foSZN6/UEpDjyfU1o84cMPmTlnDgt6WfoL8JvOTlZkS3/NmQwLlyxhutvNjCFS4rlr2fA0YJrXyyXRKMubmmiprmazzcZyIMSOUVcNRK1WFqfTrM05ngeoDIXwtrYy3utlfHExFUAFA5uwZTAad7VhjLKva2+nrrOTVEkJIY8HP8b9i8fj+EMhMJmgvR1fQUF3OW/ufVdaQyTCVJuNCcAEm41Cu51oaytVY8fiKy0dmDsqBlQ78L1olK3NzUYH3UiEr8ViHJGnBnGfAPexYz3eyfX1TGxqoioPI58a+GkwyCfZEVtXIsF1hYU7LQ8l9o9S6kLgIozKptyqJg/GS5AYglKpFBbLvmZg7S6dTnP72WdDdfUBnTcQDnP3Cy/wlTPPPKDbi4PfCz/4wQHfdtnGjSypq+PMGQe2IlZjYyNvv/02mzdvBowvhC655BKcTucBx3Qwuvvuu3nxxRcZNWoUl19+OQsWLGDy5MkDHVaf29srZrVS6q49XdZaD8ruhC+3trIpu06oNxZjdllZXj7gLcVo2ITWFIXDVDc356W0uAn4eyLRPZo4b80aKjs7h0yiujeVPt9OJb4ZjJry17XmmbY2thcWkrRYukddu7TE46xsazMuBIP4nM7uZM8DlGd/7J2dZFpbGVZURFVxMQ6MZNaR89PZ1MT2xkYqKispraggk40jnf23sbmZLS0tuCoqsJeWEsIYHQ1lfxpDIeojEZIeDzGHg0w2xng8jj8YNC7sIyGNxWLYbDbKgHFmM61btlDS2UlVMMgXTjiBytw7L+W9h7QkxtyL7YkEaE1BKsWZH3xA+eTJeXk96ARuiUZpTSSw2+3MKivjqrY2RuYpEX4ReDN3xHblSjpHjpTn9IF5G9gOlAE/z9kexFjNSPSxcDzOf511FvX19aTTaW6++WbOP/98AP7v//6P5557jmQyyeOPP87EiRNZvHgxN9xwA9FoFIfDwQMPPMCECRN48MEHef7554nFYoTDYW655RZuueUWSktLWbt2Lccddxx33303JtPOxW61tbVceeWVLFq0iK997Wu89Kc/seD44zlv7lxeWLKEb/zhD5R5vUwfM4YNjY3845ZbAFi1ZQvzv/tdtjQ3c8PChXz97LP5zp/+xPrGRqZdfz2nTJvGz66Q1Y8OJeF4nP+6/XbqW1pIZzLcfP75nD9v3k771H7pSyz5xS8o83r54aOP8vDrrzOirIwyr5ejxo7lm+eeC8Dj//kPX7n3XgLhMH+47jpmjx/PLQ8/TDSR4K3Vq7npvPN2O3Z3HOEw1113HR9//DGpVIpbb72Vc845h1NPPZWmpiamTZvGueeeS0NDAyeccAJlZWW8+uqrff74DDY/+9nPeOyxx4jH45x77rncdtttXHPNNWzYsIGFCxdywQUX8Oyzz/L666/zox/9iCeffJIxY8YMdNh9Zm/J6rd2uby0x70GmfezJQwaGO33sz0SycucyBeDwe6SvHGNjXkrLf59Zycd2VKHYe3tHLZ1K8cO4rLf3jBhNGkaV1TE2VVVbGtowFRdTafNxjqMRHY90LGHZA+MT2lBYHU8jj8QMEYvd0lou8TjcfyxGBQWQiyGLx7faZ94PI4/GjXW4g2H8bndu1/f1mY0t4nFutczhT0npAXAaKuV9tZWioJBSiMRPjdzJtMAF4DbjX/8+N26NwvRNSr5XiaD2WRCAad/9BGlsVheXmsywK2hEKuzz+lYOs3PPR4Onzat18cGeL+5mTutVsxmMyjF4Vu2MLa1lar+XpD4IKG13gxsVkpdDDRorWMASikHUI3Rk0/0oZdWraKqqornn38egI6Oju7rysrK+OCDD7j77ru58847uf/++5k4cSJvvPEGFouFf//733z3u9/lySefBOCdd95h+fLllJSU8Nprr7F48WJWrVrFyJEjOf3003nqqac477zzdovBbrfz1ltvGfH82pi6HEsk+PLdd/PGj3/MqMpKLvzZz3a6zZpt23j1jjsIRqNMuPZarj3jDH566aWs2LyZZb/+9W7nEAe/l1atoqqkhOezX2h0hMN73HdJXR1PvvMOH/7qV6TSaabfeCNHjR3bfX0qnWbxz3/OC0uWcNujj/LvH/6Q2y++mCV1dfzmmmv2Gscdd9zBiSeeyB//+EcCgQCzZs3i5JNP5tlnn2XBggUsy5a5P/DAA7z66quUHYLrxS9atIi6ujoWL16M1pqFCxfyxhtvcO+99/LSSy91Py51dXUsWLCgx9eNg83elq55aNdtSqliIKC1HrTTCjtLS6GtDaU1lcEgVRMmHPCxfnXLLQS2bCEcjfJKKkVGKUxAMhrlE7ebe958s8fbFdXUcMN+1OdHgZezoxAAR9fVMXnSJCZNmnTAMQ8Vu5YOH5f9VwMrEgke/vhjWp1OQk4nvtJSIhidc1PZ/faULOba1z4Hcn25zUYJYDOb2dbQgDsSoSgWY+Hs2UwBigDldOLvWut24kR8u7zY5rt7szg43N3RwRM5nX+vMpmYO2oUVXPn5uX58giwJJ3ufk6f8tFHpGproby818fe7PfzrbY22p1OUIopbjfXu915G7E9xD2GMW29Sxqj99bMgQnn0HF4VRXffOgh/ud//ocFCxYwL2e06LOf/SwARx11FE899RRgJLOXXXYZdXV1KKVIJpPd+59yyimUlOxY3m7WrFmMHm2sjn3hhRfy1ltv9fihs2skN9ea+npG+3yMqjTqci487jju++c/u68/a8YMbFYrNquVisJC44tdcUg7vKqKbz7zDP/z4IMsmDmTeYcdtsd931q1inNmz8aR/Tx09i5TRD6b/QLyqDFj2OT3f6o4Fi1axLPPPsuddxpNzmOxGFu2bMGR02zyULdo0SIWLVrU3UwxFApRV1fHcccdt49bHrz21g34FuAxrfWa7HzVFzGmI6aUUhdprf/dTzF+Ki1uNz6rlVgsxvmzZuHrxQexwJYt3Fpby9qmJkYXFABgS6U4I5lk2LBhe7zdrZs27dfx3we02QxAaTBITWcn4w/hJyMYy9ocXl7OjTNn7hh9zE461xjz+ZqBNek0/1y3jqjZTNJqZVxJCVaMLwC6ftoLCkgkk6A1JqCqoAAXYMYY5S21WtkaCmFJpXCkUkwrKWEYxgioC0hmMny4fDmOWAxPIsHnTz6Z6sJCI1C3G//o0TtilIRU9MILwN+gO5GcXF/PMQ5H3pZ6eam1lfssFswmEyjFjPXrGd3WRtUxx+z7xvvhN8kk7U4nGrCmUnyhoYFZeRqxFVi01omuC1rrhFKqYCADOlSM9/lYunQpL7zwAjfddBOnnnoqt2RHprq+2DSbzaRSxteoN998MyeccAJPP/00mzZtYn7OMgEul2unYyul9np5T7cD2Nd4gc1q7f7dbDKRSqf3ur84+I33+Vj6y1/ywpIl3PSnP3HqkUdyywUX9Ljvvkajup5fZrOZVCazj713ObbWPPnkk0zYZSBp035+bj4UaK256aab+PKXvzzQoQwaeysDPh/4Yfb3yzDyiHJgPPAQMOiS1SCwLR4nFovhttk4oiux6KW0xwPZOWSuRAKP15uX4/47GKStvR3N/2fvvuPbqs7Hj3+OJGvY8h6KncTZw2QPEkIYgQAhkEJpKdDSH6NldgEtbemgpXzhW7oXFEop0BYKpVDGlzJCw54hm+zpJI5jeUiWNa/W+f1xZcdZzpJjO3ner5dese69uueRovXonPMcGOH1cvLJJ0uCk7GvZE8BJZnLqJISTho7dleymJ+/90lcLrz5+buO2fOXu9xcvGVl5v4BA/Y+R3Exp0+btt8hu5KQimx4H/idYXRMMxjU1MSZa9fS/0gXbs5Y3NTE7cEg8czw3JNzc7mmqIgBWer1fBNYvscyNZOmTDni84oOTUqpC9qXjlNKXQgc/VK0x6H61lZKcnP54he/iNvt5tFHH+3y+EAgQP/+/QEOeOzChQvZsmULgwYN4p///CfXXXfdQcc1esAANnu91Hq9DPZ4+GdmmHBX8l0ugtHoQbchji31ra2UVFTwxTPOwO1y8eiCBfs99pQTTuD6++7jexdfTDKV4j+LFnHtOed0ef6DfX7NmTOHP/zhD/zhD39AKcXSpUv3+aNsfn4+wWDwuBwGPGfOHG6//XYuv/xy3G43O3bsICcnh4o9aj+0P0bHgwNVA27/gWUO8KTWOgWsUUodeim7o2BpczPeSMQsTBIK0Zyl4kqGy4XLYiGRSDDA7T6o8tIHY1ko1PELaXVzM7FOQ4TEgR1MsnigY450vxBHYiVwdyxGQ6bKuKetjZuiUcZlab3TVuB/LBbiVisayI9G+YLfz5Qs9djWA7/qVH19ciDArVOmyGsmu24AHldK3Yv5m9124IqeDen48El9Pd+eNg2LxUJOTg73339/l8d/5zvf4corr+TXv/41Z555ZpfHzpgxg9tuu41PPvmE0047jYsyxWsOhsvh4I833MC5d9xBWUEB00aOPOBtSgsKmFlTw9ivfY25U6ZIgaXjzCf19Xz7T38yn8tWK/ffeON+jz1xxAgumDaNCTfdxKDycqYOH07hAarynjFuHPc8/TQTb7qpywJLt99+OzfffDPjx49Ha83gwYN58cUX9zruuuuuY+7cuVRWVh53BZbOOecc1qxZw4zMcGu3281jjz22V7J62WWXce211/L73/+ep59++pgusKT2N5xEKfUhcA3gBdYBU7TWWzL71mqtR3d5YqWcmOvaOzCT4qe11l3WxZ46dapetJ91mg7G39at41dOJxoY0tTEHVbrEQ2ju+Oqq7hj8GBei8fZGI2C1ozwegnG49z21luk0mmumTyZ2045Zffb1dZyxwF+Vd3q9XJhLEYa89vHjQsWcFGWvqAKIXq/j5ua+KHNRiidJhQKURQO89mFCzl1woSsDP81gJvCYT6JxQiFw9iSST63aBFXn356Vt5nYsBXIxEWNTebVdKjUf5aXMzgXvQeppRarLU+vLUUehmllBvzM/uo/5R+pJ/Nu7n//sNefuWoq6uDLr7UH64333yTX/7yl/v8kt6lTo9dKBrF7XKhtearDzzAiKoqbrnwwqzHKrpRNz2/9ukQX3ftz6+IYXDa977Hg1/9KpOPNBnq7vvbl95b9nQ0nwu9wKF+NnfVQ3oT8DTm0N/fdEpUzwOWHsS5DeBMrXVIKZUDvKuUellr/eHBBneo8svLIRRCaY09naZq4MCsnDecGQIMoJJJbnntNV6/+moGFBRw4p//zAWjRnHCIc6NXdnUhM4MOy2MRBgzYoQkqkIcJz5pauJmv5+QwwFKkRuPc8GSJeSlUlmp/KuBO4NBPsisd6qA6wMBLsxSoqqBXwMb2ueEp9PMWbYM/6hRvSpZPVYopc4HxgDO9rmNWusDV/ETx6w/z5/PX19/nXgyyaShQ7n+3HN7OiRxDLnuvvtYvX07sXicK88888gTVSGOQFfVgD8C9uo91Vq/hFkPpEuZIcShzNWczKVbqwi7SkooyckhHIkwsro6a8mfxeGATBXN9c3NDC8pYWhxMQCXjRnD82vXHnKyWtivH2SGLLsSCUYexDAeIUTf1wj80GIh5HCgAXsyyc2trYwcMyZryxk9yu7rnZ62Zg0nZnFI+wOBAK9AR8GmM1avxhMOZyXRFrtTSj0A5AJnAA8BFwMLezQocURmzZq1W/Glw3HLhRdKT6roNv+49daeDkGIDt0691QpZcVcn3U4cF8mAe42Da2t+NraQGvqtm3Dq1RWvpwlO/3dEo3Sv1MhngEFBXy0Y8chn9PoVPnPdojV1IQQfdPqxkZ+YLHQlulRtaVSzFu2jFlZWp4G4Am/n0cslo5EcmJtLRN37KAqS/NUX/T5eCAU6lhi5+KcHOZVVVE1daqMDukeJ2utxyulVmitf6KU+hXw754OSgghhDgaujVZzRRkmqiUKgKeVUqN1Vqv7HyMUuo64DqA6urqI2qv2eeDTCERtKa+vj4rX54SmaFu5mn1bmungTnn9JBjbWyEzIT1NGQtViFE77SmsZEbfT5aXS6IRCgvLuZLO3YwO4uJ6istLfw8FCINoBSznE6uyM/PWuXfLcBvlerosa1ubmauUllbYkfsU3uJzYhSqgpoAYb0YDxCCCHEUWM5Go1orVsxVzjYa1KF1vpBrfVUrfXU8iNcnL66uBiUQgGG3Z61IWl5NhtkekJL3W4aY7GOfXVtbVTta9mUAxjaqRx3fXGxDJ8T4hjmA263WGh1udCAJZ3mqvp6vjB6dNYS1ZXAL6xW0pjzLcoDAT5fX8+USZOy0kYAuAuw5OaCUhRFIsz95BMGyntXd3sx84PvL4AlQC3wRE8GJIQQQhwtXSarSqlCpdSlSqlvKqVuyfxddDAnVkqVtx+rlHIBZwFrjzTgrgwqLsbj8VBYVET12LFZ+xJos9tx2O1YLBamjhjB5kCALX4/8VSKJ1et4oI9Fjc+GEmfr2MCrwZafL6sxCqE6F3WNzZyQ1MTLZmhvxatOW/FCs4uKspaGx80N3OL3086s5ZqYTTKp5YtY0hlZVbOnwRuD4fZEAgAMKiigu+lUlx87rkyIqSbaa3/R2vdqrV+BhgEjNZa/6in4xJCCCGOhv0OA1ZKXQH8GJgPtE/KPAP4X6XUT7TWfzvAuSuBv2bmrVqAp7TWh1in/dAUAIl4nFgsxlKXK2vnbTAMDMMAYFMqxd0zZzLnscdIac2XJk5kzB5rHx2Mlo0bYezYjusrtm/nhJqarMUshOh5axsbubGlBV9uLkSjlBYXc8XOncydPj1rSd7ipiZubmsjlhkBMqSggK8GAow/55ysVf69KxjkrUxl4TbgHrebczu9f4mjQ2ttYFbaF0IIIY4LXc1Z/QHm2qqtnTcqpYqBj4Auk1Wt9QrgqE5kqt+wgRa7HYBYLMaaHTuoyUIC6A6FiFqtAFi0ZlJBAeu//vUjOuewoUPp19pKQ6Z3xchSD4gQonfwAt+3WPDl5qIBpTWX79zJVVms/N0A3GGxELPZ0IArHuf6ujrOHjcua208ArzeqbLwjA0b8JSWQmlp1toQQgghhNiXroYBK/a91Eyaw6sp1O2CGzbsdn1tbW1WzjvasuthSlit5GYKIx2JmpoaJhQUdFz/sLERr9d7xOcVQvS8JU1NXNPSgr/T0N9zV65kXmFh1tpowfxF0XC7QSnsqRQXLl3K5COc+9/ZI62tPBoIdFQWHltXx9StW2WO/VGglJqZ+dfR07EIIYQQPaWrntW7gSVKqfnA9sy2auBs4H+6O7DDMWrIEIoiEVozyaQjSz0YQ4qLWRiNYhgGUYeDxtpaioqKcLvdR3TeoakUymJBAzuKiqQisBDHgA+bm7mp07DciqIirti5k3OyuLRLAPhWJMLmRAKn08nAigqu3LKF0047LWtt/Nvn47edlqiZ5XRyRW5u1ioLiwP6PTAF+ACY3MOxCCGEED1iv8mq1vqvSqkXgDlAf8ze1DeB72mt/UcnvENTU1PDNK+Xt9JprFYrwZycrJw3F8jBnCiUtFiI2mwEg8EjTlZnFhbyQDQKWrOzqAh7PJ6NcIUQPWQV8COrtWNYbk4yyTU7dnBpFuej+4BvRiIsbW4GrQliziGdk8U2lgJ/sFg6hv729/m4HJgiS9QcTQml1CNAf6XU7/fcqbX+Rg/EJIQQQhxVXVYD1lr7tdZPaq1/pbX+ZebvXpmothvpcBBPJIhGo/zf6tVZGVqrgH6ZKpsAIZeL/MNYrmZP48rLGVJQYC61Y7Px3KpVMhRYiD5qfksL32htJZHpUXUmEnxmyRJmlZRkrY0W4PvA5k5rP5+9fDkV27ZlrY2NwP8COS4XKEVpKMS85csZJPPqj7Z5wKtADFi8j4sQQghxzOtqGPB+KaUe1Fpfl+1gsqGgoQEyaxlmc2htf7udHVqTSCSwVFYeca8qmEnw8FCILZnrG8vKZCiwEH3Qv/x+/jcUIg2gFIMLCriuro6pp56atddzE2aP6tZEAqvFggUzUR3V1ETV9OlZaWMHcFs0SmM8jtPppKa8nOtaWxkjS9QcdVrrZuBJpdQarfXyno5HCCGE6AmHlawCf8pqFFk0o7gYSyxGGvDl51PgdB72uYqqq7kjU6TJG4vxrleTbLLgLE1wTj8rrv0sj1NUXX3Qbcx2uXgtHAat2eTxIJU0hOg7NPAE8IDFQjpzvSAa5auBAOdksSJvI3BzNMqqzNBfC/BtrakZOJCqLC2DsxP4ZjTKhqYm0BojmeSeggImjx9/xOcWR6RFKfUsMBPzKfYucJPWuu5ITppZVm4RsENrPe/IwxRCCCGy77CSVa11rx2CNMjj4aRwmBWxGADrlGLYYZ7r5jvv7Pj7L4+u4083jkDHFcquufQvW7ntC0OOON7ZpaX0y8mhwe+nNTeX5xYupLSkRHoxhOjlksBPg0FeS6c7quWWt7VxwbJlTDj77Ky1sxNz6G9dPG4mquk0c5cvp2bQICZlaQ6pN9PGzkwbtlSK85csQQ0fDlmsLiwOyyPAP4DPZa5/MbPtSJ9kNwFrMJcoF0IIIXql/c5ZVUrZlFLXK6VeUUqtUEotV0q9rJS6QSmVncpF3WR0MkkoHCYUCvFkluatbt5QhY4rSCt0QvHKIndWzmsHxra1dVxfWVVFfX39EZ9XCNF9wsC3QyGe9vsJtLbi8/uZ6XLxP8kkl519dtZ+bNoB3BSNsimzfIxVa85ftoxhLS1ZWz6mCbilUxu2dJp5S5fSv61NlqjpHSq01o9orZOZy6PAEf2CoJQaAJwPPJSNAIUQQoju0lXP6t+BVuAOoH240QDgSuAx4NLuDOxIeHbu7Ji3uqm8nB1ZmAc6b14+v/y1Jp7QqBxN64lh/u/FBXwqC8s4XOh08t9IBLRmXWUlSqoCC9FrNWO+Ka5IpTqq5Z5QV8fVLhcnZrFa7nrM+aObMsNybek0P9SaIYMHU3XyyVlJiJuBWyKRjuHFVq3NNoYOpaqqSkZ49A5NSqkvYo44B/g8Zq2tI/Fb4DvAkVcKFEIIIbpRV9WAJ2utb9Raf6i1rstcPtRa3wj06vULTi0uxplMojAr98YGDjzic86YAa+9rhj+/RhDH/eSPllRX1CQlV7QU8vKOCE/HwUkrFYe2bZNqgIL0QttBL4ajbIi0wuJUpy0cSNnrVlDdRZ7IRdjDstt7jQsd96SJQwJBJg0aVJWkkhfpo1tmcrClnSa85YuzWobIiu+BFwCNGCOCr84s+2wKKXmAY0Hms6jlLpOKbVIKbWoqanpcJsTQgghjkhXPat+pdTngGe01pkil8qCOW+mVy9f09/jYV5uLq9keigX2WycnIXznjYDrh6T4J+tCdCwauBArs/CF1QFTPf5WG0z/zuWVFezXaoCC9GrvAn8MhZje6an0wLcAkwoKaFq7NisvV7fAH4eixE2DKwWC85kknmLF1MVDGZtWK4fs0d1S6aysFVrzl2+nCE+H1UnZ+PdUmSL1nobcEEWTzkTuEApdR7gBAqUUo9prb+4R7sPAg8CTJ06VWexfSGEEOKgdZWsXgb8DPijUqo9OS3C/C51WTfHdcSmxuM8namy+69YjEtiMfpl4cvk5woKeNPhIBwK0TB8OOF0OgvRwkVuN0+EQkRtNtpcLtY6nUzNypmFEEciDfwuEOBZIJVMgtbYk0nmLlvGhKFDs1bkCOA54I+GgbexEbQm3zD4mVIUjhiRtWG5zcC3IhGWdaos/B1g9KBBVM2YIT+SHeO01t8DvgeglJoF3LpnoiqEEEL0Fl0NA+6ntb5Ua10OzABO1lpXZLZt6eJ2vULp9u3YEwk00OZ08pY/O53Bw4HqVIpQOExrOMyvV6zIypDdQR4Pn3U6UZhrE/wlGqVehgIL0aNCmIWUHg0ECLS2EgqHKQmHueTDDxnU2pq1nk6NWd71L0AsFgOtKQmF+OyHH1IYCmVtWO5O4LvAlszQX6U1Zy9fzmi/X4b+CiGEEKLX6SpZ/WP7H1rrlswC5X3GoMpKanbuRAEoxcr+/bNyXgVMrK/vKKyydOBAtmWpeu9Jzc3kpFIAtOTm8tDWrTJ3VYgesh34JvBxp0JKgxsb+b7fz1knnMC8LBRXA3MJnP8JBnkkEMAwDJxOJ1WBAJ9ZuJCCRCJrCfGipiau9fnYnmnDqjXnrFjBqKYmqfp7nNJavylrrAohhOjNukpWj4hSaqBS6g2l1Bql1Cql1E3d1da+eDwevj5qFIVFRZQUF/NeKsXGxsasnPvC/HxciQQAIaeTVSUlWTnvqH79mFpb23H9P8XFPP3qq5KwCnGUvdzSwpf9fmoziR1KceLmzXxq+XLGDx+etV7IIPDNcJhnMkvgeL1eJicSPOjxcMrEiVlLiN9vbuarbW1sDwbxer3Yteae/Hw+P3Bg1toQ3UMp9cNOfzt6MhZx7Kj1evnHW291XH/zk0+Y12lt+YO5/divfe2Ax337kUcY89Wv8u1HHuHRBQuobznSQtaiL3O73Qc85ve//z01NTVcfvnlPPfcc6xevfooRCZ6s67mrA5VSr2wv51a6wMVfEgC39JaL1FK5QOLlVKvaa2P2rPuxPJyxoTDvN/SAlrzq40buSMLhVAGejxckkjw11QKDfwtHGaO10vlEZ7X4/HwA+BL8TjedJqo3c5/a2qYIcWWhDgqksC9gQCPZOa7EwwysKKC/3G7GVhURFUWE7s64E5gbWYerAbG1NVxcUsLAydNYmCW2vkE+LHVSsxmQwP2ZJIrt2zhnJoaKC3NShsi+5RS3wHewaz+e1dm8wfA5B4LShwzahsb+cdbb/GF00/v1nb+9MorND32GI6cHGZ9//uMra6mSt53RBf++Mc/8vLLLzNkyBCuuuoq5s2bxwknnNDTYYke1FWy2gT86nBPrLXeiTlFCq11UCm1BugPHNWfSCbU1/O+3Y4GllVXszVLid+0lhYez88nYbXSkpfHc8EgN2bhvAM9Hr7V0sJ3w2G01myuqGCRUvLtRIhu1gT8HPgIOpLHgmiUGzZtYt6YMZClERQAy4Efx2L4MhV/UYqT169n6tatDJyXvVGZHwP3ACo3F4JBXPE4Fy5dymmnnZa1NkS3WYdZfX+oUuodYA1QqpQapbVe17OhiZ7yP08+yeNvvcXAsjLKCgqYMnw4t150EZt27uSrDzxAU1sbuQ4Hf/7a1xg9YABX/fa3FOTmsmjjRhr8fn5+1VVcPHMmt/31r6ypq2PiTTdx5ZlnMmno0I42wrEYX//Tn/hk61aSqRR3fP7zXHjSSfuNKZVKcdvf/sabn3yCkUjw1fPP5/pzz+WCu+4ibBhMv/VWvnfxxSzauJHLf/1rXHY7H/z857gcMlDgePaLX/yCp556CsMwuOiii/jJT37CDTfcwObNm7ngggu47LLLeOGFF3jrrbe46667eOaZZxg2bFhPhy16QFfJakhr/VYX+w+aUmow5tqsH2XjfIdiXkEBf2trI2y3E3E4qC0rY1oWzjuiXz+mrF7NR0OHglK80b8/V2OuA3Ckzi0t5YN4nOficTRwv9YMa2lhtvwaKUS3WAj8NBajpVPyOLipiXNWreLEOXOy2tYrwG9jMXZmKv7a0mm+qxQ1paVUjRuXtZ7bt4B7MkvgOJ1ORpWXc/WmTUw+7TQZqdE3+DGXwp2VudQAc4DbMgmrrDF0nFm0dSvPfPABS3/7W5KpFJNvuYUpw4cDcN199/HAV77CiKoqPlq3jq/cfz+v3303ADt9Pt695x7W1tVxwV13cfHMmdxz5ZX88tlnefFHPwLMYcDt7n7qKc4cP56Hb7qJ1lCIabfeylkTJ5Ln3Pc3nL+89hqFubl8/OtfYyQSzPzudzln4kRe+OEPcV9yCct+9zsA7n/5ZX559dVMHTGiOx8m0QfMnz+fDRs2sHDhQrTWXHDBBbz99ts88MADvPLKK7zxxhuUlZWxYcMG5s2bx8UXX9zTIYse1FWympWKv0opN/AMcLPWum0f+68DrgOorq7ORpO7GeDxcI3DwaNKYbVYeMowOM3rPeJlbNqH7H7NZiNkt9MQj/NwPM5XCguzEvd5Xi/v5OTQ7HaTAn4cj5Pb3MyMsrKsnF8IYQ77/Svwz07LxViAL1utnGKx0H/OnKwldmngYeB5IGIYoDW5hsG8pUupGTkya0vgaOBp4M+d7pOOxfhVSQnjxo7NShviqDgX+DEwDPg1Zod8WGt9dY9GJXrMu5s2ceH06R09kp+aZv70HopGeX/tWj73s591HGtk6moAfPqkk7BYLJxQXY03EDhgO/OXLeOFhQv55XPPARCLx9nW1ETNwIH7PX5FbS1Pv/8+AIFwmA07dzKkX7/Dup/i2Dd//nzmz5/f8bkXCoXYsGGDjPoR+9RVsvpTpVQ/rXUDgFLqCuCzwFbgDq2170AnV0rlYCaqj2ut/72vY47GwuOXFhXxfCxGbWMjPq351apV3DplyhF/CR3k8XCF389dfj9ozUNaMyWRYHoWEsrBlZVc8NprPHXiiYScTtricb4RjfIzpTjzGOth1UAMiALbm5rwNjRQ1a8f/crLsQBW6Pi3yeulpb6e/llac1Icv1Y2NvJzrWkoKupYLiYvFuPcFSs4NVNEKVvCwB2hEB+lUjidTpxOJ45gkPOWLMlqxd8U8ABm7237fSoOhbhw8WKS48ZBeXlW2hHdT2v9fQCl1HLgMczRSeVKqXcBv9b6Uz0Znzj6tN73V6S01hTl5XX0YO7JkZNzwHPs2c4zt93GqAEDDjquP1x3HXMmy4QlcXC01nzve9/j+uuv7+lQRB/QVbL6J+AsAKXUaZhTn74OTMRMLrvsk1dKKcxlA9dorX+djWAPVx4wtaGBWqXQwPvDhlG7c2dWkp2htbV4rFYaCgtJKcUvteYx4EhnYng8Hj5/9tkUrlrF/dXVxHJyMKxWfpBIcIvfz+eKi81leXqZJLC+sZENzc3YPR4spaX4Mcez1QWD7AyHycnPR+XlEQUigIGZsBqGgTcahYICiEbxGAaOTnNaDMPAaxhQUoIrGKQmP5+q3FwKgEKgCCgAUj4fyYYGJpeWMkgSWrEHDTzj9/OzUIi41QpeLyXFxQxpbmb2J5+Qm0pldSmXLcDtkQif+HygNQGlOL+4mOvLy/GNG0dVln54iQG375EQ5/v9zF26FFc6LcvT9F2vaq0/Bj5WSt2otT5FKSVDbI5DpwwbxvVPP833Lr6YZCrFfxYt4tpzzqEgN5chHg//evddPnfKKWitWVFby4QhQ/Z7rnyXi2A0us99cyZN4g8vvsgfrr8epRRLN21iUhdzBedMmsT9L7/MmePHk2OzsX7HDvqXlu41bLirNsXxZc6cOdx+++1cfvnluN1uduzYQU5ODhUVFbsdl5+fTzAY7KEoRW/RVbJq7dR7einwoNb6GeAZpdSygzj3TOD/AZ90Ov77WuuXDjfYI/FFl4v/BINEc3IIuVws93iYnoXzDqiqYs7rr/OP6dNJ2mw0O538ZPt2brLbj/gLqMfj4Tyg6c03eW7iREJOJ2HD4O54nAWtrXw9L4+xe7ywu4MGQtCRdLZfagMBtodC6MJC4m43fqDZMPDGYpCXB+EwHrcbh8NhJpqZHmjicTw2226JKOzqCdKA0ppYLLbbMZ33R3Ny2JRIsOfiv4Zh4A2FIC8PFYsxIRJhTG4uQ4EhwFCguJseJ9H7BYB7gVctFuJWKxqwpNPMa2ri8gED2GmxZC15BHjG5+OPFguxTmu1Ttm8mYsLCxk0aVLWfkzxAbeFw3zUKSH+THEx11RW0qh1Vu+TOLq01t/pdPWqzLY+te65yI4TBw/mgmnTmHDTTQwqL2fq8OEU5uYC8Pg3v8mN99/PXU89RSKV4rJTT+0yWR0/eDA2q5UJ3/gGV82evVuBpdsvvZSbH3qI8d/4BlprBldUdMxt3ZdrzjmH2sZGJt9yC1prygsLee7739/ruKtmz+aG+++XAkuCc845hzVr1jBjxgzAXNLmscce2ytZveyyy7j22mv5/e9/z9NPPy0Flo5Tan9DQpRSK4GJWuukUmotcJ3W+u32fVrrrE9+mjp1ql60aFG2T9vhCb+f+y0WrBYLtmSSexMJRmUh2fN6vfw7GOQpjwdfJiE7c80absvSWoxer5cFy5fzYP/++DqtUWXVmimGweRolNlVVYd0X3Z4vaz3esmrqsJaVkYA2NraSm0ggLWkhHR+Pn6gIRqlyTCwuVx793J6vWbyqRQejweHw0EgECDQ2momnEBhURGFhYX73d7OAaholMatW9Faoy0W+ldXY3e5SGEOb4zEYuzYuZNkpgBOe5udHagdMJPVoUBJIEDpzp2cXlzMAPkif8z7APhVNEpjPI7VYsHn91MYDnPOqlVce+qpWU3mEsCv29r4R2trx2skJ5lk9sqVjGxqyuraptuAO4CNnZ77Uzdv5mtFRUzO4lDmvkgptVhrPbWn4+jrsvrZfP/9cJDDS3tcXR3ceGNPR7HL/fcTKi3F7XIRMQxO+973ePCrX2WyfIHvm47m86s3vO66+/72hvt4uHrbe003O9TP5q56Vp8A3lJKNWNOJ3wn08BwzA6KPueS4mJejURY2twMWvODxkbu1TorxZZu8HhYXV/P25nek9drapjS2soXs/CF1OPxMHvCBNpefpm3hw9nZabIQUopFjqdLHQ6+VM0SkVjI1VuN7laEwmFyHW7ycvLIxQO449EsLrdKJeLQCzGdsOAwkKIRPAYBgDetkz9K78fj91ubmtqMr9st7XtlhzurxfU5XSSSCTIjcXIi8c5saSE6swxqz75BIdh4NCauaefTjXgylwsAC4X3uJi6uvrzZ4gl2v3B8LpxJuby9b6evL798fhcNAGtGI+IduAbUqxqLkZv8tFa14ezn1UL/QD7xuGWWjC5eK34TDnBoOcnZ/PFMxh4+LYEcac0/CKYex6PivFp3NymGsYDMlyotqMOWdiodYdr5GSUIivB4MMHTiQqunTs9beCuBHnZbAsQCnr1rFuJ076Z/FJXCEEL3Ddffdx+rt24nF41x55pmSqAohjnn7TVa11ncrpRYAlcB8vasL1oI5d7XPsQLnbNvGUpcLDWyoqOD5tjauz8IXRwXcarWy1uejMT8flOJvlZXkrV7NyaWlWRkSfNHcuYxZv54Fixbx0dCh7Oi07qMGvNEojbFYZoMGw6Akne7o7SUaxePxEMtUIu2caLbfZl/bjF/9iry6Ogy7HYfTiR2oiMdxNTdjTaWwac3AigoKnE5yACMaJRKJkJubS8rl2lVWOhrFn9n+9ooV3Hznnfu8n109VgfaT0EB3gEDqK+vp6y0lJjDwSbMeYObM/8a7J5sx61W3kqnWYb5ghgPnARMB7K3sqboCQtaWvgdEHO7dyuiNHvVKj49ZEhWiygBvNHSwi+UIpn5oSSgFCMaGjhr9WpOmTs3a0mqBv4D3NtpCZycdJofAMMqK6nKQgE5IUTv849bb+3pEIQQ4qjqqmcVrfWH+9i2vvvC6X6zi4t5cfNmVlVVgVL8Z+BAPg1k42vdII+H+5TiuxYLrQ4HXr+f/3U4+NR773H9zJlZSVg9Hg8jvV5mr1/PO+vWsdHjoa6khJb8fBJW626V/pTWhCORvZJQp9NJG+CKx8lNJJhQWkq+1mzdtg2nYZCXSHDOtGkUaM1H777LR4sW8Z2yMkYOHYq70zDkUFUVwWCQ/Pz83bYfjDtqa4/osejKnglt5xXd0sBOYFEqxb+3bWNzeTltubkdPbBJYEnm8hvDoF9rK+fb7VxUXIy92yIW2dYG/C4Y5Olw2PyhJhympLiY0Q0NnLJ6NbnpNFUzZ2atvRTwYCDAn0IhNEAoRGVFBd8sKGBcSwv9s5ioJoD7gdfYfQmcTy1ZwrBRo7KegAshhBBC9JQuk9Vjkcfj4afALVYrofx8YsB3vF5+ClRl4cvkyIoK7gWuyRQ6MWw2nps0iepAgKuy9GW1c9K6fv16Ig0NbP34YyI5ORh2O/GcHLTWKKWYPGkSy5YuxZJI4NCaT511FtWFhfidTnb6fOZw20yi6R05ctcQ3MzyOMPOOovNTz7JyJEj90pI3W73ISepPc0C9Af6l5Rw0siR7KivJ1VayiaHgw+BTZnj2ufkerVmuWHwL6eTz7pcnIdZeVj0Thp4HbMMeV063fFDjSse58qdO5k7eDD1dntWCw55gV8BH2ba10CuYfDlLVv4XE0NZDF59AE/DIdZmUx2VPx1BoOcu2QJhVlcAkcIIYQQojc47pJVMHtA7wG+kRlC59WaH2zdyj2QlS+w/YGfpFLcHI8TtttJWa38rayM4KZNXOJ2Z+1LcuceRK/X25FoAruSTo+HqW73ruuZIkz9PJ695urua4itx+OhtLS0zyWlB6Pz/T0RuAxowkw6nvP7aUynSSuF0prGeJx/uFz8CzgTuBDY9/LooqfsAH4eDrO0UyIXUIrhDQ2csW4dc88558DDyA/Rsz4f9ysFmd75gFL09/k495NPOO2cc7LWDsB64IfRKOtaWnar+Pul8nKas7gEjhBCCCFEb3FcJqsAI4FZO3fyhMWCBpYMGsQToRA3Z+nL3rTych4EfqwUPoeDFr+fh2w23tq6lZ8pxbAsLzmz55fwPf/O9pfYLz3/PC+uX09FXh4rv/IVAJY1NHDDiy8SSyaxWSz88fzzmda/f1bb7W7lwKeAaUrx9Ntvs6qykuWDBnUME04Ar2Yuo0Ihpm/fzmklJZIk9KA48DTwWCzGjk6J3Jjycr6Zl4cnJ4eqTKKaLRHgF8Eg/w6FzGHGwSCVFRV8taCAKS0tDMhye69jLrnTHI+b7QGnrF3Lp8rLGThpEgPl+SeEEEKIY5ClpwPoSVfm5jK0qQkFoBQvDxjAu1k8/9jych4uK6N/NNoxHHGDx8PNVitLs9hOT7hq4kRe+eIXd9v2ndde48enn86yG27gzjPO4DuvvdZD0R05j8fDxXPmcG1ZGU8VFvJDh2O3ua+GYfCaz8ddubl8dds2VjU29lisx7MFLS18obmZRw2DUGb+ptKaSVu28I116zi3tJRJWVpCqt064BvAgk7DjAsiEa7fvJnrioqYksX2UsBvAgHuCAQIGYbZY5xMcuGiRUzevp3+MuxXCCGEEMew47ZnFaDS4+H3wA+AhqIi7A4H/xuLcfWWLVnrLSsE7taa2+rrWZ0p6mS43XzXMJjc2MiVDgc1We5lPRpOGzSI2tbW3bYppWjLLIMTiMWoys/vgciyp3OPdH/gVGA18CzwWqdqwhsqKviG3c71wKdBCjEdBTuA34VCvNpeQCkSoaS4mH5tbcxatYqKcJghWV66JQn8pbWVJwC7y9Ux7Ldmxw5mrVvHyXPnZrW9ZuCOcJh3AoGO3uLJZWX8sqCA1NChMuxXCCGEEMe84zpZBRjo8XAf8G1gs2HgbWzk53Y7a995h+uytP7iII+H3wKvtrbyQnU1bZhzTF/WmvmRCJe0tfGlggL6Xsq6u9/OmcOcxx7j1tdeI60173/pSz0dUlYpYEzm8ql4nLsbGljXrx8ohdXl4u+YFVqvw5wDK7JvU2Mjj8RiLK6oIJxKdfxg4Egk+ExjIxdXVNCQTGY9kdsM/DQSYWFbW8e6w0MqKviJ280gp5OqLFb7BViMWbSpLpnsuI9DvV6u8/kYP3EilJdnrS0hhBBCiN7quE9WAfKBO4EvZXppDJuNZ6dMYXBrK/8vi8WQrvB4uBD4fn093swX0JRSvKQ1b8VijGtu5jNOJ9PLysyhyX3M/YsW8Zs5c/jsCSfw1KpVfPmFF/jvFVfsdkwKiAGNsRiPr12Lu6ICV0kJUSAK7AwEaAkEKCkqoqigACvm+rihQICgz8fAoiIGFxdTCBRkLm446o/XhPJy/pBO847PxyuDBuF1OABoAH5gGAzz+fiG1done817oyTweGsrfwwGidls0NhISXExCqjZsYMZmzZxSWaeaGUWk8YE8CTwDOBLJDoSx0q/n68HAsweNw5KsrcabxL4YyDA09BRJKoNOGnjRk6srWVolnuLhRBCCCF6M0lWMyqAH6VSfCORIJqTQ8pq5fFBg+gHnJ3FdgqB261W7vv4Yz4aMgRvURFWi4X6xkbqtebVSIQx0SizXS5OBkZz9BOxQ6UBXzjMI8uWcdNpp7EFGHvCCXz4wgu8YRi0JRJoh4NkTg5xIJVM8kEyyXsuF4RCePLycDgc5nIxmSGPtLbicTh2326xQDCIJzcXRyY5NAyDZDTKMLudsbm5DAWGAoOBvG6+3x6Ph4s9Hi7CLLj0d6Cl05I3S5JJ7rBamZtZBkgcugavl/mtrfx34EBqlSJms3WsGTwkHOaevDzsLlfWCyiBOTf1p5EImxOJjsQxnE4zbeNGJm/fztjzz89qe83Aj8Nh3u007HdUeTnfz8ujsKSEqrFjZdivEEIIIY4rkqx20l7B9w6lCOXnk+Nw8AvDYHF9PVfl5u611Mvh6ufx8LWTTuKi+nr8eXk8Hg7jy/TYKK2pi8d5zuXiOcAVjVLd0sJ4t5vJRUUMofuTMIA0EARaMdd23IrZIxqIxQjE4+B0Ug+0AY8nkwSTSfLy8rh3yxYmjx7Nmm3bKC8pYW1mbiepFO68PKw2G8lkEqDj/sZiMRwOB7FO80APZnv7WqhoTYtSbPV4dkti84NBZtrtnFNQwAl0XzUxK3AecArwv42NvJyJNWaz8VObjVrgy8hc1kP1VnMz9zQ0UF9UBM3NlBQXg1IUhcOcsnEj35g2jX5lZVBWltV2DeAx4CnDoKG5uSNxPK20lC+73eiyMqrGj89q4vgx8Bt2H/Y7qKmJr/n9nDZhQtbvoxBCCCFEXyDJ6h7Gl5fzF+AOYE0mGXrCYmFJbS33AEO7YY3UsV4vf1q8mJVVVdRWVHQsk2IYBtuamlinNa+1teFxuXA4HFQA5aEQVp+P/oWFDCwsJB9zOLPR3Eyz10uFx0Np5guuBpqam9nR1ER+RQV5paVEMZPPhtZW6traUMXFpPLzCWAmqE2GQTQWw+l0EgHew+wRba+4+vAzz7Bhxw5C0Sjf+N3vOG/6dC6fPZt/vf02T7/9Ng67nSvmzOlYZgOtSSaT2Gw23FYrzkSC0pYWHKkUk4qLqcBcgmTVxo1YUimUxcKkqVPJB/xas2jLFhJKYTgcDCwtJQ1sDgbxJZPErdZ9JrFerdkYifCKw0G5w8E0YGRLC6XbtzOosjLrvVQFwC12O7nvvcerY8YQyhTheQlYGIlw8ZYtTC0rk96xA9iAmSy+kZNDoKio40cKezLJLQUFjGlpoXratG55HN9saeH3WhPKz+/4kcSWSjFz/Xqu8niYOGlSVueLJoF7AwH+za5hv0Fg+oYNTN26lVEy7FcIIYQQxzFJVvehGPgp8A2/v2Nu6bp+/bjZZuMuYHyW2/N4PFw/cyb19fVU5OXR4HDwPvByZg7tnj2K2w2DRT6fmQgGAniczl1JWiQCbjdEIngMY/ftubkQDuNxu3dtby8Y4/fjsdv36rEMKEVeKgVg9ohmks8vzZ2L0+nE4XSSSiaJBYPkJJNMvugiqoqLKXQ4IBajeft2bMkk9lSKmiFDKAFUTg6LnE4uU4qq6mo8BQXmA1FYiHfsWOrr680COUVF5vaiIj5dU7Nru9sNgDeV4sU33iBiseArLGTwmWfiBz5sa6MxnSatVMfj1uZw8B/D4OFwGFdeHhNWr+ZWpRjRDevdXj9zJmc2NPByVRUrMo/nkuZmlufmMnvxYm6dMkUS1n1YDzwcCvF+KtWRuAWUwpJOM27HDn48YgTDKypg0qSst+0D/hAM8u89qgtX+3zMWrmSonic/lludytwVyTCwk7DfkeXl/PDvDzyS0upGjdOnidCCCGEOK5JsrofucBPlOJbO3eyprISlCLmdvMD4ELgCrI7rHPPZVKmAJ9NJPjLxx/jzc+npbAQd3k5zZhDcQ9luOzhbnckErgSCXLicaoBlMLv92NLpbCnUowYOJBSwGmzEc3JIRiLkZ+fjzszFBenk1BlJcFg0Nyet2sAs8vlYtI+vvx3fhwOtN3j8TBv3ry9kltvOs1zb7zB9sJCavv1I15RYfYkZ+5XxG7nw6FDucFu56y2NiZt28ak8vKsJQbtsc4E5gM/z6yzm7RYmD9mDHbD4CfIiw/MOanv+Hx8MHAgK3Ny8GZ+hAkoRT+Ph4uLizmptpbxw4fj6YZiVUng/4AngIZO66Y6Egku9Xr5dFUVOyGr1YXTwHNk5jh3Kto0ODPs91QZ9iuEEEIIAXTj92Wl1MPAPKBRaz22u9rpTv09Hn4HvBQI8H8DB5LIJGHPA0uAbwHDurH9Ko+H6049dVcylptLElgaj/OvlSsJ22zEHQ6GT56MAhqsVj4JBkljrnk6tKyMPCBqs7G5rQ1rKoU9nWZcSQkVQEIp1tTWYo/HyUskOGf6dIYBccPg7QULUKkUFouF9ZjzMXE4CJWX70o+c3M7YnW73bgzPZ6d7W97tuwvif30eed1PG4VLhcbMIsgPWkYhBwOUIq01cqTfj9P5uczqraWO5VidBYTIgXMAcoTCb4VieDLzQWleL+4mGu8Xm7Lcnt9SQp4yefjPq+XnYWF4POZP2ZkErcRDQ1c09bG3LFjYdy4bolhOfCbPQooBZRiREMDp61bx0WZok3ZmqsOZrXou8JhViSTHW2GtOak9euZvH07I2XYrxBCCCFEh+7s3HkUuBf4Wze20e08Hg9XZ5ac+QOwKLN9o2FwTTTKBUpxdWEhRd3YfudkzAacWF5O9dSpu5LY9mG0bjfe8vJd29t7MvPy8FZUmNv798eTn29uLyjAO3r0ruPbq9ZWVFB8/vkd2+9/552O9rs7+cyWPR+3kcDIwkI+E4vxclsbC6uqWNupmM26fv34ek4ONwIXkN0XxuTych5Jp/lVKsXK/Hx8fj8+rbkqkeBHNhvnZXHpk95ui9fLc+EwH1dWUme1Eigs7OjZBxjV0MDkTZsoj0aZ3E2JWxPwMLDAMPB2KqA0qayM2/LyKM7JyXp1YY35Y8l9sRjbWlo62pxeWso9eXmo8nKqJkyQYb9CCCGEEJ10W7KqtX5bKTW4u85/tJUAP2LXF05vYyNozaNKscDh4AKnk88CR2uRkkMZLpvN7X1df4+HazwevoxZbfa3zc1sKSsDpVC5uTwCPB+JMHfbNs4oLs7aYzDY4+H3wC+3bOExiwUNRHNyuFtrXq+r4zq7nZHHcC/rZuCfbW08E4mQsFqhqamjuq81naZm505uGz4cz+DB1NvtWR122y4BPNLaylNaY8nN7RgWnpNMMm3TJq4uL+fESZMgy0sN+YDfA4uBQKZAmdKaqZs2cW1LC5OzXLRJCCGEEOJYIdPmDoECzgUsGzbwq3SanUVFKK1pMwz+z+nkZeAc4LOY67aK3ksBs8rKqEmleNPn4+VBg2jJFENa1tzMMpeLl9ev525gQJaSJgVckZtL+P33mT9mDGGnk1A4zGta81YoxOXxOCc3N3dLpeKeEAFe9Pv5v0QCb2EhMa1JZBJ1pTXORILrCgsZs3UrNUOH4skkbNm+7xp4B3ggGmVVe0GxYJCS4mJGNzQwY9068hMJqidMyHq7z/l8/Ekp0pm1gZ1OJ5ZIhLNWrKAyFKJ6zJistimEEEIIcSzp8WRVKXUdcB1AdXV1D0dzcCZUVPC5F19kU1kZi4YNQ/XrB5jFWl7C7H09sa2NE7duZUJFRZ9PPIqqq7mjtjbr5+wNPB4Pl3o8fBb4D3BfJNIxNHhZdTXfUYqfAwOy2N6NJ5/M2Q0NPG6z8Z7VigYMq5VHUin+mZfHhFWr+LZSDOuDPa0pYBnwOvBWLMb2YNBMDmOxjp7UklCISdu2ccukSVSXlMD4bNfX3mUl5pDfDWCuD5z5vy0LBvlKOMyp3dST2wT8PBRifijUkRz383i4xOFgTkkJzSNHdkvvsRAHopQaiDk9px9mva8Htda/69mohBBCiH3r8WRVa/0g8CDA1KlTdQ+Hc1A8Hg+fylShvam8nDqHgyeBdZn9EcPgqdZWnioooKqhgc87HJxXVERfre9585139nQI3c6GWeV5dCLBdzsNDW4uLOSGWIx5dXVclJ9/0MnFb3/0I1q3bevymPxolEFNTTQWFGDYzJdiDPgIuNxmoyyVYoDVisfpRGEm+L3x/yINrMZci/e/0SjeeByn00ksM+RVA9Z0moltbXw6N5f8lhb6T5rUrYlaLXB/KMQHmWVw2ns1jWSSaRs3Mn7HDk49//ysD3dPY/7o8TfMpZXa739BNMqXN2/mkpoa8HgYKEmq6DlJ4Fta6yVKqXxgsVLqNa316p4OTAghhNhTjyerfVXnL7n9MJeaWQ78E3iv05Iw9UVFPKQU/8Is8nNy5lLZM2GLAxhVUcEDWvNkKMRr/fuTALY3NnJ/Tg7vbNrEzzi4YcGt27Zxx+DBBzwuNHAgbcEg9bm5LE8miVutoJS5U2tQimKHA49h8MT69SSAnCO5g1kSA95saeHNSISNZWUYLpe5Pm9TU0fxoJLiYspCIUbV13PCzp18bs4cPGVl3bosyw7gH8B/DYOGTsvgDKio4HKnk1PdbgIVFVRNnJj1ZHkL8PNwmFWdKv22AWO3b2fmxo2cPnduVtsT4nBorXcCOzN/B5VSazBXTJNkVQghRK/TnUvXPAHMAsqUUnXAj7XWf+mu9nqaAiZmLm8mEvzK52NbSQkohdPpBGB95vIoMAQY09rKgB07mFxWRuUx3NOSBoLA+qYmNrS0YPd4oLiYVsAP1IXDNEQiWNxucLlojcWIxmLkOZ3kOp0kYjHS4TAel4v8dBqXz8dQYGAg0C3DrPt5PNzs8fBp4DtNTXgzPzys7N+f7wO/IXuFtNqrK1cBI0MhNhgGm3JyaEmnzQO0xh+L4Qc+TiaZ19bG0HCYKS4X04qKGI65JnB3CwIbgYWtrXwUi7E1L4/mcNhMqJua8Hg8HQWLcg2DkTt38rlgkBPLyqiPx6kaP75be1K9wJ/b2nhNaxxOZ0csAKN27OCGQIAzx40Dj8e8ZFEEM0H+l2HQ0KnS76SyMm7Py8Odl0fV3Lky5Ff0OpkiiJMwB3QIIYQQvU53VgP+fHedu7drL9yzzutlx8CBrHY4+ARzPl+7tYbBW21t4HaTE4lwYjjMuLw8hmImsoMBR08Ef5A05pf0jU1NbGhuxu7xoEpK8GMmoNtDIeojEZL5+RguF1HDwBuNgssFwSCeTMEZwzDwZr7gE41SUlyMz+83k7S2tt2ubw2HzbYzSQgFBZS2tDDL5+Py0lKGZ3mO52DgF+k0t3q9rPd4QCm25+by/3w+vqU1s7NcNbbA7WaK282oUIjFdXU0u9343G6SFkvHMQ1+Pw3A+4kEHpcLBeQHgwx3OhnldpPr96O9XoaVljKivJx8wHqAdtNACGgDNjc3s8nnQ1dUYBQVsSkUYqNhEMksV+RtL1BkGLSP2VdaYw+HmW2zEV28mEqfD5tSnDh6dLdXld4O/AuYH4uxs7W1oze6pLiYoc3NTFu/nopIhDHdsAyOBt4FHsKs+BvNJMiWdJqpW7ZwbUsL0yZN6taeZCEOl1LKDTwD3Ky1btvH/j5XT0Ls3+D3zM+R2pnpHo5ECCEOjQwD7iZ7fkkPAguB94GlQKDTUOGExcKqZJK6TrdXmOOyhgLFra3YvF6GlJYytKyMfMBN9v/zEkAgc2nt9PfWQIC6YBCKiki63R37w+0JaG4uhEJ48vJ2JaCZIZjEYrv1urVXgo3FYjgcjr22hzsVONrzentPWWcteXk8A7wQDjNr40auLyjI6hIwgzwe/gA8EQ7zf+XltGQS528qxf/LyeEbBQXYD/JcsWSS0x55BCOVIplOc3FNDT854wxuf/11nl+3DotSVOTl8einP82U6mqCwSCWVIpVjY20ulzYk0mimXMprQmHQoTCYRq0ZkMkwkda4wsGzR8EolE8hkEyHicRDFKYl0dZYSHJSIRQNIo9Nxeby0UwFqPNMHBkev+9kQg4HNDWRonV2vFDAeEw7ry8Xf8XQFkoxMDmZoY1N3PtKadQWVKCd+bMXev2dmOSurC5mccNg7VlZdgdDiKd5sdWNzdzTSjEjAEDqLdYuiWWbcBvQiEW7zEnNt/v5/TVqymNRhkklX5FL6WUysFMVB/XWv97X8f0xXoSQgghjj2SrB4l+cDszCUKvJpK8ffGRuqLiohkvuh2poE6YJNhmL1ZTidEIngMA4fD7HN1Zc5bkPmXYJBIIEBhYSHu/PyOpEJnLm3BIL5gEHtBAVa3m1gmlhjQmkla2r94tzMMA28gYCYsPh+enJyO/QebgMZiMcrsdqyRCK5YDHc8zoyiIgYD6VSKFUuW4DQMHKkUp02dyuL33oN0GqxWps+YwXsLFxK1WDDsdiIOB015eXgLC9leVtbR65iwWHjNYuHtUIjPNDVxZVkZVVlKUPp5PNwCVK1Zw29sNiJ2O0prXtCaTyIRPrNlCyeVlR0wIXJYrbx+5ZW47XYSqRSnPPIIc0eM4NszZ/I/Z54JwO8/+og733qLB+bNw53pzcxzuQgGg8wABr73HtuLimgqKsIYNIgNXST6bYEAkaiZ3gZaW2lNpwm2V+cNh3frtUap3ZLRPc9nS6UYEI2Ss2MHHp+PwX4/Z02dSqyggKpMDyp07/q8GlgCPB4KsSATG14vHo+nI1E8ceNGBgYCzJg3r1tiCWIO+X02FmNnpzmxI8vL+bbLxcjKSnZqLZV+Ra+llFLAX4A1Wutf93Q8QgghRFckWe0BLuDTJSXMSCSor68nt7CQsMPBZswiLZsxC8Vo9p8QgploRoFGMklle+Lh9+Ox2/dOOtv375F0GoaBt7Gx44u3x+M5YEIKUOhwoGMxcmMx8hIJphcXMwjQ6TQrly/vSEwvPvtsBhQW4i0pMXvdBg/GU1hoBlZSwiknn7xbb9zAoqLdrlcWF3dcB6ivr8fpdLJjxw5eCQRYWl1NU0GBeV+sVp5wu3mjqYlfWiyMz6zdmQ2zSkponD+f/9bUUFtRgdViYVlzM8vz8piwYQM/OsByM0op3HazHzaRTpNIpVBAQaf/p3A8jtrjdu3zWosMgy/Onr3bY/Hsa6/R4nLR5nZTMXEiHzU0EHQ4iDkcpCwWIp3OE+2i19oZj1Oak4O7rQ2nYVAYizFt0CDqly8nPxymNBrlwvPPh2HDqHe5qDrxxKOWjMWBN4DnMYf9BjpV2VVaM8zn46bKSoorK6nvpkQxBTzp9/OY1qTy8joqHQOM37qVG/1+Tp4wATwe+kmSKnq3mcD/Az5RSi3LbPu+1vqlngtJCCGE2DdJVnvQnj0/kzvtiwFbgSXpNP/ZsYOg3Y5ht+MpLyeBOcew87isrpLKA+3vXIzGZRiUtLUxorycQsCiFBs2bsRpGOQmEpw3cybDgULA6XTibU8sBw7Ek0kYKS7GO336XsNB99fTtef2g7kOUAOM83pZt349r23cyNujRuHPywPAm5/PzcBlGzZwYUFBVpIXj8fDJeecw8z6ejbk5/NQMglak1aKZQMH8pWcHL4CnN/FOVLpNFMefJCNPh9fPfFEpg8wV3D9wYIF/G3FCgodDt648souY+h8Xy6aO3e3x9lrs5nXS0rw+Xy8+e67JK1W0koxevx4Vq5fj06lyAFOPvFEPv7gA6zJJDalmDdvHlRUmLcfMcI8n92+z//Ho2En8ArwYjRKU2Y5nPbhtm3AMK+XabW1XH366XjMwLIemwYWAX+MRFjS3isdClFSXMwAv59T1qyhIhJhWDfMiRWiO2it34W9fhMTQggheiVJVnspJzAKGFVczJnDhpkJg8eDJ9es/aoxE9Zg5rIlmeS/q1aRwuzBm3HSSZRkzqUAfyrFhytXYk0msWvN2aecwoBMO0HD4PU33sCSSGC1WJg3bx4dX/kLCvCOHbsrYdmjWMzBJqDdpb2dUV4vZ65fz5M7d7Jw2DDSFgst0Sj32e28sXkzP4esrG3Z3t5koKapidtaW9lRVARKoXNzeQh4OhIh2dZGWyhEQWYobzurxcKyG26gNRbjon/+k5WNjYytqODu2bO5e/ZsfvrOO9y7cCE/OeOMQ4pnX9fb/928eTNDhw6lpqaGiQMG7JZ8Vu/Ri935dvs6f3dLYs7tfhlYBnsth1NdUcElTicn5eaSyMmh6vTTuy2+jcAjwAogkEh0/NhTGIlwZTTKuTLkVwghhBCiW0my2gfsK2FQmPNU8zPXR5WWMmnKlF2JR3Hx7icpKeGUqVP3mXRWVlRQuEcP3YHa723aYzzB6+XD5mb+UlLC1ngcDayuquJ7SvEbIHuDgmF8eTkPp9O82trKfwcOpDVTXGpFczMWi4V/GQaTbTbGOJ17FWEqcjqZNWgQr2zcyNhOQ4e/MG4c5//jHwedrB5ITU0NNTU1HdcP1GvdU7YArwOvRKN4O/Witvf6u2MxJmzdyhfbh9uWl5uXbuAF7g8GeT2d3q03N5JOM2XzZiZv28bc887DI0N+hRBCCCG6lSSrx5ADJR5d7e8tScuR8ng8XOjxMNHr5TsNDazt1w+UorGwkBuiUS6prWVWSUnW7ms/j4crPR4uB/4D3N9e+AeIW60sA9Ymk/QLhShPJBiQn0+R00k0keC/W7bw3Zkz2dDSwojMMjgvrFvH6ONkqZO1jY38JxRidb9+NObm7tWL2s/j4SSrFfuyZQxsbMRmsTBswoRui6cF+Cfwf7EY9Zn53QGlqKyo4CKnk9l5eYRLSqgaO/aYeK0IIYQQQvR2kqyKY9Igj4ffAf8MhXilf39SmGvC/m9uLq+tXctPgP5ZTDhswIXA2ESCn2/axJJ0GpRCKUVrOEwr8N9AgCeeeYYcrbFpzaVjxjBv5Eg++9RTrGtuxqIUg4qKeOD8rma99m0+zOWb5ofDvB2Noq1WaG7ebXmjXMNgTF0dXwgEOHPcOLwnndSty+EEgKeBlzCLOYU7LYMz1OvlxrY25owdCxUV5kUIIYQQQhwVkqyKY1Y/j4ebPB7OAr6TWWZEAx8PHsy3leJnwMAstzmsooI7x4zhzmSS0+x2VieTRDM9rQPKyrj9qqtwOJ0ooCQeZ6HPx/3nn09FpjDUsUYDnzQ1sSAYZKPHw7bM/Qwkkx1LKimtSUWjzLJa0UuXMqC5GZtSjMmsU9pdvf4B4Dng6ViMQKdlm5xOJ3mtrZy0fj0D2tqYKMWThBBCCCF6hCSr4pg3BvhVMsm3/H7qiotBKZoLC7kJuAr4FNktjenxeCgvKWGMy8WgUIiFDQ005efTmpeHzWa+5JLJJJujUbBYWJxM0i+RYFBODoWRCM62Ngozy9X0RUHMokTLgPejUVZGo2C1QksLHpttt4q+/X0+ahoa+NrkyQzxePDOmNGtvagAzcC/gVcxi4t1XrZpRmkp1+flUdmvHzvTaSmeJIQQQgjRgyRZFceF0RUV/EVrngiH+W9VFRaHgwRwr2Hwgt/PzVYrY7uhYI/b7WbagAEEg0GcOTn4bDa2ANszy94AoDWtqRQhpQglEiink7xIhKE5OVQ5HJSyq5BWb5MEtgGbMKvnLg+HWZNM4sj0Ugbi8d2WTDJiMaY5HMx0OBjqchEBqiZPPuDyRtmwoqmJx2MxPikvx+p0AruWbSoJhThp40Y+V13NpEmTZL1UIYQQQoheQJJVcdzo5/FwC/AZ4FfAWsPA6/Xi1ZortOZKu51rCgvJ9oBcd6de0mJgGNCYSrGopYVWl4ugy4XNZiOZSWA1ELLbWa81WzPnsCSTvBuNcndbG6MLCugP9Af6ATlZjndPGvBjVsltv2xsa2NNLIavoKAj8TMMA29Li5mEK4XH4+mootu/pYVhzc3cOHkyI9pPfBTmgGpgDfBYMMhLkYi5NnFjIx6PB4fDwWibjdIVKxjS0IDVYqH/SSd1azxCCCGEEOLgSbIqjjuDgF8D/9vQwDOYCU1KKZ7BXOPzcmAOYO3GGCry8jjN4yEYDJKbk0PEZqM2lWJdIkE0JweUwmazEdsOoc1pqIjRkkrxVGsrHocDh8MBQNwwsIXD9HM6qcrNpRAoAkJ1dbTu3MkAj4dh1dXkYCa1bS0tvDc/yML5HkKtLor6wZlXQNloP/WtreSUlEBhIUGgDfBGItTH41hdro42DcPA29pqJqWxWEfi195LCeBpbeW0dJpPDx5McW4uja2tVE2ahOcoFShKYhZyeg7YAATS6d3myFa2tvINj4fJeXk0TpvW7UOPhRBCCCHEoZNkVRyXbMD1TifWd97hrZEj8RYVdcyjvB94KhLhrO3bOauoqNuGg3bucS0EKh0Oxrlc+EIhEgUF1O208dbfIJ1SKEseyVMtWLQmFovhyKzp6vV6QWvqQqGOpDEUDNKSSpm9llpTGgzizs/HMAw2v51g01XVEFdkUjdefEQz9AmDvMkWCATwZIbwGoaBt7nZTEDb2vZKStsTv9xQiOkOB2VaU7d0KWV+P7npNPPmzcMD4PFktfJyV3zAa8Cz0Sj1ndZrdTqdBJRiUFMTJ27dynUzZ9Ivc5tjZdkmIYQQQohjjSSr4rjl8Xi45tRTmVtfzza3mxccDpowew6XNjez1Onk742NfC0nh/NLSrAcwrmLqqu5o7b28IOLxVixApYmzZSSlKa4uYRT162j+qSTzCJGweBuSWN7EhuORHY7VTgSwZ2fTywWI/yBAxKKziWldBzCHzjInWzsdp7OSakzHqcsEGBcRQVOoHbtWgpDITzhMBfPmWMmpUVFR6VA0p40sBx4GfgIiOyxXuuAigo+5XRyssuFxWKhauZMSU6FEEIIIfqAbk1WlVLnAr/DHFH5kNb6nu5sT4hD1d6rNhk4D3gBeDAS6UjSGgoK+IXVyvOY66ieDTgP4rw333nnEcf2wQcwezbE45CTo7njW+uZO6EIT0EBAN5UiucXLCBssxFzOpkyezY2YGUiweLaWpIWCymLherhwykBfFYr6RMa8NoK0Yn2VhRWO4wftp3KWj+5ySSzJk9mEBBPJPjo/fdxxmK4OveUFhbinThxn0np0eyl9AHPtrbyn2SSUH5+xzDl9iTbGY8zfts2/p/fz2kTJkB5uXkRQgghhBB9Qrclq0opK3Af5vf7OuBjpdQLWuvV3dWmEEfCDlwMTEgk+EldHav69ydtseB0OvECDwL/AE4OBBi3dSs13ZyYzZgBCxbAm2/CrFmKGTNG7bbf4/Fw4fnn70oaS0sBOHPAANYEg2zevJmhQ4dS0x6j2413bhEvP7iBN94YQFtbHv36wRVXKIYO9VBfnzLPU1xsHl9Wxsgzz+zxpLQzA/gQeB340DBoaGszhylHIh3DlCfabDhXrmTIzp3YlWLU2LFHPU4hhBBCCHHkurNndRqwUWu9GUAp9SRm55Qkq6JXG1FRwa+0Zq3XyyeDBvGew0Eos6/FMHgoEEAVFDC4ro6rcnKYW1KCo5timTHDvOzP/pLGmpoaampq9nn8VVd5uOqqvfbs8zy9YT5nGnirpYX/RKOsKyuDTPXhaKdhyo5EgmleL9dXVzMwLw/v1KlSNEmIPmDwe+YEi9qZ6R6OpO861MdQHnPRGwy+7T8A1N5zfg9Hsm/H8uuktz/2e+rOZLU/sL3T9Tpg+p4HKaWuA64DqK6u7sZwhDh47Una6cA1wALgeWBtJkFKK8WWsjJ+bbXyOHAycAYwHg5pbqvYtySwEngPeCMaZUM4bPagdlp2xul0ku/3M2rHDkY2NnLReefRnpb2hiRbCCGEEEIcme5MVtU+tum9Nmj9IOYIS6ZOnbrXfiF6mhM4H5gLvJRKcV8gQH1hISiF0+kkhjks9XXAGY1S09TEGXl5nFJa2u1roB5L6rxe3vL7qa2qYlVBAcHM9kA8vlshqYJgkEscDmY5HOjKSuq1pmrqVElOhRBCCCGOMd2ZrNYBAztdHwDUd2N7QnQrCzCvpIQTEwmWNzayZeBAljoc7MjsNwyDbU1NrNea58NhqvPyONHpZAowGajsudB7JQ1sA5YB74RCvBmJkHC5YI+1ZJ1OJ8l4nKENDdQ0NPDl007rWHYG6UEVQgghhDhmdWey+jEwQik1BNgBXAZ8oRvbE+Ko8Hg8nJNJkDSwEXgLeDYzVLW9BzBgGHzsdPJx5naVwIi2NsobGphWVERNRcU+hx8cy9Y0NvJOIMDOfv3YnJ+PL7M9kEqRsFh2W4anv8PBycBMh4PiggIaQiGqTjtNklMhhBBCiONEtyWrWuukUuprwKuYS9c8rLVe1V3tCdETFDAiczkvkeBPS5eyqbSU7eXlOPr12+3YWsPgo9ZWcDggFmNkNMoEl4uRwChgOJB3tO9AN9FAC7AJM5nfCKyMRlkfi4HdDn4/Hrt9t97TgFIUhcMMa2rimrw8TqbTXAKPh0pJUoUQQgghjivdus6q1vol4KXubEOI3qLK4+ErM2aYVWiLi0k7HCwBFgMrgECn6rVKa7zxOB+5XHyUub1hGBQEg4xyOBiZn09/zCplVUAB+54E3tNSmElpA+AF1gYCrIxEaCkqwnC5djt2z7mnsViMUoeDCcBEh4MBLheJlhaqRo3CU1Z21O+LEEIIIYToXbo1WRXieLNnFdrzM5cE8E4yyWO1tTQUFNBYVIQzswQLmImq1+vFqzUbIpHdeh3B7HEtCodxtbZS7XYzqLCQIqAQOv4thKwVdEoCbZ0uwcy/21pb2RwMEi8uJuh204S5tEzHfQgEzKq9TU0dVXvbOZ1OIuk0Fa2tVPv9XDl+PNPpVD25vNy8CCGEEEIIgSSrQhwVOcCZpaWMGT2a+vp6+uXmknA4WA+sB94NBGhMp0kr1dHr2DnR8xkGa1pazEQwEMDjdO62v10qEMAIBinJy6O8uJicTNs5mC/2eChEsK0NZ0EBDrebBHRckkBbNIovFoPc3L3ObxgG3rY2MwafD09Ozm7HxPboOSYSYazDwTDMIc7DHQ6subk0tLZSNWaM9J4KIYQQQoguSbIqxFG0Z89rNXAW8FmtefaNN2jOyyOQl8eQU04hjFmZbAd7DyHeM5kFCAWDtLS2AtDU1kazzYY7P79jv2EYeH2+/SabhmHgbWoy9weDe/WM7pmMtsdQDPQDci0W6rZsoTgYxBMK8cUzz2T3WbvI3FMhhBBCCHHQJFkVohfweDxcdN555nzXqio8hYUd+zSwzjB4avFi/E4nMYeDESeeSBoIAK2Zf5vC4d3OGY5EdktW95ds7mu/JZ3GFg4z0OGgAHPOLEqxsbaWvFiMoliMi04+mbGAvf0E+fl4a2p23QdJSoUQQgghxBGQZFWIXmLPXtd2ChhdUcH1M2fuSgQLCvY6brXfz38//JCkxULKYmHySScx2OMhjjnMtyGZ5M3ly9HpNDbgzFNPpR/mm0AO0BqP88a772JLJHClUnxq3jx2i6agAG9mGHNVVRWefcwv3d99EEIIIYQQ4lBJsipEH3GgRPCEmhoUsHnzZoYOHUrNiBG77R9fWsqE6dN3JZulpbufoLycyrPO6rJnVJJRIYQQQghxtEiyKsQxpKamhpqamv3uP1CyKcmoEEIIIYToLSwHPkQIIYQQxwql1LlKqXVKqY1Kqdt6Oh4hhBBifyRZFUIIIY4TSikrcB8wFzgB+LxS6oSejUoIIYTYN0lWhRBCiOPHNGCj1nqz1joOPAlc2MMxCSGEEPskyaoQQghx/OgPbO90vS6zTQghhOh1lNa6p2PooJRqArYepebKgOaj1NaxSh7DIyeP4ZGTx/DIHauP4SCt9d5rLB3HlFKfA+Zora/JXP9/wDSt9df3OO464LrM1VHAuiyF0Nefa305/r4cO0j8Pakvxw4Sf0/aV+yH9Nncq6oBH80vFUqpRVrrqUervWORPIZHTh7DIyeP4ZGTx/C4UgcM7HR9AFC/50Fa6weBB7PdeF9/rvXl+Pty7CDx96S+HDtI/D0pG7HLMGAhhBDi+PExMEIpNUQpZQcuA17o4ZiEEEKIfepVPatCCCGE6D5a66RS6mvAq4AVeFhrvaqHwxJCCCH26XhOVrM+vOk4JI/hkZPH8MjJY3jk5DE8jmitXwJe6qHm+/pzrS/H35djB4m/J/Xl2EHi70lHHHuvKrAkhBBCCCGEEEKAzFkVQgghhBBCCNELHZfJqlLqXKXUOqXURqXUbT0dT1+jlBqolHpDKbVGKbVKKXVTT8fUVymlrEqppUqpF3s6lr5IKVWklHpaKbU283yc0dMx9TVKqVsyr+OVSqknlFLOno5JHHv62ufu/j7nlFIlSqnXlFIbMv8W93Ss+7Pn50sfi32v9/Y+Fv9e76u9OX6l1MNKqUal1MpO2/Ybr1Lqe5nX8jql1JyeiXqX/cT/i8zzZ4VS6lmlVFGnfb0m/n3F3mnfrUoprZQq67St18SeiWef8Sulvp6JcZVS6uedth9y/MddsqqUsgL3AXOBE4DPK6VO6Nmo+pwk8C2tdQ1wEvBVeQwP203Amp4Oog/7HfCK1no0MAF5LA+JUqo/8A1gqtZ6LGbBnct6NipxrOmjn7v7+5y7DVigtR4BLMhc7632/HzpS7Hv6729T8Tfxftqb47/UeDcPbbtM97M6+AyYEzmNn/MvMZ70qPsHf9rwFit9XhgPfA96JXxP8resaOUGgicDWzrtK23xQ77iF8pdQZwITBeaz0G+GVm+2HFf9wlq8A0YKPWerPWOg48ifmAioOktd6ptV6S+TuI+SHSv2ej6nuUUgOA84GHejqWvkgpVQCcBvwFQGsd11q39mhQfZMNcCmlbEAu+1hzU4gj1Oc+d7v4nLsQ+GvmsL8Cn+6RAA9gP58vfSX2/b2394n4M/b1vtpr49davw349ti8v3gvBJ7UWhta6y3ARszXeI/ZV/xa6/la62Tm6oeYa0pDL4t/P489wG+A7wCdiwv1qthhv/HfCNyjtTYyxzRmth9W/Mdjstof2N7peh2SaB02pdRgYBLwUQ+H0hf9FvONKN3DcfRVQ4Em4JHMULeHlFJ5PR1UX6K13oH5i+c2YCcQ0FrP79moxDGoT3/u7vE559Fa7wQzoQUqejC0rvyWvT9f+krs+3tv7xPxd/G+2ifi72R/8fbF1/OXgJczf/f6+JVSFwA7tNbL99jV62PPGAmcqpT6SCn1llLqxMz2w4r/eExW1T62SUnkw6CUcgPPADdrrdt6Op6+RCk1D2jUWi/u6Vj6MBswGbhfaz0JCNO7hlX1epk5SBcCQ4AqIE8p9cWejUocg/rs525f/Jw7Bj5f+vR7+3HwvtqnXs9KqR9gDut/vH3TPg7rNfErpXKBHwA/2tfufWzrNbF3YgOKMadQfBt4SimlOMz4j8dktQ4Y2On6AGTY2yFTSuVgfoA/rrX+d0/H0wfNBC5QStViDok7Uyn1WM+G1OfUAXVa6/Ze/acxv+CIg3cWsEVr3aS1TgD/Bk7u4ZjEsadPfu7u53POq5SqzOyvBBr3d/setL/Pl74QO+z/vb2vxL+/99W+En+7/cXbZ17PSqkrgXnA5XrXWp29Pf5hmD90LM+8hgcAS5RS/ej9sberA/6tTQsxR3iUcZjxH4/J6sfACKXUEKWUHXOi7ws9HFOfkvl15C/AGq31r3s6nr5Ia/09rfUArfVgzOfg61rrY+mX126ntW4AtiulRmU2zQZW92BIfdE24CSlVG7mdT0bKVIlsq/Pfe528Tn3AnBl5u8rgeePdmwH0sXnS6+PHbp8b+8T8bP/99W+En+7/cX7AnCZUsqhlBoCjAAW9kB8XVJKnQt8F7hAax3ptKtXx6+1/kRrXaG1Hpx5DdcBkzOvi14deyfPAWcCKKVGAnagmcOM39Z9cfZOWuukUuprwKuYFdoe1lqv6uGw+pqZwP8DPlFKLcts+77W+qWeC0kcp74OPJ75ArwZuLqH4+lTtNYfKaWeBpZgDpNaCjzYs1GJY00f/dzd5+cccA/mkLYvYyYln+uZ8A5LX4p9X+/tFvpA/F28r7rppfErpZ4AZgFlSqk64Mfs5/mitV6llHoK8weEJPBVrXWqRwLP2E/83wMcwGvmbwZ8qLW+obfFv6/YtdZ/2dexvS122O9j/zDwsDKXs4kDV2Z6tg8rfrWrV1wIIYQQQgghhOgdjsdhwEIIIYQQQgghejlJVoUQQgghhBBC9DqSrAohhBBCCCGE6HUkWRVCCCGEEEII0etIsiqEEEIIIYQQoteRZFUIIYQQQoijQCl1p1LqrAMcM0spdfLRikmI3uy4W2dVCCGEEEKInqC1/tFBHDYLCAHvd280QvR+0rMqhBBCCCGOC0qp7yilvpH5+zdKqdczf89WSj2mlLpfKbVIKbVKKfWTTvue7XSOs5VS/878HVJK/UoptUQptUApVZ7ZPlEp9aFSaoVS6lmlVHFm+6NKqYszf9cqpX6Sue0nSqnRSqnBwA3ALUqpZUqpU4/iwyNEryPJqhBCCCGEOF68DbQngFMBt1IqBzgFeAf4gdZ6KjAeOF0pNR54HahpT0SBq4FHMn/nAUu01pOBt4AfZ7b/Dfiu1no88Emn7Xtqztz2fuBWrXUt8ADwG631RK31O9m400L0VZKsCiGEEEKI48ViYIpSKh8wgA8wk9ZTMZPVS5RSS4ClwBjgBK21Bv4OfFEpVQTMAF7OnC8N/DPz92PAKUqpQqBIa/1WZvtfgdP2E8+/O8U1OBt3UIhjicxZFUIIIYQQxwWtdUIpVYvZO/o+sAI4AxgGRIFbgRO11n6l1KOAM3PTR4D/A2LAv7TWyf01cYghGZl/U8j3ciH2Ij2rQgghhBDiePI2ZlL6NmZv6g3AMqAACAMBpZQHmNt+A611PVAP/BB4tNO5LMDFmb+/ALyrtQ4A/k7zTf8f5hDhgxUE8g/pHglxjJJfcIQQQgghxPHkHeAHwAda67BSKga8o7VerpRaCqwCNgPv7XG7x4FyrfXqTtvCwBil1GIgAFya2X4l8IBSKjdzrqsPIb7/A55WSl0IfF3mrYrjmTKH4QshhBBCCCH2Ryl1L7BUa/2XTttCWmt3D4YlxDFNklUhhBBCCCG6kOk5DQNna62NTtslWRWiG0myKoQQQgghhBCi15ECS0IIIYQQQggheh1JVoUQQohjjFLqYaVUo1JqZadtJUqp15RSGzL/FvdkjEIIIcSBdFuyqpQapZRa1unSppS6ubvaE0IIIUSHR4Fz99h2G7BAaz0CWJC5LoQQQvRaR2XOqlLKCuwApmutt3Z7g0IIIcRxTik1GHhRaz02c30dMEtrvVMpVQm8qbUe1ZMxCiGEEF05WsOAZwObJFEVQggheoxHa70TIPNvRQ/HI4QQQnTJdpTauQx44kAHlZWV6cGDB3d/NEIIIY55ixcvbtZal/d0HH2RUuo64DqAvLy8KaNHj87Oif1+SCazc67uZrNBcS+a1tuXHjtxYEfz+dUbnjvdfX97w308XL3tvaabHepnc7cnq0opO3AB8L397O/4QKyurmbRokXdHZIQQojjgFJKRvPszquUquw0DLhxfwdqrR8EHgSYOnWqztpn8/33w4AB2TlXd6urgxtv7OkodulLj504sKP5/OoNz53uvr+94T4ert72XtPNDvWz+WgMA54LLNFae/e1U2v9oNZ6qtZ6anm5/AAuhBBCdJMXgCszf18JPN+DsQghhBAHdDSS1c9zEEOAhRBCCJEdSqkngA+AUUqpOqXUl4F7gLOVUhuAszPXhRBCiF6rW4cBK6VyMT8Qr+/OdoQQQgixi9b68/vZNfuoBiKEEEIcgW5NVrXWEaC0O9sQQgghhBBCHL8SNht15eXEcnJ6OpRD5/HAmjU9HUXWOZ1OBgwYQM4R/p8crWrAQgjRYxJAJHPZ3tzM9sZGij0e8ktLiQNxoMHvx+vzUVRaSkFRESkgDaQAXyCAv7WV4qIiigsLUZhzKBTQ1tpKwOfDU1xMeXExdsAO5ADBlhZaGxupLitjUHk5uYALeeMVQgghsqlu+HDyKysZXFCAUqqnwzk08ThUHFsriWmtaWlpoa6ujiFDhhzRueQ7kxCiT0kCaxsbWdfSgtPjwVZSQgBoAwKZS0M4THM0iiUvj7TLRSJzW8Mw8EYikJcH4TAetxuHw2FuDwbN8vFtbXhcLhwOx67bBALmCQIBPE7n7vva2sBqhWAQT27u7vvCYcjNhWgUj2F07LMDlmgUHQ7jcbmoysujECgECoC0z4fR2Mio0lJqystxHo0HVgghhOijYnl5fTNRPUYppSgtLaWpqemIzyXJqhCiV0kDzcCKlhbWtLaiy8owCgtpApqAesOgIRYzk8BQCE9eXkcSCJkksaUFtIZIBI/H07E/FouB1mhAaU0sFsPhcOx3e1e3OZJ9QcPA29QEWrMhEsFjs+2e5IZC4HJ1JLllDgflQDlQAeS0tmLxehlfUsK48nJ5IxdCCHHck0S1d8nW/4d8xxFC9IgYsKS5mRV+P/GKCsKFhewA6oFQe6+kzbZXb2a0iyQQ9p0k5joc5AL5djs5oRDWVIqcdJqa0lJKAcNiYX19PZZkEiswsaiIEsyhviFg2ebNkE6DUkyePJl8zKS6FVhSW0sK0FYro4qLcWEOK/ZZrazx+YhbLCRycvBUVKAxhyIfapIbdDgIApvp1JvrdEI0SlUsxiCnkwHAQCDP7ydn506mlJYywOPpxv9BIYQQQrS7+5e/5B/PPIPVYsFisfCn3/yGe377W7Zs3UooHKapuZkhgwYB8Mdf/pLKfv247MtfxufzMfnEE/n73/+O3W7f67x//etfueuuuwD44Q9/yJVXXrnXMR9++CE33XQThmFgGAaXXnopd9xxB48++ijf/va36d+/P/F4nFtuuYVrr70WrTU33XQTL730Erm5uTz66KNMnjx5r/MuWLCAb3/726TTadxuN48++ijDhw9n7dq1XH311SxZsoS7776bW2+9NcuP5i6SrAohupUGljc1sdTvJ+rx0FpYSC2w1TBoiETAbt8rIe0qmXM6nSTjcdzRKLmJBCcWF9OfXUNok8kkixYuxB6P40yn+fQ55zAgM88UlwtvWRn19fVUVVXhcbvNIPPz8Q4dumt7YeGuO1BYiPeEE3btKyrafd/o0bv2FRTs2ud2462qMveVluJxuToej22xGM+9/TYxqxXD6WTSrFlYMYcwb1eK5++8E5qaSFitpNxu/FZrx2kT8TiWeLzjus9uJ2i3sxJIp1JEo1HAnE9b6nRSYrNRAFRWV/OjO++UN30hhBDHvMH3vJfV89XeNrPL/R8sXMiL8+ez5M03cTgcNLe0EI/HefaxxwB48913+eUf/sCL//xnx20uufpqbrnxRi771Ke44Uc/4i9/+Qs33njjbuf1+Xz85Cc/YdGiRSilmDJlChdccAHFxcW7HXfllVfy1FNPMWHCBFKpFOvWrevYd+mll3LvvffS2NjImDFjuOCCC1i8eDEbNmxgw4YNfPTRR9x444189NFHe92vG2+8keeff56amhr++Mc/ctddd/Hoo49SUlLC73//e5577rlDfSgPmXxvEUJkjcYcqrse2ABsBFbGYtRGo+Bw7JaUdtVDWmG3kxcIUBAOUxiLcfbEiYzCHAZb5nDgKyigPhSiasCA3RNEgNJSJp522q4Eco/eRY/Hs9e2rrZne58CBnk8XHbOObtiLCnZdUBBAS2hEDdXVpKfn0+e200MCGP2yrbEYtQ2NhLNySFmt5NTWIjVZr6VG7GYmehnOJ1OHE5zxusfa2tZFItR0tbGFIeD0woLGQMyH1YIIYQ4Qju9XspKSjq+x5SVdr0Yitaa199+m3/8+c+QTnPllVdyxx137JWsvvrqq5x99tmUZL4nnH322bzyyit8/vO7r07W2NhIZWUlAFarlRNOOGGvNisqKhg2bBhbt27l+eef54orrkApxUknnURrays7d+7sOEc7pRRtbW0ABAIBqqqqOs5VUVHBf/7zn4N9iA6bJKtCiMOWJJOQAh+FQqyKx0nuMYc0YBj7TEpdTieWSITSYJCSSIRzx49nHFAFuF0uvB6PmcwNHYpnj18Qu0oQD2Z/b9BVjC6Xa7cPDFfmAlDtdDKipIRgMEi+w4HTZqMNs8BUE7A5HCZitxOz27HZdr3Fp1MpdjQ2skNrPonFeNnpJM/hYCQwIXMZhXwoCCGEEIfqnDPO4M6f/5yRU6dy1umnc+lnPsPpM/ffG9vi81FUWGh+TsfjDBgwgB07dux13I4dOxg4cGDH9f0dd8sttzBq1ChmzZrFueeey5VXXonTufvP0Zs3b2bz5s0MHz58v+fdM1l96KGHOO+883C5XBQUFPDhhx8e9GOSLfK9RAhx0LZ7vXzg8+GvrGRbURFrMednGoaB1+czixqFQrsVNXI6ncQTCcra2igPhTi/oIDJwACHA39JCfWxGFU1Nbv3LtI3Es6e4na7cbcPYQZKMpfBTic1hYUEg0GcLhdxm40WwAfYEol9/miwGlgNPAHoWIyBfj9nORzMLSkhtwfumxBCCNHXuN1uFr/5Ju988AFvvPMOl37pS9zz4x9z1Re+sM/jtdZ7bdtXQaKDPe5HP/oRl19+OfPnz+cf//gHTzzxBG+++SYA//znP3n33XdxOBz86U9/oqSk5KDP+5vf/IaXXnqJ6dOn84tf/IJvfvObPPTQQ/u8T91FklUhRJeagY+B10MhXo9ESObm7rW8S+c5po5EgoF+P6f168cIYITDQSo/n53BIFWjRu3WSyoJafbtmci2P7oztKb6rbfYUVDAjrIyrOXldC4obxgG3sZGtmvN+4kED+fmcorTyanAiYADIYQQQuyP1Wpl1imnMOuUUxh3wgn89Ykn9puslpWW0hoIkEwmsQF1dXUdQ2w7GzBgQEfSSea4WbNm7fOcw4YN48Ybb+Taa6+lvLyclpYWYNec1T3Pu3379t3Ou2f7TU1NLF++nOnTp3ec59xzzz3Qw5B1kqwKIXajMYf2LsxcNme2B1IpkhbLXj1z/YCc//1f8hcvxmkYOFIpygYOZIvLxRZgfpbjK6qu5uY778zyWXu/3334IX9esgQNXDt5MjefdBK3v/46z69bh0UpKvLyePTTn6YqP3+ft3e5XFw8Z86uebK5ubQCK4DlwBvBIN5OPa9Bw+B9p5P3Mee1nhAMMry+njOLiugvPzAIIYQQHdZt2IDFYmHEsGEALPvkEwZ1Gma7J6UUZ5x6Kk8//zyXfepT/PWvf+XCCy/c67g5c+bw/e9/H7/fD8D8+fP56U9/utdx//nPfzjvvPNQSrFhwwasVitFnQtC7uGCCy7g3nvv5bLLLuOjjz6isLBwryHAxcXFBAIB1q9fz8iRI3nttdeoqak5mIcjqyRZFUIAsAN4KhDg9WQSw+3ebd4pmMN5A0pRHA4zwO/n4vx8TgXKgDu8Xm6dONGcR5mfv1vPXrbdUVvbbefurVY2NvLnJUtYeO212K1Wzn3sMc4fMYJvz5zJ/5x5JgC//+gj7nzrLR6YN2+/59mzJ7sIOC1zuSSV4rH33mNDRQUbKyux9OvXcVzAMHjO7wenkwcCAa5xOLi0qEiGCQshhBBAKBzm69/5Dq1tbdisVoYPHcqDv/1tl7f52R13cNmXv8wP77qLSVOn8uUvfxmARYsW8cADD/DQQw9RUlLC7bffzoknngiYw31L9pg2BfD3v/+dW265hdzcXGw2G48//jjWTisJ7Om8887jpZdeYvjw4eTm5vLII4/stu+hhx6iqqqKP//5z3z2s5/FYrFQXFzMww8/DEBDQwNTp06lra0Ni8XCb3/7W1avXk3BnkUvs0CSVSGOY0ngQ+Bl4GPDwBsImPNOw+GOeac2YCwwzeFgiMtFoqWFqmHD9ppjuufwU5E9a5qaOGnAAHJzcgA4fdAgnl27lu90Kt4Qjsc5kuW3PR4PX5w92+x5LSsj4XDwDvAWsLrTMO+Qw8EjSvEKMAe4APMHCyGEEKK3ONBSM9k2ZeJE3p+//7Fk7cODOxs6eDALFyyAeBwqKjq2T506dbd5oV/60pf40pe+1GX7Tz755D63X3XVVVx11VV7bVdKcd999+3zNi+99FLH3xdddBEXXXTRXsf069ePurq6LmPKFklWhTgONQCvAq9hru0Ju887dcXjjGtq4qIBA5gMu3rQysvNiziqxlZU8IPXX6clEsGVk8NLGzcyNTNc5wcLFvC3FSsodDh4Yx8LhR+KPXtePw9cBnwcj/NAbS2rq6qIOhw4nU4iwLPAC5g9s58Ghh5R60IIIYQQu5NkVYjjyFrgoVCIhamUuQZnp6G+uQ4HpU1NjNm+nUE+HxfMm8eRzEz80vPP8+L69VTk5bHyK18BwBeNcunTT1Pb2srgoiKeuvhiil0uHl+xgl+8/37HbVd4vSy5/nomdhqKerCSmMu4BIDNLS1sbWnBXV6Oo7i4Y61Sb1sbjcEgzsJC7G43ccyqxv5IhLZIBGdeHg6XixSQBsKxGJFolFyXy1xyB3O9VAsQi0ZJhMMU5uZSlJtLDpADxEMh4oEAnvx8+hUUkIuZ9Bt+P9HGRoaUljKsrIzCzPauekVrysv57syZnP33v+O225ng8WCzWAC4e/Zs7p49m5++8w73LlzIT84445Afs64oYFp5OYNGj2brzp1sKSvjDYeD9sL5KeAN4BXDYERLC1+x2RjT6RdiIYQQQojD1a3JqlKqCHgIcxShBr6ktf6gO9sUQuxtE/A48G6nJWYCSuHxeOjvcDAHONvpJDlwIPVWK1Unn3zEVXqvmjiRr02bxhXPPtux7Z5332X2kCHcdsop3PPuu9zz7rv87OyzuXz8eC4fPx6AT7xeLnzyyX0mqoFQiDq/n/ktLaRKS2kCGoHacJj6aJSU2006s66YYRh4w2FwOCAYxJObi8PhMLe3tprDnX0+PDk5u7Y3N5vbI5GOYdDtVXLR2jxPp2V5DMPA29S079u0L+XT2orH4di1PRgEp9M83jA6hlrnRKPYg0EGZQpTrQXyACIRdFsbl44cyZcnTwbg+wsWMGCPeSFfGDeO8//xj6wnq+3ae12nAZdgVoh+FnONXcMw8Hq9eLXmI8PgG62tfLGoCEu3RCKEEEKI40V396z+DnhFa32xUsoOUo9DiKNpG2aS2t5n2T7UF2BQUxOfi0b5wqhRdEzBz+JSMqcNGkRta+tu255ft443M0NVr5wwgVl//Ss/O/vs3Y75x8qVXDBqFCuam9FuN3GnkyDgSyRoSqVYnJPDx+EwnkwRKMMw8La07JUwdh7W3Ll6cba2d348j/Rc4U5J7yexGHmpFEuAVDJJKJEAp5Noayuj7XaS0ShPrlnDv77wBV5ft45p/fvjdrt5Yd06RpcdndmjCpiWuawH7mtu7qgknLBYeEgplgNfBwYflYiEEEIc77TW+1wrVPSMfa3leji6LVlVShVgTmW6CkBr3T7STgjRzZqA+4JB3kincXQa7utyOunX0MDUjRspjcU4Z9489l8rLvu8oRCVmaVVKvPz8YZCrG5qIul2E3O5CAAPr1zJdfPm8Z7NBoaB22bDarNhpFIdiTZdJIBGLEaFw0FZTg6Nfj+OeBxHOs3U4mL6AXGtWbFmDdZEArvWnDFzJpVAWyLBOx9+iCWZxAqce/bZ9AOaDYPX3nqLdCqFxWplzrnnUo45PNhrGLzy7rsktEbn5HDq7NkUAjuTSV5fvhxDKZJ2O+OmT8cOeJXi4507idlsRJ1OyioqSACBPe5DKpUCIJlMdtznP778MhHDIMdm4/Nz5rDQauXBjz+mcf58HFYrA4uL+dX559McDpNoa+v2qsztRgLft9ko++ADFpxwAn63G6fTyXrgZuAzmPNe7d0eiRBCiOOVMxympa2N0oICSVh7Aa01LS0tODOj3Y5Ed/asDsX8zvyIUmoCsBi4SWsd7sY2hTiupTAL3jwci7HN7zcTncxw3zMcDi53OHAMHky93W6utXkU18tMYc4FWAf4gIZEgjjwVk4OxOO4c3LY0tBAjs1GVWmpeSOtSSaTWG02bDYbCrAnk5T5/ZxUUsIwwJZOs3rJEnKjUfKSST47Zw79CgshNxdvZeWudUXbh80WFeGdNGnX9va2ysoYNmvWru2ZeZclFRUUdl6ftNN8zOKKCorPOmvXvkzP5gmlpYydPn3X9va1zgoK8A4ZYm4vL8fjcgGwLRbjmXffJWi3E87NZTswAmi1WKiPx4nl5PCtSy7BnZdnJu6xGLFYjOsyy9Q4nU4cTidrkkk+Dodx2mwU+P2MsVoZ7HJx5B8VXfN4PFx36qnMqa9nSf/+vOpwkMT8P/8X8FokwoVbt3JqSclRfc4JIYQ4PgzYuJE6l4um5uaeDuXQpVLQ0tLTUWSd0+lkwIABR3ye7kxWbcBk4Ota64+UUr8DbgNu73yQUuo64DqA6urqbgxHiGPbOuA+YAvmupjtPXVDGhu5JhjkU2PGmAdmcahvV+KYVYdjwHygMZnElZfHfL+f0uJivIEA+ZlkrT0p/WDlSmaMHYstncYVj+NKJBjqdFIB5NtsYLOxKpXih5WVeDI9tBQX4z355F2JYaf7tmd122xvz9a5qj0evtAp6b3/X//iRAC7nVBuLsFgEGtBAUmbjTagSSm2xmKEHQ7SFgs2m/lW3t4TG8vJIZaTQ5tSLAHyEgmWhkK819zMyWVlR7TEzf50ntN6PnAvsBpzPuuK5mZWulzMXbiQm6ZNk4RVCCFEVuUkkwxpaurpMA5PXR3ceGNPR9FrdWeyWgfUaa0/ylx/GjNZ3Y3W+kHgQYCpU6dmZ3CzEMeRzV4vD8XjLK6owJ4Z7ut0OrGFw5y+ahUD2tqYlumB605pzGJHWwyD+mSSiMOBDzAAbzJJKBxm3ODBLFi8mM/OmsUHq1czYdgwcuNxcuNxhjoc/GD1av579dVU5+QQNAzyi4txdx5C4nZTWlq6V7LTVTLZV+zvPuy5fm0VMNrhYJLbTTAYhIICYjYbPsBrsbBda9JKgVLYbDZSyST1kQjbgK9EIoyJRpnjcnEqMISuqxAfroHAPZjLI/06EgGtSSnFS+PGMTQQ4Jo+/n8lhBBCiKOj25JVrXWDUmq7UmqU1nodMBvzh3YhRJa82dzM99vaCNvt4PXi8XjIdzi40uFgRmkpjcOHd+tw3wCwCPgEeAaIJZOEMvMvH37hBTbs2EEoGuWm3/2O86ZP54KJE3nw5Zf5/sqVDCkp4W9z5+JIJskvKmKR10t1QQEnFBcDHJX5ln3ZnknsEAC7nbZ4nO3RKJH8fFptNnZ0KqqF1tTF4zztcvG4YVAQDHKBzcbniopwZTk+BZwLDEgk+Go0SqvLhbZY+NegQQwCzj7A7YUQQgghursa8NeBxzOVgDcDV3dze0IcFzTmUIV7c3II2+0dhXmG+nz8pLLSXB/V46F/NySpKcxlS/4VCrEolcLhdBIBEuxeEOjLc+dSkZPDkLw83JEI/g0bsDY2MnPqVEaOHLlXMjrL7ebDa67JerzHmwK3mzGdHtvWZJIlDQ0URSKEM+vrdl5q5ldK8W+nk4ucTj4FlGQ5nrEVFfwJ+JFStBYUYHc4+D3mMPHzs9yWEEIIIY4t3Zqsaq2XAVO7sw0hjjdtwK8xK5Y5nE5QClc8zhlr1nDztGl01wDLZsy5p68COzuvI6oUeZnqtQVWK0VtbRSGw+QbBjXDh+MGyM0lNGwYwWDwqFWp7cuKqqu5o7Y2a+eLas30AQP4Wl4e9Q4HT+zYQUsyScJqRWmNzzB42unkn7EYJzQ3c7XdzphOhaSO1OiKCh7CLFiwObPtd4bB2h07+GJeXp8fwi2EEEKI7tHdPatCiCx6p7mZXyhFLLPGqMPh4JTSUj67aRNjuqlwTR3wYDDIW52Wwem8Xms/v5/8SITzgYKcHMIlJQRzcvZKSvcctir27+Y77+y2cw8ABtlsjHrtNVZ7PCwfMgRHv35mb2tjIzu05s1wmPNebcO5pIAzZpm3e/NNmDULZsw4vHYLgLuBO4AVmZ7dv1mtNC5axDenTpWEVQghhBB7kWRViD7ieZ+Pn4RCpJSCcBiPx8MXHA6+mJeHbfz4rLfXADwJvGwYNOyxDI7HbmdkbS0127ZRFI+z3majMHM7SUp7P4/Hw0Vz5zK9vp5+xcVsdTi4PzMsWAOtS53c/cV8dBxybIA2K+vb7bBgweEnrG7gf4Cv+v0dbb05ahTzGhokWRVCCCHEXiRZFaIPeBn4tdVKSik04IrHuaK2li+OGpWV83/wwa6esxNmwB/b2pifTpPjcnX0ompgQEsLF8diXDFyJC2jR1NfUGAutfLOO1mJ42hKALWNjWz3einr14/i8nISQENzMzubmiiuqKCwtJRk5thGnw9fSwtlpaWUlZRgAfw+H/6mJqrKyqgsLSUHCDQ14W9oYIjHw6CKil77Jtu5+nAlZoGmPy1ezOujR9P0USHpOJCCeFqjAK0V8bj5PDncZBXAhTl/9XLDIORwELPbWeDxcOoR3yMhhBBCHGt66/coIQRmIaV/AX9n1/zUklCIC5cu5eyzzspKGx98ALNnQzwONjtMf8mgdWir2ZPa1kZJcTGDWlqYtnEjlcEg58+bh43et1xMDGjKXNb7/dS2tmIrLYWCAgJAQyRCSySCJS+PlMtF2DDwxmJQUADRKB7DAMAbiUBurtl7nRlubRgG3lDI7FoMhfDk5ZnHhkLgdHYcC+CNRs1zxmJ4DIN8hwMVjaLDYfq5XFTm5VEE/5+98w5vqzr/+OdoWJIly7Y8lDh7J5C9SAiEECBhhAAthbRQVssoLaOUDviVWeiCUkrLKKWFUqCUQpkFGgoECgFCICEh0xlO4hF5aK+rdX5/XNlxljN8HWecz/PosXXv1TlH0vX1+d73Pd8XQiEyzc0MLS1lmMdDBVBE15SS2Ru8Xi9XTpvGqfX1vHCSmXt/D7mURJj1GxWmLBQUCGbM6Hxf/b1ebrVYuNtiwW6385nNxmfAhM43rdgLhBDfB76NfolZDlwqpUx276gUCoVCodgZJVYVioMUCfw2HOYlKbHn14pOLSvjgkCAoSefbJhQXLAAtBTkspBNweZ3Je4BukDp5ffzrViM43v1ol6I3ZbBMdoQaHdEEwnipaW85PeT9HioA6pjMTZpGlmnc5uwjETAZIJgEG++9qyvuVkX4PE4Xq93u4ixkFJ/Djtta79Gd0/H7m6br6kJpGRdPI7Xol92faEQWCxt4tdmsyGTSQojEYbY7QwvKqLQ78eydSvjy8rocwBuDLTegJgMeB9dz8OfFpI7QRfQ2S9K+eapdqZ0IqrantllZSwH3gM0TeOOaJQHMhn6H0Q3QA5HhBC9gGuBo6SUCSHEc8A84IluHZhCoVAoFLtAiVWF4iDlt+Ewfw0GQUpCQjDT4+HnLheOMWMM6yMHZGYABRJSYCqAipkm7Mkkx69cyQC/n+PnzNljFNVoQyAJLGtq4vNAgITXS6C4mNXxOMubmpDAh+2jmy0tugiNRvdJhBbabGiZDJZMBjMwwGrFAmyJRBDZLBYpGV5WRgmgmUys8fmQUoLJxHCPBwmsbG4mC2TNZvqVl5MWgnXxOCmTibTVisNuJ7EPQtfX2AhSsiaRYCHgj0bB6cSUTDIxHmd0YSFlgQDF9fVMKC+nRxcKuwtOcVGYeYPX+o9mS3k5nlPSLMhp/CEE1xQX77mBveByYGEiwea8mL9tyxZ+DQdVxP4wxQI4hBBpoBCo7+bxKBQKhUKxS5RYVSgOQl4CXpKyTdAM3rqVr7e04Bg3zrA+QsC9wCfjNQY8HSD2kQ33lCQXjS3krGQJzf37U3XssQdEOKxubOTjYJCw10tjcTFfJpNsTCTAZoNQCK/dTjKdRsJuRZ85l8MViXCU3c7WhgYcySTOTIYTx4/HJSWLFy3Cmkphz+U4Z9YsehcX0+hyUV9fr0eMCwsB8FVUbNvWahRVVISvX79t24uK9GN799a39ey5TTx7PG3HVdpsbA4Geen990mazWh2O+NmzCAsBO9t2EC0oICYw0FZRQW18fh2AjbW7nkOWJNOs6k1auxy4YhEOA4YGIlwitvNEANLzcA2E6bxDQ38zeHg/bzJ1mNCMCqdZkZ5eaf7KAZOq63lD/lawct79WJ9Q4MSq12IlLJOCHEvsBlIAPOllPO7eVgKhUKhUOwSJVYVioOM/wF/Bux2OyEhGLx1K6ctX06/OXMM62NBczO/EQLN5SKZTOIcrzFooI+ZK1YwbcMI+owb16Vpp182NvJBKESL18tqi4VlyeT2wlTTdoo82u12IoA7HscTjzO9pISeuRxrP/uMomiUonSaM+fMwety4RswYJuw9HgAGDt9+rZt+fe2q4jx7qLIe3vsjtv6eb3MmzVrp/GcfNRR2wllXyTCCwsW4LfbCRUVUT5mDIsaG2lyuQg5ndjt9u2ixnGrlbeSSbBa+VMiwZTmZkYHg5xeVEQ/g7671vciliyhJpdjU3k5Qkr+ABwLFBjQx5luN882N9PscpE1m2no29eAVhW7QwhRCpyF7qkVBP4phLhQSvnUDsddAVwB0Fd9JwqFQqHoJpRYVSgOIhY0N3OnxYLF4WiroXqx30+/fCquETwbCPDLWAwJEIvhKS1lUk0Nk6qrseTXpRpNg8/Hh34/9VVVLLFa+TyZ1M2KgkFcTucuhamWyVARClERjTKnqIhxNhtWu51mv5+q3r3x5lNRfdOmdUqEHgj2Zjxer5evnnrqdu/FZ7FQX19PscdD1GZjcSLBvxsbqS0tJWm16t8hkAUWxmIstFp5IhrlK5kMU1paGG7Qe+5bVcXJb73Fnz7+GOvWrdTabJyvaQw1m3E4HJ1qu6RvX75xww38VQjsdjvLbDa+2ukRKzrgZGCjlLIJQAjxL/R7D9uJVSnlo8CjABMnTpQ7NqJQKBQKxYFAiVWF4iDhy6YmfhSJoJnNEA4ztrycXzqdFI0da0j7EngBeMhkakundaRSXF5Xx0ntytAYKejWNjby95YW3jKZiBQWQii0kzgFMEuJNxikRzjMOUVFHGOzIV0uGsJhqoYNa4tG4vXuFPE92FyJO8OuBGz756NLSjijb1/q6utpLiri5Zoa1ldU0FBS0iZcExYLz2QyPOdyMXXpUq7u25ejRozo9LjmnXIKC//1L04bNoxEMomQknGbNnF0nz6dqqt7e00NF5SU8FL++VL0cF9Jp0as6IDNwBQhRCF6GvBJwOLuHZJCoVAoFLtGiVWF4iAgA/xKSjSzGQk4NY2L1q+naNQoQ9qXwP2hEC8CZpMJhKAyFGLOF19w0imnGC74/MBj4TDPxuNk8mtBYXtxWuX30zsY5BujRzPQ4aApENhJmHalgdChSvvvakxREfX19SQ0jac3b2ZZ796EHQ4kkDabeX/4cJrq6rh11SqONkCwDne7cWcyJPI3G1qcTiKRSKfEKkAFcDTwuaaRTCZ5NZfjm6WlnWpTsWuklJ8IIZ4HPke/9CwhH0FVKBQKheJgQ4lVheIg4EnAV1wMySSmXI45X3zByOOPN6RtCdwTDvN0KKS75grBlMJCLvH7GZgXqkYRA/4UCvGqlCSzWbJiW9VQezrNkMZGLhw2jKMcDvxCUHX00XjzRj29lTDdZ9oL10HFxdTW17PGbufReBx/3vBpVa9e/K66mu8DIzopWAUwxGTCJwRISUtRERaTqZPvQmd0IMAbkQhIyXN+P7NSqcMmYn6wIaW8Dbitu8ehUCgUCsWeUGJVoehm3mxp4QmLBbvdjtfrZXZdHRcef7xhE/V/Aq+1cxYe6PPxLauVyQalF4MuiD8EHkgkWNNOFCMEPYJBRm/ZwunFxRw9ZAjesjIAw0yAFDqtwnUCMHLVKu6uq2NVr14AfDpoEK9/8AEej6fT59VQh4MlJhOxRIKozUb1li04HI5OR1fL6uqgqAgJ+AsLqa+vV2JVoVAoFIojHCVWFYpupLqxkdsiEZIWCyEhmOXxcMPAgYg9vO7+W28luHnzHttvAFYAuWwWUyKBO5GgMBjkhd69eX0vjXFK+vbtsI5qALg7GmVRNks2k2kTxZWhEPMyGcYDvSZOVMLjADJ6xAhuWbWK68NhGt1usiYTq6qqDBGANsCTShHLPw/b7fzmww95bv16BDDK6+Xxs87ilnfe4dW1aykwmxnk8fD4WWdRYrfvtt2RFRWYkklyQNThoKykpFPjVCgUCoVCceijxKpC0Y08mE6TtFiQgCuZZO769YgxY/b4uuDmzdzev3+Hx/iAtzIZpmQyWCwWKnI5RrW0UDxixD5FwW6vqdntvmXAzxIJ1vr9bdHUwlSK41avZlhjo15KRonUbmHkiBF8bcUKHsw/X9ejB3aDUna9VitbcjmQkvpUisdXrmTV976Hw2rlvH/+k2e//JJTBg3iFyefjMVk4sdvvcUv/vc/fnXKKbtts5fXy8h4nA2JBAC+XA5VMEWhUCgUiiObLhWrQogaIIJeWSEjpZzYlf0pFIcSnwIry8vB50NIyUkrVzJ06lRD2k4A76XTROJxkJLCVIpjCgsp7dnTkPYBXgQe0TQC4TBSSj2qtnkzFwlBRe/eVE2erIRqNzM2ncYkJTkh8LtcNGzZQudWreqU2+04hCCdTlNQVkYWSGQyWM1m4uk0VUVFzBo0qO34Kb178/yqVXts15vLsSwWAyn517Jl9FXnkEKhUCgURzQHIrJ6opSy+QD0o1AcMsSB3yQSJFMpPKWljA+F+N7UqYZMzCXwERDLZkFKLNksQxsaSFZWQifXFba2/1fgGU3D5/MhpcSRSjFr2TL6B4OMUdHUg4b+PXviDgQI5lO+P62t5Wifr9PfjzkeJ5FOg5RkTSaumTCBvr/9LQ6rlVmDBm0nVAH+snQp5x999B7bLQgE2tLIwwUFat2qQqFQKBRHOMbkhCkUin3ioXCYVU1NhIJBEj4fVxcUGDYp/zyZZFMyiRACAQz2+bBlsxQVFXW6bQn8KhzmL6EQsWgUpKRnIMC8hQuZYrczRwnVgwqv10v/dqWDonkB2FnSeddegIim8cqaNWy87jrqb7iBWCrFU8uWtR179/vvYzGZuGAvyjB5ioshf96aTCaqqqo6PVaFQqFQKBSHLl0dWZXAfCGEBP4opVS13BRHPOuBV9u58x6/ahXh3r2hsrJT7V728su8smYNBYWF3HLhhSAEzevW8duFC6kOBFh0+eVMzEdWn162jHsWLmx77TKfj8+vvJKxPXp02MfDoRB/b+f2O6CpidlffEEBMFGZKB2UlHk8CL+/LVXbCAFY6HJB3kxrZW0tAz0eKvKlcr4yYgQLt2zhwtGj+evSpbxWXc3bF12EEHuyDQOX243XZiOZTDJ54kS8qtaqQqFQKBRHNF0tVqdJKeuFEJXAW0KI1VLK99sfIIS4ArgCoG9fZaehOLyRwD2xGJlMBoSgb3MzwxobqZo8udNtXzR2LCNGjeK3r78OgCuR4KjCQs77xje48rXXtjv2gtGjuWD0aACW+3yc9eyzexSq/wgEeCKVQuYjasPq6/luOk3x+PFUVVUpoXqQkmsnErsilaasqIh3GxqIp9M4LBbe3riRiT178ua6dfzqww9575JLKLRa96ot2e73PUtbhUKhUCgUhztdKlallPX5n41CiBeBycD7OxzzKPAowMSJE+VOjSgUhxHPBgJ8lE+hNEnJZek00wxKnS32eskFAgCYpGRQUxOjBwzYo/Pv37/8kq+PHNnhMQubm/llLEY2/7xfczOnrFzJiDPOUCL1IKcukWhL2S1IpQxZBxqKxaCgAIDBlZWc1q8f4//4RywmE+N69uSKCRM4+qGH0LJZTvnb3wDdZOmROXM6bDcYDuMLBkFKFq9ezSljx6rzS6FQKBSKI5guE6tCCCdgklJG8r/PAnZfrFGxz2z1+ahpaMBTVUVRZSUJIInuBJsAGgIBtvr9eDweSneRThcIBAi2tNDL46G3x0Mh4AAK8w8HqraRkYTQjYla038nbNjAgNJSQybjjbEYi1Ip0uk0AMMymb0SqgD/WLGCl+fN2+3+NHB3JtMmVCvCYS5tbGSaEqoHPTkgaLNBTK+K6kkmDUkDFkVFkEqBlNgyGe488UTu2+FcW3fttfvcbn1+HbQELOm0MlhSKBQKheIIpyu1iBd4Mb9OyQI8I6V8swv7O6yQwIrGRr70+7FWViI9HgKAP/+oj8dZFY+TLi2FZBKvpmGz2dper2kavkgELBaIRPAWFu56v9UK0Shep3O7/a3HZBMJehUU0LewkArY5aOgiz+Lw4UHIhEiuRwIQXE8zqRNm6jaC4fUPSGBRblcW7qnKZdjSCazV0L1k9paCq1WRnawXnZ5Ok1tKgWALZPhjGXLmHbyyUpEHAIsa2qiKZFAAoWpFCccc4wh31vW4cBhMpFOp+lZVLRPdXs7IlFSAs3NCCkpNUhYKxQKhUKhOHTpMrEqpdwAjOmq9g8XJNACbM4/NuV/rk0m2ZxMgsOxSzEZSqdJm0xIQEhJMpncbn8ymWyLUOzPfi1flgQpaRaCrV7vTmK29ThHNMpwm43RLhcDgIHodyrUmrNtvNvSwvP5+pEIwcWJBGeefrohwmFdIoHPbIZcDoCCbJbivXT+fXYPKcBbAF/eDArgxC+/ZFLfvkqoHiJ8FArpN6QAbyhE0mw2pN1mTSORv4bEW1qICtFpwSoBn8mEK2/UdP706Xg7aTqmUCgUCoXi0EZleR5gUsBq4Avgk1iM6lQKuUPUEyCkaR2KSbvdTkgILNksBdksfa1WStFTd+1A1mRifUMDpmwWkxCMLC3F3a79sBB8WVdHBshYrfQvK8OEnj4cB+ricUQ+Wrer/mF7QVsTi7HEam07xgEMAMrDYdw+H8cVF3P0ETrxjAC/hbbvc/DWrUywWg0RfMFolPc1jZTZDELQJ5fDbrXulXDISck/V67k/Usv3eX+FPBROo3MR4OPqq1lWHMzQ6dM6fS4FQeGJq8X8rVLewWDVO1F+Zi9wZd3AgawaxqRSKTTYnVtY6N+g05KbNlsm2hVKBQKhUJx5KLEaheTAarRxekydKGaJi/0Wlr0CV8kgneHyKXdbkfLZCiNRinSNKaWltIf8LQ+bDZSNhvB+np6VVXhbVdLEYCiInwDBlBfX687tbrd2+93u/ENGrRt/w4TTV8qxQ+vuQbN7ydjseDp2RPsdpKw7ZFMYs5k2hw8QwUFWPOmKwGgNpslkUgA8AhQardTbrFQCpSii+pWSvr25fo7D78lzRK4OxqlBUAIHKkUJ6xdS9UppxjS/tJMRheqwOP//jc1dXUEkkl633cfd8yYgcfh4Jo33qApHueMZ55hbI8e/OfCCwF4f9MmervdDNxNeZBPNI2WZJJ0JkOhpnGplIxVdVQPGSTwpWXbJb4qb77VWTQgabNBJoOQkqJUypAavkv8fnA4kIA7FqMhFKKHOtcOS1znnUf0uec6POaBV1/l4TfeYPygQXxt2jSGVlVxlKoYoDjMcLlcRKPRDo954IEHePjhhxk/fjxf+9rXGDp0KEcdddQBGuGhzel33MEzP/gBJR3cTJ1x883ce+mlTBwyZLvtSzdsoN7v5/SJE7t6mIo9oMRqFxABXgkEeD+ZpL60FOz2nY5pn4ZrS6fpGQwy2eulL9AX6GezkXS5aAiHqerXb2exCeD16o/d4PV6OxQWHe33er30LCzk+qoqinazJi0ajbKmupqExULcZqOob18SdjsB9Amtlkzq7zOP3W7H1u6zsKfTuONx+lmtPLl5827HeagigdsbGngjldIj5EJwWSTC2aecYkxUFah1uXTzHCm5a9Ikjp07d6fv6pwRI3b5+hn9+/Pxt7+9y31NwLp26b8nrFxJpUr/PaRYC2zNmyDZ02kqQqFOGxaV9O3LDTU1LMlmyaTTOLNZNtpsOJqbobl5v9sE8PfsCaEQQkp6hMNUDR683+NUHPo89PrrvHHbbQzo0YNL7r+fOZMmKbGqOCJ56KGHeOONNxgwYACXXHIJc+bMUWJ1L5BS8tott2Ay7V/RtqUbN7K4ulqJ1YMAJVYNIgN8BrwD/C+ZpC5fnoTGxp2ipr2B44QguGwZFYEA7nSaM+fMYacppNfbrZEFh8NBz549d7vf5XIxbMgQIpGILmjzQlSiR17rcjlWBQJE7HaidjuWdlGebCaDLx7HJyXV6TTvZrPcgV7baBJQ3pVv7ACwxefjN9Eo77R7z2M2bmSy222I4JPAwlSKdC6Hw26nNJ3m2J49DTG6yQGfgv59CUFRMsmQ5maqVPrvIcVCwJz/Jz3Q58MiRKcNi66/805+HQ7zQb68zNGbNnHDsGGGnNO1xcV47XaSySRfKyrC6/F0uk3Fwc89//oXz33wAVo6zTlTp3LHN77BVQ89xAafj7l3382844/nlUWLeO/LL7nrued44Sc/YVAH/5cUikOVe+65h+eeew5N0zjnnHO44447uOqqq9iwYQNz585l3rx5vPLKK7z33nvcddddvPDCCwwaNKi7h31QUePzcdodd3DiqFF8tHo1SzdupOmppyh3u/nZs8/y9Hvv0ae8nHK3mwmDB3PjOecA8M8PP+TqRx4hGIvx52uu4ZihQ7n16adJpFJ8sGoVN517Lucff3w3v7sjFyVWO4EENgJvA++hlyYBiO6w3tQZiXCizcZoYDR6Gi9uN77Jk7el4R6iESuXy7WTQBLoa1YHFxbSo6KCSCSC02pFs1jwAT6gtt2aN6Qknc2yGFiMniJdHgpxnM3GKcXFDObQMWta3djIc7W1zC8sJOxwtG0fsnUr09aupWruXEP62aBp9MjXzxTAJKvVsDV+a4CWTIZMJoPLbmeE2cwclf57SJED5icS+AMBJDCosZFjjz2209+hBD5Ip9uub32bmqgvKup0u2lgWTJJUtOw2+0cvwszN8Xhx/wlS6iur2fRb36DlJK5d93F+19+ySNXX82bn3/Ou3ffTbnbTXV9PXMmTeLcadO6e8gKRZcwf/58qqurWbRokf63MHcu77//Po888ghvvvkm7777LuXl5VRXVzNnzhzOPffc7h7yQcuaujoev/ZaHvrOd+ifzx5bXF3NCx99xJL77yeTzTL++99nQrvsnUw2y6Lf/IbXFy/mjmef5b8/+xl3XnABi6ur+cNVV3XXW1HkUWJ1P8gAzwUCvJLJ4He7dzIestvt2MNhhtXXM6C5mQtOPnnnqCl7TtM9GLns5Zd5be1aKp1Ovrz6agBueecdXl6zBpMQVDqdPHH22VQVFfH0smXcs3Bh22uX+Xx8fuWVnNSjB+FMhiUNDQQcDoJOJ+b8ustW0yaflKxIJnnJbqenzcawcJjeDQ1MLymh/0HymSWAz5qbWRwKEaisZIPZzLJkEllWtt1xQxoaOOXLL5l+3HGGfN8bgGohODYv9nsEgwibDQwQq3FgSSZDNJ9a3Nfvp8RuP+TO0yOdpUBduxTg3i0t26Xk7y/VQCS/Lt2eTtM7FDKkvMwHLS1syZ9zIpHQS3Kpc+6wZ/6SJcxfupRx118PQDSRoLq+nukdOJQrFIcj8+fPZ/78+YwbNw7Ql1lVV1czffr0bh7ZoUe/igqmDB++3bYPVq7krGOOwZGfr585efJ2+78ydSoAEwYNosbnOzADVew1+yVWhRAuKWXHK8IPQ7LAu8BfEglWtKb5JhJtab5lwInATJuNgspK6jMZqsaOPawm+peMHcv3Jk/mohdfbNv2w2nT+NnMmQA88Mkn3PneezwyZw4XjB7NBaNHA7Dc5+OsZ59lbI8eALhdLib06aOnEDscrIrFmAa8GgjQlMuRbedC3AAsDQbBbue3ySTTYjFGpdOU19czuayMPl34+WaARmArsDoQYHUkQszjwe9yUadp+OJxvZZtIIDL6US2RovRJ/NTq6v5qsvFsDPPNOQ8SAJ3xOPk8g69zmSS3oEARTsYA+wvnwFaPurtSKXwBoPE270nxaHBfLalAA+vq6PAgBRggDdCIfyhEBIY2NjIcVOnGnJev50XqhLo3dxMff66qji8kVJy07nncuWpp3b3UBSKbkVKyU033cSVV17Z3UM55HHuwidmT7MYW77Em9lsJpMvA6g4eNjfyOpKdB+gIwIJ/A94BqgDQvmIhQQs2Swjm5u5qFcvRgNty7gPwajp3jC9Xz9qgsHttrnbRZZjqdQuU3b/vot6nu1TiB3NzcwFjhGCF957j5rSUjZ5vaQrK2luZ0aVA5Ykk/wvFgOnE1Myyfh4nP7ZLPbmZoYUF1Oey5FsaKC/10vfykqs6GnEMv+o9/nYuHUrxVVVOCoq2NzSwka/H1NFBbmSEr3ubSzGlmQSzeWiwGbTI76tNyj8frxW6061agHMUtIzEGDQ1q0Mq6/npGOPZcRuDI72lSxwRzTKUr+fVGUlj23eTL+GDM9HXfRON1NZuX8GN63UJZMsM5kQQqBpGv2am5mfSnGUWqt6SNEMvJdMtqUAH11XZ0gKcBZ4K5ttS98f5PORbJfqvr9IYF1FBTQ1IaRkSFMTVQbdfFEc3MweP55bnn6aC044AZfDQV1LC1azmcqSku2OK3I4iOSd5RWKw5HZs2dzyy23cMEFF+Byuairq8NqtVK5Q8m/oqIiIpFIN43y0OW4o47iygcf5KZzzyWTzfLvxYu5fNasDl+jrjsHD7sVq0KIG3a3C+i8i8shgAQ+AZ4CNrXbbrfbSaXTjN+4kZF1dXz1tNN2meZ7JPF/b7/Nk8uWUWyz8e7FF++0/x8rVvDyvHl7bMfr9fLVU09tW8tb4XDwQSzGE5s2scnjobnVFbmdeF2dSLA4FgOTCVot4N1uSCbxahqmfIS2ID+x9mkalJRAIoEnEsEfi0FBAYTDeFuPaS0rFIvh9Xp3EqbJZBKXzYY5HqciFKJHOMy88ePp63CwccsWcLkYauA6TwncD3yYFwvWH/yAof+s5cWfTiWTMVGwDt5+G/KZLPvMJp+PC4NBknY7CMHpBQWc19BwSK+nPlJ5GYjl18338vvxxGKGpAAvBlJOJ0SjODWN/oEAVcce2+l21wF+kwmX00lhNsvlBghrxaHBrHHjWLVlC1N/9CMAXHY7T91ww05idd7xx3P5gw/ywKuv8rwyWFIchsyaNYtVq1YxNf9P3OVy8dRTT+0kVufNm8fll1/OAw88wPPPP68MlvaSSUOGMHfyZMZcdx39KiqYOHgwxTuWfNyBE0eN4pfPP8/Y665TBkvdTEeR1Z8D96BnQu7I/vlAH0LUAXfFYqzIZPSSK/nooRO40GbjmKIiAuXlVI0erSZWwN0nncTdJ53EL/73P/6waBF3nHhi275PamsptFoZucNFd3fsuJZ3enk5w4YNo76+Hpfdzgoh+EdDA/XFxYRaLzZ5IUm7lFUhJbFotG39JeGwbkLUTnTG4vGdRGj79oSU2KNRhtvtNDY0UBSLUR6Pc96UKYwqLqbF46E+maRqzBi85bqHcW+DzwcJ/DIc5g0p9dROIRi3cSPRjwrJZATZLKRSsGDB/ovVB9JpwnY7ErCnUpwWCLStnVEcOsSAl5JJspkMCMH4mhpMJpMhKcDz8z9dTicnJBLMPeMMQ659r4bD+PLuwn0aGrAMGNDpNg8nhBBfA96UUkaEED8FxgN3SSk/7+ah7Tfta6xeN3cu1+3CeK7mscfafp921FGsfPDBAzI2heJA0r7G6nXXXcd111230zE1NTVtv0+bNo2VK1ceiKEdkvT3evnyD39oe97+OnLjOedw+ze+QVzTmH7TTfzg7LMBWPDzn7cdU+52t73GU1TEp/fdd2AGruiQjsTq58BLUsrPdtwhhNh1ccbDAAn8B/hDMsmWfHQtJAR9Kys5z27nHPJhZa+324x+Mug1NgOAP/9zQyhEfSiErbQUa1ERSXSzHH88TigWo9DppLDdXaR4PE4yFqOssJByp5NCdAffTDiM5vczqLiYFiAMFLL3+eLfGDWKM555Zjux+uwuUoD3lfYCdggwdcAA6uvrKfF42CQlL6xdS8hmI1JYSMRuJ2G1krFYMOVrhbZP1TUB1nQaWzbLgKIiWhoasKdSuFIpTigupiSXY/lnn1GYSODWNM4+4wy8Tie+fJ9VI0firajYaVxdQRz4RSTCK/nJPEJwVkEBZ7vdNFzWjzfeEKRSemB4xoz96+NdYHlFBfh8CCk5Ye1ahk2YYNybUBwwngyF2BwKgZR4YjFml5czzIBI5Vbgg7z5GVJS9vnnkF+n3hnSwH/za6QlMLi+nnqbTd0A3J5bpJT/FEIcB8wG7gUeBo7p3mEpFArFocMVDz7Iyi1bSKZSXDxzJuNVVPqQoSMNcim6FtoVh2WF3DDwAHrqbzifRmfK5Ri9ZQvfCgSYPmbMAR1PHNgCbEZPQ94ErE0k2JpKYWsX7dU0DV9+gkoggLegAFvrOsvm5p2MoHbabrFs2x4MghAQieDMZnktPxZzOo0llaLcYiGDLphTQAFQ3dLCkLwD7itr1jC8fFuV1JyU/HPlSt6/9FJDP5v2InEAMGL06LbUYWDb79ksL7/9NrlcDosQnDlnDtjt1Pv9eoqrx4MvndaP79cPbz79bNq0aTuVFTrQ7s3VwK+BNblc22R+eH09Z9tsjB83Dsbpqb8LFuhCdX+iqvXAQ4AtLxBGNTVx44QJSiwcgkSAF9udK+M3bKCoVy9DvsuXgEQ+Fb53SwvuaJT6+vpOt/0JkMmnFhclEvQLBKhS5Ul2JJv/eQbwsJTyZSHE7d04HoVCoTjkeObGG7t7CIr9ZLdiVUq5poN9h52v81Lgt2xT53a7HUssxilffEFlPM6wOXO6fAxBYDmwDPgkHqcmnd4uBVnTNHxNTW0Rtlbxuav1lEZsz2b1OVI2kyGUT5f95SuvUF1XRzSRoMd99zHv+OP5Yu1afMEgNpOJgSUlPHLGGW3v6f1Nm+jtdjOwtLRLP7sdhWT7388644xdCs/dvXZ32w4UGeCpYJAnAYvDgd1uJyQEI7ds4cQ1a+jV7vOdOnX/U3814PZYDF8+1X2AzcbdvXuzs4+e4lDgeSBt0S/pnmiU4T4fVZMmdbrdCPBau9TiCRs3GpZa/GI0SjKbxVNayim5HHNVPd9dUSeE+CNwMvArIYSNI2ApjkKhUCgU0LHB0kDgp+jBl1+ia7mpwCrgh1LKmgMxwK4mB/wuFOJF2E4YnmuzcVpZGc3Dh3eZyYwE3mtp4b+xGHXl5TTn03TbRz5DuxClAA5NozwUYmhlJVYh2FhTg03TsGWzzDjmGKqAWDrNR598gshkMJlMnHTSSVQATakUb3/0ERkpyVitHHPiiTiA+lyO/1VXEzebiRUWEhYCF+DPp+kBXHbaafrnZLeTzdfjHDVkCAihG6RYLGwAmhMJnJEIE8vL+fjb3Zs1fqjUs82gp+T+NR5neTjcts62f2Uld7pc9C0spMqgdYIp4KZolE/8fpCSqJTc5XJhbxcVVxw6+IDn2zkAT1m3juMMMip6KhRiSz5zoyIS4eTKSoYZUDN4aVMTb8fj+s0xYG5hId69XNd+hHEecCpwr5QyKIToCfywm8ekUCgUCsUBoaM04CeAvwPFwMfA48CdwCzgL0DnFyx1M1ngzkiEl/ITsZAQDKmo4CcOh57n7PV2SQ3PeuAd4PVEghWt5j/NzTuJUiElpdEoI8xmpvbqhSubZfXChbhiMaxCMGfOHN2F2O3GN3z4tuihx6N3VF7O8BNO2LY9v86yT0UFvU48cdv2fAovpaXMGDWqbfvDVitzgUgmw4pNm0hYrSRsNpy9exMHGtuJWKQkk8mgWSzUZDJE8wsp7ckkw61WBtpsVKDCAbui1ufjpUiEhb16EXE4CKXTbRFubyjE90IhThk1Clq/106SQb/7tDjvLCyB41avxur1ghKrhyR/ASL5pQuVoRADGxtJ9u18dbEdU4vH1tQYllr892SyrZxU/6Ym0mYzKLG6E1LKuBDiZcArhGj9Uld355gUCoVCoThQdCRWi6SUDwMIIa6WUv4mv/3PQojv7W0HQggzetWDOill1+fS7iUZ4DfAu+0mYv2bmrg2GGTi6NGG95cDXvT7eSWdpqGkBJvNtl29ViElmUSC8TYbfYHmzz6jwu+noL0o9XiYNHPmTimtsPvooRHbi1wuRg4aRCQSoaioCFc++hzOZFhWW0vEbificIDTqa9nbSdikxYLq6VkI2DKZCiJx+lntTLI4aBg/z7Kw4IkuoPZ/EiE12MxNKsVmprwer3Y7Xa0TIaxNTVM2LSJ0e3SfjtLFv28/xTa0ounVFczpq6OKuX+e0iyHHhX09rSdKevXo3ZoDTdP4dCxHI5EAJPNMowg1KLg8DnxcUQCAAwYfNmtVZ1NwghrgFuQw+gt1arl4Dx/6gUCoVCoTjI6Eis5oQQQ9Ejq4VCiIlSysVCiMGAeR/6uA49ddjdiXEaSgb4FXq4uHXCPmrzZk5cs8bwtakS+BD4UzzO0mhUF3E+33aiZHBDA4Obm7ls6lT6ARQX49uFwQ90X0qry+XC5dq+vK7b5WJs//5tItZptRIGaqRkVTxOyOEgZzJhsVj0da+xGAEp2ZhK8ZnVSg+LhV5AaSxGS0sLvvzncjiSQzfL+igQ4P1Egs0eD8JuJ5TLoZnNbTcsLLEYl3k8THS5CHg8uvOwgbVa745E+G8u15by/q3iYo7zeOhlYD+KA0ca+E083rZsYFhDAyf27MnQE07o9Pe5urGRv8ViZPLlks5Lpw1bU/pUKERjKIQEeoRCnDtihDr/ds91wDApZYtRDQohSoDHgJHol4bLpJQfGdW+QqFQKBRG0ZFY/RHwKvo8+2zgJiHEGHTRefneNC6E6I3uYHg3cEOnRmoQtT4fd+dyrPd4sNls2Gw2Liop4cSWFnoZaO4hgf+0tPBkNktzcTHJdqmdplyOIS0tXFBVRV+Xiyank6ohQw4KUbqv7Chii4ExDgeDsllC0ShJtxu/xcK6vEETAFKSzmRotFhoyGSIZjJ8YrFww/r1nG+1cqLHQ1H3vB1DkMCKpiYWBwKEvF62FhezDghpGr5IRP8cGhvbbliEhMCdSDBmyxZ+NGqUfsPC4NJIIeCuaJT5gUBbyvs3S0q4prgYoSKqhywvABvy1xZLNsvUtWtxjRplyLXjsVSKjMmEBCrCYabkcoa0GwFeyWe0AIyrqUHr06fT7R7GbEH/EzaS36HXbj1XCFGAXqFMoVAoFIqDjo7cgN8GhrXb9IEQohwISCmzu3nZjtyPLnp3qz2EEFcAVwD0NWCNVUds9fn4Xm0tG8vL26Kb82w2LnW7DZ2wh4BfRKO80boeNZnEU1pKQTbLmJoaxtTWct7s2Xpqr9dL70NAlO4r7UXsIGBELsfS2loChYUEnU7I78tkMqTrTUSq7XyydQBbjjbzGNAjFqNnczMTioqY5PHQA92E5WBCA75samKF34/m9RIpKWEzsC6ZZEsiATYbhEJ481HMHd2WPeEwZ1ZUMKSwEEtLC70MEhk7sgw99XdjuzWqR9fWMrOlRQnVQ5g64G/tXHqnVlfjTqcNSf+tBpa1q717XHU1vY49ttPtgi6wKSyESARPNMrgpiaqjlElQztgA7BACPFv9MsOAFLK/apWL4RwA9OBS/LtpNA91xQKhUKhOOjoKLK6E1LKZgAhRA8p5daOjhVCzAEapZSfCSFmdNDmo8CjABMnTpT7Mp595alYjI3l5W1i4fiGBi7t399QEbQE3Ta5pp0wsGYynOj3c4HLRbi0lKqjjz4koqYlfftye02NYe0lzGbigQCFmoYpkaAFWF+fYf3bZsK5wQQv8OJ5M0NyisYnLXrG20vRKF6nE4/NxiCgIhSisLGRoaWlHFVeThn7lpO+t0j0dXV+0McZCLAuFCJTVkasqAgf4NM0fIkE2O0QDuN1OLDZbG01encsDdSjoIDypiZ6BAIMamriwpNO0m9YlJd3ibFRFngW+Ef+/bRGccdt3Mhx69bR6wCUY1J0DTng57EYtS0tuqlSOMzXCgsZbkB2iAR+G4uRzGTwlJZyVCTC1QY5CwfQXYuTmoantJSLkklOV+Vq9sTm/KMg/+gsA4Em4PF8ttRnwHVSypgBbSsUCoVCYSj7JFbb8Wf09N6OmAbMFUKcDtgBtxDiKSnlhfvZZ6dYA7xdVQWNjQgpGbt5M5cPHWqYUM0AD4TDvCQldrt9u9qYUzZs4PxZs/SyDIeQ2+X1d97Z5X384hfw3juSLAJTWmJfWEBqTHAnsRez2fhU0/CFQlBQAPE4Xk3DYbNRBhTGYphCISpdLirdbhyAA0gEAoRbWigpK6O4tJQcuojzB4M0BQIUlJVhcruJATGgKR7Hl0iQdjqx2PWKo1pr+q4QEAjgLSjosF6t3W4nlU7jiUToEYnwlaIipgDlDge+Pn2oN5upGj26SyfozcC9wIp22ypsNm50Oqlwu6lSAuGQ5mVged7ITEjJiStW4B42zJDv9PlAgA/z6epmKbnS6WxzEu8sfwqH2RIM6mVwolFOKy9X5+EekFLeASCEKNKfymgnm7QA44FrpJSfCCF+B/wEuKX9QQcy60mhUCgUit2xX2JVSrlHe1Ip5U3ATQD5yOqN3SVUY8CvAYvdjtfrpUcwyM+HDqWHQZOkFHBzNMpb+UlYawmcG51OKgoLqZo1S03IdsOMGVBQINAr3Qh+NQO8msafv/iCereb5uJiLF4vGditOKzVNHz5CBPBIN78WuQ2kWm1QiSCt7Bw2/ZwGEymnY/PG9UQi+1USmjHfp02GyKRoCgexxOPc5rbzWigj81GoqiI+kiEqmHDtpUSouvXImeABcBDiQTNqVSbkdJo4AeAp6wMWksVKQ5JtgCPtUv/nbR+Pd5YzJD03xDwFynbzvcxNTVki4vBALG6BXi9nfv6MWvX0pBKGXYdPlwRQowE/gZ48s+bgYuklCs6fOHuqQVqpZSf5J8/jy5Wt+NAZj0pFAqFQrE79ihWhRBeoBd6dli9lNLX5aMyEAn8IhKhOu+A6rHZuNfrxaj4pgbcBSxql/Y7oLGRawMBpo8Z0y3CYLPPxwafj5KePSmqqGBLczNbm5upqKigrKyMlpYWmhsb6VtRQd/yciKNjYTr6+nXs+cBF9VTp8Lbb8OCBbpwnToVwMu1xxzT5oZcabfThP4Zv1RTQ8DhIOpw4K6sJMnuRWxnt5tjMfrbbBSYzdTX11OYTFKcTHLm5MkcDZTZ7TSXllKfSOgGWaWlbe/LfYANsjLotXufAzZrGr6mJpCSMPCd4mIuLylRNW4PA1LAHfE4tfmbKhWRCN+wWjnKoEj5/ZEIYSkhb/p1TE0NVaed1ul2JbrqKXA4IBymd0sLA/x+qgxaB3uY8yhwg5TyXWi7+fsnYL8+PCnlViHEFiHEMCnlGuAkYKVBY1UoFAqFwlB2K1aFEGOBR9ANXuvym3sLIYLA1VLKz/e2EynlAvSAzwHnRb+fV/MlY0JCcK3LRWW7SFdnSAI/iUb5PJvFnC/vMGn9eqZu2GB4CZz2bPX5+KKpiXRVFVGPh5WRCFvicbJFRQRMJjZrGhQXQyKBJxLBH4+DwwGxGJ6CAvyxmG5wEo/r+5NJKC3FHo0yuqiIslwOW0sLo4uKmODx0Jv9zxffG6ZObRWp29gxAlkJzPF4mDR8uC5iKyvxOhykgNWpFP/6/HPiFgsZi4UxU6diB7YCn9bWkhECMzCmtJQS9Ej7sk2bMGWz2LNZTpgwgd6Alsnw8SefUJBK4UqnOfv00/U1pS4XvoEDt5USancDortdm9PA28A/gcb8tlbR7Uwmmb18OZMHDcKkjJQOCx4H1ubdf025HCcvX07J8OGGnINvtbTwr1ZTOCG4JB7nzNNOM6TtT4FPNI1kMklZaSnfjUSYqFLR9xZnq1AF/f+pEMLZyTavAZ7OOwFvAC7tZHsKhUKhUHQJHWmQJ4Ar26UKASCEmII+ZxrTheMyhAzwVLu0s1GbN9PL6QQDxKoEbo9Gedfvb5vcXWQ2M7OkpEvWA/qB1wMB/hcMsjSbJVlUBNEoHqsVf74cCZqGy+ncLjoYy5eM2ZvnSYuFlYkE0Zjus/FSvn2RzTLSamWK08lodItoq6Hvbu/ZURwWAKMrKvAee+w2MVlSou8sLsY3ePC27W73tu3Dhm3b3hoRLSvjqBNOOKjq2+6OFPBfdJHavMO+8oICjl63jqM3bcIhpSHpoYru5yPgBU1rS/89fs0aKuJxQ77fGPB7aLsWDGloYEJBgSHnfAp4oF0t2FG1tUwcPPig+ns6yNkghLgFPRUY4EJgY2calFIuBSZ2clwKhUKhUHQ5HYlV545CFUBK+bEBd3UPCG8D0aIiiMdxpFJMW7fOkJQ2gNeAhe1Sf49du5aZZWWMMzCCJYE3W1p4KZWi2uWiJRJBmkz6Wkt2LT4BzFJSkE5jy2bpW1REs8+HKZtFCEHv3r2pDQTIAmmrFY/bzZZIhKTFQi7fbmt7SInf7wfgPSFYbdFPl2wiwXiLhZkuF5MA431s953diUmjth8MSPQZ6kfAK4kEDe3WpIJeAPkrwOkOB+GRI6n3eHYS3YpDk0bgV8kkvsZGkJJBjY2c63QyzKAbY/dFIrQACIEjlWLGmjVUzZ7d6XZBd6TenI8GF2QyTK6upr6wUJ2Xe89lwB3Av9AreL2PioQqFAqF4gihI7H6Rr6u25Po3hgAfYCLgDe7emCdJY0+SbLZbHi9Xk6pr+erBqW0LWpu5rcWC2azGYRgzKZNTNq0iapRozrddivvtLTwSDLJmrwgxu+nvcOFI5WiMhrlGK8X/8qVuOJxitJpvjpzJoUOBw2BgC5UPB586bQeLezZE295Ob5sVn9eXo63tBRfKkVdfT3OXr1okZJXli+nubCQZrebpqIiIna7LoyjUT3qKiXzheALq1UvyRKP07+xkZkuF1PKyw+6eqiHMjn0xWQfAR+jixat3ZrUVjOvCxwOTkO33QZwHMSiW7FvZNCdnf35kkhFiQQnfvklRWPHGvIdv9HSwvPt0n8vjsX46uzZhrRdg66wWt3Rp61dizObVdH+fUBKGQCu7e5xKBQKhULRHexWrEoprxVCnAachW6wJNBdBB+UUr5+gMa338wH6vJrpCoLCrhmwIC2iXxnqPX5+JHfT6CwEIRgtMvFNS4X/QyKcKSAXzY08EIqtZ04Bejt9zOosZHefj9Te/dm2NCheL1efHkDoKqqKr08DmznsLljtHBPzwdNmkR9fT12u52FH3xAxGKhobyc1LBhfJZOEywsbDMmAl28LxKC5+JxhiUSTHc4mIyeJ27r9Cdy5JEClqIL1EVAeIf9rWtSCzWN8TU1XOT3c8zYsQd4lIoDxSOhEB8DZpMJEzBr2TIKczlDBJ8f+L0QbdkUQxsamGpQ+q8Efh2L4c9ksNvtHF9WxkU9etBr/Hh1I2UvEELcL6W8XgjxKuz07wAp5dxuGJZCoVAoFAeUPfnmLEYvHr5OShns+uEYgwSeTiTaok+jq6sJjRqF3YAJ0gvRKIHCQiRgzWS4sL6eyQal/saBH8ZifNBOqFpyOUZt3szY2lpOHT+eZGUlVTtEVIxOXW3fnsfjaRPCAK+99hpBm42aykqsxx7L0kRiuzTkrakU/3E4+A8gk0n6BAJMdTiYUVJCH1BR110QAdbmH59HoyxNpxH5Mjs74gQmmkwkly2jb2MjBUD/MQf98nHFfvJvv58/5Q3iEIJLzWZOGDLEkPRuCdwPZJxOiEZxJZOcaGD675PBIB+GwyAlUSn5pdPJeGX0tS+0rlG9t1tHoVAoFApFN9KRG/C3gZ8D64EBQogrpJSvHLCRdYK1QG0q1bZG6qhNm6gvK+v05C4FfFhVBU1NCCmZun49Y0ePNmTMCeAHsRifRaNtQrV/UxMzV65kwoABDD355G6JRuwohOfMmbMtiutysdHn44/Ll7OhvJxNFRXY7Xr8WtM0fI2NbJGShek0Tzkc9LDZGIsecR3DwbHW9UATBz5vbmZxKESwspL6oiIa8vs0TcPXatgVibTVefUAU4CpwEjAUlSEb/LkXRpBKQ4faoD720U9+zY3M10Iw9bFvwJ83M6h98q6OmYYlP5bh75+pHXs4zdsQJSWGlKv9UhBSvlZ/texUsrftd8nhLgOeO/Aj0qhUCgUigNLR6UXrweOllJORa/ndtMBGZEBfIi+RgohGNjYiA0MSZl7HQiaTLicTnra7fx49GjD0uV+EYmwsKWlLbV22po1zFmyhNmTJnH88ccfNILE6/Uybty4tvEM8Hr5/qRJ3GSz8aLLxW9tNr4CFOcjKq1GTclkkgDwLno05xuaxlebm7k1EuFFYDm6I+nhwgafjxdWruQfgQCPAbeiO6KcrWl8Nx7ncYuFFwMBajSt7TXt67yWxGIct3Ur96Lbcn8HGMu2u0s7fg+Kw4sw8H+JBPFcDoSgOJHgtC+/pJdBaz1XA39MJvH5fISCQfovWcKM0lJDzqcccFcsRjKbBSGoiESYXFOj1qnuPxfvYtslB3oQim3079+f5uYdfdi7nltffZX/Ll3a4TG3P/MM97744k7bg9EoD71+0K/gUhxgZtx8M4urqwE4/Y47CEaje318e5Zu2MDrixfv8jULli9nzp137nEsX//61xk9ejS//e1vuf/++4nH43vxDg4fXC7XHo954IEHGDFiBBdccAEvvfQSK1ceGSWyO0oDTkkpmwCklBuEEIfE8kMJ/DeRIJlK4SktZW48zskGrCeVwDPtUosnrl5NgUHrBN8G3k6lkHk33xNWruTUXI6Jc+ceEmKkffS1CjgaOD2X46kPP2STx0NdWRk5r5dM/nhN0/D5fPikZF08zscFBW0prz2BQUB5MEjh1q0cXVbGiIqKbiuVszs0YHVTEytbWsDrRSstxQf4gJpEgvWaBk6nHiFtl9LbXpC2rvt12mwMAHoIQdOKFVQGApQmk5w5Zw4H/7evMJoMcEssxpctLSAl1myW68Jhjjco6hkCfglE84ZNFeEwk9eupb6oyJD2HwsGWZi/WWWSkivjcU4444xD4lp2MCGE+DrwDfTMpvZZTUWgmzcrDj0ymQwWy75XLs9ms9x55pnQu/d+9RuMxXjo9de5+vTT9+v1isOf12+7bb9fu3TjRhZXV3P6xP2riLV161YWLlzIpk2bAP2G0IUXXkhhYeF+j+lw5KGHHuKNN95gwIABXHLJJcyZM4ejjjqqu4fV5XR0xewthHhgd8+llAelO+HHzc2syJdzsWWzhkULVgJb86nF9lSK4Vu2UF9Z2em2E8BD7WqbHl1by5i6OiaeeeYhPbnzer1ceNJJbamqFXY764EvgDcDAZqzWTImU5tgaxVzDUCNpuELh8HhgEQCr6bR02ajAqgAKvMPc0sLms9H34oK+lZUYAccdJwusCskunt0FD262/7nlkCAmnAYPB5SRUW0oJvS+DUNXyKhj3EHQRrKnyftBWnrPpfNhiUWoywcpkc4zLzx45mEXi8WtxvfhAkqvfcI50/AkkxGTwcHTlm2jEH9+hlyPmSB26JRNmSzmE0m7JkMpy1dilUIQyKfq4BnoO38n7x+PUM8HnUu7x8L0S+J5cBv2m2PAMu6ZURHGDFN47wzzqC2tpZsNsstt9zC+eefD8Dvf/97Xn31VdLpNP/85z8ZPnw4ixYt4vrrryeRSOBwOHj88ccZNmwYTzzxBP/+979JJpPEYjFuvfVWbr31VsrKylizZg3Tp0/noYcewmTa/r9X//79ueyyy5g/fz7f+973ePPJJ5lzwgmcO20ary9ezA1//jPlbjfjBw1iw9atvHbrrQCs3LyZGTffzOamJq6fO5drzzyTnzz5JOu3bmXsdddxytix3HOpqn50JBHTNM67805qm5vJ5nLccv75nH/88dsd0//b32bxffdR7nbzs2ef5en33qNPeTnlbjcTBg/mxnPOAeCfH37I1Y88QjAW48/XXMMxQ4dy69NPk0il+GDVKm4699yd2m4bRyzGNddcw/Lly8lkMtx+++2cddZZzJo1i8bGRsaOHcs555xDfX09J554IuXl5bz77rtd/vkcbNxzzz0899xzaJrGOeecwx133MFVV13Fhg0bmDt3LvPmzeOVV17hvffe46677uKFF15g0KBB3T3sLqMjsfrDHZ5/tsujDjLej0TAZEIC/X0+Gu12ehlR3iEcJpvJgBAMamykwKDJ3auALx5HSok7keC4VasYNmzYYTG523G965D843gheGnBAhqdTpqLi6mcOpVGYBP6ZHpX0Ue/zYYfWJNvS9M0fLGYHr3MC9pWQViALlodQC4eJxqL4XA6sRUWkkNPU8zmf8YSCQKahsXh2MnQSNM0fJGI/iQQwNsuAryrMbbus9vtRKWkJBajLBbj5OJiRgF9gR52Oy1lZdRrGlVjxuAt337l7sFc51XR9fw9EODvJhNmkwmEYEp1NYNbWqiaOtWQ9h8MhXg3FAIpEcBPTSYGjRxpyM2RCPBroMDhgHCYnoEAEzdtomrkSCOGfsQhpdwEbBJCXADUSymTAEIIB9AbfVmzogt5c+VKqqqq+Pe//w1AKBRq21deXs7nn3/OQw89xL333stjjz3G8OHDef/997FYLPz3v//l5ptv5oUXXgDgo48+YtmyZXg8HhYsWMCiRYtYuXIl/fr149RTT+Vf//oX55577k5jsNvtfPDBB/p4fqcvXU6mUlz50EO8//OfM6BHD75+zz3bvWZ1XR3v3n03kUSCYd/5Dt857TR+edFFfLlpE0t/97ud+lAc/ry5ciVVHg//zt/QCMV2v/BqcXU1L3z0EUvuv59MNsv473+fCYMHt+3PZLMs+s1veH3xYu549ln++7OfcecFF7C4upo/XHVVh+O4++67mTlzJn/5y18IBoNMnjyZk08+mVdeeYU5c+awNJ/m/vjjj/Puu+9SXn7kuZvMnz+f6upqFi1ahJSSuXPn8v777/PII4/w5ptvtn0u1dXVzJkzZ5fXjcONjkrX/HXHbUKIUiAoW/NVD0Ki5eUQCCCkpFcoRNXAgfvd1v233kpw82YSiQTvplKkzWZMgNA01hYW8vD//rfL15X07cv1e5GfnwWeaxdVnbh+PTZg6NCh+z3mQwGv18vZp5++LYLodgO6gdUmYHEux2t1dbQ4nUQcDhz2nYsOdSQWU/lHo6bha27WI1SJRJthUSvt65USDu+0v6M+XDYbOU2jKB6nOJnkxOJihgJewGuzkW6tdduvH96Skp3evxKkih15s6WFX0ej5ACE4BSbjW94PPQaOdKQ8+UT4HloO6cnrV/PoNJSQwybJPDzaJT12Sx2u52BlZVcEwpxtEr/NYLn0H0jWskC/wQmdc9wjhxGVVVx41//yo9//GPmzJnD8e2iRV/5ylcAmDBhAv/6178AXcxefPHFVFdXI4QgnU63HX/KKafg8Xjank+ePJmB+fnJ17/+dT744INdTjpbI7ntWV1by0CvlwE9euivnz6dR//zn7b9Z0yciM1qxWa1UllcjC8Y7MSnoDgcGFVVxY0vv8yPn3iCOZMmcfzRR+/22A9WruSsY47BkZ/vnDl58nb7v5K/eTph0CBqfL59Gsf8+fN55ZVXuPde3eQ8mUyyefNmHA7HPrVzODN//nzmz5/f9r85Go1SXV3N9OnTu3lk3UdHbsC3As9JKVfn16u+ge7xkhFCfENK+d8DNMZ9oqWoCG9BAclkkq9NnLhT5GpfCG7ezO39+7Pe56OXv5BUrQVHVZpzqmJU9ey529fdXlOzV+2vABryUVWnpjGsvp5hw4cfEZO7XQm2AvLR19JSZg4apIvZ4mLK8lHVRvQ6So3AOiH42O8nYbGQsViozNeXTbKtIGFHYnPH/eZcDkssRi+bDRd6iZicycTGujocySRFqRSzJ01iCFAGuO12GouLqY/FqBowYCdBite7Xa1bhaIj1gD3mM3k0M/finCYr2UyhpV6+aKpiVssFswWCwhBv6YmpmzcSFUHE5Z94alAgNcjEZCSkBD80ulk5qhRhrStwCKlTLU+kVKmhBAF3TmgI4WhXi+fffYZr7/+OjfddBOzZs3i1nxkqvV/idlsJpPRHRluueUWTjzxRF588UVqamqYMWNGW1tOp3O7toUQHT7f3esA9hQvsFm3uTyYTSYy2WyHxysOf4Z6vXz229/y+uLF3PTkk8waN45b583b5bF7ika1nl9ms5lMLrdP45BS8sILLzBs2LDtttfs5bz5SEBKyU033cSVV17Z3UM5aOgoDfh84Gf53y9GL5FZAQwF/gocdGI1BazPl2Jw2O2MLy42pF1fpITACwXILMTMdqLnWXUnoE7yZjjcFlUd5PNhFeKwj6ruLTuK2dZ1qm243fiqqnRBW1mJN39XTqKbHyWALakUr3/8MTKXwyIEp5x0El7AjL6utVnTeOv997GkUlhhZ0OjoiJ8raK5qgpvWVmHY1Qo9oc64KZEos09151IMHfJEvrPmmVI+xt9Pr7f0kKL0wlCMNjt5vuBAEMMMJ4D2AA83q7EzphNm+jhcsEOfy+K/aZJCDG3tXScEOIs4MBb0R6B1AeDeAoLufDCC3G5XDzxxBMdHh8KhejVqxfAHo9dtGgRGzdupF+/fvzjH//giiuu2OtxDe/dmw0+HzU+H/29Xv6RTxPuiCKHg0gisdd9KA4v6oNBPJWVXHjiibgcDp54++3dHnvcUUdx5YMPctO555LJZvn34sVcvof/R3t7fs2ePZvf//73/P73v0cIwZIlS3aZ3VNUVEQkEjki04Bnz57NLbfcwgUXXIDL5aKurg6r1doWlGml9TM6EtiTG3DrDZbZwLNSyiywSgix71Z2B4DPm5vZmjdXEokEodJS7EbUDGywIXMSEJCT+HwOjNCUS/ORPYABPt9hs1b1QLErsSgAe/5RWlGBd8aMbWJzhxqP5ZWVlM6a1aGhkRKkiq7ED/wwkWB9Ph3dnk5zQzDItFmzDDNU+kUuR4vTiQQs2SwX1dVx3JgxnW4b9EyGO+JxtNYyNeEwx1VXU3XGGYa0rwDgKuBpIcQf0C9xW4CLundIRwbL6+v54eTJmEwmrFYrDz/8cIfH/+hHP+Liiy/mvvvuY+bMmR0eO3XqVH7yk5+wfPlypk+fzjl585q9wWGz8dBVV3Hq7bdT7nYzeS8mJGVuN9NGjGDk977HaRMmKIOlI4zl9fX88I9/1M9ls5mHv/Od3R47acgQ5k6ezJjrrqNfRQUTBw+meA+uvCeOGsUvn3+esddd16HB0i233ML111/P6NGjkVLSv39/XnvttZ2Ou+KKKzjttNPo2bPnEWewNGvWLFatWsXUfLq1y+Xiqaee2kmszps3j8svv5wHHniA559//rA2WBK7SycRQnwMfBu9GscaYIKUcmN+32op5fAOGxbCDrwP2NBF8fNSyg59sSdOnCgX76ZO097w9OrV/NrhQAL9mpu502Tq1Hqs2y+5hNv79+fFDSmWPWNF5sAkJFXHr+KeL98lm8vx7fHj+clxx23/upoabt/DXdUscGo4TGMggASuXLCAc089VQkjheIIIYZevHppKEQoGMSSzXL24sXMGTLEsHWkvwyHeS2d1jM4pOSUFSv44YQJhtWHvi0S4eVAoK3Ezs1NTUzr3/+guY4JIT6TUu5fLYWDDCGEC/1/9gG/ld7Z/83b8fDD+11+5YBTWwsdTOr3lwULFnDvvffucpLeIe0+u2gigcvhQErJdx95hCFVVXz/rLMMH6uiC+mi82uX7OPfXev5Fdc0pt90E49+97uM76wY6ur3eyhdW3bkQJ4LBwH7+r+5owjpdeh+HBXAb9sJ1dOBJXvRtgbMlFJGhRBW4AMhxBtSyo/3dnD7iquyEqJRhJTYcjmqDDppTZUpSr+qkaq1MNBWzw2L/8M7l15Kb7ebSX/6E3OHDeOoHaJ2e+LLpiYaEwkk4NI0Zk6efNBM8BQKRdeSAv4vGmVpvoSMCTj1iy+oikQMcRn/6CP4zRsJlo6L4xyvgRDMTST4nkFCFeAFYEEu15b+e8LKlQzo1Utdx7oAIcQZ6CWs7a1rG6WUe3bxUxy2/Gn+fP76zjukMhnGDRzIlaee2t1DUhxGXPHgg6zcsoVkKsXFM2d2XqgqFJ2gIzfgT4CdoqdSyteB1/fUcD6FOJp/as0/utRFuNDjwet0kkwmGVta2uYy21lMBQVYqxJYe2psXVbHYI+HgaWlAMw7+mheXr16n8VqTVMTMm+cUKhpJPMGDQqF4vAmDdwcjfKu368vAxCC64Bx/ftTdeyxnRZ7H30EJ54EWsqOsNoY8LSP8VWbOMdmwzu8w4SYveZT4En0shohIRi5ZQtH+XxUTVIGtUYjhHgEKAROBB4DzgUWdeugFJ1ixowZ25kv7Q/fP+ssFUlVdBnP3Hhjdw9BoWjDtOdD9h8hhFkIsRTdwPWtvADuMtov7d652Mn+k2nn0uePx+lVVNT2vLfbTd1+LHCW7cqxWDMZ7Lsoz6JQKA4vMsAvgUXZbFtEcuratYzz+xk3bpwhUcnnF4CWArICmRaYF8DJq1bRy4CILegLJn+WTBLM15ycXlbG9wsLmWOQYZNiJ46VUl4EBKSUdwBTgT7dPCaFQqFQKA4IXWqUlDdkGiuEKAFeFEKMlFJ+2f4YIcQVwBUAffv27VR/jcEgvnAYpGTFpk34DDIs0tLpNiMkKeV2tdNAd7zYV5KpFOQdbAX5MioKheKwJQPcGonwQS6H2WQCIZi0fj2TNm2iyqAyLz5gyVQNU0EBuRSYC+D7E6OcPft0Q66FUeDmeJxN+frFMpnk2tJShhhUYkexS1rvw8aFEFVACzCgG8ejUCgUCsUB44C4+kopg0KIBcCpwJc77HsUeBR0E4fO9JNsaQGLBQkkzWbq6+sNmaAVWq0E8oK13OmksV0R5NpwmKp2kda9pX95OSIWQwJNbjdVLlenx6lQKA5OssDtkQj/zpsRIQTzLBZml5TQy6CIpB/4QTxOy8BmBjxlRVtYwN0zTVx0+pBOtw36e/gVsCl/LbRks5y+ZAnRYcNgB5dChaG8lr/hew/wOfpymj9164gUCoVCoThAdChWhRDF6AKzF/o/yHrgP1LK4J4aFkJUAOm8UHUAJ6PPdbqMfqWlbQZLms1miFEJgMtqxVZQQDqdZsKQIdyzZAkbAwF6ud08u2IFz3zlK/vcZsbvR+aLimsWC36/X6XQKRSHIVngPuD9dmZE4zZuZLbbzXiDIpIR4BZgc15IFo1LcmHuQ0b1HASUGtLH78Jh3pOyLSp8yvLlVMZihl1nFbtGStla7/wFIcRrgF1KGerOMSkUCoVCcaDY7ZpVIcRF6HdxZ6CbOzjRDR4+y+/bEz2Bd4UQy9D9ON6SUu6jT/u+0d/joaioCIvFgqlPH8PE32ZNQ9M0crkcNek0d0+bxuynnmLEgw9y3lFHcfR+RBVa1q3b7vnKmhpDxqpQKA4essDPIhFeDYXaRN7YTZs4ft06w9aQJoAfxmIsz/dhAk774gv6hEKGCclnAgH+GgwSCgbxBwJcYDZzft++ap3qAUZKqSmhqlAoFIojiY4iq/+HXls12H6jEKIU+ATdDHK3SCmXAQd0IZNv3TrCVisAazMZVq1axYgRIzrdrtC0tt/TFgsT3G7WXnNNp9ocOmAATk0jlo+uplV0QqE4rEgDt0ajvN4u9fdsq5WziooMS/1NAT+OxfiopQWkRAA/kJKR/fpRNXWqIX0sBP5oMrVFhQf5fJxssRhSC1ahUCgUCoWiIzpyAxbsutRMjv3zFOpy/OvXb/e8euNGQ9odk8tt97y0tPNpdSNGjGBSXqgCfOTz4Wu3FlahUBy6bPL5uHrrVt7XtDaRd/SWLZy1dSvjDXL9bXUWXprJbFfrdGQgYJiz8HvNzfw0GMSUjwp7w2Fmr1hhWFRYsXuEENPyP217OlahUCgUisOVjiKrdwOfCyHmo1crAOgLnAL8bLev6kZG7eAm7BpijLFI/5ISlmoaqVSKjMuFw2RMxZ/+2SzCbNYXA7vdhhlCKRSK7mODz8fVPh8NxcWQSoEQjNu4UU/9nTPHkD5ywJ2RCAvaOQsfu2YNo+vrqRo/3pA+Fjc18cNIBM1sBiEYVlTE9wIBhp12mrpOHRgeACYAHwHGfKkKhUKhUBxi7FasSin/KoR4BZiNbrAkgAXATVLKwIEZ3r4xYsQITmhq4uNMBrPZTHg/XHp3hRuwms0kcjmiUrJi40aOHjQIVycdfKe63fw1HgcpqfN4sGWzhoxXoVB0DyHgp0LQUFyMBISUnBOPM9ftNiz1N4suVF9ul178DbOZWeXlVI0ebUgfTcCdJhNa/maaU9O4IhRi+pgxnW5bsdekhRCPA72EEA/suFNKeW03jEmhUCgUigNKh27AeVH67AEaiyEMLSjg/UQCUileqalh6vDhnZ68mYDCZJJwvtZqxGYjEol0WqxOLi+nRzjM1kCAqM3GGx9+SJnHo6IWCsUhyMrGRm41mWhxOCCZREjJ9DVr+M6YMYb9TWeA3wDvtnMWHr15M6c4nYatIY0AtwFJlwtiMQoyGc5asoRRJ5xgSPuKvWYOuov+TOCzbh6LQqFQKBTdwn7VWRVCPCqlvMLowRiBy+cDmw0JNBQXG5ZaW2WxsDWbBSmJOBwUGRC1NQMDYzG25p+vr6hQqcAKxSHI4qYmrgsGidpsEI9TVlrKeVu3co7BQvXWSIQP2qX+jtq8mRlr1hiWXqwBP4nF+DKTwW6306uykos3bmTGCSeo69IBRkrZDDwrhFglpfyiu8ejUCgUCkV3sF9iFfijoaMwkGNLSrg/H9XwlZRQ7nDsd1slfftye76kTF0yyeJMBgBbOs3H8TiO3bRdssPa2Y440W5nYb424vrKSuwFBfs9XoVCceBZBtxssRDN3yQz53J8s6GBS4cONayPNPB/0Sj/aZf6+xWrlTOdTkOdhW+KRvnA7wcpCQnBnS4XZxngqK7oFC1CiBeBaeimhx8A10kpa7t3WAqFQqFQdD37JVallAdtStKwykrGxuOsSyQAWC8lffazrevvvLPt94+WLmVxSQlZIUgAp4TDnDxqVKfHe2ppKY9YLLT4/TSUlPCf//0Pj0oFVigOCV7w+3nQZEJaLCAE1kyGOcuWcfrUqYb1kQJ+Dnycz+yQwLiNGznT7Wa8Qam/KXRHvcXt+jh+1Sr6VlaCx2NIH4r95nHgGeBr+ecX5red0plGhRBmYDFQJ6U0JjSvUCgUCoXB7NbWVghhEUJcKYR4UwixTAjxhRDiDSHEVUII64Ec5L4yLJMhGosRjUZ5ZvlyQ0rCDOzZkz5+v16zRwhq++yvBN4eNzAoFmt7vqJnT+rr6w1pW6FQdA0S+GMwyJ3RKC2hEP5AgAFuN7cnElxtUH3Tjz6Cn/0CLno7zjuhUFvq74RWZ2GDysekgZ9Go7zbro+p69YxvraWKlWi5mCgUkr5uJQyk388AVQY0O51wCoD2lEoFAqFosvoKLL6NyAI3A60phv1Bi4GngLO78qBdYbKrVvb1q1uKC83ZB2o1+vlwoIC/mAyYTaZeDce5zSfz5BJ6ZyCAhalUiAlK3v3pmCHuq4KheLgIQM8BDwvRFsUsjwS4dpgkJmjRxvSx0cfwUknQTIlwWpn4NMhnBPTXGA2c3JxsWGpvxnglmiU/+RTfxGCC81mTvZ4qBo5UmV4HBw0CSEuBP6ef/51oKUzDQohegNnoAfUb+jc8BQKhUKh6Do6Khg6Xkr5HSnlx1LK2vzjYynldwBjcs+6iJnFxZilRABNxcVYe/c2pN1TS0sptNnwBwIsTSZ5+u23DYnanu7x0Ke4GAFE7HaeWbvWkHYVCoWxxIAfR6M83y4K2belhXMXL+ZoA4XdvxdAMgUyK5BpQfRjO5OrqzmlsZHx48YZJlTvARa2S/2dsH49JzU2Ms6gPhSGcBlwHrAVaADOzW/rDPcDP0Iv2btLhBBXCCEWCyEWNzU1dbI7hUKhUCj2j47EakAI8TUhRNsxQgiTEOJ84KCss9rKQK+XmeXluFwuXE4ni63GZC27gf55gxMJfGlQyq4VmBgMtj3/vF8/lQqsUBxk1AFXx+P81+8nFAziDwQ4vaCA24Tgq6eeapi42wJ8PFVDFEgwS4RVMq1qLVNqagxLy80Cd0QivNFOdI+vqeHYDRsMSy9WGIOUcrOUcq6UskJKWSmlPFtKuWl/2xNCzAEa9+Q9IaV8VEo5UUo5saLCiKxjhUKhUCj2nY7SgOcBvwIeEkK0itMS4N38voOayek0b8ViICV/D4c5TdMMmUzOtdn4KO/eu6p3byx5h+DOcp7DwcuJBFmgvrSUhkzm4A5fKxRHEJ+hRyHr83/7Epi8bh1fKy01zOQIYDVwcyJB08AmBjxlJf6xnW9PSXLOgAKqqoxL/b0zEuGVds7C51qtnOF2G5ZerDiomQbMFUKcDtgBtxDiKSnlhd08LoVCoVAodqKjyGoPKeX5UsoKYCpwbP6u7vlSyo0HaHz7TY/NmxG5HBLY6nbzuUFpTLM8Hvq73QggVlDAM+vWGZKye1RlJbPtdgS6ecujwaBKBVYouhkJvADcrGnU56OQllyO2cuWMXXjRkOjkJ8C/wc059evF49N8K0p73LOgK2GpeWmgF8AC3K5NtE9etMmzti61bD0YsXBjZTyJillbyllf/Qbz+8ooapQKBSKg5WOxOpDrb9IKVvyBcoPGYb16MHA5uY2997VBrn3Wtg+Zfezfv2oMyhl9/h2gnpjeTkL/H5D2lUoFPuOBtwL/FHT2OrzEQoGSTU08PNslm/07s0cA6OQzwcC/DAYJKJp2O12HOk053z6Kf0DAcNSfxPAHcAiwG63gxCM3rKFE9auVam/CoVCoVAoDko6EquHNF6vl6sGDKC4pARPaSnzs1lqDYpUfq2wELOUAPiKi6l1uw1pd2JFBSMaGtoE9j/dbupVdFWhOOCsaGzk0sZG3tI0kskkSEnPQIDzFi6kMhIxLNIpgYdCIX4WiRAIhfD5fJTncjxSXMwZQ4caJogjwA2xGP8LhdA0DZvNxreKi7nB6eRMlfp7UCOE+Gm7321Gti2lXKBqrB6Z1Ph8PPPee23PFyxfzpx2teX35vUjv/e9PR73w8cf5+jvfpcfPv44T7z9NvUtnTKyVhziuFyuPR7zwAMPMGLECC644AJeeuklVq5ceQBGpjiY6UisDhRCvLK7x54aFkL0EUK8K4RYJYRYIYS4zsBx7xUnl5XRq6AAfyBAfSTCA4sXG5JaO7yyktPapez+xaCUXa/Xy20DB1LidAJQnclwx8qVKh1YoTiAzG9p4VvhMCsSCXw+H2aTiVF1dZy9eDGubNawSGcK+DXwLLSl5JZFIlxRXc3YigrDBHEAuD4eZ2FLC6H8teqsYJBri4tV6u9BjBDiR0KIqejuv6181F3jURxe1DQ2bidWu4o/vvkmn99/P/dceqkuVlXGmGIPPPTQQ7z++us8/fTTSqwqgI4NlpqA33Si7QzwAynl50KIIuAzIcRbUsoDdtaZgDFbt7LSZEICn/ftS50BNVcBpjc381pREaCn7H7g9/NVA9odUVnJGRs38nR+zJ8MGMB/t2zhAjWhVCi6lCx6Aek/WywkrFYkYMrl+GpjI18bNIh6h4OqqirDBORNsRgrM5ltJXCamzl9+XJGnHpqp9tvpRH4KVCdN4YCOGHlSiZ4vWCgMZSiS1gDfA39xvH/gFVAmRBimJRyTfcOTdFd/OzZZ3n6vffoU15OudvNhMGDufGcc1jf0MB3H3mEpnCYQpuNP33vewzv3ZtL7r8fd2Ehi9etY2sgwK8vuYRzp03jJ3/9K6tqaxl73XVcPHMm4wYObOsjlkxyzR//yPJNm8hks9z+9a9z1pQpux1TNpvlJ08+yYLly9HSab57xhlceeqpzL3rLmKaxjE33shN557L4nXruOC++3AUFPDRr3+Nw2ZoooDiEOOee+7hueeeQ9M0zjnnHO644w6uuuoqNmzYwNy5c5k3bx6vvPIK7733HnfddRcvvPACgwYN6u5hK7qBjsRqVEq537fdpJQN6DXhkFJGhBCrgF7AAb1F8lWnk3/GYmRMJpqKiwnmo5adZWxFBUM3bWKt1wtC8FbfvnwF9BTeTvLNwkLe2bqV+pISckLwoNvN2MZGjq6sNKB1hUKxI83AbbEYy9uJR1cyyanLl/O1447D6/UaFoHcCNyUSLCqpaXNjfdsq5UzhaCPgSVwaoEbEwnqUynMJhMmYOby5Rzl81GlhOqhQAC4GZiRf4wAZgM/yQvWY7tvaIruYPGmTbzw0Ucsuf9+Mtks47//fSYMHgzAFQ8+yCNXX82Qqio+WbOGqx9+mHfuvhuABr+fD375S1bX1jL3rrs4d9o0fnnxxdz74ou8duutgJ4G3Mrdzz3HzNGj+ct11xGMRpl8442cPHYsTrt9l+P681tvUVxYyKf33YeWTjPtxz9m1tixvPLTn+I67zyW/u53ADz8xhvce+mlTBwypCs/JsUhwPz586murmbRokVIKZk7dy7vv/8+jzzyCG+++Sbvvvsu5eXlVFdXM2fOHM4999w9N6o4bOlIrBrm+CuE6A+MAz4xqs29ZUhlJeeHw7wmJWaTiWejUY72+To9IfR6vdwmBNcWFCDNZlZmMrzk93OOx9PpMff0erl640Z+5nKhWSxEbTZ+lEjw+8ZGBirBqlAYymLg54kE69uJx2kOB/MCAYblhapRLEIvgePLO/4CTF+1irMrKxlnoIBcAfw0mWRDUxNIiVlKfiwlw3r1omrSJJX6e2hwKnAbMAi4D/gCiEkpL+3WUSm6jQ/Wr+esY45pi0ieOXkyANFEgoWrV/O1X/2q7VgtnW77/ewpUzCZTBzVty++UGiP/cxfupRXFi3i3pdeAiCZSrG5qYkRuzGqnL90Kctqanh+4UIAQrEY1Q0NDOjRY7/ep+LwZ/78+cyfP7/t/140GqW6uprp06d388gUByMdidVfCCF6SCm3AgghLgK+CmwCbpdS7tXCAyGEC736w/VSyvAu9l8BXAHQt2/ffRz+3nGR283beUfPT6TksU8/5dvHH9/pCdvIykrODoX4c75e4T2pFCMzGYYYICiPGTCAMz78kJfHjSNrMrEFuLypiQfR18wqFIrOUefz8adkkoU9epBsJx6nrF3Lt8vKDK2fKoEngkGeEAKb3Y7dbieRzTL7iy8Y4PdTNXasYX39D13ZtGgaSIklm+WMJUsYNnCgoYJY0bVIKW8GEEJ8gZ6hPg6oEEJ8AASklGd25/gUBx6Zv0btSE5KSpzOtgjmjtis1j22sWM/L/zkJwzr3Xuvx/X7K65g9vjxe3W8QiGl5KabbuLKK6/s7qEoDgE6Mlj6I7oHCEKI6cAvgSeBEPDo3jQuhLCiC9WnpZT/2tUxUspHpZQTpZQTKyoq9mXse00PYERzc5uJyftDhhhWbmbixo04NA2JXnf1/kyGPf8r2DNer5fvTJvGvK1b27Y1uVxcq2mG1YztalLoa+bWAB8DzwQC/GrjRh4IhXgE+C3wc+AW4EbgauDriQRnt7TwzXicq/LbrgGuB34AXB2LcUVDA7dHIjwG/BOYjx6yX42edx4DQ74DxeHLF01NXNbYyIvQZqLk0jS+8umnTN60ydBSLkng1kiE+8NhgnmDo/JcjkeKivhq//6GOf5K4M/BIP8XChHLl8ApzJfA6RcMGmYMpTjg/EdK+amU8lGgVkp5HKCiq0cgxw0axKuLFpFMpYgmEvx78WIA3IWFDPB6+ecHHwC6EPhiY8fJcUUOB5FEYpf7Zo8bx+9fe61N2C5Zv77DtmaPG8fDb7xBOpMBYG1dHbFkcp/6VBxZzJ49m7/85S9Eo1EA6urqaGxs3Om4oqIiIpHIgR6e4iCjo8iquV309HzgUSnlC8ALQoile2pYCCGAPwOrpJT3dXqkneSyggLeT6fJCsHW0lLqXC6MuAc4qGdPTvn4Y14ZOxaEYGVREQ+tW8e5RUWGpBpfAjR99hn/PeoockKwNZfj8miUeT4f36yooMcBTufLAWH0xVTrWlpY7/djqahAlpQQyG+vj8fZqmnIwkJs+XQlTdPwRSJgMkEohNdub9vXiqZp+PJpi8RieL3e7Y7RNA1fa6pmIIC3oGCnNlqPk/E4QwsKGOV0MhAYCPQFCrrmY1EcIkjgdeA+q5VmtxsJCCkZGo1yY0kJ0UGDDDNRAqgD7ga+zOXabpb1DAS4KhBgwpgxYNANuixwbzjMM+EwSElICMaWl3NfcTHpoUMNfU+KA4uU8kftnl6S33ZI1T1XGMOk/v2ZO3kyY667jn4VFUwcPJjiwkIAnr7hBr7z8MPc9dxzpLNZ5h1/PGMGDNhtW6P798diNjPm2mu55KSTtjNYuuX887n+sccYfe21SCnpX1nZtrZ1V3x71ixqGhsZ//3vI6WkoriYl26+eafjLjnpJK56+GFlsKRg1qxZrFq1iqlTpwJ6SZunnnqKyh0yB+fNm8fll1/OAw88wPPPP68Mlo5QxO5SQoQQXwJjpZQZIcRq4Aop5fut+6SUIztsWIjj0DPSlqNrHICbpZSv7+41EydOlIvzdwq7gvvCYV7Kr10t1TQeyGbpbcAEzufz8YCmsbC0FH8ggCWT4auffca3pk83ZILo8/l4du1anuzVi7TZ3La9LBZjVjzO+FSKsYMG7XdfGXQBuq65mfXNzRRUVmLyeAgCtZEItdEoueJitMJCgugTfk3T9JI6+TV+rcJyd9tDoRChYFAXB0BxSQnFxcXbjWNPx+xNG7vrH/Q0gj7QJl6LW1pwbNnCgJ491UT+CKAZ+Hk0yuJsFrPJhD8QQORyTF2/nttGjjT8xs9C4JfJJEFNa+tv5ObNTF+7lrPPOMOwcy6JXgLnv+3+PnoFAvyfEBw3ZowhfRyqCCE+k1JO7O5xHOoY+r/54YdhL9NLu53aWvjOd7p7FNt4+GGiZWW4HA7imsb0m27i0e9+l/FqAn9ociDPr4Ph766r3+/B8B73l4PtWtPF7Ov/5o4iq38H3hNCNAMJdOGJEGIweipwh0gpP8AYc1zDuMLt5oNEgvVNTfil5K7167kDjDFbAi7Mt5s2m3ll7FgmNjYyy4AJqdfrZR6QWLCAN0eOxJ8vqtzidPJ3p5N/SElpczPD4nEGlpXhlJJgIEBJaSnu4mKCoRBNoRC2khIK3G4SQHMsxtZ4nIzLRdrh0EVePA4OB0SjePOuyb78elyam7cTfslksi1SJKQkmUxis9m2227K5bBHowy22bCYzdTW12PTNGy5HNPGjaMKcLR7RFMp/vfBB+RyOTCbOemUU/CgR42yQGM6zduffopmNpO02Tj62GMRQBBdbIeA9dEolkyGtNm83bhAv2OyKf94U9PwxWKYi4vpW1vL1wsKmF1aSkmnvy3FwYYEFgC/SybZ6Pe33cgY6XIxr6GBySNHGnqzIou+XuLvmoavsVFfN5rLcZ3JxDinkyoDhequSuAMbWjglBUrGHLGGYb0oVAoDh6uePBBVm7ZQjKV4uKZM5VQVSgUhz27FatSyruFEG8DPYH5clsI1oS+jPCQwwVMr69nvcWCBD4eOJCPm5s5y4CJYwFwE3BVJkPSYiFhs/FYeTn2L75gWI8ehgjiS2fMYHJ1NU83NbG0b9+2KGtOCFpcLhYCHwWD+guEgFAIj8mEPxTSJ+jBIN68cGtLp00k8Hq9uxSfAEiJ9pvf4KivJ1RQgLWgACtQkMlQFA5jzmaxZrN4PR5cBQX0TCZpaWjAks1izuXo06cPDocDgD6JBPF4nMLCQlqGDeObd965/ZusqKDPySdTX1+vpy3ukCI5uLycQccfv21/SclOn5Mvk+HVd98larXS4nbTd8YM/MAGoP0q5db3mzGZ2FhezoMmE08Dw4GpwBT0E19xaFPd2MgDmQxryspI5g2HAMZv2MB3iouZbLDhUBA9yrmcbedYUSLB6UuXMm7YMEMNjtYD/7dDCZx5FguzCwroZaAgVigUBw/P3Hhjdw9BoVAoDigdRVaRUn68i21ru244Xc95LhdvNDay1e1Gmkz8a8AAZgO7rh62b4yrqOBeIbjdYiFnNrMmEOAOs5mz//Mfzps92xDB6vV6OdrnY+n69bwUi7HO68XXLhW2fVq3kJJYPL5bEdq6TUsmqSwowBKLYdc0nOk0U0pLKcrlWL1yJdVffsmPysoY3qsXHqeT1kTkaDRKJBKhqKgIVz7aCxDt3XuX29tze01Nh+9xT59BR/vPnDNnl4I2AdSgC9elQvB2LEaL0wlCYLfbkcCq/OMvQHk8zsDGRs5yOhndReZfiq5BAi/5/fwqHCZhtYLPh6e0lOJkkpOWLaN3OEy/OXMM7fNL4GeJBA2pFPa846+nuZmTli2jMJcz1ODofeB3QFM7F+MTVqzg1B49lOOvQqFQKBSKw4YOxerhSJXXyz0mEz+wWBCFhTQAt2/ZwvcLCgyJRBxfXs7dwI/z0cymoiL+OWkSwwxKCQZdkM32ehnr87F27VoCPh9fhEIE7Xa0ggI0i/61moRg6NChrF2/HnMmgy2XY/rkydil5JPPPsOmabgyGc6dNYuexcX4ysp0kdevH163GwDf+PHc5XQyrl8/XPnU4FZcLtcuxejuth8odidoHcCI/OMMt5tvl5WxrLGR+j59WG2zsYJtLsKapvF5czOfC8EL8TinRyJ8s6iI4Rxkue2KnWgAHgLeM5tJWK1tN2WmBINcVVKCf/BgQw2HMuhrJp7SNLbmDcLCwHeKizmrd28aTCbD+ssBfwiFeB7aBHEim2XWF18w0O+nSpWOUCgUCoVCcRhxxIlVgNEVFfwY+HXejOcNKWHRIr4/ebIhE8opwPdyOe7OPw85nfy+uJjkihUcU15u2CS5vSg7xudriyYC2yKLXi8+i2Xbc48HgPHTpm13zI7tte+jrKysW8VnV+H1ejml3fsNAZ+il9l5N5Foiz4DfJDLsRwYBpyNnipsRnEwkQH+EgzyLGBxOLDb7YSEwJVMctLKlXxv6lS8Xi/9DEyPXdbUxD1S4isubkv7taXTzFq+nMn9+9Nj3DjDjJtiwG3RKG/lb4S1Ov7+uqgI2b8/Vcceq1J/FQqFQqFQHFYckWIV4CTg5ZYWfHlBMn/kSCa1tPBVgyZ7XystxZXLca/ZTM5sZnMgwB0OByd8/jk/Gj/ecOfRHYXmjr/vSoR2ZmJ72csv89ratVQ6nXx59dUALN26latee41kJoPFZOKhM85gcq9e+93HgaYYODn/+Kam8ciyZXxZVcXmigrsdj1RfA3wK6ASmB4MMqSmhkHKTbjbWQHcE4+zJF+6hXCYHl4vF5eUMHXDBgbmhapRSOCFQIBfRqOkTSZIJvGUltI7EODkZctwp9NUHXusYf3VAncBK7PZtpsoAxobuTIQYKyBJXAUCoVCoVAoDiaOWLEqgOstFpaFwwQdDrJmM08NHMhk9PImRnBaWRn9ge/nHXXTZjNvH3UUyWyWn8Mh7Tx7ydixfG/yZC568cW2bT966y1uO+EEThsyhNerq/nRW2+x4JJLum+QnaCf18v1kydTX19P1uFgoc3Gu+jRO4AtmsZ94TB2l4tjlyzhR+PG0VMJ1gPO+sZG/phKsbSigmQ63SbkKkMhro5EOOvoo2HsWEP7jAE//gj+/aYD85gkhRNSmHI5zmhq4sKePWmQ0tA04zdbWrjPZILCwrZo8cQNG5i6fj2DDF53q1AoFAqFQnEwccSKVYBBlZX8Xgh+YjaTcTrJ2GzcBtwLeAzqYwTw80yGG+JxAoWFIATrysr4diLB6Vu2cHpxseFR1gPB9H79qGl1Hs4jhCCsaQCEkkmqioq6YWTG0T76PBG4CPg38DqwJZ/ymbBaeWfECBqF4Fb0NGFF15MBngkGeTASIWmxtBkoWXM5jlm7lrF1dUzpgtIt7zc389PFVj78iptcyoawehn9l82cZ17EN084Aa/Xa9jfcw54JBTi0WhUT0ePROhTWcmdLhd9i4upmjNHRfQVCoVCoVAc1hzRYhX09au/A24GkkCtpvHdUIifAYMrKw3pY3xFBU/mcjyqaSzKTy6rm5r4nc3GM83NXG+1cobHc8gb99w/ezazn3qKG996i5yULLzssu4ekqGUABcAXwNeyOV4KJkkbLeDEDQVF3Mjenr5xUBpN47zcGarz8f8YJC3+/RhoxAk82WohJQcHYlwtdOJVllJ1dixhgq5JPBQOMyTsRi+d9zkUkBW/4udurCAb/30BEP78wP3AB+ipxxLoCiR4Mr16znz6KPBY9TtNIVCoVAoFIqDlyNerAIMAX4C/F8yia+xEZ+UfDse5w/ASIMEa1+vl7uApcAt+bqIEmhyufi12cwL8TjTams5vbiYqkM0WvLw4sX8dvZsvnrUUTy3YgXfeuUV/nvRRbs9PoNeTqb9o7alhYbmZirLy6ksK8OMXtg30NyMv7GRQRUVDK6owEb3ufIWAF8vLWVaKsVTiQQLvV5Evn7t28C7ySQz6uuZ53Sq1GADWdTUxB0NDdSWlkJzM57SUhCC4nic6WvXcu0xx+CtrASD/mZbWQb8HliT/5stnJJEWCUCsBUILvpGFUZ+zf9taeE+Icg4nW1pv71bWjht+XImz55tXEcKhUKhUCgUBzlKrOaZAJy9ZQsPFxQggUBhITeZzfwe6G9gP2OB+7NZ7ty8meW9e5M1mzGbTHqZFJuNxyIRznQ4ONXtZgyH1hf01y++4LennkoCOPmoo/jWK6+wIpEgkExiKiwkZ7ORRBelb2ezvBMKYbfbseWFnqZp+GIxsNshFsPrcmGz2fTt8Tg4nZBI4NU0imw23IA1FsMUDjO8sJBxxcUMBHqhC9xd8dFHsGABzJgBU6d27v329Xq5GfABj6G7CGuahq+xkSfMZt7aupV7heAog8XTkUYA+BvwQkEBwdLStkiqNZPherebo1ta6HfMMYanxMaB34XDvCFlW5mYkBCM6N/AmT/6AmdmGnPmFHX6PGolCzwcCvFYa9pvNEoPr5er3W4mtrTQ24BazQqFQqFQKBSHEoeSFupyznG7qfn0U/4zcjCCrYwAAQAASURBVCQ5kwnN5eLHwE+BUQb2M6iykl9LyZqtW1navz+vZjJtkdaE1cp/pORjwAmMiETouXUrE0pKGFtR0S3lUiSgoadC+uNxAokEJqeTenTh+S4QTqdxOZ3csmEDIwcN4suNGyn3eHg/lQIhIJnEZTZjtljIZjJEEwlywSAhIfB6vdhstrbSH61iJJlMdri9TtPw5aPUH6XTvJ4XvgVARSyGx+/nhMJCTiwrowBdqJ50EqRSUFAAb7/decEK4AX+D1gC3B2JtDlM15WUcIPVym3opW4U+0Yc+FswyPNSIgoLseVTrk25HCPr6rhtyBCGVFbCuHGG970YuDeRYFUw2FYmZkBlJbcUFTGwpYVeV4/D6zVuTXYL+lr59mm/Tk3jsg0bOH/EiC55jwqFQqFQKBQHO0qstsPr9fL9SZMY5/fz9IABSJuNgKZxXSLB1VLy1dJSw1JPW817pgNnNDbyy40bWVFVRSwfwQHwaxr/CgR0ZZVI0DuZZJjdTn+gNBAg19hI/7IyBpaXUwS46PgLlUAaXXS2Rjhrm5vZ2NJCQWUlptJSgkAQqI9GqU8kyLpcbEU3DspmMkTTaTCb+cuLL1JdV0c0keCr993H6cccw7yZM3lq/nwACqxWLpo9Wy8jAiAlmUwGs8VCJpNpG1NBOo09GqW3zUYvi4XaQABzJoM0mRhcVoYDCFssVIdCpE0mkgUFFOUjsbsTsRFNY11exP47FqOv08lxdjvrF+hCNZvVfy5YYIxYbWUc8Ltslts3bmTRgAEgBLnCQn4OHBsOM3PDBvqrMjd7REM3sfpbIsH61lI0kYheF9fj4aSaGsYPHqyn/BrM+sZGHkqlWF5RQTKVaju/BjY2cn0wyIzRo6HU2BXJb7W08Nsd0n77Njcze8UKZsyaZWhfCoVCoVAoFIcSSqzugNfr5Xyvl0nAjxMJNjc1gZT8TAiWWCz8uKgIt8F9Dqqs5C4pqauvJ+bxsNZmYyFQvYMYi2ga1XY7X2oavkhET5eNx/FqWlsqrSmZJBWPY89HolqjNIlkkkgySYHDsX3abTyutxOJ4C0s3JZ26/frIiGRwJnNAugiMy8+LzvtND2F125HSyZ14Qjc9PWv47bZKHU4MKdShBsbsWYyFORyDOjZEw+Qy2Z5c+tWTpo/H7PJxJw5c/ACOJ34evakvr5eL/3hcukfkNOJz+vVt1dUUGm3owHrUileXrSIsM1GS3ExngkTaAQ27PC5hTSND+x2AjNAFkhECixWmDHD+FWvvfJrk//n9/N8//7E8p/ns8Eg/ykoYM477/DNmTOVYN0FKeAfgQDP5XJoLtd2YrEsEuGSeJxvDB8OI0ca3rcE/uX3c084TMJqbXMXdqTTTF+1iqGNjYwwuExMCvhDOMxfYzH972rHtN9Zs9R5olAoFAqF4ohGidXdMBC4at067rRYCBQWIqTkf7kcm4FrgUkG99e+TMrxwGXAJ+k0f9mwAV9REc1ud1vEdXcRxdb1kq0T39b02u22h8P7nHabzWYpABxmMzFNw5rJYM1m6We3UwLIXI6GujoseVE6bMgQXAAFBURLSohEIhQVFeFyOPQ363TSv1cvJk2cuFM9yvafw+4+HwA7MLKigorp03cSt9WaxlNLllBTWkqN14utRw8ACsdrDHg6QOwjG86pGk+OLiKHkylgaHq11+vlXK+XU4EHgX/nP0+/08k/Jk+mMhjkIiVC2kigR1L/nkhQHYno52kshqe0FHcyyaR16xjh83FSF5SiAdgAPAJ8bDaTsFrbzvux4TDfdbuJ9O5N1eTJhgrHauA+YIWUbX9rrmSSb2/YwNdU2q9CoVAoFAoF0IViVQjxF2AO0CilND4UcgAYWVnJ1994g/eHDGFFnz7Y7XaCwJ3AbODb6KKpKxDAlPJyBhx1lC7GiosptNnYCHwuJf9paCBusZC02fBWVJABwnshPs25HOZYjEqbjXKrlbpwGFsqRWE6zZSSEvoBMptl6ZIl2JNJnJkMddks5wJYrUSdTl18FhfjyotnCgvp0a/fNlHaGhEFXC7Xds9bcTgcjDNgQr4rcTukspKrp06lvr6enqWlpGw2PgZeCYXwjdcoHK8hgBUZB3doGoXRKBeYTJxrYJo36GnZPwIG5HL8KpcjYzKRslp5vLKSzTU1fMvhOKLdgoPAM6EQr+Ry5AoLt4ukupJJvtLYyFdKSmisqqJq4kTDo4wR9HI0r0uJrZ2BkiuZ5MTVq7vEXTgD/CkU4h9SUuBwtPXZr6mJWStWMF25/SoUCoVCoVC00ZWR1SeAPwBPdmEfXYrX6+Wc007jmPp6Gp1OnrbZCOT3vaJpvBOJ8B0hOLmsrMvKqOwoxkYDo0tKOG3AAF3EVlbiLSwEoCGZ5F/vvUc2l8NsMnHaqafiBXzJJG+++y6mTAarENvSbgsL8VVW6u0MGIC3uFjvxOPhuLzYq6qq4uH//ret/92Jz91t7y52/Nz6AidIyRMff8ySPn1YW1WF2WTC5/OBlNwlBO8UFHCD08kQA8chgPNKS+mfzfJzIQgVFOAPBPinEHzc0MCvj0C34E3Ay8CbySR1oVDbmlRPaSkuTWPcxo2Mqq/n7NNPx+v10stgkZoD5gOPJhKszxsoIQS9Kiv5VnExk/1+BnSBu/AW4K5YjI9b33M4TN/KSm4qKmJoSwu9lNuvQqFQKBQKxXZ0mViVUr4vhOjfVe0fKNqLnqnAQ8A7mobP58MnJTcKwbF2O5c5nUzkwNX+3FVEsafXy7mzZ29Li82LoIFeL1897bRt2/cj7fZwwOv1csmMGcyqr6ewsJB/trTwaiZDwmpFSMmKTIYfAFPDYY7buJGhPXoY9hlMLi/nb8APGhr4JB893FJayjVCMK+6mjPdbnocZp93ezLAJ8Dz0SifZbPY7XaSmtYWSS2JxfhaKsVZxcU0VlZSNXZsl5x/a4A/oqfhhtpFcvs1NfG9cJjZI0fC2LGG9inRxfmTQHM75+9efj/XhkKcMmqU4aZNCoVCoVAoFIcDas3qPuAGfgx4Nm/mTyYTmsXSJnLuRF/nej66qD1QonVHjiTxuT+0/xwu9/kof+MNFvXrx9IBA9oE1LPBIC8XFnLyxx9zzZQphn1uRcAdJhO31NTwaf/+IATNiQR/KCjgXz4ft5jNHFtebkhfBwtfNjbyYjzOMq+XkMnUZtwVEgJPaSk9wmHG1NQwpKmJuWec0SWRVIBm9Fqtb2gayWSyrW6qTCY5btUqBrW0MNZgAyWAL5uauC+bpba0FJvNht1uJyolU6qrGbd5M6O7oE+FQqFQKBSKw4VuF6tCiCv4f/buOzyO6lz8+Pds0WxVl1aWbbn3hgsYY4rpTUBISELCDSW5JCE3CeHe9EKANPIjPSEQAgESSAihhIRQY0IHGwPGuOCCLduS7JW00q621/P7Y1ayZMt91ez38zz7SDszO/PuaLW775z3nAOfBqirqxvkaPZPARcVFxN/9lneGDuWtaNGdQ98tBn4ETAGM2ldDFgGLdLCKa2r44aGhoLvc7D1LPO2uN08ahg8ly/RjBUV8c9jjoFkkuuBogIdc4TPxw+Al9vbubusjO3JJBpoLinhK0oxv7mZS4uKhnXSGsOcL/TxaJTnEwlznt3WVjxud/do0hN27uS/IhEWV1fTnMkUfACjLlHgIeAfQDhfEYHWRLTm6rIy6ktLaRszhtpFiwp6/BzmHLG/jkRIWyzg9+Pz+ZhuGHzC7cZSWUnt7NlyAUkMOKXUaMyG/hrMl+odWutfDm5UQgghRN8GPVnVWt8B3AGwYMECPcjhHBCfz8elZ57Jyc3NOF0uXjYMnsScigLMPnnfSyYpDoc502bjvNJSRg9ivIfrSzfdNNgh9JueLa2zgYWZDN9LpYgWFYFSLPf5+Fwsxoc2b2ZeVdUBJxe/uP56gtu27XObqfE48c5OOtxuNGaS91L+VmmzUZVMMrKoCHd+FOXSuroh+7dIAW8D/wqHeSWbxep0kuhR8qq0xpvJMH3LFqZt305JKsXi+vp+a/FPAw90dPAXrcm43b0GGhvb0sJJ69dz/IwZjJ47l9EFPn4D8CtghVKkLRY0YMnlOGXHDr42diy2qiqoqiroMYU4CBng/7TWbymlvMCbSqlntdZrBzswIYQQYneDnqwOVz2/ZE8FPgw8CvwLCPXo07pRKR52OplgGJyA2do6jsErExZ7p4BzKyqYlM3ys0yGTRUVALzR1sbbLhdnLl/OdQfYAhjcto0bxo7d73aRSAR/NMpaw6Cxj/VWrRlvt1OdSPCn9esP7gn1swa/n+dDITaPGME6r9d83Xd0dA8eVJ4fXbmurY1Zzc38z3HHYZs2jeaSkj36ThdKFngO+EM8ztquaXDy0zhNs9kY8eabjAwEsFgs1NbWFvTYKeCOUIiHtcbeY6TfinCYM9au5b9PPlnecMWg01rvAHbkfw8rpdYBIwFJVoUQQgw5/Tl1zV+AJUClUqoR+K7W+q7+Ot5gKwGuBD4I/HLHDv6RzXb3aU0kEjQaBg8CDwI+4IT8bQpHT+Lq9/vZ3tyMZ+RIbNXVdGBOX7IlGKSxsxOjtBRbcTGtkQid4TClXi/FHg/xcJh0KESt14tXa+x+P+OVwhWNMrIfkp6J1dXcijn350/zo8WmrVaenD0bZyLBtyncvKxdoyj7IhFWNjSwo6SEgNdLV4lBVik2ZjJstNl4LpPhc62tTAqHOb64mGMrKwc0+UkDy9vaeCkc5n2vlxWJBDnDgI4OfEVFvaZIqurs5LxMhvM9HuIWS68y3/5IUjXwWHs7f8rlCHu9vabBKY7H+ci2bXxq0iRaFi/uc6Cxw7UC+Hk8zuoeI/2OrK7mc8XFzAsEqDv5ZCn5FUNOfhDEuZjjnwkhhBBDTn+OBvyx/tr3UFYMfNrppPLJJ9lcUcHmmhqSu31J9WO2wj6QTFIUjTKjqIjZHg/jMAdp8jG8EtiuEtZ26JWANoRCUF5OxuulORZjTThMvLwcEgl8ySSGYZBMJvF3dppf8INBypWivat1rr2dcq133Q+FzOPl+wgX53KM37CBs7dv54zRowuaDCjgfKA6nebL8ThBpxOU4vmyMhp37uSrFguTCjjljMfj4ZixY5kQDpPJZlnZ2Umbx0PCbu/eJqcUr8RivGK1ck8sxqhEgrpslvJAgGleLzPLyrC1tJBsamLUISZjO/1+Nu/ciW3kSDKVlawPBlkXidBRXk6jxUJzLAYWC0Sj3Ql11wWZsXY79oYGJu7YQXU0ak6RVOB5SneXBV4E7o3FeDsSMV8nsRjlZWU402nmb97M7KYmLjjvPBSFH2isFfg98Bq9Rxce2d7OtV2jCxdgPmEhCk0p5QEeBr6kte7sY/2wGk9CiCPZ2K//C4CGm88f5EiEGHhSldYPfD4fH+wxVUypw8FbmF9ol2MO+pLsMdjLdqV4227HMAwAXNCduI4Ditva0I2NjB0xYsCmN8kAnUAI2BwIsLm9naKqKigtJZhfHgR2xuPsTCaxOZ3d8XcnoLCr1S2dJm63d/dfTCQSvfoRdi2PxmJ7vd81OE+XTqeTlXV1rAT+5Pdz0Y4dXFzgc3RsVRV353L8v1yO9R4P7R0dLNeaT6TTfNdq5dx8qfCBSGQynHz33SSzWTK5HJdMm8aNp57Kd557jsfWr8eiFNVuN/d84AOcWlVFOBwmYrWyOhwmlJ9Lt2eCGIxGaYxGQWseD4cpt9loTySgvBxXOMx0rxd7LEa8rY2qsjJG+XzEOzsJhkK4S0txeL0Ew2Fao1EoLiasFBtjMTKlpWbCFw7T3nUhoa2te4Ck7hiAikiECa2tfHrGDBaUlNAydSrNxcX9VubbJQ0sxfymvRMIpdPdsRnpNOe0tXGp10t7VRW1c+YUPJY0cG8wyANaY3G5ukf6TWYyLNqwgZnNzf0yurAQhaCUsmP++9yvtX6kr22G43gSQgghjjySrPaT3VtwFuVvGeAd4K+trbyQSnXP8dmVvIHZSrkmf0smk/hjMSgrwxqPMzEex+d04sFsxfXmb8VApqODUFsb5RUVlJWXA2Zy0/UtI9DRgb+9HVdFBY7SUuJAAogDbZEIrZEI2eJi0i4X4fxjkskk/mgUioqgsxPf7klpa2t32aPP5+szAe2aKiSkFEprnOk0k+x2RgE2i4UtDQ04UimMbJZ5U6ey/p13IJcDi4WZs2ezcs0a4lYryaIiYkVFtHo8tBYXk7Ltevk2l5RwG/APv58bLRaOK+AANuN9Pm4DftjQwINKoYG43c6PbDY2Af8NOA9gP4bVynNXXIGnqIh0NsuJd9/NuZMm8ZXFi/neaacB8Ktly7jphRe4vb4ej8cDwIiiIsLhMMuyWRzr1rGtrIzW0lKyHs9eE/uY3c6aSIRYPA5OJyQSFHd0EO7qx9nRQTnsarXOJ6OZ/IBAfV04ACiNx/F1dDCmvZ1LJk6kKJWidto0fPnz3d9TJEWBp4G/xuPsSKVwOBzdiWI8m2XW1q0s2LaND51zDj6fjzEFjkVjXnD6TSzGqq5EPhzG5/NRbxic6/USqamhdt48KfsVQ5JSSgF3Aeu01j8b7HiEEEKIfZFkdYDZgPnAKLudSc88Q8DhIFBSQu2JJ9KOOf1Nz3qsnolfVil2plLEnXumRslkEn84bCaVkQi+/Aioe6y32fpOOvPzX9LW1p107n783ZPqnuuKMhm84TCTDAObxcK27dtxJpN4UinOPu44JhoGKYeDSFMTo2tr8eVbCvF68U+d2qsfod/p7HX/VJer+z5Ac3MztlSKN0IhnkkmWV9TQ9ZiThLUVFLCF3I5PhYK8fmSkoK9wBXw304nydde49/TpxPNz9P5z2SS58JhPqMUZ1dU7LN8WymFp8icBCedy5HOZlFAcY+/UzSV2mMf3f1ak0mumTvXPBelpXRms9y7ciVtbjchtxv3pEmszrdgoxTZbLbXfuL7aLXuSkZRCls2S0kiwXSXi1BjI8WxGNXhMJcvXoy7rIzmeJzaBQsGNBnbAfwTeJb8AGb5iyQhpZhQVcVlTifHeTyESkupnT69X2Lbjlny+za9W3Irw2E+E4nwoenTzZLnfix7FqIAFgOfAN5VSq3ML/um1vqJwQtJCCGE6Jskq4PE5/Nx4fnn70rKSkoAs+WmK2ndAqyyWHgpHidsGGSt1u45XXe3r6Ryf+v7bAk1DIqBKrsdf0cHzmQSVzrNiSUljAFKgUw6zeuvvIIzkcDQ2uyjCGYCOmnSrufWVSq7ly/yu7fGHch9gFnA+X4/KzZv5sF0mnfq6sgpRTyR4O5kknU2G991uynUmK8+n4//WbSIs3bu5KkRI1gO3aXcX1OKpw2DL+b7Hu9NNpdj/h13sKm9nf859lgWjhoFwLeWLuWPq1ZRYhj854or9hlD90BFwBeOP37Xea6sxJ/Nsi0/iNX2zk5eWLWKtNVK1mJhzMSJvL9tG+Ry2LVmzvTprH33XazpNK5MhguXLMFrGASam82Bq6qq8Ody5v57zAk6UEmqJl+FEInwajaLkW9F7Xq9OlMp5jY0cHl7O4uOOabfEsUQ8ADwaCJBLJnEkb9QkchmOW7jRmY3NXHi+dKPSAwPWuuXGV7DIgghhDiKSbI6iPoqmVRARf52LPARrxd/WRlNzc1U1NbiNgw6gXD+1vV7k1Is27mTLGYL3vTycorZ9Y0karGwZscOrJkMRbkcC0tL8WGWr8ayWd585x1s6TTuTIaLTz2VCYAFwOXCP2KEmbCMHYuvtHRXsJWVTDz99D5HV+3vctCexznf52OB389Tq1fz1/JyGsvLQWtWJxJckUrxOa25OF8WXYjj+Xw+FgN3btzIHRZL96jPb2azXAss7OxkR3s7kcrK7lLeLlaLhZWf/SzBRIKL//pXVre0MLO6mh+cfjo/OP10fvTSS/xm+XJuPPXUg4qnr/vTqqsZnU6zefNmxo8fz7Rp0/CXl++9FTuf6I0ZhL9jTyHg35jlvg09W/2VwufzMcFup2ztWiY1N1MEjJ89u1/iSAKPAQ8BwWQSf0sLaE0n8LGyMj7k8RCurqb2mGOk5FcIIYQQoh9IsjoM7J4wVPa1UXEx/rFjdyUeXm/v9V4v/nHj9mjJBaC8nMULF+6RtOzt+Ae6biD5fD7OAdKPP87bo0fz6uTJRKJRIlpzg1Jssdn4YnFxQcuCLywuJvH007w+fjxrR482W9uSSR4MBrEWFfFkMMgJSjHS7d7j8aUOB0vGjOGpTZuY2eN8f3zWLM7/858POFndn2nTpjFt2rTu+/trtR4sWWAl8PdwmFey2e4Bu3q2+o9pbeWyWIyPTp1Ky7x5NNfU9MtATjngkY4O/pjLkfB4esVR297Oye+9x1lTpzJx7lwp+RVCCCGE6EeSrB5B9pd4DIek83D4fD4uqK9nfnMzJ7e28luPhw6XC6U1f9eahmiUSzZtYkpNTUGeq8/n4yNnn82Jzc1ol4t/GgZL8/NsaqDN4+EZq5XaVIoRnZ14cznKiospdTiIp9P8e8sWvrZ4MRsDASblS6X/sX49Uyv7vBxxRNoCPAc8D/iTSfxdAz7lB+wqNwzGbd/O9G3bqIzHObW+vl+moAGz7Pg14PexGG91DUQVjeLz+RhvtzNy5UrGtLRgtVi6+08LIYQQQoj+I8mqOKJ0JTG1fj+BJ5/kmRkz2OLzYbVYeCEQYIXTyVmvvMI1ixcXLGHt2s884MRMhp8Gg+wAUAqlFJvjcTbbbLT4/fz54YexYfYN/siMGdRPnsyHHnyQ9W1tWJRiTGkptx/h/R8bgVeBp2MxNqbT3SP69mxFrQkG+WAyyVWTJhGcNIlmt7vfpsPRwFvAn4D36T14kiuZ5MLt27lm4kTaevYPHuYXdoQQQgghhgNJVsURyefz8aFzz+X45mZWFBdzfy4HWhMxDB6dP59cMsm3gaICH/f0igpmZjJ8I5NhisPBNq2754et9vn4+lVXYTgclAIjEgne9/u597zz9ujbeiTZ6ffzZmsr20aPZnVJCdvIj0Dd1tY9oq/P58NXVMSErVuZ3NREdSxGfX09Bv3X6t81gNPvo1HezWR6TYMTy+U4ZssWFmzbxsXnnou1H+MQQgghhBB9k2RVHLG6kot5wNhAgO9kMiRsNlCK130+rgP+DxjfD8etKy3lNMOgJRrllVCINq+XjNWKLT83bCCTYWsyCYaBI5Fgst3OWMPAx5HxTxnGTARf7OzkyWCQTq8XQiF8u7WiWnM5Jvj9fCAW49KpU2mbMoVmr7dfWy818AbwILAqmcQfCHQnzaOrq/mYw8FJbjfhsjJqZ8yQBFUIIYQQYpAcCd+LhdivsyoqqMtm+Xk2y5bycgzDYBvw+USCJTt28AmXixH9kJRUu92cqTWhcJhYSQktNhuNQDKT6W5xTdhsbNCarYDOZPAkEtTYbIx0OKjAHLF5KNNAK7AJWBEKsTyZpLWkhCLDIKQ1nQ5Hr2mRvIbBiRYLmdWrqfP7cWrNGfX1/d56ucPv58lQiFdGjaIlP89vV9JsyeWY0dTEfweDLJk9W+ZLFUIIIYQYAiRZFUeNqdXV3A48BdwFdOanI7nfYuHptja+abNxetecsAXk8Xi6y3wnAWlgo9asisUIOZ3kLBZsNhvZTIZINEqn1jRns2yw2bDabLgAbzLJu+Ewj7W3M6u8nFqg7xl3+4/GnFbGD6xrb+fdcJiOigp2ejyEyZf25geYIpHA5/PhcDgIKYU9k2FcIMDlXi9nAQ6vF/+CBQPSBzQBPNzRwR0dHQSdTmhrw+fzYRgGHsOgrrGRuZs3U5pKMa2+vt/iEEIIIYQQB0eSVXFUUcC5wBzg68Eg/h4j995os/Ey8ElgdD/GYAemO53UZbOEwmFSJSUEbTY25afaAUBrMpkMVpuNcCbDjkSCzUpxfSSCz+3GMAzKgZJoFHtHB6O8XupKSigFSoHWTZvwNzQwoa6OGZMnY88f146ZdKZ73DJAc2srW1tbcfp82Csq6MScw7eps5Ot0SiJkhLCLhdJ8klpJGLG2d6Oz27fY4AkpTU1wSBn+3yMcrlwbd9OXV0dvh7z3fZ3H9B24HHgSaDJYiHkdHbHlovF+IBhcLHDQXriRJpdLhk4SQghhBBiiJFkVRyVaoGbge9t2sTycePI2Gw4HA5WYI4Mew7wcaBkXzs5TD1bXAEmac3qbdsIGwZRh4Mil4sIvUuGyZfSGobBjmSSlfn+lj37g0bCYQJ2O0yaBEBFOIwnP+9uMpkkkUh0DybUtcwfj4PbbU7Vkp9bNJlM4g8Gzf33aI3cPSlNJBKUGwYTrFZCW7fi6+igLhjkQ+ecgw+gstK8DQANbAAeCId5ocd8rV0tvEY6zZzGRr4+bRoTux4kAycJIYQQQgxJkqyKo1atz8cNwDq/n1fGjmWZYaCBHPBoMsmjsRgXWSxclm+xPBildXXc0NBw0DHF7XZikQiuXA5nczM5IJBIsCUQoHTECErb2iiuqqITCPWRNBqGQTQW67XPaCyGx+s1k0+/v9cIvHtLPve2vMwwqLHbCbS2UhKJ4ItE+PjChcwClMeDf8oUs7T3+OMHNAGMY87V+hSwro/5WscYBp/wepm0dSvjpk7FJ/1RhRBCCCGGvH5NVpVS5wC/BKzAnVrrm/vzeEIcrK5S1CXAZuAPwPIeSd0dSvGEYXC2w8HFHHh58Jduuqmgcfr9/l39O10ussCaVIq/vf02UbuduMPB5AUL0MBGq5X14TBpq5WsxUJFaSluIBaPd7fQWrNZVCxGqWHgKSpCxePYMhlc6TRzy8sZhZm0r1u/HkciQUkiwUeXLGE8oFwu/KNHm/FMm4avqqo7zoGe3mVZWxuPxuOsqaoCh9mLt2eSPbK9nY/G41w+ZQqWsjIoKxuw2IQQQgghxOHpt2RVKWUFbgXOBBqBN5RS/9Bar+2vYwpxOMYD3wPub2jgzmyWdrcbpTXhZJJnHQ6eBRYAF4PZkjiAse2eBFqB2VVV+BYt2pXEluSLlisrWdfayubNmxk/fjzT8sv9yST//Pe/0bkcFouF+vp6s0zX6cRfVrZrP/mSYUpK8M+Zs2t5j9bIwZxztB14AXg8FmNFLGYm4C0t3S3FxYZB7Y4dzNy6lRGRCOfW12MZlEiFEEIIIcTh6M+W1eOATVrrzQBKqQeAiwBJVsWQpYAzS0uJ/+tfbKys5J1x49A1Nd3rVwCvJJNUhkKcU1TEhaWlB10iXEh7SxqnTZvGtGnT9tj2gvr6Pkfg3dt+BjMp7Wmr388znZ2sGzGCTR6POTJxOt2rTLm0s5NPVFVxqsNBdNw4mg1DBk0SQgy6sV//FwANN58/yJEMPWNfMS8lNizOFWx/B7qvQh9bHJr++v8YCn/foRDDgRrK71P9mayOBLb3uN8ILOzH4wlRED6fjwvPP5/m5mb+t7qaDsPgEWAZkMiXCPu1Zk0iwZ8dDhY6HCwBFjHw08kcrKGSfB6IBPAm8FQ4zJOxGOmiol6jDzscDqK5HOP9fmY3NXH1iSfSdVnBM4yepxBCCCGE6Ft/Jqt9VUnqPTZS6tPApwHq6ur6MRwhDlzPpK4G+BbQDPympYWnslkyFgtKa2LJJG85HLwFGMCMcJjJTU2cXFbGaEmWDlqMfOt1/mcKCOVypC2WXgM9HWsYnGoYTHC5CBoGtSeeKMmpEEIIIcQRpj+T1UZ6j0czCvP7fi9a6zuAOwAWLFiwRzIrxFBRC1xbVMTI555jY3U1G2pryfQoEe5MJvl7Rwc4nfwsFuO0SISTPR7m5R87kH1chwsNbAVWAi9HIryVyXRPN9Ola9qZ8kiEqTt38vmZM5nZtdLnM29CCCGEEOKI05/J6hvAJKXUOKAJuBRz6kohhi2fz8cl55xj9vusqUEZBi8C/wHe7TEKbcZiYVk2y3tdjwPmA2MDAUoaG5lQU3PUtgS2YyanXbcO8nO9trf3mm7GMAzqgBMMg8lOJ9ZAgJEzZsi0M0IIIYQQR4l+S1a11hml1OeBpzEHL/2D1npNfx1PiIGye7/PS4APAW+kUty2dSubq6oIut04HLt6sPox5271R6NQWkpZezunulzM93qZAowF7AP7NAZEHHi/x+2dWIwt6TQOh6NX62nP6WaqOjs5LZvlsnHjdpVmVFWZNyGEEEIIcdTo13lWtdZPAE/05zGEGAoUcFxVFWNyOZqbm7FXVrLdMHgTeAdzsKCeCVmHy8XSXI4V+cfbAF80SkUgwHSvl5llZYwEKhge5cM5oA1YEwjwdihEqKoKv9dLM7s6qieTSfxtbaA1IaW6W089wByLhei6dYxqa6M0mdw1rY4QQgghhDhq9WuyKsTRpmer60zgXCADrMMsFf5nOEyrx4O2WHq1vEaTSV4LBEBrHg+H8blcGIZBEWZ/15GAOxTC3trKhLIyJlRUUAoU0///xBpz4KNO4P22Nta3t6Orq0mUluLHbDVuAWJdLcdWK3R04Csq6rP11JLLMSIY5JRslg+OG8cEwOL14p87t89pdYQQQgghxNFJklUh+pkNmAXMKinho4kEW3fsIDVqFO2GwXpgI/Bej1bXrhFvDcMgBTQA65NJ/KEQ2O0QjeLzeLoTQS9QApQCyZYWIq2t+CoqGF1Tgx163aIdHQTa2ymuqMBdWkoaSGMm1GmgvbMTfySCKikh43bTCYQxW06TyST+WAwMw+xXuttASIk+noMj3+90IlCRy9HwxhtUhEIYsEfr6XCaVkcIIYQQQvQ/SVaFGEB7S8jeTya55+23afF6CbndVFRWEsRszYS+E8GuRDGcv70XDhOIx8HjgWSSinAYj9fbfYxkMok/HAabrc9kM5lM4g8GzUGOAgF8Ntt+k9Ge66uLinB2dlIWDuOLRPjwvHkcizmlDwBlZfhPOklaT4UQQgghxAGRZFWIIWBCdTWfX7RoVyLndgNmEtoMrM5meXLLFoJOJwnDoLqqihRmMtvVJzQai/XaZzQW65Ws7i/Z3Nd6J1BcVIQjHMaVSFASj3NGcTFTMUc6rgYcTif+6mqaMxlqJ0zAV1m5x/OU1lMhhBBCCHGgJFkVYojoK5HzAlOAKeXlnDhtmpnMjhiBz+UCzPLcMBAE3o5GeXn1arJWKxmLhSkzZ1LDrhLfNuCtxkZ0Lodda+aXllKJ+SZgByK5HG+uXYstncaVyXD+SScxIR+DHcDpxF9VZcYweTK+srIDeg5CCCGEEEIcCklWhRgm+koELZj9VUuAMePHMyWZZPPmzYwfO5Zpo0f33kFJCf6JE3e13paU9F5fVsYZ8+btWt/HVDGSjAohhBBCiIEiyaoQR5Bp06Yxbdq0va7fX7IpyagQQgghhBgqLIMdgBBCCCGEEEIIsTtJVoUQQoijiFLqHKXUeqXUJqXU1wc7HiGEEGJvJFkVQgghjhJKKStwK3AuMB34mFJq+uBGJYQQQvRNklUhhBDi6HEcsElrvVlrnQIeAC4a5JiEEEKIPimt9f63GiBKqVZg6wAdrhJzNg9x6OQcHj45h4dPzuHhO1LP4Rit9Z7DWh/FlFKXAOdorf87f/8TwEKt9ed32+7TwKfzd6cA6wsUwnB/rQ3n+Idz7CDxD6bhHDtI/IOpr9gP6rN5SI0GPJBfKpRSK7TWCwbqeEciOYeHT87h4ZNzePjkHB5VVB/L9rhqrbW+A7ij4Acf5q+14Rz/cI4dJP7BNJxjB4l/MBUidikDFkIIIY4ejUDPSZhHAc2DFIsQQgixT5KsCiGEEEePN4BJSqlxSqki4FLgH4MckxBCCNGnIVUGPMAKXt50FJJzePjkHB4+OYeHT87hUUJrnVFKfR54GrACf9BarxnAEIb7a204xz+cYweJfzAN59hB4h9Mhx37kBpgSQghhBBCCCGEACkDFkIIIYQQQggxBEmyKoQQQgghhBBiyDkqk1Wl1DlKqfVKqU1Kqa8PdjzDjVJqtFLqP0qpdUqpNUqpawc7puFKKWVVSr2tlHp8sGMZjpRSpUqph5RS7+Vfj4sGO6bhRil1Xf7/eLVS6i9KKcdgxySOPMPtc3dvn3NKqXKl1LNKqY35n2WDHeve7P75Msxi3+O9fZjFv8f76lCOXyn1B6VUi1JqdY9le41XKfWN/P/yeqXU2YMT9S57if+W/OtnlVLqUaVUaY91Qyb+vmLvse7LSimtlKrssWzIxJ6Pp8/4lVJfyMe4Rin1/3osP+j4j7pkVSllBW4FzgWmAx9TSk0f3KiGnQzwf1rracDxwP/IOTxk1wLrBjuIYeyXwFNa66nAHORcHhSl1Ejgi8ACrfVMzAF3Lh3cqMSRZph+7u7tc+7rwFKt9SRgaf7+ULX758twir2v9/ZhEf8+3leHcvz3AOfstqzPePP/B5cCM/KP+W3+f3ww3cOe8T8LzNRazwY2AN+AIRn/PewZO0qp0cCZwLYey4Za7NBH/EqpU4GLgNla6xnAT/LLDyn+oy5ZBY4DNmmtN2utU8ADmCdUHCCt9Q6t9Vv538OYHyIjBzeq4UcpNQo4H7hzsGMZjpRSxcDJwF0AWuuU1jo4qEENTzbAqZSyAS5kzk1ReMPuc3cfn3MXAffmN7sX+MCgBLgfe/l8GS6x7+29fVjEn9fX++qQjV9r/SLQvtvivcV7EfCA1jqptd4CbML8Hx80fcWvtX5Ga53J330dc05pGGLx7+XcA/wc+CrQcyTcIRU77DX+a4CbtdbJ/DYt+eWHFP/RmKyOBLb3uN+IJFqHTCk1FpgLLBvkUIajX2C+EeUGOY7hajzQCtydL3W7UynlHuyghhOtdRPmFc9twA4gpLV+ZnCjEkegYf25u9vnnE9rvQPMhBaoHsTQ9uUX7Pn5Mlxi39t7+7CIfx/vq8Mi/h72Fu9w/H/+JPBk/vchH79S6kKgSWv9zm6rhnzseZOBk5RSy5RSLyiljs0vP6T4j8ZkVfWxTObvOQRKKQ/wMPAlrXXnYMcznCil6oEWrfWbgx3LMGYD5gG3aa3nAlGGVlnVkJfvg3QRMA6oBdxKqf8a3KjEEWjYfu4Ox8+5I+DzZVi/tx8F76vD6v9ZKfUtzLL++7sW9bHZkIlfKeUCvgVc39fqPpYNmdh7sAFlmF0ovgI8qJRSHGL8R2Oy2giM7nF/FFL2dtCUUnbMD/D7tdaPDHY8w9Bi4EKlVANmSdxpSqn7BjekYacRaNRad7XqP4T5BUccuDOALVrrVq11GngEOGGQYxJHnmH5ubuXzzm/UmpEfv0IoGVvjx9Ee/t8GQ6xw97f24dL/Ht7Xx0u8XfZW7zD5v9ZKXUFUA9cprXuSoqGevwTMC90vJP/Hx4FvKWUqmHox96lEXhEm5ZjVnhUcojxH43J6hvAJKXUOKVUEWZH338MckzDSv7qyF3AOq31zwY7nuFIa/0NrfUorfVYzNfgc1rrI+nKa7/TWu8EtiulpuQXnQ6sHcSQhqNtwPFKKVf+//p0ZJAqUXjD7nN3H59z/wCuyP9+BfDYQMe2P/v4fBnyscM+39uHRfzs/X11uMTfZW/x/gO4VCllKKXGAZOA5YMQ3z4ppc4BvgZcqLWO9Vg1pOPXWr+rta7WWo/N/w83AvPy/xdDOvYe/g6cBqCUmgwUAW0cYvy2/otzaNJaZ5RSnweexhyh7Q9a6zWDHNZwsxj4BPCuUmplftk3tdZPDF5I4ij1BeD+/BfgzcBVgxzPsKK1XqaUegh4C7NM6m3gjsGNShxphunnbp+fc8DNmCVtn8JMSj48OOEdkuEUe1/v7RaGQfz7eF/1METjV0r9BVgCVCqlGoHvspfXi9Z6jVLqQcwLCBngf7TW2UEJPG8v8X8DMIBnzWsGvK61/uxQi7+v2LXWd/W17VCLHfZ67v8A/EGZ09mkgCvyLduHFL/a1SouhBBCCCGEEEIMDUdjGbAQQgghhBBCiCFOklUhhBBCCCGEEEOOJKtCCCGEEEIIIYYcSVaFEEIIIYQQQgw5kqwKIYQQQgghhBhyJFkVQgghhBBiACilblJKnbGfbZYopU4YqJiEGMqOunlWhRBCCCGEGAxa6+sPYLMlQAR4tX+jEWLok5ZVIYQQQghxVFBKfVUp9cX87z9XSj2X//10pdR9SqnblFIrlFJrlFI39lj3aI99nKmUeiT/e0Qp9VOl1FtKqaVKqar88mOUUq8rpVYppR5VSpXll9+jlLok/3uDUurG/GPfVUpNVUqNBT4LXKeUWqmUOmkAT48QQ44kq0IIIYQQ4mjxItCVAC4APEopO3Ai8BLwLa31AmA2cIpSajbwHDCtKxEFrgLuzv/uBt7SWs8DXgC+m1/+R+BrWuvZwLs9lu+uLf/Y24Ava60bgNuBn2utj9Fav1SIJy3EcCXJqhBCCCGEOFq8CcxXSnmBJPAaZtJ6Emay+hGl1FvA28AMYLrWWgN/Av5LKVUKLAKezO8vB/w1//t9wIlKqRKgVGv9Qn75vcDJe4nnkR5xjS3EExTiSCJ9VoUQQgghxFFBa51WSjVgto6+CqwCTgUmAHHgy8CxWusOpdQ9gCP/0LuBfwIJ4G9a68zeDnGQISXzP7PI93Ih9iAtq0IIIYQQ4mjyImZS+iJma+pngZVAMRAFQkopH3Bu1wO01s1AM/Bt4J4e+7IAl+R//zjwstY6BHT06G/6CcwS4QMVBrwH9YyEOELJFRwhhBBCCHE0eQn4FvCa1jqqlEoAL2mt31FKvQ2sATYDr+z2uPuBKq312h7LosAMpdSbQAj4aH75FcDtSilXfl9XHUR8/wQeUkpdBHxB+q2Ko5kyy/CFEEIIIYQQe6OU+g3wttb6rh7LIlprzyCGJcQRTZJVIYQQQggh9iHfchoFztRaJ3ssl2RViH4kyaoQQgghhBBCiCFHBlgSQgghjjBKqT8opVqUUqt7LCtXSj2rlNqY/1k2mDEKIYQQ+9NvyapSaopSamWPW6dS6kv9dTwhhBBCdLsHOGe3ZV8HlmqtJwFL8/eFEEKIIWtAyoCVUlagCViotd7a7wcUQgghjnJKqbHA41rrmfn764ElWusdSqkRwPNa6ymDGaMQQgixLwNVBnw68L4kqkIIIcSg8WmtdwDkf1YPcjxCCCHEPg3UPKuXAn/Z30aVlZV67Nix/R+NEEKII96bb77ZprWuGuw4hiOl1KeBTwO43e75U6dOLcyOOzogkynMvvqbzQZlQ6hb73A6d2L/BvL1NRReO/39fIfCczxUQ+29pp8d7GdzvyerSqki4ELgG3tZ3/2BWFdXx4oVK/o7JCGEEEcBpZRU8/TmV0qN6FEG3LK3DbXWdwB3ACxYsEAX7LP5tttg1KjC7Ku/NTbCNdcMdhS7DKdzJ/ZvIF9fQ+G109/Pdyg8x0M11N5r+tnBfjYPRBnwucBbWmt/Xyu11ndorRdorRdUVckFcCGEEKKf/AO4Iv/7FcBjgxiLEEIIsV8Dkax+jAMoARZCCCFEYSil/gK8BkxRSjUqpT4F3AycqZTaCJyZvy+EEEIMWf1aBqyUcmF+IH6mP48jhBBCiF201h/by6rTBzQQIYQQ4jD0a7KqtY4BFf15DCGEEEIIIcTRK22z0VhVRcJuH+xQDp7PB+vWDXYUBedwOBg1ahT2w/ybDNRowEIIMaRoIAOkgCTQ1NpKo99Ppc9HRVUVWSCXv/nb2vC3tuKrqqKqshILoPK39rY2Wv1+RlVXU1tVRRFgB4z8TzUYT04IIYQ4ijROnIh3xAjGFhej1DD75E2loPrImklMa00gEKCxsZFx48Yd1r4kWRVCDEsaSACdQCh/6/p9eyjEjs5OikpLsXm9xKD71h6PE0omsTmdFBkGAMlkEn88Dl4vxOP4kkmMnutiMXC5IBbre53Hs8fjutZn4nHKDYNypxMn4MrfsuEwqWCQ0cXF1JWUUAK9bl4GbiJsIYQQYjhLuN3DM1E9QimlqKiooLW19bD3JcmqEGJIavL7WdPSgq22llxFBS1AK+ZcG9tiMZpTKaxOZ6/kEPIJZCgEWkNHB76iot7JZWurua6zE5/Ph2EYJBIJ0BoNKK1JJBLdjznUdclkEr/fD1oTUKr7WN3rOjrMOEIhfA7HHkluMpFgRFERdU4nVdDrRmsruaYmxo0Ygc/n658/gBBCCDGMSKI6tBTq7yHJqhBi0Oz0+1nr96NGjiRRUUET0ARsisVYnUiQKy6GaBSfx9M70Wtr2yPh7HIwyWUmHqfMMHAUFaETCSy5HFatGV9V1d2ymbDZ2BwMgtYopRhfWYkLszw4YrOxORw2S4atVkZUV2PDLC2OxeOHneQGlaJ9t+fX3QpcVoYnFGKh280Uj4fRwKj8rQwpPxZCCCEG0g9+8hP+/PDDWC0WLBYLv/v5z7n5F79gy9atRKJRWtvaGDdmDAC//clPGFFTw6Wf+hTt7e3MO/ZY/vSnP1FUVLTHfu+9916+//3vA/Dtb3+bK664Yo9tXn/9da699lrzYncyyUc/+lFuuOEG7rnnHr7yla8wcuRIUqkU1113HVdffTVaa6699lqeeOIJXC4X99xzD/Pmzdtjv8899xxf/vKXSaVSzJ8/n7vuugubbVf6+MYbb3D88cfz17/+lUsuuaRQp7IXSVaFEAMiCmwFGvK3NdEoy6NRUiUleySkoXSaHOw30bNlszgiEcYZRnf5rFKKDe+/T1EqhZHLcdrChYzGLL2NpFK88MILWDMZ7FpzYX09PgCnE39pKc3NzdTW1uJzuXYF7nbjr6kx140Ygc/t7r2uqspcV1WFz+nsXuVPJvnnv/9NCsgWFXHyOefgxixFbspkeG7NGuJWKwnDYMK8eWjMEub3w2GCqRQJu32P5777848YBiuyWTb2OM/JZBIVizHdbmeOx8NEYBJQjSSwQgghjg5jb36loPtr+Prifa5/bflyHn/mGd56/nkMw6AtECCVSvHoffcB8PzLL/OTX/+ax//61+7HfOSqq7jummu49IIL+Oz113PXXXdxzTXX9Npve3s7N954IytWrEApxfz587nwwgspKyvrtd0VV1zBgw8+yJw5c8hms6xfv7573Uc/+lF+85vf0NLSwowZM7jwwgt588032bhxIxs3bmTZsmVcc801LFu2rNc+c7kcV1xxBUuXLmXy5Mlcf/313HvvvXzqU58CIJvN8rWvfY2zzz774E/oQZBkVQhRcBFgE7Axf3s3HqcplcLRo9w1lMmQslr7TEgdDgchpfDG4xQnkxxXXs4EzBJYaybDytdewxWL4dCaC7oSzi7FxfhnzNiVeFb0GJC8qgrf2WfvWtejhNbn8+21pPZQ1vl8Pi6or991rKqq7nWzKyqYN3/+rnXFxd3r/NksX73uOpKBAFmbjYraWrTDQQKzj24unSYVjZKy2cxBopxOOqxWAHLZLPF4HDDLpZc5nVjy6yx1dSz46lcpa2tjkdfLSRUV9C6gFkIIIcSh2OH3U1le3v09prJi35OhaK157sUX+fPvfw/5pPCGG27YI1l9+umnOfPMMykvLwfgzDPP5KmnnuJjH+s9O1lLSwsjRowAwGq1Mn369D2OWV1dzYQJE9i6dSuPPfYYl19+OUopjj/+eILBIDt27OjeB0AgEMAwDCZPntx97B/96Efdyeqvf/1rPvShD/HGG28czKk6aJKsCiEOSxbYArwSDPJ2NEqgrIxgj5bJnv1EQz36bnYlpI5UivJYjMXl5UwBRgIjDQOLYRAIBMxkzuvddcCKCuacemqfCWeXQ008C+1Qk9wal4sv1dbi9XrxeDx7bBOJRAiFw1iLi8m43XRiDi61IxKhNZUiazGHZnI4HBgOBwC/ef99lra3g1I8FI0y0u1mjsPBHGAOZuurfCAIIYQQB++sU0/lpv/3/5i8YAFnnHIKH/3gBzll8d5bYwPt7ZSWlJgltakUo0aNoqmpaY/tmpqaGD16dPf9vW133XXXMWXKFJYsWcI555zDFVdcgSP/+d9l8+bNbN68mYkTJ+51vz2T1crKStLpNCtWrGDBggU89NBDbN++vTuuRx99lOeee06SVSHE0JLBbC1dA6wG1gLBZBJ/Z6fZj7StrVc/0q6yVUsuR3k0yiyLhcWjRjHGMHA5HMQDAUbunpAC+HzUDYGEczA4nc5eHxi783g8fSexwIaGBhJWKzGHA++YMUSBdsxynZ79ZCPJJKsdDlYD9wMOYEwkwsiWFs7xeJh2hA2jL4QQQvQXj8fDm88/z0uvvcZ/XnqJj37yk9z83e9y5cc/3uf2Wus9lvU1INGBbnf99ddz2WWX8cwzz/DnP/+Zv/zlLzz//PMA/PWvf+Xll1/GMAx+97vfUV5efkD7VUrxwAMPcN1115FMJjnrrLO6+6t+6Utf4sc//jHWfPVWf5JkVQixXzuA5cDzkQirMpk9RuHta+CiGYbBJKAyl2PL669TEg5jV4r6nmW71dVH3Nxig8nj8TB58mTC4bDZKpu/qqqBl3I5nO++S1NJCU0VFdhqano9NpRM8mx7O1it3BuPc3I0yjluN4sx+wILIYQQYu+sVitLTjyRJSeeyKzp07n3L3/Za7JaWVFBMBQik8lgAxobG6mtrd1ju1GjRnUnneS3W7JkSZ/7nDBhAtdccw1XX301VVVVBAIBYFef1d3329VK2rXfvo6/aNEiXnrpJQCeeeYZNmzYAMCKFSu49NJLAWhra+OJJ57AZrPxgQ98oM/YDockq0KIPWSB9zAT1OVAI/ly3vb2Pkfh1TffTNmqVThSKZzpNBN9PtxOJy2YfSfj8TiNsRgul4vb8m96h6q0ro4v3XTTYe1jOPrl66/z+7feQgNXz5vHl44/nu889xyPrV+PRSmq3W7u+cAHqO2jdFgBZQ4H1xx7rFk+XVFBkWHwLrASeAfY2OOCA8DKTIYtwO8wy4RPBhYBboQQQgjR0/qNG7FYLEyaMAGAle++y5geZba7U0px6kkn8dBjj3HpBRdw7733ctFFF+2x3dlnn803v/lNOjo6ADNh/NGPfrTHdv/6178477zzUEqxceNGrFYrpaWlez3+hRdeyG9+8xsuvfRSli1bRklJSZ8VXS0tLVRXV5NMJvnxj3/Mt771LQC2bNnSvc2VV15JfX19vySqIMmqECIvB/w7EODpeJwtFRWke4xsC71bT0tiMea0tnLOqFHMAG7bsYOvTJu2q0WvjxLVQrmhoaHf9j1UrW5p4fdvvcXyq6+myGrlnPvu4/xJk/jK4sV877TTAPjVsmXc9MIL3F5fv9f97F4+fXL+BrA6leKudevY4PPRVF7e3dclB7wNvJ5MkonHOcVq5XKvl3H981SFEEKIYScSjfKFr36VYGcnNquViePHc8cvfrHPx/z4hhu49FOf4tvf/z5zFyzoHrhoxYoV3H777dx5552Ul5fzne98h2OPPRYwy327Blvq6U9/+hPXXXcdLpcLm83G/fffv88S3fPOO48nnniCiRMn4nK5uPvuu3utu/POO6mtreWWW27h8ccfJ5fLcc0113Ba/jvHQJJkVYijXAfwLPD3eJw10ajZctra2qvltAg43molvW4do1taKEmne5XzKvbej1Ls6bXX4PnnYckSWLRo/9uva23l+FGjcNntAJwyZgyPvvceX+0xeEM0lTqsqWlmVlXx9blzaW5uxuV0stEweBFYR++5Xx9RileKilhoGHwQOAaZEkcIIcTQsr+pZgpt/jHH8Oozz+x1fVd5cE/jx45l+dKlkEr16hK1YMEC7rzzzu77n/zkJ/nkJz+5z+M/8MADfS6/8sorufLKK/dYrpTi1ltv7fMxTzzxRPfvt9xyC7fccss+j33PPffsc/3hkmRViKOQBlYBTwKvY5b9hlKpXv1OjUiEsw2D4zDLQA2PB38+mdnbKLxi/157DU4/3fxsKiqCpUv3n7DOrK7mW889RyAWw2m388SmTSzIl+t8a+lS/rhqFSWGwX/6mCj8YPRseZ0C1AOtwB+bmngyGqWluLh7mqGVhsFKYCxwMWYLrXygCCGEEKKQ5LuFEEeRBPBAMMg/MhkiXm+vQZIcDgfJTIapTU1M8fv55MknU7Pb4w9mFN5PPvYYj2/YQLXbzerPfQ6A9nicjz70EA3BIGNLS3nwkksoczq5f9Uqbnn11e7HrvL7eeszn+GYmt0jODg7/X4279xJyYgReKqriQExoLG9nab2drwVFbjLykgBSaCts5O2UAhPSQnu4mJy5BP5cJhQOEyJ10ux14sCLJgtitFwmGgwSFVJCZXFxdgxW6KjwSCxtjZGlpczqrwcF+ACHnw8QjLpJpdTpFJmC+v+ktVpVVV8bfFizvzTn/AUFTHH58OWn57mB6efzg9OP50fvfQSv1m+nBtPPfWwztnuqoD/crsp/c9/2OH1snLcOMI9/i4NwM+B2+NxTmhu5qMeDyPkQoYQQgghCkCSVSGOAingKeCP8Tgbu6aYicW6S32nA+cYBhM9Htq8XmqnTDnsltMrjzmGzx93HJc/+mj3sptffpnTx43j6yeeyM0vv8zNL7/Mj888k8tmz+ay2bMBeNfv56IHHthnopoG2jBb/VqBTcEgDeEwzevL2fqGm/IlYDkmzqZEAl1aCokEvmQSwzDMktZIBOx2CIfxuVy7lgeD5rkJBvEZxq7lHR3m8o4OfEVF3Ul+r3W7P6az0zxGJILP7e5evnlBBF3kMp9EEbyzRHEjYAmHob2dCcXFtAFBzMGM7Pnn/Kl58/jUvHkAfHPpUkYVF/c6Jx+fNYvz//zngierYF6kqK+vp7m5matra8EweAyzfDyRPw/bWltZb7PxRGsr37dYOK6qquBxCCGEEOLo0q/JqlKqFLgTmIlZefhJrfVr/XlMIcQuGcyE4q9AgN6lvkY6zXF+P1fX1TGm6wE+H6ML1Cp28pgxNASDvZY9tn49z+dLVa+YM4cl997Lj888s9c2f1m9mo/NnEkWc97QTiCc/xlIpfh3IsFrySRFPRPGzk6iK+xsvsyJTmssRYpZj2XRk+kua04kEhiGscc0O4e6HPacsudA9uWel2Tc/X5irzvwnWknusjDK11JL0A4jDubpavHiMpkKEomUckkk8vLCYdCPLRuHa9+6lNsDASYVFEBwD/Wr2dqZWVB/nZ92b1V/dPAxzAvgtyb7+usAb/Xy1ftdq7Kry/qt4iEEEKIXbTWfc5BKgZHX3O5Hor+bln9JfCU1voSpVQRZhWcEKKf5YBHOjq4L5cj5vF0J1cOh4NsMsn8999n+s6dXHzeeQxkwaY/EmGE1wvACK+XlmgUjZmMBvO3e9es4Ssf+hB/TCSw2WxY8xNQZzMZIvE40UyGsN/f3SrclRhGXnegUwpyilwKoq87cE1RFGUyGJkM4+12qoCc1crWlhZs6TR2rZlXWkoVENOaVRs3YslksAKLFi6kEghmsyx79110LofFYuH4E06gLH+O27NZXlm7lgyQs9k45thjcWG2+q7Yvp2UxULabmdMRQUWoM1uZ0MqhXVuDs+CNNX55G/35Dabze56zvlE8KcPP0w8lcJmtXLZeefxpN3Ob55+mpaODoosFsaWlnLH+ecPyN+xixf4MLAoneZ7mzezfNw4chYLRU4nDwGvAJ8HZg9oVEIIIY42jmiUQGcnFcXFkrAOAVprAoFA98wCh6PfklWlVDHmmBtXAmitU5jViEKIfvQ+cEs0ymvhsFmeGo2arWKGwUcMg2NKSmirqaF23rxBGSQpBLRjtvSmgT8mEljySemmxkYsNhuGx2MmcErhcbux2mxkMhnz+QBojSMSYaph4LBYaGxooHOEwWO2Y8llLRQVKX5zho2ZhkFLIGAOCOXKXyvzePDX1e0aKKqkxFxeWop/1qxdy8vKzOXl5Szump+0thZfzyHjy8s5cd68Xeu65jQrKcE/adKu5V2jJLtc+IuLaWpupqy2Fodh0AlszmR4dt06wkVFRJxOQkpRDAR6POf/+/CHcTgcGA5HdxJ75Xnn9TpHrwJvp9N4YjFGFxUx1ulkV6/k/jPK5+Mm4O3WVv41bhwN+YsjO4BvAQs7O1myZQuTampkYC4hhBAFN2rTJhqdTlrb2gY7lIOXzUIgMNhRFJzD4WDUqFGHvZ/+bFkdj9md7G6l1BzgTeBarXW050ZKqU9jVpRRV1fXj+EIcWSLA/cB/wSC+SRHA85UirObmvj8+PFm4lLAUt+92b4dGhpAVZilyO8AzakUTpeLP3Z0UFFWRqCjA7fTSaxHUvra6tUcN21ad4JmpNOUxuPUer3YtSawYwcT/H7OWrqUi84/32wV9nrxT51Kc3EzVz0SYtWq8h5TwvgY2cdz3dtAUQe7vBD7GgFMqahgXo+Rlm+z26kHIpkMa7ZuJW6zkTQMikeNIgXszJdzA6A1mUymO6HfEYuB1mxMpfDY7VTabJQmErwfCtHk9/d5PgrB5/Nxjs/H2cAzwN1AFLNM+2/BIE85HFy8dCn/dfrpkrAKIYQoKHsmw7jW1sEO49A0NsI11wx2FENWfyarNmAe8AWt9TKl1C+BrwPf6bmR1voO4A6ABQsWFKa4WYijiAZew/wn6rou53A4iGjNvM2bmb9tGx8899wBaWHLAG9sSvDsAwY6Bx0WCHthVb6Ed+a4cSx9800+tGQJL7zzDrPHjwfMD5niWIy31q7ljx/7GO6mJoxkEiswefJkPABOJ5HRoxkRi5mJao+EpysBnDsXBrgStmD6Sm49Hg8zJkwgHA7j9Xrx5MtpIrkc723ZQrSoiJjDgWvUKCJAy26tz5lMhjagIZlktdXKByMRLnQ6qS8uZhbmiMaFpoCzgWMxX5NP5EucOx0OHl6wgBmtrZwjyaoQQgghDkB/JquNQKPWeln+/kOYyaoQokDCwA8iEV7NZs0S0Xz55XGGwYfdbnJlZdTOmNGvLVltQBPwAtCUydC8BXJZeJhHaMg2EAvFuPaXv+S8hQs5a8EC/vDEE3zt1lsZWVLCt+bOpaahgaJcDr/TybjiYs4eMYKI17srQesqocVM3ioqKo6qljmPx9PrHHQtmzpp0q5zlP+7BzMZVu7YQcjhIOxygcdDukcCm7DZeFprXgcc8TiTW1u52OlkQT+M3FuO+YY/M5vlu7kcGYuFqMPBnaNHMwUYV/AjCiGEEOJI02/JqtZ6p1Jqu1JqitZ6PXA6sLa/jifE0WYdcGM8zrr2dtCakFJMqqri804npwCqqgr6afqQTuDhYJBnUynaSkqIYSasyUyGolFplNXgQ7kPoqww7XLFyOok8a1bcbe0cPrcuWZrqcdDJBLpTrjmeTycO20a0HeCJnrr6xyVejwsGD3aPKduN4bNxtZUindDIezZLEmlzPl081PNbNCax+NxzoxE+ITHw2zg9dfMuV93lVIfnvrycjxa8wOLBeVykTQMvgncBEw6/N0LIYQQ4gjW36MBfwG4Pz8S8Gbgqn4+nhBHPA38HbgXaO8xFc3M7dv5n44OFs+Z02/HXQc8CSxNJGjqmq81kcCdH73WZrNRXBmm4uwI6UYbx87wMGO0EzCI1Nbu0VoqSWnh7X5OJ7pc1FRU8FxbGx91uVhrGPwjf4Gja/Th5dks6wH1nwRPnVdELq0oKlIsXVqYhHVJRQU1wHeBGOaURF9OJLh882ZOPMpayoUQQghx4Po1WdVarwQW9OcxhDiavN/Swk8zGTZVVGAYhtlKlslw+rvvMiEQYGJ9fcGPmcGcBuehTIZgcTGGYRBJJruTHUsuhzuVYj5Qa7OhnE7Co8J4pznxeJzd+5HE9MCV1tVxQ0NDQfc5Ye5cTqys5ETggnSa3735JqtGjWKzz9fd2vruUwnSKQNyilRK8/zzqiDJKsBU4AfA9UBbMom/pYUfOhx8+IUXuOqUUyRhFUIIIcQe+rtlVQhRICtbW/lCRwedDgfk5xmdbRhc6fWSHjOG2kWLCvqFP4fZD/UPsRiruqbBicfx5ZMbR2cnM7ZvZ1JrK1uBKV0PlKT0sH3pppv6df8jfD6uWbyY5uZmrC4XrxoGfwsGcS+Mo4qK0WnQRRBbYs43VlSg404EfgR8Lj93bNpq5dnp0zmjuVmSVSGEEELsQZJVIYaB94FvWq10OhzdpZuLdu7kO2PGYKuuhurqgh1LA4+3t/OnbJZgcTGJdLq7FdWeyTCvpYWrR4/GU11NcyZD7fz53Paf/xTs+IPN7/fT3NzMiNpaqnw+Mpity80tLezYsYORI0ZQU12NAlr9flqamxldW0vNMEu2eo4+PBs4M5Xi5vL1WO6H8DIno89zsWye5tK2MF8GTqisLMhxxwDfy2a5Oj/oUltxMSuLi6UERwghhBB7kGRViCHuXeB7QMbthkgEeybD2atX87mFCwv+D9wI3BKN8nwk0t2SWl5WhpHNMnfzZuY0NvKhc8815zfdx9yjgykDvNfaysbWVpw+H7aKCjqB7aEQOzs7KSotxer1EgPaYjGCsRhFbjd2p5NIPM62aJRsaSm5RILqZBLDMEgmk/gTCSgthUQCXzIJgD+ZhPJyVCLBqEQCr8NBNh4nE41S4XJR6XLhArLhMKlgkNHFxdSVlFACZAIB4jt2ML2qijFD4DxOqK7m+1rzdmsr/zp7HOttGr/fj19rvpjL8ROlWFJRUZBjzauq4nN2O/fmB3x60jA4D6gtyN6FEEIIcaSQZFWIIezJQIBbrFZsTieGYTC+uprLN2/mhIULC5oopoC/Yc4vFchPddLVknpGIMDH3G5CFRXUzprV53H7o4/l3pTW1dGJOfpwM7A2FGJTJEK6tJSo283OZJKd8Ti43RCN4suXJPtDITMB7+jAV2QWtvrb2sxlsRg+n49EKkXKajVbr4FEIoFhGCTyc4V2tWonEgkzmPwygM5kkpRS+FtbQWvez+8TwN/RYR4nFMKXnyvVH42C1wvJJOMTCUY7HDgjEezt7Uz3eplVVsYooDQfy0Dw+Xyc4/NxNvDbTZu4RymSNhtpi4XvWa0UY06eXQhXlpbyLmbVQAr4NfBDBu65Hs2UUtcB/41ZSPEucJXWOjG4UQkhhBB7kmRViCHqn+3tXB+JkAPo7GRKVRW3OJ2MmT69oMdZB/woFqMhnTb7ojochIFZW7dyXEMDHz77bDPp2kdy3F99LKNAA7AV2AKsjUZZlkzyRM8Wz64kNBDAZ7PtN7Hc1zKHw0FIKZTWoBQuw6AIKDcMUum0mZgqRblhkANiuRxZpchZLDgcjkM+diCZJKoU/vwovf8Mh/G5XACoWIxpdjtzPB4mAcWtrWQaGxlZW9tvLdsKuMTrJfbcczw6fz5Rh4Oc1cqXg0G+ks1ybgFaWK3AF4HrgHgyySuJBA/kcnysrOyw9y32Tik1EvPUT9dax5VSDwKXAvcMamBCCCFEHyRZFWIIWg383GIhh9n0URqN8ulQiDGzZhXsGBp4GLgzkWBHvoUxpBQnVFTwfZcLu9dLbVeiOgCimK1sG4CNwLvxOI2pFA6HY1diGgiYiWkkYraE9pEcOh0OsskkrmQSZzrN/PJyvFqz4f33KUqlMHI5Tlu4EKfWvLZsGdZ0Ghtw7plnUltSQsAwaNuxg9EjRjAi3wqKw4Hf66W5uZna2tpdraMuF83NzdTU1lJuGDSGQjz+4oskLRYydjuLTj+dBPDcmjXErVYShsGEefMIK8XboRCRoiKi+QsEuz+XaCRCJD8Q0U6lWGu3m8eMx3F6PIzeupVzkknGhkLMrK4u+N/J5/Nx+WmnMaelhdurq3k/3zr8nVyOumyWGQXoJz0eOD0U4q78BYdfpdOckkpROwTKoo9wNsCplEoDLswiBSGEEGLIkWRViCFmO/B9wOZ0QmcnZdEoH1qxgllnnVWwY3QCPwdWALH8NDRFmQyLNmzgypoa5s2dC1VVBTteXwLAmvxteSzG+/mW3e7ENF9OG1Jqj8TUnslQGQox3ulk55YtFEejlCSTfPCkk5hWUkKgpMRMLEeOxOf1AuCfMWNXsplvGZx2yim7luWTrxKfj/F9JEu+Pvro7r5sQnU1l5511h7HmTd//q5lxcVmPD6fOZBTWRkOw2BdOMxjq1bR4XQS9Hhg1Cjez2RIWa17tMjGiopY7/OxQWsoLqaqrY0L0mlmdnQUNHH1+Xyc5fNhe/ddvmu3E3I6SVss/Dqb5TYKU7J7/JYt/MXtJlpURMxu54WODj4myWq/0Vo3KaV+AmwD4sAzWutndt9OKfVp4NMAdXV1AxukEEIIkSfJqhBDyHstLXzNaiXu8WAYBpOrqvhMKMSss84qWAKyGfhmPE5zvtXS4XDgCoU4a+VKStJpRs4rVK/E3jKYLcZvAC/GYmzNJ6ewq+/o7ompJZejPBpllsXCDI+HhrffprSzk+J0mgvq6/F5vfinTduVCOYT7ANJLPe27HAd6rEXVVYy/rjjup8LwD+ffppQURFtpaWMPPlkNlutvJzNkrRaAbr7y7Z4PPwhm4XiYsY1NnKtzcaSioqC9f+cUV3NWS+9xEPHHgtKsd7j4a4NG7igpOSwz9+YESOYvGEDK+vqQCk2jRxZoKhFX5RSZcBFwDggCPxNKfVfWuv7em6ntb4DuANgwYIFevf9CCGEEANBklUhhohtfj//09ZGm8cD0Sh11dXc7HQyoYClv6uBbyUSNPRotfxkSQmX+Hy0zJplJnwFTN40Zlnvg+EwL2YyqHw/zJ7JqcftBq1RWlMRDjNXKeZ6PDQsW0ZpZyd2paivr8dXWop/0aJdiWk+zv5IOAfL7s/lgvr6Xc+3pASAndEob7S10VBSwrMtLWwvLyenVHfiuqWykm8Doxsbubi5mSVjxhz2+fH5fHz6pJN444c/pKWtjWAyye9yOZb6/dSNGoXT6TzkfZfW1fHZL36Rr9ntOBwO3jWMgs7tKvZwBrBFa90KoJR6BDgBuG+fjxJCCCEGgSSrQgwRt6ZStHk8aMCSy3FpQwMTpk4t2P6XAz8GOnqU/Z61ahUnjx3LyLlzGVngJHUZcHc0yupEorvvJeFwd3JqzeWoCQZZEIthWbuW6o4ODDAT07Iy/D1LdI/AxPRA9PV8a3w+Lsgv+4jdzvs7d/JeaSl/DwTYWlEBShGJRFgLvFddzfLly/nviROZNm3aYccyOxRixsiRBFMpACYaBjOLixkxYsQh7/eGhgaOr6xkGrAlmWRnKMTT2SwXlJcfVrxir7YBxyulXJhlwKdj9ggQQgghhhxJVoUYAl4E3q6uBr8fpTWnvvceZ8ydW7D9vwT8IJEglkxitVhwp1JcsGIF1bEYtSecULDjAPw7EOCebJYmp5P2jg603lVBWBKLcXwyiWv1amoCAYryraYsXnzUJ6aHouscnQCc73CwsrWVpx0O/mO1krVYyCnFv2fPxvHWW3yxvPywz6cNmGSx8IZSoDUBrxdvvk/w4VDAMaEQr+cHWrq3pYXj0mn5+/cDrfUypdRDwFuY1flvky/3FUIIIYYaSVaFGGTvtLbyPZsN5XLh8/mY3tbG1+bOLdgX9ZXADxMJdrS0gNaUJBLcbLHgnTq1oGW/rcBPIxGe7GpFjcfRgC2XY+KOHczcvp3aSIQL6uvhhBP6TE7FofP5fJzt83GM38+IpUt5YvZsAl4vGvjP9OmcumlTQc7xFIeDdTYbqVSKeFERaV2Y7oy1jY2Qryxo9Xhobm6W10Q/0Vp/F/juYMchhBBC7I8kq0IMoia/ny+3ttLi9UI4zOzKSn44ciSuAu1/C/BDIJov/S2LRPjAm2/inTWLuQVqudXAH4NB7tOaWC7XPWKvLZdj1vbtzNu8GXcmw5QpU5g8ebIkp/3M5/Nx+emnM3H1am42DOJFRUQcDv7Z2cksv/+wz7sXKMvl2J5Og9a82dLCih07+NOaNShgls/H3RddxHeee45/bthAkdXKhPJy7r7oIkq7pgLqwzGVlZBMorSm0+XCJ2XAQgghxFFPklUhBtF9sRgt+dYvay7HJVu24JoxY7+P+8X11xPctm2f2ySA1zMZ4rkcSimMWIyq1laW53LsGD2axw5wUJzSujq+dNNNfa4LATdGIizt7DRbU5UCpZje2MiizZs5a/58El5vwQduEvvm8/m42Ofjnbfe4pH89DkbamrYsGFDQf4O7lis+/ftqRS/ffNN1n/hCzjtdj7yt7/xwOrVnDlhAj864wxsFgtfe/ZZfvTSS/z4zDP3us8xPh9T4nF25kepVoZx2HEKIYQQYnjr12RVKdUAhIEskNFaL+jP4wkxnDQCL4wYAS0tKK1ZtGkTxx/gyL/Bbdu4YezYva7PAU+kUoyJx83BjLTmDK1xVlfj9XrxeDwHHOcNDQ19Ln8PuD4epyEa7e6XWhEO88l4nJlOJ7VnnikJ6iA7LpnkkfzvO0tLyUYiBdlvpWFAKgVak7LbyWlNPJPBbrUSS6ep9Xo5a8KE7u2PHzWKh9at2+9+JzidBC0WEokE70YijMgn2kIIIYQ4Og1Ey+qpWuu2ATiOEMOGBm6ORolkMpSXlVEbj/PtWbMKlty9A7TmS3IVMGnHDpxlZYc1amtPK4AbEgm2t7Z2J6rzN29m0ZYtnHX++ZKkDhHzx4/HEwoRMQyyFguWAv1dPD36qbpKS/niscdS9/Of47TbOWvChF6JKsAfVq7kowdQMeDp7MQfDILW/Gv9eubMmSOvJSGEEOIoZhnsAIQ4Gj3Q0cFLgQChYJBgezvXKkVtgb6Uvx+LsTKRQOVLckcFApQkEgUZtRXg7+3tfCUYpCM/kJIjneaCN9/kkliMiyRRHVJ8Ph/Ty8tR+fvPrVmD3+8/7P1mIxGz7BsIpVL8Y/16tlx7Lc3/+79EUynuW7Wqe9sfvPgiNouFyw6gaiCRT1Q15jC1zc3Nhx2rEEIIIYav/m5Z1cAzSikN/E5rLcPji6NeCLgHur+Uz928GXtpKVRVHdZ+P/nYY/xz/XqKnE6+/YlPgFJse/99fvHyy2zs6GD51VezIF/+e/+qVdzy6qvdj13l9/PWZz7DMTU1+zzG04EAN0Yi5ACUwptIcNEbb1CeTLKgvl4S1SFIZTJ0tYNmcrmCjLLrcbshkwGtWdvUxPjycqrcbgA+OG0ar27fzn/Nns29K1fy+MaNLL38cvPiyX4Ul5ZCMIjSGgtQW1t7WHEKIYQQYnjr72R1sda6WSlVDTyrlHpPa/1izw2UUp8GPg1QV1fXz+EIMfjuBrTLBeEwJbEYCxsaqD3vvMPe75XHHMO86dP54dNPA1CUyXCG08mVH/84n3n88V7bXjZ7NpfNng3Au34/Fz3wwH4T1dfb2vheOk02f788EuHLoRAjZ8yQAZSGMIvNBskkAEprHPsYkfdAOd1unMkk6XSa0VVV3PfWW8TSaZw2G0u3bGHBiBE8tWkTP37lFV648kpcdvsB7ddTXEy5UkRjMWZMmyavKSGEEOIo16/Jqta6Of+zRSn1KHAc8OJu29xBfkLyBQsWFGbCPiGGqNXAE8kkiUSC8rIy/jsW44zzzivIl/KRVVW8Fgp13x/X2spxo0fvdzClv6xezcdmztznNhtaWvjfUIhIUREAxfE4H3zzTY496yxJKIa4cC7X/bs9myWRSBz2PiPRKPF8y2ptcTEXTpjAvN/9DpvFwtwRI/j0/PnM+O1vSWaznPmnPwHmIEu319fvc7/Bzk7a86XA6957D39Rkby+hBBCiKNYvyWrSik3YNFah/O/nwX0Pf+FKKgsEAe2tbTQ6Pfjq6mhqkeJaVcxXmtrK607dzLW52NMdbXMY9TPMsBPYzH8bW2gNRNbWjijrq4gX8aDkQgvJBKk02kA6rTmuFGjDmjU37+uWcNjl1661/UauCWXI5pPVB3pNFc3NXGOJKpDngYCDgcqHkcDZclkQUprA/E42Mx3DFsmwxdnz+ZHZ5/da5tNX/ziQe+3NRzuLo+3ZLMFKVkWQgghxPDVn/mJD3g030/JBvxZa/1UPx7viJQDgkAH0J6/df2+LRKhORrF7vWCy0UCM0lNA8lkEn8iAcXFEI/jSyYxesxbmEwm8cfj5vpEAl8yiccwcAFOwAXkolGyoRBjPB4mFBdTBd23csA6YGfhyPAP4P10GrTGls2yeN06mm22gnwZX5nJkMwnD0prZiaTeMrK9vu4ZY2NuOx2ZlZX73WbrcBWtxuSSRRw7urVnLNokSQRw8D6lhZ2JhJowMhkOP3YYwvyd9Mej1lanB9gy1tefvjBAvHSUggEUFpTkkhIn1UhhBDiKNdvyarWejMwp7/2f6RJY867uS1/2wqsj8XYlk5jOBy9Ek3IJ5vt7eaInMkkPp+v1zaJRKK7hUJpTSKROKD1IcwBgJLJJP5AALTmlWAQn2H0erwCKgBXNIq7o4NZbjdzy8oYB7j75xQNay3AHxIJspkMKMXC99+nJJ0uyJfxINDo8UA0CpilnhUHOI/qA/spAQ4CG7NZIh0daGDBli1cOmWKJKrDxOvBIOT/b8sjEZI9SoIPR7THYEmOTKYg+wQIu934bDYSiQQfOfFEfPu4iCKEEEKII59Ufg6CFLAeeCUUYk00SmdpKUGXi55fI5PJZHe5KEodVDKqgDLDIJtMYs1mUUpRV1WFs8f+S+12tsXjZJQibbfj2i0Z3l+yq4GmHgnt0+EwPpcLwzDwAeOA8UBpIICzqYlpPt9Rm+DkgO9Fo2zPn6uKSIQPOxxML8DouRp4NZUincvhdDiojkRw2WwHVP6b05q/rV3Li1ddtdd9Lwcy2SxoTU0wyMJNm0iUlBxWzGLgtNXUQL4P6MiODmqnTSvIflvyFQIARipFOBymo8NDQwOMHQujRx/8PqNAS74/t9cwmCavMyGEEOKoJ8nqAMgCm4B3gFXAOiCcTOIPhcwvfG1t+0xGnakU5Z2dTK6qohwoAyy5HGtWrcKZTGJks5x/2mnUYZbw2gHlcOAvKaG5udkcqdXl6h2Uy4W/rKx7fbXDQQqzjDgGbEun+fGXv0wmECBts+GtrCRbVEQCSGAm3OlUCksq1b3LUFER9qIiOoD3gFw2SzweB6Aom2Wk00l1URFlQO/UGErr6vjSTUdml+bfB4MsSybRWqOAJWvWUDppUkGS93XxOFtTKdCaPzz5JNuammiPxxn1s59x45IllDudfOHJJ2mNxTj/z3/mmJoanv6v/wLgxa1bGVVczPi9lAtvAPyZDDqXw6I1p69Zg00pKc0cRtbZdr3Fj+zoKMg+s0DU4TBb8rXGm0wSDpfyt79BNgtWK1x++cEnrO+0teGPxUBrLLEYLeXlR+0FriOd5yMfIfLgg/vc5lf//Ce3Pfkk8yZM4MOLFzO5tpbpMmOAOMJ4PB4ikcg+t/nVr37Fbbfdxrx58/jwhz/M5MmTmT59+gBFOLydd+ON/Pn//o/SfVzAX/LNb/KTq65iwaRJvZav3LyZ5vZ2zluwoL/DFPshyWo/WdnaynPhMDurq2nweIjvtr6vlssxhkEdUAd4s1k2LFtGSThMEVBfX0+vr21lZfiPO25XMtrHHJ2+/bRm7r7eyN9KgdrKSiZbLHxp0iS8Xu8eLXVZoC0aZe22bcSKiogbBkU+HzG7vbuFOJlI9Bp51OFwYOSnzSgGSpNJ3JEIYw2DX27btveTOYw91t7ObeFw9zk5btMmRobDBUn4ksDb0N3C9a1Fi1hoGIwYMaLXdhfvpTVtydixvP7f/93nuhjwZiZDJBolnclw7ObNnDB6NJMnT5YEYpjYAWzMt4BaczlGdHQUZMCiAGa1QJHdjiubZcaECbz9tpNsFnIayEJDw8Enq8s6O8FqRQOVnZ00JxLyWjuK/faJJ3jyu99lXE0NV/7iF9Qfe6wkq+Ko9Nvf/pYnn3yScePGceWVV1JfXy/J6gHQWvP4d76DxWI5pMev3LKFFRs3SrI6BEiyWkARzHl5/hmN8mo8bjYxtLfjs9v36HM6zm4n29REdUcHlbEYl518MmN6lr2Vl+M/5ZRdyWgfX9r2l4weLqfTuUfi08UK+Nxu3KNHEw6HzYTWbicLdGIOAuVXis2JBBHDIGexYOvRytORybA9kQCrlWWZDMvTaR7DnNuo7yMOPy8DP8nluhPVke3tXJhIcFwByn8BlieTJLQmvcNGdpvCbU/hPa7ysPcL8BaQzE9NYqTTzNu8Gc/8+ZI8DCOvA9b8h/ToQABD68O+SFJaV8e1GzbwXr6ioiwWY6XXS9hw8rQyk1WLgp0GLG048H0CtFZVQUcHSmtGd3RQO3fuYcUqhodbHnmEB19+mWQ6zcWLFnHjxz/OZ3/7Wzb7/Vz4gx9w6Ukn8Y/ly3lh9Wq+/+CDPPz1rzNhL59LQgxnt9xyCw8++CDJZJKLL76YG2+8kc9+9rNs3ryZCy+8kEsvvZR//OMfvPDCC3z/+9/n4YcfZsKECYMd9pDS4Pdz7o03cuqsWbz23nus3LKF1vvuo7K4mO898AD3v/ACoysrqSwuZv7EiXz54osB+Nsrr/C5228nGI1y1xe+wMLJk7n+/vuJp1K8vG4d37jkEj560kmD/OyOXpKsHqYMZuvWUmBZ/n4o/yW/Z6vpKMNgDjAbmAVUulz4J0wY1GS0EDweT69WVytmmXIZMN4wmOXxEIpESBcXE7bZ8ANt7EqEID+9htbcCdwJVMRijGttZYnbzYmVlcNu1OGVra3c1dnJG15vdxl0eSTCeatWcdw55xTkb7ozkWB1IkG62ULHwx7IwjLrJKZOUhzg2Ep71QxsyWTI5XKgFDWhEHYp/x12no5Gac8PjDXB7+eEE0447Nfel266iY+3tJDLT4Uzf9UqLh01irlz5/Laa/D887BkCSxadHD71cB7Nhsetzk82yfmz++zWkQcWZ55+202Njez/Kc/RWvNhd//Pi+uXs3tn/scT731Fv/5wQ+oLC5mY3Mz9cceyyWLFw92yEL0i2eeeYaNGzeyfPly83/hwgt58cUXuf3223nqqaf4z3/+Q2VlJRs3bqS+vp5LLrlksEMestY3NXH3F7/Ib6+5hrH56rEVGzfy8Guv8fYvfkEmm2Xeddcxf+LE7sdkslmW//SnPLFiBTc+8AD//t73uOmyy1ixcSO/+exnB+upiDxJVg/RytZWHonHWVtVRdLp7LXO4XAQ0Zq6tjbGt7Vx1fz5zGTX/KZdhkMyurtPPvYYj2/YQLXbzerPfQ6A7zz3HI+tX49FKardbu75wAeo9Xq5f9Uqbnn11e7HrvL7eeszn+HUmhq25XK8GwwSdDqJOhxYrWZKmkwmebutjbeBR2IxJsTjnOh0MrG9ncrt25lQUzOkzlkOcxTnDfnby+3trInF0DYb5BPVkliMC1es4Jjx4wsSeyewGpijNalGGzoLoMjlDq38sqcs8Ho6TSTfd7AqHGaE02mWoQ+h8y72rQFYm78gZM3lGN/aSqIAFxv8wA6nE+JxrLkc4wIBao87DjAT1INNUrusaG3l/XgctMaZTlPr9R52rGLoe+btt3lm5UrmfulLAETicTY2N3PyPkYoF+JI9Mwzz/DMM88wN19REolE2LhxIyeffPIgRzb8jKmq4vipU3ste3ntWi5auBBnvsrxgvznVpcP5j+85k+YQIPfPzCBigMmyepB2gncEQ7zSCyGBmht7TU40kTgNMNgmstF2Gqldu7cI6qF4MpjjuHzxx3H5Y8+2r3sK4sX873TTgPgV8uWcdMLL3B7fT2XzZ7NZbNnA/Cu389FDzzAMTU1AIxzuaiqrCQcDmOz2XjLamU08EL+C2tXq3RbKsVTFgv+SARVUsIIv5+LHA5OKSlhMgM312sGWNvayruBAKmaGjpLS9kOrE8kCCWTOPJ9cf3hsPm6yJu4cyenrlmDS2smT5582HFo4AeRCCkApXDWpolbDLQGq1Uxduzh7X8NEMqP/mvL5RgVCGAr0FywYuA8y64S4PEtLbiy2YK0jD8ZDNLe2YkG6gIBTl24sCCvjaWRCFgsaMxy+R3hMDXymjviaa35xiWX8JlzzhnsUIQYVFprvvGNb/CZz3xmsEMZ9tz572M96T6268mw2wGwWq1kCjTFmyicg0pWlVIXaq3/0V/BDGVtwF8xvwS253Jo6E6ojEiEDxkGp2EOjgRAdbV5O8KcPGYMDcFgr2XFPfrjRlOpPVqQAf7Sx3yePUuIR7a2cj2wLZnkjpUr2VxZSUN1NQ6Ho3swqpxSNJeU8GfgkWQSYjGmFhUx2+2mvL0d644dzKiqYkJ1dZ8x7M1Ov58NO3fiGDkSVVlJO7AlFOL9cJhUWRlht5umZJKd8Tg4ndDZiS/fmu5vaQGtCSmFx+1GA7ZcjtFtbRzT0MCoYJCpU6cWbGCiPwSDPNXZiSU/t+Xx5VG8H7Xj9zsPecqQLp3AWjD7FivF6ECAolwO1+4jSYshLQE8kUh0lwDPaGwsSAmwBp7OjzwNZhKcKFDfwfd9PmhrQ2nNxNZWamVAi6PC2fPm8Z377+eyU07B43TSFAhgt1qpLi3ttZ3X6SQc332YQiGOHGeffTbf+c53uOyyy/B4PDQ1NWG326ne7Xuk1+slHA4PUpTD14nTp/OZW2/lG5dcQiab5V8rVnD1WWft8zHyvjN07DVZVUp9cPdFwK1KKRuA1vqR/gxsqAgCfwOeBNL5ZQ6Hg5BSjGltZe727VyzaNERMyjQofrW0qX8cdUqSgyD/1xxxR7r/7pmDY9deul+91Pn8/GF44+nubmZEcXFRAyDZxMJHgmHafF6QSmsFgt+vx+0xq8U7+ZytEci4PFAIkFNZyfuVIpyl4sKl4tsJEI4HMbt9eL0eOiMRglEo+D1ElOKhkQCXVoKsRi+ZBJg17RCgQA+m63P0ZsB0BpXMomvs5O5bje5996jur2dolyOuro6jjn55IK1Sj4F3KsUaE28tpaH1q1jrd1ORUUSRmPW8DYc2r418EY6TUBrrFYr3lyOyZ2duFwuRkyZUpD4xcB4Fggkk6A1JbEYo9rbe43KfajeBwIlJZBIYMtmmdTaSu38+Ye93xZgq9WKx+3GqjWfXbBAWvKPEmfNncu67dtZ9NWvAuBxOLjvf/93j2T10pNO4upbb+VX//wnD8kAS+IIdNZZZ7Fu3ToW5ctRPR4P99133x7J6qWXXsrVV1/Nr371Kx566CEZYOkAHTtpEhcedxxzrr2WMVVVLJg4kZL9XIg/ddYsbn7oIY659loZYGmQ7atl9UHM78ct7Opu6QYuwPxue0QnqyngjlCIv+dyWFyuXqP5zjcMznW58Fos1C5aJF+sgB+cfjo/OP10fvTSS/xm+XJuPPXU7nXLGhtx2e3MPMCW5t378k4sKeGDiQTrd+6kffRoXg2FeCUeJ+xwoLQmmu9fqQG0Zmd+Psn3YzHKy8po7+gwE8/2dsq13nU/kehuDe0rCe25zOlwkE0mKY7FqIjFOLu4mFG5HKtefBFnIoHVYqG+vh5OOGGfg2YdqueB37LrQsm4T36SD7z1Fh84//yCHOdPHR38PRw257gEfuFycdwRVL5+tMgCf4nHyWYyoBRzt27FarEUpAT4mfxPj9vN3FCIDxVosLB/BYP4OztBa8YGArhGjjzsfYqhreccq9deeCHXXnjhHts03Hln9++Lp09n7a23DkhsQgyknnOsXnvttVx77bV7bNPQ0ND9++LFi1m7du1AhDYsjfX5WP2b33Tf7/k+8uWLL+aGj3+cWDLJyd/4Bv/3gQ8A8PwPf9i9TWVxcfdjyr1e3vjZzwYmcLFP+0pWFwE3A28At2uttVJqidb6qoEJbfBsA26MxVjR1boWDuPz+ZhtGPwXMAdQlZVQWZhpQg5HEmgHNra10RAI4K2qwlleThyzHHBnKEQgFKK0tJTi4uLux3V2dtIZDFJTUsKIkhKcgAuIBQJE/X6mVFZyKFX7H581i/P//OdeyeoDfZQAH6yeCeyidJrJL79Mp91OoLSUkvnzebWtjZDDQafTSTo/WNPuiWxf980NFUY6jTeZ5JiKCsq0ZmtDA654nNJEgg8uXsyMkhLaS0pojkapnTABX1kZANPPOmuP5LSQSarGbCn7WSJBLN83dlFFBZe3tzOhQInqZuDufIutBmY3NGAvLgZJVoedv7e3syYSAa1xpNNc5PEwswCDY0WBpxKJ7rL36pUroQAjs2rgyfxcsBoYv2MHzUrJBcAelFIfBp7SWoeVUt8G5gHf11q/NcihCSHEsPHpW29l7fbtJFIprjjtNOZJq/SwsddkVWv9hlLqTOALwHNKqa+x/z7Kw5oG/gXcDbT2+AJV1dnJ5fE4l02ZclB9IQsVUxtmAr0VWBMO0xCNkikuJuFyEcMcQdcfi4HDAZEIPrcbwzDM5V0JdzCIzzB2LQ8GzeWhED6HY9fyaBTcbkgkcGezzMNsTrcmk1jjcaoNo7scusvGQIBJFRUA/GP9eqb2SOJzWvO3tWt58arCXePw+XxcUF/fK0n022w0NzdjWCz85403iFmtZOx2ZixYwBvvvovO5bAqxdzZs1m1ciXWVApnLsdFZ5yB0zDwBwLmvvJ9aP1Tp+7afz5p62v05v4c0TkG3Ao8m0x2Jwn2SISvVFUx4ZhjCnKMOPBjwJbvi1sdCnHC++9Te/75Bdm/GDgZ4P5cbtdFh61bKS8vL8jr8xkgmC8tLo1GqQkEaG5uPux9vwcEi4shHseeyTBF+qv25Tta678ppU4EzgZ+AtwGLBzcsIQQYvj485e/PNghiEO0zwGWtNY54JdKqYeAnw9MSIMjCPwSWJG/73A4iOZynLB+PXOamjizvr7fE9XXXoOnnofaJRCc0cmaeJxgSQk6P7JZMpnE31XC2tbWPQpxX/0pC7E8m80SA8KZDJF8eeyX//53NjY1EYnHqfzZz/jUiSeyfMMGdgSDFFmtjCkt5fYeic6LW7cyqriY8fmWyELZPUnseb+ivLxXIrvQ7e51f1HP+/nS5NoBTEIPxGttbdwCRLze7r9LeSTChStW0Dl7dkEG79LALeEw63I5HA4HddXVfCEUYk6BWmzFwPo30GEYEI3iSKeZu307tQWYAiQDPNCztLihoWClxQ93dpLQmvKyMo4LBrn43HPltbenbP7n+cBtWuvHlFI3DGI8QgghxIA5oNGAtdZNwEf6OZZB80wgwC+UIpNvkQSYYhhc6fFg8fnM6Wf66QvUNr+fF4JB3tg+itsudJNJgaVIM+7+GO55SUgm95mUug2D2qIiHJ2dOFIpirJZ5paV4cPsd7t60yZUJoNFKY479lhKgWAux/L168kqRcZmY+r8+dgBv8XCqkCAhM1GxOmEfDltJj9fI8Anzz0Xh8OB4XCQzWSIRKOMnTwZlKLC5aLWbicG7IhGobOTBZWVvJ6flHmg7CuR7ev+ULID+ENnJw9Fo2YZdr7f7cymJhavW4cBBUkSAG4PhXg43/IeUorrPR7OmjWrIPsWAysB/CEe7x4BeN6WLQWbVubvHR28l+/P7EqluLC4mBnz5x/2vt9vaeHv0ShpiwWU4iKXC98Q6FoxBDUppX4HnAH8WCllAJZBjkkIIYQYEPsaDdgCXAl8CBiFeYF9I2b/1ecHIriB8NeODn4UiZj1zZEIPp+PjxoGlwP2qqp+6benMeezfKyzk79Ho6QcDlqeTZNJacgqcimIvmbgmpdEaY0lFmOGYVCqFDvWr6c4EsGTTvOhU09lAqCcTvzV1WZr4ahR+Lr6ppaU4J85c1crYlfrZlkZZ82Zs2t51/ZeL/6RI83lxcXcarVyIdCWy7GhtZW4zUbcMLC53aToncSiNdFslm12O1syGSKZDEV2O2UdHcy2WBjncg3YnKjDURPmiGbPAx1ak8N8nRRlMly2YwcXTJhAs9NZsIGbHgb+At0XP6Y1NTHe4YDy8sPetxh4fwN25qeVcSeTzN6+nUQBEr8M8Of8vLsamL1tG2UFKi1+KJ+odnW1cAQCQ2IcgCHoI8A5wE+01kGl1AjgK4MckxBCCDEg9tWyehdmN8kfAZdgTsP4EvBtpdQsrfWvD+QASikrZnVtk9a6/jDjLagngFvzX5Y04E4muWrLFj42dWq/HG9NSwuPxWKs8fnodDoJaU3KajWPvTCOpaiEXApsRbBgbANz3txCVTTKR886ixqA4mL8PZPMHqWge2stPJzlFsADeFwuKkeMIBwO4/V68djtJIHmXI617e1EDINOp9Ocn5NdSWzKZsPv9fKSxcJbQHkqRUkkwnjDoMLtPuzzOdyFgeXAM5EIr2ezGPm+w10j/o4KBDh93TouOP30grYGPw7cQ+8pmE5bt076qQ5TfuCBRKK7THfRxo0YWhekBf7fmKXoxGI4UinmNDYWpLQ4BayoqYHWVpTWzNu2jZEFmAbnSKS1jimlHgN8SqmuqbzfG8yYhBBCiIGyr2R1fo+Rf19WSr2utb5eKfUisBI4oGQVuBZYBxTvb8OB9A/g9+z6wl4dCnHR229z2tlnF/xY7cDvOzv5ayxGVilobcXn83UfuywaZX7lVj7/iIvw2yWcsUQxfnwtzc3s0ZI2WCWsHo8HT37wIQADGOdyUVVdbSaxRUWkbTZagO0WC1u0JqMUKIXNZiOZybAxHgeLhTfTaUalUowrKmIkUDLgz2ZwaGBNayv/7uxkS00NDW438WQSf3u72UKdHwV1oWFwustFSSBAbT5RLZQHOzr4jcVilnIbBqdUVHBZeztjpZ/qsKSBn0ciNOZfQ9WdnXyguJgpBZirNAXcE4+TSKUoLyvjvLa2gk1X8x8gZLHgcbspSaf5UgHKio9USqkvAN/FvC7RNUi7BmYfxj5LgTuBmfl9fVJr/drhRSqEEEIU3r6S1bRSaoLW+n2l1DzM7y5orZNKqQMaFVgpNQpzUIgfAP972NEWyKPAH/K/G4bBCRUVfKKjgwlnn13QL0whzHLLfwGtWpNVqru/qYrFuKisjDkuF85AgJFTpuDzlZjFXgAM3X6VPe2exJYBU4qKCKdSbIvH6fR6CdhstOb724L5zag1l6MTeAcoSqd5Mxrln+3tLCkvxzsYT6QfRDHr5tcDG4BV8Tgb4nGw2SAQwGez9eqHXNfWxlWRCB+aPt0shyxgSaQG7gkG+WVnJxoIKcUJFRX82O3GWaCRhcXAew14tUeZ7knr1uGdNKkg7x1/DAZZl5//1JVO8xGvtyD7zQD3xWL429pAa47ZuBGb9JXel2uBKVrrQAH3+UvM6XAuUUoVYc5cJoQQQgw5+0pWvwL8RymVAOzApQBKqSrMSsID8QvgqzB08o+7gkHuVaq7ZWkacIPbjWvOnIIdQ2OeoDsSCUL5uTG7WlFHdHQwd/t2/ufYYxkNBU9Khgqvx8OMHknszmyWN9vb6XC5iDgc3SXD2UyG1liMRq35diRCjdvNdMNgXChE1Y4dLCwvZ3wBRr7tTwlgO+b0Ql0/N8RibEunu19nAKF8n8KeA2TNtNlg40bG+f2UJxKcWF/4SvkQ5j/i0vzFkq4+gp/o6MBZwNe9GFhR4Bc9RumduX07I8PhgpT/tgN/1br79bpg0ybafT7GFCBZXQpszU8NZqTTTNu2jeaKimFxcW6QbMf8Ny4IpVQxcDLmmBRorVPkL0YLIYQQQ82+5ll9Tik1BqjQWrf1WN6KmYDuk1KqHmjRWr+plFqyj+0+DXwaoK6ubm+bFcS/AwF+FY12j356SkUFN7ndOAp4jCBmYvBqj7kxQ0pxfEUFX3a7qQwEGHnsscPii1lpXR03NDQUbH/xZJJYRwd2l4uY00kb0JxMEk+nidfWYmhNPJFgDfBcKAROJyQSzIzHmeV0MgEoCwSwNTUx1eejZoDOYQpY39rKe21tqJoakmVl+IGdQEM8zoaXs0Rfd+A7w0bZovwUQ/lWo1C+tLerL2o8m6Wmo4MJbW18du5cppaU4J81i+aKioINntTTu5iTMrazq+S9JhjkwpUrmdAPJe9i4Pyqs5P1+fmSXakUVwJz6usL8hq6NRwmlsuZo3yHw8xubqZ27tzD3m8KeIBdr8V5DQ04C9S/9gi2GXheKfUvINm1UGv9s0Pc33igFbhbKTUHeBO4VmsdPexIhRBCiALb3zyrGmjbfblSqkZrvXM/+14MXKiUOg9wAMVKqfu01v+12zHuAO4AWLBgwQGVFx+KDuBnSnW3FIxsb+fj7e04ClgC+VQgwK/yU+B0lXeWRSIs2rSJD9fVMW/uXKioKNjx+tuXbrqp34/R5Pdz1yuvsK20lMZQCHw+YrtN0bM9laLT6eS5ZBJ/NAolJVjjcWbEYoxxuagGikIhMq2tjCwvZ2R5OQ7ACURaWwns3ElVTQ0VVVXkMCctbGlro7GlBY/Ph1FRQRSzpaopFKIpHCZXWkrK4yEABJJJ/PE4uFwQDuNzuTAMg2QyyeanQmz+eDU6rdj8I82ipQrLdDN+pTWVnZ0sUIrTR49msmFgd7vZEQpRe8wx3QNk9Uc/5CxmUvBXzJZUMEverywp4cRAgLoCl7yLgfUW8GSPls+T1q2javTogvxNX2lr46FYrLsf9SeSSc4vUJ/mp4CmZJJEIsGYkhKurKxk3KxZ8lrct235W1H+drhswDzgC1rrZUqpXwJfB77Tc6OBvJAshBBC7M0BzbPah7sw+6Luldb6G8A3APItq1/ePVEdKBr4GZBxuyESwZ1Mct6qVYwrYMvSncEgv8632hKJUF5WxrytWzluwwaKlGLk8ccX7FhHkpE+H59ZvNgc4djnw+Nw8GI0yl+2b6e5pIR2rxeHw2z77tm/M6sUW9NpguRbMkMhsNvN6Yfy8+Umu5LM4mKIx/Elk7uWx2LgdkM0is/j2bU8P+8o7e347Pa9zm/btTz6moFOKcgpdEoz8nn42JQs619/neJIhCKgvr6e7q/iA9AivBP4YTTKykymuwy5GLgOWFBSAgVoIRODJwr8uEf578SdO5nc2krtwoWHve8M8OseSfD4lhbmWq0FSSbDmAM2+VtbQWvmrF/PuDlzJFHdD631jQBKKa95V0cOc5eNQKPWeln+/kOYyeruxx2QC8lCCCHEvhxSsqq1HlZzXNwVDPJCvp9qjc/HVVu2cGoBW5YeAP7Yo9XWk0jwmaYmTp0yhWavt1/KO48ku7csnltRwbxJk2hubqba6SRpGGwC3lKK5zo7CTqdJIuK+kxid08mC7HcbRhkk0nciQQliQSnlJYyGbBlMvzdtYLbraeTxUKRXfGlJbCovBz/kiW7phgaoL/9Dsy5Wp9MJNgRCHSXIS+pqOC7bjcyg+rwp4H/Fw7zXkcHaI0jnebqTIZ5BSr/vScYZLvFAkphz2Q4Zf16as844/ADx5zXty3fb9sbjzN92zaaq6rkvXE/lFIzgT+B+S+slGoDLtdarzmU/Wmtdyqltiulpmit1wOnA2sLFrAQQghRQPtNVpVSPmAk5vekZq21/2APorV+Hnj+YB9XCK+1tXFrNEoOcwTUq0tKuLRA86hq4LZQiAcAa/4L3qhAgPPefbc7Ge7PL2JRzNqwdzs62BwMoioqyBQX0xiNEojFsHg8KKeTUCJBJD/QU1cLYjKRoMwwKHM40LEYOhymzuVivNeLraMDi9/PgvJypgzS4Ea7n7vxwFnFxVxVXU1zczNltbUow6AVWJ/LsbShgbjdTtpmY3xFBVYgYLOxIRYjY7Fg1ZqxVVW4gWq7na2RCJZsFkcmw5zyckZgtiqt27SJolQKbyrFhYsXMxkocThoKSmhORqldswYfCX5yXYqKphxzTHMG/s+GzfWUl/vZdGivuPvT02YSerzmPNaxJLJ7pGXj9u4kcsDAcqlNfWIsBT4Ty7XfVFlydq11BSo/HdVayu3RSJk8u9lH0wk+PgZZxRk39uBR3rMBXvi+vUUKSV9VQ/MHcD/aq3/A92VSr8HTjiMfX4BuD8/EvBm4Kr9bC+EEEIMir0mq0qpY4DbMafBbMovHqWUCgKf01q/1e/RFcDvMxlymInliI4Ojg8EClYGeWcwyO/yUzugFIudTq5QirH90B9QA++0tvJSZycNXi8brVYS+dF2/eEwWCwQDFKuFO35VhficcrLyrrvh5TqdT+oFKEe91cmk5QD7eFw9+BGY0IhamIx5judnNTVoljQZ3Zwdk8CxwALyso4Y+rUXS2ZXaMQu934y8t3LXflZ2dwufBXVprLR47E580PVl1Sgn/mzF3b9xileW/Jp8/n48orB6dlaDtmkvoCu/qlgjl4jbejg4UbNjAyHGbUzJmDEp8orO3AL3okfNMbGwtW/quBn+VyZCyW7tGiz06nC/I+1jUX7I78XLCjOjo4r7ycKccfL62qB8bdlaiCefFXKeU+nB1qrVcCCw43MCGEEKK/7SvvuAf4TI9+LQAopY4H7gaG/JwXq4DGsjLw/3/27ju+repu/PjnSLI1LO9xY8fZO4FsQgaEkEASSAqF8hRaaJmlUEqhfTqg/UGBwvPQllLGU6C0zEJLKZRCmaHMhpVmJySQ6SRe8pQsydo6vz8kO3KGE2J5Jd/366VXrHuv7v1K0bjfe875HhemeJyFn37KoAUL0rLvjcBTKV1/h9bXc4nZzIw0z1m5ta6Ol3w+VuflsTEQQFssEAgAoPx+nFlZHbqu+pOFUdJxH63Z5XazC/gkEuF5u51MrSl1uznJZmNhXh6laX22R66zZDIdy/uKOIn+en/1enk/HseaMjUOwGTgAquVotJSqpNVVvvy8xGHJwzc0trKnmSV6QK/nyvicY5PU/ffl4DqvLz278oFmzczaO7cLu8XEhdTVibnggU4afNmsseOlffl4duhlLqJRFdggIuAnb0YjxBCCNFjOktWs/ZNVAG01h939apuT9DAUyQqoBqGwZS6Oi5asCBthULuAqw2GyjFwKYmlqxbx5Al6RvKu72ujkeam3kjM5Oo2Qxeb4fWMwBTPM6AUAjlcpHd2oozEuHEUaPYsWoVmeEw1nick6dPZ9UHH2CKxTCZTMyePZsPP/yQiNbEMjOZNHMmH6xZQ6vZTKvDQenEiaysrqbR4aAhO5uI2QwkE1mfD5ffzx6tWREO87TdzgirlbEeD+XV1cwuKKBUTkDTLgysAz4CVgB1oRCuttbz5NQ4s6xWLgDGtT2ojyfd4ov5I7A1OTepOR5n4bp1FKYp4asC/hAMEgyFKMjP57TGRi6fOzdt35V/ZO9UNZMqKihpbZXuv1/MZcCtwN8BBbyPdNsVQghxjOgsWX0tOa/bkyR6oAEMAr5JYgaCPm01sDY5RYLTauW/Bw0iHaMvNXCHz8eOWAybzcaI4mK+63YzIU1TO0BiCpxbWlpotXWcAdYSjzOooYHypiYGNjVRHAhw1pIlMGRIh2I+Lru9w/1BeXkd7hekdo01DEbl5nZ8fEYG1dXVWEMhXlu7lursbKoLC/EOG4ZvnwJE24EPPR5wOLD5fJzpcLAgO5upgCMtr8axyU9i8sOPgJVAMGVdaiGoofX1XOrzcc748b0RpugB/2xq4hmzuX1c/MmffZa2hC8K3Ob3sydZkKvY5+OSoqK0fZfd19LCbq2x2WyMKy7m6qYmhqepNfhYobVuBr7X23EIIYQQveGgyarW+ntKqTOAs0kUWFIkSt7/Tmv9ag/Fd8Qe9ftxJU/ABldWokeOhDScIL3Z2MhrySlqqldbOXl1NvYzJ6Zj12gSVwYeBlozMtqXF7e0MKmykouGDUNZLNgGDyZYUtKhi2fqyd++XVm7cr8wJbEF+PPy5VQUFLCrpISoYdCSkjgFLRbeisdZSeKNNcznY7DLxdycHKYUF6O6/hIdtcLAdmCF282HgQB78vMx73Oxos2AzEwGV1Uxds8eSn0+Zi9d2qOxip6ztr6eX3i9hMxmUIrTbDYuHDCAgVOnpiXhewrYHI2C1onuvxs2UDdmDAPTsO+3Gxt5Nvld6VGK72dlMSvNwySOZkqpe7TW1yul/gn7daxBa31WL4QlhBBC9KhD1cpZCdQD27TW7u4PJz1cwIaUE7Bp27dT7XB0+eROA08mx175VmWy6+vF7IyY+Otv4K23aK8Ee6T7vrulhb9HIvh8iWn0skIh5n72GUvy8xmTppPTL2rfRPbrp53Wnrzm2Wy87ffzVFUVO4uK8Nts7dPJ+EMh3mpqAouFxwIBxgQCzLTbmUxisHNhjz+TvkOT6Hr5ObAledtJooqvq61gV10dhmG0j0ctBWYlb2PsdupGjKDabpcxqUcxP3C7UoTMZjSQEwjwleZmpqapQNw64C+hUHvBpllbt1Li96elxbYVuBfaL2SNrK1lQEYGFB7Ln/wvrG2M6l29GoUQQgjRizqrBnwF8D8kGnyGKaWu1Fq/1GORdcEH7B0jNaipiZxIJC0nYCuAKrsdAgECH1mJRxQ6rgiH4d13u5asPu5282RLCzpZhGRofT2nbdjAlJEjOfnkk7sce7occE7UESOoqq4mVFDADquVFcCafeYsrQ2Hecdup62kZUFrKwMbG5nidHJCfj6DAHMvPJ/upElc6dlNoh99279bgkHcKVMJtdl3ntcij4ezS0qYCQyGDi3Tfb0QlOiaOPBzn48apUApLLEYS9atY8Qpp6Rl/83AHYEAtfX1id4njY1cYLczJk1ddH/b0kIDgFLYw2FO/fxzyhYu7PJ+jyVa61XJPydrre9NXaeUuo5E7SohhBDiqGbqZN31wASt9SwS87nd2CMRpcFy9hZWOjMnh6VpOgF71O+nqbkZDUwetgtrJpjNkJkJ8+Yd+X63AI9Go+2J6sjaWs5Ys4aseJzRo0d3Oe7uZhgGU6dMYVZREReSaFF5KBTi1M8+Y6TLhTU5vrdNKBRibUMDr8Tj3O71cmUoxFeB/wYeBJYBKxoa+M+aNbhcX3ha3x4VBWqAtSQGcj8B/BL4tt/P6c3NXBQKcSvwKPAvYH0oxK66OjxuNy6Xi1Ao1L6vYRkZjK2pYd7mzVyyfDm/1ZrzSUzPI12ojy33ejy82dTU3svi8pYWLjvllLR8j8WAXwG14TBojS0cZsHGjWQ7nWnZ/+uNjTzrdrfH/k2/n68uXCgXV47cxQdYdklPByH2Gjp0KA0NDT1+3Jv/+U/+tXZtp9vc8uc/c9cLL+y33O3z8cCrfX4El+hh8376U1Zu3QrAmbfeijv5vX0426dau2MHr65cecDHvLthA0tvu+2QsXzta19j4sSJ/Pa3v+Wee+6htbX1MJ7B0cPZNu1iJ+677z7GjRvHhRdeyD/+8Q82bdrUA5H1vs66AYe11vUAWusdSilrJ9v2GXXAxmRhpSyrlQtHjSI7DfutYu/YLnM8ziLHOr76oIOamjHMm3fkraoa+GVrKy3JD+UAt5uFGzYwYexYRo8e3W9P8MaXlHDj5MlUV1czICsLn9XKOhJJ3YeBQIcWxGAwiNVqbe8SGwqFcLW2ovLzyXa7meJ0MjQrixJovxUnb5ndFH+URDfMHfX1bGloIMMw0AUFNAFNQCNQGQhQFQ7vN31MKBRqHy+N19uhO29b66ktHGaAx8OsWIzFw4YxCshyOHANG5boZj1lSr/9vxdd8zbwArR/RqZv387svLz0FT3yePgAMJtMKGDR+vVkp6n3SRNwX8qUXqNqa5mdkSHv5SOglPoa8HUSPZtSezVlk/gKEv1QNBrFYvnis5XHYjFu+9KXoLz8iI7r9vt54NVX+c6ZZx7R48XR79Wf//yIH7t2505Wbt3KmdOPbPrm2tpaPvzwQ3bt2gUkLghddNFFOBxSqjPVAw88wGuvvcawYcO45JJLWLp0KeOPgQKbnX1jliul7jvYfa11n6xOuKy5GZfXC1qT19hI68CBZKfhRCm1a/GQhgacsRhnLM3rcmGl5cBngQBaazJiMRauX8+EMWP6VNffI7VvV9VRwHnAnlCIR1avpjonh4bcXKwlJaRey2tL6OJK0WKzsTYaPeCkgqFQCNXaSr7NRr7djh3ab7bkv2GPh2aPh5y8PLJycoiTaFmKJ29ur5c6nw9zTg46Kws/iSQ1lNy/KxAAhwN8PoysrPakMxQK4Up2oWybPmbfhFQD9nCY8uZmThgwgEFAVjTKxvffxxoMYjaZEq3+nbxm4tjyQUMDt1ssmJMFlYbX1TF7xw7K0lRE6+WmJh73+drftxebzZw6fHhaxj7Hgd8A0aws8PlwBoOc+tlnlC1alJbYj0Efkui4UUTipW3jJTGNuOhm/lCIry5ZQmVlJbFYjJtuuonzzz8fgPvvv59//vOfRCIR/va3vzF27FhWrFjB9ddfTyAQwG6389hjjzFmzBgef/xxXnnlFYLBIH6/n5tvvpmbb76ZwsJCPv/8c+bOncsDDzyAydSxs9vQoUO57LLLWLZsGd/97nd5/cknWXrKKZw3Zw6vrlzJDx55hKKcHKaOGMGO2lpevvlmADbt3s28n/6U3fX1XH/WWXzvS1/ihiefZHttLZOvu47TJ0/m15fK7EfHEn8oxFdvu43KhgZi8Tg3nX8+5+9znjn0iitYeffdFOXk8ItnnuHp995jUFERRTk5TBs5kh+ecw4Af/vgA77z0EO4/X4eufZaThw9mpuffppAOMzyzZu58bzz9tt3exx+P9deey0bNmwgGo1yyy23cPbZZ7Nw4ULq6uqYPHky55xzDtXV1Zx66qkUFRXxzjvvHHBfR7Nf//rXPPvss4RCIc455xxuvfVWrrrqKnbs2MFZZ53FBRdcwEsvvcR7773H7bffzvPPP8+IESN6O+xu01my+qN97q864FZ9zPpk9UkNlDc0UJ1MJI7EPTffjHv3bgA+iEZpicexK4UjEGBLRgYP/vvfB3xc3uDBXH8YXR408HhrKz6/H4BJu3aRFwr1i66/XTHIMLh69uy90+XY7XiAHcA2YJ3JxHvBIC3JeWxtB6iKGwqFEl2EtaZ2n9bLDtt4PIkTc7cbw2rdvwW0bb7SxkYMi6XTMaRtLcCp6wCygkEGut1MNAwMIDMeZ9OqVeS2tOCMxTompIWFjF+4sMNUQUIAbKyv50duN/7MTFCKCU4n16ZxqpcqOrZ6DqurY57ZzJQ0FWz6g9vNv5Of1wGGwWU7djBv0SJ5jx8hrfUuYJdS6kKgWmsdBFBK2YFyoKIXwzsmvL5pE2VlZbzyyisAeDye9nVFRUWsXr2aBx54gLvuuos//vGPjB07lvfffx+LxcK//vUvfvrTn/L8888D8NFHH7F+/XoKCgp49913WbFiBZs2bWLIkCEsXryYv//975x33nn7xWCz2Vi+fHkinnsTQ5eD4TDffuAB3v+f/2HYgAF87de/7vCYz6qqeOeOO/AGAoy5+mquPuMM7vzmN9m4axdr7713v2OIo9/rmzZRVlDAK8kLGp7keeeBrNy6lec/+og199xDNBZj6ve/z7SRI9vXR2MxVvzmN7y6ciW3PvMM//rFL7jtwgtZuXUr/3fVVZ3GcccddzB//nweffRR3G43M2bM4LTTTuOll15i6dKlrE12c3/sscd45513KCoq6vqT72eWLVvG1q1bWbFiBVprzjrrLN5//30eeughXn/99fbXZevWrSxduvSA3xtHm86mrnli32VKqXzArdsGV/ZBLfn50NiI0jpR2XLSpCPel3v3bm4ZOpRGvx+jrbow8FWLhfxO+pbfUlFxWPvfQ8dW1ckVFYwZM+aYOLnbtwUxF5iSvP1XdjauvDx21dSQOXAg2mqljkSxorZ/N/t8qHicuFL7JZJtOks2D7XeBBRlZqICAeyhEM5QiNn5+QwjUck4Homw6sMPcfj9ZCrVMSHNz8c1Z85BE1JpPRX78gA/Vwp/ZmZ7i/wlVVVpm+olCNwBiV4CXi+5ra0s/PRTBi5enJb9v9fQwIN+PxrwKMW3c3M5f9y4tOxb8CyJuhFtYsDfgBN6J5xjx/FlZfzwiSf4yU9+wtKlSzv0eDr33HMBmDZtGn//+9+BRDJ78cUXs3XrVpRSRCKR9u1PP/10CgoK2u/PmDGD4cOHA4mxesuXLz/gSWdbS26qzyorGW4YDBswIPH4uXN5+I032tcvmT4da0YG1owMSnJzcbndXXgVxNHg+LIyfvjii/zk8cdZesIJnDxhwkG3Xb5pE2efeCL25PnQl2bM6LD+3OS4t2kjRlDxBeuKLFu2jJdeeom77koUOQ8Gg+zevRu73f6F9nM0W7ZsGcuWLWu/kOzz+di6dStz587t5ch6T2fVgG8GntVaf5Ycr/oaMBmIKqW+rrX+Vw/FeNjiQKXZjDMrC4AL58zBKCnp8n5rAgFIjjFxhEIEAwE4jIHQh/Kqx9Peqjqkvh5HLHbUt6oerkMldK5olJfefpugyUQsI4OTFy7ECQRInJgHgOp4nA+3bkXH45iVYsb06RSRSETNgCcW4+ONG8mIRLDFYpwxdy7DACdgBZTdjis/P5F0DhmCkZOzN4CiIsbNny8JqeiyIPATv5/a1Mq/69czac6ctOxfA3d4vWyMx7HZbAwqKeHb27czY/HitLxHvcBvlEInjzWwqYkZjY2QphZbgUVrHW67o7UOK6W6a7i+SDHaMFi1ahWvvvoqN954IwsXLuTmZMtU24VNs9lMNBoF4KabbuLUU0/lhRdeoKKignkplRezkuclbZRSnd4/2OMADtVeYE2Zp91sMhGNxTrdXhz9RhsGq377W15duZIbn3yShVOmcPMFFxxw20O1RrW9v8xmM9F4/AvFobXm+eefZ8yYMR2WVxxmI8+xQGvNjTfeyLe//e3eDqXP6Kwb8PnAL5J/X0yiIGkxMJpE0dM+l6yur69nT7J4T1Y4TE5qctEFEacTQiHQGkcoRHbK1dGuWJGMFWCEy3XMtKqmg2EYnLVkyd5ksbh4/43y8znt+OP3bpOf33F9QQEnTZ/e6T46SzolIRVdFQX+n8/HR01NoDUKuMLj4Stz5qTtvfWgx8NLye7wHqW4KTubL3VyVf2L0MDtPl+i2k9ymppFGzcy6PTT07J/AUC9UuqstqnjlFJnAz1fivYYVO12U+BwcNFFF+F0Onn88cc73d7j8TBw4ECAQ267YsUKdu7cyZAhQ/jrX//KlVdeedhxjS0vZ4fLRYXLxVDD4K/JbsKdybbb8QYCh30McXSpdrspKCnholNPxWm38/hbbx1025PGj+fbv/sdN553HtFYjFdWruRbh5h67HDfX4sWLeL+++/n/vvvRynFmjVrDjgUJTs7G6/Xe0x2A160aBE33XQTF154IU6nk6qqKjIyMijZp/Gt7TU6FhyqGnDbBZZFwDNa6xiwWSl1yFJ2Sikb8D6JRioL8JzW+shLjR2GTY2NYLejgTyfj2qfLy0nfJ6UK56OcJg3d+7khvfeIxaPc8XUqdxw0klfeJ8aqLXbE0kwMLClhdEnntjlWI8lh5MsHmobSThFb9HA/cCKWKy9O/opmzYxa8CAtL0n3waegfb9H797NyOysmDfCzdH6Em3m9dbWtoLNl3u9XL26afLZyq9rgKeVkr9H4mLxnuAb/ZuSMeGDdXV/GjGDEwmExkZGTz44IOdbv/jH/+Yiy++mLvvvpv58+d3uu2sWbO44YYb2LBhA3PnzuWcZPGaw2G3WnngqqtYfMstFOXkMOMwemQV5uQwZ9w4jvvudzlj2jQpsHSM2VBdzY9+//vEe9ls5sGrrz7otieMGsVZM2Yw6brrGFJczPSRI8k9RFXeU48/njufe47J113XaYGlm266ieuvv56JEyeitWbo0KG8/PLL+2135ZVXcsYZZ1BaWnrMFVhauHAhmzdvZlayu7XT6eSpp57aL1m94IIL+Na3vsV9993Hc889d1QXWFIH606ilPoYuAJwAZ8D07TWO5PrPtNaj+10x4k+LVlaa59SKoNE4dvrtNYfH+wx06dP1ysPMk/T4Xi5qYmfJStdjqiv58FBg7p00nTLJZdwy9ChvOTzUZXs5jOyqopvvfEGb196KeU5OZzwhz/wl698hfEprXK3VFRwyyGuqm6qq+NrwSBaa6zRKE+Ew4yXMV5CHDPu83h4jkQ3vabmZk7Yto1ZO3embV7ojcCPg0E8fj8+v5/B9fWctW4dZy1Zkpb9rwOuc7tp9ngSc0/v2sX3s7PTVrApHZRSq7TWRzaXQh+jlHKS+M3u8UvpXf1t7uDBB494+pUeV1kJnZzUH6l3332Xu+6664An6Z1Kee18gQBOux2tNdc89BCjysr4/tlnpz1W0Y266f11QF/wc9f2/moNhZh74408fM01TO1qMtTdz7c/fbfsqyffC33AF/1t7qyF9DrgORJdf3+bkqieCaw51I6TrbJtM5JkJG/dWpjJXlCAkZVFMBhkckEBRnY6ZlgFU2YmJFs/tjY1MbKggOHJlokLJkzgxc8+65CsHo5t9fXt415zAgFCKYUYhBBHtz+43TyS0iK5NDOTr+TnM3DChLRV/r0pGKSqrg60ptDn43vBIBPTlKjWAHcCmXY7tLQwwO1mzrZtlC1Z0uV9i/0ppZYAEwBb29hGrfWhS86Lo9Yfli3jibffJhyNMmX4cL6dpmJpQgBc+bvfsWnPHoLhMBfPn9/1RFWILuisGvAnwH6tp1rrV4FXD2fnSikziSlvRgK/S+6z26T2lremsWCxyszErjWRSIRwZiZDU8aslufk8ElV1RfeZ45hQGsrJCsBl5WVpS1eIUTf9XfgT/tMIXOO2czUNLVIeoBbgMaUcfZLV6+m6Ljj0pKotgI3trZSFYlgs9kYU1zMd9xuxqUpERYdKaUeAhzAqcAfSUxXvaJXgxJdMm/evA7Fl47E988+W1pSRbf58w9/2NshCNHOdOhNjpzWOqa1nkxiTrgZSqnj9t1GKXWlUmqlUmplfX19l45X63bjcrnwuN18tnZtYh7ONAhGIgSCQaLRKM1NTR3K0UNiENEXFUkZB2v5gtXUhBD90xNuN/d4PJhNJlCK8qYmztywgUFpulgVBn7q9/N58hgZ8ThL16whNxxOywUxDdzq87GmoQGP201DTQ3f9/uZN3GiJKrdZ7bW+ptAs9b6VmAWMKiXYxJCCCF6xCELJaWD1tqtlHoXWExiKFXquoeBhyExLqYrx/E1NoLFggYiJhPV1dVpOYGKh8PtVXsLHQ7+VV3dvq6ypYWyI+hu7HO50MmS9P6MjLTFKoTom/7U3MzdXm97198ZDgdXNDUx9Mwz0/LZjwI3+3wsT6ksfAMwZvToA06vdCSeAj5KKQh16saN2AYOhGOwYmMPaus01KqUKgMagWG9GI8QQgjRY7qtZVUpVayUykv+bQdOAz7rruMBDM3PB6VQQNBqTVvXWmfKnGWjCgvZ5fWys7mZcCzGM59+yln7zBd1ODKDwfa/G7OzCYfDnWwthOjPXgf+YDK1J3mlzc1cXlnJiZMnpyWJ1MC9wIcpieSczz9njNvNlClT0nKMF5ua+ENKq/CUigrGu1wyhKH7vZz8Lf01sBqoAP7SmwEJIYQQPaXTllWlVC6J1tCBJM6HqoE3tNbuw9h3KfBEctyqCXhWa/0FS999MUMLCshWikBrK840tSQANKSMfw3Y7fzPSSex6KmniGnNZZMnM2GfctKHI+RyQWFh+31XY2NaYhVC9C1/bW7mdyZTe5I3wO3m7DVrGHbGGWnZvwZ+1dLCK1q3H2Pajh1M3bOHskmT0nKMDxsauM3rJZrc/0l2O5fl5FCepsrF4uC01m3znT+vlHoZsGmtPb0ZkxBCCNFTDpqsKqW+CfwcWEaiuCQkCjz8j1LqVq31k53tWGu9HujROQzqtm2jJdkKuhrYvHkz49IwHUwwZYxqi8PBCbEYW669tkv7HDd0aIf7sdLSLu1PCNH3/Km5mbtSuv5OycriyuZmRpxxRtqSvPs9Hv7s8bQf4+zMTL6cm8vANCWSVcDtJhNRkwkN5Pv9XNjczLQ+NEXNsUJrHQJCvR2HEEII0VM6a1n9GYm5Vd2pC5VS+cAnQKfJam+o37kTUibH3r5jR1qS1ePj8fa5eiyxGPnJaWu6Yty4cczas4ePksWVPqypYXYaW4OFEL1HA3+lY9ff4pYWvtXczOw0tXZCYm6x56D9GGOqq/my1Zq2ysJNwM1ANCsLfD7s4TBfWruWEfPnp2X/QgghhBCd6WzMquLA86LGObICuN1uyj6TAeePGpWW/Y7MycFut2M2m4llZ2O329Oy38GxWPsLWZOTQ3VK4SYhRP+kgXs8Hh5IGd9Z6nbzlVWrGDlgQNqO83RzM/elHGN4fT2nb9rEwDSNIfUDP25tZasn0eN0UEkJN4TDfGP+fLmo1gOUUnOS/1p7OxYhhBCit3TWsnoHsFoptQzYk1w2GDgd+MVBH9WLxo8bx4kNDayNRDCbzXidzrTsNw8SiWo8TovWfLZ1K2NHjcLZxf3PzM7mWb8ftKY6Px+bqVtnEhJCdLM4cGdLC39N6ZY72+Hg4qYmhi1enLYk75nmZn7d0pK4mqgUMx0OLrdYGJKmuU4jwM98Pv6TrCzsBf7X6WTx+PFd3rc4bPcB04CPgKm9HIsQQgjRKw6arGqtn1BKvQQsIlFgSQHvAjdqrZt7JrwvbkxmJitaWyEc5h/btzNlwoQun7xZAFsohC/Z1c5rteL1erucrM4pLKQwM5PGpiYanE7efu89CgoKpNVCiH6oyuXiV9EoK2229m65I1wuLrVYmJHG8Z2vAg8kx49qYIDbzSVNTcyYPDkt+9fA3cDqlMrC8zZuxCgr61AUTnS7iFLqMWCgUuq+fVdqrb/XCzEJIYQQParTasDJpPSZHoolLbLq6iAjAw3UJrvWpiP5K7VYaIhGE60MdjvZRzC36r5sQHlrK211gHcUFMh8q0L0Q7tcLr5XVUVFYSH4/aAUY6urOX3TJoYsWZK24zzpdvNHpdq7/pZ4PJy9di3DFy1Ky/418Jt9KgvP2rKF42prKZs+PS3HEIdtKYkp3+YDq3o5FiGEEKJXdJqsHoxS6mGt9ZXpDiYdZuXm8lAggNKamvx8SrvQ+pk3eDC3VFQAsDsUYk2yKrAjHOaDYPCgY1fzBg8+7GOcbLWyLhQCrdluGNhstiOOVwjR85qBG5WiorAQDSitOT0c5utWKwPT1C0X4DG3m3taWtq7F0/NyuJbzc2MWLQobcd40OPhTyldmM/JyOCswkIGHn+8XETrYVrrBuAZpdRmrfW63o5HCCGE6A1HlKwCv09rFGk0qbiY0YEA1a2tAOyJxznSkibX33Zb+9/vrl/PqtxcNNCqNWd7PGmp6nlmXh5/Nptpampid1ER70pXYCH6jdX19dxmMuGx2yEYRGnNCRUV/HDsWAakqcAbwN+Ax5Rq75Zb2tzMt5qamJ2mrr+QqF78DLQfY1RtLV/KyEhbZWFxxBqVUi8Ac0g0fi8HrtNaV3Zlp8k50FcCVVrrpV0PUwghhEi/I6roo7Xus12SFDAmGsXn9+Pz+XhyzRpcLleX9zvOMCjxelFA3GSiZtCgLu8TEoOBjWAQgKjJxJaSEqkKLEQ/8G5DA1d5vez0+WhqbqYwP59vRSLcMXYsA9J4sen3bjf3p1T9HdjczDlr1jAijXMz/9Ht5ncpxxjS0MDCjRspT1NlYdEljwEvAWUkfjL+mVzWVdcBm9OwHyGEEKLbHLRlVSllAS4HziHxI6mBauBF4BGtdaRHIjwCJXV1YLGggYrCwrSMAzUMg69arfwpOV7sba+Xk1yutLSALs7IYHOy1eTT8nJsGRld3qcQovu8B9xmsRAym9FARjTK5VVVXDh2bNqOoYF7PR4eS+n6O9Ph4NKmJoadcUbael887nZzf8oxZjscXGo2p62ysOiyEq11anL6uFLq+q7sUClVDiwhUfX/B13ZlxBCCNGdOmtZ/RMwGbgFOJPED9utwCTgqe4OrCvmZ2eDUiigqrCQ3DS1DpyZl4fNZqOpuZmPQiGef/31tLTanpuXR3F+Pgqozc3lxfXr07JfIUR6aeAPbjc3eTxosxmUIisc5ryVKzktPz9tx4kC9wJ/h/ZuuYMaGri8spKZkyenLYn8J/BoSvfigY2NXFJZyYw0HkN0Wb1S6iKllDl5uwja6/IdqXuAH5OYbUkIIYToszpLVqdqra/WWn+sta5M3j7WWl8N9OlBTMeVlDCzsBCn04k9O5s1aWqpHAgUJYuPRE0mPjOMtHTZzQGOa2lpv7968GDpCixEHxMGfuH18n8tLXjcbpqamxmfnc3twSCXnXJK2pK7IHDxW63c+/Mgvv9YQCmG19fzpXXrGJLGrr+vAg9DoqhbsnvxWevWMTSNxxBpcRnwVaAWqAHOSy47IkqppUDdoYbzKKWuVEqtVEqtrK+vP9LDCSGEEF3SWYGlZqXUfwHPa63jAEopE/BfJApg9mnTIhE+9vtBa56qr+ekSCQtJ5NnZmTwaTDY3mXXajanIVr4L6uVd5LzGm4pLSUQDqdlv0KIrmsk0V9yZTze3gpZ3tjItc3NaSm01sYLfPPtAC8utaHDil2Zmm/8LYtrB5oZdOaZaUuIXwfuCYUIBoPYbDZOKizkoqYmhqexe7FID631buCsNO5yDnCWUupMEjOo5SilntJaX7TPcR8mcT2D6dOn6zQeXwghhDhsnbWsXkDiCq5LKbVFKbWFxJXdc5Pr+rQhlZXtJ5UVRUVsqa1Ny37Pyc/HyMtDAfXZ2bzw6adp6bI7p6iIGQ5HooCTUvy+rk66AgvRB3wGXBUIsDKlANH4qirOXrOGEQOOtNb4/upJ9Mtc+55ChxXEFYQh+40Q06dMSVsS+QJwdyiEy+XC43bDli380OdjlnT9PSZorW/UWpdrrYeS+C1/e99EVQghhOgrOktWB2itz9daFwOzgNla65Lksp09FN8Rm1xcjNHS0l69d/uQIWnZbxYwMbXL7qBBaeuye0rj3mFI68vLWV9Xl5b9CiGOzJvAD4JBttTX43G7cTc1cZVS/Nhu58tpLEC0qr6eyxsb2R4KUTzfhMrUKFMciznOGYvTM/eyBp4GHgWCyd4hxR4PZ61ciVuGHQghhBCiD+qsG/ADwFQArXVXizn0OMMwuDwzk9+ZTJhNJl4JBlnscqVlSomv2my82dqK0prtAwZgcTjSEDGclpfHUy4XNbm5xE0mnnc6mZimisNCiMNX5XLxYCjECsMgGAqB1lgjEc5Yt46Zw4czJY1zj77T2MhPvF5CZjP4/Qw8sYQ7/+Fjz8s+Fi+2sWRJQZePoYG7W1p4UWtsNhs2m40st5slq1djj8cpkylqjkla63eBd3s5DCGEEOKgjmie1cOhlBqklHpHKbVZKfWpUuq67jrWwZydn0+u1UpTczNbWlt5ePnytHStnVFUxIKCApxOJ1lOJ69ZrWmIFgYYBjeVleF0OgH4yGTivk8+ke7AQvSgz+rquLKmhn9qjcvlwmwyUeTzcf7HHzPY7U5rYvcGcJvZ3D4FjiUa5eKKCn68KIf77y9LS6IaB+5oaeFJtxuP243L5WJiJMLvBwxgzuTJLF26VC6I9WFKqf+X8nd6fmzEMa/C5eLP773Xfv/dDRtYetttX+jxx333u4fc7kePPcaEa67hR489xuNvvUV1Y79r+xBp1HZ+25n77ruPcePGceGFF/KPf/yDTZs29UBkoi/rLFkdrpR66WC3w9h3FPhvrfU4YCZwjVJqfFqiPkw2YEJ9ffvY1TVprLK7JBTC5/fj8/l4pqmJT9PUZXdOUREzkl30NPCvceNYtWNHWvYthOjcWuAHFguV+floAK05zuvl0aIi5k+YkLbELg781uPhDo8HklPgOEMhzlu5knlpngLnV8Ayrdu/U0bW1nL+1q0MNgympHEsrEgvpdSPlVKzSNSOaPNRb8Ujji4VdXUdktXu8vvXX2f1Pffw60svTSSrTU3dfkzRvz3wwAO8+uqrPP3005KsCqDzbsD1wG+OdMda6xoSZfbRWnuVUptJzP7So++682w2XgsEUFqzs6QElaYuu/m7d1NiseDKySGmFI9EItydlj3DdzMy+MTvx2e1EsjM5P/sdia6XJTLSaUQ3SIGPOTx8CxgyshIzNOsNTO3b+dnEyYwwDAYkqbPXwD4uc/HG8lpsFCKiU4nl7rdTEjjFDgh4Gc+Hytisb2FoSorWbB5M4OXLk3LMUS3+pxE9f3hSql/A5uBQqXUGK31570bmugtv3jmGZ5+7z0GFRVRlJPDtJEj+eE557C9poZrHnqI+pYWHFYrf/judxlbXs4l99xDjsPBym3bqG1u5leXXMJ5c+ZwwxNPsLmyksnXXcfF8+czZfjw9mP4g0Gu/f3v2bBrF9FYjFu+9jXOnjnzoDHFYjFuePJJ3t2wgVAkwjVLlvDtxYs56/bb8YdCnPjDH3Ljeeexcts2Lrz7buyZmXz0q19hT1OvNNE//frXv+bZZ58lFApxzjnncOutt3LVVVexY8cOzjrrLC644AJeeukl3nvvPW6//Xaef/55RowY0dthi17QWbLq01qn5bKbUmooiblZP0nH/r6I6cXFLPL5+Dh5wvYXt5vSNIwDHVhWxsnLl/P89OmgFJ/YbHzY0MDsoqIuxzyipIQr9+zh7uQXeWV+Pjc3NfE/kJYxt0KIvZqAW/x+3ktJHofk5nJhdTXzJkxIa8tjPXAbsC45TZUGhrtcXNPUxMzJk9N2HA9wg9/Ph01N7c/pvIwMltjtDJRuv/1FM/BTYF7yNg5YBNyQTFhn915oojes3LWL5z/6iDX33EM0FmPq97/PtJEjAbjyd7/joe98h1FlZXzy+ed858EHefuOOwCoaWpi+Z138lllJWfdfjvnzZnDnRdfzF0vvMDLN98MJLoBt7nj2WeZP3Eij153HW6fjxk//CGnTZ5Mlu3Axd4eefNNch0O/nP33YQiEeb85CcsnDyZl/7f/8P51a+y9t57AXjwtde469JLmT5qVHe+TKIfWLZsGVu3bmXFihVorTnrrLN4//33eeihh3j99dd55513KCoqYuvWrSxdupTzzjvv0DsVR63OktW0VPxVSjmB54HrtdYtB1h/JXAlwODBg9NxyP180+lkbXKqhmXxOGVvvskFp5/epRM2wzD49kknURkI8IlS+Hw+bmlp4fFYjLI0nAieUV7OJxs38kHyh2ilw8EPduzgLkjL/oUQsIZE95Hd0Wh78jiosZH/drs5ZeLEtB7rg4YG/sdkIpKVhc1mw6MU03bsYM727QxLY0tnNXAL8FnKc5qxbRtL8vOZmsbCUKLbLQZ+DowA7gbWAX6t9aW9GpXoNcu3b+fsE09sb5H80owZAPgCAT787DP+65e/bN82FIm0//3lmTMxmUyMHzwYl8dzyOMsW7uWl1as4K5//AOAYDjM7vp6xg0adNDt11dU8NyHHwLg8fvZWlPDsDRO7SWOLsuWLWPZsmXtxQp9Ph9bt25l7ty5vRyZ6Is6S1b/Vyk1QGtdC6CU+ibwFWAXcIvW+pADD5RSGSQS1ae11n8/0DY9MfH4BGCA241La2JK8dHw4cytru5y64JhGJy3YQP/yc4mphSunByeCAS4MQ0xG4bBz4Ff1NXx75wcADaWlfETt5v/AQb1s4Q1CGypr2dHfT05hoGjsJAAiS6Rrcl/A0B9SwstHg95ubnk5+RgJjGw2py8eT0eWhsbGZqfz5D8fPKAXCCHxBhlIQ5HFHjA4+F5wJqsjttCIqmbUVHB2DR3k/1rczO/9PmIKQU+HwNLSrgpO5sRubmUpbGl89/JhDiWTIhbgJM/+4wplZUMnDAhLccQPUNr/VMApdQ64CkSvZOKlVLLgWat9Zd6Mz7R87Q+8ClSXGvysrLaWzD3Zc3IOOQ+9j3O8zfcwJjy8sOO6/4rr2TR1KmHtb0QWmtuvPFGvv3tb/d2KKIf6CxZ/T1wGoBSai5wJ3AtMJlEctlpm7xSSgGPAJu11ukaznlEFHCxxcIPkuPQPhs4kEhWVlr2PamkhJkbN/LhyJGgFG8WFDBm0ybmFBZ2+QR0gGHw/4DrKyrYnLxCuc5m45KGBq7etYuThwzp1e58VS4XW1wu7GVlmIuKcJPot1bR0sIen494bi6RrCyaAU8ohCsQgKws8PsxnE6s+4xXCYVCuNzuRLdFtxvDau2wTSgUSlwVNpvB68VwODqst5JIXDP8fsweD8dlZTElN5fhQDGJ94EQFcDtra38J6Xb7+jiYn7qdJJbUEDZccel7XMVBh4CnjOZiCmFBuzhMJfu3Ml548ZBGospvdzUxM+9XqImE/h8DCop4X+dTgaUlFA2ebJ0/e2/3tBa/wf4j1Lqaq31SUqpro83Ef3OSSNG8O3nnuPG884jGovxysqVfGvhQnIcDoYZBn9bvpz/OukktNasr6hg0rBhB91Xtt2ONxA44LpFU6Zw/8svc/+3v41SijXbtzOlk7GCi6ZM4cHXXmP+xIlkWCxsqapiYGHhft2GOzumOLYsWrSIm266iQsvvBCn00lVVRUZGRmUlJR02C47Oxuv19tLUYq+orNk1ZzSeno+8LDW+nngeaXU2sPY9xzgG8CGlO1/qrV+9UiD7YoFhYUsslrbx67+3u9ncBrmXTUMg5uBn2nNzqwsGpub+a3JRPUbb/BfixZ1+QSx1DC4F7iztpa38/IAqHc6ucPh4PgtW/ivnTuZMWxY2k5EY0ALiTFvbmBHUxMVbjemwkLiubk0J5fXBAJsCwbRubnQ2ooRCmG1WjsmnI2NGBYLVquVYEqFY6U1wWBwv2T1UNscan0I2BMK4WpsBK1Z7vFg2GxYrVaygOHJ2zAS/erK6fwDII4uceBRt5s/A6GUMaODGxq4trmZuZMmQWFh2o5XB9zk97M5Gm0vcFTk9bJk3TrmLliQtuMAvAjcbTYTNZnQgCMU4vIdOzhj/Pi0PifR87TWP065e0lyWUPvRCN60wlDh3LWjBlMuu46hhQXM33kSHKTRSOf/sEPuPrBB7n92WeJxGJccPLJnSarE4cOxWI2M+l73+OSBQs6FFi66fzzuf6Pf2Ti976H1pqhJSXtY1sP5IqFC6moq2Pq97+P1pri3Fz+8dOf7rfdJQsWcNWDD0qBJcHChQvZvHkzs2bNAhJT2jz11FP7JasXXHAB3/rWt7jvvvt47rnnpMDSMUodrEuIUmojMFlrHVVKfQZcqbV+v22d1vq4dAczffp0vXLlynTvtt0e4FvBIDV1daA1S9at47oTT0xLolcHfKO5mdqWFjRQ6nZzm9acmKaiKS6Xi/9du5b3R49OtJykGODxMN3ppDweZ1h+Pnataayvp7C4mKKiIuobG6murye7pAR7QQFBoNrtZk9LCyo/n1h2Nm7AFQjQEA5jTSZ4oeQ437bWJ8Mw2pNDj8eDx+1OJI5Abl4eubm5B10eDwZp2bULaziMNRbjuJEjKXY6sQN2wAGE3G7WfvwxWmu0ycT0GTPIyc8nTiKJbnK7WblmDUGzmaDVSvmECcScTjwkkutoJ3EdSCwYZIDbzTybjcV5eZQccCtxNKgBbvf7WZ68kIFSWGIxZm3ZwuTKSr6U5qJDq4A7AgG2J6fOQikWW62cU1PDsNLStB0rDtzd0sJLWmM2mWhqbibX7+fsNWu4aMGCY741VSm1Sms9vbfj6O/S+tv84INwmN1Le11lJVx9dW9HsdeDD+IrLMRpt9MaCjH3xht5+JprmCon8P1TT76/+sLnrrufb194jkeqr33XdLMv+tvcWcPSX4D3lFINJIYT/jt5gJEkcoN+ZxAwtb6eV5ItKm+PG8fi2tq0nNCVAN/Tmp8l79fm5/NCQQEn0PlktofLMAxunDyZkyoq+IPdTk1KAlabm8vLAGYzyu9PLHQ4oLWVAq+XJr8f7Hbw+TCS3Z9dLS2Jk+jmZozMzMSylBNrwzDaWzJDv/kN9upqPJmZZCS3jcdimAMBzPE4lliMbKcTe0YG9nAYR0MD5liMjHicwYZBts2GBQgGArS2tuJwOCgdM4br952APC+PxVOmUF1dTVlZGca+XSTz8jh7/Pi961Mml9Yk3qTbwmFe+s9/aLbbacjJIb+wkFrAv8/rGQqFcNXVUaU1q8JhnrLbGWe1MpPEpMBDkW7DRwMNvAY8CtSlFBwyPB6uam1leJq7yGrgr8CfAXc4DFpjisc56fPPOd8w0lrgqBW41efj9baeDEoxPSuLS5ubGSWJqhBHpSt/9zs27dlDMBzm4vnzJVEVQhz1Dpqsaq3vUEq9BZQCy/TeJlgTibGr/dJlVivvejz4MzMJWK28UlrKyaQnMVlSUECTUvzBZMJms7EauHHPHq7PzKQ0DSeOhmFwnmFwksvFy9XV/ENrKgsKiKu90ae2lCut8be27td1NrnhAZcB2MJh8lpaKHU4qHK5aNq6lR+UlDBswADy7XbsJIoZRX0+fF4v2dnZOFMSR19ZGd4DLE91S0XFQZ9jZyfZB1uvSLTOTiwuxjj55A4JrSYxZchOYAewHVjp8+33GuywWtlBItEoASa0tDCoqoqTCwpkyqB+yAX80udjZSyGLVlEyQucsG0bJ+zaxUlLlqQ1ofMCv0hOk9V2vGg4zOI1axjo9TIwjYlqNXA7sDGlO/Oo2lq+nZnJjDROgSOE6Fv+/MMf9nYIQgjRozodsqe1/vgAy7Z0Xzjdb2RJCbeYzdxusWCz2dhktfIGiTkC0uEb+flEgb8ku9C+rjXbdu/mHtJXwXeAYXCFYTBn82b+9e67VOfmUp+TQ4vDQSgzk1BGBlprTEpRnpVFlduNORolMx5nckEBNq3ZXFGBLRQiKxpl8Yknkh2P8/H772MNhbAoxdKlSzGysnANGcLtFgvziotx2u0dA3E6yT5AMup0Og+apPaEfRNaRSL5LAFOTC5zRaM88/777CgqYqdhEN3n/2ZPKMRKtxscDvKbmvhWZibn5ecjI2z6vijwD+DxYJA9yXlGPUoxtaiIX2RlkZnmIkoA64HbAwE+TznevMJCrsnNxT9qVOLCSZqO92ZjI3eZTGiHo30KnKk7d3LStm0MSXMVYyGEEEKI3nRM1pdZWFhIBfBPEt1Bfx0IUBKJMLW4OC37vwTYWF+PK9nisa2khJ9rzf1AemoQJ4wbN46CggKqq6ux2WwEg0HKysoA9rYsFhXhisUS98vLMbKzAXCNHbt3m2QBliELF+5dljyxNgyDwsLCXk0+u4NhGFyQ8nyzky3hHwErAU9KMadmh4Pfm0y8ApwBLAEKejF2cXDLGxr4P61pyskhGAq19xaYvHMnVzc1JVodi9JXSDUKPE1ifq62br8amLZjB99obGT0lClQkp7R0Bp43O3mXp8PDeD1MqikhJ87nQzLyUnrFDhCCCGEEH3BMZmsQiKh/Ki1ldUNDaA11wWD/FFrxqThxFIBP8rIoKGigrWDBoFS7MzK4vL6en4MaUuK4eDdYlOXHWibw112NNv3+Z6UvEWB96JRHqus5PMBAwhnZLR3IX0W+DtwCvBlEmNbRe/zA/e3tPCM359I5AIBCvLzKfL5OPXTTyn1etPe6lgF3Jas9tvW7TcciTB/40ZGNDYyKI3HCwP3Ay8mp7/RQHYgwLd27ODs8eOhQC6fCCGEEOLoc8wmq5nAeTt3ss7hIGoy0WKzcSuJiWHth3js4RhgGPwS+FNrK68WFdHU3EyT1nwrHud6i4WL8vP7dQGfy158kZe3bKEkK4uN3/kOAGtra7nq5ZcJRqNYTCYeWLKEGQMH9nKkX5yFxFRHx40cyY6aGrYNGcJ7Viuu5Poo8BbwaijE8KYmrrJYmJzGCxDi8NW6XLzi8fD6oEHtPRk0kBGNsrS+nq8VFeFKczdcDfwLuDcYZE+yurBHKRYUFHBlTg6BIUMomzUrbcdrAO4AtkF7t9/S5maWrF/PzIUL03IMIYQQQoi+6JhNVgGmFxVx5scf88/Jk0EpGnJzuRO4ifS8MAMMgx8BOVu38lBGBjGliJpM/MFkYrXPx5d27GBCP23NvGTyZL47YwbffOGF9mU/fvNNfn7KKZwxahSvbt3Kj998k3cvuaT3guyitpbXWcCFwMfAC8Bn0D6tj0trVoRCfDMzk2/n5qblQoc4PP+pr+e26mp2FxRAfT0F+fmgFMPq6pj3+ed8/bTTMAyDsjR+vnbU1XFPNMpnhYXt3YxN8Tizt27louJixqax2y8kxsL+IhDAFQ5jS04pdX5eHqc1NjJk4cJ++d0hhBBCCHG4julk1TAMrp05k1KvlxcHDcJqtfJRKMRP6uv5UUZG2irAfjknB/e777JswgQacnIwm0y83dTE+04nEz//nBuUSkv34540d8gQKtzuDsuUUrSEQkBizGdZcnzs0cAEzE7ePgMebGhob8mLKcXfgTXApSS6CPfnVvO+zk1inOizmZm4CwraKzo7w2H+2+mkrLGRgclENZ3eaGzkNrcbn9UKLhcF+fnkt7aycN06DL+fgZMmpe1YcRJdzh8LhahNTinlBX6Yk8PX8/NRaawsLIQQQgjRVx3TySokEtZrDIM84ImU1rLd1dXcAwxM05Qzl8ybx6nV1Xycm8vz8ThoTcRsZvWQIXwnM5Pzga8AhV0+Wu+5Z9EiFj31FD98803iWvPhZZd94X3UuFzsqalhYGkpZYbRJ5O+scBPLRZKP/iAd8aMoTY/H5vNRhPwG+A5v59FFRXMKCqSlq80CgNPut08qzU4HFhtNlAKpTWT9uzh1lGjGGYYaR+/6QX+APzDYsFntbYnxzPdbq4uKKBxzJi0djNuBu4i0aoaSBb6soXDnLFuHeNHjEDtO/+wEEIIIcRR6phPVtt8HVhXX88bydayLYbBLVpzH+kZw9rWpXQGMLmhgVt9PhqcTlAKs93Oc6EQzwQCzDabWZSdzfQ0HbcnPbhyJb9dtIivjB/Ps59+yuUvvcRfvvIVGltbMWdloRwOgkAAWB2JcFltLeacHJTDQQBoDgbZEwpBfj6EQhihEDarFTMQCQaJBAKUWK0YDge5QC6gPR7ijY0cn5vLCYWF5PbQczUMg0tPOYWF1dVUOJ28aLXSRKJ78L8bG1melcWJmzZxC6Rljt1jmQaWAw8GAnza0pKo8Ov1YhgGpxUUsKCigmmjRnXLhYGXm5p4AIhmZbWPF3WEQszfvJnrTjwRwzAYnOYpcFK7/dpsNpxuNwvXrSM7Emmv9i2EEEIIcSyQZDVJAd/PyKB69242DBwISrErP58bgVuAvDQea25REU/HYixzu/mgvJydgMvlAq35p1KsyMzEabUyFRjX1ERxZSVj+sjYVp/PR5PPhyU7m3ogAmwG3MEgj6xdyxnz5/MKYBo/ng9eeonnolHIyIBIBGc0itliIRaNsicUYlcoBA0NGIaB1WpNdCFOXixQWhMMBrFarfhDIVx1daA1tUq1bx8KhXB5PGA2g9+P4XRSarUyHCj0eHDW1jIvL4+h3fS6tV2AmEpiSptngD8FAqA1caX4ePhwfgr8CpDyS0dmeUMDD8di1OblEUyZGqbA5+Pi1lYuHDsWjjsu7cd1A7/2ennZ50skxz4fhmFwTn4+C3bsYHQyUU2XOPAX4MmUbr8twJV5eXx5wABc8XhaW2+FEEIIIfoDSVZTlBoGdwGPt7bydlkZVquVTaEQl3m93Kx1Wiu+DjAMvmkYfAP482ef8UQ4TG1ubock7f1QiL/5fJCbS1ZLC7OzspjodDIMcNbXE6qqYmhpaZfH1oaBFhLdDz3JW4XbzW6PB1NBAWuA1wBfJEJjNIq22SAaJRCN0gqsjEbxhUJkZ2WxbOtWpo4dy+bduzHy89vnuURroslkNRqNJhbRMSlta7myxGKgFDabDYBgypynqdsfaHmT1UpNWxJrs3FfIMACn4/TnE5mAN3VgdJOYrzqlEiEG91uqvPyQCmq8vK4FrgWmNNNxz4a7QAe8vl4o7U18R5KjhG1RyLM2LaN46urOW3JkrQfVwPvkuj2W5nsrq8BZzDINysquGjMGEjj2FSgvfv4vt1+F61fz6zhwymbMiWtRaKEEEIIIfoLSVb3McAwuAGYAtydMob1inicH1gsfC3NU84o4LT8fAIvv0yD3c7O0lKiJ55IHR2TNH9mJitiMT4nWYk2EID8fMyBACMDAQy7nWxAeb34WlrIzsnBmZ1NMlWkxeejyevFkpODOSurvTuuOxjEEwoRXGvH+2EmhfPAMTWEq6Ul8cDmZrJiMZqBUCzWvr8/Pv8aW12VtEYCXHfvvZx54olcuGABf3v/fZ57/32smZlctmQJmbEYlliMzFiMMrs90UKtNeXNzUxduRJrPM6Z8+YxGLBbrXisVmqqqxOtSMnxgdXBIP98+20iShGyWplx+ulkABXxOO9t306L1UpjTg4ZyRP61NctphSfxGJ8lnytB/n9jKup4azs7LR232wzubiYR+Nxnmht5d3SUjKsVvzAraEQU+rq+G5mJoMk8Tio1fX1PB6JJKrtxmLt/4/meJy5TU1cnJ2NxzAomzIl7a2MtcBvfD4+icXau+B6lGJCZSUnb93K6YsXp/V4ACuBOwMB6lK6/WY3N3P6+vXS7VcIIYQQxzxJVg9iEeCqqOCezEyiJhMRk4mHTCa2AN8D0lnCxTAMvrR0KdVtSZrDQTXwqtY85/FQ73QStVgO2NIYU4racJiA3Z5IYpubEy1Rzc0YmZl7u8s2NSWWNzZiWCx7l9fV4V+ZwY4Ls9ERjSlTcfyLERi9t8UyFosBYLFYQCliVYqzqs+HOJjMimnnhIlTSUY0ypJTT2XMoEEUZmVhBfw+H16vl+zsbJxWa+IJ2+2MLyriy8OHJ55vSou13TA6tBQrEkWuzjnzzL2vT1ERALPy85k/YUJieUkJRTYb1cCqWIwXd+1id0EBDTk5e1+3UIjljY0sz8jgTz4fF9tsfD03N61dvCHRQn8DcDaJQjl7khc9Xtea1fX1/FYpjutn1Z+723bgUa+Xl5PdqNtaUhUwuqaGmTt2cNGCBYkENc1Jagh4DvhzMEhl8nPiUYoJxcXckJVFvt1O2eLFaU2OA8AfgX+GQrhSuv1elZfH2aWl1Got3X6FEEIIccyTZLUTi/LyqH7vPV4/7jianU5sNhurgO8C3wFOSuOxjH3GpJYBV+Tl8aVQiMrqaszl5XitVnYAG8xmPgqFCGRkEDObj6i7bOpy/8c2dFhBXKHDUPRBBuW23dhCIbIiEVricRYBNouFqNnMBxWapjjEtULHILsqkylTSvYmpVlZ7c/D6XTidDr3e752u50pX2D6jX1fn4MtHwQMKihg1pgxVFdXk2GzscNq5WPgg5TXIWix8AzwcjDIcQ0NXGS1MjGN3bwBxgH3AT9LmeamLjubH1ss3AlMTOvR+h8NvN/QwJ8jEXYWFBBM6XartOY4r5eLHQ7MVitlbYlqmo//alMTf9CaVqezfd5UgIm7dnFNUxMzJ0+GwvTW6N4I/BY69J5whEIs3LCBE4cPp3TKFCnKJYQQQghBNyarSqlHgaVAndY6/RVQekBbxdf5NTV8kJvLO8luqV7gtlCI4xoauCYjgxHd2Eq2bzJ2MoDTiSs3l6rqagrLynBYrXiBndEob27YQExrzEoxe/ZsCoHmWIwP1q/HHI2SGY+z+JRTKAdaQiHefucddpny+a15CXFlJjNT8YtFVoYPH93ekvngX/+6d0odp5Pjj4c1a4BYorbR0KEHT0p7S+rrdhxwFrAtFOKeLVtYO3gwXrsds8lEVV0dVVrzL7+fyzIzuSI3F1sa48gCbrBY0J9+ynujR6NNJgIZGVzr8XCh1lyRl4cpjcfrD6LAh8Cf/X4+2mdMKkoxrK6OE3fu5PK5cxOt7mm+iABQRaLL71ttBZT8fgry8zG8XuZu2kSp18uwpUvTesww8Cfg2VCIQDDY3u23pK6OUz79FEcsJt1+hRBCCCFSdGfL6uPA/wFPduMxul3qlDOnkWgRqUwZy/rvUIiLrVa+mZtLTi/E1aYYGF5YyHEnnLC3u2zbfJMFBZwwY8Z+3WjLSkrIP+MMqidVM/fkFtavL2DePJg1C+Dg1YcHDYJvfhMqKhKJ6qBB3fhE02hkSQk3TZzInupqqouLea61laaU7tTPAquAy0kUQ0rX2OQBhsFPJ01ibmMjT5aVUZHsqv275HjaC6qrmVhSctR3+fQAf3O7eSkWI+h0EoxGO7SkTmxp4SK7HYvZTNncud3yegSAvwIvAo0pY2Lt4TBfdbk4p7iYmlGj0t4FdxtwN4kLJm2Vv0PRKDfm5zNr8GCqLRbp9iuEEEIIsY9uS1a11u8rpYZ21/57w/HA/cDP6+t5M3mSGzabeRZ4j8T0JeeS3mluvqjD7S677/IpU+CLFFcdNKj/JKmpUl+HGS4Xf1i5kn+PGoUrLw+bzUYDiVbzoU1N/MBsZmyaWs0Nw+ArhkHh+vX8r9bU5OWB1qz0+ViblcW0TZv4GTDkKEtWNLABeB14Nxikqm2e1GRLpllrxlRXM23XLr4xf363taS2Vfl9MBCgNqWYUQtw/O7dzNqxg3OT41K7Wl07VZXLxZOBAO8PGIDFZmvv9ju4oYEFn37KkOOPx+iGYlFCCCGEEEeDXh+zqpS6ErgSYPDgwb0czaFlAT/KyMC6ejUfjBzZPpY1CLwAvAIsJpG0pnekW+/JGzyYWyoq0r7P3jbAMLjypJNYUl3N9uxsXrRaqUtpNb84GuUWs5kz0jhmcZxhcN4rr7BiyBD+M2IEcaWImM18Mnw43waWbtvG2dnZ/b5icB2J5PCV1lZ2RiKJz0jKPLqOUIhFDQ18JSsLn91O2fz53ZawrQMeBTanFDPyKMXJhYXc7nCQ4XSmvYASwIqGBn5WX09ddjbU1WEYBrlWK9M2b2bcnj2YTSbp9it6nFJqEIkeTwNITPH7sNb63t6NSgghhDiwXk9WtdYPAw8DTJ8+XR9i8z7BMAy+d+KJnFtdTdWAAbxptVKRXBcGXgJeCAaZVF/PErudOUVFaZ3upqddf9ttvR1Ct2lraZ0KnAn8r8vFP1OKMP2vxcKGlhbm7djBkNLSLic0hmFw1pIlTK+upjYa5a5QiAanE5SiJhTiDxkZPOX1cl40yozGRsYcpEW8L/IDrzQ383ooRGV+YkZbV0NDe3JYkJ9PqcfD+D17GFNXx5fPPBOjpAS6acz3yvp6/hCNsrOgoENBMUcoxOwtW7hw4ECmTpmS9pbcMPAX4DGLhebk9FFKa0rdbu40DExTplBtGNLtV/SWKPDfWuvVSqlsYJVS6k2t9abeDkwIIYTYV68nq/1VW5IzDfgS8AnwDIkpONqmhKnSmldbWxkbCDDfbmc2MB4w92Lc4uCygGutVjI++IA3jjsOv82G2WTi6eZm3rBYWPLWW1x4mFVp77n5Zty7dx9yu2mBALsjEfZkZNCanCIoBDwN/BnICoUYYrWSGw5TOnIk/+/uu7v0HNPNC4lKy8CKYJAqr7e9YJIzKwu0JiMaZUxNDV/3epluGFTHYpRNn95tiVoN8Huvl3+0tibmBXa5MAyDHKuV0RUVTN6+HbvWDDzhhLQf+53GRu7XGl92Npl2O7S0YInFmLl9OzcdfzylAP3oAoQ4+mita0h8TNBae5VSm4GBgCSrQggh+hxJVtNAATOBE0kU6LnP7W6fqkRpTU04zMt2Oy8DucntZgOTOLb/A8KAG9ja0MDOxkacxcXYCgqocbtpamqiqKCAwrw8Wpqbaa2vZ1hhIdlaE6usZHgaWjkPxDAMrpozhwW1tbxSVsYHySI89dnZPDNjBkZzMxcexnHdu3dzy9Chh31ct8/Hh3V11OTkELbs/65QwFNbt5JbWckIt5upxcVpHVt5uGIkigWtAZb7/WyMRMi027FarfhSuvkqrRnt81G8cSNDa2uxAtOXLj3o2Ol0aCBxwehNoDkeR0N7LJPr6/lxeTmxsWOpzslJe6umG7jX6+Xvfn8iWW9txTAM5hUWcubOnUw+/nhJUEWfk6wrMYXE9VYhhBCiz+nOqWv+AswDipRSlcDPtdaPdNfx+gIFTAd+BTy0ahWfDRjATsNonwcVEhVRlyVv5mCQYY2NTHU4mJKfzzASrXv9mQZagC319WxvbCSjpAQKCmgGdnu9VPn9xHJyCDoc+Em2Qre2gs0GPh8FGRk0tbQk5sRpaaHAbKbJ6wWrFfz+xEHy88ltbmaKz8cck4mhHk9auui2aUuo5gB/bm7mN1oTU4pQZiaPGAaVO3dyscOR1mQxz+lkLuDxemmwWNgQCuG1WtvXa8BvtfLHWAyys7H5fMzJymJELEZ2bS0TCwo4rrg4rR/oALCxvp71zc14DYP63Fw2BoM0h0KYTSaaklWNaWnBSL7PbV4vI2tqGFNbywULF8L06XurUHdTslYPPA+8FAziC4Xaiyd5lGJofT1ztm3jknnzKIK0t2rGSRSPehKoTpkn1hqJcM6ePVw1ciTquH45c5c4yimlnCQ+OtdrrVsOsL5f1ZMQQghxdOrOasBf665993UDDIOr58yhuroaw+mkwWrlAxLdJZuS27R1Fd6pNW97vRgOB1arFQMYnrwNS/5bRPqmUTkS1S4X21wu7KWlZBQX4yHRkuQB9rS0UOn3E8/JIZiVhRsIhEK4AgGw28Hnw8hKpOCutuSmoQHDMDqMI2xrAfMn59080H303iHNbrudd4B3AHtWFsdv2sRXtm9n6ogRaUtGFHBhfj5DYzF+qRTezEwam5v5s8nE8upqfqUU49I43rJtrtqBwAifjzq/H5fdzpZgkNbMTCCRtEJiPO0noRBv+f2JRD8QoDQYpDgex9bSwsCsLMqzs/FVVuKurmbQgAGMGDwYb1MT9Q0N5BYVkV1QQH1zM9VuN5aCAlRuLtU+H9WtrbRmZ+MzmRL/j1YreDwUpCaoKbGUNjezKBrlouHD0cXFVEcilE2c2P7/0F1JajXwHPA20Jr8PLWNjz21oICbHA6cJhNl8+Z1SwwfNTTwf/E49bm5WK3W9gR5VG0tcz//nHMXLuzXY9XF0UsplUEiUX1aa/33A23TH+tJCCGEOPocy71Qu1Vqd8cyYCJwFfAZifF9//T5OiRlwWAQq9WKC3ABH6XsyxIMku3xMCAri1Knk2xov+Wk/B2sq6OhpoYBpaUUl5S0JxNt3SHr6uqodLnIKy0lq6iIIInWsyBQ09xMlduNubCQeE5Oe0LqCgTYHgyic3MhEMAIhbAmW/xCoRAutzuRvDQ2YlgsB0xAg8FgMpCOy+xWKwMyM7F6vdhCIazxOKMHDaJqzx6Ix9EmE8NGjGBrdTVBs5lQZiatmZk0OxzE1d40IJCZyYrhw1kdjzN90yZugrRW051TVMSTwA9qa9vnZd1dUMD3MzL4GXDyYe4nGI0y97HHCMViRONxzhs3jltPPZWb3n6bFz//HJNSlGRl8fiXv0xZdjZOp5PhwPEmE/V+P/8GQnV1VObnE0wmr6mvqdfvp6atG2o4THY0SkssBoYBWpPT3IzX50skn22t2F4vmEz7J6PBYPuY030vHGQFg5Q3NjKksZHyxkacsRhLly6lBHpkPOYO4HGvl/ficaw2W4f3nOF2M3PbNs4ZPpwpU6ZAck7hdGoGftfSwt+SrwfBIIZhMNRq5cdZWRRmZFC2cKF0+xV9klJKAY8Am7XWfWsQvBBCCLEPSVZ7kALGJW9Lo1EeXbGCqtxcGnNycBYX00BiTGCqUCjE7mSL0bpQCCMjoz1Z3Hc7VzAIeXmJk+eUpLLD+pycxHi6fZPOtqTF7cawWtvXecLhDmP/2pJq4IBJqdVqpcBqxdTaiiMYJCsSYVZ+PrnxOJs//RR7MIgzEuHcU09lJKDsdlzFxYmuouXlGIaBS6kOXUddJlPifmkpAJ9u3coHtbVsLypia2kp3mQ366jJxMfDh3NFKMSPGhs5LY1TzuQBv1CKm3btYtWQIaAUcYeDX4RCjG9o4DsZGYw+RCur1Wzm7YsvxpmZSSQW46THHuOMUaP40Zw5/GL+fADu++QTbnvvPR5aurT9cW0trqMDAa4ePJiq6moyysvZrhQv7N5NY1YWbqcT7XR2+P8ItLZ2OH6gk1brA903a01+ayvZra2U+HwsGDIE1wcfkNXaitlkYvbs2QTLy3ukqq0G/gP8A1gZCrW30vtXW1Ebi5g0J5NTW9YwsL6+26aEiZKo9P0MUKt1+2tlicWYX13ND4YNI7OwENL4vhOiG8wBvgFsUEqtTS77qdb61d4LSQghhDgwSVZ7yQDD4PK5c/cmZQ4HEWAPsJNE69EOYPU+CURqspjqYInj4azvbF1b10Z7OIwjEuH4oiIGkkje0JrNn32GPRDAGY1y9ty5jAYybTZcBQWJ5zZkCEZODgCuadP2Pt+UxG7fojuHc3+Cy0V1dTUZ8Tjvud28YDYn5rMEarTmv/1+LrFY+G5uLhlH9l+0n4GGwf8C7zc18cLQoTRA+5ysH4RCfDszk2/m5ZF5kMcrpXAmW0Qj8TiRWAwF5KT8P/nD4U67jqa+FscDs0aPTrymubmEolH+8vHHeDMzCVqtFI0cyeaaGsJmMzGTCaO8nKr6eojHsWjNyCFD2F1VhTkSwRGNMm3UKHasW4ctFCI3FOL8009HFRRQHQxSNnZs4sKB3d7tY1BTBYDnm5t5IRbDm53doRXVtyqTiq+XQERRZbVw6d/mUjZ9V9pj08AK4HetrVQk54xt+1wMr6vj5C1buGjBgoP+vwvRl2itl9O7I0uEEEKIwybJai/aNwnLYO941QXJZbXhMH9ZvhxvZiYhq5XJJ5+MhUQRI2/y1gK4MjL4LBwmphQKKMnMxE7ijEQBjsxMYqEQ5liMzHicsUVFFAFWEi2SWyorsUQiZEUiLJg2jWEkEtJcq5WA1YqrsTGRBGSllIDKy8M1efJhJaAHW5aO1+444FyXiz/s2sXLBQUEMzJAa56LRvlPXR0/UYpJaZpL0zAM/sswWALcXFnJm8kkP2w286RSfAR8qamJxsZGfEVFOJ3ODo+PxeNMe/hhtjU1cc0JJ3BieTkAP3vrLZ5cv55cq5V3Lr74iF4HgEvmzeuQTG6OxdixYwfDhw9n3ODBuKzWjq3W+7Zi77O+7RgHO1532U6icNHrwSC726bDSVbYdVitGC4X7r/Z2Bk20FoRDsP69QUsWVKQ1ji2AI8Bq0KhDnPGTikq4kdZWRSZzZQd5nRGQgghhBDii5FktY8bYBh8/bTT9iYQ+fkH3tDhwJWTs3c7u73jersdV27u3vWpSWd2Nq6RI/euK+h4wp9vGJQd5GS8p5KXQyk1DL4N5L/xBm9OmMCu4mJ8fj+fas23YjFuM5lYnMbumQ7gRxkZ2Feu5N+jR9PsdGKz2dgTCvFznw+7ycSHNTXMLC0lJyVhNZtMrL3qKtzBIOf89a9srKvjuJIS7liwgDsWLOB///1v/m/FCm499dQjimvf/49x48Yxbty4g64/1P2e1Aq83NzMS5EIdcmiRZ6U6XCskQhzamu5ZsgQYkOG8NoiN8v/oYhEIDMT5s1LXyy1JCr8/jt5v601NzMaZca2bVxSUsIJU6ZIl18hhBBCiG4kyWo/cLgJxKG262x9X0k6u8IwDL66aBFzqqt5w+vl2aysxJQzZjP/Y7HQDFxA+vq/GYbBd2fN4uzqaj4vLeVVq5U9Hg9oTSgjg+3FxTSYTEwGRkKHbqJ5Nhvzhgzh9W3bOC6lRfrrxx/Pkj//+YiT1f4mBqwlUdH3vWCQPW2tqMmiRTabDYvfz4Q9e5hQU8M5Z5zRPgXNJZcYjBkD776bSFRnzep6PE0kKgz/I2UaHKvVSpbVytA9e5i2bRvOWIzBkyd3/WBCCCGEEKJTkqyKo0pb0j3Q5UK/9x6vTJqEz27HZrPxWCjE+01N/LfZzMg0TTnTdrzpwJeBPwJ/iscThbKUIpaZyapolJWRCLnBIGPtdkbbbAQjEf61cyc/mTOHrY2NjEq20L30+eeM7YYKtn2JJtG99pWWFt6KRolkZWG1WmlJaUW1xGIcX1/P5eXlFBQWUhMKUTZ58n4XVGbNSk+S6iWRpL4MePeZBmdpfj7XZGdjHjWK6qysHhuvK4QQQghxrJNkVRyVDMPg8lNO4aTaWv4+cCCb2FsMaW0kwi1mM4vS3IUzC7guN5eloRA/1ppCh4MQ4EtOJ/N5YyPf+9e/UFpj0Zovjx7NtOxsrnrjDba73ZiUYkheHg8tWZLWuPoCDWwGPiQxdVNV6rRHPl97K2qGz8eYqiom1NZy3qJFGACGwYBuSg79wJMeDy/E45Cc67ity+8At5s5W7bwpZEjKZsypUem5RFCCCGEEHtJsiqOWm2tnnOAX+zaxQskkqbWjAzusFjYBlwO2NJ83BElJRyfnc1XMjJY09jIxliMQGYm5UVF3HLJJVhtNmLRKD6/n9ciES4+6SSOLypiqMORtsrFfYEXWAe819LCx5EIIafzgBWos0IhZtXWcsmQITiKiqgOhymbNKlbE8MW4EXguWCQimTXbbxeDMNgTEYGA9auZVBdXbdNgyOEEEIIIQ5NklVx1DMDV9tsRD/+mH+NH0/AasVms/E68HFrK+dWVDC7sDDtyZEZGGu1YtqyBZ/VSmN2NpGsLKJANBpNjG21WHDl5OAxmVgF5IXDZPv9lFmtlPez5NUPfNLYyHKfj6qiImqysgimtqD6/RiGgdVqpdBqZWBNDSNqahjS3MxZS5a0t6J2Z5LaBLwAvAaEoEMBpwKfj68Hg1w8ejR1M2f26BQ9QgghhBBif5KsimOCYRhcO3Mmi2preX3AANZbrYRCIdY3NLA+K4tJW7fyc6UYkaaxrG2cTiejR4/G6/UyNTsbR0YGtcAWpdiiNTGlQCksFguRaJSdgQAoxfpIBGc0SoHFQiGQFQiwy+1me11d2mP8ojSwra6O1Y2N+EtLqc/LYztQEQrh8vsTGzU2YlgsHVpQHaEQU+vquGDQII6z2WgcNoxqq5Wy2bO7PSGsAv7U0sKyeByL3d5hHmFTayvTtm9nrMvFGUuXojg6Co4JIYQQQvR3kqyKY0ZbAnIS8A5wZ2treyK1btAgvpORwXeAJaT3g+F0OjvMt1oGlFmtTI1E2BMI4MvOpslioTaZ2AGgNdFoFI/FQlM0ii8cZq3FwrnBICMCAYbb7QwEHG43ur6e4QUFjCgsJJfE/LhHGn+UjvP3VjQ1sa25mVhxMYGcHGqBXcEgu4NBcDigpQUjmfylJqZKa0LBIBMsFqI7d1Le0EBZS8veFlS6PyHUwAbgH8Dy1BbelpZEd1+rlfOtVkYUFFAbDFJ2wgmSoAohhBBC9CGSrIpjjgLmAyWRCD9pbqYyPx+UQjsc/BF4BbgUmEn6prk5kBynkwkpSWxDLMbq+nparFb8