{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# QUANTUM AMPLITUDE AMPLIFICATION" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this tutorial, we provide a detailed discussion and implementation of the Quantum Amplitude Amplification (QAA) algorithm using the Amazon Braket SDK. \n", "QAA is a routine in quantum computing which generalizes the idea behind Grover's famous search algorithm, with applications across many quantum algorithms. \n", "In short, QAA uses an iterative approach to systematically increase the probability of finding one or multiple target states in a given search space. \n", "In a quantum computer, QAA can be used to obtain a _quadratic speedup_ over several classical algorithms [[1]](#References)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## TECHNICAL BACKGROUND OF QAA" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "__Formal introduction of QAA__: We start off with a brief formal introduction to QAA, following standard references [[1-4]](#References). \n", "In the lines that follow, we provide a pictorial derivation of QAA, giving an intuitive background to the derivation shown here. \n", "Consider a unitary $\\mathcal{A}$ acting on $(n+1)$ qubits as follows \n", "\n", "$$\\mathcal{A}|0\\rangle _{n+1} = |\\psi\\rangle = \\sqrt{a} |G\\rangle |1\\rangle + \\sqrt{1-a} |B\\rangle |0\\rangle,$$\n", "\n", "where $a \\in [0,1]$ is the amplitude we wish to amplify. \n", "Setting $\\sqrt{a} = \\sin(\\theta)$, equivalently we can write\n", "\n", "$$\\mathcal{A}|0\\rangle _{n+1} = |\\psi\\rangle = \\sin(\\theta) |G\\rangle |1\\rangle + \\cos(\\theta) |B\\rangle |0\\rangle.$$\n", "\n", "Here, we have introduced the $n$-qubit states $|G\\rangle$ and $|B\\rangle$ by convention referred to as _good_ and _bad_ states, respectively. \n", "The states $|\\psi_{1}\\rangle = |G\\rangle |1\\rangle$ and $|\\psi_{0}\\rangle = |B\\rangle |0\\rangle$ are (unique) projections of the original state $|\\psi\\rangle$ into good and bad subspaces, denoted as $\\mathcal{H}_{1}$ and $\\mathcal{H}_{0}$, respectively. Note that $|\\psi_{1}\\rangle$ and $|\\psi_{0}\\rangle$ are orthogonal, i.e., $ \\langle \\psi_{0}|\\psi_{1}\\rangle = \\langle B|G\\rangle \\langle 0|1\\rangle =0$, because $\\langle 0|1\\rangle =0$.\n", "\n", "__Goal of QAA__: The goal of the algorithm is then to evolve the initial state $|\\psi \\rangle \\in \\mathcal{H}$ into a state with a higher overlap with the _good_ subspace $\\mathcal{H}_{1}$ by _amplifying_ the amplitude of the $|\\psi_{1}\\rangle$ component of the state.\n", "\n", "The amplification process that follows boosts the amplitude of the good state $|G\\rangle$ from $\\sin(\\theta)$ to $\\sin((2m+1)\\theta)$ with $2m$ denoting the number of _queries_ or applications of the unitary $\\mathcal{A}$. The probability of finding a _good_ outcome is maximized when $m=\\left\\lfloor\\frac{\\pi}{4\\theta}\\right\\rfloor$.\n", "\n", "__Procedure of QAA__: Rather than directly taking measurements on $|\\psi\\rangle$ (as prepared by a _single_ application of $\\mathcal{A}$), QAA proceeds by applying the following operator $\\mathcal{Q}$ (that is derived from $\\mathcal{A}$, i.e., taking $\\mathcal{A}$ as an input), \n", "\n", "$$\\mathcal{Q}=\\mathcal{A} \\mathcal{R}_{0} \\mathcal{A}^{\\dagger} \\mathcal{R}_{B}.$$\n", "\n", "Here, \n", "$\\mathcal{R}_{0}=2|0\\rangle_{n+1} \\langle 0| - \\mathbb{1}$\n", "is a reflection about $|0\\rangle_{n+1}$ (leaving the all-zero state $|0\\rangle_{n+1}$ untouched while giving a minus sign to all other states) and similarly \n", "$\\mathcal{R}_{B} = \\mathbb{1} - 2 |G\\rangle |1\\rangle \\langle 1|\\langle G|$ \n", "is a reflection about $|B\\rangle |0\\rangle$, giving a negative sign on the good state, as $\\mathcal{R}_{B} |G\\rangle |1\\rangle = -1|G\\rangle |1\\rangle$, while leaving the bad state $|B\\rangle |0\\rangle$ untouched.\n", "Finally, $\\mathcal{A}^{\\dagger}$ denotes the adjoint of $\\mathcal{A}$. \n", "As demonstrated in Refs.[[2,3]](#References), repeated application of the operator $\\mathcal{Q}$ ($m$-times) on $|\\psi\\rangle = \\mathcal{A}|0\\rangle _{n+1}$ gives\n", "\n", "$$\\mathcal{Q}^{m} |\\psi\\rangle = \\mathcal{Q}^{m}\\mathcal{A}|0\\rangle _{n+1} = \\sin((2m+1)\\theta) |G\\rangle |1\\rangle + \\cos((2m+1)\\theta) |B\\rangle |0\\rangle.$$\n", "\n", "In a nutshell, this equation shows that, for small values of the unknown parameter $a$, the repeated application of $Q$ (involving $2m$ queries of $\\mathcal{A}$ in total) yields a state for which the desired good state would be measured with a probability at least $4m^{2}$ times larger than that of a naive strategy as obtained from $\\mathcal{A}|0\\rangle _{n+1}$. \n", "This result is because the probability of measuring the good state $|G\\rangle |1\\rangle$ is $P_{1}=\\sin^{2}((2m+1)\\theta) \\approx (2m+1)^{2}\\theta^{2}>4m^{2} \\theta^{2}$. \n", "Compare this to $2m$ naive queries, i.e., $2m$ measurements from copies of the state $\\mathcal{A}|0\\rangle _{n+1}$ which gives the good state with linear increase in probability $2m$. \n", "This reasoning is at the heart of the quadratic speedup obtained with QAA: the probability of measuring the good state after QAA scales quadratically with $m$ instead of linearly, meaning we only need $O(\\sqrt{m})$ queries of $\\mathcal{A}$ to achieve the same probability of measuring $|G\\rangle$ compared to the classical strategy. \n", "Specifically, if $(2m+1)\\theta \\approx \\pi/2$, we have amplified the success probability to $\\sin(...)^{2} \\approx 1$. \n", "\n", "Because $\\mathcal{A}$ is an input to QAA that we assume is given, our goal is to figure out how to implement $\\mathcal{R}_{B}$, $\\mathcal{R}_{0}$, and $\\mathcal{A}^{\\dagger}$ as unitaries in a quantum circuit.\n", "This work is shown in detail in the lines that follow. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "__Intuition for QAA__: The previous discussion follows the canonical, formal introduction to QAA. \n", "This section provides a pictorial derivation of the QAA routine, which helps to get an intuitive understanding of the definition and the role of the operator $\\mathcal{Q}$ introduced previously. \n", "As shown previously, the two states $|\\psi_{1}\\rangle = |G\\rangle |1\\rangle$ and $|\\psi_{0}\\rangle = |B\\rangle |0\\rangle$ are orthogonal, and the whole problem can be analyzed in the two-dimensional subspace spanned by these two orthogonal vectors, with real amplitudes. \n", "Since the length of the vectors involved are preserved (that is, the vectors remain normalized) we can visualize the whole QAA procedure as transformations of a point on a simple circle, as shown below, using the good and bad states $|G\\rangle |1\\rangle$ and $|B\\rangle |0\\rangle$ as basis vectors, respectively. " ] }, { "attachments": { "image.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABngAAALQCAYAAACzAX47AAAgAElEQVR4AezdB3hUVf7/cbf99o+uqCxYQLAjKthQUbErNlzrrr1jL6tYEaVLh9B7L9J77733XkMnEAKBNEhC+/yf72UnmdSZSSbJlPd9Hp7M3Lnl3Ne9ZE7O95zvOU8sCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACQSVwXlCVlsIigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiIAA8PAQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQZAIEeILshlFcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAAD88AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBBkAgR4guyGUVwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgAAPzwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEGQCBHiC7IZRXAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAAA/PAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQZAIEeILshlFcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAAD88AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBBkAgR4guyGUVwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgAAPzwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEGQCBHiC7IZRXAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAAA/PAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQZAIEeILshlFcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAAD88AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBBkAgR4guyGUVwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgAAPzwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEGQCBHiC7IZRXAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAAA/PAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQZAIEeILshlFcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAAD88AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBBkAgR4guyGUVwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgAAPzwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEGQCBHiC7IZRXAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAAA/PAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQZAIEeILshlFcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAAD88AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBBkAgR4guyGUVwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgAAPzwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEGQCBHiC7IZRXAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAAA/PAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQZAIEeILshlFcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAAD88AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBBkAgR4guyGUVwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgAAPzwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEGQCBHiC7IZRXAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAAA/PAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQZAIEeILshlFcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAAD88AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBBkAgR4guyGUVwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgAAPzwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEGQCBHiC7IZRXAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAAA/PAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQZAIEeILshlFcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAAD88AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBBkAgR4guyGUVwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgAAPzwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEGQCBHiC7IZRXAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAAA/PAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQZAIEeILshlFcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAAD88AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBBkAgR4guyGUVwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgAAPzwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEGQCBHiC7IZRXAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAAA/PAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQZAIEeILshlFcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAAD88AApkEzpw5q+PHT+rs2bOZPim6t64y2c+8LqdPnymU6zK3lJTTSkk5ldeish8CCCCAAAIIeCngqiMEUr3F6hwnTpxSfuotJ0+eVnLyqQKvj506dcaps9hPFgQQQAABBBDwTcC+r0+cOOnbTgW8tatulJ96CO0nBXyTODwCCPhVgACPXzk5WCgIrF1/UK+/O0ybtxzOV8NEdhbW+OL6l93n7uvcG2rWrDugF18doo2bYtw38fq1VU4WLt6rN98fpn37473eLy8bxsae0I+1p6htx0UF3iiTl/KxDwIIIIAAAqEiYN/vi5fu1RvvDdeevXF+vyxXncW9TpLTSVzbWEPPnHm79P4no7Vte2xOm+e6PjExVSPHbHTqE4diknLdNr8fTpm2XbXrTXPK7LqG/B6T/RFAAAEEEAgXgaEj1umjz0fr6NHjfr/kvNRDrBC0n/j9VnBABBAIcAECPAF+gyhe4QsMHLxWxUo01+ixm5Tf3pxWIbHeLBb02L8/Tus3RmvJsn1OY4wFa6KjE51RNZmv0ho2tmw9nLZ63oJd+mvxJvr06zF5Cpqkpp5W246LdUHJFpq/cE/acQvixYEDCXrgiR667pY2BdLYVBBl5pgIIIAAAggEo0Bq6il16rpMF5RsqVlzduT7Es6cOTfa98iR49q795jWbYh26ixLl+/Tlq1HdOhQojMyx/1EVteJi0tR5I5zwRwbwTts5AZdfEVL1a4/LU/1lgMHE/R9rWm67Z4eWr32oPvp/Prayt53wCqVv7Wtvq81RUePJfv1+BwMAQQQQACBUBf4/Jvx+lvx37Q9MjZP3/nuPrSf+L+zjrsvrxFAIHQFCPCE7r3lyvIo8MeQdSpWorHGjNuc5wCPDQWOj0/Wtu1H1KvfKr31wTDdeV9nXVW+lcqVb6FrbmqtCre11dPP91OXHkudBhPX8GELCDVtOVfVnust65lri6U8q3x/J11xTQvFHPa9J6sFeNp1sgBPkzwHeOLikr0aep2UlKqIDgtVokwL9eizPI93gd0QQAABBBBAwJOABXg6d1uuC0o21ey5Oz1tnuPnVt84evSE1q2PVqduS/Xq20N02z0dddWNrXTVjS117U0Rqli5vV567Q/1H7Rahw8nOaOcrSHGOqvUazRTb9cYllZv2bXrmG6/t6Mq399Fh4/4Xm+xAM8Pv0zVbfd0zVOAx64nPj7Fq3SxNnL7pdeH6KnnB2jRkoLtBJPjDeADBBBAAAEEglTgi2/H6cJLGzhtH1YvyMtC+wntJ3l5btgHAQTSBQjwpFvwCgFHIL8BHgvQbN56WL81mKnrbonQRZc1dwI67348Qp27L9HUGZGaM3+nho5cr8/+O1ZX3dha1V8eqG3bjjgBlF79VuhvxX/Xp1+PzXBHItov1HnnN9SQ4eszrPfmTX4CPMnJJ52yWc/WCZO3ejydVc7WrDuoK69voeov9/eqccXjQdkAAQQQQAABBLII5DfAYw0xCQkpWrHqgGr+PFlXV2itEqVbOJ1QPv5qjNNRY9rMSM2cs0P9/litdz8erhsqttM7H43Ujh2xTqCnRZv5uuSKFqpdf3pa+ayTS52Gs1SybEuNGrspbb23L/Ia4HFdz8JFe1Sv0SzNX+Q5YGPzLjZoMkvlb22jTt2W5Llzj7fXxnYIIIAAAgiEkkB+Azy0n9B+Ekr/H7gWBIpKgABPUclz3oAVyGuAxxoVrPdr997LdX3FNvp/lzR1Un60bDtfe/Yey/F6V66Ocnq4PvZML/UbuEoXXf67zitWX4OHrc2wz46dsbqw1O96+Y1BOnXqdIbPPL3xNsBjwRmb0DgxMUXHjiVr7944pxz3P9ZTf7+kuX5rkN54k9s5LSXd2zWGq/S1rbVsxf7cNuUzBBBAAAEEEMijQH4CPDbKZf/+eFk95ZqbInRByWZOfaRzjyXaH5X9fH1Wn5g2Y7vufqCrnv/PAEW0X6DilzVWySuba9zEzWlXYSlu5y/cpZJlmsk6uPhab/E2wGPnsXqLBams7rFlS4zad1msW+/porLl26tz96VpZcrtxYTJW3TPg9314WdjSC+bGxSfIYAAAgggkEkgrwEe2k/SIWk/SbfgFQII5E2AAE/e3NgrhAXyEuCxwIgFQz76Yoz+dH5dXViqud6pMcIZpuwN1cbNMSpzXQv9rXh9nVesjv5RqoGTwzbzvq+8+YdKlWuuTZsPZf4o1/feBHisghV1IF79/1it9p0X66uaY1X1se66+H8Bp79f3Ej1G8/M9TyuDy3/vk22eEnp5qrTaEa+c/G6jstPBBBAAAEEEEgXyGuA5+TJ01q3LlqvvzdMf76gni4r11pffz9RO3cdTT94Dq9s31lzd+ryq5s79ZY/nV/HGf2ya3fGziwxMUl69uV+TvBo67b0eQVzOGyG1d4EeKwcm7fEqO/AVWrZZr5qfDZSd97fSReWauR0lClXPkLdei3LcNyc3uzec1Q1Ph+rKg9318QpW6m35ATFegQQQAABBDIJ5CXAQ/tJRkTaTzJ68A4BBHwXIMDjuxl7hLiArwEeC4zYXDvVnuvnNChcWKqJM9LFvqR9WRo1m+Xsf16xurrj3k7ZpjYbM36zzi/ZVM1azfPl0PImwGM9eWfM2qEbKrVRpbs66Knn+6puo1mq+dNEp1y+BHiscJZ//7Yq7Z1evtYjhQUBBBBAAAEE/CuQlwCPBUYWL9mrB6v11p/Or68y17ZSq3YLsq135FRam5fv+18m67xi9fR/xRvo2ZeypmS1lCvde69UiTIt1bbjopwOle16bwI8NsdO7/4rVb5SG2eeQxvhXKfhTL35/jCfAzynT59Vp65LVP7WCDVqOkeWto0FAQQQQAABBDwL+Brgof0ke1PaT7J3YS0CCHgnQIDHOye2CiMBXwM89kX88FO9nEaOv1/UUL/UnZqnnp+btsTo/H/aCJ4G+vTrMdmKx8Un65oKrVTl4a5OGrVsN8pmpTcBHtvN0pxEHUjQ0WPJzuTJ1gjUs8+KPAV4rOGldr3pTv59C0yxIIAAAggggIB/BXwN8FhKs+Ur9uveR7o79ZZLy7ZQ84i5PtdbrH5g8/IUK9FA/yjZRLXrT8tyYdaAs2lzjK69uZUef7a3kpJSs2yT0wpvAjw2j3NiYqoORicqPiHFqbccOpToBHks1a0vI3isHAsX79GT/xqgl18fqnUbonMqGusRQAABBBBAwE3A1wAP7SdueG4vaT9xw+AlAgj4LECAx2cydgh1AV8CPJbS44nqfZ1Gkr9e2EAffDrKGS2TFyMb8XPT7W2cAM+wketzPMQvdabp/H/+rvGTtuS4TeYPvA3wZN7PGnC6dF+WpwCPjQhavHSfylzb0kkB4+uIpsxl4T0CCCCAAAIIZBTwJcBj38srVu7XA0/0dOotF1/eVD/UnpLnesvOnbG6vmKESpVtKZvDJrvFRvrU/GmSSpVtrinTt2e3SbbrvAnwZLdjdHSifqk73ecRPHYsK+uv9Wfoljs7qFe/lbJgGAsCCCCAAAII5C7gS4CH9pOcLWk/ydmGTxBAwLMAAR7PRmwRZgLeBnisJ+pXNcc7jSSWVu2Wyu21Y6fn3PW5cT74RHcVK1FfkTtic9xs0ZI9uqR0U7370XCvGx+KIsBjF3D4cJJeeXOwrq7Qht6wOd5RPkAAAQQQQCBvAt4GeGw0zb59cXrv45FOvcXm/Hv06d7aszcubyeWdPBggqo83EXX3RKh3Xsyzr/jOqh1FJk2M1KlyjbT59+MlaVC82YpigCPlWvU2I2qfH8XffHtBGdEszdlZRsEEEAAAQTCWcDbAA/tJ56fEtpPPBuxBQIIZC9AgCd7F9aGsYC3AZ5xE7bo/H/aRL519H8XNVCXHkvzrfZQtZ6qWLldrr1pbehutef6qOwNrbVjZ86BIPfCFFWAx/Lv2+THJcu2UrNWvqeAcb8GXiOAAAIIIIBARgFvAzz2fdyr7yoVK9HQqbdcfnULDRyyJuPBfHxnAZ4HHu+hJ//VJ9d6y4EDiXr0mZ66+Y6O2h8V79VZiirAsz3yiN75aJQefrKPps+M9Dl1nVcXx0YIIIAAAgiEkIC3AR7aTzzfdNpPPBuxBQIIZC9AgCd7F9aGsYA3AR5L42GjbWzkjv27495Ozrw1+WV7qFp3ffntuFwPY71hu/VcrvNLNlHHrkty3db1YVEFeKzH8Jath3XTHe308JO9nPQnrjLxEwEEEEAAAQTyJ+BNgMe+i7duPax7Huri1Fn+r3gDPf1CP8XFp+Tr5BbgeaJ6L9VpOCPX41iP3TYdFumfV7bQ0BE5p6B1P0hRBXgsnWxE+4WqcHs7tYiYL2toYUEAAQQQQACBnAW8CfDQfpKzn/sntJ+4a/AaAQR8ESDA44sW24aFgDcBnuGj1usv/6iv84r9qj+dX0+t2i7wi42NAlqyfF+ux7Iv/W3bj6hc+XOTFnvT+FBUAR67EKvMffvjJF1aroWmzvA+/36uCHyIAAIIIIAAAvImwHP8+El17r4krd5SonQzde+9PN96CQkp6t1/pVatPZDrsSyn/Ko1B3RV+Vb69Oux8mZOvqIK8NiFzJm3U4882Uevvztcm7fG5HptfIgAAggggEC4C3gT4KH9xPunhPYT763YEgEE0gUI8KRb8AoBR8BTgMcm3X3hPwP+N/fObypRurG25zJnTkGwWlDno89H65LSzbRw8R6PpyjKAI+NOJoyfZtKXdlMX303wet5gzxeFBsggAACCCAQ5gLeBHiiouKdNGrnFaunP19QR7fc2V67cpgzp6A4Y2NP6J0aw3VX1W5au/6gx9MUZYAn+lCCvvlhku64t7Mz4ujMGe/mDfJ4UWyAAAIIIIBACAp4CvDQfuLbTaf9xDcvtkYAgXMCBHh4EhDIJOApwGMTCf+zTBOdV+w3J8jzRPXeXk8anOlUeX5rvWEnTtmqCy9rph9rT9FZD20PRRngsYvcvz/eyb9/y50dtXdf3id0zjMYOyKAAAIIIBCCAp4CPFZfWLRkry65orFTb/l/FzfSWx8OK/R6i43aGTpyva65uZ3adlzksd5SlAEeC+j0G7hKle7uoFq/TdfRYydC8MnhkhBAAAEEEPCPgKcAD+0nvjvTfuK7GXsgEO4CBHjC/Qng+rMIeArwjB636X9z7/zqBHgaNZ2d5RiFsSIm5rjuvK+DbqncQfY6t6WoAzyWf791u0UqWbalevVbkVtR+QwBBBBAAAEEvBTwFOA5fjxV3XuvSKu3XHx5U7XvvNjLo/tvM0svu3PnMd16T3u99NogHT2anOvBizLAYwVbs/agXn5jqJ55caAWL92ba1n5EAEEEEAAgXAW8BTgof3E96eD9hPfzdgDgXAXIMAT7k8A159FwFOAp3bdaTqvmM2/85v+8o96mjt/V5Zj5LTCAi3JyadkP23orQ1Xtt619s/euz73Jh2Ibd+15zIVK/G7OndfmtMpnfVFHeCx67E89pXu6qRHnuqlo0fpDZvrDeNDBBBAAAEEvBDwFOA5dixZX347Pi2tbJnrWmrJstzn+nM/rY28SUk5Vz/Jrt7i+tybeos1VtSuN13XV2yn4aM2uJ8my+uiDvBYXS2iw0LdcmcHtYiYL5vHiAUBBBBAAAEEsgp4CvDQfpLVzNMa2k88CfE5AghkFiDAk1mE92Ev4CnA8+FnI9MCPBdd3lB79h7zyswaNlq1na96v8+Ujfpp3HyOWrebr3adFjn/WrZZoIZNZqve77O0dp3n/PTWG3Z7ZKyuuamNHn+2t+z4OS1FHeCxctlkgTV/mqTS17XW1Bnbcyoq6xFAAAEEEEDASwFPAZ4jR47r1XeGOAGeP53/m26+s632R8V7PLrVMQ4eTFCLiHmq33iWU29p0mKOItovcOoslmbNAh8NGs9SizYLtGlzjMdjWmeWSVO36YaKbfXp12Nl8wnmtBR1gMfKNWfeTj3+bD+9+f4Ip5NKTmVlPQIIIIAAAuEs4CnAQ/tJ3p4O2k/y5sZeCISrAAGecL3zXHeOAp4CPO/UGPG/AE8dXXNTK8UnpOR4LPcPjsUl67/fT9DbHwzXG+8O1TMv9NNlVzXVpeWaqVTZZipXvqVeeu0PvfPhSC1Z5l06kLi4E7rnwS66qkILHYnNeVRMIAR4rPdrlx7LdEnplurWa5k7Da8RQAABBBBAIA8CngI8hw8n6eU3zgV4/nphPVV9rJsSEnPuEOIqgvUc3bX7qL6qOV5vfzBCr709RI