# Start with AWS Deep Learning Container. See # https://github.com/aws/deep-learning-containers/blob/master/available_images.md FROM 763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-training:2.12.0-gpu-py310-cu118-ubuntu20.04-ec2 LABEL maintainer="Amazon Braket" LABEL major_version="1" ARG PIP=pip3 RUN apt-get update \ && apt-get install -y --no-install-recommends \ vim\ && rm -rf /var/lib/apt/lists/* \ && apt-get clean # Installing our custom python libraries RUN ${PIP} install --no-cache --upgrade \ amazon-braket-default-simulator==1.18.1 \ amazon-braket-schemas==1.18.0 \ amazon-braket-pennylane-plugin==1.18.0 \ amazon-braket-sdk==1.50.0 \ awscli==1.29.4 \ botocore==1.31.4 \ boto3==1.28.3 \ dask==2023.1.1 \ h5py==3.8.0 \ ipykernel==5.3.4 \ jinja2==3.1.2 \ keras==2.12.0 \ markupsafe==2.1.2 \ matplotlib==3.6.3 \ numpy==1.23.5 \ openfermion==1.5.1 \ pandas==2.0.0 \ PennyLane==0.30.0 \ PennyLane-Lightning==0.30.0 \ pydantic==1.10.6 \ requests==2.26.0 \ scikit-learn==1.2.2 \ six==1.16.0 \ scipy==1.9.3 \ typing_extensions==4.3.0 RUN ${PIP} install --no-cache --upgrade sagemaker-training==4.4.10 # install cuQuantum RUN wget https://developer.download.nvidia.com/compute/cuquantum/redist/cuquantum/linux-x86_64/cuquantum-linux-x86_64-23.03.0.20-archive.tar.xz && tar xvf ./cuquantum-linux-x86_64-23.03.0.20-archive.tar.xz RUN mv /cuquantum-linux-x86_64-23.03.0.20-archive /opt/cuquantum ENV LD_LIBRARY_PATH="/opt/cuquantum/lib:${LD_LIBRARY_PATH}" # Some packages can not be installed using pip (because they are not # python managed packages) - install them using apt get # Setup our entry point COPY braket_container.py /opt/ml/code/braket_container.py ENV SAGEMAKER_PROGRAM braket_container.py