Nhum5Lq2LsMAaE1DOEzEbmd9KISrpSUxyajfj5EyJjTm8RBpaSHf6aQ4P59MIAMI+3y0+HzYsrPJzMoiAkSAlkCA5mAQnSwyBBAKhXD5fGCxgNuNYbXuN/ep0ppgMNg+vUumz4fR3MyQ5maumDGD4YaBa9y4Hu1SGwFeamriuWiUxuR8ramJ9AC3m28EAlw0Zkzi/9cwKJUkVQghhBCiz5FkVRyzjisp4RGted3t5q1Bg3Ank7Qa4OehEAPdbi42mzmlqKhbk9Y2RVlZzC4txev1ku1wYEvODVsJbPX7sUUiROJxbLZESah9WzLbkkaf10uj2w2Aq6WFeosFZ3Z2IvlsakokvuEwhsWCNdkd2lVf36HIUFuC51+Zge9jG86ZQYILEvu32Wy0xuPk+v0YXi9Lc3I4ARhis9HcViBp1Kj2xLSnutRWA68DLwcCbPf59puvtaChgUkVFQxyu1mY7O4rhBBCCCH6rm5NVpVSi4F7SdSa+aPW+s7uPJ4QX9QAw+ASw+AiEi2qfwGaQqH2aW5WK8Usv5+vZ2Uxh8Qb+XDkDR7MLRUVRx5YKAQNDe13A4EApxgG1zscZFitVAGfxuMs27ULX2YmQauVkuJiIkB927jRJH9rK87s7IMmt/sut/j9lFutWFdl8sHXncQjJhoy4lz5op9zFoFhtdLqcFDjdlM2fDhGfn77sXp6rGcU+IREwaR1yWWecLjDfK3T6+q4ZtAgLOXlVCer+0p3XyGEEEKIvq/bklWllBn4HXA6icah/yilXtJab+quYwpxpCzA2SS6B//K5eKf8ThxpVBasyka5dfAE8BZwELAfoj9XX/bbd0abyEwMT+f+WPG7O1i63AAsKm5mTc//piI2UzMZGLazJkMMQxqIhHeXr0aHY9j0ZrT5s2jFHCHw7yzfDmWSAR7LMaXli7FAP73Ezv/iGqIK4iaiK3OYdSixPFzunHu08Oxk8S449cCAVzhMDabrUPRpHgoxITdu5lYXd1hvlZJUoUQQggh+o/ubFmdAWzTWu8AUEo9QyIfkGRV9FnZwHetVvLefptVgwfz2cCB7d1u64A/Ao8Fg0xyuTjL4WBacXFvhnvAlszx48ahgB07djB8+HDGjRwJwKiiIsbMnr03uS0qSjyguJjS007bb1zpvHmQmakIhxP/zpvXc8/rQJqA94C3gQro0H3ZoxQDDIOTrFbOsFoZmJtLbWEhZccfLwmqEKJTQz8wAVAxJ77PssFU9E5IPeJAz7s39tFVfSGGw5WW1/yGVxL7uHNJ78XwBffRU5+no+U9fbiO9L3Q1fdQT+vOZHUgsCflfiVwYjceT4i0MAyDi+bPZ351NU6Hg/9YrbxCojpuKBTCVVfHTuAfgQAzWls50+FgLonWzr5i3LhxjBs3br/lB+ume6Dls2bBW2/Bu+8mEtdZs7op2E60kOzm6/OxKhbDmtKC2tZ92REKMaGykq+73cyfODHxQCmaJIQQQgjR73Vnsnqg+iV6v42UuhK4EmDw4MHdGI4Qhy81eRsFnEeiRe8PXi+ulPGdn0ci1AKPAROBSc3NDNy1ixGlpUdFi96sWT2fpLqBj4APgfVAILUwlFIYhkG21co8kwm9Zg3lDQ1YlGLChAk9G6gQQgghhOhW3ZmsVgKDUu6XkyjY2YHW+mHgYYDp06fvl8wK0RdkAouBybEY/7d2LZtLS9lZUtLeRVgDK0Ih/un1Ys7NZWB1NedZrczPy6Oc7p0Cp7/TwC7gXbeb94NBqvLzyUy2nkLHqsfljY2cFQ7zzZEjcWRn45o1q0enxRFCCCGEED2nO5PV/wCjlFLDgCrgAuDr3Xg8IbrdAMPg2pkzqa6uJtduZ4fVyjvABvYmVVGTid0FBTyiFM8BRcA0YCowCcjqxfj7iiZgbcqttm3OWK3B5WqfPgfgOIsF09atDK+pITccZunSpTiS++np6sNCCCGEEKLndFuyqrWOKqW+C7xBYsaPR7XWn3bX8YToKakJ0nDgNKAReElrnvb5qHc6Qan2VtcGEh+CN4BIMEhRSwsTbTam5+QwBijj6G55jZHoZrENWN3Swn9CIdw5Oe3JKOw/Z2x5czPnDBjAbKAwKwvX8cdTXVgoLahCCCGEEMeQbp1nVWv9KvBqdx5DiL6gELg0L48zQyE+dbmoHzSIHVYra4HW5DZtxZlqtGZDMMi/rFasVitZJMbFGh4PObW1TC4oYEJx8WHP6dqXVLtcrGloIFBWRmN+PtuAHUCY5PN3uxOtp4FAh9bTosxMSurqKG9oYHhDA+cvXEhqSiotqEIIIYQQx55uTVaFONbsm1RFgS3AKuB1j6dDcaZgMIjVasUPfBIK4fJ4wGaDQICyYJAhNhtlJMpqDwSsjY3oqirGGAYDeylx04APqAVcKf+6gIrWVjYGAsScTvB6MRyOg7aemuNxBjU3s3jAAKYAI+x26gYPptpioWzqVElMhRBCCCGEJKtCdCcLMD55W6g1z733HjVOJ/X5+eSecAJVJKZn2bcbrD8Uospmo4rE4O9QKITL74fcXAiFGBEIMMBuJxfIS95ygZbdu2msrmbwgAGMGjqUDOhwc9fX43K5KBwwgNyiIiJAhERSHQFcTU1UNjeTWViIysujJRmfN/mvKxikJRTCljKFTBtPJEJMqf2ScUi0PE8wm2nesYPi5mbKPR7OOfNMaT0VQgghhBAHJcmqED3EMAzOW7Rob/VapxMN1AEfx2K8sHs3dU4nnqys9vGubfZNZhvCYSJ2e4eJjH1eL41aQ2kpAIVeL87s7Pb1oVAIVyAA2dnQ2ooRCnVIOEOhEC6fDywWaGnBsNv3X19XB1rjSU4hk7reZrPhUYrsQIASr5fFublMA0aSSKZxOnGNHy/Ve4UQQgghxGGRZFWIHrRv66ECDODsggJmjh6dSORyc8m1WqkmMddTFfCZycSHLS247XZCGRn7JbMA/tbW/e6nJqv7JrypLZ9fZL0lFiMnEGCkxcLksjIMYABgWK0oq5WmxkbKBg3CyMs75PMXQgghhBDiYCRZFaKP2DeRG568AZCdjaukhOrqaoyyMhxWK27ADXiS/26OxVhbWUnUbCZmMlE+bBh50N7V15ORwbbWVtAas9aMKioil71dhEMmE1tdLizRKI5IhJMnTWIQkJO8hcJhlr/7LpZwGLPJxNKlS9kv7TQMhkgyKoQQQggh0kCSVSH6iX2T2bx91p9dVsZmj4cdO3YwfPhwxhUXd9zA4cBVULC3G27WPjO+ZmfjGjIksX7EiP1bRouLMRYvlm68QgghhBCiR0iyKsRRZNy4cYwbN+6g6w/VDber64UQQgghhEgXU28HIIQQQgghhBBC7EuSVSGEEOIYopRarJT6XCm1TSl1Q2/HI4QQQhyMJKtCCCHEMUIpZQZ+B5xBYgrorymlxvduVEIIIcSBSbIqhBBCHDtmANu01ju01mHgGeDsXo5JCCGEOCBJVoUQQohjx0BgT8r9yuQyIYQQos9RWuvejqGdUqoe2NVDhysCGnroWEcreQ27Tl7DrpPXsOuO1tdwiNa6+NCbHTuUUv8FLNJaX5G8/w1ghtb62n22uxK4Mnl3DPB5mkLo7++1/hx/f44dJP7e1J9jB4m/Nx0o9i/029ynpq7pyZMKpdRKrfX0njre0Uhew66T17Dr5DXsOnkNjymVwKCU++VA9b4baa0fBh5O98H7+3utP8ffn2MHib839efYQeLvTemIXboBCyGEEMeO/wCjlFLDlFKZwAXAS70ckxBCCHFAfaplVQghhBDdR2sdVUp9F3gDMAOPaq0/7eWwhBBCiAM6lpPVtHdvOgbJa9h18hp2nbyGXSev4TFEa/0q8GovHb6/v9f6c/z9OXaQ+HtTf44dJP7e1OXY+1SBJSGEEEIIIYQQAmTMqhBCCCGEEEKIPuiYTFaVUouVUp8rpbYppW7o7Xj6G6XUIKXUO0qpzUqpT5VS1/V2TP2VUsqslFqjlHq5t2Ppj5RSeUqp55RSnyXfj7N6O6b+Rin1/eTneKNS6i9KKVtvxySOPv3td/dgv3NKqQKl1JtKqa3Jf/N7O9aD2ff3pZ/Fvt93ez+Lf7/v1b4cv1LqUaVUnVJqY8qyg8arlLox+Vn+XCm1qHei3usg8f86+f5Zr5R6QSmVl7Kuz8R/oNhT1v1QKaWVUkUpy/pM7Ml4Dhi/UuraZIyfKqV+lbL8C8d/zCWrSikz8DvgDGA88DWl1PjejarfiQL/rbUeB8wErpHX8IhdB2zu7SD6sXuB17XWY4FJyGv5hSilBgLfA6ZrrY8jUXDngt6NShxt+unv7sF+524A3tJajwLeSt7vq/b9felPsR/ou71fxN/J92pfjv9xYPE+yw4Yb/JzcAEwIfmYB5Kf8d70OPvH/yZwnNZ6IrAFuBH6ZPyPs3/sKKUGAacDu1OW9bXY4QDxK6VOBc4GJmqtJwB3JZcfUfzHXLIKzAC2aa13aK3DwDMkXlBxmLTWNVrr1cm/vSR+RAb2blT9j1KqHFgC/LG3Y+mPlFI5wFzgEQCtdVhr7e7VoPonC2BXSlkABweYc1OILup3v7ud/M6dDTyR3OwJ4Mu9EuAhHOT3pb/EfrDv9n4Rf9KBvlf7bPxa6/eBpn0WHyzes4FntNYhrfVOYBuJz3ivOVD8WutlWuto8u7HJOaUhj4W/0Fee4DfAj8GUosL9anY4aDxXw3cqbUOJbepSy4/oviPxWR1ILAn5X4lkmgdMaXUUGAK8Ekvh9If3UPiiyjey3H0V8OBeuCxZFe3Pyqlsno7qP5Ea11F4ornbqAG8Gitl/VuVOIo1K9/d/f5nTO01jWQSGiBkl4MrTP3sP/vS3+J/WDf7f0i/k6+V/tF/CkOFm9//DxfBryW/LvPx6+UOguo0lqv22dVn489aTRwslLqE6XUe0qpE5LLjyj+YzFZVQdYJiWRj4BSygk8D1yvtW7p7Xj6E6XUUqBOa72qt2PpxyzAVOBBrfUUwE/f6lbV5yXHIJ0NDAPKgCyl1EW9G5U4CvXb393++Dt3FPy+9Ovv9mPge7VffZ6VUj8j0a3/6bZFB9isz8SvlHIAPwNuPtDqAyzrM7GnsAD5JIZQ/Ah4VimlOML4j8VktRIYlHK/HOn29oUppTJI/IA/rbX+e2/H0w/NAc5SSlWQ6BI3Xyn1VO+G1O9UApVa67ZW/edInOCIw3casFNrXa+1jgB/B2b3ckzi6NMvf3cP8jvnUkqVJteXAnUHe3wvOtjvS3+IHQ7+3d5f4j/Y92p/ib/NweLtN59npdTFwFLgQr13rs6+Hv8IEhc61iU/w+XAaqXUAPp+7G0qgb/rhBUkengUcYTxH4vJ6n+AUUqpYUqpTBIDfV/q5Zj6leTVkUeAzVrru3s7nv5Ia32j1rpcaz2UxHvwba310XTltdtprWuBPUqpMclFC4BNvRhSf7QbmKmUciQ/1wuQIlUi/frd724nv3MvARcn/74YeLGnYzuUTn5f+nzs0Ol3e7+In4N/r/aX+NscLN6XgAuUUlal1DBgFLCiF+LrlFJqMfAT4CytdWvKqj4dv9Z6g9a6RGs9NPkZrgSmJj8XfTr2FP8A5gMopUYDmUADRxi/pfvi7Ju01lGl1HeBN0hUaHtUa/1pL4fV38wBvgFsUEqtTS77qdb61d4LSRyjrgWeTp4A7wAu7eV4+hWt9SdKqeeA1SS6Sa0BHu7dqMTRpp/+7h7wdw64k0SXtstJJCX/1TvhHZH+FPuBvttN9IP4O/leddJH41dK/QWYBxQppSqBn3OQ94vW+lOl1LMkLiBEgWu01rFeCTzpIPHfCFiBNxPXDPhYa31VX4v/QLFrrR850LZ9LXY46Gv/KPCoSkxnEwYuTrZsH1H8am+ruBBCCCGEEEII0Tcci92AhRBCCCGEEEL0cZKsCiGEEEIIIYTocyRZFUIIIYQQQgjR50iyKoQQQgghhBCiz5FkVQghhBBCCCFEnyPJqhBCCCGEED1AKXWbUuq0Q2wzTyk1u6diEqIvO+bmWRVCCCGEEKI3aK1vPozN5gE+4MPujUaIvk9aVoUQQgghxDFBKfVjpdT3kn//Vin1dvLvBUqpp5RSDyqlViqlPlVK3Zqy7oWUfZyulPp78m+fUuo3SqnVSqm3lFLFyeWTlVIfK6XWK6VeUErlJ5c/rpQ6L/l3hVLq1uRjNyilxiqlhgJXAd9XSq1VSp3cgy+PEH2OJKtCCCGEEOJY8T7QlgBOB5xKqQzgJODfwM+01tOBicApSqmJwNvAuLZEFLgUeCz5dxawWms9FXgP+Hly+ZPAT7TWE4ENKcv31ZB87IPAD7XWFcBDwG+11pO11v9Ox5MWor+SZFUIIYQQQhwrVgHTlFLZQAj4iETSejKJZPWrSqnVwBpgAjBea62BPwEXKaXygFnAa8n9xYG/Jv9+CjhJKZUL5Gmt30sufwKYe5B4/p4S19B0PEEhjiYyZlUIIYQQQhwTtNYRpVQFidbRD4H1wKnACCAA/BA4QWvdrJR6HLAlH/oY8E8gCPxNax092CG+YEih5L8x5LxciP1Iy6oQQgghhDiWvE8iKX2fRGvqVcBaIAfwAx6llAGc0fYArXU1UA38P+DxlH2ZgPOSf38dWK619gDNKeNNv0Gii/Dh8gLZX+gZCXGUkis4QgghhBDiWPJv4GfAR1prv1IqCPxba71OKbUG+BTYAXywz+OeBoq11ptSlvmBCUqpVYAHOD+5/GLgIaWUI7mvS79AfP8EnlNKnQ1cK+NWxbFMJbrhCyGEEEIIIQ5GKfV/wBqt9SMpy3xaa2cvhiXEUU2SVSGEEEIIITqRbDn1A6drrUMpyyVZFaIbSbIqhBBCCCGEEKLPkQJLQgghxFFGKfWoUqpOKbUxZVmBUupNpdTW5L/5vRmjEEIIcSjdlqwqpcYopdam3FqUUtd31/GEEEII0e5xYPE+y24A3tJajwLeSt4XQggh+qwe6QaslDIDVcCJWutd3X5AIYQQ4hinlBoKvKy1Pi55/3Ngnta6RilVCryrtR7TmzEKIYQQnempbsALgO2SqAohhBC9xtBa1wAk/y3p5XiEEEKITvXUPKsXAH851EZFRUV66NCh3R+NEEKIo96qVasatNbFvR1Hf6SUuhK4EiArK2va2LFj07Pj5maIRtOzr+5msUB+HxrW259eO3FoPfn+6gvvne5+vn3hOR6pvvZd082+6G9ztyerSqlM4CzgxoOsb/9BHDx4MCtXruzukIQQQhwDlFLSm6cjl1KqNKUbcN3BNtRaPww8DDB9+nSdtt/mBx+E8vL07Ku7VVbC1Vf3dhR79afXThxaT76/+sJ7p7ufb194jkeqr33XdLMv+tvcE92AzwBWa61dB1qptX5Yaz1daz29uFgugAshhBDd5CXg4uTfFwMv9mIsQgghxCH1RLL6NQ6jC7AQQggh0kMp9RfgI2CMUqpSKXU5cCdwulJqK3B68r4QQgjRZ3VrN2CllIPED+K3u/M4QgghhNhLa/21g6xa0KOBCCGEEF3Qrcmq1roVKOzOYwghhBBCCCGOfpFIhMrKSoLBYMcV06aB2dw7QXWVYcDmzb0dRdrZbDbKy8vJyMjo0n56qhqwEEIIIYQQQhyxyspKsrOzGTp0KEqpvSvq6iAzs/cC64pwGEqOrpnEtNY0NjZSWVnJsGHDurQvSVaFEEeFKOBJ3nY2NrKnsZGs4mKs+fm0QvvN5fXS6PViy8khw+kkDIQATyBAS2srVoeDTLudOBAD4kBrMEhrKITDasVms2ECVPIWCQYJtbaSbbeTa7eTAWQmb2Gfj5DXS7HTiZGdjQPIAuxAqLkZf10dwwsLGV5URG5ynUIIIYQQBxIMBvdPVEWfo5SisLCQ+vr6Lu9LklUhRJ8WB5qAehLzbNQD21pa2OX3Q04OsawsPCQSUYBQKITL7werFbxeDIcDq9W6d11zM2gNTU0YGRlYrdbE8vr6xHK/H8MwOj6mrg60xq3UQdfh8+2/rqkpsa65GSMzs+M6rxdsNmhtxQiFsFqtmIEcIKO1FVNLC4OzshienU0JUJy8FQHW7n/ZhRBCiD5JEtX+IV3/T5KsCiF6XYxEIlqVctvi81ERChHMyiLDZmvfNhQK4XK7E0lgYyOGxdKeBELiqitaowGlNcFgsH39wdYdyWO6Y10MqA2FcDU0gNasCIc7JLltMgMBslpaGOVwMC47m0FAOWAgX+pCCCFEd7rjrrv48/PPYzaZMJlM/P63v+XOe+5h565d+Px+6hsaGDZkCAAP3HUXq9et456HHmL7zp3Ub9tGUWGinM/Tzz7LL++9F7TGmZfHgw8+yKRJk/Y73s6dO7ngggtoampi6tSp/OlPfyJzny7Pra2tfOtb32L9+vVorcnLy+P111/H6XRiNps5/vjjiUajjBs3jieeeAKHw8Hrr7/OddddRywW44orruCGG27Y79jvvvsuZ599dntX3nPPPZebb74ZALfbzRVXXMHGjRtRSvHoo48ya9astL7WIOc1QogeFAdqgYrk7VOvly3BIP7sbMz7JqRtrZL7tHQeLNEzkWiVLM7IwNXcTGYkgjUWY3p+PgMABxCKx1mzcSPmSIQMYP5JJzEQ8ITDvPfBB6holAylOGPRIkpJzO3VEAzy2ltvoeNxlMnEmUuWUJKbSxyoCQZ57d13iWqNtlg4ddEi8oAwUBOJ8Nbq1YSUIpqRweTZs7GSaAGuVYpVtbUEzWaCVivFxcWEgGAnzy/1tdmdbAVeFwp1SGYtQG5rK9luN5McDqbn5TECyO6O/0whhBCilw294ZW07q/ihjmdrv9oxQpeXraM1e++i9VqpaGxkXA4zAtPPQXAu8uXc9f99/PyX//a/hi73c7SxYuZt3Rph30NGzKE9155hXyHg9dWreLKK6/kk08+2e+YP/nJT/j+97/PBRdcwFVXXcUjjzzC1Vdf3WGbe++9F8Mw2LBhAwCff/55e2Eju93O2rVrAbjwwgt56KGHuO6667jmmmt48803KS8v54QTTuCss85i/Pjx+x3/5JNP5uWXX95v+XXXXcfixYt57rnnCIfDtLa27rdNOkiyKoToFhESCelWYE1LC5uDQdw5OahkUtqhS24g0GlCavH7GWW1UgzYgB1btpDV2kpWJMKXTjmFEYCT5HhPhwNXaSnV1dWUDR6MkZOzN6j8fOZPn55YV1aGUVSUWF5czKAFC/YuTyl0MMgwOHvJkr3rDKN93TDD4CuLF+9dV1zcvm5kURGjZ8/euy4/f28cOTm4hg5NrCspwXA4gESSuy0U4uYf/IBwUxNRi4Xs4mLimZmJRBbwhsOYwuH2XXkyM8lIXmGNx2JUBAIALCfxA2Uym7EDeYMHc8YPfkBWTQ2zCwoYlPI8hBBCCHFoNS4XRQUF7ecrba2knZkyceIBl88+8cTEH+EwM2fOpLKycr9ttNa8/fbb/PnPfwbg4osv5pZbbtkvWa2pqWFIsjUXYMyYMQc85sknn8z69etZsWIFI0eOZPjw4QBccMEFvPjiiwdMVg+kpaWF999/n8cffxyAzMzM/Vp700WSVSFEl2lgVX09//F48JSU4MrJoYJE0aMO3XaDwfakdN+E1OrzMdFqpQzI0ppta9eS4/ORGw7z5TPPpD21ys3FNXHiARPENoZhdEgqD2fdkTwm3esygfElJYywWLh+9Giys7NxOp0dtvH6fHy6YwcBi4Wg1UpOeTkhq5UWoDkY7FDO32azYU1eHPi/7du5t6UFHA7MgQAn+/3MzspiIjAK+TEQQgghDmXhqady269+xejp0zntlFM4/9xzOWVO562xh+ORRx7hjDPO2G95Y2MjeXl5WCyJX+ny8nKqqqr22+6yyy5j4cKFPPfccyxYsICLL76YUaNGddgmGo3y2muvsXjxYqqqqhg0aFD7uvLy8gO26gJ89NFHTJo0ibKyMu666y4mTJjAjh07KC4u5tJLL2XdunVMmzaNe++9l6ysrK68DAck5ydCiC8sBuwAPgU2AqsDAbYHApCRAW43htV60FbSDL+fyVYrBUDVp5+S7/VSEAhw7hln7E1I8/JwzZx5wNZM6DwJPBrY7XZKS0sPuC7b6eS44cPxer2JZDali7A7GmVDVRX+zExabTYyHQ58JLpfx2Kx9v+HmFKsiUbZkXycDTgeGOx2Y1RWMrW4+Kh+fYUQQogj4XQ6WfXuu/z7o49459//5vzLLuPOn/+cS77+9SPe5zvLl/PII4+wfPny/dZprfdbdqDCRZMnT2bHjh0sW7aMf/3rX5xwwgl89NFHjBs3jkAgwOTJk4FEy+rll1/Oiy++eFj7nTp1Krt27cLpdPLqq6/y5S9/ma1btxKNRlm9ejX3338/J554Itdddx133nknv/jFL47gFeicJKtCiEPSwG7gTbeb/wQC1OTno1PGmHrC4QOOsywFpphMNG7dSpHHQ5Hfz1cXLUokpbm5uKZNO2YT0q5wOp37tbgC5DmdTBkyZG8im5lJjMR0Pq9rTbS6murcXJqdTmwp/39BYHkohKulBbKzKWxs5HyrlbPy8jhwyiyEEEIcm8xmM/NOOol5J53E8ePH88Rf/nLEyer6jRu54gc/4LVlyyg8QJfioqIi3G430WgUi8VCZWUlZWVlB9yX0+nk3HPP5dxzz8VkMvHqq68ybty4DmNW25SXl7Nnz572+wfbb07KUKozzzyT73znOzQ0NFBeXk55eTknJrsyn3feedx5551H8hIckiSrQogDipJoNV0BfALsaUtmtIa6ug5jTFt/+UsyP/sMeziMPRJhSH4+xTYbGcl9OQMBmlpbCf5/9s48PK6q/v+vM0tmJjOZ7Jk0TdN93xcKpVAKhRbaWkBBqvBlEdkUBP2hAgoCgoogIgoFRAEFRWQRUJYqS0vZSve9pEvaZpsks+/r+f1xJ2m6pUsmTdqe1/Pcp5m7nPOZyc30vO9ny81lwfvvd8qugqoqbrn33k6NcSzyu88+448rViCBayZM4JZTTuHO99/n9c2b0QlBmdXKsxdcQMVeocN6oAgYYDJxw4AB1NfXYykpodFkYjWwGq0dUHsPuMtq5QUh+DcwCJgGnIbWOkehUCgUihOVzdXV6HQ6Bg8cCMCqtWvp2y6c9nDYuWsXX738cv762GMMGTJkv+cIITjzzDN5+eWXmT9/Ps899xznn3/+Pud9/PHHjBgxgsLCQuLxOBs2bGD69OkHnPukk06iurqa7du307t3b1588cW2vNj2NDY24nA4EEKwdOlS0uk0xcXFCCHo06cPmzdvZujQobz33nuHnO96uCixqlAo2tjmdPI/v5+d5eV8mZdHpN2xvcN5zcEg00wmRgHv1dfzs/ahqfvx+mWLu2tqumzsnsq6pib+uGIFS6+5hhy9nnOff545gwfzw6lT+flZZwHw6Oefc++iRTyxV7XB9rT3Vg8DpqN5zRuBRek0/2xqYntJCSm9vs3zuiWzLYjF6OX1Ms9o5PyiIvWfh0KhUChOOIKhEDf96Ed4/X4Mej2DBgzgqUce6fCaR598kl8/+iiNTidjTjuN2eecw9OPPsq9Dz6Iy+3mOz/+MfzkJxgMBpYtWwZoXsynn36aiooKHnjgAebPn89Pf/pTxo8fz9VXX73PHFu3buWGG25ASkk6nWbOnDl87WtfO6BNBoOBP/zhD8yaNYtUKsW3vvUtRo4cCcATTzwBwPXXX8/LL7/MggULMBgMWCwWXnzxxbZw4d///vdceumlxONxBgwYwDPPPHMkH+lBUesNheIER6KJkZf8fl4Lh0nk5IDHs09/zwKTibKmJvo0NdHH6+WbZ59NeebYZxw4NFXReTY2N3NKZSW5mTL0Z/Tty2ubNvGjdkUdQvE4R9J+WwC9gPmFhZxZVcX2hgYaq6pYZzKxnHZFspxOnFKyKhbjHxYLl1gsnAtkv5SCQqFQKBSHRs2v5mg/NDVBF1Wjbc/EceP4ZOHCAx5vDQ9uz/euu47vXXfdPuc+/eijPP3ooxCPQ7suBABvvfVW288DBgxg6dKlHdp1+eWXc/nll+/3WDAY3O/+2bNnM3v27H32X3/99W0/33jjjdx44437vX7cuHFt4rorUWJVoThBiQIfAu8AWwGflCR0uj3yTqtMJiYDk4FRZjOuqirqDQYqJk1S+aRZ4NNP4cMPYfp06KiP9qiyMn7y/vu4wmEsRiNvbdnCpEwBpp+89x5/WbOGfJOJD664olP2tPe8XgCE0B5E/MPtpimdJi0EQkoa43GetVh4EZgFzAPKDjSoQqFQKBQKxRGixKpCcYLxRXMzr0ajrC8t3aNIktlsxicEJYEAQxsb+faYMUyAPbx1x0PRoySwo6mJGqeTwvJyCkpLiaH1OG1wuWh0uSgsKaGgqIgUWiXdFo+HFpeLkuJiigoLEYAO7bPxuN34W1roVVxMeXExOYAR8DU342tspL/DQd+yMvR72fHppzBjhvZANScH3nvvwIJ1eGl8LB3QAAEAAElEQVQpP546lXP++ldsOTmMdTgw6HQA3D9jBvfPmMEvP/qIPyxdyj1nnpm1z8oKzABG6XS8tHgx6yoqWNu3b1uIcBR4HXgTGBsIcPLOnUwqKTnm7xGFQqFQKBQ9AyVWFYoThBrgyWCQtyKRfYok5QAzTCZOys3F4nLRe9So/fYvPRy+9frr/PvLLymzWln3ne8A4I5EuOTll6nxeulXUMBLF11EocXCC2vW8OAnn7Rdu8bpZMV11zGuvPxAwwOakHQDG1ta2Op2k1Naiq6wED9aBdyGYBBnOIzeZkPm5hIGArEYzmgU7HaIRHDEYphMJi3UNRQCkwmCQRxW6+79gYDWlicQwJGb2xYeHYvFcAaD2jWhEA6bbfc1kYg2RzSKIxbDbjKRC4hwGBkIsOPdAqJxEzIFsTj84a0wOwt2MLykhNR+3uvVEyZw9YQJANzx3ntUtqvQB/DN0aOZ87e/ZVWstuJwOPj6rFmcVl9Pqd3OJpOJV4HWOoKRWIzXPR7esFqZsHkzdwNVSrAqFAqFQqHoJF0qVoUQBcDTwCi01LhvSSk/7co5FQrFntQCfwOWAN52vTaFlBT4/VxWWspZgA2gpETbssCV48Zx4+TJXP7aa237frVkCTP69+e2007jV0uW8KslS3jgnHO4dMwYLh0zBoC1Tifnv/him1BNAIHM1hSN8kUoxPdCIUJWKy4gHIvhDIc1wdhOTMZiMZxutybMo9E2Yb53oajWNjuHux/2LTp1sGv8sRjOlhaQktBYDyLHgYwLyJF8PsHPutxciESwplKMR/NsGmIx9JEIumSSESUleH0+Xt24kU+vvppql4vBmVL3b2zezLAs/e72R3uveiWax3UF8CrwUeb9poVged++3KLX8zNgbJdZo1AoFIoTFSnlfnuCKnoW++sReyR0tWf1d8A7UsqLhBA5QG4Xz6dQKDKsbW7muViMtaWl5GTEVWuo76DGRsbV1nLt1Kl07Ls8cqb17UuN17vHvtc3b+bDTF7lFWPHMv2553jgnHMALQzXBzy2bh2nDR/O68EgcZOJRKaoUCqZJBiLUS8ltS4XDoPhiESmxWwmmkphTCQwptMMKi2lAEgYDGx3udCnUuiBEUVFFAAhnY4N9fWQTiN0OkYWFrYVFfLpdKxzOkkBKYOB/pkwYK/BwJfhMAmdjrjRiKU1bLadTdYJMUa/HiK2zIZpUgg5JNZmayqVIgqEkkmC0SgAv3ntNSLxOAa9nqtmz+YzvZ5fvPMOjV4vOTodAwoKeGLOnK74Ve4XAUzMbJ8lEtzr9VJXUABCEMzL46dogvZqIO+oWaVQKBSK4xmz2YzL5Wprn6LomUgpcblce/R0P1K6TKwKIexo7fmuBJBSxtHWowqFoguJAk/4fDwXDpMGcDrbvIrTTCZm5uZiNBqpmDr1qOcWOoNBemVa4jR486j1hXhxcxjDACPxjCh9bd06rp07l/pkElIpbFYreoOBZDKpeUkB2onPspwczIEAudEouYkEUwoK6AOkUilWrVyJKR7HnEoxd8YM+gEmk4kmq5X6+noqKipw5GaeoVmtOHv33r0/LyOx8vJwZvqTVlRU4GgffpuXh7Nv393HWqshW604i4ra9peZTESBmliMf3/6KWGDgajJxOjTTkN3Duzyp/l8cxOBnByCFgtSr2W4tn/P/+/iizGbzZjMZlLJJDWhEN+cMweEwGa1YjIY2ADsiMXIDQapMpspsh6dWr2nlJTw51SKVwMBFlZWkso8HHkPWAZ8ze2m744d9K6oUPmsCoVCoThiKisrqa2tpbm5ec8DgQDo964OcYyQSoHL1d1WZB2z2UxlZWWnx+lKz+oAtF7zzwghxgLLgZullKEunFOhOKH5AngCqEbL52z11PVzu7m1Vy+GQFZDfQ+VJmBXNEoS+GciQaDRyK6/SNJJ2PxPC4VfC1E4WLC9sRGjwUBFJrQVKUknkxQZDJh0OkI+H728Xk5auZILp05lOGCyWHCWlmrCsE8fHPn52rVFRZw2ZcpuIdmuLPyBCkUd7v7DucYCDC8ro+jMM3fbVFioHbTbcVZVafvz83lMr+d8oCWdZnNTE1GjkWhODiarlSgQ20u4J5NJ9AYDja2eWL2ezxIJKhIJ+hiN2MNhmt1unJkHF11BucPBdxwOvgE8hRZ2DtAUi3F3MMjARIJZb73FBbNnK8GqUCgUiiPCaDTSv3//fQ8sWABZEEbdQm0t3HBDd1vRY+lKsWoAJgA3SSk/F0L8DrgNuLP9SUKIa4FrAaqqqrrQHIXi+MWFJhBaSxS1hvv28niYumUL1512Gl0lDz79FNasgV166NMHvMEgu6JRIjYbm9FCe9/NhPBaLRa2NjeTu60cfzKIFSsyDfFaPen+SVasW8e5I0ZQ5XZjjsWwJJOM7t9fCyPNySFYXMz/Wlr4zpQpexSAOhKR2V0ciq06tHxVa24uxRUVBAIB8vLysBmNSKA5lWJdYyPBnBzCZjN6q5UEe3piJeBKpfAJQTCR4FOjket37eJKo5FZRUV0PjBn/xQCPwbOBBYAWzOhz1scDmJGI2MbGnrc70ShUCgUCkXPpCvFai1QK6X8PPP6ZTSxugdSyqfQ1tlMmjQpO5m4CsUJggRe8Hj4C0C7KrUlJhPX5uUxwOWi92mndZk4aG2/4ojAs2th2DcSuIuSpA0GiMWIJJPAbhE1ZsAAPlu/ntn9i1mjW83Q9BB0QjI8p56piTJ+smEDi6+6ijKjcbdAaw2tBWw2G8XFxSeU2LHZbHt8BgIos1qZXFm5h4iNAHXpNOu9XvwWCyGTCUO78GkpBNtKS/mNXs9fgRGBAIPq65lRUEDvLvg8JwOjgd8Jwd8z/Vlri4t5vriYMagCBgqFQqFQKA5Ol4lVKWWjEGKXEGKolHIzWq2NDV01n0JxohEE7gsGeTsQ0LxpgQAOh4M5JhNXAfbCQmgNM+0CljY3c+drBiLxAiRaykXdDoGpSDv+57feorqujmAkwq2PP84lY8dyTb9+/Pqjj3hgwwbKHYXcWjWP/uVuBg1ysKylhUq7nQEZm9sLNMW+7C1iLcCg3FzKS0oIBAKYDQbCBgM7Uym+TCS0k4TAbDbjz7SawWzmSZ+Pa0wmvl5QkHUBaQFus9spSqd5PjP3DpOJnwL3oAovKRQKhUKh6JiurgZ8E/BCphLwNuCqLp5PoTghqAZ+BVS3a0VTFAxyTSjExcOHd9m8MbRcxJdDIT6JRAidYkQYJaQkQg/W/oKkEOTGYtwxdSojS0upslgwA8FgkEAgwOzLL9+vEJ1us/HZt7/dZbafKLQXsYVAb5OJ0RYLSxIJJtntrDKZWO/ztd03QZOJPwvB28ApPh9jd+xgZJbDp68tKMCB1scMtPv3J8DPgfyszaJQKBQKheJ4o0vFqpRyFTCpK+dQKE4kJPBv4M9Akt25qeNqapi6ZQvTuqh1yZrmZv4ZibC2rIyU2YwvE1qaOzHOgBecWO5JMX4SjOijJz9kIBkOk1dUhM1iaRtjb0+g4sAUVFVxd01NVsccOXYs1xVoXvBl8TgLamrYUFFBxGTCbDbjicV41udD2O1M2LSJe4A+WRSs5wM5wOOZ15tiMa7x+/mFlAxqV/xKoVAoFAqFopWu9qwqFIosEQfuDQRYnE5rLUxMJopMJr5ns9E7L4+KOXOynsvZDDzl9/NyaxucpiYcDgdms5mglAxwOhmmbyQ6LMG8PpmLrFZtUxwxt9x7b5eNLYCTSkupGjaMHQ0NbC8p4cN23ta0ECzv14+b9Xp+BozN4tznoQnWX8diOJ1OnFJyu9PJH6Q8ofKQFQqFQqFQHBpKrCoUxwAh4LZQiMUeD0iJTwhOKS7mHquV8qIiKCrK6nybmpr4azTKyrIyglLu0QbHFghwWUkJo3NzCebkUHHKKSx47bWszq/oelqrD08Gvo5WsfkRn4+G/HwQgmBeHj+MxRjT3Mx3cnIYkCXv5wxg+86d/D4nBwl86XDwX6+Xy5RYVSgUCoVCsRdKrCoUPRwvcBewurWqKzB6506udrkoHz8+q3MlgT97vTwZCpHU6aCpiaLCQhCCSpeLk3bs4IYpUygHKCvTth5MHPBntu0uF7tcLqylpeQUFhIBGnw+mv1+rPn55NrtJAFvIIA7GMSSl4fJZiOJ9rn4w2FCoRB5Viu23FwEEAmFiAaDFFqtFNps5ADRQICI10u53U6v/HxygZjHQ7CpiQHFxQwsKSEfrTWN6J6PZR8EcG5xMeOSSV4NBFhYWUkYcDqd/FdK3n8vzPR1QS6ea2PKlM7P9xW7nf/W1LCpvByE4N9VVXwVVSFYoVAoFArFniixqlD0YJqAnwIN7M5PPW3TJibu2kXfuXOzOtc6tHzCdUKQ1OnaPKlV4TB3Wa0UuFxUTJmy33DNrsixPBAFmX7MEnADa1wuNnk8yNJSYvn5NAM7w2GcsRgi084nFovhDIXAZNKqJudqssiZCX3F68WRafvjzHivcbtxGI27r29p0fZHIm2fgdPl0vbFYjiMxj2v9/lwmLVups5AAMxmCIdxxGKYTCaS0SiGUIhKs5l+ViulgNHjQTQ1MaaoiFGlpeiOyie6m3KHg+84HHwDuLuuDqeUBJfnsP1bDlYmBAt+C++/R6cFq8Ph4BdCcJPBQNJqJWQy8RygWqIfHYQQ3we+jfZntBa4SkoZ7V6rFAqFQqHYFyVWFYoeSh3w/UiExngcs9mMxWTizrw8BpaWUjF2bNZy/ALAo34/70qJ2WxuE8Wlfj+nbtnCd6dMoby4GIqLDzhGV+ZYptHEeg2w2udjczDINeEwntxc/K0i1GjcUxy2CstMO59oNNrmlRZSaq/hkPaZTKZOXX+gfc6mJpCSnaEQWw3aV3GbqI1E6B2NUp5OY/N6GZWby0kFBQzi6LR7KQTuMBjIWb2a5z+bgkwISAmiUclvn4wyZYrloGMcjIFlZdwGPAjEYjH+Ho0yMpFgWklJp8dWHBghRG/ge8AIKWVECPESMB94tlsNUygUCoViPyixqlD0QNzADyMRNjc3g5QEpeT+vDzOKy7Oau/UzcDPIhE2er1tubBVZWX8P7udES4XfQ7gSe0qkmiitBpY4fezIRrFZ7cjzGbNu9nqCW1pOSQRqkunycl4L50eD8ZEAlMqxUmFhZilZP2WLRiSSQxSMvXkk9FLydI1axCpFAbgzNNPpxzwJhIs+uwzpJSg0zH9rLOQwPtffEESkAYDp5x+OnEh+Gj9emI6HUmjkRGTJhEVgmUNDUQNBqImE6WlpTSFwwcVtb5QiLpQCKRkkd+Pw2LBZDKRF4lQ7nYzJTeXMwoL6apAbIfDwa0TJ2Ly+/mFoQCZkiDh5b+beO1iNxfO6Xye9OnAv4NB3nW7QUruDQZ5PpWiXOWvdjUGwCKESKBFX9d3sz0KhUKhUOwXJVYVih5GGLgHqI3HQUoMqRRzV6ygfODADr2bh4ME/gU8B7gz80hgUGMjN3q9nDVmDGQ5H3Z/+ID1wKd+P6uiUdx2O7pWYZoR0ESjBxSmxSYTFr8feyhEfizGjDFjKEmnWfXpp1giEczpNF+ZOxdHURHOXr2or6+noqoKh90OgHPUKG1fRQWOzEOAUydP3r2v9fMuKWHA9Om792e8fwNPP32fc0+ZOHH3vnyti6izf39tX1kZjtxcnIEA/3r/fYJGI6HcXEZOn45Lp2NRXR0eiwVva4uf/Qjanc3NrJeS9wIBHjcYKIzFOMNo5Cv5+fQnu3mwDoeD++bDp/9y8/5LhSAFMgWPLRJcmIUuSQI4d9s2/peXR1Kno9lmY3lLC3OUWO0ypJR1QoiHgJ1ABFgopVzYzWYpFAqFQrFflFhVKHoQSeCXwDa0HNUAcN7q1VT5fFRUVGRljjBwbzDIJ6lUW9hvNJXirLVrGdzSwsgs58K2JwasAd73+1kei+FtFY0HEaY5oRCjcnLw7NhBQSBAUSTCN6ZNY1B+Ps6yMk0I9u/fJjjHnHnmbsGYET6t1W/bc6j7Onv93vscDgcXzJ6928ZMNefzBw7U9tnthJJJ/r50KS1WK835+dhKSvgyEmn7XJASt9uNG9gqBP/S6SiOxZhnMHBxQQGdD9TdzQ/+Dxb/K00yqUMYJZ6ZObyxfj0nl5R02vM+0uFg4I4dfOlwgBBsrazMktWK/SGEKERre9sfrX7bP4UQl0kpn9/rvGuBawGqMnniCoVCoVAcbZRYVSh6CBL4ZSDAonZ9VG+32xncrx8Vp56alXBcH3BrOMzSTNilTwimFBdzo81GoqqKilNOyXrYbwL4t9vNwliMXYWFxIXYLU4jEWxW6x7C1BoIMNlkwlNdTYnPR2koxMWzZmne0aFDdwu8TCXiwxGcPYlDsfvb06btfr9WK3VOJ88uXcquggJqi4upLyzUqja3E66/EYIXhWCqx8P/WSxUZeFzmDOniNdecfPjXzyAyVpL+okYv0wk6N/cTJ8+fbBYjlwaF1RVcfXNN/MLgwGz2cwqk0m7FzptteIAnA1sl1I2AwghXgVOBfYQq1LKp4CnACZNmiSPtpEKhUKhUIASqwpFj+FvHg8vBwJtIvKG/Hy+XliYtRzVJuBOYHMi0SYOx9XUcLXLxajx47PehsYL/MXn481YjKaMp5Smpj3EqT6dpm84jKWmhl5uN70CAS6aNQtHXh7O0aMPyTt6PLP3++3tcLQJWLPZzOIPPmBnYSFf9urFtrIyEno9SEmd18s/hOBdt5uf+f3MGDy407bMnVPE4n86GVneh3AmJHm4ycTQggJ69ep1xOPeXVPD2cXF/AVoicXY4vPxkSq01JXsBE4RQuSihQHPAJZ1r0kKhUKhUOwfJVYVih7ANuBPQrSJuBG1tUx2ubKWN7oLuDUSoSEeR6/TIYCz1q9nVEMDVVkO+93a1MQLkQgfFxbS6PNpRYkyCCkpi8UYumMHfZqbqfD7uWD2bBg27IQXpodK+8+lqKioTbguWryYDeXlrOrbF2+mNY83N5fbEwl+XV3N9CwI1lxgoBCszdyrrrw88vI6X5/YAIz2+3kx43F/qraWoamU+v13AVLKz4UQLwMr0DIPVpLxoCoUCoVC0dNQYlWh6GaiwK8Bg8UCfj8lgQBnbt5M79mzszJ+C5pQ3ZSpLKyXkh8Dw3r1omLixKwJgjTwgsfDo8Egcb0ePB5aZWpeNMrIXbsY1tTEpTNmwNCh1Ofl7SNOFYfH3sL15Pp6TMBTGzbw0dChJPR6okYjv/R6Kdu4kRHDh3d6zqEmE9v1euLxOKGiItIyOxGiA+rrwWJBAg35+dTX16t7oouQUv4M+Fl326FQKBQKxcFQYlWh6GZ+HQiwIZOnWlVWxnf9fsbPnp2VhXoIbUXa0L6y8MqVDBswgPFZrPa7tKWFR9NpTcTo9W0itTQQ4KStWxnQ3MzwoUMZMmOGEqddRHvheh1Q9MUXvDZ5MimdjoaCAv66ciW3FBV1+nMvASxSEkwkiEvJ8sZGPnc6+ev69QhgtMPBM+efz53vv8+bX35Jjl7PwKIinjn/fAoyfXD3x4SiIohGtbY9Viu9Mt5hhUKhUCgUJy5KrCoU3cjbLhevZHpp+oTgLpuNc0eNOuh1j9x1F96dOzs8Jw18kUjglhIhBPpYjMqWFqrjcV7s04fXD7EoTkFVFbfce+9+j0ngz14vfwiFSAMIAUJQEApx6tatXD5wILEuKtykODDDhw/nYmDLzp2s6tcPgC8zrXs6+3sQQEE4THPGo7ozkeDx5cvZfNNNWIxGvv7Pf/LiunWcM3Agvzz7bAw6HT/+73/55Ucf8cA55xxw3EFlZfSPRnHHYpjNZnJMpk7ZqVAoFAqF4thHiVWFopsIAY9DW57qsPp6BphMkGlj0hHenTu5OyNCDsRHsRi9WgsbCcEUKXEUF5OXl4ettY/nIXB3Tc1+9weAnweDfBiLkcrsM6RSzIvFmB2N0vekk5RA7UaGDx/OhdEoqzKvd5SUYIrHszJ2iclEdSwGUhIzGEhLSSSZxKjXE04kqMjLY+bAgW3nn1JZycsbN3Y4pgAGmM2EhSAajbImEGC6KrKkUCgUCsUJTZeKVSFEDdqaNgUkpZSTunI+heJY4lG/HzeAEOTGYpzx5ZdUzJqVlbF3AFuk1IQq0MflwmGxdKpqa3ua0VrgrHK72woolXu9zNqwgcvOOgvHsGFZmUfROfoCpmSSmMFA3GCgpqmJEVkY15ZOt/1sLSzkeyedRNVvf4vFaGTmwIF7CFWAP69axSUjRx583EAAp8cDUvLGhg0MnzBBPfBQKBQKheIERncU5jhTSjlOCVWFYjcftrTwotdLMBgE4P/CYa1lSxYW5s5QiMWRCCITklscDFLh9WalaivAyuZmrna52BKJtInh8du3c2NdnSZUlbjoMfSuqKAgHG57vayuDqfT2elxZTDY9rv3JBK8sXkz22++mfof/IBQPM7za9a0nXv/4sUYdDouHT364ONmhKoEYno99fX1nbZVoVAoFArFsYsKA1YojjJJ4PGM11MCA5qamKLXd1rkfev113lz82ZMZjM/ufxyEILqbdv47UcfscXjYek11zApE/77wpo1PPjJJ23XrnE6WXHddYwrL+9wjnXNzXzH5yNsNIIQ6KTknDVrGNrczMlz5yqh2sNwOBxUxGI4M8IyLkRW8lbzrFZIJkFKNtTVMaCoiFKrFYCvDh/OJ7t2cdmYMTy3ahX/rq7mvcsv1x6eHIT8ggLwehFSogMqKio6ZadCoVAoFIpjm672rEpgoRBiuRDi2v2dIIS4VgixTAixrLm5uYvNUSi6n38BXrsdhMCYSjF90yZ6Z2FRfuW4cfz6/PNJ67Q/ayElM3JzefOb32Ra3757nHvpmDGsuv56Vl1/PX+98EL6FRQcVKhubWrih+EwIaMRCRiSSW5yu/lGnz7MVUK1x2JuV1VXAOYOKvIeKharFYvZjMFgoLK0lOVOJ+FEAikl723fzvCSEt7ZsoUHPv6YN+bPJ9doPKRxrXY7DoeD/IICJqucZ4VCoVAoTni62rM6VUpZL4QoA/4rhNgkpVzc/gQp5VNkGpJPmjQpOw37FIoeShPwbDRKNBajqLCQrzQ3841zzsnKonx8376sbGlpe13pdnNG794HLab093Xr+MZBKhDXOZ3c6HRSl58PgD6d5vxVq5gzdaoSFD2cSCrV9rMunSYajXZ6zFAoRCTjWa2w25k3cCATnnwSg07H+F69uHbiREY+/jixVIpz/vpXQCuy9MTcuR2O2/4/gKORo6JQKBQKhaJn06ViVUpZn/m3SQjxGjAZWNzxVQrF8ctvg0F2ud0gJSXBIPNLSrIi9iSwJB4nnkqhE4Iyo5EzysoOqervP9av5/X58zs850/RKPUZoSqAbzY0cLkSqscEHrMZEY0igcJ4PCuhte5wGDLeUn0qxffGjOGXexUH2/K97x3+uH4/Tq8XpGTZxo2cPX68uscUCoVCoTiB6TKxKoSwAjopZSDz80xg/80aFYdEHPACLsADbPV42OnzYSkqwmi3EwUi7TZPOIw3EiE3NxdLu56arZljkUiEaChEcW4uJbm5WAALkJvZ4l4vEZeLwYWFDC0qohSwt7tecXh8AXycSrXlqp6xYQPOQYOoyMJifGMkQk08TiwWIy0lpwih5RUehM9ra8k1GhlVVnbAc1qA9UVF4HYDcOqWLVw+apQSEccA251OdsZiSEAvJedkq7quzQbxOEiJOZkkr6Cg82MC28Phtr+P3EgkK/m1CoVCoVAojl260rPqAF7LFNUwAH+TUr7ThfMdF/iAnZltrd/P1nCYpN1ONDeXYLvzYrEYzkAAhACvF4fJhMlk2vN4S4tWsTMUwuFw7Hu8uRmkZGs4vP/jfj8YDBAM4rBaMZlM5AAlQGlmy/H5MDqdTCgsZFxpqQrdOwAx4LeRCKlkEoRgRG0tvf3+rHi5YsAndTpC23OIF+owpFLofD5ol6t4IF48SAhwDFibTOL1eJBA35YWbqqoUALiGGGp2912HxSEQsSz1Gc1abFg0elIJBL0ttsPq29vR4Tz86G5GSElhdGoKrCkUCgUCsUJTpeJVSnlNmBsV41/rJMEPm1pYbXXS6SsDK/dzg40sQoZsZgJh6OlZR8xGY1G2zwQQkqi0ehROR4H6jNbLBbD6fOByQSRCH2iUYaYzQwABgD9M1vny7kc+zzq97M+8/s0JxJcCYzPUlGi/26LU/diDjINfmFFZ5aH1KYmLSX/3LCBxVdddcBzVgLRdBqkxBqLcfbatcTGqj/rYwV3RQX4fFpuqddLxaBBWRm3OR4nkvmOCDY3E9TpOi1YE4Bbp8OWiQiYr9ogKRQKhUJxwqNa1xwlUsBWYE1mWxGNsqs172s/ntH9iUWLyUQhUATk6PXsqqvDEo1iSqc5beJEKtDCeM1AKJFgySefoEsm0el0nHPOObQP9GyKxfjvkiUkgKTRyKkzZmBBCx8OA/VS8vc770Q2N5PU6zEVFBA0GEi0GyMRj6Nr56lpzsnBm5PD0nbnpFMpchIJinU6ynJyKARy9vP5FFRVccu9x2eU+NsuF/9MJpGZ9iGnfvkljl69srIQ3xkOs2mrDpmCV3iVGllDJBJm2FNPcc/06RRZLNz09ts0h8PM+dvfGFdezruXXQbA4h07qLTbGVBYuN+xG4HqZBKZToMQTN+wAVsqpbxdxxAbDbu/4nt7PFkZUwKNmXB2AGskQiAQ6LRYXdvcTGOmd689GsWYpdBihUKhUCgUxy5KrHYRjU4ny1taaOndm50FBaxDE4Gt+GOx/Xouc4AqoEino6G6msJAgLxEgq9On84g2lXItNlwDhxIfX09FRUVOPYWHCUlDDjrrN3H98pJLCsro/Tss3cfLy7e8/qCAqpjMW6pqiIvL69tIRrPvI8w4IpE2OZ0Es7JIWwykZOfj77d4jiVTBIMhbRFrRDYrFb0BgMFQBlgj0Qw+3wU2Ww8tHNnJz7tnsuK5mbu9vuJZj6XAU1NjGxooGLixE6PnQa+kJKcygRCb+Jr6a9i0MEVVwj69Nl93oXDh+/3+un9+vHZt7+932Mp4JNEgmA4TCKZZFBjI7OLixkyZYrydh0jBIA1iUSbqKxwu7OSA+oDUpn2SIZUCksyeUie/IOx1OuFnBwkUBAMUp9JT1Acf9i+/nWCL73U4TmPvvkmC95+mwkDB3Lx1KkMqahgRFXVUbJQoTg62Gw2gsFgh+c8+uijLFiwgAkTJnDxxRczZMgQRowYcZQsPLaZfc89/O3//T8KOniYOv2OO3joqquYNHjwHvtXbdtGvdvN7EmTutpMxUFQYjXLNACv+Xz83evFb7OB34/DYtnDawpar0MRiVDm9VISCjFv3DjGoyX6CoC8PJyjRx9QbAI4HI4OF3OdPW6xWOjVq9ce+3IyWwFQYbHQv6SEQCBAnsmEwWDAi1b8yQvUxmKEMoIcKUkmk+gz57iSSYLxOJjN5IVCfBmPswNNqB8vBZwagJ+k00QyQtUWjXKpy8W0LIX/ro1G8QqBsSJN0VeDFK0PcdLYfPr0sRz84oOwHvBlvGe6dJrTN27ENmaMEg/HEF8AQq8HwOHzkZdIdNorXlBVxU2bN7MuocVY5EUirDcaKWhpgXZtkw53TIAWhwO8XoSUVHq9VByknZLi+Obxt97i7Z/9jP7l5Vz5yCPMPekkJVYVJySPP/44b7/9Nv379+fKK69k7ty5SqweAlJK/n3nneh0R1ZNZdX27SyrrlZitQdwQLEqhDgZ2Cil9AshLMBtwARgA/ALKaXvQNeeaISAj4D3gY1onge/2byP17QYGIOWyDvaZEIWFlIfiVDRv/++nk0OLiZ7AjabbY/wv/LMBhCUkk3btxMwmQjk5qKvqCCA5hFMZno0AgRMJrYCN6KJ9WF+P5X19ZxeWEjvHv7+90eD08lLTievlZbiyYRJG1MpZq9Zw7Rp07LyO/VGInweiZASAoRgTGmUiefZsNk6L1T9aEWV0pnw3zK/n7xkUoX/HmO8GwzizhTGGtjUxKmnntrpe++We+/l2oYG0vE4Ehi7cSNXOByMHz++0/ZuNhja8lW/OXYsjpKSTo+p6Pk8+OqrvLRkCbFEggunTOGeb36T6x9/nG1OJ/Puv5/5p5/OG0uXsmjdOu576SVeue02Bu71EFWhOB548MEHeemll4jFYlx44YXcc889XH/99Wzbto158+Yxf/583njjDRYtWsR9993HK6+8wsCBA7vb7B5FjdPJeffcw5mjR/Pppk2s2r6d5uefp8Ru5+cvvsgLixbRp6SEErudiYMGceuFFwLwz48/5jtPPIE3FOJPN93EyUOGcNcLLxCJx1mycSO3X3QRl5x+eje/uxOXjjyrf2Z3gaTfoUV+PgDMAJ4Bvtq1pvVs6p1OPvB42NS7Nxvy8mhfY9NsNuMTAnM8TpXHw9fsds4AerGX1/AYEKN7863XX+ffX35JmdXKuu98B4A733+f1zdv1vp7Wq08e8EFVOTl8fq2bTzw6aek0mn0Oh3rmptZet119C4vZyfwZSxG0GQCIdBnPEA7YzG+8HrBYuE3oRCzAgHOystjElrbnJ6IRGsn9CXwXkMD7/r9+PPztdYegD6dZs6KFZxRXp6V33cKWAcM1SptY4nHGZRMZqUiqwQ+icfxZ3IHbbEYfY1G5mbJG6w4OniApe0eCA10Oonu54HY4RIEdhUWQlMTQkoGtrRQkQWhurGpiTWZPH1DOs2AQ6hkrTj2WbhyJdX19Sz9zW+QUjLvvvtYvG4dT3znO7yzYgUf3H8/JXY71fX1zD3pJC6aOrW7TVYouoSFCxdSXV3N0qVLtb+FefNYvHgxTzzxBO+88w4ffPABJSUlVFdXM3fuXC666KLuNrnHsrmujme+9z0ev+EG+mVSnZZVV/PKp5+y8pFHSKZSTPj+95nYruBgMpVi6W9+w1vLlnHPiy/yv5//nHsvvZRl1dX84frru+utKDJ0JFZ1Uspk5udJUsoJmZ+XCCFWda1ZPZc08JrbzaMeD16LBTweHDk5bWG+euB0k4nxNhtlO3bQt6pq33zSY5grx43jxsmTufy119r2/XDqVH5+1lkAPPr559y7aBFPzJ3LpWPGcOmYMQCsdTo5/8UXmVSu+V17mc2MTCZxBYOE8vP5n16PHvC1KywV1+tZnE6zGojHYpR7vZxqMjGtoIDBdE8MexyoA3ahtRdaFwyyPhYjlhGKzngcad5d/9geiTBz9Wp6B4MMydJTuX8A4ZwcrW2RlPRvbiY/S+FxO4GGTPVfgH7NzSw1GJRQPcZ4HyDzAKiXx0NRltrAfAGkMvnnlZEI3zjnnKzcG+/5/WA0IgGH10uT13tMRlUoDo+FK1eycNUqxt9yCwDBSITq+nqmqRBwxQnGwoULWbhwYVuUSjAYpLq6mmnTpnWzZccefUtLOWXYsD32LdmwgfNPPhlLZq3+lcmT9zj+1SlTAJg4cCA1TufRMVRxyHS03l8nhLhKSvkMsFoIMUlKuUwIMQT2KAp7QiCBT4HngXV6PT6LZY8w3+EmEzOAM4B8gKIibTvOmNa3LzVe7x777O3ycUPx+H5zTv++n36e7UOIRwM/BRYlkzy3axfbS0rw5+ZiNpu1FjlOJ41SsioW4xWLBbOUVLrdjM3NZVJBAfamJoJ1dVp+bycWuXE0r9SXLS1s9nhIl5YSLSjACWyPRKiLxzGZzZhMJs0ut7utl63NatXycwFTMsmYHTsYv2MHYwcNYsiQIVlZ1K8BnovFSKVSWMxmBoXDjKuqyopXNQ6sAAwGAwhBudeLNR4nV3m5jikk8Ho43BYCPLKuLishwABvBYNt93zRli2QJVGxvbwc3G7NW9vcTIVqj3RCIKXk9osu4rpzz+1uUxSKbkVKye233851113X3aYc81jN+zZMlPs5rz0moxEAvV5PMp3uAqsUnaEjsfpt4HdCiJ8CLcCnQohdaE6l/ZcQPQ6RwDI0kbots699mO/I+nq+k5vLSd1nYo/gJ++9x1/WrCHfZOKDK67Y5/g/1q/n9fnzOxzDAMwoLmbU4MHU1dcji4vZbjLxptOJs13l5FAwiDMUYoeUfOz3U6TX445GMeXlYW9pYaQQWGIxHHY75fn5RL1e3G43BUVF5BUU4PF6qff5yCksRGe30xQM0hCJELfZSFgsmggNhyEnp61AFoCzubmtsrHD4dijvZAxmWRAKIRxxw4qmpup9Hjo36cP42bPzppXcgtwZzRKY1MT8ZISnl6/nlMtFv5nsRxxcZv2rIvH2YX2ZZ0jJSP8fvIsFnoNHdrpsRVHj6VATaYKsCmZZJDTSTQLXtUW4H+fQtN/88g9JcrAcAP1RUWdvr9DwIZ2+arXjxu334JyiuOPWRMmcOcLL3DpGWdgs1ioc7kw6vWU7dW2KM9iIRCJdI+RCsVRYNasWdx5551ceuml2Gw26urqMBqNlO31XZiXl0cgEOgmK49dThsxgusee4zbL7qIZCrFf5Yt45qZMzu8Rn3v9BwOKFYzBZSuFELkAQMy59ZKKU8Y//iHLhd/TiZpLCjYo5pvgcnEhfn5jK2pYeDQoThKS7vRyp7B/TNmcP+MGfzyo4/4w9Kl3HPmmW3HPq+tJddoZNQhLkDbF5aaCJwOvLRoETsLC6ktKcHXvz/B9uI1HAYpiRqNRI1Gmlu/XHw+inQ63H6/FhLZKmz9fu2410uRELg9Hk2ERiL7iNBWzznQFhqbHwox2OViqNXKzvXrKfF6KY5EmDd3LgwdSn1eXqc9vHuzA7gL8GRaHuXfdBNf+/RTpo8enZXiNh+6XPwrGNSePgrBbTYb847DyIATgb+GQqSSSRCCUbt2YZIyKyHACz6FNedbScdAZ5S4f5BPxTmdH/cdt5v6YBCkxBEIUKK+T08YZo4fz8Zdu5jyox8BYDObef4HP9hHrM4//XSueewxHn3zTV5WBZYUxyEzZ85k48aNTMmEo9psNp5//vl9xOr8+fO55pprePTRR3n55ZdVgaVD5KTBg5k3eTJjb76ZvqWlTBo0iPyDRI2dOXo0v3r5ZcbdfLMqsNTNHDTtT0oZAFYDCCFOiNVrHHjE7+eF1h6hTicOh4M8k4l5aJWl8vLzoQeFqjU6nexsaKCwooK8sjKiQASodbloaGmhtKSEonYFVtwuF+7mZipLSuhTUkIuYAFyAWMn7Pjm6NHM+dvf9hCrL+4nBPhwcDgcfH3WrLY2PhJ4/pNPqLPbaSkowDBsGGvSaZKZ8uSt4R7thezewvZAr+ORCL1MJsx+P9ZolIJIhBl2O6XpNGs++QRbOEwOaAWH8vNxTpy4u71QRpxmO79zJ3BrJIIzHkev02FOJjl/2TLsWWhFAlr139+gfW4S6NvcTKXLdVyGsR/vfNTSwkeZe1onJV8zmTgpC8WxUsDL/02QjhsgLZAJSSRyMg5H5z2gb8fjbX+D/RsbqU8kVI50O4QQFwPvSCkDmUinCcB9UsoV3WzaEdO+x+rN8+Zx87x5+5xT8/TTbT9PHTGCDY89dlRsUyiOJu17rN58883cfPPN+5xTU1PT9vPUqVPZsGHD0TDtmKSfw8G6P/yh7XX775FbL7yQu7/5TcKxGNNuv53/d8EFAHz4i1+0nVNit7ddU5SXxxcPP3x0DFd0SEeta34qpbwv8/MI4F+AUQghgEuklJ8fHROPLtuBB4F1UrYtoPTpNJOdTv5fVRXdVSopDtQCq9xuqn0+dMXFJO12PEBtJMLmcJhkYSFEozhisd05laEQmM0QCuGw2fbcb7FAONx2PkAsFiMViVCRk4MP+AxNwOojEWQoRC/Lvq1Rql0uBmeE8BubNzOsXcuJtJT8c8MGFl91Vafe/95tfP7vrLN2i8TiYhqTSTY7nYSsVhZv3EjYYCBpNNJv2DDW79yJlBI9MGTQILbW1GBIJLAkk0wcNozqVavIicWwxeN8feZMehUU4Cwr08YfOrStQNa49nO2E6ZdtbCWwP+A30Wj7MqEIOekUtwrJeXDhmXFeyvRSn3HbDYIhbDE45y9YQO9DxIeo+iZPJupACyBIQ0N9Dabs3J/fgqIKTGEUY8EDLo0Y8d6gM6JVSews7AQnE6ElAxvbKRi9OhO23uccaeU8p9CiNOAWcBDwALg5O41S6FQKI4drn3sMTbs2kU0HueKs85igvJKHzN05Fn9KnBf5ucHgZullG8LISYDjwCndrFtRxUJvAE8CyTZnZc6wOlk+ubNfOOcc46aUA0Ai91uVvr9hEpKcNtsNADRWAxnMAg6HXi9OEwmTCYTvnicpE63T1/X/YWzdrS/tZARUtIiBNZUim1AKpkkGI+DwcCf33iDLXV1BCIRHA8/zE1Tp7Jk82Z2+v0Y9Hr6FhTwxJw5be9l8Y4dVNrtDMhyReS9RWK5w0F5a+iwzbaHqHQaDHu+1uv3fG2xHJIIPZp9b8PA48AiwJ8J/TWkUsxdsYLygQOzEvoL8LzHw391OswZUXN5TQ3nzJypPFvHIKuBbVYrxGLopGTy9u1UzJjR6XEl8CpQNs3IgL81UfBWiJmlGzjvvMkHu/SgvOzzEQWKCgsZGgxmrbrwcUYq8+8cYIGU8nUhxN3daI9CoVAcc/zt1lu72wTFEXKo3T8qpJRvA0gplwoh9nWvHcNsamri4VSKmqKiNg+j3WTiW3l5DHG56N3FC6gwsB5Yi7bg3BSL0RgMaq1J3G4cRmOHIrNVWOvTaXJSKSpzcigC0gYDu9xudKkUQgiGFhdjA4J6PZtbWkgBCaOR3pkcsfpQCJFOkxYCISWplLZGSrbr1/it887DbDZjMps1ERsKcf7QoeSkUgyw2ehjMmFHW+AKYHq/fnz27aNbj2tvUXm4r7uTNLAEeCocZmcigdlsxmw2ow+HmblqFWXhcFZCfwH+53Lx20CAlBD4hOCKggIuU8WUjkkksCAUaqsAPKKujtnjx2flvl4PrIvFiEaj9J+Ry50DmxjqmNzpseucTv7m87X1Wv6KzYZDhZ7vjzohxJPA2cADQggToOtmmxQKhUKhOCp0JFYHCCHeQNMclUKIXCllOHOsM2mNPYqlLS18z+8nYjS25aaONJm4FehdWAhd1CM1jhZi+0YwyLJkkhyLpU0oR/YjSs0mE32NRoItLdiDQfISCc6eMIFBQKHJRMJkwtPqHWwN1bVacVZU7PYatrY3sdlwVlZq+x0OHJkkc2ciwZvvvUdUCMK5uVSn00wG3MCOYJCo0Ug4J0drbcKeIjau11MjJQ2Z92dMJMiPROhnNNLfYjl+bpguIgUsRuuhui0Ww9nSAlLiE4KvFxRwWVER7iyF/gKsA36p15MSAgmU+Xyc5nJBljy2iqPLh8CGzN+jPp3mpK1biWap5dDT7drVjKqrY+jAgdlpg+P3EzSZkEBuLEaZypM+EF8HzgUeklJ6hRC9gB92s00KhUKhUBwVOhKr5+/1WgcghHCg5cscEkIIPVr3lzop5dzDtrALqQbu1OuJZJrRCyk5rbGRO/r2PWSX8+HQ6HTysdvNpt69WWO342nfp9Pvx+FwYDKZsJjNWPx+yt1uykIhLpo8mXGAKTd3t8isqNjTC+Fw0G8/C8gDeQ0PFOb6lblz28Zf8M47DAIwmxlRUEAgEMBmNCINBjxAI7AtEiFgMpHS69tEbCqZxBcO0yIlW+Nx7EYjFQYDxZEINr+fMqs1K31BjwdagLc9Hv6VShHIy9vDg25MJjlzwwZmV1bSd/x4+mbJ+7sZuAfQWyzg95MXiTB3zRr6nn12VsZXHF2iwIJIpK0C8PgdO8jPUvGtNcCKVAqkREjJuG3bqLdYspIr/Xnv3tDSgpCSsbt2UTVyZKftPR6RUoaFEK8DDiFEVWb3pu60SaFQKBSKo0VHrWsWHWC/Ezicsnw3AxsB++GZ1rVsRmsFInNzIRDAlEgwZ/Vqrps6NetCVQJvu938pqWFFputLd+0fVhvqd/PFCmZ27cvI00mAmVl1CeTVAwbhqNdwaKuDlk90Pg2m20PgWkH+prNjMzLwx8IkM7PJ2Aw0ATszPR41N68JJ5MUgtsisfBZCI3HGa4wcAAs5liNNf9iYJEK5T1KZpnfV0shjMQ0D6vcBiHw0GRycTQ7dsZU1NDbipFxeTO5wa2sg34GZrAMZlMDC0t5dtbtjD27LN7TCi04vB4yudjs88HUmKNxfim0cjoLFQAbg0tbhXBw+vqKIrFsiKCVwE79XpsVitGKfnRqFGqt+oBEELchPZn60TLFADt1zOmE2MWAE8DozJjfUtK+WnnLFUoFAqFIvsckS4TQlwrpXzqEM6rRCsKcT/wgyOZqyvYANyN1trFZDIxsLSUq7ZtY/LUqVldsEtgBfA8sFyvx2ez7RHa29doJHfrVobU1VEQj2vtUDLX5vagPMqO2FvEDgcCqRQr6+vxWCx4rVZ0NtseIcPhnBzWA1sAM1ASi1Ht87G1qYmBx9mCNY5WYfrLzLayXS7q3nnI5nics+rrual/f4LDh1Ofn5/Vfq3VwG2RCM3xOGazmVKTiV9ZLPRR1VePWWqA19pVLj+lupriLN0zb7ndfJLpf6qTkm/qdEzOgggGeK5daPHYXbuwDR7c6TGPY24GhkopXVkc83do7XAuEkLkoBV9VygUCoWix3GkTsRDdYY9AvwIyDvCebLOhy0t3K/XI3JzMZlM5AP3WSz0y3II2nbgoVCItclkW5EcnxAYk0mGNTZyvdXKafn5NI0cSX1hYVZFSXeTZ7MxoaqKQCBAXm4uwmBgayLB+kgEn8WCFKItZDiUTOKMRtmg1/O1SISTQyFOtVqpdLnI27WLvr16HROfi0TL7d2F1hd1vd/P+mgUt92O3mwGtLZA7XNRHQ4HVpOJfLeb/k4nwxob+dp552EFrFl8WNFa6frJaJS6TAucaCrFfXY7fdp57RXHFhL4dShEPJUCIajweBjR2EjFpEmdHjsB/CmdbhPBo3btotJmy8o9uXdo8ZiaGuqt1mPi77yb2AX4sjWYEMIOTAOuBJBSxtGeqykUCoVC0eM4IrEqpXzyYOcIIeYCTVLK5UKI6R2cdy1wLUBVVdWBTssK65qb+WEgQFyvh0CAIaWl/NJioU8W55DA68BT0Sh1LlebMOlTVsaV+flMrKnRCpRkREJPqkS7NwVVVdzdrhn1ERGLQUsLAJFIhEBDAzGrlYDJRAsQiseJx+NEKiowARuTSbZn+sDqCgooaW7mTIuFCXY7A4G+QE7nLDpiJOBCy9V1ZrbqQICt4TD+/HxS7UWp16t5kqPRtlzkVi+qIZWib0sL58VifHPwYIIVFdQDFVmq3toeP9oToy+AYKYFjjGZ5CvLl2McPBiUWD1mecHj4eNMCLlOSr4djXJ6tjyfXi9OIUAIzPE4p2zfTsWsWZ0eVwJ/YXdrsOF1dRRmKbT4OGYb8KEQ4j9ArHWnlPJIu9UPAJqBZ4QQY4HlaK3pQp22VKFQKBSKLNOhWBVCDEMrtNQbbZ1RD7whpdx4CGNPBeYJIWajRXvahRDPSykva39SJpz4KYBJkybJw38Lh0YSeEBK4nqtqb0tGuXqrVvpM2pU1uZwA79Fy8dqFQa6dJqRdXV82+tl+pgxMHZs1ubram65994uHT8NfNrSwjPr1rGzqIgmtEVsq6hLCUFTXh7vSElrMlUyGiUvEKDKYmGAzUYZUAaIlhaiDQ30czjoW1aGkUNz/yeBEBDM/LvT5aLG7UZfWkqqoAAXmkCti0RoiMUwtKva7FwUZ9dbKawnp7FOatpHlLaGfOcFApxqMlGWTrPziy8o8nrJEYK5c+dm3YvannVoDZLdmddmsxlzIMA5q1ZlLfdQ0T00oPWEbr3PJm7bxsDCwqzcR5uamngiFCKh04EQfC0W46JZs7Iy9jJgTaYNTmlhIdf4fIzMksA+jtmZ2XLIzrM6AzABuElK+bkQ4nfAbcCd7U86mg+SFQqFQqE4EAcUq0KIHwPfAF4ElmZ2VwJ/F0K8KKX8VUcDSylvB27PjDUduHVvoXo0+SvgzM+HaBRdOs3c1asZP21a1sZfB9wVidCSyQc0m82YAgHOWb2a4miU4XN7VCHkHoEOmFpSwqDhw6mvryffbKbZZGJxLMZ/wmE8ubmaZ6e9x7KpCaRkcyTS1n82FovhDIfBbtc8mbEYFpMJC0AkQjwUwmy1YrJYSKO1iQlHIvijUXSZcPC28UMhyMnRqjNnhGksFsOZCZ9trdocXmFi+XlG0rF8RI6dAS84EWeGGWYyUSAEDV9+SWEgQHkwqC30AQoLcZ5++u5qzl20QE+jFd35O2DK5MYCzDeZmFVaStPIkcdV2PmJRhq4PxQikk6DEBQHApy0YwcVWUpleCyZJKHTIYGiYJAZ8XhW7pUUsCAcbguFH7trFyMHD1b34UGQUt4DIITI017KYCeHrAVqpZSfZ16/jCZW9573qDxIVigUCoWiIzryrF4NjJRSJtrvFEI8jNYnvkOx2pNYDryKVkzJ4XAwq66Oy6ZNy9oiaQ1wRzTKroyg8QNXFxTw1dJSmkaMUMLgILQPhR4AnGy3c3kkQnVjI/HKSjwmE1uBzwIBnHv1n92fJ7N1v7u9yMxU2t1HfAYCB/SI7m98SzxOmc+H68MyZBxIC4hLhr3YyNNTKygHsNtxjhmzX1HalWHfaWAJ8OdwmJWZ6rAIwaDSUm63WJikGUBvdS8e0zzn9fKR36/lfALXhsOcNXt2Vu6rpcDm4mJwOhFSMn3TJvpMndrpcQHeBbZkKoUbUikmbt2qclUPASHEKLTnrUWZ1y3A5VLK9UcynpSyUQixSwgxVEq5GZiBVndQoVAoFIoeR0diNQ1UADv22t+L3eXzDwkp5YdofeuPOh7gl5EIvozH81STiR8MGJC1dikrgfsAfybsNzcWY+aaNZw2cCC9x4/vcmEggQ1NTWxuacFUXo4oKqLG56PB58NcUIDBbqclGMQbDJJns2G12QgFgwQDAcpsNkrz8kj4/cTcbgbl5zOksBCam0nU1XVrcaP9iTpnKsUrH36Ix2QiZLUy9PTTSQDbdTqWBgJEjEYSBgO2jCfxUMSnLp1GHwrRy2Sit8FAndtNTiKBLR7njPx8BgAymWT5J5+QG4lgkpK5c+eybTosyhHE4xKDAW64oi/ljqIO7e8qUsBi4B9AHeDLCAIJVLpc3Oj1MmnMEXe5UPQgqtFyPlt/vydt3cqwLIX/RoGHIxGi8ThFhYVM9Pm4IUsV0gNoVdFbc1VP2rYNWzKpQtEPjaeAH0gpP4C2SKU/Aqd2YsybgBcylYC3AVd10kaFQqFQKLqEjsTqLcB7QohqtGqEAFXAIODGLrYrazzu91OdKXaTjMe5ND8fkaX2KKuAn0aj1H2UxP+xGdtwwVeTX1AUjXbJIkyiFfdZ5PGwPBQiUFhInV7PzmgUrFYIBikyGnG3etW8XoqEwO3xaK/jcYqk3P3a46EIcHu9IAQEAhQZDLgjEURBAUUuF5MARyjEKXY7J5eUZL0H7eHgcDj42rnn7vZYFhRoB/LycJaW7t5vNpMEdsRivLlkCQlAD5x7zjmUA65YjIWLFiGSSXKk5CutLYOsVpwVFdo4ffvuHr+4mBFnnbWHp9ThgPfegw8/FEyfLpgypWhfg7uYJLAITaQ2tNtvNpuJpFJM2LaNSTt2MEKFoB8XhIB7wuG26r8On4/JNTVZC//9nd/Pxsx3pSWR4Aa7PWu9T/8GtGRyVQfb7XyrpIS+o0crr+qhYW0VqqA9/BVCWDszoJRyFdD5stEKhUKhUHQxB9QeUsp3hBBDgMloBZYEWq7LF1LK1FGyr1M0AP9t137hrLVrCfbvD1lYgLUA90YibH7Hx7ZvliHjAlNOJaULJnHe3IKsLcKcTidftLRQXVnJ5zk57AqHCYZCmth0ubBZrXt4D0PhcFZep4WgxWrl3WgU9Hr+Eg5TFY0yNJmkvKmJ6Xl5TCwtzZqH+lA5kMdy7/0GYGBZGd84++zdIjPzey8qK8M+a9Zhhenub/+UKdp2tEkAr3k8vJhKEczLa8tJBbCi5aZOsdnwFRdToQTBcYEEfhUIsDbzoCknleK7oRBT5szJyu93FfCfdv1ap27ahL9376x8V24BXo3FcDqdICWnrVlD38mT1X156GwTQtyJFgoMcBladzSFQqFQKI57OiqwZAauR/OkrgX+JKVMHi3DssHfgRyLBfx+Kl0u+ns8VGQh/yoFPAS0xOOEPjUh4wLSgmQCGhqGko01mATed7n4dVMTjXY7+LQ2e1LurnMhMj+bk0nywmFs8TijevfGuX07OfE4Oek0E4YNY/Pq1eiSSYROx9ixY1m9ejVJIGk0MnjMGFZ9+SVhg4GQxUL+oEFsjEbxZ4oayXZzuUMh/hsKgV7PXyMRRkYiTLdYGOhyYd+5k6oemJt7OOKzJxNGq6T6KbAkGmVnpmVJay5ukcnEBcBX0AQrZWVZERqKnsF/gUXtHryduW4dffv0yco9HAJ+FYmQSiZBCAY0NTHc6aTipJM6PXYK+D0QyYTeV7pc9GtspL6+/pj6++tmvgXcg1Z6QaBF/auwXYVCoVCcEHQU1fkcmhPnI+A8YDhaaPAxQS3wbibsrKiwkKuDQU7LUouEp3w+PgH0Oh22U8IYDCnSSR1Go2D69E4Pjwu4PxhkSTJJ1G7XdmaEaU4ySYXHQ2+3G0cwyKWnnYbdZqPe76eishKHw4FTiD28hk6LZY/XU63WPY+bTLtfl5TgTKXY1tCAKy+P/27ZQoPdTl1xMdhse3hha+NxXtbpcIZCGPPz6btzJ980GjmnqAh75z+GEx4v8FlmW40W9gvgy+RHtxZ8mlFfz039+5PbTXYqupblzc08YDSi1+tBCEbt2sXQ5mYqTj45K+P/JhBgY8Zja04kuDYeZ2KWviuf93pZKQR6nQ5DOs30DRvQ63QqV/UwkFJ6gO91tx0KhUKhUHQHHYnVEVLK0QBCiD+xu33NMcFTgQCNmQVYX5eL03r3zsria0VzM0+Gw5rHUQiuP1lP8ZNbqa6uYO7cvE6HhS4HfubzscvrbfNq6tNpBjU1May+nkqXCz0wdOhQhowd2xba2lEoa2den2SzUV9fT6/8fJrTaZ7ZsIEdxcXsLCnZoydqXK9nS1kZv9PreQ4YBgzxeqmorWVCaSnlyotyUNJo99eiQIBtDge7rFbkfs4zm82ISIThtbWMra3lq+edp4TqcUqN08kPXS5cVisIwUibjZutVvplSUwuBv7XzmN7xoYN9MqSx3ZdczO/Dwbb+rVeaTQyXbVNOmSEEI9IKW8RQrwJ+34VSCnndYNZCoVCoVAcVToSq20ta6SUSSGOdnbikRMClqRSbQuwyVu2UC9EVhZIz8XjSLSVQ2+3m+lSMvHK8Z0eF+DfbjcPpNP4QiFAi/casWsXXwmHmTF2LPTr1+U9OvemvXAtB348YQL19fWUWa00m0z8Lxbj9daw4UxPVAmsisV41++HvDysfj+zcnM5PS+PsUDxUbG85+MCNqNVeN0MrI1G2RmJgF4PLhcOg2GPfNQBwBRgismEqbCQhkhE5aQex0jgwVQKV+ahhSGV4rL6ek4eNy4r4zcBD0ejbeG/w+rrs+axlcDDqVRbv9biQIDT4nHGj8/Od+UJQmuO6kPdaoVCoVAoFN1IR2J1rBDCn/lZAJbMa4HWmLzHRnp+DhgyuaplPh+9AoGshJ3VAGvsdnC7ATi9uprKadM6PS7Aey4XdwaDtFauskWjnLNmDZVeLzPmzWsTJN0tTNqL197AOLudyyIRVjQ3U19ZyZcmE5vYs21MKCeH99JplmXGqAQG+P2UNjQwubCQ4WVlR71Q09EkjhaWvgvYCawPBtkQixG12fYQo+3De4WUxKJRJppMnIImUvfIQHU4lLf6OGeBz8cqkwmSSYSUnLVxIxMnTszK2EngnlCI7S4XSIk9GuWaVIoxWfLY/huoLSwEpxNdOs05GzZQlaXvyhMFKeXyzI/jpJS/a39MCHEzWjFwhUKhUCiOa3QHOiCl1Esp7ZktT0ppaPdzjxWqAEsAk8mEw+Fgls3G3GzlqgYCuD0eJDCguZkLR43Kyrhe4NfJZJtQLQyFuOizz6j0ejnttNO6XaAejHKHg9mjRvHtggJ+jeYO+F4mdNmU8dqYMwWbALbGYjzv9fJbs5lvRKNcHIlwd+a6T9A8PvsLf+3JpAAnsAZYCDzq8/Hd+nr+LxzmIuBmNPfIX2Mx3na72REM4nQ6icVibWOYzWas8TgDm5qYsWEDT8di/BI4n72EquK45w23myd9PoLBIADnxmL8cOLErH0XPAusTSZBSoSUzFy9mpLc3KyMXwc8GY221Qv4GnD1tGk9/nusB3PFfvZdebSNUOymX79+tLS0HPV573rzTf63alWH59z9t7/x0Guv7bPfGwzy+FtvdZFlimOV6XfcwbLqagBm33MP3sz/OYdyfntWbdvGW8uW7ecK+HDtWubee+9BbfnGN77BmDFj+O1vf8sjjzxCOBw+hHdw/GCz2Q56zqOPPsrw4cO59NJL+de//sWGDRuOgmXdT0fVgHOBhJQykXk9FJgN1Egp9/0m7CGEgM+iUYKxGGazmf/r359sLJH8wCeZ0GKAk7dsITp0aBZGhgcDARozoiU3HueCZcuYNGAAQ4YMOSYXePnARYWFnF5VRW19PfE+fag1mVgFbAR87byuQkqa4nGWWywsbzeGMRKh0OdjQG4uA+12yqBtK6LjkIBsIwEfWtiuO/OvC6jx+9kWDhPNzydosZDOnB+LxXC29rptacHhcLR5UNt7nI3JJJUeD6eXlzMUGGIykbTbaQgGqZgwIWs9LhXHFtuAR4Vou0+qWlq4WAgcQ4ZkZfwlwOtoD0d8QnBKdTUVWYo+SaB5bHdlPLYlwSBXlZQck99j3Y0Q4hvAN4H+Qog32h3KQ/sKUhyDJJNJDIbD/x8slUpx71e+ApWVRzSvNxTi8bfe4juzZx/R9Yrjn7d+9rMjvnbV9u0sq65m9qQja9/c2NjIJ598wo4dOwDtgdBll11Gbq6qyNGexx9/nLfffpv+/ftz5ZVXMnfuXEaMGNHdZnU5HX1jvgNcDVQLIQahdc14AZgrhDhZSnnb0TDwcFnodlMXDIKUmAIBRGkp2egl8xm72+D08ngoC4WysrirBj6Mx9ta0pyzZg2T+vfn9NNP7/TY3c3ehZsuRguJ/SiZ5IWaGhry82mx2/fwuoIm9nY2N4OULIvHcZhMe4TLCrS819xQCJ3PR1leHmV5eVgAM2Bpt4VcLpqbmykqLaWguJg0WiGjVObfFo+HOo8Hc3Exhvx8gmgPPEJAEGiKRGiKxTBaLHvYEIvFcHq9miBtbj6gIG0N5+1nMlEF2IFd69dT5PNREokwb86cPR+mqPDeE5rqpiZu1etJ5eSAEBSEQpy3di19zj03K+PvAh6IRvFlHuadV1TE14uL6Z2l3OfngE0Zj60unWbG2rU0Dx1Kpbqnj4RP0NqFlwC/abc/gBbEoehiQrEYX58zh9raWlKpFHfeeSeXXHIJAL///e958803SSQS/POf/2TYsGEsXbqUW265hUgkgsVi4ZlnnmHo0KE8++yz/Oc//yEajRIKhbjrrru46667KC4uZvPmzUybNo3HH38cnW7PYLd+/frxrW99i4ULF3LjjTfyzl/+wtwzzuCiqVN5a9kyfvCnP1FitzNh4EC2NTby77vuAmDDzp1Mv+MOdjY3c8u8eXzvK1/htr/8ha2NjYy7+WbOGTeOB69S3Y9OJEKxGF+/915qW1pIpdPcecklXLLXOrPft7/NsocfpsRu5+cvvsgLixbRp6SEErudiYMGceuFFwLwz48/5jtPPIE3FOJPN93EyUOGcNcLLxCJx1mycSO3X3TRPmO32REKcdNNN7F27VqSySR33303559/PjNnzqSpqYlx48Zx4YUXUl9fz5lnnklJSQkffPBBl38+PY0HH3yQl156iVgsxoUXXsg999zD9ddfz7Zt25g3bx7z58/njTfeYNGiRdx333288sorDBw4sLvN7jI6EquFUspWX/8VwN+llDcJIXLQitb2SLG6MiNUJdC3qYn6ROKIF2GP3HUX3p07AfgikcAnJRYhsEejfGkwsOCjj/Z7XUFVFbccQsgDwB+DQYKZgkqDGxvp6/Ew5LTTjsjeY4EcYEZxMaOGDdOqDFutpEwmtgJbgK3AsnB4D7EXjUb3EIoSqIvFcGa8N3g8OHJy9jgHMoIyFAKLBUIhHHvliMZiMZyBgFbQyOfDYTbvezwjmvH7OxSk0WiUXiYTDiBXp6N2+3YKAgFKIhEuPeMM+uTna4Pm5+OcOPGoF8pS9Hx2OZ3c5HTSkJ8PQlBRUMD3/H4mnHtuVu6TCPDTcJidLS1a+G8kwrWFhQzIUtGjd1wu/mIwoM9U/z21uhpHlh7qnYhIKXcAO4QQlwL1UsoogBDCgpb6X9ON5p0QvLNhAxUVFfznP/8BwJfpdw5QUlLCihUrePzxx3nooYd4+umnGTZsGIsXL8ZgMPC///2PO+64g1deeQWATz/9lDVr1lBUVMSHH37I0qVL2bBhA3379uXcc8/l1Vdf5aKLLtrHBrPZzJIlSzR7fqelLkfjca57/HEW/+IX9C8v5xsPPrjHNZvq6vjg/vsJRCIMveEGbjjvPH51+eWs27GDVb/73T5zKI5/3tmwgYqiIv6TeaDRWshzfyyrruaVTz9l5SOPkEylmPD97zNx0KC248lUiqW/+Q1vLVvGPS++yP9+/nPuvfRSllVX84frr+/Qjvvvv5+zzjqLP//5z3i9XiZPnszZZ5/NG2+8wdy5c1mVCXN/5pln+OCDDygpKen8mz/GWLhwIdXV1SxduhQpJfPmzWPx4sU88cQTvPPOO22fS3V1NXPnzt3v98bxRkditX3a4FnAgwBSyrgQIr3/S7off1ERuN0IKXEEg1SMHHnEY3l37uTufv3wBoO8mEy2tav5msFAmdV6wOvurqk5tPGBzzOhxQI4acsWhg4dekIImL29rr2B1vIrjfE4f/v4Y1wWC0Grlf4nn0wMaM5sbvYvFvcWqwc753COW+JxCv1+hpaWUgzogepNm7CFwxTEYsw/88zdgjQvD+fw4QcUpHu/d4UiDTyQStGQn992P15WX895o0ZlZXwJPApsTyRASvTpNOeuXIlv2LCsRJ5saGriZ4EAUYMBhOAMi4UrS0vpPXasutc7z0vAqe1ep4B/Aid1jzknDqMrKrj1uef48Y9/zNy5c/eIePrqV78KwMSJE3n11VcBTcxeccUVVFdXI4QgkWhrqsA555xDUVFR2+vJkyczYMAAQMvVW7JkyX4Xna2e3PZsqq1lgMNB//Jy7fpp03jq3Xfbjs+ZNAmT0YjJaKQsP1+LAlKc0IyuqODW11/nx88+y9yTTuL0DtbGSzZs4PyTT8aSWQ99ZfLkPY5/NdOjceLAgdQ4nYdlx8KFC3njjTd46CGtyHk0GmXnzp1YLJbDGud4ZuHChSxcuLCten4wGKS6upppJ3CRwo7E6hohxENo9TIGodWNQQhRcBTsOiIk0GSz4TAaiUajfGPKFBylpZ0etyESQRqNgCZaUuEwdCBWD5VPoC3sp8LtpjQaZUiW8tKOZcodDi6dMWO32GsVgRkSwMZ4nFdXrCCs15M0Ghk3ZQpmNO9R69ai07HW5UJKiR4YVlxMPlpVMR0Q1unY2NCAMZHAnEoxddw4KgFrZosmEny8ZAnmaJQc0Ap1tRqRn49z3DglSBWdRgIP+P2sbFf597Tqas4ePTprc/zF6+U/QrR5Pc9cv56ycDgrXs8U8FA6TdRgQKJVMv+6x8ME1aYmWxiklPHWF5kHxjndadCJwhCHg+XLl/PWW29x++23M3PmTO7KeKZaH2zq9XqSySQAd955J2eeeSavvfYaNTU1TJ8+vW0s615rhr3bAR6oPeDe1wFtaUMHwpRZrwDodTqSqVQHZytOBIY4HCz/7W95a9kybv/LX5g5fjx3zZ+/33MPVuCy9f7S6/Uk04fnu5JS8sorrzB0r5ovNYfo5DkRkFJy++23c91113W3KT2GjsTqNWhFTPsBM6WUrWW5RtBD+755gJZYjGg0SoHJxMi9RM6RkrTZIB4HKcmNxcgrKMjKuB8Gg23VhQc5nZx66qlK4GToSOwZgTGlpThOPXW3WNzf7yQvD2fv3rvP2bvSWl4ezv79DzxGSQl9zz5bCVJFl/KU18uLfr8Wbi4E58Zi/CCL/XPfdbn4bTDYFhlygdHIBb17U3HSSVmZ4x/sblMjpOTctWsZfBynMnQDzUKIeVLKNwCEEOcDR78U7QlIvddLUW4ul112GTabjWeffbbD830+H7179wY46LlLly5l+/bt9O3bl3/84x9ce+21h2zXsMpKtjmd1Did9HM4+EcmTLgj8iwWApHIIc+hOL6o93opKivjsjPPxGax8Ox77x3w3NNGjOC6xx7j9osuIplK8Z9ly7hm5swOxz/U+2vWrFn8/ve/5/e//z1CCFauXLnf/tt5eXkEAoETMgx41qxZ3HnnnVx66aXYbDbq6uowGo2U7VV0s/UzOhE4oFiVUkaAX+1n/ydoTsEex2qXS8tRlBKL309TWVlWFmO+dkUPcuPxDs48PNYFg21PSCvdbqJK+BwWhyIWD3ZOZ48rFJ1hIfBCu8q/Q+vrucRkylrl3+3AQzodEu1pebnXy5xUar+LgyNhLfBc5gFhUWEhs1pauOoYaLd1jHE98IIQ4g9o9eV2AZd3r0knBmvr6/nh5MnodDqMRiMLFizo8Pwf/ehHXHHFFTz88MOcddZZHZ47ZcoUbrvtNtauXcu0adO4MFO85lCwmEw8fv31nHv33ZTY7Uw+hO+LYrudqcOHM+rGGzlv4kRVYOkEY219PT988kntXtbrWXDDDQc896TBg5k3eTJjb76ZvqWlTBo0iPyDVOU9c/RofvXyy4y7+eYOCyzdeeed3HLLLYwZMwYpJf369ePf//73Pudde+21nHfeefTq1euEK7A0c+ZMNm7cyJRMuLXNZuP555/fR6zOnz+fa665hkcffZSXX375uC6wJA4WTnLEAwthBhYDJjRR/LKUssO62JMmTZLLDtCn6VB4bvNmHjab2/qg/kyv79Si7O4rr+Tufv14MxCgNhNGM6SxEaffzz1Ll5JKp/n2hAnctpcX4e6aGu4+yFPVbU1NXBiNaiGq6TQ3vP8+52epH6xCoej5vO1y8SuDAZ1Oh9vjoU9LC/NWreL8OXOy8j3gAr4TiVAbDhMMhciLRPj60qVcMnNmVsZvBm6IRKjOFCGr9Hh4ulcvevWg7zAhxHIp5ZH1UuhhCCFsaP9nH/VH6Z39v3kPFiw44vYrR53aWuhgUX+kfPjhhzz00EP7XaR3SLvPLhiJYLNYkFLy3SeeYHBFBd8///ys26roQrro/tovh/l313p/hWMxpt1+O09997tM6KwY6ur3eyx9t+zN0bwXegCH+39zV7arjAFnSSmDQggjsEQI8baU8rOumtBWWgrBIEJKclIpKvr0ycq4OpMJIhGtEFIqxU8/+YT/XXEFlXY7J/3xj8wbOpQRh5kbu6G5GTJhqfnhMMOP0Z6qCoXi8PnQ5eKnfj/JTA7pWJuNG9xuBmRJqEaB28JhNmUq/+akUtzi83F6loRqFLgPaMqkR5jjcc5Zs4ZGKXuUWD1eEELMAUYC5tbcRinloZWcVxyX/HHhQp57/33iySTjBwzguiy1t1IoAK597DE27NpFNB7nirPO6rxQVSg6QZeJVam5bIOZl8bM1jVu3AyWoiKKjEZC4TBD+/bNmvgTOTlYpCSRSOACBpeUMKCwEID5I0fy+qZNhy1W8x0OyLRoMaVSqrCSQnGCsB64T6cjmQnPzQ+H+bbXy5Rx47Iyfhr4NbA5U/lXSMl5K1cycMCArHwnSuC+QICV6TR6nQ69lMxetYq8REK1qekChBBPALnAmcDTwEXA0m41StEppk+fvkfxpSPh++efrzypii7jb7fe2t0mKBRtHFCsCiEMwNXAhUAF2hqlHngd+JOUMnGga9uNoUfryToIeExK+Xk2jD4QjV4v7kyhktodO3AKkZ3+hIkEkUwbky937aK8XYntSrudz+vqDnvMWLvKf0ZVqU+hOCH4qKWFe/V6UpkWL7ZolAtWrGDojBlZm+Nhv5//SdlW+Xf6+vX09XqzJiT/6PXyZruCUDfqdEwaNEj1De46TpVSjhFCrJFS3iOE+A3wancbpVAoFArF0aAjz+pf0VqB3g3UZvZVAlcAzwP7Nv/aCyllChiXaXfzmhBilJRyXftzhBDXAtcCVFVVHZ71e+Fxu0GvR6K1U6ivr8/K4imV8VAApDMe1vbsv+B8x3ibmpCZhPWETpc1WxUKRc/k45YWfuD3E9frQQj62e18x+9n3IwZWfvb/7PXy1/bCcn5BgPn9upFxcSJWZnjc+D5dgWhxuzYwSSbLWsFmxT7pbXEZlgIUYGWjty/G+1RKBQKheKo0ZFYnSClHLrXvlrgMyHEl4cziZTSK4T4EDgXWLfXsaeAp0Ar4nA44+5N38JCCAQQUhIzmbLmSbAaDLgyVYCLbDaa2jVBrvX7qcjLO+wxc6JRyIjVhoIC4o2NWbFVoVD0PKqBe/V64pmHabmxGNfX1jJr1KiszfEO8Gw7ITm4sZFZRmPWhOQOtJ5lZrMZnxBUulxMq66mYs6crIyvOCD/zjzwfRBYgRbl9MdutUihUCgUiqOEroNjHiHExUKItnOEEDohxCVoLU07RAhRmvkPFiGEBTgb2NRJezukb2EhDoeD/IIC+owcmTVvRbhdmG7/khKqPR62ezzEUyleXL+eeUP31vQHJ9rUtMfr5hbVNk+hOB5Z2tLCTR4P8UzoryWR4KsrVjDhMPPcO+Jfbje/9PnaQn97ezzMXL+e3ll6YOcH7ohEcPp8AIwqLeUOnS5rlYsVB0ZK+XMppVdK+QrQFxgmpbyru+1SKBQKheJo0JFndT7wAPC4EKJVnBYAH2SOHYxewHOZvFUd8JKU8jDrtB8e+UAiHicajbL8ID2hDgdvO7HqKSjgp+PHM+v550lJybfGjWPkXr2PDoVRe4U82wcP7rSdCoWiZ/FxSws/8PmIZoRqn/x8rq+t5aTp07Mm8t5xubgnGCQNIATjrVaudbsZOHt21ir//igUYp3LBVISTqe532bjpLFjOz224vCQUsbQKu0rFAqFQnFCcECxKqWsIZOXKoQoRuvvdsjuPynlGuCoJjLVV1fjyskBIBqNsrG2luHDh3d63AFAa9yzIZXigpEjuaaTlfxGDB/OlJYWViQS6PV6gkcQSqxQKHoua4C79XqiBgMSMCUSXFtby9yRI7M2x1rg13o9abTY0OJAgG97PJyapcrCSbQnlhuSyba8/XPWrMFQVQVZ9AwrFAqFQqFQ7I+OwoDbkFK62gtVIUR515l05Pi/3DOVdt2OHVkZd6TNhsViQa/XI6xWLO2qAXeGoTk5xBMJIpEIr65di7NdLqxCoTh2edvl4havl2S70N8Lly/n5JKSrM3xSUsLP/B4kJmCTfmRCBesWMHg8ux8PUvgl4EA77ULLz5j40YGtbSoFjVHASHE1My/pu62RaFQKBSK7uJI+6z+CehxVTUGDxhAmd9Pk90OQE6WepcWAHq9nlQ6jQfY/OWXDB0yBJvN1rlxGxvBZEICdfn5qiKwQnEc8C+3e4+w3P52O9fV1jLhjDOy9ve9tKWF77cLLx5gt/Ndn4/RM2dmbY4/+Hy87PO1VRb+pl7PTIeDivHj1ffU0eFRYCLwKTChm21RKBQKhaJbOCKxKqXscUIVYPjw4UxubOS/UqLX6/EbjVkZ1wzo43GQkrQQhHNyCAQCnRarUwsK+F2mf2tjQQG6SOTgFykUih7LO8Bv24Xl5ofD3Ojzcfbo0Vmboxq4q114sSUe59ra2qzO8SbwT2irLDyitpZzLBbVoubokhBCPAP0FkI8uvdBKeX3usEmhUKhUCiOKocUBnwsMdRsbgut/ffmzVkLrS3PhNoBBCwW8rKQYzq0rIxheXkIICUEr2TRXoVCcfSQaD1Of+HzocuEzBYHg1z0xReMPoICbAfi45YWvuvxEMt4VE3JJOdnubLwG243D7UL/e3f3MyMTZuyVllYccjMBd5Fq3G1fD+bQqFQKBTHPQf0rAohRqP1cusNvA38WErpyRxbKqWcfHRMPDzs9fVgtWqhtYWFnQqtLaiq4u6aGkBrMLsukSCZTFKGFobHAdrNFOxV6bcjhgYCbf18qktK+PLLL1WInUJxDJEGfuP387zf3xYyO95q5dseD4OzGJb7UUsLP/D7iWcenPXJz+e62lomZzG8+D2Xi7sDAVJCgBBMsFq53mCgn2pRc9TJ1Il4UQixUUq5urvtUSgUCoWiO+goDHgBcDfwGfBtYIkQYp6UciuQnfjaLmBycTHGcJiETkfAYiGnsPCIx7rl3nvbfl7e3My3IhGQkpZUimusVnpnYfF2dm4ur4fDICXbHA42LlrEkCFD1MJQoTgGiAEPAgulbAuZ7e12c63bnbWKvADrgHv1euJ6fVvo7w21tczJYmXhNcAv9HpSQiCBwlCIqz0eTs7i+1AcES4hxGvAVDQn/hLgZillbWcGzbSVWwbUSSnndt5MhUKhUCiyT0dhwDYp5TuZZuQPATcC7wghTkH7D7NH0tvhYFppKTabDZvVyibDkdaQ2hNRW4stEkECMb2exR7PQa85FE4vKaGXSSv2GMnJYWdxMfX19VkZW6FQdB0+4OZQiIXtQmYHNzZywcqVDOzVK2vzrAZ+BojcXBCC3Hicry1bxqQsVhZeB9wL6C0WEIK8aDSrlYUVneIZ4A2gAi3S6c3Mvs5yM7AxC+MoFAqFQtFldCRWhRAiv/WFlPID4GvAX4G+XW1YZxiaTBIMhQgGg7xUXZ2VPNDeFRUMampCAAjBUoMhK+MKYJbZjMjkw66vrMRsNnd6XIVC0XXUAd+JRPjU5cLn9eL2eLjEYOAnOTlcMHt21iIjlgE/iUZp9vkAGFpayj2xGFeceWbW5tgI3B6N0pSZY1hpKT+Lx/nm2WerCI+eQZmU8hkpZTKzPQt0KklZCFGJVtH/6WwYqFAoFApFV9GRWH0AGN5+h5RyDTADeLUrjeos5fX1bSF520pK2JkFT6XD4eDq4cPbKgB/KiVv/Oc/WRGsF+XnU1RYiAC2l5by32XLVKElhaKHsrilhW+73dRkwvcBztiwgfOcTiZksa3L+8BPo1F2NTXh83oJ7djBT4NBZo0albU5NgM/ikbZmZkjuHMndwSDzBw9WgnVnkOzEOIyIYQ+s10GuDo55iPAj9BSrhUKhUKh6LEcUKxKKf8mpfxsP/t3Simv6VqzOsfJxcXYYjEEEDca8R1GwaOOOK2khCIAKQnn5LCtqCgrIbt9gH7hMABpIVjTu7cKBVYoeiCvuN3cEgxSHwgQDIUwpNPMWbmSsXV1VGSpWq5Eexr4WyAci4GU5EUiXLh0KanaTqUp7kE1cBfgy8xhice54IsvSGdxDkVW+BbwdaARaAAuyuw7IoQQc4EmKWWHFYWFENcKIZYJIZY1Nzcf6XQKhUKhUHSKI0roFEI8JaW8NtvGZItyh4OvWiy8mkgA8IXRyNlZGFcHzDQYeFoIhJRsqKrK2gL1QqORFZlF49qqKkQymZVxFQpF50kBzwLPtStAlBuL8T2vl+F9+1IxZUpWPJES+DPwj1iMaDSKXqejJBjkK8uXk5dIZO37Zivww2gUdyyGXqfDkkhwwRdfUByJZG0ORXaQUu4E5mVxyKnAPCHEbLQ24nYhxPNSysv2mvcp4CmASZMm9dg6FQqFQqE4vumodU3RgQ4Bs7vGnOwxKR7nL5kwvX8lk/xfJEJlFhaTF+Xn86bZTCgYpMVmoyWVIhvBcnOKivirEHzp9xMxGvnTtm38tLBQheIpFN1MAPhZMMiyVKqtkFJRMMi8lSuZkcW8ziTwO+DdWExLA5CS3l4vPzeZ0I0eTUVFRVbmas1R3d7UBFJiTia5HygePjxrcyh6LlLK24HbAYQQ04Fb9xaqCoVCoVD0FDryrDYDO9DEaSsy8zp7Xe67CNuuXdhycwmYzUQNBt71+bg6C4uwXsDIRIL3QyGQkt/s2MEvpez0Ak8PTHO7+TJTvfiL/v3Z1tCgFo4KRTeyE/hJOMwat7uth+p0s5n5bjcDsihUo8AvgRVANBoFKRngdDJz7Vp0EyYwfvz4rMyzCrgPcGeiOHKSSc7/4guKhw7N2hwKhUKhUCgU2aKjAkvbgOlSyv7ttgFSyv5Aj6/+U1lRwcj6+rbqveuyGNo2rq6urYDT2t692drQkJVxL7DZ2nJtIyYT/7FYVKElhaKb+Az4f8CORKLt7/2kLVu4oq6OKePGZU2oeoBbQiE+8PmIxWKYzWZG1dVx7urV5EDWwnLfcrv5gdeLPzOHJZHgwi++wBEKqdDfExQp5Yeqx6pCoVAoejIdidVHgMIDHPv1wQYWQvQRQnwghNgohFgvhLj5SAw8UhwOB7eMHElBQQFFhYUsT6VYk6UiEbMKCijMFESKGwwsz1K/wz4OBz8oKWmrOPxWTg5/ef99JVgViqNIGljg8/Ejnw9fRtgZ02lmr1rFlO3b6Z1FYVcD3NCuBY7T6eTCaJTfDBzI5EmTmDt3blZE8StuNz8JBHD5fDidTorSaZ7Iz+e8oUOzNoeiaxBC/LTdz6butEVx/FDjdPK3RYvaXn+4di1z7733sK4fdeONBz3vh888w8jvfpcfPvMMz773HvWuzhayVhzLtK5vO+LRRx9l+PDhXHrppfzrX/9iw4YNR8EyRU+mI7G6XEq5en8HpJS/P4Sxk8D/k1IOB04BviuEGHEENh4xI8rKOFmvx+3x4PN6+c2mTVkRfuUOB5dZrQi0uOi/RyLsyJKg/GpREf1SKZCSpE7HO6NGseHLL7MytkKh6Bgv8P+CQZ7w+drEY2k6zQKbjUuqqrIq7N5xubjG42HXXi1wTtm2jXKHg/FZaoPzFvA7vZ402vdVfijENVu2MK60NGtzKLKPEOJHQogpaNV/W/m0u+xRHF/UNDXtIVa7iiffeYcVjzzCg1ddpYlVt7vL51Qc2zz++OO89dZbvPDCC0qsKoCOc1YfByYc6cBSyga0MvtIKQNCiI1Ab+Co3nVja2t512JBAut692ZLY2NWFmdj3G6subkETSZCOTn8PRzmts6biwBuFoLrpCQlBM12O896vYxwOtWiUqHoQj5wufiNEHikbAv7rXS5uMHj4aSxY6G0NCvzSOAvXi+/DQaRAEJgTKU4d/Vq+rvdVGQxd/SPXi9/FaKtMFRJIMAFK1YwaubMrM2h6DI2AxcDA4QQH6HVxioWQgyVUm7uXtMU3cXPX3yRFxYtok9JCSV2OxMHDeLWCy9ka0MD333iCZr9fnJNJv54440Mq6zkykcewZ6by7ItW2j0ePj1lVdy0dSp3Pbcc2ysrWXczTdzxVlnMX7AgLY5QtEoNz35JGt37CCZSnH3N77B+aecckCbUqkUt/3lL3y4di2xRILvzpnDdeeey7z77iMUi3Hyrbdy+0UXsWzLFi59+GEsOTl8+utfYzGpQIETmQcffJCXXnqJWCzGhRdeyD333MP111/Ptm3bmDdvHvPnz+eNN95g0aJF3HfffbzyyisMHDiwu81WdANH1LrmcBFC9APGA58fjfnaM6OwkD+5XLisVpIGA//LyWFQFoRf3169OGXFCt4bMQKE4J28PC5oamJYWedrT00uLeXi5mZetFoBWFVVxYvBIDcrsapQZJ008JTPxxPtxKMAJm3bxinbtzN4zpyszZUEngT+kWl/IwF7JMLNPh+D+vWj4tRTs9YC5xGfj2f9/rbCUBOsVq72eBg8c6Z68HVs4AHuAKZntuHALOC2jGA9tftMU3QHy3bs4JVPP2XlI4+QTKWY8P3vM3HQIACufewxnvjOdxhcUcHnmzfznQULeP/++wFocLtZ8qtfsam2lnn33cdFU6fyqyuu4KHXXuPfd90FaGHArdz/0kucNWYMf775ZrzBIJNvvZWzx43Dajbv164//fe/5Ofm8sXDDxNLJJj64x8zc9w43vjpT7F9/eus+t3vAFjw9ts8dNVVTBo8uCs/JsUxwMKFC6murmbp0qVIKZk3bx6LFy/miSee4J133uGDDz6gpKSE6upq5s6dy0UXXXTwQRXHLR2J1QFCiDcOdFBKeUh934QQNuAV4BYppX8/x68FrgWoqqo6lCEPi3KHg+8ajTwsJcFQiLcNBsrfeosLZs/u1ILN4XDwwwkT2JFKsSWZxBMK8bOGBh7NQmVggG8VF/NFbS3bSkpACF4qKKDK7ebCogN1FFIoFIeLB3gI+AjaxGNuLMa1gQDjCwqomDMna8JuW1MT96fT7CosxGw24xOCXh4Pc1evZtqsWVmbJw78FvgP7OEhvtbtZsq4cVmZQ3FUOBf4GTAQeBhYDYSklFd1q1WKbmPJ1q2cf/LJbR7Jr0yeDEAwEuGTTZu4+IEH2s6NZfrMA1xwyinodDpGVFXh9PkOOs/CVat4Y+lSHvrXvwCIxuPsbG5meJ8+Bzx/TU0NL3/yCQC+UIjqhgb6l5cf0ftUHP8sXLiQhQsXtlWhDwaDVFdXM23atG62TNETOVjrmt90ZnAhhBFNqL4gpXx1f+ccjcbj5xcV8ZzLRVBKwjk5rOzTh8n19Z1eHPZyOLh40yZ+mQkz3tSrF+94vVyRhUVnucPB74AfJRJsTKcJBoPcLQSbGhr4VknJMe0ZkUAMiLTbwpl/691uXC0tOEpKKCkqQo+WWK3PbO6WFvxOJ4NKSxlcVnZ0QgMUxyXvuVw8LAQJq7VNPFa6XMxat445WfY+Lm9u5v+5XHhycyET2XFhYSGz3W76ZlGoBoCfo8WLtr6nAU4n561bx4DZPb49tqIdUso7AIQQq4Hn0aKTSoUQSwCPlPIr3Wmf4ugj5f6XSGkpKbBa2zyYe2MyGg86xt7zvHLbbQytrDxku35/7bXMmnDEmWOKEwwpJbfffjvXXXddd5uiOAboaK0flFIecfa9EEIAfwI2SikfPtJxsoEBuESn49dCIKRk+YABh1SR7FA4s7CQl3fupLqsDITg9aoqvgJkw/9Z5XDw3dWrudNoxG21gpT83WZj/ZYt/BKtenBPIY5WnMYDbHO52OrxYCgtJZ2fjyezvz4SoSUaReTmkrOfXJVYLIYzGASTCYJBHFYrpnbnxWIxnOEw2GwQjeKIxSgymbAD+e02fD5oaWFcfj6TSkqwdPm7VxxLxIDf+/38NdMrmWCQcoeD6/LzOdnlojLLQnUxcK/BgCc3V2tULSVn1dfz4/79EVn0dDYAPw6HqUkkMJvNmEwm/q+ggDNdLio7GUmi6FbelVJ+AXwhhLhBSnmaECI7JegVxxSnDRzIdS+/zO0XXUQyleI/y5ZxzcyZ2HNz6e9w8M8lS7j4tNOQUrKmpoax/fsfcKw8i4VAJLLfY7PGj+f3//43v7/uOoQQrNy6lfEd5ArOGj+eBW+/zVljxmA0GPiyro7excX7hA13NKfixGLWrFnceeedXHrppdhsNurq6jAajZTtlUqXl5dHIBDoJisVPYWOxOr2To49Ffg/YK0QYlVm3x1Syrc6Oe4RMb+wkP+aTGzLLOT+azKRjawJh8PBA0Lwfb2eqM1GELitoYF7dDp6ZWFxOKS8nIvffZc3xo6loaAAgDWVlVwfjXLF9u0M8nrpXVHRJQvRNLClqYnq5mZM5eXoiovbhKcHqAsGqY9ESOTlkcz8pxSLxXCGQmA0gs+HI7NojsViOJubNXEQCOBwOPYQogDRaLQtbFFISTQa3eOc/R0PmUyEyFTyap3f5wODAcJhHLEY/UwmBgL9gQGZrRCtmJXixOLjlhZ+CzQI0XYv5cZiXLV9O/OHDYMsFjdKAr/z+3ldSvQGg1ZIKZnknA0buOqkk7J6/20GfhKJUN3SAlLiB76fn88VBQVZfU+Ko4+U8kftXl6Z2dfSPdYoupOT+vVj3uTJjL35ZvqWljJp0CDyc3MBeOEHP+CGBQu476WXSKRSzD/99A7F6ph+/TDo9Yz93ve4csaMPQos3XnJJdzy9NOM+d73kFLSr6ysLbd1f3x75kxqmpqY8P3vI6WkND+ff91xxz7nXTljBtcvWKAKLCmYOXMmGzduZMqUKYDW0ub555/fR6zOnz+fa665hkcffZSXX35ZFVg6QREHCgkRQpwE7JJSNmZeXw58DdgB3C2lzHr98UmTJslly5Zle9g2vgDuRRM0sWiUh+NxJmapwuca4IexGI1OJ0jJ2F27+PXgwZRnQUQ6nU7WV1fzB5OJLXv9IReGQgx0Ojm9tJQqKRlUVkaVw7HPQjiJFmYbzWw7W1rY5nJhKiuDwkJ8wK5AgLpQiLTdTiI3l+Z27wch9hCYsVhMawO01zFfpuWHRBOD+QUF5Ofn77O/JD+fXgUF5AKWzJYKBtm+caMWpiQEg4cPJ9dmIwWkgEAoxOatW4nr9URMJvIrKzHu9eT2QPPvTT5QFgziaG7mbJuNCaWlSrwexySBJ30+/pi5NxDab7tfUxMzNm7kkix7U93AnaEQS1yutr+RoXl5XFFXx6TS0qzO9RnwINCcuff16TQz16zhkqqqtnygExUhxHIp5aTutuNYJ6v/Ny9YAIcYXtrt1NbCDTd0txW7WbCAYHExNouFcCzGtNtv56nvfpcJagF/bHI076+e8HfX1e+3J7zHI6Wnfdd0MYf7f3NHntUngbMzg04DfgXcBIxDyzE95kpzTQIGB4O853aDlNzh9/PndJre2WhlA5zW2MjLaDmZq/v04flQiFs7PbLmvXU4HIxwOnmqpobXS0tJ6PUAeKxWlg0YQOsyQsRilAYCpFMpzGYzOWYzkViMSDTaFhrYFk5rNmtezsyTWafHoy2sW1pwOBwdejr3PhaPROhlMtHLYMDpcmGJRrElEpwxZgwDgFQiwRcff0xOLIZZSubNmcM+n7rNhrOqivr6eioqKnDsHaptteJ0OLTjJSWUmc0EAV+7rSadZtG2bXgsFlx5eRgP8LttisVY63aDTsffIhHGhMOcmZvLFGAoHTcgVhxb7ECrTrOS3UWUjMkkl4ZCTNfr6Z1loboOeADYkUy2/Y0McDq5xePh1LFjszaPBN4AHs/8fet1OszJJHOWL6d3IEBFB60mFArFscm1jz3Ghl27iMbjXHHWWUqoKhSK456OxKq+nff0EuApKeUrwCvtwnqPKQQwY8cOPrBaSQlBo93Os5EIP8nS+NeYzaxul7/6n9JS7NXVnG+3Z2UxXO5wcB2Qv3Ahy6uqWN+nT5tobUVKSXNr022/n6LCQtwZEerLeED3J0IzF++xz2w2E0smiT/0ENa6Ogrz8rAajZiA4lgMT2Mj+lQKYzpNv969sVi07NDCSIRwOExubi5bLRa2ZmyLtNv/95oabrn33n3eY6swPxB7H8/LbK3P0k4tLGTGiBFtgrbQbGYnWkz7tnabb6/PYEciwWvAa2he15OBU4CxQM4h/G4UPY8U8JzXy/OAwWJpKzjU2+3mnPXrufTss7MqUlv7pz4D5GTm8wNTqquZtGMHA+fOzdpccbRG2G+1i3AoiET4tV6PffBg7WGPylFVKI47/nZrNh6BKxQKxbFDh2JVCGGQUiaBGWTayxzCdT2aSSUlnLJuHZ8MGgRCsLi8nK+iNbDrLOUOB78FfiYl261W3B4Pj+XksH7VKu4YNy4ri0eHw8H8mTOZVl9PsKWF/zQ0sKuoiJa8PPy5ucSMRpI6zS8opCQUDoOUCCkxJpOYg0F6WSw0BAKYYjGsiQRTCgqwS8mG9esxR6NYk0kumD6dQfn5uGw27qut5ZdDh+5TlCrYuzeBQIC8vLzDLlh1d01Npz+LA7G3oB2U2VqRwNp4nL+uX8+2khJ2lJZibhdO7AMWAm/GYshwmBl6Pf9nt9O7yyxWZJtq4NfhMEtb+4z6/VSWlfEDu53RLhe9syxUfcD9wSDvtptv0P9n777D46rOxI9/z7Q7oxlJo3olWZYlG3fjhm0wzaY3BxLSCGQhoQVIAVJJsqSQZDdsdhNgEyAkpGwIIYTAD0KAAKaDwRjjho17k2SNykjT+5zfHzOS5W7wyJLs9/M880hz751737lT3znnvKeqils8HsoqKqg79tiCHc8P/Ae5caq9PzyZPT1c8O67lEybdtR3/RVCCCHEkWN/SedfgJeVUp3khju+CqCUOobcd7NhyTRNvgd8V2uay8rQwLe7uvhFOk1TAb5MjjRN/he4sqMDf77l7qUJE6iOxfgOhSnq0z8ZG+fz0draitMwiEciGE4nr775JtlsFotSnDh3LosWLYJMBqvFwoIFCzCLivBVVeVaH5uaMPNjOn3HHbezC25+bKxpmlRUVOw1GfV4PAWrqnw4KWBqVRVfz9/fyqIifIbBm+TG/wXYdUzuX5TiBcPgFMPgo8AUpDjTULXZ5+P+RIK3TZNYKtXXel4dCPClYJDzpkwpeMGhd8nNa7olk+k7Xk1PD1/s6eH0qVOhoqJgx1oL3BqL0ZZM4nQ6cTqd1O3Ywbz33sMB1NXVFexYQgghhBCDbZ/Jqtb6J0qphUAt8KzeWYnJQm7s6rBVa5rcDlwTj7O5vR205qauLu4B6gqQsLqBH2vNF4NBfCUloBTPl5cTaG7my3Z7Qaec2Vu32Yry8p1Jp2lSvdv1fd3uQF1wjzT97+9IcmOabyCXEPy1rY0XolF6ior6ukUvNgwWA2OAjwInM4y7GBxhNPBPv5//CAaJOBzg81FeVoYtm2XWxo0ct20bMy+4oKDHTAG/DAR4DPoSx4BSTNu6lZPXr2dygY/3PPDzeJyWfFXtEPDVkhLOampih2FI118hhBBCHHH2+11ba/3mXpatG7hwDp8q4CPbtnGXYaCBLRUV3JFKcTuFaTUbW13Nb7TmP7JZ1nk8+Lu7+ZfWLAkG+anVypzKgZsmb/ekcyCS0Csff5wn162j2u1m1Q03ALCsrY3rnnySeDqNzWLh7gsuYM6I4dV51kKuS/j1Tif1zz/Pdq+X5Y2NRGtq+rbZCPwPcE8sxgk7dvApt7sgRbrEh9MO3As8b7UScTj6xiGPDYf5ssdDusDdcAG2A7dFoywOBPrGg4+tquLrbjdVHg91F1xQsONlgN+RK6YUTiRAa4xUinOXL2fK6NHUzJhRkKrjQgghhBBDzVFd9HRBaSmzt2zJJadKsayqir8UcP+jTJNf1dZyXP4LrQa63G5usdl4hNw8psPV56ZP55nPfnaXZd987jm+P28ey667jttOO41vPvfcIEV36EzT5CMLFvDR0aP5dX09vzMMzmVnsaVEIsH7HR38wWrlMr+f57u6BjPco1IS+G1PD5d2d/NaIpEbd6wURckk565axW0WC8dWVTFjxoyCJY4aeAa4CVjbr5txQ0cHX1m/nrMrKgp6vADwtXCYPwUCJPL3sTIc5lNvvsmonh7p9iuEEEKII9pR3YvRNE1+DPwslWJlVRWGYfCHRIKe7dv5eHFxQb5w2oCv2+2k3nuPV8eNI2O1YnO5uC+R4PFAgMutVs6sqBh2YyBPHTWKLT09uyxTShFMJIBctd264uJBiKxwdm+R/iLwb8BTwP9FIn2JSndREbfZbCwGrgaq97o3USgaeJ1cy/aq3oJGoRCmafIZr5dTN29mzKxZBe9N0A3cHg7zRn5aKKfTSVhrTly7lunNzYwvYLVfyE2Bc1ssxtr8VFsBpVhQVsa1lZX4J0+Wbr9CCCGEOOId1ckq5Cr43g78CFiUL6rza7udDUuX8q2ZMws25cx3pk9nWUcHjzU1sQnw+Xz4tObrSjHX6eQqt5tZDO/CPXeccw7nPPAAX3/uObJa88aVVw52SAVXAlwCnJRKcfv69bw5ejQpmw2n08ki4B1yExB/HJnyZiC80dnJrzMZdni9xJPJvh8MKkMhrguHuXjSJCjgXKaQS45fBP43HmdTv8RxZmUlP3G7sVVXU1egat+9x/sb8ADQ0+8+Hr9+PR8vL2fUjBmMkiRVCCGEEEeBoz5ZhdxJuAW4KhDAl/9iuHDSJKqjUb5F4Sr4nmOanAn8bPNm/qoUGaVQWrM6nea7iQSVgQAfsds5v6yM0gIc83C7Z8kSfnHOOXx80iQefu89rnriCZ6//HIgN+4uBsTzfzcmEvx082ac5eU4SkuJ5Zd3hsN0RyKUejwUu91YACsQC4eJBYPUejyMLCmhlNx8qKmuLuJtbUyrrKT+MH6BH2ma3Aq87/PxSlMTiw0DyHVN/X0iwV/DYW7WmnkDODb5aNIJ/DIU4rH8VEy9BZSc6TRz1q/n2NZWTipwQSOA99rbuSuTYXN5OfH8eFENTN22jev9fmZPnw5VVQU7XgD4YTjMkn6tt4l0mrNWrKDJ72fElCkFO5YQQgghxFAnyWqeC/ghcH04TIfHA0rxQl0dpcAXKNzgXivw+aIinM89x5LGRlbX12O1WPpaWt+Lx/lDUREzDYMTgROBwk18UVg6f+kG/NEov1u2jCvmz+cdoG7SJBY98QSPpVKE02mw27Hack+3TDrNqlSKFRYLBAKYTieGYeSmi8m3XJFIYNpsey7v6cE0jJ3LIxHweLDE48yMRjm2qIgmoLSrC0dzM2Nqagasq2RvN+F5wPvAr4H3+k15cyNwrd3OF0pLsQ5IBEe+rT4fD8RiLKqpIZjN9iWL1myWU/1+riguJmCa1BVwnCjkntcPdXfz83CYpNXalxyXxOOctmoVo3p6GFXgbr8rgR/t1u33lIoKbiguJtHYSN2JJ0q3XyGEEEIcVSRZ7ae3gu9PtGZbWRmGYfBYIsHqri6+abUWbMoZ0zT5zFlnMa+1FVdREQ92d/NkJkPaYkFpTSweZ5VhsAr430SCsmCQSU4n04qLGQ00AQM1GjQN9AAbOzvZ0NmJs7qareTmkowDwWSScCpFxuGgDQgCT6bThFMpPG43D2zcyMwJE1izbRvV5eW09baEJZN43G6sNhvpdBqgr2prPB7HMAzi8XhfMvJBl2eB9akU7bAzifV6GdHWxqcNg3O9Xgbya/4E8hWCt2/nj0DcbgfgIWAL8HVkLOsHkQT+0tPDPaEQMbsd2tspLysDpRjj83Hy+vV89owzcvMBVxf2zO4A/hd4zWIhabX2Pe9O7u7maq8X/+jRBR0vmgUeBh5k126/szZt4nNdXUyaMaPg91EIIYQQYjiQZHU3TabJvcAvgOfyrWQ+rVnT3c1PLRZmFajLX//iPV/0+aj61794v6aGTTU1ZPPTpCT6Hf/9WIzXHQ6MfHfTolgMIxikxu2m1uOhmNx4ylR3Nz1dXZRXVFBWVtbX+unv7sbX3Y27ogJHaSlxcslnRzhMWyRCtriYRFERkd7jRqPgckE4jDuTYQ25FtFwLAZa87snnmB9SwvhWIwb77yT848/nsvOOIO/vfIKj7zyCobDweXnnJNLVMl92bclk5TbbFgsFsqiURo3b8bIZDhp5kzqgGgmw9tLl2LJZFAWCyfPm4cXaE+neXX5cpJKkTAMJhx/PAposVh4t7uboNNJsKgoVw0WdkliW7xe7leKR8gl+RMDAcZs28a06uqCt1JZgE8UF5N67jmenTyZlooKnE4na8jN6Xvhtm0sKC2V1rH9aPH5eCwU4tURI9ihFDG7vS9ZrI3F+L7bTanNRt0ZZxT8PGaAP/X08CfA6nL1zZtaFolw5nvvce0pp2CaZkHHi/qBH+/W7TeZSnHmihU0dXczssCtt0IIIYQQw4kkq3thI9cSFvL5eDyf9HR4PHzTbufLwEcpbCEk0zT51Dnn0NraSp1p4jAM3gQe7e6mPZslmx/b2tuimEgk2NbRAVqzPJHAtNt3dosNhcBuz1VHLSradbnVuv9ut6a515bMTCYDkGsRzSefV553Hk6nkxKnE2sqRbSrC1s6zSnnn88o06TM6URHo7Ru2oQtncaezTJu3Dg8AA4HzxcXc0lpaa6FqqwsdyLKy5l94om581BXh1mR7wBdUcGM44/fubw0P6K3uBhfbS2tra2UlpURMww2AcuV4qV+3bl7k9j3EwleDgSgpITRzc3caLUyr7Ky4I/lZ846i1NaW3mnpIR/GgaxRAJfezt3GQavrF/Pf4DMy7qbJPC37m7u7ekh6HRCR0dfS2pxLMYJmzbx9Zkzqa2ogIrCd4xfBfwiGmVJb3XhYJDa6mquKi3lBL+fUflEtZBeBX4Ri7GxX7ffeRUVXF9SQrypibqTTpIfNoQQQghxVJNkdR8UcINh0LN8Oa+NHds35czvgMXAzRS2W+fu06ScB8xUikdfeokOt5uu0lKqTziBLmBZvnWzkN1oe5e7DAPT4cAeDuNKJChKpdDAdEBrja+tDVsmgyOTYdLo0ZQA2O2EPR5CoRDFXi+efHJIURFVjY255cXFeDyevvvncrmYMWPGAc/DB10+GfhISQnXVFay1udjx8iRrDUM3iU3nU7v/d1UWcn37HYmRSLMamnh/NJS6grYzds0TY4D5gG3hEJ9x102ciS3as3PAW9Bjja8bfX5eDQSYVFtLW0WC0Gns+/5WJRKcWVxMeO7uhhVoMrcu/MDvwNeBgL95k2tDIW4PhTiosmTYfr0gh4zBNxDLlkN5Lv9AszauJHLu7qYKN1+hRBCCCGAAUxWlVK/AxYA7VrrYVnCssY0+e60aSzNTzmzI98FdxVwdTzO+du389GSEmoGsIDPxeedt7NFsaQEgNZEggffeIOI3U7C4WD6KadgBZqBt1pbyWqNRSmm5KsKB5XivZYWLOk0RjbLCdOnUwvEMhmWrFiBI5HAk07zsdNPZwygXC58lZW54zY2co/DwSQAl4tR9fV7TT49Hs8u1w+0fKDtnsTGgOczGX7b1cWWigpQCqvFwqKuLhYZBg92dXGrzcZpBW61Gw/8PJPhax0dbKyqAqXY7HZzeVcX39Sak4/SasFdwIOBAA+Ew8Rttl1aUl3JJDO3buWWKVNyXW57W94LKA08Afw+HieQSPR1wY1ms8zauJGZ27ZxwgBUF34HuD0Woy2Z7DtmNpHgjJUraejpkW6/QgghhBD9DGTL6h+AXwL/N4DHGHCmaXKeaXIWuWI5DwPxfLfOexwO/rFjB9+w2ZhXUTEgc6TurUWxzjT5t9NP35nE9n6ZLy3FN3r0HsktJSX4xozZudzrzS0vL+fkOXN2Lu/XmrOvlszBSj4PlQv4SHk5c1IplnZ08G5DA89nMn0taV1uN9+32XgbuBIoZArZZJrcDfwxGuVflZV0dXfj15ovA9fY7VxbWnrUdHF4s7OTv8XjrK6sJALEbba+llRPMsnnSkoYv2ULTVOmDFgX2GXAvcCm/Ou4twvuhWVlfMbtJlFRQd2xxxb0+DHgfuCJRAJfvgt/QCk+6fVyWWkpPQUu2iSEEEIIcSQYsO/IWutXlFKNA7X/w80GfBaYDXw7FOqbj7W5rIzv2WzMBS4h1112IJLW3R1qd9kDLT9S9f74cB7wyfZ2frZpE++MGkXaZsPpdPIq8Eo8zvzWVi5zu6kt0LmpMU2+BdS//z532mzE7XaywJ/TaV5rb+d6i4VTjtBW1ji5Lq9/j0RY1Fsdul9139JolOO2buVr06czsqKi4N1ue7UDd4ZCvJrN4nQ6+7rBl4XDzHv/fT46evSAVN59j1zBNh87i385k0lOf+89Lhg1iqYZM+Aoeg0KIYQQQhyso6VBp2DGA7/IZLh1+3ZW1NejLRacTierge/l138amMXhSVrFhze2upofac1qn48Xm5p4t7foVHs7f7JaeXHHDv5bKSYWMHk5s6yM9uef59nJk2ktLyccifCe1nxJKc5ob+dcn29AKhUfbhpYDzwWDLIwk4GiIuL5Al29LamN0Shf93io6eqifvr0AbvPYXI9Ih6Jx2np7u5r1azzepm6bh1Ttm7FrhR1dXUFPW4CuDsQ4P8BRr6omdPppKq9nVPfew9PJkPd3LkFPaYQQgghxJFk0JNVpdS1wLUADQ0NgxzNwRllmvwMWNHeztujRvG2YZDOr1sL3AbURKOc1NzMWaWlw77yq7ehgR9s2VLwfQ4FvS3Lp5Ebi/zjYHCXVvOv2mz8ADi+gMe79MwzmdfaytPhMH93uUhbLKA1C2MxFpaUMGb7dq4MhxkRDA67rqGr2tv5ZyTCatNkh9WKr6cn15IaClFeVoZVa8a0tTFj+3auOvVUzPJyKC8fkFhSwFPkuu+HgXAi0ZcsVz0TYOR7ds47+zjqjqss+HleBvwsFmNVIJC7/0rRVF3Nd5xOJjQ0sMNmG3aPrTgyKKVGkhueU0Numt/7tNZ3Dm5UQgghxN4NerKqtb4PuA9g1qxZepDDOWimaXJWfixrB/B34FlyX5ATiQSLOztZbBjcHYmwIBTinOJiZgCOwQz6Q7rpttsGO4TDYgrw82yW72/ezOKmJlCKjNvNrYkEs30+bjCMg/7h4Y7vfY+ebdv2u00sFmNMayvtJSUEXa6+5ZuBWwFnKkVpLMbEsjJKXS68DQ1D8rFoB94Ano1EeD0eB4sFOjvxuN19yWFZJMJH0mku8ngIGgZ1p546YIlaFngJuD8WY3u+kFFvq6YrGKThiXb++MN5vJy18sBvFAsXlhesF26I3NjUheys9KuBhs5OvtLTw/ypU8E0B6womxAHIQ18TWu9VClVDLyjlHpOa716sAMTQgghdjfoyeqRoAq4DvgU8Cjwl35TyySsVp7PZnkbcJLrHnxS/q9zsAIeYnw+H1tbWykfMYLi6mq2dXTga2+ntrqamqoqujo6CLS2ckxNTcHGkO5LnWnyY+AVv5+/Nzbiz8f3pNa84/Nxh1JMOIhuwT3btvGDxsYDbhceOZJQKETYMFiSSNDTL2nt5XA4qMxm+euGDWwGGhncLuYZYAPwUk8PryaTtJeWYhgGgd26+TqyWSbu2MH4lhZG9vTwkQULckW8BmhaFg28DvwZ2LhbIaOplZV8oaiIY6qr+UlbBdmslUxGkUzCSy/BofbG1eQS5F/FYrT3q/SbSKc58f33mdzWxmSp9CuGAK31DmBH/v+QUmoNMAKQZFUIIcSQM5BT1/wFmA9UKqWage9rre8fqOMNBeXA1cC8ZJKfbtnC+zU1hF0unPl5R+PAa/mLAxgbDtO4YwdzvF6mV1VhGbTIB0YGCAA9QDewqbubTT09WCsqyJSU0A20RqOsiURIlpdDPE55KIQ/FgOPB2Kxnde9XlQ8Tn0gQHk8TlM2S0MoxOmlpTQVOIE1TZNP5oswfbu1ta9b8I7SUm7SmmtWr+bkioqCtAz2r65cGw6zIxplW1ERG9JpsgBKkUylaNWaNckkV4ZCeJJJpjkczCwupryzE2dzM021tQPWUhkil5xuAJaGwyxNpUjabPiDwVwX13gc0zRxOp2EgPrOTia2tfGlWbMwmppoNYwB7fKqgbeA30ajrEuldimeZKRSzN64kc9VVzM7X8jo0kvh/vshmQSHA+bPP7TjbyM3b+o7uyXIF5aV8W/FxUTq6qibNUu6/IohJ18EcQa5l9Du64bdEB0hhBBHnoGsBvyZgdr3UDe2upr/0JqW1lYSFRWsMwzeAFr7bRNKJHja7weHg3tiMUbG44xzOhkNjAaa8peh1vqaJZe89JBLRDf5/WzOJ6DZ0lL85BLTHbEYHclkX2GZRCKBLxTKdRHt6cE0jFxrXCpF0mrta42L5KvF7u26Brb39LCN3JhADINfxmLM3rKFz3o8nFJZWdAWRw/wXauV7OrVvDZ2LCjFjkSCHxUVceLKldwKBW3p9Xg8jPV4GAvMDIfZkEzSbLXSpnf2jvf7/fiBbUrxOuCPRqGsDE8gwGy3m5psFmtXF01eL41lZXRu2EDHli2MaWhg8rhxdPl8tLa1UVlbS3l1Na0dHWxtb6eopgZ7RQXbenrYEgiQKi8nWlzM1n4thQA+vz+XoJJ7PAAs2SxNfj+fqK2lyeUiZLHskpwNZHff18gVT1qXSODr7NyleNLETZs4dvNmXFrT0K/C8Ny5sHBhrkV1/vwP36q61efj9/E4b5kmtn4Jsjse57TVq7m4sZFxA1BdWIhCUEp5yI1guUlrHdx9/XAdoiOEEOLIIt2AB0j/KWHmApeTa4F5I39Znv9i25uUBRMJ1judrO+3DwXUAlWhEEZXFw1eLw1eL8VAMVCS/+vmw3ULTZNr7Y0D2zo62NrRgdM0sVZU9CWjPUBLOMyOWIyMx0PS5epLUhKJBL5wGKxWCAQw+yem+RYmlMI0zb4v8r33Nx6P940jDCiFJZvFyGSoNwy6u7py21osVJeU0NrTQ9xmI5mfk7O/jFK8CbwVjTKxuZkbnE5OLeAUMDWmyfeAl7q7+W15Oe2xGFmleH3sWL4D3A4cbCoST6c59fe/J5HJkM5m+cTEifzwtNO49YUXeHztWixKUe1284ePfpS64mJmAxPDYVZt3EjA5aIkFiOWShG32/dI5MOGwduJBOFIJPeDQChEMRC022HsWABKursJJRLg9e7Zih2JUO5w5FpLAbq7KQf8/arn9h+D6onHGen3M7KzM5eonnsuJuQSswFOztLAo93d/DWTIVRcjGEYfc8vWybD1G3buKqsjLGTJtHq9e61VXfu3A+fpGrg//n9/HcgQNgwoL0d0zRxGwZjtm5l9oYNGFpTd+KJh3xfhRgISik7uUT1z1rrRwc7HiGEEGJfJFk9TBQwKn/5DLA8meTeDRtoLS2ls6Skr+WqPw1sTiR4s7sblIJgENPlwjCMPfZdDNiiURKRCG63G1dRUV9rZO++otEoPbEY1qIitMvVV8E4kUjgi8XA7YZIBNPj6TtGIpHY2ZoWi2GaZt+6fSWg/ZcXJRKUB4PUuVy0tLXhisfxpFKcMXMmY4AywyDldNLT0sKIujpMrxdfIkFra2suySgrw5dM0trait3pZOGSJXQUFdHm9bK5upqOkpLc/dOa1ZkMX45GOWXTJr7i8TCuQEmTaZp82jSZ3N7OV0MhfMXFoBQtXi9Xx+Oc39zMR4uLD1g0x7BaeeGKK/A4HKQyGU7+/e85b+xYvnHSSfzo9NMBuOutt7jt5Ze5Nz++0ePxMGXMGEKhEDOiUSa//DIdbjcdXi+u6dN5MxLBX1SEtuQ7kfd7PGLR6C7Hj+2n1Xp/1y3ZLJXhMFOSSdiwgRq/n4pYjJNOPJG400ndnDmHpYtrCHga+FssxrpQKPecjEYxTZPSfKI4ffNmPOk0YxcsGJA5hDeQa2p602olbBh952pETw8/ME2c48fTWlwslX7FkKWUUuTqgK3RWv98sOMRQggh9keS1UEyraqKH0yZkkvKSktxGgabyVWC3ZS/NLPvhLA/DXT06wa5e1IJ+aSzd30kclBJ577WVRgGXqDJZqOlvb0vAT19xgyagEwqxVuvvooRj2NXigULFmB6PPgaG3cmof2nK9mtNW73JKP/9aryclpbW3E6nXR2drJo1SqWNjSwtq6OjMWC1ppXrFaWBIP80GrlnIqKgjxeAFOqq/m91vwhFuNV0yQLbG1v5x67ncd9Pr5ntTJ3P626Sik8jlw96FQ2SyqTQQEl/R6nSDK5Ryt577hWbyLBhQsW7DyHpolPKba1tmKvr6cNeHLdOkKGQdwwcNfXszkUIm21krFYKK6ooCuZRGWzWLWmtrQUf3c3tnQaVzrNhNpafM3NOBMJSuNxTp0wgU2LFuGKRrFZLCxYsABmzNjl+IfDso4O/hqPs7Kqip53nbQ8o7BOs1N0XBIjlWLejh18pbGR6AAmij3Ar4JBntUaI188KaAURYkEJ69fz9ePO44agAFIkIUosJOAfwNWKqWW5Zd9R2v91OCFJIQQQuydJKuDaPekbHr+0isJvJNK8bc1awg6HCQdDhrzSV4ICOb/xjhwUru39S7DwAUUORxYolHs6TRFqRSzy8oYCZQCmUyGFe++ixGP406l+MTZZzOitDS3U7cbX0PDLq2gAFRW0nTWWXskNYVo6dp9H+N8PuauW8eS11/nlXHj2JhfF7PbuQ14fds2rjUM6guUQIwwTb4LrAO+3dnZV3yptbSUb9ntXESuy/e+ZLJZjrvvPjb4/Xxx9myOr68H4LsLF/J/K1ZQahi8eMUV+7z9/hJ5gBlTp+5y3tcEg2zatInRo0czsbISXyazc/3urdimiQ92ve527/VxHGhp4E3g7+EwL+Sra0ee7mHzZSbZpIHFbvKR29/h7JL3+Ph55+W6xg9AohgH/h/w53icbb1zxirFiOpqPl9aypzNmxlz3HGSoIphQ2v9GoNbUFwIIYQ4aJKsDmEOYG5lJaP7t2YVF++xXZrcVB2PL1pEGrAoxRmnn04VuW8kCuhMJln4xhtY0mkMrbnonHOoLy3NfWNxufDlWyzrRozAzHetBaC8nJPnzt1na9q+EtCB6IK5N73HGTduHLPWrePZpUtZOHkyEaeTcCTC41rzZns7dyjFpAKOpRwH/DyT4fvbtrFs5Ei0xYLT6eQl4MV4HGs4THskQrXbvcvtrBYLy667jp54nI/99a+sam9nSnU1PznjDH5yxhn856uv8svFi/nhaad9qLh2P+8TJ05k4sSJ+1z/Qa8PtFUdHTwWjbKiupq4y0Ugk+n7kSWyyCCbBDIKBYxcP4KP/3vDgMSXITdX6p8BPxBIJPriaGpv54ZgkHOmTIF+hZuEEEIIIURhSbI6DBwoYbAB46urueK003YmlVVVu2zTUFXFiNNP/8BJ58EcfyjoS1p9Ps5ua+MPhsEScl2kfSUlfN1m47+AKQU85ijT5HZgeXs7LzU2srK3uFR7Oxbg0VSK8YkEUw2D3Tsje51O5o8axTMbNjClXxJ96bHHcsGDD37oZHU4ipKbH/XJSISXYrHcwo6OvulwgkBTRwdzyjbzZ/s8UoDDobj00joK/bTUwGLg3miUjflpcHoLgdkiEU5cu5Ymv5/pMmeqEEIIIcSAk2T1CHKgpHI4JJ2Hqvc+jvX5+PGKFbw2dizaYiHtdvP1eJxzWlv5jNt9wGJIH+R4Z5smZwOrgP8IBPD1m9pli9Y0p9OUxONUJhKMd7updDqJpVI8v3kz3zrpJNZ3dTE2P7b2ibVrmVDAasZDVRp4oauLp+JxNlRUoJxOAun0Ll3VjXCYSyoqmOFykbBaqbtyIlfNV4c85czeaGA58Cdg5W7T4IyvquIrLhdTKipoa2yk7sQTj/jXkRBCCCHEUCDJqjgi1Zgmt06dyit+P39tbCQI7Ghv5w9WKy+1tHC7Ukwo8BQrU4Cfa80vly3jxUQClEIpRTgSIaw1i7u7uexvf8OmNTat+czkySwYN46PP/wwazs7sSjFKK+Xey+4oKBxDRUpcvPjvgG8FI+zKRLJjQHNT/3S24ra0NnJsS0tfOn446mDXQpwmWZhk1SAVzo7+UM6TXNZ2R7T4By3eTNX+v2cMH06mGZB59UVQgghhBD7J8mqOGKZpsknTZPTgJvb2/uKIW2pqOBmm41bgULPhFljmnz5hBMI/Pa3fMRuZ1UiwZb8cesrK/n+5z6HkZ+myJZK8VwgwH9+5CM0ulw4ChzLUBAEXvT7eSUaZUNlJdn8fe8/BlRpTXZhlJrlZXx+ajET6vzUHX/8gLZeauA94HfhMAvzU/Tg82GaJsWGQdO2bczcuBFPJkPTlEJ2HhdCCCGEEAdLklVxxKsE/lNrvrttG8saGkApMm43/wmcBnwBcO9/Fx+IaZpUVFRQX1SENxzGu2ULHR4PXcXFWD0eADLpNIFolC6t2ZBMUmy3U2OzURaP4w6FqHO5KMlvO5w0+3y87vfjq6tjc2kpqxMJ2sLhXVpQe8eAZhIJjmlro+jlJH/4jzNIpeBRRzkLF5YXfCxqLw0sBf4KrIFdCjhZsllmtrfz9ZEjyYwbR6vHI/OlCiGEEEIMIklWxVGh3jT5L+Alv5/HGhuJ5Kf1eSaR4OVwmOuBcyoqCj6fg8fjYcro0YRCIYpdLlI2G5uB95PJXAIHoDWpdJodwPpEAux2LOk0I5JJah0OKgBXJEJXVxe+fOvfUJAGtgEbgI3A8kiExbEYmaIiCAQwnc49pkxyh0JcaBicaBiUlpayIxLhkfgxpFKKTAaSSXjppcJ39c0CT/n9PJhO01la2jetU2/X4/E7dnD8pk189owzqASZL1UIIYQQYgiQZFUcNUzT5NOmyQLg1+QSVZ/PB1rzLaX4l2HwFY+HpgIf1+Px4OnXSloGjM1mWdraSo/LRcDtRnk8pPMFhiCXXHVkswTJtcKG02necDi4rLOTE4qKmFBczAjA0dlJqrWVsabJiAInVxrY7PPxfkcHltpaUhUV+AAfsDkaZVMyic3l6kv8Auk0GaV2mcu3yDAoCgSo7+xkTGcnn583j5reA5gmNaZJPA6/+EUuUXU4csWTCiUGPAf8NRZjVW8LbzyOaZq4DYOzDYN5RUVkDIO6M86QBFUIIYQQYgiRZFUcddzAV4GyrVu512IhZrejtOadTIYbgTOBzwLlAxhDscfDcQ0NuRbXoiJsNhubUineC4cJOZ0k7HZsttzLszeJzSpFh8fDK9ksyyE3TU40CqWlkEgwJhbDdLnwAsn2dsIdHdSUlzOythY7uRd7pKeH7u5uisvLKSotJUWu8JE/GMQXDqNKS8m43YSAjnic1kQCioshEsH0eDB6p+fJV8slGNyla29AKbyRCA1+P5cWFzPP6SRsmrRmMtRNnrzXZHDuXFi4kIJW+V3V3s7fYjGWmSZZp5NAviVbA7ZMhjk+Hzc1NORaUauqchchhBBCCDGkSLIqjlrnl5YS/te/eHP0aN4bORKn04km1xL3XDzOSTt28JmiIkYNUGvb7i2uk1wuGrxeQqEQDpeLuM1GF7DDYmFbNpvbSCmc+SJFu3ex7UwmSblcvB8K0RWLgccDySQVoRCe4uJckhkMgsXS1023L/ns6ckln11dmDYbhmEQ2a0IUjwexzAM2l9J0f5cMUUnxKmdHGR8Vxen1tVxjGFQ7HQS6uqi7phjMMtz6b77ILrUzp176EmqBt4FHgmFeDoWIwu7VBpOpNNM3raNGc3NfOrssznyJwgSQgghhBjeBjRZVUqdC9wJWIHfaq1/OpDHE+KDME2TT51zDie3tpItKuIfhsE75Fss29vZZrHwWDjMZ51OList/UAtrd6GBn6wZcuHD66jI3fJi8VizC8v5+KiIpKGQQuw1mLhzXCYiMNB3OHoS2Ij0eguu4pEo3iKi/dIbnuTz30tdzqdRLNZXIkEpfE4c8vKYBE8e5GbVEJjsxXz6a8t4cYb59CXivabZuZw6QGeB54h10U5kM2Shb77UxIKcVVlJZM9Hrq8XuomTZLuvkIIIYQQw8CAJatKKSvwK+AsoBl4Wyn1hNZ69UAdU4gPyuzX6nccuZa524PBvmlu4jYbfwNeAOYBHwUaD2K/N91224DEu4viYnyVlbS2tlJTV0eRYdADLI1EeH3VKtJWKxmLhXFTplADdAJvb9mSm0NUa+bMmEEVEM5meWf1amzpNEXpNOeffDJjgGLDoLuoiNaenlxV3JIS/vMlyCQVOqvIZhRKzcc0iwf+vu4mQ27O1sdCId7IZHYZO9vbHbm+q4uZ27bxpRNOyI2TNU0aJEkVQgghhBg2BrJldQ6wQWu9CUAp9RBwESDJqhiyZgC/yGb52erVLGlsJOB243Q6SQML85ex4TCzmps5rayM2kFOfszdutiWAqNGj2ZCIsGmTZsY3djIxJEj8ytLuXjCBFpbW3PJp9ebW15WxpkzZ+5c3m/85u77nz8/VwQpVwxJsWDB4U1UN5P74eAlwJdI4Ovu3mXsbLlhcJFhMNPlQgF1J5wgrahCCCGEEMPUQCarI4Dt/a43A8cP4PGEKIha0+RbM2fS3NpKm2nysmGwJr8ukUiw0O9nocvFL4NBPul08tHSUhqh4NPeHIqJEycyceLEPZbvnnweaPnuBqIY0oG0A0/29PBsKoW/pKSvBbV/9+Xa7m4uTiT4/NixOECKJgkhxEFqfN0CwJaTsge1/kDbH+x+j1SFvN+Nt/xzl+tbfnrBoe9zgB+Xve0/t6yBLQNyxN7z1MCW+gKc8yP4edv7fCrE8+hwGshkdW/f3fUeGyl1LXAtQENDwwCGI8TB65+8XQC8DzwGPNMvQYo4HDxGrqVvFDCfXFfhIz1FKkQxpAPZAbwOvAGs6i0MpTXEYn3Vh02HgzFbtzKupYXqaJQFCxbkElUhhBBCCHFEGMhktRkY2e96PdC6+0Za6/uA+wBmzZq1RzIrxFAwAfg2sCCZ5L+3b2etaRLLFyEC2Ar8EbgvkaC+u5tTnE5O93ppYGi1uA5VGljS0cHCcJgNpomvqKhvXf8WVFsmw+TOTv5txAimuVx0jh9Pa3FxrvuydPcVQgghhDiiDGSy+jYwVinVBLQAlwCXDuDxhBhwx1ZV8V/ZLNtaW/GXl7PSMFgEJMlXEfb58GnNO8kkf3G5qDMMZgIzgemAZ387P8p0kSuS9C7wZizG+lgsN61OZ2df6ymAxzDwdnVxzI4dHNPRwcfPO6+v+vDBdl8WQgghhBDDz4Alq1rrtFLqS8C/yE1d8zut9XsDdTwhDpf+CdI5QAx4E/iL399XRbh3Cpguw8jN20quhXVkJEJNRwezios5vqLiA02HM5xpwA8s7urijUiE7ZWVdPVrPQ0kk7tMn5OOxTjVMDgJmON0Eh4xglalqJs1S5JTIYQQQoijxIDOs6q1fgp4aiCPIcRgcwGnAZMsFv76yitsLi9ne3U1adMk02+7eCLBa11doBSPRCKYHg8jDINxwDigoqsLY/t2RtfWDuuETJNrNd0IbOh38SUS+CKR3NjT3VpPnU4niXSa+q4ujuno4PpZs3aZIsgtLahCCCGEEEedAU1WhTiamKbJp88+u28KmEqnk/XAO8BSYEm/sZe9La+dhkEn8GJvIldWRklPD7PdbsZ5PIwA6siV1q4GLIN27/YUBnz5S1v+7/pwmPeTSdJud18i2iu+2/1Px2LMNgxmANMNA4/Hw45gUFpPhRBCCCEEIMmqEAW1+xjKCfnLZcCGRILfrlzJjuJi2r1erP2265/IBZ1OlmQyrN9t35l4nKJwmHqnkzqPBy/0XUrzf33r1rFj82aOGTWKYydMwM6BCzxpIAWkgZb2djb7fLhra3FUVhKEXS4t4TDbolGiJSVk8sWleiUSCXx+f67lNBzepeUUoNQwcPf0UN3Tw6jubq6eO5dd6n+bJjWSpAohhBBCiDxJVoU4TI6prubm2bNzLa81NVQ6nWwD1gFLlOKFcJhOjweU6qsy3CuRSOBrbwetWR+NYtrte7RchkMhugwDJkwAoCIUwlNcjI3cC90OZGIxotEo9qIirC4XaXJJat8x4nEoKYFoFDOR2OUYuySj8fgeyWj/hNueTlPf3c2JNTUcAxwD1DmddNTU0JrNUjdhgrSeCiGEEEKI/ZJkVYjDaPeW16b85ZySEq6urGRrayv2+nqShkEruTLaLcCqcHiPLsS7J6uRaHSP657i4r6ENJBI4OvoyCWbkch+k829HWP39ZlYjJGGQQ1gAobWrFuxAm8wSHk8zkcWLGD3dFSq9wohhBBCiIMlyaoQQ8T+EjlfOs2jL75Ij9NJ3DCYOm8eViAAdOf/brbZWB+Pk7ZYyFgslPSrtgv7T0Zt5LrpJtJp7Ok0RakUUysqqANK8pdMNsvyFSsoisXwJhJ86uyzqel/AK8X35w5fWN2JSkVQgghhBCHQpJVIYYB0zS5+LzzdiaC5XuZ9KaigjXt7WzasIHRo0czsbgYTa5VNQW0JBL889VXyWaz2IEF55xDfWkpNvLjWp1OfB7PzmN4dpsVtqyM0w+QjErLqRBCCCGEKBRJVoUYJg4mEZw4cSITJ07su67IjVW1A2Orq/nMWWcdUrIpyagQQgghhDhcJFkV4igiyaYQQgghhBguhtK0jUIIIYQYYEqpc5VSa5VSG5RStwx2PEIIIcS+SLIqhBBCHCWUUlbgV8B5wCTgM0qpSYMblRBCCLF3kqwKIYQQR485wAat9SatdRJ4CLhokGMSQggh9kqSVSGEEOLoMQLY3u96c36ZEEIIMeQorfVgx9BHKdUBbD1Mh6sEOg/TsY5Ucg4PnZzDQyfn8NAdqedwlNa6arCDGEqUUp8EztFaX52//m/AHK31l3fb7lrg2vzV8cDaAoUw3J9rwzn+4Rw7SPyDaTjHDhL/YNpb7B/os3lIVQM+nF8qlFJLtNazDtfxjkRyDg+dnMNDJ+fw0Mk5PKo0AyP7Xa8HWnffSGt9H3BfoQ8+3J9rwzn+4Rw7SPyDaTjHDhL/YCpE7NINWAghhDh6vA2MVUo1KaUcwCXAE4MckxBCCLFXQ6plVQghhBADR2udVkp9CfgXYAV+p7V+b5DDEkIIIfbqaE5WC9696Sgk5/DQyTk8dHIOD52cw6OI1vop4KlBOvxwf64N5/iHc+wg8Q+m4Rw7SPyD6ZBjH1IFloQQQgghhBBCCJAxq0IIIYQQQgghhqCjMllVSp2rlFqrlNqglLplsOMZbpRSI5VSLyql1iil3lNK3TjYMQ1XSimrUupdpdSTgx3LcKSU8iqlHlFKvZ9/Ps4d7JiGG6XUzfnX8Sql1F+UUs7BjkkceYbb5+6+PueUUuVKqeeUUuvzf8sGO9Z92f3zZZjFvsd7+zCLf4/31aEcv1Lqd0qpdqXUqn7L9hmvUurb+dfyWqXUOYMT9U77iP9n+efPCqXUY0opb791Qyb+vcXeb93XlVJaKVXZb9mQiT0fz17jV0p9OR/je0qp/+q3/APHf9Qlq0opK/Ar4DxgEvAZpdSkwY1q2EkDX9NaTwROAL4o5/BDuxFYM9hBDGN3As9orScA05Bz+YEopUYAXwFmaa2nkCu4c8ngRiWONMP0c3dfn3O3AAu11mOBhfnrQ9Xuny/DKfa9vbcPi/j38746lOP/A3Dubsv2Gm/+dXAJMDl/m7vzr/HB9Af2jP85YIrWeiqwDvg2DMn4/8CesaOUGgmcBWzrt2yoxQ57iV8pdRpwETBVaz0Z+O/88g8V/1GXrAJzgA1a601a6yTwELkTKg6S1nqH1npp/v8QuQ+REYMb1fCjlKoHLgB+O9ixDEdKqRLgVOB+AK11UmvdM6hBDU82wKWUsgFF7GXOTSEO0bD73N3P59xFwB/zm/0R+OigBHgA+/h8GS6x7+u9fVjEn7e399UhG7/W+hXAv9vifcV7EfCQ1jqhtd4MbCD3Gh80e4tfa/2s1jqdv/omuTmlYYjFv49zD/AL4JtA/+JCQyp22Gf81wM/1Von8tu055d/qPiPxmR1BLC93/VmJNH60JRSjcAM4K1BDmU4uoPcG1F2kOMYrkYDHcDv813dfquUcg92UMOJ1rqF3C+e24AdQEBr/ezgRiWOQMP6c3e3zzlTa70DcgktUD2Ioe3PHez5+TJcYt/Xe/uwiH8/76vDIv5+9hXvcHw9Xwk8nf9/yMevlLoQaNFaL99t1ZCPPW8ccIpS6i2l1MtKqdn55R8q/qMxWVV7WSYlkT8EpZQH+Dtwk9Y6ONjxDCdKqQVAu9b6ncGOZRizATOBe7TWM4AIQ6tb1ZCXH4N0EdAE1AFupdRnBzcqcQQatp+7w/Fz7gj4fBnW7+1HwfvqsHo9K6W+S65b/597F+1lsyETv1KqCPgu8L29rd7LsiETez82oIzcEIpvAA8rpRQfMv6jMVltBkb2u16PdHv7wJRSdnIf4H/WWj862PEMQycBFyqltpDrEne6UuqBwQ1p2GkGmrXWva36j5D7giMO3pnAZq11h9Y6BTwKnDjIMYkjz7D83N3H55xPKVWbX18LtO/r9oNoX58vwyF22Pd7+3CJf1/vq8Ml/l77infYvJ6VUlcAC4DL9M65Ood6/GPI/dCxPP8argeWKqVqGPqx92oGHtU5i8n18KjkQ8Z/NCarbwNjlVJNSikHuYG+TwxyTMNK/teR+4E1WuufD3Y8w5HW+tta63qtdSO55+ALWusj6ZfXAae1bgO2K6XG5xedAawexJCGo23ACUqpovzr+gykSJUovGH3ubufz7kngCvy/18BPH64YzuQ/Xy+DPnYYb/v7cMifvb9vjpc4u+1r3ifAC5RShlKqSZgLLB4EOLbL6XUucC3gAu11tF+q4Z0/FrrlVrraq11Y/413AzMzL8uhnTs/fw/4HQApdQ4wAF08iHjtw1cnEOT1jqtlPoS8C9yFdp+p7V+b5DDGm5OAv4NWKmUWpZf9h2t9VODF5I4Sn0Z+HP+C/Am4PODHM+worV+Syn1CLCUXDepd4H7BjcqcaQZpp+7e/2cA35KrkvbVeSSkk8OTngfynCKfW/v7RaGQfz7eV/1METjV0r9BZgPVCqlmoHvs4/ni9b6PaXUw+R+QEgDX9RaZwYl8Lx9xP9twACey/1mwJta6+uGWvx7i11rff/eth1qscM+z/3vgN+p3HQ2SeCKfMv2h4pf7WwVF0IIIYQQQgghhoajsRuwEEIIIYQQQoghTpJVIYQQQgghhBBDjiSrQgghhBBCCCGGHElWhRBCCCGEEEIMOZKsCiGEEEIIIYQYciRZFUIIIYQQ4jBQSt2mlDrzANvMV0qdeLhiEmIoO+rmWRVCCCGEEGIwaK2/dxCbzQfCwBsDG40QQ5+0rAohhBBCiKOCUuqbSqmv5P//hVLqhfz/ZyilHlBK3aOUWqKUek8p9cN+6x7rt4+zlFKP5v8PK6X+Rym1VCm1UClVlV8+XSn1plJqhVLqMaVUWX75H5RSn8j/v0Up9cP8bVcqpSYopRqB64CblVLLlFKnHMbTI8SQI8mqEEIIIYQ4WrwC9CaAswCPUsoOnAy8CnxXaz0LmArMU0pNBV4AJvYmosDngd/n/3cDS7XWM4GXge/nl/8f8C2t9VRgZb/lu+vM3/Ye4Ota6y3AvcAvtNbTtdavFuJOCzFcSbIqhBBCCCGOFu8AxymlioEEsIhc0noKuWT1U0qppcC7wGRgktZaA38CPquU8gJzgafz+8sCf83//wBwslKqFPBqrV/OL/8jcOo+4nm0X1yNhbiDQhxJZMyqEEIIIYQ4KmitU0qpLeRaR98AVgCnAWOAGPB1YLbWulsp9QfAmb/p74F/AHHgb1rr9L4O8QFDSuT/ZpDv5ULsQVpWhRBCCCHE0eQVcknpK+RaU68DlgElQAQIKKVM4LzeG2itW4FW4N+BP/TblwX4RP7/S4HXtNYBoLvfeNN/I9dF+GCFgOIPdI+EOELJLzhCCCGEEOJo8irwXWCR1jqilIoDr2qtlyul3gXeAzYBr+92uz8DVVrr1f2WRYDJSql3gADw6fzyK4B7lVJF+X19/gPE9w/gEaXURcCXZdyqOJqpXDd8IYQQQgghxL4opX4JvKu1vr/fsrDW2jOIYQlxRJNkVQghhBBCiP3It5xGgLO01ol+yyVZFWIASbIqhBBCCCGEEGLIkQJLQgghhBBCCCGGHElWhRBCiCOMUup3Sql2pdSqfsvKlVLPKaXW5/+WDWaMQgghxIEMWLKqlBqvlFrW7xJUSt00UMcTQgghRJ8/AOfutuwWYKHWeiywMH9dCCGEGLIOy5hVpZQVaAGO11pvHfADCiGEEEc5pVQj8KTWekr++lpgvtZ6h1KqFnhJaz1+MGMUQggh9udwzbN6BrDxQIlqZWWlbmxsPDwRCSGEOKK98847nVrrqsGOYwgxtdY7APIJa/W+NlRKXQtcC+B2u4+bMGFCYSLo7oZ0ujD7Gmg2G5QNoZ7Sw+nciQM7nM+vofDcGej7OxTu44c11N5rBtgH/Ww+XMnqJcBf9rai/wdiQ0MDS5YsOUwhCSGEOJIppaQnz4ektb4PuA9g1qxZumCfzffcA/X1hdnXQGtuhuuvH+wodhpO504c2OF8fg2F585A39+hcB8/rKH2XjPAPuhn84AXWFJKOYALgb/tbb3W+j6t9Syt9ayqKvkBXAghhBggvnz3X/J/2wc5HiGEEGK/Dkc14POApVpr32E4lhBCCCH27gngivz/VwCPD2IsQgghxAEdjmT1M+yjC7AQQgghCk8p9RdgETBeKdWslLoK+ClwllJqPXBW/roQQggxZA3omFWlVBG5D8QvDORxhBBCCLGT1voz+1h1xmENRAghCiiVStHc3Ew8Ht91xXHHgdU6OEEdKtOENWsGO4qCczqd1NfXY7fbD2k/A5qsaq2jQMVAHkMIIYQQQghx5Gtubqa4uJjGxkaUUjtXtLeDwzF4gR2KZBKq91mcfVjSWtPV1UVzczNNTU2HtK/DVQ1YCCEOmzafj01tbXhra/FUVxOFvktrdzetfj8lFRUUeb0kgCTQGQzSGQziKS3FXVxMFsgAWSAQDhMMhSgpLqbE40EBitw4ikgoRDgYpKKkhIriYuyAI3+J9vQQ7upiRHk5I8rKKAJcQBEQbm8n0NpKY20tNaZ52M+REEIIMdzE4/E9E1Ux5CilqKiooKOj45D3JcmqEGJY0ECQXPnStX4/G7q7sVVWokpLCQKB/MUXi7EpHkd7vRCPYyYSGIYBQCKRwBcK5eY0CwYxXS4Mw8gt7+kBraG7G9Ph2PU2fn9und+Pabfvuq67e9+3CwZzxwqFMIuKdl0Xj0NZGbZolLGxGLUuF6VACaACATJdXYzxehlfXk4VUA4M0w5OQgghRMFIojo8FOpxkmRVCDFkJIHW/OW9nh7Wh8OkvV6iHg8d+fWJRAJfOJxLAgMBTKezLwkECCSTaHLJrdKaeDzetz4ej4PWe6zb1/L93aZQ69IWC63JJBGXC3rvXyCQG3sTDmO63RiGgSI3pqIKcIZCGF1dTCopYWp5OSMA50A9KEIIIYQQg0SSVSHEYRcBtgFLu7tZHQoRKy8nkE9INf1aJffSmrm/JBByA/oDSuFIpzHSaUbb7VSS636btVjYuGMHtnQaezbLLK+XKiCmNUvffx9LOo1NKU464QQqyXXzDaTTvL5sGWSzKIuFk04+mbJ8nJ2ZDK+tWEEG0FYrM+fOxQ2kgA7g7S1bSFospO12RpeXYyHXFbnLbmd9MkncZiNjteJ07kw193X/NNAJtPS25iq1SzJbCYwESoJBnO3tzPJ6Oa6ykkMrayCEEEIMXY23/LOg+9tyy0kH3OYn//3fPPj3v2O1WLBYLPz6F7/gp3fcweatWwlHInR0dtI0ahQAd//3f7N0+XLuuPdeNm7eTMeGDVRW5Mr5/Pnhh7n9zjtBazxeL/fccw/Tpk3b43ibN2/mkksuwe/3M3PmTP70pz/h2G18bjQa5ZprrmHFihVorfF6vTzzzDN4PB6sVivHHnss6XSaiRMn8sc//pGioiKeeeYZbrzxRjKZDFdffTW33HLLXu/vSy+9xE033UQqlaKyspKXX34ZgDvvvJPf/OY3aK255ppruOmmmz7IqT5okqwKIQaMBnYAi/1+VoZChCoq6MwnpX1dcj9AQuoGqu12ujo7ccdiuFMp5k2fzihy3WdLgVLDIGIYtHd1UVdXh1lUtDOg4mJ8TU20trbm1pWW5pZ7vZw7ffrO5eXlO29TUcHME07Yua6iX8248nJmz5mzc11Z2c51paVcPGHCznXFxTvXFRXhKymhpbWViro6nIZBD7luzluyWe77938n29FB2mbDWVpK1G4nkb9pKpnEkkz27SrgcGB3OOgG1mYyxGIxAO4HilwuSq1WioHqhgZuvu02GpA3fiGEEOLDWLR4MU8++yxLX3oJwzDo7OoimUzy2AMPAPDSa6/x3//7vzz517/23cblcrHg3HOZv2DBLvtqGjWKl//5T8qKinj6nXe49tpreeutt/Y45re+9S1uvvlmLrnkEq677jruv/9+rr/++l22ufPOOzFNk5UrVwKwdu3aviq8LpeLZcuWAXDZZZdx7733cuONN/LFL36R5557jvr6embPns2FF17IpEmTdtlvT08PN9xwA8888wwNDQ20t7cDsGrVKn7zm9+wePFiHA4H5557LhdccAFjx449hLO7d/KdRQhREBroAtYB6/OXDYC/t9su7JKU7i0hdRoGJjDeaqVj+3ZKIhFK43EuOvFEJgFuyCV69fV7TxDzvKbJiH0ULTJNE3Mv6/a1/HCt6/1vdlkZS5JJbho1iuLiYjweD5Ar9hQFOqNR1rW0ELPbiTscGFVVxO32XIt0PL5LOX+n04mRb7W9e8sWrkskyMRiHGuzcaLHwzTgGGQsrBBCCHEwdvh8VJaX9/24Xllx4ElPZkydutflJx5/fO6fZJITTjiB5ubmPbbRWvPCCy/w4IMPAnDFFVfwgx/8YI9kdceOHYzKt+YCjB8/fq/HPOWUU1ixYgWLFy/mmGOOYfTo0QBccsklPP7443skqw8++CAXX3wxDQ0NAFTnqxavWbOGE044gaJ8g8C8efN47LHH+OY3v7nfc/FhSLIqhPhQNLAVWAW8ByyJxfAlk7kEqV+33L0lpW7DYKzdTqitjfJQiIpolI/PncuxkOu26vHgGzt2Z0JaVbXLsfeXBB4JXC4XtbW1uyyzAsVAcVERVbW1hEKhXDJrt5MFwoBPa9b6/UQcDqJOJzbbzrf4bCaDz+cDrXlRKVbnfzQoAqYAU4G6jg6szc2MqKs7os+vEEII8WGcfdpp3PZf/8W4WbM4c948Pn3xxcw76cBdhw/k/vvv57zzzttjeVdXF16vt+/zvL6+npaWlj22u/LKKzn77LN55JFHOOOMM7jiiiv2aOVMp9M8/fTTnHvuubS0tDBy5Mi+dfX19Xtt1V23bh2pVIr58+cTCoW48cYbufzyy5kyZQrf/e536erqwuVy8dRTTzFr1qxDPQ17JcmqEOKgaOCtzk5eDwbpqK5mq8dDvr0016W3owO0JqAUpmn2JaxVDgferi4qg0GqIhE+OWcO0wFbURG+xsZcQnrssUddQnooPB5PX4sr5MbWlgAlLhe11dW5RNbpxG6z0Q34gdJEAkssRtDp3KVrdRRYDLyaSOCLxXC73Yxdv55rrVZOrKxEai4KIYQQOR6Ph3deeolXFy3ixVdf5dNXXslPv/99PnfppR96ny++9hr3338/r7322h7rtNZ7LNtbld3p06ezadMmnn32WZ5//nlmz57NokWLmDhxIrFYjOnTpwO5ltWrrrqKxx9//KD2m06neeedd1i4cCGxWIy5c+dywgknMHHiRL71rW9x1lln4fF4mDZt2i4/kBeSJKtCiH1KAMvIJTOvxGKsi0ZzVWr3McbUnk5THQwyR2vOHDWKcUCVy0X7iBG0KkXdxIm7JKWSkB68O998k98sXYoGrpk5k5tOOIFbX3iBx9euxaIU1W43f/joR6nr13UYoCZ/maoU4157jaDdTmtlJSWnnMImckWbYOdjGDYMlo0cybftdsYCpwKnAE0giasQQoijntVqZf7JJzP/5JM5dtIk/viXv3zoZHXFqlVc/dWv8vSzz1Kxly7FlZWV9PT0kE6nsdlsNDc3U1dXt9d9eTweLr74Yi6++GIsFgtPPfUUEydO3GXMaq/6+nq2b9/ed31f+62vr6eyshK3243b7ebUU09l+fLljBs3jquuuoqrrroKgO985zvU19d/qHNwIJKsCiH6+Hw+Vvt8tI0cyfqyMpaTmy4GclPC7N6dt9owmAKs+/GPCSxejCOVQgGxkSN53uXi+QGI0dvQwE233TYAex66VrW385ulS1l8zTU4rFbOfeABLhg7lm+cdBI/Ov10AO566y1ue/ll7t2tgEMvl8vFggULdin41FsAaznwusXCc+k0cZsNlMLpdNIOPJK/lEejjG9v58KiIqbkx6wIIYQQR5O169djsVgYO2YMAMtWrmRUv+60H8S27du5+PLL+dOvfsW4ceP2uo1SitNOO41HHnmESy65hD/+8Y9cdNFFe2z3+uuvM2nSJMrKykgmk6xevZr58+fv89izZ89m/fr1bN68mREjRvDQQw/1jYvt76KLLuJLX/oS6XSaZDLJW2+9xc033wxAe3s71dXVbNu2jUcffZRFixZ9qPNwIJKsCiFIAf/0+7mvrY0WrxdCIcyioj2mhEmk04zs7GRkdzeXH3cc08m1tv2go4Ovz569cxxlv5a9QvvBli0Dtu+hak1HByfU11OUr+w3b9QoHnv/fb7Zb5xMJJk8YMvn7i3ZCqjLX84rLuaGaJRXurvZWFfHSsMgkt8ukUiwrLOTZUrxt1iMj4RCXFFczJhC3kkhhBDiA9ry0wty/7S3w27TuQyEcCTCl7/5TXqCQWxWK8eMHs19d9yx39vc9etf81933UWbz8fUk0/m/LPO4rd33cVtP/sZXX4/N3zrW/Dd72Kz2ViyZAkA559/Pr/97W+pq6vj9ttv55JLLuHf//3fmTFjRl9rZn8bN27k+uuvR2tNNpvlggsu4OMf//g+Y7LZbPzyl7/knHPOIZPJcOWVVzJ58mQA7r33XgCuu+46Jk6cyLnnnsvUqVOxWCxcffXVTJkyBYCPf/zjdHV1Ybfb+dWvfkXZXgpeFoIkq0IcxXYA/wKeA7ZbrQS83j2mixkJzAHmGAZlHg9twSB1M2bsMcZ093GUonCmVFfz3RdeoCsaxWW389SGDczKF2D67sKF/N+KFZQaBi9eccUhHafONLkkn8ymgXeBV4BnotG+VvUs8FI2y7vkijJdDMxEuggLIYQ48h03fTpvPPvsPtf3dg/u7ytf+AJf+cIX9tj2t3fdxW/vuguSSditx9JTTz3V9//o0aNZvHjxfuO6/PLLufzyy/e6Ltw7I8Nuzj//fM4///w9ll933XW7XP/GN77BN77xjT22e/XVV/cbU6FIsirEUabF5+O5QIAVdXWs75dcOp1OAkphyWYZ0dPDp0pLORvYpSataVJ7hI4x1eTOzbYdOzDr6qisriZDLjlra2+n1eejrqaG6qoqLOSSMwV0trfTuWMHDTU1jDDNAUnaJlZV8a2TTuKsP/0Jj8PBNNPEZrEA8JMzzuAnZ5zBf776Kr9cvJgfnnZaQY5pA2bnL59MJrl75UpWjBhBS0UFzvx0OCvylwZgfnc3o7ZsYZRUEhZCCCFEgUiyKsRRIgU83N3N3YEAYcPYo0jSCMPg4yUljNu2jUm1tZhe7yEd78rHH+fJdeuodrtZdcMNAPhjMT79yCNs6emh0evl4U98gjKXiz+vWMHP3nij77YrfD6WfuELTK+pOahjtfl8bGprw1NXh6OqiiAQALb29NAaCGCUlWErKSHKzrlKu6JR7G43VpeLJBBKJGhLJKCsDOJxzEQCwzBylY7jcSgpgVisbzmwc53XC4kEZiJBsWFgBzKxGNlIhEqXi0q3GxdQBKSDQVJ+Pw2lpTSWlVEKlAKJ9nZef6qbDevr6G4HGne9j1fNnMlVM2cC8J2FC6kvKdll/aXHHssFDz5YsGS1vwbT5ObZs2ltbSVZVMSrhsGr5BJ5gPWJBK+FQpS4XJz+xhvccOKJkrAKIYQQ4pANaLKqlPICvyU3jZ8GrtRaD8zoWyHEXqWBF4GHgPUWC2HD6Ovqm4jHOdkwOA84DrB4vbnEqwA+N306X5ozh8sfe6xv2U9fe40zmpq45eST+elrr/HT117j9rPO4rKpU7ksP2n2Sp+Pix56aJdEVZOrTOyLRlkbDPLrnh6SXi8dwNZolFXRKGmvd5dkMpFI4AsGczvo6cE0jJ3LOztBa4hG+6bZie1lPljDMPY6T+zuVZB3XxfqN5XPhmgU02bbeeyeHlBql3HBiUSCTa9n2XT9WHRS0Yjm6VqoGwmWWAwViWDJZplYXc32QIBH16xh0VVXsb6ri7H56oFPrF3LhMrKgjx2e9N/vOvxwOXAE+S6kQfy5yHgcvH/Zs4knErxfXLT6QghhBCFpLXe6zQrYmjZ27Q7H8ZAt6zeCTyjtf6EUspBrmFBCHEYZMmNN3yQ3NhU2NnVtyiRYEpLCzdNmsSUATr+qaNGsaWnZ5dlj69dy0v5cZVXTJvG/D/+kdvPOqtvvQb+uGoV50yYwGvd3aSLikgaBkEglk4TTqV432JhdTCI6XJhGAaBVIq0xXLQSea+ljudTsJaY8lmsWpNtcNBEVDkcKDzt0EpRjgcOPPn1+lwkEylyChFxmrt6x77QY8dj8eJLDLQSQVZhQY2boHO2jThZBJsNv7nb38jlkxiWK3cdP75bFSKW556ipZAALvVyiivl3svuGCAHs09VQNXA58B/qI192UyJKxWUIqVVVVcn18/HxnPKoQQojCcTiddXV1UVFRIwjqEaa3p6urq+150KAYsWVVKlZCbou9zAFrrJDtnwRBCDKBlwB3RKJtSKZxOZ19LYJVhcGlJCZO2bGHUxImYh3kKEl84TLqnmFeXwcjGYtrCYRZ1d5MqKiJmGPQAf1q1imsXLGClUhCP47FasdpspNPpXMIIsFuSGVAKezpNUSrFJJuNGkBZLGzetg0jmcTIZJg3axb1QDSdZtFbb2FLpXBozYKzz6YecBgGHS7XzqldXK7csVwufF7vnst71xUX962rNgxSQHMiwT9efZWEUqQdDk44/XRcQEs2y8tr1xKz2Yg7nYwqLycLtNrtdM7243OUolOgNBQ1sst9/tonP5l7LJ1OMuk0b0cifPwjHwGlqCwqotpuxw/EolEcwSDlh6nglRu42uvllGSSu1Mp1lRWYuR/YPg58BJwAyCdgoUQQhyq+vp6mpub6ejo2HVFKJSbB344ymSgq2uwoyg4p9NZkLlXB7JldTTQAfxeKTUNeAe4UWsd2f/NhBAfVje5fvfP9evqGlCKpupqLnU6uRBwer0wffphjSsLtESjpLPw+//T6IwCqyalYFm/pHRzWxt2m4263omxtSadTmO12TBsNqzJJCWxGKO3buX0khLGAdWGgTYMerq6GFFXh+l2525bXIxv3LidSWZ5eW55RQWT5s3bubxfwr771C4HWr63dQ5gdHU1l5x11s5j9N6fsjJOmTZtl7lOASgqwndqiH/cu4Hl6+voXqqYNxL8cdgaDueSW4cDmy33lr174h7OZEjZ7WzLtz7jdOKJRhlrszHK6WTXus0DY3x1NXcCbwN3A5355UuBq+Jxzmlp4VMej4xlFUII8aHZ7Xaampr2XHHPPVCAxGhQNDfD9dcPdhRD1kAmqzZyMxp8WWv9llLqTuAW4Nb+GymlrgWuBWhoaBjAcIQ4cmngGeCPQISd3VDt6TTTt27lyu5uTpw27bDFkyGXrLyfj+ehdJpAKkWRtYhAPEQxJYTSITzO/MiAfFK6aNUqTpk8mdJYDFcyiSuVYnxdHTWA02YjUlTE2xYL/z5+PGb/+bxMM3fZzYdJPgvlgx7bNE2uviK3/AefgzHAGKeTiV5vbv7afLIaBHxasyEYJOJwEDWMvSaxYYeDNcAmQKfTvBaL8efubhbkizoNlNnkktU/AU8C8UQCX3s7v7XZWLl6NbcBNZKwCiGEEOIgDGSy2gw0a63fyl9/hFyyugut9X3AfQCzZs0qzEhcIY4ib3d08L/ZLG1eb193X6fTSU1bGye+/z7F6TRj8hM9DxRNrvpuC7AlmaQjm8Vis+EnV+ApkU+ipowazfJ1yzmZk1muljNjZBNVoRBFySTja2r499WrefXzn6fabs8laBUVeIp2DnX3eDxUVFQcVa1zu89f6wSqXS6ayssJhUJ47Hay+XO9Qyk2JpOEHQ5QCpvNRiadJhyJ0JXJ8F+hEP9XVMQcw+BUYC4wEB2FXeR+gZwHfD8YxJcfp/vW6NHcF49zKzKOVQghhBAHNmDJqta6TSm1XSk1Xmu9FjgDWD1QxxPiaKOBB7q7+UUkQkYp8PkwTZNGw+AGw6C2sZFWhyPX3XQAkrsWn49Xu7tprqvjDWA85BKjWAy05ndPP836lhbCsRhfu/tuLpo1i8tmTeCOjhe5L/ouTWVe/nLWedjTaYrLyljS0cHIkhJG51tMD8d4y+Fs9yS2FGgyDKYWFdEdDhMvKSFos7EpEiHcr8twLB5nmWHwViJBOhZjntXK5cXF7KVT1SEbD/xXNssX/X62lZeDUrxmmvwGuAZJWIUQQgixfwNdDfjLwJ/zlYA3AZ8f4OMJcVSIAP8LPGWxkFG56rHWbJZ5O3bwjcZGHAAD1NW1A3g4EODPwSARlwt6enBnMsCu3VC/eOaZ1DscHFNaSjWQDYcJhUJ8+vOf2WsiOt/j4c2rry54vEeb3ZPY8VqzautWasJh6OkhU1OTm0LH5wOteVQpXnc4ON4w+Bgwg8ImkQ2myT3Af2YyrK+owDAM/kFuKqIvApYCHksIIYQQR5YBTVa11suAWQN5DCGONhuB28lNR9NbCbcqGOTcVau4/LTTcolqge3w+VjY08OKESN43+OhB4g4HH1TsGQyGexAjVKkOzooiURwZLOMGzduZzfTw1Sd9kjgbWjgB1u2FGx/MYeDaU1N3FxTg9Uw+L9Nm3g6EsFXUtI3hU5va2t5MMg1Fgtn9BaFKoB60+RO4H+A1/LL/pFIsLmzk2/YbNQeRd26hRBCCHHwBrplVQhRQH/p7uY3SmHLzzFqGAaXer2c5vcz6rTTCt6SqoEn/H5+4ffTXVQEfj+m3d6XJLsTCcb6fDizWT4OWAyDcG1tbrxpcbEkpx/STbfdNqD7v8ztpvTFF9lRXMyypiZC/VpbfVrzVaX4uMPBTcXFlBTomDbgG4ABPNXvWNG1a/khHFXjkIUQQghxcCRZFWIY0MD/BgLcHwrlutkGg4yqruYbTienlJQUfCoaDSwGHgCWW60Eior6WlHj8TjzSks53uPB7OqiYexY7nE6+7pz7t4NVQw9pmmyYMECWltbuaauDgyD/922jafTaVJWK0prns9mWR6Lccw/OrEu9/KRBcXMnXtox7UANwJt7e08nS+6tLipiWUdHZwjyaoQQgghdiPJqhBDXBb4Fbly2uS/4FcFg3wpEOCUY48t+PHeB+6IRFidTuN0OvtaUY1UiiktLdxcVMRUgPLy3GWYaPP52LRjB966OjzV1USB7V1dtHZ2UlZVRXF5OWmgo7ubdr+fkooKPF4vKXIVjf2BAD09PZR5vZSVlmIBgoEAIb+f6rIyqrxeHEDY7yfU2cnIigrqKyooAsLt7QRaW2msrR0y07bsPoXOlw2D6pdf5uXx49lQU4PVYmH5MwEeu2IEOqn4xc81L7ygDjlhVcBXHA6WdnTgKy4mY7Xyj6YmzkYKLgkhhBBiV5KsCjGEpciN83udneNTm9rbOX/lSqadf35BjxUmN0/rE4kEbV1doDUBpWioruaa0lKmb9nC2PHjMauqCnrcQ9Xq87GmvR1bbS3Zyko6gI3BIM3hMKq0lLTbTXssxqZ4HF1WBvE4ZiIBgC8SAacTwmFMtzu3LBQCmw2CQcx8d+tEIoEvEMgdMBDAdDpz2wYCYLH0bQvgC4fBMCASwcy3MPvicSgrwxaNMjYWo9blwpoveNRUXMwxpaVUAXR0kGppobG29rB3izVNk0+ffTantLbic7u5O5kksshAJxVkFYmU5oWXOORkFaDONPmJxcI37XbsLhdbDYOngcI+o8W+KKVuBq4m14liJfB5rXV8cKMSQggh9iTJqhBDVBz4TjjMkkwGp9OJYRhcXFbG+V1dNJx/fsGSGQ38P7+f3wBpt5t4PA5aY8lmmbp9O1d1d3PqtGkwbdo+91HogkB7kwK64nFClZX8IhAgUlrK+miUlbEYmZISiEZ3JqE9Pbnu0l1dmDYb8WQSnb+vvV2Zc3deH3CZYRh95+TD3L7/srTFQmsyid9iwef352Lsn/zGYlBWRklPD8e73dRlszja2znO62VWZSX2AT3Du7a2TvD5uHpsBz5HKToFygHvTO5guy/LyAI892ZXVXEl8DCQSCS4IxqlMZViUnX1Ie9b7JtSagTwFWCS1jqmlHoYuAT4w6AGJoQQQuyFJKtCDEFp4LvhMAvzCU1AKa7werm5pAQ1Y0bBjhMGfhIO81Q4nEucwmHKy8po6uzklNWr8SaTjF+w4ID7KWRBIA20AW/5/awIhQhVVNDp8dDSb7qVVfkEL55K9U3ds7+EsbdV2p5OY2QyjLbbcWlNs9+PNZPBpjVTysuxac2alhYs+WXHeb1UAGGtWbZ+PVprtMXCzOOOQwPvbNpEGsharUwqKyMJrGhrI2GxkLbbqa+sJKYU65NJ4jYbGasVp9N5wOQ36HSyKJEgHImA3c5volFGxOOMczqpDgYp9/k4tbR0QBO7RtPkgQvhlsp2XllehmVaNxunJfhKcyf3QEG6M38aeD4aZVlnJ2jNre3t3K21FFsaeDbApZRKAUVA6yDHI4QQQuyVJKtCDDEa+CXwdibTl7ycsH4988vLC5qorgd+CqzvdxxPPM4VO3Zwbn09OywW6urqBjxxCAOvdXXxdihEd2UlOzweuhKJXHda6KtAvLcErzcJLUokKInHmVNeTkU2y6a1aymKx3Gn01xwyimMKS0lahj4urpy96moCABfXR2tra25ZcXFuWVjxuxcVlqai8HrxXfssTuXe725bSdN2rmsJFc319fYmFtWW7uza3FJCS2trVTU1WEYBhtDIZ5etoyww0HE5aLhuOPoUoql8TgBpxNUfvRmv/sbTiRYrRQv9vSAw8E98Tjju7sZEw5zZlER8ysqsBb4sakxTX7/MfjRzK38ndxzc1NlJU8Eg1xbgOeFA7hw61aW5Qt4baiuZo3PJ8nqANJatyil/hvYBsSAZ7XWzw5yWEIIIcReSbIqxBDzILCQnWNU52zYwPFbtjBiypSC7F8DD3R38/v8FDi9xzl22zZO3rCB8847D9M0B6wQUBR4we/nzXCYtspKtluttEUiuQRtP4mpxzCwh8OUh0KUx2KcN20axxoGNsPA35uE9iac06btTCLzY2y9pkndbvdp9yJD+1r2QbY9mGU1lZUcc8IJeybKXi9bW1ux1dfTqhRPbtxIh9tNZ2kpRk3NLucFrVkbDLIWeCoSocFm49hgkIudTmYVcFyxAq51Olm3YQMr6+tBKZ6pr+fTQGkB9n9yeTn1O3bQXFYGSrG1oaEAexX7opQqAy4CmoAe4G9Kqc9qrR/YbbtrgWsBGuQxEUIIMUgkWRViCPlLdze/tlj6xqh+0uvl/LIyRkyeXJDWpixwezDIQ/2mwGmqruYnHg8j3G7q8olqoa1pb+eZcJjt1dW8b7PR0tvtuLMTj9u9R2JaYRiU+v1UBgJURyJ8as4cppWW0lVZSWsySV1TE2ZvJWLTZNRBJpxDyYGS2pnA7MmTcwltWRkew2BxOMxfN26k2eultayMtCU/YZDWbOvpYRvwz1iMkzo6OK2zk1PLywtyHmpMk58Al/zsZyifjzbgM/E4x1osuPKFpT4sb0MDl998M7/KP++XG8Yhxyv260xgs9a6A0Ap9ShwIrmZqvpore8D7gOYNWuWPtxBCiGEECDJqhBDxqudnfxXJEIWCCjFWeXl3FJSgq1AXX/T5CoLP611X3JYHQjwxUCAs449tuDT0Gjgxa4u/hoM8pbFgrZawe/fIzkFMEMhavx+aoNBLjv+eI4tLaW9ro5WoG7ixL7W0eGQhBbS7vf3tIoKJuUTWGs8zmNr1rCxspINNTWEe5M8rXk9GuW1oiImbtrEt7u7mT5hwiHHMso0Oa6zk+NHjcqNpdWaadu3M7Wy8pDm1f3Bli1cXVbGQ0AkkWBJIMDyZJJpQ6zq9BFkG3CCUqqIXDfgM4AlgxuSEEIIsXeSrAoxBISAnylFFvqSyE/4/dimTy/I/vtXFrZaLKAU41tbOXPNGqYWeAocgOXAvZEIb0Qi6N7WP3Ymp1XhMA0dHdT39HDl3Lm4qqpoTaWo6zc1ztGWmB6s/ufFLC+ntbUVRybD3955hxX19Ww0TXqbwdbU1fHNnh5uf/99ZhQgYa0EymIxwvnHsdPjIRQKHVKyCuABxofDPJ0vKParTZv40aRJ8vgPAK31W0qpR4Cl5H7Depd8C6oQQggx1EiyKsQg08CdQNzjgUgEZzLJghUraDrzzILsPwXcEg7zYu9UKUpxsd3ORwyDEQWcAgdgC3BHOMzSTIZMOp07Xt4Iv58JPh/XzJxJRW933okTdyZekph8YP0T18p84hpKJrmzu5v1+eVtXi+3Nzfz/TVrmDhx4iEfc6zNxvZsFrSmy+Mp2IfI2NZWnjYMNLA1f1/kOTEwtNbfB74/2HEIIYQQByLJqhCD7IHubp7Nj9czTZPPbtnCOWeeWZAv6hq4A1jar+Lv8Rs28JGyMmYWsLLwNp+PP8TjvFxeTmd3d19SbNGaSc3NTNu+nbn19YybMQMzP92KJCKF1T9xrVqzhl+uWcOr+eR0dX09jy5axNUFGMN6jMvF2xYLoViMuN3O+y0tuFyuQ25dPd7rhXgcpTUBt5u6fNEpIYQQQhy9JFkVYhAt7ejgF5EIGaUIKMXlXi+Xjx9/wNvd8b3v0bNt2wG3W51MshVQSmFJJKgKBomEw/x15EieOMjCON6Ghv3Oo/p6Zye39PQQdDrB70cDFq2Z2NzMpRYL9W43daefLsnpYTRx4kS+BDS3t7M5/+PA+/lpeg71cbAClYkEofz1sGHwP6+/zsMbN6KAY02T3190Ebe+8AL/WLcOh9XKmPJyfn/RRXidzn3ud3J1NfXxOKFEAqfTiUcKLQkhhBBHPUlWhRgkGrgjmyWjVN841VO6uuAgWjx7tm3jB42N+91mVSzGq8lkXyvnBKuVCaEQxcXFH6gV7Adbtuwz/j/29PDrdJpIvyRkRHc381evpjIWY86CBZKkDpKJEyfyiZUr+Vn++kbTxJnNFmTfVQ4HmxMJ0JqWZJLfr17Nmi99CZfdzqf+9jceWrWKs8aM4T/PPBObxcK3nnuO/3z1VW4/66x97lMBo5xONihFPB5nRSjE3MrKgsQrhBBCiOFpQJNVpdQWcrVjMkBaaz1rII8nxHDyT3LjCfH5sGaznL16NaPmzy/IvnuAd5TqGzNaFokwXilqa2sLsv80cFsoxOPBIDp/DCOd5tR167iqsZHExIm5+UMlUR1UE9NprNksGYuFsNPJ9uZmDn3UKlQ5nbiUIpVK4SgvJwPE0mnsVivRVIq64mLOHjOmb/sT6ut5ZM2aA+63NBzGlx9b/f9WrWL0rFnyHBJCCCGOYoejZfU0rXXnYTiOEMNGB/DreJx4IkF5WRlndnVxxfz5BflingZeAyw2GyhFUSLBMT4fJWPHHvK+ITc+9SfZLKscjr5kuDoQ4HM+H2fNnCnJxRAysq4Ob1cXXW43AEtaWpjm8x16V+BolFgqBVpjt1r58nHH0fCLX+Cy2zl7zJhdElWA3y1bxqcnTz7wfvOJqgbCdrsUWRJCCCGOcpYDbyKEKLT/CYfZ1t5OoKcHmpu5wuUq2JfyNxIJOuJxAErdbk4CJowde8gFcAC2+3xc19bGm8lkbq5NpZjS3MynlizhrKlTJbEYYkzTpKHf4x612WhtbT3k/cbC4b4fKsLxOE+sXcvmG2+k9atfJZJM8sCKFX3b/uSVV7BZLFx27LEH3K/X6wWlUIBFKerq6g45ViGEEEIMXwPdsqqBZ5VSGvi11lrmchNHvcXAG/2q8562ahUdxxxD/SEmelc+/jiPr1uH4XJx62c/C0oR37SJixYtYk1HB4uvuYZZ+S//f16xgp+98UbfbVf4fCz9wheYXlOzz/1ngf/KZGjxetHk5ky9MBbjY0VFjLjgAklUh6iy8nKU34/WGgsUJAF0u92Qn5podXMzo8vLqcq33l48cSJvbN/OZ6dO5Y/LlvHk+vUsvPxylFIH3K+npATTMIjH48yZNQuzrOyQYxVCCCHE8DXQyepJWutWpVQ18JxS6n2t9Sv9N1BKXQtcC9DQ0DDA4QgxuBLAHbFYbg5SpZjc3MyIYLAgCcRnp0/nmKlT+eU//wlARShEjWFw/qc+xReefHKXbS+bOpXLpk4FYKXPx0UPPbTfRBXgjmCQpYYB6TRKa07asIEvTZmCOWHCIccuBk6mX5JYqK40ut//FcXFvLhjB9FUCpfNxsLNm5lVW8szGzZw++uv8/LnPkeR3X5Q++1f/km6/QghhBBiQJNVrXVr/m+7UuoxYA7wym7b3AfcBzBr1iy9x06EOIL8JhDgvUAAtMaZSvE5YHqBKuYaNTW5MX+ALZulsauLSWPGHLD7719WreIzU6bsd5sn/H7+2Nv1UynOTST46pQp0po6DGwKhfqKYBXF4wUZBxqIRiGfgB5TXc15o0Yx89e/xmaxMKO2lmuPO47Jd99NIpPhrD/9CcgVWbp3wYL97rcnGMTX0wNa8/b773Pm9OnyHBNCCCGOYgOWrCql3IBFax3K/382sO/JGsVB00AMWNfRwYbOTkqqqymqqCCWXx7P//UFg3QGg5SWlFBcUrLHfkLBIKFAALOkhNrSUooAF1CUv0Q6Owm1tTGxqopG+cJ4yLYDj2rd1/33xHXrqK6tLciX8W3RKCuTSVKpFABTk8mDSlQB/vreezx+ySX7XB8F7shk+hKeMT4fn7bZMMeNO+S4xcBq9vloSSSA3NQwJbFYQVrxtccD+WmRnKkUt512Gj/f7bm24Stf+cD73R6J9L0+HImEFFgSQgghjnID2bJqAo/lxynZgAe11s8M4PGOGBmgDXjX72dNIIClooJ0SQl+oBvwA8FEAl8sBkVFEIlgejwYhtG3j0Qi0ddCQU8PpmHse30ggOl07rk+GoXiYkgkaIrHGel0UgV9l2pAdXZCSwvjamrkS+V+aHJFlRKZDChFbXc3k3fsoO644w5531ng7fwXfABrNkuD1geVqL7V3EyR3c6U6up97nt5KkVXLAZAaTTKme+9x4jzzjvkuMXAe7ezM5dYAsWxGJPHjSvI6zTjcuGyWEilUtSVlBSkeBdAtLQUOjtRWlMej0uBJSGEEOIoN2DJqtZ6EzBtoPZ/JMgCPmAbsLXf32YgkkjgC4fBYtlrshmPx/taIJTWxOPxAV3vTyTIOJ1s6Rd/X0Lr9eIOBjnJ7Waqx0MT0ATUkWvNEfC37m5eDIVAaxRwVSLBvAJ1/10Zj9OjVK6KqtbY02mKi4sP6rYPHaAL8DqgJ98abM1mOXv5cqaOGSM/TAwT3SNGQDAIWlMTDDKuQK3hnYkEsfx7RKSzk7BSh5ywZoEOiwVPvlDTJfPmyfNMCCGEOModjnlWRV4W2ASsyF/eiccJJBI4d2vVhAMnkyWGAfE4rngcI5Nhank5leS67zqBuNasXLsWayaDRSmOP/54+tfV7M5meWvNGtJAym5n8qxZOMh1+YwCnVYrr/zHf2D1+UjZbKRdLrqt1l1iTCWTWJJJINft+BWHg0UOR996K+BMpTASCarsdmoMg32VWfE2NHDTbUdmL/FlHR3cmU73daOdtnUrY4uLC/JFvDMS4a1kMldERynGpNM4HY6DShyyWvO31at55fOf3+v6MLA0nUZns6AUczZtoi4SKVjCIwbe+/1esyP8fhg1qiD79eWrWQO4EglCodAhJ6ur29tpyb/vuVIpXAf5g4sQQgghjlySrA4gTa61dAWwHFgFRPLrEokEvvZ20JqAUpimuUsyWutwUOr3UxYK4UkmOXPmTI4ByoByoMjppN3rpbW1lboRIzB3/2Ln9eKbNi23vq5uzykgysqYP2PGzvWlpbuu93j4Vk8PN5kmxcXF2DweIuQS2d6/3YkELYEAMbudbL5FxGrb+ZTKpNO5uTjzRXk8bjeVNhsmuS7E1UBvavuDLVs+3Eke4rb6fHy9s5NQ/ot8WSTCiZs2UVegbrRvZzJ91V7/+OSTbG5pwZ9IUP/zn/PD+fMpd7n48tNP0xGNcsGDDzK9poZ/ffazALyydSv1JSWM3sv0IBp4PZkkEIuRSqepCIW4xOFgUoFag8XASwNL8tPLANT6/QUZAxoB4vkk2KI1nmTyoFvy92dpdzc4nWjAG4nQGgrJc+0I5fnUpwg//PB+t7nrH//gnqefZuaYMXzypJMYV1fHJJkxQBxhPB4P4XB4v9vcdddd3HPPPcycOZNPfvKTjBs3jkmTJh2mCIe383/4Qx782tfw7ufH1Pnf+Q7//fnPM2vs2F2WL9u0iVa/n/NnzRroMMUBSLJaYBp4D3g8GOT1dJq0271HqynsbDl1JpNUhMPMBE5uaGAUMBLwuFz46up2JpPl5XvswzTN/X6ZO9T1LpeL2travutOoKL/BoZBuKiIYCiEKikhabPRDX2XQL8vymhNOp2mO7/N++SSWXciwUirlSC5c3ckdRtOArcmErTn3ySt2SyXt7Wx4LzzCvIlfAfQmR+zjNb8dOZMZl100R4tXB+bOHGvt5/f2MibV1+913XbgNZstu/xO33VKrwFGu8oDo/lQCr/41FJLEZlAYoreRsa+NLatSzLF/JyJxKssVrxdnZCZ+eH3idAV00NBAIoranr6aFOpkQ6qt391FM8/f3v01RTw+fuuIMFs2dLsiqOSnfffTdPP/00TU1NfO5zn2PBggWSrB4ErTVP3norFsuHmwht2ebNLFm/XpLVIWC/yapSagzwMXL5UxpYD/xFax04DLENKzuAF4AXgW39ixeFw7u0mpYDU4GR2SzNr71GcTSKxWJhwYIF7J4GHCiZHAo8Hs8uyVH/ToadmQwr2toIOp2EXC5Uv+16W13DWuNLp3kzk+FzwGxgTFcX5du301igSrmDYVV7Oz9OJlnTm6wD89auZcGMGYUpcAMsSqVIZzK4nE5qEwlmjRxZkEI3SWBxKkU23/23LBKhNhyWYjfDzL+CQfw9PWhgTHs7J5144iE/92667Ta+1txMNpNBAxM3bOCK8nJmzJhxyPGutdn6xqt+asoUzIqKA9xCHAl+9uijPPzaayRSKT42dy4/vPRSrrv7bjb5fFz4k59wySmn8MTixby8ahU/fvhh/n7LLYzp9yOqEEeKn/3sZzz88MMkEgk+9rGP8cMf/pDrrruOTZs2ceGFF3LJJZfwxBNP8PLLL/PjH/+Yv//974wZM2awwx5Stvh8nPfDH3Lascey6P33WbZ5Mx0PPEBlSQk/eugh/vzyy4ysrKSypITjjjmGr3/sYwD87fXXueHee+mJRLj/y1/m+HHj+N6f/0wsmeS1NWv49ic+wadPOWWQ793Ra5/JqlLqK8BHgJfJ5RDLyCWti5RSN2itXzocAQ5lEeB1YCGwut/y/uNNXckkE7q6OLeujmn0KzpUVobvzDN3tpwO06RsfyrdbubU1xMKhSh2uzFsNjrIFZXanEgQ7tfqmslk8ANPJBL4IhGspaU0NDfzaYeDs8vKGA5fWyPAq11dPN7RwZuGQabfr3knrF/Px93ugj3Oq5NJ6qJR0Bqb1sxyOPq+6B+qJYkEnfnnsCOT4RjI/ZhyBD5Hj1RJ4OV+40pH+3zEC9BVNw1srKyE9naU1ozu6qLuAHP0HowtPh9vxuN9vSvGOZ2HvE8x9D377rusb21l8f/8D1prLvzxj3ll1SruveEGnlm6lBd/8hMqS0pY39rKgtmz+cRJJw12yEIMiGeffZb169ezePHi3Gvhwgt55ZVXuPfee3nmmWd48cUXqaysZP369SxYsIBPfOITgx3ykLW2pYXff+Ur3H399TTme48tWb+evy9axLt33EE6k2HmzTdz3DHH9N0mncmw+H/+h6eWLOGHDz3E8z/6EbdddhlL1q/nl9ddN1h3ReTtr2X1GmC61jqjlPo58JTWer5S6tfA48Ch/5Q+TLUDvwkGeSGbxepy7dHNt9wwaGhpYVxzM3WhEB/ZS6spDI+W091d+fjjPLluHdVuN6tuuAGAW194gcfXrsWiFNVuN3/46EepKy7mzytW8LM33ui77Qqfj6Vf+AIzamoYqzVrtmyhx+Wix+3GyCd2vYl+2mJhc2Ul91gsPAjURiKM6ujgVI+HuZWVg95/PUBu3tR3u7tZFonQWV7ODqsVXySCdrn6trNozdx16zhu+3bGLVhQkGO/Ra5idG8iUt/ZSdLjgQIkq35gbb76L0BDZyfLbLZh9zw92r0BJPNdgEujUUYEgwVpGV8JRJVCry4l8YqFY086E9Pcc4jCB/VSTw86P161MhQi4PeDPOeOeM+++y7PLlvGjJtuAiAci7G+tZVTC/ADiBDDybPPPsuzzz7b10slHA6zfv16Tj311EGObPgZVVXFCbsNI3lt9WouOv54XPnv6x+ZM2eX9RfPnQvAcWPGsMXnOzyBioN2oO/8NnI9Dg2gGEBrvU0pta+irkc0P/Aw8EQ8TktvN99gENM0cRkGxwGnA3OcTrrHjKHV5TriWk0/N306X5ozh8sfe6xv2TdOOokfnX46AHe99Ra3vfwy9y5YwGVTp3LZ1KkArPT5uOihh5heUwPkug9PPOaYXKtrcTGrOjv5NPA88Fg0ir+oCJTC6XSSSCR4q6uLt5Ti4WiUUfE4k9Jpanw+ZpeWMruyEsfugR6iNp+PdW1tWEeMIFNZSRuwPhhkYzRKoLSUpMuVK5KVn46Gzk48bndfxV+Amp4eTlm7lvm1tYwrUMtkJ3B7LNZXobcsHMYMhSguQLc4DbwN2Gw2UIrSaJSKSISioqJD3rc4vB6LRPB3d6OBSa2tBekCDPBUMMimhVE2XVqNTio+6YAXXoD85/yHtrWuDrq7UVrT1NUl41WPElprvv2JT/CFc88d7FCEGFRaa7797W/zhS98YbBDGfbce+mZo/eyXX+GPZfWWK1W0tnsAEQlDsX+ktXfAm8rpd4ETgVuB1BKVZHL244aQeAR4J/kuteFE4m+br6VoRDnptNcOXo03n63GY6tpgfj1FGj2NLTs8uykn4ty5Fkcq9Fkv6yl/k8+493VZ2dTAImlZby6Xic5e3ttI0cyTrD4PX8DwO90/h0RSI8HYmAzcbvo1Fq43FGZLN4urtp9HiozGZJd3RQX1FBfUUF4Y4O2tvbqTJNyior8XV2sr2zE3d1NY7ycpp7etgeCJAtLydVXExzNMqaaJS01wvRKGYiAbBzHHJHB6Zp7jG9kEVrqkMhRnR1MaatDTMQ4NRTTmHiPgocfVAh4FvRKBs7O0lWV/P7LVuYlkjwbnExrkMocNNrYyLBOqWwWq1YgInBIMtdLmrHjy9I/OLw2AS8my9upoAJLS3E91Kg7YOKAy9lMkQWGeikgqwildK89NKhJatp4F27va8b+zWTJ2NWVh5yvGLoO2fmTG7985+5bN48PC4XLV1d2K1Wqr3eXbYrdrkIxWKDE6QQh8E555zDrbfeymWXXYbH46GlpQW73U51dfUu2xUXFxMKhQYpyuHr5EmT+MKvfsW3P/EJ0pkM/1yyhGvOPnu/t5H3naFjn8mq1vpOpdTzwETg51rr9/PLO8glr0e8TT4fD8ZivFVTA/1+qXE6nRQFAhy/fj0NPT0sWLBgl0T1aPTdhQv5vxUrKDUMXrziij3W//W993j8kksOal+maXJ2v0R/UyLBfStXsqW8nO2VleDx7JIkhiIRlvROkRPI1/4yDIhEKHc48MdiudtEo5SHQvijUXC5IBym3G7HHwzmbtPdjelwEE+lSFssu8xxC+xyzGw0yiSHg+62Nip7eqgNhbjilFNwVFWxrrsb6uoYN39+wX6wiAI/ANanUqA1xle/ygVLlnDhmDEFKW6zur2dz4XDJKxWUIrrS0u5bvfpjMSw8H+hEJl0GpTimLY2SlKpgnQBfhVI22y4TwhjcWhIaux2xfz5h7bfl7u62Jx//ZbE44zaLVERR66zZ8xgzfbtzP3mNwHwOJ088NWv7pGsXnLKKVzzq19x1z/+wSNSYEkcgc4++2zWrFnD3Pwvfx6PhwceeGCPZPWSSy7hmmuu4a677uKRRx6RAksHafbYsVw4Zw7TbryRUVVVzDrmGEoP0GvstGOP5aePPML0G2+UAkuDbL/dgLXW75GbiQWl1DHANGCN1nr1/m53JHjK7+e2UIiY3Q7t7X0VfccA/2YYjDBNdmQyQ76bb6vPx/YdO6jtV1lXAT6fj7bWVhoKFP9PzjiDn5xxBv/56qv8cvFifnjaaX3r3mpupshuZ8pub7oHa7RpcvPs2bS2tlJbWkpbNsvv166ltaSEjtJSUv2SV/p1w1VaE8kXIdIHeT0ej+N0OgkohSOdpjQWY05FBVXZLFvWrqU4EqEyGuUzZ55JTVkZvsbGXJGs6dP7zmOhnw8J4JZIhGXpNFaLBZTijJUrqQ8ECpKEZICfaU3Cau2b43Km3w/Tpx/yvsXhtaq9ncdjMbIASvFxpTijQF3Qe7sWFx2nueinSxi1pZFPfar6kLsAPxWL9b0Gm3w+dkSj1Azh99TDTSn1SeAZrXVIKfXvwEzgx1rrpYMc2ofWf47VGy+8kBsvvHCPbbb89rd9/580aRKrf/WrwxKbEIdT/zlWb7zxRm688cY9ttnSbx76k046idWrj/iv4B9ao2my6pe/7Lve/33k6x/7GD+49FKiiQSnfvvbfO2jHwXgpf/4j75tKktK+m5TXlzM2z//+eEJXOzX/qoBvwh8UmvdqZT6N+BW4BXgB0qp+7TW/3u4gjyc4sD9wF+tVmJ2e18S4w0GubmqihPIV/M1zcP+hUoD69vbWd3ZiWGaUFGBn9ycptvCYXyRCLbiYlRREXGgJx5neyIBZWWQSGAmEhiGkRtrmUhAeTnWWIymWIwyl4siIBuJkAkGGeV2swXYAhQBRCKkg0FKDlBR9NJjj+WCBx/cJVl9aC9dgD+o/t2qa4DvTJuWSxLLy4ml0/xpyRJ6eud9dTqJ2+2kbbb/z96dx8dVlY8f/5yZyWyZyTJZJk3SvaVNKd0XSqGUAi3QUkT5sgg/QFRARUFFBRQEFL9+BRFRQHEBFRSRXWQpW1mkUFooLW1p031JMkkmmX3mznZ+f9zJNC1tuuSmSdrzfr3mlcydyb1nJpPJfeY853koHzSIrblZGxNQ63LRGApRkEphy2SoGziQnVu3YksmcSeTnDV9OiNtNtI2G+1+v/5hRC5V2ddxzE4Bfk+ne28Hbo3FWOb364G4EHwdmFZTQ/XUqYYc+zFgZ0kJ+HyYsllOX72aweoTxH7pb5pGFv29otbvp86g4ljrgU9yqcUmKTm5eA2zLi1g4sRD+wCqQxRY16m68OimJqpV2vmebpZS/ksIcSIwD7gLeACY3rvDUhRF6T+uvO8+1mzfTiKZ5LI5c5ikZqX7ja5mViuklB2L4L4FzJBS+oUQTuA94IgLVjegnwXshPzsmjseZ+aGDXx7yhQOZ+LRJp+P5W1tJKuqCJWWsg1YF4+zMZHQq75Go3hdrl3BZ1ubHsxoWn4WONRpbW3HrKHNZtttrWVGCFqSyV0Fg3JB0bupFIWZDO+S64maTiMcDhyxGDYp0YAmoBTY5vczMtcT8bl16xjdab1ZVkr+tWYNb33pS4Y+P3sGiVeeeGI+kAR2BZVlZfjS6b1fHzQIr9eLT4jdbs8dgCF7nOQfznXIEr0l0u+A5lzqrwROXLeOaeXlhqT+Aiz2+3nQYsFmt+P1epnT0MCXTjqpT2cLKHvXAHxQUgJtekmBaZs3U21Qq4+n2PWeeExjI65cVkl3PdveTshkwlNaSlU8zhUnn6xee5+VyX2dDzwgpXxWCHFrL45HURSl3/n79df39hCUQ9RVsJoSQtRIKXcCEfQPwUHPSjT3+MgOI4l+MvYIerEPAJvNxtmlpZzZ3s6IKVN6/AQqgZ5vvRJ4PxrVew46nRAO43U6sdlsBJPJ/Qafnbfb7XZCgDmbRaAXQrLmvkazWTJCIE0m7Ln1uHvuJ5PRz5HSuRkVCfz2tdeo37mTSDzOmLvv5vOzZrFy/Xpa2tuxmUwMLSnhj/Pn5x/XW1u3UltUxLDS0h59/vYMJPf8/mCu97ZW4DfhMG9ks9jtdux2O9FslpM+/ZTjGhqozlVY7q41zc3cFAwStVpBCE7xePj+0KGY9v+jSh/0+3AYf64CcG1bGxfU1Rnyum4E3tA0EokEntJSLg2HmWpAanGTz8dDLS0E3W4Qgivcbqp6+H2in9qZaxl3GvB/QggbqD9TRVEU5ejQVbD6bWCREOJJ9DjqdSHES8BJwEOHY3CHQxT4USTC8kwGu92uB3nA1cActxsxfnyPHbsNeDYQYLGm0VxcjCUXNAbTaSTsNfiMZbMUR6MUJpNMLy1lMCCyWVavXIlN07Bls5x1yikMAuw2GwG7ncaOWcOOIlF2Oz6nk50NDVRUV+O22YgD21IpXl6+nJjZTNTppAkYBARMJnyZDEmzmSvOOgtXYSFmi0WfcY1G9cbKQuS3LwM2aBruSIRxFRW8l2vKrHStBb3q9L8TCXa2t4OUBIVgYnk5d7hcWKqqqJ40yZAApA34kclE1GpFAo5kks9t2oTJoEBYObzWAW9ks/k128fX15MYOdKQfT8UCtGUq4Q9qK2NqQatc/9vWxvNbjcSsGQyDNu2TV+yoOzpfOAM4C4pZUAIMQD4Xi+PSVEURVEOi66qAS8WQpwAfBG9x+py9FnVb3ZUBj4QQggzsAzYKaVc0M3xGioMfC8aZUkuhTYoBCeUlXFLYWGPpfwmgaXo/USXaBpNodBn0nc7ZkTLw2HKo1HmFhczDhhss5F1OmkMBKiuqcFbVKTvtLQU37Rpu1JZKyryx6vax9raPWcTS4AB5eUMmTkzv58HrFZOBLBaidhstEciZIuK0CwW2oGdmkYsmyUrBEhJOp3GbLEQSqdpSCTAbGZpKsXgZJIhVis1QFHPPK392octLfwzkWBVRQVmu3231khjduzg6rY2pk6YAJ1+r90RAn4ERNxuiMUwZ7OcsWoVdSecYMj+lcNLAvdEo/kKwMN9PmrCYUPSdBuBRbkgWAKTNm2iAWOKiH0wcCC0teXXqo4YNqzb+zwSSSljQohnAa8QYlBu8wH/D1YURVGU/mx/1YCD6IUcuuNaYC19LE4JoVeMWtMpxXXqxo1c4fczwKD1gJ21o89QvJzJIHNpvfE90m49oRCnVlQwzmajwm4n2NZG9ZAheDuX8T/A4PNQ7Ws/nXuidohIybotW4harYQcDgpqawkCWu45Bf1EuimbpR1Ylk5jTSYZZDIxzG6ngqMzl00C9cAS4PVYjBW5aqgdVaftdjuOUIip9fUMbW9n6ALjPuOJor/ut6Onug+orOSirVs544QT+lQqtHLgnmpr491IJF/86LJMhhkGVQD+fThMKpMBIaj1+xkYCBgSBO8APuzUW/X6ESN2+5BN2UUI8U3gx4AP6OhWLwGVBqEoiqIc8boMVvdFCHGllPLBA7hfLXpRiDuA7xzKsXpCEH1maQvkZzFPWbOG4xoaGGRgYAD67O1TwL8SCbbnUukIh/NBiSsQYNTOnQxrbeX8efPIn156vfqlD3O5XIwaOZJwOIzb7cZltZIFdmSzfNzeTsDpJGqzYemUMoyUtAnBBosFh8XCAKAsHsfX1obP5zsiAyaJfnK+HlgaCrEklSKRK44V7FQ8SUhJdSDAdV4vVZWVNKbTVM+caWiv1uujUVan0/paWJuNm+x2Zqnqq/1WGL16ecdraOKWLQwuLjZm5rOlhWdiMb0llBBclMkw16Ag+C+hEL7c++HQ1lZqamu7vc8j2LXAKCml36gdCiFKgD8CY9Hfoq6QUi4xav+KoiiKYpRDClbJdW85APcA30dPI+4TPm1u5hYhCBQV6Sm3Nhs/KipiuIHrAUEvmPRwMMhT2Sw4nSQ6pXYWx2Kc0tjIl4YMQVRV0ZDNUj15cr8M1PaccTUBg5xOPBUVhMNhrAUFBCwWPg2HP5MynLRY2JROszKZ5D2rlUtaWjjbbufk4mLqAGuvPapDl0ZPnVzR1saKcJi2sjIaXC5ioFdb7vjAIhrNf2ARzWYZ1NrK+O3buXrmTKrA8NZI9cDtsRgrc9Weg0LwQ7ebWWqNYL92byhEMNfSyB2PM3XLFqrPPLPb+5XA7zKZ/Nr5IS0tjDWbDSvY9Eqn1OKJmzfTYDL1y/e/w2Q7+mesRvo1eu/W84QQVnIdyhRFURSlrzmkYFVK+fv93UcIsQBollIuF0LM7uJ+VwJXAgwaNGhfdzPENp+Pr/v9+AsLIR6nyuvlRpuN2aWlhhb2qAd+EovxcTCYn0n1lJZSHokwrb6e4X4/Zy9YoM+i9rFKtJ2VDBrErZ2aUR+SlhZoaSEej7Ntxw6iVisRux1ZVkbKYiGVTJJMJolXV9PsdvME8PgSaH01xciJIU4/ycKk4mJGAF4O/FOSniTRCxT5gLVtbXwaChErK6Pd7aYBiGkavo5G321teAsKPlO12ZFMMq6lhf+prWWA04nfYjF0FrXzWJ8DHgb8nWZxT167lpGVlaqgTT+22O/n8Vy2AkJwaTzO584805DX0PvA9tLSfO/dEzdsoHr27G7vF+AfgNXhgFCIWr+fmmDQkNTiI9gmYLEQ4j/odSMAkFIeUrd6IUQRMAu4PLefJHo5BUVRFEXpc7oMVoUQo4FzgBr0894G4Dkp5doD2PdMYKEQ4izADhQJIR6RUl7S+U65dOIHAaZMmSIP/iEcuPuSSfyFhUjAlM1y/tatzD7mGMP2n2VXC5y2ToGBJxLh/yUSnFVeTmMySfWMGX02QO3suttvN3R/Pp8vX7yp0utlC7AoEOCp7dtpKioCIUiscLD8TEk2aWF9QSlr/97MsLP0Ks2FQFUkgrutjRFFRYwsKaESqESfujcikG3w+djQ1IS9pgZRXk4b4Ae2hEJsjUZJFBcTdjpJkZspjURACGhvx2u17rOVUKXNxhizmeDGjXjb2qgNhVg4f37+A4tBPfB6CKGnNnyQu26324lnMsxevZrRzc1UT5hg+DGVwyMB/FrK/OtsRFMT0woKDHlfSQG/jcVIpFJ4Sks5ob2dy2bPNmTf24CXO7XB+XIkwokGpRYfwbblLlaMSTgZhl58/CEhxHj04onXSimjXf+YoiiKohx++wxWhRA/AC4CHkMvYAtQC/xDCPGYlPLnXe1YSnkjcGNuX7OB6/cMVA+nt4CPKivB50NIySmffsoCAwspBYAfR6N81LEeMNdm5sRPP+XYhgbm507IjEzt7G/2LN40FLiqpITPaRobm5oI1tby4LtWPkhKyAgkEF1iIzFHb93TpmmszVVuJhTC63Bgs9kAkIkEBZEIHqeTMqcTB+AAUuEw0UAAd3ExhUVFZIEMEAyHaQ+HMRcXIwsLiQD+RIKtmgYlJRCL4dU0bDbb7um7ra35qs376m9ba7VS4vdTGg4zIBzmkmnTOBYQLhe+Y4/dVbW5B18LnwB3oQfaHcbabFzudpOpraV62jQVIPRjDwHRXDVnWyrFyevWUT13riH7/mMwyKpcVog9neYKtxtvZaUh+74/EqEp9zc8xO/nxJoa9TrcDynlbQBCCLd+VUa6uUsLMAm9sv/7QohfAzeg117LO5xZT4qiKIqyL13NrH4ZOFZKmeq8UQhxN3rf1S6D1b6kEfgtevVTr9fLmNZWfjBxomEnSW3AJW8k+OilFIXT4xROCXJCWRl3uVxkDF4LeyTqHMSWzIaXCiAps5jMkslDtnCMeSRNQHAfwaGmafiam0FKNsVi+WBS0zR8uX6lBAJ4bbbPbvf78VoserGjTuuKO+9/b0Fpuc1GtcWCv7kZdzRKWSzGF6ZNYwLgcDjw1dToQeno0bud6BtVtXlfWtF7tT6tacQTiXzv4HPQc/4sFRWGtcBRescK9N9vx+zkRU1NnDN3riGvq+3AvzrN2E6vryfk9YIBwerHwLuZzK59r19PgxDqvXE/hBBjgb8Bntz1VuBSKeXqQ9zlDmCHlPL93PUn0IPV3RzOrCdFURRF2ZeugtUsUA1s3WP7AHaVzz8gUsrFwOKD+RmjpIHbolGacjOeQ2w2flZTY1g1iVbgy0vg5fk2spoNYS1i/i8+5IoT/YybOPGwBgZx9MC5vrWVHX4/rooKHB4PTYEAze3tlJaWUlJSQiAQ0NvilJZSXVpK3O8n2tzMqLIyRldWHnLVLSPMmAGvvy54/vkII0c2cOaZ1XhdLiSwWtN4dOVK2h0OIg4HA8rKiAPrY7EDDjK72m632wkKgS2VwpVMMrGsjEHofyT169bhjMcpTiS4YPZshhYXQ2EhvkGD9KC0rg5veXn+cfR0ULqnFuBfwCtAVNPw+XwgJVo6zW0lJZxRVnbYxqL0nABwRzyOr6UFpGRYaysLa2sNea1J4BfRKFquVU1VIMBxO3dSbUAGSgb4A+T/xup27sQbjaq1qgfmQeA7Uso3IJ+p9AfgkBojSymbhBDbhRCjpJTrgFOBNQaNVVEURVEM1VVcch3wmhCiHv0Dd4BBwAjgmh4el2EeDgRYEgqBlESk5DaXC2enoKI7WoDr4nFWviTIJm2QFZCUWBdLBp3fcydhn7S08F4gQLyykmBxMfWxGA2ahnDqIbgvFgO7HSIRPAUFtIVCYDJBKITHbNavm8164SeLhbZoFJxOSCSo0jRKs1mcwSBjnU4GZTLYGxqYXF7OgMMUfM2YATNmuIFdLVUEMLaykuumTduVRpurQtyUTPLk4sXEzGYyVisz5syhEGjIZFi8Zg1pITADM6ZPpxwIZDK8v2oVIpPBnslw1qxZDAEKbTZCNhtNfv9u+6e4GN/48XtN3z3cQememoHHgdfQP5gB8sF4TVsbp61ahfe440AFq/2eBH4F+JJJPUU3meTkTz6h0WQyZHnBP9rbeSsczvdr/UoiwckGrSd9GVifmw2uKinha4EAdWqt6oEq7AhUQf/wVwhR2M19fhN4NFcJeBPwpW7uT1EURVF6xD6DVSnlS0KIY4Bp6AWWBHr60AdSysxhGl+3RIEnOqW0HV9fj728HAwIVpPATbEYn7S2Yh5fgCjwIoACC1xxxXC8Xk+3j9Ehg57692IoxJJYjB3JJFitEAziMZlo60hpDYdxFRbuNmsY3WPWcX/XI5EITbkKo8uTuQKRLhfWaJRTIhHGpNOU7dzJ1PLyXll/u7fgsMrr5bwzztgVTHb8fj0epk+atGt7R+Vbj4eZU6d+9v5Aode716C8t4PSPTWiz6S+jv766GysxUL5Rx9R29KC2WRSs1dHiKeBJZpGJp0GITh91Src6bQhv98m9HWwHe8FE7ZsYaRB/VoDwB8SiXyq/rEbNlA3dmyf+nvq4zYJIW5GTwUGuATY3J0dSilXAFO6OS5FURRF6XFdFViyA1ejz6SuAv4kpUzv6/590XNA1umEcJiSaJQJ27dTPW6cIft+GFiXq/jrnpjg//34bYp2juSLX6xmxgxjAtUI8NdgkBcyGaIFBbQFAki5a+nQnsGmJZOhNJXCHQxiTaWwZrMcM3AgO7dvx5ROI0wmRowYwYatW0kD6YICqocNo97vJ26xEHE49B3n9kenYyXNZv6rabwcjYLLRWEoxHyHg9OKipgA2Ax5xIduX8HkwW7vy4LoLUWWAEsSCWKall+TCjAGvSLa+MJCmmfMOCyFnJTDYx27B3yTt2xhXkUFxxjQ7kgCP4tGiWWzX6p9bwABAABJREFUIASeSITjN2+m+qyzDBn7HwF/bj14USzGuC1baPB41OvywF0B3IZebF6g1wtUM6GKoijKUaGrNOC/oHcxeBs4E6hDTw3uF8LAM+wqqvSFbds4Z/58Q06QXvT7ecRiwWwygRCcuG4dEyp2suBLozHi/CsL/CUQ4JFUitZ4PB80doSOBZkMA9rb8UYinDxkCA3vv48rGsWezXL2ggXg9eqBSm4tm0+I3QIXn9m8+3XQrxcVkU6neey//6XV6cRfVESL242vuJio3a4fPBfIRq1WXpaS99Ar8Q5sb2eW3c680lKMm1NWfOSCU2At+mugc0GpoBDMLivjy4WFHMeu9j39MRhX9i4K/AJ9LTJS4g0EmFZfj2vyZEN+x38NBHgzt1RCAFfGYpx61lmG7PsVv5/nOr1XnrJmDVZQs/0HQUrZDnyrt8ehKIqiKL2hq2B1jJTyOAAhxJ/Y1b6mX3gGaM+tkRpaUMBXR47EZMB+NzY3c2s4TMJiASGYbbdzmddLjUHVhVuBG1tbWRqNIjttL9Q0jmlsZLjPhzccZswxx3DM6NF6sGm3f2YWrat1lfu7fsmpp+b3B7CzoQFzaSlrTCae8vnY5vGQsFqx2+35wGm7lLybSvGQ08mxNhvT0PPHh2FM/9OjRZPPx/LWVrbX1rKmuHivuX75Nal+P9M2beKc4cP1Yl7KEUcC/xsOU5/NYjaZsGUyzFu5kgIhDAn4NqN/KtnxIdTkTZuoKykx5L1sq8/HTwIBgnY7CME8m41zhw1Ts/0HSAhxj5TyOiHEv2G3fwcASCkX9sKwFEVRFOWw6ipYzbeskVKmheg/IUcaeKpTylzVJ5/QMmWKISdIf4/HSVgsSMAdj/M/7e1MMihQaAS+HY+ztlOgWhqNMnXDBka1tnLijBkkiop6vMjP3oJZgPHAnMGD2dHQQGzgQDbZbPynpQXfHpV1N9hsbAAe0jRskQhTrVZOcrsZD2rWdQ9RoB5YD3wYifBWKETU5YJgEG+nFF/Qg/4xQJ2U+N95B3cshkmtST2i/SkQ4N+5WU+E4AcmE3Vjxx5ywLdkCSxeDLNnw+QZcCdgcTggFKIyGNTTf+fPN2TsD2oaQbsdCTiSSRa0tzNRfahyMDrWqN7Vq6NQFEVRlF7UVbA6XggRyn0vAEfuukBvTF7U46M7RB+za41UYSLBsIYGGhoauh3QBYGlXi80NyOk5KT6ekZOnWrImJuBa+NxtoRCeuAHTN2wgambNzNm1CiOmT69T8xGdA5kTwLOyGZ55L//ZVNZGVu9XjK527RO7VO2CcE7Vis2m42BwARgoN9P8Y4dDK+q6hOPq6dJIARsA1a0t/NxNEqLx0Obc1cTpWAmQ9Rq3S3wL7TZmAgcD0wHigFKSvCddppak3qE+wD4mxD5Wc9x27ZRV1h4yAHfkiVw6qnQUZ/tG6/Bhkm7KvR+JxRigkFLJVYCH3i94PPp75Xr1zNq8uRu7/doIqVcnvt2gpTy151vE0JcC7x5+EelKIqiKIfXPjNjpZRmKWVR7uKWUlo6fd9nA1WA/6L380MIRvh8WAyafXoS0ITAVVjIiIICrps61ZATuzTwA7+fdc3NJBIJLNksC5ctY/qmTcyaOZOTTjqpzwYkXq+XS049la9UVvKnAQN4wm7n+8DY1lZsyWS+UFMikQD0HkhPaBo3RKN8raSEC9ra+HE4zNPoVbyivfZIjJFB/+Dhdb+fezZu5OehEDcAF6OX8PyupnFXOMwrmQwrWlvRNC3/sx2vWVs6zTE+H9dnMvwduAWYSy5QzfF6vUw0KPVc6Xu2Az9JJEjnKv/WtLcza/36br2PLV6sB6qZDGhJeObVND6fj2AgwJh332VCRYUhr6cY8PN4nEQigae0lBOsVq43aH3tUeqyvWy7/HAPQtllyJAhtLa2Hvbj3vLvf/PqihVd3ufWv/+du55++jPbA5EI97/wQg+NTOmvZt90E8vq6wE467bbCEQiB3z/zlZs2sQLy5bt9WcWr1rFgttv3+9YLrroIsaNG8evfvUr7rnnHmKx2AE8giOHq6NdYhfuvfde6urquPjii3nmmWdYs+boaJHdVTVgJ5CSUqZy10cBZwFbpJSffSfsI9LA4nicRDKJp7SUz0UizBw1qtsnSkng2U6pxaM+/hgxfbohY/59MMiHkQgSMEnJguXLme5wMGXhwn5xgrdn2vBJwDEWC3VvvYXP5WJHeTn2adPYiv776VhzKYF2p5M3slk+7LS/AUBlOExRayujiosZ7fFQAZTS++tfk0Ab4Afq29pYHwySLisjVlSED733bkzT8EWjYLFAIIDXZsun83Z+7EJKkvE4dTYbo4BjbDY8DgfS76d28GC8HpU0fTQKo7fF2traqlcbTyT4VizGpG7Oes6erc+oJpOAFQqPTyClZHhTE3Xbt9Ng0HKCX4bDrM6107Kn01zrdlNVWdnt/R5thBAXAV8Ehgohnut0kxv9LUjph9LpNBZLV0lte5fJZLj97LOhtvaQjhuIRrn/hRf4ukFVvpUjzws//vEh/+yKzZtZVl/PWVMOrSNWU1MT7777Llu3bgX0D4QuueQSnJ2yzxS4//77efHFFxk6dCiXX345CxYsYMyYMb09rB7X1TvmS8CXgXohxAj0gqSPAguEENOllDccjgEerMV+PxtzfUJdmsYJZWWGnICtQC/Y1NF+YYjPZ0hqcRvwVEerGOD49esZ2N7OlD48m3ogvF4vC+fP35Wq6nKhoVe0fRN4PhymxeVCmkz6jGInWzSN99vbwWSCSARvYSE2mw0LUJG7VAK2YJB0SwvVHg81Hg8OwAHYc18dQCD3e6qqrqbc6yWLXm05k/va2NzMluZm3FVVOMrLiaC3DIrmvjaGw2yPREgXFxN3Oun4zFHTNHyRiD7G/QSkiUQCm82GHaixWAg0NuIJhRgQCnHZSScxqPODr6jQL8pRKYNe+Xdrri2WJZNh/ocfUpUrptYdM2bA86/BdxclkSckKT1eInfEmLN6tWH9eN8AXslm86//WWvWEK+tBRWsHop30UsZlAO/7LQ9jJ5prfSwqKZx/vz57Nixg0wmw80338wFF1wAwG9+8xv+/e9/k0ql+Ne//sXo0aNZunQp1113HfF4HIfDwUMPPcSoUaN4+OGH+c9//kMikSAajXLLLbdwyy23UFZWxrp165g1axb3338/JtPuyW5DhgzhiiuuYNGiRVxzzTW89Ne/suDkkzlv5kxeWLaM7/zpT5QXFTFp+HA2NTXx/C23ALBm2zZm33QT21pauG7hQr519tnc8Ne/srGpiQnXXsvpEyZw55dU96OjSVTTOP/229nR2komm+XmCy7ggpNO2u0+Q77yFZbdfTflRUX85LHHePTNNxlYXk55URGTR4zg+nPPBeBf//0vX//d7whEo/zpm99k+jHHcMujjxJPJnln7VpuPO+8z+w7P45olG9+85usWrWKdDrNrbfeyjnnnMPcuXNpbm5mwoQJnHvuuTQ0NHDKKadQXl7OG2+80ePPT19z55138vjjj6NpGueeey633XYbV199NZs2bWLhwoVceOGFPPfcc7z55pv89Kc/5cknn2T48OG9Pewe01WwWiql7Jjrvwz4h5Tym0IIK7Ac6JPB6nvhMAiBBIb5fDRGo1QZ0a4mHCaTS8kb4fMZdnL3LyBrNiOAimCQSVu3cuKJJ/brQLXDnjOuNvT1qhOKi7kwkWBrYyOp2lqCuYJMG4Gt7DvYS6OfuTWSCxaDQSgo2C2g7UzTNHyaBh4PaBpeTdvtPpqm4UskwO2GWGzvt+dmiGhtxev17jcgBfBarThCIUrDYcpiMc6ZOJEJ6EG2KCzEN3SoHsSPH39E/J4V4/wqFOJNKfOtXk5ftYrKWMyQ9xoJvDo2TLZGf02HW7P8n8WCZ+JEQ9Y+7wTuR09nDwrB6IYGRjc3Uz1tWrfHfjSSUm4FtgohLgYapJQJACGEA6gFtvTi8I4KL61ZQ3V1Nf/5z38ACAaD+dvKy8v58MMPuf/++7nrrrv44x//yOjRo3nrrbewWCy8+uqr3HTTTTz55JMALFmyhJUrV+LxeFi8eDFLly5lzZo1DB48mDPOOIOnnnqK88477zNjsNvtvPPOO/p4fq0vXU4kk1x1//289bOfMbSqiovuvHO3n/l0507euOMOwvE4o772Nb525pn8/NJL+WTrVlb8+tefOYZy5HtpzRqqPR7+k/tAIxjd96KrZfX1PLlkCR/dcw/pTIZJ3/42k0eMyN+ezmRY+stf8sKyZdz22GO8+pOfcPvFF7Osvp7fXn11l+O44447mDNnDn/+858JBAJMmzaN0047jeeee44FCxawIpfm/tBDD/HGG29QXl7e/QffzyxatIj6+nqWLl2KlJKFCxfy1ltv8bvf/Y6XXnop/7zU19ezYMGCvb5vHGm6ClY7l8qfg144EillUgiR7dFRdUOkvBza2hBSUhUOU33MMYe8r3tuuYXAtm1E43HeSKfJCIEJyCQSrC8s5IG3397rz5UMGsR1B5CfrwH/TiRoa29HAsdv3MhJJ55IXV3dIY+5v9hXBeMUsCyV4vG1a/E7nYSdTsorKoiiTyd06CpYPND7HMrtTpuNUqDWYsHX0oIrFqM4kWD+5MkcS27G1+HAV1lJQzpN9fDheMvKDuixK0e3hwIB/tap8u8lZjOnDRpE9fHHG/J6eRp4p9Os5ymffIKnttaQCr0p4NZYDF8qhd1uZ3x5OV9ra2PYggXqtd59jwMndLqeQf+c05jqfso+HVddzfV/+Qs/+MEPWLBgASd1mi36/Oc/D8DkyZN56qmnAD2Yveyyy6ivr0cIQSqVb6rA6aefjqfT0o5p06YxbNgwQF+r98477+z1pLNjJrezT3fsYJjXy9CqKv3nZ83iwZdfzt8+f8oUbAUF2AoKqCwuxhcIdONZUI4Ex1VXc/2zz/KDhx9mwdSpnHTssfu87ztr1nDO9Ok4cudDZ+/xgePnZ8wAYPLw4Wzx+Q5qHIsWLeK5557jrrv0IueJRIJt27bhcDgOaj9HskWLFrFo0aL8/+ZIJEJ9fT2zZs3q5ZH1nq6C1ZVCiLvQPzAfASwCEEKUHIZxHbIWlwtvQQGJRILzp07F242UysC2bdw6ZAjrm5sZZrUCYM1kOCuZZMCAAfv8uVu3bDmg/S8H2qNRpJSURqMMam3NFyI6WhUAM8rLGTZx4q4U4tyahTj6mtBmYF02y2tbthAvKCBtsTC0rAxz7j6J3FdhsxFCDzRNQJHNhhO9qpgZsFutZDSNgnQaezrN2LIyqoBCwAWkpOSTtWtxxOO4Uyk+P3s2I8mtmy0sxDdwoD7GUaNUQKp0y2LgoU6Vf0c0NXFqQYFhrV4W+/382mLJz9iO37rV0FnPX4dCLA0EQEoiUvJTl4tpEyYYsm8Fi5Qy2XEl94GxtTcHdLQ4xutl+fLlvPDCC9x4443MnTuXW3IzUx0fbJrNZr0QGnDzzTdzyimn8PTTT7NlyxZmz56d31dhYeFu+96zHeC+2gPu+XMAUn6m7e5ubAUF+e/NJhPpTKbL+ytHvmO8Xpb/6le8sGwZN/71r8ydOJFbLrxwr/ft+tW16/VlNptJZw9u7kpKyZNPPsmoUaN2277lAM+bjwZSSm688Uauuuqq3h5Kn9FVsPpV4FpgCDBXStlRlmsMfbTvWxTYrumtGFw2GxOLi/f7Mwci43brVUmkpFDTcBcZUwz5lXCYSC4VY0RTEyYhVM/MnL0Few5gUO4ypbSU00aP3m1N7GfY7fjs9l332WNtLA4HvuLife+jpARf56B5j3V3KiBVjPAR8H+JRH6ZQU1bG/NWr6bGoEIoq1pauCEYJF5QAEIwpbCQq10uBhk06/k+8JyU+UD7hHXrKKishKMwfauHtAghFkopnwMQQpwDHP5StEehhkAAj9PJJZdcgsvl4uGHH+7y/sFgkJqaGoD93nfp0qVs3ryZwYMH889//pMrr7zygMc1uraWTT4fW3w+hni9/DOXJtwVt8NBOB4/4GMoR5aGQABPZSWXnHIKLoeDh197bZ/3PXHMGK667z5uPO880pkM/1m2jK/Ondvl/g/09TVv3jx+85vf8Jvf/AYhBB999NFeP5R1u92Ew+GjMg143rx53HzzzVx88cW4XC527txJQUEBlXucg3Y8R0eDfQarUso48PO9bH8XvfBDn/Nhayu+WAykpCASwV9ebsjJmOZw4DCZSKVS1LpcB1Re+kB8FInkPyEd3NLCKAOqFh9NDiRY3N99unu7onTHBuCWRIKGXJXxskiE66JRJpx1liGvuwhwOxAvKEACTk3jkkCAqQbN2LYC/xeP5wPtYT4fE3bsoFrNqhrpauBRIcRv0RM7tgOX9u6Qjg6rGhr43rRpmEwmCgoKeOCBB7q8//e//30uu+wy7r77bubMmdPlfWfMmMENN9zAqlWrmDVrFufmitccCIfNxv1XX80Zt95KeVER0w5guVNZUREz6+oYe801nDl5siqwdJRZ1dDA937/e/21bDbzwNe+ts/7Th05koXTpjH+2msZXFHBlBEjKN5PVd5TjjuOnz/xBBOuvbbLAks333wz1113HePGjUNKyZAhQ3j++ec/c78rr7ySM888kwEDBhx1BZbmzp3L2rVrmZFLt3a5XDzyyCOfCVYvvPBCvvrVr3LvvffyxBNPHNEFlsT+0kkOecdC2IG30OvqWIAnpJRd1sWeMmWKXLaPPk0H4m/r1nGX3Y4Ehra0cKvZ3K00ulsvv5xbhwzhlWSSDfE4SMnI5mbCmsYNb75JJpvlK5MmccOJJ+7+c1u2cOt+PlXd7vNxdiJBFv3s4+rXXuPz3WxNoShK/9EIfA/YFgwSDAQoTCQ47/33OeW44wxJ/00D10cifKBpRKJRzJkM5y5fzpUGVRpPAtdGo7zr9+err9/S2sqE4cP7zPuYEGK5lPLQein0MUIIF/r/7MP+UXp3/zfv5oEHDrn9ymG3Ywd0cVJ/qBYvXsxdd92115P0LnV67iLxOC6HAykl3/jd7xhZXc23zznH8LEqPaiHXl97dZB/dx2vr5imMevGG3nwG99gUneDoZ5+vP3pvWVPh/O10Acc7P/mg2/2deA0YI6UMiKEKADeEUK8KKV8r6cO6K6ogEgEISUF2SzVAwcast9oLgUYQKRSfPuVV3j9S1+itqiIqX/4AwtHjWLMQa6N/aSlBel2A1AUizF25Mg+c4KnKErPagO+H4uxLZXCbDJhT6c5Z/lyilMpwyr//m84zBsd1ayF4EuhEOcbFKhK9Mq/q9NpkBIhJfM+/pjKESPU+1gPEELMB44F7B1rG6WU+6/ipxyx/rBoEX95/XWS6TQThw3jqjPO6O0hKUeQK++7jzXbt5NIJrlszpzuB6qK0g09FqxKfcq2oy1lQe7SM9O4OQ6PB09BAdFYjGMGDTLspMlks0EmA1KyvrWVER4Pw0pLAbjw2GN59tNPDzpYLaqqglzKsiOd5phuVC1WFKX/CADfjsVY2dqq91LNZrkNqKmrM6SFDOilYjv3O51RX8+JHo9h74l/CQR4Soh8waYTP/2UmlBIrbnvAUKI3wFO4BTgj8B5wNJeHZTSLbNnz96t+NKh+PY556iZVKXH/P3663t7CIqSt89gVQhhAb4MnAtUoweaDcCzwJ+klKl9/WynfZjRi96OAO6TUr5vxKD3pSkQoC3X+mHntm34hDDk5Czd6Xt/PE5NbkYUoLaoiPd37jzofSY6Vf4rUJX6FOWoUN/czA+FYKfJlJ+RnPvxx9QMHmxY5d9n2tr4rdmcDyTH7NjB1C1bqB471pD9v+L3c08kon/yKATzrVbOq6ykZsIENavaM06QUo4TQqyUUt4mhPgl8FRvD0pRFEVRDoeuZlb/hj4JcCuwI7etFrgMeAT4bPOvPUgpM8CEXLubp4UQY6WUn3S+jxDiSuBKgEGDBh3c6PfQ0tYGZrN+EpXN0tDQYMjJUyqVyqcBSyl3650GuVYmB6m1pQVyfaWyYNhYFUXpmzY2N3N1SwutLhcIgQDmrlzJCL+f6lwhhe5a3NrK7ZEIGSFACI53OvmKw2FY5d+dwF0mExL908sB7e18LptlkkGBtrJXHSU2Y0KIasAPDO3F8SiKoijKYdNVsDpJSjlqj207gPeEEOsP5iBSyoAQYjFwBvDJHrc9CDwIehGHg9nvngaWlkI4jJCSpM1mWEpaocVCWy5gLXO5aO7UBHlHKER1p5nWAzW0rExPAwYaSkup3rOtiqIoR4wwcDPQ6nIh0Xv/fjkQ4MSBA6mePt2QQLIe+JnZTEYIJOCJRLisvd2wyr9R4CeAdDohHMYdjzN/5UoG76elgdJtz+c+8L0T+BD9c4I/9OqIFEVRFOUwMXVxW7sQ4n+EEPn7CCFMQogLgPb97VgIUZH7B4sQwgGcBnzazfF2aXBpKV6vl+KSEgaNHWvYTKXVasVmtWIymZgyciSbgkE2t7eTzGR4bPVqFo7aM6bfv3R7e34BrwTa2toMGauiKH3LJp+Pq5ubaXQ4ds2orl7N+VVVTJw40ZD3qe3AjwGcThACl6ax8KOPGF5V1e19g579cWskwppgEICBlZV8P53mgrlzVUZID5NS/kRKGZBSPgkMBkZLKW/p7XEpiqIoyuHQ1czqhcD/AfcLITqC0xLgjdxt+zMA+Etu3aoJeFxKeZB12g9OEZBKJkkkEnxi4Exlg6ahaRoAmzIZ7pg5k3mPPEJGSq6YMIFj9+h9dCD89fXQaQ3Zqm3bqKurM2zMiqL0vo3NzXytpQWf2w2JBJ7SUi7w+Th38mTDgrwm4LvxOE3JJHa7neEVFXxl40Ymn3aaYZV/7wyFWBQIgJQEheA2l4tzjj222/tWDo6UUkOvtK8oiqIoR4V9BqtSyi3k1qUKIcrQ+7u1HuiOpZQrgcO6kKmxvh6/1QrA9kSCtQ0NhgSAjliMeKeCSJOLilj/zW92a58jhg2jMhikubgYAE1V0VSUI0obcJMQ+NzufOrveT4fV48YYegxvhuPs66lBaQkls1ym9vNDIOKKQE8DvxHynxl4SmbNjG4uBg8HsOOoSiKoiiKsjddpQHnSSn9nQNVIYQxuWUGC23YsNv1dZs3G7LfMZ0C1YzJhNPp7PY+6+rqGF9UlL++xOfD12ktrKIo/dcnzc18pbWVZrs9n/o7Z+1azjuE9e37EgJ+BGzP9YE2Z7PMX74c+/bthh3jn+3t3BcM5isLH9PUxAkbN6oWNYeBEGJm7qutt8eiKIqiKL3lgILVvfiToaMwyOghQ3AlEvnrdoN6lw4pKcFm088XYlYrzc3NRCKR/fzU/g1Np/OVhBtKSmhoaOj2PhVF6V0ftbRwVSDAxmiUtvZ2ykpLuSaZ5AaD1qeCXuzo+9Eon+QCSRNw5ooVDAoGDQskX/T7+d9QiGAgQFt7Oyc4nfzAauVsgyoLK/t1b+7rkl4dhaIoiqL0oq7WrO6TlHK+0QMxQl1dHcc3N/N2JoPZbCbcaeayO1zoT5QGpM1mEmYz4XAYl8vVrf3OLC7mD/E4SElDSQm21H5b1yqK0odtAn5oNhOx2ZCAJZPh8oYGLj2EImz7Ega+F42yxO/Xe7UC35WSsUOGUH3CCYYEkmuBu3JtwCRQGQxyaVubYZWFlQOSEkI8BNQIIe7d80Yp5bd6YUyKoiiKclgd6sxqnzXKaiWZShGPx/n36tWGpNYKwGs2Qy4dOOJ04jYgnW9CRQWDiosRQKKggGdXrVKpwIrST73d2srX2tuJFxSAEBRkMixcsYJ5JSWGHaMj9XdNOp1fQzp7zRrGtrcbWln4J4A5V724OB7nnBUrGDZgQLf3rRyUBcDLQAJYvpeLoiiKohzx9jmzKoQ4Dr2XWw3wIvADKWV77ralUspph2eIB8fV1AQOBxLYmUutNeIErtZqpVFKUqkU5gEDuj2rCnoQPDISYVvu+oaKCsPGqyjK4fOftjZuCYdJ59Z21hQX89WdOznBoJlOgCDwnViM+lQqv4b0lNWrOa6hgepJkww5RivwvXichlxl4ZEVFVy5YQPjVYuawy5XJ+IxIcRaKeXHvT0eRVEURekNXaUBPwDcCrwHfAV4RwixUEq5ESg4DGM7JCeUliJy61b9bjfF3WhhUzJoELdu2QJAUyLB++k0AAWZDKdYrTgcjn3+3IGa43DwWiQCUrLR68XeqZiToih933PAL81m0iYTEnBqGt/YsYP5BrZ2aQe+HYvxUWtrPvX3W8CkqiqqJ00yJJD0546xNneMfGXh447r9r6VbvELIZ4GZqJnZb8DXCul3NGdnebayi0DdkopF3R/mIqiKIpivK6CVZeU8qXc93cJIZYDLwkh/h/6P8w+aajXy/RolE9yAet6YNgh7uu622/Pf//BRx+xvKgIzWIhC5wYiXC2ASejp3s8/MZioam9nbbCQp577z08Ho+axVCUPi4L3BMK8YyU+ZnOkmiUcz76iCmnnmrYcfzAD4FNqRRI/a331FWrmFRTw0SD1pC25Y6xNXcMUzbLGR99hH3oUCgvN+QYyiF7CPg78D+565fktp3ezf1ei7482ZjiDoqiKIrSA7pasyqEEMUdV6SUbwBfAP4GDO7pgXXH6HSaSDRKJBLhH2vWGLIOdFB1NUNbW/XqvUKw1Gw2ZL82oC4czl//pLpaVQVWlD4uCdwcDvOXQCBfLXdyYSF3JJNccuqphn3Y1AJcF4uxplPV33krVzLG5zOs6m8APb248zHO+Phjhra3qxY1fUOllPIhKWU6d3kYqOjODoUQtcB84I9GDFBRFEVRekpXwer/AXWdN0gpVwKnAk/15KC6q7KxMV98ZFNFBTsNCP68Xi+XjhyZX6v6djbLv59/3pCA9ZxcL0aAT6urMXUjdVlRlJ4VBG5Cfw/oeJ8Z3tTE1du3c9L48YYFqtuAb8bjrGxtJRgIEGhr43tSclFtLQsMah8TQg9UP9rjGOcPHmzYMZRuaxFCXCKEMOcul6BPuHfHPcD30RMEFEVRFKXP2mewKqX8u5Tyvb1s3yal/GrPDqt7Ti4txZrJIICQ00l64EBD9nuax4PDZAIpaSsspMnlMmQWdHZZGaPcbgSgWSz8ZcsWVRVYUfqgHcA1sRhLc7OQCMGErVs5c9UqBhtYLXct8AOgIZncLS23zsCqv2H0ysIbOqUXn75ypaHHUAxxBXA+0AQ0Auflth0SIcQCoFlK2WVFYSHElUKIZUKIZS0tLYd6OEVRFEXplkNqXSOEeNDogRip1uvlzIoKXC4XrsJCPigwph6UHZhlsYAQCGDtwIGGpMkJYHp7e/76h4MHGzIbrCiKcT4AvpFI5Gc629vauEoIvu12s9DAWcilwPcSCXbmAuKCbJazP/yQEX6/YWm5EeC70SgrcscQwOmrVjGquVml/vYxuQ+IF0opK6SUlVLKz0kpt3ZjlzOBhUKILcBjwBwhxCN7Oe6DUsopUsopFRXdyjpWFEVRlEPWVesaz75uAs7qmeEYZ1oqxbPRKEjJv2IxvpBIUGXAyeR5bjfvWK1EIxEaRo4knjUmi+rcwkIei0bRzGbaCwtZ73BgTDMKRVG6QwJ/DAR4RAjSuf6m5myWuStXMmPQIMOKHAG8CtyVSNDY3AxS4kiluAOoHDaM6upqw1J/vxeN8r7fv1tl4Yk1NVRPnapmVI9wUsobgRsBhBCzgeullJf05pgURVEUZV+6mlltQS9r37kJ+bLcpbLnh9Y95du2YUmnkUC708l/29oM2W8dUJ3JEIlGaYvF+NWKFYak7A7zevmc3Y4gd3Ici9GkUoEVpVclgFvCYX4bChEIBIhEo7gTCc57/31GtrYaNgspgSeAXwMxTQMpKYrF+MJ771EZDhuWlusHbgDW5oJuCZyyejUT29pU6q+iKIqiKH1OV8HqJmC2lHJop8swKeVQoM9HUUMHDGB0U1O+eu/q2lpD9iuACZ0KOH04eDA7DErZndnaijk3U9vscvHnzZvV2lVF6SXN6OtG3+xUSKm6rY0f+v2cOWqUYQWIssDdoRD3BoNomobdbqciEuELS5fi0TTDAuJVLS18pbWVDbljCGDO6tWMbWxUqb9HKSnlYtVjVVEURenLugpW7wFK93HbL4wfirG8Xi/XHHMMxSUleEpLeTOTYZNBgd+5Lhf2dBqAkMPB2tJ9PU0Hp87rZdLWXUuRni8t5ckXX1QBq6IcZotbW7m8rY21ucAOIThu+3bO/fBDJg0fbtgsZAK4MRLhr7kWOD6fjzGpFH8oL+fkceMMC4iXt7RwVSDApmgUn8+HWUpudbu5bMAAVfW3jxNC/KjT97beHIty5Nji8/H3N9/MX1+8ahULOvWWP5CfH3vNNfu93/ceeohjv/ENvvfQQzz82ms0+LtbyFrpzzo6anTl3nvvpa6ujosvvphnnnmGNWvWHIaRKX1ZV8Hqcinlx3u7QUr5m/3tWAgxUAjxhhBirRBitRDi2kMe5SE6vrycUQUFtLW30xoMcvfKlYYEfoO9Xj7fKWX3L5GIISm7Xq+XH9XVUW42AxCx21k8apTqu6ooh0nH+tRvR6PsDIfx+XxYpORGt5vrCws5Z/58wwK7VvTeIUsymd1a4HxxwwaGer2GBcT1wI/MZqJWKxIwZzJcvHUrn/N4VOpvHyaE+L4QYgZ69d8OS3prPMqRZUtz827Bak/5/Usv8eE993Dnl76kB6sGLclSjlz3338/L7zwAo8++qgKVhWgiwJLwP3QrRo/aeC7UsoPhRBuYLkQ4hUp5WF71QlgfEMDSwsKkMBHgwaxraHBkJOzGX4//3S7SZtMNLvdPB8M8hUD9jvE6+XatjZuiUSQUrKuuppPpMS4Ei6KouxNEPgV8LoQZNEDV6em8eVNm/jCmDFgUAYFwHrgh/E4vmQy3wJn8qZNzNy4kcELjMvK/AS4HcgUFkIkQkE6zcIVKzh95kzDjqH0mHXA/wDDhBBvo3c0KhNCjJJSruvdoSm95SePPcajb77JwPJyyouKmDxiBNefey4bGxv5xu9+R0sohNNm4w/XXMPo2louv+ceipxOlm3YQFN7O7+4/HLOmzmTG/7yF9bu2MGEa6/lsjlzmDhsWP4Y0USCb/7+96zaupV0JsOtF13EOccfv88xZTIZbvjrX1m8ahVaKsU35s/nqjPOYOFPf0pU05h+/fXceN55LNuwgYvvvhuH1cqSX/wCh00lChzN7rzzTh5//HE0TePcc8/ltttu4+qrr2bTpk0sXLiQCy+8kOeee44333yTn/70pzz55JMMHz68t4et9IKugtVukVI2oveEQ0oZFkKsBWqAw/oRyTluN4+Ew8QLCog4HGyvqGCqAfsd5fUyft06Phw8GITg9YEDuRSwGrDvczwe3k2leCmRQAL3SMmQ1lZOKi83YO+KouzpE+D2eJymTsHjgPZ2zly1ihNPP93QY70D/DyRYHtLi95DFfiWEEwqLqbawJTcD4DbEglCuVTm4RUVXLZ5M8fPnKlmU/uHduAmYHbuUgfMA27IBawn9N7QlN6wbOtWnlyyhI/uuYd0JsOkb3+bySNGAHDlfffxu69/nZHV1by/bh1ff+ABXr/jDgAa29p45+c/59MdO1j4059y3syZ/Pyyy7jr6ad5/pZbAD0NuMMdjz/OnHHj+PO11xKIRJh2/fWcNmEChXb7Xsf1p1deodjp5IO770ZLpZj5gx8wd8IEnvvRj3Cdfz4rfv1rAB548UXu+tKXmDJyZE8+TUo/sGjRIurr61m6dClSShYuXMhbb73F7373O1566SXeeOMNysvLqa+vZ8GCBZx33nn736lyxOoqWB0mhHhuXzdKKRce6EGEEEOAicD7e7ntSuBKgEGDBh3oLg/YQK+XL9lsPCoEZpOJxxMJTvD5ut3Gxuv1cjNwTUEB8YICdiST/FXT+EpJiSHjPqexkSU2GwGnk5TJxM2axt0tLUxS/e4UxTAS+BfwJ02jKRc8IgQXWSycls0y8PTTDQvsJPBP4FEglKv4a0ulOHPFivw6WKO8CNyjaTTlWuCkk0l+VlLClDFjDDuG0uPOAH4MDAfuBj4GolLKL/XqqJRe887GjZwzfXp+RvLsadMAiMTjvPvpp/zP//1f/r5aKpX//nPHH4/JZGLMoEH4gsH9HmfRihU8t3Qpdz3zDACJZJJtLS3UDRy4z/uv3LKFJ959F4BgNEp9YyNDq6oO6XEqR75FixaxaNGi/P+9SCRCfX09s2bN6uWRKX1RV8FqC/DL7h5ACOECngSuk1KG9rxdSvkg8CDAlClTZHePtzdfLCnh34kE25ubaZOSX69cyXXTpnX7JHSY18sX29u5s70dpOSBbJbJqRQTDQgohw8YwDmvvcbjU6cSt1ppS6f5WiLBr4TghCNwhlUCKWBbczNNjY1UV1VR7fViAszoi6tFr45QOdLUNzdzZybDFo+HRCIBUmJPJjn9k0+YN2SIocGjBvwsHOaNbBa73Y7dbscUizH/ww/xJBKGtsD5K3obnHjuMbnjcc5ZtgzzsceC+rCr35BS3gQghPgYeAT9A98KIcQ7QLuU8uzeHJ9y+Em591OkrJSUFBbmZzD3ZCso2O8+9jzOkzfcwKgD7KIgpeQ3V17JvEmqO7xyYKSU3HjjjVx11VW9PRSlH+gqWI1IKbu1+l4IUYAeqD4qpXyqO/vqDjcw2edjO/rJ3H9HjODzBq1dHbVlC2VWK60uF2mTiTul5K90P7/a6/Vyyamn4l67lt8PGkTKbCZusfC9VIoftrVxlsfT7bH3lK0+H+uam3EMGIC5vJx29Hy2raEQTZEIBUVFmFwu4rDbJaZp+BIJKCkBTcOradg6rWkxAalEAhmLUWm3M8DppBg+c0n7/SQbGxlXUcEAle6o7MWLfj+3h0LECgrA58NTWkp1IMDcjz+mKJWi+gTjMiwbgR/FYizLfagVFIJTPB6+VVZGcMwYqqurDXkvSgE/CYdZ3CkgtofDzF++HFc6rdrT9F8vSyk/AD4QQnxNSnmiEOLI+8RS2a8Thw/nqiee4MbzziOdyfCfZcv46ty5FDmdDPV6+dc77/A/J56IlJKVW7YwfujQfe7L7XAQjsf3etu8iRP5zfPP85urrkIIwUcbNzKxi7WC8yZO5IEXX2TOuHEUWCys37mTmrKyz6QNd3VM5egyb948br75Zi6++GJcLhc7d+6koKCAysrK3e7ndrsJh8O9NEqlr+gqptrcnR0LIQTwJ2CtlPLu7uzLCJc6HLwUDpOwWAgWFrJmwABD1q4Oqq5m3uLF/HPaNDJmM40OB3ds3crVdnu3T0C9Xi/nAC1vv82zEyaQKCggnExyYyrFovZ2rnG7GbHHH3ZPyaAXoAmgB55twOZAgG2hEJSWkna7aQcaEwm2ahoUFUEslg84NU3DFwjoaZZtbXgLCnYLRIH87JYEhJQkEond7hPXNHy5tMaGSIRGr/cz+9A0DV80Cm43BbEYU6NRjissZBgwDBgMqJIOR68Y8AfgSYuFWK7wmpCSOX4/X66qwpfNGhY8AixFz99sSKXyr+2x27dzsd/PsIkTwaC/3zBwUzTKW50C4jM8Hr5eUUHbuHGGPibl8JJSfr/T1ctz21p7ZzRKb5o6ZAgLp01j/LXXMriigikjRlDsdALw6He+w9ceeICfPv44qUyGC086qctgddyQIVjMZsZ/61tcfuqpuxVYuvmCC7juj39k3Le+hZSSIZWV+bWte/OVuXPZ0tzMpG9/GyklFcXFPHPTTZ+53+WnnsrVDzygCiwpzJ07l7Vr1zJjxgxAb2nzyCOPfCZYvfDCC/nqV7/KvffeyxNPPKEKLB2lxL5SQoQQU4HtUsqm3PVLgS8AW4FbpZRd1h8XQpwIvA2sQu97D3CTlPKFff3MlClT5LJlyw76QRyovwQC/Cm3dtWWTnNfKsVwA04WfT4f/4hEeLaykrbcyeIZq1bxnalTDTlB9Pl8vLRqFX+orSXkcOS3WzMZTojHmZRIMKe2lkEHeawkevAZQA9EN7e3syUQwFJWRraoiADQGIvRmEiQKSzE2ukfi6Zpehug3Bo/by5wDAaDBAMBPQgAiktKKC4u3uf2zjKJBP6dO5FSIk0mvNXVFNjtZNFfQAeyj/3dRwC16IGrJxDA09DA8WVl3V7DrPR9K4Gfx+PsyBVRamtvpzCR4PQ1a/j6jBmGBnNZ9LWpf9M0EokEZpOJoN/PrLVrGdvQwNkGFlLyoS9sXNPptX/c9u18p7CQyQamMvdHQojlUsopvT2O/s7Q/80PPAAHmF7a63bsgK99rbdHscsDDxApK8PlcBDTNGbdeCMPfuMbTFIn8P3T4Xx99YW/u55+vH3hMR6qvvZe08MO9n9zVzOrvwdOy+10FvBz4JvABPQ1pl2W5pJSvkMfW2Z4cUkJr8ZirGxtBSn5UUMD90hpyAzotV4vaxobeT83e7Jo7Fgmt7VxvgEnpF6vlzOAyMsv89qoUWzIFS1Ims0sdrlY7HLxq0SCwY2N1BYVUSglkXAYl9tNoctFKBKhPRrF4nZjcjpJAG2JBMFcldD8zGc4DCYTBAJ4c4GpL/dcEYnkA1LY9yyo3W4nIiVOTaMwmWRiWRkD0VN41336KVZNw5bNMvfEExkIODpdCux2fC4XDQ0N+kxQpxQiiT5r++/XXychBJrDwdTTTsOCHmh3XHaaTHwYCBBwOonlxtOZBLYDGzQNXygEhYUUhkKc43Awt6iI4+jBEtlKr0iir+N8XNPwdSqidLrNxufa2xlpcKAaAu4E3u/0gY5b07jDZKKqqorqSZMMO149cGM8TnOnKsYz161j8rZt1BrYAkdRlL7hyvvuY8327SSSSS6bM0cFqoqiHPG6Oi83d5o9vQB4UEr5JPCkEGJFj4+sB1iAU7dvZ6XdjgTWVFfzYiDA5QacOArgB2YzX47FaHc6yZpMPFxdTeHq1UwpLzckID5v3jyOW7+eFz/+mPeGDcPvdudvl8CWZJKtfn9ug55u65EyP9uLpuXH0ZFOG8zNiu4t+OzYj/bLX+JoaCBaUIDJZsMGeFIprH4/lkwGSzZLTUUFRXY7ViAdjxOLxXA6ndgdDlpyY7Tltgunk+UffshJt9++18e5t+dKANVeL58766xdwWxZ2WefKLcbX1UVDQ0NOIuLidpsbELPad8INOSeq86PN2q18h8peQdwAlOAGehNhp0H9VtS+polra3cLSXBoqL879yWSjF7zRouGjjQ0CJKHcf7uRDEXa788Qa2tjJ31Sqqxo839HhvAL/s1ALHLCXXA2PLy6keN06l/SrKEejv11/f20NQFEU5rLoMVoUQFillGjiVXHuZA/i5Pu2MkhL+s3Ur671eEILnBg1iIWBEuaLhlZX8FrjRbCZitbL+1ShXv+NlQenH3PpVDAlYvV4vo3w+1q1fz6vr1rGxspIdZWUECguR7F7pT0hJNBbbZxBqymZxpFKUB4NUO53saGzErmkUplLMmTSJIilZ/v77fPjhh/ygrIxRQ4bgcrny+48MGEA4HMbtdu+2/UDcumVLt56Dg7lP5/qECfQ89uXZLM81NrK5vJyE1ZqfgY0Bb+UumUSCge3tnG2zcZbHg+mQRqz0hgRwfyjEX6NRJEA8jqe0lCF+P6d88gnuVIrq6dMNO54EHmlv51eRCBkhIBrFU1rK1M2bmVpfj8VkMqzAURZ4GHia3VvgzF+xgrEGt8BRFEVRFEXpTV0Fnf8A3hRCtKIXa30bQAgxAj3jsl+q8nr5P+A6i4WEy0UE+EFTEz8RwpB1i2MrK7kXuODlEJu+WIlMCn5vPYUBw7dxy0Xd3j2we9C6fv16Ytu3s6mhgZDNRsJqJVlQgJQSkxCMHzeOlR9/jDmdxprNctYpp2CTkjcWL8aSSx1csGABXpcL39Chu2Ytc9WGx518Mjv/9jdGjRz5mYDU5XIddJDa2+zAKGBUaSmnDh3K9oYGIgMHssFmYwnQnLuflivmtFNK3kuleMxu5wKnk9Nz+1D6rveB3wEbcx/SSKAgneY8n48v1NTQKIShBYcCwD3A6yYTGSGQgC2V4oqGBubW1dFQXGzY8SLAjyMRPshk8hV/zbEYZ374IWUGtsBRFEVRFEXpC/YZrEop7xBCvAYMABbJXVN2JvS1q/3WMK+XnwHf1TSafD58UvLjTZu4ne7PfgIMBSa+beaDpICsQKbgr+sGUL1+PWcXFxt2ktx5BtHn8+UDTWBX0On1Msvp3HU912fRc8YZu91nz/11PkZZWVm/C0oPROfHOxv4Mvqs63vAc8Egvk4z0ttSKR5EL5pzBrAAUL0j+pZW4O5wmHc6tW4JCkGt389pa9Zw3mmn4fV6DS2m9bLfz6+FIF1YmD9eRSjEWStXMvfUUw8oE+BAbQduisVY2da2W8Xfqz0eAga2wFEURVEURekrukznlVK+t5dt63tuOIfPWGBmUxNPos+8vDdsGE+HQlxt0Mne5fML+csvJVpKYrIC49v5jc3G4g0buAMYbPBJ5Z4nxXt+v7cgtDsntlc8+yzPr19PZWEhn3z96wCsaGri6uefJ5FOYzGZuH/+fKbV1BzyMQ43AQzJXU6Rkr+/8w6rqqtZPWhQPk04it44+BlgQjjMlG3bmGrAmmTl0GWB54E/JBJs69S6ZURFBVe5XAz1+6nJBapGSQL3hkL8LRrdrQDZ5cXFzPT7GZwLVI2yFLgLaOrUAmfqxo1c4PczdOJEUK8/RVEURVGOQP127akRvmy3s7Sxke2lpSAEzwwcyFRgsgH7njED3nhd8J/FsGR8O63HakhgVW0t3zGb+Rl6Omp/dfmECVwzbRqXPv10ftv3X3mFH598MmeOHMkL9fV8/5VXWHz55b03yG7wer188bTTaGhowONysdpm4xmgMXd7TNN4ur2dp10uxm7cyO1CGNIGSTk4S1pb+W02S0txMYnc+k0JjNmxg2va2zlx/HjwGLEifZet6IHjx1Lmj+dKJLhi82YuHD0aDFwzKoE/BAI8KgS23GxxLJvl1FWrOKalhRpV8VdRFEVRlCPYUR2s1ni93AvcZDLRVlREgc3GrYkEX9m0iePLyro9MzJjhn7Z2Jzie9ta2FhRAUIQdrv5lqYxs6mJSxwOhvXDIGfW4MFsCQR22yaE0Au+AMFEgupO1Yr7o86zz4OBM9FnuJ4B/tupmvAnNTV8o6CAb6GnCKtCTD2vFbg/HObJXAExEgk8paV4YjFmr15NbTDISIMDuY4iSg8LgdnhyKf9Dm1u5rQ1azhl3jxDjxcGfhKJ8HIolG+3c2xFBT91uSgYOJDq6dPVjL6iKIqiKEe0ozpYBX396v3A9cCOXFGd/y0o4NzFi7l89mxDTgaHV1Zyv5Q8EwrxwsCBJIAmn48ngX9HIlxms3FpcTFF3T5S77pn3jzmPfII17/yClkpefeKK3p7SIYSwPTcZUkqxf/6/WwtKwMhyDqdPAC8DFwFjOnNgR7Btvp8PBqP825VFaFsNv+BgSWT4YzWVi7xeGgePtzw9Zv/XgL/uyhJ8ziNwkkahEIMrKzk+243dX4/NfPmGXq8tcAvgI2ZTP4x1vr9fK29nWnjx0Nu7bmiKIqiKMqR7KgPVkFvW3Mb8NXcLE3MauWJKVMY2tbG+QadgFZ5vVzt9fJ54IampnzxnqTZzOPAy4kEk30+znM6GdtPT0QfWLaMX82bxxfGjOHx1av58nPP8eqll37mfmmgLZHg6TVrKPJ6cZSVEUcvOd0YCNASCFBWUoKnpAQz+kxluL2doN/PYI+HoR4PxUAR4KZ3ZjJnlJfzYCbDK4EALw8cSNBmA2ATcJ2mcVxLC1+3WlVqsEEk8GR7O3eHQkStVmhuxpNL3x/W3MxJ69dzSW6daI2BQWMW+MUS+NGpkEkWIAoqGfqoj8Gj2vhGKMSZY8dCaalhx5PAnwMB/gZYO83eTty8mZkbN3LM/PmGHUtRFEVRFKWvU8FqzkDgh5kM38lkSJrNJAsKeLimhhpgpoHHqQR+JgS//OQTPhg6lHaXC7PJxLbmZrYBT8fjTIvFON3p5ASg1sBj96RQJMJDK1bwvVmz2AlMGjOG9557jv9qGsFkEmmzkbVaiQNaOs3b6TRvFhZCNIrX5cJms+ntYkIhEAJCIbwOx67t4TAUFOiFbAoLseWCw6SmYYlGGWm1Ms7lYigwDP15M/fwY67yevl/Xi8XoKcG/xMIaxq+XIXp9wIB7jCZmF2u6gZ3xyfAn4DlJhNRqzVfobkqHueWwkJKzGaqDS5oBLAN+N9olJdeMpNJ2iCjt6UpfTHOBcGlTDrrLEOPFwJuj0R4pSPtNxRieEUF3y4spKqoiOr581Xar6IoiqIoRxUVrHZyUnk590nJ7WYzycJCzDYbt2saC3bs4HyXy7ATxSqvl+unTGFHQwM7q6r4eyJBW6c2KetSKZqAvwFlsRiDWlsZ73Ix2eOhlsP3S0ujn0CH0QsLJYBAIkEwkQCHgwb0vo//TKVoy2QoLCzk7s2bmTR6NGu3baPC42Flbm0n8TgukwmzxUI6nQbIP95EIoHNZiPRaR3ogWzXcoEhUrJDCNYUFOSD2GwiQVkwyEybjXklJQxGT+PtCVbgfOAU4KetrflZ84jNxo8LCvgqcCHqj+1gbQF+F4nwbqeeokEhKNQ0ZmzYwPcmTWJAWRmUlRl63DR6xee/JBLs9Psxjy9AFOh/+9YCuGZmijPPPMvQwHENetrvpk5pvwPa27kmGGTOcccZ/hgVRVEURVH6A3X+vIdpFRX8GbgF2JQLhv5osfBBfT13AAMN7pE6GZjm83Hvxx+zurqa7eXl+TYpmqbxUWsrH0nJs7kZxUKbjUFAeTiMye9nYEkJA0tK8imxiZYWWpqa8FZVUZZLJ5ZAc0sLO5qbKfZ6KSwvJ0Eu7ba9nR2BAKayMrJFRQSBAOCLx2lNJvXqo8AbQCadJpIroPTnp56ifudOIvE4X7v3Xs6aPp2LTz2Vf731Fk+89RY2q5VL583TA1UAKUmn05gtFqwWCwWZDOWhENZMhuPKyqgEUkKwbutWTOk0mEyMmzgRFxAQghXbt5M0mdBsNqrLy0kDW3Jp23sNYpub2SElH2saTzocDLHZOB4Y0dpK4fbt1PZAT8oK4CaLBdfy5bw6ZgwJqxWb3c4/gf9Go3x+0ybGVVaq2bH92An8HXhV02jq1FN0YGUlVxYXM2nzZoZNmtQjz+P7ra3ck83i71Rd2D0xwdm/WE7t+hou+WI1M2YYV8dbAn8KBHiE3dN+J2/axIxNmzhWpf0qiqIoinIUU8HqXlQC/wdcEwzmZ8k+HjiQ75pM/AwYYfDxqrxerp0+nYaGBoodDrbbbLwLvBqP7zUYW6tp+Nrb954uG49DURHE43g1bfftLhfEYrtvD4fBZIJAAK/Ntmt7S0s+SCjMZAD0GdFc8HnFmWdit9ux2e1k0mmikQiWTIaffOELVJWUUGy1IhIJ/Dt3YkmnsWazjBo0iDKgwGJhpdXKhem0XgjH5dKfiKIifKNG0dDQoG8vLt61feTIXdsLCwHwJZM8+9prhKxW2oqLqZ01Cz/wQSTymeet0WbjMU3DF4tRbLcz4eOP+e748T3S7/Zb06dzms/Hs1VVbMw9n+/6/SxzOpn73nt86/jjVcC6FzuBP4fDvJbJYHU4dptRH9XQwNc6ZhknTDD82FHggVCIR6NRspCvLuwNhZizahUVzjgLfjTI0HamzcAd0SiL90j7/U5hId7iYpX2qyiKoijKUU8Fq/tQDPxUSq5rbWVTeTkIQaCoiOvRUzr/B2PXRHZukzIMOBn4oqbx4IoV+Nxu/MXFOCorCcNBp8se6nYAh6ZhTaXwAiYhCIRCevCZyTCipgYPYLdYSFssROJx3G43LqtVf1B2OxGvl3A4rG/PBZkADoeDiXvpR9n5edjfdq/Xyznz538muPWl0/zrzTfZWlrKZq+XpNeL7PS8BZxO3hw1ivVWKxcBCwAjkyw7xnoy8BRwX+5DB81i4fkJE3DG49xEz6Ul9zdb0Nf7vq5pNLW35wM3T2kpQ1tbmV5fT2U0yrE90FNUAq8BDwPbpCSb22bJZDi7pYWLKitpqqsztLqwBF4F/gA05T4Ayqf9BgLMGTdOpf0qiqIoiqLQg8GqEOLP6HFAs5RybE8dpycN9np5AHgyHOal2lqw2cgAjwLLgG8DNT18/G8df/yuYMzhIAIsS6V4et06ohYLms3GUI8HCfgsFtYmEmTRK+QOtFpxAiUFBWyLxzFnMlgzGcaUlVEOpE0m1u/YgTWZpDCV4tQpUxgGJJNJlrz5JlZNw2IysV5KTgWw2Yh4PLuCT6dz12BdLtwdM6R03uzCtZftRtlXEPs/8+blnzeP3c5KYJEQPJNOk7BY8u1mHtU0Ho7HOctk4mtFRRg5UhNwHlCdTvN9TSNss4EQvOrxsKOxke+ZTAw7SmfOJLAKeCQS4b3cmtTOH54M9Pv5SiTCCbW1NJhMhreiAagH7o5GWZ1O77YmdqDfz5xPP+XiOXPwer0MMPC47cD/dnrMdrudMDBp0yamb96s0n4VRVEURVE66cmZ1YeB3wJ/7cFj9Lgqr5dv5FrO/Aq9/yHASk3j0nicC4BLSkpw7nsX3bJnMOYCZpeXUzd+/K4g1u3WbywsxFdSsltwC4DTia+0dNf2juDR7cY3YsSu7R6Pvr2igoGdgr0H3n571/F7OPg0yp7P22RgclERX4zHeTYS4YMBA/BBvkDTI0LwXkEBVzkcnI6xs54nlJfzcDbLz7NZNhYW0tbezrtScqmm8VOLhdlH0SzaDp+P50MhPqipYbvZjK/TmlRPaSmD/X6mbNxITSjECQsW7HOmvTtC6MXLntM0mvz+/PHrKir4pstFjd9PTS5QNdJ/gV/G42zs9JgnlJdza2EhjpISlfarKIqiKIqyhx4LVqWUbwkhhvTU/g+3AcDP0dM6/5xI4GtuBim5TwhetNs5327nbDB0Zq4rB5Mua+T2/m6w18u3vF6ywN/WrePviQSNJSUIKWlJJvmNw8FT0Shnbt3K8WVlhj0HIyor+T3w061beQp9ZjFss/FD4NRt2/iSzcbQI/D57tAEPB4M8vdwmLjVCq2telp4biZ1RFMTl4fDTK+poUGIHplJzQKPtbfzNynJFBbmZ3JN2SwTt2zhyrY2jp8wATo+tDFIBPgd8CYQTCbzj3n81q18va2N6RMmgGpvpCiKoiiK8hlqzepB6EjrtG3cyN2A3+VCSIlf0/i73c4z6HnP5wBFvThOZf9MwBklJaSef54N5eW8U1eH3W5H0zSW+P2853Qyfc0abgXD0kDNwNV2O4mlS3m9ro6E1UokGuVZKVkUDnOFpjHJ72dgDwRqvSENvNzWxrOaxlaPhzgQLyjIr5EukJLjduxg3JYtlCUSTO+hmVSAD4H7YjGWhcP6mthIBE9pKUP8fk5cswaPpjG0B9bELvL7+Q2g5XoJ2+12MprGaatWMSgQYEgPHFNRFEVRFOVI0evBqhDiSuBKgEGDBvXyaA7MtPJyLvrPf1jr9fLh8OHYqqoAiAGPA88BM4NBJm3dyqgjYIayZNAgbt2yxfB99jav18vZCxbQ0NDA14uLedtm40+BAEhJVgjeGzaMH0rJLwCj5r28Xi/XTZvGPJ+PvxQU8CH6LGusoID7pKTYbmfiihV8d8IEBvXD141EXwv6OrAoHmdjrjIzPh+e0lIQAlciwfjt27n+uONwjRhBg9PZIzOpAJuBPwMrgGAqlZ/VLI7FuCIe5/SaGhp7YCY3BPwqHOapaFR//NEoXq+Xs2w2FhYXExw2rMces6J0RQgxEH15ThV6wsGDUspf9+6oFEVRFGXvej1YlVI+CDwIMGXKFNnLwzkgHVVopzY08L3SUtbZbDwO7MjdHtQ0HgoG+avbzeAdO7ikoIAzPB4Ku9ppH3bd7bf39hB6TOeZvIuB41IpfhAM0lBcDEKwo7SUryYSfG7rVs4oKTng4OKeW24hsG1bl/epjMep9ftpcbtJmfXa0mHgLWCp2Yw3k6HWYqE813e3ZNCgPvm7kMBW9DWZi2IxNqdSesGkTimvQkqOiUT4XGEhFX4/A8eOxVtZCdAjAVsz8PtwmFezWWx2e35WM5bNMnHTJqZs28bcs87C6/VSZeDxJbAYvdLvjmw2//idmsYlW7Zw6ahR4PViaA8cRTk4aeC7UsoPhRBuYLkQ4hUp5ZreHpiiKIqi7KnXg9X+qnOQU43eauZd9BYcH+fWwqVNJjaVl/Nrs5lHgPHADOB49NY4St8zrqKCP2Wz/CUeZ3FVFRLY1NzM3XY7b336KT/lwNKCA9u2ceuQIfu9XyQSIRCJsN3p5JNMhrQQev9c0GfkhKDSasWbSPCP9ev1wK87D9AgGeDd1lYWR6NsqKigzenU+/O2tu5WMMmlaYzauZPjGhr44mmn4S0r69G2LG3of4P/TiTY2dEGRwiqvF4W2mycVlhI3OOheuxYw4PkJuDOSIQPOlX6DQrBMY2NnLxuHfPmzTP0eIpyKKSUjUBj7vuwEGItemF7FawqiqIofU5Ptq75BzAbKBdC7AB+LKX8U08dr7eZgBOBmcALmQy/Dofxud0gBHa7nTSwPHe5DxgL1LW3U7N9O8ceAanC+5MG1jc3U9/aitXrRZSVEUBv5bE9HKYxFsPsdiOcTtrjcWLxOIUOBy6HAy0eR4bDeJ1OXFLi8PsZCtQGg4yqqjL8uav2erkRfe3xjblqsRJYNmQIP85m+SXgNuhYHdWVa4G6SIRPk0k2Wq2E0mn9DlLSrGk0C8G76TQLg0GOCYeZUljI9NJSBmNsv999SaH3Q32/vZ0l8TibXC4aYjH9xtZWvF5vvmBRQTrNCJ+Pz0ejzPJ4aIxGqR4zpkdf40Hgz8Egz0uJ2eEgoWn539vQ5mauCoU4a+xYqKzULwZKohdeeySRYHunSr9jKir4bmEhlVYr1fPmHfF/40r/kyuCOBF4v5eHoiiKoih71ZPVgC/qqX33ZQKY7/EwJZViRUsL22trWWOzUd/pPhJYpmn8JxyG4mIKQyFmFhYyzuViKDAMvfpwX5hB60rHrOO65mbsAwbsFoBuC4fZEY2SLioi6XTSqmn4EgkoLNTX7+UKzmiahq9jBkzT8JSW0tZxPVcEp+P6mkRCP25u5lGUlDCgqYk5LS1cUFHBYIODgTHA3ZkM3/b72VpWBkJQ73Lx//x+vi8lJxhcwbXE5eJ44NhIhA+ammh1uWgvLCQrdr0StgUCbANezQXvVinxBIMc43AwuqgIe1sb2cZGRlZUMLKy8oD/wDPoVWs3trRQ7/cjvF600lI2hMPUx+MEiopIC4Gvo0BRezsdOftCSmQsxmyLhdTKlQxsbsYGnJwrmGRkmu2e/MDTwDOJBNuDQX1soRCe0lKqg0Gmr1/PwGCQyT1UyOgj9Eq/DUAoFyADjN+yha93VBc+iloTKf2HEMIFPAlcJ6UM7eX2fldPQlEURTnyqDTgHuL1epnX6SS9GViCvq7vU8jPQkkgarXyfibDp51+3g4MzV1K29sxNzUxrLycYRUVuOm5X5yGPksV6PR1ayDAtlAIU2kpGbc7f1tzIkFjIgFu974D0D1m3TrWLyYSCWw222e2R2OxfV7vCAQ6SKChpIRHgCfDYU4PBLiipIRhBgZHwysr+b2U/DEe53WPh7b2dtqk5BvAlQUFfLW4+IB/F4l0mlkPPYSWyZDOZjmvro7bTjmFm19/nWfXrcMkBJWFhTz8uc8xrbaWcDgMmQyr2toIOJ2Ys1kyuX0JKYlGIviiUbZLyceahkcI2iIRcLkgkcCraVgSCdKhEKUuF5WlpaSiUULRKDaXiwKnk3A8TnsiQdapdwr2xePgcEA4jMdi2fXBQSKxW6sZAHciwUC/n+GtrVw9fToDS0vxTZu2q29vDwapn7S08EgiwcqKCsx2ez5QlEBlMMgVsRhzvF4aM5keGUszcG84zFvZLPZOa2Jt4TAnr1nDgHC4R6oLK4oRhBAF6IHqo1LKp/Z2n/5YT0JRFEU58qhg9TCpRE8rPQd9Xd2L2Sx/b2+nsbiYjNmMPVdEp0MCWAus0DR9NsvphHgcr6Zhs9lwoKeidlyKABkKEW1vp7i0lKKiIiTkAwsJBEIh/KEQ1uJiCtxuEkA8d6y2XNAinE5sNlt+HJqm4QuF8rNpXqs1f3usU4DQVQCaSCRw2O2kk0kcmkZhMsm00lIGASKbZfWqVdgSCezZLCdMnMiK996DTAbMZqZMn857y5YRN5vRrFZiNhuthYU0lZTQVFKSf3zxggKeKyjgtVCIC30+LjBwRm+A18vNwKB16/hNQQFJs5ks8A/g42iUczdvZkJFxX4DIpvZzOuXXYbLaiWVyXDiQw9x5siRfG/mTH4yZw4A977/Pre/+Sa/W7AAl0vv2uu22wmHw7ybzVK5dCnbSkpoKSkhYbMR6SLQDwWDxOJxAJpCIXaCHgDngs/dZrHD4d2C0b3tryyZZEBzM1VtbQxua2P+hAloDgfV06fnH3tP9+ddD/wtHOb5WIwsQHMzXq8Xu92ONRJhyoYNjGht5dQemtXVgCeAfyQSbM89d0EhGFpZyXV2OxMrKmgaOVJV+lX6LCGEAP4ErJVS3t3b41EURVGUrqhgtRd4gItLSzktmWR7QwOm2loiNhubIH8J5u67rxnJOHqg2Zy7n6Zp+AIB/UoggNdm+2zQmWvLsmfQqWkavpaWfNDi9Xrzt+3r+AB2u514JoMzF4BO9nj0AFRKPl29GnsigSuV4vOnnMKI4mJaior0WbeaGrxFuU60paX4pk7dbTZudMf9ctdHFBfnrwM0NDRgt1rZsnMnL0QirBg4kGBuZjBqtfInq5VXGxq4UwhGG7g+8YySEvyvvsqisWNpLC3FbDKxxO9naWEhU9as4YfQZSqyEAKX1QpAKpsllckggKJOv6doMvmZ9O+Oda0lmsaXZ83a7bn451tv0ep0EnS5KBs3jmV+PxGbjbjNRjp3rA7xLmathZQ4MxkKYjFsySTFiQSTa2vxrVmDOxrFG43yhTPOgEGDaLBYqJ4w4bAFY1ngPeAZ9A9wgtksWciPuyoQ4JteLwPLy2lMJqk+/njDxyaB59ra+JOUJFyu3dbEjm5o4JpAgFnjxoHXa1hfXkXpITOB/wesEkKsyG27SUr5Qu8NSVEURVH2TgWrvWjPWahZua8Sfd3nZuBDKXnZ5yNss6FZrZRXVpJCP4HvrKugcn+3d77NnM1ij0QYZrNRAphNJjZt3YpD03CmUsydPp3h6NWMi2022goLaQgG9cDSnSs7VFKCb/LkXQFnpxYlewsi9tx+INcB6oBJPh+frl/P88Eg7xxzDNHcY9rm8fBN4LJ16zj9IFrOdMXr9XLxaadxckMDK4qKeDSTyVd9fn/YMK6xWLgOmNPFPjLZLJMffJANbW18Y+pUptfWAvDD117jrytXUmyz8cZll3U5hs6P5YK5c3cL7H0mk369vBx/WxuvvPceKYuFjMnEMccey5oNG5CZDAXA9EmT+GjpUsypFI5MhoULFoDHo//8kCH6/iyWz6T1Hq4gNQC8CjwVj7Mjmdwt3TYoBLV+P9M2b+bqmTOp0gfWI+tj1wK/jUZ5p6NnbDSKp7SUynCYE9eupTYUYpRK+VX6CSnlO/T9kgiKoiiKAqhgtU8S6LOvHmBySQkLBw/WAwaPB6/DgQRiQAi9L2cY2JLJsHj9ejLoM3hTp0yhtNP+gtksH6xbhymdxiYlpxx/PDXoa2MjySRvvv02llQKezbL2QsWkD/ld7vxjRq1K2DZo1jMgQagPaXjOKN9PubV1/NINstHgweDEDQnEtxpt/PaunXcgV7l16jjTQaOa2nhpkiEFpcLhEBzubgHeCwWIxEMEolE8qm8HcwmEyuuvppAIsG5//wnnzQ3M7aykjtOPZU7Tj2V/337bX67dCm3nXLKQY1nb9e9Xi8C2LRpE8OGDaOuro4TBgzYLfis22MWu+Pn9rX/niaBVcCL6LOp0U6z/kEhqKms5Ey7nZlOJwV+P9UzZ/bY+BqAv6C3pAqm07v1TD3f5+NzFRU0pVIq5VdRFEVRFKWHqGC1H9gzYBBAYe4yILdtssfDiePG7Qo8Skp230lpKXPHj9970FlRQfXpp++zMM7hDlgORccYj/P5WNzWxkMeD42JBBL4cPBgbpaSuzG2v+20igr+ls3yTDjM6zU1JGw2fG8mWfZCkvJAAU/G40wxmxntcHymvUyJ3c7swYN5acMGxnZKVf7icccx/+9/P+BgdX/q6uqoq6vLX9/frHVvaQYWA8/HYmxJpfKzqB2z/rZUirHbt3NpIMDsceOgvFy/9IAg8IdQiP9ksxQ4HPnZ3IiUHLd1K9O3bOHzZ5yBV6X8KoqiKIqi9CgVrB5B9hd4dHV7Xwlausvr9XKB18vk5maub21lc3k5CMH20lKuise5aPNmji8rM+yxDvB6+ZrXy5eAny+Bn5xZQFYrxoaDYKWdpW7B6lSK6kiE8nSaKrebErudeCrFq5s384OZM6n3+xmZ+/DguXXrGN1DQVhfE0Ovjv068Am5tdOtrflZVK/Xy3EWC87VqxnW2IgVqBszpsfGE0Fvg/N4IsG2jvXdoRBer5fTbTbOLCwkVVREdS5QVRRFURRFUXqWClaVI9KIykp+JyUPx2K8UV2NBNa2tHCr08nMVav4ERi6vtEO2BYDSSCrLwdL7ihADBP4YzH8QrAzEOCxJ5/EIiVmKbng2GNZcMwxfOHxx1nX2opJCAaXlPC7+fMNG1dfEwM+QA9S300kCGnaZ2ZRC9JpRjc2clE4zPxjj919/XMPBIlx4Dn0QDUKBDsVT6ppa+PqSIRzxoyBigr9oiiKoiiKohwWKlhVjlhVXi83AKcCP8q1GckIwdsjR3KTlPwcvaWQUWbPBptVkExKzBImDhM0ZzLEc/1hayoq+OHll2Oz2zEDFZrGR34/f5g/H09hoYEj6Vs2NDfzWjDIpgEDWO9ykSY3i9rcnJ9FrfJ6mWY2Y/7kEwY3NWEDpuSKFvXUrH8ceAH4ezxOyx4FnAoiEabX1zPM7+d4VTxJURRFURSlV6hgVTniTQXuTKf5bjhMs9sNQrCjtJRvAlcBp2BMacwZM+C112DxYsH2twWnDrcRikR4r6WFFpeLkNOJxaL/ySXTadYlEmA2834qxcBkksFWKwPQC2v151KdSXI9goH/RqMsjceRViu0teEtKNhtFtUTDlPX0MD5ubWovilTenQWFfSCZM+jz6b69yjgNKG8nK84nYzsaIMzY4ZK+VUURVEUReklKlhVjgrjKip4OJvlz/E471RVYbXZiAE/1zSe9vv5lsXCSAN6ss6YoV9uXadfL3K5OGHAAMLhMBaLhRaLhS2AL1ddFvQKuM3ZLEHgo3QaUikqzWYGWK2UAWXoacZ9kQRagA3ARuCjSISP02nMucJEwXQaCbu1TKqz2ThWSkLvvktxJILJZKJu/HigZ9dOr29u5rF4nA+8XrDrz2hH0OyOx5m6cSMXV1czZeLEHmuDoyiKoiiKohw4FawqR40ar5ebgU+Bu4EtmobP58MnJe8lElxltXJpSQlWg4/rcrnyLWwqgDHAzkyG5YEAQYeDqM2GxWIhk04TiUZBSiJC0GwyYc7NxNpSKd6LxbgnGGRMcTHVQA1QwuGZhU2iV+xtAnzA+mCQtbEYrSUlpBwOIJfa29a2W2Eiu91OGKgMBBje2srV48YxDvRevHPm9PgsKsA24G+hEE/GYmSEgOZmvF4vNpuNwQUFVKxZwzE7d1IgBAOnTOmxcSiKoiiKoigHRwWrylFnNHAvcGtzMy/mCukkzWb+KgRLgMuAk+jZILCmsJBiKQmHw9gKCghbLHwaCqGl06TMZpCSdDqNORfENsdi+LJZHgoG8ebWVgKIRAJ7OMwAp5PqwkJK0APY4LZttO/cycABAxg5ZAgFQAEQbG3F19xMaWUlJeXlpIAU0NzWxo62Nqzl5ZhKSgih9/FtikbZmUiguVz5Y2qahi8Y1IPSlpZ84NcxSymB0miUqT4fCwcNosJuJ5jNUj12LN5OBYp6chZVAh8Bz+S+BnPrlTtmeEtCIb5RUcGJTietkybRUFWl+qUqiqIoiqL0MSpYVY5KduDbVivWJUt465hjaHe5sNvtNAN3Av+IRjl961ZmGtjmZk+dZ1w9QJnJxPqtW4lbLMTsdlyDBxMBGjqlDJNLpbXZbLsVKVoXj+O1WLDZbETCYfxSQnU1AGXhMC63W79/LAaFhRCL4dW0XfuJRKCgQJ8RzaXwapqGz+/Xjx2N7jUoFVIiYjHG2WxUAI2rVlHZ3k5JMsmCBQvwAni9+uUwiKH3a/1XLMbGTv1a7Xa73g4nGGTqli18a9o0qnI/c6S0bVIURVEURTnSqGBVOWp5vV6+MWMGZzc0sH7AAF6w2Qihzxy+6/fzbmEhg3fu5NsWC7PLyg5qprVk0CBu3bLloMcUdziIxWI4CwpwNDYCEI3H2dTURPWAAdRu2sSAKVMIAZ/EYrsFjR1BbDQW222f0VgMl9v9mSCz4/4Hst2UzeKMRDjWZsMpBNs3bqQoEsEbiXDxqafqgV9xMb6pUw9Lau+eNgAvAW+it57p3K+1yuvlFJuNE51OCv1+aqZNU8GpoiiKoihKP9CjwaoQ4gzg14AZ+KOU8uc9eTxFOVgds2pTgc8B/wL+Go/ng7StZWX82GJhInAucCIH9kdz3e23GzpOn8+3Kwh0uwFoSib515tvEikoIGG3M+HkkzEBazIZPt6xg5TFQsZkombIEEqAgMXC+nAYcn1eR5eVUQJoZjP1Ph+WdBpnKsVJ48czCEil0yz/4APsiQRFySQL58/XZ0qLivAde+xeg9LDOUsZA/7d3s6/Uymai4vzacodQbYlk+HYHTv4f8Egpx93HJSX6xdFURRFURSlX+ixYFUIYQbuA04HdgAfCCGek1Ku6aljKkp3FAKXA1NSKW7z+Vjv9YIQ2O12NgG/BP4CzAoEGLV1K8Orqg5bYLa3ILDK6+X8efN2BY0eDwDnVFezNhhk06ZNDBs2jLqOdaKFhfgqKnbdP5eCjMuFb/Bgffvw4XhLSvTtZWVMPOmkXg9KO8ugt8R5HXgzkWB7LvgmkcinKY8oKMC1bh3H7NyJI5tlnOqTqiiKoiiK0i/15MzqNGCDlHITgBDiMeAcQAWrSp82tqKC32azfNzczEeDB7PUZiOZu22npnFPKITF7WbEli181WLhlLIyzL001n0FjXV1ddTV1R3w/Q92++EkgQ9aW/lPNMqaykoSuerDIU3Lz4BbMhmOa2nhK7W1jHY6aR4/noaKClU0SVGOUEP+awJgy8xsL4+k5wy54T8AbPn5/F4eSc/py7/H7o7NyMdmxGvhcD3Xffl3ergM+a+pzzz+I+F9pCeD1Rpge6frO4DpPXg8RTGM1+tlrtfLXPSquC8C/wa25VJMU2Yzn1ZVcbvFwl+BWcBsYDiHp5XMkU4Cm4D/Aq/GYnzcsQ63U/Vhu91OQSTC6J07GdPUxHnz5tERlvaFIFtRFEVRFEXpnp4MVvd2zi4/cychrgSuBBg0aFAPDkdRDk0RcAH6mtVnslkeiMVoczrzKcLtwLO5iycWo87nY47bzdTychW4HoQmn48lfj9bamr4pLiY5tz2YCq1WwEoazTKuTYbp9hsOMvLaUgmqR4/XgWniqIoiqIoR5ieDFZ3AAM7Xa8FGva8k5TyQeBBgClTpnwmmFWUvsIKnF9ayqxkkvdbW9k4cCArbDbac7drmsaK1lZWmEz8IxbjmHicmQ4Hk4CJgLv3ht5n+dHXoL4VDvNyOEy8sBD26CVrt9uJZbMM9fmoa2ri6hkzqO7YgZpBVRRFURRFOWL1ZLD6ATBSCDEU2AlcCHyxB4+nKIdFldfLObkAKQOsAt4AXtijlYwvmeQ1h4PX0NMMRgLDg0HKGhqY5vEw9CgMsrb4fLwTCNA0YACbiory6wSC2SzxgoLd2ud4bDamATNtNqqdTlptNqpnzFDBqaIoiqIoylGix4JVKWVaCHEN8DJ665o/SylX99TxFKU3mIEJucsXkknu++QTNpWVsa2iArvdnr+fBFZpGq8Gg+B0IhIJJsRiTHA6GQUcAwzmyGp8nAA2ovdA3QisjMVYkUgg7XYIBPDabLvNngaFwJFMMqylhctdLuYABR0783oZqIJURVEURVGUo0qPnhtLKV8AXujJYyhKXzHI6+U7U6bQ0NBAlctFxGZjOfAh8Cm7+n925LpvSqXwA6/lrstEAk8wyCiHg9FFRdSgVymrolPQ1gdFAV/u8mkgwKpoFH9pKe1O526L1IOpFBJ2mz0ttNkYA0y02ah1OrH6/dQMG4a3rKwXHomiKIqiKIrSlxxJEzmK0uv2rEI7Ej3/PQK8nsnwz507aSoqwu927zbzqmkavuZmtkvJx5q226yjACqBokgER1sbg4uKGFJSQglQDJTmvtoMfixJ9ErIISCc+7qlvZ2NoRBpj4eo201T7rHlH0MopPc9bW3NV+3tYLfbCQHl4TCD2tr4osvFrM7jLi/XL4qiKIqiKIqCClYV5bBwAQs9HqYPH05DQwMeu52IzcZ6YD2wJBLZbb1rIpHIB3oS2KZp+Nra9EAwFMLrcOwWCALYARkIkAgEKHe7qSwrowB2u2jhMIFgEGdxMXa3mxSQAtK5r8FYDH88TqawEDoF05ALRsNh/Up7O16rdbcxdJ45FlKiJRIcY7MxAr2lzwibDafdTltbG9WjRqnZU0VRFEVRFKVLKlhVlMNoz5nXY3Nffek0j7/1Fj6Xi2BhIYOOP54wemWyFj4bCHYOZju0hsP4g0EQgm2RCGVWKy73rhrEmqbha2/XA969BJuapuFrbdVvj0Y/MzO6rzFY0Wd+R5nNNO3YQWk4TFUkwv876SQGFRfv+QQwWK09VRRFURRFUQ6AClYVpQ/wer2cP3cuDQ0NVFdX4y0qyt+WBD5JJnni448JOBwkbDaGejxkgCAQyF2isdhu+4zGYrsFq/sLePe8PR2PU2WzUYTea9ZkMrF5506c8TglmsbCadM4Fj0NWQC4XPhGjNAfw8SJqmqvoiiKoiiK0i0qWFWUPmLPWdcOVmBSRQU106fvCmbdu3dtlcCH7e28tmwZaZOJjNnM+ClTGOT15lN9mzMZ3l6zBpnNUgCcNGMGXvT0YAt6AaS3338fczJJYTrN5888k6rOB3G78eXSmKurq/HuZX3pvh6DoiiKoiiKohwsFawqSj/RVSAogMmjR+OUkk2bNjFs2DDqhg/f/U4eDzMmTdoVbHo8u99eXs6Ik0/edftejqWCUUVRFEVRFOVwUcGqohxB6urqqKur2+ft+ws2VTCqKIqiKIqi9BWm3h6AoiiKoiiHjxDiDCHEOiHEBiHEDb09HkVRFEXZFxWsKoqiKMpRQghhBu4DzgTGABcJIcb07qgURVEUZe9UsKooiqIoR49pwAYp5SYpZRJ4DDinl8ekKIqiKHulglVFURRFOXrUANs7Xd+R26YoiqIofY6QUvb2GPKEEC3A1sN0uHKg9TAd60ilnsPuU89h96nnsPuO1OdwsJSyorcH0ZcIIf4HmCel/Eru+v8Dpkkpv7nH/a4ErsxdHQWsM2gI/f211p/H35/HDmr8vak/jx3U+HvT3sZ+UP+b+1Q14MN5UiGEWCalnHK4jnckUs9h96nnsPvUc9h96jk8quwABna6Xgs07HknKeWDwINGH7y/v9b68/j789hBjb839eexgxp/bzJi7CoNWFEURVGOHh8AI4UQQ4UQVuBC4LleHpOiKIqi7FWfmllVFEVRFKXnSCnTQohrgJcBM/BnKeXqXh6WoiiKouzV0RysGp7edBRSz2H3qeew+9Rz2H3qOTyKSClfAF7opcP399dafx5/fx47qPH3pv48dlDj703dHnufKrCkKIqiKIqiKIqiKKDWrCqKoiiKoiiKoih90FEZrAohzhBCrBNCbBBC3NDb4+lvhBADhRBvCCHWCiFWCyGu7e0x9VdCCLMQ4iMhxPO9PZb+SAhRIoR4Qgjxae71OKO3x9TfCCG+nfs7/kQI8Q8hhL23x6Qcefrb/919/Z8TQniEEK8IIepzX0t7e6z7suf/l3429s+8t/ez8X/mfbUvj18I8WchRLMQ4pNO2/Y5XiHEjbm/5XVCiHm9M+pd9jH+O3Ovn5VCiKeFECWdbusz49/b2Dvddr0QQgohyjtt6zNjz41nr+MXQnwzN8bVQohfdNp+0OM/6oJVIYQZuA84ExgDXCSEGNO7o+p30sB3pZR1wPHAN9RzeMiuBdb29iD6sV8DL0kpRwPjUc/lQRFC1ADfAqZIKceiF9y5sHdHpRxp+un/3X39n7sBeE1KORJ4LXe9r9rz/0t/Gvve3tv7xfi7eF/ty+N/GDhjj217HW/u7+BC4Njcz9yf+xvvTQ/z2fG/AoyVUo4D1gM3Qp8c/8N8duwIIQYCpwPbOm3ra2OHvYxfCHEKcA4wTkp5LHBXbvshjf+oC1aBacAGKeUmKWUSeAz9CVUOkJSyUUr5Ye77MPo/kZreHVX/I4SoBeYDf+ztsfRHQogiYBbwJwApZVJKGejVQfVPFsAhhLAATvbSc1NRuqnf/d/t4v/cOcBfcnf7C/C5Xhngfuzj/0t/Gfu+3tv7xfhz9va+2mfHL6V8C2jbY/O+xnsO8JiUUpNSbgY2oP+N95q9jV9KuUhKmc5dfQ+9pzT0sfHv47kH+BXwfaBzcaE+NXbY5/i/BvxcSqnl7tOc235I4z8ag9UaYHun6ztQgdYhE0IMASYC7/fyUPqje9DfiLK9PI7+ahjQAjyUS3X7oxCisLcH1Z9IKXeif+K5DWgEglLKRb07KuUI1K//7+7xf84rpWwEPaCF/8/encdHVd2NH/+cWTJLZrInk4TIvggIsgsiCKIoi1ittVR93Fq3PrXa59en1fbRqq2trbZVW5dardq61brUpWqxKiKKIiICshiWAFmYrLPvM+f3x70JEwgByWSD83698krmzp1zzySTmfu955zvl5Je7Fpn7uHAz5f+0veDvbf3i/538r7aL/qf5mD97Y//z1cAb+g/9/n+CyGWADVSys/3u6vP9103EpglhPhYCPGeEGKqvv2I+n8sBquig20qJfIREEI4gBeAG6SUvt7uT38ihFgM1EspP+3tvvRjJmAS8KCUciIQpG9Nq+rz9DVI5wBDgHIgWwhxce/2SjkK9dvP3f74OXcUfL706/f2Y+B9tV/9Pwshfoo2rf+p1k0d7NZn+i+EsAM/BW7p6O4OtvWZvqcxAfloSyj+F3hOCCE4wv4fi8FqNXBc2u0K1LS3r0wIYUb7AH9KSvlib/enH5oJLBFCVKFNiTtNCPFk73ap36kGqqWUraP6z6Od4CiH73Rgp5SyQUoZB14ETu7lPilHn375uXuQzzm3EKJMv78MqD/Y43vRwT5f+kPf4eDv7f2l/wd7X+0v/W91sP72m/9nIcSlwGLgIrmvVmdf7/8wtAsdn+v/wxXAWiFEKX2/762qgRelZjXaDI8ijrD/x2Kw+gkwQggxRAiRhbbQ95Ve7lO/ol8deRTYLKX8XW/3pz+SUt4kpayQUg5Gew2+I6U8mq68djsp5V5gjxBilL5pHrCpF7vUH+0Gpgsh7Pr/9TxUkiol8/rd524nn3OvAJfqP18KvNzTfTuUTj5f+nzfodP39n7Rfw7+vtpf+t/qYP19BVgqhLAIIYYAI4DVvdC/TgkhzgJ+DCyRUobS7urT/ZdSbpBSlkgpB+v/w9XAJP3/ok/3Pc0/gdMAhBAjgSygkSPsv6n7+tk3SSkTQojvAf9Gy9D2FynlF73crf5mJvBfwAYhxDp920+klK/3XpeUY9R1wFP6CfAO4PJe7k+/IqX8WAjxPLAWbZrUZ8DDvdsr5WjTTz93O/ycA+5Em9L2bbSg5Bu9070j0p/63tF7u4F+0P9O3lcd9NH+CyGeAeYARUKIauBnHOT1IqX8QgjxHNoFhATw31LKZK90XHeQ/t8EWIC3tGsGfCSlvKav9b+jvkspH+1o377Wdzjo7/4vwF+EVs4mBlyqj2wfUf/FvlFxRVEURVEURVEURekbjsVpwIqiKIqiKIqiKEofp4JVRVEURVEURVEUpc9RwaqiKIqiKIqiKIrS56hgVVEURVEURVEURelzVLCqKIqiKIqiKIqi9DkqWFUURVEURVGUHiCEuF0Icfoh9pkjhDi5p/qkKH3ZMVdnVVEURVEURVF6g5TylsPYbQ4QAD7s3t4oSt+nRlYVRVEURVGUY4IQ4kdCiO/rP/9eCPGO/vM8IcSTQogHhRBrhBBfCCFuS7vvpbQ2zhBCvKj/HBBC/FYIsVYI8bYQoljfPkEI8ZEQYr0Q4iUhRL6+/XEhxPn6z1VCiNv0x24QQhwvhBgMXAP8QAixTggxqwd/PYrS56hgVVEURVEURTlWrABaA8ApgEMIYQZOAd4HfiqlnAKMB04VQowH3gFGtwaiwOXAY/rP2cBaKeUk4D3gZ/r2vwI/llKOBzakbd9fo/7YB4EfSimrgIeA30spJ0gp38/Ek1aU/koFq4qiKIqiKMqx4lNgshDCCUSBVWhB6yy0YPUCIcRa4DNgLDBGSimBvwEXCyHygBnAG3p7KeDv+s9PAqcIIXKBPCnle/r2J4DZB+nPi2n9GpyJJ6goRxO1ZlVRFEVRFEU5Jkgp40KIKrTR0Q+B9cBcYBgQBn4ITJVStgghHges+kMfA14FIsA/pJSJgx3iK3Ypqn9Pos7LFeUAamRVURRFURRFOZasQAtKV6CNpl4DrANygCDgFUK4gAWtD5BS1gK1wP8Bj6e1ZQDO13++EFgppfQCLWnrTf8LbYrw4fIDzq/0jBTlKKWu4CiKoiiKoijHkveBnwKrpJRBIUQEeF9K+bkQ4jPgC2AH8MF+j3sKKJZSbkrbFgTGCiE+BbzAN/XtlwIPCSHseluXf4X+vQo8L4Q4B7hOrVtVjmVCm4avKIqiKIqiKMrBCCH+CHwmpXw0bVtASunoxW4pylFNBauKoiiKoiiK0gl95DQInCGljKZtV8GqonQjFawqiqIoiqIoiqIofY5KsKQoiqIoiqIoiqL0OSpYVRRFUZSjjBDiL0KIeiHExrRtBUKIt4QQlfr3/N7so6IoiqIcSrcFq0KIUUKIdWlfPiHEDd11PEVRFEVR2jwOnLXfthuBt6WUI4C39duKoiiK0mf1yJpVIYQRqAFOklLu6vYDKoqiKMoxTggxGHhNSnmCfnsrMEdKWSeEKAOWSylH9WYfFUVRFKUzPTUNeB6wXQWqiqIoitJrXFLKOgD9e0kv90dRFEVROmXqoeMsBZ451E5FRUVy8ODB3d8bRVEU5aj36aefNkopi3u7H/2REOIq4CqA7Ozsyccff3xmGm5pgUQiM211N5MJ8vvQst7+9LtTDq0nX1994bXT3c+3LzzHI9XX3mu62Vf9bO72YFUIkQUsAW46yP1tH4gDBw5kzZo13d0lRVEU5RgghFCzedpzCyHK0qYB1x9sRynlw8DDAFOmTJEZ+2x+8EGoqMhMW92tuhquvba3e7FPf/rdKYfWk6+vvvDa6e7n2xee45Hqa+813eyrfjb3xDTgBcBaKaW7ozullA9LKadIKacUF6sL4IqiKIrSTV4BLtV/vhR4uRf7oiiKoiiH1BPB6rc4jCnAiqIoiqJkhhDiGWAVMEoIUS2E+DZwJ3CGEKISOEO/rSiKoih9VrdOAxZC2NE+EK/uzuMoiqIoirKPlPJbB7lrXo92RFEURVG6oFuDVSllCCjszmMoiqIoiqIoinL0i8fjVFdXE4lE2t8xeTIYjb3Tqa5yuWDz5t7uRcZZrVYqKiowm81daqensgEriqL0qiQQBqrq69lTX09haSnOoiJiQAyoa25mb1MT+UVF5Obnk9IfkwKaPB6ampspLCggPy8PAyDQ1lF4W1poaWrCVVBAaUEBWYAZyAK8jY207N3L4JISBpWUYKPn6oUpiqIoytGmuroap9PJ4MGDEULsu6O+HrKyeq9jXRGLQcnRVUlMSklTUxPV1dUMGTKkS22pYFVRlH5nh9vNloYG7KWlmIuK8AI+/csL1AUC1IdCGB0OsNsJAlEgGo3ijkTA6YRQCFc0isVi0bYHAtoHnd+Py27HYrFA62N8Pu2Krc+Hy2Zrf5/fD2YzBAK4srPb3xcKaceKRNqOZQXsAKEQ0u+nNDubAQ4HeUAOkAskmpqI7N3L6OJihpeUIFAURVEUJRKJHBioKn2OEILCwkIaGhq63JYKVhVF6XOCwPrGRjY1N0NJCfG8POqBBmBPJMLOaPSAgLNVNBrF3dwMUmpBosvVdn8kEgEpkYCQkkgkgsViOej2zh5zpPdFAG80iruxEaTk82gUl9ncPsgNBsHhgEiE4yIRBlitFEPbl6mlBbF3LxMKC1UwqyiKohxTVKDaP2Tq76SCVUVRekUK2NDQwOfNzSRcLoJ5edQANYC7dVTSYjlgNNMbjR40QISDB4kCKLBYSEajmJJJTKkUI4uKKABiRiM76usxJJMYgXH5+eShTdkNCsGG3bu14FcIxufn49T77xWC9TU1JAFpNDK8oAAL2rTiFpOJL/1+4gYDcZOJPIsFeYg+dnSfLxpFWK3U6o9tG8212yESYWgkwnCrlQrgOMDW1ISxtpbxJSWUulzd9NdTFEVRlGPTHXffzdMvvIDRYMBgMPCn3/+eO++5h527dhEIBmlobGTIoEEAPHD33az9/HPueeghtu/cScO2bRQVaul8nnruOX59770gJY68PB588EFOPPHEA463c+dOli5dSnNzM5MmTeJvf/sbWftNeQ6FQlx55ZWsX78eKSV5eXm8+eabOBwOjEYj48aNI5FIMHr0aJ544gnsdjtvvvkm119/Pclkku985zvceOONBxzb6/Vy8cUXs3v3bhKJBD/84Q+5/PLLAbjiiit47bXXKCkpYePGjZn+NbdRwaqiKN1uW309nzY1ES0rw5OXRxXwZSTCnnAYrNYDAtLOgjmr1UowlSI7EsEejzOxsJBytOmzuUAimWTdZ5+RFYthTaVYfNppDAEsgLBacefmUltbS3l5Oa7sbK2DDgfugQP3bc/J2df5nBzcI0ce/L5hw/bd53Tuuy87G3dxsXZfYSEuqxUJhIBd0SivrVpF2GgkarUy7pRTMKJNYd5jMLDsjjvA7SZhMpGw22lJSxoRj8UwxGJtt2uzsmjQP7RSySThcBgAo5SUWK0UmM04gQEDB/LT229Xo7CKoijKUWPwjf/KaHtVN87s9P5Vq1fz2rJlrF2+HIvFQmNTE7FYjJeefBKA5StXcvcf/sBrf/9722NsNhuLzzqLOYsXt2tryKBBvPevf5Fvt/PGp59y1VVX8fHHHx9wzB//+Mf84Ac/YOnSpVxzzTU8+uijXHvtte32uffee3G5XGzYsAGArVu3tiU2stlsrFu3DoCLLrqIhx56iOuvv57//u//5q233qKiooKpU6eyZMkSxowZ067d+++/nzFjxvDqq6/S0NDAqFGjuOiii8jKyuKyyy7je9/7Hpdccslh/GaPnApWFUXJqCCwDajUv9aHw2yKRLSRwLSg1NfJCKnTYsEUDJITCpEbiTA3N5eRaFNgSywWwnY7dR6PFiA6HO07UFDAKTNm7Asg90ta4HK5cHUw4niw7Zm8TwDZwJiSEgrnzt3Xx/z8fQ9yOol6vdxQWorT6cTicBDSf68hoDkSYVdjI2GzmUhWFjanE6NJeyuPRiLtMiRarVYsVisAD1RVsTYcpsjjYarNxql5eQwD+mnuREVRFEXpcXVuN0UFBW3nK62jpJ2ZOH58h9tPPukk7YdYjOnTp1NdXX3APlJK3nnnHZ5++mkALr30Um699dYDgtW6ujoG6aO5AKNGjerwmLNmzWL9+vWsXr2a4cOHM3ToUACWLl3Kyy+/fECwKoTA7/cjpSQQCFBQUIBJP+eYPXs2VVVVh3z+XaWCVUVRjpgEaoENwMd+PxuiUXxOZ7tpud5YrMOg1Gq1Eo/HKfT5KAiFOCMnh7HAAKDYaqWhsJDaaJTyESNw5eW1O26uy9XpFNfOAsi+orM+2mw2ysrK2m63jhoDYLUyJi8Pv9+P02zGYDK1JZdqEIKqSIRQVhYJo7HtAwW0UdftDQ1sl5KP43H+YbNRYLFwAnAiMB4YCGrkVVEURVEOYv7cudz+m98wcsoUTj/1VL553nmcOrPz0djD8eijj7JgwYIDtjc1NZGXl9f2eV5RUUFNTc0B+11xxRXMnz+f559/nnnz5nHppZcyYsSIdvskEgneeOMNzjrrLGpqajjuuOPa7quoqOhwVPd73/seS5Ysoby8HL/fz9///ncMhp6ta6CCVUVRDpsEdgEb07686OsoW1q0dZ2hULukRq3TdgsCAYoCAc7KzWUiMMhiIeJ0Uuv3awFp+ugi/SPg7C0OhwNH2oiyHSgFRlosnOhw4Pf7MebkEDGZaAaaARKJAy4aBC0WPgZaP54s4TCDmpo4w2bj9MJC9QGhKIqiKGkcDgefLl/O+6tW8e777/PNK67gzp/9jMsuvPCI23x35UoeffRRVq5cecB9UsoDtnWUuGjChAns2LGDZcuW8Z///IepU6eyatUqRo8eTTgcZsKECYA2svrtb3+bl19++bDa/fe//82ECRN455132L59O2eccQazZs0iJ31JVDdT5yKKonQqCHwGrAZWhsM0xmLa9NKDJDUypFIUeb3MLClhBDDCYsFit+P2eCgfOrTdKGmuCkgzbv9AdqD+fVYqRckHH1CTm0tNURGypIRw2uOi0Si7GxqolJL/BIMMzc5mrtXKbGAcarqwoiiKogAYjUbmnHIKc045hXFjxvDEM88ccbC6fuNGvvM//8Mby5ZR2MGU4qKiIjweD4lEApPJRHV1NeXl5R225XA4OO+88zjvvPMwGAy8/vrrjB49ut2a1VYVFRXs2bOn7fbB2n3ssce48cYbEUIwfPhwhgwZwpYtW5g2bdoRPd8joYJVRVEOsBctOF2NNnqaRB89bWgAKfEK0TZ66gD41a+wr12LLRrFmkhwXEUFDTYbDcCHGe5b3sCB3HD77Rlute+796OP+PPatUjgykmTuGH6dG5+5x1e3roVgxCUZGfz+Ne+Rnl6kqc0NpuNi+fNa1snW2KzUQt8rn+tCAbbjbw2RaO8ZbXyFtoU5PE+H8NqaphZUKCyDCuKoijHpK2VlRgMBkYMGwbAug0bGJQ2nfar2L1nD+ddcgl/u/9+Ro4c2eE+Qgjmzp3L888/z9KlS3niiSc455xzDtjvgw8+YMyYMeTn5xOLxdi0aRNz5sw56LGnTp1KZWUlO3fuZMCAATz77LNt62LTDRw4kLfffptZs2bhdrvZunVr2zrXnqKCVUVRAG2q6D88Ht6Ox/Hk5LQbOYV9o6fWWIyKlhZmx+OcM2wYg4Db9u7lh+PHa+sonc52I3uZdmsPLObvazbW1/PntWtZfeWVZBmNnPXkkywaMYL/nTmTn592GgD3ffwxt7/3Hg/tl20w3f5TqwfoXwuBy+Nx/rJ6NZXFxVSWl2PVEzMB1EejPOXxgN1OQXMz383K4mv5+Zi75+kqiqIoSp8UCAa57kc/wuPzYTIaGT50KA/fc0+nj7nvT3/iN/fdx163m/GnnMLCM87gkfvu4/a77qKpuZnv/vjH8NOfYjKZWLNmDQALFy7kkUceoby8nF//+tcsXbqU//u//2PixIl8+9vfPuAY27dv59prr0VKSSqVYtGiRXz9618/aJ9MJhN//OMfOfPMM0kmk1xxxRWMHTsWgIceegiAa665hptvvpnLLruMcePGIaXk17/+NUVFRQB861vfYvny5TQ2NlJRUcFtt93WYd+6SgWrinIMk2ijam8AKyIRan0+bd1pONxu3ekwYBTQ8vHHFHm9GA0GFi9eTPr42v7TT5XM2dzQwPSKCux6GvpTBw3ipS1b+FFaUodgLNal5EilLhffnj2b2tpaynJz8VgsrABWAlVp07yb7Xb+YDDwKnA2sABQf3VFURSlN1TduUj7ob4e9qs92h0mT5jAh8uWHfT+1unB6b5/9dV8/+qrD9j3kfvu45H77oNYDParXPD666+3/Tx06FBWr17dab8uueSSg5aQCQQCHW5fuHAhCxcuPGD7Nddc0/ZzeXk5yw7yfJ955plO+5QpKlhVlGOQF/gP8G+gTt8WTCslY0omGdbczDllZUwFCgFyc3Gfeuq+citqKmiPOaGkhJ++8w5NoRA2s5nXt21jip4t+Kdvv81f168n12Lh3Usv7dJx0kdeS4Hjge8A7yUSPFJTw5bSUhImE1arlRbgr8BzwBnAOYB6RSiKoiiKkkkqWFWUY8ge4FG/nxXJJCa93mkrq9VKtsfD2D17GN7QwLkLFx4QfHyVDL1XvPwyr335JSXZ2Wz87ncBaA6H+ebzz1Pl8TA4L4/nzj+ffJuNp9av564P961uXe92s/bqq5lQWnpEzzOGVsple2MjVY2NOEpKsBYUEEKrVVrn9eL2+bDn5WFxOokBUaAlGMQTDGJzOLDa7SSBFBAMhfCHwzhsNux2Owa0Ei8CiIRCxAIB8rKzyc/OxgxkAVG/n6jHQ2lODqW5udjRsvZGmpsJut0MLypieHExDg5dLmZ0cTE/njmTM/72NxxZWZzocmHSU8ffMW8ed8ybx6/ef58/rl7NbXPnHtHv7GAMwNzCQsYMG8b2vXvZPGgQKywWLcMwEAFeBV6IRhnX0MA1WVkM3+8KsaIoiqIoypHo1mBVCJEHPAKcgDbj8Aop5aruPKaiKAeqA54B/h2Nsre1xIzPh8vlosBiYR5wlsVCVmkptakU5VOndnnk9LIJE/jetGlc8tJLbdvuXLmSeUOGcOMpp3DnypXcuXIlvz7jDC4aP56L9KLZG9xuznn2WSaUlrJnD1RVweDBcNxx2lSWvc3NfNDYiCwqogGoB3YGAlSHQqScTuI2GxH0hFChENhsEAjgys7GYrFo271e7XfQ0oIrK2vf9qYmbXsk0jYNOhqN4m5s1LYHg+2mR7e7LxLBZTLte0zr79nrxaVnT45Go7gDAbDbtanW0Sg2i4UcwBwKYfJ6GZSdzU5gB5ANEAyS8Pn45siRfHvSJAB+8vbbVOyXNv7CceNY9PTTGQ9WW7VeqDgZuBRYAbwEVLX+Htxu9krJ+34/PzKZOK+gQNVsVRRFURSlS7p7ZPVe4E0p5flCiCy0gQVFUXpIA/As2pTfFBBOW3tY6vFwXjTK5SNG0Da+msFSMrMHDaLK42m37eWtW1muT1W99MQTmfPEE/z6jDPa7fPMxo2cO2oUKze08O4reaSSAoMRhl2YIJAX5+OsLFaFQrii0X0BYHPzAUFmejmd1rqimdwOZKwtd1rQ+3E8TnYyyUdAMpEgkEggbDZiTU2MycoiHg7z982b+eeFF/L+1q1MHDAAh8PBK1u3crye9KC7mYDTgLnAOuCBlhbc+vOKmEzcazTyOfDfqKnBiqIoSmZJKTusCar0LR3ViD0S3RasCiFygNnAZQBSyhja7DxFUbqZD/iTz8cbqVS76b5Wq5W8piamVVZSFgiwePFiLJ03lVHuQIAyvbRKmdOJOxDgy/p6Uk4nEZsNL/CXjRu5cvFiPtphJZkEJCSTUF8Flon6h9MhAsBsi4XSrCzMgQCWWAxLKsWEggJKgTjwxbZtmOJxsqRk1kknUQr4EwlWffopIpHACJw+dy4uoCkW490PPySVTGIwGJh3xhkUad2iPhbjrY8+IgGkTCZmzpmDE9ibTLLiiy+IGgwkzGZGT5mCGag3GPissZGwyUTEYiHf5SLJgUFvMpkEIJFItG2/b9kyQtEoZpOJb515JiuNRh7+5BMali3DYjQyMD+fexctIkHPre8QwETgF0Lwx3XreOf44wnYbFitVj4DvgtcDCxB1WlVFEVRus5qtdLU1ERhYaEKWPswKSVNTU3tKgscqe48pxmKNrDzmBDiROBT4HopZbAbj6koxzSJNor6YDjMdo+n3XTfqRYLF1ssFAwYQK0QPZ4kqfX62k60Mjl7YzHiwNtZWRCL4TCb2bl3LyaTifLCQmKxBMIAMiURRkH2EEFCCIypFIWBAFMKCxkKmKVk6/r12MNhshMJzp03jyG5uQibDXdRkZYQqqICV2v90dxc3CecsC9RVEGBtr2wkPEzZ+7bXlwMwKDiYgacdtoB2wGOKy6mYs6cffe1FvQuKOCkyZP3bc/N1bY7nbgrKrTt+fm4rFbiwLZolJc//hi/2UzAbqcOGAR4DAb2JpPEjEb+3wUX4MjOxmgyEY1EiEQiXKWXqbFarVisVjYCnycSZEejDDAaGWS1UkT3B68ul4vvTZ/Ooro6PiwrY7nFgkS7OvkX4I1gkLOrqphWVKQScymKoihHrKKigurqahoaGtrf4feDsZ9eFk0moampt3uRcVarlYqKii63053nMCZgEnCdlPJjIcS9wI3Azek7CSGuAq4CrfCsoihHZg9wP/AF4I3F2kbkylpauCIY5JujR2s7ZnCqb2dSQBNa4qLlQF0igTU7m9daWijMz8ft8+Gw2bSdpSSRSLBq40ZmnHACBiCvMEzuwggWbz5Dh5sYdpwRQ9DEpnic/ysqwtVaJicvD/e0aR1mKT5YQqhMbc9EW2ZgdEkJBWmZlh985hlmAmRlEbBY8AQCiJwcEiYTXqBRCPbE44TMZhACk0l7K08mEgSCQQJS4k4k+NJkwmwykRuLscHvZ11DAxPSgu1Man1e09FK2tzHvvWsHzc18anNxtkffsi1J5+sAlZFURTliJjNZoYMGXLgHQ8+CBkIjHpFdTVce21v96LP6s5gtRqollJ+rN9+Hi1YbUdK+TDwMMCUKVMyM7lZUY4he9xuHg+HWVVailGfbmG1WpGRCKds3sywpibm6CNw3UkCLcCOSISaRIKg1UoDWrbYPXoQNW7wYN7+9FO+PmcOqzZtYvywYWQlEmTHYgyyWFi3aRNvXn45Q0wmguEwzpFOHI60t6nsbAoLCw8Idr5KluK+6mDPocP6tRYLAZsNTyBAMieHiMlEM1AdjRJoXSOiXwAAqAqH2SEEl4bDTAuFOMtuZxbQXTl7RwC/B/6JNsqPlMSNRl6ZMIHhHg8X9/O/laIoiqIoPaPbglUp5V4hxB4hxCgp5VZgHrCpu46nKMei1Y2N/G9LCx6bDerrcblc2C0WLrJYmJOXR/OgQZTPmNFtgVwU+BzYjBaYBBIJAnq91r/84x9U1tQQCIe5/t57WXjSSSycOJFH33iDmzZuZHBBAY8vXEh2PI4zJ4c1bjeDcnI4MT8fgJz9AzSlnY6C2ICUbKqqwme14rfbEdnZtOjrXgGQkq3xOHuBP0WjlHo8nGM2c05BQcY/DEzA+cDQeJzrolECFgtJo5GnBw1iKHByho+nKIqiKMrRp7uXMl0HPKVnAt4BXN7Nx1OUY4IE/g38xmTCY7O1JeYp83i4zeViMIDLxaBuCFIl2lTj5/x+PkgmMdpshIAw+xICAVyxYAEFWVkMstvJCYfxbNuGxe3m1MmTGTly5AGB1hyHg4++852M9/dY4nA4GDN8OH6/H6fTicNspjEWY21DA85IhICUWK3WtlIzbin5PBrl7zYb37TZOAu9XE4GTSou5k/AzUIQdDoxWiz8GvgBMCfDx1IURVEU5ejSrcGqlHIdMKU7j6Eox5ow8Ee0Opcmmw18PsyJBLO//JIfT5xIaTcdNwC8A7wBbE+vI+rzka1nr7UbjTgCAXKDQXKiUU4YOhQHgM1GYMiQfUGUGjXtVN7AgdxaVdW1RqJRaGwEIJxIcHJ5OVfZbOy0WHiuro76VIqUEAgp2RuL8bjNxuORCBPr67nEamV4SeYmCZ9QXMyfgf8DatDWM/8qGmXznj2c53T2+ynciqIoiqJ0j56qcKAoSgZ80tDAr4XA53RisViwWCxMKSrigh07mDBxYrec9DcBj/h8LEulMOplcNJLrRQEAuSFw5wBFJnNBPPy8BuNBwSlHa69VDp0w+23d1vbQ4ETDAaeW7GCjQMGsH7QoH2jrfX17JaSZT4f/2sycV5BAemFAVatguXLYc4cmDHjqx23CLgTLWD9Uh/Zfchspvqjj/j+9OkqYFUURVEU5QAqWFWUfmJZUxM3BQIkDAYIhXC5XCyxWLjKbifrhBMyfjwv8A/gpUiE6v3K4ORaLAysrmbsnj2UBIN8aTTSmmNWBaV9n8vl4oIzz+SU2lqKnU62WCw83NCAW78AETabuddoZD1arVQXWqA6bx7EYpCVBW+//dUD1jzgl8A1Xm/bsd4dPZpFe/eqYFVRFEVRlAOoYFVR+oEVwK+MRhIGAxIwJxJ8Y/durhwxIuPHCgGPer28nEphsNuJ6AmTJFDs87EkFuPbw4fjGz6cWrtdK7Xy/vsZ70dPqHW72V1XR3F5OQUlJSSAuoYGatxuCktLyS0qIgEkAHdTEw0NDbiKiykuLEQAzY2NNNfXU1FSQllREVlAS309zXV1DCktpawPB2Dp2YcrgBNSKe77/HPeGzWKgM2G1WplVTTKynCY76ZSfLm8gFhMKwcXi2kjrF81WAXIAX4OXKyX3glarbxXWqoSLimKoiiKcgAVrCpKH/c68BBg1ten5oTDnPPZZyyZOzejx5HAh8C94TBbvV5tJNXvpyA/H5ffz0lffsmglhbOXrwYG2DrY+ViJOABGoCtzc3sbGkhq6gIcnPxAXWBAA2hEEaHA2m30xyJsCcahfx8iERwRaMAuMNhcDq10etoFIvFok2RDQbBZoNgsK3GqzsUguzstn0B3JEI5OVBNMrASIQCqxVCIaTfT2l2NgMcDvKAlMdDvKGBkfn5jCkqooDefUMudbm4/qSTWFJXx4dlZfwb2Ot2g5TcLgTnTjKRlZXTNrI6Z86RH2tYSQk3mUzcbTRitVr50GJhI5D5+QFKR4QQPwC+g/ZvswG4XEoZ6d1eKYqiKMqBVLCqKH2UBB72eHhKCKxWKxaLhUlFRVyybRtj5s7NaKBYDzwIrAG8sVjbSGqR389l4TDzi4upi8cpnzmzw+NmJCHQYQiFw0Tz8vhPUxORwkJqga2BAFWRCBGHA0Pr2stAAEwm8Hpx6bVn3c3NWgAeieByudqNGAsptXW4cMC2/dfodrbv/tu80ShRIXA3NoKeeddlNmv98fm0qE8PdK0WC7ZwGJvPxwibjbE5OdiamjDU1jKupITSHrgw0DraOh0YtmkTvweas7MRUvLOdMktb4NcfmRrVvd3dkEB64HWQtx/0L+yutascghCiAHA94ExUsqwEOI5YCnweK92TFEURVE6oIJVRemjHvZ4eMDnAynxCsHJhYX8Jjsb5/jxGTuGRMvu+0Akgi8axWq1YrVaicfjnLxlC6Pdbs5cvBiXy9VpsNQdCYG219ezpqmJSFkZ3rw8NgWDfFJfT8JgYHn66GZrEKqv4z3cwNJqteIDTMkkRqAkKwsTIMJhRCqFUUpGFBWRA8SMRnY0NSGlBIOBYYWFSCH40uMhKQQpo5EBxcXEhSARixE1GkmYTFit1q8U6O5qaAAp+SwapUAImoNByMnBEgxyciDABIeDguZmnNXVjOnmke3phYV84803eXniRNx5eRgNBl4f4+XS0ZIZeXldbl8A16IN67VEo2yORPgTcF1ubpfbVg7JBNiEEHHADtT2cn8URVEUpUMqWFWUPugt4Ckh2gKagY2NXNrcjHPChIwdI4hWAudtPQssUuIDlubnc4HTiXfAAMqnTu2Rqb673G4+bm4mUFZGQ14en4fDfBGJgN2uJXWy2YgkEm1rdg8W9IlQiJEWC42NjdgjEeyJBLNOPBFnKsW6zz7DHIthTaVYfNppDM7NxWu1UldbS3l5OS6bDQB3fj61rduy9aqjDgfuAQP2bW8NlEtLtW0uFy67XduWk0NtbS1l5eXkWCxUeb38a9UqwkYjEYuF8bNm4ROCD/bsIZCVRcBmI7ekRJs+nPZcgqFQ2+2o0cjaZJJNraPGubnkNzdzairFEL+fubm5Ga+p63K5OP+ss5hUV8df7HZW66WK/gCMSSSYUVTU5WMUAl9raeFOvx+k5IlUiiWRSLfUB1Y0UsoaIcTdwG60SljLpJTLerlbiqIoitIhFawqSh+zBi2ItFqteIVgYGMjZ69bx5BFizJ2jNWNjdwJBJzOtpG/gkCA0774gjNHjGDoxInQjQHDjvp6PmhpobG0lK0mEx9HIqTSA9O0qcjpI6FeIbBHo+SHw5ySn09pKsX2zz/HGQySG43y9QULcOXn466o2BdY6qOAM2fM2LdNryFq62DE2HWQEcuOth/OtjElJRTOnbvv2Pn5AJwzYoS2raQEl81Gjc/H3z/4gGarFa/TSf64cXza0kKjw0EkK+uAUdpmu51/xmJgsfDHUIg5bjfjPB5Oz8tjQIb+dq3PxbBuHXuEoFb/Xd4rJVPJzAfIqKoq8i0WmrOziRsMvOX18h0VrHYbIUQ+cA4wBG2Z9z+EEBdLKZ/cb7+rgKsABg4c2NPdVBRFURRABauK0qesamzkZqMRg92OxWJhWlERVzQ3M3TRooyNcL7S3MytgQBJISAUoiA/n3HV1czcsoUsoLy8PCPHSbfX7WZtQwO1FRWsM5tZGQ4jrVbwenFkZ5OCAwLTgJQU+v0UBQIsyM1lgsWCzWol0NSkBX05OQC4TzppXyCo/44ON7DsKYfTnwEuFxfNm9fuubiFoKa2lqwBA/BZLKyJRPh3Swt1ubkk9VFmgJjBwFuRCG9ZrTzs9bI0HmdyUxPDSksz8pwHl5Ux/+23eXLGDJJGI26rld/t3MmldnuX2x9QXs6oL77go2HDQAgqu+H1p7RzOrBTStkAIIR4ETgZaBesSikfBh4GmDJlity/EUVRFEXpCSpYVZQ+Ykt9PT/w+QibzeD3M7a4mF/b7RRkcOrvm8BvjUaSQiCBrESCi+vqWJxWhiaTAV2V280/Ghp4QwianE7w+XBkZyPZF5yCtn6xMBCg1Ofj7JwcplksWG026ltaKB86tG10lJIS7StNbwahmbb/c9n/9sm5uXyzrIxddXXU5uTw2p49bCsupkX/nQL4LRYeSSb5W3Y2sz75hG8PG8aY0aO73K+L5s3j41/8gl3NzXiiUZ6Vkk/dbgYPGIBNn0J9JPIGDuS/r7uOzfro8VaLBT/g7FKPlU7sBqYLIexo04DnoU3oUBRFUZQ+RwWritIHpIDfpFKEzWYkYI3FuGT7dgpOyEwxDwn82ePhSSEwGgwgBAWBAIs//5zFp52W8YAvCDzh9fJYMEjUuS/sSA9OS3w+KlpauGDsWEbabPiam7XAVJ8mi8uVsemsR5P0v9WM7Gxqa2tpMpt5traWjeXlhLOykEDEbOatceNoqKriRshIwDrK7+cb5eU0xOMADLZameBwUFZWdsTt3lpVxfjiYqYB66NRmr1eXkul+Fbr60DJKCnlx0KI54G1aCWEP0MfQVUURVGUvkYFq4rSB/wdqM7PB7cbISUL169n4syZGWv/fq+XP+uZhRGCidnZfLulhZF6oJopMeAJj4fnpSSQShEzGtvuMyeTDGlq4ltOJ+NtNgLNzZSPGoWrsFDbYb8RU+XQ0gPXcTk57KqrY73FwmPhMH69ZM+6wYO5f/NmvgeM7mLAagBGGAw06Mm/mpxOTGl/4644saWFt/RES880NXFaLHbUjJj3NVLKnwE/6+1+KIqiKMqhqGBVUXrZ8qYmHjKZsFituFwuTq2r4zsHqWd6JF4HnoO2xDzHNTVxdXMzMzI4vRhgHfDbUIj1aUExQpAfDDJ+zx7Ozs7mxOHDcRUUaA9QwWlGtQau04ApW7Zwm9vNdv019NHIkYxYuZKCgoIuv65G2WysMxgI6QHx9t27sdlsOPQMyUeqqKYGnE4teZQ+YqyCVUVRFEU5tqlgVVF60Y76en7i9RLMygIhOLWwkJsGD8aQofY/Ah5iX2bhIfX1LFy/nqEZzCwcBO7y+3knlSKZSLQFxXnBIN+Ixzk5maTixBNV4NGDJhx/PLdv3sx1gQDNDgdxo5HNZWUZCQCtQEEsRki/7bVa+e0HH/Dc9u0IYJzLxWPnnMPN77zDq19+SZbRyLCCAh475xzy9NHejowrLkbo5YgCVitFGajlqiiKoihK/6aCVUXpRX+KRgnqawxtsRjnbt+OYfz4Qz7unltuwbN7d6f7eIFPkkniySRGo5HSVIoKv58dNhsPrlhx2H3MGziQG26/vcP7KoGfhcN8odfgRAgsiQTTKys5obaWczKYxVj5asaNHs0FmzfzkH67sqwMa4am7LrMZqpTKZCS2nicxzZtYvP3vofNbOaCf/yDZzdu5Ixhw/jV6adjMhj48Vtv8av33+fXZ5xx0DYrXC7GhMNUx2JYrVawWDLSV0VRFEVR+q9uDVaFEFWAH0gCCSnllO48nqL0J+uBz0pK2tapnrZ5M2OmTTusx3p27+bWwYMPen8UeDUeZ2QoBFJiTSRYYrNRmJ39lft5a1VVh9vfAn4fidDo8yH1xEmjamu5PJWizOWifOJEFaj2sonRKMJuRwJNTid1e/bQtVWrmiKrFZsQxONxsgoLSQLhRAKz0UgoHqfc6WT+sGFt+0+vqOD5zZsP2e5wm41Gg4FIJMLGQIDjWtczK4qiKIpyTOqJkdW5UsrGHjiOovQbUeCuUIhIPE5Bfj5j/X5umDYtI8GdBD4G/MkkSIkxlWJkbS2x4mI4gmC1I88DD0ejuOvrkVKSlUhw2saNjGpsZPLixSpI7SOGlpXh9HjwWa1IYM2ePYx1u7v89zGGQoTjcZCSpMHAdZMnM/D3v8dmNjN/2LB2gSrAX9at45tjxx6y3WyfD7fHA1Ly+tatTFLTxxVFURTlmJappXGKonwFD3u9rG9sxOvxEGxo4HsmU8ZOyteHw2yPRBB6gqOh9fXYEgmczsxUrvyD18t9Xi/BQACkpMjv55sffsipJhOLVaDap7hcLoak1UD1WyzU1tZ2ud2EnrUXwBeN8srWrey8/npq/+d/CMZiPLl+fdu+d6xYgclg4KJx4w7Zrl8PVCWQkjIjfVUURVEUpf/q7pFVCSwTQkjgT1JKVctNOebtAV6Ssu2k/OStWwmXlnY5O+4VL7/MK1u3YrHb+b+LLwYhcG/bxj0ffEBlSwurr7ySKXrG1qfWr+euDz9se+x6t5u1V1/NhNLSTo/xhMfDI2nZfge0tLBw7VpsUjJlyhQVqPZBRQUFiOZmpJQIoLy8vMtt2h0O0JNpba6uZmhBAcX6qP15o0fz4Z49XDx+PE+sW8drlZW8fckl2sWTQ8jNywOPByElBiEy0ldFURRFUfqv7g5WZ0opa4UQJcBbQogtUsp2mV2EEFcBVwEMHDiwm7ujKL1LAncHg0STSRCCspYWTqitpXzSpC63femECYw94QR++8YbANijUebYbHzrwgu5+rXX2u170fjxXKQnctrgdnPOs88eMlB9pbmZ++PxtvWpQ+rruT4SIX/iRMrLy1Wg2kel0oLETE2lsWdnY4tGicfjVJSU8ORnnxGKx7GZTLy9cydTysp4c9s2fv3BB7x32WXYzebDateRk0OBEARDIcaOHq1eU4qiKIpyjOvWYFVKWat/rxdCvARMA1bst8/DwMMAU6ZMkd3ZH0XpbS82N7Ncnz4rgG9Ho5yaoamzBSUlJDweAAQwrL6eCYMHH7L+5TMbN/KtE07odJ9PGhq4LRAgbtDCnbKWFhZu2MDYhQtVQNHH1elJtgDMsVhGytf409aslufksGTYMCb96U+YDAYmlpVx1eTJjH3gAaLJJGf87W+AlmTpocWLO23X4/PRrE8F3rJlC+6sLPX6UhRFUZRjWLcFq0KIbMAgpfTrP88HOq5/oXRJAggDEf1761dtczO1jY0UFRVRUFDQtn/rOEtzczMtjY1UFBZyXGEhNsAO2PQvtaA5s4LAo9A2/XfCrl2McDozcjLeGAyyKhYjHo8DMDKROKxAFeDvX3zBy0uXHvT+JHBHItEWqOYHg3xn715mq0C1z0sBzVYrhLSqqPnRaEam1jaGw6CXwTHH43x//Hh+deaZ7fbZ9v3vf+V29+prYSVgjMczElgriqIoitJ/defIqgt4SV+nZAKellK+2Y3HO+rscLvZ2NhIVmkporCQFqA57as2HKY+GsVks2HZryZhNBrFHQhotQoDAVzZ2e32aXd/MIjL4TigDRmJIIJBBlitDM7OphgO+MphX/CrdO5+nw+vvtbTEYkwfccOyhcsyEjbnySTJPXpngYpGZVIHFag+nF1NXazmRM6WS+7MRZjpx4Em5NJFn3+ObNPO00FEf3AxoYGGsJhrY5vPM7cDGWcTmVnQzQKUmKLx3FmqMRMKD8fGhsRUpIXiag1q4qiKIpyjOu2YFVKuQM4sbvaP5pE0JLu7AZ26d+3hMNsjkbB4egwmIxGo7gbGrTpfT4fLper3f2RSKRthEJISSQS+Ur3R/WyJEjJ7mCQHSbTAcEsaAGt0+djtM3GiU4nQ4AhQGbyzh49Pmhs5OlgEAkgBBeHw5y3YEFGAoe9QKPdDsEgAOZEgtzDCFQBnj3EFOA6QJ/LD8DszZuZUVGhAtV+4kOPB7KyACj2+YgcRpKjwxFMa8eSSGSkTQn47HZcLheRSISls2fj6mLSMUVRFEVR+reeqLOqpJHATmA98FEgwNZIhKDTeUAg6I3FDjvYNKRSiFCIIosFG2AFUkYjuxobMSSTCGB0QQFO/fgAfoOBLfX1JICE2UxFURECbfpwCPAeIpiF9gHtpkiElVlZbfsUAUOBQq8X5969zMzLY+gxGuCEgN+i/e4lMKihgekGQ0YCviTwYTxOIpnEZrVynM+HzWw+rFHVlJT8Y9MmVlx+eYf3J/S2ZSoFQjBi717G7t3LyClTutxvpWc0uVygrwEd0NJC+SHWJh+uej0TMIA1FsPv9x/Wa64zPqAlGiUSiZBrsTA8NzcDPVUURVEUpT9TwWo3k0A1WnC6HtgA+NEDveZm7YQvFDpgZNRqtRKQktxgEEcsxrSCAgYB+UABkIrH+WTlSqyRCFnA2YsX0y70cThwV1RQW1urZWrdv8am04l74EDt/rIyXHrZiVZ7IxF++P3vE2luJmE0kl9WhrRYiEDbVyAaxaBPDwXwZmVh1kdxWoCtySThcBiA3wNFFgvFZjP5QB7tX3x5Awdyw+1H35JmCfzG78et1zy1xOPM3bKFAaefnpH2P4tEcOvTMR974w121dTQHA5T8bvfcducORTYbFz3xhs0hEIsevppJpSW8u+LLwZgxa5dVOTkMDQ/v8O2P4lGqY9EiCcSWGMxvpNIMEnVUe03JLAxLQvvgJaWjLQbA0IWS1vpGmc0mpEavp81NeEOBkFKsgIB6ouK1GvtKOW44AICzz3X6T73vfoqD77xBpOGDeMbM2cysrycMapigHKUcTgcBAKBTve57777ePDBB5k0aRLf+MY3GDlyJGPGjOmhHvZvC2+7jaf/3/8jr5OLqXN+8hPuvvxypowY0W77uh07qG1uZqG6QN/rVLDaDWLA683NvBcOU11QQMRmO2Cf/UdG83w+JhcXMxAYCAyyWDDYbLhbWjoONouKGHn66fuC0Q5O6lwuV6cne53dX+pyMcBq5YYxY3A6nR2OmgQCATZt20YoK4uQxYKjooKQxYIHLbFLNBLRnqfOarVisVoBbZ2rMxbDGQoxOCuLR3fvPmg/+7Pf1NTwUiKhjVALwSWBABecfnpGTsL9wBfQNsJ129SpTJgzh7Kysnb7nTt6dIePnzN4MB995zsd3tcMbNFrwQKcsnUrpao8Tb+yHajRZ2hYEglKPJ6MJCxq1L9nmc3kJBKMHj68y6OqAB/5fGAwIEHrayymXm/HsAdef503fvYzhpSWctk997B46lQVrCrHpAceeIA33niDIUOGcNlll7F48WIVrB4GKSWv3XwzBsORpQtdt3MnayorVbDaBxxRsCqEuFxK+VimO9OfSWAz8Dbwn0iEKr08CQ0NB4ya5gETDQYCmzdT3NJCYTjMOYsWccBpmctF+REGm5lgs9kOCHzSORwOxgwfjt/v1wJa/Tmm0Kb01UrJVq8Xv9VKyGLBZNr3ckskEuzRR103xeMsTyT4HVpto4lA9v4H62dq3W7+6PHwmh6cAxxfXc0pNltG/mYS+DAWI6FP0c2ORCjx+XAeolbq4bb9CWh/LyHIjkYZvXcv5eoNu19ZBRj1D+nB9fWYhehywqK8gQO5/ssv2RaLAVAQDLImJwdbBxfkvkqbAPXFxdDcjJCSAR4P5cOHd6mvSv9w14sv8tzKlUTjcc6dMYPbLryQax54gB1uN0vuuIOls2bxyurVvLdxI7947jleuPFGhnXyuaQo/dVdd93Fc889RzQa5dxzz+W2227jmmuuYceOHSxZsoSlS5fyyiuv8N577/GLX/yCF154gWHDhvV2t/uUKrebBbfdxtxx41i1ZQvrdu6k4cknKcrJ4efPPstT773HcUVFFOXkMHn4cH547rkA/OODD/juQw/hCQZ59LrrOGnkSG556inCsRgrN2/mpvPP55uzZvXyszt2HenI6m2AClaBeuAd/atO3+bVp2W2rvc0hELMsFgYj5ZxqgIQTifuiRM7HRntDxwOxwGjKga0gDzPZmNgYSF+vx+ryUTIZMINuIG9aWvekJJoKsW7wLtAIhJhgMfDbKuV+Xl5dD386jlVbjfP797N6zYbjWmj4YMaG5m7aRPlZ5+dkePsikYpDYfb6rVOTCQYMnJkRka4tqGtSUwkEmRbrYw2GLRp5v30NXosksCyUIjmlhYkWs3dk08+uct/w+tvv53lTU2kAgEkMGPtWr4+eDATJ07sUrsJoNJkwqEvR7h86lSVXOkYsOyzz6isrWX1b3+LlJIlv/gFKzZu5KHvfpc3167l3TvuoCgnh8raWhZPncr5M2f2dpcVpVssW7aMyspKVq9erf0vLFnCihUreOihh3jzzTd59913KSoqorKyksWLF3P++ef3dpf7rK01NTz2/e/zwLXXMlifPbamspIXVq3is3vuIZFMMukHP2By2gXRRDLJ6t/+ltfXrOG2Z5/lPz//ObdfdBFrKiv54zXX9NZTUXQHDVaFEOsPdhccOAh4LJHAK83NvByLUZ2ff0DiIavVigiHGVlTw9CmJi479VQ6ug7c3SOj3eGKl1/mtS+/pCQ7m43f/S4AN7/zDi9v3YpBCEqys3n8a1+j3OnkqfXruevDD9seu97tZu3VV7OgtJSWZJK1bjcemw1PdjZGvWZja9KmWin5JBbjSZuN4RYLx3u9DKitZUZBQaejzT0pBaxvaGC1x4PX5WK70cjH4TDJ/U6yBzU2smDdOk6dOTMjf+9qYCtwkh7sl3i9FGVlZSRQjQCfJhIE9LWDAzweCqzWfvc6PdZtBHbF421TgAc1NhLJwBTKnWhr00HLAjywpYXyk0/ucrurGhvZHQqBlOREIhTm5XW5TaXvW/bZZyxbt46JN9wAQCAcprK2ltkZSgSmKP3FsmXLWLZsWduFv0AgQGVlJbNnz+7lnvU/g4qLmX788e22rdy0iXNOOgmbfr5+9rRp7e4/b8YMACYPG0aV290zHVUOW2cjqy7gTLRcOekE8OGBux/9JPAx8OdQiDWt03zd7rZpvnZgFjDPYiE/P5+6cJjyE044qk70L5swge9Nm8YlL73Utu1/Z87k56edBsB9H3/M7e+9x0OLF3PR+PFcNH48ABvcbs559lkm6NNU87OzOWnAAG0KscXCF0YjU4DXvF7c+2Uh3gZ84PWC3U5WMMi8QICx8ThFNTVMLC6mtBt/vxIIoJWH2dzczCavl1BRER6nk+2RCNXhsFYaxOPBkZ3dVusUwJRKMW37di60WBiVoZHJGHBrKERSr9dqi8UY2NKCM0NTJj8DwvqotyUep6y5mVDrCLjSbyxj3xTgkbW1ZEFGapa+4fXS7PUigcENDcyaMSMjr+v/6GWXJFDR2EitnnROObpJKbnp/PO5+qyzersritKrpJTcdNNNXH311b3dlX4vO235VatDncVY9GSERqNRW16l9CmdBauvAQ4p5br97xBCLO+uDvVFEu0k/kmgEvDqIxatAdWQ5mYuKitjOpDV+iCXq1uDqN4ye9Agqjyedtty0kaWg7EYHVVyfKaDep7pU4hzGhu5EJgnJc++/z47CgvZVVJCwuXCl5aMKmY08n40yhvBIDidZAWDzAgGGZJIkNXQwKj8fApTKcK1tQwpLaXsIH+DFBBEC0R3NTayvbERs8tFKj+fJmB3IMCucJiQ04m0WrUR30AADAZoacGVlUVkv+neoCVRKvT5GOZ2c8Lu3cyfPp3RB0lw9FVJ4E6/n09aWjAkEhikZGosxqAMJbipCoXYYjAg9MzFgxsbMQJ2u73LbSs9pwV4JxJpmwI8tqYmI1OAU8CytOn7w9xuIh3UXv6qJLCtpAQaGhBSMryhgXL9KrdydDtz0iRufuopLjr1VBw2GzVNTZiNRkr2G1l32mz49RwHinI0OvPMM7n55pu56KKLcDgc1NTUYDabKdlvppbT6cTv9/dSL/uvU8aM4er77+em888nkUzyrzVruHL+/E4fo953+o6DBqtSym93ct+F3dOdvmcj8DdgU9o2q9VKKJVi/K5dnLhnD0vnzz+250UDP337bf66fj25FgvvXnrpAff//YsveHnp0kO243K5WHrGGW1refOsVt4JBvlbbS27CgoItCZySQteP41EeC8YBLMZ9BEa8vIgGuW4SASrlITCYaw2G2abjWAkgi8axapffXOHQmCzgd+PSw/M2soKhcO4XK522ZtbR3ytViuJWIxir5dSv5+vjx/PMKuV2l27ICuLkQsXZmx0SAIPAf9JpUBKwuXlPP1BJS/5sxk6NE5JSeOhmuhUMBzm/WiUqJ4Eq9xoZFMohN1up2zUqK4/AaXHvAb49QsppR4PxX5/u6zcR2odEHY4IBjEFosxpKmJ8unTu9xuFdBgMODIzsaSSnFNhkZrlb5v/sSJbN6zhxk/+hEADquVJ//nfw4IVpfOmsWV99/Pfa++yvMqwZJyFJo/fz6bN29mhn6hzuFw8OSTTx4QrC5dupQrr7yS++67j+eff14lWDpMU0eMYMm0aZx4/fUMKi5myvDh5B7iQvzcceO48/nnmXD99SrBUi/rNMGSEMIkpUzoPzuA44EdUsrmnuhcb2oE7gwEWJ1MaiVX9BEEM/A1i4XZ2dkEcnMpHz1anVgBd8ybxx3z5vGr99/nj6tXc9vcuW33fVxdjd1s5oTDTJiy/1reBYWFTBo6lJraWgwFBXxhMPB8QwN1ubmEW0d29ECStCmrQkpagsG29ZcEAhTk59Pc0gJS4hVCS+iyXxCa3p6QEhkKMdxioaWxEWcwSGEoxHlTpjAxN5dgTg61gQDlY8bgKiwEYFiGE8NI4F6vlxfRp3YKwXEnfIf3HhpDKmUka7fg7behK4NRP929m7D+nM3JJD8MBJirT+FW+o8I8GIkQjKRACGYVFWFwWDIyBTgZfp3R3Y2p0QifG3Rooy8973q9eL2erU10nv3Yho8uMttHk2EEN8A3pRS+oUQ/wdMAn4hpVzby107Yuk1Vq9fsoTrlyw5YJ+qRx5p+3nmmDFsuv/+HumbovSk9Bqr119/Pddff/0B+1RVVbX9PHPmTDZt2nTAPopmsMvFxj/+se12+vvID889l1svvJBQNMrsm27i/33tawAs/+Uv2/Ypyslpe0yB08knv/tdz3Rc6VRnCZYuA34rhGgCrgfuR8uvMVII8SMp5TM908WetxL4bSTCDn10zSsEA0pKONtq5QKgEKCkRPvqJVG0Wpgt+vcdHg/VHg+2/HyycnMJA2GgKRCgJRjE4XCQnb2vIEwwGCTs91PkcFDscGAHbEDc4yHc1MTw/Hx8aCe/Fuhwam9HLhw3jkVPP90uWH22gynAX1V6ADsBOP2446iprcWam0uVELy0cydei4WAzYbPZiNiNpPQkzalB55BPYmLBCzxOHnxOLZAAEsshiMWY2ZeHvmpFJvWr8ceDpMXifCNM8+kND8fd0WFNuI7ahSuoiIAHN2cJCsG/M7n4xn9ZB4hmG+xEN5QxLspI8mkIBaD5cuPPFj9CPjE5QK3GyElp1RWMmbChMw9CaXHPOnxsMPnAynJDYdZUFDA8dOnZ6S26nuRCO76epCSwrVrIe1//EglgWXJZNv/5LC6OmqzstQFwPZullL+QwhxCloeibuBB4GTerdbiqIo/cdV99/Ppj17iMRiXHraaUxSo9L9Rmcjq/8PGAU4gc+BiVLK7UIIF/AWcNQFq2HgYeA/7Cs/AzC6uporvV7mjRvXo/1JoZXD2a1/7QK2hkLsiUbBbm8b7Y1Go7h9PhACvF5c+khwNBrdN501GsVlMu3b3tSkbY/FcJnN+7b7fGAyQSBAdjKpjeYBWfE4xmiUYpOJBNpJZgqtTE1lUxMj9FHFV7Zu5Xg9kANISck/Nm1ixeWXZ/R3kx68jgEmjx6tBZL69LDa2lrKysuJJhK8smIFqVQKkxBMnzaN1R99hCEex2QwsHjxYigq0h47eDCu3FwA3NOmHVBWqKezN1cDvwY+l7LtZH6o280FJhOJCyfyl0chFtPyO82Zc2THaATuBSwWCy6Xi5FNTdw0YYIKFvqhIPB82mtl0s6d5JSWZuRv+QoQ1N8Ty1payPf7qa2t7XLba4BYdjYEAjgiEYY2N6v1qgdK6t8XAQ9KKV8WQtzai/1RFEXpd57+4Q97uwvKEeosWE1KKRuBRiFEQEq5HUBK6RbicMfZ+o+twG/ZVyvVarUiIxHOWL+eAT4fJyxe3O19iAKb0a4MfBQM8mU8jtFmax+UNjZqQabf35aFuKP1lJnYnkxq50ixRIJmfUTy56++SmVNDYFwmOLf/Y4LZ81i3ZdfstfjwWIwMCQvj4cWLWp7Tit27aIiJ4eh+fnd+rvbP5BM//mC+fPbBZ4V+fkdBqKdtdeTJPBCSwsPAQa7HavVilcIRuzdy/yNGxm4aBEuF7z9tjaiOmfOkY2qJoDbgkFqEgmsVisVFgt3lpfT9VRNSm/4J7StOc4NhRhTV0f5pEldbjcI/LObpha/FAgQSSYpyM9nbnMzSzI0tfgoUyOE+BNwOvBrIYQF7TqhoiiKohz1OgtWdwshfoU2srpFCPFb4EW0D8y6Th7Xr0jgzx4PTwNZaYHhmRYL5+bl4R0+vF1Qk2mfNDTwVjBIXXEx1dnZJKD9yKfP12FQakylsAUCjLBYMBuN7KmuxhqNkpVKccrkyZQBkUSCj9euRSQSGIRgzpw5FAGN8TjLP/mEBJAwm5k8axY2oFZKVu3cSdhkImizETQYyAL8aRlAr1iwQFvDa7WS1OtxjhkxAvT1n3kmE9WALxzG5vMxpaiIj/SizL2lo0C2L54QS7QpuX8JhVjt97ddlKgoKeFGp5NRTU0MSDuZnzHjyKf+JoGf+f2s0Nfv+oGbs7NxpI2KK/1HE/BsWgbgadu3Z6yszDMeD7v0qcX5oRBnFRYyKgNtb2xo4M1QSFtrLgTn2O24iou73N+j0AXAWcDdUkqPEKIM+N9e7pOiKIqi9IjOgtWLgf8GvMCNaGtlbkKbjXpZt/esB0jgNz4fT+snYvh8DC4p4QdWK3MAXC7tK8M8wHvAq6EQn4TD2vTdpqa2abrpQakjEmFQSwvTSkvJSaWo/OQTcgIB7MkkZy9erGUhdjhwDx++b7SwdRSzsJBJJ5+8b3trIFJUxMhZs/ZtLyjQtuflsbh1Om15OQ+aTJwPtCQSbKquJmwyEbZYsA0YQBBoTgtikZJEIoHfZMKTSBCIxcBiwREMMtpkYpjVSh6Hv/b1WLLX7eYNr5eVFRXU2+3tSiMVBAJ81+9n0dixkKHR6RRwD/C+nllYAidVVuIoLAQVrPZLT7Bv6UKh38/IujoiAwZ0ud39pxZP3LkTZ1lZRoLgZ8NhJNr78MDGRlJCgApWDyClDAkhXgZcQoiB+uYtvdknRVEURekpnZWu8QG/Stv0gv71lQghjGhLk2qklN0/l/YwSbSMUf9KOxEra2nhOq+XOd2wNlUCy5qa+Gcsxs78fMxW6wH1WiORCCMsFgYLQcv69ZQ2NZGdTLK4NSjNz8edHmQexmhhJrbnOxycOHgwfr8fp9OJI0urJtuSTPJ5XR1+iwW/zQZ6rc9EWhAbsFjYAHyJtu41PxRisNnMYLsd45H8Io8SSeALYJnPx0teLwGLBRobcblcbaWRxu7ezYydO5myYEHGjtv6ul8ObdOLJ1ZVMWXXLsp7eE22khlbgTej0bZpurO3bsWUoWm6f/V68adSIAS5oRCj9+6lfPLkLrfrB9aVlEB9PUJKJu/erdaqHoQQ4jrgZ4Ab7VoTaP/KKl23oiiKctTrtHTNwQghrpJSPnyYu1+PthQz50iO1R1SwH3A2+w7YR9ZV8eZX3zBuLT1lpkg0dag/ikY5MPWEir19W1BSTCVYkh9PcMaG7li6lRGAeTkdJjgB3pvCqvD4cDhaL+aMT87mynHHdcWxNpMJprQkkFtjUTwW61IITCZTCQTCRpCIRqk5Mt4nNxEggqTiQFA18d/+ocm4MPmZt4LhdhRWEjcZsMrJQGLpV2ZnIvz8zk5O5tATg7lCxZktFbrb30+XpGyrRzTt/LymO90MmDx4j45NVrpXBK4OxRqW8s+tL6e00tKGHnKKV3+e26rr+cvgQAxoxGE4PxYjHMytKb0dSCmLx0oi0S4VtVW7cz1wCgpZVOmGhRC5AGPACegvTVcIaVclan2FUVRFCVTjihY5TBncwohKtAyGN4B/M8RHiujat1u7kok+KKoCIvFgsVi4ev5+SxqaqIiw8k93m9s5LFEgur8fCL6aGNrUFLu8XChy8Vwux1vVhblU6bgSiuF01fXVe5v/yC2BCixWjne4aA5ECCYm0uzycSOcLjdlOFoIkG1vr41mUiwIhzmPq+XU3NzGQ1k9caTyaAd9fV80tSEv6wMd14eXwJ10SjuQED7PTQ0tF2w8AqBLRbjhJoabho9muGQ8dJIYeBOv59/ejxt5Zi+np/Pj3NyEBMnZuw4Ss96Fdiqz9AwplLM3LoVx9ixGXnv+Es0SsxobJuOfkoymZF2g8Dfw2HcDQ0gJUO++AKRgdHao9getOU4mXQvWu3W84UQWYA9w+0riqIoSkYcUbAqpfzTYe56D/AjtCRNHRJCXAVcBTBw4MCD7ZYRe91uflBVxZbSUnC7cblcLLZYuM7pzOgJexi42+/neT2DLm43Bfn5GKVk7J49TNizh4vnzdOm9nbTutjetn8QOy6ZZG1dHS12O57sbEx61tLWJE0tySSPer28ZrXitFgYFAhQ2tDA5JwcphUWHvwF1IsksLW+no1NTcRKS/l8Sz6rl4NhRpTGoRGw27UEWXrirv2zLVsDARYVFjIyOxtHUxMDjz++3QWLTNkG/AbYkrZGdcTevSxsalKBaj9WDzySlqV36vbt5EejGZn+WwV8WlLSVnt35rZtVJyUmbKeLwONsRhISU4oxLDaWmoztA72KLUDWC6E+Bda0ngApJRHVK1eCJEDzEbPPSGljKGVdFYURVGUPqfTYFUIcTxwDtpMTQnUAq9IKTcfqmEhxGKgXkr5qRBizsH206cTPwwwZcoUedg9PwL/CATYUlraFixMrq/nuuOOy2jSn61oFdu3pgUGhlSKkzweLrHbiToclM+b1y9OzPIGDuTWqqqMtRcGQo2N2EMhUoEAjcCecJimZJJweTkWfd0uwNvNzWAw8FQwiMvhYKDFwjCgyOPB5nYzqqCAscXF3TocEAda0KbvVjY3s83jIVlURCgnBzewOxJhT0QLSoPLo+y8SJKKCQxZWQx50ox9cqxdaaBciwWHx0NpczPDGxu5YvZsSgEKC7WvDJNo9TEfRytT0zqKO6a6mtO2bOG4DE95V3qOBO4MBNij11EuDARYarEwJgPTuSVwTyBAWC8pMzwY5LqTTsrIe5YfLWtxa4A9bft2zEJkJMA+irWW2s4iM5NOhgINwGNCiBOBT4HrpZTBDLStKIqiKBl10GBVCPFj4FvAs8BqfXMF8IwQ4lkp5Z2HaHsmsEQIsRCwAjlCiCellBdnoN9fWRXw5oABbQk9xtTWcv3QoRkLVFNoJXCeQSuBk14b8+Rt27SR1AxP7exuN9x+e7cfw+1288Kbb7InL4/q6moMxcXs7KAOrNtiYXc0itvnA6sVwmFc0SgFFgslgC0QgJYWSnNycOXmYgNsQKi5GW9jI/lFReQVFJBCW+fX1NLC3uZmbIWFmPLyCKJNT3QHAuwNh4k7HMRsNkAvJRQIgNEIHg8uffq4T8++KoHgKgupmNZ4Kgahj6wMGtlEqc/HOTk5TAMGWq00lJZSm0pRPmZMt16w8KFNa/gkbVuexcJ3HQ4G2WyUq3qW/dqbwJpksm1q/ZwvviBvxIiM/E1fbW7mXX26ugG42m6nNENZeh/1etnl9YKUFASDLMnN5fipU9VrsRNSytsAhBBO7aYMdLFJEzAJuE5K+bEQ4l60jP83p+/Uk7OeFEVRFOVgOhtZ/TYwVkoZT98ohPgdWiLTToNVKeVNaKVu0EdWf9hbgWoE+DVgsFpxuVwU+Hz8ZuhQSjN0gpQAbvf7eXm/Eji3ORwMMpv7zUhqb3C5XHz9rLP2JZOy29lUX8+jmzZRm5NDY24uZv13t/802kgkQtBiYUs0ilsfYcLrxaUnD2oLMi0WCARwZWfv2+73g8nUbppuNL2dcLjD+rbpI6VWq5VoIoEzFKJ4ZICmrDxSMTBnCf50qqQiHqd82LB9pYTo/rXIEvgY+H04TF0s1pZIaTjafPyyggJoLVWk9Et7gQfSRicn7NzJAL8/I6OTQfRpLvrrfezu3RgdjoyUlKkDXknLvn5SZSU5Aweq98ZDEEKcAPwNKNBvNwKXSCm/OMImq4FqKeXH+u3n0YLVdnpy1pOiKIqiHExnwWoKKEerq5qujH3p8/uF3/p8fKFnQM2xWLi7uJiKDLWdAO4ClqdN+y1vaeH7Xi/zxo3rlcBAok1hjehfuxsaqNUzEBcVFdHY2EiD283AkhIGFRdjA8z0Xg3U/QO4MSUl/GjSJC2ALS6m0GplN/BJKsWr1dV4bDb8djuOToLYzoLMw90eC4cpt1gYYDLhbmjAHomQF4mwYNIkxgAui4WAw0Gtz0f52eXsGCtYvhzmzIEZMwrQzy17hARWoU2D2BKNtiWv8QrBpXl5XJeTg7nHeqN0lwRwezDI7qamttHJS41GxmYom/MffD5apAQhcEQinLxjB+VnndX1jgN/AUw2G/h8lLW0MLyxkfLp0zPS9lHuYeB/pJTvQtvF3z8DJx9JY1LKvUKIPUKIUVLKrcA8YFOG+qooiqIoGdVZsHoD8LYQohItGyHAQGA48L2vchAp5XK00o497vXmZp7Tp7R5heAqp5OKtJGurogDNwcCfJhMYjQYQAjG797NqVu3csLi7isp63a72bp3L8mKCoKFhXzh87E7ECCZm0s0Oxt3JEIgGsVqtWr7h8NaDdRQiAK/n+ZQSLutT6UFSITDDMjKYqDdjtXvJ6uxkRNzcphaWEgBPR/I7h/ADgWG5uczZ/hwLYjNz6fEasULbIrHeWXDBkImEwmTiROmTiULcAvBOrebhBAYgTEFBeQBQYOBTbW1GJJJbMkkJ594IhVANJlkzdq1ZMViOGIxLpg/nzKA7Gzcxx2nHXfECFxpFyCy0/rpckFPl4qUwAdoQWrrVaXWoNsSj3PGhg3MHTwYs0qkdFR4CtioZxYXUjJvwwbyR47MSKC6orGRZ1qTwgnBxeEwXz/rrIy0vQ54LxolEolQkJ/PdwMBpqtySYcruzVQBe3zVAiR3cU2rwOe0jMB7wAu72J7iqIoitItDhqsSinfFEKMBKahJVgSaNOHPpFSJnuof12SAh7X13VJYFRtLUMtFshAsCqBX/r9vNHS0nZyd77ZzKLs7G6pWRkC/t3czPKWFj6Lx/Hm5UEwSEFWFs16ORKamihIpWjW++TV6ximjxYG9ZPRttuBAAG9/muTEFTn52uPNxh4Wm/fFo9zYlYWJzscjAMG0XdGYfOAk4uKGDZ16r6pxLm52p05ObgHDdq33annFHY6cQ8dum97Xp62vaCAaSef3Kfq2x5MCliJFqTu2e++HIuFYbt2MWHHDhzJJOUnH9EAjNLHfAY8FY22Tf+dXllJWSCQkem/EbQ1zq3vDUPq65luNGbkNZ8A7kmrBTu6ro7pQ4b0qf+nPm6HEOJmtKnAABcDO7vSoJRyHTCli/1SFEVRlG7XWYIlK3AN2kjqBuBRKWWipzqWCe8BnpwcCIfJSiSY8+WXDDjzzIy0/Q7wdtrU38k7drAoN5dJGR7BWt7YyD+jUTY5nbgDAaTJpK215CDBp35bSElWPE5eVhZZoRCGZBIhBGVOJ3WNjaSAuMmE1WYjlEqRFOKA9pCS5uZmAGqE4FOzNpHUFAxyktnMPKeTiUBXL/FnwsGCyUxt7yvq0ab7vhgKsTMeb1uTCloWs8XA16xWIqNGUet0HhB0K/1TC3BHWm3SgU1NXGixMCpDF8YeBwJOJ4RCWOJx5m7ZwoAzzuhyuwAvAjv0WrCmZJLpX35JrcWiXpeH7wrgNrRfpQBWoEZCFUVRlGNEZ9OAn0Cb6fo+sAAYjTY1uF9IAs8AFv2k6NS6Os4/88zMTGlraOBXJhNGkwmEYHRNDTO3b2dABqf+rmps5MFQiM9BGzVtaSE9w4UplaIoGGSyxYK3shJHKIQzHufU8ePZ9MEHGONxDAYDixcvhoKCfaOFBQW443HtdlERSMlrb79NRAhCdjtDTjqJlV9+SaPdTmNODo0OBzGT6YBR2BeF4IOsLOwWC0MCAQa53czLyWFchrKGKhqJNr13FfAR2ny9aDTaNkrlFYJBJSV8w2rlHCBHf1xuHw+6lcMngd8B9XptUlssxukbNuAcPz4jf+PPgRfTpuh+c+9ezj3jjIy0XYc2+t+aHX36tm0443FVquYrkFK2AN/v7X4oiqIoSm/oLFgdI6UcByCEeJR95Wv6hXeAqtYTMIuFGwYPzsgIYI3bzQ8bG2lwOLRA1enkBpuNIRka4UgCv6+p4cl4nJRoP9m22O9nqNtNRUsLs0tLGaOXqnAL0W7q6qicnAOmsnY2pXXx4sXt9p9lt1NbW4s1K4sPli+nyWajtrCQyMiRrEsmCZvNbYmJAN5pbgaTicfCYSaGQsy125kGjAIMXf6NHHsksAUtQF2Flv01XeuaVHMiwYRdu7ispYVTTjyxx/up9IxHPR7eEwKjwYAA5q9fjyORyEjA5wd+mTZiO6Sxka9VVGTkvUwCdwUCNCaTWK1WphcWckVxMRUnnqgupBwGIcQ9UsobhBCvQrtrlQBIKZf0QrcURVEUpUd1Fqy2layRUiaE6K1Vil+dBJ5MWyM1Zvt2AmPHkp2BE6RX/H4aHA4kYEom+a/aWqZPmNDldgFiwE8CAd5KJJD679sgJcfX1DChuppzxo8nUlBA+QkndBp8ftWprJ09viBtVBbg1ddew+1wsKukBKZNY8t+GXR3xOM0odVCyAqHGdzUxMl2O3MLCnowN27/EkdbgLYVWOv3szoeJ66X2dmfCTjJaCSxeTPD6uqwpVKMGDu2h3us9JS3m5q4PxDQ0q8LwYUmE/OHDs3I9G4J/BGo00dsLfE4c774gjqDISNlvf7e0sLbfj9IiQ/4eXY2k1Wir6+idY3q3b3aC0VRFEXpRZ0FqycKIXz6zwKw6bcFWmHynIM/tHftBHbqa6TMiQTjqqqozc/v8sldAnh/wABoaEBIybSdO5mSoUAhBtwYCLAyGGy7hF7e0sJpX3zBjIEDGTlnTq+MRuwfyJ6dPgqbnc3m+noe3ryZHUVFVBcWtmUgjkaj7G5oYJuU/CcQ4E/Z2Qy3WJgAnAicQN9Y69rTUsD6hgY+8XjwulzU5eSwA+21FY1Gcbcm7AoE2uq82tAyocwAJgN2hwP3xInUulxqTepRrA64y2AghRZYlrW0MC+VYmKGAr5lwLtpCZvmbdyYsSm69cCj0HYha0JVFVk5OVBU1OW2jxVSyk/1HydIKe9Nv08IcT1aWgZFURRFOaoddJamlNIopczRv5xSSlPaz302UAUtS6rVagUhGNLQgFXKjJyALQMaDQYc2dm4bDZuGjs2Y4HC3T4fbzc3t02tnbxjB+d+8glnT5rErFmz+kxA4nK5mDhxYlt/RpeUcOPEidxqNPKS3c7PLRbmA1n62tbWRE2RSIQ9wKvAL4CvRyJc4nbzG5+P/wBVaAHb0SKBljr7Q7Q1e3eh1Yo4OxLh0nCYP2Zl8TePhw3RaNvzTq/zaotGmVhfz8/QypX8CJgF2PV99/87KEeXEHBTKIQ/ldJqnkajLFy/nuMytNZzJ/CHSAS3200gEGDcnj0sLCxkcQaWM0jgl4EAIb3v+aGQVq9VrVM9Upd2sO2ynu6Ess/gwYNpbGzs8ePe8uqr/Gfduk73ufXpp7n7pZcO2O4JBHjg9de7qWdKfzXnJz9hTWUlAAtvuw1PIHDY+6dbt2MHr69Z0+Fjlm/YwOLbbz9kX771rW8xfvx4fv/733PPPfcQCoUO4xkcPRwOxyH3ue+++xg9ejQXXXQR//znP9m06dgokd1ZNmA7EJdSxvXbo4CFQJWU8sB3wj5CogWrrYmVFofDnJWhE7An09Z2TaisxDpuXCa6zErgX/E4UmpjqidVVvK1aJQpS5b0i2AkffR1IHAS8I14nL+sXs2uggKqCwuRac8jGo3irq+nTko+j0b5j8WCxWLBDAwBhgGFLS1Y6+o4oaiIoSUlvVYq52AksKO+no2NjYjSUmIFBbgBN9oa0+q0Wrfp03n90Wi7adORSASLxUIZMMlgoPnLLylpaaHU72fJ4sX0/b++kmkp4NZAgM+am0FKjFLyPa+XefPnZ+T9IAj8CvDpr8X8QICZW7bgmDQpI+0/2dLCu/r0XwFcFQxy+sKF/eK9rC8RQnwLuBAYIoR4Je0uJ9DUO71SuiqRSGAydTaprWPJZJLbzz4bKiqO6LieYJAHXn+d7y5ceESPV45+r//sZ0f82HU7d7KmspKFU46sItbevXv58MMP2bVLqxg/ePBgLr74Yux2+yEeeWx54IEHeOONNxgyZAiXXXYZixcvZsyYMb3drW7X2Tvmm8C3gUohxHC0XC9PAYuFECdJKW/siQ5+VTvZl1gp12LhW6NGkZWBdr8EqtPWdo3dtYvawsIun4DFgPvCYS3LLjCiro5pVVVMOfvsfn1yV+py8e3Zs7Upw2Vl5FmtbELLPLrM68XdQcAWR/s9b4hGcfv9kJ0NkQgDIxGOs1opAUqAYv27obGRcF0dQ1wuBpaUkEXX6r/GgQDayXxQ/3lXczM7PR5EURHxnByagWagLhJhTySi9TEQwJW2xrQ1GG/N1ts6nRe0Ef9ELEahz0eZz8f548czHT2Lr9OJe/z4Duu8KseOJ4GP0upDn7ZxI6MHDMhY0qPbAwG2JJMYDQbMqRQLP/+cLMjIyOd24DEh2vo+aedOxuTmqtfykfkQbTZ4EfDbtO1+YH2v9OgYE4xGuWDRIqqrq0kmk9x8881885vfBOAPf/gDr776KvF4nH/84x8cf/zxrF69mhtuuIFwOIzNZuOxxx5j1KhRPP744/zrX/8iEokQDAa55ZZbuOWWWygsLGTr1q3Mnj2bBx54AIOh/WS3wYMHc8UVV7Bs2TK+973v8eZf/8riU0/l/JkzeX3NGv7n0Ucpyslh0rBh7Ni7l9duuQWATbt3M+cnP2F3QwM3LFnC988+mxv/+le2793LhOuv54wJE7jrclX96FgSjEa54PbbqW5sJJlKcfM3v8k3Z81qt8/g73yHNb/7HUU5Ofz82Wd56r33OK6oiKKcHCYPH84Pzz0XgH988AHffeghPMEgj153HSeNHMktTz1FOBZj5ebN3HT++Qe03daPYJDrrruODRs2kEgkuPXWWznnnHOYP38+9fX1TJgwgXPPPZfa2lrmzp1LUVER7777brf/fvqau+66i+eee45oNMq5557LbbfdxjXXXMOOHTtYsmQJS5cu5ZVXXuG9997jF7/4BS+88ALDhg3r7W53m86C1XwpZetY/6XAM1LK64QQWcCnQJ8MVt/1eHD7fCAlLreblkGDMnKi9LrX27a2a2h9PRYyc3L3BlATCiGlJDsaZc6mTRw/atRRcXK3/3rXifrXAin5x3vvsdfppCE3l8KpU9kLNOj7RfZL2uSNRsFqZU9a29FoFHcoBDk5EIngikax6us7bWg1R+1AIhgk4PdjczqxZWeTQsu43Po9GArRFImA3Y7Q19u2O0YgAEYjeDy49BFg2DcqtX/And7/7EiEwkCAicCsgQM5DjjOYiGQk0NtIED5mDG4Cgs7/Z0px5Z/NjfziNGI0WAAIZi8Ywej3W7Kp07NSPt/9nh4U39/RAh+JARjRo/OyMWRMPAbwGSzgc9Hsc/H9B07KF+0KCN9P9ZIKXcBu4QQFwG1UsoIgBDCBlSgrZ5QutGbmzZRXl7Ov/71LwC8Xm/bfUVFRaxdu5YHHniAu+++m0ceeYTjjz+eFStWYDKZ+M9//sNPfvITXnjhBQBWrVrF+vXrKSgoYPny5axevZpNmzYxaNAgzjrrLF588UXOP//8A/pgtVpZuXKl1p97taXLkViMqx94gBW//CVDSkv51l13tXvMlpoa3r3jDvzhMKOuvZZrFyzgzksuYeOuXay7994DjqEc/d7ctInyggL+pV/Q8OoDJB1ZU1nJC6tW8dk995BIJpn0gx8wefjwtvsTySSrf/tbXl+zhtuefZb//Pzn3H7RRayprOSP11zTaT/uuOMOTjvtNP7yl7/g8XiYNm0ap59+Oq+88gqLFy9mnT7N/bHHHuPdd9+l6BjMc7Bs2TIqKytZvXo1UkqWLFnCihUreOihh3jzzTfbfi+VlZUsXry4w/eNo01nwWp6qvzT0JbdIaWMCSFS3dqrLtiYtlayrKmJWrP5iE/C7rnlFjy7dxMOh3k3FiNuNGIADNEoX9rtPPj++x0+Lm/gQG44jPn5Eng6bVR1yvbt2FIpRo4ceUT97S9cLhffOPPMfSOITicAPrSRmU+l5I36epqyswnYbG1Jm9LtH9C2BoshtPV+oAebTU3aiXkshstkajclN71eaXpCo0MdA7QTiFAqhTMUIi8S4ZT8fEYApYAhFmPNu++2q3Wb/grMVgGp0oHljY3cHgiQFAKEYJbNxuW5uVRkqCzWOuCptFHPiVVVjHE6M5aw6Td+P5tTKaxWKwNLSrjO6+XERYvUa73rngNOTrudBP4BZOYKhnJQ48rL+eETT/DjH/+YxYsXMytttOi8884DYPLkybz44ouAFsxeeumlVFZWIoQgHm8rqsAZZ5xBQcG+nPjTpk1j6NChgLZWb+XKlR2edLaO5KbbUl3NUJeLIaWl2uNnz+bhf/+77f5FU6ZgMZuxmM2U5Obi9ni68FtQjgbjysv54csv8+PHH2fx1KnM6iQ56MpNmzjnpJOw6ec7Z0+b1u7+82bMAGDysGFUud1fqR/Lli3jlVde4e67tSTnkUiE3bt3Y7PZvlI7R7Nly5axbNmyts/mQCBAZWUls2fP7uWe9Z7OgtX1Qoi7gRpgOFp+IYQQeT3QryPmzc+HxkaElBQHg10a/fTs3s2tgwezw+1msP5Pa0ylWBSNMqCs7KCPu7Wq6rDa3wxU66OqtliMMdXVjDr++GPi5K6jEcQc9NHXvDzOHjiQ2tpaygoLybZYqEcbea3Xv3YaDKz2+wmbzSSMRpwdlHnpLNjs6P5EOEyJxYIDLVOxNBrZ7XZjj0RwxOOcPnEiw4FCoMBiwWe3U+vxUF5RgSsnLedYcTHHLVigpvMqh60K+JXRSFIIJFAQCHBhS0vGSr1sqq/nJyYTBrMZhGBAczMzt23L2Kjn8y0tvKivU/UKwc8cDuZnaE2/gklKGWu9oV8wzsTqFuUQRrpcfPrpp7z++uvcdNNNzJ8/n1v0kanWzxKj0UgioaXJu/nmm5k7dy4vvfQSVVVVzJkzp62t7Oz2+e/3Lwd4sPKA+z8OaMtvcTAWs7ntZ6PBQCKZ7HR/5eg30uXi09//ntfXrOGmv/6V+RMncsvSpR3u2/mra9/ry2g0kkh9tbErKSUvvPACo0aNare96jDPm48FUkpuuukmrr766t7uSp/RWbB6JXA9MBiYL6VsHbAaQx+t+xYH6vRsvQD/laEsukmnE/RSONmxGLn6SGBXvenztY2qDnW7MQtx1I+qHq79g1knWuKlfRucuIuL9wWEVisJIKJ/hYE98TjLPv0UUimMQjD31FNxoaXANgJNsRjvfPgh5ngcazLJ1xYupDT9GA4H7kGD9h2joH2lWFsnI6RqOq9yuBqAH4XDBPTsudnRKEs++4xhp5+ekfb3uN3cUF+POycHhGBwTg4/8HgYnaFRzxrgIWi78DO6poYhVisUqMrKGdIghFgipXwFQAhxDtDzqWiPQbUeDwV2OxdffDEOh4PHH3+80/29Xi8DBgwAOOS+q1evZufOnQwaNIi///3vXHXVVYfdr+MrKtjhdlPldjPY5eLv+jThzjhtNvzh8GEfQzm61Ho8FJSUcPHcuThsNh5/++2D7nvKmDFcff/93HT++SSSSf61Zg1Xzp/fafuH+/o688wz+cMf/sAf/vAHhBB89tlnHc7ucTqd+P3+Y3Ia8JlnnsnNN9/MRRddhMPhoKamBrPZTElJSbv9Wn9Hx4KDBqtSyjBwZwfbP0RL/NDnfNbYSG0oBFKSG4lgy8vLSLtRux1bNEo8HqciO/uw0ksfjrX6yB7A0Pp6Rh0la1V7yv4BoQlw6F8AxxUVMWzmzH3B5n5veoOLi6k47bROR0BV0Kl0Jz/ww1CIrfp0dHMyyQ0eD3NOPz1jCZV+k0zizslBAoZUiv+qq2PO+PFdbhu0BHG3hEKEW8vUBIPM3bqV8gULMtK+AsA1wFNCiD+i5ZDbA1zSu106NmyoreV/p03DYDBgNpt58MEHO93/Rz/6EZdeeim/+93vOO200zrdd8aMGdx4441s2LCB2bNnc66evOZw2CwWHrjmGs669VaKcnKYdhgXuQtzcpg5ejQnfO97LJg8WSVYOsZsqK3lf//0J+21bDTy4LXXHnTfqSNGsGTaNE68/noGFRczZfhwcg+RlXfuuHHc+fzzTLj++k4TLN18883ccMMNjB8/HiklgwcP5rXXXjtgv6uuuooFCxZQVlZ2zCVYmj9/Pps3b2aGPt3a4XDw5JNPHhCsLl26lCuvvJL77ruP559//qhOsCQONZ3kiBsWwgqsACxoccTzUspO82JPmTJFrjlInabD8dSWLfzGZkMCA5ua+LkQXVqPdetll3Hr4MG8E42yVQ8shzY0EIpEuPG990imUnxn0iRuPOWU9o+rquLWQ1xVTQFn+Xy4W1qQwFXvvcc3zjxTBUaKcoyIAv8HfOz14vV4MKRSLFm7lq8NHZqxdaRPAE9Fo7jdbpCS2Vu38n8nnpix95lf+Xw86/G0ldi5sb6eUzOU1C4ThBCfSimPrJZCHyOEcKB9Zvf4pfSufja38+CDR1x+pcdVV0MnJ/VHavny5dx9990dnqR3Ku13FwiHcdhsSCn574ceYkR5OT8455yM91XpRt30+urQV/y/a319haJRZt90Ew//938zqavBUHc/3/703rK/nnwt9AFf9bP5qxf7OnxR4DQpZUAIYQZWCiHekFJ+1F0HdJaUQCCAkBJLMkn5wIEZadevTwEGMMZi/OCtt3jn8supyMlh6p//zJJRoxhTXPyV2tzY0IA7HEYC2bEY86ZO7TMneIqidK8k8LNAgI/1EjIIwRkbNzLQ48lIlnGAf6MFqpFIhIL8fGa2tHBdBgPV14E3pGyb/nvKli2MUDMRuoUQYhEwFrC2rm2UUh46i59y1PrzsmU88c47xBIJJg4dytVnndXbXVKOIlfdfz+b9uwhEotx6WmndT1QVZQu6LZgVWpDtgH9pln/6p5hXJ2toABXdjaRSIQJBQVtWWa7ypiVBXrdwy+bmhheUMDQ/HwAlo4dy8tbtnzlYHVnQwNSX1ubHYkQ0RM0KIpydEsCt/n9vNHS0lZC5iohOLmigvJp0zKW+ff3kUhbvd8hjY38d0VFxgLJjcDDaFmxvUIwsq6O8TU1lGdoRFjZRwjxEFolrrnAI8D5wOpe7ZTSJXPmzGmXfOlI/OCcc9RIqtJtnv7hD3u7C4rSxnCwO4QQJiHE1UKIN4UQ64UQnwsh3hBCXKOPlB6SEMIohFiHlsD1LSnlxxnqd4ciaT9bMzi9OZ6Wpa85FGJAWhBckZNDzZEscE4rx2JOJDosz6IoytElBdwDLE+l2kYkJ+3YwcmNjUycODEjweQu4FdASK8FXOTzMf/zz9lbW9vltgHcwC3hMM16zcnphYX8yGLh7AyV2FEOcLKU8hKgRUp5GzADOK6X+6QoiqIoPaKzkdW/AR7gVqBa31YBXAo8CRxY/Gs/UsokMEEvd/OSEOIEKeXG9H2EEFcBVwEM7OK0XbfHg1sveL9p1y7cGUpYFE2bBiylbFc7DbSMF19VKBYDva5Ua1kVRVGOXhK4w+/nrVSqberv+F27mLl9O+WLF2fkGM3AjeEwdbEYRoMBRzTK2Z99hkXKjEwvjgA/CYXYrieEisfjXJ+Tw5gJE7rctnJQrSk2Q0KIcqAJGNKL/VEURVGUHtNZsDpJSjlqv23VwEdCiC+/ykGklB4hxHLgLLQZZOn3PYw2o4wpU6Z0aTg03NQEJhMSiBqN1NbWZiRYtZvNtOgBa1F2NvVpRZCrfT7Kj2C68eCiIkQwiASanU7K0+t0KopyVJHAL30+nteTESEES7KyONfhYECGRiRbMwtvas0snErxK4OBonHjMlLvVwK/Byr190JDKsWCtWuJjhgB+2UpVDLqNf2C713AWrQ/xZ97tUeKoiiK0kMOOg0YaBFCfEMI0baPEMIghPgm0HKohoUQxfoHLEIIG3A6sKWL/e3UoPx8EAIBRLOyMpaoxGE2Y8nKwmAwMHXECHZ4vexsaSGWTPLsF1+wZNT+Mf2hJZqb2xbwhrKyaG5uzkhfFUXpWyTwIPDvtGREo6urObeujkkZmvobRpsCs00PJIWUnLVuHUV+f8amF//J6+UNr7dtVHjOpk0M8Psz9j6rdExK+XMppUdK+QIwCDheSnlLb/dLURRFUXpCZyOrS4FfAw8IIVqD0zzgXf2+QykDnhBCGNGC4ueklF8xT/tXM7igAKcQhEMhzBlMJrI7GiUajQKwJxrljpkzOfPJJ0lKyRUTJjD2CEYVmrZtg7Fj225vqapi9OjRGemvoih9gwTu8vl4Tcq2IO/4mhpO37yZARma+hsDbgwG+SyRwGgwIIDTN2xgSHMz5SefnJFjvNTczIOBQNuo8NfNZs4uL6d8yhS1TrUHSSmjaJn2FUVRFOWYcNBgVUpZhb4uVQhRiFbfrfFwG5ZSrgd6NDVk/bZt+Mxa7qdNwObNmzMSAMpYrO3nSFYWk3Ny+PK667rU5qghQzAnk8SNRgDianRCUY4qSeCXfn+7qb/zLRaWWq1UZGjqbwK4ORBgeXNz2zG+KwTTMpxZ+A8GQ9uo8MDGRhZ2sYa1oiiKoijK4ehsGnAbKWVTeqAqhCjtvi4duabt29vd3rZjR0baPTGV2ndDSvL1sjVdMXr0aE427btWsKquDnfaWlhFUfqvarebG2preTMWawvyhtfV8c3aWiZnaFpuCm0N6Sq9rJYEZnz5JdOamjI29XcbcAdgstlACAqCQRZs2MBx6uJatxNCzNS/W3q7L4qiKIrSWw4rWO3AoxntRYaM3y+bsHPkyIy0OyQ3F5vNhtFoJOl0YtOz+HbVoESiLZNwbW4utRkqLaEoSu/Z5XZzbW0tK+JxAsEgCMGYmhrO2rgxY0GeBH7t8/Fq2hrSKTt3MnXXroytIa1Dyyzs1kvUjC4u5pZEgvPPOktN/e0Z9+nfV/VqLxRFURSlF3W2ZvWgpJSLMt2RTBg9ejSzGhpYnUhgNBrxHUGW3o7kACajkXAqhV9KNu3cyZhhw3A4HF1qd3pODn8LhUBKagoKsKaP4CqK0u8EgVuA3QUFSLSyVGdFo3zTZutS1t9Vq2D5cpgzB6bPgN/4fDybNr34a2Yz5+TmZiyzsAf4UShEpZ5ZOJpIcGdODpPGj+9y28phiwshHgMGCCHu2/9OKeX3e6FPiqIoitKjjihY7ctGZmWxMhyGWIxXqqo46fjju3zyZgTs0Sh+vdaqz2LB7/d3PVgtKqLU52NvSws+q5U3V66koKBAjVooSj9UWV/Pz4A6ux2iUYSUnLRjBz8YM4bSLszyWLUK5s2DWAyysuCat2HNmH2ZhY+vreUci4VJGVpDGgZuA3bpmYWNqRSL1q5FDB8OxcUZOYZyWBajZdE/Dfi0l/uiKIqiKL3ioMGqEGIcWi23AcAbwI+llC36faullNN6potfTbbbDRYLEqjNyclYrdUyoxF3IgFS4rfZcGZg1NYEDAoG2avf3l5UlLH+KorSczY0NHBdUxMtdjtEIhTk57OkoYELx4zp8v/z8uVaoJpMQiQmeenNKINP0Kb+jqqt5YxNmxiwKDOTXRLATwMBPk0m2zILn/n55wzw+VSJmh6m54l4VgixWUr5eW/3R1EURVF6Q2cjqw+ile77CPgOsFIIsURKuR0w90DfjsjMvDz+EIkgpMSdl0eJ3X7EbeUNHMitVVUA1EQirEkkALDG43wUCh107WrefmtnOzPHauVjfQRju8uF1aJyaShKf1IJ/NhopMVub5v6e4HbzbXDh2ek/TlztBHVSEyCWWI8sYXmljgLLBa+YbFQsWhRxjIL3+L383ZLS9v04u8JwZRBgyifMUNdROs9TUKIl4CZaMuVVwLXSymre7dbiqIoitL9OgtWHVLKN/Wf7xZCfAq8KYT4L7QPzD5pdEkJ40MhdoTDAOyQkgFH2NYNt9/e9vOHn3/OJ7m5pIQgBJzp9XJaBtZvLcjP5xGTiabmZmrz83lrxQo1FVhR+ok3mpq422gkZTaDEJiSSeZv3Mh50zIz8WTVKnhnOSy4B9bWRDGe2IJ9cozR1TVcYLNlbOpvEvgtsDKVaptefNK2bUzJz1clanrfY8DTwDf02xfr287oSqN6DfQ1QI2UMjNFfxVFURQlwzoLVoUQIldK6QWQUr4rhPg68AJQ0CO9O0KjEgnWB4MgJU9t387IsWO7HPwNKy3luNpadhcUgBDUHHdcRvqaDwwOBmlCuwKwqaxMTQVWlH7gyZYW7g4EtCt3QnBcbi6X19RwSobqm7auVY3EJCILTnwlSXJknBN272Hu1q0MWJyZ+CIF3Ob3szyVasssPHHnTk7auZPysWMzcgylS0qklI+l3X5cCHFDBtq9HtiMlkNQURRFUfqkzkrX/BoYnb5BSrkemAe82J2d6qoSt7ttdGCHvg60q1wuF0sHDyY3L4+C/HzejUYzVhd1UVYWCK2IzaYBA7BYrRlpV1GUzJPAX4CHDQakfjsnFOK6PXv4egbWqLb6z3ItUJVJQSoGdW/FOc9s5v9lZ3N2hrL+poCf+/283NKC1+OhuaWFr5vNXJ+Tk7FjKF3WIIS4WAhh1L8uBpq60qAQogJYBDySkR4qiqIoSjc5aLAqpXxaSvlRB9t3Symv7N5udc283FwMgADceXlYBhzpROD2FubnY7NaaW5p4dNolGfeeisjAevZBQUMyM1FAB67nb9v2ZKxQFhRlMyJATf7/TyeVt+01OvlgtWrmZDBTLk+YEUh2puYQSLMkomDdnL23r1MmjgxI0GkBP4AvJ029feE3btZnMFjKBlxBXABsBet/O35+rauuAf4Edr1ig4JIa4SQqwRQqxpaGjo4uEURVEU5ch0NrJ6UEKIhzPdkUwaVlLCnMJCHA4HjuxsPjVnJh9UPnCcnnxEAl+Ul2dk1DYLmOT1tt1eO3BgRtpVFCVzGoHrgkFeTRuFnGO18vNUigvOPDNjwV09sPTdCO/cIJEpwCA5+dqtnGdZy4AMZeSVwJ0+Hy+kBd1jq6u16cUq62+fol8gXiKlLJZSlkgpvyal3HWk7QkhFgP1UspOy+FIKR+WUk6RUk4pViWLFEVRlF7SWemag61LFcDC7ulO5kyJx3lHX7f6jMfD/FgsIyeTZ2dl8UksRnCNmWUrxzFnapBM5B+5wGbjtVAICewuKqIxHu96o4qiZMRm4JfALr18lQRO3LWLSxwOJmcwAVEV8KNwmM/ejJKKWiAlMAiYGM/N2LRcCfza5+NZj6ct6++irCzOt9sZoKb+HgtmAkuEEAsBK5AjhHhSSnlxL/dLURRFUQ7QWYKlBmAXWnDaSuq3S7qzU5kwYM8eyM1FAjV5eXxeX8/8DJyELSwo4DefZrHhIjsyJrjMlM//Z+++49uqzgaO/44kW9Py9rUdZycEZ28IYQQCJJAUaEtbWlqgtIXSAW3fDugubd9SuqALShml0JbyQhmlzLJTdmgIGWQvj8hT1r5a5/3jKo6T2CEkcmwnz/fz0cfWvdI9j65lSY/OOc8p8XewZMmh1ZyaWlnJwpYW/h2Po4GbOzuZGgjIB0chBtgTwI2JBBHTxG6zYQNOWruWqY2N1OWpyBHAauCHwM5kEu9xcVShH5KaAgd87GO15OOlIA3cCDyqdXfSfWxTEx90OvNWWVgMblrra4BrAJRSC4CvSqIqhBBisNrfMODNwAKt9egelzFa69HAoJ9QWW8YjGpvtzJtpVj3HtY+3Z8CwPVUCp1UkFWkM3YefzyRl2Of3GNe0MaqKv7Tfkg1NIQQhyAN3Az8wjRpbGmhKxgkHgjwg0yGTxpGXgsQPdbezheDQTpME5fLRen0OJd853nef95y7r8/yLx5h95GErgOeA5wuVygFBOamzlj9WrqZOivEEIIIQah/SWrN2BN0+zN9fkPJb8Mw+DyHtV7n8hkaMxT0aJLT9GoQg12q/DJlLM9eTnu8RUVjG9p6U6w/8/vZ6cUWhLisNvQ0sJlO3fyD9MkkUiA1pSHw3zo5ZcZ3tXFjDwWObozGOSaSIT2ri4CgQDF2Sy/8/v54lkl/P73Iw551AZAAvhGJMKTXV2YponT6eSCkhKudjo5R4b+DmpKqW/3+N2Zz2NrrZ+TNVaPTlsDAf76/PPd1597+22W9lhb/kDuP/kLX3jX233tjjuY9PnP87U77uBPTz9Nk3wJf1Tz+Xzveptf//rX1NfXc+GFF/Lggw+yZs2awxCZGMz2l6wu11q/1dsOrfVv3u3ASqnhSqlnlVJrlVKrlVJXHXSUB+nMsjKqCwvp6OxkRzjMb197LS9Vdi9cUsal/4wz4poYkx8Is+1Eex6itRLs740aRbHXC8CaTIYfrVwplYGFOIyWtbVxSTDI8tzyVHabjfEtLZz/2muUJJPU5qkXMg38HrhNqe4lcIqjUS7buJG5FRV5S4gjwJejUZ7p6KArGCQQCHB6VxdX+/3Mkqq/g5ZS6utKqXlY1X93eXmg4hFHlq0tLXskq/3lD48/zps33MDPPvlJK1nt6Oj3NsXQ9vvf/55HH32Uv/zlL5KsCmD/c1Z/D8w8hGOngf/RWr+plCoCliulntJaH7ZnnQOYEgiwLvdhcFeV3Xx8OLt8WozXj4mD1jzSqVhqmsyrqDjk406prOSMrVu5Lxfzf8aN4/lt2/iwfKAUol9p4AHgNw4HEafTmqCvNWe1tXHRiBE0OxzU1tbmLYH8TiTC8kymuxpvTWcnS996i6mLFh3y8XcJAt8FVvcoDDVvwwZOKitDyRzVwW4d8CFgjFLqRaw6X+VKqQla63UDG5oYKD+85x7+8vzzDK+ooMLvZ9a4cXz1/e9nU3Mzn7/5ZlpDITxOJ3/8whc4tq6OS264Ab/HwxsbN7Kzs5PrL7mE8+fP5+o772RtQwPTr7qKi087jRljxnS3EU0k+OIf/sDb27aRzmT4/kc/yrnHH99nTJlMhqv//Geee/ttzFSKzy9ZwuWLF3POj35E1DQ57qtf5Zrzz+eNjRu58Je/xF1YyMvXX4/bmdeBAmKI+dnPfsa9996LaZq8//3v5wc/+AGf/exn2bx5M+eccw4XXHABDz/8MM8//zw/+tGPuP/++xk7duxAhy0GwP6S1UOitW7GWhMOrXVYKbUWGAYc1q9IPuTx8EAsRkYpdpaWEvHkZ8iuo6GB0ek0m6uqUFrzx3Sa49mzGtXButTt5vnWVlqKisjYbPzW72d6SwvHVA36ulZCDEkh4IeRCK9mMtjtdlAKVzLJmatXc/Hxx2MYBtV5+sKoGbg6FmNFR0d3Nd4znU4+pDUj87gETivw1ViMLalUd0J8ytq1TG9oYNjkyXlpQ/SrTuCbwILcpR5YBFydS1hPGLjQxEB4Y9s27n/5Zf57ww2kMxlmfvnLzBo3DoDLfvc7bv7c5xhfW8ur69bxuZtu4pkf/xiA5o4Oll13He80NHDOj37E+fPnc93FF/PzBx7gke9+F7CGAe/y43vv5bSpU7n9qqsIRiLM/epXOX36dLwuV69x3fbUUxR7PLz+y19iplLM/8Y3OHP6dB7+9rfxffjDrLjxRgBueuwxfv7JTzJ7/Pj+PE1iCHjyySfZsGEDr732GlprzjnnHF544QVuvvlmHn/8cZ599lkqKirYsGEDS5cu5fzzz3/3g4oj1v6S1TFKqYf72qm1PudAG1FKjQJmAK8eeGj5cWxVFR8MhXhCa+w2G/eEwxyThyq7tbW1nPjMM2ytrETbbKwrKOCxjg7OLjv0+WXDDIMrtm7lfz0eUnY7Qbebr0ci3Kg1I6WHVYi8Wgv8IB5nbY/kcabXy8e7upicS1TzZRXWEjgNqVR3T+dxGzbw0bKyvFbj3QxcHY+zrq0NtEYBVwEzqqqonT5dhv4ODYuB7wFjgV8CbwFRrfUnBzQqMWCWbdrEuccd190j+b65cwGIxOO89M47fOinP+2+rdlj+bvzjj8em83GxBEjCPRY070vT65YwcOvvcbPH3wQgEQyyfbWVuqHD+/z9iu3buW+l14CoCsaZUNzM6Orqw/qcYoj35NPPsmTTz7JjNz7XiQSYcOGDZx88skDHJkYjN5t6ZpfHGoDSikfcD/wJa11qJf9lwGXAYzIU8XevV3s9/N8bv7ZMq2548UX+eSCBYf0gc0wDD5x2mkEQiGedDqJRCL8JJHg2FSKMXn4IHjiqFEsfvVVHpk2DQ1sttu5PBDgd0oxVnpYhThkOwMB7orFeLqmhlgy2Z08ztiyhc/5/czJ8zDZezs7uVkpHG43LpeLaDbLwlWrmNDSkteezuVYVX8Ducdky2ZZtHIlM0aM6P5gIAY/rfU3AZRSbwF3Y33hW6mUWgZ0aq3fN5DxicNPa93r9qzWlHi93T2Ye3MWFLzrMfZu5/6rr2ZCXd0Bx/Wbyy5j0cxDmTkmjiZaa6655houv/zygQ5FDAH7S1YjWutDmn2vlCrASlT/orX+R2+30VrfAtwCMHv27Hd/FT0IdcD49nYCuQ+jy8aP58w8zF01DINzd+7keaVIFBQQcrn41iuKqWtgwQIOabkJwzC48rjjKNy2jftzcTYVF3NlPM71LS1MGgIJqwZiWPPmOoFNHR1s7+zEU16Os6SEOOxxiQGdsRjRSAS/14vP68WOVQXMnrvEIhGSXV3UFRUx3O+nGCgG/EBJ7ncf+RmOLY5ca1ta+EZjI9vKy6GlhbLSUlzpNKevXMmYjg5G5HH91BTwy1CIv4bDVs9tKMQxlZV8r6gIT10dtXPn5q2n8++dndykFIW5hDiRyXDWf//LiGCQ2v3MOROD2hNa69eB15VSV2itT1RKHXqBBDHknDh2LJffdx/XnH8+6UyGf73xBp8580z8Hg+jDYP/W7aMD514IlprVm7dyrTRo/s8VpHbTTge73Xfohkz+M0jj/Cbyy9HKcV/N21ixn7mCi6aMYObHnuM06ZOpcDhYH1jI8PKy/cZNry/NsXRZdGiRXznO9/hwgsvxOfz0djYSEFBAVV7fbYtKioiHA4PUJRisNhfsrrlUA6slFLAbcBarfUvD+VY+XBpQQH/yQ2L2VFRQWuu4u6hGl9dzWmvv85jU6YQfdPJvRdW8ndT4yyEZ55Rh5ywfhZoXbmSF445xood+GQ4zMXNzXywujpv8+jeizRW8rmhrY2N7e0UVFWhSkvpzG3fEY3SnEiQ9npRuTcr0zQJRCLgcEAohOF249yruIJpmgRywxZJJDAcjj1uY5omgV1DNYNBDKdzn2MApBIJCqNRjnU6mebzMRoYAxhIEnu008CLwP8WFNBcXt5dRGlELMbXi4pIjhpF7Qkn5C15bAN+AryudXfPbUU4zBVdXcyfMgXyUJQNrMf1u64u/tgjIZ5YWclPioqwjRmTt8JQ4vDTWn+9x9VLctvaBiYaMZDmjBrFOXPnMu2qqxhZWcnsceMoztXh+MtXvsIVN93Ej+69l1QmwwUnnbTfZHXqqFE47HamXXkllyxcuEeBpe985CN86dZbmXrllWitGVVV1T23tTefPvNMtra0MPPLX0ZrTWVxMQ9+85v73O6ShQv57E03SYElwZlnnsnatWuZl/uQ7PP5uPvuu/dJVi+44AI+85nP8Otf/5r77rtPCiwdpVRfQ0KUUnOAHVrrnbnrFwEfBLYB39da77f+uFLqRKzPhW8D2dzmb2qtH+3rPrNnz9ZvvPHGe34QB+q6UIhHc3NXKxMJbshmqc3DB7hAIMDPUin+cWslW35UCBmFsmW55uooP/5xUV6O/6fNm7mnupqMbfdqQ7VdXZyXzbKkpobhh/g4klhrS25sa8NpGDjKywkC20MhdoTD6OJikj4fQSBMLnEMBLrn+BmGgdPp7HN7V1cXXcGglRwAxSUlFBcX7xHDu93mQI7RV/sAHuhOXMcA/rY21I4djJAP8keFEHB9OMwL2Sx2m42Ozk7QmlnbtvHDCRMYlufnwFvAtfE4rclkd3vjdu7kjDVreP9ZZ+XtOZcGfg082OP/ozIc5jvZLAumTs1LG0OVUmq51nr2QMcx1OX1vfmmm+AAh5cOuIYGuOKKgY5it5tuIlJejs/tJmaanHzNNdzy+c8zUz7AD02H8/k1GP7v+vvxDobHeLAG22tNP3uv783761n9A3B67qAnY02D+iIwHWvY7n5Lc2mtlzHIOrKu8Pt5KZFgW0sLHVrzk/Xr+fbUqXkZDnwt8PpxQbYWFFjJVAHUHBsADj1ZNQyDS4DksmU8MWkSIbcbsIYF/x74YzTKpKYmhmUyDPf78WpNZ3s7peXlFJeU0BkMEujsxF1WRmFxMQmgJRKhKRolW1SE6fEQNE0CiQR4vRCNYuQWbg4Eg1bi19GBUVDQnfglEonuniKlNYlEAqfTuc/2TDxOtdPJCIeDnS0tFCaTOLNZjispoQZw97hEUylefvVVstks2O2ccuqplAIZrG87WtJpnl+xAtNuJ+F0MiFXXKKrx2VrLNZrXGANM16du5imSSAWw1lUxOitW/lEQQGnl5XRe61DMdS9Dlwfj7M+l6CiFOP8fi5obubkCRPy+mWFxpr78EfTZGdrqzVvFPiMzcYJBQUMy2OiGgW+FYnwZo8lcEa2trLk7bepP+usvLQhhBg8Lvvd71izYweJZJKLTztNElUhxBFvf8mqvUfv6UeAW7TW9wP3K6VW9Htk/aAYOLG5mW02W/capm+2tnJWHj44eoCfzUlz0d076XrVjXeeycunlDHzrbcYW12dl4T4shNP5PiNG7kTWF1b293LmrLbWZFKsQJQuyr95YbbltntdIRCYLNBVxdGblhu93Ba08QwjF6TTwC0xvzFL3A3NdFVWEhBYSEKsKfTeMJh7JkMBVpTVVyMr7CQStOkY+dOHOk0Dq0ZOWwY7lxy7YvHicVieDwezAkTOO/aa/d8kBUV1J9yCk1NTdawxb2HSJaXM+3443fv36tXFayiMg8+/TSdLhftxcXUnngi7VjVUXvOetj1eBMFBbxTXc31djt3YH0TczwwF+v5Ioa2LYEAN6VSrKisJNGjiNKkhgau9HiYN316XtuLAjcArwDx3HPMY5osXrmS+WPH5rXAUSPwzb2WwDmnsJBzbTaG5zEhFkIMHn/96lcHOgQhhDis9pusKqUcWus0sJBcxd4DuN+g9jGPhyfa2mjz+cjY7dw/ZgynAwXves93N7eigt8uaOfHCxXYvazq7OSHWvO+xx/ng4sX5yVhPcMwmBoI8NrmzfzDNNlkGAR7rB3bc1i30ppoLz2NuRvusc3rdJJOJnGbJp5UitllZfizWTZs2MDW1av5WmUlxwwbRrnXixOryzwSiRAOhykqKsKX64kFiAwb1uv2nr6/dWufj3F/5+lA9p+3ZMk+Ca0G2rEmYm8C3rbZeM40iTid1pqaLhdJ4LXcRQEjo1FGBwK8z+dj/BAoaCX29GR7Oz8MBgm5XBAIUFZaijeZ5NRVqxjT0cGYPBZRAusLke/HYmxNpXC5XLhcLrxdXSxasYKiVIra2tq8tbUc+BnQ1GMJnBPWr+f95eV5XQJHCCGEEGIg7S/p/BvwvFKqDatY64sASqlxWCMuh6Q6w+B6m42vFRTgcLvZDvxo2zY+53LlpSfi9PJybMD3u7pAaxpLS7lv9mwm5mFt110Mw+B9hsG4tWt5cdkyIoWFtPn9dLndmE4nSYcDDdiUYtzYsWzcvh17Oo0zm+WEmTNxA2+sXInLNPGm03zgtNMYU1xMi9+/O8krsoYvB6ZM4UceD3Pq6vDtVZTK5/P1moz2tf1w6S2hVUBF7jIHuKCoiJ2xGK+2tdFQV8dap5NtPW6fME1eaG/nBbudu2MxPhgKcZHfT++rzInBpAP4I/Avh4OQy9X9pczUUIgri4sJ5bmIkgYeBP6YSNCYKxDWpRQXl5TwEcOgZcqUvBU40sDtwSB/VgpnLiGOZrOctmoVx7a0MGzKlENuQwghhBBisOgzWdVa/1gp9TRQAzypd3fZ2bDmrg5Zsyor+TLwm1wxngeB7Msv84V58/LygfI0YIfW/FIplNa0FxXxG78fc9UqpldW5u1Dcn19PWVlZTQ1NVnLVCQS3b033UmnYRCw2XZfLy0F4KS5c3dvy/Ua9pbkGYZBeXn5gCaf/aXaMDi3x+Ntxhq++QrwSo9h0RmleEJrXgFmAecB0xhkE7IFGvhrZyd3Ang8uFwuupTCnUyyYN06vjJ7tvVcz2Mv+TstLfwim2VbaSkJ0wStcWQyLFy9mlPr6hg2Y0beCjeZwI/DYR4KhbqH/dZXVvLDoiIK87wEjhBCCCHEYLDf4bxa61d62ba+/8I5fJYC/+zo6F579dGpU5nb1sb78vRh7+KSEnzZLL+x2VB2Oxs7O/muy8Vpr73Gl/L4obKvYbE9t/WVhB5KDJc+9BCPrF9PldfLqs99DoAVO3fy2UceIZFO47DZ+P2SJcwdNuyg2zjcaoD35y4bTJOb1qzh7bo6WoqLceXm+i7PXUYBp3R2MmLrVkZKNeEBtwW4PhrlpV1Lt4TDGIbB+aWlnLJ5MxNmz8773+ix9nZ+EAoRLyjoHmZshMOc8dZblCUS1OYKgOVDK/Aj4L/ZbPeXKMM6OvhcZyfHTZuWtyVwhBBCCCEGkyE79/RQKeB/7HYuzc1bTDsc/HnMGI4D8tXv8sGyMkYB38hVII0XFPDo1KmkUil+AORnpdeBccn06Xxh7lwueuCB7m1ff+opvnfKKZw1fjyPbtjA1596iucuuWTggjwE46uq+MbMmTQ2NRHxeFjmdPIKVu8dwDrT5IVwGJ/Hw0m5LyAGYs3bo922QIA7EgleMQxi6XR3IlcajfKpzZv5SH09TJuW1zaTWAtI/83hIL6r+rfWnNrRwacqK2mZODGv65o+39bGT2020l5vd2/xlO3bOWX9eiYsWZKXNoQQQgghBqOjNlkFmFBVxY1K8S2HA+3xkHA6+S5W4ZJDX3DGMgu4NpPhaz2K+aysrOTT8TjnbdvGgtLSIdkrd/LIkWwNBvfYppQiZJoAdCUS1Bbl6ywOjJ69zydjDRN+GHgK6/GhNWGXi8emTqVVa74PMqf1MNHAPzo6+GVXl/V/1dJCWWkpdq2ZuXkzc7ZtY8HZZ+e93ddbW/kZEPT7uxNHXyLBmatWcfn8+RiGkbdhvxr4czDIDdGotVB1JEJtVRVXFxVxrNdL7ZIlQ/K1QwghhBDiQB3VySrA7MpKfgF8B0gDm02TLwSD/AAYlacPgidUVHBXJsPvUinerqwEYE1rK2vcbv7c3MzXHA5OKS8f8nMgb1i0iEV3381Xn3qKrNa8dOmlAx1SXtUAlwMfA/6uNbemUtYQUKXYUVrKF7GGl3+Uod1rPtitAW4F3rDbiTid3T2bo6NRrvR60aWl1E6alNdELg3cFgzyh2iUjFIQj2MYBktLSzlr82bG5xLVfAkDNwJPKkUWK3H1mCaf2rKF8+vrITf3XAghhBDiSHbUJ6sAk4H/AX6YK7gU0JrPhMP8TimOyVMxljGGwS+AZcCPc+siaqChtJTvOhxMjUaZv2MHp5aWDtnhpDe98Qa/WrSID06cyL2rV/Ophx/m3xddtN/7aKxS07suO9raaGptpbqykqqKCuxYFb06Wltp37mTsVVVjDaMAU3si4BPl5RwWjLJ7YkErxsGhU4nGeAh4Il4nIUNDZzn9w/Zv+VgtBP4bTjMC9ls99IwXUrhMU1O3LCBr86aRXVlJeS+EMqXTViJ4wqlyCiFBgrSac7dsYPPjRuHyvMw4/+0tXG9UsR9vu7HaHR1sWTlSk46/fS8tiWEEEIIMZhJsppzInBWQwN35JZ9aSkq4mqbjd9h9ajls51fpdN8v7mZd6qr0TYbdpuNF9vbedHt5qZgkA+4XJxVXMwxDK2Ks3e+9RY3Ll5MBjh74kQ+9fDDbIjF6EwkUB4P2uUiASSA59NpzujsRHk8OJ1OAEzTJBCLgccDsRiGaeJ0Oq3t8Tj4/WCaDEskqHS5KAbskQiqq4uJXi/2tSVseQ7OWgDz5vX/4x1TVcWPgK3AH4BVucewvbWV9YWFPNHQwM+UYpys0XpIosC9wP8lEjTm5n93KUVdVRWfKS5m1pYtjJk1K+9DYpPAH7q6uF9rCt3u7sSxOhjkjNWrOf+00/L6/6mBPwWD/HrXsN9oFMMwuLikhJPa2xlx+uky7FcIIYQQRxVJVnv4qM/Htv/+l2fq60EpIkVFfA34PjAuj+0cW1XFjVqzsqWF10eO5N+ZTHdPa5fLxT+Ap7HWBJ0UClHT1MSssjImVFUNWPKaxVo6oyMapSMex+710oiVeP4HCCWT+Lxevrd5M8eOHcuqLVuoKCvj36kU2GxgmvgcDuwOB5l0mmAiQTYU6q7a6nQ6SfRYLkZpTSKR6HV7xDSxu1w0myaBXC/1w88m2HKhJptU/G8hfPifMerHtnCaz8cJFRX9et5GAf+L1Wv+s0ikO9bNFRV82W7nx8DUfmz/SJUC7uns5G9ak/Z6u5eG0cAxzc1c0dXFwilTYPr0vLe9FrguFmNFbr1kQiGGV1XxZb+fKe3t1J12Wt6H/f4K+HePYb/OVIoLt27l4gkTYMaMvLUlhBBCCDFUSLLag2EYXD1jBjOCQe4dORLldNJimlwRi/GVbJazysvz2tYZhsEZwLktLVzX0MDamhpSDkf3MimNpsmbwSC43ZBIMD4eZ6LbzWiguKODTCDAmIoKxlRWUsSB/zEz0N3DuaO1lU2trbirq7GVlREEuoAd4TBN0ShZv59twD1AJp0mkk6Dw8HtDz7IhsZGIvE47/vlLzn7uOO44LTT+NOTTwJQWFDARYsWWR/0AbQmnU5jdzhIp9PWJqzkU8dilDqdlBYU0BSJYE+nwWZjVEUFTiBSUMDmWIy0zUaisLD7/PRMYqMvO8kmrQeXSWqefTLJ6s8p7ovFOCYeZ4HbzfFYSWPBIfzd+qKAk4AR6TTf2bGDt4YPB6UwfT6+DXwQuBD5hzsQGeAZ4PZ4nDW7lqKJRCgrLaU6FGL+2rUMC4eZvHRp3ttOAHdjFdIKplJ7LBNzZVcXZ06ZkvfEcVlu2G+ix7Df6mCQs95+m8Uy7FcIIYQQRzH57LwXwzC4yDCYA3wzkWB7SwtozdVK8WZBAV/x+3Hnuc1JVVX8XGu2NTXRMWIE65xOXmV3xdldSV1LMonpdvOKaRKIRKzhsvF493BZN+CIx0lEo3g8HlweT/dSK9F4nFA8js3jQeWSve7htV4vRCIYXu/uYbe54ZbRJ0K438qSsIOqTHcnn5eedRYulwuny4WZSFiJI3DNRz+K2+WixOXCnkwSbWvDkclQmMkw0jAoA7LZLP9qaWHBM8/gzGY5Z+lSDACPh0BFBU1NTdRWV2N4c2WKPB4CZWXW9pISSp1OuoBNqRT/+u9/CTmdvDN2GG2FJaSTYCsE73Hx7vMWSCZ53O3mcUAlEtS3tvIRl4uZeZ7bCDDSMPgZ8FQwyAMjRpDMFQD6i2ny764urgEmyrDgXmWAhzo6+Es2S7ioiEQy2f38L4rHuTCRYGlVFc3pdF6XhtnldeCGeJwdyWT3nNhYNssJ77zD1KYmpuU5Oc4AtwaD3LzXsN9Lios5UYb9CiGEEEJIstqXeuCyjRv5UUEBYZcLpTVPaM0W4CvAxDy313OZlMVY1UefT6e5c8cOAkVFtOeWygD6HC4bNE0Cra1WQhmLdQ+vNXtuj0QOeNhtZHkhWy6sYkRCsWMVjLzQgduboiCdpiCbZbjLRQmgtSbQ3IwjnaYwm2XS2LH4AAoLifj9hMNhikpL8blzab7Hw9iaGuZPn75P0tHzPPR1fgAqgcqKCkbPm2clsTMNNk9VPPscDJsWZI1+k22NpWytquo+b6ZpEmhpYZvWPB6Pc0Ykwid8PqaS37nBhmHwccPgbKyhna/2KNx1aSrFdXY7C/LYSz/UpbB6Uu+KxXg7N4yaWIyy0lLcqRQzN29mWmMj7zv7bAzDyHvRqmbgj8CyHv8nXUpxelkZl3q9JKurqZ05M6+JYwPwS+CNHsN+XckkH9+6lYtk2K8QQgghBNCPyapS6naslTxatNaT+6ud/jSzspKPPfEEzxx7LBurq3G5XASAq7GGdX6M/hlSCtYfZmF5OZPHj6epqYkajwftdLIZ+C/wdFsbMYcDs7CQ8qoqUvSdxO693UwkKHY6cRcWouJxnMkknlSKOaWl1AFozepVq3jj/pFsSRqAQmVg7A4HM2a4reSzuBhfLgnE7WbE8OHW9qIifD5f9+Pw+Xx7XN/F7XYzIw8fyHsmsYaxq7BSKYHAbJqamqguKqLD6eQV4JHckNJd5+G1TIaVpnhR+WkAAQAASURBVEl5VxcX2e0szvPyQWXAtcAvGxu5y2YjqxTxggK+DXxg82Y+5vUe1dWCY8D/BYPcn8mQ8PlI9Bh260ylWNzWxgVFRXRUVlI7bVreexkTwK1dXfxDaxxud/f/iTOV4sR167iwtpZJM2ZAHnvCNXBXMMidgL1H0aaazk4Wr1rFIhn2K4QQQgjRrT97Vv8E/Bb4cz+20a8Mw+D8RYuY19TEVp+Pe51OotA9rPOxUIgrleKEiop+jaHnh/QaYH5xMR+qq7N6FMvKMNxuNLDFNHngP/8hqzU2pTjjjDOoAtpMk6eWLcOWTuPUmvPOOovq4mJwuwmUllrHqavD8PutRkpKCMyezWOtQV7+h0IlwG6HUaP6Tj772j5Qep63GmASsCST4Zbly3lzxAi2VlZit9m6ezyvVoqnnU6+7PMxLI9xKODjXi/R//yHR6dMIe50Eo5GudNu5z/bt3O9Uow9yoYFtwCPAA8lEmwNhaye1GiUstJSXOk0U7dtY/qOHZy/eDGGYTAyz0mqBl4CfhOPs7ZHAaXy0lImNzZy3Pr1eDMZhs2endd2W4D/jUR4dtdjDoUYVlXFF/1+ZrS3UyfDfoUQQggh9tBvyarW+gWl1Kj+Ov7hsivpmQmcDNwAvNZjWOcVSnF6JMKnfT7qByCuXRTWUiofX7jQSj5razFyczKrq6qoPP303dsPcNjtJZcYTJgAP/s8XDQDhg/v94fVr6oNg8vnz6epqQnl8XBvMMjjmQxpm627p/ULwKldXczdsoXRNTV5SR6MXLsnBQL8we1mbSaDBjZWVfF5rfnEO+9wemnpEZ2oaOBt4N5wmGWZDIVu9x7VfT2myZLWVs73+egsLaV20qR+OR87gFuAFUBXjzmx1cEgn49EOH7sWJrc7rzOidVY1b1vAXb2qPxdEQ7z+XCYJZMmybBfIYQQQoheyJzV96AC+CFwY0MDf7bZupOc1zMZ1mNVmr0AmMzArY96oHM+D9S8eTB16tBPVHfZo8c1EKD22Wd5ecwYVg8fjsvlImqa3NbVxd/dbhYvW8ZlJ56Yt4TVMAzGBwJcvW0bb9fVgVI0mybXu93c19DA92w2pvdD0aeBtKmlhQcjEVZWV9Nst3cX7iIUoqy0lNJYjKlbtzJp507Oy81JHdUPSWoY+DtwfyJB1DS7CyglUynmrVvHpJ07OX7p0oP+P+nL+pYWbkin2VhejtPpxOVyEQJmbd7M8Vu2MHvJkry1JYQQQghxpBnwZFUpdRlwGcCIESMGOJp3p7DWY00/8wyvjBnTPZcVYGXuMhEraZ3OwCWt+VQyYgTf37o178ccaIZh8KFFi5jf1ETS6+U+p5NXc8NCwy4X982ejT0e5xuAPU9t1hkGv8CqFnxXSQk7E4nuNVm/qBTzd+zgApdrSCetaeAN4J/hMI/FYmTsdmhrw+f1dvcq1rW387F4nNPLymhOJPJewGiXJNaQ43uBjlyBLbQmBHy8tJQPFBXRVVtL7ezZeW1fA/d3dvKzcJiEwwGBAIZhMNrp5LteL96SEmqXLDmie9PF4KSUGo41PacaawntW7TWNw5sVEIIIUTvBjxZ1VrfgjVCjtmzZ+t3ufmgYBgGnzjtNBbmhpM+53TyLNa7PsAa4BumSVVXF4sKCji7tJShXPv1S9deO9Ah9JuePWlzgfuzWX6WTlsJhlI8V11NYzTKBzZvZnJV1QEnFzd897sEt2/f720mxeMkIxGCuSrJEeCJ3KXa4aDSNKkuLMST218yYsSg/VtkgbXAI6EQz6XTZLxeEtksGaW6C1o5s1nG7thB/Y4dVMVinJHryeyPIlNZ4IGODu7SmpjPt0ehsdqODk5+5x0WHnssY2bMsCpz5dFO4HfA8zYbCYej+/HPCQT4zogRuCoqoB/nuQvxLtLA/2it31RKFQHLlVJPaa3XDHRgQgghxN4GPFkdqnomOdOxelLvw5qbFu0xp/XtRIK7PB6mOZ2cAMwHjq5yOkOHAs4vLWViKsXPs1kaSksBWNbezhtuN4tfeonPnXDCASWswe3b+f6oUe96u0gkQmMsxmqnk4De97uawkyGcYWFVCUS3LFu3Xt9SP2qMRBgWUcHW4cNY7Xfz07TJBAMdi+RVFZaCkpRHQwyubGRq2bOxDV+PE1eb7+skwpWj+YrwC2xGG/uWgYnt37pqIIC6lauZNTOndhtNmpra/Padgb4czDI3exZ6dcfj7NwzRo+d8IJuPLaohDvnda6GWvFJrTWYaXUWmAY1vesQgghxKDSn0vX/A1YAFQopRqA72mtb+uv9gZaNfAF4CPADYEAj/Uo3JNIJHjH6eQd4HZgLHQnrvmsPDtUJIHOHpfNnZ3sCAZxlpVRWFxMSzhMVyhEqd9PSVER0VAIs7OT4cXFFGmNbedOZpWVMaafhlBOrKriVuD/gJtyyVe8oIAHZ87EF4vxVfI3vNvn8zHB52NYJMLyHTtoKi4m6PF070/a7azJZFhTUMAzqRRfDQQYHwpxQkkJkysrD+swcw281drKC6EQm4qKeCkaJenxQDCIsdcSSUXxOKdls7zP60W3t+8xzLe/ktSn2tu5M5Ohtbh4j2VwPKbJ0oYGPjd2LO1z5/ZaaOxQrQV+HovxRo9Kv9WGwcUlJZzQ0cHoA/ySQ4jDKVcEcQbw6gCHIoQQQvSqP6sBf7S/jj2YVQJXOp1UP/kkGyor2VRdTWavD6mbcpdbTZPiUIipLhdTi4oYDYwGig5/2IcsC4SADqwEdEtnJ1uCQWzl5WT8fjqBpliMZtMEjwen0wmAaZoEwmGw2aCrizKbjY5dRXg6OykDOoJBq5FQyPrp8YBpMr6xkXnA5M5OpldW5jUZsGF98VCbTvONZJJoYSEoxaMVFWxvauIrdjuj89iez+dj1vDhHBMOk8hkWBGN0u71krLvni2bsdl4KpHgqcJCfh+PMzYeZ0wmQ2lbGxP9fiaXlVELeA8xlizQBgSAdzo7WR0KESwvZ6vDwZZ4HBwOiMfRudh2fSFTVVjI8MZGxjU3MzwY5H1Ll1oVqftx/q3Gmh97ezTKS9Go9bxJJCgrLaUgm2X6li3M3L6dD551Fg4OvtBYX0JYa3Q9BXT1SJArQyE+F4lw7sSJMH163toTIl+UUj7gfuBLWutQL/uHVD0JIYQQRyYZBtwPDMPgw2eeafXg1NTgdrl4FWttxxVYE4bMHkOF18fjvFhY2J3AVQJjsBLXMUBRayvJhgaG9dPQyb4kgS5gY1sbm9vacBoGqrSUYG57EGiOxWhOJEh5vRT2loDmet0AAm1tVjIRDmMYxh7zCHfN64vGYn1ep+cwWa1Zn06zHqCoiNENDby/oYGz6uryeo5OqqjgjmyWn2jNNo+Hjs5OXtCaFeEwP7TbWZDHuYc916qtdDoJhcMEXS7WRKPd81p3nQGlNYFYjE3RKCgFkQiG10pTbbEYhtNJrceD2dJCtLWV6rIyhtfUEOvqojMYxFdaitvvpzMUoiUcRhUXk/H5CMTjtJomBbn2AuGw1WBHxx4FksDqXfYlEoxtbeVSr5eTi4tp7YelX3qTxfp/+j9gM9CVTnfH5shkOLmjg497vUT6aRmcLPD3zk7+rDUZr7e70m8sm2X2pk3M3L6d46XSrxiklFIFWInqX7TW/+jtNkOxnoQQQogjjySr/WTvHpwzcpco8DpwX3s7bXsNFd6VrLbmLq+SS/zicWylpbhDISYUFVHt8eDD6oH19/iZ6uigs6WFispKysqtkk6a3QlOe0cHTW1tFFVW4iotJQEkgDjQGg6zMxxGFxeT9noJ5rabpkkgFgO320oy9+4V3ZWARiJ9JqCJRMIKILfNls3iikQY53RSYLfT0NiI0zRxZrNMGz+eTatXozMZsNupnzyZt995h4TdTqKwkFhhIW0+Hx0+H1m1exDslooKfgk82NDAD202puSxN29Cbljw97Zv55HcYwi5XHyvoIBPAhcCBQdwnEQ6zcl33IGZyZDOZjm/vp4fnHoq33nmGR5atw6bUlR5vfzpvPOoLSrC5/NRC4woKCAcDvNqNotj40Z2lJbSUlKyxzlVWhONRIjkeheblWJTURGheBx8Pkgm8Xd2Et6VfAaDlCll9VprDR0dlGm9u1c7FNojOVW5Lwpc6TTVnZ2M7OjgA6NH44/FGDZ+PEYuac93z+XeksBzwF9iMbakUrhcru5EMaI19Q0NzN2yhQvOPBOjqgqq8j9DfDVwQyzGa+HwHs/9BU4n53q9JMvLqZ0yRYb9ikFJKaWA24C1WutfDnQ8QgghxP5IsnqYebEm8tbb7Tzw/PMEfD7a/H6qjz+eVmAbVs/rLrsSv4xSRAsL2ZRK0dbLcU3TJBCJWEllNIqRq4C6z36ns/ekc1eS0t6O4XB07+st8exrnz0aZYTTSaHdTuPOnbgTCXypFAtnzqREa954+WXciQTuTMYaIgrg8xEYO3aPeYQBp7PP6wDr169n5euvs7W8nPU1NWytqupOyDdXVHB5JsOlwSCXlpRgy9PfzYE1vDv9+us8U19PsqAAp8vFX02Tx0MhPq8UJ71LL6vTbueZiy/GV1hIKpPhxDvu4Kzx4/na/Pn88LTTAPj1q69y7fPPc/PSpd3329XjOsw0uWLyZJqamqjxetmZzfKX1atp83gI+nxQUEC8xxcg8Vhsj/bj++m13vu6xzQZbrORCQQoikYxIhEuPO44Knw+mkMhaqdNO6zJWBB4NHdp6fElSZdSDK+q4sMuF/M9HhJeL7VnntkvsbUCdwAvsueQ3+JYjIu2buXjEyZYyXE/JMhC5NF84BPA20qpFblt39RaPzpwIQkhhBC9k2R1gBiGwfvPOmt3Uub3A1ai2gBswRre+Lbdzss9llLZtabr3vaXVL7b/r722YHqwkIKIxFcpok3leL4khKGA6VAOp1m+Wuv4YrH8aXTnLtkye4EdNSo3Y+trAyASaee2mtxm7174w7k+jHHHENTUxMul4u1O3dybzbLmlwyGzFNfpNMssrh4Ls+H2UH8wfqhWEYfGXOHBYFAjwyZgyroHso9xeU4n3hMF8oKqK6j/srpfAVFgKQymZJZTIowN/j7xRNJvdbNKnnuagGambN2iORf/iZZ4jZ7ZhuN7X19azYupWUw0HGZmP4mDFsaWhAZ7MUAJMnTGD92rXYUyk86TTzp0xhzSuv4DRNCoGlS5fCyJHW8SdOtHoqoV+WmunLBuDvoRDPZLM43O49eu4L0mmmbt/OJZ2dnDxtWr8linHgH8DfEglCponL5cLlchHNZpm5eTOzt2/njLPPznu7QvQHrfUyjowlwIUQQhwFJFkdQL0NmXQAo3KXU8FK/KJRtjY3U1Rbi9vpJIxV2CWcu4SAJpuNN9vaSCuFDTimvBwf1icSBUTtdta3tWHLZCjMZJhVWooBuIBENsuKNWtwpFJ402nOOekkxmH1Aiu3m0BFhZWwjBqFUVy8O9jycqaffPIBJaB9bcvHuasH5gcCPLR2LfeWl9Pi94PWvG6aXJhM8iWtWVSen5Vud7V7KnDjpk382Wbr7sl8IZtlNXByVxeBjg4iFRXdc1B3yWSzzLrlFjZ2dPD5OXM4rq4OgG89/TR/XrmSYqeTZy+++KDOA8A5S5fu8feYVVDA5s2bGTNyJPXHHEOguHjPXuvCwj2uTysq2ufvebiHsyaA54HHgdU9l8MJhTAMg9rCQqZs2ED9jh24s1kmTJzYL3FkgCeBvwIB0yTQ0tLdm3tuaSkf8XpJlpVRO3myDPkVQgghhOgHkqwOAQeU5BUVEair251o7JUk4fPt3j9yZHdPLgClpZw5c+bu++4133N/7ff3HMUDZRgG5wLqX//ildGjWT5mDJFolIjWfAPYardzWUlJ3roTFPBRnw/973/zn3Hj2FBTY/W2mSZ/6urCUVDAUx0dzM/NQ93FbrOx4rOfJZhI8P6//51VLS1MrqrixwsX8uOFC/nJiy/y29de4wennnpQce3996ivr6e+vr7P/e92/XDRWL2oD4RCPJ3JdFeM7tnrXx0M8pFEgkuOOYa2KVNoKi/vl0JOGni8vZ3bs1m6/P494qgIhTh53TrOGTuWSTNmyJBfIYQQQoh+JMnqEeTdEo2hkHQeCsMwOGfJEmY3NbGyrY0/FBURyQ2x/YtStAJf5tCXdunZ3sdOP50FTU3EPB4edDp5tasLtCarFDv9fv5ltzPSNKkJhRjudnf3tJa4XCwYOZLHN25kco+E52NTprDkr3896GR1qGnBKpj0DLC5Zy9qrmJ0kdNJTXMzk7ZvpzYcZunSpdjpv+frSuAP0SjLdi2DE4939+bOXb2a8Y2NOGy27mHXQgghhBCi/0iyKo4ou5KY2kCA0BNP8NiUKTSWl+NyuXjBNPlvOMzXgOPztORMz6TpBOCfmQw3RiJ0AKlmB8mAg1VGgnU1BaTb25maTjOnpASVSvHvLVv4xvz5bGhvZ3xumPLD69ZxbB6XwxmMOoGXgcejUVak090VfXv2opZGo5zV2Minx4whNno0TU5nvy6Hsw64C3iLPZfBKUynOb2piS+NHk3nrFk01dT0+7I8QgghhBDCIsmqOCIZhsGHFy1iXlMTLxYX8xi7iyFdAXzW4eDTJSXY89imAs4pK2NuKsVnWyD4spdsBpTNS8kHI7Q4kvz8b39DA3atWXLMMUzx+7nyiSfYFAxiU4qRJSXcfASuz9mGlaD+B1gDJEyTQHt79xxQwzAodjoZ1tzMMQ0NDO/q4n1Ll1IEFPVjr/8m4A+RCK9kMvssgzNpxw7mbtnChxctopAjY/SBEEIIIcRQIsmqOGLtSi5mA0Xr13OTw0HKbieLNSx4A/AVIN8DOqsNA1vEBxllTYDMaNI7HNQdV8WPPvMZ7A4HmXSaSDTKo1pz/sKFHFtczGiXizLI23I7AykJrAVWAMtiMdb1WBMVdlegBhjR2sq5iQSfOOYYgoehF5VcbH8HXjJNAh0d3UlzTVUVS10uTvN4SPl81C5aJAmqEEIIIcQAkWRVHBXeV1xM19NP8+SkSewsLcXlcrEOuCyRYHFDA+cXFeV1SZbqarDbgQzYbLCgKoa70MNOh4MA1rI/u5K1iNPJKqwCQ7Z0Gn88Tk1BAcNyyetQ+CeNYi219HowyCvxOE2lpSiXy1rDt8eaqIZh4HI6meFwwLp1jG5upiidZunSpTjp395LjTXM917g7dy2nknz+OZmPhMKsWjyZFkvVQghhBBiEBgKn4OFOGSGYfDxhQs5pamJN/1+HnU6ieWWI/ljQQH/CgT4rt3OvDzNF62qgosugq1bYdQoxfDh1pzUiVjrdq4DVpkmYacTlMKR623tikbp1Jpt2Sw+hwOHw0Ex4DNN1oRC/Lu9nanl5VQwMD2wKayiSGva21nZ1UVXZSU7i4poBisxDYWs5K+lBcMwupNBpTV17e0sTib5xLhxFHu9BKZNo6myst97UdPAS8Bfo1HW9JgjC+B2uagKBJi1aRNVsRjTly7ttziEEEIIIcR7I8mqOGr0HBa8ELgmFCKQK6TTVFzMNwoKOA+4CMhHyjp8uHXZmxuY7nIxLp2mIxIhXlxM0OFgUyzW3cuH1qTTaewOB+3pNNsSCTbYbPxPNIrh8+FzOqkB/JEI9o4ORvj9jCwpoQQoAQLr17NzyxbGjRzJlGOPxQH7LNujsRK5FNDY0sKWQABvTQ2FFRXd6/fu6OpiaziMWVpKxOulg9x802jU6jru7MQoLNynQJLSGn84zOmFhXS99RY17e24s1mWLl3KrpV6+3sOaBR4Avgn0LjXHNnaqioWuVx8yOnEMXIkTQUFUjhJCCGEEGKQkWRVHJXGAr/IZvnutm38d8QItM2Gy+XiWawiQOcB52Mllv3F5/N1L2UDMCmb5a2GBkJOJ1GXiwKvlxh7DhlGaxKJBE6nkw095lsSCmG43TidTiLhMO1OJxx7LADl4TC+oiIKgEwiQTwex+F2Y3e5gFyPaCIBfj/EYhimidPptLbnluKhvR3D4eg1KU0kEnicTiYUFBBpaqK6s5ORnZ189PTTMfx+Ascdt3sN38OQDDYCfwuFeCKTQe21Xqstm2ViYyOXdnWxcMoU6w5SOEkIIYQQYlCSZFUctYYbBtcBK1pbeW7UKFblhoYmgbtMk3uiUT5ks/HhkhI87/HYJSNG8P2tW99zTHG7nVgohCedxt3YSBpoSyTY0tGBb9gwfF1deKuqMKHXpNHpdBKNxfY4ZjQWw1dURCQ37LnnOqZ9JZ99bXc5nQwrLMQXDFIcjWKEw3xk1ixmAYUeD4ExY6zEdNas7gTwcFTRTQOvAI8Br/eyXmtVYSHHbt7MpG3b8GUyTJbhvkIIIYQQg16/JqtKqcXAjYAduFVrfV1/tifEe2UYBosMg0XAKuBWYI1pEggEQGt+pRQPuFyc63JxDgc+PPhL116b1zgDgYCVBBoGhttNFFiZSvHAqlVECgpIuFyMLisjC2x2ONiQSJC228nYbBR5rFS7t+TT63RS7HRiptMUpNO4UymmlpdbFZKVYv2mTbhNk+JEgg+eeCITAYfbTaC62opn7FiMHvN8D/fyLm+3tvJALMbKqipMt3ufx1keDvP+ZJJPjRtH58SJNJWUyHBfIYQQQoghot+SVaWUHfgdcAbQALyulHpYa72mv9oU4lBMBn4F/HH7dv6kNRGnE6U1nabJAy4XDwMnAe8Hxhzm2PZOAr3AvIoKxsyevXuIbVGRtbO8nLUtLWzeuJExY8ZQX1SEBhoSCf753HNks1kKgHPPPpvq4mJwuQj4fLuPs2tost9PYNKk3dsrK/uM53CKYQ3V/mc0yvPxuLWxtbW7p9jtclHe1sbkbdsY2dnJ+5YulXVShRBCCCGGoP7sWZ0LbNRabwZQSt0DnAtIsioGLQWc6/ejH32UNdXVvDVqFIXV1QBkgOeAJ0yT4Z2dnF1YyNllZf06r/Xd9JWA1dfXU19f331dYQ17/uDixb3OH+3rOIMlwctgrdn6DNZw3yTQlZvLu6un2BWJ8FGnkzOcTjJ1dTTZbNTOnz8o4hdCHLhR/7GxdX62z31An/v7s+0Duv/V/wJg63VL8hVSj+OOYGtd/zzuoaznc2LX36+/nyeHW389r/JpsJ3z9xrPof7vi/7Tn8nqMGBHj+sNwHH92J4QeWEYBuedfTZzm5qoKStju9PJA1jDhM3cEOGA1ryRTHKHx8MpLhcLgBkM/knggyX5PBAZYDVWL+oz8TiBZHKPZWdcLhchYERbG1MbG/n8ccdZw5dBiiYJIYQQQhwB+vOz9d4rZYC1WsaeN1LqMuAygBEjRvRjOEIcuJ5JXTXWMIENwG/b2mjJZskqhdKakGnygsvFC4AfmBYKMa6hgRPKy6mWZOk9SwMrsRLUV7CWzzFNk0Bra/eyM4ZhcKzTyalOJ/VuN3GbjdrjjpPkVAghhBDiCNOfyWoD0HOVyTqgae8baa1vAW4BmD179j7JrBCDxXjgmw4Ho599lneqq1lfW4sjN0QYoNU0+UswCF4v7nCYxR4PpxQVMRO61xYV+2rHGuL7QjjMq+k02dxyM7vsKpjkMU2OaW7mQ+EwSydNsnZWVVkXIYQQQghxxOnPZPV1YLxSajTW0ocXAB/rx/aE6HeGYfDRM86w5n2WlxN3OnkWeB7Y3KMKbbyggGeyWZbn7jcWmIU1ZNWzYwcjjuKKtHGsIdX/xUpSd5DrPe3s3GdZnTLgFKWILV+O0d6Ow2ZjTm79WCGEEEIIcWTrt2RVa51WSn0BeAJr6Zrbtdar+6s9IQ6Xved9fhK4GHg+neaWpia2VFQQdzpxuVzdt9lEbkmcWAx7SQmVLS2c4XYzx+/nGKyhxr2Nmx/qMlhDLDZinYMV0ShrUykK3O5ee081UBSPM2/nTi4YOZJjAeX3E5g/v9fCUEIIIYQQ4sjVr/VgtNaPAo/2ZxtCDAY24NTyciaOGUNjUxPp0lK2OZ28iVX+OsvuhCxts7HT7+dhrXk+d/8ioDYSobStjcl+P1PKyqgFXH20NxjFgbfb2nizs5OwYdDi97MZq3Iv5HpP29ut3tNQqLv3tACYZbeT2LiRutZWjGiU9y1dSs+UdCgVhhJCCCGEEPkx2IuXCjGk9Eyq5gIfAqJYRYOeU4pHEwlCLhcotUfPa5tpsrqjA5Ti3kgEw+vtHgY7LHfxBIPYAwHGl5cztqKCEqDwMD0uDUSATa2tvNPejjYMkqWl7AQCwM7cYwjEYlBYCMEghtPZZ+9pZSjEPK05b+RIJgGFPh+ByZOl91QIIYQQQnSTZFWIfuYF5gHz/H4ujcdZt3Mn8bo62pxONgDrga4eiZzSmkQigdPppAPoAN4wTQKhELhcEIthmCZOpxM3UIJVwKkYSOzcSailhZqKCkbW1lIAe1zCHR20t7dTUlGBr7SUFOxxae/qYmcohK20lKzPRwirIm8YSJgmgXgc3G5rXmkfhZD2fgzlwDigUmt2rFhBZWcnvkyGpdJ7KoQQQggh9kOSVSEOo94SMg28nUxy96pVBHw+Qj4f/spKQlhLuUDfiWAca/htMxAJh2k3TSguhlSK8nAYX1FRdzumaRKIRKyez16STdM0CXR1WcN0OzowCgoOKBndxed0YovFKIlEMMJhPjBtGsdhJdMAlJQQOP546T0VQgghhBAHRJJVIQaYAqZWVvI/s2fvTuQ8HjJAC9Z6T6u15smGBrpcLuIuF2VVVSSxChjtEo3F9jhuNBbbI1l9t2Tz3faXOZ2QSOCNxylOJFhQUtJdHMoAylwuWsrKaEokqJ00CaO8fJ/HKr2nQgghhBDiQEmyKsQgsXciZwdqcpdZJSUsGjfOSmYrKjDcbjTWfNhg7vJWPM4ra9eSttvJ2GyMq6+nit1DfDuU4q1AALJZHMC00lLKsV4ECoCo1ry1YQOOVApvOs2iefMYDfixCkA5XC4CJSU0xWLUjh6NUbzv6rGSjAohhBBCiHyRZFWIIWLvRFABvtylDpg8ahQz43E2b97MmDFjqB82bM8D+P0ERo7c3Xvr9++5v6SEwJQpu/dXVLxrDEIIIYQQQvQXSVaFOILU19dTX1/f5/53SzYlGRVCCCGEEIOFbaADEEIIIYQQQggh9ibJqhBCCHEUUUotVkqtU0ptVEpdPdDxCCGEEH2RZFUIIYQ4Siil7MDvgLOAicBHlVITBzYqIYQQoneSrAohhBBHj7nARq31Zq11ErgHOHeAYxJCCCF6pbTWAx1DN6VUK7DtMDVXAbQdpraOVHIOD52cw0Mn5/DQHanncKTWunKggxhMlFLnA4u11p/OXf8EcJzW+gt73e4y4LLc1QnAujyFMNSfa0M5/qEcO0j8A2koxw4S/0DqLfb39N48qKoBH84PFUqpN7TWsw9Xe0ciOYeHTs7hoZNzeOjkHB5VVC/b9vnWWmt9C3BL3hsf4s+1oRz/UI4dJP6BNJRjB4l/IOUjdhkGLIQQQhw9GoDhPa7XAU0DFIsQQgixX5KsCiGEEEeP14HxSqnRSqlC4ALg4QGOSQghhOjVoBoGfJjlfXjTUUjO4aGTc3jo5BweOjmHRwmtdVop9QXgCcAO3K61Xn0YQxjqz7WhHP9Qjh0k/oE0lGMHiX8gHXLsg6rAkhBCCCGEEEIIATIMWAghhBBCCCHEICTJqhBCCCGEEEKIQeeoTFaVUouVUuuUUhuVUlcPdDxDjVJquFLqWaXUWqXUaqXUVQMd01CllLIrpf6rlHpkoGMZipRSJUqp+5RS7+Sej/MGOqahRin15dz/8Sql1N+UUq6BjkkceYba+25f73NKqTKl1FNKqQ25n6UDHWtf9n5/GWKx7/PaPsTi3+d1dTDHr5S6XSnVopRa1WNbn/Eqpa7J/S+vU0otGpiod+sj/p/lnj8rlVIPKKVKeuwbNPH3FnuPfV9VSmmlVEWPbYMm9lw8vcavlPpiLsbVSqnre2x/z/EfdcmqUsoO/A44C5gIfFQpNXFgoxpy0sD/aK3rgeOBz8s5PGhXAWsHOogh7Ebgca31scA05Fy+J0qpYcCVwGyt9WSsgjsXDGxU4kgzRN93+3qfuxp4Wms9Hng6d32w2vv9ZSjF3ttr+5CIfz+vq4M5/j8Bi/fa1mu8uf+DC4BJufv8Pvc/PpD+xL7xPwVM1lpPBdYD18CgjP9P7Bs7SqnhwBnA9h7bBlvs0Ev8SqlTgXOBqVrrScDPc9sPKv6jLlkF5gIbtdabtdZJ4B6sEyoOkNa6WWv9Zu73MNabyLCBjWroUUrVAUuAWwc6lqFIKeUHTgZuA9BaJ7XWwQENamhyAG6llAPwIGtuivwbcu+7+3mfOxe4M3ezO4HzBiTAd9HH+8tQib2v1/YhEX9Ob6+rgzZ+rfULQMdem/uK91zgHq21qbXeAmzE+h8fML3Fr7V+Umudzl19BWtNaRhk8fdx7gF+BXwd6FkJd1DFDn3GfwVwndbazN2mJbf9oOI/GpPVYcCOHtcbkETroCmlRgEzgFcHOJSh6AasF6LsAMcxVI0BWoE7ckPdblVKeQc6qKFEa92I9Y3ndqAZ6NJaPzmwUYkj0JB+393rfc7QWjeDldACVQMY2v7cwL7vL0Ml9r5e24dE/Pt5XR0S8ffQV7xD8f/5UuCx3O+DPn6l1DlAo9b6rb12DfrYc44BTlJKvaqUel4pNSe3/aDiPxqTVdXLNlm/5yAopXzA/cCXtNahgY5nKFFKLQVatNbLBzqWIcwBzARu0lrPAKIMrmFVg15uDtK5wGigFvAqpT4+sFGJI9CQfd8diu9zR8D7y5B+bT8KXleH1P+zUupbWMP6/7JrUy83GzTxK6U8wLeA7/a2u5dtgyb2HhxAKdYUiq8B9yqlFAcZ/9GYrDYAw3tcr0OGvb1nSqkCrDfwv2it/zHQ8QxB84FzlFJbsYbEnaaUuntgQxpyGoAGrfWuXv37sD7giAN3OrBFa92qtU4B/wBOGOCYxJFnSL7v9vE+F1BK1eT21wAtfd1/APX1/jIUYoe+X9uHSvx9va4Olfh36SveIfP/rJS6GFgKXKi13pUUDfb4x2J90fFW7n+4DnhTKVXN4I99lwbgH9ryGtYIjwoOMv6jMVl9HRivlBqtlCrEmuj78ADHNKTkvh25DVirtf7lQMczFGmtr9Fa12mtR2E9B5/RWh9J37z2O631TmCHUmpCbtNCYM0AhjQUbQeOV0p5cv/XC5EiVSL/htz77n7e5x4GLs79fjHw0OGO7d3s5/1l0McO+31tHxLx0/fr6lCJf5e+4n0YuEAp5VRKjQbGA68NQHz7pZRaDHwDOEdrHeuxa1DHr7V+W2tdpbUelfsfbgBm5v4vBnXsPTwInAaglDoGKATaOMj4Hf0X5+CktU4rpb4APIFVoe12rfXqAQ5rqJkPfAJ4Wym1Irftm1rrRwcuJHGU+iLwl9wH4M3AJwc4niFFa/2qUuo+4E2sYVL/BW4Z2KjEkWaIvu/2+j4HXIc1pO1TWEnJhwYmvIMylGLv7bXdxhCIfz+vqz4GafxKqb8BC4AKpVQD8D36eL5orVcrpe7F+gIhDXxea50ZkMBz+oj/GsAJPGV9Z8ArWuvPDrb4e4tda31bb7cdbLFDn+f+duB2ZS1nkwQuzvVsH1T8anevuBBCCCGEEEIIMTgcjcOAhRBCCCGEEEIMcpKsCiGEEEIIIYQYdCRZFUIIIYQQQggx6EiyKoQQQgghhBBi0JFkVQghhBBCCCHEoCPJqhBCCCGEEIeBUupapdTp73KbBUqpEw5XTEIMZkfdOqtCCCGEEEIMBK31dw/gZguACPBS/0YjxOAnPatCCCGEEOKooJT6ulLqytzvv1JKPZP7faFS6m6l1E1KqTeUUquVUj/ose+BHsc4Qyn1j9zvEaXUL5RSbyqlnlZKVea2T1dKvaKUWqmUekApVZrb/iel1Pm537cqpX6Qu+/bSqljlVKjgM8CX1ZKrVBKnXQYT48Qg44kq0IIIYQQ4mjxArArAZwN+JRSBcCJwIvAt7TWs4GpwClKqanAM0D9rkQU+CRwR+53L/Cm1nom8Dzwvdz2PwPf0FpPBd7usX1vbbn73gR8VWu9FbgZ+JXWerrW+sV8PGghhipJVoUQQgghxNFiOTBLKVUEmMDLWEnrSVjJ6oeVUm8C/wUmARO11hq4C/i4UqoEmAc8ljteFvh77ve7gROVUsVAidb6+dz2O4GT+4jnHz3iGpWPByjEkUTmrAohhBBCiKOC1jqllNqK1Tv6ErASOBUYC8SBrwJztNadSqk/Aa7cXe8A/gkkgP/TWqf7auI9hmTmfmaQz+VC7EN6VoUQQgghxNHkBayk9AWs3tTPAisAPxAFupRSBnDWrjtorZuAJuDbwJ96HMsGnJ/7/WPAMq11F9DZY77pJ7CGCB+oMFD0nh6REEco+QZHCCGEEEIcTV4EvgW8rLWOKqUSwIta67eUUv8FVgObgf/sdb+/AJVa6zU9tkWBSUqp5UAX8JHc9ouBm5VSntyxPvke4vsncJ9S6lzgizJvVRzNlDUMXwghhBBCCNEXpdRvgf9qrW/rsS2itfYNYFhCHNEkWRVCCCGEEGI/cj2nUeAMrbXZY7skq0L0I0lWhRBCCCGEEEIMOlJgSQghhDjCKKVuV0q1KKVW9dhWppR6Sim1IfezdCBjFEIIId5NvyWrSqkJSqkVPS4hpdSX+qs9IYQQQnT7E7B4r21XA09rrccDT+euCyGEEIPWYRkGrJSyA43AcVrrbf3eoBBCCHGUU0qNAh7RWk/OXV8HLNBaNyulaoDntNYTBjJGIYQQYn8O1zDghcAmSVSFEEKIAWNorZsBcj+rBjgeIYQQYr8O1zqrFwB/e7cbVVRU6FGjRvV/NEIIIY54y5cvb9NaVw50HEORUuoy4DIAr9c769hjj83PgTs7IZ3Oz7H6m8MBpYNoWu9QOnfi3R3O59dgeO709+MdDI/xYA2215p+9l7fm/s9WVVKFQLnANf0sb/7DXHEiBG88cYb/R2SEEKIo4BSSkbz7CmglKrpMQy4pa8baq1vAW4BmD17ts7be/NNN0FdXX6O1d8aGuCKKwY6it2G0rkT7+5wPr8Gw3Onvx/vYHiMB2uwvdb0s/f63nw4hgGfBbyptQ70tlNrfYvWerbWenZlpXwBLoQQQvSTh4GLc79fDDw0gLEIIYQQ7+pwJKsf5QCGAAshhBAiP5RSfwNeBiYopRqUUp8CrgPOUEptAM7IXRdCCCEGrX4dBqyU8mC9IV7en+0IIYQQYjet9Uf72LXwsAYihBBCHIJ+TVa11jGgvD/bEEIIIYQQQhz5UqkUDQ0NJBKJPXfMmgV2+8AEdagMA9auHego8s7lclFXV0dBQcEhHedwVQMWQohBSQNpYEcgwI5AgMrqaiqqqsgA2dxlZ2srO1taqK6qoqqyEhugcpf21lZad+6kzjCoq6qiACjI7RNCCCFE/jQ0NFBUVMSoUaNQqsc7bUsLFBYOXGCHIpmEqiNrJTGtNe3t7TQ0NDB69OhDOpYkq0KIIUsDMSAEdOUuIWBbMEhzVxfO0lIcfj+x3O1iQHssRlc8jsPjQbndpICEaRIwTSguhkQCwzRxOp0AmKZJIB4Hnw/i8d73+f373K8AyCYSpGMxyl0uyj0e3IAX8ADpUIhERwcji4sZWVqKHyjOXfzIi7MQQgixt0QisW+iKgYdpRTl5eW0trYe8rHk85AQYlDaGQiwcedOCocNI1tRQSvWOhutwNZolMZEgozXi93l2uN+pmkSCIWsK8EghtO5Z3LZ1gZaQzSKYRg4nU5rOJHWaEBpTSKR6L7Pwe6LmCaBlhbQmh2RSHdb3XEEg6AUhMMYHk/3vl37bbEYw5xORno8VMIeF93SQqKxkbraWgzDyP/JF0IIIQYpSVSHhnz9nSRZFUIMqATQBDT2uGyIRnkzGsUsKYFYbN/ezPb2fRLO7uMdRHLpczqJZzLYMxnsWjOssBAfVrn08oICtkejoDUKGFFZiRtreHBJQQHbEglryLDdTqnTiQ1rWPHBJrmmaRIIBEBrmpVix16PzzRNAokE9pISStvamOfxUF9URB0wHKgF9kzfhRBCCJEvP/75z/nr/fdjt9mw2Wz84Ve/4robbmDLtm1EolFa29oYPXIkAL//+c958623uOHmm9m0ZQutGzdSUW6V8/nLvffy0xtvBK3xlZRw0003MW3atH3a27JlCxdccAEdHR3MnDmTu+66i8K9hjzHYjE+85nPsHLlSrTWlJSU8Pjjj+Pz+bDb7UyZMoV0Ok19fT133nknHo+Hxx9/nKuuuopMJsOnP/1prr766n3a7uzs5NJLL2XTpk24XC5uv/12Jk+e3L0/k8kwe/Zshg0bxiOPPJLP09xNklUhxGGRwUpKtwDbgK3A2nichmQSl8u1R0LWlU5j2u0HlOjpWIwqp7N7CK3NZmPztm0UplIUZjKcMmcOw7CG3sZSKZa99BL2VIpC4H2LFjG8uBiby0XA66WpqYna2loMt3t34B4PgfLy3fs8nj33lZTs3pfr5dVAQyLBw889h6kUmcJCTjj9dLxYQ5Ebs1leWL+euN1OwulkVFkZGaxhzFtziXFvj73n40/bbLT5fLyQzfJWj/NsmiaeSITJhYVMLypiHDAO8B3qH1AIIYQYZEZd/a+8Hm/r1fP3u//l117jkSef5M3nnsPpdNLW3k4ymeSBu+8G4Llly/j5b37DI3//e/d93G43SxcvZsHSpXsca/TIkTz/r39R6vHw2PLlXHbZZbz66qv7tPmNb3yDL3/5y1xwwQV89rOf5bbbbuOKK67Y4zY33ngjhmHw9ttvA7Bu3bruwkZut5sVK1YAcOGFF3LzzTdz1VVX8fnPf56nnnqKuro65syZwznnnMPEiRP3OO7//u//Mn36dB544AHeeecdPv/5z/P000/v0W59fT2hXSPa+oEkq0KIvEtjJaMbcpe3YzE2JZM43O49exBbW0FrupTao4fU5XLRpRQF6TR+02RWeTmjgSrAnsmw+o038MRi+NJpzjv7bPYYCFtURGDChN0JZGnp7n0VFYw57bTd+3oMoTUMo88hte91nwKGGwbnL168u62Kit03KC3l5KlTd+8rKureFUil+NoXvkCis5O0w0FpTQ3a6SSB1QvtTqWIx+OkbdYy2Wm3m85cBcRsJkM8HgesLwSecbux5fa5Roxg3te+RklrKyf4/RxXUXFYFtoWQgghjhTNgQAVZWXdn1d29ZLuz4ypU3vdfsJxx1m/JJMcf/zxNDQ07HMbrTXPPPMMf/3rXwG4+OKL+f73v79Pstrc3MzIXG8uwIQJE3pt86STTmLlypW89tprjBs3jjFjxgBwwQUX8NBDD+2TrK5Zs4ZrrrkGgGOPPZatW7cSCAQwDIOGhgb+9a9/8a1vfYtf/vKX73oeDpYkq0KIQ6KBALCss5M3IxE6ysoIeL2kc/v3mCcaCu0zT1RpTXEsxrj2dmbX1lIL1DmdOFwuYo2NDKutxfD16BcsK2P+iSf2mnDucrCJZ74dTByGYVDj8fCl2lqKiorw+fbtE41EInREIuD3k/Z4CGEVltoZi9GRTKJzt3O5XDhzvb2/3bSJhzs7wW7nz7EYoxMJ5rhcTAWmA3VIBWMhhBBif8489VSuvf56jpk9m9NPOYWPfOADnDJ//72xB+K2227jrLPO2md7e3s7JSUlOBxWylZXV0djY+M+t7v00ks588wzue+++1i4cCEXX3wx48eP3+M26XSaxx57jMWLF9PY2Mjw4cO799XV1fXaqztt2jT+8Y9/cOKJJ/Laa6+xbds2GhoaMAyDL33pS1x//fWEw+FDffj7JcmqEOI90VjzSlflLquBRtMkEA5bCWl7O4bD0euw3aJ4nDEdHcyrqcGfybD+lVcoDocpUIqlS5fu2UNaVdVnKffDmXAOBLfbTU1NTZ/7fT5f70lsNsu6LVuIFRQQdbnwDh9OFAhizSvpOby4wzR5xeXildx9y4DR4TA1O3dyht/PmCP4/AohhBAHw+fzsfy553jx5Zd59sUX+cill3Ld977HJR/72EEf89lly7jttttYtmzZPvu01vts661w0fTp09m8eTNPPvkk//73v5kzZw4vv/wy9fX1xONxpk+fDlg9q5/61Kd46KGHDui4V199NVdddRXTp09nypQpzJgxA4fDwSOPPEJVVRWzZs3iueeee+8P+j2QZFUI8a66gDeAZ8Nh3kylSHu971rUaITTyXigSmu2L19OeVcX7mx2d1JaVkZgwYL99pCK98bn8zFh/HjC4bDVK5v7G2WAF7JZCt95h6biYhrKy3HtVUW52TRZ0dkJhYX8IR5nUSTC2T4fc5CCTUIIIcQudrudBSeeyIITT2TKxInc+be/HXSyunLVKj79la/w2JNPUt7LkOKKigqCwSDpdBqHw0FDQwO1tbW9Hsvn8/GBD3yAD3zgA9hsNh599FHq6+v3mLO6S11dHTt27Oi+3tdx/X4/d9xxB2AlzqNHj2b06NHcc889PPzwwzz66KMkEglCoRAf//jHuTs3dzefJFkVQuxDAzuA13KXd8itRdrZafWe7rUUS/KnP8X/9tu4TBN3Os24ykr8bjdxrLmT8XictlgMj8fDTS++eEixlYwYwZeuvfaQjjEU3fjKK/zxzTfRwGdmzuRLxx/Pd555hofWrcOmFFVeL3867zxqexk6bAeqXC6umD6dpqYmavx+Uk4nK4G3gJVAV48vHDJK8Z9MhlVYiepc4GRgJtb6sUIIIcTRaN2GDdhsNsaPHQvAirffZmSP4bTvxfYdO/jARRdx1+9+xzHHHNPrbZRSnHrqqdx3331ccMEF3HnnnZx77rn73O4///kPEydOpLS0lGQyyZo1a1iwYEGfbc+ZM4cNGzawZcsWhg0bxj333NM9L7anYDCIx+OhsLCQW2+9lZNPPhm/389PfvITfvKTnwDw3HPP8fOf/7xfElWQZFUIkaOBl9raeDwWY0tFBV09q96yZ++pO5lkfHs7Z9TWMhn4c1MTX58wYXePXi9DVPPl+1u39tuxB6tVLS388c03ee0zn6HQbmfx3XezZPx4vjZ/Pj887TQAfv3qq1z7/PPcvFe1wZ72Hj49HFiCtQzPa6kUd27cyHrDoM3v7+55TQAvAE+ZJioW4wy7nU/4/Ug/uBBCiKNNJBrli1//OsFQCIfdzrgxY7jlhhv2e59f/+EPXP/rX7MzEGDqiSdy9hlncOuvf821P/sZ7R0dfO4b34BvfQuHw8Ebb7wBwNlnn82tt95KbW0tP/3pT7ngggv49re/zYwZM/jUpz61TxubNm3iiiuuQGtNNptlyZIlfPCDH+wzJofDwW9/+1sWLVpEJpPh0ksvZdKkSQDcfPPNAHz2s59l7dq1XHTRRdjtdiZOnMhtt912kGfu4EmyKsRRLg48B/wjFuO1WMzqOW1r26PnVAFTHA6yGzcyoqWFyliM9/WYY2qj73mU4tCtbW3l+Lo6PLky9KeMHMkD77zD13sUdYgmkwddIMkGHF9RwejJk2lqakK53bzjdPI80MCea7/epRRPOZ2c5nTyAWD8/g8thBBC9Jut1y2xfmlpgb3WHu0Ps6ZP56Unn+xz/67hwT1defnlXHn55fvc9tZf/5pbf/1rSCb3qdHx6KOPdv8+ZswYXnvttf3GddFFF3HRRRf1ui8SifS6/eyzz+bss8/eZ/tnP/vZ7t/nzZvHhg0b9tv2ggUL9tuLe6gkWRXiKLUJeBwrUU0AXanUHvNOicWY73QyF5gN+L1eArlkRuaYHl6Tq6r41jPP0B6L4S4o4NGNG5mdK8D0raef5s8rV1LsdPLsxRcfUjs9e16nAx/BGsZ9V3MzTyYSdLndKK2JJxIsczpZBkwG3g/MQaoJCyGEECK/JFkV4iiSBh7s7OTBVIqW4uI9iiS5XC6i2Szjm5uZEAhw2QknMGyv+7+XKryXPvQQj6xfT5XXy6rPfQ6Ajnicj9x3H1uDQUaVlHDv+edT6nbzl5Ur+dlLL3Xfd2UgwJuXX8706upDfchorGQ81uPS0N7OjvZ2/BUV+MrKMIEk0NrVRWswSFFJCUXFxWSwhsh2hkIEu7ooKS6mxO9HYfVGKiAcChHt7KSquJiKkhIKseZ1Rjo7ibS2Mry8nOHl5XgBNxAOBGhvarKW5OlxLl9+GZ57Dnr7crK+spJvzJ/PGXfdha+wkGmGgSO3zuqPFy7kxwsX8pMXX+S3r73GD0499ZDP2S4KGAVc5nZT8/TTbCstZcXo0Zg9/i67qkKXxWKc2NjI+/x+quWLDCGEEELkgSSrQhwFssDzwG2xGG/vWmImkege6jsCWOx0MsnjocvtpvaEEw655/SS6dP5wty5XPTAA93brlu2jIWjR3P1iSdy3bJlXLdsGT894wwunDqVC3OLZr8dCHDuPffsN1HVQARozV3Wd3ayNRTCVlqK9vu71x0NJBJ0mCZOl6s7MTdNk0A0Ck6nVSgqV9nYNE0CXV1WA11dGLn7mKZJIBi0zlkwiOF07nmsYNC6TyiE4Xbvvk84bLURjWL4fLu3mya20lI8XV1MLCqixuOh82X4w0JN2oQCJ3xkAcRGWcntrt7KT82cyadmzgTgm08/TZ3fv8c5+diUKSz561/zmqzuYhgG71u6lKamJr5QW0vM6eQBrLmsmdx5WNHWxorCQh5uauLHNhtTKyvzHocQQgghji79mqwqpUqAW7FGimngUq31y/3ZphBiNw38B/gL1tzDnkN9HZkMU1pb+VRdHfXkkiLDsC55cPLIkWzdlcjlPLRuHc/lhqpePG0aC+68k5+eccYet/nbqlV8dPLk7h7RMFbiGQbakkmeSyRYnkhArgBQd2IIeySTpmkSaGmxkkyluhPz3pbZOZjt0PuSPQdyrIxSRJxO1qVS7ATe+XeaVNIOWUUyqflvc5YHsXpvC1IpCkwTWzLJMWVlhLq6uH/tWl7+1KfY0N7O+Fyp+4fXrePYioq8/O16s3ev+leAi4CHgXtyc501sL2sjC8XFPA54DysSsRCCCFEvmite10TVAwuva0RezD6u2f1RuBxrfX5SqlCwPNudxBCHDoNPN7ezp3ZLB1+f3dy5XK5MNNppm/ZwtSmJs5ftOiwVnUNRCLUFBUBUFNUREs0CuTmzAJB4M+rV3PNBz/I3fE4FBRgd1gvU5l0mkg8Tlc6TWdLy3tKPgvSaZyRCMOcToY5HDR0duJIpynIZpleWkpZLobVW7Zgz2SwAXNnzaIMCGWzvPHOO5DNomw25sydSzHWOe7Qmtc2bCCtFFm7nUkzZuAB2pRixc6dJO12Ug4Hdbkk0lVYSDSbJW2zgVLdFXe9xydQBR7rMRRoCiozAKTSaTpzieAv7r+feDKJw27nwrPP5vGCAn7zxBMEOjsptNkYVVLCrUuW9P8fsYcK4FJgQTLJD7ZvZ8WIEaAUdrebP2H1vH4RGHdYoxJCCHGkcrlctLe3U15eLgnrIKa1pr29fZ813Q9GvyWrSik/1tJ8lwBorZNY08KEEP2oCfh5JMLT0ajVqxiPYxgGpU4nFzqdHOfzESwvp3bKlAEpkhQHOoB2rDm0f43HyeSS0o0NDSiHA5vPR8Q0IZnE5/VidzhIp9PW4wHQmmwsxnCnk2PsdnY2NuKJx/Gk05w+Zw6jgWQyyX+ef57CZBKHUizdVb3Y6yVQU2MViho+HGPXcNriYgL19bsLSJWUWNtLSzkztz5pbW0tRmnp7gdTUsLiKVN27ysutrb7/QRGjbK219RgeL3WdrebgMfDluZmfLW1OJ1OuoCts1P89frlbFlVgf+4BM6nwQmEejzm//nQh3C5XDhdLjLpNF3RKBedfTYo1X2OXgJ8ySTeWIwRhYWM8HgOS8/mGMPgeuCV9nYeHjWKltyXI5uxemBP7epi3pYtjK6pkcJcQgghDlpdXR0NDQ20trbuuSMcBvsQHcuTyUB7+0BHkXcul4u6urpDPk5/9qyOwZpOdodSahqwHLhKax3txzaFOGqlgPuBe4G2TGaPXsWTmpv50qhRFEFeh/q+myzWnMZ3gEbTxOPxcGtnJ+WlpbR3duJxu+nqkZS+vGoVc+vruxM0eyaD1zSpcTgoAIItLYxqbeX055/ng4sWUQ3g8xEYO3Z3wlhWZjVeWcmwRYt6rV7cV6Go97o9X8eaXVrKSR8eQdOJVqw3vVDAB4GudJpVO3aQKCggUVhI0bBhJIBAbjg3AFqTTqexOxyY6TTt8TgAa1Ip/Ok01Q4HxYkE24JBdgYC/Vb8yDAMzjUMlgAPAn/D+nYyYZr8qauLhwoLef9TT3HBGWdIwiqEEOKgFBQUMHr06H133HQT5CExGhANDXDFFQMdxaDVn8mqA5gJfFFr/apS6kbgauA7PW+klLoMuAxgxIgR/RiOEEeulcDvgcbcdZfLRQiYun07c7ds4cOLFlmJaj/TwI5YjB2mSdTrZQNWIaTX02kiiQSTRo/m6eXL+eCCBTz/1ltMHTMGAFs2izuRYPmaNdz+sY/ha27GZZoUZrMcc8wx+KwHRaS2lofCYWv48iEkn4NRb7EW+3xMGz2acDhMUVERvlyPZSSTYfW2bUQKC4m5XLiGDSMCBPfqfU6m0zQB602TFQ4H53d1cb7LxfuKixlD/yw14wDOB+YDvwVezA3H7vB6uX/WLCbnhnALIYQQQryb/kxWG4AGrfWruev3YSWre9Ba3wLcAjB79uz8zMQV4iiRAH4eCvGk1tYQ0VwyM9np5AKvlwKfj9q9Ert8iwIB4GVgeypFRyoFSnH7/fezobGRSDzOVTfeyNnHHceZs2dz26OP8o3f/Y7a4mKunjWLmu3bcaXTtLjdjPH7WVpdTcTn252g+Xzdbfl8PsrLy4+qZMfn8+1xDnZtmzR27O5zlFsIvS2TYUUgQMjtJuR2Y/f59hg+HXY6+QfwNFAaizGhpYXzPB4m7bUYeT7UAD8C/p7N8lOsXvYur5c/VlYyMbdfCCGEEGJ/+i1Z1VrvVErtUEpN0FqvAxYCa/qrPSGONluB78VirMgtq9KlFCOrqrjc5eIswFZRAf1UHTYBPNzZyZOmSWNJCWFgC2Dmhh8DXHrWWbhcLkpdLkpMk8SOHXjb2jht5kwmjB+Pz+cjEol0J1yzfD7Oqq8Hek/QxJ56O0cVXi/HDxtmnVO3G7vDwZZUijWRCPZslmyuqJNpmrzV1sZbSnFfPM454TAXFRUxNs8xKuCC0lKKs1l+ZrfjcLuJOp1cjZXIDs9ze0IIIYQ4svR3NeAvAn/JVQLeDHyyn9sT4oingX8DNwOtPZaiGb9zJ18MBlmQW6+0P2wHHgceTSTYsmu91pYWvBmreq3D4aAwk8Efi1GcSDC9tpZKQDmdRKqr9+ktlaQ0//Y+pxPdbkaUlPBcIMBSr5c1TiePdXZ2P2+ywLPZLG8CYyMR5jQ0ULypirdXlrFgAcybd+gxnVVeTjVWgprEKrD1pXicSzZvZm5FxVHVUy6EEEKIA9evyarWegUwuz/bEOJosi0Q4NepFG9XVuJ0OnG5XMSyWU5Zs4aJO3dSv3Rp3tvUwKMdHdyXStFYUmJVsDXNPZaLcSaTTAaGORw4nU7CySRFNTX4dlXBRRLT96JkxAi+v3VrXo85bsYMFpeXsxj4UDLJ71auZGVdHY3l5d29rc92dPDImmK2fKwE0hpnoeLpp/OTsM4AfpC7dJkm21tbudbl4sPPPMNFp50mCasQQggh9tHfPatCiDxZ09LCF9rbafd6IRDAMAzGOZ182udD1dZSO3t2Xj/wa6wS3rdEo7waiVi9qLl2XS4XKh5n0o4dTAgEaAK6+3MlKT1kX7r22n49/nDD4Mtz59LU1ITp8fCi08m/csPJI6+4yKYUZBVmEp55Lj/JKsBkrN7VK3Nrx5oOB/+eOJGFTU2SrAohhBBiH5KsCjEENAJX2+20e73dvZlTW1v5UV0drspKqKzMa3vPtrdzRzrNzpISErkCPRqrau+x7e18KrfeaHM8Tu3Uqdz073/ntf3BRgNNgQDNTU3U1db22/Ivh1PP6sPHA2clk1zX0ED0+DG0FGp0CiiE56d2srg1w6w8PccmAN/PZPi81mSUYmdpKauLipiZl6MLIYQQ4kgiyaoQg9xG4HtAwueDaBR7Nsupa9fytZkzceW5rTbgl+Ew/4pGu3tSy0pLcWSzTN6+nZnbt3PBmWdiABjGoE3aNgcCbGhtxVNdTWFFBV3A9mCQ5q4unKWlOPx+YkBbJEJHNIrL56PQ6yUNhOJxwrEYBR4PDrebFBA1TQKmCWVlYJoYponL6SSVSJCKx/G7XBS53RQC6ViMVCRCpcdDpc+HG0iHQiQ6OhhZUsLIkhKKgWRrK/HmZiYMkvM4uaqKX2jNK6Xt3PpoKe8sc6AntxGYbPK5UJoblGJengp2zauo4NMFBdyDtczSw04ni4H8fuUihBBCiKFOklUhBrHn2tv5X5sNPB6cTifDq6q4cOtWTps5M6/DJjPAI8DdQCCb7e5JtWezzO/s5ONeL3G/n9ozz+y13f6YY9mXkhEjSAM7sXqc1wSDbAiHSZeWEvP52JFIsNU0oagIYjEM0wQgEApZBwgGMXJL/AQ6Oqyk3DQxHNbLYaC11doWjWIYBk6nk0RurdBdvdqJRMK6bUsLaE1rONx9XgJtbdb9EwmMggJrWzAISkEohOF2W9vicSguxh6PMykWY4THgyscxtHezkS/n2llZdQChYfhnO5iGAbnGgZLJsKvRm3hb0AaGwmHg+/Z7dwI1Oeprc8UF7MK2IFVXfr3wHfpn7VfxZ6UUl8GPo01aOBt4JNa68TARiWEEELsS5JVIQapp9rb+UY4TEYpCIcZU1XFdS4XE449Nq/tbAF+Eo3yTjqNy+XC5XLRpRT1jY3M27yZj55+OkZVFexnLc7+mmOZxkpIt2Et1bMqEmFlIsHjiQQFuaJAgVDISg47OjAKCkjsVfxpV2J5sNt2FbIKA1prtM2Gy+XqM4F9r9sySrEtlSJgmgQ6O62kNhLB8HpRgCccZqLTyfSiIsYDY4GifjnbuzmAizweUs8/z0MzZ5IoLCTlcHBlZyffymZZUF5+yG0UAFcCXwcSpsnTiQRTMxneX1Z2yMcWfVNKDcM69RO11nGl1L3ABcCfBjQwIYQQoheSrAoxCG0ErrfZyCiFBnyJBJ/ZuJEJkyfnrQ0NPAH8JpGgob29e63WGRUVfNPjodjlovb00w9b4Zs01tI464ENwMpYjE3JJA63G6fTaSWmu3pCYzEMw+g1YXS5XESzWTymiSeVYlp5OUVas3nbNgpSKZyZDKfMmYNba157803sqRQO4IxTT6UAeHbZMlQmgwNYsmgRw4qLKXA6aXG5aGpqora2liqnk53BIP98+mnSgHY4OHXxYtJK8fgrr2AqRbqggDmnnEJcKV5Yv5643U7C6WRUWRkhm423YzGiBQWYhYW9Jr/RSIRIbjj25liM1wsLu89DcSjEHKeTiek0JTt2ML66Ou9/J8Mw+NQppzCtrY2bKyvZnlvu5uuZDHdlMkzYz5cXB+pY4KRQiLtzxZ1+bpocn0pRMwiGRR/hHIBbKZUCPEDTAMcjhBBC9EqSVSEGmQDW8h7K44FwmKJ4nPPfeINZp5+etzbiwG+BF4BwrifSns0yZ/NmPt3ezpwZMyBP8xP3F8NaYDXwajTK2lQKe8/EdNdw2lCo18TUHYkw2emktaEBfzSK3zQ5d948JhYXE/N4aA4Gqa2txchVJg5MmNCdbBqlpQDMPuGE3dtyBYRqTj9997YeSVPPgkQANYbBuUuW7L5tLnkzFizYvS3XS3jy1Km7txVZ/aKBsjKampooq63F5nTyTiTCo2vX0uF20+XzkS0sJNLb0ONAgIDWrI/HrUBKShjR1MS5psmxnZ15TVwNw2CJYeBYtYofFBYScTox7XZ+n0pxY15agBM3b+Y+n494QQERp5MXOzr4sCSr/UZr3aiU+jnWd0Nx4Emt9ZMDHJYQQgjRK0lWhRhEwljFlIKA0+lkdFUVl2/cyMw89nA2AdfEYmxJpbqH/RZEIix66y3K43FG5LH3ticNbALeAJ6LRnknlaJw1/zNXM9ub4lpUTzO2I4O6j0eGletoiQUojSR4P1nn41RXk5g3LjdiWAuwfb3UrRo72TzvWzry6Ecc+9tw8vLmTpjRvdjAXjw6adp93hoKy6mav58VnV10ZrNWkPDte6+77ayMn6jNbbiYo7ZupX/sdmYm8cK0dMrKznjpZd4cOZMUIqVfj9/XreORSUlh/y8HFNTwzEbN7Kyrg6UYuOwYXmKWvRGKVUKnAuMxnqp+T+l1Me11nfvdbvLgMsARowYcbjDFEIIIQBJVoUYNNLA1dEoa3JzR71OJz9yuZiUx+RxM/D1eJwNuV7LLqX4cEkJF1VU0FZfv09vYj40Avd2dfFMOo25q5ezR3Lq83q7E1N/PM6E9nameTw0LF9OeVcXnmyWpUuXYhQXE5g9e59ez/eSXA52ez+W83r23Pr9BOJxHnz2WRr9fhrKy2koLyfg9wN0z399p7qaL9tsTNi2jXOam5k3evQhnx/DMPjcCSfwxk9+QntrK0HT5DeZDI+1tDCirg537kuHg1EyYgSXXXkl3yoowOVy8bbTSQprTqvoF6cDW7TWrQBKqX8AJ2DVV+umtb4FuAVg9uzZeu+DCCGEEIeDJKtCDBK/DoVYlpu7FwKuLSpiUh6LzawCfgi0JJPdw35PXb2as4cNY/iMGQzPc8K3Crg9EuFV0+yee0k02p2cAlSEQsw0TezvvEN1RwdF6bSVmJaUEJg//4hOTA/E3o/XMAzOO/vsPXpf1wQCrC4t5eGuLgJFRaAUkUiEN4AVhsGil17iomOPpb7+0Or4GobB9GCQiXV1hHIVlsc7nUwqLqampuagj/v9rVs5saKC8cAO06Sxq4t/p9OclYciTqJX24HjlVIerGHAC7EGPAghhBCDjiSrQgwCrwEPat3dwzhv/XqGV1RY63rmwRvA9xMJQqaJ3WbDmcmwdPlyhoVC1M6Zk5c2dnmprY070mk2er10dHaiewxXdSeTzEin8a5ZQ11bG55MhqVLl8LcuUd9YnqgektgTwU+VFjIy+3tPO5287LNBkDaZuOxGTMoXL6cz5WVHfL5LADGK8Xy3DDkjqIiiooOvTaxAqZ1dfFGVxdozR07dzIznZa/fz/QWr+qlLoPeBNrQMd/yfWgCiGEEIONJKtCDLA24AboXjJmdEsLs7dvp3bq1Lwcfx1WorojtyaoN5nkf5WifNy4vA77DQE3hsPcF4t1r12qsRKRUS0tTN6xg1GdnZyzdCnMmdNrcioOnmEYnGcYzAsEuPX553l8yhS6PB6ySvHMxImcsmFDXs7xBJeLdQ4HyWSSaGEhqWw2D9HD8MZG8HrRQEtREU1NTfKc6Cda6+9hTY8XQgghBjVJVoUYQFng+9EoDbl5qvWVlXyhs5PxS5fm5YN6E3AtWMM2taYoHue8N96gfNIkZsyYccjHB2uu5P2dndymNaEevcMKqG9qYs6mTZQkEkyYMIFj5s+X5LSfGYbBp085hWPWrOH6ESMwHQ66PB7+uXkzkwKBQz7vxYBfa5pSKdCa5YEAb+zcyV2rV6OAKYbBHeeey3eeeYZ/rl9Pod3O2LIy7jj3XEpcrj6PO728HEwTpTUhj4dqGQYshBBCHPUkWRViAN0VDPJiKARaEwa+7fVy4rRp73q/G777XYLbt+/3NknglXSaaDaLUorCeJzq1lbezGRoHT6chw6wKE7JiBF86dpre90XA/43HOaf4bDVm6oUKMXYQID5GzeyZPp0EpMm9UvhJtE3wzD4kGGwcsUKHsot07O+pob169fn5e/gj8Voyg3vbkil+P3y5az74hdxFxTw4f/7P+5ZtYozxo7lJ6efjsNm4xtPPcVPXnyRn55xRp/HHG0YjI/HaUkmcblc2J3OQ45TCCGEEENbvyarSqmtWKtxZIC01np2f7YnxFDSAtzVoydy1qZNFJWWHtD6psHt2/n+qFF97tfAE8kkw+Nx0Bqb1pymNb7KSoqKivDlqvIeiO9v3drr9q3Ad2Ix1sVi3fNS/fE4F8VizHE4qD3tNElQB9jceLw7WW0qLSUbjebluOWFhZAr1GU6HGS1Jp5OU2C3E0ulqC0q4syxY7tvf3xdHfetXfuuxx3rdhOy2UgkErwdibBQeleFEEKIo9rh6Fk9VWvddhjaEWLI0MB1kQjxbBaUojwcZu7WrdROmpSX468GmrPZ7qq7YwMBfIdYtXXv438zkWBrW1t3ojppxw5O2biRc886S5LUQWLumDF4wmFiBQVkbDbsefq7+HoUzfKWlnLlnDmM+NWvcBcUcObYsXskqgC3r1jBRw7guV0UChHIVcR++J13mDx9ujyXhBBCiKOYbaADEOJo9I+ODp7u6CASiaC05tPxOOcuWZKXD+ZbYzFeTyRQuSG5wzo7KYvF8lK1FeCJ9nauDAZpyy1HU5DJcOZbb/Hxri7eL4nqoGIYBpNKS1G56/9etYpAIHDIx81GIt1fhASTSR5et44tV11F01e+QjSZ5O6VK7tv++MXXsBhs3HhlCnvelwzl6hqIK0UTU1NhxyrEEIIIYau/u5Z1cCTSikN/CG3yLgQR7UIcBt0fyiftm0bE4uKDjnJu/Shh/jnunUUut18+xOfAKXYunkzN7z4Ihs6O3ntM59hdm74719WruRnL73Ufd+VgQBvXn4506ur99vGc21tXBOJkMklwp5kknOWL6cqGmV2nopCifyypVLs6gdNa52XKrs+rxfSadCaNY2NjCkro9LrBeAD9fW8tGMHH586lTtXrOCRDRt4+qKLrC9P3oW/pASCQZTW2KB7LVkhhBBCHJ36O1mdr7VuUkpVAU8ppd7RWr/Q8wZKqcuAywBGjBjRz+EIMfDuAtJeL0Qi+BIJ5m3eTO1ZZx3ycS+ZPp05EyfywyeeAMCRyXC6282lH/sYlz/yyB63vXDqVC7MLY3zdiDAuffc866J6putrXw3lSKdSzr88Tj/09nJqAkTpIDSIGZzOMA0AVBa49pPRd4D5fZ6cZsmqVSK4ZWV3P3mm8RSKdwOB09v2cLsmhoe37iRn/7nPzx/ySV4CgoO6Lg+v58ypYjGYkyqr5fnlBBCCHGU69dkVWvdlPvZopR6AJgLvLDXbW4htyD57Nmz9T4HEeIIsgF40DRJJBKUlZZycXMzZ+Vp6OyIykpe7urqvj66rY3j6+retZjS31at4qOTJ+/3NptbWriqs5OuXKLjNU0++MYbnHD66ZJQDHLhHuugOrJZEonEIR8zEo0Sz/Ws1vj9nDN2LDP/8AccNhszamq4bNYsJv3+95iZDGfcdRdgFVm6eenS/R43GArRkRsKvPaddwgUFsrzSwghhDiK9VuyqpTyAjatdTj3+5lYSz6Kw0AD2wMBduzcSU1NDVVVVfvcpqWlhUBzM6Orq6mRD4T9Lgv8PBplZ3s7aM3I9nYWDxuWlw/jXZEIz8XjpFIpAIYBx9fWHlDV37+vXs1DF1zQ534N/DKdJpRLVAsyGT7V2Mj7JFEd9DQQdDpR8TgaKDPNvAytbY/HwWG9fTgyGa6cOpWfLFq0x202Xnnlez5uW24ZJw3YMpm8DFkWQgghxNDVnz2rBvBAbp6SA/ir1vrxfmzviJUEOoGO3M/23M9t4TCNkQiFfj/K6yUBJLDWvgyZJjtNE0pKIJHAME2cPdYtNE2TQCJh7TdNRiQSlLlcuAEP4AYykQjpYJBRRUWMKy6mEqgCKoFDH0h49HkcWJvrjbJls5y0Zg3NSlGdhw/jK9Np4gUFEI+jtGaKaeIrKXnX+73a0ICnoIDJvXyZsUsDsLmoCDo6ADhz9WreN3euJBFDwMaWFhoTCTTWlwwLZ8/Oy99Ne73dS9e4UilryaU8SJSWQns7SmuK85RYCyGEEGLo6rdkVWu9GZjWX8c/0misJHQbsD13WRuNsjWZJOvx7JFoQi7Z7Oy0KnK2t2M4HHvcJp5IdPdQKK1JJBJ77E/stb/LNKHHXDbTNAl0dFjH7+rCcP0/e2ceHlV59v/PM5PJ7Fkmy4QEwr4jmwgCiiwKKhS1pa3Wti6tW63V9u2itlq12rf9aa3VutRWbX3VWutSd8UN0IoiIJtsYQmQDEyS2ff1+f0xk5AgRCQnhOX5XNdcyZxz5nnumZwk53vu+/nepg6vt5ETreZwGJPHw2i7nQkOBzUcnn5IRxs+4OF4nEw6DUIwYds2zbJcIWCnzQb5HpqGTKbN7OaLePoLSoBDwKZMhpDPhwRG79zJdwcNUkL1KGGpz9f2e10WDpPIZDQZN6LbayRvymfztSBoteIsKCAej7Ng6lScndxEUSgUCoVCceyjdEUPIMmJ0vd9PtaFw4QcDjxWK9F2xyQSCdz5clFCIZxOZ6dic18xajKZiGSz6DMZhBCUFxZ2yIYaCgtJpNOkhSBdUPA505UvGj8MeFoFLfCfcBin1YrNaKQv0D//KGppobChgQG9eh23AkcCd4TDbM+L/5JolAuMRkZq4J4rgQ+TSZLZLGaTifJIBEtBwUGV/2al5N/r17PkkksOOPYyIJXJgJSUhUJM3byZ+EGMrTgy8FRVQSAAUlLj81E9bJgm4zanUm2ta0zJJKFQ6KDOuc6IAe78em6b0ciI4mINIlUoFAqFQnE0o8TqYUACLmA1sBZYAzQnErhDoQNmRtuLRV02iykcZpDRSCngAPTApg0bMMXjGLNZ5kybRh9y5bsmwGw00myx4HK5ck6tZnPHoMxm3DYbLpeLXtXVFBuNRKHt0ZBOc88vfkGmpYVUQQG2sjIyBkNbqXEWSCWT6JLJtiEDhYVECwtpAj4BspkMsVgMQS770ttqxVlYSEk+/vaU1NZy3W3H5pLmx/1+liQSyPzF/Wnr11M6YIAm4n1zLMa2fDnmo6+/zs7GRryxGL3vvptbp0/HYTZzzeuv0xyNMveppxhbVcWb3/42AEt27KB3UREDDlDCuQ1wpdPIbBYBnL5uHYWodiJHExsK9v6Jr/b5NBkzC0RMplwmX0psyaQmPXzXtLTgjkZzZfLRKM0Ox3F7g+tYx/aNbxB+5plOj7n35Zd58PXXGT9wIF+fOpUh1dWMUB0DFMcYNpuNcDjc6TH33nsvDz74IOPHj+frX/86Q4YMYcSIEYcpwqObs2+9laf+538o6eRm6vQbb+SuSy5hwuDBHbav2rYNl9fL2RMmdHeYii9AidVuYlNTE+8Fg7idTrbZ7Xj32b+/zKXDaKQW6AsUZbNsXbGCknAYayrF/Hnz6HDZVlyMe9y4vWK0vPxzMTidzk4v9vbdbwbK8t8PLStjoZRcN3Agdru9Q9ZEAgmgORplU0MDUYOBqNFIQUUFyXYtKhLxeAfnUZPJhNFkQkdOcJfE41jCYWpNJu7eubOzj/OoZaHHwz3hMK3Fl+O2b6ev36+J4EsBK6Rsy3DdMHUqkw0GevXq1eG484YP3+/rp/frx0ff//5+98WBT9JpwpEIqXSacfX1TKupYciQIUpAHCU0Axtb10hLSS+fTxPDIg+QAQoNBiyZDKMGDOhyVhXgo0AACgqQQFkohCseV+faccwDr73G67/+Nf2rqrj4nnuYd9JJSqwqjkseeOABXn/9dfr378/FF1/MvHnzlFg9CKSUvHLTTejaLVv5Mqzavp3ldXVKrB4BKLGqIUngY+ClcJi3YzGyBgP4fDgLCz+35rSisJDKpiYqfT4qolHOnzKFYYBoPaC0FPfUqXvF6H4u2r5IjHYVs9n8OeFDPkYT0MdiobS6mlAolBO0BgMJwE9ujaZbCOqTSaKFhSAEBfksTxZwp9NsTSSgoAB9KsXKVIp3gAnAsVL8txK4Q8o2oVoZCPC1aJRJGpT/AixPJIgBCIEhnaaP14t90KAujwuwCtpakxjSaU7asgXb+PFKPBxFfATo8/+ke3s8mLPZLt8kKamt5UebN7MxX1FREouxymbDvG/lxpccE6C5shJ8PoSU1Pj9VI9RlgfHA3c+/zzPfPABiVSK8yZP5tZvfYsrH3iAbW438++4g/NPPZWXli1j8bp13P7MMzx3/fUM3M//JYXiaOfOO+/kmWeeIZFIcN5553Hrrbdy5ZVXsm3bNubPn8/555/PSy+9xOLFi7n99tt57rnnGDhwYE+HfURR73Zz1q23MuOEE1i6cSOrtm+n+YknKC8q4jdPP82TixfTp7yc8qIiThw0iJ+edx4A//7vf/nBQw/hj0R45JprmDRkCDc/+SSxZJIPNmzghgUL+Oapp/bwuzt++VJiVQjxuJTyu90VzNGIBDYC7wLvAxEgkMmQze9rnzUdBYzOP/qazTTV1uIqKMiJ0f0YiXS3GNUCm83WIatiJGcD7QSGGY2caLHgDYdJFBcTLCjATU7MpvNCCCAjBG4puYecEO4TidCvqYmZNhvjKyr2CvijhI1NTTwaCLCkuJhYLAZAUSzG3NWrmTR7tiY/06Z4nNX5diQIwQnpNMMHDdIkw9UE1KXTZLNZEIKqQAAjqvz3aOONSARv3hhrYFMTU6ZM6fK5d91tt/Gdpiay+XNv/Nq1nF9Tw7hx47o0rgQ2FRRgyxuDfWfcOJwVFV0aU3Hks/DTT6lzuVj2hz8gpWT+7bezZN06HvrBD3hj5Ureu+MOyouKqHO5mHfSSSyYOrWnQ1YouoWFCxdSV1fHsmXLcr8L8+ezZMkSHnroId544w3ee+89ysvLqaurY968eSxYsKCnQz5i2dTYyGM/+hEPXHUV/fLVY8vr6nhu6VI+vece0pkM43/8Y05sd3M/ncmw7A9/4LXly7n16ad5+ze/4bYLL2R5XR1/vvLKnnorijwHFKtCiJf23QTMEEKUAEgp53djXEc8G5ua+E8kwnqnE5/F0mGfyWQiIAQ1Xi/9PR6+M2YMk4B9CxGOBjG6L5e++CKvbN5MpdXKuh/8AICb3n2XFzdtQicElVYrfz/3XKrtdp5cs4Y7P/yw7bVr3G5WXnEFM6uq2Ckl64JB/BYLCYMBvT63ijWeSPCBx8MHOh1PxGKMisU4zWxmIjCKI7MUwAvUAZuBxS0tfBKLIQsLIS9UrYkE53zyCRP69dPk5x0F1gEn5J8XRaPUgiZCNQt8mEoRzq8ddEQi1JhMzNMoG6w4PDQCa9uVAA9oaiJeVdXlcVuABrMZYrHcuB4P1Sed1OVxVzU3szkWAykxZjL0OUg3a8XRzcJPP2XhqlWMu+46AMKxGHUuF9M6cShXKI5FFi5cyMKFC9tu/IXDYerq6pg2bVoPR3b00beigpP3MRP8YP16zpk0CXO+yvErEyd22P/VyZMBOHHgQOrd7sMTqOKg6ezavzewHvgb+SQhuSrNPxyGuI5Y/MCjwSBPRKNkdDpoaeng1FsFzDQaOcFsJiUl1aNG7Xc96dHKxWPH8sOJE/nuCy+0bfvZ1Kn8ZuZMAO79+GNuW7yYh+bN48LRo7lw9GgA1rrdnPP004zNXzAPMZupdjgIhUJIs5mP9XoqgY/3Wcu7K5nkZbOZZxMJiEYZbzAw1WZjHFADhy3rKoFtTU2saWkh1asX4dJSdgIbYzFcyWSbm7I7EsllO/P08Xg4fc0aijIZhgwZokkcvwuFiAMIgT6TYUBLC/b+/bs8NuSqBHx591+dlNS2tFBQUKCE6lHGW+wtAe7X3IwtndYkM/66z4c3FEICfbxeZmrUb/ftcBh0OiRQ7fGwOxDQpP+w4shGSskNCxZwxZln9nQoCkWPIqXkhhtu4IorrujpUI56rPt0twA6XJftD2Peb0Wv15POZrshKkVX6EysTgCuBX4J/ExKuUoIEZNSLj48oR1ZhIAXgJeAJinJCNEmqIhGmW00MgsYTl5AVVTkHscY0/r2pd7v77CtqN163EgyuV8B+c/99PNsX0Lcr7mZW4C6RIK/fPYZ28rL2VVejslkyrXxcbtBSl4XgpX5PyrGcJhRRiNjbTZKPR50LhfDKyupOYSL3DS5DKmXnIHMNp+PLcEgKYeDiN1OfTxOfTwOVmuulVA+m+5ubgYpCQiBzWptu6tT7fUytr6e/i0tDB82TDNjoqd9Pl4MhdCl0wCMTSYZ0b+/JlnVCDm36oKCAhCC3h4PxkwGyz6VA4ojmyTwSizWVgI8sqFBkxJggLfyztNALlurkaDcVlkJHg9CSgY1N1N94omajKs4spkzfjw3PfkkF552GjazmUaPB4NeT2VJSYfj7GYzoXylikJxLDJnzhxuuukmLrzwQmw2G42NjRgMBir3WSJmt9sJhUI9FOXRyykjRnDF/fdzw4IFpDMZXl2+nMtmz+70NervzpHDAcWqlDIL/FEI8e/8V3dnxx+rRMkJ1Bfy38PeMl9nIMD4nTu5esIEjnePwl++8w6Pr1lDsdHIexdd9Ln9//rsM148//wvHGdwZSU/O/FEXC4XlVYrzUYjz+7cyaJYjKDJhJCSSDhMON82Y2ckwkdS4o1EoKgIEY/T3+/HmkxSbrFQZrORCoUIBoPYioqw2u0EwmGaw2F0RUVIiwVPPI4nkci5FRuNOXHc+s8gb5AVTyQ+594MgJQUZDJUBoOMicdh82aqWlqwplLU1tYydv58zbKS7wMP6XQgJbHqap7ZtIn1ej1lZWXQ0tKlsSWwIpWiWUr0ej1WKRkaCGC1WOg1dKgm8SsOD+8CTXlRaYvHqfV4OrhyHyr1wJ6SEnC70WezDGlqorqLa1Uhd3Noa369qgCumjBhv2v4Fcces8eNY8OuXUz++c8BsJlMPPGTn3xOrJ5/6qlcdv/93PvyyzyrDJYUxyCzZ89mw4YNTM6Xo9psNp544onPidXzzz+fyy67jHvvvZdnn31WGSwdJCcNHsz8iRMZc+219K2oYMKgQRR/wY34GSecwO+efZax116rDJZ6mC8Un1LKBuDrQoi5QLD7QzoyyJLrj/mvbJaM1drBzXeo0ciPrVacHg81EyaoEkngjlmzuGPWLP73/ff587Jl3DpjRtu+jxsasBgMjDrIC9D2a3lrgF5GI/3eeguvyURjRQXRIUNYlcmQKCjIidf8+kpJvlw3EMgNFI/jkBKvz5fLBvl8OGDv85YWHKWlbc8DQuB0OvfbVshkMhHNZrFHo5RFo5xRXEx1NsuGpUspDocpEIJ58+bBSSd16uB8qCwjV39vNJlACGouv5yvL1/OeWedpck8//b5+E++768A7rRamXoMla8fL0jgn9EomXQahGDsjh0UCKFJCfBb+a82q5XRwSBfnzNHk3PvNZ+vred0rdeLTRl5HfO077F67fz5XDv/8xYY9X/7W9v3U0eMYP399x+W2BSKw0n7HqvXXnst11577eeOqa+vb/t+6tSprF+//nCEdlTSz+lk3Z//3Pa8/d+Rn553Hrd861tEEwmm3XAD/3PuuQAs+u1v244pLypqe43DbueTu+8+PIErOuULxaoQooLc+tWdwHFRAtwE3BaJ8H4wmBM14TBOp5MBRiPfBqYCoqwMysq+YKTuRwJhYHNzM/UtLdgrK7GUlREHYsBuv59mvx9fXTm7ltsYPh2GTIZAIEDA66VXaSnVJSWYAQsQaWkhvGcPww6xhPlbJ5zA3Kee6iBWn95PCfCXwel08pV589pEIMBLr75Ki9lMS0kJtrFj+TgQIGgyETEa29Ym7CtkO3sOYI3HqQwE6G2x0NDQgDUepyQeZ/6kSYwsLiZusbDb76e6thZn/s7/xBkzPidOtb558SFwRzxOKJ/9HVdezvd8PoZoJFR3AX+Bts9l1K5dWKxWUGL1qOMVr5dV4XDOqCid5qtWKydoYI4VB16Lx3E3NYGUVK5aBVOmdDleCbyWSrWde/337MGF9r9DRzNCiK8Db0gpQ0KIXwHjgdullCt7ODSFQqE4arj8/vtZv2sX8WSSi2bOZLzKSh81dOYGPAK4F+gH1AKfAhVCiCXAtVLKwGGJ8DCzGHgA2J130pRAcTTK13bu5PuDB6PvgZii5ATFTmBtMMj2cJhMcTEJqxUfEE4kcMdiYLFAJILTZttbzhoMEllpZNuFFmRKoisUnPh6kkT/AOh0EAziNJv3Hh+Ngt0OiQTFmQwTASugTyTQRaM4jUZS+8RX5/EwOC/cX9q0iWHtRE5WSv69fj1LLrmkS5/Bvs7J8+fO7SAS3TodLpcLfSbDW59+SrSggLTBwPCxY1mxYQMym0UvBKNHjuSztWspSCYxZbOcMnYsa5cupSCZbMuOOm023IMG7R2/9f04nZ8zfelOR+ck8CjwfCLRJhJELMb1DgfDNOpBmQT+H6CzWCAUwhEOc2pdHdVnn63J+IrDRxb4v7w5lgRG7tpFWXGxNgZIgCdfCm+PxahpacHlcnV57K2Ap7gY4nEKMhmGNTVRPX58l+M9xrhJSvlvIcQpwBzgLuBBYFLPhqVQKBRHD0/99Kc9HYLiEOkss/oocJGUcpMQYiJwtZRykhDiMuAR4Jhq8hQhl116L//cZDIRAiZs2cJJO3Zwzty5h0WoJsk5sr4fCLAmGiVYUkLYbAbIiUm/P5cJ9HhwFhRgNBr3W7bafnv4IxMyKSAryCah+d0sRZce+PjW7YlMBj/gSacJx+MgBI+++CJ1jY2EYzEq7r6by6ZO5ePNm3EFAhj0evqWlPDQ3Llt72fJjh30LipiQGmppp/TviKx/XOnw9FByM6wWDoKW7O5w/OhRUX7zY72ZHZnVXMzv5cST3Fx28/FHosx/5NPiI0aBRqt6bsnGGS1lJhMJnpXVvKDUIgJZ5+tMltHIYuAZpMJolEK02km7NxJ9Zw5XR43A/wzFmsrLR63Ywd6nU6T0uJng0HiUuIoLWV8IMDXzjxTnXufJ5P/Ohd4UEr5ohDilh6MR6FQKBSKw0ZnYtUspdwEIKVcJoR4KP/9X4UQPz4s0R0m3m9p4Q9CEM1nJAH6GY382mrF4nDk2s900wWUy+1mqddLS69e7CgpYSP5TGkgkBOlzc1trXEOJEqLjUZELIYpkaAwm2W0w0EFkBKCDfX1NPex8rphHDKto6BQsOCUNIFt20gDaYOBwQ4HBUCzXs9nwSCxggLCZnNb79N0PssMcOlZZ+WMiEwmMuk04UiEPkOHghBUWSzUGAykyZUNmoDp/frxUb4p8+GiMyF7MM97Ej/wWCDAE+EwaZ0ut+62tJRBTU3MWLcOczariUgA+Iffz5P5UveAEPzcbmfuyJGajK04vCSBv7VzAB67YwczTzpJk/P6Fa+XdfnSYlMqxTkalRZvd7t5LhIhqdeDEMy3WI6pNl8a0iiE+AtwOvB7IYSRz7ftVigUCoXimKQzsbpVCHET8A7wVWAVgBDC8AWvO6p4yevl15EIWciV0DqdzDUauRwwl5d327q9euCFQIB/B4NELJYO5bj7itJ0LMZgoxGHTkfTtm0UhcPYUynOOfVUhpLLArtLS/dmB+323CRFRbiHDcNV5OLK5wKsWeNg+nSYPNmG2z3i88fbbLgrK3G5XPRyOLhXr2cO4JGSLR4PMYOBmNGILt8mpb2IRUr8mQwxg4EtQCadxpxIUKvXM8BkoozD1xP1aMQLPA+8DjQD6XzPyYJMhq82NfH12lp2FxRoZtz0BvCIEG3n2aA9exju8YDGGXDF4eE/QEPeAdiUSjF2xw7iGvwss8CT7UqLT9i5k7LSUk3OwefzQlUCjnAYu8ej1knvn28AZwJ3SSn9QohewM96OCaFQqFQKA4LnYnOS4Eb84/V5HquQs6H57sHO4EQQg8sBxqllPMOMc5uYRHwB72eLDmjD2Mqxfk7dnDpkCHdMt/WpiZeDoX4rFcv9lgsBIBIYeHnMqX9DQYyDQ308nqpjET41owZ1ADY7bhHtBOZ7UyQDpQdbN0+bhy0q879wuMBCoEyoMxsptrpJBQKYbdasRYUEAZcUrLJ7ydkNBI2m3P9OaEt4xqWkuZ0mk0FBVgLCihPJCgKhehnMlGiQV/Qo50kuYXgC0Mh3stkKMjfrGhtjVQRDHLGZ5/xjenTce5nveyh8h65ddmt8/Ty+Zi9fj01Z52lyfiKw4sH+L94vK1M9+QtWzTLwC8G/EVFEItRmE4ztqGBag2y72ngk169oLkZISXjdu6kRoM2OMciUsqoEOJFwCmEaO2StrEnY1IoFAqF4nDRWZ9VP/Dz/WwPAB99iTmuBTYARV82uO7kHeBP7G0F4giHOffTT5l7+umazxUhV9r590iEVEEBtLTgdDrbxIIlkaB/SwvfsNs5DXBYLB0Nfo6AklWbzYatncC0A0PNZmrKywmFQlgKCogXFOAGtsXjRPKZGKQknU4TAdzxOBQU8HE6Tf9kkv6FhVSTM3A6XtjW1MTbgQA7qqrYZLcTTCRwt7bSCQZxOp2MaN8aKS9UteJlr5e79HqM+Z6yk8vK+K7Px0CNnIUVh58/hULszJ9DZeEwX7VaGa5BmW4aeCQaJZ5K4Sgt5XSPR7N2Ne8DXp0Om9WKNZPhJ+PGqfPvAAghrgF+DbjJJbshd391dBfGLAH+BozKj3WplHJp1yJVKBQKhUJ7DqmcVwhxuZTy4YM4rjc5U4g7gJ8cylzdwULgz+SzqUYjJ5aXc7Hfz9DTT9f0gikOvESuvNMFpPKlna2lvWeWlDDWasXh8dBnwACcDkfba4+kdZSd0V7EFgNOYACwsb4ev8mE32Yja7USaVcynAUas1laWsdIpVgVDvOux8MpZWUU9sD76A7S5Mq9N+cfq6JRVsViyMJC8PlwFhZ2KPl2BgJ8NxbjwqFDNW+NJIFnfT5+GwrlrnaFYEJ5OXdardg1chZWHH5WAIuy2bZz6NSNGykeMECTvx3/9PlYm+9/akqnucBm02TcLPCPaBR3SwtIyaitWylUa6U741pgqJTSo+GYfyLXDmeBEKKQXMWUQqFQKBRHHIe69vRglx/eQy47az/EeTTnnz4fD+p0OZMgo5H+wO0WC0WjD/km9X5ZBPw5FqMpmcRkMrVlUctCIcbu2sU148YxAHKC5Ajo16olNpuNYYMG5cqG7XasBgO7UilW+f34LBaiRmOHkuHGaJQdwI8jEfpYrYwzmejr91PhcjGhrIyaI1y0Z8mlPFrbC+0CNkUibE6l2kp7AQKpFBI6lH33NxjQ19fT3+2mVyjEGfPmab62N0au7PdFna6t5L00EuEivx+7xue94vCRAO5u59I71OWi1u/XpPw3BDwJbSJ4/LZtBMrLQYPfxcXAtnxv1YJMhlE7d+LSaB3sMcouQLNWcUKIImAacDGAlDJJblWCQqFQKBRHHIckVqWUf/miY4QQ84AmKeUKIcT0To67HLgcoLa29kCHacL7LS38v7yZUkAIJpWVcYfVqqmSjpBrgLcwkcDd3NzmtDqmvJwf2Gz08XjofZSUvJXU1nJLfX3XBkkkoCWXQ43FYkQ9HnQWC2GzmRbAnUySSCaJVVdjlJJgIsHHQvBSMAhWK/pYjAmRCKOtVgYBxS0t6Bsa6Nur12H7DCWwvamJDc3N6KqqSJaV4Qb2ANujUXYmk+jbidJEIoHb4+lQ2tu6FjUEVAQCDGhp4fITTmB8cXHeBKtIM/Ok9mwFfg/sZu8aVUc4zHkrVzL0jDM0nUtxeHkgEGBd3jXclEpxaTbLeA3KfwEeDAYJZbMgBCWRCGN37aJagxsbaeAp9p6L4+rrsWQymjlcH6NsAxYJIV4ld48CACnl3Yc43gByPm6PCSHGkEvQXyuljHQ5UoVCoVAoNKZTsSqEGAacA9SQu2Z3AS9JKTccxNhTgflCiLPJdTEpEkI8IaX8dvuD8uXEDwNMmDBBfvm3cHCEgLuEaMssVQYCXOTzaVoCuaSlhbvzLXBayzut8TiTtm7lwl69mDBuHLQr9T3Sue6227p9jnq3m4c//pidDgcN0SiFVVUdSmMzQrAxnWY38FIigTsahdJSLKEQY2w2+lutVAAGn49UczO9y8roU1aGCTADoaYmmnfvxtmrF+WVlWTIZUL3NDXR0NSEvaoKU3k5ESAMNPr9NAQCSIeDpN2OF3DF4+yKx8FmyzlG51scJRKJtlLG9qK0ffxFsRjDW1qYUVPDUKMRq8mEx+uleuTINoOs7ij5lsDLwGPkBALkSt6/UVLCLK+X/meccVTcMFHsn/XkHIBbz7MpmzdTpdENnGXNzTwVjebWnAvBhYkE586dq8nYbwM7Egni8Ti9i4u5tKyMgSNHqnOxc3bmH4X5R1cpAMYD10gpPxZC/Am4Hrip/UGH80ayQqFQKBQH4oBiVQjxC+AC4GlgWX5zb+CfQoinpZS/62xgKeUNwA35saYDP91XqB4uJHAvEMuLDVMyybw1axikoZnSP30+fh+J5C7wIhEcpaWMcLk4ZcMGTFLS58QTNZvrWKKf08m1kyblzKQcDvRGI4uiUZ7Zs4fdxcUELRZMJhNABxEYNRhYn07TSD6TGQqB0fh5MRmPQ0kJxOM4E4mO2+12iEY7bg8Gc4Hl15QajUaCicR++9u2j8eaSNDH52NiVRW2bJatK1ZQHAxiy2SYN28ebZfiTie13XxhHgD+Nxzmw0ymrdzdBPwQOK2oCMaO7db5Fd1LHPjfaDTXOkoI+jY3M3L3bqo1+BuTBe7Ln9MS6OPxcBJoIiZjwCOxWFvFycgtWxjYjT2sjxWklLcCCCHsuacy3MUhG4AGKeXH+efPkhOr+857WG4kKxQKhULRGZ1lVr8HjJRSptpvFELcDXwGdCpWjySe9Pl4M79O1el08u36euZoaKb0CvBg3jyptQXOd3bvZu6AAbhMpm4p7zyW2DezuKC0lFP79cPlclHkcBA2GtkCfKrT8X4sht9sBiH2K2IPJCa7st1kMhHNZrHG4xTHYkwpLWUIYMhkWPvxx9gjESzZ7F5RWlqKe+rU/bo5dyc+4AXg+XicXV5vWwn6pLIybrFaUYWWxwZ/DAZZ4/eDlBjTaS5PJpmoUfnvkz4f2/R6EAJ9NsuMjRupmTmz60EDz5Ar+2+tODlhxw5cDof62/gFCCFGAf8HOPLPW4DvSik/O5TxpJR7hBC7hBBDpZSbgFnkkvUKhUKhUBxxdCZWs0A1sGOf7b3Ya59/UEgpF5HzHDrsfNLczN2RCBkhCAjBd0pK+O7QoZqN/w+/n0eEQK/TgRA4AwHmrl7N3HyZZXdeiGXIrUVc7fWyxedDX15OtriYXeEwzZEIBXY7OosFXyxGKB7HbDZjMpmIx+MkolFKzWYcZjMyEiETDNLXamVgURF6rxfdnj2MLyvr9izggdj3sxsDfM1ux11ayi6XC1NNDRiNNAN1UrK4sZFYQQEpg4E+5eXoAG9hIclUirROh15KKgsLsQDWwkJkPI4um8WYTjOqrIwqciXHdfX1FKZS2JNJzp40icGAw2gkZLHg8vuprqnBWZTvwuRwMPG003q8xZCXnOP06+RcUtpngsfW1/N9j4dq1cPymOAD4HUp236+p2zcSG+Nboisb2ri3nCYZF6szo/H+c7MmZqMvRv4V7tesFPq6jBKqdaqHhwPAz+RUr4HbZVKfwWmdGHMa4An807A24BLuhijQqFQKBTdQmdi9TrgHSFEHTk3QoBaYBC5isKjgr+l02SEQAIVwSDTvF7NyiCf9Pm4O9/aASE40Wrl+z4fA7tpPeDmpibe9/upLyqiTq8naLeTFgJ3OAwFBRAI4NDp8Lb27UwkcJSW7n0eCnV43hgOd3j+YSqFQwi84TBYrYh4nGE+H1XRKBMsFk4rLaU3B28F3R3sTwTOKCnhnIED94pGa75zq9mM227fu91s3ru9pGTv9tb+sUVFObOj1u3tXJotBxCfPdliqAV4DngTaF/+YDKZMITDTN68mf5eL33nzeuR+BTa4gbubCf4Bu/Zw4g9e6ieMKHLY0vgnkyGpF6PBBzhMHMTCZzDhnV5bIA/hcM05rP9VYEA84uLGXrSSSqrenBYW4Uq5G7+CiG61J5aSrkK6PqJo1AoFApFN3NAsSqlfEMIMQSYSM5gSZBb6/KJlDJzmOLrEhuB7Q4HuN0IKZnz2Wf0nT5dk7HrgEeEaMtwVPt8XOb1Mlnj9YA73G5eD4VYUVLCsngcaTTmHHYBEYths1o7lK5GolHNnktgQzDIBuC9UIjHLRaKs1mqvV5OtVg4o7SUYk3f7aFzINGo1fYjBUnOaeXpYJA3s9kOrXEABgIXGI30LS9ndzJJ9ZQpR/T7URwcaeDXkQj1eZfponicK1IpxmhU/rsQqG/3t3Lmhg30PeWULo8L8BHwYSbToResffBgdV4ePNuEEDeRKwUG+DawvQfjUSgUCoXisNGZwZIJuJJcJnUt8IiUMn2g449EniDngOp0OhnV0sJF06drcoEUBe4ECsxmIu/FYRGMtjcw4BrtblTvcLt53OvlFYOBuMEAreZN7ZGS4lQKh9eLPRrFlkwyYeBAdqxejSGZxJjNMmXcOFZ99BG6TAadTsekSZP4+OOPSUtJ2mDghIkT+WjNGqJ6PRGzGeeoUXza1ITHasVntbbNKaQkEg7jjkTYLCWLQiH+arEwxmhkiN9PdUMD4ysqqFIXoJojyd14WUruwr8+kcCdX7PY6kI8ymjkAnKpEgHgdKqfxTHEE8D6dBqkzN14W72aCo0EXxPw53iceL4S41SfjytOOUWzv5UPsbdVzciGBnqFQqr898txKXAruWp/ASxBle0qFAqF4jihszLgf5CrLnwfOAsYTq40+KhgHbAs3yLBYjTy05oatLp0/30oxMZslvgqM9svdEIC7is8m/PmCrTQB4tbWvhlIEDQYumwXQC9fD5qvF5qvF6qIhG+duaZUF2dK10dNAin04nbaOywjnJYUVGH533al8A6nYxpXyrrdOLW63G5XAidjlfXrWO33Y6rrIyg2Uy4XRY2Fo+zCngzGAS7nWK/n3PMZk4vKmIkh9jEVwHkMmmryYnTj8mZJ7XS3giqyu/nomiUbw0b1qPl2YruY6HHw6MFBW3r4qds3qyZ4MsCv4lE2JnP2JZGo1ymoenRA8Eg26TEZDIxuKKCq30+BmuUDT5ekFL6gB/1dBwKhUKhUPQEnemJEVLKEwCEEI+wt33NUcHfwmHc+TVSNbt3o+/fHy2U5CKPh/9EIiAlTa9JSBaTzQpSKVi0CCZP7tr4zwN/EIJQu9LO4miU0Y2NfLtPH0xSYurVi3hpaQdTn87MfbryvFdpaZuQlVLy948/pt7hoL6yEllVRaydcAqYTLwoJYsACzA4FKJ2zx6mFRczrLKyax/MMY4EGoGPfD4+iEbZXlZGNu92vC/FRiOVTU2M2LmTWr+f0+fNU0L1GOWzpiZuDgaJGQwgBKeYzXyvvJya0aM1EXz/Bla3y9jOWruWlsGD6aPB2O+3tPBEviIkIARX2WycomFf62MdIcQ9UsrrhBAvw/4Ka+T8HghLoVAoFIrDSmditc2zRUqZFuLouRxuAVbm10gJKTlxyxZc+XLgriCBv+cv7CQwYlADvoIi0ggKC6Gry2EfCgT4v3SacDjXRs+USjG5ro5zbTZGnHBCj2Qj9hWyl7S63zqdmI1G3opEeKqpiR1lZaQKCtrayfgSCV72+aCwkPvjccZHo0y2WBgLjCInZo9n/MAmYHP+UQd4W/vFSglNTTidzrb1qMXAJGAyMNpkwldbi6ugQLVFOoaJA3cAMYMBCdjicb7p8zFeI2fnjcBj7QybTtqyhWqNMrYJ4B5oW/vet7mZvh4POBxdHvs4onWN6l09GoVCoVAoFD1IZ2J1jBAimP9eAOb8c0GuMXlRt0d3iHzI3jVSvT0eShMJTS7AVgE7LBaIx9Fns8yzrOYnz1WzZo2D6dO7llX9p8/Hg6EQUuZuoFf7fMxevZqTBgzg1FNP7XLsWrGveP2aw8EpqRQ7XC6CtbVsNRpZBtTt07N0aypFC/AyoANqIhF6NTdzYlEREx0OyuhZl+HuIkLOSnsXOWOkXcDGWAxXMonJZOpgjrRvn1dLOMw8o5HJ5Grwde3GPdKNoBRdQwK3h0LsaNfz9Ky1axmqkelRCLgtFmN3czNISa9AgAsLCxmuUYnu40DIbodoFGMqxayNG6k5/fQuj3s8IaVckf92rJTyT+33CSGuBRYf/qgUCoVCoTi86A60Q0qpl1IW5R92KWVBu++PWKEKuV6ErcZKZxYVMU+jC7C/RSJ4fb5cVrWxkTPHj2fuXAc33NA1oVoPPJTJtAnV2pYW5i9fTnE6zZAhQ7ocd3fjdDqZOG4cp5eVcQXwN+APySSTt26lt9eLPr9mrZVYIsF/PR6eFYIbwmG+lUjwHeDX5FIJH5Izfflc3dsRShjYAvyXXBn3A8BPwmHmezycl0jwM+Be4D/Ah4kEG5qbCfj9uN1uEnlnZ4DKwkL6t7QwecsWLvjoIx5Kp/k+MJJOflEVxyQP+/287PO1VVl8OxTico1MjyRwN9CQTIKUGNJpzli9mmKbTZPx1wL/zvsFOEpLuVRKLjj9dHVz5dC5aD/bLj7cQSj20q9fP1paWg77vDe//DJvr1rV6TG3PPUUd73wwue2+8NhHnjttW6KTHG0Mv3GG1leVwfA2bfeij//P+dgjm/Pqm3beG358v2+ZtHatcy77bYvjOWCCy5g9OjR/PGPf+See+4hGo0exDs4drC1tlHshHvvvZfhw4dz4YUX8p///If169cfhsh6ns7cgC1ASkqZyj8fCpwN1EspP/+X8AjBA6xqZ6z0nUGDNGmv4gbW5kuA9dksJ27bRtzapVZ3QO7C8XeRCP78L2VZKMTcVasYNXQoQ4YMOSov8ARwUkUFtSNH4nK5KDOb8RiNrCKXnf50nwxiPB4nYDSyEliZHyORSCCiUWqNRvpZLFQCFdDhaxHdm41NA9uamtjU3ExhVRWUleEFvOTOs13RKDsTCaTF0iFDmkgk2tZLE4l0KOdtzZ7qs1kqgkEmAWfU1jIUqDCbaerdG5dOR/WoUUflz17RdT4CnmzXFmvMjh3M1EhIQk4IvyNEm2HT6evWUZJMalJ9EgRuj8Vw5zO2/TwezqupUefyISCEuAD4FtBfCPFSu112cn+CFEch6XSagoIvbz+YyWS47Stfgd69D2lefyTCA6+9xg/OPvuQXq849nnt178+5Neu2r6d5XV1nH2Ifb/37NnDhx9+yI4dO4DcDaFvf/vbWCzH+6KxjjzwwAO8/vrr9O/fn4svvph58+YxYsSIng6r2+nsL+YbwPeAOiHEIHKdM54E5gkhJkkprz8cAX5ZFvp8bev+inw+4r16UazBhdJ/2Vta3MfrpTiV0uTibhmwNh5H5gXMnNWrGTVkyBFV+nuotC9VrQVaV9ptSST429q1uIqKaCkupsDp7JBFTSQSuN1ukJI9QrCjndhrj4zHMYTDOCwWyiwWTIC53cMExP1+fD4fxQ4HtuJisuQcUDP5r75gkKZgEH1JCcJmI0yudDcCBBIJ3PE42Gw50WmztcWRSCRwt7TkBGkotF9BKgF9NosjGGR8RQW1gDWTYePSpdjDYQxC5LL+B/jMFMcfnzQ3c1NBAfqCAsgvYzi1ro7quXM1Gf8tj4e7FicJf2TCOjnGpZMKOKu2luqTT9ZkTf89wO58xtaYSjFj3Tp2C6HaKB0aHwK7gXLgD+22h4A1PRLRcUYkkeAbc+fS0NBAJpPhpptu4pvf/CYA9913Hy+//DKpVIp///vfDBs2jGXLlnHdddcRi8Uwm8089thjDB06lL///e+8+uqrxONxIpEIN998MzfffDNlZWVs2rSJadOm8cADD6DTdayh6devH5deeikLFy7khz/8IW88/jjzTjuNBVOn8try5fzkkUcoLypi/MCBbNuzh1duvhmA9Tt3Mv3GG9nZ3Mx18+fzo698hesff5yte/Yw9tprOWPsWO68RHU/Op6IJBJ847bbaGhpIZPNctM3v8k397nO7Pf977P87rspLyriN08/zZOLF9OnvJzyoiJOHDSIn553HgD//u9/+cFDD+GPRHjkmmuYNGQINz/5JLFkkg82bOCGBQs+N3ZbHJEI11xzDWvXriWdTnPLLbdwzjnnMHv2bJqamhg7diznnXceLpeLGTNmUF5eznvvvdftn8+Rxp133skzzzxDIpHgvPPO49Zbb+XKK69k27ZtzJ8/n/PPP5+XXnqJxYsXc/vtt/Pcc88xcODAng672+hMrJZKKVtz/RcB/5RSXiOEKARWAEekWF0dDrcJhT7NzbikPOSLsHtuvhn/zp0ALE2lCEiJWQissRibDQYefP/9/b6upLaW6w6i5AHgsUiEcCQCwAk7d1Ieix0Vpb9dYVBlJT8+6aScUVNVFZUmE7vJldJuBf7r8+FLpUgUFLRlXvcVq4lEAndTE0jJtmi0g1jscEwwCDodBAI491kjmmjfr9TrxWkwdLqGtH0c7fcVZDKUBIOMqqigCjBKyabVqykJhShNJJg/d+5eQepwMHHGjA6tghQKgI1NTfzE5yNoMoEQDLHbudbnY/DcuZr1U71puYGtF5YikwKdQVL1UB3jLtbGsOlxv5+322Vsz1i7FrtGN/WOR6SUO4AdQogLAZeUMg4ghDADvcmtIFF0I2+sX091dTWvvvoqAIFAoG1feXk5K1eu5IEHHuCuu+7ib3/7G8OGDWPJkiUUFBTw9ttvc+ONN/Lcc88BsHTpUtasWYPD4WDRokUsW7aM9evX07dvX84880yef/55FixY8LkYTCYTH3zwQS6eP+WWLseTSa544AGW/Pa39K+q4oI77+zwmo2Njbx3xx2EYjGGXnUVV511Fr/77ndZt2MHq/70p8/NoTj2eWP9eqodDl7N39AI5K8798fyujqeW7qUT++5h3Qmw/gf/5gTBw1q25/OZFj2hz/w2vLl3Pr007z9m99w24UXsryujj9feWWncdxxxx3MnDmTRx99FL/fz8SJEzn99NN56aWXmDdvHqvyZe6PPfYY7733HuXl5V1/80cZCxcupK6ujmXLliGlZP78+SxZsoSHHnqIN954o+1zqaurY968efv9u3Gs0ZlYbZ/smgncCSClTAohst0aVRcIOBzg8SCkpDISoXr06EMey79zJ7f064c3EsHZ2t4B+IbBgKOTEuBb6usPavxGOmZVx2/fztChQ48LAbNvBrE6/5gGnC0ELy9aRNhgIGKxMGrmTNJAM7kL7mZgUzR6QCHZSmdi82D2m00mEuk05kQCeyLBRIeDvkAZQCbDqk8+wRaJYE2n+Ur7DGlJCe5Jkw4oSFX2VLEvEeBWIGgyIQFDOs3FjY2atXpJAr8DPMssyJSArICUZGudNkLyo5YW/hQOkxEChGCBwcC8fv2onjJFnetd5xlgSrvnGXJdh07qmXCOH06oruan//gHv/jFL5g3b16HiqevfvWrAJx44ok8//zzQE7MXnTRRdTV1SGEIJVqa6rAGWecgaOdG/bEiRMZMGAAkFur98EHH+z3orM1k9uejQ0NDHA66V9VlXv9tGk8/OabbfvnTpiA0WDAaDBQWVycuymrOK45obqan774Ir/4+9+Zd9JJnDpy5AGP/WD9es6ZNAlz/nroKxMndtj/1bxJy4kDB1Lvdn+pOBYuXMhLL73EXXflTM7j8Tg7d+7EbDZ/qXGOZRYuXMjChQsZl3f+D4fD1NXVMW3atB6OrOfoTKyuEULcRU5TDQIWAgghSg5DXIeEBBr0emx5IfmtKVNwatDf0xWNgsEAgCWRIBGLgQbrVV/z+9uyqn1bWrAdJYZK3Y3T6eQr8+btFXv7aXfhTiZ5btEiIno9GYOBKbNmYQVi5Fp+xIDdUrKsvp5sNksBcOK4cZQCenKGRUEpWb5pE4ZUCnMmwxlTptAPsOYfZqORJpsNVzCYi8Nu3xuAw8GEU09VglTRZVLAL8Nhduadf3XZLGevXcuEk0/WZHwJ3BUMslxKSqeZ0RXqISkpNAjmzbN/4eu/iCjw/4CMEEigMhDgzHS67R+tossUSCmTrU/yN4wLezKg44UhTicrVqzgtdde44YbbmD27NncnM9Mtd7Y1Ov1pNNpAG666SZmzJjBCy+8QH19PdPb9bOz7nPNsG87wAO1B9z3dUCbGeOBMOavVwD0Oh3pTKbT4xXHPkOcTlb88Y+8tnw5Nzz+OLPHjePm88/f77FfZG7Zen7p9XrS2S+Xu5JS8txzzzF06NAO2+sPMslzPCCl5IYbbuCKK67o6VCOGDoTq5cB1wL9gNlSylZbrhEcoX3f1jY3szMWAykxp1IU27t+IQaQttshkQApsSST2EtLNRn3o3xmD2Dgnj3HTVb1YPgised0OvnamWfuFYv7KxUpKeGcYcP2HlNS8rn9Z44Z0+kYncWhBKmiq0jg1lCI93y+3N8CIbg4FOICDdaQtvK438+/gsHc+P0D/PKFEswri7rcbgty8T8AhPNtagrTac5au5baWbM0iFyRp1kIMV9K+RKAEOIccu3EFd2My+/HYbHw7W9/G5vNxt///vdOjw8EAtTU1AB84bHLli1j+/bt9O3bl3/9619cfvnlBx3XsN692eZ2U+9208/p5F/5MuHOsJvNhGKxg55DcWzh8vtxVFby7RkzsJnN/P2ddw547CkjRnDF/fdzw4IFpDMZXl2+nMtmz+50/IM9v+bMmcN9993HfffdhxCCTz/9dL83Nu12O6FQ6LgsA54zZw433XQTF154ITabjcbGRgwGA5X7JN9aP6PjgQOKVSlljFzl2L7bPyRn/HDE8ZnHA2YzEigNh9kdCmli7BFod8fTkkzy1vbtXL94MZlslu+PH8/1h9D7UAJuszkngoHewSBD9im1UHTOwYjFgxG9SnAqegIJ/BVYks22laNP3ryZ08rKNDsnPwIebecsPNTl4txKD+Nv0Cbr+TawsF2bmgt37+Yrs2ap3yltuRJ4UgjxZ3IG6LuA7/ZsSMcHa10ufjZxIjqdDoPBwIMPPtjp8T//+c+56KKLuPvuu5k5c2anx06ePJnrr7+etWvXMm3aNM7Lm9ccDGajkQeuvJIzb7mF8qIiJh5ERVZZURFThw9n1A9/yFknnqgMlo4z1rpc/Owvf8mdy3o9D1511QGPPWnwYOZPnMiYa6+lb0UFEwYNovgLXHlnnHACv3v2WcZee22nBks33XQT1113HaNHj0ZKSb9+/XjllVc+d9zll1/OWWedRa9evY47g6XZs2ezYcMGJufvJttsNp544onPidXzzz+fyy67jHvvvZdnn332mDZYEl9UTnLIAwthApYARnKi+FkpZae+2BMmTJDLD9Cn6WB4xevll3mDpQHNzTzUp88hXzQtXQp3Xn0xfxrXj09LwzTmy3wGNTZy2Ztv8u4ll9C7qIiT/vpX/vm1rzGioqLttbfU13PLF9xV3djUxDfz61ULMxkeTyQYMXz4IcWqUCiOPv7m9/N43pDI6/MxescOTtu8Obf+WQOxVwf8OB7Hlzdxq/L5+OrKlZx79tmajL8pP35j3uhshMvFPQMGHFFCVQixQkp5aL0UjjCEEDZy/7MP+630rv5v7sCDDx5y+5XDTkMDdHJRf6gsWrSIu+66a78X6Z3S7rMLx2LYzGaklFz90EMMrq7mx+eco3msim6km86v/fIlf+9az69oIsG0G27g4auvZnxXxVB3v9+j6W/LvhzOc+EI4Mv+b/7yzb4OngQwU0oZFkIYgA+EEK9LKT/qrgnNDgdOq5V4PM5Yh6PjGsMvwdKlMGsWOGPw+FoY+C0jODIgJXVeL4McDgbkS4HPHzmSFzdu7CBWD4a65uZcSxSgKBYjkUx+wSsUCsWxwpM+H/flW2whBKebTHzLZqO3RkK1CbgxFmNXvt9pcSzGjyMRxmkkVD3AHUA4vzzCEQ5z6vr1uEymI0qsHisIIeYCIwFT69pGKeXBWc4rjkn+unAh/3j3XZLpNOMGDOCKM8/s6ZAUxxCX338/63ftIp5MctHMmV0XqgpFF+g2sSpzKdtw/qkh/+ieNG6eeLvvTV3IGC9aBMlkLthMBsINBszVJlKpFEmjkX7tDH96FxXxcWPjl56jyOmEvKNtYSaj2jsoFMcJbwJ/0enaSnN7ezx8UwhO1MiQKALcRs6ErLXf6bwVK3COGKGJkEwCv4xEqE+n0et0mNJp5n36KUZQf8e6ASHEQ4AFmAH8DVhArkW34ihl+vTpHcyXDoUfn3OOyqQquo2nfvrTng5BoWjjgGJVCFEAfA84j1xXEQm4gBeBR6SUqQO9tt0YenI9WQcB90spP97PMZcDlwPU1tYewlvYy26/P9dXU0o27tiB+xANi6ZPh8JCEDHQ68HYJ004b4bk83g62NFDbhHRlyXZbh1sgXLqUyiOC571+bhPp2vrRVrl9zNvzRr6apQVSQM3hcOsyWTQ63TopeTsVasoi8c1EZISuCMUYmneEEoH/FoI+o4cqfoGdx9TpJSjhRBrpJS3CiH+ADzf00EpFAqFQnE46Cyz+n+AH7gFaMhv6w1cBDwBfL751z5IKTPA2Hy7mxeEEKOklOv2OeZh4GHIrYv5cuF3JOzxQEEBEkgJgcvlOqSLp8mT4Z134M6r4bvj4CNHgnAqF1qZ2czbLlfbsQ3BINWHUG4ccruReUv6uF5/yLEqFIqjg+e8Xm4PhXLlJUIw1mrlCp+PgWeeqcnvfquQfKeds/CPhWDMwIGaCcnngffaGUKdumEDfZ1O1aame2m12IwKIarJVWH378F4FAqFQqE4bHQmVsdLKYfus60B+EgIsfnLTCKl9AshFgFnAuu+4PBDpra0FMJhhJQkjMYuZRImT4bRo6FPH1iXNNCSz6YOLi9nx6pVbPf5qCkq4unPPuOpfHPwL0NhPN7Wq7WpuJjknj2HHKtCoTiyWQLcq9cjyYnKimCQy3w+powZo8n4EngIeKedkJy4ZQtjSks1E5JveDzcW1DQlhUetWsXoxsbqVZCtbt5JX/D905gJXuNpBUKhUKhOObpTKz6hBBfB56TUmYBhBA64OuA74sGFkJUAKm8UDUDpwO/1yDmA9LP4cAuBLFoFHtNjWaZSm+7pscJk4nfnnIKc554goyUXDp2LCP3sZM+GBJNTVBW1vbc7fFoEqtCoTiyeNnr5Q86HTq9HoSgPBTiqytXMnjOHM3m+HMgwL+hg5A8eft2qkeO1GT85c3N3BQKkcy/h4kWC5dbLNRqZAilODBSyt/kv31OCPEKYJJSBnoyJoVCoVAoDhedidXzyYnLB4QQreK0BHgvv++L6AX8I79uVQc8I6X8kj7tX47mLVsIGgwALAc2bNjAcA3awUTzbWsA/FYrJ2WzbL7mmi6NOaJv3w7PZa9eXRpPoVAcebSW/ubv9jHCbucqn4+hc+ZoJvL+5vfzt/xafYTgDKORCywWzZyFm4HbdDqS+cywPRbjOz4fJ6mM6mFHSpkg57SvUCgUCsVxwQHFqpSynvy6VCFEGbn+bi0HO7CUcg1wWK9mmrdvh3bNsbdu26aJWB2RzbIm/31BJkNpvm1NVxg+fDgnNzTwUd5c6b8uFycrgxKF4pjhVeBPej1ZcnWbpZEIV/r9TNOo9BfgdeBxIdpKf/s3NfFNvV4zZ+EQ8GsgbrNBJEJhOs1XVq1iaBedTBUKhUKhUCgOBt3BHCSl9LQXqkKIqu4L6dAZv08z4LLBgzUZd0hREWazGb1eT9Zmw2w2azJun3S6zUl4j92Oq51xk0KhODqRwMN+P78PBNrKcsvDYRYsX84wDW9GveD18rt2c/T2ejl77VpqNWofkwSuj0RYF8hVnNZUVvKzZJJLpk9XN9UOA0KIqfmvxp6ORaFQKBSKnuJQ+6w+AszVMhAtGDF8OBNbWlidSqHX6wnZbJqMWwzo9Xoy2SwBYGNdHcMGD8bWxfEn2u08G4mAlDQ6HJj0ek3iVSgUPYME7g0EeLRdWe54q5Xv+3wMmj1bM5H3ktfLbe3Ki8dZrVzh9TLg7LM1mSMD3BwO84HXC1ISEIJbbTbOHTasy2MrDpp7gROBpcD4Ho5FoVAoFIoe4ZDEqpTyiBOqrQwuLOSTaBSSSf6zZQtjRo3q8sVbIVCYTLaV2oWNRkKhUJfF6illZZQVFuLxemmx23lv0SIcDofKWigURyFZ4EHgOWj7W9Hb4+EKr5eTx47t0thLl8KiRbke0MnJ8Id25cVloRDf9/mY3MU5WpHk3seHmUzHFjWVleBwaDKH4qBICSEeA2qEEPfuu1NK+aMeiEmhUCgUisPKoWZWj1isTU1gMCDZW1qrhfjrpdfjza8NC5nN2A+ht+rnYgV6xWJ4yF0g1jscqt+qQnEUkgJ+EwqxKJttK8sd0NTEWWvX0v/ss7s09tKlMGsWJJOgL5SMeDFCycm5ORzhMOeuXMng2bO1eSPAg4EAz7DXWfjEbdsY39BAtUZiWHHQzCPnoj8TWNHDsSgUCoVC0SMcUKwKIU4g18uthpyPxy+klL78vmVSyomHJ8Qvx8nFxfw1FkNIicvhoFcXRGVJbS231NcDUJ9IsDrfa9WaSPBBPH7AtasltbUHPce0wkLWxeMgJVudTkwm0yHHq1AoDj9h4JeRCIt8vrbS3zlGI1/X66nVoCx30aKcUM1kIJOEPW+lyA4NMcpm4wq/n6Ealhc/7vfzl3YlzGcajXyzuJga1aLmsJP3iXhaCLFBSrm6p+NRKBQKhaIn6Cyz+iBwC/AR8H3gAyHEfCnlVsBwGGI7JE6sqGBgLIY7GgXAlc1yqG5Q1912W9v3765dy4+LipBANJvl3EBAk7K7M0tKeFqvx+v1Ul9ezpLFi1UpsEJxlLCuqYnbhKBRp2srmT1h507Ot1oZr5Ej7/TpoC+ETFIiDBLLyXHKg0Gu8Pk0dRZ+FfhbO2fhvs3NLNDpNHsfikPGI4R4AZhKrgjnA+BaKWVDVwbNt5VbDjRKKed1PUyFQqFQKLSnMzdgm5TyDSmlX0p5F/BD4A0hxMnk/mEekQhgaCZDOBIhHA7zj5UrcbvdXR53ZGUl5eEwAsjo9TR/iexpZ9QCZYlc27yUXs/migrlCqxQHAV81NLC5YEAm6JRwpEICMGUujpmbNpEjUaOvABbhvkY/mKY/r9KMuCpJvoPbuGrK1cytEo7U/Z/+nwd3It7+f3M1dBZWNElHgNeAqrJVTq9nN/WVa4FNmgwjkKhUCgU3UZnmVUhhCiWUgYApJTvCSG+Rs4/5Ih22ahsaoJ8A/v6sjJN1oE6nU6+bjLxFLm1XO8Eg0xyu7s8rgDmFBRQl89orO/dG5NRdSpQKI5klgM36fVECguRgD6b5dJAgFPKyqg+4QRNKiMk8Ijfz32hEAyR2IfmXH8vb8gycM4czaovnvH5+F0o1MG9+HKvlwFnnaUqPI4MKqWU7cXp34UQ13VlQCFEb3KO/ncAP+nKWAqFQqFQdCedZVZ/Dwxvv0FKuQaYBTzfnUF1lZl2OwiBAHaVl1OqUXbgrOJiTCYTXp+PDxIJXnj9dU2ytgtKSigvLUUAjaWlvLJ6tSbjKhQK7fmnz8f/BAKkCwpACIzpNOetXMk3qqoYN26cZkL1b8Dj7cpyq3w+Lm9oYMqYMZqJyHeA+9uVMFcGAlzW0MDksWOVUD1yaBZCfFsIoc8/vg14ujjmPcDPyZlYKxQKhUJxxHJAsSqlfEpK+dF+tu+UUl7WvWF1jTEVFUwoL8dms2G221lj0GaJbS1QkjcfSen1bKqs1KRktxQYHgq1Pf+0Tx9VCqxQHGFkgD8Eg/wuFMLv9+P1+RhUVMRtsRhXTJ2qmbhLA78Ohfi/dmW5vb1ezv30UwZqWPq7GPgTYDSZQAgqg0HOXblS0zkUmnAp8A1gD7AbWJDfdkgIIeYBTVLKTh2GhRCXCyGWCyGWNzc3H+p0CoVCoVB0iUNqXSOEeFhKebnWwWjJSakUyyMRkJLHm5qYlEppUrJ7tsHApny247PevTFpJIQXFBbyfjoNUrKxuppEMqnJuAqFouuEgN8B70vZIQv5I7+f00aP1myeGPDLcJh32jkLzzKZOF8I+mpYlvs+8NtEglg8jslk4qTyci72+Rh85pkqo3qEIaXcCczXcMipwHwhxNmACSgSQjwhpfz2PvM+DDwMMGHChCPWp0KhUCgUxzYHzKwKIRwHeJQBXWsceBjo09DQdlG5rbycrXv2aDLuV0tKqMiX7O4pLubFNWs0Kdk9rbyccVYrAkjrdDy8Z48qBVYojgDqgStjMd5vl+kc2NTEghUrGKahsAsAvwSWZzJtf7tG7dzJhY2NTNSwLPct4PZEgj1uNwG/n/TWrfwiHOYUDcuLFUcuUsobpJS9pZT9gPOBd/cVqgqFQqFQHCl0tma1mZyPyIp2j+X5R2X3h9Y1Tiwv7+Deu00j994iYGQw2Pb809paTUp2BTDds3cZ0qraWj5TYlWh6FE+BK6Jx1nX3EwgX/r7Xb2emwoKOE/DTOe65mYuaWlhXSKR67UsBJO2bGHGpk301tCR90XgXiCW7+1cGg5zziefEG5s1GwOhUKhUCgUCq3orAx4GzArX4LUASHEru4LSRuqnE4uKSzkYZ0OvU7Hq7EYp7vdVGlwcfl1o5FFmQxCSup69cJosWgQMZxZXMwTLS0022xk9HpesFoZqYHjsEKh+HJI4CngaSCQSICUFGQyzF67lpm1tYzTsPfo0pYW/sfvJ1JYCNEoVU4n19vtDHM4qB41SjPDpr8EAjwFmEwmTCYTheEwX/nkE2yZDNWqRc1xiZRyEbCoh8NQKBQKheKAdJZZvYec98/++H9fNLAQoo8Q4j0hxAYhxGdCiGsPJcCucF5pKUVGI16fj/WxGI8sWaJJae0p5eWcWlbWZuD0pkatZqqcTn5ZVYXNZgNgSUEBD374oSoHVigOI2HghnCYvwQCJPKZzpJYjK9/9BGDWlo0FXYfAL8qKNjbAieT4YIdO7igtFRTZ+E/BoM8GAgQ8Ptxu90MTqd5uLycaWPGMG/ePHVD7AhGCPGrdt+rvmYKTah3u3lq8eK254vWrmXebbd9qdeP+uEPv/C4nz32GCOvvpqfPfYYf3/nHVyerhpZK45mWq9vO+Pee+9l+PDhXHjhhfznP/9h/fr1hyEyxZFMZ2J1hZRy9f52SCnvO4ix08D/SCmHAycDVwshRhxCjIeMFRjW0tK2/kurkl2AufE44UiEcDjMk14vG5uaNBl3RlkZY/OZHAksHDGCVVu3ajK2QqHonE3A5bEYr3u9bcJuVCrFow4Hc4YP10zYSeAvfj83BgJk9XoQAlMqxbmffspZxcVdHr+VLHAf8J92xlB9Wlr4Tl0dA5xOzQSxQnuEED8XQkwm5/7bytKeikdxbFHf1NRBrHYXf3njDVbecw93XnJJTqx6vd0+p+Lo5oEHHuC1117jySefVGJVAXReBvwAMP5QB5ZS7iZns4+UMiSE2ADUAIf1rFtgMvFWNIqQkq1VVRg0Ktl17txJWWEhLTYbKZ2OxxIJfq/JyPCjggKWR6PEDAbCJhP3G42c4HZTrS4qFYpuQQL/8Pv5B5BsZ3A0rr6eb3k8DBw3Diq1WaqfBH4bCvFCvg0WQjDMbud7DQ2M0bgFzi2hEEuy2TZjqEF79jBn3Tr6z52ryRyKbmUT8HVggBDifWADUCaEGCql3NSzoSl6it88/TRPLl5Mn/JyyouKOHHQIH563nls3b2bqx96iOZgEIvRyF9/+EOG9e7NxffcQ5HFwvItW9jj8/H/Lr6YBVOncv0//sGGhgbGXnstF82cybgBA9rmiMTjXPOXv7B2xw7SmQy3XHAB55x88gFjymQyXP/44yxau5ZEKsXVc+dyxZlnMv/224kkEkz66U+5YcEClm/ZwoV33425sJCl/+//YdaoKk1xdHLnnXfyzDPPkEgkOO+887j11lu58sor2bZtG/Pnz+f888/npZdeYvHixdx+++0899xzDBw4sKfDVvQAh9S65ssihOgHjAM+Phzztefk8nJmhsOsyGTQ63Q87fNxjQbrQGuqqzll6VJeHDcOhOADi4VPmps5qaKiyzEPrazkUpeL+0tzVdj15eX8prmZX4Mma24VCsVeQsAd4TCvtxOPxnSamevWMbilhT7z5mk2VwC4A/gom20TxL09Hn7k8zF1zBjN5okCv9qnBc7ZhYV8zWCgz9y5Kpt6dOADbgSm5x/DgTnA9XnBOqXnQlP0BMt37OC5pUv59J57SGcyjP/xjzlx0CAALr//fh76wQ8YXF3Nx5s28YMHH+TdO+4AYLfXywe/+x0bGxqYf/vtLJg6ld9ddBF3vfACr9x8M5ArA27ljmeeYebo0Tx67bX4w2Em/vSnnD52LFaTab9xPfLWWxRbLHxy990kUimm/uIXzB47lpd+9Sts3/gGq/70JwAefP117rrkEiYMHtydH5PiKGDhwoXU1dWxbNkypJTMnz+fJUuW8NBDD/HGG2/w3nvvUV5eTl1dHfPmzWPBggVfPKjimKUzsTpACPHSgXZKKQ+q75sQwgY8B1wnpQzuZ//lwOUAtRo59u7Ld202PkskcLvdvJbJ4HzzTb4xZ06XLticTidXT57MrniclUA4HOYWn49HsllNBOW5vXrx8caNLO/XD4D/2u3csGkT/4sSrAqFVmwktwB/S7tsqjMQ4IeRCLW1tVSffLJmwm5FczO/0emI2myYTCYCQjBy1y5mbNrEIA0znS3ArcDqdu9pzI4dfN1mY7yGxlCKbudM4NfAQOBuYDUQkVJe0qNRKXqMD7Zu5ZxJk9oykl+ZOBGAcCzGhxs38vXf763vSqRSbd+fe/LJ6HQ6RtTW4g4EvnCehatW8dKyZdz1n/8AEE8m2dnczPA+fQ54/Jr6ep798EMAApEIdbt307+q6pDep+LYZ+HChSxcuLDNrDAcDlNXV8e0adN6ODLFkUhnYrUZ+ENXBhdCGMgJ1SellM/v75jD0Xh8LFAWCOCWkrROx8cDBnCKy9Xli1Cn08mCdetYabcjgYbSUp6MRPgfDWJ2Op38FviVx8MyqxWAFX37cpPHwy1AzVEmWCWwramJrW43Jb16YSkvJwYdHlHAnTeBKSspobS4GD2gJ7e4Wg8E/X6iLS30Ky2lf1kZxUAxYCbX/kehOBiywGN+P08ABrO5TTyOra/nlC1bOFnj7OMrXi+3hkIk9XqIRKhyOvlJUREnWCzUaDjXJ3lBHG8niCfV1TGpvp4aDTPEiu5HSnkjgBBiNfAEueqkCiHEB4BPSvmVnoxPcfiRcv+XSFkpKbFa2zKY+2I0GL5wjH3nee766xnau/dBx3Xf5ZczZ/whrxxTHGdIKbnhhhu44oorejoUxVFAZ2I1LKU85NX3QggBPAJskFLefajjaIEAvqvXc70QCCn5rE8fpEZrVydUVDChNQMqBK9XVDD0s884qby8yxegVU4ntwI/bGhga3k5AB9brXxvzx5+sH07k/r37/FyvgTgB7zkatb8QH0gwI5gEEpLSdls+AB3PE5jPA5FRRCN4kwkMO6zXiWRSOy96xsI4DSZOhyTSCRwB4NgMEAkgtNma9tfAJSQ64OrD4cp8Ps5wWplXGkp/cmZbSkUAHuAOyIRlrSW/QaD9K+s5HdWK1V2O9UaiscM8DjwmF5PUq9HAoZ0mm/X1/OdoUNBw0znOx4P17cTxNWVldxktzNQwxY4ih7hTSnlJ8AnQoirpJSnCCHKezooxeHnlIEDueLZZ7lhwQLSmQyvLl/OZbNnU2Sx0N/p5N8ffMDXTzkFKSVr6usZ07//Aceym82EYrH97pszbhz3vfIK911xBUIIPt26lXGdrBWcM24cD77+OjNHj8ZQUMDmxkZqyso+Vzbc2ZyK44s5c+Zw0003ceGFF2Kz2WhsbMRgMFC5jzeE3W4nFAr1UJSKI4XOxOr2Lo49FfgOsFYIsSq/7UYp5WtdHPeQOLOsjDeNRlZmMphMJl4xGg/dPaodTqeT24CfC4HLbKbZ5+MuIfjG66/ztbPO6vraWKeT+4Hbmpv50G4HwFVSwm02G+M++4wFW7cyduBATS9EU+TW1vmAbR4P230+9OXlyJKSNkHqA3bH4/jyrT1aRWOb4JQSvF6cBgNGo5FwO4djISXxePxzYjUej3d6TGf70+TKHxsTCdxeL0jJm6EQTosFo9GIk1wtXX9gQP5RhsrGHk9I4Gmfj0eBaLs1o1V+P9cEAsw64QQoK9NsPj/w60iET9PpNoOj4miUeatXM3v6dM3mAXgbuKOdIDamUlxUX8+CYcOg9EAdyBRHA1LKn7d7enF+W0vPRKPoSU7q14/5Eycy5tpr6VtRwYRBgyjO33h/8ic/4aoHH+T2Z54hlclw/qmndipWR/frR4Fez5gf/YiLZ83qYLB00ze/yXV/+xujf/QjpJT0q6xsW9u6P74/ezb1TU2M//GPkVJSUVzMf2688XPHXTxrFlc++KAyWFIwe/ZsNmzYwOTJk4FcS5snnnjic2L1/PPP57LLLuPee+/l2WefVQZLxyniQCUhQoiTgF1Syj35598FvgbsAG6RUmruPz5hwgS5fPlyrYdtYxtwHRBPJIjH4/w6nWaWRhenjcBFPh/NwSASqPV4OG+NlabdQ5k+HfK/j4fMHrebWz77jI8GDCAr9kosfTZLb6+XSUVF9JaSfg4HVilpdrupcDqpqKigqaWFhqYmip1OLGVlxAGXz8eOQAC9w0G2qAg/sDsaxZ1IIPMCL5Ff59tq0OJ0OjuK0v3sC+TLeCU5IVhcUkJxcTGJRAJfYyOmZJLCTIZh/fpRYbVihrZHMhBg3fLluTIlnY5x48djKykhSy5D5QsE+HTtWhJ6PXGjkV5Dh5KyWvGTc1gFDjj//jDEYtT4fEw3mZjtcGDv2o9IcQTjBX4bDvNW/kYG+SqLCVu3MrG+nnM0LvvdCNwci7GpubltvmlmM+e7XAyqqtJsLgk8FAjwT0Cv0+H1+bDG45zz6adcPH36cZ9NFUKskFJO6Ok4jnY0/d/84INwkOWlPU5DA1x1VU9HsZcHHyRcVobNbCaaSDDthht4+OqrGa8u4I9ODuf5dST83nX3+z0S3uOhcqT9relmvuz/5s4yq38BTs8POg34HXANuSWgD9Ox99tRwQDgpFCIZ/MOmb9OJOifTjNAgwu6GuAqKbktfxG8cUc1V/7AiUxCYSG8807XBGtrSfDbu3bxV6sVb/5uakanY0d5OTvyx4loNPeN3Q6xGI5QCG80ClZrW+ksgDsUAiHA78eZF6DufE9aQiGcTmenmczWfbpsFksySWUgwNDKSvRCsH37dszxOLZUirMnT2YwUGI04rdacQUCVFdX47TupzC3uBj3qFG4XK7cMSUln98/ePDe/e3GiANBYGsqxaurVuEzm/EUFWGrqKCFnNhtTyKRYGdzM1ulZEk6zV8tFk40mTiZXFPgrns6K44U3ifXh6uxneGQIxzm8kiE4aWlVI8cqal4fJXc+gdPMpn7fQIm1dVxicOhqcFREvjfUIjnWysZhGCUzcb3/H5GKqGqUByTXH7//azftYt4MslFM2cqoapQKI55OhOr+nbZ028CD0spnwOea1fWe9Rx6vbtvGKxEDMYCBmN3JdO80eNxv6aw0GLTseTQhBdZyWdBDKQTEoWLRJdzq46nU4udDqZ4XbzrNvNy0LgLirqcEz7TLmQkkg0+jnBmT/wgNt02SzGcJhasxm314vvvvswuVw4HQ7shYUUAjIep6mhAV02iwBq+vQhYzaTARyxGNFolIzFwtvPPcfb+3kvJbW1XHfbbft9j51dZB9ovyn/qCwvZ8DJJ+8VtBYLKWAXubr2rfmvK/b5XKKJBGtMJtaQuxMzABjh99O7sZETy8uVA/NRSAC4KxRicTaLyWTqYKI0detWZp19tqaCLg78PhTinXbzJdJpzli9mv4+HzWjRmk2l4dcC5zl7cqZa1tauNrrZcrYsZrNo1Aojiye+ulPezoEhUKhOKx0KlaFEAVSyjQwi3x7mYN43RHNcKeTmcuW8dro0SAEn5WXs4hcEzstuLykhBTw+LQkwqBDAhRkGTk6ADg0maPa6eRHTidnbNjAa0uW0OBw0GK3E7BYSBQWkiwoyIlOoJfdzp6WFvSZDIXZLKPKyjBJSV1jI6ZEAksqxRkTJlAkJZ8sXYopHsecyfCVefNwWiy4q6u5vbmZ/x01Cls+K9tKuHdvQqEQdrv9c/u+iFvq6zX5LPbHvoLWwN51qrPy2/Ykk/zf0qVsLS9nu9OJ3Mdif0MiwaJgEGw2nM3NXG0wMM/hQN9tUSu0QgJvAQ/G42zLV1EEhGBkRQU3Wq0U2+1UayxU64DfRKOsbjffyWVlXGO3k+rfn+qpUzWbbyPwW3LrxlsF+IiGBmZu3MhADVvgKBQKhUKhUPQ0nYnOfwKLhRAt5DqLvA8ghBhELmlxVOJ0Orlu4kTSqRSrK3LFnr/1+ShPpxlV0fXiTwFcBWwY3IL3SUH4IxO2k+O8OU4yB9DSTmD48OE4HA5cLhcmk4l4PE51/oK4LbPocOBOpfY+by0DHjiwwzEAw2fM2LstP47T6aSsrGy/YtRms31pkXqkUOV08t3W91tZicFoZBnwEblmhoF2JdBuu50/6PW8CHwFmI1yFz5SWdHczL3ZLLtLSoi3M/Ua0dDAD1uzjhqaKElyvbmeALypVNt8Ixsa+J7Xy6ixY2Efw4iu8Bbwx3iccN7YzGw08lO7nZFms6YtcBQKhUKhUCiOBA4oVqWUdwgh3gF6AQvl3vpSHbm1q0ctrQ6+l0ejrMmv07wmGuURKRmgwYWlHrhRr8dTvZ3lJ/cl8rGZpUUGLtO7+YUQjNTw4vVAZbHtt+3vmIPddiyz7/s9M/+IAG9nMvyf2822igoyej0mk4lm4FFyd3FmA/MB7X6Siq6QBP4SCPBoNEoWwO3GUVpKcTzOtM8+o7/Px0CN+4x6gN+Ew20O4yaTiWg2y2nr1zNizx76ajhfmtw62OcSCdxNTSAliXSaG0pKmFFWphx/FQqFQqFQHJN0Ws4rpfxoP9s2d184hw8z8NX6etZZLGSEwGux8Bsp+QtQqMH4NU4n315u4LkLS0inBO57JcEng1wyNsYvCgr4qsNxVLdNufTFF3ll82YqrVbW/eAHAKzas4crX3mFeDpNgU7HA3PnMrGmpocj/fJYgXMcDk7u25dNbjef9e3LB0Yjwfz+GPAi8Gw8zsiWFr5XWMgIDW9AKL4cK4EHgU1AFtrWXc/0eLi4pIQWjctwAZYCd8ZibM27CweEYEpZGXfZbGSqq6meMEGz+YLk3O3WstfYzBEKMW/VKkpGjtQ0U6xQKBQKhUJxJHHUrj3VgillZcxevpw3Ro0CIWgsKeFu4Bdo039z7RoHMgVkchfQ4Y9MWE9M8ie9nk9DIc7cto3BGraxOJxcPHYsP5w4ke++8ELbtp+/9Ra/Pu00zho8mNfq6vj5W2+x6OKLey7ILtKaeZ0GfA94D/gP0EC+dU9TE7ulZHEkwpV+PxeVlGDoyYCPM5qAe0MhluxjoNTL52PWhg1cNGMGTqeTPhr+fu1wu3kwmWRlZSXxdm6/E7Zu5VKPh9HjxoEGywla2UKuBU5DMtn2Hiuampi1di1GKamurtZsLoVCoVAoFIojjeNarDqdTn4yYQKVkQhv1tRgNBp5N5Eg7HbzQ6Oxyw6w06fn2tYkkxKhz+AcFwChQ6/T8bLPx1tWK+PXrePnQP+jTLBO69uXer+/wzYhBMFEAsit+ay2HzudSwuBOeTKf1cAD/l8uPPrE1M6HY8LwSfAZYBq6ti9RIF/A8/E4zS0MzTqX1nJjXY7gz0eavJCVUveb2nhJq8Xn8XSVmZsSyQ4Y80a+gQC1GpY9tvaAueBeJzGfK/WgBBcXVTE/NpadhcUdFhbrlAoFAqFQnEsclyLVcgLVsAOPJtI4Ha7eVlK6rds4U6gVxcuBidPzvVXXbRIMHp0kLIaP++WDOCNfLuJmMHAh4MGcVVhIReRM+85Ou2KctwzZw5znniCn771Flkp+fDSS3s6JM0R5MToHULw0IoVLBo6FK/djslkwgXcCgwPhzl9+3bGVFYqMaEhGeAZn4//k5K01drBQGmoy8U1fj/TRo/WfP1mHHgceNJgwG+xtLU7Gh0Mcm1JCYGBAzUVjhHgXuBDIJx/j4Z0mjPWruWkvn2pGjdOtVJSKBQKhUJxXHDci1XICZDvA+s8nrZs2drevfltJsMf6Noa1smTyfdXdQAOTgbGezzcEY8TNJlACLIWC48lEjwWjTJDr+esoiJGcfT9cB5cvpw/zpnD10aM4JnPPuN7L73Es1/9Kp5IhAK7HWGxECe35nN1MsnVLheFRUXobDZi+e2+eJxQPI7FZMJqMqEj5+iVjMVIRSI4zWaqrFaKgWIg6/eTbm5mTGkpJ5aXa7Le+GBwOp1cOXUqc10uNtjtvGo0EiFXHvym18vbNhtTV6/ml2PGKGGhAauAe6NRVoRCudLbcBhHaSnOYJBTNm6kJhhkqMYGSgDvejzcC0RtNoz539fCdJrTNm3iZ+PHU1VZqanbbx1wSyzGrnZlv4XhMHM+/RRHIkF1V5s1KxQKhUKhUBxFHG16qNvQAT/X69nd0MBmpxOEYFNZGb8GfoW2rUrOLCvjhHSal0Mh/ltdjRtwu90gJU8LwXtGI2VGI5OAoR4PZbt20bdXryMmS5cFEoCfnEvpVsAfj/PIqlWcM2MGbwGmESP470sv8c9MBoxGSKWwpdPoCwrIpNPUJ5NsS6XA68VpMGA0GtvWgSIlBIM4nc692/OlkNuiUZwFBRiNRtyLk+x6DayTbFgnROkVjzPIZGIAUOr3Y929m6kOBzXd9Lm1rmmdQM4Z+B/Ac3kDnLROx5KhQ0lns/yOnLBWfHlWNjfzcDrNNoeDeLvWMPZYjAsTCeZVVrI7nda8JDYC3BMM8kwkkjsfIxGcTidnOBycvW0bI8eP13Q+CbwMPLRP2e+FJSVcUF5Oy8iRquxXoVAoFArFcYcSq+3o7XRyH/BAIsFHeaG0IpHg0mCQX0upqeNrjdPJlU4nlwGP1tXxZCqF12pFSEk8HidsNPJaIsFjkQiUluLweplmsTDGbqc/YG1qItzYSI1GF7BxcuIzkP+63edjh9+PvqyMtcA7+WPCqRTRTIaCggK85C7qP0ynCScS2K1WXtmyhfHDhrFh506cpaVtBjRISTovVtPpdG4TtL1fo9HY5nR6MNujK42sOMtANlGMKCxiwJNuorMS7DCZ2JxI4A4GwWLBGIlwdijEGXY7JwKmLn9S+6cY+BFwUirFr8JhWmw2EIKtDgc/An4MjO2muY9FdgMPh0K8EI0ioW2NqCGbZfy2bYzfuZOvnH02TqdT88z1J8D9wDYp2847UzLJgp07uWzwYMTo0ZrOFwb+RK7Hb/uy31mffcYZffrQZ9w4TU2iFAqFQqFQKI4WlFjdhyqnk1uB54G/5NewuqXkknSaGwsKOMfh0HQ+PTC/qAjxyis0FhezraqKRGUlEegg0rwWC+9ls6wk70Qbj6MrLcUcDDLUbqfKYsEOyGCQcCBAUXEx9qIiJDlRGAoGaQ6FMBYXU5Avu40D3liMlngcncWC0WiE1vFDIdDpwO/HmsngBjLpNOFoFKTk0ddfp66xkXAsxrV/+hNnT5rEhbNm8e8lS3h2yRKMhYVcOncuOsCQTmPIZOhlsVBEruy6VyDACatXY8pmOeOUU+gDhBIJFi9ejEil0On1zD7rLMqLi9mdSPD6+++TEoKE0ciJM2bw70XwYRLICmQKMh/oMc3NSdH2n1tCr+fdbJYVgAEYFA4zzOXizOJiqrtBAEwuL+fvmQx/bXfDwwv8PJFg6p49XGYydcu8xwrrm5p4PJFgdUUFkWy27fwVUnJSIMClVisxh4PqUaM0zzL6gD+FQry7j7vwoD17mL5pE+fMnq15u6kNwG/2cfs1hkLMXrUqV/Y7aZLGMyoUCoVCoVAcPSixuh8E8DWgZedOHjQYyApBvKCAP+j1bAauQlsjJKfTyVfmzcPlclFdXU2l2Uwd8Drwn2gUr8UCQmAydRRjGSGIFBayNZWihbzI9Ptz2Uy/H6fRuLeMtnX7vmW3+ZJDQqG2stt9M5mZTAYglxHNZ0qvmD2bEpOJMqsVXSKBf88eCtJpzpw1i0G9e+OwWDADyXCYUCyG3W7HVphfUWoycYLDwfl9+uRKG8vLc9srK6mYM6ftc2gVI0WVlZScccbe7WVllEyHpwsFyaSkoEDy51kFzDQaqQdWZLO86nKx0+EgbDa3fW7h/HrSN41GHvP7+b7RyNdLSrBo+LME6ON0chs51+A/Ak35mx7PA8t27+YeIRis+rJ2YDfwaDDIc9EoGSGgqQlHaSkIQd/mZqZu3colp52GU+M1opArZX8VeDQep76du/DgigqusdnobTBQPXu2puI4BTwJ/DORYE+7st/vlJRwfkUFzarsV6FQKBQKhUKJ1c44t6gI93//y8KRIwnlRc8S4DPgOrQt62xd/9jKEGBIcTHnx+Ns372bdO/eBI1GtgPrCgr4JJslpdPtV8QeSnltQSaDORxmoNFIgV7Prt27McXjWNNpIlIyE8hkMuzasYOCTAYdMGTIkJxoNxoJl5URCoVyotSyV/4V2mzYbJ+X9mazmXHjxn3h53Cg7e2dlqdPF0yenMt4DweGl5ZyxoABNLpcpMvKqDMa+QhY3e79Bk0mHhGC5+NxxrrdXGA2M0xjEXQi8Gfg515vm3FXQ2kp/6PX8wdgsKazHZ0sb27mqWSSz8rLieVvwLSep/0jEW6zWLDpdFSfdlq3CLf3PB4ezGbxFxV1cBce5nLxI5+PU8aMAY2rKbYBdwM7gFj+nCxMp5m1bh2zamvpPW4cvZVIVSgUCoVCoeg+sSqEeBSYBzRJKUd11zzdidPp5IqpUzl9927eqa5mWb5M1kOurHOi283lRiO13XhhuV/xZrXitlio370be3U1JqORELAjk+HdjRvJSolOCCZNnEgp4M9mWbZhA7p0GmM2y6ypU6kBIskkiz/4gMJEAqOUfGXePJwANhvu/v3bMpkPGo1U5ectHjhwryhtJ0JtBxCl3clep+XP0/5zmwhcCKxNJrl3+3bW9O5NvLAQvU5HfVMT9cBr4TA/KCzkOyUlmv5SlAC36XT8eutWPho4EIQgVFjIFX4/35eSC0pLNS8tPdKRwErgyXCYd2KxXLY+vyYVIaj2+Zi0bRtXTZlCVXk5tGbeNaSFXMnvS60GSrEYjtJSSqNRTt2wgX4+H4M1dhfOAM8Bf4/HCScSbWW/xV4vM9aupTiVovrkkzWdU6FQKBQKheJopjszq38nl1h6vBvn6HZaRc8UYCm5N9Tcrh/ru8EglxmNXFBS0m3mPZ3F1Z4xDgeTxo7dWy7b2m+ytJQZ48Z1KKMFoKKCmtNP/1zZ7YHGh54RpVpxQkUFtw8fzo7du9naty/PJRJ485m0pF7PY0LwCXA52mbNq/JlwW/7fDzZqxeN+VLT3wvBh+k0X9+9m2EH+LyPJeLACz4fL6TTuUxmJtMh4z8oEuFCi4Vij4fqKVO65fNIAS8C/wLc+X7Hkty66rnNzVzgcNDUvz/VU6dqOn8juZLwNe0cryPZLD8uKeH06mp2gyr7VSgUCoVCodiHbhOrUsolQoh+3TV+TzCZXJnpje36sUYKC3lMCN4GzgXmguZrIL8MB1tG+0Xbj1Va3+9EYIbbzX2rVvHfwYPx2WyYTCZ2kcuaD29p4UcGAwM1Kg12Op1c6HRSsXYtv9Ppcm7BUvJ+NMonFgsTV6/m+jFjuq3NTk+yHXgDeD0eZ0drn9R8JlMAA91uTtyxg+9Pm5Zbv9wNmVQJLAf+HI2yPZXqYKA01OXilC1bOP+MM3A6nZr+DCTwCrk7d0n2luo7/X7OWLeOkSNGUDVunOrFq1AoFAqFQrEfenzNqhDicnLJLGpra3s4mi+mBLhZr+euVav4cNAgIvmL3iC5FPLzwDnAV9C2N6tCe6qcTn508smc63Kxrrqa14xGAu0coJdHItyh0zFdQ/E0prKSb772Gv8dOJDVffsigZjBwJKhQ9mZzXLO5s2cVVxMr6NcvISA94GXIxE+S6cxmUwd1oQa0mlO9fn4hsVCymCgetq0brtpshV4FPgkkcDd0tJmZnRieTk3WiwUG41U54WqluwGfh8OszKTybn8Go3YjEZGbtnC2G3bKNDpqK6u1nROheKLEEL0Iffvqopc2+yHpZR/6tmoFAqFQqHYPz0uVqWUDwMPA0yYMEH2cDgHRZXTyc9OPJEdLhdbKip4x2ikKb8vTN7lMx5nwp49fMVqZWxFRQ9G23VKamu5pb5e8zGPBFozrSeRu8lwe0tLW9Y8bDTya4OBbwYCTNy2jT4alGk6nU7OPftsJrpc7Mhk+EMqRdBkAiGoT6X4k9HI3/1+zk8mGe/x0L9Xr6Mm850E3vJ6eT0eZ5vDQVoI3B5PmzhsXRM6ctcuRu7ezdfOPBNnRQV00+/HuqYmHk2lWFde3sFQzJBOc/KWLVxcWcmEceM0z+RmgP8Aj8Xj7PJ6297/hPJyfmWxYBk1CpfDocp+FT1FGvgfKeVKIYQdWCGEeEtKub6nA1MoFAqFYl96XKwerbQvJ/0G8B7wb3LZlER+XVq9EDwbizE+GuV0i4UpQD846gx1rrvttp4O4bDgAH5RUIBpxQreGTGCeGEhOp2Ov/h8vKTTcfbChXzzIFuY3HPzzfh37vzC406OxdieTtNoMBBPp4FcVvKvgE5K7PE4/UwmbMkkVYMH86u77+7am9SYJLkWPf8FlsTj7AiHc2W+TU3YrFaQEl02y8CmJr4ZiXCqw8HueJzqMWO6Taj5gEeCQZ5qbYPjduN0OrEYjdQ2NHDSli3Y0mn6jB2r+dwftbRwbzZLS3FxWyYZYPy2bVzh8dB/3Dg4zkrvFUcWUsrd5P5VIaUMCSE2ADWAEqsKhUKhOOJQYlUDCoAzgJnAEuCBYLAtOyekbOuD+jTQC5iSfwzm6BOuWiLJme5sbm5ma3MzdqcTS1kZLp+PFo+HSoeDcoeDgNdLuKmJ/uXl2LNZEo2N9O6mrJTT6eTaSZM43e3mxV69+DTfW9ZVUsLTkybR2+Phqwcxr3/nTm7p1++g5/VGInzQ3Iy7qIi0Tve5/QXZLE9s3kyvnTsZ4PczoocEjwRcwCrg/XCYFakUwmLBmC+hbm+Y1DsWw7lpE4NcLqyZDNPmzcPpdHbb+swQuTL8l4GmfdrgDPZ4uKG6GsOgQbgsFs2zmlHgwWCQ/4tEkADxOI7SUirCYWasW0dVOExfjd2FFYqukveVGAd83MOhKBQKhUKxX7qzdc0/gelAuRCiAfi1lPKR7prvSEAPzACGZbPcu2YNG6uq2Fle3tYHFXK3s5/LP6yxGAObmxlvszHB4aCGY+PuQRqoa2pic3MzxqoqdGVl+IAdwSC7wmGyxcUkrVZ8QDCRwB2LgdUKkQiOwkK8oRAYDBAO4zAY8IbDYDZDNAqAvqSE8qYmTgwEmKrXUx0MUqOh+GjNmk8H/ub380B+e8Rk4oHSUlxbt7LAZtNUdDmsVmZKiT8cZo/ZzLpkkpjB0LY/rdMRNJm4V0ooLqbI72eGxcLATAbr7t2MKStjUGWlpjc/ssDGpiZWe72Eq6poKSlhdSyGK5lEr9PhzbsaEwrhdDoxmUyIWIyBu3czYs8evjNzJowZg6uioltLXkPAS8Az8Ti+di1hAkJQ5fdzSl0dV5xySq4tk8YiX5Jbm/sIsD0v1Fv7Fs9tbuZb5eW4hwxRJb+KIw4hhI3cv6LrpJTB/ew/qvwkjjf6/Td3U7N+araHI1EoFIrupTvdgC/orrGPdHo5nVw3cSIulwuHxUKD0ciHwDJymUTIlQrvbG5mg5S8Eg7jtFqxGY30BfoDA/KPfvSsu3AraSCQf/jafb8jEGBXKIQsKSFps+Ej39onHgebDSIRnPlWN26/PyduPB6cBQUd1hG2ZsAi0egBn7eWVKZ1OvYUFfEq8CpQZDYzdvVqzrVaOWHQIM1EgQ64vKSEgZkMdwlB3GCg2efjrwUFLNqxg98LoZlbMOxtC9QbGBYO0xiN4jabqUsmSer1QE4IAQRNJt5JJnkxEgGLBeJx+sfjVGUyGP1++tjt9CkqIrBzJ76GBvr26sXg/v0Jejy4m5spqaigqKyMJq+XRq+XwvJydCUlNIZC7IpEiBcV4dHpaIzHczcKgkEcev1egdoultJIhGm7d3Nhv36YS0vZHYtRPWJE28+hO8t9XwBeh5wxVr4lTEAIJpaX8xOrlUqPh5pTTumWGFY1N/PnTIadpaUYjcY2gVzb0sKMjRv59qxZOJ1OqpVIVRxhCCEM5ITqk1LK5/d3zNHoJ6FQKBSKY49jIZF3RNK+JUxfYCq59X2rya3ve2MfURaPxzEajWwBtuwzVkk0iiUQoNpmo8Zuxw4dHkX5r1G3m2aXi175LE5rlof81z1uNzv37KG0Vy/slZXEgRg5Ad3o9dLo81FQXg7FxQQAPzlBuicex5vPWBmNxra4EokE7kAgJ168XpwGw34FaDyel+j7eb9FRiMyHsecSGDMZBhUU4Nr925ENovU6+nTrx/bm5qIFxSQMBiIGI1ECgs7fD5Bs5klQ4fycTrNyatXc8OYMZoKhFllZZwAXNfU1NaXtc7p5Dq9ntvI1dAdDPF0mmmPPUYikyGdzbJg+HBunTGDm959lxc3bUInBJVWK38/91yq7XaG2mwMBcaHw7iiURYJQcTnw1VcTCYvXtt/ps2RCNsjkdzPw+/HnskQlBJqagAo8vkIRSI58dmaxQ6Hc1nsfcVoS0vbmtN9bxwY0mlqvF5qvV76tLTgiMf5yrx5bZnL7m7Dsgd4PBjkjWyWArO5wzlXEokwacsWzu/Th/HjxkFrT2ENiQAPBwI8Ho2ShbY1sb2MRq622ejj8VCTF6oKxZGGEEKQKwbYIKU8shbBKxQKhUKxD0qsHkYKgZPyj68nkzy8ciWNxcV4iosxVVYS3s9rEokEa/LtNvD5cBYWdhCM7Y9zJxLgcEAigTOR+LywTCSgpATi8Q77E4kE7nAYCgogEMDZTpQm9slYOZ3Otn37E6VGoxGzyUQqlcISj2NNJjnJ4aA4m6Vu82bM8Ti2VIr5p57KYMBiMtFUUoLL5cqVSlZW4pZy73OnEzfknuddY1du3coHzc1sLS9nm9NJPF8umygoYPHQodTHYlzf0sJUDV1eK4HfS8kvXC4+q64GIUjYbPwikeAkt5vvG430/wJxYtTrefeii7AVFpLKZDjlscc4a/BgfjZ1Kr+ZOROAez/+mNsWL+ahdusbbTYbQ2w2hkejXNWrFztdLjJ9+rBVp+Ol3bvxWK3489nr9j+PWL5supVYJ1nr/T0HMKdSFEWjVITDTO/dm5aPP6Y0GMQgBFOmTCFeWXlYSlwlsJGcy+6iRII9rVn6YBCn08kgg4GKdesY4HJRoNNRM2mS5jFkgbfJ9fzYmX/e+lmd7HZzfW0tFocj9zuoUBy5TAW+A6wVQqzKb7tRSvlaz4WkUCgUCsX+UWK1h6hxOvnBlCl7RZnZTAjYnn9syz/WxWL7FYT7ciDheDD7D2afkBJzMokjGGRwRQXFgE4INm/dijkWw5ZK8ZVTTmEQUGw00mK34wqFqK6pwWm3A+AePXrv+23XrsS5zzrCL3p+ltPJeLcbl8uFLp1mYTzOywUF+M1mAHYIwQ8jEa4qKOD7JSV83q7o0OjjdPJH4E2/n5dqawkCbrebV6TknVCIawsL+UZpKfoDvF4IgS2fFU5ls6QyGQRQ1O7nFEkmO1132v6zOBk4vX9/XC4XvSwW/JkMz6xYQbCwkLjRiGPAADa53aT0ejI6HRW9euHy+yGbpUBK+vfuTWNTEwWpFJZ0mrEDBrBj/XpM8TjFySTfmD4dc+vPceDA3I0Do7HDjYTuJg284vXybDpNU3ExRqORWLvz1RkI8O1YjO8MHUrThAndFttnwJ8iETbme8a2lvxW+3xM37SJS0477Ygo11covggp5Qcc395+CoVCoTiKUGK1B9lXhNmB0flHKw2JBE98/DHBwkKShYWMnDIFPTlTmWD+awhwFxYSzjug6gCr0dj2w20VRNFsFn0mgyGbZYDBQBlgAjJ6Pdv27KEgncaaSjFtzBj6A8VAKplk6eLFGBIJ9Dod81rLPQGKinCPHLlXILTLZO773g60TYvPbgxwgdvN/Q0NLCwtJaXXkwX+kcnw0Z49/EynY7hGa0udTiffdTo5B7jR5WpzfY4ZDDyo0/EBcK7Hg8fjIVxejq0145knk81y4sMPs8Xr5eqTTmJS794A/PKdd3h8zRqKjUbeu+iiQ/ocqoArpk7tINg2JJNs27aNAQMGMLx3b9wGQ25/Tc3+s9it+9sJvs5uHHQXe4A3gZdjMepa2+HE421GTiUeD2Pq6+nr8zFn3jxEN8XWAPwdWJJIdOgZO7yiYm/J72mnqZJfhUKhUCgUim5AidUjnN5OJ5ecdtpeAVFSsv8DzWbcZvPe49o5EANgMuG2WPbut7TLA9lsuPv127uvtHTvvooKaubMOWDG6nCJly+it9PJdUDl22/zxqhR7CktJRyJsEJKLkml+J1Ox3QNy4KLgZv0eu7+9FP+O2gQYbMZk8lEXSLBTyMRbELwcUMDk3r37iBY9Todq668En88znn/+hfrmpoYVVnJHbNmccesWfzv++/z52XLuHXGjEOKa9+fx/Dhwxk+fPgB93/R88NJGnjD6+WlRIJ6hyPXDieZbMuiFmQyjGtq4uo+fTDW1OASguqpU7slXj/wFDnBnGVvhYE+m2X89u1c5vUyaexYVfKrUCgUCoVC0Y0osXoUcLAC4ouO62z/oe47knA6nXzr9NM51eXixWiUl8zmtqznrQUFhIB5aFf/VuV08j8TJvC13btZ7XTyltHYZjgVLSxkc1UVHp2O8eQcntuXB5eYTEzv25c3tmxhVLus77dOOIG5Tz11yGL1aEMCm4F3gbdiMba2ZlHzpkUmk4lMIsGIXbsY3djIN+bM6ZYWNK1EgBeBf8bjBNqZiplMJnrt2cOkzZspTibpN3Kk5nMrFAqFQqFQKDqixKrimKJVWPdxu9H/97+8ccIJxIxGDGYz9yUSLGpu5hqDgX4alyNPAr4OPCgE/27dKQSJwkKWptN8nEpRGosxwmKhr8lEPJXi7e3b+cXUqdR5PAzOu9a+tGkTwzTMAB+puICX/X7eSqcJ2u2fy6IKKRng9XJJr170KS7GHYlQPWpUt900iQOvkOvl4dnHVGyGw8E1Nhu2fv1wFRaqnqkKhUKhUCgUhwklVhXHJE6nk6umTmWa280z1dVsI2eG5JaSTyIR7tDrOVVjUVgK3FhUxLnxODcAJVYraSCcbyez3uvlqmeeQSclBVLy1cGDOdFu58o332Sr349OCPqWlPDQ3LmaxtWTLF0KixbB9OnQe3KubdN/gU2JBO5gMJdFjUbbsqjZRIIhjY2c4HLxrdNPb8uidlev0iTwtN/P09ksaau1Qxuc0nCYUzZv5qv9+jFw3Lhuy+YqFAqFQqFQKPaPEquKY5bWrOcpwK8aGngzn7ULmEz8ymDge8C30P6XYERlJeNsNhYUFLDc52N9JkOyoIDe5eXccvHFGE0mMuk04UiEt+JxvjdlCqMrK6m1WDRzLj4SWLIUZs+CZFKiM8D4N1I4T8u5Ibd3oC5MpxnT3Mx3e/emoriY3ZEI1SNGdKswjAOvA/+MxdjUKprDYZxOJ30NBqo++4xBjY25NjhTpnRbHAqFQqFQKBSKA6PEquKYpxD4icGAXLOGRUOHkjQYMJpM/BtYAfzP/2fvzuPjrOrFj3/OLJklM9mTSdI03VegLV1pS6FQKFtlE6WCVxAQwSuC93JVXJBFf+IFFVwAuSoooCibLAJWWQUqpZTSvXRv02kn6+z7zPn98UzTpE3T0kyapP2+X695JfM8z5znO5PJzHznnPM9QH0vnNcKnGC1UrB1KwG7nRa3m1Su2FI6nQatidhsRGw2Wkwm3EBpIoE7EmGQzUZNYeGASl7TwLLmZt4KBvFWVbHoDReJpIaMIoNmx0tRSk7S2Gw23DYb5c3NjPB6GdnczEXnntvei1rdi0lqBPgbxnqtIeg09Ngdi3HBjh18eeRIWqZMwVtTI0N+hRBCCCH6kCSr4phQ7fFw85QpnOPz8fzw4WzKrW26NpHgyliMzyrFlcXF2A/SziflcrkYM2oUoVAIt9uN3WKhAfjYZGIzkNxlJtlgxTLKSqwuTVM8DiYTH6TTFKfTVFosVADOWIydbW3s9PkY1A+Sp50+H8uam4nV1tJSWspGYF08TkM0CmYztLbinFWAqcBKNqlRVk3R9ChjW6J8praWqXY7wbo6vCYTtdOn93pC2Ao8HgjwQjYLTmf7OsJ2u510MsmJmzczwevlwnPPxcLAKSomhBBCCHE0k2RVHDP2JCCnAc8DD8Xj7YV0HlCK1woK+LLDwenkr2IwGAlrx+VrhgJDCwpYszXD00/byWYhukRRtTBJKmki2WChoC5NYliaJouF3ek04WSSpVYrC+Jxjo9GGel0MghwtLWRbWxkRHk5IysqKAZsPYw3xd51fLe0tLChtRVdWUmspAQfsCUWY108jna5IBTCk0v+QolEpwJJ9kkxzvpbll1P7OaEYduYFdrCReZz2tfpdRyBhHAzRi/qP+NxduYqNRMKGUW4bDY+Y7NxfFERTVVV1E6aJAmqEEIIIUQ/IsmqOOYo4ALAunEjP9WaxqIilNbsTia51+HgBeBq4IRejqPF50BnjfxJZaBspWLdqkKyGYUyg+PzWWxD9w4ZBmPNz22pFH7gnUQCXygEdrtRpCiRMJZZAWhrI+H3U1ZURHV5OVaMYcmJUIhAKISjqAiby0UKIzkNRKO0xGJkCguN9oBEIoEvEoGCAggG8Tgc7VV7NbQnpfF4vH15Fx2PU+X3M6S1launTOG404rxjXfg9RZRW3vOEUkGNfD3lhaeTKXYUVqKzWYj3CGRLo1E+PT27Vw9apTxAujxUCdJqhBCCCFEvyPJqjhmTams5NIXX2RNTQ3vjRqFPZekbQL+O5FgVEsLV1qtTKus7JXzDx1qjJglY/x0WqyQ1YBCZTUjdpgZPdRY5mVjLIY1kyGhVHucHYsUdUwam0MhWoJBMJnYGg5TXlCAy+02ks+2NiPxbW3FY7Vis9mM7c3NxvZIBI/H06kqbldJaRBwx+N4gkHOLi5mKjDCZiNWUoI3GqV28mQ8ufVjj9SQWj/wD+DZWIzVuQrMHddrLQwEmLhlCyOamzl/wQJ58RNCCCGE6Od69fOaUups4D7ADPxGa31Xb55PiE/C4/Fw/oIFTPV6uamoiLdtNp4BQolE+zI3b6fTzAuH+Q+Xi0kc+vDgkvp6btu69aDHNZ4Ju3dDdTXsBP6ujHzVpGC3DapyTcRiMU6vrOQrNhtZmw0vsFprXtu1i7DVStxmo7yqigQQiUY7nSMSjeJyuw+YfO67PRmLUWWzUW610uj340gkKI7HOaOoiHGAx2Yja7fT1NpKbX09npKS9nMVHeG5nhpYAbwCLAYydC6aZMpmGd/czFcGDaLY48GbyVB70kky3FcIIYQQYgDotWRVKWUGfgWcCTQA7yulntdar+mtcwrxSXXs9RsCnAX8qKkJX4fkbWkmwwaMuaYXAqdy8H+cm+6447Di6bgu6cyZBz5uKDCrpITzhw3D6/VSW1mJx+FAA8va2vjn0qWkzWYyJhOTpk1jMLA7nebNlSvR2SwWrTnt5JOpBgKpFP967z3MqRSF6TQXn3021QBOJ77qaqP9IUPwlJbuDaCPh842Am8AL0SjbEulsNvtnYomJdJpxjY0cGJDA5/rsF6rJKlCCCGEEANHb/asTgc2aq03AyilnsCYKijJqui3KoBvWK1UvPsuS4cOZVNuCCnAVuBe4NexGFN37+ZThYWMyw11zZeZM7tPUve17xBbBUwZOxan1mzevJnhw4czbvhwY2d5OZOnTTOSz9paPOXlxvaKCkaeeure7R3a609VcaPAO8BrwCroNHw5oBQej4dJNhvn2GyMdLloLiqi9owz+k38Qoj8GfpO54W9ts7O9lEknQ391t8A2HrXeX0cSc/seXz7y+P6SR1u/APhfh/uc2wg3Dexv954Temuzf74GtabyeogYEeH6w3AjF48nxB54fF4uOrUUznb68XidLLYZuMfQBwjQdre1MR6k4k/xmLMDYc5z+ViFlDYx3F3NG7cOMaNG7ff9gMln/0pKe0oibEW7suhEO9kMphzRZ5g75zdgnSasV4vC4NBzjv+eOOGHg+D++H9EUIIIYQQh643k9Wupvfp/Q5S6lrgWoD6+vpeDEeIQ9cxeTsBuAxjXuTvw+H2+ZAAyzIZNgEPYHwTMxeYglQu64k4sBSjF3UpEOhYGCoYNAom2WxMN5sxr1rFkN27sQFTFyzo07iFEEIIIUR+9eZn6gZgcIfrdRiFTTvRWj8EPAQwderU/ZJZIfoDF3AJcFI6zX2rV7O2upqG8vL2IcIp4G3g1UQCUzTKdIuFU91uTgTK+i7sAaMZeL2tjTdiMbaVlaFyjyt0rnpcGQxydjrNlcOHU+Zy4Zs6tcvhy0IIIYQQYuDrzWT1fWCUUmoYRqHThRgdVEIMWHUeDzdPmYLX68XhcLDOZuN1YDO5OZQ+H2jNc0rx74ICbDYbwzB6WycD45BeVzDmn64Elucum/asGas1NDa2L58DMMxqxbplCyN27aIqGmXBggXtXwD01+HLQgghhBCi53rtc7PWOq2U+irwd4yla36ntV7dW+cT4kjpmCCNxagQvAN4ZNcu/p5IELTbOy0NswXYAjwFEI9T09bGJKeTacXFjAaK++ZuHFGtwEZgaSDAkngcX3ExlgP0niqtKQsGubCyktnAYKcT37hxeIuLpQdVCCGEEOIY0qudPFrrl4CXevMcQvQHg4FrHQ5qXn2VJqeTHVVVFMyYwTYgnTsmkUjga2xku9a8l0rx19xyK1XAaKDK78e1axeTy8sZkecqw0eKZm9iuhHYlPvZRu7+BwJG72ki0an31G2zUdTWRl1zMyObmviP00+nY0oqPahCCCGEEMceGZEoRJ54PB4+tWDB3jmULhcxYAWwDPh7h+JMHXteG4EdiQS+YBCcTojHGRGLMdzhYBBGWe1aoKC5mWxDA8Nqavo0cUtjzDH1AbtzP/dctsRiNCWTndY93WPf3tOKQIAzqqo4ETjObqetpgav1tSecIIkpkIIIYQQQpJVIfJp3x5AB0aV4BnARek0j7/zDrvdbhpLSiisqGA3RnGmfRO55mSSlMPB+lw7iUQCXzQKpaUURCKMjUapcTopAUowhhKXAG1bt9Lc0MDQ2lrGDB+OBbB2uPgbG9m1ezfl1dWUVlWRyp0/nfu5u6WFHS0t2CorMZeWEoROF18sxq5kElsXyWgikcDX1NRp3dM9x9iBIRYLoR07qGpro76tjc+edZb0ngohhBBCiAOSZFWII6Ta4+Hz8+bt7XktLCQNbAP+nc3ywq5dNLrdBJzO9irDe3RMZpNmM9tSKfz7tB8OhWhRCgYbRbjLQyFcbnf7/kQigS8eh+JiiMfxJBKdEs5EIoEvEgGbDUIhPE7n/vtzySj7JKMdY7RkMlQFg0wDTquvZyRG77CpsBDfqFHG/Z8+XRJTIYQQQgjRLUlWhTiC9u09tAAjgBGlpZwxbBher5eaigosNhtejDLaXmC92cySaBS/w4E2mfZLZgEi0eh+1zsmq/v23u4Zhnw4+13xODV+PxM9HjxANWBOpVj+9ts4o1HMJhMLFixg33RUek+FEEIIIcShkmRViH5i30SuApiw54rLha+sjJ1eL8WDBlFgsxEA/LlLAFinNSt9PjJmM2mTiZr6eoqgfahvYUEByVQKtMasNUOsVoqgfahw0mJhS2sr1lQKZzrNzJIS6oCi3CWZSrH47bdxxOMUwP7JaEUF4844Q9Y9FUIIIYQQeSHJqhADxL7J7OB9D6iuZm1bG5s3b2b48OGMKy/vvN/hwOd2700mnc7O+wsL8dXWGvuHDMFTvM+iOhUVDD9IMio9p0IIIYQQIl8kWRXiKDJu3DjGjRt3wP0HSyZ7ul8IIYQQQoh8MfV1AEIIIYQQQgghxL4kWRVCCCGOIUqps5VS65VSG5VS3+rreIQQQogDkWRVCCGEOEYopczAr4BzgPHA55RS4/s2KiGEEKJrkqwKIYQQx47pwEat9WatdRJ4Arigj2MSQgghuiTJqhBCCHHsGATs6HC9IbdNCCGE6HeU1rqvY2inlGoCth2h01UAzUfoXEcreQx7Th7DnpPHsOeO1sdwiNa6sq+D6E+UUp8BztJaX5O7/h/AdK31Dfscdy1wbe7qGGB9nkIY6M+1gRz/QI4dJP6+NJBjB4m/L3UV+yd6b+5XS9ccyQ8VSqmlWuupR+p8RyN5DHtOHsOek8ew5+QxPKY00HmZ5jrAu+9BWuuHgIfyffKB/lwbyPEP5NhB4u9LAzl2kPj7Uj5il2HAQgghxLHjfWCUUmqYUqoAWAg838cxCSGEEF3qVz2rQgghhOg9Wuu0UuqrwN8BM/A7rfXqPg5LCCGE6NKxnKzmfXjTMUgew56Tx7Dn5DHsOXkMjyFa65eAl/ro9AP9uTaQ4x/IsYPE35cGcuwg8felHsferwosCSGEEEIIIYQQIHNWhRBCCCGEEEL0Q8dksqqUOlsptV4ptVEp9a2+jmegUUoNVkq9rpRaq5RarZS6sa9jGqiUUmal1IdKqRf7OpaBSClVopR6Sim1Lvd8nNnXMQ00Sqmv5/6PVyml/qSUsvd1TOLoM9Dedw/0PqeUKlNK/UMptSH3s7SvYz2Qfd9fBljs+722D7D493td7c/xK6V+p5RqVEqt6rDtgPEqpW7J/S+vV0qd1TdR73WA+O/OPX9WKKWeVUqVdNjXb+LvKvYO+25WSmmlVEWHbf0m9lw8XcavlLohF+NqpdT/dtj+ieM/5pJVpZQZ+BVwDjAe+JxSanzfRjXgpIH/1lqPA04C/lMew8N2I7C2r4MYwO4DXtFajwUmIo/lJ6KUGgR8DZiqtT4eo+DOwr6NShxtBuj77oHe574FvKq1HgW8mrveX+37/jKQYu/qtX1AxN/N62p/jv8R4Ox9tnUZb+7/YCFwXO429+f+x/vSI+wf/z+A47XWE4CPgVugX8b/CPvHjlJqMHAmsL3Dtv4WO3QRv1LqNOACYILW+jjgntz2w4r/mEtWgenARq31Zq11EngC4wEVh0hrvUtrvSz3ewjjTWRQ30Y18Cil6oDzgN/0dSwDkVKqCDgF+C2A1jqptfb3aVADkwVwKKUsgJMu1twUoocG3PtuN+9zFwC/zx32e+DCPgnwIA7w/jJQYj/Qa/uAiD+nq9fVfhu/1votoHWfzQeK9wLgCa11Qmu9BdiI8T/eZ7qKX2u9SGudzl39N8aa0tDP4j/AYw/wM+AbQMfiQv0qdjhg/NcDd2mtE7ljGnPbDyv+YzFZHQTs6HC9AUm0DptSaihwIvBeH4cyEN2L8UKU7eM4BqrhQBPwcG6o22+UUoV9HdRAorXeifGN53ZgFxDQWi/q26jEUWhAv+/u8z7n0VrvAiOhBar6MLTu3Mv+7y8DJfYDvbYPiPi7eV0dEPF3cKB4B+L/81XAy7nf+338SqnzgZ1a64/22dXvY88ZDcxRSr2nlHpTKTUtt/2w4j8Wk1XVxTYpiXwYlFIu4GngJq11sK/jGUiUUguARq31B30dywBmASYDD2itTwQi9K9hVf1ebg7SBcAwoBYoVEp9vm+jEkehAfu+OxDf546C95cB/dp+DLyuDqj/Z6XUdzCG9T++Z1MXh/Wb+JVSTuA7wK1d7e5iW7+JvQMLUIoxheJ/gL8opRSHGf+xmKw2AIM7XK9Dhr19YkopK8Yb+ONa62f6Op4BaDZwvlJqK8aQuNOVUo/1bUgDTgPQoLXe06v/FMYHHHHozgC2aK2btNYp4BlgVh/HJI4+A/J99wDvcz6lVE1ufw3QeKDb96EDvb8MhNjhwK/tAyX+A72uDpT49zhQvAPm/1kpdQWwALhc712rs7/HPwLji46Pcv/DdcAypVQ1/T/2PRqAZ7RhCcYIjwoOM/5jMVl9HxillBqmlCrAmOj7fB/HNKDkvh35LbBWa/3Tvo5nINJa36K1rtNaD8V4Dr6mtT6avnntdVrr3cAOpdSY3KZ5wJo+DGkg2g6cpJRy5v6v5yFFqkT+Dbj33W7e554Hrsj9fgXw3JGO7WC6eX/p97FDt6/tAyJ+Dvy6OlDi3+NA8T4PLFRK2ZRSw4BRwJI+iK9bSqmzgW8C52utox129ev4tdYrtdZVWuuhuf/hBmBy7v+iX8fewV+B0wGUUqOBAqCZw4zf0ntx9k9a67RS6qvA3zEqtP1Oa726j8MaaGYD/wGsVEotz237ttb6pb4LSRyjbgAez30A3gx8sY/jGVC01u8ppZ4ClmEMk/oQeKhvoxJHmwH6vtvl+xxwF8aQtqsxkpLP9E14h2Ugxd7Va7uJARB/N6+rLvpp/EqpPwFzgQqlVAPwfQ7wfNFar1ZK/QXjC4Q08J9a60yfBJ5zgPhvAWzAP4zvDPi31vq6/hZ/V7FrrX/b1bH9LXY44GP/O+B3yljOJglckevZPqz41d5ecSGEEEIIIYQQon84FocBCyGEEEIIIYTo5yRZFUIIIYQQQgjR70iyKoQQQgghhBCi35FkVQghhBBCCCFEvyPJqhBCCCGEEEKIfkeSVSGEEEIIIY4ApdQdSqkzDnLMXKXUrCMVkxD92TG3zqoQQgghhBB9QWt96yEcNhcIA+/2bjRC9H/SsyqEEEIIIY4JSqlvKKW+lvv9Z0qp13K/z1NKPaaUekAptVQptVopdXuHfc92aONMpdQzud/DSqmfKKWWKaVeVUpV5rZPUkr9Wym1Qin1rFKqNLf9EaXUJbnftyqlbs/ddqVSaqxSaihwHfB1pdRypdScI/jwCNHvSLIqhBBCCCGOFW8BexLAqYBLKWUFTgb+BXxHaz0VmACcqpSaALwGjNuTiAJfBB7O/V4ILNNaTwbeBL6f2/4H4Jta6wnAyg7b99Wcu+0DwM1a663Ag8DPtNaTtNb/ysedFmKgkmRVCCGEEEIcKz4Apiil3EACWIyRtM7BSFY/q5RaBnwIHAeM11pr4FHg80qpEmAm8HKuvSzw59zvjwEnK6WKgRKt9Zu57b8HTjlAPM90iGtoPu6gEEcTmbMqhBBCCCGOCVrrlFJqK0bv6LvACuA0YAQQA24Gpmmt25RSjwD23E0fBl4A4sCTWuv0gU7xCUNK5H5mkM/lQuxHelaFEEIIIcSx5C2MpPQtjN7U64DlQBEQAQJKKQ9wzp4baK29gBf4LvBIh7ZMwCW53y8D3tZaB4C2DvNN/wNjiPChCgHuT3SPhDhKyTc4QgghhBDiWPIv4DvAYq11RCkVB/6ltf5IKfUhsBrYDLyzz+0eByq11ms6bIsAxymlPgACwKW57VcADyqlnLm2vvgJ4nsBeEopdQFwg8xbFccyZQzDF0IIIYQQQhyIUuqXwIda69922BbWWrv6MCwhjmqSrAohhBBCCNGNXM9pBDhTa53osF2SVSF6kSSrQgghhBBCCCH6HSmwJIQQQhxllFK/U0o1KqVWddhWppT6h1JqQ+5naV/GKIQQQhxMryWrSqkxSqnlHS5BpdRNvXU+IYQQQrR7BDh7n23fAl7VWo8CXs1dF0IIIfqtIzIMWCllBnYCM7TW23r9hEIIIcQxTik1FHhRa3187vp6YK7WepdSqgZ4Q2s9pi9jFEIIIbpzpIYBzwM2SaIqhBBC9BmP1noXQO5nVR/HI4QQQnTrSK2zuhD408EOqqio0EOHDu39aIQQQhz1Pvjgg2atdWVfxzEQKaWuBa4FKCwsnDJ27Nj8NNzWBul0ftrqbRYLlPajab0D6bETB3ckn1/94bnT2/e3P9zHw9XfXmt62Sd9b+71ZFUpVQCcD9xygP3tb4j19fUsXbq0t0MSQghxDFBKyWieznxKqZoOw4AbD3Sg1voh4CGAqVOn6ry9Nz/wANTV5aet3tbQANdf39dR7DWQHjtxcEfy+dUfnju9fX/7w308XP3ttaaXfdL35iMxDPgcYJnW2tfVTq31Q1rrqVrrqZWV8gW4EEII0UueB67I/X4F8FwfxiKEEEIc1JFIVj/HIQwBFkIIIUR+KKX+BCwGxiilGpRSVwN3AWcqpTYAZ+auCyGEEP1Wrw4DVko5Md4Qv9yb5xFCCCHEXlrrzx1g17wjGogQQgjRA72arGqto0B5b55DCCGEEEIIcfRLpVI0NDQQj8c775gyBczmvgmqpzweWLu2r6PIO7vdTl1dHVartUftHKlqwEIIIYQQQghx2BoaGnC73QwdOhSl1N4djY1QUNB3gfVEMglVR9dKYlprWlpaaGhoYNiwYT1qS5JVIcRRIwEEgM3NzWxrasLt8WAvKyMKRIEYsDsYpCkYxFFcjM3tJgEkAX8kQls0iqOwEJvTSRbIAFkgEosRjcVwOhw4HQ4UxoR/BcRjMeKRCMVOJyVOJ1agIHdJhkLEAgE8RUVUFxXhBJyAA4i3tBBubGRERQUjKitxc+QWvhZCCCEGong8vn+iKvodpRTl5eU0NTX1uC1JVoUQ/V4caMJYZ6MJ2BAIsDUUQpWUkHW5CGAkqQkgkUjgi0bB6YRwGE9hITabDfbs8/tBa2hrw1NQgM1mM7a3tBjbYzE8Hk/n2zQ1GfvC4QPvi0b339fWZuzz+/HYbJ33RSJGjLEYnkQCu81GEVAEWCMR8PsZ6nIxoriYSmi/FGEkyUIIIcSxSBLVgSFffydJVoUQ/UII2Jm7eIH1oRCbYzHibjcph6P9uEQigS8QMJLA1lY8Vmt7EgjGt65ojQaU1sTj8fb9B9p3OLfpjX0BoLFj4hwI4LHbO92/AsAVjeIIBBjjdDK+uJg6oA4ozvPfRAghhBCd/fCee/jj009jNpkwmUz8+mc/465772XLtm2EIxGampsZNmQIAPffcw+/+s1vWLp8OVaLhelTpvDrn/2s0zzO9z/8kJPOPZc///nPXHLJJfudb8uWLSxcuJDW1lYmT57Mo48+SsE+Q56j0Shf+tKXWLFiBVprSkpKeOWVV3C5XJjNZk444QTS6TTjxo3j97//PU6nk1deeYUbb7yRTCbDNddcw7e+9a39zv3GG29wwQUXtA/lvfjii7n11lsB8Pv9XHPNNaxatQqlFL/73e+YOXNm3h7nPSRZFUIcUUFgK7ANWBEMsj4WI1xUtH9CuqdXMh7v1GPZXRJoAaoLCrCGwxSkUtgyGSaVleHBGH6b1JqV69djTqUoAE6dOZNqIJhK8c6SJZjSaSxKcea8eVRjDMttSST4x1tvoTMZTGYzZ551FpWABnYnEix6+20ygLZYmDNvHkVACtiVTvPmypUklSJltXLC9OkUABHAZzKxormZmMVC3Gaj1OMhk7vv3d0/gFAiwcbmZtCaxalUp2TWDZRGIrhaW5nkcjGttJShyAu9EEKIo9PQb/0tr+1t/dbsbvcvXrKEFxctYtkbb2Cz2WhuaSGZTPLsY48B8Mbbb3PPL37Bi3/+c/tt/IEAjz30EACXXXMNv/nDH7j+6qsByGQyfPPOOznrrLMOeM5vfvObfP3rX2fhwoVcd911/Pa3v+X666/vdMx9992Hx+Nh5cqVAKxfv749IXY4HCxfvhyAyy+/nAcffJAbb7yR//zP/+Qf//gHdXV1TJs2jfPPP5/x48fvd/45c+bw4osv7rf9xhtv5Oyzz+app54imUwSjUa7fewOl3yGEUL0Cg3sBjYAHwQCrI1G8ZeUEMslpZ2G5CYS3Sak6ViMoTYblYDdZGL7li0URqMUplKcO3s2wzGGxzoB5XDgq6jA6/VSW1eHx+3eG1RJCb6JE419tbV4ysqM7RUVjDvllL3bKyvbb1JVVUXZ/Pl793UoglBRVUXlGWfs3VdR0b5vUnk5k6dN27uvpGRvHG43vro6Y19pKR67nTRGIr8xmeT//c//kGppIW0246qoIFNQQBxjOHQsmcSUTLY3FSgowJr7hrUlk2FtLAbAIow3KIvZjAsora/ngq9/HafXy5SKCmo8nsP7wwohhBDHqF0+HxVlZe2fVyrKD77oybnz57f/Pn3KFBq83vbrv3joIT69YAHvr1vX5W211rz22mv88Y9/BOCKK67gtttu2y9Z3bVrF0NyvbkAY8aM6bK9OXPmsGLFCpYsWcLIkSMZPnw4AAsXLuS5557rMlntSjAY5K233uKRRx4BoKCgYL/e3nyRZFUIkRfrGht5r62NUHU1vuJiNgJh9hm229TUnpTum5BmYjGG2WwMAlzA1tWrcYfDFCcSXDp/PtV7TuR24xs3rssEcQ+Px4PnAMnYgfYdzm3yuc8ClAHTKysZoxQ3jRyJ2+3G5XJ1ul1bOMzqrVuJWa3ECwpw1daSsNkIApF4vFM5f7vdjs1uB+CXmzbxw1AIXC7s4TBnOJ3McruZCAxC5sEKIYQQBzP/tNO443//l9FTp3LGqady6cUXc+rs7ntj90ilUjz65z9z349+BMBOr5dnX3yR1556ivdvuaXL27S0tFBSUoLFYqRsdXV17Ny5c7/jrrrqKubPn89TTz3FvHnzuOKKKxg1alSnY9LpNC+//DJnn302O3fuZPDgwe376urqeO+997qMYfHixUycOJHa2lruuecejjvuODZv3kxlZSVf/OIX+eijj5gyZQr33XcfhYWFh/RYfBKSrAohPjEN+IDVwCrg/WiUlfE42O37zbPsKikdZbNRphS7P/6YsmCQsliMhWeeuTchLS7GN2XK3oR0n4SvuyTwaOBwOKipqelyX6nLxaShQwmFQkYym3ucNdCcybBq924iVitRux1LYSF7UtdMJtP+d4hbLPwrm2VFbl8ZMBGob2ujfMcOxh/lj68QQghxOFwuFx+88Qb/WryY1//1Ly696iru+v73ufKyyw5626/cfDOnzJrFnFmzALjp29/mx7fdhrmb9WG11vtt66pw0aRJk9i8eTOLFi3in//8J9OmTWPx4sWMGzeOWCzGpEmTAKNn9eqrr+a55547pHYnT57Mtm3bcLlcvPTSS1x44YVs2LCBdDrNsmXL+MUvfsGMGTO48cYbueuuu7jzzjsP+jh8UpKsCiEOSQvwj7Y23otG2VVWRqTDHNNAKtXlPEs3MNpsJrB1KxV+PxXRKJeffjo1AEVF+CZMOGYT0p5wuVz79bgqoLKwkGl1dXsTWauVBNAGvAgkGhvxlpQQtdmw53pcAVqBVxIJfKEQFBdT6/NxeUEBC0pLKTlyd0sIIYTo98xmM3NPPpm5J5/MCePH8/s//emgyertP/4xTc3N/PrRR9u3Lf3wQxbm5q42t7by0ksvYbFYuPDCC9uPqaiowO/3k06nsVgsNDQ0UFtb2+U5XC4XF198MRdffDEmk4mXXnqJcePGdZqzukddXR07duxov36gdouKitp/P/fcc/nKV75Cc3MzdXV11NXVMWPGDAAuueQS7rrrrm4fg8MlyaoQoksa2AQsyV3W7Elm9hnOCxD98Y+xrF+PPZXCkUxSX1pKpc2GHSOJssRiRKJRtNPJr//+9x7FVVJfz0133NGzOzcA3ffvf/N/y5ahgS9NnsxNJ53E9157jefWr8ekFFWFhTxy4YXU7jN02AZUA6MLCri+vp6dXi+UlLDTZmMFsBKj6FPHHnBvcTEPmUz8BaPH9RRgJsbwbCGEEOJYtX7DBkwmE6NGjABg+cqVDOkwnLYrv/nDH/j7q6/y6nPPYTLtXVF9y0cfGb8kk1z5jW+wYMGCTokqGL2dp512Gk899RQLFy7k97//PRdccMF+53jnnXcYP348paWlJJNJ1qxZw9y5cw8Y07Rp09iwYQNbtmxh0KBBPPHEE+3zYjvavXs3Ho8HpRRLliwhm81SXl6OUorBgwezfv16xowZw6uvvnrI810/KUlWhRDtGnw+3vD72VFTw7qiIlo77Nt3OC/RKFNsNo4H3vZ6uWPYMCJ7evRcvZfW3LZ1a6+13V+tamzk/5YtY8mXvkSB2czZjz3GeaNG8T+zZ3Pn6acD8PP33uOON9/kwQULDthOx97qycCngCzGlxJvas2zbW00lJaCUtjtdjSwPHf5WTzOkLY2Ligo4KzycpnjKoQQ4pgTjkS44RvfwB8MYjGbGTl8OA/de2+3t7nuv/6LIYMHMzNXaOniT32KW7/xjW5vc+655/Kb3/yG2tpafvzjH7Nw4UK++93vcuKJJ3J1rje2o02bNnH99dejtSabzXLeeefx6U9/+oDtWywWfvnLX3LWWWeRyWS46qqrOO644wB48MEHjbivu46nnnqKBx54AIvFgsPh4IknnmgfLvyLX/yCyy+/nGQyyfDhw3n44Ye7vU+HS5JVIQRe4M+BAE+Ew8TtdvD78dhsnZZMKbTZKGpro76pibq2Nq489VT2DBhZBRS5XBT1YpJ6LFvb1MRJdXU4c2XoTx0yhGfXreMbHYo6RJLJw0ogTcAoYFRJCZ+qqWH97t3sqK9npc3G6twxiUQCX2MjO7Xm3VSKPzkcXO50Mhdj3VchhBCiL2y96zzjl8ZG6KVqtB1NmTSJdxctOuD+PcODO0o3Nx+03T1Vdfd46aWX2n8fPnw4S5Ys6fb2X/jCF/jCF77Q5b5wONzl9nPPPZdzzz13v+3XXXdd++9f/epX+epXv9rl7SdNmsTSpUu7jSsfJFkV4hiVBv4NvAJ8BAQwCu90nHdaYbMxFZgOnGi3E66pwas1tRMmyHzSI+j4qiq+89prtESjOKxWXtq4kam5AkzfefVV/rBiBcU2G69fcUWPzrPvPOFm4G3gqUAAX4de9S2pFL8A/oDRO3suxhqvQgghhBD5JMmqEMeYVY2NPBuLsaKqiniHIkl2u52AUrhjMUb7fFxZWMjJQMcadYVHSdGjXT4fW3btoqK2lpKqKpJAEtjZ3Iy3qYmKqipKysvJAhmMwgeNzc1UVlRQXlaGCWMurglobWnB39hIbWUltRUVFABWwN/YSJvXy7CaGqp7+JiNq6zkm7Nnc+ajj+IqKGCix4MlN+/lh/Pm8cN58/jRv/7FL5cs4fbTTuvRuTqqAC4EZmrNY++8w4pBg1gzeHB7caYA8BjwF2BGMMiUbds4vqrqqHiOCCGEEKLvSbIqxDGiEfi/YJCnYjGy0KlIkgLm2GxMKyyksqWFujFjuly/9JO46rnnePHjj6kqLGTVV74CQGssxqVPPcVWv5+hJSX85ZJLKHU4eHzFCu5+9932267w+Vj25S8zqbr6QM23SwB/eqmNv/8jxYln2znurCKCGIlUQyiELxLB4najCguJAK3xONsTCSgthXgcTyKBzWYzhrpGo+B0QiSCx+Xauz0cBpsNwmE8hYXtw6MTiQS+SMS4TTTaua14HEpLUfE4Q+Jxyux2HICORNDBIINcLurcboqBYiDd0kJy927GV1ayf6F6uHryZK6ePBmAb7/6KnUdKvQBXHbCCZz3xz/mNVndw+Px8Pl58/B6vRQXFvKRzcbzGD2vAKFEgsf9fp5wuThp1Sq+AwyShFUIIYQQPdSryapSqgT4DXA8RnHRq7TWi3vznEKIzlower4WAS1ak4X24Zy2cJiFNhtnYfSiUV5uXPLgykmT+Or06Xzh2Wfbt9319tvMGzaMb518Mne9/TZ3vf02Pz7zTC6fMIHLJ0wAYKXPx3mPPUFoQzU7UlA32KhWGwIaYzE+DIf5dihE1O2mCdjwZpKlny5GJxV/flAz9ZUknlMLjISxrc2oXpxM4rFYsNlsBBKJLpfZ2beA1MG2w/5Fp7q6DUBbIkHWbjdiamkxYmprw1NQsDe5jUTA5YJ4HHcmw3TACZgTCczRKOZMhvEVFbQGAjyzdi2Lr76aDS0tjMr9vZ5fv56xPfyCoTsdhwgPxxj++zbwDLA8d3/TJhPvjBzJzUpxB8ZcWCGEECKftNZdrgkq+peu1og9HL3ds3of8IrW+hKlVAHGZy8hxBGwobGRR+NxPqiqwpQbtrlnqG9dSwuTduzgqzNm0PVqXT13ypAhbPX7O217bv163sjNq7xi4kTm/v73/PjMM9mxA7Zshcqh8NOlqxgWOZ7XXtcoMwz+gsI2GDLpNOFkku3A1g6JXtNrWXRSQVahU9D0WhbPqQdOJPc8BtZ0Gms2S21BASWAx2plRzCIKZPBDIwpL6cYiJrNbGhsbH9zHFNWhhMj4Q+ZzaxraSGtFFmzmcGVlViBooICUqkUSZOJtMXSPmz2UBPiVCZDAGhNpwnH46AUP3n2WWLJJBazmWvPPZcPzGbufPlldgUC2EwmhpaU8OB55/XSX3N/FmAucCrwWjrNj8JhmlwuUIqW4mL+Gzgf+Dxg76YdIYQQ4lDZ7XZaWlral08R/ZPWmpaWlk5ruh+uXktWlVJFGMvzXQmgtd4zLUwI0YvSwCN+Pw9GIqRMJmhsbB/ue6LNxjmFhRS3tFA7Y8YRn1voC4epcbtJA2a3m13hME+ti7DmaSfZjEKZ4QXTaj6rL0Wj0BlNaHMW22AT6XTa6JEE6JDoVZ+m2P6/mmwKzJYsZ8/JMAvjhXLVqlUUJJPYMxnOOfVUhgBOm42gzcaulhZqa2vx7Jm363Tiq6rC6/Ua2/dUNna58NXX793u7lBKyOXCN2iQsc/jwePMfR/ncOBzu/F6vXhqaym22YgC25JJXn7/faIWCwm7nXEnnYQCGkwmPmhtJWSzEXY4MJuNmcId7/N/f+Yz2O12bHY7mXSaDZEICxcsAKVwFRbisljYCOyKx7GHQgx2OCg+AtWZFTCvvJyx6TR/ikR4o7YWZbOhgeeAxcBXgCm9HokQQoijXV1dHQ0NDTQ1NXXeEQqB2dz1jfq7TAZaWvo6iryz2+3U1dX1uJ3e7FkdDjQBDyulJgIfADdqrSO9eE4hjmlrgV8CK5UiZTK199RVBQL8V1UVJwIqj0N9D8brhWgU1u6AVEWMNPDXVIqY1Uo6nSYNbN1hIpsBNOxIN2C1W/CYq9BZjTJBQV0aBwWUmkxEQyGqgkEmrVrFp2bMYBxQOtfGy0+18sorcc4+2855Z5QZJy8pwTd16t4ks7KyPS6nx9Nl0aN9q+EebPsnuU0hUFlZyeA5c/bGVFJi7HS78dXW4vV6qSkv5xdmM+cAzdksG1taiFksxAsKKCgsJAn7Je7pdJqYxcL2dJpwIgFWK6ZUiiHJJIMLCnBHozS3tODz+XrtC4pBHg83A5cD92OszQrGXOlbEgkmNTVxo9Uqc1mFEEIcNqvVyrBhw/bf8cADkIfEqE80NMD11/d1FP1WbyarFox152/QWr+nlLoP+BbwvY4HKaWuBa4FqK+v78VwhDh6hYBHMOalwt7hvuWhELM2beKGGTM4eKmiPMUSDrMzFmNnsIgXn4FwBv7yB03pxRkKHQ7WNTUxqKqKZr8ft8OBtS6NMoHOalazitPGjmdU7W7iDRZlvOCnAAEAAElEQVSqykPM9lRRSgEUFBAuLeWNxkb+a+rUTgWgzjuvjK5GwHaXZPaVQ0lurUApUOp0UuPxEAqFcLvduKxW0sDubJY1TU1ECgqI2GyYcj2oHZPYrFLsymZpSqcJp1Istlq5afNmrrFYmFteTm99/1wD3AG8jlGwoDmRwOfz8Xet2bh7N79Aii8JIYQQ4tD0ZrLaADRord/LXX8KI1ntRGv9EPAQwNSpU/MzE1eIY8izra38H5DuUKW22GbjsqIijm9pYfARGO6bBLYAWxIJNqZSZKxWIps1OmP8S+sMJBvMTBg+nH+vXs0FZWUsW72akwYPZpTVR/rUZgoSNfz6wzU8fsoXqbJaCdWFcLurcHUYyupyuSgvL+93CWhvcrlcnR4DC1DndFJSU2MksS4XhRYLQWCn1qwLhQjY7cQLCrBYLO0JbNZkYk1tLbdbLDwMnBAMMmLnTk4uK+vx0jr7UsDpGEN/b21ubl+jdVNlJXdms/wc6P2l24UQQggx0PVasqq13q2U2qGUGqO1Xg/MA9b01vmEONYkgP8NhXgqHDZ608JhPB4Pp9hsfBmoLCmBE0/stfOvamzk5UiErVVVrMAo+Z3Qmkyu4MGfdvyVj9lJlCg/0z/j05EpXDV6BPe8+SY/WLOGoaWlPHzOOVjTadwnulnavJshW4sYXloK0ClBE/vbN4ktBoodDupLSwmFQlicTsIWC9szGTZmMsZBSmG322lMJPij3w9OJ+UtLVxfUMCFpaVY8xxjMXCLxUJg82Y+rK8HpdhcVsbtGENspPCSEEIIIbrT29WAbwAez1UC3gx8sZfPJ8QxYQdwF7Aym22vIuuOxbh861auGDOm186bAZYCT4bD/DMWQ5tM0NJCYS4ZslgsoBQFqRTfmn8yVfFKUrtsjBkKpaVhQqEQn/qP/+gyEZ3rcvHva67ptdiPFR2T2EpgmM3GlFSKt9NpTigp4SObjS2BQPvzpqWwkF+YTLwAzPH7Gb9tGyOrq/PWe13t8XAX8NtYjDerq7HZbKwAbgW+jzGXVwghhBCiK72arGqtlwNTe/McQhxrXgd+hdGzumdu6livl9PWrePsc87plXOub2zk2UiE5dXVRBwOApkMmr3rtWYyGSqBQRYLJRYLKhrFXVKCy2WDkXtacUlv6SEqqa/ntq1b89rmxAkTuKmoiCzwVirF/+3cybrq6valdXYnEvwyGMTidjN91Sq+S/7mllZ7PHwHGA38IbdteSLBlwMB7tSaYcfQsG4hhBBCHLre7lkVQuRJGvjfYJBXtDaWMLHZcNtsXON2M9JmY9A55+R9LmcQ+F0gwKORCGmTCZqa8Hg82O12gkB9czNjfD6ymQxn7rlRYaFxEYftpjvu6LW2TcDcigrGZTJs2r2btUOG8FaH3taU2cy7I0dys1LcAYzK47k/A9iAX+aKLvm05jteLz+DY2oeshBCCCEOjSSrQgwACeA74TD/8PtBawJKMamigtudToaWlkJunme+RIC/5i4+IN1hGRxLJMKlZWVMdjpJm0zUTpnCA3/5S17PL3rfnurDs4ArgOcyGX4VidBSWAhK0VJczFcTCWb4fFxtszEkT8nk+cC2hgZ+Y7GggdW1tbzR2sqlkqwKIYQQYh+SrArRz0WA24ElmUz7PMMxXi/XtbYydNKkvJ4rC7wC/F88Tksigd1ubx9qXBkMMnXbNr42dSqDACorjUs/F8foId7c3My2piaKqqqwlZcTBbx+P41+P+7SUgqLi0kBrcEgrcEgzuJiHG43aSAFBCIRwqEQRS4XbpcLExAJh4kFg5S53ZS73ViBeDBItK2NmuJiaktKcADxlhbCjY2MqKhgRGUlbowezv7CAny6rIyTUin+FInwRm0tSWC3z8dzWvPvxkYeVIrhVVV5Od9nXS7e2L6djVVVoBQvDhnChRi9rkIIIYQQe0iyKkQ/1opRhGYre+enTt+4kZO2bGH4ggV5PddmjLmwKxMJfI2N7T24J1ZU8DWXi9qWFgZNndrlcM3emGN5ICUd1mOOAyuam1nT2oqqqiJVUkITsC0SwRuPky0sRNntJBIJfNEoOJ0QieDJzZ31BYOgFAQCeOxGbVpfrveatjY8BQXYbDbj9i0txvZkEo/VqJvra23tdGz77QGCQTwOh7EtEjHOHYvhSSSw22wUxGKYw2EGOxwMc7moBMytrbB7N5MqKhiRp8Twkxjk8XAzcDlw6+7d7UvO+IqKuO59CzNXwNlzYebMnp3H4/HwQ6W40WpFO534bTb+iFTgO1KUUl8HrsGYdr4S+KLWOt63UQkhhBD7k2RViH6qEfjvaJRtqVT7HNX/LirihNJSao87Lm9z/OLAA4EAz2lNgcNBPB4HrSmKRpmxaROfGzSIKSeeCGVlB2yjN+dYgtEzuhVY7vezNhTipnAYv8uFd08SarN1Tg73JJaRCB6Pp/0+7RnKHI/nPpcfwjabzdaj2x9o27amJtCadbHY3uQ3HDbm+8bjjIrFqMlmKWxtZYLLxbTSUoZC3peX6UoNcKdS/HD9et4aM4bIMhuvXl7KP5Ka/7XCa6+pHiesY6uq+G/gF0AikeCReJzxqRQzKirycA/EgSilBgFfA8ZrrWNKqb8AC4FH+jQwIYQQoguSrArRD4WA/4lGWdHcDFoTAr7rdvPpsrK8rp26Dbg1GmV5rrgOwSCVpaVM37KFyZs2UQDUTZuWt/MdjMZI0jcASwMB1kSjtJWUEHc4jN7NYNCIs7UVj9V6SElkOhajxmbDGg5TkEphy2Q4sawMu9as37oVczqNBThpyhTMWvPB2rWoTAYrMGfmTDxAIJ3m7Q8+QGsNJhNzTjnFqKq7fDkZIGuxMG3WLJLAux9/TNJkIm21Mrq0lJhSfNTcTMxiIVFQQInHQ+shxL0rGmVDJAJa83IohMfppNBmozISoaqlhVkuF6eWlfXa0i/VHg/fnTiRZ4NB7v6ommwSyCjiaJ5/McTMme4en+NM4KVwmNdzPdS3BoP8IZORYku9zwI4lFIpwAl4+zgeIYQQokuSrArRzySBO4EtqRRojSmb5eyPPmL4kCHd9m5+Uv8EHgCacufRQF1LCzcGg0waNw5vcTG1tbW9mjgkgfXAu34/y2IxmktKSO5JTPck0LkKxF0lpoU2G6ZoFHc0SnE8ztziYiqyWVa+/z7OeJzCdJoLzzmH6pISfBUVeL1eauvq8LiNRMs3dqyxrbYWT0kJAGeeeOLebXse7/JyTpg9e+/28nIAJp500t5tuSJX8yZM2LutqMg4T12dsa2sDI/dzs5AgKfeeouw1UrU6WTsnDk0m0y809hIm8OBf0815S4S2s25XuMXwmHKrVZqYzHmFhTwqZIS8v2X8ng8XOfxsH3cdu6y1hmxWDX+ySGg58mqAs7dsoU33W4ySrG7qIhlTU2cI8lqr9Fa71RK3QNsB2LAIq31oj4OSwghhOiSJKtC9CNZ4CfAWvbOUT1z5UpGtrRQ29NxlzlJ4MehEP/IZtsLKEWzWeasXctxu3YxacGC9kqx+ZbFSE5fDQR4Px6nqbiYtFJ7e0wPkJhmYjHGW60EvF5Kw2HKolE+M2sWxxUX01JWhjcep3bkyPaEc+acOXsTxtz96Oo+Heq2nt5+322DPB4Wzp+/X6J7WX09Xq+XGqeT5kyGP3/4Ic2FhTQVF+OorGRbh8cFrWlpbaUFWBmP87jZzOBolAusVi4oK8vri/uNc218fNdS3tk5isKZCTac4eblVauYXFnZ4+fJxKoqhncotrRl8OA8RS26opQqBS4AhgF+4Eml1Oe11o/tc9y1wLUA9R3miQshhBBHkiSrQvQjPw0GebnDOqr/VVTEhMGDqZ0xIy/JYwT4ViTCW21tnQoo3eVyoWpqqJ0yJe9Jahb4Z0sLf4/F2FJeTthk2ttrmkjgKizslJiqaJSpViuBrVupCASoikS47PTTqSkpwTd8+N4EL1eJ+JMknP3JweKuBipnztx7f51ONjU28siHH9JQUkJDeTmNRUXtiWtrayutwEeJBI+aTJza2spnCwsZlIfHwePx8IuF8Lkf30n8KR8tjye4M5lkaHMzgwcPxpGbK3w4Surr+eJNN/G/ZjN2u53lNpvxXOhx1OIAzgC2aK2bAJRSzwCzgE7Jqtb6IeAhgKlTp+ojHaQQQggBkqwK0W883drKo+FwexJ5RUkJV5SU5G2Oqh+4FfgonW5PDsfu3Ml1ra1MnjQp78vQRIE/+f08G4+zI5ls7zndNzmtSiQYunMnNa2t1ASDXD5vHtWlpZ2H6HbTO3o02/f+jqiq4qu5BNZusfD6G2+wqbycDTU1bC8vJ6sUaM2WQIDNZjMvNjVxWyDAnNGjexxLjcfD1NZWjh88mFhuSPJ4m43RJSXU1NQcdru3bd3K/LIyHgXaEgnWBQIsTqWYJYWWest24CSllBNjGPA8YGnfhiSEEEJ0TZJVIfqBncCDuURDAyN372ZuS0veEtWOlYXNJhMoxcnr1zNl+3aG5XkJnATwIvB4LMamYNAoSpSjtMadTjPE66W+sZFBgQCfPessGDECr8NB7bRpx2xieqg6Pi5lZWVG4mq38+pbb7Fy0CBW1NcTyS2j0+R28814nP/9+GNOzkPC6gKGK8Xq3HO11e3G7e753NUC4IRgkCdzywb9evt2RoweLX//XqC1fk8p9RSwDEgDH5LrQRVCCCH6G0lWhehjSeDHgHI6IRSiJBLhzDVrGHTOOXlpP4CRqO6pLKww1q2YXFFB7YQJeUsINPAW8MtYDF8ySSbXgwtgT6UYu3MnY30+rjr1VNTw4Xjt9v16TcUns2/iOtvrxZxOc//Wrbw3ciQZk4mw3c6PWlq4e+1axo8b1+NzjrHZ2GY2k0wmCZeXd/oyoieGeb3gcKCBnSUleL1eeU70Eq319zGWcBZCCCH6NUlWhehj9waDLM/NUx1UVcX1mzYx/Zxz8vJBPQ7cDmzrWFl4xQom19dzYh6XwFnR1MQvMhk2FhbSmpsPi1IUxeNM3bSJMbt3c9yoUYw+9VRJTntJx8T1RuCPy5bx/NSpaGBHeTl//OADbigr6/HjXgXYtSacSpHUmg927eLfjY08uno1CjjB4+HhCy7ge6+9xgsff0yB2cyIsjIevuACSuz2A7Y7tawM4nGU1gQKC6kp7K1FeYQQQggxUEiyKkQferWlhcdza2kGlOJ/3G4+ddxxB73dvbfein/79m6PyQLLUimatEYphTmRYFBrK9vicZ4YPJjnDrEoTkl9PTfdcUeX+zTw57Y27g6HSZtMkEiggcJEgumbNnGhy0VJLxVuEgc2btw4LgM27djBqlx13fU1NXnprVRASTRKc65HdVs6zf0ffMD6G27AYbXy2Sef5IlVqzhzxAh+dMYZWEwmvvmPf/Cjf/2LH5955gHbHV1VxZB4HH8iYVSpttl6FKcQQgghBj5JVoXoI3Hgl1q3z1Md7vMxvqUFcsuYdMe/fTu3DR3a7TGL43FqEon2Xs5pwKDyctxuNy6X65DjvG3r1gPG/6NQiJeTSVImE2AkMpO2bWPGxo3YtWZ8bhkcceSNGzeOi5cvZ1Xu+rbKSmypVF7arrTZ2Jh7biUtFrJaE0unsZrNRFMpat1u5o8Y0X78SXV1PLV2bbdtKmC43c4apYjH46wIhThFiiwJIYQQx7ReTVaVUluBEJAB0lrrqb15PiEGkj8CEbcbolHsySSnr1vHoPnz89L2TmAdtM8ZrWlrY5DN1qOqrR0FgP+JRHivra19zmJ5OMz81au58IQTiLvdneajir4xXGsK0mmSFgtxq5VtjY2Mz0O7FXY7DqVIpVLUDBnC/8yeTf3PfobDamX+iBGdElWA3y1fzqWHMGLAHQrhyw0jf27NGsZMnizPISGEEOIYdiR6Vk/TWjcfgfMIMWBsAP6cSBCPxykrLeVSn4+L5s/PywfzpkiE100mVK7qb0kkQn1rK+48VIMFWNXYyG0mE7tyFWEBxjc0sDAYZGaHOami7w2qraWkqYnGXMXepV4vk32+Hv+NTJEIsVwBrW2hEM+sWcOWG2+kxG7nM08+yWMrVvD5CRMA+OFbb2Exmbj8hBMO3nAuUdVA3GyWIktCCCHEMU6GAQtxhGWBuyMRdre0gNYMbmvjwpqaHn8ov+q553hh/Xrsdjvf/sIXQCnWb9nCS2+9xca2NpZ86UtMzQ3/fXzFCu5+9932267w+Vj25S8zqbq623Osa2zk+rY2gnY7KIUC5q5ZwwSvl5ky5Lff8Xg8DEokaMx9qZAwmfKSAEYjEcgtj7O6oYFap5PKXEGki8eN490dO/j8hAn8fvlyXtywgVe/8AWUUgdtt7ikBPx+lNaYgNra2h7FKYQQQoiBrbeTVQ0sUkpp4Nda6/3WclNKXQtcC1BfX9/L4QjR914C1uV6pczZLKeuWsUuranuYQJx5aRJnDpmDLf885/GBq2Z53Bw/WWX8eUXX+x07OUTJnB5rudrpc/HBU88cdBEdavPxzeiUQK5iq7mbJYv+f3MrK6mVoZr9lulZWWo1lZ0HhPAwsJCyD2Hy9xuXm9uJppK4bBYeHXLFqbW1PDKxo38+J13ePPKK3FarYfWblERHpuNeDzO9GnT8BzC/G0hhBBCHL16O1mdrbX2KqWqgH8opdZprd/qeEAugX0IYOrUqflZsE+IfqoN+L943FiDVCmmbN5MWSKRlwRi6pAhfNi8d8T9IL+f0wYNOmgxpT+tWsXnjj++22N2+Xx8bedOtpaXA2DSmgUffcSnTzpJktR+LtmhR9OcpzVRO7Yy0uPhwlGjmPzrX2MxmTixpoZrp0zhuPvvJ5HJcOajjwJGkaUHFyw45HZNeYlUCCGEEANZryarWmtv7mejUupZYDrwVve3EuLodV8oxNbcvLySaJTLbLa8VMzVwDvJJMlMBpNSlFutzK2oOKSqv39evZrnFi7s9pg/RKNsyyWqAJf4fHxJEtUBYXM43F4EyxWL5WUYcFs0CrneUnM2y9cmTOBHZ53V6ZiNX/vaJ283GMTn94PWLF27ljNOPFGeY0IIIcQxrNeSVaVUIWDSWodyv88Hul6sURwSDcSA1txlU2srW/1+nGVl2EpKiOX2x3M/myMRApEIhS4XTqdzv/ai0SixcJgKp5NKlwsH4IT2n/G2NmLNzYwuK2NseTkVyCTnnlgBvJbNtheQOXXNGkqGD8/Lh/GPYzE2JpMkEgmyWjNDKYpycwi7815DA06rleOrqg54TBvwVkUFtLYCMG3rVr40dqwkEQPANp+PXYkEYCSV7jz14uNyQTIJWmNPpXCXlPS8TWBrNNr+/+GIx6XAkhBCCHGM683cwwM8myuqYQH+qLV+pRfPd1RIYSw7sg1YGQiwIRwmW1JCorCQViCROy6RSOALh8FshmAQj8OBzWZrbyeRSODLFfAhHsfj8ey/v7l5736rdf/9oZBRRCUSweNyYbfZKAUqO1ysbW2YfT6mlJUxppuE51iXBn4SjbYP/x21axdD/P68JA4p4IPceq0AlkyGgkAAuviCYl9PHGQIcApYkU7T2taGBga1tfH1qipJIAaI91tb258HRbEY40aPzsvfLu1w4DCZSKVS1BYVfaJ1e7sTLS6GpiaU1pTG41JgSQghhDjG9VqyqrXeDEzsrfYHOg182NTE8rY24h4PgeJitgG7MKrFJhIJfIGAkYC0tOCxWDolk/F4vL0HQmlNPB4/Ivv39Oqup0NC63BAPM7oWIzxDgfDgWG5yyBk7hnAA4EAy3N/T2smw1XZLFPzVD13aSJBwGsissVOtjiINZPBnVuqpDtZrXlyzRre+uIXD3jMR0A01xtsT6U4c8UKUoeyBInoF1pqaiAYBK2p9fsZnafli5qSSWK514hIUxNhk6nHCWsaaDaZcOVGBCw87TT5UkQIIYQ4xsmoziNEA7sxPvyvAJbEYmyIxcBmg0AAj91+SMliAVAGDLFY2N3YiD0ex57NctLEiVRjDOF1AJF0mn+//z6mdBqzycTpp59OBXsLmDSnUrz23nukgbTVyrRTT8UBRDGGEO8CnrntNmhsJG02Yyoqwm+xdCqAkkomMSWT7de3FxSwq6CAVzve8UwGWzJJhdmMp6CAYsDcxeNTUl/PTXccnaPEX2tp4bF0un3e4EkbNlCbp97JnZEIS7dnaX3axVOZp9nKNuIqytiHHuL2uXMpczi44eWXaYpGOe+Pf2RSdTV///znAXhr2zbqiooYfoCKq03A2nQanc2CUpyybh3FqZT0dg0g6y17X+IHtbXlpU0N+DKZ9p58ZzzOxo1xQiEXQ4fC4MGH1+6qpiZ2x2KgNa5EgoLi4rzEK4QQQoiBS5LVXuLz+Vjt89FWV8eOsjI+Apo77A/k5nvtm4wqjPHTx5nNNG3dSkkohDuZ5II5cxiNMZdUARQW4quvx+v1Ultbi2ffOWPl5UyYM2fv/oqKTrtHVFQw9NRT9+4vK+t8++JivNEoN9XV4Xa7cblcZDES2Uju0hqPs7WpiajVSsxmw+F2Y+7w4TiTThOORIwPtUrhKizEarFQAVQBRdEo1mCQYpeLe7Zv7+lD3i+tamzku4EAsdyalINbWpjU0EDtpEk9blsDS7Qm0WBBZ+DTXIJJaU47TTFnzt7jLho3rsvbzx06lH9fc02X+7LAO6kU4WiUVDrNkOZmzi8uZsy0adLbNUBEgOW55WUAaltb8zIHNAikTMZ4CUs2S7yxgDcWl5PNGrMSvvCFw0tYl/j9UFCABkrDYbyRiDzXjlKuz36W8F/+0u0xP3/hBR54+WUmjxjBZ2bPZnRtLeNleTtxlHG5XITD4W6P+fnPf84DDzzA5MmT+cxnPsPo0aMZP378EYpwYDv39tv543//NyXdjPyZ++1vc88Xv8jUUaM6bV++eTPe1lbOnTq1t8MUByHJap4FgL/6/Tza3ExTcTGEw3gKCzv1mgLY7XYS6TRVfj8VkQjnFRUxCRgM2ABcLnxjx+5NJisr9zuXx+Pp9sNcT/c7HA5qamrar5uAwtwFYJjdzpjSUkKhEC6rFW2x4McoyNMGeHMJOQBak06nMVssNAK70mnCqRQmm43iYJDNiQQtwN56swNfK/DtTIZwLlF1JJP8R3Mzp+Vp+O/qWIxWk4mCugzKDGQ0JhMMHdrjplkHtOV6z0xaM3f1atzHHy/JwwDyAaDNxjiGymCQ4mSyx73iJfX13LB+PStTKQDc8TiulkLWZrYZX7yl4YMPYULmk7UJ0OzxgN+P0ppBfj+1xx3Xo1jFwHb/Sy/x8ve/z7Dqaq68914WTJsmyao4Jt1///28/PLLDBs2jCuvvJIFCxZIsnoItNa8+L3vYTId3mS05Vu2sHTDBklW+4EDJqtKqRnAWq11UCnlAL4FTAbWAP9Pax04QjH2eylgCfAqxgfENqUIuFz79Zo6gOMxJvJOsNlwuFzsCgapHTMGTxdDMQ+WTPYHLper01y1ImDPx4lwNsvqbdsI2u2EHA5MhYVEc/vSuR6frFK0OZ2sD4e5EhgBjAkEqG1oYEZFBdX9/P53RQN/b2nh3nSaXblh0uZslnNWruS02bPz8jcNxGIsjsVIm0xYaxUTLwzg9jkYPdp22MMw99jTI5fNDf+tyFOiI46sRaFQe2Gs4Y2NzJo1q8fPvZvuuIPrd+0im0wS/qAA24thJk8q4I2fDiGZNOqx/c+vYObMT972eoulfb7q5yZM2G80iDg63f3MM/zl7bdJpFJcNHMmt192Gdfdfz+bfT7O/+EPWThnDs8vWcKbq1bxg7/8hae/9S1GdPgSVYijxd13381f/vIXEokEF110EbfffjvXXXcdmzdv5vzzz2fhwoU8//zzvPnmm/zgBz/g6aefZsSIEX0ddr+y1efjnNtv57QTTmDxunUs37KFpsceo6KoiDufeILH33yTwRUVVBQVMWXkSG6+6CIAnnznHb7y4IP4IxF+e8MNzBg9mlsff5xYMsnba9dyyyWXcGnHIWviiOquZ/V37C2QdB/GdMYfA/OAh4GLeze0/m23z8filhbW19XxUVERHQdx2O12AkphyWQY5PdzfnExpwAj2We+pscz4JKxq557jhc//piqwkJWfeUrAHzvtdd4bv16TEpRVVjIIxdeSK3bzXObN/Pjd94hk81iNplY1dTE4i9/merqanYoxcZUipjVCkphzvUArUkkeD0QAJeLwmCQBQ4HZxQVMZFcj3M/FQU2Aov9fl4KBtmi987uNWnN2cuXM6+yMi+JqgZWa83o3LeFtlSKaRVpBh1f0uO2ARYnkwRycwedySTDLBYW5Kk3WBwZIeDdDvNKR/h8xPcd6n8YYsC20lIiL/vZcnkVW5IePipQ3HcftLTA3LmHl6h+3NjI8tw8fbPWjHA4ehyr6P8WffghG7xelvzkJ2itOf8HP+CtVat48Ctf4ZVly3j9hz+koqiIDV4vC6ZN45LZs/s6ZCF6xaJFi9iwYQNLliwx/hfOP5+33nqLBx98kFdeeYXXX3+diooKNmzYwIIFC7jkkkv6OuR+a/3OnTz8ta9x//XXMzQ31Wnphg08vXgxH957L+lMhslf/zpTRo5sv006k2HJT37CS0uXcvsTT/DPO+/kjssvZ+mGDfzyuuv66q6InO6SVZPWOp37farWenLu97eVUst7N6z+a0+v2T3NzTS5XOD347HZOg3zPdFmY7LbzeDt2xnR1XzSAezKSZP46vTpfOHZZ9u3/c/s2dx5+ukA/Py997jjzTd5cMECLp8wgcsnTABgpc/HBU88wYzqagCG2GxMcjjwRSKEi4t52WzGROfCUpGCAl7RmsWAjscZ3NbGLLuduaWl1JGbu3uEaYy5xztyl5XBICsSCQJFRUbhmWCwvZASGEN/569YwVC/n9GzZuUlhr8CYZsNlAKtGdbURHFPu1NzGoAdueq/AEObmlhqsUiiOsC8zt4hwFWBAJWxWF56xpcCaaVILXOjUwqyilTKSFRvueXw230tGASrFQ14/H6a29oYLM+5o96iDz9k0fLlnHjTTQCEYzE2eL2c0s1yWkIcjRYtWsSiRYs48cQTAQiHw2zYsIFTTjmljyMbeIZUVnLS2LGdtr29Zg0XzJiBI/dZ/VPTp3faf3HuW9YpI0aw1ec7MoGKQ9ZdsrpKKfVFrfXDwEdKqala66VKqdEYI1+POSuAR4H3LJb9hvkOttk4HTgdqAEoLTUuR5lThgxhq9/faVtRh0Q9kkx2mUT+qYv1PDsOIZ4M/A/waibD47t3s7W8nHhBgTG3N5HA19jIDq15N5XiUaeTsmyWupYWTiwsZGppKcOAgjzcP43RS7q+qYm1LS3g8ZAoLcUHbI5G2ZpIoJxObDabEZffbyR2sRiuwsL2RNWczXJcQwNTN29myvDhjD755LwkfB8DD8XjZDIZHHY7Q2Mxpg4enJd1LtMYw9gtFgsoRWUggDuRwHkI67WK/kMDf41G24cAH7dzZ16GAAO8HArha2vDeqIVs8UOmCgoUMyd27N2N1dXQ2srSmuGNzdTK8sjHRO01txyySV8+eyz+zoUIfqU1ppbbrmFL3/5y30dyoBXaLfvt013cVxHNqsVALPZTDqb7YWoRE90l6xeA9ynlPouRmfSYqXUng6lrkuIHqXWAo9hJKvQeZjvGJ+PLxcWcip909PXX3zn1Vf5w4oVFNtsvH7FFfvt//Pq1Ty3cGG3bRQC55eVMWPoUBq8XiKDB7PZZuOlpiZ8HSonR8JhfJEIa7XmH6EQHqcTk9Y4w2Hq7XbKtUa3tlJdXExNSQnxtjZaWlooLS+nqLSU5rY2dvn92MrKMBcXszsUwhuJkC4qIup0Ekwk8MVixvqxufYBfM3NRmIaCuHxePZbXqgmHqd+504GNTcztKmJgkyGOXPmMO4A1Xg/qR3ALbEY3qYmkhUVPLRmDbPtdt5wOKC5+aC3P5g1ySTbMF6srVozPhjkfYeDmjFjety2OHKWAxtTqfY1fUft2kU8N6KhJ9qAxbmhxc4pSb58y6uYmo/nsstqD2vo7x4xYHWH+apfnjixy4Jy4uhz1uTJfO/xx7n81FNxORzsbGnBajZTtc9oJLfDQSgW65sghTgCzjrrLL73ve9x+eWX43K52LlzJ1arlaqqqk7Hud1uQqFQH0U5cJ08fjxf/tWvuOWSS0hnMvxt6VK+NH9+t7eR153+44DJaq6A0pVKKTcwPHdsg9b6mOkfX9LczG9TKbaUlXUa5ltos/EfJSVM3bqVccOGSSEQ4Ifz5vHDefP40b/+xS+XLOH2005r3/deQwNOq5Xj93nRPZCOhaVOAc7JZnnsnXfYVlbGjooKgk4n4X2S1z1L5GyKRvc2FAxSZjbTGgqB1QqhEGUWi3HdZIJAgDKTida2NiMJbW7uMgmNx+NGe7ltjmSSQX4/ox0OvB9/TIXfjycS4aJzzoERI/g4k4HSUkaPHp234bO7ge8CTbkKy64bb+SixYs547jj2ocN9cTi5maei0TIAijF99xuLjkKRwYcCx4Nh8mk06AU43fuxKF1XoYAvwbG2jRATVsbk+t2sOC6ifT0Kf6P1lYawmHQmopwWF5PjyHzTzyRtTt2MPMb3wDAZbfz2H/9137J6sI5c/jSr37Fz194gaekwJI4Cs2fP5+1a9cyM/fNn8vl4rHHHtsvWV24cCFf+tKX+PnPf85TTz0lBZYO0bRRozh/+nQm3ngjQyormTpyJMUHGTV22gkncNdTTzHpxhulwFIfO+jSNVrrEPARgFKq5xU6BoAM8OtAgIciEWPogM+Hx+PBYbNxJnApUFlUBLn5mP1JBohj9FbEgIbmZrxNTVRWVlLR4UNgc3MzLY2N1FdWUl9ZiRNwYCxP0xOXnXAC5/3xj52S1Se6GAL8SXg8Hj4/b177Mj6ZbJaH33+fnUVFNBcXk6ivb09e6TBfVGlNJBrtlHge7Ho8HqfIZkPFYhTGYhQnEswtLqYym2X1++9TFIlQmE7zqQUL8BQV4ZswYe/yQrlP7fme39kI/FcsRkMyidlkwprNcv4HH1CWSOQlCYkCd2OsraqBQa2tDG9pOSqHsR/t3mtu5tXcc1oBn7FamZGH4lgaeK6Xhha/lEi0/w8O9/nwJpMyR7oDpdRngFe01qHcSKfJwA+01sv6OLTD1nGN1RvPP58bzz9/v2O2/uY37b/PHj+eNb/61RGJTYgjqeMaqzfeeCM33njjfsds3bq1/ffZs2ezZs2aIxHagDTU42HVL3/Zfr3j68jNF13EbZddRjSR4JRbbuG/L7wQgDf+3/9rP6aiqKj9NmVuN+//9KdHJnDRre6Wrvmu1voHud/HY9R1sSqlFHCp1vq9IxPikbUL+AnGUjQ6d1Fac0JTEzfX1dFX3+dqoAlY3tLCx34/pooKssXFtGIMz9sZi9GSSGB2ONp7gROJBL5oFJxOiEbxJBJ751pGo1BYCLFY+3YwChmpSIRBdjtNwDKM4bkqFkOHQlR38U3UhpYWRpUbK6Q+v349YzskxVmteXLNGt764hd7dP/3Xcbnmjlz2pNEgGdff51AQQFhh4Ogw0HcaiVlsTB49GjW79qF1hoTMHLYMLY0NGBNpbBnMkwaNYrNq1Zhi8dxpVJcctppDCsuprG0FG8sRu2wYe0FsmZ3OGfHxLQ3P1gvBn4cj7OlqQm0xpLNcqvW1I8a1SmOw6WBXwFhtxuiUWypFGeuXs2gM87IR/jiCHs4N/xXA6N272awzZaX5+f7wNZc2wXpNCN9PuJ5+KKkGdhSVgY+H0prxu3eLeur7u97WusnlVInA2cB9wAPADP6NiwhhBg4rv3Vr1izYwfxZJIrTj+dydIrPWB017N6MfCD3O93AzdqrV9WSk0H7gXyU9q0n9AYw9wexOiZ3DMvta6lhdPWr+cLp53GkfquPwW809zMh8Eg0YoKVq8uYuUb4JiVJDEsAhYLBAJ47Pa9yWcumSEYxOPxYLPZuhzO2t32PYWM0JrtkQiFmQzrgEw6TTi3iOLvXniBTTt3EozFqP7pT7lp1ize/PhjtgWDWMxmhpSU8OB557Xfl7e2baOuqIjhee6l2zdJvOicczolrx2TSp/J1Pm6Up2v22yHlIQeyXVvkxhrR/0NCOR6nkzZLOcsX0790KF5GfoL8GRbGy+YTNjtdjweD5du28aCM86Qnq0BaC2w3uUyChUB07dsobbDCIeeeIa9r4nHNTRgy9PQ4qf9fmJKUVZayohIhMvnzZPn3v4yuZ/nAQ9orZ9TSt3Wh/EIIcSA88ebb+7rEMRhOugw4JxarfXLAFrrJUqpo2oRvM2NjdyXSrG2oqK9h9Fps/G1oiImtbRQd9ppvfoBKo2xRueK3GV5PM6OaBTMZiKvRtlyuZtsQqFMVmrvcFJ2WaTb5JNolDKbjTKrFW8ohCmTQSnFiIoKCoGIxcKmQIAskOowgT+4TzuZjPEZKZ1Otw+vveqcc7Db7djsdiOJjUQ4f+xYHKkUI4uKqLfZ6DjjbO7Qofz7mt6vx7VvIrnv75/kel/SwIfAr6JRNqRS2O127HY7Oh7nzI8+YlAoRG2elsD5V3MzPw6FSJtMBJTisyUlXD16dF7aFkeWBh6IRNqH6Y7dtYtPTZyYl+f1emBZIkE8HqeitJQr/H6Oy8PQ4l0+H4/5/QTtdlCKG10uPHlYC/YotFMp9WvgDODHSikbPZ+xIYQQQgwI3SWrw5VSz2MUua1TSjm11nuq11h7P7QjY3lTE1/1+wnZbO1zU4fbbNwMjCwpgTz1YO0ri1G186+hEIvT6fblUACCHeZwRRbbyCaMG+gseL9XxthyL0NHt3LaxIkMB7KpFEvefhtbIkGB1sZ8SgCnE19l5d5ew1y1TQoL8Xk8xnaPB4/D+O5hdzzOX19/nYjZTNTpZLPWTAJalaIhGiVmtZKwWo2lTeicxMasVjZozfbc/StMpSiKRBhWUEC90ymfrA5CY6xh+QSwMpForzwcUIoFpaVcXVpKIE9Df8H4cuROs5m0yYQGysJhzmhthUmTety2OPIWA8tz/48mrZm2cSPxPA2n/W04jK+1FbRm7O7dHDd0aF6eg68EAgTt9vaiZbXbt4Mkq135LHA2cI/W2q+UqsFY6UsIIYQ46nWXrF6wz3UTgFLKgzFf5pAopcwYn8N3aq0XfOIIe9EO4LtmMyGbrb03cXJjI7cNHsz+qzTl75yvAq8DuxIJfHsq0eaWQ7HZbNjtdlQsRk1rK+lBPv5qmkbGKNOK0jBuZQXfvcCDZ8/Q2ooKRp5xxn5DWeHAvYZdba/2eDoNp33ghRcYD2CzES4qIhQK4XA4SFsstAG7lWJrIkHEZkMr1Z7EZtJpvNEoXmBdKkVpOs1gi4XyWAxnIEBZh/VVj3UR4JXWVp5Jp2kqLu7UU27KZpmzfj2f9ngYfuKJcIjVlA9mG3ArGHOZQyGciQQLPvqIoaefnpf2xZGVBH4Zi7VXAD5h+/a8Fd9aB/w7t1wNwImbNuEtKMjLXOn3Bg2ClhajJsDOnQzZZxF3YdBaR5VSzwEepVR9bvO6voxJCCGEOFK6W7rmzQNs92HUZDlUN2JMpyr6ZKH1rq0YS4EkCwshHMaaTnPW6tXcOH16rySqq4CHIhGWp9PGMNp9hu+6YzEmNDVxXl0dJ9hsZPYU+FlYy3yH4j//E7JZsNkUl11Wu99yEfkaynqgdlz7JJgVwCibjRMLC/GHwySLighZLDQCOzv0uKI1sXSazcCKZBJlt+MOhznOYmGE3Y67xxEPPK3AvzF6w5bG43hzy3YQj+PxeHDbbAzdsYNJmzdTnEoxKI+9+zsxnvchwGazMbyqims2bWLq6af3m6HQ4pN52O9ndTAIWmNPpfi8ycSkPAzTBXiwwzI4o71eKmOxvCTBa4DNubVVzVrzjXHj8OTpy5ijjVLqBuD7gA9jUA4Y+X7/K0cvhBBC5NmhzlntRCl1rdb6oUM4rg6jKMQPgf86nHP1hs10/sBeX1XFFVu2MGf69Lx/YF8PPAa8l0jga2lpH9rp8XioKihg2PbtjNm5k6pIZO/wXYAOSeO118IJJ8Abb8DcuZBbhqtf2DeJBfCn0yzbvZs2pxN/YSEWi6V9yLAGgnY7H2J8YC0CyuNxtvj97PD5GHyUJUwa8AIfAxuAZZEIazp8YRHpMOTbkskww+fj6/X1pEaNwltYmLdhvwANwM2xGN5kErvdTonNxg/tdkZJ9dUBywv8GdqfQzM2bqQqT19c/bOlhddz6xcr4DJgVp6S4Ec6DC0+zuulePjwHrd5FLsRGKO1bslXg0qpEuA3wPEYL1NXaa0X56t9IYQQIl8OK1nFmMd6KO4FvgH9pwPt383N3GY2k83NEXUCt9vtjB03Lq/n2QXcGw6zOJPBbre396IqrRnu83FxLMbCMWNoGT0ar8t10KRk5sz+laR2p8TlYnpdHaFQCLfNRspiYVM6zdpEgrDNRmqXhVRjAXo4ZGrS7EgkWGGxcGE0yqhXo5iXOLlwLlwy89CfaP1BHCMh3AGsDARYFY3SVFpK2m701Se6+MLCbrdjD4UY5vNxnNfLpfPnUwadvqzoqT2Vrn8Wj7MjVzU6ms3yXbebURUVB7u56Kc08L/hMIlMBpSiKhDgBK+X2jz0xKeBh7LZ9iR4/M6dDHU48vKcXAe812Fo8aQtW/DmqlGLLu0AAnlu8z6MtVsvUUoVAPuvSSaEEEL0A4eVrGqtf32wY5RSC4BGrfUHSqm53Rx3LXAtQH19/YEOy4t1jY3cFAwSs1ohFGJYVRV32u3ks/7pnsTg3nic7bmeg4BSlJeWMn7XLqZu2EBJMsmZCxZgoX9Vot1XSX09t3VYjPqwJBLQ3AxALBZjmzfFknfdZLMK9RaUzkuhixLEamtJf2jnyc87yCbhiQLNtGdDzJptYqLLxQhgBFBN3yawcYyxeHsuHweDbIxECJSUEMoVqkokEvgCAePDeGPjfksJKa2pbW1lfirF50eMIFNZiTeVovb44/P+XIhhTDB/nb2Fu8zZLOcuW4Z7+HCQZHXAerqtjddDofaez2vicU4777y8PIf+1NbGTpMJlMKaTjNz0yZq58/vedDAo+xdBme010t5noYWH8U2A28opf4GJPZs1Fof1mr1Sqki4BTgylw7SYypz0IIIUS/022yqpQai1FoaRB7RzQ+r7VeewhtzwbOV0qdC9iBIqXUY1rrz3c8KDec+CGAqVOn6k9+Fw5NFrg7myVmtbZXn7xq0yZG53EIZBhjMu/b7F0bE2DUrl18KRhk0rBheG22vA7t7E033XFH3tv80Y/gqcXGwoFmBXNnREidvZwdZWV8/IiRqJKBbBK2vZohNs7PKqu1vVKyOR6nJBBgqNPJCLebSqAKoKmJmNfLsOpqaj/hY5vGKHQUAbY1N7O5uRmrx0O2tJRWoAVoiETYkUiQLixsjyWRSODz+42/c1PTAde3NUciTLHZqAZ2fvghVW1tOLNZFixYYCzz00tfWGwCfozRyw9GgmCKRjlr+XKqolFJEAawZuD/oP15NmnbNsa43fmpFN3YyC9DIeIWCyjFhfE4l86fn5e2VwDv55bBKS8t5UuBABPzNLT4KLY9dynIXXpqONAEPKyUmgh8gLGOeqTjQUfyi2QhhBDiQA6YrCqlvgl8DmM1jSW5zXXAn5RST2it7+quYa31LcAtubbmAjfvm6geSU8CO0pLwedDac25K1YwY/bsvLW/CfhOh/mAexKDM1asoCYcbi94cqx/KJs7FwoKIJk0fl57biHDh4/E6/Wy9pQsV/1CkUxqlFXjPMlI+vasJ5tIJPA1NoLWfJhI4Cko2Ls9FoOSEkgkGByPU2y34wB0NEoiHMbhcmF3OslgfHERiUYJxGLowkLoOEw3GgWHw6jOnBsq3nH4LuEwHo+H6DIbO1/RmCdacU5JorQmGYsx3GbjBJOJxi1bKA2FqA6FuHzePKoBiovxzZzZZdXmfNLAY21tPKwUFoejPbk+z2bjwrIyWseOHTBfmIj9aeBH4TDhbBaUoiQSYebmzdSec05e2n8wmSRusaCBkkiEsxKJvDxXNHB/JNL+v3T8zp1MHDFCnocHobW+HUAp5Tau6nAPm7QAk4EbtNbvKaXuA74FfG+f8x6RL5KFEEKI7nTXs3o1cJzWOtVxo1Lqp8BqoNtktT9ZDTyOUUzJ4/Ewd9curp49O28fkj4GvhGPsyU3HzCgFAtLSrisrIzW0aMlMehg5kx49dV9i0UZSfyJJ8KwV+HFF8Nk9RuURwM0ryyhds4cmoCluWIve3os9ySx+/ZkBhMJlN1OU4f1SvdU2m1PPvdsj0QO2CPaVfumbJbEazHe+7SNTNKGyVLFpXe8y8QhXi6bO5c6ALcb37hxn2gpoXzQwDLgN5EI7+aGhxIMUl9VxX/b7cw1AmCIPBcHtCfa2vhnh+G/X4pGmX/OOXnr+VxRWdn+pd4pH3/MkJNO6nG7YEyPWJMrtGbOZpmycSPePM2DPZoppY7HGD1dlrveDHxBa736MJtsABq01u/lrj+FkawKIYQQ/U53yWoWqMVYlrGjGvaWzz8kWus3gDc+yW3yJQTcGYvhz/V4TrHZ+ObQoZjz1P46jDUFWnPDfgvSac5YtYqz6+sZcuKJRyQx2Orzsb6pCVtNDabycrb4/Xj9fuylpRQUF9MUCtEWDOIuKsLtdhMKhQgHg1S53XiKikgFAsSbmxlZWsqYsjJobCS0cyeDeinJ7q5YlLHPjc83fW+yV1wMwO5Uij+9/TZtdjthp5ORs2aRBLZYLCyLx4lbLKQsFuy5ntJDST6V1iTicSpsNoqtVnyhEAWpFK5kktklJQwDVCbD8vffxxmL4U4m2br5s7yTBJ1RgImyHSO44orRRywp3ZfGWMj4CYwvTgIdKi9XBQLcEAgw94QTjkgsondtA36jVKfhv8fnafhvErg7GiWeSlFWWsqEYJAbTjopL21HgUfYO1f1xK1bKU6lZCj6oXkI+C+t9evQPlLp/4BZh9OY1nq3UmqHUmqM1no9MA+jOLsQQgjR73SXrN4EvKqU2oBRjRCgHhgJfLWX48qbB4NB1ubmFSbSaf7D7cacp/X81mL0qAYSCcwmE45UiguWLqUqEqE2T70R+woCb7a2sjQUIlRezk6zmXWJBLjdEIlQVlBAazAISkEgQJnJRGtbm9HL1tZGGey97vdTphStgQBYLBAOU2a10hqPU1BURMXu3ZyUzVIViTCzuJiJlZVHrLhRV8letcfDZWecsV8SS2EhvpISvF4vNbW1lNpsxIDtySQv/fvfpJXCDMw77TSqgZZkktfeeQeVyWDPZLj4nHOoLi4GpxNfZaXR/tChe9svK2PanDnt59282c3PfrZnKHPX694eCRpjfP4TwMYO2+12O2GtOWHbNmZt2sTE88478sGJvEsA349Gieeq/5aHQszatInac8/NS/v3BwKsyBUGs2UyXO9y5W3t0ycBX26u6vCiIr5UWsowmat6qAr3JKpgfPmrlCrsYZs3AI/nKgFvBr7Yw/aEEEKIXnHAZFVr/YpSajQwHaPAksIYPvS+1jpzhOLrkSbg5Q7LL5y2ahWJ+nrIwwewAHBrLMb23NBfRyrFD7SmfMyYvA/7bcSo5rooGmVdLEY4kquD0dqKq7CwUy9hJBrNy/WExcLOkhKeSSbBauXBWIwxsRjj0mk8Ph9zi4oYn6cPsp/EgXos991uA0oqK/HMnbs3ua2sBKC+spLaefM+0TDdjts9nq6GMh85GniptZXH02mai4vb56QCWIEFNhtznE4SRUXU5qk6rOh79wSDfJj74s2SzfKf4TBzzj03L3/ftcCz0P5aMHP9emLV1Xl5rdwOPBGPt883n7FqFcOmTpXn5aHbrJT6HsZQYIDPA1t60qDWejkwtYdxCSGEEL2uuwJLduA6jJ7UlcBvtdbpIxVYPvwFsDgcEAxS09bGyObmvPR4auBngC+ZBK2xJ5Nc9P77lI8bx4l5WONwjw3AQ+Ew72UymHM9pFrvrXOhcr+btaYwHqcwmWScw0HLjh0UJJMUaM2EUaPYtHo1Kp3GZDJx/PHHs2rVKtJA2mpl+HHHsWLLFmIWCxGHg8Jhw/g4EiFpNrff1z3n2hmNsj4SAauVX8fjTI9Gmet0Mh3jSdIf10Q91OT2kzrS696mMf4JFwNvxGKsD4c7zcV122ycDXya3MS2qqq8JBqif3gL+LvW7cnkKWvXMqKmJi8JXwL4UTRKOp0GpahvbjbWa508ucdta+CXQCQ3TaLa72eU14vX65Vk9dBdBdwOPIPxMvsW0hMqhBDiGNHdMODfAyngX8A5wDiMocEDwm7gxXiceCJBWWkpX4xGOS1Pw84e8ft5TSnMuXUIz1y1ioo8rhUYAu4OhXg1mTR6UXNJqQZMWuMJBBjU2oonHOazJ52Ex+HA19Zm9BJWVeHTulOvoc9m63zd4eh83Wrde72sjN2pFGt8Pprdbl7bsoVdRUXsKiszguvQC7s+lWI38PtEAls4zCyrlTOKiphIftZXONbFMdaUWIwxJ3XPuhKB3JckGrBkMszcvZubhgyhtK8CFb1qRVMTP7BYMOeWkhm9axfH7dpF7ZQpeWn/vmCQj3I9ttZMhi8nk0zP02vlE21t/NtkwmwyYdaa01avxmwyyVzVT0Br3QZ8ra/jEEIIIfpCd8nqeK31CQBKqd+yd/maAeE3wSDe3AewQX4/c6ur8/Lha2VTE7+IRMgoBUrxWYuFc4cOpXbWrLwNx/u238/mQGBvryYwuLmZcV4vQ5uasGWzjBkzhtHTp7cPba3tZijrJ71e7fFQnbt+qtOJ1+ulurCQrVrz6IYNbCsvx1tWht1uNyrr+nygNduV4nWbDbfNxiRgVFsb1Tt2ME6W7Dlk6xobeSMYZEt1NRtcLlJdHGO320mmUozduZMp27bx2bPOkkT1KLXD5+PmpiZ8bjcoxRi3m5taWxmRp2TyfeDFDj22c9atoy5PPbbrGhv5WThMwmwGpbjMamX+uHFSHf0QKaXu1VrfpJR6gb2DXNpprc/vg7CEEEKII6q7ZLX9c7LWOq1Ufxzk2bU48HqHuarTN2xgVzbbnoD1xO8TCTJKoQFPIMD8dDpvQ39fbWnhDq1pi+xdm33k7t1M37iRynicWbNmEa+rO6If9jomsjXA8BNOwOv1Umy347XZeLahgUAyScxq7VRx91+JBE+FQlBcTHlLC+c5HJxSVMTxgOOIRN7/xTGGen+cuyyPxVgXj4PVCq2teKzWTvNRq4CZwEk2G2VuN76iImrPOks++B+lNHBvKoXP7UYD5myWy3ftYtakSXlpvxW4KxYjkxv+O9zny1uPrQbuzWRImM3t67WelkjkdZrEMWDPHNV7+jQKIYQQog91l6xOVEoFc78rwJG7rjAWJi/q9egO0xLAnJurWhEKMTgQyMuws53AsuJiaG0F4JSPP6b+5JN73C7A283NfCMUImUyAWBPpZi3ciXDm5sZO3Yso0eP7hdJScfkdTgwympl7KJFeIuK2FpVRbayklY6LxvTUljIc1rzBmAGRgNDAwEqvV6mlZUxtB/cr96kgWaMQjM7gFXBIKsSCdqKiijokIx2HN67J/EfbbMxEyNJHUaHecEeT6fedHH0ecTv598OB0QiKK05+eOPOWnixLy0nQV+EA6zsbUVtKYwkeD6VIpJeeqx/Sewuaysfb3WM9auZcjs2T1u91iitf4g9+skrfV9HfcppW4E3jzyUQkhhBBHlulAO7TWZq11Ue7i1lpbOvzebxNVgHcAm82Gx+NhvtPJgjx9AHsoFKKlrQ0N1Le0cMn48XlpNwz8KJ1uT1Rd8TifWbyY4c3NnHzyycyZM6dfJKpd8Xg8nH/eeZw/YgR3jRnD751OHgKu1pq6tjbMWoNS7WufZoDliQS/DgT4gdPJhfE4V0Sj3INRjXQle+dmDjQRjDUg3gV+6/dzc0MD10UifBajQsptwP2JBE/6/ayNRtnt85FIJNpvb7fbsWazDGpr4+QNG/hlMskvgcsxvhgYOGMbRE8tamnhvkCAcDgMwNx0mu9MnJi314E/AUszmfb58GesXEmVw5GX9puAX8TjxONxykpLOV8pvjx7dr99DRsAruhi25VHOgix19ChQ2lubj7i5731hRf45/Ll3R5z2x//yD3PPrvfdn84zP0vvdRLkYmBau63v83SDRsAOPf22/Hn3nMO5fiOlm/ezEtLl3Z5mzdWrmTBHXccNJbPfe5zTJgwgZ/97Gfce++9RKPRQ7gHRw+Xy3XQY37+858zbtw4Lr/8cv7617+yZs2xsUR2d9WAnUBKa53KXR8DnAts1Vrv/0rYT8SBd+JxgokEdrudzw8bRj4+IkWAf3X4cDdj40bio0bloWX4SShEQzIJGD2qF73/PicNHdpvelMPZt85rzXAFSUlnF1Tw5ZduwgNHkyDzcZyjGSuY68rwJZUilY6dxOURKOU+v2MKCxkZHExVUAlxlBY5xG5V52lgDagBWP4ZAuwORBgcyRCvLiYUGEhe17iE4kEvmDQeK60tOCxWNqH83a870pryoJBZlVWMgYYY7NR4HTi8/upPeGE9vnI4tiyE/iJyYTG6JWvaWvj8myW6hEj8tL++xhr89rtdgJKMWXTJob4/XkZfZIB7ohE2NbSAlpTEovxpdLSAfE61t8opT4HXAYMU0o932GXG+MlSAxA6XQai6W7QW1dy2Qy3PGpT0Fd3WGd1x+JcP9LL/GVPK3LLI4+L33/+4d92+VbtrB0wwbOnXp4K2Lt3r2bd999l23btgHGF0Kf//zncTr74hNf/3X//ffz8ssvM2zYMK688koWLFjA+PHj+zqsXtfdK+YrwNXABqXUSIyipI8DC5RSM7TW3zoSAX5Si1pb2ZFb1sMSiWAtLzcWxuyh99i7DI4nEKA2FMrLh7utwKJksn1JmtNXreKkIUOYM2dOj9vua10tDxMA3sxk+PPOnewqLqbN5Wrvdd0jkUiworkZtObNQACP3d5p7mYhRuLqDIehrY3qoiKqiotxAnaMObF7LqHmZhobG6moqqK0ooIsxhDITO5nU2srO1pacFZUYC0tJYzR0x3J/WyMRtkVj5MuLOwUQyKRwBcIHFJCGo/HqbDZqAeKlcK7fj1lwSDV4TAXn3NO5y9TZHjvMW2zz8c3zGaSNhsohTsWY8GKFQyZPz8v7fuA/xePE8h9mTevrIzLW1qoy1f1X+CjdLr9S715K1fSMnIk9fKcPhzvAruACuAnHbaHgBV9EtExJpJI8NnzzqOhoYFMJsP3vvc9Lr30UgB+8Ytf8MILL5BKpXjyyScZO3YsS5Ys4aabbiIWi+FwOHj44YcZM2YMjzzyCH/729+Ix+NEIhFuvfVWbr31VsrLy1m/fj2nnHIK999/PyZT58FuQ4cO5aqrrmLRokV89atf5ZU//IEFp57KJbNn89LSpfzXb39LRVERk0eMYPPu3bx4660ArNm+nbnf/jbbm5q46fzz+dqnPsW3/vAHNu3ezaQbb+TMSZO4+4uy+tGxJJJI8Nk77qChuZlMNsv3Lr2US/f5nDn0mmtY+tOfUlFUxJ1PPMHjb77J4IoKKoqKmDJyJDdfdBEAT77zDl958EH8kQi/veEGZoweza2PP04smeTttWu55ZJL9mu7PY5IhBtuuIGVK1eSTqe57bbbuOCCC5g/fz6NjY1MmjSJiy66CK/Xy2mnnUZFRQWvv/56rz8+/c3dd9/NX/7yFxKJBBdddBG333471113HZs3b+b8889n4cKFPP/887z55pv84Ac/4Omnn2ZEnr7Q7o+6S1ZLtdZ7+vqvAP6ktb5BKVWAsaJGv0xWPwiFAKNHYqjPhzeRyMuHsFfCYeKZDGWlpczPZPI2tPj/QiFjeRpgWGMjI5ubGX0kF/A8woqB88vKmDFiBF6vlwq7najNxiZgI7AJWBGL7ZfsdUwUI0BrIoEvN9+OLhJayCWU0SgUFkI0iieR2D/hDIehoABCITxO5/77c0kz4TAej6fbhNRts+EBxprN7G5ooCQUojwa5bKTT2YUuWG8RUX4Jk7stHSQEAA7fT5u2rmTbeXlxvO1pISvhkLMmD8/L8+TJPDdaJTNued0JpHg+pISRuWp6NHrLS08ZLG0L+k1fcMGBgWDskzNYdJabwO2KaUuB7xa6ziAUsoB1GF81yl60Str1lBbW8vf/vY3AAKBQPu+iooKli1bxv33388999zDb37zG8aOHctbb72FxWLhn//8J9/+9rd5+umnAVi8eDErVqygrKyMN954gyVLlrBmzRqGDBnC2WefzTPPPMMll1yyXwx2u523337biOc+Y+pyPJnky/ffz1v/7/8xrLqaz919d6fbrNu5k9d/+ENCsRhjrr+e6885h7u+8AVWbdvG8vvu2+8c4uj3ypo11JaV8bfcFxqByIEnXC3dsIGnFy/mw3vvJZ3JMPnrX2fKyJHt+9OZDEt+8hNeWrqU2594gn/eeSd3XH45Szds4JfXXddtHD/84Q85/fTT+d3vfoff72f69OmcccYZPP/88yxYsIDluWHuDz/8MK+//joVFRU9v/MDzKJFi9iwYQNLlixBa83555/PW2+9xYMPPsgrr7zS/rhs2LCBBQsWdPm6cbTpLlntWCr/dOBuAK11UimV7dWoeiBUXg6trSit8YTD1Page/zeW2/Fv3074ViM1zKZ9gdkh8XCA/v0BnZUUl/PTYcwPj8IvNNhaPH0jRsZM2bMMZHA7NvrOqbDvoZEgj8sWUKL00nY6aR+yhTiGHPhmjA+dHeVLO6brB7smE+y35TNYg+HGWmzUQZYlWLzpk24olFK4nE+c8opjCGXkLpc+EaO3JuQVlV1e9+F0MDPUim2lZe3Px8v3b2b8487Lm/neBBYn0qB1piyWc5evpzwqFGwz/PzcGxobOQ7gQCRggJQipOcTq4tK6Pu+OPlud5zfwFmdbieAZ4EpvVNOMeOE2prufn3v+eb3/wmCxYs6DTi6eKLLwZgypQpPPPMM4CRzF5xxRVs2LABpRSp1N7Fx84880zK9qxXDkyfPp3hw4cDxly9t99+u8sPnXt6cjta19DAcI+HYdXVxu1POYWH/v739v3nTZ2KzWrFZrVSVVyMz+/vwaMgjgYn1NZy83PP8c1HHmHBtGnM6ea95e01a7hgxgwcuc9Dn5o+vdP+i3MdKlNGjGCrz/eJ4li0aBHPP/8899xjFDmPx+Ns374dh0PWidhj0aJFLFq0qL16fjgcZsOGDZxyyil9HFnf6S5ZXaGUugdjCtVIYBGAUqrkCMR12BpdLjxWK/F4nM+ddFKP5v35t2/ntqFDWdfUxAirFTDmlJ6dTlNTU3PA2922deshtf8eoMxmAKr9fqqjUUaPHn3Y8R4t6jwerj7llL3JXtHeel6a/8/encdHWV2PH//c2TMz2ZeBJIR9CSCbQEVcEFRccK1taW21i1q3VtuvWu1q7fLTrlprtWpba9VW61KtVatFcUUREAFFtrAlgck++zyz3d8fMwkBErZMSALn/XrNi8zzTJ7nzDCZmTP33HPTpcQfx+M8t3o1YbOZpNXKhBkzsAORTpdmi4W1gQCkUpiA0SUl5JHuKmYGwmYzG5qasMbjOBIJPlVQQAXpMmMXYCQSvPfeeziiUVzxOOcuWLCrZDcvD++ECZKQiqy42+djSafOvzM3b2ZBdXXWjv94aytPmkwdo54nrluXtakMGvhVMknIZkMDTsPg821tHCvL1GSLRWsda7+S+cLY1pcBHS3GeDwsX76cF154gVtuuYXTTz+dH2ZGptq/2DSbzSQSCQB+8IMfcMopp/DMM8+wZcsW5syZ03Esl8u127H3XA6wu+UB9/w9oGPaUHfsmc8rAGaTiUQyuc/biyPfGI+H5b/9LS8sW8YtDz/M6VOn8sOFC7u87b6fXbueX2azmUTq4MautNY89dRTjB07drftWw7wc/PRQGvNLbfcwte//vW+DqXf2FeyejlwHTAMOF1r3d6Wazz9dN23NqDBMIhGo+TZ7RyTn5+V4ybcbsgsK+KKxcjN0nFfDQZpyXQXHu31cvzxx0uCk9FdsqeAAuD4khJGzpixK1ns6v/E5cJbWrrrNnu+6bvdeCsr0/uHD9/7GMXFjD/55G5LdiUhFdnwt9ZW/hQIpCsslGJOIsEt1dVZe24tbmrijmCQpFKgFGfY7XzO46Fi6tSsnONfwOZOy9Sc9tFHVB/BUxn6QKNS6lyt9XMASqnzSK+GJXpZfVsbRU4nX/ziF3G73Tz00EP7vL3P56OiogJgv7ddunQpmzdvZujQoTz++ONcccUVBxzXuMpKarxetni9DPN4eDxTJrwvuTk5BCKRAz6HOLLUt7VRVFbGF085BXdODg8tWtTtbU8YP56v33MPt1x0EYlkkv8sW8bl++mbcKDPr/nz53P33Xdz9913o5Tigw8+6HL97dzcXAKBwFFZBjx//nx+8IMfcPHFF+N2u6mrq8NqtVK2x6BI+2N0NOg2WdVaR4Dbu9j+DunGD/3OyuZmvKEQaI3D76ehrCwrH8b8nZoe5HRaaqSnVgWDHd+QVjY3E5XurwflQJLF/d2mp/uF6Im3gAdNpo5y8+ENDXzJbM5a59864HazmaRSaKAkEODClhamZWnUcwNwfzRK1DAoKizk5JYWrpo1S/5msutK4FGl1O9Jf1+3Hbikb0M6Oqyur+fGmTMxmUxYrVbuvffefd7+pptu4tJLL+U3v/kNc+fO3edtZ82axc0338zq1as56aSTuCDTvOZA5Njt/OHKKznj1lspyctj5gFUZBXn5TG7upqJ117LmcceKw2WjjKr6+u58Y9/TD+XzWbuveqqbm87Y/Rozp05k8nXXcfQ0lKmjxpF/n668p5yzDHc/uSTTLnuun02WPrBD37A9ddfz6RJk9BaM2zYMJ5//vm9bnfFFVdw5plnMnjw4KOuwdLpp5/O2rVrmZX50tftdvPII4/slawuXLiQyy+/nN/97nc8+eSTR3SDJbW/cpJDPrBSDuANwE46KX5Sa73PvtjTp0/Xy7pZp+lAPLxuHb92ONIf+hobudVs7vIbmwN165e/zK3DhvHvQIDaTBnN6J07afD7+fHSpSRTKS6bNo2bTzhh99/bsoVb9/Otao3XywWGgdYacyrFla++yvlZatokhOj/Xmtu5idmM9pspqW1lUGtrVywYgUXnHVWdr5kA64Jh6mJRAiGQuQYBp9bupQvnHpqVo7fBlwZibC2sRG0xuP385eyMir60WuYUmq51vrQ1lLoZ5RSbtLv2Yf9q/Sevjfv5t57D3n5lcOuthb28aH+UC1evJhf/epXXX5I36dOj10wEsGdk4PWmmvuu4/R5eV867zzsh6r6EW99Pzq0kH+3bU/v8KGwUm33ML911zDtJ4mQ719fwfSa8ueDudzoR842Pfmg1/s68AZwFytdVApZQXeUkq9qLV+t7dO6C4thWAQpTW2VIryIUOyclyT3Q6ZDrWmZJLvv/MO/7v0Uirz8pjxwAOcO3Ys4w9yVHRtUxNkFgDOi0QYP0DWVBVC9NySpiZu8vuJmc2gFNW5uVzb2sroLCWqMeCWUIhVmfVOLakU32xrY16WEtU48HOgPjM9wpZIMP/DD2mYMKFfJatHCqXU2cAEwNE+t1Frvf8ufuKI9cDLL/PXV18llkgwdcQIvn7GGX0dkjiCXHHPPXy8fTvRWIxL587teaIqRA/0WrKq00O2wcxVa+bSO8O4GTlFRRRZrYTCYcZVVWUt+VM2GzlaE4/HaSbdqGdEYSEACydM4NlPPjnoZDXP44FwOF2ynEhIYyUhjhKbgFvNZmJmMxpwR6Nc7vNxwuTJWTm+Bu4CVnda7/S0VauoztJrogZ+4ffzrtaYTSYUMH/VKgoMQ5ap6QVKqfsAJ3AK8CBwEbC0T4MSPTJnzpzdmi8dim+dd56MpIpe89gNN/R1CEJ0MHW3QyllUUp9XSn1klJqlVLqQ6XUi0qpKzMjpfullDIrpVYCDcArWuv3shR3l3a2tdHS2ooRjbJ9wwa8B9lSuzvReJxINEoikWD99u0M6tRiuzIvj7pDmOBsdOr8Z5FOfUIcFZY2NnJtSwsxiwWUIice57wPPmBiFpaPaXevz8e/fb6Ozr+z161jdFNT1hLJR1pbeaKtDV/m9fZrZjOfHjYsa2tPi70cr7W+BGjVWv8YmAVkp2xICCGE6Of2NbL6N9LTkm4FajPbKoFLgUeAvRf/2oPWOglMySx384xSaqLWek3n2yilrgCuAKiqqjq46PfQ0tICmdGKlNbU19dnp+QtszYhmeN2XjsNMmtrHqTWhgbITFhPmkxZi1UI0T8ta2zkmz4fEasVlKIiP5+ramuZOWdO1v72/9Hayh87dRY+32rlvNJSKiZPzso5PgT+pFRHQ6hx9fXMttt71BtA7Fd7i82wUqocaAaG92E8QgghxGGzr2R1mtZ67B7baoF3lVLrD+YkWus2pdRi4AxgzR777gfuh3QTh4M57p6GFhZCIIDSGsNuz9pIgttioSWTsBa73TR0GrGt9fspz8096GOOKClJlwEDOwoKKHc4shKrEKL/2Q780GwmYrWiAXs8ztfr6jhnHwuzH6w3gHs7dRYe2tjIOSZT1jr/7iDdHt6WkwN+P4Pa2pi3di0VZ52VleOLbj2f+cL3l8AK0pXYD/RpREIIIcRh0m0ZMNCqlPqMUqrjNkopk1Lqc0Dr/g6slCrNvMGilMoBTgU+6WG8+zS0sBCPx0N+QQFDJkzI2miFttmw22yYTCamjRlDjc/H5tZWYskk//joI84du2dOv3+JlpaOCbwaaG5pyUqsQoj+ZWVjI1e1tHSMqNqSSc7/4AOOKy7O2jleam7mR21tmDKlvx6/n7HP7OSZJ0exZEnPjx8GbgmHqfP5ABhbWsp3gfOz1BBKdE9r/ROtdZvW+ilgKDBOa/3Dvo5LCCGEOBz2NbK6ELgD+INSqj05LQBey+zbn8HAX5VSZtJJ8RNa64Ps035w8oB4LEY0GmX5ftaEOhhNhoGRWV+1JpnkZ7NnM/+RR0hqzVenTGHCIcw3a9y4ESZO7Lj+QW0t46ursxazEKLvLWts5JttbYRsNlCKQQUFXFFbywknnpi1JG9xUxPfCwRIZBLV8bm5nLzY4Fu/Pot4XPHb38KiRZBZsu2gxYHvBoN80NICWhPUmh+53cyeNCkr8YsDp7U2SHfaF0IIIY4K3SarWustZOalKqWKSa/v1nSgB9ZarwIO60Smug0baLbZAIhGo6ytraU6Cwlgod+fHhUBzKkUU/PyWP+Nb/TomCNHjKCipYW6oiIAjMGDexynEKL/2AD8wGwmZLOhAWsiwWV1dXx6/PisnuNnZjMJkwkN5IfDfL2tjSV1k4jHIZmEWAwWLz60ZFUDvwFWJJMd5cWnrFmDs6ICSkqydj+EEEIIIbqyrzLgDlrr5s6JqlJqUO+FdOiCGzbsdv3jrVuzctzRFguxHWZC79vxN+fgzMKobXV1NVPy8zuuv9vYmLXuxUKIvrW4qYmrW1uJZkp/rckk561cyUmZL6eyYVljI99saSGR6SzsNgwuWLGCao+HOXPAZgOzOf3voaySoYFf+/38p1Nn4VkbNzLe65Ulag4DpdTszL/2vo5FCCGE6CuHus7qn4CzsxlINowePpySQICmTMMj2+jRWTmuLVhI29ManYCQ2cEns9ZTUBDE7Xb36Lgjk0lUpntxbUGBdAQW4gjw3+ZmvtupLHdIfj6X19Vx3OzZWfv7XrlHefGQ/Hyu8fuZNm8eHo8Hjydd+rt4cTpRPZRR1T+1tfE3v3/3zsJFRVRMnCivU4fH74BjgSXAtD6ORQghhOgTh5Ssaq37XaIK6dHKGV4vr6ZSmM1m/NYDWg52v3ZsAZ0EUOiUZkdrPoFAoMfJ6vH5+dwdjYLW7CwowBKNZiNcIUQfeRO4vVNZrjsa5Wq/n7M6zU/vqe3A9zuVF9sSCS6vreXMPc4xa9ahz1NdBDzcaYmaUTt3cq7VmrXOwuKAxJVSfwEqlFK/23On1vqbfRCTEEIIcVgdUBlwO6XUub0VSLaMs9uJxeNEIhGe/+STrJTWDhsGJgWgQYGjMkHuISxXs6fxZWWMyc1FAQmTiafWrpVSYCEGqMdbW/m+z5euvVWK/EiEi5Yt49jS0qydYwtwCxBzuTrKi89duZLjsjh/9OXmZn7S1tZR+lvR2sr8jz6iUkp/D7cFwH+BKLC8i4sQQghxxOt2ZFUpdeGem4B7lFIWAK31070Z2KHK27EDnE40UJfV0loF6HS+WlSM252ThWPC6GCQ9kVrN5aVSSmwEAOMBu71+fhjINBRMjs+N5cr2toYnynL7YklS9LlvKPnwGNTIjTFYjgcDqrKyrh082ZOzGJ58ZtNTXw3ECCeSVQnut1c09rKSFmi5rDL9In4h1Jqrdb6w76ORwghhOgL+yoDfgJ4CWggnakBuIBzSH8+65fJ6qeKirCEwyRMJnwuFzk9WMuwoKqKW7dsYckSWJfSQLoszrEkztJkEmdO1wlrQVXVAZ/jNKeT/4RCoDU1ZWXYk8lDjlcIcXglgLuBZ6CjZLbM5+Pq1lZOnDy5x8dfsgTmzQMjBtg0wx/14ZpmEEkm+W1eHidkcbmrdcBPzGbimRLmvEiEy9vaOD4L90P0SLNS6hlgNun33reA67TWtT05aGZZuWVAndZ6Qc/DFEIIIbJvX8nqLOB24H3gPq21VkrN0Vp/5fCEdmgqPR5OCIVYlpn/+YlSjDvEY11/220AXHUVvLw+k6yiKZodYPr36vhsFj4onlRczBCLhe1tbQTtdp5YvpyriopkFEOIfi4EfC8YZEUy2VEyO7SxkbNWr2bMmWdm5RyLF6cT1VQSiEFoiZ3CSSHOW74c1+jRWVs+ZgPwIwCnEwIBnIbB+StWUD13blaOL3rkL8BjwGcy17+Y2XZaD497HbCW9BLlQgghRL/U7ZxVrfX7pN8MbcCrSqmZpL/V7ffGJhIEQyGCwSCPr1vX43mgl1ySXv4BpVE2TeGnwyy1WLIyv9QMTPb5Oq6vqaigvr6+x8cVQvSeJuAb4TCvtbTga2ujpbWVBTYbPzSZuPDMM7P2ZVPVHMCmwawx2aBwRojz33+fwYFA1paPqQFuikapz7wOjSot5QeGwZfmzpUvzfqHMq31X7TWiczlIaBHE6GVUpWkO/o/mI0AhRBCiN6yz27AWusUcJdS6kngt4cnpJ7z1NWBy4UGakpL2d7DeaCzZsHixYo/vxDivdkJ1PgY70Q1zz3/POcuWNDjD3Tn5eTwfCQCWrPJ4yFhGD06nhCi9yxtauInStECHaW/szZs4NNFRVntlvse8PepUYY/2kZoiZ2iGSHunBqlJDCW8vLyrCSSW4AbIhFqGhtBa4xEgp/m5TEzi92LRY81KqW+CPw9c/3zQHMPj3kncBPQ806BQgghRC86oG7AWus6rfVntdYjejugbJhdXIwrFkMBUZuN4EHMIe3OrFlw309cVM5MgtYE7Xa2FhVlZRR0ZmkpU10uFJBUij/X1kpXYCH6oRebm7k6EGBbMEgwFMKkNaetXs3MLVuoyGK33JeBnwF+w8A1zWDo5U18KfEmJYEAU6dOzUqiuh34PtAUi4HW2BIJzn3/fay1PZoKKbLvq8BngZ3ADuCizLZDopRaADRorffZUVgpdYVSaplSalljY+Ohnk4IIYTokW6TVaWUWSn1daXUT5RSs/fY9/3eD+3QDfJ4OM/jwe1243a5eD9L662agdMyy1Io4OMhQ7JWijerpaXj5w+qqti6Y0dWjiuE6DlNuuPc7RZLRwMiWzzOdc3NfLGiggVZqLDofJ5fGQZtPh9mk4mCSISL3nuP0nA4a683tcC3IxG2Zc5hSyY5b9kyBoVCWTuHyA6t9Tat9bla61KtdZnW+nyt9dYeHHI2cK5SagvwD2CuUuqRLs57v9Z6utZ6emkWl18SQgghDsa+yoD/CDiBpcDvlFKva62/ndl3IfDT3g6uJ2bE4zyW6bL7dDzOFyIRKrLwYfKi/HxedDgIBYM0uly0plJkY1bXgrw8Hvb5CNjtRGw2VtrtzMzCcYUQPRMFfhoI8EYq1dFIKS8S4dyVKzlzzpyszetMAQ8ATxlGurJCa8oCAX5qtWKbMCHrpb8bMqW/1lSKH2tN+ZgxWTuH6L+01reQXq4XpdQc4Aat9Rf7MiYhhBCiO/sqA56ptf6C1vpO4FOAWyn1tFLKzq6lbPqtvG3bcBoGGghbrfyvrS0rxx3CrgZO/lCIX3/8cVZKdis8HhY6ne2rufLXaJTtUgosRJ/yAteEw/y7tbWjkdKnnE7+XzTKpVlMVOPAL4HngWg0ClpT0dzMeUuXYguHs1b6uw64GWjIlP5akknOWbaMcr8/a+cQQgghhMiWfSWrtvYfMh0IrwBWAq8C7l6Oq8eGlJczvr4+nVUrxZqKiqwde3JdXUdjlVWVlWzOUsnu9KYmcmIxAAJ2O/fU1cncVSH6yCrgW8CGeLzj733S1q1cvn07J06enLXELgTcGAzyH58PwzBwOByMbmjgnBUryNE6a2W5rzU3c21rKy2Zc9iSSc5dvpxKv19Kf49SWuvFssaqEEKI/mxfyeoypdQZnTdorW8jvb7bsP0dWCk1RCn1mlJqrVLqI6XUdT0L9eB4PB6uHz+e/IICigoLWZpM8nFDQ1aOfVZ+PnmZdVyjVisfFBdn5bgjBg9m1qZNHddfKSjgsf/9TxJWIQ4jDfyttZVvtrXRlEnszFoz76OPmLN+PVVZTOx2AFd3WgLH6/VyumHw+6oqjjv22KzNhX2xuZn/CwRo8Pvxer3kplL8Pi+Pc0eNyto5RO/o3CMiU9kkRI9t8Xp57PXXO64vXr2aBZm15Q/09ydee+1+b3fjX/7ChGuu4ca//IWHFi2ivrmnjazFQOZ273+s63e/+x3V1dVcfPHF/Otf/+Ljjz8+DJGJ/mxfyervtdYv7blRa/2g1vpAOhYlgP/TWlcDxwHXKKXGH2Kch+SY0lKmm820tLbS1tbGr9auzUriV+7x8IVOJbuPRiLUZuG4Ho+HG6dOpUqnl7ONm838d8IEPlm/vsfHFkLsXwj4QSDArwIBWn0+vF4v+akUd7ndXDJ4cFYTuzXA/wGbO43cHrdhA3M3bWKQx5O1stzXgTvMZpJKoQFXNMplmzbxqZISKf3tx5RSNymlZpHu/ttuSV/FI44sWxoadktWe8sfX3qJFXfeyS+/8pV0stqpmaQQXfnDH/7ACy+8wKOPPirJqgD23WDpD8C0Qz2w1noH6YEDtNYBpdRaoAI4rM+6SXV1LHI40MDqykpqduzIyoezqc3NONxuIlYrAbudx0Mh/q/n4VLu8XBLUxPXhEKkgPrCQh5pbWWc1ysfKoXoRUuamvgl4FWqI3n0+Hxc1dbGiZMmQUlJ1s61CPh1NErQMDCbTOmR29WrGdfQQEUW1zj9e2sr95lMmDJdzAtCIS5YsYJpp56atXOIXrMO+AwwQin1JrAWKFZKjdVar+vb0ERf+ck//sGjr7/OkJISSvLyOHbUKG644AI27djBNffdR6Pfj9Nu54Frr2VcZSVfvvNO8pxOlm3cyM7WVn7x5S9z0ezZ3PzXv7K2tpYp113HpXPnMnXErpUJQ9Eo3/jjH1m9dSuJZJJbP/95zjvuuG5jSiaT3PzwwyxevRojHueas8/m62ecwbk//Skhw+BTN9zALRddxLKNG7n4N78hx2ZjyS9+QY5dCgWOZr/85S954oknMAyDCy64gB//+MdceeWV1NTUcO6557Jw4UKee+45Xn/9dX7605/y1FNPMXLkyL4OW/SBfSWrWaOUGgZMJb3O/WE1v6CAh1paaHU6iVmtrBs2jFlZOO7wwYOZ+eGHvDF2LCjFC7m5nNfQwKiysh4fe3ZJCec3NfF0Tg4AS0eM4Fm/nyskWRUi6zTwSGsrvw0GSSoFmcsx27Zx0oYNTDjrrKye62HgUcPA29AAWpMTj/NTpRhcWUn5zJlZWwLngbY27gkEQGtQigluN1e0tVF96qnyxdfA0Ap8F5iTuVQD84GbMwnr8X0XmugLy7Zu5aklS/jgzjtJJJNM+9a3OHbUKACuuOce7rv6akaXl/PeunVcfe+9vPqznwGwo6WFt26/nU9qazn3pz/lotmzuf3SS/nVM8/w/A9/CKTLgNv97IknmDtpEn++7jragkFm3nADp06Zgsvh6DKuP73yCvlOJ+//5jcY8Tizv/MdTp8yhee+/33cn/0sK++6C4B7X3yRX33lK0wfPbo3HyYxALz88sts2LCBpUuXorXm3HPP5Y033uC+++7jpZde4rXXXqOkpIQNGzawYMECLrroov0fVByx9pWsjlBKPdfdTq31uQdyAqWUG3gKuF5r7e9i/xXAFQBVVVUHcsiDMtjj4UqbjT+YTJhNJp6OxTjN6+3xMjYej4ebJ09mWyrFlnicpnCYW2tr+fz7FlatKmLOHJjVg6z4isJC3t+xg9rCQlCKvxUWUtXczBlZmh8rhEiX/f4OeNFk6iiTtSUSfCUQ4HiXi/KzzspaYrfV6+WXySTri4s7Ov4WBQIs+OADBk+cyNSpU7NyniRwL/DEHiPEV7e2csLkyVk5hzgszgB+BIwEfgN8CIS01l/p06hEn3lr0ybO+9SnOkYkz5mZXuAuGInwzief8Jk77ui4rRGPd/x8/nHHYTKZGF9Vhdfn2+95Xl65kueWLuVX//oXANFYjG2NjVQPGdLt7Vdt2cKT77wDgC8UYsOOHQwfNOiQ7qc48r388su8/PLLHe97wWCQDRs2cNJJJ/VxZKI/2ley2gj8uicHV0pZSSeqj2qtn+7qNlrr+4H7AaZPn657cr7uXFhYyFORCOsbG2nRmtvXreP7WejmWeHx8Ol16/h1psz4Xe8I/nlxAck42GywaNGhJ6zlHg93Azcmk2xMJPCHQtwChJTi00VFPYq7v4gDkT0udc3NNDU24iktpbS4GDPpidXmzKW5sRHfzp2MLiujSkaHRA+8kyn7DeXm4nA48ClFmc/HmatXc9G8eVkdfVzT2Mj1TU00ut3g9VJUWMjwpiZO+/BDHFns+BsB7gCWQ8d9qmxu5pwPP2T0mWdm5Rzi8NBafxdAKfUh8Ajp6qRSpdRbQKvW+py+jE8cflp3/REppTUFLlfHCOae7NZdbUa6O8ae53nq5psZW1l5wHHdfcUVzJ92yDPHxFFGa80tt9zC17/+9b4ORQwA+0pWg1rrQ559r5RSwJ+AtVrr3xzqcbLBBszasYP1ZjOadFntxp07s/Jh9PSCAp6qq2NLcTGh93KIxRUkIRaDxYt7Nro6wuPh2lWr+IHdjt/hIAncEY+z0+fj6/n5h6eG+wBpIEq6bm19UxM1LS1YS0vRhYW0ZrbXhcM0RiKYnE50Tg6JPY5hGAbeUAhyciAUwuN2Y+80p8UwDLyRCOTlgWEwJBrF43CQD7tddFsbqYYGphUWMqW0dJ9dxMTRJwE84PNxf2ZeOOEwHo+HLxUUcFJzM0OznKguB75nsdDodqMBpTUntrZyVWUlO00mysvLs3K+FuA74TDr4nEcDgd2u50LCws5q7mZqjPPlNLfgeu/Wuv3gfeVUldprU9QSmVvArUYME4YOZKvP/kkt1x0EYlkkv8sW8blp59OntPJcI+Hf771Fp854QS01qzasoXJw4d3e6zcnBwCkUiX++ZPncrdzz/P3V//OkopPti0ian7mCs4f+pU7n3xReZOmoTVYmF9XR0VxcV7lQ3v65zi6DJ//nx+8IMfcPHFF+N2u6mrq8NqtVK2x1S63NxcAoFAH0Up+ot95Tube3js2cCXgNVKqZWZbd/VWr/Qw+Meks+6XPyrrQ2fw0HUZmNpaSmzs3DcQR4Pv1SK6y0W7Gc5abgbdExjtcKcOarHxx/v8fCZl1/mX1On0pybSzQa5X7D4I1AgGsdDk7MYtOXrtR5vazzeskpL8dSUtKReLYAtYEAteEwydxcok4nBpmEMhwGux0CATxOJ3a7Pb29qSk9fy4UwuPx7JaIAh2lke0f6KPR6G632XO/3zBQDgedFyQyDAOv358+fyTCkGiUsQ4HI4DhpOvphgJdz7wRR7rtpOsplwMp0l+y2ONxvrB1K18eMwayVIpL5tj3t7XxmFKYLBZQCnMqxZxPPuGaTBfewVlKILcBN0UirM38jfmU4or8fK7Oz0dl8T6Jw09rfVOnq1/ObGvqm2hEX5oxbBjnzpzJ5OuuY2hpKdNHjSLf6QTg0W9/m6vuvZefPvEE8WSShSeeuM9kddKwYVjMZiZ/85t8ed683Ros/eBzn+P6Bx9k0je/idaaYWVlHXNbu3LZ6aezpaGBad/6FlprSvPz+dd3v7vX7b48bx5X3nuvNFgSnH766axdu5ZZmREdt9vNI488sleyunDhQi6//HJ+97vf8eSTT0qDpaOU6q4kRCk1A9iutd6ZuX4J8GlgK3Cr1jrr/cenT5+uly1blu3Ddvh3Swu/NJsxm0yoZJI743EmlZZm5djvA98zDGpeaCW0xM6MoZt54KKKrIxmeL1e3vrgA/5UVkZtpzmrSilGJ5NMjUSYYrdTGAgwYvBgBnVzTg0YpEsFtzY2sqmpCbvHg6moCB+wze+nNhiE/HziLhc7o1E2Z5rAoNRuCaZhGOllgPbY5/P58LW1pRNKIL+ggPz8/C63F+XnkwMdl1QoRO369Wit0SYTI0aPxuFykSQ9Dy8YDlOzdSuG2UzUZqNk8OC9Et7uzt+ZAsqB0kCAsoYGTs3NpToLjbFE/6WBZ4EHolECmQ68La2tDG5t5fQ1a7g4y02HgsCPg0Febmnp+BsZkZfHJfX1HF9cnNVzrQJ+DtRnnvtKa075+GMuGTw4a/NgByql1HKt9fS+jmOgy+p78733wgGWl/a52lq46qq+jmKXe+8lWFyMOyeHsGFw0i23cP811zBNPsAPTIfz+dUf/u56+/72h/t4qPrba00vO9j35n2NrP4RODVz0JOA24FvAFNIzzEdcK25FhQV8VIoxFvNzaA1t7S28qdUqtvk7mDMAGZ4vXinaZzTDLZSzD8DAa7NwrE9Hg8nTJ1Ky/PPs7yqivdGjSJpMqG1Zr3JxHqXi8cBCguxRCJU+nzoRAKH04k9J4dIJII/GkV1HuWMRMDphGAQj8sFgLetLf3BurkZj8VC1DC6HensahQ0125niM2G0+cjxzBwxWKcmJ/PMCCVSPDB0qXYDAN7KsX58+dTmZ/PbmPPLhfe8nLq6+spHzy4I64OTifeoiLq6+sZnJ9Prt2OH2gD/IAP2KI1b2/bRltODk15eTi66F6ogRrDYElrK1gsPBiNMisUYp7LxXFAJdDzMXHRX3iBO4HlnTrwmrXmMouF41MpKrOcqNaQTh7XJ5MdfyOVzc18q7WVk7Lc4OhV4FedlsCxplKc8cEHDG9tpfzYY7N6LiFE37vinnv4ePt2orEYl86dK4mqEOKIt69k1dxp9PRzwP1a66eApzqV9Q4oCjh961becrnQQG1hIY+EQtyQpeNfbbezuq6OrcXFoBRPezzkrVvH/IKCHn8Y9ng8nLtgAePWr2fUkiUsHTaM9eXlpNTuaVVCKba2taWvhEIUFRbS0tqaTkIDATweT5eJJrDXNofDgR9I/eIXuGpryXW7ybFasQH5sRhtXi+WZBJLKsXQwYNx5+SggMpIhHA4jNPpZEdOTnqxXSDSaftTGzdy/W23dXk/9/VY7bnfBQzufIOCAs4bMyad8Obn47Db2Uw6gWi/1LJ3sv1xIkEd6WVFKoDjMpexSOI6UGngidZWHgSU09nxf17i93PamjWcMG5c1kcen2xt5V6lMOfkdDQ4OramhuNrahh79tlZO08SeAh4vFMC7orF+LlSlA4fTvns2TJHVYgj0GM3ZOsTixBCDAz7TFaVUhatdQKYR2Z5mQP4vX7tuOJiZqxdy/vDh4NSvFpezoXAiP3+5v5VZDr4flcp6nNyaG5t5bd2Ox8tW8a3p0/PSsLq8XgY4/XyqfXr+WDxYmpKS6ktLqYpNxe/05kecc3cXmlNKBzeLSlLhcOUORwQjeIwDJzxODMKC8nXmnXr1uEwDFzxOOeceCKj8vOJOBz8bNs2/t/Ysbjd7t3iCZaXEwgEyM3N3Wvf/ty6ZUuPHot92TOhnZK5tDOA5fE4f1+3jprSUuqLinYbga0j3cL6McPAFgpxhtnMF/LzOTJ6MB8daoFfhEK83r7OaCBAcWEhMzdv5tiNG7EqlbUOvJAurf9lIMBT7efz+xlaVsbP3G4q8vMpP/vsrCWPAeAXwEp2felSFAxyzvLllB5zzFFf+iuEEEKII8e+ks6/A68rpZpIfxZ7E0ApNYp0xeWA5PF4+DFws1J48/NJAN9pbOTXqVRWlkIZ6vFwD/DVpiZatCapFC9NnMigUIhv9fjoaR1J65gxrF+/HuJxSkwmom1tmHJyWPz++2itUUrxqZkzeX/pUkzxODatOXfBAjyFhXgLCtKjj5WVePLyAPBOnpzeVl6OJzOXN9/jobi4uMtk1O12H3SS2h/YgeNLShiZub/5OTlstdt5F1hBuqtx5zm5DyjFC3Y7pzscnEe6UZPon7Z7vTwcifD2oEEEE4mOL2oKQyG+GQwyq7qa+vz8rHXgBVgH/ApYl0p1nK84EOAav5/5EydCFpea2gZ8NxxmW6bjr8PhoLixkVNXrcrqEjhCCCGEEP1Bt8mq1vpnSqlFpKssX9a7OjGZSM9dHbAqPB7uAL4ejbKtoQGv1nzb6+X3kJX5qwXAT1MprgmH2b62gNB7OfztNCtt5q183eGgPEsfkrsrmR1UWLgr6fR4GN6emHb6gN7V7+6vBPdI0/n+jgBOAWLAh8A/Gxt5wzAI22worQkaBoscDhaRHqU9H5iGlAj3J681N3NrayttOTnQ0EBRYSEmYPKWLRxXU8Oss87K6nM8BTzY1sZjgK1T2e+4+nrmfvIJU7K8rum7wM+iUbZ16vh7ZX4+FwwZwg6zOasJuBBCCCFEf7DPcl6t9btdbFvfe+EcPuXAWbW13Ge1ooENHg/3RqP8OEvHH19WxtXvW/j8xYUk4+D9ncb/qI33Rnn5hcmUtS7EXdnzA3lvJKFfffZZnl+/njKXizVXXw3Ayp07ufL554kmElhMJv5w9tnMrKjI6nl7m410s6wqq5XR//0vm0pKWDl8OKlBgzpuszJzKQ6HOa6ujvPz8rLyJYc4ND7gz8AzFgu+nJyOkvch4TB3OJ1Y8/IozySq2dII/CQU4nW/v6Psd1hZGT92uxlqt1OexXVNNfA48CjgyzQ9sySTnLZ6NcdVVTFo6lR5/gkhhBDiiGTq6wD60gW5uRxTW5seHVOKJYMG8WwWj79xVRE6piCp0DFF8F0HO/Lz+bbFwkvQMbd0IPrylCm89MUv7rbtplde4Ucnn8zKK6/ktlNO4aZXXumj6HquvaHV56qq+KvHw912OyewayTVMAw+aGriXpuNSxoaeKdJlj083FLAP1pbWdjSwouGkZ53rBT2RII5n3zCHcDM0lKmZtY0zZa3SJeWrOxUZjyotZVvbtjA+UVFWT1fGPh+IMAffD6MzH3Mi0a56L33GN3UJGW/QgghhDiiDdhGSdkwyOPhl8BPk0k2FBdjt9u5xzBo2rqVBfn5Pf7AWVwMqRSAhhRYCpOgFCank98YBk+1tvIVi4XjS0qycXcOq5OGDmVLe9fhDKUUfsMAwBeNUp6b2weRZU/nEWkP8B2gAXgOeKJT4ypvXh43W61cBFwK5Hd3QJE1HwK/C4dZ1t7QKBhMf8FQWMi8zZupnjIl69UEIeC3fj8va90xX9QPzNy0iZlbtjAxi91+Id25+kfhMKsy3bx9SjG3qIhrCwvxjxsnZb9CCCGEOOId1ckqwGCPh98C3wdWZprq/N5mY8PSpXxr5swefRhsbgaTCVIphcmkmetNYiopoR7wer14tWZpLMapwSCXud1UZ+tO9ZE7589n/iOPcMMrr5DSmne++tW+DinryoDLgLmxGD/fvJkVQ4eSNJtxOBy8ArwDXAycBZj7MtAj1MrGRu6Px9lYXEw0Hu/4wiAvEuHSzZu5eNw4mDQp6+d9H/hlJMK6zFrEPqWYUFrKD1wu3IWFlE+YkNWy3xeBB4GmTvdxypYtXNzczMipU6GsLCvnEkIIIYToz476ZBXS8xR/AHzV78eb6eD74qRJVASDfKMHH0DnzAG7HWIxsNkUV33Ow7FO+Om2bTzbaTmZ95NJVhsGQ1pbOd9m47SiIhz7O3g/dO+yZfx2/nw+PX48T3z0EV977jn+d8klQPoDeJx0p90osM0wuHvTJnKKi7EXFBAhXfLYGAjQEgxSkJtLntuNmXTSFw4ECLW1UZGXR1V+PnmkRzBjTU1E6uup9ngO67y9ER4PPwNWNTSwaPhwPrLbgfTo292GwaN+P98mXYYqei4A/NHv59FwmBSA10tRYSHWVIqpNTUcu20bp551VtbPu7GhgXvicT4qKSEai3UkjmPr67m2tZXjJ0+GLFZGhIGfBwK8kUp1jN6GUylOWbOGcQ0NDFmwIGvnEkIIIYTo7yRZzcgFbtWaa8JhWp1OUIp/V1ZSAHyRQ+v6OmsWLFoEixenE9dZs9Lbr7HbyX3tNZYOG8aGwYMxm0wdI63LYjH+6HRyvMPB8aSb/biycg97TwhoCYf5y8qVXHbyyawBho0fz5LnnuM/sRiBRIKUzQaW9NMtmUjwQTzOcosF/H48OTnY7fb0cjGZkkdaWvBYrXtv9/nwOBy7tofDhDaWEv2blePPjHD63ByGA1teaGXFixHOOsPB2Wf3zgqpHo+H0zweTgOWA/cDmzOj816tuVJrrrda+VJBgXQNPkR1Xi9PhEK8UV5Os9akoONLnmN9Pi5zuYgUFVE+cWJWS2I18O+WFn7u9xOxWjuSY2c8zskffcTopiZGZjlx3ATcukfZ74ySEn7hdqMrKynvYaWHEEIIIcRAI8lqJxPKyngAuA3w5udjt9v5m2GwurGR663WQ1pyZtasXUlqO4/HwyWnnMKp9fUop5NHfD7+l0qRUgqlNX7DYInDwRIgGY0yqK2NCU4nU/LyGA5U0bv/cQawoaGBDU1NODwe6oGPMtt9hoE/Hkfb7ewg3Yn16USCYDyOy+XiLzU1TBs3jrXbtlFWVMS2SCSdZMbjuF0uzBYLiUQC2JV0RKNR7HY70Wi0Y+TqQLeHllmpudiDjimeugfqF0EsFmPZp/PRsQLueyDFbc/6+eb8PHpzBu2xwO+BO+vr+YfWxM1mkkrxoFLUAN9C5rIejBTwTEsLd7a14Xc4OpaiQSkqWlo4af16vnryyXjKyrJeEtsC3Ae8ZDYTyXQLV1ozzefj6rw8/FVVlB93XFbLfl8gXfbb3Kns95ht27iipYUpU6aAjNALIYQQ4igkyeoeRmcS1tuBdzKjZP/VmjXNzfxCKSZm6YNx5+Y9g71eyt94g48HDaJm0CAsmWVSDMPA29BAndYsj8X4r92O3W7HTHrZFKvPx2C3m4rcXHJJjw7HW1pobWqiuKSEwqL0iKIGmlta2NnSgqu4GHthYUc5boPfz45gkFR+PnGXCx/phNQbjYLLBaEQrmSSD0mPiAYzieOf//1vNtTVEYxEuO6uuzjrU5/i4nnz+Ocbb/DkG29gt9m4ZP78dKIK6Q/g8Ti5Fgv5JhN50SgVtbXYk0mOy89nEGCkUqxYvRqVSKBMJmadcAL5QGMyyZKPPiJmMmHY7Yw+9lg0UG82U/eGKd1xOaVIxTTNiyEaTe3aljDx4Ds23psPE4FxbW0M3baNcb2wnI8VuMTpRL36Ki9NnEhjfj4Oh4PlwGWRCBds3cq8wkIZHduHnV4vL/h8vF5ZyWazGb/D0ZEsFhoGN7rdDGpupuLkk7P+OGrgqdZWHgRSTmfHuqm5kQhzP/mEa487LuvJcRC4fY+y30gyySkffcTYhgaGStmvEEIIIY5ikqx2wUG64dLNjY28khnlqCso4NtWKzcB8zi0suDueDweLp43j/r6esqLi0nY7bwN/Mvnw9vFiGLYMNjc1JROBFtb8dhsu8pig8H0RNlgEI/Ltft2qxUCATxO567tmYYxNDfjsVi6HMlMJpMA6RHRTPL51TPP7PhwbYnHibS2YkkkmHXOOVSVlJDvcEAkws7Nm7EkEthSKapHjcINYLPxhsvFQqcz3dG0oCD9QBQWcvKMGenHobwcTybZpqiIE449dtf2vLz0drebU0+L8en7NIkEWGyKhXNgUzjFNpsmFQdl1ZTONaGBZYbBf/x+THl5jN28mf8zmZiR5RErj8fDl+bO5aT6et7Oz+fVzOO8rbGRO3JyeP3jj/kxyLqYe0iRLrv9XVMTTW43NDV1jKTmxGLM2LKFW445hoqSEijKfln3ZuDXoRBvtncXDgTweDwsLCjg5JYWRmZxJLXdB8DtkQifdCr7nVlSwi9zc0lJ2a8QQgghhCSr3bEAN1itBDZs4L3hw9EmEzid3AW8S3qdxWyWdXr2GOn7LHCy1vzjzTfxut005+dTMn06DcC6QyiXPZjtbrudpGGQYxg443HMSnV0Km5sbEwnn8kk1cOHUwQoq5Wg00kgECC3oAC3I9MeKieHiqqq9PbcXNxud8f9y8nJYerUqft9HPa3/eyzi3jttT3nBTv53JMtPPlKjMFnuUicnMsn0HF/k0qxdvBg/s9mY3owyPTaWuYWFmYtgWyPdSYwB/h+KNTxOL87YgS3JZP8kv4/F/lwqPN6+bffz5KKCjabzfjc7o7nozWR4Kr8fCZt3szIY47plcQtCDwK/Ado67Ruan44zNdqavhcdTVMmZLVc0aBv5Au/fV1atp0zLZtXN7SwmQp+xVCCCGEAHoxWVVK/RlYADRorSf21nl60yCPh9uAd5qbeWbYMFozHV/fA1ZGIpy7bRvzCwp6bfTD4/Gw8LTTdo0oZtYtrYlGeez99wlZLMTsdibOmoUJqFOK5Q0NpAATMK6oiFwgaDLxideLOZnElkoxo6AAD2Bozcq1a7EZBq5EgnNOOonRgNPhoCE/P33eigrutVqZCuBwEBw8eFfy6dqVbrnd7t2S0f1tz6au5gWffXYRnZe9bAX+m0rxkM/Hjvx8UAqzycSilhYW5eTwsNfLbWYzM7O85u1U4M5EgutbW6nNjBSuzc3lkqYmbtGa6UdpUhICHm9r408+H0G7fbeRVGsiweTaWr43bhwjy8qynixCuuT3f8B9kQiNsVhHlUBQayZv2cKntmxhzplnZv28a4Gfh8Nsjcc7zhmLx5mTadokZb9CCCGEELv05sjqQ6R7zjzci+fodR6Phws8Hs4kfYf+Ax1lnb92OHh22za+0wtJTufz75kMj/B4uPzEE3clse1ltHl5eKuq9kpuyc3FO3Toru35mTHhggLmT526a3unxKm7kczDkXz2hkJgYWEhp8RivN3czIohQ3gzleoY1dqRn8+NViufA74EWW3GNLqsjAe05o/RKG8UFtLS2kqL1lyhNddZrVxyFHULXtXYyBORCB+WleFTiqDd3jGSakskuCI/n0lbtjBm7Nj0/NBesAG4F1hjGHgbGztKcOcVFfEllwvy8yk/88ysfgkVBx4DHjMMdmZK+H1KcWZREV/LyyOY5aZNQgghhBBHgl5LVrXWbyilhvXW8Q83B3Al8Cngh8FgR5KzsayMG6xWTgMWAqMPUzwHWy57sNuPVB6Phws9Hi4EVjc28svt21ldWUnKZMLucPAi8L9IhFPr6rgwNzdrpcHlHg8/Bv60fj1/sFg6ugXfn0zy+s6dXGU2Z33+bH+RAJYCTwaDLGrvDt2pu6/TMJi6bRs3TpzICI8HJk/ulTh8wO/9fl7WGrvD0VEW7o5GOfGTT/hsVVW6ND3L/w+bgd8AW4BI5pzWRIKTPvmEz5aXM3rq1Kx3NBZCCCGEOBLInNWDNBW4M5nklp07WTdoECiFw+FgKekP5McCn4OOOZ6i/zqmtJRfplKsbGzk5WHDWN+pGdImq5VXtm/nV0qlS1GzZEF+Pi2vvcZLEyfSlJdHMBRiudZcDpyzcyenNjT0SqfivlAHPOPz8VIySczlIppM7jZHuiwa5arcXIa1tDA0y+ukdmYAzwKPRKNsbW8ophRlBQXM3LyZqZs2YQcqjjsuq+dNAH9ua+MfgCWzlrDD4SC3tZV5q1eTH4tRMX16Vs8phBBCCHEk6fNkVSl1BXAFQFVVVR9Hc2BGlpVxt9YsbWrivaoqPszMZQVYnrmMDAaZtX07JxcVDfjOrwVVVdy6ZUvWj9kfeDwe5ns8nE76y4b/12nUvKa0lG+ZzfwMOCaL57vklFOYU1/Ps5EI/84szaKB5wyD/+TmMramhhtNJqYNwJHWAPAm8CqwyjDw+nzp5DAYpKiwEAUMbWpi6rZtXHX88QwqLITCwl6JJQW8BjwCNJFekqn9/3Z4QwPX+HxMrq6mPj8/XQafxb/T9cAd4TDL/P70/ff7GVJWxjccDmYMHswOrbN+TiEOhFJqCOnpOYNI/5ncr7W+q2+jEkIIIbrW58mq1vp+4H6A6dOn6z4O54B5PB7O8Xg4B9gGPE76Q7omPaf1tZYWXnM6+Z3Px4U5OZyRl0c16cZHA831t93W1yH0OkW6xPvuRILvbd/Oh0OGgFJE3W5uMAxO2rGDr+bkMPgAk4s7f/hD2rZt2+dt4pEIo3buxJubSyjTQVkDnwBXWizka02FyUSF3Y6VdILfH/8vAqQT/beBd6NRgoaBo1OZrQZchsG85mbOdzqJm0yUH398ryVqGlgG/DEcZn2mkVF4hR3v/1y4R7VyluMDRrS0MHnBgqyXwUdJJ8fPAW3xeMf9H9TWxjf8fuZPnAgez4D/AksMaAng/7TWK5RSucBypdQrWuuP+zowIYQQYk99nqweCaqAG4EvAP8E/pWZl6eBoN3Os1qzGCgAZgHHAxORB39PKSACbG1oYOfOnZQPGsTgsjKaGxpoqatjyGEYiRri8fBL4OW2Np6pqiII7PR6eUIp3qur47cHWBbctm0btw4btt/bBYcMIRAI0OpwsDwWS3fGVZl2S5lyVZfDQXEsxhMbNtAI9PV4qyZd4vtaaytvRqNsLyzE4nCk1+1taOhoHlRaWMiIpibG1tYyormZ884+O900qZfmZ2rgQ9LJ4irDwJtpZFS/ws6Wiz3omAWbdSjX3Wtw5oLsd/F+H/htJEJtp+7CoVSKT23cyNTt25nSuT21EH1Ea70D2JH5OaCUWgtUAJKsCiGE6Hd6c+mav5NeZrJEKVUL/Ehr/afeOl9/UAFcD8yLx7mjro71ZWUYNhuOzKhZG/Bi5pILjPf7qdqxg+MKCxlzhDZYiZG+363AppYWalpbMZeUkMrPpzWzvT4SoTEaxeR0AuCNRiE/H6JRigIBWqJRKCrCHgoxrLWVomiU4akUVYEAJxUWUpHlpMPj8fAlj4ezgZt27sSb+eJha3ExN5pM/BoYnqVztXdXHgxUBYNsi0TYaLVS134DrQlFIoSAVfE4nw0EKI1GmWq3Mz0vj9GkvyzpzRH7OOnmQJuAZX4/S+NxAjYbLYFAR7Mkj8fTMZJa6vNRXV/PZwcPZkxlJfUmU693ul0D3B8KsTKR2G1U15JMUvifEJsNSKUgjmLHjrFkM5QG0qUhb3TRXfgrbjeJkhLKJ02Skl/R72SaIE4lvSLbnvsOyxSdYW+nX722zE71ye/3Z8Nu/g8AW26XL7oGuiP5eSpEb+vNbsCf761j93fHlJby61SKbfX1+Kuq+MRuZwnpbqTtmgyDf7a1gcMB0ShjIhHG5+QwgnQiNAIop3+WDScAP+kktKa5mU0tLVhKS9EFBR0JaF04zE7DQDud2DONi7zBIFgs4PPhcTh2bc98wCcQSK/d2qkJTygc7rgeNZtZ5/ejgXcAcnL4bTDIrGCQL+XlZX3N0iLgJ0rx/S1bWDZsGChFq93OZW1tXKE1n83MwcwWt9vNeLebqmCQNTU1NLtcNOXmErbZOm7T0tJCC7AuEuG1zFzpZCTCMJuN0U4nbp8P1djIiMJCRhQX412/Hm9NDaOHDWPiuHGYM8dJkE5C6xsa2OL14ho8GFtJCVtaWtjc1kaypIRIXh6bw2G2x2JYcnIA8LY3KCI9kgnp/6dBbW2cYrfT+vbb5IZCmEwmxkyd2qvdpjXwAekS/A8MA29zc0eiWFZQwJRt25hWU4O3rIg1thHE42CzwZw52Tl/ndfLY+Ewrw8ejOqUINvjcU5ct46Ly8s5phe6CwuRDUopN/AUcL3W2r/n/oE6RUcIIcSRRSpRe0nnD+nzgKtI11i9AywBNnWaz6e0xhuLEc3JYUWnY9hIJ67Ffj/2piaGFhRQVVREHumR2VzADT1KmDTpbqnbGhrY3NCAY9AgrCUltJFOrtuAukCA+lCIZF4ecaeTQOZ3DcPAGwqlMwC/H0+m46nRqQSTQGC3Ubf2+xuNRrHb7Xttt6dS6FgMlUqhTSaKCgrwhkLEzOaOeDuLWiy8BiyORJi2dStXO51ZXQJmsMfDz4EXfT7+PmgQO1tbQWt+rhQrrFZucbspOMBjRRMJTvrLXzCSSRKpFBdVV/PjU07hB6++yrPr1mFSijKXi4fOP5+JI0YQCASwKMX67dtpczpxGQahVIqkyZRO5INBgqEQaE2TUtQUFtLi84HVCqEQuSYTfrsdqtO9qYsDAWw2G5FotGO03xuNQl4ehMPpUexgEMxmaGujSClaMvcXv3+3LxJsiQSVra0MaWpiZHMznz/1VDwFBXjnzdu1bm8vJqkvtrTwWCJBQ37+bs8jpTXja2u5rK2NCWPGUO92U35GOeeco1i8OJ2ozprV8xhebm7m5y0ttDqdHSPLDoeDivp6Zq1bhyuZlE6/ot9SSllJJ6qPaq2f7ut4hBBCiO5IsnqYmEjPU50IXA68E4/z4Nat1Ofn05yX15E8dBYjM/eurS2dQASDeFwu7J26DyvSCWsuYAqFMAIB3Lm5OF2uji6zZP4NhkL4QiHMbjfK6SRCOlGNGkY6acnNhXAYj2F0nMMwDLztCUtTEx6Pp2PfgSSgplQKRzDIcIcDb1MTDsPAHY9z8qRJjASS8ThL334bezSKQ2vOWbAA8vJ2JTz5+XijUWrr60k5nby2ciUNOTnsLChgS1kZ/syIn9aa5cDl4TCnb9jAlXl56TU7s8Dj8fBljwfPmjXcYTLR4nKhtGZJMsllkQjnbNvGGQX7nwNpN5t59dJLcdtsxJNJTvjLXzhz9GhunD2bn8ydC8Dv3nuP215/nfsWLMDtdgOQk5NDIBBgeiDAuMWLqc/Lo7GggMTIkXyUmee65yi00ppIOLzb+QPBIPFM0x+fUvscxd7zekEoxPhkElNNDYNaWhgcCHDCrFlEzWbKMyOo7Y9VbyWpUdJdhh8Ph1mZ6dpMNIrH48Ftt1NRX8+0TZsoMgwm7NE8yePJTpJaDzwI/M9iwed0djxWxT4fPywro2jECOodDun0K/otpZQC/gSs1Vr/pq/jEUIIIfZFktU+oIDZJSWMGjuW+vp6BjmdpOx2NgM1mctmoIXuE8J2mnQ31qZOZZDEYngslt1uZ3Ten/mAv7+ks7t9DrudPKDUasXb2oozGsUVj3NSfj7DgVQiwbJ338URieBKJjlnwQI8Lhfeysp0EjpyJJ725UpKShjTxWhc5w/6nZOOqoIC6uvrcTgcNDY28rrXy4qqKmo8HjTpJk0v2WwsaWvj52YzJ5aUZO3/bVppKZ9/4QXeGjWKVUOHYjaZ2NDYyG8cDp6preVWk4kp+xjVVUrhzpT0xlMp4skkCsjr9P8UisX2Gilvn9daYBhccNZZHY8VwPOLFhE2m/G73VTMmMFbmzcTsNuJ2u04Bw9mazRKwmwmaTJhNZuJx2JowJxKYUulcCQSWBIJnPE4o1wumrxeHIZBfjTKCaNGsWXpUtyhEDlas2DBApg4sddHTvf0SUMD/4xE+KCsjHhODr5OXXYtySQzvF6ur6oi1YuJYhi43+fjOa2x5OTgcDjwKYU9HudTNTV8d9IkygGOkDVyxRFtNvAlYLVSamVm23e11i/0XUhCCCFE1yRZ7UN7jkJVACd02t8GLEskeHrDBgJ2O4bNRlVxMSnSCWoACGVuu7+kdl/78+x2YvE41kzSMrW4mEogHyCVYs2aNTiiUVyJBBeccgojycyldTrxDh6cTl6GD8dTUJA+WXExE+fM6TIB7eqD/MGMxnW+bTUw1utl/fr1LHnnHRaPG0dtUREAfoeDW5RiwebNXOp0HvCSM/s79/lnncXM+npaXC7ujMVoyTyma7aWc+Gzbj5zJnxvHyN4yVSKY++/n40tLVwzYwafqqwE4HuLFvHwqlXk2+28dumlB3T/ARYsWLDb43ymw7Hb9bVtbdRs3MiIESMocrl4btEidDKJ2WRKJ59u967bl5TgTSbT18eMwePx4HU69/lFQm/RwCrgn4EA/4lESAE0NnaU20aTScZv3860bdv43Omnpzsk90KimABeAv4SibCxfc1Yv59BHg+fLSjgxC1bGCvNk8QAorV+i57NHhFCCCEOG0lW+7EC4NTiYo455phdCUOmNLRdgnTCuikW4z/LlpEATEpx8kknUUL6E4kCmuNxXn//fUyJBHatOXvePIYCdsDkcODNze36HIWFeKdP37Vvj67F2UhAe6L9PGO8Xo5bv57n6+p4rbqamNVKIBTi7yYTb+3YwZ1KMSoLHZc7369hDQ18b8cOltUPpeZiDzqu+OUd8MQlCcZsCdNSGqLI5drt980mEyuvvJK2aJQLHn+cNQ0NTCwr42fz5vGzefP4f2++ye+XLuXHp5xy0PF0db26uprqzJxVgHPPPvuAR7G7ut7bNjY08GwwyMpBg2hzOvGlUqSg40sWVyDAV0tKOMblojUvj/LTT++V+DTpueV/JV3664vFOr7sGdzaytWBAOdNmACTJmX93EIIIYQQIk2S1QFgXwmDhfQI6LTSUipOOGG3UbLdlJQw5sQTDzrp3N++/qI9xrFeL2c0NPCnggLWpFJoYHthITeYzfwaGJnFc44sK+MurbnxH1ATV5BU6KRmy5/MaJXDo2Uppo40mGy3k7vH7xY4HMwZOpSXNm5kYqf/iy8ccwxnP/bYASerB6s//l8mgGXAvwMBXgyHSZrNHfOj28ttK1pamLp9O9+YOZPBAB4Pw3rpfnwM3BMKsTqzDI7dbsfhcJAyDI5bt45xDQ0ct2BBr5xbCCGEEELsIsnqEWR/iUh/TFSyrf0+jvN6+dHatSwdPhyUIux2c100yoLt27kgLy9rj4PH4+Gqz8GT90Om0hq0Ag2B9xyssWs2D01QHIlQYhiMcrspcjiIxOP8b/NmvjN7NhuamxldXAzAc+vWMS6L82z7Kw2809TEfyIRPikpSc9FTaVIKtUxiqrCYT5dWMixOTmYtKZ85sxeff5uAB4BluyxDM7wsjKudDiYkZ9PU2Vlr8chhBBCCCHSJFkVR6Ryj4efAq+0tfHPoUOJANsbGrjXZuPVLVu4XSlGZKEsGNJdZhctgocfhj//GWLxFGiIbbPg/QcUXhgiODjJ221tPPbkk1i0xqI1CydMYMGYMXz6iSdY19SESSmGFhRw39lH5gLwGlgHvA0sikT4KNNtuPNcVJ9SDGpr45i6Oq6bNo0qSK9T2otrlb7f2MhD8Tgbiot362ZtSqU4Zvt2rmht5YTJk8HjYYgkqUIIIYQQh40kq+KI5fF4+KLHw1zg+sZGvJk5h+sGDeJ6s5mfAJOzdK5Zs9KXSy5RfPe7MTYvBlCQ1MRqzVgHJ6gsKeGHX/4y9swyRTnxOK+3tfHrBQuocjrTTauOMDHgzeZmXguF2FBaSjiz1FDnOaBKa3KCQS4qLuaYnBx0czPl06b1+ujlZuBPgQDPh8PpJZ68XjweDzkOB4N37GDGxo0UGgajpeRXCCGEEKJPSLIqjnjlwC9TKb6zYwdrBw8GpYi63XwfOBe4FLBl6VyzZsHPf27niycoTBpMJqi21RNrM9OSm0tip5XQdrAPSeIrDLMT+DgeJz+RoNJioTASwen343G5OtZZHUg06STwA2Al8EE0yvZQaLcR1PY5oNFkkhE7dzJ+506umD2bQdDro6iQHt19AlgK+DLzmtuT5uqmJm6oqMA2fDj1druslyqEEEII0YckWRVHhaEeD3cBL7a18e+qKmKZZXv+aRi84vfzDaWytibrrFkwfz6cYsCwYYrCQg+BQAB/s5N//tNMMgmYTRReaMI6OAlaYyQSbAU+isXAbscai1EVizHYZqMYKM5KZNmlgUZgI7Ap8+/qSISmWKyjMZHfMHYbQTWHQpxut3O83c4gl4uGnBzKZ8/u9YRQA4ubm3ksHmdrYWHHsk3tpcfDGxqYVVPDV04+GQ/IeqlCCCGEEP2AJKviqOHxePiyx8N5wN3AW4aB1+vFqzXXKsU5gQDX5uamR/h6qKwMThzWfs2N2+1m40ZIpXNTTEnI+yRKriuCz+nEYrGQSCQyHZogbjJRl0rRlDlCMpFgUTRKWzDIGLebCtIjxtbGRmJ1dQwdPLhXkqudXi+feL2Yy8tJlpSwE/ACNaEQ6w2DpMvVkfgZhoG3sbGjMVH7PFRTOExlUxOjmpq44vjjKW8/uMdDRS8nhAngTeCxcJil7SO8mXJfh93OKXY785xOrGYz5SefLAmqEEIIIUQ/IsmqOOoUAj8A7tm+nb+YTMTNZpTWvJFK8RFwDvA5wLXPoxy8YcPAbAaSYDYrjp/gJteaINfhIGWxsDke5+NIhIDdTtJsxmJJ/3kmEwmCoRDBRILXWlr42GrFbrenk8NIBAoLsYVCjAuHGeR0UgBEd+7E7/VSXlLC0IoKrIAVCLa2sux/IbavLmbKmTmMnAVxoMnnY6ffj7mggFRuLn6gIRJhUzRKKj8fwmE8hrHrvJluuQSDHaW97Y2JHLEYQ1pamBeL8ZlRo0gWFVEfjVI+ZsxhSwYDwIvAf4AWwBePd4zwmlIpjmls5PrKSoYAlJSkL0IIIYQQol+RZFUclRTwmdxc4v/7H2+PGsWGwYNxOBwkgGeA5yMRTq6v5yK3O2ujf0OGwCWXwJYt6cR1yJAcIKdj/+ScHEYmkwQCAVReHhGLhRZgq2EQyoy4ojXRaHS35FADMbOZrfE4bUAwEKDZMKCgABIJigMB3Lm5GIZBzWKDmkvK0XHF07/SzFqkcE4z8Pp86eSztRWPzUZ4hZ26lxTmyTacx8ZQ3ZzXHo8zpLWV2YMGUZRMsumdd8gNBjGbTCxYsIASOGwltZp0KfKLwMvRKH7D2G2d1FAqxbi6OqZt28YX581DxlCFEEIIIfo3SVbFUcvj8fCFU09lTn09IaeTf9ntrCNdzrqtsZFNFgtP+Hx8zW7ncwUFBzXSWlBVxa1btnS9cwiQBLrZDUBjY/oCRCIRttXWMqqsjLErVzL65JMJAevNZt43DMI2GymTCUemy3AoHN7tUKFwGHduLtFolNASOzqmIKVIxTTNi8E0PrrbvNKGN+KsPs9OKmZHWT2Me7ieiuo2ZhYVMRKwp1J88sEH5AWDFBoG5yxYkE78iorwzp1LfX39YW1MFAUWAy+RnjtrGAbehoaOcuSxpaVckpPDNJcLv8tF+bx5Uu4rhBBCCDEA9GqyqpQ6A7gLMAMPaq1v783zCXGwPJ1G/WYDbwG/DgY7kreg3c5DSvEiMJ909+ADWZ31+ttuy2qcXq93VxJYUJDe6Hbjzc+nrr6egooK7HY7bcDKSIR3164lbjaTNJkYVV1NGdCsFC+P2k6jNY9UXGGxKT47B8q15sMNG7AkEjgTCZrfO4XVMSCpMAHz3jDx/ZNK8eTmps9bWIh31qwuk1LPYRxF3QA87ffzajIJTmfH3Nn2kd8Sv58pW7eysKKCGVOnpicSZ2ltXSGEEEII0ft6LVlVSpmBe4DTgFrgfaXUc1rrj3vrnEL0hAJOBIYlEvy/DRtYMXQokfZlVoBngX8DkwMBjt2+nU8VFzPoMI3QdZcE7rm9ApgwbBjTIhFqamoYMWIE1RUV6Z15eXzpPA8v2jayYUM5CxbkMmsWQAHeY47pSD5ril08+muIxcBmU3zhC+XseerDlZTuqYH0KOqrQI1h4G1rS5cvBwJ4PB5y7XZOM5lQ779PWWsrZpOJqhkzDnucQgghhBCi53pzZHUmsFFrXQOglPoHcB4gyaro14Z4PPwI2LpjB1tKSlhst7M9sy9iGDzb2sqzLhdFLS18wW7nvIKCAxptPZyqq6uprq7ea7vH4+HLX9530uvxwKJFsHgxzJlDJqHtOwHgxdZWXjIMajstO9N57mxRMMhZ8ThfGzmS3NxcvCeeeNjLkYUQB2bY2yYAtsxO9crt+9Kwm/8DwJbbz2bYzf9hy+1nZ/G4VbA1ff1gH4uuHsPeelyHvW3q8/+rfd23gfp86k/29Xxqt2V26rA91u1/H1sqs3eensTe/jfQG/d/z9eY9p+PZL2ZrFZAx2d8SI+ufmrPGymlrgCuAKiqqurFcIQ4cO3J20zgM8By0o2X3uyUILU4nfxNKZ4DJgBzSJcS5/ZV0Fk0a1bfJqk+4F3gbeD9aJT6QGC3ZWfsdjv5djsVO3YwtraWSp+PcxYs6Hjs+2rkVwghhBBCZE9vJquqi216rw1a3w/cDzB9+vS99gvR1xQwPXN5Lx7nNzt3srG0lITF0tHU6KPM5XfRKMNbWjg5J4e5hYXIgigH7uOGBhYFAmzyeKhxuzteLEKGsVsDqOEtLVw8eDCfcjhoGz6certdRlCFEEIIIY5AvZms1pLue9quEqjvxfMJ0es+VVLC75JJNu/YQV1VFavtdlaQ/hamvQttnda8lUjwoNPJaLudY4FppEdfrX0aff8SBlYDK4F3wmFWRqNgsUBLC57MWrIADoeDHL+fkTt2MNbrZeHpp3csOyMjqEIIIYQQR67eTFbfB0YrpYYDdcBC4Au9eD4hDovOCdKngTbgTeBxnw9vpxHAaDTKNrudbaRLiO3AiGAQT0MDx+blcVxJCY4+ug99IQq819TEkkCA2rIyal0ukpl9vnh8t9FTIxplqt3ObOB4u51kWRn1iQTlkydLciqEEEIIcZTotWRVa51QSl0L/Jf00jV/1lp/1FvnE6KvFADnADO15m/vvENNcTHbS0tJ7pFU+Q2D/7a0gNnMw+EwgwyDMXY7Y4CxwBjSpQjmw30HekGU9JqnGzv/axjsDIfBZILmZjwWy26jp0GtKW9pYWRjI1dNncq4zgeUEVQhhBBCiKNOr66zqrV+AXihN88hRH/h8Xj40ty5HV1o8x0O1gArSDdoWtupOZPSmkg0yha7nS3Ay6TLiFPhMMPtdkY7nZST7lLW/q+7j+5Xd5JAE+DNXHYCGwIB1kaj+PPysGUS0XaRPe5/NBql2m5nCjDVbqc4J4cmpSifMgWPrIcqhBBCCHHU69VkVYijzZ5zKNsbMwGsisX4y9q17MjLo6GgAOugQR23MwwDr9cLWtOoFFszHW87s0UiuPx+hjidVOTmUgAdl/zMvzs++YT6mhpGDR/O+C6Wrtmfeq+Xmp07cZeXYy8txQ+7XWoDAbaEQkTz8wnm5NC5GbthGHhbW9NdeyORjq697XIcDiyhEGVtbQxtbeWyGTMYvfuDxxAZPRVCCCGEEBmSrApxmEwqLeXmqVPTI6/FxeTZ7WwE1gGvNzcTikQIOBwdo46dEz3DMNjW2Aha86Fh4LHZ9kpmg4EAzTk5MGECCvD4/RTl5WEh3djJCiTCYYKhEHaXC4vTSRxIAHEgaBjsNAwoKEgnm4axVwwdyWhj417JaOd1T02pFEV+P8eVljISGAUMt9vxFRdTbxiUjxwpo6dCCCGEEGKfJFkV4jDac+T1mMzlRLOZ5996i6DZjN/tpnrePMKkO5PVAx9HInuV0O6ZrIbC4Y6fNdAWiWDPy+vYZhgG3qambkc+uyrT7S4Zbd8/yG7HAwwCHMCmjz+mMBCgNBTigrPOYs9xUofMPRVCCCGEEAdIklUh+gGPx8OCBQs65rt6Cgt327/TMPjHW2/R6nAQtduZOHs2AD7S3Yh9QI7NRk0wSMJsJqUULqdzt2N0lWx2TkYdDgd+wJZI4IzHGV9SwiAgL3NJac3Ha9fijEQoMAwWnnIKQ/Lzd50gPx/vtGm77oMkpUIIIYQQogckWRWin9jXmqGDPB4+f+qp3SazABQWsnbnTmpqahg2YgSjhg4lDh2X+liM/777LqlUCitwxrx5lLOrRNhqt9PkcOw6h8u1+/ELCvC2lzF3k4zKuqdCCCGEECJbJFkVYoA4kESwurqa6k6NlToXCpeVljJ4zpxdyWYXc0b3dw5JRoUQQgghxOEiyaoQRxFJNoUQQgghxEBh6usAhBBCCHH4KKXOUEqtU0ptVErd3NfxCCGEEN2RZFUIIYQ4SiilzMA9wJnAeODzSqnxfRuVEEII0TVJVoUQQoijx0xgo9a6RmsdA/4BnNfHMQkhhBBdkmRVCCGEOHpUANs7Xa/NbBNCCCH6HaW17usYOiilGoGth+l0JUDTYTrXkUoew56Tx7Dn5DHsuSP1MRyqtS7t6yD6E6XUZ4D5WuvLMte/BMzUWn9jj9tdAVyRuToWWJelEAb6c20gxz+QYweJvy8N5NhB4u9LXcV+UO/N/aob8OH8UKGUWqa1nn64znckksew5+Qx7Dl5DHtOHsOjSi0wpNP1SqB+zxtpre8H7s/2yQf6c20gxz+QYweJvy8N5NhB4u9L2YhdyoCFEEKIo8f7wGil1HCllA1YCDzXxzEJIYQQXepXI6tCCCGE6D1a64RS6lrgv4AZ+LPW+qM+DksIIYTo0tGcrGa9vOkoJI9hz8lj2HPyGPacPIZHEa31C8ALfXT6gf5cG8jxD+TYQeLvSwM5dpD4+1KPY+9XDZaEEEIIIYQQQgiQOatCCCGEEEIIIfqhozJZVUqdoZRap5TaqJS6ua/jGWiUUkOUUq8ppdYqpT5SSl3X1zENVEops1LqA6XU830dy0CklCpQSj2plPok83yc1dcxDTRKqW9l/o7XKKX+rpRy9HVM4sgz0N53u3ufU0oVKaVeUUptyPxb2NexdmfP95cBFvter+0DLP69Xlf7c/xKqT8rpRqUUms6bes2XqXULZm/5XVKqfl9E/Uu3cT/y8zzZ5VS6hmlVEGnff0m/q5i77TvBqWUVkqVdNrWb2LPxNNl/Eqpb2Ri/Egp9YtO2w86/qMuWVVKmYF7gDOB8cDnlVLj+zaqAScB/J/Wuho4DrhGHsNDdh2wtq+DGMDuAl7SWo8DJiOP5UFRSlUA3wSma60nkm64s7BvoxJHmgH6vtvd+9zNwCKt9WhgUeZ6f7Xn+8tAir2r1/YBEf8+Xlf7c/wPAWfssa3LeDN/BwuBCZnf+UPmb7wvPcTe8b8CTNRaTwLWA7dAv4z/IfaOHaXUEOA0YFunbf0tdugifqXUKcB5wCSt9QTgV5nthxT/UZesAjOBjVrrGq11DPgH6QdUHCCt9Q6t9YrMzwHSbyIVfRvVwKOUqgTOBh7s61gGIqVUHnAS8CcArXVMa93Wp0ENTBYgRyllAZx0seamED004N539/E+dx7w18zN/gqc3ycB7kc37y8DJfbuXtsHRPwZXb2u9tv4tdZvAC17bO4u3vOAf2itDa31ZmAj6b/xPtNV/Frrl7XWiczVd0mvKQ39LP5uHnuA3wI3AZ2bC/Wr2KHb+K8CbtdaG5nbNGS2H1L8R2OyWgFs73S9Fkm0DplSahgwFXivj0MZiO4k/UKU6uM4BqoRQCPwl0yp24NKKVdfBzWQaK3rSH/juQ3YAfi01i/3bVTiCDSg33f3eJ/zaK13QDqhBcr6MLR9uZO9318GSuzdvbYPiPj38bo6IOLvpLt4B+Lf81eBFzM/9/v4lVLnAnVa6w/32NXvY88YA5yolHpPKfW6UmpGZvshxX80Jquqi23SEvkQKKXcwFPA9Vprf1/HM5AopRYADVrr5X0dywBmAaYB92qtpwIh+ldZVb+XmYN0HjAcKAdcSqkv9m1U4gg0YN93B+L73BHw/jKgX9uPgtfVAfX3rJT6Humy/kfbN3Vxs34Tv1LKCXwP+GFXu7vY1m9i78QCFJKeQnEj8IRSSnGI8R+NyWotMKTT9Uqk7O2gKaWspN/AH9VaP93X8QxAs4FzlVJbSJfEzVVKPdK3IQ04tUCt1rp9VP9J0h9wxIE7FdistW7UWseBp4Hj+zgmceQZkO+73bzPeZVSgzP7BwMN3f1+H+ru/WUgxA7dv7YPlPi7e10dKPG36y7eAfP3rJS6FFgAXKx3rdXZ3+MfSfqLjg8zf8OVwAql1CD6f+ztaoGnddpS0hUeJRxi/Edjsvo+MFopNVwpZSM90fe5Po5pQMl8O/InYK3W+jd9Hc9ApLW+RWtdqbUeRvo5+KrW+kj65rXXaa13AtuVUmMzm+YBH/dhSAPRNuA4pZQz83c9D2lSJbJvwL3v7uN97jng0szPlwLPHu7Y9mcf7y/9PnbY52v7gIif7l9XB0r87bqL9zlgoVLKrpQaDowGlvZBfPuklDoD+A5wrtY63GlXv45fa71aa12mtR6W+RuuBaZl/i76deyd/AuYC6CUGgPYgCYOMX5L78XZP2mtE0qpa4H/ku7Q9met9Ud9HNZAMxv4ErBaKbUys+27WusX+i4kcZT6BvBo5gNwDfCVPo5nQNFav6eUehJYQbpM6gPg/r6NShxpBuj7bpfvc8DtpEvavkY6KflM34R3SAZS7F29tpsYAPHv43XVTT+NXyn1d2AOUKKUqgV+RDfPF631R0qpJ0h/gZAArtFaJ/sk8Ixu4r8FsAOvpL8z4F2t9ZX9Lf6uYtda/6mr2/a32KHbx/7PwJ9VejmbGHBpZmT7kOJXu0bFhRBCCCGEEEKI/uFoLAMWQgghhBBCCNHPSbIqhBBCCCGEEKLfkWRVCCGEEEIIIUS/I8mqEEIIIYQQQoh+R5JVIYQQQgghhBD9jiSrQgghhBBCHAZKqduUUqfu5zZzlFLHH66YhOjPjrp1VoUQQgghhOgLWusfHsDN5gBB4J3ejUaI/k9GVoUQQgghxFFBKXWTUuqbmZ9/q5R6NfPzPKXUI0qpe5VSy5RSHymlftxp3zOdjnGaUurpzM9BpdSvlVIrlFKLlFKlme1TlFLvKqVWKaWeUUoVZrY/pJS6KPPzFqXUjzO/u1opNU4pNQy4EviWUmqlUurEw/jwCNHvSLIqhBBCCCGOFm8A7QngdMCtlLICJwBvAt/TWk8HJgEnK6UmAa8C1e2JKPAV4C+Zn13ACq31NOB14EeZ7Q8D39FaTwJWd9q+p6bM794L3KC13gLcB/xWaz1Fa/1mNu60EAOVJKtCCCGEEOJosRw4VimVCxjAEtJJ64mkk9XPKqVWAB8AE4DxWmsN/A34olKqAJgFvJg5Xgp4PPPzI8AJSql8oEBr/Xpm+1+Bk7qJ5+lOcQ3Lxh0U4kgic1aFEEIIIcRRQWsdV0ptIT06+g6wCjgFGAlEgBuAGVrrVqXUQ4Aj86t/Af4NRIF/aq0T3Z3iIEMyMv8mkc/lQuxFRlaFEEIIIcTR5A3SSekbpEdTrwRWAnlACPAppTzAme2/oLWuB+qB7wMPdTqWCbgo8/MXgLe01j6gtdN80y+RLhE+UAEg96DukRBHKPkGRwghhBBCHE3eBL4HLNFah5RSUeBNrfWHSqkPgI+AGuDtPX7vUaBUa/1xp20hYIJSajngAz6X2X4pcJ9Sypk51lcOIr5/A08qpc4DviHzVsXRTKXL8IUQQgghhBDdUUr9HvhAa/2nTtuCWmt3H4YlxBFNklUhhBBCCCH2ITNyGgJO01obnbZLsipEL5JkVQghhBBCCCFEvyMNloQQQgghhBBC9DuSrAohhBBHGKXUn5VSDUqpNZ22FSmlXlFKbcj8W9iXMQohhBD702vJqlJqrFJqZaeLXyl1fW+dTwghhBAdHgLO2GPbzcAirfVoYFHmuhBCCNFvHZY5q0opM1AHfEprvbXXTyiEEEIc5ZRSw4DntdYTM9fXAXO01juUUoOBxVrrsX0ZoxBCCLEvh6sMeB6wSRJVIYQQos94tNY7ADL/lvVxPEIIIcQ+WQ7TeRYCf+9qh1LqCuAKAJfLdey4ceMOU0hCCCGOZMuXL2/SWpf2dRwDUa+9N7e2QiKRnWP1NosFCvvRtN6B9NiJ/Tucz6/+8Nzp7fvbH+7joepvrzW97GDfm3u9DFgpZQPqgQlaa+++bjt9+nS9bNmyXo1HCCHE0UEptVxrPb2v4+gr2SoDzup78733QmVldo7V22pr4aqr+jqKXQbSYyf273A+v/rDc6e3729/uI+Hqr+91vSyg31vPhxlwGcCK/aXqAohhBCiVz0HXJr5+VLg2T6MRQghhNivw5Gsfp5uSoCFEEIIkX1Kqb8DS4CxSqlapdTXgNuB05RSG4DTMteFEEKIfqtX56wqpZyk3xC/3pvnEUIIIcQuWuvPd7Nr3mENRAghhOiBXk1WtdZhoLg3zyGEEEIIIYQ48sXjcWpra4lGo7vvOPZYMJv7Jqie8nhg7dq+jiLrHA4HlZWVWK3WHh3ncHUDFkKIw0oDBhDe41Lb0kJ9czP5JSU4CwuJATGg0eej0ecjt6AAd14eKSAJpIC2QACf309+Xh75ubkoQJGeRxH0+wn4fJTm51Ocl4cNsAI2INTair+piSHFxVQWFZEDuABn5mLNHEcIIYQQ+1dbW0tubi7Dhg1DqU7voA0NYLP1XWA9EYtB2ZG1kpjWmubmZmpraxk+fHiPjiXJqhBiwEgATcDa5mY2tLRgKy3FVFCAD/AB/sy/DdEoLYaB3eHAbrd3/L5hGHiDwfQbWiCAx+nEbrent/t8oDW0teGx2zt+zzAMvK2t6X2trXhstt33tbV1/3uBQPpcwSAel2uvWBKRCCV2O4NycsgH8oB8gLY24k1NjC4sZFxxMaVATi8/tkIIIUR/F41G905URb+jlKK4uJjGxsYeH0uSVSFEv6GBFqAO+Ki1lXV+P8miIiK5uTQCrUDUMPCGQukk0O/Hk5Ozd0La0JBOIJXC4/F07I9Go6A1GlBaE41Gsdvt3W7f1+/0ZJ9hGHi9XtCaZqVo6xSjYRh4/X6wWiEUwuN2Y7fbcQGlmYvd78fW1MSE/HwmFxdThozQCiGEODpIojowZOv/SZJVIcRhlyS9+PKKlhbW+P0YxcX4cnOpB6J0GpWEvUYz95UE7rnfkkxiDYUot9txAtpsZmtTE+ZEAmsqxZTCQkqBCLB60yZMiQRm4LgZMygGzIAvleK9jz5CJ5Mok4njZs2igHR5cEsqxbtr16bLhc1mJs2YgYt0WXGzUnxQV0fMZCJutVJVUoLKnKs2FMKcTJIwmQ44yQ0BIWBd+2iu2dyRzOba7VQAlUCuz4fd62VGYSETS0sliRVCCCGy6Ge/+hWPPfUUZpMJk8nEH3/7W26/8042b91KMBSisamJ4UOHAvCHX/2Kex58kGUrV2K1WJh57LH88be/3W0e5/sffMBxZ53F448/zkUXXbTX+TZv3szChQtpaWlh2rRp/O1vf8O2R8lzOBzm8ssvZ9WqVWitKSgo4KWXXsLtdmM2mznmmGNIJBJUV1fz17/+FafTyUsvvcR1111HMpnksssu4+abb+7y/i5evJjrr7+eeDxOSUkJr7/+OgB33XUXDzzwAFprLr/8cq6//vosPcK7k2RVCNGr/MB7zc186PMRKi2lJTeX7UCwvSRXqQNOSBVQbrPh9PlwRSK44nFm5+dTBR1ltLFYjLdffx1rLIZVKRYsWICnPRi3G29lJfX19ZSXl+PJy0tvz8/HO2HCru2FhbvuQGEhJx577K59RUW77ZszdequfQUFu/bl5eEdOXLXPperY5c3Huf5V18lBhgOB8fNn4+VdAnzVq352w9/SKqxkYTFgiUvD5/FQirzu/FYDFMs1nEsn81G2GbDCyxLJolEIh37cnNyKDCbyQM8VVV857bbKEVGYYUQQhwZht38n6web8vNs/e5f8nSpTz/8susWLwYu91OU3MzsViMZx55BIDFb73Fr+6+m+cff7zjd9p8Ph65/34AvnDZZTz48MNc9bWvAZBMJvnOT37C/Pnzuz3nd77zHb71rW+xcOFCrrzySv70pz9x1VVX7Xabu+66C4/Hw+rVqwFYt25dR0Kck5PDypUrAbj44ou57777uO6667jmmmt45ZVXqKysZMaMGZx77rmMHz9+t+O2tbVx9dVX89JLL1FVVUVDQwMAa9as4YEHHmDp0qXYbDbOOOMMzj77bEaPHr3Px+9QSLIqhMiaMLAR2NDpsr29bNds3i0p7S4hdQGVFgstO3aQFwpRYBicPXMm44EiwJKTg9fjSSeBw4btniAClJZSMX/+riTR49ltt8fj2Wvbvrb3xj6Px8OCBQt2xVhSsmtnQQGfRKNcP2QIubm5uN3ujmZRIaA5EmHjjh1ELBaiNhvW4mISmTckIxrdrUOiw+HA7nAA8IctW/iiYWAJhZhqtTI7N5fJQDmSvAohhBAHYofXS0lRUceX6yXF+1/05KzTT+/4eeaxx1JbX99x/e777+fTCxbw/iefdPm7WmteffVVHnvsMQAuvfRSbr311r2S1R07djA0M5oLMHbs2C6Pd+KJJ7Jq1SqWLl3KqFGjGDFiBAALFy7k2Wef3StZfeyxx7jwwgupqqoCoCzTCGrt2rUcd9xxOJ1OAE4++WSeeeYZbrrppv0+HgdLklUhxCFrAj4C1gDvh8Nsjsf3amrUXVJabrNR0NxMsd9PUSTC+TNmMBnIBZTLhXf48K6TOfadIB7I/v5gXzHm5OQwePDgjusKcGQuxTk5lJeVEQgEyHW7cVutGEAA8GrNBp+PsM1GyG7HYtn1Ep9KJjvmydYpxfuZLw1KgEnA5MxF1hoTQgghunb6Kadw2y9+wZjp0zn15JP53IUXcvLsfY/GtovH4/zt8ce56//9PwDq6ut55vnnefXJJ3n/llu6/J3m5mYKCgo63s8rKyupq6vb63Zf/epXOf3003nyySeZN28el1566V6jnIlEghdffJEzzjiDuro6hgwZ0rGvsrKS9957b6/jrl+/nng8zpw5cwgEAlx33XVccsklTJw4ke9973s0NzeTk5PDCy+8wPTp0w/ocThYkqwKIQ7YmsZG3vL5aPR42Jqbizez3TAMvE1NXTY1yrXbcfj9lPj9lIZCXDBtGtMBd04O3ooK6pWivLr6oBPSo5nb7cbtdndct2cuJTk5DC0uTieyNhtYLLSQblrlisWIx+MYFstuXxo0Aa9mLoZhUOD3M89qZUFBARV9ceeEEEKIfsrtdrN88WLeXLKE1958k8999avc/qMf8eUvfGG/v3v1DTdw0vHHc+LxxwNw/Xe/yx233op5H+vDaq332tZV46IpU6ZQU1PDyy+/zP/+9z9mzJjBkiVLqK6uJhKJMGXKFCA9svq1r32NZ5999oCOm0gkWL58OYsWLSISiTBr1iyOO+44qqur+c53vsNpp52G2+1m8uTJu31Bnk2SrAohupUCPgGWAovDYT6IRNJdaruZY6q0pjgQYIrJxNzKSkYDQx0OmsvKqE8kKB81arekVBLSA3fXu+/ywIoVaODyadO4/rjj+MGrr/LsunWYlKLM5eKh88+nPFM63M4NVAHTgNGLF9PkdFJXUoJz1iy2kC7dhl0dir1as04pnsrJodpu5yTgRODIWgFOCCGEODRms5k5J5zAnBNO4Jjx4/nr3/++32T1x3fcQWNTE3/82986ti374AMWZuauNrW08MILL2CxWDj//PM7blNSUkJbWxuJRAKLxUJtbS3l5eVdnsPtdnPhhRdy4YUXYjKZeOGFF6iurt5tzmq7yspKtm/f3nG9u+NWVlZSUlKCy+XC5XJx0kkn8eGHHzJmzBi+9rWv8bVM/N/97neprKzc52NwqCRZFULsJgysIJ2gLiNdXgrgi8f3KufNtdupBrb+7GcE3n8fh2FgAtSQIbybk8O7vRBfQVUV1992Wy8cuf9a09DAAytWsPTyy7GZzZzxyCOcPXo0N86ezU/mzgXgd++9x22vv859CxZ0eYycnBzO6TxP1u0mSXqO8YfAy62tNO3RobjGbqcGeAgYEgoxZudOzsnNZeQRtni5EEIIcSDWbdiAyWRi9MiRAKxcvZqhncppu/Lgww/z30WLWPTss5hMpo7tmz/8MP1DLMaXb7qJBQsW7JaoQnq085RTTuHJJ59k4cKF/PWvf+W8887b6xxvv/0248ePp7CwkFgsxscff8ycOXO6jWnGjBls2LCBzZs3U1FRwT/+8Y+OebGdnXfeeVx77bUkEglisRjvvfce3/rWtwBoaGigrKyMbdu28fTTT7NkyZJ9Pg6HSpJVIQQaWAn8MxDg3WQSyx5rl0K6WU8olaK8pYXKtjYunjyZ40i/iNza0MANxx6bLj/dY2Qv227dsqXXjt1frW1s5LjKSpyZRkonDx3KM598wk2d5smEYrH9NkracyTbDIzNXE5Wimdef52aoiI2lpdjdLqdYRi83dzM2xYLfwuF+Jzfz5fy8hi81xmEEEKII1cwFOIbN91Em9+PxWxm1IgR3H/nnfv8nSu//W2GDhnCrEyjpQvPOYcf7qcR0VlnncWDDz5IeXk5d9xxBwsXLuT73/8+U6dO7RjN7GzTpk1cddVVaK1JpVKcffbZfPrTn+72+BaLhd///vfMnz+fZDLJV7/6VSZMmADAfffdl477yiuprq7mjDPOYNKkSZhMJi677DImTpwIwKc//Wmam5uxWq3cc889FHZeSSGLJFkV4ijWBvwP+C+w1TDwtram5536/R3zTouAGcBMu51BTifNbW2UT5y41xzTPedRiuyZWFbG9159leZwmByrlRc2bmR6pgHT9xYt4uFVq8i323nt0ksP+Rwej4cLzjyzY+TV7XDwHvAGsDgS6RhVT5hMPK81bwGzgAtJJ7tCCCHE4bbl9rPTPzQ0wB5rj/aGY6dM4Z2XX+52f3t5cGeJpqb9Hvehhx7a7foLL7zQ8fOIESNYunTpPn//kksu4ZJLLulyXzAY7HL7WWedxVlnnbXX9iuvvHK36zfeeCM33njjXrd788039xlTtkiyKsRRRgOrgReBd4FEZnvnrr2lfj8np1J8dtgwRtFpaROPh6qjYI6pJj1fN5n5t97rZcfOnQweNIjBHg8K0uXOQIPXi7e+nooulsnJlurSUr4zezan/e1vuG02Jns8WDKlRD+bN4+fzZvH/3vzTX6/dCk/PuWUQz7PniOvczOXjbEY96xdy6rKSpry8nA4HGjgncylGpjT0oJn61Yqe/FxEEIIIcTRRZJVIY4SGngT+HM4TE08nl6Ds1Opb7HdzvBt25iwfTvFkQgLFiygJynHV599lufXr6fM5WLN1VcD0BKJ8Lknn2RLWxvDCgp44qKLKMzJ4dFVq/jlO+90/O4qr5cVX/86UwYNOqj7FwReWwKvLYbxcyB3XCu1ra04ioux5ecTIj0ntzEYpCkcxuZ2Y3E6iQExwB+NEjCM3ZbfMQwDr2FAQQEYBh7D2HtfURHWcJiqSITcnBysQCIcJhkMUup0Uup2kwM4gbjPR6y5maEFBQwvKiIfOi77ekH+2rRpfG3aNAC+u2gRlXl5u+3/wjHHcPZjj/UoWe3OqLIybp46lbr6etpcLt6w21neaf9Kw+C/wSAlVitz33iDy046SRJWIYQQQvRYryarSqkC4EFgIunPkl/VWvfO7FshRJc0sAR4FNjQaYkZX2aJmSl2O2cCsx0OWseMod7tTjfg6WGy8eUpU7h25kwueeaZjm23v/UW84YP5+YTTuD2t97i9rfe4o7TTuPiSZO4eNIkAFZ7vZz3j3/slagmgYZQiE0+H4+2trL2k0KWL4aiOZCYEsFrGIQ/dLL8TBupGJhsmuGPGrimmcHnw5NJQA3DwNvSki53jkY7yp0Nw8Db0LDX8jvdrRMLu49Gx00mmmIx4jk5uy/lE43isVp3ncPnA7MZgkE8Ltduia85FKLS4aAJWE46uTVFIuhAADMwuqyMbT4fT69dy5KvfY0Nzc2MzixI/ty6dYzbozQ7mzqPus4FtgD/Al4HfJnHoTE3lydmziRqGHyP9LqwQgghhBCHqrdHVu8CXtJaX6SUspH+7CWEOAw06YTnEWBTZlt7cmVNJBi3YwefDwQ4OzOhHrK7lMxJQ4eypa1tt23PrlvH4sy8yksnT2bOX//KHaedtttt/rZmDWeOG8d7LS0kXS5idjt+wJdIEEwkWGM2s2SxweaLNamYyiSlPlzTDBpegFTMCklFKgahJXac04zdkszuks89t8ciEVx2O3l2O5FksiOJzbfbsWce31y7nQDpUmGUwuFw7PY47+8c7dvbl41Ba+qDQVzJJOuAZCJBMBYDm41f//OfRA0Du8XC/511FtuB/3vhBWp9PqxmM0MLCrjv7LOz8n93IIYB1wOXkH6O/TWVImEygVK85/FwNXA10DtLhAshhDhaaa27XBNU9C9drRF7KHotWVVK5QEnAV8G0Fq3V9oJIXrZeuDOUIg1icRu5b75djtjNm9m8ubNOFMppnezzElv8QaDDM7NBWBQbi7eYJBlzc3EXS6iDgdtwF/XrOGKBQtYYTJBNIrbbMZssZBIJNIJI+kkNBUDkuyWlBZMD9JozScFmG0wcXQd5VuacaRSzJ46lXIgmkzy/ooVmONxbFpzxty5VABthsGi115DJRKYleKc9jJohwOvy7VryRdHp/FChwOvw0FtfT0l5eUU2e3EgLpYjBfffRdDKRI2G9NPOokcoF5r3q6pIWyxEHU4qCwuJgHUhEK7JbHJZBJgt/v8f5/5TPr/0uEgmUjwdijEheecgwIGuVx4rFaCwNZwGIvPR34vd2VuVwR8Mz+fU2IxfpdMsrWwELvdTiPwY9JvApcDBb0eiRBCiCOdw+GgubmZ4uJiSVj7Ma01zc3NHV/i90RvjqyOABqBvyilJpMe5LlOax3qxXMKcVQLAQ8D/zIMdjY3d5T7Dikr40KHg087HESrq6nPz89Kqe+B0qRLeJNas8QwCNrtNCYSxID3zWYwDNwWC5t37sRqsVCeKW1FaxKJBGaLBYvFgj2RwGUYTBxVS7OtgGQMrFb4jHMp1a9sx6YUg568gFWripgzRzFiRCn19fH0fS0oSB+zqIgZxx+/K/ksLQWgtKyMvE7dcDs/Nvsace5qX3FpKZ45c3Ydq6govaOggDPGj99trVMAbzzOc//7HyGrlZDTySatmQq0KsW2cJio1UrUasViSb9kd05iNdCaTBK2WtmYSBCMxzE5HOQGAoyzWBjqcFDU0//AA3BMaSn3A4uBB9i1Pu8bwDvRKGdv28Y5+fkyl1UIIcQhq6yspLa2lsbGxt13BALpKTYDUTIJzc19HUXWORwOKisre3yc3kxWLcA04Bta6/eUUncBNwM/6HwjpdQVwBUAVVVVvRiOEEcuDbxFOkloBSKZclNTKsXE2lq+1tbGnMyc0PwslvruKx4f6fLjMPDPeJzmRAKn08nrzc1UlJXR1NZGbk5O5hfSSemSNWuYPXEirliMHMMgJx5nzODBlAG5FgsRh4MPgO+fV0bNMYrFi8kkpVOory/LJJlF7KqG7fq+dpd8ZrMM+mDO4fF4OHfBgo4k9t7nn6cawG5nUl4egUAAV04OWCz4gQZgUzBIyGYjarPtlcSmlMKXk8OHwCeAKZHg3XCYf7W0cEZRUa/NJVXAKcCxpJsVvEZ6Lu62hgbuttv58MMP+f7kyZKwCiGEOCRWq5Xhw4fvvePeeyELiVGfqK2Fq67q6yj6rd5MVmuBWq31e5nrT5JOVnejtb4fuB9g+vTp2SluFuIosrqxkd8nEmwuKuoo93U4HBQ0N3PSxx9TaBhUH4Zy3whQB2yJxdiRTILVSgsQB0KZOZ+TRozg3Y8+4ryiIpZ8/DFThw+nMBzGGYsxuqyM73/8MW985St4rFYCySS5hYW42xNa0mu5FhcXZxI+mDWrfU/vJ+C9rbvkds/1a/OASoeDMQUFBAIBciwW4hYLLcAOpdicSBC1WEApLBYLyUQCXyiEN5XiR8EgDzqdnOhwcBLppLI3VqXLA75NOnG9LRDoKHF+Y+xYHg6H2Xu1NiGEEEKIvfVasqq13qmU2q6UGqu1XgfMAz7urfMJcTR6uqWFnweDxE0m8HrxeDwMttu53G5nVEUFO5TqtXLfnV4v7zU1UV9ZyVLgGTINgSIR0Jo//+tfbKirIxiJ8H9/+APnzJjBRRMm8IdXXuHHH3/M8MJC/nrmmVgTCXJLSljW0MCQvDxGFhYCHJb5lgPZnklsKTDWbmd6PE5jKEQkLw+fxcLmcLijZBit8RsGbzkcLDIMCIeZbzbzpbw8ynohxqnAr5NJrvb52JGfD0rxSnk55cAX6LR+rxBCCCFEF3q7G/A3+P/snXd8W9X5/99Hki1Zkpc85DiJs/eeEBJCCJBBQigUWlooq6zSsvqlI7RQoPDrgFJKyyilpQNayiplEwokbEIIITtxdmzHkm3tvc7vjysrznJCfB07yXm/XnrFuvfqnCP5Rr6f+zzP54Ens07AW4DLOnk+heK4IIGWjvC00UjSYMgZ80xyubilpgYbgNNJVSeI1CDwvM/H4x4PXrsd/H5s+zEEunrWLHrm5TEgK4RMoRDBYJALL7xwv0J0ht3Ox1dcoft6jzf2FrGjMhm+qKujIhAgGYmQV1W1h/vw34VgkdnMaWYz5wCDdF5Pf6eTPwJ3SsnOrPnSU0Ac7Q+CEqwKhUKhUCgORKeKVSnlClTnAoVCV+qBXwFb0dJ9/UJQEg4ze/Vqrpg+XROqOtPocvFBSwure/fmi8JCmoXAb7Xu4V5rAHoYDGRaWigOhylIpRg8eDA52bSXiFIcmJKaGm7ftk238aJGI+P79uUmh4OY2czft23jzWgUn9WKkJJoLMZ7ZjP/i8fp5fVypcnEFB17tvZxOnkY+H9oTnsAT8XjbHK7uT4/v1NuqigUCoVCoTj66ezIqkKh0JEXPR5+LwTCasVsNmM2mzm7tJS5Hg/9p0/XPd1XAm+3tHDLmyF2rOyBbUqY/mfm50SyOZmkf3MzNik5F8jPzyfkdBIMBik8Qq1TjkVuvPPOTh3/qoICerz1FttKS/miXz/ibaKtLilZHo9zcX4+1xYV6WbGlA/8BPg1sCQ71ytSEly5kp+OHn3U1xwrFAqFQqHQHyVWFYqjhL/4fPwuFNLSbINBelVW8j2LhTmFhYixY3WfbzXwJPDacjMrr+yHTAhEvsT+YoSZZ9i5orCQmu3b6de3Lw+bzTmjnr3TUBXdD6fTyVlZ9+HrqqsJm808WFeHO5Mhk+1b94KUfBqNMn/7dk4vLdVFTOYBPwKamptxZU2XPhwwgNVutxKrCoVCoVAo9kGJVYWimyOBvwF/FSLnqloSDnPN5s3MHTFC9/l2APeHQixLp7FYLIQ/tiCTAjICEjBlieC+M4DSUu1xFCHRaiUj2ceO5mbqm5pwVFZSVFZGCnB7PLhaWiguL6ewtJQkkAKafT58Xi+O0lIcJSUYAL/Ph7+lhSqHg8rSUvKBYEsLfrebmooKasrLsQJWtMhid6rP3Nt9+Id5eVS/+y7vDB3KzvJyjAYDa5uaWFtQwKKNG/kV6JKuawJ+YDKx0u+nxWYjZTLxSr9+zKR7fT4KhUKhUCi6HiVWFYpuTAZ4EFjE7vrUnh4PZ33xBZPnzNF1rjjwb+BfsRgNHg9IiV8Iyk52sj3fSDohyc+Di+d1RlVsx4gCTWj9R5uATX4/O4NBREkJGbsdP+COxfDG45gtFsxms5b2GomA1QrhMM5sNNgVCkF+PgSDOLPp1vF4HFcgAAYDBAI4s+10XIEAmEy5YwFc4bA2ZiSCMx7PvT4VjVJuNuMsKKAEEMEgeL0MKCpiUEkJFYB0uwnV19Ozkxyc28PpdHLRaadxakMDW+12HksmczdHVtTU8NtEgl8ABh3m6ul08nOjkVvy8jBbLNSazbwDzNRhbMXBEULcBFyBdv9mFXCZlDLWtatSKBQKhWJflFhVKLopSeD2YJD3MhksWYE11+HgXI+HPnPm6CpmFrW08LCUhAsLicXjOUffofX1XFnmx/bWKBYvhhkz2vY23Y3ehkD7IwN4YzFCZWX8yecjXFJCA7A5GqUpkch9RvF4HJffr70HjwdnXh4ALrdb2yYETqeTWCyWE2NCSu057LPNbDYf8rEH2tbqvNsiBL7s783l9WrraSt+YzFMxcWUNjcz1WqlOp0mz+1mYmkpoyoqOj3y2BptHQ+Mdrv5YVMTWyoqQAiWlpTwg7o6/i8vj2odzr2p5eVcBLwIxONx7gmH6Z1KMaiyM5roKFoRQvQErgeGSymjQoingQuAv3bpwhQKhUKh2A9KrCoU3RAJ3BEM8nJW0PiF4LzSUm4pLMSoY31qHLg3EODpcFgTTpEIjtJSevj9zFizhopIhFHz5+MctX+R2orehkBB4JOWFlb4/YQrKmgpLGRTLEZ9VnAubyvwmppyn9GhiFBTOk1eOEyVxcKuYBBTKoURGFpWhgnY5HZjSKcxSsmY0lIcaCnDq7dtI5PJgMHA6LFjtYjjjh2khSBtNDLY4SAFrG5pIWEwkMzLo0dFBS3hMMZ0mpTBcEhCN2k00mS3879EglA4DGYzRKP0i8UYabFQ4fdT2tjItJIS+ndi9HVQZSUPSclvkkk+Ky7G4/XyPympq6/nAdDlZsm3gHeiUXZkf4c/aWzk91Kq+tXOxwQUCCGSaFnqDV28HoVCoVAo9osSqwpFN+TPwLuZTE7QjN22jXktLRjHjdNtjp3AL4FVUubmsSQSnO9yca7Tya50muojkI6aAj5qbmZpIICvooLGwkK2x+NaOq3RCF4vzvz8XMR3fwLPkMlQGItR4/XSz2pl+5YtFMRi2FIpZk+ZQqGUfLBkCXmJBHlCMH/+fJwOB66KChoaGrT32ZoGXFOze1tRkTZHcTGuoUN3by8u1o4dPHj3tsJCbVvPntq28nKcViuuYJCX336bBBA3mzlxzhwCQrBozRpC+fmECwqoLiujxWBgZTpN3GiErMlR2/fricdZKoQWNbZYuC8WY2xLCwOCQc6w2zmhvFz3yGsPp5N7gFt27uTV7FrWV1Xxmt/PpTqcFxbgrO3bWVNQgAQ2Op1saGxUYrUTkVLWCyHuRStPjwKLpJSLunhZCoVCoVDsFyVWFYpuxgvAf9ldozpm+3am19bSc/583eZ4zuPhkWwLnNZ5Bu/axSkbNvDV2bNxOp2d1vsyBbzf0sKHwSDu8nI2mUzsjET2FKb7iY5aLBbS8TiOYBBHNMqsoiKqMhlWvfce1mgUo8GgidCiIlzDh+8Wkdl+oT1nz969Lfve9jYZOtC2L3Ps3tucTifzs867bdczZsKEfYWyzcbGxkZkz57sMhh4fft2mux2moqLsVgse3wuEvg8FOJzIXg2EmGI18tov59zrFZG6JhKK4Ab8vPZsm0b66uqQAhe6d2b80GXnr4zS0v5m8vFruJipMHAzpoaHUZVHAghRClwNtAP8AHPCCEuklI+sddxVwFXAdSo34lCoVAougglVhWKbsQLHg/3GY25+sv5paWc29JCr/nzdYk2SeAPfj+PtWmB07uykp8UFjKwpYWeWaGqN1tcLt4MBNhZVcWqvDy2hcNa9NDjwW6z7SNM7WYzlmCQcr+filCIcydMYEJxMeHiYhrCYaoHDcKZdSIeecYZHRKhR4LDFbozhgyhoaGBHnY7BrOZT8Jhnt++nZ2lpTQVFSFbD5SSDYEAG4TguWiU01wuZjQ3M6m8XJf3XOV08gsh+MY992BsbKQe+HosxgiDgYJsOvbhUlJTw7duuok/GgxYLBZWms1c2OEVK9rhdGCrlLIJQAjxPHASsIdYlVI+CjwKMHHiRLn3IAqFQqFQHAmUWFUouglLm5u5MxQiLQR+ITi5rIyfFRaSr1PqbwZ4GHgGcuKwNBzmO5s3M2/EiE5pQ/NJczP/8vt5z2AglZ8PXu8+4hSgOBajh8dDVSDABRMmMLG4GE9FBQ3JJNUDB+aikfZuJkI7m73f21kOB5OzAjYdi/Hcxo1srqhgS2UlCaMRgDTwZizGm3Y7YzZs4GaPh9HDhnV4Lf0rK5nQ1MSUPn20WlopGbtzJ6PKyzvUV/f2bdu4rLSUp9HO0bVors7KZqnT2AGcKISwoqUBnwYs69olKRQKhUKxf5RYVSi6AVG0+tG0EEjAEQpxgddL/pgxuoyfRDNsejeTwWgwgBD0c7uZs3o1E+fO1WWOtmwGHgmFWBSJIE27v2ZaxWlRLEZNUxO9/H4unTQJR0kJDZEI1f3754TpsSxCO0Lbz6V3SQkNDQ0Y4nGe2rSJL3r1ot7hyEVcV/Tpwy3Nzdy9bh1jdBCslWg3FkLZ32OzzUYwGOyQWAUoBsYBH8bjxGIxXpSSK0pKOrpcxX6QUn4ihHgWWI6Wlf852QiqQqFQKBTdDSVWFYouRqL1Ug0VFkIkQl4qxfwvvmDQTH26TqaBW0MhXmttlSIEc8xmzjMaqZk7V1dB6AYeyIridCqVa4EDUBYMMtTl4orRo+lZUsKuSERL583WVyph+uVpK1yrHA4aGhpwJ5P8PhBgR1kZADvKy7l3+3ZuAYbpIFgHGY3Up9NaK57CQt3+iIzyePhPNj39eZ+Ps+JxdU50ElLKnwE/6+p1KBQKhUJxMJRYVSi6mGe8Xl7M1us5nU7O37GDBTNn6laj+kfgw6y4aHUW/nphIeN1dBZOoRlD/TUWY2cbUSyAQY2NjNm5k1OcToaMHImzogKg0wycjlf2iLiuW8d9mzaxdOBAAFb26cN/P/gAh8PR4fNqUEEBywwGQtEo0bw8NtTVUVBQ0OHoalF9PWTrcD1WKw0NDUqsKhQKhUJxnKPEqkLRhaxqauLXoRBJgwG/EJxfUsKVgwYd9HX333Ybvh07DnrchkSCLYAQAkM8jiMUIhUI8O/evXnxEI1xSmpq2u2jugO4IxKhNpnMRVMlMLCxkW9KyYD8fKpPPlkJjyPI8GHD+D7wg5YWdpaVIYF11dW6CEATUJ5IEMo+D5rN/OaDD3h682YEMMrp5PGzz+bWt9/mpY0byTcaGeBw8PjZZ1NisRxw3JGVlRijUdJCEDWbKWltG6RQKBQKheK4RYlVhaKLkMDv0mmSBkOuTvV0jwfGjj3oa307dnB7377tHrM+GuWdRILp2SjnAKORUcEghYWFXyoKdvu2bQfc96zXy+/TaXyRSC6aWh4KMWPNGqqDQU7WycVY8eUZPmwY569ezX3Z55urqrBIfUxdK/Ly2JbtA9yQTPL42rWs+973KMjL42vPPMNTq1dzxoAB/OL00zEZDPzozTf5xXvv8aszzjjgmD2cTkZFImyKRgFwS0k/XVarUCgUCoXiaKVTxaoQYhsQRCubS0kpJ3bmfArF0cRbwI7SUnC5EFIya80a+k2frsvYQWAp5GpGiyIRRgA9evTQZfwMcG8gwJPBIDI7hymT4cRNm/iaxULxoEF7tJJRdA0jkkmMmQxpg4FAQQH1dXV0vGoVKiwWCoQgmUyS73CQBqKpFHlGI5FkkurCQmYNGJA7/sRevXh23bqDjluVybAi6zT8/KpV9J00SZ1DCoVCoVAcxxyJyOqpUsrmIzCPQnHU4AUejMWIxeM4SkuZ7vHw7enTdbkwTwPvAyIvDxIJLIkEg10uirP1ix2l3uXi16kUyyyWnBh2hELMWbGCiliMYSqa2m2oqa6myOPBa7UC8GldHaNcrg7/foyRCNFkEqQkYzRy3YQJ1Pz2txTk5TFrwIA9hCrAX1as4OsjRhx0XJPHk0sjD+Xnq7pVhUKhUCiOcwxdvQCF4njkt8EgW9xu/D4fqYYGLs+aK+nBJ/E4jbEYAEU2GydJybCBAztsgAOaUP1uXR2LUymt16YQDHK5+PrSpUytqWG+EqrdCqfTSR+bLfc8nJdHQ0NDh8eNB4O5GxXBWIwXN2xg6w030PD97xNOJHhi5crcsXe/+y4mg4ELR4066LilJSU5Yy6DEFRXV3d4rQqFQqFQKI5eOjuyKoFFQggJ/FFKqXq5KY57vgAWZ+v9JHDq6tV4+venTwdF3uX//S8vbtxIfkEBt150EQhBaMsWzv3oI9Y1NbH0yiuZmL34f3LlSu758MPca1e6XCy/+mrGVlUdcHwJ3J9MsrW8HInWM/WMRIJv5uXR88wzlUjtppQ5HAiPByklBtBFAFrtdsiaaa2tq6O/w0FFVhSfO2wYH+7cyUWjR/O3FSt4ubaWty6+GCHEQce1FxXhNJuJxWJMnjgRZ2lph9eqUCgUCoXi6KWzxepUKWWDEKISeFMIsV5K+W7bA4QQVwFXAdTU1HTychSKriUJ3BeJaK65QjB41y76+Hy6CIhvjR3L4NGjeeCVVwAoDYcZYTaz4Gtf4+qXX97j2AtHj+bC0aMBWOVycfZTT7UrVAEe8fv5sKAAwmGElEzYto2bhw6l6hDcixVdR7qNSNQrlaatTVNZYSHv7NpFJJmkwGTira1bmdijB69v2sSvPviAJZdeijUv70uPq9J+FAqFQqFQdKpYlVI2ZP91CyH+A0wG3t3rmEeBRwEmTpyoj1WlQtFNedznY0UgAFKSl05zWSbDRJ1SZ61OJ8LrBcCYydC3qYmRAwYcNP33X6tX842RI9s95vWWFh7JGt8gBKekUtwydKjqlXoUsDUQyJlgFcRiutSB+iMRyArQgZWVzO3Th/F//CMmg4FxPXpw1YQJjHjoIeLpNGf84x+AZrL0yPz57Y7rCwRw+XwgJZ+uX8/pY8eqiL1CoVAoFMcxnSZWhRA2wCClDGZ/ngUcuFmj4kshgU1uNxvdbkqqqrCVlxMFokAMiAAuvx+3z0dJSQnFxcW517bGWfx+P0Gfj6riYqpLSrACBZD7N9zURGDXLgY7nUqU6IAL+Dfk0n9PrK2lurJSl4vx+nCYz5NJkskkACOTyUMSqgD/XrOG/15wwQH3x4DfpNM5wVPT3My3hKBqLxMdRfej3uViZyKRe14ci+kSxRd2OyQSICXmVIo7Tz2V+/Y61zZdf/2XHrcuFMr9/8hPJJTBkkKhUCgUxzmdGVl1Av/J1imZgH9KKV/vxPmOKfzA8pYW1nq9mMrLSZWU4AU82YcrFqMhFoPCQohEcMbjmM3m3Ovj8Tguvz87mB+nxXLg/YEAzoKCffdHo1BcjDEaZXgkQo3VSjlQ0eYhmppI1dfTp0cPdVHZDhL4TShELJ0GIagIBBhTX0/1IfRUPZSxl2Yv8EGLqvbLZA5JqH5SV4c1L4+RlZUHHPuLZBJ31rDJFo8ze9UqaubM6fC6FZ3PiuZmZPY8sMdijBg0SJf/p6mCAgoMBpLZNjV6mHcBhEtKoLkZISUl0agyWFIoFAqF4jin08SqlHILMKazxj9WCAI72jy2Z/91x+O4wmEt1W4/YjIcj+ciEEJKYrHYHvtjsZhu+9NCsCOZxL/X2lsFrSgpwdHSwnSrlTGFhfQD+gNFun5SRzcveTy8kY0aCeDyWIzT583TRTisiUbxGAw5F9W8dJrCwsJDeu1TB0kB3gx4pMyte9YXXzC2f391Y+IowVtdDVnn3qpAgMGDB+sybnM8TjT7HRFpbiYkRIcFqwSaDQbsWaOmC045RZ1nCoVCoVAc5xyJPquKNriAlWiOsJ9Go+xKJLDsFfWEg4tJi8VCPJWiIB4nP51mRFkZZWgpvBYgDqzfsgWRSmEQgokTJ1LCbgMTn5R8tmkTKSCVl8eQ0lJMaGnEEaDZZGJDNErMZCKWn4/FYtnnvbSuMSMELTYbb2cyfNZmfxlQGQpR2tzMFLudk8rLydfjQzzKcAMPCpH7fY6oq2O41arLhbgnHOajeJxUVqz2S6Ww5OUdknDISMkza9fy7mWX7Xd/BPg0lUJmMiAE47dsoSYQYPD06R1et+LIsN60+yu+p9cLOpnYudLpXOuagnicYDDYYbG6zu1mZ/Y7xZJKYdMpWqtQKBQKheLoRYnVTqYFTZy2PtzZ7fF4HFdTE0iJXwicTuceYrTIbMYSDFISClEYjzNj9Gj6A47so9Rsxmu30xAIUF1djXPvC7viYlzDh9PQ0KDtLynZc39JCfNHjty9v2ivOKjNxl2PPoqrthaz1YooKCAGuUccSCeTxCIRkkYjoKUGerM/A7Sk03wRjQLwNGArKMBhNFIKlADF7Hb8LKmp4cY7j72S5gRwRzhMKCv4iqJRpm3aRLVOabTL0mlNqAJ/feUVttXX44nF6HXffdwxYwaOggKue+01miIR5v3zn4ytquKNiy4C4N3t2+lVVET/A7QH+TCRwBeNkkylKAmH+ZbJxAjVR/WoIQV8lkzmRGW1x6NLDWgUiGb/nxukxJZIHHIkvz2We71gsSCBklCIhkBAnWvHKPavfY3Q00+3e8wDL73Ew6+9xvgBAzh/6lQGV1czXHUMUBxj2O12QqFQu8c88MADPPzww4wfP57zzz+fwYMHM3z48CO0wqObM++4g3/+3/9R0s7Nzxm33MK9l13GxL06G6zYsoUGj4czJ07s7GUqDoISq53AduB5v58PkkkChYX7RE1hd1TSkMngCIcZaTRyUs+e1AA1gNNiwV1RQUMySXW/fvvtN+h0Otu9mOvo/pTHw+8nTGjvrRIKhfCGQmSKikhYrXgBL+ADIrGY9j6zWCwWzG0jtKkU9liMPiYT/9yxo915jkbSwA/cbt6PRpFowvyaYJAz5szR5SK8CXBZrZB16f3F+PFMXrBgnwjXOcOG7ff1M/r25eMrrtjvvnpgZ7YXLMCpa9ZQOmCAEg9HEWuAWNax1x6LUREOd7gGtKSmhu9u2MDnWSMvayLBOoOBkuZmaG4+7DEBWqqqwO9HSEmPQIBqnVKWFUcnD736Kq/97Gf0q6ri0vvvZ/6kSUqsKo5LHnroIV577TX69evHpZdeyvz585VYPQSklLx8660YDIfXCG3F1q0sq61VYrUb0K5YFUIMAM4BeqPdqK8F/iWl3Lt88bjHDywB3gbWtpoXSamZH7WJmlqAEUAfKWn85BMcgQAmIZg/fz57y4CDicnugN1u32/6XwYtVXCV203QYiFgtWJqk5KYTqUIhcP4paQ+nea9dJpr0XobTQaGcnT3Wax1u/l/0egeadFTNmxgREWFLr/TDPBhMkkqnabAYqEykWByr166GN2kgGWg/b6EoCQSobffr8xujjLeCATw+HxIoL/bzdSTTurwuXfjnXfyg7o6Muk0Ehi2eTOXlJYybty4Dq93vcmUq1f9+vDhOMvKOjymovtzz/PP8/T77xNPJjlnyhTu+OY3ueahh9jicrHg7ru54OSTeXHpUpasXs1dTz/Ncz/+MQN69OjqZSsUunPPPffw9NNPE4/HOeecc7jjjju45ppr2LJlCwsWLOCCCy7gxRdfZMmSJdx1110899xzDFCu/HuwzeVi7h13cOqoUXy0fj0rtm6l6YknKC8q4udPPcWTS5bQu7yc8qIiJgwcyM3nnAPAMx98wLWPPIIvHObP113HCYMHc9uTTxJNJHh/3ToWnnceXz/55C5+d8cvBxSrQojrgbPQNNgkYAWaaP1ICHGtlHLxkVhgdyYFLEUTqMvQImmwZ72pKZ2mt9fL7KoqRgMDyX7oJSW4TjlldxpuNxelXxYD0MNmo7C6mmAwSKHFgsFkwo1Wt7st2/YCAClJp9PsBHYC/4zHMYbDnJiXx2mFhYxHq8Xt7qSAj5ubed7l4l2LhUQbcT5u2zbGbd9O9Rh9PMfWJxL0iES0z67BSNUuM97B+ehR5rcaCKRSpFIpis1mhppM2s2UY+wcPZZJAYtTqdz/sQFuNzEdTo40sLmsDJqaEFLSz+OhesSIDo+73eXi41iMDIAQDN5Pjbzi2GPR559T29DA0t/8BiklC+66i3dXr+aRa6/l9eXLeefuuykvKqK2oYH5kyZx3tSpXb1khaJTWLRoEbW1tSxdulT7v7BgAe+++y6PPPIIr7/+Ou+88w7l5eXU1tYyf/58zjvvvK5ecrdlQ309j19/PQ995zv0zWaPLaut5bmPPuLz++8nlU4z/qabmDBwYO41qXSapb/5Da8uW8YdTz3F/37+c+688EKW1dbyh2uu6aq3osjSXmT1SmCslDIthLgPeFVKOUMI8Ufgv0DHb6UfpQSAx/1+Xk+nSdts+6T5FprNVLrdDKmro8bn4ytnnrlP1BSOjsjp3lz+3//y8saNVNpsrL72WgBufftt/rthAwYhqLTZ+OtXvkJ1YSFPrlzJPR9+mHvtSpeL5VdfzQlVVYzIZFi9YwfeggL8Nht52Rq4eDyOy+UCKXleCD7Iz8dmNtMvFKLG5eKUoiLGVlTkesV2FUm0VNnPPR6Wh0K0lJWx3WikLhLJtQppZeKWLZy4aRMnT5umy+97BVqqOVKS2GXE/7yNT9KCzz6Giy+G3r0Pf2w/sDob9UZKqpuaKCooOOrO0+OdT4BomxTgXj6fLpHxNUAo69hblErx7ZNP1uXceM/nI5OtVy0LBgm0tMAB2ikpjh0Wff45i1asYNyNNwIQikapbWhgejsO5QrFsciiRYtYtGhRLkslFApRW1vLdGVo+KXpU1HBiUOH7rHt/bVrOfuEEyjIXq+fNXnyHvvPnTIFgAkDBrDN5ToyC1UcMgerWTWh3Uw3A4UAUsodQoi8zl5YdyQMvAA8FYuxozXNNxTKpfkOA2YCJ1sshGpqaDCZjrmo6aVjx/K9yZO5+D//yW37wdSp/HzmTAAe+OQT7lyyhEfmz+fC0aO5cPRoAFa5XJz91FOMraoCtPThkf37a1HXwkLWJBLMB553u3kvFiNkNudckAHe8njAZOLxaJRh0SgjUimcjY1MLilhTCeJ1xTkIsGNwEa/n43hMKGSErxWK7F4HFe2HQ0tLdhtNmRrtBhwhEJM27CB2RUVDF6wQJfzwA/cHY3mHHqNWyUyLZAI0mnYtu3wxaoEPgWS2YicPRajPBAg0uFVK440z4dCeLxeJDC8vp5pOqQAA7wWCODy+UBK+tfVIdrcme4I23v0AJ8PISV9W1qoHjJEl3EV3RspJQvPO4+rVd9mxXGOlJKFCxdy9dVXd/VSjnps+8nMkfs5ri3m7M1do9FIKpPphFUpOkJ7YvUx4FMhxMfAdOBXAEKICsBzBNbWbYgBLwHPAyHA36bHaWE0yvRdu7i8b1/axi1sR2HU9FCY3qcP23y+PbYVte3/mkjsVzj+az/9PNvWuxqbmzkB6Jufz6BFi2i029nudMLkyWzYq43PzkiEdeEw5OfzYDRK31iMPuk0Vo+HAYWFlGcyJFwuaioq6FVeTtDtprGxkcqqKsoqK2lsamJHUxN2pxNzWRk7vV62+3yIsjKSRUV4gLpoFFcigTnbVijetg65uRmn07lPeyGAoliMXs3N9He5qGlu5pSTT2bYAQyOviwxYGE4zMaWFhKVlfxl+3b6GNN8bighkxEYBDSa4a1thzf+tnicdUIghCARj9PX7ea1VIrhJ56oy/oVR4adwKfZ1jICGFZfT+wAjs9fhgTwdnZcCfTftYsGHVowpYG1RUU4zWZisRhX2Gw4y8s7vF5F92f2+PHc+uSTXHjKKdgLCqhvaSHPaKRyL/f6woICgllneYXiWGT27NnceuutXHjhhdjtdurr68nLy6NyrwyTwsJCgsFgF63y6GXa8OFc/eCDLDzvPFLpNK8sW8aVs2a1+xr1vdN9OKBYlVL+TgjxP2AYcJ+Ucn12exOaeD3m2ely8Ww4zAc9ehAvKMhtt1gsGCMRTti4kYHNzZy1H3Ok442fvPUWf1+5kmKzmXcuuWSf/f9es4b/XnDBQcdxOp2cNX/+7lpeq5W1bjePrl/PNoeD+lbTlTYisTkcZls2bZVAQNtvtUIkgiMYxBOLQXExxGLa82gUbDYIh3Hk5+MJBsFgAJ8PZ1Z4t7YVIttWaG9hGo/FqMnLI9TcTLnfT1UwyCVTplBUUsJGtxsqKhg8dapuNywSwM/RUnSRkrz/+z9mL1/OV/v2JRYbx+LFMGMGZDNZvjQb3W4uDgQ091gh+JrJxJku1zGXGXA88PdAgHQqpfXddbspSSR0SQH+EHJ12MU6mm6tBZricWKxGFX5+ZxUXNzhMRVHB7PGjWPdzp1M+eEPAbBbLDzx/e/vI1YvOPlkrnzwQR546SWeVQZLimOQWbNmsW7dOqZk/4jb7XaeeOKJfcTqBRdcwJVXXskDDzzAs88+qwyWDpFJgwaxYPJkxtxwA30qKpg4cCDF1vbdUE4dNYpfPvssY2+4QRksdTHtpgFLKdeglSkhhBgIjAHWSSnXHoG1dSmLW1r4qd9P0GyGpqZcqm8P4EKzmcEOB401NVSfeGK3v5j/6CM6LGYOxt2nncbdp53GL957jz8sXcodp56a2/dJXR3WvDxGHmIN2t61vMMrK1k4dqzWI9JmY6uU/H3LFhqKimhqvbDNCknapOEKKQlnTYjkIT7PtdrJjmOPRunl9dLPZqNuyxbs4TDlkQgXnnIKNcXFuHr1osFgoHrECJzZ96f3+ZACfhoK8XE6jdFgACGYvm6dZm5z0kk4nR37vUrg3nSaaF5eLlvgtGhUF4dXxZFlvdvNc5EIaSFACL4qBLN0Msf6Tzi8O7W4oUEXd2GAl9qkFtfU1eEeOLDbf6ceSYQQ5wOvSymDQoifAuOBu6SUy7t4aYdN2x6rNyxYwA0LFuxzzLbHHsv9PHX4cNY++OARWZtCcSRp22P1hhtu4IYbbtjnmG3btuV+njp1KmvXHvOX4IdNX6eT1X/4Q+552++Rm885h9u/+U0i8TjTFy7k/77yFQAW/7//lzumvKgo9xpHYSGf3nffkVm4ol3acwN+BzhfStkshPgWcCvwLnC7EOJRKeXvj9QijyQp4EngLyYTQbM5J2IKQiG+ZzYzEzACOJ306IILqp0uF+vcbsw9emAsL8eD1td0WzBIYyhEXlERRpuNKLDjI1j7lxQ7/m5EpsGYL5j6FpRNgXgsRiIapcRiwVFQgBUoADKhEEmfj36FhdQDDYANzY33UAqVvzlqFPP++c89xOpT+0kB/rK0FbDVwMDhw2loaKBHYSGedJonv/gCv9lMsKCAYEEBMZOJZF4ejqIi6vx+JGCUkqqiItxeL3nJJOZ0msHV1TQ2NGCJx7Enk8yaMIGSTIZl779PQTRKXmtbocJCXNk520YbO9skqwm4PRzmfY8nF+m9zGDglMpKqseO1WXuF4BtDge4XAgpOX3dOvp11l0NRafyRCxGWggkUOXzMcJg0OUc2Qp8no3q51KLHY4OjxsD3mmTWjy4oUGX1OJjjFullM8IIaYBs4F7gYeBE7p2WQqFQnH0cNWDD7J2505iiQSXzJzJeBWVPmpoL7JaIaVs7fJ+PTBFStkihLACHwPHnFitR7sK2ASYLRYQgoJEghO3bOEHY8bQ60iuxeViRXMzyR49CDoc7ADWRyKsisWQRUVa/9Z4fHc9pdebM/pxmkxElpv56DRJJmbMVpYL0gmJe7HAPD6Oy+0GKXEHg7mocTwex9Uqivx+bOk0i7PrSadSiGSSMqORFFpaqhcoAra0tDAom5774oYNDG1Tb5aRkmfWruXdyy7T9fNpKxKrgOtPOCEnJAHt54oKnKWluBKJ3SJz7+eVlbik3P08ewE++PTTj7gw3ZuPgd8B9VmRIIGJmzdzSkmJblHPj5qbecBkIi/r+Du1sZFrpkxRYuEopAn4uLQUPJqlwOStW+mpU73xf9DKH/xCMKCxkcJkUpcU4Je8XiJZszBHKER1IKD6+e5La1e0ecDDUsr/CiFu78L1KBQKxVHHP2++uauXoDhM2hOrSSFETyllPZqvUDi7PU42uHisIIFFwJ/Q3hyA2WzmNIeDBVu2MGzMmE6/eE8Dm4GVwIehEEsiEVJ2u+Y2nG2P408mkdn1tqasmrOmJHunsrYsNpNJAFJorxASQz6UzWC/x+9vnHRau0ZKt2ll8rvXXqO2vp5QNMqA++7j3OnTWb1xI26vF7PBQP+SEh6dNy/3vt7dvp1eRUX018HgpT32FpJ7//xlnh9o25EiBDwcCPCSlFgsFiwWC0HghNpaJm7fTvX8+brMU+t28yOvF7/FAoEAJ5WV8ZM+fQ5qEa7onjwaCNDk82lRVb+fbw4erMs53Ay8GYsRi8dxlJZycSjEFB1Si10uF392uQgVF4MQnAFa/b+6UbI39dmWcacDvxJCmNFaWSsUCoVCcczT3nXpTcAiIcRzaHWrbwshXgdOBh4/Eos7EsSBO4NB3stksGSdX03ApcACux2Rbb3SGUSBl71e3o7FaCgtJZO12/an06QMhn3EpMViIYDWN9GeSDDB4aA3YJCSDWvXYo7HMWcyzJ4+HdcM+EYeJGQGg0Fy0rSN3HSzkzOnOHC5Yrz69tukpCSVl8f0OXOwAXWpFP9buZKI0UjYaqVZCJxAcyKByIrYy+fO1T4niyUnYicMHAhCYLfZMJlMrAR2xOPYgkHGlZfzcbYps6J9gmgpuc/EYmzP1vD5hWB4RQW32mzYy8qoHjVKl4v5IHAb4M/2tjQnk3x1yxZMo0Z1eGzFkWcrsEjKXK31lNpa4v376zL2XwMBGrLnY0+fjylVVbqcgx+3tLCruFhL0c9kODmZVEJ1/3wNmAPcK6X0CSF6AD/o4jUpFAqFQnFEaM8NeLEQ4iTgm2g9Vj9D03bXtToDHwpCCCOwDKiXUuoTEtKJGPCjcJjF2RRavxCMKy/nZ1Yr/Tppzgxa9PQt4J1YjJ3BoHaB6Xbn0nFb0+0Ko1EqQiFmlpQwCuhjNpNnsdDs8WjpqYWF2qAlJbjGj9+dtlpeDuXw9tuCl18OMWhQA3PnOnA6tRTX3k4nXznzzN3HV1QAMLisjBGTJ+e2P5yXx2lAKJNh45YtxIxGohYLxX36EAUaEondhkZSkkqlMJpMNKdSbIvFwGTi42SS/okE/fLz6Qns2/1Ksd7t5ulolE+dTrBY9miN1N/l4rteL9PGjAGd2nlEgJ8BLVmHZCElZ6xZw6gTVAnc0YgE7g+HSWUdgPs0NVHj8+mSTtsEvJrJ5M7HcVu20JDJ6CIqP+3dG7xehJQMcrkY0rdvh8c8FpFSRoQQ/wWcQoia7OZD/husUCgUCsXRzMHcgP1oRg4d4QZgHVp5Y7chCtzObtMQCYzasYNrPR76jR2r+3wR4B8+H6+k08TsdsxmM4E2okRIiSUU4lSzmdFmM06LhWRLC9W9euFs28rB6aT3fi4U95e2OmUKTJlSCAw5pOMPtN1utzN48GCCwSCFhYXYsxHgUCbDum3bCGaNjYzV1QRBu2jOiti0EOzMZHCjpRPbYzFqTCYGWCwUw357sh4P7AI+Av4XDvNhNKqVFWdvWLS2Rpq4aRND3G4G6ZT2C9oNmjuBWrRUd6fTyVd37OArJ5ygolpHKa94PCwOhXLmR5ekUpysUzrto4EA8XQahKDK58s5UHeURuDT/HzsNhsAN/fvn7tpptgTIcR1aPeXXGj3O0G7R9F5aT8KhUKhUHQTDqs8TQhxlZTy0UM4rheaKcTdwPcPZ67OIIz2l38Du01DTtqwgUk7dtBHR2EAmjh4BXgyGmVzIKCJuHA4J0pM4TBD6+sZ0NzMhTNnUtX6wspK7dFNsNvt2O32fbYNGzhwt4jNzycJbM9kWOX347NaieXnYzKZcinDISlpTKdZazJRZDLREyiNRGjyeHC5XMesYPIBG4FP/H7eTyTwFhVpdcip1B51yKWBANdVVDDQ4WBXr15UT56sa6/WW0IhlqXTuZT3m8xm5g4apMv4iiNPBHg0m/4rgTHbtzOgsFCXc2ZFUxPPRiKaOhKCb6RSnKmTCP57IEBja7saj4c+ylSpPW4AhkgpW/QaUAhRAjwGjET7+rlcSvmRXuMrFAqFQqEXh+ulcqgBsfuBH6KlEXcLtrjd3Aa4i4sxm82YzWa+X1TE6PJyqkeP1k0YpIB/eb08JSVJm41YNmVWAtZ4nBNcLi6rqcFaVsaueFzXuY8ke4vYPGCg1UpVWRnBYBBhteI1mdgYChFu0ws1lUoRNplYl0oRSib5KC+PKxoa+IrZzIySEvpzdEZdJZowXdHSwnK/H29FBQ2FhTSB5rbs92s3LKLR3A2LANDT42FMXR03TJ6s3bBwOqnS8XyoB34WifBp1u3ZLwTfLypibkmJbnMojjxPADG7HcJh7Xtl61aq58zRZexHk0kyaOd0r5YWxgqhm2HT621Si8du3UoD+vcnPobYCfh1HvN3aL1bzxNC5KN1J1MoFAqFottxWGJVSvnHgx0jhJgPuKWUnwkhZrRz3FXAVQA1NTUHOkwX6lwurnG7cRUVQSyG0+nkBrOZeSUloFMrENCEwR3hMJ+01qOGQjhKSymKxZi0aRNDXS7OnjcPJ+guSroLbUVsFdAbWLt9O76CAnw2Gxm7nchOCGwCQ5UBKQQ7HA7+JgQvAIHFcRJvxJlxquDrswoZQDe644FWvO0G1rS0sM7vJ1pejq+oiJ1ASzyOKxwGoxG8Xpz5+fu4LZvSaQa1tHBudTV9CgoIgq5R1La8BTwCuJLJ3Pwn1tYy2uHQ9bxXHFk2As/F48RiMRylpVy4axdnzZmjyzn0ObCprCzXe3fapk1UT5/e4XEBngJMBQUQCFDl89HH66V66lRdxj5G2QIsFkK8wm7DeqSUh9WtXghRBExH8xFESplAS7xQKBQKhaLb0a5YFUIMBc4GeqLdYG8AXpRSrjuEsacCC4QQZ6L56hQJIZ6QUl7U9qBsOvGjABMnTpRf/i0cOo/G47iKinIplwt27mTewIG6jS+BN9Ba4DS1qYUtjEb5aiLBOSUluKurqZ448aiIIpTU1HD7tm26jRfNzycSDGJNpwnUJ1n0BqQzEmEAw7m9sQuBxWLBtSTBsrl5yEQ+n9wveev1BM5T8qkEqoJB7C0tDCouZnBpKZVAOYefIrA/Umg9ZFsAT/bfrX4/W0Mh4iUlBG02fGQjpa2i1OfDmY3U7681UKHZzCiTifCOHVR5PPT1ejln7lzthkUnpXxH0QrO38k+t1gshKRk2vr1jK6vp3rkSN3nVBwZEsD/i0RobG4GKenT0sL8nj11+V5JAb+LRIglkzhKS5no9/Pt6dN1GXsX8HKbNjjfjkSYodrVHIwd2Ud+9tFR+qN5Zz0uhBiDZp54g5Qy3P7LFAqFQqE48hzwGl8I8SPgG2g3wpdmN/cC/iWEeEpK+cv2BpZSLgQWZseaAdy8t1A9knwKfOx05iIFJ9fWcr6ObTrCwM9DIT7M1gO2CoPJtbWMq6vjK2eeidPppOdRdFF24513dtrYv/gFbF+k9Zc1Csml1S5mF5rZbjbzp/9FkIk8yAhkEprezuA8BXbG4yzzekEICAZxWq2YzWYEUBCNYgoGKbfZKLfZsKDltSX8fkI+H4UlJRQWF5NBm9MXCNAcCJBXUgJ2O2G032FLLIYnHs/VdMJe6bstLThNpgOKUrPZTKnZTEEgQGkwSI9AgG9MnMh4wGSz4Ro8WHNbPvHETr1A3wL8Cu3uUiv9zWbustnIczqpHjdOCYSjmCeBLdlIuSmd5pS1a9klhC5ZGn/3+fg8W1+fl8lwhc2GU6ebKQ8Hg+zKuq/38nqZ0aOHOg8PgpTyDgAhRKH2VIY6OKQJGI/m7P+JEOJ3wI+BW9sedCSznhQKhUKhOBDtBaS+DYyQUibbbhRC3IfWd7VdsdqdaAZ+y27304EtLfxUp36VoPWsvOjtKEvfSGE7IYptop9x5eXcbbNh0rkW9lhhxgzIz4dEAvLzBd++oIoppdq+oSfGONeUTyplwGCSjDlFczn1H0AcxuJxtjc1aWIyFsuJyZzIBPD7cWYFaDwex5U1d8HjwZmXt3u7252r6WxtJbQ/UWo1m6nJy8Pv8VAYieCIRPjK+PGMBcosFtyVlTSkUlQPGKC1EspyIBdmvQgCLwJPxmKE2oju04BrAEtFBSjX1aOadcBT8TjpbKuaqRs2UBKP69KqxoUmhFvP90mbNhEpL9cl8r8OWNymVvWEjRtpkFJ9Nx4EIcRI4B+AI/u8GbhYSrnmMIesA+qklJ9knz+LJlb34EhmPSkUCoVCcSDaE6sZoBrYvtf2Huy2zz8kpJSLgcVf5jV6kQHuDIepS6WwWCxUm838qrpat/pHP/CVR2HJdy3ItAVhLuKM+1Zy7RQPk8aOPaLCQKKJlY1NTWxvaqLI6cRWVkaD14urpYWysjJKS0vxer14W1ro6XDQ0+Eg0txMsLGRYRUV9DtCF45TpsBbb8HixZpwnTJl97758xz853kPr78eY84cC/NmOkgBnyWT/HvdOrwWCyGrlYrycsKg9XTdn4g9zO0AtliMSr+foZWVmIRg6+bNWGMximMxzps2jWGA0WrFVV2tRUoHDsRZVpZ7D50tSvcmAPwXeAnwtRHdkUyGhcXFfNXhOGJrUXQeIeDn0SiN2ZszvT0ezrPbGaJDKq0E7gmFiGVb1ZQHg4zbuZPq0R3vkCLRVE+r+/qgxkZ6BoO6COzjgEeB70sp34FcptKfgMPqISSlbBRC7BRCDJFSbgBOA9bqtFaFQqFQKHSlPbF6I/CWEKIWzY0QoAYYCHyvk9elG096vSzJGh0FgFtsNgrbRLo6gg+48J0YS75rRqYABDIusf8vSZ9zOy9taovbzUceD4mqKvwlJWwIh6mPxUjZbKSEwBWNgs0G4TCO/Hw8wSDk5UEwiMNk2v08FMKRl4cnEoHCQojH6ReLUZbJUODzMcpqpSadxtzQwPDKSt2NoLQ+sPvfN2+eg3nzdj83ASeUl9N33DhNHFZX48z2aKyPxfj3Bx8QMZlImUyccMopFAANmQwf1NaSEgIDMHnCBBxAIJNh2fr1GNJpLOk0s046iT5AJJFgyeLFmBIJTAYD8+fP12pKi4pwjRixe942UaYjLUr3xg+8ALyM1iYJyInu8kCAOStX0n/4cFBi9ahHAr8H6rLO4vmpFDNXr6Zw5EhdzsHnPR7ebNOv9YpolNPmzdNl7LeBNVkzKGdJCdf6/YxUtaqHiq1VqIJ281cIYevgmNcBT2adgLcAl3VwPIVCoVAoOoUDilUp5etCiMHAZDSDJYGWPvSplDJ9hNbXIWLAv9r0IJy0eTPFpaWgg1hNAT8Jh1n+ehKZMaN9PBKjAS6/fABOp37iQKI5f77q9/NBKMSmVAqZddN0GI14sjVghMPYbbY9oobhSORLPW8Kh9kaDoOUvBcIaAsoKsLu9zPbamV4KkVpXR0jKyu75EJzf+Kwp9PJhaedtltMtkY4S0s5bdSo3dtb27SUljJr7Nh9j6+ooGLOnN3b28zT1aJ0b3zA88CrtLEHzdI/Lw/n6tX0b2jAZDCo6NUxwuvAO23Sf09bvZriREKX328L8KgQue+CUTt2MMxu1+WcDwIPR6O4stHgwVu3MnLYsG71/6mbs0UIcStaKjDARcDWjgwopVwBTOzguhQKhUKh6HTaM1iyoJW5DQRWAX+WUosfHi28AqRsNgiFKIxGmbRtG9UjRugy9r+AVSmtRlXkF0FcYjTCgw8amDdPH6GaAP7l8/FSKkWL2YzH70fK3aVD+xOblkyGvEiE/GQSczrNgJ492dXYiCGdRghBv3792NrQQBpImUxU9uvHlkCAqMlE2GLRBm7TD7WVkNnMG4kEz4XDUFSEw+PhKxYLZxQXMxQw6PKOD58DiUm9tncHYsBy4CPgnViMwF5GUH2AC4CpVivuiRP3K7oVRyfbgD/EYrn07lF1dcxzOBisg1GXBH4RChHKZEAIiiMRpm3eTPXcuXosnb8C7mw02BaLMX7LFhqKi9V5eehcDtyBdn9KAO+iIqEKhUKhOE5oLw34b0ASeA+YCwxDSw0+KogCz7HbVGnBzp18RaeUtrdaWnjMZMJoMGCbmGTBrz7DuESLqOohVCXwjNfLXxIJdsXjuahpq3Q0ZFM8naEQ03r3xvXZZ9gjEezJJOeceSY4HHukrLqk3EO4uITY/by8HFc6TUNDAz0cDoLpNM8sXUqz1UpzURHNhYW4iopImbKnSlbIeqxWngP+B+RFo/RraeEUq5XTHQ7VXV5HAmhW3B8BK9BuYOxtBDWpvJzLrVamoF3JQvcW3YovRwzN2TmY/S5wBINMXb8e+/jxuvyOn/Z6ebO1J7QQXBEOM2fuXF3GXtLczDN5eRgNBhCCU9avxyylivZ/CaSUXuD6rl6HQqFQKBRdQXtidbiUchSAEOLP7G5fc1TwItCcrZHqlZ/PNQMH6tKLc6vLxa2BAOH8fBCCk6xWrjzZRM+vV+uS+hsAbnW7WRyNIttsz0unGdTYyACXi2qfj9EDBzJ48GBNfObn7xNFay+Ftb3nVcC3p0/PjQewo6GBRO/erDMa+a/HQ31JCWmjEYvFQjweZ0dTE5ul5H+hEI9YrUywWJiMlj+u5NKXpwn4GE2groY9zgPYsyZ18ubNnN+nD+PHjTvi61QcGe4NBFgjJUaDgbxMhrkrV5IPugi+ejSnntabUGO3bWN0YaEuQrXO5eJ2jwe/1QpCMMNi4Ws1NZ3etulYQQhxv5TyRiHES+z7NYCUckEXLEuhUCgUiiNKe/ot17JGSpkSQrRzaPciDTzTpkZq0tq1tOgUhfh3JEI4Px8JWONxLvD5dBMKLcBNkQhftBGqtniciZs3M8Ll4pQTTiBWUNDp9ZT7E7MAU4GzqqvZtmsXnt692Ww280ZLyx5pyKF4nBUWCyuA38fjlAQCnGA2M72oiJFAgW6rPDZIodltb0CrS14RibAlmdwjvbctfdBSHAKffEKZ34/RYKDngVyqFEc9T3q9PNMm6nmDwcC4YcN0Se9OAfcCBqtVM18LhThp82aqzzxTl7X/JRbDY7UigbxUirMbGxmnbqp8GVprVO/t0lUoFAqFQtGFtCdWxwghsg47CKAg+1ygNSYv6vTVHSZr2F0jZY3HGVxfT0NVVYcv7kLAxz16gNuNkJJptbUMnTBBlzV7gRsjETYEgzmhOnr7dk6qrWXU4MEM1klsd5S9hex5qRR/WbqULWVlbHM6MVRVAdlUVZcLl5RsiEZ5w2zGajYzGBgD9GpuxrpzJzXHUU1lAmgAPvd4+DwUoqWsjEabjUR2fzwex9XcvE+f16HAFOBEtF5SFBfjOuUUVZN6jLMKeKyN6dHQhgbGms26Cb5/sNuht6K0lBuCQSafeaYu59MG4IOqKnC5tO/KTZsYMWZMh8c9npBSfpb9cayU8ndt9wkhbgCWHPlVKRQKhUJxZDmgL46U0iilLMo+CqWUpjY/d1uhCvA+Wj8/hGCAy4VJCF1S5l4AIkJgt9nom5/P9ydM0OXCbQsa6QABAABJREFULgP8uLmZlU1NxGIxDFIyZ8UKTtmwgVNPOomTTz652wqSKqeTb0+fzndLS3myvJx/ms1cC/T3eDCm0zmjplgsRhpYB/wtHuf6SISrS0q42O3m14EA/0OztzyqHLwOQARY2tzMn2pr+YPfz13A1cB5wFXxOLeHQvxXSt5vadHqELO0pvcaMhlqmppYUFfH34B7gHPJCtUsTqeTcePGddvzQtExXMDPolES2Z6nzkCA09ato6dOtZ6fAP/K3lDy+3wM/fhjJpeX63I+JYD/F4kQjcVwlJYy0Wxm4Zgx6lw9fC7Zz7ZLj/QiFLvp27cvzc3NR3ze2156if+tWNHuMbf/85/c+5//7LPdFwrx0KuvdtLKFEcrM265hWW1tQCceccd+EKhQz6+LSu2bOHVZcv2+5rFq1Yx/847D7qWb3zjG4wePZrf/va33H///UQikUN4B8cOdrv9oMc88MADDBs2jAsvvJAXXniBtWuPjxbZ7bkBW4GklDKZfT4EOBPYJqXc95uwm5AB3o5GiSUSOEpLOTscZnq2trMjpIDn2rhxTlu9GuNEfZz//+Lz8XHWQEkAcz//nGn5+UxcsOCouMDbO9o6FxhvMPCfJUuoKyqivrwcU0UFjdn9raIsZTDQWFTEy1LyXnZfHtAXqAwEsLvdDCstZWhZGRVA/pF8UwdAoonRFmBjSwvrvV4yFRVEi4txAY1otdKuSATy88Hvx9kmpbf1vbemTcdiMXpnI86VUlK3bBllfj9mKZk/fz6qO+rxRxRYGImwORtltyYSXB8K6Rb13AX8lt3nYk1zM6O3baNBJ7H6u0CAFT4fSEleJsNNNhtVbXoTKw4NIcQ3gG8C/YQQL7bZVYj2FaQ4CkmlUphMX95BI51Oc+dZZ0GvXoc1ry8c5qFXX+VandL8Fccer/7sZ4f92hVbt7KstpYzD/O6uLGxkQ8//JDt27cD2g2hiy66CKtVWXa25aGHHuK1116jX79+XHrppcyfP5/hw4d39bI6nfa+MV8Hvg3UCiEGovm9PAnMF0KcIKX88ZFY4Jfl3ZYWarN9Qq3JJNMcDl0uwFYCLVk3TlssRv+GBhoaGjo8th/4d2urGGDi5s30b24+aoTqgXA6nZwzd+7uVFWrFT9aauO7QvBaLEYgG/22tLbMQSuUXh2P4/L5IC8PwmGcdjtms5lioLLNI8/rJdnURK+yMnqVlWFBq4ltfeSz2x23LRKtrjkD7HK52OpyUdSjBwUVFYSAcPYRAuoDAXYEg2RKSojZbLTQxpE3HNbWeAiC1Gw2I4A+eXkEm5txBAL0CAS4ZMoUBrcurKQE17RpKr33OEYC9wGbkslclH3u55/Ta9AgXc6HOPDTSISGZBKjwUBhPM6sVasw6tSP92PgpTa9raetX0+yqgqUWD0cPkS7t1AO/KbN9iDanyRFJxOOx/navHnU1dWRTqe59dZb+frXvw7A73//e1566SWSySTPPPMMQ4cOZenSpdx4441Eo1EKCgp4/PHHGTJkCH/961955ZVXiMVihMNhbrvtNm677TbKysrYsGED06dP56GHHsJg2DPZrW/fvlx++eUsWrSI733ve7z+978z/5RTOG/qVF5dtozv//nPlBcVMX7AALY0NvLybbcBsHbHDmbccgs7mpq4ccECrj/rLH7897+zubGRsTfcwBljx3LPZar70fFEOB7na3feSV1zM+lMhlu//nW+fvLJexzT94orWHbffZQXFfHzp57iySVL6F1eTnlRERMGDuTmc84B4JkPPuDaRx7BFw7z5+uu44TBg7ntySeJJhK8v24dC887b5+xc+sIh7nuuutYtWoVqVSK22+/nbPPPptZs2bhdrsZO3Ys55xzDg0NDZx66qmUl5fzzjvvdPrn09245557ePrpp4nH45xzzjnccccdXHPNNWzZsoUFCxZwwQUX8OKLL7JkyRLuuusunnvuOQYMGNDVy+402hOrpVLK1lj/JcC/pJTXCSHygc+AbilWPwwGQQgk0L+xkcZgkB46XOS9FgiQTqVACAa5XJh0urh7Dq3fqQAcoRCTt2xh2rRpx4RQ2TviWgxMA6YVFfHtaJQNLhexnj3xms1sBjahOeEeSOz50cR9LVmxGAyC2byHoG2LAGQsRiwaxVxQgMliIcNuW814PI4rHofiYohGccbje4wRbxXNUkJLC06T6aCCFMBuNmOIRCgJhykLh5k3ahRjgZ6A2WrF1auXJkiHD8e510W8ajlzfPOw388bkGv1curatfQMBnX5rpHAr4JBlnm9ICVGKbnbYKBqzBhdbo40Ab9DK8HwZ0swRjY0UD1+fIfXfjwipdwObBdCXAg0SCljAEKIAqAXWvtdRSfy+tq1VFdX88orrwDg9/tz+8rLy1m+fDkPPfQQ9957L4899hhDhw7l3XffxWQy8b///Y9bbrmF5557DoCPPvqIlStX4nA4WLx4MUuXLmXt2rX06dOHOXPm8Pzzz3PeeeftswaLxcL777+vred3WulyLJHg6oce4t3/9//oV1XFN+65Z4/XrK+v55277yYYjTLkO9/hO3Pn8suLL2b19u2s+N3v9plDcezz+tq1VDscvJK9oeEPhw947LLaWp776CM+v/9+Uuk042+6iQkDB+b2p9Jplv7mN7y6bBl3PPUU//v5z7nzwgtZVlvLH665pt113H333cycOZO//OUv+Hw+Jk+ezOmnn86LL77I/PnzWZFNc3/88cd55513KC8v7/ibP8pYtGgRtbW1LF26FCklCxYs4N133+WRRx7h9ddfz30utbW1zJ8/f7/fG8ca7YnVtlb5M9FK55BSJoQQmU5dVQcIlZWB14uQkh6BANWDBh32WPffdhu+HTuIRKO8nUySNhgwAJlYjI02Gw+/995+X1dSU8ONh5CfnwT+G4vh8XqRwAmbNjF96lSGDRt22Gs+WjiQKAsAn6ZSPLtpEy02G6GCAkoqKwmjRUJbaU8s5o5p04+UYDBnWHSoYxxovxnom5dHs89HYSRCcSzG7DFjGIbWqsdhseB2OGiIxageOhSnY89kXiVIFfvj314vf2zj/HteXh7zq6upnjhRl/PldeB/mUzunD553Tqqqqp0MWxKA7eHw9SnUlgsFoZXVPA9r5eB8+erc73jPA2c1OZ5GngGmNQ1yzl+GFVdzc1/+xs/+tGPmD9/Pie3iRade+65AEyYMIHnn38e0MTsJZdcQm1tLUIIkslcUwXOOOMMHG3+FkyePJn+/fsDWq3e+++/v9+LztZIblvW19XR3+mkX9bQ8BvTp/PoG2/k9s+bOBFzXh7mvDwqi4u1m66K45pR1dXc/N//8qO//pX5kyZx8ogRBzz2/bVrOfuEEyjIXg+dNXnyHvvPzXYgmDBgANtcri+1jkWLFvHiiy9y772ayXksFmPHjh0UFKheEa0sWrSIRYsW5f42h0IhamtrmT59ehevrOtoT6yuFELci9aKbyCwCEAIUXIE1nXYNBcW4szPJxaL8bXJk3F24K6Mb8cObu/bl1q3m375WsVkXjrNvESCHj16HPB1t2/bdkjjrwCaw2GklBRHIvR3u4nV1Bz2eo8FioDTysoYOXKkFn2sqsJZUEAazTHZnX1slJIl9fVETSZSJhO9y8sxoNX7xbL/+tsRowa0CGg4kyEvlcKSSjGsvBwnYMs+UsD6TZsoiMUoTCRYMG0aQwArIKxWXFVV2hr791eCVNEhPgEeMhhy52tNczNzhdDN+ffD5mbuMZkwGo0gBMPq6xmlY9TzYb+f9/1+kJIgcKvNxlTl/qsXJillq2l46w3j7lDCf8wz2Onks88+49VXX2XhwoXMmjWL27KRqda/JUajkVRKswa89dZbOfXUU/nPf/7Dtm3bmDFjRm4sm822x9h7twM8UHvAvV8HIOU+bXf3wJyXl/vZaDCQSqfbPV5x7DPY6eSz3/6WV5ctY+Hf/86sceO47YIL9nts+2fX7vPLaDSSyny52JWUkueee44hQ4bssX3bIV43Hw9IKVm4cCFXX311Vy+l29CeWL0SuAHN72aWlLLVlms43bTvWxTYlm3FYDWbGVdcrMu46cJCyLbCsSUSFBYW6jLuG4EAoWwqxsDGRgw6uRYfC+wt9oxohVvlaCfgjJISzh4wYHd9537+oDfEYrzwzjvITAaTEMw/80x6FBcjyNayWiy4rNYDj1FcjKtVNFdX46yoaHeNCsXhsA74eSymXfAKQaXfz7yVK+k9d64u4693u/mBz0fIbAYhGG23c11BAX10inquQAvztQrtybW12MvK4DhM3+okmoQQC6SULwIIIc4GjrwV7XFIg8+Hw2rloosuwm6389e//rXd4/1+Pz179gQ46LFLly5l69at9OnTh3//+99cddVVh7yuob16scXlYpvLRV+nk39n04Tbo7CggGA0eshzKI4tGnw+HJWVXHTqqdgLCvjrW28d8Nhpw4dz9YMPsvC880il07yybBlXzprV7viHen7Nnj2b3//+9/z+979HCMHnn3++35uyhYWFBIPB4zINePbs2dx6661ceOGF2O126uvrycvLo3KvsrHWz+h44IBiVUoZBX65n+0fohk/dDuWNzdrLqxSYgqH8ZSV6WNKUlBAgcFAMpmkt91+SPbSh8LKrGETQN+mJoYMGaLEz5fgYGKx2unkq21NnvZz7MHGUIJU0ZnsBG6JxdiZTVcvjkb5fjDIhLlzdTnvYsCdQMhsRgLmZJKL6+uZPHZsh8cG8AF3R6M5oV3T3Myk7dupHjVKl/EVAFwDPCmE+APafbadwMVdu6Tjg1UNDfxg8mQMBgN5eXk8/PDD7R7/wx/+kEsuuYT77ruPmTNntnvslClT+PGPf8yqVauYPn0652TNaw6FArOZh665hjm33055URGTBw8+6GvKioqYOmwYI7/3PeZOmKAMlo4zVjU08IM//lE7l41GHv7Odw547KRBg1gweTJjbriBPhUVTBw4kOKDuPKeOmoUv3z2WcbecEO7Bku33norN954I6NHj0ZKSd++fXn55Zf3Oe6qq65i7ty59OjR47gzWJo1axbr1q1jSjbd2m6388QTT+wjVi+44AKuvPJKHnjgAZ599tlj2mBJHCyd5LAHFsICvAuY0UTxs1LKdn2xJ06cKJcdoE/TofDEhg3cY7EggT7NzdxpMHQoje72Sy/l9r59+V8iQW00ClIy0O0mFI/z4yVLSGcyXDF+PD+eNm3P123bxu0HuauaBGYHg7R4PEjgO++8w7k6XaAqFIruTwtwM7DZ78fv82FJJDjvk084fcQIXdJ/M8DCUIj343FC4TAik+HsFSu4dsoUXb5nUsDNoRDveDwgJQXJJLc1NTGhf/9u8z0mhPhMSqlPj7EuRghhR/ubfcRvpXf0b/MePPzwYbdfOeLU1UE7F/WHy+LFi7n33nv3e5HeLm0+u1A0ir2gACkl333kEQZVV3PT2WfrvlZFJ9JJ59d++ZL/71rPr0g8zvSFC3n0u99lfEfFUGe/36Ppu2VvjuS50A34sn+bv3yzr0MnDsyUUoaEEHnA+0KI16SUH3fWhPaKCgiFEFJizmSo1umkDWdTgAEMySQ3vfkmb192Gb2Kipj0pz+xYMgQhu+VInowVjU10RKNIoGiWIwZJ5zQbS7wFApF5xIEfhCJsDnbQiYvk+Gs5ctxxOO6lQLcHwjwequbtRB8KxjkIp2EKsBfgOXpdC79d9YXX9CjGwnVYwkhxDxgBGBprW2UUh7cxU9xzPKnRYv429tvk0ilGNe/P1fPmdPVS1IcQ1z14IOs3bmTWCLBJTNndlyoKhQdoNPEqtRCtqHs07zso3PCuFmsDgeOvDzCkQiDe/fW7aJJmM2QvSjb2NLCQIeD/qWlAFwwYgT/Xb/+S4vV7U1NyGyNpCUeJ6YMEBSK44IQ8H/hMJ+1tGi9VIGfAv0HD9atv+7LwAtt+p1O2LKFmcXFun0nLgJeYnebmhNra+nj86ma+05ACPEImq/bqcBjwHnA0i5dlKJDzJgxYw/zpcPhprPPVpFURafxz5tv7uolKBQ5DAfaIYQwCSGuFkK8LoRYKYT4QgjxmhDimmyk9KAIIYxCiBVoBq5vSik/0Wnd+2WXz4fH6yUei1G/aROuL2mpfSDaysiWSISebQyWehUVUX84Bc4WS+7H/HQaS5vnCoXi2CQM3AasT6Vy2RozV62iv8/HuHHj9GlR09LCPX5/rlfrQJeLqZs36yYk1wL3x2K5npNnlZZyjcPBfNWmprM4SUp5MeCVUt4BTAF6d/GaFAqFQqE4IrQXWf0Hmn/G7UBddlsv4BLgCWDf5l97IaVMA2Oz7W7+I4QYKaVc3fYYIcRVwFUANR1s2+L2esFg0MK36TQNDQ36GCwlk7kLSynlHr3TIOss+2XHTCQg21dKku3pqVAojlmiwA/CYVanUjkhOXP1aoa7XFRP0qdl5sfNzfw0GCSZHX+8zcZ38vN1c/5tAm6LRqlvagIpyQ+FuLK8nD46tdhR7JdWi82IEKIardy5XxeuR6FQKBSKI0Z7YnW8lHLIXtvqgI+FEBu/zCRSSp8QYjEwB1i9175HgUdBM3H4MuPuTe+SEggGEVKSyM/XLZJgN5nwZgVrmd2Ou03Eti4QoPowWtn0Ly9HhMNIoMHhoFpFVhWKY5YYmlD9IJv6ixBcC0zu0YPqCRN0EZI7gTsMBpLZG3ZF0SiX+Xy6Of/GgbsAd7aG35JIMHf5cjwjR9JHRVQ7k5ezN3zvAZaj3d/8U5euSKFQKBSKI8QB04ABrxDifCFE7hghhEEI8XXAe7CBhRAV2T+wCCEKgNOB9R1cb7v0KS3F6XRSXFJCn1GjdEtJM+fnY87Px2AwMGnQILb4/Wz1ekmk0zy1Zg0Lhuyt6Q9OKusCDNqVh8fj0WWtCoWie7Hd5eLaxkY+j8VyNaTT161jckuLbqm/LrS617TNBkJgSSY5+/PPGaLTd6AE7goG+TybXmyUkjO/+IKSRELVqXYyUsqfSyl9UsrngD7AUCnlbV29LoVCoVAojgTtRVYvAH4FPCSEaBWnJcA72X0HowfwNyGEEU0UPy2l/JI+7V+OIiCZSBCLxVhvNus2bn08TjweB2BrKsXdU6cy+4knSEvJ5WPHMmKv3keHQnNtLYwcmXu+evt2hg0bptuaFQpF17Pd5eLaXbuoKy2FRAKE4OT16xlbV0e1ThFPD/B/kQg7kkksFgs1lZV8e8sWppx6qm437B70+3nR789Fhb9rMDBpwADdDKEUh4aUMo4W5FYoFAqF4rjggGJVSrmNbF2qEKIMrb9b86EOLKVcCRzRQqZdtbW05OcDsCUWY92uXboIwPxoNFc0lBGCCUVFbLzuug6NOah/f8qDQZqzKcRxFZ1QKI4pgsCtQF1pKRIQUnJ+OMy8igqqx4zRReQF0YTqquZmkJKQlNxXWMiM4cM7PHYrLwFPQy4qPGrHDibZbLr0glUoFAqFQqFoj/bSgHNIKVvaClUhRFXnLenw8W/evMfzjVu36jLuyDY/Z4TAarV2eMxhw4Yx1m7PPf/Y5dLNvVihUHQtG9xurmxqYqfVCkIggJM2beLKsjLdUn8jwM+Azdl6eiElcz//nOIdOzo8disvejzc28ZZuF9TEzM2blSpv0cAIcTU7L/6pQkpFAqFQnGUcUhidT/8WddV6MTwPn3IT6VyzwsGD9Zl3L4lJZizacURsxm3200oFDrIqw5Ov3Q65yTcUFxMQ0NDh8dUKBRdyxq3m6s8HtZFIni8XhylpXw7leL2kSN1S5mNAwvDYZZlhaQAzli1iv4ej25C8p2WFm4PBPBlW4KNt9m4xWRiwbx5KvX3yPBA9t+PunQVCoVCoVB0Ie3VrB4QKeU8vReiB8OGDWOa280H6TRGo5HgYbj07o9CtA8qDiSNRuJGI8FgEHubyOjhMKWoiMeiUZCSeocD814tcRQKxdFFPbDQaMRXUIAEDJkM32hs5KpBg3SbIwb8KBxmcRtn4e8KwaRevaiePFkXIbkV+IXBQFoIJFAaDnO518sJOtXZKg6JpBDicaCnEOKBvXdKKa/vgjUpFAqFQnFE+VKRVSHEgs5aiF4MMZtJJJNEo1FeXLNGl9RaAVQajSC0OGiwoIBCHYTwhIoKehcXI4BoXh4vrVypUoEViqOUpU1NXOnxEMzPByE0x9xVqzi7qEi3OaJoqb+fp1K5GtKpGzYwSUdnYTdac22yKcz2eJyvLF/O4KpuWf1xLDMfeAPt/sRn+3koFAqFQnHMc8DIqhDi3L03AQ8KIUwAUsrnO3Nhh4u9sREsFq1/aUkJDQ0NulzA9czPp1FKkskkpurqDkdVQftAB4RC7Mw+31Rertt6FQrFkeOdlhZ+GAySyN7Uqiop4bKGBk7VKdIJEAZuDodZk0rlakinbtjAhB07qB49Wpc5/MAPIhG2Zp2F+1VWcuXmzUw8/XT1vXSEyfpEPCWEWCel/KKr16NQKBQKRVfQXhrw08DraDfaW0srbcBZaG33uqVYnVpaym+imndvc1ERpRbLYY9VUlPD7du2AdAYi/FJth42P51mRn4+BQUFB3zdoXJqQQGLQyGQki1OJxaj8bDXq1AojjzvAD83GkkYjUjAnExyVV0dX9XRkTeEJlQ/apP6e6UQTC0vp3r0aN2chb8fibCirbOw3c6MESM6PLaiQ7QIIf4DTEX72/s+cIOUsq4jg2bbyi0D6qWU8zu+TIVCoVAo9Kc9sToF+CXwKfCIlFIKIWZIKS87Mks7PPpXVjIxEmFdVrDWAn0Pc6wb77wz9/PSFSv4tKiIpNFIDJgRDDJ35MgDv/gQme1w8KDJhNvrpamwkJc//BCHw6GiGApFN0cCj/p8PCkExmxE1R6LseDzz5k2Y4Zu8wSBnwJr26T+nrJ2LVOdTt3ax4Syc9RmnYUBzli5kuLevaG8XJc5FIfN48A/gfOzzy/Kbjujg+PeAKxDa1GuUCgUCkW35IA1q1LKT9H+GOYDbwshJqNdn3V7hqZShMJhQqEQ/1q9Wpc60D49etC3pUULMQvBJyaTLuMWAEPaOAuvrq5WrsAKRTcnBfy/QICHAgH8WbfckXY7d8ViXDZjhm43m/zAjZEIn7dpH3Pq2rWMra/XzfW3Nb348zbOwqevWsXgpibVoqZ7UCmlfFxKmco+/gpUdGRAIUQvYB7wmB4LVCgUCoWis2jXDVhKmQF+J4R4FvjtkVlSx6nctStXt7q5spJ6HepAnU4n38rL4x4pCYXDvJdK0fvll5k/f36Hxz7LbOa9bNRkfc+eGJUrsELRbYmgpZwsljIX6axpbua7Xi8njRmj2zwu4OZIhJXZtFwBXA+Mr6qievx43Xq17p1efL0QjO/Zk+pJk1SGR/egSQhxEfCv7PNvAC0dHPN+4IdoZvcKhUKhUHRbDskNWEpZL6X8mpSyf2cvSA9mlJSQl8kgAJ/NBr166TLubIcDs9EIUtJUWIjbatUlCnpGWRn9i4pyrsD/2LJFuQIrFN2QJuD6SITFbSKdwxoaWLBiBQN0dMvdCvwA2N4mLfe0VasY7/Ho5vobQ3P9XdMmvXjGmjWM19FZWKELlwNfAxqBXcB52W2HhRBiPuCWUrbrKCyEuEoIsUwIsaypqelwp1MoFAqFokMcUKwKIYxCiKuFED8XQkzda99PO39ph0+N08mc8nLsdjt2m41P8/J0GbcAmJqtTRPAut69dUmTMwAneL2558v79KFepQIrFN2KNcB3olE+bW7Opf5+y2jkRxYLZ8+bp5u4Ww3cGIuxLSuIjVIyd8UKhrtcuqXlxoAfhsN83EZ0z1i3jtENDSr1t5shpdwhpVwgpayQUlZKKb8ipdzegSGnAguEENuAp4CZQogn9jPvo1LKiVLKiRUVHco6VigUCoXisGkvDfiPgBVYCjwghFgipfx+dt+5wF2dvbiOMDGZ5KVwGKTk6VCIs+NxqnS4mDyvsJBP8vMJh0LUDxlCPJPRYbVwvs3Gs+EwCYOB5sJCtqbTjNdlZIVC0VH+5fXyqBAk0mktJVdKZq5ezWnV1bqZHAF8CNwdi1HndoOUmNNpbgd619RQfeKJuqX+/jgcZkmb1N+rhWCK00m1iqge80gpFwILAYQQM4CbpZQXdeWaFAqFQqE4EO2lAU+WUn5TSnk/cAJgF0I8L4Qws7uVTbelcscOjOk0Emi22/mkpaMlPhqjgcp0mlA4THMkwv3Ll+uSsjugspKzLBYEmovVn0IhGlUqsELRpaSAXwYC/DIYxOP3EwqHKUgmOWfZMkY0NuoahXwNrRY2GI+DlFjjcc755BN6+/26peW2OguvaJP6O3XDBqY0N6vUX4VCoVAoFN2O9sRqfusPWQfCq4AVwNuAvZPX1WEG9OjBIJcr5967Rqe6VQGMbWzMXejpmbI7rbkZQ7Y+raG4mH9s3qxqVxWKLsIP/AR4tY2RUoXfz0+am1kwYIAu5mqg3Zx6xO/nF34/sXgci8VCSTTKeUuXUhmJ6CaI17vdfLupidXZORCCaRs3MmHHDpX6e5wipVyseqwqFAqFojvTnlhdJoSY03aDlPJOtP5ufTtzUXrgdDr53sCBFJeU4Cgt5Z10mu06Cb9zbTbysum/XpuNTSUluow7srKSMTt35p6/WFrKf159VQlWheII80lzM99qaeHzNsJucGMj5y1bxuR+/XSLQiaBO4NBHvb78ft8uFwu+qdSPOZwMHPECN0E8eqmJq7yetkQieDK3sT7cWEhV5aX6zaHonNo6xGRzWxSKDrMNpeLfy5Zknu+eNUq5rfpLX8orx/5ve8d9LgfPP44I777XX7w+OP89a23aNApy01xdGK3HzzW9cADDzBs2DAuvPBCXnjhBdauXXsEVqbozrQnVv8gpXx9741SyseklAd1LBJC9BZCvCOEWCeEWCOEuKFDKz0MppWX0z8vD4/XizsQ4LcrVugi/Po7nXzFbM6l7P4lGNQlZdfpdHLbkCE4TFopsd9q5b1Bg1TfVYXiCCGBf3q9fCcUYnsolBN21xcVcUt+PueceaauPVR/AryVyeQit72bm7m0tpZBlZW6CeKdwC0GA/5sOy+RyXD+9u18o7RUpf52Y4QQPxRCTEFz/23lo65aj+LYYpvbvYdY7Sz++PrrLL//fu657DJNrHo8nT6n4ujmoYce4tVXX+XJJ59UYlUBtG+w9BB0yOMnBfyflHK5EKIQ+EwI8aaU8oiddQIYu2sXn5tMWspuTQ11OvRcBTipuZnniopIC8Gu4mIW+XxcrMO4/Ssrudbr5e5gECklq3v3pjaTQT8LF4VCsT8iwB+Alw0G0kIgAXMyycVbt3Lh0KGgo5HSTuDH0Sg7E4mcG++IujpOXb+efvPm6TbPZuA2IGa3QziMKZ1m7sqVnHXiibrNoeg0NgDnA/2FEO8B64AyIcQQKeWGrl2aoqv4+VNP8eSSJfQuL6e8qIgJAwdy8znnsHnXLr77yCM0BQJYzWb+9L3vMbRXLy69/36KrFaWbdpEo9fLry+9lPOmTuXHf/sb6+rqGHvDDVwycybj+u/uTBiOxbjuj39k1fbtpNJpbv/GNzi7ne+MdDrNj//+dxavWkU8meS78+Zx9Zw5LLjrLsLxOCfcfDMLzzuPZZs2ceF991GQn89Hv/41BWaVKHA8c8899/D0008Tj8c555xzuOOOO7jmmmvYsmULCxYs4IILLuDFF19kyZIl3HXXXTz33HMMGDCgq5et6ALaE6sdQkq5C60nHFLKoBBiHdATOKK3SL5it/PPcJi40YjfZmOXTlGEEU4no2pr+aJ3bxCCt3r35pvo84GeX1rKB8kki6NRJHCPlPRtamKyah+gUHQKW4CfRSJsTyZz4rE8GOTMlSs5feZMXedaDtwRi7GtqUlzFgauMBiYWlBAT51b4PwkFsObTWWuqazkoq1bmaGTq7Ci0/ECtwAzso9hwGzgx1nBelLXLU3RFSzbvp3nPvqIz++/n1Q6zfibbmLCwIEAXPXggzxy7bUMqq7mkw0buPbhh3n77rsB2OXx8P4vf8n6ujoW3HUX502dyi8vuYR7//MfXr7tNkBLA27l7qefZubo0fzlhhvwhUJMvvlmTh87FpvFst91/fnNNym2Wvn0vvuIJ5NM/dGPmDV2LC/+9KfYv/Y1VvzudwA8/Npr3HvZZUwcNKgzPybFUcCiRYuora1l6dKlSClZsGAB7777Lo888givv/4677zzDuXl5dTW1jJ//nzOO++8gw+qOGZpT1v1F0K8eKCdUsoFhzqJEKIvMA74ZD/7rgKuAqipqTnUIQ+Zvk4nF/v9PA0YDQaeikaZ6HJ1uI2N0+nkNiH4bl4eCZOJrckk//J6+VZpaYfXLIDzdu1imcVC0GIhbjSyMB7nd243IysrOzy+QqHQkGguvH+Ixahvbs61clmQn89ZySR9Zs7UVdi9gtYTzJd1/DWl08xeuZJpffro2gLnXeCXsRj12RY48VSK+4qLmTpsmG5zKDqdOcDPgAHAfcAXQFhKeVmXrkrRZby/eTNnn3BCLiJ51uTJAISiUT5cv57zf/Wr3LHxZDL381dOPBGDwcDwmhpcfv9B51m0YgUvLl3KvS+8AEAskWBHUxPDevc+4PErt23j2Q8/BMAfDlO7axf9qqoO630qjn0WLVrEokWLcn/3QqEQtbW1TJ8+vYtXpuiOtCdWm4DfdHQCIYQdeA64UUoZ2Hu/lPJR4FGAiRMnyo7Otz8uLC7mtWzvQo+UPPj553xvypQOX4QOrKzk6z4fv/N6QUoeSKcZl0oxUocI6OCqKhYsXswzEyeSMJloSqe52ufjASGYcAxHWHe5XOxqaKBndbWK/ig6lS0uF79LpVhXXk6sjXicuWYN5/bqpat4TAH3BQK8LCUWiwWLxUI6Hmf+8uVUhsNUT5miyzwSeB74KxDKvqeCRIKzly3DOnQolJfrMo+i85FS3gIghPgCeALthm+FEOJ9wCulPKsr16c48ki5/0ukjJSU2Gy5CObemPN224wcaIy953nuxz9myCF2UZBS8vurrmL2eNUdXnFoSClZuHAhV199dVcvRXEU0J5YDUkpO1R9L4TIQxOqT0opn+/IWB2hFBjd1ERd1sTk/UGDOFun2tWRW7dSbLHgs1pJGI3ck8nwF8DYwXGdTieXzpiBbcMG/ty7N2mDgaDZzE3JJHe0tHBqWVmH195ZNLpcbG5spKC6GlNFBT60fLZtfj8NgQD5JSWYCguJQu4RAXyxGDvjcXA4ELEY1bEYBRYLRsg94tEomXCYqoICethslADFQBHkfk40NxOvr2dwVZUSvIr9sri5mVt9PgIWC7hcOEpLKQ+FmL1iBWWxGNXZiIUeeIBbw2He9/lASvxCMKWsjJtKSogMGUK1Tjdm0sC9gQCvtBHEhkiEs5YtoySRUO1pjl7ekFJ+CnwqhPiOlHKaEELddTgOmTZgAFc/+ywLzzuPVDrNK8uWceWsWRRZrfRzOnnm/fc5f9o0pJSs3LaNMf36HXCswoICgtHofvfNHjeO37/8Mr+/+mqEEHy+eTPj2qkVnD1uHA+/9hozR48mz2RiY309PcvK9kkbbm9OxfHF7NmzufXWW7nwwgux2+3U19eTl5dH5V7Zg4WFhQSDwS5apaK70J5Y3dqRgYUQAvgzsE5KeV9HxtKDS81m3gyHSRoMeAoLqS0sZKIO4/aprmb2u+/yzKRJSIOBHVYr92zdymVWa4cvQJ1OJ+cDTR9+yMtjxpA0GvElk9yUTHJmczNXl5TQ5wiKsQTkhKcX2OL1ss3vRzgcpIuK8AIN0SgbolHSJSUQjeKMxzGbzcTjcS39SErwenHm52Pey1whkI0Etd73DcXjGNv8sYvH47iydX6bIhGcJtM+Y8TjcVyRCJSUYAsEmGqzMdpupz/QH6hCS7NWHJ8k0EJUf8vLI9DqjislJ/p8XFteTvPw4bqJR9DqRn8FbE+lcuf2oMZGLvd4GDJ2LOiU1h8DbguFeKONID6lrIwby8rwjxyp63tSHFmklD9s8/TS7LbmrlmNoiuZ1LcvCyZPZswNN9CnooKJAwdSbLUC8OT3v893Hn6Yu55+mmQ6zQUnn9yuWB3dty8mo5Ex11/PpaedtofB0q1f/zo3PvYYo6+/HiklfSsrc7Wt++OKWbPY5nYz/qabkFJSUVzMC7fcss9xl552Gtc8/LAyWFIwa9Ys1q1bx5RsVpHdbueJJ57YR6xecMEFXHnllTzwwAM8++yzymDpOEUcKCVECDEJ2CmlbMw+vxj4KrAduF1K2a7/uBBiGvAesArIZDffIqV89UCvmThxoly2bNmXfhOHyqM+H08IgdFgoCCZ5MFkkn46XMC5XC4ej0R4o7wcj9eLyGQ464sv+J5ORiYul4uX1q7lsV69iOTn57YXJJOcEokwIRbjlD59vnQdrkS7yPVlH1s8HrZ6POSVlyNLSvABDeEwDdEoKbud9N7C0eXK1fg5nU7MZjP+bL9IiSYKi0tKKC4uPuD2thxozFYOZYyDHWMB+qEVgZV6vZTU1TGmslJdyB8HbALuikTYkjVR8ni95CeTzFy3ju9PmqTrOSCBF4A/xmJE4nGMBgNej4cpGzcyYccOztKxt6kXuBP4rM25P7ixkR/m5zNZx1TmoxEhxGdSSj3uSx7X6Pq3+eGH4RDTS7ucujr4zne6ehW7efhhQmVl2AsKiMTjTF+4kEe/+13Gqwv4o5MjeX51h/93nf1+u8N7PFy623dNJ/Nl/za3F1n9I3B6dtDpwC+B64CxaDWm7VpzSSnfp5sFsS4pKeHtaJR12ejc7Tt38mvQJQL6Q2C9y4VHSjJC8OqoUUxsaeFsHS5InU4nZwHhN99k0fDh7MymAEfz8ni9uJjXi4v5dTjMwLo6akpKsElJ0O+nsLgYe2EhgWCQlmCQ/KIijHY7UcATjeKOxzEWFOyOfIZCkJcHgQDOggIAXC0tmniMRPYQj7FYLBcpElISi8Uwm81YLBb8QpCfSmFLJBhdXk4vwCgEmzZvxhyPY85kOPXEE+kNFLR9mM34zGYaGhroUV1NhdlMGnKPxnicV999l7jRSMxiYfyMGRjR+lW2PhqMRlaGw/gKCkgbjVj2SkOKofV/WBGP4woGoagIh8fDVy0WZhcXM5BudtIqOkwKeBb4WyxGQxsTpakFBZzv8zFcZ6EaBX4HvB2P48oaHBUkk9xuMNCnvJzq0aN1m28n8KNolLo2LXAmbtnCSZs302f+fF3mUCgU3YerHnyQtTt3EkskuGTmTCVUFQrFMU97YtXYJnr6deBRKeVzwHNCiBWdvrJOwAzMrKtjXX4+EljRuzdve718Q4cLRwOwUAiuiMUIWCykTCYe69mTglWrdIncOZ1OLjjjDMZt3MgLLhdL+/UjkBWUAEmjkXXpNOtbG25n020dgCdrAIXHgzNrtNCaTksggNPp3K/4bB0n/pvfUNDQQCA/H3t+PvlAUTKJ0evFlE5jymSoLi+n0GwmH8hEo8QjEaxWKwUFBbRWqBRHo0QiEYTVyoZPPmHunXfu8z6rnM49IsRtT9DCykoumDWLhoYGLa3R4dj3g7LbcZWVUdfQgKFXL4JmM1sg92j1QWz7fj1WK08DbwBlwAnAFGAkndjbSXFE+Lypid9Iibu4eA8TpakbNnBpVRXjdY48Lm9q4heAv6god445fT7mfPEFfUaN0tW06VPgrr1a4HxXCCYVF1OtY+RWoVB0H/55881dvQSFQqE4orQrVoUQJillCjiNbHuZQ3hdt2ZBURGv1tWxtbwchOD5Pn2Yh2bQ01GGVFbyeyFYaDQSy8tjh9fLnfn5fOXtt/mWDi0wnE4nTqeTIS4Xazdu5HWvl01OJ3UOB9FsenDbtG4hJeFI5IAiVAKmdBprKER/i4XG5mYs8Ti2ZJJTxoyhKJNhxWefsWrFCn5UVsbw6mrsdntu/FAoRDAYpLCwcI/th8Lt27Z16DP4Mse0GqFLsrW2wHIpebW5mR0Oxx4R2Bbg1ezDGIvRr6WFBRYLM8rKVMT1KCIF/MXn45FwmLQQEIvhKC2lh9/PaStX4ojH6amjc6UEnvd4+EUoRNJggGgUR2kpo+rqmLpuHflC6GZwJNEixf9gzxY4c774gkl9++oqiBUKhUKhUCi6kvZE57+AJUKIZrTMtvcAhBAD2R2gOuqocjq5RwhuMJlI2Wz4gYUNDdxqNHa49yrA2IoK7gO+lzU6CVgsPDNpEgNaWjhHp0hHqxgb7nKxceNGwlu2sMHtxm+xEMvPJ27Sfq0GIRgxYgRrVq/GmEphzmQ44+STMUvJe++/jyUeJ19KrX7OZsPVq5cWtRwwAGdJCQBTpk7lrscfZ/iAAfsIUrvd/qVFalciAEf2MbGkhLN79WLrrl14amrYaDazFGj1nItnUzi3Ssnb4TCTCwr4ptXKyRzFd2qOE9YADwKrhSAtBBIwZjLMa2riQqeTxhEjdDUcCgMPAS8ZjSQNhtxNoG80NnL2wIE0WK26zRcD7g4GWZLJ5Bx/M/E4Zy5fjjMcpvqkkzo8h0KhUCgUCkV34YDX3VLKu4UQbwE9gEVyd8jOgFa7etQyqLKSO4FbsoY+Lim5e80afqpTLdkw4MfpNAszGZIGA7H8fB6prCS8YQNnlJTodpHcNoI4zuXKpccCu1NlnU5cFsvu59k+izWnn77HMXuP13aOsrKyo0qUHipt3++ZaHWxa4GPgZdDoT0i0huSSe4D/gbMB+YAx94ncnQTBB4IBHijTesWvxBU+v2csXYt35oxA6fTSQ8d02Pfa27mN0IQsdtz85WEw5y5ciVnZ+fT6/+7G/hJJMLSbFp/q+PvdSUlhHRsgaNQKBQKhULRXWg3SCSl/Hg/2zZ23nKOHBOBiW43r2QFybuDB/Oa38+lOl3snVFWhk1K7jIYiObl0ej1co/FwuL167kD6KnzReXeF8V7/7w/EdqRC9vL//tfXt64kUqbjdXXXgvAisZGrnn5ZWKpFCaDgYfmzWNyz56HPceRxgiMyj7OSqV4/JNPWF1dzfqePfdIE/4b8G/ghECAsdu3M0q5CXcpElgMPBiNUtumdUtNZSU3FxYyvKWFXlnhqBdp4FG/nz+Gw1qrpXAYp9PJ10pKOM3joZ/O860GfgHsTCZzN1FG79jBt1paGDRunG4tcBQKhUKhUCi6E4auXkBX8p38fKoCAa0WUQieqalhrY7jn1Rezp8cDooTidwF5qd9+/IDIdih4zxdwaVjx/L6RRftse2Hb77Jz045hRXXXMOdp57KD998s4tW13GqnE4uP+UUbrbZ+LfNxrfNZkra7PfH4/zD5+MHhYXcsn49212urlrqcc2KpiauaGzkF/E47jb/z/q7XNy0cSPfKi1lwrhxugpHN7AQrU5CZh/5ySQXbN/OT4qKOHHsWN3mk8CTXi/X+Xw0xeNYLBaMUjJzzRpO3bCBGp3qYBUKhUKhUCi6I8d1+V1vp5M/CMGPDQaChYUYzGZ+Eotx1aZNjK+o0OWCsyfwy3Sa//N6qSstBSFoLi7mO7EYpzY08HWbjd5HYVRuep8+bPP59tgmhCAQjwPgj8WoLizsgpXpR9vo80DgXOBdtP6ZX2SdXtNCsKxvX64zmbgZOBnV+uZIEAQeDQR4IhLRmji7XDhKS7HH40xfu5aBLS2M0Ll1iwRe8Hh4WAiwWnNpvz09HmavWcO800/Xdb4Y8KtgkOeDwZxz9+CKCm6127H36EH1hAkqoq9QKBQKheKY5rgWq6DVrz4I3Ay443F2uN3clZfHuW+9xUWnnabLxeDQykr+LCX/Cof5X3U1SaDO7eYfRiPPBYNcZTbzjZISLAcdqXtz/+zZzH7iCW5+800yUvLh5Zd39ZJ0JQ/NFnsm8HYqxa8DARqLikAIYnY79wCvAVcDfbtwnccy9S4Xz4RCLOnZkxYpyaCJSEMmw3SPh8uLi/H06UP1lCm6CjkP8OtQiNeytcwEg/SorOS7RUVMaGmh1+mn6zrfNrTG1mszmVy02On38x2fj5NHj4Zs7blCoVAoFArFscxxL1YBqoDbge9k27wEsw6+A5ubOVunC9Aqp5ObgK8CP3a7cWUvQCN5eTwuBC9Ho5zQ2Mi5NhsDj9L6s4eXLeO3s2fz1eHDeXrNGr794ov87+KL9zlOAoFolDdWr6a4qgpbeTlRNMvpBq8Xl8dDucNBeWkpRrRcdZ/Hg7+5mX5lZfQrK6MYKKRrTmABnFZWxohUihcCAd7q1YuY2QxotYVXx+NMcrm40mymj4p86YIEXm9p4VceD16rFdxuHNlMhZ4eD6ds3Mhlp5yC0+nU9TOXwFvAY0BDOp0TjsWRCFdv2cI5w4eDjq1iJPBvr5c/CYGxoCAXvR1eV8epGzYw4swzdZtLoVAoFAqForujxGqWgcCPMhl+lMmQMhiIms081rs3fYCxOs5TA9wjJb/csIHP+vYlbLFgNBjY1NTEJoOBf0WjnBIKMctu50S0NitHA6FQiL+uWMEtJ59ME3Di8OFc/uKLLI3F8MfjUFBAJj+fKBBOpXgnneatwkKIRHDG45jNZq1dTDAIJhMEgzit1t3bQyEwmzUjG7sdc1YcGmMx8oJBhlgsjC4spD/QHyil89Nxq5xOrnE6+RbwFPASEMk6TL8kJe97PPzKaOQEFQXrEFvRxOJ7JhN+qzXn0Fwaj/N/djvVLS30zApVPXEDvwyFWJZO7+EuPHLnTqbV1nLS3Lm6zhcFfhkM8kKbtN+aykpus9vpX1BA9ZlnqrRfhUKhUCgUxxVKrLbh9LIy7peSu41GMlYrmM3cDtwIzNBxnp5OJz8dM4btDQ1srqjg34kEnmzEJgMsT6fZDDwC9A6H6e12M7aoiIllZZRxZGsiE2gX0S1oNXS+aBRfLIawWqlH6zH5n2SSpmQSq83Gr7ZtY/zQoazbsYMKh4PP4nHtwjsaxW4wYDSZSKRSADnREYvFMJvNxLJ1oIe6vbUXKlKyMRplaX5+TsSao1HKfD5OtliYU1pKZ8pFG/BtYBZwh9ebi5p7rVYWmkxcB3wFVcv6ZXEDfwwG+V8mg7mNWDQnk0zeupWFo0bRq7wcHPre0pFo6dwPx2Ls8Hhy7sKjystZaLNRYrVSPXeursJxK/Ar9kz7LQsG+W4gwJyRI3V/jwqFQqFQKBRHA0qs7sXJ5eX8CbgNaEaLlN0Wi3EBcFVxsW4fWKt5z2RgusvFb9auZU11NY2lpbk2KbF4nPdbWsBg4F/ZiGK52Uw/oCwQQDQ3U1NSQo3DQRFaWmzU7ca1axdVVVVUOp20NsdtdLvZ2dhISY8eFFZUEEUTnw0eD9u9Xkzl5VBcjA/wAY2RCK54HKxWIsAbQDqVIpRIgBD85fnnqa2vJxSN8u0HHuDME07gwtNO45l33+XZd9/FnJ/PxbNna0IVQEpSqRRGkwmTyYRRSgojEfIzGYaXl1MOJA0GNjc0YEilwGBgRGkpNsBnMLC6sTHXs7ayooIUUNeOiN3R1EStlHycTPJ3q5WRZjMnAgObmqCujp6d0JOyN3CXENy7Zg3vDB1KymTCVFDAX4D3QiHO3rKFoTr23TxW8aC1BnopFqM+21MUIehRWck3S0qYsnUrQ0aN6pTP8YumJn6XTlNXWkqs9UYLMGbbNq71eDhx7FgoK9NtPgk8lU37NbVJ+x1RV8cpGzYwTqX9KhQKhUKhOI5RYnU/9AbuAX4QibC8uRmk5I9CsNJk4labDb07h/Z0OvnR+PE0NDRgsVjYbDbzIfDBfsRY0Gzm03gcl88HRiOEQjhttt2RxlgMSkogHt8zvTYWg+JiiEb33B4KaWm3fj9Oi2X39uz7JhjElk4DkEqlSDYYSNSZ+NbY+RSek4fZYtFEbDiMkJKffe1rOAsLKcrPR8TjeHftIi+VIj+dZlDv3pQBFpOJ1SYTF8RiVFdX47TZtA+isBBX//40NDRo24uKdm/v21fbXlWF02oFYFcsxrNLlhAwm2kpKqLH1Kk0A8uztcdtP7das5nV8TiuaJQKk4nxy5Zxw8SJuve7rXI6+cGECcxyu3m+f3/qs5/nWx4PHxYUcOYHH3D11KlKsO4HD/DXQIBXMhmMBQU5sSiBPk1NXBsIMHfkSBgzRve5E8Cf/X4eC4VIGQw5d2FHJMKpq1bRMxikn87uwn7gF6EQr+2V9vszu51+Ku1XoVAoFAqFQonVA1EOXFFby92ZDHUOB0JK1qZSXA9cDpyJvmmdbdukDAPmA7XxOH9cswZXYSHNRUXkO51k4Euny3ZkuzGTwZhMUgqEG4zsfC6fTFpgMErGX5Bk0EBNfKZNJuKBAIWFhdjz87U3ZTYTKi8nGAxq27MiE6CgoIBx+zGmcR4g8ri/7T2cTr42e/Y+4rYxkeDJDz9ke2kpW51OUtnXtb4vd1ERb4wcyXqTiUuB2WipvHrhdDqZ5XQyE3gS+Et23kh+Ps+PH09RKMQNTqdKC87iBp4FXo7FqPf5csLNUVpKD7+fEzdupLffz3idxSJokc2lwKNALZAyGHLuwjNbWrjU4aB50CDt/NJROH4IPAjsbGPaVB4M8r1AgNkq7VehUCgUCoUC6ESxKoT4C5rmckspR3bWPJ3JwKoqznn5ZT7r04elAwdisVhIoNWSfgLcAOiXELgvgyor+cGECbmIYqXFghtYlk7z4pYthE0m4mYzvcvKkIArP59oOk0GzUHXYTZjAUxmM/FUCmM6TX46zZDychxA2mhki8uFOZHAlkxyytix9AVSySSffvgh5liMgkyGWimZC/+fvfuOb6s+Fz/++Uqyj6a3La84i2yyBzMhYY+UVdpCoWW0tKUthdvb25b21wG3g95OekuhdEBbdqFcCgUKZe+ZEEL2cIYdy7Zs7S19f38c2bETJ4REju3keb9eesU6RzrnkSJbevR9vs+XF1uKWJXTgIIc6B0G3iPywbpc5mUXbrcbt9s9aM/RQElsrdfLJSee2JvEuu123gKeslh4PN9Aq2e5mVuTSW6JxTjPYuEzpaUYBYzNBlwKjMpk+FY6TbyoCG2x8HBlJVtbWrjWZqPpMB452wT8NRzm2WyW4l1GUmuCQS6PxTjJ62VHNlvwZBGgBfhlJMIbuzRQqgkGOXn16t7uwoVcBzkK/Cwc5ulcrt85p2/dyqL165klZb9CCCGEEL0Gc2T1DuA3wF8G8RyDyuv1cvbSpcxrbeUKl4u/GgbN+X2vJZO8HotxKfCx8nKKBjGGvh/SvcBZFRXMmzp154hiTzLocOBzuXZuz899xW7H53bv3N6TVLrd+EaP3rm9vNzcXlXF5D7J3i0vvgjAmDFgtSrImv+OGTNID7oAdn3eTgBO8Hi4NB7nwWiUt2prCQE+n6+3zPvF4mKudjg4hsKOmp9YWcmfsll+DGx3OOjq7uZprVkWCnHjYdYtuM3n46lAgLcbGlhVVISvZ05qfiS1NhRi3oYNjO3q4uSlS/F6vdQWOElNYM6JvS+RoKVPA6Xx1dVc7vEw0e+ncRC6Cy8HbozHWZ1/zEGlmFxdzdddLipdLin7FUIIIYTYxaAlq1rrF5RSYwbr+AdL36RnNnAncG9+eRK05idK8Q+7nYsdDk4DiocgroO1fdQo+PSnobnZTFxHjdrv8IfMhJoavkl+juKGDdyfTOJ3u1Fa05JK8WOHgwmRCKc2NzO7urpgycPUmhr+CHxn2zaeyI8edjmdfA04a/NmLnE6aTyEE5Ug8GAgwJ+7uwk4HNDVhdvl6h1JbfT7uTQW44SaGnZkMtQfe2zBEzcNPNLVxR+0JuF292ugdOTWrVzV3c3xM2dCz5c2BZLA/Obun0Awlep9zJNbW/lKdzfHzZxZ0KZNQgghhBCHCpmz+iEUAZcD7k2buMliIWS3o7SmNZXiNoeDvwHnA6cD9iGNdPCMGjUyk9RdFQPnezwUPf88K+vqeHXSJOx2e28zpOdcLha++y7XzZxZsJG9YuCrxcWk33mH5ydNImOzEYrFuMdi4Z+BAJ+Px5na3T0onYqHggae7+zk/5JJ1lVWElGKoMPRO0daARN9PmY2N1MXDrN4kEZSAdYBv4lGeT4SMRPUaLR3TuzCVauojUaZMAhzYl/q7OQXQMTjwTAM8zWWybBk5UomdHZyxCCcUwghhBDiUDHkyapS6nPA5wCampqGOJp9s6iiAv/jj7OioYFlY8f2LjXTDfwR+BtwHnAW4Bi6MAumrKmJ7zc3F/yYQ83r9fKRpUuZ29rK1R4PTxkG9wSD5jI7FgvPTZpEJl++W1LAc35jzhxOb2/n9vJyVmWzaCBot/NToNpmY+6bb3LN/PnUj9CEtQV4FngsHuf9fGdm2tupKC+H/DqpR7a08LXJk6kaPZrWoqJBmZMK0IY5D+FFIJjJ9I5qOpNJLmxr45xBmhMbB24OhbgzGjWXj4rF8Hq9LDIMPu7xEG1qov7oow+JLyXEyKKUGoX5a1GLubT3bVrrm4Y2KiGEEGJgQ56saq1vw2zGybx58/QH3HxY8Hq9nHfGGRzV2kqVx8Nyw+BBwJ/fHwJuSyb5fSzGQquV00pKmAWDNq91sF17ww1DHcKg6VvuPB6Yk05zXSRCp9sNSrG+spLPxuN8tLmZxRUV+5xc/Oq73yWwdetebzMqHqe7q4tOj4esxQKYr6EngZf/+ldqMxkabDbKHeZXHmVNTcP2/6ITeBl4Ihrl/UwGu91Ook/Jq9KaUbEYX/J4GLVlC2MmTcJbUwMwKAlbEPhjKMSjuRw2h6N3VDMMTN+yhaM3b+bc008flJHcN4HfAhvzj10DxZkM52/dyucnTEDV1ED+sQsxBDLAf2qt31FKeYC3lVJPaa1XDXVgQgghxK6GPFkdqfomOaMwS3//jbkEx7Y+c1r/phQvGAblhsF84FhgLhS066wonAVVVdyRzfK7ZJI38v+/azs6+JHTyQvvvcd3YJ+Sm8DWrXx/HzpQRSIRuiIRml0uVuc7OaPy7Z20BqVoKCrCm0hw97p1+/24Ck0Dyzs6eCYcZoPXy3aXy1yf1+/vbR5UUV6OPZPhiB07mN7aanbXLS8v+JzQvqLA34H7Ewm29lkGx+v1cqJhcKbTSdbjoT6fqBZSN/DLcJjndun0O7qjgxPXrOG8k0+W5YrEkNNa7wB25H8OK6VWAw2AJKtCCCGGncFcuuYeYDFQpZTaDnxPa/3HwTrfUCsCzgBOAX6/bRv3pNMEnM7e9UtjhsHzwPOYcxfnAZO7uvBu3cr4urrDohxwi8/H2vZ27HV1WKuq6Mb8gL81FKI1EqGopASL240/FiMai+F2OvE4nSSjUbLhMHUuF26tMTo7GQd4QyHGDsJzN8rr5QeYI2Tfy3eL1cBLEybw40yGn1C4Ock9S/s0AdOiUVal02y22Yim0+YN8o2fWiwWXshk+ER3NxPCYRa43RxTUUEVhe1cvCcas6T29a4uXonFWO92sykeB6sV/H68NlvvOraWXI7RnZ2cm0hwcmkpHS4X9YPQXbevBPCXQIAHtUY7nf2Wwanr7ubzkQjnT50K1dXmpYBywGPAHxIJNvfp9HtEdTVXud2M9vtpOPnkw+J3XIws+SaIszFXYxNCCCGGncHsBnzRYB17OLORb9zz6KPs8HjYVFtLurqaYJ/bpIBnk0nujURQZWVU+P0scjqZ6fEwFhhH4eZIDrZWn491Ph+O+vp+CeiWUIhtkQi50lJSLhc7Egm2JpNQUmLO30smMQzDHI3rGQHr6qJCa7p6ljOJxagoL995PZUCQFutANhKS2nato2T2to4v7aWhgInA/OBX2QyXBsMsqO0FJRiRUkJn+7o4JvAnAInPZUuFwuBGZEIr3d00OlyEXQ6+91mTSjEGuCRSASvy0VpLkdlIMAkp5MppaUYfj/Z1lYm1tR86DVcM8CG9nbWd3Sg6upIV1SwPhRibSyGv6yMmFL4ehoUBYP01OwrrUnF48yz2dCrVzO2rQ1XNssZ+YZJg9nlOAI8Ctwfj7MxFDJjC4epKC+nKhJhwfr1jPf7OW6QGhmtBW4BNgLBPgny5JYWru7uZuHMmVBRMSjnFuJAKKXcwIPAtVrr0AD7R1w/CSGEONSM+eY/AWi+8awhjmToSBnwIOhp3NOzTmmN08lm4FXMeX3boHcUKqcUfpeLZ3I53u5zjErMpHUsUNbVhWXHDsZXVzO+pmZQ575qzOYwQSCQvzR3d7MlEMBaWUmupKR3X1s8zqZEAl1auucEtGfUrc8H+Z7RZsMwep+Hnu3RfEOega73LDPSI2OxsKm6mk3AvcEgZ/n9fKqyklEFTI4m19TwR625OZXi1bIyurq76dKaK3M5rrXZuKS8fJ9HNhOZDItuv51kNksml+OCKVO4fskSvvPMMzy8di0Wpahxubjj3HM5tq6OcDhMNpPhvWCQgMOB6nkeep6bSARfNApa82o6TYXFQlc0an4hkEzSlEhgj8dJBgJUlpRQW1lJMhIhFIlg93godrkIxWJ0xWJk3W7iSuFLJMDthkiEiqIiunr+H9vb+y01A2BkMjR0dzO+o4Mvzp3L+LIyfLNn71y3dxCT1PXt7dwTj/OW14u22wmmUkTfKiLymp3a2UEunruDpVVV7EilqD/mmILHEgR+GwrxhNYYdnvvnFgVj3PC++8zOhBgonT6FcOUUqoIM1G9S2v994FuMxL7SQghhDj0SLI6SHZdp3Rc/nIxsB14TGvuj0ToyDfy6eko3MOfv7yUTJqjWW43JBJ4k0lKDQMP4MEcge35WQeDhLu6KCsvp7SsDKC3wYsGAsEg7YEAjvJyiktKiGOWT8aBrliMznicrMuFpU8syWQSXzgMFgsEAngNA8MwZ9wGU6neY+8tAU0kEtjtdiJa40wmcaVSzK6spAmwAGtXr8ZIJjFyOY6eMYOVb76JzmbBamX2vHm8uWwZCYuFhGEQKy6m0+WirayMLre7N86wYXCvYfBEdzeXtLZyTgGTpQavlx8Bt65fz202GxmLhYzFwu8tFtYB1wBV+3Acw2rlmUsvxV1cTDqb5fjbb+eMCRP4r+OO479PPBGAX7/+Ojc8/zy3Ll2KO//4yux2wuEwr2azlL/zDlvLy2kvKyPudBLZS6LfEQoRi8fBYqE5EqHEYiEcDveOUlfkcv1GsfsmowMdz5HNUtHVhbe7m9FdXZw3bRppq5X6OXP6NUsazCS1BbgzFOL+aJSMxQLt7Xi9XhLLHWy+2INOQZfVQ91DIWrPqih486QM5nqptycSbO5J5JViVE0Nn7HbOa68nI5x4wY9WRdifymlFGbj+tVa618MdTxCCCHE3kiyOgQagc+VlXFOMsmmHTvINDYSNgw2AZuALZilwsCAiZ9hGCSAjj7HTCaT+IJBM6kMhfDmO6Duth92SzqTySS+zs7e9Se9Xm/vvj2dH8ButxMCHKkUrlSKmZWVjMJMQNevW4cjkcCdTnP2woVMLC0l7HCwo7vb/CDfk2iWlu42GjfH7e53fYbH03sdoLW1FbvFwpq2Nh6LRlkxahTx4mLzoTkc/Mbh4F9bt/JTpRhXwK6r55WUEHzuOZ6cNo3OkhLsdjuvJ5NcHItxCXBReflef6GUUrjzcaZzOdLZLAoo6fP/FE2ldhup7ZnXWpFMctWxx5rPRV0dOpfjr6++SofTSdDtpmzaNJaHQoQNg0RxMdlstt9x4nsZtVb5UWtHOo09laI0kWBWXR2d69fjiUapiUT45Mkno+rraQXqp007aMmYBt4D/g9zHnEwv7RQT9xloRCjX6nmnbQml1PklGLFigrOKnDFzL/9fm7L5QiUlPSrFBjT0cHVwSCnTJ8Og1z2LEQBHAd8CnhPKbU8v+1bWuvHhi4kIYQQYmCSrA6hPY1CZYFWzMR1GfB0V1dvAuLsk9j0tbek8oP277pPx2J4DYMywGq1srW1FUcyiTOd5qS5c83SZKDMMIjZ7fi6unZPQGfM2Jlw5ud2uvawTMiuz8O+XAeYAhzr8/H++vU8FI3y+vjxJIrMIukNNTVca7VyIzB1D8//h+X1erls8WKWtLbyWmkp/wTa8l2ff6YU/zYMvuh0smAvx8jmcsy97TY2dHXxpfnzOaqxEYBvP/00f1mxglLD4NlLL91rDH2fi08vWdIvsfdhJvN1paW0dHfz77feIm2zkbVYGD95Mms3bYJcjiJg3syZvPv221jTaVzZLB897TRUzxcDDQ3m8SyW3cp6D1aSGsdsSPZgLMbadBp7n3LboFJUh0Is2LyZaxYsYPNiuKtYkUpBcbFi8eLCxbEV+E0kwr/yJdfE41SUl1MWj3P86tWM7epihpT8ihFCa/0SB6cvmxBCCHHAJFkdhqyYy+GMAk4oLeWi+nozYaispMZuJwaE85dQ/t9tuRwvbN5MFrAoxaxZsyhj5yeSMLBs0yZUJoORy7Fo/nzqAAcQSad55bXXsKXTuDIZzjvjDHrTEbcb37hxOxOWXZrFlHm91O9DAjpYes4zzedj2caN/FkpVtXXg1KEi4u5KhjkYq25sqysIJ/Oes63AKhfvZqblCKYn0+6OZ3mB8C4aJRQIEAkEukt5e1htVhY/oUvEEgkOO+++1jZ3s6RNTX88KST+OFJJ/HjF1/kN2+8wfVLlnyoeAa6Xuv14tSaTZs2MW7cOKZMmYLP6+2XfM7dZRS75xh7Ov7BsAl4AngWs2lRz6h/UCm8Xi8LDYPjXS5K/X4aFizIr5UKTz8Nzz0HixfDMccceBxdwF3AU0Agm+39Qqc4k+Gsjg4uLC+nY8wY6o89Vkp+hRBCCCEGgSSrI8CuCYMrf6nte6Pyck6dMmVn4lFa2v8gpaX4pk4dOOmsqmLi4sV7bIwzFAnLh+X1ejnd62W2z8cTgQD319ayPT8f82al2Gyz8R23G+cHH2qfLayowP/Pf/LuqFG8OX48drudZDLJc34/FpuN/4tGOcpq5QiHY7dEucxuZ/Ho0TyxYQNH9ilV/uT06Zx19937nKx+kClTpjBlypTe6x80aj1UwsCLwD+iUVZlMr2jqD2j/tZcjiktLXw6FOK0I4+Eykrz0scxxxQmSY0DdwSDPJjLYXE6e0dzQ8CUlhaO3biRT5x66qB3OhZCCCGEONxJsnoI+aDEY2/7h0vScqC8Xi+Xer2MWrGCn+ZytJSXo7Tm5WyWq2IxLtq0idnV1QV5rF6vl3PPOosFra38h9vN04bBvT1NdzCbPr2kFO+l0zSEw1RkMlSXlFBmtxNPp/n35s1847jjWO/3MyGfeP1j7VomV+1Lu6aRLwO8BTyDORc1mkzi8/v7jaKOLSqiZN06Jra04MxmmTWI5bYpzOZJd8bjbAgGe5fB8Xq9HGMYnOV0UuRwUJ9PVIUQQgghxOCSZFUckqZ5vZz3z3/y0hFH8O6YMWb5bWcnK51Olrz9Nl+bO7cgnWL7JvkTgKPSaX6yYwfrAJRCKYUvFjPnfgaD3Pvgg9gAq9Z8fNo0lk6cyEfvv5+1nZ1YlGJ0WRm3Froz0DCSAd7FXMLpuXiczlRqt1FUSy7H+PZ2PhGNcsGUKbTPmEFrVdWgddjNAE8C92GW/gZTqd6S3+pQiCtiMS6cPBmqq82LEEIIIYQ4KCRZFYckr9fLOWedxfzWVja73dycn3OYtlp5ato0EtksPwRKP/BIH87s6mpuyuX4birFHMNgXS7XO9JaX13Nty6/3FyXE/Amk6zs7OT2M8+kZJe5rYeSbT4fzwUCbK6vZ5XHQ5R8B+qOjn6jqFNtNoy1axnf2oorm2XR0qUoBm/UP405qvvneJztfZJmu92OTiSYv2EDU9raWCLNk4QQQgghhoQkq+KQ1ZPkzAYaOzv5r3icgMMBSrGuspIvYa6ROn8QzltXUcFRdjuTIhFe8fvp8HiIGQY2m/krF8tkeC+RAJsNazrN2FSK0cXF1GGumTuSaWAzZifrlyMRnovHydrt0N2Nt7i43yiqO5FgUmsrHw+FOP3II/HNnElrdfWgrlOaxBxJ/TvQskvSPKm6mqscDmaWldFeX0/9vHlS8iuEEEIIMUQkWRWHhQVVVfwlm+V3qRRv1dRgGAZB4NvJJLPb2/lCcTFjByEpKXO7WQSEw2G0zUa7zUYz0J3J9I64ZpViey5HB5DNZChKpaixWqk3DCqBCswO0cNVFLOD7wbgnXCYt9NpMi6X+Rxns2SV6rdk0ijD4EQg+uab1HR3Y7VYmD3VXGBoMOdON/t8/C0W4/XaWpIOB7Bz2SZ7KsXc5mYu6+piwaxZ4PXSIEmqEEIIIcSQkmRVHDZGe738CHgb+DWwI5nE5/PxhNY8Hw5zTXExHy8vL3hi6Ha7e5ewqQdmAltyOZaFQgQcDhLFxdhsNrKZDJH8Wp7dStFitWK12VCAK53mzWiU3wcCTCsroz5/rOICx7onGggCvvxlTSDAqmgUf3k5AafZYzmZTOLLd2AmEsHr9fauiVoejTK+vZ0rp03jaECVluJbuHCPHagLqQO4MxjknmiUpNUKHR14vV4Mw8BbXMyR69czbetW7FozesaMQYtDCCGEEEJ8OJKsisPOXOA3wP/r7MSXb6QTLyriFouFl4HPALMH8fwKGON0UlVRQTgcxuJ0ErLZWBcOE8vlyCkFWpPJZLDabGQyGVpiMVq15jehEF6HA8MwzCQ2Hqc4FKLR6aTB46EUKAe6m5vp3LaNMQ0NTBo3jiKgCAh0dNDW1kZFbS1l1dWkMedutvn9bPf7MaqrsZaXE8Jcw7c1EmF7PE7M40HZ7UA+KQ2FzKS0s7M38esZpdSAI5ViamcnZzU00GC3k/T7qZ88GW+fTseD3YF6HfB/mM2cuoGk1do7wmuPRPicYXCqw0H39Om0VlYOetIshBBCCCE+HElWxWHJA1xns2FfvpyXjjiCiMOB3W5nC/BdzIT2CqBpEGPoO+LqBeqUYm1zM9GiIqIOB87GRsJAR5+SYfKltIZhkEgm2ZKfb7k8meydDxoJh/ErBU1m9JXhMG6Px0wy43EoKYF4HG8yiWEY5vZoFAzDXKolv7ZoMpnE19VlnjseHzApVVqTjseZYhjUKEX7mjV4u7upiUb5yNKleAFqaszLQZAGXgXui0Z5r896rX1HeOc2N/Ofc+bQkL/PobJskxBCCCHEoUaSVXHYqvV6+eq8eZy/YwfLvV7+bRgk8vteSSZ5NpFgicXCpz0exn3IY5c1NfH95uYPHVPcbicWi+G0WnHs2AFAOB5nY3s7NXV11G7bRnVlJSFg7S5JY08SG43F+h0zGovh9nh2SzJ7k9593E4sxjjDwGWx0Lp1KyWRCLWRCJ9atIhRACUl+GbNOiilvbvaAfwLeAroGGC91vmGwUKXixq/n4Y5cyQ5FUIIIYQYAQY1WVVKnQ7chNkf5g9a6xsH83xCfFg9o2pHAR8D7gIezc9lRWseUopXiouZbxichzniqvbhuNfecENB4/T5fDuTwPxobEsiwT2vvEKkqIiE3c60447DAqzRmvfa20lbreSUorapiRIgWFTEpkQCcjmswBHV1ZQCKZuNzV1dFKXTODIZjikrYxSQyWZZvnw59kSCsmSSj552GrUAHg++iRMHTEoP5ihlBniiq4uHUym2lJdjGAZAv/VaJ7S18alwmI9MmwaVleZFCCGEEEKMCIOWrCqlrMDNwCnAduBNpdQ/tNarBuucQhyICuBqYNyGDdySTLK1srJ3pHGFYbACGAWcB5zAwWtuBAMngQ1eL5868cSdSWN5ubmjtpbV3d1s2rSJcePGMaUnQXM68ZWV7bx9vjESLhe++npz++jReEvzq89WVHD80UcPeVLal8aci/oM8FQ8zsZIxCxT9vl6y5Tri4uZsmkTU7Ztw5NOs0DWSRVCCCGEGJEGc2R1AbBBa70JQCl1L3AOIMmqGNbmVVVx3qOPssPt5t2xYwn3Scq2AT9NJvllNMqJNhvnlJRwBPs22joY9pQ0TpkyhSlTpuzz7T/s9oNtZXs7j0ajrPZ66con2cFUql+Z8viuLi6vq2Ouw0Hn1Km0lpVJ0yQhxH4Z87IFaKJ5qAMZIcznC5qPyw1xJGIw7fr/fCD/72O++U/zvjeeVaDohs/rcMzLFpqPyw2LePo+z4PxnB8Mg5msNmB+tu+xHThqEM8nREF4vV6WLl1Ka2srV9bXo+x2/oE5JzLYp0T4r0rxpGEwzjBYDCwGs0xWFEQb8ArwZDTKq4kEWCz9ug/b7XZyySSTWlo4srWVT558Mj1p6XBJsoUQQgghxP4bzGR1oMEmvduNlPoc8DmApqbB7L0qxL7bNdn5LHARcEtLCw+l04Tt9t4S4RbD4C7M+a6jolEmt7VxosfDkQepA+6hwufzsbyjgy2NjbxfVsam/PZgvhty30ZPpxgGSwyD6tJSdkSj1E+dKsmpEEIIIcQhZjCT1e2YU/x6NAKtu95Ia30bcBvAvHnzdktmhRguXMCnXC5KH32UbWVlrGtoINonQUomk7zs9/OyzcYfEwlmx2Ic73QyBziSgzvHdaSIAe8BL4RC/LOri26PB/qsJQtgt9sJA42dnUxta+NL8+btXFLI66VWklQhhBBCiEPSYCarbwITlFJjgRbgQuCTg3g+IQad1+vl7HyJcH19PWV2O28AzwLPxuP9RgA3pdP4gYcxE9XpwLhAgIqWFuZUVVF/GCZZLT4fr/n9tDc0sLm0lLVADghqTdDp7Ld8jsswmA0cZxiMcTgIWSzUz5snI6hCCCGEEIeJQUtWtdYZpdSXMaf6WYE/aa3fH6zzCXGw7FoivDB/+WQqxf+uWcOmqipaKyqw2+29t0lhrt36UCgEbje2WIxjolHmuFxMBCYC1Qxdo6bBkMUsr9gAbATejUZ5PRYj7XJBMIjXbu83ehpUCls2yxi/n0s8Hk7DHM0GoKbGvAghhBBCiMPGoK6zqrV+DHhsMM8hxHBxRE0N35o1i9bWVqqcTjoMg3eAtzGTtp71PzWQsVhYkcmwpc/9jXicqkCAyU4nU0tLqcfsUlbG8E5ic0An4ANWd3fzbjhMd2UlPpeLVJ/bBTMZ0hZLv9FTwzAYB8w2DEa5XHi2bWP0qFF4KyqG4qEIIYQQQohhZFCTVSEON31HXUcBczCbM7UDT+dyPNDeTltJCRGHo9/IazKZZGtHB+u15tV0ut+oowMzafWEwxh+P2NLSxlTXk45UIqZzDoYnIQ2CYSAcP7fzV1dbAgGyVRWEispwQd0AJn8Y/CFw+a6p34/Xput9zHAztFTTzxOU1cXn/B4WJJ/DABUVpoXIYQQQgghkGRViIOiBriovJwTm5pobW3FUV5O0DBYB6wD3ojF+s137Rl1BIgD7yeT+Lq7QSkIh/E6nf0SwSLMpC/n9xPr7qa6tJS66mqK8vt6LvFQiEAggKusDEdJCWkgjZlspoFANEpHNErO4yHtcPQbGU0mk/giEXMJmUAAr2H0i6HvyHHPY6g3DI4AjgDGGwYldjsxv5/6ceNk9FQIIYQQQuyVJKtCHES7znftWXi4LZXizldewed2E3K7qZs3jxBmZ7IYAyeCfRPFNNAcDuOPRKCoiLWxGJXhMG6Pp/c2yWQSXyBgjnwOkGwmk0l8fr+5P5HoXc+0x95iKAUabTY6fT7KwmFqIxE+dcwxTNz1CZC5p0IIIYQQYh9JsirEMFDr9fKpE0/s7TLszSeZGrP89t10mv9btYqA3U7CbmdUZSVZIJC/JIFoLNbvmNFYrF+y+kEJ70D7XYZBCVACWK1Wtre344zHKU0kOHPuXKZhjhrbAVwufKNHm4/hyCPxSlIqhBBCCCEOgCSrQgwTu466gjkPtRRYVFXFpDlzdiazbne/2yWAN4NBnl22jKzFQsZqZfrs2TRCb6lvey7Hq+vXo3M5ioBj58+nBvOPQBEQymR45e23saXTuDIZzj/5ZJpKS3fOhXW78eXLmOsnTcI7wPzSgR6DEEIIIYQQ+0OSVSFGiL0lgnZg4cSJVGWzbNq0iXHjxjFl7Nj+Nyov55Tp03cmvOXl/fdXVjLzuON27h/gXJKMCiGEEEKIg0WSVSEOIVOmTGHKlCl73P9ByaYko0IIIYQQYriwDHUAQgghhDh4lFKnK6XWKqU2KKW+OdTxCCGEEHsiyaoQQghxmFBKWYGbgTOAqcBFSqmpQxuVEEIIMTBJVoUQQojDxwJgg9Z6k9Y6BdwLnDPEMQkhhBADkmRVCCGEOHw0ANv6XN+e3yaEEEIMO0prPdQx9FJKdQBbDtLpqoDOg3SuQ5U8hwdOnsMDJ8/hgTtUn8PRWuvqoQ5iOFFKfQw4TWv92fz1TwELtNZX73K7zwGfy1+dBKwtUAgj/bU2kuMfybGDxD+URnLsIPEPpYFi/1DvzcOqG/DB/FChlHpLaz3vYJ3vUCTP4YGT5/DAyXN44OQ5PKxsB0b1ud4ItO56I631bcBthT75SH+tjeT4R3LsIPEPpZEcO0j8Q6kQsUsZsBBCCHH4eBOYoJQaq5QqBi4E/jHEMQkhhBADGlYjq0IIIYQYPFrrjFLqy8C/ACvwJ631+0MclhBCCDGgwzlZLXh502FInsMDJ8/hgZPn8MDJc3gY0Vo/Bjw2RKcf6a+1kRz/SI4dJP6hNJJjB4l/KB1w7MOqwZIQQgghhBBCCAEyZ1UIIYQQQgghxDB0WCarSqnTlVJrlVIblFLfHOp4Rhql1Cil1LNKqdVKqfeVUtcMdUwjlVLKqpRappR6dKhjGYmUUmVKqQeUUmvyr8djhjqmkUYp9R/53+OVSql7lFL2oY5JHHpG2vvunt7nlFIVSqmnlFLr8/+WD3Wse7Lr+8sIi323v+0jLP7d/q4O5/iVUn9SSrUrpVb22bbHeJVS1+V/l9cqpU4bmqh32kP8P82/flYopR5SSpX12Tds4h8o9j77vqaU0kqpqj7bhk3s+XgGjF8pdXU+xveVUv/TZ/uHjv+wS1aVUlbgZuAMYCpwkVJq6tBGNeJkgP/UWk8Bjga+JM/hfrsGWD3UQYxgNwFPaK0nAzOR5/JDUUo1AF8B5mmtj8RsuHPh0EYlDjUj9H13T+9z3wSe1lpPAJ7OXx+udn1/GUmxD/S3fUTEv5e/q8M5/juA03fZNmC8+d+DC4Fp+fv8Nv87PpTuYPf4nwKO1FrPANYB18GwjP8Odo8dpdQo4BRga59twy12GCB+pdQS4BxghtZ6GvCz/Pb9iv+wS1aBBcAGrfUmrXUKuBfzCRX7SGu9Q2v9Tv7nMOabSMPQRjXyKKUagbOAPwx1LCORUqoEWAT8EUBrndJaB4Y0qJHJBjiUUjbAyQBrbgpxgEbc++5e3ufOAf6cv9mfgXOHJMAPsIf3l5ES+57+to+I+PMG+rs6bOPXWr8AdO2yeU/xngPcq7VOaq03Axswf8eHzEDxa62f1Fpn8ldfw1xTGoZZ/Ht47gF+CXwd6NtcaFjFDnuM/yrgRq11Mn+b9vz2/Yr/cExWG4Btfa5vRxKt/aaUGgPMBl4f4lBGol9h/iHKDXEcI9U4oAO4PV/q9gellGuogxpJtNYtmN94bgV2AEGt9ZNDG5U4BI3o991d3ue8WusdYCa0QM0QhrY3v2L395eREvue/raPiPj38nd1RMTfx57iHYm/z1cAj+d/HvbxK6XOBlq01u/usmvYx543EViolHpdKfW8Ump+fvt+xX84JqtqgG3SEnk/KKXcwIPAtVrr0FDHM5IopZYC7Vrrt4c6lhHMBswBbtFazwaiDK+yqmEvPwfpHGAsUA+4lFKXDG1U4hA0Yt93R+L73CHw/jKi/7YfBn9XR9Tvs1Lq25hl/Xf1bBrgZsMmfqWUE/g28N2Bdg+wbdjE3ocNKMecQvFfwP1KKcV+xn84JqvbgVF9rjciZW8fmlKqCPMN/C6t9d+HOp4R6DjgbKVUM2ZJ3IlKqTuHNqQRZzuwXWvdM6r/AOYHHLHvTgY2a607tNZp4O/AsUMckzj0jMj33T28z/mUUnX5/XVA+57uP4T29P4yEmKHPf9tHynx7+nv6kiJv8ee4h0xv89KqUuBpcDFeudancM9/vGYX3S8m/8dbgTeUUrVMvxj77Ed+Ls2vYFZ4VHFfsZ/OCarbwITlFJjlVLFmBN9/zHEMY0o+W9H/gis1lr/YqjjGYm01tdprRu11mMwX4PPaK0PpW9eB53Wug3YppSalN90ErBqCEMaibYCRyulnPnf65OQJlWi8Ebc++5e3uf+AVya//lS4OGDHdsH2cv7y7CPHfb6t31ExM+e/66OlPh77CnefwAXKqUMpdRYYALwxhDEt1dKqdOBbwBna61jfXYN6/i11u9prWu01mPyv8PbgTn534thHXsf/wecCKCUmggUA53sZ/y2wYtzeNJaZ5RSXwb+hdmh7U9a6/eHOKyR5jjgU8B7Sqnl+W3f0lo/NnQhicPU1cBd+Q/Am4DLhzieEUVr/bpS6gHgHcwyqWXAbUMblTjUjND33QHf54AbMUvaPoOZlHxsaMLbLyMp9oH+tlsYAfHv5e+qm2Eav1LqHmAxUKWU2g58jz28XrTW7yul7sf8AiEDfElrnR2SwPP2EP91gAE8ZX5nwGta6y8Mt/gHil1r/ceBbjvcYoc9Pvd/Av6kzOVsUsCl+ZHt/Ypf7RwVF0IIIYQQQgghhofDsQxYCCGEEEIIIcQwJ8mqEEIIIYQQQohhR5JVIYQQQgghhBDDjiSrQgghhBBCCCGGHUlWhRBCCCGEEEIMO5KsCiGEEEIIcRAopW5QSp38AbdZrJQ69mDFJMRwdtitsyqEEEIIIcRQ0Fp/dx9uthiIAK8MbjRCDH8ysiqEEEIIIQ4LSqmvK6W+kv/5l0qpZ/I/n6SUulMpdYtS6i2l1PtKqev77HuozzFOUUr9Pf9zRCn1c6XUO0qpp5VS1fnts5RSrymlViilHlJKlee336GUuiD/c7NS6vr8fd9TSk1WSo0BvgD8h1JquVJq4UF8eoQYdiRZFUIIIYQQh4sXgJ4EcB7gVkoVAccDLwLf1lrPA2YAJyilZgDPAFN6ElHgcuD2/M8u4B2t9RzgeeB7+e1/Ab6htZ4BvNdn+6468/e9Bfia1roZuBX4pdZ6ltb6xUI8aCFGKklWhRBCCCHE4eJtYK5SygMkgVcxk9aFmMnqx5VS7wDLgGnAVK21Bv4KXKKUKgOOAR7PHy8H3Jf/+U7geKVUKVCmtX4+v/3PwKI9xPP3PnGNKcQDFOJQInNWhRBCCCHEYUFrnVZKNWOOjr4CrACWAOOBOPA1YL7WulspdQdgz9/1duARIAH8TWud2dMpPmRIyfy/WeRzuRC7kZFVIYQQQghxOHkBMyl9AXM09QvAcqAEiAJBpZQXOKPnDlrrVqAV+H/AHX2OZQEuyP/8SeAlrXUQ6O4z3/RTmCXC+yoMeD7UIxLiECXf4AghhBBCiMPJi8C3gVe11lGlVAJ4UWv9rlJqGfA+sAl4eZf73QVUa61X9dkWBaYppd4GgsAn8tsvBW5VSjnzx7r8Q8T3CPCAUuoc4GqZtyoOZ8oswxdCCCGEEELsiVLqN8AyrfUf+2yLaK3dQxiWEIc0SVaFEEIIIYTYi/zIaRQ4RWud7LNdklUhBpEkq0IIIYQQQgghhh1psCSEEEIIIYQQYtiRZFUIIYQ4xCil/qSUaldKreyzrUIp9ZRSan3+3/KhjFEIIYT4IIOWrCqlJimllve5hJRS1w7W+YQQQgjR6w7g9F22fRN4Wms9AXg6f10IIYQYtg7KnFWllBVoAY7SWm8Z9BMKIYQQhzml1BjgUa31kfnra4HFWusdSqk64Dmt9aShjFEIIYTYm4NVBnwSsFESVSGEEGLIeLXWOwDy/9YMcTxCCCHEXtkO0nkuBO75oBtVVVXpMWPGDH40QgghDnlvv/12p9a6eqjjGImUUp8DPgfgcrnmTp48uTAH7u6GTKYwxxpsNhuUD6NpvSPpuRMf7GC+vobDa2ewH+9weIz7a7j9rRlkH/a9edCTVaVUMXA2cN0e9ve+ITY1NfHWW28NdkhCCCEOA0opqebpz6eUqutTBty+pxtqrW8DbgOYN2+eLth78y23QGNjYY412LZvh6uuGuoodhpJz534YAfz9TUcXjuD/XiHw2PcX8Ptb80g+7DvzQejDPgM4B2ttW+gnVrr27TW87TW86qr5QtwIYQQYpD8A7g0//OlwMNDGIsQQgjxgQ5GsnoR+1ACLIQQQojCUErdA7wKTFJKbVdKfQa4EThFKbUeOCV/XQghhBi2BrUMWCnlxHxD/PxgnkcIIYQQO2mtL9rDrpMOaiBCCCHEARjUZFVrHQMqB/McQgghhBBCiENfOp1m+/btJBKJ/jvmzgWrdWiCOlBeL6xePdRRFJzdbqexsZGioqIDOs7B6gYshBBDTgNbfD62+nxU1NZSVlNDCkgCO/x+Wjs7qayqorSykhyQA7KAv7ubDr+f6spKKsrLUZhzKBQQ6Oqiq7OT2spK6iorKQaKAAMIdHTg37GDsV4vTV4vamgethBCCHFI2L59Ox6PhzFjxqBUn3fV9nYoLh66wA5EKgU1h9ZKYlpr/H4/27dvZ+zYsQd0LElWhRAjzg6fj7U+H666OozqaoLQewkBLeEw7ZEI1pISlMtFHIgBgWSStmQSSkshkcCbTGIYBslkEl80CnY7RKN43W4MwwAw94XDUFQE4TBep7P/vkgEDGPg+8Xj5rmSSWqTScoNAyfgBHQ0SiYUosHtptHjoRR6L+nOTuI7djC5poYGr/fgPrlCCCHEMJVIJHZPVMWwo5SisrKSjo6OAz6WJKtCiGEnB7zf0cH7fj/K6yVTXk470AFsicdZHY+TLS2FeLw34eyRTCbxdXeD1uD347XZevfHEwnQGg0orUkkEhiGYZYTDbAdKNi+eCJBsWEQ7YnR7zdj7O7GW1zcP8mNxaCkBJVIMDEep8nhoBp6L9auLnRrKzOrq2mUZFYIIcRhRBLVkaFQ/0+SrAohhszG9naW+f3kamuJlZezHWgFmhMJWuJxcDh2G80MplJklRowQYS9J5B2u51YLoctk8GqNWOLisyRTJuNrd3dWLJZrMCUykpKMUt9YxYLq3fsAK1RSjGlogI3ZkIdslhY3d5OFshZrYytrKQISAHBoiI2JhKkLRbSNht2u32fYuy7D6AtlSLucLA2f713NNfjQSUSTI/FmOB00giMAuydnVhaWjiithavJLJCCCFEQf3wZz/j7gcfxGqxYLFY+N0vf8mNv/oVm7dsIRKN0tHZydjRowH47c9+xs1/+ANvLV9Okc3Ggrlz+d0vf9lvHueby5Zx9Jlnct9993HBBRfsdr7Nmzdz4YUX0tXVxZw5c/jrX/9K8S4lz7FYjCuvvJIVK1agtaasrIwnnngCt9uN1Wpl+vTpZDIZpkyZwp///GecTidPPPEE11xzDdlsls9+9rN885vf3O3cwWCQSy65hK1bt5LJZPja177G5ZdfDsAVV1zBo48+Sk1NDStXrizkU9yPJKtCiEG33edjWWcnqbo6ghUVbAFWx+OsTSTA6dwtIY0kk3tNOINK4UilcKbTTK+qoo6dJbS5XI6VK1dSlEphZLOcccIJjMYsvXUYBh1OJ62trdTX1+N1Os0AXS58dXU7t7vdO4P3ePCNHbtzn8fTf19T08D3czrxlZX17qs0DOJAHNiSSvHEW28Rt1pJGAZTjzkGhVnG3Gq18tyPf4zy+charWQcDrr7NI1Ip1JYUqne6+uKi9mcf9PKZbPE43EAirNZvE4nFUVFlACNTU18/YYbDvS/UgghhBg2xnzznwU9XvM3j9vr/lffeINHn3ySd557DsMw6PT7SaVSPHTnnQA899JL/Ox//5dH77uv9z6BYJA7b7sNgE9+9rP84S9/4arPfAaAbDbLN/77vznttNP2eM5vfOMb/Md//AcXXnghX/jCF/jjH//IVVdd1e82N910E16vl/feew+AtWvX9ibEDoeD5cuXA3DxxRdz6623cs011/ClL32Jp556isbGRubPn8/ZZ5/N1KlT+x335ptvZurUqTzyyCN0dHQwadIkLr74YoqLi7nsssv48pe/zKc//ekPeloPiCSrQoiCygBbgXXABuDdWIy3EglybjdEInhdLgzDIJhK7TUhzaRSlEajlCSTLCwrYwJQA1QbBjnDwO/3mwmiy9U/gPJyfPPm7Uwgq6v77fZ6vQOOOO5peyH3efKXmupqmo4/fmeMZWU77+R2843ubq6tqcHl8WB1u4lizrmNAt3JJNu6uogXFZGy2XC53Vht5p/yZCLRr0Oi3W7HyI/o/ra5mZWxGBXd3RzldLK4vJxakKZPQgghxD7a4fNRVVHR+3mlqvKDFz0589RTe39eMHcu21tbe6//72238dGlS3lzzZoB76u15plnnuHuu+8G4NJLL+X73//+bsnqjh07GJ0fzQWYNGnSgMdbuHAhK1as4I033uCII45g3LhxAFx44YU8/PDDuyWrSinC4TBaayKRCBUVFdjynzkWLVpEc3PzBz7+AyXJqhDigASA94FXQyFWxON0lZai+pS8BtNpcrBbUmq324nmcpRHIlTEYpxYVsZUoB5oMAxCJSW0RiLUjxmDt7S0/0nz3XX3ZG8J5HCxtxgdDgd1dXW91/ul44ZBxOMhHA7jtNvRNhshzMZSHUqxLZUiVlyMVqr3DQXMUdd3OztBa54Nh7nd6aTRMJgBzMxfKgr/MIUQQohDxqlLlnDD//wPE+fN4+QTTuAT55/PCcftfTS2Rzqd5q/33cdNP/4xAC2trTz06KM888ADvHnddQPex+/3U1ZW1vt+3tjYSEtLy263u+KKKzj11FN54IEHOOmkk7j00kuZMGFCv9tkMhkef/xxTj/9dFpaWhg1alTvvsbGRl5//fXdjvvlL3+Zs88+m/r6esLhMPfddx8Wi2WfHm+hSLIqhPhQOoGVmAnqe0AL+XmUgYDZMCiZxOv17la2WxaNUhmNckpZGTOBMYaBxemkLRAYMCF1jICEc6i43W7cfUqOy3p+MAwiTifBcBhdWkrCZqML6MJMVncdye4wDJ4Gns7fvSIWY1RnJ6c5nRxfVSWjrkIIIUQfbrebt597jhdffZVnX3yRT1xxBTd+73tc9slPfuB9v/i1r7Ho2GNZeOyxAFz7rW/xk+9/H+te1ofVWu+2baDGRbNmzWLTpk08+eST/Pvf/2b+/Pm8+uqrTJkyhXg8zqxZswBzZPUzn/kMDz/88D4d91//+hezZs3imWeeYePGjZxyyiksXLiQkpKSD3y8hSLJqhBirzKYyekbwAuxGFvTabO8dC9NjZyRCEcbBhOACYaB2zAI+v3UjxrVPyn1eqmThLSgdk1kezydzVL+xhu0lJbSUllJzuul71tgMplkeWcny7XmkViMqfE4pzocLALGIeXCQgghBIDVamXx8cez+PjjmT51Kn++554PTFav/8lP6Ojs5Hd//WvvtreWLePC/NzVzq4uHnvsMWw2G+eee27vbaqqqggEAmQyGWw2G9u3b6e+vn7Ac7jdbs4//3zOP/98LBYLjz32GFOmTOk3Z7VHY2Mj27Zt672+p+PefvvtfPOb30QpxRFHHMHYsWNZs2YNCxYs+KCnqWAkWRVC7CYEvIWZoL6D2RQomUziy5eRBpXqHT21AY4f/xhj+XIcySSOdJoxDQ0kHA7ewxx9LaSypiauPQwbBd302mv8/p130MCVc+Zw7dFH851nnuHhtWuxKEWNy8Ud555Lfd8GUH24HA4+s2hR7zzZKrvdnFOcv7waj/f7wqElleLvDgd/xyzNnhkMMnbbNuZUV8uItxBCiMPS2vXrsVgsTBg/HoDl773H6D7ltAP5w1/+wr+efpqnH364Xwnt5nffNX9Ipbjs619n6dKl/RJVMEc7lyxZwgMPPMCFF17In//8Z84555zdzvHyyy8zdepUysvLSaVSrFq1isWLF+8xpvnz57N+/Xo2b95MQ0MD9957b++82L6ampp4+umnWbhwIT6fj7Vr1/bOcz1YJFkVQgBmA5+Hurt5KpViR1kZxX1GTmHn6Kk1l6MuEGBhNsvSsWOZCPyorY2vHXkk4XAYj8cz4MheoXz/IEzmH25Wtrfz+3fe4Y0rr6TYauX0O+/krAkT+K/jjuO/TzwRgF+//jo3PP88ty5dusfj7DpPdlL+8nFgWzLJH5YtY111NZtqa/sttbM5meS1YBA8Hup8Pr5SVMTpFRUc3FkrQgghxNCKRKNc/fWvEwiFsFmtHDFuHLf96ld7vc8XvvpVRo8axTH5Rkvnf+QjfPfrX9/rfc4880z+8Ic/UF9fz09+8hMuvPBC/t//+3/Mnj2bz+RHY/vauHEjV111FVprcrkcZ511Fh/96Ef3eHybzcZvfvMbTjvtNLLZLFdccQXTpk0D4NZbbzXj/sIX+M53vsNll13G9OnT0Vrzk5/8hKqqKgAuuuginnvuOTo7O2lsbOT6668fMLYDJcmqEIe5DcDjwJOJBFvDYXPeqc/Xb95pDXCCUoTfeYc6v58ipVi6dCl9x9f2VH4qDtzqjg6ObmzEmW9Df8Lo0Ty0Zg1f79PUIZpKHVCp7iivly8ecwytra3UuN3sMAxeAF4Fgn3KvHeUlnKj1crDwLnASUDxXo4rhBBCDJbmG88yf2hvh+LBfzeaO2sWrzz55B7395QH95Xp7PzA495xxx39rj/22GO9P48bN4433nhjr/f/9Kc/vcclZCKRyIDbzzzzTM4888zdtn/hC1/o/bm+vp4n9/B477nnnr3GVCiSrApxGEoAzwNPYCarAMFd1jatDQT4iNfLAqAJUCUl+I49dudyK1IKetAcWVPDt595Bn8shqOoiMc2bGBevlvwt59+mr+sWEGpYfDspZce0Hn6jrw2APOAFPBkNsvt7e1sqq4mZ7Fgt9tpBX4L3AksBc7EXOdWCCGEEKJQJFkV4jDSCdweCvFUNgtOZ78mSXa7HVs0yrRt25jo8/Hx005j13T0wywJc8XDD/PounXUuFys/OIXAeiKx/nEAw/QHAgwpqyM+y+4gHKHg7tWrOCnr7zSe98VPh/vfP7zzKqt3a/H+cqr8PRzMHZmNyWjWymprcVRWUkMc/5tayDAjkAAV0UFjpISkphJWVckQlc4jMvjwe52kwOymGU/oWiUEpcLl8uFAiyYTYfi0SiJUIgKj4dyt5tizJHGeChEvKuL+rIy6svKcAJOINrZSbStjYk1NYyvqdmnUtop1dV847jjOOWvf8VdXMxMrxdbft7LD086iR+edBI/fvFFfvPGG1y/ZMl+PWd7UgwsrahgfjrNap+PFaNH84phEM3vDwF3A3clEsxpb+cKw2CMfJEhhBBCiAKQZFWIw0A38Dfg4USC7T1LzITDeL1e3IbB8cAZhkF5ZSU7kknqZ8064JHTy2bN4ssLFvDphx7q3XbjSy9x0tixfPP447nxpZe48aWX+Mkpp3DxjBlcPGMGAO/5fJxz7717TFSzmMvldOQv7cCmcJhtkQiUlNCywsW/ToJsSqOKShl3VwKXJ4rX7cYwDLNRVCgESkEggNcwdm7v6jKfm64uvEVFO7f7/eb2RAKvzdab5Pfbt+t9AgHzHKEQXodj5/ZYDDweSCSoTSapNAzKAFs0iiUQYKzbzbb8Y3QCOholGQrxiYkT+cycOQB86+mnadylbfwnp0/nrLvvLniy2qPni4rFwJXAk8DD+f+DZDKJr72dbVrzdDDId2w2Tt+HhdKFEEIIIfZmUJNVpVQZ8AfgSEADV2itXx3McwohdgoDDwKPYI4chvuU+pZHo5zR0sJnx42jt3+s10ttgUbFFo0eTXMg0G/bw2vX8ly+VPXSmTNZ/Oc/85NTTgFg2zZobob7Olfy0UmT2NDeDm43GaeTUP6xdKXTPJlK8Xoy2T9h7O42E0a/n9i/DbIpG2QVGoi8Zsc1N0UikcAwjN2W2dnf7bD7kj0f9ljxRIKwYdDZJ+l9NhjElc3yPJDNZIhkMlgNg3RnJ9OLikglEty/ejWPXnQRL61Zw6zGRtxuN/9Yu5bJ+aYHg80BnINZ/vsycGswiC//uCKGwY9sNlYAn6PPGrBCCCFEAWitB1wTVAwvA60Ruz8Ge2T1JuAJrfUFSqlizIECIcQgSwB/Cgb5v1yuX7mv3W7HEQoxf/16xnR385GlSxl4oZPB4YtEqMsvrVLn8dAeidDs89EWLuWp++zksnC3fp/Pn/YRniouhnQadyaD1WYzE7dYjFQqha9PA6hdE0DX0QksxW5yKY2lSNMws5uaQJjplZXUABmlWLdlC9Z0mmKtOXbuXGqAaDbLG+++iyWbxQosWbSIaswE+YU33kDnclgsFk5YsoRKzG/f2tNpnn37bTKAttlYcPzxuIH2XI6X160jabGQKSpiYnk5NqDdauW9YJCEzUbcMHo77u76GLLZLACZTAa0Jmux8MunniKWTFJks3HRaafxrM3G7996i/Ynn8RuszG6vJzfnHWWeYyD9P9pBRYBE7Xm5++/zwsTJ5IoLsZut/MisAy4Ajj5IMYkhBDi0GW32/H7/VRWVkrCOoxprfH7/f1WFthfg5asKqVKMD/HXAagtU5hDu4IIQbRa8Cv4nFWB4P9yn2nGAaXGAajamrYkclQf9xxQ9IkqQXoAtpSKVLA44ZBdAVks5rtuoUiiqgM1wLmKHAmn6z2JG4KcMfjNAQCHOn1YgAbV6/GGY/jzGQ4Z/FiOp9288pzipkzuqmvD1JfW4+3p1NxSQm+SZN2NooqLze3V1RwzFFH7dzeU8ZaVcXEPuuTevuMXk6pqmLyccft3FdRYe4oL+fEGTN2bu8p2XW78Xm95vbKSqoMgzCwPpXin++8Q7i4mIjDQQdQBwStVtq1JqsU//nxj+N2ubDabCQTCRKJBFfml6mx2+0YdjvLgGWZDJ54nMaiIkbb7ZQz+IlirdfL1+bO5ey2Np7xenkr/+VIBPg18M9IhDM3b2ZmTY005hJCCLHfGhsb2b59Ox0dHf13hMNgtQ5NUAcqmwW/f6ijKDi73U5jY+MBH2cwR1bHYU5nul0pNRN4G7hGax3teyOl1Ocwq8VoamoaxHCEOLR1AL8DXgeCqVTvSF1FJMJFiQSXTZxoJi0FLPXdVU8p75gx0DjKbL6TAl4BdqTT2F0u/t7dTWV5Ob5QCLfDAUBxYxplNViZWcmRlmkUN2Ypzmaxp9OMdjioAmy5HO3btjFpxw5OfumlnUvnlJbimz17Z2JYXQ3VsPgYgIr8pb89NYr6sNsLcawyYH51NU19Oi3fUlzMEoCiIiJFRXREo+DxkLbZCAGdFgst2SwpqxWUwmYz/5RnMxki0ShBrdmey7HSZsNhs1GeTLI6FGJdezsTa2oGfBwHqudxLQSWA78BfJhl2s92dfGy08m5L77IZxculIRVCCHEfikqKmLs2LG777jlFihAYjQktm+Hq64a6iiGrcFMVm3AHOBqrfXrSqmbgG8C3+l7I631bcBtAPPmzStMcbMQh5FWn497olGeq6+HfLmF3W4nlU5z7Nq1TGlr48ylSwd9dG3bNvjzX8wRUmWBpkuyBMvM7rsb8yW808eM4em33+ajixfz6qpVzBg/HqvWeCpijLmwmP/92yr+8pHLOaZJkQil8Hg8uHs6Fjud1I4dS1UqZSaqfRKeD9OleLja02MYcP3a4mIihkFnNErG4yFus9EFtKTT5mg69I5Kx4GORIJ1Fgsfj8dZEolwhtvNMTBoJeCzgJsxuwT/OR4HrUnabPx9zhwmdnXxsRH+fyWEEEKIg2Mwk9XtwHat9ev56w9gJqtCiAJZ0dHBf3Z00O7xQHt77zzOsw2DM0pKCNXXUz9v3qAlcjlgDeZarf9qhkxWg1bonOamf/6dzfGtROJxrrnpJs486ihOnzuXP/3zn1z3/vs0lZfzhzPPpDyRwOPx8FZ8B0dUlXDmtHxZrsu12/ncbjeVlZUjPjEthIGS2Eg2y3tbtxJ0OAg7HGiXi2i+fBrMebZvZ7NsAH6ZSDCmu5tzios5rbKy4F9mGMDlwKRMhq+m08SLisjYbPy5vp4JmAmtEEIIIcTeDFqyqrVuU0ptU0pN0lqvBU4CVg3W+YQ43LwE3GCz0e7x9DbmKQ+F+H51NVMAamrMyyBoBu4LhXgukyHrchEDLGNAWUHnR1YvP/EMKsbYaHI4KEkkCG/ciKOtjSVz5zJx4sTdEq3FbjevffazgxLv4cLtdjN93DjC4TAejwdXURFtqRTL/H6cqRRRzFH3nqVmWrXmlXSaexwOPul0sgRzXdVCOraqipu15ntWKymXC2UY3ABcB8wv8LmEEEIIcWgZ7G7AVwN35TsBb8L8ol0IcQDSwB+BfwI4nRAOY83lOHrjRv7fkUfSMEjnTWEuU/I4sLxnHVGtIRLBlc1iHwONF2dJrIpRXR6iIRtgZnYMbgC7ncjo0b1J1G5lraKfsqYmvt/cfGAHSSahsxOAeCrFwtpaLnU4WGcYPOjz9S41o7RmczrNb4Dfx+PMa2vjIqeT0QUcvZ5bXc1twLeBTszX8HcTCT6+dStnlpbKSLkQQgghBjSoyarWejkwbzDPIcThZEVHBzdqTWdpKYZhYBgG06uq+NjmzRx95JGD8qE/AtwRDPLPbJasy7XbcjGuZJKKRIJFQO0YG4kqC+GwFY9nTL+kdMC5l2JA195ww6AdewpwNHDXyy/zbkMDq0aN6h1t3drRwXqLhUeCQb5js3F6T0fkAqgHfoKZsG7Jj+z+yjDY8vLLXDVEnamFEEIIMbwN9siqEKJAXujs5GvhMEmrFRIJvF4vSwyDrziduKZNK/j5YsA/gHsTCTb3LIMTieD1enEbBjU+H9O2bWNUIMB6i4WeHnySlA5/Xq+Xi086iSWtrZS6XLxrGNzu9/d+ARExDH5ks7ECs1V7WYHOWwPcCHw+HO4d2X166lRO37FDklUhhBBC7EaSVSFGgLeA6202klYrGrDmcpy1fTtfGT++4I1xUsCdgQB/y+XIulwkksneJKYkHueU1lauHDuW5OjRtBYVmUutvPhigaM4uDSQBTJAS3s729vaqKytpaKmhkx++47OTjra2/HW1OCtqkIBnR0ddPl8NNTU0FhTQxHQ7fPR3tpKQ339sE7A+nYfHgcsyGT4xapVvDRhAoniYux2O/9OJnk6FuPaXI4zCjTKWgn8IJfj0kyGhM1GyOnk1bo6ji7I0YUQQghxKJFkVYhh7nngl4DV4YBQCGcyydnLl3PhokUFT1RXAD+PxVgeCvWOpFaUl1MeizF/wwYmtrdz9tKl5kjbMFwuJoU5J3Kt389Gvx+juhpLeTkhoCUcpj0SwVZSAi4XcaArkSCcSGBzODAMw2w8lEhAaak5ep1M7twei5kdimMxvMkkAL54HDye3tsC+JJJqKjAiEYZH49T6XCgo1EyoRANbjeNHg+lQK67m5TPx8TKSqZWV7N77+ODq8Hr5etz5nBuWxvPeL28DPh8PtCabwEJpTivYvc1a/fH5Joa/quoiF9bLNjtdp41DJYCEwpydCGEEEIcKiRZFWIYu7O7m99bLBh2O4ZhMK26mss2bGDmokUFTRSDmE2bngWC+bU6e0ZSP5FMcnZFBb7GRuoXLBjwvAVpCLSPnE1NrAda8pe14TCb43ESHg8Jh8NMLKNRMAwIh/E6nQD4urvNBNzvx2sz//T52tvNbaEQXq+331xcpTWJRGK3Obo924G9bktarbSkUvgtFnz5Elu6u/EWm/12feEwOBwQj+NNJik3DFyxGPZAgIkuF0eWlmLv7ES1tHBEbe1B+WKgZ7R1IXDvmjX8RilCdjs54FdWK27glAKd66Pl5bwLLMcc2f415pcy8qY0+JRS/wF8FvOpfw+4XGudGNqohBBCiN3J5wIhhqm/BAL8PBw2kxylmFNVxc+dTiqmTy/oeV7AXHPTn0xit9ux2+3Es1mOWr+eGS0tnHPWWXi9Xur3kiwNRkOgbT4fyzs7SdbXEyovpxlYE4/Tlkrx774jnj1JaH4e7/4klkprMvE4pXY7yUwGlcth1ZrRRUV4gNqiIraEw+j8/8WY6mpywOZolKxSZK1WaoqLSStFRGuySoFS2O32fY6nG1jT2Qla83IwSIXFQlcsBmVllAQCnOB0Msvjodzvx7ltG+Pq6gY1gV1SXk77k0/y0Jw5dHk8WCwW/jsYpDOX46Ly8gM+vgK+BHwZCCWTvJtI8Cet+VxZ2QEfW+yZUqoB+AowVWsdV0rdD1wI3DGkgQkhhBADkGRViGHoJeCPSvUmNLWBAJ/p7qZi5syCnSMF/B54ON+ZFa0JKsXZ5eVc7HYTr6mhftasgzKi1+rz8U5nJ9H6ejrLy1kei/FWIkHO7e4/OtrR0RvnQIlpKh6nwTBwBYM4Ewkc6TTHlpXhyeVYuXIlRakURjbLGSecgENrnnvuOazpNDal+MjSpXjLyvC53bS2tlJfX997XpxOfNXVu233VVbu3OZwmNscDra2tlLR0IDHMNgSCvHEW28Rt1pJGAZTjzmGsFK81tZGtKiIiMOB2+sltMtjicZivddDdjsv5HK8kR81VmVl1Pp8LMlkGBMKsbCiYq9fJuwPr9fLJ049ldltbfze7ebd/JcC/wMckckwv7r6gM9RCywNBPhlvuz899ksZySTjBpm5eWHIBvgUEqlASfQOsTxCCGEEAOSZFWIYWYl8HPAsNtBKeq6uzlv2TImnHFGwc6xvKODn2iNv7S0N+HzxOMsXr2a88eMYfLs2VBTU7Dz7Wq7z8frXV346+pYa7PxfCxGuk9imkinycGAo5GWXI6yWIyJNhsTXS62rFqFJxqlNJnkEyefTH1ZGT6v10wiR4/GW1oKgG/evJ2JZT7Rqjr99J3b8gmSdw9zcQfavi/baqqraTr++J3nyY8c+saMMbdVVFBjt7MxFOL+11+n2+Eg6HbjmTaN5ZEIXS4Xufzczp7/q5xStJaWcncmA04njnCYU7Vmenc3CysqqC1QstfzWKzvvst3LRbaS0rIAf+by3EHYCnAOaZv3kyJw0HQ4SBltfJ0MMhlkqwOGq11i1LqZ8BWIA48qbV+ctfbKaU+h9kMmqampoMbpBBCCJEnyaoQw8g7HR1cZ7OhnU4Mw2BWVRVXdncz4YwzCjbC+aTfz7ciEdIWCyQSVJSXM9HnY/HKldi1pv7YYwtynr58Ph+rfD7aRo3i3aIi/h2LkXY6IRTC7XKRtlj6JaZ2u52gUpTGYlRFIpxSVsaobJa1r7yCJxLBZrGwdOlSvKWl+ObM2aeEc1+3DYZ9OfcRNTV85oQTdj6Wmhp8WrO1tRU9ahTdhsE7yST/jkTozC8NpPP3jRUV8XAyycNOJ5V+Pxcnk0z3+xldoI7E42trOe3ZZ7n76KPJWSxsczr59caNXOR2H/DxG+vrmbx6NW+MHQtKsb6u7oDjFXumlCoHzgHGAgHgb0qpS7TWd/a9ndb6NuA2gHnz5uldjyOEEEIcDJKsCjFMbGhv5yuBAOF8Y6CJ1dX8j9OJt4Clvy8AP7Zae5NDay7H+e3tfGz0aHbkl6EpZPKWAR7t6uK2tjZaysogHN4tOQVAKdyJBHXBIKeXljLfMCix2wn6/dSPGtU7OrrgxBP3eSR0JNr1sex6/bSSEq6oqmJ9WxtbS0t5rKWFTdXVRA2jN3HtdLn4tda4nU4Wv/IKl0yezJQpUw44rk8vWcIbP/gB27q6CCST/FVrXvP5GN3QgCNfAr0/ypqauOrqq1mbXy5ntWEQhSHvjnwIOxnYrLXuAFBK/R04Frhzr/cSQgghhoAkq0IMAxr4eTZLOJ90FGUyfGrTJrzTphXsHHd1d3ObxYLFagWl8MTjLH33XT5+wgl4vd6ClY6COR/2ceDOeJwt6TSJfOlr3+S0LBqlIRDgo5MnM9nhIOX309DU1FsmS03NbqXIh1Jiur/6PgcnORy0tLay3Wbj/rY2VtfWksmvxRu223lkzhza16/nq1CQhHVKOMzHGhrwp1IAjLXbmel2U3cAo6Hfb25mTnU1s4HVySSdwSCP53JcUIAmTmJAW4GjlVJOzDLgkzCXchZCCCGGHUlWhRgG/gFsrKgAnw+lNaevXMlRRx1VsOPfHgjwqz6dhad6PFwZCDAtn6gWSha4v7ube3I5wsXFdHV3mx10AYvWNAYCfKy0lFkOBzm/n/px4/D2JCUFaNhzuOlJXOcAR7lcbGxr483KSu5OJIgXFQHw+oQJ/G7lSj7PgSesFmCixcKr+eZfXR4PnnxJ8oGaGQjwXL7R0p2dnSxsbDzsv5gYDFrr15VSDwDvYBY/LCNf7iuEEEIMN5KsCjHEXu3s5CabDZvDgdfr5Wifjy8ddVTBPqg/C9y+S2fhL3V3c3wBy4sB1gP/E4vxRk9SjDli7EommbZtGydls5w4c+bOkVNJTguqJ3E9Fjh27Vq+HwqxrbISgJcnT2bsiy9SUVFxwK+riXY779lspFIp4sXFJLSmEOmqd/t28HjQgN/lorW1VZLVQaK1/h7wvaGOQwghhPggkqwKMYS2+Hx8IxAgaLdDKMQxlZV8t6mpYL+Yy4GboLdhUUNXF2cvX17QzsJJ4H9DIR7Rmkwm05sUu5JJ5m3axNTt2ylWihOXLpXk4yCZP2kSP1qzhi/HYgSdTpI2G2vr6gqSADqBqlyO5nQatOadjg7eaW3lr++/jwKme73cfs45fOeZZ3hk3TqKrVbGV1Rw+znnUGa37/G4M6qrUfmuz2GHgxopAxZCCCEOe5KsCjGE/pBMErTb0YCRTvPRTZuwTZ/+gff71Xe/S2Dr1r3eJgK8ns2SymaxWq1Ua83YUIhmh4Nbnntun2Msa2ri2htuGHDfduC7sRhvBwK9Jca2XI55mzYxe+tWTjj6aBJeb8EbN4kPNnPyZD62ejV/yF9fV1eHPV8afKCcsVjvzy2pFL99+23WXn01jqIiPv63v3HvypWcMn48Pz75ZGwWC9946il+/OKL/OSUU/Z4zFFeL1PicVpSKex2O9owChKrEEIIIUauQU1WlVLNQBhzKltGaz1vMM8nxEiyFnjD6+2dp3rC2rXMmDt3n+4b2LqV748Zs8f9aeDRdJrxsRhoTXE2y9l2O9VHHPGh4/x+c/OA218BfpxI4AuHe+elju7o4DPpNKMrKqg/8khJUIfYvFSKPzqdaKCjtJRIV1dBjltlGJBKgdYkbTZyWhPPZCiyWoml09R7PJw6fnzv7Y9ubOSB1as/8LjjHQ78FguJRIL3IhEa82XMQgghhDg8HYyR1SVa686DcB4hRowMcGMsRjydpqK8nAmRCF+bO7cgyZ3GbO0ZyGZBayxaM7G1lUxVFbgKsyDIE8Avk0na2tvRWmPN5Vi0ejXTd+zgGCn3HTbG19biDgbN5ZCAaIGaIbn0zmU3nWVlfGX+fJp++UscRUWcOn58v0QV4E/Ll/OJfehs7QqF8OVH6R9bu5Y5M2fKa0kIIYQ4jFmGOgAhDkd/DAR4p7OTYCBAuLOTr1itBVs6ZnU8zppEAqUUKMWYjg5c6TQej6cgx/9jIMCPgkEikQhoTWksxsdee41TteYjkqgOK16vl6kVFSjMLzGeXbkSn893wMfN9mmiFUql+MfatWy+5hpav/pVoqkUd65Y0XvbH77wAjaLhYv3obw9mk9UNZADWltbDzhWIYQQQoxcgz2yqoEnlVIa+J3WWtrji8NeG3A/9H4oP2r9etLV1butKfphXfHww/xj7VoMh4P/96lPgVLs2LCBX738Muu7u3njyiuZlx9Zu2vFCn76yiu9913h8/HO5z/PrNravZ7j/u5uft1nCZyaUIiPvP02rmyWeSeeKInqMKQzGXrGQXO5XEGaLLncbsg301q9fTvjKiqozo/anz9lCq9s28YlM2bw5+XLeXT9ep7+9KfNL08+QGlZGQQCKK2xAPX19QcUpxBCCCFGtsFOVo/TWrcqpWqAp5RSa7TWL/S9gVLqc8DnAJqamgY5HCGGlgZ+HomQyGZBKapDIWZt20Z9AZaRuXTWLGZMm8b/PPEEAI5UiiVOJxd/8pN8/tFH+9324hkzuHjGDADe8/k45957PzBRfdLv5xfpdO/81Ea/n6/GYlTOnCkNlIYxi80GySQASmvse+nIu68cLheOZJJ0Ok1jTQ13LltGLJ3GYbPx9ObNzKur44kNG/jJyy/z/GWX4dzHxk7ukhIqlCIaizFtyhR5TQkhhBCHuUFNVrXWrfl/25VSDwELgBd2uc1t5Bcknzdvnt7tIEIcQh7r6uLJfPmsAj6TSHBSgUpnq2tqSAYCvdfHdXQwp6kJ9wfMU7xn5UouOvLIvd7m3Y4Ovh0Ok7RazXOFQnzk3XeZfsYZklAMc4E+80uLMhkS+eVhDkQkP98arakvKeHs8eOZ87vfYbNYmF1Xx+fmzmXab39LMpvllL/+FTCbLN26dOneYw2F6MqXAq9ZswZfcbG8voQQQojD2KAlq0opF2DRWofzP58KDLz+hThgGnO9yxiQAOLAts5OdnR2Ul1dTeUAXTX9fj/+9naaqqtpqqrCgbmGogF8cMGe+LASwO+07i3/PXLbNqa4XAX5MN4VjfJyfqQL4Ihsdp8SVYD73n+fhy+8cI/7c8BPtCaVT1RL4nGu3LGDJZKoDnsaCBgGKhZDAxXJZEFKaztiMbCZbx9F6TRfmTGDH592Wr/bbPjKVz70cdvyJeYasGQyBSlZFkIIIcTINZgjq17gofw8JRtwt9b6iUE83yGn1edjVXs7Rl0d1qoq/EA30JX/d3sshi+RQDmdsEtpXzKZxBeLgcMB0Shetxujz7qFyWQSXzQKTifEYniTyd79CjNpJR5HRyKMcjgY63ZTDf0ulchCvR/G74JB/ABK4UwmOXbjRupPP70gx347myVjMfulKa2Zkk7j3odlP17fvh1nURFH7mW+7AZgh8MB8TjWXI6zVqxgyQknSBIxArzf3o4vkUADjnSaExcsKEzHabfbLC3WGnsmg6ei4sCDBZJlZeD3o7SmPJGQOatCCCHEYW7Qcg2t9SbgwCfiHQZygA/YAmzN/7smFmNZPE62pGS3ZBLyyWZnp9noJhLB6/X2259IJHpHKJTWJBKJfd6vga5kEl9Hh1mOF4/jLSrqd38wk1p7PI4nGGSa08nMkhLGAaOQJHZXb3Z0cEcsRg5AKS5MJLjg9NMLkjh0AM1dLqLr06TLIxRnMpTt4xIl935ACXA70JzNEu3uRgPHrVvHudOnS6I6QrwWDEJxMQCV4TAHXgBsivZplmTPj+YfKA0EXC68NhuJRIKPLVyI9wCbjgkhhBBiZJOcYgi0AyuAV8NhVsfjhEpKULuMjAbTabJKfahks8QwcAAOwFtUREswiDWTQSnFhMpK+q6wGbVaWd/VRUYpMjYbddXVaMwy4tQejr9rsppIJtmST2jfSqXwGgaGYWDDTFjHAeWBAO7WVo6urKThME1wUsBPMb+U0EBDVxeLtC5IwpcDntqcofVuKzprEFIuijzF+1T+m9Oav61axQuXXz7g/izwBpDNr9c6pqODGVu3kpAEYsTo8HohPwe0sbub+n1Y63RftOc7AQMYqRThcHifXnN7E8H8kqznb9mk0tICRCqEEEKIkUyS1YOgG3gPeBczSW0jPzLa3W1+4EskdhsZtdvtBJXCnUjgTqWYU1nJKKACKAfIZHjn9dexJxLYcznOO+MM6vp+uHM68Xm9tLa2mp1ad/0g6Xbjq68391dX43U6e3dlgS3JJN+69lqSXV1krVZKvV5yhkECei+RVApLKtV7v2BxMUX5UZwO4K1slng8DoBFa7x2OzVFRZQDHvov8lvW1MS1NxyaU5p/EQrRYrGAUtiyWU5cs4aGJUsKcux3EwlaN4DOWHmQv9Osm4mHYjT+4hdcv3gxFQ4HVz/+OB2xGGfdfTezamv51yWXAPDCli00lpQwrrx8wGO/D3RnMuhcjqJslsWrVmG1WKQ0c4TQwCrbzj/x9d3dBTluGogZRu/SNZ5ksiBr+C7r7DSnLmhNUSRCe1WVjOAfotwf/ziR++/f621+/cgj3PL448wZP56PHXccE+vrmSorBohDjNvtNtcs34tf//rX3HLLLcyZM4ePfexjTJw4kalTpx6kCEe2M6+/nrv/8z/3Wm22+Fvf4meXX868CRP6bV++aROtXV2cOW/eYIcpPoAkq4MgBzzj9/NsNEpLVRX+Polgj11HLouiUWYaBk1AEzA6P0oZ9PsHTjYrK5l9wgk7k9EBPtR5vd69ftjb034rMK6mhtHFxVw7eTIej2fAUZNQJMLKzZuJFRURNwwcDQ1Ei4uJ5vcnE4l+nUftdjtGfgTZBpSlUrijUcYWF3Pr1q17jHMk+9/t27knmzX/n5Xi4kiES5YsKciH8BjwntYUN2ZQVoMLsudjtcKllypGjdp5u/OmTBnw/ovHjOG1z352wH1B4L1Mhkg0SjqTYdG6dcwfO5aJEydKAjFCbAG25Dv2FmWzeAOBgjQs6sRMhIuLivBkMkw94ogDHlUFeD0cBosFDVQHg7SmUvJaO4z99rHHePx732NsbS2X/epXLJ0/X5JVcVj67W9/y+OPP87YsWO57LLLWLp0qSSr+0BrzaPf+Q4Wi+WDbzyA5Zs389b69ZKsDgOSrBbQVuBp4PF4nLXRqDlq2tm526ipAcy3Wolv2EBNdzfVsRgXnHYau30s83rNyx58UDJ6oBwOB3V1dXvcX+J2M2PsWMLhsJnQ5kdVU0AA2KE16yMRQnY7yaIibH1GeZKZDBvjcVCKdzMZXsxkuA1zbaMjGfkvzDafj993dfG3Pl9UjN+xgyUFXIrj1WSStNYU1eeoPTtA6eo4c2aXM2qU44COq4G3gFR+5MyRSjFt2zbc8+ZJ8jCCvApY82/SYzo6KIYDHhUva2rimnXrWJ+vqKiIRnm7pASHY/9fc2X5BMRXXQ1dXSitaQwEqB8//oBiFSPDT//+d+5/6SWS6TTnHXMM13/yk3zht79lk8/H2T/8IRcuXMg/3niD51eu5Af338+D3/wm4/fyviTESPXTn/6U+++/n2QyyXnnncf111/PF77wBTZt2sTZZ5/NhRdeyD/+8Q+ef/55fvCDH/Dggw8yXv5O9tPs83HG9dezZPp0Xl2zhuWbN9Nx551UlZTw3/fey13PP8+oqiqqSkqYe8QRfO288wD428sv88VbbyUQjfLHq6/mqIkT+e5ddxFPpXhp9Wquu+ACPrFw4RA/usPXfuUESqnLtda3FzqYkSgEPA88g9k1FSCYSvUbNc3E48wzDGYAM4CJgM3txnfkkXsdGR0J3G73bqMqxUANUONwML6sjHA4jNXhIGKz0Y7ZTKqrz5w3tCaay/EI8AhgSSQY4/ezyOHglIoKSg7qIzowGeD/Nm/mj8EgLX3Ka+u7uzl55UoaPmCdyX21NZlkXX50HqU4uirO+LNKcLsPLFEFaAZaMxlyuRwKqA0EpPx3hNHAv2IxuvKNsca3t3Psscce8N+Za264gRc7O8lFo2jgqGXL+Njo0cyePfuAjpsD1tlsuF3mzPpL58/HW119QMcUw9+Ty5axvrWVN37+c7TWnP2DH/DCypXc+sUv8sQ77/DsD39IVUkJ61tbWTp/Phccd9xQhyzEoHjyySdZv349b7zxhvm7cPbZvPDCC9x666088cQTPPvss1RVVbF+/XqWLl3KBRdcMNQhD1trW1q4/Stf4bdXXcWYfPXYW+vX8+Crr7LsV78ik80y5z/+g7lHHNF7n0w2yxs//zmPvfUW1997L//+7//mhosv5q316/nNF74wVA9F5O3vANb1wGGbrGrMMt+/J5NsrqjAuktzJLvdTiqdZmJrK+P8fj5z7LGMGuA4gz0yOhiuePhhHl23jhqXi5Vf/CIA33nmGR5euxaLUtS4XNxx7rnUezzctWIFP33lld77rvD5eOfzn+ec2lras1mWdXQQcDoJOp1Y82t4JpNJfO3tNGvNc5EIt7lczDQMJgYC1G/fzpzqamqH0XO2vr2d17u7CdXW4ist5c1gkO0WC/RJVOsCAZa+8w5LCpAsgNmgaw0wP5/sV4VC1NhsBSnFTAFvptNE8nMH64JBvC4XS5cuHXGv1cPZGmBTnxLgMR0dJBobD/i424Auw4BolKJsltHd3dQfc8wBH/fVzk625F9z7mSSammudFh4ctkynly+nNnXXgtAJB5nfWsri/bSoVyIQ9GTTz7Jk08+2fvFXyQSYf369SxatGiIIxt5RldXc/Tkyf22vbRqFeccdRSOfJXjRxYs6Lf//Pz72Nzx42n2+Q5OoGKf7TFZVUqt2NMu2L1i9XCxEvhdNMoLPWW+7e29Zb424CjgJMOg3uOh3eOhftKkQ+pD/mWzZvHlBQv49EMP9W77r+OO479PPBGAX7/+Ojc8/zy3Ll3KxTNmcPGMGQC85/Nxzr33Mqu2FoAal4vj6uoIh8O4iopYabVyJPBYJNJvVDqeSLAc+FcoBB4P7mCQ051OpqXTVG7fzuSDkPBnMBtGrfL7eT8QIF5dTbCkhHXxOOsTCXON22CQCouFrkCg934WrZnd3MynrVamnnVWQeLMAN+LRsnkR1SNdJoxfj+ePt8QHoh3gWi++29xJkNDVxc2m+2Qeg0fDp5iZwnwhB07MLQuyMj444EAXaEQGhjT2cmio48uyGvj6ag5010DjX4/O6LRYfWllBgcWmuuu+ACPl+g9aaFGKm01lx33XV8/vOfH+pQRjzXLgNIYL637I1RVASA1Wolk8sNQlTiQOxtZNULnIbZzLYvBbyy+80PbeuAO4FlQDBfwtqTUNUGAlzk9XI8ZpdbALzeQ3KplkWjR9PcJyEDKOkzHzeaSqHY3T0DrOfZt4S4orOTzwFnZzL85dVX2VRVRXNNDbq2lnifZlQRw+CJVIoHolEoLcUTDLLQ5WJMJkNxezuTKyqoyuUIt7TQ8AHl1TnMJkXNHR2s7+igqLYWKirwA1vCYZqjUeKlpUQdDhLJJL5oFGw2CATwGgaJXcq9o7EYGvAkEoxva2P61q0snTePKXtocPRhaeCXoRCvBAJYMhmU1sxLpRhXoAY3fsxSdpvNBkoxurMTq9Y4B2gQJoavMPBkItFbAjytpaUgJcAa+Fef8v1xPh+J/Bv8gR53Y3U1dHaitOaIjg7qjzrqgI8rhr/T5szhO3fdxcUnnIDb4aDF76fIaqWmrKzf7TwOB+F8Z3khDkWnnXYa3/nOd7j44otxu920tLRQVFREzS5LxXk8HsLh8BBFOXIdP3Uqn7/5Zq674AIy2Sz/fOstrjz11L3eR/7uDB97S1YfBdxa6+W77lBKPTdYAQ03m4G7gNf7bLPb7YSBqdu2MXvbNj514omH71Bz3reffpq/rFhBqWHw7KWX7rb/vvff5+ELL/zA49R6vVy6ZIk5l9frxW4YPBWLcU97O1srKkj1fDjOJ4lhw+CFZJLHolEwDIjFzP0VFRRHo4yLx7HnE0mH00mx00k0Hqc7kQCnEw344nFwuSASwZufM9e7rFBHB16vd8B1Z+12O9FcjqpQiNpQiJNHjaL9lVdwRyJYlOL4448vWKIK5pclj2gNWhOvr+ehVat43zCoTKWgs/OAjp0DXs1kCOVyWK1WKnI5xkajOJ1O6iZNKkj84uD4JxBKJkFrqkMhvMFgv67c+2slEPF4IBbDSKc5orOT+l1KqfbHdmCH1Yrb5aI4l+MLRx0lI/mHiVNnz2b1tm0c8/WvA+C227nzq1/dLVm9cOFCrrz5Zn79yCM8IA2WxCHo1FNPZfXq1RyTL0d1u93ceeeduyWrF154IVdeeSW//vWveeCBB6TB0j6aP2ECZy9YwMxrrmF0dTXzjjiC0g/4In7J9Onc+MADzLrmGmmwNMT2mKxqrT+zl32fHJxwho8Q8PNwmGdzOXPJlfzooQLONAxOdjpJu1zUn3iifLACfnjSSfzwpJP48Ysv8ps33uD6PuuIvr59O86iIo7c5Y/unuw6l/eC8nIWNjWxrbWV5KhRrLRaeTgQoK2khGx+rmtPItnbtAlIWa1sj8WI9JRsx2JUlJfT1ZOIhsNmQ5ddktC+x1Nak0wkqCsuxhUIUBKLURmLcfasWcw2DLTTyY5AgPr8ki4+h2NQmmb9PhDgr0qZpZ1KMe2SSzjjvff4SIHmkv5vMEh7MAhaY8vluNHt5khpcDPipIAH4nGymQwoxewtWwrWHOvJ/L9ul4uju7s598wzC/LaezQYxJd/7R3R3k6xLE/Sj1LqY8ATWuuwUur/AXOAH2it3xni0PZb3zVWrzn7bK45++zdbtP8hz/0/nzc1KmsuvnmgxKbEAdT3zVWr7nmGq655prdbtPc3Nz783HHHceqVasORmgj0hivl5W/+U3v9b5/R7523nl8/5OfJJZMsui66/jPc88F4Lkf/aj3NlUlJb33qfB4ePMXvzg4gYu92muDJaWUTWudyf/sBiYDm7TWXQcjuKGyHPhRPM7afFITVAqv18sphsEngQaA6mrzMkQ0EMGs0e4CNnZ1sa27G2dlJUZZGXEgAXSEw3RFIrutlRqJRIiGQtR4PNR4PDgBB5Ds7ibe2cnEigrimCNuH2aFqk9On85Zd9/dL1m9d4AS4A+rbwJ7HHBuMsnW1lZobKTZYuGRbdsI2u2EHQ7CDgcpqxVUviB5l1LdvtftuRyWRAIjlcKdSnFUeTkVuRxrV63CmUhQlkhw4Ykn0lhaiq+21kxEx43DW1nZE1i/uXWFbpqVBW4JBvl9KNTb+XeRw8Gni4poKlCiuhx4AHqfl6M2bCBdVTWkr2+xf+7r7mZ9ONzbqOis0lKmzp9/wK+TAPBMIoGvvd0csX3nHTjhhAOONwc80WdaxfgdO2iVOdK7+o7W+m9KqeMxp+b8DLgFs0WCEEKIffC5m29m1bZtJFIpLj3xRObIqPSIsbcGS5cBP1dK+YFrgJsxq2InKqW+rrW+5+CEePCkgb8A/0f/5WfGtbdzZTjMWdOmHfSYQpjrt27J/7s6GmVrIkHa5cKSn0SeTCbxRSLmfMpQCK/DgWEY5vaeUcSuLrxFRTu3d3WZ27u78RYX79weDkNxMUSjuLJZ7gPsQFEqhTWRoLq4mAzmh0yNOdK83u9nQj55+8fatUyuquqNP6c1f1u1ihcuv7ygz0vfpHA+sGjCBDORzJ97a2srlQ0NJLJZ/vnqq+hcDqtSLJg7l7fffBNrKoU9l+PspUuhrMy8b2Mj3hJzoRzfnDm7jZAe7O7NHcBPgdeg97XY6PfzKaWYf4BLhfQIAL8ADLsdlKKps5M5W7dSn2+MJUaOBHBPvkxcA7M3b6aspqYgr9lHgHC+tLgmGKQyGKS1tfWAj70ciLvdEI3iSKUY39kp81V3l83/exZwi9b6YaXU94cwHiGEGHHu/trXhjoEsZ/2NrL6n8AkzJ5B7wKztdYblVJezGaTh1Syug0zMdicv96z/MxJ773HuK4u5hVofcy9yQEbgfeAVyIRVqdSpF2u3hLkZDKJz+83k8xotLcL8UDzKQuxPZvNmiO4mQyReBy05rsPPcT6lhYi8ThVv/gFn164kLfXrqUtGMSwWBhTVsatZ53V+5he2LKFxpISxvVZymUw7JpI9v25smcObD7xnFhaOmAiurfjHWyP+/3cZLGQczqx2+0E84nk0hUrGH3GGQU5Rw7470iE5mwWu93OxOpqrg4EmCTL1IxIjwLx/JxudyLB9NZW6mfNOuDjJoC/JxI7S4ubm7EUqLT47+EwiVyOivJyFnV1cW6BumYfYlqUUr8DTgZ+opQy+HAFL0IIIcSItbdkNau17gQ6lVIRrfVGAK21T6mB+r2OTBq4p7ubPyqFNT8iCXCsYfDJkhKiY8ZQX6D1MQeysr2df4fDtHm9NLvdRKH/yGckssekVMdi1BsGY202Wn0+7KkUxdksR8+cSR2QyOV4+733UJlMb8OfSsCfyfDS8uVkgUxRETOPOQYDaAPe2L6duM1G1OEgabGggEyfDqBXnHGGOYfXbiebyRCJRpk4YQIohdvlosZmox1IxGIYoRDzqqp4Lb8o81AZKJEdjh+INWYTmz9EozzXM882HKaupoYvlZQwz++n4YwzChK7Bn4YDvPvPqXuX3e5WCQjqiNSELizTwfgBZs2FWxZmfsDATbly9BL43HOKi9ncgGaIK1ub+exWIysUqAU5zideKX0fCAfB04Hfqa1Diil6oD/GuKYhBBCiINib8nqVqXUjzFHVtcopX4O/B3z290dByO4waaBm4NBfp+f40UoRGNNDVfZ7ZwFqJoa2MemQB9GAngZeCQS4dlEwizf7VOm2zcptWWzVAeDzKupoURrmpcvpyQSwZNOc94ZZ5hdiF0ufKNH7xwt7OmkWF7Oovnzd27vmWdZWcmco4/eub1n1LO0FN8RR/R24r3FZuMTQGc2y+rWVuJFRcQNA8PpNJPqPkksWpPJZPDbbLRnMkTSaZTdTmk4zDSrlfEOB66CP5OHhjafj+e6u3l51CiaXa5+SyN54nGu3LSJj06dCgUq/dXArcBTuVzveeZt2kRlaSn0vEbEiHIn0JUv0y2LxZjc0kIiv6bxgUgA9/V5ncxsbqakQF/23BePk1UKDTR0daG0lnnSA9Bax5RSDwNepVRP96k1QxmTEEIIcbDsLVm9BPgS5pf238Rs7HAd5vTJy/b1BEopK/AW0KK1Hvxa2n2kgTuA+6H3g1hVOMyXQiHOPMBmQHvyUmcnDyUSrKuqArudYDa7WzlunWEw12IhtGoVtV1dlCcSnL10qZmUlpXh65tk7sNo4YFutwA1LhfOpibC4bDZqKm4GA10ZLOs8PkIGwZhpxOVb+CU6ZNsBRwO3laKlYArnaYsGmVscTGjnM4B12M9XGjMkvMngkEe8Pvxu1zg9+O12XqXRprU0sLCDRs4/rTTCnre24HHoLe8eOr27Ry7cSP1B6HUXRTeZuAfyWRvme7CNWsoUqogZbqPAun8sk6eeJwjd+ygvgBfmsSAZV4vtLejtDbnSctc1QEppa4Gvgf4MKv3wfxVljIIIYQQh7y9LV0TAn7cZ9OD+cuHdQ2wGijZj/sOCg38EXiYnR/Yx7a3c+Z77zH3zDMLfr4NwK2RCE/lO9HS3o7X68VutxMCmjo7GdfZyeVz5jATUB7PgA1+YOhKWN1ud79uwgoziT26ocFMYp1OivMlwNuUYl0qRay4GJTCZrORzWRojcVoBVal01Sm04wuKqIBOPDxn5EhAbzq9/NsNMqG6mrCDgdBIOhy9X5hkY7H+WhZGYudTtIOB/WnnVbQ/+9bgkHuhd7lmM4pL+ccv59Gmac6ImngZ9Eobfm57E1+P6dVVTGpAFMXosBdiQSJZJKK8nI+mkoVbLmafwHx/NSB6lSKq2Vt1b25BpiktfYX6oBKqTLgD8CRmC+jK7TWrxbq+EIIIUSh7HXpmj1RSn1Oa33bPtyuEbOD4Q+Br+7PuQqtpwTysfx1wzA4s6KC8/1+mgr0QazHWx0d3JFOs66yksQuo6hloRCfqK5mmsNB3GKhftasfvO1huu8yl3tmsQ2Ao2GwXSnk/ZolEhJCX6bja350mYAtCaazbKxqIiNgM5keCUW40+BAIvLyhgLI37UtcXn453OTiL19XSUl7MOWJ9M0tYzF7Wjo/cLi6BS2LJZpu7YwTcdDo6Egi+NlAJ+FQpxV349y6BSnFlRwXc9HmwFKi8WB9+/gPfylQyWXI7j16zBM2VKQf523BYMsin/eimLxzmvvLwgx00Ad8fj+Do6QGuOWr0aJa/BvdmGWeFUSDdhrt16gVKqGHAW+PhCCCFEQexXssq+5xK/Ar6OOe91WPhZKMQjWveOLB0HfM3tLugH9hTwm1CIv8RiaACfj4rychQwcccOZm/bxhWLFpkjioM0L3ao7ZrEBjIZ3vL56HY6Cbpc2GzmS6+nSVNHLsdNoRD3OhxUGQbjwmFqfT7ml5Uxt6pqv1+og22bz8d7HR1k6uuJVFSwDVgTi/FuPE7W7YZwGK/TiWEYxHdpkEUsxqnl5Uxyu6neupWx48fjHYTXQgvwE2B5n2VNRnd0cJ7fL4nqCNYN3LpLl96qeLwg5b+twCN9Xi8L1q+nvbGRhgIkq48CvvzSYK5EggktLbSOkC/nhsgm4Dml1D+BZM9GrfV+rVavlCoBFpGfzqO1TmG+bQkhhBDDzn7lAFrr333QbZRSS4F2rfXbSqnFe7nd54DPATQ1Ne3pZgXxYFcXd0YivSNL55SX818eD9YCnmMr5hI47+Y/5PUkJtPDYS5zOlGGQf2iRSPig1lZUxPfb24u2PHiuRyx9nYcTifpUIgOYHsiQTCTIV5fj5Gft9sJvN/dDUVF/D4WoyGRYJLdznigsrub4h07mFpVxeSamkEdgdWYc+u6gHV+P+u7u8lVV5MoLaUNaI7HWZtMgsdjdm3OLzMUTKd7G8f0XRrIYbdTFIlQ293N+M5OPn/MMTQAVFSYl0HwDHAL5mhWzyjuEW1tnPr++4wehJJ3cXBo4H8iETbnu4aXxuNcUlTEtAKVc98UiZDMZkEp6rq7mdTeTv2CBQd83J7S4p4Ee/6mTRRDQRLsQ9jW/KU4fzlQ4zCXcb5dKTUTeBu4RmsdLcCxhRBCiILaa7KqlJoMnAM0YH4+agX+obVevQ/HPg44Wyl1JmAHSpRSd2qtL+l7o3w58W0A8+bN0x/+IeybVuBWpXpHCia0tXGO34+1gB1W7+ru5vb8Ejh918Y8fsMGLj/hBLPMdwR1u7z2hhsG/Rw+n497/v1vtpSV0dLWRq6mhvZdRiAjySQb7HbeTybxhcPgckEiQUMiQYPdTg1gD4fRXV3UlpZSV1aGHXAAMb+f7vZ2KmtqKK+sJAdkgc6uLnb4/TiqqigqLycKRABfOMyOaJRMSQkxp5Mk+aWEolEoKoJgEG9+VD6YHx3aNSnt+b/3xOPUhkKcVVrKAuAIwyBYVUVrKkX9hAmD+oVFAvgt8GyfbW7D4FKPhyl+Pw0FLnkXB9dzwMt9phYsef99yseNK8x8Ur+fJ/Ll6gq4LJXixAIlwX/uU1pcGo9zrtvNVJkvvVda6+sBlFIe86qOHOAhbcAc4Gqt9etKqZswmyh+p++NDuYXyUIIIcSe7DFZVUp9A7gIuBd4I7+5EbhHKXWv1vrGvR1Ya30dZvdg8iOrX9s1UT1Y0phlkMrphHCYsmiUU1atovGMMwpyfA3cGApxb58lcEbV1PBfHg9T/X4aTjhBPoztgdfr5aKTT+5tJlXjcPBWJMKf16+ntaSEjtJS7HY7wG7rzEaSSdrsdrYkk/i6u80DhkJ48+vl9iaZTidEo3jd7p3bIxEoLu5XppvsOY7W0Nm5x/Vt+yalYcAdj1MRi7G4rIzpQJNhUGQYBPx+6puadi4lBNgPQrnjSuB/YjGa0+necvcGzHr8ceXl0LNUkRiR/MBNfUYnp2/dSlMgUJDRyQTmSHzP631KSwuTHY6CvGY7gQf7lBbP37CBsoYG+dv4AZRSRwJ/BSry1zuBT2ut39/PQ24HtmutX89ffwAzWe3nYH2RLIQQQuzN3kZWPwNM01qn+25USv0CeB/Ya7I6nPw6FGJZfp5qQ00NV23cyIIzzijIh6Qc8Bvg8T4fwqrCYb7YswTOECYGOSAObG1vp8Xno7a2lurqajo6Omhva2OM18vompqClkHvj12bSc2vrqZp+nQzgS0rw2UYbATe0prHfT4CDgdhp3OPSWxPMlmI7R7DYHRREf5AAGciQVkiwSkzZjAZ8BoGWbud9q4u6hsa8JaW9n1Q5uUg0cB7mN8svZVM4uvs7C13vyBf7m4/aNGIwaKBH/Yp/y1JJLgcmF6g0clbgkE6AJTCkfr/7N13eJvlufjx7yPJlmTJe8ixs/feBMIIWYSEhFBaZqGlcCiFLujv0ALtKQW6OAdaoJwCpWUWOEAZhVKgUCCEHQJZkEG24ziWt7Zeref3h2RFWSaJ5dhO7s916Yr1vvL73lJkSbee+7mfCCdv2kRVlpZOehgw2+3g9VLu9TLS7abquOOycuyj3P3A/9NavwXpL3//DJx4OAfTWtcrpXYopUZorTcAc4C1WYpVCCGEyKqOktUEUEVyXdVMfdi91ttB0VovIVm5dsT9u7mZR1MlbR6luDY/nzPHjMnKsRPAL30+3kgkMJtMoBQj6uqYu25dlyyBkylC8uvxGuBzj4dtPh+6qIiI08muUIgWw0h+MATc4TAUFEAoRInPR0solLweDuMyDHK1RgUCVNtsDHQ4sHo85DQ1MbGwkKllZd2S5OydwE4AJhQVsWjAgGQS63RSaLXSCKyLxXhl3TqCOTlELRZGTZpEDtBoMrGmuZmYUpiB4aWlFAJBs5mNDQ2oRAJbPM60oiKqgUgiwao1a8g1DJzRKOfMmsWgwkJUXh7uysrkeQcOxJX5BYTLlZWmM4dLA6tIJqntwyztSbclHmfm2rUsqq7GJo2Ujgp/A5anyn8B5qxZQ+mQIVlJVD9sauKRQCDZFE4pLgyFODdLSyetA14zDMLhMCXFxVwZCDBDyn8PlqM9UYXk+6lSytHJY/4AeDzVCXgLcGknjyeEEEJ0iY6S1WuAN5RSG0m2zgfoDwwFvt/FcWWFBh7MmNc1uKGBMc3NWRvtvM3r5bm2tuQHR6U4IzeXc6xW+nbBfMAo8FZzM+/7/WxzOtlqsWBNjSy6U3PAaGmhRGta2ktZvV6cDsceo4WB1Fqv6et+f7JUVmtqAgE2JBK0eDxgsUAwSKnPR4lhMDE3l5MKChgHlGX1nh2avZPYfkC/0lImTJq0e13agtSSvvn5uKurd29v707sdOLu33/39vYR0eJiZh93XI9a3/ZANLCCZJK69wRyh9VKdV0dUzdvpsgwZPTqKLEOeDCj/HfK5s3083iyUv4bBX6f0RSub3MzMyBr1Sd3BgK4U2vBDmtoYEb//j3q76mH26KU+jnJUmCAi4GtnTmg1nolMLWTcQkhhBBd7oDJqtb6VaXUcGAayQZLiuRg3sda6/gRiq9TPgCaCgshHMYSjzN73Tqq583LyrHfA/6pNYHlOfg/tDFuyA7OnRZncpZHsD5ubOTvoRCrCgvZ0T7q4U/211BKfWkyak0k0JEIpkQCBVQUFtLQ1kZcKaKp5WMO9PtoTXNLC83AxmCQpVYrAE6fjxNzc5lbUMBYDn/9o2w6UDKZre09hY/kBPJnAgE+j8XSc1IBzMBc4FybDQYPps5m2yfpFr2TD7g5FGJXam3SPh4P37RYGJWl0ckngLZU9UVOLMacdeuonjOn08eF5FI16zLWgp2+fj11Fos8Lw/eZcDNwHMk34eXIiOhQgghjhEdNViyAVeSHEldAzygtY4dqcA6KwE8DlitVlwuFyfW13P+vHlZ+YDUANwNhFfa2XJRPjqiaDHns+t5L2QpV13Z2Mh9fj8fmM3JUdK2NjI7XCigMBBgeCKB3r4dZzCIMxLh5DFj2PDhh+RGIuRqzZmLFkFBwe7RwqIi3IaRvq5jMf7+1lsEzGaCeXkMmDqVDzZtosnhoCk/n1aHg4RS6VFYfyCAW2s2B4O8ZrVSZLUy3Oejf309cwoLGXIUrhnb3ZpIfvHyIcnmSSHDSI9SeZSiuqKCRTYb5wDpR7+HJ93i4GngD0Bdqvu0NRpl3qpVFI4dm5X/4w3AExklul9paOCCOXOy1lTpr+xeNmnali0URSKyVM0h0Fq3Aj/s7jiEEEKI7tDRoNgjJKvD3gEWAKNIlgb3Cu8CG1MfwAqtVv7fgAEUZOG4CeCmQIC6WIzWpQ50VEFCkVBmVq8uYeHCzh1fA/fu2MFfYjFiJlN6bhpAfjjMkPp6qltaqGptJU9rFi1aBCNH7lG6Ojk/f59S1o5KWs9esGCP259us1FXV4fNZGLpW2/hdjrZWVpKaOhQPovHiZlM6QZEbcA/WlshN5d7QiFODgSY5XAwjWTr6K5cB/VotoPdCerGvfa1z0k1JRKMqa3lsrY2Zo8ff+SDFEfE462t/MtkSs+Ln/PZZxRmKeELAb8MBqlPNeTq29rK+X36ZCVR1cDtfj/ueBybzcbksjIub26mf5aS7KOdUupOrfU1Sql/wB7fVQKgtV7cDWEJIYQQR1RHyeporfU4AKXUA+xevqZXeCQYTHdEHb5tG6GRIynIwgekF1paeM/vT65BOCaINaeSGJCbq5g5s3PHjgE3+3y8mEigTab09sENDUzcsYPzRo3CKCjAVlFBOBw+6GT0y+x9+8zrJSUl6UQW4O8vv8zOggK2uVzEKiqozeigC7A6FmM7yc6fRcEgA5uaOMnh4NTSUuyH86AcAzRQT3KEa7nXy4eRCN78/HR5797GWCyoTZsYvnMn+dEoYxYtOpLhiiPo3aYmfu/3E1cKlOKrOTksHjCAqunTs5Lw/QmoiUZBa3JiMWavWcMuranM0mvlK6nXSo9S/Dwvj+Ok0dehaJ+jenu3RiGEEEJ0o46S1fSSNVrrmFK9Z4ysBtiY+gBmiceZsGULdQUFnf5wFwceSyTSydnJxeuZca+XXbtGMHMmTJ9++MeOAb/w+Xg9GEwnfmU+H7M//5xTq6oYftJJ3TIasXci+5UzzthjTdRP/H4e2LSJLWVluIuK0svJGIbB6qYmVmvNi4EAVQ4H4202JpLs7DucnjHXtTtsbGhgWUsLnj59aCgs5AuScxINw8Dd3rArGEyv82oGxgMnpC4lDgfusWOpKymROalHsSbgtyYTcaXQQLnXy4JolEmdSPg++ACWLIGZMyE6HV42jHTDpplr12atRLcFuE+p9Gvl2B07cOblQVl3tmfrXbTWn6R+nKi1vitzn1LqauDtIx+VEEIIcWR1lC9MUEp5Uz8rwJ66rgCttc5GVW2XeJfdc6QGNjWRl0hk5QPYEqDFaoVAAGssxtSaGhYsGJ2V5TTv9nh4yeNBp8p+x+7YwSnr1zPzpJMYNWpU50+QJXsnr1PLy+k3dix1dXU47XZqrFaWAW/u3XXYMFhrs7GWZDMXwmGqWluZkJfHlMJChgClHD1lwxrwkPzipIZkWW8NsDEUYmM4DHY7eDy4MhokZa7zmhOLMaK5ma9VVXEcsPc6FT29EZTonAjws0CAtlSncXskwsJVqxgwd+5hH/ODD2DOHIhEICcXprxs4BvsBq0ZsWsXZxUVMXzatE4/rzRwq9+PL5EApSgIhThl40aqFizo1HGPYZcAd+217Vv72SaOkIEDB7J8+XLKjvCXLzf+4x/MmD6duRMnHvA2Nz3xBE67nWvPPnuP7W1+P08sXcp3u3hZPdG7zPzpT7n90kuZOmwYZ9x8M0/8539S1L5ywpfcPtPKLVuoa2nhjKn7NhlfsmYNtz//PC9ddlmHsVx44YV8/vnnXHrppSiluOKKK8jLyzu8O9YLOZ1O/KkGqgfyhz/8gXvvvZfJkydz7rnnMnz4cEaPHn2EIuw+HXUDNh/JQLLpXXY3VloYDrMwCx0zNfBoMEhLaysamLRtG7Oy8MEOYDnwTCyWTlQnbdvGuX4/x515Zq9ISDITp2EkV5j/RiTC/StWsL24mNqyMsyVlenbG4aBu6GBGq35MBpNJ2yFwBCSHb2KW1rI3bmTMRUV3bqOaUd2ut183tCAuaqKaGkpbsBNsqR3WyhEUySyR7deAE+qSU57Eh8Oh7FareQDI8xmvFu2UNHWRr+2Nr5yxhn0zHsuupIGfuXz8WFqCSqT1lzl8bBg7txOvR4sWZJMVONxSERg51uagkGagmCQGWvX4pw0KSuvN39rbeVfPl96Sa/L/X4WLFjQK17LehKl1IXA14FBSqkXM3blA83dE5XorFgshsVy6HVF8XicW848E/r2PazztgUC3PPyy5KsigN6+Re/OOzfXbl1K8s3btxvsnow6uvref/999m+fTuQ/ELo4osvPqaS1YNxzz338MorrzBo0CC+9a1vsWjRomM7WVVK5QFRrXU0dX0EcAawTWv9/BGK75DtADalGisVWK18ffhwbFk47lZga6q0ODcWY8L27YRLSjp93Bjw+1AIfyAAwMDGRk7euLHXJKoH0tfl4nvTpydLhsvKsFmtrAZWAm+k5rHtnbB5gE+BDwwDt98PBQWocJiRoRAD7HbKSXa7rQDKAdXYSKiujoGVlVlLaKNAIHXxA9uam9nS2oqprIxYUREtJEsca1MjpLqgAAIBXE5nOik1DAN3aokRj1Lpcl5IjvgHEwlKfD4qvV6+kp/PdKASUE4n7tGj97vOqzh2PAssyZhucMr69UzIwkj6zJmQmwthQ4OC3FKNWWvmr1qFXeusVJ/UAvdDOvbx27czwemU5/LheR/YRXJp699lbPcBq7slomNMwDA4b+FCamtricfj/PznP+f8888H4O677+Yf//gH0WiUv/3tb4wcOZJly5ZxzTXXEAqFsNvtPPTQQ4wYMYKHH36Yf/7zn4TDYQKBADfeeCM33ngjpaWlbNiwgRkzZnDPPfdgyuhVAckP7JdddhmvvfYa3//+93n10UdZdOqpnHPSSby8fDn/74EHKCsoYPKQIWypr+elG28EYG1NDTN/+lNqGhu5ZvFifnjmmVz/6KNsrq9n4tVXc9rEidx2qax+dCwJGAbn3XILtU1NxBMJfn7++Zx/yil73Gbg5Zez/Pe/p6yggF8++SSPv/02/crKKCsoYMrQoenR+r+99x7fve8+2gIBHvjBDzh++HBufPxxQpEI765bxw3nnLPPsdNxBAL84Ac/YM2aNcRiMW666SbOOuss5s2bR0NDAxMnTuTss8+mrq6OWbNmUVZWxltvvdXlj09Pc9ttt/H0009jGAZnn302N998M1deeSVbtmxh8eLFXHDBBbz44ou8/fbb/OpXv+LZZ59lyJAh3R12l+no671Xgf8ANiqlhpJsTvo4sEgpdbzW+vojEeCheqOtDbfXC1pT3tCAp39/bFn4oPRPjyc9t2tQYyO2LH24ex3YHgyitcYWjTJnzRpGjhhxVHy427tU9ZTU5bxYjMffe4+6ggKaCgspKCujnmRnUtizHBaSS3YE7Hu2ZzIMA3coBEVFYBj0DYcptNmwQ/piA2J+P16vF0dBAXlOJ3GSHZ0TJOcg+wIBmoNBcDqJ2+1E9j5HIAA5OeD14rLb00mnJxJBwz4Jd2b8lnicUr+f8SYTJ/btSz9ggNVKIi+PXW1tVA0bhmuvLzykvPfY9mpzM3dbLOnOv+NqapiwcydVWWhMNH06XPDrAA/9xA5xxcbrrFzfz8YZI0Zk5cuRCPDfgCkvD3w+Svx+Tt68Wcp/D5PWejuwXSl1EVCntQ4DKKXsJJutb+vG8I4Jr65dS1VVFf/85z8B8Hg86X1lZWV8+umn3HPPPdx+++385S9/YeTIkSxduhSLxcK///1vfvrTn/Lss88C8MEHH7B69WpKSkpYsmQJy5YtY+3atQwYMID58+fz3HPPcc455+wTg81m4913303Gc1ey8jscifCde+5h6W9+w6DKSi687bY9fmf9zp289etf4wuFGHHVVVy1YAG3fvObfLZ9OyvvkurxY9Gra9dSVVLCP1NfaHhSAyT7s3zjRp794ANW3HknsXicyT/6EVOGDk3vj8XjLPvd73h5+XJufvJJ/v3LX3LLRRexfONG/vfKKzuM49e//jWzZ8/mwQcfpK2tjWnTpjF37lxefPFFFi1axMqVKwF46KGHeOutt454qX1P8Nprr7Fx40aWLVuG1prFixezdOlS7rvvPl599dX047Jx40YWLVq039eNo01HyWqx1rp91YxLgP/TWv9AKZULfAL0yGR1TcaoXVVzc6cWn7/zxhtpq6khFAqxJBIhYjZjAiyRCF/Y7dz7zjv7/b2i/v255pZbvvT4GngsY1R1ypYtOOJxhg8ffljx9hYul4uL5szZPYLocKBJDiFsIjm6+nprKy0OB0GrNd20KVNmQqu0xmcYmGw2fBm3MQwDd0tLshyxpQVXTs4eJblGxnqlhEJ7jIDu7xyZCWn7nGhnOExhOMwJJSUMA1yAORpl5TvvkBcKYTaZWLRo0Z7lvC5XVrqtiqPLh01N/JfPRzSVqE7Ly+MKh4P+WZjGALAeeLvVBAkFWkFE43szwaS7s9Oh9w6vl1VaY7PZ6FtRwXd9PqZK+W82PA2cmHE9DvwNOK57wjl2jKuq4tpHHuG6665j0aJFnJIxWvTVr34VgClTpvDcc88ByWT2kksuYePGjSiliEbTfSo57bTTKMn4cnLatGkMHjwYSM7Ve/fdd/f7obN9JDfT+tpaBrtcDEpNr7lwxgzu/9e/0vsXTp2KNScHa04OFYWFycZ94pg2rqqKa194gesefphFxx3HKWPGHPC2765dy1nHH4899XnnzGnT9tj/1VQ30SlDhrDN7T6kOF577TVefPFFbr892eQ8HA5TU1OD3S7rRbR77bXXeO2119LNFP1+Pxs3bmTGjBndHFn36ShZzVzXbTZwG4DWOqKUSnRpVJ3gKSmBpiaU1pQHAp0a/WyrqeGmgQPZ6nYzMPVHa9KaRYZBdcYczL3dtG3bQR1/I7AtY1R1bE0NI46SUdUvs/cIogKqUpcZhYVc2KcPdXV1lBUUYLZaaQAaIf3vVouFT8NhwhYLUYvloBLazGTzQPvtVitOkg2Nqi0Wdra0YDcMnIbBrPHj042gSqxWIlYrDc3NyYQ7P3/3icvKGHXaaVLOKw7aLuAWk4moyYQGCkIhvtHamrWlXjY2NPATs5nCGTbUbRodBYspwfz52ZgkAS+1tPBExjI1P8nPZ2EHH4bEIbFordNFH6n34NzuDOhYMdzl4pNPPuHll1/mhhtuYN68edyYGplqfy8xm83EYjEAfv7znzNr1iyef/55tm3bxsyM9ewcjj3b5O29wsKBVlzY+/eAdH+LA7Hm5KR/NptMxOLxDm8vjn7DXS4+ueMOXl6+nBsefZR5kyZx4wUX7Pe2HT+7dj+/zGYzscShpQNaa5599llGjBixx/ZtB/m5+VigteaGG27gO9/5TneH0mN0lKyuVkrdDuwk2fPmNQClVNERiOuwxIA6kwln6sX94pNPzkqiEM/Ph9R8VadhUNhBp7RD8bLHkx5VHdTQgBWO+lHVg7V3MrvPVw4OB+6iIurq6uhTVUWx1UoYCAJhkiXFtbEYb61ejU4kMCvFKSedRAVgAsxASzTK0o8/JicaxRaPc/Zpp9G/sHB3R2KHA3dVVTLpHDQIV3Hx3kEecK6slPOKg9UG/CQYxJNqSGSLRDhrxQpGzJqVlePvdLu5ZtcuaouLYXiA6S+WMPIlP1+dl8vChZ2fd98A3J2xTM3Q+npGNTfD3n8v4nA1KqUWa61fBFBKnUVyZSPRxera2ijJy+Piiy/G6XTy8MMPd3h7j8dDdXU1wJfedtmyZWzdupUBAwbw1FNPccUVVxx0XCP79mWL2802t5uBLhdPpcqEO5Jvt+MLhb70duLoVNfWRklFBRfPmoXTbufhN9444G1PHj2a7/zxj9xwzjnE4nH+uXw53543r8PjH+zz6/TTT+fuu+/m7rvvRinFihUr9rscW35+Pj6f75gsAz799NP5+c9/zkUXXYTT6WTnzp3k5ORQUVGxx+3aH6NjQUfJ6reBq4GBwDytdTC1fTQ9dJHylY2N7AyFQGvyDQNHYWFWjmvk5WE3DKLRKNUOB84sJaufpkb2AAa73cfMqGq27J0QWoHM//HRpaVMmDZt9whnaemeBygrY+Qpp3Q4AipJp+hKIeC6QIDVqXJ0SyLBD9ramDdrVlaedxq4Kxqltrg4XUHw3X61XHTXyE4fG5JfEN4UCODPWKZm7rp1VM+fn5XjCwCuBB5XSv0vySKUHcA3uzekY8Oaujp+PG0aJpOJnJwc7r333g5v/5Of/IRLLrmE3//+98yePbvD206fPp3rr7+eNWvWMGPGDM7ea6mZjtitVu658krm33QTZQUFTDuIL7lLCwo4adQoxn7/+yyYMkUaLB1j1tTV8eM//Sn5XDabufeqqw542+OGDWPxtGlMuPpqBpSXM3XoUAq/pCvvrHHjuPWZZ5h49dUdNlj6+c9/zjXXXMP48ePRWjNw4EBeeumlfW53xRVXsGDBAvr06XPMNViaN28e69atY3qq3NrpdPLYY4/tk6xecMEFfPvb3+YPf/gDzzzzzFHdYEl9WTnJYR9YKRuwlGQOYQGe0Vp32Bd76tSpevny5Yd9zsfXr+d/7HY00L+5mV8qtd9vbA7WTd/6FjcNHMhbhsH6VGI5qKmJUCjE9W+/TTyR4PLJk7n+5JP3/L1t27jpS75V1cB8r5f61FI43166lPPmzZPESIhjRAy4GXjb48GTmlN2xooVnDdgQKdetyC5puqSJZCYCW9PNnC7k+upTt+8mZvHjMna68ydHg8PeTzpJXaubWpibr9+PeZ1TCn1idb68NZS6GGUUk6S79lH/Kv0zr437+Heew97+ZUjrrYWOvhQf7iWLFnC7bffvt8P6R3KeOz8oRBOux2tNd+77z6GVVXxo7POynqsogt10fNrvw7x7679+RU0DGbccAP3f+97TO5sMtTV97c3vbbs7Ug+F3qAQ31vPvTFvg6eAczWWvuVUjnAu0qpV7TWH3bVCfMrKsDvR2mNNR6nqn//rBzXmyoBBrAYBj96/XXevPRS+hYUcNyf/8ziESMYXV5+SMf8vLGR+lAIDeRFIsydOrXHfMATQnSt9rVU304k0p1/Z33+OUObm6lKfZt6uD74AObMASMC5GrGvRCl5IRipng8XJvFRHUJ8Byky3+P37iR0WVl8jrWBZRSC4ExgK19bqPW+su7+Imj1p9fe41H3nyTSCzGpMGD+Y5UM4gsuuKPf2Ttjh2EIxEumT2784mqEJ3QZcmqTg7Z+lNXc1KXrhnGTckrKcHlcBAOh5lYUrJn05tOMOfmQjwOWvNFczNDS0oYnJqPdcGYMbywfv0hJ6ubGxvRqbm1jnCYcKpBgxDi6KaBW71enm9rS34JphTfNJuZXVlJ1eTJnU72lixJJqqJOBAB9+tRqsu386M+fbLWhXojcDe7u2IPamhgak0NVePHZ+X4Yjel1H1AHjAL+AtwDrCsW4MSnTJz5sw9mi8djh+ddZaMpIou88S113Z3CEKkmb78JodPKWVWSq0k2YPjda31R115vsyp3dZsljfn5mK32bBYLGirlYEZ7ef7FhSw83AmOGd0r82NxfbbzVYIcXTRwH3AK1qnRyTH7NjBrIYGJk2alJVRyXEzQeUCZo3K0VRObGP+ihU01NV1+tgALcDPQiEaU2tOTior4zqLhTOztMSO2MeJWutvAq1a65uB6UC/bo5JCCGEOCIOOLKqlLIA/wGcTbIZqwbqgBeAB7TW0QP9bjutdRyYmOog/LxSaqzW+rO9znMFcAVA/06W7brb2nB7vaA167Zvx52lhkVGNEooNWe1taVlj7XTAPbfcL5jwUgEUutKtS+bIoQ4emng914vL2idLv0dWVfHrPXrqV60KCvn8AF/mxBk7AsJvO/lYB/TyEXGe+QlEp1axqtdBPhZIMCGVEMoIxbj9oICxk+c2OljiwNq/x42qJSqApqBQd0YjxBCCHHEdFQG/FeSqyrcBNSmtvUFLgEeA/ZdqfoAtNZtSqklwHzgs7323Q/cD8kmDgd7zP0JNjeDxYIGIiYTdXV12emoGYmk56yW5OWxPWOEotbrpeowyo0HlpWhAgE04HU4qCoq6nScQoieSZNsRvRoqhkRSnGa1cqFVit9szQiGQJ+EgiwsrkZhmuKhml+GY9T5R2TlfV+NXAP8Hksln49PH3lSuKDB8MhToMQh+Sl1Be+twGfkvyv+HO3RiSEEEIcIR0lq5O11iP22lYLfKiU+uLLDqyUKgeiqUTVDswF/vvwQ/1yA4qL0w2WwlZrVkYSAJw5OTSmRlOHlZWxfcUKtra2Ul1QwJOff84TX/3qIR8z2tKCTi0q7rXZaGlpkRI6IY5CmuQ3f8/DHmuRXpCTw5ROdv1tFwF+xe5EUgNzV6+mql+/TncWbvdoWxvPKZUeFT55/XoGtLVl7XVW7J/W+pepH59VSr0E2LTWnu6MSQghhDhSOkpWW5VS5wLPaq0TAEopE3Au0HoQx+4DPKKUMpOcG/u01voQ+7QfmoElJeQrRSgYxF5dnbXkrz5j/msgL4/fnHwypz/2GHGtuWziRMbstfbRwWjZvBlGj05f37B1K6NGjcpKvEKInkED93g8PAXpJG+w2838zz6j38KFWTlHDLjR7+f9eDx9jplr1zKisZGq44/PyjlebW7mDr8/2SFPKRbm5nJOeTnVEybIl2xHkNbaINlpXwghhDgmdJSsXkByJPQepVR7cloEvJXa1yGt9WogO1/pH6SGTZvw5uQAsBpYt25dVhLAWMYc1aDVytSCAr74wQ86dcwRAwfucT0qoxNCHFU0cIfXyyMZpb8z7Ha+abHQf+HC7ExRILkEziutrelzXGoycarLRVWWGjatB24zm9Gp8/VpbeUriQSTszRiK4QQQghxIAfsBqy13qa1Pl9rXU6y++CJWuuK1LatRy7Eg9e8Zcse1zfvdf1wTYzH0z+btKY4tWxNZ4waNYpT1O7WTB/s2oXb7e70cYUQ3S9BcmmXv2d0/e3f2Mg3ams5LktJpAbuBd5MJNLnmLxlC6c2Nmats/AO4BbAbLeDUhSGQixcvZoB8uVal1NKnZT619rdsQghhBDd5aCWrtFaN2utm9qvK6Uquy6kwzeh357d/AuGD8/KcQcXFmK32zGbzcSdTuypLr6d1T8eT3cSrisspC5LS0sIIbpPDLjR5+MZjyddljvU7WbRqlVZS/I0cLfHw5MZ5xi3Ywcnbd6ctTmkzcBPQiFqU0vUDCsv5+fRKOfPmyelv0fGH1L/ftCtUQghhBDdqKMy4I48AGRnwlUWjRo1ipOamlgejWI2m/EeRpfe/SmEZKKaSODVmnWbNjFq6FCcTmenjntCfj5PBIOgNXXFxchKq0L0bgbwM7+f1zPKcs/IzeVrOTn0y2Lp7x89Hh7IKC8+3WrlAoeD6ix1Fg4APw4GWdvUBFoTTCS4OT+f6ePGdfrY4qBFlVIPAdVKqT/svVNr/cNuiEkIIYQ4og4rWdVa97hEtd3wnBzeDwYhEuGFrVs5btSoTn94MwN5hoE/1WjJa7Xi8/k6naxOLyujwuulobWVtrw8XnvnHUpKSmTUQoheaKvbzS3AFxZLuix3wvbtnOt0Zm1+pwYeAZ6G9DkGNzRwrtmctXO0dxbeFI2C1iitmb9iBbZBg6CsLCvnEAdlEcku+rOBT7o5FiGEEKJbHFKyqpRarLV+sauCyQZHQwPk5qKBXQUFWVtrtcpioSG1LITPbic/C6O2uUD/YJCG1PUtpaVZi1cIceSsb2jgB42NNOTng1KgFNM2beKErVupXrQoK+dob9j0d63Tpb+DGhpYsGYN/c84IyvnSAA3+3y8l0ikzzFnzRoGtbZSddJJWTmHODipqTdPKqXWaa1XdXc8QgghRHc4YLKqlNp78VAF/FEpZQHQWj/XlYEdrhMLC/ljOIzSmvriYiry8g77WEX9+3PTtm0A7DAMPk11BbZHInwQCh1w7mpR//4HfY6ZVivLIxHQms0uFzabFAML0ZvsAK4zm2nIz0cDSmvOCwQ4o7iYqjFjslb6e5vXy+NtbenS35k2GxebzfQ/44ysnePXPh8vZZQw/4fJxCnV1VQdd5x8idZ9mpVSzwMnkfxvehe4Wmtd271hCSGEEF2vo5HVp4FXgQZI9wFyAGeSfMPskcnq2IoKRodC1ASDAGzTmurDPNY1t9yS/vndVatYXlSEJjmfa6HHw4zx4zsd74LiYh60WGhpaaG2pIQ3li6VUmAheoklzc381mQikpsLSmFKJJi9fj2XZ6kbL6TWagVeyugsPLS+notzcjgui+XF/wu8ntFZeOK2bZycn88kWaKmuz0EPEFyjXOAi1PbTuvMQVNroC8HdmqtszP8L4QQQmRZR92ApwN24GPgMq31pUCT1vpSrfVlRyS6wzQyFsMfCOD3+3l81aqsLAkzrLKS6ra2ZNauFDv36jx8uMqAfqnEOqEU6yorpSuwEL3A8y0t/D+fj3qvl5bWViqLivhxOMx1WUxUE8CvvV6eyuj6O7y+ngWffUb/LHYW/h+vl79lnGP0zp3M2LiRalmipieo0Fo/pLWOpS4PA+VZOO7VwLosHEcIIYToMh2ts/oxyW9uc4E3lVLTSH6u6fEq3O706MDW1DzQznK5XFzYvz+FRUWUFBfzVjictXVRF6ZGZQA+79sXq5QCC9FjaeBvwB1mM3Gl0CQbsH1vxw4uGjkya4lqlOQSOH9ra8PT1kZLayvzrVauz81lcRY7C//O6+WJjHMssFr5id3OmVnqLCw6rVEpdbFSypy6XExyZaHDppTqS7Kj/1+yEqEQQgjRRTpcZ1VrndBa30Wy7OjaIxNS580pKECRrF3eVVyMo/pwC4H3tKC4GJvNRktrK8sMg6deey0rCetZxcVUFhWhgBaHg2fWrs1aIiyEyJ4YcKvXy90Zo5AlgQDnLVvG8VnslBsEbgKWZpTljqqt5by6OqZmaeRWk1yD7MWM8uLhdXWcW1fH5CyODotOuww4D6gHdgHnpLZ1xp3AT0gO3u+XUuoKpdRypdTyxsbGTp5OCCGEODwdJqvttNY7tdbnaa0Hd3VA2TC8ooIZZWU4nU4cTief5ORk5bhlQHWqwUlCKdb26ZOVUVsbMMnjSV//dMAAKQUWoofxAv8ZCPBkxijkCXl5/CYa5etz52YtuWsDrgkEeCcjIR5fU8Pcdevom8XS30eAFyDZ1E0phrndzFu7NmvnENmhta7RWi/WWpdrrSu01l/RWm8/3OMppRYBDVrrDpfD0Vrfr7WeqrWeWl6ejapjIYQQ4tB11A3YDFwO9AVe1Vq/l7Hvv7TWvzoC8R22qdEobwcCoDVPtLQwOxLJyofJRTk5fGoYoDVrq6uxZiFWgPNsNl4JhUBrtpaX0xaJZOnIQojO2kpy7dGNqeWrNDCyro7LrdasNTmC5LDZT4JBVjc3pzvyXmIyMdPppDpLZbkaeBR4wjAIh8PYbDYWFRfzleZm+mepvFj0aCcBi5VSZ5D8rrRAKfWY1vribo5LCCGE2EdHI6t/Ak4lOTfmD0qp32fs23tZmx6nb01N+kNlTUkJn2eprHZRSQnVhYUooC0vj6fWr89Kye7k8nJm2mwokh8m72tullJgIXqA94AfhMNszBjpPGHTJuZ9/nnWmhwBbCFZl7k9Gk0mqsCszz5jVmNj1spyNXA/8Lhh4Ha78bS14fjsM74bDHKclP4eE7TWN2it+2qtBwIXAG9KoiqEEKKn6ihZnaa1/rrW+k7geMCplHpOKWVl91I2PdYYl4t+ra3p7r1fDBiQleNa2atkt3//rJXszmhqSv+8vk8flmVcF0IcWRp4DLjZMNjR0ICnrQ1/YyM3xONcVVKS1QZEbzU3c2VrK27DwGazYUkkOGPFCsbt2kVVlhLiOMmJii8B4XAYtGZAYyPzVqygQaYdCCGEEKIH6ihZzW3/IdUu/wpgJfAm4OziuDrN5XLx7YzuvS/HYuzK0kjl+XZ7uoHTuppq/vLsMD74oPPHPbm0lEFNTekE+2/5+dTL6KoQR9xWt5vv19XxaKpUFq0pCAY558MPGdHWxqQsjkI+29LCf/p8uL1e3G43eVrz+/x8zhswgEVZSoijwM99Pp73eDBSCfEwt5szVq4kV6msJcQi+5RS/5Xxc7ZmngCgtV4ia6wem7a53Tzx9tvp60vWrGFRxtryB/P7Y7///S+93Y8feogx3/seP37oIR5+4w3qmjvVyFr0ck7nl6cPf/jDHxg1ahQXXXQRf//731m7du0RiEz0ZB0lq8uVUvMzN2itbyG5GPnALzuwUqqfUuotpdQ6pdTnSqmrOxfqoTujpITy3FxaWlvZ7vfzxw8/zEpp7fjychaVlKDXFbH16y7u+a2DGTPg/vs7d1yXy8WN/fuTn/pjXqU1/7NihZQDC3EELW9s5NKWFt6NRnG73ZhNJgY0N3Pehx9SFgplLbFrnzt6V8YSOI5wmG9v3sypZWVZS4jDwHV+P/9sbcXT1obb7eZUw+DuAQM4fsqUrCXEIruUUj9RSk0n2f23XRa+FhUCtjU07JGsdpU/vfoqn955J7ddemkyWW1p6fJzit7tnnvu4eWXX+bxxx+XZFUAHTRYAv5Xa/3h3hu11n/h4NZmiwH/qbX+VCmVD3yilHpda33EnnU5wNiGBjaR/GDYXrKbjQ9mCw2DB96ykDAArYglNN//vmLcOJg+/fCPO7m8nFk1NbyYmm/79vDhnLxtG1+VD5NCdCkN/Bu4NSeH1rw8NKC05tSWFr5TXU19agQyWwnkL30+3kkk0vNgS30+Fq9cydS5czt9/HYB4GZgeTyensM/aetWFhQU0GfSJPrI60pPtgE4FxislHoHWAeUKqVGaK03dG9oorv88sknefztt+lXVkZZQQFThg7l2rPPZvOuXXzvvvto9HrJs1r58/e/z8i+ffnWnXdSkJfH8k2bqG9t5X++9S3OOekkrn/kEdbV1jLx6qu5ZPZsJg3evdhDIBzmB3/6E2u2bycWj3PThRdy1gknHDCmeDzO9Y8+ypI1azCiUb63cCHfmT+fxb/6FQHD4Phrr+WGc85h+aZNXPT732PPzeWD//kf7NasFgqIXua2227j6aefxjAMzj77bG6++WauvPJKtmzZwuLFi7ngggt48cUXefvtt/nVr37Fs88+y5AhQ7o7bNENOkpW7wEmH+6Btda7SDa3RGvtU0qtA6qBI/oVybl2Oy+GQiSAnaWlhPPysnJc244dDB6VR725IJmWo4jHYcmSziWrAFdYrbzb3Eyzw0HUbObu/Hwmut0Mlg+WQnSJMHCrz8ebiQRmsxmUIicWY/a6dVw1dSoulytriV0zcEMgwEetremOv6fY7Xy9pYUhWVwCxwNcGwyyIRpNJ8THb9zI8du2Ub1IKj97gVbgp8DM1GUUcDpwfSphPbH7QhPdYfn27Tz7wQesuPNOYvE4k3/0I6YMHQrAFX/8I/d997sMq6riow0b+O699/Lmr38NwK6WFt699VbW19ay+Fe/4pyTTuLWSy7h9uef56UbbwSSZcDtfv3008weP54Hr76aNr+faddey9yJE3HYbPuN64HXX6cwL4+Pf/97jGiUk667jnkTJ/Lif/0XzvPOY+VddwFw7yuvcPullzJ12LCufJhEL/Daa6+xceNGli1bhtaaxYsXs3TpUu677z5effVV3nrrLcrKyti4cSOLFi3inHPO+fKDiqNWR8lq1iilBgKTgI+OxPkyja2oYLHPx1upEYwnvV4Gu92d/kBYVVXF4i+WsP2WUnbeWAoJTU4uzJzZ+d5T/Vwurqyp4Va7nbjJRLPDwXU+H3cAfSVhFSKrtgG/CAZZmZE8jnE6+UZdHZNTiWq2bAZuAbZmLIEzcds2Ls3PZ0oWl8DZCVwXDLKmqSl9n65QihNLSqgaO1bKfnuH+cAvgCHA74FVQEBrfWm3RiW6zbubN3PW8cenRyTPnDYNAH8oxPvr13Puf/93+rZGNJr++SsnnIDJZGJ0//64MxpEHshrK1fy4rJl3P73vwMQjkSoaWxkVL9+B7z96m3beOb99wHwBAJs3LWLQZWVh3U/xdHvtdde47XXXmNS6n3P7/ezceNGZsyY0c2RiZ6oo2R1sFLqxQPt1FovPpgTKKWcwLPANVpr7372XwFcAdC/f/+DOeQhuyQ/nw9SSzUs0Zq+S5fyzdmzO/WBzeVy8a2ZM9k11cNLI2MEPrBSOclD9WA70PkPgjP792f5J5/wrzFjANiQk8N3d+7kbmCAfNAUotM08BrJpVwaU8vFaGB0bS1X5+Vx/MSJWT3fP1tauEMpTHl52Gw2fMApa9cyoa6Ovlkc6VwH/BKozVgCZ/aaNZxYVZX+YCB6Pq31TwGUUqtINqaeBJQrpd4FWrXWZ3ZnfOLI06m/570ltKbI4UiPYO7NmpPzpcfY+zzPXn89I/r2Pei47r7iCk6ffNjFeOIYo7Xmhhtu4Dvf+U53hyJ6gY6S1Ubgd505uFIqh2Si+rjW+rn93UZrfT/Jz4tMnTr1y19FD8NgYGBLC+7Uh9H3hg1jbhbmrrpcLs52u3lngiJvskECxb2RCL/NQswul4trp0zBUlvLP8vKANhWWsrVgQC3NTQwrKIiC2fpehrwkqxn29zczLbmZpzl5diKiwkBQSCUugSBFr8fn99PodNJgdOJGdIXExD0+TDa2uhbUED/wkKKgAKgECgC8um4a5gQAD7gNp+PJYkENpsNm81GMJHg1M8/Z7TbzcAsJo8J4B6Phz/7/cnk0edjUEUFtzudlFRWUjV5ctZGOl9saeFOkwmL3Y7NZiOQSDBv1SqGNjdTNXVqVs4hjrh/aa0/Bj5WSl2ltT5ZKVXW3UGJI+/kIUP4zjPPcMM55xCLx/nn8uV8e948CvLyGORy8bd33+Xck09Ga83qbduYMGjQAY+Vb7fjC4X2u+/0SZO4+6WXuPs730EpxYrNm5nUwVzB0ydN4t5XXmH2+PHkWCx8sXMn1aWl+5QNd3ROcWw5/fTT+fnPf85FF12E0+lk586d5OTkULHXZ9v8/Hx8Pl83RSl6io6SVb/W+rBbxSmlFPAAsE5r/fvDPU62XJaTw0fRKEprtlZU0OZwZOW4I10uTv30U94YPRqU4sOiIv66YQPzioqykgxfDTStW8dHqTedLWYzl7S1cXltLQurq7utnC8MfNHYyMamJnJdLlRJCa0kk9Idfj87g0Fi+fkYdjsJwDAM3IEAWK3g8+HKy8O6V3MFwzBwt7QkP9BHIrhycva4jWEYuNtLNT0eXDbbPsdQgCUUwurzMcpuZ0J+PoNIfmHR49dbEkfEJ8B/h0JsSD2XPEoxtayM/3Y6obqaquOOy9rflRe4DXgb0iO3RYEAV27axJyxY6G0NCvn0cDDbW3c2Z4Qe70MKy/npvx87AMGUDV9upT+9lJa659kXP1Wapsswn0MOm7gQBZPm8aEq69mQHk5U4cOpTDVh+Px//f/uOree/nV008Tjce54JRTOkxWxw8ciMVsZsIPf8i35szZo8HSz88/n2v+8hfG//CHaK0ZWFGRntu6P5fPm8e2hgYm/+hHaK0pLyzk7z/96T63+9acOVx5773SYEkwb9481q1bx/RUkxen08ljjz22T7J6wQUX8O1vf5s//OEPPPPMM9Jg6RilDlQSopR6Tmv91cM+sFInA+8Aa0gOLgD8VGv98oF+Z+rUqXr58uWHe8ovdYvPx79Tc1f7hEL8Xmsqs/ABrt7t5tfxOJ/l59PS2ootEuH8jz7ioiw1S3G73dy7fTvPu1xk/m8NbmzkbKU4vW/fTt8PDdS43WxoaCCvTx9yyspoBba3tVHj9aKKi4nm56cTUk+qrLp9PpzL5cJqtSYTyv1s93g8eNrakh1WgcKiIgoLC/eI4ctuczDHOND5ASognbgOARwNDUR27qQ6Sx1eRc8WBu7wenlFa+KxGH6/Hw2Mqa3lRw4H07Jc9vsFcGMoRF0kgtlkoqW1lX5NTSz47DPOOf30rD3nEsCfgccz/j6Kg0H+KxbjtHHjsnKO3kop9YnWWoaUOymr78333gsHWV7a7Wpr4aqrujuK3e69F39pKU67naBhMOOGG7j/e99jsnyA752O5POrJ/zddfX97Qn38XD1tNeaLnao780djaz+VilVqbWuTx34m8DXgO3ATVrrDhfL0lq/SzKn6DG+m5/PsnCYHQ0NtGjN/6xbx3VZWMuw0uXiN8DXm5tp0ZpQTg4vTJ7McfX1WflA6nK5uAqIf/ghr40eTSg3F4At5eX8DrjX62VCJELfRIL+hYU4tKalqYmSsjKKi4tpbm2lvqWFvNJSbEVFhAG310ttIIAuKCDqcOAOh9lhGFBQAMEgLsOA1O3QGlpbceXmphO/cDicHilSWhMOh7FarfvdXmq1UpqTQ2NrK9ZIBGsiwZTiYlyAHchL/RuKx/no00/RiQTabOakU06hGIinLk3xOO99/jlhs5mw1cqQ1PyYNpKdT72A5wBxATSkLh+RSmrDYfLz8hiycSOXWiycUlqKudP/W6InWgv8JhhkTVtb+osMezTKrM8+Y2hzMwOyWPargX8BfwiH2dnYmD7f181m5ipF3ywmqgbwC7+f9+PxdMffqtZWzly1ivGnn56Vcwgheo4r/vhH1u7YQTgS4ZLZsyVRFUIc9TpKVv8EzAVQSs0AbgV+AEwkOce01/WRLgOm19ezQ6n0GqYLGho4LQsfHPOBH2vNNVoTV4o2h4MHKyrIXbmSgX36ZKUk+PsnnMCJmzfzoNnMF5WV6VHWYG4uHySSg9fKm+phlZsLPh8lFgstPh9YLOD14rLbAXC3f2hvbsZlsRA2jH2SPAC0xvjd77DX1eHJzSUnlSgTj2P1+7HE41gSCcoLCnDk5lJsGLS53ZjjcXISCQZUVeFIndMVChEMBsnLy8MyYgTfuOWWPe9kSQlTTjyRurq65HqWe5dIlpRw4pQpu/cXFOzzOO0Mh3l26VJa7XaaCgqoPOEEGoAaUisMpbQn1V6bjZX9+nGjxUJfYBpwAslOJlKg1PtFgMeB54G2jCZKQ+vr+XYsRmWWS2QjwL0k12v1p/6mcmMx5q1ezbyBA7Pa4KgJ+FkgwIftpfNKMddm43ytGZDFhFgI0XM8ce213R2CEEIcUR0lq+aM0dPzgfu11s8CzyqlVnZ5ZF3kYrud11taaM3LI2ax8PzgwcyGrIyozSgr42aTidvNZkwmE5+2tvKreJyFL7/M2WeckZWEdYHLxWS3m3e2b+e5aJTNFRXpkVbYs9Of0ppAMHjAJDRzW3szFnskQl40ysTSUgoTCbZs28bOdev4z/JyhvXtS0leHjYgBwj4/fh8PvLz83E6d88I9VdX73d7ppu2bTvgfezocfqy/dUuF+fPm7dPQhsDaoEtqcsai4X343EiqTU127uzvpG65ALD/H4G7trF/IICBsoH/15nPfDfwSCbo9F0E6VwPM4pa9cyyu1m8qJFWU3o6kgugbMh43w5fj/zV6ygxDCoOjF7y2KuBX4D1GQsgTNp61YuKihgsnT8FUIIIcRRosNkVSll0VrHgDmklpc5iN/r0Qa4XPzWbOanFgs5djs7rFaeBi7M0vHPLCkB4DaPB7Rme1kZz0+ezNgslQRDMmE7x+VizLp1LF2yhGaHg+b8fDx5eRhWK4Yl+d+jgMEDB7J11y7MsRjWRILjCwuxASvXrcNmGORFo5x16qkMKyzEk5fHrra2ZJKXSjLdI0fyK5uN6VVVOFONHNo5nc79JqMH2n6k7C+htQADU5fZAA4HOx0O3mltZXtVFeusVpozbu8zDF5paYHcXB4MBPi6x8PFhYVIC86ezw88ArxgGLhT64x6lGJOSQmXO50YWW6ipEl+wXFXOExNxvm+VlzMt8rKaB4zJvk3laXzPdnayv1KpTv++oBT1q1jws6dVGexnFkIIYQQort1lHT+H/C2UqqJ5Moi7wAopYaSnCLYa00vK+Mq4K8k5y7+KRSiOhZjRll2UpEzgR3An5RCaU19cTF/zM8nsno1Y75kZPBQjBo1ipKSEurq6pKjRuEwVVVVALtHFl0u3Ertvl5UBMD8SZN2bysvB8Ducu3TqMnlclFaWtqtyWdXqXa5uCB1fzWwCfgQ+AD4LGPuq2E28xywBDgZ+AowtDsCFh3SwAstLfwZiDoc6VJvSzzOSV98wcUuF6MnTYIsLvvkB/4IvEuy6RhaY0okOGX9ehZVVtJ/0iT6Z+nvPQb8zuvlCZ8v3fF3aHk5P3U4KHS5qMrC/HshhBBCiJ7kgMmq1vrXSqk3gD7Aa3p3famJ5NzVXu0c4J1AgKXNzaA1P47F+JPWTEwlbp313cJCnFrzF6Uwm0ysbW3lv2w25r33HleddFJWR1n3d6zMbfu7zZeV0x5rFDAsdfkGsDIS4f5Nm/isqgqPw4HNZiNOcgmSt4GxwIzmZlw1NdJNuAfYBdzm9/NG+9Itfj8lxcUMamrilLVrKYpEqM5yeexnwK9S3X7by35NwSDzVq3CFQhQnWoAlg0ekk0D3tM6/SVKudfLdz0eZo4bB1n6ok0IIYQQoifpsJxXa/3hfrZ90XXhHDkm4CtbtrDMbieUk0PYYuEmk4mHgOIsneObRUUMBG5KNTPyW608P2UKCcPgv0jOi+ytLnvhBV764gsqHA4+++53AVhZX8+VL71EOBbDYjJxz8KFTKuu7uZID8/E8nJ+MXYsO+vqcFdUsNRq5bOM/Z8YBi8HApTk5nLq++9z1YknSsLaDXa63TweDLK0Tx+88Xg6kXOGw1yyaxfz+/Zll8mU1TLcGMmyk8cMg/pUt1+PUlxQVMTXS0poGTEiq+db1tTEr5Ui5HRis9nwKMWw+npOW7uWsQsWZOUcQgghhBA9kam7A+hOYysqWLxiBTnxOChF0OnkJpI1z9kyA/iveBxbLJZcx0cpPnS5uCIY5IW1a5NrgvZC35o4kVcvvniPbT95/XV+ceqprLzySm6ZNYufvP56N0WXHS6Xi8mTJrGgtJTfAncAp5JsxtVeYtrsdPL85Mn8Oh6nsXvDPaZo4NXmZi5qaeFxk4kdDQ2YTSYUMKGmhovff58FhYVUulxMymJ57OrGRi5zu/mrYRBKPQes0SgLVqxg/ubNDMjy+Z5pbeUqn49tfj9utxsFfL+ggJ/l5HD2ggXyBYkQQgghjmq9tlFSNrhcLi6fMYMBbW08VlVFjtXKOsPgh62t3KgU/bL0QXB2aSmPxOPcGY+zJdWAaUVTEyscDobW1HCd2cy0XlbGN2PAALa1te2xTSmFN7U+qyccpio/vxsi6zpDgWuBb5FcDuWviQTR1NqW60tLuRI4Dzib3j1q3tNtAx4A3rZY8OTlpbta9wmF+I3Dgc3ppCrLiZwGHmtt5S6/P/l/7nZTUlxM39ZW5q5eTUE0StUJJ2TtfGHgPuA5k4mYyYQGrNEo39i2jYtHjADp+CuEEEKIY8AxnaxCMmG92OWiArjdMHC73bi15jttbfwvMDhLH3hHVlRwL/Av4PbW1nS54qaKCq7NyWG638+JNTWcUFraa0dL7jz9dE5/7DGuff11Elrz/mWXHdTvaSBKckR7e2MjO91u+rhcuMrLMZMcyWxuaKBp1y4GV1bu0wTqSCsDri4s5HTD4M+RCGvKy7FarUSAx4B/BIOcvmMH84qKeu3/ZU/UBtzr9fKq1lhTc0Q9SmGNRjl+yxZ+On48VWVlWZ+/uRO47gN471U75glh8qZEMCUSLGxs5OI+fdildVbLfj9pbOS/gbaCgvR9LPH7WbhqFafNnp2VcwghhBBC9AbHfLLabh7waV0d/5caxdhZVMRPTSbuAUqydA4FzAeqYjF+0dTElrIySDVgerWlhVcdDlyNjZxntXJGURFVWTrvkXLv8uXccfrpfHX0aP7v88/51osv8tA559AaCmHKywO7nRDJUaP3YjHOam5GORxom40Eyc7M7lAI8vMhFMJlGFit1uT2cBiKijCFwwwNhXDZ7RQCyueD1lbG5OczpbiYAYB1P7F98AEsWQIzZ8L06dm5vyMrKvgdyTUv/0Ry/VbDMFjT1MQam41/bt3Kf5NcLkkcvgjwIvBoOMz21PxvlKLS5eLCoiJO3LqVEePHZ/2LgTjwSFsb9ywzs+IrThIRKyrHxYQHtnNuznK+MWMGrv100D5cmmTZ761+PzGTKfk34HLxteJi5rW0MGj2bPnyQwghhBDHFElWM3wrL4+azz7jvaFDQSlaCgq4FrgF6JvF84wvL+e+RIKPm5r4sH9/liYS6ZFWd34+jyrFCyTXBB3j8eDauZMppaVZWwLjcMWBlkCA5mAQi8PBTsAAPga8hsEDK1dy6pw5/A3Qo0fz4Ysv8ko0CmYzRCI4c3IwWyzEYzGawmESfj8EArhcLqxWa3oeaHtZZzgc3md7AnBHIoTt9mQSmxql/ofPhysvD5vVSl+g3OejsLGR2fn5hDaVM2cORCKQmwtvvJG9hBVgNMn5rK8CfwgG07Gu69OH/2c2cyvJLsPi0Gjg7y0tPKI1QaeTcGppGA0MaGzkKq+XM8aOhQkTsn7ubcCtgQAfeL00/DufRASIKxQw/QMr//FfM7KaOIaBe4C/Z5T9WuJxvlpTw5XDhsHEiVk7lxBCCCFEbyHJaoZKl4tfAH/3evl7v35YrFZqDYNvBwJcl0gwM4vlhS6Xi0UuF4tIlv3d6nazsaICbTJhs9kA2GAYLPV4wOFAhcNMCAYZm5fHIKCguZnorl0MqahgaEXFIf9Htpfebm9oYHNDA7bKSixlZXhIllvu8HrZ6feTKCxkI/AMEIrF8MdikJMD0SihWIwwsD4Wwx8Ok+9w8O4XXzB55EjW1dTgKi5OjoIBaE0sFsNssRCLxdIxtCelDquVstxcdDiMOdXwqm95ObmAPTeXSDRKzGQiarGkH58DJbebDIP3WlvBbOaRUAjLaxGMSC6JeDJhXbIku8kqJDuVnQGMiEa5ob6eDZWVoBS+/Hx+QnI5nLNJjq6LjmngI+D+YJBP2peiCQQoKS6mJBjkpPXrGdTSwpRFi7J+7hjJ5/pTQHMsBlqTd0IYU07yeWzNVXzj61Vk83uj5amyX89eZb9nrF7N2bNmZe9EQgghhBC9jCSre3G5XHzH5WIq8ItwGHdDA2jNNcClOTl8t7CQnCyfc0p5Of+bSLC5vp5d/fqxzmrlU5JNitqTMYCt0SgtwOuGgTsQSJbLhsO4DINCq5UCwBQMEvL7cToc2ByO9O8GgkHagkFMDgeqvRy3vbw2Px+CwT3LbtvLLZubccTjRCCZZKaSzwdffpmNO3fiD4W4+q67OOP447lozhz+tnQpzyxdijU3l++ecQb5hoElFiM3Hqe/zUYRoBMJ/tHUxEnvvIMtkeArp59OdWEh2O24i4qoq6tLzgHMy0sGb7fjzs+nrq6O8qoq7FYrHmBrLMa/PvsMr9VKc0EBeeXltLJvEhs/MTWkGgFyNVtG1LO2wczoioos/0/CkIoK7taaF7xe/tGvH1itxID7DINXWlu5zmRiaBec92iggdebm3k0HqehsJBwNJr+f7RHIny1oYGvlZTgHjiQqi5YKmgt8LtgkI3RaHrdVL/WzC34nKIfLceiZrJoUX7WvujQwOOtrdyxV9nvOcXFnNbSwqBZs6TsVwghhBDHNElWD2AKcPmWLfw2N5dQTjI9fRbYBPwnyRLdbHK5XHt8MA0Dr8XjPF5fjzs/nzaH40tHFD2GgbupKZlQhsO4LJbdyWf79mDwkMpuldbE43EAciwWEvE4lnic/zdzJlUlJRRarahwmIaaGnJiMb528smMGjSIIqcTBfj9fnw+H/mFhThT8ZOXxzCXi9ljxuzTmGbvx+FA20uBwaWljJ06dY/kNgx8Eo3y9Pr11JSUUFNWRumMHKa/Ae5/x9Bjm1g2OcJFITjL5+Mb+fkMyer/ZDLWK1wuzgRuB9ZkNO76lmFwu8nECb2s+3NX0sAHwMOBAB8FAunnb0lxMTmJBBO2bWNKTQ1fmz8fl8tFVZYTuBbgYeDVjL8Tj1KcWFrKrQ4HqrSUqqurcLmy1926CbgLeDuj7DcnFpOyXyGEEEKIDF2WrCqlHgQWAQ1a67FddZ6uNL20lAtff51/jx7NjrIybDYb24AfAReTLOvsqoVqbcDikhKOHziQuro6SktLCVutbAFWKcWStjZCOTmEc3PJsyZbCh1s8tm+vcBqxYjFsEYi5EWjTC4poZpkqer6DRuwhcM4YzEaEwm+BuRaLASs1mTymZ+PM3VebDb8VVW7tzud6fvhdDr3uN7ObrczKQvLb+ydxNqAk8rKGDpxYvJxy8tjl9XKh9Ph1RFe6nxGeu7rm4kE7xsGfVtb+abFktUyb4A+wH8Dv62v5xmSSZnPauUnwNc3buTsgoJjeuQsBrzQ0sJT8ThtBQWEUyP37fM1Z7S0cLHDgb+oiKrRo7P+WMWAv7a18YTWqLy89N+JJR7nhE2buKy8nMmTJkF5edbOqYHnWlq4Xyl0Xl667LfM52PBmjVS9iuEEEIIkaErR1YfBv4XeLQLz9GlXC4XF552GjPq6vg8P5+/p5YniQF/Mgz+0dbGNSYTE7P4YXZ/MWR+SB8OzC8o4FuVlckRxdJSKmw2gsDmSISXli0jrjVmpZg1axblQHM0ylsffYQpFiM3kWDxaafRv7AQi82G2+ncPTLZvi5qYSHuCRPS2+998cV0h90DJZ8H2t5dMh+3/sDxwLnRKH9ctYpP+/enrqQEs8mUHvH8JBLhKz4fP8zPpzSLcViAK2w2jA8/5F9jxxLJycETDHJvbi5Lt2zhtxx73YJ9wCvAM6EQG9rnpIZClBQXY0kkGF1by9Tt27ngtNNwVVRAF5RNrwLuCAZZ4fUmz+/zUVJczLCGBk5cv57CSIS+WW7c5AH+2+fjn+332eej0uXiPwoLOaG5mQFS9iuEEEIIsYcuS1a11kuVUgO76vhHSnvSMxmYDfwO+CyzrBNY7PNxeX4+/bshrnYOkl2GXTNm7E4+UyOFQ8vKGHjqqbu3H0bZ7dGgyuXih8cfT11dHeG8PJ7yelmSSJBQCqU1byUSrAXmt7UxfutW+mdp7UyXy8UPTjiBGQ0N3FtaypZoFA18XlXFDxIJLlm7lpN78fq6B2sL8JTXy78TCcx2O+FIJD2SmhuLMaulhQsdDvxOJ1WnndYlj0cj8CDwLuDJmBNb4vdzZTDIzP79qbNYsrpuKiQbRt0N1GR0/i4KBLhi82a+Nno0ZKHKQAghhBDiaCNzVg9BNfA/wG27dvEUkFDJ3q5LEglWAicC5wODuitAjq3k83BkPg6D3W4GLFnCu0OHsqlPn2RJpmHwB6+XYquV+UuWcOnMmVlLWOe5XIxwu7m2tpYvXC5Qiu3RKLc4HIzaupVfKMWoo6z50na3m5d9Plb16cMWi2V34y6vl5LiYhyRCONqahhfW8s58+d32UhqGPg78Fg4jNcw0g2UgokE0zZtYuKOHcxcuDDrfydb3G7uiUZZXV6O1WpNl/2Oq6nhlE2bOHnBgqydSwghhBDiaNPtyapS6grgCoD+/Y/k2OThsQCX2e3w9tu8P2QINeXl2Gw2NPBe6nI8yaT1aFlbs6h/f27ati3rx+xuLpeLr8+dy8y6OtocDp6xWlnj8YDWtDgcPD1tGja/n6tdrqwtOTPA5eJu4EWvlyeLimgOBtNrsl5pMjFn+3bOs9sZ2YuTVg18Drzg9fL3QIBITg40N+N0ONKjiuVeL+cbBgsLCmgoKaFq7Ngu+TIlAfwbeBzYZRjp7t4epfhqcTHnOxyEysqoGj8+6+d/pbmZX3k8+K1WcLtxuVz0sVr5scNBmcNB1YIF8gWSOOKUUv1ITs+pJPkncr/W+q7ujUoIIYTYv25PVrXW9wP3A0ydOlV/yc17BJfLxWWnnsr8VDnpv61WlmXs/whYavwjFiYAAObASURBVBgMbGlhgdXK6SUl5HVXsFlwzS23dHcIXSZzJO0U4HGtuTuRIGoyETebebmqijq/n0WbNzOisvKgk4s7b7yRtpqaDm8zLhRiRSCAL9Ul2Qs8T3IEsNpsptwwKLdasdvtQDLB76n/FxrYAfzD4+H1WIyg00lYayJmc7qxl1lrRtTXM3rHDvp6PJy5aBEul4vqLkjYNPCv5mYeTCRoKyjYo9FYic/HzPXrWTxkCCMnTcr6SG4ryRe0f1os+K3W9P0f29TELdXVOEtLoTSbM6OFOCQx4D+11p8qpfKBT5RSr2ut13Z3YEIIIcTeuj1Z7a0yk5zppObjAe9DcqmY1JzWj6JR/pyXxwk2GyeSHHXN3gIYIpsswCVFRYyPRrlNa5oKCwH4V0sL79rtLHznHS4/5ZSDSljbamq4aeDAL72d3+9nWyjEWquV5kRin/32aJThViuuUIj7N2w41LvUperdbj5uaqKmb18+Kyxks2HgTo1MEwhQUlwMSlEUCDBu505+NH48+QMHUpebm/U5oZnWAPcFArzbvgxOav3Sytxcpq5dy4jaWiwmE1VVVVk9rwb+1trKA7BHp988w2Dmhg386Ljj6DktyMSxSmu9C9iV+tmnlFpHcpaLJKtCCCF6nK5cuub/gJlAmVKqFviF1vqBrjpfdxsM3ABsB+5oasKdsVSM3zD42GbjY5JL3YwjOb91OlDcbRF3Hw0ESY5AtQKbW1rY3tqKvbQUa1ERbq+XNo+HksJCigsK8Hs8hFta6F9URL7WqLo6JpaXd8mIHMCk8nIeAR4BHk0lX36rlWemTqXQ5+P7WTyv0+lkrNPJAL+fZbt2UVdYiL99PVoglJPDqkQCrFaWRCL8Ytcuhnm9nFhczOBuKBXe2NDA221tbCko4G2vF7/TCR4PLpttjyWSbJEI09vaWJiXh725mepx45LzUaHLktT3mpp4OBZje3HxHsvg5MRizK6r45pBg/BMnkxdZWXWk+XtwO2BAEt9vnSnX5fLxTnFxczasoVhxx0nJb+ix0k1QZxEsiBICCGE6HG6shvwhV117J5sAHCDxUK/t9/mC5eLzZWVmCor0/sTJJfNWAXcZRi42tqYaLczoaCAwUA/eu9wdxRoI5WANjezubUVS3k5icJCWoHaQIBd4TAxhwOVSsgMw8Dt94PFkmy6YzbT0t6Ep62NEqVo8XjAZAKfL3mi/HzMoRBja2o4QSlGt7YyKsuNcXKAy4H+sRg/j8UIWywkTCaedbnYsWMH38/NpV8Wz5fvdHJ8dTU+nw9fIsGqYJAWhyPdxAsgYjbz90gEbDYIh5kQDDI4HqewsZExhYWMLy2lguys/RsC3MC65mY+83rxlJWx1WLhs3AYrFYwDHRqnd32tXsLrVYqGhoYWlfHoOZmvrJwYbIjdZbXr93bOuBBv5/XgsHk88btpqS4GLPWjK6t5fitWzlv3jxsgC3Lz5Mw8ATwAtCakSAXBoNctnUrF4wcCVleAkeIbFBKOYFngWu01t797O/2fhID30u+mm07ad+qEyGEEMeG3poX9Wgul4uL58xJLhVTVoa2WvmAZPOl9kLO9lLheq1ZZRi4rFasVisWkuuCDiI5Wjs49bOjG+6HBgxgY2MjmxobsblcmEtLaSOZlHqAnX4/daEQMaeTaGpupWEYuAMByMlJj7oBuJub0yWiLpdrj3mE7aPQgVTCsb/r6N1TmmNKsVJrVmqNOT+fYVu38rXt25k5YEBWk5F5paX0SST4jdbU2+20tLbyqtZ83NzMrWYz07KYiLWvVdsHqMrNpc3vp9lmY10wiCf12LY/AkprNodCrAoEwGxOPqZOJxatsfn99LHbqXI4CNfX43O76VNWxsDqagJtbTS3tlJQXExeURFNHg9urxdzURGJ/Hzqg0Hqw2HijuQzzh0IJL8oaG3do0ESgCK55MygpiYuyc9nrs1GW/vSLyec0KUjiZpkue9TwGrAE4/v8bw5zuPhm3l5RB0OqubNy3osGnippYU/a03Y6Ux3+vUBE7du5fitW5l1xhlZPacQ2aKUyiGZqD6utX5uf7fpjf0khBBCHH0kWe0iey+BcXbq0gR8ADzf2rpHqXA4HMZqtRIjOf91C/BG6ncNw8ASCFBhs1GZl0c+7HEpSP1rNDXR2tBARUUFpWVl6aRCpy6NTU3UNTVRUFGBvaSEMMkRtDDQ4PWyy+tFFRURczrxkExIfYaBOxQChyOdEFlTI2qGYeBuadljXuD+EtBwOJwKZPe2RDBIH6uVARYLuxoasBkG1nicsUOGsPWLLyCRQJtMjBg1is83byZsNmPk5hLIzaXJ6dyjVDZuMrG+Tx9+DTy/dSu3KMXwLJbIjisv52Hghp07eSN1H5odDq63WPgu8FUObjQzHIsx46GHMOJxYokE54waxc2zZvHzN9/khQ0bMClFhcPBw1/5ClX5+TidTvoCQywWPD4fH2mN3r6dHcXFtOTn7/OYBvx+/Kl5mpuDQfIjEbyGAUVFEItR0NqKz+dLJp/to9jtc0xbWykBWlpbk9f9/j2SU5X6osCsNeUeDwNbWjirf38qvF76DRyIq6QE6PolkhLAh8BfAwE+j8Ww2WzpRNELDKuv54QtW/jG7NldtgzONuCOQIAlfv8eX75MsVo5Ny8PVVhI1RlnSNmv6JGUUgp4AFintf59d8cjhBBCdESS1SOsDDgTmKYUT7/9NnUFBTQXFlJ63HE0AA173b59BBat2en3pxPCvRmGgTsYTCaVwSAuw9jjdun9djv4/bgcjj2TzvbS25YWXDk56X37SzwPtM8Ih+ljtVKZk0NDczP2cBhnNMqp48dTqDWrli/HFgqRH4tx9oIFuAAcDtz9+ydHoVPzCN05OQe8DvDFF1/wybZtbCkrY0OfPuwq3j3zd22fPlwei3FVaysXFBdnbckZK/ATi4XEZ5+xdPhw4mYzFrud+w2Df7S18X2TiePKyzs+htnMm5dcgjM3l2g8zskPPcSCYcP48Ukn8cvZswH4w0cfccvbb3PfokXp32sfce1vGFw1YgR1dXWU2e3UaM2TGzbQ5HDgcTpJ2Gz4M/4/QsHgHucPdTBqvfd1cyJBWSRCaXMz+cEgFX4/F0ydSl+7nYbWVqpGjz6iyViI5BI0LwA1hpEepfcoRZ+KCs6w2Tg1Lw9yc6maPbtLYvMBjwGvAG0ZJb95hsE5NTV8e9gwVHk5fMnzQIhudhLwDWCNUmplattPtdYvd19IQgghxP5JstpNXC4X551++u6kzJnsExoAtrJ7dHWZx0NjIkFcqX2SxUwdJZVftr+jfflWKwnDwG4Y5EWjTC0poR9QBMTjcVatWIE9FMIZjXLO6afTp7AQ8vJwV1cn79uQIbhSyeTxJ5+8RxKa+Vgc6vXhw4dTV1eHzWplRWMjTwNbUklCWzTKrbEYn1ksXJ+fn7Xuy5UuFzdMnMiCxkaeHzSILZDu+vxt4Hyvl6sKCig6wO8rpXDm5gIQTSSIxuMooCDj/ykQiXSYYGc+Fv2AoRMmJB/T1Lzo5956C19uLmGbjcoRI1hTU0MkNd+2euBAttXVQSKBRWtGDx3Kpk2bsESj5MViHD96NBs+/hibYeCMRjlz0SJo/38cNiw5/xS6rLHV/uwCnvR4eDWRQOfl7TFyb0okGL1zJ5d6PMwdNy6ZJHZBohgDXgYeCodpNgxsNlu65Hfc9u0cv3UrZ82fn7UvRoToSlrrd0GerkIIIXoHSVa70f5KJh3A2NQFwK01L7z5JkGLBcNq5fi5c8kluSanL3XxArvMZlZ5PMmkFhhSVoaD5CcSBQQtFja3tWGOx8lNJJhQUkIFyRHDCLBm40Ys0SiOaJQzTjyRISQTUpvNRkNhYTJhqa7GlZ+R+pWUcPL06QeVgB5oWzYeu1HAHLebp774gmdLS2lNla8uiURY09zMtVozI0tzS10uF6e7XMwFbtu6lSeVSjdBekVrPgVOa2ujsaUFf1kZTueei5XEEwmm3H8/m1pa+N5xx3F8374A/OyNN3h09WoKrVbeuuSSQ4on8zH96oIFe/x/rDOZ2LJlC4MHD2bUkCG4nc6OR7Edjn3+P490OWsMWEZyBPOjzOVwUh12y3JzGb5tG2O3byc/GmVcxih0NmmS88wfAbYbBu6GhvRo7pySEi7Oy0Pl51M1f76U/AohhBBCdAFJVns4l8vFWQsX7k4gSkv3f0OnE7fLtft2jr1aMjkcuCsrk/v79dsz6SwsxD1u3O7f3Sux6yjJ7Oo5igfL5XJxPmB9+WWWDhvGZ/374w8E8GvN1cD/M5u5OItlwWbg0rw8TEuWsHTYMHaUlSXX1TQM/uj1kmux8FZjIycqRWnG/4XZZGLllVfSFg5z9lNP8VlDA2MrKvj1nDn8es4cfvvOO/zvsmXcPGvWYcW19//HqFGjGDVq1AH3f9n1I2kn8LzHw6vxOJFUmXrmqH9xIMDi2lq+PWQIbSNHUldQ0GXrtS5tauIv8Tj1RUV7xFEQDHLKhg2cM2AAkydNkpJfIYQQQoguJMlqL3CwCcSX3a43JJ2d4XK5+MoZZzCtro5lLS086HQSyskhAfzZZKIJ+B6Qm8XzXTJzJqfV1dHocPB3q5XPUqOAMZOJ2uJiXjKbGWwY9PF4qMzLS4+0FtlszBwwgFc3bWJsRhOgr48bx8InnjjsZLW38QHvAG8CqzNHUVPzs+02GyVNTYypqWFQSwtnLlqEla57vm4B7vP7+VfGMjjto7njv/iCMdu3k6sU1dOnZ/3cQgghhBBiT5KsiqNKexJT5XYT+ve/eWn8eBoLC7HZbLxiGHzs8fATpZiYpRGxzKRpDvB0IsEfDYMAgFJopfgsHOaz3FxobGRCNMrU4mLi0Sj/3rqV6046iY3NzQxLjZi/uGEDI7t4XdIj4YMPYMkSmDkT9s7rQsDHwCt+Px/FYljs9n1GUZ3hMKfu2sUVAweS6NuXOpOJqhNP7LIvVHaQXC/1XfZcBscSj3NifT0/HjAA//jx1JWVddlorhBCCCGE2JMkq+Ko5HK5uHDuXE7ctYt/FRfzDrubIf1HIsGPLBYuymJZMCRLgy8sLubUSIRr43H62u00JRLp9WFrYzFuffLJZBKkNYuGD2dSQQHf/de/2NzWhkkpBhQVcd/ChVmM6sj74AOYMwciEcjNhTfegPHTk/NQ3wM+BfyZyx55vbhcLpxWK6WNjYzYuZPBzc2ctXAh5QBdOOq/C/izz8cbiQTWvZbBGbFrF9M3b+brc+fiABxHQfWBEEIIIURvIsmqOGq1j3oeB/zv5s08aDYTV4qYycT9JhMbgauBkiyft8rlYnhhIYtyc9keDPJhMEhrXh59Kyr41be/jdliIR6L4Q8EeCmR4IJZsxhVXMxgm418en+bziVLkolqPA5GBK79l4F1VCg9ggp7dqCubGtjUTTKt4YMIdSvH3VmM1UnnNCliWEN8DTwumFQ3762rFK4XC5mWa2clpeH2Wqlau5cSVCFEEIIIbqJJKviqKeA85xOAkuW8K+xY2nJz8dms/Ep8B/hMGfW1LCwsDDrSYkCBublUZZI0BQI0FZYSL3FQgsQS63TmVCKNrudFcBawBqNUhAMUpWbS7XdTiG9I3mNkSylXdbayooxMcgtg4iCXI17QisOj5EeQbVarQzLycGyZQtD6uooDYdZtGgRBUBBF49ebiKZpH6Quh7KSJoHNDZyuc/HWWPGdNkyOEIIIYQQ4uBJsiqOCS6Xi0tnzmT2rl28V1jIW1YrYcOgpqGBu6xWXqyt5SaTKWtzWTM5nc49lrDxAuuBtdEooZwcUApLarS1IRikQWs2RSI4c3KwWiyUkJzD+YXXywdNTYxPLUvUHXQq/s+bmljV1oanooKGggK2kSrt9flggmbg427UZ2U4TgijhxtooMLj4bR4nIsGDaIqLw/36NHUFRV1+RxQDawEHvP7+Tgex5Yq94Xk0kyFLS1M3bSJvl4vJ3TRMjhCCCGEEOLQSbIqjhntZcHTgNOAn/n96VG1rWVl/CgnhwuBC4H8Do/UOQXANJuN0bEYDYEAgYICWi0WtodC6fmtaE0sFsNssbArFsNvGKwzmbgyGMRlGLisVqqBfK8X1dLCgMJCBhUXU0hyfdz69evZuXkzwwYP3mPpmgPZ5Xazpb4eZ1UV1vLy9Pq9NW1tbPF6iZaUEHA6qQc8hoE7GIScHGhrw2W17tMgyTHZoPpUL8fl5OB/dy3VjY0URqMsWrSI9rS0qztQR4C3gb8DGzPmyHpS5b4zrFbOt1opqKqiDqRxkhBCCCFEDyPJqjgmjQXuiMX4WV0da6uqQCly7Hb+QXIZlfOBRUBOF8awz4hrPM6KXbvwWq0EbDbMDgdRdpcMA6A14XCYNqsVt2HgbmsDpcDnw5WXh9Vqxe/z0Wy3w9ixmLTG5fVSUlBADhALhQgEg+Tm5WG224kB/nCYXYYBRUUQCuEyDKxWK4Zh4PZ6k+duacGVk7NPUqpS8VitVqpzcylvaKCirY0BLS18a+ZMKktKcE+evHsN3yOQDLYAT3s8vBiPE9trvVaAYbt2canPx8IxY5K/II2ThBBCCCF6JElWxTFrsMvFncCHTU28MXAgW1OloQHgXsPgrz4fXzebOau4+JCT1qL+/blp27ZDjikEBFtbycvLwx6JEAYaDYPtra3YqquxBwLYUonVgZLGQDCYPl5CKVpDIXILCpLJZ2NjMmkLBNLzR4OGsd/jZB4/uDyHjas01fOheJKVHL+fwkCACr+fr02YwPFAgd2Ou39/6iwWqsaPTyeAR2INXw2sAl4BlobD1O21Xmuh1crAHTsYt20bJYbBVCn3FUIIIYTo8bo0WVVKzQfuIrmqx1+01rd25fmEOFQul4uzXC4Wk1xa5UFgq2Gkl7n5pVI8bbNxrt3OAsDZ8eHSrrnllqzG6Xa7k6OTpaWU22w0AatjMf6xYQP+nBzCViv9SkuJA7bcXLYEAsTM5mRJbl4ecODktn2plpx4HHs0ymiLhUpAmUxsqanBs8LGP388mUTchPs2+PcbNoYMLqMuEqFqzBhcqTVi4cgkppk2NjTwgt/PqspK2lL3M5CRfOeHQpy+cydXDh6Mf9gw6hwOKfcVQgghhOgluixZVUqZgT+SnB5YC3yslHpRa722q84pxOFSwPHAFOB/a2t5QmvCOTkoramPRHjUbudpkk/mxUDlEY5v7ySwAphbWsq4CRN2l9i2lxQXF7Ouvp7NW7YwYPBghg0YQBSoNQxeee89dCKRXOf19NOpBixWK002G7vaj+NItW/Kz8c9fDi/ejqOjptIxBWRCLy9BE6c3n2lszFgOfCiz8erwSBxsxmamtIjxTabDUdbG2NrahjW2MhZCxfKOqlCCCGEEL1QV46sTgM2aa23ACilngTOIrlChxA9kgW40Okk99VXWV1dzeoBA7DZbACEgX8AzxoGw5ubWWi1Mre0tFtr6Q80kjlq1Kg9GivZgFEVFZTMmbM7ua2oSO+vdLmo3M9xXC4XX/86PPBAcu3U3FyYObMr7knHNPAFyfnE7wA+wJNIEFcqPVKsgkHOtFpZYLWSW1lJXSJB1bRpkqAKIbrVwOv/CcC2Wxd2cyR7GvieCYBtJyUOaV9Xn/tI2V8Mmdt6Qow9zeE+Z5L7+rOtq+K6/p/J4/eV/6uO9NTXoi/TlZ+zq0kuvdiuluTglRA9msvl4mvz5zO9ro6KggLWW608D2yH5LxPt5t6rVkaizE0L4+5djuzgBH0/DVRD6dMd/p0eOMNWLIkmahOn94loe1DA1uB94B/B4NsjUb3WXbGoxSVbW2Mr63lh1Om0L/9l2UUVQghhBCi1+vKZHV/n9v1PjdS6grgCoD+/fvv8wtCdIfMpK4amE1yrc57WltxZ8z7bIxEeNlu52WSpcGTPB6G7NjBxPLyoypZmj79yCSpGthEMkF9H9hF6guCpqY9lp3pa7Uyy2plnN2Obm6masqUo+rxFkIIIYQQXZus1gL9Mq73Ber2vpHW+n7gfoCpU6fuk8wK0RMoYBLwK6V45MMPWedy8UVVVbpEGGC7YbDM44H8fIpaWznTbmdmQQFjSZbhiv0LAmuApV4v70ajhJzO9Ogp7G4MlROLMdTt5quBAOeOGpX8Nqy8PHkRQgghhBBHna5MVj8GhimlBgE7gQuAr3fh+YToci6Xi0tmzqSuro4+hYU0Wq28RXIU0JPRbbfNbudFrXmb5B/ZWGAy0L+xEVVbS/Ux3JE2BmwEVpAcrd4AhNrXjN1rWR07MNlkIrp6NX0bGrACpy5a1OPLrYUQQgghROd1WbKqtY4ppb4P/Ivk0jUPaq0/76rzCXGkZJYIVwLjgCuB1+JxHmxsZHtJCTGLJT3qGiOZlH1kGLhDIWz5+VTu3MkCm43jCgsZDuR3yz05MlpIlvZuAlb6/ayMRiEvb7+jpxqwRqOMb2zk/L59mQjk5OfjnjZtd2OoYzTJF0IIIYQ41nRpI1Ot9cvAy115DiF6glxgUUkJx0WjbK+rw9+/P9usVj4l2ZgJdidkoZwctpWW8gTwz9S+PkAfn4+ixkbGFxYyrrSUcnp+w6ZMGljb0MAnra34KytpKixkE9Ca2m8YBu6WluToqc+XHj0FGJGTQ3z7dvo2NtLX4+GshQvJTEmP9PqtQgghhBCi+3XnqhtCHHX2TqouA5pIlry+bTLxeixG2GIBpfaY77rNMPiotRXM5mQZrNOJ02qlD8kGT9WAvbUVVV/PiLIyhpaXY+fIJrMJYHNDA2ubmlCVlURLSqgH3KnLjnCYneEw2Gzg8eDK6NwLe46e5odCTGxsZFHfvkwACvPycI8YQV1+voyeCiGEEEIIQJJVIbpcGXAacFp+Pt8PBlnV2Ii/qoomq5UvgC3sOd9VaU04HMZqtVID1JAalfT5IC8PQiFchkG+1UohUJS6FALBujpa6+vpW1HBoL59yYH0xQL4mptpbGqiqLycgpISopC+xIDGtjbqPB4sxcXoggK8gJfkuqbNhkF9OAwOB/j9uByOPZJRv2Hs9z7YgMFAhVLUf/455a2tlITDnLlokYyeCiGEEEKIA5JkVYgjqNLlonKvhCwKfByN8uSGDTQ4nXicThwVFRgZtwkfIJltBBpTt/H7fDRHo1BaCvE4pT4fzvzds2ENw8AdCCRHPveTbBqGgdvrTV5pa8Nlte6xP3SAGNrZbDYi0SjFfj8VPh+L8/OZRnJU2ARQUIB7yhSZeyqEEEIIIQ6KJKtCdLMc4MSyMoZMmJBM5FwuXHY7AZJrPdUBa4E33W48Nhshq5WCjCSxXSAY3Od6ZrJ6oIT3YPfbbDaMWIy8cJjCcJiTi4sZDrjaL1Yr3vx86nw+qoYPx1VSsk+MMnoqhBBCCCEOliSrQvQQeydyDmBY6nJqYSFfHTAgmcwWFVFhs2EAbamLB1htGHy8cSMxs5m4ycSg4cMpY3eZb6vZzOfNzWitsWjN2JISSki+COQAIeCzbduwRKM4YjHmTpvGAKAgdXFarTQ5ndR5vVT17YuroGCf+2CXZFQIIYQQQmSJJKtC9BJ7J7M2kkvnVKauH9+/PycHAmzZsoXBgwczqk+fPQ/gdOKurt5dhpu/14I5hYW4R47cvV9GRoUQQgghRDeSZFWIo8ioUaMYNWrUAfd/WbIpyagQQgghhOgpTN0dgBBCCCGEEEIIsTdJVoUQQohjiFJqvlJqg1Jqk1Lq+u6ORwghhDgQSVaFEEKIY4RSygz8EVgAjAYuVEqN7t6ohBBCiP2TZFUIIYQ4dkwDNmmtt2itI8CTwFndHJMQQgixX5KsCiGEEMeOamBHxvXa1DYhhBCix1Fa6+6OIU0p1QhsP0KnKwOajtC5jlbyGHaePIadJ49h5x2tj+EArXV5dwfRkyilzgVO11pfnrr+DWCa1voHe93uCuCK1NURwIYshdDbn2u9Of7eHDtI/N2pN8cOEn932l/sh/Te3KOWrjmSHyqUUsu11lOP1PmORvIYdp48hp0nj2HnyWN4TKkF+mVc7wvU7X0jrfX9wP3ZPnlvf6715vh7c+wg8Xen3hw7SPzdKRuxSxmwEEIIcez4GBimlBqklMoFLgBe7OaYhBBCiP3qUSOrQgghhOg6WuuYUur7wL8AM/Cg1vrzbg5LCCGE2K9jOVnNennTMUgew86Tx7Dz5DHsPHkMjyFa65eBl7vp9L39udab4+/NsYPE3516c+wg8XenTsfeoxosCSGEEEIIIYQQIHNWhRBCCCGEEEL0QMdksqqUmq+U2qCU2qSUur674+ltlFL9lFJvKaXWKaU+V0pd3d0x9VZKKbNSaoVS6qXujqU3UkoVKaWeUUqtTz0fp3d3TL2NUupHqb/jz5RS/6eUsnV3TOLo09vedw/0PqeUKlFKva6U2pj6t7i7Yz2Qvd9felns+7y297L493ld7cnxK6UeVEo1KKU+y9h2wHiVUjek/pY3KKVO756odztA/Lelnj+rlVLPK6WKMvb1mPj3F3vGvmuVUlopVZaxrcfEnopnv/ErpX6QivFzpdT/ZGw/5PiPuWRVKWUG/ggsAEYDFyqlRndvVL1ODPhPrfUo4ATge/IYHrargXXdHUQvdhfwqtZ6JDABeSwPiVKqGvghMFVrPZZkw50LujcqcbTppe+7B3qfux54Q2s9DHgjdb2n2vv9pTfFvr/X9l4Rfwevqz05/oeB+Xtt22+8qb+DC4Axqd+5J/U33p0eZt/4XwfGaq3HA18AN0CPjP9h9o0dpVQ/4DSgJmNbT4sd9hO/UmoWcBYwXms9Brg9tf2w4j/mklVgGrBJa71Fax0BniT5gIqDpLXepbX+NPWzj+SbSHX3RtX7KKX6AguBv3R3LL2RUqoAmAE8AKC1jmit27o1qN7JAtiVUhYgj/2suSlEJ/W6990O3ufOAh5J3ewR4CvdEuCXOMD7S2+J/UCv7b0i/pT9va722Pi11kuBlr02Hyjes4AntdaG1norsInk33i32V/8WuvXtNax1NUPSa4pDT0s/gM89gB3AD8BMpsL9ajY4YDxXwXcqrU2UrdpSG0/rPiPxWS1GtiRcb0WSbQOm1JqIDAJ+KibQ+mN7iT5QpTo5jh6q8FAI/BQqtTtL0opR3cH1ZtorXeS/MazBtgFeLTWr3VvVOIo1Kvfd/d6n3NprXdBMqEFKroxtI7cyb7vL70l9gO9tveK+Dt4Xe0V8Wc4ULy98e/5MuCV1M89Pn6l1GJgp9Z61V67enzsKcOBU5RSHyml3lZKHZfafljxH4vJqtrPNmmJfBiUUk7gWeAarbW3u+PpTZRSi4AGrfUn3R1LL2YBJgP3aq0nAQF6VllVj5eag3QWMAioAhxKqYu7NypxFOq177u98X3uKHh/6dWv7cfA62qv+ntWSv2MZFn/4+2b9nOzHhO/UioP+Blw4/5272dbj4k9gwUoJjmF4sfA00opxWHGfywmq7VAv4zrfZGyt0OmlMoh+Qb+uNb6ue6Opxc6CVislNpGsiRutlLqse4NqdepBWq11u2j+s+Q/IAjDt5cYKvWulFrHQWeA07s5pjE0adXvu8e4H3OrZTqk9rfB2g40O93owO9v/SG2OHAr+29Jf4Dva72lvjbHSjeXvP3rJS6BFgEXKR3r9XZ0+MfQvKLjlWpv+G+wKdKqUp6fuztaoHndNIykhUeZRxm/MdisvoxMEwpNUgplUtyou+L3RxTr5L6duQBYJ3W+vfdHU9vpLW+QWvdV2s9kORz8E2t9dH0zWuX01rXAzuUUiNSm+YAa7sxpN6oBjhBKZWX+ruegzSpEtnX6953O3ifexG4JPXzJcALRzq2L9PB+0uPjx06fG3vFfFz4NfV3hJ/uwPF+yJwgVLKqpQaBAwDlnVDfB1SSs0HrgMWa62DGbt6dPxa6zVa6wqt9cDU33AtMDn1d9GjY8/wd2A2gFJqOJALNHGY8Vu6Ls6eSWsdU0p9H/gXyQ5tD2qtP+/msHqbk4BvAGuUUitT236qtX65+0ISx6gfAI+nPgBvAS7t5nh6Fa31R0qpZ4BPSZZJrQDu796oxNGml77v7vd9DriVZEnbf5BMSs7tnvAOS2+KfX+v7SZ6QfwdvK466aHxK6X+D5gJlCmlaoFfcIDni9b6c6XU0yS/QIgB39Nax7sl8JQDxH8DYAVeT35nwIda6yt7Wvz7i11r/cD+btvTYocDPvYPAg+q5HI2EeCS1Mj2YcWvdo+KCyGEEEIIIYQQPcOxWAYshBBCCCGEEKKHk2RVCCGEEEIIIUSPI8mqEEIIIYQQQogeR5JVIYQQQgghhBA9jiSrQgghhBBCCCF6HElWhRBCCCGEOAKUUrcopeZ+yW1mKqVOPFIxCdGTHXPrrAohhBBCCNEdtNY3HsTNZgJ+4P2ujUaInk9GVoUQQgghxDFBKfUTpdQPUz/foZR6M/XzHKXUY0qpe5VSy5VSnyulbs7Y93zGMU5TSj2X+tmvlPqdUupTpdQbSqny1PaJSqkPlVKrlVLPK6WKU9sfVkqdk/p5m1Lq5tTvrlFKjVRKDQSuBH6klFqplDrlCD48QvQ4kqwKIYQQQohjxVKgPQGcCjiVUjnAycA7wM+01lOB8cCpSqnxwJvAqPZEFLgUeCj1swP4VGs9GXgb+EVq+6PAdVrr8cCajO17a0r97r3AtVrrbcB9wB1a64la63eycaeF6K0kWRVCCCGEEMeKT4ApSql8wAA+IJm0nkIyWT1PKfUpsAIYA4zWWmvgr8DFSqkiYDrwSup4CeCp1M+PAScrpQqBIq3126ntjwAzDhDPcxlxDczGHRTiaCJzVoUQQgghxDFBax1VSm0jOTr6PrAamAUMAULAtcBxWutWpdTDgC31qw8B/wDCwN+01rEDneIQQzJS/8aRz+VC7ENGVoUQQgghxLFkKcmkdCnJ0dQrgZVAARAAPEopF7Cg/Re01nVAHfBfwMMZxzIB56R+/jrwrtbaA7RmzDf9BskS4YPlA/IP6R4JcZSSb3CEEEIIIcSx5B3gZ8AHWuuAUioMvKO1XqWUWgF8DmwB3tvr9x4HyrXWazO2BYAxSqlPAA9wfmr7JcB9Sqm81LEuPYT4/gE8o5Q6C/iBzFsVxzKVLMMXQgghhBBCHIhS6n+BFVrrBzK2+bXWzm4MS4ijmiSrQgghhBBCdCA1choATtNaGxnbJVkVogtJsiqEEEIIIYQQoseRBktCCCHEUUYp9aBSqkEp9VnGthKl1OtKqY2pf4u7M0YhhBDiy3RZsqqUGqGUWplx8Sqlrumq8wkhhBAi7WFg/l7brgfe0FoPA95IXRdCCCF6rCNSBqyUMgM7geO11tu7/IRCCCHEMU4pNRB4SWs9NnV9AzBTa71LKdUHWKK1HtGdMQohhBAdOVJlwHOAzZKoCiGEEN3GpbXeBZD6t6Kb4xFCCCE6dKTWWb0A+L8vu1FZWZkeOHBg10cjhBDiqPfJJ580aa3LuzuO3kgpdQVwBYDD4ZgycuTI7By4tRVisewcq6tZLFDcg6b19qbHTny5I/n86gnPna6+vz3hPh6unvZa08UO9b25y5NVpVQusBi44QD702+I/fv3Z/ny5V0dkhBCiGOAUkqqefbkVkr1ySgDbjjQDbXW9wP3A0ydOlVn7b353nuhb9/sHKur1dbCVVd1dxS79abHTny5I/n86gnPna6+vz3hPh6unvZa08UO9b35SJQBLwA+1Vq797dTa32/1nqq1npqebl8AS6EEEJ0kReBS1I/XwK80I2xCCGEEF/qSCSrF3IQJcBCCCGEyA6l1P8BHwAjlFK1Sqn/AG4FTlNKbQROS10XQggheqwuLQNWSuWRfEP8TleeRwghhBC7aa0vPMCuOUc0ECGEEKITujRZ1VoHgdKuPIcQQgghhBDi6BeNRqmtrSUcDu+5Y8oUMJu7J6jOcrlg3brujiLrbDYbffv2JScnp1PHOVLdgIUQokerd7upqavDVVVFuctFAogDCWBXQwP1bjeVLheVFRUoknMoFNDU0EB9XR0D+vShyuVCdeedEEIIIY5itbW15OfnM3DgQJTKeMdtaIDc3O4LrDMiEag4ulYS01rT3NxMbW0tgwYN6tSxJFkVQvRqGvADXsCTumxvbWVnayv20lJyCgsJACEgCDQGArQGg+Q6HJjz8ogA3nCY2nAYXVIChoHLMLBarQAYhoE7HIaCAgiH97+vuBgMg0rDwGm1kgvkArFQiKjfT2leHuUOB3mQvkQ9HsLNzfQvKmJQSQmFQCFQkPpdIYQQQuwpHA7vm6iKHkcpRWlpKY2NjZ0+liSrQogeKwa0kFxfozHjssXvZ0coRMLpJGq3k8j4HcMwcPt8yXIgjweXzbZnctncDFpDKITL5cJqteI1DDTJxFdpTTgcTv9OOBwGrQ9qXygcJtdqJdJ+rsbG3eeyWPaMw+NJxuj343I40vsAVDiMxe+nr93OQIeDckhfKoCE201LXR1VVVW4XK4uevSFEEKInkcS1d4hW/9PkqwKIbqVJpmA1gE7My6bQiFqIxGsGckmpBK9lpZ9Es52h5Jctu+z2Wx4lMKUSGDWmkKrFQfJUl9bbi6xSASVSIBSVObmYiVZHpyTm0s4HicOaJMJm83WqTjS96+hAbRmczDI+owkN73fMLA7nZTU13OK3c7oggL6AX1JJrTyNi6EEEJ0jV/ffjtPPPssZpMJk8nEn+64g1vvvJOt27fjDwRobGpi0IABANxz++388S9/YfnKleRYLEybMoU/3XHHHvM4P16xghPOOIOnnnqKc845Z5/zbd26lQsuuICWlhYmT57MX//6V3L3KnkOBoN8+9vfZvXq1WitKSoq4tVXX8XpdGI2mxk3bhyxWIxRo0bxyCOPkJeXx6uvvsrVV19NPB7n8ssv5/rrr9/n3K2trVx22WVs3rwZm83Ggw8+yNixY9P74/E4U6dOpbq6mpdeeilbD/EeJFkVQhwRGmgFtgPbUpe1wSBbIhHMdvu+CVn7qKRSeySk+0v0iq3WdAmt2WymZtcuciMRrPE4J02aRBXJ0ttQLMaHH3+MORolBzhjzhz6ArlWK61WK/Xto5UZSSd2O+6CAura99nte+5zONL7yq1WokAE2GkYvPzeexhKEcvJ4fhZs8gDAkCd1ry/dSths5mw1Urf0lJiJEuZa0KhAyaymfc/mJtLKDeXV7Tm/czHORymwOtlnM3GpIIChgEDkBd7IYQQR5+B1/8zq8fbdv1JHe7/YNkyXnrtNT5dsgSr1UpTczORSITnH3sMgCXvvsvtd9/NS089lf6dNo+Hx+6/H4CvX345f3n0Ua76j/8Aksnedb/8JaeffvoBz3ndddfxox/9iAsuuIArr7ySBx54gKuuumqP29x11124XC7WrFkDwIYNG9IJsd1uZ+XKlQBcdNFF3HfffVx99dV873vf4/XXX6dv374cd9xxLF68mNGjR+9x3N/85jdMnDiR559/nvXr1/O9732PN954Y4/zjho1Cq/X2+Hj1hny+UUIkXUacAObgC+A1X4/GyIR4hnlroZh4G5qSiakXu8BE1JnOExlWxtjXC7KgZxEgvWrVuEIBnFEo5wzbx7VhYW7T+504h40aHdyWVS0e19pKeNOOWX3voyGBn1cLvocoKTW5XIdsNx2733W1GVkRQXFc+bsPldpRmP0oiLOGDVq9z6nM72r3jD4zx/+kHBrKzGzmaLKShJWKwYQBiyxGOZwGJ26fcxupzXVATERjxMKhdgJrAP+YbdjMpsxAY7+/Zl57bUUNDRwUmEh48rLZQRWCCGEOAS73G7KSkrSn1fKSr980ZMz5s1L/zxtyhRq6+rS1+++/36+tmgRH69fv9/f1Vrz5ptv8sQTTwBwySWXcNNNN+2TrO7atYsBqdFcgBEjRuz3eKeccgqrV69m2bJl/H/2zjs+6vr+48/Pjdy+7FwSIOy9wlREEVABEbEoVlqtq3W1VWxrW7XVqtVftVprrbtarVVrncWJuMAtgrKHYQRIApdxI7fn5/fHHUfCCEguhPF5Ph73SL7r83nf9765fF/f9+rTpw+9evUCYM6cOcybN28PsbpmzRpuuOEGAAYMGEB1dTVOpxOHw0FNTQ1vvvkmv/vd77j33nv3ex4OFiVWFQpFu/EBnzQ1sdTnw11UxHarFV96W6uwXb8/I0pbClJzJEKZx8Moh4NywJRIsObzz7EGAuQAM2bMICMH8/NxHnfcLqG3FxH5XcRlR3IwdpQ6HHQ1Grl24EBsNhvWFkJ2Jz6/n4ZAgKTNRtxsppmUV9YZCtEciWT2MxqNGNJe4gc2buQ5jwf0eh4JhRgcCnG8ycQwYBhQ0P63q1AoFArFUc2USZO47c9/pt/o0Zx68smcd/bZnDy+bW/sTmKxGP/+73/525/+BEBtXR2vvvEGH7z0El+lBeHuNDU1kZeXh06Xkmxdu3altrZ2j/0uvfRSpkyZwksvvcQpp5zCRRddRN++fVvtE4/Hefvtt5k2bRq1tbV069Yts61r1658+eWXe4w7fPhwXnnlFU488UQWL17Mli1bqKmpweFwcO211/LnP/8Zn8+3x3HZRIlVhULxnfEAq4DV6Z/fRiLsCARACHC5cOj1e/WS6uNxSj0ejnM4sCeTbF66lPzmZsyJRGtBWlDA6EmT9ilID6Xg7AxMJhNlZWX73G6zWrHtRcT6EwnWbNlCQK8naDRi6tIFP6lqyYlEolV4cU00yrsmE++mj+0G9GpupnT7dibm5dH1KD6/CoVCoVAcDFarlaULF/Lx55/z4ccfc96ll3LnH/7AxT/84X6P/el11zHhhBM46YQTALj2xhu565Zb0LbRH1ZKuce6vRUuqqysZNOmTSxYsID33nuPMWPG8PnnnzNw4EBCoRCVlZVAyrP64x//mHnz5h3QuNdffz1z586lsrKSoUOHMmLECHQ6HW+88QYlJSWMGjWKhQsX7ve9twclVhUKxX6JAMuB95ubWRqN0myztcqjDO0lj7TAYKAvqeq1dStWUOT1khuJcOZOUZqfj3P8+GNWkHYEVquVQb174/P5Ul7ZnSHXwMJkEs3GjdTl5lJXUNCqGBTAhkiETz0eMBq5PxDgrOZmzrDbGQocoW3WFQqFQqHIOlqtloknnsjEE09k6KBB/Os//9mvWL31rrtoaGzk0X//O7NuyTffMCedu9rocvHWW2+h0+n43ve+l9mnqKgIj8dDPB5Hp9NRU1NDeXn5XuewWq2cffbZnH322Wg0Gt566y0GDhzYKmd1J127dmXbtm2Z5X2Na7fbefLJJ4GUcO7Zsyc9e/bk+eef57XXXuOtt94iHA7T3NzMBRdcwDPp3N1sosSqQqHYKy5gcfq1HPBFIjg9nlQ4bzDYKsc0dNddWFavxhSJYIrF6FVcTL7RiACagGQoRHUwiNls5uGPP26XXXkVFVx7223tGuNI5G9ffME/vv4aCVw2ciTXHn88N33wAfPWr0cjBCUWC09973uU7yV02ACUG41cNXgwdXV1lJjNNBsMLCf12a4DvC0eOES0Wt6Rki9I9X4dD0wABqEqDSsUCoXi2GV9VRUajYa+vXsDsGzlSrq3CKfdG48//TTvvP8+78+bh0ajyazfvHx56pdolIt/8xtmzJjRSqhCyts5adIkXnrpJebMmcO//vUvzjrrrD3m+PTTTxk0aBD5+flEo1HWrFnDxIkT92nTmDFjqKqqYvPmzXTp0oXnn38+kxfbEo/Hg9lsJicnh8cff5wJEyZgt9v505/+xJ/S4cwLFy7knnvu6RChCkqsKhSKFixraGC+38/mkhLqLJZW21qG82qTSbp4PJzicDAEeLmujt/27bvLo7eXENVscUt1dYeNfbiyqr6ef3z9NYsvu4wcrZZpzzzDGX378uvx4/nj5MkA3P/ll9y2aBGPzJixz3Faequ7AAOBOaQ8r5/E4zyzZQtVDgc+kynjefUCbwGvRiIY/X6m63T8IDeX3L1PoVAoFArFUYs/EODq3/wGT3MzOq2WPr168dh997V5zJW//CXdu3VjXLrQ0tlnnsnNv/lNm8dMnz6dxx9/nPLycu666y7mzJnD73//e0aMGMGP097YlmzcuJGrrroKKSXJZJIzzjiDc845Z5/j63Q6HnjgAaZOnUoikeDSSy9l8ODBADzyyCMpu6+8krVr13LhhRei1WoZNGgQTzzxRJt2dwRKrCoUxzhx4AvgJb+fD0Mh0GigqQnHbv09e+n1aLZsoVt9PeU+H9+bPj2TY/o/UuEnHSlSj2XWNjRwfNeumNNl6E/u3p1X163jNy2KOgSi0YP2ehqAUwoLGdK/P7V1dYQKC1lrMPAxKQ97JBLB6XSClDwsBG8YDEw3GjmLlOhVKBQKhaIzqL7zjNQv9fWwW+/RjmBUZSWfLViwz+07w4NbEm9s3O+4Tz31VKvlt956K/N7r169WLx4cZvHX3jhhVx44YV73eb3+/e6fvr06UyfPn2P9VdeeWXm93HjxlFVVdXm3BMnTmzTi9telFhVKI5RdgDvAO+S8p55dyvAEwuFGGMwMBYYC5SZzTj796fOZttnFV5FxzCkpITfffABTcEgJr2etzZsYHS6ANPv3n+fp1esINdg4MOLLmrXPC09r+OBS4E1wLP19XwQjRLS6xFS0hyJ8LbRyHzgOOBsYAAqRFihUCgUCkV2UWJVoTiGkMD8piZejUapbtEnDFJtTpqBng0N9N+xgyvGjKHXbsd/l6JHl86bxxvffkuJxcKqn/4UAFcoxHkvvUS1x0OPvDxemD2bfJOJZ1es4O7PPsscu8Lp5OsrrqCytLSd7ziFBGJAAAgCWxsb2drQQF5JCbbCQqJAFHC63dS73eQWFGDPyyMBJAGX14vb4yE/L4+83FwEKWGmAZo9HnwuF478fEry88kB9ICvqQlffT3di4upKCrCDJjS276rqBtYXMxvx4/ntH//G2tODsMdDnTpvJc7TjmFO045hT99/DEPLF7MrZMmtf+EpdEAQ4Brc3Lo+e67VBUXs6xnT0T6c5GkvPJfAF0DAU7cto1T8/PVgwyFQqFQKBRZQYlVheIYQAJLgMeCQRYHAqkiSemmzgaDgSJgisHAcJOJiFZL+Zgx7RYcF1dW8vOxY7nw1Vcz6+785BNO6dmT6088kTs/+YQ7P/mEu047jfOHDeP8YcMAWOl0ctbzz+9XqCZIhajWA+tdLjZ7POgKCyE3l2ZS3mJnMEhjOAxmM7p0DmYkEsEZDILZDIEADqsVg8GQWu/zgVYLzc04TKZd673e1KReLw6jMSPyI5EIzubm1DE+Hw6zedcxgUBqjmAQRySSOSYRDiOCQUqNRkrNZnKBPEB6PCQbG+mXn0+AVHh2yy/oH48cyY9HjgTgxvffp6vd3up8/HDoUM547rmsitWdOBwOzjrjDOrq6vhVcTENBgOvAl+lt0ciET5rauIzk4lXt27lDiHoX1KSdTsUCoVCoVAcW3SoWBVC5AGPk3o4L4FLpZSfd+ScCoViF5JUtddngPWANxZrFerby+XikrIyRpNuT1JSknplgQndu1Pt8bRaN2/9ehamQ1UvGj6cif/6F3eddlqrff6zahU/GDIESAk2P9AM+IDGSIRPQiF+EAoRNJlIkhaMfn9KMLYQk5FIBGdjY0qY+/0ZYR7eS5udg1kPfOdjIpEIzvp6kJKaFjZlRK9eD4EAlkSCF0jlkupjMfThMCIaZUBhIc1eL6+sXcvnP/4xVU1N9C0sBOC19esZUFSUlc9ub7T0qpcCQ4FtwKvA/0KhzPutKinhGr2eXwGnoUKDFQqFQpFdpJR77QmqOLzYW4/Yg6GjPat/A+ZLKWcLIXIAcwfPp1Ao0ixqbORf8Tg1+fkZcWU0GgkkkwzZupXKmhp+eOqpHMqATaffT5nNBkCZzUZ9IACkvKTNgAf49+rV/P6cc/hPMEg8JwetLvU1lYjH8YfDNCUSNDQ0fGfxGQ+FKDEYyNPr2eHzoYvH0SeTDC4spACICsHamhq0iQRaYGReHvmkRPKyjRuRySRCo2HEyJHkknoQ4Aa+rq4mBkitlv75+ZgAl0bDyqYmohoNMb0eR0kJEvC3EHVt2ZpIJAAIxuP4g0GQkr+88gqhaBSdVsv506fzvk7HvfPn4/R4yNFo6JmXxz/OOONQfIwZugHXAFOiUW7Zvp21ZWUgBNJs5u/Ah8DPUUWYFAqFQpEdjEYjTU1NFBYWKsF6GCOlpKmpaY+e7gdDh4lVIYSdVGu+iwGklDvTwhQKRQfiAu71+Xg9LXJ2hvtaDAZmGgxMsFgI2u2Un3pqp+QWxkmJvCYgLiUvBgJEDAY0Oh0bampApyNpteKJRiEWw2qxoNXpiMfjqfcDkBZ6DoOBLjodjfX1mEMhzPE4E0eMoDsQi8VY/Nln6CMRjMkk3zvjjJQwN5txFhdTV1dHeZcuOHZWMLbbcfbpk1pfXo4jN92cJTcXZ7o/aXl5OY68vF1vJjcX54ABu7btDM212XB26ZJaX1SEw2QCYEckwrwPPiCg1RI1Ghl1yinogK1Ssqi6Gr/BgN9kIqzRoAEiLd7zr849F6PRiMFoJBGP0xAI8KMzzgAhMudoMWCLRjEHAnQ3GCg3mw+JZ3NASQl/k5IP3W7eqKjAm344sgq4Gpjm8TBi82YqVGEuhUKhULSDrl27UlNTQ0NDQ+sNO9N4jkQSCWhq6mwrso7RaKRr167tHqcjPau9gAbgSSHEcGApMFdKGejAORWKY5Yk8Cbwb2BHMpnx1GmSSUbW13Ndt24UQVZDffeHTNu1CaiJRDCbzTzsdlOYn0+T243ZbKYxFoN4HKvFwuerVjF24MCMQBNSkhONUqrTkSME3sZGKhobmfDZZ3x/8mS65eaCxYKzomKXYMzPT01eVET/yZN3rW8hkvZVKOq7rv+ux5Q6HHxv+vRdNqVDeMnLY9pO0VtaysM6HecBTYkEa+rqCOl0hHNysJSXEwYadxPu8XgcrU6HPx5nRygEQrA8FqMgFqNcryc3FKLW7caZfnDRETgcDuY4HMwCngdeIfXZ+yMRHmxuxqHVctY77zB76lQlWBUKhUJxUOj1enr27LnnhocfhiwIo06hpgauuqqzrThs6UixqgNGAldLKb8UQvwNuB64qeVOQojLgcsBKioqOtAcheLoZSPwILCzE5bRaMQrBP3r6hi3aRPnn3IKHZfNuAsJOAMBtkYiBCwWqkiF0X6aDuEd3LMn7y9dyjkTJ7Jo+XKG9UrXG5YSXSTC0jVreOyHP8TqdGKKRjHG4/Tv2xcrgMGAv7SUN71eLpg8uV3iszM5UFsFUGSxMLKiAp/Ph81mw5ruIdccj7OypgZ/Tg5Bo5Ecs5kArT2xSEkwkaBaCPzRKEv0en7Y2MgPDAbOzMvrsPBvA3ARcBLwALAkHeK8IzeXl0eNYmgHCmaFQqFQKBRHFx0pVmuAGinll+nll0iJ1VZIKR8DHgMYPXp0djJxFYpjhBjwgNfL/wBDiyq1vQwGbrRYyDUYKD/llKyIg88/h4ULYeJEGDdu1/o4qdDjpcCWWAxnPA4aDf985RWqamvxh0LM/dvfmH7ccUwZPZon3nqL3zz4IGW5ufx27FhKa2uxxGI0GAz0stv5Xmkpfqt1l0DbGaYLWK1WCgsLjymxY7VaW50DALvVyvAePVqJWAlsTyRY0dhIs9FIs9mMbrfw6UarlaeFYB6pVjP9nE5mWq307gBPey/gbuApKfl7el2TzcYTRUUMBgqzPqNCoVAoFIqjjQ4Tq1LKHUKIbUKI/lLK9cAppPrLKxSKLLADuCUQ4HOvNyVGhKBrSQk/Mho5B9AXFkJhdiTB55/DKadANAo5ObDgfWju7+KdUIjqwkKagOOBSCKREUaXnn46RqMRq9FIbjRKtKYGi9vNxFGjGNinD1arFb/fnxFco61WTh84ENi7QFO0ZvdzJIByiwV7aWnqnObkENfp2BKLsTYYRKSvEaPRuKvVjFbLM4EA5zU38yO7nbIs26gFfpyXR14yyf1aLQajEZfBwPXAHYBqbqNQKBQKhaItOroa8NXAs+lKwJuASzp4PoXimOBzUqW269JeMwl0a2pirtfLlKFDsz7fwoUpoZpIQCQKV70bQ9PFnxKm9fVY0tVrdTodWimxh0LYQyGGlZVRDmhycvCXlOzhLVWiNPvsfk7zTCZ6JxJ8tGMHp1itrDIYWOjxZK6buEbDG1LyCTDU52P0tm2ckGXv9TkFBZSS8rQmSD1o+S0pwVqetVkUCoVCoVAcbXSoWJVSLgNGd+QcCsWxRBx4CpiXXjYajfilZNz69YyoqWH4jBkdMq+90oPQ2wEBOQLtuAiyRasVXSxGf6CLTodZrycQDmNzOLCad3WrUsL0wMmrqOCW6uqsjtmvspJzCgo4B7ggGuWBtWtZ0bUrjXY7RqORcCTCG243b1gs9N26lTuEoH8Ww4PHAznA/5G6jmsjES4PBLgzHmfIISr4pVAoFAqF4siioz2rCoUiS3iB6wMBVsfjqRYmBgPdDAZusVoxlZRQXlmZ9VzOdcCjfj8fDG6m+7MhAl+a6DbdTN7xenzbYgzcto0BTidNUjJq50FWK3YlStvFtbfd1qHj9y4p4foRI6itq8NjsfCRwcAH6XByCVSVlHCNXs91wKmQtfY3Y4A/AL8Ph3HW14OU3OBy8Q8pKT2G8pAVCoVCoVAcGEqsKhRHAA3AdcEgy5qaQEq8QnB6QQG/t1qxFhVBUXZr/X7Z2MiTsRibCgoIp/NQzaOiWEZFGWYIc4mhlB42G/V5eZQPGsTD8+dndX5Fx9Oy+vBk4IxolD87nXzrcIAQSLOZuyMR/uN280utliHFxVmZtxK4cPNm7jCbkcDWggL+5/NxpRKrCoVCoVAodkOJVYXiMGcbcDOwORbLFC8av3493y8qwjpiRFbn8gH3NzfzQjCYmsvppCA/Hw3Qv7aW0Vu28KPJk1NtTxwOuhymAmO700nVjh1Yy8vJKS6mGdjidlPndmMqLESXm0sQaPD5aPT7MdtsGKxW4oA3GMQbCGCwWNCbzcRJha36wmEioRBmkwmz0YgAIqEQ0WCQXJOJXLOZHCAaCBBtbqbEaqXEZsMMRL1ewk1NdM/Lo0dBAXlApL4ef20t3XfrAdtZjCku5oFkkg/dbt6oqKAecDqdOKXk8miUB4CRWRKsJxcU8Na33/JNRQUIwfyuXTkPyM/K6AqFQqFQKI4WlFhVKA5jqkiFTfrYlZ86Zfly+jY20mXYsKzNI4EPgH8C26TMhIMKKRnR3MxFZjNJk4ny3fqb7qQjciz3RV5FBRJoBmqBVW43671ekoWFhGw2toZCrA2HSeblQSiEIxIBwOnzgVYLXi8OozG1zu1OiXKXC4den1rX2JhaFwrhcDgwGAxEIpFM2Co+X+YcOBsaUusCgV3r0t5v3G4c6b6oTq83Nbffj8NiSa0Lh6GgALPPx3Crle4WC4bmZjQNDQzNy2N4YSGFZC8E90BwOBzMcTiYBdy1ZQuvSElSCAI5Ofxeq+VBYC+t2A9qnluBa7VaAjYbCYOBx0gVXVJ0PEKIXwA/IfWnvxK4REoZ7lyrFAqFQqHYEyVWFYrDlLXAb8JhvJEIRqORXIOB39psFFRUUH788Vnzxm0H7gwE+CadC2s0GvEKQc/6esZv2MBFkybhKC6GNrxqHZVjKQE3UJ1+rfT5WBIKMSscJpFuweL0+UCIjDgMR6Mk08cKKQmH0/fgLQT4d1lnMBhS2w7y+P2tC+r1rInH2RSJ4PR4QKdLiV+rFYOU2JubGWQ0Mspupw/Qg47/4jYAVxiN8OmnzKusJK7TEdLrucrt5g+JBOOyEHbe3eHgD8BNQCQS4c1wmGHxOKdnqd2SYu8IIboA1wCDpJQhIcQLwBxStdsUCoVCoTisUGJVoTgM2QbcGA6zNe3Ni8Tj3JKbywlFRVnrnQrwCfDncJgtLXJhBxYX8wuLhVKtlvJJkw5ZiKoklZtblX4t8/tZH42SsFh2eTd3ekLDYRwOx15F5E6xbYjFMMdiDC4qwi4lW+rqyInFMCQSjB8xApOUfL1yJdpYDB0w6aST0AEff/klIpFAB0w75RTKAXckwjsffkgymURotUw7/XSSwNsffURcSqRez4RTTyUuBO8uWUJUoyGu1zNi/HhCQvDZpk2EdDrCBgPdCgvxajSsjUYJ6vVIjSZVjXe39xLw+3EGAiAlq8JhFhkMGAwGEuEwxV4vxxmNDIrHMW/d2iGhxA6HgyvGj2dIUxOPd+lCbfrc/zIW45lkkt5ZqOBbCRzX3MyL6VY6d4ZCjIjHVbGljkcHmIQQMcAM1HWyPQqFQqFQ7BUlVhWKwwwXcAvQFImAlBijUc7+6itMAwdmrZBSDHgCeBPwpucRUjK8upqrXC6Or6zMqijeGwlSzZdXAV/6/ayIRom3FKYuV0qY+v17FaYEgwzMycHldGIPBMiNRDhjzBgGGAwkDQYam5ooLy/fFXbbqxd1dXWpdXl5AJw8Zsyudelz2/fkk3etSwuygpISzjn99D3W26dM2bUu7XnudeKJu9blp7IwTx80aNe6dKVkp93Otro6zF26IAwG1gcCvLNhA26TCY/VStxkwr8Xj6yzvp5aKVmWDm/W5ebSc+tWLtbrmVJQQE4WPyOHw8HZDge61au5w2AgpNcT1Ot5JBrl7izNMWnzZuZZrUR0OjwmE581NXG2EqsdhpSyVghxD7AVCAELpJQLOtkshUKhUCj2ihKrCsVhRBC4FagnlaMaTCaZ+fXXFIVClJeXZ2WORuB3gQBrW4T9ynCYqcuWUeb307ODerUCOIHFwEK/nxWxGCLdh7UtYZoTj1Pm8TDAZGLHunXk+3wUhEJ8f8oUSvPzcXbvvksI7hTYDgfddhM8Lavfftd17T3+QNYNLChg3JAhqfficCCl5MVFi2i0WGjIzaXguONY4/PhTJ+XncW2YlotVSUl/ElK7ne7marVcoHdTjbl3nFFRZz65Ze8MXw4CMGS3FyeX7eOSfn57fbo9iktpd/Gjazq0gWEYGPXrlmyWrE3hBD5wFmk0o89wItCiAuklM/stt/lwOUAFRUVh9pMhUKhUCgAJVYVisOGBPB7v59vEgmMRiMmg4H/s9sp7tcvJcSy4G2qBa4LhVjTIux3Rn4+P87Lw5vFeVriBl70eHgvFsNjtwMtxKnPh9ViyQhTQyxGN7eb4SYT21esoMjrJTcS4cwZM3DY7TgrK3cJ07Sd+xKXRyK7v5fvT5266/3abDiDQV5YtIhteXnUFhayrbAQr8kEQuAPBPBLydNC8KYQDGxo4Aynk1G9erX7/DgcDq457jiW/ulPeBoa8EQi3JtIMK++noquXTGZTAc9dl5FBZfNncvNOh1Go5HlBgMJQNsuixVtcCqwWUrZACCEeAU4AWglVqWUjwGPAYwePVoeaiMVCoVCoQAlVhWKw4ZHvV7e93ozIvJ3NhtTCguzFo67gVR4cW00ClKiSSYZ/+23nFNSQq8RIyDLgq8aeNznY1EkQvPOVjihUCtxakvnKOq//ZYyl4uCUCglTHNzcY4de1QL0wNh9/frcDhaCViApQ0NfK7TsUhKPGYzSEmTy8XHWi2LS0o4/eOP+cHgwQwcOLDdtozweBjUtSv+dAhyv5wcBuXlUVZWdtDj3lJdzYTCQnoBdZEIW71ePojHOU0VWuootgLHCyHMpMKATwGWdK5JCoVCoVDsHSVWFYrDgBXAfyEj4kZv3EjfvDzIz07nydXADeEwnkgErUaDPpnk9G++oYfbTZfKyqzMsZNvGhp4Khplhd2Oy+1Gyl1OGV0iwQC/H9u6dXSrrycvGmXGjBkwYsQxL0wPlN3Py3SHg1FOJ93feIPq/HyW9ejB1rTQi+h0vDFqFPqvvuLygoJ2n08D0FcIvhECpMRls2Gz2do1JoAGGO718k36Yc0T27czLB5Xn38HIKX8UgjxEvA1qRbC35D2oCoUCoVCcbihxKpC0cl4gXsAg9EIQtC1qYlxmzZRnqXc0WpSlYW3pCsLG+NxbgPKevakfPz4rAmCMPCw18vTwSBJAJeLnTK1zO1m6LZt9GlsZNb06bCPcF7FweFwODhzxgzq6uo432jkP0uX8u6QIQQMBuIaDe8PHsyJ336blXPc32ikSqcjGo0SyM8nIbMTIVpRWwsWCxJw2mzU1dWpa6KDkFL+gVQLZ4VCoVAoDmuUWFUoOhEJ3Ob3U53OU+1bXMzPPR4GzpiRlRv1RlKhv+50xV9zJMJZS5dSNmAAI0aMaPf4O3m7qYmHgSbI9DgF6NXQwNgNGyjx++nfvz/9xo5V4rSDaOlx/VlBAQPXruWeigpiWi0uq5U3N29mkNPZ7vOeB9ikZHssBlKyxOnkqx07+Pfq1QhgqMPBk2edxU0ffMDr335LjlZL74ICnjzrLPKMxn2OO6KwECIRhJQ0m82UZanytUKhUCgUiiMXJVYVik7kBbeb93y+TJ7qdRYLE4cN2+9x9918M56tW9vcJwZ8GY/jSyYRQqALhylraGBFPI67WzfmHWBRnLyKCq697ba9bosC9zY38590P1CEyHiHx2/YwNlDhhDu379DCjcp9o3D4eAHDgcrli/nzXSbnm9LS/k2C95VAdiDQbanPao1sRgPLV3K+quvxqTX8/0XX+T5Vas4rXdv/nTqqeg0Gn777rv86eOPueu00/Y5bi+Hgz6hEA3RKEajEa3B0C47FQqFQqFQHPl0qFgVQlQDPlKFTuNSytEdOZ9CcSThAv4JmTzVEdXVFNtsB1RQybN1K7f06LHP7RJ4LxqlayiUKqYETJCSvKIibDYb1nSvzwPhlurqva7fDtwcDLI8FMrkpZojEX4QCnES0GXCBCVQO5njQqGMWK0pLETW1GRl3KKcHNanC3WFdTqSUhKKx9FrtQRjMcptNqb07p3Z//iuXXlp7dr9jtvLZMKn0RAOh1np9zNZFVlSKBQKheKY5lB4VidJKRsPwTwKxRHFX3w+/MkkCEFeIMC4jRspnz49K2OvB2qSyUwvzh719eTZbO2q2tqSTcBvQiGqGhszQrXPjh2csn49s6dOVSL1MGFcz56YfD5Cej1xjQZdlj4Xa4s8VUteHteMGUPFX/+KSa9nSu/erYQqwD+XLeO8wYP3O67N58PpdoOUvL52LYNHjFDXkkKhUCgUxzCazjZAoTgWedPl4g23G7/fD8ClwSCzpk/Pyo35tmCQL8NhRDokt9Trpdjvz0rVVoBFjY1c6XazPd2ORptMcvKaNVza2KiE6mGGw+FgUH4+Ir387qpVOJ3Odo+b9PszD0I8sRivrV/P5rlzqfvlLwlEozyzYkVm3zs++gidRsP5Q4fud9xYWqhKIKrRUFdX125bFQqFQqFQHLl0tGdVAguEEBJ4NN1kXKE4pgkDj0qZuSkfVFPDcJOp3SLv0nnzeH39egwmE7/70Y9ACDZt2sR9H39MldvN4ssuY3Q6/PfZFSu4+7PPMseucDr5+oorqCwtbXOOLxsb+ZXPR0yjASEwxOPM+PprujQ3MyZLRaEU2UUXi2UKXsWkzEqVXavFAvE4SMma2lp6FRRQbLEAcPbAgXy2bRsXDBvGv5Yt442qKt6/8MLUw5P9YM/LA48HkQ5d39lLVqFQKBQKxbFJR4vV8VLKOiFECfCuEGKdlPKjljsIIS4HLgeoqKjoYHMUis7nOSBstUIggDkS4aSqKsqnTWv3uBdXVnLcwIHcumABANpkklNNJn7ywx9yxRtvtNr3/GHDOD9dyGml08lZzz+/X6G6qr6eG6JRoppUQIYlEuEXbjd9+/RRBZQOYzQ6HUQiAAgpMbZRkfdAMVksmCIRYrEY3YqLeebrrwnGYph0Ot7fvJnRZWXM37CBuz79lEUXX4xZrz+gca12OwVCEAgGGTxwoLqmFAqFQqE4xulQsSqlrEv/rBdCvAqMBT7abZ/HSDckHz16dHYa9ikUhylbgBfCYcKRCAX5+czZsYPvTZuWlZvywd27s6RxV3p498ZGxnftut9iSv9ZtYofDBnStt1OJ1e7XDSZzQAY4nHOXrqUkydNUoLiMCeQTGZ+1yWThMPhdo/pDwQIpT2rZXY7M3v3ZuSjj6LTaBhRVsblo0Yx+KGHiCQSnPbvfwOpIkuP7Kd3sKe5GZfHA1Kydt06nDk56vpSKBQKheIYpsPEqhDCAmiklL7071OAvfe/UHQITqeT2rq6fXq9nE4ndXV1dFFesUOCBO4OBNje1ARS0sXj4azS0qyc+yTwaSxGIpFAIwRddDrGl5UdUNXf/65ezbw5c9rc5/5YDFdaqGqTSS6pqeEcJVSPCNwGAyIUQgJ5kUhWQmtdoRDoUv8+dIkE1wwbxp+mTm21z4ZrrvnO4zY2N2fC40UikZWQZYVCoVAoFEcuHelZdQCvpvOUdMBzUsr5HTjfUYsEgoCbVLsTV/r3aq+XGp+PnLw8tFYr4fR+YcAdDrMlFCJRUACRCI5IBEOLvoWRSARnJAIFBRgCAXqFQhSaTJgAc/oVb24m6vHQy26nb14exUAxkAfsP/tMsTsfACvS3ighJRNWr2Z7MklpFm7Gl4fD1EYiRCIRZDLJcUKk8gr3w5c1NZj1eoaUlOxznzqgKjcXXC4ATlm7lnNGjVIi4ghgY309NeEwkpRX9bTRo7PyuUmLBdKta4yxGLb8/PYbC0Tz86GpCSEludGoyllVKBQKheIYp8PEqpRyEzC8o8Y/GgkDW1u8Vvv9bA6HiVqtiN3yzCKRCE6vN1WR0+XCode3EqPeSISEECkPhZSEw+FW28PhcMaDEdFqqYtGCZhMrcdPh+PR3IzDZMocrwOKSAlXo8+HobGR4XY7YwoLKUAJ2b3hAx4KhUjE4yAEIzZvpjgUysrNeBBYmS7YBClPV7K5GQ5ArD6/nxDgILAmkcDndiOBgXV1/LhnTyVUjxC+cLkg/Xdd4PcTicezMm6gRbEkQyyWlTEBmi0WHDod4XCY2ePH4yguztrYCoVCoVAojjwORZ9VxV5oBD5yuVjl8+EvLKTJaqW+xfZIJILT5UoJkGAQh8OxT7G5NzFqNBrxCoGQEgGYjEYEZKqCttyOEHsUXWlr/DiwA9gSiaR6Imo0PBcI4LBaKTYY6AX0TL9sDQ1QU0O3YzjUWAJ3+nxsSLflsEYinK/TMTRL1XM/j0SI7fwco1F0yeQBtalJSsmLa9bw0SWX7NPur4BYIgFSkh8IcPLatYRHjGi3zYpDQ1NZGaQfanXxeCjv1y8r4zakIwQAjLEYPp/vgELO2yIMbI9ECIfDWAwGBuXmZsFShUKhUCgURzJKrB4ivMCKFq/NkQjOdI/NvXlGdxeLyWCQMoOBfKAA0AnBhg0bMIXDGJJJTj3hBLoApp0vgwGvwUD9zpzUFmMDYDDgNBjYWldHQZcu2AwGgkCIlDetNpHg4RtuINnYSFyrxVxQQFyvJwzs9KPEolE00eiu95iTQzAnhy3Ah0AykSAUCqGREnM0SjebjdKcHKzs2eA3r6KCa287OlOa/+t28240ikzf3J+8Zg2F3btnRahuCAb5NhYjVqfhyQ/eYatvC82xMAMee4xbJ06kwGTi6rffpiEY5IznnqOytJR3LrgAgI+2bKGr3U6vfYRwbgW2xuPIZBKEYPLq1RikVKGZRxBrdbu+4svTYdztJQn4jUYIBDIPX7LRw3dFQwPOUCgVJh8K0Ziff8w+4DrasX7/+/hfeKHNfe5//XUefvttRvbuzbnjx9OvvJxBqmOA4ijDarVm+q3vi/vvv5+HH36YkSNHcu6559KvXz8GDRp0iCw8spl+660896tfkdfGw9SJN97IPZdcwui+fVutX7ZpE3UuF9NHj+5oMxX7QYnVDqLa6eQjj4f6sjKq7Xa27LZ9b55Ls8FAOdAdyJOS6hUryPP5sMVinD1tGq0ai9jtOIcMoW5nAaXCwj1ssDkcdG3jZs/hcOzzZnBUQQGfJhJc27MnNputldckDgSAxmCQqro6gno9QaMRbWEhssXNcSQcblV51Gg0YjAa0QMlgD0cxtzcTBezmXu2bt2nnUcyixobuXtnX1JgyLZt9G5qonzcuHaPHQeWALE6De6XrZyVOBedFi66WNCt2679Zg0cuNfjJ/bowRc/+clet0WBL2Mx/MEgsXicodu2Mbm0lH4TJigBcYTgAlbvzJEGyt3urBQscgMJIEevx5hMMrRXr3Z7VQEWNzeDTocECnw+6kIhda0dwzz01lu8/Yc/0LO0lIvvu48ZY8Yosao4JnnooYd4++236dmzJxdffDEzZsxQYvUAkFLyxk03odHs7h45MJZt3sySqiolVg8DlFjNIklSXtN5Ph+vB4PEjEbweHAYDK28pgB2g4Fcl4sSj4eiQIBzjzuOSlp8IHl5OMeO3SVG93LT1pbYzAYmk4mysrI91uuAXCDXbMZRWorP58NmsWDR6fADHlI3tE6Nhq2JBFGtFoRAlxayMVIeO38kAjk55EQirIhGWUwqydmwx4xHJuuAW6XMCNUCv5/v+3yMy1L479fhMAEgWqNHJgAEyaSkuppWYvVgWA4E0uG/ukSC49evxzpihBIPRxBfANr0tdfF5cKcSLTbK55XUcE1337LmnRERW4oxAqrFVOLfPeDGROgvqQE3G7EzpDldB9gxdHN3a+8wguffEIkFmPWuHHc+sMfcuVDD7HJ6WTmHXcw56STeG3xYhatWsXtL7zAy9dfT++9/F9SKI507r77bl544QUikQizZs3i1ltv5corr2TTpk3MnDmTOXPm8Nprr7Fo0SJuv/12Xn75ZXr37t3ZZh9WVDudnH7rrUwaOpTP161j2ebNNDzzDEV2O398/nmeXbSIbkVFFNntjOrTh+tmzQLgxU8/5aePPIInEOCJq6/muH79uPnZZwlFo3yydi03zJ7NeSed1Mnv7tjlO4lVIcTTUsoLO8qYI5Ua4H1gIalcVG8ySUyjaeU1tRgM9AeGpV/9jUZc5eXUAeWDBu21kEhHi9FsYLVaW3lVbOlXN4CcHPwGA85AgLDdTrNOh5NUmHG8Rc5bVKulFvgjkAP09vup2LGDU+12BrRRpfZwZbPTyb/cbhbk5xNIe5bN0Sgzli1j3KmnZuUzbQyH+SYcJgnkdNWh1RqQSYlWK+jRo31jNwHr4nGS6fDfUq8Xkwr/PeJY4PfjShfG6lVfzwknnNDua+/a227jIqeTZLrC8IjVq5lTVsaIduYxS2C9TpepYP2jESNwFBW1a0zF4c+Cb76hqq6OxX/5C1JKZt5+Ox+tWsUjP/0p87/+mg/vuIMiu52qujpmjBnD7PHjO9tkhaJDWLBgAVVVVSxevDj1tzBzJh999BGPPPII8+fP58MPP6SoqIiqqipmzJjB7NmzO9vkw5b1tbU8ec01PHTVVfRIR48tqari5c8/55v77iOeSDDyF79gVJ8+mWPiiQSL//IX3lqyhFuff573/vhHbjv/fJZUVfHAlVd21ltRpNmnWBVCvLb7KmCSECIPQEo5swPtOuzZ5HTypt/P6tJSanerurqzeFGhz0fPxkZ+OGQIJwLG3cY4EsTo7lw6bx5vfPstJRYLq376UwBu+uAD5q1fj0YISiwWnvre9yi32Xh2xQru/uyzzLErnE6WXnEFfUpL2SIlawIBvCYTca0WrVYLgC8S4R2XC/R6/hEOc3wgwESLhbFALw7PSsNhYCPwLbCwvp6Pg0HiJhOkhaoxFmPmV19xXEVFVj7vCLAKGJxezi8IMGFGGJ+viB492udVlcBn0Sj+dO5gXihEF4OBGVnyBisODU7g67RnXAC9nE7CWXjw4wa2mc0QDqfGbWykfNSodo+7sqGBdelrLieRoOIAKlkrjnwWfPMNC5YtY8S11wLgD4WoqqtjQhsVyhWKo5EFCxawYMGCzIM/v99PVVUVEyZM6GTLjjy6Fxdz/IABrdZ9smYNZx13HKZ0lOOZY8e22n52OjVrVO/eVDudh8ZQxQHTlme1K7AGeJzUPawARgN/OQR2HbYEgX97PDweCBDV6aCpCYdOlwnztQMnGwwMN5vRNzXRZcCAveaTHqlcXFnJz8eO5cJXX82s+/X48fxx8mQA7v/yS25btIhHZszg/GHDOD8dyrfS6eSs559nRGkq83aIyUSP3FyafT5iubl8qtViB1btlsu7Nh6nDngyEsHg9zM2J4eTbDYqSfV7PZTUOZ2sbGggUV6Ov6CAbcCaYJANsRiGdDVlZyiEbJEfUeL1Mm35cvKjUfplqRLr40BUrwch0CST9GpooE+fHmQhbZBvgcZkEqREIyXdGxrQ63RKqB5hvMuuEOCKxkZyY7GseMbnu900+XxIoKvLxaljxmTl2njf5wOtFkmqENQOr5cydc0d9UgpuWH2bK6YNq2zTVEoOhUpJTfccANXXHFFZ5tyxGMx7u4a2tUJY18Y9HoAtFot8WSyA6xStIe2xOpoYC7wO+DXUsplQoiQlHLRoTHt8CICvAG8DNQIQTR9YyWkJB4KMclgYDIwivRJLSpKvY4yJnTvTrXH02qdvUU+biAa3av38z976efZMoS4D3ALsCIa5bFvv2VTURHbCwowGo2pNj5OJ0jJViH4OCcHgPzmZoYZDIyw28ltbETU1tK7tPSgb55DpEJgXUCVy8UGr5d4YSFBu53NoRBrw2GSNhv4/TjSnh9nY2MqnFkIrBZL5gux0O+nsrqa/tu3M7h/f/r165eVm/qPgHmRCIlEApPRyKBAgEE9emSlwE2IVM61TqcDISh3uTDG45jN5naPrTh0xIHXQ6FMCPDgmpqshAADvBuJZML3e9XXZ8VbC7DR4YCmJoSU9G5spFy1RzommDpyJDc9+yznn3wyVpOJ2qYm9FotJXl5rfazmUz4QqHOMVKhOARMnTqVm266ifPPPx+r1UptbS16vZ6S3b5jbTYbPp+vk6w8cjlx0CCuePBBbpg9m3giwZtLlnDZlCltHqO+dw4f9ilWpZRJ4K9CiBfTP51t7X+0EgPmAy+QKhwEu8J88wMBKrdt45rKSo71FPffvf8+T69YQa7BwIcXXbTH9v+uXs28OXP2O86w4mJuGjaMuro6co1Gag0GXq2txRONEtbrEVIS8PvxBwI4pWRdKMR7QuAKBiEvD0MgQF+XC3M0SonFQrHNRrS5Ga/Hgy0vD4vdjsfno97nQ2e3I61WGoNBnJEIwmzGYDCkxLHfDxpNpkBWOBolCa3ykIHMjXuBz8fQWAzNhg2UNTRQEApRUVFB5ZlnZs0ruQS4MxzGWV9PtKiIJ1eu5HiLhbdMJmhsbPf4X8diOKVEq9VikpIBXi9Ws5my/v3bb7zikPExsD0ahXTLqB4NDYSzUEW1FqjJzwenE00ySb/6esorK9s9rgeoapGvetXIkTiOwFx1xXdnyogRrN22jXG/+Q0AVqORZ375yz3E6pyTTuKyBx/k/tdf5yVVYElxFDJlyhTWrl3LuHQ4qtVq5ZlnntlDrM6ZM4fLLruM+++/n5deekkVWDpAxvTty8yxYxk+dy7di4sZ3acPuft5ED9p6FDufOklKufOVQWWOpn9ik8pZQ1wrhDiDKC54006PJDAS243/04mCVutrar5djMYuNxmo0dTE92GD1c3VsAdp5zCHaecwp8+/pgHFi/m1kmTMtu+rKnBrNcz5ADPU8tc3l5AP52OgR99xA6rlZqiIgJ9+7I6mSQhREq8BoOZ0OGwVsuqnU8do1EKAJfHkxKVHg8FQuByu1PLLhcFUu5a9vlwOBx7bSu08wGFNRymMBBgYn4+5YkEVUuWUOj1YpSSGTNmQGVlmxWcD5YVwJ8gVUFZSkquvJJzv/yS8ZWV7S5uA/Cay8Wrfn/GS3yHxcKkoyh8/VhBAs8EgyTicRCC4Vu3ohciKyHA76Z/Wi0WBvl8nDdlSlau8bfcbnb4fJCuAmwvLd3/QYojmpY9VufOnMncmXuWwKh+/PHM7+MHDWLNgw8eEtsUikNJyx6rc+fOZe7cuXvsU11dnfl9/PjxrFmz5lCYdkTSw+Fg1QMPZJZbfo9cN2sWt/zwhwQjESbccAO/+t73AFj4f/+X2afIbs8cU2Cz8dW99x4awxVtsl+xKoQoJpW/uhU4JkKAvcAdfj/vpG+gCARwOByUGwzMAU4FdPn5kJ/fyZamSALf1tezub4ee2kpG6uK+GIhDJoIBQPc1LtcFBQWktfiabXH48HT1ESX/HzKCwowAyYg0NBA8/bt9D/Im9AfDh3KGc8910qsPr+XEODvgsPhYOYZZ2REIMCrb7/NDquVhrw8TEOHsiQYpNloJJGuwgzsIWT3t6xLJLD6fPQzmdjhdGIJh8kLh5k+ahSDDAYwGGhsakoJUbsdAOeJJ+4hTrOd37kMuCkcxhuJoNVosIfDnLVkCaZkMisipB54UIjMeRhQV0eewQBKrB5xvNPUxJJAAKREn0hwtslEZRaKY0WBN0IhnA0NICWO5cvh+OOzYvP8tBdYAr127KAumVQ50i0QQpwLzJdS+oQQvwdGArdLKb/uZNMUCoXiiOHyBx9kzbZthKNRLpo8mZHKK33E0FY14EHA/UAPoAL4BigWQnwEzJVSeg+JhYeYpcBfga3pSpoSMEcinF5by8969SKnE2xKAtuBLcBKj4dNPh8yP5+o1Yob2BGJsCMcJvBtIe47DbhflMiEQJMj6flsBMtIHTQ34zCZdoW5NjeDTpfJv8ysD4UgNxdtKERePM57gAXQhsOIYBCH0Uh8N/uqmpromxY2r61fz4AWubpJKXlxzRo+uuSSdp2D3Ssnzzr99FYi0QnU1tURN5t5b8UKgjodcb2evkOHsmz9eqSUaIHBAweybs0adLEYpmSS44cMYc1XX5ETiWBKJDhzxgwcFgvO7t1T4/fvv6tAlsNBt91uojuyonMCeA54JhJhR309SIk1EuFOIbAOHZoV720c+DMgzWbw+bCHQkxcv55yVfDkiEMCT7f43hpUU0OJzZaV6/NDoD4tKi3hMN0aGqirq2v32NXAjrw8cDrRJpMMcDqzElp8lHGTlPJFIcSJwFTgHuBh4LjONUuhUCiOHJ677rrONkFxkLTlWf0ncJGUcr0QYizwMynlcUKIy4AngKOqyVMUeAp4Pb28M+yzsrqaEzZtYtbppx8SoSqBzcBHHg8rAgGa8/Nxmc3EYJfITIewOvR6DAYDoXCYwBI9m853ICMiU/YsGYXA5wbMIyOZcFaDwbDXMNfd1yeEIJBMUg8k4vFU+KlGwz/nzaOqthZ/KETJvfdy5fjxfPbtt9R6vei1Wrrn5fHIGWdk3s9HW7bQ1W6nV5a90LuLxJbL3fPyWgtZo7H1ssHQanmkzbZX72hnenfW1NfzZympy8vLfC6maJSzlizBOnBgVkJ/AR7yellM6novLynh8k2bOGHaNOXZOgL5FNhuMkEohC6ZZPSWLZTvp4DEgSCB51qEFldu3YouS6HFLzc3E5aSgvx8hjU3c+7Uqera25NE+ucZwMNSynlCiFs60R6FQqFQKA4ZbYlVk5RyPYCUcrEQ4pH07/8QQvzikFh3iPiqoYG7AY/dnslNLTUY+I3FQqHNRvnpp3fYDdQOp5NvGhpo7NKFmvx8VgKNLUVpYyMOh6NNkWk0Gol8FkdGBUgBSBCgy4Ghfbbh2OpFCMGw/HzsQLMQrNi2jQQQ1+vpWViIBmjS6VgXChHW6Qjn5GR6n8bj8UwhoUtPPx2j0YjBaEyJ2ECAc/r3RwBdzWa65eSgIeWx0wETe/Tgi3RT5kNFW0L2QJY7kyDwrMfD4z4fYZ0OnE4K8vPp5nZz6ooV2LLUggRSOdlPpEPdvUJwjd3OrEGDsjK24tASB/4RDGYqAA/fsoXTRo/OynU9v6mJZenQ4pxEgllmM8OyEFq81enkBb8/dZ0LwUyL5ahq85VFaoUQj5LKQLlLCGEANPs5RqFQKBSKo4K2xOpGIcRNwPvA2aRS5xBC6Pdz3BHFu01NXO/3E9doIBTC4XAwwWDgGsBeWNhheXuNwCseD8+5XLhttlRxn3Q12r2J0jKDgb5aLU1bt5IbCGCNxThj3Dj6AfkGA+9MCnDOA5J4HHQ6wSWXwIUXCnr1clBXl2iVZ4ndjrNv313exJ1tTywWnPn51NXVUVBezgNaLZMAl5Rs9HgI63QEDQa06f1bilgJNCSTNAOrARmPYw2HqdDp6G00Yu+Qs3j0ECDl1Z8H1ApBWKfLfP7TGhu5sKyMHVJmrXDTx8DfNZrMdVbR2MiIpiZQLUOOSN4ENsdiKUEZjzOyuppwbm67x5XAv1uEFg/eto0iuz0r1+C8tFCVQG4wSH5Tk8qT3jvfB6YB90gpPUKIMuDXnWyTQqFQKBSHhLZE56XAjenXclI9VwHMwIUHOoEQQkuq60atlHLGQdrZIXwF/EmrJZ4uyqNLJJi5bRs/69Nnr71C28tWp5P5zc2sLStjo9WKRwi8ZvMentKSnBwcTidlLhfFgQDnn3QSvQCsVpz9+u0SmS1yQ884o4APP4SFC2HiREhXPwf27jXclzex5XoLUAaUmUx0LyrC5/NhM5kw6nR4ge1S8m1zMz6jkaDBkOrPCRmPa7OU1CUSrNLpyNPpKAqHsft8VJhM2LLQF/RIJwmsBd5pbuadRAKZflixMwQ9NxhkyurVXHziiTgcDsqy5P39EvgLYDAaQQiKm5s5feVKuqg81SMSL/BkOJwJ0x27aRPmRCIrHvjPgMbcXAiH0SUSjNi6NSuhxUngy7IyaGxESEnl1q10GT683eMejUgpg0KIeYBDCLGzB9G6zrRJoVAoFIpDRVt9Vj3Ab/ay3gt88R3mmEvqnvywcq59AdwF6EwmaG7GHgpx1jffcO6kSVkXqlHgOY+HR3w+Qjk5mXzTnaJEH4/T3eVilt3ORKCryUR99+7U6fUpUdqi5UtbIavjxrUUqdnFarVibSEwC4FCk4keBQX4fD4MOh0BnQ4nsDkSwZ/2uCIl8XgcD1ATiYBejy4Wo08kQi+DgTLolKJVnUWN08kit5vq8nLW2u3URyI4d7bWSbfO6ZFujdS9qYmKtFDNFt8Ad5JKgjMYDIwoKuJSt5v+Kk/1iOWB5mY2p6+hvGCQc41GBmUhTDdJKrQ4HItRkJ/PyS4Xc7LUruYzoF6rxWqxYEokuG74cHX97QMhxNXAHwAnqY8FUk7vYe0YMw94HBiSHutSKeXn7bNUoVAoFIrsc1DhvEKIy6WUjx3Afl1JFYW4A/jlwczVEXxCqpzizhv2oUVFXLJxI0MmTcrqDVMcWAD8F9gsBCG9PuNFjYTDTMjNZYTVSvnWrfTs1g1HiyJEh1MeZVu0FLEFQDdggJSs3rIFt9mMx2IhabUSaREyHBeCainZDgggLxpllc/H4sZGxhQVdYhXuzOQpO4uv02/vgkE+CIYJG4ygceDY7eQ7/xAgNlbt/Ljvn3RdkBrpC+A28NhmiMRjEYjPQwG7jSbKVAerSOW1cA7UmauoRPXrSOvR4+sfHe85HbzTTqnOSeR4EdWa1Z6Skvg6UAAZ1MTSMnA6mqMAwa0e9yjmLlAfyllUxbH/BupdjizhRA5pCKmFAqFQqE47DjY3NMD1RP3kfLO2g5ynqzzP5eL+zQactJtXMqBO8xmioYOzeo8S4B7QyFqolGMRmPGi2oLhRhWU8PVQ4cyCKCgIPU6irBarQzu3TsVNmyzYdLp2ByNssLnw20yEdXrMyHD8Xic6lCIjUJwWTBI71CI40wmurvdFNTUMKykhNIjQLT7gG3Ao4/Bey9D2YwwOecHiafbAgF44/FMyPnOsG9HTg7damvp6XTS3eVi5owZaLNs285K1y9FIjjTLXCSkQjX5OVRkAXxoegcYsCfW1Tp7eV00svlovyEE9o9dhB4qoUIrqyupjk/H7JwvXwOrEs/vNImkwytrqYuS3mwRynbSEV7ZwUhhB2YAFwMIKWMkvqaUCgUCoXisOOgxKqU8tH97SOEmAHUSymXCiEmtrHf5cDlABUVFfvaLSssbmzkNr+fhBDQ3ExlURF/MpvJplSMkur580okgrOhIVNptX9xMRfabPRraqL7kCFZ8VB0NHkVFdxSXd2+QSIRaGwEIBQKEayvJ2mx4DcaaQCaolGi0Sih8nIMUtIYjfK+RoPT5wO7HaPfz3iLheFWK70Be0MD8ZoaumSp0NCBst3pZK3Tiba8nHhREU5SXtONgQCbIxFiFgs7/mVg5RUAkjULDHTx+yk835mp5rzzgUVeIEDvhgYutVg4MTeX+t69qTOZKD/hhKy/p1pSfVQ3QcaLaw2HOeurr4gNHpwV8aHoHP7h9bLM6wUp0ScS/DgeZ2wWwn8BHvN68UoJ6Qdso7ZupXzw4HaPmwSeYVdrsGFbt2KNx7NW4fooZROwUAjxJhDZuVJKee9BjtcLaACeFEIMJ9VefK6UMtBuSxUKhUKhyDJtilUhxADgLKALqeitOuA1KeXaAxh7PDBTCDEdMAJ2IcQzUsoLWu6UDid+DGD06NHyu7+FAyNEKkc1IQQSKPD7+bHHQ8Gwg0772YPFDQ3cQ6oFzk5hYIjFGL15Mxe5XBxXWZn10M6O5NrbbuvwOdbV1/PY0qVsLSigJhbDaDS2Co0N63QsSSSoIt1nNhRCl5uLzeVilMVCL6uVYkDrchGrr6dbUREVRUUYAROpC09H6uJNkLpZTgJ1Tic1Tif2sjJMxcUESFXkrXG72erxQGEhMbsdF1ATCvFtOIzMzYVgEEckgsFgSNmTDmXE76f2xS6AllTggcT7toWy73vp4XIxoayM/gYDuUYjgaYmyvv3zxTI6qiQ7w+Bh4BwetloNFLY0MDkVauyVoBH0TlsAF5o4fk8vqqKriUlWbmOljU08HQgkHqoJwRzwmFmZal91yJgQySSqnCel8dP8vLomyWBfRSzNf3KITsp/jpgJHC1lPJLIcTfgOuBm1rudCgfJCsUCoVCsS/2KVaFEL8FfgA8DyxOr+4K/EcI8byU8s62BpZS3gDckB5rInDd7kL1UPIw4LPZIBhEH49z5vLl9J88OWvjz3O5uHXnDV4oREF+Pr0aGpi0ahWWRIIeWRTFRxMDSkr47ciR1NXVUWazETYYWBgK8UpTE9tzc4mmC1HBLs9gTKvFbTbzVSLBt6RFrN8PJlMrMUl6WyQcxmA0tlrnjEQgNzfVrqil+PT5QKPJ5JQaDAa80SgS9qja3FJU6xIJek8N4HrPnt4TpvZdzrSFqzlzxgwyt+IlJR3uzQwB9/h8vJtMpnriGgzogCsNBkZ168Z2rTZrLXAUh54YcEcwSCyRACEod7sZXlNDeWVlu8eWwP2JROahXpnbzfhkMivXSgR4LBTKRJwM2LSJvoMGqetwP0gpbwUQQthSi9LfziFrgBop5Zfp5ZdIidXd5z0kD5IVCoVCoWiLtjyrPwYGSyljLVcKIe4lVdejTbF6OPEBKS+TwWDA4XBw7tatzJw8OWs3SQ98Dn+Zb0Y7PIJ5VBR9PM5sp5NzlDA4IHb3LF6cl8fpXbpQW1eHvmtXvAYDG4HlWi2fxuOEdToQYg8Ru7uYjEQiOJ3OlOdTiEw47r7239f6nSGLpmiU3HCYsQUF9AVykknWff011kCAvEiEmT+awTy7nZdfFpx2WjOnnGKgvPzQeY2CwBvA86EQG93uTAh6ZVERfzCbU+2PHI4jIgdYsW8e8Hr5Oh3+q0smuSIU4oQseSffB2ry88HpRJNMMmndOrpMnNjucQFeBWqjUZASYzTKsOpq6vLy1HfjfhBCDAH+TaqGHUKIRuBCKeXqgxlPSrlDCLFNCNFfSrkeOAVYkzWDFQqFQqHIIm2J1SRQDmzZbX0Zu8rnHxBSyoXAwu9yTLaoA/4aDuNNV0CdbjBwWd++WRv//s/hF6dAMmpA6B0Mf2ILPxBfMjsthjtaGHiBbxob2eB2oy0uRublsc3nw+nzkWO3o7FacQWDNAeDWMxmTGYzoWCQUDBIgclEocVC0u8n7vHQ02ajT24umqYmqKvr1OJGuwvYEwGsVnYEAmzcsQN9ly5Ig4F6UiGRn9TXE9LpiOv1lBUXI4C6YLCV+IyGQlgMBuwGA6FEAk0yiTEeZ2BREcWA1GjYXFtLTjSKNRZjyqhR9AEKDQaiBgMNTU2pBw+2dL2w/HycJ5ywq++tw8Hll8Pll0OqU9OIQ3KuAsDrwDzAD3jTgkACA2prucrlolcWvG6KzmcpKdG38/M9Yf16emQpjNwLPBQKEY5GM61qLpk4MStjNwLPtOgFO27DBkzJpApFPzAeA34ppfwQMpFK/wDaU0nrauDZdCXgTcAl7bRRoVAoFIoOoS2xei3wvhCiilQ1QoAKoA/w8w62K2s86POxNe1l0gSDzCoogCwJsA+Bv78XJxnVQiJVIHnMF0Z+9LvseW1bstXp5DO3m2q7nW81Gry5ufg0GpzBIOTkQHMzBVotrvT7xeWiQMpdy8EgBfn5rZeTyV3LXi8FGg2uQADsdvTBIMObmnAEg4y1WDi5oIDOzrgt3dsDgNxcflhRkRKNxcU4zKkuDM5olNffe4+ElGiF2BWOazTitFh2iUyLJTWOzYazd+9d61tWaXY46LqXz7QzWwz5gNdICdWWlVGMRiMyHOb4b79lQH09PWfM6BT7FNnFBfxfKJQRfN0bGhheW0v5iPY/FJHAn32+jEfeHg5zSRa9nvf7fGxLj13k9zPLamWAylU9UCw7hSqkHv4KISztGVBKuQwY3V7DFAqFQqHoaPYpVqWU84UQ/YCxpAosCVK5Ll9JKROHyL52sQn4OJnMeCFOXbECV79+dM/CDdJW4C/hMHKIB6EvQQIGPVzyg7JsaWEAap1O3vN4+CY/n49CoVSPzlgqMls0NGC1WFp5DwO7eRPbsxzVaFjiT6VHven347BYKEsk6NLUxElmM5MLCzFk7622i72JRofDwZkzZrTyfLa1f1vrDycagee9Xl5LJsFszuTiQirs4TyDgQF5edR37Ur52LGH/ftR7J8kcJvfzwaXC6TEEonw00iEkVkSfB/T+rvy5NWrcfXsmZXvymXAwhZjn7R2LfbevdV1eeBsEkLcRCoUGOACYHMn2qNQKBQKxSGjrQJLRuBKUp7UlcATUsr4oTIsG7RskdBnxw7K/P6shJ1FSVUWbo5EsIyMMPzxarq+6uacGVbGjevf7vEhJVL/09DAqzk5+I1GCIWQYrf2tlKSk0zi8PmwBoNYo1FG9OhBzZo15ESj5CSTHDdsGKu++goRj6PRaBgzZgxfffUVCSCu1zNo1CgWr1pFSKcjYDJRNHAgy91umiwWQjk57KyqIaQk4PezLBBgmZS8GQjQzWJhrNFIX7ebsm3bGHgYCr0jQXweCNuAL0j1qFwVieBM5yzi8+FwOOhlMHAeqeaJWgCHgy5HwftWpHgR+DqRSH3mwGkrVlCaJcHnIpUqsdNjO3jbNnq63ZSPH9/usaPAg+z6Hu63fTvdvF4V/vvduBS4FXiF1EPjj1BhuwqFQqE4RmgrDPhfpApPfgycDgwkFRp8RLAe+CTdIqEwP58fNzczOkteiL80N7NSSrQaDbpkknPFFxSfHuL007MTbrm4oYHfulw07cyNTCOAfL+fri4XXVwuHH4/Pzz1VERxccp72L07DocDp17fyps4ympttdzfbm+1PK5lSKzDgVMIauvqiJjNvLV2LTvsdmoLC/Hv5sVtjkT4RAhe9vkgN5eShgbOMRo5LTeXXml7FQeHBKpIidPPSfVL3UnLQlAFfj/fj0S4tG9fNJ1hqKLDWdTYyEN6PVqNBoRgzIYNVGRJ8Eng//x+NqU9trZwmB8DQ7P0Xfmo18t6UmK1Z0kJ13g89Ffhv98JKaUbuKaz7VAoFAqFojNoS6wOklIOBRBCPMGu9jVHBI/7/TjTN2D9nE5Gp4Vce/m0sZHn06GyCMHPtVpGDxyYtYq/7wB3CIEnnXcJYIpGGVpXxwXl5eRGoxiLighbra3mbCvEtT3LvfLyUkK2tJRoIsETS5eypaCAaocDfWlpK+FUb7PxHPAmUAj0b26m2/btnJiXRw91c7pfPMDnTU18EgiwobiYoMm01/0sBgO5LhcDa2roW1/PmTNmKKF6lPJtfT03ejz4DQYQgrFmM1fk59Nt8OCsfN+8BixOe2wlcMqqVRT26pWVsRc3NvLPQIAk4BWCG202JqgWXgeMEOI+KeW1QojXIRPkkkFKObMTzFIoFAqF4pDSlljNtKyRUsbF7iGohzEedt2AAYzZsIE6vT4rN2BPxeOZG7teTiejdDpGZKHACcDTHg+PJhL4A6lyOfpEgjGbNjHbaGTogAGd4o3YXcheNX58SrwWFJA0GFgQCvGC201tXh5So8m0k6mLRPjG4wGjkb+Ew4wPBBhvsVAJ9KXtC+9YIAJsJBUB8G36tS0SwRkIpK7bhoZMqx0AAzAKOB4YYzQSKC+nDlRO6lFMDLhDSvwGA5LUQ6sfeDyMztL3zWbg0RbhvyM2b6bC48mKxzYG3CslSVIqq4vLRd+mJsjv7BJtRxQ7c1Tv6VQrFAqFQqHoRNrSDMOFEM3p3wVgSi8LUo3J7R1u3UHyGWAwGkEIyl0uCkOhrNyArQY2WCwQiSCAEzdsoMvkye0eF+BVl4u/+P3ItMAubm5myvLlnNC9OyedeGJW5sgGu4vXi/LymFZWxsYdO2jo1o0NBgNLAG8Lj2sSWBGPswV4DjACPf1+SuvrGWm3c1xREXv3IR75JIAdpApybUv/XBsMsjEaJcdkalUcafc+r9pAgFMMBsYBldCqmJX1KMnFVewdCfy5uZkN6Z7CQkqmrlrF4HHjsjJ+GLglGKS2sRGkpNjn42KNhkFZCtF9HnDZ7RAKoUskOHXt2qx9Vx4rSCmXpn+tlFL+reU2IcRcYNGht0qhUCgUikPLPqMHpZRaKaU9/bJJKXUtfj9shSrAp4DBYMDhcDDNZmNGlm7AHvf7cbnd+JfmIO+ELozLyrh1wP2JREaolnk8zFq8mKJIhH79+rV7/I7G4XBwwvDhnFVQwK9IFba6LRZj5JYtFPt8IETG4wrgjUR4x+XiX1otc4NBvheJcCVwN6kekito3YrlcCcBOEnZ/S4pd8hNPh9zGho4MxzmSuD/0usXRCIsaWzE7fXidDqJRCKZcewGA2VeLyO2bGHW0qU8EYtxLXAcHDZVlxWHhmfcbl7wePCnq3GfFwjws3HZ+b6RwN+AzbEYSIkukWDK8uXkWa1ZGf9b4Jl0vYCC/HwuTCa5YHLHtPM6RrhoL+suPtRGKHbRo0cPGhsbD/m8N7/+Ou8tW9bmPrc89xz3vPrqHus9fj8PvfVWB1mmOFKZeOONLKmqAmD6rbfiSf/POZD9W7Js0ybeWrJkr8csXLmSGbfdtl9bfvCDHzBs2DD++te/ct999xEMBg/gHRw9WK3W/e5z//33M3DgQM4//3z+97//sWbNmkNgWefTVjVgMxCTUsbSy/2B6UC1lHLPb8LDBC+wJBIhFA5jMhr5Ue/eFOz3qP3TCCxNJAgs0bP5fAdE4ZInoUcPaI+zQwJ3BgK4QiEA8oJBzly6lOH9+tGvX78j8gZPC0wsKmJg//7U1dVhNRrZbjCwDFgOVO3mQQyFw9QaDNSSKnMJEIlEsPh89DAa6WG1UgKUAMXpn0UcmlDiWqeT9fX1GMrKEEVFNJGqntoEbPX72RIOE7Ja0bcQ45FIBOfO3rWhUKtw3t2LIw3TaJjctSv9ge5GI00OB3WJBOX9+x+Rn72i/SwDnhAic50MqK1lmtGYtevh5gU+nvlUT/5JOugnmLh2LYXhcFaiT4LAbcEgO9Ie265uN3PKytS1fBAIIX4A/BDoKYR4rcUmG6mvIMURSDweR6f77v+9EokEt515JnTtelDzegIBHnrrLX46ffpBHa84+nnrD3846GOXbd7Mkqoqpo8+uPbNO3bs4LPPPmPLli1A6oHQBRdcgLlF/RYFPPTQQ7z99tv07NmTiy++mBkzZjBo0KDONqvDaesbcz7wY6BKCNGHVFHSZ4EZQojjpJTXHwoDvyvvuN3s8PlSvQg9HmKlpWSj8elnpCpaBr6UyKiApCAelyxc2D6xuhxYGg4jpUQjJVOXLWN4376cdNJJ7ba5s2kZMtyXVFsVCayMRnly7VrqcnNptNvR7/b5RCIRnE4nSMmmYBCHXt8qXBZSsejGUAidz0eRxUKRxYKJVIixqcUr5HbT5HKRX1CALT+fJKmw5ET6p8vrZbvXS05+PhqbDT8pr64faAyH2RqJgN0OwSCOSCRjRyQSyRTwIhjcpyAVUmL0+xluMFABWJNJNnz1Ffk+H6ZkMuX138c5Uxx7rGho4HqdDpEO/y31eDhl3Tq6ZOkG86G3PdzxPTsyJtiih4tfDnNBl3LKR49u93UnSbWp2Zr22OrjcSavWsV2KSlV1/TB8BmwndSzub+0WO8jFcih6GACkQjfP+MMampqSCQS3HTTTZx33nkA/P3vf+f1118nFovx4osvMmDAABYvXsy1115LKBTCZDLx5JNP0r9/f5566inefPNNwuEwgUCAm2++mZtvvpnCwkLWr1/PhAkTeOihh9BoWge79ejRg0svvZQFCxbw85//nPlPP82Mk09m9vjxvLVkCb984gmK7HZG9u7Nph07eOPmmwFYs3UrE2+8ka0NDVw7cybXnHkm1z/9NBt37KBy7lxOq6zk7ktU96NjiUAkwvdvu42axkYSySQ3nXce5+12n9njJz9hyb33UmS388fnn+fZRYvoVlREkd3OqD59uG7WLABe/PRTfvrII3gCAZ64+mqO69ePm599llA0yidr13LD7Nl7jJ2xIxDg6quvZuXKlcTjcW655RbOOusspkyZQn19PZWVlcyaNYu6ujomTZpEUVERH374YYefn8ONu+++mxdeeIFIJMKsWbO49dZbufLKK9m0aRMzZ85kzpw5vPbaayxatIjbb7+dl19+md69e3e22R1GW2I1X0q509d/EfAfKeXVQogcYClwWIrVZX5/RihUNDRQl0we9E3YfTffjGfrVgC+iMXwSklZo8CEDglopGDbx3DL+tbH5VVUcO0BhDwAPB4IZAoqDaqpwREIHBGhvweLAIYVF3P9iBGpQk1FReQbjWwmVXBoA/CF10t9MkkynasXDof3EKvhSIQtDQ0psRgO49Dp9tgnEong9PlAp0v1IzWbW+0Tadmv1O3GkZPTars3EmklOlvasbsgNfj9DDQYcJASzBvXrCHP56MoFOKcadN2CdL8fJwnndSqVZBCAbCxvp5rmppwm80gBD3tdq71eBg4fXpWrhM38OcXjKmHbQhkVOJ9KsmIl7JTsOlFt5vXNZpMi53Ja9aQF4monqoHiZRyC7BFCHE+UCelDAMIIUxAV6C6E807Jpi/Zg3l5eW8+eabAHi93sy2oqIivv76ax566CHuueceHn/8cQYMGMBHH32ETqfjvffe48Ybb+Tll18G4PPPP2fFihUUFBSwcOFCFi9ezJo1a+jevTvTpk3jlVdeYfbs2XvYYDQa+eSTT1L2/C2VuhyORrnioYf46P/+j56lpfzg7rtbHbOutpYP77gDXyhE/6uu4qrTT+fOCy9k1ZYtLPvb3/aYQ3H0M3/NGsoLCngz/UDDG9h3stWSqipe/vxzvrnvPuKJBCN/8QtG9emT2R5PJFj8l7/w1pIl3Pr887z3xz9y2/nns6SqigeuvLJNO+644w4mT57MP//5TzweD2PHjuXUU0/ltddeY8aMGSxLh7k/+eSTfPjhhxQVFbX/zR9hLFiwgKqqKhYvXoyUkpkzZ/LRRx/xyCOPMH/+/Mx5qaqqYsaMGXv93jjaaEustiyVP5lUSiFSyqgQItmhVrUDb0EBNDUhpKTE76d86NCDHsuzdSu39OiBOxCgNBZLCZMSOKnIgMtpokcP6NZtz+Nuqa4+oPHrSRUeQkq0ySSjN26k/zES/rm7B7F/+gVwnpT874MPcBuNBCwWBkyYQJzU+WpI/9y8m1jcq6Ddzz772240GmkGLJEIlmiUUYWFVAAFgCaZZOU332ANBsmLRPje9Om7BGluLs6RI/cpSJX3VLE7EeBWKXGbzUhAl0hwSV0dE7PU6iUB/BmI7xZ+aLVkJ8Tq64YG7vL7iaeF6oycHGZ37aqqVWeHF4ATWiwngBeBMZ1jzrHD0PJyrvvXv/jtb3/LjBkzWkU8nX322QCMGjWKV155BUiJ2YsuuoiqqiqEEMRimaYKnHbaaRQU7EpKGjt2LL169QJSuXqffPLJXm86d3pyW7KupoZeDgc9S0tTx0+YwGPvvJPZfsbo0Rj0egx6PSW5uTg9nnacBcXRwNDycq6bN4/fPvUUM8aM4aTBg/e57ydr1nDWccdhSt8PnTl2bKvtZ6fDCUf17k210/md7FiwYAGvvfYa99yTKnIeDofZunUrpn206jsWWbBgAQsWLMh0GvH7/VRVVTFhwoROtqzzaEusrhBC3APUAn2ABQBCiLxDYNdBIYFtWi1WiwWAH55wAo6SknaPWxcMIvV6INU+osAWYnC/9v9hfQopLwTQtamJ3Hj8qPaqHigOh4PvnXHGLrG3l3YXteEw//30U4JaLXG9nuNOPhkzEGrxcgJLa2uRySRaoDI/nzxSObUaUrF0yzdtQheLYYrHmXz88VQAlp0vgwGf0ch2lytlR8vk9/x8Th43TglSRbtJAH/w+9nYovLvlNWrOX5M9rTI/V4vnwLlF5ioe1oLMYleD1deaWn32FHgLiCu0WRysWdGo1lr6aVAJ6WM7lxIPzDO6UyDjhX6ORwsXbqUt956ixtuuIEpU6Zwc9oztfPBplarJR6PA3DTTTcxadIkXn31Vaqrq5k4cWJmLIul9d/a7u0A99UecPfjgEwxxn1hSN+vQOoeI55ItLm/4uinn8PB0r/+lbeWLOGGp59myogR3Dxnzl73bfvq2nV9abVa4snv5ruSUvLyyy/Tv3//VuurD9DJcywgpeSGG27giiuu6GxTDhvaEquXAXOBHsAUKeXOslyDOEz7vq2ur2dL2ltmjMfJP4DKWgdC3GqFaDSVBxuJYMtSr8CP09WFJdDH6eSEE05QAifN/sReF4eD8085ZZdYLCzcc6fcXJy9e+/ax27fc/ugQbu2F+xZisvicOwz304JUkV7kcCdzc287fGkwtGF4Ad+P5eMGZO1a+sFt5un0nn89PTy69fzyVtqY+LE9uXb7+QfgLtFm5rpK1fSo8VNuqLdNAghZkopXwMQQpxFquafooOp83goMJu54IILsFqtPPXUU23u7/V66dKlC8B+9128eDGbN2+me/fu/Pe//+Xyyy8/YLsGdO3KJqeTaqeTHg4H/02HCbeFzWTCly7kqDj2qPN4KCgp4YJJk7CaTDz1/vv73PfEQYO44sEHuWH2bOKJBG8uWcJlU6a0Of6BXl9Tp07l73//O3//+98RQvDNN9/s9cGmzWbD5/Mdk2HAU6dO5aabbuL888/HarVSW1uLXq+nZDfn285zdCywT7EqpQwBd+5l/WekCj8cdqxyucBkSj3d9/nY3tyclcIe3hZFD8zRaBt7fjdWBYOZJ6TlbncqLFVxwByIWNzfPkpwKjqT54B3pMyEo4/atImpublZuyaXAQ+3qCzcs76e84qbGHlDdryenwDzWrSpme10MnviRPU3lV2uBJ4VQjxAKu1/G3Bh55p0bLCyro5fjx2LRqNBr9fz8MMPt7n/b37zGy666CLuvfdeJu+nr/C4ceO4/vrrWblyJRMmTGBWunjNgWAyGHjoyiuZdsstFNntjD2AiKxCu53xAwcy5Oc/5/RRo1SBpWOMlXV1/PrRR1PXslbLw1ddtc99x/Tty8yxYxk+dy7di4sZ3acPufupyjtp6FDufOklKufObbPA0k033cS1117LsGHDkFLSo0cP3njjjT32u/zyyzn99NMpKys75gosTZkyhbVr1zIu/TTZarXyzDPP7CFW58yZw2WXXcb999/PSy+9dFQXWBL7Cyc56IGFMJLqRGIgJYpfklK2WRd79OjRcsk++jQdCG+4XPwuXWCpV0MDj3Tr1q6bplsuvphbevTgNb+f2nSYT//t29nh83Hr4sUkkkl+MnIk1594Yuvjqqu5ZT9PVb+tr+fcdBVgfSLBlR98wMwzz1Q3eQrFMcJzbjePpAsSudxu+tfWMmXNGs7MUl/orcDV4TCN6SJuRc3NnLtkCbNOPz0r429Oj7+tvh6kpK/TyQPdux9WlX+FEEullAfXS+EwQwhhJfU/+5A/Sm/v/+ZWPPzwQbdfOeTU1EAbN/UHy8KFC7nnnnv2epPeJi3OnT8UwmoyIaXkZ488Qt/ycn5x1llZt1XRgXTQ9bVXvuPf3c7rKxiJMOGGG3jsZz9jZHvFUEe/3yPpu2V3DuW1cBjwXf83d2SryggwWUrpF0LogU+EEG9LKb/oqAnNBQU4LBbC4TCVBQU4bLasjKvJyYFEIhVGl0zy+88+472LLqKr3c6Yf/yDmf37M6i4+DuNub6hAdJhyvZgkAHHSGElhUIB/3O5+LPPl8oNEoLxJhOXGI1UZEmoeoDrQyGq0xWzLZEIv/D5GJMloeoFbgea0xWz7cEgE1evZrtef1iJ1aMFIcQZwGDAuDO3UUp5YCXnFUcl/1iwgH998AHReJwRvXpxxbRpnW2S4iji8gcfZM22bYSjUS6aPLn9QlWhaAcdJlZlymXrTy/q06+OceOmaRlEa8iix1iTk4NJSmKxGC6gb1ERvdJ5q3MGD2beunXfWazmOhwQDIKUGJJJVVhJoThG+AT4q1aLJPWF6PB6udDlYkyWChJFgD8CNek8e10iwYyvv6ZLlh6IxYGbAgGq4nG0Gg05iQQzvvkGUzKp2tR0AEKIRwAzMAl4HJgNLO5UoxTtYuLEia2KLx0MvzjrLOVJVXQYz113XWeboFBk2KdYFULogB8Ds4ByUvdVdcA84AkpZWxfx7YYQ0uqJ2sf4EEp5Zd72edy4HKAioqKg3gLu9ju8eBsbgYpWb9lC84s3ZyFYjFC6cJN67dto7RFie2udjtf1tZ+5zEjLSr/6VSlPoXimOANl4t7NBo0Wi0IQaHPx8xvvqHn1KlZGV8Ct/l8fJVMotVoEMC05ctxBAJZE5J/aW5mUboglABuFIK+AweqvsEdxwlSymFCiBVSyluFEH8BXulsoxQKhUKhOBS05Vn9N6losluAmvS6rsBFwDPAns2/dkNKmQAq0+1uXhVCDJFSrtptn8eAxyCVF/PdzG9Ns8sFaY9FXAjq6uqycvOUTHsoABJpD2tL9l5wfj+2Op3IdEn6qEaTNVsVCsXhydtNTdzk95MEEIKBNhs/9XjoP3VqVv72JXB3czNvpIVk4GsDQ77Ipe/AQZw+Iy8rc7wNvNmiINTxVVX0LSxUbWo6lp0lNoNCiHKgCejZifYoFAqFQnHIaEusjpRS9t9tXQ3whRDi2+8yiZTSI4RYCEwDVu1n94OmIi8P/H6ElIQNhqx5Eix6PY1pgVpgtVLfoglyTXMz5QeRG5sTDkNarO7IyyO6Y0dWbFUoFIcfS4C7tVqSpERlfiDAlR4PE4YNy9oczwBvpIWkf2kOW35YzOaYhgWGPN5/H9qrVRc2NvJnnQ5t2ivcb/t2xmzZQvnQoVmxX7FP3kg/8L0b+JrUJfSPTrVIoVAoFIpDhKaNbW4hxLlCiMw+QgiNEOI8wL2/gYUQxel/sAghTMCpwLp22tsmPQoKsNls6HQ6bF26ZM1T6W3R9LhHSQlVbjeb3W6iiQTPr17NzP67a/r9E6mvb7Vc36ja5ikURyPvNjXxG48HmRZ5ecEgZy9dysAsRlL80+PhH14vWo0GhMD0XpxkVJBMCqJRWLiwfeOvbGjgeo8Hl9eLy+1muNXKrw2GrFUuVuwbKeUfpZQeKeXLQHdggJTy5s62S6FQKBSKQ0FbntU5wF3AQ0KIneI0D/gwvW1/lAH/SuetaoAXpJTfsU77d6N+wwaa9Xog5clYu3YtAwcObPe4/nTbGgCv3c7vR4xg6jPPkJCSSysrGbxb76MDYXD37q1XqMIkCsVRx9tNTfzO5yMhBAhBH7udn3m9DD7ttKyJvP+43fzN50ulKgjBBJOJyrEufv6kIBaDnBxoTy0XL/AHIQjp9UjAHIlwscfDcZWVWbFfceBIKSOkamgpFAqFQnFMsE+xKqWsJp2XKoQoJNXf7YDdf1LKFcAhTWRqrK6Gvn0zyxs3bcqKWB0gZSZ2WZdI8L3Bg7msnZX8Bg4cyNiaGhaniyt9WlvLWFWgRKE4avgQuEurJSEEErCFQvzU62VyFsNmPwIe0WgyOaRdm5r4kRCMvbiSQf1THtWJEyHdW/w7EyZVtMBvs0EwiC6R4Izlyxm8j4bvCoVCoVAoFNmkrTDgDFLKppZCVQhR2nEmHTyjunRptVzUp09Wxu1vs2EymdBqtUirFVOLasDtoSKRyBRn2m6zUVdXl5VxFQpF5/Ks280fvF5Ei9Df2UuWMOQgojD2xfymJv7g8aBJh/46mps5c/lyupeVASmBesMNBy9U48CNfj9LvV4ASh0O5kajXH7SSeqh2iFACDE+/dPQ2bYoFAqFQtFZHGyf1SeAM7JpSDYYNHAgo5uaWBmNotVq8VutWRk3F9BqtSSSSTzA+qoq+vfti7Wd44+xWnk5EAApqSsowKjrsLa3CoXiEPG4x8PfW4TlDrFaudzjYcCpp2ZN5L3b1MSNLcKLh1itXOV20/f007NWWfh2n4/33W6QEq8QXG+z8YODyM9XHDT3A6OAz4GRnWyLQqFQKBSdwkGpIynlYSdUd9JXr2dpIADRKK9WVTF06NB237wZAH26fY0E/Dk5+Hy+dovVkwoLKczJocnlosFmY+HChRQUFCivhUJxBCKBp4Gnhch8V5R6PFzldnPi8OFZm+cr4E8twovzAgEu83iyOseTwAfJZOZ9HLdhAwPy8yE/P2tzKPZLTAjxJNBFCHH/7hullNd0gk0KhUKhUBxSDigMeCdCiJkdZUi2sDY0ZG6wdtjtWQutLUuH8wH4TCZsB9GuZnesQEk4DEBSCLbk56tQYIXiCCQJ/Lm5mSdaVOTt6nIx6+uv6VuavayJt1wuftuisrA9HGbW119ntbLwUx4PT7V4H0Nqajhu8+astQJTHDAzgHdIpQ4v3ctLoVAoFIqjnn16VoUQZ+++CnhQCKEDkFK+0pGGHSzH5ebyeDCIkJLt+fmU2e0HPVZeRQW3VFcDUB2JsDzda9UaifBxJLLP3NW8iooDnuPEnBzWhkIgJRsdDoxG40Hbq1AoDj1h4A9+P/M9nkzo78kmExcIQfcsheUCvO5ycbPPRxJSfU5tNq70ehmSxfDil9xu/toihHmi0ciFZjNdVYuaQ066TsTzQoi1UsrlnW2PQqFQKBSdQVthwC8A84F6yNQBsgBnkop4OyzF6uiiInqGw7giEYxGIwnDwdemuPa22zK/L1i5km/sdiQQTCQ4u7k5K60bpufm8rJGg8vlYnNxMR8tWqRCgRWKI4Rv6+u5Ddis1WYiOvrX1fEjg4ExI7JXDP0j4C8aDUnIhP5e5fEwediwrM3xIfD3FpWFy91uzpeSUVl8H4qDokkI8SowntTH/wkwV0pZ055B023llgC1UsoZ7TdToVAoFIrs01YY8DjARCpF6lIp5SVAo5TyEinlpYfEuoNAA4w0GjEajYTDYT52u/d7zIEwvKSE/GAQAcR1Ohq/g/e0LXoC+ZFU27yoTsfGoiIVCqxQHAEsa2jgx243K0Mh/IEACMGozZuZuno1FVkMmX3Z5eKmFpWFCwIBzlmyhMFZfKD1EfBXwGA0ghAU+3ycuWxZprKwolN5EngNKAe6AK+n17WXucDaLIyjUCgUCkWHsU+xKqX8CjgNyAE+EEKMJfVU97Cnm8eD0+nE6/Hw4oYNOJ3Odo/pcDiYXV5Obl4eBfn5fBAMZmVcAZym12fyYdd07apCgRWKw5zVwPU6Hc1GY+pLUUrOb27mmtxczsxiyOx/3G7+6PPh8Xhwud0Mtlq5LR5nzpQpWZvjE+D/wmE86RY1o4uKuDWRYPa0aSrC4/CgREr5pJQynn49BRS3Z0AhRFdSFf0fz4aBCoVCoVB0FG0WWJJSJqWUfwMuAK47NCa1n9KamkwoW3VhIdXbt2dl3NNzcwkvM7Hu9gRvfQ7/e+utrAjW2bm5FObnI4CthYW89c03WRlXoVBkn3kuF1d7PER0OhACfSLBmcuWcVFxMSNGjMha65j/AA9rNMj0cqHPx5XbtjFh2LCsicgvgDvCYbbX1+P1eIht2sT1fj8nDh+uhOrhQ4MQ4gIhhDb9ugBoaueY9wG/IVUbTKFQKBSKw5YDqgYspayVUn5fStmrow3KBiOLizskZNf5OXw9Tc+Ou3NZ98NyXlo6Mishu8VAP78/s7ysWzcVCqxQHGZI4FGPh5v9fpq8XlxuN91zc7k5HObq44/PmrjbWVn44RYVeR3NzZyzdCn9s1hZ+CvgLiAQiYCU5AUCnLV4Mf7a2qzNocgKlwLfB3YA24HZ6XUHhRBiBlAvpWyzorAQ4nIhxBIhxJKGhoaDnU6hUCgUinbRVjVgLfAToCswX0r5aYttv5dS3n4I7DsoHA4Hs41G/hOPA/CVXk82GsMuWgiJKCAFxOH9R4eybvxWslF/5JycHD6PxUBK1nTpQiJdeVihUHQ+YVI5nW+36KFa4Pcz1+vllKFDszZPFLjV5+ONFpWFx5tMXOhy0XPq1KwJ4qXAH8Jh/JEIWo2GvFCIWUuWYIvHVYuawwwp5VYgm23jxgMzhRDTASNgF0I8I6W8YLd5HwMeAxg9evQRkQKkUCgUiqOPtjyrjwInkwo3ul8IcW+Lbbu3tTnsGBOL4Q8E8Pv9vNHYyJYshNVOnAg6jSDlYxHIpODped6shOyeWljIEKsVAcS0Wh6rq1OhwArFYcAO4KfBIG/v1kP13CVLGFJSkrV5AsAtwMfJZEYQ992+nUtqaji+sjJrQvUz4KZwmNp06G+iro4/aTScPHQoM1SLmqMeKeUNUsquUsoewBzgg92FqkKhUCgUhwttidWxUsofSinvA44DrEKIV4QQBna1sjls0W/bRr7fjwRiGg1v+nztHnPcOHjwQdDoAI1E5EgSk0RWQnYFMLFpVxrS1927s37HjnaPq1AoDp7lwE9DIZY2NuJNFzmarddzGzA7i57OdfX1/KS+niXpllsIQeWWLUxbtSqrlYXfB+4E/OnQX1soxFmLF2MKBLKWb6tQKBQKhUKRLdoSqzk7f0lXILwcWAZ8AFg72K5206W8nCF1dSlVLQSLjMaseCovvxzuf72Z0uu89HrWSeNUO5YuXdo9LsAZdjsF6VzbmE7HPItFeVcVik5AkuoVcjPQGI2ClGiSSU5ZuZIZO3YwOovC7uuGBi5zu1kTCmX+3q+227nWZstqZeF/u93c6vUSTgvi/GCQsxcvJi8aVaG/xyhSyoWqx6pCoVAoDmfaEqtLhBDTWq6QUt5Gqr9bj/0NLIToJoT4UAixVgixWggxt32mfjccDgfXDhtGrsUCwLpEgicXLsyK+PvptFzOulmP4+QcTDYb7xoM7R4ToNzh4LclJVitqWcB7+n1PP7xx0qwKhSHkAhwu8/HPV4vobSws0SjnP3VVwzesSOrwu5rWrfAEckkZ2/bxk/y8hiZxcrCj3o83OPz4U239apIJHissJBJKvT3sEcI8fsWv2fnn43imKfa6eS5RYsyywtXrmTGbbd9p+OH/Pzn+93v108+yeCf/YxfP/kkT73/PnVN7S1krTiS2Xl/2xb3338/AwcO5Pzzz+d///sfa9asOQSWKQ5n2hKrD0gp5+++Ukr5uJRSfwBjx4FfSSkHAscDPxNCDDpIOw+KPiUljEyHu0myV2VXANMjkUxO7L+amthYX9/ucQGmFhYyKF1oSQLzBw9m5YYNWRlboVC0zTbgimCQl9zujLDrHY/zz9xcZvTtm1Vh96zbzS89HmItWuDMWL6cWTZbVsaHlFB9Eni2RWGoUrebS6qq6FdSokJ/D2OEEL8RQowjVf13J593lj2Ko4vq+vpWYrWjeHT+fL6+7z7uvuSSlFh1uTp8TsWRzUMPPcRbb73Fs88+q8SqAmijGjDwEDDyYAeWUm4nVWYfKaVPCLEW6AIc0qvuHIOBDxMJhJR8W16O0WzOyrhdtmwhz2jEbTYT0Wp5MhwmG+WRBTBXo+GSRIKIVovXbOYRn48hTiel6qZSoegwXnK7eQQItShwNLC2lktcLgZUVkKWiiklgL82N/Nvny9T8beX3c6ltbWMzXILnLuam3lbykxhqIrGRmasWEGf00/PyhyKDmU9cC7QSwjxMbAWKBRC9JdSru9c0xSdxR+ff55nFy2iW1ERRXY7o/r04bpZs9i4fTs/e+QRGpqbMRsM/OPnP2dA165cfN992M1mlmzYwA63mz9ffDGzx4/n+n/9i7U1NVTOnctFkyczoteuzoSBcJirH32UlVu2EE8kuOUHP+Cs44/fp02JRILrn36ahStXEonF+NkZZ3DFtGnMvP12ApEIx113HTfMns2SDRs4/957MeXk8Pmf/4wpS1FpiiOTu+++mxdeeIFIJMKsWbO49dZbufLKK9m0aRMzZ85kzpw5vPbaayxatIjbb7+dl19+md69e3e22YpOoC2xmjWEED2AEcCXh2K+lpxUVMSJgQAr43G0Gg3/dbm4yuls9w1h1/Jyxi9ezJvDhqVyYs1mljU0UFlc3G6bh5SU8KMdO3g8NxeAbx0O7tqxg+tBeUEUiiwTBu72+XiphXjUJZNMWLuWwdu3031G9lL6AsCfgQ+lzAhih9fLXI+HicOGZW2eKHCbz8frLVrgTDQaOV+jofvpp6vvkSMDN3AjMDH9GghMBa5PC9YTOs80RWewZMsWXv78c7657z7iiQQjf/ELRvXpA8DlDz7IIz/9KX3Ly/ly/Xp++vDDfHDHHQBsd7n45M47WVdTw8zbb2f2+PHcedFF3PPqq7xx881AKgx4J3e88AKThw3jn3Pn4vH7GXvddZxaWYnFaNyrXU+8+y65ZjNf3XsvkViM8b/9LVMqK3nt97/H+v3vs+xvfwPg4bff5p5LLmF0374deZoURwALFiygqqqKxYsXI6Vk5syZfPTRRzzyyCPMnz+fDz/8kKKiIqqqqpgxYwazZ8/e/6CKo5a2xGovIcRr+9oopTygvm9CCCvwMnCtlLJ5L9svBy4HqKioOJAhvzMXWizcFIngdDp5I5GgeP58Zk+b1q4bNofDwTVjx7IlGmWVlDQHAvyhqYlHk8mseEDPczhYvHEjK9LFm97PyyO8ahV/AOVhVSiyxBbgLmBVC29qgd/Pz/x++pSVUT5qVNaE3aqGBm4DPHY7RqMRrxD02bGDKatXM3D69KzMAdAM3A580eI9Dair40cGA6Oz0RRacaiYBvwB6A3cS6o4dUBKeUmnWqXoND7ZuJGzjjsu45E8c+xYAPyhEJ+tW8e5d92V2TfSolf7944/Ho1Gw6CKCpxe737nWbBsGa8tXsw9//sfAOFolK0NDQzs1m2f+6+orualzz4DwBsIULV9Oz1LSw/qfSqOfhYsWMCCBQsYkf6f5Pf7qaqqYsKECZ1smeJwpC2x2gD8pT2DCyH0pITqs1LKV/a2z6FoPD4WyG1uxiklUa2WxT16cEJdXbtvQksdDr6/Zg2rLBYkUF1YyEs+Hz/Pws2tw+Hgz8BvPR6Wp59mftqnD3c4nfyOI1Ow1jmdbNqxg7yyMqwlJYRgj9cOjweP201hfj6FeXloAC1kfnrdbvwNDfQsKKB3URG5pEpTH/a9lBSHFRJ4we3mMSHQmkwZ8TigtpbJ69czIcvex/ebmvid10tIr4dQCIfDweW5uYxraqLL9OlZm2tFQwO3CoHPZsu8p8rqaiZUVdEtix5iRccjpbwRQAixHHiGVHRSsRDiE8AtpTyzM+1THHqk3PstUlJK8iyWjAdzdwz6XWVG9jXG7vO8fP319O/a9YDt+vvllzN15EFnjimOMaSU3HDDDVxxxRWdbYriCKAtseqXUh509r0QQgBPAGullPce7DjZQAAXaLXcLARCSlZ2744+XSW4vRxfWMjwqiqWd+sGQjC/a1dmkUrObS/lDgd3AFdt3862/HwAFuXmsq2mhruFoG+WcujagwSCpOLVdr42ezxUe72IggLiNhtuYHsoxIZwGJmXB+EwjkgEw275KpFIBGdzM2g00NyMw2RqtU8kEsHp84HBAMFgZgwNYAfy0j81Ph8al4thNhujCwrowiGKd1ccEbiBO/1+5u8M+21upltJCTfZbPQ2GinPolCVwEvAAzodIb0eCWiTSWZv3crlfftCFj2dnzY28qudgjgYpNTh4Jd2O8NsNspVxd8jmXeklF8BXwkhrpJSniiEKOpsoxSHnhN79+aKl17ihtmziScSvLlkCZdNmYLdbKanw8GLn3zCuSeeiJSSFdXVDO/Zc59j2UwmfKHQXrdNHTGCv7/xBn+/4gqEEHyzcSMj2sgVnDpiBA+//TaThw1Dr9PxbW0tXQoL9wgbbmtOxbHF1KlTuemmmzj//POxWq3U1tai1+sp2e2+1maz4fP5OslKxeFCW/fwm9s59njgR8BKIcSy9LobpZRvtXPcg2JmQQHzDQZWx+MYjUbeNBgYkoVxHWlB+SuNBo/dThT4TX09d0pJtyzcHFY4HDwC3OR287XJBMCmoiIuj8U4d9s2Rjc10b2sLOs3omHAA2xsbGRjUxP6khLIz28lSutCIXZEIuhaiMqM4ARwu3Hk5GAwGPBGo0hSN+9CSsLh8B5iNRwOZ8IW97bPvrYn07Z6ds7vdgPwP78fh8WC1WCgO9AT6EUqpq4HYMrqGVMcCbzucvEQ0NwiZ7TA7+enzc1MHzIE0g+FskEA+KPfz2eJRKbAkSUSYfry5Zx10klZmwfgC+DmFoJYl0jwgy1buKhfv6wKYsWhR0r5mxaLF6fXNXaONYrOZEyPHswcO5bhc+fSvbiY0X36kJsuGvnsL3/JVQ8/zO0vvEAskWDOSSe1KVaH9eiBTqtl+DXXcPEpp7QqsHTTeedx7eOPM+yaa5BS0qOkJJPbujd+MmUK1fX1jPzFL5BSUpyby/9uvHGP/S4+5RSufPhhVWBJwZQpU1i7di3jxo0DUi1tnnnmmT3E6pw5c7jsssu4//77eemll1SBpWMUsa+QECHEGGCblHJHevlC4BxSaV63SCmzXn989OjRcsmSJdkeNsM64NekBE04HOaOWIyTirLzgHoz8LNwmNr6epCSPvX1PFBRQVmWROR2p5Mb169naffurdbnxOP0aGxkXF4eXZNJehcVYZES544dOEpLKS4pwVlfT019PbmlpViLiggBtS4X1W43uqIikrn/3959x8dRn4kf/3x3Vzu72lUvI0u2JRsb496wwZhiMKGaQMrdkYQcCcnlSO/tkkvhLiG/Sy+EHLkA6QkhIQECJMQU02yqMRhXXGVJu6qrrbPt+/tjRvLalk3xytLaz/v12pe0s6OZZ0fbnn2e+X6riAAd8TidqRTZQADl89mJXyg0PECLaZoHJqUj3BaJRIgMDNgJJVBVXU1VVdXw+t5MBm8ux/SJE6kvL8cPw5fM4CCbn3vOblNyuZi7YAGBykpy2COoRgYHeWHTJiy3m6Rh0HjSSaTLy0kUHI/D7X8k1YkEE/r6OM/v57y6OrxF+U+J8SgGfCsa5Y7+/uHHLMDc3bs5c/t23lTEVlyAXcB/JhJs6OkZ3t/S8nLe0dHBTNMs6r7uAn4KpJznmC+d5rL16/m3s8464aupSqlntNanjnUcpa6o78033givsr10zLW3w/vfP9ZR7HfjjcTq6gj6/SQsi7M//3lu+uAHWSQf4EvTsXx8jYfn3Wjf3/FwH1+v8fZaM8pe63vzkSqr/wuc72z0bOAbwIeBBdjnmJbc0FynAPOjUe5yPrD+ZyLBz3M5WovwgW4KcOG+fdzs8aCB7Y2N/Miy+G+Kcz7lBNPkG8BtW7fy28ZGYk57TdrjYWtTE1ud9dRQi01VFaRS1Eaj9KVSUFEx3DoLEIrFwOOBSATT2Vaot9f+YB2PY5rmESudhbeVZbMEo1GmGQZlLhd72tspT6UIpNNcsHQp04AawyBlGIR7e2lubsYcaQqhykpCp5xCR0eHvU5l5aG3t7XZtzc2Dm8jA0SwB5Z5OZvl7xs30u/z0VtVha+xkdgIx9OyLDb09LBBa/4WjzM5EOAMn4/TgSXY58GK48NzwPeBHQUDDlUkk7w3HmdBMEhzkRPVh4AfAt2ZDPGny4it9bGwbRfvW9bLkiJWOXPY51nc7nz55vP5mFdfzztffpn5kqgKcVx63w038NLevaTSaa4+7zxJVIUQx70jJavugurpvwA3aa3/CPyxoK235Jy7axf3BgJk3G76y8u5MZ3mG0Xa9pXBIM9t3cpzkyeDUjxeU8P/7NzJu8rLi/LB0TRN/hnw3nMPL0yYwPOtrUQOSvoKK+VKa+KJxCEJp7PiEZdlk0maDQNfNMrg976Hv6ODxupqgl4vXqAllaKnowNPLodLayZNmoTfaVNuTiZJJBKUlZez9ve/Z+0I96V68mQ+dt11I97HIx2rkW4vA+qdy9S6OuYtXrw/4fX7iWJXvncUXF5MJg+4vxHL4nGfj8exB3OaC8zo76dl715mF7kSJo6NBPDDwUH+qjU+n294wKGZ+/ZxztatXHKUI4IfLAN8f3CQO539pdb72fGOCkjDavdcPnTHoD1EThFEsUcxfrKgw8E/OMiXTJPpc+cWZydCiHHnN5/61FiHIIQQx9QRk1WllEdrnQVW4kwv8yr+blyb09jIuc88w/2zZ4NSPNvYyDrgtCJs23Sqn9dns2yorKSvv5/fuFxs2bKFr1OcEXxN0+SKSy5haUcH1uAgDzz/PHtra+mpqGCwvBzL68Xy2P8eBTRWVdEdieDO5fDm88ysr8fQml3hMIZlEchkWLFgAZVa89xTT+GzLALZLG++6CKaqqsJNTTw36EQ18+aRTB4YL0xNnEi0WiUioqKQ257JV/Zteuoj8XhHJzQVgDznMuQvZbFrU89xY76enY0NWEUDLGfx04C7opGoaqK1n37+IjHw8q6Ohl1uARo4Ange8kkW5x5RiNKMb2hgY8Fg0zw+WgucqLaDnw1keDJgv25H2pCZRT5vCKvFBs21HLppUe/r13YU9OE2N/hMDUU4oIXXiC2aBGMg4HXhBBCCCGK4UhJ52+Bh5VSPdizijwCoJSaht11WZJM0+RTixeTzuXYXFcHwFf6+vhuNsspRfiQ12SafAu4tquLPqdy90xrK9/MZPh/FCfLL0zGpjhtsT6fj1QqRXNtLcD+ymJ1NSHL2n/dGQU5NHny/mXOoDJLzjpr/zJn+6ZpUldXN2IyGgwGX3OSOl5MMk3e59zfCTU1ZAyDtdgD1WzlwDbn3XV1XOfx8GfgCuAc7GquGH9eDIe5IZfj5dpaUun08P/wpFCIj/T3c/b8+eA8R4pBA38Hrn8Cdt/nwj2/jPLFaaZ1dXFRW4qPeU8mnQavV7FixdHv73Hg+lSKiGUNV4tn7tjB4u3bcbtcNDc3H/1OhBBCCCHGicPmTlrrrymlVgMTgL/r/f2lLuxzV0tWkzOC73uTSTZ3d4PWfCQa5adaF+X81TLgK0rxkZ4edtTX2xXcqio+0NnJp93uok45c7i22cJlI63zapcdzw6+v5OAfwL6gPvyeX7b18ee2lpQCp/Px27scx9/DqwCLsaeKkeMvRzwi4EBbojHybhcEApRW1NDIJ3mzM2bOTkcZkaR5xmNAtdHo9yzVvHC5QHyaQNVZvKmrz/JxZUbuWzVKuauhoceghUrwBn08HXRwG+An1sWIWcQt0Q+z3VVVSyeNYuO6uoDvmQSQgghhDgeHLHQp7U+5HRDrfXWkdYtNRXAm3ft4uvl5WggVFHB1/N5bqA41c9JpskNwA/SadZVV9PX3886rfnXTIYvu91c5FR1S9U1f/kLd2/dSmMgwIsf+AAA67u6uPbuu0lls3hcLn586aUsbSnGjLPHVi3w9poaVqbTPB8Os6G1lXWGgXNmLwPAr4BfplIsCId5t8/HSdJ6OWa2ADcA65Ui43INn4e8bGCA91ZWEpk4kealS4uayG0AvpZMsrm/n/D9FeTTQE7hApp3TOayL05xvgw5uiQV7LaWbwPr2F/xr0wkuPS555gwcybmwoWSpAohhBDiuOQa6wDG0oraWs7dvNk+D1EpdtbW8mPsKkYxNJsm10+axBucUXY1kCgr4+seD9cPDrJ2/Xp7cJQS9K4FC7jvqqsOWPaZ++/ny+ecw/prr+W6c8/lM/ffP0bRFYdpmlwwdy6fqqzkFuBq7EQW7NGE94bD3KU1b49G+W1/P/kxjPVEFAGuHxzkfZEIm522WJSiPhbjn556io96vUw1TRYWMZnLYlfWvwh0Om3G5aencHvyuN0ar1fx9rcXr8K5D3h/IsHfIxEs5z5O7uvjn9etoyGZlLZfIYQQQhzXSnagpGIwTZPPL1hAXTLJI01NGIbB3ZZFtLOT9/r9RfnAqYD3+P0kn3iCf8yeTcIwcLtc/K6/n7v9fpasX8+nFixgYolVRs5ubWXXwMABy5RSDDpT40RSKZorKsYgstERxJ6r6Qrsk7d/GokQcr6ASHk83OhysQ64FnuKJDF60thzi/4ilbIfg848ppMaG/loZSVze3uZPApTt+wCro/H2ZTNDp8vms5kuNT1HHzCjVIrWLWq4qgrqUMeAr6dSrHHmas1ohTvqqriX5qbCYG0/QohhBDiuHdCJ6tgJ6xfxD4X8R5nGojblGLn5s38N8UbwfdDy5ZxQVcXf2tqYo0z32PU5+PBU05hh8fDvwEXAt6j3tvY+d6FF3Lhr37Fp+6/n7zWPH7NNWMdUtF5gHOBmVrzgw0bWHPyyUT9fnw+Hy8DnwaWRqOcvXMnp5xg5wCPNg3c1dfHLfk88YoKUpY13LHQ1t3NRyMRVs6dC0WcyxTsauofsNu+9zldEhGlWFlby/sqK0m2ttK8rBnTLM6XMxb2JNf3AxHnPrryec7buJEVLS00L1xIszyuhBBCCHECOOGTVbCrnx8CXurrG66WPdXWxncyGa4H3EXYx9BgPmcCf+rr45uZDMmyMlCKVDDIDy2Ln8TjXOh2c3FVFdOcuErJjU8/zXcvvJC3zJrFbRs38p477+TPb34zfbEYZRUVuAIBkkAKeCmd5jPt7XirqnBXVJDEPjevN5kkmkgQKC8n4Pfjxj7+ViKBFYthlpfTEgxShT24Ua6/n0w4zMLaWuY0NLD2iZEHtHniMMtfrybT5KNLl3JFZyfPNjVxv2GQxm4Pvr2/nzsDAVY8/TSfOvVUSViLYCvw/XicR2Mxu5KaSFBbU0NNIsHyzZuZ0tfHnCIPoATwRE8P39eavsrK4eTYlc+zbPt2rqqv55SFC4s6Vcxe4MuJBNszmeHqrSuR4MLnn6cxHqd5yZKi7UsIIYQQYryTZNXhAb7gcvHh3l5219WBUqxvaOBrwGcBo0j7UcBbams5NZPh9nictRMmEAH73FWt+ZlS3O3zMckwWAbM6OkhsHcvLeOs5S8HJJyfe4H+ZJKb16/nreeeyxqgctYsHr/zTn6dzZL3+SCbJZjN4vZ4yGWzbEun2ZLLQX8/pteLYRhYlkXIGZ2ZeBzTNPcvd1ohX0ylMMvK9i+PRsHng2SSyocs1l5ikEtDmVfztZ/u5KrzA+zcYbJyJc4UIrB6dXES1qEvIJYCbwZ+BtzrDIBjeTz8fc4c8pkM/wWUH/3uTkgbw2F+lsnwYn09qWx2uJLqT6e5IhzmrbW1hNvaaD7jjKI+P9LAjZEIt8Tj9jnsySS1NTVMiEQ498UXqU8maZk37xW28to8AHwnlWJvQdvvFTU1vLu2lv4ZM6TtVwghhBAnHElWC7SaJjcC381k2NDQgGEYPGpZbB8Y4EtKMa2IFZRW0+ST2B+Kf/zyy9yWyxEzDJTWpFIpwobBbZZFKJGgrKqKhlCI8/x+FlRWMgWYTHFbhjUQxx60ZgDY2dfHzv5+PPX1bMY+T9MCopkMsWwWysroA2LAQ9kssXSaYCDAHdu3s+iUU9i0Zw+NNTX7Bx3SmqyTrGaz2eF9Dt1fwzAOmNv09Sxvf1CTTQM5OzH99vM13LGkm6r7qrDSPvLO8oceKk6yWqgR+DywNJvlumSSAb8flOKFhgY+it0efHJxd3lcGwD+b3CQ3yQS5JQanorGrTVz9+xh6c6dvPWiizBNk5YiJ3AvAT9wfmrn4snleGN3N1eaJl25XFETRwv4CfAPsM/51hp3Ps/ZmzZx+YQJtC1cSJskqUIIIYQ4AUmyepAW0+SbwC+AXzvnsIa05l/Taa5zuzm/yFPOeIG3BYP4//pXdtXWsqOpCcs0ybF/moq0201HVRV3ac0a5+8yqRTuRIIGn4+m8nIqsKfjyUciRAcGqKqupqqqavjD9kAkQk8kglFTQ5nTdpsCehMJupNJsoEAbp8PsFtZQ7EYeDwQiRDI5dgL5LJZYokEaM3Nf/4z2/btI5ZM8tHvf59LTjuNd6xcyR/WrOH2NWswvF6uufRSUAp3Pk9ZLofpclEJuJSicXCQmS+9hJHLcd6yZUwE4pkMjzz2GCqbxeV2s/KCC6gFQuk0969dS0YpLMNg/tln4wb2AGs7Oxk0DHoqKzHOc7Hnm5BPa1SZPUprzDCIn5kFL6g0KK8m07abrpC/KOcjH2xlXR0nZbP8qOALjy7go6kU53V28s7y8lHZ7/Hi5XCYXyeTPGmaDGpNTqnhLyNmR6P8WyBAvqKCZidRLaY48OPBQe7WGsNpwY0oxcTeXlZu2sTbV67ENE0mFHG/u4CvJhK8fHDb7/r1NCYStCxeXLR9CSGEEEKUGklWR6Cwpynpb2/nFo/Hrjp6vVzn8bAdeDfFawsGu530iksvpaOjg+bmZup8PjYA9ynFXZkMCefcVl9hMhkOg9a0x2IHtstGIvZGIxFMn+/A5Vof2nbrtBwWtt0eXLHM5XIAdkVU2xP7vOfii6nyeqktL8eVTjMYCuHJZjn/ggs4qbmZGr8fP5CNxUgmElRUVBD0OrVgw2BBTQ1XNjXZFaqhLwDq62lduXL4OJgNDQC0NDTQsmLF/uU1Nfb6VVVcOWUKHR0dTAgG8Zzj5S+r4e57U/S17SIx30taldF4dhnLVkPoH1n0nB7+uEjxcE8P7/d6ubymhrIi/i8B2kyTbwFrsOf/7Hf+X79yuXi8vZ1vA1MlYT1AP/DzSIRfxeNkXC4Ih6mtqQGlaBoYYPn27Vy7fLn9mHAeF8WigQeBG5NJthaMLtza2MjnKiqY0dtLi5OoFkse+BNwcyrFvoK23zfX1PCu2lr6TjlF2n6FEEIIccKTZPUI3hYM0r12LatnzSJpGPh8Pv4KrAc+QXHbOofOfxyyCFhUWck1ySSbQyGslhYihsFO4MlodHggqGK20epEgibDYJLHQ2dPD75UikA2i6U1y4F8Pk9HezvubBZvPs/JJ59MEMDrJVZTQzQatZNSv3//HQsGqQ4GD7m/fr+fhSOM2nrwcXity9+zDN6zzE8oVMuejg6ikyezzTBYuwxcs+JEBiw00BMM8gOXi9uSSRZ3dfFP5eVFTyDPBmYAnx4YGP5/7aiv5zNuN98FJhV1b6VpYzjMb1Ipnm9sZBDIuFzDj8emZJLPBgI09vbSsnz5qCRuT/b0cEMuR2d1NSln3tSh0YU/NjDAefPmwdCXI0XSAXwX2AzECtp+z9m0icsmTKB14UJaJUkVQgghhBi9ZFUpdTOwCghrreeM1n5Gk2mafOT007mwq4t7Jkxgo2HXU/cBH0mlOKuri3f5/UU/Z65Qk2ke0jYayuX48wMPkHC7SRsGS88/Hy+wJ59nzfbt5LHnPF28aBE1QERrntm2DVcuh5HPc85pp9GC3Xb7+Lp1lFkWgWyWN11yCSZAIEBo4sThSuaNhkErQHk5DW1t+5PSgiQ0GAwecH2sFSax5wHvA9ZlMtzQ3s5LEyaQ9Xhwu1xs6e5mi8vFHdEon/R6eWtNTVFHYTaB64H/2LOH9ZMng1L0GgbX9PfzIa25vLa2iHsrHVuBX0aj3J1M2uc1F1RS66JRTtu5k48tWUJTXR0UufUeIIrd8vvboQGUnHNig5bF8i1bODkcZnaRRxfWwL3Aj1MpBi1ruO3XF41y/oYN1CWT0vYrhBBCCFFgNCurtwI/wj79s2QNJT1nYQ+AchP23IehcJjblOLv/f180OvlzTU1x6xMbZomV1xyyf62WOfD/PKaGs6bM2f/8upq+w+qq1k1d+7+5UMJUn09M845Z//ygqT4cJXM8ZaUvloKOL2+nim5HNu6utjU2sqd6TR9TiUtWVbGD10u1gH/Dkwv4r5bTJP/Ae4aHOQ20yTU3w9a8yWleDyT4fKuLk5qajruWz6zwL19fdyeydiVzHyePPsH2mpJJvl0MEhTby8tS5aMyvHIA3/HflFqd/73GnDn85zb18fVVVX0TZxI89KlRd1/D/agTWsLWvijwLVVVVzW0EBo5kxp+xVCCCGEOMio5Vda6zVKqbbR2v6xpoA3APOAzxW0dQ74/fzI5eJvwFuB86Ho50CO5GjbZV9p+fGqcL7bS0IhvrtxI0+cdBIxvx+fz8cW4EOWxeJwmH/3eovWjmmaJu81TZo2buT/ud1E/H7QmvtSKR7x+1n+zDN8cvHi43LwpTDwN+DOZJKtQ/OkOpVMnAGMTt29mw8sW0ZTbS2MUrV5M/C9eJyXstnhqmZEKVq7uzln61beed55mKZZ1BZcDTwE/C/2AE5Drfc1sRhveOEFls6YQfPChTQfh/93IYQQQoijJeesvkYm8HXga9u2sW7KFNJlZfh8PsLAj4HfA28BLqS4U8uI4msxTT69eDE7Ozt5uqmJ1YZB3BkB+q9a83hfH//jdrO0vr5o+1xSX8/b7ruPh04+mS3NzWggZhj8ffZs9mQyvHnzZs6pqSn5pDUNrAP+EovxVC6H4fMdcE6oO59nUSTCv5SXU9bbS/OyZaP2pUkH8HPgQcsi1Ns7PJjR7IYGPh4IYPb20uIkqsXUB3wrGuXRfB6fM9iZ3+fjpN27WbptG16gubm5qPsU4pUopSZhNxc0YTcb3KS1/v7YRiWEEEKMbMyTVaXU+7BPKWTy5MljHM2rM8E0+U/g5c5ONra18ZBhMOjc1ovdKvyLZJLTOztZFQwyo4jzs46F6smT+cquXUXf5ngwVGk9HftLhq/29Q1XzfvLy/mcx8PVAwPM3bmTliK0aZqmyVsuuohlHR1s0pofZLMkndGeN+fzfN3v56c9PVyVSjG7r4/JJdQaqoGHe3q4J5ViS309SaUI9fUNj65bW1NDIJ1mZns789rbufKCCzDr66GIXwYU2h4Oc2sqxTONjXh8vuGqpjufZ/HOnfxbXx9LFywo+jmxGrvV+MZUip1Oy3dEKeY0NPAffj/1M2bQUVEhbb9irGSBT2qtn1VKVQDPKKXu11q/NNaBCSGEEAcb82RVa30Tdn7Hqaeeqsc4nFdtKMk5A3gn9sApfwIGsKeW2dPdzVa3m18mk5wZj/OGQIAzgOJOunFsfOy668Y6hGNiAvAVl4tvbdzIg6ecQtbjQbvdfKe/n7Zcjgvvu4+3vMr5Pb/3pS8xsGfPK653ZjLJy7kcHR4P6WwWsL/w+D529bEymWRGVRWNPh81kyePu/9FHngJeAxYnUyyxZmHl3CYYCAwXEmd3NPDW5NJ3lBdTbi6muZZs0YtUUsAv4hE+FksRtrthnAY0zTx+XyYoRCnb91KtWXROnt20fe9vrubH+RytNfUkHJG+tXAnL17+VBfH7MXLIATrPVejC9a606g0/k9qpTaBLRgP5WFEEKIcWXMk9XjgQ94E3Ap9rl5P3XOyxvKvDdks+wG/g974J4zgOXYydGJTgM7wmG2h8NUNjURqK9nX28v4Z4ezPp6GurqGOjtJRoKcVJDA8F8noERBoQqlianNfgN3d38acoUNjlzy+5saOB3S5fS2tPDpa9ivwN79vCVtrZXvd9wPM6jvb10V1SQVweOR+z1eikH/rB9O6djnzdd/pruVXFFsKdvWhON8kQmQzYQwDAMIgVtvkpr6tJp5uzYwfR9+6ixLC5etQrTNEdt9OwUcDf2l0btQNrtHo5lYn8/n29qorK1lY6ysqI/ftLALQMD/G88Tk6p4XNyq5NJVmzcyOSBAaYWeXRhIY6WM67EQuyufSGEEGLcGc2pa34LrADqlVLtwJe11j8brf2NB17gMmBhNsu3N21ic1MTnTU1+Hy+4XW2OZefA42JBFPDYU6tqODUujpqoajTpoylPaEQW8JhfBMm4K6vZwDYFYmwe3AQXVNDNhikHwilUuxLpaCiAhIJaqNR+uJx8PkgHqfW67WvBwKQTALgDwZp3LePJX19rKqvZ2FDcevVpmlyoWmyEvhhJMKtSqG0JhII8IPqajq3buWyqqqiJjuNgQAXaE1vLEZHeTkvZTJ2VVAp0pkMaa3ZmU7z+WgUcjlOLitjQSBAQ38//n37mN/QwMRRSAJ3h0Ks7+0lMWECvTU1PJdIsC2Twe1y0ee0uBKLDVcu05kMJ3V1Mauri/ecdRZq1iw6qqtHteU1hf0l0a+SSULp9AGDJ9XGYizfvp0Pn3YaTTAqVc1nsAdQ2qwUOaXQgMsZXfjdNTX0TJ0qLb9i3FFKBYE/Ah/TWg+OcHvJnaIz3rR97q/s+salYx2GeA3aHnMBsGt5fowjEcda22Oucf1/b/vcXwFOyNeU0RwN+G2jte3xbqJp8rmFC+no6CDo9/OyYfA4sAHIOetYlsXTPT08rRS3xeOYwSANhsFUYAow1bm0AO6xuRuHsLDbnAewq2sRYNfAALsHB6GmhlxFBX1AZyrFbsuCykpIJDAtC4BQJGInN319mGVlGIZBrKBVUmlN3GkjHek62q5VJ7xedtXVsQu4PZlk+r59vM3v5/La2qI+oD3Ax6uqmJbL8QOlyHo8dPX380PD4KGXX+ZrUNSRY4emBWoF5sRi7E4m2et2sxfIuew30L6+PgDWKsXWfJ6+aBQqKlCpFLOTSZpyOcr6+5lcWUlrVRX9u3bRt3cvbS0tzJg6lUhPD52hELWmSVV9PaHeXtp7ezEaGnDX1NA+OMieaBSrupoel4ttlmV/URCNUuvx7E9QYbhzIGBZnBoOc+WkSdRXVBCKRmk+66zh5Gy0krQ48FfgL0C3ZRHq7h4+P3RufT3/HgzS1tvLxNNOG5UYXgqH+Uk2y+a6OgzDGE6QzUiElZs28e5zzsE0TSZJkirGGaVUGXai+mut9Z9GWqdUT9ERQghxfJE24FFSOCXMdOAiIAY8CTwOPJBMHpCUpVIpBg2D9dgtlkPKgMZ4HP/AAC0VFUysrKQCqAAqnZ9Dvxu8cmU2j12JSgHJgp/7envZ29dHWUMDqrr6gIS0M5kknEqhyssxDGN4W5ZlERoctJOX/n5Mr9duBz0oAU2lUvYfHLRs6AN+KpfDZ1kYuRxTAgHCPT3Dg/I0T57M7v5+Uh4PVlkZSa+XjJO42ZvUbM1muS4W42fpNO/xenlzbW1RK9SX1dYyH/h4T8/wvKwvtLTwCbebrwMzXuV2UtksZ99yC1YuRzaf560zZ/LVc8/lPx94gL9s2YJLKRoDAW694gqaKyqYEwzSFouxZds2ooZBXSyGHhyku7Ly0EQe2JVI8GI8bh+7SISKfJ5BpcCpilT29xNNJCAYPLCKbRj7k9GBAfvve3sPOOe0cH9Ka5oGBpjU28vk3l6aolHeuGoVJoBpjvo0LBHgV5EId+bzaOcxOTR4UiCVYsmOHVzV1MSShQtHZRqcNHDrwAA3xeP2YzEUwjRNag2Dd1VUMKO3l4lOoirEeKOUUsDPgE1a6++MdTxCCCHEkUiyegwFgfOcy1WWxY0vvMC+qip6q6ooM01G+uo6Zlm87Ey3wcAApmEckDAWyqdSZJJJDGfOUM3+6pfGnuMxZlnD02gMsSyLUDwOXi8MDmL6/cO3WwUVK6JRTNMcvm0oQRgpAY1pjd+yCKTTLKqroyqfZ8fOnfhTKYKZDJcsW8bJQLVh0B8I0BGJ2K2S9fWEcjk6hs5LbWgglM/b1xsayANP7NrFYz097GhoYHdDA1mXC6017ZbFdek0f4zH+aTPx+IitgdPBr6Zy/HpcJjtjY2gFNGKCj6aSnFWVxdX+/2v2IZruN08cPXVBL1eMrkcZ95yCxdPn86nly/nv847D4AfrFvHdQ8/zE+c8xuDwSAzpk8nGo0yJ51m7pNPknC56KmupmrJEtb09NATDBIbajUv+H8kE4kD9p88QtV6pOsAbq0JJpM0xmKcNWEC/c8+S31/P36tOeOMM0jV1h6zFtc9wJ+Bv6VStA9V6aNRjJ1NWA+XM6NiE+dWbsQLTF60qOj718AT2J/ytylFxuUaPlbzurv5z4kTqaqpgZqaou9biCJajj0u4AtKqfXOsv/QWt8zdiEJIYQQI5NkdYy0mSafWLLETsJMk0afjy5gJ7DDuewEXj5MQngwy7IIhcMjJpUH3x5R6lUlnQff5s7n8cViTDUMqgG3y8WO3buHE9CLTz+dadgJaNzvp7O/305kgkEAQjNn7k9CC6YrMQ86j/CVrr/ZNFkeCrF161aeX7OGDS0tPN/aStLrRWvNi1rzvliMT3g8vL2mpmhV1qmmyQ3AnwcHuWfSJFJAZzjMbUpx38AAny4r47IjVHWVUgS99uy7mXyeTC6HAioL/k/xdPqQvx9qD662LFatWrX/GJom7ygro6Ojg/rqarrzeW5//nmihkHKMKhua2NrdzcZt5ucy0WtaRJ2Bv/yaM3kQICuvj482SzlmQxz2tpo37YNn2VRZVm89cwzqfH76ervp3nyZEzTJOTs71glqBq4v7eX29NpdtXWYhgG0YLKvfuxPOuv8ZDPuNhadhqX3FjDxRdXFz22XcD3YjGezeUOOCe2PhplxZYt/Pvy5VQVdY9CjA6t9aMcP8MjCCGEOM5JsjqGDk7CJjiXMwrW2W5Z/OrZZxn0ekkbBqcsWYICos5l0Pm5d4S24sJktTDpLMtm8cbjTDAM/EDO42FPby9lTtJyZlUVrUAVkM1kePLxxzFSKXz5PJcNtXsCVFQQmjFjf/JSMF9lhWnSdFDCcPD9LcaxO/nkk5m/dSsLHn2UdVOn8nxrK3mlyLpc/Dif5/GODj7h8XBSkea6bTJNrjVN3gx8rqtreE7WQZ+Pb7ndPAq85wh/n8vnWXzTTWzv6+ODS5Zw2sSJAHxh9Wp+sWEDVYbBg1df/Yr3e6Trk4CW0047IJnclEyyY8cOpk6dyswJEwi5XAd8YTBcxR5KRt3u/bc7x2zCEb44GC0R4B/AHYkELwy1Njvttj6fD180yoKdO9l+exMvZFrJ5QAUnZ0zKGZ4PcCvgHstiy5nztiIUpzU0MDVTsvvpOXLpeVXCCGEEGIUSLI6zk1rbOT9Z5yxP4GoGrl+E7Is7njgAbKASykuufhimpx1FRBOpbhn9WpULofb5WJVYdIZCBBqabH30dqKWV29f8P19Zx83nmHraYdq+TlcAqT1rlbt/L42rX8be5ceisqiMXjPKo1G6JRvu1ysbSgmnu0GoGvKcX1W7awbupUUl4vPp+PTcCHLQtXIsHuRILJ5eUHlDDcLhfrr72WgVSKN/3+97wYDjOnsZGvrVzJ11au5PpHHuFHTz7JV88993XFdfD/Y+bMmcycOfOwt7/S9WNJAw/39vLnVIqtdXW4fT4imcwBX8LM6O3lA83N1DQ00JnJ0HFNK/fdq0in7S72FSuKE0sCe/SZP2Ofo5p0vuxRWjN3zx7+vb+fM+fPl5ZfIYQQQohRJMlqCXg1CYRpmrzpkksOm1ROMk2uuPTS15V0jnVC+moMJ62hEOd2dvIHy+LvXu9w1fPzHg9fBF5fCjiyCabJF+bPZ3tXF082NLDGMIhbFqFQCFc+zz2ZDJPSaeZ5vUziwL67ap+PFa2t3Ld9O3MKqr5vnzuXS3/zm9edrJaifcCDwD3JJBuHqqjh8HAVNZXLcUp7O/Pb27lq5crhgZyaTJOFC2H1anjoITtRXbbs6GJJA/cBv0gmCTvT4Aydh13T28uyzZtpSCaZLnOmCiGEEEKMOklWjyOvlFSWQtJ5tIbuY2sohHfdOv42Zw4Zjwe338/1lsXqUIhrDaNoc5IO7W85cCXw9d5eQs7gRGhNdz7Pw9ksZek0dakUM8vLmejzkcxk+MfOnXx2+XK29fYy3WmhvnPLFk4pYgV4vIoAd/f387d0mq7qansU6XT6gCpq08AAV5sm0wMBeisqaF65csTH77JlR5+kZrHbjn8P7DtoGpzT6ur4UCCA2dJCh1IyZ6oQQgghxDEiyao4LpmmyUdOO42zu7v5zdSpdAKhUIi7tOaJnh6+4XKxpIijBYN9vvEX3W5+vmYN9yYSuLAHVYo51cIX+vp472234XYGOLpy9mxWnXwyb7ntNrb09OBSitbqan5yaelO+PzEE4evcvZhT9v0OPCMZdEVjR5yLqqVzTKts5O5+/bx7hUrhquok0cpOcwDd/T18et8nlhFxQHT4ARTKZZt28bbW1qYt3AhnABf9gghhBBCjCeSrIrjlmmaXGianA18pqNjeDCknmCQz5aV8WHgcsB15M285n1efe657P31r3lLWRkvJZNsyefJulxMrK/nK+96F4YzzUw+m+XOWIwvvvGNTPX5qKS0h+h84glYuZLh80f/sRrMZfDgwACPWBadTgUV9p8DOjTK9PTeXt7R3MzkYJDuQIDmFStGNTHMAg8Dv0gkWO+MkEwiYVfKvV7mb9nCrL178QItS5aMWhxCCCGEEOLwJFkVxz0/8AW3G158kcemTyfnduPx+7kZeBL4OPaAScVimiZ1dXXUBwIsisUo37aNvvJy+ioqyAaDpPZCbEceGlNEJ2TZl8vxosdDhcdDrWVREYvR4vPREAiUVPL64ENgpTX5nCKV1nzgIUXjIovQ4OABFVTDMPD7fAQHBjips5NTwmHeeuGFw1XUYrVojySN3e77RyAMBwzg5EuneUNHBx+eMoXI/Pl0NDRIy68QQgghxBiSZFWcEJpMky/On89z3d3cMWUKHU6F7xnL4qpEgncCb6upKfoTIhgMcsr06USjUSoqKgh1evjNLyCXUyhXgOq3xPBOyJHNZokCnakUuN2QzVKXyWCWlVEP+BMJuvr66AqFDpkSaCxo7GldtjuXl4GHl1nosjJ7hTKN94zMIXP4Tu7v5y1NTZxuGKSbmujI52leuHDUE8I4cNvAAH/K5bCCweEK79AATvN27WLR3r285aKL8AE+afkVQgghhBhzkqyKE4ZpmlxkmpyPPZDOL1MpQuEwaM23lOIfhsEHy8tZQnHbcYPBIMFgEIDnngOdA7SCnCa4xSJYaaGDQZLZrF2BBNCaeC7HvrIy9mSzxDIZ1nm9vDEeZ1E8zvRAgBbA19dHLhRiWn090xoaKC9S7GnsOXx39PSwtbcX3diIVVNDCAgBu1Mp+i1reLRcgNzCFFN/3UdsrY/g6Sl8C8pp9Hpp6upiYk8PU3p7+eehCiock3NAu4C7gDtTKfYMVXjjcUzTpMEwuMIwWBwIEKmpoXn2bElQhRBCCCHGEUlWxQnHA7wDKN+xg+8qxUB5OUprdmYy/BcwD3gPMHUU9t3WZhdOyYHLBYvbYFpVFeUeD3vTaZ4fGCBqGMR9Pjwe++mZLUhiLbebl7JZ9gGWZRGKxaC8HJJJTMsiaBhUAfneXpL9/dRXVdHc0EAZUAYkBweJDA4SqKrCV1FBBsgAA/E43fE4uqKCjN+PNbT9RAJ8PohGMcvLMQzDXu4k+RGlhlt7fT4fNQt6OaWtk9a+Pq5Oz2dJVRXhtjY6vF6aTz31mCSDGni0p4fb0mm21tXhNQwiljVc4Q2mUly8bx/vnzoVH4Bp2hchhBBCCDGuSLIqTlhn1NURvuce1k+cyNMnnYTPGfhoA/B+y2JedzdXe70HzIN6tCZNgn/9V9i1C9raFJMm7Z+mprW8nLr6ertluKyMnMdDL9ChFDvTaVxak1dqOM6DW2xTqRSGYbArGqU3FoOyMkgkqItGCVZU2EnmwICd+Pb3Y3q9+5PP3l67mvtYHvViGeb5HlyzRt5+KpUi/nQZqce9TJrTw7Jzu1jZ2so0w8AVCNAZidA8dy6mM9rysZoyKQk8BPwpkeDJROKQkYbdiQTzd+5kZlcXV1x6qZ2oCiGEEEKIcWtUk1Wl1EXA9wE38H9a62+M5v6EeC1M0+SKSy5haUcHnwgGWW0Y3AskLYtQKESX1vwjmeSyaJR3VlQw/TVsu3ryZL6ya9fhV5gE5IDDrWJZ0NMzfDWZTHJ+XR3v9vnIGgb7gJeANT09xMvKSBoGlU47bjyROGBT8USCYEXFYZPboeWxZ7zsfEcjOqPYcT2suMdHfUMMv2VRlUqxoqqKGcCmxzUfflsD2YyLsKeKL94xyNmtwwf1mJ9TuwO4FztRTXHgoElKa9r6+nj/hAlMqK2lM5WiefFiafcVQgghhCgBo5asKqXcwA3AG4B24Cml1J1a65dGa59CvFaFVb/pwKXA1/v6hqe5yQMP5fM8B8wB3gSv6pzWj1133egF7cRyYVUVb584kY6ODpqrqzF9PlLAk5EIDz33HBm3m5zLxdxFi2gBwvk8j23ahHbmeT3r9NMxgcFslsefeYbH/jCNnWkT8gqVhvOfMLjmmnp7+yedhFldDcBj66vJ5zRaK/J5xYYNtRzrqWGjwCPAnfE4L2WzB5w76/P5iOfzTO/sZNHevVxdMF/reBicSgghhBBCvDqjWVldCmzXWu8AUEr9DntaS0lWxbg1CfiKy8WNzz7LU21ttNfVDbfdvuhcahMJlnR2ckkwyNQxTn4ObrH1AWeffDINuRw7duxg6tSpzGxrs2+sqeGshQvt5LO5GbO21l5eV8f85ctpGxzg0T8rMhl7ntQVK0Zu4V2xArxe5cynqlix4hjcUey5UZ8GHgCeAuIF7ctD585OMwwuNgxml5cT8ftHfb5WIYQQQggxekYzWW0B9hZcbwdOG8X9CVEUpmny/jPO4PKODjLl5TxqGKzB7tq1LIv1PT2s93i4OZnk4miUVRUVnIo9gNF4MXPmTGbOnHnI8sOdP2qaJu96l8mMGfDQQ3ZCumzZyNtetgxWr37l9YohD2wE7hkc5KFsllwgMFxBHWpfduXzTAuFuDIe580zZ9pVbxk0SYiS0vaYC4Bdy/O0PeZi1/L8GEc0PhUep2Jt4+Bj/1q2X4x4Dt7WkNF6DBQzZvHatH3urwDs+kZx27Hs7U5m10T5nx7sSMd8tP4fxTaayepInZL6kJWUeh/wPoDJkyePYjhCvHqFSd1S4F+xp0D5rTNwjwZySvFIPs8GIACcBZwDzKa4U98cS8uWvbrk89Wu93pksSvYjwFPAOHCgaFiseHRh2d5PBhbtnBSRweBXI4zV60q2eMuhBBCCCEONZrJajt2V+WQiUDHwStprW8CbgI49dRTD0lmhRgP6oF3AyvSab6zdSubmprorqoabhGOA/cBf7EsfLEYy8vKWFFZyTzAP3Zhl4w4sKa3lweTSbbX1ZHx7z9qhQNDVSSTnNXZyTVtbbQEAoTmz6ejocFua5ZKqhBCCCHEcWU0k9WngOlKqSnAPuBK4O2juD8hRt0U0+SL8+bR0dGB9vvZaBg8BIRx5iUNhUBrdivFasMgYBjMBBYBi4E2SrfqWkxZYBvwHLAe2JBK0RmP29XT7u7h6imA6fUyub2daZ2dTIxEuGzVKobS0mM1LY4QQgghhDj2Ri1Z1VpnlVIfAv6GPXXNzVrrjaO1PyGOlcIEaRFwFbAJ+GU4zOp0mlRZ2QFTw7wAvAD8HPAnkzT39bEwEGBpdTUnAd6xuiPHUAp7ipmnBgZ4MpFgb20t2rd/ptOEZR0w3YwvFuMyw2A5cIrfT/e0aXSUl0sFVQghhBDiBDKq86xqre8B7hnNfQgx1hQwC/iY18uU++9nX2UlexsacC1ZQqhgPcuy2NPdzRateXBwENPvp9wwaAVmAA39/ZTv28eChgZaSjghSwEvA9sLfrYDKcsiNDhoV0/D4QOqp36fDyMaZWJPD9N6enjPWWfRVLBNqaAKIYQQQpx4RjVZFeJEYpoml1966f6pYcrL6cNudX0GeKBgcKbCyusOYJNlEYpGoaICVyrFnESCaeXltADN2ENrtwB1jI824jjQBYScy9DvOxIJdmcyGAXzng4pPPdUaU15LMZKw2AhMM8wSDY00JHJ0DxzpiSmQgghhBBCklUhiungCmAtsNK5vDOd5pYnn6SzooJwdTW+hgb6nPUKE7k8sDuTYQB7XtEhlmWRSyYxDYMJfj/VQBVQ4/ysBnp37CC8Zw9TJk5k5rRpeLCn1PE6P/tCITo6OmhobqbWNMnAAZfOnh729vTga2zEXVvLIDAIRJ2fnYkE7ZaFLi8/JBm1LItQT49dOXXmPR1aRwEnlZWR6OzEHBigtb+fd5x33gHV00qpngohhBBCiAKSrApxjEwwTd5z9tkHVF7j2AMNPak19/b0EA4Gifn9w6MMDykcvKlHKXoKEsEhsWiUXrcbpkwBoC4aJVhRceA2LAtqa8GyMC3rgG1YlkUokQC/354ipmBO0+Hbh5LRaPSAZBT2J9xKa2pjMea5XJwzcSLTgCmAr7yc0JQp9v1fuFASUyGEEEIIcUSSrApxDB1ceQ0AC4AF1dVcPnEiHR0d1FVXkzcMOrCH0d4HPDcwQCSdJnnQ4E2F4onEIdcLk9WD23AP3sZrud2Ty1E9OMichgZMoAkoy+XYsHYtlbEYBrCqYNTew91/IYQQQgghDkeSVSHGiYMTubaC20LA3Q8/TFIpLJ+PpRdcgAeIAAPOZZtSvNTXR9btJuty0VhZSRB7mpgMgGEQBbTWeLSm3uulAoZbhRvLytgbjeLJZCjPZllSU8NEoNK5ZLJZnly3jvJkkmA2e8AUMgDU1rJ4xYr9lWNJSoUQQgghxFGQZFWIEmCaJqtWrdqfCNbXH7pSYyObenvZsWMHU6dOZWZNzYG3+3yEfL792/D7D7y9vJxQQ4N9++TJmJWVB95eV8fcc845YjIqlVMhhBBCCFEskqwKUSJeTSI4c+ZMZs6c+bq3cbS3CyGEEEIIUSyusQ5ACCGEEEIIIYQ4mCSrQgghxAlEKXWRUmqLUmq7UupzYx2PEEIIcTiSrAohhBAnCKWUG7gBuBiYBbxNKTVrbKMSQgghRibJqhBCCHHiWAps11rv0Fqngd8Bl49xTEIIIcSIJFkVQgghThwtwN6C6+3OMiGEEGLcUVrrsY5hmFKqG9h9jHZXD/Qco30dr+QYHj05hkdPjuHRO16PYavWumGsgxhPlFL/BFyotX6vc/2dwFKt9YcPWu99wPucqzOALUUKodQfa6UcfynHDhL/WCrl2EHiH0sjxf6a3pvH1dQ1x/JDhVLqaa31qcdqf8cjOYZHT47h0ZNjePTkGJ5Q2oFJBdcnAh0Hr6S1vgm4qdg7L/XHWinHX8qxg8Q/lko5dpD4x1IxYpc2YCGEEOLE8RQwXSk1RSnlBa4E7hzjmIQQQogRjavKqhBCCCFGj9Y6q5T6EPA3wA3crLXeOMZhCSGEECM6kZPVorc3nYDkGB49OYZHT47h0ZNjeALRWt8D3DNGuy/1x1opx1/KsYPEP5ZKOXaQ+MfSUcc+rgZYEkIIIYQQQgghQM5ZFUIIIYQQQggxDp2QyapS6iKl1Bal1Hal1OfGOp5So5SapJR6UCm1SSm1USn10bGOqVQppdxKqeeUUnePdSylSClVrZS6XSm12Xk8LhvrmEqNUurjzvP4RaXUb5VSvrGOSRx/Su1993Dvc0qpWqXU/Uqpbc7PmrGO9XAOfn8psdgPeW0vsfgPeV0dz/ErpW5WSoWVUi8WLDtsvEqpzzvP5S1KqQvHJur9DhP/N53Hzwal1B1KqeqC28ZN/CPFXnDbp5RSWilVX7Bs3MTuxDNi/EqpDzsxblRK/U/B8tcc/wmXrCql3MANwMXALOBtSqlZYxtVyckCn9RazwROBz4ox/B1+yiwaayDKGHfB+7TWp8CzEeO5WuilGoBPgKcqrWegz3gzpVjG5U43pTo++7h3uc+B6zWWk8HVjvXx6uD319KKfaRXttLIv4jvK6O5/hvBS46aNmI8TrPgyuB2c7f/Nh5jo+lWzk0/vuBOVrrecBW4PMwLuO/lUNjRyk1CXgDsKdg2XiLHUaIXyl1LnA5ME9rPRv4lrP8dcV/wiWrwFJgu9Z6h9Y6DfwO+4CKV0lr3am1ftb5PYr9JtIytlGVHqXUROBS4P/GOpZSpJSqBM4GfgagtU5rrQfGNKjS5AH8SikPUM4Ic24KcZRK7n33CO9zlwM/d1b7OXDFmAT4Cg7z/lIqsR/utb0k4neM9Lo6buPXWq8B+g5afLh4Lwd+p7W2tNY7ge3Yz/ExM1L8Wuu/a62zztW12HNKwziL/zDHHuC7wGeAwsGFxlXscNj43w98Q2ttOeuEneWvK/4TMVltAfYWXG9HEq3XTSnVBiwE1o1xKKXoe9gvRPkxjqNUTQW6gVucVrf/U0oFxjqoUqK13of9jeceoBOIaK3/PrZRieNQSb/vHvQ+Z2qtO8FOaIHGMQztSL7Hoe8vpRL74V7bSyL+I7yulkT8BQ4Xbyk+n68B7nV+H/fxK6XeCOzTWj9/0E3jPnbHycBZSql1SqmHlVJLnOWvK/4TMVlVIyyTIZFfB6VUEPgj8DGt9eBYx1NKlFKrgLDW+pmxjqWEeYBFwI1a64VAnPHVVjXuOecgXQ5MAZqBgFLqqrGNShyHSvZ9txTf546D95eSfm0/AV5XS+r5rJT6AnZb/6+HFo2w2riJXylVDnwB+NJIN4+wbNzEXsAD1GCfQvFp4DallOJ1xn8iJqvtwKSC6xORtrfXTClVhv0G/mut9Z/GOp4StBx4o1JqF3ZL3HlKqV+NbUglpx1o11oPVfVvx/6AI16984GdWuturXUG+BNwxhjHJI4/Jfm+e5j3uZBSaoJz+wQgfLi/H0OHe38phdjh8K/tpRL/4V5XSyX+IYeLt2Sez0qpq4FVwDv0/rk6x3v8J2F/0fG88xyeCDyrlGpi/Mc+pB34k7Y9id3hUc/rjP9ETFafAqYrpaYopbzYJ/reOcYxlRTn25GfAZu01t8Z63hKkdb681rriVrrNuzH4ANa6+Ppm9dRp7XuAvYqpWY4i1YCL41hSKVoD3C6UqrceV6vRAapEsVXcu+7R3ifuxO42vn9auAvxzq2V3KE95dxHzsc8bW9JOLn8K+rpRL/kMPFeydwpVLKUEpNAaYDT45BfEeklLoI+CzwRq11ouCmcR2/1voFrXWj1rrNeQ63A4uc58W4jr3An4HzAJRSJwNeoIfXGb9n9OIcn7TWWaXUh4C/YY/QdrPWeuMYh1VqlgPvBF5QSq13lv2H1vqesQtJnKA+DPza+QC8A3j3GMdTUrTW65RStwPPYrdJPQfcNLZRieNNib7vjvg+B3wDu6XtPdhJyT+NTXivSynFPtJru4sSiP8Ir6tBxmn8SqnfAiuAeqVUO/BlDvN40VpvVErdhv0FQhb4oNY6NyaBOw4T/+cBA7jf/s6AtVrra8db/CPFrrX+2UjrjrfY4bDH/mbgZmVPZ5MGrnYq268rfrW/Ki6EEEIIIYQQQowPJ2IbsBBCCCGEEEKIcU6SVSGEEEIIIYQQ444kq0IIIYQQQgghxh1JVoUQQgghhBBCjDuSrAohhBBCCCGEGHckWRVCCCGEEOIYUEpdp5Q6/xXWWaGUOuNYxSTEeHbCzbMqhBBCCCHEWNBaf+lVrLYCiAGPj240Qox/UlkVQgghhBAnBKXUZ5RSH3F+/65S6gHn95VKqV8ppW5USj2tlNqolPpqwW13FGzjDUqpPzm/x5RS31ZKPauUWq2UanCWL1BKrVVKbVBK3aGUqnGW36qUeqvz+y6l1Fedv31BKXWKUqoNuBb4uFJqvVLqrGN4eIQYdyRZFUIIIYQQJ4o1wFACeCoQVEqVAWcCjwBf0FqfCswDzlFKzQMeAGYOJaLAu4FbnN8DwLNa60XAw8CXneW/AD6rtZ4HvFCw/GA9zt/eCHxKa70L+AnwXa31Aq31I8W400KUKklWhRBCCCHEieIZYLFSqgKwgCewk9azsJPVf1ZKPQs8B8wGZmmtNfBL4CqlVDWwDLjX2V4e+L3z+6+AM5VSVUC11vphZ/nPgbMPE8+fCuJqK8YdFOJ4IuesCiGEEEKIE4LWOqOU2oVdHX0c2ACcC5wEJIFPAUu01v1KqVsBn/OntwB3ASngD1rr7OF28RpDspyfOeRzuRCHkMqqEEIIIYQ4kazBTkrXYFdTrwXWA5VAHIgopUzg4qE/0Fp3AB3AF4FbC7blAt7q/P524FGtdQToLzjf9J3YLcKvVhSoeE33SIjjlHyDI4QQQgghTiSPAF8AntBax5VSKeARrfXzSqnngI3ADuCxg/7u10CD1vqlgmVxYLZS6hkgAvyLs/xq4CdKqXJnW+9+DfHdBdyulLoc+LCctypOZMpuwxdCCCGEEEIcjlLqR8BzWuufFSyLaa2DYxiWEMc1SVaFEEIIIYQ4AqdyGgfeoLW2CpZLsirEKJJkVQghhBBCCCHEuCMDLAkhhBBCCCGEGHckWRVCCCGEEEIIMe5IsiqEEEIIIYQQYtyRZFUIIYQQQgghxLgjyaoQQgghhBBCiHFHklUhhBBCCCGEEOPO/wdB7hf3YSGUywAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize=(16, 4*len(action_names)))\n", "iterations_downselect = [iteration_id] ## Lets pick the iteratons with the highest rewards\n", "\n", "y_limit = 10\n", "track_segments = track_segments_hash[trackname]\n", "segment_x=[]\n", "segment_y=[]\n", "segment_xerr_l=[]\n", "segment_xerr_r=[]\n", "segment_yerr_n=[]\n", "segment_yerr_s=[]\n", "i=0\n", "while i=len(track_segments)-1:\n", " segment_xerr_r.append(len(waypoints)-track_segments[i][0])\n", " else:\n", " segment_xerr_r.append(track_segments[i+1][0]-track_segments[i][0])\n", " segment_yerr_n.append(0)\n", " segment_yerr_s.append(y_limit)\n", " i+=2\n", "\n", "segment_x = np.array(segment_x)\n", "segment_y = np.array(segment_y)\n", "segment_xerr = np.array([segment_xerr_l,segment_xerr_r])\n", "segment_yerr = np.array([segment_yerr_n,segment_yerr_s])\n", "\n", "#segment_x = np.array(vert_lines)\n", "#segment_y = np.array([0]*len(vert_lines))\n", "#segment_xerr = np.array([[0]*len(vert_lines),[1]*len(vert_lines)])\n", "#segment_yerr = np.array([[0]*len(vert_lines), [150]*len(vert_lines)])\n", "\n", "wpts_array = center_line \n", "text_y=[.66*y_limit,.5*y_limit,.33*y_limit]\n", " \n", "for iter_num in iterations_downselect:\n", "\n", " # Slice the data frame to get all episodes in that iteration\n", " df_iter = df[(iter_num == df['iteration'])]\n", " n_steps_in_iter = len(df_iter)\n", " print('Number of steps in iteration=', n_steps_in_iter)\n", "\n", " # Reward function threshold\n", " th = REWARD_THRESHOLD\n", " for idx in range(len(action_names)):\n", " ax = fig.add_subplot(len(action_names), 2, 2*idx+1)\n", " print_border(ax, center_line, inner_border, outer_border) \n", " \n", " df_slice = df_iter[df_iter['reward'] >= th]\n", " df_slice = df_slice[df_slice['action'] == idx]\n", "\n", " ax.plot(df_slice['x'], df_slice['y'], 'b.')\n", "\n", " for idWp in track_segments:\n", " ax.text(wpts_array[idWp[0]][0], wpts_array[idWp[0]][1], str(idWp[0]), bbox=dict(facecolor='red', alpha=0.5))\n", "\n", " #ax.set_title(str(log_name_id) + '-' + str(iter_num) + ' w rew >= '+str(th))\n", " ax.set_ylabel(action_names[idx])\n", "\n", " # calculate action way point distribution\n", " action_waypoint_distribution = list()\n", " for idWp in range(len(wpts_array)):\n", " action_waypoint_distribution.append(len(df_slice[df_slice['closest_waypoint'] == idWp]))\n", "\n", " ax = fig.add_subplot(len(action_names), 2, 2 * idx + 2)\n", "\n", " # Call function to create error boxes\n", " _ = make_error_boxes(ax, segment_x, segment_y, segment_xerr, segment_yerr)\n", "\n", "\n", " i=0\n", " for tt in range(len(track_segments)):\n", " ax.text(track_segments[tt][0], text_y[i], track_segments[tt][1])\n", " i = (i+1)%len(text_y)\n", "\n", " ax.bar(np.arange(len(wpts_array)), action_waypoint_distribution)\n", " ax.set_xlabel('waypoint')\n", " ax.set_ylabel('# of actions')\n", " ax.legend([action_names[idx]])\n", " ax.set_ylim((0, y_limit))" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Lets analyze the actions chosen for each situation. Does this model choose to steer or go straight on straightaways? Does it choose to speed up or slow down? Are entire portions of the action space ignored, suggesting a mismatch between the action space at the reward function?" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Simulation Image Analysis - Probability distribution on decisions (actions)\n", "\n", "is the model making decisions that are \"too close\" or is it confident for the laps it finishes. if the top and second best decisions are far apart, the model must likely be making more confident decisions " ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "import glob\n", "img_path = \"simulation_episode/\"\n", "all_files = sorted(glob.glob(img_path + '/*.png'))" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "#### Download all the checkpoints (provided as an example). \n", "We recommend downloading only the ones you are interested in\n" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[33mWARNING: Ignoring invalid distribution -umpy (/home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n", "\u001b[0m\u001b[33mWARNING: Ignoring invalid distribution -umpy (/home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n", "\u001b[0mFound existing installation: numpy 1.23.4\n", "Uninstalling numpy-1.23.4:\n", " Successfully uninstalled numpy-1.23.4\n", "\u001b[33mWARNING: Ignoring invalid distribution -umpy (/home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n", "\u001b[0m\u001b[33mWARNING: Ignoring invalid distribution -umpy (/home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n", "\u001b[0mLooking in indexes: https://pypi.org/simple, https://pip.repos.neuron.amazonaws.com\n", "Requirement already satisfied: tensorflow in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (2.10.0)\n", "Requirement already satisfied: h5py>=2.9.0 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorflow) (3.3.0)\n", "Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorflow) (0.27.0)\n", "Requirement already satisfied: keras<2.11,>=2.10.0 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorflow) (2.10.0)\n", "Requirement already satisfied: protobuf<3.20,>=3.9.2 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorflow) (3.19.1)\n", "Requirement already satisfied: google-pasta>=0.1.1 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorflow) (0.2.0)\n", "Requirement already satisfied: absl-py>=1.0.0 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorflow) (1.3.0)\n", "Requirement already satisfied: typing-extensions>=3.6.6 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorflow) (4.0.0)\n", "Requirement already satisfied: gast<=0.4.0,>=0.2.1 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorflow) (0.4.0)\n", "Requirement already satisfied: tensorboard<2.11,>=2.10 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorflow) (2.10.1)\n", "Requirement already satisfied: flatbuffers>=2.0 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorflow) (22.9.24)\n", "Requirement already satisfied: six>=1.12.0 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorflow) (1.16.0)\n", "Requirement already satisfied: opt-einsum>=2.3.2 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorflow) (3.3.0)\n", "Requirement already satisfied: tensorflow-estimator<2.11,>=2.10.0 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorflow) (2.10.0)\n", "Requirement already satisfied: setuptools in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorflow) (59.4.0)\n", "Requirement already satisfied: keras-preprocessing>=1.1.1 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorflow) (1.1.2)\n", "Requirement already satisfied: termcolor>=1.1.0 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorflow) (2.0.1)\n", "Requirement already satisfied: packaging in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorflow) (21.3)\n", "Collecting numpy>=1.20\n", " Using cached numpy-1.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.1 MB)\n", "Requirement already satisfied: libclang>=13.0.0 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorflow) (14.0.6)\n", "Requirement already satisfied: astunparse>=1.6.0 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorflow) (1.6.3)\n", "Requirement already satisfied: wrapt>=1.11.0 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorflow) (1.13.3)\n", "Requirement already satisfied: grpcio<2.0,>=1.24.3 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorflow) (1.50.0)\n", "Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from astunparse>=1.6.0->tensorflow) (0.37.0)\n", "Requirement already satisfied: requests<3,>=2.21.0 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorboard<2.11,>=2.10->tensorflow) (2.26.0)\n", "Requirement already satisfied: werkzeug>=1.0.1 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorboard<2.11,>=2.10->tensorflow) (2.0.3)\n", "Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorboard<2.11,>=2.10->tensorflow) (0.4.6)\n", "Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorboard<2.11,>=2.10->tensorflow) (1.8.1)\n", "Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorboard<2.11,>=2.10->tensorflow) (0.6.1)\n", "Requirement already satisfied: google-auth<3,>=1.6.3 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorboard<2.11,>=2.10->tensorflow) (2.13.0)\n", "Requirement already satisfied: markdown>=2.6.8 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from tensorboard<2.11,>=2.10->tensorflow) (3.4.1)\n", "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from packaging->tensorflow) (3.0.6)\n", "Requirement already satisfied: rsa<5,>=3.1.4 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.11,>=2.10->tensorflow) (4.7.2)\n", "Requirement already satisfied: pyasn1-modules>=0.2.1 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.11,>=2.10->tensorflow) (0.2.8)\n", "Requirement already satisfied: cachetools<6.0,>=2.0.0 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.11,>=2.10->tensorflow) (5.2.0)\n", "Requirement already satisfied: requests-oauthlib>=0.7.0 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.11,>=2.10->tensorflow) (1.3.1)\n", "Requirement already satisfied: importlib-metadata>=4.4 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from markdown>=2.6.8->tensorboard<2.11,>=2.10->tensorflow) (4.8.2)\n", "Requirement already satisfied: charset-normalizer~=2.0.0 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard<2.11,>=2.10->tensorflow) (2.0.8)\n", "Requirement already satisfied: idna<4,>=2.5 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard<2.11,>=2.10->tensorflow) (3.1)\n", "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard<2.11,>=2.10->tensorflow) (1.26.8)\n", "Requirement already satisfied: certifi>=2017.4.17 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard<2.11,>=2.10->tensorflow) (2021.10.8)\n", "Requirement already satisfied: zipp>=0.5 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard<2.11,>=2.10->tensorflow) (3.6.0)\n", "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard<2.11,>=2.10->tensorflow) (0.4.8)\n", "Requirement already satisfied: oauthlib>=3.0.0 in /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.11,>=2.10->tensorflow) (3.2.2)\n", "\u001b[33mWARNING: Ignoring invalid distribution -umpy (/home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n", "\u001b[0mInstalling collected packages: numpy\n", "\u001b[33mWARNING: Ignoring invalid distribution -umpy (/home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n", "\u001b[0m\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", "daal4py 2021.3.0 requires daal==2021.2.3, which is not installed.\n", "numba 0.54.1 requires numpy<1.21,>=1.17, but you have numpy 1.23.4 which is incompatible.\u001b[0m\u001b[31m\n", "\u001b[0mSuccessfully installed numpy-1.23.4\n", "\u001b[33mWARNING: Ignoring invalid distribution -umpy (/home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n", "\u001b[0m\u001b[33mWARNING: Ignoring invalid distribution -umpy (/home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n", "\u001b[0m\u001b[33mWARNING: Ignoring invalid distribution -umpy (/home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages)\u001b[0m\u001b[33m\n", "\u001b[0m\u001b[33mWARNING: You are using pip version 22.0.4; however, version 22.3 is available.\n", "You should consider upgrading via the '/home/ec2-user/anaconda3/envs/python3/bin/python -m pip install --upgrade pip' command.\u001b[0m\u001b[33m\n", "\u001b[0m" ] } ], "source": [ "!pip uninstall numpy -y\n", "!pip install tensorflow" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2022-10-22 02:20:52.178606: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA\n", "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", "2022-10-22 02:20:52.400732: E tensorflow/stream_executor/cuda/cuda_blas.cc:2981] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "WARNING:tensorflow:From /home/ec2-user/anaconda3/envs/python3/lib/python3.8/site-packages/tensorflow/python/compat/v2_compat.py:107: disable_resource_variables (from tensorflow.python.ops.variable_scope) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "non-resource variables are not supported in the long term\n" ] } ], "source": [ "import tensorflow.compat.v1 as tf\n", "from tensorflow.python.platform import gfile\n", "from PIL import Image\n", "\n", "tf.disable_v2_behavior()\n", "\n", "GRAPH_PB_PATH = 'intermediate_checkpoint/'\n", "\n", "def load_session(pb_path):\n", " sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, \n", " log_device_placement=True))\n", " print(\"load graph:\", pb_path)\n", " with gfile.FastGFile(pb_path,'rb') as f:\n", " graph_def = tf.GraphDef()\n", " graph_def.ParseFromString(f.read())\n", " sess.graph.as_default()\n", " tf.import_graph_def(graph_def, name='')\n", " graph_nodes=[n for n in graph_def.node]\n", " names = []\n", " for t in graph_nodes:\n", " names.append(t.name)\n", " \n", " # For front cameras/stereo camera use the below\n", " x = sess.graph.get_tensor_by_name('main_level/agent/main/online/network_0/{}/{}:0'.format(sensor, sensor))\n", " y = sess.graph.get_tensor_by_name('main_level/agent/main/online/network_1/ppo_head_0/policy:0')\n", " \n", " return sess, x, y\n", "\n", "def rgb2gray(rgb):\n", " return np.dot(rgb[...,:3], [0.299, 0.587, 0.114])" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2022-10-22 02:20:55.135118: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA\n", "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Device mapping: no known devices.\n", "load graph: intermediate_checkpoint/7a42c0c5-e13b-49c6-955e-18e3b64dba4b/model/model_1.pb\n", "WARNING:tensorflow:From /tmp/ipykernel_13346/3390989653.py:13: FastGFile.__init__ (from tensorflow.python.platform.gfile) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Use tf.gfile.GFile.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2022-10-22 02:20:55.419584: E tensorflow/stream_executor/cuda/cuda_driver.cc:265] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected\n", "2022-10-22 02:20:55.420698: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (ip-172-16-173-108.ec2.internal): /proc/driver/nvidia/version does not exist\n", "2022-10-22 02:20:55.588005: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:354] MLIR V1 optimization pass is not enabled\n", "2022-10-22 02:20:55.589004: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv: (RealDiv): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.589393: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.589650: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.589909: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590114: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590181: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590197: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590209: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590221: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590233: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590245: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590256: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_3_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590268: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590280: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590292: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590304: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590315: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590330: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590342: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590353: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590364: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590373: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590382: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590392: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590400: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590411: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590420: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590430: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590439: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/StopGradient/input: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590456: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/StopGradient: (StopGradient): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590487: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590497: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/mul_1/y: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590506: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590522: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/add: (Add): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590533: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590549: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590559: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590569: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590599: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590618: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590720: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_0/FRONT_FACING_CAMERA/FRONT_FACING_CAMERA: (Placeholder): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590734: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590746: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590758: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590768: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590780: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590791: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590801: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590811: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590822: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590834: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590842: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590851: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape/1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590859: I tensorflow/core/comm" ] }, { "name": "stdout", "output_type": "stream", "text": [ "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv: (RealDiv): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_3_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/StopGradient/input: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/StopGradient: (StopGradient): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/mul: (Mul): /j" ] }, { "name": "stderr", "output_type": "stream", "text": [ "on_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590869: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590879: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590890: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/sub/x: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590902: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590913: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590924: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590934: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.590944: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:20:55.670865: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 23068672 exceeds 10% of free system memory.\n", "2022-10-22 02:20:55.721089: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 23068672 exceeds 10% of free system memory.\n", "2022-10-22 02:20:55.779259: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 23068672 exceeds 10% of free system memory.\n", "2022-10-22 02:20:55.784635: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 23068672 exceeds 10% of free system memory.\n", "2022-10-22 02:20:55.790557: W tensorflow/core/framework/cpu_allocator_impl.cc:82] Allocation of 23068672 exceeds 10% of free system memory.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Device mapping: no known devices.\n", "load graph: intermediate_checkpoint/7a42c0c5-e13b-49c6-955e-18e3b64dba4b/model/model_0.pb\n", "ob:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/mul_1/y: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/add: (Add): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_0/FRONT_FACING_CAMERA/FRONT_FACING_CAMERA: (Placeholder): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape/1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/sub/x: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv: (RealDiv): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_3_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/StopGradient/input: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/StopGradient: (StopGradient): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/mul_1/y: (Pack): /job:localhost/replica:0/task:0" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2022-10-22 02:21:04.290735: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv: (RealDiv): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.291368: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.291517: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.291624: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.291735: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.291850: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.291969: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.292085: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.292209: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.292324: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.292441: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.292551: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_3_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.292666: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.292774: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.292881: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.292986: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.293088: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.293189: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.293292: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.293397: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.293515: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.293613: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.293699: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.293792: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.293892: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.294015: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.294149: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.294274: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.294384: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/StopGradient/input: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.294491: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/StopGradient: (StopGradient): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.294613: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.294726: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/mul_1/y: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.294862: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.294967: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/add: (Add): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.295075: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.295178: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.295299: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.295407: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.295516: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.295617: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.295731: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_0/FRONT_FACING_CAMERA/FRONT_FACING_CAMERA: (Placeholder): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.295835: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.295948: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.296054: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.296158: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.296263: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.296365: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.296471: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.296573: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.296682: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.296785: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.296894: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.297000: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape/1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.297103: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.297210: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.297311: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.297418: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/sub/x: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.297523: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.297632: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.297736: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.297847: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:21:04.297954: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n" ] } ], "source": [ "model_inference = []\n", "iterations = [7,8,9]\n", "models_file_path = glob.glob(\"{}{}/model/model_*.pb\".format(GRAPH_PB_PATH, ModelUuid))\n", "\n", "for model_file in models_file_path:\n", " model, obs, model_out = load_session(model_file)\n", " arr = []\n", " for f in all_files[:]:\n", " img = Image.open(f)\n", " img_arr = np.array(img)\n", " img_arr = rgb2gray(img_arr)\n", " img_arr = np.expand_dims(img_arr, axis=2)\n", " current_state = {\"observation\": img_arr} #(1, 120, 160, 1)\n", " y_output = model.run(model_out, feed_dict={obs:[img_arr]})[0]\n", " arr.append (y_output)\n", " \n", " model_inference.append(arr)\n", " model.close()\n", " tf.reset_default_graph()" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Inference for model: intermediate_checkpoint/7a42c0c5-e13b-49c6-955e-18e3b64dba4b/model/model_1.pb\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAPg0lEQVR4nO3dfYxldX3H8fenbMWKNUJ2lm5Z2kG70YLRSKbUqjE2aIpiXPoHzRJtNpVkY0KrbWp0qUlp0pBs06ZPSW2yQeo2NdCNlbAp8YFsa0ijgIOCyJOssoWVlR2fam0TFPrtH3MI43iHufeee3fu/Hy/ks2953fOb86Hw+Wzh3PvPZOqQpLUlp/a6ACSpMmz3CWpQZa7JDXIcpekBlnuktSgLRsdAGDr1q01Pz+/0TEkaVO56667vllVc4PWzUS5z8/Ps7i4uNExJGlTSfKfa63zsowkNchyl6QGWe6S1CDLXZIaZLlLUoMsd0lqkOUuSQ1at9yTXJ/kZJIvD1j3viSVZOuKsauTHE3yUJLfmHRgSdL6hjlz/whwyerBJOcCbwYeXTF2PrAbuKCb86Ekp00kqSRpaOt+Q7WqbksyP2DVXwHvB25eMbYLuLGqngQeSXIUuAj43ASyrml+3y3T/PFrOrb/0g3ZryStZ6xr7kneDny9qu5Zteoc4LEVy8e7sUE/Y2+SxSSLS0tL48SQJK1h5HJP8gLgg8AfD1o9YGzg7/GrqgNVtVBVC3NzA+97I0ka0zg3DnspcB5wTxKAHcAXklzE8pn6uSu23QE83jekJGk0I5+5V9W9VbWtquarap7lQr+wqr4BHAZ2Jzk9yXnATuDOiSaWJK1rmI9C3sDyG6IvS3I8yZVrbVtV9wGHgPuBTwJXVdXTkworSRrOMJ+WuWKd9fOrlq8Fru0XS5LUh99QlaQGWe6S1CDLXZIaZLlLUoNm4hdkS5ot3tJj8/PMXZIaZLlLUoMsd0lqkOUuSQ2y3CWpQZa7JDXIcpekBlnuktQgy12SGmS5S1KDLHdJapDlLkkNstwlqUGWuyQ1yHKXpAatW+5Jrk9yMsmXV4z9eZIHk3wpyU1JXrxi3dVJjiZ5KMlvTCm3JOk5DHPm/hHgklVjtwKvqKpXAl8BrgZIcj6wG7igm/OhJKdNLK0kaSjrlntV3QZ8e9XYp6vqqW7xdmBH93wXcGNVPVlVjwBHgYsmmFeSNIRJXHN/F/CJ7vk5wGMr1h3vxiRJp1Cvck/yQeAp4KPPDA3YrNaYuzfJYpLFpaWlPjEkSauMXe5J9gBvA95RVc8U+HHg3BWb7QAeHzS/qg5U1UJVLczNzY0bQ5I0wFjlnuQS4APA26vqf1esOgzsTnJ6kvOAncCd/WNKkkaxZb0NktwAvBHYmuQ4cA3Ln445Hbg1CcDtVfXuqrovySHgfpYv11xVVU9PK7wkabB1y72qrhgw/OHn2P5a4No+oSRJ/fgNVUlqkOUuSQ2y3CWpQZa7JDXIcpekBlnuktQgy12SGmS5S1KD1v0SkySdKvP7btmQ/R7bf+mG7HeaPHOXpAZZ7pLUIMtdkhpkuUtSgyx3SWqQn5aRZtRGfXJEbfDMXZIaZLlLUoMsd0lqkOUuSQ2y3CWpQZa7JDVo3Y9CJrkeeBtwsqpe0Y2dBfwzMA8cA36rqr7TrbsauBJ4GnhPVX1qKsmlU8SPJGozGubM/SPAJavG9gFHqmoncKRbJsn5wG7ggm7Oh5KcNrG0kqShrFvuVXUb8O1Vw7uAg93zg8BlK8ZvrKonq+oR4Chw0WSiSpKGNe4197Or6gRA97itGz8HeGzFdse7sR+TZG+SxSSLS0tLY8aQJA0y6TdUM2CsBm1YVQeqaqGqFubm5iYcQ5J+so1b7k8k2Q7QPZ7sxo8D567Ybgfw+PjxJEnjGLfcDwN7uud7gJtXjO9OcnqS84CdwJ39IkqSRjXMRyFvAN4IbE1yHLgG2A8cSnIl8ChwOUBV3ZfkEHA/8BRwVVU9PaXskqQ1rFvuVXXFGqsuXmP7a4Fr+4SSJPXjN1QlqUH+so4eNuqbi8f2X7oh+5W0eXjmLkkNstwlqUGWuyQ1yHKXpAZZ7pLUIMtdkhpkuUtSgyx3SWqQ5S5JDbLcJalBlrskNchyl6QGWe6S1CDLXZIaZLlLUoMsd0lqkOUuSQ2y3CWpQb3KPckfJLkvyZeT3JDk+UnOSnJrkoe7xzMnFVaSNJyxyz3JOcB7gIWqegVwGrAb2AccqaqdwJFuWZJ0CvW9LLMF+JkkW4AXAI8Du4CD3fqDwGU99yFJGtHY5V5VXwf+AngUOAH8V1V9Gji7qk5025wAtg2an2RvksUki0tLS+PGkCQN0OeyzJksn6WfB/w8cEaSdw47v6oOVNVCVS3Mzc2NG0OSNECfyzJvAh6pqqWq+iHwceC1wBNJtgN0jyf7x5QkjaJPuT8KvCbJC5IEuBh4ADgM7Om22QPc3C+iJGlUW8adWFV3JPkY8AXgKeCLwAHghcChJFey/BfA5ZMIKkka3tjlDlBV1wDXrBp+kuWzeEnSBvEbqpLUIMtdkhpkuUtSgyx3SWqQ5S5JDbLcJalBlrskNchyl6QG9foSk37yzO+7ZUP2e2z/pRuyX2mz8sxdkhpkuUtSgyx3SWqQ5S5JDbLcJalBlrskNciPQmpT2KiPYEqblWfuktQgy12SGmS5S1KDLHdJapDlLkkN6lXuSV6c5GNJHkzyQJJfS3JWkluTPNw9njmpsJKk4fQ9c/8b4JNV9XLgVcADwD7gSFXtBI50y5KkU2jsck/yIuANwIcBquoHVfVdYBdwsNvsIHBZv4iSpFH1OXN/CbAE/EOSLya5LskZwNlVdQKge9w2aHKSvUkWkywuLS31iCFJWq1PuW8BLgT+vqpeDfwPI1yCqaoDVbVQVQtzc3M9YkiSVutT7seB41V1R7f8MZbL/okk2wG6x5P9IkqSRjV2uVfVN4DHkrysG7oYuB84DOzpxvYAN/dKKEkaWd8bh/0e8NEkzwO+BvwOy39hHEpyJfAocHnPfUiSRtSr3KvqbmBhwKqL+/xcSVI/fkNVkhpkuUtSgyx3SWqQ5S5JDbLcJalBlrskNchyl6QGWe6S1CDLXZIaZLlLUoMsd0lqkOUuSQ2y3CWpQX1v+asNML/vlo2OIGnGeeYuSQ2y3CWpQZa7JDXIa+6SfuJt5PtYx/ZfOpWf65m7JDXIcpekBvUu9ySnJflikn/tls9KcmuSh7vHM/vHlCSNYhJn7u8FHlixvA84UlU7gSPdsiTpFOpV7kl2AJcC160Y3gUc7J4fBC7rsw9J0uj6nrn/NfB+4P9WjJ1dVScAusdtgyYm2ZtkMcni0tJSzxiSpJXGLvckbwNOVtVd48yvqgNVtVBVC3Nzc+PGkCQN0Odz7q8D3p7krcDzgRcl+SfgiSTbq+pEku3AyUkElSQNb+wz96q6uqp2VNU8sBv4t6p6J3AY2NNttge4uXdKSdJIpvE59/3Am5M8DLy5W5YknUITuf1AVX0G+Ez3/FvAxZP4uZKk8fgNVUlqkOUuSQ2y3CWpQZa7JDXIcpekBlnuktQgy12SGmS5S1KDLHdJapDlLkkNstwlqUGWuyQ1yHKXpAZZ7pLUIMtdkhpkuUtSgyx3SWqQ5S5JDbLcJalBlrskNWjsck9ybpJ/T/JAkvuSvLcbPyvJrUke7h7PnFxcSdIw+py5PwX8YVX9MvAa4Kok5wP7gCNVtRM40i1Lkk6hscu9qk5U1Re65/8NPACcA+wCDnabHQQu65lRkjSiiVxzTzIPvBq4Azi7qk7A8l8AwLY15uxNsphkcWlpaRIxJEmd3uWe5IXAvwC/X1XfG3ZeVR2oqoWqWpibm+sbQ5K0Qq9yT/LTLBf7R6vq493wE0m2d+u3Ayf7RZQkjarPp2UCfBh4oKr+csWqw8Ce7vke4Obx40mSxrGlx9zXAb8N3Jvk7m7sj4D9wKEkVwKPApf3SihJGtnY5V5V/wFkjdUXj/tzJUn9+Q1VSWqQ5S5JDbLcJalBlrskNchyl6QGWe6S1CDLXZIaZLlLUoMsd0lqkOUuSQ2y3CWpQZa7JDXIcpekBlnuktQgy12SGmS5S1KDLHdJapDlLkkNstwlqUGWuyQ1yHKXpAZNrdyTXJLkoSRHk+yb1n4kST9uKuWe5DTg74C3AOcDVyQ5fxr7kiT9uGmduV8EHK2qr1XVD4AbgV1T2pckaZUtU/q55wCPrVg+Dvzqyg2S7AX2dovfT/LQmPvaCnxzzLkbZbNlNu90mXe6Zjpv/mzg8LCZf3GtFdMq9wwYqx9ZqDoAHOi9o2Sxqhb6/pxTabNlNu90mXe6NltemEzmaV2WOQ6cu2J5B/D4lPYlSVplWuX+eWBnkvOSPA/YDRye0r4kSatM5bJMVT2V5HeBTwGnAddX1X3T2BcTuLSzATZbZvNOl3mna7PlhUlcsq6q9beSJG0qfkNVkhpkuUtSg2a63Ne7hUGW/W23/ktJLhx27gzmPZbk3iR3J1mckbwvT/K5JE8med8oc2cw7yk/vkNmfkf3WvhSks8medWwc2cw7yy+hnd1We9Ospjk9cPOncG8ox3fqprJPyy/EftV4CXA84B7gPNXbfNW4BMsf67+NcAdw86dpbzdumPA1hk7vtuAXwGuBd43ytxZyrsRx3eEzK8Fzuyev2UTvIYH5p3h1/ALefa9xVcCD8748R2Yd5zjO8tn7sPcwmAX8I+17HbgxUm2Dzl3lvJuhHXzVtXJqvo88MNR585Y3o0yTObPVtV3usXbWf5OyFBzZyzvRhgm7/era0bgDJ79MuWsHt+18o5slst90C0Mzhlym2HmTlqfvLD8L/HTSe7qbs0wbX2O0awe3+dyqo8vjJ75Spb/z26cuZPQJy/M6Gs4yW8meRC4BXjXKHMnrE9eGPH4Tuv2A5Ow7i0MnmObYeZOWp+8AK+rqseTbANuTfJgVd020YTDZ5nm3HH13eepPr4wQuYkv85yWT5zjXWmj/GAvDCjr+Gqugm4KckbgD8F3jTs3AnrkxdGPL6zfOY+zC0M1tpmI25/0CcvVfXM40ngJpb/F26a+hyjWT2+a9qA4wtDZk7ySuA6YFdVfWuUuRPWJ+/Mv4a7Inxpkq2jzp2QPnlHP77TfAOh55sPW4CvAefx7JsPF6za5lJ+9A3KO4edO2N5zwB+dsXzzwKXbHTeFdv+CT/6hupMHt/nyHvKj+8Ir4lfAI4Crx33n3dG8s7kaxj4JZ59g/JC4Ovdf3+zenzXyjvy8Z3qi3sCB+OtwFdYfof5g93Yu4F3d8/D8i8F+SpwL7DwXHNnNS/L757f0/25b4by/hzLZxvfA77bPX/RDB/fgXk36vgOmfk64DvA3d2fxRl/DQ/MO8Ov4Q90ee4GPge8fsaP78C84xxfbz8gSQ2a5WvukqQxWe6S1CDLXZIaZLlLUoMsd0lqkOUuSQ2y3CWpQf8P+Lo1EsNg4o8AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Inference for model: intermediate_checkpoint/7a42c0c5-e13b-49c6-955e-18e3b64dba4b/model/model_0.pb\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD4CAYAAADrRI2NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAPAklEQVR4nO3dcaydd13H8ffHViYMCV16O2tbbdFG7AgEvM4JhKgjWWHGzj+WlIg2uqTBTEUj0U7/wMQ0mYkxSuJImoGWSGgahKyRoCxVQgywcQeD0XV1hc3t0rpeEAT8o7D59Y/zkB26c9t7z3Pvuefu934lJ89zfs/vd37f+9vd5z73ee45TVUhSWrHD6x1AZKkyTL4JakxBr8kNcbgl6TGGPyS1JiNa13AlWzevLl27ty51mVI0rrywAMPfLWqZkYdm/rg37lzJ3Nzc2tdhiStK0n+c7FjXuqRpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGTP07d/vYeegjazLv43fevCbzStJSeMYvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1Jjrhj8Sd6b5EKSLw61XZPk3iSPdttNQ8fuSHI2yZkkNw21/0ySh7pj70qSlf9yJElXspQz/r8H9l7Sdgg4WVW7gZPdc5LsAfYD13Vj7kqyoRvzbuAgsLt7XPqakqQJuGLwV9UngP++pHkfcLTbPwrcMtR+rKouVtVjwFng+iRbgZdU1aeqqoD3DY2RJE3QuNf4r62q8wDddkvXvg14cqjffNe2rdu/tH2kJAeTzCWZW1hYGLNESdIoK31zd9R1+7pM+0hVdaSqZqtqdmZmZsWKkySNH/xPdZdv6LYXuvZ5YMdQv+3Aua59+4h2SdKEjRv8J4AD3f4B4J6h9v1Jrkqyi8FN3Pu7y0HfSnJD99c8vzE0RpI0QVf8WOYkHwB+AdicZB54J3AncDzJbcATwK0AVXUqyXHgYeBp4PaqeqZ7qd9m8BdCLwQ+2j0kSRN2xeCvqrcscujGRfofBg6PaJ8DXrGs6iRJK8537kpSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TG9Ar+JH+Q5FSSLyb5QJIfSnJNknuTPNptNw31vyPJ2SRnktzUv3xJ0nKNHfxJtgG/B8xW1SuADcB+4BBwsqp2Aye75yTZ0x2/DtgL3JVkQ7/yJUnL1fdSz0bghUk2Ai8CzgH7gKPd8aPALd3+PuBYVV2sqseAs8D1PeeXJC3T2MFfVV8B/hJ4AjgP/E9VfQy4tqrOd33OA1u6IduAJ4deYr5re44kB5PMJZlbWFgYt0RJ0gh9LvVsYnAWvwv4UeDqJG+93JARbTWqY1UdqarZqpqdmZkZt0RJ0gh9LvW8EXisqhaq6rvAh4DXAk8l2QrQbS90/eeBHUPjtzO4NCRJmqA+wf8EcEOSFyUJcCNwGjgBHOj6HADu6fZPAPuTXJVkF7AbuL/H/JKkMWwcd2BV3Zfkg8BngaeBzwFHgBcDx5PcxuCHw61d/1NJjgMPd/1vr6pnetYvSVqmsYMfoKreCbzzkuaLDM7+R/U/DBzuM6ckqR/fuStJjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5Ia0yv4k7w0yQeTPJLkdJKfT3JNknuTPNptNw31vyPJ2SRnktzUv3xJ0nL1PeP/G+Cfq+rlwKuA08Ah4GRV7QZOds9JsgfYD1wH7AXuSrKh5/ySpGUaO/iTvAR4A/AegKr6TlV9A9gHHO26HQVu6fb3Aceq6mJVPQacBa4fd35J0nj6nPG/DFgA/i7J55LcneRq4NqqOg/Qbbd0/bcBTw6Nn+/aniPJwSRzSeYWFhZ6lChJulSf4N8IvAZ4d1W9Gvhfuss6i8iIthrVsaqOVNVsVc3OzMz0KFGSdKk+wT8PzFfVfd3zDzL4QfBUkq0A3fbCUP8dQ+O3A+d6zC9JGsPYwV9V/wU8meSnuqYbgYeBE8CBru0AcE+3fwLYn+SqJLuA3cD9484vSRrPxp7jfxd4f5IXAF8GfpPBD5PjSW4DngBuBaiqU0mOM/jh8DRwe1U903N+SdIy9Qr+qnoQmB1x6MZF+h8GDveZU5LUj+/claTGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY3pHfxJNiT5XJJ/6p5fk+TeJI92201Dfe9IcjbJmSQ39Z1bkrR8K3HG/3bg9NDzQ8DJqtoNnOyek2QPsB+4DtgL3JVkwwrML0lahl7Bn2Q7cDNw91DzPuBot38UuGWo/VhVXayqx4CzwPV95pckLV/fM/6/Bv4I+L+htmur6jxAt93StW8DnhzqN9+1SZImaOzgT/LLwIWqemCpQ0a01SKvfTDJXJK5hYWFcUuUJI3Q54z/dcCvJHkcOAb8UpJ/AJ5KshWg217o+s8DO4bGbwfOjXrhqjpSVbNVNTszM9OjREnSpcYO/qq6o6q2V9VOBjdt/7Wq3gqcAA503Q4A93T7J4D9Sa5KsgvYDdw/duWSpLFsXIXXvBM4nuQ24AngVoCqOpXkOPAw8DRwe1U9swrzS5IuY0WCv6o+Dny82/8acOMi/Q4Dh1diTknSeHznriQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWrM2MGfZEeSf0tyOsmpJG/v2q9Jcm+SR7vtpqExdyQ5m+RMkptW4guQJC1PnzP+p4E/rKqfBm4Abk+yBzgEnKyq3cDJ7jndsf3AdcBe4K4kG/oUL0lavrGDv6rOV9Vnu/1vAaeBbcA+4GjX7ShwS7e/DzhWVRer6jHgLHD9uPNLksazItf4k+wEXg3cB1xbVedh8MMB2NJ12wY8OTRsvmuTJE1Q7+BP8mLgH4Hfr6pvXq7riLZa5DUPJplLMrewsNC3REnSkF7Bn+QHGYT++6vqQ13zU0m2dse3Ahe69nlgx9Dw7cC5Ua9bVUeqaraqZmdmZvqUKEm6RJ+/6gnwHuB0Vf3V0KETwIFu/wBwz1D7/iRXJdkF7AbuH3d+SdJ4NvYY+zrg14GHkjzYtf0JcCdwPMltwBPArQBVdSrJceBhBn8RdHtVPdNjfknSGMYO/qr6d0Zftwe4cZExh4HD484pSerPd+5KUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGtPnnbuSGrPz0EfWZN7H77x5TeZ9vvKMX5IaY/BLUmMMfklqjNf4JU29tbq3AM/P+wsGv7QOrWUQav0z+KUxGb5arwz+VeCvpZKmmTd3JakxBr8kNcbgl6TGGPyS1Bhv7mpFeENbWj8Mfq17/lmltDxe6pGkxhj8ktQYg1+SGuM1/ucZr3dLK+v5+I/PeMYvSY0x+CWpMQa/JDXG4Jekxhj8ktSYiQd/kr1JziQ5m+TQpOeXpNZNNPiTbAD+FngTsAd4S5I9k6xBklo36TP+64GzVfXlqvoOcAzYN+EaJKlpk34D1zbgyaHn88DPXdopyUHgYPf020nOjDnfZuCrY45dC9a7uqx39a23mqe23vzFyObl1Pvjix2YdPBnRFs9p6HqCHCk92TJXFXN9n2dSbHe1WW9q2+91dxqvZO+1DMP7Bh6vh04N+EaJKlpkw7+zwC7k+xK8gJgP3BiwjVIUtMmeqmnqp5O8jvAvwAbgPdW1alVnLL35aIJs97VZb2rb73V3GS9qXrOJXZJ0vOY79yVpMYY/JLUmHUZ/Ff62IcMvKs7/oUkr1nq2Cms9/EkDyV5MMncJOpdYs0vT/KpJBeTvGM5Y6ew3omv8RLq/bXue+ELST6Z5FVLHTuF9U7j+u7ran0wyVyS1y917BTWu/z1rap19WBwU/hLwMuAFwCfB/Zc0ufNwEcZvG/gBuC+pY6dpnq7Y48Dm6dwjbcAPwscBt6xnLHTVO9arPES630tsKnbf9M6+B4eWe8Ur++LefYe5yuBR6Z8fUfWO+76rscz/qV87MM+4H018GngpUm2LnHsNNW7Vq5Yc1VdqKrPAN9d7tgpq3ctLKXeT1bV17unn2bwnpcljZ2yetfCUur9dnWpCVzNs28kndb1XazesazH4B/1sQ/blthnKWNXWp96YfAf+GNJHug+ymIS+qzTtK7x5Ux6jZdb720MfiMcZ+xK6FMvTOn6JvnVJI8AHwF+azljV1ifemGM9V2P/9j6Uj72YbE+S/rIiBXWp16A11XVuSRbgHuTPFJVn1jRCp+rzzpN6xpfzqTXeMn1JvlFBkH6vWu6U72+I+qFKV3fqvow8OEkbwD+HHjjUseusD71whjrux7P+JfysQ+L9VmLj4zoUy9V9b3tBeDDDH4tXG191mla13hRa7DGS6o3ySuBu4F9VfW15YxdYX3qndr1/Z4uJH8iyebljl0hfeodb31X86bFajwY/JbyZWAXz94Iue6SPjfz/TdL71/q2Cmr92rgh4f2PwnsnYY1Hur7Z3z/zd2pXOPL1DvxNV7i98SPAWeB1477tU5JvdO6vj/JszdLXwN8pfv/b1rXd7F6x1rfVftiVnmh3gz8B4M74X/atb0NeFu3Hwb/4MuXgIeA2cuNndZ6Gdzl/3z3ODWpepdY848wOFP5JvCNbv8lU7zGI+tdqzVeQr13A18HHuwec1P+PTyy3ile3z/u6nkQ+BTw+ilf35H1jru+fmSDJDVmPV7jlyT1YPBLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxvw/ox9RUfNuXQgAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "prob_diff = []\n", "\n", "for model, model_file in zip(model_inference, models_file_path):\n", " print(\"Inference for model: {}\".format(model_file))\n", " for mi in model:\n", " max1, max2 = mi.argsort()[-2:][::-1]\n", " prob_diff.append(mi[max1] - mi[max2])\n", " plt.hist(prob_diff)\n", " plt.show()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "The model which appears to have a better seperation in probabability will work better in sim2real experiments" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Model CSV Analysis\n", "\n", "\n", "Download the model from the console AWS DeepRacer > Reinforcement learning > $Training Job Name$ > Download Model\n" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [], "source": [ "fname = './intermediate_checkpoint/{}/model-artifacts/worker_0.multi_agent_graph.main_level.main_level.agent_0.csv'.format(ModelUuid)\n", "df_csv = pd.read_csv(fname)" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['Episode #', 'Training Iter', 'Epoch', 'In Heatup', 'ER #Transitions',\n", " 'ER #Episodes', 'Episode Length', 'Total steps', 'Epsilon',\n", " 'Shaped Training Reward', 'Training Reward', 'Update Target Network',\n", " 'Wall-Clock Time', 'Evaluation Reward', 'Shaped Evaluation Reward',\n", " 'Success Rate', 'Inverse Propensity Score', 'Direct Method Reward',\n", " 'Doubly Robust', 'Weighted Importance Sampling',\n", " 'Sequential Doubly Robust', 'Loss/Mean', 'Loss/Stdev', 'Loss/Max',\n", " 'Loss/Min', 'Learning Rate/Mean', 'Learning Rate/Stdev',\n", " 'Learning Rate/Max', 'Learning Rate/Min', 'Grads (unclipped)/Mean',\n", " 'Grads (unclipped)/Stdev', 'Grads (unclipped)/Max',\n", " 'Grads (unclipped)/Min', 'Discounted Return/Mean',\n", " 'Discounted Return/Stdev', 'Discounted Return/Max',\n", " 'Discounted Return/Min', 'Entropy/Mean', 'Entropy/Stdev', 'Entropy/Max',\n", " 'Entropy/Min', 'Advantages/Mean', 'Advantages/Stdev', 'Advantages/Max',\n", " 'Advantages/Min', 'Values/Mean', 'Values/Stdev', 'Values/Max',\n", " 'Values/Min', 'Value Loss/Mean', 'Value Loss/Stdev', 'Value Loss/Max',\n", " 'Value Loss/Min', 'Policy Loss/Mean', 'Policy Loss/Stdev',\n", " 'Policy Loss/Max', 'Policy Loss/Min', 'Value Targets/Mean',\n", " 'Value Targets/Stdev', 'Value Targets/Max', 'Value Targets/Min',\n", " 'KL Divergence/Mean', 'KL Divergence/Stdev', 'KL Divergence/Max',\n", " 'KL Divergence/Min', 'Likelihood Ratio/Mean', 'Likelihood Ratio/Stdev',\n", " 'Likelihood Ratio/Max', 'Likelihood Ratio/Min',\n", " 'Clipped Likelihood Ratio/Mean', 'Clipped Likelihood Ratio/Stdev',\n", " 'Clipped Likelihood Ratio/Max', 'Clipped Likelihood Ratio/Min'],\n", " dtype='object')" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_csv.columns" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 51, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEWCAYAAAB/tMx4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAgaklEQVR4nO3de3SV9Z3v8fcnAUQPVBGiUlEQb62CphAkoljUehnHo4h1HNs64FRxyth6eua043S1Qp126rS2ddl6bPFS6CnjeMFahzNjRQpVGFATZKyKVg+SGpsBDOiIVSHJ9/yxH9INbMhOsp9kP+TzWitr7+e2n+9vJ+u7f/nt30URgZmZZU9FbwdgZmZd4wRuZpZRTuBmZhnlBG5mllFO4GZmGeUEbmaWUU7g1udI+jdJ00t9rllPk/uBWxZI2pq3eQDwAdCabF8bEQt6Piqz3uUEbpkjaT1wdUQ8XuBYv4ho6fmozHqem1As0yRNkdQo6W8l/SfwE0lDJC2StEnSluT5iLxrlkm6Onk+Q9JySbck574m6U+6eO5Rkp6Q9I6kxyXdLulnPfh2WB/jBG77gsOAg4GRwExyf9c/SbaPBN4DfriX6ycCLwPDgG8Dd0tSF879J+BpYCgwB7iyyyUyK4ITuO0L2oDZEfFBRLwXEc0RsTAi/hAR7wDfBD6+l+sbIuLOiGgF5gPDgUM7c66kI4EJwI0RsS0ilgOPlKqAZoU4gdu+YFNEvL9jQ9IBkn4sqUHSfwFPAAdJqtzD9f+540lE/CF5OqiT534Y2Jy3D+D1TpbDrFOcwG1fsOs38X8DHA9MjIgPAWck+/fULFIKTcDBkg7I23dEivczcwK3fdJgcu3eb0k6GJid9g0jogGoA+ZIGiDpVOC/p31f69ucwG1fdCuwP/AmsAp4tIfu+2ngVKAZ+AZwH7n+6mapcD9ws5RIug94KSJS/w/A+ibXwM1KRNIESUdLqpB0PnAx8HAvh2X7sH69HYDZPuQw4CFy/cAbgc9FxLO9G5Lty9yEYmaWUW5CMTPLqB5tQhk2bFiMGjWqJ29pZpZ59fX1b0ZE1a77i0rgyexv75CbvrMlImqS/rX3AaOA9cCfRcSWvb3OqFGjqKur61zkZmZ9nKSGQvs704RyZkRUR0RNsn0DsCQijgWWJNtmZtZDutMGfjG5yXxIHqd2OxozMytasQk8gMck1Uuamew7NCKaAJLHQwpdKGmmpDpJdZs2bep+xGZmBhT/JeZpEfF7SYcAiyW9VOwNImIuMBegpqZmtz6L27dvp7Gxkffff3+3a81KaeDAgYwYMYL+/fv3dihmJVFUAo+I3yePGyX9HDgF2CBpeEQ0SRoObOxKAI2NjQwePJhRo0ax5zn0zbonImhubqaxsZGjjjqqt8MxK4kOm1Ak/TdJg3c8B84Fnic3Wf2O1bqnA7/oSgDvv/8+Q4cOdfK2VEli6NCh/k/P9inF1MAPBX6eJNh+wD9FxKOSngHul/RZ4HfAZV0NwsnbeoL/zqy31DdsYdW6ZmpHD2X8yCEle90OE3hErANOLrC/GTi7ZJGYme2D6hu28Om7VrGtpY0B/SpYcHVtyZK4h9ID3/zmNznxxBM56aSTqK6u5qmnngJyA4/efPPNHotj3rx5XHfddTvt+8lPfkJ1dTXV1dUMGDCAsWPHUl1dzQ03FNft/sYbb+Txxx/f6zmPPPIIN998c5fjzjdjxgyOOuooqqurOfnkk1myZElJXrezCr2XZr1h1bpmtrW00RawvaWNVeuaS/bafX42wpUrV7Jo0SJWr17Nfvvtx5tvvsm2bdt6O6x2V111FVdddRWQ+0BZunQpw4YN2+mc1tZWKisLL/d40003dXiPiy66iIsuuqj7wSa+853v8MlPfpKlS5cyc+ZMXnnllZK99p7s7T0w6021o4cyoF8F21va6N+vgtrRQ0v22pmsgdc3bOH2pa9S37DXkftFaWpqYtiwYey3334ADBs2jA9/+MPtx3/wgx8wbtw4xo4dy0sv5XpPPv3000yaNImPfexjTJo0iZdffhnI1fouvvhizj//fI4//ni+/vWvt7/Oz372M0455RSqq6u59tpraW1tBXI17OOOO46Pf/zjrFixoui4Bw0axI033sjEiRNZuXIlN910ExMmTGDMmDHMnDmTHbNMzpgxgwcffBDIfQDMnj17t/Lk11ZnzJjBF77wBSZNmsTo0aPbr21ra2PWrFmceOKJXHjhhVxwwQXtx/bk1FNP5Y033gByCfZLX/oSEyZM4KSTTuLHP/4xALNmzeKRR3KLt19yySX85V/+JQB33303X/3qVwGYOnUq48eP58QTT2Tu3Ll7fA+6+l6apWn8yCEsuLqW/3nu8SVtPoEMJvAd7UnffexlPn3Xqm4n8XPPPZfXX3+d4447jlmzZvHrX/96p+PDhg1j9erVfO5zn+OWW24B4CMf+QhPPPEEzz77LDfddBNf+cpX2s9/+umnWbBgAWvWrOGBBx6grq6OtWvXct9997FixQrWrFlDZWUlCxYsoKmpidmzZ7NixQoWL17Miy++WHTc7777LmPGjOGpp57i9NNP57rrruOZZ57h+eef57333mPRokUFrytUnl01NTWxfPlyFi1a1N5U89BDD7F+/Xp+85vfcNddd7Fy5coOY3z00UeZOnUqkEvIBx54IM888wzPPPMMd955J6+99hpnnHEGTz75JABvvPFG+3uwfPlyJk+eDMA999xDfX09dXV13HbbbTQ3N+/2Hhx99NFdfi/N0jZ+5BD++sxjSpq8IYMJvNTtSYMGDaK+vp65c+dSVVXF5Zdfzrx589qPT5s2DYDx48ezfv16AN5++20uu+wyxowZwxe/+EVeeOGF9vPPOecchg4dyv7778+0adNYvnw5S5Ysob6+ngkTJlBdXc2SJUtYt24dTz31FFOmTKGqqooBAwZw+eWXFx13ZWUll156afv20qVLmThxImPHjuVXv/rVTjHlK1SeXU2dOpWKigpOOOEENmzYAOQS6mWXXUZFRQWHHXYYZ5555h5j+9KXvsTo0aP5zGc+0/7h9thjj/HTn/6U6upqJk6cSHNzM6+88gqTJ0/mySef5MUXX+SEE07g0EMPpampiZUrVzJp0iQAbrvtNk4++WRqa2t5/fXX25tk8t+D7ryXZlmVuTbwNNqTKisrmTJlClOmTGHs2LHMnz+fGTNmALQ3rVRWVtLS0gLA1772Nc4880x+/vOfs379eqZMmdL+Wrt2VZNERDB9+nS+9a1v7XTs4Ycf7nLXtoEDB7a3+b7//vvMmjWLuro6jjjiCObMmbPH/s6FyrOnc4D2ppjOLPzxne98h2nTpnHbbbcxffp06uvriQh+8IMfcN555+12/pYtW3j00Uc544wz2Lx5M/fffz+DBg1i8ODBLFu2jMcff5yVK1dywAEHMGXKlPay5b8H4G6C1vdkrgZe6vakl19+eacv2dasWcPIkSP3es3bb7/N4YcfDrBTbR1g8eLFbN68mffee4+HH36Y0047jbPPPpsHH3yQjRtzg1U3b95MQ0MDEydOZNmyZTQ3N7N9+3YeeOCBLpVhR0IbNmwYW7du7bBtuitOP/10Fi5cSFtbGxs2bGDZsmV7Pb+iooLrr7+etrY2fvnLX3Leeedxxx13sH37dgB++9vf8u677wK5tvJbb72VM844g8mTJ3PLLbe0N5+8/fbbDBkyhAMOOICXXnqJVatWFbxfqd5LsyzJXA0cckm8VG1JW7du5fOf/zxvvfUW/fr145hjjtnpi7JCvvzlLzN9+nS+973vcdZZZ+107PTTT+fKK6/k1Vdf5VOf+hQ1NbnZd7/xjW9w7rnn0tbWRv/+/bn99tupra1lzpw5nHrqqQwfPpxx48a1f7nZGQcddBDXXHMNY8eOZdSoUUyYMKHTr9GRSy+9lCVLljBmzBiOO+44Jk6cyIEHHrjXayTx1a9+lW9/+9ssXryY9evXM27cOCKCqqoqHn74YQAmT57MY489xjHHHMPIkSPZvHlzewI///zz+dGPfsRJJ53E8ccfT21tbcF7DR8+vCTvpVmW9OiamDU1NbHrgg5r167lox/9aI/FkKZ58+ZRV1fHD3/4w94OJRVbt25l0KBBNDc3c8opp7BixQoOO+yw3g6rU/alvzfLju6OxJRUn7cWQ7tM1sCtd1x44YW89dZbbNu2ja997WuZS95mvSHNkZhO4CU0Y8aM9i8/90UdtXub2e4K9Zzbp4bS92QzjvVd/juz3rCj51ylKPlIzF6vgQ8cOJDm5mZPKWup2jEf+MCBA3s7FOtjdvSc65XZCNM2YsQIGhsb8XJrlrYdK/KY9bRS9pzL1+sJvH///l4hxcysC8qiDdzMzDqv6AQuqVLSs5IWJdtzJL0haU3yc0F6YZqZ2a4604RyPbAW+FDevu9HROEp7czMLFVF1cAljQD+FLgr3XDMzKxYxTah3Ap8GWjbZf91kp6TdI+kgl+xSpopqU5SnXuamJmVTocJXNKFwMaIqN/l0B3A0UA10AR8t9D1ETE3Imoioqaqqqqb4ZqZ2Q7FtIGfBlyUfEk5EPiQpJ9FxGd2nCDpTqDwEjBmZpaKDmvgEfF3ETEiIkYBfw78KiI+I2l43mmXAM+nFKOZmRXQnYE835ZUDQSwHri2FAGZmVlxOpXAI2IZsCx5fmUK8ZiZWZEyMRKzvmELty99tdsr0JuZ7Ut6fS6UjqQ5GbqZWZaVfQ280GToZmaWgQSe5mToZmZZVvZNKGlOhm5mlmVln8AhvcnQzcyyrOybUMzMrDAncDOzjHICNzPLKCdwM7OMcgI3M8soJ3Azs4xyAjczyygncDOzjHICNzPLKCdwM7OMKjqBS6qU9KykRcn2wZIWS3olefRYdzOzHtSZGvj1wNq87RuAJRFxLLAk2TYzsx5SVAKXNAL4U+CuvN0XA/OT5/OBqSWNzMzM9qrYGvitwJeBtrx9h0ZEE0DyeEihCyXNlFQnqW7Tpk3didXMzPJ0mMAlXQhsjIj6rtwgIuZGRE1E1FRVVXXlJczMrIBi5gM/DbhI0gXAQOBDkn4GbJA0PCKaJA0HNqYZqJmZ7azDGnhE/F1EjIiIUcCfA7+KiM8AjwDTk9OmA79ILUozM9tNd/qB3wycI+kV4Jxk28zMekinllSLiGXAsuR5M3B26UMyM7NieCSmmVlGZSKB1zds4falr1LfsKW3QzEzKxtlvyp9fcMWPn3XKra1tDGgXwULrq71CvVmZmSgBr5qXTPbWtpoC9je0saqdc29HZKZWVko+wReO3ooA/pVUCno36+C2tFDezskM7OyUPZNKONHDmHB1bWsWtdM7eihbj4xM0uUfQKHXBJ34jYz21nZN6GYmWVdWj3pMlEDNzPLqjR70mWiBu5+4GaWVWn2pCv7Grj7gZtZlu3oSbe9pa3kPenKPoEX+vRyAjezrEizJ13ZJ/A0P73MzHpCWj3pyj6Bux+4mVlhZZ/Awf3AzSzb6hu29M0mFDOzLKtv2MIVc1eyvTXoXynunXlqz3UjlDRQ0tOS/kPSC5K+nuyfI+kNSWuSnwtKEpGZ2T5k4epGtrUGAWxrDRaubizZaxdTA/8AOCsitkrqDyyX9G/Jse9HxC0li2YP0vr3w8wsbepguzs6TOAREcDWZLN/8hMljGGv3A/czLJs2rgRPFDf2N6Tbtq4ESV77aJGYkqqlLQG2AgsjoinkkPXSXpO0j2SUsmqng/czLJs/Mgh3HtNLf/rvOO595rSVkCLSuAR0RoR1cAI4BRJY4A7gKOBaqAJ+G6hayXNlFQnqW7Tpk2dDtDzgZtZ1o0fOYS/PvOYkrceKNdC0okLpNnAu/lt35JGAYsiYszerq2pqYm6urpOB+k2cDPryyTVR0TNrvs7bAOXVAVsj4i3JO0PfAL4R0nDI6IpOe0S4PmSRpzH/cDNLMt6sx/4cGC+pEpyTS73R8QiSf9HUjW5LzTXA9eWLCozs31Emh0xiumF8hzwsQL7ryxJBGZm+7A0J+TLxHzgZmZZlWZHDA+lNzNLUZ+eTtbMLOvS6ojhJhQzs4xyAjczyygncDOzjHICNzPLKCdwM7OMcgI3M8uoTCTw+oYt3L70VeobtvR2KGZmZaPs+4F7QQczs8LKvgbuBR3MzAor+wReO3oo/SqEgMoKeUEHM7NE2SdwAKSdH83MrPwT+Kp1zbS0thFAa6ubUMzMdij7BO41Mc3MCiv7XihpTsVoZpZlxayJORB4AtgvOf/BiJgt6WDgPmAUuSXV/iwiUumo7TUxzcx2V0wTygfAWRFxMlANnC+pFrgBWBIRxwJLkm0zM+shHSbwyNmabPZPfgK4GJif7J8PTE0jQDMzK6yoLzElVUpaA2wEFkfEU8ChEdEEkDwesodrZ0qqk1S3adOmLgXpofRmZrsr6kvMiGgFqiUdBPxc0phibxARc4G5ADU1NdHZAD2U3syssE51I4yIt4BlwPnABknDAZLHjaUODjyU3sxsTzpM4JKqkpo3kvYHPgG8BDwCTE9Omw78Io0A3Q/czKywYppQhgPzJVWSS/j3R8QiSSuB+yV9FvgdcFkaAbofuJlZYR0m8Ih4DvhYgf3NwNlpBLUr9wM3M9td2Q+lNzOzwpzAzcwyygnczCyjnMDNzDLKCdzMLKOcwM3MMsoJ3Mwso5zAzcwyygnczCyjnMDNzDLKCdzMLKOcwM3MMsoJ3Mwso5zAzcwyKhMJ3Gtimpntrqg1MXuT18Q0MyusmCXVjpC0VNJaSS9Iuj7ZP0fSG5LWJD8XpBGg18Q0MyusmBp4C/A3EbFa0mCgXtLi5Nj3I+KW9ML745qY21vavCammVmeYpZUawKakufvSFoLHJ52YDt4TUwzs8I61QYuaRS59TGfAk4DrpP0F0AduVr6bt8ySpoJzAQ48sgjuxSk18Q0M9td0b1QJA0CFgL/IyL+C7gDOBqoJldD/26h6yJibkTURERNVVVV9yM2MzOgyAQuqT+55L0gIh4CiIgNEdEaEW3AncAp6YVpZma7KqYXioC7gbUR8b28/cPzTrsEeL704ZmZZV9aY1mKaQM/DbgS+I2kNcm+rwBXSKoGAlgPXFvSyMzM9gFpjmUpphfKckAFDv1rSSIwM9uHFRrLUqoEnomh9GZmWbVjLEulKPlYlrIfSm9mlmVpjmVxAjczS1laY1nchGJmllFO4GZmGeUEbmaWUU7gZmYZ5QRuZpZRTuBmZinrzaH0ZmbWRfUNW7hi7kq2twb9K8W9M0/1SEwzsyxYuLqRba1BANtag4WrG0v22k7gZmYp2nUiqUITS3WVE7iZWYqmjRvBgH4VCBjQr4Jp40aU7LXdBm5mlqLxI4dw7zXpzIXiGriZWUa5Bm5mlqJe7YUi6QhJSyWtlfSCpOuT/QdLWizpleTRy8abme2it3uhtAB/ExEfBWqBv5Z0AnADsCQijgWWJNtmZpanV3uhRERTRKxOnr8DrAUOBy4G5ienzQemljAuM7N9Qpq9UBQRxZ8sjQKeAMYAv4uIg/KObYmI3ZpRJM0EZgIceeSR4xsaGroZsplZttQ3bOlWLxRJ9RFRs9v+YhO4pEHAr4FvRsRDkt4qJoHnq6mpibq6us5FbmbWx+0pgRfVjVBSf2AhsCAiHkp2b5A0PDk+HNhYqmB3ldZEMGZmWdZhN0JJAu4G1kbE9/IOPQJMB25OHn+RRoD1DVv49F2r2NbSxoB+FSy4ujaVteXMzLKmmBr4acCVwFmS1iQ/F5BL3OdIegU4J9kuuVXrmtnW0kZbwPaWNlata07jNmZmqem16WQjYjl77vlydkmjKaB29FAG9Ktge0sb/ftVUDt6aNq3NDMrmTRbEcp+JOb4kUNYcHU68wiYmaWtUCtCn0ngkEviTtxmlkVptiJkIoGbmWVVmq0ITuBmZilLqxXB08mamWVUJhK4B/KYme2u7JtQPJDHzKywsq+BeyCPmVlhZZ/Ad3TBqRQeyGNmlqfsm1A8kMfMrLCyT+DggTxmlm3dnQ98TzKRwM3MsirNjhhl3wZuZpZlaXbEcAI3M0tRmh0x3IRiZpYiz4ViZpZhvTYXiqR7JG2U9HzevjmS3thlhR4zM+tBxbSBzwPOL7D/+xFRnfz8a2nD2pnnQjGzLOvNJdWekDSqpHftBM+FYmZZVt+whSvuXNW+oMO915RHN8LrJD2XNLGkllE9F4qZZdlDqxvZ1tJGANta2nhodWPJXrurCfwO4GigGmgCvrunEyXNlFQnqW7Tpk2dvlHt6KH0q6xAQGWl50Ixs2yJDra7o0sJPCI2RERrRLQBdwKn7OXcuRFRExE1VVVVXYsyYudHM7OMGPPhA/e63R1dSuCShudtXgI8v6dzu2vVumZa2oIAWtvCTShmlikv/P7tvW53R4dfYkq6F5gCDJPUCMwGpkiqJvffwHrg2pJFtIs0V3Q2M0vbxnc+2Ot2dxTTC+WKArvvLlkEHfB0smaWZYcM3m+v292RiZGYnk7WzLJq2rgRPFDf2N6KMG3ciJK9diYSuJlZVo0fOYR7r0mnFSETsxF6JKaZ2e7KvgbukZhmlmV9ekGHVeua+WB7biTmtu0eiWlm2ZJmDiv7BD7kgAHtI5fakm0zs6xIM4eVfQLf8odtKHmuZNvMLCu2/GEbFUkSq1Bpc1jZJ/D8T6/ANXAzy5b8JdUG9LUl1dIchmpmlrY+vaRamjN5mZn1hF5bUq23pTmTl5lZlpV9As9v8PeXmGZmf1T2CTz/S0t/iWlm9kdln8DT7IJjZpZlZZ/A0+yCY2aWZWXfC8XzgZuZFVb2CRw8H7iZWSEdNqFIukfSRknP5+07WNJiSa8kj86uZmY9rJg28HnA+bvsuwFYEhHHAkuSbTMz60EdJvCIeALYvMvui4H5yfP5wNTShrUzL+hgZra7rraBHxoRTQAR0STpkD2dKGkmMBPgyCOP7PSN6hu2cMXclWxvDfpXintnnur2cDMzeqAbYUTMjYiaiKipqqrq9PULVzeyrTUIYFtrsHB1Y+mDNDPLoK4m8A2ShgMkjxtLF9LO1MG2mVlf1dUE/ggwPXk+HfhFacLZ3bRxIxjQrwKRG8gzbdyItG5lZpYpHbaBS7oXmAIMk9QIzAZuBu6X9Fngd8BlaQU4fuQQ7r3GA3nMzHbVYQKPiCv2cOjsEseyRx7IY2a2u7KfC8XMzApzAjczyygncDOzjHICNzPLKCdwM7OMcgI3M8soRUTP3UzaBDR08fJhwJslDCcLXOa+wWXuG7pT5pERsdtcJD2awLtDUl1E1PR2HD3JZe4bXOa+IY0yuwnFzCyjnMDNzDIqSwl8bm8H0Atc5r7BZe4bSl7mzLSBm5nZzrJUAzczszxO4GZmGVV2CVzS+ZJelvSqpN1Wu1fObcnx5ySN6404S6mIMn86Ketzkv5d0sm9EWcpdVTmvPMmSGqV9MmejK/UiimvpCmS1kh6QdKvezrGUivi7/pASf8i6T+SMl/VG3GWkqR7JG2U9Pwejpc2f0VE2fwAlcD/A0YDA4D/AE7Y5ZwLgH8jt7paLfBUb8fdA2WeBAxJnv9JXyhz3nm/Av4V+GRvx53y7/gg4EXgyGT7kN6OuwfK/BXgH5PnVcBmYEBvx97Ncp8BjAOe38PxkuavcquBnwK8GhHrImIb8M/AxbucczHw08hZBRy0Y33OjOqwzBHx7xGxJdlcBWR9Xblifs8AnwcWkuKaqz2kmPJ+CngoIn4HEBF9ocwBDJYkYBC5BN7Ss2GWVkQ8Qa4ce1LS/FVuCfxw4PW87cZkX2fPyZLOluez5D7Bs6zDMks6HLgE+FEPxpWWYn7HxwFDJC2TVC/pL3osunQUU+YfAh8Ffg/8Brg+Itp6JrxeU9L81eGSaj2s0KLzu/ZzLOacLCm6PJLOJJfAT081ovQVU+Zbgb+NiNZcBS3TiilvP2A8uaUK9wdWSloVEb9NO7iUFFPm84A1wFnA0cBiSU9GxH+lHFtvKmn+KrcE3ggckbc9gtync2fPyZKiyiPpJOAu4E8iormHYktLMWWuAf45Sd7DgAsktUTEwz0SYWkV+3f9ZkS8C7wr6QngZCCrCbyYMl8F3By5xuFXJb0GfAR4umdC7BUlzV/l1oTyDHCspKMkDQD+HHhkl3MeAf4i+Ta3Fng7Ipp6OtAS6rDMko4EHgKuzHCNLF+HZY6IoyJiVESMAh4EZmU0eUNxf9e/ACZL6ifpAGAisLaH4yylYsr8O5LF0SUdChwPrOvRKHteSfNXWdXAI6JF0nXAL8l9i31PRLwg6a+S4z8i1yPhAuBV4A/kPsUzq8gy3wgMBf53UiNtiQzP5FZkmfcZxZQ3ItZKehR4DmgD7oqIgl3RsqDI3/HfA/Mk/YZc08LfRkSmp5iVdC8wBRgmqRGYDfSHdPKXh9KbmWVUuTWhmJlZkZzAzcwyygnczCyjnMDNzDLKCdzMLKOcwK2sSBqazMi3RtJ/Snojb3tAB9fWSLqtiHv8e4linSJpUd7zSaV4XbNilVU/cLNklGk1gKQ5wNaIuGXHcUn9IqLghEcRUQfUFXGPNBLtFGArUPSHw97KYlYM18Ct7EmaJ+l7kpYC/yjplGRe9GeTx+OT8/JrxHOSuZmXSVon6Qt5r7c17/xlkh6U9JKkBcnMeEi6INm3PJm/edFe4hsF/BXwxeQ/hcmSqiQtlPRM8nNaXlxzJT0G/DSlt8z6CNfALSuOAz6RTG71IeCMZLTfJ4B/AC4tcM1HgDOBwcDLku6IiO27nPMx4ERy81GsAE6TVAf8OLnHa8nouj2KiPWSfkTefwuS/gn4fkQsT6ZC+CW5mfcgN2nV6RHxXqffBbM8TuCWFQ9ERGvy/EBgvqRjyc3k1n8P1/zfiPgA+EDSRuBQcpMJ5Xs6IhoBJK0BRpFrClkXEa8l59wLzOxkvJ8ATsibSfFDkgYnzx9x8rZScAK3rHg37/nfA0sj4pKk+WLZHq75IO95K4X/3gudU4r5ayuAU3dN1ElCf7fgFWad5DZwy6IDgTeS5zNSeP2XgNHJhwPA5UVc8w65ppodHgOu27EhqbpUwZnt4ARuWfRt4FuSVpCb6a6kklrzLOBRScuBDcDbHVz2L8AlO77EBL4A1Ci3cO2L5L7kNCspz0ZoVoCkQRGxNemVcjvwSkR8v7fjMsvnGrhZYdckX2q+QK7J5se9G47Z7lwDNzPLKNfAzcwyygnczCyjnMDNzDLKCdzMLKOcwM3MMur/A0JAgtt5cOeUAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "title = \"Training\"\n", "df_csv.plot(x='Training Iter', y='Shaped Training Reward', style='.', \n", " title=title)" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABCLUlEQVR4nO2deXhkZ3Xm31N7lVRVklpLa+td7t1u242xjSFsxsSA7fAAYwhgMImBgYQsk4RlEshkIM6EzMAzM5AYMO4YsDEYsAOBsbHZgpfutrvttt22e9XSi6SWSqp9/+aPe7+rUqmWW1W3qq6qzu95/Eh1q6T+XJJOnXq/93sPCSHAMAzDtBaWZi+AYRiGMR4u7gzDMC0IF3eGYZgWhIs7wzBMC8LFnWEYpgWxNXsBANDb2ys2bNjQ7GUwDMOsKp566qkLQoi+QveZorhv2LABBw8ebPYyGIZhVhVENF7sPpZlGIZhWhAu7gzDMC0IF3eGYZgWhIs7wzBMC8LFnWEYpgXh4s4wDNOCcHFnGIZpQbi4N4lQPIUfHTrT7GUwDNOicHFvEj89ch5/8t3DmJyPNnspDMO0IFzcm0QwngIALMZSTV4JwzCtCBf3JhFJZAAAQS7uDMPUAS7uTSKaTAMAgvF0k1fCMEwrwsW9SYQTsrhz584wjPFwcW8S0aQiy4S4c2cYpg5wcW8SEdm5s+bOMEwd4OLeJCKq5s6dO8Mw9YCLe5PQ3DKsuTMMUwe4uDcJzS3DsgzDMHWAi3uTkJ07yzIMw9QDLu5NIpJkKyTDMPWDi3uTiHLnzjBMHeHi3gSS6SySmSwA7twZhqkPXNybgNxM7XBYEYqnIYRo8ooYhmk1uLg3gYh6OnWt34VMVminVRmGYYyCi3sTkKdTB/1uACzNMAxjPFzcm4As7mv9LgC8qcowjPFwcW8CUoYZVIs7H2RiGMZouLg3gTB37gzD1Bku7k1AumW0zp01d4ZhDIaLexOQ0QNrfeqGKssyDMMYTNniTkR3EtEMET2Xc+0fiehFInqWiH5IRF05932KiI4T0UtEdF2d1r2qyd9Q5VF7DMMYjZ7O/S4Ab8679jCAXUKIiwG8DOBTAEBEOwDcDGCn+jVfISKrYattEaTPvctth8NmYVmGYRjDKVvchRC/BjCfd+0hIYRsN58AMKJ+fiOAe4UQCSHEKQDHAVxh4HpbgmgijQ6HFRYLweey84YqwzCGY4TmfiuAn6qfDwOYzLlvSr22AiK6jYgOEtHB2dlZA5axeogkM/A4bQAAn8vGmjvDMIZTU3Enos8ASAP4trxU4GEFg1OEEHcIIfYKIfb29fXVsoxVR0Tt3AHA6+bOnWEY47FV+4VEdAuAtwJ4g1hKvpoCMJrzsBEAZ6tfXmsSTabRkdu5s+bOMIzBVNW5E9GbAfwVgBuEENGcux4EcDMROYloI4AxAPtrX2ZrEUlk0OGQxd3OsgzDMIZTtnMnonsAvBZALxFNAfgsFHeME8DDRAQATwghPiKEeJ6I7gPwAhS55mNCCI48zCOSTKOnwwEA8LpsLMswDGM4ZYu7EOLdBS5/o8TjPw/g87UsqtWJJNIY7fEAAHxuO8syDMMYDp9QbQLRZEbbUPW5bIinskims01eFcMwrQQX9yYQTqThUTV3r8sOAAhx984wjIFwcW8wQiiTlzqlW8atfGTdnWEYI+Hi3mAS6SwyWQGPU/W5O5XOnXV3hmGMhIt7g5GhYZoV0q0W9xh37gzDGAcX9wYjpzDJQ0xel5RluHNnGMY4uLg3mEhSdu6qW8bNsgzDMMbDxb3BSFkmNzgM4A1VhmGMhYt7g5FTmDrVDdUOhw1EPI2JYRhj4eLeYOT8VOlzt1gIXqeNpzExDGMoXNwbTFjt3KVbBlAOMrHmzjCMkXBxbzCyc+9wLk0f9LntbIVkGMZQuLg3GKm5SyskoGyqshWSYRgj4eLeYCKJNCwEOG1LT70iy3DnzjCMcXBxbzARdQqTmoMPQMmX4c6dYRgj4eLeYKI5U5gkPI2JYRij4eLeYMLJtBYaJvG5bAgl0shmC84SZxiGqRgu7g0mmkhrcb8Sr8sOIZaiCRiGYWqFi3uDiSQz8DjyOnc10503VRmGMQou7g0mkkgX1NwBToZkGMY4uLg3mGgyo4WGSeSoPT7IxDCMUXBxbzCRRFoLDZMsjdrjzp1hGGPg4t5gIjnDsSVa587FnWEYg+Di3kCyWYFoKqMN6pDITHeWZRiGMQou7g0kns5AiOW5MsBS586yDMMwRsHFvYGE86YwSRw2C1x2C1shGYYxDC7uDSSqZblbV9znc9m5c2cYxjDKFnciupOIZojouZxrPUT0MBEdUz9259z3KSI6TkQvEdF19Vr4akQbjp3XuQOA12VjzZ1hGMPQ07nfBeDNedc+CeARIcQYgEfU2yCiHQBuBrBT/ZqvENHKNrVNiRSYwiTxuXkaE8MwxlG2uAshfg1gPu/yjQD2qZ/vA3BTzvV7hRAJIcQpAMcBXGHMUlc/snPPDw4DONOdYRhjqVZzHxBCnAMA9WO/en0YwGTO46bUaysgotuI6CARHZydna1yGasLqbnnB4cBajIkx/4yDGMQRm+oUoFrBXNshRB3CCH2CiH29vX1GbwMcxKRbplCG6pu7twZhjGOaov7NBENAoD6cUa9PgVgNOdxIwDOVr+81kLbUC2guXtdNtbcGYYxjGqL+4MAblE/vwXAAznXbyYiJxFtBDAGYH9tS2wdosmVw7ElPpcdyXQW8VSm0ctiGKYF0WOFvAfA4wC2EtEUEX0IwO0AriWiYwCuVW9DCPE8gPsAvADgZwA+JoQwbbU6MrWIHx0607B/L5xIw24lOGwrn3YZQRBiaYZhGANY2ULmIYR4d5G73lDk8Z8H8PlaFtUo7nrsNB59cRo3XVpwz9dwogVCwyQ+91J4WJ/X2ZD1MAzTurT1CdXFWArBeBpCNGZ2aSSZKeiUARTNHeDOnTEn33lyAl/++bFmL4OpgLYu7sF4CpmsQCTZGOVIifstfKbLpw3s4E1Vxnz8+NmzuPfARLOXwVRAexd3tZA2qqBGCkxhkkhZhjt3xowEoilMB+NIZbLNXgqjk7Yu7rKQNsqCGC0whUkiZRm2QzJmZCGaRFYA5xfjzV4Ko5O2Lu6Lase+GG1MQQ2X2lDlTHfGxASiSQDAVCDW5JUwemnb4p7OZLV89UadDI0mV05hkngcVlgtxMmQjOmIpzKIpxQ5ZioQbfJqGL20bXGXhR1onOYeTaYLHmACACLiU6qMKZFdOwCcWeDOfbXQtsU9t0NuVEENJ4oXd0DR3XlDlTEbgcjS38cZlmVWDW1b3BdzuvXFBnTumaxAPJUtaoUEFN2drZCM2VhQO3cLcee+mmjb4p7brTdC546qoWHFDjEBctQed+6MuQiohoOxfi8X91VE+xb3nA65EbKMnMJUzC0DcDIkY06k5r5z2IezCzFks4050c3URvsWd7WI+ly2hsgyS/NTS8gybu7cGfMhZZmdQ36kMgIzoUSTV8TooW2Luyzooz2ehujc0RLzUyXKkGzu3BlzEYim4HFYsam3AwBwZoHtkKuBti3uwVgaFgIG/e6G+Nyl9bLQ/FSJz2VHKJFGht/2MiYiEE2i2+PASLcbAB9kWi20b3GPp+Bz2+F3N8ahEi0xhUki82VyPfgM02wWoil0eewYVos7b6quDtq3uMdS8Lns8LkbI4VESkxhkmj5MizNMCZCdu4ehw3dHjt73VcJbVvcF2Mp+Ny2hkkhcjh2yQ1VFydDMuZDdu4AMNzt5s59ldC2xT0YT8OvyjIAEK5zQZXFvZQV0sfJkIwJkZ07AAx3ublzXyW0b3HXZJml8Xb1RBuOXeqEqpsHdjDmIpMVWIyl0C079y4PpgKxhk0vY6qnfYt7XC3uardcb697JJGG02aBzVr8KedRe4zZCMZSEALokp17txuxVEY7tcqYl7Yt7prm3qBuOVIiEVKijdpjWYYxCfJ0aneH8rsp7ZAszZiftizuibSST52rudddlklkSm6mAty5M+ZDFveuHM0d4INMq4G2LO6yePrcOZp7ncPDwol0SY87ANisFngcVtbcGdMg437lhiofZFo9tGVxl/p6IzX3aDJTMu5XwsmQjJnQZBl1Q9XvtqPDYWU75CqgLYu77Ix9bhs6HDZYqP6yjB7NHeBkSMZcLKgbp1KWISIMd7u5c18FtGdxVztjv9sOi4Xga0AEQUSHLAMoUhEXd8YsBKJJWC2kvcMF2Ou+WqipuBPRnxLR80T0HBHdQ0QuIuohooeJ6Jj6sduoxRpFMEeWkR/rHR4WSWRKhoZJeNQeYyYC0RS63HYQkXZtpNvDsswqoOriTkTDAP4YwF4hxC4AVgA3A/gkgEeEEGMAHlFvmwpNc1c3U33u+me6R5PpklOYJDxqjzETC9GkFj0gGe52YzGW4oA7k1OrLGMD4CYiGwAPgLMAbgSwT71/H4Cbavw3DGdpUEdO5153n3umZPSAxOfmzp0xD7nRAxLNDsnSjKmpurgLIc4A+CKACQDnACwKIR4CMCCEOKc+5hyA/kJfT0S3EdFBIjo4Oztb7TKqIhhLw2G1wGVX/vf9dda5U5kskulsyegBidelrIWPdzNmQAkNyyvu3ex1Xw3UIst0Q+nSNwIYAtBBRO/V+/VCiDuEEHuFEHv7+vqqXUZVKFnuNk1HVDr3+nXL2hQmnbJMKiOQSGfrth6G0YvSuS+XZUa62Ou+GqhFlnkjgFNCiFkhRArADwBcDWCaiAYBQP04U/syjWVRDQ2T1Ftz1zM/VcKZ7oxZEEIgEE2hu2N5597b6YTDamFZxuTUUtwnAFxJRB5SWuA3ADgK4EEAt6iPuQXAA7Ut0XiCsRS87pzi7rIjlsogWaduWU/cr7aWBsUhMEw55N9E/oaqxUIY6nJhih0zpqZ8tSmCEOJJIvo+gKcBpAEcAnAHgE4A9xHRh6C8ALzTiIUaicxyl/g9ckhGCms6nYb/e3IKkz63jMx0501VprnI5Mf8DVVAtUNy525qqi7uACCE+CyAz+ZdTkDp4k1LKJbCqLopBCy5ZhZj9SnuUa1z17ehCrAswzSfQGR59EAuw11uPPqS6RRXJoe2PKGqxP0u19yB+nXLYW3EXvnXUr+bkyEZc5AfPZDLcLcbs6EE4qlMo5fF6KTtirsQQhvUIfHVuVuO6hiOLfFypjtjEmRoWE9HgeKuOmbOLcYbuiZGP21X3OOpLFIZsVxzr/MmpuaW0ZkKCXDnzjSfBS3LvYAso0X/stfdrLRdcddOp7qXumgp0dTLDqm5ZXR07i67BTYLsebONB25odrlLt6586aqeWm74r6YFxqW+3m9DjJF1ENMHnv5zp2IOBmSMQWBaBKdThsctpVlYtDvgtVCpggQ+82xWdz/1FSzl2E62q64B/NCwwClW7ZbqW4FNZpMw+OwwmKh8g+GYodkWYZpNkr0wEpJBlCmhq31uUzRuf/Lr07i737yAkd25NF+xV0t4LmaOxEp+TJ1kkLCCX2hYRIvJ0MyJqBQaFguw11uUxxkmgpEsRBNcRxCHu1X3FXpJXf4gHLbXrHmns0KXd2CEvdbXpLR1sLJkIwJCJTo3AFlU7XZnXs2KzRp6Lkzi01di9lou+Ken+Uu8borG9iRzQpc8w+P4ltPTpR9bKTSzt3JmjvTfBZ0dO7ng3GkM80LuZsJJZDKKA3WES7uy2i74p4/hUnic9kqkkIC0STOLsZx8PR82cdGEmldoWHaWty2uqZUMvUhkxV4ZnKh2cswjEBkZSJkLsPdbmSyAueDzfO6SysmERf3fNqvuMdTcNutKxwAlWa6TwcTAICTs5Gyj43qHI4t8brsCHHnvur4348ew43/97d4eTrU7KXUTDqTRTCeLng6VWIGO6TU2S9f143nzizypmoO7VfcY+llHndJpUOyZ0JKt3LqQqTsL1QkmdE1HFtbi8uOSDLT1Le7TGWcmA3jK784AQA4faH8C77ZkfJlqc59RBva0czirnTub961FoFoyhTWTLPQdsU9P8tdIgd26H3ln1E793AijdlQouRjI4m0rtAwbS3qiw/PqFwdCCHwmR8egVW1urbCkXwtEbJA9IBkyCSde2+nE3s39ADgTdVc2q64B+OpZTZIid9tRzKT1T0BSXbuAHCijDSjaO6VyTJA/Q5VMcZy/9Nn8MTJefzXt26Hw2rB2RboHpeiB4oXd5fdit5OZ5M79xhGut3YttYLm4VYd8+hLYt7vlMGyEmG1CnNTAcTkGeSTpV4Gy6EQDSZqWxDVct0Z93d7MxHkvj8T17A3vXdePcr1mGwy4WzrdS5l5BlAGVTtZn+8qlAFCPdbrjsVowNeHHkTLBpazEb7VfcY+kVHndgeaa7HmZCcWzs7YDLbsHJ2XDRxyXSWaSzouJDTAAX99XA539yFOFEGl94+25YLIRBv6slOneZCFnKCgko81Sb1blLj/tItwcAsHvYx5uqObRdcc/PcpdUOt5uOpjAWr8LG9Z04GSJzj1awRSmpbXIdxEsy5iZx05cwP1PT+HDr9mMiwa8ABQd+lwLFPdSiZC5DHcrxT2bbXxBlR53ubG7e9iP+UiyJd45GUFbFfdsViBUQnMH9BfU2VACA14XNvd1luzcIxVMYZIsxf5y525W4qkMPvPD57B+jQcff/0W7boZDvYYQSCags1CZZuSkW43kuksLkRKmwrqgXTKyOK+a9gPADgyxbo70GbFPZJMIytWHmAClnRuPbKMEAIzoTj6fE5s6uvAZCBWdLi2luVeSeeuyTLcuZuVr/zyBE5diODzN+2GKyftc9DvRlYoXeVqZiGaRJfHAaLSYXfN9LpLrV/KMtsHfbBaiB0zKm1V3GWxLOZzVx5TvrgHoimkMgIDXhc29nYgkxWYmC88tEDG/VZS3DtdctQed+5m5PhMGF/95XH83qXDuGasd9l9Q10uAFj1unsgkiq7mQosDe1ohu6e37m77FaM9XeyY0alrYr7YrRw9EDuNT1umWn1uHW/z4lNfZ0AUFSaiVYwhUliVd8Os+ZuPoQQ+PQPj8DjsOEzb9m+4n7p/a5G9/31y7P42XPnal6jEZRLhJQ0u3Pv7XQue+e0e9jPm6oqbVXcC8X9Shw2C9x2qy4pRL7lHvApnTtQ3A65pLnr79wBmenOnbvZ+N7BKew/NY9PX78NvZ3OFfcP+qvv3L/085fxdz8+WvMajaBUlnsuXpcdPpetKXZI6XHPZfeIH3ORZEscJKuV9iruRRIhJT63TevuS6F17l4n/G47ejsdRTNmpCxTiVsGUDPdubibisVYCl/46VFcsaEH77x8tOBjvC47vC5bVcV9Yj6KMwsxzanSTPR27gAw3O1pmiyTX9x3DqmbqizNtFdxLzRiLxefzoIq4wb6vUqXtqm3EycvlJZlPBUcYgI4GdKM/OjQGSxEU/ivb91ecqrWcJcbZxcq6xzDiTQuhJWi/sLZ5h7EEUIonXtH+c4dUP5/Gy3LZPI87pIdgz5YiGMIgDYr7qU2VJXr+or7dDAOr8sGt6qjb+rrKCrLhOWGasWyjB2hBHfuZkEIgXv2T+DiET8uHukq+dhqDjJNzC1tyD/f5OIeTWaQzGR1d+4jqte9kTr3TCi+zOMucTusGOv3cueOdivuaufuLdK5K6P2dGjuwQQGfC7t9sbeDlwIJwvaKKPJNCykzGmtBK+LO3czcWhyAS+eD+HdV6wr+9ihLjfOLVZY3OeV5oAIeOFcc4v70ulUfZ37SLcb4US6ob+vSzZI94r7dvGmKoB2K+7xFLxOm5bel4/PZdPlc58JxdHvXdpMK+WYiSSUuN9yfuF8ujwO7Y+MaT73PDmBDocVb7tkqOxjh7rcCERTiKmnk/Uwrnbue9d34/mzze06F9R9p1KhYblIx8zUQmE7cD1YskF6Vty3e9iHC+FkU4eImIGaijsRdRHR94noRSI6SkRXEVEPET1MRMfUj91GLbZWikUPSPTLMss79019imOm0KZqJJGuWG8HFL90KJ7mTVUTEIyn8G/PnsUNe4Z1bYxrXvcKuvfx+Si6PXZcuWkNTsxGEE/pf2HQQyKdwXcPTOiKCdCbKyORXvdGOmam5ot37rtH+KQqUHvn/mUAPxNCbANwCYCjAD4J4BEhxBiAR9TbpiAYS8NbIDRMomS6p0q+nRNCYDaUWNa5r+vxwGqhgrp7pMIpTJJRtSOZLHI4imkcDxw6g3gqi/fokGQA5ZQqUJkdcmIuinVrOrBj0IdMVuDF88ZOc/rZc+fxV/cfweMn58o+Vm8ipKQZXvdCHnfJjkE/b6qihuJORD4ArwHwDQAQQiSFEAsAbgSwT33YPgA31bZE4yiW5S7xu+3ICmVyUjEWoikkM1n053TudqsF63o8BR0z0QqnMElGe2RxX90nHVc7Qgh8+8kJ7Br2aR1hOWSxO1eBY2Z8PoL1PR7Nyme0Y+bYtPK7eVSHnq8nyz2Xng4HXHZLQ+2QUwsrbZASt8OKLXxStabOfROAWQDfJKJDRPR1IuoAMCCEOAcA6sf+Ql9MRLcR0UEiOjg7O1vDMvQTLCvLlM+XmdFskMsPsGzq7Sgoy4QrnMIkkZ271BaZ5vDM1KLujVTJgM8FIv1H8lOZLM4uxLF+jQejPW54XTbDdffjM0px17NZG4hIzV1f505E2LCmuGOsHhQ6wJTLrmE/jpwJtvWmai3F3QbgMgBfFUJcCiCCCiQYIcQdQoi9Qoi9fX19NSxDP8EiI/YkeiII5AGmXM0dWLJD5mua0WS64gNMAOD3KIdhWJZpLvc8OQGPw4obdGykShw2C/o6nbodM2cCMWSyAut6PCAi7Bj0GW6HPDajyDwvnisv9wSiSXidNtit+svD2IC3YYPBM1mBswU87rnsHvbjQjihDbJvR2op7lMApoQQT6q3vw+l2E8T0SAAqB9naluicQTjhYdjS7TwsCo69429nUiksys20aKJDDxVFHdA6d4nmzjlpt0JxVN48JmzuOGSoaL22WIMVXCQaVx9AV+/RtmY3znkx4vng8gYlJGeTGcxPheFzUI4PhNGqkwc8UI0qfsAk+Si/k5MBWJa3EY9KeZxz2X3MJ9Urbq4CyHOA5gkoq3qpTcAeAHAgwBuUa/dAuCBmlZoEOlMFuFEuqzmDpSO2s0NDculmGMmnEhXFBqWy2iPu2jaJFN/Hjh8FrFUpiJJRjLU5dLtlpmYU35n1q9ROtEdQz7EU1mcKnLquVLG5yJIZwWuGetFMpPFiRLzBwBlQ1WvU0Yypg4rOTZjzJpLIV05cl+qEDuGlJOqXNyr548AfJuIngWwB8AXANwO4FoiOgbgWvV20wmrHYUeWaaU5j4bSsDrtK0IApPFPV93VOanVt+5TwWiba0bNgshBL7z5AR2DPpwsc6N1FyG/G6c1Xlq8/RcFC67RXs3uHPIB8C4k6qy4L7tYkVaKifNyCz3Sti6VinujZBm8qN+C+Fx2LC5r7OtHTM1FXchxGFVN79YCHGTECIghJgTQrxBCDGmfpw3arG1sFgmNEy5r/yQ7OlgfEXXDgB9nU50Om3LDjIJIRQrZNWduwfxVBaz4fbVDZvFkTOLeOFcEO9+5bqKD6ABwGCXG/FUVjsQVIrxuaimtwPAlv5OOGwWw4q73Ey9ducAHFZLWceM0rlXJsus6/HAabPgWCOKu+ogk66kYuwe9nPn3g7Io9GFhmNL9AymngkltMCwXIgIm/qWz1ONpTIQAtVr7j3KLy/bIRvPPfsn4LZbceMe/RupuQyrB5n0OGYm5iNY19Oh3bZbLdg64DXMMXNsJoyRbjd8LjvGBjrLOmYqSYSUWC2EzX2deHm6MbJMn7ewxz2XXcN+zIYSmpTabrRPcS+R5S6xWgheZ+kIgulgHAMFOndgpR2ymilMubAdsjmEE2k8cPgs3nbJYEkZrxR6DzIJoUzxknq7RDpmjJDkjs+EMdavRGRsH/ThaAlZJp3JIhRP67ZB5nLRQGdjOvcSHvdc2v2kavsUdx2yjLy/WACSMjs1sewAUy4beztxZiGmHR2vZgpTLiN1OqUaTqTxB/sOYHyucb7k1cSDh88imqxuI1UiJzKVGxoxE0ognsquKO47h31YiKZqHjqRyQqcmA1ji1rct6314kI4ocVW57MQk6dTK+vcAWVT9exivO5DZhSPe/HNVMmOQR+ojTdV26a469HcATWNscgv52IshWQ6u8IGKcnfVA1XOYVJ4nZY0dvpNFyWeXZqAT8/OoNHXzSNS9VU3LN/AtvWerFntKvq77GmwwGH1VK2c5eBYevynB9GbapOBaJIprMY61c2PHcMKt/3xfOFv+/S6dRqOne5qVo/aWbJ416+c+9wtvematsUd1mwS2nugOzcCxd3zeNepHPPt0NGk9VNYcpltMeNSYNlGZkdXs4S144cmVrEkTOLeE+VG6kSi4Uw2OUqO0t1XLNBdiy7vm2t0nXWqrvL2IHNObIMUDyGYClXpvLO/aKBTvXfrJ80o8fjnks7b6q2T3GPKbnq5Qqt320vqrlrp1OLdO5L81SVPyhtfmoVqZAS5SCTscVdHpo5McOyTD73HJiAy27BjXuGa/5eeoZ2TMxHYaGVzo8Opw0b13TU3LkfV1/ApSzT3eHAWp+rqO4eiFSWCJnLaLcHLrulrp37pJYGWV6WAZRN1ZlQAjNtuKnaPsU9ruTKlOvGfC47QkUOMc0ES3fuHocNg36X1rlHqpzClMtoj3LSMV3mVGElcOdemExW4MfPnMX1uwZLbrzrZajLjXM6ZJmhLjcctpV/ijuGfDUHiB2bDmuzfiXbBr1FO/elLPfK//8tFsJYv1eLOqgHejzuubTzSdW2Ke6LZXJlJMrs0iKde2hpMHYxNvV14ISquUfkhmqNnXsmKwyd5j6uTv2ZCSU4Lz6Hl6dDCMbTePVFvYZ8v+EuN84HS78wj89HsSFPkpHsHPLXPDD7+GwYY6pcItk+6MOJ2TCS6ZXr0rLcOyrv3AFgbKCzrgeZ5OnUch53yc6h9t1UbZviriRClu+gldml6YK5HjPBBDqdtpLWxk29nTg1G4YQAtGEdMvU0rmrjhmDpBkhhNIt+pV3H4WSLNuVg+MBAMDe9T2GfL9BvxtZsbRXU4iJuQjWrSksMchN1Wq7dyEEjk+HsKVvZXFPZYR2uCmXQDQFu5WqdnhdNODFdDCBRR2Ht6phKhDV5XGXdDht2L7Wh4dfmG67k97tU9zjpXNlJPIxhexcM6HCp1Nz2djbgWA8jblIUsuFr1VzB5ZO5dXKQjSFUDyN121TkpgL/YHXyo8OncEDh88Y/n3rzcHT8+j3OnW/5S+HNpGpiDQTjKcQiKawvkhGyo4aHTPnFuOIJDPYorpYJNvVqIBCjhkZPVDtZrLcVH25TtJMuajfQrz3yvV4/mwQ+0+Z4rB8w2if4q5blpHJkCt195lgoqQkAyx3zEQSaditBKet+uI+2OWChYzr3OVm6qvHemG3Ul109y8+9BK+9PNjhn/fenPwdAB7N3TX5JLJRXrdizlm5N5Hvsdd0tvpxIDPWbVjRr5wywNMko29HXDYCscQKKdTq99vkJbLekkzej3uufzepcPo8thx529P1WVNZqVtirtuzV21ShbSoqdD8RU57vlszhmWHU1mqva4S+xWCwb9bsMOMknr3aa+Tqxf04ETBnfuM6E4pgIxnLoQWVV6/vnFOM4sxHC5QZIMoLhlgOKd+5LHvbDmDii6u54BG4WQgWFb8oq7TY03KOSYCURTFYeG5TLc5UaHw6pZMI2kEo97Lm6HFb//ynV46IVp7QW1HWib4h6Mp+DX0ZH4i2S6CyF0de7S+XDqQqSmuN9cFK+7MbLMRM6hmc19HYZ37ocnFrTPnz9j7MCJenJwXHnLvne9cfPcvS5l4Eoxx4zc2C6muQOK7l7twOzjM2F0e+xYU2BzdLvqmMnXoQOR2jp3i4WwpU6DO6aDcaSz+j3uubzvyg2wEmHf46cNX5dZaYvinkhnEE9lyx5gApZkmXyvezCWRiKdLdu5Wy2EDWs8ODEbQbTK4dj5jHZ7jOvc56MY8CkbUpv7OjE+Fy07vKESDk0uwGpRZI3VdDLw4OkA3HarpnMbxXCXG2eKDO2YmIuit9NR8uzFzqHqB2YfnwlhS39nQZlp21of5iLJFYmj1WS553NRf30CxKRTplJZBgDW+l14y8WD+O6BybrHI5iFVV3cA5EkfvD0FC6UicSVvvVy0QO5j8mXFGZUG2Rfmc4dUBwzJy+EEalhClMuoz0eNYOk8u4tn4m5KNarMsDmvk6ks8LQgSCHJgLYNeTDoN+1quxnT40HsGe0q6LRcnoY9LuKjtuTUb+l2DGo+LQr1d2FEDg2E8aWfm/B+5dOqoaWfU01We75XDSg5NfMR6q3cBaiUo97Ph981UaEE2l87+CUkcsyLau6uE/MR/Fn9z2DJ0+W3gXXcmUq0dzzNlTlLMZynTsAbOzrwMRcFIuxlGGyDLDUudTC+PyS9U4eSTdKd09nsnh2ahGXruvGrmH/quncI4k0XjgXxN4NxkkyEmXcXuGfm5IGWVxvB6ANzK7UDjkXSWIhmlqht0t2FIghCCfSSGdFTbIMAM1Xb7Q0U6nHPZ89o124fH037nrstGEjDM3Mqi7u2wd9cNosODQRKPk4qZ/rsUJ2Om2wUPHOvZzmDijRv+mswLHpkGGyDFC7YyaeymA6mMAGtbhLZ88Jg7zuL08rm8iXruvC7mE/Tl6IrIq3wM9MLiCTFbjcQL1dMtTlRiCaQiy5/F1XIp3B2cVY2c692oHZxZwyEr/HjiG/a1lxX6ghVyYXGSBmdMZMpR73Qnzomo2YmI/ikaPTBq7MnKzq4u6wWbB72I+nyxV3TZYpX2iJCL4C+TLTZaIHctmkOmYiyYxBnbv0utdW3KX8sk7tFn0uO/q9TsM2VQ9NKj+Hy9Z1a8e+jZomVE8OjgdABFxWl+KuOmbypJnJ+RiEKG6DzKWagdnSKZN/OjWXbYO+ZSP3AjUkQuYy6HfB67QZrrtX43HP5007BjDc5W4LW+SqLu4AcOm6Ljx3NohEurgeHaxAlpGPy3fLzITi6HBYdSU8bupdeqtthObe1+mEw2ap2TEjrXe5h2Y293UaV9wnFtDb6cBItxu71OK+GqSZg+MBbB3wVj2YoxTFhnZMzC8fil0KOTD7ZAU/pxMzYXQ6bVhbohnZPujFidmw9rejJUJWGT0gIaK6xBBU43HPx2a14Jar1+OJk/OGTboyKy1Q3LuRTGdLTpfRm+Uu8bltWrcvmQkmdOntgPLHIXXLWuJ+JRYLYaS7dq/7UrxsTnHvV7zuRhzNfnoigD2jyiGgPq8Ta33m31TNZAUOjQfqIskAS/rwuTzHjB6Pu0SLIajA735sJoTNRZwyku2DPlU+VF40ZIZNrZo7oEgzxww8Q1Gtx70Q/2nvOngcVnzzt6drX5iJaYHi3gUAJXV3PSP2cvEXyHSfCcV1OWUkUprxGCDLAMZE/47PReFz2Za5Ibb0dSIYT+NCuDZnw0I0iZOzEe3nAShxq2Yv7i9PhxBKpOuymQooG/BEK2epjs9F4XFY0dtZvkuuZmD28ZnwikyZfLZrgzuUxqiWuN98xga8mI8kyzrZ9CI97qM1du6Ast/wjstH8ODhs9peWiuy6ov7oN+NtT4XDuUcnsknGEvDYbXAWSBWtRA+V2HNXW/nDixJM7WEhuUy2uOueSLTeAF3huaYqVGaOTy5AADLivvuYb92mMusGB0Wlo/DZkFfp3OFHXJiXrFB6ok6qHRg9mIshelgoqTeDgAb1nTAZV+KIZCyjBFxx1rGTBX+/EIsedyNyf354Ks2IpnJ4ttPTBjy/czIqi/ugFJQ5GZeIZQsd5vuzBCfy77MLaPMTo3rcspINqpOFCPcMoDSuS/GUjUd6S+UQCjjEmoNEDs0sQALARePdGnXdo/4IATwvIm796cMDgsrhGKHzJdlIrr0dsnOIf0Ds+XPslznbrWQGkOgFPeFaBI+lw02A7z+SyP3jCrutXnc89nY24E3bOvHt58cN+T8iBlpmeI+OR8rOvRXb66MRMl0X+o2g/E04qnyp1Nz2dSr/GHVkuWeixb9W6Xuns5kMRWIrUggXOtzweOw1ty5H5pcwEUD3mV7DLtWwaCEg+PGhoUVYqjLtcwtk80KTAZiZT3uuewYUgZmlxvbByydWyjXuQOKNCNjCALRVM2bqZJ+rxM+lw0vG6S7y859qEqPeyFuvWYjLoST+Ldnzlb9PYLxFH7xkjlnEbdIcVf0UikN5KNkuesv7n63HbFURhtmMCs97mXifnO5ZNSPbo9d64xrRfO6VynNnFtUNMv8btFiIWXASA1e92xW4PBEQPs5SPq9Lgz4nKZ1zEwHlZAzI8PCCjHkVw4yya77fDCOZDpb1uOeSyXZ7sdmQnDYLLqcJdsHfQhEU5gJJRAw4HSqhIiwda3XMK/75HwU/TV63PO5evMabB3w4s7fnq7aUPDZB57HB795AA89f96wdRlFSxT3XUN+2CxUdFM1GE9XVNzzIwg0j7tXf+c+6Hfj0N+8Setea2XplGp1nXspd8bmvs6aTqmevBBBMJ5eprdLzDyg+OBpqbfXZzNVMtjlRjyV1Q4JjZeJ+i2EHJit57k8PhPG5r5OLeOn9PdV5JMXzgWxEE0Z4pSRjA148fK0MU4sIzzu+RARbr1mA46eC+LxE3MVf/34XAQPHD4DCwGfffB50+0t1VzcichKRIeI6Mfq7R4iepiIjqkf6/uXAyXSc/ugr+imqpLlrl/7lhKOdMzMVNG5G43fbYfXaatalhkv4ave3NeJMwuxFaco9SJfVC8rUNx3qSdVzfaLDyhJkPUIC8tnWD3IJB0zmsddhw1S0uG0Ye/6btx3YLLsz+nYTLjoydR8tuXEEChZ7sZ07oASILYYSxWVSythaiFas8e9EDfuGUa/14kvPvRSxS9CX/nFCditFnz1vZfjfDCO//nQy4avrxaM6Nw/AeBozu1PAnhECDEG4BH1dt25bF0XnplaKHiKr1JZRp5klV73SnJl6gURYaTHU/VBpom5KBw2S8FDLVoG/YXquvdDkwvwuWzaPkMuu4f9EKL6UXH15ODpAC4Z9RseFpaPPMgk5+COz0Vhs5B2elUvf3HdNpwPxkuerowm0zizECuaKZOP323HcJcbR8+FsBBN1Xw6NRe5qfpSjdJMOpPFuYV4XTa9XXYr/uzai/D0xAL+XwXSylQgivufnsK7r1iH63auxe+/ch3ueuwUjkyZ511qTb/VRDQC4C0Avp5z+UYA+9TP9wG4qZZ/Qy+XrutGNJlZsTsvhFCy3CvU3IGlw08zwQQ8Ok+n1pPRGg4yjc9FMdrthqXAW/XN/bVlzByaWMCedd0Fv7dZp89rYWF11tuBnIlMauc+Ph/FSLe7YlfKFRt7cO2OAXz1lycwV8Q/fnI2AiGKZ8oUYvugD0emFhBOpA3t3Mc0x0xtm6rToYSa42585w4A77h8BGP9nfiHn72kO/76X351EkTAba/ZBEB54V3T6cSnfvhsyYHojaTWluVLAP4SQO7/zYAQ4hwAqB/7a/w3dCH13vycmXgqi1RGVOaWyZNl9ExgagSjPR5MBWJVaZiFPO6SDWs6QFRdOmQ4kcZL54O4dLSr4P39Phf6vebbVNXCwup0eCmXNR0OOKwWzTEzMRfV8n0q5a/evA2xVAb/+9HjBe8/XmT6Uim2D3pxWt0HMFJz7+1UTmrXuqkqM5XqZVe1WS341PXbcOpCBPfuL+97nw7G8d2Dk3jH5aPaC7ffbcfn3rYTz50JYt/j43VZZ6VUXdyJ6K0AZoQQT1X59bcR0UEiOjg7O1vtMjTW9XjQ0+FYobsvRQ9UoLnnbajOBhMVnU6tF6PdbsRSmYpPkwohFI97EXeGy27FaLenKjvks1MLyAoU3EyVmHFTVQsLW1f/4m6xEAa7XJrXfXwuUnQodjm29Hfi5leM4ltPjOP0hZXvtI7NhGCzUEU2S3lSFYBhbhlAkRIvMmAqk9EHmArxuq39uHJTD77082Nlk0z/5VcnkckKfPR3Ni+7fv3utXjd1j7800MvFY15biS1dO6vAnADEZ0GcC+A1xPRtwBME9EgAKgfC5pAhRB3CCH2CiH29vX11bAMBSLCpaNdKxwzskBX17mrmruJOneg8ujfuUgSkWSmpDtjc5V2SPliuqdI5w4om6onZsOImGhT9eB4ABf1ew05jamHQb8L5xZiWIgmEYynK3LK5POJN47BYbPgH//fSyvuOz4Txvo1Hjh0nsYGlhd3I2UZQM2YqdExc+D0PBxWi6Ee93yICJ/63e2YiyRxx69PFn3chXAC39k/jpv2DK84EEhE+G837oIQinum2VRd3IUQnxJCjAghNgC4GcCjQoj3AngQwC3qw24B8EDNq9TJpeu6cGI2gsXo0itvJVnuEpfdAofVgsVYSvfs1EZQ7UEmPda7zX2dODkbRrbCIQaHJhawqa+jZMenbapWOejZaLSwsAZIMhI5tGM8Z4ZttfR7XbjtNZvwkyPnVsiQilOm8PSlYqzv8cCt+seN3FAFlBiCUCKN88HqMlzOLsRw/9NTeNcrRgz1uBfiktEuvO2SIXztNycxXWS9X//NKSTSWXzsdZsL3j/a48GfXjuGh1+Yxs+ea673vR42gdsBXEtExwBcq95uCNphpqkF7ZrWuVdQ3JVMdxuC8RRCiTRiqQwGmmiDlMi3pZVOZJLWu1IJhFv6O5FIZ1cEXJVCCIHDkwFcOlq6SO4eUTdVTeIk0MLC6uxvz2XI78b5YBynLkhLanWau+QPX70JfV4n/v7fj2pdcTKdxfhctCK9HVBko62q392oE6oSuan6UpUZM//yqxMQAvjI7xQupkbzl9dtRSYr8L8eXmlrDESSuPvx03jrxUNaMGAhPviqjdg+6MPnHny+qcNqDCnuQohfCiHeqn4+J4R4gxBiTP1YegaegVw84gfR8oTIpRF7lTldZKb7TBUHmOqFx2FDb6ej4s799IUoiJYOQhWimgCxqUAMF8LJkno7oFhI+0y0qVrvsLBCDHW5kRXA/tPKn0MtnTug+N7/9I0X4cDpAB5+QZkqdHougkxW6IodyEdKM0ZuqAK5U5kq38+ZCcVxz4FJvP2y4bo5ZfIZ7fHg/VdtwH0HJ1fsFXzzt6cQSWbw8ddtKfk97FYL/v7tuzEdiuOfmuh9b4kTqhKvy46L+r3LNlWlbl5J5w4AXrcdwXgaM8HmH2DKZaSK6N+J+SiG/G44bcXf1kqveyW6u5QEyhV3wFybqk+dnkef11nyxc5opKf9iRNz6Pc64TYgCvpde0ewua8Dt//sRaQzWa2AVtq5A8DNrxjFh39nkybPGEVPhwO9nY6qNlW/9uuTSGey+M+vLV1Mjebjr9uCDqcNt//0Re1aMJ7CNx87jTfvXKu9yynFntEuvP/K9dj3+Gk8UyQWpd60VHEHlEJzeHJB044rncIk8auj9mZC5uncAaWzqDRfZryEU0bSow4YqSQd8tDEAtx2K7YOlP9ll5uq0WTzN1UPjgewd319w8LykZuBJy9UlgZZCpvVgk/+7nacnI3g3gOTOD4TBhGqyjO6ZLQLn/rd7XV5Tsb6vRUHiM2FE/jWExO44ZIhbOitTcKqlO4OBz72ui149MUZPHbiAgDgXx87jVA8jY+/Xv8LzZ9ftxX9Xif+9L7DRTX8etKSxX0xlsIpdepQMJ6C226tyD0AKDJOKJbSfihm0NwBxQ55diFW0TzNifmoroJS6ci9Q5MLuHjEr+swzu5hP7ImOKm6FBbWOL0dUNwyEj3Tl/Tyxu39uGJDD77085fxzNQCRrs9dd94rJSta704Ph2qyDFz529PIZ7OVFRMjeQDV2/AkN+F23/6IsKJNL7xH6fw+m39FWVF+Vx2fPnmSzG9GMfbv/JYRWMSjaDlirv0LUtpZjGWqsjjLvG5lUz3mVACbnvzT6dKRns8SGfFiuEPxQgnlClL+batQkjHjB7iqQxeOLu4IgmyGGY5qaqFhW1onN4OKJKhV933MapzB5TN/0+/ZTsuhJN49MWZqiSZejM20IlIMqN7s34xmsK+x8Zx/a5BbKnQ+WMULrsV/+W6rXh2ahG33nUAgWiqqheaKzetwb23XYV4KoN3/PPjeDbH7FFvWq64b+7rhNdp0zZVg7F0VYOPlQ3VNKaDcQz4nA19C1+KSqN/J7Sh2OW7xc39HbgQTmqzNEvx/NkgUhmhS28HlHc+vZ3Ophb3mWAcP3v+PFx2ixah20jkPFUjizug6LtvuXgQQGWxA42i0sEddz12GuFEGh8rs3FZb27aM4ztgz7sPzWPa7b0Vn3gbfeIH9//6NXwOKx49x1P4D+OXTB4pYVpueJusRD2rOvSOvdKc2UkfrcdyUxWzZE2h94OLDle9G6qTpRIg8ynkk3VQxVspgJKh7l72Ncwx0wmK/D82UXc/fhpfOLeQ7jmHx7FFV94BP/2zFlcs6W37mFhhZDSTK1OmUL85XVb4XXZGv6ORA/b1nrR4bDiv//4aFmnVyiewp2/PYU3bh+oe1pnOSwWwl+/ZTucNgv+5I1jNX2vjb0duP+jV2O0x4MP3rUfP362+gEhejGH1mAwl4524f/84jgiiTSC8VRVxVlKOcdmwnj9tobE4+hiqMsNCy3lbZRDOzRTUXEPl9WkD00sYKTbXdFzu3vYj1+9PItoMg2PQbNlc4mnMvjhoTP4ybPncGgigIgajdvvdWLvhm584OoNuHx9t2EZ+5UypHXuxm8Qrl/TgcN/8yZdGe6NxuuyY9+tV+DWuw7gHf/8GPbdegW2rS1cuO9+YhyLsRT+qElaez5Xb+nF8397nSGjBwd8Lnz3w1fhD/YdwB/dcwiBaArvu3K9AassTGsW93XdyArg2alFLMZSZWdJFkJKOdFkxlSdu91qwaDfrTv6d3w+im6PXZc0NdLthsNq0bWpemgigMsr7BJ3qZuqR88FDZ1+tBBN4u7Hx7Hv8dO4EE5iS38n3n7ZCPZu6MZl67ox0u02hax27Y4BhOJpw73kEjMWdsneDT343keuxvvvfBLv+ufHcecHXrHiXUY0mcbXf3MKr7moD5eUiLNoNEYUdonfbcfdH3olPv6dp/HXP3oOF0IJ/Mkbx+ry+9mSxV3mnByaDCiaexWyTO7XmMUpIxmpIPq3kgRCm9WCDb0enJgpLcucX4zj7GIcf1DhH2DuSVUjivvkfBTf+I9T+O6BScRSGbx2ax9ue/UmXLV5jSmKeT6v3dqP1241z7vARrN1rRf3f/RqvP8b+/H7X38SX/n9y/CG7QPa/d95cgLzkST+2CRde71w2a345/dejk/+4Ai+/MgxLMZS+NwNOw3/d1qyuHd3OLCxtwNPjwcQqkFzl5jlAJNktMeD3xzTl6Q5Ph8pGw+Qy+a+zrJHxQ9PVqa3S9b6XOjtdODImdJ2yHAijUSJifQTalH/9yPnYLUQbrhkGLe9ZpOuwyVMcxnp9uB7H7kKH7zrAG67+ync/vbdeOfeUcRTGdzx65O4atMaU+4bGI3NasE/vuNirOl04KI6OYJasrgDiu7+0AvTyIrKDzABy+MKBkwkywCKY2Y6mEA8lSnpaU5lsji7EMdNe/Rv4G3u68RDL0wjmc4WPBsQS2Zw9xPjcNgsFW94ERF2DfuLbqoemVrEHb85iX8/cq6sj9/rtOEPX70JH3zVRqz1m+vnw5RmTacT3/nDK/GRu5/CX3z/WcxHkvA4rJgJJfCl/7Sn2ctrGDKJsl60bnFf14UfHDoDoLIsd4nP1J27sjF3ZiFW8jTimYBy2KkSd8aW/k5ksgIT85EVHuPFaAof2ncAT00E8IXf210yzqAYu4f9+PXLs4glM3A7rBBC4Jcvz+KOX53E4yfn4HXa8IGrN5R097jtVly3a21VL9qMOeh02vCND+zFn9/3DP7+py/CabPg8vXduGrzmmYvrWVo4eK+JEVUI8vkFo5+E2S555Ib/VuquI/Py6hf/e4M+f2Ozywv7ucX47jlzv04dSGC//uey3D97sFqlq5tqj4ztYCpQAxf+/VJvDQdwlqfC5++fhtuvmIdF+02wWmz4ss3X4qeDgfufmK8bhuL7UrLFvdta71w2S2Ip7JVFQuHzQK33QoBAa9JTqdKtINMZRwzE3P6Pe6STX1ynuqSY+bEbBjv/8Z+LESTuOuDr8DVW3orXbKGPKn6/m/sRzKTxba1XvzTOy/B2y4Zqjgigln9WC2Ev71hJ/74DWPo7TTXO+TVjrmqloHYrBZcPNKF/afmq3LLAIqc47JbTddN9HudcNgsZb3u43NRuOyWigaNdDhtGPS7tHmqz0wu4IN3HQABuPe2qzTHS7UM+l24YmMP7FbCH756E37noj7TPb9MYyEiLux1oGWLO6Do7vtPzVf9Nt/nshs+mcYILBbCSJcbx8ok7Z2ei2Jdj6fi4ikDxH5zbBYfvvsp5W3zh16JjQak8xER7vvwVTV/H4ZhStPS74PfefkI3rV3RMvSrpT3X7Ue73nlOoNXZQzX7hjAoy/O4NtPFp+0PjEfqSqBcHNfB46eC+HWuw5gXY8H93/0akMKO8MwjaOlO/ct/V78j3dcUvXXv++qDcYtxmD+4rqteHk6hL/+0XMY9Lvw+m0Dy+4XQmBiPopXj1U+fHxLfyeSmSyu2NCDr92yt2FDpBmGMY6W7txbGZvVgv/znsuwc8iPj3370Ioo0ZlQAvFUtqoEwrdfNoK/u2kX/vVDV3BhZ5hVChf3VUyH6hXu6XDg1rsOLoskkIFh1YRUdThteN+V60039IFhGP1wcV/l9Htd2HfrK5DKZPGBb+7XstjHpQ2yDvGyDMOYHy7uLcCWfi/ueN/lmJyP4bZ/fQrxVAYT81FYLYTh7sYNgWYYxjxwcW8RXrlpDb74rkuw//Q8/sv3nsHpuSiGulxNGUrBMEzzaWm3TLtxwyVDOLcQw9//9EVYLYSrNnFOB8O0K9zWtRi3vWYT3nfleiUwzOBZnQzDrB64c28xiAifu2Enuj32ZYMQGIZpL7i4tyBWC+HP3rS12ctgGKaJVC3LENEoEf2CiI4S0fNE9An1eg8RPUxEx9SP+scAMQzDMIZQi+aeBvDnQojtAK4E8DEi2gHgkwAeEUKMAXhEvc0wDMM0kKqLuxDinBDiafXzEICjAIYB3Ahgn/qwfQBuqnGNDMMwTIUY4pYhog0ALgXwJIABIcQ5QHkBAFBw3DsR3UZEB4no4OysvmHPDMMwjD5qLu5E1AngfgB/IoQoPdY+ByHEHUKIvUKIvX19lScXMgzDMMWpqbgTkR1KYf+2EOIH6uVpIhpU7x8EMFPbEhmGYZhKqcUtQwC+AeCoEOJ/5tz1IIBb1M9vAfBA9ctjGIZhqqEWn/urALwPwBEiOqxe+zSA2wHcR0QfAjAB4J01rZBhGIapGBJCNHsNIKJZAMXnxZWnF8AFg5ZjNLy26uC1VQevrTpW69rWCyEKblqaorjXChEdFELsbfY6CsFrqw5eW3Xw2qqjFdfGwWEMwzAtCBd3hmGYFqRVivsdzV5ACXht1cFrqw5eW3W03NpaQnNnGIZhltMqnTvDMAyTAxd3hmGYFmRVF3ciejMRvUREx4nIVNHCRHSaiI4Q0WEiOtjktdxJRDNE9FzONVPk7hdZ2+eI6Iz63B0mouubtDbTziwosbamP3dE5CKi/UT0jLq2v1Wvm+F5K7a2pj9vOWu0EtEhIvqxeruq523Vau5EZAXwMoBrAUwBOADg3UKIF5q6MBUiOg1grxCi6QcjiOg1AMIA/lUIsUu99j8AzAshbldfGLuFEH9lkrV9DkBYCPHFRq8nb22DAAaFEE8TkRfAU1AirD+AJj93Jdb2LjT5uVOjSTqEEGE1f+o/AHwCwNvR/Oet2NreDBP8zgEAEf0ZgL0AfEKIt1b7t7qaO/crABwXQpwUQiQB3AslS57JQwjxawDzeZdNkbtfZG2mwMwzC0qsrekIhbB6067+J2CO563Y2kwBEY0AeAuAr+dcrup5W83FfRjAZM7tKZjkl1tFAHiIiJ4iotuavZgC6MrdbyIfJ6JnVdmm6aMaq5lZ0Cjy1gaY4LlTpYXDUFJhHxZCmOZ5K7I2wATPG4AvAfhLANmca1U9b6u5uFOBa6Z5BQbwKiHEZQB+F8oIwtc0e0GriK8C2AxgD4BzAP6pmYuhKmcWNIICazPFcyeEyAgh9gAYAXAFEe1qxjoKUWRtTX/eiOitAGaEEE8Z8f1Wc3GfAjCac3sEwNkmrWUFQoiz6scZAD+EIiOZCdPm7gshptU/wCyAr6GJzx2ZeGZBobWZ6blT17MA4JdQNG1TPG+S3LWZ5Hl7FYAb1P26ewG8noi+hSqft9Vc3A8AGCOijUTkAHAzlCz5pkNEHeomF4ioA8CbADxX+qsajmlz9+UvssrvoUnPnbr5ZsqZBcXWZobnjoj6iKhL/dwN4I0AXoQ5nreCazPD8yaE+JQQYkQIsQFKPXtUCPFeVPu8CSFW7X8ArofimDkB4DPNXk/OujYBeEb97/lmrw3APVDeaqagvOP5EIA1AB4BcEz92GOitd0N4AiAZ9Vf7MEmre0aKFLfswAOq/9db4bnrsTamv7cAbgYwCF1Dc8B+Bv1uhmet2Jra/rzlrfO1wL4cS3P26q1QjIMwzDFWc2yDMMwDFMELu4MwzAtCBd3hmGYFoSLO8MwTAvCxZ1hGKYF4eLOMAzTgnBxZxiGaUH+PwyFrReNu96HAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df_csv['Episode Length'].plot()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## What is the model looking at?\n", "\n", "Gradcam: visual heatmap of where the model is looking to make its decisions. based on https://arxiv.org/pdf/1610.02391.pdf" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [], "source": [ "import cv2\n", "\n", "def visualize_gradcam_discrete_ppo(sess, rgb_img, category_index=0, num_of_actions=5):\n", " '''\n", " @inp: model session, RGB Image - np array, action_index, total number of actions \n", " @return: overlayed heatmap\n", " '''\n", " \n", " img_arr = np.array(img)\n", " img_arr = rgb2gray(img_arr)\n", " img_arr = np.expand_dims(img_arr, axis=2)\n", " \n", " x = sess.graph.get_tensor_by_name('main_level/agent/main/online/network_0/{}/{}:0'.format(sensor, sensor))\n", " y = sess.graph.get_tensor_by_name('main_level/agent/main/online/network_1/ppo_head_0/policy:0')\n", " feed_dict = {x:[img_arr]}\n", "\n", " #Get he policy head for clipped ppo in coach\n", " model_out_layer = sess.graph.get_tensor_by_name('main_level/agent/main/online/network_1/ppo_head_0/policy:0')\n", " loss = tf.multiply(model_out_layer, tf.one_hot([category_index], num_of_actions))\n", " reduced_loss = tf.reduce_sum(loss[0])\n", " \n", " # For front cameras use the below\n", " conv_output = sess.graph.get_tensor_by_name('main_level/agent/main/online/network_1/{}/Conv2d_4/Conv2D:0'.format(sensor))\n", " \n", " grads = tf.gradients(reduced_loss, conv_output)[0]\n", " output, grads_val = sess.run([conv_output, grads], feed_dict=feed_dict)\n", " weights = np.mean(grads_val, axis=(1, 2))\n", " cams = np.sum(weights * output, axis=3)\n", "\n", " ##im_h, im_w = 120, 160##\n", " im_h, im_w = rgb_img.shape[:2]\n", "\n", " cam = cams[0] #img 0\n", " image = np.uint8(rgb_img[:, :, ::-1] * 255.0) # RGB -> BGR\n", " cam = cv2.resize(cam, (im_w, im_h)) # zoom heatmap\n", " cam = np.maximum(cam, 0) # relu clip\n", " heatmap = cam / np.max(cam) # normalize\n", " cam = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET) # grayscale to color\n", " cam = np.float32(cam) + np.float32(image) # overlay heatmap\n", " cam = 255 * cam / (np.max(cam) + 1E-5) ## Add expsilon for stability\n", " cam = np.uint8(cam)[:, :, ::-1] # to RGB\n", "\n", " return cam" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [], "source": [ "import glob\n", "img_path = \"simulation_episode/\"\n", "all_files = sorted(glob.glob(img_path + '/*.png'))" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Device mapping: no known devices.\n", "load graph: intermediate_checkpoint/7a42c0c5-e13b-49c6-955e-18e3b64dba4b/model/model_1.pb\n", "/device:CPU:0\n", "main_level/agent/main/online/network_1/mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/add: (Add): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_0/FRONT_FACING_CAMERA/FRONT_FACING_CAMERA: (Placeholder): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape/1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/sub/x: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv: (RealDiv): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_3_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/StopGradient/input: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/StopGradient: (StopGradient): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/mul_1/y: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/add: (Add): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Sum_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Sum_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_0/FRONT_FACING_CAMERA/FRONT_FACING_CAMERA: (Placeholder): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias: (Const): /job:localho" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2022-10-22 02:23:12.660420: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv: (RealDiv): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.660939: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.660983: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.660995: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661005: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661127: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661145: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661158: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661170: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661182: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661194: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661205: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_3_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661217: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661226: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661235: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661244: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661253: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661265: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661274: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661290: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661373: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661384: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661396: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661406: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661414: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661423: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661433: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661443: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661452: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/StopGradient/input: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661461: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/StopGradient: (StopGradient): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661471: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661481: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/mul_1/y: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661491: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661505: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/add: (Add): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661515: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661525: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661534: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661544: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661554: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661564: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661574: I tensorflow/core/common_runtime/placer.cc:114] one_hot: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661584: I tensorflow/core/common_runtime/placer.cc:114] Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661595: I tensorflow/core/common_runtime/placer.cc:114] strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661607: I tensorflow/core/common_runtime/placer.cc:114] Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661616: I tensorflow/core/common_runtime/placer.cc:114] gradients/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661626: I tensorflow/core/common_runtime/placer.cc:114] gradients/Sum_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661634: I tensorflow/core/common_runtime/placer.cc:114] gradients/Sum_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661642: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661652: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661661: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661671: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661680: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661689: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661807: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661829: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661840: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661849: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661858: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661867: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661876: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661884: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661894: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661903: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661912: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661920: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661929: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661939: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661948: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661957: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661967: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661977: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661989: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.661999: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662008: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662017: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662028: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662057: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662067: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662076: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662085: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662093: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662101: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662110: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662119: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662128: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662138: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662148: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662158: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662169: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662178: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662188: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662199: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662209: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662219: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662229: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662238: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662247: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662258: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_0/FRONT_FACING_CAMERA/FRONT_FACING_CAMERA: (Placeholder): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662267: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662277: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662286: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662299: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662310: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662319: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662330: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662339: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662350: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662361: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662371: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662380: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape/1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662389: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662397: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662405: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662415: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/sub/x: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662425: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662435: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662445: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662456: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662465: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662476: I tensorflow/core/common_runtime/placer.cc:114] one_hot/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662485: I tensorflow/core/common_runtime/placer.cc:114] one_hot/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662496: I tensorflow/core/common_runtime/placer.cc:114] one_hot/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662506: I tensorflow/core/common_runtime/placer.cc:114] one_hot/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662516: I tensorflow/core/common_runtime/placer.cc:114] strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662525: I tensorflow/core/common_runtime/placer.cc:114] strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662535: I tensorflow/core/common_runtime/placer.cc:114] strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662543: I tensorflow/core/common_runtime/placer.cc:114] Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662553: I tensorflow/core/common_runtime/placer.cc:114] gradients/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662562: I tensorflow/core/common_runtime/placer.cc:114] gradients/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662572: I tensorflow/core/common_runtime/placer.cc:114] gradients/Sum_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662581: I tensorflow/core/common_runtime/placer.cc:114] gradients/Sum_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662591: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662601: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662611: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662621: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662631: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:12.662641: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2022-10-22 02:23:14.998276: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv: (RealDiv): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.002832: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.003083: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.005607: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.005706: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.005747: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.005782: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.005817: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.005862: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.005894: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.005928: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.005965: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_3_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006000: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006031: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006111: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006147: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006180: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006219: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006255: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006289: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006321: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006351: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006382: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006416: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006449: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006481: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006511: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006545: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006579: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/StopGradient/input: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006612: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/StopGradient: (StopGradient): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006647: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006677: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/mul_1/y: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006812: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006850: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/add: (Add): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006890: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006924: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006961: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.006992: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.007024: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.007055: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.007089: I tensorflow/core/common_runtime/placer.cc:114] one_hot: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.007119: I tensorflow/core/common_runtime/placer.cc:114] Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.007153: I tensorflow/core/common_runtime/placer.cc:114] strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.007186: I tensorflow/core/common_runtime/placer.cc:114] Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.007231: I tensorflow/core/common_runtime/placer.cc:114] gradients/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.007266: I tensorflow/core/common_runtime/placer.cc:114] gradients/Sum_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.007297: I tensorflow/core/common_runtime/placer.cc:114] gradients/Sum_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.007332: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.007364: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.007397: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.007427: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.007459: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.011947: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.012000: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.012125: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.012174: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.012204: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.012234: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.012266: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.012301: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.012330: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.012369: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.012405: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.012438: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.012471: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.012516: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.012548: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.012581: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.012612: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.012645: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.012779: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.012816: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.012848: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.012879: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.012911: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.012953: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.012991: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.013029: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.013072: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.013114: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.013152: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.013186: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.013222: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.013259: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.013298: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.013336: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.013378: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.013416: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.013454: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.013491: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.013524: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.013567: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.013606: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.013770: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.013812: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.013851: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.013889: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.013934: I tensorflow/core/common_runtime/placer.cc:114] one_hot_1: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.013973: I tensorflow/core/common_runtime/placer.cc:114] Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.014012: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_1: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.014060: I tensorflow/core/common_runtime/placer.cc:114] Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.014095: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.014129: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Sum_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.016223: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Sum_1_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.016491: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/strided_slice_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.016562: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/strided_slice_1_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.016603: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.016638: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.016679: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.016718: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.016756: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.016794: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.016837: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.016875: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.016910: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.016948: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.016989: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.017028: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.017065: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.017104: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.017150: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.017188: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.017222: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.017259: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.017296: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.017332: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.017370: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.017409: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.017456: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.017493: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.017528: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.017566: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.017606: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.017641: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.017668: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.020127: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.020283: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.020337: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.020475: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.020513: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.020545: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.020571: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.020599: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.020629: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.020658: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.020688: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.020721: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.020756: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.020786: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.020818: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.020852: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.020885: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.020916: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.020947: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.020985: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_0/FRONT_FACING_CAMERA/FRONT_FACING_CAMERA: (Placeholder): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021034: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021071: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021106: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021139: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021176: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021207: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021237: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021266: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021301: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021334: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021370: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021403: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape/1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021519: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021554: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021587: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021620: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/sub/x: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021655: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021685: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021718: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021750: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021781: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021812: I tensorflow/core/common_runtime/placer.cc:114] one_hot/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021843: I tensorflow/core/common_runtime/placer.cc:114] one_hot/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021875: I tensorflow/core/common_runtime/placer.cc:114] one_hot/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021912: I tensorflow/core/common_runtime/placer.cc:114] one_hot/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021950: I tensorflow/core/common_runtime/placer.cc:114] strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.021981: I tensorflow/core/common_runtime/placer.cc:114] strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022013: I tensorflow/core/common_runtime/placer.cc:114] strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022066: I tensorflow/core/common_runtime/placer.cc:114] Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022084: I tensorflow/core/common_runtime/placer.cc:114] gradients/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022093: I tensorflow/core/common_runtime/placer.cc:114] gradients/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022102: I tensorflow/core/common_runtime/placer.cc:114] gradients/Sum_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022111: I tensorflow/core/common_runtime/placer.cc:114] gradients/Sum_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022119: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022127: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022135: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022145: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022153: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022161: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022170: I tensorflow/core/common_runtime/placer.cc:114] one_hot_1/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022179: I tensorflow/core/common_runtime/placer.cc:114] one_hot_1/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022187: I tensorflow/core/common_runtime/placer.cc:114] one_hot_1/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022204: I tensorflow/core/common_runtime/placer.cc:114] one_hot_1/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022213: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_1/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022222: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_1/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022231: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_1/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022240: I tensorflow/core/common_runtime/placer.cc:114] Const_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022249: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022257: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022266: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Sum_1_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022275: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Sum_1_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022283: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/strided_slice_1_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022291: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/strided_slice_1_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022300: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/strided_slice_1_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022319: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022328: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:15.022337: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "st/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape/1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/sub/x: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Sum_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Sum_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv: (RealDiv): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_3_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/StopGradient/input: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/StopGradient: (StopGradient): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/mul_1/y: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/add: (Add): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Sum_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Sum_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_1: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_1: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Sum_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Sum_1_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/strided_slice_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/strided_slice_1_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_0/FRONT_FACING_CAMERA/FRONT_FACING_CAMERA: (Placeholder): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape/1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/sub/x: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Sum_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Sum_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_1/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_1/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_1/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_1/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_1/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_1/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_1/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "Const_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Sum_1_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Sum_1_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/strided_slice_1_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/strided_slice_1_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/strided_slice_1_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2022-10-22 02:23:16.088081: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv: (RealDiv): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088566: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088597: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088609: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088619: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088628: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088638: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088648: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088658: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088668: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088679: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088692: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_3_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088704: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088715: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088728: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088739: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088750: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088765: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088776: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088788: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088800: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088811: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088834: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088844: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088854: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088863: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088891: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088902: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088914: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/StopGradient/input: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088925: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/StopGradient: (StopGradient): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088937: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088948: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/mul_1/y: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088960: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088971: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/add: (Add): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088983: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.088994: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089005: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089017: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089028: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089039: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089051: I tensorflow/core/common_runtime/placer.cc:114] one_hot: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089062: I tensorflow/core/common_runtime/placer.cc:114] Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089084: I tensorflow/core/common_runtime/placer.cc:114] strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089096: I tensorflow/core/common_runtime/placer.cc:114] Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089107: I tensorflow/core/common_runtime/placer.cc:114] gradients/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089116: I tensorflow/core/common_runtime/placer.cc:114] gradients/Sum_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089125: I tensorflow/core/common_runtime/placer.cc:114] gradients/Sum_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089134: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089145: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089156: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089167: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089178: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089189: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089200: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089211: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089222: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089232: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089243: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089254: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089265: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089275: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089286: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089314: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089326: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089336: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089345: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089358: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089369: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089380: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089391: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089402: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089413: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089424: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089435: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089446: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089457: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089468: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089480: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089490: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089502: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089512: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089523: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089534: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089544: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089552: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089563: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089575: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089586: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089597: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089609: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089620: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089632: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089643: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089655: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089666: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089677: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089692: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089704: I tensorflow/core/common_runtime/placer.cc:114] one_hot_1: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089715: I tensorflow/core/common_runtime/placer.cc:114] Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089727: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_1: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089738: I tensorflow/core/common_runtime/placer.cc:114] Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089747: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089755: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Sum_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089880: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Sum_1_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089903: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/strided_slice_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089916: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/strided_slice_1_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089930: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089942: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089954: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089965: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089977: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089988: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.089997: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090005: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090013: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090022: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090029: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090056: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090066: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090075: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090084: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090092: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090100: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090108: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090117: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090125: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090133: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090142: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090151: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090159: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090168: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090176: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090184: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090193: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090204: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090213: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090222: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090230: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090239: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090248: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090257: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090266: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090276: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090285: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090294: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090303: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090313: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090324: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090334: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090342: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090351: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090359: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090367: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090376: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090384: I tensorflow/core/common_runtime/placer.cc:114] one_hot_2: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090392: I tensorflow/core/common_runtime/placer.cc:114] Mul_2: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090401: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_2: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090408: I tensorflow/core/common_runtime/placer.cc:114] Sum_2: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090416: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090424: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Sum_2_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090432: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Sum_2_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090440: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/strided_slice_2_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090449: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/strided_slice_2_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090458: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090467: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090476: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090486: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090495: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090509: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090519: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090529: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090538: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090548: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090558: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090569: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090579: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090588: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090598: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090606: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090615: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090625: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090634: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090644: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090654: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090664: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090674: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090684: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090693: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090705: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090715: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090725: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090735: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090744: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090753: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090762: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090772: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090781: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090791: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090801: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090811: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090821: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090833: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090843: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090853: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090864: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090874: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090883: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090893: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090902: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090910: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090920: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090932: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_0/FRONT_FACING_CAMERA/FRONT_FACING_CAMERA: (Placeholder): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090943: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090954: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090964: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090974: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090983: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.090993: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091003: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091013: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091023: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091032: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091041: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091050: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape/1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091060: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091070: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091079: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091090: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/sub/x: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091100: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091110: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091123: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091133: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091143: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091153: I tensorflow/core/common_runtime/placer.cc:114] one_hot/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091162: I tensorflow/core/common_runtime/placer.cc:114] one_hot/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091171: I tensorflow/core/common_runtime/placer.cc:114] one_hot/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091179: I tensorflow/core/common_runtime/placer.cc:114] one_hot/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091199: I tensorflow/core/common_runtime/placer.cc:114] strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091210: I tensorflow/core/common_runtime/placer.cc:114] strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091220: I tensorflow/core/common_runtime/placer.cc:114] strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091230: I tensorflow/core/common_runtime/placer.cc:114] Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091241: I tensorflow/core/common_runtime/placer.cc:114] gradients/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091251: I tensorflow/core/common_runtime/placer.cc:114] gradients/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091261: I tensorflow/core/common_runtime/placer.cc:114] gradients/Sum_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091272: I tensorflow/core/common_runtime/placer.cc:114] gradients/Sum_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091284: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091294: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091304: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091315: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091324: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091333: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091342: I tensorflow/core/common_runtime/placer.cc:114] one_hot_1/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091351: I tensorflow/core/common_runtime/placer.cc:114] one_hot_1/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091359: I tensorflow/core/common_runtime/placer.cc:114] one_hot_1/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091368: I tensorflow/core/common_runtime/placer.cc:114] one_hot_1/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091377: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_1/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091386: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_1/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091395: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_1/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091404: I tensorflow/core/common_runtime/placer.cc:114] Const_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091414: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091424: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091433: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Sum_1_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091443: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Sum_1_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091451: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/strided_slice_1_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091460: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/strided_slice_1_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091469: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/strided_slice_1_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091478: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091486: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091496: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091506: I tensorflow/core/common_runtime/placer.cc:114] one_hot_2/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091518: I tensorflow/core/common_runtime/placer.cc:114] one_hot_2/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091529: I tensorflow/core/common_runtime/placer.cc:114] one_hot_2/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091539: I tensorflow/core/common_runtime/placer.cc:114] one_hot_2/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091552: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_2/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091563: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_2/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091573: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_2/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091584: I tensorflow/core/common_runtime/placer.cc:114] Const_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091595: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091605: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091615: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Sum_2_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091626: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Sum_2_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091637: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/strided_slice_2_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091647: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/strided_slice_2_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091658: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/strided_slice_2_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091669: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091679: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.091689: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv: (RealDiv): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_3_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/StopGradient/input: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/StopGradient: (StopGradient): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/mul_1/y: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/add: (Add): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Sum_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Sum_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_1: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_1: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Sum_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Sum_1_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/strided_slice_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/strided_slice_1_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_2: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "Mul_2: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_2: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "Sum_2: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Sum_2_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Sum_2_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/strided_slice_2_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/strided_slice_2_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_0/FRONT_FACING_CAMERA/FRONT_FACING_CAMERA: (Placeholder): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape/1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/sub/x: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Sum_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Sum_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_1/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_1/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_1/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_1/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_1/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_1/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_1/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "Const_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Sum_1_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Sum_1_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/strided_slice_1_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/strided_slice_1_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/strided_slice_1_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_2/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_2/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_2/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_2/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_2/stack: (Const): /job:localhost/replica:0/task:" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2022-10-22 02:23:16.892382: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv: (RealDiv): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.892974: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.893254: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.893523: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.893774: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894018: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894191: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894212: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894224: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894236: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894247: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894259: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_3_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894270: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894280: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894290: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894299: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894308: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894319: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894329: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894416: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894433: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894445: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894457: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894468: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894479: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894490: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894505: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894517: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894528: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/StopGradient/input: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894540: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/StopGradient: (StopGradient): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894551: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894562: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/mul_1/y: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894570: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894579: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/add: (Add): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894588: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894598: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894609: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894620: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894631: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894642: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894653: I tensorflow/core/common_runtime/placer.cc:114] one_hot: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894663: I tensorflow/core/common_runtime/placer.cc:114] Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894674: I tensorflow/core/common_runtime/placer.cc:114] strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894686: I tensorflow/core/common_runtime/placer.cc:114] Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894696: I tensorflow/core/common_runtime/placer.cc:114] gradients/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894708: I tensorflow/core/common_runtime/placer.cc:114] gradients/Sum_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894718: I tensorflow/core/common_runtime/placer.cc:114] gradients/Sum_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894730: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894742: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894753: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894764: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894775: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894785: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894793: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894802: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894812: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894823: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894833: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894844: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894858: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894869: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894880: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894891: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894902: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894913: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894923: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894934: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894944: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894955: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894966: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894977: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894988: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.894997: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895006: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895016: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895026: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895037: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895047: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895058: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895069: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895079: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895090: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895101: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895111: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895122: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895132: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895143: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895153: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895164: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895175: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895200: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895211: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895220: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895231: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895242: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895253: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895264: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895276: I tensorflow/core/common_runtime/placer.cc:114] one_hot_1: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895287: I tensorflow/core/common_runtime/placer.cc:114] Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895299: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_1: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895310: I tensorflow/core/common_runtime/placer.cc:114] Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895322: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895333: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Sum_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895344: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Sum_1_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895353: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/strided_slice_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895362: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/strided_slice_1_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895371: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895380: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895389: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895398: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895406: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895415: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895424: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895432: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895440: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895449: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895458: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895466: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895475: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895484: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895492: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895501: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895509: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895518: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895527: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895536: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895549: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895558: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895567: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895576: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895586: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895596: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895605: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895615: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895625: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895635: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895646: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895655: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895663: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895672: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895680: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895689: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895697: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895706: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895713: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895721: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895729: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895737: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895746: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895754: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895763: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895773: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895783: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895793: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895804: I tensorflow/core/common_runtime/placer.cc:114] one_hot_2: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895815: I tensorflow/core/common_runtime/placer.cc:114] Mul_2: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895827: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_2: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895838: I tensorflow/core/common_runtime/placer.cc:114] Sum_2: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895850: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895861: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Sum_2_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895872: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Sum_2_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895882: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/strided_slice_2_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895891: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/strided_slice_2_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895901: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895911: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895919: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895929: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895938: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895947: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895957: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895968: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895978: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895988: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.895999: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896010: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896021: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896031: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896041: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896050: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896059: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896068: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896078: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896088: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896098: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896109: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896119: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896129: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896139: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896149: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896160: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896170: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896180: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896191: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896203: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896212: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896222: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896232: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896242: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896252: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896263: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896272: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896283: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896293: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896305: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896315: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896325: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896333: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896342: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896350: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896359: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896368: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896377: I tensorflow/core/common_runtime/placer.cc:114] one_hot_3: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896386: I tensorflow/core/common_runtime/placer.cc:114] Mul_3: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896396: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_3: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896405: I tensorflow/core/common_runtime/placer.cc:114] Sum_3: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896414: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896424: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Sum_3_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896433: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Sum_3_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896443: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/strided_slice_3_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896453: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/strided_slice_3_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896463: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Mul_3_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896471: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Mul_3_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896479: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Mul_3_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896488: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Mul_3_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896497: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Mul_3_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896505: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Mul_3_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896515: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Mul_3_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896525: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Mul_3_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896536: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Mul_3_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896550: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896560: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896570: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896581: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896593: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896604: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896615: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896626: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896636: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896646: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896656: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896667: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896678: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896707: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896715: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896723: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896732: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896742: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896752: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896760: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896769: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896778: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896787: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896795: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896804: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896813: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896822: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896831: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896839: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896848: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896857: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896869: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896879: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896890: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896899: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896910: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896919: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896930: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896940: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896953: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_0/FRONT_FACING_CAMERA/FRONT_FACING_CAMERA: (Placeholder): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896964: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896973: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896983: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.896991: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897017: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897029: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897042: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897054: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897064: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897073: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897081: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897092: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape/1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897102: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897112: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897121: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897133: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/sub/x: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897144: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897154: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897164: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897175: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897185: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897199: I tensorflow/core/common_runtime/placer.cc:114] one_hot/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897209: I tensorflow/core/common_runtime/placer.cc:114] one_hot/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897218: I tensorflow/core/common_runtime/placer.cc:114] one_hot/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897227: I tensorflow/core/common_runtime/placer.cc:114] one_hot/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897237: I tensorflow/core/common_runtime/placer.cc:114] strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897247: I tensorflow/core/common_runtime/placer.cc:114] strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897257: I tensorflow/core/common_runtime/placer.cc:114] strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897267: I tensorflow/core/common_runtime/placer.cc:114] Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897278: I tensorflow/core/common_runtime/placer.cc:114] gradients/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897436: I tensorflow/core/common_runtime/placer.cc:114] gradients/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897451: I tensorflow/core/common_runtime/placer.cc:114] gradients/Sum_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897461: I tensorflow/core/common_runtime/placer.cc:114] gradients/Sum_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897470: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897479: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897488: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897496: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897505: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897515: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897525: I tensorflow/core/common_runtime/placer.cc:114] one_hot_1/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897535: I tensorflow/core/common_runtime/placer.cc:114] one_hot_1/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897546: I tensorflow/core/common_runtime/placer.cc:114] one_hot_1/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897556: I tensorflow/core/common_runtime/placer.cc:114] one_hot_1/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897565: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_1/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897575: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_1/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897587: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_1/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897598: I tensorflow/core/common_runtime/placer.cc:114] Const_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897608: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897618: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897627: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Sum_1_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897637: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Sum_1_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897645: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/strided_slice_1_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897654: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/strided_slice_1_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897663: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/strided_slice_1_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897673: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897684: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897694: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897705: I tensorflow/core/common_runtime/placer.cc:114] one_hot_2/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897715: I tensorflow/core/common_runtime/placer.cc:114] one_hot_2/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897724: I tensorflow/core/common_runtime/placer.cc:114] one_hot_2/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897735: I tensorflow/core/common_runtime/placer.cc:114] one_hot_2/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897746: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_2/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897756: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_2/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897765: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_2/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897775: I tensorflow/core/common_runtime/placer.cc:114] Const_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897784: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897795: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897805: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Sum_2_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.897815: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Sum_2_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.901546: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/strided_slice_2_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.901672: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/strided_slice_2_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.901794: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/strided_slice_2_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.901924: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.902047: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.902165: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.902273: I tensorflow/core/common_runtime/placer.cc:114] one_hot_3/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.902379: I tensorflow/core/common_runtime/placer.cc:114] one_hot_3/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.902481: I tensorflow/core/common_runtime/placer.cc:114] one_hot_3/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.902587: I tensorflow/core/common_runtime/placer.cc:114] one_hot_3/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.902686: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_3/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.902772: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_3/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.902857: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_3/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.902940: I tensorflow/core/common_runtime/placer.cc:114] Const_3: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.903022: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.903104: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.903186: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Sum_3_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.903281: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Sum_3_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.903365: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/strided_slice_3_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.903446: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/strided_slice_3_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.903528: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/strided_slice_3_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.903613: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.903695: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:16.903777: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "0/device:CPU:0\n", "strided_slice_2/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_2/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "Const_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Sum_2_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Sum_2_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/strided_slice_2_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/strided_slice_2_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/strided_slice_2_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv: (RealDiv): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_3_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/StopGradient/input: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/StopGradient: (StopGradient): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/mul_1/y: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/add: (Add): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Sum_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Sum_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_1: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_1: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Sum_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Sum_1_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/strided_slice_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/strided_slice_1_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_2: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "Mul_2: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_2: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "Sum_2: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Sum_2_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Sum_2_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/strided_slice_2_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/strided_slice_2_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_3: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "Mul_3: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_3: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "Sum_3: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Sum_3_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Sum_3_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/strided_slice_3_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/strided_slice_3_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Mul_3_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Mul_3_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Mul_3_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Mul_3_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Mul_3_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Mul_3_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Mul_3_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Mul_3_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Mul_3_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_0/FRONT_FACING_CAMERA/FRONT_FACING_CAMERA: (Placeholder): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape/1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/sub/x: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Sum_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Sum_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_1/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_1/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_1/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_1/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_1/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_1/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_1/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "Const_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Sum_1_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Sum_1_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/strided_slice_1_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/strided_slice_1_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/strided_slice_1_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_2/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_2/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_2/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_2/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_2/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_2/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_2/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "Const_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/grad" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2022-10-22 02:23:17.737011: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv: (RealDiv): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.737511: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.737667: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.737791: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.737915: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.738026: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.738176: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.738289: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.738392: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739531: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739561: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739575: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_3_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739586: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739597: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739607: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739617: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739625: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739637: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739648: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739658: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739668: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739679: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739689: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739700: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739709: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739719: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739730: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739740: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739750: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/StopGradient/input: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739760: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/StopGradient: (StopGradient): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739769: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739779: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/mul_1/y: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739788: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739799: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/add: (Add): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739809: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739819: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739829: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739839: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739849: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739860: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739871: I tensorflow/core/common_runtime/placer.cc:114] one_hot: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739881: I tensorflow/core/common_runtime/placer.cc:114] Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739891: I tensorflow/core/common_runtime/placer.cc:114] strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.739998: I tensorflow/core/common_runtime/placer.cc:114] Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740014: I tensorflow/core/common_runtime/placer.cc:114] gradients/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740025: I tensorflow/core/common_runtime/placer.cc:114] gradients/Sum_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740035: I tensorflow/core/common_runtime/placer.cc:114] gradients/Sum_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740044: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740053: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740063: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740072: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740082: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740093: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740102: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740112: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740123: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740132: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740142: I tensorflow/core/common_runtime/placer.cc:114] gradients/Mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740151: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740162: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740172: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740182: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740192: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740202: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740210: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740220: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740229: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740239: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740249: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740259: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740268: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740278: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740288: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740299: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740309: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740318: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740327: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740336: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740345: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740354: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740454: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740468: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740478: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740487: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740496: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740504: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740513: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740523: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740532: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740542: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740551: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740562: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740572: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740583: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740593: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740603: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740613: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740622: I tensorflow/core/common_runtime/placer.cc:114] one_hot_1: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740632: I tensorflow/core/common_runtime/placer.cc:114] Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740641: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_1: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740649: I tensorflow/core/common_runtime/placer.cc:114] Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740659: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740668: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Sum_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740678: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Sum_1_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740688: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/strided_slice_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740699: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/strided_slice_1_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740709: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740719: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740728: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740738: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740748: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740758: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740767: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740777: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740786: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740895: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740908: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740918: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740928: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740938: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740946: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740956: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740966: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740975: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740985: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.740995: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741005: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741015: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741024: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741034: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741046: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741055: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741064: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741075: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741083: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741091: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741101: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741110: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741119: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741129: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741138: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741148: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741158: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741168: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741178: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741188: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741198: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741294: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741309: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741320: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741330: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741340: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741350: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741359: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741367: I tensorflow/core/common_runtime/placer.cc:114] one_hot_2: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741375: I tensorflow/core/common_runtime/placer.cc:114] Mul_2: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741385: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_2: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741393: I tensorflow/core/common_runtime/placer.cc:114] Sum_2: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741401: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741410: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Sum_2_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741419: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Sum_2_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741428: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/strided_slice_2_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741438: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/strided_slice_2_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741447: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741456: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741465: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741474: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741483: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741490: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741499: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741507: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741516: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Mul_2_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741524: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741532: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741541: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741551: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741559: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741567: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741575: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741583: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741590: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741598: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741692: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741706: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741716: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741726: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741736: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741746: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741754: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741764: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741773: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741782: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741792: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741802: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741811: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741819: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741828: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741839: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741849: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741858: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741867: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741877: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741886: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741896: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741907: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741917: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741927: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741936: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741947: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741956: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741977: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741988: I tensorflow/core/common_runtime/placer.cc:114] one_hot_3: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.741998: I tensorflow/core/common_runtime/placer.cc:114] Mul_3: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742120: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_3: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742137: I tensorflow/core/common_runtime/placer.cc:114] Sum_3: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742147: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742157: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Sum_3_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742167: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Sum_3_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742177: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/strided_slice_3_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742188: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/strided_slice_3_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742199: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Mul_3_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742209: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Mul_3_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742219: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Mul_3_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742229: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Mul_3_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742239: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Mul_3_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742249: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Mul_3_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742259: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Mul_3_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742269: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Mul_3_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742279: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Mul_3_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742289: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742299: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742309: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742320: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742330: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742341: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742352: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742363: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742374: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742383: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742393: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742403: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742412: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742421: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742429: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742437: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742445: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742453: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742462: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742470: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742565: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742580: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742591: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742601: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742629: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742639: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742650: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742661: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742671: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742682: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742692: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742702: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742712: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742723: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742733: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742744: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742755: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742765: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742776: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742788: I tensorflow/core/common_runtime/placer.cc:114] one_hot_4: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742798: I tensorflow/core/common_runtime/placer.cc:114] Mul_4: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742809: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_4: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742820: I tensorflow/core/common_runtime/placer.cc:114] Sum_4: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742830: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742841: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/Sum_4_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742851: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/Sum_4_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742860: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/strided_slice_4_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742870: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/strided_slice_4_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742879: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/Mul_4_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742888: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/Mul_4_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742896: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/Mul_4_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742904: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/Mul_4_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742913: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/Mul_4_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742922: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/Mul_4_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742931: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/Mul_4_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.742940: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/Mul_4_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743041: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/Mul_4_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743056: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743066: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743076: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743085: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743095: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743104: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743114: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743126: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743138: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743148: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743164: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743173: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743183: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743203: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743213: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743223: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743233: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743243: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743252: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743262: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743271: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743281: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743292: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743301: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743311: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743319: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743329: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743337: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743346: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743356: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743366: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743469: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743482: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743491: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743500: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743510: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743520: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743530: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743540: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743553: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_0/FRONT_FACING_CAMERA/FRONT_FACING_CAMERA: (Placeholder): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743564: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743574: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743585: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743595: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743605: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743614: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743623: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.743632: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.758341: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.758516: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.758651: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.758769: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape/1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.758886: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.758994: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.759105: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.759223: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/sub/x: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.759342: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.759527: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.759657: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.759769: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.760214: I tensorflow/core/common_runtime/placer.cc:114] main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.760335: I tensorflow/core/common_runtime/placer.cc:114] one_hot/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.760451: I tensorflow/core/common_runtime/placer.cc:114] one_hot/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.760560: I tensorflow/core/common_runtime/placer.cc:114] one_hot/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.760670: I tensorflow/core/common_runtime/placer.cc:114] one_hot/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.760777: I tensorflow/core/common_runtime/placer.cc:114] strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.760880: I tensorflow/core/common_runtime/placer.cc:114] strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.760996: I tensorflow/core/common_runtime/placer.cc:114] strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.761111: I tensorflow/core/common_runtime/placer.cc:114] Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.761215: I tensorflow/core/common_runtime/placer.cc:114] gradients/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.761320: I tensorflow/core/common_runtime/placer.cc:114] gradients/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.761418: I tensorflow/core/common_runtime/placer.cc:114] gradients/Sum_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.761520: I tensorflow/core/common_runtime/placer.cc:114] gradients/Sum_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.761621: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.761722: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.761817: I tensorflow/core/common_runtime/placer.cc:114] gradients/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.761941: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.762058: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.762153: I tensorflow/core/common_runtime/placer.cc:114] gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.762230: I tensorflow/core/common_runtime/placer.cc:114] one_hot_1/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.762327: I tensorflow/core/common_runtime/placer.cc:114] one_hot_1/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.762430: I tensorflow/core/common_runtime/placer.cc:114] one_hot_1/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.762529: I tensorflow/core/common_runtime/placer.cc:114] one_hot_1/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.762727: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_1/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.762844: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_1/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.762955: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_1/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.763063: I tensorflow/core/common_runtime/placer.cc:114] Const_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.763168: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.763287: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.770100: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Sum_1_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.770423: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/Sum_1_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.770491: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/strided_slice_1_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.770555: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/strided_slice_1_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.770605: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/strided_slice_1_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.770640: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.770933: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.770995: I tensorflow/core/common_runtime/placer.cc:114] gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.771034: I tensorflow/core/common_runtime/placer.cc:114] one_hot_2/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.771082: I tensorflow/core/common_runtime/placer.cc:114] one_hot_2/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.771117: I tensorflow/core/common_runtime/placer.cc:114] one_hot_2/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.771157: I tensorflow/core/common_runtime/placer.cc:114] one_hot_2/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.771194: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_2/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.771228: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_2/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.771276: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_2/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.771398: I tensorflow/core/common_runtime/placer.cc:114] Const_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.771439: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.771472: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772137: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Sum_2_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772197: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/Sum_2_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772238: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/strided_slice_2_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772271: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/strided_slice_2_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772304: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/strided_slice_2_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772337: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772370: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772401: I tensorflow/core/common_runtime/placer.cc:114] gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772436: I tensorflow/core/common_runtime/placer.cc:114] one_hot_3/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772479: I tensorflow/core/common_runtime/placer.cc:114] one_hot_3/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772510: I tensorflow/core/common_runtime/placer.cc:114] one_hot_3/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772539: I tensorflow/core/common_runtime/placer.cc:114] one_hot_3/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772569: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_3/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772597: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_3/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772627: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_3/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772657: I tensorflow/core/common_runtime/placer.cc:114] Const_3: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772689: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772717: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772752: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Sum_3_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772783: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/Sum_3_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772812: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/strided_slice_3_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772843: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/strided_slice_3_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772874: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/strided_slice_3_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772906: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772936: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772964: I tensorflow/core/common_runtime/placer.cc:114] gradients_3/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.772994: I tensorflow/core/common_runtime/placer.cc:114] one_hot_4/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.773024: I tensorflow/core/common_runtime/placer.cc:114] one_hot_4/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.773054: I tensorflow/core/common_runtime/placer.cc:114] one_hot_4/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.773085: I tensorflow/core/common_runtime/placer.cc:114] one_hot_4/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.773121: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_4/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.773152: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_4/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.773185: I tensorflow/core/common_runtime/placer.cc:114] strided_slice_4/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.773215: I tensorflow/core/common_runtime/placer.cc:114] Const_4: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.773246: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.773277: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.773306: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/Sum_4_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.773336: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/Sum_4_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.773366: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/strided_slice_4_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.774728: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/strided_slice_4_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.774895: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/strided_slice_4_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.774933: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.774968: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "2022-10-22 02:23:17.775001: I tensorflow/core/common_runtime/placer.cc:114] gradients_4/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Sum_2_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Sum_2_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/strided_slice_2_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/strided_slice_2_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/strided_slice_2_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_3/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_3/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_3/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_3/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_3/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_3/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_3/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "Const_3: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Sum_3_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Sum_3_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/strided_slice_3_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/strided_slice_3_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/strided_slice_3_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv: (RealDiv): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_3_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/Conv2D: (Conv2D): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation: (Relu): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/sub: (Sub): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/StopGradient/input: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/StopGradient: (StopGradient): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/mul_1/y: (Pack): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/add: (Add): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias/read: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd: (BiasAdd): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy: (Identity): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Sum_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Sum_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_1: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_1: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Sum_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Sum_1_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/strided_slice_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/strided_slice_1_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_2: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "Mul_2: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_2: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "Sum_2: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Sum_2_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Sum_2_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/strided_slice_2_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/strided_slice_2_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Mul_2_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_3: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "Mul_3: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_3: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "Sum_3: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Sum_3_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Sum_3_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/strided_slice_3_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/strided_slice_3_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Mul_3_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Mul_3_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Mul_3_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Mul_3_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Mul_3_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Mul_3_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Mul_3_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Mul_3_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Mul_3_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_4: (OneHot): /job:localhost/replica:0/task:0/device:CPU:0\n", "Mul_4: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_4: (StridedSlice): /job:localhost/replica:0/task:0/device:CPU:0\n", "Sum_4: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/grad_ys_0: (Fill): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/Sum_4_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/Sum_4_grad/Tile: (Tile): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/strided_slice_4_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/strided_slice_4_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/Mul_4_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/Mul_4_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/Mul_4_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/Mul_4_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/Mul_4_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/Mul_4_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/Mul_4_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/Mul_4_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/Mul_4_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/ppo_head_0/policy_mean/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad: (StridedSliceGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/add_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/add_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/add_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/add_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/add_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/add_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/add_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/mul_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/mul_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/mul_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/mul_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/mul_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/mul_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/mul_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/mul_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/mul_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/mul_1_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/mul_1_grad/Shape_1: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/mul_1_grad/BroadcastGradientArgs: (BroadcastGradientArgs): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/mul_1_grad/Mul: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/mul_1_grad/Sum: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/mul_1_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/mul_1_grad/Mul_1: (Mul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/mul_1_grad/Sum_1: (Sum): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/mul_1_grad/Reshape_1: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/mul_1/y_grad/unstack: (Unpack): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/middleware_fc_embedder/BatchnormActivationDropout_1_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/MatMul_grad/MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Shape: (Shape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape_grad/Reshape: (Reshape): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/BatchnormActivationDropout_5_activation_grad/ReluGrad: (ReluGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/BiasAdd_grad/BiasAddGrad: (BiasAddGrad): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_0/FRONT_FACING_CAMERA/FRONT_FACING_CAMERA: (Placeholder): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/truediv/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/sub/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_2/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Conv2d_4/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/FRONT_FACING_CAMERA/Flatten/flatten/Reshape/shape/1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/middleware_fc_embedder/Dense_0/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/gradients_from_head_0-0_rescalers: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/sub/x: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/kernel: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "main_level/agent/main/online/network_1/ppo_head_0/policy_mean/bias: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Sum_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/Sum_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_1/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_1/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_1/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_1/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_1/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_1/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_1/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "Const_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Sum_1_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/Sum_1_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/strided_slice_1_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/strided_slice_1_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/strided_slice_1_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_1/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_2/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_2/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_2/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_2/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_2/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_2/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_2/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "Const_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Sum_2_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/Sum_2_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/strided_slice_2_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/strided_slice_2_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/strided_slice_2_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_2/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_3/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_3/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_3/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_3/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_3/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_3/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_3/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "Const_3: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Sum_3_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/Sum_3_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/strided_slice_3_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/strided_slice_3_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/strided_slice_3_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_3/main_level/agent/main/online/network_1/ppo_head_0/strided_slice_grad/StridedSliceGrad/strides: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_4/on_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_4/off_value: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_4/indices: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "one_hot_4/depth: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_4/stack: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_4/stack_1: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "strided_slice_4/stack_2: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "Const_4: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/Shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/grad_ys_0/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/Sum_4_grad/Reshape/shape: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/Sum_4_grad/Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/strided_slice_4_grad/StridedSliceGrad/begin: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/strided_slice_4_grad/StridedSliceGrad/end: (Const): /job:localhost/replica:0/task:0/device:CPU:0\n", "gradients_4/strided_slice_4_grad/StridedSliceGrad/strides: (C" ] } ], "source": [ "model_path = models_file_path[0] #Change this to your model 'pb' frozen graph file\n", "\n", "model, obs, model_out = load_session(model_path)\n", "heatmaps = []\n", "\n", "#Just need to match up the shape of the neural network\n", "if 'action_space_type' in model_metadata and model_metadata['action_space_type']=='continuous':\n", " num_of_actions=2\n", "else:\n", " num_of_actions=len(action_names)\n", "\n", "for f in all_files[:5]:\n", " img = np.array(Image.open(f))\n", " heatmap = visualize_gradcam_discrete_ppo(model, img, category_index=0, num_of_actions=num_of_actions)\n", " heatmaps.append(heatmap)\n", "tf.reset_default_graph()" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUoAAAD7CAYAAAAMyN1hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAADXnklEQVR4nOz9a6wtSZbfh/1WRGTufc69t6p7etg9w+FYI1qiHrYsWx5LsmUIhGgDhixr5AdlGZZNyzTmiy3LL1gjfdEnAwPYMKyvA1kGAQsQaVoSBUvQw0NRkGCDFl+QLBFjkSKHpObRPV3dVXXvOXtnZsTyh7UiMjLPPueeulW361T3iapz996ZkZGRkRH/+K9HrBBV5Tk9p+f0nJ7T/Sl82RV4Ts/pOT2np56egfI5Pafn9Jzekp6B8jk9p+f0nN6SnoHyOT2n5/Sc3pKegfI5Pafn9Jzekp6B8jk9p+f0nN6S3htQish/TUR+RUT+nIj8wvu6z3N6Ts/pOb3vJO/Dj1JEIvD/A/6rwF8B/h3gv6eq/8EXfrPn9Jye03N6zym9p3L/VuDPqep/BCAi/yzwc8BFoLw6fk0/ePWT76kqz+k5PacvJ72NhD2OpIkIEgKffPopNzc371zO29P3fktVf9ulM+8LKH8K+Mvd778C/G19BhH5eeDnAV69/Bb//b/vn3586SKfv4b3pve0Uul5AdRz+pFLpfuubAdB//uhcxDHA+OLl/zrf/Tf4N/5k3/ywbwP3/Nt6Q//6n1n3peO8hKSbWqsqr+kqj+rqj97dfz6e6rGc3pOz+mrniREQkxI+PJsz++LUf4V4Ke7378D+LX3dK8vOD2Grb4DPXyo2Ge2+Zye0+Uk9icijxqZ7yu9L4j+d4C/VkT+ahEZgX8A+Bff072+hPQFv7Ivswc8p+f0xJM4WH6ZA+W9MEpVXUTkfwb8q0AE/mlV/fffx72+vPS2l/YZaeJj+8Az+3xOP0JJJCASCCG+Z9vEw+l9id6o6r8M/MuPvuBLbIT3kz7L83wG9HtPmoHn9JyeZhIDyxCRLxEjnlfmPKfn9JyeaBIjUPXvS0zvjVE+p8+SvmCa+J7I7I9seqsPx3N6L8mNOMYqPwtYfvEv5xkon9Nzek5PNAkSIxLDOzDKLxYsnxBQPk/RX2x6ZHs+6zzfLT27ez0y7Z3D++/7htqeF1F3CzLXoBUr31bOpXyfLz0RoFQgf9mVeE4/0ukZ3d5feuwKnT6vf0pBpPjv7H/vUt7nS08EKOGLeqDn9B7SD5tDwjunrwpLfwov7F2XGermTwJ8/+Pv8dFf/st89N3v+rX90sf959uA893SEwFK5YcTKN/3MzVP3Of0A0lfFdb5ZfeLdwHGC+dECVH4j/7Cn+df+X/+UVT3IHk/wF7O8+7piQAlvL9O+L4790Plv+97v20wPIPoF5vq+/wC2vW9sk595A3eV3pXoNzmNWdzBSmoPlbkfgzL/OzpCQHl+2Rf77PsL27W+uLSl80onlD6wl/Nly5Xf0XS46MD3QuAEpCAgSVVT/muIv3+2s+WnghQvm/R+1IDvWujXXrpTzHJ7vsPA3A+hWf4PGztqfaV95EugeTbdIv9MRCUEIL7UuYLeffA+DagfPf0RIASfvA6yndlgl9Ffarw1V+E9RRAsqbPA3g/amD5OYw6AhKCuwVdyrsH2M8i4n+29ESAUvnBuwfdncHenv+zXvO2e19K7wMQ6oz8g2aWX/S9nhJYvmt6Bso1PQBsAlJdg6S6Bu2vu4+R/tBaveHLYWmfpRG/KF3k28p5H2DWGyF+UGDzPu7zowQyPwzpIdB6GNCMRap32c/JTL+A9ISA8jHpvkb+POX9IIDyi6rv5wW69wWUl8p9BrXndKnfPxL0JCIBwsaYcx9Avn+S9USA8rPq/d4GPA8PUtnkeqw4/QyU23L26YkC47OR+ktOl8bX2xihGXKMUer6/aLV+weTnghQwuefFfbK3Xe59rOee5fyvsj0LsD3RRl1+nKekeY5PZTewY/SfSi3Osovz4j6lQfKLUzsZ6/HMcvHAOXboeCSiPFZrnkXpre/5rH06Yu411fN8v9A+sKC1f+g9L9PeWIS3i5u32WQl3SUEuia9Mt95icClJ9V9H5smY8Rp9+W97HlfF7W+UWIxY9li+9yr/01T3mwflnpB+WC9YOSWN4lbRVbj7NC76RBESSoO5vLatj5EtOTAEobgu/DPeixLO9tQF0eASuPYZ0PX//5OkPvlPuYvI8FStl9/iDTE3EHehRR/yzt/0WkpwiUPZvcj6eHLN77Y8H9J5+O7++TAMr3wygv3eNdgfJxnfLLDSz+Loz2Mal21h/0wHwiIPnYJI9on6eIbV9ouk+87o89xhijBpICpWSKfvlqnicClPDZetH7Mtr8qKTP8qzVUf2LTo9RDH7FwPI5ebrPRvBIwiGCxMC3v/Nb/Nv/j3+Zjz763hdau3dJX2GgfNdZ5mkA4lcLAr6sNnsa7+oLS1/iS/9yWvJtd72vQWznxdvTiT/3H/45lvzlB/V+IkCpwPJlV+I5/UDTDxkIPqcvLgm2PW2IX3ZNWnoiQPmcntNzep/pq+V373t5I09G9HpCQPnlbUX5nJ7Tc3o6SUTM6h02jpRfavqKAeUzSD6n5/S+0lMYgeJbLZr/5NMASXhSQPnY9Oz0/Jye0w9jah67Ikh4WkD5zh6dIvLTIvJviMifFZF/X0T+ET/+YyLyr4vIf+ifX39EaY/4u5TvOT2n5/SDTI8Zqe/6Z+WLs8kA4emM8c/j+r4A/2tV/RuAvx34n4rI3wj8AvDLqvrXAr/svx9Zlfv+nk6DPafn9JzeYxKPxh+kBqV8EumdgVJVf11V/5R//xT4s8BPAT8H/AHP9geAv+9z1tHTJcB8ZpbP6Tn9MCUJAYnBd2B8OmP7C1lMKSI/A/zngD8OfEtVfx0MTIFvfgF34DIoPgPlc3pOP0ypid3ytCTJzw2UIvIS+L8D/wtV/eQzXPfzIvInRORP3Jw+5XEajFrldwkv9pye03N68kkEX+ZtfpRPJH0uoBSRAQPJf0ZV/zk//Jsi8pN+/ieBb1+6VlV/SVV/VlV/9vr4iseB5Gc995T+ntNzek5vSyJCQfg+wic8Hb+Wz2P1FuD/DPxZVf0/dqf+ReD3+fffB/yRd6/e5o7cBcbn9Jye0w9TkhB5ExP/rMC/JD/4vVnvS5/Hj/LvAP4HwL8nIn/Gj/3jwC8Cf0hEfj/wl4Df+7lqCKygqPf8/iqkzwLsX6Xnek7P6QtMImjOvP7VX+X2134N9GmMhXcGSlX9t7l/9P+edy33OT2n5/Sjm0QEubmBf/6fg08+hfLlx6KEr+TKnEtJ+OFiYY9hnz9Mz/ucnhNuyPHI5rk8GZCEJwOUjzF47AO59mK48sMHlm9LP2rP+5x+FJKEiMT45CwQTwQo4WGg7IHwEkD8qILGY7vTj2LbPKevZKp+lE8sPSGgfChdYpL1+DMIvD09G5Ke01cheSCMJ7Qip6YnBJSPEb3vy/88uJ/Tc/pKpxaDMvrKnKcFll9RoNzn/VHUUb6v9GxIek5fRqprcZ5WeLWavkJAWffPqFte9oM1+O8+DzwP6Of0nL4aqQXqbZHNn1Z6IkApIG+ryro5+gqUe9Dc5/kse3U/gyrwyGZ4ejP+D1/6UeuP4oacp9m3nghQBuDFW/L0oLcHyj6P7v4uXcPuc3/Nj1onfU7P6ctNEgIhRkSE8Mwo70sCDG/Js2eOl0Ct7M5fAtf7/nrQ3Yvue8C9r04/BOlZRflE0o+Yp4JgBpxnRvlQCsDxEfn24Hgfa6zpMUBZeDyoXmKf+cKx5/ScntNnSVVHKU802tYTAUoBDm/Js2dul5jcHuwufZbdsT371F3e/ppLgJi5DKL7e7+t/l8hdvrsmfXE0ldfDBARFPiTf+pP8Z3vfpfz+fxlV2mTnghQBmD8DPkvMbf7GN27sMyHzu3z7Bll2X2H+4H2vutgW+enn95JULzk5fWc3lN64qu4JKAKf+bP/Gn+8n/8a19OHR5ITwQoH8MoH5Me4xZ0HxDWYw8B6aVjeyb6WJH9vnIeyss93x96pv2zPKfn9PSSiKBPcOliTU8IKN9mzHlM+izRRi75Y+6t6HsQ649dAqT3AZSfh6HeV6/++BNKX30J8ocgfUnMU3DXoKenn4SnApQBOH7GBrqYPV46eDlpN3tt8EPvP77/foekPVa8fijvJTAsPAyOj3WLeoipXqpTrUd/Lne/n9Nz+mJSCAmNw7PV+8EkQPocQPkubatyWZrd5OmP6zbPJULa8twDSHofy/MC77tW90D5WcX0+8DykhvU2wBYuHufSw136fsD2X6o02Me9AcJEO/S8Pv6fXH0vwbCsM/PXLEfSHoaQBmA6895/X0N/BCbf2isw8Mbduz91sHBV/2zu+m9JE7vYtbGW6kHsEugdd+xfQUfw0T3lS3d36VyHiP+5105PzLI+JwenXyNtwRbvvhEkfJpAKWAXFBRPjis+vYM9xzvfz8Elpey3AG1XQH3AV+RbbkPSrtyGbsarnhGdSa3+e2Zexaq3U11f7OHgPO+VU8Psdi3gfQeKFc3KrnTMD966ct56h/0XR8BetXJ/Ak7m8MTAkquPmP+h4DyUnt/UXri/di+hDH734+5pv4tXMAhZ6g9UXssdul9N7rEDt/GPrknzyVQ7SuaWUFzYQXO+vtHFzCfk4AEJAYkxicLlk8DKD+LG+WeIV7aOvsSKD4knvOWc33aj+d+jN+n99wb43ux+j5sqQB5CX/uk4Iv5VU6RuoPumem1bDVfnvF7jDYSxV+G1BWULwPKOcHrv9hSXc717OB35KtXKwrcp5uehpA+VncKHsQFB4Gyn3eh9y03tmFSy8zxkuA2X53FetB7j5Cl/XtKsGtdLs7L9vPx6gtL/q/98i/z3ip0Nz9LWxF8QqQaZevB9MfBai4P/1IrPYWnvTSxZq+OkC5B73+WLgnz6U/dmVc+n2f6H4ndd3zbSL45lPXAntMuSThXsKkRzNJLi9FvyRN7+956R6tvqF7lniBifoz5h7Bl+6zYH6zFTAzd0G1F8v7h3hOP1TJI5sTLKr5U4XKpwGUAXR8yyB4DAh+FqC8wCBbDS5Nbm+b8B4Cykt59qL3fUDZY8QeyPIu70U2urvmbYC5z7upV68KiI9jpZeAUjPm81qwl1+689mOUex+dypzoQ2f03tP+p7aOrQtauvKnKcJlU8DKB/DKEP3eR8I7pnlpbzs8vS/+3vdl/e+97jXQ/bpovjdfYfHA+VDNpNLYHWJWb6LXeax4nr/LBnzAsgRcjCGmSv7nFhZYwXS+jf4sdR9XtJvPqevempqcLafTy09CaBUIMsjOv4eFN8GmA8B5UOW8h4oH2Moqg9x31u+dG4PlpVE7QGoD+ie35KnXDgGKzl7V6CEt4vw/ad0n431ilk0Wz6/kcL2RdUUukL6CvSNd2kGek7vK72X1pVCXpSyFFQzV8cjL1+8NN2l/dPS+Xxmmqb3UYu3picBlLkUvvfp7cOZHgOQcff7Ut4eRPdl7wH1vrz3pYfA8m15L4nIe9C6L89nZZR3AE6743I336XrH9KL9tdkTA3ZE8cMzKVTRwbIA+sLCqBL1zBAE8v8fBPLp67gfaM+JTHus8DMY+r9g5wUvuh2tLqrQogTIZ4YryfSMPJ3/m3/ZRRlOB4IMRBTRIKJ5//mv/nH+NN/+k9/wXV5XHoyQPn69i1A6WMjhOBjRu4AoUQ7LlGQSwApIFG2jGdX/oZJ7tkR3blL6fMA5WMMNW8Dw54B3nfNpb/HpPrMeuH3vm1qHXpVY08Qw+6zFqqCGYoCaPLD0Y5T7HtD3/odVgpdZ5a+Adh9fpaH/iLTpXt+HgD6op5h/2IfyvNFJW0fEhQJBdXAMhTGq5GYIuNgQJlSQmIgpMiPfe0b/MQ3f8KAUwQJNmBF4IYbPpKP4GPgky+4unwBQCkiEfgTwH+sqn+PiPwY8AeBnwH+IvD3q+r3HipjWmb+4nc8Bt197ytAjIHDeCCEQIzByYX6gBNCDIQgDMNoYNqBnyRr2Ehc15R2oCj1s3d4vY+FvmsfvTRGHwK2vYtOX69Lv+8Ddljr3pdZ87I7dwmAHeh0k1cvYo8UWRnlwKpyrOwyY36zvdG72XICLIetSnKyG6h27kO6dTuS5m7U6Tqlt5731PuhtakPJL384h/THS5Cjdx75m7p79DnHgfNaye47xZvE6I+X7J3cfvmjCANBGNKBpRDJA6J4XDgr/kdv5Pf9Vf9NQ6miXQYCCEQUuA/kH+ffyH8C/DHgH/rc1fqTvoiGOU/AvxZ4AP//QvAL6vqL4rIL/jvf/ShAhRlYbZxp+qfpf0GUFGCBE55QoIQgjFKbUAJwSn6MCZjlh1zkWgvIQ3JZqIOJIMIIYqz1eqioA04QxDLE6xTbQhUDWHffMG05WjH+gHRgZM4gUL9WexBV++hvd6y3nivC1RMB/hW9qj3n6vl9uX3RGyvQr50fR3T9T4brx9ZgbPHrr1I3sRxWfOMYnUv3lYqUCJogZJAFS0uemuHyBswNaAU6d2O1Mqo3+WBxtuB5GcFiD6/9AcfxMnHgeRnqcvdvG+/+r3w732hamNcs3q084WQhVIyYcnkJRNTIqaIZiXGmXxekBhIQ+IqXvHXDb8L+Xog/PXBxrKswIvAJ598wl/4C3/hnar7uYBSRH4H8F8H/nfA/8oP/xzwu/37H8Aw/q1AOYeZkpWihaLKkhdyLhQtBp7F8mlQVAzEVHQFy479pcFZY9VZRhoIDuNAiJ3SMUAMgWFIpBhJKSIUGzMYmB1iJIXAmBKCErq3nGJCREgxdZ3eKiLiL0wFdkxVVgqL2h0B8ZI70Cvd333j+D6A44G87I5dAr1L5ezTfW5Rfd33/uSVSfZg2i/Q2RPABqbBGef+Ol2vV2WLwJm71vI9Sj+Ux/+k3Mso31/aU/4fjaSq6JKta83bc9K5E8UhEmJgOIxcj0f+ruu/i+EnBoa/arBxniJpGIxYxcCv/Mqv8Ku/+quU8tk9Jj4vo/w/Af9b4FV37Fuq+usAqvrrIvLNSxeKyM8DPw9w9eM/wX/yd/40JSuqSlEll0wuBS0GlKWoMU+x0VPEfhdVCoWCsrCAKBINcIoqRexsEQPYEIKrxazcrIuNs0XIGeZZjImoomrwdeuMMolQYa0yyxgSIoEY97EwhRgT0cGyP64IMQRiiM5GA4UVMAUhhoEKtkZohCCu2HYKHQig0tR80gwxHROphuULInJ/TC6c2wzRHWvcf5dL5zJrhLisd2JkyH241K98dKAUZ5hbibsCZMc+s3g5qWOdgzNS6zNkBz3tUbwvXFmRNyNkdFOhh6j32rB12tPauJcI4hcBvheKeMjv8bL4ffHEO9bHn/vBe9572b1Jah4tqJiUUYJQlsJ8Cky3Z2KKBpBVdD8MhBhJQ+QoI//Fn/3bTU2XgqvqqhQp/PIf/Tfuvfc7A6WI/D3At1X1T4rI7/6s16vqLwG/BPCtv+E/o3/1z/wUWrSJ3rlkA7pS0LIC4qyLAWQoxjiLsuhC1sK5TA6KBoLLUlg0s+jCrAuZ3ICXDKqFMs/GYnOBUhwgFxP9y9LennFEbSO/csAgJubHYOBV37UAQ0zEmMyp1o+q/6WYGNNADAaGlacWDDjH4YiESAjDek0aCUQkJgNLB26q0L8BQ73DIPsl28L23CXGeIfP3Mcq96naXhowyhb8eoa8P66y88NkBdwNAdQtE+0BNwdjn5dUlFVFUao4nUEyZmW/BJQLeof27h/iEt3PDlb9TNW13xdix9G7h95XulTvx9x0Pzncg8m6yXQhST1tGCE+31lJyyafNHtFIB3cOHQcGceBn/3P/ixxSKTR/mKKZlkX4Zf/6P23/zyM8u8A/l4R+buxvWY/EJH/K/CbIvKTziZ/Evj2W0sSIY6VOXnFNGz7l3i3C2UjbrdjomQpKIpGu9A5J0o24KNAsVEnxY7lPDvrKGhxIM0VPGcD75wbA8l5Jud5ZbrZxlzOS1MZVN2q+IDJJTsrtkFTSmGaYRZBVdbhpTQRXMKASEBCbEAZwkAIESQiITLEkSDBWWskxsFBWUjRrk9SN5WPri8NLeR+g29XA6jeyzW6KeCeV7j/UUmUCqWoAdQeIPWe3z2z3INppmOS3AXDHhTvk6bbtWLO8CVATv4ivRMuxkAp2t34PqC8tCqgbH/rHkzrb3Z56Y71ed47FN6f3vOtH1W88YHHladKyYVS7E9EON+ezAicohmAYiAOiZACwzjYMsoH0jsDpar+Y8A/BuCM8n+jqv+giPzvgd8H/KJ//pG3lSWw6g3bDCTdeVnd5zq9o9bfwdwMCN0xAUIVZteOGspig94Bs2QfPR1QlmVeQbQUyrLYZyksy8SynCnFgC/PphaYlolcMnM2YDAWbIaZeVFyMQZsAJoNiEshF8g9k1Z74oKHnBKhEAwoJTXwFIkM6WBgGAIxDsY4gxAkMKQDIURKTAQHTCQiRIKz1tCs/1U/GroZf7vuNqB3++kjOq7ixpe8Zbi6VDWBbHHD2f4Gf3Yi+wazLgKlg/KiWya5NxwtGFguYXfOO2Gz+5TthXofyvv3DSju9Qg9mCp3H5Q1j+6voTtfX8BlmPlshHVP++4HL1HcCvl2eHu0hvUCQ15L6PP1DFratz5rtS1UI3DOXbtJZ2QVMaCMgeE4uqH2/vQ+/Ch/EfhDIvL7gb8E/N63XuHA92Cr7v2NI6trUAXGhFm6Yx32GYOZQgiZQCGGXhuoptcz6EDURVmNDq4Hy1OswzbAbX/VQu/6UHCRHWOisKoRirLkbGzyPLPkzDwtnOaZ87xwczsxL5nzNJGLcp4zuShLLmTNDqZnu1cxYJtna5RzE8PXrilizxRjaKxTQiTEgRgiMQQX/WP7fRgOZt13nesQjX0GhBjsk2rEp+prtb3C/gWu3VhQETT6lKUGuZpWNYQ2NmtXFd0eL0Q7v7Gi0wFZ97snff1fL033PurNAb47VrrfE646SM4+1e/ZAXq18jdjUg9++wreB5C10nT5LtHr/bWX9KT7Y++Y7sOtH7hR61Lq6yCPY5xVd6o+NksBgfk0vfXaLwQoVfWPYdZtVPW7wO/5TNeDK7z3aWsp1h4oOys3Ykyy+k6KKCsPUyJqYCmFJKUfni2P+By1/pnJBIVA6M7bGdlEzMFh1w85gOIvpBSz5GcXB6ZpIS+Zea5AOXNzGJiXzOmcyKVwmjJLLsxLYSnFALO4TrbQDF4mHUrT46r/1ZYrHl7fmGYkxEQMJn6wAcqIZBPlgwRIFkg1iAFdCIEiZtQy1YC1TxBt7NMIqt9bZBXpK1giZInUt2PtZi+wWf21TWHtL0syFYUbarTDDc1h1W0WZ6pFV7vM3tLeA2ULXKRb8OyBcoDm2rTINk+/GKhhWu0TtYJuUOrZZ+vqeX0Y2YPfHiD3EZ3zJl+nwGHlcpVNrQCxprvjbbNk8NJw7MBIuzwPxtq959xalS8CdL1i6hixK/K++lU3Nm0T1P3pSazMAd4eD7ITuTesMm7PiSgDswOkschAIbG07zYkrXMl8m5Y9n/FwbS08hqLqh3mPnm0WVe6uV7NaANDA1F1wF1M+idnY4/TYuA4TZlpnpnmhdNpZloyr2+Mfd6ebi3PnFmWhXnJLDlvxHwtzviKw9ki4B4DJ+miAPYgKEIKQqyfQTjESAzCEMwANaTEEIQhBoaYCCEyOrAOwcSbGKr6ILZ7XJqarAWCf64N2ri/t9sSB0qsMoKxzEUShUDGwDQT7beGVQTv2WZjiRj21OWVPXheYp193vvI4sajyKMr5bQC6F69WWrvuAR+e6S/4ApwEVQvMVa9cK4zgLxLegqk8geYngZQrlLXw+f7P6MzTfwWcXYjpQFbaEPKxW7Wc3sQDBRjotqzTTMS1XLWa+9oSDai5qbedTZH2tR2p48pDMFNPyWiqsxZyCUwj5FlCSxL4nwcWHLh1dXIkjOn8+is09jpvMzMi/mfLstCLvZZldvNoERpzLMCNWV9EhEHVm9nFaEUA9AcEiqCLAGCMcUSI0ECxcE0iznxpxhdpxqMzQZBpBqVUueQLxaP0MWGKtoXcB2tyQSLDBRWMFQJLHRAGcR+q70tDW4sC8Y2SjD2WVJAi1ByMGN3D5QVCCuYVnDc59lLzHv96B2pWu4CZcbb3XV+bXO6ginhXU+pPRjWm1ddVQHZuwdUQOwjqvRLPHsxve+jF3vnvqve+XVXEpfNx4Uzb7nLfWBwz/G3EOGaLmoM7q/qJj0NoITevHr5XM8o65+L2xKVIEo0LdiGPUay/1WgzDvA0zsguD8fWfw4mzyXUvHO2Wvrto+09XBrsFsZavTfCVSqCSV52c7Aion2xkKV7ExynhfmeWZZFk63J+Zl5s3NLcuSOd2eWZaZ6XxiXkxfWnWmJbvxqnht1P9ECUVtPlrseTPms1oonFW7djGwDyKkYEA5JltiFkNkTANDGox9SmAYjqYL9fMpJQJ2vbhlvvLdQqJIaABZ2rTXMUiSgannLYT2ucSEIszjQCEwMbCQmHWkZEGL3BW9J1Zw3ANldZZ/iFHugXLe/d7oU8WNTeEu8NawdHcvYguSe9bZV+KSznPPSPc6z8+TVlG4pbch0WPTF1XOZ0xPAigFLFjFgxloDGdllPYXGtjlBo7SQNI+E5koNpQaGOpdoAyu37RFP3nHOpXQ6TgvJa26ktpZZPduddt/TH+3Pui25Aqi0uwFIG1lUsJJSFByUUoS8hjJRchHKGXg/GqklMwyzeS8sMwTiwPrsiyUnJmmM7kU5nlGc6bkhVLsnLobFWUxtlINW53lt6ozkjrBV1uGFjQQxMRwXSI5RNSt7bm5L5n+M7m/qbk6SQNRY6TmFhXCCBJRSSADBPuuBIoMDTBtuqzAKu3YwkAmMDGSSUwykEMkSyQPEU1in8XaUYugM6aumIEZWz5+KQD7Q5JyD6J3XJ3kfkPUoisTLaHpYavz/MNiuiG59uDoHv6yYZjV33PHOJv5uP3Dyk59DF5SCLYj2rLZT+k/uhPr6OjHyX1QvV6245D3gnKV/9YMm7IfOSc8CaBUAY1vqXEHjhLFdZSKBAhaCFqILATJ9tkxylT/tDRL+IZRivMT3bLJXidpBqJV72kVv6eem4fb/9wyyD7Lak7apmr4aB3QJ2uNl/Ib3RZS10lNnNOS0bywLJmcM8u8kJeF29sT87Jwur0xXef5bMxzOjPNFi8wLwtacmOfFB/5alAUKAaQKFT1RdY2iZlTVK8ZE4JAFFteGhu7dHcnt8oHd4MKIRHTkRAHJAyk4UhghDCCBJRxo6Ms/r1pqSUwUxnlgYXIzMAURmYG5jgYeDI2gKWIGYtmvaujrKzzIWt8tdPUVUVFt+J92eXdx/XIsv0swJSajUbd82K9oAPO6qEvZVex+lfF8npd3OWpgFg1xxUkteuDysWO/K6MVC6D5sXUbrGVnUWrxNbr6O67/h7wvJCeBFACD4vesDLJasyJEKQDSLKL3PZZQa0Hyl703uox9+L21nizGnNWZrm3KLaqNwfytyldt2kFy7svtpbVzeeb4/uSpcsp0LwACMYqNLh+clRUA/l6QEuk5EhxMM3LQlkW8jKhOZPnkzHTeaIsM8t0Yllm5mlC84yWhTyfKSXbNaXzUdXSeQl464ggakAp6urm7K841M+6RYCzPmeUhERMBwfMK0IYSMO1ifjxYH6mYXTmGSmSMAWK9YIzRxZiE8EXBs6VZXIgE+y3ROY4mNgfI3lMZA2U4u5Ke1G7B8DKNvcg2APqfsn53OWtv3tVQGGNurQBUHeaL7WN9/5Qe3rbo3O8kKcX9/XC714870G1fvyg5eM9eAhboOzAVDsy/BnS0wBKwWS2/vf2y/aZgzNJlKjZwS+7sLUCYS96b8VydXBdRfAKghUo2QFluACUgq8dbjWtgCYXQWyT7rwpK6ewXzO+ztpbMX1zWddMxn5rquw3yKpqqLdYu5Kx0EB0NljA19mzzGgxoNScmacTyzwz30bO05nzSVhmI5jTaSJnZTpnSs5kmXwJqg1KLQWpztjeYYPXda1fzUNTW9gwNd8FlYBKJMQDIQ7o8IKYBtLhFRIHhvFIDIMD6YiEBGHwNz44UJ4bo1wYmB0gF9kBJZGzHFhiYokGpogFGC4a3GleO6Dcscseq+p69ew4tugOROWuASlBWyMfvMzIFkxFYIldX1BsaVrxbtOzxZ41irNNfBILLqb3BqBObym1H66fcidAwJeV6qDo/Yl3wWqrGCb9iHp8ehpACdzBhz71k0MECQ5eujRw7I02A/3xxRnl0kBTOsCsXnw9UN5lkqsIXkFzy+8qWF5mfus8t7LFXo9j3yq47sKlXGyMNVX2esm9CdjoV7fnqkFqm9/yZkIo9hddVXGoSz3FBmK+gjJCuYJsASXKNJnO8zSRc2Y6z+Q5M51mzqcz0zTz+vUN0zRxe2N556mGR3MlbF2eVGiOwVYxRUKB4Fb5dIYQyPFjSgjkZOHzblIkxkiMiWEcSUPicDiS0sBxeAlh5Cq9RGVAwxWLjMwyOkBGzt3nQnL2mfz76MA6UCSSk2vGNa6fGim6HrsoVldg3bsr7ZnkAsxioDp1efvPOyoBB84SaA7ya2QStjRWWYOF7te6V6Cs19Xe1ovmF3SbPxDgdIOF9sBwiUVWEfQR5b0lPR2gvJju1dCuotxmkEM/8Fe9Wbnwt/eX7I7JVhy/a/hZO4Tu7l2/XwbK/sl0ZQBCg7KHkuyaZBV+wuaZUQdI2QGk7K36q0jcA2UkN71tkGxsOpTOdcoCIAe11TpSAqIFXSKaC/N5JC+Z6bywTAvTuHA7jJzPE0OGsySGSZh14YwtAS3Zgp9ogTKD9nuZC8ZoojaDnsQCwaROEaEk+8weUi/GiB4GypiIyxHSyHA4I3EkDBPEEYknRA6EcCDIkSyJwEyWSCCTSUT/nGUgsbA4+ywSmg/n7C5KdUrOFmzA2bsY6NfPLBaxrbe0V6KXtr9lse+6uE4+Ow3P1iaSZbuUt6okxcvH260El5KcTlFMRbQJfAp1hdoW8KrbVtVNVmrb56n9tiMQ963ekX3+/bm7hzdZ/HpVYbs9yNtAc6ci2xySt2Ll0wBKxcSWWvN9Q9WB4lJBCVBSXb9cB7e40QBmEsEhYus5WXwODJQmgmfETTwVBIuKuxtlL7N3FQILtLF/q/e39EVpWWV3rofavZ3u4qtuOfu6FGeXFTzxI1UElzul0pVQQTS7+OvfZZ1MKrtOTdUxt4cSiRAj4zigSdHBArHqC7UQelmZzwt5zrz59MR0nvnk+685n2Zef3rD7e2Z25sT52VmmRfm2aM47cYsQgvY3Lb2SKBSzDAshUUyU5yRKHwaX1sorSEgKRCvBuIwMByPyPACSS+Q4QMkHhnSC4YwMqZXaBjIcnQRfVzdihgpLrobQA4uu1S5Jrj8EshxoMTAMri/p6aW945z+5kt0+zdk+Zdnt5tadnl2eg8xS3rPqvMw2pRv0N1eyfRe/SWvU+n9Od6X85e4toNZgVEdwce+l376X5DrPsY5O6Y1BgS4e5A/Azy99MByupndl+qbVFVLioUD+KZJVp8OjELuIoBQyF41w3t+yqm9kBZQXBr4IkE11/WPKvT+t2q7mYl7c9sc99hjrqbaHfFXH6fq75ofaY6JdCeaXV12jrNh5afxixXMKwiu00IooXSJiKhBi6OYuKxiDE9CYooSLT+KaG4EV7beEoxUrJFq5+nhSiB82lmHAZub86cjkdu35xZZrPG51yY56Ut2awxoVrjFAPNyqSgSmTuTF89mgQogiwQZSaWRJEFyRkZFsgFCQd0mCEMkDIaRjROFBnRcERkJMqASqFoREKmeO8qEklEFjWgjBUoxfphwPIuYj0xECnJfDgVA7MismGUurDVTWbZ/WZ1Wdotw5RelG9StZjVLKt99g7uamCkWh3Z1StgIFgnXa1AKQ6Ikp2trkCpVGt897cZG/3U7hKNdBJWu3+9oK1NbjEBagSsNUbA/u/egfNO6WkAZQa+rw+hwgqUCeskCUoMlBiYU7LzAyZuRnP5Sc3OmRmYfR7fOpdvgbIG0dg6mksHMvWvT2+38q26tj2PrELvVvCWO9dx4dy2BlWsVp9Pq/5xK2Y3sJfKHml52DyjtcWwciOfPIxlD8wtb5SFEHNbDhoHN6gVkOoS42J0PARigfTiGgp8/Vuv0AxlNra5nBdu3pyYTjMf/dYnnE4TH3/8Kedp4tObG4vQVGZq0GZquL0HZhrNuO9pgQJZMiwzkk+UcEMJn7DIRxRJzHJEZSAMr5B4JI2vCMM1cXiBpGskHojpmiiJQzq4Rf7QWm1pYng08ZwB895dz2c1s+IkAyVG5mTXTBxMZO4Z4h7s+uWXe4f4vR50Zss0exXlGWOb87DVjzbDeGWJvV6ys5prNmaoFZUvLVfS7vrdS2nH7bveUaX11/TqAXbfhd3g2t6mlfMAuDxE0Dw9DaBUoN+E8dLz9EDpoEiUBpp1ptUglKgeQMNWaQQxZ2fTu2XX3XWGmqZ/7FbtaL8ipzfqrEDaV3ijPxToQ1HVw7rN3Y6tjHDtArrJ8bZ0GShFVzbQL9kM7flWEK2guoJhdgWFDfEKgnXVU2VS5rcaN3kj2dy2ZDGWSSEErJ2jNkJi40qQjB2PiTgEJAqH44hEY50vXh6Z5pnXN7dMy8w0TZznmTkvTPNEUQscsk4s2siJasdmqstAG6deN1mw6FHq+7VkskQoM1kzzCck3UK6gjAS4rW5KA1XZlWPR1M7hJEYBoIkAolCJEmmEEjeoknrkstAlMWOuQifKBQRcvQeJkKJttzSgn/ods+hBRgxp/jevWjx9u2P90CZxUiF/9bcXVN/F0xc96WVqsF0XjVcVvXhFF+Q0Fup1PbobkAoVWep3lurVNAbgDrQlO632hX9eBLEvja/y/peOzDcDMjdWHrMkNqlpwGUGXhdf1xSrOo6qdTli4kNuySsnzoIJURyiib2WRBybBud1RizMqd+PXdv4V6XLhoALE2sDe3Fep2xF7hhjAIt+IXD0UNpBcqH3uRd/U1trt5wU5lydWPar22vqoat5Xu/7HNdNFgBsjLJdcXT0q6r51Jlm+J+rHFuS0wbI9+tapEspDFCjoxXxnK+9o1XUGCZbBXR6TRxc3vizZtbPnn9hpvTie9//AnnaeL2bKuLCrnpNLfRcryl6hh0UIipNNe0LCZaZiLTbCLzcv7UdZADJYxoGJBoADmOL4hxYBhekNKBcbwmpgMhHSAcgITqgEq/1DK2Vl6aPjP579V3c4kmxje9Z8H0bFNX/wqCvZW8VzvugXIRWozOjZgunYpSkcWl7vnCkspendnWpWt3UwdO9cxSOpHa3Iy0STA9SO4t57kB4wqYDqT+NlF2u6auYNrnf1jge5x8/jSAsgBvthXeqDREthGDKihW0BxYWWYfq3LAdDERNAHR99hAEFGyrDu0GQnU9of4ckZZ9XkGPmyA5xJUbnSQsr6zx0xkeweiO6nrPOLiRCWwa70uLb+86ye6Rk5awTQ4s64qi+TM8i5QZqJkoq6AupAcQJOpPrSulBo8vzNTLcRo/pJRyqqCqvFFA/T74EQJyDAgQ2C4Sly/OvLq/IJ5WXjz5mvM88LNja0uurk9Mc0zp/PZ1r5nCw5S9ZVgVvba2OrvPkQTJdc1RGYQC275XljILJSSKHkGiSz51oHtQAiDWdSTfQ/pihASKR2RkAjxgITEEEeQBJIokihi/p0mlo+YFd0UHlk6oAzGRMsYKWp+nKUESg3u0a3ekWrEmaFFg28GHlmB8pJLUu4YageM2gNwtcgXWVlm9ohYudC22ZDe8NOL1luRXrVDY6mSUBf0YxUJduxUt8yyrfPtRffu2HZYwmYEP5yeDlDebA9tBFvTM5sbRP3bA2XEXuQeTOvvZGJ5TnVkYI0e4yoqd+XXe7bgEHS6TV3BBrr2F4BgEWsuKUwuvZPtjNCA+GFYNbHHXH6skN59yWph7kGbMHLuHlSdvhN1Oec2IEgVtU23W/1PDSAXYhPPK1gO7vQ/uAieqiguVY+5rowqzAQpqDifisXGk4OWN8BqnCnYNhfAQAIO1gK+l9L5ZEFA3rw5cT7PfPzxa25ub/n409fcnk6cp4l5np1tugW9RjBf1vYXsXilscXXdCOMFBZ/hjkvZCLKZC21WASjTEQlokRzOwqJIV0R4sDV0VjnYXxJiGNbSSRhMKMRHVDKZC2ttfWjuSBJYJbBWGeoVvPU2ChFKLqyRZndYFOBr7LHHjQr0HXBPzTr6gjf6ys3or1SVwQZExVbmjmHVS3ZgZPUOJuyY4uNNfq5KqpX3WcFRbIPE+sMzv0dLItLbbtx1j53Y6iSjIarj5fBnwZQZuCT7vclNryPQ9kD5R4Yh93v/ntiNYw522y/2xYS62/bRlpQMeX8Kh/7i2ht3+tG9nbuLumdL37dzsyzcaFw7zahm1HvXGoA0wM9vcP5nj2uOtdev1nZ47r8s+ooJwKFsf12ANXlDtscumuiC5XVsLY4Q1uvGQghk2RBQiHk4mouRep2Ec3f2X+rmruPCmNIDCUyHBIlF772tZcsy8I0mag+TZMZh6aZT968Zl5mXk+3LJqZdWk7f6LGZqNkMwiHbCAoStKFrKaJXTQweEtRA3IQbCko5uStJUAeUAmcpoRI5CYcfV+jkRgSIdryyxgHMxKFgZReICFxiAdUEkVGComiqxnSnN23yywamA4WYi6niGpgKQPF9Zs1kLHs2WJzNzKQ1LquvWDtX0An3epAs4NlX06LrKSduC72V63rFStbRKTOOCTLCpo7MF3tdBUg14AexlwfIha6+/Rfd7I/DJpPAygL6Mm+tuq2gW5kvYnTl0RvBzQDSH/Rve5yzy4d7KQah+reMTVvBaS4iv3qwCpBzIev1rFTPG4iRN+TtAPXTdpft3H76kBYuutlf45VYgk1wrhugbJbyrgCJSt4ihllogcXWdQcXaqfqTpbLEQfptUdproOFdSZWEGImklNe2qKhRrVPDhtTP49oM3eYuom9a06/AGrRKUgamJTFFt2mWJEFa6OtD2LzqeJeVp4c7jhfJ6JIXCeJ7gVprxwypNts6Gm2yx1ew9XvZhiwwLLCQXV4E9YW0yb9FCdfhRpwTkUaayziEVLipI8ynyijNfENJIGY5tBZyQMRD3asksZKWFAJblSI5BkcFCuU1CLjWXRkCQyh4FqcpQS0OrNk4Ekq6tQ0dUVyR3Wm9N7Bq36zIpLfk4cJDc7Y4pNbtQVkJWRZqFFQKrsz1Ug5ttY97Sqs3wFyvq9jqna6XtNfyUrZSfW7UHRbtr0mRcx8SsAlJrh9D2L+LKoMJfg7ivKdSqkoOabV4HgAlDeAcM+z/77foVTxyDb8Z5Zhgt/rfLd97eA5CZ/nQTrvfYpXDhe826A8p46V8u/T+hForNNXcVbD9dWw7ZVX8gYdNVRykLQzMhEDTiyiuS961VuTHKQmYBdE5ubVg0/MTWdX80z+9koC0kWhmG2wdONlRq2n+AEovf62LWF+XEKx+OB4zhyfTyiRfnWN79BLoVznkyfOZ24PZ24OZ/55PY1p3ni5nzDkhfO0+ztNxMCpCCMQawt674/nKleq9VQU4FTCb79hb0QxWJi4mvEFaFMNsmcwgASkXi0kHLpysT0eCSmo4Hp+BIJA9fpCJKQaOvXi6z8f3bH97pefWFgCZHZw8ktKTIfKkNNqAbK7EC2XxLZM8gzTQSXFtGI1V3pUt4+Tx8sRGtegRzNsl5oOs7VyudLZiX71iY2UW2tSz3y1uP9YNDN+ZVFCnJpzD2QngRQ5iJ8+jqylMCiwpTdlSdAGRbGWBiSBZCNyUCTbAOiAWVllJUluruQbTYmK8vswXDHMDcg2Ld3xMR0/y5tx7bH6zg2+pCNHoc7gS5aZHGfTTeT5f4Nyz1//XPhrLi2RQXQ4CDZTRwSQKM6CzJ1Q/BOGdzVpWeUSRaUQCIbk3RmGcmgJsr2CynrqiHUwnCY4CqNHFdWKwoSbKUNRVfpqhpRK3NxorkByrrqKeAszqLGj8OAqnLQkWVZOMwDh3HkcD4TU+A0TQwpMi8zp2myPeFZKBjLLJiYnrW4BsBXaEld3lBojmMS2jI7A9PstgYPqaJCrvsDZd8VL5/QkCj5FsLIEkdIRzSOSDkRwkhwlySJB4sWHwZEEolElJEsichiuk6poeMWFjERPTD4Ek01MZ1o2/qI2PLKhBk+s9g4Ktjk2rPRfq+h4Ey1LioA011Wh/jMRlJuE1zFuepkj3RG77JmUJzd96xAO5b5NsahTTrpjz2O1azpSQDlzSnyJ/78h0xFyEVYSjADiig/dpx4MWS++eLMVSp8/ViIUYmjXharq46ygsWedV7QQ15kl9yTZ88oN+ktL6B/r/t0iR1eOtanvh6XALL+pju2fxaRO5NFSea/t0RgGJGg3MYrhGIsccciq75y5OyscyZqZmAk6dLF6JmZXEc5NmYZ/HNiIJLcVSaSGdJksUari0mn0qp/GjtVRJXU9jNP1+YigTFarMvrqyNfMwGapZjofXs+My8Ln7654TxNfHzzmtvzmZvTLbfTmXmZmfJkG7mJ+V1K7F6EM3QJwZnw7jVL52PgK02yWFSkQkJLIJdIVhsL56oPDaPtoulGonEwsX0YrizEXDpydF1niS+caR4b05w7Xl8q65TIlIyFzsPAIsb5cwnmb96WVspq1FmASVqMTp11yyz31vRej9kHAemZZm84miIUcxOj888UCio1o/g5YetSdOGl7+JpXqQ2j6CXTwIos97yevr/shSh6NfJ5SfbHjhvQqaUzCEo06AMkhmTciVKCNhWK8V0hx5O29rWQUGD2mzXAaXl5X4QrDOdM6yNCN5/XkwdWN7z7vZJ6FjlBhytrCoad7Srfb0DpvtniF7OnjX7b+nbIGBt6D6qmmjibkkWG3JxJ/4SjEVWj0pbHgp1mWh2etG75xdnA7YcUjsGCkJq9qvg6B4wfYsEpbp+3OnTveh9h3Q4u6u6Tl3P1YxRTJwOUSiqyAhLHAgEpsPCOAycponbs4np0zxzc75lyZlpmSnabeSmBromEdhN5M6kpwTMYbq6koUAhIAGa5usYgGUdF0uYBvSBeCMlATlBpaBko/k+QqNB0hXSBjQGh0pXSOSiHIAGYkyksKIkkhiFvwkI0v7tLAfS4i2eihV9YEttSwp+Nhy/f2y6jgba+wjui3d9yoVV8NcvaYDUyn+jnIVFYKBpjfg6g0SfLyETpzYD6C+r7jOWak94kInehgsnwhQ/hafnP8p7xD/eeDvdaCEj8+FN7Nym5WrVJjzzKtR+QaFQ7AOvlJKf9i9zrL/q1bvjb6yA85Oh7dhYXS3uI/h7dNDDLKlKiY6+rUoLV0hO5C8A9SX6vVY5nwHKFmd+Qea65UOggZhGg822YxmUU+NLWYGzkQyB1+HslAj7pgeMrGQMbHcvC0ruK5b2OYGptXwkwmhKuPL2qermKfSPEVa4JRef1l2n7CKfbX5AwiBKEoM9nyvjtdWhAi52NYZt7cWyOOj73/M7fnM97//sS2tPN0wL7ZbZlOriLbJtr2jessWvNjnslHN+JYWFCV7ZTWob/UBpmcSlhwpi7sqSqSExMyAysAiBzQkJL0ixJHx8AEhHYnjK4Z0jaQriLa6aJErikRmRo/DOZK1sk/TQE9pIMfIdLAgIEUHc1o/s11C2TPJS3sNXdJ57lYStTwVPM9C20dI1eX7ftBVsQLWAdq/5JqUuwOxz1Mn0IfVaE8CKKNc8bXj30SUQpBvEMNHjEFJQTm4MeeYlDEoH46ZYxIGwbZX1R4offTX/UXUe2L7wyhovaQHkh4k98DTgLaClmw/YWOM2wRtuLf9u5kPcct6J0bumeJDwNjn2wBjp39MXb77gLL3LBjEOu9I0/Fq1VVFe94iMIdACQNziHZKMkUNDG15Xt3yrWoj6zJIoYgvi9To8GgPEx0NzQouVkJdEokioRj7cD2lVD2Wt0W1llfMamNq07be1kG6gBpdI4f2ZggaSArHcGAYI/IK5uPCq+HKnN5P5n50Ok3mt7nMnKfZ1qXP2TduK33PsKetHhWzrrphbOVKfTctkpgUY9eabQM2sHaIhSIZDRNDPKElUDhDHij5tUWFT9cQrzZAqekFyADpBTEMHOI1RQZGGZkZyQxMrs+sMTonGSkxUsZASZFSwlaf2TPJnlFWMK15wjZP29pl8Zbp3CzB3102xiJtnx4B7fRKzaLdD4oqbtdOcCnp5rXfl54EUKbwgm9c/Rc4xsIQC4f4Ha5S4ZAyVw6UQ8D2mRZ8y1PbClXrCPegfCIBijtSZkM4uWOpYQeUTebrwHALii3mXwdIq1EHH4h6Fxj9na5Bfe8ip6I7vaes94G2eqie2oDiPn/UuyDY6u6FRGMrfR6pYnrNW9nk7CJ4depf/PpFKEkgRpYhQlKyBIIWMhYtZyS4iBc6oITsN0rOH4usHd6q0wElNfydOSIHzM+RYKYhlHU9d/c6qhtWbwRCtzpDUfx99427LQdqDwqkYHv0vByuzajzoYnd5/PE6TTx5uaWTz99w5ubWz7Jrzktk4vpkJe8CURcRXIJ4sYzGthrJ0VYFKZaWbCwdwYuIWZCDM2jQ1XRALO+JhM5Fw9ZLSMajxCPBpjx4EE/DgyHrxHjgeHwAcQDhCM5HF2LbNtjjMxYHM6ZJSSmg4GpAjoGE5UrSxww1jlYX5H6PbPmid3vyjr78eWA2T6zN0aBJjJoRVzrIwagRker8aYPtLHqLL2f9Vi6/XIxPQmgPKaZv+7rv0EMajslCiR3U7GdE1ciGKS26EqLipqDbdYEGiz6iwgp9CC5o1HFB2fpBkltvRrDrh3rGKkITazqlWabNaaPTL1q5LEMss/bRHBd67UXtfefez1lf653yk/qYOlsYVAD4QqYB13F8wWIwpKihb1LgSgZW7y4uB4zsTC7yL2gnNqqodI6fNVjQvZjNc6o7wbe/FoDXWiu6uvXt71276TXfXV5VDB3l/6a/Xvpj3dJEGIOBBVEDwxp4Or6wIfpJcurzOlDW0L55s2t6TVf33KeZ97c3rIsi/3lYtsFS+WRxT+1gWjztnAQbZOmSyAaFUliLlGDoBFSXIghE+OCRqEMJ7Tc2jsoB8qcKPMVKgPn07XpM+MLiBZOTtMLNBzQaBHh0/AhMYwM6QVZBhY9sLhOc44jOQTbW6gEymjSh8yygmAFyMSWbQqrCN4dk+R6+eYT7I2+iINmwjSWNTp+aCzcAmbUC3pxolx+t/e94F16EkA5hMy3XnzccAj6Z3HFt88E6qCnJPNZ02CK57oSQW1WicEWokWxLU/tGkMHQaD0S3RgJ4O3vO2vrp+sTLNRxR1H3LW53HcCVteLmrd3bu9mPN34PnaldUYb6Q0+bdcuOqCsvy+oF3qRO8pqzKkuILF+VtHbgEeSrNbnZP6FRGwL2BBtZq+93H0KKzCaEcdW69ij1ChOEL3TRx8ImeiDoLIqRWTZLHncNfba6lX+3usphS0wbr7v35U0Y1BjewpSrC+NBAO08YAmu9dyzCy5cDPe2KogecPN7Yk0J85l4qwT58W2zJiL75ZeqlDSieXBViEp9f3XidrecwmFmIK9k4MBZkwFjWobVCYrp+hE0cCkJxOjlxtbZz4dmoW8AiXpJcQjMn6IxKPtSxWPxFBIMjLI7LrNEQmFTKJEi91aQqpL2d0qzpYl9uCnbJaRmnhh56Q4WNadURRf6YOPRUyi1AsK+v7dbhjlvl88dGCbPhdQisjXgH8K+E97Tf7HwK8AfxD4GeAvAn+/qn7vbWWtkqd2/wpzNp+zpQSyCucSmXPgdglMOTCXwHkxH8zTYtY6JXKVlB+/WvjwkPn6cWYIgWgyC3cpVl+D+851gFl1n326xCgvmmh1+xLLDgGrmLF5b5XR7uta79F3ksDWOCV3H+kSo+yJejXmVFZZGWTEdJYJ0ztVRlmPHcTE+AU0RqbhwBIH+3MzgYUTM1nLIg/hzkXGIntjjoneZurZb9kbgi832evve+DsycQFKeytf+w+ezH+vnMOtLEEogqJF5RB+fBrr8ivMvOHM9Nk0dtv3pw4TzOfvP6U8zTz8ZtPmOeF02Sh47Jmcz8KQkjmAVDULOyl5PasORbbbO8qwCCUZDtt5liMbR4EBvt+GBdIgWO8pQQhx+iBOQ5kHVnCyLwcWSRxfnMkM1DSK4gHdHjlTPPKwfQKHT6EcOAwfIDKwBCvKTGRx4MF61iCSSMLq1hemWVijX5UdZSdrrKBqu+rXv2LmaNLCcm7f3VS7zp1s1/0Rp9d+gGu9f4ngX9FVf87IjIC18A/Dvyyqv6iiPwC8AvAP/q2gvariyoTyCrMWbhZInMJ3ObIlIWbKTKViSlPnDvAzKUCZSL43p6HmLlKC2OAEDqgbC3fjS69dM7l/p5ZKmwDX2zFulbWBiurt3Q/wtb7a6UNG0rZHzN3ja1C04/Xa8S0eqar6AAzY+y3bqHQRDpWvWYFyz3AVEYb/X4+62upzyyrD2Ml6glK1SEHZ4Ni7kOAWWqBRELVXNbrYsDF4XJxRfLCgmkkjXKJw+ga6cmeQWBlKrWZmmNz16QPjY97ALNZ1vfMtF2jq54azPZCMFWRYHEji1LikWXILHPmwMg0zIQsnOOELoVJFlI+sRSLfFSDeDRXp6IeU1fW1x91nb8XbZ5EGtQkA183L4O4Sr4QFDRCFFNshFDIZSGwoCyoJihnVBM5z7accjk7UF5DOiPpGnI23acWCAckFdsqOCiEBMmCdhAw9lf9Xh0EN8sK3YBm782YdFOr9O+t+MstbpdoiGqd16IRdWN3I29vSUiLk3FBGunTOwOliHwA/J3A/8huqBMwicjPAb/bs/0B4I/xCKC8m8zv6ZNz4vWU+HPff8XNErlZErm4qxX/L5T/N9XcqQ5eqvBm/p187/RzfPBG+LWj8NOvznzjauHVOJEC1rh1fWkd7J3ovaVaeyUhtLfXGv1SS++P5Xa8qhKs3p2scCe0feyu34/4wKYDVLldBLQatBLrfbz8/ePVzbXrsd41aNDON85m9o2FMymMaqs2XFfZGOYRNAXyIVDGxJSKW8Jn8+FjoSBEFiYSByZGt7iaK1FsnxZjZ6AG2KguSSnNxFQYDxPrdghqddhH+K7bjfRxF+o7rCbz7N/rJNAb6ao19r6/Csz7wV3/BEIURkkMQ+R4GFCFH//Gh5SizMvCvCy2JcbZYm++fn3D7enEm9tbWzE0TxY2LpfutQfXChlbC2OgqvI1qj33YO9EpwJJCEcT18OgEBeGmCHNaJhst0lJ/hYi5+VElsRUXrO4G9IsBzP4yJEsAyV9AHFEhq+ZuD5+QBheEoeXMLyAw0g+HgzcqhHnjL2vCY94BHK2fqQ3mJ/mDau70dnfoX/q7cHedRkRFpATJuvPNguoKz9rROI2xvqPx7HKz8MofyfwHeD/IiJ/M/AngX8E+Jaq/jqAqv66iHzz0sUi8vPAzwO8evkNc+loYmSFeUiibvUuRAnMWVj0hlx+C/g2Ip+uZQIwUPgJRF9SVDjlwOs58OkUGaIyRlsCYNbzfnbZgVDH0Ow3bJlcP0vRpqQtNO6BsoZFq9fqmk+3+ZoYXd20K5i2etl10l73CpiqsvocOqVa2aodsmLqfbV7dN3OFbWasQMSo3ub6qOYm0dbm40PXkV9IYBiOxeqQBBt1vHUzfrq3we1nQOTTxTm0i5EElGrs3RmkC4gRyyEVJxVF4uu7nFIpQZ1qOBXdasewbu50TkYajX89GJ7YXWKriy6i4qjpWOVHrSDQlub3pzedf2uCqEEVJWhJJacGcbEYRo5XI8Mh4Gr05HDzcg8z9ycTixL5nyeKCW38HG2zLKra+dkr6pWb19GqKK+HY5Sg6xUxi8RkghIYWDdKSloRosgYhF+lIwyEZgxe0FB82h7wccDuUxoPqH5BMMJwhHCNZAIacSCtkQ0CeqTrCzSjDqK2mfVUyZM3+rYp7O/gwXWfc1HA+IS/T3MrLtGVnl+HWH9oHubFP55gDIBfwvwD6vqHxeRfxITsx+VVPWXgF8C+NY3f2cHVx1AaeHD48zLMYMIH58HTjlyWv48p/JH0EYJ+vQhQf67CC8AmIvweor8+psDn0wDUQqvxoUPxox04LIFwYoG7D4rwF3m6Xf3zrm/9Te+lveW21GRjbhe8/ZypbVX/a0l03xjGshXyugDdvHBVbdBje5TWAd08ecu3aW1eaqkMwBZDCS1dnQ1EWsBTSCz9WEGOI8DxIFpGAmSmdwR3fY4nBh05sjIwMyBkUTmwGRxL5mJaiEgRl+UNzJje7lbnMtxnIx9qi2RjBRiyVDKNqp6B360UGvduV7M3n9v7ecDrGhdRrMBKlTu3uuCvlTUjEJBhaSRo1rMTQTyVCi5WCSkZeH1J7eczxMff//TlXFOZ6ZlYg4LJRSfmCCItE33wACzTgCZ3GIm4BZzckZKIQ2LxVkoiUUDkQNZknsweGgTTcwaOavvQFne2J5D80dkSWQ5cJYDORyQ9AqJVxyuv0EcrhmvvwlxhJfXlBLJZTDgW0DPBV0UvbH+wwlnkQKzh96rx97gzFTQZYDzYLrMGci+t4XeoDXGXEfAtmPv7enzAOVfAf6Kqv5x//2HMaD8TRH5SWeTPwl8+7MVWwHEPk1tUXg1mLPxT7448Xq+5qPTf8r7p7hLkTJGJchLoghBFoZQ2t/1YE7rV2lh8A1b1GmPsbyyE8N7kNkruvZKkx0TZmsJb+9FdXdkn6OW2Xo2ULfG3QP2/j4+INo93IS6Yb4uGzZWujKczS16HWX2CSCvs/wWu2tdMfGoXyThWK5onfcawGYVNATOYWTx4BtZLGSYIsxu+Kn7avfryyMLswf+Pfix5IA5MRpQykSLzh4WgofzElX3wTQWJcUCMVfxOhTn5qVsfTA7BmrHxcU+1nXKG6Dcg2n311iobEMplq4tHYxjCEgWxjgQc0SicJxHhmNiOk/cvHnBaZqY5onbcmYpmVOx8HFnPVNEKeKM08Fc1QPLtD5jzM3kE69MhKgehi+AhWxWLLTbQmRgFFtdlQnM2M6Us05kTSxyNhciHSnMxjbDTJmPnMsZCSMyvHCmeSTKiKQEMth69xSM9R5woFSLzl4XQVQVUA+cflwnQZYIWdD5YJNk2Rp0qnffyiQfBsx3BkpV/Q0R+csi8tep6q8Avwf4D/zv9wG/6J9/5DOWW7/5O7Q13V87TrwcA2MsfHT6OvB3u9VbOMTCGAuvxswQlGNcGOLEi7QwxswYCkPEw4eZIdgGu7Cyx+rGEr31ekDql09VxfElKNw/Q32SO0+5XtNbrdsMV+la/3vPeuvo68FbumrXOvd0cFdn7a6tA7uK2P28UIvomeR+8Ces3aoUXSWeauFcMH2ni04lCyVGloMZEqZoLHKQhUlH11seSCycmakh3hIWsaiyxdGDAw8eWNhdrFs4tygeJFgKQ5hpu73ruk959IcwUb9uJNdNlD0YdsBvx3Qb3KGCZBXRF1a2WfZ/ur6STixHu2sSBBXG4wAKV68OLjwoZc4sU+Z8npnOMx/fvuE0T3z/9cec5olPTp8yl8xUZmYWZ5TFdaiyvqt+cqv1ijDEBRVlEI/o7rrlxZdMFkmc1VjnrCcy5qKXJbLowCwWDuWcPzbN8vxbLDIwvX7VnN6HwyuGq6+RxlfE8YoSX6KMFI7Whics8MZJVgv5rX++8Patv8/+Nyk6iYnkN9cm4VRRfZfukpjL6fNavf9h4J9xi/d/BPxDWPP/IRH5/cBfAn7v24ux3tGD5JYl2+gPUng5zERRkphFfCnCGG31ziEWcwMMmSBVr2lO63Xv6dAY5Mq/1Vnj2ox7xlhTRY2epVVdVA1T3/P6FQxlU0ZX9ob1rbpEaUqzPv8lRtoxSHQFv2Zx768v3fX2t1E/KGZNrQ67FSuqr2c/sBQosm6LUoGgGjSibJetZWcEg3r4rtDCeGm0LTo0BJYwMIeBEAqz77Vz6ICyAl+N+T00RrlsP3Um+Z4+a5T2hbonkMi6R3tdZAnr1hl1d84grusU20JD1IPGqRrYqiKlGDPtWWjVfMyYfrky8b69cseynWVKr/YwdWD36jpRPtviixQESYHxamB4NbCUzNfml8x54c1sBqDb85mb6cTN+ZY351umPJPJaNG2LFWajl1sTyFR93ZQN/oVQpoRycSwoGGCEEjO22e1VswyWLxLGZjV1qGb4Sc5mEbm5RbNAyV/jM5XTOdrlvSCkI5I+sC2BB4/QGQghGt0TJRhpOSBUmIDRr31SerKfnMCmcTE+Fvs3MH79NyPlbvpbVtOfy6gVNU/A/zshVO/53OUeu+ZKMqLIXOMhVfj7Jssrat4AjRjyf6xe7F3s3ObA+U+8rg5qWuXa/1XXGTvjzVwlx5k9yLzpcddgbIXsVWL14GOJXbgu/ldt2e1et25U1UtUI1DwdvjQv00dNFbxMrsg4JAp8fT1ZJejwVrh+ra0bZCKWIze5YVaKNfG4UyBnKye00yEFRZsOjqcxcAOPrfZvsJXbevsODB2beo6LazENt+uG6MVsEwst+ZctmAZyRb9HXxRZi+5XHblVMNXA00C23rg/rM/dYIe3Zag0Ls3Y5qHtchVtFdOkHHvMQCKWC7VwpchUOnXi6clrOtCro58fHrT/n49WvkE+HmfOKUJzMBlbKyf3zqdDWL1vXzEZssNCMhm5EuWd9JUvcxt317CrZhmsXBHJh1YJHJnNzVAm+c9cad3kfzX6i+meFAGj+0kHHX37Cgxcevo+GKHF+wiHP90Rni6EB5MCCU+jlhOvEJE8d7o/cleJE2gu5NT2Jlzjb54L0z2legC+7DWkMI9K7im5IcaGxljzPWNuWHfW5KCxmv0ICqMqweUHp51OvWgKev6wUGKP0X2eZp76qWtdeNVnnvEsD1Tx9WTUJl663cC35lG/VDwf1Ktmts92J1Yd2IqjqqT35u9M/qrD5o990/5+4ad0eSJP49UKJyDiMiynkYkQAxrBuV1X3H1316LCp6NfYkFtshsgFbBUFtv/vNY9e927u9ySkEzR1AGngOLc+aN0omymLLbtX3TFcljr7rpC4bJtn+Cmu8xp1ueM2jzj51bfvaZYQ1/qa7ztpf4Go4cDja0soPvnbNt5Zv8Omb38Z5OvPRx59yms5879OPmZaZ2/MJRG05ZdPiBBAlDOYLKrPPnWFdmy4y25LjtrQymg9nFK6CUIKw6JEcErMcsFiYHgOzhXYbWPKBUgaW/F1bKXS6Zgkjml5BvIbhA8L4AXF4SYwvkcNIHs0YtORxjWo0ibkb3eoqplfXMAlNNwmsofEe4Xj+ZICyiq0mLW6J8OZBxGc9AVTXmWCDTXXKvVt+hUktdYIxd5pSQ/irMAR8K4qCbEDJWNmdZt1FT97cWdbjW2CsDyPt+m2VL+W/kC7OkHZtc0Xa5CmrczrS2rax7LpvSY3vJV5ccBVDZzxcGZDSlpfV+aexRl1n8v0xXwpZRfAVGGzNssbojstm9LCVmeaQXsHNonYXZh1M90i/i0zdWWbdr7zqIUP/pytzXPPkVp5vH2Z5tN88bWbVc2YG8bC4oTSWWYN6iE+msijSgWTdgfKOHrQPWtJrTNgdq6/YA4O07ZcFYrJ9fNIQOeDR3Q8j0zQjBG486lGSM3leyFrI1YLvLEvqf5V1VpbZ6mIVqes4xFcJkbBgHwGWWCiaGKKF1xs0eYi32eQDHZg5s2hqbHOeP6XIQI6fQrxGhtdIviWUG+JxRuIVmkDdu16KqSAYg6l43JVIkzYduUALZNO2L65S01uG2ZMByjuRazeo4T1DuvOba3X76V+Lh5BXLFp0VmHKgVyE27rSZxmYS+CUk4WNQvgdr27NhWgwHee2p1aWVxHBp3FlZaubemp3TX0h0h0P3e/98ykXn7chz1Y9cHcESct9l0X2zdW7DnXmarI7rIe1qv0KnqqH7FeFBtYlaQMtOs6GUVa2GbQteyR5p65LJwNoLI2hagCSsMRADqGtRJVwtHKCmngY626SlS2ue5NHFoJuGeXKTGueatRZsG2KV1E8OHgO6ixWDFwH34ht0LlTCSzUaO/1d5RCHDIpLSTNLrqXbQTwyjD30b/3eYS7IqVgfoc1LR3YYgTj+nDgeBh5cXUk58JPffO3cTpNfPzJp3z65oaPP3nNm9MNp9nCxRUtxvpZy65kxrqtAY2GFaRbX/CoRmmcIS4cxhmJglqMREoUZrXteWd1f4Zg+sxFBnd2P7LkkWk+kqcXlHjFbXyFhiNl+BoSr4jHH0fSFfH4IXp1hYYryhRtr/PqsF7dKDfDy+p+JyL+hfREgNJat70AcNazy6Pr+cbC2JJJVZh9XXhW5xIqzA6U58X25bmdI3NZOOXvMuXAuXh8PRU+GI8Iias4Q6w7vqz3qN9W5/Gujo3NVXjaXdmvwvHabyezdf+Y9VZdjosz312dLKxGqvW6nqWuVzTDkVQGHdBV6bjWu3d/8etbqDNn+PTL0BADsOLMtUVMly6vroCbscGdnFFV4HWQ1uTAm5zsBmeeNYqOM5mAEsR2jglSzIGlhWgz52mpv51VDrICpTHLxWNgdgDq+5fPGIsdHYyz24KzRBP3NbM0/85IIKP+mciUEFBdvHXdbal4HPi79jaavFgZJ2yDS5S1rXddoPWX9raCLWNMQ6REizF/iKP5cEoilEAKkfF84ub2xJIXlmwh4rKaIlNUVlbpUkVTp9egHa6OkQSS7Z1GLearq3jwcttdSdQ2BCkElphRWfcvTzoz60DgzKwTS75hCWdKOECe0HhEKTBcU1gs8hGTLbUkwSFAEiR7g4W+3/q4ebvk/XSAUiR13ys2aDfAe3cZy1d/i3h4KhWmIvza6ytul8jH08FAMFsAjUUDSzbAnDWg+peAP4yFazKxW4nM5b/Fq/FnGOMnvBgyL9KFlmyadZ/eNzEN90zwElvsz+2of3MZ6s53bXWp/dpnW0mUd3lXTW61+reVUDVyre6eqVdK1pGxOKUUdzLvo9fVAKwR2pYSQWxlTHJmWfMPnrcP7VavrdcN0v3uqlTZbGUuslZRIpRorkcEM3Kcow3kGklHxZlqdPWKqGvNKqNcdZVDJ3oHmRGtu0wWd3bPHLS6Ji1uha/7CFXHePusDNPcnGbaXkNxIsbCOMxmOR8Kbd/sfp+aujBgXQlrqapAetpQf1f2UFNjVkJAuEoHjunAq+uX5K9n29739Q23t2d+49u/xZs3t3z3e99nmmdO5zN1uwvNFu2oaPHiZI3b0m2vQYRwCDBguk6XJiyMmrXpGJTBJz9GY5thFEoIzGIBhE8cOC8HZgZuufLPI4uMTOElJR7J6RUyvIThFenw44ThBeHwDeTg22SIrb2XNvl4+irpKKs+DPZscv8QPXB0MgfYjIy4SJ34/nlgzt9jyt9mUWOWuViurILybUzbW/y+AJHb5VeBhe/e/jamPDBez2ZVF+0ixnfgtwkjX1mZn9uBXGOa3TNueWXdT3rt8KtFXtoztgtbXfb36o/DRvxvab9OsXJTQZo1SNaievA23QY1SotUMazibG8zijbIK7Bq0DVPjZyeoIV6800JybKK6RUkhTUidmALoALqoLgB8OQMyAeqBmdfUSliwTbMP9m3SRYlhIiIsuDsUwqBEakrhChk99Wsu5snMouvNKoO8Aa5tntljfqe1WB49OuAZom33UfXPdibJqfoGgwHNqukeq1PA8e+N2n/DtfP1ku1yjEBCYkyHIga+LGXH3KdjsQcbcsLecM8L0yTrRJa5rxKC7VAXxUkPomJL0ls8QOqSsYntXXi8/c/WzAMmc1om+LiqpVCDAtLsF0mZxKRmUUHTiWTOZmvKGe0nEAzZblGdTZ3o/wCCZEYEyFEc+QXsV0S5O3b1z4RoPRW7UXrHgz6F9HAsZoH17wWIj8w5cjrOfGbb44s5S+Q9V+1XLLCwpp0dyDzyfRv8WZ+ifA/5OvHl7waM8dUONRYjo3l1s89sNeRu0+9FbsHednmUXH3ID+3ZwtVL7p7js3Kig1LrczRvquWbTm6xl+3a4JTsOjAHFaNgeTGLrUIoj0qeXm9HnPDAusxMct4Y4Ta9JK4LnIFzI61VnAQtiC5B8/9ZmrRGE9lscYsFY3FdwyxlSAENTEtCDJ2jDWApGrcs90mzb+z7khpyybN2WVpDDKycG7nbKVQzZssoqOzzvMKuJIZku1YOaj7BNWu1LQh/u5nWJdPSscsu3aqL675a9Y/3f02wSKocD0cuU5HPhhfUhblzQfGML/z7e/x6adv+Oj8MW/Ot9yeTiyz2qKXrku1T3/fdfIqY7H36bpL8bYu0VYKaVDTU1cwjYU4FtIwczwCB9ARTlgYuFuuWUjc8Jq5jJx4wVwOTDIynX6TRQ6U8UMkHhgPHzDEgXS45hAHDsOBISZijMRYw0Lfn54IUIL3Zv++Ax7pj3WKshr+XVZwiEH5sasZRfjO7cLtnLldtJVaSwm7dtlMtmphBl7PAZHEb7wZ+PCQ+W3Xk4tg0pW2NrH6UjhtLLPLJxdeRZsAdqK3V3aVCHrG523gYGVNZvRNN4ac7mF71yUR8JiGvswE21Kjlm60xWKLb8HcpyP61lRt5lCQYIrx5ksY1uAboYKeW1AXF7XcENNjbS+Ga9AdCLJhkA0EA9vdKnug9HMy+CD0wShRWtS8jegfbEA2UHVR3wi0MMcDWQo5JoJYMNsoBo62uiib76czzKiLM83MwEBqsTkNTM1VdaFa27XDvBTNYERhu5AsGwAR+x5IB3zi77a+5h0wdv6Zxju0gSXFzoXFfCqPMhJTQF7Bq3jNB+EFrw833Nyc+PSTG6Zp4vZ8puRCyZ0nSlSPhObtPVg7yiDrO3fApOmf1SUDPz+qTapHgQPIKAzDQgwFGZQSImM4M8nIWE5MWGSjs5zIcmDKC6ojQd8gIbJMAxIiGgd0GEkxEceDbS/8QHoiQCnQ6SibhrpnktUBXNUZUTcadAWIFODHrycQ4YM3C2jhvIudIQK1XSphbZJL/a7wegosJfJrr0eWMvH1g5Kixek2kLrbuCtbM4AxX7S7+lWDPu9Urfq7Dt8mDt2pUfbiM6vFscu4j/HZIeemzXQz1KrcpLQQ+51+c/1cJ4B+NZBSf+/l3+j7wEm3YZaD5IaU7hhkHTR1Tuy2Qtjk7SWD+tzRkSJYZCpN5bI+NIp1v16cH9RUBqM4YAPurlTG6IMYEwljJqmxxIMYCI6MDpTRPwcP7GHsMjOTOZPUdl6MasaGujNl8YAWks6++qcGMPFn7Zz1m7RQgU/wCWvbZZog5A4N1UVGatSjIna8890MKhwZOaaRVx9csxwz03Hh0+Mb3rw+8e35I17nWz6avs/sG6zVDlfq5FXf8ejMf6BtAx1SQAbMtacy0KBksr2/0SatcMTAcoThakETjNcTGqEcApMmxnJoQDmFFyxh5HY52/YVs8U/XbRQJLBIQMcjYxoZr14QwsNQ+HSAkoGNGLvRU1Z6paz7YRTvvWUd2LUkybwaZv4TH9zyG29+hlP+bzKXP0Uuv2pFG942oiryM6B/S8PjKBaHe4gHxmhRaYoqkweVjjF3INmDZddTN3rDFSDrb+3ZmlToXDlvzx/B9y1viOdf1AGvC/F219Oh7K7xOsi2/DVPrUM18FTFoHT56PL1YLk/18vewcrKgRZ4tQGb2GRS9UVxe7n2onSbH73d3KhTgzoQalep7FJXRunGnCr69SJ+M0Bt3Je6c1GNwQW1FSARWx4XA2WEOdieQctwIET1Nei5Bek4cCZp5iAzE5OzT2OXWYQkC6oW9b06NanPApmZcZgIIaN1BU1bd9+1e51QFjzkm4+bojYvdr6aWlcMVUZZj1fPg94lqfl3CmGJjFn4IL7k+njFix+/4vxq4aOr19yeznznex9zOk+8fvOGMs/kvDTJJEaXgJK/l+iTWRJj+1HaM9TI7loZ5ZW39whc28SmVxZGT47KEBdeDoWSJspww8SJRQduyo2Z0DT5ROEERiAskSCB5db2qn8oPRmgVEIbt+aWWIFvHbjbZXcOksjKvhTwtd3HlPnG1cTN8nXGm5+m6F+myK9tyJhIFcG/CfI32zgUZQyFGJRjzAzB/N+E4pvSr2C4rvSpaQXFrdiq64zeidH11xaI/Ei/7r05g3ftpdqVo31Jm/K38tb22TdJWdvT23Stb49SPbju/7ZPtbG0qFO/YlHaW+Dk7n4GlmovpQZtEHObUQdH9TX7/rJWAw94HGZxYcQniG7DtWboqQBZfTurPtTZjgZtQKmuP6tgScTCHCbxteyK5kBJhtA5mBGiiEU8Kgo1QPFABnpXd7CYnIXMTBAz+gTn+PZpIyGF2dh0ddavIm112vduufGjbE7VdIC3RhFamaW1mWQLY6YVKGcXPJaVoYZsrjZRIgzK8eWRfCwkueLN6cx5DoRww+0pk91yX7KtTmquf33E/MoiBwz86jsXMbXLaCxSZuCIMfy2rQRoUsKsyFiIR690NLK0yEAQi3U01c0EO7JR1Fi1iuyVVnfSEwFKsD1RbcBvQh91a6dtGSKsC1P7Qepv1MFrkMzXDmfOC5wX4bdu/1ZeT39zs2oeYvbwa5khXHOIH3Pw7XKvh4I5+ZvfXZLsQTc6/eQazcDr18nyte61l24AXqxHVPracMy/bECxB6A9+K3/St0IWS7l3U4821Nd/RvDrPf0cx15tZl4Z0jSXi1QXY762bl/R51sK9EGQ/UBhMZeNUcoq2qjNQ9q+tRu9ld/H1LX7oXoYdOA4pNrrW8IEAQZQ2c0Umc1XGaSiQasIQlEMf1lBK78ugNNFNeDUkZhHhNLikzJoiONcrTISJx9x+yJg8fd7CO5D8wokUXP5guMMBAIHgxkHM6uhfLJpDaOVpDsgXJ9T81cV5nibEyzGYRyaMAps4NljRafpQFmViec9fIg5CGSv/aCWK74+ocvuJ4mrt/c8ubTG25e3/D973+f29tbXp/OlJzRYnslhQwxCDFAnFxI8M5kO6gqwSctOUK4DshR0KMB5HJYrP2vMEC9Ah0UHZR4PBGGM+lwgwaxHaz7XinSXJ1cVf9gejpAeZGZ3B24UtkndYBUQ4bs2KIySuYqZT4YZ6b8CuHH2ha4x7iQQuHFsDCGwjFNHFJhDIWrQRmiksR87EJ1tHUQ2CrPdQMy/VrS7XN0zymrVnDTtffLCbeXeP6eRd53j0v3v3S+Y8Q9g+2BcnPPPWvc18VZbdPJrgB7FyzXZ90arZxqqKC6luNyE0qgX8NvEOD6PHHLdS2vWMSfdYKq1NNZa2ZnnVVjT704nrrv7tcpymr0yd7v0sretCgFMSWdiEUdikYDjfCKO5FZv43Nfcj2Bhp8uY1Q16DDojbSY/QISJVXVJFZHb1q3cSev7H12iZ118P9UOuTwmZpXy+2bw6JrRMIoCEgRMYhIfMIw4CkgZAGziWjMVJEbJveyduodDtPFjMTNnuc+DbVIutziTHbtnghG2AK4ksU7VMXj3CfQXAw7Z5VxPpM8Zs/wo3yqQClIKQdI9qzo8q4zJRvomddzuHAGUqbRavo+/WDxaX8qZe3LMVmryAwhMUX8xf3p1rHkQRnKM2K7S9Bquwmlw0wm3rfeUTaYO3yNB+0LrrRo1tNuMDg+mRdesPQ22d/P71wrH7V3WNVxz1Z9Uhan6OGqquTR3AjuyO9Kqvz3Brco7LBi4DZ8qxttVXBuMep2oKB0CbR7hHCWp4SYHJHzSmt8U6aW4qxxi2z1PVYNeJUUE3A0XRmZQA9FxPH/RgvBFJgujqyBOWcjo1RTozU/SkTMzOJgZmFgVEmRg7YDjZzy/MiJlJcOI4TYSnIQde9ZBYHlbpH0ARtHX4Vtes+7LP34cnPL6xO7oOXc5JWjhR79rRAnLerAqsqU4BDCIyHwNWY+NrLK8o3v85P//ZvsEwLH3/vU063Z77zne9wOp345NNPKb5dr+Kg6GNuVpPejiEQFm/ukmHK6NnciPSoHmEfs6QvEI+RdEwsy0KJhXJbbHIbpHX1trNl8UA49/GILj0RoIQNc9QKKKzH7uQzgNB+kPc6LwCKbbccC0Fs5Y5LX653VNdR6obFNYiu4rADQ2UvIJ1fYX9Fx1zu1NX/vCwnSPVG670vuUi5HgW/ZhMpvQOx1QtI7774XWCR9Wtljd2x9VasEv0OfPpH186KX/MrDo6yqkyq0Ula6bVyrUTV2gY9eK/XqW6vXadTbddv3kn7XsPYYfpLxUZ/i9vJanMC01fCugqmFlMwHZtiMqg6IDZfVJvEpS4xnPyaKL6VfLR9gzDnctNJmiO6aDand4qtD/K6Z41AYfClk4MsCLZHUErunB4VybYUktnZ5YCDpGw5Rb/hmu/NLkuXJ2E7wNb5zG5vgLOYsS2oEhVSEVs5qdR4vx63uDJ8WI4HSkqkXJjGgZhnTqcz1ykyTTPnqYrkxcmjhX+7002wvr/uTWSvUPy56h5i4uyy7ruu0ddzix+XSoQCQYWyi35+KT0RoOzAbYNA/eDMu+NVQ++9t5VTjTzqR0zUTolded3d2+GVsTTLaSV8HUhWFrR9hxdAcWOm3YHl9pZrGb3etZnn5XL22iLNjaov+xJj3Ne1O94s530b6abMFty16VF7ALOOB12Ve0B3Jt6L5ZZXO/Dr33lo59tyzHZtv/zS3aNaOVXh1Okx2yTq56t8qtCMTEozHplHVGiRZvC+oB5Vxy73Z0tmaKrGHcliK4CEtctGYCnoIJRjIKcR0sDsq0wm11GeSQw6m08gs+9KOTEwc+LKP48kFjsXZo7HiaTmj3kQWxIpSzbU6q3XNcjGWbe/+50p63LJs7NS3xmRqR6nlRdnIWYYTzTgLaWqPn03q7qWOgVIgZ84fmhrxr/1dV8qecunn77h4+9/ykeffMKb2xtubm5sN0o1a3kEQgjGCBNukBOa+qoZomTd+1sc0MWPBfPdlCAE1+sqkEJCRMg5t6WY96UnApQre7EUOiZT0xZ4pIYDozo9rwxEXGRTSmMvF5naneSjQCooquPVCl4r49mX09crNGAwkfDu07YljA2IZJ/lgd/bZ+lI5fY5+ku7TBsoLLTnrEx35UZrG/RlbxZK9can7kE3zG+lmN1nX8eOAYuBY9sVsLX/vhGkvdvKiRsT7idPoUWHWdUcpVZ+fY7qKF/Hy+IRcZBV71nVq4vnX9bjmsvqm1jZc7aGUAdVC4grTe9ZUkBD4hyPLHaShQElWAgysag6iYEi1XXItu6d9cQgC7Oe27rxsxpQRlmQoIRkutEQs+23XQphFGOdk7/7ySeRZuQBHRxkJzEAmvz8iBl5mpjPutXH2dhdymZNDlnX99r3F4SUImmAmI4MB+HqOnH9auT2dOLjT14znSc+ff2GXDKFbHNa8liZqqv/Z/UpzQacLELxwC4W4s13n6xQ0dTjNfCMg0zZE4S76WkA5Ybw1ClhHXc2ACoY7v0WO3ZBbMfAQmLZUsCuXDpG1EpZX+pq1ZXNuF4Ha7f1651kdZDgukxda1OBo7GenmE2K67QWyrXMvtfqwhZa3+nJkLHzOuH3GWnZZ1crGlXpizt+beg296L625Db1mVDoy6+vWGIm2AVie9cie7rQxSLFBKr5/sALXNpPXYPQxaawtVsBRDCDW/zdZ3SlxZYMEm2Wh6TwmyBs3tvaQm8S5XLefORquBJ3p5dUfKAQOpZPnzGCFFlquRIDWi+8KkA4PMjMX0lImZSY4MZCaOvvzxlqTmnznUIBy6BjEOoozDGv7Nzs2ugi0GkJ0eU0uBWcy/8qxGDV1/Kefo+kzWvWmyX18Z5dlYXZwhNteiKpl1U1Ibi4krTXxYrmyXyduZ6bzw3e9+n5ubW37j29/lPE28nm5YyCzuCV80r1sJL2KTYKhGIBO3ta4tD+47KyDVoNMNFuM/fWyG+9PTAEpW1nZJH+ZhnP3HajFdn7xzQu/EcJHYMU/twMrha8eU1pfolu07TqjSDTz7XYr9FrFF9pHQDOFNfK/UqIJ6ZTj9860Nsbndjhx6UbU87a69wOY2ZfXt281AtU3AAaRaket9dhWpIFnML64aVleQl01b1wqtZcEW2HbPi6yXlX2YnBUEtT1ova+265tOtI3S0ABxdUmqxSrrogVxduIniz+r6DbsW52vVTbBKVr3WxwwXf9nFnZdNxqr1vTZvy9QojKngRwjOdpyx7PMvkZ8YWYiSWZiIOrC6IB5YDJG6SuD+ohHg3bbY4gBaSITtfiiiUIQj82pSii+te+0IO4epO4uJBkDyKX7zIKe/LlOlYV6W8xOPLx562TdANOPaymELAxjIi6Bbxw/5IP5Bdc/dsV0nvjkzQ2304nXpxvenG64nU9MOlPcSKlVxeBLNtV1quqxOMUjUVX/TO0m8xAqKeqD3VxOTwYoN8xqj5PQAUJlYb3OMHQ5e4tqokZgRtc31nzyegCjYoB0IBnb2GwGOWdZFpINlmIMT0JsizvMwKvrbdszhe6eXt8Nk+7ArgPBZkDa1Lm22aaRunJ36ArdJFSocK/9vbUyPm/PXj2wqeMKgEXLqstrA6FThVQ2231swbQekk0+rT4jXt7F/YN6drk96a3V0RlZa7cKJdr9uWzWHk9WMbrXXbrQ0hyjk1TrYMsvFd+zt2H0d+nLA6X6ZmZf7VOKBSU+RkQTcwDbXmJkkdF9LM9EXSMVDX584kwqM9HDuUXZbo8RKL7J2kKUda+hMdiKsxQtylES291SFGQubefCaiBpWy0sGNOcgxlOqjheremVbfa6T/V2qD6zPYC6oWnQiJIYXw5oUV59/Zp5Wvj4+6/59OaG4eMIr6HcFsqsLGUxsGzu097GxSLIa102mbsls0Bp0bu0rerajp3L6WkApRjQbBFygzBsRbS74vdmcHpvVq0r/xVtUQDWslXXwaNiKyuq/aTesQb9XYqFbzsviXOOnHJiyoGb2SjFq4Pyalz4qRcnD8nGRlyv913fya7OwjpR9Ey0Z7rO5KQG3KjHK/tjDcLW/EtbAAyfBPr7+KqXpnTfUVf1e1JK52Jj7Ey7DlZF+Ka2aPWJPj85xDcLc1f/Hkj7u4ts2wOoyzUtgEEHrBt2qq1eDXwddFWW3XW1AjYpWrv6YgAtxk5qqLdqzvXVOFVvqdHApIneddVPtRJnA1IdOiZZ/yYv+6QGpkdp65tzFDRFcgpIHLmJB0QKR7kiSWaU2aMSzUTpY2But6qwTdl8217JRJ2JattWBOkjsS8tPNyQJmJcbNmkFsYyG9ucy2oxn4pZxs/Y5xQ6UVxt9VLuVgH1oNn7Zda/Yv3DwrbBeBBSTqQXiQ+Xl/z4/DXevDlxe3vie598yu35xEcff8y0TNxOtxRVE7mz92vvhzHF9rrVx0/r5dWO128bfE96GkBJHdgrI+h96pwct9/272rMYXeuaW9rOLB2lxV8GnjU69X3zVGleEiZWYNHRY8sRTjnyO2SOC2JN0vhnDNvJrvfXEZQIV+dEen1hru69cr+WiVgz6i2L24LJHV/lIYF7brejb0+V7/2vGtRkbWNfEXHps293J4Z96pdizhUNgRzW01p/2qro7GJvaZB6vPvO2vHvDcuUTzUVp5/U4uVAbfJhf1Krzop6VqC1jp1oF5v3ZbQ7+JEVvYEq8toNQrVYBMNKAQJvg7bHdnV9ZqahJLEDCgJ0Ij4/kFRCjnYEknbdabfsncLlIFsQYkrYPpSycHzrjtVesg4mRnFxPkSIm2L35Ih+n4/yVnxjOtfxSIDVVeiRWwnxIx5YC3dM6s/X1VRNKD0c0VsGXgIhCLEIaA6cFWOXF0dOJ+uiUPi5uaWZVk4nRNFC7mUFoldO3efOjlXtq+56xluQbeJ/uH0ZIBy1ZKDDVStX+3DKYy21f2wOiTDVozaj96qSHIGp0rRaCCYI0sJTCVyOxtbvFkScw68WUaWEjktybeWsCjpuQiq/yrKn2cpIPJjnPN/m6xX/PYXE1cUroZqZutHcuey4i/TDD/rOlRjwV2z7Pw7L2DCJULWXZ8MEOpezX2bumpBtevBm7ttb7pdX+6Tm1y4fc/opOpvqxeA7jqzlyHBmKKElQU3Zl0LVb8+0+sd1wmiEnFpksS2DSvTqJNUceOVILIi3XqpMWhjkp0nQxfqbONruEgXlo3VQl6XRtauWJllCzvm0YiSx2Ws7NOd220NurHPKR0gwHnUuhKUEAshrJudbfftMTBcAbGCar+LZY28bqA6cmZg5iBnIgtHPRHDwmE4k9LMMEyMajEzQ2WOZwM9qU7q1U9zEffR1BUQ67LJmqcF4DBWKO6r2rPRUOBqGDm8HHjx4YG8FH77T/4459PERx99ws3Nie99/Alvbm55c3vDsmRKKb76Bor3KS1Ki8aeBIlCIj04hODJAGXHEsRm35Xd9IC3py7djN/EuTWP9uUax8a4goHeOQe+fz4w+545pyVxXiK3y8fMZeZmGQ1Ec7LlWs4wzZ3uuwgfGafVyDmLXxtJEa56SHtgwto4aF/Mu3vmbvUCVEJ4Ca367NLhrd5hh7XMO8f7GnQKxd7V6h7voBUru6rflyrW26duzuzvvQZL2ddXukfZAnpfz+0kqtTVQ1Um3OqW63UBqexZ3EXM2U8jpK1dZLsjcgXH+rs4q3Fxs56rEd01uktLjcdY87gKQJM5ceeqL01ibkChi9ZOJIjvUCm2FDdSt+5d2ed+E7Tkhp91hZBFay8S10+dyWJbsxWESCFE3xc9WxwFshjr3PhwujW68od+sqnqDReba+iCCpLi7S4qhGhsUwcQDRyGEV3gkEYokCQSNXA6nVkW29qilLIR/2s0Ki3uQiRc7vhdeiJACeto6llYWf38Wtr6TK7XCj0rbb50dcS28zYIbpeRj04j/+53vsZUElMeMI1dAf514M+zlDr4bBuJpUjDqCBLBxiB0xL5ZBr5zdtrkIkPxtP28bZLeWgBMaBjV9Kxoe5S1TvvsSdaEjupsm/KO8nroG4xRNoz1GZSH7TF9Y69GLNntyubq+3UichVL4jpn2vE9obxO7/WUird6N29dK3bLtU2aWJT76jfLThYpZNaXmWl9XTwKO2lMckKxfaX2PvGNhetxQJ7UDA2vEi33UUxPebkL2bPNAWo8THrssnRXZFSsd9pLY/9hmtt/TloMkY6x2hgGrJVd1Bz+Uq2a6VESDITtN8dcm5ietVTHtzJ/cCZxMI1J5IsHDkTZWYoJw6cGXXmkE5mfR/M2HTUs68Own0tpS2XDO6PqSfX/866Amn965ZfSha0LrHMSjUIBQxYr659R8njFWUuzN/8Fq8/ueHNJ7d89zvf5/XrW37ru9/jPE/cnk6UYtvx1mAYS1gIIZhD+1cCKLWygOoIap367t45tfPWQzvGKP3g6B3Re6u4JYvk5bsy68cs+m23ZCvwfWCibJalCdV53PxdLZq32RvOwK+wlK/zyfmbvBozcwlEj1RUxcuNvuteNNsf7373es2Guy469m2jcDHaeb1/R/dUFQkemVzKJvMdn8hK4RQPQtHeWNfu67tsYObuQXY83FVHXmTceuf4tjN3LNr7jzXrbhKVKkPcYwxUtc3GmmTCLl+lNZ3H8l6KKfWYfxaBoL6BlmctDlr+W+v2F6LIEtwoZNdtxPO6zrwPNixs16InTI8ZLTSZeog6Hax/asLFTFgwcLdo7coSIhb0LRnjlMwk5ps5izNKZ5bGMGcG8b24ZWLRSHRNaZKFImIr6odCCEooSoi6Nl/vEVDZdvVPrTskdiaGFnFdZPUm8NdbTZdRbKKSmLgej4SrQPlAOaYjaOB0mvjk9RumebbtK3JmXhYCsrrGvkXqeRpACStzrFS4F6/vMMiqp6wAubKPlT1YB2+im6ygKQJDtL8xRhb9Vcj/kokTan16deXp2JOrBIqDJhhRQF4D/yKn/Lv4zZvfy3VSvnU9cZWss9wFajdQCXfY42Yy6H0PN2y0Ur8OPDa6t3qrnnFfavT6xfWEMVF1iPegF9V4sQHmBkrOuETBrYt1lY1h+sqm+8dq4nRv0OpbpD5as4Jv1+ab8FBqYd2EWTPktlZ+y4mdfW4et79/8QlHfEgJdZnmCoyBtidDGWhR3tvg9/oEDDyTuOhX/NPCgkkfNLiBorkPtWhGlZnWPKLruRZ82OeyDetU6tZGi0eFmZ2Fth0RQzHjRoKDnhlk5lqNSV7JxMDCkRODzoycGH155ciJpDNXvCFhrHOImUOcGIbZdqEsC0EL6iyRkTWm5IwvkZRO1+vNv/jLz6xrz6thqL4DVTtfIBJ4cTjyIh754PiSZSl8/es/zu155je+831e39zwne9+lze3N0zzm7YWPPb98Z70uYBSRP6XwP/Eq/zvAf8QcA38QeBngL8I/P2q+r1HlOajIXT6od1A3Omv2jrf3S6Ia5HVV1CB6lZjgylJYAiBQ1TmAkotyxmT9q42a32Cf692bRtu9r2ocF4Sr+fCR6cDP349M6Y6ddbr+ieuzG0HD3vw016FUE/JNm+T41exstfzrnNPbectiDbmLAZ0Fs4qUPcBulM3v6KCIYoZRERcWR4JoQ/+If1d2rtr5HgDzls42zSN16EakuoNtH8mZ7sbg07n5SCy9pl1IlXvGh3jbpPj2jc3E/gaeshGqhaXgkJzObEIfQ5uCDUyO8GlkSAGFj1Qxu1n26WyMjC/JYLpNJ1NUvediT5Z9VsBR0WdcVLLc6Cs9anMdEkDGiN6GIihsATbEO3MgQFbLXSQydejn0gyM+voEZBuSWQTzcWA8hDNJSmNM6EoMSxruLcaMLmuK1d/3mooa13O30uU9dpVd0XbxqKoh9cM5CSEF0eGw8AHMXA4v2B4dcXrNzd88voNN7e3TNPMtMwekPv+9M5AKSI/BfzPgb9RVW9F5A8B/wDwNwK/rKq/KCK/APwC8I++vcDeN65jR/Tw0g8m7fJ255qTNAjJc/VM1FIMgRSEY4JTroNgHcqlunhokwhsT+DgEkR1NJc6Xu2ak+8A+dHpwKuD8rJBKjTrbAMzh9kNa+zgQqoKYQWBvqxN0r2o3J93R3Jfjre2d222CjTd5ORAIxuGKWuxFUx0lQaqZC7RrOkhGtBuXXu2qVfJrvcJ3fntc6xAXPtKZZGyLbM1y04F0ZezkVTcQV13+fw9FZVmuV9XV9V+o9goNQppj7Gqazb9GrG2D4LEsDpkCO6fKbQN2IKsus7GTlkBs5FZz+/7+0h0P9cecKOisaxl7Le8qLsjDrAcB/IozMmkr8ldh0566wGHzxwrUMqRpDOzHEg6szB6gI+zBe6QmeyM9BBvzfE9OVD6JKEJpAbeaCK6+pr67t0WWbtHYR1PnV9m8QhEOYg5KqRIAj58dc2yZF5+4+t8+ukNLz55zbe/8xGffPqa2zevmXOlsZfT5xW9E3AlIjPGJH8N+MeA3+3n/wDwx3gbUDoDsa89YxEopbZJzUrtoG2TsWYmW0U4IWLRrgNKRMvc8olACIkxJV6OhdPyM6j+XuDfBf5D2/bWO5QAQ1zrVNSlvGCDJzqxKQRUfxPVf56b+XfynZu/gW8cZ16lmSG6A3oFFl2fcI8dPdipZmwXNN0BY98YO8bXmrRjXVZY34C7tJZxp6RaybYuXFhFfp8ipPNSqAxUzPghzuZ7wNwap7r6aBXCs1c1dnXeShjasWRrBtk+570qBEV1xpZphu58rZPRe+0ZfKt3rUNodbK/KjWE9ZzWD697MyTWfu35tUO/7J/uJiXBrjPcLa1uFfya9TZmY5FjcEbp+aKuAFiNQnUbhp5tdrpOBkGuxAD0ZKqC+ZBYYmAeAyFeEVNukY2OemuitxpAHuXIyMyVnBn1zKBnJpkYWTgykMT35h4WxjBZsI7oAUgWMcNY9P40d32iaKt7JTMNID2YiaqyIMwCJ1VmlBOrt1KJQrkaGNILXr04ED+45uvnM59+au5E/H9+i/vSOwOlqv7HIvJ/AP4ScAv8a6r6r4nIt1T11z3Pr4vINy9dLyI/D/w8wKuXv527Oxpap+mIi7OP1WXDOn0dPO6X2EYPDShExZY7OZia6BWJQTgmJcUfA34a+HXgzxuoNRZJtz3tWrU2AGTtu4VPUf33mPILXp//Jk5zYM5CCmuEm96pe2UwssWvHixLQe4Fyfq7G9Ad2+p9BvUOYHD5uNZlkuu9ujvUi1aarZ3Pawe20tVRCAb6m9tsgxG0e2z8H1cQ2YCkKiJuUa91bO+ktukOJDcThonI+0B5Vo7ugLwyzX5xQ+g+sfL2x70qvWcESNeWYlSqGLhKD54VEOt71PqedC0q+jNWg1EQGKVtgLayTt1Z3MWu2W3PW8OYtaWIoz9yUvIiptAntC1nsyZmGcgaSDp5ICHbzmKWBXX398FC/7CI0cPETAiZASHFxY2d6qFL1eoByOxPO/sk3bQePkWqSY9SFwUovnGksKAWJQ5hwkK+Td6eEgOSIofjgXg1crVkxmtjmw+lzyN6fx34OeCvxszE/zcR+Qcfe72q/hLwSwDf+ubfpCKJrbO1UHVRBpLeGnXW7/9qQI1gooKEjh20jhedONk+ylIyQeHVMPNpGhijsBTzk2ykBBev+/HUiJkQd+xMgBjMkn6TD3xvmjme4CfixCFW95fdFe1eHSzt3GO6k90xZ213FZJ9G3el6KpvlOriUq9ZQWgFgwp2xpAkBMeg7j4NkGz5n3b1rU7jDcjCzoCjCnervH8CmquP9vWEslQXoKpz7J+7XuuQ1NvShObypM4E10DBsK1UfdkGzP37Ym0hwANt+DuRCpTQJvJmDNpMuvcBr83UvhkCQm9sUPfF7KthDJTb3vdIrM/7lr5tn+waz3GUdm7VWfra82MxR/craXvSMAAvBB1Bjso0DMwpcRpHJBYO4SWJhStuGXXmWm5NT8mJE2cOFtaDgYmZyOiR3Ic4czieiWEmDMV8HgPuAcBqJZ87sKx9p4WGE3JWzqqcVDkDtyJMwA3Slqfvw0XoMKApIUMivcd4lP8V4C+o6ncAROSfA/5LwG+KyE86m/xJ4NuPK67TxVU89M6zXaWzNRCsOrx9B9RN2f1fFQFFlTEoQ1Ci1PCBlYH5dRfiSfrwdBbxAbUZq7uMyLUZ61SYSqTcGYPaDaD1XO8NtSqwezC7y/4utSPbYeVZDSTvgCeV53SX1/rQmtz+kVrJlbX1DPmOVL+xkHeFr/RxrWN9J50Y3wIFt+I69yXdbRzG9ubtHXe33DRnY6ZbHXB/jba+uEoj27L3964TUVmbqPa5C8ttaxPU/RY3bkvVv1MqYPYzAY1MNoBtQY0LG3FeBKoutHcvqnEaK3D6DoiSfLrLzt2S37dapD3QhxahFNt1EjWgzb43diaahCW2N5ApYMyNyJzUF5RApEAwp3WSAgsyWEwGHbzf1PXbHrS3gX2tj6348KHak4b64qWNrfUd+rlQl0vWgu9Pnwco/xLwt4vINSZ6/x7gTwBvgN8H/KJ//pHHFGbeHT0oVSfQVbyxN9ivqI8+m/q1JaOov5jO0bgOBgUtLrJ717xOhatUOCYDtrk6mftd+wlsmxQYEX4O4VvGJkUZQuYQB47plkOYoSyUslBKvmO0ucgeuxe8ef7ON3FbRr1sYyJc8zTDUacj3DmR94RVtWyAay1PNx8bK0yrb68+We+1JWG7zdkupBAjiBA8UIrWTaBq2LUNAazlN3Sj/9lYoNQ6AlrXqfdidu9DKvX/FVzrLljdTUqpjDZ1ag6liumCg5GjZtMq1PexNgp9XxAx3aVKwPdUvZMH3CBU+4iamdgs9MEntNnQLw8u4scVq5fi+kvpLONiOsqiaPJO70Api5GG5tJzVnMtOgODMF+NLANMR4vEPnPLkTMjZxYxd6KZgUHXvYImOXHkzMQtx/GWYThzHG4IeYGDGosc8W1q/fOM7Xo5CRzE15tDnJSrW0iLclggqTKLkBALfOS6zk1Uqo1R8OH0eXSUf1xE/jDwpzDc/9OYKP0S+EMi8vsxMP29by/NRWxtE0DXIbqZYZ2mWaNUs4KEu3k00av63Sj4ps9efh1aZoxJwTcZQ5u1GyJBfjswOAhiUaNxYxCFICNDfEmUgzvrFg4xMMbCMZ34YJi5SgtBTOyuALEOkI62XXTB6Y/ZzxWf7jLMOlht/XKdRp16VFp74T6Xbrenh6s428FcfVkX+9mdCq/3aO/NgaEx2/X4Rn8p/QRRK9NTxQvV8AM9g+6x804IuS6mpcc6Whmjg9uGi7d3sK1nK6q8ffCtj7OfhquDvLXdCqnqq4gw1tpYaEXfVT3QB5ERzHuhbRSnYrhadNef/CP6s2z8GTFQ2j+2316T1askyJKYwqF1j4jtARR0JiNEXciy+OpNa1NFyRKQmIkSCaNFaY+aV9eo6oyPAbYIBpjFQDsAcRaYlUP26HaqTkiVviW9OY3XXzRwbtPnsnqr6j8B/BO7w2eMXX6GJCCjRUeh73q6zYMa59Yahto6hzA4/a5MYTEra71SoDlDB22ifECQAmOEIZhFPDeydQT5bxDDNxijbV97HAopZAbJHOPCEAofHgNj/JgX6UwKhTFkkghDBFGLst76lQzd81WGJ2xk7jbCa7v0bEIvYk97SAmEENcBi7OwsmOJnn9lQfX+pdWlBiKu9VRdtveqQLLvYxf0tncj//R1qG5Zlf1204h2hqymJ/U84pC90S9ui6/Mrbg0snErElgjVkHbp70x6Z1iswGSHbOr1hBeK2MNDk1lB4A+SdfJG4cwhbbGvPYHARVxI+LmYdAODE0XWutV/WpgXYzR3sCq469SyezFuKFEapBhldVQV/fXaSK3tn11NBcDqyK2BBNMPM6wDInlmJglMYSBudh+5RPia8gjgy5MjIycOTJyxKzl13IghYmrF7ckZq4/PFk9bgvcACeQGzGGeyPmrP4CXDFJOkE6C+MbYFZentT28tn0ksae/OPtYPk0VuYIrmLpRDfdoX998cU6uvr63LqLXrWEW66+k5fVUi6yXuMNJcAghRdD5px/ilwyY1SSjBxSJIWJ6yEzROUqFWKwuH6DLKSgXA+QgjKGxQMQKCEIMciqQ2oDpu/AK2Daj/2gqM7Lzq0McTDg2r1UB7UeuHQDPCuHrvcyjLw7JVXd6EYjcEc9wMpe2/XalSStHBRzd2mMtKvH5pe/ROmK6T+BFtqtqmWqKA3tObeTAZZX13lHN4V6QAytfqQdGGovmdTiqp08dEBdbyStHvV5jAmXVl6rktdrlaCqHn710xRZQXC1enetVVm31tbvWba07mLN5P1OXH9ZqV5HRC0iuLvFteWF/s4XLzd29aizdW0yMZAUwUOZCTkGSAkJB1s6SfZPC8ZRVJglkrGdKUcWcgVTMXAtRGJaiIeFyEIYjGHq7IF3XfSWSUwtcAA9Y7rWCeIAIdOWP64LCmq6I4tcTE8DKKG5LjTxtNcJNZwR0OB7cXRvqKXqrxY7Jb0vZWxuLFVWqF2rMMbMh4eFrL+LIH89H4yZQyx8eJgZ4mteDBNDLFxFW1UQPUbfBmzW8YSEiIizjbZ+HFRzYzTmx+f5e9boota69t2Y4rq/Td8gdUD54ArV/URpxo4ucG8dpRYCf1dUJ842R3f7Ac3o0bX2Rjze09ueBVeo3wF8u7TO5uLvvxbXP28d2+ZvK70bVFUfqMci7M3BTW8bMa11dfWpzM2BoAKLUSxgy2yla4f6XKsdpwLsWu8Gpn5s488ptY9KY5gNGNsE0BljUNTVNhsjV2PapWtXf0+1jq1SeT1epZL6vBUUq1EkiEUux/0xEXMGr3N8DYsGUIyYaN3iInnzJSAryyGw6MAyBEIonmUmE0jMTEQOOjKFkVGPDLJwxlb4XDE6Cx0Z48TxeMvxcCJoMYvIDBzV3IcOGLO8wpjl2b7LJIQ3iixCOq+voKmlPkN6IkCpvnvaaoXVZmmkAY69f9dNVsuemFixLmPs2YK93RpJyMA3b7MBVzHzresTXzsIUxGOsRhLjIsFPO3YoogthZTtxiv4MLbfTWSUdRXB5qZ1cPZgsubove0211V9VU//qpW1TQxep2q4cVZZ97gB9TBxWz3gyh7X37a/TD/AWZlRI1MC7pNYGuOt1vWOcWm/VLNbZunPKzWaUujYDmt5l5Tu2urj4Nc/M66X60Cttb7H5pS2XLanV7Ux1isaF5QefOiAa/ss+8m7nW2guuo/95Hc6zPJ/mV099m0wB12tK6tt1THgKmrtI4bXSeRltm3fG1LB317CxVdwTF1dakeWsm/R2xFTd2ZcQYOUMaApsApXRMlk4PtCbTIkUlmJpkZOZN05sxAYuasyX+PDEwcOXDkxCgT42EmDYXDOCFZkSOmq7zFgVINNCeQo/j2FbUl17Zfg7eUXTveTU8DKAVUygqSgg0s6TvuOkCNTdRAftXHTVn9BWDV7dH66KoT7FtFOMRCihM4S7SoPwDZr8l0w4yNz+Cms3ZMymJvtTqvt6yoWeMg9r1fm1RkP+uL7O+13q+5xygt6EN9Jmnt1hdfuqYUVPYuEX6/bsi3EivDrA/UFS+hsk0HwApYtW06UW8D/y2f644JawCjBkbKqpfsRN6WpVuB0xiftklldePaPWdl+hXLaxm7dmzwt1ON9LtC1vtAfQ87u/4F8tKiNiFU155VitLWbBcv9vr2xqVKGlawxH/XmdoZvVZmX/tOra9Ytm4Hw3UJIY15rhoCWVUaHgKtbsvbIpcXfGuHgBaYZESiGqOUjMrAIjNZZmY1gFwIRF1YNDR95sjERGKSgQNnrtOJUWbSYSaWTgQfxUDyZM+gk5pYXkO4tQ4r7Vnq1rdfDaAEq0kVO1knWUv+RoqfUHsB7dglp+SNPk8wcTwYwGqhqPcCzUjwhhCoIloPzNIr9ivzrf6WzZ2GTk9YGW5dsdGHO+mZCZ4HjOleYiNbV56NBbi+aB/4m3XavRFEdSdpdM7nHePZiHaqELZBMQQDAuleyXqbOikYs1yZGluydudZyn1Q0PL19W6SRT9RtQ8DgNVlps0obbYyA1dVm9Rr6EDj0ojx8vYrkKrqj9oWdZbTtZobq/TKZARMhSQWJgwR1+X27L9PuvteZ98KetBv62F/vaHH+tZG16nC6pCYaBuAzbquq67cow6BPkp5Ers8CLpkCIqeS1vhI5OYW8/ZAIujObTPh4EcE/M4kmIhxcygE5GZg155FKJri67OiYEzV5w4cuLAxJVHMXqhn5LIHI8zwzFzfDkjU4Ypoze4gYc11qXi5Es3w0zKloNfSk8DKKtEoisLaY7KtTOX9eFaRO/qgqF1TXEVpcqu4J2YLELd87uC1j0bQIKLbs0c0mHRBgxYT0gdyHUQNdDuB+eW/fiD0INl/+oaQ/R22egd3zIbrnWqaR1o/Wqa/izQre+u5WyNN5VR1Pe0Oos/plK1SNl8biqNDW1kx6rrOekxcHvPxoB7sOweruqpBF1Z4MU9S/19bN5blyqjrCAp3fF2qYNUNzntes2mDbZTwNvasb/p/phuHr0v9e6kbNGfBfU152wFKQ9/Vl9voHvePrBH275hnRSaWF5vg6ApkANkVRZJLCokojukZ4oYs8xERhIWUd023y2YoUfdKEQ8U2SxTf2iYH7vGU0QonqQ4G1bbkhFqe/o/vRkgFLGygDqjNqfxMDQo2PYtjmVSTmb0dXNxPqiTYciHq/JdTQl1+ACKzpXo8wahs0V6DUghdpuSKqz6+wqV1dKXtmCIgT1NbEtqsY6y2tenC1HzDCxVdpb6thrAx2hOda3JpF1Z0QHiS1B1K6Mri03aQci+8HTW2827jLd9eq6yY6dNWNDW5fv9dtcXgdxp9u92Fd7UNx3dHcZAlYddA+k1vYbB/tWap1koe7uyEYPusJV00FWoKsThPSPo9313czUiruwRE6tL5XSGabuqBFqIfvyuNBetW+u17SJS7vnBdbAHvXgRFv2UiJodCapHtUI2rYUM2jyVTuzd81DhKCUIM4s1djk4H8RuHVmeVCLGDQGC+F5COR04BwP3A5XSFBSyERZOJSTuxDdcPC9fK701j55ycDMC06MOnOlZ4YwMx5mxnRL0oXjckPQvPUPElldoNC7K4svpCcClGJ6hoY5sjtde6R0C1W0sZhWRqmiRl19U+jFj6be68hYZ5XYnDBsU7aiTA+SvTi9Gi96y67cGXgVHNyKibL15esr17MCadc31rYBxF1zdt9X5rnXs5nBbOt60rLen+4wz32gZXYIsg72fbZ+LXgtsOqlK59cFe/eblKV7/vw/TbxNJYvlbdZjM3eCLVp74t179UQXbaqK6017NQQPcHaPHnVId8B4A5MqdLGw6ymTxvXrt3ks05K/vzaVfBOPbZBV4xjdHWu/cOM8sa+Ko4XNQCOPiFGm7w1UFdxWsaCeX/3zHIxQ6FkMfekQSxGiEbTrkUh+0SXse+LrxUvBHcdEpI7ek7MZE2MMrEwkyMknZGQCSWbj3Z7p5WkrJP129KTAEoRCGO05W5aXHFcWUHnelGxqbLJTmwTAmItbRsZaYZStdG+RLKy1eqsLl35jX3VxoN1N6ROBhHdsIMQViuvdR434kikhuWyQe5GILXrDSLML3DLLFdGsBXTV9KzWrLX+jYW27wDHGBKH/jBClijIVnAkbLMTT1Q2XVj3M0PsHi7aHfPPfjW+takVD/CO87t2udRqhNeDUd2kV2qUooZ2EKISAiEaHva1DibbaVHq6cSqq6VCs6lI9HVJaerlIg56VfVxJ1JplYxduxkZZubcpwpS4t2Rcde6cDXgGQdxO30ts2rLnqPyP1923LfalyrmSraCasZO3YFZB8GFtVXl2TtOXmWyRilJlkD7g6yBtloW1aIAeOZLvK6wMGv8biZ1N0mhy7foJSotlVvSkyHhAxXcMAs48xcccvgATgGWXjtv4+cGcvZGaixzms5EWMmxfl+4foRE9STAEqgs6QJ65YCUHuE5uJrlLyTNHFTUQKi65riJiHp+tu+VGt5AMlsA7f2wTa2M4y6iGRzmwHtqk8S+n67+gxm1mAH/hhVRG2DtjSwXJ3lobvAK2CzurSIMq1m2+9e/oad7I0hjWft7tUeoAMzVgZ1Byi0O1+t0fXSCz5qO+n8zhOsOs91EzJvSVZWtH8SP99CoLE2W8ciK6C3IBgdv6vP3NhfLV/czWYXHs7e11rrdq9689bs0u5bn79NYB0NbSHDWnm6qUcdA1uw9DZf77qbIMLm+lUC6WXManzbWaSwfFVkl7q1BeKXV4CXFnZBo7dD0C5Ku5j1u25VUU0F1YUo0MR3bVv30oC3bdmbjW2ShRwHkMApCkvIZN8dMmtkkIVZB0YGRh3XnSRlsAUiLP0Ddi33uPQ0gFKwGQifeQur7qmyJ++UEq3R1kGiaMlmO67+UKWKTsFZqpUsEiyqNGCaafeHMHljN8Bbz/ZqFNQt5SLaWEFlg1as1dEc4rOzqaoLqp2xUmNndFoZn9W3NUhnUq2szHRZ9bwNs9pqa7UdhKvweifO566zVGbd8q+Mb91fe8+q+kEJzZE+xM/Q9daBvwHLtUrtnbc8rvf0hwcRlxB6YNnXYH2H69wh67P1kkt3bYheduntxFv3JO326VknprABydb+odg7DWG9roHO2o7Wba2M0EIM0hhuDQKy+pbWCbZn+v7c3lcsGl891wVnkcosBaezmK5/6Y4FpCKd2tgjS0dQHfQGvRONqEVm73eMjLoJFqxRbWXvIDY2/ZwMankPGAM9Qh4PlAGmwzUkJaSJqAtXvGHQpdueYuKI7Q55zS3JjT6y7/sdIbgLotv0JIBSwUIo1TFQ9xUBBzpXHCseFEDbulSt+FajrNQXqAKu77AMC4KzSDf0WPL1Gr1ITnHm6E66nfGmGQ3csLSujKnGm/pQdwGqFwft1nWL1AqkikhaG6UyjFZE9RGt4mIFpk6sa/l7AKkDsWL1alhROvG4gorUeaCqDVbG1UESe3eZDtfac/ZMssagtOy9iqFnsVuwbrfy+9vxrXi6uWurSo+wXRs2WrsuSKA+W5MStFVv8xoqSN4x1PR17QCQDqC8gOohsHGil/r++ncNdV23tnL68/UJHei0e+b6PHRMuX9X7aFWiG1EAutX63bK3t8RH6Sh5UWDuxHJWlxg3X2yAmmLTMQKnA6qLVbmAMSyRjManBQdsLXkJ2x54oBFFopKGQOEyCldMYXCKR0Zw8IQMkc3+Jz0SCQzbtRntYm2/e6h9CSAEsHj0WGDoOsclTVa7Dgx/0kwS2uNbszauU2pjL3AYi9+jUwkIB3oSV+GM726hG2jm3QQZc3XAs+GaJ3LLeSVGJrIQiu7gcN+4EIHbmEdaD5pbANK1Lp4gOK692l7/i74RX/ZeiO01Ufv1MVY29bAYlvZ3vPOqvrD77lChG7q0V++sqlafry/w3aHxBmkxNjVvat3/SJ3n2ubSRobNatDh7+XbtyzZ9mCndQN1XcAtyWKHcBpLa+u7e6s3UDbSbKbZPrPbUP2723/ggo1WlYDBWpfKtv2asdpAGlM2Npyq+PsAgNrQjx6OWAsU2k7SzZ1aI2w3j4xZunn65bpJGeQyXWeg1j+quesYdYGYPS8V4ElCssxNt1okmKbm8mBQWcOHImaGW1d5ua52x5IrYXuT08GKDUovV7Nho6Y+40qmqsBY/EJVNdZyctonTQYoEoJBh6+eZgtXbPOuIqwdZBWdghrMApTrKyDPlODhK4BbN0wUzwigNggaNc4CxHxnaUVr0d7VPpQU6JuVtwE9uiesX2ub30dkLUZamP05dDyt0JaG6y6K4smU1iZnoukvR5tV1ZbhiddW7KuAFEtrnuWNU/vkiON+2yfs92iRx/WumwmElp9jWz2LLvTzVVxu3uci3OKH7FJtq5ssfctsYJlB3J909yJwLy+j37ik/31faogua1Oq6VsWGj/BL2KpGwwvBXchd3rgyFrjWlZ8sosu3LXv4CquxA11VJ1z6tAKgaeRZpfZsVbjdoxS1eHVTG9zv0DrvOUNdjFqEaoDmr5rryMo9jnAcoQWIZIGQLnWLgZXlh4xLBd2NA0YMBddc3d9DSAEhplb07m3rfM5QZ7MgcYs0TSmFslnfauevDDZ9b1mK3K6DtgHaTVXeCCKNgGU79Kxv4xElPdgzxzzyLAO5I6IPjqEK3H+1s5WPp3/J4tGrpsr+mfYh0Qwube/kyNNFzqExUIV+XgNvPGQtuXa0AVwmq138RBlNXJuvmDXzQyXaqYg+PmsE8D0hl3NsyqFrN6G7R60m1LwZ0ImO1ZNjMYNvC1xXGke797UNq2+h2SR9WQdX6O9w7Q/Tusx1hJRAP7PjDyWp82H3VAWud3UZOY7ojzCFWqWleUrSC4AUvNaKONPkGJ0Fb4VPWIBh+fsk5KwQ2zKVQHERBxluk+1L0es+7jc3agnPy8Rz5vyy5nQUehjEI5jKvedN/3dUsu7FU8DJZPAygFPIqnvcB2Qrt3JPUtm+4iii2fKoJOBXPccugoYjNVZZFAi8ii2YG37sjobKh2ijZrr/6NWjI1qMB2cEhjK2a8EXcP8rq3AWsz+1KEXGBaAkWFXCLHVDikmh9WsWkd4iso2QAKfX1rng276qC2tGmTCpjSAZ99rBOAnVlloqqDbe+keLCSDqBKqS5AsbWfAITYWFdz/ergqgK0AVxX91296tJQiXHt5HVPnujMyl3GtGTfm7wDsG6WqOW0bXirsdDztO1861p8wdo7pPYem69sVQ15v+ldsHoAan1Mi3lvqOuF+2tYv9s5V+VUb44KkGHtlxs6jGt/nETYLfs+bO3fure/Q+3F/cruq0qnGpcqODa9pU/SCuCqpza+wpq3AqkHzK7LIrVqsnJYw9u1sHLSPUwASQaOo64O7AdxBqmNSRqz9PNjPSZ2LGJliKyzRU+1H2L2np4GUN5JO8QHNuJSHQjVUOMdrlfgN/0mW+bV38PK6spfb7Yq9ls9qp4K71NhLWXDXJycYc7nilA0UBSmHMgFTottdVs0ICEzaCY2Q0nvLLxjOb28iGwl4u7+dxllu2SFqZ6VPSJVvfGd4mtdpbJrfwbpm1Yao+yP1eeTzXPeZYp+wfqp6/Ov5+1YAz/We91XjujlnnH/s3f7N21KV3Cd9EPjTfy+PRu2a/YX9UC7fr/4TK2dd/XZ5+zeh/btVzGfPmxgXajRl9dXp+uHm8AbHcHQ7USLj4V1DnGS0dyPthujrYFnwrq+vJoN6D4XoUY4R1nDwBXDWHOIZ42S3qcuyv3b+sHTAcqm89sf98/i50r351791betiVQFE8mz6TbXwBkewbNGsxYvKJRdB68sriBiOkNjExnNBqI2Wa+dXtXAL2tgKpFzjryZAqcl8Hr+/7f37bG2blddvzG/tfc599H2tpaWS2+lqPUBKI8QBTWGUOUVLPEPkxJJmkjCPySi0UgbEo1/kJBoiCa+QhTxgRCCKA2JAqKGGOXlg1IelRJIuVBojdjSe885e61vDv8Y4zfGmPNbe+9jsWcv4pq5+651vvV98xtzzDnH+I0xxxxzh6t1wcuHHQ694dG6s2NwG/C7nnsJl7sHuN+676riSnPPAQWAAzdPN4T5YgXQLpCm0LVHlIDlnBw15fhNIB6IHYBruIvMNv7Syb/G/vo6eeifovDrgfAyVKaGZlHRKHRdg4cVeZGijR8vwGGZ5dAM+mageF+pTviAn9J5jP7rpNuoaMOvfd29wUsiM6Mpk/k6rwSG1kJJ8Bzz7BeriykBMzKhe8KM5mhdhItbc0Z1hDURoXZ1LDQplxTM75r70VdfqKwCM60Te55mddGAQ4JLOh1t/NjmjMKxkLcCjZAkZojn9xU47IB1N+792JnwtSRi6okv1LMIwQToDohD1Jr3Y1h8ZVw9BmA4DUGp5Q/lk9pUYRPP5ZqEkFQLSHVhqFWI8pnwwzBQHCb4vHaicQsJohYbKgmC1IWYyQA7/Gm/2imL+3WxUxfXBVd9wcN1wcv7hkcH4OXDr2HfH+HRumDVhkNfIPIqLPJ6PDgsuFobLhuwNEMmMcGCF1VgVNMreXXUae8QJydpCWOCFB5QREpMHL6Dk/Ban6LkwoZEve7h6r0g2UJLNYEqfdGgCX56A8fVbh8XVbMGpFMMCyrxfAnsD3ObYyQnzujD3E6im2VsVTd54yDEOPDm61GnxKdRwSNOHPlxYJB/oj42rS2zfxa9juHS3kLfuDWWfJ56RjXGZjUZpLQnBq2jZa6dDdaPW4dWE8eCKyMKAm0+T0vYXodteaQsrp8kl2sdHF9cOGIKuNquigluKacjKPfjpTgbmQP60OMcX2WGEsozXtv7v7kBXuGCzh4UWcGEhwItg9xzWqrdZ4HljuF9Fdp80Q1XXXC1Ch71Hfa6w0evLvBobfj1h/b50tUOV73h0drcJ3nAqv8R0Pf7wrAdEwH9HKi+FR9+sMNvXO5wf7fi0s/9cZEFVUVf8+RBaTtI+H7E/YXiHT2t5gdjE93MQdVMXLtcY4aHL3D+wd/Bc3XoCwv00RFbDUc/Y7N7w5cHP2lxqnxGbjRRS3IL+kV1Rp/8zmNUAyHB0Kv0UDrkcR7XIGjLjjWEsDSB1Yvi5WuIasu7B8lJa8OZ4vfRp6e6pg8dSN9qADePoBA/WTSQsqL37r9zPPRsZwe4XVZkYAECAEz8AuoiWVV80QX+WYSs1npyzNmGCwIOgSW7rqh2Ke8oajmEO69WW7sBq497LtDsgsWxxkHzW1c14biqx2u6tK7xt4PivbmchqAEIlzBSmq7QBGRf5LoUS0ESJtrG99JscLMbogny6YJYwsyUqSrUkCG1NUgZVXBw8OCtQserYL9qnhwpXi0Ch6tDVd9h4MueHhYcOiP8NL+3Tj0Ax4dGlYVHLr5Jbt2CD4My2Npr1i7QPVXofrDeLS+Di8dXo3XTPGFEHgkEmNKexgkXk36YZUDWFPOhLmYkzlKPEdUU6Or82vBtagpyAIVlvqAXNnWnpNWilCE1yexHx5lso6l4B9/pxSaUMxTp9IXWjYCa0BuZWIoTAGGuWy/mwAaka4WXg6jNBY/6HoYaQ/WzIytnBQdrxE1RkMLBwRloruAjzU9KgeiURO0gSCZySKqq6FKlThBmX6bVm0L+ZenjEoTm48xNhmbbPQF3+ifpKWUoD6VUCBAh6baHFnCAJJiWNkerI7u/GuwDSu+o46RNUbW40nK0xCU6pJ/tLWK05sxkVpMcIX0xQSl/xsHjR07oTzU/GBElbF6rVfJRAahi9nvK4B9F/z6wx0ersBHHgEv7wUfebjgwWHBw0PDvjes2ux1+gBdfwiqLwf1Ur60MgC6Arbw+X6o/hIeHN6Cj159Albd+0TPiUG/Wgge9wWFEAkBmXYNLY5i54TwUOe1TbAUsjSFaggNVEvWdEFdZR8QBBG/CHjMhjJxRfgnc6EtJ6dPrJZCJldSsR3AZQIlbyVWrynsQ1jWRMYsFOj+26Cb/X12/rohy1l1p9+x/pCCMlEWv27boGnq5MWhyq2AzSQYEgH32lfn/Wq+V/oMJWq1YH4CBUYrgOF2HWNRStd8J6a2zk/URR0fRzyLXRZD/VRQPAOdEyL1Axd9igAdeCzJKjQoGiIpzt6nrDc95AAxx+KAyveOpxKFjx0MiP6mchqCEuKR/bniG9lsfOdLg2e60dUm+b5sJTwAuZVKYeixo68rVA9QtTM2K3pUV0cWfqF2TQ9Q7XhwpXj5IHj/R+7j5cNH8PL+P2G/HvBwL4YW1T5VefryAyztCvQQeD+EcORZXuJKbS1j9GpteGm/w9Uq6GomlkQeK+dOoK/m/KnmJlJQ8RpS6HAvufnmKFSrUNIY53GWzODkpjZPEzknmsYtR7chxi6PBi5CaUxYf3evzEqhkSZqGSP+TLKmKAPCCk4CaYl8uWgy77EevhMOuygrZwxZhAXdCwi+xZbMEl8bNYdQVoSy2gjO2T87lugerW4iPtoGhWh950KO6D4Et5Q6e+Ha/EIq49E9gvBNytAEKfGzMtToSF/EAbBkajYp0QrRwNy/bgs+BWWGNaQQmuG+iGuoUDm8rfsjrlpt4X2FbWZZkSHV8M9+LJb0eDkNQakwQdedaUQ7gO+qstU963szj8x9qEDvkLU5wuS4sUw/qleI9MZ+NEP8eRyl9tX8Oa1DuyHOq7Xhwb7hQw8u8NGrPa7Wn0Tvj3DwziG+cnIA2DwK8ZVAyb5Lfs4x6/sueLA2HAzkoUmakzHBHE3UEZYDlpPQhlK56rkd6yl9+XwI06kjWK+Mo7k87wMrlFn9rQo7+jDbUJfW5wGodrQmgyDm++eEHmMI0fj+AS0UFE2UkpmDqhIgLzx8ieilKGqvBIIqfJ2WWJXmwKhZ1St9c7gShQuFW1EIFHyTUN26Ro8kw+Cz7F9XEKEIQ//eJhiSJiobe45nk/fgCbg//AitXORj4zYZ5J2PVNrCLZNw0FPGkbXKFwfVs3JxKDQThvFONlE0Ft95/EcVlury5nHK6QjKK3Z2CbRVzRwDhNZr80BzBbrY3m//d9e9NVwdk2OFLeBYDkLzy5gw7H0PczIjUmpJ8wWRZsL50BX7rrhyX0hXE4Ct2c4qEZrRiJwcTfKPw8KBWpxVX0XQvi94cLjAw3WHh2vH01hdWMJQki/g2C4HG1Q5iejBJhrqgeI4kY77oYBq4oQLC1VAzqZQw1wVw07EA4oT6OXkYDC3kWR2QQXAEV7VEyWTSpE+3BMTJ6755CAiFfEje/P9VWAN5EtDa2NquxByVVjVdzegnhlStxGGj7TAtRtjVQUQ2ZlCaMkrOOq2ereT+GgykMjZSp5I/r8o1Ng9owQNlRgKtlJ3CCu2s4cSETeTRhGJQIzj0Rzs8Bb/tOITwpWOqkI9UUljblVPSqNYYQljfPskGuSwQxwH0wAc1ATmAiizsl8AdLEp+wR+5EV2xIbPczkNQQl4vznEdrO2HndtzJSMkfStUQMCiONobbU6BF9sO+vTnxamaZi81Z/Iv5gz/sfFW+bUqGjymGtMYVtXA1mEZrOFH/7p4gPG4KVbkry5DnwESgJ4mUimCDEk3XVRAvGrTagqJGMnjDSP1RSL1SSSYkP9k6iX6KWiiBA2w6pn4qtZYFo/pAAHkEeDKAe6RDvjmZZmfrRtQKAYvoug0E0+iPn+xBcGA6h5D2+j5kfpq4OXN3gZCwzlBxkUUVmgAXOdamlDeV95V9YEEDUPhcNlGDcyfbI9deAeE+7O8/r+Mgbme7fCMt9JRDoQGumaOohgZ3PfAtaTkeFfpCnOAAC+kpZ7E1sDKfozqaKSPdLkUk5DUCoMFXqGIPMpuSnWTYyt62EIMgeR5MG0EXSF4AA747rEDUWIgfkmRVZDkjFpDgmpYGd2dz3YoUerYmWui8JICs9FgIVk0ipwE/rK3WHhw/NnBcDFhSeDbsCuNUAWPDjs8NH9imd2e0eUag54WSPco2p+kz+2bVJcGqY5qLBDSWrvc+K7EprO4LGPlpO30Wz2aw5ee+dqc6I9LcJtfKcH2aimAAq05qEjrY5sDM8msooZ75MlOyRQTrdrm3AjLULUt0D2SPRbBDb9bTI+qxHm5CmTPdaVrbN6L4K+3hn03wdFFowu/6YC6ORfgmSYRZBCmYs3xyc0JULR5gpg4K2W36fi9aaCnYUp+VJcGpt7+A5+piVir0jUmO3kFsmK7kIM+iWLTElFLhAcTAhrh64N6JlpXjzGXVZX8h5wrjwHeW4++XWLoGw3/wyIyLeIyAdF5D3l2mtE5AdE5Of889Xlt3eKyPtE5L0i8kW31Z8Ei5vSsMZR1q0aO2zsr0MP6tdtlTpWsv2YWAH/mFdy+yc8UjYOFPO6kOZFAaxpgc0KqA7uomT5DMc2fZStARcN2C3AbhGI/G8ofhlX6xWuDg1azFarR72NNXxo7NVIQhtm4Gyi18coqMZJQxqz0hv6imhsIGJ+xukpPx11A2iu3m9M3SMvHheNEtHlvu2ePDgmFOhbi2eOtHd6LnxtMvbN/FiQPQA/Hfpm/Jk0a9kLH/EBSe/0bi31ho8vapQcu8M9fP6YgMOGD+6VHe6ba4Cbsdl3lSEDQzefY3+rjym35uq8nCzAjBd2YMNY584/lw08otb/5CCQvdin/+EgFpu5+vcbyuMgym8F8LcB/JNy7R0AflBVv1FE3uH//joR+VQAbwPwaQA+CcC/FZHfrXM+/akIgNZLnsHCxBjsXPrfI4PLYegQ4lsNIx4yw4FmRMmodGnOdFUwxpICt/d70M5D6RGoclkSRZKta0/TnMKGlhotg4vFnrm3M2F50RAD/9B/DIf+bnzk6k+i4ZPx/LNX5v9s5AxRU4e0HWx1y5GMGirRfqBBmRzVchaPCCDLkVAar4fL8loEKJcpm5p0L2N6LoEO3Y9q1ygceBNJG5VADI2cfTkufIslYwvqFsT0fdI0c2XR+ZoUbhQTrL9uLaR245ZRrTk9gcyXKbltkAOjE+WtWyVA/2XvhxSQ0rC4/9gGigv1wz5+r4o26hGxjOvsu4nHJXILAE198+sNfGvLqHSP6K3RDB8k/nSzIHc/FRQx1Ff8zuqfg+osdXk/pGld3GlIZJp7y90l5EdV+xAAOiElADTonlEL5VVOa5Mc97eVWwWlqv6QiLxpuvzlAD7fv/9jAP8BwNf59e9Q1UcAfkFE3gfgDwL4zze/BJ5vkvBYLQSonoVCc5ur244KEZ/2PRPuOnIcNFLZzhOHhLmQ7G62E11SB88oa7LOfOEdjCZpKSviRMylmZnNRR420XTCCsUV9h141C2rkFLoIO8FGAyNPKbW6VPhAgcwUleRH5M2aLln1qI2UMMnRGXVuRe+TB6uTBUELoVhsWhAAeyTo/pUJYY4X+j3BfJiDGZhmqTwyHPecocSvYSs/3oUJWNz4kvSN/NRgTy1sroDdEKBw3MtlE74K4Up+dI7qlFX4b01DTUBL2lVUCl7H82LMxCEH753y6YVAdeeY3MWEoMPFNM7Cx7UeRyNiqlaBdVKyAW4qj2zt0YhOo9Nvz4scDlveffmrCb1zSewAwdLY23e5LEdt5WP1Uf5elX9AACo6gdE5HV+/Q0Afrjc96Jf2xQR+WoAXw0Ar3jFG6CHTAAAIIOs2XkBFm0A2Iq1bUmkoNQ4NZF7GbllsaLKsgtHOqC2ZVF1jzQDLwDtg2ADsvuiSxU4rC4oPVyx7tBjWNDlYqZ2CEmMC0UAcLVyl48l19iVmyNeT1coOhYPpTGhLGhMjNCJXGL6YRjMbMNkxiVasOupeJC+xVjg2aUfU9V8s7qmcJscuuJ9aQImkQH9qvRhVoTHd0rz7YRcXe4ddryHowGYiITCjqQZkM2AIXGsEE1LJJ/1e1WHNGw5APwM8wKvE73lPUGDlJCiAZEVfkvGgA4hSVG/J4aumeCFisgWmGblUlfBcyEKdkJAa/Y7z5WKhaOJPGreKiwHH3MKyxozW82qwR99XRhO+N750vm+DA/K7YwOoBgcGf+20BhhfVw554qrIkCQRh+1pP2G8v96MefY27ZqFoCqfjOAbwaA13/iZ6jEIoEzlrKMIRmhaJwpjbFtgJldPPyrmtweLiTjwk7Gc3GBhwJZQsA193U2MSEnYsiQfkYCil3z7vN+rkl7FgpaGYViMKkApYeHBYIdHq47XCyCi6UH80Tod7Mrqrl3dtg+tyDawJi3wu98aRUkZUAn+MwYOZvsY3fO/ihigqFZxUTOlV8OdqIPPo3SthQUHcy0nXRRYPL87/TPjqimtWWYqNcJyw14OTpaOdmndFw6fES7Nm8qykMK32NVV3i9Bx+ij4rvQhXl0L3MU1n7MCcNEKjfedT7CmF/xM6sEd2pJF01/2Q2UiahwnAv5WCNNpvMFFdm7r6hZVErpeAfGMp7yIMOM6kVYzq2mdv8bYWU+3LrJ5WaxniR25dqPmZB+Wsi8ryjyecBfNCvvwjgjeW+FwD8ym2VmQVNqa/mjK0dM9sAKO0GkIkvbPWb3y110wrhb/W8HABpktcBOApKgWK3s9dSUEqhY6G7yWuku6+5ub14XylyR05DqcfH6qNDA7DDw8MF7u+MKRURavi0KPQUceYHtThccE4b/xORVuRYCwVKSYvGNF7TaZicGImcKLAdcZb35lctyJXP7aJfGa4Xe8Up4NY1UV8471w4VpFV0ZqIxUdyL3hdOa8Ta/KVDhNulvoBIHV6dtqpEnVPNCEV2oZeuKIJYTn+QpM6XBvHinodytXh8k5mKx8QKlCVUioan3cltIwMGJTRMQKKm2UuoUirQpjM4PHB+buUby4wKQAhcF+c3xExQeM9WHyeRGcig/blKN21fKyC8l0A3g7gG/3ze8r1fy4i3wRbzHkzgB99rBpX9RgbWwUJ/esT0PaqGjIUseBwM/nMbE7zeYXIAbEzJ4LNueijpWMmJOJC+d6l4GkAz95XoCkerYWPOsZWcjGHVezoTiKKXM0sBMati5RtnTGjYib3Rx4KFgheeamRn1JaQ1M1o6JOmNnzHxOtDC49tgJM3y8d4vmcixObmEAEgo/PT6jUBUMPX+ZEVjxWByRpWFxQKFoTCxieFlRGrtW+cMY3nh7IiWzjJZ4oW0BBhDrwRbMTvW31KForTHXGica2k2MlLtI5GShaNcNTKiuKL29oYqRP83C5ijDj5hZjToWLPC4Qy06hcC0oV8dJE1lYFRq7Rn0TxiQYbzBPLQdpaYOQJzwH3ReR6kRif1GAii+qAdia6i5gu7XdbqfAXLyOsng4CMnKN1MIYbh4w49GSJRyq6AUkW8H8PkAXisiLwL4qzAB+Z0i8lUA3g/gT9v79KdE5DsB/DTM1v2a21a8nU6bHCudz5oIpUxi88b4QoyjwUioq4kmVY/4IsWz74TZTa1CJJYM3TXBxU5wudiKdWwE6gl66RKcwMzg0wyB6tfW+X7WBYHIHk0e4cEeeGpHp7/UO4tAx9COOD8cQCwUIDL7Xcd1jDM0L48LLNNnmMxtfgx0nWzcXhT4IsM8qa83+eDWQ8OWschJawLchboUZVoq1On5MRjd2igoaNfplxqHGTJxkv7HGlh0Bs3hmTe1OaYcyVtJcFS27g31MqM+Mz4N/LCx0Xlg2HB4XVTs/bNyOKF8GYopybLQxn4Z+JroXKlQqHTIszD9S7RFGUbX8S9Im2kjAi7B/3PmpgRAFQAUYez3VIyhjD2+oTzOqvdXXPPTW665/xsAfMNt9U5Poa97c+KDK6gLIIuF8YjaqrR2AFcec0ZT+wBgD5EVij3CBBcNs9fGdQc8/x8FzmiKShl4biC4oNuviKw/1sayTdHdOIeM2jAhilGQ0sdJFEql3gRYWofg+yHyKnz40RdikadxOKxAE08SwM6vDZJpAPqe7g6k34UTloLGzPIMMcmwGyPcFxWgYIbwueRukrhQeMgnMnA9+9NpiC1NAV9yZgzChBMNsco/buOs6A4p4ApSTJN9qxAoCMi/oPwIssjkCVNN7ERHyoqeC68192d1OYBC0msr7o3YgVTfFCazIvteQTcMeSqyYHF3Q2fAOxfFnJdt4UHasJMQwzUBxBnztY0zgpy1/MCNRID0fY5n9PCLOrBJZUW0LxxXVelEnYWcQM18Zyt3uTCtQhs2hiKaZOxE5ILi9eU0duaADZ9W/vgb0pzJaxqDiElKk1EaWpbwvv6uRXik72ccFANqRH4vJKHIguE51lZFCIA44of5fCgomyiA/wXBI1z1jqsu/t5SmY6oSeP/Ov47to1NHS9z+8gDR++udbfbzgpiGIoLWWxuv6ZMEDIJQfrQpsoCBRQ/NckbzPi5XddQUPxsurk3JxgRaiBBCvnoDvIqSdo2k6imTly/P/TX6JWc/X/q/0t9rhsOqjIfQh2UVKprtCGrTnSlgawUeUQF79Jbu1Xpl7z+juHjGH5VOP0M8QoqMwRqfjKnq5Y7/U9QFFMVnOzTDqZhVJ/YW5mzLachKJUDqazU+heLT/SOFyCcskAq3V41i/umaGpFrkkJE38jCDi4XPP23tFXwaM9cHUYxwJBxE5sVZuCj9cVuejDgd79k9eWIkVbUxeUdvHlww73DxfY62JnIjVAwnk90hEDxQ4OCRRl9XrAfCQiII9Se3a/ttQ8hgJAW6C4CKr2icOFIQlx38bFFr8nMr0M9FqnSbzIP+ddRzETooOdlxLPNWnQJrHFsGPNR8tLtbQ9sq23hnEISPzfMlU1T+8HC7gHQphXpCI7V9/HxlRP8yP7KvlDegSALLtQghFiw2dDRnDVnQH6Kan7ejAjqoQQicACzJHvwtqxCYUpyD3cRowk2CSTZn9ESwp62PKzNCQesnnJzRwM1cmx2VeCGUPXTdgfjMBIejOfgT3TjyaMzjHQo0/g7xhpu6mchqAEpg6cIT8nCFEVBaJPVPeF2E6OBZG3DkgNX+oY6/aPsJs7VM0B3USxOKNreqZ57DSU0CEZ63allff7vUHaMPYUhy646g1Xa8OuKS5jgJHOmXEViWkgIAbrxyCcHhyd+OUd6lQGQKn89urn9+qIPlLjHyuaPzqiGkDsBM+qoAuGSYaeIBYLnJQqkJAoMCqX2tck4zg6pVnBvhndtYl/EvVU4muoD66v3wWekg4AGTcIME6SyDCV45bBsaAT9RwbLxj4NdDhAtYPnsjzzGfiJ3Q61IX0kd+INjXDxmoIWFpNFPAAF3FEPDqA0R6F7m1DiSA1agsTO6qvg+63AqIUQWsX4wwLzU0mcrk/tzqGdvEg6CYXUG0e/e2aviTBTf/EDHV8QnQPv+mGOC52iks1UHHwuXTonozdS02rRjCgGBd/4lV+z0XLe4hE4dPh4brDg8MOL+13aHLA/aWjNQ6IY8X9bDx9UM3BTfSXQ4GaeRf8CI3uCSVy6lN7l8zTaIMZmY55BcK5zna2eN8GjpMe+kWB3O2C+d4+vDMEplgGcpGdndHt95MPwzuGXUw5trQIHdaZvsZEU2Ny10Qz5HvKjFFQcmeSsVhDuJdey+++rUt8EOWiUwmOJr9dkWkINlMUFnvsprbUGNoj42ZQALyLAcCeng8ehaAKVU8cE1ZJPfsIJCrGwxyGJjwhU0cFPfDfBZssroY7felMSrJmjcLFuQsIWg7Dwp/YvRX94QlR+lr4XwPhb5LqpyIoQYd2MjgaH6aIIMIDyPCGaSJzhwNNbrhABYYdIRSWMQnLwBV4an0TzF1t982aP4cbpBelOVgz9Uu+ZsB+AvXFHXd6F2ipsAD0ewsD5SuSYN9qCgelmM2UccFXJ64xvlISjYgjx7rjw6p1NNo1hCVLxHC6WcPGM4h5aIQURafleS2oaFYAkVl8vB5bGb3vbVveGrTrNQO++hwB9oVu0RZ/j5t6ZWOOuSGIoyBBLQJOajun+MdhVhdkXU3uvLEMOEl+FsTPewdM5EKwUUlszBHJ7o5rPZpdeRebCwY7wtp2jFy7c5oMQ1OF3R9j74ir2IVci7lSf6wRKvkeKco6Q7NijGkV4HykLo7eXE5CUIoAslv8bBtQJpYJk1qHgid9ZXAtb2gzxBC3LhW/hn2w5xQQzZCkMohEmm8LtNjGqymkqx0ZdywcA4EutazN+f3dheQiPRAKFy0s1l7w8mHB/V2f6i8a3AXsvEtmFqp0TciSfk5tDejdQ1GmyeTPW73iq4W1KMYLJX6Q8WnhG9RyP5GCX+vMX9einprwIV2YFaUthgh6QY4Fmarmg2kOY/y9VM4g7WO87WVsRcA0ekGsyQSupuYxqdP7on7nbWTCacCA2knGyHGSrNX/U/pLNk+Q5zX6oP6akovmb6A39Ly/KLWxDTn/jhGar8t5JcMt/Jeh4borZ1ggEvdnahWWtbShF+Dj2sZYWbeIjsi7c2OFK41bhOVJCEorGooyvisHlq96Ej3FxHPB2RkfacJRuXcWDJMB0s/lvjZPz9TXQ05qTiAe1iQppkVyN83a09S+WMrCjVfDUCLBtL/bSWBS5mWhUGro+EMAXkDXp7F22HG3ccIgO55KgOfPcEbmoG+yG4QPEYzFmRZiUAZkIMAqLPmcYAi/2IxXTgQB/DCrPoQH1CiDMiFgfZmLQiw1cNv9cxSufA/RH01WCEYTShxRtRB0zvl8iyclhm+d5S2hMHv3uE5TZm1ZzByM4zUKLwbBgOGizoK/OVJyhTImqvXwp3VFhC71dQxPCpN7Ke/hbzx10anpa8amVgGm8b+B707weKlkhJL4f76D7pWtz7tj7Ne55CLk4M+d6dPhkYImKay19J/NfzujqY69gUtTm0tExQ3lJAQlxSF4FrNfHaZV+IkAF0H2ixYzqiCXMZyGZj2DUP2NkaGollwoKIrN8KqDVIJdkcwKxHZQmc0hQArg0JeoX7v48neDyA6qb4bqm73rOrpKhCYNOw4qkvSXalKdSQ/Kb+rSm1p5BANz6oy5b2wyHxtMYcbCzf7YUrnm04M/bM7/XVcebcAmOs1BbFtRS2fULDGbSW99mwey5cTKzfYUNg1S41TpiikNVFXzm9GHGHxXf4TjbxY85T7nYwa9m9DqcZJiyaqkMFRX9mdXRUG6+T2vJRfV2xKC5JipOvkoR9IpeOhKKHPB/x/zRvj+kpxjmKvk95HSGsQ3Swzz8AgCTMuwtGNoI29LhcxqZKxpqC/uv5YZVk5CUJoU4lcS7mt9PEw9IrqpSTNouh/sVEXLy9gDHUXGbqhb5znQi5U3ECIAeu9Y145Dt9fufZ4eJBdgZouGQvLgURiRpxJc1HkGwJdhkWdwuSju7YBnLoHLRbFrwFPLc9i138DTuwMul45X31/x1K6XJNWze2Dc5RIIZD2UiQRsE/HlvRUVKJojMBdOvSon8p3CAsPA5qKZLC58FjuZniZQXYjRmHR18tLnaOivlXCQeJfqgKxyZGupx/8tZQzpAUQaMXnU6a0WhD/bu03elQJeu68Nuk/OeV3HDKShxVk9qdyhHnPgAg9iCSIie3wEiNupoUxYUYW7LbL4IqP3m2gHdB/jmxsJWhUSUFjm/6Q3EXgpIU38vTRfC9o9JuiYKzSEeKM/3BRBBSTbh4vQ80UW8d1YY/96e4gWox/ZV9lH4S0o3ZK8AKZWl+bfIiG9nIagBHxvKdUCxnkANpf55bhCS61O5MQHiAobBEdyKSZ4yGvIHIH2Tw0zmqvXPV+56X6bVzuoPl3HntepAF6JnbyApb0CT10o7u8Uz14q7i2Ki6Z49mLFZbvCMxd7XDTFM5fdYyhlPKfbIeowKSs6oL8p2lISPgxtK/XFT5K84sFecQMCac8gLuvyPmKi3y2XQokN5HS4oLA93wMCcoGW3SW184LCYyE+dUfTsCDgSrgiOTbSqmlDO3MVfCqTP3Q8pyjjeTl2Y2Qq+SkFHFOpuPBIkuw+rSJQPVLA0Fg0YRCwQPgAga1ACH7pdFlKftNEBRxnW19eGUfFz2o0Twrl2pJuluP3b98ZrgsqAQWGUx4jWubY6+RIO24upyEo1TJBUzvm+dUmQG1rWPfVfBtQAIwRDbCJsECWSwAdre0gwsPFOmz/t2nI7ok3MkjYB1oRPv7qQIY8hZFjQZoluhDxXB6goPztAN6KXWu4WBQ76Vik4/6y4qIBz91X3Nt9GK+6t+Le0nF/t+JC4As7noTA22bYagGws0FbhGWLLOfNcoi4v3XjRlBFnBA/HQcbv8MGWKbhJ8paPE6tPiDuYwO0XRjC62tMqL76eUTd3SIVBUcjNkSA+/a7KqQLZPVs4jzrJoK/F3M7dLofysIKQ2I4b+v2PRIgjBpY4x4lIiOqnNpPRKhHkUlxEURoj/9bGSPYAW1o81RTorsWceHhV+uHqJsuhMbA92ExicrS92aXLZCksvHY0BLmpEF78gtD290KqQg+ELbGffWZgbYwa9nmDFyngMsIDaFmGfmDyZQXM/dDDYQbAxiDZYmCHCy1ndVV65f5y+2o8jQEJSr6KBvWocnHAjJGfE3ToAXjxuzLOt4bfw2RymxSPgyLyLjEUkN7FVp7lQs3236Yadlej0VegaUJdk1x0VYXlHtctI5XXu5xb9fx7OWKi9Zx2VYsIv68xLvz8KqK5rYat27RhJslGS5T244QGNyumCu5xdwrZpkO76n8Rrnj+ACL2EfeIyjJHgrt15Y0MbU+N9TjGmszv2bEOQMLCjwuJiEnZHmWiHLYylhwKVgHYAqlCKFEYxlidGx7YjYrtxNeZwnGPbVV4Wvld69ZibKBY1Qn024XEIi21+eP0QcXZluEGgI9WOy8Mua5nNPh2Y014p2lecPAvxgT87ikLJZxTlT+X9emWk5CUJp+oRkxdqItuolJJe4U0GYJgSJ1FVNO7ZDbHZk9iEUALGhtB1WaK+S2o073y/Vupy92zwJ9aUrJk/Z+Jhb5Y7hYgJ0oLpaOnXQ8fXHA/UXx3P2X8dTO/n3ZDtjJih2uYHGTTF1VJqeHManYWcWVK7llZRRQmYhWvN2O4EQhfg54PXCMz0cQbsTd28pkW7hSXsUktX5OyKBAO4ZAbPqDS6gOwjQi+wsNc6mZqb1+ABGymAs85bwgLub1aQW6lMbEFLPLobgeDFFmO+ZJE8gyNjjl+OR7u3Sg5wmQIlzsmBA1+YKsa3pbjvG5hDAud4u4v3PHieLKfR9KHgBEMwQt/dN9qAdzvxyjIRCuIFw8pCnaztX6HrHIXEyNOVcV+TS8Y17MRAgwzI/KpmKJsqqwHDkOB+RbAUSbu/xoOQlBmSBPkWfzunodAGGF6RmgHgtAnHDCzilIC56GN0JkgqUjKSJoIoYYm+Ki3Yfo78du2ePeTnG5vA4XTXF/1/1zxSKK+8sBl4vimcsVl01xuevY4YCGDlE7u6eBCLAkDKUZ4Tsjcl75v4spMY7e2tmhcBH7opFaNBEjhmeqKWxouQ2CJEzb3sIsH3MKAolCTdiwL7a5NfjbBgLa/wfTV0rd4nM4F5IGoS2ZNzOxgv9WBVHANZ3+7YKZHorY914HHsDQG8YdUuwMLYw95eX5IyZlfqNiSMEwW5ElE0e+MRCZ9ZUUy4jWFVTTxaD06GeUwbxDZljXllzFDnQ8EuX/TTk6o4qxrmwrkwhLsr8KKRGzIsInYM/EUQ6VfcNQUnMTcJzEeM/xnP0xvi964hZheRqCEnAhKb5xGtag6o7JMEIXIHABiEQ0ZSXTK8UsMPOT/PPKy7N2GJjg3rJiv7wCO3wJntopnntqxTMXBzx98RKevTjg3m7FMxeGKBfsPWVaTnQ7tKyjax2wTDjh4Sut0se+E8CTkop4ooBUnyPfhqM97Z3Q7mnHajCzI1BWUQUOEVtkBQcyqsD4oxG4W5BKQWrRUa757aMM1JD1M8rMRbRKa/gmB/eC930V8CUx7DAhALdSXAlpTpScpM4Idb4BUORB7hExEcqMQnMSfsVNUwdqgMhB4RMRpxDBrHxIKNhHEl/tuY7uRzUDgMqayTwAqCw+7nq6Fwoi1eGTZjpX45fSXi4G1a2kdYwCGU3AaJNUqvTblg43wc6zVBiaFTuO/PkCM2cX0qjtySrPmL52i+WVpfhZVzduRuuyupsep5yEoBQRtJ3vHBEXMEr3uU9KBiuyvR2lU83M1r6Hip+8KBOz3dxI34eHXVRh7KbxIsC9Xcdvf+XLuFpN2Fg4j/kdL9rq/kXFhfsoK2BT9HCE10GZpgdRXsb6aRXe3pFQbgvkRLTfGlZoUzRtMcDsdt7fY39l+mY6ZUIKDcqJ3t2qmV0VFfFMA42LX4Ji/rq5ztVfDnotk3OICcz+HxdJShiPSgSqpp/V+jZlbmkPxnvtvo0UKjKydBzbFvLL2zSjcSKq8Ikjxmoq34JSeE344qSzEpMKqOxWAlFjKhBzISUXVW0hrS1SeFT9wBrCP+qqaLWwsXcPSSt8DFuA+99XLYufR5SG88g2gljYV8g7dV6xy6i0gPxSlJTxoNyktgGg8knL/7Qruq4JQAbrrbwDgGqO4dsE5kkISojYFjs2tmgwohQG/TKnmTZFIsYiADhZS5iJuYvMD2nv4//qH6KTlwbck45PevYBVG33zW4B7i3wie8DJqqqk9N+78Xsqdo4pFXVumXIFawEciMXluxK1xXSFUpFQbQoKLxzJFDbGCOqTCKakuG/i8vRLguP0eBboJeoQ1OxqQ/t0NY2GHtsLSv9SlRXJkhlAuP+4Ek7YmW68KcKyWo+VjfCcN/0HtFSVxG0VsrxBbWPCyKMxTFH9T1OmqvPYGzjVOrC2kBjuRSKlidwLrlDK/pVc0U7BbkWF0RBUINidz5RkPUSdww4au9BB2DRCXpUuGgooGGxy3m+UW7Z2QNHgjMlk9JwnHVx0Ygs2QbOl24H8FmEiLdBuRaim3cd0aVDOQ1BCZi5XVPYMxcZYAOAGSgW9T4tnRtHPnAiHfz3XOzJ8JjcMjczp/p8myie3q0+QD2rY79hQA9ZZYpQnAsFyDARtDxbnqFcCZMyB5UCFlKFFosIYP7NTa/74BbuLbbgo5pKkCIxtXnZ+aQUwH5Pt2Nb7RAvuggamBU9s+GQJrhw5Yl8tZ1lsg2aoigHpylGhEjwIOSPI4gMiOd73PyeUGNmlZom+4Qcw19W/I9xnoza/tV4t7t/UoB1DAtcYgef1YiK7SAE1BERFyggrmhUge6JQJplghInKiI0ShvCxHV/f6r2VE7hL89klFnBQJudgGgyv/pHidpsTCdadKEdWY8IBTTCiOjzrQpgdOv4nA/3TVouiYgJErJPqS5s0TEBAds7zksd/3lNORFB6QIyLI7SeFWDyKruYlT/w5EGFiaUeTgu9pQOZOe6HJoV5EXrxQUA1EO4Kirb6NVr1NPWxMyBEfUGKuhxafgdDD7WiJuzrEmkRbYN4a+uWXN74Fz/QKwjJ8Tgj6HOQTvYTdn2GnsnFL4oITBDe3R+PJEqzTjO9TlhQ7SMyGNEUVlhEagTb2Jiy9wzCAG9Md21nGzoSlsm/ufCDid+7ZZjgghIDJa+u/FANEdVMvqe64KK0cL4Qro+ehF/fKa8dSCu9M7AY6bvo7Ak94iuy8r6lMcyLRxs6g5DvSV18c4BxZvv3MK6GFEw81RgZ2OV+sPVUG/Ot2x3eh0vJyIoYbOhlU4jo/MMU2+sb5W7aJBVLLNzIKk9AIH2PbLhXMWkYEQOJKzIpA/bQN6hFIFZzRZpO59QPkE7g7enjoIfo0pBpQrVQwx63tu5XY+p144EijN9VldFZrTxweoSUcAFkV2ht8WATpTq7S3+0GADCupYWnnM6OvragiH7yqmNgDw/G0JVMe/BQrbusaVWaPQhUv3ycxB7GcAc9VWkAIvfXcuUNT6gIHwCpRM3YYQW82urGoIjif68QWxuCAQX12s5p2NyYNbOjtbMW+OMLWZYtdq5m2z1LPPB7NcvC+0Qw8dbTEB1dwp2fvBF2r24DbICPh3PzR9jLIRfq2AkFQk3Vf9CSoijGxZoh9DmRDpebKOUIxEd+G7rsLI1xCI4AcFpGAeWDnSN3U+NkfuKmv+PBfupQ8LKH6IsQtHsalLb4eUpyMoodlIN3c0cvBlV1OjWeYXFFXNP+T34hDeDlJHS/WktmKcPHYRpJCIV7kJVmIDTY6NsYrcuaEo5lk1y5ArgClMS/ucbTRhaEqKlHsESUNW4A/yiAU2X4MT8XkEnVbzKuSs1oGr9SefY1Ww1bpKnZU7wyQxhRmIVDmhk7d8sloAyKcHumhNaHlvoNcQkjHSSl017ClNXca1piAtL44BpZWQrFOOTNQACsXfPAxh+qsZOqOFX05PWE86vXYc72RL7bN6kudI58SNgrbDhxonSk7Lc3VsIMcCkSnbFBbF8MKCXIFAtkf56eOePtJo3lSqwfE45YQEZWrwKkxYiLQKqIt71OMUw4cRdxBpWNIB1GNsw5d3RIgOaOuo2nJtXlASV3pVoU1sAYJ+o/kUwb5a6Ebv/nyu5DGkw8ZBtwQRjlhtWxzCzMydxc6rMO0FkTxkcB3oEGw7rLIyKDmC0j2Ok/sz2XKuOFM4lUkaZ5I4Xa01nzd1AajwSTtEF/AUyU3PkhHdFUBrYUGFcsi7h08ZkLqjS8/W09fV60thkWLxmFJBKsTi3rGthvCtm0XdyfSso9YUClFhvC+DwJ1PEDBhhCGyBAN2r22/jFMji2CxmFLj7Y1lEnxJp4/LthQLCBgCzP2dARA4yqINS7RPZAfxBU7zs6bbi1YTx4C5t7kJIutOV1nLcR6HCt7SSC20Rghcj656HGh0QoISKaCOoJgUXq51QgBIfi/3JMroUzWuoVGR2w1l8m+kSTsO9Lwf4FZCLfdvBMD0bglkmkhAINHJdWCFaRsUHSvJq7HtSWj6C4lOC/8DzKVZREINMIypsXjPiBC6Bas3QoUy4KOfvG3zPvC4PtJfN/L1cvQwA6Q3iwEAuF2VhI5xhNh04XhxyzPSFWHc3jaNtpW6C88HxMkmcnwUv+a1JVwbQIaTlfoGutO0dZjo7/OOLXMlFAoQ/WACTQHxuNLK2+ldQ9KWGLnpQxSnfXjP0KyCAuNkAs0XTVZfrWTemhjPYX72hiLXzaEsJyMoQ6NOQeMpzLSAPEMv0mFhCsrtiuYTkgj65kSrAzAn8TwwDU0pIpGoC4wakxYatvprIIEO7SbEc3WAZHv47kQXRILLshhw7j0mQwhbyXAoqHj6zjoqShPRNwMyeMKVTg5in7/jxLKJEifbefC3eAaHJgIDaH6WSaAHBHIIwabcoMppmrQSpfUgJNuS/YGgieEwyuiF8HuWcdPIK7bak2osMNSyjslwQ1gdnS7ztezjwc/Gfekcc8fCXQblqObLbIaoKPwY2jLylEqZPPF3d44jHz1tifuI7siv3Ho4C2OhlrYwHiRyVPWk1gNwIS3sK16m8PX3uhUAYRtbpFKTwfLzx2MFf835ocC4cFXkBABbiXcFEPPKBnPd1JExvjkna5tmd9CxcjKCknxWcDVXUoFw8sSRsvw3v2eAbvoxOPBNuDSxLT82iQG4eTEgLjA5RRvGBsHVUDjoA321UZsdmXT0n2VMZGlHVssGgwsfIzEUFJWqXHOtPAn9GxO0ouHiF3VzvPuhbBH/VgTIsV0MDEZWN42E+STbEgohkI0LAB6ZUGrJuhTgokD1uSa6kIGtFbWpL8yJiGUv4rkbYQnw+5JhS7GQhKC9sjlETvBg2hdc0bArN5qFgwuIQlya5+xz5aEd0hUiPILZJ/0QwuIKR9vIf3FXRGf/mqAWtIg3pV9PudEiziNK3o9Zj6xeKs30j5ZFQs49zsdAuJvh4Xy0JNTiYGLoN9Qxxmk+ujdQE6OoxngmbwS64QuUi346XB+iTsp6wW8dQclJEJKfzmg2oGj+JpZBxj9jrKrAo9ERgd9Cv1iebyzq6EI8HT9GYWnvaBvmpVZSDL6aIsS1Mr4IzCEEYdakTmM1y3g2SsbRlRXdEJQS+mKave4vzfPPiVLSneVn6HDgAZFvUWGJZNuSWyDZP7lbAinwWgO6xa22oT0oK8/qKAOopyIWLZjzDvWeMTSnovnoA7YrtvM1mwO+0JfdkIJuaXZ2uzoiFKmK1Slbp8BkkZF25Tgz1BuKQcv0lBRXpEVacx8pDHWRh1UpLcitr9SHWjJd8b2wkxL7eghhaawcQ6XQxMMZtUg0ifFRsJX9KQaLi4Cg+TgM//CA2rffQjD27ZJSmdKhD1PZUxRU9Ej6S3/G3vHMgDUqTyRfJ2UgRLuPISSBUxGUbExbQqMGAvAO8bhmNGVgKkxQAhGmkDCAjPHqA6U5JNcWgag9ztuhbkRBi3Ch1EsdiIFP2u2RHu+oAw6lc6swtDnE0VFhLV9KYY8iXIvmhTpy4FESGgJDu3qYBR3fKJnFUWhnc30C+tGvtqPBTCbu7JH5ftiEbdLQZQFqjGMTA//uRki+DZU4R8icFMJ140EgGeS/q1BTRhjE+UG0SBTh+Cda1TWVckFs9HUKEZajRxUKYrVnVZETjhOtIB9H5EFoKIlUoLHw5/VaDs6Dv3uMfigkmuBiwHed9HyOZjsU0teN8DOZKYXfVLpazsr2+sRCcWxa5di071xYsnfWFWp1PqAIpGjApsQo9jhxp6MoYtR+Bfy0A3dxKYAZDbOu4Z1pTdlhea0AkjXM8dsE5okISqIF/15P1gN8cjQPA/QOIjqfEBrlVGgn2HSMDoBAaUr4JC5K1u4ffHW8p6DairB4W/U/VTukosmou7S7auAQrOJUT8Il2lQmI7UlaWBF9eF5MI1SL6hrzhcexUBzdCC5ttEZPWRDGtBKIn5sJlyZqE5BCkDST80/tT/NiBSChS00G1vLXqdQtix8LfprWFgTAbhSXBQM6LODApoxpbFg15qjQ0Ht7xgX3qeBLE0S+So8wmS3gGpEXxEh5bhIPxuFW0xyEUPBtB6iryWts6IsB7So8BMkW1Ek2Y+l5wKLDFZfRXFFiWbHjWN+9NMi11tK+4LWzVZUhBWQSjPnUVrp5HvWTfdYdpO7NdxVdFM5LUEZ2jwhNFdMzU+TAtNixDeAnpWhSD3AzQ9KV4lUZFr+cvDEtRhYNU8mgsa4t5g943sHovKjDH4LbWqogpiPxzT3QHWlL2z1Q6n8qEdZMnSCbWMYhjAhwUAH3+G+Mt/hY7ksxQO8JxEdWrgOWsebTUDHet6P6buMF6mLqhUAdt0yosYadqSaBxeFoE7/1zChUOIchUpTwk8YZl0oNedtmLZUArbbxNwXq1v1AtmlIolx6UhRQtCyYnXLJMe4eIhap2BfqnAZmF8EUC6JZbH6LCadi0GuCNxEFWbV4aJOhKql/5LHsUgTSFuwlD3Us7Cq1lco65CqRH40bdM9gameo80tczJ41WDHLHOuaTB3HHfV0lMgF3K3L6K7ZF1vFpLAiQhKmyc5gEKTFagQ9wgCZVwjJkulLBxk9V/XldJJBRmO0Pxo7z5mGQVGNU0rBcMTMbD91wG1aExM1i/RhgkNHp2DlFhHBt3m1iOcC+SYAv42Dm9+n+Z9oiBMbRvpkOFx56sU8/IaTG6/jHVML4i6nKANoqlliH6YXByUk6mMt+0Z3lv4eRzljG0y5Mwti1VQFZQHLgahzLMj+mt6f0r642FLMn0G2p0HXWCEG2fs8XdMlpACU7b88iPgoYK31orU1KT8liduD9j8+BcR+RCAlwD8z7umpZTX4rToAU6PpjM9N5dTowc4PZpOiZ5PVtVPOPbDSQhKABCRH1fVz7lrOlhOjR7g9Gg603NzOTV6gNOj6dToua602285l3M5l3P5/7ucBeW5nMu5nMst5ZQE5TffNQFTOTV6gNOj6UzPzeXU6AFOj6ZTo+doORkf5bmcy7mcy6mWU0KU53Iu53IuJ1nOgvJczuVczuWWchKCUkS+WETeKyLvE5F33MH73ygi/15EfkZEfkpEvtavv0ZEfkBEfs4/X/2E6VpE5L+JyPfeNT0i8pyIfJeI/Kzz6fPumJ6/4H31HhH5dhG5/6TpEZFvEZEPish7yrVraRCRd/oYf6+IfNEToueve5+9W0T+pYg8d5f0lN/+koioiLz2SdHzmyl3LijFUvv8HQBfAuBTAXyFiHzqEybjAOAvqurvA/C5AL7GaXgHgB9U1TcD+EH/95MsXwvgZ8q/75KevwXg36jq7wXwGU7XndAjIm8A8OcAfI6qfjos0+Tb7oCebwXwxdO1ozT4eHobgE/zZ/6uj/2PNz0/AODTVfUPAPgfAN55x/RARN4I4E8AeH+59iTo+dgL9/ve1R+AzwPwfeXf7wTwzjum6XtgHfleAM/7tecBvPcJ0vACbKJ9AYDv9Wt3Qg+AVwL4BfjiX7l+V/S8AcAvAXgNbBvu9wL4wrugB8CbALznNp7M4xrA9wH4vI83PdNvfwrAt901PQC+C6ZsfxHAa58kPR/r350jSuSgZ3nRr91JEZE3AfgsAD8C4PWq+gEA8M/XPUFS/iaAv4xxo+1d0fM7AHwIwD9yV8A/EJFn7ooeVf1lAH8Dhkg+AODDqvr9d0XPVK6j4RTG+Z8F8K/vkh4ReSuAX1bVn5h+OgX+XFtOQVAeT5dyB0VEngXwLwD8eVX9yF3Q4HR8GYAPqup/uSsaprID8NkA/p6qfhZsX/4T9yWzuN/vywF8CoBPAvCMiHzlXdHzmOVOx7mIfD3MxfRtd0WPiDwN4OsB/JVjPz9pev5vyikIyhcBvLH8+wUAv/KkiRCRC5iQ/DZV/W6//Gsi8rz//jyADz4hcv4IgLeKyC8C+A4AXyAi/+wO6XkRwIuq+iP+7++CCc67ouePA/gFVf2Qqu4BfDeAP3yH9NRyHQ13Ns5F5O0AvgzAn1G3a++Int8JU24/4WP7BQD/VUQ+8Y7oeexyCoLyxwC8WUQ+RUQuYQ7ddz1JAkREAPxDAD+jqt9UfnoXgLf797fDfJcf96Kq71TVF1T1TTB+/DtV/co7pOdXAfySiPwev/QWAD99V/TATO7PFZGnve/eAltcuit6armOhncBeJuI3BORTwHwZgA/+vEmRkS+GMDXAXirqr480flE6VHVn1TV16nqm3xsvwjgs3183Ql/HrvctZPUFdyXwlbkfh7A19/B+/8oDOa/G8B/978vBfDbYAsqP+efr7kD2j4fuZhzZ/QA+EwAP+48+lcAXn3H9Pw1AD8L4D0A/imAe0+aHgDfDvOR7mGT/qtuogFmdv48bMHnS54QPe+D+f44rv/+XdIz/f6L8MWcJ0HPb+bvvIXxXM7lXM7llnIKpve5nMu5nMtJl7OgPJdzOZdzuaWcBeW5nMu5nMst5Swoz+VczuVcbilnQXku53Iu53JLOQvKczmXczmXW8pZUJ7LuZzLudxS/g//I1S9D26R7AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUoAAAD7CAYAAAAMyN1hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAADW2klEQVR4nOz9baxt2ZrfB/2eMeaca+1z6lTVvdf33u7Yjl/UdhInJAG1sJOgyMQgIhJhC7AVSJAJRv0FQngT6eRLPiG1BELkawuCLBGJmODEAUJe6NgISGTFbQcsx+rg2G73m/t2d9WtOufsvdacc4yHD88zXubca++zT9WpW7vq7iHtvdaar2OOOcZ//J/XIarKU3kqT+WpPJW7S/iyK/BUnspTeSqPvTwB5VN5Kk/lqbyhPAHlU3kqT+WpvKE8AeVTeSpP5am8oTwB5VN5Kk/lqbyhPAHlU3kqT+WpvKF8YUApIv+wiPyciPwVEfnJL+o+T+WpPJWn8kUX+SL8KEUkAv8x8F8EfhH4D4D/hqr+R+/8Zk/lqTyVp/IFl+ELuu5/FvgrqvpXAUTk/wD8QeAiUF4dP9T3X/zoF1SVp3K7PAUZXC7yZVfga1be1M8e1g9FBAmBT1++5Pr6+q3Pf/hx3/91Vf32pT1fFFD+ZuAXut+/CPze/gAR+QngJwBevPdd/vE/9C8+/Oryg+jQ7xhMHhU25S+7Ao+wCE9A+a5L38+U7SDof9+3D+J0YHr2jH/nT/9p/oOf/fOf+3p3lz/583ft+aJ0lJd63KamqvrTqvrjqvrjV8dvfEHVeCpP5al81YsEQUJE5MuzPX9RjPIXgd/a/f4twC9/Qff6gsp97OIz0MN3fLmn8lR+eIqJ3l9m+aLu/h8Av0tEfoeITMA/BvzrX9C9voTyjkW0J4nvqTyVO4uIIBKQH4jK7XL5Qhilqq4i8t8H/i0gAv+iqv6lL+JeX15500t7S5r40D7wxD6fyg9TkQBuzPnB2CYuly9K9EZV/w3g33jwCV9iI3wx5W2e5y3Q7yGXfQLTp/I1KoK4fvLLw4inyJyn8lSeyiMtxiTr39eRUT6Vtymflybu9n1BZPbrX+5oDLnw46ndvvgiLmiKfKkgCU9A+TUuTyP57cpD2uvrph56/KWwyaKr/LLKIwLKr9LAfmx1vVSfB9bxSef52cqTu9cDy97xu/++b6jtftNN0v7e6nqfxeH87vJIgFKB9GVX4oHl8zf6D1/5KqjCH/JOn97725X9WHlopI4fKwoyIqL+O/sxD7nOu40+eyRACV+dsLqvE1A+UJT53BLPV+Xdvqk8sfS3L/vQwrs+L++TAN8X+EiUjyoAPgSA99f7fOWRAOW7nwHeffk6AWQpP6j45q9Lu31dnuMHXT5jzLcoIQp/NcC/iaJkv9ZnjSH/7OWRACU8ftHn6waUgj3Pk4Hi4eUdvv8fKtb5liK3F9NRKvzNX0Z/8Zfhl36B24zyTSz13YzbRwSUD2WUXyZgPXbW+9AS+BqNwvvLl/KYPyRt++DycHDc7hPTU/7yL8D//WdoIPk219mf89nKIwHKtxG9P8tDf96GKnX7ugyAJyb52cq7aLOvSx96U3mIRfp+HaUEJVRH83Th2D0wfnG6ykcClPDFsbV3wUC/Khb5tylPQPn25V1Y739YgPI+cfshx9hvi8i569g9EL6NiP925ZEApfLFgdFdjfPQRnt3eo7Pdo13CWjFeJPe8XXfRXls9blUMp+/nj8sQAmfXeTGXYMGJKi7BaUL593FSN8dQJbySIASfvD6v7e537uo22d5YV8keDymAftVAMlSHlO7PfbyFsC4+22Ri9rCGD8r4H79rN4PKW+jy3zo9R7SkJ/1nu/a8PR53Xm+aHegz3r9J/D5epb7AO0Nx0hERIiB5nB+5/W+eJL1SIDyXRtz7j9GNkc9RNn7WQHv6wqUX6H4vR8qN5zHWO4TiUvZM0IQ1MVv7POiBfsH9+IeCVDC558VPo8u8b7z3uaa7xoY31Q+C/C9q3DCS9d5Qpyncql8Bj9KEQPLgANl4gevnmvlUQClDfd3pQfsP/fbb9+37b8fKN8MAe/GDeHtiuw+H3L8Z2nnS9f/uviU8pbJ6r8K+tQfVB+8qy0ujb+7wPEy4xQBCYqIGmB+yZPwowDKd6973F/7TZbvz8sov+wX+TbM8m0Z5UMHww9D+aqA5A/i3bxJ/fKmsXXpmA4oY8mspq6jfAJKLz9Ih/NLv++7f37AEHkI6/wiSglF/CKO7T9/EOWRApHc+nK7PLp544uu0ENp+H06yjt+Syhm789dy3dVHhFQ/qD0gJfOfxNQPux+X05i8be5kvJ2YvrbAOu7KD+oJB2ftdzTFj90RqOHGlX3+seHGGMsFyVATpmcv/yGeyRA+Vmt3p8FNN9Oj/n1K28zIX1e0Hrb89/FPZ/K4yn3WbrvKSLIMPC9X/8N/t//13+Tjz7++Iuo3FuVRwKU8Nl0lJ9Ht/nlAuNXAw6+jDb6Gk9YX/JL/8G37JvueFeD2KqLp9OJv/JX/gpr+vJDiB8JUD4E8L58he5Tedvy9L6eytsXgbb+wyMpjwQo31SeQPKpPJXPW97KC+rLLAIiX+7ytPvyFQFKuP2aH81rfSpP5am8wyIihDggYXg0rPIrApRPIPlUnsoXXR6D4V7c80EewVreffkqLI93R3k8jfhUnspT+fylee6Kr+f9eMb4ZwZKEfmtIvKnReQvi8hfEpF/2rd/U0T+HRH5//nnNx5wtQf8XTr+qTyVp/KDLA8ZqZ/1D6hMUsLXh1GuwP9EVf8O4PcB/z0R+T3ATwI/o6q/C/gZ//3Aqtz193ga7Kk8lafyBRYL8kZCgPB4BN7PXBNV/RVV/fP+/SXwl4HfDPxB4I/7YX8c+EOfs45engDzqTyVr3sxNuni95ddma68E8gWkd8O/KeBPwt8V1V/BQxMge+8gzvARXH7MTXlU3kqT+XdlLvG+5dXPjdQish7wP8J+B+q6qdvcd5PiMifE5E/d316+RZ37Jml8MQ0n8pT+foUiYEQoy8q9jUQvQFEZMRA8l9S1T/pm39VRH7U9/8o8L1L56rqT6vqj6vqjz87vnjoHS/83bfvMf09lafyVN5cSkTO4xozn8fqLcD/FvjLqvq/6nb968Af9e9/FPhTD7ziG/6eylN5Kl/3YhE54dEN+8/jcP4PAP8t4C+KyH/o2/454KeAPyEifwz4G8Afftjl7muVr4OD+du89a/D8z6Vp/IZighrSvz8z/88v/TLv4zq4xgLnxkoVfX/xd2j/w981uveXcqtHkfDPZWn8lTefQkx8vL6hj/5r/5JPv30JTk/jiVHvmIhjD8sIPkYgsmeylP5ARf3oUQCKeVHA5LwlQ5h/GEvj0iB81SeyjsqRUf52Hr3I2GUD9Hc7hmUXNj2w1Ye2p1+2NvpqXxVisV4Pz7+9kiAEt7OmPPDJop/3vJkSHoqX4XiMd6PECgfX43uLE/O5U/lqXxtS0mGURL2PqKEGPCoGOV9pWeQl76X30/l85cnQ9JT+ZKKPL48lKU8IqCMb9ifsUG8/4TtAupPy0Y8lafyVSsVIJ90lPcVAXkTUBZQDFxmkw8Fyx/WZWofWB7UHI9vxv/6lR+2fmni9uPKGdTKIwHKADx7wzG9T1VZtfGuBdYvrf29/8vdOf25T+WpPJUfeHH9ZP18ZOWRAKUA4xuO6QHwLuaYH3DsJcC8dL37mOele35NypOK8pGUHy5PhY0h5xGWRwSUhwceewkEL+2D2yz0PqC8BJj3Mdb76vFUnspTeZvSln94XOnVSnkkQBl4OFDuGdx9wHjpM++23QeQD2Gle6C969737dsf88jLk7PBIytfAzFAAjlEflbg14Dzl12fXXkkQPlQRvkmI82l/Z+VZT70mPsY6f6YNwFuud9Xr3wmQXF/0lfz0b8i5XFHcUkQcgj8BeAXH2FHeCRA+TaM8lK5JILfVd5kFLoEuJcA9C4QfAg43nfMnpneV7eHTA6Pr9M9ladyuwiSM/zpPw2/+j24ufmyK7QpjwQoH2LMua+8jUHlIdbzu35fYqYPBcSHHpvuOeY+oN3X9T4r/iMFz6+BBPnVL18O8xQRVEH+6l+FX/rld3rtd1EeB1AKML3Jj/K+co/yt8+3cYl85QsvfIM7an+X9l1kdneBIXx+tvlZRfo3Af/eW+C+uj8h1VN590ViJITB0qw9wvJ4gDI+cCa7eNg95+4TE+3J5yUyusEVvd9GdBEEcXDds7odAOkbQO7W/rfRdV7SnV6ow2e63qUGu1TeAKo/NJj7kAf9QbrFfJaG/6wroL75XlIczR+paxA8FqAMwNUDjntTNrbPOxldYpzwBjD1CmVnxDncQ+D0wrYLf3eC4kNcmT4LqN5XoXKd9BbX1QvnPJWncqn4+JGAhPhog74eB1AKyAUVpe6O2Xzut5fvn6Oh5eLkJw9gneW3Qpb2uz9OAd3t66XZDWHT7TUrw/TwTe0uXvbrxRt2f/eJ6286rwe9+4B4f4/k37fHysUG/OEqPzxP/pABKTVj0FMI433lIYzyElvcA+NDjvms5SFs804mudt+SW24ssOacBmHLhnZL0Zh7tE47056KIjed8ylCu3BNbMFzLXbVo55Kj+0xZd/sIS9n8dO8cWWxwGUD3GjvMQk9yB4CRQfApSfR92yATy5DJw9aavbdft7gzlyGc/uInV77EI79uqzh3pGeC37tf3es1LtK32fG9R9zHIPkOX76t/LzLAX6b+OYvrtDvZk4G+lZg4SHq2e8nEAZQCOb3nOpTy+9wHnF6HfrCDT/77w/dZvuRsML+FN1sv7L2FMD7S3vu+Pu+O3+j3vrNibgLJniz2TLACZgYUGoIkteP6wQMT95Ycj2tuNOI8wWW9fHgdQvk2ot3CbTfYZ2PbbLh0Pt3vhZzLq6baH3guO3XdVu8Fd4AdbHLpLwr3PvvImIvgmrKsgK1umWRlrB94bplqer6/4yhYoE+Y3uwfQHjT3D/5Uvo5Fatag8ASUbywCOj5wMETuZo7lL9yzr5QLDLInfJ9Jr/kmoCzllsGm+7vEEvdA2asA4R6gYwuYb1IpbvbtWOmbbDrlHtI/X2GMK7CAJuwFls8MBNDsvy+xTritx3wCzh900S+ozS0ZRln+4XH6UMJjAcq3Eb0Lawz3bCu/L/2V8hCG+bYW9TsZ5IVt+3N6IIPLwHQXSF0K5rlPv3mXXabg0UMl7TcCbzAvgDVCnpxpOhjqzJZtLmxF8IR1zwKYvSj/BJRfm6JfjXf5KIBSgSQPVOJfErvvYpSXAJNu3/6al+5z3zGXyiUWeakv9CB6CXTK99BtC9wGptwdky9sK7/lwr67jumfoVxT7jjnliGJLYCDiVSVofrFVJ1J0l28b+TQXaQHyf4lXJqJnsoXVb6IVlYUREmrzdRXxyvee/5efc19fsrz+cw8z19ALd5cHgVQppT5+OUDg+B78Avczx73+3od5n1AuTcS9dd5SG+5S+S+75jejnEXS7zLeHMfo3yQHlO7bbIlbW/SY963vRDGniwuQFKXrgXWkdbAhV0KJqYXVMfFMvGLlGMVmHcP05fHpPN6G5h5bDbxd92OVndVCOFMiJHp04VhmvgHf+9/DkUZDhMhBoZxQIIQQuDP/D/+DH/hL/yFd1yXh5XHAZQ58+oN2UIEQIQQi4WMBpRlLEVxtyy5DZAByNLGWyEwpezVI5f6RiE5byqXgFK6fZeO+SxgdNex++tf+v5ZyNi+TfZtWI7Zs9aehW4mMwfo8pI00oxE7kdKtu9kbF2lgrjlux9zq5G44/PLYp/33fezKsTfRdl3zPuOeVdF64eIIkFRzqxLZrqaiENkGEZCjIzjSIiBOES+9eG3+JHv/Ign+LVEv2Bj/pprPpKP4BPg03dcXd4BUIpIBP4c8Euq+o+KyDeBfxn47cBfB/6Iqn583zXmdeGvf+/ujCECxBAJMXI8TmYcuwWEwjBGJATGYdjqLQOEGGxmiqHz2eruobZNinhLd/1ed3efCP7QcbgnP3vAfNM1erVDD1Z6YVvPhvtz+jr0IFtsLHcAsfbHFyv4rs5SxOxCCkcavvXfEzD5MWuAFCCNnculXz/7wVKMPCuqG4qK0PbZsXu3o6KE/RwAc4c+7SFXvNhl5L4j9N6fDymXTrldjyYm3XWL+2Dy88O1Da6b6zOCg5+Ij/fAeBgYxoHxcODHfsvv5Hf9th9zMB0YDiMhBMIQ+I/kL/GvhX8N/gzw//zclbpV3gWj/KeBvwy8779/EvgZVf0pEflJ//3P3HcBRVlYbCCqtj+09s0gBnQ3OfqyloCo+VH7XxwjEoRhsM8eLMMQaqPugTKEQAx2/co4sU8RsX0iFuLo51WMluDHh/o0YIFY+zWKtZxIu4cAqh1D3oi62ljZJWaZ+nNkC1gXwU7b9z3z3J971749Ocu392lB1B6rktz2Cip2mrpfO1wTWMXUAilYi6qgmiFHyBk0m5GI7MDZAaX27kYNREV2DdmHiEr/8H0jcAsk3xYg+uOl3/gOpOy3qcvtY9989hfCwfcXVVBRNPl7yErOASWT1sS6JuIwEIeIJiXGhXReERfPr+IVv3v43YQPhfC3BSdEobJPBD799FP+2l/7a5+pup8LKEXktwD/CPA/B/7HvvkPAr/fv/9xDOPvB0pRlrCQk5I1k3Ii5UTOmZwLcNoAzJKbpCbWqNk7uQwmdkdnjww0EB1ipfAhhA1QDjFymCYD0hhMJCwgKoHjNBGDMHTrDQcyAkzD6NfzpqwAKMQYu/U/ekQvx/nBPRjd5/e4/9vnnLjEEt/mj3uuc9fvu44t9SpEbu8eWfzNd0TwcrRj8N+x4d7Gk0gNZNFuR+/Q3jPKN920NGo53x9I5E5G+VTecVHImiFn0rrd1bsTxdHG9HSYeDYe+Yeu/vOM3x0Zf+vAeDwQx8gwjlWS/Lmf+zl+/ud/npwfaDjuyudllP9r4H8GvOi2fVdVfwVAVX9FRL5z6UQR+QngJwCuvvUj/Njv/K2krGjOpJzJan+aDCizKhllZTXGEiA781w1kcnkkG2SFgNVDUrSTCJBKKK1gZOSUVUDZFbyuph+c8VYCxlUEYHTKTp7LGKKEowfMsTBX1yJU22McogjMbgzLcYoS9B/DIEhNiTPm5BDYYij7avbheir1AUPSwzBr+fv3ViX16EDQN0D2AUGuWE52r5emvn3x+FPcevYZKSvgRkbPJINGG73tU+5jWuVieqWfapCHqwNK+tU+8wKWZ3t9jfo/jTvbtADZ68H3Zv3L9HtuwdjTyQb9n4OEL5w6tv4PUqb3T9f2T3LRRZ93+kPqLIqBM2oT1w5CLpmJAbmmzNhCMQYGaaBEKOJ5zEyjJGjTPx9P/77zNYxGCkKRZJE+Jl/90/fed/PDJQi8o8C31PVnxWR3/+256vqTwM/DfDdv/3v1t/x23+zgWEuwGhAltdUQTJrZtbFQdCs5Tkpi86smlh0JZNJKaMYSK66MueFRAe+KDlDUiUvycA2Z0RtYOW8uIiXEBTpXrk4iIoDpSUbFQdR6w5F7B7jQIwDTSw3/YsA4zAwDZODaHDoBcUY72G68n3Nw36UgSiBKNHF+oiiSJbqgbMdo1q/V9DbgaQUMN2x23s79p5V7ktfj57Q7QFR2YFit63ft/SAS9Nf9sSxAmaEFLf33fux14sX3WfqwLMcNHO7wsuFbW+i/b0Cufv4PKD0LsD1XZSH3H772NyFyRcn5b50M3lWRRRSth0r6+Y4EakgOBzMODQdJ6Zp5Mf/3h8njgPDZH9xiMTBxtPP/Lt33/7zMMp/APiviMh/GXMXf19E/vfAr4rIjzqb/FHge2+8kghxCgYnCqplRrKBXoAR1FhjFb3LX0bJ5KCm5yiMUtSYpsEskBFNoIrmRNbMmlYbhTmjzjxSOpM1oclYhibbn3Mi5ZWcFnLO1RVQVZnXxRlq9rGjIBllYc0ZzTYJgB2TF2F2JlmgtwGWEAqj9PAuJRDDQJBACAMigSGOBBECti06gw1ix4qEql+NISCUP2fXe9H/85YyV/TEqpdse/DbY8ylqMUCmD3gZRqT3INhTxJ7UL0l5osxzhScgbronoE1t9+3xPP+ew+G+4fS7TGbJM6X/vb7uPD761se9IT9nPOmQ1XJKbvqLiMinG9OZotw1VuIgTgOhMF0nOENUUGfGShV9Z8F/lkAZ5T/U1X9J0TkfwH8UeCn/PNPvelaImZssQtvPmw/bFyBtBCt7lPEvtd9qBt77E/IiCghu4iVE+r60AqUycXx9YxqIqfVAHJNaM5oWlnSzLrOpk/N7YXczEJ2tYFmRbPa2FNYVtO1pnJ9kp2bMymrMVsVc2dUdQ7rIImgElAJBImIRCSYuD/GycBQgoHkMDHGSAyRGEznOsRIIDBg5wZiVXCHkv/PDUHF7lQMULJ5Abe+bt+Q7HYWxlqALWNGq54tqp/bA2TFDL3NLNcL3/ckrzccVfBjZyQqv6UdX7a5IaHWoQdH3VvPy1+XCanqOfYOrLvfugNVKcfQjruV4f5Cu98BM29HWG8PurvAy1TrD9PX3l27y7e/ffTuKbp7VgmodjT/KI/ix6bUqUBKv3YjaxyH6qsZwv0t9kX4Uf4U8CdE5I8BfwP4ww86K3J/qxZrdJFEAxDVnsDdg+q+iLtaKiKZgP9JJoRcLwcQ1JiVqDMtFNEDxj6tg0rOCNk7t32qW5BLX045+dhSV4kVAxSsyYAxrfY5LwvrujLPCzfnhXlZuZlX1jVxmmdSypyXRMrKmpWsDqxaMN6AdHa9qDRFQDOquyogRmeYYgA6DAMhRIJEpnGqDDRI4OC/Y4gM/hmDuH7WXkDRzfYJDIJDe3l9UmR3ETQIGgVV8faxuiaNbUIoCg6Vut9EMbkNlL04f8nws8+tkS6cXyztC5eZaaJJ3uvg7NOBO+8+q8yobNG+p9F3UeZL+oc9w7yLgt8n9r+jchduPQqj1o5KPYRxFklVra9qziCwnPaz/O3yToBSVf8MZt1GVX8D+ANvdb5gFuw7izS7hmDo1kfluAW8JiAJNvSC2JCLaANK31YGdxuu/Z+BT1EFBP9VtgvmDF3HCKA61N8ZapYyBVIyPWhy9rksI8uamOeF03nhvKyczgvrmriZBwfMlZSVJdl5a052viqLi/trXv2Fa7FVVNeqUrEcrPYxmMiR1gaUmibb7n5rkg0ohxDQGNEQ0RAIIvbprwKkKsCLp1ZwSmqgWt6lt7L4H0L2bf0n3e8CqNaUUlmoqti6SoWMraBZjCEqLk6X7dxvaZ9pQFmY58XkRuLHyHZfD6q1qb1iugO/mq6um2g3oHoJKHvGete+S8d27GkDmgUg2PxuRS58u1A6MOr7/r1Jf+7Y906MWPuKKU1Pf6EOt/Sihew8oA6PIjIHeHM+yAKMrrqroncvhg8gokSSg2CqbHJg9e97oFwvAGX5y36sdejQ7ytWkE3rl4Hvday6VvyFWMVFB7+idO5PJq4vSUlZOS0GjOu8cl5WzvPKzfnMuq5cn1aWNfHqdGJdM/M8s6TMsmZSWkz/WnWoVgfJbQEnFRv7Nzct8X4VxR2PDEwDYwhEEcYYiEGYwmifw8AUI9MQ3V8tMEUD3TGaaDMEm4YsosZVCHUqspKJPqSLMavf5+wzRnuLYySrvcVEJBP9M7AyULMc7VnmxlJOxxZprLJnmb1IX0C1Z6CXLPUZLAmIuzKl0QFct3iWSr/owfISo7y0b29Q0t2+PbPskbwH5ndQHgOp/AGWrxZQVkbZ/xVK4wxStAJiD5SB7EMq74Ay3QmUgQx+vf6cAqK3i6C+XWELorI/zkGhqGYVUGHNQlblMEJKgTQF5jWyrAPzEllT4nReWVPm+jSRUmZeFpY1sayJdV1IKbGuK5ozy2q62B44MwWcTQ+mQFm2t+ZQze6o65ESmoUsQgqm11jXACGg0RhnECEPA1GEHExUz8WPVCIhOKCK83Mpjv+uLwlFqBeL7MGBUoTMQEZIMqAipAqQkdXlhZXB3pjXWdVEfiNyVn8dbHuejInqJaAsIFp+TzQWObNllBt8ky1wVnF/pz4o4oY6/XF3MPvt+qeaMOQSUAa2QJlcEVzUQr04XujVLQVw91dKN6nfU/TCrzsl8QtUc6dZvOvEt9suD7vufRqDN6XCfBxAWcBvv63/XvWSbJlkxBzNhQqEBSAHlg4kU91fhL67gLIAY/krx1wGyi1DstKT+dvLJaVLL9yfUQtgjLi4OlBeU3VKyqb/XN2gtCaLXFiWlfM8s64rpxv7fP36Ncu6cHM6k1JimRfm1fShKa2oO/ebxV4R9T9nzSGpz0XmYG8eq0ratZFAZZ8xQJTAYRgJwXSj4zBZ/K4z1aIfHYKHocXBwTNUkV5d6azECpDlDa4MHbMMJAfKNQxkCZtjkytYZp1IBBZGchYLm+yBcs8sC6Ms2/t9PWG7CJDcwrMtC5WmLkjxjnOUrZx/gSbXsM69kWlfmb0+s99Wjn3HZadGfCflXV3nLcvjAEqo63rf2Q7Fb7s33ESMSTq4RRev2+deQLNhU1in6A4oq04zO1g00bsAZZDc88ELIEmn95DdbGfsYmO3usU0w26ed0ZXdKJIjUgaAA1Kjmr2hlFI00DOwnIVyDkzvx9JKbMsMzll1nVlWVZSWlkWc3Nal7ky05wzeV3IaSVns/oXn1IzYiVEM0KqbeTaRAb35xxUTQDwcFMNgbwMrDEQcCYZB4KIOeyLOQmb61Mg4lbJOLpYX46ZgIjKgIYJlYEshUkWgCwA2oNoJCMsGFDOTHZsEeljIA+BnAM5BWOfq+snZjbMU8r3u0DwTUBZLO97KfrS74QZkopIXxzqC9BtPPb3ugA7RisLNcPmbbaZvK/28bPbvlzB9VZXv6QQ7Ld0o8OlhOo/Wndc1o+WbHyX7mhfdhzyXlDebuj1qw8tjwMoBbNgc0/9O5FbYgFKM+AUBnkJKAcSQxXQHCi1AWDA3YbQOvB7Ef02iCbXWd5R2dvk0j92zPMivl5ip1D0nrWFXJrTWKg2prtFECJSlbkAz/xg9ytLiXVZSR1gnm9Oxj5vTqzLwvl0YjnfsCyJdVFSSqTVdJ8pWaZyyTZAmxdoY6NDQYfUHtWGoPomYQY3InkMvoPlEAKDmDh/GCdjpHEixoFhuCKEEQkTYTwicQIm132OqDbWmTSw9lOkGJNMRGYmkkSWOLLEkZVxsy9rcKDUxihLkvbVwFP2IHiXhT1hqoSExTFfcnEq5K7391xxt6W4ZbiZemHt9QC6Q9ji2iQJG+Z7hWpJIFC2x+57Jw/V2Piyoe+vut+w//J2pZN/H7wqhG7HlOjeNCO7v83J7dsbIgAeB1DC7WfY/+7dg1zsDpI7YEzVYFOA0gDSfg8do+xBcOgYZfCB3/YX8bxjlBTnldJ5dFtlvTB7IfXzvlKMGre3S3ct7X7ffvnF8LSBXAd5gppzfsjoqOhBUQ3k5yM5D6xpQFMir1fk9T1SWsnrjObEuszklFjON+S0ss4n0rqQ18X1on5sSvZZfFXJVRfaK4mCWHRFVNMXighhdZWzqHkazO5sL4EkkRRGkBENI3E4IvVzYBifEcPA6L9FRlRGVCJZisHHwHBhYmXg7J8FKFciM0eSBJY4GusMkZQja7ZPzbIN2uml4z1Qpt0xvX6zZ5DLbt/efWm/LYszTVcf1LbdVyh2N9u7AKzdsZd0A70OswfPu3ScrSv+4Nfm9vtt6OoFgHQCLPVQ3Z5/T3kcQCmYy8+l7eVLYZR+rLmlKFFTFbQCqw+yIm430bu3k/bi9FBFSK0gWoAm0PSYxQVmq6P02OG+qvcwwnaE7BTL2h0b+wNtX+0A9pbb9eRCX82V/Qo9MOX6nOUWTfUb/eoDopmgk4ncOaFpQVMiLTM5rcw3I+u6cD5F1vnMchbmWVkWZTlDTpn5vLZzc3HqN6NSAftQ2nxDCNrkJIWtSGtDA7yBLCMxHghxZBiviHFkOLxAhpFpek6IE0M8IGGEMJCL/pKJTGThUIFycZljZmKVyJmZxMA5FNY5sDACkzFWFaQYeAp+LFCNOeWviNgdcIo7thv50220ZHU/Mv00KzBou14hhdGvuxQdp/t4ojRgLGJ0EY17oCzGH6nHmL9w6MT03qJO9x46/aekLwEQ7yqlHuYfKBuwEDY+Q9IUD29THgdQAj0+3Cqd2M0IIpnBgdB4gjHI0YFudCNOdOFrcN7QA2VhiNvfxUq+Z5hNTPdYmXuA8pIIvVXMNNh7mOxerrfRdd4qDRgvW/C3v0HZss9ezZAJMROiIsNq8e1H01HKewF0hPQM9ADpGZoWyIm8nsk5sZyMfa5nMzDN55nTzYnzeeb16xuWZeF0ms24tKxUBaw5GZhLU13x0d+7CDGKObALBLeoy2DW92UcSEFI40AIA2GYiPFIiCPj+IwQR55N70GY0OE9skys4YrEyCojs4PnzGRA2YHpioHlIhOrDKxjRMdiaRdWHdxtKZKTsEnkUTCnF6sLKO6Bct797h3i5wuf1fgk7S9HalhmnrpK7DMldfK+dExSe9a5t5L3v/eJSy/oN7+wsmeL4Z7fYXfeZyuPByjvLUrNal4FzmJQaZ97H8hAJmjebGsGmq2v5P5c01t21m7tLea8ESjzLY4pm29NgL7/scv1KlB20sJWf/0AoKzO9p1qQW+3nznnm8ohSKoThmhmGIwRByKiHj2exWhSCmhOLOeRvGaWczI/0NPM9RA5jQNHVc7nyOsECyunxZOfJMtFqFnRVWsYKMXO4OqWYtCTsNrnCgQhLxiIDoKESIgjOhwIcSJMzyCOkE9InJA8I+GAxDNBJqKMiFwxyECUA4mBQCIRiawGlDKylO/RRPgoiUzEnMIiKyDFFSlKM9qotHXSnFlqD5T9wpTJn3V1Xfzq2CUYcxQ/Rnx/oKXerCGZuCgenL7uAcS2aVmzSBpzlLq/B0pXnSDULCr1mj1YdsztLl8cYXvc25YSUaLQYpf3wLgDzSZrX64OTXK5qzwOoFTsJTdk2BYBslb9s+UyGIgdzGU3EzTn8Bb5UezU2S3KJmTY4C8AJOBdPvi2BjpKrnzOu5j/epuX3cCzQWvPE7ePLrvftu3NM6K8ZZ32d2kAasxCqpdAYdvNmd/+VqR4AoQIEjlMIwyYHjSDJiV/I6OrMp8X0pp4/erE+bTw/Y9fcjrNvH55zelm5nSaOa9n1iWRlrWGmwEbwNQanSU1yZJKtm4UEhIWlniCKFwHiyQKY0RiQI5XEI8wvEcYniHDFTK9j8Qjx/EFGiYO8T2yjCQODpKT6zGNdRowjlUDnor8EkynugRzjk8yUtyZVA1EK5j1vpsJOLNlktWow/2Mcu8sv0/+scbmapkK6HUK0pqaqWechSXulLFK27exaO1Bda/n7Mt9wu+lc/YMMnILDG8dI1sQLUkvtIzpvXx3f3k8QOlLOPcT0eYRihFHcYdi3BnZFO6KQBDLVYcQSChCIjBQBOtUQVC6AV+YVOzEbPsdENUKuZESxthE7ztnowv9Y2uEcbisM+x9jdNaRC5trnXa/WkRr6E3YG3ZNIhbSdvUUmznPpFo9uYP3rZ2TRV7X0G8Db0pxL0RJLj4PCiUzNRDJKdsCZEPKwKcTwvHcaxAefP6xDKvzC6ez6sBZvIUedqJ6oD9boTd1LpZUU0b8iMqtq5SyBAWSIqkFdKMpAzxQFhXCBN5WNEwkuWKHCYIR4JMDDKaQUwigUwmEkkkCUQGkloPCjKQJJBEvUVNhsgSzD82WP/VZOqEyiSTVmapvTEnYqJ1zz5XLBpt1Pq9YN82+QedxO2RQzX1Ff5Z2Kf9GZQ0s754JYqO2SqYEdkDZXE3KoDpf/5uxIG2dV9lOwRuG0k34OdxzFISxujm5O2xm7IdMHLH9rvK4wDKBHz/ngqXScTDFMtnioEUA0tZI2cEEWWQRBBzODcdZQlhbP6UDRwTzbq9dSxvINoifHrxtFTtPqBr82M1T9x5/J4xbq3rfWNcOrcHwR4YG59uKontMaE+Z/MRbfrd5JNHr/9tblJSvA0kM8Qy+XQ+q5oJWes4iikQc2B6b0AzfPNH3rdMTEtmOSWW88rrlzecb2a+//ErzqeZjz75hHlZeH26IeXEkhavZQeQPRXvpUCXPFUUXdRdll6Tw5kUziQZSTKyyMF8McMVGkZkeIHEA2F8jzA+YxjfI4zPCfHIYbgCGcnxgIr5dRZGmavP5rhxfDf2aT0phUgKkXUwtrnogGrYssd199eHXfbssWefvRU9Xzi3F8/XwY+dtufU9HI9W9w7g7aKqGb3z9wfu9dfsuvLuv27BaqX8KD0/Z3esYDlZmiU8/OdYvftY+8ujwMoFRM7unLr0YrYNWCgOWBO6uW763U0YAzTZ+0kkVXUcjmGHgw7cNQCgs2Q05zR8/bYHWuz+u8gTqA4iZfH01ujuXv2skX66zTd4e2yFZmlbi36VG6BX2HAJcKmsM1LQGkgN3RA2XxLE8akynaRosuzTPI1MkpLHL3pOSW4btfdgghqjg5JkKx18bc4BCTA4WpiGAeWZeHqvQPzsnB9OjEvM+dl5rwsrCmxrAsp271bezvjdINQv66SbTdLb9BUk3UEDa6zC6DJmGGaIa/IckKGEzJcI3EiDM9ABmS4gjAQ4sE+w4TIQJRIcLE8i4VfrqxkFZI0P4yVhaSRKKO1foxosFBRHcUMQ6uxTkaQrBeBUvttDnqydylK1tZ2jMIi9Rh11ikFSL2NqsigwVh7MRL1WUckebt1QKnuElaBz9ilserSnxuYag+YsgPNC31f/NU2Z0vZjKUKtv3vvtSfcg8ob8vjAMoMvLavG8ipD6tNFVEickpkXw+UERAhj0IKAYZY9xexMN4CvRK7cSmUcfVPKFb0tv+2PrAt9OD6TIvD273yu1/K9uy7QHJfmlYVGrMsIE+tb+8jWkC1TRA9U94nE3GnHCzqevHfJclI1c75edqFjtq2QRafpNyaTrZBWnJOZkEGGMaB4QCH58ZyvvWbPkCzss6JZV25uTlzczrx+vqG7798xfXphk9fvmJeFm7OZ19vqbEW7QmMUBeZIjluhrXiJ7ibVFardVqNCZ4/db+KCeIEYUTis+a7GScOh/cYhgPT9IwhTuYIHw4oEdVxE35ZIoeMZTa/jRQiSziQJbBO1upLji4NyzYGvTdk965Fe5/LPaheOmYGKXrTFUvikQJlUbdb9yx/hVnq7TAl85t1q7pkSkYl7fv0JkqoA1V1sKQ4zcN+zFSwVTaL923AcQ+aF0uT8d5UHgdQJuDVXuykPrjpH7kNlP33sP9UGKQeo74thYCIkkVqBiCRwb6LA2Cw79uUbPkWmPYvsMBUyw3p9S6SQft3b6k5Me86Vvt99lnSn9mgzz6nbJnzJUt3AbaedRYxu/Ce4obVmOXYRHDJRC1gaiK4tdNQQTZIYnB2GsUFU80MkmqmJ4IiEWTVKhlQVqbM2NIXoxDGwOHZyPP3r3j/G8+NZV6fmNeV19c3LMvKzenEvKyc5zNLiWnPrnNTNy7l8t4haCK4vj+4aBk0Yua+gDB6YIMlctYcjWlKZF2vSWFgnT8hhJHgvp0hDITojvCDgWocjjWhMjLU8MssRSwPLJwxP8+BpC7Kh0iWQJ6C+XGO0RJ7aDT9Zm/w8U8pOsoZA7z+mMWBsTDJXqT3v7oScBdevrf3SBZsHXZoGeIVctNVbpJ1VGt5L9q7PrRPPydFtxl2Y6wHtQasm1DHUpc9WhbA3WFq03HqG4fm4wDKDFxvN/XPXz0ChC0Y3gWUI1tQLWAZxBK09El+C1PtDWflnrHX/d12NdqLvvYl1OSzt57oTim6iQ6Nqd715kxnWidmP784cJdkHRuH+uKArtu6D1U/u2WURbQu4BdpCUYKUK4d+I2sBE3VfzUwECSTXEeczMxRwTdIRsXAVUL2RS+1LvGBuBgIiFry4YHIVMMyqZnlz7MlQX758przeeGTT19xfXPi05evOJ3PnGVmWVdbfsNZivq1SR5EIEYxEyZiBl0dKCNBlKTGmhddzJLNyVopjKhYq6hYR5Q4WGb54YoQJq6OLxjixHB8jxBH4nBljvBizvBU63lgkZmszYqeiKwykCWyhGY9T+KxZwqaxFykkonTTSJW9MxGr6lJkbkTtbPA2UHQF2vTVZshvIjwPQvNWn02jYkGm3gKQ83QLOJFf1mAsgPR8rn329RybtiBa6+2Sp5zNddxVajJZrztz+0vUX7eJZ7vyuMAygR8emF7jzUFyPbi9iWA7EXxPZh2WdDvBMrYfpuqRjwULrTjLzJK6KHu3rL3M6tp6usBm4YQfKKoOpzuNOnOC2W79R5jwbBljZdCNaFY/AtDDBugnClO/QU4G+tcOkNPE8vtd6rXK8Br++y6I9ENb6uJ5cFAS6MiRV+WWzsU1iAhEBAOAUYdGA8DOWW++c33WTx7/Pk0M88Lr17f2Of1a+Z14dV8Q/LF6NRXZgyaEEkIqzPJjBLJYvrKRGDQWL8rAdQczlU8T6ZGZ8IBXcyYczNPiESuhwNBBkL0WPUwMgweVTS9h4SR43hlxqFwcMY5udKjBeEu/lmNQyGSR0vqsU7m+L7m0Vb1LIabwh4T6Fx0keyc3d1/ddWOocpW9C7GsKTNR7S/Tgad1THPmU2OnUtm6bcFHPfGoQ5gN6zzElgW5XO3T/ZASXd+Oa/svSin31keB1Aq6Kl+dd2DAVR9tIA1xB4M/buWyKugDwZKqSK9dkAp7pOnTaYtbNYT0mq4rPcwvfBdOg/t/nP73XRAJ7c2dj9Ft++9+uTQdDQO5qKQOkV6r5O9lfTDu06UTGIlimnPkrr7C8VdyIAuEyr4JYSIuV7ZMcFYI0LU5PC7Ukxldm8hy1ZfbM/uopdg9e7jd318VAahtrZzVGUco43DK2wtopSZTwvLvPLscM3pPDPEyGmeUYElrYS0GBCKL3esioilkVMVX5zOfHIDZuQp37WCqc2mJRGHqk07yTtaTuYlv86WCSmEAQkjEkam8RnDMCH5TBwmhOcEGczHM4yoTM5aBwaPAhpkJGtThiSPZbfpyoxt5tIVSGPoHNnFWGIJhVzFmOCAidbF3agafjB9ZX9OCcZxAN2I48EYq70jqbrn6qYkfhz4YHXWWFlnOaBjncVIdItZlnN3wFjF0B4AS8Z/Jw+bgdKOeVN5FECpK8wfBVIWVhWWHBiCEkU5Dolok7Q93x1AeQsM++377zVmnNvMkt022R27E9HbQ3Bh46WHfcP+cv196fDi1v6eTXZ/CqSSiTcW1qkQRkq8PNikUFQNlkpOq/A3ykzUxhoLOxzr51Jdr2oIqRiTnJiJzhYHFygHZ5m5E8vtOoMbhVbGYTU1R8jNvUeLtZxt3y6/O8ONiDDESDwGjocDz6+O5Kz8Ld/9TaScOa1nW6fofOb6fMP1+cTL62vOy5lX5xvWnBxEcX9dcyLPwUFQS3oUV7OIOEC2QNfmZNYr1wXNnsYNIc+Rmcg5TCARhivTZ8YjEg/EeGQcnxGHicP03KKNwgFkgGhO71kGZ5uu28QzIElkiRMpWDq5VQOrupiv0UFQ0L0D+yU3o3P/Wy4bivqwy50+8xaBXINfJzTSWA/c55rr8mZurHPlexHl9x1jD6wFMMWJWA+Wby6PAihzFl6+iiwpsKow58gQMqMoaYIxZMaohCCEziG35qcs7VSWiRja9ro09kpzJ9qDX1n4pd++B0kHGwLNeto39Bva/DaT1NsH+L2qflPKTCgdOMrdYNmrEXqG7G1iWN6eoyzrW491iSoEtRySYg7GBmjGEo1JGs+KpAoMUSztlzn6QyQiqmTJHWiYg0h0TmaprSxRRiDXZ4pFMAre0YM2jUM/VrzdbpNzl0SC607GgCpMgz3vIduaRYfJ1no+TBNDiJzmAzFGlrRyWk5kMqvmKmUmzw6/Ys7sWQNI7wPRPG7Ldi0Z3AuoYtFhWSGpe6LmASWi+QQykOMBCZM5wKdnMEzEfLIwTDcSSTwQxVySghuGoqePG1hNLyzmCL+EgUjEQi8wx30JzoQxwAyCJkzdMWJjqjiwB/VsbbLFs6TFm8o7j/e77BPzpfDy8v5y0Rl58+SiRywvWfqDu05uvUXq+CjH9oOg6xyoLxrZA+fbgSQ8EqB8fY787F99n5s1kFRYc2AImUGU3/TszPNx5TvPFo5D5v2jJ2sozHKvk+wBc2fM2TDI0B2zB8j950UA8spvmLuyfVF3lPveUdV/SrtfKfcB5P5v2P2+Uycr7VjflqOYzmuAeRghQAx96rqVg+ssh8oqG1ucMBY6Mzgb9WNkceaYWB1oJxfbE8EDBK2ikcQYZkIwKN6Qg96bpAzQTZMUqkyh1a5+ACFwjAcOAzx/dkWJ9FmTGXyu3Wr+6atXnOeZT65fcZpnTucTN/PMnBaWtNryGmI6ohAtRLKsR9RejBmIrCr71ZrMfUxdTFcJZB1RDaQcfRwIJ8wyLuGAuDU9RHNNGoYDh+m5s84jDM8hjGTXca4czc2oSyO3OpjO48FY6BhJGj3reyDlcHttoLM0PeSKZy4yXabOeptRpt1fny2+Z6o9kK7R9Jnr6KBZDh7aQdWKLrQY9h5M+47gnUUaWNbN+wEo7X3dVR4FUOZ8w8vzX2JOYk65GojybYbwDV6eMuuqjAJXg+nQxkE5Fp1WsJcohSkJ9gIcFOs638VlKPqxl4CyAxXpdX93HQsXQG8Plhcoz6XSq08Em1kDEIyFgW2/5TfG7rze6HUXUHaThZT2qgAqLYQug2ZBgpIHc+JHMKNWKIyy10Fa6CjgOsvyaWsnFFcMO24bampWeatGMgUy0ZTF5q7lYYv16XOn7aht1n2CX9XPy9LaKmMhltrATaIQJcMEU0wEFebDwjRNzPPMaZ6rw/vNfGZNK+dl8fWIPIkHDtyuC1NvagpzRyz8EakJk1SEQaxCOWQHTkvnZpnYzIBkqdYjojeQB8jXsE6k9ArWK4sSis9MtxktckiH5wQZGcRydw4yscpEloGhqD3cql4mqyQDWY1h5uAseBNiiSXZXjHDTy/Rlc8eBNduH91nwblu0pYkhTBCKp30UkfPPiF1A1F3v4FmIDXQrK5At8qbGeajAMpVf53vn/7FrqqCyD9MyH8fa85EUV4umWdDZs0L703KtzQzeIbs2trNq/xuPWYPFvUlSWNuonfH3Pfb36bc+w52wCd+QgXO7uQg2/tfYpv9897FkvfMOO72jTSHfm/DfAgQA2kcIMI5UHWUhVGOnIlkVibXWc6MLCTOrJhIuBKwDOjNABRZO9Hcnj/6w0USwUVw0bxtj0x7d9nbqm/rnoHuRfbSfv7cAcuqPgwRRvjg2XuNkKZMWhOvrq85n2e+//JTTqczv/7RJ8zLzPX5xJpW5rU4WdvNRcQMFb0+zCWG8pwieLIONxSKktBqB2m5myzMMaVIXk3qVYmsYWCRCZWRVQ5kGZHhPSQemI4fEocrhsMLxniFDFeoh2iuciRLZOZgDLNkfWdkGT2J8WEyK3+OlGUxanTPfq2hPkVcv33DTGnsswfTnoWWWPZziQIqGwp77EMky/ein7w0MLd6yrZtd8gbUqo/CqCMcsX7h/8UUSyR6xCUMR4Yw69ziJkhKFeDcojKB9PKYRAz8EiPYAHPNGDfi4uCiNGHwpb2QLHRR+rdLDNgM6nQNapcZJa6/XFHkfpupfu5uV65b9l+iUH22/rn2oPfQ4AyYqx7wfRRAwaaZTXDqI01TCY6LiGSg7CEXK3f5bM4eijF4cMeJuMRPGKCqarQVgoS7/ZCdL3liiUUjm50kmB0pMwpGxVWabws2+QZt4BSK9BKbUfZXKdIFTELopFnw5GJgUEjy3Hl+XDFsqxcn88ssy3gdl7Nb3NefDXMlMhlFczdWCzdVwdnZoP3HMnt1Yj6uurqDJyq45QQkRjRcEaDi88ykPWEppGcX5PDgeX0DGLJmHSFygTDc49pf88XeLsiy8AkU01sPBajkPtwpinaukJjQBcxBliAsUjIhT26NX3j7C7cZp8JkwoXKt5Vo3jJsanBALMON6el2gPkfnBQe97WCf2zlUcClM/58Ph7OcbMFDPHmLgaE8fhVzkOBpSH4LYYwdZREV8bRs3BpNAoIUBqVFIoGYEdcfaW60BjKUHtTxreVlDs9Jt1YO1nobYCWLeN23jaTWwl+xPQDfTuntIGbN11q19IB4R6NwhWxt0fozugFPsc25+WTl+NYoquQhqEFAcWT0ZizjOJA4HAinklWoxQQhjdTFMyxmf/NDewHigNFIZOLK9RM2KRNFIaNmOuXPs2z9ostEUadgm+trLWf75hzyrURHSEQGCIEYLy/vTc9JovvklKiZubmdPpzOtXN3z6+jWvb254ubzinBduTjesWUmrbu/t70KCWHv6PG8TplZPhNBLQmDTj79biULM0UexMHvLLulAInI6jcb55YDGI8QDxGcQD8TpfUI8MF59gxAPRE8vl8PBExpPvhhbZJaJNQ6cowHoKgN5DRYVVAw/s7Q+UkTuBTMOFYf4KrrTgHKVNiZXb5zCQAPWKBnc8ujt0I/pMsDKgDW/YaWPIfdZUrUO3vv54+3yKIDyOCz8nm/+ki9zqgzB/oKoz6hKFBNNhIBIs86YvseXDsuW8h9s1b4hlIW2eg/yYLNUoxFWqud2aL8r1ZMOWMXB1F5H87G5MGPtN/kp9a9s699a2H32x1wESWywB6Ey4lsA2X12gH+LQfcRToPCKE0MH30Smfz3QRuguh/eMkQkWEanICUix1xXzOyzkl0ED6hzT4+IoRk8ClAWP00Li4RiGbe5QW+3he7+stq7K4wybScyGzdd4+/F9ruK2lCLORLUltg9TCPPX1zx4fF91jVxOp1ZlpVXr14zLyuvXl97yOWNLS9cmKZaDJCKgaNlP81uHMKZgb2rjRrOpQINijj7H4dMDMownFARDlHIIZJkZNWJlEbWfCQtA3n5mBRG1tP3QCaIV+RwIAc3CsUDDC8gTIzDC2IYGeJzsljc+xpHkgyscXCWGc36PdFAcpFODPdx07PNAo79JCwgg+uWi2eQL6FhYrjQxGgHzJLQxEOQ28oPvcit/Uu/5+VeLo8CKKeY+NH3vt/G/QWiVvPPuQnbEg4E09tosNAyT8kPAzEEotjwaucGyAU8L6FO9OvT9ml/TICgPvO3RBTa/d8X0W5febDU9pelZ223bNmsn1qPKdUuJfjPPUheBMotm9SyRlFlkvYpxfA1YMCSvH+uaudmTCzHGA2eQk0HIWmEqKwhUpzIc1nDRKz9bQiYhRssDsYepS0RPHh+y9XfRSQgggEIhXF1+sr9q9yDZZaW8GYPhv054ORDt9fZFKmDsGQnjQR33QE9WH9djxZn/jK+5jwvfMJLrm9OxHNkzjPnbNbznLNZ0ckkMrYYm1bGqKJIkAqSRY9Z3mEOmTAEJEI4QhgUckKjMoq1dZKBlTOrDpz0hGhkWa9NxylHsgwkOTpQXhEnSycn0zeQeCQeVotjl4zKxBAOJp7HyfoGAxqCuxkpNW9mpInUEevYqUhvVPVi3xcl28QgyZ9z9R19tniCjWEJzTeyvBfZv7g+Y1HrLvuil4hOVz4XUIrIh8D/Bvi7vGb/HeDngH8Z+O3AXwf+iKp+/KZrhW4WaFU2F4mssGZzHZpTYMnCaYUlw5LgZjUn9XOyUDI08GxUfvT5De9NmfenZGtGi4D0Fh64rKzsv7P9nZ2VFrZZywWxm/4Yl/+Uxj61PHgH1vvUUZvt4cJsuNteFF8V/GT7SD2jvOQqVYCyit6FOfrn0Y+Z2YjnvT5TjoJG4TxF1pBIsmAu6jMWCW5Ze0aXtSyFhta5X7ClFaJ7LYrDSLP/q6VtE70MfqX0TLITw2/99eftI+Yqjev29dfvSxXxlSFFogaG8QU5Kt8c3ietieWbFl65zCvX1ycD0VcvOS8zn75+xbKunNfZMiFpY5ZjtBRYKsZCk6bWJYcMEeIxIIOQx0wOShqTvY8pEYeFOAiHKaJRWGUkaWDWkcTALFekPJLCxJqOrIzM+sskGdHxhYHo8L6L8M9geA8ZnsHwghgnJL6HxpF8dTQJ7xCb0eeM6zF1yx4H2jHOLlXUdJ/gKd+0sk9Zgr/D4huY3UfS1iZAyziQBph34J9Bzf3g2JfPyyj/BeDfVNX/uohMwDPgnwN+RlV/SkR+EvhJ4J9504UK7tR+66C55MCahZs11s8lBW7WwJzOLHnm2red02hrMmvkvRQ4DiNKYgorU4QhCEHMncVoITSQuQMoN2t0lO/B38EOKC891eaQ4tOi3Wd7uaZz3tOjcp0e2dq+GrOqrYOIOKAHaQvuOVNtSyhwGSiLIl19ls0Yk1RcNJdqUdce8LPVU7JdRzU42wCJapE2vg6PMUljlIN7wvdLTQwMCMLq3TM5BU92YUpeTHtW9cADrQyluZ5os4x3zH0jfkPVX9YNFyS2tq07uUgG4u9N/R0DkiFoIIq1w0FAByWPmXVcWcbEUQ6cx5mQhFM8w6LMYWXQyJpNPG+x6MFvaXk8c+/u5MYgxb6rA4uulpVJc0LGjGQhBAsfDWTzz9REkgFQEiMpL5hL/YCmk4VLpoUcJlJc0HiA+BwZZ8vROa4QD+iYTcc5qJ0bJ6QqXUNjkNHaUXrBrb4IzGVrBZJn90qyka4AM9JWi7iaKk7VL1qm3N5q2abg7fuX1ocv0cyufGagFJH3gX8Q+G8DqOoMzCLyB4Hf74f9ceDP8ACgvF1M+f3R9cin88jPf/qc0xq4SdEzOgmq/x7Kv09ZvNwmcxNTXi6/k984/SG+cch8+yrwt7w48+Fh5sot5huKVc2RsTGyWzSMbjvdNrp9t1pp97tREFOFlnpXOn3h3rLbfonp0s4pnTOP1lE3/mhaH7N6AFSA1AaeRa/UM8mEsdOijF9oussJE8fLOUUPlSAPgWWa0CGyxEN1EyrM0tyFFg5YdqCRiVVPjGLRJZGVIyMDKwsjlh5ioSTrGMeZqJlxWEzMvriCoXZ6Lm6zxj4aroh3RZ/Zg2MfityXHfBWwO7vIfbOI4EgE9OoXD07oKp859vfsExIy8KyJG5OZ25uTlxfn3h1c8P5fObl9bWxzTSTc0ZSt3zdKq6GsUlMJr9XijYxLlTWr3OGQRiOQMyMYyIzc5TZgFImZmazeou5Cd2sZ3P2Cq9JDCQ5MIeDZ4a/IslEHl5AOBCmDwjDM8bDB4ThOWF6jkxHYEBmMePOlb+bM1WXKbP1H5mNNeq1A/61tv54Lp8R1oieBiycaEBkxTriAjo76yxUtehdti/sLQjl52KUvxP4NeB/JyJ/D/CzwD8NfFdVf8Uqor8iIt+5dLKI/ATwEwAv3vsWpr6/DTYxKEOwVQEVOK2BrNck/XXgewgv/YJUuLH14K85KbwOgUMceO+8Wj5EyUxBbZ3rjRhbZpvSy7GrXThmD2zSn795hNtA2S63B8e+dNuLKFFHYM909cI1FNWAiKWiKkunbTuFizRaZuvCHJ0lXkqGWkAm0oCg7PdjxEzYsHhcbTBmZUtem8FmkZEs4isYCqL+6RbujIU3JmcL0fWUg2s9I5FBDWyjJLKU8MmASEYGxeLYs63dkw3oa8acPVBmNaf60r7Z2lrXtr82ccLzMPqDFzD1Tlei70q7V/ck3y7OOsUlh2CnEaeIqhLXgZQS42HgcBw5HCcOp4nzPDO9Gi1BcXF2Py+e/COZOC7+PnOpi6VBE4Gc1erteKGo5f5UkGChwVFWBGsHEw4yE4poYFXzOtAMQUZEE6oLyEjSBZURzSuEg4V2phtWXZDxREgnJDwDGRmYkBgJ04gOAjFaRiKfdC180oBRUetHNKCU6JNxEHN2p1jEXRTPwVim9unErG81k3odJZeH3B3l8wDlAPxngH9KVf+siPwLmJj9oKKqPw38NMB3v/M7OzJcHT8A5VtXM+9PK0kD3z+PvFxGcvprwL/KdpYo57OJ7Xy9ROYUOafAr9+s/O5vXPP+tHIc8g6eeopeZLeOrt9id/15jtIXAe+CvMf+RXUAWK+vu2v2MmBBqV5Jtj1XPVrJQvQ6Jiqxuc5EXxK27HaJpV/muQ6+wjw78alFl9miXah07NPYnY4gs5AnyGNgOR6QOLGILfd6xcDAysRkzuu6cuLgLPPAQOLATBRzbo9aAvGKk7uJ7FMwZ/chemINnd1qnokpQc5NR9nrKl2HWV3tNkySpufst5WJa/EJJ2tVU5QctHWSyrt70t1by2sWRIUpCzBwxbEel1Imp8zNtS249unLV+b0/skrbm5OvHx1zTnNLGkhhUwuuRyxrEc10bP63OgZgRK5vesIYRQkJMJgIkUkonlg0EDwtc4nFpIOJJlYPeXcOXtoZDKj0LIcSTJyliM5HsnhiIwvCPHI1bPfZA7w730TkQmRoy1JMUtdz0jPBoz5dd6yTj9GFoETbd8qcHNA/RhWnxylOHjeoFpEjI7eb8Ze/3m5fB6g/EXgF1X1z/rvfwUDyl8VkR91NvmjwPc+2+Wt4kGMUX54WIhB+e75xM36jE/Pf1dlj0NQQlDGYA7rUTJBvssQTgwSGAO8NyWeDZlDNCYCOIDoPZlECpvoFH0bAN2e1+JK+is0ntwC89sZl8Gw3+aUbA+iF9/r9s7GIounb/En6byzq/5uVwUHTXH9kKKXgyAKaJQmCt3+UEDEGYx6Wi8EHTC3kmC6q0HWGj6XWMgI0ZPZmgO78cnRMw5FVhaxnDll28JIoGQ1WhnlgKe3ZQyLSxCGFrZ+j7WVZEtobCndFHE3RXJuORc6oLSVCpy9rdovXLg5trDHW0CpDUwruyylslVvV4WYA5KFg0wMh4gMsCwr09XE+Tzz/vWJ8zIzrwvnNLNq4qQzSROzLli6YpMu1BNPqGpl/7o6WKJItMrFYEsQT2qrlotmfwfq2YrM9StJJMrqseKJpJFRF1YdGORM4kTKB1TPaDjYux0O5PU1hAmJzwlMtrb6NBkTHEdTkxQXIgdKPRtI6gocfN8Jm6xKqriz/14ESYNZ4VeswfPW6meeGC2s9k3lMwOlqv5NEfkFEfnbVPXngD8A/Ef+90eBn/LPP/Xga9qF629L1W8g+J1nZz5I5n/38flb/CL/iFvEhashM8bM8zF5FM/KFDJXwyvGqExBmaL5Zk5BTUep0PSRvRxZa9J9FrCxY/vlHm739nKabH/eWS6xUKdtt5QosjumR7j+ToUedjTx0n17g4AUsbDftrtUr5DvQWSTaQZXwOt2e/WnU4iwHi0Ucp4mYrDUbBMzk8wMOhFJzEwMJM51NU1fckJKYrHMxEwJl9ymgbNMRlFWpuAAG4tPZqquSEHKwmllkTkD0Vgo2J5ZOmuUut6Ptjaozu3SQE/9mNS3VzfxlPbWC38u9ocsHA4TKDz74MrVBcq6ZpZ54Xyemc8Ln95cc1pmPnr9fbOi37xm1ZVZYdWEpozm3N73zsBCVGRIDEMyK7pYawzMWPLgxVvYI4BkYBEzw814fsxs/pWLjixqTuvzaumel/OvkWWE4RnEIzK+zzi9YDx+iBzeJ45XaHgOavpMEpaBfQZu1FhjB57cUEhj02HO9qfnAdYBbg7W3ks/frpRUJv/i2OUAP8U8C+5xfuvAv8k1vx/QkT+GPA3gD/85st4pyyMrCTa9L8SuTGExLeuZq6GxLPBVrXLKhyiAeQU1XSakqrjujmru+1CcMd1n1F8BBRfrG1iz7tEbaundNs3eObXKk9ghPH2C9pcju4cB1nZg+/FUp6ho3h9WFe1lJeRvj+3sN2wZT/FOFZ0bL0nVTlOgCwtoUsBjaLBqH5z9lsdIKt7SPHHTJBDYB2MYS5hZAgTURKJsTLJkhU9SGLQ1cMfG8scPQaoGHmCGqBG3e4LeDZz2rIXFSjLmj609YRCcE+F4IxT3YKvSlQHXPXF0rI2C3rJN5u8HUq0Sa/WSF0be7tK1TPa32YNrn5fEmIAiSNxDByeTRzeP7DmxIfLeyx55fp8Yl5nrucT1/PJ8m/ON8xpIeXExmtB/V0681fX8wIMvnTHMJQEKAMt87pHA9VWHMgaWWQysGRkEYvwWfRkrkjLazSNpPVTmI8sp2ek8T3CcECG95FwYIzPERkJhysYR/Rqas7pDox6UPt9pDJMmcXAsrgkHanx6apaR8p+KLwpVudzAaWq/ofAj1/Y9Qc+xzVvbfNhyxCUDw4zz8fAh8e5WriHYHHAsWBDx/fadTtGuAGuRF3jRpWS5LLcs55/oT77urZZqQfYu15AE6F1cwfxK7U1Hbdi7va4eudOhJB6X6eBJkt2d5Y6OVCeu6+Cu/rU5Up73WTZ70zzlm7PwVSCt1IB0KK3TO06UthmtPRe66AwKIMYQGYi/UJmbfXslUFtLfGRhaBlaYm2wFnQfmG01RMIL5tleqOUtRHbqpVlBcoClFEM8Womdl8QLWhbR2gAcPA0JinOPE08R2kqsh4o98alPt9DAdCeiVZAtYk0hEAcAuNhAIHnodxayZo5LWfOy8zL62s+ffWKT1++Ql4Jcj5xzrZq5ea6HRhbkEMGUQZXqUhYQcRylTL4+kFlbfKWvKNkXJ8ZWXRgkQOJgUXPJI1c60RKnoiD0SKE4hWEA3H6kDBcEZ99izgckeM3IFyR40BYg4HeZOySwSfgA2Y5P0hllJV1lhDLTkV5CyyLeume8igic/oi+9DCCw8wuC6yPJ6gLeJwcy0btWbI1RrxsJUjG6hZSq7cMcsdwywhMxJo4nhfz/73Fsg24LljmPVIvXRuzxr39+hF6h2UB3MLKguV6eY6/X3KdWT7WdY8QdrALYOqN9gMSk2IPPslJv9c8FBIto7skRa9MfrnhIfiCXk0lpliMH3iYEA1SOEsqfpdtnV6LBemGXsM6KLmuh5PdP4T3JdTKpPMFRj3QClkorp/p7Tc5WXdn6IDLRneB0mEiAOvs87Jr5PXLUgWoNwxTLTb7kCpVXTXbbcLNhEJsukuIQhBAs+GA4fjyLPnR77x4QvmZbFM7vPMR59+yul85uOXn7KkhdN8tsQbXa4A0+PZexERZCk4nQlhIYgQWEA8WMsT0NgifsJagJLJooPkSCZy6mLIk4vya5pMbE8fkWVkOT1jCRM6vIB4hYzvMwwviMMzwvSCcJhIz67QHJDOuCOLgaXeaBPPHSgFew4cBoxh6iWIuVUeDVBWv8+aQ64BVWFLvRgba0qtLR+j/NpEuPTLrnuofDe7qIvwBRCHYEYkc+fpQVK8PpcAcN/ahQ3ugOkWmlNf3Hbfpev1QCcXjtk+e1mOt7ZT529arrFv9+qOlP1rNeJIm2gqs9H2WdxPCnbv9ZgDngmG6uiuJZdoOdb1fJoDGpU8iGUsEiEIrNHE3ZW27vjqRpyogwNdWQwt3QK2surk0AFkWV3TQDR3IFrOX9mI6M5ei3N8AWmzytsKk9GX0gjacm7WZYKL8cTVE1J0mz1gCh5yWV7OhVde2tZ9jIrAUdeBEiFKJBIZZeB4mMg5czweOM8zgcD1yRZdO8+BtNiyvllztfcpnipOHSiL0QcsR6gbxVS0LvkrJakKsLAQ3ashy8AaElkiA4sBpX+uagn5kg6cubF96yt7Y/ElEq+Q8SX5+A2E980FLF6RxwA6ICHY8hJj8EgfsUl3oSV0WbwJQ5GorN1EOzeue8qjAcoGOreIsf+8ZJAoIuPus0iTbtVSLBFqVmFOQsrCKUXWHLhJI3OKnNJoa5mo8Le+f+LFtHIcQDb1gtabw257q/tllaR2FdtbR+pD7triwrNePKZjvlVaz7vzyrGJMqq0ja6uPkXJmLEEIs4uC5Pps8eXQbHPMF/8fEcsXnnQFh45Ykz0hBl8JrEMWoMfVxJyBNAh1+vkADoIOQwscajROFLW/okmJsbQ6x2LMFgArTDBso5isnW9ydXNqAHl6qK3i/KUBWRTZZmjGDCOUrYv9V6TM9yxfhoQD6OdX64j5G3G7/JZDD41Azit211io2UIoK17lYnNX31AeHY4cHU48OLqGWtK/ObvfIebmzMff/9TXl6/5vsvX3FzPjEvC0teqj8sWHeoQ6wk7fANlgNZNlFfQ1gJceUwzBADcowQhDTaVDUz2jo+GpnV/RXkUPNiJh04rwfWNJnb0fk5KV6xjO+j4UgePkTikeHwTUJ8Rrz6ANEJYULOYpPSNWb5dqDsYaSApGiXHPuO8oiAsoikhbXtd98vjpetqrAks9ZlomdMt5jxpMK82ro8p9UWXLpZB+Z85rR+guoHqL7HN+aFIMoYjU7tbNxcBMQN6NCY5MWqKpd3dhNFvaG2a2/EhJ6KdqnuezHd16Shima3QR20Y5MNxCv3rFX1OpWsLxQRxo8s3tPF6bwcUzP4aFOTJv/dZcvSCgjqq2rqZu0jA04oufa0Dkhvg2i62BwtOCGhiBhoreLMUixuPEgBSmeF6qDXAWxjmMUaXvSjqbLNlZWIksp2GRjUDEjFtckc6E3fWjLCR1kZCKg42xzM9096kOuCroq4qNK1Ya85uiTU7LqYyxhEzy0wjNHWoSIwxRESlm0rB6YwcIozN6eT5dRcbZXKamTts2n11y+Msns3YVDCmCFaJjAGMTcjR/zBOXtkthYOi/N4E88HZpY8cuLMojOSbljzTA4HWGc0HklkdHyGxozIEeFoywJLgKO5CbH4eC0JRvqh0vX4u8ojAcoAMrWf0g3s+qmtQ1AAwKcHMZ+NjCXH+JXXR84pcr2MnFLkJvnCZVk4J1vtcdFYJUflP0H1/4bqfwn4vagoHx4W/vb4mqtBGUPvi2j3F9ltq3rN0H2n+4StgqkBWsMw16FsrNWXGGcpe0t2uUfujFfl3DaVmqElULuMqznMMbdvW69HQSUVY5gixYWgsUihSwmG7Z/8M9oAaezTf5fgiRI/XgZYiSkf+2PYZDmqAzV62/t9cxRyDOYAH4ZadQn4NmxAuS4uaKZfZ7wYd4qhJro4bXrHmaDJV5lsrkgH3a8ftFa95cRMpPl7lk/TzPn3uBJjZhpn9+XM5khdolb6ZLfQd0MHS+m6Qj9B+/tPFRraceIMczxyNRz54NkL1iWxnFdevrrm5ubEr/7qb3B9fcOvff9jlmVhXhdzSSwO9gp5585H9yejicBh8uxGh2DqhlEJsiLhbOHaEXJ0/egYIEhllmeOzIycdOKcDixM3KxHFkZu9IpVRubwHjke0fF9GJ4jw3uMV98iDu8xvPctW0ddJgQhBJthKjl4g8hdyiMBSpCeE+9Z00bELQf0orjY7KG2HsvNOnC93PD989/gnAwcVw1kFZayLk/PE/UXUU6o/iLwglfzjyBc8fF5ZMmJbxxNDIPb1vTb9dNbte1Brrj9tGQW/dmdeN7rYG+9zJ4B7mntti632w627dpvLUafsj80Jq9QE/1p506EuBVWGhsqgIZfIooNVjcC3V6DhcZUHSil+mPS5he/7sb9NeJr+RRmWcCwu15hoEPwfZ4OLHTvIkAS89kNoiwhEkQ7I04mMhLM9EDvmmQx6SXj5uBAafuUQJRsjFLXyjTdiclZplS3JNNxJiTYInq4XrACXO954K9IM51EIZvXrcU5vrzDvgtUnmnjbwAkwrPpwKCB9cXK8/FIyMJ5Xnj1+pp1WTmvC+u6klJCiudDuWwfwFCySpUcACULkOc2Df6edFBCBcoEQRiieToQIIaFIdiyIouMRF1YsOWNVx24yYnMiVVWVE/kfEOWhA6vUFZCODDEK0KwlSgtk5h5v0h4WBLfRwOUt3WQ0j5uyeF7f4nik2Ixwp/MBz4+/RK//Or/QtJMjdLbtchWXAULV///8tHNP87L848xBuUbx4X3ptce9VPE2PvknSa6dnPt7tj+93afltXldPVZr8hY/bmyw7g9WO7r1ctI4vcAc5Uqcm9/mtiIkcGvnDsA9XvlaCJNXQ+4mkq3OsvyCOV3OXRiywjLcgiBDfusxoECily4ZmGwJVs7NJbpx0gQE1ocuFUEomXQUVHWIRhwjhaOKYXxDja5FTHc2KCB4OQ5xe3TANRWkjQHeHOWP986tojxkzPSIzcd4CbGsBhrDe4c3jNJ9WctXSKVL7LtJvV9+rvvHee77qHeVGBRSVED741XEK/4cHpBTplX719zfX3me7/6ES9fveaj0yfcnG84nc/kRatapS59XOpa0/YpREv/JlGqhCCDIMG6kvjkpZ6EZRhXiCvjeLa+cgVrsNa95sjCwFmeszBwzSuWPHFer1jWA7NMnE6/yioHlsM3keHI8fgBY5wYpiumYWQabYnimn7xqyF61xFzx+7+7fem1f6tW2bsMSjfOs4o7/PrN38/S/pFZv1rmzvhkiNsMdiE4JXM/4dVf42PT38nOY/8xtXI8zHx/rQaFvTVlNz0dD6KSzajHlia7+b+xrr5qD+kWfsvgp86HFcw7cjfLQbqA6myiKJvyrgWfne8DS6pk5A9R/EA6EMj7VkL1TMLqekggewr4RRRXQAfHKxFondm1zPADmhrBm+pt2ggKGLXE9zvr2OWt1inNjE/YuqAoirosX7EmY04+7H2KXYtlWCivShLHN0KPjOIxZ+PmDP85M7yq4dfljDM1TMhDSxkF9FBKatWDv5ZCHwckgFm9j7UgWYRWysn2mhipEorprnSLbfoXL5qN8tUi7xmCEkgB44yEceAvP9N3h+f80F8j1eHa25e3/Dy5TXn88LN+UxOmcpKKPVTdMC8F1ylIr1KxUGSgWb48/6gEZjUgPIEcUzICFfxhkkih3EhycDE2UTyfGLmwMzEFM6scmBdE+QDQV9DiCznEY0DOQ4chokhDgzjRNisyXK7PEKg7BhWT7ikbTNGVKbXstsyTo9B+fazGeUDfiH+Q6j++6wOlIVVlnFbNhZgyX5t5c+z6n/MRzc/xnl9xjePA988wotxpTgfGxuzOvUCuYUNF0NPYOsX2p5N6PQ79TEK8/NKSTFxcitOvK0y46BW76P3AKYDXRkJ9Yq9+FGA0xYlqEgiNBGuZ5dCk3OL434q+8P2z4GtEVAfFBWopPuuzY2oW3pX9pd2sCs1hrbPMmeLheZJNwiLUcg/pYIyDqCgozr7EV/PJsIYLGvdNHaPZO5Bo1oI5ihrTfJRgVL9U8z6PdXVKRei+rK+umKZHO13FiGLcAhnQgG0kqgYqgrb8jqWF966z8a30veVWG9jov65ekcp2xItFj1BVOFKDhzHAy8+fM56tTIfVz6dXvFqvOF75495Pd/wG6fvsywLy7y0+xVxuqz7U6QH94ZgdFY5CGFs70ODklF7FxPmY3sQwlUmHjPDYbE+MVhWqgPPmBmZ8pEzE7McmLkhhQM360ySkbSaDWRWWENklQCHKxgmjlfPiSFyX3lEQDluN9VRXjqBT4d1ezGF5o6IZoLA82HhwwP8lvdv+Ojmt/O91/9Vsv4sys/XPlEITrmFKgT5u0F+jIASZGAMR6aYeL0EjgPMOTM4EJmuMdB3Uq3VKwhflHb96LYbtoWPqKO/hyvt/gMthVnd7OffYoR69/d6vnLLv9Pbr9XT2WbHKNkMvu6ZZO1kYrpz+s9iDOpF9nJKwFcMo67PXpifFMDbVSXYcxe2qQ0h/K+0rfqtdSNOV8NSbN+lGpC0GZDKZ2+FP/g5B9AopGEgx8AyDES37h440+fQnBkYNDFJYmZ29mnHmJvp4ozSEhpnSsAAZFbGwTwxqmHGXbA0SEvSUdhcLgxS3JVIO6d17wqLVjCszg6J5n3QRw4lZ5pJiOvAtAY+GF7w/NkzXvym55zfW/jo8JKb05lf//gTWwP95gbmlZRq1o2tUa60f/nrXclKtwpibT1ioYgH+5MrP+cZxKgcphvGcOYw3LDGkVVGTjxj0YlTvnb+PrauL2bICmsEEc6vR5bwlWCUYFnH7bt043EDAb242A9KzXUlPkGZYub5KHzrODOv3+Sj8FtY8y+Q9JerTqZKah32iPxWhL+HwZ2GDzEzxMSaYc2QVG12d11lixy9Rd2KwE25YclU1HZ20z/swiqlW6LaKlqiJBrh7BlmT73b9sYs92y0O6eeVkaLtJ/16AJs/bMWAIzcfv7O76ccV5cRtoXgLCu1bK4pBTwHfzGFgRQZMkibF8qly1IXhWOLr7XSqzaCnxtt/RkDSG1RQe7fWURA7QBSRz8nSNOjrtQ4dQbIU0QHQ+AgEIKtVdNAsLBFW9qimYeMEQUSKm19c4vqoVrgwXwS1Zu2ztHlr5uPtS43Io0p5u2fZjU3rAKOJYY8gayCWmZsc9jOYv6IfkxIgqTIIBFG5er5kXTIjHrk9c2J80kIesN8o2g6k87ZxfvcJqrC3vv3sGGdVJ2lzMY8WYAZ5AyeCtPbXxmvVnRUJoHkyToGMgsjg5oT16yDNUuXR6JE5pR3cV95JEBZ5CsbvG2Qlh4BdVrT/pF8eiw9p2ZbVY4x8bc8vyYrXK+RV/Pv47T+vYRgHlyWSCNzNSTGoExD4hjfZwof82zMDFE5hEQQZZKVMSrH0CJ11BMr9G5BW1VfBzwFnesoHxz8TH1QogQ2wLXFxU1TVbFZe5/HjelzW48KzHRscnflzXoIHbPtsRgxgNsT2HpQVSK235tPwbzLBWQ0cdgt58bGXVWx+mfJzr41q6JlHYFNgmHXkUoDeslamxW0ielT6MIntdOf0VhPGbgl5DJirisDJg5G4KiVWcog6KjkA+gonA4HQpw4xZEgiSMHRkkcWLA4lJmD5+BMREZPLzeyokRWzhbPo347ScQgDIOFDHLwDlKinVSdLHTvuV8nqGQzWrXFPjsYWmhkaGC50Jy0s5qrUrbfqWKsWlIeCaQhoN98wZSe8+1vvOD988L7r2949ekrXr18zctPPuV0OnGeT+RUsrPbeqkxWHKPGFzzoi6xFQPPZO9Ar9TWBDoEW3BmhDQlm9ieqbkiHQWmTBhnnk8reRCeHSJZAosOVUVWkuJkFwPf5GwOjwYooclM5bvutu0Hne0XacdXlxuBiHI1JJ6PK+9PC/A+Q/gGMZhoNIWVMWSejamuJX4cMod45tmojBHG0KXlAreO0eq0TRvU6nOp3dX/qXDJracm5WCbOah7vEsXvOf3fnv/2f31RLSFdOwebw+gt9mrfbq4WB8tOJPeT27tOiJym72qnydlcR5a+xEoYvWmlSRWH9Tq699nJ0dKvpNW1eKa5H8atWU3KkBZFsEa2CY0LqTZV6TULnWaZtcxDpZcJYTgLNPURRb7Ywy4MkkVRhbAlumFEjJh0UQrlvgiBMtYFAYM/JxfqOqtxCR1GWOltYnP1dp3v33pGWl9Zm2gTGdEF3tWiQNhhMM4EA4JGSeIEeLAqgrDQHotpLSiywKaySnV+b0ms/FHkGIfdHWA6VwtazuCJcNwRi8Ak9UteGy8sNqCo3FFQ3F+8p4gpd/p5u++8miAUqpoBwYcvc7A3n4VPyV5Xr3eoGNO4PbLllwYyXz36oYX48JpDaw5cBgsFdsYSviZLzQvShAb5CG4qKsJpWULt/XEy2AuVevAZvtE2/oL3GZcRRTQjikHLl+wB1drB+lF8ovHd3Ws2+4SMsoxZQgIG4NZZaVrHW01rlhL9qLVH69NZiL+aEWfUgws3URYnexvAeba2kv8Pn3b90+pviZ4CTr2uhvr70zbWeDs20JshqUiVo9izHPDLNUAsbDLwigXbLuDq4ygc0YHRc9iOH80HebpamQOiTmszigXFiYsDe7A4JEpAwtnDkwyM+mBVQ6cmZm5ZmDhahgYh5Xj8YwsmN5upq2dndQy5zgDrHH4DvAyO/CcxfSRs0/eLnZXtcKqcPbrFfE+QlwhLhApi3dIdXMNgMbIGCKHaeSDF8/gRzLz9XdZ55mPPzJm+eu/9hGn04mXL1+Sc2LOiTEEooh7OymSMiEII6EKkjll8pLRxdyI9Kg1y76MCrMQjgFZhDxnW53yJiHRJMYyTiQIIZg0o6rknC4YPrflkQCldH/OqiiDZ/8EZeA0i3ArZYD6ds+OfjWsDMGWu52iORQP4qm23GK6keL8XIsDrRsaONDljrwEUhvmuf/rysbq3T33vuyI6+VlJBx0NxEHe7DsQa//ul0i2Jp9H7O+oZ5dkwTTP7kKoa+CV7axRmnn3Xqo0q5+fAX1Xh8t5Tn2bVRY6/58KnuXzXKU2ZujtJUfW/AUG0yVlZVbuPqkhhL6JMEgNayvSAale2oEUSH7GjFp8Pb2OiYCFtksnkPTqGpGaiRo0oDpOAfMQ8gmpBCVMFnIpkQDF1eKtmS1RvlazHhh0sE/B2luQSXf44wlyI1Qs417vLmsAhG3xJt7WLAK1yYxG5I5cwcNrFcTaYjENXE+jMSUOJ2OXA2RZZ6Zz2dK51lZ7XWkYu7sO46xRVVtDF6MdSJiLHSlRmCJuq4/eH0rwTD4KGsX2XN8RRglGwYJ1XhQFfNd7FWdv0A3YNnpwryZoygxmhhet28kyabXKqWmze+XTQj9fe9icX39umP7vyJ634qWKBNAf+EeeXpI0+4It3rCjpVtnqj729fV95e28G12Ke9ctb0aA7TDA4hnfC9eCdBFijRQq+5LveTgYG5jpIGllaK/7d9X934Fr2ubHAs7b54H5Rl7lYLfv1iKS9xy3eUgiIXdlTatfaJkbi82rDKC3Lgjo7jDpR/TAZcOwnIYWYYBRmXEo0xUGIplnJWTHJncI/DEyfWZz2wf1wyycsWJcViZhoXpaAx1pE+yobY4V59UI1HXpCm/a0KODVD6MbOB6IahOpCGRQgJhrI0zVJYn7pqwd6BoDBFGCNcfQPNSvruN5nnldcvb/jkk5d89NH3+fT6NdfzmevzDWtambOCZAvOikIYQ/UbraUCvPfHQB3LIQczBhWXs9n2hdiMxiF4dM5XCSi3eqo9DvUDyAaH+Mxr+eTC5hytPbSterhx+L7IlLZFQujsRg3oCu/bHd3+JCDm2+AvpNPBbd7FHhj23+8qPbOT3bdL182ORw6GUqKG1EXmLqHGhlY7S6ogur3/LV63Y/87+0tXyo7g5E63GO4eAkX3vL1s+eJO/j1z7Ml0x56b8a20Se+B4H1JQ5dOrlSvq4ezE1UoYY8VCMHyH2ZvzwI6OMMRqu+jjn6eW2xTiOQAEq4YxLI6DZo8bmcgiS3gNTCyysBIQl08XxkY1Xwyy8JsNYN7sATDQTKSlVCWt00ZmQTp2eaSG+NcFRZf6Kvkd0yYqqFkCV/U6l/E9GJ9PhtohZW69hBYRvg6jzs5CFMkHC1SKlwJ03uR966fcTrPfPLqFed55uWrVyRNpJCrvlglu6hsA1MypkZIThjEjoHQsrQXdpnKvN5N0j5nhtynvblcHgdQKtUZtsSK9qygOG9v/RJtShcPr5OOrdgjmxZYoWMzl0C4H1h9UgqQEGlrhhdm1WUfuQVspsc0y3BoQFTvUQBqX4vQnn1T9uCpVSzuj7l1Vm2/ihy763ldnAVqyTe4mUS2963f+3ejluZse99+NpDu9m22uMXgb33LDuDD7nn6GSfeOruc21/ZzmtWHHvVTvOk8udmFXYCqijiIZO2wqQPyCKSVznTHrAaF/qUaD5fVyPRiIm0A7bA2hQhRtbjRJDMoha/fNCJiZmjJ4MYWJjlyCiJM0cGFqZ8w8DKgbOHTZZEHJlBFmJIHIaSGm4l6kLMCxF3oyrJNpx9asIW71oyWhjl2Z9pMT2h6ULVGGbCE3f49xPVYi4JQnIGnvf9QQhEBiIHRl7oFSl9wPl6Zj6t/NpvfJ/r6xv+5q/9Oudl5no9kSWTJFnuJV/7hwwSg01gi7qHgxvyUjJQD9qigJwkbATXOtTfHO/9OIAS6IGsikP9vjoF9GKUgMYOujpRWQIiIyXDN/RgtWWYtyXWTkdad+4PsvNLwl8Rj5sub6LMpCr1ihvRsVVk2wwVEOTCNjveqlWWryjHaGWN9Tl7sNx8SL1WiQUuPqpNx9d3n74u6hjp8nXe7tqAYweaUjrq/nnqAd0X3681Br2fMOzUohel/m/H1Wz25T5SPAnsfWouk05BPKGmGaq2LDfiKaYPK/5/xSwb/H5FBC86v6R1QTUdZJMMBF+StTpZL5h70irkKMzDRAgDaRiZWTkzc5Czi+ULgyaOciLqyuSAeWBmYLF1hGoGpJmomcmBcxRbPiPIWllnHJKt6R1XX/8nE3Mm5AxzMqbphp+w2HsWX+HQAFQMKF2U10kb8BZ22vtxlu67eY8CORNz4DCNDGvk288+ZFne471vXVkijutrbuYTn9685nq+4bTOzHkmk401OuhLEjf6qPmCirawVTEmaduKa50ZbXPY9a07yuMCyspoLjGOBo5SfRyKVba5jLRrFQtz9ardXK0HhPL6Gq+EInPZ/Ov7tWeEzmezTVcxFpDsYrS1sL+iBw31yRq+XWa5tSZSL9VaqegKKThcaZABdKnspj06sNLyRGYk2IZJlvru69MzS61sWUWpjuK7++1adPeQ2p69Xlq6doF+4msJQvrzyz2ooletQQHL2mh+nY41NwNPtcy0TEXeTpWQuu5Sey81cdEOsdC7nCvzBFry3QKm0cislKw6vuCaJouHzscBGYRlNCf1WacaG76oZVFf1ZfulckB9MyQFzcI2RIZJUXcqLbk1+gLscXCOiUzRUu6UY+VFcVCLGVW02/Oas+yYm45i3Trabu64qY8hz/rLM0/s7z+jHXU2iWlue36AnXhODAoHF5M5Ky8/+Ez5nnl009e88nr18j3Ba5BT0qay/K73m8XY+1BQ32VmWzvcXGQDNbnc5f1X6NjxAMW8nskQCmYH9wd++qg6RmOg2MFy1J8+iqsx99Wb2xwzmNUvQ9dKm0YCiiabmvJgZRhTYE5B+YUuVkHlhy4XkaCwLefrVwNiW8clybqa7tw47KlBuWvMcUGjLollR2K9xmnt8jg7VBi0ZvCrmPSxQhTAMqtgrec6rz9OqNT9VcV9/+rbVjaGWfVxpwL+FXvpzrBlXYIW+yt7bMDdWBjnRZpeiZ/ps3L63/XrwnVbO/aI4Tq89SDVm8dUyzq6rtWbZJ7cSUq2xJm1S4AWl2GcICUmrHIVqGU5lpU4s0DcMi27SwwKHoDawykOLAOEQkQg61AeZArBhKTWDb1iYUoMy39W8vkPvraiCPJHNYlET2+fJS1W08oMXh29oGFcZyJcWWcFsu/qSshK3HN1ZjDks096Rm27bkBpy0zqyYOl7jx6vTevaaiyy3qChebJdvnYZgY88j0YuSD5TnfPn/I6+sbbm5OfPTJp1yfTnz/5afM68LNcmqqj1C6lvW1YrAprznn3PpkBAkPcTd/LEApPmjlkvVpP4h3ola1CPfMrbuO3m6ISkSkKZoV3K9KUPfJy57D8pwiyZP+ntfIOUVeLZlzWnm9WJqmQxxRhA90NrKxQX3Z3fzORrADvB0a1yy6yfpIFVCbmMzm/HrcBpzhMlvc+6zuW6u43bTrNEfxe7qZhA5U2+Rxn7PzliX7ZwXUHgjbrttgy4V+RG3AspZQE737uwfHWHG9uToj9Of25VxrNbK2bOsFBMqEUPxHi8BT1KrRWWf0NYF8Xz0mYe5EQySpGYXWISCSzUFdzAF9kMzCSpSJ0IneBSgnX72yAiWZqDPBk3PEsrKlJgYpqeIWJhkZwkrWE7aqJSaSR3y9GsxHtCzb4QvFSXUlEovuKcF0JVyyAGXqPhMt21RhmAqRSFBlOAQOeeRqPXJ1deB0OiMhcLyx7Oun2VaTTDkbCBbdaOkfrqoqY0pTIVHaJr4HlMcBlMhGcV/Khh9UVtnrKMtfH61Dt53dvjZ4sio5C6sKaw7MOXJeA0sKvF4n5hx5vRxYcuC0DiQNLElYNbJkIeV/i8x/wpoDg3yDOf1Bvn115JuHM2MUxti7HRWRsnN5KXukc0JXqjhhLHQncvZZUgtaqlJTIW3E08awDNR6Rl6MXlrFDu2v2XsI0NVHafcXSzXWULsr2rd90akWjXqJhHDKVgxJMVK8BTS3tdabHcrvpe507m5JZWLY9pP2rjeYS+7aG2qiFfPr8fquNJWJP0MStww7oxZP/FsMNkW8LuBRInoCLWltYY+enaiFR4qFVAbMIBKBURuDnRQGQYcIMXAaovlMuiO8DBbeWBc560TvqWOYg2YHyyKeb9f2iRRGWQxECwcHz6PemHFoPBOHlXGcGdWt7AtIVjhJ56Tuz79Kix/Pul0TqHz2xq8MmsxirlEpq05KhhiFZ9OBqxcTLz58Rlozv+WTb3M+z3z08ae8fn3Db3z8CaeTrV+e8urWcfWVDHJz8fI+FUYhxhbRdV95JEAJhR70HX7DyaR38WjnND2XbH6372Ugt3MVWLKJ1C/niVUDcxo4pwKUL1nyyqt5Ys2Bcx4MVLM5rScVlI9Q/diYp0Sul8DNODCngRCUbmGLrVHlQaXR3Nt2rY5a9r834FZAQhxLL6S+rxctjK13FepFW7r7lbZu526Pf4gQ0z+fg2FXa7ldQZoMb9OHMT5T5N/21ywTUV+XPYvW3fduQvB31b+z6jeqoZ3hTs696ru2cXEPKnNDAdJiECpgmaWy1d5B3URI3Tp8j4JGgVFb0g63qucQCGLJHQKJVWw99DXYkr1RcmOUVSxfCWqMtAfKkdVcj9wFaSCRxRN8SGTQhSRtDcuIGYCCGmhL8TN167c6GJqOk+qPqeUZy4RSQkPFfT93NlsRIaq1VwzREvwmOEwTmmCKI3lVruPIyMB5PrNoIi0rOSuprhhKUxz1LkRv0FM+LqDc6Ix6sah0Zutp0pvR6rl0x4TO4lzeQnNMzln45Hzk4/PEz330PotGUvY5VhXl30XV2KK5ztj11lzARxBPh1UE31fryHGZ+P78jA/CwnGYdyTWfjSeU4C9wbfhhnRiJs6g7vLyKuAWLxyzFVEb2bZ8KcVItaVcbvUmNL1mZbgt6UcHS84s6xM0QNP2/ix6xzSkWr0BSt3s3JxsdMjeIV23DLzI2qaayLX9tKvHVvLoLN71oqkCIsXntTLJ3ltBqEHHuMsX7qCMwOxtknywJXG/PXOzIagZPgqwhe5PgLrKpLj+0gBTBzV9ar8Oep81vo9FHwUdBnKEFAe7p7i5vjDW0QGtuA5pY51l6d7ofpiWL9MY5ZETIytHTgySODIzyMKYT5YiTheOg1nlj+MNg65MOpsr0SLmCJ7EvmdjliTQUzZxfKaJ38VaXrYJNpEU5t79BTfmPn9+xbMr5f3nz1nnxN/6nR/h9ac3vH55za9/7/u8enXNRx9/ynyeuT6dDCQro1RWWUmSCIVV3lMeB1B6B5XNwN07BvdA0LNHoWThacAanGgVdyL/LO4wbnBQAnMeWfInJP2brpME5fvATNYi3kkZs+ReXCxMRc+k/HPM6UM+nb/NFDMfTOVMYM/m9gz3Tr3sHvoK39oCRwGhvj3Ll3bLLRPd6EClCLHOmLQd01+0AHmfCOmWLlbKBXpx30GyhhPexz17RqntK+1evZN8z323663355a+4f1Ed+17S4/d3o89Y9FnBm+jst+v5ZE8IJvuZsnfTYyWst3/VLQahcw/EwOVmvfSRG4Wx+qSd7PEpPc5NQdnooMlGUakpjGTKOboHgQNARV3ZHf9cQiFG462OqSsHIgMWHqyQdbKLFfO5sMpkVEHRllIGj2dnBBlJUkw96PRfGxDVoIbvGrmIoBqLKMBoxt16nB2XWY1Q5RX6R2obIoKSDS/10MmroK+UJ7FIzEPnM4zQ3jNsiy2sqTaypIbifsrAZQ40nuSyJakthfKem15xxaqptyPqezB/MRU3TWoJoo1oLO0TrZEVNJfIOm/TipLFwDFNag6Ypc7qy1OJn6pKILIK9D/M6+XH+NXXv3XGEPm28/E922fs0WUlHjxuyBD7n55PUPcbOyZXWek2KDKXow1/SAihDBUJphzqduGjlJ0hNvM7V7dDYBk1xGJOe7Xia7pLUupas/+cTvXHmvrrj3yHqChX/dHd99US3q8nlmWybaX8bp2rM8Xbn8KnbQSLGQxRfss/nvB+7OfVhc7K2Je8OPEXINqktreul7WQy85NAVk9HuUzPB9Grh+Jcsi5gcTifMg6CCkssDaMFXx3oxR2UAzrBwrozwzSOIq2BIXV5wYdGHi7H8zB9/2miMDK884McaVQ5wZRjMwjXklqqKFNQ64A760lSZLcpFeAFy9UyQxkC2vtLeiu44zJAgExumKF+GKb4wvSEvmo/dvuD6d+ZVf+5hXr6/53ke/wc35xJpuaqcbCISw60+78rmAUkT+R8B/16v9F4F/EnMY+JeB3w78deCPqOrHD7gaDTxwlrNPCtvLbCZy2qAronjPLAO3FsTy/SIwBZiiMgVjKCm1cDmLRnOQ1LIWcrGZNDOZbABDSVl4NY+8WpRXy8LzIXOIW0Sronc1QBQLfccJ+1lOBDfH9zsukE7trrXjnbpj47cs8tLtsokkBDVGrrlTGFRqV+9Zwd4no3pMCAQd6j2kv0dXB9XcSGjfShvWsK2vhH4Cc+NQv3/z9EqTTgoI9kv1lpsruu9qFKd+QXujW9nmiGSTtTlJFtZd14gr1ysZ2YshyCV+7dfBXrSBYgeYGpSynAWjs9EKvIWB2j7zGfS+7NfRwasX8fybtGxJJZluMKd3YmQeDqQ4kqajRQzJzOh+nQMGlAeZHSgPDLJy1JIJaXKDUIk/nzmElcHF+xB9lcm11Y3orHn19+zMU6EyUHE/TA1l0vRuUlQzWc0tyV2SUhDWIRDeOzIeRj4YIofTmeH9Z7y+vuHl69e8vr7mfJ6Zq/Hw7vKZgVJEfjPwPwB+j6reiMifAP4x4PcAP6OqPyUiPwn8JPDPPOCC1FDE3WCWOmIUaGGFUpxKKftC7fQGoCYDaZGFrN4EDCQPUZkGtSCCYtHEOrl5hoilXvNBFpzp1rhfoGdWKQsv54GXc+blfGCKCwdpTAcnE8DG6CTdM/RuOIVF9c7Xe2NL/a7QVlesN6lHFSiWmoasK1W8KWDmbj1awsJ0S8Y25xbHXy3UDwkWKCcxsBGHpb3bjUfAbYTaPFr/o4j7VZdZ33faHWr7tuJ42Vmes2Qw1e62nWeBI13xpy2O9c2wWNNx457jdqdsbFM3Ttbunwm0Bc5kE6xlukl8ATZxkPQ+HjFn6f3KlEUMr7pOr1/ALON7wO3XDQq01TADMATyEJivBmQSzqMt2Tt79M+Z0RilzNjqNIv7dS4sMjHoYg7yalFFhXWmsFjS4nhD1JU4JDPyFIZdPov1W/x11jWCbGIi+7P38FCWwMjqrkGY8SaIEfwxMgIffvCcdUm8d/0NPn35mqtPX/Grv/brLJ++ZLm5YU1d/7lQPq/oPQBXItX19JeBfxb4/b7/jwN/hjcBpfTuQTvGk32JqwBbGlVm9n5oBQNPQr2OaCBrMncUNWWIBJhk4DBEjjEzJ8jaemwI7vzqIDa4U3rWcgcpIb5Ev48FZfwqS/7X+OT8O/iVV38bh7ByFbIvB7NPjtGpAzalZzZKW+/8AjhW3WcBC90cU30se6raA+1GZ7mtQ2lfgba0QqfC2Pi8CrSs66XdChvuIiiysf1NNM+mDr3lGarj+q3n6J61dJey1jgF+C5Zv0tZu0lZa5NYdV0c7iYnu12vcijK/z5fWUGk0h5FT14uXoAdav5HbQYiRMzoITbBFGnC8gY0Mb2EUdbLCb7EBTAFMyb1bLMufUEDJKGJ9T2YunVdjlgi3Bslj7AcBtYQWMZICJkYUwNKbixPpjPKI1dMsnDFmZEzk1o2zZHEM0YGWUnh2tyMwoLEjESz5EsUd7ly8BNpIndZK6h3G9s4rRvB8bwenFRZMI8rS26kpnp4fmCcIu+/uCJ+8Jxvns68fHnNsq7wsx9d6CtWPjNQquovicj/EvgbWCDTv62q/7aIfFdVf8WP+RUR+c6l80XkJ4CfAHjx3o/awKl9umdJWtunMi26xqqgWSkeJdlcicQIKuTkIqQPvCCBGANTVKIEVI+ImAkuVHZrlwuV4Xlst0pVARYR0BJCvyTpX+S0PuOT09/J+ZlF9Ehlw/2HjaK7rW27wdqDXXnO7tj60W2ukwWX4aIbybQZp1y/HWPhzQ08bXsTX+0dhe7+HXP0a+QyOVQQuw3920zTW2v1bda9faJiWW/PsfeY8O9Szi80qms/7Lrqn2VCaxb87vnr92KlKd99n80wXb0bINplHQyqDF6uF6qhQ4i1WStjD1oBsm1zkfQgVbxuukptTLMwS6GJ3HXBL2lW9iSeEQkYLCKNMbBINMNMUJIMLCysGhh8GYtBV3M0khWVgUkjq1miWD3GfGQhSGKIgRiT5YlU950Ui9MGr58xETeMdX28+ytr+ZhF25IJ1+AhSv4OZfbBLDEQxsjx6kC8OvBsSYzPXrMsXxCjFJFvAH8Q+B3A94H/o4j8Ew89X1V/GvhpgO9+5+9SkeiGl74jlgEArXX6zh18XNhgkLKSXyg6uSaaS4g100sZSCOJD6eVJf0uPgq/DdV/D+UvurW8L71e0rt8sA5fdMDRB0BQSDrw6Xzk5brwfsq8CJkh5A0I1HZwg8dWHO1A4NYp3czaM9IKcj0Lk5aAVtta3lVHeFEv04FTOc4e+Pahfo0gwRIO1EmtT64hICbCtXp20RMXILwwwZKWq+gre1+3lCyYWLp+0kofK1cmjPK4ioU0Fipa6rlnn+V3bqy1voTVP9s9c+4nhwJ6275MD85azjeGilT0oyKhKTEriRCFLhK3MWbPC8rNCBLas7khSAp4Omu0Bdbsvero1fL1t5lAD9n0nc/8uLLq4RXk0QD5PB2Yx5HX4wEJmSuxfJlXnJh04UpuOHDmwIkTJyYWFgZGZhZCWytonJni2QxJS7a1wQGZfLJJ/rliOlzB2GVxaF+ARchJOWNM8gZjkjNwjQWnzuygRUCnAR0Hhil6Yt+7y+cRvf8LwF9T1V8DEJE/Cfz9wK+KyI86m/xR4HsPu5zrfepM3DpXyxJTOq9s/1TQahzBt/dMoh1bB6Ff8RAzY3hGkO+QeeEdnu7cOtwaxt66SwQ+QIpbEs9IKiwpcE6R5+M22qZdWLurQB9zvXH32dxtX7ZI2v5vz28uP4Boy4e8u2bD6sKs9tfrQfxy5yoO7rddvsr5W2DaTCBVnVBu3owzW1Wmx+93xjT6ut/yveznBvXrSadC0O01aMdVHC09UAsA99FOpd7Siejd89B6XTm2BUvE3XYnCOqGokorC7vvm88Ig4hZ3U3t4ADsYrYWNllFbanieHFJEl9lsubTLCt+DH7D0Z/RXXgyFuprgeiWYX0Qm0CSRB/G1hZmIWhuRIOY6mNwvXKMGYbFmn80K46O3ndWjHkPDuQeMy/9+hOilWFref/+wncEtP4HawdRGKbhssTVlc8DlH8D+H0i8gwTvf8A8OeA18AfBX7KP//Umy9lWXgsNVYRV8KOxfRK9iJXZGpYn/pL7oGjXAdFswFd9gSrZtRR3p8SL5fMGCxaJ+8AUrtZfNuY3X30A7L+NwnyjCnAKANTWDityic3gRcxMQxpx+K6AY5wy52nMMwy/ioBuwOodri61QuWw7Vu0107bdSdtGzhqDOkSgj3bFdrnRurUxcrBa2KJDrQ2E8C/aMXV422/o36S9BcHOvas1dQLpWvOpHtfQrLtiRAoYKpuQ71DbdloWaUcWZZn71vWwEZqppgm+IOTEXhdantJd1vUM9A1Sal0r/F+mt9oPKifAIJ5diqqCvoZp/JlY/Jcm9uXIc6tyKJocVvL2pgNKhdsiTmHbE47FlqRnNGRc/AAOerA8twYJ2OjLKwcOLImQNnVrliZCYxMunMwugM88ghzMycOR5uGA8z0+GasCYL3Vy8HgfM6HRQk6UnLEvRRE1CEmfleK3EpEwJRsSqGIKn1rQ+r5lN35fNZHx3+Tw6yj8rIv8K8OexpvsLmCj9HvAnROSPYWD6hx92xU4R3qaKbn8BlV6s8uOqftOnGW+URipb52vxzYEggTFq8eU1IN1lbBA5IPxmJITKQgFbp0Qsw73wAYEjUSa3pmcO8cSLceYYVzaRRNIPmJ71dvtrO7T9ldX0WHuLDTbEa64zfmR1gdF2+Xrtvg79NaVNEHv2WHF+xxirmHyreoXO4pYy+sxExa2mMbG+fttLNWf5rr32N6tKUOmeuT217s/vDT/St4ldW+shu/ap9+4mNm3MtW/n/pn76xZfoqKuaPVrDLPeY8NKS3/2exa1CrmTXHwSdjG+DKGSHKL0+40mO3q7JD+grEmz+G0X6C9PBkZTkSW3T82hBQVEsuswFw+zXMnEyjQVC0ZIBIiWDi4cViQqQXPTowotZd3odSzp3DwoKSzCsKolZFLLsF4W0rRgEvW2apLCVq1yuXwuq7eq/vPAP7/bfMbY5VsUARmRcKk6/UxbZuvicWpvSWRyMWg1/Vi29b3bYAIYEAlIzPXcqMKVClP0K2VhSaX1THKJ8k3G8EeI4cAUs6/WmJliYgyZD4+JKSjP4g1DuOZqWJmichyUqJZ4IDpDKstXQHlhHbvon1igGQ/6NqK+2FsWXQfJEBpYgjFLSzLRsURnJrK/dQcC/cqI5qfYRT0VRtMx3lbxflulTP1N2k0FLlm/yzGbiCNPwqGmted25UsJFMBvrNivWKzoeEKPghS36rhtQ7nIKsu9+nNiZcPW7rq5VgGlbdvgdS3+qkIQC+JurlwNkPt8BwaSvf68cKXie1Pu2vWl8nUxwmAx12Ls05e+rYr3IDXxsBRdYTGcrLk6jssQqjifciSNA8vxwMLkOTUHJmZWgufQjIysprvUmaOcuOKKiYWrcGCUmasXrxh05fD+YsmBr0FusDV/nvsjXmNA+R6GOq+F4QTDGY6+bzlnkpq+sjHJyh5q//hCgfLdFamMrRSt7ihFQ1lmV9eNOJMxHVjpFKVjlYEG9lZtYLQQOMAHYRBlDJmrmEn5t6KaGGMmBuUYE0P8gOdjZgxnDkNJMJAZQ2KQzLNJGYIykWwZ3KgMAYYIkgtYlxdUDDfUAULdXylaeWyKvqlazS8ySamAY8Yst8JvwMKPrGy1RB117b1/H8UAQonR7hhHud/F8zvm41O2FvDqCXS70LZuyBYz+5oFE5mpPo0F7It4Tte2siXvF0prD3xVxJ55+zXqNlrlNzNwz/KwDNu1CwpFLbRp1/KcXXWrq5L0z9bA7rYhsPWX288nm8lUSo7SrkmrPUAaw6pt4lFAJuRJs10tUPV/ZZ4RaVmUCppk6zVrjBBGRDKrlJUkLSPG6PrKxdcFShKZZHEpfyaJMLKSwokwZuLVSowr4eAAvXh8fVkq+GwWfzmoZTAarb7xRgmegahOJX1fZjdH31EeB1AKtv5FP0NnS7ZaDijLHqgWXWbYMIvbFuPiAye0dS3pjrG/IZio/HxKKH87IfwdvDdmDjHzweHMYUi8fzhxiImrITGGlcEzsQRRYpTN7aquzl2UGlEp+rCOXexBo6ubPVoob7hVubAJoRojEJtogoQNCJfJZpM9iJ3TeRFLteNvvQhfwZK2f9PefZvuH6e8G+gjfOohe5AsAOEsth/crd1Cjc4Qkcp+SoSGFv87DzW0amjHxLsKdpOnhNKvLDlGLirlTY3tnW7qjN+ra8vqLgXWhzfGqpK8Q6putTSVYb5buQtjrm3R6tLOh+aeVPZBE/gbUNohDhKKBU2A/Q4dmLs4K2CuRoCURBWKxZqX7D7Zz18d6Ae1bQPoqqxTYJ0OrDEQwsSKid8JYWBhJjLpxFlGzkxMLMye0f3MxCgLV9wwjTOH8YbDlS2UxhGjiEfM8n0wyihXGEiesWzoC8RXwGq2ojJ+tgEGm1d3Z3kcQAm2lkVhToCSydrSaElJO55Lx/SFSQqCVGu20jK+2HUqU8u5DvnSaAF4MSV+24trFhVShqsxMQTlGBdiyExhJYoylNXtyNSo8NwzEbEr1gEqlpTANMj+oB276MH7ImsscXAdZBTAUSgKG8FyOObOfaYM0AKWuej1pFx2y+DN0KGVqBR1R9nUvAqkAml5xmLdbqDgImI9h05CaL+LTk4Le5KiS+sBxwXSzp2nAblsj93pYQsKleduryDXuvXiuYFKHzbbj56O2fevqKtS29BNhqUC3STXjnew76rbGqi/l27acls3f6HFnYgKBW0fyd+5HdeSyWC/iyar3CF0dSzDp2iNyiJsSrUfyYD1tQik3DK8L/aXxkiOgZvDc6IkktqyvKtMTKwsMjOLhTye1RzYTzq6I/uBiTNXTBw4M4WZ8bgQx8zhuCKrmrFnxtyYzv535dsONOOTs/wWauB9J+dd294ujwQoLchfSV2ndjYktEGY8QftdTcFUMosXuQAm9pEko+lVFlpKeUKz4bEd5+fbJsoU8zEkIk1+n6tg9A6Ld11iqjYOrUqbpHsB4wfs2E07aMf1Rs9lhbRVSi+kBuLdTdQtpNiYwmVWXb7hGzxy7uy7zCl7i2jeb9TvModYNkNG5h3gLZJHrwBQ/FsRMF1za09N6tXejv0fMleSXfv+ojd08p+Z6ljcT3T2vybNt08agHw8ra257X5rwMh/3l7qQ3qJAFmvd4YqLZHlivd2rad9MuWCs80v9MSWultXRN6SHtHzqBrIt1ySHnkEq3Z99/il1xcdTxbuxaXogSSfF2pUUjjQIiWN9NciaKnOpuwVc3NLX3QlQXLfbkQOejI6ongJhm4Gs+M08qoiZAVGcQc5Cds2dyT12FWT6KsBpQ+vpp04iqNver5QnkcQClYTCsN5Wl2jzbogrtEZPEgeYXcUvpbbK07gREw404BNx8UJf67uJqQGYJlEzJGke2Pbkh2Rpgic1TrWWG9ZbYqRpJ6bPdMXo8a1SJtc3tTFxy76xSOd9bCYpOr7JqBpTGcxrosbjt1Y83b00M6G4irMcdyroSN6FhinLceq9KU/9lYac6esUlzZ3wotGk/8Pse2lG07g7t3N7NSDf7NhE9dG3egVsBcM2mAikBCmWC7Q1kW0toYVqhsVCFXNYKKkd1StENA+8PooBk6zsisSPSurUrlXYp2ZE2QQZ1JbRd83XbNt+13UOLHtTTB0lwkVq280S3fAVKY4sJc0ZPYgDpK1XqkD0zOxYGOWHGmFFhhhxhHkeWODCPB4aYGCV5DsyVSQ9Ez7I+sHDkmomZK04c3XH9mdwwsvCaa0sLd1wYj4nDi8UWRpszvHagNI9zY5cAcsE1Lgd00w9vl8cBlOB6EmiAsBswGUoKNVMg+18oM7u/3a7jt2mxYzLekaoFtfBTH3y9Xqp29LJwV93aBqOUzldFUT+lTr29i07RUTZdV7kK9dHveWHSQGpjwdbOOfzSYJG+Ofvz2/0qR3Hw9wwgG2YG7TraidHVCs6e1b7hefrr3rnl7vMvEcWyo7KFzSXK8zTHZOsLty+hutteJpB6Xrmw7HTA9QIUB/NNm3UMdHuK90mf7PVWpTrg3+zrGGWJjpK9EbG8b6NOTQKS7jkFPH2gxVVLyzOSukuV/tWrVXz5341AV4Zl6abujsQASQMyWNKKTCSLuQ+trG6bsVDI4qC+MqKU9SVn1CN7MjDIgsZADisxqGUnGvwNlyU1HCg35KTHA73U/7blcQClgExdppmOBdbiWXvIRaeSK7tSQhM1XLwTz5RqoneZIl2XQ0mRJRRXEZuo/bdrq81dSSGvziCbFrsAVU6FgYTGIgpq1XdRRFEP7Qs90/L7ammIDZWmQ176l2v+dkNrrj37KYOhbu6cweu3PZBg8baIs67uHVQ3nnKgWrYWdGt8QBsj1fJeGpjT3VPLexUpWU9ulaLDtHOKn2CblIpOmLxlhAXYmu5y20a1ZxU9bt++tZ5S61CkB6uGPzd9/tJaY/r31C7XMeDK6uy+mdTaYDMGumteQvNNXaEuRF5vXu5ZEAxuxfHV793CPzm240qG8eKkvvrfoMYoPYUbU0CCkoPaUhejmq7QwyLr+j8ROKpbqANpEPI4sIwRIoTpORIyE7OxRb2xVG16Mh0lC8/0NSMLV3ptOTDlxKQrVzpziDOHeGYaT8S8MCxnMwCt0r/S7ft5gNn78QBlLJ0ReqV/7dR9yiqlrtNL2SdiBp9NBykDx6a4XlekJfmu0Ukqm6xt1u5X9VGlc2++d+K1hpr9u0a0VOTsju1iyW8Th9xt7DmT3GZKO9a1MQ5pqdOuHbtrNcC/UORSj6qVvPVrw2A6EbQ3wMjuyG413AvX7s/DAc1fddUvUt/d1jhT6lBCKbe13IrV/SP3/aN5C/SMcctSe/F6D7TtfTTp/+IDU1ieXHwX+3fdv5rSlrp/JV2fhT6z0606byYIB8yS+7Fbx2ZjzMmFk/jzZGelQeyv6PyqZZzGMst1BrHzRyc+2aKDMu4qGMwB3YzqnpVdB1adUXBGKQysKJGFlawjq/gCvFEYQmQSs5SHuG3L/bt+U3kkQCnIwd19ciGFoTInoFnbVjztF7XxRQOigqQDqJry2N9yI0DudF2WIC39ZAMgtUI+MEvIXEVw2tsvShw3sGiZdgdnVMnXcWmrCrYIER85NcaXrvc3x2673xZURahRFf3z1Xr3XxU0mZZeQnSW1difeN1zWjeAWl1YepyuxpdyVAHbS65C7UTt9Io9kFcxXe0ZJOf2gN0DV4DCBr9m05lKsLYNUTbH9Wkp67VC3pKGOqF2x+zB0xmk4uqSzVritDYsqpQqa/oR3WTXJmDBUGY7CdXlb1vjbuphl3V96GYS3T0nOKMs3hJp+9wbQCxtXeoaAZe+PNOvzh41M2fTFvlyEzKIJ9wVZAxmjBrNw0OGgATIMTvrpMt9KXabg1SGqgO2AOZoYKyDogHO0wBx4HQ8IDETxszEiZGZK248m/oNo3giDl/bZ8rnqtMcWbiK18SYGMbVetxm3ukn2/vLowDK8p7E18vQHBDZoX7551E0mqlxzNUc4Z2tdkrtElmoH1Cyoteo7jbz3jWzmEGjnx4N6Mw/zfz+shb/OL+/Jo+sdKC1C3X3Kc8WusG2uWvtyHa97C4ytk/769VrFbUDlE5wW9flbe7nVXbR6X9vz7aFUfXbewt2l5HovtIDX30p9qO2fKeDk/qkQs3yXiYl9fbfsDRt/pBd+zRA69u9r5Zs7glUNUrNnt5PJF0xVQq3mGJVEUjxp3R99h4k+wt1bVr+d49GAWItde4lCdr+3mCxBWm99Y5qYo8qBRirbMljhLYu0HYioayhHcx9T30FxpI0WBMeN85th5SiO4yYSO8LodX1ghb7rgl0DJACa5jQECBEYljJ4m5GjIy6eAz5xITFk4+esSj66pIbHeV+YnxDeRRAieD552zGlSyEUNhWYWKeGz5Gc3BVRVfXkxX/u6zONou4FdCcKjBVZ95CTWs3dV+z+p3KGCB3zu/mR9nGlR2jaOez6/6aCuQShubsOBTQs+OMTfl+LhgE+pRyCqrSFOdoB+zGkIrIb8/qDHK3FkgntBqr2z3LBiRzYcrGbNtxBaz8t4rrGMP2GToRXChLJpRn2q1xU3SJBbCEZvygAXYJxayTY6YBJphlWjyE0K9+CwhVNmuH17BMaW0bQqS4pN1ydap0vbtvaXspIFYm++DV0ppSr2fZAJQEJtWwHSq7rk2etUkuTija5NXVozRo9x6sLXtJpbRxD57+WT1HCssUhMm2b9Y3V0+fkC32Y9GWeb0HvD45cL+iZAFId4mWshLlIC0Te1RPhhHQK2GZrlhGOB3s2pOczUKery38kTOTLEzMHN0f88iJKLbG+f3z+GWSVMrjAcqaE0Ms8zPQDwwDUmx94Ag6tBm1xsmWfhNwUd2yQ1tn89zkxUpe/1Kn8C/zcPaBuDXcUMT3CpalMws1Fllps+dOnN7GZ3tly8AvI6IzulTWVsEiU6KXLG4dyiJXG3cYNZ9UO1fb9ShDxBzvbyXK6PSJ1GP3DMQdxEO7toJPCrD3GTTskyrG4vkGyT3r2YHrhWJtHS0NhPYGpB07zd0zbazTm6vV/kBRMQRpwKOt7Xv7sWyq1+3TPibdryEX7ixS39/GbzKE7TOUdusY0PYJdj6pbXObHIrevlctKA0EGwJTfHClTHTFZQh830wdWBpMJxmCj7FQ9ZZa5vyQ24JnJQ9mwBaqKrEi3XIUGn18DwVgxTKtRzGH8eJEfhAD14Ndcx0jOUAKV5zjxGk4MrEwycKRYwNKTUzS54fomPgDxG54JECp0NXE3UwcQGpatCCuhyyds8x+RW8lhbjVjk+OHcM2K66Epmm22TnVTlmc3A1USthBsRaW7S6GO/uRMPi4a8C3jSrTzfmbHu9MoXXcjnFtji8zQHNuqx26wJniqx76PTegDK1S0jGT3jjlUCqyGX57kbtuc7aoaLM4V8DvMIrOmLIHZrrB/IYOW52zowO8/663qZh4ywmxMVZoHaSoO3zCE7rn3Ijprf5NPSil9vW5q/W/XttypO6UhJtz++fyi20eZqMK2gC/PWcLbOzarnQ3CpsN9Z1q/543DVT6tiGazUHluYTmr+nX0wC5mLv3/SM3Jln+CoDWdXLKNm2XHMs5fv9DMEyYaZnXj/55MA6UjpE1BvQQPSExTGFlYuXAiVEXDnIikpjqamWtkSy/xGVvi315FECJYFbsbvYruhEpC5Y7wSvssYp+QluUqFqw/dwkTgoF1bVbBMtpX6fPbGF0pd9I9/61r2qdlGyQJJRA0NQGfYSqHPXri4g5Yvuuuqxu6ZAOOkEbU7pdvBH2rj7aWcLbhOm/O0rihpPLllfapFPAowPJuxxyDd+7nItAvzhZBZECIBULiu/nloldrtmFe9fB3b+bJuq2s/Q2yPRtpOXpLkXGtC02aRuAhFAMdlBzYW6q5tdSbW5P3l/V+2YDVDqc7K9UwLI9a6tWp3NVaJmdpI0dwSd5ZROaVAC56nv7e65YkMHq1y/ZMUK7viOb6uwg046RbuzZGjbSVlYUgZMz5Oifzh5lCFtArY7rghxoLkYTlgPzgB1/hRmXCqgelDQMnMeBdRyRqMQxIZIZWXbvV2v4cSMqd5fHAZRgjVOSFAj15fbWzGIYqRFY0TpFtWQX14QoJqJXcQGbBdEKgg0EuuM2lLxVrQ64Kgq1jmeDIqPFZzBcHuwFFBprld01S4ctMkx379LHuzVk6jk7ktp2OuuqoFsGx+3rdrOD/9S2faPbK+e1O9pzdZZ5/68iiKZ6/CaM8BYNLOqLuwHcG6A+1iWDjb3Kdo1G0rpjtBxzu9V0817KLZuKorL7cg0pdW/P04dcSm3X7mm739t+pt29Nie0+nSvfuv2tK2vfdaGqsd0vZa6NMgm0bFHYlWjoBEK8xftQMUnc/WEM033LPjqZ1Czs/dA6xNbAUTLY9jW7xGcZWpbOXIWs4ofQGetLLMm5xgwMB6ABfIUyFNg1REpLFVsrZ5b73w/Wd9THgdQCqa89Q6stcPp1kumvNOi/ysNjvo+s8LJChrdJaZ0cBU0+3oi5LpgWGNnXSRPFSm80xQm2hCrO8+LO5Nrf2wNLSzdM5EV1myAmRXGYH2l3N+id8oDl8bZvuCt4VTrC98Xi2Nt7ih3doe9eNgdvbFSC1AYPlQ2p9WDIGzvFeJGLG/JKLbX7ipy6/72tejOQh3ghbH2VmVVRdNKTTlXwbS/bJEcKurvJqPC9goWWlirauwYsmyDvbq+1Mh+A1YpAK6KpsLyFPqJr39svfDTmWLfZlUnXtqzN9xJ99vrYjpudazLZhDd99dqgAposS4Vd6qNoa89cyMknbhP7FQRNp7skdUk+QQsvlZQKGOu6/NlfBe95aTNOl5Y5tGB89BtL8yzHgMEYY1T97IayakqNO4vjwMooVKWfv6tv/rOU/pxmdEFd7nYnrkFKPs0a2g341eXmHbh9t2vtWFRJTKE1mm0WVdbcXdf35S9k6wpkjLMaxdtMmTi4PXo7nkRNKoYW0TZHcZVNNuVqtNrlzO2pbfudbHLFB1Xx5YuscJan5KKrALOjinJ/j5e7w2ulWuwAd/qtrN70v76lbV3Or/KHIrYap7r///2vjbW1u0q6xnzXXvve8+9t7altJS2WND6AUSEEAOKCQGVQioEE5MSSZpIwh8S0WikDYnGHyQkGqKJXyGK+IEQgiBNE0EEP/4oiCi1fFRKQLhtpVVy23ruOWev9c7hjzGeMcac79pnX4s9ezWueXPu2utd7zvfMcecc4xnjDnmmEd4vWl8Qcz0V5MYRJtHmS/DR4wt5P2FTXnfrBMDESaAkFq3t2HusxrYT/7RtRC/8A8OLQB12236w+vNx/x5BWDEZ4tnIsrEN7PHXAoTo/kusHyP8dPjAFfNwPdVczslJReTDdP9tkqmgfMFYCzwlHEytJcAqgy9G8vpCEpXarl6O/1WwhjFbW8mh5AupqlXNcTTbeKIIrOhwL5YiI6F+iR6g09oLS8rExUdihXar2FnuqSpMZj9PltWXbCq4MFecL0KHh522K8NH9tf4NHa8LFHF9gtistF8RkvexGftntU4pknpFPCOWjm52inxLPJ0YFI9mFoGmWyzbMymVxXvXOKTaJIuMh2yAHPO4rgSNcCUsA1mmNb4ad9hYoYqCirzgihjMyf6QLWhCUXUOBc8p7ygPTe7byCAYG1gphES6B33IGhDFqIIVfT+HTTNY+2kXxHVFNClBwVA4rO+FPut46FLXt3LFqphoLvYr7wxvAvWfLe4qscZDQQSE+IyBd3AxFk9F7oZeiWo8LgoW+99f5KFpWFriHWmEKyApLCPgXC59lLyiIRc2Vx0ciWtjMZh8IyBsF8m9p9lX2PQJTicZjYI0KSBleD91XOj8eX0xGUKZtKkRwEZNDqGmcFdFUzw104hoZQxHXu5Kj7qigQbWxaR6aQLFK5ng1acE73DM4QwaE3dBWshwUdDfvecOj2+eJe8GgVPNwvOPSOB+v7se8dDw477NbncLl8Kh4dTKhSziq1tsZ8CV7U1eFjwCPzEGKAOeNqbYmHbH4fQyKP4MlYmKio3V8oRXgl6kvfWWeeP+ZJHMxGKe8k4hwn0/iFfSPle7lEmjZ+vpFmxywIe2UYcxr8qUJq/H28NPNr/j7TISKDv5ahYaqp+walEGQ4qvR+HmBsIP5EhmHmKgFAKluw9aXucSMACkFT+4ZrBQoP3WJziPrZMEWL/mY9OaOmvh10kUeRSLN1TApLQYTiyupjibGd/PRImECYpe6B/Pn6kXIaglLhm9YLuqMpx+16/qkHE4K6duDgsPyAhOUdudq9V6RDZAXEVsB42FcIybItUbEaaiIU1RWt2YqnSjOZrIpDBzoWvLi/xH4VvPDo0tDi9Q4PDgte3C94sG+4Xhv2h4aOj2BZfhTSPoqlCRb5AlzIW/Cae4/waG3YLbYVTMpgMfdRLyhlQfqEcLRzOekyKJtIhgH3s1BTB3s5kaMTgBHZAKAJZWnKxpXxmGzdVvj7egiiiMRrdnUBLGRv0uiJvsaZypMlIZKnTM58kIxVxCQwe7fkE70cM5tnCUm0KflYEJemkBn4U2mGxxdORekLjH4Ui52Ms4yySgGiDoYtqQLNdxxxM4Ml0mjD++h/7y4cNRK2VCZtB01VZhCklXRU7I/XR8SZ7UUIZNuRbbfkOyrPRkuEfVMQafdEHXw41i0k82QuJW6hexsWkwmy5H2xuFv5cTugPCFBGafCydg/E8jDQQNRDnkp4eZ3h614R1ytmikhYxC5CUWFRKzkGghSXXMfuqBrw/W6w2FteLhfcL02XHfBdb/EigUPDw37teH+fsG+v4CHh/dh383k3q8Nq3o8HR5A8QCqK3QVdCi6NDw6LHh02OHpi0nVia06DkErUgZX2rplYM5MBaQtxlMK4TrxOUhUN1NiE9Bcsh1loD1KnYjfNztPnB7udLkxUH8zLtKU1Fpf9UdG2E2lAIlY2U4cSSFH9MtJrQKVNd5TUdZ4HG0iOX4eweLl43EzUeL9rCtMdb6rKLawAjTjfsc2t1CQdTFHB76xDYkaC8gdaDtulU5CN44kcSolozssznaFRlhbdUvkmIoxT1cTAYEvJNlMaBHcbtjH33/Ipmi1LrndmQHtzt98N5txu7A8HUG5979lvJyCUszEPnByC1p3xvlgDz8l8+r5vsI8D9qDzJ3TEtdWiKNJC0BXrKp4cGjYd8H96wUP9sBHHgL39zvc3+/wcN1h3xdcdxOG1yug+jygP4Fcnke4peocP3SA2YUeHBa8eNjh2W6nNwII7atNw3xSVbTwfXGCc0U550DKJtY1okijQROdxd3HhFCKn0SnzcHeJBiigfnuNt/DicNuFoBJkcVzKW5S7bHuWRgV312eYGiUpk+ztKm8Wymsi/EXvkb/TdoyIV2+e0KMFalPfBsyDVGO1GtzKbwLNCtArh7D0gpyTCtszDMBsUj4agEUQYmYA7kQVxam+FEFvytkLTQNgi381BmMbjt7iIbdX9wB1QM0nhVI21UqfYIsjqA5WVyownNmAmCmoogd32czLKeHphuu27XeATTPgi7b+ZDz5/GS8jQEJRACMTWRlcbT/hw59r4ao1Z3hmuLFS9ZBTxMzHbQHKDd/uUijnFX1Q6wNKBAIXmA6ooXHgpe3O/wgfuX5mM8KK4P78f9/c/g0M0veVBB93+57vgCuofKVBlBZSsSoBjAfwfwLjw8fBbu71+HtUdOK59YmURBUOQG0ZcmmoqXFMSnDG73xZIMe6n7nMl7Expb87uUwcRyXqqfxVMEmeksz7vpz4ibmRRWlkjBw3di/hBFZ/tz4jqa2uAesS2pimkxgmK/ImAKvirEtkKrmsigenD6bCJX32ZBl1lD1l+FjIrn+izUc7JGa0qbow4uWsnwKinbHmML5abbiJyrQsAwv0Khzo8WVJ30tUSmIoXHZVyUu0Varueg6uDZWunZ3sa+VucI+8JDuiCeilYyixgQQEp8/qgiBWcD9OA8pOeHBFE5f/IISrHBHqjCkCF2glb3x/K8ZK5kqxar2VEGsbna0Zj2t6FHW+2231Thgiivq664v9/hhUcNz//vHR4eBNer4tA/iuvDuwMZcJUz5ji/+NypYXy8p+V4AvBhQP4X9v05PDh8hpnoHFBlVI0r0WXyTP1qry6ThYiroBuGxYwB1KwXg7m9kZWDkCR9RIEyTCh7pSEF+iUV4giDAtwEkuoaq9HREiLWzQ6kQofP+jqJBjQ6mM8y1kE+DkgpOBEIHjHtC4qWchzEhMprHaQvLXXN0M2KpwqjJS9ukLWCiJpoyIX2hFApEmdlx2e17uKiEOXg3ZglUpRU1jIq1NknW0YrhamkThyIjb+bj0/GEvto9mNbjJ4O7qazoxtgC7p8nbLbvd9VzWr3x2IDERWwIPv5k8r0vp4c21UbN3iogDEA2h2hwCEaPOXT3iWmocbIVC5cLusmPF0oMjTIAqFduPopcfv+EI8OP4IH+4/helWo3oeqbyZoydu1D/PSyJ0E5SKocgZVrT1cd/jIoys8Wq9x6B07ugvcNJdWQzQaAkkCifKY1Diyu7v5qRToI/KZhQePA0jh6/fzpMZjCLOa5ZNpLz47OMFo5ks9XmJGTsMCgq9Os3kD+uXnmGPS9u0SlSJpZ/2qUD04Gyj4anOd1opu6kuDZ5zEuZfbMhUdE7r+bBXwpT6amemiWN2s1mx3fS40aU52O/RswxxHVGt5nkK20khMqBPZFSXWqgv6qopIKirIUyxTGc3un9om+pJXTwTsiN7RpFl7vnQtHSILdG0eL0nU0nw3jy9gcY+5wALRPfEw3ewqjIe+XUCynIygzCMzx+u5rC8Q9awo/EfHbveJ5kkuMpbInBU8fCx8lJqLOabJ8neoepUrDv3XsfbfjIQ3pI9jTWAkxDyqE3d8ZGOkEWGu2nDdlwgzil0nbp4K6mBMxLBlIQOSi2YVnwTDIwXTFLSqm8mcAlCc/3zP0M7ZZC6Nl3o/J1ZBvYMoGjWkC3OL26ur3XHPxlSSkZYquMPUzE4a2ial7u6trH5G3/00bCEdaquC4bheOXIpaGWOgdBs0mddYgLU2xJabUDNZMk04uaKUEKwNggyldzYSUepH1s2vWMzRic9kdcVGS/l7YYtSkEkt8H6VknbKw9wz7yZ02U8UGY4khQA2sT5qpHCIUO0XpqkPBlBKQcBsKQ5QaewR5iorrHaJasHo66uQTqRI52VXikI5w0pAh3SbMEG/RD3GNtdizcTHqsCh65Yi7KtCPJiZ8iS6JJZ8XnzYUXs9jvAri/+28XOhORuARQLHhx2eHiwFfRlWZ0HLhyaoRyZBqwqrN0iEOH2hNxzvjkFED22naUgKRINMBdHTF4TzmEW+8hihiLtOcBaIF6fzBMKssWyFiiIky+zEDniK5LWtiN6FALfqYagmofEZEiJjReFB2IX31O4HIDY0spclbaKXJNEi+VCVPOFU6mqj6+ui1snFLDN3CmyK+9bPeNVov4QPjfJm8nUZR/cuLA1DAK/JjTF2aGjshgWymZBFvL/yCIYeN1uTMtDop/iLWEi2++pAFKIW1PWcrGMQwCRrSv4YWdYJS86YktlbyZQ+27KSoTMgbk6/8uZ98dYcFs5tidprE/ku0TkQyLynnLtlSLyYyLyS/75ivLbO0TkfSLyXhH5ipdMiUocHiYqEAK8FdC1Qw89YictZlIDqodPEq79SwjQ+M93rXj8JG4IMo99wxNwIQqUeczLeA803K3p/tB8frcAF4tg56nZVrUA9X13jTmbpaSnvkwQiFgLzcyZCdUyDgbslu0rgqlM1bwWbZWY7Jl04Ths2l4uaCsEYtJO/ufiB/koeT1qEbag0M5+SoZXnlQBUxe0gswNMk2OHOPK9lsQHPVLRaghHLJ9WXfSCq08kOE+Ezh1FWJUmDr0bwl5qv8G6o+06ygbyK96Kxe18mL0Rh3wm/oSkFQlluPW5mV6OKZ5Wf9FLLT/6/7P5UIcgHYQS4h0cCDm33EQ887FPZJRNzeUl4IovxvA3wTwj8q1twP4cVX9dhF5u3//FhH5bABvBfA5AD4dwL8Skd+luSfqeFFDiYD6qYpaBs7BeM/Ac4YErILc03QwxgVzGTC+NzTmK9ohfaF52NBwsiJzYO4sYFo9z6yaz/FiGXYqous4Nlh6N0QJ2L07R5+XO0OVF8wFIA1rbzj0BS8eLnB/3/GyyxWtdXfZ+Qp1CC1H2Y37Zn2g8ZRIJB0SITAp3KrNYUKkZi0fBdN2D7GU5/km76euJfB5EnAFCaR1JEloMC4nbyLNpDvDfspDocwogHv6Q6sZXlshgnHbn3UYFVRGErhoLqdi8pyeBOlEphkREKE8FimLvubQFxG03Y5fYCn6FHoo/VTZy/eLoJVsP/MCjq3sFiSmFo1gi8viCFx8K2mPvp8VqPkHGd7TkItppR9ZYuPAMQk7C+b61YXfgG6nvvc6QolAUDJ7O6ub8Z+xz5SbaBAswN776QI+2fwtFPIDMp+VzbbcKihV9d+JyBuny18D4Ev9738I4N8A+Ba//n2q+gjAr4jI+wD8AQD//rb3UOpQMw37Mgfl4gNAU+jJBkmumDVQ/c77DVWtPnjMFKe4cd6aH5FgBYiO4lyK35zPdWMG5/uuGYrcNXgsZDa56wfQ9Wfx6PBqPFqfAjOE1x0vxhJDu5I9jjS3UnDEi2OityCEMZlZJgk/IVluQRQ3bUGk4veKoxf2WQgRLg5hmkrK5+qF/DtQiYhHgmRoVMh69+nFwGakRJjnvtAycG8jf8YSk8doZ9hJKhjHTxEvqTEk7Z29fgkzkxM/2hX0JUUy1FOoI2NbjUTwmEJBWq2cM12H/qv19N4H94JQIcRAnpiE0nnlJ84NhW5PjJTpi9Q21fE5cC4/pfaQvc3aSaFOi899cdx3Hvcy3pIK3DdarD4Je22BhPJ1xh63Ekr5eH2Ur1HVDzojPigir/brrwPwH8p9z/u1TRGRbwTwjQDw3HOvg+5dM3BADSulsFCACAsyJGnjrWbVZgqRA3IhxwSjBpMdIqJDZI04y1wRBQQdDYrWTFAeXBD2bsgw3GoA9oeU50EHiBhNcF7tTFAuZYtiV7cU+rvR9efw4v5P4HJ5o282qOgJmfGor97eXSBSJZIuprYEFRjrSepKT/jAkqRtMPd9kkVWdSRaA5qdVwTT/PV8oBiG9QRLKUyyF22ETPS9SJwdI4H+TBjLsiSoc0UnpLuUFA5TCWGP9MGGH5NSiEd0SNIC2dTBMKEtImF97nf3sCh0tXypUF81R9YzKy6idZFIcsLD00xelw0H7Mq5qVBHnC2OhzDe8BC2KnX5ENHAoKEKj72/Y0tiuXdQ8GxT8bkPWhNI36E/PyTMBmwjgisLtcQZGmdNsXhm9sE94as5K3f4sMuSSYwv5gmljyv/rxdzjr3tqBJX1e8E8J0A8JrXfJ5KL1vOGPqjGM4TNpThneqO41isKXu0RUx6aSTrtJAhxQpRLvYU9ClMQeVIwU0XEt580WZxfqYeM2HYWwpLdXnQHEXW0KC1F2FKBOqa7boveHjYYcUOHSvsmPOcASG8pKMxwTHcf+WTmygMqOgHwwvNmvIWRBut7qpXB7M9BB9RbHasBZPTvBxdBN7PNthLXspaMv5SEP5VRwuN1+PTJ00vArAI9aDbUSdp3AigpHYE4U5DIS7rr3vLS9sSJY01G24pQmbhQV1sBwWLLyYpoFoWLeo7oG5WVv5734kcoaMIG4ObUO3o7iIh7rLBnkceU6fZ1tnS/iTG2iDL1GRaE+MCDlG58a4lzWD+0l5oJa+S/xRsElHrqawkgtZTZeZ3KXUzJ6yArrmK+O1F6V65qXy8gvI3ROS1jiZfC+BDfv15AG8o970ewAduq8zklptyfc09nPG7a14VCwUIQcns4hlEDm5F5E6b8Eu6h1eA7OUVTJCRAw4YFnNgArKJCctYzCkAiUKT94vfG+a2y41exjI7TyBozQTlg3WHFYuvnvcpQJnoK3lAX02aKAjeDM72CbHFYBISnVgT1LIx6HPwHdumB38mAWPeR14ozcKNkDT6o86hbs2thrOvrK95jYs4Q70tTlFMVUBOpvAaygCqRnpjdX1GXoWnRcXkgIhKJ/+qWp0SPHXhUtwHyVdPCK2r3b+MU5YoTystVHK15eGPRbh+Q2BossAq0M0i8fhGCp16Waa+LzyMoZZupwoCQvgFgJnGl9+jqIH0zjcKxbidy949eesExKgMK4e111jU4+XjFZTvBPA2AN/unz9crv9TEfkO2GLOmwD81EuqcdU0E3phHoUi8yy64JPQDh0MIo9FHDex7VwPLvLQyV+/jyikqUX837sArvsV7l1+FVr7MFR/AsABVJa0MEqQP1oRpsWSCx8m/wYsEwwFWe9uhnuWoY89sv26z1359k0VhvbBjiwNsYwy6lKTSz0wiaabH9J2pMScnq8OZpSgmk858VwoKxUFkVc1s3ScFCEEUvjFfHLzsBeEZPOsIg+E4KgVUDg0ClZJuvO2m4M8OBV5TnudqByDpoyLWTCwrCgocYWfGgo1t1rKJ/X6qgAeF9+Ex4JImQv+vOknseYqF/eMdoFYW2SB6AIeipdJRErUwYwOadrLEu8cXIip7fOp3t1qzjHSJAWUPTFtnRW2Fyjd6/cUZB9jkAuC6wQGit9ey/0AxsAeXp/qv+kMqVJuFZQi8r0AvhTAq0TkeQB/GSYgv19EvgHArwH4k97AnxOR7wfw8zCp9U23rniDc8InWSCEHDDCQeUNtJhHTlxbXaTZrTWtWqRDppA0bUKHb2g9EAmZ1rtcgKvdgsvld+LQnwPwb6F64CLijClCpmRsJEKWdbYPngwD6U0QeIaiDliSjIZHe8H1AktA6lLZHNX+d3INRUeG6ZiTiYKsCinEb8O4P1rmVipms5B3eW8dNa1vfsOIzsL0FYHU0yTjPjfviH4cRdVFCgAepF/rlUIC741KQsCnm01ScvPtR5F05U+ZtFL+1dbSJ1OVBa8FK2R8rNJ61IeWVgUTETOW0oTliKa0vHuzch5f2M8S9MX4Kw9UiyWe64nbAUBb5Tfn69zvnOtD9ZB53AhCeXIs5z5w+qznXJ98MOe4rYqXJCqjLr2xvJRV76+74acvv+H+bwPwbbe/engKfb0uGW0U0oDWlhBupqENNap26LpCdQ8LH7r269egP9ImlnWEdULN3hmvAcDJ4dvaILi4EFxqBpQfHPUdiuu0jneWOsdWJfLJ5C7GH+D6UASu2O8dC/Z9wUceLGja8Yqra7+hhUsg/IUFLYXviTTEooMP1ky9fZz1VciEv8+zv8PRGXnk9UjQgBS+N/nIXMunCV1Q1tQPrLMty9Q/rJNtzolMF0FkdKe5HWcFyWbBJu5TDZSlfiJfBrO7MO5r9PcwA2PijrxQwBFZcxBExb+mzy3o4qefKUPfDP2XIUWrkksSoj+aZ97hzjIPF9PYkLAUd4QLiIjdnM39ECvlfdNKPmSKwJ6lkwnE3sUP+Rt5zncKDwqEgQQRyeFdz/tx4R1s1kP0h+q80CalbxR1bBlbWzYtgNi4HfZYOY2dOYH6UpBVqy/uEdOKmVeyaBi/R4mWQrEXjYY+7pjaoJ0YInWIgr7H+KykbTRY+ZzeIECeiOCVNKitxeAjUPwmHq3A9SqRlUem5wfBVviXCj+d2NlGCaYSHcRiAibExAaoD+KIY0vNn2EYyYA0rydUdFsZgE1FGwIusoHIQaYtl/6Iok4ifmZm9hxCWjqtCMMi5FWTV7V9Q0/K3CsFDmlphdi1AckVJLNd4aXlkG3mmCP9R1fx43kLm7KV+ypMFZG2rD4vClSXTFFuw1umaWLtGfv5mLUB5fJo4c80XxN1AOqLNsGboW1DtciVJyBPJ5Cp7hxVoayr0gl9OwGoI+U0BKVi2BLnl2JC2BzxXe4Ri7PkpPWszwwZEFkMkS4AHB3RTO9+6ty8vYr5EAHB2hWHFXh0DTzcm8zhpqAmbmK7G+zh3p4/9PwNTvvicyisMaiHi1rHChS7JlhaR9cfgchzuH/4WlwenkVXsX394lrwJkQIlImhRUCgtJFozhtbwkrs+RJrCQy5Ks0v5wHMdjOAkshBcoWZPRfyiB0JDsY1mUHaUbMZVeHLxgMJX3JV1eYGF/EEuma9dTePAOU8dRP6rTWMow05qVwYNUeoGklKxvC15EVpZKmnx+QjokxlZrzn4oQ9TxMy21l44H1md84nUq6+1ZMWmIBbWlcKDvXwuOAf+yzpNoBFBeLtjHEwh1kpxszwIwu2pfRrzOVsE5C+7a6cnzZ5iBaljLPG01WdP1L7vZrn9f2ai7OhhKgc4yTKm8tpCEq4Np2EQQQPO1IZ0Eb9JwL+lwlC54ZPdYc241hMTUSTjH5HkVHB1encBPAzjgZBWe8Nql1YLmXrpMJDkfQhFIsjyhZrWm0GkBrUH2lPosSRUpRB6V/LhJeqZYFpUhQUV9/mF+k/lursKajtaJnpjMqLlhme9+Bif85Wi405gQBjMlTOzDRsBSnbq07X4FbYFCLqfI7NCRqqS6KMsePFlYrqQIv/MSLnUudYZfaMrfLnaveR11lOTNJ25J7c5sl5wGfZNiV55V23SUq2qYRM+XjbIFF/Py3H3JnDd0gZHvxbEGi7joFyT3aRz7vCy4r4byonJCiXUTMAgZJqgPNGSLqWVCzg1rQYoDEgfDKUgNuhuF8lQoL6Cu0Nu2YJLPimtZdtiw4mdv7KXctVb0Uq45n/iwCL5VCIFfGDEoUp7u8XXC0LrrvHb2Ir4quotiZmeET1K+Y+YkQtFmiM+N0+Vx9kZbseESbzF5YBmOEy8EHKXRKzkH1cObJYx3cWO9rasOakFUOE5pcUiLbpHkrwJZVWUQCjkNRCCwJpjVsJjd813nNu4hDTGW1K2mubWaq466uff7O4IChHHIaw1C3fhWM//Ky2YfnYuT3xzq7z6EnFJJIZq/y9o58255IF0tfKi4DieIvpVtpd3BwW2uY8YjxpKLN9vDu5RxdMG1C/E1U1WNAZ494BkJaJGTkSbkGTwKkISrGBXb9SIKSQFCAy4CgYyBgrWaLo2kyCuVmTq2wABarVV5zT3PUSk4w0pOaLtTqpAwj1BFZAXECWsdxrlWpCFQCauC918c7LKtDRsKLZGeCtA0tH5PMDYDFfJfwmJiR8MvkWTS2mNji4nA+BQLIL6H6gcqpCK7YEuqBJwUYixokQk1uqUCnJGpCWwmzShUBwoqpwYh/1vvoCWZplil7eCxsr6vdUUz8mlNab43NwX9RxUSbUOB8FszAonUPohfmOwXoK+mgeJ00qPc3EOp+Vq/7ZrkBJsRDHPpxcI0GLFD5kO8c7jwgRFzhbpZho2D74PN9YEHlVRNUtFM/60cDatmjDx0iZ2YXOnJSqGgtmcZ+PI5PlzFl6QztLOQlBKRBI26Gah6F5hlMHKVg81muhqeS+SfVkB118QnEfOLVg81treEwHT8PjvLd7c5JT4HF3G/Pk9o557EasvCJXvlkWyh8oWlPk4hUnvFF28ByVF54dKQ+mb3FPDO5AzxSWXEkshhHbTmEbK7HJ6yqITFhIIAcKTC6UxQRVJXAofcZPW23dlDB96LRH0Ej/cbUE7Efyh8jJxGJrib4sV6H6kR98R/J3M6m1/jH5uQBoTXprZob5z3SqQjh+GyKBbemb3JduapBSQmhehqlrW/OGgGqBPV+PPJhYoyWtWeWxApHE49gOrfzuUQLO18h3yXr8u5S+1cK34F08Nim+4W8qXgbRs27nDVviwGkYV9wmWlBrKKz4v0AjuoAPl/AxoVAtAGo6nuOmchKCshadeBsHCzkKCz6Fr0UQSWW1PuMwnocWBTfcKd4TnUSKLjfn2tLQ1haokOtMNKu1LNzsiDKnNnie0EFJB8JsJsDpq1Tfl6qqWFXw6CC4v29YRPDcJYVKmnHqiS77MCmLWULHqQ66NCYQJ2trPH4ite7EfDDxwCgE1Wv1uphVh8HMZZuo6g3DkCEZNwWBlwzl9Zq9skffcUdm+tMKzqAZPx0DHEhXgFyUqC1nx9U6dmhDOrTRYLPdR+vGLI+FAhEwocmwCq49FEpj+2huKmJ8xjlEw4RPhGRNlsIDDT7NsaX+4vKFqHtE0+RjCkVaAI41dVyFH81qDPePhXXZXA3kGHT7+2Kyc7zJ4LSnAKwLwVTu5Fee3yQ+NmcaJ1fLDeXEBGVhaghBZDjPzG9UZzAZAQclNLV7MUEmrVtyN8brpWhhzdf6fLO93c7Xuvpdqo1k69H1UoQnAHRLkIFmB3nYym8DsKCrYO0mLA87iTE6CCp2OFFk1dZENoR6SmSZ0joRQRto3wh8wIUfDZQBysT3wEAFdcJRimn5cZpSWBt5R3a6HOkrXk/0Rz5MsL7QQsugSEUndl7FLXXEWKMS8+TFvmuIq7MhOmL8aYyXAYhGzKDku6NZU1hKoNo1xrLFyU4uJEjh2ai4asB1CPPegYosA3EPLy/PHBFsVZZIZp2fPSeYEG4EeBmz/J3VXWGcTGRchOOMfmNcyPBi7TmGgs9kxKDgC29KfTf5dGs5DUHpAAiQ3D4WeSl7Mk0VcViv4b3Q8BxQFVmoSydpvUwAeyXN7WMHRPFVPMTtGN6i0IxsQh2RBe7QLR8l59vq85Cr2JaP8k3YtS9B80Gzg2KRhnuXDfcu7uPlT6+4d6EODHsKOCqCMgkV6Xc0YaBjO4PPRJojiopQkTg4iy/y6rh7YhJ3MR+78bcti8eUc4ElIwi6S5EqMKIeZ5T5pVou1lDBrIfo46mnvKp59bQgwWiKZ2cnOmkWgG1JInLHT++WYb5z1bd3w/tT/VGxpLIJ9wUFlwA8PImpzlo1h0NR22q1+tYvQeGf71brUS9P+cwwodG0TIEQPkYuWgiFbPJkbBMFUPGBO6+GC3ClqDlW0sR3V0MsmhTBOUwihilpzJ+MaeW7nJZBCBaBToG/8T5UZZR9sykxRx4fnwqciKDMiWz/s3706R8xf+yVFFuJzMuChlc0h7iwxkHa1IFSNbTXNyzG8InyGPutjru6mKP6NBQX8XADsIjiogGX7VPw1PIZWFzgXraOnXQ8d7Xi6d0eT+06dksvJFWNOIapxGUXkmPeyekmIStd0UAwhG1IrXvU6MNq9PALhZiv0Yt74OIgpKLZgbK1uQ76jjS3E3GM47cwXre0xa6TecwPLgfSS88h2816WkE3CNo10Gjli/gYKIHSR4oCQ8ILk2tUPA2MVY2FsGERRKfKyHvyK5hZ6kS4poZ+VPNfS7hDBviZpuwASwtzpmtH2ysOdoY+KgpreIZ1aArDEPBy7IGppJKd69fNvUeJjetHA+ZLOQlBCVV0Xe28kwlZjscc+OKM5uKDMjM5bKVPZIEs5jBurQM8gdHP7DYNvkYQMux1Ay3qjvvDAbjeW85JIAGZSJrcPAeH6DNOZQQg8ocBfC4udx2LKJ69XHG1KF7+1AFPX+zw7OULeGpRXC4dl61jEROWhjpTQw/FUYkNyJ0tbHgWbQXDKVbQhxVhV2F+JtKIGLUOoDU0j6eRhfdhFIriIRnqAehqC2FEO9LXQBbq94sLgirIkukVVSrQVwizQ4G+VqB5DFbvLVGWT6TuY4LtzC15fUIaubgUbovY4pf+E6K0prbdz9Bsj8UdumTsZro46ObJRBBEO31dAa4QS5mUnlElfH7eLgUQ7iI0D8MR23IIDNt8U8GMbaDAVOjmTJ9ByGOrEGMBD7BtwjEGUtkNC07Rf8y3iYIgKCx5XwkwV8ZJSvSPCcwkp+r6oHXYG+5Wh9wQML6xKrKNg3/kJZTTEJQAfJoHohhKaB1E8hYNJeQDVX0iSEfyIRFo4Jnob++RcPTnO6sJMOv0hpQ5hnhfA5FLCAwttsXe1kTR5JVoeAYXbcVOFM9erbhaOl52dcBTS8e9i0e4XBQXzf4tohAP7TDPXnOEkwNFQ/tykQGQLlN/VwQwI6exrUQSM7KKxyXWzhNB8JqKmXNO1zEUard7WFGBIBVQ1hlBU12H2KusxzpB3K24WaKIe2wilgnNZleAXRDmOJbIJ+SxGxwPBb1kNMKEnGbEf8QPNvJjRPFBe8kqVHloQqsKq5kLeoSkmwSj3aSDQCtjhUJyrB1j580ItNQyjLexw4f1hbgWDDryTg2WDIuE7LshjdtEiVQu1Wdn3h0vJyMoOzoY6ir+HbRXwwoxLqnm2SUSE3mByOraeA8yn6uOzFGpjlZMoLbcqlZMrK4Z+iNiZ96wMFGGIcpLdPxxNP00M52b4umLjqeWFfcuVjy9rLhcXsAzyzUuWsfTF4rFTWwhCgsxZAcP02w336pRlpODUp4osflB7zaAmJjVBs3qdXVAM+EHBaxqatu2LMiEFWU4SfwPQyxeOH4QTDLB6Ys3R5V0QTuDlMw/6Q7oq5866UdR5KNEq2Z5GAtnv2WZtG1CWqizyPs7rk1hNM6PtjhK7UVoUGh6arFGhStLKKVUthS4TNqh5d01WYc4mqZbgFEdlVWc8DKgpXnleTzet6CqQMR8T1Y+Lp5NHcMLfF+9JZDg5MfsvmNiEJTkATcHZNxoCONbAB7nRqWJCTWGbWwRTuT8LRKUKDna/Zj0eywnISgNJemw8UZyi6yvNgLDPkLIoDUlBkRZGVN2godmwIJYzU+TQa4aVJRB3Dlg72Fpn4cmeyyO/HaL4qmd4mLZ4bJdYpEVV8uKi0Vxb9dxuXRcLR0XbY8dVly2ffgmmygWttffO6A1NmkAChNyifnHgesxhH4tg/ABPZIMQWiqERvE/l/ylKFYnqpL6rvrIk0NJZGNSTOY2mWCb8s4mTfg1hFvBL4XHmn3xYMBlR55hdPEf+V2H2wwv94gtIM6gO/WskLLYeaCtFNpSC6W3bQqv6V1e9OotpASqvTR0Hd+S+8pDDeIUEs/BjY80i8Sv0z9mGAm2leITUTPaua6taBB4ZWp5d5QLX+PhG1KuJBduVuUQqlbs7XkC4jSb5POOBFBCQG0OTJiOIcfWk7tbBrd7jUh5w5wzKjDESPgmsJjyGSHZJJh1vCBFkaZouMqukL15ViWt+BiAZ7edTy167jarXju4oCndh3PXV7jsn0Uz1zs/R43wUVh5/GkP1RIy9D2SYjx/yF0FKF8q0AtwlJaQ5wIyPqkHj2QlQsQZ4XE5Thd0FFTxO6pP9PKhEghSfpBM3I4WQ2Zqbi26aYhUCZ8rujK+MkerGZrKzTPA17jgZH2I4JVkf7KFNoDgaDfb0wokZZICtAJiQ1MYZswPD/QPD+yuUCfoIRF1cq5LwzMZ7RAnqPt7Y13ObL0MRRWQ9FZFSGPvGAVUviLcNrnkSPbRpB/BCg2JssNqhhNyaxnXp2uAfDmk13C2gQAJQ8KqkrWU1j27bycykkISgHKThgd/osGkm8lhAKys4GNFTxMrBhTYcrBM9do/J25CLsHR5vMsY7Y7YCrDnzqM49w6Hs8e2UI8pnLjsu24mIx83rXFFfLikU6Ltpq4UL24hTCxQ8WCK7tijXoE7CaO/RpKaC6RugEGPztq6JSTDubA37cLpjpW2BmepIQPC1OtIz1m3bSVORYJjZ5RcGdSWC0CDUp61DqbRmlAEWfsAOq8Ch38NKAOuP6DY58f+j4Vrux6nilTmNOU1CMiphfnBdlslYZHOjK76mKrvJQuWOnojC/KcZwXZQLZAyPsRQoDhaeVUz56B/y3bNM0ZgZk9y6i0ol8ltSMMX20Fi5Z2xyNCQVadGNgyeDgiuZgzgLR3VEf9WlEO6OpHNwA9Vx3BXdUymma85y2qZveYtOH5f5nuUkBKUJBmO8aRaiGQ48IhZ42xTQOigM+SgodFIyqJvR4EFiocEpxPwdwtRhDbtFcLVTvOrpR1AFPuWeIcmXXXXs2opdWz2sZ0QVtfAwrbrfnFu2WiClgl7Cl0ow6X4bR7c2DltBdxIIIWgAJw6g3I0hraqO4ZiNoJWCcsi9LvEI6kADhkkkIuglMsHmjafDWjJRrPZeTlPMfp8GwnSpzC7J72VuoCqgqaZC++bHEdANzOioDgWoWqhLReeSflYBmGAcQB7xm3xi6dM157GIm/P2fBWy1k6OHwpaCksXXIwHVsA2LUh5nvvpb2i8D4XcvEAFKmCy32RTtSjc/zgjRipDKUpCYYJqsGwEG8LmTiJqjc5WZERDPst7MqayJ2sLSiYvh1jcMg9vK6chKAHI0pIhwNAHQgEosNx7DvdTluaBYoLuAeZVbU5Zh8STZ0gviUvVfcuKezvFVRNc/jbLxnK1Kws46LYyXUFPCGwYXX3cTVGt1AQrE9inneP3RyhdvCTdBG0VP42RbfMB0QTijvLUoGaiaXmjCFfTy95kKUS6CYpWkCAHmL8zJmxz7dYV6Kufxuo8pikLQIWB1+swMWXy1bLjqWRsIphSbAw5iF0XI//CT+1jJhH9EUk5X6MM9Ow5GjQkequ7TFRsy6GGuQ4ADY2TtnS6sE9jUvJ3toFCbXZVeIhUsU7EedDaAm1tbAYVJwW7h3Ll7jONdgZCb3mMQtyDfGdSI96HrtB5pHCgPzd3i8BT0lNeyzEQtaZWQZr46RuX2D9vfuCIl1Zkwgsxp8icGcusibKfHhLRB6Ny3CrauZyGoKSwUR1kwyBKWmoY80tIyVbODq4wvSCgKiSRMX5zkkn1wOuL1rET4OJq9VdPgrBqQ07asupXzbdjgawzptPNr/lczKcws1OADEkUwqE0CwEN0y+QOTX+0I58IpF6i0k2toOmuAZ3Q8U5rcblmrEIhe9FOW2ARZ3MpF0i96RXV3ji9RdBV1oS78pgdEdU3m8FwwUKA5BJIKITSt8ECWWEusDUzq2ZY68mCneeSo7V2T8WQenxHMdBh6pbCh7WJi23EzpHUyG2lgImya86uQgRh8VlLs0jkwujUZmWsVyRG6aiKHxOfmpFyTPMRc5bKiH4mJsXkCgs7S8fiVTGQztR6mZd4ztvKqchKAEACiwthGHVQDEBRc0/Fz/6/W1nHdUVwArtdgqj1HtDkFG7ypFOTWalVa9hzsY9UjqxZAdnxwiF8VTq9jV2VEgKbuJnNu6yZ1bn1X4fWLoeoKIRKM4WaPwlGbBMpEgNLGIJ2eqEPhJqkwNsDA/q68FiV3uuqhP1wzcA4LAa4irCi9mcHluoFAKVmRVh287rpPKfiWxhJqP27gtp86l/jEWkUBjZaizow3cmDql5DEMXNzjqy7313Nmj3rc5kj1/ZqzGsq9HhEWiel8hvUfWJ2b15jZde3WLvk5/PJBB2d7fzcPI6p5ojMLTfPyCcAd5P1ahw/aJSCx4Wl9TXvnzqIqCzw8dFrxUD+MR307axLcoBzBwvohAFtuJJJsz4nWquyhmOJqq+hlVQUzP31BOSFAWqS9TA6iRKoKwj+wc3+mwzVaTgiXf49VODByDT+qwraXc4+8fw2Jc685tAkBzNBvl/q94yWjuUNjlO4v2lURu20WS8b5QPmUQHUMMQwAwTcbEJxgQmKY2jr4od2Xm8wauUsdkKswdBXXlP5E7+2VChRN/Kw3EKjGNJjglIemy3QLOJxmuZd2SaFfzufTflvupNI4g5ht5Pp2fY4U7kColhRe9Q5ZlvBY0DAyZ3uv9W/kSArY8VyeASKBsiIT1VTdmDOo8LJuijHOibUooFtI9yIAtUBiEcWEynx+aU1590/fbzO+TEZTUtkCB6YV2JjQQmhy6gIszKRSqIEjkZHX51HGT8uggmgbrPDE3ZrTAtxO2GBhduFiTdUTOxHJSYKcPThY7w4Ur1uHbZKKB/MdmjKZqj+1tRLZxv4yak4taPP9GJ9cDGxV0lnaFy9c1eedZOv2AFOBFsVHo+DinsOEJi8yJua6HaZBa2+01jpACLSLqa1Q606RjaFPwA4JIChEm25JCu5hogyDntaK8Y3GjRDPE9samHpTgo681jJmdvT3rOqCt/EggEOFHyrAnCsRcoOnrwZBmSrKS0m3aX9t7jK88f8l5V+njwpD7oNtSlfO4KJbxyaPAsmzldQzKkO3dBGIGmlMB2btXW4SUhrakaMo0iI6SA8GvoTByYqQMGMx951EyvOxv/aTxUSJ0D3IwcCAiBnPAhNCE/q+G/MTMrGYjSgeRSey821TNWDZB7YFuxeWwC2xhELjkgOGg0OKcRz0qkyudArocEqyWCbs51H1LX0irMlhiZXCapwDC1zv7cjChrwj6FoY0zWimYrkGoNuq7tQfQz1WwQ0GECdpojbtHb0Z56XwJREq0UUKUjtwsExoIeZ7fDnmY86+LKuw6kfeln5GHV9x4mEJJQLdFZq0B+Kd0F1K8uCvOi9svFe+l/Hu82cQcsgqSc3oJ9WYckLBqyMv5jHL+kKpjvDSvsZ20NHFwzFbqQfRO8p4Lj8PoHeE7EO9W996Sfqhtf2PL6cjKD2dVaa98rAeooEyIUUFrQOIbYkrIDy3m8KJyNFQJ/0p0IPfNwaaz6ixmhS1BMJjxvDId4gUYi37MjUgQuB3anh4yt6OqC+CcSn0PatOaOmChs33PqPj4CgiOS4AW5iZW5Ro0wbNHHPIPtAx+S3b1MfzkJV0R1ymIZgmAmiij/qG1hbnRz1bJnmdLhduyfT3+0JWDU6vfGDiEP9i72XIVl8Lb0beRTD7YIlUmhJZZmowngvuQlIQiHnoDmWPw3U5Ixbct7sWuiqCHW1gODttLBWrJ++3fsuckVwIqTwaFaDVS6vFxl5flTp/4M/EkKQv5gzHAMe0xNywQHj2Q66ci5+qSuHemWClOU/n5DC9g37WCKUriqkq/ECd8S6gLlQOJtoN5WQEZTC694zuJ2op/1yc+WAat9Dl/0ud/FVsCyN3NMQdmqZ7nSDhY5uorDs3FMhU5sNujdpRhRoX+HojeiqIUFxAtoqOKxYYEZ1ZUm7KhMk7mRU+WXhfLNBwgNEdMFDnyJamGveXu5ui8kJ4WFSfnvZByt1FsxAyQUFBWpBgIEBsBGEgUF0LWiXvWqCYEKyAh8KoW8Rsa0GkYSnMGMYnV/RNfQahABnfKvOkjg4qyJHjV3qG6PiCzYDOI6qCc8LGWXoVamxh3dJI/hXhAUDD75lCOISZAhQgw0JNTMLalng6WFCHWywudZsbaTmQdSnkBtfZmHkYYabzisHo/D2oGBFpANLpXSifaM1zKnxSCUrEQENPXE3zYEDyMygKRo7mHRlJbWtaLDXNZuEzVjCP0HbDRdXu0H89Khzna1rgfk7sFALMVhPnmEfijqrtq/zjwEqfUQhCH71h/RlBJRDX61wNjfe+2sKpJwwZpwcFSURXx3nSgZ7DxywhiEAU1aM3toJGPC5Qa1xlea+Uv0vj1SdyKFHxtGSkr9ZCSwUAWjMUW1PtlbGTYTvWlhEVwXlNf18mRta+urDrA2ALReyB5SkIbbw3WFISCRd2L8KqTPDgmR1Xor17HuayO0kwJOCw37jdF6iLjYHI2Scivm2Y/nJfAyjnzoQlVce10qRFEdBIBdyA6g/Pe8tclEIDeRkIcXxfPZVgADfh8ohedKXpbU0uel8KYprdgipPSFDK9Dn+JEsG9QKIzokdN1oQB53/Hhsmsjh66CGIbOBUNFQFMplfTSdqN+TkBIomJsqtPkuu3FqtEWwdzRod2iOa8I50Ac8XVuVuwrQBspR70h9KGgQp1NL8SCQQg0ZsYYosaNzVUwd1IYAmneqKroqFPrZlSdQZisFCSkJ7D7wpSAvFTzq8cxRY5oLJScO8pPCUc40oNJAqszFJKIuciInQ0qzmtsIe9I8nOoYYRZh+HbkzJMaWocI8pG1BQwbDq7sVmM1qLJJjQpsLlxpK5P3SPHRKO3RVC5oTKkwTxWPUCMcaECvrWt49CcLB3O7dNyKUMKIqHDnGYpSgjM0ZLebc2Fr0fqhaPVRMM9KCbU/EC2QnlgoDvaNENcjmXbeVkxGUg3bB6GanxjMw00Ie2HNq2VIG1JE+Sgsboj+DZpFCsU6Q49jfnKg9O2pLOdjp1oc6DDI+l38fd2Tn/vOCNgeTQENGccilIOBgKzxrwaDg1xig3eK73SJDHwR6qBQU+kIQt+bJLwIvphaPM8HrDo9aimIoEyDdIUcKUb+jpdz+x/rsXUw5VxeSMpDbJzIndC99VhSdFoYbMhoFeEzUSEpybIy4f52p7lywxS4T5DERmewUo0xB9l1uMii+VOUiIBcp038XbaKwGIQlv7sJOvO80FCFnXbxXCRiO+pKW/PZVFCDgB5eoTGe/SXBVx6IlgKeyaKnMescJsBh/+pAs/qrW76/DDvBDWOtlBMRlKZxW4HJ4wqbs0QFjSilAfbHHCRt9WUv97gnzE1R9EMuECWTc2JXeZVys427dIw4jGE9nIDsZMT1OvBCuHUtKGEuVVO2VB89MFrQlecHFd8SBVlpX6Ap0qK+YIMM+s19vuOoEkhuZioKoS2LT9ay0CSCeuToKEC46o+xD0o4UrA80P2EBAqKEGFojMMG/h6OqrIKTdqi7T2QGASQWWj6iX52LwPo3ez2QO6a8zDNYM33AgCzqS8eoN8cdXeiYYb6yNDMVJDkSfPXuTIDFxctvRoXqzJzOAYkHivMSgXAkCAidhsbjfGZ8/7oYL+3sRdaBJnjIN6bYVyj4Johhx79M6wTKFoEmvccM4ArdCoNE6AR4RLjxHnoe/8ZtaCqWPtN8y/LiQhKTB3pbabJNZgS/jeB3PHapu9l4smRPprv1rHTYnJ5BfPq4PwOaArhYwNg1GCBDzmnKW5LaygSqxDR8mS5Z0AMbOzou93qzyKQy794hKcwTkHGlT4eizCjkmGxJ1BRea9mazOA4PEavi5OhBlO4TdC4FGpYX4/kD2VSo318jMOuhseLoKanea5ThOtVGXfA8WPQCCVUfVEjAO18lsLPXZzi4S1dVJooaMIS7IFtU1JrZTYHkPMsu3zooDGMisyF9Y5kG6+fyga7w/6wTCqeez5/6u75tj8jumgwdpRAT2+yNE4sSdcROTDAO4D+J93TUspr8Jp0QOcHk1neh5fTo0e4PRoOiV6fruqfuqxH05CUAKAiPy0qn7hXdPBcmr0AKdH05mex5dTowc4PZpOjZ6byu3LPedyLudyLv+fl7OgPJdzOZdzuaWckqD8zrsmYCqnRg9wejSd6Xl8OTV6gNOj6dToOVpOxkd5LudyLudyquWUEOW5nMu5nMtJlrOgPJdzOZdzuaWchKAUkTeLyHtF5H0i8vY7eP8bRORfi8gviMjPicg3+/VXisiPicgv+ecrnjBdi4j8ZxF5113TIyIvF5EfEJFfdD598R3T8+e8r94jIt8rIk89aXpE5LtE5EMi8p5y7UYaROQdPsbfKyJf8YTo+aveZ+8WkR8SkZffJT3lt78gIioir3pS9PxWyp0LSrHMDn8LwFcC+GwAXycin/2EyTgA+POq+nsBfBGAb3Ia3g7gx1X1TQB+3L8/yfLNAH6hfL9Lev4GgB9R1d8D4POcrjuhR0ReB+DPAPhCVf1c2HHqb70Der4bwJuna0dp8PH0VgCf48/8bdkcpP4JoefHAHyuqv4+AP8NwDvumB6IyBsA/FEAv1auPQl6Pv7CDCZ39Q/AFwP40fL9HQDeccc0/TCsI98L4LV+7bUA3vsEaXg9bKJ9GYB3+bU7oQfAywD8Cnzxr1y/K3peB+DXAbwStg33XQD+2F3QA+CNAN5zG0/mcQ3gRwF88Seanum3rwXwPXdND4AfgCnbXwXwqidJz8f7784RJXLQszzv1+6kiMgbAXw+gJ8E8BpV/SAA+OernyApfx3AX0Qe7oE7pOezAHwYwD9wV8DfE5Fn7ooeVX0/gL8GQyQfBPARVf2Xd0XPVG6i4RTG+Z8G8C/ukh4R+WoA71fVn51+OgX+3FhOQVAe2xl/JzFLIvIsgH8G4M+q6kfvggan4y0APqSq/+muaJjKDsAXAPg7qvr5sH35T9yXzOJ+v68B8JkAPh3AMyLy9XdFz0ssdzrOReRbYS6m77krekTkHoBvBfCXjv38pOn5vymnICifB/CG8v31AD7wpIkQkQuYkPweVf1Bv/wbIvJa//21AD70hMj5QwC+WkR+FcD3AfgyEfknd0jP8wCeV9Wf9O8/ABOcd0XPHwHwK6r6YVXdA/hBAH/wDump5SYa7myci8jbALwFwJ9St2vviJ7fAVNuP+tj+/UAfkZEPu2O6HnJ5RQE5X8E8CYR+UwRuYQ5dN/5JAkQEQHw9wH8gqp+R/npnQDe5n+/Dea7/IQXVX2Hqr5eVd8I48dPqOrX3yE9/wPAr4vI7/ZLXw7g5++KHpjJ/UUics/77sthi0t3RU8tN9HwTgBvFZErEflMAG8C8FOfaGJE5M0AvgXAV6vqixOdT5QeVf2vqvpqVX2jj+3nAXyBj6874c9LLnftJHUF91WwFblfBvCtd/D+L4HB/HcD+C/+76sAfApsQeWX/POVd0DblyIXc+6MHgC/H8BPO4/+OYBX3DE9fwXALwJ4D4B/DODqSdMD4HthPtI9bNJ/w+NogJmdvwxb8PnKJ0TP+2C+P47rv3uX9Ey//yp8MedJ0PNb+Xfewngu53Iu53JLOQXT+1zO5VzO5aTLWVCey7mcy7ncUs6C8lzO5VzO5ZZyFpTnci7nci63lLOgPJdzOZdzuaWcBeW5nMu5nMst5Swoz+VczuVcbin/B8/WHHd/OOHYAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUoAAAD7CAYAAAAMyN1hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAADXoUlEQVR4nOz9baxty5rfhf2eqhpjzrX2Pufce/v27b60G9rdgIODEoWQxGARWTFRIkAxEtgiEsghjvpLQsibQsMXPkVqKVEUvraSgJWg2IZYakcyBNKKheJIDo2xQ0yHGGG3affb7XvPy957rTnHGFVPPjxP1agx1lxr73PO3uesc+6qc+aea45Ro0aNGlX/+j8v9ZSoKk/pKT2lp/SU7k/hy67AU3pKT+kpPfb0BJRP6Sk9paf0mvQElE/pKT2lp/Sa9ASUT+kpPaWn9Jr0BJRP6Sk9paf0mvQElE/pKT2lp/Sa9M6AUkT+myLyH4nIfywiP/eu7vOUntJTekrvOsm78KMUkQj8/4D/OvBrwL8L/LdV9T986zd7Sk/pKT2ld5zSOyr3vwz8x6r6nwCIyJ8A/hBwESivrr6hH7z33XdUlaf0lJ7SVzvdR+YUEEKM3N6e+Ojjjz7l9fv04e+o6o9eOvOugPIngP+0+/1rwH+lzyAiPwv8LMB7z3+cf+of+5c/9U3kc1Tw06an9UtP6eubHnvvVtY66uYTYuTw/AP+yq/8f/nTf+b/ApRd/v31D6U/+av3nXlXOspLGLapqar+gqr+var6915ffeMdVeMpPaWn9PVOgkgAebe06V0xyl8DfrL7/buAX39H9/pC0kOv4bHPx0/pKT2cXstrHlESNnUTQUIwsHyH6V2V/u8Cf4eI/G4RGYF/Avgz7+heT+kpPaWvdbqPpggiQggRCe8WKN8Jo1TVRUT+B8D/FYjA/15V/8q7uNdjSJ+G9D/WefopPaVtepNe/bre/LbEYe3K2t9TQMJbvNfl9K5Eb1T1zwJ/9k3zf5GGmS8zPYHq1yN9lv769XufX+aoXe8tYszyXaanlTlP6Sk9pa9kCkEIISAhvnOgfGeM8il9/vQ2hJ+n9HbTD4vk89VIJnaLyDu3ej8xyqf0lJ7SVzJJCEgQvgDvoMfEKJ+40WdJTzrPp/T1T5ccxtVcgzYIeSHPvdd/uvRIgFKB/GVX4ik9pdektz3VvHtr7Vc7KbbSpv9djzmTDGJsUurxujKnpv76z54eCVDC2+2ET9zpUrp/SD4N1jdLn69f3W3lcvHoY0xfzoi6f+kimLh9EvhVUX5tA5L9dU9A+UA5T0D56ZLwVRmwjzd9lj731E/fLPVM0pNAiMJHAf41MicKq1Ta5387bfxIgHJPsT9vWW8jz1c5fVrQ6x16n9JnS1+lPvXp3/X9V+iFv9522rNERXCR+9UL9C//Jfibv8aKIbr7+/PX7JEAJXzxOsqvK/MMfD2f6+uUvqz3UyWHt63m0lb6Q7k+X9rrKgWCwouP4Jf+LZjOu/p81ghCl9MjAcovy5jzdQDLvdj8ZRrFnrzN3k56V33yXUgOX8T4uaurFAmEYJ+74LjPD59XYn0kQAlvT/T+qtz3baXHol9820zlhzm9y3b8ct7R5++hdwEwBHcPkr1O8hKT/Fowyj697mHeBbB9lkb8NPnfBZC9bTHq8wLu6rbxlD5veppw7qYeBL2PSUGkWrszl12JvlY6ykuzwEN53/X93/Y1j4X1fRHpaZA/pbed9owx2OrFNqwu+U9+LYESPptubd8An5dtvkmjviu95qcB088LvJeuf8wA96T7/OFMlx3ORQpBBAmKxGrf2Fu53+44fSRA+Xncg96Eib5pg32ZQPmm1ur74vK9yTV9+izP8GWx4q+6Hvkpffa0NeIAPs8rIrVHXjLgvN0x+kiAEt6dtfbTNNqbDMi358S6TZ/GIvlZGGV/zeep/5ehRnjMbPermr5KbdqL3iASLKJ5W7rYi+XvJj0ioHwTJvc2yn2d/vNNwPJdvJA3ZU1vAlSy+67pdfV+UwD8Kg2yS+mHRV/8UHps7/B147L7SPRgvXtG+e7SIwHK1z3o22qI15Xzbmelh9OnFaVfN9j3er03FetfV+5jG2CfJf0wGdc+a/oi3/Objn9nlMFDrImCfDFj9pEAJbyZ6H2pQT5LI33VB/ub6lLfBAzknr8/Tfoqgc6Tv+fbS2+7HR8a32ufFxEkuNn7XQei9PRIgPKzGnPelfX5y7jv205vAqZvCzS+SuHCvgrv7quSvoi23BtpVregUgqlfDGGvkcClPDUgb/K6V07mn+ZfeOruOTv65TutpeEwHma+Dd+8Rf53u/8DvM8v/NaPB6g/KoQEqBV9qnPd+ldNcbXrZG/bs/zJSQRcin89b/+1/j+Dz78Qm75eIDyKT2lR5megO1RJRFCTIQIXyS7egLKz5O+LurMR52edgV6Svv07vfx3qentWFP6Sk9pa9UEgmIfLHQ9cQo33V6IkRfYHqi+F/v5O5AX7BrEDwB5VN6Sk/pK5JsNY4F65UYv9B7f2b+KiI/KSL/dxH5FRH5KyLyz/rxb4nIvy0if9W/v/n2qvs1T/IpPk/pM6anRn44PfY2MCb5VdJRLsD/VFX/LuD3Af99Efm9wM8Bv6SqfwfwS/77Kb3t9DTOv4D01MiP6tkdIE0/KV9oDT4zUKrqb6jqX/S/XwC/AvwE8IeAP+7Z/jjwj37OOj6lp/SUnhISBInRxe+voI5SRH4K+C8AfwH4MVX9DTAwFZHvvI17PKXPkJ4MSV9A+mFu5C/YeOZrvCV88Yz2c9vYReQ58H8G/keq+smnuO5nReSXReSXb29ffN5qPKWn9JS+5sn28g5fuMUbPiejFJEBA8l/VVX/tB/+LRH5rrPJ7wK/felaVf0F4BcAfvw7P61PK2q/5PTDoG770tNbauSvVOd+e6xTXEf54pMXvLi5JecvbmvmzwyUYman/x3wK6r6v+5O/RngjwI/79+/+Llq+JSe0lN6SgAhoiHyb/zZf5O/9qt/g5ubmy/s1p+HUf5+4J8C/gMR+Ut+7F/AAPJPicgfA/4G8Ic/Vw0/Y/ph1hw9pa95eqhzfyU785uN1mrxvr295eXLl++4Ttv0mYFSVf8f3P+Ef/CzlvuUntJTekqXkoSAhPiF6yfhaWUO8LTw7Sl9jdLXtTMLUDcV+xIU6k9BMd4wPdk6ntLXJn3VOrPX17aACF8GoXxilJ8m/bDsUfiUHkf6PHjw2j74mPaQe4MHld2qnC86PQHlO0hPhqSn9JVPX5QI/4aDZQXKL4cOP4neT+kpPaVHnQwcLQalhPBkzPlhTF9X3ftT+iFIX5j47kzSP18Gp3xilE/pKT2lx53Eg2GE6Izyi6/CI2GURq3fLN03TX19eddXzUj5lL789GX2mTYS31IlBBe/pT/yxaZHApQBuH5NntJ995ui0/2+dO4pPaWn9JVOVeQW+YKjUK7pkQClAMNr8uiFT03lgfOXQPPSuYfyP6Wn9JTeNL31FZYihBD59V//DT785CUvPnnjIGVvLT0ioDy+Yd49CPZMcp+nZ6H7c/tP4XJZT+kpPaUvM4nrKP/SX/7L/IVf/otfSh0eCVAG3hwo7wM9Lvxd7jl+CUQvgeaeZd53n/77vmNP6Sk9pc/i5SHOKL9MzesjAco3ZZT36SbvO9eD6iUd50O6zvvE+UtA+5Aq4IczPTndP6XPmu72nbp08YceKANw9SnyPwSY/bFL7HN/7hLrrMfyPXke+rwu3331uXTtpbKe0lP64Up1e9onoESA8VNecx8Isjt+X/6HmOVeX/k6/ed9eepnD7iX8jzEeMsuz33P+JSe0tctmVvQl7Uip6ZHApQB5NMwSnb48DqQ3B/fM8tLQEl37tJ1n4VR7s89JN6/CXA+dL/98+4Z8xNDfUpflfTl7JPTp8cBlCIQ45vnf3CMv27wX2B1+ibgUvPel+eh6+9jkveBIK85lx/I8zoALZiq41K99unTTEBP6Sm9/VQdzb9MsRseC1AG4NnnuP5TkaNw+ZpLxLEC4z7fQ4b3zcGHRO1Lx/bguTcq3Qei9+W5lPdSHd5E3N+X1+ttn9JTehdJQAIhRCQkD7H25aRHAZQiIA+oKF87FDdAdc/MI13efaF7oCs1u7Tfd/Leh3Wbg9Lda3fRPq92YrH2x15nfb8ElPflYXee3bFPA9L5Qjn7xr3U2HfTD/MSzadp5uEk3aqcL7OjPAqgfKMVjJ831T3TL7HPS+P90+bJ+3PdJu1vQjAfInR66SQ8zATfJO/Fm+0++Z5ylgfK668pnvcpPaVPmQQI4UtlkjU9DqB8E6P3Q7PJ62Ya6b5fA4BC9/sSWarpkhG9/ZbLhG1f9qfFrOIPUHdBV+9ApXsIrUy0stbXoXFfwdcBZX9dvqecsisvA/HCA16ajX740pO/6UNJtozyh97h/DULc8T/0fva6XVteN+E9NBY/TTnHvp9H5OsaY8befe7AmSRy37we1zqv+v9Xss6H0Lqh266P7evfPbP4t+VXfYs84dv+H/W9MMGqhY1KDSQ/DJVNI8DKN9kYY7svuvfD/2u6SGgfChdOn+JbcLDYLhnkf2xSzaT+7DpPil4T+4ukcbGcqX7W7s61b/9QCunt7TfxzQvMcnXAeW8e6hLOs+n9EOdRJCY+NUQ+RURfvWH3T1IA+jhDTP3oLcHxkuA+CkZ+2uH6X1juXRXP5inL0fuN2BnkEtS8CW7zSUW2l9DvY/cTyLZlS2sele9jy3uK9aDagXBKnr3+sqMvaweMOnKfEqfN30tIuf7rovfA/5CzlDKay95V+lRACUBtDfm3PcG5cIH7vaKwJuzzc+SXgeCfb6HRHTUROoO9OQhZrlXF15SH14Cyn2eN7Hv9NinQIkGmK0M7zqqfg9d2eimggsGhj27LN2xZfed2bLPp/TDmsyWE5C/+lfhl/8ifP/7X1pdHgdQouRQ6p+v1zdeAspqqOmDpT/EPt926kXY/tj+u52uBhndAJKoV7XIXSIX2YJbNTw/BHiVuL2plxH+HbhLGnsGTGewEtgakDyT9luLBtDYFezH2gur3/XvPUvdte1T+kLTl9LyoqjCcHPLe7/9PesW772HiFBK4ebmhvIFscxHAZRLKXz44ubNMl8Cv/oJ3XF2v+/1MJBPtxPFQ0lxCzRbUO6NK33e/thiIBliIIgQimyvvyRy70HuIaP1m4rc/aevp+x+X8yrd9loCUge0eITQmOSjuC6Y5S6gNQZQdjqNS+B59tId330Ls2p+1d4yYni4Stee8Hr032T/ReNZPeSjs/KRvTOM4Qhs+Rb/rbf9bv5o//kTxFTtPERIze3N/yJP/En+PDDDz/j/T5dehRAWYpye55en3HHJCWILf8MfiCuFnLEWFkDwTtMVbaD/22kCpT7EfQmQKkgKoSiFn+vdPl6Mbwv7yFr95swyH099ufuq++nQQw1dYI2IPcXopFVZxr84/pMiaysMzszzb7Wd++a9LoHui89jIxvCpSvu8smx2fuZ3Lxz89f7udMdxrpc4hs2v5pKSxAOJPGkeP1FSlFQgrElAgIP/bt73AcDy0Em32grglXVX7rt36LeZ4/e708fW6gFJEI/DLwN1X1HxGRbwF/Evgp4K8Df0RVH4T9JWe+9/FrZoaeNYoQAsSYiDESwgqIIkKIoX1vRHIRQotGsnupBdrqmF5i/CzpEijel3pAVC77cV8y4nDhWE+0XsckL4HjpfPs8sF2wqpiepXEC4Z1sru25m/eQcNWVTnXSjuDlL0es4B2v2VZL9Re99kbkrr6XkxvWWn9wHt+Y8h+47rqgz/boUoq3rQyF9Knyf55W7S/l8iEfHhCQjCAjMYox6uRkCL/tb//DxBS5HB9IKbEMA429mMgBOF0PvOv/Cv/Cr/5m7/5OWv1dhjlPwv8CvC+//454JdU9edF5Of89z/3UAFZMx9PL9b+pqAoWkU58IGmaA0kEoQYIzFGxMETsa+YLHZdTHGrAhMhxUgQQWLYdVAhipjfVr2ff4s7voa6QqBjUFL3GRZpgLC1Icldsb4HnQpKgctgpU7Cij4MlP1xZOvjvftsrOl9Od7294r21XDDPWV3hqOmX22Ss2yl6EUaUEq132ig6kFVvVG0QMlWYMkIBdXcgeYlo1C9Ua3M3QYzIH8bVEwvfX3qEqT/ARcQp3aEN7uL7v74okjn27yP2QcLooYFmgsSBFUlxGDAmAJkJaRIHmZCMkyIY4Jc+Jmf+ml+5Js/0siTSaH2+dVf/VV+8IMfvFFdPhdQisjvAv5h4H8B/E/88B8C/oD//ceBP8drgHIpC799+z20gBZT4OaSKVo6G4H9R40IH0yfF2PcieMYRQ+BlJKxzA4oj4cDMQZi6AKBilnXxjgwpMEMKnVtqUCQQJTIENJ63HtE9ICi9b8KEkLHWntQ2v++j83tfz8kSt9xO3rgnn3efZn743u2e4lt3levPbnrvYP6Y5vfAllgCTtQ7b6zOgr3QNm7GXVMk4XV6l7z6K5CX4wx4Cl99mQgmSk+Sc/nVZQWMNIThJgSMUXSkBivD6Qx8ff9F38fcYgMh4GQImkckCCEEPjTf/pPfzFACfxvgP858F537MdU9Tf8AX9DRL5z6UIR+VngZwGO3/4x/s7f81OUrGhRSlFyWcilUIrNJiUXVJWFTEHJZKqvfkEpKEtZULQxTBGhUMjkNhmXUhD/oY0WemPE6HtzVILo+sJgbDKFhMgWVVIaEAnGNl3nZvgqpJjMvaFbUiSY+G/lxTugGUNE1EG3Ug0nV6GyXZXGCqVaovfGls3fWzbaH24skwvX6XrpBhAfyCv98R6Psl4Gz8UJ39718g6YiuXNOBtNoBGyuy3l0VmnM0itF14CygXd3HRHh+/MTJ2lrM2tVQ/GW0nqk/ZF0fXOPe5nlg9W587JS7nvEZ7fkkytF+75edbcKBjTVEF1oeRCnheWeSHEwOnliRACcYgGoi6exxT5W3/8d3H4L43ElJAg/Dt//v92730+M1CKyD8C/Laq/nsi8gc+9QOq/gLwCwDf+b3/Of3b//afpGSllELJypwXY5XZwDLPmVwKU5nJmpm8UUpWFs1kLZznM1kLWTOKUtQ+uZTGSGedUTUWa5J98frQAFa99ytq5DUacMUQEQqyAcoDIQSCeDzNYmUIwmEYDSw72VtESCSGmBjTsAEfEWGUwcCZsB7HgDHGaGDp4BXU61qNVtSyOnmrB7ei1qHqyY5MbUJyCtxxTr/EWmvePYiyu24HhHeAsVdL9raaS6xzESeLyY5Ng6klNurMiu49UNaTyl0x/RJ97dln5wjf+sYu9Qc+y7i/r9xPXc72j09T3meGq/1NPmVBFTzvg/9LXXt/fzUxdNVM356bxFjtFSFG0phIQyIOiZ/40Z/gp37XTzEcRkIM/Dt//v46fh5G+fuB/5aI/EPYAsT3ReT/CPyWiHzX2eR3gd9+XUESAsdnR1B1vYTrJFAfwMYYAQqFIorKer7435kFVSVraeczDpzqYJkLWgpLngxIS0FzMdDVgmphXiZKKeSl6sYKWQtLzqAZLaWpCBad/AVqIzTFnyEv9RVvfZoUY6AxBIPiBjpClNSAFjVQqdu+D2kgSiRgLkRjHI2ZSiSGSIqRKGEF9U6v2lhqo6lcZoewtWJfYpHsft93/SWy1gOkchcUy4XreqCc2fqvV7I4sZW8M8Y2S4Q8OOv0l1Md5HOPzJeWWPYO8Muucl0F9ZKlrc9zqfGe0jtPdfJxwlRyoSyZOUxIEG5f3DiAvn7jss8MlKr6zwP/PIAzyv+Zqv6TIvK/BP4o8PP+/YuvK0tEGMZaFd0OuPpH70QuNF1ljWamomhwMFQHUnFgVRPO0QKLAeWcT2hRllxM/7FkY7ClMM0ncl7IUzZAzAtLyZyXCc0BLaUx3XPOxlpztrEnQtFCLg7CKEWliWiKuKulsUBjtet5c41ZIW0FSjGgDJHoQHscD0SJpJAYSIxiQBpFiDIQpANMXQ1Sl+wEfYNLj5S6xc0713Un+te1YZMNR+QuUPbnN/llB6K6JYgLps/spercHa/sMwvMcb2+xzzo6G0FverPudd5+kf7yvfguX+Q/QzT0/e7fE/u/PFAehBzPw8gX7j5vcb2S/eRO3nuZYcXytGLJvpt3nufrpO+9tUQnHG6dHmnRm/Q5u/Cj/LngT8lIn8M+BvAH37tFfKamsjuE1iNOg6aFo3J3IEkGm9DS3eJEhDEV4uo2h494mxAtf5dGqMVdcuMM82iipbirNL0qZPrUE2fCjlDLoVcMnMu5FzIi/q1du5mmlmWhWmaOc8L81KY5pklZ6Z5MlVDzo0xK4KKkBcT/GdvlJvJ2KMBoIFpkGrdM8PTEJKx12iM85BGYjBjl/1dDVth9QiQ2PmlvbkGSdp3hQFB1Ri0VpH/DVWBm2MVXCtAzrtjD9l0Lp3bgGpw/Wf0e40uyuuKhRswvcQuq0i/p8X3Uef9A9/XCE+pT++sRToh6770VoBSVf8cZt1GVb8P/MFPWQKEh5pBm/9kA8oAiBtuuhVwIhCCdToTbO07tt+l403q7GlVpPewEBwopekxXczSCqawNKBUk+qyGYxyKSzZmOWymKhe1IDydpqZ54Xz2YFyXjhPkSUXTtNMLoV5FjdqFRs6ihkgFANdVRPzva7ZmqOL32dgl8UU1TEEUkyU4kApgVJGUojEmAhByCU14AzuKhWbMy8NlM2BoGuzTmyxNuyA0t9A8b+r25LqqlpAacYpbbrRVUeqbhHXyiiXykz1NUAp3bnKPnUHlF5eLXMfsyPUxi/GNrVgSzE7YNNeBK+GpJ51OkDKnkpfoNf9utWN4bAfH28OGdtp7uHrLhpadJ/nnmI2xOwtQdpnKEZ7iZS9NHQJDR8Smdb0KFbmNFH6odSL3HtGGRQRG44GirkNz/WTu+FaQbPeXjcfS1bmpd/S4AmK6wTUdQCle5hm9vF3VzQ0CCkKRaWJ8PO8kHPhPE0sS+b25sQ0L9ycT5ynhfO0cDqdmJeF0zSRs11TtLAszj7RNrZKt/Za1bEA4QyNKVb2maqDvgRSCIxurY8hcBxGhhgZYiJK5DCMhCCMIZgRK0RSMB/U0DNQqaKU+FtxoKxbFunakto4fz0mHRu1TyYy6WCAWeKWUe5ZYsHdjLjrarkH0z1LvQS4i8AcjG1mjG1eIpTNCbUHv7k71oNjrw/9LMz0HcTzfF1RDwHKG7Cyt5neFP578fu1mR5IjwMo4e4a7kvnG5tUZ4/OHMVm3+hD7BJQ2rF1yAafKu1WW6Cs4ChauhUmPSNdW7bUHtII0PogDRyofKGsd1QH0mj6yZwipQjzOJBz5HoQlmxMc5oz07xwnkaWJXOeJnLOTNNMztlAtmRyzmQH3qUsaBXhVd3Nig2YBmfowRu3slEtgSLmgLrkCCGgIRJDgDkRJVDiapAqQYjuQhXEFgII7s4kxlCRgFZrvgBEby+f7cTfjKwgWaQCZ6BoYJCBIoESIhoEilCCeQeUFNAiaA4rC80gSweY1c2oA06dddV9Zu4ahZo7ZnfdLFsM2+CdsC7JLPa7p87FMsodPyjtCroPKP1bnOq2daG1h9XvNwPPu7kuHZGHTl+8vneZus9Gsh6/m2HV529vKN2/d49fvuZtpccBlL2OUvYnWAGy+5ZQ9Y6FKBmRFQSTs8egeQeUDqZyFxTtNjtBUUrrHFsmWnnhFgwre6o/jWT0AolsOl4hrBNEexPRP4NdozQxPxczRE3zQsmZ+XxmXhZub8+cp4nT+czp9mxM9HTLsiycTwae87xQilvusfJCHWTVvUhBVJElt7afKMwotkpUiYalZn0XiCKM0ZhodDC9Hscm6g8xMQ4jISQkmOEphEgUA08D06oIqTxfW/sUZ5OFwEwiSyRLZIkDhchCIhOZdaAQWMR+q8atSrFnlBMrKO6jvNVz8+73/txed9pA0w1IDth3vIwKbMGvZ517F6VLaNxb53uXp71+c//54Upvm9w+PqC87xGbTtLFbNENCBpo5gaU0o6b2B2dTQYP+Bh6wPQp7O4xdbKo9wLlqpFb2U9NxpDW52oGDWjMadMGXWn79jG1XYGgHIMbjlKkZGE+QM6JZRmZ5yPLkpnma2edE3nJLNNkxqJlYVkWcs6UxcBz9u+cM1oyWswhuxq0BFtGFgSCVkFZCH4sqdg512XmJZoDdTD2l6OBYwix6UdTTM5ATYRPMXnYf2OpIQTEl1UVMRDMMtpblURmMMBkoGhglmRAiQOoRDQYiy3BjEk5J2Oqh0ApQlnCyiZfB5TL7tgloGyWdrZ4dgfXBIobkVSdhSqUwXqV1rXtlRbvCtKCTaaZda1qD5LFlYvd76Zc7IH0c6QLw/QSH33QIf81Ljl1yvw0oNdbve+77h4V64PpkQCldDXpH0PWYy6hNYCUFQij7lnjQtBVLxnJRDGQrCBYv0ODt8KWZa71CN3xWkZf1Q0/revBXbRuoraYWFmvKRsQ7R+zE/3b5S50hBXUTcRwEY/UQLwaeijmOzpNxj6X6ezi+8zt6cT5PHE+nVjmmZvbyj4ncl5Y5olSFkrJ2LqxtW1MNVzrUQi+Frf+Fsx31R2y2kMEt7RX8XwcBqIvDU0xoWkkRft7GAZSTKQQEYkQDiARDQeKJDLJQFPtbwPI2IAyE8kklpAcTE3GmDiQiS1P0eB+mbqC25nVO+ii6K1blunYJVUnemnJ+d4Kv4Qti81Dxz6rQWhPh+9Tyvbn1AHykoW90Vl/MxfE2g649mCyBzx5AwTTe3/4tbot5K40ftfjokOEi2krkO6ufgC1XzdtPA6gxETpixjpqQJUY4maCaIOkgaMlVkmFmeSixt3ysooO/3llimuBpr6d9VH9kC5F9dh1U1W3doqelfjjR1Y2aat+Sld3vXeq+bOrlzV0WHPBnTVgIrnrX6l4gNDR/ctPQilJEoWcg6UPJKXK2OU00QpBqY5O/tcZpZlZp7OlLyw1O95ouRMzjMlL8Y+S25uU2jpdMTaVA/iQTGq6B5KpLrAh8Y+A7MI6iuQUmWVcQRJEI9oSKiMEI8QR2I4kELikK5ABohHikSKjA6i0UR2F88zkYmBTGJioMRAlkAuiaKB5ZAoxTwANsyyXzq+F8F7MNwD5aUl6Pe5LbWlms42c8SWalalq+4u6m/YM8oL1vTNsb1Y74ZA3jw9iJON0dWBoE0qeiupDpstX7lQif5zKeeb1+hRAKXpA2Hri7DqqsDFYjqWKLmBYNiJ2tGBMu6BUo1t9sC46iPXVt+C52okkg6QauYq0RT3Teq7W29bV70LlL3hpz5yD9gVbNbfVo/qArHPK3WaVwjBQb4GtnRrdCAZ+GhqTrhajuZEv8zuaD8xzzPzNHM+3TLPE+dbWObA7W0mL4V5UvKSycvsoJmhLKBK0Hk7oaj5nNb2RrDxSh1DBv7mESTMdZ2+sAFKSUc0DBBGQromxAMhHQlxYBjfJ8SBwDUaBoqMLrInZmedpseMnBlZJDIzsgRjnhMjCwlQsvq0Wg0/+5WQk+PWtErFmnVllXt9aA+UE6vbUg3ysXeWn2ULztU9qUoRzZhTXUBWnafeDdvkH/EypLFO9TzSwNU7Yfv3zUwjD65qUfVx0ZHIewt6o5vdyX/5sgqQfcxE3eV/c9PPowBKUKKe7c+7/Buguf4MLBuxO5iQ1fSQQnFBKzdmGRugVqB0vRsrGInqHSPPyijXvBt4E3xppIvZGlbRG1aoUMtcrbjN0rsROyqL7TWel4GyTSx04NPyqhtHtufu6ljdWCXYwIuKxGKD6Wh6M9EI5Wi6szyimsnzjOaFskwGrPOZaTqzzBPz6Za8LMynG3Kemc4nlsUCFCzZrfJLphSlLM5kVBuzbME+6mDwc64ARZLrHUMkh9FAUBJIZErXEAbicA1hRNKRmK4I8cjV8AwJA5Ku0ZAo4YrMwMyBhcRC4syBTOLMSJbAWUdKiOaFMESyRhZN5BLJ1UndQ2GKA51mNSv73iVpr+u8pBftpelpn0fMIT6rs001V6XtMiX2FnLVvdXpkoU97o7vDUCdGqhjcJ+GffZJum4viAPn5+Wae/boH+1pTdjktqR3jtyXHglQ9iytpu1DSPcC90DWf68uQatf5QqM/rfrNMH1j9KBZcsPwWfZsAfVro7a6hXW3y06ERurdw2mWehCrmt9ylX3eVfMX5lsA8/W2eoz1effiu4riNZnWBl0K9+jbIS41UUGESIW/chsaRFyQMuA5oQuE2WJTOfAsiSmG8jLzPk2s8yB021mWYTpDPMCy4Ix0ZxZSmnr8qmEqVOdbWORqoFlAQ3iRppEv5SgpAMSBnS+QuKIpCskXSPpiOTnhDgSyjOII5omogxEObqVfCDKTCaRXI+ZZCETObsIPzPQdLPFXLmIYvVOVjfpDTk9MFabSwNKNda4uEqis8todThIzjQjBsqT60HFALnF7gSaS1IDw+DRkWi/+3OrS1HxKcqZ5kZ89+m/m7QQ/fQg+VBUpHpaW2f+jGnPHqv+Sdaye+ntDin9igClIkzuDlNTfYAKOdEB0BZXlAZNBjmDA4K4OCEbgIhUEa/gCxn9XygNZPqVPCaeWB71IwZEZccJqzida611hfP1+axkkR7qtgJ8jTBUga4CWw/M63JG2rm+FWtZ6zy6gv4KtL2n1XovZK1VnUiagaz6qDqTl6iEBOEQER0JGsw6Xq7A2aJmJU8mpi9zZpkWljlze3tmnmc++egV52nmxYuXnM4zr17dGvOc86pWq2NWQENZPadSJsaFKIImeyBxNq95NGOODJyIqETTaUpChmdIHInj+4R4RRjfI6ZrhnRNSsZEc7ymSGLmQJbI5KxzZmB2I9AUBnKoLkqB+crvqfF+K/pefN/rPwvNkMTEXUf4vV70LJCTrWPPOMtU+2ZBpDLKXg+wtSrJHfF8ZxjageaWmb6l9JnIZA9+PYvc/3Y1Q91+5LXl3Z8eBVCioMvemtOnzqwirLH7fDVJphCkws0qlhcHzOiiuMHoZWPO1mhTjMT0x/cW8wpM7vKz0xZeBsoGXzug1NVPsd77kiFpwyy1d2cqXcn1uq68joXeXZ20y6PmURDUPlbvggrdBGIi+xqu2IAyaERUSbFAUTSVJmYvcybPhcM4MC8LKSSmaWYcEufzzHEYmc4z03linrNfY36jWbOzTnsGKTjL1C5au7/tIkgb0NGeThZjnqpIGMgFJJ4JeUHSmZBOSDo3tokMaLwCEiFkkiRERgKZLNEnzMgshYw511fruiLOegVziJeNmE70+me10ZfFXGYzNpYr+xwwUEwYllW2OTizDJgXUawsVmFRK1ux5y/4hdEou1aRe2uyFwotzLy62I7rLbUHzAqumY12rxefm0ro9dxTdwrLZqKQ9s89qQfG16dVTXVfma+v6+MAygx8LJsG32hIBF8pAgwe0TyqL2UUYjCgrNbWVTe5NCa6Gnh6cdw6wQYQ2ekCK/hoB1LiA7TrLlue2RtuunOeuQrIfYodaNV0F8gd0C7oU9dyqmFrr2+9+wnswbg3mG0NY0n3BrLqhLNOQlE8b5oJKOlQHDoKBw/cq2qsUxdsLfuUmc4Lty9PvHp54ubVLR9++ILbmxMvPrlhnmduzidbqqmLAcRmUK4dxdQe2RzhvU5CsAAmBPJsALecbzH9pht8ZIDhGgkH0uE9YjwwHj8gxANxfJ8YD6R0ZAwHkIHMahTq3Y0ykSWZpX0Z7djMaLaYjllqdlzaO8BXRrk3IFVL+94otLBzmhfPk1wVMJhqoGexZW/o6f00e12ndn/n3e+9Rd3OtQhd7MT2O0nv0U3uf98Hhg8BpO6+Zff7vvRVAMoC3OrdZ2upypqd3iZKW/NdQkCDukiqlCimo5TozukuSspdoHzIBWgPKO3T9Gd1wG5BsmeUvRiuF87b06kHtKggvYrOF1ZAd5Dcs082dY3t2NaJvi9nBcrdt4Ni0IwFdSsM/h2JBNEGkFl7UBWClApPFG/zQPH1+D7hBPvEoraHSRQkQBwix+uR8TAwnWdevX/LNC+8enXDnBdupxNzycxlxiLdZ49Fum1dm4qqbq2L0KfZWXWwlUmKOfGT7aowoyg5DOQ8m67zfIPEg3+ukDgg8WiifLgiSkLikSQm7iepK4YWikQSmYKQo7HMEtyarkLJtuWFJgx36vfeyX1RGNkALYOfrzadPuRctZQvYoDcgFKxFUMOqJi+1XQ6A6vv5n2Gn+odu3Ux0pZH6QHU1F3SUUW6caONUa6Mr0ppu7Hf/7rINisj7L97iHy9fP/O4lG+1VSAT7rf+zpL9930VP4dxEAyCCVGGxUDqwLTwTRIVf1ntiC4B8O7Ink93vLo3VWo1RZur2nP82hru1seqeJ4l1NrkKQVCFc2W+6UugW8rVh9d0JYGeO+vOR6SAPJ0jwDeo+CoTFy8y6oQOk8ytmlgelCXSlV89clppko62IBgJCFeBDGq8TzD65MYpy/hWbl9GpmnhY++eQlt6cTP3jxgpvTLS9ubridbjkvE7Oaezs+d4kbMUIbfNZV7KhtI1J12AEDXYgsZUIlMs23/m6S+WOGEWSEeCANz4jpwDg+J6aR8fA+IYwMwzMIA6QjhcGd4ofWgoXAnMyXMw/VAT41/wvOjlGdPlL2+sxLlvENmHLXyf3O/mvSsc64uib5NhuWCute65Ud3hfY4xKoZjZr0EWphqBuNDga1mO9LrTLc4FxbsF1HQnr9wMsdbMI/c4fD6bHAZQZeFV/yK4VOjGrAmXALI1h93cfWaiPMBQdSF131EcFEqNkVHiz2zsPbIEz/DjaQKzmV2cntcEFcR2qdKTTytnGDJUGlP3zBRfrQ62D3gXtenzLNv3aDijNmp995czWM+AOk9TKQledbu9iNTCbWO1AOTiA1jyRzEAyltkYZmWli6+7j1a2FpKYgSwEr2dQJFvMzgBoMPBMQyQMwvPlmufffMY0T5zmiVenW6Zp4tXpxLTM3JxvmUvmPE8W2s5FQBGfGD3Cfd0+w3cuQiQ68BcHNkU1UCRRNLKUjMqE6hn0RF4GzvMniCRu0zUSBuJwhYSRkK4I8YBE/zsMpHhEJTIGc4TP3oJZ63LLQI6REoQlRLv3GChZLMBHFdM70NNeTHeAlL0/Zunyzru8FUTdmt5A1Wg1lISU4EwTzOndOnDz09QdWIozSq3Mcg2iLRUYpTLG6hrmAFl/t/HeA2tHDrpjq+jeH9N2rO15xT5p9yVt7D3o38ljAcoCcuN/36HA/hQ1HuUeDHsGGTEviRaSTVseTTb4SHLHMEYFy3rr6nnRTVRb/69V/G1xFutpwSvR6UZ0/b73hbgty1Sxq/9kdci+pALYAGUHsI1duoM9HbPchp6rLlI1b782fmls0FjiQJDC6ICZPU+QxQXyTMGMaYW5sXcDSnczohA9j6qYCC/ZneKLb8trjRiCMpJghOP10Pr1kjNLyby6veV8nvjokxeczhPf/+QjzvPEJ69gzgtltuctbeCIbwkg7lBkEZICShIDVotSVFAJFLVIRUEXilr0opztyolIkUCWAxISIR7N/ShdM45Xps88vEeMI8NoPpzIbC0io4XX07rcMrCEkUxgiiNZbCURJZCLrIyyRiyaMCY4wiaU3CWXpB1ArnmrmK47a7rr0RfftG1PHF3NY6qKauhZ0MZCO+NQxxK1ylJaxfQKkv2nDoy8jhmp12s3jtjkX9UtNfVi/R5g6a5hXUH5esn88QAlLy5Q4PogyApmjSXSMcrue5+nF9d7llkDBV/wKOgBE7BtZztArfC0b+PNisT7JIC9RNHfz++pYs7prUw/n4P636tYU8+JoWMD9MqUV1VDvwR0q/esK5sqeKYOJHtGGSlMjT3OTexObjSreRYH0xVsE1EyUc28ESgoqYFqxPbVDCG3oCX1EdcBag1h2pVAGAPPyhXvffCMXAo/MX+HeZl5eWMA+urmlpvTmdM08fLm1uJ4LjO5KHMxtzAVq0khs2hVTLgZTBYKwkg0YMPAUkVMnFYh64CWYD6lkigyMJ1GJkmckoFoTFdIGAjDM0IcScOVGYfiyBCvIAxtDfvC6rOZg0VJyiGiKbCMHh0pm46zdIGGZR8B6ZJLkZ+TvVh+7n73xqIeIHu/9RoZKbvje0n+7Vb1yjRrTISNg6z/rXt9ptLM9W2p5gUXpWYoktopdoNnZZArP7V67XWbjbC8jkp6ejRAqSf7s3Gz+gCN1QkqugG/Ft28iePswLD7RAwc+3NwASjFxewLeeo+3f51SUmsQmfs6VO9SLduaD35xFjvhpRKx26DLetr6Bi25Ujs2HKwGgaJKwN1/WAV2ysfrss6K2gmZ4gGiJEo5n8anHVFN35ECcSmjTRP6UwBhOqeVcS9NbWqJCrDWFUA6mBOdXUK3uXrZNaNieDeD9G/r/RgTeqbvz0/nTidzrx8ecvLm1e8uj0RBM7niTApS1Hi4uNelaLuGytiW4ZTGp+32pjGtXj9VYU1EMeCIrZaB9drLtFE7GmAEJB4NMB0/aaM10i6IqYjYbgmxBHiFSqJGI4UjUQ5WBmSWCRRsG2SMxEdLAKSMT5lDevWkbq6THIAWXQbxGO/tLI6uw94eX5tbxBPeIB3XdltZtVt9gakCn5iFnCR0t75CoLirLOOpw5EpYoVwgYU26DR9XxjnUIvovcxZCuzVF2H2ZZ/1l8XiFqXHgdQLsCHjT6yeZRO/L3DJC/pJMM9n3quB5IeMDuQvMgsZXf9pbRni/elPaPsn+8Sw2V/rGPY/XW92sFVFSXGxoalMukqikTdsE8Jq8ErtcV9xgpHJkLHJEf/TiwMLY+xxZmzs9DkeUaSzESdXY9ZxfNqITe3HSsrEIMtU23jpICKrpZJAalLRRvZt03tY4w8v7riW++/z1Jsi+PT6cwyL3zy8obzNPHRi1fONG84zTPnaWJafEM4qSawuOMzprtUhOKrghbX6i66OlTVGbxoQnOw0G4SKFNCJXJLQkICGZDhynWcz5AwMozvIW40kjgS4pESLdjHEg7G0T3k3BIHSgjkIZE12RJLEqqBXIHsAqO8FEau12NKXX9exfrGKNV1nrrm7Vnn5IRvCbYhnoYWCKWFk2uGnp6+1lb2ybKxzNV9SRuIlk5eLpjytl7j3aF1EV1BsH2taLmXBl+XHgdQ6sooq+ahYYT40XuAUh8ESllZZA8izs6quArr8b1ucg9Gm1VRlxDz3tbXy+craFUA7PWjDnAGBhdAfFev9bnVwVRWdURwRl6/+4k7+H3cO8BCwBkbNAZps3lsrNG+jVlao1a/0d4gZF3TtwLV+hw0Eb+6EVVrdEHJ7tCugEhuult7N6bwuOTJUUE0BYvIToRRbbCMaSAvmRgS0zQRJXKazowxcDudOZ0Tp2lmXgpLsVB1Sym+2MX3R3JfTBVzN0eESHJStiovamez4MEGpsZCq0dvXX4Z0XILIVHyCYkjuUyEOCL5FokHSEeIVxBGQjgikpB4QIlEB84sA4tYNKQgNuEIwSLni/gWPyvrJGLuRnWJd3VyD2wM3uLssg99qcEZpX9r1aH6QgA714FjFvveqCK9L9QAHZT2t4ovqWxe85UpWkc3jKyVxoG1E8/u9IsLg7H2pTtZHobNxwGUC5TvB5ZuXXQSJV1idZdYYwWDBgp0wCmrjtKWs1imqnfsNzW7j0neB55038qKoP0Lu9T+D+oo9X5muWfBd/LsVAu9GkK63/vrOt1uCUKJiZwSJIjJxOORkUjm4GzRdJWLL+yzQGYjE9Ft3sYoM0kWFmaSDERdGiPF88DcxHZzy7EKRxZSLC3+5tpetaf3Esiubdv2CxZkYwwJhsTxGwdQ5cd/5Nu2gZvH4DydJj5+8ZLT6cxHH7/gPE18fPOKJS9M82Iium89rGg3yQbfVXerBdZmR5funInr1XEKAmWxJZbLYr6XEytrNN2lWc8lHBjG9wjpwOH4ASGOXI3PzUgUj+40n5jVdJxTHMkxMg1D03mWHCgl3mWU5933zmpev7XG4ey3/c1dns4hXor7b1bjkMfx1Cmw7niprPuqrz5N2oxBjtztO2M+IvXvav2EVX9QO0BvHHo76VEA5ZyF3/4kMmug6hmuUuYYC4eYiUEJdXBnZw9BtpbwSyC6M+KIyEUAavjcRG9v5L2oXVlfcynqktZ/xI06nqEF2t1nvwDQe+bsdZCqn93Xp9djdiDadLc7nazWiWEvpi9dO/rEoy5alRKQqCwyoBLNMdz1eIl+LVNdIhqo7kkw+3ltqllBUZGmA10wETtgkboFJWpAiB6JqTrMd23XJiddf6wbrYBvnVHdW6TGxPRGCwIhFGIKxDGQJBFUmMYjowxM88zV4cg8W5Dj2QMez8tsexMtbr0N/hbFubPiPr2VH0vHzhcX24PHLDXwNBHeVvEEnckEog4mupdkopYMqJ7QZWTRW0IYyZO5JoV4bLE5QzAxfQxXFEkEOZIlERnJHsS4DM42o+8xFMWYo7PEdcWQtH7QcCjizLTqRlmXYQb1BT6yCchubq2VoHjeyj4JW4LR2GE17Eg3clxrLH6+Nbx0Y7EPUlO/LozVz5AeBVDezsJf/o2RKTulFuVHr85887Dwo9cTVylziG5LaShQLTdsweVNdJaNle3A6j4g6u9R871OxO7lwzvi9oVr9uwxesaH9KP9ufZscocltrao97mkt+0nluSfQdBR0AjTISERpnBwfeS5McqFmcjiZqDcvhcSSc0YYlEhzb2mivAmuguZBUVJvm5enI1V41OUpYHe3XbXjkSogWRvMIWNdFbLMC/KyJAS1wm+cfUeAMuPZErO3Nyemc4zn7x4ycsXN3z88Us+efmS2/nEzflMLpkSbGAG70sFhZDRACEITf0hSukkBfEJdwVK2+JiFnMXmjWRSzDunc21fzm761AVuRkIYSCmI+nwHml4xnD4gJSOHMb3sQAf71HCwOKAucjAdLBll5MczEUpeyCPW1aWWPWO/ZLKgoWTczDsGaXF5pQVZNu3i+91vXr1/K8Go0nMb3NhtZ43atq/uP2AqSyznyR1vcY9J94o2uQbguijAMqsL/j4/G+TS4DKHvRv49X049wscJ3gW8eFMSrPRiV4MAzpkU9ltdaVvpP6J7jVtYpNPQAi9wMl27zaG1HgMmCKDZtWdpvhVgayz3/nnh2ANUNG79LUg2hfd1+ltGHS+wmi/n1JVdGAUtZOn7zu0fRSOQSmMBIlUkJshhh8yR7QLOPFWYHzAcD32Gn28eiazGqdL8YywY0jHrtJaNLGKo5fmIzqmOm8SqTuEY5/F2f+PQv1FLMZIY6ipBQJV8K1HHgvPePm+n3O08zNjW0bfHM+seTMeT4z54VpmbB1QqX1M4nY7pPdJCg+oUlQ08vFGRWLiGQThxuHJJB9SeQskwGkTlgQYt9ArQxQXpKnI+X8kQU5Ts8hjGh6H+IBhmcQLDbnEI5EGQjhysR8DmgM5GOgFPvgSysbsE1QA3vIBiAVkh+rOs+d76Yu3rc8sEfTh2Y6aQY3DglkN7HTW4r6F6tWQB1bzXFavZC1T1S9td7pL7v3LtwZkvv0KIByKR/x0fkX228BXk7/MEF+jA/PcJXgb3t/5r0xc0iZFNQ7niuua6TnFqNvT7Oa7L2KoECN+i2VhVVxtQ1JOpZXR50fr4AG97BLdT3o7uRe51ZBDxqAa71fM8o41PRi9Z6Bbli1rvrZPRi2j2xAVAWLgRgFSazRa5p4ZWVbHMZIHiMhFnOVkeSsMJLFXYd08a7bu9q46UaDA6VF+rGuv0ZCCi5aJW9kO1dsEi3aQO/OQtI9GBYHSTw0cAei6udtAzWfzFSQIkQVohzQpDy7PqIHRZ8r85RZlszLl7dM54nvf/QJp/OZj5aPOZUzL8/KlBez+rrKRJL4KhFp/aj65WqwdxyHskYMchVLCW7ykuQ+lmbtnhgoKswKSwnMKszz6DtUmr4yB/PPZPiAMFwxHD4gju8RhucMDqJDfIbKwBKvySGxxAOz+zmUSjgOLka7blKrhbxaz2erc4tq1APljG0FPPukfQkoN325khyPvN/0k9WYA1U1s2ETUn93DLN1iN1vvX+ovg4pHwVQirzHIfyDFgEowBAKx/RNxvg9ng2ZQyxcDRNDKBTNHdaYZXFt7d6Ssf/tQFo6lBHA94UG6US0eoM9pfQWle76Oy3cv4o+H3dBsuapRdIBa8N7XV/4Xn3Qf+7T126+ZaujrHl7MT0qmgQZ2Ib6Ovp5112xWL5lSJQUmGOiiInVBTPGKIEs5rJSiAzMABRf/lh3y6zW7/VRzCyyMsqwag98D/fW1E0XKQ0EN+SjAaIzlnZcNv7OTXSvedo5ceOEMmQhlURKkSzK8x95xrIs3H7wbXNyv73l5nTiNE28urnxrYRPZjgqS6dW0zZpb5i8rzDTCEghhEIYQFJhjBkV4SC3Vj2x9lnEdZySmOVIJnEqr8glsZRX6HKgLB+x3IwUObCEa4qMaHpuxqLxfSQe0cFck4ZwBDmgMqDDABpYhmQW7jGsbHF0tjjr6h7Uux9NrIE7zqxA2ftu9s9eARb/nmvsub3/ZK9TqT3mDUTs7or6xwW55N70KIAycMUh/l2kUBiCckiFZ0PmOHzCVSqMoXCICylaI7kAtgVJ9ZEuPUBGb40OMe54cm8VkavHPmyQqP6WdTg3an9BDm/rv5XGXP0O3RuSepAt/+/Yq7NS6atameoOJKWbDzZN0D2+eNSlekx7oKz5BkWbGgOkLvusamEHkVKswjlEJFikpqjVmONLFamBP+yauqSyxm5MeDxHijkbiVJ0cQE2OG/sFnX6lr2rkbO2p6/srTiqYi491XFanUXWcVawuI4VaKuLX82zWTQiUITov4eQIMDz8YpSlOVqYZombo4nXr0ysPzB8jE35URZlGVZ0GxuR4WqP2Odv+tS22H7WyKEMSNDIQwFAiQpqCgalSIupoeBIpGzmF5Y8pmFyLmcKWVkybdkjUyamDiSZWhi+XB8ZQ7wh7PtP5SeQbQgxhqPaIyIHKFEA3D3r9TKEqu0UcVrYRWrKwjS9cf63qplXdZhsJ4Xs4wrSOuUxX1nK8pWya9DvB4whQvEpCMhbN3MXgeWnwsoReQbwP8W+Lu9Fv9d4D8C/iTwU8BfB/6Iqn74UDnPxpm/7yd+nRSUKMoY7dviTGJMU7CBuMcTE/S4X/nWI0CVXessJDZTAltZen+sf5NeXgeYXWW29VLZXV/P7crT/lvX443l9vekY7Rh+3fNU1UIe7YYQKMgd7wE9C6zGf37wBo8NuEMU/28NhFME5zHiITAksTNObixxxw6bDOFQvLRU2NdFhZ/WptQorieU7NrL31lRxs2ZW2i2qY9I6zqrUpIFvOD3DhA9yqw9reuwSHauY6p+mezTQUQiRzLgVEG3rt+Rj4Uvnv9bZacTZ85z7x4dcvpfObFq1eczhPn6cztfGYpmUWygd9g70yiND2xJiAqxYGyOFAy+HgIShwUkjCkEznAKLY6aA7XZAYyRyYSE4kTBxYdmJZXlJw4z98ny8gSriEczIKeriEekPQcCSPx+A1CGEk1StLhSDmYZf7OcsnuW3y7C05smGUD2Qquk3fdxbw72jLLEmA5sL6UOnM5+mrVTQZU+5nNv3r061/Z/twbpM/LKP8l4N9U1X9cREbgGvgXgF9S1Z8XkZ8Dfg745x6shBS+fXVrL10gBV+L3BMudgRbrcPaignf4kFM2RaCTWlSgVE3qMCWrneg1FLYfe/zWRm6ObZXgPSKj/1b6e8X2N9funus1EO8Y3S/2/ItO66NmcoKlE0X5ACa6t+69S2tv2PHstz1Qova8ULH5lYmV/VLxR3cJUSPiG5UznhPdUQfAGFxarGQHLMLUSy8xuKuQkmse2ZiY+1KjfzTMepuzftKMO6KY1p9L3ug24HgBjh7ZtmD6cbHWVyyiESJDD7ZHNNIKYWrcGCeFw5y4DadSSVxy4kbHYglMDFzLrMtwZyzVa+66VT1gGDLBwMoxbrB4vNkcL1tEdBCiIqGQAmRGGosJyUwEGQAVRYWRJVFI5MuCAmVyUTyMKLpFsIBSWdzfKeg8UBgcTBdKOFgIeiijTFRMf12CCsIVpFaHfzV2bKrH7vVh9bng7N30dWQqK6L0Cq3V8AUA8yemhO68w+L46q7yELvKh6liLwP/FeB/47feAImEflDwB/wbH8c+HO8BihjUK4H4+3VrnJfsnW9vsqqBJYCU44sxYArCrx/mIgBUuhBqLI2Z1096FSA2bA6P0c9R3fM822W9uw1Hv2DPASY/d8dQLIDxc25WtfuOqnKLZerc1iPN79T2fqWVit6ixbvnwljjDV6doK2dcGilt8V+QyY/tK3KNAE+RApyXRbA7O7pE/OLgcSC0USiYWs9j0ztc8BO7a4NX1hoK72iWSimDN6pBCihW2LvlVuA7NNtBxWi6wq/Vpm++gqCgZp/oDNnrCukFvn2H4evJBCCLak8jqiCu+9/8y2xcjKPC8sy8LLVzecpolPXr3gNE18/8VHFqB4OVMoFpF9KcYiJ0VFydhqpZCCdeUolEEhFXSwdzkcMsQCVwslWLCNUQ4sMnKUkYXISScWjRzkioXIzMRCYtbEPH2C7XtuwTqmV0cz2IUrF8mviOnagnuM7xPikTS8h4wjcXgGJRAmQSfMpajqKOv3rb+Lk7FIZlbj0BkzAI3+ns7AMsCcYMlY8A33W5KEyIKSEBZURy9kRhq1ZZ1UMU+HagW3V3h5pdc+fR5G+dPA94B/WUT+88C/B/yzwI+p6m8AqOpviMh3Ll0sIj8L/CzAe+99u3Ki1gFLEY/Q4itA1X4v2Y7NBZYiLEU4L4FcbJ1HDCakHaLyfHTR3em53bgCWlWQVGtZL/L2s9GO1rbRwzbfzgWh10puQFS67NUR+lL8zY62rMy1lnuBAfcDt1VrnRCkrMfqvuB3rumPVVZQpZ7k30Hbhl7taVcJyJhFwIJgBHX/PXWx0cKaWbA1JZMQwS3mQmXpdjv3rXSjUL/30RrV0XwsRSwCOzV2Z/NQUCS6I7Ta396Z3BUFA/7evaVfKNL7FWZdATfWdqovkzupObm31VrBBmiBlCM5D8ggHOaReAxM84QchWmZm0g+55mpzCwlM+WZrIVSd610a/0arUyabtaWFBqjsGDJM1UtUw1n2XdtTCoIydpKE8KAaLall2TfpndBxGZQDSMaz5R8MtejMiPxQC5n27hNz4hGQrHI2hIiMiYkBoKITaaADLKK3tVg6NVk8KHhBiCZja3qgk9gZmQyfX/yJ5q9r1cn4IBQqbm9JHEJ1FbU6m6MPpw+D1Am4O8B/hlV/Qsi8i9hYvYbJVX9BeAXAH78x36myULVd/R2Dpxy5HZJzCXwck5MOfByikw5cLNE5hLsk8Vj/JnY/t1nt3zrOPPT37jlGJVjct2PdCCzaZu92LxLbUD0mSqiFFZdZI80r2v8Xd6Nc6fu7tWfk3uOdcu2Nrs09VuOhpVNmbS4iuVVBO8twbWauWOe1V2oMrRqnGybYEnHQoUlBvJou2RKLMwcSSycOZHInDkRxZY/DjoxMjFyIrFw5IrIwpG528YjI5p9LYvF8BEKY5gJqsRQwbQGFvadI1EGnUxMrayzrn/uo4NnVznMLs72Ycf6cGN9++9F+Sqqd6Llelyx+JyRUZ+hwLfjN1CUeVmYc+Z0nrg9mWHo41cveHW65cMXn3CeJ25OYCHiqlFTCWLsNcSARFiKTTJ6NqaZZMI2x1sIoVBIqC5EDZR8SyYRwoHBQ8VV382JgayBk44UDcx4OLk8UgPoTb5/UJYDhIE0PrdtM9IzQrpG0jPS0VjnYRmJJRKfRyOEk7fzbMxRZ131mb1eszLOSWAK6Pngus1nvibdX6KcEOkYpdQCfLYTZ5d8OrEbPh9Q/hrwa6r6F/z3v44B5W+JyHedTX4X+O1PW7Aq3C6RT6aBH5xGbpfC7fJXWcqZcw4sRZiLfVemWYGyqPLReaboc67ST/L+IfPNw8KYVt3nKmp7724i7BvUrf0r1PXGndfl3XSJLGKgXa++k6FnhJuyL91n/xw+QqXqaI0BC10w07aSQTq8lrV4D24gzioV1y11xLwxTQxktRqdojvHVwY6eGCGwZbNzdEstAQhigX7Tdge2otEFk3MGtuxSGaRuWOUnQhuDjIECpOuW1UEyY191qjsooUko7ncYKHcQlAkFiQVJHvUeLd6N4NCH+y2RdahvfvW7vtP6drHAbIdx5mmrF1RRSyaexFkhHQMjNeJw3uJ0/SM5zdXTPPMy1e3zHnhvBjrnJal7RcF2piS+j2rg3gIigXVnSlBGbB8WTzkspqZrbhWs4iZ40wKKD4lRfPrZLHlkJglvRCYywlKAjlDHtD8kjJfofGKnF5APDDrFaKJyJFAIg4jMURiisQYkCzGNBdxVQ4rgE40sVxchJcpWFT8yfPmgzmslxG0bjJUZ/Lc9fuKjW825uFzAKWq/qaI/Kci8ntU9T8C/iDwH/rnjwI/79+/+KnK9c/LOfK9m5G/9skzPjmfWPTPA78D+Fy+e8Y6qWeF790Kn0y/h5v57+K7z2eC3PIBC2mwNbgbY8klMfvedA/qPah73D8dVL3oNldlpr08vC/vEqPtWWWlhIIHxqQPL9xCT9VBq2HVXVaGuY+lWckqrK4elXUOsjKsyBqVJmMre5xxysGAkhSYxggRpnEkUDgzklg4MDMw+VLHyZnkgUTddsIY5RpMeBXDRdetKnoWWa/pd+UMUkix7vFTt7Gom6lZOUInZtfldhudp3qb+DurALj34ewBM/fn5eJrjmJbuQ2k9mpLtoAc0zwxL5lPPn7F6TTx4SefcHs+8cnNK87zxJRnlrKQ0VXPmoO97xlCzEi0HSq1LCC2NDIE25Zi0snCtTFQGCgkCLbE8sC8uiJhyydtv/TEpH59Ns+G5Wy7UOYwulZ6JIdrchjJ4ZkZgw7fIMYjw/g+Rw5c6dG2/SiJOEdz26r6zKq7PNm3zGIW9SzIFJxIRnSOcDsYi568jxcFbjAHz6UZf8Fd6eqsv1kCeTl9Xqv3PwP8q27x/k+Af9rv/qdE5I8BfwP4w29UkoSmY0Lgg8NCkBM3S2IMwvdP/wBL+S3g/4U9NBuwkYYHz4G/j6I/zs0y8INTIIqgz42WH6Lu4++2tO7DsdMbVsL2gMP4VnTuzrGyxn5z2y2LXVch7K+1v7TD9F6srgdNlm5WXYQVzaBZxYGNy1JzsPbz1UKeTPxUj75jKixZ14tXHV01glS1UAVMxTw4sqCzmsU2ebkHEw/L7DsSxoE5RKaYSG7oGTwK0eQRi0YWRNeNzeJm50dzWk87MK15t1sVm5hu8TMLaROl3aKrV1BOwTZcC8HYVihKKAbKkp2VN5ckXEcoKxBmf8eLfWsum/zbrrRde9KDqESIJTAOA6kkwhBYlsJ737hmWhZO5zO35zPnaeLVfMuUZ16eb5jLYuBHIRdb1YTUd6yEkCmSiZLJKqQSnUkuZGbb/qIYUCYx/pnVtsCo+wkVjRxwoASzIagHLtaRhYFZBmY9kfPAubyiMJDLCzSMLNNzbmTkLAdSeEaUA8PwjDAMXI0HQgmkJTVw5Aw6FQPI7IC4QLkt5vA+lBVYa0Dj2SJGsZR13NUmrsubH8ZI4HMCpar+JeDvvXDqD37qwvo1mlp4b1y4SoWPzxPCyCfT30PR36Tw77Pxz2AVXww2niH8PpRnnLPwyWTA8f5h4XrIDLGskdVkX8olNgcm0txb8e6zvWYvWNstOrH3Tv47T2XHe8ze1H11mlkzVTcJj6MIbBRmanlac2sALWu5Ow8LhbYMsOk2vfm1AmUVk9xqDKxgWpnYoKa/zGYM0sWAt4zJjPVg1mzJjCRsUaTFWBy0ssW6p3hhje7Yidwoaccie4Cs32MFQ5mJWre2yJs9gYY42SZoLEQpzj7VQVO2DuzZNRzaDbrF26ezwlf/y+bO0xaYdO+vIzfStX1wKeRwPXqEc8i5kHPm5vbE6Xzm41cvuD2fiB8HzvPEqwVmtZ0mdfNeLTizCiQyGSG4GqTumGSGVAPGwYN31BibhWRASt1lUpzEybpbko4WJ1MHznq2d6mm25yWT8hhYA7PmMNAkQNh/MD2HBoWUjwSIgw6EH3bCZkFbhWdHCCzwLl40A0/7u5IMoPOrjo6jauQ1RPHKnS9oUPlo1iZA7Du8GYpiDKEwk+8d8s3r2ZUhBfTM37n5o8AmRA8ZmVQjqmQQuEQlSgDxzgRw8IhYssfU+aDw8JVys6t9sBWp+/a0R9qPNl971C3gpOa9dXO9v6YdNcpG0fyvrhVeUijz9rn28vuPcNcVy6sZdTlEr2LUW/V8VRCY5itClXk7MNt1SVp/d+Ds84cVh+66nY0YIzy7L9H1gAc/rvEaMaflCzaelq3qmhDWCz2+BYE6z7jSpS7ondwEKzR2tc9gQyY7Zjt3WMi/BrRPTETtQKlb93rlvbg+8KE5KyTuk1wcTCkiek6r6CK7+vdgHIvrrdISbVPdQDsvvZEiCEQovA8XHF1NfL8/SO5FH5s/jZLXoxp+o6Vt9OJ2/nMzWSsc1oWt6CbZ8jBox1pEIr3YXUredbEds9OW1W17rIkrrAQ5/e1JUcWRs5UlyQzwZ3lSC6JmSNLGVlkJJePjGWerjnLwA/ic2I4MIwfkOIV6dl7jEdj1WkeCHnVVfLKwdHFc52Bk6IzyHnd21y0G14+ZFoc9NewyscBlFrF2rW2Js0q740Lh6R88zgTJfFq+hkAYiiMURmCGlMMhetkSyCv0kIKyiEqYyz2CbaOvMeWS0Fo1hlmC5Zbw/emlO2jVB+tDXPsHKIfAOGqP6kVk1Wf4McqyNX7bu9dY/XVGJBbfWMPpB4T8R5Rv0Ziklqo0cq1KsXvX/VyYIMfbKZXGkvsCO7KrqrzevUjdiu6JiF353DJKEiy4ScOhnXYihLVgVJKA8a6J/kqett31WNWMEwucjeg1NzE8YXokFDF89y2vGjGJSmVPzVwru4otkUwvjRSaXY1j/ot7sazsa9VT5YqJaoiddLqrejd+xaEMEQGjRzigKJc6xW5ZM7nqW158fLWPqKmC5X5TCZDWWxVEGquX4rtRKnF52aLaN/2/hR70nVfIQPKQVegNNZpHrSLzCRm94m11jZDXWIus4vmBxY9k3Oi8MrWrccblnggh4UUnjMEgXBEGW2SKNGc3bslkVJjE0zer+oqsqpj7obMZhi/a9H77aW7g772iiS22uCnP3jBlAPffXZDEBhjIQVlEDVxWpRYowEF60B1Sdyqk+zFZN3eqqaLusbX1F7VGVv3G0zHJ/0N7par7he31S1W5lfBcb1Uur8dsXbPs2eL9bsH2f46dvd0VNPgkaiTtUlW93Hz74nGCCVJxw51dWAfw8ooR2nsUYOuWwwnXdloWsskYMsnA5QUQSIlJOpyy7YS1YNk1GWZIa7MTqQyz+wAWYNxzE08Hxwskxp4mn60tGjtW6C0SO6D9OJ+aSAbWUhqer+q8wxx8SDBS9OfNrG7d0mqINomIGeipexU2LIG92gTlb1H8f42hMAQEmMceXZd+Mb771nA4Zw5zzPzknl5c8M0T/zA3Y5e3LxkWmZO55lpnsgZD96hpLgY22zDp5PAfIVIwSzuBYuOJENg1oGFkVnccT0dyARuy8Ci5tA+e4z8RQcWSUyMZE2clyuLxbn8FlkO3IQrXoUrkANh+AYSjxzHb5Fk5Pp4RSqRISdzOTqDnI1ZyonmAnavzeYNhvsjAcr7UhVclatoUYVUXSyPth9zFNqa8KYRlNBfzutbYp2qVffs8Q3qeD8O3in/Di24k69+1+3be5+v+yu0FR/qPSr4gW0fWqldfVbd5pdtLRWB4sEIqnGix+HCasDorbvVP1N1uywyY+5DQRrL2oj0O6CUIk281xpnM0hbhKT9Us26lD9b/8iy7oEenG0u4iwxJKrbkAHlQvLV6TM1+PCWUdYVQvbtOs72Hbs8C9H9PAOZJBaA2NrT2j5INSgW2n4zl9Y94G1Y96Gp6T6BRutpKyAKBAmkYNpbVWVMI7kUBolM8wwqnKeJROQ0TYxy4rZEpjIzZ9uz27Q2unKIttGbNo2Q+KRdtECEoMEmKlFiVEpIpFjbdfIWX8wdjIFFRhZNDExkElFs1dacJ2YZzN9TjuRwYCEj5YopCjkciCzkMKDhiBAsVm0IyCC2dDK7OM5dW4Ps+v196ZED5ZpSKCSEw9XUjkmjFaGJpmbJcitu7+tWwbPp+vqm2Yrbd63b9fdDK3L2ZV1K9yHqPYxatas3tNG00RlsZYm17rUtalQMaHKKRLYGnVpKX25Fu2FllwhMYSWeFdhq1v13Y4sYWAbMbSiYmKRBIXlnjha7sVrQ2yKL4Ax1X61ankcQpwv+kd2VpdWzivGV6R7MrzAEpe5LXtli1V8emBoLNSCdG2iOWsFz1Wuue50v9Ex0ZaZ173PTi6aYSdFYbKhSxYyxzbYLoq4rhqqze/3dL6usKpbKLut7bV1HCM78gkc+un7viALf+ea3KbkwTTOn05nbmxPf+8GHvHj5it/58EML4DFPjS2CMc0QbI17cduC5m7XwwAalTDMjGmB8WTv9mA60Emqs/porSsj2fc0P/tSgpkjC4kzRyYduFVbirDkgdv5dyxa+80zVEZeDh8gwzPS4ZuMwzXj4YqrckUqiWEeCHXhwH6Y9TDwGqR8HEApwt76tGFIe8TfM6eNwqH+rc2pu28NdQZU/O+sNOBM1Ql5U87+xt2xiyApq6tSk1B2dbtTbC867++1Pb4F8V73ua1OCyrUBw7uI3p3x1fcrSy23rchzKaebRvmxSedIlsQaxK8M8Iid8E1YwFsO4DTQZsYL563hYHzpmvAV/OIn+ijJPXxHgXqtrzqIE2GEsSAXJIZLUJgETcGSWGRgSgd49S5gejCmaiFoW7LK3VteiLJ4puoGctUbMuLupulSkRZ/AMBi+EpGPPaBHruX3UFva3Dxzr4/dPAqnWdXhKQ1lxo452o2qQZohDHQL4uHGUk5sDpNPHi1SvmJXPyLTCWnL07rDrWptP2ukr1o23xAbA9xiPEaKYgRElhIYeFEieKRFIDypksiYEF47sGlLO7jC06cCqZIgNzLignCgtzuKKEKwrPiAwkuSbGxBAHgu9DLyKNSdoYeT2lfBxACTvmtPb/bdItm1JYHbX3D3uJbfkm9yrMGslFOOdq2IBnQ+EqlAeF43sqf/dvd/lovlr3XVkf4w5TrF8XZKt77i2be6qrj6oY7//W6NFa2XNffAXJqgS0yOJSUcvRV1XMOl531KvX1D8rYFUm2UcpqvrHjn2qOGusW1BEMRBt4eA8Sni/Q2XU1VF+D9L1N2vVkO7eo4FmOfi+52lgGi38nCaQoAZ41L2BCkkWBjXGaMcyAydjiTr7MszKTBff93xh5ODfE4nMgYVZlgbAJp6bjvMQJjMC5eI6YVndq+rkNHfPWbrj1Z9z31caEWDbTesKIQFRYSjmxXo9HvjgW88pWXn13i3n08Rv/ub3efnqht9+9X1uz2de3txQStmSgeIkQW0CDEOwmJlR0WTvV8fKNAshQhomE3iq/jrB2Q0+i1yRJTHJFTOJMyNnDswycuIZCwM3XLOQOC2fMM0Dp9sDkxyZ5YDG52g4Eo7fJqUj37z6BmMauBqOthpIYgvAs06496fHA5Q17anxvU9QB7qCW9zq7nZZg/l0FbENlIow58hSAqclsqgwFd/AqYRGsH7s2cS31DYzS6GHS107G7oC3yUAbHi9o3p91opO3cy+vUS33+L6wjtmejFj0K4CdjsPA+cMxZh0nf5lR4Yb5fAHqPsR2Si0iaSPxlrr0KFSDWen3i7qH1sr2K3+0Y04vAG4JsrrGhnPt+A1y2zxvLJZp76J1RycIXjVNrtX1kAMg91LR2ygJixYccLjP0JOgoZo4cWCOZ7HsLihZzS2qUMTr83vc27Mc2EiScbCdSwUjf57JunCIu5Y71tmFCxgiOlQF1p4kPqeNvY3XTmDf6oVvb3OXszs2WbtUp1rksK6nl/x2MjCoYykEPnO82/ywfCMZxy5uTnxcXxhvpunM9N5IRfz56xg3Sa5yvwHZ/Ojd5NeJTOAjDR1SwwZCYWQgBg5pIUcEnMYOMvBIwFYRKqkZxZNjG4UOnDFpCdjnvlM1gP5PMNy4FResMREGQ6McWBMA2MaiTEyBGObD6XHA5SN4TzMmnqQqAO8+CoScwwRzkVYyhpQ47xEXs2J0xJ5MQ1MJXDOiayBRQNUHJNX7k5kjsu7Cnb3dSiU7Zn2q5HZPaut0lDPiu8+bxPV/XJtV9a8e11pf66yvgqWmb7Ol0X8dudV7yuuDFtNnQ6Avc6zHq/mbAfHikxLBVEsTmGQZkntgdJiDqvrHZ1JBV0ZZF0R5MYhdR1lu65tXbzeGtS3VGAF6cEfq4GjfWsNROyDV6OSRyHHwHyItu/NIM13csRiMx7kQNSFg1gQj4mZQU2XmWUwZ24xXWWRQFQTzwedWXR2+5W9y4hHhpfsAap9n6CKhhH2W7Our1A6/0xdu8OdJZXauR5dPl5dl0ThyAAy8Oy9I/mq8KPjN3nx8oYfhE/4fv6Qj25f8PJ8wzTNMFsE9zps1PWUBLW9dxLG5IMxdq2+tDVItINqSJkQQQ4LIQXC1QlNEY0WdPjMyC1nZhKp3LCQOHBkkZGznIx56shJb5jLwO1i7ka30xUxJpY0cjUckOHIeHxGHA8c05HYCMDl9HiAcku5/GvP2GSTr2oTv38aeTklPpoOTB5xKKtwznWFgTCXv0guv8qiAVXIasFgS3PmFX7r1e9lKT9FlJd8cJgZY3e35k/Y/d6kKvbuj/XPtheBKpCuMfKkzmwbS0ttj9J9y7bJdvXYVqG22zq4pPpMaVeUAGSvi69nbM9dEajG+68XBNaYbA6mDch7Y1uEErwWyrp3Ees11TjTG2k6EishdGC4A8ca+j74QzV87xjluGWUdaDKECy6eO+2NOKR3KUxHx1MVD8PIxIG5uFAkMyZI4mZkTMDE0NllGrgmdxOnlxsH9wpJhNJYpuy1S18ExbtvZCNWUZfJFGd+tszdu+/B71+zXneH5M1Xx+E+NL+Qb0zfBFCCRzmAyFEjs+PfFPe5/TszMcfveR0e+YHv/Mxp9OZT168JGsha2lqF3Eg1LRr46H7+FwbfNGCHIJNUFfBGOkhM6YTKZ4Z0w05BI4cmUnccvSWvebMyMShRXK/4caWVS4HyIGwBOLZ9hq6SQNTTOSDieMPpUcClFsA3B6/P691KHg1D3x4HviNV9eclsjNouQCk+tNDB7+Jsr/p/lU9swLTDT9ZPouyu/hu89OXKXMEGpsw35AdxhWf+sOnO59xj6XM+j6by+Od2nrwtPl68uU/YVeqm7zWV6l6hrbZdIDvLo4byOmKb2Jqy61fYsbAuoi8ZV9SgPMeqx6l9eifdQrrMDqQCuhscIGlM4M+0h5GzAcZHtN+2YV7Uevgge4ZbRIPTLIusQy6uqsHLEAsgMWjGbwrRmOCRIsbvwr0Z2pVczNXWZAiCSK2rYYAEnmJmbXvYTWrS4WZo9hEB21hECUgobiLkK6uk1t5smORe7Bzv00ta4EqmC5aLcIoAKl9699AI8CooFYIBG5Ohx5zhXLkLnOV9yGE/qR8kpuOU0Tc14oeV7VIxMGkK4jrgGG1XXSdSM76VZ3yeReEBlkAFmUNM6QlHS0dxRlZpZEcNetgczAgYmJgYmFgaDm7L7ksZO/jJgsEihBiOevDFDCqvuqb3oLTpedGm2/5KtRea7K+ZPEi/kFp+XPUPTkPpF10P5gI2ReKu7VHDjlgb/+8TWfTAN/xzdvOCbfPnWTqgfwPeB4p+zdMzWnuY7liVdKl6ZrvVhGB9yX2Wsvht+tx6ou1abSEncmbtb6tgyzsriAiG0CZkr8fmJTtFRXpHp8C5pbK4s/7Eak78438Z01b64AWq3w7MqHxnjvLEOV9WvAxWsftAcaY5QhuDhoAX6120JWB13ZZ92R0r9LgumQmGPkNIwMYSbFzIEziYUrbrEI7oOzyIGByaLqYDtT1lBzFqh4RigOlYoEZ5R1X6PGtOu4oANE/11difrgxG1JpZ+rQFkNRbkrI3dlNdbpUoDfL86RsAgf8Jxnx2uu/5bnnKeZb7//gpubWz786GNuXt1w8/KGqUy2YVy0KO0lZlOdHFylMRprJAo6+FYXrrfkyt5TuAr2LpISjgVNyuEwMcaJcbihxMCSBuZwxSxHbtW2373mqjmA2Tyg3oV8DBUhTOtGgfelRwOUW/ZTgWAf6fEyAAy+XNGedSGXv4nyqpXXGmVzVQdSfmYpN2T9kE+mkRgGTjkQg3IIrwOnnvl1wN69kPWWusvfl6VtWXdPiOzsShfuj6W3B0ndfdf6r2WpMzpp9+jfRV1U2V1PaYC4XabZgZ9UT4IVKFvQ5D560UZUD37HHuhqW0bPt967/1g1QiurOr5Iq6OXU53cF8y6XoHB17KL6wE1YODsgYrVQ6tJ9qog68hJoBJcrLRnKGI7UmaJzTUouFEsok7qpInb0dazkBgAfDs2M+xEoulG3Z9UquN9t/cMVVdbQVNoE5de2le+rgxyxigOqtox0C0j9bw1qHHBAk5kYSARgxKuEmPK5CUyhpEyKzEHwgy3s7DkwLTMZGx7i8aLmppAWgQqqRb95JNF9vfnAVhQkCTGtqOCZFQDKWRTPUerdMKCoi7ud2DNU2hr9ipRaBsM3p8eDVBa6ge0d/xSNsfv5lfeHycOMfOj1ydCOHPOhex0qfoRxmZ4NXti3R/cwsjjIRr/PKp/ke/d/OO8mH43741nvnmY+cn3Z+IdcOpAEkWLG02aeO6gUPGgMiHxVSkAWho4bShuTz7bAQtgYL92oLMj35eTg0yXSUtx9licPdZqdODnI2+tXseGpT/WTRRtP6IV9LQxxz3QVXG888mrutGekbqRyJaFVvclr3CbD5x1VjP4vtvMLvtNyW47c9egUJdmNn2mNhaqzkRljt2OlLWcYCG/hoGSlOUweET31BilGXwOpkWTmZmRxMysdcXPQJKZiZFBzKXoqCcGnTkeby3S0bCYP+JtV/+ZbbzMtjTSPxMd6DlDr6xzEWokdyms2y1kB9SeoYqu4eIiILbfefR3HA+J9CPPKd+85rs//k2m24n5duLDjz/m5uaW3/74B9zOJz45vyRrZlnWbRpUMUCs6u56jwz5nMnnBY6CjNLaXbLY7pOLTVS6KMN4iw4nDmFgkciZI1kiM6Ot5Op8iRv5uBNg5m56HEDZBmfPyjqNws7Jumd3ilkIhwDPhplzFqL8rah8iPKbbEeLNUhwsVOcpYh+gMh3PO6DLffKqtwugWMM5CIWzUaK6+RkrYvXvQKeScZy577myi3rJfW5pKvbpk068YoV4LsC7J6VfV5AyY1V/r65ZnfLXRP7cW0TDtKxYS94XUO/5r/0VKodyFJXBu1ZMGy3sugq74E5VItL33ffrYib+NpWCX3x7vtX291Xv2g1GhVsNq2Thou6gtogq4FBEja4Bi92bo9EncA02uBfgsVyPEsmS2XuNbOuSyV1AcGC9gKZBQs+ISzYnjaRhRQncyMaCxKVEMsa5q5uHbv4nFqBs27dUWzPmhUotYGqLLLu/jgrdZsMVdbVQHV/IS9X67YaRurMTqOCakSHwJCEfEzoUDieBsqxcJrOpFeRKdveQFkyWbLNeaHJNPZ/LV9YI8tndW8Kq4OIRQcSEcriEbvEXLlEikVDkkhy/+gq1bX79P3ngfQ4gBLYL2ZVzd0Y6llXHTSrCCdYoNUff3bDMQ385st/nNPyV5nK/wnbypbm6TK4JTuI+10SUH4G4Q9hRlVhiIEUZl5MQpTgRiFlCNlvG7eDtCrB6wjbJwdPraypdNsyVDFxtTJdEMuNjYl0fpMt7Ay0nRYrQF+8Xpy1VabtbLoDwF2Ft+xT2QKielg8VWNxoXvuTbCOCxPA5n5ll6c+a1jbsk0Exmy1eHQbF+/F9ZdtgUVf7/qvwkpXgunbcu1esjIYZV2b7r+lhDXaj6/ykYTpb5O9L10wplf3ESqCpsh5PCBxZI6jM0pbXzLozIEDg87cOtu80iuSLBy59iBlMyMn+1uvSCwcwokUFo6D6UAPMtk2FhVAqlN6Vt/3xx+7COLPTAVDPyfFAXIRC7LcM9QGptrtGSTrthh+TmYrJ3g4MxQkjhCE53JEKXx3+jbzvPCDDz/mxe0tv/WD7/Py9IqPb16wmFAOuB6z9i8XxYMGm9Tqi81CSAEKhBia0736c8eYCWEhjRNEIXTGmuaTSx///+H0SICyH8Bis4I6YGzoUD/ItkxTgOs0Mxe4HozhzZOC/DjC32qBCDBYDAJjsO8UlCjfJYUzQ4QheGQiUd4fF66HQhTfHsCZiNeUPi51k0TF+GMd/E2U7ddtu5VZfYrbs0HpRQTPX59S6m5+IvQRi1YGKm3WbMzb69OLHq29L3YVWc+1pteVwfYAWAG63k7X69c31ok2neP+1g9f1i8fJFIZmgPkykC70lcLlOdRA+qqAvE6Vi2O1vNgy+5EmidUPQY0AFkfQh00xdhP0VWHCWZZLorp/LyMGik+QB4ChARRbAvZMKAaWWQhqxCxbVcTtiwvMTO7c1Fk5ijR/DDFHNhnDgxieUKwKEZB1GKEBI/EPlpczFB8J8puQzV1MJXFn8UZZQPKvAKjzroDSnZiviCTriCt/p5roBKx/ZvGQyLkwAfjexymA+m9yMvbG9579YxX5xPneeL2fCKXhcnDv9UVWGav0JU8VYZLfRYn/L6YQarFvU6AS98nfBnuKpq9Nj0SoIS7zEK7j6futIgxi8pERYTnw4RQ+GC0rdtuFgX9aUT+IQfIQhQlivJsXBhD4b1h4ZAK1+ljno3K1aAcowUCHiiIuIueuOirFXiqpzTg0WAcjtgyqZ7h+cCs7KtceubuAel/Sgeslrdnl7oBbmEbNaEHtg4o7jSsXjhWyWvpsgjmFdw7vut67o5DfFcHgX5tezO2+HpyrUsswdWqQnVa195/tBVd29vOVZWKeB2MZXbW8uojqtioWuqLk1VvWXySqBuqdRbjFmdzsf5XXVhIakxywfSGVeRdrAPZvleJeRTmYOqiRc4kXUiaHPzOJApnsXBvQzmRmIxlOts8cWqrgQZmDpxtxZAsDNGjGY0TQdcAH0K+a/We1MDdmaXe2RvIgFGLWrDlTkzH84pv9dH0oBU4qwtSgLqUVoHk5pVjOKAK3yk/wqubW168eMXvfPgRn7x8xe/84AecpjPlfGsMs67wqSoQytoVpzpReZi9BfcOUAu0EtgumZVKxmiT+0rGHk6PCChhO3hWotIDZiM0wD5kcZDCGDM//uyW5+N7HNMfIMl3GeJLxpBJYkF8oyjHlM2iHQspwBghRWeYTYtkLzlUt5Ral2pU6SmRdOysieI9cK3P56OeyoI6AvqgQaYP5FtBc9N6pbgIX8FqO8lUQqayPVf1j23GbmG0wgrGe/G44ltlfLVSfv3KlMUAVWGzSajf3tyPKlPG9l7uQND+rmJSX+/KSIVV52csW9u97VjdSKoy91VX6jrLbJY+qeqG+gx1pUuzAIuHiCuO3Q6SuM9fb8Et2kBUo4OMb1mQB9AU0DQSQrLtZiUzy5EkhQMzSScGxrZ2/MyZyMKBY7dscmFQOx61xsm0KEa2/49HN6rR2EMhhoKoxckULcScEVWiFmNljS0GmM3irKfS2GIVbasYL7MLNhOrKK7WVs2NSbX1PXvp9kdAuBoPpGeB8f3Ej5zf51sfv8fpdOb7H33EaZr45OYli2ayFAPOvE6UskjbN13bKi1asBUJoa3uEo8X0Ku4Si5fPaC8q9iXdrwNwosXrl+mq4QfuZq4Gq5J4e+xrSCGG65iZgiZQ8xEscjnBoK0kFE1aemtvLvVNhvdYK2urD82AFkLqZZY3ZSxeUnOanobzsZmdOn579WHasfcuurQTE5U5OzVBHbJJZCvE8IO+GtlxZa8bYw8Fh0BA6jQxGzd90oHSQOplRlvH9f0kZX41VtYFXT1MOhYtlnHI2soPrq/KzN11l2XAFaAVSdFvcuN0uJjCrK65tQVQbr2Ia3rpisDixjgRAOZMghlgHxw6/tQ3YksiPCsM4mBgdQCC0++Zvzs0XMOvlNl4tDt+2OMso/knqQwiBI9qlEKdi6lbqsLTHSvbkLM/nyzmHg7sIrVdWfEuu9PZZJ9Hp9cqpnvPuEwBiFeDRwYuPrgQMmF97/xnPPtxHBIvHx1w1QWpjxzXs7UeA7isVElOFDWea86QgQstNoq5iHRQs2FWCdtpSxKW1vxGrR8HEBZJ/JW4X6g1rQFUGBlLN2oiqJ843DmvUH41uFMCL7gQmpwX9dVRudCF0BwrYcbCHw3Mq2zZKteh5Z7P8oeROuhZvDo40Zun3VjUb+Ttox71bnINs/uUnusHuDXXmvgE3bXeofcgOO+/VeQFhGbvb2cUkVnd7vQVlczvGnDqsrwqnLdyxfXSW1m+4pYtZy1KpZv6cC8lpsdOB3VmmQQnOiGtVw1UFANGyy1NehAMqCTPmxc1VMuQAoWb7G6E7WVPT6gD4IGpaRsgBkVDs58xgAR5iGyBOUcD+ZoHtYwb+tePh6xqMXJnNq+P+sWFwaGY4uBWXel7CIWsQXKg7PQGJUUs+0TdJgJWgjP1PYAmoupEiaarpPJv6vFvboiVd9LvL2g+uDROkU3BOIQCRp4PjzjOl9x9cGR6Tzzt7z4Dje3Jz558ZKPXrzg5atX3JxPzHmxQBwCMaYVKL1AXV1zW/8qIuaP6vr24u5xXylGWdmNbgZGO7VNPiNIR71W44Q5n5t7nu9f0qNhw5hdqT3L29A8Gjg2MN+4/1wAkgr83aBdb3fnaXZJVlG43p4Od+/mvvMY20fTO4+zn4d2UL2ry+7GnWGpzwduuVdt4tAmXy2nss99HbeZ/Jdue4H4Urw7aWWyJlr17VcaQW6O6G2G7MC3iuMFM3rVbRmatO/tqOLinTGXyjZNDeNMKnl/ifagEr3OESvXnce1YOK5iukxFffdjBATqPqeM5mZgUBm9nXhQwVHmej3/bGdIy3o8Fjz6EL0rWmTVra5BcqFueUZZSFh3iJBM2nISCm+BTFIUjP+FAt2UV2TNEvnSuRt1a8vr+ytRrJyS7XUwDQqBN8zaTwM5DlzPI68urllTANVC6+qhDlwns8bfiK5epZoP196X7CMJRR/X2XN+wbpcQCl4oYZ/3EpbVxV6qzA1kLcMa010nnP9ugar2eOtAG8LacOnm5PmU7Ms+T6s1jfTGW50pVlqzJMVdd1nv5NVhE09oYe72FNvHVrcGWkPjNuog3t2eW9bdnp+zqkXHWc+yJkLd+/6303agt27bN5N7I+S2WYjVX6zRRUl+61yRoMA4DsDvsV8OryydqG6+3Widec9Y1dmma/rTayZTisbkPOOrNbbSozqc7lAUIW02m6t5GOCrOi57yGihuM1cjBlkZKdWCPICmsEYyCwmhuRzL6qggPGqER5pCYQ0CiRSaX4dq8waL7D1M3SNuyRTuXXZ85r2AqBqZjNfzUTdXUAHeNpZkZ9URksbibkhmGmTgspMPCIIVEQeZiuslTBUxjmLq4pb0CZHUramxTtk7t/f5B/s5CgOs4crhOvP/BM37sx77FdJ75+OOX3Nye+PVf/21uT2de3dySswcUdveneZkpRRnSQBBpa7lVsajsxaIdmermLuHYp8cBlHsFxi6tg+mBPF0J/cC1Mf0GLM4zi1Y3mibAdUYbB6mNEUna8VaIl9Hq1FxyankXat2cAOmaY8/e1gxNNOUOQbzYKtu5ooq2681W1tXfZ3fbzYFLd9wzSe2eX1j1ofV3l9vnuzYB7HW9dx5yv7xyX15/vl5c2t/27C4fNiminu9WFlWxsd4mYptWxfW3GXhYLcs1JJpHnmsrngJtD5f2qfvhBMzhO6o5f3vkHQ1WgNZN3SrWJyiiqESyLAQxy7nFsxyMWfomZzOVdTowSvF9Ee13kExiJLn4PrsBacZCw40ECxkXJqJHPlLJ5tjNggSbiCQrobLOCny9GN6vGKqql5qnShn+KipblxhIDnQpRA7DCAUOw8jtixNX6UzSyDQvnM9npmVmWmZkCkgpzWG9Loduq9FcDWDz6+vw4dEAJawyo7ChBZvkoOTRZVoghsq09mJh9aer5e7v53llZ8wJGlYRvLmTdEDW2Nh6v1Wcs3wNeBTw0G53QVIabrRhXnYMuD3L7hq6bSDudfepdYXe/aoxsApIfr2E0JjvWlTPLrf1Uhedqq9cY3QhNMDbGIak1tVAy6aXyhZ7Vrr9q1qpqy5VwrrOXDX7lRb2dmO8oVsiWiuwWWu+Msl1pawbgGRwaSWYBZjYPK607TLpksTidaruKBGLSBSx/aWDQiqru4rrPNs+6BYpF4aMBkHG2DZQs4AlugYdjlh5UclRKDFBjJY3mVuMjMGctKMxzKgTidIYaMRE8KrrtO0sskVxZza3JJ0ZWmAPY5SjnrGtwM6MZAYKY7wlxoUxnYiaGXUyJrmI6TWrJbzzuWyO8XW5ZA0hl/2d+mZmbZgFGx0pGViO3/wAzcqPPPuA+bzw8sMbXr645Xvf+4iPP/qEj29ecDudbYlk9a9UY5AlZ6p3hxlxQ9cH70+PBigruVkHv+5O3ndhJ4atlGhLUhsj3LbGfiK5q7fEQa+KaaXTrXWsta9z20dky0x6w0gNGNFYXTWuqOwGdveId+q4PqjuXIHa4+51fDR83DHHWi9nVXeiAe0fdL2RquVHSjNWbeaYTdl3n6Mt7byUdoYtLeWu/rX9Wyzc3a75tvpeu5ulcJfRrrVlZc3VCa++HwMARZAlmoGvSNM7kjHrYdbVBzBgfpc11Fh1iF6gBh2uewNJxHwTm7uLv6wGlC5N1JBlkRb3UR14dXE1T4y+6Gig+BLcJSQz2oQBcaCM4jtS6sIgC4NGok4cXB+apa5XTw6gtlP3SGYRi6GZxZzmi1j0hDhAUCWoruJ5Zc+V3Nce0I/VGqS5GsuENrnVBRDVo3KMAzEF9KjEEmDCLOhy4OUnt5zPE+ebiZwLy5yhFErO1sWL9VdhF0rxnvRogNKSbr7uPb8imP2s+r2OCqkYvW6xFRthlXaNZdSOzdZTq9XVdIKdkcfLU3diDq7TW4Nb+NYJCiY7VD9BG3SVVK1Vl66j1IOtJpebYbNc0Ne3NmYo/rgdyxS5MwnULTQsVSDw4F6qILH5OK7W9e56X0ZobZStzXqoUeiZt3asf53UNiW2RlkNYZsbotTVN52Ppq7vRrGAI7J7l2uqbVIVj2ntEzVQyWYkyybvWpVoKpo8rHk63SI1grewBtdoxeiKvZEtGFa2OJRWrMWixKzq1R2pOlSLfTeGW8PIHdRCliVhiQlSYKr3rIx2xPwqWczC7XrMUcw3MzFz5ESSzNHj71gk94lRT4wsjCwcnXWOjNT9hIaYuZKFIRTGkJFlhlxWy/gZj/+sNMOAyMadp6kmiudDVrE92+qnhBBjYHyWeH98xrevvsnp/YnzNya+91sf8fKTW37n9CGncubFzSuWZaHMpsssi3olLvWTu+lzAaWI/I+B/x72eP8B8E8D18CfBH4K+OvAH1HVD9+40E8DGP1lld20QnbGmjrIrOLdsTpr1Xyr7i8XKCpM2aKkLyUw5cCcA9mn9G9fLxyikkLVUzpQeYDHulRqM/AbSNef++e7MFM0fWRdfrXhQ1Upwcqq68LlvjzZtqm4hVpo4sh6a/FJYlur1XDk4krzW8QZQMfGOkYqIawrkVRY3awuP/udAHvtEm0gvzdi2dfmITasFr/dGphYWzttyat0z2GimTb9JYjU5R51P6FgrLoGa6iDXgTJPtnUeJLOMNWBUpovpjYw1eTtHGiMk1AamDajkMjmdwPBAwaevZhfgbnbr0ZDoMRoYeJiIAdlSYUYj8SQmbRucWGbqR092tHIwXepqRGQFmOfsnDQWwbNZFkYyIy6MMhEiCbah2J7fZO12zVEVwKfvX/X4E+Lv4/2WmXVay5ioe9mkFkJizBqIiThm+99wHG4IqUDt6eJ9OELTucTH3/ygjxNzKcTpRTbh/wN0mcGShH5CeB/CPxeVb0VkT8F/BPA7wV+SVV/XkR+Dvg54J97g/Lsj9bHOzq8lcD6i9qfW53iHfmrWbdWsbMWqauzdDM4G6jOBZYi3CyxbTFxMwdu5shURkQCx/QShkxMxceXrIDV9Jqyssxmja9AtOr1/EF6zDbG2diOOqldn7GJyLIu29vqFcsdVW/P6tq5rTVn0651HqniaX2GaiFXV/A1v8eGkTU2JDR2zXrfldTvX+zdzltJaGWQFU6b1bu2ReX2m35QJ7CaD2e4psAS1Ovarm7vaAVLWcsTs6hoqWVGfJMYNjtZEtA5dCC4gmGL+F23S6h64w5MkeqfWj3e/ZzYdboD37oFuwUflpVhJjGRvgfPAQhCGRMSoAyYeK+YnjPAodySdOasFnx4kpEkM6McOfqmCzMHks5Mkog6MxMZyMy6MKqzTom+rcUZyBbxaPF2D9rFzNR1ZU/y91YNWMV+i4+jGiPU/DrtW2Zh0MAQB+L7I8+eK4fn73N7ntHjR7x8ecNNgfPNDUsuzMtMLmIBOO70uG36vKJ3Aq5EZMaY5K8D/zzwB/z8Hwf+HK8Fyp4JsbI71a7DXnoUvefcFlmbaOZuJUVsC4OsMC22wdhcIuccmTVyOwfmIkw5shTh1Ww7OE4lMOe/wlx+haL/AFF+km8dEstROcbFiEFIpkOp5s4KmLVObQALEuKKS368uJuUtDaRFaC061B1WCsdUIROa7dlnK2NGmOq16x5VR3sN+y33tLX2PrsX3V/4uxp1ct2VVQ32FS1SPB79Eyyv6RXg8j6XJvgJx5pvalAvJNLiNvC9kQVZQXgLvixLiilPfNqDMqrcOMR3tdXmHftaAxTJLjHRPfOs6/KKvV9ruoMibGBIbCGe6tVaFjd9ef9ubYpG91+P25AqtsFD7LuNlnZZSeCt9++Xl2PoKMwpZElJqZxJITMbTBjz5EzJ84WJ5MTSWYOHEmyMOmRQRfbBkxnRiYmom2oJmY9P4YzIWaGw7x5z/12F1qw5ax9lK66GqiuR5+xKEiT/57EIsGJcI7CLMp0FPKQuEqROL1P+tb7vLq55ZMXN3zy4iU3t7d88uoVOS9wutl3mpY+M1Cq6t8Ukf8V8DewMKL/lqr+WyLyY6r6G57nN0TkO5euF5GfBX4W4L33vr0OCukHNI11X6iBiz09eOxz9PXFLV8m1C0KuQg3swHgaUncLHDOyosJpiycS2ApxiCzwqJCLt+j6H8I/N0M8rfwYhbGWK3kK9hvoHpFOuq2sRK6DgJswpZRsWQPdv68bQR3N6rsqrNur2LnpRaUzfdF/e2lxqzPgW4MPtu7bEHQ8lZRXZzFrfm0mxgNtMKaH5oaS/tBVV08uvbouswWKBsD3SiHvYLaAbqsF1dAr/4+rTri+tn+WWtbxE6iqPeuLLNRQZrH+iLr2mOpzaPrq26TUvd0lZQHr7vQIuw0K3rVg3Y7S+I7SZJYQTTgYjrNr1MSLZJ4PkbyECEMSFKWkBlkRiWx6EBiIhNIslAIJF0QCSy+cVrmTPH2WQgELWTXd6agpBrXU7HloWr1rONDq1je2tL7So3QvjizdOu5LgaSswiTCEtQZrHdNNOYkFyIz65JNyfi9S15GCkvX/FSFeaJh9LnEb2/Cfwh4HcDHwH/moj8k296var+AvALAD/+Yz+zymzrDdZZ2y54qDCooh+VWa2AA8IPTiOv5sTH55FzCdwuqYnVdX/vufw/Wcr/m6Liq62MGRZnQObS9onzkl8iyC/zYv5vkOI3yJzMYFc8HFlVqjXxdgVLM0WGjbvexcdTdbG2tku9oIcEpxfS56ntgA1eaMYUNuysB0trsZ7VbYA61EquILgWZfUKoQfoux1cRAgtCIYby0pl+2Wtil8U2tYKfjMt7sajrXxtPjudjrh7prW9+g8VdbfgCIjHVlO0qhmxCPCzrVXpVSOt/SdWEOzP1bZx1ulgSidl1DXpzYmwqyKuEjC1Si02eLa+w7jZPCQrazBgb76X3da8G9G7/655RmxPoBHbryYBR0UTLMdAHkbmw2hBNWLmyuNlXnHLIAu3nBhl4kpvfS/EMxO3JJ1Y9wjCfDEDpLTYTpS+TW4L05b88V232rpU3QNoFhO5Z+BkUdTOKGcnmDeqzMBLVRbsnAbQMVDSkfhs5FvffMZ7y8L7L26Ylwy/8Wvclz6P6P0PAn9NVb8HICJ/Gvj7gd8Ske86m/wu8NuvLUlXkHs429ai2Z25k68lQwnOOfJyjnx4vuV2UU452p7fOdrueUXI+jsU/c1NsbXf9goAq8H3gZeccua0RLIGirqiurr5dLEXN6CPd/RmSPIj+3rXR+vG/l763hCnmq1vjg44VjisbdQF/Ohxreol6RnctiqbeJaV6TV2qZuy6nP2aoL6iM2ItAH/tY5333ZF6B4qthNAD7b1W5wF9w9abU19VKZePF8B1HVYdbKhPkvwNjRAq3FUjRlKu3Z9JsvjDdsqq613ebaNpCSsW2tABWPRXnJw+lXVBsWs8G1zzI4lWlQdMWNKdVGqLHSRNR5nLd4Bi2TPpCoUj7QkRELwKO2iZDNlU4hNNQO2oqyIMc6CkJhRhAGLbC5aCMnfYZJ2PynYGvtSma6sxLzXa+K/6xzofxZVN5Tr6lEbTOWVUiSmxFiUEJOtG38gfR6g/BvA7xORa0z0/oPALwOvgD8K/Lx//+KbFLYuYaR1IrET2Mz7AJD6UkXDxO1gqJ3pZkl8eE782qs/y+38622AO1w4NziZkdH7ynkxQ23u/NalOy8I378ZWPLIJ9OB52PmeVhYFzN30NKxu6a/avq6vso79LsDFcoakK9GaecuA6xF6r4tXE1QFBVbtrAG63A2qrlVq5Tst3Sm1elDDUxqzj2b2967eiTk4m0t1eeyvi93KBex+2u2laP4goCu5A1A1qPq6oDWVyp4dYyxN4pZJWonW6vbgiG7RbvqXxvr7VcNxVZn8biLhM67on8XLpYGUe9AwdzX7kyiazvW91SPC+JGP1mBQjEW2QJ8ROu0RWBx/WiUVT9ZxXOPHK6pWFkJ2x9oEAOkAx7sA2NvCTOeDMAZ9BDQQbg9XhOSMsUDicw1NwzMnBk5cubImSnYPkFzSaarZGyGoIOcOKQTx3jLWGbTpy6YW9UscBDCJHAlcAI9q9X57H3Pg4+kCeLJ1axqU89kb4sF5aJgnawPfiNdvZaofR4d5V8QkX8d+IvepP8+Jko/B/6UiPwxDEz/8JuVeMFiawc25zsVVSeS7PWVa8bt0FVUbym86sfHSmgukVXW+3k33Ez+1WXodokMUXk+eAapTGBbaAPonkX1DrWbCt+tkIhsn/VOlsrndizLIWazdPFO35DGhqR7yE0ncrH88kooGmZWi3916al6Qq/F/qG2IN9d327bn+zmng0oV/C7w44ffrGbTac2d1vF7O0+Qezy9p9L5ysm9xOL5+9FhMZsQ1dW8UfbB8TrHrvGJNj4gIa1iBqqwPDZ2iPT7t0TVhXb1oHqelQ7ff/tjE69qrkIMphz+ymM5FoHZxbmXBURcrczZUTUNNJm0FZKCMTBonzFq2KsEtZNOKuFv+7YqIpMXqfBmHJcYMhwLKa6LWoGnhHdBWJZW1L38Q0upM9l9VbVfxH4F3eHzxi7/BQpIOFof/b17TpRm7HdT05qUFCEfqfGuytKjAEMoXBIwhCVVNbil7KuGqxssnLbRjr248jPigSyRqaS+PA0Igg/csysATlcn9R2XaxUY63bxRd0Mc+ar0Vb755XpA9MuwfJvuD+ntaW1Uk7NBclZ2iNOel9jdDaoZ2vE1jVQ1JsiwGvkwbfVKxZtzuQbPq/sA7omlTp3YbEgxxInfE2Rppalq1BvrgHURUnWjt0pxB6neEm6npldg+qgPrZvB6Lq4q5TWW9G1Tfvmt/rl4CTdFQoO0n1HTztdou2rOyTq3xGpdan66DB1kt5nVVUd3PabE2kiSt+q5cNLF9MSArk7HR6QikyOlwzSALU0hMzJy5YuLAgLkQDTrbNhZM3HJg1DMjV1xx4iAT1+OZNC5cX98SckFuCzIrnMQ+Z5BrsfBuL7BVTK+w3ydhOMFwUq5uBZ3hvewqzdYPtn1B7hy5nB7HyhwRRHxLuwYS3UxLNyCkOlWV9ax0Dtd7JZ5fm6JyjEKQ/yzwHeCvQEfIVbfrNpqYDWu0KC9SWoUyyn9ALr/Ny+lnuEoDhYm4YUiyrjjo6KJ5kdQBuZkdAAOtxsTujHNZickOULUbPHe6gLTLHdhMc7eKp/W8+f5VDYI24OzzyJ13tfqy2rne/SXgg75Zs9f18W2VTQXuBrhsWPbWYL1jtJ5XvK1V1Ae9VDrXtdNa3kY9ed8kJl3n8DXqVXr3Vqdu+VsnsC0DlfU+sgVe7R+sf1GtG+8Gt69Q6lrdP3VSAFNO9szVrSE1xBtAXNtOytZ3t+kBaxDe6iCPi/R1DqmRfrI3RhazU8bIlA4QLGCHat1d0qIXFWDQgUxgYuDgcYsmZhYGBreaR8kM40yMmRQzISkyqtV97uoYsaE8goxYnM/RjqWz+erHXMfaOums0t3rofJxACWCPSWbQdM/kKm0lLq2SdVCkVggWGn5to9cR5twSHA1QJDfj01B/wkw0QiJfxfWwVPHYaxqHyBsBnZG9d9hLj/Kx+ef4WoYKMQansHvHTZkbI2nuGpGt+/J2VgIHSuiVaiJ3t3At2eog7Xr9BuwrAAmvZK1sTZjf77EsNXd21S1RV2peWsFWkTxGpWlArXUZ5d1KWQn49XJpl+OuCF4/azkQCdlH/AYzEDStVvNiwVBuOuLWF+09S/V3SnP2qsHRMXdXDr3InzAtWYNTqbDbuD1wGvtuOol12fdWrFhJyeuh3UBDRtXqWpEWqMhWbtYm7j/Z3VTqhhabT/VtJ+7fljVz0FtLx3FnNV9+9hmnU6sa9vd8CIKeUgUGXzDXXMIstXhQpKZhURi5iwHRs4c9MRZzHp+wpzbT5wYwsLVeMuBiaurE8wLYS62v/e0giEHrD63mDw7ATcgs5JeYqqEae3T3pCbd/TOdJRvNamgJTnzkrXnVh0KuPjaCcXVH0/c0izWiUQLpcyt6DpQYxCSb0Pa241cr75Zcpp6SVIhOzAVdVtfMLBShFKEXCIvpsT1OfLqLBwTXCXXE7VlbnXwdT6ETfT052vPq7YdRXsINqSiAsMduaEB1Vp+E187MLnL2jdF0OjSekcaa9ctuFRAv1NeBTuxPOJ1Mx9EAzEBi5aDr0BpAFnLKFtC1bHofkWStck6Aa3t1FuLaxF6B5gaJivNsGWP5eBGIITOP1K76/wPY3m13D3I1br6xZsJrDXWheu4HB+0Y8j1sYPUd9O7k2VWzwFHx+wrily90Tp7p+8HaLsBR3/Qqp/Mxia0LoWsm6gpLfq7jIJoQJNQUuAUhRBGskQSmYWDO6mfGWUyNyI9k5g4Y9vynrUC55GDzJzD2deRz6Q0EXMhHrKpFI7ALIiL5kwKr0AnMef7xY7ZSqDg3XsdB7Y67/LEVNPjAEpANXoUmm5wt3OKKbpWqtesrtRVFtVQkaHUdVCVZVhHb9JGN0zqpArruAurdGhgWTADhzOkIMYwahSgouaUfjNHbmchohydAd81FLghJPTHYB0sOJiXDo3Wa9n/KbL1GOjvtBkArA9Fx5oqOG/pXPcOKqx3RqLWepXh9qymeyKtHbDWY2W91GVjWQws+2X67csnj27GaOK1dK5Nd8CS9Z57hrcnexsQFn+mtdj2bDZFUieRTQDlyuRbX6S1y3qvnln2967t3VeKNnM3/e8OpDdZO5Zkda5K+LoO32ON1fasF4ZV/VHBtzm81/LrTpTJjxcfj9X/EpC64Vd1Iy1e3iC+Q64xkSKBqJkiiSSLR7+cWBhYGEluEU8sLDI6Cx2YZKbIxDHdcuDMcRBUZ8JQzEIenTUeMKA8iyHb2SUK34JXvV2bYSx0ffsrwSgJiFzR9FV9h296rxpKJFHXzopvE9tCKeuCSGlbEtQZVUuxLT+jcj1kbrNyWipbXG9lUqmsjsa+7CwG8SjJvkFRsNW/qkIUE7QhMpeB75+eIWHmvWD6TxsPyhoBwB/L3XPaKpSNiObf3eC9Ix/WClfaWyeYbjfBOknQRD4f4Luy+pUxm3KbSoMGTKUGsq3lV+ACihhzLGWNymKz9cpyQvAgDP1OltYg/YPZRztxvgHjjmF1TaWqhM3kUu8p3kyrW5U0CtkxZRQtdfuQ/US83qjfmdJUFr0fZNdujQ0KlBqiT9Z3igNqNfb1XcBBVEv2S9xhfdM/pB0TEY+Ob1KOtdtMWyztm8i0EH8MaAmbbTl0UTfqSLdFhRv7ZkFzueu8Xn0b/VuqK9FZ0QGL9H5QSLAMiRwiy2EghMJtOFrUIjVWmXTm4FtfXMlkEYz0JQcWXurElZwYmbjiFYmZq/SKFBeO6UzMC2lZ4CzIWSzi+izoS9bljrpp3Kaye5P0SIBSoBpzNgNBN9/WIXM7K+1cFzRAi3UCyau4rmox8kSJwaUNttzo7r3r/UB85UtwtuFd09mlDRzlhkXhZhmYKxv0F3NXd1pPKdQQaZu26HLplimtXO6eZuxAEuo4WtlgDQ7itGit14Z1aYvQXu8p/jyXRNzGbOi50TqoN/dsdQxNLLx/Nu9q4ADU6oJ25Ki2U/8Ysinn7rle4hC05M1Okj077NWid2sqrW26BuzuX3tplWV7DF/f0b1qzTZh6vr7TuoBXdauV8eGNTKrWsAmKhsu1udbf1Q131EwUVp9IgldVH0fOE1c9Z0oW9T3bETAlhZWRuqTbAzkCCEoJQoLgUggI9iek7ZzZBGLeplVmXWhbmxxkIGswsCEBrVtK2KhFEGGbD63UTxSvLftguk060TXt+EbYuUjAcqAKRrMSrmpe9PhLc4wlha4XFFjk1q9sUz0LsUsbSXnlWll8aWzFjYr1KlxxTNfnSPUyFi51NnXkgtDrp+0FCWAfEzg/8A5/zS/9eof5ipmvnMFEdtD3AaB0Pbg6Z+ws4DuB9fF1MhfDTjKhm2qK5dq+KjSGKmDgBZz5G5j2UBLNvXqB2MHzeLGAVbLtG1IX2NNVl/XdSmfxQSdWR2zK6quzuDGQnN3P4db6Wa0WouGXvvqFYv6VHrA8Dr7RNrAYNPGxrSaWuAOENUBputV7prUHV6V3e0RKrjX+4q/mzoJrWqm1VugtnO0uleDXi2098HsQFQ7smASil1fGVNj0yU7mpXWRqjvYq+YyJyjGW0i5gIU6OJcBnv0QVZr86Bm6Dn7Sp9k7FEOHlw4YXbaJGZ8SQpXQolCSZE5BSQO3KQrJCop2BYVR51IunDgOSMz167HPOjUnNqvec+/XzHIxDGeGI4Tw2Hi6plFPpL3xJc9OkNus+vWMPe69DiAUgSRtFGfdCfbt8h2CZm5K7CZQe14HaiJ6kokIkQCUQLB+CVK2LXVqrBv4NbSNcK3aAPQO2kKxiqHqBxCZAyFUFmirOW2QnsmQef87QxOOmC73FZ0YImrl2SXgR1N0dVQsiMmdUndZXjoj/ZGAt2EfltBswfVdrrm6kDBOYys59odO2f61RC1LjZY/TPtee7qHzvXKAmrw/vuaVqv6hSS6/vw4rx9t42zneike8drNt208faObBjiyvz6pLu/nA3q/l3vcmk/4a7ALXWtvEBzRpc1YtJqYfc14yWsxVRtUbNNet/1wBSKcxWlGXqaHrMCZREDSJU1Vq4DrkYo3Za9RKEERYKwSCJLYJEZpW59NmDLH+syyAVFGGWmkBjjiawRCYVBA3G0/cpDXYpZ306/tv4N0uMASgISrm2WbYO6+kq6m0Ow31p3HSoZpc6a1dHWvWI9ik4IM9XvcnB91DGOjHFhySNLGS2qk5gLUG9gFFZXMwVE/k4C/xhDhCGszsxXqTBG5VtXC8cEH4yveG+YEQdnusjr5kJDxwxq6V53EQi+l7ifLxVEGi7pHZbVatwU/9A2OqhGk3rvekuUXmfanbD7Nid5H3xtydwWbpqTe8+6KkN1RtdUg7rmac7WbeLoVtP3eUQsdJ140I06kagz2eLK5gsW7s2j7ppqPxGZG010n0KPVQkdSMv24qqDqW2iui433IioNsFIiI1Bt8nF323PwK28vK5cXEe3fVWViMfPrMt3rbiMNte5Wq73C6+3GRErmglrY9Q8C+TBmWVshwhqIc2Smu6qRiSaxXA3KRrUlhd2W15YKDe15ZNHsd+v6GJiqn0OYsafw4AGuB0Ptu3FAWLMFjUdN+boDUlnrj0Qx7XrLq+5YeTMqCeOaoE4rseX1H3R2+vT/aR5HytZ0yMBSlBixyDqbNv59LlSWmTEXvKCmjKEtomUdC9eyup7KRnxyMptM6EWMgXgW6j+LoOOACmoLY8N5lJg+x3/JCkEjkk5uD1JgGOCIcB7ozDEwnWcOcRc4X0FkvZmpI6Pi61QWZW0bBWIDET2gXyNhRsYh7YOeEV43QAP0Nejft8xntGO3V2TfXkKtoVq3ig71rNtg931vTsY0hzG+6psmqerejUmbbPtnmXD6lfQaVBcSiun1l1atFgaM1+bpTOGbVQeVp62H/sXXKhxOZsrUdkVU+8FHRNeG2J1xPeJwr83lvEmXva8vLqoV5B15tzpnZtbUWOXZX2Ous2s4nsEueN5FmSRLlKRWsTxIO5faR9x/01RacNuE+rNTA8mns+sDuVR0AwlRZZBOMcDJUSPazl7NCLTXw5i0YlGHTmIbdCbmMgiDSjbvCa7jiWvh8pHApSCicI9z+p8ECtrBCS4l6vOziYWZyeuq6zRpCkgyYdRRkI266uayU4ZUQbvK/8ZVP/R1oDXQ+EQlauhMEjhKt4yhMJVuuH5ofD8oAy+9/EQizmYV6ZQg0c0gF9fgYStq0oVCSvLgDUSe1FdB28fj21DC2uLSRuEUsESH1itPv01bCaVNSgGZp3V1fF8jWLuHgQd2G2Wi+47W/+jM2xt2XCdAKGxU6nvmKb7rEBVvU5W8lh/dM7wLYBvpbG7SmmdjPzbmb9tNOVe2HKXZewt3RsPBhFDNnKH7rL9Vrdeh0hwhlektHK3YOn9QGE1wqz13hv/RKIz1o6VW6WxPlXfkT9bi3Qk3iTatZOjlqEfbWtJDRakQhSi2vbnESR5pPvRL40rGNp5Y50t4npd5RPwuJnilvTtdS2W5gHKKOgxshyuTN85XBNiNkbJwg3nFurtwJkjJw7ckpi4kmuimgPSdkrt/74sjfTpcQClYBvEg0teZdMhZKNLECjBHNSN87NuGFzaQKiihXYDRghcD4Hn+Zpnwz9A0ZNtgBS/yzHNHGJhiJnno4nTx5hti89wJooyhMyY4BAV0QXBFvCvgNIxvsowNksUt0yjd4WqCvc2/9do5QqrmNQO0MBJVuW9dIDUHKtL144dsG10oXeo2+pitL1n9w6swC3I9lm1z+YAWKMddSG4NpOJrFZowFyd+rrVLqLrD3EHYi1lZfDOCtvk0MCG9flbP6l5OjAUbwP/1qqf1YIWj4fexRpo+t8NtlZfVNkcr8a2FbQBLZvARlTpqLL61pzedrrJ3GlcKvjX1OkhvZTWdrr386TrY4m2qqqqw0Rc7YXpIjUY01ycQS7e9oO3m289oVF9i4qOQSYsypJvTRFisOtqlKPegDQ6Xh8UDiCjogfQJNwOI1NMTOPAwMKtjBzkzFGuOHIkycxJD0SpjNLbtfYHpZGC3cu7kx4NUFKBstQVHGtnMMOwd7Dqj9itzLEXWP0sK0h5eDBq2H4IolwNged55Hr4/QA8H2aeDZkPjjNXaeYYF66HwhALoywEKQQW1q0PvFZlXQtmLKezeFI6naCuF7XBV392omO3tcHKJNcJQndMZRsMI6wGjnbNOtnsV+uEnnU6kPSjxvrNarSqfoz71KKCQwO0+u/66LW+1YLds9Jtmb1hZH3G9W5a67KxsHt/qHrf1iY+5ai6zq62v6y32HgcdIx+M0nU64ItAlAL8tH7La6CgewfafssOAlwoKoI2N5Rp/aQ9UXQGK5sDWL1xsaIa9v2/aQH79UvdPPY7X79SjD1yTfQrOQ10HB1DChGC+tWH02Env09h+KR17FVPA0gWQGz7ueTgukwnWVqn3fEwr+NxdmlekBhIV8PbRvfJJkhHDiGmQMzVxxtZY+Mtt840zrxubG1/hdesyoHHhFQasoN7fsYfDUFNebQNh/KAmpWTUpwYHLRp1hcKQMBf4MSQZUfPWY+GArfPhr4HWMmhcIYC1EWghiLDKK1GyDNer52xDuBEXymtk7jA60nLfsHlu3ztVnNr9FuZU7zV9MaftSs9RY4w8rRBkqrMUy9HG0ADIitlpC2/KjWp47ateV738miJqJqc8Re61zzGqBq99za6tt8ujxVFma3qKyvWrR9sqgrJ6QWV0EdVj9HA8kqjveTwJpCNxHtmGUVuxp5zh3L2L6zENquX+szsL187RHtSbv27S/aHjfcXsV7rU7xd1LnAF8nhCZyrz6Td6QEwScQHxtStqdDaFZsH2CsxtTYCqlDVDyiQY2JKiRUA1JjooVghp6qKxFZt9WNPnDqPuZJzaAj2vJI8vdfgfKAfWoE9gH0qCa+X8OSBD0M5CFyGg+8SlfEmLnSa9t6AjP6rW9H23Bb38f96VEApdYGqoOsiRLSZ1oRqWBime+CJ4sDV4beEGSdpW4VYAP8WVKuU+H9QyagpFgQbHP4dQ/wLcKZGCxdWV4fnFVpD1Rrx73sl7eyi9rrKoDdNV5sJ4w6C1Z3J2M/zlD2TKOJ3CtjbCwv2EZhDSz7sS1s98audaz329TT9ZiV/YLvGVPbz99FA0lnfy37yi7XqEfObkQQDd39ukmqAqzSsa4KKw3xdnhhQFLLktbJLoPRWrf+xa2TBHCHldldKjP1knRHTteHpzZ8mwjYX1T706bJ1tt17Lk/308+fYv091x9erb1WO/kRqfqZdKXUieoLsiJTcQBzc5ES51UqoERC7IhsG7dKysOBx8rfplt56vGPgdgBplBRrEVRH6sRm/XEXKJ5GJG4eAxILIKUTNRKsPaJcEDpDycHgVQIqBDdaexAxtxUiFgjLLMxaOYqIV5KnTgaXlER+uwms0IUeq2bdmCGgsY2PhC+Qo+ofpcerWkDpiCaDERTosxHs/T9oDpfIuazqpv/Trz74weLXJOZWNdx+oZVC1jHUvq4r+wht1f27O3hIo/Q00NYLck7//f3tfG2rpdZT1jvmufe1sotrV8lN7GotaPQhSQGFB/NBSlECwx0aREkiaS8IdENBrbhkTjDxISDdHErxBFVLCElCINiWKtGv8IiCBYKJVCG7htoSXa3t57ztlrve8c/hjjGWPMudY++1Ls2atxzeScvfda78ecY875jGeMOeaY+Vy1Q9hamWh1P3nu0CjKBOmvVFj27r6t4D59JZjxHKE4I6cqQx1BldvtBMhUb9YnffNFkLJlMxia5mmWVSg1XZwKM095e7rVnHJqtfOGemWfHZWi3MVlSXAWX1gpF+afkRDlCJnzMzeP22I1U3cD9HABVRbsyrdJfAelK0rynfyuAm28V4Buscb8O33DVHiFKcehaTXLrv2MnJjdQb3tyr312vJ8fkygfBLAEw14QiAvgDHJex16BcgLmy3yvKBFmjW9t2HdAfefeBKyqIFuSIfyrv1wSmFmOQ+gBGxPafhm+G9y5pN0bnUA5a/B9LSlIILtKB/pfcQbK+sTYw08JVB63BcB05iYS2j0WpFSnB2QNWZFy9f+/KGhtcSGXIKGgycZVpxqWG6PMSzl2XVg24UzayJQmmKQis3pq9R8nxY551Avf0z1Suak8RkG+WmRsbVRb5ItTC4x5P2yyqzH9hX5q7qbcGKsRRGFvCemd4PLNq7P+9nA+nfKRoYH6SDr8d5yWZkjyi9DbgnQIzssfDXqURTfSTnVsSrxmozm8AC4CEGgkqe57lYVLUH4vETL8AWfq5xPCgC9rNI3+5tB7iTCAMw32RHnAgnzZDIQfhPozs7zwaK2S+jkHKvK7+ZyHkApSGeuDyRFDy0+9Dng/dBsT6damAWWHm4VXTcTIjtIGkQs7mDIa+ka31Ywi4blKvpJLc86e2cPUers9D4NSmrxzdka8wbSHE62mY/PAUlQT59gOqLj+XJDhzsYDCnHyNRLZvixvkDfFNK7hc3IxACrr7G77EQsjq6wLSYANpImA7gPcomKcvIF2iQI8iqXN9O2RT3C91gePXVda4uzTa2tzvu1MG9dimXRiqxPjwfWM9wuYm4a3cjaHHhbC6WXrgxu35z6rrSJZ9JTxtIWG0v+dnUfsv3Zx7SEAwOe3UH+3SmFIn59fEdFkkBpiz0cWx3Q5gq2mN1R+JmZ6baFmGa9+JQo79sWoN8DNgfXtUP3sHl+BVvUOXjdebY3/ZhXaui21zyO15uQY0TGn48o5wOUS12RlKRaYRpIKC2Bli1V8BM8m5kTzQEklRBGDenmn3Z/pMQVEDIqv1NzkHOftPq/WrUwK/NJ/vJcRBk5Xw7EQhaHEnkEY7Vd+MgAvxigITY5/Qz/bpgeIogjbE+VSr7K6JLom3m7H1ku5QgKJ90L4VhEDk6feOkDPW7LMYM7HtjDCrnLx4ZQhoIUWjY9YZaBjJ9rfePpSRV3aN6DCchPsZZg5D6Y6nNiG2wVGZVHKM9J90SFBBnuM7931CKVPVcZsR2jj7jKxuekMO/AuI2TllmSAd5X9j5GAzx6xPfG2zuNrIjlanO3qMIPe7Rgdyi46QaLjMHkxIsIb63CGsfLTf3KchZAKSJoV2Ubl+o4dAURLwfA/JO9I87QJsgqbJXXVnfyHywGbNxVATBIPYHU9bNvjwvtK7airmr+TnVGaGN1Zxp+x/z5jt4OkqpbGJOZGKLleNQyueJv/qqwg6OWGFA5mHNVNEOpymPi1MRjAB23450ACZHxHgeZI0U2vtFPFRyvNQAUD+iWEfGCxU01CH9uue6WIo3vtDap9jxWppwdnqvECvU0fIHEUlbBXUFwx0q7YYtkjYUVEQ8hYrtOAZlE/2XbqlyKgh4YnNWndz+TKU5dTCU1ZmkSRChAfV6wv2GCZN1qKYscx12QdRpd60UBkkUnWvor/TgLjmMp6d8cTHMn2ME2g69l4dFTpmnTWF+1nT/dMxYhEwpvYviwslr9SIkNPOqGchZACQBhvlFIlXk4/ohKLpqqAKtfS0e8d7zSjI7BXyf+8eAwxkHQdA9ZZO4uz/KdG7E6Dr4XkN5jh4Zyv3AwEv5myYfFM6Snhq0DOIhY9p0QcCbZ1EFP9iCS7h+aMWqmmvB71GvEd8CwLkXRHjGgpIsZvlR9dt5XARyJQTeDnRSMcP7n7P0ou3eAfrZVN1NEfXOTlH1elQEz+JAVE2SctaTpW15FBo+i1ArzGFbpW41DrP0zTv7K0kLWQ3s0ADqV2A19ABups6JL12gPoDzNZIfWjoycDLK04WThLezoAo7xEt2Qx5+0/CkCqOVjzaq0IAIWFkot4zL1bZOWuk3zwLOyJDEUbtf3zVpWvbIPv7QD84LoVM4DKAXQJRdNbCJ6N/nRiNLMHwmTvQlYN9N6kqDE8BmIaRxB8zAT+kvMkVl3q9Ccjt091IwebGsAan7OHr6gBHUB0Pvq5i1ZXsbEsaO1AByZVoIxgMKiWpi24gCATHjStzRNCEpxHX2dZFEbVBqWcgZ180lhMlR0PxilMtvKvMCnqasV+vI0V7oBGbcWRiFLT6XBttYkEUXvIJReT3lU4AsWp36wfc/+l2Z73mVZECBFpRfidwBDA7YVPHBLa194Hc1tzs/Hmcgkv6otGfPEVDJOs4BJ9LcMP2382DUW9uXnLZU6jSnZgBpIngDl9YrELByviYTZEtYhlW7MQZ1YtLRRPIUJZ71yDGrXooQFQEa2xCJaZFQ3850KXX38c3UfXW2f+QZLzkFD0Hf5GPu1kDJOYyak10UzaxHFP+DiZ0h4kELdt8gJ0WwQqhobkI4umw9EdqUC0i1jifRMYS8CuVpMUEzc6Q71yH1aBo3F7S1OlDx0xOw1MHwo2BJsu5U50gX0cxrIEDisdxJjRgCydxKkgewxagCyNALxRpwOUB2Zi19P1ub5PGPHSqsMhNs6M6NRmvI+QYXgl2xFkaBQg48BNwWtxW4UiC20JS9NkIj74GCdvkmlLINRJRiYaRZvRE1ETEugK/enU0a5V17EJx/dEZnOyCeuH30Ln4w0m6HQsvMpS3fxt5h0tqhlTxHJPuaYzp1bo1WQeUWTBecYHT+PsUNLQWAkIsxsHzNMk0ZZRjtTqSXSTAoMQG5vHMfYoCgGedRr6K4YNF88hxENNr67y5cLDc3jKetqeYMnlPTFnWybLK5I11IFhSfx0OG8H50SNGFQalXxnC5nAZQALMSFbKg1yOZsCLl7IyYQfMIA1t5Ytba/ZbdY2ED3gdVwYrdPMQeE/N21mCazhCiG7cxiwMqV3FgQoXldFyRKbcfGeq9Ws4tXahmDPik0zgvy6+YOrjZumPmcYPNg0FhUGeMBi/nlq/dDmI2DjG3bQwBcpHEDB7Zp9WFFfhTGYCIniBeWpdnHDGCPj7VcC7LbQhHmflAE8JvPUh1nNOrSuJ8Z6s0wpWUiVQANEsl6+W7uy6/doicOAyvtKhKpI6K6LqjkdACoIkddbRbo5oe2oVhLfFZDZZ42B1ydDX4ExZD/s2IHnAgMtQYGhSH1mVTuIYyxkUWRD2RF1Vbyoa4El/gurDMI6LbKkyTFQoTsUFYrB1f2PidolSoD3OO17iphHW8BSeBcgFIAuWpoNTM2ECyKA5fXxthZYI1W0yxG0ARNl7hOVrVIfrg57+ySrNGOlvCALGZygfepbrbVSy3WSJpNPhELTYKqn/joI104sawFuTPH/5FmupkAbQEYMcS4o2YKEEcx5duusjokdhaTOB9I0Nkms3xD31z9RPBxLhBlcUXACTKYlmSmDlh9gwpJLP129Xk5kXrfBkZZnyvhZygl2pEAZ1UwlwIXOcwE9prTKul1//yjC0+MPIYIEkYuDOYqLU+UZHvSbQH0zbMubatJ17WuuPx4j91usjTc8xCo3n0RyvsuHG65eCZSMk35Nba1d/P54xmhVKEtx1yCYQU/+8+GiW8gOAJtxP3jJpEJW0GlaN8zBjMWXoO10vXlD6A1BEEe/8h/3fJldkAfdlvn7JKZh3ZqoUNbsz3kq81bbT7vWXUALU5Hu31gnAVQmrnm/wiMACK3HrU1kP3FjmqSPigKrUu6bhrchwFQ2LOfh0x1mNKCmMAdts2ReBjf07SLQVruA19RVVayEbh/kGbX8PLJVI8BAiZrzRXeGGzQchvBUoZHKCeUp6/L8KCJ/ZV+mc+9qgJK4OihXNhmfjc+W4fm8ZOauEP4v5Q7R6pTKwFiqkR7E9ADgIctlKV/WKPA79qPI8BH8BcnvdbtnDrIWhVx4FqUrukeSREWkOTA4uM8BtXN7ICq+s74URUZHzy2kWFootXFNZbqHRkjFGpkSEqE5KCWk13FNk6AXEZENieAOyZvvj++cwckdxSvmgEqSAukDCDbUw5EkD/rnwr00WB5FkAJwBiapBkbx2T61sXYo++p5aU1OyazS4Qn5Opld2As+63Dh0mzEjAWSb9gcWK4ZrckCJL+OS4aMOhXgGWxHPN2DrfGBGKxvi2MYWDIG7QvzjJ88QE8rS+ZQ9bLf8SkPwUeDjg+UTVsDmchuqEPDK4+wxYQWnflI4LFt5vlKm9O0HDMuyWgwyQWoC15nrefFxODE0Dvub+eJqO0DLwfhu7RZ85UZIHEqjaKEgWYTDhk0ec2k9kkW6/PP3p3+kTif2tukYszzQhF4rZO+u182+nMYjSYVSouW6BbhlCgiF4IFl8YIdE03EH5PPqQo394XHKpO5V6a55mjb5q9XOSpjC0wRJg37aG5qn/1H3HPA2A9m+6CnKVO/yzvSg4EPAJlrnELfBgdD9eQptClx7B5XLVLSzoSsyPe7UgubyOVtLU3afK6eCwUkTke0XkoyLynvLZS0XkXSLyy/7zJeW7t4rI+0XkfSLytbc9n5VUSVOVQaO0EMJiDPlK/iufm//XTQ2kz2n8J9ExaYJwX/nIwJJe2Ae5yFD9YoUhoJpeyUBGXXyCLZ5kS6c+w9ShYx3Cmpo/e96FbSsJQvjaGNADFk11KzkMb3oxgfOWmlQ5nv43XD28L33GlXXVSlc2pEWMU3uLXCrrPdksf+8cxF9N8RhvwzDTULABWOHfS5ZdxxCZaB1nlKk1ne0/EmqREUo/FLlMozVvmxaVworJ8RKHp03jbx77CYSTa8qrMO+UE/DwQP6zmGZLf76Zstg0/ZWrWKzlAbaT5wDboXPg77Bkwvzbv39UeT6M8vsA/AMA/7J89hYA71bV7xKRt/jfbxaR1wB4I4AvBvCFAP6DiPwBPRWoNpUh7hBA0P9a0yrX2pcMEZLNQHZTiKd+CrIY2Yf8/rU5K+qI2C+ln5KDgK+pTIKTj4sYNHnnugOtiWV/07zHXlq2fMWTM9THHujbD6b4Svtv8ivVCzjZeg1jmgf+xGgGEFCortBuvl/bwtimRxRmxrg0wNlgG54LuHukM1EFJ9DOgdeZc6nvACrDW3V8drAmviuVWGedqAjBozLK0/o4qe2xdRFM41Xip2lWBinMru6xtRm8XhYmCWi1DcX3yH4TkWG9rmuVlcR1jzQTOSarDe3G6AzSNUkKNWybfKZJBia5hVujjG1YpMPm8bUaZwQ1D+1bShjXWD8bQ65kY4squ7MPSqMCgCW7aWBadNEF0lskFIbAtjKKQltP2RWr5vmWW4FSVf+LiLxq+vgbAbzWf/8XAP4zgDf75z+oqtcAPiAi7wfwxwH819veY4sj8Ze3h3402Kp1EDwXFtmlm9XC4z0Xz4zjQeC5mutPVwSTNBRl3BnHGBdtWBunq6TshVlO09c6gSTFB9HGOe2cdYm6+ICMva/Z/DBzhhAltj3j7aB+7eRTy7qyZVW112urOZ3PCcaC/BulTcOzCSA8KnZwECEBozUHBw1fVLKk0kfH2D7UOlhQ6SPtcnRdtJDsJYL8xycN7yiss/rbRlkiFC6T1looXwFc6xhEaNNkvtuxIHzeqI5xQtZjhEK+xS84/gwAmKuT4MDnRocVmUkaptkBYx/j6DtNOZS3yiAvRmyMz4vHeSLuOJoig1kQHewdMWTJUoA75OzTbv5HbQaWsH4pOZttXsFnzzgFJrkdl0/VR/n5qvoRAFDVj4jI5/nnrwDwE+W6p/2zoyIi3wrgWwHgRZ/7lK1Q2Tf2P307fQXPcckJ5KvTHrLhqSYhi/k8ugIa2xwtnCfImbuIMtCRvkBuCJ0ElpTUx4alWVOt9NbqHQssVivzz3Rg7cDmPxcBXnBVB1YZ7JwzWr4LHyow1I3B92HyCDKpBErAOyd2rgbnuNd879RmriZX847dQ1YUT/FJp6xrjaMMMtSA5jGT3dsFQCPpx4T1PnhPVA10wGfw8qiYLO1e9Y2VhS6v3+BbGx7OSrgv7Ki95RrfkWOB+4VRAshVXAIu4zy9n1jvwV/MNomNs23sv6NxMN07yCnqGR0wfFuTYxyDcNFWYSKzsL883WAZsPaKVPgaFoRg7lwt8iRbH+Yfxx/PS6+RHN72PDHTmKXqZiDZFkB3wLZADkDJeDA2MV45LdWfKP+vF3NO8IDTUK2q3wPgewDgC37/l2puYcTQT5ExHMiMQApXVK5pfdwLHdQxRpzK83dPxSQ1dRNKWifmzrMK2rei7vhmGIjnsHRmwoyWmzZsG3DogrULVm24XhsOm+D+QbB1O9XxhVcbnrp3HxHSEWATCH4kMdWO3le0ZRfXSFxmjTUAWsGjYiPjzcD8JOUKSR9VnajWaBvkDaApzb3OI6PkgOcK+BTozEmixCDLEq4i6Nvm8i2gp0DXzXfDCGYzPo5RAGKhgbuMwnyNwH/vG21ggHaCkkY9o3jYTJrnGn48oVVDkEY13fJ5bdkVcKA000yFuBINwByVSfQBTeG2RIgTt4zmTihXYktLF4K4mp4shAhBk0wUkkRhJCYE8nFVvIXs6MroCs/9S2XGBbn6zqwG3UX52LJAyMXSogRBq6OvkEjplmMqtm+KY0JJ8WYB9zTLTVkNgZQDSI59eFP5VIHyN0Xk5c4mXw7go/750wBeWa57CsCHb3uYQmNnjfVDdpIsrtnVr1FYMDkZlfBep9NSzL/m1/nAjlRjIrZf1MFRCJDUrHRIuyTFJ0yw2oLpdDXvNwPFZ/fAvi+43q7w7GHBg7XhmesFWxd89j3FS57c4xUveohI74ZZq+WOmcz9V7R69a+QGARA8BrzFUpckJKeg5NHs6PkdoQ6wIzMpIanDGyo+tEG5uv+vEhwbOxAaiJgAjsXAwgKuwTeykJsHgnR15vsbhctwMs+ZIB5dx/e5jtBok12ffhjo2J+z2CnFS1O5RPMyAG6MhTKV+l3pHLgqY+1jwPbTB7NUt316Ave62M6QJOxvnzhcdhXjde1d8zruGkRNcZaFgTXADSfM13HbFBxFWM+EfdLpGrjtdw/T1kVxdWY3i5DgsLqUO+TOv5jLjaoR20AgkgSHCvAtT3HSu628qkC5TsBvAnAd/nPHy2f/2sR+W7YYs6rAfzUrU8T5F5vMa2k6NkHAt/ahATRyhBEPeTKQYQnuPlxEZbO3geC+zp7A5gpPdijDxLtxsZUD1DnjF0FB93hsHYcNsX91cDx2cMO+97w7H7BfhM8t2/GLrUB8hNQ+VWsXSB4IVZ9HRax6+8twNKCEyLi5aqP3SdDEAS/YDaFveYB7rZrowwoJKMIAKUeaRqJkJWTXapjHa44CrDFNWRKdTByMvutvUP7ik35nbkAmh9JW9mgoUkGsFugOGIsM5g82I/gyMVwKj4QQh9YDByMgdYScyYzPCJBG8hFhlPPp3INpZHhPCOQFOCpJm1VflAHVP+7LWhdcnGH1UeegeRCAYG7bp80jOrhl2/i1ghTK2lReA5wfVhYQ1GC3J2EzFPKUzDrar/CzWFaGpjWg6gwEvhDzkIwRr4/Lt4gvotOxPZghIoJMScopoIjIQoKgHGnG24ttwKliLwNwGsBvExEngbwt2AA+UMi8i0Afg3AXwAAVf0FEfkhAL8I477f9nxWvNkWZuoOTTUrcgaPQwwwI2ks8l8rHeyT2PwW/FuA2Smcv8I0k2mn3nMlctOG/brg4drwcFV84rrhwdrw8WvF9dbxyX3DfgPu7137YsNu92Es7b1GbuV3AfpaXF9dYe2CXT3eFshOjAwySTaOV+hcBiNpcK3rE13HPerV/PKH2uSPR8WyjT8vgW+I7YsJlM/xhyWgBaMoZpkfdyDN+jfYEOsd9/UR0ErbhYAgw5DPCYp81lBcAycbHuXIzQw6syMd5VgXZPQIAMcxdcSs5UQvasmGmvofmN6prfmOMoRsMg4wF2tqPQgSYRl1X51faF3lu2p9/K2orpO6wMVaCiRT+AXma9YtlAZlMcs9xJLztgBoESRiizEsE1HujdewgLSMF1/nR7J9AFjqW6f33F6ez6r3N93w1etuuP47AXzn868CrN4eYK4Cy1zuZ1X7Q9EPa4ZRiS82NFhuSnToquZH6zJukpecroSweGd0omWLPqhi3YD7+3vYrzs8c3gShw48twmuN+D+AXi4brjeOg6rYOvX2Pd3QPHRZEy+eq8d2PrHwXhggeAA4MnW8NzeGM6TOxtYNLWsQn7M7Eb90iwRhyxpxYVvh8MgmUk6bG3ytLY4QJJVky0bgxAo0OiUT3lzoCdJWP0Vx6NLaOq3NKl8LPi6iQLdzs/pPOfHV4RjD7X3hSwLcgd1CZbnT2cuoR8mQI8QpGmRJhd+BHYWPBd7XILdk66QRRcwZI7JtmQGpgDduLwFAx2ydEOPJmS4IaLheW08oyTjEGlonjy6+kA1fM48i4bujZ1BXe/gHmpjl5unAhSfY83ew1Rzah3eJf2J5rKYKFcQjtI1UgBVu2Negi0/H2mJuUpCAsT76GekG4N6gXOf86XodbvVwZMEqGwmGOvPrpeTSmwu57EzR8s/wEPT6sQF6nbG1BqOrN7B8YwOT8vkyiiuyX/dwWzdBJs2rH3BflUcNuCTDwXXa8czB8G+H/Dc+nHsN8X9VbHfNuzXjq0rVK/R8RsIF+04z7LqPmhUBWu3BZ8e40dRx1LOKgP1ZBzi289yBXdgF2QfwTT4vPyzPDrfO3SCgzxqpqX6/Yw/UkYony8n7po/TzM4meHIXEbmN9chmU/IsF4TC0355uOQmMowHaCgwJxarCpZmsuawJuX0aTFLDh724SWp6amPmq6xnOntsYXUhQkoo7kWASQ8PMWX26yrxtKAf1ahZH45f3RLyE6jslJgQEAXSKnXi/1eq6M89rc6TPURhD3mGF6+4r289h3cx5AKSqQhx5j56QoVsFds9hKdbPN7sxLt8HP0bDI/L52W4nb90izBg9CtQD0Bl0Vuin21x0P9oKPPLvg/gH45P4e7h8UD1bFc/uO/aZQOUDxIWz9+6H6AF03qDLDue2pFLGFGWDEuuagoRAcyurg2gXXq+CwTYDC0SKSnoFgF8Z2aApmujBO/jRjfXS4KilojY5Oc6zb6ZT0jWkEKrtfSRZEJujCFMaQDon62ucbehxza9f3bXUfpa9wtwUjWjO8A3maZQWvALcKUpylfPeoCGzrnC08qG8gCNLTdhOYS3m2g3BnGM84eRTiLF/RdorYbjmVwe3APlUpixTHJUCcJKDtRmU3Iv6JMlkCJYFGKKLePUmGMd6OZWKhi483zwkp6R+MbYXslqjTqTqykpX5lLrNbafsmYXex4BZFgjlr55cBFDoWhbFQDdOIVZVGdY993XsDRbTDRs4SjkLoIQCsrYhyFrjHA4vmzj4ub9rE9sMv3XbgrQhUqthhcWgHTRYmFFIga6WNedwUNw/NPzvh1d4sH4czx0+goer4npVPFg71t4h7QDFx7D1ZyC4huAAkQ2CzUFTEfMC7CoJoOzBVgTQPdDeD8WLsd8+BytZJmoXue8HoJ2RTz5iE/xKRkALs3SOTStMNcyTNGHhTn17XFm4OWKWBXzpTyVgh9Xvk67stqomK+CZfYB8J/1obWIJns0hAK76y6q5F+IgKyboDtRmANa4Hm0Ay2CXbGhhVJzwxroro5ufKUV4WW/voqmcYIleUT36vr4vx8jA9FnPGj0iAkhLBRhtkPjedC4X9NLPb6FHteIEmePxmP7Nua6n/j5drCvSHSQCy3o0mPSszgzA9o6xjwELvi/XkHkeD/CT5UyAUtD2i/kbtUcMn0UweOtW75iDsUddYUC5AljFs587mF6LOb99YUXQ7Rzo3qH9gLV3PHvd8H8e3sMHn7nCof8q1v7D6H1F145DX2ErhXb4Ru97NNmwtBVNNohs2K9bJIuNAzcFEDQszeb71hWbm/6qzwL4Yaz6Sjy7/nl81ia5zXCY7AoIIiFHrFJzPBRNnlvbKCwOgJIMYS3nxBSfbwXU+u5hgSHcGxrvs8zhKACZW/GYACTCnmKLnmUcFynbCA+FyamBs1kOfvJjJMfI2mSwM5uR9RpKs34gSEXYkXreQy0gy589oyyszds0xxMorN/oGElQrawYxbhOv3hO/HyPa5jKwCp7q5MbZFhDl0Hru9QWEgF4Zn9njXDfnq+KMz5TVN23vAt3gpQ2+BB0+SXQVd9hLeoKTQhMUtp0iiVX+VJBoNv8bvSxm58+zrGK4H7v3029nrV+VrnwzRcFnEH9OQZPgX4tZwGUooDsxVijBwiL07LYU7qZOW0sEpAVkE1s44pnEcKmds01Te8e7BQ8EKyt4Bamjg29H7BuBxy2a2eJxhjFgdEybztgqh1j23jet9ga+Yh15j5owo2RdRJvUHTst4a160AeMjWah75wr6zHgVm/k/V58Hf9T21V025pyRi8DjnnuO+X13gpAyVWesniTjDbMU6PXyc01M9aOMu5iARXAGNIiV8RjCcgUjXCJnM7X5a6vXBg0YFPEgxT4t2FRSlyQkvUFKGd6KIoYT9UEsEUB+U1AlfKjO+pbA05YaeQJTnFduieiLcU5cf6axs/7iVFob97yItJpRdtE6hw7zfbkKvZwUoH5sgH+W8yjpyUa7lF2YbCVIv8ZWgElUwlBNU/X2Q0aRLKuPKEcQRN958oZwGU2gE8hPkeFba5nYs53Iq22eIMj9zGJhYjyVVumuWbAtc+wI2iQBb3KbYOYPPJIlBs2NSAcr+uUGeQu2XFIh1XBEpd0ftmWriR/luftga0IfeflgFStT9NTODhtuDQgY5mQAt3Jyjc9Gm2wkqQVPWUZONkZt9ypXdgXULT8EjayVKLs9wGEwetM7UwGY9ZXIBIlAoUfj/HNBvugJcLDZJzJGvhzy4hKg5+BpbHfsGBFejIDmiyB0A6u64RFTQtJSqdoJwhK7nDJ99bogUiLK0NkzDq4j64DoCHy8U1PS0AHwThUcHQllSc4pUU8ZMfay+EvMszpHwHySTZagCeq+kOUR5KlAoM/l0HTo6roUdCwdBbnvWTUBY4knFUMhQrApRdzmS9JrijM8F0HFBhIQ2RCO6SqX7YGTrnchZAiQ7oA9gEmieP2ufgCvbqgLpJ5KiUze7RzX2SenDhlxBOzxIksgEduH8Q3F9/C4ftZ6H4MJpco/se7q0foNrRZEUTxdXOQlu2MCW9aj4eYoip+8ybzYvug1+a5VLe+SFp+77gsHU3y9VDyGzRodFvAg3zZhyXOi3ElG+0ZyCwwgZVCcjO7YY9ACFUewoqzS43WUZQIwXOtHQE1BjohR0m63E2zF03QcPLbqnS51rZFU1sANzqGVm7w/0gIYOxLSWLfIBgVnKQnw0im9oMd0JlMG1kgGSJ6BnT63WpMZd2a24DVB5pSxnw+sEHqMiV6JRXkyXv80sZgjXvG6fMZtnmFwgFMUcFmAtMxnsJoOjTc0o9h7draSevmxUalWor17FjuLBYPitjgQsEmgMuxy4/okulZ9+Ac2w4luLR5TyAUmEsULKBSfXtT+nuc/KTF2LVmws46m5k7RA3cfNkdAcsgQElgOttwX79OLb+E1DdQ2Q1ZzFsk31Xjy0Txa5xUpa+EoyRSf5vo6+cbROgeZD80twk74JNJXbSsd6DPGIikqmIbdd0Z/YAb8WEzvGfoUKj+ae2AuvGWwXJIfDb/7YdOi1BOS5vx/eVIHLT5AkWzKwTPlDuoqqTw0GVEzF3a3CCZVsj4W+ALo8MgDMpj6uluVaAEt72ZOhwLJRQWLmg0Y7qMGy1BCc9oNJt73nNx1kAk8ldEtAYLF5iSZX1y3pa5bhbiunLUon0TualZbPGNPlD+fV4RVwihcNVFwwCNoPMZRq6YeTUpibWxf9aPpUyt2v8r+RzMNY/mzrRx+L2INCHYiBZiPbm2DBSm4tOMws9Vc4DKDfF9olDaDdEw4uQiUobnK51ZGYYd/LKBhGF7NJkTjTlgN7QO3DYOg7bQ6z9Gl33UN3QZMNVs+VzJgolMzzZRwocPOnQLGqBZ4BrwJNXasx0adiJbT7btGGzQ2QhQoAuK8WdgDUOIoKdqi34JAlxYN22TBYCYAxQJqJ7xcgQ3CfMn2SREHOmjxPTntMZzMw6K3x73DH4ivjWUDU23HsPt0BVENxrXfhekSZ5j02w2KbnP5unmosjdpXH8ALd9/02LkR5EgmFBuO08BjzW1dAHgmV+4BV7Fwdgt/GPvNJ2bxdlVnC3rEsOzBEh2E3ET7lrEvaPC0TxFQ3KPx8KR3lwxNAI9TmaND6f7V9ZUswf0n2SsDRohhKqQzY5TKw5MElkguXGYqULx6OP57GUIq/lXfWerBxGuwx3DbTZYNO5l9zu06UswBK7Wqxj8A0MnX8XZF7szvtbprY/KmAdIhY3JjFPfoCDpFWxVnjGt8be7S9pOKAm51YmONcdy1yFmApFkRzBnm12M9d0zgQclMDS+XArOYpCABTmIPLZ46j1MoWnY3lKt/xwKISStIjoxnLl82sJGuRfaVZ18psT5Ywk8okrkxTBLcdRF9uGe8XHfIlpELRiJ6wnJWCYX/4ohiyFHG3EhBty8UTe05gggNDTQ7hXBVkTiEn/nDGaSzbQ6RqqFiMhUlwRdnZIlibhMFrJK3LvCv/n6bUiVccl2PMOWZhCkwdMFPLIxkm69MBxVSP7/XLMe+jr96GkTTMDazllIwfXc4CKKEKfbhHDpY5s7aCq9bGEhWQzUEyaCag5ls0S4YrPyvUP2fGHlWuej6EyENA986Q7Hn3dskGATen1ZPOIIGQVWNZBHjiyn7uFmDXEOa2NxMHBdat4bm94tl9w+4JxRM7z66jMYSMnQiKhk2NKs5E+nrA0OnCiY0AYImTLZ2JbWQ+PZinnXudfj+LMHA2tOw8pIdgkgHcR3qsZ7QCC7f/5UXUNkUx+vd924BttTpXn51IgkwHlAHC4mcWiWQM7sA2+ZG9a96JlxZMFoYvEfz7tkGaeHISB8k6MVUgcmXghbUwcVoDrsxcWIMu8v5s/r6+ucto2wc7lghUd0U6ZUCKLaAomXgks5WrdpPrKUYIWD/z8cVCgCrUnx3gTUZ3ijGAWGngFekNITg6aC22jqZf+3hrbFX0VRlIficMUcozgk4VgvJN4Hhq48BczgMooRBsSAd+B3TBEAxKoIyN3Jv7Mjqgmw/Egz/LWYscADWgLM5M08Zy5cyRn49HURAMnclDe2YrCesCk1J2Rrnzn8uIGW7GO6PsgsPWsNUVvynDiXDQQspAkmByiCv9c9TPyGL8eVTTQ6V1up5spCABJ1iMW4ZbsM2CukKtFewxy4iAzn7NUJd4HxxUtNyhhW0J0rwuRXgAF5mUApkxiI8viULCLC6APMvxUeQ25q+UZy4R91efbb5lu0F6Khotz3Bh5odqCsGOYs53ZNcwWqKPVWb7JXdnDed8H13ofl62vigdprtLGWeY2kBbi0wUuYEgCGCVq3KkjGNkqBdlcTS2f3sscCylnz6FcjZACTx0ACqDeDh+weMgpZrZvDfig4rJbIs5qiuge9j5GpsPWjspbpGHWGRFl62ujw/E3PaDG0iua4IkTWz25dKMRT6xOEgWy0j952HzrOcq2HfBs4cFL7rngc30f7FJDqjYVttltqTWs5P5CEyzdmeMJzNE5y6ZaF3so/dn+ODmtSh+zb55o8k8yqQWKay/k7nZsRY1YDkqqIDMdW6+WVABbjZI/xK3ba7Okoz5ymIn/NUYzOVqFwJnQLVoi2emYFOBnGYS9Bs6A2wM+SGTEWePE1AvOz99sAbFK5ht3RS2YqMPtN7ru2GMWXbffukLWuLbb8lQG8AM8embd4Xjz+3arT8Xn0sLT8OUkE88n77UyoAFAexWB1/YggWlK89OVxtvsy/UFFIPeY2NpRx1VFCz/TxEmCSQG1CPzDHJAE6XQjKoUDMk61E3ZjkLoBQoRA4+r+pEBiLjiKb/0fbvrnGvagRXImegr3qLmd+2YGKd31Wx32whpgdbsddGlEIhGsxGVkvoumbdTlM7krGXG2pkQpNPQvvPQPFSHPoXoPsKaQJzfZMGIMTxp+LsTRDm+kxrMyQHrsErU64NdBNILXN4xbT6vHwm7/d+ItMJX53/HrJhULMGRjH2kLxqnEY1NEmNqQo8Cw6snqyL0AzOODmJ+92vWNmJFl+wpGwGW3hqtwAh87qwVnfCZFdRziWsKZSClss0Xl3vLRJA+uES2PMSVz4ygs2oMLkK70BdrRH+GFi5K4bilx/kRxZYxiCfo73IwplkWDwkneF3Hlkk2engkxx/ncbzDKwpS5sTs3Vw9DQ2t4yf05fM5SyAEuiQdg2AjNJRPzRfgqCxAz8Te2CbHcPecMuYAeEmcEeB3g0oHxwsn+TmR0K0BiyLAR6JBruiObk9ddTKzhdq7u3SH6mI9IFUygDIMj8GtHcA8sew738WG9Zqn1i74l4NNmgr0gwjkZhQBDc6xZPlcYIVfxBQ/J4AuptS3dkFBxvfQUAtLCxWwWMCKzMAp1Kzq52FlEmlaZa1kmA2JiecQdVPCxD0vvn2Rp5mL+lv7TRRS5yhILTUCJJZ9wq69k6XlSRTIUBmMHoLgM7+UUQaM5bZ3B0+jz9KlEyzPvUFJQMm33TQkaDnLLFuHx0A09+5rZuFYbUR3KCpZNXPilL4lsYKWO4WYdxnV/PhylKSm0yKRgpIegdGVyFkm+CffVxdGCjPTkWtRF6q/uLGKDUoMp8UBOBJT2w2mNJ9fkh5HkApCmn7OJcFgnJcJ2MiOeEzgNI0Puw7JtGQog25bZGTBsy/uGDTBYqGe7vUKsNx4eLj0kFIm1m77Mu41sGR2mntvpPS8aPOWX6+dcUOwDNLw/UK9K6efh8W46geG8dB54xSY2eJV8KFNQZdj4ND+zYAjpTfR5hCkhXGHdLslNE3llvZtLCyCrA5f9LfqMP9sShBphfMFckyyMZYX0/+yz32FfgYXtId8Afzmc1rGQqUbUAy1pABK68Yvgh3QN57BIQ3MpqRXUq8bGJKASYNsvP9/kbdEHqMbIgnDUY4DB8sKXNF7IysQfBhWke1s38qWRmWCZRHAwsiuxLHw9ziuC9X4YN6BI5R4Y8jURWZR3XaajnssQ9M1bh9dImUMVXISNYle+K2ch5ACUVrB0hhkplwdC1MRWGr2B0iPLhXCkgmiGQ4EMok5CRu6GqbB6+SpEUh4VLvQ+4uXFKhJ0AWEmZ+SLt+7bmgs3Orbev2b78BCwTPNgdKgirEt7dpHmh1olTgCrOwsLeYIznC43NekTkyp0lKWTGmsaXcMmayDz6eXIjiG5Kx1ffzfdVHFvWq6ApMfZ4NCsZUEoGIaykLaufiGN+bTCqBsrnPToMt5dydJo5PPvGdHFEPzG1DaktQf8g4OIYiw3g9jnnMFe3ZDy3eQHudD8Jyds9QF97bENuCazgXOdUoa0Hk10TJ7gQDS3TxxT0ZFFkRWakDfEEKqBEJAMaJNrNvkoKy+k3AjVjdcG4TIMuAigqkMs2u0KGp0y8ny5kAZYfqc8Eiwi/n5kx2omI4WWJK3RUn8mHUZhUoIUDThqud4F43oKTMuLrt0RTJAP3vjlzJdj+5hXUWv3PzzwiKgC/8oOzaUctL+WBteHgQXB8sID0ieWB1bm0x7TmZ01FUwVAZTp7UyuOEzp/peyMZHAGt569G7d3k6YUdAlx8okwBBEsJtsjNnYpgDanMG3KvubE/IQWHRFiMqq8aw6Ibon1ATPEE55ws9bC4E1Z3tDfghQsUs4yHz6iMm1e9h2zJcGPCajdL4Ybn1a2VsdDGbM4TuFbOqXFWPZtblVUyRlpQYD9KeVKYS+KhHIJ6hkwqwBauTCqWqANT91fLgq+o9QCKH55t82uPwpXSb9r76sShTArqAJdf5EfgqG4J3JVIjGUC5PrgR5QzAUqFhfCwkVsxDSpI+kTmQPMVVgAI+3bWzgTSIjARyfAdhoYBYWb0ThM5f9qN46uotN0iHOIlFbmIQ2zn383Z5WFrWDexVXVVN+1Lp0Xd83TABBogFjIq60rYL5+mPGQYyMdEhzIWD4aP5xaGWx361QoYn8H7ipYv2juYVP2CbKGSI04s9TbdlEK8mLjZViJkdr9YBYeG54LNOGFUs3ZhkqqCe4wrqUx5ZP+bXPjSWpcKaJ6gYW6VVgCeSmGtLs1xrsu06HcEBGWxyyucVsoMJA5KYKA75yIrWccef1Sl7Du+lA58wWxq8z35k0oeyULKNbnbKZCB6j+HzjCNbgfC28rZACX0MHwiXDgpLMIw40TYi4/MWF1ux6ZMiEqN+UQ848adMgmQLM1XtJeW5nQ8poAh511H+jcXAcSfx3XQ3cK5by/Zbw0PV8GDgwWdL0r/Sxl/Mg3zYi52JpjAmNcyBpgCGZxbw480ny0yIrw/geFUmQLoSJJlAEpcYsObJ+ktGTBf3mmydQbGiYebikCWFidpRgOP6qPE81K/PMfHyBMtlS3q3OhiKKBqY8m2WTJcScvsy8QjNN+3CeSqigrUtLaUSdtdMbbYPknWbuNaIB6ppdFX47ne9ZVJKOIdZIvlwlgclYbmPuhwqfjRvBGg78lX7Mymcm3XTIhdgbNq8Vq6LRZlTDBlWc9YOgZoAOkaCRkA3cOUkkOp52bgBgqJ+5mnwDCB5IKWWAXsR4PpmQAlMDOBunrHYGl2FieACVGyswhJLrxYmRwGSgIcTev5H8dW7kUZa6g6KUbv54ANn2+9sg7kM2Mcex3W3tL8YqcVrRkPneTEykS76/EFw5ib2ZInyT3x3eyzPFI4JFVZ0+APgzBqW+B9Oj6pXE6f8gSZOgm23CPzZyeaXetc20ciJafi/E6VMOVcYevclvH5oxl68nEAqjXAdsnIyIKazhO59hm3nxb5nzIVjmthTDYYrrMCD3+MdvAf3RhwBuD9ZuF6xeUwFLnh9xNN4r2FGIT7jc92cZj/vsjK53uwUD7a5TnkxnSmHb7Z28Tk5WyAMhIxKJ3yQPg/4iL6rmo4B38q0Ff/g4BRwl/chFWY2Xt/L3hwEOw3XpnAtRPuzTb5b3bUCPoGrD5uGAoUO2+W7PcG+9zX6uNz3rOTZLP7vuD+eoWX4ABpGoG/WlYVjyaJs4omm4dClsnPCRTbzxbQN0TW0HlSoE+4tvCMbXfg58lnGAKT/RqvRWErbvgMAdzGLG1Q7uIzrkSzj4ftbWmz+p8OGCsnS83WTh9fyskSMjdPNrEFw4+jW7UynypWxbYxUL+sjkq5pvi9tm4RF21hVvB8fr6ADFXi/uGnSCTDUMqwyYhxFew81hUK5ImaOQvsUpm0NYOrN9QMSgqxjQRQQEk8/GTDBqgfc8Izj7jpoHlQfVt2jk2pFITpzE5tI2T7pIwptinEIS4uyov/1TFhv/dty3tm3jCFDDHuVyO5S26SyO6fcOZEORug5Ew35iVgEHNyjRuK+7CqltegSxiPLdFuKc66LaZsXcCdb1mPrI7f5uayx1q2cTFnui2qRIt2aUUhK6c70PXj6Hgv1v4i7PsLPdONlmdI3hhtIyBqjKFgs3yp5Oo3G0LWkhr6lBg5iPm7P6/n/QOIQUv+Ci74jHF4KZi6P7yG1chJ2c/yzIdW5PLKTgdDjWeD26RUnQH8mEGHCyepBxDMY5QZmUn4yhhuBM2VWNQ6lz8HwCygcGK75fCB97Mpk+5JqKUAu4AdUsk2zU1TApQRfZipCGPcFFAL4GSGdLde6AapizO5DTJD/I6LxvuHwHQoR1C4HCqRHAWQMjzuldnXirAqGT4GQosjpRw953Q5G6Csu0+ySACFX+T7jsvCBpAsZzLZqwjUV28PB8H1oWG/CroKnvBV7+6r1Mzi5q+DoGxXlDHkR2Ig5ptougPmk1yIaVreA6Dr+6H6QTzcvgb316/ApgeESUxtJ9XXWlYdJ+bF2MCaQIO5D3MffMr0aOIXmZsMnbU2X5nuGmet1Hocy3hLsC5MiiFFQx2Ik1v2XfUtDW0LMOiJLRPoS1tGVquuAbsFmQ3jqjyDyid8YRHvNbkrRCI1XIQZDdsVMcinxpv6TX5Nz8+IyvO15Vl1KIuop3RrvmjdwNh7cPIfUayiCLqExdIW8zf29eDg537LJTcUtGVn7Yg2cTENGE+hlDy/nXO1yiUsGNZtTHjD72O1vXbSo8ogR8Q4MfztIVObBttw67CAF5sobi7nAZRK53VZeGC4BuBprEo4gpvSKabKprQMjvGnaS43W5ug+c6UjmSBAVJIYsHpS3B0osV5GEAIJHMko4TkNWHRKuxAe3RsClxvzVbYu4Lbrakdqfl5DvPIOsicpIRR+XcR0J0DNxiFS8JFbzteBvXq/l0O3NgI4LKNA6P43zTIaKYGy2CYR147gFwFHbHFhGGTVemTGqJS2bKoy8uVheWezM4ZJqpnzea4EQBgBvLi1hkZ3TyRokZRrzHaAsgYxVRGuXhCM9+ZONifBTC1vEfyXamsShby6F+J75X1rvOAYT1kca2Vunf0LXd3DfvpS/PVWW3sE6fynfA/Gad3xZRtP+aZCNJBWkphhkMljjBtXPA0SkRT8Sa+SPCHLUx9JgClwoVYjsqkgBsA1Qbd1sGMSDUqQNHww2TvPU6bI3PgAgEJEyvQxU3rKluCpGR8La+PhSCM84lmeb13Gj/JaABs2vBwW7D2sionE5Cgpbngbbf5X1mmGCuYPqf2JkuIRZX4T2FEcGTlwnHrWwIlwxBKz5Wg+Oqn89YJUrPMqbZE89q6AwigYlRapCErf0GkbhsW/GBMj8mDMyrCVvDjBD+Cowc7t6IEhONmkE+B9yKjQphNDt2TGTPsAXxVDoAEMt5fLIDQpEgQkTKQpj6DJ/Dt3ZRCjSGOEu8tu4koMw5Obpd0v6TpCgNNQb5vYHlugnMOBshQPryaTKEJbIsrQZZHFSPGFuUx1PUESJpIqiuFba3zpdRnym8qrojDioC35TMBKKuGiUHpE6V3S90TB2hFuIoUIbcYU/60wiL8cj8+sy07tG6B3JvaLhmudofbxH/fevl7qrE4IIqD5cqFQOTGBbaFiX8ifGl4TsOqCzqaRYX6Na1kC6KpHWZQkKOCIoJSyVQ40nzBIRJoqA20CPaWwt6z8Rby0j2mn2ApGAL+qzBAsM0A6iFjUZ/N1B79jk3G/Z5ARO7bIh0D1xmGo551KI8w7Z71XrGZ4nQTUkTQsYAuhVAynoGni++nniZKLjhoAErtD4aZEAzD3N6qiTn0dGLe4E6IpyLYbLGWjuUcPAzJHrsdib6UMCdwJfw4u0+0qzyTijDcJIIilxKrXMzdypjTx1vAUtls74fm7I1+b45rgrL/J54wIXbXpZbMMRxypDI5dl8M7axtdTeNymjyP6qcCVAauJm5F3+BfkuNYx/sGzLOSOM/a1MOWs3O4Bkt5l9aQt5rhmECQDlmNmWcHCkL53UCu/chSZ9/oXCGiYFolAdapvOuAh0aMdAIpI9I8/mjAOMWMhehCVomj01wTnxu95PxOWTfcPO7+O04WY7Dhgr7qWxMOWF1qnP2j5GyXij+cFX6OUoPhNlMAHR223svx+P6tU2g2iySJSYe320qbZSBlp+ancr6RSJgJirmAViK6oNUr2mVkQLOZh1ohzEmwfSi9zmGo34S/yQvCuZU29HE/PDHMvUncZCakGDZ/w30whVTnzkok+SYw7qAKkgTYqwFcDuwim8hLTu3IhKMphvHMNkvkLk358EvpS7A1H9TwwcFIBAVI2O3lLMBSmqdHFdjyEmQw1a1JhBmAO9XD2twkI0hGIfeN7TWsIidCcIx2MqreduVZxI6WhkvrBObhwNdRXUA5NbGVsdYoLHf34EHB8HBtzLuV2B3j/2eYBVnqwSwjJMvlEb4AX3uRGUBeFB0PbBLkUeWssQKdzynw/KRTGFC1XfFX53FqTAUaZtYUJmYYCiMgyjsGOBoT1yfQm++ujw4/f2kxABANb+dbt5emKBTavSXpkJJZlJkCowyD7m13M5FZhSB2QtU7btw+ZRFrPRKEPyqPBDKtraZPYJelZrA9rsWVxWmaIe58L7iGrG3TwM7qtjRPflFBu23sGoGZtkkFvtiYabb6niMSY6dE0o2wE09NLAqCpQxwcXKulW2KImQD2OsA4HLu7w/ImdqW7B85mQ4nxuTbC1YzCOuH24MSj8yEA7JSozmJw5ghoyTPBUKNMRICkCIUpRV8/Kvukoq0d0UgJ/I2Hu+XifwGthXtqY0ICcM/Zyn5ZMtJiAflcHEynuPVmLn2+J2r8fpSpR6TnUjcEQ7j99wPBQC/hB3lbpykYItrb7auL3+fmJsUWGNOE9Fbf2Tz3XxnJJhkQEccMa4weGXqQJFAR4NXjn+bP5egVNStbEyMbK5roOMUonwply06QWLOVbSb34KJOOt0V+lHkU0w8KbnBo7x6y3smJ7DmWo0e+1/x9V5PnY55/uIiIfA/AcgN+667qU8jKcV32A86vTpT6PLudWH+D86nRO9fk9qvq5p744C6AEABH5aVX9iruuB8u51Qc4vzpd6vPocm71Ac6vTudWn5vK7cb5pVzKpVzK/+flApSXcimXcim3lHMCyu+56wpM5dzqA5xfnS71eXQ5t/oA51enc6vPyXI2PspLuZRLuZRzLefEKC/lUi7lUs6yXIDyUi7lUi7llnIWQCkirxeR94nI+0XkLXfw/leKyH8SkfeKyC+IyLf75y8VkXeJyC/7z5c85notIvKzIvJjd10fEXmxiLxdRH7J5fRVd1yfv+p99R4ReZuIPPm46yMi3ysiHxWR95TPbqyDiLzVx/j7RORrH1N9/o732c+LyI+IyIvvsj7lu78uIioiL3tc9fmdlDsHShFZAPxDAF8H4DUAvklEXvOYq7EC+Guq+ocBfCWAb/M6vAXAu1X11QDe7X8/zvLtAN5b/r7L+vx9AP9OVf8QgD/q9bqT+ojIKwD8ZQBfoapfAtsY9cY7qM/3AXj99NnJOvh4eiOAL/Z7/pGP/U93fd4F4EtU9Y8A+F8A3nrH9YGIvBLAnwbwa+Wzx1GfT73UJKN38Q/AVwH48fL3WwG89Y7r9KOwjnwfgJf7Zy8H8L7HWIenYBPtqwH8mH92J/UB8DkAPgBf/Cuf31V9XgHg1wG8FLYN98cA/Jm7qA+AVwF4z20ymcc1gB8H8FWf7vpM3/05AD9w1/UB8HaYsv0ggJc9zvp8qv/unFEiBz3L0/7ZnRQReRWALwPwkwA+X1U/AgD+8/MeY1X+HoC/gTGb6V3V5/cC+BiAf+6ugH8qIp91V/VR1Q8B+LswRvIRAJ9Q1X9/V/WZyk11OIdx/pcA/Nu7rI+IvAHAh1T156avzkE+N5ZzAMrTmRPuoIjIZwP4YQB/RVWfuYs6eD2+AcBHVfW/31UdprID8OUA/rGqfhlsX/5j9yWzuN/vGwF8EYAvBPBZIvLNd1Wf51nudJyLyHfAXEw/cFf1EZEXAvgOAH/z1NePuz6/nXIOQPk0gFeWv58C8OHHXQkRuYKB5A+o6jv8498UkZf79y8H8NHHVJ0/CeANIvJBAD8I4KtF5PvvsD5PA3haVX/S/347DDjvqj5fA+ADqvoxVT0AeAeAP3GH9anlpjrc2TgXkTcB+AYAf1Hdrr2j+vw+mHL7OR/bTwH4GRH5gjuqz/Mu5wCU/w3Aq0Xki0TkHsyh+87HWQEREQD/DMB7VfW7y1fvBPAm//1NMN/lp72o6ltV9SlVfRVMHv9RVb/5DuvzGwB+XUT+oH/0OgC/eFf1gZncXykiL/S+ex1scemu6lPLTXV4J4A3isgTIvJFAF4N4Kc+3ZURkdcDeDOAN6jq/amej7U+qvo/VfXzVPVVPrafBvDlPr7uRD7Pu9y1k9QV3NfDVuR+BcB33MH7/xSM5v88gP/h/74ewO+GLaj8sv986R3U7bXIxZw7qw+ALwXw0y6jfwPgJXdcn78N4JcAvAfAvwLwxOOuD4C3wXykB9ik/5ZH1QFmdv4KbMHn6x5Tfd4P8/1xXP+Tu6zP9P0H4Ys5j6M+v5N/ly2Ml3Ipl3Ipt5RzML0v5VIu5VLOulyA8lIu5VIu5ZZyAcpLuZRLuZRbygUoL+VSLuVSbikXoLyUS7mUS7mlXIDyUi7lUi7llnIByku5lEu5lFvK/wXa8gXqYSc/ZwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUoAAAD7CAYAAAAMyN1hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAADTC0lEQVR4nOz9a6xty7bfB/1aVe99jLnW2vu8fO719QOuSYLBvERkkggbZMlE4hG4DsLBSEEmGN0vEMJL5CZf8gnpSiBE+MYVD1k4kJgQcKIYHGRxHZCQiR0i5+HYiezrG+e+zj1nv9aac4zee1XjQ2v16H2MudZce621z9znzNp7rDFH79WrV69e9a9/e1QrUVWe0lN6Sk/pKd2fwg+7Ak/pKT2lp/TY0xNQPqWn9JSe0hvSE1A+paf0lJ7SG9ITUD6lp/SUntIb0hNQPqWn9JSe0hvSE1A+paf0lJ7SG9IHA0oR+c+KyF8RkX9bRH7uQ93nKT2lp/SUPnSSD+FHKSIR+KvA3w38TeBfAv5rqvpvvPebPaWn9JSe0gdOwwcq9+8A/m1V/WsAIvJPAj8DXAXKm+M39OMXv/UDVeUpPaWn9KOV3kDuBCREAL7/gx+wruubrwHgk99U1e9eO/OhgPK3A/9O9/tvAn9nn0FEfhb4WYCPnv8kf+Rn/ldf8lbyJa97H+lpVdNlUn402kX44fatp9RS36d097mSR4Sbj7/JivAn/g//R37913+dh/XJf/Jv3HfmQ+kor/WwTU1V9RdU9feq6u+9OX7jA1XjKT2lp/RjlUQIISIh2vd7muw+FKP8m8Dv7H7/DuBXPsytCv7+MGb/193zR4FVPaWn9PVKBRhF3q9E8KEY5b8E/G0i8rtEZAL+CPDPfqB7PdL0JLY9paf0lScRJAT7Fnlvw/CDMEpVXUXkvwP8GSAC/1tV/dc/xL0ed3roW3pin0/pKb2PJCKIBEQKB3zcojeq+qeBP/3wK36cGdhDnv0JTJ/SU3pjEkFCREJA3uOQeVqZ85Se0lP6kUlSRO/3TLw+GKN8Su87vc2Lf9/s88eVzT7kuX+cJaGvOj3sfYgI5/nMeVnJOb+XOz8B5VN6YPpxA8snkHyc6fXvRYJACPy5P/fn+Gu/9Df47LPP3stdHxFQ/rgNxMeQ3rbNn97RNglPbfJVpNc5me/zGKP8/PPP+f73f3N37sunRwSU6Yddgaf0lN4iKT96ffaxrUZ6zeqbq+ApSIAQAyIlz4+U6P1lEP9pJn9K7zN9GYD4UeuDxsgeV9oD47Vj7T2IgAQwk3fmfb2jRwKU8HYP9KOynvgpPZ70IdjU17GPPsY6X2OS95wTNT0lmffFJuFRAeXbPNS7vMzH2BF+GOmxMYcfdvpQbOpaf3tq+7dLe+Z4jV1iUYN8RY6J3j9yQPlV6nue2Ki5z/64t8EPM11zX356H69PRYy+P2KQ+VC65Xtz/t3b9pEAJTz8Yd71oe+7/uveUd+Gpby/mfbrnX5YzO7LtP/XvX++a7pmvOm/AxKcSUq2zxNQfohO83UHj7fRsf24Dzr4esYx/XF/b/e7CQnqQTDUxe59/ndLjwQo37fo/a6N83UQz/fA+KHr+6O22vV9t9cP07XmsffVd033idw70buI3QJCZosp7zamHwlQwvt92e/KDr8OQPlVp6f2eNzpR/n9PAAocUMOuPi9v+bdMOFrBJQ/DPB7bOJ4z1rex8B4Gxb0o+Rc/SHY8ft4Hx+StX8dgfR1rkDQj08R7fwnE8348yPncP6mB3rTi35IR9jnsd/371txxQXhh5K+rIj9ocO3fV3dXN518Hyo534ME/MPu6/v0zXDTfne+U+K8Omnn/Dy136VV69e8iPqcP4uneRtr30bdvkYxPDC/L5MPV7HGh87C/pQ6V2f+0PpI3/Y/eyHff/70uvEaDsnokgU/tV/7S/x//n//kvk/NCdFx+WHg1QyjsB5bUGeQgDvT+PPDDfQ+70bqkA5NsMzH3et63hj6qr0fsEt4e26deJdX9dgPI6ywxBUM2ktNL65Y8Uo3x/uoRtme8Glg/P8yHT27LJdwXJ/p4PSY91cF1L74sJvq364+sElvelH+Z73vtOXjPk0Pwoeb8+lPBogBK+PFC+riGu6ySvH3tIOdfzfDhN4EMG2f78uzDPcuzLdq7HDghftn7v8lzvq00ee9uW9L4B9U06SpO2pKzxrsEw9nneLT0ioPwyD/M+dY0PAeov3+BfLj75Q0Tud/GnfJ9L6b4OA/ldnu3LPt/78k74uqQPAZTXDDi736Lda9rrMN89PRKg/LKi90MY40PyPmbx8SGqgS/LItNbXPumfG9bjx9Gehewe8i1H+r5vw5tW9KHGEuvdxMqjuYhGrP8EHV4HEBZ1me+c3pbhvme0nt+L28/JN6lAg+99iHW7cc84cC7Wejf9GwfGsh+OG37ON7o64BS6pd8QHXw4wDKL61H+GEbWr6O6cu212N3OH8ICL6vZ7g2Ir+qfvi+3LF+mN4KD32G1zNJewZBwuDrvAX5QEj5SIDyoeltRO2vMP0wN0h8Sp5+XBr2fQHcw9rrdV37y7f4l409e4UYeQzK+v2B0tcMKOHHZ0A8pbdLX2W/eOqDjylJjIQQXVn5xCh/NNKHXlX4lJ7SV5QeQ1cuEc0/FECW9HVcf/aUntJTekqAa4tDROTDQtmXLl1EfqeI/D9F5C+LyL8uIv+QH/+2iPw/ROTf8u9vvXs136+X/aNP8hafp/SUHnF6m678ZT7mbB743m9+j3/xX/wX+Rt/4298kOd4Fxhegf+hqv4Hgb8L+G+LyO8Bfg74s6r6twF/1n8/IO2XJu3B8ccEJN82PYHqU/pxTgISAr/xG9/jF3/xFx8fUKrqr6rqv+x/fwH8ZeC3Az8D/HHP9seBP/TAEt/weUpP6Sk9pW0SEUKISPiwovd7MeaIyE8D/3HgzwM/qaq/CgamIvIT7+MeT+k9pMegfX9KT+k9JwuG8ciNOSLyAvg/A/89Vf38La77WRH5CyLyF+7uvnjXajylp/SUftySYE7mIZhr0AdM78QoRWTEQPKfUNV/xg//uoj8lLPJnwJ+49q1qvoLwC8A/OR3f1p/fJVoj4zC/bi+hq9zemRd6KtL7hYk4fEySrGa/W+Av6yq//Pu1D8L/FH/+48Cf+rLV+8pPaWn9JSuJ5FAkEiIw6PWUf4+4L8O/Ksi8q/4sX8U+HngT4rIHwN+GfjD71TDH/n0oxgg9yl9penHVfe88eb4sIzySwOlqv6/ub92f/DLlvuUntJTekoPSSLBP/KhF+Y8LWH8+qQfV9rwlN5L+jDRLX6oabt88ZHqKJ/SY0xPlpin9CXS17HbuKO5RF+++IEp5ROj/JFLTzrPp/Ql0kMC2H9V6UFdWCB8eIAs6Qkof2zTUxDNp/QW6bFpfmr8SSHlRM4fNhDxE1A+paf0lL6WSULkk08/5c/96T/Dp59++kHv9QSUT+kB6bHRiaf0KNNX3E1EhHle+KVf+iXmeX5/BV9JjwgoH5OS5Ck9paf0uJMgcUBi/Eru9kiAUoA3PfC1KEL3gecTqH716etoOv26pq9x/35P3USQ5h70FaRHApQBuHlAvjeFYCu/i2I3d8ef0lN6Sj8ayXdcdIfzryI9EqAUYHxg3vtA8G3iWe7B9SHHntJTeizpx9xjofiXhw+/V05JjwQoH8oo4ZI19seu7fvLG/L25T0FDn5KT+mxJxEhSPCAvfErUfo8EqAU4PiAfPdtD/G6rSOugeebAPG+PPtyec2x/b0fql99Sk/pfaYfRY+FEl7tw6/xLumRAGUADg/Id59Osv/7dXng9UD5kDxfltG+jTHqRye9bT/+0W+Rx5i+XqJ8MeJIqfdXAJaPCCjfxpjzut9wHcSu/X6d4edN4Jh3+a5dcy3vfWXvn+Eak72PJd93/Ck9pR+9JBIs/mQoxpwPj5SPBCi/jDEH7geGNwHl/vshLPF1bPG+a15Xn/vE+oew2NeVt1/K9QScT+l9pkfAPqvF+8fOmCMwTA/Lqvf+uMSImuXaC3sdOO4LvC/PQ8T9+849FBz3IPimPG+q49sA9FN6So8vSQjwFTmal/Q4gFKA4QH+UG8av9cml6vX9GDQ3VffBGq7AvUBee79XdI1Pea7AOV94NeL/29zz33j3fcCnoD1y6W3abev0qn/Xd6n7L7f831EUFU++eRTPv30U1Q/fN97HEAZgGcPzPu2QULuBVd3xnqIlH5xTu8nn5u8PaDuK7XP/BDweltQ3ef9Mvcsn/SWeZ7SU/owSSRwPs/8X/65f57v/+CTD77OGx4LUArIA1SUGwJ3TznXL9r/lu1vvZLXj8u1fMh18rbJq+0+F3XuflQW62US7Ld2hatuC9n8fhvAZPf327DY/fe1POHKOXbfrwfRH9eFkD++U8vbs06RgCLc3d1xOp0+TLV26XEAZeBhbpQPKedN6T5p8lpPfSe7kbQfF+yzB2ox4Puy5HFzgy/LQvcPcY095u7cvrx85XdfTuryrLvGeEpP6eFJEEKMhKEjIl9BehxAKTzMjfIh5bzNBLVngX1R9wHqG67bqgbuYZSbctTAsidspZwHkUXtgFe2TBQFjWwYamGj9d77Cu1Z474iaXd8D5L9sfJJ3Xe855ofV/CU7l94SDv8+LXUblB/hcEwSnocQPlARin+j75tG+2Z5uvG5ZvG7Ot0pPVavXLsNfcpQHkfOGaus07FQDJ3ZewB+d7y+vuz+/E6IEy7PNfY531Msv+9dHnK5yk9ZKZ/BA46P7wkXdSgrxArHwdQPnQFI7xevL7WcPexzNf1oDeB5esY5ZtA8b5z11SBcB08H6I21O76+8rh2rGif40Gzjn4b78gd+z0wSJ3D4arHxu6c7k7vi/zKT0lTyLgzuYSvhpH85IeB1AG0KkNCnldA4TXNM81EP0yO1m+zRh9iBX+IUB5n2RbP/KAPDRQ67GLe/JunqFjpD3DvXavUu97EbsHzJ5NFtE7YS+rB8rAJZg+AeW7pi/voPP4zGolBiUS7PMVpkcDlP0KRhW9Hyz79tlnuea+9aG3/H0I83wIe30bttiDF/fkuVbutbz3Xb8nd3vgrIAqDcSzdnVWv+ceKAsILt13uidPMfysD2jIp/Qjn2ogjB9THaUCKdhILo2g9w2KHvjuA8E9mH7lk6O2rzeN7S8DlHsvnLfx8nko+7xPNRm4rF8urk07tymgKpRV/GIB3aP2tRda8hT2eUFn32/66uIrfK3TD3WqcgKlGE68eP6cZVkAWJblg7oKPQqgTDnz2auTb9UrxIes0ikqij173H/v8+yLfsPIuK7e3B99QPe5DzTLsdexxB60+rKugeD+fl/2c185r3u+8l08owrLdIIoKUCa7BgR3Yjcziy1t4wX8Vy41GMWkf0dk7jLySCE8NWF7XpKb59CFEJMDMfEOI38oT/095JzRoLwV//qX+XP/Jk/88Hu/SiAMmflbp4bUOZwXfTeA94OBE1t0XX2TR7ZuDZeLfPhp77czHrfuN6D4VUxWO8Xle8FyituR9eY5B4Ir/39JqDsJyfdHaO4W5X6tHurFgf7ATS0D4kGkOWhpfsW2uwClw8Ilw1yWWHxvhGTIOEehc9DwfND06333iG/XkkihKjIqxPDkpmmkTAG4hD55sff5Kd+8rdeWMUFYVkXvve9773T3t/vDJQiEoG/APy7qvr3iMi3gX8K+Gngl4C/T1U/eV0Za0785hefWnlBiBKJMRJFtu//PqboBp4Qo0U/DmGbR6zcq3qNa4z0faf9+yn3uQ8UyzX3gdpD9I313tfEYX0zE80uIfu9atNds7FcY/KB63hVxPPF67AGs6yvY1NRavKbFyAs+svX6TNnLvWh9gBFjXP5etuRN7qbvKlv6MUfD8r+1l1OLv5463u/U9J77iJX/7wnvb2JyQQVI0HxN18RYmCYRuIQOTw78q2bj/l7/54/RBwH4hAZxpEQAyEGvv+D7/Mn/sSf4O7u7gH3vZ7eB6P8h4C/DHzsv38O+LOq+vMi8nP++x9+XQEpJz47fwEoQqhgF3x0avlHcGqC7ZcBdVCKQKxAGW1gi7oCGIYhGoCWi0wvTPBwTaEfKGLMQkJwnL3sBeWl3ffS6zV6JUsvmtL93ecVP1GZV5engNUejK4yQ710nn+duF3ut2O4ql6lxP0rKO/zRe9dKJPa9+i/F0H2HkQ5GPusq5YCqhlyBM1I3roV6QYolys3tQrpFdN96WGbwArXkODtx/aDsl7rHq9NNfMb6vuB00Ucih1uv/6ZHlLhS6BUipE3kVNGVVmXSM5q4DgNxGElDJE0JgPTcSAk4W/96b+FZV0I0ca7hHDhj/mX/tIv3lubdwJKEfkdwH8B+J8A/wM//DPAH/C//zjwi7wBKNe88usvvweAqjZMFOkWlKgxg8ISg4NdJ14Pw4CIEAtQBrxRhGmaGIehlltY5hhHhhgZ41DvJX7dGEYDUjrgczofQyBIQaoOtNmB5Ov6RM80HwBeF0C5L/t1DPEh99yXcyGu7+qwv+c1lcB9qsW9++QeKDOQ4kbHyeqfBR+pfQF7gFx3n5JHr1RirwS+kvYU8EuA4kPOvxE031DY+8bMB4P4Dh3fuh6VDb0pm5JWU8usSwKB0ytjimWshxAYpoEQI+PBWOfv/zt/H3EcmI4TcYiVeYYQECddf+kv/S/vve+7Msr/BfA/Bj7qjv2kqv4qgKr+qoj8xLULReRngZ8FOHznJ/hb/tbfiaqSVUk5odnAMWdFs7LmheznFUUVkiayZjLZ3pMzPOMOSpYiN8KaVoKGKoapTyQxRII3bgXKCqLDzhVBKb5cQygMtfWOIMIQh5rHmJix1XIOaaQYPychINkZalHBOdx2Ae9NHAYkNyCWIsr672ugt+l+euU7s72oAmQR273NuvL1Goh2x6QCpWzxaI9RRcq+5xwqFxioq0IWJAfIg4FpKg7yyX7njBmG9q5IW6BUMpXSVvC99u1/eyPslEKb9C5gtcfj95rurdiXfZYH1FIv/nhPSTdfYHiBCimbhBDCSlpWQggspxmJwQAyBsIYGYbBVHxjrGB5X/rSQCkifw/wG6r6F0XkD7zt9ar6C8AvAPyW3/0f0p/+6d8GmBi+pERKiZyVdcnklDmlEzlnUsrkrKSUWfLCklYHTDuWNZPyamCp2UHV/s6rOqhqA0X/R4s4TNPHDUP0vTm2HbiAXix01vPHEDmMk7PQ4M8JQ4wECRzlYOVVVicMMRLxmU0FgnodzKAViXQ4vQE48UmhHi9Ay5X89Y5XwC/Xk7tr9M2sFzYAWbM6HkkPghWjtOHSjtRJAdb+XA+UGUgCK2gWWEJTUfbqS/WK6Z5lXkPk+yjujg5r+1tLY38Jhgm8EWO2ou09hb/ORP+AGI0PCeN4TSV6f4EXfzw4XavL/vEeUl/1GTyntiS2EB0xXVvVXY6u4xyPk6/0uT+9C6P8fcB/SUT+89gCxI9F5E8Avy4iP+Vs8qeA33hTQSEGXnzrmdsYDNjqJ2tliPU/BSUbOHZnsudNOZHJJLWBojmTNaE5sWYDVV0T6uCacmJNq+Vz3YeqsqQV1YymZJihSs52X1idYDQgTgjLuUVeri+2gF7srfn2VwjRdKr+nxYeGYRAIIYIzl8KuxwHUwkEMQAeg31HookTvp0nroOtzBNr33tZaD8jwOuBd2+gugLKG6m2ELNrqxv3Os09uPaidzm+x769nWfFADUHSCPo0FyTktrLKU7x2t/8GlAWt6VrqF8evpzrf1+j23sq/pQ+dNxdVQNdVYVsUmlOmbwmRITTq9MbHdi/NFCq6j8C/CMAzij/R6r694vI/xT4o8DP+/efelNZEoTxeC0gZdeC7vpj3+os0ARpdVk2u1hk4riS3XpqALiiWgBRyYsB45rs2LzM1njlkzOn5UxOCU1S1QBrMr/PnDOqmZQMKFNONgbzUtqnGgiyGtCFtYCVz3AoSKzsERGy2nfZu3gI0QU9qfrVQ54IIRJlIIbANIwMEolhYMSYbnBldZTo0Bv8nuJqB2k9VL1tL14M1RB0QRb2QLl7XYAx5KxbzLgGlB2uqOe/yix7Q/ebFvokYJXKPi/Ulxsi2YvWflLz9iLZ6wi8YhuQ7Zct9Q/WzxQ+G22ofGvA66L3fgYr2d8OYd6vFHxPnR5cif7n9XL6x5M33W8/wd9XlhayoDbNPVDH8SH8KH8e+JMi8seAXwb+8BuvkDfURK5/JIgbc4o+zxR89rfDi/qALTfR0QRWd5ER8obB0n1S9s6ek7NbSJrJ2axuWZW82veyriRVUlJXESjrupJyZi7qgjWjCmtW1rSyLAtryqSsrOtCzpklJ3JSUlYf70VssIYQgfVUdKNm7i8MMoRgICnGRE1F4KwzjnY+BMZhZAyDexYEYhwRv0YcRNv9pL6CTXrdGOmV+ipkLNCqqtTvey3kvU1lD5SvA8g9GO4B9Zq9ZwPAAjlCclF+dYDPWlUFLSDIHuX3RqFrVPra8c16UFT9t1xrhP7zCNMbgOrdi//hPvd7AUpV/UXMuo2qfh/4g29dSFURXFNW2EdEWz7HCcMK7cDRvgNK7H63YooQWgTdfs8c+0e0dNzBDubsv6lMMhcKv9rvpehUs5KTUfslJQPK1XWoayZnB8p1ZV4W1jWxpsyyzKSUmdeFlDPL6vfI7georasUQ4r5oNvTZd+ZLjlwRrGtPNdgAJriaMdDJA8jKY4MHoVliJMZs6KBq3hZoURrgZ0TL3VyKu3amfw3SRESjRXXT5RG4gprLXrKqkf1TxLLl8Qk4P6zArkz+FwDyb26cdmf61jnIltQLXlCz4zXBpiFGZbKbxjmnlnuQbXz9dQur6ZG5av+Yy/C0x17TXoAgF1Xs+6p3+5iaecv9qypP2WrX79W7rui6kPw8wrz1l29XhuIh0eyMscUb2/I05EodsMukio4ghLIm+Ov/0j9u4518Q7v41W6e9bk4qoWtGZwlVcD3iJy10uyeld3UT4ZsKakrMtMWhO3pxPrmnj16o5lXbg7z8zzwrwszPNMSol1TWRXGxRPgS3hUK+bspqswbmT6UL1VTUmGoeBKMIhDs4wjYGOcTCjVQgcx9HYaBwccAeiQAxtJUSZhMpT961c2qWyyyCbb2uTck2gn/oK0CaNZA1kDfcbeq65Ue7VjvOV4/f5re/1oxlYB79ucOxTLqz7lX3udZ/3McuHMNRr59Lu/FeUrt3qA7PKH2Z6HEAJSKiOO9vj9Q/x4CHWIUIbXh0wbs/1QNnnb4O5uPs0ECxsUmTfEwoQ7yvW11pQF//LsX5duDq45iKGDkrKmFg+jOQcOY6wpsSzSVjXlfMysSyrfwwol2U19jkvDphrZZ/JwTPl8l2s/NmZm2s7BYK6062L8JojWQRSQEKEGNEQSBKQxQAzOescgq2ciqH4lIqL+zgTdYMSxmzVHVvVPQXUw2Sp7N+MTzbSQLYA5YoBZdKIiqDZylEFHQSyoKMfr8BlbLN6AGVg4n5RvpzbAK5uca6yTZ9JV7nEwuQ6YBVsWabYzXVPoRVYvf+VaEk7faj0wBjYAuX+d6eM6/pu6Z3bvrvpmFdTO7XLIw/EQi1f18f1VrFzDQGul/egpH3Zb0pfC0apSMxXqyodIAl04JcdIPMGKEMFxnb+knV62TuW2P9+3blr6fJsG+g1jxTWhBujgsV/QOBgoBLqchvzAshu+Tcd54zmxPm8sq6J27sTy7Jyd3dimWfm+czpfGZeFs7nmZSUeTEwTbJWL4I2cOy/kLL1k1SeBRZnow5r3DljHNwZfxADyCEOjCEwhMDNaOL8OBj7HIaRGKL5lkpEQiCEwYxX6supMBC9aKcdC80EViKJyEpkDQM5BNZx8POD5xk8z3DJKK99X7Oe77+v6UV7XLvGYuu3YEs0o5fh7HPDOu+jvr3sn7qb9SL9XtnaixZFTL8GpB8wfQA2WV3h3urGcuXYQ667TI8CKAUYJL02Q9M9ZkSVUIFvC5QiO0apeZMnuIjdA2L5lh2TDJ0+6LVAqSZOt8xbkFSX4XVzDioyda4J4aIzKxrVY0WYnuwYAjnDi2kipYHlRSSlI+vqrHNNzK7zXFxcn+fF2Oi6ktJKTia6Z7fg465P1aDl+rbKyNWqGbPatwhRhZBNhEeElMRALpgVfwmxgqlIhBAYghmVbJmpEEMxMjXn/iB2TiX6y48boExiYGjHRrIEkgPlwkgm2PlgIJwlOIOPZlzKoX0Xvec1gLwGlNfE8b0+s56Tbd5iid/kdSOSBvvbXVh6trktuEykVXlKi7Z0xUImPWjm3Xk23z1cPEj1tz+wV2Oiu1KvXXt5p34V3DbLlbKk/CP35AmXx6//+dr0SIBSGWpw1u2ZPk8Tozvwk/Y7VgFOCWrDxYaM2Y6LiN1/Sgrdtft7bn9fJlvA0jGiHUhqJ6eUJyi/rrVFLyJt1ALR/z4YtxaCqwqOxiGyojmhObOsKzkllnlmXVfu7mbmeeZ0PnM+nVnmmbvTiWVdOZ8zKWfWdfU11ckdd5ODpbeNKkHV29yAs2+31SextXuGIGaJJ0QkRMZoLHOMAyFEpvForNTZZ4zB9aLRWKgEkBF1MEzOGLODZ3JgLAC5MpgeUwJrcHYZB/vNSHa2mYzKk7OL7AUQ90DZ49TC5YrIC/0l91vlLwxN0oGnwDK0vFrAck9nhysF7vWWBRx7hpkRySi5E+s9T+mb1zRL8gBx+BLRHpyu3dPc/WRTXDW6yj53+Vsu/96B6LsE+30UQImLxteTPVxjhI1Jlu9Icit3GbSFYa4bUA0b0XsrZofaobagvAfTa3NQ00XuwHFzrr9r6Eou9yyfLWB3nLQ7rl19oIpYAoSMBCUHd3saQXNkfTaR80BOEyk9d13nTE6J+Xwy9rkspHVlXWbWdfHfMzmtrLOJ/SmtoBkpPqqudxOHLfyd1HZUF/CTgUFIzUdUJJBjZJXgLNR0pkM0JmqsMxDjBBLRcAAZkDAS44EYBoZwBIkcg+XJMpFlIOtQwbSJ4yNZ2++FkUQgh0AaAzkG0jCQVcgayVnIOV4C3H3sc886X2ck2oPptWuLq1JZqqkZdNxVYu8GcI052jGt4Nmzz8AlwH4F4vmV1KtDe9tEGaEtCVtAtL8FzPXsXhBld/zizvemRwGUxo9yd0S3Z7WARL7QUcZOtC5A2UB03ZwLNHtqWfpnrLRTdBeYq0yq1KJYxq80+kb0lp3OTekt4ZdA2ZffRO8Ggs0qfx0orZ6lqYK4+sB3qQ1jaWEPCMJoVyvktKA5sZxvyClxnhfWZWU+n5jPZ+b5zHwW0ho43a2kNTPPxnQ0r8ZeffUSmgm6gmSCGyvKM1TWkHfvtuoi6d6+uMEoOFgG4jAiMiLxiMSRECdCvEHihMQjhIEYjyADGg+oDOQwohpRic4yIwtDY5RqQLmK6zzjQI6RmamK9EldZC/Mr7eaO6BpcU0qANeBnfRuSwPNKNSzSS9PSnkFA5Nfu8aOtSp1hZCIt1xy/8tSgR4Me5G7GJE6g6O2PmafBpjFfaY505X+2/+xF9/La+0lQc+x98d5Q9J67427Syu1gmMPhOFKRK97gLLUcfMc96dHApRKZH5tngIthT1uATCxN+oUhlPy9IYeQav+rTDMLRdsgNS+2RmCyhW9trE0fjNQvFEk79rA7pH8efOGRV4y3K3zTcubN3cM3XNUKBdAFBH3A4yrAacG8x3NN2ge7Ts9h5zI60JOibScyWklLWfSsrAuM/P5xLrMLOdb0rown8/knIyN5ozmVP1Bmw50l7S1X1h9AIgPhSAQAkQz2iQZWMOEyoCGyd5MOCIhIvFAiAfieEMcbhiGA8fhBokjhKNNtXIgORiuDpyri+4GlAaqicgiozHNGFjVADcdzfq+6HjJFvsIR9d0nT2YlmPzLs/SlXHBOmMzDmkBzmtr2bfsUStYFga5jx6fumN65QMPBbmrqReZu/cv/fH+ow0MrwLl1c992x5cA0t5q+d5FECJM7h7k1wCRmOHDg4u/hWdZdNl9nkuwSWgtb2aDrOAzRZktkBp//aWuAa5impgD4a5zoBcWHr3PqA9zPa62Qv1gOjm/IWO8wrI1jLF2ktCB6KYu5DoYO5DGhCy+QzmTF6jAeUcWZeFdR6Yz7DO4qxTOA2ZlIRlTuRMdbTPGVLKpksty009crtZ4/uG7BiIYGH1AmYUIqJi+kYNg7kIyQRhQOJEjAdkfUYYn6HDEZmeEeKIxGdEGQjhSCQyhJFVRwNe118OrGRxoJTIzEiS2InqQ2WkGTcKBWeHA+ha/hZjgEWlWOwtK6aTXP3YStsNIzizDKCRrZ1GMD2mUN2SbLlnY1NGA3uDTykYP9fecvvW7nfujvWi+14c1931b04bmLqqK2xgV+QlKCvDWt11l5cub/3elB9231aI7pnkGx7jUQClIqyEfmhsuJYdy3WgZ5REaKxSQTasMVUIs3Aa1OsaIJW5tDS90PSDvbhb6mMBN8pxdcjLRBA8UlEPbeWFa/1bYJOnf8rs4JwpAofdowfncm4vtF97y3LlWDm+Bd7G1vtJxFQSmSjWljHYZBaniKgQEEQnRI9IfmYGoLSgKbOeLfrTcl5Zl5XzeWE+Lyzzyt2tuzSdzizryu3tiZRW5vPivqB6VU2mkq23SiaGlRjOBp6jDYyNPlIiKQycwggSIR5ARsJwg4SJcXpBHI4M0wvG4YZpOIKL7kmMUc4canmNdTbXo0zk7GL6Mo6k0YFUTX7RYvW+jy32jLGwziLSp+54ue7MJQtN4m5HwcX6Qyeea1fY3hzfs8/yWbq/e13JNcDsrenF5/Nt0gMYoBQ8eN3mWHuxvO8010T2PiktZNg14N6mxwOUOtqQ75De1A02exbmlLpBXj7ZQS47UGaiD/bo4nc0cVx7hhm3FmXEWWmDuI2B54Kd2VVNOG+rbvqZsQnu9Yk2PLF4I/XO8zgrRq+BWMeGpYB+fzzv6nhdfN8CZd4dT2SEFrLYn0qCHZNcjwciQa29JVkE8nHIBpjjSloTx6OB5LIkjseJdUncnc6sy8rN4cCyrJzvZndvSqyLuS+llGtEKUHQrEjAdaLWuJKdadYaZ9BYo0WpBDQnA8GckDCScyYMZ4a8EoYTMtwQguk6iUdUBiSsBIlEmRAGRJK3SyRKJot5HCQJ3i+jfYcBi10VzfEdse+AAWdhkYVRJvtWJ4LiLkWygkZteaTlrVJyFeXFQDNADUJSgKDuQ+Q30UJR97E5t0Yd2QBkA0oh746LW6lfR8l6ClR+O4hJB4IbSWIPkFL+79hxxx61K3ez3FI315djLve9ps7b9CiAMmvkZfrIflyI4NK+BCRuQbJZvXtjTmNFfZ5ejymbzmCpGHqa03ovam/F4JIUaU7k9EadBmF93v7l5zKwKWJzuze1nm3NSsvjwKVb0ft14Hf54UrefKVtbdVIab+RBenavLWtMsTFfg+mR74huUrF1B4odXFK8jijy2lhnlfuXp14+fKWly/v+OSTz7m7PTnbTHV1UQnE3Mfg1MJAY1G7dBo1tTbWpKjMrOtMRlj1C2OgYYQwQXBxPYxMx4+JcWI6fEyIB4bpGTFMjGFCZXLjkInpi5xJ2tyNVhmbRT1OpBhZJ3eE18FjCcuWUabdd6/rLIxypTHTMzv2KebEXt2WpDMA6c6KDjXIx1Vv+QKCe3/MrZvR5WefZw+c2wDX27Rliw28mhR2ca2HDrwophVypQ6X93cOxmVhl+lRACUKnJwGa6+L6FJp69hWbBRn4izBBomFCjLLL0qQtnKnGXichUnhfnu9X+OCsa+F9sxtKw5vBXTomeOe27Xi2nV7nekle+yB+xJUr7HNxlCvASgXZfc6zgaCyQIHk4m6VvZeJyex7ySxli+qZFZn9oEgzuI9cAkuwg8iaPalj2MkDha+/+bZgeNh4nyaub01P8/T6cyaEudlZtXEkleXHxw4S9lq0ngmE1RwsuntHQi6eu0xtM4lvmkmaUIkctaMxJFlnQlxJJ6fmXU9TEg8QDDru8pAiEeESJCJLJFBE6tEMgMDqRqMMoFVRlKwFlUEDabb1Cx1+SULaLGMr1j8gwKURdc5UPWhFQzvc0kq+tLVdZ9JDVirk3vHPsvvCzDsQdDdwXZAaYs0LlcFtXis10HKB0k3Xujq0ElfXd4L4OxJ6ia9Bvzk6p+vTY8DKBPwxRtQvbBqX6yRQqjRg+rHz5XvoOb6Y4M1N5CQPegVsWLPzqDjJ415aZmHimOOv74aDb2BY4Muajl0ea7dc6vp7MHsOkt8HYuMXAfD6+VRQbAsFgzY6qbBmeTIQvFZjW7aKG2biP53pLHN3jUrVwNSnBRRCOPAqAM3+cA3sgHFek7kNXP76sQ8r3zyg8+5O5345IvPuZvP3J5OLHll1dVYZqdqKr6uBpJl/yX1AV56QCaTyJrMOs9CSoGkwnp+adOLDBCG6oYUh4lhuGEYJqbpY+JwYJheIHFEwhENA1kmb7nB9ZiBVUey2LEkA0scWWNk1ch6iCQNpDxs1YR7NnlNj7lno69zcu9dkkr4uMVZZ3VyV+rSyrqPh3tFVPap3c32gFqOwRZkdYtZnfjbn2iCZK8j3cGYFgUX9ziP9/e/dq5d87AlkS09DqDMCq+2h9rM4cDSqTWKBXTz6QDSvhUNwYL7Sqyss0xQUrdc6BvLz0tjmK1CWzZZvhvgbWtOFzmoXrULlKu0mVVE20oXdZAugL7xS9xb+4sv6DUg3DLK+l3L2zvvGxMtIncDy8xA6MBQXcBMrAyVgWbPE12lEEkkB9Ugua6WMuAqrN+kAJHSUhDHQAjCDUcOx8w4RZZl5VvnjzkvM6d55u58Zl5nXt7dsqSV0zxbeLq8evjI1OKMVhWIR3+nQKUFeQ7+n6pFlVd/YrIrFHWAPLCur0gSWU6fI2EgjM+R4EaiOBGGg/l6hokhmnN8cYjPYaQ4vdf16r7CaAm2cijJgKqQxoBOQkph40okxbdyB5RaROwOIDc+nJvVRbL159yxz2oH8kAegpqxSL3/liWWHdvchIi7ENt348ujcjXmSPWAsJR313Tjpiuv/rsRs7eKrp7kGMvqiuwp7QPw8pEAJXDrf0v9pz/gh3XLHnvAhAqQRGsIY59SwVMK0IpfJ3pxK5WuPL3M0wvVlnwQNkzfiAeb6CvXJrxSdiik2UFLXAfpx0z03wOlNnashUGmeqzVrtM/aqosOrg6oizx7HW7tpNPYnCDWMKE1pWBQPbh3vhTdDObQUwxrgUH0BaUJGJGM/w+SGP5YEwhIhB9Mzbg+Yubug3H4nE8X7665e585vuffsrd6cTnr14xrys6Z5K3V9lAxGrQ3pypBbyOGlydEMgqflZImlwXNpNz9CWUxadisA4Vbwwox+cMw8Q43TCOz8x/c3SRnRVCBB29pVvLFX3mLBNZAudglnYh1pByWqIXLWIAVZzRe1/MjSWcZp+5tnhnxsrs2GeNJl/FeAeV7AOi9O1EseM5Q3dAlGwIu2GfvWW8pOKqVJjhNYBMlxGLpIBgcV/qB1ZhrfbdcdTdpx9zDTS3wHp/ehxAmYDPudRl7Cl7zxqvidx7ZnmNde5dr3p1h3THyqxXf8sub3lh26oKrW9tlCtlj+r9c5VUInEFW12QnWXZOw3OdLsJQ/y7NFthpEUnCGxF79QFE9myzlghoBlnehC0VdaLA+TqgLl2Qua6OTcw+DWri+lmMbayDUwVHEQzQYyhii+/dOm4DVCFoAISmOLAOEUOx5GUM9/69kesa+LufGJeVl7d3nE6z7y6u+PudOY0z5wXCwiy6kKBaHUWuWkJD8ShCFkX93Ut4Z+bV26Nj5nPaI5o/pw8D5xOI+c4IWFE4o2tGBqeEcLAMN64I/wzxnjgGCeyO80vmAN8+a4GIRlJgy2tXIcBJbDmaNLKGrZuRD2jvG+L82si/CYmZyea99LzlaBGos4yczDgWwfr32ls7PMCrHqdJ93v3Fil9mK+93E3CCpd/68DqR/EexbZ7lmCC0s//nq8uSbJd+lxAGUWM+YUMdSmrC2eFCZYQLAHwg1QSmOWO6BsQKgNMGujSytX+uNAkI0XwyZvvhAuKli29+cjvttm9gItu7obq5VL4O6f26/p9zqXgC9h7Cz3UsRrc18R7WN0ur6Q7pjmyhCDGyQiyTSPYnq+qgekaVTLWv1Q44WGyivtvOC7lKBuZDNh30ZfRgnu+iPSnmnTRCIgEQkwMqDAzc1EVuU8P2NZV16+vOPudGIaJ8bhFcOdxchcV2EuYnk2kbvgcdHw2uRnbzBL4TDFA7yAauHCgUXtGVL2aEXuAN+vS4/jDSGM6PSMYTgS8hkZj0Q9EuMBlRGRxRQWspK76WdgZZVIChGJSjVFaiC7UUdXQYqBZ8TY4OY32xVDxQhUmn7nXiklulH/KaJ82h5X1WocEsEXDcSuUXMFOUsFGItvQsno7b4B13KNdnlCy1cGZF2W2UCy2h2cieqmDl0q6rGOYd6XHgdQJuCz9vNqcKaeAV5jizvWKIL5ru3P7cGw3khNlK/3qqi9/XjWjXje08k+FbC97yX0x3eLCzYTwmuAcl/HHAUCpOB60+BstEwefp2Evf/l1trdu1lHElNllAuRzMRMJDOz+rFm2FkZHVyNjRajkLFN+7tYz0eSA2izpsdg6oMLFUWlFHZABEKM9npj5Kjw/Nkzi7+5Wmi5ZV14dXdinhc+/fwl5/PMZ1+8Yl4XTvOZlG23zgri/rEll1ioN/Xgw34uucfCgrG8LENVYuTsi2pTtHPrgBI5303MMkAcTVyPE2G4IYSJYfqIECfi+JFtyxFv0DCiYSLJ5C1bllgeLBLSMNiyynGoYvqqpuOsDHJv+Nkfy1yy0b2onq9893/7vXTVRhbr+WDqguxApLGz+/RAmRHKMssORKWBXdsFs9ykZ46pG0tlTO9ZbO7Wges2fxMB702PAyhVt3sVsMeWwuB0Cyj3GXPKSqbCIq+BzsXKJqnibQ+UhbEV3aUUdtgxyk0b15fxplRmMWfORWcaMIveveB+pe71nLPpwqCL4Uswh+ZuUiZrE+8dKFWKFd4G+1CDVlgDFtaYnZVmkkVEB4rLVrErF11g8Rww0HHjAJC1sFIbDIVzVvt7NfD0ydlDIRRKtX7Gsi9zjMYgBmUaR9KaGIaRZVkQFc6HhUDgvMzcnmLdhXNNtq/RmhOa1cCzjKGOmVRbhP9r4rkxbpVAUp9qnIEmtSWWKc/m/J4GNJgFXIcbNI5InslxYsgLEiYYn5k7UjgQwgHCgPiKIQnGOqPY0srogT2yt1/26O9EVyVkYBDXdXof7lln78BecGUfbzM5eyzM0lWSlWwnRYN5MRhANvapxdquatcKbNVQhRmWjlzAsWOG3bHGLum+r/WT9pGqK7XdDIyEquNlAeJ7ivL0OIAyAZ/yZnzZg959OspwJc8eZKIPMr9nfU99nv6+++Pl2L6BH4KRfernh/J8cAn+DwHKvd42yBX9rdbfGl28D7YMc5Vo+QYhhuSmh8YWjUmeiSRm5rqob3QGOTnbTMxuEY8eQbKEmChmnQQCQYvQWyrnjyOY4D646FYZiDeYilnNxWYwKYPPs4mveR7CwDBGxmEEVb790cfkrCyrbadxujtxe3fm7u7Mp59/wd3dmc9efsGSbfviAoyF9ZTfxVI/xjOIILFY4oQVMTej7KJ6HMG5s6p4TF5fbrlYKLiZ0RzZwxFktJVC8UAYjsThOTIcmaaPGMPEcXoOYSTHGzIDuTi5y2AxOSUyi7PPcSJJZGXait8XSyHZGII06QVQSmGqyoZx6uJR82dv+/KuVqHuXulWeS0uSJODZioMU1Etfpyhu4nSVhCVjl76Si/Ohwp8Gwlxo2gtEx4NLDes9PXpUQClZmG5E9s0CmMSUVzfZjks41Wg1Mae+uN74LgGMoW50RHBOsF19+w/QBPLr6DkQ4CySuTd9R1QKops6i6XQOl/XwRY6QE2qDfk7riwBdGq05XaT3MQiLbMM3u8yOy6zMSK2S0Dyooxw+Dd14xFhVdCYakCUlyDIDGgkpyBGj/NRLIoZdV80x11KpIrfVq700YetLIWxQ1B2O6UGpQQzdMzqjDIwCFORALnw8xxGJmXlbvTySPFr7Y6KNlumTl5FCSxPie+jQnO3kNlR52lXQQNNrCz4kE8hBJkeGEkayToakE+1gXJI5IP5HRClol5vSWEibA+R2REh2cgI0RjnYWBmq7zQCISJDmAZnNuHzzaexRyDJCsPSrTrNZvtsagjC0fHcRAsQIqTdfpr1uzg2VUZ5Pa8thqgMpKC95pHXyYeO4v2YIMh50LX7mwHwAO5FXMUFpH6X2lN73m/g51JT0KoMwr3P4gck7RQTJzM2QO0TrXJhTTNaa1F1FfZ/W+j5WxO9+nK7rACya4v2bz8mHzYvZM/woIVv1qcWuSLm8/EZQ2KZ+SZyhtoVvW3YnmtZxhd2wAHYQ0CGk8QIQxJIp7kHHCwRnnSnLWmd2lyFzOk2scbeed7OzTdJNGm00nKkCxuls4kyKeB49stJGk+vYv7VoYZmnPcq53yVOqMS0iDBI4ThMfTaAvlPSNb5NT5nR3ZlkSn3/2itPpzCeffMHd3YmX6y2nebZgxqmYnxwwB1dhRLEVXwLRmbuE1Sa9aKxHq/qohXEp0dkXDmSNrGkkp0hazDF9IbLKhDJ0LknPiMORaXpOnF4wjM8Yh+cQJjQ+R2VglYmVgYWJFAbWMDAP5p60MBkx2ess3aCjSbfuRdkYYVmLbgCqsGi7XlvevSN88+uUzqez3A+0RGCah068Kxbr3DmY953gyuDbjMO9+d5LqH8+DCThkQDlnOCXPgvM2SPnSODFmLkZlY/GlSlmDtE7Yy7A2c0oFUQcKUI5Lm3S6RnkPW187/HQ/ezO1fdZv4tuRbrfParuMBPoDSwKWxAUkGCzvriu8erEsJ8UekDcA2Tc3cOPaX9uABnErKbZjqccrDPHiSTmMzlg+rLe6l0s6IVhlgZSxJdtFuHbqGtysSkQvSmKxbzFdTIdZveetftyBim5/20frUv0/FjW9lp6AFUs8nqOHGRiiJnwLLAMNzwLN5zOM6e7E3d3Z87nmdu7O5Z15e58JmlimVeb3MTUASpOaEUhGJjKoK0vetsL5ho1BgOKOGRjmyGSfCnk4tPJ4n6YOZ8tILHeIuvEuh7J8w1rPJLD0cLNjS8gTDAacMZ4QwgHokwMcnCWeSBLZB2iLaeMEc3BwPOKAzvKxnFdk+cZbEzWdeYFBIcidgtS9aPSQLQSFW8XjHk3bPOO67psVemYZfnu9JUbgOxnyRLZvXQQH4965bLXpEcBlKck/FufBpbc4hV/8wAvJuW3vZh5Ma4MkiiqIFVxPVQZ4SXOY/N5syS1AyOCXACMbluqA6NrwHjxe0Nh2gHtRIXi6rKZu3q0vFaf+hEbfFEsksxVkVu24DlcYZC9kec+Rind+QGYpIlhEdseIQprHIguJidWVtYKmgqUIBqDGDfMhLq/ufMDMkLE9khayS46tzVOJowHsrj7d2nnor7qGUEFRRydoK5hrt/XPlL/luz9SSHKBBGePTvCEfQFFvnovPLq1R3n08wPfvAZp9OZ76+fMy8zt/Md2TmmvWvt8NnehwyuU5XWJyX4EtsxIVGA2bwTgpj+kYFVBpIG8zHQwJz63SYHUhhZZLK82LdM3yAMR8abb5rz+/QRMtzYGvVgFvVFnpEYmONEGlqsTYvoDpstevdMsHc5yh4BqwNVLQC5aI29KW440uJzXvxlV+r7rd5ZWWyJpZZxXG5aXnwvOrXUliXumeRetGDPX96ImI8CKLP+gLvln7CVUT7uPz3/Hm6X38VpzdwM8FufrzwbMt95thLFWRuB5gd0jWLFTmQL5q5QwAXPtqeL0rdg/wbZHrv6Wy+P7YEWeu6/qW41LknXRwTXNfZ5d+BY2aFeqhsKCBbxuldLxO6cSAPZkRaUYaQFjx0MeHKEJUZyEEKMHbsM5jgu5oEJQqT5HxbhuInm5pOp4P6dASRQfD6NlXaroAq4lTa8AnrbseHH0058z8EB0glLNRjRvr1cSTCkSMhCjIF0PPL820fWNfETH3+HdV25PZ+Yl4Xb04m7+cx5njnNFshjzi6Tlg0lq5RjkoIKyCgGkGdq+8eQCXElSCILjNF3lAziyx3HCqRlWeQ5+/LI8y06j8zzJxBGGJ6hwRinDM9txdD4sS27HD9CZCKEI1lGd4KP6BBIIfqSSvs2dx+2QLlfBVRdk7T1o87ibt1CmwGpn7BLny+h4jJm8GkDh/tF737B8bUx2aULd4o3i+CPAihVX7Hkv+hikVX6pN9ilt/BqqarPA4rWRPf1Lm6OzaE6aymGy/toeVT82tr9Nv9DCX6lSUshAOl7o/195T6V/97K2DvXkYPwD1QVhFkC37VjiG2VW1jw+LinHjexjSlF6t7EAzcD5QBm9UD5sYRaR219MtyTS5NKehk7SnB3C/MHQhUbN2K1mWN1h5tPbm1TfJJrIBhcoE7qDHJPnIoQrVS1lbtQbF+OkDsz23UVNKsuAlEtW12WH38uk+CkAMhC0OIqBjb1Kx842huRafTzN35xOfxls/1Fa/WW8gwp4W82M6HdQ+aUCZrl3LEWJeUOJURdFFjoDFZ3GHX01a9NYEkpgM2HeTCqhYXdNXASU8kIvPyynw8w9G2v5ADYXyBDAem4x0hHol59ajwzwlhQvWA+oohiUNVrWQE1VAt2VKXVmL7BvVhLpOWIQfR1EbVDdInLXG2WtQUFOGuvIOCj6l0Vh9T2o31Oq7u+/kGylj71Z5eXqZ3AkoR+Sbwvwb+w36n/ybwV4B/Cvhp4JeAv09VP3ldOVG+wcfTf44xKlMwYDwM32CMv8KzwXSUL8aVQ1BfHQI7KtX97qlWT8t6FLFj6iJey+OpttnrLD7931KZcAuG0Td8aNi5fx+5WG8cHVOhlB3Yym4y2FvBazNIp2csIrhsQXFvuNmDaBW91cTvia3PXVndsQo6gI7CPE4s0fz6BgfHgaEyzQkD1dT5YxZHdFs5bShcHiVSVmKbciwgbbWOt3E/p/VgqA7y1bKqVtcNayxW3JJnZ+FtzFK3TtZFFFWbZCcdGRk5DAc+Cs/5zuFbzB8tFrn97sQyL3z28iXneeazL75gXhcLUJwTS1p9wlNk8vEfbRJkBI2mcqEE7y3vaASiMo0JjZkpLEb0AizBWP7JmeVZbmwPdDkx68CcBxZfbrnMP0BlZAnPyAykcETCAYYbxuk5cTgSp48IceQQnkGIqBwswMwwkIdgO1WmYO+jOrBr02/6R2dtInZhliVw8QJ1u6yCh6F/B1DDwtWXs8+4JzO6+7wpfXhG+Y8D/3dV/a+IyAQ8A/5R4M+q6s+LyM8BPwf8w68rJISRj6fvMsXMFDM3Q+IwKFO85WZYGUNmCpkhNI6nukcJ+zbrWJNT24zRkKHhleXtm2kbN/h1QFmQcQe0Ir48tYfLDUXcP71xW9/xr5ZX6yHdV/+82hhm/3gl0nUBk2r99vO5yxvZ9rnqXLy5c7umRBP3/MUxPDtLSsFowOIgGRw0S+R18G2JFVZfghi9C/abxlm0cNzg45GfKMwVRKQZ6Lr1+L1uuG3WUQ/smKdZyi/E9atAKc0i3DNTsbcXywQV4RAncs4cw8QyrUSNnIczLMp5XrhNJ+Z1JubAqsm2EFlMalA3eGjKTS89YPq8sbxfkCgWBCUqRCVEJUfT/OZQlgLEqgIxLXI0qUrNY8GisA8kPfueQRPEo+1qmc/ocARd3Z9zweJwLiDm/C4yEMKAykgNz15cfVLXL8tgE8tWmOSGNPQSdXE1yt3v5O1dLI5a6aZ/lwDYW/bQMOI6ENZYCg/A0i8NlCLyMfCfBv4bAKo6A7OI/AzwBzzbHwd+kTcA5fNx5e/4qU8Yoolmsa4Y0Spmt9Bnfdo/4cgWOPfsUpDCzAqQVb3XNUAqd9uzzlLOHkCv1as/Hrvz1yjh9ljxQLx2rl7jsotk70QFPFe2ANkbcQa2BLvTY2qwwcmIzfRHLoPF9t8l0MIA8zQicWCNgSiJhVAZ5URk8NAaAyurM8tE9N8jIwsji/+9kohEWZl0tCDB0detizLoag7rVZfVfWv3W9m6uVTwU+qWsaVdetZIdz1aJ4k64W26XvkhhGB7lj97dkQVXry4QbPyO9JPsq6J83nh7u7M3enEZ198wd35zBfnVyxp5Zxm99d00I80I94CRF/XHRVNzXczx2wMdFyJEW7GFQ2BA7aIdM4DQw4MOTKFI0lGEguZgRMja46cdETzQE4j83nkjoh6qDgZniFhZJheWNR3j5AU4oFpfG4xOaejSw1jXU7J2ftQ2e/n5N9nb+fyPYPM/vdddy55/1sDsoAuI6yDfXIGmdguLyoBPHc3qboVdgBSxlHmTeldGOW/D/ge8L8Tkf8Y8BeBfwj4SVX9VQBV/VUR+YlrF4vIzwI/C/DixXd4Nq7Vqm3s4fKaHvkLMciqlGjhNaJaaFt0iWTaFp0N6BpY9SXub1qOlanSf0t3vD3RJT5ezFT9VNrAUjf1Kmwx1CMXTraVde7i75Vndf2b6cW01kOKLkmwkyVuZ1UQcYnJqx+Pdj+ibBZQtKDYXkYW44aCMY5uAmqu5WasMcOPVM5Tgk2AkMSZpi8B7LefiGSPqp482pAbfAL2O9t3XSrsx6pRp9OXyX7Pbu8qWq4JziLLWHTmuW3avV6l7DekVn+UmCMpZcZpYJgi081IGAM385npNLKkhdvlxJoTp3QmkUkkY35F3aTSlj53m7DVbYC9W0j06JvBfFgHtaWNFhE+mgZFI1k8GIlrlTPJl26uiEaSrr7WfUXDSNYVjROaTuR4JAwHNJ0MKOMNyEAOB5QBZEJChMFnoRxskqmit0snC03ls3j7rZgaqbgfrcBgelxdxcV7a18pelPtX5KxBJHViJAkNK+131cu9BUB5QD87cA/qKp/XkT+cUzMflBS1V8AfgHgJ7/7u3QMDciugWS9Duq2H2sOrBnmNbKqsbwo8I2DMdFm9CkjwJikbkqTXaPRfe/vTD2/cXC+Zimvx8vvXvZ7XfmlHcp3eEDecv/SWRRSaFl6kVu7vwurLOJOapdXNlXAsjBI1aqrLKJh1WMWV6KbgRRhGUZiyAyyMjEzsHDmSCRx5ECUxNHcqZmYGZkZWXwpZOLoyyVLiLc+BFxQ13NKdrbpgT20RVzvP6KZkLJ3HDom6myxLu1z404fWizJlm32hqL6SrSNN+n6kZpsEFWJGiyaux5R4Cfyt1FV5nVlTSsv7265O5/4weefcXc+8ep8x+18x3ldyHTO6hhQlm0scs7ma4uY/6sAMRP0zChi+50TCa5BVhYWNWPQwIEkkRspAfN8F8uycojAkm7JKZAXMxadNZjBJwzE4UgIvuwyjAzTR8Ro+k0ZnsF0gz57bv6d62Bt27PGZfd3xzqrk/pqjFMXQVaFc7TlkHP0vM/sPSbtCjRPepETWtjmZuiVmAFyfTju0rsA5d8E/qaq/nn//U9jQPnrIvJTziZ/CviNhxfpXlAZC5GvQspCVmHJtoZ2ToGcYVVhyYE127GUbQ/gMShLXjnGzEeT1rBjYNxtyyavicvXQM9Z5D3ilm6UHPcB4esoslO0Cth9PS91L+AvmF4PU3xJd2CvckF86z33t7iG4z0Zr1Zvv75YyIEaISZ6xxsMgDQKKXpsxRDIYrsYGo9JKDPRxWyz4K4szAzaVvqUbShiBcps4ePUttNtMS+VIGsHqmWfJGeiHpXIYnNi8TmzBT0Oyb4v9tryb/FguWXLmE3krjoHyqZ59+e0MFy8O7mUMuWBqIIebpiWgfgsMi/mYnR7PnFeF4/gnpjXhaSJc7LvlJPP/w1Eq2M3JpgMvrWDhNWJs0lIGVsJl4kkyQwkFl0tBpQKUUtwlNEiFjEwIrbqXxc0R1hnNEQk30EYyOkOjRNp+QKNNxBv0OG5LbGUZ0BEZEKHaGL9GAirGGMshsKETb6dNK0zzTg0aHNf8wAfWqO/2/px84t1X7Zipt+M00aQXkfMSvrSQKmqvyYi/46I/G5V/SvAHwT+Df/8UeDn/ftPvVW52SaGuzVwTpG7NbLkwMtlYE7CF+eBJZtz+pKjf5fo1HCImbv1jm8eFo7xzBBgCL24fB+Q1Rp0f8v27wqW912/A75rLLOc1/6aHpx7sX5fX9kd24vjBdW6vL2PYam7QnWl6YvIVz7QWGb99o46aGOShVkW6WcADpg/3hhIwwACs+9fNHNgYGVx1mj6ydUDillQjTMn13r1jLIEI26bm5kYvwNFUscofQfJsFi8zdDKK1taDLKaWa8Ec3DAlN7Bune47p3ZwcXirq1z18b9p2OjZV4cJDBI4CAjAN/mG6gqKWfuTmfmZeHTz7/gdD7z6RdfmBX99qWB5pIoMpLW0HQKwSbOMJgaIoaVUczBv8YY1UhmtR0pZWIlsKhJabY4x13qZEIJLM4wk++hnjWwpEBKtjmIRYEv+wOZO1IOB8LwHIkHhuO3keGITN80C/vNC6IOSBoMJFdx3aRsl1Y609RFrWJFf1m+Z+pxnQPMAdbJ3l22WU3E4hNYm3cs8iEoybtbvf9B4J9wi/dfA/4BbLT+SRH5Y8AvA3/4QSU52icVTmvkN24P/OA0cbsMLHnhnP4iWW+NUarbUVVMcsp1dTCqz/i1V387r5aRIIGPp8S3Dqb/DJKpyxw34ER37A1JqNfp5uC+LEMh2fzuy7km6tsIKltibYF2y35b9JMGnm3vkUYNRQYq21RxMbIEdfDRWiIp6W7SLX+7DcpUvWpAOUHdkqCKqC6OJzVmmbDvEetpg5AH0CjMcWIJI2scK1D6EHPRe2XWA0ETA3NliEHM2BdosTOD5sYoWX1vHv9IA8+BRJAGvG0zhhYnMwbbAM0YqxJzJqgSPMxYMxKJDc7SThUYHSyTv6OiS6wAKaZKrpOVv4MuQEsoYiGR4zAxpoHhGFnXlW98+wXLsvLq7o7TfLaI7rOB6SnPbuV2bwM18VWykFURsbibopkQMipC0gWVSGJhIDASTQWoUFbgax5RCUwOhtnDuiV1domtJFIVcrCllqucWHRkSSM5mz9nSi8txmb8CFuT/owQDgQ5EuQIjITpSNDIMA6EHIhLtHY/YNtWFKm62GmSNnA9gyzGLGWxdmb2/r56DAEtQ+9hAFnSOwGlqv4rwO+9cuoPftkyUzYx+5PTyK+8PPJyGZmTovqXge8D15/RJm9h5bt87/Zv526dbA2tzrwYy+ZbAO27gd4eiLjymwoc29jr/RrUK9ddIZPbFHan9r4TfZ4toLZjsr2mAKb70FSXKaV5VBQS2mO1zyMFg1sos64aRUcJroT3+xamVaLRDAYaGjGF/egi0hTIUclTgCgs8WBAqQtRDLQWZ5QzIxZEeO5EbzV9HyVy+1pBT+rx3AGpi+UeyT1qYqrAuzZG6eUUtjlGy6MVClJzbUk4UFp7qIJk122WtlqhhhnbM8r62c1KZdEBTZFymIxlPuNgLDMpKSXuTrb2/PMvXvHy9pbbuxOfn41lntJM2cpXVJAkiGTMlmftE8X2pjFPskhUY5YqZuyxSGuFkAwe8Wgw407H11f67TECStt18kzknG3F0EpzgJ/lmQcmvrGllcNzZPwIiUfi9A1CmDjmiagRJpBVkEnM8p0w8HPRWxItknsBUwdKPK8kYA7NHawb7pVvvCE9ipU5iDEaVWWMynNJfPfZDAj/zheBlJW1e8ZrAq3ZUxTlM5T/K6f1d/Jrr34/pzTwap34bc9PfPOwmi/mvZJzkTV7fSE0q3cByWuAdc3oUvLsgGxzrZ3fvquCYtfK6r+LeL8He6l1NoW/IHXZTmiPWnWPoQV0CC7euCVSi4Fnko0vZbVeDi6m9k7RRQSfMVeWQSwoxIDplyJwkHpNEiHHAYm25cFtmAghM3J0QCtb5GoTqz14cJQieq8dcBb39pK/cB4b3qOL+9HjZ5aYmSUaUonE3mJs+kYPMRFCJo6+60421im+daFopWIdGBaGSfvurez3dZnyGjddxsIbhyCEcMPxcOCjj56xLBYG7m45syRjm8u68vJ0x3mZeXW+Y04LS1qwLd+ork6h6JRDgpBRWclYUOcsuDdV2ThksFU4Dqgq1VRmG6GJGFC6wmSWgTkYYK4audNXJB1Yw5GUBpZ8JOWJvBxYT0dWGTkHA9Hb+AyRiRhfMMQbxmcvzMFfB+ISzdCzcTNS9EwT4cukdgJdFT1rRUV1vOmHypvS4wBKKEhHQJmi+VYuh8D37hKnFZIeUX12wdBCLwoXcNNfAW6Ys3C3Rr6Y4XwMu/boAe9NaQ/Ne7CUDa5uwjhtwszft5Pwtbq0Y3Jx3X7K6FNv/ClZpRPVu3v1QSRcMqe4xigtmnsW6jryguFKW7aWu7+Lq0Fsx80FR81SWXw4FQPREgRiCC6eU63rOZhbUNChidzqXEZTZZlSNie7YJLNqNPrLUfX0UXGKnoXvejiDLIAZWIgSmLQZIxXEmPwTdOCrR+K2rbUsOWgWkVtKYaFhLn0iLZVthlXl/iBXsihe8XafhKsvCAD4wAwoarkDC/SwpoTL2/vmOeFMY7cnk9oUoKL/EGFRG7qFy9YXA2goe2dnchFi2BAqcn7UrCVOj4ltSWOgspC1kiShYGRgYGIbQYiaka7xZ3eg66saqGfMxNJI0mOqIyk8QXEA8LCGGbrC3Kw5w0mlocQUXfAryt9aoBibZN6WRrqA9PiPXu7f62AUttDlAPfPK68mDKI8Nk58tc/+xnOSUnZeo8IjEEZgjKEEq7KBtOzITHGiefj5xwiHIfMx5MxDEvXAO+eir0h1avlvrKUEjKlsdHQoWlVmuzue0289rN14PjxDUXeO0KW6x206zVdPu0Zsx8r5LNbEbL5vV/2WD6eR4L4cjsxsTtiYOsO1OrBNmSUrRN8x0yXYTBVgIfYKyG5KHEqBQvOLlthsOz/UxhlWWNexGuL0u5gKMWAZDrKSWdCZZi5Y5SpgumQVy9v6QDYd6501jn4mvdIttfYhygrYcxKJPFq9Okmt1546D9llUo95wtxBQ7DxATcHI5kzXz3O980J/dlth0pTzMvb2/NGPTyC+ZltchHmllLWJ+ObQVM0gjifTesXg0tuO7h/xxwRDwsoMAgzGomulOOLBp4ju3/M+uNh3qb3HQ3MufIopFZjq6pviGvI8tyQ5aJu/iMu3AD4UAYXhDCgePxmwwy8uz5kZACcQ22ra9bySWBnjK6gi4NDZtvbzHudG16T3ocQGlIiT2CVXgImSjKR5NFX/lo+ohxNSu3zeYmpo9BGT3vGDODKDdDYorKs2FhCBbvb/TgDS0UU2FMbPHkvtRn1d3B7jmKy0fR0V9m3Y+C8sRuk9sAaMvV2qkUdh+j1N299oAJ23WLhUr25Qp1x8iyx7O07GIjpzll9x/pii6ss/wOUoES9+WsUbJ7oHTA1VHMgDRIDQihZc13MKzPrle14BoWj8j2Nbc+UZY+ltBvgeR7zbStdm1l0NqdywxqoFhclMrWFrGCqjHTHigHLBxgEHsocxRPbbmhg7w1dUcTvUtstoXpukkVBupb6vqNNqc3xAl9sBlsCJEcM+MwMIaRQ5wZJDKPM5KF8zIz3EXWnJjTQsomwmfK/kDuYBtcqnEn/kxu83MB1tC+i3vS6G5JSiBqYJDSvkpiqCuyBh2JDMb0NduSSs0kjaALSSbWfCaHEzkcyay2n9Ag5DAZ0w8D4zghIRBiREJAkjdaUpu0+zHQ85o917iSHglQwh48Cu7/lpsT3zwIY8icU+C0RMaYeTatHKJyiJlBMiGofYtZDcFenPQM62J9+D7tAWXPQK//BGfEdX13+bZ7ycUFm17fpbw9BzRUcbSRFgF8K5uV59q5B9W83fPKtTYpebr2yQEWX9/oKylq0NWhy75fJjn2v3W7snQIdqwyUqWEkdMOKEWAUdu9PKZmCWRcqx9BA77ePEAcDMijUDcoC9R7BlFGWaoesnzGjY4yMclM1OaqNHSW+bFnpOTNtdFF9kjZY8it+XElxsQwzo1d9kE2Shid6gTPzk1LdwKQXLLNmrQO/kggMDFNIx+NN3z7+ceowjIvrGvi9vbEPM98/vKWV7e3fP7yFbfnO+Zl4bzYtr61eKEZRMqk2en6LMamVDVNHBfiuHAY/B0NoCLMaqxxkWN9A4vYJml3OpGIzNm2szjL0d6OTCzpYHrM+UBi4PbWAhN/MX7MMD5jOn6LcXrGdDwy6cSQI3GOpv5Ismke7YfQA5zOHxFQ9kmREg3bO/qLaeWYhJuYGIJyGFJllEFM9O4jlfVlbZYIXjWZ+z+CA2u55oo4vcPO7SZF/nd/rO/YfZ4utL1eu25Dz9okclGcds+o3T2qQ7pl3kr3fU+nu66E3C80sNQp+iAuTNKvKY1dWKEDWWGLFTh93xSpecWXqWF6yj5vL8LXPLIBZCl7+1QQ7D4OnERrA4szonbP0QaqDBYwIouQJFhMRzFdZGWWGhqL1MQgiZWBQVcsJFwBRluvHsUcc9o2v7bEEiBICVVmfUuCrRSSISNZ2xYve4cH734SaLto1u6hzSDXi+1dKlOqiEtPartiqne/IURkhImBeBM5hIljOHB3PnFeFk6nE+uaOC22Bn1ejHWuKTWQ7PtVz0HM/bL520YIg73rMS62oirC6PuWL2KBgyOJVYOt9ZeBAdtEZNaFRRZWHQm6mK5TMllHssnYrKxouGENRxa5ITIwyA0h2gZzASGEIkWVepdneD1SPlKg3FY6ivKd43lzXDbZdKe3u1JaDVWGi8ft2mv3vGS4l6eb3+K+3ntWeC2PnymW9p5kliWRG0PQHjSvvdgC8iVb34Ov+AKVv/sBWGXm3XWpp5B+XIRNaLf7GGYf2i3u8/j9S1i4gCnn93n7a8LufrK7h2/BYNWUdr2HM1vGwX1BhwrMYbBVXBMzUQtrTL700kCxMce5njMRfK2M03acbHlXd3Fa6zWRGFYGWdxSn129IV2kHJqV3F+VBJcjik6z2+Rro9ssqQBvecU18KM3Tw4oyjgOMAjfOkDOSs6Z+bywLCuff/GK8/nM939gSyo/uf2c8zKTzqfWPegAk3Y/Ii3w8wAErR4P43GGKBzGk+moJyFhW1ScZSSp7Uy5EjlzYNGRWSYLmaIjJ2wvoDnfkhg4Jdd13k52TiZk+AiGI+PNdxmGGz4+vmAcRo7jgSAWsUveJG936fEAZXUEp/LiLRjCJQB1l3tm6cBgQ68rQ6rz7JbAiQPT7h66RRH/dZlvV5t6/k2vorhF3Udgq7Kz8U62f7QpXeso2ypgalgyP9XaJdT2qgE0Koju6EE9V5woQ2OZ+Ld42wTvhMXdyEFMLnZ+pNuGQurOkzJcB0rdR3Dv8b/fzqKsxCqgWcoZXbwvUdsnLGCux9XMAZY4sEpgjYEgmTlMW6AUA0izkBcwXXyVUWTUyMhCwnRyihDdUBKx1SFDWTCB7aAegzquX06aPWBuxnUvcl8spaQtsaxRsmg6eaU6wtfVRFmsDhqYdGSQSDgIS7xhyiPzvPCN6QV3d2e++OIVd/OZeZ5Z1pWUc+2dqs5JopjBblC0SA2uh9YZcxcrMQJGkLgQY2YKCRVhCEKSyCQTq4zMemCWiVUGJj2wElnErOgTB1YdOHFgZWLRkZRWVCdUVlKcuF2fMcSRPB4Z4sAYB6Y4EqPpct8Emo8EKHfovkNI7Q0cdAO9O2ZgsH9YadFt7mFjuZzTQCiuGxSjUo8u9m1LuvYg6TO1XB678qi1zIscFwf2jLX/uWd9/bEC0gISvV5l8W+PlGFXizJZuBK/iuEmM5d9iaocX2Jopr3Os5QrHZMU10c2wwyiDeCsOgamQ8nPBiilRnen6sF6Fiuuxyx7JPVAqQ6UVWdaQskN4o7w2Hauo7PMgw34EMxaPqgzRg/wYQA5ukHizKArgw5MRFZ3uI6aKGvaMzBodFxzdxrExEaxZYiD5Nb3i9GqF8nrq5ItSHbfqrQlluV4LuNG23UbR3gx1ooQVIhik+HxcIAJvjm9IK2Ju2dnXr685RO+4JNPP+fz9JJXp1tff96tRAqCjKG6f6nriKX4154VjYIc/D0MShhXdFiZJnun0+grh+LAGiYWuWHGWOXBGeUiC4mBAwcWBg568LAqI+d8Ys0Dc3pJloFXciDGgTQeOY4HmA4cDs8Yx4nDOBGu2ixaeiRASVOcvJap9aDZXVeOCxu0ymrrUVMW1ux7KOdIUltHvubA3RoZRTlE5RvHhRdT2gv4+xq047W62n70K1ku3H5afXclXblHn2R3fH8+XxyvfNJDdEnvS1nBsoCbjZji0ye9seeCusXunHR380+znlBZp68OMdYZ2jX1ffl1gu1/7axQet2kfytg22PYczQxfZcX/zuY8Ug6FYCOWhll9ds8YKBZBrN/6whrGMgxurtSZggHIpkDE6OsLJxc5D4zMTLqwkFMZE+UmJyBQVa3kZuInl2sR0zXWbbVCL06pjDrEuHpWofZG356h/cOLLXLIxuHeJ8gKyh7P3IGGnyvnJt0YIwDzz468q3hI84vZj797AtOp5lPP/+C8zLz8uUrMkoKyWJnDtQN08oEFY/R2nayyU4HbSx/dF/OCQhKGBPjMDNMiSkGchTOOrkm+DmrDBy4YWXgpC6ey8jZj80czbSmE6xCTAHmyHKKvBpG5hA5jxNBviZAaWO4AcE1KnyJkWWGLJGvsUHks7WqsHrwjDlF1hw5p4E1C69WmJPwco5MUXg+wmHIPBttw4Lr7G57Ykt8G+z1Vb8O+7nm1X2m10sAXGWZVS+pm5vXYMdeURHTQ1WwrPfOu7XjvT5zD5S71UvVPa2AZA+UjlolFmEPnvVhS17/2YnMWmLlVaC0yUhLoEkxxlJEeu3FbDx/AdGqApAazEMWacyyBPLo4sBqxOIfDuJ7XEUYlJWBINmXe1vAzoHISHN5R4UktpVF8p3iVJy3iDHu4BOTaQuF4Es4qy2tNM2OUZatezeCkussK6N0wBQXq6sl3c9pOZf8nXuQj7o4rSvbmKbtGzTKwM3hwHO5YRlXDsvErZzJL5VbveN8Pnvk9tXbVpqk4JNPyAEitp9Q2ThvBBkgu8Gn5p0yTLbSKo/WT4PMBpSiJLF3Ya5bU/XNHMisYgsKkkYWnR0qrDEVWH3rjDyMXx+gNLDT+ndjGw2gGisCY0BCynC7WkShUxqdJQZWjZzW0UFycIAMpBxRXpH1/0biliUFBvndTOH3UcDkG4fEJB1L69kX3lEf9lA0sb1/nmtgV1IBW6lNsXUb6q/tEbm/l21zq+6MrB5ZaXvHbXkFTFs97VMnrB7cFBvsF4/Qg2r/G1vNgS2llBA6lUjHMKuLTGGbHbOVbXnlORFbOichuOFIWrO4qE8RaYuv5sEjhU8FKDtx/OB5pjaAtURGGkEGIR8iGiO3x0gMmSUcGFgYZebA2aO037lYPhBZWYmMvp46MTCK+VAlliqeW1Bj29vV7GQ+DoqVvxdBeva4j3C0aBOvyzazJf8ufFzd5mK/Nh0x1FTaGvYKypjrjUZ+yziQQ+Zb4RuczzM/OHzG7e2Jzz7/grvlxN3pxMJqQYJHnwRuMb3loA0oJ5MgZFCb1A7+uidsnfeNx9oclCEuxLhyfLaiMfLR4ZaVkbMcPUb+yJlbVgZe5YmkgaX4qPVEwpm1pPBGgvJogLLhn4vS6FYVWMdwERXFg/cKt8vA3Rq5TRNLVm6XW9Ys3K0DS7bP7KK2DdiXIL+G8oqUhSjfZpbPebUor5bIszEzhN5fcVcP2VVKr0PQ645cnjVAls7A0s4qPdve/7vJV1P2qvka7vvq1O9BXkZiXWW0oTFd8eUd7EstATgaUGp/DcFlPqmsqAIkNL0mxa+wrKWyYwVsq++nto6vIRtr6UXUYtQplwzqrJTmSN+vu179ubvll5SgCw40mtQAfAAdIuph+bOzRNO8BIJmyna8gwMhCC3muxBkBYVARlVY3NgTJBJChpDNMKJeFzXAvDBqFXcsb44+GH973eLLFGkidvHb7MX1CpTOMGtemvTQ6zODRbOPx4E5HNDncJCJMMM4R8IcOOUzq64s62oBh4vqpHcrUxqjL5NCv0RWbJLSQQmjGYjCCEJGMgxie6QPtAAnFjdzZdVAZAQRAmEzdoQdi74nPRqgbOkeaL+kL8x54OUS+bc+/Yjv3R44p0jSH5D0n0O5c4LVm0+L/k3J+Q5jUoFV/00Sv8Rv3P5+Tut/lEP8giiZw1DwoZdzOtGzVlkuxN7tI107vgVD1VzFH3Mqv5w8Kjzum8KXjm3LLfWrHsvd+dLzOy+BOhHZcb3oPZsZgrYpT1/TPaOkSgFN73mfsq2v/14fWh7f5NESOq6sQKnl5cJGy3Fa25fiPJamDiAemEPdeMMAskplOERtMTc7VsmixlwX0EFYjiPrOHAeD8wcGFmZZWTQhcUNPgsTIwszJw46M+rCkcggKwczATEzYGHmjoxxtc9khqIan7HslV1ApexZ1IW8q1F2+r2CSt4+Wn3PLCOYVzjULQQ2Ok46EO2OOemdQmScIofjhOZM+u0/we35zN35xG9+9gmvTnf85stPOK8Ld8upaVuCNIEtaXudZe32BLooeVXTLQ8gU0AGc6a3gL+ZMMwM08IqgRQCBzX3oglzXF8YQIVQJlaofd9jxfO69PiAUjo+JVwYb3q2JWJLGRUhqTLnX2XNv0nWzxHOnThpK3Rs0PZMqQDCGdUzp3UhSODlEpliYoxlGVwneXbAUKXSOnv30/h+Sm9XF+7WnqPUqwDhpWi9tfxLf3Hzu7xnkunL3ovZ1R3fL7dIQ/t6cOkr11exIbqD4u6dSblv66Q1CLJec+7vR6N0h0oeG51iDobtlCv2pNIgb1eR5v0FDavXco3637YvC0gFBZVWu1rnQN140JiP96Vge/1IEISJTKDs72PTU6gt7jF8GHRARYjOLldfNplkxYLqWsxIicaYwpRMdydK2VdbBrG/V2eIgyBd8OHNSqACmqM0MX0vnvdGn+LfqT7BVGu6+L49PiI97zAGyIHhEOAAcRHWYWU6j+Sjcl7OfHa2HSgXFrKo+wS0PqdAvweTicgd+y31Le9v9REeQT3Y5wgESY7zgaCx9oMWI8FvcVU62qbHB5SwY2DbB2jrbIQp2oqcj6aVV8vK7fqnyfobvka1DVAbWHtxsoBTqJ4UX8zwaol8PE3crcLN8IrjkFvDblChG8SbOvZK4c7jdw9im5iRxuy0u7bHyg4ua/s03O6ZmHaf3X0LkEhXR/U1vTTLOA6i/ZJMXKaz826YyPmyb1UPhFzrtdF97p9j87tv45L29+hXGO3ew2Y2K23g7LToR5Ozl7WcVhvsgzdN8jYorjbRl8Amf15fKaRJjW1maSBl4cNZxsgyRuYQCMHs2xZb88zAwpFD3RvowOwW8YWBxEHOddlk8d2cXOc5jOYIfxhP5poki4UUW2iRcuo32yWSPUCuNPZZooTnArLOInvDT5lzSqDiyjD9Xg6WBUyD+9UqgaMcODDykTwjq/LbzidO88yvfe97vDzd8ZuffcJ5nblbTk5mbbMzLbtrihl+RMXdd3yiXbNHYqK9u9HyDOK7dA4zRDiEMxmYVVzlmokSibHpyb82QKnd4N5ipJYM2+QDJWBLh5+NiY8PgU9O/35S/jaJv4LYdFPGfd07p1p3Vba6OxWUX0Z15PP534PIc14txgBuhitLB9GOqfmAgwrIG2hwxifSAMq+GssrbdDr9MRpUAsfV+IPbTdIuzAubRqxB3dpbVrrJOTsbdK7NvU4We6p0tnXXB+nu+tqtex4b3yzjZ1LabXpqI3aty09BSysuFyU/H35JON6UXsdfaT30Fh/BU3c0gtadpjs55PVls86BbQT0ZfUuj9g1eb4ahNBTNSta7UhjwENMMeDW8gDtiDPIoWvOpuvpaysakv6VobOod2CbywePGJiJvgyStsKeCFEDzfnwSrCaPq6kLOL4ErdTM2BUspGaYuBnE4NZKUwtaqvlMoe26Zs0oFkx/TW8oq1m5QNzCRYHM3jYSKuge8M3+T5+Yabb0zcnk68PN1xN58s6PBytr2AjKJuXjnBf8fuGP5afVVR9dl0d6MQ7M1P3qtyzuYxtrYxFB6gpHwUQAk0AlB+bhjN9eT+xXzjsKBM/Nqr38+SP4H819E6CtzDREwkzFU8LLeMFnBUA6r/Osq/ySd3/1VOy7f47c8HUOUYk4uTNvhahZvBpLDYamiojKoB0uUDO1O5OhPo7htaZKJuBhSHyiqC38PGG2JQgFzLzFGAO3eTyRUCLNJNCLXYIt7SWHJ/e2kFaC1oX70tE2zF7Flm0eW2c5eh5toAkA3DFi73D9ql7K+vW3xU3YZMyvd17tiWF85GNZuDtZQNrgbIh4AMkfNxhKDMMjGwMjMxadlxsgsOrJmjlCWSZSmkuVgPsnr4t8xBzgTxYBtxZZSzR4Z3I4ZakA5RYM2Xe/4U0bWAXmGU/ba9BUyL1by/poj4uhOHF2faZUtgpfmvuvP/QUYOjDz/LUfbKG1e+eLlLZ9+/gXf//RTvnh1y2evvmBeF+Y8U9f7KOSUqavYyjCUVtccFE5aPRsqUDpYxxLjNDvCBrfov4FJlvR4gBIfvqXyu0FXmGBzEWps7vlooPh8XEk58cr3By4l5IzFLaTDCwXh2yi/F8GWMFlQjcBh+CZjXJgznJPpMTtOhimyOupVwQtC6AZ9P3i18iiyg2NjlKGJlPe9t+IC07tRXcvcr1UsSoo9WNX29CeqoB5aGZV5hgZGu9s1smh12oDWxY22bbFxuZIrE0n3s00ADRxLEBCtPqD1aWv+EmKtTkpqq4u0GC0KIykW7WiTnxZLc8CMPgU4ohvNsjm6t828QFbMoJ+CA6s2q3kU8hhZg6AhsMhIlGPdG2hiIZA4F+BUO25AuRrLlD5Cka8319XWpGsL82bRjFaC2LYWErIxz9Ec2aOq7wWUTI85i28XERzoKDuLQRJ3TLfn18XUExvQLX6ZPXstE1IRP4rOu5MYRIVxHPhoesb0fOD5N4+czjOfff4Fp/PMDz7/nHlduJtPZDIpJ6ufOokSB2bhcvlqBBlokaYChMH6dshNvZWLAfUBgPl4gHJDhHasaXNKacYLe85jXBExEfycMreLhakvJKcnKGW4Wf/+BujvRRgIIrZqTmwnxymurFlZszVii468Z3s71gI0fajdtJCojcDcAZVsrNZcfXYD6G7D3f604vEzpM+9b7mu/j3IsQGpug1uyU9xFm+T1VYPUQxiPjH0Vub7+t7Oir/NvGXEzVl+yy6r81bOXRsYiBbAty/tSjU3HCHsfAP93kWV4hJ6cb3RYtQoqznLkr/oAKpKid8p7geqOTvrxCzrGmxHymGAMLqT9ELUlZWZIJlFS2Bh010OjJxJRM0VKMsePxZ8eGVg8r3M/ZzkBqbRrxkMQPu9gYIme8jFmXa2+I26qu1tnhwU66oqYAZNoGvudJ5+btC6H7rQ2rZ0mX1nCAhRAuPRVvq8WJ+RUuLFp8+4uztDEO5OZ/SLbLEy11T7gmpnpxZtDhhBTA0RxJdOal3aahtcikclozGoDBer/a6kRwOUUpnIZaXbQL4iVgoMoogkvnWYQW/4/PyH2C8xKEHrD27JvhkSUY4c4yumCM9GZYoWLX3ySOnPh8wQfC+UogcjXwCS4cMlOFVI8hmrDPYQgo/PIutJQbpGyHK6KK+1hekv6yqb0iOlAVsFr01terbZn+ucvi/yb99HtUHR1zdwea/LlmiV7MotvdZdf7Y3K514NRCUSANNCKHb3mOjey0W78u+Y3XtLOI1Ag+NJfXO3dWtRpvjd9n3J0mLkhMx95UpW6DhUc3gM6rNvnOfV8ghMkeQMDCPR/PgGM0FfWIh6ELUpQLjSHYQXAiaiMXgIwtRHCjVorKP4t+0uJslTuaoxl5HF+XjYBu22U43vhVwWpCcCSmbHrOI5Us2XWxvHFoMNI1RUsVy+omo/xsMfMsE6JLKMEZiDnxr+IiP1+d89I3nzPPCF1/c8vL2lh989im3pxOn85lzmkmavP/j2zrQscquy5W/B7+fdz1FawSlrw2jlP4vaQDTRGz7bqtVdHNtEa9uhpXzODHGnzbrm2Cb22NuRDFkbobEGExcH0Pm2bBwHDMvJmWKmTFYlPSA+vLhHZtxK/EeGJt1V5uMUafWVu8SVcdOhUpilEJEy4C+xgq7eyDdvNLYdSV0Qmds6utDJYUlpL/N77u7bFhjq2NJTdQumeUiU+Fy+3VBjRmUjGUJqj+XZ2rvOVtbkRFfERSCvfNqUKpV7XWUziA3bDS7kczrUCab5I0p1EmrsvwyyEtcyzL4i1GnsE1nJ7aftHaO695WxXfRxcM82FK+JAEJsEaLJqQSER0IeWAQj6YebHO1wcX0yMggLVhw0MQgZfuK2QGybJ7mQKkmsgdNjB7+bQy2bDLLShQLgh0HRfJqxp+iv8xqGqe9zjNiInCZf6K/D18iKdrciCw4h9S27ztKyNYfDmFEFaZpYl0Sx+nAYZrI2azVQQVmWNLKqgnVTPJI7BfxMcttBDT2fZo22e+Fm3vSowBKe5rYNaDQdEv7J7jyRKqgme/enHg+rKwezXgaMlPIHIfEISSGkDkMxhbHYH5pMaiJ3XUljstaWtiHIP7yepaqpaEJ3cvZyBrUlSSVzdRZoA3u8p0dLEK//O++1OkpNxiktn9zPdF/d+1WDEwX9+hZ+J5lFtbXyinrZgvT2x7vyuncii7ZZoO1SjY75/R2SwUfGCLB9bxlAsIBrwRmDdgSy7KMsyxbsYC9iK8g0k70Wv26sjIkiYlyQ6BuXxF8DvT4isVdqAV0ADmL+TFO4kYFqaHFSiT3ykjrGvSyvllYQyAPEyoDyIiMYqtzvG1KDMvRAbNsghYrMJY4mYno7HHQhVHabpNBVtN9khnDbrdJTQx5NhftsBBDJkbPe1yJmom6NsAsOyHO2vSb1WJuQCTJwbKoKcqklKW5ApXuF3B/TCEOgWkc+OijG37iu9/i7vbE+W7me9//lNtXd3zv+59wnmduz7dt2NVh5eqyojoL6vv/BLM5FNe4B4jd8GiAEi4HdkEA/9TxpezQoeaeYkZ15ZuHGQQOUZliMp2jA+UYjI1Ep+vF+GKzTWtAG7SNuUEBtysA3oHj9hm6I0Z9N7OYdi+1XqfXDBvteS/UezgIVUbbt9Hbpjdcs3ED6u7hf7ZgDdLapCezxUJOX0Yru6pfuvqIKFvXIGdtQNUFV+ZeXJiaN0IzYDV3JnGPc2HvrG7Mlayml6tdTZpbUCHOpcn7BVDaiqGcUwxw1YN8RAeKqDVohxax3plZHs3oYyxNXBfq6hYRApksFmV9FfPTDJKJYixxcbYYPQixWdAzFkPcGOXqDHJ0wFzcsDSorU6PjIxi4eSKKK8SGNRibNrcZ5MXUa3NN07uWoGS1Zll8c8U9W1vlT6kwuY7YOwx2uQ3xIGogSmMLOfk3yun00xQYV0T67KSUyZnbcDcvYvaZ3ZDuC2nvT89EqB0Rln/LqlvvZ556EUeAW5i4hgTL8bFPBIKCEJFGBOn5BKM0CaGdfWQOgj9+yIWZe6AoVza8X/FZZByrBy3EbffffLNAFdYa/ccQvc819yNdPvVi7S1zoVBc8EcG3hJA7Racof6HmY/hM4pfSOet/YvRhi9qmKw+1d9bLQJpOlkS7mBosaQIvI5W9g2gZWj2eqXXWaUMGzOI4LoSBMTgXNhf1RVhYbsy+tMdGbRJoYP6rpJY6Q4s6yfuleQ1PBjGhJI9q17vdyaJ1TWavEZI0kCSxiNsUZfNx0yjGbMKPv+DMzul9nrKC3Y8KAGkAdc5KZstmZuSebHaXlvfI+giYUYrLwxukvSdCboyphnA/pZ/ZvWFV33K7Mzy4XmklR8N4uaoltNVNU7amB2GEemOPJsOpKT8ju+85OcTwu/+b1P+Pzzl/zGr/+A03Li7u5EXnFgtv4ayj4xOGirmhO7mK77whd5lx4JUEKZmi95YmOQGyfkC4NAG89DXebbnd8wm/4ejak1t6R2UQ3aJt2tr6oEWsGb4gvr6b4oT9OL31d0k16zTne53UWyv7ayrNoQ4qd39dz8ls3XVZAuZVW96v6Ju/dRWaHnE9mw5hbQpJXdDGXlumvt2lk4N3XMHS0v9e/pwu556r7UpTnLZAOFLor4+sbOdavuSFkuKYMcrbo58S1aLXCt+uBX/43FXAw0JhmpkdxFur19IuhilluJYmubPZhxCSOnItUCrzWUnLklaTQwzVhUpSSZFGxnyCC56SbFLOSrx8IcKpu0/bjNbcnYqmI7U9pq9MzarSayyHXRmG5IyJAIQS2oR2F0RZ/Zs+2y2VeZ5Fe6d1xfu/Wb4shPcUCLBFGO40TMkW88e8GYI+Es3I533A4nXr28Y862pUXOtklasTdsDDgKOfQG2uvpkQBlzyi7Tr6puw2K6qbTD4rN2JOOAV05V+/BJSh2jLKs2rErOmVxLa+wmgIOO31fh+OXckWpVwfMUtyEfMJwdrSx0Owmju1zuNuDdK/8Gua0xqBv4EtxP1wcb1tW7KazELp278C3eGdv6lmubUErrpNKy1vUHeWtV2DTvJMAXFtf0LwHYLpjCiYFlBFb6l0MdP5eK5BGq0rysrQoKkHnbKxvdJAc/boSFzOADtkt5Q50AfPxG0PNU1UW3cofDWpA2rNRJ9Gb7S3KubqPOqzTgERY42gsddIa2KOI6QdpPpc9e7TdtsvSSjt24kRk5aBmaZ9kZdSFURcGnYi6cOBElMQ4nhklcZCl+VnOVLWC6X5puuCSR2g63757aZfHN7ez1UeBGCKHCW6+OZGeJX7bi9/Cqy9OvPr8jl/7le/zxfqKH5w/ZZ4XTqcZwfSeZYTklL8aHaWI/PeB/5Y/zr8K/APAM+CfAn4a+CXg71PVT95QEmXgFO5YuUrt5xmV7MeaxdUGr3bl9H91oHmFRW4ByCj41oIK1SLrNdLNVgrlHjSxtYh5hUHWsVzeuGw/tXpbkbYc6yGiq/kbUjdbq/HQDSjXti1tmHcTEJvzu1I7x+Fuzx1tA75WtDy8P/9WzG5PUpdG7m6muQ8oXI4Xjb9PZrlSFPqwa6CXZRb/yCIPanuzZvwpSFRu2f1uKNU+Gn3FSrSysu+9IrEB5aodcEpjjbGLzu6rV0RwPaY/hjPQtqskBswiNXixBrdGB2yPmggyOdOsRiapWy7kaExzjqbzXIYBkcwQjy6erxyCAeXBRfBFDx4B6VzXpo/1MxCxXRFNzB8s/iQzUZQ4KFFWJBmlNMIuzdm/c/qX4jCuNMDsOUb2119WCHmUJJkhrMKgA8/igeEY0W8LH918zOHwnLvTzA8+/Zw1JZZ1Zc3J9jBHSepLH98AmF8aKEXktwP/XeD3qOqdiPxJ4I8Avwf4s6r68yLyc8DPAf/wm0ts9vurJFhsi88yY4uExjo6XVsvCu6NA1vRumRreq62bHLLRKtB4GJfUSgMzyLGOEiCWbE3jFJoe44Wa3qgWNLrEsQOp7Wr3+VrvDYBXGs32QYz92Nb1l2WF1IBqBUssLv71i2oUYDqY9m79nSXbqMibdfPq8qWlGvJv23HMnlI2Xa0v3Gtk3TP0YMs9LphW+ZanrUoCNslbeooeQpzDu2a7P0weXSaEE1XWwEwlW2EGhA4c9S6c6TPaOL9KJb7q4nqgoOqIEMnU5QVL77uvPpzHgyrq360BCWOgk6CRmWOzmgPVF2oLYVcOchi68zFgHLWOwZdWeRsFnRmX4a52K6SslK3msW39NWRKRj7lKjE4glRVu6Ud724Z0Jhmr0Paz8z+7DT4tPqTFVdHypJGPLAECM3B+XwnWfMa+Zw8xEv784sMnJ7PnN++ZI1LcwrLMmAcknZA2Pcn95V9B6AGxFZMCb5K8A/AvwBP//HgV/kjUDZGKWlAizX8hpfb/u7FPeU7moXsUqgicJ02vC8HPwGSlIHuS1PuyIDaKmD19yBuznWlXq7ZdCVm+W+ezsJFfDbnjbtncnFv6XcDUBWy+61dnsTB+3B7hLcG7MsbHFfXnOzqO0s0VUX4sCW22UVTa+5H+1qVhh5zz5Lvqz+vhT6fJ1ngubiCmT3aeB9hZ+7L14V3zd9KNDiaUJjlgVcB1QDtuInYpbz2OpbwLV3kxJjl1qimJfX4EacSqcEo1EeIJjB3knunKzFl5RpiQ4+OWM9CGWDLwZMRXCQtkNiUHeIV3TKpAg6RPIgnOLA3TgRQubGwnhwZmaQhUlPjBhoHhk9eMdE3YmS1TYB04VFVtYMgwaGOCOSbVfKJN0OkPgeSNTPRroqw6s6uWM6zbMa8J5tVVDKSlIhB+E0KGsQ5JvPObw48p1nEx/NCy9enXh1e8cXr17x2RcvmU93zHM0d7PlzH3pSwOlqv67IvI/A34ZuAP+BVX9F0TkJ1X1Vz3Pr4rIT1y7XkR+FvhZgBcvvtsNHO06cg9ofU+C3vLZSGMLvNCssfZPXdbWz1L1PNsBUliYNBZUyq2DsRpf/E8tzLZHsOK/Vxy6pbTdrjWubavQ6lXdkgrrBLY6xVKv7QRwXZzoemPJs9G9tonGmtc79IWetOVtbjj7SEbOlK4Bd697rXXwwbJny0Ut0DNVX+Pd3msB+dy9Cwr/bPcukxiA9BNDz/bLb7D1i5Ue7trQgFI1YY7wxdmyVypeYayl7SXDBii9vaJPXHViUgM+waO7NBCVWrQgg5rIPWs1ClUDkovfsmBgOxqeM3qeyRhuGgPpIDBE5gBBbW+gURIqAwMzCWFFGNxHavW4j4Oa1SYRvdalTVaTsMNKRAnRDKQagwXW6HSz5f0r2m2vq24YkgqYmgwkbcml29fUFgatwBLE1tYPE0GVZ8eJaUnEZ2d4ecs6DLxKpa9gQPmKe9O7iN7fAn4G+F3Ap8D/SUT+/oder6q/APwCwE9892/zEIbbQby7I1sdX2FBuUbgudBnbe93BVxKuZd3aqTOmF5WbDdHDaw5EkMgiHAUCChaGEkFAqHo05pZqBe58Tpfe1Y6YNo8hJ8Ll+eusOT9RCMbZljOCU1R1AClqimy1aVf871hga1yXkUlp7W7z7XHUMyZvLgSlXr1E0kD2B4My+RVIsJrBYxOqqh6ZPP5q5JBffS9G1R7jrZO3CWLqgPdTQAItvGOV1VDBcsGmn1/LtKGT5wSK2ttt3c1S08a6qThWwD3TV/17xFC9KAdwMHFat9tUovoPYBO6vsFQd1wzSOJU/YPOvg1R0iDcDuNyDDw8jAxyoFJDkx6ZGTmxJmRlRsODLJw1pGRmQMnjiwsLKwyMMqM5mCBOoZXZhlXa2cJoUp/LVaoP1tWA8VFLYDHKmYcWoCzCQJzdmIJzCgLwtmznERIIsyDkGMgj5HDiwPf+i0fc/yt3+F8nvn0s5csywp/4Te5L72L6P2fAf66qn4PQET+GeA/Cfy6iPyUs8mfAn7jYcX1zsidk3fXM2TT8Yrdu5t1uM6iSnez9t+xukpepMZXyAqqQlapAJlUWJKwZNvydoy2SfsYLB5gS2X9Nj4o7llFuse1zlq9PVwW8bfna07Yu5IrM7Qn3nvjbBmRP7UUJ+3u3ve1YWehb9eXtmw3q52+Axcj7FLv1fSP94eg8zsYu7gHdBvD3yk4/VtqfehYbHmOTkKgfUo/M2DuVxm1Wl0y7MY6C0g241DXbxWEiPaqJqU779eUyWwPosBW4ir1wZho8PM1chGm/ys7TWYsWEfxXRy6vIOaDlBpc+cAya1gMoD6vuxGUYIrwiIBJREQEtnJQTFQBic4kQUFxjCgZPN9LbmK/+Ti94/uhVKatTbvdtyW5ujnnLYVkFQPpexGIpHAMATiNBJC5HA8oCIGlK9J7wKUvwz8XSLyDBO9/yDwFzAC+0eBn/fvP/XmooQaqribQa2jFK/VMhCKSFN0gtc6cp+0khOhAWQNneb6Q0VYEqxJOKXAkoVX68iShC/mgXOKvFwGlhRZcuCbB+X5lPk93/6MF2MmhGuW2zJQurqU562Y4wyjuAWlYo2lDsYClm1fnQKEjR02tljAx5mRA0G/XEu6so3hNmYkBbyutWQB4R7cxPYhUW9bRaszedFLSFkyiCDR3W02QT9s2DVfxm4fFWuUzQRYjXR1jnSGCfVefTSmFscw+7PpJUEswJ1TY9C1bv3g7Jl4ORwqoG71oMJ2IYVP0kQvv78HdLJn+7vepl1vzxb8VfiChyyQR2OXabI83dLKuu9PzyD77wEDzSEbWI2YHDsIksyIRLZwcfNhIsUj55hZ9I6BhZkSb/PAKAtnjhyZOXNm9v2CzhJ936DIFFdu4pmRzKTZ7jf7fRexXRkXgaMis5JPCidsAcCIx/1UZIHjCVKCcWlkc0RKaNDqoZTpFDECejPCzcC3n08XnGOf3kVH+edF5J8G/mWM+f7/MFH6BfAnReSPYWD6h99UljmC7l1zevbovzeiuQVJaB3yCsOCShhsINsMpgprjrbiKgeSBpJG5mSs8ZSi7e64Dqx54Xb5d5mzcLtG1mSi9xi/i8iNbYGrNofi86du2EYbUDsSW5+pd8S+z01hu1VvebReJ9gNpGuA3V1chvmWyUnF72sgWV5JWUu+ZYJSCuxUktvK9ipJI77+vvo6bIlpOyjX3m+RKEIF922rbPMX41JroGvt/JrjVxpFyr/OVrZ68e5WdJMMGGD3pWgT78uyWXYs+rLvKI0Rl7K1TqQKXQTwZgAsxjApzHPHNQQLUQZqOk3FAFQxtPFI71mNsCwy+XJKJbESxBim1TPU95OICNn24daVLCtBhKwJldWis6PEnA0AwQARLCZoFNO1Fif9xdzNZDXWGVYj1KMLAaIw+n4+K+o0rLMiSCE2oVN13J/eyeqtqv8Y8I/tDp8xdvnwJBiryakbqIURFf1FGSz9Qtr+A61ndHVEyChLgqTCOQXWHLhdB85r4PPzyClFXq0j5xSYk21gryqsWYBfJfPPg56tLDX906v5v0zW/wB368AhKkN0ZhGsk6ivJKgPaA1GGU5SWWTThfXuS1LcmzbNdGXAduByKZ524Lsdsdt6dX9ubS9XgPeCnffMNDTGtnEFsvsqDZxD6FQtPoq11K+yXysjxNJNTbrIOXv7gLieUJ11Fp3iNVF96x1RWKzfcye6t+o3A9om6r6ouQKVundMvzDSfo+hoja158q1L2w9rJsxUKR/Z/vnsTL04l2WslMLSlFWFXUWZpL7pwYghxZX068RFO1Eb4Qq8OmgZjw5CDpG1sMNMiiJ0beoODCxsnBi4sxJZ2eUM4uYP+YcD4y6cOLEJDMTM4fDmfGwcHx2JiZF79To1zMxijgDc7DvO/std2q6y1sIiyJ3ynD2c66/PNEM5bW1ytgqRlahP3s1PZKVOaX/bdydgbbcCHez2bBKLYNtzz4bp7ldI5/PkdvF9vaec3TAjKz5JXfrv8mchfNqALp6mYrY1ir6GeIKFEGqP6ydj8x5ZMlQlxdoe5btA5aHLExq92JkD1KFG23z9PvIoNSAvbIZ0GXQlEHXRI5avluYZXcDA6uyOuU+fllK7+if9F9W8A4q/bYtupG9ymYJro7vHUiW91pnf48eVOpQ2NjeB3ZrQC9t07Fq9bbci/T9pCxs1Rtqk1nxbe0qUYvezSlXeuS1luzaox7T8jZ2e6ZdTnS1jrXdMlpE90zdI6g9YWhbNhTdYG0UL7P8mWk6TGh6TtUKwroK6zCQJcAgJFYUYSUwYYFHBhlRAoOuZGBw38uZmQNnC1OsC6tEYkgMUyIMmSEm20RtVmQGmaWJ3iPoIra+fsaC8zpQcgJZYUwQVQx8u8YUf8hehfS69DiAcgMiUF9oHS8dZarL4sI9IGkFFjH7s3nkb37xjE9OEy+XkaTBjDQIyg+A/xc5r60vlRKcIAjukeH6xmL9zUTWHDnniZMK3zC5pNtTRuqj9QOpsTyqL2DJ3cFoHRAXxo6dK892NYq3nRSwbFWRbvC1MGiFVnRV7utZX0ljVEUFcEleC1K0M/flUUBCbHrVelowPWIvivaPZioafCXFfr8h7epuhgB/Xxfwta+hdPjY6tSHxevv38LKNXelC41JwdH9iTrZbd9p1wpNFeOTaTFoUT+1ddgwYWlMXFTb+Fm6CapnUSXCTglIkWg7MI5+bfI2K+J3xPcRp67h1gjLIZpLUbQ4mQsDk0YmYt2vfGVkkJWVkUjizJlRzxw4cfDdJic5MISVm8Mdo6wEToRkukjOWq3dLAJHr8sB28v8JM48QU52bjx5PZfiw2z9Wnq3rP6F3ZMeBVDa8G2O11t9nI1e679FJ+mrIKqIVDJfGndSDpzWyF36NzilX6sAYt3mCywIgt2lBLYp9pTVx2HKbiDw/WNEAol/hZx/lU9O/xGEZ3z3ZqHxnD1YOJj1ImZhUF0u+/NS4G5/NaNJabnKtDe33rKnLesRirinWVGSj7WtXq8wNHERWXvm5u23n4QLaWurZrZlbV5Vzh61vC/EGnyr+xQ0G0Oh4pa3WghoTlyKoP7YijHOAu6lbRpStPsWY9MOvEtBFtl+X74/X+6eU9qyzrqAoWv+AlYNSevBGvm+tFExLPXgbZxB24X9cxE89JmydaWLHpxC2mOX0yWYcIkdWWdrB+cSzGIoACoWaxNaVKBBTFSPwAo5BpZhIoXIOR44MDOSSG7wWRkZClDKzKQ3HGRmlJVJ7xhk5ax3DKycuCOGxDiuDGFlmFbiISEpIVMwEDwKLEI4Ua056uI5d/YMOpdG7btJ145X2X5LjwIogc0sWxTAlkoH2TIWkYiWOE5a3manqyzvUoU5B5b0N1jyv1ZLLM3TuwAH75O+RTFl6+qkYlwyGEgGDWT+Gll+hZfz72YKH5PV1t9uBn4H9nUNsB9vvoLFobk9W7vq8q89My3Mo1m6dwC1L29jOHLwqz6sXT2KPrUu+bsSvqwOYhrT7Bhom+RadKOiby5BfzfrvDu9Zr+3j3ZWdGOj98/+G6NgHQP+nIQNWG5drMqztGjvDbT64CShE6N7Rrm9Z1WFXJ349oyyfJd7O2MmGyO+xladHfXBPcSjvlcmqi6CK+bYjZiTdiz1FMtbxVGfjFZ/X4L5MNKGmLhfLeAivXgkdDFji0IeApkI44AwYYHfVjKRgZWMOGAODEwsMrOK723OSNTVV5EvLIxMsnCIZ6Z4tteQE0HV7reKBTd2ZlkZ5Yg53I/UfYAqUbjoPnrZxrv0KIBSEEIYubQaajcoCgiNNDmhrvmycvzF2wZSFsR3iomPpsTtqpw73X1SkzzW3ECyEgtnS8EtpeZEXLzCrPMHzC3mtA7cLgPLGggDjBGKzxud+FOMHBcM8l7Kv88jbSznsirFB2Jxv+n1Zto9rDVOO++7OQpU8FNnynaP7XvYqAwvUmPQNYpQLx4WNlQduBNlN8RS98ZOZfsceIi5fl33RacOiCg9AKLqW+96mxVgdPZZQ231ZWz8HbuH9/OtKfv790yvsLveMR/a+n7Ylt0BVImk78e3YrZ213gbQcujmboiCGlqgSoFFJ9MX1qZQgM1HAhLoI6y42RylpjF4l2mXONu6qDorAZOoxgwFUf13hVpUnS01T7nGDiHkbsxEkLmEMyocxDbsnfyrXsHMge5sxBvemJg5ciJkZmjG4dGZo7BgnMcny1ETRyezUhS5KzIIqbHPIMsAb3NyKrkuS2jvX+blfvTowBK62+dm0fpex1AND+7tsSssCAtekun0+JLqATTL04x+/433f28v2ftuvFmjAtByuZVVo8NWPr3kgOzG4FGX9IlFOZRnMOtxN76XNld+7UZvD3gXLqGdIzldWnHKC+xrugz9yfbstDq4C7yGttOaw+natBkwu5ewsYzobzrym76dyRdX2iMpyfUddopYCxdu0l2IC6srpmzLt3Qds12tbE663Sna31dqn6r3X1a/bdTpkg5u7X497XaejYoxjy7gDDFp3IjdtN+9xs0lZsrnbZq65mw0XXnLm+ZXLP3dWebGrQLiWbfOijJndqTRPejFQaxnVJXWW3ljgNlIljEIjH2mYiMOpIILDowMpLF1pPLYGAax0RYMyKZMJjPZ4hikdWDoCu2RUd5sfe899elxwGUND9KezlddGtnlKrJZ+f9mtvSgcWZytZxOYSB6NJLUraASX3nVoJCFEHdqd0iH7uOsgdLMZaZNHC3Doxh5NV6RELi6DrPwi4U6Zaxl8EqNIS6ZJdW72gMrPhp+LVSJ5U+6XUDS72ttoFZmZdQXVeqm4x/AsZMQnRBU5Fs4mcukclp1utWC9yIUMT0bEabMNQRbs/VFB5tj6Ar4K/FUd4nxVCCU2DieGdI6fWaZVlcm4z83hQM7waLlOWv2jrD7rqt8KxUFUpd3ljeo7O4+jNsnwelBt/wCaWBsnR/95JIYjOFFh1718bFwp0ziDSdM/WpC+uMmPuPGH3siUgR0KKiq8fCLOvA3Xex7vVTrMuDoqds7kWHdr0xSukc2bU6t2sww88SIqdxRAYhjDCGxCCZyWNflliYxigXDtxVRnnj+ssbTr588sQYVw7Hs8XJZGVcF2JKyEncmMN2oG9m5TenRwKU0Ne6DUBpHVd3ZyW0wVr0Uj6jirNTw4PGQus4kDbf1vHSAZj0ZxXbIF62n+wdOuXfZM5wWo9M0QMk3POEPS4W0dOK6a2al+3Q+Eub6Vu+1kAbAqkXDddSqUMtR7bn6q26uhT9YPmu2S8gu4qo1S9UtYGgi/17trt/9n2qZ1/3XJsJFGeU9tsu6yWPAq5los3eP7xPqeyaZfv7ovqlTtVYaP9K/Vvqc/eXlvbbGCW9o9T3vmGw/fPv26IwyeLe1bPLkq0tLtyQjtw/bDdhlPjKxdZaWGS5vWJLIsHjgajpDTMGkKsasBY7a3CWGjHwzuaBQghkybYBGIMxS8kkiYyyWIwFnFESGFlQDQyyYlcsJAlMwXYAUiCGQFT1QMk+GRYRspNCNk14T3o0QJn3Dtrecey4sxrwWdo6UpCIhaoC1ZWcvKOGaHqroL48bySprbZR12cJQhTxkFb2GYLpHYPYy8wIOVukFPOhbOI3BHJeuUt/GvTbfO/l30tOke9MK8VC7rRy6zJkaEM1HGgHKJRnpRo7tpb8a2DiQ7EyEd2e6nOGwJ612ZgMl8XSDeo2m3hAjyIG9r6bPlFpAR2tx6XsXy6hOo/ntFadZX1mya5v3Ru3rN1yannL+W3A5G0zbV2D7GArcguqUgBzI/Z6nrB7Thxu6v7sysVA82fOVYztMvSqid2E1PQ0efPdbEU7P9Sy30s1TCXXzwZs3WEpO9HfRyujLEuFPbamBM8qBngRi0pUovuU9eF1byBqcA0VRWN2fVfolkwKJfwbvr0FgyCHYMx1sHCeaxTOw40x4gnb/2dMzijPTGL6yhssPuaR28YoPRDHgYUDK4d4xxgWbsaT7xW0tvcnfd+V7Zi5Jz0aoCz7NVvqBqmPVHvxWhX34n+bLspYo1nCm1IcbFXtFGEMv9ND+v114FUVgaveURwkg3QSWIBAjRQUQ8nrs2IAUQuOd3Zn9hIowJ9qO+lX/Pep+QKdCrjQRgbNxaSxN/+rMNIubmZzoO1/9/fZAYTRpy2j6f8Sqe9ge6bVtXW60LGRpjaoPny9kk16Z6QG9jU8WtFRbhCoq6dI3W/nqkvP7nczErW7eok9abt67QabCwOsbVPicG4Ndc3wU1G7ApxVoV9MUCZAree6QqyOBXB1e81mLin9xpc2SokG733NYqyWokuEp+DhzPweGmyVmARkjc1aLtbfq/4xQ9k5UotYXoA0gCaPUlTWlgdp4n3ZOiPZeRkEjaGK7R6ZDYKSJqppIoXIHA4kBgZZSBqdSZqz+uLR1Rf31RxlIXtA4VEWex1ldwTpxsZ9gWu69EiA0tlVednstwDwFypcgiTUmVOCs5eiXc6ZQYSbKBzjf4JD/DtI+r8n6y+TOw/9GIxdFp2kOhAGzH0lDA1IiygnSN07KkrgVZp4vkaSOpstj7YZ6z6Ism/5GcrA89wdqzRrZHFu3sbctKKkgkX/km1pZAFBoerTyuSz2XO7T3oxs/Zr0Jvvn3ZllQEcLFxa1Z0qOSezlpbSy6ZbDhDGBHMHiHuwLG1yWc9WJ2mf8rvUffsk/gjRJ+BWRt135zWm/T5I9B5oKyvUJvFYudknsPKRNqF31zfY7SYg6Z+zBXGo96uMFDZgSekLuUNUpXhhWPbde9ZipY9NPZGtnpomRAIhTf6axZhlt885Jbr6YGW3jdPwjdRoOs4RO++xO9pvqdtZ1F0qBysrHSPJA3EwARMcOTGwcJSiq7xjlIWj3nGQlYOsHMUisN/oK4KuDMyXQhN7Xf/96XEApTpDA3/5keJcrl1nKcMJegYgtd9oWVpVWQmgBeBKkNWIavFn9BU62RYoRjVGmes4cmrueVPdzNl+F+OKinBeI6cUOSfz4J1i8ue6Mvh6MU5akf1AL+2yQ9o6OLYRfjoH/d043vxQfMtXe6riPnNVdNxUt6uXGyi2+99cAkhbwdLXowB1x4xD2AbScCDTfFmh6rheyxCkvMvCfGvb1n+27VpQp2LrLtjITp3QHO2LWmA3mfRQ14GtQNPH9k3QW+MraKeLPlBsbZv3Wh6sgJ1irD20Ad/AvBwxVlnjifpkpbk0usUFtXWCQg3zVnW3sTnUJ2tLy+KxCqIbXKOiwdyJ7HJtsYpHjFEOVLG6gmI0FyID345RDg6mJ893AD0ojLCMgTWMpFGIIbMMRwZmTnrgoAsTCzfMTLJyZiBiQFnffW+sKO/wDYj5OIByk6RWXAv64f0Df0l78PH12TlvRcgyMQfKyy8gGeuwzmqdw7c+IiKkarhsHa7Ci58L3YCCwCkFTmngnEdiWJj0yoqRqt/q3oo2HoCrAer69h1Ido+2Y2IdSO0xT6tzaO0g1UlZQiOIG0DtllbWZ9Rav8auLieCNn8JEiI1NFzJW8Vlt7gX300/r+SNKmFbsrZ6bph0cXYvA93y5zqDtvq2QdGx0DoDF2t5aa/cgV9x7t63y76a/btkN/kZwIXNWnHr461niPuNUo9o3w/6+ahIB1lNj0qhFD7B13Xx5Xp7dhEQTV0/K2W2/rwFykyztrtkYYW0GJi+WRmDeOT2rpgS7q2s/CxAWbap6MG1Mkpc10n1y+RovpnL0ZdLPhsJA5xHGHRhYmLSmYmF2X0zb3qg7BpwO5bo+s319HiAslslYXW22VsL3VDX0ynYCovy8jo/yrYeq/vYbGp7AQ8mE2hzULclrM4iMReLMtlKoeZtukfVApaq/l2I/A7GoESZmMJEIHOa1ZbJtr5uz7QfQFdYmCOwzf5ls7LeIt6DZ8eeyrNQy4UqGtdDPTC483faiuFbI08Btz5P0enCXj2i5Z4bmC6TXgH/UiZb9UQVn7XW43JZonszlAm0HC2gU563bEBHdwytwUO0qk+2Td/arRbsTM1ZpZYJrnc+z/0FlaF3jdg3LoXhas7db7qJyttUWx/Z62mr21ypY1f17sYUqapn3z0JMTVVy18YeC9JNVe7ZVNGJR2mOLSoQ6vXZ3FjXDEQCiZ6C2Z4rUxTXdyWZuwporxI26nyIJVRFtGbI75bF+QB1htIcWAZn3M33BDGzKtgK31uuGXwbXjbZLFlE18rY05N/qIKyluQNFDvPM3XsgeaEkWo6DnLKn8XOyqDCaAmfpc+FqSfhTddEjhQIj6WTxZBVAjy70X43YxBGYJyiMkiomSt4u1lD26ManO0Y3BtwPkd/X6t87cBt5kFK9srd9L6b/mngFa552VqIGK36K3tDmDuSL+J2tPftfstwUFMggXq7c6p78Xid6UFyi2PU+p5+XyyzdiV6T6XFANYq0/rKX01tJV2hSFWMNK2Pn+Tdli+MSrVNebd+/ZKbMK1daW2ZZDbNt3eMmxBsh6vT9dd07d3m7QqEAtdvt7RfSstNcNjYcJu1dHgjKAbITJ4uaF24WJF11CYpn1r3a5XG/sMzkxd16k1mC8GkiWw70h1PcpJYDR9pnMjEguDJJIE36983alN2t95NxldS48DKEWQMHb7k0AFiTqr20DLydZxS8tCUYaEWF5qiZauDAiTKz1SjszryKpDJQ3RiIMbc6i6ebhB9b+I8A3b235Qno3qjrGJm/iCMXzGi0NmDMrNsDJK4hhmhtjVn0L+CoMTtoO7PW/vsnApCjRxtYmfF1ka46hL1xxAkqsCPOZnvQDc+HMF1Hc3Kde3OhQG1w2sKuLuqlb3CSpllSVl2kTuzbN2k1fZE0mMQUownXPbIhh3hM8W6KMb8LUMhRC3hq2+LTeTjPbMLYDYsktTf2u39Ue75gJm64yTO6bWbqCaaQF1Q50sWlzLUmjHHtUnGC2TZD8ZKs2tqk1sbG9b457WSUe6Z5HeIFVMzz1NsHpq/TtQlpdqiXfpZKS5JgVsR8qApALlQuvCjRDYtw/CAWMxI/aZQCc1I88zseWTz0JlljICN1LzrYeJNCjL4eB609yNj+79AEq+GEr79DiAEmhbulIbXKS44hRjTmFU0BakNUv0hiF4J6rWan8h9pJGlG8ART+mpmsOMAT1sGo3oD9B4BuMQZkGDBRlZQorN3FhjDPPR2WIyk1YETKBRFu7SwPLDUiwqePrZ7P+mWo36+Gr3qst12tg3NoOrt1nI8pVttqXXXPWY02MvkTqC7tJO7MB7svyr6VmLNuiLC4BNyC8yFJ1oftIVOxeRvlHnQHab9Gu3TfltOP9m6nPWCvTnrMalqRdt6lHvcz7aN0/XusYKA94te/U+xRfybLwtmPpdWgZ4SjRmFz5v3mS4u5UJ7K+gYsk5yuCpFry6coJtFV0RS1WJkpBtIuStAmV6MYywaSoAGRphqfCgQofCg6QFla9Prrk4jYXSAG7fvCGC9vxYe12nydIS48CKFWFlErUFx8chWEF1wBL2SooeodYXfrLboHzF1S6rxrDEC3+rUKUwBgjMXyMyB8h8BExZIagjCHz8SHzfFKejwtjVI4BBvnUQVE4TmJAqMmZZ3FepzKHXHvAZSoOym0foHqGapzIbQ1763g9g7x04yn6NCR0uxq2vKWjC1vd316nVnxVLbwXoNI5qVvb5pSxPWzKPtiB0DPS3aC7LxkzKQ/Vd9yufv4ssbj11HZzhlwd1P3aEBCNzrpaWLSmTujWRdd/tZ3THtys3BCKVb2oa4qaRD382w4gN7pipd/AbLsYwEe7ms5SOmd8ohlicnkPFAfy1sN1s3ySjThflj1mKROotWUNfycCLqGpiDPYoqZy8hCEPnxf08l275qE5tj6ayUj2c8VlhgRIi0EXfu0cVt+2zIeUTXdZxIkm3gs2cO5FX9O1RYns8TK8WjoksTOLbiLUkctymsqr21vULiSHgVQAt4Dupm6vmHq7GbcKPqAB3Mh2jtu56a/1NZRhgBThCA/herHjPEZg0xMQ2YImTFkXkyZZ2PmOMAYMpPMRMkcwkqMwhQCogmkuXPUTcFKPL9cJurillHn5C41JiH1mbWQmvps0i2j24Tx6pM0A0ubJMvgpAJ4taxKEzIvjA/0YqvXr/zRHbuuFtge21Rzp5ftHei1iO6lbKQyj025AqYTKwajnhFo/Vks39rdqzxIbeN6vd7zPF3z7Sal7XP62y3sST0smlwaYfZpY6HfvLeurb3tiqGH7kxjuP6GSrM1pW5XorA5tXvOza13J7fq1N4jw+/h7+xCp6ydSgDb36q8d7ZV3D1v7prAx31xjQ7ebkkaWAoW/EIMFOtYi0BWD1+7dTfrGfquIvemxwGUgkdUrqhQJx0VH+BOv0UHByS3cEuiOdGu/uw9q7IliTeD8PEYGMN/iiEkvnHIHIYv+MZxZQzZdI8hE0URkrHFYqUsIhChshV1NhmKmL1p+BLVRWkW+e3zbvWRhSFkcllX7kv+0G7P400HLVbgAih094bi2lL3ktkxtWYwojKpogcur6S1Y7OKAk0cLu2jl0B534vuI9MAaL6yhKyA/46hVcys970c+SLmriKdgawYlVoTpcoutyt2sAg8O6NTuX9L2q5VbIMszZBNAjIWWqzw2iYK7a4DCJ3OVKh7Adl9nR0W/Ww3qHvXLWO+WoHIxkgH1JsZtPShPSq2fmjCjfq+Oh2Q9H3VyUmLfVBEbM+Wu9t4G4poF/dULH+Nz1ou6GMflIlk8C10Q3l6C0CMmBGoSPhldWuyTw0Nt2Lrz2tQem9LYzOUSr+p/z4eoBy6ma+8GBf3BNBk58W2gLPVA9VFrwyc0uBNiREwBv7t48IUMkNYCaLcjIkxZI5DJkjGFh+aTVf6etGERNfm09aB4etqqR2pRARvrGjHSOo/Jfmc38ZRHVi983zRC24MDYUb1WtznWOK0t+imGsnqgmFhVcn5L6qjdLugMrySL+DYJkcKmtrE10Jmdc/vfGRLqrPXhzdAJSXK93gutqZd6xAvGXKmnEpk0pXbmkGN4psDRpNt1zLV+pk2b/TFiikGNn6e3TP5c8q+7bc3IfL9vCy7f25p6/Q9YGuDj4hGwgUi7OHvwiNsfdRh1pHVJpFu7eOd0+hZXLf3r9KfbVR7b6lW7Txad9F9Suya6Naj8qQ/G+3rmcscEcWE6v9FFC3umh6Cf9ddpOMoOP/v72vjdW1ucq61tz7vC8thI9SC4VWCqZ+AKIQQkD9QcAPIATCD5MSSZpIwh8S0WikDYnGHyQkGqKJXyGK+IEQgghNE4WCGmOiIKhA+agtgcALhRbQgud9z977uWf5Y61rfczz7LNfCz37MXkm2Wfv8zz3PbNmZs21rlmzZiZFtFT8klI/P53OCiiTSVD5XCkVwKZ2ig8E2AW6q/krdjGKrW5OGqMUDFEIJj7+lbfQV17bfu/iLAfZwHLwRB9YroShyDmw0royNtOAYI7YVIvaC6dW3WwrH9pzDINKs4w44ozKTPapBIN8tAwIAgJBS03hjA63LqgyEedjeq5drYffuBjVKyvQ4ABpfjOOnLnUvYBpuBcYWlPBSIASDK6sV3m3ssPYUsmV4I7YZez6iVO1+UvAdxiW5j4oGYhAtis3DjXPfFLuqu9i8NQPboh8WR9VKHLfPIGtBtGzb2NBr8w0CmH2U4JILBYDIeKupOrLTH1neeGTPnJD8Jf4lRRZZ5O9+N+NZXj/VrDtO7cA2OxqF2D6ocMHNoEv9IhmpEAwSrVA9l2DWdZ+izJf1kzojIBSPqwoNRAdFwPu4ErSwlu8Azff2D/JUm7BBR9TngFxh0YGOs+g4FyoSHLFjt3dOvoiQgxyWl2UEJUwZUWZNRUHyTwWygoyMzPEhSloUbbQ2wJ+UA+g9hANQWNlKGUG08xmi8Dn8B3VdlVzoI9B6e3zNQYwumEBEnEgrudT2tQSPlUvoU5avY5csbT9yvXZOGkJCZIt9jAGehUsFyDiSuBVg+akeQyGRJ2g/mmZHq5A0+InUQwSgFztjR6J72JaX/XeMoy2zO4vfbQy/SP2r9HRyjKbu4JAWwvVJc9eh+rr7Y+oG/U6Y8FRylOlcrS0XV+J5P5fGjj24TQAZCD7hO0AGv7MDkAlgNJWyH1szsy26e4dVTqVzgcoHw1GfyMtI2y9hqN7nuwD2CqZW6rwC/F4M42plfghrX6/AOrJijlV8bKobI4wwRyNPrmu5sAiSFbArDi4+kCOfSLlhKAAbInBJEAekUgmZ9qSnxNIAeT1EF6Wcn94UUqCzVF7FjCu99OU51Pdl1qUetnlX9MZP322xyUmWHLw1hCkwi4m2mCOQU/jUWREeRPwnUgBTIQPGlbWizXLdiewqmoB6sVgjHIXzx0tWhrIDeIJg7Mk1ieiQZYhXVsnwd0NPJ8IW1t0M18ouXEDQcdbGq9jODGdsj81xgel0jAqq8SaQ8M3s1t5I0kRkdCczf7ZbkRo53j0cbxpPh5FFCZKTJlw/3OtQvH34unpbIBSH83oeZtOlpNlFJArs8yyD/O73e55Zaa6pRLfi32bVlwEkEGPL5fPUmECPEOB+uDkVQ5h0cuUJkGyM8PiPAWVp4VvxOCuWin97xIDx64kMJtfVHPjTMhsh3oY1i4DwUUNBRvJMoJhamkD/3ju2lhaXvQ1UA+JSFdBFsZQE+VpT0hmplzdlMpAOsjrqtiRvSCm2l4W5TKWTCCvfSLxXmcVNLCnF23iSlzNAc7FsFnKVDkGMjK/AAXmytCckGOisVJ+3vpvMUzsM3ETq5TLg71VMecBXHwM/eEWTNiNATmLGymT1DAg6pE00Zp+l+l53HKqRQ9RFudAtXfwC12f0T1RMWe5pvf2jE7xg4FdpunjaYdNv/3oNtzCtkAekMe8FWNL3cx2eTpUng1Qgj4NN1QyOLL9h+FDIpAdFojKztkJPBnUmluo+vbA6NRgmQDBLWMOl9EZLKiZo/5XGY/0nyU7TACKKXMwXwpRj3yqVj9/CySUrN4gGI8EbqxsAWl00L9qPtcCIIldmnuT45uSfwHZlj9pbjS9y6uCYAl+A2OpRXlW4vu7FLlJFPXTLLtVqdctxSoD+yQTJLAeG7bapnUGkaat1IeACY9dXOSKAPm72CjbtNXCxVreibNbfUEk2+C4Hfv22axK2Jn185OymdJ3DPXZDhT9FKmqSnbuZbLKUq+6MiP5W9i/vrijQGJHrZP690Nt8Yf2IPzz8PY+Hiun0vkA5fPSlW0zKyLeO/Ow5/cDdheL+x7m9cEWd+YBXOY2g1Wthh3dZivS1vB2Cjqsw3SH6m2E6QCAiFnjOW/BkB/xzprDAm1lbGXUEQB2QA9hVdsJ4sFIFXlVbUWuOvxRvqPMlp9AgG0Dqo7E2FHwPpfm9x3iflyvcwzSukhEMU8xHPgGgJ4IFnPPxQgRwdh4xiHBWOKszOHKOdXZZptmVxmWMo+YeHsBK3tpDeN14KBmbRlSVN0D4Q9GAXZOK7mAwDzWmUVvHQejNahZQOOM8J8zhsXLPsly70jK7b28QYdkgW3RDX1sl0T2H4K5IfpcQXeNAgXw8rZJxjTTGSNltuPtFa4A+jpLyFz1XS6kIg8dWTZoKIwU3Rge6M2ehwdfid3h80j8OlvYTqdlfS4V3TO8ByzvDUkXkW8VkfeJyDvLZ68SkXeIyLv998eU794qIu8RkXeJyJ+5L/8QNs6lEz+LTiBXAnlkx8XLldiOBcZE8ay74UTSTxrikfV2gycXAghG9W/rVAJNPZ7KR1Oz0/SfaPxwVTn9b/xba2erxbiFCwE8od2A4Lh7NH9i722FsOO2C6ndQtZnI0woprVReAFDB5gT3XK6yLq8gzuVbI0QqPWuMkgBt6zDy0i1HvHu3ZVgsV2+fE7a9Li018L1NWYEmTFlrj+NYarlWS9Fy7JOCd37pbZRlyXfD6PE/r6PKTVXTy+5vsuqtlXyOxPbpQJe/kQMoyzvSOpof2+2H7+gBbFg4dNtoRtu/blB7NbBbfn7Ru363RuF3gJ6cxddtvRyGOW3Afi7AP5Z+ewtAH5IVb9JRN7i//96EflUAG8C8GkAPgHAD4rI79c0KaeTKOYj3yM9xG/uG+kbU2AcPCToZrfj59noCug2EecYTtgJyjpsNXyOxqIYeUo/EQWz8bA5w1Rw47+xqCtgHuIdc17b0trkFJuB01oHgnc2FyFacDqDa/2Zk0qY28lERhlkM79v/UskcKBXhe67DWT3X6UfS4KdMSidfrjeN4kuYfCllbisNJ94nyyj+mnrlK+xLc168SoJBmKvSFfai6yJ518qt18CS7iPz9SqQRPAttgZIAWg+Zc2xZZss5BUkf15svIJvsrZSQl0Xw0Cqewpf2e0TUHF1lne77Fol4/FbwewDB2S0pdafklmGaosrd+pBhEihtq39eVaj2kMhsZylMyiL/JDPaqf5xGRDM/ZKN1ta6Pu6ldIwK6oHchA84HAC3PH1an9EXIfpXuBUlX/o4i8Yfn4ywF8vv/9TwH8BwBf759/p6peA/h5EXkPgM8B8J+fWojADvwkixpqjtiyUKDDFFt5QrP7JXgLp0CMkbIdF9xRD1ZNc7aVBytAGKARyqyrB3RsmBGnOYt+8S7l0vC0mg10yspgJZyhYDlAmkHm96aVCWi1egrvbG6hy+9COVqqbAlQjwCY5WQgBqMnqOayYsySKY8voHTQsv+vA7aWX20DJ26qpxSW0+ET30mWktjh0114aNhAMFUAvvDCxb2F+JXwlSrrEfuKX12mMAYCA5eC0ZlnAUmRZQclB3MW0lhkO9T4SMlA37gqItC8+bM5HrzB5GS9pBnFOrUO1KEhbuJUQ6I1V/+DY4RhQrXiJZLD69EMLDUkBBvg6UY0kgYNRkzkVmL91ly1xWKIHy4cdX6Kb9jTB+uj/DhVfa9X6L0i8hr//BMB/Jfy3Av+2VESka8B8DUA8BEf+wmQ5zzOTWwFERswY6XUB9ZUZ5PTnlUYSMrII+mnGr1mOzDuO8DTBr8IUXVvyk0fChs/B6HAmOQBceVlMBgAI7efndDf8EWpirHdtjgCyLhCPXVI2ekRfG2sWXWa5QRgsaBlMFHmFq9ZmYIrCRnHMKMwYCu4uvgYg32agIVp+f7dcEG0fgXGtoCaFqBNMONIzKD2bLiYOlYWOjNsrKWOXX7U2gxwHXrlB6eYj20M3xY6iwGIMZMB7i0eFjHGnsqgrY1yAiW6lb6R6GNTNte50k65IIXiB0S+A24zdT93MIEqA18r8cE+E8rna52klINkWN4d8T7fFvFuqYxklHezz1L0kn9cOidhjFU5puvkc9glZ34giR10wggWj60ViY0IUyVPDqIqp9sXKP2pdXwP7fKdSL/bizmn6cCpD1W/BcC3AMBrPuUPKx5JgJsFkroihb8FnXWzbptAdo/YD2BUDx1ScBIdAalzQw9lsUE8J1/eMfwK3L5BQ3w3yuZW1o7Sj1hNbGWqwA6p/spSXtX9MHScVlcKYtcZDAC+kAlgZSBAPU6LDDUXQqhQ3rZaAN2Ng5U9S5tw9JIFI9hjBqkDwYBVe92n7RYaUjaE0tmfdLTXIYL+pRx8rMF8LCULyNCxzD/8xy63HcaQBE0TQSCQ3G4a7KhwvrE5y0hfNH/oCog9860vrIgIHVLqB3e7ZBhOYH64mKx+644jRd0Ns7lMBVCkr8AzXKmpbz1VStNuZvPySDe+JVE2ywC4B1vLy+ylGX1BMK1dLHy4JZtBaITTlfYGkFN1Iwm2ndNJjoemGdhuQMwEvFweKDyP+6cxX019fVr6YIHy10Tktc4mXwvgff75CwBeX557HYBfuTc3AeQ5Ghr1i+HUAJPMSoAIeSSmDbMgY7gvcnge6gs707Yv8sJ1a0BBXq/gz7oSx8EU8LZcjezYygLodJaarLcPmuNdIL3OGvmannLbW7H6/n9dGNmpwan5ONKKVMUvjKDkDbJWdPnTjuSVD8kixNsMXeniGfM3a+wxJhtyJrTUMfG55tUqFLIqyEB6mUd18parSyzBpKsfUMrCXG3TAhic/tmqvgbQ9HuTCOBeSxogyqcau7ispIxVzDxGGvajVAyfwnzPlA+sD4LlQz2iIA5A6X7gCHqn1vm9O6xEr9WqPbWtvDEC6CT7W048u+g2uLYQH7mPuTJVHRDZjaRgACNPJLKG9kOCWxcWoIzbD9LI0rCuM4q70gcLlG8D8GYA3+S/v698/i9F5JthizlvBPAj9+YmsCsrryozKtSRFmLCptdXmykyV7oG0E6FZvjG7tdI7KSgzFxx6ipRGVc+zhikOwFRN/iu4hx3DtDsm9RDLX6kBEMrlkp58PKsw/ICUw7apdc0ZTed30qmCEUNQOPed0GxnNZ26v5XAppl78rpLoXjraSFOQfmZXvHXTYxbTQFnNN9hNwOWLq7V8+mq8e66kwJi5FYgbE8K7KBN2vmogXbtoAWp3xrNpHm8oXkdbdHRrGAvrtuuPurMuC2Oq88c3ISLrNPC+BItHEObgEg4yoG+nSmG1NoD4GjAWjllpmGwJlvMfbQ6actjVTq2L6pRUbK5Ldoqp5oQ+3vyPJdTN3zxTQmM7MADc8O6A6du59v4PdhDYbAUDfWvqGhzM8iTkGqZt6d7gVKEfkOAJ8P4NUi8gKAvw4DyO8Ska8G8IsA/iwAqOpPich3AfhpGIR97b0r3l4XvQLCRxU4UxpR3eJx2seAc28YFfhpIpo+4+F9IQ6cpVGEQBmmk1d65hQ69iaHJYo2iZ0YNqVJBuPC4oTWtDqZ3uUKtDRmtEKKFrCUctipt920e2JSWcmqAqH9l6CN75hu5pRVFHHCtjjIBCaesLpUtl7F7LM8hzABW9fMOK1dwZ9l3AFKpxJ3C7WV3SwoptHKU4MC+UuZ5fIpLucdy9EKRXlhkfOYdcY7xbAFGEZ++f8qogBm7AZsj3rx4fZnJAAuaiAntslKGUdhXK3ebRqO1A+s/SHxWql/JwlZ9TJGZH1eA5ylvaQIReQZtCqAjqhnuDZABsn+SKDMcUrTxN/rCvtxejmr3l95x1dfeMfz3wjgG+/LtyVR4Gqe+Jyrk/Dj1cTgd0cBPt+y5hcM8TQhM5cIX5KdWWdTckzECSS2/9O2elmvbs4gOb2jP8guDWPs+HArxuOveKkVQ3pUc0tWhCLoHl3FbY6mm4XZoJ6wwjHgz1erGQtd9n0AEaf04WBNnxgzJIuIFfeKWRDInIUMeVjRFUORNAZS6Sgrye+xnhxYJawnfJle75jcOWBw8cVkMgUeGxczlsWTqtQL+8UYNiUehUGUqa24zuS45bQ75TGcLMHedREEpwCzrOBKv+I2mD4BgBQRCCOpBLxa5MLCQg+yUn725bCFuMltigA2v475xEaCON678A9ezMdnybotONGf429nnRTH7qkqBKa+UOraiUOCaITK6e7VO/QMwkrMCN1Ln64/q7exNJFx0wt5kS0YNY1LxMT/bjDKZ5cKowAQnW5/wg5FRRoMAcDrbNnw/FeSfcV9GsPziHdpOtlRCk4zHQrD4oRVNu3rpCYMVbIALR2SVZKUjTVWP2jhiKjc3XE5O9Oj55Kk8Lsy+EH/oeb3R8VIll6ei6DrNhAKMyjvIuoOxEVRIV+CVwR0N0tfgaDk2gbcHQ1yxAhyyg3VY2d9+PSWd6o8Poik9ttdrPKUaF6nDM9R2CzCv6UMR+4EJutD9of4bxXKmr/zdQkZAx61ZZfk/USbBXAQUGqdixunlbi2yZFOVwE0h1AZGxEHW8s50SiJCXUcldA15E6iJCWlfsWgFaQ8WVZNZwKUAsy+6JBflc5RxGo2bgE9KDAV8/YA7IqxX9nq95RjF1MpykwZosNzZw3jAdcBSwBlngoGnLeVUrInnuk3l9VUGdGJTZ6SclDRR0t/USD88kJI2I5ZSzZXG88L9LxGnAxEYOjMM++lEQ9fOsUOMv85kynRr7tOC4cfRDvncvbi2MxozOq3Yjn1JPesf2372Aww98Z2qy+2sVggwkr6mE5fXW2XU9PnxJFst9zR4yvufjAFwdqahXc8WX6b35UTB3uQ5QqKPhXD5nfczKXMbE7m7bOJ2l/KvqqfrX8s1FBPPFvdBM194XKrZr3DMM+ezbTFpjF8zUE2DEaT7Hsz1oGsYkaLYWiWmW11npMXpxXdIlPmLZph9LlI1xrgznQeQKmAuEOx7sUuRM0Y0ZTYfWM3sxm9FPc5YaphnSK/YwH1LDLw9+qbKLZZPI94H4Dv/c6DfmcZLPXZtGWr0T6KLzzBlILJlK/WrXT2HEGtsLasgQ3w9STnGMh8MhX8yE9D539jhRXMV1nYzvQBwrFS8/4fSSbE9k8eq72KZE4n2EmfVmuRkQxLy9fizK6yBz9HQBJAU+vi7WOZ2rRfSt2X5PUUnnpTQU3Uy+7tK+66aHuhkQs4KdPS+tWn2ZWmyVv9xMsfNbMEP7okTuw5lxUcSyktr7W/quFU2Jjl6vUJ32djseVr67rSS+JtTfDTkk+Rq87yqgG5b6JwFkApEIy5QdX9Net+WDqhp9om993AUqZA/D1MD8SeCswtQ4mIaSAYA6kv7K1scPHyOEDor7E7USY0TgblcW2C9LNosaROcBRu+QVXo5WCiD2LjqvJpyjFFXAqdWd+si4GPceuBl/l5M4GrQp4VDac9fBWx6W3BKi7M1IYZ0R+q6CWQxRaqE6dnjP8KBZW2Eam+H3wzzIIpD1vcY9VlJxShJeFO7HU2mWCO3fqfd80fnWAyfJ/9L8JKNFErKe3kgrm7gOT/UWAbiBHf7xVcvJ2RPUlpcriSrtHH50Y7fdzpSq2zVzGWHynDfu8/+rRe8HAa/1NXo0V1YZe2azqYVeuE7x1NX3Mms+yH/zzWCd2PSFLp853cM7+a2MGQOu7O9JZACUA300oPnUug1BgbESdrRCjDupn0Em8C7JM75c+qSpKBoTCxjRnKuaYkKkYw6x+MFuNDMHOyr2iBrj7BKYK9jlwmBtup+DJLXA7gTntSorXfPg1rqAY4Vclq/J8w9imrQw/pprircPVvY/Z+eKr8T7FzTqkJZdeXNvXnM3F9tEYxMaQSijTrFPlZFY2jv0WSSq7++G4kjqGXSs7ZwJXGqmUS0V8Aa2y2GSjAapI37Dl73fNlDYlYvZpsk3Zjv1s0RBogdixCQKtzkCyrFoPHcNu5hzsx142d9JZO7cQ8fBlds6QxsGaVssZnN0n3KpzivWWPO10Lcv3GDg4djxCg10RunT3BkCp/6jYmoKhfp+FxbDMDQ6RQ3yXfZ7VNMabfU9SUXzU8fk6pqN1cHrrbKbzAEqFXTkJgejwE8I0jljjM2obZ/JejIPaiccTziBl2eudIQBRDhBtVjMmY4TMvv/fwZRKm76yjA1UBW534DCB67nhyWHDi7dX+MD1hhdvbWvVc9vER71iQrYDBvbIL8uoDbJ6zhxYpddlDe0IUItbB2010QbU9Jx9MEnADeoKb0xD1dgMzzS0gzkISpzepB8qRc+tf7ozXlHK4PBytg28gZGAvvCyAADma78kjZgWI0M/5sYtg777wMst4w3hPlH2vZRtWE05XOZk1pw6h6vixFRcCnBQpgEaj6zluvffpo+Ule1tU/e0oixjA2+TDNY3vH9LK2ZtqvKj/d1ZNdu+TmFpJOpOJI+tpJ9XCGRF1tqGUZ60Ps1QJc7aajRhYa4tbyk/BAaLER5+oM5RKkZI5o4502ihtc/pdCZAqXYqEDjmTQEbw5gwfwaZpANk/mSji2w+5CXeP55CwC4rk+GDpDCZ0BCaTS5AKA4q2OeG6yk4TODxzYabXfBbT65wqwPXc8PUgV0FN/MnsM/3YpPPwSv0o7DrZlsjt2JJw0pqk60NIAXAxZlBoAZncL5w75ZVDWAGF4CkQm614hwkyGlw46nJXrQoY+xHJ8sU7jc/wayWqeKcB0B7v9gizixbI5OVzQgZsbLHuIpyKrsI534YkqxjIf5I2CAAJdiZq6KzitymOKIO1lZlpbAYgQTAmotGXhBf4MsCylMKW3DIlXD63KKMqpPI7xlypVOhsnvomteXJyjNkQpTujraMdqfjF8wY8/HCrLOQIF0j8DnQVoMEcr79YzKui3WjQJk2EIfjSz7I+wDtxCzDFai6KQveuncW9u22QJDm2RAwDCnp4MkcCZAqersEFSY+Cutw444FKNeIJQ3ORAUfKqkfdAIB9wKlmPkXk9NkEaZaisGpk7sU3EzBTe74P/cDlzvgv/1kuDJYeA3XnyEWx24mYzXAmT8CgQ/hee3z8AYH4sdW44pcF/z7gxttcTSOvuUT6WO0fzWFSmCpvs0ZZ1iZvCt5if0F9WBXKbVXb51sSXLqWFFFrs5fTC7TzEGpse5HsnnwDZnrnBCCovSYF8gG6tvk92GNWEZjp6iEbSdxqoYFoJbqUfthwyDSibpPVD/ibzMPZAxnM08KjW+8urloBXUkDPX9zEgu+a7rsPJ/r2fRrLfjuO7k/Ppvsl0AWQ7SZGP8tAVUy4eo1jqh2awNE46qqIu+py7h/y7uKwsn2Ff5+IW28t1KQwhdaMazTU3d9XonY+0dBZACYUFivuAzUURO3JNRIwxTjGwjN2F1XeExi7tfIsJXsYYCz17ea44ygHH4Ck4zIGpgpf2R7iZwG9ffxiud+DxjeB6B6534GYC+7zBzf4D2Odv4smtHRgwVTA22LW48zcgAtwcBIdd8PhasAF4xZa7Vbh3dxt2Gng7JXyIheUA1DQfR9VyI5VCRg4G5TF1aTB4HmW0l2clILPw6XnzHUlhIQvzWpXdrmysUBMDVYZN5XQ/2OX0HqA/fDtm3GZZlDavMvAwq8mTwBFTxRZYDySr5jhpSrb+7SBCeu6DzFrN913XLaWe4eSuLmYTN3EudC2aLad5DYSXmUR3tyBYorQXWbcanZ7TU4IEmVLEXMY0nlRyNcwMr5kerpOGMJjoTHmN5IsZmjAUCKZphsF962wfAqjawQv0b2swyNQ9GVdVtARp4YyMzH5hg4ufN1O5T96JCfv45aSzAEoB/PQfCRwoNzJY+0w/Y6/6TjwECOD/Nc00f2Yy1KDswRxtAWZOsQWYXbFPwc0cOKjg8WHget/xgevHeHJQ/Pa14GYC17vazF+fYOp7ofp+K4ZFMdoBAPQKcwquILjdgT0MZYLYSRZVphXWwfb/PL0F0ck5o5Kjjm/T4MIS4zkpzGERIcE2mm+RHQH4/p9i2fO5xi7ZF84s41zCWEzosscMI77LARNAx48pCUW+cwwsNEKKHiHblnuYBcBRVgtzi+wK60F9s7C5U/God26PrIxYUjfS1SknykQQjZRhCybatWSpXRgGX0n29ukxq5p5xOt6nNdR4uzDjZCwnXM3U7ZPs5iRLafp8TfrLUUXnkoRa52KvbonnQVQWizk5j5rm56RvtumdzsdSKZi3k4Dv4P7ZHTPafjB2JnYYZYwlgP7jEA2BFOBJztwuytevNnx+PZ5fOAaePEGeOkAvOQLMwaGv4qb+b1QfYJ97pjuf7HfO8Z4DBHguUdWFQLmVORZAhM4iOD6sOFmn6nwy/SA4BodV3xDcYAD2TaZQzzrT4rEABYZZYtZsah8qQFuAmfpmASKOG2c4OcH/RW/Vk7Z68KI5WNX1zoDnAAXU7jiLGpTPoamAIWJbMmKgy56vpWBs51imlun6EBxH0j/DQQzVU2/laoC++6uAgPTMAJkU+odPba2IJLT/mokjDmFO4D5NFBgPdJFYNlkHexnBw8cCfbns4IZUQwwmcVP2gGn1eKyavgm66Kc+p3qjVWK5CAC+w+gTzVITpsyF71a9QEAtiuI6/Fku8Qs79QpSt3AxBGCpa5H48KHmshe/L6mvwT7tmh8RzoPoAT6LbIKRLB4XOPAcBTNRUDVFoRuNLTcZlj6aZ/AvgseX2+4PQy8dG0r1Y9vdrx4+xi/df2beOkAXB+A66nYp8XZqb4fu34Aqk9ge7Vz7t5263gKN4yGiADeB9UNB30e+6wLR4Vl1AwANxYoYAr0AU8XBeLtCpKN4oAsknqjiD3OK1NUyqBRkfi+sYrck55TmmQbad2LzFUhV1+ps9cGZiInWopiJdjHmHgakSj109ISjZVaLuXebcSADWIH9KZV1m1C1be9BpZ2ADw5zWtsiEaos6PUszsGNKtDhrkM/NAvKiafQ21jBsZTLLpiiuES6W1fmiKrU8tegbJo4tJZUvsj/p91phc9y5esBnOuPlA+HfptMcuxI0rubM2T6TyAcir0SQ8LGLzSwAN1Gfyqt15hP3Yt/I675snfsmUfTfv8pWvBSzeCd7//lfjtJ1d4fLNZOM8+cbv/HJ4c3o4hE7aKe4AdX8UTOG6TcLnGbZt9sGeUiameUAXF2eUE8A5MfCSeHL4C1/srLD90hYr/xTSYW/HoqBcLXJ8ltCVSrnCbYVlZVEFDkdzqVe7oBpB+ohpeQTAuoAW3/HYvjcIO+6zdOTMfL3/uB+9Da6jhvqw+pbO2SLJVtrXGOYWFWS7vgyBFxg000NGD61D4w3iHUL9dsC4oRhmzsOeGzOo6tvv5j1tfda6PQqBDWt72Kd0Pp7fxWhWrP84ZUQWbOu2u7bF8FhElDCGLIHcAypPGjd3NfYfIhGxXzXDVffNHgeetsOWPI3n1+NEA8PQ5Lw0Rb3ALZ/SxuM4Iog41zhegX/N4UfO+dB5ACeRd6GG5kzHwt02FUEAQNkWfPh2ffNOBYsIuJNsVh/0KN4eBJ4crvHhQXO8/i31e43ZO7PqLUBzAS+EVvj8XtxDYeZSOUQ14RNpZpxj+M1XifBojDLaidDsFh2knePu6h6eF0QAW1iHJPnMqUZSf7E8Kkyn+pNwxQSudY7Q+Q/BnCmVCerMK3+mMBIBiQjQD3E0siUMHgk0qD5iQAJMaR5nAREGWlU9OqaPsurrr/0r9n7RKB3DPWlfv2E5PclA35hoUkl3VzZ3OAJt83/+Jg5rZZml4Vv9xCl3KabiiqD3S2qy0RqsPmbc4O6uAGY8KBAMq9EGuoUPermzHwD+Cmxt2rQItQB3/INnFKXmPnr+b/0XML0aEG5l/dfjelVyojIOntehH86ufTucBlEagyv+TQdYkfI4Nx9XtA3yVm1TbN8A7m9QduDk8wku3Gx4fHuHF/UXc7D8I1f+NXXdM3X3oOVOaDYPw3Ia4iocMkhDmR2RiGwRKi6+cBdDpdrvZB673gV2n79YQ1MNdOW22src42Ne+TNAI1iPs7MIAi78KQNzCyB9ZmZK3t71LcEWfxXDAAMjDUstKq6qz73xOIYUgaRxmzLjEcXUVfT/nvvga3Q+3c4Au986A7GFR7pDRnyu7aVQVdu6uLyIVZq4MngYZSU5/23ZaGusw4oj+0WiLevByAVVNVolRrmlo/tI76sMCjqa1srxCMB7lURovSVVCNxaVkQG8j139FHX3q8JDkcKAaylbyhZSH7stRlGKKIGSCMJxxxbMjJnMNj8Kb6t9I2rxw3HIBtqFYxF9QNB0MH057PJMgFL8ziRNZdTqzPWBwVVuttuerBGqNh2nw13hfxuq7brhZg7czh/D7f7ruN2fQKfTdz/FfHNGyCMt92mhIIc4ZcS+VxgwbgMRlMu2JpcpJCrqsOvA5MVIMZYKCAHGtmpsmpRFidIeUvyIWlgj4Io3CVjxRvyfh9uukWpx74izPA7sCKNY9akAB6fNHaz4f3XQJAABWGQmQ1rrElnFU+x86YMsvq1s0RccMLOdXGYtmdd4zwhnijoHwhWmu7CbYpho5KUsStkjPnCrolAOtqOUI9hqfRo7q+ZrlaWWd5rRZXL94DbRsgDHRTkjjiV4XLM/W91rfl4nLeM4xVzedfF48DTz6zGgVe+0/cp6asFdA/YxuDEix1rEUiPdWUHK7sHK8wBKwNkhqX5pEG6dixVHRypf2LGj1pA+QgAJCxK6ZUApOOw/icP+yzgcphejxgS3BEsAvEkCOoG9nnnpoDicQda7ixadQVVVm4kOTB2wi4+KYpVDVzMQu/jwKptoUzSyg+mMoTCukSvWRcLyS4oPEclmVxYfwCFNYdv0vg1mvpeWm3Sqr0hXQJWl7MpC+uBKcKhMoIMP32uB5EXe+EzK6vLSrqFDUq77gB61z3HS/GkYVgDAjUgDSQCol6eV7PpulPKl91mytqqAFTQXgI0mopycxZCpu99yGPE4clUsl7xh1ZsjBo6jfuyuCbhhZh2kPJIAesToW1tWZmJ1gs/YBPAQY0bTzPJskfcp6TyAUgHcmjIIRqmAs8jaqPzhuZPst/Af+iphBVYBpg7MKdinbc3iEX/7DkxNUJEBbEOxiQZROEkkNGLajdxOwRDgamT4J2fWnGJf7xuu94Fb96VejRnGQYb53gYvOouTeOpA0mQhIYezsLK1kDtGyA7rs66Sna3DgZz7bDuFA7fy4WR+8RAi7q5OpdYBornQYo9stqkAAtUeAJyDzKezlblBbZeL+v1BZI8Cn05VpklWUmSk2DygedQ2IaA6nJENxZ5vD62J6qfPLwxgTDUccrX4br3wlEPCYGaWFfgS6DIqAOV7ly8Ye4bsMK827Yy2cLdPVag5fdLMthLIuGLpATARFeAbB2Sj/hVxa/8vTLnLfSKd8BFn/TrASTBxpJzuO4oThirR8DuN2iaA/z8YpfZ9/7o0aCUaERoEC1JXQP1MyvZcSwKdEgyRBridCaw2zZ4CbGIn/Khjts/sczaJBNBGgIfETjH6N8dMP+auA4c5sE8x5lpZD9lBIQVc9bYqcDDal8k7SiWQAyxixCQHPR/kIKqDqWFeyffUdka+0Ad+Posy3YlMyeji9XoOJaJx+50sfCdP90aph3E8AcgSEilLmcpHs86l3iI9pKdUsJWl4Db7ZbbCvAggLSIhy476Ps0fVoGWW3JP+i6PP6op+6GwvjgUmIE2ZVFMUGT2v9mGoU8Aqt+xkBn1dk9XTWmThW0e61F8c9wcfP4uxldkPI4ACOFqIRRiKU2e2i3AmQClTmA+yS1MXLlq/hkhe/RpqvJ0al4KpgkkZWyQkT25AR4/GbjxYHIRi4N8xDUFf2FXYGP4GIphkwRFVeBmj6JaPWjMRIDnHxnLfO4K2ESwDbPiU2zPtxWwB2Bin5iyNyWnFa2sUn2qPUa93d0D4f0syJApmrBOW8bJAdgOvHD5+oEDVh8OjgryNbZzvcURqsEyCcK6H6wN6l0vTRZbIDAV0CNdjz6rq5n+bFww5hZKwxAfygGvgrbi6+07o8GSrahfqTr3CcjEtl1ZGaO0odI3V/ygqhGmYheZcRGkuA3czSJQqB/6EFfR1u2BgztlMgjdfmeEAgEjtoXWHVcjgSvbtIwvb/P1FKXuvqH8HkNLGdgZCmAjAGvocL9hfOln3igaXayJ01GnVddK8HzoaM2UErOPCltXgvXmoW3ZRE9LZwGUAJqwDe+TggB1msD/g1ZHgLo84dMDG0vGJg+7YD0TeImOCC71NLdFBUziDYeMiK9+D5uGb8MO7LVFIAsb2ufAHAqL2SyZkmVmzTpIxhimJlU/XG2wcpjCU+pwikh1t5+EDEcAWjKi5c+pTGV2Je/gkGytHIjcmpn/1zbAKjHItkFjy2TgeXzZKAOazCclqNPCAHquzgeOmaxxyIiXdzT1DZZCIJvIotfFrmKJk5aW8T2iXbMBtHWOhMzM4y7WKeUDJyBel1M+6drCWbQ6YLEPCWwaskRRbOua7dNYIctrxFZ7dbUY2MhcPYzpRHleJpmt6XouVGZbpz7fl84GKGmdZenY/DMtcLVkUirb9gb7i2boBNcHweNbm/baNDtBbRvAFXfkwUMyS4fHleEVpz10c/Mtyo+ubCHoyg/EuPKf6mq5PgiebAMvHTZsQ4PV5MKGBWtbndYVUP6dvqapZQDGlM01jGwzxlJRFFWo7oj7m0vlMgg9GdfJqXeobg445j2R/q3Wh4muoB/VQk/g7cBtjSb0aPf0IBWe03tQ3mplCcYzOy+ClwmsB5N/Chh03hd9pAdZqx8nV/zFEV/osqfRNml4JJjw6DC1kBlbTFC0y8p4Qrf4XUPbVbTn3O0e61mC5Mmi+gwg22n6MWMj2NOaxLdkwuJnYO3EGRx3XLVUwNJuKM12Nz/m1p89itTgV6mrpgPu42Rbs/9mMvPeTtaRPYJhL++WAdfs2IhsPph0NkB5CtYFyKnHkcW8oxM0WYH5rgrTkfyJiIc7JKiskdjjfdSK5myFrHHzlfNN0s7Tx2mnE9nUP7fjnvL/he0MeX10wNgN5SCDSllaJgByjzd1pzJUZzcVLEvbGrubcVJMA+6qxKfYQqMEQAC8/ZVTv3i8IWl53j7X9o3zGiGzsvLIIKLlKyU5ki3ZS05Bn8J6RHzmLEVeB1XmU5lpsFUaqJRkda3U9lKt7ZynyxPEkgjMwuIkmy4MJxxMXL9ae2vUIxnzBP3aJkoOEEZEFDGX5lTkeaWFVq5p0ZMWaSHLCK8sNAZt/j89rcWQYtGgY5pZeJYiOdU9fY8zAUr6VWq8IB3sHBCNHfmkOqYB/IznHe4H19sB1YGpwBDFoy2BjLsd5+whPkCC5M0tFdtjLHnpG+WG57fRD5mB58wy4jHVpv63u+DmAByuMg+sPhYKgVQmawIyTb/moJ0G7bmVQWjvVH/hbLrK+DFz2YltK5RyQIHyXpkZCxmsmTGe7seg8kLVg3lrWQSQo+jNyJN+tthzrEXeqgNljz1DnOjXC6YlfpTXXeyGjEMnjgJKaRHLL8Mjvxc87iOy76ZPsxsj13ShaLBz9ssSsM/hOnmiTrYc/Ybil3Dl0WSWhitb3YZp2bJNpN171FbxQT8m3Dc0kffUHzcXb/bsLN99xLsD5chDOoRyNCN0mtJVN4K9Xo0JZc9/7Q6osT5yf3LiUG9ePa2TPZ0FUAJwkJulMYrjGou/qvhvYvMHANoXLYN596ncYQpup6AaKUiuSNcGX9mkekEiJaTM3xnSATJlyRPebCp/DZEfBfAq3M7fi11HoDAtflg6cEph0ycs4S5h3Zvvh0CSTLKy1TZFrZV1umOieCvGqTU+COCn/Hh+R3aaq9xTYSdZzxgk4d8c5cCONgq1ZoSImY3pKkoneBXnLLuaEky6TN5uA8D0MPVZWFMpuzlxeCI4gMoaGy2kTHENQqVz/SSeYEqSBxWvjDIJghmGAP/CAGM6HLcMZvgYfZotuBrZ5zP8rpK1LqQjQsrYXkvZZN7ibRW3cNJdU5mqkVi02NTKZteZQ2XAIeOin8tzd7LWmG7TapXvIss6nXcyFXLdnc4DKOlrqJZHCurzg3j8dKXEp6XBuNQur7rdgZtdcLOP2INdyVfbKeggOSfawg/HKp8jbnGHzlW6weLZnfkooHgCkf8ExetwOz/JTxFalZfKR7ZmB2HYQaUaPwQy4c1Up9riDqtM5e1g4H3Ag37j+9LmJ2L8GF8Zyu2xUbaFVDligtGsx1nllK3IBkGcP+iN2QCLTHtO3/3JA3y3kp89E0e2uZ9Qo0xjTycQv7tBmrylX0o7rEHqpwZwAOSoBi+fiy4IpsqV/B6Ebf05yzvJmKX5tHOHUsZOCmyjQ0/h4hll4YuDIEAy5QGAOWu9CUpsX0ZtAGPz1Xf6P1OqBtTdwGc5dy1I2jBx2D65paYYmAV005eOkDNnMnen8wDKliotKz6Z4jO5K4UzmltmHChU7TbEm4ODH5IBXm2FCRYwHCMMdeAX0MF1iO0DLzsGj0iHCHDl707YswcdtrdhlEFTLfjJjJA02BV/bI+WwSvR+bGjpAJCsJtcaBHJQPNmqBZ/0NH7Y4SCpTL64kZhnal+ZQHBa1nBOMgAEH3PTyQO0LC65wr1tPM24yBX9pcCc8cMd4L7tCSZboJaHyB5fJwBbBoyZS1CGY6iAQDIZu4eA47s11j8YXxVtHH9wVGfpa+ThtVYJfy5ekGZAWtpw5j+wrEp61YXr1ScVxU2ZzMAhgFV452t0ZmdJFt3djxn9h2ZnvnI92R+63hmfST7h244W0RSAAdj0iXPCo58q5Z7nLTowf3pbIBytcUJFur9WUJe1CgzB+0Rw5QRuz2w+xUNfnIPn8xDLI6NCYEzADAxI36TSXKchr/qBMkjdtnfgh2DkALElOYUH9EY+FKfqIzv6PTnMt0mO6jtI3RpLHLexdKFfiwpOlemkGHY6mnf0rboNkAR1odjmavCVWlTlloGFdt2IjHEB9EmtVKqGtfD5krx4jZY3mHRCg2DGANW+3usa1Z5YVgxM6gscSBXEcnYet/0/sodWhHy5QHyMsSz0qUba9v5SeJIH237N8aXa1cwcMn+VB7UkuBKQNalTdLAIXcmofs1G4iB/ZE1aGB/AsREEPWuRjeBN2u4GrIl4KoTg3vS2QBlXTlL8Eul4TWc6Sh2RpOGBJx6x0qfmLN7bANXm+C5Kz8fiEbadYJxj+z4XZx5bugss/QbF4UmAEaicMYyxBZ4uKjDxZzb3bZMfmAMfMSVXVZmO788SFjVznLUfrOhxoB3X5IrpLiVjQMAgEBlpb9wP1aEOrVbgbSG3tj/DRBHLEbks3FGaEx305AhZOmAciwMXIZZwrCyn8mUcpD6YoafaKNKF0C5Q4fVmgroDh305zGkpDrvuwuB9xBlmcmSoyKaAKfChUgHlFlYnucfzE139/X653VrmOedLcx2K0HjlN3bR7bNDoKpBqvkxyuGg4lPbk1De15Vse87RG2zwigLTzVZ21r9lA74+lgwWPbVDuwK2TIAXkQxZ+oJQTiAb3V9OONNsOVtjOh657/arZA1L84qdGYbV124By/PBigz0VIsTAgSP8ksk4H0qZF/J8WqDIkp9ZFrz1+hleTfMQNDftakKVa1XgERY8p/iEX79GOAd0Q8p8K37bOvO+U52UKS1C7+Xq12ZZqn0mqI1jKTMTHv3LGRltgjDZ5imeXEX8fC9D+O6nIH203g5GJGglkrTbUMjJ6XyArMkv28sr2TIqQRU009zLpkNpXV5ay19BNJgBYFOqp+AsrpMKNjEdO41swaD42vuAvmqLriRGTNp4Bb6GW0N1aFRozfgm9YRVoL1zrVP5USsauurs+TzWYvnNL/00nuWhh5lklE3g/gMYBff2hZSno1zkse4Pxkusjz9HRu8gDnJ9M5yfNJqvp7Tn1xFkAJACLyo6r62Q8tB9O5yQOcn0wXeZ6ezk0e4PxkOjd57kp371a/pEu6pEu6JAAXoLykS7qkS7o3nRNQfstDC7Ckc5MHOD+ZLvI8PZ2bPMD5yXRu8pxMZ+OjvKRLuqRLOtd0Tozyki7pki7pLNMFKC/pki7pku5JZwGUIvJFIvIuEXmPiLzlAcp/vYj8exH5GRH5KRH5Ov/8VSLyDhF5t//+mGcs1yYi/11E3v7Q8ojIR4vId4vIz3o7fd4Dy/OXvK/eKSLfISIf9qzlEZFvFZH3icg7y2d3yiAib3Udf5eI/JlnJM/f9D77CRH51yLy0Q8pT/nur4iIisirn5U8v5P04EApdpDe3wPwxQA+FcBXisinPmMxDgD+sqr+IQCfC+BrXYa3APghVX0jgB/y/z/L9HUAfqb8/yHl+TsA/q2q/kEAf8TlehB5ROQTAfwFAJ+tqp8OuxbxTQ8gz7cB+KLls5MyuD69CcCn+Tt/X9ZDJD808rwDwKer6mcA+J8A3vrA8kBEXg/gTwH4xfLZs5Dng0/c0/pQPwA+D8D3l/+/FcBbH1im74N15LsAvNY/ey2Adz1DGV4HG2hfAODt/tmDyAPgIwH8PHzxr3z+UPJ8IoBfAvAq2DbctwP40w8hD4A3AHjnfW2y6jWA7wfweR9qeZbvvgLAtz+0PAC+G2ZsfwHAq5+lPB/sz4MzSqTSM73gnz1IEpE3APhMAD8M4ONU9b0A4L9f8wxF+dsA/ir6+dsPJc+nAHg/gH/iroB/JCIf/lDyqOovA/hbMEbyXgAfUNUfeCh5lnSXDOeg538ewL95SHlE5MsA/LKq/vjy1Tm0z53pHIDy1E73B4lZEpGPAPCvAPxFVf2th5DB5fhSAO9T1R97KBmWdAXgswD8A1X9TNi+/GfuS2Zyv9+XA/hkAJ8A4MNF5KseSp6XmR5Uz0XkG2Aupm9/KHlE5JUAvgHAXzv19bOW5/8lnQNQvgDg9eX/rwPwK89aCBF5BAPJb1fV7/GPf01EXuvfvxbA+56ROH8cwJeJyC8A+E4AXyAi/+IB5XkBwAuq+sP+/++GAedDyfMnAfy8qr5fVW8BfA+AP/aA8tR0lwwPpuci8mYAXwrgz6nPax9Int8HM24/7rr9OgD/TUQ+/oHkednpHIDyvwJ4o4h8sog8B3Povu1ZCiAiAuAfA/gZVf3m8tXbALzZ/34zzHf5IU+q+lZVfZ2qvgHWHv9OVb/qAeX5VQC/JCJ/wD/6QgA//VDywKbcnysir/S++0LY4tJDyVPTXTK8DcCbROR5EflkAG8E8CMfamFE5IsAfD2AL1PVFxc5n6k8qvqTqvoaVX2D6/YLAD7L9etB2udlp4d2krqB+xLYitzPAfiGByj/T8Bo/k8A+B/+8yUAPha2oPJu//2qB5Dt85GLOQ8mD4A/CuBHvY2+F8DHPLA8fwPAzwJ4J4B/DuD5Zy0PgO+A+UhvYYP+q58mA2za+XOwBZ8vfkbyvAfm+6Ne/8OHlGf5/hfgiznPQp7fyc9lC+MlXdIlXdI96Rym3pd0SZd0SWedLkB5SZd0SZd0T7oA5SVd0iVd0j3pApSXdEmXdEn3pAtQXtIlXdIl3ZMuQHlJl3RJl3RPugDlJV3SJV3SPen/AkbuP0DG5SKAAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUoAAAD7CAYAAAAMyN1hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAADVs0lEQVR4nOz9a6w1y7rfB/2equoec77vWmvvffbleMcOcS7GsYUViCKICAIjcxNEGAG2gpTIBKMjJAjhJnIShPIJ6UggRPh4xEWWCMImhNiIQAxWDkogMXHsXHyRE8s452yfk7Mv6/a+c84xurvq4cPzVHV1jzHne997rr1nrTXfMUZ3dXV1ddW//s+lnhJV5Sk9paf0lJ7S/Sn8pCvwlJ7SU3pKjz09AeVTekpP6Sm9Ij0B5VN6Sk/pKb0iPQHlU3pKT+kpvSI9AeVTekpP6Sm9Ij0B5VN6Sk/pKb0ifTCgFJH/jIj8ZRH5KyLyix/qPk/pKT2lp/Shk3wIP0oRicC/Bfwnge8B/wrwX1HVv/jeb/aUntJTekofOKUPVO5/EPgrqvpXAUTk/wD8fuAiUF5ff12/9vF3P1BVntJTekpP6VISBAgpgQR+/df/9R+q6rcv5fxQQPlbgV/rfn8P+A9tqijyC8AvAHz80W/hH/gv/ZH3cmN5L6W8e3pa7/QmSXk8LSY8nl70VU+P5Z1eThIiISSefeNbpPHA/+h//J1/5768H0pHeamnbVpNVX9ZVf8uVf27nl1//QNV4yk9paf0lC4nkYCEgEjgVZPjh2KU3wP+xu73bwN+/QPd61GmV3GSxz3XPqUPnX42+sdDT/nQE/6YGL2IgaUIIg/f80Mxyn8F+B0i8jeLyAj8fcCf+ED3ekpP6Sk9pTdOIoIEgSDwCqD8IIxSVRcR+W8B/xwQgf+Nqv6F91X+T4MG6U2e4aeDXfzspZ+Gfvrh0k++dUQCGhL/MoEvfhJACaCq/yzwz75u/p98sz3e9Dpt8wSmT+kpvVmSENAQ+DdQfq2UB/N+MKB8Sk/pKT2lx5wkBECRP/kn4UefPpj3CSh/StLjE+W/yhz3ERgantKHT2J+lPzqr8Kvfe/BrE9A+ZQ+YPoqguUTSP6spBAixIHXea+PCCi/ioPqq5l+PMP9MTmRf/XSTwMkP963L6tLkIg39sO1fSRAqUD+SVfiKT2lV6RXsc2fBnj7GUiCid1BIAbkNSb1RwKU8OObf34S89zTAPrpT8rD7/lnrw88Vm8NQcxtUnBW+QSUF+7xkwLKn72B8rOXnhjnVyMpVepeQfIr4x70cEXfX/pJAOWr2MabpKfB9tVN72ooerxav7dNb7vI8Z3uWZctthU5XxlG+aSjfHWqjOSnb7D8bKe3ea8/G33gQ1ECESXEQBBBqy3nq8MoP+TLf2wd6226wPtipU+M9HGl+97ru7ynx9bfH1kSnE3if4WvCKOED/dyH5ubyk9yADyB5ONMl97ru+o0H1Off1xJHChzXlhyoZSvDFC+LZi9znXvo8O8Thlv0qnfJO/7DPD0Lm3xtA/djze9bp97WzD9GQZSB8p/4f/9L/Bv/ZW/yg9+8H2+IkCJW594w/f3amvV+0mvusebdtbXfcjHpJMsPDHSn7b0WPrWjzdVRvnppz/ie9/71de65vEA5Qcz5ryaVr97epvyX4cNvGoi+EmzPHkEdfhZTvf1u/flivTTCKS2IifE6CEoX+8ZHwlQKrzzbpD3Xf+6Yv377BSv20kf6uivky6B6I+b9fV1eGKcjyf1fetJPN+k5mgOXzGghHd7Ke8qfn8I1vkqpvWq+70u43yb695X2t//yan68aUPxfq/uiAqQZAoX0VGCW/G+i7lfej698koL4HDpfQ64P22QPiqa94UrN4nuL0PJvOU3l/aS1Q/y++kBsOosSjhpxgo35Q9vm/3oP3972NRr3PPh2b6twHJN7n3vtwPodN6YpiPI+2B8mf4nUi3Muerxyhfd2XOQ6D3pozyXcDzdWfoV5279MxvUt6HXBb5rmVXi/3P8KB8lOlD9aH3mWT3+f6KDTGY6P2KPXL26ZEAJbyb1fttWOP7YpoPlfG+GeOHEqE+pMPzzziDeXTpMYvhtT51gn2/elCRAH0Myq8mo3wboLv0/b48b3LuTfLsU9/5Mm/GEB9iYK+T932DZ1/eu1hO9+V8yAH61TUy/PhT/25+0qB5qX+/76SEEKh4+Sa480iAktXh/LXT6+gq39Ua/g4vS8++7NJ9HfNNmOaHZgd9+e9iOX1f5bzpvZ7Sq9PPkHpEQAIs88x885JlmfnqAeUrK/zjAMb3kd7Wer5PPaDcl/d18rxt2jO/N1GNPASGb6tieRLhP1x6k77zod7Dh5/gRAISA//6X/g3+Jf+v3+Gly9eAMtrXfsVAsrXzfNI0pv0pYuP9Rja421VDx9qwnpaBfSTT1/lCasgQbm7u+GHP/zNN7ryKwaUb5Lvq55e5zmfYng+nN7noP6q9rvHuMz0x1mfbtIWkLAgMgPTG5XySIDyffs6fsXS64zln+Hmefv0Phvtq/wCHoNKqk8/zrZc7yWi7hoEb9omjwQo4avdEZ/S400/rn71WPvvj6Neb2KY/MklESUEQcKbL1x5aw4sIn+jiPzzIvKXROQviMg/7Md/TkT+HyLyb/vnN972Hk+pS/IGf0/pKT2lTVr3yWm+QW+U3kVZsAD/fVX9XcDfDfw3ReR3A78I/ClV/R3An/LfT+nHmZ5A9SeQnhr9PD2itrAF3kgIb7wqB94BKFX1N1T1z/r3F8BfAn4r8PuBP+LZ/gjwX3jbezylp/SUntL7SLa225cuvgVQvhcdpYj8duA/APxp4OdV9TfAwFREvvM+7vGUPlB6MiT9BNKHCm7yVUw/rg5Yly4K8hZM9p3t9CLyEfB/Av47qvrlG1z3CyLyZ0Tkz9zdvXjXajylp/SUntLlJEJIkRAj4S11lO/EKEVkwEDyn1TVf9oP/6aIfNfZ5HeB71+6VlV/GfhlgN/ynb9Ffxzaip+F+fmDpJ8ltdqjSu+h4X8qOv17YJ1V7H4rPvluVm8B/tfAX1LV/3l36k8Af8i//yHgj7/tPZ7SU3pKT+ldkxAIISEhrtGD3jC9C6P8e4B/APg3ReRf82P/GPBLwB8TkT8M/CrwB97hHu81vfOqwqf0lL5q6WdGB/3AgwoQhJvbW773mz/khz/84RuX/tZAqar/4gO1+31vW+5TekpP6Sm97xRC5K//+q/xT/0z/xeW5fUCYfTpEa3MeVzpZ2YifkpP6ae9s1dHc4ScF/Qtdnx9bKvlv1LpycbxlH5m0le4s4tAiKmB5dukJ0b5junJI+4pPYb0PjbteOeb/Dg7+Ws+sODLF0Podl588/QElD+m9GRIeko/9elRivDuEvSWSxdrehK9n9JTeko/tWllk9Hcg94yPTHKR5ge5cT8lJ7S+0gPde4P0an7Nd7voKB4YpRP6Sk9pZ/aJEHAly2+g+T9xCi/qukrbIR8So8s/ST70oZEfoiKVEb5jmHdHglQ3revxyUu/iR0PqWn9JReLzVr91suXazpEQHl+Io8FSDL7vdDYPpQnqf0lJ7STzp9aH28SGCaZv7qX/iL/Nr3vvdWzubwaIAyAM9fkUd3f2X3qffkLV2ep/SUntLPThJCjLx48QX/zB//Z7i9vXvrkh4RUF69Ik/PKC8BZg+Wl/JeAlQuXHPfsfr7Ur6n9JSe0odKb8s6zdk8EiS+81B9JEApvBoo4WFWCdud1V6V91Kemh5iqT07FR7fVqCPPz053z+l950u9inhnVfk1PRIgPJNRO/++9sA5f78fde8qjy6PPexzEv578tz6R5PMPGUntLbJkEIzZjzbmU9IqB8HWPOJYC6JHrDOeC8Kei9qrx67FK5fXm8Rp5LAHnfcz2lp/SUXisJEAIibx8Mo6ZHBJQfvSLPfWyyP/Y6INSf68t+U8C8r5xLYvtDIH0foOcL9S6vKGP/zE/pKf1sJtvHOxJC/GkSvQVeax2mA4Aq2xnigqis/e+3Acr9uTcBztcRzy+xxkuM8nXy9H9yz/Ny4fc+PYHrU/opSW3r8Hfzn6zpcQDla6soO+96ja9B7vQyrp0VvE+XWOKmIg/kfYjZvkqH2uetx/bM8lLezHn5e7H/kv/pfoLZg/NTekpf0SQ1YlAVvd8tPQqglAAyvgL1L2CMPkTuFChy+Xj73DPTViO/wfp7zbUDkH0ltAM07a+5r7L3scNLIHjfNZeA8iEAflUdHtL77tvgwwLqz/JSzaep6u2T4IEwfuoY5bPXzPsQuTsDygfyXvLqaXmcubbf4UKeB8rdY02fd/uly5RZneP3BfVO8+8DKO9rjNe55x64n9jnh0pVifKU3jy10GotctC7pccBlK/jRnmJEe570ZtIzBUQHyJHD4LpLs++Xvf6wSuo7K6pvwONiZY9bd6DE1wGyn1DPaTj3Fe6v88eKOvvfOHYfWU++Zi+a3oKufeWqYrc7wEk4bEA5asY5atY3H159racV5X7OudeRyX5EOFS2V5T6u+wxZ89Hl0sdA9q9xmN7mOil/L24Nvny7vPS8B5VukHGvIpva/0tB3JeRIJZiD+qRO9X2dhTk2vC5x7UIPz6/bX3Hfuvnu9DuZcwow9du1tNhdJXTCG2Rhoxz4r89zU+yGg7CvfP/B94Fc/l93D9YC6Z7j7vP25p/SUPlySEMil8Cu/8it8/wc/ZJqmdyrvcQClAIc3yO9jTna/z/K8juj8uufuy/OQT/l9gHkpz17NeEbYxL/LOc4tbOvV6ncfUF4CzP6B7gPKgs1qezTfi/61QoEt4l9ivU/px5V+lpaOigilFP78n//z/Lu/+f13Lu9xAGXk9f3N99/r79cFyvvyv256iBU+xDb3xKrP0+PHpc9X5Vl4oB5i4FrDS7Xzes93doVXgNyzxD1Q9nnyheP1e/LPpcv7VR+WT+mxJYmRIPC+/CYeBVCqQEkPDJZXAdt9zPHS8dpub2tn2NflIRC8xBr3996L15eMyq/Ks/cxvwjaO91oryvt79XifJT1gFZ2qN3vvnL13AIUc6aSnlFKV3AfSOQhS/wTeL5d+vE7VD2mNyXuZC4iSHi37R/69CiAspTCi+l0+eSZOPkW5xUkCiEIoe6dcZ8P6r5h7wVpz3jJvnIGUv4jXMhT67JXF/YYU6/bA2P7vQM9dC2rdOW9ivHu8a/gACurfjQPzkD3jHJlkiIZESVE7c4v3WfPNuddOXvRv0uPaUTC28uy73l/bDPuviMofNUdVjuBySbqOsB/ihhlUeU0L29+4W4s3dsk6jtmqBD1Lfyq9h13I9ayZa97ZnlJtN2D0n2/7xO3z8BZut+6re99LPPS9wcYsW7uqQ38Rb0dAHNvkrZyLIR6QfC/zDoDVFCU7nfN48faTe+r8P77h0gP9JV3MTffd63e++P+aoR1p8G3goWvOkjWVEmDKPG0UCTwrW9+y1fndLsx+vN++umn3NzcvFbR7wyUIhKBPwP8dVX9e0Xk54A/Cvx24K8Bf1BVP3uojFyUL2+P71ILI14VAB/q2/qOveI+MKnptRjm7vgeHPd5zqzfu7yb++j2fqV73vvqk7sM+3v1qsS9+N+TP8zYJCqQEygEzPAkTZRXjEHm7sKZLXCuLFN1r+vcsU9R0Hpsl+T850XY2R8860I/2a23dP16MYnHXAxhCwIPlfnjT++hDS+FdugP+LG6Gud4J6TDyO/7j/zHCSmQDiMxRdKQ3Bld+BN/4k/w5/7cn3ut278PRvkPA38J+MR//yLwp1T1l0TkF/33P/JQAVkznx4/Xw+86bv0mXSI6UwECRIIPqPAuhgxiMWoCxLOWOm6B/B6orHQnsjUz/57vWxvHO7z7s89lPchoLzvr69f2TXmQ8Bdz98HlJeYbaubgax211TpXHLHcjU4A66uTvWzrBdU8VyzQ0Uvtuf1Twpo4v4GseMi9vu1tkt5Hax5o6Sbj7e8+mKqtgophdL6/aXa/yTA8T2nB4GyO17FmZsTccqMcyakSJ4KIQaGcSDEQEiRn//md/hd/96/nRAjIvDn/+L/897bvxNQishvA/5zwP8E+O/54d8P/F7//keAX+EVQDnliV978ev2YzeFvl7fttn0+nBNDMF/W5ulmBjTaIDZhVsaQiJIIMZo+V0KFBFiiMaGuqSilq8/vgfLHuj2x3uQue/8pTyvA5A9C92nPSheOrYHz4fY7CUL+55tLo57RSHrliyWuBLCIqvKcvPse53l3H3WG+51nh0z1S2oaqv0K9JuLnz3RYQPg+Qb84H99Q0YL73k16vDvYU/cLn0Xy6U+yFg+XVwsk/T0VR54mNaYiTGwHAYjFmOA3/b3/i38rf/bb+T8XAgxMCf/4v/xL3lvSuj/F8A/0Pg4+7Yz6vqbwCo6m+IyHcuXSgivwD8AsD4ze/wtW+bf5AWpRRFS6EUZSkLRRUtivpnUSWXbA2mK1OYl+XsfUcJhBDdiFPPCinaEqfo4d1EaTqM5CBaX0mNlDzEROOkfk/LK4iu0CoIgbDe0/NKMKYawt4CXVUCnY/knh06Y3slk9wntRptgXHX7TcsVC+D84Y97v725y4t3qmGoc7LqLHPlkeMAZfKON3CXqIhbxm9nFKRmHPRfUEcQPWiAWk/s3QPov25exZ07Nv5Lenn+wOTSqPeQzH3/7x87sdIVO+91Sveh3qf1lwMP1RNVXGaiceJGAMxJR+b96e3BkoR+XuB76vqvyoiv/dNr1fVXwZ+GeCT3/G369e+ZUBZciEvhZwzORdO84lcMnkx4My5QFHysj54KYWiSukaw+/R1Rf6VgzB4CyGNfpxELOKr0BJY5EpJg7DuCrM1c5dDQeiRKLEVnyUQCSSJBJYw9CHGtEkpjOGaPpVvQx+m2N64djZ2+n+vS9Pf3LX+S8xXJd0z3Clx5ZLC3H2InotZ69+XJyBFiCL6zrXc+2zkcWe4nYFSZdJ6/f5QkEXKrabpV5LVNf2z/tPFwd9d7rp29cT99Wkdq+H8mxOnhV96apXAPS74vfu3g/Ve+3r5zdVl1I0Q5nz5qLXNey+C6P8e4D/vIj8Z7EFiJ+IyP8O+E0R+a6zye8Cr3SLP1yN/C2/47cCuLrKWKNqMeaozjJVyZVpLgvF2WcumVIKS8kULZSlkEthWRZyKX7e2OiSl3Z9VY3VPBVkZxYjVqU0Fis5EEtA0XVsKKRjFfVdrNcKuIEosRk0YNWXDnFwsJXmYTikkSihifailj/FYQVY7+wxmM41Ejudq8ff24Pk+Vi6P10EZs7B7xIYwv2hM3sy14PfRdZp37WAXLqmAuUizlB90lkcuXP9LM48la3ovkPnswrsrVSXqPK+EX5K0k/Ro7w6qU/2r/fQbw2UqvqPAv8ogDPK/4Gq/v0i8j8F/hDwS/75x19VVkyBb3zTpPcKQo0yO20p/jsXB9BcKNlBMztQqn3m2djotMwseWFeMiVnclHmeSbnzDTNlncxoJ3zYszUgVgVSlYoxT61kBUKxl4vjhX/FIyZBtyI5JPYCpSpAzT776AHUog+8wuiEEPkICMiwZipXWBMVYRBBjc+mGogdmGlGh92d4l6r5Yaw+gohEKzs+4AT4rnLJ53r1d8CFw3Okq2QFnz7XHKbDntvOzVkguQBbLrPKe1XK2kQYozz8ELnP35ejF9D5R71tlXfq9QZfe9Tx3LuzAWzyayS+kVY1irBHIx89Z8v6lDe8UP3GB/qv8t92Wqp1+DpT1Qh3cJi3axvO0t73mWh9OH8KP8JeCPicgfBn4V+AOvukAE4qibB9g+btWjiR8PiJaWb20cH83ODNUpo2pxMXFlppUtlqxkVZYKkmrgqUWZZgPTeV5c7Ic5L8zLwrJkZ6Z23XGePE9GVSgqzmhdbaCQtZC1MJWpY6UGyjKfG4rEVQG1DersFx0oY4jNkJVCJMXIkExZPcaBGIIZskIghUiMkZiiMddWdud/t3eIXxvY6ribEC5iBt3vS0Tskk/5Ho8usdAqQdfvl6TqPZhmsb95MN3nMnTsE9eH1ll5D5SXWOfSHe8frPoAX6LQl6j1O6YzLPhAVFA3H1t8fL+uAY8+vRegVNVfwazbqOqPgN/3pmUEKa/d+IJuszqYhH6ZXT1VnZbbIDdY1VL8E4oqS1GKg2p2fdm8zE2ELwVyVuZlYc65AeXsYv5xmpyhZooKucCcjb3OS3FjlN0rL6uYX1UCpZhQbwC+1q8CaWXWCkRnqlEj1Z0paiBpZGAgElnUgHKRkVgCQ4wEIkmS6VDdC8BE+NUhFzHdV9PpqrPeOt57d6o9g6wT2Z5sFWi6oxrY40IcDbF57S2AUs+l6xkHSoXJAbNiXuzKr3rR6rOpflJ7EKwV692T+ofb0WPtj+1p9SUr9T307R7W9UZu5W+LoQ9d9yYgeS/jfegavXDFzsS+K27zc8dI9f7LXrtaj2JljlAYOXHBAeIsb+itkqgNTa3n/PemGCWgNk4bhqqNB4C415gLpWOuVQUAfYMrWQVVccBzkuLW+npsLoWsSp7t2FLMuX5aZkouLHNmzpk5F453R5Z55ub2jmVZuD2eHGQzOZvqoFTrycbQpAgGrnMWlgwywZ3XufqVRkz0jyGQ6l80sHw2HEgxchgOxBAZU2KIiRQjSHTvAF9dEwyckdr6q8tVP31pezu1hpGi7Q2dA+Ul1tmB6JkbZf0+cQE4WcXzhRVgL6koczUape6Ywuz9KrvlXQurcahD8o1lak+ZL+k8L1Hn/sH3LPQDscU3SDs76E8w9f1r+3udPvZb09b2C11L9m364Y057y0JkMgXusT5nCLtmG5+r0MS0HXISj979349m1LXTxEo/v3eLlpJCKtl1IywQvEAvGZXCGaNH7VJeUUL8xKaBX/JhaUU5meRZckc7waWnLk7HclLZpoXlnl2cd/0qLmpDZyZlqWxVVQRVde9QZ03AmoTbRFUhCJCDgENwpwTJUSYR2IIaEpkF+UrUKaQCCEQgq1sWBmpBUcVX0C/ht4Xn6I6oJTgk5C/KQUCNuGENbq7FtOBFl+aqdkMN/WzAWBRODmBm7RjlJZHFl2B0vWYK67JuStmY6JAko7N+n0LmNtSWcGzMcjKJs/N+XIRKHN3bb0+rt/lEpB2HfBiH+Z83D+As5cgQncn38QWuIexDQG8rwDZyH8PlLobp6347V3lDCjXcqShxVcUKAOFA8dXvIy+OTsgQJxlroC5Ds+1xJ6J9qk013LZtpnSMctL1/lg373H0hjWukJIN7NZQDX1sO4GHAO5Ug1Ty0ReMqfTwul04niauL25YZ5O3NwdWZaFu9tblmx5csksOUPJaOkHZmWd2fVxpeu1Ju4ffWo4BvP9TIKBou+NLBIYh5EUIlfjFSlGxjQwxIFhGAghEUJkiINZ6ltk6QgSUFaAzER7exIgWHspwY/jb9bYes27EClEMsl9yaVjfv6oJ85tMXtGufdN3zNVZWMU2uYRWNKaXztxv0h7f1va299sr0fYW9wviel7tro/9/6T9ZYHRuKlU+/CNpuU1xfWD6o+es02ks3lLf96oOzLWo+sYPn6FX8UQAlKagrx+1KFs5Wj2JXShmFNYZenHjt7y7KWeNZoUsVHKtE5OwfnQNpz2Yfz9SANIvYMGgsEJQdTD+QkLIfEssD8HJblwDxdmeX+dM2yZKZpYsmZZZlZpom8LMzziZIzs7PQUtlozqg7a1f9bZ1EIqaLDIAUaUs/BdOHhhAoJbGIbdxUQmSJ0R36Aymm1aofAjEMJqpLNDD1TwtSMBiYhmgTicQ2xRWCsV7/vRDJRBYGSgiUFOyzCCUFtAjLaNZvXUwvKYt931jLN4Cpq5vRGa4JzE7q/FptlnZdGenGPdMZZ4msDvNqIr3uRfA9Ol/41DXvapmvg/uSmH4PuF2SQl+R5E0vuqhT9JJeC4u2smH9kwaUF1il9FLfzimu39b67HN7168UoxSUgfnimf1Hr/mqHs+d5qsRw20+nKesLNQy1cbuRMHdrVVNVPVfu1rfzzjB2eV+jXg714NqFY3Xv3qNdZOIEFBGHxMGdsVdneZpYZ5nlvnE7e0d0+lk7HOeubl5ybIop6OJ7pMslOw+NMUGb50qIrp2bHdRatOFG2v1tA75OhDq8tDqnnRIB2OYaSSERIwD43AgpoEURz93ZWxVk28CFVGJDpLGMmsbV6CcGVlCJIfIxMBCYiGZigMDTqq4vddnFox1VqNOO6dI01Nyrs9cah5WFeWefTYAFlji6rLUgFddJO8rdIlR7l2RegSvn+FC3p513pPeTHa+zCl2efq1D/cWc185myMVDLdAp5tzoSvggr9wB7CrbNmnFXDPOear0yMCyt7FYj3T5+lhLaCYmbQDSs++DjETM6XTOkordn0xup7ZgFdN2uXb122ff59ne95nXlk7QtWhitZarBxUeqG1gqcooerExMTpMmQ3JEXyxwdKTizzYIxyeu5gemSZF6Z5MtY5L0ynO5a8MB2PlJLJeaY4M1U1p//KOlWbq73VT729VazblhrCDkIxwAyzGYCKBE4SmUMkhMH8QtNIkEiMgzHSMNhfHAgxEUM0RioRCSNFErMcKGEgy8hCohCZGMkEZkZyCCwpUWIkDxHVQNFALsn0nZeMOntQ3VjNOWeUPcbt8pyVs7lXcNYZ3XBUwXNvXaq/04Vj/e+enfYBTXt2+Qq2+Z7Sm0vee9G4huGTC39hm1fBjJn9XcP20/vlqpN8qJZfKaBkJ3qf6w+kgQkWFLbBWwWS9Yp6Lrii3JhkjZOoHuc2bEVq6WHqPPVwSy1N9nkuA+16Xv1J6rJGQdRFbq9J8Ls0hrkxf9ixID7XhtIMNxV2hcFYGgNooSxXBoLzNcuyMJ+OTKeJ+TRxexuY54mbl5llgdNpJi/KNNUVTcVYp6+QAmytLPgkhJNz+y9sQryt4lh2T4IFceNPIMSESGRIhwaYKY2kdCCmkRATKR5MZE9XqAykcIXqSAkHsgwdUEZm/Hc4kCUxMVBITc+pxCaWb4FS0MpCL4Ffzyzn7nOPZXugnECzrvaZWZASOonbdZLag1/oCozrsY1lXViB0gFDu2OKfTZ/rvuY5n2ExM/uKeSOGmp3au+upGdf9req0lulNBUot2C5Msr+YlvequvNsbai5bVbmJ77LSN0nqVHAZSBwpWcNu43a9qyyrBjiSsj65pWSmf5rVqvlXj3gnRpjX/+XstZB+hnusvpPta51eKsZaxAX2vSf24NU8FBP7ZjK4iiq1mkZ6LEAlGR5HqvZwoloDqiOVrwkeU5WvKq35xOTLOJ86fjiWWZOd7dsiwLxy5PcQOSievVwX9t954jt5qquFhvagldgjMEE7+LBKaQIARO+Ll4BTJQ4gHCFRqvIV1DGCnhGpGBw/AclcQQrykyUsIVGgbUmWgmscSBEp11EigayRpZNK1Y5eK07tyOpHdFqkC5F717P89pl2d/bQYWZ5k5OD5WYOsRd68/6J1As//euxxVkOz1mL0B6MOzzG26xCD3rPEhVrn92+gyO8Cl6vw3EuNuvMoFDexrNMWjAEowsLxPJVyntwaUHb8TqbrK1YgTtA7LauTR5h4jrXFrI4UuYMYqvtvXHcNUbHDvrG+Xp9C1c1y0T3bX1OcypqhrnXUrersmzp5Fu7bonjeQ1zyNfdZz1TxS4xv5ExYx1jhHSl5Y5sg8LUzzzPEusMyJu0NmniN3R3X2ubAstjJJ3ZLe1subx76t18c5va7TVmNB6m5V3bQAgoYIWAwgJKDhgEpCwxXEA8RrSM8gjGh8DmEglCOEAeI1QUbLE0Y0JFSuCZIQuaJIROJIIVIYMEAX1AMUEaR9UkBnA0nN4pikNmp6jNp8yioNL2wCu+viSucsphcNbI1CBVZWuILH6vJSJ6DKLHsAKuuNNkBYv0uXr++fu275wNrn+86s079sj0hPRK3PaXs2/5Q9oIkd016cvgf0zoB3yz6lU3Ftrzn7eGV6FECpwKzrS79U+SpaFmKbV1YR3CyDvq2VvZDGZWrXMSBcG03NUAPGcmS9d+Nx3WqYVtcu7+YZqti5VvhStnuevz7RucZTdn9WZAW84uqICoK5TRaxQU/e/dYGpjZxKCka27TIcgGuD4gOwAHKM9CC5m+YAcmXZS7TxOysczpNLPPM7c0tyzxxe3vDvMzcHU+21n5eWLKtfqrv21yA7JctjnExSYASTY+r1iI5J4pElsoMSSwykEnMDn5ZDEyXeAUyGrjGKwgjYXhOiAfS4euEOHI9fARhQNK1i/Ajc4iUEJijsc3lerAVVjmilVFWfeWOLcrEVn/ZMUqtbkvOJGW+kHdzTYA84oEFjGUWuky7AjcGH//bRBPp2eXe+t6L5quIvgdEXZGw/3gg7Rlk7d9b8JMNwPWgB4gvbOgn1jai98C3B9P9vR+q32s90GMBSmHSAbjnsWQl3DVP2ABIcFZlDDM3UIkNHEzH6YVBe/vt5dVz2usqq/jY60wvvRDXMW7kd3/NF0T6TQ4vpjQgW9UGAaWQN6xQHDwauxZjlAaUoTFJbSJ4nTZK+7QJInftR1vvLRLW+6ki0d2IUjIoLxktmTwO5CWb3tPF8asxscwL11cD8zJzPB6Zl4VpmpkXc67PHhJvyaWtjc9qwU688SnkFsJtbX/1mJ8F8cGuLKioTwPZADMvqAyonNB4QmVElhmJI7kUQhyJy4TEkZCOBqhhRGQkEEnB2KYEpWgwiSUY+9Mg5gwfsE9nkhqx6G4zkNVsNJVlVrWjs1BNuCO8nANl7H9XZuoMVz1SVPOFdcf3phfYgqAZ/zJVF6oNSFfj0Hqsz+vj4hKzbJKYT9htsN4HRsbqVPdjxoFNtgC5LpvdAZnfTCuJ2lWtjmSbaLUb4xcyv2V6FECZiXzO1zbHZPOtzi29vq4TOXWvz4PaQL1+rzvc3WO9033GnPuNPML6bk0FoO09yaaE/euSdn1lvfUulQEu7VxsjHH1exSUdEEsr0JsdNZYy4kNOJUgmaDrudCuKQQpzj5XcR7U1uKjxKhIVMJoZpKrmkcVURe9l8V0nvPJ/TwXjseJaZq5PR6Z5pmbmzvmeeHm9pZ5yWaN9zX02nw911YWMkEW1Ke26D1HS50CFoSIltkNOInsxpwJY4kariAkNF4bYA7PScMz0vCMcXhOSiPD8BESByQ9QyVRwkiJgTwEt7T7ZxF0Yo0dvOBrynWro6xi9Ymtlb23nu/J4j5K0oK5HZUI07B1O8q9+X7vbtT9lr3haL+eMzcJah0kl8R07Y7vz3HhXA1BaISi+TiKbPKcWbc3SVYJDUDqirg6ilbd6zr29uXsaPEbpkcBlIXAkeuz43sgs187t5mmn1sF2LoOZtVPdkaPVt7G2cWOVLG6Y4Uq5yBpWYx9rgTVuY+0ee9C2jLTVZhYjVS1rqsYXQjNUOPn/Jmj9ODXidS6gl0kNeANdKK32LkVYJUoxcHV2abYvZFVhC+tjNBUHw2gJRgLTQIaSSEQUiGkTBwPXC0Lh+manDMff2Ri+d3x5Es1J+Yls8wLx9OJebYVSUsunBZbW29BS4RIbqSjOChENcVM8aOmyDCmFLVQ12+h0ZZ6lomiC3M+kucblvSSEAbi8JwQB+L4HAkDEq+RkAhhYBAzDkUZUQmUFNFiq4xKEjQF9/gRi+zWG2/8t/Qi9z6QR73mDCg79pmcQA74KiUPUuJ65sYgbU2r9TlTsjpYVqA8dz8Sqv6z9tUONNuw2QPlfgys4LoBLQ+2sG5fsZ5b96jyY0LHKmtdtmlLGuu46sFwRdbqD7x9kDdLjwQoIy/5hDMl34XUGyYam9ItlG1ZZA+U2xfc2867g10pl9eNCgbuQPN/hCrNl13tL12/zqjteXShugaJrPWPLE0Uj71uEiWoA6UosbHIvAU7KtvMvhCwbH6Hjm02FirdPaUyWRP7UwNRbfdpAF3rFVw1EEcCSgKe9YNO1Qau2nr3nDPLPDFNJqZ/+cVL7u6OfPrZZxxPJ754ecdpKSxzb9Fdx1NQk28LwfSoRIpkhIWgJvOalTtba+SJUgJliczuzF5IQEDSFSEMXF1/TEpXjIePGdIVw3BNSldINIMRkliisc15ML3pzAAatjtUdExys0qoB9GeUfYAOV/I27POxmKjO7rjLBPaSqHKAKvHfC+mbypawTJ3w0DX6zdj8x4w3Zx7VarXXFp5s/1KAzrlfDzp9rNXr53lefv0KIBSC5S7qsu4lBxUTMmIiJCl6jRWJtkaKDhwSnWdWcGnb0QFzlQx2tnuZA+i3eyqVWfSK8B1KyLs6r/Ozt1s11ivgU90QKo+lL1IXd2CQhOnV71mUG0roqUBWGWCZQVBB8QKD8YsV3Hf7jeYeF6BVUvHKJfG5CuztEjrXo4Uj7vuzN4nsaqDtXegFguzMugQbOOnIXN1NXJ1SOR54ee+/oxpnvny5R13p4XPb07cTZnb48LdUpgyHLOSNSMeJs/qmCma/QkXgovMhdmc0GWwmKFEskSyBjLJJsY8QYmUuyNzSOTTZ5zCQAjm3xnjQBo/QuJIHD4CSQzpmiQDo4ymHw2RMkRbrx78s26qVmRdNrlfWtkZiXQDlorMmOX9wLq0cpEuepIDZB9OLls/pQSXvF2v6Zu+2Xiq+gNjnEr1pND1ew+M0oPjHii3oFrDAzZV2NkKNxvPeoE9brBuM6C2126PdZjaGK16Nr2Al6/PLh8FUFKg3IX+KS9yS60A4wEV9mTwzPi1b+wtI+9u181GzRVp84+/9Qttva9oqEL1PdlEz+olXvfG2GQF/9VQs7LojQsQSlQTpSs7XD+rHrJ0xwtJDBATVVdZgTK2+6zX9wy1kJHO2FQcKC1PQQhSbALpV0xhRqXG7uvziVoEIlUsyqaz5Y8OxjaXj8lL5suXR26PMz/6/CVfvDzy2Ys74t3E3bSgZJZihrosIFpsNQ6ZQPQ7m8KgqJjIrNk+W80DSw3WUVxTnG8pCBO2tBKSA2XicPU10nDgcPV1YjyQ9CMkjEhzSRpY0mDlDiO5hpfz0HxNj1kBs0Y1mjCn+Il1KWa1nrubEjPmyO5Aqq4fPVvT3qsfF0FzXMFZnG2q+2U25K3EIrsKabWa1/fY/s4c2s9/t72rXFKqAAaV9OzHevdtN9C2JHHd+WAFZd3lXb0q9qO21eUNIqk/DqDMwBfdb9mDTYdQ93kC9OfC7vh94EkVTzowvJR27H7T8Bu1yCU62eUNF47Va6Jh9OL7jYvHyZRgCmoJeOc13eGqH+yBs5wBZXKWuAKegWdjlBQSs7PSKnqv/pjJ2aeJ+aVjnSuARgej5EBbQTU1cbxU7tBAFOlWIPnnujrJX2Oy3TK/Ea/4+KMDX/vkOac5c5wWXh5njqfMZy9uuDvN/OiLW05z5sVxZsnKnBeLKI8wOIivnDayRizqnahWk6AxzBpH088twXSC+TOyJG5vn1lwj3TVgDIO18R0RRqeEcPIkJ5BGNB4hZIowVydzEAUUY0szxKqAZ1X4Gwg2bsV7YxEuqx5dcH0n700fWnF0CaPQPbo78U/q5jV9I2FNYhx/dv/ruL9Nm+LinWRedby+zEhbMX69dxqJIW9KkB1Xw4Xfl8Y2z0pfQW7fBxAqcCx/ujFUmMhPem7yCTr78t+p/cCpeze3fbV1C/9iQsAeeE+1YFnPaFr3euN9iCeAJHGmtV/E7Dgwu0atZU26hpUMaNOFY9XwDSxOjt4JSrrLCSNDhOVCeLXB7tWC9G/V+5YndOrWSTSzCMoNUzB6itXF49VELQcq/dBFbea+qK+ZKmDbHVbSqNB+tV1JGcLgHxzXDhOC+OYuD2e0KLcnmxPnHkpnGZjmrnATHZpsypKTGcZic11JdMWvjpQLm0aKtDtGiGUcodKIC+3FvUoHCCMSLxiGJ6hwzXxYOJ50I+RMBB47k7zo72NkMjuC6oiFrc0RqSovfvZ+0QFTxfBLzq5O6ts/p518c4OKLWxTV3dlmZbp9+AtLpiOpBVg5jtz1MXcEQHJ5u0K+gJxfpsc0mqfXY1MtXBs9mbCcvTmGBjid5DvN/X8AJbJrn9bcd6m4WudViPsP3x6oWOjwMoF5DPL7ExcORpX1cQlA04NRDZM80zXfHuJhsU9lQ2J7cgqpeLuXi/FfE7vPRZcw/2ie0qrgAEbT58xjq1nVMRsiElOVqethJQIMbVQBOdWfZs0rRyiwGmjh2zXHWd0ePzVBF+wz4ZSGSWHnBdpB8Qqri7iud1kFXutq7GUrUm35vO6tp+ii1LDS6qpyAMzxP5WeLrHx/IRfmbf9u3mebMi5sTt3cnvnx5x5cvj9zcnfjy9sRpXribbI/4osWs1ZXPinQRi6w+tZaNTXZDNKsxwMxoLVwSKpE8J8rJ3JJu4gEkIcMzQhhI4zNiPDCMH5OGA2O6gvTclmHGZxRJLOlA0cg8DG1ppTm8y8okj2xZ58x2DXpvyO5FcY+CpLvll7LINm8PmNnVYfXT34W9NPdl9QhUuJRz2cl9nQAvM9P69rV9ViC296EbUb0HPZE+b3dNFfdbukdafM30OIBSYd0JQrqDODDtWRn3MsV1FtMOuKQnqg5aO9/GHjC3E9Tl71XU7g9W/aNIOycYqIk/QnNe39c5r0C3AdyIAWb9Lhh4dr81ggbxvPaniHUiEYqoMSDNJGdPFbqCxsYO1T/LTlQNWhqTBG0GoHV+F6rO1NhZaZuiVYCRdo/KNqRjle2lse/Qm/EhdVuPur2FieYKHIbIvBQOQ+TukDikwCEFnh0iYxKO08LN0dyN5nmyHTnz0g3bFaYbnCusEQXWYVcNP4vrOjPJ1o0TycWnoWKuRJQjGhKl3EI8EMqRkK8o6QoZ7pBwQNKRIAMxPEOCLdW0eJ0jEiwakor1kUIwduhLIUnY32KfVX8pLYJ7lUqcjVYm6uU1ZlmXWtZll+5YT/H+XBvK53n7XTtw6A7WsVq6m6xSQj1n4Ba6fD077JNdYyxRt+O7O99couq9ekarcO7x0vWx7lHuS48DKPc6ypp6EXX/ZBdAkuBfgm6v3zC9PeXnHBj3SbDN5tvGOx3FDBfyV2ZXLw+74us1ff06kNuAYn+uAeWlPLopo4wCQciDGb5kMENLCKY/DGQGZ4kjU2ONFke8ss2Fra4zM7jv5dD0nLmxVXX4NTNKbmxU29EVjO3xhTVgyepWFcjGJhtBkJWASNXR2uHorHOMgkZ4fhjRjwfKt575NhvK7e3EaVr4/PMX3N2d+MGnn3F3PPHFzZ1tsZEXDyNXJzLI3Uvqt7eo54oGsiSKBBYGmtOVx9RcGCxfTpQcyLNx9VlG5piQMECwYB86fg2JB4bDN4jpiqurr3ngj+cUOaBxZIojWSOnZwdKcX1mbxnvDD/V4COd2F5jacomr5wH+KjMcrXv9D7pzXIvJZgVfU6dYcgz+zYWLeDwxvBjBUsDy03B3YTUjTUqSNaxtzLI5rtZ9apif3UJM223Vl0H5C71MHNfehxAWYC7+0+fYZjgA4YVKJyl1WNtvunytgC8gjvjXhCpH0otc3cD2X1CE5vtBYit2hFWv9iNfEkDPW2is2xBMfi57pjUa/ZAGYHoFr+qq/LPEkGj2Z+LX1fjXBoY1u0XFgq2s2NxsLM8roX05aLVGd/mnxUIhYL57l9avR66rl8rYe1kuz12/LKT0trbEtdphm7eovYFIdaLgxAlMCiEq4GrFIklMx0GBincHSc+uhqZppnTPHE62cqgeZ59V86l05FVoLRUw8YVmc16HhaKuG+B1iln6tyOhFmDGXF0QIloSajcoTKQdTERXGc0Hij5zoAyPkPjNerBP0QGUnhOIVLCYA7uIaAxdEE72C2X9PffsUupap6m65T1d2WnRXe7VfpxFT8mhofU85VI0DrlqqXudJJgnbkfeGeMZ02XxmTPnVbRG3rRe8sgH2JBVbx/IAuPBSgz8PmF420gcA4ue6POWTtLJwrX16ErmytsX54P2E0ZeV+hB1pzpxJQqUN7rcMZC+3rXtlg2j3fhml6WdXQE7tj9drk1wz+rIOd08F3nkxACkgMzClBgJmBIIWB2XWX845ZZjK2Iqa43rE4e7RN4QKRxSU4E3mqa04kUz0pYbV/BzcQ2HYYxgrW4eKzSq962ohasj5zqWoPXONRWtbgBR4OCQ7wc89GtCjLt7/OPC/c3p24vbnj5vbIjz79jJvbOz7//AVznjktBpjF6yOyDvhcXIUQFIlCCAaGVVtrALlazwvBllFqoEgyZ3cCi4vrx+maLIn5eEVhYA7Xvgb9GtJHSLzi8OybxOGacfwGhBHic8pwYA7XLhukHTuUrfV878S+t6LvHdkvuRntfxfWBT5TsHeWfall0W3mFg5d/C02R09W2R+27kb9IKm+0XS/q0ju76PuDuCTdDe9bkrq02Vx/zw9DqAswG39cU+lpUMaHyRaD8uOWt8Hnv3EVSMg6xpzqI6/VotLiwz2KoCa9pb2S5b3S/UAA7smXjsDjSuz1I5ZGlDKCqKIqRoqm0yyMojAGgN2sXMyiFlIozYDUvHdGDVAkEiWQJJMYWliNOCgF5t+sjQQrKpzE7IX/+yXktbloxa2Q4mYAaWehQsLDprEdqFPVOz1d6RSB5K0ayvLbMnHYMwRFJ5FSIfAlYwcdGB6NvFzh68xzTMvX94yzTO3dyePv5lZshmDKpOSKBAEGZyVi5mda1wcFSEF29pi8A3X6jqorMKsiUxgCLNNT+XEwsCkJ3IZyXJLybeUMDJl03EyfAbhAOkjNB7Q9BHEa9N1cgUSYRzN3Sha5CMGVqPPPkRcwKzpwqrzrOyzd7Es3TWZ1Re0XoeuxKLqTzV07ndVsSGgpb1zk1N6XWXfDyqIVgBc/TmrFX5zntKN4bXPXALI8870MFg+DqDMoC/3DyZr1Ruo+CN7o7U8lW11WTrswylOd25FKdHQsisXKPj+gMdRpLr6tHt1ryPggQBqXVeG2Z5DsF4oOyAMJuqRQINumbNtzm3nerANrAA5YO5Esx8facxSktimW8nGk4n72vSYjBEJBZGBQWcGIpFEFBsRpodcHDADidkgUM1d3AAzN+isxh174kJ1WK+LKi3KkTERY6jexJU91HFS1VxnXb5jndBUHBZlp38Hnt0JTCyBoMIQEteHAzoo3zx8jVKU20+OTNPMpz/6ktubIz+aPuduOnJzukOnQlkUKS5WDutkJqEYgw1m/Y3VADeABEFSQNwIt6gwl34voJmsiUlHFiJHDswMzIxMDCiJ6e5TA9P4kTHK4SNCekYYP2Y8fEIcPkKGTyzI8fgRkCiHYJPMjC11nFhX+NQ14xED0wBSQ7v169P9t/bHq8+mX6cNaH1irBGWFsEsjStQ2pjNTWUC6hNmz/tcoqDTS+5BErUKNANO9fnsIK8G6ZW1ZNgN6U1wjvvTowDKXODFTeE6WUixutXBmnR9oDrb7L3q92ueNjxdztuhKpjrIOtutbnv5hq6Vq7Ad8Ga04NbD86tDj3Acm7EqQwxsLoHdUBKlPW6ykabWO15XORmZAXQBDrI6oo0sPrhOevUaOfnONje3iG7mLyK3gaUZoEtWtfTLA6Q2YXpqrO0oVGF9Dr9FakLHSsr9QaRgJSqnJd1fCnru68zmsr6Pi6opKqUIVXcy9qRFHHnSN9ELUNU4bocOMjA+HxgGTLfHr/O6TRxdzdxc3PH6XTi5cs7i4A035FLZi4W7q2IEiRY6Lc6mfvkJoMDahRCUZJmQsxoEA5jQWOgpIFFkgGlJiZGJhlZGDjqiYXEVE4UHcj6krIcyPMzjnfXlHBFic/RcECGjyAckPETQhhJ4RpJV5AOhBwIJSAnMaAbsVVAiXXZ5CBtFVCv89zoNTs/TmlWeG/3ohaYuPbRXMXyKqf38ntVvteXVpmlExgnE7LBhGr46cX7CqI11eXFDwPgq7mkpUcDlDd3hXjIpFAYwkOK2NA+t42yA8oNSu3B7B5R7qJG9xJY7o/vXkYQ6r6v56xYQWsUlY4xNrHa8aCyR2eV0n6z8aes1zQdZe3EVeRWmlJeaxDYfkuWtjWLNp1TXWpXkm0bGxz6zJEIVMLKFj0eJphbshlU6u/gPLS4LjKiFO/ivVFnbaPKP6WBZAeOq78y617afmyj2jIQbSy+0/Vr1X0W1r291FkQylBsxjmMB0hKGT5imhZOVzMv0w13tyc+m7/kjhN6UuZlQWcodfBKafYORFapwJklCVssoEoYiqtYij1vmlmIJDKzJE46M7CwMBBYWEgkzWQSUz6x5IGy3DEzGgMNtg1GcL1muj4S0zV6+BoyFCQJMQ6oKhGLdNTUO9qBetYVr3pDT8W1NsFXMHQFTJdv4waHl9PcPyqD7D/r9y6AMzTd8JocECuTbITnTBTEpmhdJ8qOYz0wei+mdwJKEfk68L8C/n1es/8a8JeBPwr8duCvAX9QVT97qJzbGf7c94VvXClfO8x85/rIsyFziKV5/NQH3wIg3fd1FrpAHy9cuxep9z9eNc/U871M7/cqbpbWC+fapbvrxU3a1f+wWsCjbN2D+o5aDT9njJKVSc5+ffKBMOqa9xLrjP57sL88BEoMlBTaOu5ENgdrFgoJJVJ0AWedViWLHVmaj4kJ1HW9ejXiFDUYtuaxB2s64/oaFtgYdxRng/1vL+Pc9xitS/M6Dxb1wBCN4JTuvGpzjZEsjEsiLZGrNKLPlZ8fv0nOmRuPrfnl7Q13xxNf3txwc7rlOB25mydyWcjuAZBjRgIWgk5MM6dVvXJtjE6uCykWJM0chsDzFJjCyCyR63IwRhmuWRg4cUWWgTlcMTlQnvSORRPz9IJM4nT6IUVGcnhGidcWhzN9jMQDKX1CZOAQrklDZIwDIQfiEldjzuDtPMlWr9lHPaqrfoLSJOrqE5zVdZW92CZm7GlTYlWkl9ZH2lg5W4td6stjNzO28kI/xN5jeldG+U8A/3dV/S+LyAg8A/4x4E+p6i+JyC8Cvwj8Iw8VknXh0+OnFJ0oKlxFoWqNx7ju+wKwdUqU3ecemPp8Fby6Qz1gbQLcdaNsj6u6uZidfN3+tCLdBhwNyLeTX2AL8KsJhKBoCk20EV+BY7cwsXEDlLX/VD/S2J2v7BFWS2Vlm7W566NvDGceJCIIGoRFDJ2rZtdqbH6NuRPRjSf0wTbMhae4+0zxEHFZhSA1PlLVXRqMVgtmC9Ta7XfuUnX3PtYqawXSSjh68Oz+tAfK1f2vgSnFmKZkIRRIkiDCVThQinKIB+Z5ZpCB23gklkAikDQiOTDrwlymFskdwXR7vjRVF1bNzWDPJ0ndN7QYA0UJElGURCIgLJjBKFODw9UFAIWoCdUFNCJ5xjaCPpHjHSUckHGGeEVUCDJSyCRJFLkihkSKkaCBID59ZX/b2Vt58T61eD+rfKCwbgbp2NhMAZWdNpLpF2n0XmTPa8PRmWXTL1cCpF2kdFZ6eEacrCPseejmbDfu2yh+RYCMtwZKEfkE+I8C/1W7uU7AJCK/H/i9nu2PAL/CK4Cy6Pe5nf+X3C3wo+Pv4a+//E/x7WdHfu6g/NaP7/hoyIypW5LkjSewUxleMDWLf69RlkXX82dt89A8VEfa/gXtmWUHeq249dz6kvYsN3afDp5FzO3Cl+xoKG2QSWWUFWf3jHLBRPTZGeQBN/LIyhwH7XSUslo9s1q+pBYEIgEHQWPgOAghKFM096GBhQORxMJAIpKZGUgsqxjJyEEmFyPNar6ouRQdECZdmEiMaiaMQWZiWhjDRChlBfZLgFdF9N7TpMZk1P6YrAxy8XegXV9Q1pG9GmC3faLqRYv1vutx5Goc+ej5MwvAoZnjNDHPE1+8vOF4mvjR519wnE58/uJLlpKZ82yqB1UkFkpQSiloVHvWAV97bfcZ4kyMM8MwU0LkRGYhMTCRdSCXkZGRWQZGNdZ5YGSR6L8HTpzI5ZZFR5bTLVkG7m6+z6KRH3HlxqGPGWRklAPP4jMO6cB1OpCIjGUklECcQ3MxakE4+v2D9ksrs/gWGWLHTk4Gq5P6nJwPVUvRYo746gW1kEg2k2ld0H7mrzRTO0EdWa/DKN+Edb4Lo/xbgB8A/1sR+TuAfxX4h4GfV9XfAFDV3xCR71y6WER+AfgFADl8QpCPjTnKASWTS2EudY8Va5hK1i1td7LZTFnURuhFOT+3TiFnzF7rqvu+BbX/Uv/2NLP/vps+N8f6vHugXGdO2eQvnciyFt0vizwjtzWUV99ropxXt872tYrVS6NSghrxvbKEBEigBDUDZ6v66H6D2kTvbA5AxjId6IvMFBWiy7XRA0+YD+a6wtxckmzZXgiFENXrpq6SMhedziPELLaKjcStfn8Lnq6HtT1pnJUXGjDZvlyyWS+tsbu2WLuIt6mYHE0gWPSkUVhygiRczzNEOE0TwyEyLQvH6dRWA006kynMvsWFFmO1UmStV8ADU5uvQJbKJhefflenf3N0Kx7M2GI3RbGji9SYSSbBLWVGNLgUN1IoLGEEOSA6kcOBLFdEEiNXBAmM0VbxByLRLfnBd6tsbdqL51U0v7RrZfE+mbGoTMXFnayslvI6q5XGklf/pNIV6B3XN1VrRp5Ga3tRo8eG3Xh4IL0LUCbg7wT+IVX90yLyT2Bi9mslVf1l4JcBhk9+tz4f/j6eDZkxCof0kuu0EEMm68xUMgf1EdEYW3Xi8gduFL3eADunziZ72g7dtT0yduL2BiAvPsGFcvpz5+LAuQd7L56vzrKWvfqKdfdqyyhXEV7qGu+ecVX/yqhbkKy6yoS5E/W+lgGzfla9ZmWns1reahkfBY3CMsISA6dhIMWBIMrIRCRz4EQiM8k1kdxYYmJhDCeiZkZORDIjk7PRmcTMoDOJydnmiRgKQ1j3/akh3uoWIDWWZqKsG8w1cVtW0OwZaPYxNQsUNSvt4pbe4oYkH486q4OodtvS+PvdqcRFYWRgkMT1Nw8oys/nb5Jz4TTNnE4TL17e8eWLl7x48ZLPb77kbjpyV44sFBaW1k9bNCZV27rC+4GE7PgpLCizKkkKIxbEZHF2n4kMMluwjbCwyGA+mkwsGrgSa7mjDsw5clo+I2MRjb6UkSxD2yY4xI9Ikngu18Y0hyuu5MAoA0MeiBoISzTVRY3S3mJqyhnr1CMrrtXIR1Myq/hpXPOqx8Rs5vgucoco53tp9ErTeqx2hn7mrK9tP2bvT+8ClN8Dvqeqf9p//1MYUP6miHzX2eR3ge+/qqBDVP6mT05cpUwKyhiVIWSGkLkeFsZYVvViLy7V4BMbB9U+9YC1B7SVjm298/WBNtuD34VDG13A3touHoWqo3rSF7GK95sqtRuFLh80F5f6vdVHVmZZt4FcG5DGrPsq1s/aI3rgXZxdbqzooYnEmqAEZZaBLBENtq58Ibl4nhg0kSSvojeJ0InpgwNmcmExsDDL4EC7+HYX7oWphSB9VPZ1Y7SgHhhYnH0GRYKJ2aE4MysgRc1old2VZVG0iEcC92MZmySqc3W31rm9wg0/kV2PM+YZSkBGIR0iYYyM14nnH1/z/O6a0zxxM98yFXc3ksIcFor4Pun1Hq6PDh7vMXo4szaZCgysYeyM0RcKieTMPksh6cLi7Ne2YxtYJDAwNKBcHGBnPVE0UZgJMpDDkZOOZLniKANRBpKORI2M8UAMgUEGQgmkIZhudwkwY+1ZAbP6Z1YxfpbOTUm2eXJANTnDjrR9gVQ7MKxBO6tovvQFOMNc1rHTDZlNwJ0H0lsDpar+uyLyayLyO1X1LwO/D/iL/veHgF/yzz/+qrKeDQt/x3d+xBBWw424TGXjvoKECXVbUbXq8LBzZ2FAOmCUngJ0APmqhZ778hqJ7e9VzleWnGmx63Da4n3L6/o21f45YTVv756nMswqNm+IsTMekdW4U8Xq4iS7un5UA1ABFjGnZPe7bI7rixozXbDPhPkGjqApUJKSY4KgHMcrLO7l0kBwcBAcORAppodszNIZpS7+3RilnSsevKPb+kK6IMOsQYID6y6StvFav9+PLdGMsu4bFFW31tuiFkxCxbeXEXeuFmOWius6a1v27d3/lnZMEIIIiQQKz8szC8BRlNM0MeeZL+9uOE4nfvD5p9zNJz6/e8ExT9zljOZiFvrkvT4uBBEGLQQx0VMam179XDOBxOQtM6MyojJzUmFBmJxRzmEga/DfA4uMFlyYxF2JLBo5LbaFb4kHJrE8dadL4YogA58MHzGGkU+uPiKROJSBVCIxRwPLZi0XpIaKq6uFaoDiXud5wiO4B/PDrHpNfydm+O6AUlbmKZtZrV93udM9qWz5xQPpXa3e/xDwT7rF+68C/yA2rP6YiPxh4FeBP/CqQgQ1xb2LnluXoJoc5LQLpuAak3V/4GrlCJ3+8RK91g4b987t9Ro7usVQ3ZbbnWx2Nv9YWaPXszID16NJo3BlLa+Nrj3zXQF3o29tAOzPX4KH2PI6Bb+n6/dWn0k/V8QuLViYNgdM7XVK1TezVwlFhUFMLJ8Fra5HCVMjTVCCsMRIFmGOgRgMxAaZiRRGnRwExyaex8YoZz82bYFSStsaI0r23SbtXN1CI7HdIyg4gIgURo+lOWBBjJNkP5cJ0fcdKrZnUXBmuZKVDiAXusDduqqRgbo0tr1W7fqbA2jVQw4hETUgV8LzcsXV1w7MeeZ2PnKcJ25PR26mO0554m45smhmyjPFaCptWxApRM0knwKiThRnieZhMKM6Ue3mmcCkQlHbejfja9ElkcNArksrS2RR4YSJ4MoVWROzDiwaWDRQxCK3L/qli/nXiAxEORB1JDJyiCMpRMZ0IGpgHBJShJDNFUlm0AkT008+eR0xUGx7ArGy+tn7+BKx/YACWhTNvgd98ZdU99fAY2VWBt4N4SZ+vwIp3wkoVfVfA/6uC6d+35uUI6KkMPdHzu/VMS7owTK0v7r52P06w07UriAn7PJKd82Dte5K18unzpY/7ma09tmbWeva87DLW7pjPVOtE0jw8sPqSrNxJWIVpXsvqqq/DAbiWkE1Y+5IG+W7dkp4RaMgswNr0NUfM1k5ebDINmiCZCJw0sGA0of1wEAgk2RprNNE7Rqko3524jWZqHUjs8o2cwPMflsLy78QtDB5ebZQ0IMZh4UgCykuzlhngnpEmsK6hWwNSVZ1ldq1Z/2sf1w4VvWMNX+BRAQJjCmhQflEPjLjTlm4O524vTvy+c2XvDze8dnLLzjOE/nkYCBuPgsW7T7jm6mpx6nXQBJz9C+6oGpK5ugcPKkFJc5YqLjZgbK29lICsdg2dmMFSp3IEpkZmIqwqDAxmshezN/zBtszSMM1MVyR5Ipn4ZoxjHwUCgMJGZSgkaEEXwopyOSS9FHMbWvA1CKTbMT0yiglA1PcEEpmB1mtorYtK5IaaQx/rx02vsotqKZHsTLnoVRD8C8lUApMOZBVOOVgwVI18o2rhWvXb4qsYGqpd9tx778usG5LTX+31TKtJw3IWph52fiQsOo+LG9bXbCRs8u2WIAWIkp2f/WeVabugbJ/pmqSri5F/qnOrrOu7kO9kTB0RbZVP8UAr49C1DuwB1wUdzE8qS95VNqyyQgt5JuvL29lBSHHgRKUJVoHDrEgwdhicn6TpEZlt2hGPVCu2+2ukdebMYdCVIt2lFj3MY8OvElnB+e5AaWJ+2ZosohJnkcWQiy2hLPuk56zMxmfMKqlPfsLVTHRXFklvc5tSVVpASh8gq7h8kRMRBcRQhKGMfL8oyu+9nMfsejC3TQxLwsvbm84zRNf3L7geDrx8u6W4zJzypnMTAFGD8ShYaFu5VHU/g4eIm721VfGFH1zNbVWmTQyEzg5+1zcqJPDtZuMBpZojHJmIBOZ5UAmMGs01plHShlRGTnJFUdGvpQrIBLKFYnElVwxysCYRsYwkA6J4RAJJRCmYD6szuSb+mPvitQ7wLu4bsa6BCUhZbDR5Su5bBLkjdOjAcqCtAewJXT2fSk2852yRVw5LcJcAneLvZBcIodYiOK6q6q7A9qi+I6tXQbBPvXKQ73ADqtsXW8j7Xxf0npqy2abSL/9h626gE1ddQeeZwrofUBhoSn/QTvmI/VWBoyVXfZEvLeg9wySLm/wc4uD5KJtZQYB06f1sRGTlxFAk1CCQg3EASbquthsYFU2QDkzmzFHqw6ybtm7bkNRgbIGG7YgxOos07exkJWhViNRcjuxifc1MHGmMBMlo7J4UJBMCGZIapOfg6BkF6mryN27WtVXk6Ft3rW+OGgTqqlBRCDECBLRYM7tKsrHObPkzLPrK46nEylGXsZbNNs+k4GJuSiZgogtElVmaxUHx0wgFgtwFkvdBiNi21pE36EykjQxq7lo2XW2AitTaMH3PMpUBcqJxUV602tODCxqa9cnLIzcxMHelF6ZJ2i8ZpQDVxy4ileMDBQZiCWSQkQ0kFq0djl3N6qfVb9ZPThmy2/+qHH1YnBmb1K4ruOQTgS/Jz0KoMxF+PwuMZXIlAPHHDnlwJSFl1NkKoHTkiw0lQPmXELDmR/dRb5+mPlbv37LsyGTpHjkmOBgUUf/TizfAFVNsvm6IYSwivcNQDfKqO76hqS742XNXpmvdHmqwanVrRp1Oqd1Vs+5NdXnrc/pi8azX7dI5wokHZOsf7oCaGWVscszygqQDoZEhSSNzBqzrNdJ59jeVX/we9RyPNpRScIcAnMYEMMJs1aLldsMNVr3JN/uX151k5URmkHH99lx0bvG2RzdWDQ0Jlm/V72of2pmkJlBM4MsRAfNONbyOt1ptRfUFXZz9edc3Y3Edcht0qoeCxtBoeszrv8UEYaYGGJiHAeKKt/+5jeYl4XpNHFzd+TudOSzL15wPB358vaGecmclsn8kZe6nBSK2lr7or56KsY2q1fb4OxT1iRmxJl1MH2mjqbHFAO0ItZymcik9iZmBnJIJp6bYxgTB7JG7tTE9BNXaBgoXHGjA1/oAHoATQw5ETXynGuGMPDscM3AwBUjMUdiCchkxqEawT3sd6+swOkgqr26BFOV9c4pG5PAPelxAKUKn50GjktiLoHjEjnlF0zljps5MmVhyrZtaGWYSwuWoHxxeg4MvJzMf+Wj0fePbtN5L7aKI1+5UJMdU9uc6sXhXjy/lP+MW+6Oddc34O3Lro/WI3RPU2q5fdn7e/YTggOtP7a0Y+KGHAek6MsGe2m/I+ESLE/TY/YBNURXTB8cVHsn4xpAoa4DrgDcsVB18dzCwIkFa6jEXpQgpoeLYixS6ra6ok2iiDKwbstbRXUD0QqCmUh0X8PKPjOJxEIh2H20hvOoa9ojUaKDp+UBiB56yBZM1XbwSbJ4u3bBhVFnSPWA1o/zfiT9ROv5khiwDdHWZx/CyBAGroYDkgPH4YokiWmeuTuZc/tJTyylkHNmLoVSClmNdUruDJRSNTZKkUIUKBJIuviWF7NzdwdK901Yt5oTJmxjtJmBwVcMDczuDmZ+nvYeEzMLqolFB7Ibm5TBrfmFQQayFEZf05WC6VhjigQJRAIShRgiUnXqM83vV7M2PbtWn+I+7bnNA+lRAOXtHPmzv/kNXs7Jdr1TUP4lCv8ye/t9v77e3KmE79/9F/ns9LsQlK9fzfzOn7tljIUk+PQeaAEYN+ZIBxDpC+/F5L1BpQMy7d2U7mnpdlg3H+C3DLLL3InPZwX1AN2DZZ+nrl6oCGSytEhAQlU2xnXgLnUFfQVKr1h1Yu8Z5cnr2yIVGShoKCsTbeHbZC0v7MppUXTc4u5BIkooxkIj61YF1aEhiQOorTBZQoJoEdsr6xQX5UPCRHD1vXy0F88ro6zO7nPz3RybS5KB6SjmNL86xK/W+NQ51gctrlPNpGh/ccgWKq5z8WuGIJHVens2L+tWQxNk7f9zXQtdQVeICJHEeDXwyRV866OvU4oyTwvLsnDz8o7b2yOff/GCFzcvefHyhhd3N5ymCZ1tN8qK1agBTYjCcBBCAo2TLVIKttBbk9rUI4ml+P7k4WCsUxKLCneLkZhZIzlckeMVJw4skjjJNZnEHVe2/88yMHk4uVmuyAyc0hWZyAu9sUmqpBasYyyJQQeeibHN54drBhLXck0skSEnWziw0Hab1EmbY7tWg5rQbBlVqHtVehRAGUQ5pMznp4Gin1P011F+EzidaRThHEeK/jvMJfDF9F2QgS+nyLNU+Hhc+bXYVI77zLDO4Wp6C9nfpd7JFoltAqB4vlVKqvnW72vFdT2zYYi0a+xo8Tz71pGuuL0Bqf/cs9xeH1uBNdDrWmuQgWoJlDppqImLWsVJUWeSSgu7tQj97pDSi/WdwaiGGWth4maasUeDIFGNxTRw9s8ak1NoAKxJ1jK9PhoNcHURJAoltkewJxfb8EtQlmB7nC8SSBirSbKQmBvLNPeaTEGo/oiDZBbPk8RCUkTtYnSqBzMWW4+sBGIwq7zpNHXVoqj1vBb6qw8VtxM6qhZF1ef7s85hgz2Iic1Roy93hCQBBkhXkbgErmTgWbjiWbjidJq4vTuyLJnTZEE7lhq0I2DGlOTRjUTNMULU3MAkuzda8cj4BQ2RGJLLbRaJdHImvpSZJBMLA8mZZJTMoqYZHmXgpDMzmQVbYJAl2Z70agBs+xJFZhnMgo85Oi26kDRx0omoiZGBKIEgkRRNc5sGY50SZWXoPe9ozXiPJOnpUQDlGAs//+zED24OLPpvs+gfxxyLuz7kY7LGv930Kf0Xyfqv8v3bP8zL+Tt8cpj5uauZ58PJrIh+fXV+kw2D1PUrYY2KXe+yn/HvAdPLPL73e8QjetPymTSvrR4rCPcsWir9ZHXY65kurH6kdEy3FpBRDWhZjFl6ODdVMd+zViFBi8WMpLHPKiuyxsDsiGlzZm86Si7kse8q2kTutlFa0JUAR+nAkk53yqrP7BhqUxfUiO5uldeIW+IjOcTuOkUHW7EzhJkkS8coLaJjJHPN3Y51Tq67rPHGZ0a3B1cf0NFNGiMLgzhDFSsvhMn8+gI7ize79ePbV7ouV/U+0ufpPqW/rhi4JlcajylBfMa3rr7OMmfylHn54o7TaebTT7/g7u7ED3/0GafFgLNoIZObfloGeydFDbXVVzlJWpBYbOuQZCAURjM+5eBGHTF/y0mHtq+PGXUGTjxjkcQdB2zB6sCJkYXEJM8sfJxcsRC5k4GTRG4lkYO19E25Q90yHoowLgNJE1ccGHVgZORZvLII9sMVCTNQifgGdg4ilUnXkAYPpUcBlCko37ye+daziZfzd/ji9B9D+CvYKklLDTMA+A7C72qdzoJpJK7iNVepkIsZfZZSSFU31kTWtUl8FVj3ewVOoIniPYvscq+F7I81YNxCetstTiqAVeDr861gvP67LXf/HNtRVj0GOjYpHjS3rRPfl+nH2rr4peVtJbu7kVS3o1CZbtiCqDPMzWcPer0hSdSBVjpw1HaugWEDXmkidxPNPXI4g65BcntH+ea+RNOD5iGiIVBiJIZMiAdmN2EUZ5Z1qeVMYtDFF1pW+3h0tmm8CQLFr7VtbG0iiwQQJYRMiBavkwhSagR01jlPYRPRnR2L7JcqV+m7Cg5uyT3367S+IAXiYj6Lz+SKQxyIzwJzWvhYnzFNMzcv75iWmdM0cbecmE8zp+NEZu2zEsQkgwREA0ZJdkxGMTVIsP4xhkLwCSkPCyVEpjiRSYxMLCQOcm1AKSMnHR00FwNVmVg0McrIKURGHZiZakQAWyo72N5Ac7LlnjlnjjmSNHKz3BBL5FpNZ3sQc3q/Gg+kkEgxrS5ZryF7PwqgjA6UP/98It39Fm7m347JaN+754rvIvKfpm5alUIhBbVwbHFhKcJSIBdjpdFlGNnszYEf2zPByjBXXdC5qNuBWQeU2zXj29Rvzr7NsrLD89clXZ4tnVglaGG1vNdrdiWpeROu4nZ3T6nld/dyHzt6YC0mX+tiOs9NoGGhAZzW5ZJVJJf1ewWxtieQP4+2rS+6supWCg6UWpllssHZ6zzNKs8KPm6Nt7xst8eIQr6K5CTMw4AMIEGZgvlwLpocKJNbwwe33RqU1oATTXR3oDSRfKGoMHi71LXpUYQh2VYZRF33mKm2uTpYqw9wZZlFV9E8ex8qrGJ7AXKxFVbVQKSYWsTLkRoWLttKmESEJHz8/Dl6BfNhYZ4Wbg9Hbu7ueHlzx6dffs7L0w3LKVOK91kBCWHT/uJLWfv3EEJEohKTktJkRhSOaIJJjuSQOOmRHEYWmZp1/EgFyskt48/IkjjKgakkrkPiqAOnkjjKaG5HqbjGGDQvnKbJqppNsJJFuNYr02Oma67CyNfSxxyGA4dkBjENgT6i+n3pUQClAFdp4bd+fEuUwpdTYsq/h6X8FlIwHcn1YA7lV7GQwtcYwguGUEihcIi2hcRVUpIoh5gZ/S+0kbpnfhV86rm9GA4Ptl5jn95pnR1u9y92it8B6HmJZctKN3oor5tuow5pp2c81wb4gKtg2PLW333masjat01/rAJipYthBVBxWRdcjOzKaU79YqDa4mia6FMBtZHfYIahdbOugPp+KT3bNAd2WR3bnS1q3Z63iu6DD+SeUVZ3pSssFudB0AF0FOYUyTEwp0CUwklGkpjBpsbdGTmRWFj0SGLhwNEBMzIwc+BERlh8H6HkRrWEgPo681jW+JpdnIb22TFCbb6aatt4dIApDUzpRHi/vrrCLLIez933boVfmiMxm9X62XDN1z9a+LnhE6Z54sXplmmZeHG8YVpmbqcT8zRzvJvIZAplnagGf+fuQ6sDECMlFuQKSDCOGY2FNCy2R9D40qYgGTnqgYnEJNdkHTjpjbPOK2YdODJwVwaOGjlw5X6Zvo8QB3JI5MPIMgSWHCkDlAWOy4lZZ2ZduCHyYr4x8byMXA0HxjRwPVwRw06dtUuPAigBhpD5+mHido48HxYC3+XE38AhKUNQPhktitBHY2YIhUM8coi5/Q2hMETcb65uX7lukwrrPhtt3fWZbrFfC1pBii5PZZC2F8cm1l29trhYLHZ3tpc3FtWYqOwysOoN13vR1ABnBZ6lKkhE1v20tQPI7pkqK+zK3USRNgpEtaJvl1YGp3l1k5+edTvbbvI2VD1q1Q9t5Mh6SbA2lRQahmutQr116v6CgaD2m6lVkbvqLn0Qa7W4V5AaMPDwqDXlECgJkIgEpUQz+NiWFzNFI+rCOAJJDY2yrwwybbShkGLO8YotGgQlEX0lEr481D7Xdu5fq3bN4wy0Ls1rgNeBZJ2kKmBWX84W81Y9xmV3zD+jO8sPmrgKUAb4KFyzHBY+GUwc/1S/4CgTX8wvOZYTTDCVmaVkX+fv6hDBg0GLT1Q2WYkHhE6LoqkQdPb3d8cgI3MYCTqRGBiCR5bSmSyJqAsziagjwkBQMwZlBpIqdYV7DgOzAJpsDzOEMsMSFnIRlmz99zYLgyQGGXgWrznoSJFCCg9D4aMByohyHTM/f33H+K3MUoRchKtkm40dkvnKpRoMQNZIQyHU4XgpwEVNdbrFDUMVeIIPVAe9DX5uQXTDvHzGV3q211ODjs5Xq+dZeV2xjo6lmBjd1ARNtK7qg7Xcflydp3z/yYqDjU326oYeDGtmp3Xi7BDY6DXPWGjdBSes5Tl11Aa8Xq+mbq3sUyzslnh9qt7UNpxBK1MdgoFeA0M9A0qNZbsM84C5JV0LDIIe/LqxngOujLHOh5ElKtNwIIaFJLPH2Vy4lgODzCxlcIu56c/Mdd2ij4OQmLEten3nSolIhJBsFdHGlbf6XNZXptpAjowtm6yhGD2wr1SmWMGyDyBRFCbtQNHfVQ2msznn87v3/6hCIBHlGYryybPn5OvC/PHMaTH/zJd3t9yejnx5fMnxaOxzKYv5RoaCDmqscgCuQQZBr9yv8eDHryANC2ksjOlEicKSjB0eubL9f+SakyZudeRabVnAHb5vkF6xkDjJMxYdmbjiWCLHkjiGkWVMlKtrVCM5r6RJw8wsmVOYCAR+OH32Ksn7kQClM70oylWCrzObkU/hkApJlCHq6tT7IKPqAU22x9tSP9uhT87yr783hvGelXLu7rMlBH79xXLX7xsVqPbH9Cy/bJjuWq6sGTZAfN462yPbQAD1uWBFLQe4njC3cxdWOCEdE10Br+ne2nnjVut7cP7bXbsJVddedWSjEyWYA8Aiq2tSlkZwiaxL3XqgVP9efRmrmFv6c6AZA+Qk5ODkLQCiZAnYXpKBIAtFDQSNGNcoNZBYUGDGgr3MYmuOIxlCdrfetQ+qdwShq9N+DqpzpKxyQ22nfnfJLdNUZ5jOKuuKlf6zt7y7q5wghGix3cY4oKJkOTDnhWtfbngVDkgRRjlRFmXWhWM+UTSzaEZVKUXNm6Gu/Ize1h7jVIoF5609IgQoLN7WCdvUONl0IzYNgTCrMflFEoFgCyjVXqJ5bigLhTkMFNQKpms3sWWdKjA3z5P70+MAyi6NsTDEuQ3QOqhXUOvTXmbxzxDWbqTKxn9xw+q6Y5t8tUdeyFsKStnqMRsj0u016vrH+16CqjNIFzk3onx2SA6ODz7SFZrOcmOc6u6h0Cm6unpuGWRLElYwrp2mOug3NpxRFeuElfm1x70wonvA3YDuvG3PTV7tqlbbzdlss9i4InKqCOmfNWjHXgRvYrjdWmNBZ9OtyUHsutGZVovoju9eqXCAPAh5SCxjIiRYOJJ0YdLAoDMTkZGZKxk5cGJkwgTJmWovXzi4QejImCbGNJEGWybZGGBdirfZ5VCMVU7OIBf3B+yATme1etd5bPLPOmEEIJd1M7XaPQQ3DEmznqMgMaweCgIaCkGEkCJpSByuRz765Jqihd9avk3Wws3xyGme+fzFC+6mI1/cvuC2HLnLtlPlkrO5o0VFF9fTLvZcTIL6zp/xMBGTMBxOZvhhZiTZvkDhwMLITT4xaeCIOakvwbb5PTGwhAM5HTiWEzORm/ySRc0sJ265Vx/rIcQNafiM+9OjA8rGUzoHsfYsuj/gubVuhv7KUukH6VZ0vcT4VgbapzN7SytkD1pbkNxayHtRa+UHG7BUNu2wZZ50FvuuzM33jvG2iVTO8oY+Ayu/7NbtrGeqc37HCu9PnVN/A8u9a5OrPtxHdA3Ert119v6krWOv1uCuvashqe5ZXucvZMVgMRbD4rWq+CtqjVCXY9bVool1olChiLXI7M7VwsGYJQX1SaFG6wGtZhwPuIGH6YCMuRANIVi0o2hO6QGQ6L6KWU21UCMVJdyS6/NvF5uxseYWR9SfJaqJ5lFXYBXWBQEFc/qvOtPKRusEU+e4tpunSVox1J3ePXCGKjIGDstCGITjfGB4nrjNR+6WI7d6ZGZhkhMLmZOcjOX1jN5ZsLRPa6khLNbPXToJKDMLoqYKymRXeUREF7LY8swg5sGAmF/nwtCYuPp/wfnquuXK/elxAKUIa/Rx627rOD4Hqjp4qgOpkbJO4VPKRnA9YzdN3IM2Kirb2ty3G9T7KtR60+ffpxUg9nHvqn6wj2SyPusOLHuoagBu4lStR3Nsr1GMunxVXG3h5dpad+3OWydCLPr2Bl3vTf1E0k9G/kxa9aqwOsWX7tr6uxP1WW9dVRHSylh10ErdEtifoTdyNJ/DsL7n4JgXHY3rbRuDcya50CIirb8xnaazzeMhITEyDeYmZKtOFg5M7qA+c80VAwt33JGYudMrt5Qb4xx01XkO0UO6DR7qTetSycX38aHpFnVS88PMoUVgt71p6nPIykxbODJdA0VsllSyss+ltqF2r9PbqgKleF+p/VnM9SkKjMFUC9/gE5RClsIxTxyXiS/uXnA3nfjBi0+5nY788OZTsmQWXy+vRQnF1Cmy+PuaIUaI48lWR7Ew6MSsEVELR3ItHh+zTCwETprIOlLC4EsiEx8Hm8zME8F6Tv2sOxOVkl8leT8SoGTFHO2BQ+1FVaoMK0sQ3997z3lqWhczBFQDWW2zgDnbdVeD6URjHXwXG6ob/A19OvBQ1790ubdu/pdAcg8+l+jpep+2tmcT5g06Wgl1Vuyvr+BXRfq6T7N0eVsz21026oQuTP55/Xyi2p8GzrfD0A7wtmx8uwQ0r6Am+zKKG+AKKtX63utTvXyV1ZNq2RHyanz3vX8UaFGSVM3eVA0azrykxpms268oZqBQ0CgUjSxBOMYrc1aXRNZIIoEIs/tVmr4ykpgtWIQaoE4yULf8DVIYmXzt+Ez0bTSCZCQUwmARimIotqJU8UlBPQSZOjAqzNI2+tKFVbXQA+V+/5oKnLUN2qvWKnI4SK5A2ubS7i8gqAQkBA6KRXC/hmf5ivRx5DifuH45csoTN8sdU5k56rTqM12PqmLGruALFCQUVGcE24YtEZhVfYFAcd9W2xw562BLTiUxcvLIR1WzYH3feo4DJcWkjQfSowFKSx3j6MDSrMu9EBfMTCdyPhOoDcnah7IGljIwlcRcEjeTjZJvycQQleu4L0B2n7Dq6Xoguyd/61N9T7o/XVYZrB2zN/ZczKe7a6CJrxUkV+v2mleo0rM9W+knp/1dpAKgnGNYCwv3CvZZCi2u5kYXW6ljp+7Qrs4qqKOUqt8/rHWpS0/rrCna6U6rs3ZZs7TvFRRGVnJdncHjCqgNTAbWPavciJQ1UlJkOQzEoEyyMDAyMLEwkliYZTR9JgfqfkC2FHJiVIt5aWt9CgcmLDKkb4uhcwvtNkTb8uGAfboATyh51WXWbRSqhfzk3+veND1Q+k6I1F0mN0BZJ+b9rLZ37/LP3tVNsBU8IlylEZItJ9SgfKt8nTlnPn/xJTfHO77/+ad8efeST2++MGt5fZZgLFOilZMiFiHf91ky81lgdretmSOFhIpFGM0kFrWopguDRRvLVeC23i8hkBwoNbw6mO/jAcozxrZ7Sd7p19cXyMViUy5d1POlCLezhbI/5WSK3JKYi4V/Os6BILDoLR+NC1fPTx07cnbWByrwMb2uYDEA2urI1mqePU7/RKWs4gvrvNY/1b5RnFQjYvuC0HfgM9SqN3NR3IFHW9a1bZvhhpWtal2FQcfepbNoN1y2azc61/1D92L5hXqeDbh2rV1jVXITqVY+Wo1j1Vmw3qtgRh5Xw4iDrQa3S4mDa6dWSB74wy9HfXme5nbb6hiuCzAXZAm0XQJrHjcSlQTzkMgBW+ccR6JkTh7o4cCBGqUoMZF04uADf2AhamEUC1ScPGhwkkz0gBsDM0Et8nrUwlAjFoWZkAohKDHOSCkMxTYkkzlv4zMusm4ne+Wfs22k1tyF6qTRd0ddv5xP7IL0+vb66oUWsKTqOFOMSAp8LX3E9XLg+pMDN8c7vn37Db64fcntdOTl6Za5zJwWMz5lzQaYg40TW+3qsUcTIAsaMyoTRaLhQQlkSRSPwG5bXmjXu2wlUyS4cad8RYBSt+9F2uDsXot3asMKU6zPxQDxuETmEng5JU5Z+OwYmHLkbjlYtOUcbdtNtcDAKSjPBwsW8Vuez9077hfedl97cin9dhAO4NVAUsFh1+ht7q0ALF7OWmrLeQlsKztc017P1wNezyx9rS+yrdJ9uHzpxO75/UbgBoy1XhXwut/9BCQrY+x9Qe+5we6zpmp5L7vn7XSVClqqjycWLFfD9tW27GtkqM0WIpttHGTVVxY1oAQX2TGDUFaL3F4E0gAxschACIW5rRlf9ZjR/yZnlCMegV2XpptMYjHFk3jkdTW2mXQhdvt4D8ykkIkhM6bowDrZvjp1b5lZVqAcQRb1rXoFJp8ITnSGldbparOzYSm1ncTyav3ed5+g68Itf0UhGkkZ0jMKhU947nsDnfj+p5/y5csXlFy4m2DKM4qSc0ZSIFR1iOABmTG1WRRiMJtEfVWLOtvH9wJCyK0rrZQoqG03Ub467kHqojRUBrQqLS0C+vdvB45L5MU8WHDfPDDlwCkLS6kzSaTol5zy/w1lQjU5eAWyBlTFPstzfvP2P0HWK37bfMcYlTH6zbA6rGO3rhHfDeYKkq9Y+mRZa3mVhnRMTDt2tjFq2aZR1SK3rj2H1RmtY4jtZa9sU73cqoPcsjVh/0wSOjQRF0tqx5Lq0r9m4ex7P1L2TLLe32dvBzkJsTHmUsrOlau0cmRzrHemr+0QdxNPMAavcZ3MNBg4qLpFGFtZkkBz2S5zXKroLWso00nM0DP571H9EzteRfRByGOkxECJAQnKMV3bhmnuvF73L0/OINdN1ApJJxKFQQpJLFL7oM42dfK8q+EneRSkGkvzwGQ6z2EmxswwzMSSiVqQuXQ6SvXdDjF9ZtbmEdDchsB9HtmyzfpXvQ0quHaGwBbUJNi76kmPCAQRrg8HDuPI9fXINH+L7958m+N04vs/+pTb05EfffEZ85SZjzMEG4uhxgQ4sQZGEbtDKLYNcXKj3agzFtFdfViv6qMYLW5BzpnLKrA1PRKghJU6wTqAV6Z2Mw+8nIUfHRemHLmdxbaIyGLRmlWwVTK3FP13ELlDMD+pgDmXFg/2UPg6tzPcpsScLWI2F3WVuhvrFTRc9N74eLIbqD0NpV1XD/QGK4sHafHzLrKrSi27ZtEaaWat1n2tak/S2rYDsvrvRRFetizLc1fLeCu/p737IvqytWu3euGFuWdfe93cvy5Nrdb0gJ6Flaufa53MnTWs2zKsJLzVRRXvA+YuA9D2HaouNhWjFQPI0n26a45mDIBKMJY5hGbwl1DIkkgkomYWSb6WZ+62qih+vjA4WEa07feTPFjw0FnGk8fUmd2csVCX+SWGaBuMDUYpCRELKhxB6sZz1aWq7knTTWS9CmL1JmAFzc2nblcbCVTjz7Z7VG21EGKAIAwpUbRwGAeO00SeCod4y/H2xGm2QMNVbaIerrDFBshruajta2RbiQjiroPFvWKC67cRiLEQKlB+NRglu1HSsSWBgvD5dODz46d878X/lUVncgkGfB0oqQpIQWRC1EBSi+Wp4ZRCsBc0lcTtMvKDu2u+fjVzPZxsMImY4aHT363b4G4/7m3b3njS6zv77tIrwBXvBNlPSbt0M6pr3/VljmubdbMs23ZcSeZFCugsVnaXVmOKmYK1VXQHRO0Zz599u9NlN6k04Oxl4U73te8GTQY21thGYnW2r21BtokmpG4K6EcxkAdbYpPTuVN628PH4izKHOz4SWgxN30ds4V2E/SgHjXJWKlt12ssU4diATwO4mufBY3CnGy/c4mKxGdIVIi2LDfibFHqvkALQ8lmzHFmmdzgk3zP87rBbN2lJrJwxZGk2Y1GC1cyeYDixRzddWFI5uw+Pj8ZYM4g2fWV1RhUo7RXgOy36d3/+Zrx9ln6PnbhvSrunqUN6ALC8/GKZ+OBj8Zrpnnh3/Pt7/Li5pZPP/uCFzc33NzdcXu8Y14W5myrnkrbyL6TaHxyClXnso0rY9cFRaW47v/8fJ8eCVB6S+qucbuBGURAIlO5JpeZrJ+2czVMktp0YyKjVGW9/9Vo3oCQyeX7TPlrvJhHrpKiTGzu2NiPrNbWfa33jGhTwnmmnQpxl7Vxvx0ACxuxQHcXnlm1e34r26t7wKziUbvrvv7dPdT1UGwNOBUQVwtp96zt1wZFt/Xet8Ge6e2uXSesDvyk7NqkbixXzdsYY0ec7jkd9MEtisd9dECEFiBJ6hJAXwBkg1sN5D1cnMXIrcBCH0Nkyzora0u2pYVG1r2FkoIUMha/oATfu1wSs2/dO0ghqrFNA8rBGWVm8NU/gzNKdbtw3ZfGrjLxPGMh4QpCFDOKSLD7UhRJisxuDKrb8dYoRM0pXZ01s/qvCs7WhbrlRXPkrnPmHoz2wx1p6p/DEEiSCM/MqZ0ZkkaLYp4DJ524nSD7HkAbA2wtsO9uSz3dkQ5/z80t7IH0SIAStsEVoB+2KQS+fgVZv00Mf5isfwEt/2eqaGyRuwEJq3uhlxXAA624VTSDcofIH6Xo38Rf++IPUjTy7eeT6YTC2mAioWOsF9hTO7BH0d2xHrsqqDTmVVem+Gt0t6dzl571qSwEDSA74KpifKt/Vx+lQWZftqo2hlpXBYkEWwsvfl6pvckmIAmE4PEtbYRsRJemL60sMnSW/ZZvDVbZN4/T691z1/e7PotRH9nkWdu9jtzg5VerZh3tnj9HZ0mCdLtDquD7l9MxTv9dg2tEYMKspmd7DOm6S+XourqhNKCUfg26f6rveZ4DzB7zURLmIB9tT/Mg2lyJzOV6cR2lsc6rYJHWr2qUdrWllqMeGdSjs6uxzmtOJMlccSKFzDB6tHdZiMX2GrJ9f7SLOKTd0kr8ezEVRRb7nK09V51lJ1lUr436ejsC6B3QHM4V246CyHA18tHwjG8/+zrHu5npOPPDH3zKy5e3fO/4m9zOR168fOmTHUgJzU8eoa1z12XbR41M6dpfX5EeCVAK26rsASJwiHCIgSjPCHJoxgUBB0sTFVf/78pnfCuIyioFc2fgRNGZuxy4nSMvp8hHg0UnWqdAXB0nm1nxTC8nynZl0f7pal06RlQnth5g2pc13yq9rvysVwX0hpqN1bsHyQ1n1E2dzOhT2vWVg9acFbzao3bX1V8qdWVQrdP6bL1ess+z0XNunns7erZWdW/82nzVvYfKjQNIphmgXEet7XzdtMb6ivn+eN3rPtfaLdFsAYUrYFl9BEycrmwpBt+/BySoB+dQF+H1DBT3wTq0RWCXNSxcxPYI8jzF70FIZFFyCAQSswwEyb7HzOT7+9jSyINGIjMHDR6AeGp6zEL0z2BiukTqRmtJfG/0sHjYwoKoIqFALtSdoNv+SS7WavU3rgzNJ+dGeZoIodsxVLpJvRMUUAe0EpACoyghCp9cfcSoieWTzN1w5CqPTNPC6TSxzAvzvNAWqdwDlCpmTDI766sNso8HKOVAazjZngsiPB+E0yKMIZF1IGtqI7IO2RgC1cCsQK4iVS/mlXVCKyq8nAY+O8H3bwbC88J16ndX7GvR/96tNa5jtDPWtOs6Xd3GmOEDdrUAb2+pWnassnvJtWN5W53F0DxzJVJvg61YLx48pHSssYPolcDt69ga01IIAe2APFBZZScWX7hOKf1jwdnM3o8eccasNOPLhrUn1mDKXpbvW9BsUhQ3gi2gAem3e8wRcl3yKOuK1+gA4BuaETHWE2QNxBHMX7CEYlGAqk5TFB2yg1/YRgR3J2rtwLgBaAvsoY2llsHumYfgelKavtSiiBeudGLQhQN3q8+mzowc254/B98D6JojkczR8x7U9JjVSBTJHGQiysIhTNRdLC0wRza3qyxwcit6VT9U4BRW40vxrSoqi+kNPy7Kq+JqEHVLuqxB7rNQsjBkUzxcffQNyrXy7fHnON3N/CB+xouXt/zg9CkvTje8ePmS+bRQcnF3W6UsW19JESAGQgjEtrf5/emdgFJE/rvAfx3rh/8m8A8Cz4A/Cvx24K8Bf1BVP3tFSWjv8qI96Nj5IQTGGDgkiyA95dQAYo1WbzNE8qIMNLc+hMFxxI59TtH/F8flO/zo7m/i41H52lVpEpY/4+Uq6zpDiWAGoAYEAWn83/MCWsqqtwGQ0kBpK6lvn329ZTVOOMCK+Hbg3rEaplYe2JXYQLqs17cqdrN8R/i0L2Tn4Kn9Sb3gXFFZbw2eoTRPgcaAN21Rl2ruiqntWNUK/ZzQJWVxl5bVSb2P42mZ+s+ANn1mRa7KNGW1eLe1jxiQCpRcTJ3gcTPrnkHmWG2Apg1oK1ssFoAiBXPErttTVIAM2FLD6qLUG4naMRqYqgfG1cHBNwaWNFBCJEchhMIQFwM6vWL0FUGznIx16rCuU2dh8ohIdduLWK3nrPsHDZiHSIrZLMbJ32vVV0ZrqCZcefNLtn5Qt6VovUWlA0wflN2afS3W1i1IcSf6hyKMeSBI4JvPvsZzueZ5vuJFuuFFvOWLT19wnE/cHU/knCmzj79uLXsz5kQhdBLhpfTWQCkivxX4bwO/W1XvROSPAX8f8LuBP6WqvyQivwj8IvCPvLLAuqUAYPQMGjdUGGPkkAKHKExZEPeb64ld6YhAJQWb8Yy5PVa9r+oXKP88d8vfyY+Ov5PvPF9YXOcjdGJj8+NbTSOrn38HGg20YPU7XEFivwKglin3+GLW1TUVVhqT7Ttau5+3W31S3RREBcuVb0tX95qpziC2zlsaAFZG3oO210O79uiAdstshaZ3VGdo3bWtLrunXwtsdGNtmS7EnPYTg5ZWmgXN6MIJbW6yWlwkWDwAt8yseTRAsQgzpqIAJNq2DFJwFwqoe5vXIMJivpdVwm+MNKgtxUsRWhR37XaSFN/zHAs63In8DSgr+xxAE8YsB4EkLGOApExXg+k1o5JYOMlkwTjEgZKFmcGjh1egHEi6Bii2PImkCwsW7X0kksT2pTqEmYCHQ6wRjqqDfvb+Uo+JGFh2c1YjAyods2QTgV1Lsf25izW31uAfi62sSWquVlfPRnLKfDN+jRfplpfhlt948QO+uL1BT19ymmamk4mSJTs5Ca5i8smsbPyaztO7it4JuBaRGWOSvw78o8Dv9fN/BPgVXgmUgskx6+/V384+okTGEPj4YOu3X8zJBrJWT4QVunKpQAjwO4G/A+dtvgeP+j47ylVaeJa+zifjHR+PM6IFkeKi2yW/RlakBXOYrsBSH6XXeWxGv3QMDutAEjaW44uKZbFtdEVDNxt73nq/jZtPBbx76JdXbGszkQbuG9eeOhOFyGpkao3b7ikIRVe3KkFBohdTIxp1IL+pVs9MlTqMpAJRy9ONNFw14e3emsLCMbmIni0EWJt4awQlY502bygb49aqI2BlxA6kuIohmz7TJjjXgYbg9Q2dXtTfiTjg+f1Izj6rTrLf/Kz9FhPzkxuDEhtGabpONZcl13vqwb9f2XXlIMYyh8iUDsSUXfReOOgtUWeuq+jNgcHFddsU1vYEMncjW7d+LXWPoKkF/xjiyXSkFKQ40Ht0Ill8LveX1CIDSaCt1GpbWsgKrBkT6QttbbrWlUV17XpRW6fueTQLugSG4ZpnXxv5thz46Dhx+Pwlt8cTv/npZxaZ/eVLlpJZ8tIITg0o9VB6a6BU1b8uIv8z4FeBO+BPquqfFJGfV9Xf8Dy/ISLfuXS9iPwC8AsAH3/085gssrnB5meQQAqBq2jsUuTay4EaVm0fP9EGzncJ/PuxIaAcQmEIyvNx4RAKH48T10Pmo2HmOlrU5Kow0b4BK3NjM9TZRuZp/2xYZgs+vNFhdsc2YuclcJMu38qitGydw1qHlMpBaxkdsFdm1EC5wlz3sJd0o7ICqd2/iq2yZnURGXcn2qgf1isvPJ/XB5+gKhuVPn+th4OtBCfwPaOGGm3QLN0F07tWF7LQypYaNUpWN6JWK/+n6kEtp7PSPhp7XoM2agk+MRiiSZvsXW8eV2mkWrNDCq73NLFckzYgNd2ksUvxvYHoAbOuIBp0/V6DDvseNZqFPArZJ1IJkMNg4rRC1Nl85cVY48jMooksEwtLOwfSYmoWmVtfLQghZKr0Ji5CtxjTla3oOmm0blLfVbWQN39MVmbpkZDqmnSZFc0Cs5qnly+71KXWJyAxkOLIszgy5MJpOCB3J8aiTLd35JyZ5onTBMVdi0ydfIGgdOldRO9vAL8f+JuBz4H/o4j8/a97var+MvDLAL/lO7/L3nYzK8PKILwTayBK5BuHwmn5W0H/Gw00YrDBEyUTRLlOmTEUno8zh/iM6/SCQ5wZQub5CEO03RwDhSgTQdScedvGZKsIa5bbbhmcPfxWXK66s8rENkAEIrGxD5TVYdzaoZNWq/4OtkCygebud/2urJS2goG341mg3L7ss2UUnCdZ6+0Gpsrdi2a3WHZALrFzAqe1W1vbrlVUrm2zAu36ZHUysEG6rZWDqcdTW9ebr94K9dUUKTTaLNB0lGVGJVg4sDoJ9eoef5fSM/yzvYFkbWsHUNVaZieJVBm8hHUyzAba6ix9DfobzTBUAbRtosZWn9kYpbjYbb/lSkwkH7Npsq4xcf46wKjooExjQNLAafyEEAu3ck3dUXL0GJlXnBiYuWZkENNfVnF9YOLAkQOJQScyYnnjRAyFhK4R2+ukWe2JoSGk/eNb8m4iHk3GGvVO17iZi9iSS2eUZbLXOhWLK1XtSZZFmIHTEFlSZPrmx0h+zje+8RHX08Thyxu+fHHDZ1+84MsXL7i9O3KcjuSyEa/O0ruI3v8J4P+nqj8AEJF/GvgPA78pIt91Nvld4PuvLkq6zlWHSgXJOhNZjkNUruIVY/i249K6ydggCzEUrtPCIWY+GWcOKXOdJq6TAeWz0Yw9o/gGTyyXZ5MNTp0zo8rMehXBmmPnNN5oiqzjStdTugfh7rZdibtKsQ481jJXQ1Vty3PwW6Vny7NlutuKrwyrXrM+70obPChqL/rvn6t7GJHts0n/hJWUVjZOZafSnVv1nc3ohPWFjt42drnW/8IE095LWcFQWCeE5tAOG2A8+11frInf7T4eibvq4E0zIOs5U0S6aG99Xev68hqYN3rDBEWb4QfEfRmluhEJnWHF294nMq1756itViMEsiqalExERbDFkgb6WaKbu/rPQqlBSVztZZumQXK3rBAKRHNcb/OhG3AsavnqpK8V/H1N+H67pLOeW7mTOjfpcDYDWYQFYRGx30FAEkGVcYjIbMYujdULFUqMLDdAXvZ326R3AcpfBf5uEXmGid6/D/gzwA3wh4Bf8s8//lqlSQ+UyroUoiZjfV+7mlHgWAJjKIwx82xYGEPmKs6+v3exHRuj605Ebc+PyjbExdadm4npmMTfgluHHQzWQb8D1R7MVKkB9RpLaXm0y7P9LUAzzPSA3KNAV0bPVrf3Lm1gnHWzjiXXFGLc9Mgmivdl102Z6vUl78CSZo1uINnJXqWsbVkBqGbb16d7Gr+Xg2d1sA/eJHXrVpx16lo/ZX2nzZWo2No7qbs5htq3qj/LahhqOtdanrReYPm7/lIneIkeSogA6rqv2p/r72YGr9cLWqLfJ1l+9fosySzsszFMD5Xjn2W30gdbUlm3gUjYfuXJkEdmM3zIJDBCmcoa2CMJ+dr2mJnHa06ycMfEtZwYZWHmlqQzEzckFo6MjDpxxcGc2DlxZGTQmZOO5naUFoa0cHV1QmZgyRYnc4ZSA3Kk4gGFMV3mjNNBbAnp4nkyyCl4UOJgoeAWCEchLBCPJp0HjEma2ldICMnnmBAMEFMQSop8chj5+a9/RP4bvsXNzdHci374Kadp4n//6Q8u9EVL76Kj/NMi8k8Bf9Yf8c9hovRHwB8TkT+MgekfeINS16+y+bDvoowh82yAb10JQ1SGULhKC0MojME2mR8jiBRisOlHfJBU5X29VzP/yMqcjLV07OdeEbirp+6yiA8aODeMsJbfHLx3z7ryHtmwoa0fWBcdqNVzD4470NtXWM/PtOvOnvi+Z+8boOp1e9BxPdSmWnuucAks13o0o01lzSGYXlq3155tIrel5D4H9E78phftdbXrfaVJLO2V1sfd1HFlpqvurbXG2TOur0TXCUXqVqr2t7HFVRbVYyxssN12FJXVcaRGwpql+72rSrByDVBBJZBDhDAwCSgR0UwiENQchawqZsjKmO5TCCzMiAjJBeBFFlSEEI23STGyIsGitAusoF6DCtdtNyIGjO6woFHNCJSKWfkXnzQWa/tQIGXMIV6luqe27YJA260QbI1+iGiKXKkwp4EhL8zzzEPpnazeqvqPA//47vAJY5dvUhLNvd+m8+2Qdw4fsL2/ryJ883BrnvXNMKpoW8sr7Dfe4mxjqgqiUH3+amCRs32z1pG1+bTDW8vsdnXMjiF21za20/SSPftcRcB12UKvM6sMOLYmO7tPb5hpz9v9bu26f9awBfbOGr8xbGkXGq4+T22DYrpMCcEb00W1VtutjrdaqLtK+CMHF7l9kqMgIaLqjt1lbUvtXYegmxBxNlec2OqqQ1Vnw44cIsEZ9BpnM4h5GmzcR3aMvU5YPVi2du36RsvjTSuNYdd3Ze86+LHa/O2VKxa/QNSaNCrVQaP6fWr2Z4p+kwVbmTKrR2fX7V5Ada+gA+QhkMeRZRiQoJw0OqOMbvU+eUzNmZE7BiaOMjNI5ihHEgtX6s7uemKQiRQnxuuTBeDQk61Xr5uIzcFAcnKGu6hHZcdk1AycbFUNE8gs7uRuQCl3QpiV8davqXmzWDECd6rNPrS1MQh8dAAOlK8/s7b657g3PZKVOdCU9FsO2bGCCk7aRCGRssvdKe7rGK5Ts+IdrA783EptCn2/ZkOUWtvu2WDxW1VAWwdBY0K1Xv7bxFDYAFO97gxQO/bj7bJrCnvh7d50J310tWs3hW7F/92E0MJkNAVTZYdrnm0l+mfcHavitoPbppYd0NqVFgxvw0i1vufKVHfLIZtxoPMA8OpLldPBwa9fFdVXVbq/es+yeb9Nz6n9pFTp7b7t2ba71om7M/7VLqOKUvcAqhOU8bbV4GUGJ4r43t8VjLUDeq9LbQ//lOwTTNg9R/FK+MSh1fjigX41GzudwkB23agtd0wMLCycmBEGTR6SOJNbgGILwHFgIPlGayOjr/QZPVDxTAgeeDcV4lCQq2JBOI5qgZDH4sApDUB1BhZFRjUUbNsKFwPK0cF08aX1RZClrjyr77e+7s4nJMDGpe9CejRAqVU7uxlrm1HczdaV3RT2Or/KJlZLLG23QvuskUZyK7eKQLLp6LSxs2WnPSOtnLQzNlS2V0GgH0jKZqCr5zsPDLyCVB0vqwFjrYvIJZmqpmqc6M6uhT2ctB+otUHomC2dIaivUs+yvOs55a/uMs3i7/rhEENrJ2vSnUitlc3K9j5tfqoeCdnnhoqUVTbtjFWuX9WzNpTN/VCz6ItUcOofr3Pc72Vkj3vY3qXuJsXahPRuW8VfR72/TxYmV6J1D3PMGd4MQd5eWswhO/vkn72/eRAK6fSTVj1dV8BErG/UwBZRzbVoAOZgsR8HYRoHCIllHIlSbLdynRkYGYtZwI9MDGTbE0gyI+tuk8m3vRiYLGiHHkmSOUT7PQ4Lg3iUds0ELQaUiwNm3bpiFvTkrHPGdqJcsO0s6ucMnEBc5xmmABkOdz7UV2FznYAbjjwMkvBogLL2KJsdV7GsC+Hlq1okdIOksqzGQPyfaqSRCg4uvjaRcSciexmlGVb6gL2VQdYq1eVOsTtrA8e+O4BqQQg0p/B+wFSw7AZcDbagbsCorjjSgMaO1cAN9R6rqO616cBZ+4qfE9Y28NvPThxeq3yZ7farfLastorN3XWyY3MtrcsSmz5PfPnnJWNVbcvuuZroLJFVzyfrxOv3txS6d795mM0k1k/KtZ/Z3ir1vv5sWueino3e95zZxWYDcVsN1D9L7f/QKyXtHRbMP9PEckWgVJWPAXSVPjSrTRJ1mVrsiq5RfyIGrhE4+JhaxPWFBlCSQD0mZ14EDQEdA5OMBBkZ5IqB2WNdZiaPrl5jYB44EZ1RDjXyujus2xr0zCgGkIPMjGIRkOK4EFImphOhFFLOVqeTIpOYjvIkNjEcjTFy7fU+YltbzIpMxZ7pClsVVCPbex/aO53Jxfe2pkcClNDAsomTmwmAHmmaakzZ5KXlXd0XVhD2SNP0A6XdYc17Jt929VNMXxZCa+jVysqm42tfxgYk+zLrs/Rg1DO+yozq8e6htbIYrM02L166PB1QNta2RnSRZiHZMVrBxdeuZK1PzHnDd+VJ6OrTldsbseyUNIbZi+L1XD+p7C3tVeysTLsGXW563KoDttm1A3ah+Zi0plqXqq7EsuqvW+PRnPJrNoEz604Dvf1x16sqHkRafQKpnWL1+dRmjae7UXXw95JV2r2bVDmrMcgKjtEmXnEx28BeV2OPr8024JR1j/CCuTWXYGHnSiS7Id4CE4/MYiJ3EVvps8gWKGcGIjNJLLxb1MzUNlpz4NSZJLZx2igWW3NMJ4t8NKjv/+Ni9Uncx9KB0vf/YcE2HpvMT5TZmGdjnYOsz1Z3BdjP+3p5euvT4wBKx4M2MCsTbANKV9boonNdGdLcTWo5als+1EHWFOi+haZqQFSp4SgaC60gWQdoGw2149fv1X2k3sO7scLqRuK5zwwMcWU0NRjDfjF+w8vubVaw6OtSx1djbf3FfkiMCbS675hUAyZvzzqo2nHZl7h5uFoIssuozhCDA1AztjSxt+utnezeg5PlWONQ1v2DtHhdezWNQN2+WKKLqCiaXY1fV+dUdt5UHVVlUsVZmpqmtmtVB7RJpX/2KpVs3mHfxmczY3dsfdZaH3XxnVLbp7JOQcnW32NxyPZzWhANa2QexdxxKjC425BEt4ov2lbxaMQMKb5UEt8/iEmbm5HtBua/j7SYmjklSogs44hEzBVPCoOeGmDWLSpGDBBHTgQ39FgeWyo5sDCqb8urR6IujPrcl1oeibKQxplhWGx7jGUhlGL1WRQ9qrHhO0xn6WI4GaSyT9fDngk2l17RhfQ4gJLaL1c2aR2pe4LueNMR1lBAncjVxmw/FjtDbhOpOtmqByBjNqvvhW7+0UrMGjDZ3VeXDhOv2Db+hrFtRVnpsmzbw2/SM6oGDDvBYcOWzsvZXNuDS58UVtExcEncXlHsrLKbgpoYeLEDPtwra1OLs+L2GsU5neR11UdX1vq6ZZtXNyWzXZRfQa5XE6yT2/ZS3Uyg1b+2Zti0QFPr6KVXQuuv+/eITwhtNVUtR7AdKNXX+3dss04uRVbJfXE2HdUjKrEuEaxLBsGXC6q5zFTP7RpwNzs3qVHNa7AKd27XIaARSjB9aJZEkGKxMMksRJIH3Fhkpu7lE9z8k1g87MbCyMLsrHPQQGSx3St1YSaYaB4jKjPKjCSIJRuBWjCH9dkmg2Ydr/uw1+2FF2+j+5DyFWD5OIBSFS3mi1XWPgRIU/bXPVbqemDNxdmFdEBYu13pZgor0LZzEHAuibBKstT2c9Gnrmbolf4IxBqVe5/sWBCxF6NVz+h/OTed5ZlEVnV0XtfzmJZdHaroFSrb2aPftk3X7/tDu3vsxOjGLkUgBGTHepuRo4q3NUAFBhJaTMwMwTd360RM9RicWh3Xz0TX+qFQLdldcIwzAtDYofWLsixdcIoEoe7GuCrwV/zp7+0AG8K5mF+r1u9V5LOxWiwwzyqsYn41FvaGurUv2u10fQQgEK39ZJ36A5V0WzsbXRJgDcZiHSggOUHx/d8DxraireaxiOnBnNODmAU5YJNJUBNRW6QiY5A62p7ajMFXA+kmCLFGYLQ9hspgz5GdYZ7GZ+4cryZWh9JE7lhOHrZtckY5k3QmsnAQZ50ciWJi+oAtrRw5kbCYDAOZ6+HO2Gc+IrkQlmLi+Yw7uWtbCinZp1EJm/dqw+7VlPJxACXQmGJL50Cxdh/d/tZqQfYrpc7qPUs8L1ou3rceq+VX5iHtOkXbpu/9tS3YrdPLhj8by0DHaLTWvStDe7BcV5nsDSb1NrXg7fP2z3KJGW6PXSZ+2nWiHqwbb2O11u7awVmOMaM9O91B3cbY1LOobf1WxwNXoTQWIJt8jWXJmn+je/R79rdrJLN7jvOxs+uH2r+L0j1Gl0+6/FvO2elp1Wdm9wDv8ktbuCAgHvz2zJuhPoQ2MiFFmvqjqWO1Y6/RWYLodmFSFNdJYrq/YmAoBdd34sE61IA34ouJjNlpgJKNLEgRSMFYbQqUYAMiSCEQiFJYZGBuQDkRdWkxMOcWC3NkYPL9f2x9ubIwiAXjSL4dbZRMEmOZISoSMjJgLoHOKNvYPEtn0+9ZekRA2S8/gNpZipr4sOlYTaRRaidd3W2gdjLdODFXEQsvh7UzdddppYKbDt/J7lSdWw9QNGNAqMvtWEW6EGn5t4N7/9knXauwB9h9M9U8TeSrIFXbwupjusddnibq9fVYDSLGLC1QbVsFtDG4xLVN2iZPq16yLdGrgFrqyN21Z++kvjdOVTZYdafB9ZClbN5VI4JZCZrbO+v3JaoTiiquWLY6NvPbxcm6ft81vFvotQjrsle8TdpL6V6UrMfUXZWAPtSbOqit2xdXJintb9W/enuQEImoZqRG9VUxd5pq+e5FUfF+70zSohO54Sa4NCaKjurBgYsH5HBH9hSQURAXv23NdvbtMIrvSBmceQrzIMwRjoeDbSM7XiNRCKOQWDwO5pGgZiEPdOHgOLqe88RBjwxMXKsZkp75EstRby1vPDHGifEwcXheSFqa47oul8ZT1a/v3+15ekRAaWkL+NoGydrB+47cWS/rFVpB0J2GBd8drmyvdxaqdU9wtTiXBWHJZhuYi4mOhySkoIwxr3dz+rKpjvYDbbVS2nNJJypDP/AuTnLU8lfeJh3QrwSrHnBW0ajSvtC1l6zsNHTMrJt86ozT6eDqlCJ7sGjPIK0uveiq4r6TW9y7N9nzel32zLeCYsPGdfJYrche16LUXaZ6dcbKhOvz7U1wNV1acbWWUSfB1lZVxK9teEmEod52neyblntTBfX/64P2E8e67HFt/9z1k37S8/q51Veh+VsiurKtSPs09zt1wilmB6i7o7Twb2orfZKuMTSDG2Hrdr2jrvmryD65Aelgc0kZsWAcwQRxITBLQKQwB3NOnxlJTIw6MNWIRTp5XMzgzu2BJDOzJkYGDiTbP10W4liQosS0TuBrn5DuHTycHgdQtnHtvaVZYjtw1C4Yg1sqG7vEr62kTSujym12Xi2la4ev3vq5CFkDpyLMJXI7B6Yc+HIaiSJ84zrzPC1847CsUlxjYVsd1AqGxeNcdEv1+lBOEukDz7bn7pJ6QIkV/3pW2jNe8a15aW2w3rds8wv07jI2uKpeLjdSKqobZ+utu8ymll01egbULjRmvwGsLskKPJdSf03PWKEG3g2t2aTmKTUWpdctdGHuepLXPdt6MK7Mtj1haSu67Eadu1Hti1rcWL2Cd3sGf86aiutTRarOu2OMuuaqSy83YO4O8hJ6Mm1IZr6aAUJfnkBOaC62ZNDXateIPVXXKIM6++zG1hxadB+tewb5Hj/q+5GbbhM3rOJl6BoiblAYtO0mqUF9/3OQMZAHIYwBjQePjnQFEcIhkKRwxczAiYPekjiSmHhWjgyycC3PfWnlDUlnDtx54OET10yW52CGpMGi/Vo71L7Y98dX6CkfB1BigxQfnM1S54qpdbVFf01prPFcB4YBTPEd+cR0QIptUJYLnJZEVmEqkTkH7pbEMUemErlbIkueOeU/yxAj8HvgSvj6aP5t1Z3E8GcdpVJFo8aoKnOoeRyc6uCq65ab1cdfItIGo/qIUFULBCF9vEzaQPVlMN1haS1rYqb7XGrVr25ZjuWPq9W1LvHa958qVtM0sq09VoIn7dnVWbb58NVn7xieM6wt2+4YqaqvGV/zG3Nkbbc9xnqbVJVCbbsGfk3PugLduhGarvddawkxWh3rJKyCxN2zbLb02OqaK0D3+/60N6QOxq0JKnMo7fIVlOv5nu03poFZaPpjgTXOgdHCzSqnRc0AlH2DLZHVa23Boxd5/ZMxTKnb8wbpGKWzXGeXLQJ7wnwya0T3qOumbANuQVff/oJWnh4sTNopJZYAU4zEcCDJ3OJjTlJ9NkcXz68Y9MioJ06czJoeFpIUBl/xXcht/K3Nf6EP7dLjAcqqT9QqGrEyqDp5a9fxKL52urM4diKKqp93i6tv9c7tJEw58MUpMZfAbR64mxNfngbucuS4RE4lkssN8K9xnRLP0u9hCEK5LoTQrTzZiVR0Q6sb6222Wq3WvrWD2Iy/Lu1zAJNACOYrZ0Bi669Wt5PtChob8NEPVwfsri6lrFZq3AWo1akf7IE14O8K8ntDTX2yKowjK2jWwdxIbNXh+qZObclgDXjhZa2rcTy/1gmyglY14tRUwa3bh2il5gbMpVWC1cK+il32yirTDF276Npm/t5sMliZqk0UsbVhD/MbgPQ2qfUwr4taj/p66pLRCmihXdKYpIZ23Vp2nVyrRcakAzR377UqKev7cQMb0gLq+nal1hcxX1SCmE9iaFVaRXPfjbIy0rYfUCVprpbWyipdV8nogDnSmOnKPD2PR2vXQSlJmMYIQ4IrCGkhxsyJE4MsLG3/nwORiZEDg94xcGTSei4ziDKKLU4oUhwlvIErr+Lh9EiAcktwWscuHfNpYrd217huR2354VICWYVTiUw5cTuNTCVwyrGxxds5kEtgKomiP2DRP8lcCtNi/mmFKpJnlC/J+k1uZuG4BB/3xriq60tTm/Vqgdq9XewUj6TNJmJOdW/yneEq3J+JqJUd1bY4n/o2yzG9A6ystpk92z3qALw/3FkV+bSJoXuwXNUI2oIrVEOWgWFl++yurRVwfV6IjlOhic3NgX0vHvWFNFVA5zbWtRkSLN4mtLqs7DM2VtFqth8pG7VDFeNrWzhY1lVFdcc6+vdAY9ZVtBdkja0JDZjXqFf1sv5Z6nFXwdSJR/t32rHH/rOtY18ZOTo3YN3olcs6zjRHtAiiidXQJS5eB+jbLTrgx5XQ9C5E6/YV6g7suOjtrHMQ2wVmMCt6Y5TVcDT63xXoEMkpcBwDp1Q4Ha6JIXPFtW/He2Twv1uOjMwcdSaVwlg3Cu/UHCuXeAWd5LEAZR08TkWqQ/kWADxPt9+1+hgtxeIGnRZhUeFmjhxz4MtT5JiVu6XwcoZTVo5L9alV4IbCX0Z1pqiF1Artdus9phxYiht9dm3afNnOdBzaHqvOXL2vYRNh6xa2qyDbX73WpQPJXnJeRUSPSbipim4+WtWbIvLy66jArEpb0WRtsUYz6pkyNRr9maJcNnU9a59a2QaKa3UNBDuw6r70k1LVcW5E93q8E6+suu6AXmmPBNbQdTtm2Bj4Cu5V7JXuvAKbrS/661udKzuHEGLlyT5R1sHrl/W3buqPlb3X7THWybCyeenKcT1me4R+Eq3MNLZoRB399/o6Q80eW6ADYpNyYtevg6nLqr9zJbfuV7nuWy62vDBi1nj3z5QqmidpzuxVz6lVTB8xNewg6BBYNECBOUHUQpbgFnJzcR8kUUhMzKhOJAojSxsnK7t+WD/ep8cBlCilLDQuprBxb4EmvqhmY3wifD6NfHEa+fwYuVsCt8vAXAJ3izHLuQhF/xxF/z8sRS2SlM+cUQLKRCkzImq7hzotJ1StqDIE7wwEigwEX065Ru6uqQ7K9di6IsZfTjeWq41yC6+yij9lf7bryF3nXf0aL73sCgjaGBsdoPRLQDdvo7FRLL6hQBuEvtY97NiSqpLz0gGlvbPgrjkr0G2fWIsbeqo6Iu1Yc8/cvC1VS8sfY0IQB6BLus6O5ji71ZyRUAg1om1F8wtqiKoC0O5ZK3Nu77dOEKEyVaGUBbRQSgXIRI0wVefVuvlZbZ1G8II05UqdSKUFv6B7JjNYqtZFAd4XQo3j2Xl6nEkjgbqvtu76loToKFdnrjrxVWOQ6zNVzDgCtrkaQgjJ7jVFkOSg6gy028aigmkz8jjLFN+yV4aARKWkYvmvxRjpAOFZsGuvFU3CabxiSspxfE6MCzFaXMyBmRvuzJijM22xQSUJpceWh9MjAUpoQHCJDcn2WAXT0xL48pT49HjH7bxwl81Ac8qhsU3lh6j+BqraVmdZGSZiF5VmsNMd2NT2y8X2F7HozhatWfvCuvrdbzxbxaSN1LTLUYvbO8ELnVO5VHZ33wuWTeGbKD5S20+31PRSjZ3V0LObVyXdWsv//+19a6x221XWM+Z6372/c9pzaEtpOeU0FrVeCqIQYkD5QQClEAL6w6REkiaS8IdENBppQ6LxBwmJhmjiLUQRLwgheKFpolBR4x/l4gUsl0IJBA4UCkZEDz3ft981hz/GeMYYc6619/e10G+/Ju9M9n73Xu9ac4055phjPHPMMccEUZgrqYrU/AHEVhTI0KZ6WyzeDO3KP4TLwOK5AKBjkMBIZKkv0evMT9XiRpkLHbHOHypIKQopgC8klGS0uXzedn3g0ZBRiYOiulXmOGT73iJDDPHH7iig3F+EsfiMt0k5uBhXfZ5Og6onDm4eD+uuG5KjsPr4Sibu8IlIhCcd1NZ0F9hOGtO1mT9TYYHsDRGypAdPR9eBdRGs0rDIARDghCMAWNLgTZp3cS/eE0n1OSlKc0rHmFZPlTVNH+1vGwi//krDz//GNf7nR96H3zz9FI6LxvZvEeAgilUf2SFK4DX7vFktufOp27m+KCLC6c9pBW7EOuL5a+BhP6A1rqDRrxS2f0dJSvSDzbAYkJajl+gimrYzLHPfty9ceT2y5IDM52T6HOvRsmiydvWzmBMJjfGqWhSy+wIjp+O8aFReO/kkh1s2we0AwC2THmwuloOR4V8rxKa3XPAbFBIVQS0K9I4++Q3HleWZaJZx5Xqv9M4zxXN6v9166sqxLS6PxtveT9P99Rnn68okHpL+y4EURQY3bulVX8SEHyVrZa23IGRTTJGHr1JhfC7nHKUQu/FQgUWON4+tF4+q6DBfqtGl/QZ0WIr4PkcswOoLjzc9fZm+Z1sP6unfWgmUFwfP4qcywu5jLOcDREB9Pzb0o+B0/SzkoHiEKzSccMQjbwVD2LyPMBvu/XI2irIuYmy3FJb77GZXDu6Tk4eAvAxF5pS03V9UXqZAVeE+SNtTrp5NpMNChliYKNofxakLTh24WQXXtIDFz7FH5RCnxSiPaFc1tWU1V2W/OiKXAQnaF5VVIlQcMzJCIKOKGUAFG0kYuJdtfFjB3Sv+f0xDWXlRWtPrkw9Mvjui3dEP7egyKByVtleIiBaAuUBi8YesnZDoYJUKiOJqeviYyee5E8jzaFTldyFXWCdvqundBoKGqfxYZFRehV/VvRKSREUmslPXrGDrs0TCrMgQedTHmQ//1Xza2JSuGKsIHI1xn503pHk9/LEtk3Ss3ncrMOwlPUnikAZTkM0C4UNMD15lc7lZOEzEzklX4LQc/DiPMbQqWS8Yjg25pZyHohQEqomFjujFWXN08MTCZbEDxh4cLe7v5IllTqt1+OKKsbETBZ6gwe4xl50fWrsWJNq4QG0hOidd8Oik+M1HgutA8B5Ks5nuuD/KT/oLD1AMNv8JAbU2joN9HFjDVkPN60Q2TE9Xnxm1RRkcRVgSgayOuBffmVGUaShnv7bW7Oc+EOrCSbwfiAON+E4dM5VvDCKNF7hg4cOSyTFIozRDWl3R10Ro0iRP0vQDyKoPsKL/QQlHXscyRd4YrNQa6dsl0ko+KONVw+9aFX/6DI2FIxK2hbM2PKfwtaKBJu77NvlrrY19NhgCjLJBe0a/L+Dv8/sUGZzPtvhz4YWJtiQ/BlsXNq0ifwvnyq28YgkuXbFB4TMkKVN0q9/cXC77rlDl6O8jGr1CKE8cYQr4KDg9eOAB8ilDuZha+nUPoJRyHooytL2OP6qI6Th3fazWQJs2Azc9UUrzOhY3RusK23/qYz+Gnno0Q5Nh40oo1UmurM+ar34HnEAgR+9M+uEYkJylmGaiBYRtLvWMhQMu/inTO5sNt0Aedepc4yTZ6jpVjYD5uld6qNsYIVqDtnsMvhGmCAKZOr0cnBknibimTgsHcS8p02KzARGot09jABOpGw/JvbQdI/Kzdlg2hxoOVRX1GJto7VQIWqWc/shhJlD+d0MwGgD1GQyViE51TO4CEcw5BUJeJrRomyia/6XZVjA6MFfjVYYeQJWd6HvVaeU+ZYqkRIuL8guv9eBqIQxkG0pYjixGX/iqETkih/wBgO3NdvApInauT/PW8yiLZq4j9Xtk8cxJpOdkeDYyHZF+l1lsxsrt5UwUJQtj9+qANPMiLQekxUwKblbg4dqwejuXpvAkJVi74qHn1FuahhLsrhWXRQJxE1QsjiQLAApB7Sr4yGnBzXqKjq2+OzSNThqDh62YXIzOfqnTGxQhmRYZgMAOfrGlwhgUNqJBOiuMacAYwq5TaHBcuvL1jPBdM03ZjpIM6mpDWtvQg2kgEH0NyjeU5MSngljCTeGhPbHI4VNnblEj0iEZEbzuspS7elIx173kXSpyxERX7TOkwgANpSMg2LrFWBijitInGGSJqGuYVguijeLtN1pLaNGQco4+2qxfggtAY2ysB+znrKK00w2dKvuQxsoXc2L8zL7f5Kf1Ufe2cAqcdKuf6RODjvF5jzyOcqHJEgSkjf3nYueai5ivHWKr4R2GpEqm97CHFeUy6mAW651yJooy48T4//CtKmTYJ21T4g5TYF2BroYko/2uEFVt4wGjHWibc3qAVIojSV5+HSLvheJNOOnboDhAZB0HkZ+FIi0R4qaFMQanrW2pAXzU2bUIVC8DNQOfKYRjNp9oT2z5Q7m/8M95Azrl+V3sKzdhah4mogvDbhQ9TjssizLD9BbBgwjZKUiPLhYSy1XZWICoSGZG4lI6yhWSNIkjZTfCrlzEywUX63+xrZp9BcOdSHVmN6LCKltM3YAP+/fJS/8QKmJK2i5aMWXDxcpdYzfxLUJ0ULaiOg8zsDwN7dAbdVpOomMGwktm2NVgsOfFbnmNFYTIhsZGRByAYsHTNPnC3JwgwqXuMvNSQE+GBoV5UBcBj6/AWgDI6m4Hai4/7kIX8aMfYDuCrmAr5lSUjQAg2JTteTygPBdFCUyc3VzPoGB4ZzWoNlOUrj+YxDTaXmQ19Ib/Ssta8h3svB76MgQ/BMWnY9U/gI4FkdCCRYitJA4FnAdQ1kdlOb5GNj1YPl1BVERgrNHs/IEYDeFNhEP+VavAZ+kdT+QY4S6OPNTRZwOg0+DfDxwqil810M1S0tAJ04uVfKLDFKwMaF6jkshga66Ut+xof1cPSchdKKEsi6UcEPfguxrr28po9m/IZyhdoqpxip2p51rpzVlJso806gqOF56qpFGz8J+5C2Skd7hBymeJt3TDR4OSDWQVk/KXNsx8GHsayTxUXDnae4bTA/g+3t59W2UTCBbPXuS3c+bQYfkOvEpOqXXxHW6ro0xtFiTB/ecL6SvNVoCxpI8r56MoGacniCmT7de2UAWFIY62LGitoZ0OaE3QfGVt7dnergWfOmOa8xw2LhE7mhzR81ZuZQWAR6svzN00vNwW/PorV/jEZ1Y7kwcupIANNlc622mzuw2QadYq+omQmGUpiAaeAUcC/YDvKdPJmCq6052rt2n0i8INg1MGM+muilkdFRR3WVVUXeDT8ZA0CzIuz/Pv3qsD3ZCZrN6/zU4VFM8a34CYstOtwM5rk+9O/MRMC7exc7HlcIhnc1soSTJetiXFXYLnRBnGi+5Kz+p1mkAWcYB3DxRwpFuiBSyOECgvCjrq80PiX2WmqWIY+EmW9pI9K1ns9fkKcxxOVgwssJ9wxPU3N04w3aBftHYtvr2UdDhaTBQSjQxZN7pRDEyHeriR2TJ3PQRC5g9nNQdTmI/EkyeJx1KKJwN2+kocpt74/wcPLzoA+nC1ax8x8CIH30FUFr7EaQjXwh3lbBSlyypoXW0gVoSVg1WiY+w7dZQ220uG+Qz1u2IMY4KoxuufjbBN709rwyunhptV/CAxf8hTyxdDXygmzfRjonTKzva+YfodBNTWexsS/TgH7LMMiKHbKwAYlHfWSy6FEvcPya+8nVKYye+Y4KOXOM2C2grS097TKU96uLBQBhvKa4f/OV0sg9GCyzUUV+VJtN/Dq9RDsBKJT2hOCkeqGyD6ZVotrSEt+bJC/4y0EpUNLgZX6HZ/rDxk3xbh4u9YFAt60uc8qMZdJZB9s/c94zVkaBzlltNnwHYMSXFHUOZpG9TlgotPVOZFscJdFUSi2hAha6sv8p0Kn9VkPbIYAXZfh00Pu7/XfZTaABz8/gZktIr16RNEB52PogSkIBNApGaFaWhLbgGzzj1h7R03KxFkLthw5sIptcIWasKHCTgqsdjIAGxwV7tS6eU2rpsO/J+HDS8/VLzy8ITrxerM/cTcZ+2LT1KEYRiMXBzx/3wBg7tqc3CMymEYjU8wVRhZay2TVjOwGy2V/wDQeB6PD751tYDnYXoqQD3nOtwG3DsduzVqhnl13gvQPReGiIVRKaBtQe+rLSoMcaeCxil4W6LtXHBiMgztK2auGM30h2kJiaFboS4a0U3Rw0LMYU80LqYsdOSfLzjlqqpu6YH3dyi19N3l9wyNg531InM/oTxPwzGe915vy0nF5ON34zW7BvJZRT89AkTQpKgJTZ5atT5t9y2MJgq2H5xGPaIrlGjO5duTxaijaicNsfVGBTjZOUDogN50z6CuNuPpBz9dUhGp3jx1mxx9wJcs7yoKyMkU70c5ntrjbhCRbxWRD4vI+8u114nI+0Tkp/3zteW7d4vIB0XkAyLyxY+lIJ/zPxCWPq9XZImw7CKKFj95B9vdHKxQSTL0h9f5HH+46r33P1e++ZNKEFv66jUffJl0dmx3LHYM3zuhNcEujcTIpDv5yfRgGZv32O4urjEd5KeCKKco7s8QC++XuGlSroNworSVCoY0VN9q8m64vqFb77wn5eh2vkmhcYwUmGneK9MXoWhLv5VrqD9OF0Fjpf9xY3iXzpmcjZ5VEIlnRS4jjKFMaL5pV35B3OkywFAgLX9vtlnm2DVXQ4cMmX34/5o/2g29rAq9UTsYLX4UMvwvdgrjI1eSj+AHjvGaAA8BfajlB9CHd/P5SRDltwH4WwD+cbn2LgDfr6rfJCLv8v+/XkTeBuAdAD4NwJsA/FsR+T06Hl6zKbZSOA5iW3Vthhe6wjKcw62hAFhwaIoHR0UX2611Wm2F2/3BljZv8QByN3ZE5U3MwC0FfVIxqmPLped3hyaQdoDKESuuTEkzFglAhhkwTtHOMFEodLUAavORFYsc0ynbR+7G2PixHAd+GNEjj/SkwSs4v5J/LREbUaw9FYOQipPKmgkORn08KpdAvYV2XU9Fv6e/lQjQknFwi5s93/0sniZrMZLky1r8bYBl7nakzlbUjOPzVN/bxtMhLR5zDOKemButa0ublG3e3YdYQ1fi5V8BLfBolOpUnbTUvfppRNd8J09qjHq2kQXh32a/Mzfn0MDHatowpFVBhowo0mBXwdDRkBoDiBbpI/aTR4P3fs46FsQZ62obP6QZSKA/X8CZnm/+5tRaYS6sBvTVT4k8OtmOHGPro39KA+RIf7REOr+PpjxWUarqfxSRt0yXvwLA5/vf/wjAfwDw9X79O1X1IYCfFZEPAvjDAP7Tne+g0NGx4VMCZZZyR2UCQMXzSa6KG99ayKQ4gxFV393q/CCiXKeQr3Dr8dUce/HLviSSPOmCm36Ayhqda4qGSKQG224aOiArlTr0Sfe4hhxWXym047d8v6AKeypPYeMwIpVZ6Cu5Wr/mP37LiI6YJxPFQOTCVpSI2fOByDoDtGRiXjOO3aZbnN4FnX3iKgem5L1afHexCDTRs1fC4CHckaOvequM2XtaeKmACWSrKHbndfV69BPdBJ6oucOCqqvv1k9j1CKb2WGFH94ne2/mbWk2isENJV6fz0FCV0BsCexFpgbB4SVXnDUTkShUXV7V30tXhR8borS8sSJPRot9dgE8pAjOp1SUQn1sSsBn8oZR/FltWe8TlI/VR/lGVf0QAKjqh0TkDX79UwD853LfS35tU0TkawB8DQA8/9wnoes6OFW7a/3eT7FrwHjXcFoPeOVmwSs3sAWWbnu1qfQoLkSYS0tUeVpLtwvApTMGawTuUqJPm2Z3Fdz0hkd9wUM9ekDymj6tGPmKKnykSLyuHFMtZRtIJVB2U2z8YFpWaWOKg2GgVL9a9b+xPu6K2IYjFQUz9BQVXPJFHDnaaYhOo2gkgMgWk8nKrcRZJ8eNGupQR6+GuA4Ak9c6PeE/ZN10Seg2vw8HugyIDNN9o6JCpVdttlAXo+bFwriXSo4Nj2zlGFfxiwKqK/L2KNtjixh6IrLsHkvYgOCtX4/9+Sh1BfNn8QN0CoMS5KyACIH96v/W+FrETKgY4mi3Bo/qWMj4ylSCYfTQIH1Jl1AM/l7cqeSJnzcb/x/tbKBHRY6YIJjZ15v/eGo3PXTrjwZw31XweAJZe+W3ezFnz3zu0qCq3wLgWwDgk9/4uyeYww70DhjUviHN3lNw6Xcc60+l10s0AqfeRA2spPoGWBVnNE0A6C9j7d+Hh6cX8X8fvgmfcOx4IGvu7R2UgITADOE3BRFVRVVA7VD2pooZWqKoTnWrnvXndDam3h6e07t9p/6d1ZRKN4CVD6AIEB/QRS6CLIe6sMEW1CDtHFitLRnQTYTm9yev4MplidcxMHtY0a2Iyvky+vYYGN5RV8qTp5QtgZRk0NHOQrfCQpT6Sv46r0qYVUzXQ3aZEWk0Zly8AzS324WSoFHJs4tCIXn4jukq3zUV/PHlP8l+iS8jmQpfER0cfFEotK9oioyhq/eWS9EQyT3+qnWXVfohOdmIoqWd0WY30sWY5ws9TDAgTINwoZAK1LNkCMSzDDVL0UalcEJZ7YYdx4vkKd+1p7hq+VgV5a+IyAuOJl8A8GG//hKAN5f7XgTwS09SYSU0DXmxznYFUEX37VnWya5ynC8cm72PypNGkz7H6u3rmivdlZ6jCJqIo80Po+PX8Oj0eXj50Yu4OSnWZR0f8icjPHgImRgFVqEYjiK4gyspo+PdMitKDtDh6fLMpHCGrGN7CwJADIZhuyPbWUOMiBzYL1oYOkwd64p/UaZlYSMHe3PWOZ/7LA+VO1p+WH/3dH2sWjbdpaHQavulJKbI2EwqxKpIhueq39aPMVFk3bkFNR5AHKvM99JIiJYzopK/TEAcEH1wp5BvJYxMky9zjC9nF1DzI3cCDiLHolSTXpPlFi4We1eHmHytVGzGp4QzVHZOQRgI7jPMe+x1nmaPxs2n7LSSRgdRJlfGebKpgQgRcZ8b62ZEwSQzUiNB9svHqijfA+CdAL7JP7+nXP9nIvLNsMWctwL4wcdX51lgKv3w7WlogyBBgKYtzqxpYskxTj3uiBXrRWz3U9eCKpGvIb/8cLlQmBZy9ADr+nagPY+rg2BpwLEBr756DV51WLHwQK0pcwpAq+jTv3C013AQhGJonMLmXNSbX8KjJpQzFhnfX9CfApYZROoK7OKHWfWBHuFUaRibag5zKfcKlWdVwHXhI8ODYooZ7oBcXKKfJEJbxBW/h4zEavHk58upIQc9B+vRkVEqS2HORD7jaHYEXVqQOGJ6Kjz0TTg1K6hsmJJzqx/ZP+6eqpl9TEGwyyxcS+M8Ip2TCY1tJ383spBITD2Tkm09rci1hCGNtg521C48zrG0TzDwPY2aQwHN9kY3wdKbCQ1l5FJLBedcoT532UHOBoolUzSI+gIoIaGPuYy1RvnuYApUTY4syYpv72yTi8TbqcNM6PbyWEUpIt8B4PMBvF5EXgLwV2AK8rtE5KsB/DyAP+XM/DER+S4APw5T91/7uBXvINjPMxmmDhTaCTll6Ivd54uq8UjsfJWCMyYZs0cbBA+wtIalcTukoGtD76/CIm/FQV6PqwYcF+CZg+LZwyNcL4+wxHYe0lF9NDs40duVq53etkAuLqhClCDbespUNuulxUUaaklFEhIdGY2dOb3SScufoT35eIbpJPM04bpiQv4VwdDHJT42csFJsWbd4PZMf0/4WHWXlfZd2YPMfgAgrdQp9H/5Pd7mwFVCRlS0XP1XEx8ni2j+3DRUjAkk/9MnOCocgfhOHHGjQN9xKnnWOCpEKe+UpDuQpfvyXZ5mo8L+VfajG1aRmZ/0U1elr/GhwQ/3L0ef0FDweedTVdRBQY+/M351ar9yW+akKGMlvQ63Bput+D0eA61cYY8UYoWfVAxPUJ5k1fsrb/nqC2+5/xsBfOMTvf0JSvqBAKIn0QMUtkvmIyfg0ckRpbf5xsN8jouN5ytudEDyyRZ1XoDiT+DQjnjVsWFpHYsfbXkQwfNXiuvD/8Lz18DVonhwUByl4ygrju7L4fa6mJpVjVU6XkGBofLPTrPOnuxJY+By3BEIZuhcCgD9qSFMHCSukLqdNSSsbojRRKAmBXZ3KgRi7LDA3SFWuiDHqjgGlCI5RoSogPVI4Z1ns9FJEc70EBXD+2HxaRe3HIIGNaAL1tVCzLR7wpGFXn8x1AwNeUslX5Vx0p71l/e0FouQqifv7+rHtGo6A7CFtLtMeKxaxtNuDWX4QbdpiULZrczRWfed+8t7BHa3vEeKTA7trYYgDaPJgcmrtgpmyI8xPGpdT2WThQIRElZnNH7IXggo32htsZkCAYYpP/Of0/loMhOp6jpl1pUtE9dsgMbj0SRwRjtzVNnRZDxyOjoUIjPXRcUQsYs5+1oVaPIMmjyHJjblWrwjDgIoPgmCN+DB4YjnrgXH1nFoimtZcWwdz191XC2P8Ny1TbuvF3uhqCIWG0IpFLRYaLl1sEsu8wgRgddj1QZMcdmdbHsglnwGhWcxMHlOigLI/T8Y/RBFiQWXibxSCQ5adK9d8f30zH7zkYjJPycFsf+o7Mh25V9VYnlvLKL4OxS6BXCpYm99e9x1ixskXAHgTi0tTyViMyJCAhKrFrkIxDO8qqC0YgjSj4pwedD3WrEweZAzG82JSnStxq31naOclD7yX5Ebs/wmVyApUVGn1iuKTYcIkLFQRVHG/SSmpewLADSoeDhhjQ6IjSLJijDcjylnoSgVAu0O4aWhLVzbHwXW0H5H9+Dybps4cTwsOGhJGeVdcnMC2uEzcLV8Ea4PiqtFcb2sOLSOaznhqgmeO/4Gnr1qeP6ZhqumODRF0w6BYmkejoM8nnPYkSNcKJgGlQgsTgsYBGqnQyLYeEA/Ww5lkKwLTHFL5I8MzwCZPAIxxamJKqplFrTDIe/ra1oiIM/sbhbC0v37TXacYiU28ZSVg9xKmZoMmpvhMVibqDAXx+z5Bl0tRGtdb6wNqu7OYFCzgItYbbEjWlfmilxPwXMaIxpsaQXdsV2ugGRJ5z8jCQBmGgeIeqy+uspfFmvGvQNjobLk+z25QCjoyY9EZCXuAmnc104UFwi+sNv5FscQ7SBUZUiR8j05Ewq63Oj09QaA+WQVyMBx8ZV6Tb8v+zvbC0xTlPoFcpW/9pNtdTV3jqPY1lxGmicF8sU8AENCX39HXwsP7+gO4EwUpZXMqafKc4lHvwlgbe264NQP6MqTid4MkZPtvYbi0DrEslXimeMb8ezVEc8eO64PiutFcJCOK7HPVx1OuD42PHtYcPDtkKK6OTqlgrpY1XO/0uhP3LPGRBjlnupvHKYErghpbaWgkrinLs4kcorpqxYaRZAJcb3CqIMZ0seeEJEM/ifCLe4C9RXJOKwrkKwMTIvpV23ayNH61sIhSdoLS8gColERsTOS4iA645UUv2r1oQ0V8B7yD8XQKtFeaT9ScTHWNIPtnS9TFMGIrGTDayo+2VyjXh0RecVrA1OLi4f9NLM6+8+vNYShKy0cZkDRRgDDDKTMmriYE3LnmYfsVEYBzzYKW1dkPuU0+TVLRSq3lMNBJdCnH4i2IlMHExxSSD4FUldgwty75UwUZQPkGRi2TDSZm+UTEQGKtV/hlfUZ3KzX6HqEyBegSceDQ8dx6Xju6oSrdsKzh0d49XHF89cv49XXJzw4dFy1k61Yu4CImkVui0z7sTnw0/di2ZjJ7J60D0oy4NS2k/1Tu2XZsZC4uipqlm9YjZ6UqZS/qSxCeIMKDUWQgeFOXc+piCF3ifYOcXu8y3NvtoKiRGwzom15LALp2/NKk2+1NslnjN+HYi6Qy68Ng9gXwZipO/vOldl6gmguHlV/bGuL+wnLqZiy2MyA6Huloq6KzNqbSNTJ5kygIZ/h8GPuUsaudRvUlv2GbSh1kUcUNY7mWExrwWuNhMcKSIMsB0iJoFDfQtrdJwvJba7KRa/Y+ebt46mPKIiWPHd/8hhIv4Q8KjK13piXM/vRZKnCafW+sHaGbWRaOc9UFDMQyCgbikDtlpeDOS+9T5zkUOh+9IQpZr3FiG/LWShKW/k75n+x3Qmo2VZ4UbCgyYJnj4rXXZ/w4HDCcel49dUJx5af18sNrpaOB8uKq3bCUToWdDsuwt/F90DrQBuxQPOtVroIVPxQ+yCwFxiAeM5k3K5xGkIznMjFBGS2pfQ32T1JSPgvYwBnbsq0kGlUQoEU/sVAKkhG+bxSGU2IF47UYvBWY8LbXUCLfGYDMNQT/RxKxXklmg7muAdJR/jVCnIKQMIcpmz/yJckI1G4Ruvp720JOKaRMyi7uW3xDl/8YHwpu7XyQxDTwN6772ya+6T4u4W5DaYRLUCdKYQrc5C3HqivKj+Z+jXaF5mBaj/N7hVX9v7qFsrGZxmSdASK2yghtjOVVsygijHNhibd+3pNg2dWTwdDw8bb2FavdzPLur2chaI0xl0hmQJPouBMltpAQOSARRqeOyrk2Ud4zfUjPHM44RMe3OB66Xj2asUiHY2b8JWb8WunLaid0FeutiZV4U+LPcwAAywivZSuPtTrFK+kHuPJgN5OaAkkVvUti4UTQ9gNlYZgqyTLdF2N1tEX2YdP1k0UNgpgopyNkMZgLehiGKstwz9mpTAJ/aAzB2UvMVhye95EQ7QdoVRofKjkUp9OIU2hRfz5ZlsIGv3I2iHtMOyVD76xTXRvTH0T8YKp28urpNrP0m4aSX6XqL16WUKJiMtXbRNoLHb4HwtazXzNoBKHodDaSYVuxrDyixobO5iOwpeumXgEIMLvSDNUZEo5ftLXGFUKBp/nlpmV0LGkoS+hL80V/yTP4f5gyGHI0d3lbBQllClAaBVo3SlNeQ7H9SJ4wzMnvPbakmJcH1YcBLhaLFznEHniTcDiHezdYA6leGaW/98VkG4raEQcYXRZP8ukZKrV0iI0mnuqAeRAQypBIkE+Ix7aALHPxh09NCCVCipIpiZjnkb3u1kAdWZvqU8byhpRUyrk4osNVjbL3yn+XkfYdeVZS59W5lSfLPWYyW9zX18ZNCVziSln9TA8Klvsl+mLiCsEjV8dkGmArBhC6mVr3ugGcYXAnT9+3ab963DvjFxas2BoZu/v/RTGIrjifre5LzLcKOuTSHxsreMRvl5R+bOXGXy1zllHgpN09WiE2mz7cDRyfp8QKlBzlzZUhBrvqy4cR4cRe8n35IIlsVPMtja00TCU2R5qfxif1IGKtI/fzpzf5iJQHLzNxYoFE+we+L/HpviEa/PNsN05ZQEsBq9lPfG8hgCEVRMM9Zc+L6gh4+Hi7jp12xEidhCH5mBBKYBant9MeThYuA+6pdgJWdNDHOsznWnNAlmNQmw6hkksNNpTCwdMUaN+b9k3TZrCMOV7InQpEMS0Yl/oJc9rmNMwxrTwryhYqA6+0+CDsO6hR2pLrJ6C9AdkS37EtkXfacTrgWztUDP6ZaVxz3MuFEEksq+nvjSlJJEWzY/9kCk7UiQBqS2gMkHSaX8EPxNcbEsGdqc8j35l6wwq/qC3IMvKsxhP84zDleXYkaShIEzKZzRvNNRZ+D7fEMDah3v5LqfHMy0NY3ySHyjH923W1srZKEro0bN7pFXPXQeeRQgFQUkx1kz8qYYSBFQA3LKm/pkKwBzc9f0S3zcqOW4FAwf0CvovtcJ8ryMHUekMWMxluL9U3cfDleoMIxpDJ+bpLDuVl0dEEOgbeQ+nbOb7K9NZVQwrgzvdkfVV9ELf2Yww7D0MM7JFitKUuCf71EELIlVb6dDuSn4Od6LBsnyOq+tQE3Lbthd3jm11vaEe6DzUKy5zMw/qbqMZMa2GVGJXVeF35OCkQgolKQNP7fbm24znWKECFLCVp5GssgNomKUUmsItYcc5m5vFlbAvhomWvmT/lt1YuZDIipnvdOpXz4g/iMYGrc+tTaMs3h+K9Dlui/uYuR+eCneTYzIBiD1GnlZws/fctpyFojRWNDCh57hlsRfBL9lYhlItVloncesr5eAywv1MXAHwGAcgLbQUi0kBH/RYWFdBHWXzihzfUad99ZFw2IfizrCgKnADIqUFHIz1JJyueLzJFQd4fZo5BmIc6tCWnP6VdrHCWxB0Iqe7LHQqy7GeQsc0VQ8lQb5TAQqDqs3Y5RtoWArKYW3TVHgmjW2Pe9VTDtdp8PxcRcPeN1szNK0ix1Q6r20Q1vgS1E4naE1lujc2pudDoaZSDcNXFNkYmpfvkaGfW3k/t0+y/ZrsqBQMRopkFNoD0Ts/Kkr0K+mbd2Vpl7eesIEfRT8MyHi+b7+chaI0R/UVBAu4oT2towU2R0YVcsUXaYZpcXznKKrBlWTtcFNIKgcbAL1s3Oc9DMB23wWVFBdHRkXh1jJCJoAMlq/FvDYCSxywLZOyp1A2Ko3utKqFvdBP1skL0m4J+GJPta6QUDCOCr1RTLlmCtXfT8Gd0EkC3+LHIt00QKq+xTFDnkIlLaTH0+SdTv5M2brpwe8OFT26gAsFTkBXdE/uSqoBS96xy1NBWaSSUK6hA9RCgcSDxauPtxo4u7UnXwA7yyemc7nTpfIt7l/H88EH/16pX+LZ8p0iZjCDclJfgAt2z+6mqLn2hPOuDTRGrs8yK0q0T6Us8XzbHC1i727LEWEQApVShriYUp5jIl2nm4stSXFZYEPdQ17lNf8FivFRhUbGXjFgsJ4QCF8w8P+uciaKEoAcoNqiEwEEsojAYLBd3rHuRwIUeeasMzymlrMloTAJiDbVE6amNRt3uZjF3bHYs7GLwTivLPK5FncBie747DRjghZ3wPjqyefJB/xznl6O27a2Pk1BJsXI+rf+zRjEOiKjiQmFLYWOcGFwsMFlebLsm+lu0pX+WPKjoqCtYcqPohCgJevMTqloNnVrTJ21fJG+rZbkDjwszcirjuQrlx5TJtEbXFPxLtaT6DIU223VzkpiozQof3MtuSIeKi6i7dlX9a/82NY1NbQY2PTFF4OBMjvc0OrtLcMlxAnJ8xTJJ1OSwJkoSjvP5AEsu7HtqQHRVzlng8bC9obYGSwmrIaapNHXYM+onmJwmOD0QZgTjWbwLyTDeeKMF1j/iSyGhrTndrYwju6Q72uuOIc1pgJmD03BuFK/z5/sx45x62EaDIedodwjxKW+q6IFeICzcGXRUd2keGNV3leXudAQgcAhdLmFsio0gWS6r6GvFeiOVqAYzomBeKQBeeChLb6vubUFoh7HGiPAHfztkIOHiLAo2epz6+RFNSj+0adpf437HLVeGguhomqt8JTbJMezi+wdqyeVSBrSz1g6mQYFyJXtgZkFVakdCUsUJvH92K+DMYp6Wsp/8EpzA4G/JxKR8Dwc7/MwoIWPkXSlnvPEYPYKLJQzOpR+lwQ+w4YTQFTQ2wBD4rW7gMB/RYzrII8jULmrnIWiNOV0yJAYZUMpKGXqRSTI+MhBGLiI0xDnjqgpGanTLaKBMuUYihaWh6y6AzkY79OwOrB9XHq37jUUnHbFNEGy7uBFklFY1MAzeiKlWAR4S6K3eKjn+5pY6vwZ5YYRGcNSRl4YOuYKO2mktt4LXk4l6/0jZeAGYCyKvDhLVQdx3/0rlKwz21Ca7+6IYG8OejNwwq2moTsLNhTu2U8kE1/WPkCzxNrDnnunLmQDyJ0us089fXzzUKfPeFu2CMhQsZY+JCmKzUwmptF8bx/6od5rvEDKEJtI+W5iiorokUAgSZ3Go5QvXJGp2uLJHphT5MzlLsVV+Gv/T5Xt2IeIn4yLMt7w/4WiRIMs1wB8oz5XN0UAWUqbJEGUKIAToMxyrKk4sEIi3+GNbVsCwPAWQGNllZ1tfktfwHFhqjsBatyfbfvypBBrOUagCIadA6OAMhmBpJW1CtPvs5kijZ0mENcBS3wVz82KqiAt+jEhgqYLquN+XNW8rV9i5AeqoyLXKpyTYFJBrt5OQ5ZtFFxHSPSDqSb9w2pzpYbK2lO01Xi8HrGL1W0iBWUjZavElqZBdMTSqEzHoRrxe1hyEIehSGXUpy2ouVJPP2jzfLbZzviMaWX60IzlbWCFqGLFCREULy4jWrYA8peyPvrxJa4VIrOe6aRP9lVOaxXST+h9HfzCGV6V/sFNCd1+Gp8pAhhytluIEmsEx6zwxi3BW+9CzgjGz7vLeShKUehB3clu1jKCvAMpOUMl4wntd4PqDaCdqQ1jIGtvgB680zwfY2Nc4gKgR36+UCLS0Zi2qUnIVManZdiHavcFnzLlDXhffE+jyR0uxu4P3l8F1WVAWgkyJ5qIukermKEWHM6rC6hPBTW5xycGBBHvFoiUNP3KaAHGDOa2O343ujXcAEGwdjXnf2tkXSoitl0SOW2Dm8cWJtKpA43v9W2hA9LLNlCG0n+qPv5veV/4IdMQi9ZFjvSZaby3xdbReIcbm0T9no+zSvNsK7WbvEs3NMe2FoWmq8lj144mS84PqvCpLYwJFV21jAPPMciWcpNH5/5yzyDlhspsnffzMMXOjEp2vwx/q9JwxS8Qzuf0mOOiEDkTHUi1GFixMZoJX24BIZozLhq5u8qZKEoABxNYO9CGkN4tFBGZwhSm1v2vjLc6gYc5cZsUz+MQOfgg9o6n0AMAF3KQIque1koHXwin8YyvK6t5gmK1W/IfxU/iCmGYMoRyyWuidcXYlVP4AYkUelEm0wAv6AShhLW+wWmutCV64iAbkK7zzmTX99wWAbQqaEhGS006cnlLsKcHq58uVp0rcqj+M6qDMniHvfr8PraD5gttCJa0dB6DGyvjCTE3/WS5FiR3sfgOmDAgks/NatcU6rRgVwfyMJZTtnhK5XiDGTHbb60RDaHMOC7VSKcRrL08Mp/gwnlHReXjoHdTPJHVH+7+EEDCxVNGSpmp2f/jCv+wmo4cY6MPUZAumYnmIpdFypDyVwCLjArcLRqHYzGYd5ezUJQKRW8nO895YTS9LxR45urGvdknU2R66r7AvZgA9gboTU4/xAeKNhiqokJk4LradQpGpJsCQgH4Pmzjo0L7CfMo1zJAQ6FFXjyiDngfUmglXjOgZp+mEoVYtuyV8prGcEA/fB7gdN5ySTKLC3NOlve4EPXVzyMapjIuvj41z0WuaZuXAtz2IIE+SZHG7/yVhq1Oh3vvqV+k+FoXQx4bldOJmhmU7m0TysEUWA+UgZXKXP3AZz6fnpU1u0i1ZMoudSsNpPVxGAqfvkKaTww0RY2vj4ULAL5Nl+nqArG26qZIJZrhacUQwo1emcY3brENZFbD3wrKo1yz3vJ9GArKk9jhY4H6gjxvWAiptyP00xRBIcUoBlO4TRTI/IZE8hKzl2ru7UUttjJOSQxjXOauqK1LgShUx+07u+UsFKWhtzmW0ZHNkiurqWwUkA6N+ElL3qmrKUN1nxCkhjdooBU764NCtuagHw3j2AG7SJKoQ5O2WPyNkZdCsMEZVWjboEAM3NTdCfmevTpSEZF2Hb6F0OdKKyu5jtLLM1QQJCIqkeFariKmkEWwvg+CnIqOC2k5UG4J9fCLEv+UFWaRUh8NUaLHXE0fjUlO64EBHRea2L5hSaS8ry40iX+nUWlFW2x/4WHUnZsFqs+c30qc7bJP+9aPC69LxneNhA7f3b36uy30s/ayoMcdQRqzkQQ4xhre50qPGq3cQyOgdfVMUyUWC+pGtHZrbb/kZ/0O6RrJmdAkGsDOhW05G0WJa7HFiqp0oNCluyItVjaCn32lcxWgHyBYfI/zDei0t8UgCsaK1g7eEb4gIw3aT9B+w0pB35H6XtzcMy/lHvKX12wAWL67htj/bLfb04sHg/sClbAJVfgbFZH7T1UtG/VGQSeisVe0UIS2Su2+ycbFBFAOQxCbCFQYVK+5/cz5Va1wbFXbCxLoJ3dX+MJRzczCmUEdi4oSalLCnrAWG+MnVFpDx4d5TXPDgHS+ywdW8ZnxlMQ8uM2NXl+Nxy3DY9qQQadkdtI16m51iybgmaesLUNkQKV3YJj3WZyNvZRbbYGQKHhI0QdFZJ6P4rKttXr309KPHBschNp2snsN8A0YOcMwJU6f68B+R4V1UdAU5rbPTASWeHVBDYU3VZFTSFvyA2UsISNWgo9lGp88sU+ZAASk+ZG8Es/FVPyOch6KEjYQhamR3OoHwhEkchFktBDv7cWKu2WpeSxpmCSO3nJkSKQqCwyhjkGzgTR99Mai0p5VQn1OMR9qn/WRFgpUGoZw9I/wJzs0Kmnlb6+mGmkqzOFIWeT/fAUTDAxoyt7bhqD7wF2+kp93S0FOXJgaDpmvtO3xarjCigMmsUHelTNP2RG0OuXvqQiFoHRcoDIqax5jEGN9WkgcKrb3iKM5JZ2TfmSX5zRYUH1v0e/loRpILun72WebwO/BeA/fsTetlLkt3AbK/qyyVt9NBUslaGa5cJSmfOirmB1OfKmGf3/GtVd06sNaH984/iNzvTPqnZ/ZKWehKIW+ucXIMd9CT3+MdvQuxTqKwbwOH9SuvCiLqlBd0dcbCPd6L4Ktm8IsV+T49C2RgXaIytzfKb61MkNrSq7HYfM9yjVHd4Cjpx51tpb5B+knkrZkp81+AK87V2J7vKdOIyOAGMWaQz3fn9o7Fm+02FJB72tRNtkQnksdpJy00Mqzacww0YfXI8C+DUdKbHeCIBZjtDMTkka+TGYG4qDa+mb3jAdCbsK4DcoijdCQq9MP4sKB8ug0tIMF23tmIHUUO7hJ3PBFIoeKUig/YpEW4desbZnQYG4A8HmKaroWeA44Faz7T0blRhJWZ70pW2kt40ydD1ueer8Nfmt3Ryh85pJKpvpHhwYNii/QQXyGrPKOcCdU4+/tywaNtBZYb9Kwp/J4zY04D2WLrFMCkVm2tuUsFCUAoE55BODqcR4KpAnU4odozKYaOqAOKxG+0F2VtCpQdZtXmyC+EzKdOrhdbZ6trj9WpyAxNaJw+upkhCYh66vTAC1Wr06XJmGwljE8wrnoK4uJpMZmxQvcsBCNDYHvRBkh9+mUnwOkDX2lL4/1S2lvRSMVVZNugKErZRDQNzUQ7/JQ2oDwRdV2lvYVXnF1d6DzDof+MGD3FovqfVSWRFthCXuuRgdS1fJcoVOzdeBRDyU+UICYTKWvvciby1Nd4BG4MQrlXtrKcbZpS36f9cz+YimIcESHKcd7K/f1/nh46sBKZpnqk0kY/bdyS/9lI4znKoBEXDBCdu4qZ6MoZ+tsgtagHoSO1VCc+oYc2M5FO/N8FdtYz23fPl1KJNJD3myqZH+Iv4urjb278pJSD0sgkBUasYnZaZy2+L/eFqIABoqbIPRu03zbLeMCFMag7IAZdtfsCLjTxXeG8fX2b8MeXDAkA3fNVWer+YFmXbkThUYrqy81PvN+hMLlAM2FC3t1ZpVPJivGwSG7f5Ou0fInytB+sh6gEhrcJGkA6YPL3TUbDsXgpZEJP6I0aOtYeQJlVZqCmFVUtne9MelgAhImkxBBHdjGS6cZSZrq6rP1shUylKwbLHE/cMTyet9wUwUmAycCLDlDk144EbOHyRiTz0jlbLbVFwaFxzn6ZoCO0jfO63Lm+oZRs9tpp6RBL51V65lRYRU1Dg7nS+emEp7tc8d7gbNRlCSyrGbSKkUiVIAI0iB0/duUZB65qSG4sQKq5WgJJN/qamFMKaR51h6AiTNYbX6OEC2nVIAM07OifCAu9HurpcmHRJg+5d/h2GZldxq4+T2tfpsGANFfbVqiqlBMpe5b3xnTMI8+KFNau80Ubvdog4jhrM1O+BFKQ6lMBiHW8rNfshXFbzp9W1HQ+GxRvprxtkaCPdtcrjrDy+BhTfWQMP8tuvi0shyW1d14yng383h2WYapaHXPMNxlUIgAzKWTfWyos6wUB+AsiljgSJ/bGl2Z+kwgdzRxhduMTC/KObqnKhyDbCAKDL7G1sU5MsCI3FVVdYYVl3ilHA7HTqpj08evoc2qYCX7mPJ7uzgBOBtF6R0kBbW4guTX9ScgOBfoulqoZA/ABIj7l5TC70iCihK80f4z3lWlQulSwLdD1gQT+TifIYp1hdJX3xvbXIj8PsD8q8NecyqaouhjQDMu07/JUTNsxYtV6xjQrMbrWVygXElRec3KwmUrlV9UM4Vv+XtIv/HMB39nTT37FrwusXiUsXyJ4srIAcO/JJAw+77nwLoFCVg7dnx30SqjucYP5hQ4IZaKWhIRbvsCkaPCYnLjbdP2P+Ot+aG7pVnzUxNbM4RY12AkEGmL5Bo9VrhHoyNOQ6DjaMGgEU0JYt5vPhYCg+aoN1axQSVKZZtKlCdINvHEGa0u/IU5GXlflP6THL1Q21tprfKeslKy0w9Gl8SUmVpZwMwtsJge2pYzUZQsZdGgOK3D8rnMiKpnEFFnTLUoptgAb3prNuUjGiUK6DYILDekW3RpWBZ2DhlZpisRApRTH049kG/Moh7OIVSRCf+3SKlwgYhBMidmTAcBP8s6Sdg65EdpmadSDDFhkojwlcLp8izdXLAIhRRKim0tbdAS0rI4IupSjJShKrohqKwZ38q6Bh/XuvpCSA5Se3eGLm2SmgTa2nA1BhN5GbvsYprtfBIg4ma7WkJz4YJeRlTEDh0q1eL3yp0+bkR0ga0ol6190ddZNosK4c/caaYn6SCw6DhBpJVs7zsPaUWvjo7VlalHkhDJdje8iapbyID2jtXdR9LrzKm40HhMcszm6JNn+JJ4/UwSUpXflua45Mk5mGRDow84rjJsLvlbETz5f8e+9KmckaKkNaxWQcOiRSygC0ZrHkMpiKwmcPSYKckq4+piTcLx3nMnA4XPrDX7yJUj3EoOg5nPzWastonKPt8bdr9OjXaEup7+CCRbbntbPirlJQWNAD6oXIFDNu+OHSnuO+RWv9YkUPzYVxIDIHVeWbgh6t1OoDBMq8KYSIyNPKumosLyXrt7qlmi2ep8zK+YKISKjjdRwc3GKw2DCtC8/wdFHP1K5Fd8YeC/PJ3Q6iSSTlqeYKwWOchL5jvlYWI841vjBELyrPAh0Hwa5ESz8B29o1EUnsMtvssNRaH3NJDkRYLaXJBNOUf2u/ZBxqssDmFTVcFzyg6OA0Gkb9PSzhjPkvTVr59kIJVyFopSVbGup8hfKPDB5z4Na//OqpmZZGNekwh/4fk6rVF4y6BzlCjNgwmEWXyKsjC4g96ZQX0tOlyG51rx42y9KTO9tmOI9+Y6Rk3c4AHinBpwtd4Jy5W/HAAWsFwRUyKaYdV12v4XjZrpdT8a6ul+PrBaswzWXOShAQGQdLrgy2L7kc2LQqWHRDIAdD2BCw+jskoFVKfCMbjb4i6JpdhVGibcWYgEm5hSsJ09ft6Pt0EZhdE4s/CpcLwnaY2xpwJL/zf1u5a+mrIbzaM1jERRGKZcXf4Lwmd/NyzQbqc6avfs8SVELOsu71XAzr/GIE82pT4A2tG9b5gNSmQxsNBgM4ZqYLXHOOKiFd/ZfIbSkXIQAKJOoRMJRSgWDe+cj5P2WcTljIbVqEGCITca4eYpHHlCJQmciaIEbGDz/IuIOQe2mn+QQQr2nmBq4X8VOiCZOFmu8hrFKEB7ZRR4veO7LQJxKpy6LdpKB3rZBbSnJCsvio+Mz2QYSgrnXszYiFtHWuJbKilIOaJiW0O2E4hV0JmX4uEzO1OrfC//rAPSlEaYD8l3JyDZad80xSXa0KK86j30h1G+1JH06PNsifKjX2tfF9pFciEmlFzeSEOtQ7MLz2rVU1tmJBwujd0ytnPjA6TcEYEFUTKBhSkLkbfNokbaGPsplZoi/64kCwY0HT4gywQxI91zm2poX5EXtqS2Ie6ZZfj2Io8LtHwaRUR+FcDLAH7tvmkp5fU4L3qA86PpQs/d5dzoAc6PpnOi53eo6iftfXEWihIAROSHVfWz75sOlnOjBzg/mi703F3OjR7g/Gg6N3puKzu5hy7lUi7lUi6llouivJRLuZRLeUw5J0X5LfdNwFTOjR7g/Gi60HN3OTd6gPOj6dzo2S1n46O8lEu5lEs513JOiPJSLuVSLuUsy0VRXsqlXMqlPKachaIUkbeLyAdE5IMi8q57eP+bReTfi8hPiMiPicjX+fXXicj7ROSn/fO1T5muRUT+m4i8977pEZHXiMh3i8hPOp8+957p+fPeV+8Xke8QkQdPmx4R+VYR+bCIvL9cu5UGEXm3y/gHROSLnxI9f8377EdF5F+KyGvuk57y3V8UERWR1z8ten4r5d4Vpdj+u78N4EsAvA3AV4rI254yGScAf0FVfz+AzwHwtU7DuwB8v6q+FcD3+/9Ps3wdgJ8o/98nPX8TwL9R1d8H4A86XfdCj4h8CoA/C+CzVfXTYecSv+Me6Pk2AG+fru3S4PL0DgCf5s/8HZH5aMuPCz3vA/DpqvoZAH4KwLvvmR6IyJsB/DEAP1+uPQ16PvbCvcP39QPgcwF8b/n/3QDefc80fQ+sIz8A4AW/9gKADzxFGl6EDbQvAPBev3Yv9AB4HsDPwhf/yvX7oudTAPwCgNfBtuG+F8Afvw96ALwFwPsfx5NZrgF8L4DP/XjTM333JwF8+33TA+C7Ycb25wC8/mnS87H+3DuiRAo9y0t+7V6KiLwFwGcC+AEAb1TVDwGAf77hKZLyNwD8JcRB0MA90vM7AfwqgH/oroC/LyKvui96VPUXAfx1GCL5EID/rarfd1/0TOU2Gs5Bzv8MgH99n/SIyJcD+EVV/ZHpq3Pgz63lHBTlnIUB+Kjyevz2FRF5NYB/DuDPqepv3AcNTseXAfiwqv6X+6JhKgcAnwXg76rqZ8L25T91XzKL+/2+AsCnAngTgFeJyFfdFz1PWO5VzkXkG2Aupm+/L3pE5FkA3wDgL+99/bTp+WjKOSjKlwC8ufz/IoBfetpEiMgRpiS/XVX/hV/+FRF5wb9/AcCHnxI5fxTAl4vIzwH4TgBfICL/9B7peQnAS6r6A/7/d8MU533R80UAflZVf1VVbwD8CwB/5B7pqeU2Gu5NzkXknQC+DMCfVp/X3hM9vwtm3H7EZftFAP9VRD75nuh54nIOivKHALxVRD5VRK5gDt33PE0CREQA/AMAP6Gq31y+eg+Ad/rf74T5Lj/uRVXfraovqupbYPz4d6r6VfdIzy8D+AUR+b1+6QsB/Ph90QObcn+OiDzrffeFsMWl+6KnlttoeA+Ad4jItYh8KoC3AvjBjzcxIvJ2AF8P4MtV9TcnOp8qPar6P1T1Dar6FpftlwB8lsvXvfDnict9O0ndwH0pbEXuZwB8wz28//NgMP9HAfx3//lSAJ8IW1D5af983T3Q9vnIxZx7owfAHwLww86jfwXgtfdMz18F8JMA3g/gnwC4ftr0APgOmI/0Bjbov/ouGmDTzp+BLfh8yVOi54Mw3x/l+u/dJz3T9z8HX8x5GvT8Vn4uWxgv5VIu5VIeU85h6n0pl3Ipl3LW5aIoL+VSLuVSHlMuivJSLuVSLuUx5aIoL+VSLuVSHlMuivJSLuVSLuUx5aIoL+VSLuVSHlMuivJSLuVSLuUx5f8BTOxkXcSAfx4AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "for i in range(len(heatmaps)):\n", " plt.imshow(heatmaps[i])\n", " plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "conda_python3", "language": "python", "name": "conda_python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.12" } }, "nbformat": 4, "nbformat_minor": 4 }