890yut3mJ1lxsqttHLrw/Sl99O0Ko1Ua5dc/25fMU+J03b0y/0VVx8zvWnQAjwWNDq1XeGq9pzA7Rw8Z5cr4sPEUAAAQQQCFcBTwEe2k/y9mTQfpI3N/ZCIFwFCPCE653nunMU8BTg+ezrsWkBngq3t3VSruV4MLcPLB3b1u2HtX7jIa1ac0DTZ0WqZNkmOq9YHed4r7492Mnzvn5jtBJzGY3jOqT1rt2w8ZDKlW+t6i8N0PFcesIGQoDH0rJ9/s1YXXl9G6dXrOs6+IkAAggggAACeRPwFOCJjT2htz4Y7ozg+Vvx+nr06Z5OyjVvzmZpyrZsi9G6DYe0YlWUBg1bqxJlGjvz+Zxf4nd99MUoLV2+zxndkuRFCjMbwWN5+G+o2E5ffzdBySmncixGIAR4ps/croeq9dZ7H4/W9sgjOZaVDxBAAAEEEAhnAU8BHtpP8vZ00H6SNzf2QiBcBQjwhOud57pzFPAU4Gneel5agOeqG1t6PYIn8wktRcolpX935vL58wX1NHrcxsyb5PregjaWIsXm4Ondb6XHbdt1WqwLSjbR/IXe90K1fPtdui9zrvfvFzdS/cYzcz1PTh9aT+B1G6J1461t9fQL/RSfS6/dnI7BegQQQAABBBDIKOApwGPft7Xq2NyB9fSXf9TV/Y96N4In41nkzBW4bMV+XXR5I6fectlVzX1Ot5qYmKrva01R+UrtNXbC5synyPC+qAM81mu2ecR83XxHO6euZcEuFgQQQAABBBDIKuApwEP7SVYzT2toP/EkxOcIIJBZgABPZhHeh72ApwDPjFmRsl6w5xX7TRde2jDPvTqtcePPF9R1RvCUvLKJ9u6L88ne0q489ERPlb+1nfbuyz2fflGP4LGGkq49lqtE6ebq0HWJT9fJxggggAACCCCQvYCnAI8FJv4Yssapt9gcPDfe1tZJvZb90XJea/Pl9Oizwqm3WN3l1rs7KOpAQs47ZPrERh3v3n1MVR7qquovDVT0oaRMW2R8W9QBHkvP9vo7I5w5eOYu2JWxcLxDAAEEEEAAgTQBTwEe2k/SqLx+QfuJ11RsiAAC/xMgwMOjgEAmAU8BHgusVKzc3klRYiNvrOEkL8t3P0/630igunqoWnfZaBlvF0tzMmvOTl18RVN9/t+xsh4euS1FHeA5cCBB1V/urwq3d9CWrYdzKyqfIYAAAggggICXAp4CPFY/WL/+oBPYOa9YXV1arrnGjN/k5dHTN7M0IR99McYZCfT3ixro1XcG+1RvsXrIuIlbdHWFNmraco7HektRBnjMbPCwtbrzvi6q+dNkHYrJPRiVrsQrBBBAAAEEwk/AU4CH9hPfnwnaT3w3Yw8Ewl2AAE+4PwFcfxYBTwEe28GGGf/lHzaKp57+9coAr+bMcT9RzOHjqnRXh//Nv1NPP/821f1jj6+tR+63P0zUxaWba8bsHR6391eAp0GTWR7PlXkDm3to9rydKn1tS33w2SifGoQyH4v3CCCAAAIIIJAu4CnAY1ueS9M21am3FLukkT78bJS8mTPHdRYnTcj6aFW4vZ1Tbyl+aRM1az3P9bFXP5088v8dpzvv76alK/Z73MdfAZ7uvZd7PFfmDY7EHtePtafqtiqdNGDwGic9XeZteI8AAggggAAC5wQ8BXhsK9pPvH9aaD/x3ootEUAgXYAAT7oFrxBwBLwJ8FhjyYefjnICPP93UQP9WHuyLIjizWI56D/8bLT+fMG5NG9/+Uc9zZ7nOUjjOralOdmwKUaXX91cz70yUCm5TFLs2ic/AZ7O3dLn4KnbaIbrkF7/tEadj78co9LXttb8hbu93o8NEUAAAZmLtlgAACAASURBVAQQQCB3AW8CPFZv2LXrmF59e4hTbyl5ZTM1aTnHq3qL7btnT5xefWdoWr2l9LUttHjZ3twL5vapjTpevGyfylzbUt/8ONGr8+YnwFOrznRnhHTZG1qra89lbiXx7uXU6dtV9bGeeu/jUdqx86h3O7EVAggggAACYSrgTYCH9hPvHw7aT7y3YksEEEgXIMCTbsErBBwBbwI8tuHOXUf1n7eGOo0l/yzTXN/Xmuysy41x3YZoffDpaFW6q73efH+4s2+Z61ooxof0HxasiWi3QOeXbKq+A1fldrq0z7wN8Fgv3cSkVB2LO6EjsSe0fmO0Xn/n3DX+9cIGevalftq0JUbWuzUuPlnxCck6fTrn9HBOapiN0brultZ6+oV+suAWCwIIIIAAAgj4R8CbAI+dyXqDrlwVpeovD3QCNVeVb6P6jWflOv+fpY5dsGiPU1+pfH9nvfDqH84ooLsf6KojR457fQEJCSlq3HyOSpZtpfGTtni1n7cBHivjuXpLsqIPJTqjmp98rq9Tv7r48ib65Ksx2hZ5RLFHz9Vbko6n5lpvsbmGmraaqwq3t1W7Tou96kTj1QWxEQIIIIAAAiEq4E2Axy6d9hPaT0L0vwCXhUBACBDgCYjbQCECScDbAI+VOXJHrH76daouv7qlLindQvc/2l2WxmzS1K2yYM7W7YedVCQDB6/VV99N0P2P9tDz/x6kiVO2KnLHEVW6u5Oeer6vx1z07j6xscdV9bHuuqFSG+3f790Ex94EeKyX7v6oBL3+7hA99/IAWQPJXVU765Irmui8Yr85/y66rIkq39/J+ey5l/s7vYF37s65d6tNDti5+zL988oW6tBlsftl8BoBBBBAAAEE8ingbYDHTmNBntVrDujLmhN02VUtdWm5Vnr82d5OQGPazO1av/GQNm+N0YLFe9Sr7yp98tVYPfB4T731wQhNmxmpRUv26PYqnfXuxyN8qrfs2XNM9z3aTXfc20kxMd4FhrwJ8Nj1LFm2T6++PVjPvthfjz/TW5Xu7qDilzZ26ix/+Uddlbqyqao81FVPP99PVm/59seJ2hcVn6P6xk2H9Nq7I/RE9X6aO39XjtvxAQIIIIAAAgicE/A2wGNb034yRLSfBNf/nNOpqdo8fZr6vP6ylg7sr7NnzmS5gKTYWC3u3V2Daryn7fNmZ/mcFQgUhgABnsJQ5hxBJeBLgMcu7GB0giZN3ab/fj9Zlat21nU3Rzg9Py0QUvWxHnrgse6q9lwfffzFGPXsu1LWeGABF1tmzdmpGbMiffKZOWeHLrqimawiZWlPvFm8CfDYcWw4cJsOC9Sq3QK16bhQbTsucnqwtutkPxc5721dm44L1Lr9AkV0WKhDMYk5FuHAgXg99UJfla/UTtsjcw4E5XgAPkAAAQQQQACBHAV8CfDYQazesGfvMY0cs0mffj3eCbpcX7GNbrq9rdOpwzqQPPh4Dz3zYj99VXOCMwfNtu1HnHqLzf9n9ZYFi7xPt2r1j7ETN6tk2Rb6ofZkr+st3gR4bJTw9sgjatNhoVq1m++x3mJ1mz4DVjqjkLMDtY4ufwxZo1vv6ajvfpoimy+RBQEEEEAAAQRyF/AlwGNHov2E9pPcn6jA+vTYvr3qUO1h/Xr5JWp6R0Ud2Lg+QwHPnDql7XNmq/GtFfTblaXU67WXlRhzKMM2vEGgMAQI8BSGMucIKgFfAzx2cZYiZH9UvNasPeiM3hk4eI169Vsh+zl+0mYtW77P6a2SOUWZ7WcNJr4sX9UcpwsvbSoL9Hi7eBvgsYYfS7ti/yzYExeXnOHfsWMnZP/ss9jYE8521oM2u8XWz5obqcvKNVeNL0Y7RtltxzoEEEAAAQQQyJuArwEe11mSk0866dlWrIzShMlbNGDQavXuv1KDhq516jErVu7Xrt1HlZR00rWL89POl5Li3ZyDtsO5PPKjdcU1rTV3gfcjYrwJ8NjxrX6TXm85nqHOYnWYc/WWZKcctp29zym1rKWftXS7t97dUQOHrPE6GJUBiDcIIIAAAgiEmYCvAR7jof0k60NC+4mUkpSkpX/0V+zOHTqTzUiZrGoFu+b0yZPaOnO6filTUj+VvFCNK92oqPXrMpz0+NGjmtmutWpdWlw/X3qxur1UXQluAR7rQHR03x6tGTVcR3btzLAvbxDwpwABHn9qcqyQEMhLgMf9wu2L2XK4JyWlOj+t8uKvxRofrr05QlUf7y7Lae/t4m2Ax9vjebOdTaRYq840p9fuuIne5dz35rhsgwACCCCAAALnBPIa4HH3s3qKq95inU78VW9Jn4cvwklHm7mTi3sZMr/2NsCTeb/8vLeRSdWe669X3hjqpKvLz7HYFwEEEEAAgXARyEuAx92G9pNzGrSfSPtWrVSzCtdqVvsIWWq0ol6SE+I1tXFD1S5VXL9dWVL9P3xHpzKV6/DOSA14/y1nm8Y3XavprZvJgjquxa5j3fixanjLDZrYqG6Gz1zb8BMBfwgQ4PGHIscIKYH8BngKEmP4qPW6oFQTtWwz36fTFHaAx77QIncc1W1VOuq+R3ro8OEkn8rLxggggAACCCDgWcAfAR7PZ8nbFufm4Vuap3n4CjvAc/LkGbXvvFg33dFevzeb43TSydtVsxcCCCCAAALhJZDfAE9BatF+UpC6/j/2zsULVf/q0prWoolOpXjfodmbklgb1bF9+7R31QpvNne2SYiOVpfnntQvpS5Uwxuv1qapkzLsa8fcsXihk7qtVqniav/EQzqwYUOGbezN/rVr1PHJR9Wl+pNKij2S5XNWIOAPAQI8/lDkGCElEKgBHkuf9kT13ipzXUvt3nPMJ/PCDvBYT+A+A1apRJkWatnWt2CUTxfGxggggAACCISxQCAHeKKi4vVgte6qcFt7Jx2cL7epsAM827Yf1ts1RunhJ/v4lALXl2tiWwQQQAABBEJRIFADPLSfBN/TtmvJIifAM71lU78HeE4mJ2tqs9815MtPvII5c/q09q5YpnrXlNGvpUuo28vPKzUpY8dlG52zpF9v1brsYjW4vqzG1akl2y/zknDokKb+Xk+tK1fSrsULM3/MewT8IkCAxy+MHCSUBAI1wLNuw0EVu6SR3v90hCztiS9LYQd4Dh8+ruf/M1BX3dhaGzfF+FJUtkUAAQQQQAABLwUCNcBjad6mztiuElc01ZffjfO53lLYAZ4Rozfo9iqd9cU343UwOufJj728LWyGAAIIIIBA2AgEaoCH9pPgewQLMsCTkpiobi89pwU9unoFk5KUqHmd2p8bvVO+nFYOG5JlvxNxxzTsq8/0S6niavPgvdq9fGmWbWzFmVOntGXmDP1eqbzmdemoM6d9m4c724OyEoFMAgR4MoHwFoFADfDUbTRD553fQJOmbPX5JhVmgMd6yixeuleXlm2q198bKsupy4IAAggggAAC/hcI1ADPsWMn9M2Pk3TpVS01fWakzxdemAGeuLhk/VJ3mirc1la9+6/0ORjl88WxAwIIIIAAAiEkEKgBHtpPgu8hK6gAj6VSO7J7p5rfc4f2rVntFUzi4cPq88a/9dvll6jDU4/pRFxclv2ORe1X66p3q8E1pTW85tc6c/Jklm1cKw7viFT/997UsC8/0ZFdO12r+YmA3wQI8PiNkgOFikAgBnjiE1JUvlIbXXdLhOLifM9FWpgBnoSEFNVvPFsly7bS0BHrQuWx4DoQQAABBBAIOIFADPDYH9GbtxxW+Vvb6MEnesomDfZ1KcwAz9Ll+/TMi3/ohf8M0ao1Ub4Wle0RQAABBBAIa4FADPDQfhKcj2RBBXhsBM3GyRMU8eC9SsmUZi07qbNnzujgxg1qUOFaNbruSs3t3DHLZnbMyPlzVbvMPxVxX2Vtnj41yzbuK5IT4rW4Z3e1ffg+rZ84zv0jXiPgFwECPH5h5CChJPDHkLUqVqK5xo7fEjCjT6bPitRfLmyqX+rm/qWR031ID/C00PyFu3PazC/r9++PV+WqnVWxcgfFxBz3yzE5CAIIIIAAAghkFTgX4FmmC0q21Jx5u7JuUARrkpNPaeCQtSpRJkLNI+bmqQTnAjzTdNs9PbR67YE8HcObnSwY1b3Xct1Qqa1+qz9DiYmp3uzGNggggAACCCDwP4HPvxmn/7uojrZHHpF9rwbCQvtJINwF38tQUAEem39nUsO6GvjRe14V6uSJE1oxaIBqXXqxWlW9W3FRWTsApSQmaGar5qp7ZSkNqPFelvl5Mp/I/m/sWbFMTe+spMlNGnjcPvP+vEfAkwABHk9CfB52Ahs2RuvzbyZo2/bAqaBs3hKjDz8b41Sa8nJDbM6epcv26YtvJ8gaTQpysbQsvzefrV79VpDmpCChOTYCCCCAQNgL2Pf78hXnvt/37Y8PCA+bf8fqHDV/nqJdu4/mqUxJSamaMGmrGjWbq8NHMk5om6cD5rLTnHk7nUDUoiV7FCDtUrmUlo8QQAABBBAILIGx4zfru1qTZe0AgbLQfhIod8K3chRUgMfX+XeOH43V0C8/0e/XlNakRvWyvYjEmBh1f6m6Iu6qpFXDh2a7TeaVcVH71fe1lzTg7Ve9ThWX+Ri8RyAnAQI8OcmwPmwFbM6Yo0dPyOaSCZTFH2WyBhe7LmsMKsjFeibExyfr+PGc848W5Pk5NgIIIIAAAuEkUFjf776Y2shhm9smr3Upq0ukpJx26hMFXW9JSTmlxMQUWZlZEEAAAQQQQMA3ARu5a9/5gTJ6x0pP+4lv9zBQti6IAI89l4d3RqpFlTt1YL3nKQRs+5jI7Wp6Z0U1r3yrDm3bkoXnzOnT2rtyuepdd6X6vP5vWUDIm+VUSoqmNKynFlXu0JL+fWSp4FgQ8JcAAR5/SXIcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAZ8ECiLAY3PlrJswRm0eul8pSYkey2NBmHVjR6tOucs06qea2W6fmpSkBT266Pdry2hRn57ZbpPTyrXjRiviwSoa9f03ij9YcGmIczo/60NXgABP6N5brgwBBBBAAAEEEEAAAQQQQAABBBBAAAEEEAhoAV8CPDaKxubKST1+XKdTc55D0ebfmVCntgZ9ViPLtbuOccpt/+SEeE1pVE+t7qioPcuXZtnHViTFxjrHa3n3bYrbvy/bbXJaaaODhn1aQ92eq6ats2fmtBnrEfBZgACPz2TsgAACCCCAAAIIIIAAAggggAACCCCAAAIIIOAPAW8DPDbKZsuMqRrx3df6o8Z7mt2hjRJjDmVbhOTEBHV7sboW9u6R4XML6myaNlmjan6pJf176/SpU87nNuIneutmbZg0QadPZj/tgK3ft3qVNs+YmuGY3ryxYNScDu2cFHCz20XodGqKN7uxDQIeBQjweCRiAwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGCEPAmwGMBmBltWqrVvZU1u21rTW7SUL9eepF6vvaSUrNJwXZ4R6Sa33OHotatTSuyzX2zf/1a1b++rH4rVVx1ri6tfStXpH1e0C+2zZ2tbs89pcEfv6/orVnn+Cno83P80BQgwBOa95WrQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEAl7AmwDP2jEj9XvFG3Vgw3rnek4cO6Z615dT7VLFtWHyxCzXuH7CWLV5uKps3hzXYqnZts6cpt9K/1M/lrxQ9cpepsX9e7s+LvCfCYeiNean7xTx4D1aM3qEzp49W+Dn5AShL0CAJ/TvMVeIAAIIIIAAAggggAACCCCAAAIIIIAAAggEpICnAM+J2Fg1v+d2LR/8R1r5969ZpdqlS+rXUsU1v2vntPWuF+N+/UWDv/zI9TbtZ3J8vCbUq61fS5dwAjxL+vVJ+6ygX1hAZ/mgAWp1X2VNqFtbx4/GFvQpOX4YCBDgCYObzCUigAACCCCAAAIIIIAAAggggAACCCCAAAKBKOApwLN80EC1vO9OnTxxIq34s9q20S+liuuXyy7S+onj0tbbC0vF1u2FZ7Wkb/ajc5KOHFaHag+rfrnLtWFK1tE/GQ7m5zcH1q/TwPfeVO9/v6BdS5f4+egcLhwFCPCE413nmhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQAQyC3AY6Ne+r//piY1rJdW0lMpKWr/1KOqXepCNbrlBiVEH0z7zF7ERx9Us3vuSEvnluFDSbb/1GaNVO/aMorevDHzxwX6PiUpUdOaN1Hzu2/Xop7dZHMLsSCQHwECPPnRY18EEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBPAvkFuCxeXOmNvs9Q7Bm97Il+rVMSWf+neHffJnlvJunTVa7xx7UyePHs3xmK06lpmpRr25qftdtspRthb1snDJRHR5/UMP/+7mO7t1T2KfnfCEmQIAnxG4olxMcAieST2rX3jgtXX1A46ZFqvfQ9WrdbYXqtFygr+vM1DvfTNLzH47WE28M1/0vDtLtT/XXjQ/3Vtl7uumKyl1V6rbOKlGxky66uYP+cWN755+9/melTrr09s7ONuWqdFeFR3rrjqf7q+pLg1XtzeF6ocYYvfvtZH1Tb5bqtV6oNj1WqM/QDZowY4eWrzmovVEJSkmh50BwPEWUEgEEEEAAgcIRiItP0dYdRzV/6X6NmLhV3QauVfPOy/RLs/n6vPZ0vf7FBFV/b5QefXWYqvzrD91arZ+uf6CXytzVTZff2cWpt1xSsaOK39RBF5RvpwsrtNfFt3R06i2X3dFFpe/qqmvu76GbH+uju6oP1EOvDNFTb43QK5+MU40fpur7hnPUqN1ideizSgNHbdK0ubu1dlOMomOSdPr0mcJB4CwIIIAAAgggUCQCScdPasfuY1q8MkpjpmxXz8Hr1Krbcv3WYoG++m2m3vp6ov71wWg9/vow3ffCIN32ZH+Vf6iX037iqodkbj9x1UNc7SdX3Xuu/eTOZwbogZfPtZ+8WGOM3v9usr6tP1v1Ixapbc+V6jd8gybN2qmV66K1/2CCUlNPF4lJKJ40twBPdtc7vu6vTnCn1uUXa/PM6Vk2mVD3Nw3+Iuv8O64NTyYna1Kj+urzzmuuVYX689C2rRr6yQfq8fzTipw/t1DPzclCT4AAT+jdU66oiAWsoWHnnjin8aHHoHWq22qhPvhuilPZsEqGNWqcV7Z1QP+zYNFNj/bRk2+N0Ec/TlWDNoucINSshXu0Z3+8zpw5W8TKnB4BBBBAAAEE/CFgnU42bDmssVMjnQDKT43n6o0vJziNG9bY8ffr2gZ0neXP5Vo7ASTr0GKdY6yhx4JPg8ZsdhqCDsem52n3hxfHQAABBBBAAAH/CZw6dUbbdx3V5Nk7nQ4kFrSxTqnWacQ6i1jHkEBvP7FOLBUf76tn3hmpT36e5nRKsUDQ3CX7nCCQpRdj8SzgS4DnxNFYJ71Z7VLFFfHwfUpNSspwAkt51q7aI1oxeGCG9e5vEg/HqMtzT2tJ/z7uqwvt9bZ5c9T9hWc1+KP3Fb1lc6GdlxOFpgABntC8r1xVIQjEHjvh9GTtOmCN/lt3lvNlbgGcv13TxqcKiFVYrr6vhzNKxyoxL3001gkIWS+RX1vMV+P2SxTRfYXsPP1HbHQaLIaN36qRk7Y5vVesh4mN9LGeLNardui4Lc42VqHo0n+NMzLo93ZLVLv5fGfkzns1JzsjeR7+91CnZ4uN9Cl2vW+VJmvssQCQ9ZL5ruFs9Rqy3mlEiU9IKQR5ToEAAggggAACvgrYKF1rPLERw9Z545H/DNWVd3fTn3zsdGKNGDc82Et3Vx/ojA7+z2fj9fFP0/RDozlOp5amHZeqXa+Vsk4uA0Zu1OCxm2X1llGTt2nwmM3OqGPbdvT/6i1Dxm7RH6M3OR1JOvZdrZZdlzsdS35uMk9f/jrD6ZVro4NsNLKN8LGRzH+9OsKnupZ1XKn87AC99sV4p4x2znWbY+h16+tDxPYIIIAAAgjkUSDmyHHNXrRXnfqtdr7frTPpdQ/09Pk73TrM2qhfawd57LVhevnjsfrw+ylOu4QFh6z9xDKV2Ghjaz9x1UNc7SfXPdDLGSHsqoe42k/6Dtugzv3OtZ/YqGEbpWztPBZssg4kNrq40hP9nLqTr51frL3FAkA2Isg60ti5LIOKjUxiSRfwJcCzfe4c1brsYmcEz7g6tdMP8r9XR/ftUaNKN+pgDoGT06dOafP0KWpV9R7F7in89GinkpM1t2Nbtahyu2a3j9DJZDokZbmJrPBJgACPT1xsHI4CNiJn49YjTkoQSxFiw35tmK+nXiTW+GCBmwdfGaI3v5qoWk3nOZUZC8TY0GIbYpzfL/Qlqw445bBz2fHysyQkpjo9ZxYs2+80wrTvvUo//j7XSbtiaeIsPZz1kvV03dZYZGlV7HqtsrRt51HRYyU/d4Z9EUAAAQQQ8F7ARuRY/cA6eVgvUkuZ5s3o4fNvaOekdrWUrtZQYqlIrAOHKw3JvgP5T0NiDSZWj7BOIvkZDWz1iiNHTzj1MxtdbI03Lbosc9LcWuOJNfpYOltPdRarP1kK3H9/Os5pELJrPXgoYw9Q7+XZEgEEEEAAAQRsRI6lUbUghqWGt46lJW/t5PE72TrKXlu1p9MBxVLWWwdVq8tYSntLbW8p7q2Ok59l/PQdTjmsk21+R/i6p68dPmGrk77NOr9ax5d7nx/kpJ/11InGPrfR0taRxYJTFoSybDDhuvgS4JnavMm59GyXXqRts7KmZ1s/boxa3n+XTp7IPnCSeChafd99U+PrZQ0OFYa/pWcb/MmH6vpsNW2dPaMwTsk5QlyAAE+I32Auz3cB+0K1hgKrjNgXc26jW1xfyDYU10bcWM/TKXN2OYESq9gU9PL02yPTKkqWBq6gF8svuyUy1pmzx/LPWhoUawiy3Pm5NaJYw5IFuixgZKOMLFctCwIIIIAAAgjkT8A6oazecMgZ5Ws54m2Ey1+uynl0izWe2DYW0LCGE5sD0NKHRB1MzF9BvNjbRvna6B9XfcHqWgW9WOeVVesPOSOIbGSRBa4sN7+N6HGVI7uf1pHnufdHyUZAT5+3W4xQLug7xfERQAABBIJVwDp02kiZL2rPcObRy210i3UYtSCOZQKxzrMWwLHvWWuDKYw59Ww0r+t730YKF/SSnHzK6YxiaXBtBLXNW2hZW2z+QVc5svtp8wPZ6CQbRWT72pyD4bD4EuAZ9MkHToCnzrVldHTf3iw8o3/+QX988kGW9bbC5t5ZOqCvOjz5iI7s3JntNgW58syZM1o7ZpTaPVpVY36sqfiDBwrydBw7TAQI8ITJjeYysxewSoQNjbUJ+l6oMUY2wV52X7C2zhol7MvYemVYb5Rlaw4qMSk1+wMXwlrX6B1Xef0xiic/xbYeLItWRDkpWb6uM9PJ3Z9bj2Eb6WMNTDZSyHr4MMonP/rsiwACCCAQDgI28nfa3N1OClfrEZtbXnobeWspReq1XijrWWqjkU+eLLqJgF2jd1z1lvyO4snv/baglllaGhcLjtmEzDml2bUGqVse7+ukorO0c5bujgUBBBBAAIFwE7B6xMLlUbJOE8++O0olKuY8MsdG7VhnUEtJZt+dK9dF53sETn68XaN3XPUQf4ziyU95LOX/vCX7nE46FvixzsU2mtpVvsw/LTuMzZFoqfs3bTuSn1MH7L6+BHgGfvK+fi1VXPVvvEaJRw5nuCabf6f9k49qSd9eGdbbm9MnT2rnwvnq+Ew1rRg6OMvnhbHiRFycJjesp1b3VXYCTWfPFF39vDCul3MUjgABnsJx5iwBImDpQCygYxUSG/2SUwDC1luPCevdajnjbThwoC3uo3dcX/6FMYrHFwcL2liPHkvVZqN3bBRPTpUWC6BZQ5TNN2R58VkQQAABBBAIdwFLRTJ1zi7nO9RSrVlnDtd3vvtPG0lrc/g177zM6Qlr6csCack8esdV9sIYxeOLg41UtgaonoPXOcGcW6v1y3FElDW02LyG1umnMEZA+XIdbIsAAggggIA/BKxDrHXibNBmkdM+ktvf8pam3TqVWEo1S+saaIv76B1XPaQwRvH44mDtVRa8sbkJLUOMBX1yGhFlqWhf+WScOvRZ5WRZ8eU8gbqtLwGehb2665dSF6p26RLaPm9OhkuK3rxJjW+7SbG7dmVYfyLumJb1762er72iVUMH68zpogmsbJs7W92ef1qDPnpP0TnMEZSh4LxBwAsBAjxeILFJcAvs2R/vjCp59fPx+mel7HuY2DBh671pEwKv33I4X3nhC0Mr8+gdVwWlqEfxeHPtlrrOGk9sAkObm8hG8rjK7/7T0qNY7l0b7h0uQ5K98WMbBBBAAIHQFbCOEZZSrFmnpc6cf9n9UW8p2KyRomaD2U7qsWAYTZJ59I7r+76oR/F48yTZaG2b56dJhyWylLzFb8o+vZulvrPGmIkzd+j4ifzNEeBNudgGAQQQQACBghCI3HXMmTvY5rTLKaWpzV/38U/TnE4OlsI90LNxZB6946qHFPUoHm/un3U+sTmI2vVa6czvk1N6t3JVuqvGD1M1ZOwWZ55Cb44daNv4EuCJ3bNb7R5/yBnF88fHHyguan/a5Sz7o7/aPfGQTqWey7hz9swZJ5Ays3UL9f/gLWfUzKmUlLTtC/OFzQk0t2M7taxyp+a0j1Dq8eOFeXrOFcICBHhC+OaG66VZrwfrZWKjb6znpevL2/3n9Q/0ciYetp4Rgdi7xNO9y270juv6Am0Uj6drsc937D6mPkM3OEE2SynjuhbXT5vr6O7qA52eQxYcYkEAAQQQQCBUBCwYYPnVraEkuzntLKBjo3esl+mkWTuDbj6YnEbvuL7jA20Uj6fnynozr1gb7Yw4tvS+2QV8/t/1bZ3UNdaZJRgCcJ6umc8RQAABBEJXwDpgzl6015kTxwI3ru9n95/WicHm3x02fmtQdr7MbvSO6/oCbRSPN0+aBdW6DVyrt76eKOsY67oW10+rO1Z9abDTYWjDlozpy7w5xKLxewAAIABJREFUflFt40uAR2fPasOkCerxwjNqWP5qDa/5ldaPHysbvTPo0xoa/PnHijsQpX2rVmj5H/015qfvNPybL7Vh4ngVVXDHXGO2b9PQz2qoa/Vq2jprZsAHR4vqWeC8vgsQ4PHdjD0CUCAl5ZSsV4aNwrFcr64vNtdPyw1r873Yl2AgplvzhTSn0Tuuaw2GUTyertcqLDbU2CZfzC6NnjWAffbLdCcNjVVIWRBAAAEEEAgmAUuh1mvIeicIYMEA13e466eNLP601nSNmLhVR48lB9OlZSlrTqN3XNcaDKN4slyU2wqrh9h8BPUjFun+Fwdlm0bPOhxZ2hpS0LrB8RIBBBBAoMgErHOJ1TFsTpeLb+mYpR5icxNbtg3rhLn/YOClW/MFLqfRO656SDCM4vF0vVa/aN1thSxNXnZp9Cyt7Df1Zjlz/liH6EBdfArwSE6KtcgF8zSlUX31eetVDfrkA42p9YN+r3Sjer/xb01r3lgT6tbW+N9qaV6n9tq/dk2RXrqNdFs7bpTaP/aAxv5UU3FRUUVaHk4eWgIEeELrfobV1VheelelJLsgQMXH+6pW03nOH92B/CXm602LOXLcmSjZJku2gJarYmJz3Ng6+xfsjUHuJjaR48wFe5xUNDc82Cvtel3XbWn3bNTShBk7ZMOXWRBAAAEEEAhEgYOHkpz0pI+/PizLvC7WOePRV4c5f5xv3XE0EIuf5zLt3BOXVj8p/1D69/joKdvT1tt3fagscfEpTnqUt/87KdvUwFaXsfqpzQnJggACCCCAQGEJJCSmOnO7vPzx2CxBAMuYYaNcrDOCfT8Feso1X8wORCem1Tdszl9XO4LNy+xqPzGbUFms8/Pk2Tv1Re0Zuure7mnX67puG/FjnWVnzN8jG5UcSIuvAR5X2ZPj47Vv9UqtGztak36vrzrXlNastq21pF9vrR07SlHr1wZEKjRLzza5UT21rnq3lvbvo9MnSenruof8zL8AAZ78G3KEQhSwXpL2ZWVzs/zjxvYZvqxsGKo1jtjIj9374guxVEV3qu8bzkkzaNVtedEVpBDPbA1fLbsu130vDJJVRF0VFftpI7U++Xma5izeG1KV0kLk5VQIIIAAAn4UsPRkvYeu1xNvDM8S1LHOKa9/MUFDx22RBQXCYan0RHrq3HAYzWINJwuW7ddPjefqugd6ZqizWL3FUgbXbbUwZCZHDodnmGtEAAEEgknAOkBah4r/fDZexa5vl+F76G/XtJGlfu/+x1pFHUwMpsvKc1mtHcnVfmBz/YbDYvWtxu2X6M5nBqRdu8vA5vP5us5MLV4ZGCNJ8hrgcb+PK4cOUptHqiolMUE2904gLZYyrs+rL6vPG//W3lUrAqlolCUEBAjwhMBNDIdLWLbmoL78dYZK3dY5w5eSq1LSY9A6HY49EQ4UGa4xHAM87gBWEbWA3iP/GZql4ezKu7vph0ZzFEw5Z92vjdcIIIAAAsEpYJ1RxkzZrlc+GafM6dcuqdhR79WcrHHTImU9LMNtCbcAT+b7u3rDIf3WYoEsLZ2rccX10xpeIrqv0KHDTLab2Y33CCCAAAK+Ccxbsk8f/Tg1S/o1q5fY/HEW3DgWF9wpYH0TObd1OAZ43J1sugLrGJxdZ1lLD2x1lO27im4kuT8CPAM+fFsT6v/mftkB8frMqVOKnD9HLe6+XbPbttbJE9T3AuLGhFAhCPCE0M0MtUuxP3Atj6ilWnP98Ws/bdTGw/8e6synE0qpyPJy/8I9wONuFh2TpHa9Vuqe5/7I8LzYM3N39YHq0n9NWFZi3Y14jQACCCBQcALWocC+ly1vvXu9xXKh20gdC+qEUiqyvEiGe4DH3cx61FqqtszpU6zz0os1xmjs1Egxz6C7GK8RQAABBHIT2HcgwRmpYaND3eshlunE5mbpN3yDQikVWW4WOX0W7gEed5e9UQlq3nmZbnuyf4bnxZ6dB18Z4sy/lHS8cFOI5TfAk5KYqOZV7tCW6VPdLzUgXh+PjdXstq3UtXo1bZs9k4wzAXFXQqsQBHhC634G/dVYrtcpc3Y5f9jaH7juFROboNZSc1nFheWcAAGe7J+EyF3H1LDtYmWes8d6LL319UTNX7o/+x1ZiwACCCCAgA8CNklxz8HrnI4E7nWWP5dr7aQ9GThqkxKTQievuw802W5KgCcri9V9LY3b57Wny0Z4uT9HljrF0rvt2H0s646sQQABBBAIewFLBWop2CzVmtU93L9DrOOjZbtgZGj6Y0KAJ93C/ZXNRfRri/kqVyXjnD02LUKNH6YW2ryB+Q3w7Fu9Sk3vuEUJh6LdLy8gXkdv3qTur/xLo77/RpaqjQUBfwsQ4PG3KMfLk4ClV7PeA5nzk9sfupaabcXawPsFnacL9fNOBHg8g1ow54PvpmSZs+mWx/uqY9/VsvkRWBBAAAEEEPBFwP4QtpzlF93cIUNjinUssDzn+w/SGSU7TwI82amkr7O0fUPGbnF6Wrs31NnodWu8s9R/gTYhcnrpeYUAAgggUFgClqq8QZtFsrTk7kEd6xhgbQSkKc/+ThDgyd7FtfbMmbOaNne33vhyQpY0w3dVH6heQ9bLOjcV1JLfAM/87p3V6V9P6szp0wVVxDwd92RystaNHa2mt1XQ0v59ZOnaWBDwtwABHn+LcjyfBFaui5Z9yf79urYZKiaPvjrM+QM3HPPT+wJIgMd7LRtebBNdV/lXxhRuF5Rvp89+ma7N22O9PxhbIoAAAgiEnYD90Wu9ZC1NrHtjio0OtboMo0M9PxIEeDwbubawEeuN2i1W2XsyNt5ZY17TjksVeyz85p502fATAQQQCFcBG/H570/H6a9XR6TVRaxDwLPvjnI6AZDaM/cngwBP7j7un9ocTZ37rZFl0nGv9158S0d913C2bD4ffy/5DfD0/+BtTWpQ19/FyvfxbMTO2Fo/KOLeO7R35Yp8H48DIJCdAAGe7FRYV6AC1vNw5KRtTl5P9y8KG63zbf3Z2hJJQ7u3N4AAj7dSGbdbtf6QPvl5miy443oGXb1jLUWgpUthQQABBBBAwARspGebHit0zf090r4z7LvDRuvYRLU0tHv/nBDg8d7KtaXVm23+pmfeyZh+p9j17fRprenatO2Ia1N+IoAAAgiEoIDN32cpX20EhetvV/tpc/790mx+gTS0hyCjc0kEePJ2Zxcuj3I6M1mnJtczaHM7vfzxWM1bsi9vB81mr52LF6rB1aU1vUUTnUrxPdPK+gnjdHhnZDZHLrpVNppox8L5an7Pber9xr+VmpRUdIXhzCEtQIAnpG9vYF3cieSTTg7Yq+/L2EBif+zbUE/7nMU3AQI8vnll3toa7dr3XqXME1He/FgfZ1LBcJ8MO7MX7xFAAIFwErA0a9ZD8cIK7dP+mLXOANXfG+Wkr6AzgO9PAwEe383c99i5J85JvWO9Z10NLK4OKrMX7XXflNcIIIAAAkEuYH+rWhr7Kyp3Tfudb7/7bW6dQWM2KzU1sNJQBQM3AZ783aUjR0+oWaelWUYX3/nMAA0dtyXfaWRtnppmt92sxX176lSq73NYWiq0QEvPdvrkSW2aNkWtH7pPC3t2ozNx/h5B9s5FgABPLjh85B8B69lqE96XvLVTWsXEhhH/64PRmrlgj39OEqZHIcDjnxtvaXesd+xjrw1Le0at8mxpUCK6r2CCbP8wcxQEEEAgKAQsZafN3fZ/17ZJ+06wSWZtTsBtO48GxTUEaiEJ8PjnziQmpTqdpmwUmSvQYz8tDe2oydtoPPAPM0dBAAEEikTg4KEk1Wo6L8M8f5aS7dXPx2vRCiZnz89NIcCTH730fS0VoAV07nthUIZ6iM2p3XXAGiUn522OGQuG7FuzSsdjY0OqLnMiPk4HN23U8WNkK0p/injlbwECPP4W5XhpAtExSU4vQ2sUcf3xaUM6bb6T7btoIEmDyscLAjz5wMth17WbYvT2fydlyGts6QPrtV4oy0PLggACCCAQmgKWvvOlj8bKRkS46i2X39nF6anI73