// Copyright ©2016 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package stat import ( "math" "sort" ) // ROC returns paired false positive rate (FPR) and true positive rate // (TPR) values corresponding to cutoff points on the receiver operator // characteristic (ROC) curve obtained when y is treated as a binary // classifier for classes with weights. The cutoff thresholds used to // calculate the ROC are returned in thresh such that tpr[i] and fpr[i] // are the true and false positive rates for y >= thresh[i]. // // The input y and cutoffs must be sorted, and values in y must correspond // to values in classes and weights. SortWeightedLabeled can be used to // sort y together with classes and weights. // // For a given cutoff value, observations corresponding to entries in y // greater than the cutoff value are classified as true, while those // less than or equal to the cutoff value are classified as false. These // assigned class labels are compared with the true values in the classes // slice and used to calculate the FPR and TPR. // // If weights is nil, all weights are treated as 1. If weights is not nil // it must have the same length as y and classes, otherwise ROC will panic. // // If cutoffs is nil or empty, all possible cutoffs are calculated, // resulting in fpr and tpr having length one greater than the number of // unique values in y. Otherwise fpr and tpr will be returned with the // same length as cutoffs. floats.Span can be used to generate equally // spaced cutoffs. // // More details about ROC curves are available at // https://en.wikipedia.org/wiki/Receiver_operating_characteristic func ROC(cutoffs, y []float64, classes []bool, weights []float64) (tpr, fpr, thresh []float64) { if len(y) != len(classes) { panic("stat: slice length mismatch") } if weights != nil && len(y) != len(weights) { panic("stat: slice length mismatch") } if !sort.Float64sAreSorted(y) { panic("stat: input must be sorted ascending") } if !sort.Float64sAreSorted(cutoffs) { panic("stat: cutoff values must be sorted ascending") } if len(y) == 0 { return nil, nil, nil } if len(cutoffs) == 0 { if cutoffs == nil || cap(cutoffs) < len(y)+1 { cutoffs = make([]float64, len(y)+1) } else { cutoffs = cutoffs[:len(y)+1] } // Choose all possible cutoffs for unique values in y. bin := 0 cutoffs[bin] = y[0] for i, u := range y[1:] { if u == y[i] { continue } bin++ cutoffs[bin] = u } cutoffs[bin+1] = math.Inf(1) cutoffs = cutoffs[:bin+2] } else { // Don't mutate the provided cutoffs. tmp := cutoffs cutoffs = make([]float64, len(cutoffs)) copy(cutoffs, tmp) } tpr = make([]float64, len(cutoffs)) fpr = make([]float64, len(cutoffs)) var bin int var nPos, nNeg float64 for i, u := range classes { // Update the bin until it matches the next y value // skipping empty bins. for bin < len(cutoffs)-1 && y[i] >= cutoffs[bin] { bin++ tpr[bin] = tpr[bin-1] fpr[bin] = fpr[bin-1] } posWeight, negWeight := 1.0, 0.0 if weights != nil { posWeight = weights[i] } if !u { posWeight, negWeight = negWeight, posWeight } nPos += posWeight nNeg += negWeight // Count false negatives (in tpr) and true negatives (in fpr). if y[i] < cutoffs[bin] { tpr[bin] += posWeight fpr[bin] += negWeight } } invNeg := 1 / nNeg invPos := 1 / nPos // Convert negative counts to TPR and FPR. // Bins beyond the maximum value in y are skipped // leaving these fpr and tpr elements as zero. for i := range tpr[:bin+1] { // Prevent fused float operations by // making explicit float64 conversions. tpr[i] = 1 - float64(tpr[i]*invPos) fpr[i] = 1 - float64(fpr[i]*invNeg) } for i, j := 0, len(tpr)-1; i < j; i, j = i+1, j-1 { tpr[i], tpr[j] = tpr[j], tpr[i] fpr[i], fpr[j] = fpr[j], fpr[i] } for i, j := 0, len(cutoffs)-1; i < j; i, j = i+1, j-1 { cutoffs[i], cutoffs[j] = cutoffs[j], cutoffs[i] } return tpr, fpr, cutoffs } // TOC returns the Total Operating Characteristic for the classes provided // and the minimum and maximum bounds for the TOC. // // The input y values that correspond to classes and weights must be sorted // in ascending order. classes[i] is the class of value y[i] and weights[i] // is the weight of y[i]. SortWeightedLabeled can be used to sort classes // together with weights by the rank variable, i+1. // // The returned ntp values can be interpreted as the number of true positives // where values above the given rank are assigned class true for each given // rank from 1 to len(classes). // // ntp_i = sum_{j ≥ len(ntp)-1 - i} [ classes_j ] * weights_j, where [x] = 1 if x else 0. // // The values of min and max provide the minimum and maximum possible number // of false values for the set of classes. The first element of ntp, min and // max are always zero as this corresponds to assigning all data class false // and the last elements are always weighted sum of classes as this corresponds // to assigning every data class true. For len(classes) != 0, the lengths of // min, ntp and max are len(classes)+1. // // If weights is nil, all weights are treated as 1. When weights are not nil, // the calculation of min and max allows for partial assignment of single data // points. If weights is not nil it must have the same length as classes, // otherwise TOC will panic. // // More details about TOC curves are available at // https://en.wikipedia.org/wiki/Total_operating_characteristic func TOC(classes []bool, weights []float64) (min, ntp, max []float64) { if weights != nil && len(classes) != len(weights) { panic("stat: slice length mismatch") } if len(classes) == 0 { return nil, nil, nil } ntp = make([]float64, len(classes)+1) min = make([]float64, len(ntp)) max = make([]float64, len(ntp)) if weights == nil { for i := range ntp[1:] { ntp[i+1] = ntp[i] if classes[len(classes)-i-1] { ntp[i+1]++ } } totalPositive := ntp[len(ntp)-1] for i := range ntp { min[i] = math.Max(0, totalPositive-float64(len(classes)-i)) max[i] = math.Min(totalPositive, float64(i)) } return min, ntp, max } cumw := max // Reuse max for cumulative weight. Update its elements last. for i := range ntp[1:] { ntp[i+1] = ntp[i] w := weights[len(weights)-i-1] cumw[i+1] = cumw[i] + w if classes[len(classes)-i-1] { ntp[i+1] += w } } totw := cumw[len(cumw)-1] totalPositive := ntp[len(ntp)-1] for i := range ntp { min[i] = math.Max(0, totalPositive-(totw-cumw[i])) max[i] = math.Min(totalPositive, cumw[i]) } return min, ntp, max }