// Copyright ©2017 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package f32 // GemvN computes // // y = alpha * A * x + beta * y // // where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars. func GemvN(m, n uintptr, alpha float32, a []float32, lda uintptr, x []float32, incX uintptr, beta float32, y []float32, incY uintptr) { var kx, ky, i uintptr if int(incX) < 0 { kx = uintptr(-int(n-1) * int(incX)) } if int(incY) < 0 { ky = uintptr(-int(m-1) * int(incY)) } if incX == 1 && incY == 1 { if beta == 0 { for i = 0; i < m; i++ { y[i] = alpha * DotUnitary(a[lda*i:lda*i+n], x) } return } for i = 0; i < m; i++ { y[i] = y[i]*beta + alpha*DotUnitary(a[lda*i:lda*i+n], x) } return } iy := ky if beta == 0 { for i = 0; i < m; i++ { y[iy] = alpha * DotInc(x, a[lda*i:lda*i+n], n, incX, 1, kx, 0) iy += incY } return } for i = 0; i < m; i++ { y[iy] = y[iy]*beta + alpha*DotInc(x, a[lda*i:lda*i+n], n, incX, 1, kx, 0) iy += incY } } // GemvT computes // // y = alpha * Aᵀ * x + beta * y // // where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars. func GemvT(m, n uintptr, alpha float32, a []float32, lda uintptr, x []float32, incX uintptr, beta float32, y []float32, incY uintptr) { var kx, ky, i uintptr if int(incX) < 0 { kx = uintptr(-int(m-1) * int(incX)) } if int(incY) < 0 { ky = uintptr(-int(n-1) * int(incY)) } switch { case beta == 0: // beta == 0 is special-cased to memclear if incY == 1 { for i := range y { y[i] = 0 } } else { iy := ky for i := 0; i < int(n); i++ { y[iy] = 0 iy += incY } } case int(incY) < 0: ScalInc(beta, y, n, uintptr(int(-incY))) case incY == 1: ScalUnitary(beta, y[:n]) default: ScalInc(beta, y, n, incY) } if incX == 1 && incY == 1 { for i = 0; i < m; i++ { AxpyUnitaryTo(y, alpha*x[i], a[lda*i:lda*i+n], y) } return } ix := kx for i = 0; i < m; i++ { AxpyInc(alpha*x[ix], a[lda*i:lda*i+n], y, n, 1, incY, 0, ky) ix += incX } }