//3HMCPP5xdB3FRpFZB5UHXh6c9szas1vhkd7qP2JjvnvSus7DTwQQQACBghfYsz/eaStxn5/Y2lJsNPHeqISCL0AYnIEAj/9v8pJVB5xUbdaJ21V/vuyOLmrRZZlsHmRfF5uvJi+jd3w9T2Fub9eTFHtEp0/6PiqpMMvJuYJbgABPcN+/gCy99Tip2WC2LDe46xf8RTd3cPLDWtCHxX8CBHj8Z5n5SLv3xevrOjN1/g0Zn+O6rRbq6DECPZm9eI8AAggEq8DKddF6ocaYtDqL1V1sZES3gWuVkpK3HojBalHQ5SbAU3DCNvG2jY53D1Dac9x32AYCPQXHzpERQACBfAvY3502p5r7yOFSt3VWo3aL+bsz37oZD0CAJ6OHP9/ZXNo1fpia5Tm2lG428pgFAQQKVoAAT8H6htXRDx0+rm/rZwzsWFo2+4Vu+WNZ/C9AgMf/ppmPeDj2hH5tMV/Fb+qQ1vhnr+u0XKC4eJ7rzF68RwABBIJFwEbsWIO4qzOK/bQAxLDxW2WpO1n8L0CAx/+mmY+4YcthvfHlBLn3pLWUKRbo4bnOrMV7BBBAoOgEbFTOxz9N09+uSU8JW+aubs4cscxPXDD3hQBPwbi6HzXqYGKWDt+udsHjJ3wf0eN+bF4jgEDOAgR4crbhEy8FrJH7txYLdEH59JEO1uMkr0MyvTwtm0lOCjxXw1SrbssxKUABG7VjQR0bjeYyL1GxkzPxJRXwAoTn0AgggICfBWwende+GJ9hpMOt1fppxMStIZXv289sfjkcAR6/MHp1EJtL6q2vJ2YI9Nz8WB9njh6vDsBGCCCAAAIFIhBz5LjTAO6eis3mfu3YdzUjhwtEPP2gBHjSLQr6lWvKBveMKJb6uFO/1Tp58nRBn57jIxB2AgR4wu6W+++CrVHbgjjWyO1q8LbIfMuuy0Vk3n/OuR2JETy56RTMZzYPg6Vpu7BC+txSpe/qqi7918gmG2RBAAEEEAhMgf0Hz/WUtYmKXfUWCzgwKX3h3S8CPIVn7TqTpUzJHOi557k/NGP+Htcm/EQAAQQQKASBhMRUZ17XzH9Hdu63RqmpNHgXwi0QAZ7CUM54Dsv0Y+1WNh+3q/59zf09NGDkRkYWZ6TiHQL5EiDAky++8NzZJnS1X8Zl7+mW9gvaKik2Cb1VWlgKT4AAT+FZZz6TpW6zCS/dKyo3PtxbY6dGZt6U9wgggAACRShgeb9tpLH73IDXVu2pgaM28YdlId8XAjyFDO52unWbY7KkJHzmnZHauPWI21a8RAABBBDwt8Dp02eczoCX3t45rf3EOslaZ1kyQfhbO/fjEeDJ3acgP7WOVp/8PE3uHa1uf6q/Zi6gw0lBunPs8BEgwBM+99ovVzp3yT7dVX1gWsXEhhXXbDBb1tjNUvgCBHgK3zzzGfcdSHAmE/zLVek9wh/5z1DZpN0sCCCAAAJFJ2ANKt3/WCtLB+HqMUhqiKK7H3ZmAjxF629nX7g8Sg+9MiTt/4TVX2xyb+thy4IAAggg4F+BiTN3yNJjuuohltbeOp0wl6t/nb09mnuAp+/QdTpz6pTOniELh7d+/thu+66jev2LCRlSJT/3/ihZalkWBBDIuwABnrzbhdWeu/bG6aWPxqZVTKyCYvnrbT1L0QkQ4Ck6+8xntkmNrSesq/L+p7Kt9f53k2W5Z1kQQAABBApXYNbCPRmCCZb/29JrJh1nctfCvRMZz0aAJ6NHUb6zEcc28thVb7HR+M07LyNNUFHeFM6NAAIhI7Bp2xFVe3N42u/YP5dr7XQKPBCdGDLXGIwX4h7g+fiBt9Xsmksy/ru2hJpfX1Ityl+qljderlY3lVbrW65URKVyit6w1uMlj/j4TXV9+A51e7Syuj92t3o8UUU9n7xPvZ6uql7PVFXvZx9Un+ceVt/nH1W/Fx/X4e1bPB5zeoNaGv7haxr+0euy44/89G2N+vxdjf7yfY356kON/e9HGvfNxxpX8xON/+4zHdu72+Mxl/XqrFmN62h203qa3ay+5rRooLmtGmle68aa36apFrRrroUdWmpRx9Za1ClCiTGeO69unTpBa4b019phA7VuxCCtHzVEG0YN1cYxw7Vx3AhtmjBKmyeO0ZbJ42TbLli4XQ+6dTixkT1f15kpS4nPggACvgsQ4PHdLKz2sCHDlnrNPQ3V/S8O0uKVUWHlEKgXS4An8O7MtLm7ZZN1uxpMit/UQRHdVzA/T+DdKkqEAAIhKLA3KkGvfj4+7XewNahYsN3SQrAUvQABnqK/B+4lsLkDO/RZJZtD01VvKf9QL02evdN9M14jgAACCHgpEJ+Q4sw38rdr2qT9XrVAz9pNMV4egc0KUiBDgKdqNgGezAEft/cH1632WLQ+/3okY8DIbf8swaRrLhHHlDMX5vUP9Er7/2J1kh6D1pFG2ePTxgYIZBQgwJPRg3duAjbp8NX39Uj7RXvl3d00ZKznHgZuh+BlAQsQ4Clg4Dwe/syZs+o2cG2GBhMbmk9+2TyCshsCCCDgQcAmJ27cfolspI6robrqS4O1av0hD3vycWEKEOApTG3vz2Wpgizlsnte/BdqjNHOPYzU916RLRFAINwF+g3fkCEt7A0P9pKlaGMJHAH3AM8nD77jjNZpdm0Jr4Iy3ozg6V39Ia+O5Qr2cMxzz8bJk6fV8seOurJCo7R6vE0NsWTVgcB5eCgJAgEuQIAnwG9QURTPernaH3WuBhKbZ6d28/mkNSmKm+HhnAR4PAAV8cdHjyXry19nyH1+nvdqTlbsMeasKuJbw+kRQCCEBBYs26+bHk3Pb39F5a4aMHJjCF1h6FwKAZ7Avpcbtx7RY68NS/sbwAKmrbotl81nxYIAAgggkL1A5K5jGX532jw7TTsuJeVl9lxFutY9wNN/RNa64pnTp515eU6npupUSrJOnjiu1KREpSTEezVXT8LBKB3dvVOxOyN1ZMc2JwVbzNZNitm8UYc2rVf0xnU6uH6NDqxdpajVK5zjewLZt2yxts+You3TJ2vbtInaOmW8tkwaq80TR2vT+JHaOHa4Nowe5qRDWz9ysE4cO+rpkM62S7q31+KubbW4cxsnDdvCDq20oH0LzW/bTPMimmhuq981p2VDzWneQImHDno8pu076eevNfHHLzXh+881vuanGvftx076uLFf19CYLz/Q6C/e06jP3tHIT95KSyWXHHfMSS1nQa/tqzfr3W8np83PYyPxLW1bYlKqx/OzAQLhLkCAJ9yfALfrP3v2rLr0XyNLKeUK7jz77ijZJGgsgSlAgCcw70vmUq3ZeEgPvDw47f/Vpbd31uCxmzNvxnsEEEAAAR8EEhJTnSC6zXlm9RYbffBDozmy9SyBKUCAJzDvS+ZSDZ+wVWXv6ZZWb6n87ACt3sBouMxOvEcAgfAWsOC3zV1W7Pr00cM2TzFpYQP3ufAU4AnckodmySxw1bHKTWmjnlzBqUUronTH0/3T6iHlqnRnNFxoPgJclR8FCPD4ETOYD7UlMjbDBGfWAE06tsC/owR4Av8euUpoAdSuA9boopvTA6jV3xslmy+CBQEEEEDAN4Hx03fIUse6OqRYGgcLprMEtgABnsC+P+6lcwVQrfesK4Baq+k8JSefct+M1wgggEBYClgK2MwN0JNmMX9ZoD8MBHgC4w65j9pxpauzn2dOpdcxLIDaokvGAOobX05QzJHjgXERlAKBABMgwBNgN6Swi2O5Lhu1WyxLw+ZqJLHJiEkhVdh3Im/nI8CTN7ei3CvqYKJedEuBeGGF9urYdzWTCBblTeHcCCAQNAKHDh+X9Y511VlIIRU0t84pKAGe4LpfVtqFy6Nk8wi6/s/ZnBKzF+0NvguhxAgggIAfBE4kn9RPjeempeC2IPh/684ihZQfbAvjEAR4CkM593NYqrkO91RIG7XjCvC0qnBFtjtaCsTHX09PH/vPSp1k812xIIBARgECPBk9wurd0tUH5P6H9rVVe2r6vN1hZRDsF0uAJ3jv4IiJWzNMwnn/i4Nkue9ZEEAAAQSyF+gzdINKVOyU1tBc7c3hTAKfPVXArnWvd67bHBOw5aRgGQVSU0+rXuuF+r9r2zj//ywt4kc/TtWxuOSMG/IOAQQQCGGBmQv26LoHeqbVQ255vK8Wr4wK4SsOvUsjwFN099RG59jcPK6ATuafHe6+MdfC9R66XpdU7Jj2/+/Jt0Zo1964XPfhQwTCSYAATzjd7f9dq43a+bnJPLlSLtgE8Jaz/viJk2GoEdyXTIAnuO+fNYzU+GFqWiXFGk4sj/OZM2eD+8IoPQIIIOBHgYOHkvTUWyPSfldakKfvMHru+ZG40A5FgKfQqAvkRNYR5b4XBqX9X7yicldNnbOrQM7FQRFAAIFAEbB2ks9+mZ72u8+ynzRsu1jWrsISXAIEeIr2fh1Ys1IDXnkq2yBPt8fu8li46Jgkvfp5+kj+C8q3c9Lge9yRDRAIAwECPGFwk90v0ebaufOZAWmVk9uf6q8Va6PdN+F1EAkQ4Amim5VLUWct3KPrH+iV9v/y0VeHad8B5ubJhYyPEEAgTATGTo1UyVvTR+28/sUEWZo2luAUIMATnPfNvdTWCaVDn1X6x43tnXqLjeb5tv5spaSk5813357XCCCAQDALrFwXrQqP9E77O63qS4O1aRtZF4L1nhLgCYw71+e5h7MEefo+/6jXhRs3LTLDXJzPfzhah2NPeL0/GyIQigIEeELxruZwTd0GrpXlqrcc2jZq59cW83Xq1JkctmZ1MAgQ4AmGu+RdGS2f8+e103uG2fDj4RO2erczWyGAAAIhJmC9ZT+tlf470UbtjJy0LcSuMvwuhwBP6NxzS4tiDZ2uuXlurdZPG7YcDp0L5EoQQCCsBc6ePetM8P63a86lprRMCy27LpetZwleAQI8RX/vdi2YkyG40/rmMs77wW+94FPh4uJT9OZXE9PqIYwq9omPjUNQgABPCN7UzJdkkewX3CZ1v+re7pq/dH/mzXgfhAIEeILwpnko8vjpO1Tqts5pFZUPvpvCpJ0ezPgYAQRCSyBzb1mbWHX/QUY1hsJdJsATCncx/RpOnz7jpCn669URTr3l/13fVu17r0rfgFcIIIBAEApYneOx19Indb/p0T5atf5QEF4JRc4sQIAns0jhvj9z+rR6PV01LcAzudY3Sog+oPHffaZRn7+bp8IMHLVJxW/q4NRDGFWcJ0J2ChEBAjwhciNzuoxpc3fLItmu3nUW4bZIN0toCBDgCY37mPkqLLfsM++MTPt/a5N5Lll1IPNmvEcAAQRCSsBSP7XosixtInd6y4bU7XUuhgBP6N1TuyKro7hPPG51GKvLsCCAAALBJmAZFGzUsKv9xDIsWKYFltAQIMBTtPdxRd/uacGd1rdcqcSY9OkiThw7mufCMao4z3TsGEICBHhC6Ga6X4rlwa7ZYLYsgm2VE4toDxi50X0TXoeAAAGeELiJOVyCDf9v12ulrDes/R+23rGN2i2W9ZZlQQABBEJNwHrL2vxjrgYV6y27egO9ZUPtPhPgCbU7mn49iUmpev+7yWn/hy+9vbMmzNiRvgGvEEAAgQAWsN9hH34/Je13mGVUsHk+WEJLgABP0d3PlPh4tat8fVqAZ3HXtn4tDKOK/crJwYJQgABPEN40T0XeG5Wgu6sPTKucWH5si2izhJ4AAZ7Qu6eZr2j9lsNybxB74o3hTCCYGYn3CCAQ1AIz5u9RyVvpLRvUN9HLwrt/n63bHOPlXmwWTALDxm+VzSPoCtbWajqPzinBdAMpKwJhKLAlMlbWscT1e+vpt0fq4CFGIYbio0CAp+ju6vQGtdKCO50fuFWnUpILpDCZRxW/8sk4JSSmFsi5OCgCgSRAgCeQ7oYfyuLeSPKXqyLUoM0i/qjyg2ugHoIAT6DeGf+Wy0bkfVNvVtofHeWqdNfyNQf9exKOhgACCBSBQPPOy2T1FWtUsSAPvWWL4CYU4ikJ8BQidhGeat+BBD3876Fp9RY6pxThzeDUCCCQq8Coydt0YYX2zu8rSw1rGRQskwJLaAoQ4Cma+3p01w61KH9pWoBn65TxBVoQG5H3Xs30UcUVHumtzdtjC/ScHByBohYgwFPUd8CP58/cSDJ93m4/Hp1DBaIAAZ5AvCsFVybrFfuPG8/9AfL369qq15D1BXcyjowAAggUoID1pLMeda7esndVH6g9++ML8IwcOhAECPAEwl0onDJYqpQfGs1J+z9O55TCcecsCCDgnYD9jrIRhq56yJV3d9PS1cx56p1e8G5FgKdo7t2wD15NC+4MfPWZQitEt4FrZe0m9v/cArkjJ20rtHNzIgQKW4AAT2GLF8D5aCQpANQgOSQBniC5UX4s5satR3Tjw73T/hj55OdpshE+LAgggECwCFgPOutJ52pUqfHDVH6PBcvNy2c5CfDkEzAId8/cOaXn4HVBeBUUGQEEQkngcOyJ/8/eeYBHVax9/Ll+915vL+rtV0TAjmDBLoIgKqBIB0UQRUSxASKCCIgK0kIKCSQhCSWUhE4oafQaehJIIAVCgJDee+P9nndy92ST7Gb77in/eZ482T1nzsz7/ubs2dn5z7xDvLJQ1w/hPQBz8srV5CJ8MUIAAo8RMA48nHbkgCTuzLv3r5R5PtaBtbUsmoXbu5/2kz7v38xF6NiWlHBEDQQg8Ci8FTFIovAGtNF8CDw2AlTo5cUlVdR/zDapk/L0G2uJw6EggQAIgIDcCfDMOV0oFJ5RxzPrkLRDAAKPdtpa31NMTtGngdcgAAKuJMBhrnlFoU7c4ZWGvJoHSRsEIPA4t53r6+oo8PUXJIEnfOqXzjXgf7WxgNtj2Abpc99z+Absa+ySlkCljiQAgceRdB1cdvNBEv+1GCRxMHLZFQ+BR3ZN4jSDODb03CUxdFsbN9FR+VvnpbTvaLrT6kdFIAACIGDhDZUPAAAgAElEQVQJAR484RlzugEVnkmHUCiWEFRHXgg86mhHa7wwNDnlWgYmp1jDEteAAAhYR4DDW+vCNXHYa15hiKQtAhB4nNvep1f6S+KO2yP/pdKcLOcaoFcb/xb5+qeD0m8RhI7Vg4OXqiAAgUehzfiDx3HpwYRBEoU2oh3MhsBjB4gKLyLq4FW681Ef8Tzgjcp9g5275Fnh+GA+CICAEwjwRqe9R26W+i08gw6hUJwAXoZVQOCRYaM40aTmk1P+8fgyOhmb6UQLUBUIgIAWCdTX36IvZ+2T+iEc7ppXFiJpjwAEHue1eVVxMXk+0V4SeGL8PJ1XeSs1bdzZuK/xbzp4UGjYpVZy4xQIKIcABB7ltJWwtKamjkZPCpc6J4gXq7AGtLO5EHjsDFShxV29XkxP9A6Wngs8M4UHUZBAAARAwNUEbmSW0GOvrW7yfEIoFFe3iuvqh8DjOvZyqpknp9zRsWFyyu/u86StESlyMg+2gAAIqIhAeUUNvaUX2prDXPOKQiRtEoDA47x2j/7+G0ncWfpiJ6qtqnRe5SZqSkxu3Nf4F3e70TyfEyauwGkQkD8BCDzybyPJwqLiKuJYkbrwJh98FUEs+CBplwAEHu22fXPP+cdLvw+2Ss+HIR/voMrK2ubZ8B4EQAAEnEYgLjGH/vtUw6amv2y7mDg0CpK2CUDg0Xb763uffKWA2r8YIPotHG7WI+CM/mm8BgEQAAGbCWTllNFTfddIv4/4tzMmwdmMVdEFQOBxTvPlX0mlBff9TRJ4kiJ3OqdiC2opKKykboNDpefDR99EUW0t9uOyACGyyowABB6ZNYgxc3iG/iM9V0oPnx89jxvLiuMaIgCBR0ONbYarHH7g8xl7pefEc2+tw+aBZnBDFhAAAfsTiDiQRn980Es8j/700BKKPnTV/pWgRMURgMCjuCZzqMG5+RX0fP91Ur+F+zDcl0ECARAAAVsJ8Az9ts8tF88XDmO9dBXCWNvKVA3XQ+BxTituGD1EEnfWDO3tnEqtqKW6uo7e/WK31A95/d3NVFJabUVJuAQEXE8AAo/r28CkBafjsuifTywTD51ft3OntVsTTV6DDNogAIFHG+1sqZfuy08Tz4bl1X48OzbpcoGlRSA/CIAACFhNwH9tHPGKHX4G8Qam5y/lWl0WLlQXAQg86mpPe3jDq4151bEuQgGvRuZVyUggAAIgYC2BfUfT6S+PeIvnyh8e8KJdey9bWxSuUxkBCDyOb9C0w/slcWdeuzso87z8xdUZC49I/ZDOr64mDjGNBAJKIwCBR+YtFhaVSr+/31M8bDhW9cGY6zK3GOY5kwAEHmfSVlZdHM+e49rzgMmdj/rQ4RM3lOUArAUBEFAcAQ57MvXnQ9IPJN4b7GZWqeL8gMGOIwCBx3FslVwyPzumzDkoPTu69F1DmdllSnYJtoMACLiIwKqNF+hX97qL58m/u/jS2fPZLrIE1cqRAAQex7ZKfV0dBbz2vCTwhE+b4NgK7Vj6itDGZ8d/uvhRbAKeHXbEi6KcQAACjxMgW1uFz6pz0iz8di8E0KXUfGuLwnUqJQCBR6UNaye3TsZm0j8eb1j9d3t7D9qwI8lOJaMYEAABEGhKgPcEHD5+pzRA+8boLVRWjln4TSnhHQQe3AOtEfANjiUOpcSTU+551h+/fVqDhXMgAAItCPzgcVzqh/D3zbUMzMJvAUnjByDwOPYGOL3STxJ33B75L5XmZDm2QjuXvudwOv354SXiOcKhpqMOIsS0nRGjOAcSgMDjQLi2FD3P54TUOXm23zrKySu3pThcq1ICEHhU2rB2dCvtWhE99PIK8TzhQROemYIEAiAAAvYkwCGW+r63Req3fDp9D9XVYZNSezJWS1kQeNTSko7zY/e+K8QhlVjk+ftjSykuMcdxlaFkEAAB1RCY/OMBqR/y6ohNVFxSpRrf4Ij9CEDgsR/L5iVVFheR5xPtJYEnxt+reRZFvL9wKVdMMuF+CE+S3RaRogi7YSQIQOCR4T3w3YLG+I+9R26mikrMgJVhM8nCJAg8smgG2RtRWFRJLBRzJ+UXd7uR98pzsrcZBoIACCiDAK/S6TFsgzSoMndJjDIMh5UuIQCBxyXYFVfpmfgsuquTj3iu/LWjN504d1NxPsBgEAAB5xDgEI8fT4uW+iHvfLaLamsxycQ59JVXCwQex7VZ1KwpkrizrGtnqq1SrsjKIaYf6blSPFd4X9F12y46DhxKBgE7EYDAYyeQ9ipmwvf7pc7JoI/CiEOeIIGAMQIQeIyRwfHmBErLqqn7kFDp+cKrBJFAAARAwBYCRcVV9Hz/RvHYK+isLcXhWg0QgMCjgUa2k4sJSXn0ryd9Rb+Fw6RgH1I7gUUxIKAiArxaWH/AfuyUKKqvv6UiD+GKvQno3y+rNyXYu3jNlpd/OYUW3Pc3SeBJitypeBZ5BRXE+4nyJNnb2rhRwPp4xfsEB9RNAAKPTNqXOyLcIeGHB//xFw/Cm8ikcWRsBgQeGTeODE3jMEq8KlD3nOHVgkggAAIgYA2B3PymP3oCQ85bUwyu0RgBCDwaa3Ab3U1NK5TCpPy2gydFHEizsURcDgIgoBYCPBGWJ8TqftfwRFkkEDBFAAKPKULWnd/44XBJ3FkztI91hcjwquaT2TwDz8jQSpgEAg0EIPDI4E7gJcQjPt8ldU54iTEvNUYCAVMEIPCYIoTzzQlUVzf9MTRxNn4MNWeE9yAAAq0T4LAFD/do2NuLwxas346wBa0Tw1kdAQg8OhL4by4B3iT9vq6B4nfSr9u501bEwjcXHfKBgGoJ8KS1PqMa9/7DpDXVNrXdHYPAY3eklLo/ShJ35rW7g7IuxNm/EheWyOGoew5vDEc9xwvhqF3YHKi6FQIQeFqB44xTPNg64MPtkrjDA/ZIIGAuAQg85pJCPn0CCGegTwOvQQAELCFw9XoxdXixYbCVNx7dHplqyeXIq3ECEHg0fgNY6X5mdhl11IuFv3ZropUl4TIQAAGlE+Cw0y8PbRxsRdhppbeoc+2HwGNf3vV1dRTw6nOSwBM+bYJ9K5BJaSwqvzG6UVSeNu+wTCyDGSDQSAACTyMLp79icUc/XNIst6NOtwEVKpsABB5lt58rrW++IemoCeFYOejKBkHdIKAAAmnXiqjNM/5iUsrv7vOkqINXFWA1TJQTAQg8cmoNZdnCsfCf7NMYC3/lhgvKcgDWggAI2EyAxR39vf+WrMDefzZD1VgBEHjs2+CnVvhK4s7ijndTWU62fSuQUWkcFnLoJzukyfmTfkAkFBk1D0whIgg8LroNeAb9wLGNK3cW+p5ykSWoVskEIPAoufXkYbv+PcThIZFAAARAwBCBjMxSavdCgPhR86eHltDhEzcMZcMxEGiVAASeVvHgpAkCxSVV9MKA9eI59H/3LKYNO5JMXIHTIAACaiHAM+h1K3d4w/OgUOz9p5a2daYfEHjsR7uyuIg8n2gvCTwx/l72K1ymJfE47uhJ4ZLIg/CQMm0ojZoFgccFDV9ff4ve/WK39FBYsOykC6xAlWogoD84v8gPIqEa2tQVPvA+PLoNSvmeQgIBEAABfQI5eeX00MsNe+78/n5POnIS4o4+H7w2nwAEHvNZIadhAjyD/9l+60S/5Vf3utOO6MuGM+IoCICAagjwzHndnju/uBvijmoa1gWOQOCxH/SoWVMkcWdZ185UW1Vlv8JlXBJHQtG/jxAmUsaNpTHTIPC4oME/+iZKGkyduQhh2VzQBKqpEgKPaprS5Y6MndL4XEK4SJc3BwwAAdkQKCyqpMdeWy36LbznTvQhhGWTTeMo0BAIPApsNBmarP9c+k0HD9pzOF2GVsIkEAABexDgGfODx4VJ4ycIy2YPqtotQ39gfvWmBO2CsNHz/MsptOC+v0kCT3LULhtLVNbl/Fwa9FHjc8l75TllOQBrVUkAAo+Tm5XjNOpmyiNmo5Phq7A6CDwqbFQXucQrC0d8vkt6PiFspIsaAtWCgIwINJ8pHxaVKiPrYIoSCUDgUWKrydPm5isLj57KkKehsAoEQMBqAjxTnvcJ1Y2f/Ox9wuqycCEIMAEIPPa5DzaOGSaJO2uH9bVPoQorRX9PdV5ZuCIUewMqrAlVZy4EHic26YyFR6TOybip2OvCiehVWxUEHtU2rUscq62tpwEfNu4NtnRVrEvsQKUgAAKuJ9A81n1o2CXXGwULFE8AAo/im1BWDujvDfbnh5fQmfgsWdkHY0AABGwj8Mm30dL4yfQFh20rDFeDAAQeu9wDqfujJHFnXrs7KCsh3i7lKrGQisoa6j4kVDyneG9A/F5SYiuqx2YIPE5qy/lLT0qdE95/h2fLI4GArQQg8NhKENc3J8AzUV4bsUk8r3gmyqqNmInSnBHeg4DaCSDWvdpb2HX+QeBxHXu11px2rYj++5Sf6Lfc1cmHLlzKVaur8AsENEVg8o8HpPGTCd/v15TvcNZxBLCCxza29XV1FPDqc5LAE/HtRNsKVMHVzSMeYG9AFTSqQl2AwOOEhvMNjpU6JwPHbieO14gEAvYgAIHHHhRRRnMCPBPlpUEh4rnFM1G2hCc3z4L3IAACKiXAE1CGfLxD6rcg1r1KG9pFbkHgcRF4lVd7KTWf/v7YUvHc+teTvnQlvUjlHsM9EFA3gR89j0v9EN4nFAkE7EUAAo9tJE+t8JXEncUd76aynGzbClTJ1c33Btx/7JpKPIMbSiIAgcfBrbVr72XiAVKOG/v6u5uJZ8cjgYC9CEDgsRdJlNOcQElpNT39xlrx7PptB0+KOXuzeRa8BwEQUCEB/b0C5/kg1r0Km9ilLkHgcSl+VVcel5hDd3T0Ef2WB7sHUUFhpar9hXMgoFYCvPG9bs+ddz7bhcgnam1oF/kFgcd68JXFReTxeDtJ4Dnhv8T6wlR4pf7egH95xJsSk/NU6CVckjMBCDwObJ2z57PpDw94iQ7KU33XUHlFjQNrQ9FaJACBR4ut7jyf8woq6L6ugeIZxjNjMSPWeexREwi4goDPqnPSoArCobiiBdRfJwQe9bexKz08cvIG3d7eQzzHOCY+Jta5sjVQNwhYToBnvf+6nbv4DPd6ZyPx/qBIIGBPAhB4rKcZNetrSdxZ9tJjVFtVZX1hKr3yWkYJ8UpiFqnbPrecsnLKVOop3JIjAQg8DmoV/mD/uws+2A7Ci2L/RwACD24FRxNISSsgjmnPnRTMiHU0bZQPAq4jsHNP44rj/mO2Ycas65pC1TVD4FF188rCuZDtl4j3EOR+Cw/kIYEACCiDAM9251nv/Nnt2HMlFZdg8FgZLacsKyHwWNdeeZeTacF9f5MEnuRofL8aI8kT/X9/v6d4lnFEFEz0N0YKx+1NAAKPvYkSic6I7gcsluY5ADCKlAhA4JFQ4IUDCRw9lUG/6dAwI7bbYMyIdSBqFA0CLiGAHyIuwa7JSnX9Yx7Ai7+Yo0kGcNrxBH72PiEGVvg+m7noqOMrRA0gAAI2EcjOLRez3fkzy7PfebIsEgg4ggAEHuuobvxgmCTurB3+hnWFaOgqTJzTUGPLyFUIPHZuDF5G/OqITeJHxa/udad9R9PtXAOKA4FGAhB4GlnglWMJhIY1zogd8fkux1aG0kEABJxGAKEEnIYaFRERBB7cBs4iwBuz82Ax/63ccMFZ1aIeEAABCwlUVNZI+37yrPcz8VkWloDsIGA+AQg85rPS5UzdFymJO/Pa3UFZCfG6U/jfCgGEvm4FDk45hAAEHjtj/fDrSOnHxKqN+DFhZ7worhkBCDzNgOCtQwnwhuu6wZIZC484tC4UDgIg4HgCHP5EN+COFceO540aIPDgHnAeAZ5095repLu9RzDpznn0URMImEegvv4WcVhY/n3xf/csJp71jgQCjiQAgccyuvW1tbS817OSwBMxfZJlBWg8t/54nVfQWY3TgPuOJgCBx46E5y6JkQY/Z7khHIAd0aIoIwT0vzAW+Z0ykguHQcB+BD76pnFG7IpQiNj2I4uSQMC5BHjwkzcw5kEV3tCYNzZGAgFHE9AJinzfIUSbo2mj/JLSaurUa5V4zv354SWUkJQHKCAAAjIiMOH7/dL4Cc92RwIBRxOAwGMZ4VNByyRxZ/GjbagsF+F1LSHIIvbAsdvFc+62Nm4UFpVqyeXICwIWEYDAYxEu45n5g6rb0HPUhHDjGXEGBOxIAAKPHWGiKLMI8KDw6+9ulgaFj5/JMOs6ZAIBEJAXgS9m7pMGVVZvSpCXcbBGtQQg8Ki2aWXr2PWbJfSfLn7iedf+xQAqLKqUra0wDAS0RCAo9LzUD+HftEgg4AwCEHjMp1xZVEgej7eTBJ4T/kvMvxg5JQIchvLZfuvE8+4PD3hRYjImm0hw8MKuBCDw2AFnSloB8awwno3YdVAIVVfX2aFUFAECpglA4DHNCDnsT4BnxD7Sc6V45vGgSVZOmf0rQYkgAAIOI7B2a6I0qPLdAoRbdBhoFNyCAASeFkhwwAkEzp7Ppt928BTPvb7vbaFbt245oVZUAQIgYIzA6bgs+k0HD/GZ7PfBVuJZ7kgg4AwCEHjMpxw5c7Ik7ix76TGqq642/2LkbEIgJ6+c2jzjL555D3QLIh5PQQIBexOAwGMj0bLyGur4v4HOf3fxpcxsDHTaiBSXW0AAAo8FsJDVrgSSLhfQnx5qELa7DQ4lXtmDBAIgIH8CcYk59Lv7GgY6e4/cjEEV+TeZqiyEwKOq5lSUM7xSkSfj8d/3i48pynYYCwJqIpBXUEH3PNsw0Hn/S4HE+wEigYCzCEDgMY903uVkmt/hLkngSY7ebd6FyGWUwKnYTLq9fYOwPeDD7Ubz4QQIWEsAAo+15P533duf7hQ/FH51rzsdPYVQRTbixOUWEoDAYyEwZLcrgW0RKVJoyomz99u1bBQGAiBgfwIcmohDFPEAZ7sXAqigEKGK7E8ZJbZGAAJPa3RwztEEPvtur3j+cVjtXXuxmbujeaN8EGhOgFfq6Pb/+/39nnThUm7zLHgPAg4lAIHHPLwb3h8qiTtrh79h3kXIZZJAwPp40Q/h32I/e58wmR8ZQMASAhB4LKHVLK/78tPSh9N7JTYFbIYHb51AAAKPEyCjilYJfDv/sPQcDNl+qdW8OAkCIOA6AhySiEMT8Q8KDlUUm5DtOmNQs2YJQODRbNPLwvGamjp6vn9DHPy/dvSmy1cLZWEXjAABrRCYNq/xd0NoGH43aKXd5eQnBB7TrZG6N1ISd+a1u4OyE8+bvgg5zCYwdkqU+D32f/cspuhDV82+DhlBwBQBCDymCBk5fzDmOv2y7WLxweQvCSQQcAUBCDyuoI469QnwTLxXR2wSz0LMxNMng9cgIC8CHJKIxR3+41BFSCDgCgIQeFxBHXXqE7iZVUr/fGKZeBZ2fnU18ebHSCAAAo4nsFVv5f+kH7Dy3/HEUYMhAhB4DFFpPFZfW0vLez0rCTwR0yc1nsQruxCoqqqlp/quEf2Quzr5UPqNYruUi0JAAAKPFfdARmYp/eNx/DCwAh0usTMBCDx2BorirCLAsbTbPrdcdFLu6xpIRcWIpW0VSFwEAg4iwKGIOCQRizscoggJBFxFAAKPq8ijXn0Ch/Qm6r37BSbq6bPBaxBwBAH9vTu7D8HenY5gjDLNIwCBp3VOp4KWSeLO4kfbUFluTusX4KxVBK5llNDfOi8Vv82e7BNMLPoggYCtBCDwWEiQl/Y/9xaW9luIDdkdRAACj4PAoliLCZyJz6LfdGjYNPCtMdssvh4XgAAIOIbAlfQi4lBELO5waCLuxyCBgKsIQOBxFXnU25yAR8AZ8VzkZ+OSFWebn8Z7EAABOxEoK6+hh3usEJ+3/3Txo+zccjuVjGJAwHICEHiMM6ssKiSPx+6VBJ4Ty72NZ8YZmwnsPZJOHKaN+yFjJkfaXB4KAAEIPBbeA7q4sbe1caPd+65YeDWyg4B9CUDgsS9PlGYbgRWhFzBYYhtCXA0CdiVQW1tPz/ZrmJTCIYl4BTISCLiSAAQeV9JH3c0JvPPZLtFvub29B8UlYpZycz54DwL2IPDh15Hic/brdu50/EyGPYpEGSBgNQEIPMbRRc6cLIk7vt0ep7rqauOZccYuBOYvPSmNn2A/Y7sg1XQhEHgsaH7ed4eFHVZYWehBAgFXE4DA4+oWQP3NCYyeFC6ekbya58Kl3Oan8R4EQMCJBGYuOio+jxyejWeJIYGAqwlA4HF1C6B+fQK8soBDy/Jvu0d6rqTKSoRI0eeD1yBgK4HNu5PF54s/Y+7LT9taHK4HAZsJQOAxjDAvNYnmd7hLEnhSosMNZ8RRuxPo+94W8Zz8yyPexKHbkEDAWgIQeMwkV1hUSW2e8RcfvC591yDEiZnckM2xBCDwOJYvSrecQElpNbV/MUA8Kzv1WoV4spYjxBUgYBcCR07ekJb9f/3TQbuUiUJAwFYCEHhsJYjr7U3gVGwm/eped9FvwR5l9qaL8rRMgFcN3/moj/hsvTpiE926dUvLOOC7TAhA4DHcEBtGD5HEnXVvv2k4E446hACHrdTt8d5tcCjV1+NZ6RDQGigUAo+ZjTxs/A7ROfn9/Z6UfKXAzKuQDQQcSwACj2P5onTrCMScvUm/bNsQT3bi7P3WFYKrQAAErCZQXFJFbZ9bLvotj7++mqqrse+O1TBxoV0JQOCxK04UZicCc5fEiOclrzLYtfeynUpFMSCgXQIs5rzy9kbxubqrkw/dzEKIWO3eDfLyHAJPy/ZI3RspiTvz2t1B2YkXWmbCEYcS4L4H90H4j/skSCBgDQEIPGZQW7WxcV+J5evizbgCWUDAOQQg8DiHM2qxnMAPHsdFB4VDQ0UeSLO8AFwBAiBgNYF3v9gtPn+/7eBJF1PyrS4HF4KAvQlA4LE3UZRnDwI8W5ZnzfLACs+ixSbw9qCKMrRMYJHfKfF54s/UtogULaOA7zIjAIGnaYPU19bS8leekQSeyO++apoB75xGgFcR8zOTVxXz6mIkELCUAAQeE8SupBfRHx/0Eh+0AR9uN5Ebp0HAuQQg8DiXN2ozn0BdXT29MGC9eHb+60lfys2vMP9i5AQBELCawLptF6VBlWWrY60uBxeCgCMIQOBxBFWUaQ8CHPee49/z4ArHw0cCARCwjsC5C9n063YNYQ/HTY22rhBcBQIOIgCBpynYk4FLJXFn8aNtqCw3p2kGvHMaAd4HkPcD5H7I/S8FEu8TiAQClhCAwNMKLR6gfO6tdeID9u8uvpRXgAHKVnDhlAsIQOBxAXRUaTaBtGtF9KeHlohn6Ftjtpl9HTKCAAhYR+Dq9WL688MNn7k3399qXSG4CgQcSAACjwPhomibCYRsvyT6LDy44r3ynM3loQAQ0BqBisoaeujlFeJz9EC3ICqvwACl1u4BufsLgaexhSoKC8jjsXslgedkgE/jSbxyCYG4xBy6vb2HeIZ++HWkS2xApcolAIGnlbb7fvEx8cHiEEPRh662khOnQMA1BCDwuIY7ajWfwJotidJgid+aOPMvRE4QAAGLCHCIoa6DQsTn7Z9PLKOcvHKLrkdmEHAGAQg8zqCMOmwhMGpCuHiOcojLhKQ8W4rCtSCgOQLjv90jPj8cYuhMfJbm/IfD8icAgaexjSJnfCWJO77dHqe66urGk3jlMgKL/U9L4ydbwpNdZgcqVh4BCDxG2oyVU+6Y8AwuHkRHAgE5EoDAI8dWgU3NCbzz2S7xLOVwlxwCBQkEQMD+BDwCzojPGU9KicC+V/YHjBLtQgACj10wohAHEigpraZ2LwSI5+mz/dYRi+dIIAACpgnsP3aNuA/C4yfzl540fQFygIALCEDgaYCem3KJ5ne4SxJ4UqLDXdAaqNIQgVu3btGrIzaJZynvC1hQWGkoG46BQAsCEHhaICHi0GxP9V0jPlAPdg+iqqpaA7lwCARcTwACj+vbABaYJlBYVEm8ooB/8CGuvWleyAEClhLg0Gx/eKBhv0DEu7eUHvI7kwAEHmfSRl3WEjgYc10aqPYMPGNtMbgOBDRDgPeOuK9roOjrc4h7CKOaaXrFOQqBp6HJNoweIok7697pp7h2VLvBNzJLpFD370+KULu78M9OBCDwGACpWxLHM1AOn7hhIAcOgYA8CEDgkUc7wArTBDbtShI/+ljkWb/9oukLkAMEQMBsAr1HbhafL94vsKi4yuzrkBEEnE0AAo+ziaM+awl89E2UeK6yeJ5+o9jaYnAdCGiCwNSfD4nPy6/budOFS7ma8BlOKpMABB6ilD0Rkrgzv/2dlJ14QZmNqXKrl66KlcZP9hxOV7m3cM8eBCDwNKPIm4L//n5P8UH65NvoZmfxFgTkRQACj7zaA9a0TqD/mG3i2fr3x5ZSfmFF65lxFgRAwCwC+vtcbY1IMesaZAIBVxGAwOMq8qjXUgIslrNozhNTWERHAgEQMEwgNiGbftl2sfiszHI7ajgTjoKATAhoXeCpr60l/55PSwIP78ODJE8CHKrtxYHrxbOVQ8dWVNbI01BYJRsCEHiaNYUu1uF/uvhRcQlmwTbDg7cyIwCBR2YNAnNaJZCRWUp/fniJ6KS8NxFxfluFhZMgYAaB3PwKuquTj/hMDfoozIwrkAUEXEsAAo9r+aN2ywjw5sYs8PAfi+lIIAACTQlwaPsu/wtt/9DLK6i6uq5pBrwDAZkR0LrAczLARxJ33DvdQ+V5WHEns1u0iTkXU/Lp9vYeoh8y+UfsDd8EDt60IACBRw/J6k0JUid+e2Sq3hm8BAF5EoDAI892gVXGCfgGNy41jjp41XhGnAEBEDBJ4N0vdot+y18e8aabWaUm8yMDCLiaAAQeV7cA6reUAIvnLPD8rfNSYlEdCQRAoJHAIr9T4vPBoe2PnspoPIFXICBTAloWeCoKC8i9c1tJ4GGxB0n+BH70PC6es/93z2I6E58lf4NhocsIQOD5H/qcvHK689GGWbBDPt7hsgZBxSBgCeJhnCsAACAASURBVAEIPJbQQl45EOClxi8NChGdlHufX07lFVhqLId2gQ3KIxBxIE18jnjgcfm6eOU5AIs1SQACjyabXdFOs3jOIjo/a1lURwIBEGggcCW9iH53X0No+0+n7wEWEFAEAS0LPByObd69fxV/vt2foLrqakW0mdaNrKmpo449V4p+yOOvr6ba2nqtI4H/RghA4PkfmLc/3Sk+MH/t6E1ZOWVGcOEwCMiLAAQeebUHrDGPwKXUxqXGfA8jgQAIWEagrLyG7nnWX/Rbug8JJRZOkUBACQQg8CihlWBjcwIsorPAw38sriOBAAgQvfL2RvGZ+O9TflRSioFi3BPKIKBVgSc35RLN73CXJPCk7IlQRoPBSkEg5uxNuq1NQz9kns8JUAEBgwQg8BARhwnSddqDQs8bBIWDICBHAhB45NgqsMkcAj95xojnLi815s1ZkUAABMwnwDGYud/ymw4elHylwPwLkRMEXEwAAo+LGwDVW0WARXQW0/m5y6uPKytrrSoHF4GAWgis3ZoojZ/siL6sFrfghwYIaFXgCX1vsCTurB/xlgZaWn0ufjlrn3ju/raDJ129Xqw+B+GRzQQ0L/DwcrcHuweJD0q3waE2A0UBIOBMAhB4nEkbddmTAD97H+6xQjx7uw4KsWfRKAsEVE2AN9v81b3u4rPDQikSCCiJAAQeJbUWbNUnkHS5gH7druHZ+4PHcf1TeA0CmiJQWlZN/+7iK/ohg8eFacp3OKt8AloUeFKiwyVxZ377OynnYoLyG1KDHvCzl1dM8mSTgWO3a5AAXDZFQPMCz0Lfho0BeRZ5/MUcU7xwHgRkRQACj6yaA8ZYSGDvkXTRQeFOCs8ERAIBEDBN4NURm8Tnpv2LAVRVhVnkpokhh5wIQOCRU2vAFksJTP35kHj+8uzZ9BuYPWspP+RXB4Epcw6KzwHvv3Mto0QdTsELzRDQmsBTX1tL/j2flgQe3ocHSbkEQrZfksZPOBIVEgjoE9C0wMObZv7xQS/xAfli5j59LngNAoogAIFHEc0EI1shMOTjHeIZzDMBeVYKEgiAgHECWyNSpE49QqIY54Qz8iUAgUe+bQPLTBPgfsp/ujTMnh30EVYumCaGHGojoL+S7UdPrGRTW/tqwR+tCTwnA3wkcce90z1UnperhWZWtY8ceYonyHIkKo6KggQCOgKaFnhGTQgXH4y/dV5KhUWVOib4DwKKIQCBRzFNBUONEOAZsDwDkDsp38w9ZCQXDoMACPBqnbbPLReflb7vbQEQEFAkAQg8imw2GK1HYN22i+I5zP0WXomMBAJaItB75GZx/7d7AauItdTuavJVSwJPRWEBuXduKwk8JwOXqqkpNesLR57iCFTcD3HzO61ZDnC8JQHNCjxn4rPoF3e7iQ9FwPr4lmRwBAQUQAACjwIaCSaaJMCx7LmDcnt7D2wYaJIWMmiVwPylJ8XnhPeASEkr0CoG+K1wAhB4FN6AMF8Q4L0Dud/y2Gurqb7+FqiAgCYIRB5IE/c93/vbI1M14TOcVB8BLQk8kd99JYk7fi8/SXXViJahljv68xl7xfP4L494U15BhVrcgh82EtCswNN9SMOytk69VqFjbuNNhMtdRwACj+vYo2b7EaiorJE2DHz70532KxglgYBKCOTmV9CfH14iOvITZ+9XiVdwQ4sEIPBosdXV5/Op2ExpomBQ6Hn1OQiPQKAZARYydc/vl4duaHYWb0FAOQS0IvDkJl+k+R3ukgSe1L2RymkkWGqSAIs6LO6w4I7tRkzi0kwGTQo82/Ri2EcfwsZUmrnbVegoBB4VNqpGXVq9KUF0UHhlZczZmxqlALdBwDCBT6fvEZ+POzr6UEEhQsoapoSjSiCgGyDkH6QcYgIJBJRK4N0vdovnMu8hWF5Ro1Q3YDcImEVg+bp4cb/f1saNzp7PNusaZAIBORLQisATOmqQJO6sH/GWHJsCNtlIYJHfKfFc/tW97pR8BdEdbMSpiss1J/DU1tbT/S8Fig9Cn1GIYa+Ku1jDTkDg0XDjq8z1W7du0RO9g8Wz+YUB61XmHdwBAesJXEzJp1+2bYiz7BFwxvqCcCUIyIAABB4ZNAJMsAuBaxkl9NsODXsIfr/4mF3KRCEgIEcCpWXV9M8nlok++nsTw+VoImwCAbMJaEHgSYkOl8Sd+e3vpJyLCWbzQUblEKiuriPeD40nTfUfs005hsNShxHQnMDjGxwrPgC8KVVCUp7DwKJgEHAGAQg8zqCMOpxFYP+xa+L5jNjeziKOepRAYODY7eJz0eHFQKqpqVOCybARBIwSgMBjFA1OKJDAt/MPi+fzHx7wopy8cgV6AJNBwDSBHz0b9sr83X2edCOzxPQFyAECMiagdoGnrqaG/Hs8JQk8kTMny7g1YJqtBDbsSJLGT46dzrC1OFyvcAKaEnh4nwdeRs+Dh2MmIwalwu9dmE9EEHhwG6iNQO+Rm8UzmgcBsXGx2loX/lhKgPd54D4L/4Vsv2Tp5cgPArIjAIFHdk0Cg2wgUFxSRXc+6iOe0RO+x/5oNqDEpTIlkF9YQX96qGEPwKk/H5KplTALBMwnoHaB58Ryb0ncce90D5XnY1K7+XeHMnM+1XeN6IfwPvNI2iagKYFnwbKT4sa/vb0H8bJ6JBBQOgEIPEpvQdjfnMC5C9nSxsXBm7GcvDkfvNcWgVfe3ij6LY+/vpo4jCESCCidAAQepbcg7G9OYKFvQwx8/n2ZfqO4+Wm8BwFFE5j84wHRD+HNvLEHoKKbEsb/j4CaBZ6Kgnxy79xWEnhOBS1Du2uAAO8rr5sQGHkgTQMew0VjBDQj8BQVVxFvTsw3/sTZmGFl7IbAcWURgMCjrPaCteYRGDZ+h3hWc0xZhKQyjxlyqY/A3iPpUmd9974r6nMQHmmSAAQeTTa7qp2urKyl/3TxE8/rD76KULWvcE5bBDgcm26fqblLYrTlPLxVLQE1CzwR0ydJ4o7fy08Sh2tD0gaBHsM2iH7Ik32CMSlQG01u0EvNCDyz3I6KG/6PD3pRbn6FQRg4CAJKIwCBR2ktBnvNIZB8pUDaVJ73TUMCAS0SeO6tdaLf8tKgEC26D59VSgACj0obVuNu+a2JE89r3uOV+zBIIKAGAp98Gy3u638+sYzKKzBQrIY2hQ9EahV4cpMv0vz2d0oCT+pebEmhpfs95uxN8bzmBQ2bdydryXX4qkdAEwIPr97588MNsWO/W3BEz328BAFlE4DAo+z2g/XGCfA+adxBafOMP1bxGMeEMyolEHWwcan9oZjrKvUSbmmRAAQeLba6+n2ura0nXnXM/ZZRE8LV7zA8VD2B6zdL6Nft3MU97RV0VvX+wkHtEFCrwBMycqAk7qx/t792GhSeSgTefH+reGZ3fhWhvSUoGnuhCYHn+8XHxI3Oq3cQO1Zjd7jK3YXAo/IG1rB7V9KLpFU8PDMWCQS0ROCFAetFv+XloRu05DZ81QABCDwaaGSNuhgYcl48t3kVT0oaVvFo9DZQjdufTt8j7ud/PelLHIYQCQTUQkCNAk9y9G5J3OFVPDmXsI+tWu5XS/w4HZclnts82WRrRIollyKvSgioXuDh1Tu8KSDf5NMXHFZJs8ENEGggAIEHd4KaCXAse352t31uOVbxqLmh4VsTAvobZR44fq3JObwBAaUTgMCj9BaE/cYI8Cqee59fLvotoydhFY8xTjgufwK8987t7T3EvewRcEb+BsNCELCAgNoEHt5nx7/HU5LAEzlzsgU0kFVtBN4YvUU8ux9/fbXaXIM/ZhBQvcDzg8dxcYPz6p38Quy9Y8Y9gSwKIgCBR0GNBVMtJpCaViit4glYH2/x9bgABJRIoOugENFv6T4kVInmw2YQaJUABJ5W8eCkwgksXxcvnt+/bLuYLl8tVLg3MF+rBD6fsVfcx7z3DlbvaPUuUK/fahN4TvgvkcQd9073UHl+nnobD56ZJHAqNlM8v3mS7PbIVJP5kUFdBFQt8PBmgHd18hE3+LR5WL2jrlsX3jABCDy4D9RO4L2J4eIZfl/XQKqvv6V2d+GfxgkcOXlD6pTvO5qucRpwX40EIPCosVXhk45ATU0d3fOsv3iOfzwtWncY/0FAMQRy8srptx08xT282P+0YuyGoSBgLgE1CTwVBfnEos68e/8q/k4FLTMXA/KpmECfUQ2reJ7tt07FXsI1QwRULfDwhoCsXP6mgwdl55Yb8h/HQEDRBCDwKLr5YLwZBBKT8+gXd7uJZ/nGnUlmXIEsIKBcArpl9c+8uVa5TsByEGiFAASeVuDglCoILFnR+PszK6dMFT7BCe0Q+G7BEdHnvqOjD5WV12jHcXiqGQJqEngipk+SxB2/Hl2Iw7UhgcDhE40TBg/GXAcQDRFQrcDDcZB1M6g++RYzqDR0T2vKVQg8mmpuzTrbf8w28WOzS981mmUAx9VP4MKlXEnMxMaY6m9vrXoIgUerLa8dvxFBQjttrTZPS8uq6a8dG/YunrnoqNrcgz8gIAioReDJSUqk+e3vlASe1H2RaGEQkAg833+dGD/pPXKzdAwv1E9AtQJP8OYEcUP/3z2Igaz+21i7HkLg0W7ba8nz42cyxPOcV2TuOYywVVpqey35qvvB+WD3ILp1C+EItdT2WvIVAo+WWlu7vur2gP3LI95UUlqtXRDwXFEE3PxOi/727+7zpNx87F2sqMaDsWYT0PW3+Xfl6k0JZl8nt4whIwdI4g6/RgIBfQJhUanS+ElcYo7+KbxWMQHVCjydeq0SN/Tw8TtV3HxwTesEIPBo/Q7Qjv/dBoeKZ/prIzZpx2l4qhkCNzJLiDfl5h+bQaHnNeM3HNUeAQg82mtzLXqcX1hBv7+/YR8THjRHAgG5E+DoJ3c/7Sf6IZ/P2Ct3c2EfCFhNQA0CT3L0bknc4VU8vJoHCQT0CfBkwUd6rhTPdL7nkbRBQJUCD29MzIMk/Hc6LksbLQkvNUkAAo8mm12TTu+Iviye6bwfD+/LgwQCaiIw9edD4v7+5xPLqLq6Tk2uwRcQaEIAAk8THHijYgI8SM6/Rds+t5zq6upV7ClcUwOBkO2XxP3K0U/SrhWpwSX4AAIGCShd4OF9dni/nXn3/lX8Rc362qCfOAgCgSHnxXP91+3cKTMbewJq4Y5QpcDT74Ot4kZ+ceB6LbQhfNQwAQg8Gm58jbnOs1Du6xoonu3jpmJfNY01v6rdraisId7MmAcCOawPEgiomQAEHjW3LnzTJ5CSVkC3tWmYcLh5d7L+KbwGAdkReLZfw34NA8dul51tMAgE7ElA6QLPCf8lkrjj3ukeqijItycelKUiAlVVtfS3zkvFb8wZC4+oyDO4YoyA6gSe1LRCqTO9aVeSMb9xHARUQQACjyqaEU6YSWDJirOig8KxwTn8ia2ppq6adp/bTAcTo2wtyurrSyqL6eilvRQZu41q62qsLgcXKpeAb3CsuK9vb+9BOXnlynUEloOAGQQg8JgBCVlUQ+DN9xsmHXYdFGIXn/JKcygidiudueK6yQApmYm0+UQwZeSnY784u7Sq6wuJOXtT9EN4osmhmOuuNwgWgIADCShZ4CnPzyMWdXSrd06t8HUgKRStBgIzFx0Vz3cWeiora212CeMnNiN0aAGqE3i+mLlP3MBYDu/Q+waFy4QABB6ZNATMcAqB0rJq+vPDS8Qz/mfvEzbVWX+rnkqrSmic32CaEfqZTWXZcnFWUQZ5hM+mCWtG0uWsS7YUhWsVSuChl1eIe/qDryIU6gHMBgHzCUDgMZ8VciqfwN4jjWHDz8TbFjac+y0XM+Lpk+XDaFnUfJfBiY4Po7GB/SnszHoqrSxxmR2o2H4E3v50p+iHPNE72H6FoiQQkCkBJQs8Ed9OlMQdDtPG4dqQQKA1AhyajUO0sYDPIdtsSRg/sYWec65VlcBTVl4jDf4t8jvlHIKoBQRcSAACjwvho2qXEJj0w37RQbnnWX+qr79ltQ2ig1JZTMO9XqEJK0daXY6hC7nszMIbdOTSXqqurTKURTpWUlFMm2JW0GDPl2jDsRXScbzQBgH9PQPjEnO04TS81DQBCDyabn5NOq+7520V8blvcf7aWXrX+zVatGOGXVnW1FbT0aR9dLPwOtXVt74PXMrNBBrj/xZND/mErudftasdKMz5BLJyyuhX9zYM/q3aeMH5BqBGEHAyAaUKPDmXEmh++zslgSd1v+siUDi5yVCdjQR097ytIj7GT2xsCCdcriqBZ/m6eDHw95sOHnYJ3+ME/qgCBGwiAIHHJny4WIEEOKb9L+5uiGm/c89lqz3gAYySiiJ626sXTVw5yupyDF1YXl1G0XFhNG/bVKqobj3kFneU4tJP0XvefWja+o/FqiJDZeKYOgkM+XiH6Le8MAB7BqqzheFVcwK6wW6eSRh/EaJmcz54rz4Cy1Y3hOHk8LKFRZVWO8j9FhZ4Rnq/Tm47ZlpdjqELr+Veoe83TqBzaSeo/lbrAk9VTSXN2zaNhnq+TDEpBxFe1hBQBR2b4xUj+iF3PupDvF8DEgionYBusJv7Ias3JSjG3ZCRAyRxJ2TkQMXYDUNdT+D4mQzxnOd7/mRsptUGYfzEanROu1BVAs+TfYLFjTtqQrjTAKIiEHAlAQg8rqSPul1FoNc7G8Wz/o3RW6w2wZEdlJziTArY60Eeu2ebnAnLDmQV3aSFO6bTe7696fTlY1b7hAuVRYCXzOtmza7Zkqgs42EtCFhJAAKPleBwmWIJlJRW0x8e8BL9Fs/AM1b74UiBh/ci5BU5F2/Em2Ufh2l726cnBexzp4LSPLOuQSb5EeCV8Lwingf9Jv94QH4GwiIQcAABJQo8yVG7JHGHV/HkJOF3gwNuDVUX2fnV1eJZ//4k60OCY/xE/reIagQeViK5c8J/rFAigYAWCEDg0UIrw8fmBLaEJ4tn/W1t3Ojq9eLmp81678gOyuWsJJq9aSLtPrfZLFuqa6vpUGIkDXB7npaEz6Fbt+rNug6ZlE3gJ8+GWbN3dcKsWWW3JKy3hAAEHktoIa9aCHw8LVr0W3jPNWuTIwUevz2LyDviZxFe1hz7Csvy6MtVI+kjv4GUlGFbTH9z6kMexxDglfA8dsIr43mFPBIIaIGA0gQe3mfH7+UnJYEnatYULTQTfLQzAd/ghtXEv+1g/WpijJ/YuVEcUJxqBJ4xkyNFB4WVSSQQ0AoBCDxaaWn4qU+gtrae/t3FVzzzv1twRP+U2a8d1UHhcs9cOU6Tg8dQSqb5s6suZyfRFytH0ieBQ6iwLN9sP5BRmQRu3WqcNfv1TweV6QSsBgErCEDgsQIaLlE8gdiEbNFn4cH0QzHXrfLHUQJPTV01zQz9grafWk8lleZNmuHwskH7l9DAxS9QeOwWk+ForXIYFzmcwJvvbxX3Ja+MRwIBrRBQmsAT4+8liTvundtSRQF+J2rlXrWnn6Vl1fTHB21bTYzxE3u2iGPKUoXAU1ZeIy19X7oq1jGkUCoIyJAABB4ZNgpMcgoBFnZ4oOTup/2IQ0xYmhzVQSmvKhUrd74L+ZRKK0vNNqu4opDWHPGlIZ4v0dm0GLOvQ0ZlEog+dFUa7Eu+glmzymxFWG0NAQg81lDDNWog8Myba8Vzf/Qk60KJO0rgyS3Ooq+Dx1BMymGqqzd/D5YL187SaL8+NGf7FLpZYJ1opYZ2VaoPHCb2l20Xi3ty484kpboBu0HAYgJKEnjK8/PIvdM9ksBzaoWvxf7iAhDQERg3tWE18WOvWbcoAuMnOpLy/a8KgWflhguic/KbDh42bV4p32aCZSBgmAAEHsNccFT9BC5fLRQhJVjkiTyQZrHDjuqgZBffJL9oN1oS/hPxKg1zE9tz6vJRGubRg0KOBWLTYnPBKTTfO5/tEv2WroNCFOoBzAYB6whA4LGOG65SPgFdeJTf3+9JPJPW0uQogef8tbM0I/RTSr5p/qpjtr2iupxmhH5Owz17UuzVExb1eSz1HfntT2DBspOiH3Lnoz5UXV1n/wpQIgjIlICSBJ7waRMkcce/x1PE4dqQQMBaAjFnb4rnPo+fnD2fbXExGD+xGJnTL1CFwPPSoBBxow4fv9PpAFEhCLiSAAQeV9JH3a4m0G1wqNXPfkd1UBr235lEu89tshhPRsE1mr35S5qzbTLdyE+3+HpcoAwCRcVVxBNSuHMdFIq9C5TRarDSXgQg8NiLJMpRGgF+9nPse372B4ZY/ux3lMATHb+DvCPmmr3/jj737afX0bAl3WndUX+qrq3SP4XXMifA+0HxvfjFzH0ytxTmgYB9CShF4Mm5lEDz298pCTyp+6PsCwKlaZLAwz0anv2fz9hrsf8YP7EYmdMvULzAk5rWOIs76uBVpwNEhSDgSgIQeFxJH3W7moBu9ebt7T2ooLDSInMc0UHhFTscXu3rtWPpkhWbDpdXl1HY6VAa4/cWHUpEJ96iBlVQ5mWrGza5/MMDXlbN4laQqzAVBFoQgMDTAgkOaIjAiM8bVm++OHC9xV47QuDh/XfWHQ2gLSfWmL3/jr7h13LT6KOAgfRV8AdUVI5wo/ps5Pz6+JkMIe6wwHPuguWzuOXsG2wDAVMElCLwrH+3vyTuhI4aZMotnAcBswgs9D0lnv/WrN7E+IlZiF2aSfECz8xFR8UNau0+DC6lj8pBwEYCEHhsBIjLFU2A91/TbRbIoU8sSZZ0UFi4Ka8upaSMC5See5lq6gwvj+fju85tom/Xj6fyqrIm5lTVVNKNgnQqKm99Y8ykmxdoxJJXyXfPQuL9fJDUR+C5t9aJfsv7kyLU5xw8AgETBCDwmACE06omsOdwujSwzqFmLUmWCDy8l0520U1KvplAeSXZxNcaSrklWeQd8TOdTD1Ctc323+GQs9lFGUb7PFxe/a168gqfQwPcnqeLN+KM1mOobhxzHYFPvm3Yh+Hx163bh8F1lqNmELCdgBIEnqTInZK4M7/DXZSbfNF2x1ECCBBRVk7j/mubdydbxATjJxbhcklmxQs893UNFB3lqT8fcglAVAoCriQAgceV9FG3HAi8NzFcfAdwqE5LkrkdlOraajqatJc+DXqbPl4+mN7xeo1mb/rSYAi1sqqS/+2/M6eJKZmFGeS5+wfq7/YcTQ/5lLIKM5qc13+TV5pD00I/pqkhY+nijXj9U3itAgJX0oukwb29RxCGTwVNChcsJACBx0JgyK4qAvX1t+g/XfzE98CPnsct8s1cgYeFnaADXjQ+cDi9v/RNGus3gEKPBRlcYcP77ywM+45SMhsHD3lSy97zO2mM/1tiX8B953dTZU2FUVuPJe2nd5f1olUHl1JFddPJLUYvwgmXEaitrae7OvmIe9DN77TL7EDFIOAqAnIXeHifHb+Xn5QEnqhZU1yFCvWqlEDvkZvFd8Cgj8Is8hDjJxbhcklmRQs8J2MzpYGS+Is5LgGISkHAlQQg8LiSPuqWA4HIA2nie+AXd7vRtYwSs00yp4NSW18jZrW+v7QfhcduoZziTFp1aCm97taZ5m79psVM1YLSPJq9aSLtPrdZsoNn0cakHKLec5+gF79vT8O9u1NE7FbpfPMXtXU1tHyvO73j9QrtOB1Kt27VN8+C9womMMcrRtyv/+7iSzzQhwQCWiMAgUdrLQ5/mxPQ9d15DxRLkjkCT35Zrpho8sPmryj26kmKu3qKpm0YRyOW9qLIuO1ixY1+ndHxYbQwbEaT/XfKq8tpypqx1G32A9Ttx/Y0b/tUyioyPjGluKKIJge/L4SknKJM/eLxWoYEdu29LPoht7Vxo4xMrBSXYRPBJAcTkLvAE+PvJYk77p3bUkVB69EfHIwLxauQQPDmBPE9wHvCFpeYv38exk/kfzMoWuCZ8P1+cWN27LlS/qRhIQg4gIDuRyLHUF7kd8oBNaBIEJA3gbq6evrH48vEd8H8pSfNNtacDgqvvJm4ajStO+JHHKeeZ7BuPrGauv/QgUZ4vUo8kKJLPOP1Wt4V+mr1GErJTNQdJj6edDOBxgcMo67ft6eB7i9Q6LHWB3UOJkbSB779yG3XDMovbaxDKhQvFEvgkZ4rxb066Yf9ivUBhoOALQQg8NhCD9eqgcCZ+CzxPWDp/iemBB4+v+P0Bvph8yQ6kXKI6m/V0ZXsJJq54VPq+dND5Bu9kHivP13iCSVrjywXIdZKKop1h0VINr8oN3pj/lP00g/tadr6j+l6vvF9brmfs/rQMuo9/zGKST4o+ktSYXghOwK6faB6DNsgO9tgEAg4g4CcBZ7yvFxy73SPJPCcXunnDCSoQ2MESsuq6Xf3eYq+yIrQC2Z7j/ETs1G5LKNiBR6e+fqvJ33FTTl3SYzLAKJiEHAlAQg8rqSPuuVC4PMZe8V3QedXzY8lbqqDwnvm8EqcjwKGUElFkXCV/8/dNoW6/XAfvePVq4n4wgJQTPIBmh4ynsqa7Z0jzqUcosGe3WmoV1fafqr1zZUz8tPpp62TaXzQULGCSC6cYYdtBGITsqVBvdNxWbYVhqtBQKEEIPAotOFgtl0JPNAtSHwffP3TQbPLNSXw8CSThTtmCrFFF1ItJuUgjQscRD1+/J/Ao7c/IO/N4xP5MwUfXka82lg/FZUX0qxNE+i1+Y/S7M0T6WbBNf3TLV5zSNn+i58V4d5KKhvFohYZccClBMorauj39zcM6gWsRxhglzYGKncZATkLPOHTJkjijn/Pp6m+tumz2WXQULHqCAwbv0P0Q3q9s9Fs3zB+YjYql2VUrMBz4Pg1aaAk7VrD4JvLKKJiEHARAQg8LgKPamVF4NjpDOn7IPlKgVm2meqg5JXk0JTgD2nlQR9RHs9QTc+9TAPdXqSecx+mb9d/0iREG++/E7TPi5aEN91/R2dMbkk2LY2eJ+LU84BLa4lt2xizioa5v0zBh32ppra6tew4pxAC0xccFvfp/S8FKsRimAkC9icAgcf+TFGi8gjMdj8mvg/aPrfcbONNCTzh57bQsd4O4gAAIABJREFUDxsn0YnUw6LMGl6hc9iPes9/nAa5v0hhp0ObhGiLTz9NC7ZPJ77OUDqWtI9GLHuFfPcuJO4TtZZq62tpwspRNGhxV7qakypWL7eWH+dcQ2DjziRx3/26nTsVFlW6xgjUCgIuJiBXgSfnYgLNb3+nJPCk7ot0MSlUr2YC2yNTxffB/92zmHLzje+zp88A4yf6NOT5WrECj27Gdpe+a+RJFlaBgBMIQOBxAmSFVlF/q574BzevHqmqrRLhxTg0R2lVCZVUFlFRRUGLlSaGXOVr0vJS6HJuEqXmXKLk7ERKyrpAFzPjKfFmHF3IOEfnb5yhuOunKfb6SZHPUDn6x3JLs2j/pXDae3EXRSfuoKiE7RSRsI3CL2yhXec30Y64DRQWF0LbYtfR1nNrKeZK64IIiy9tuy0QnZSfvU/oV2X0dWsdFC7vRl4afb5iBCXfTBBl8IqeHWc3iH10+i54nHacaRraoqAsj75dP57C9fbf0a+8vKqUtpxcSx/69qe0nBT9UwZfc9z8CcEjafaWL8VgicFMOKgoAg92b5ix/e38hsE3RRkPY0HATgQg8NgJJIpRNIGEpDzRZ+Ewbeau6GxN4OFwaxuPryS/6EViv0CGk557hWZvnkBdZ7enr9aMpgvXzzZhFhW3nRaETadzaYb7TWk5qaLPsuXkGuI+jKm05UQw9V30BG0/vZ64z4QkPwLDx+8U912fUYZFPflZDItAwP4E5CrwrB/xliTubBg9xP6Oo0QQ0CNQVVVLf3zQS3wnmLuiE+MnegBl+lKRAg8Pvv33KT+LBvNkyh9mgYBNBCwRePhzww9l/hFYXVstfnzx4D2Hk9KFcmjNmIqacrpecJXS8y/T1bxUupKbTJdzLlFK9kVKzkqgS1nnxaB/ws1YupBxlq7mXW6tOHEuryyHDiVH08HkSNqfFE77Lu2mPRd3UnRiGEXyoP+FrbT7/GbaGb+RwuJC6WSa6YHRa/lXaPXxpbTymDcFHfWiwCMetPywO/kfciPfgwtp2YEF5LN/Hnnvm0te++YIMcGUoezb7B0TaVbYlzRz+xf03bbPaPq28TRt6yc0dcs4mrJ5LE3eNIYmbXyfJm54T9Rpqsyz6cdp9Io3aFRQHxoZ9DqNCHyN3gnoRcOX96Rh/j1oiF93Guz7Eg1c1pUGLH2B5u7+xlSRdDhlD3Vb9IDZf99u/UQ1ZX4wu2Efnif7BJv0iTO01kHh8zzztbAsT5rtWlieT1PXjRPh2d726knZRTelevizdT3vCn3oO0AShKST/3tRWllCW0+uoW/WjqWyStMDJcUVhbQkYg6N8ulNe8/val4c3iuMgP5gHu+/gAQCWiUAgUerLQ+/mxPQif7T5pnu2/K1rQk83A8pry4V/YtbdEtUdSAhgt5b1od6/PQQ+UT8TKV6odP4t8C6w/7kuftHyiy80dw08Z73E/xixbtiX53mIdwMXXCz8AYN9ehGk4PHiP6ToTw45joC+oN5gSHnXWcIagYBFxOQo8CTFLlTEnfmd7iLclMuuZgSqtcCAZ3o33vkZrPcxfiJWZhcmkmRAs/xM5aH43EpZVQOAg4iYEzgOZq6j3ou7kg93B6m7oseNDngz0KFqXTEQvFAy2VO3fKxKZx0NHWvyXbRF2tQZutIV0Q0xJHl2bBXr5uO/26qg6JfG6+G4pU8fed1oV4/d6Q5m7/WPy1WSR25uJfGLR9M5Xrx7fUzZRXdJN+oBeQV/pP+YaOvWXhdGjWf3l3yGkXGbTeaDyeUQeAHj+NiUool4XiU4RmsBAHLCEDgsYwXcquXgKVhO1sTeJpT4olbQfs8qdecR4knpfBqHf2UU5xF3hFzafXBpVRdW6V/Snq9J34HTQ/5lFjoMSfllebQcM+e9HnQCOJVzUjyIhAW1RiOJ6/AvHA88vIA1oCAfQjITeCpq64m3+5PSAJP9PemJ3XahwRK0ToB/bCdRcWG+wL6jDB+ok9Dnq8VKfBM/vGAGCjhH4lIIKBlAsYFHkvFg3EmMbJopC84mHrNK1tMJbWW+c3mj0y5Tpb6bk6Zxy7vl9qIhT0W+Fjo6+X+KL3q0Zle93yc+ng9SX2XPEVvej9DP+z8yqSd566dEKuMeLXR+yvfpDGr3qIPVw+gj4IH0bg1g+mTtUNp/Lrh9Nn6t+nz9SPESilThXKIN14N9f2OCfTDzkn0467JNGfX12KV0rzwaTQ/4ltaGDWD3KJm0eLo70WoNlNlZhRcp3883rCKZ7H/aVPZTa7g0S+AB0o4RAmHOem78EniQQ/9xPvvrDzgQ99vnKB/uMnrixnxNGXNWNqfENHkuLE3CddjaUrIh/TdxvGUmnnRWDYcVwiBzq+uFv0WfmYjgYCWCUDg0XLrw3d9AmfPZ4vvBZ6Ycv5Srv4pg68tEXiuZCfTzI2fU9cf2tPUkI/oUkbTFRvnr52lhWHf0W4jYWV5FdDCsBnkqxfyzaBRegd3n9tCby5+kjYcX0EV1eV6Z/BSDgTemxgu7reew5uGGJaDbbABBJxJQG4CT4yfpyTuuHduSxWF5u0n60xmqEudBMoraui3HTzFd0Pw5oaw9K15aonAg/GT1kg67pwiBZ4HujXEsZ/ldtRxZFAyCCiAgDGBR3+gX1+IedntIeqx+BF6xb0j9fLoRK95PEa9vZ4Qg+2m3D17LUaEEONQYiODetN7K/rS6JVv0ger+tGY1f1pbPBAMej/8Zoh9MnaYbT0wHxTRYqwbhzqjEOecegzHvTnUGgsPPzEg/67p9DP4VMbBvwjv6PNZ02H3+IQchySLfCIJ604uoRWHvMRIduCY3xp7Ql/WndyOYWcCqTQ0yto4+mVYiWNKUN5zxgOHcch5DiUHIeU49ByvKqJhZrjlw9QzJVDdCrtCJ2+ekzsVWOqTA6lwSHueH8bDmfHoeU4BF5G4TW6WXSdsoozKLskk7huDmXHe+eYkzhMh1bT2ClRooPSfUioSQSWdFCKygto1qYJ1O3H+8Ts1MzCjCblF5TmilmuoceDmhzXvSmpKKJNMatoSvCHVKIXIkV3vvl/HljZdnIdDXN/mYL2e1FVLWLZN2ekpPfpN4qlQbwjJw2HwlGSP7AVBGwhAIHHFnq4Vm0EeFUnCzxzl8SYdM0SgefwpT30oX9/evmnB8k78mfifoh+io4PE/vvnLlyXP+w9JoFoc8D36FjyftFaGfphJEXvNL5mzVjqd+CZyk166IU3tZIdhx2MoH6+lt0Vycfca95rzzn5NpRHQjIi4CcBJ7yvFxy73SPJPCcXukvL1iwRvUE+o/ZJr4bhn7SdAKrIccxfmKIiryOKU7gSUkrkAZKTsVmyosmrAEBJxMwJvDwD62aumqqra/Fjywntwmqsz8BFv54lc+aGD9i8ZLFL0NJF37il20XU2FR66KIJR2UnKJMGuXdm3rMeUgMYNTX10nVs6B2NTeVPlw2gBKvx0rHdS+4nrirp2jy6vdpz3nTHSe+jvf3mRc2lcYFDKLjyVjxoWOp1P8+q86JfgsPrvAgCxIIaJkABB4tt742fOc9+z5dN5wWRc2kLWfXEK+E5n31DKXPvtsrvh+e77/O0Okmx8wVeLhfsu3EWhrg9jz1d3uOtp1cS/qTf3gfzrWH/WjJ7jkG99+pqqmin7dOJZ/IuZRdZLi/1cQwIrqSnSTqmrNtChWXG/a1+TV47zwCR081hrc3J4yx8yxDTSDgfAJyEnjCp34piTv+PZ+m+tpa5wNBjaokwPtD82Tp9ScD6MSVQ2LSsCFHA9bHi37Inx9eQjU1jWMchvJi/MQQFXkdU5zA4778tLgB//Wkb5POqrywwhoQcA4BYwKPc2pHLSDgHALLDiyQQs/pVqTxyjMODacbQLmQcZZ4mfFvOniI74iQ7a1vTmlJByWjIJ2GeLws9t+Zt21aE6dZSD16ifffGUIcqk0/8YDKtbwr5LZzBi0Mm2k0zr3+Nfz6WNI++mj5AFqwYxplF99sfhrvFUaAN67kGdr8gxIJBLROAAKP1u8AbfjPq9t1/RXd/4HLuhIPuPjsn0fhF7bQjcJ0ijiQJr4fbmvjRrn5re+LYq7AU3+rjkKOBdEbC5+id7x7UXSzsLI5xZnkE/kzrT60rEW/pK6+lsJOr6evVo+h89fOmD1JLPRYEPWZ35kOXYokFpCQ5EVg2rzD4j7j5y8SCGidgFwEnuzECzS//Z2SwJO6P0rrTQP/7Uhg7u5vWvRD3vB+WoTUd98zm7bHrqfkrATKzC6jX9ztJr4j9h5Jb9UCjJ+0ikcWJxUn8PQYtkHcfGMmR8oCIIwAAVcSgMDjSvqo21kEYq+fbNFB0Q2Y8H/eX4hnpnDqM2qL+I5494vWB9Mt6aDwZsRj/QdSz7kP08wNnzeZXFBWVUorD3jT7E0Tm+BgcYdXGi3f607frB1HWc3CujXJrPeGB1dWHPCm4Z6v0OYTa8weXNErAi9lREBfdAwNa110lJHZMAUEHEYAAo/D0KJgGRHgUMH6/ZTmrzncMfcRqqpq6Q8PeIl+y6qNF1r1wFyBh/sfO85soCGe3Wiwx0u088zGJuWycMP764THbmlyvLa+ho5e2kefBY2gved3EcfPNyeVVpbQ1HXj6L2lb9LNQoQhNYeZs/Ponrss9CCBgNYJyEXgWfdOP0nc2fD+UK03C/y3MwHeVqB530P/fd8lXYgnyHJ6qu8a0Q+ZOHt/q1Zg/KRVPLI4qSiBp6S0mn51r7u4+bZFpMgCIIwAAVcSgMDjSvqo25EEqmoqxb5GPMNkkG9Xox2UPl5PUtz105IpS1fFiu+IOx9tPRyWJR0UFnF8oxdQjzkP0LtLXqWbhdel+nT772w8vkI6xmXfLLhGPhHzadLq9yklM1E6Z+pFQWkezdj0GU1eO5p4E2QkZRPQhQ3kvktRcZWynYH1IGAHArqBRl7VFn8xxw4loggQkAeBgvI8ikjYJvaTfN3zcaP9Fl7dk1+WKxk94MPtot9iKv69uQIPFxyffpq+WvMevTLnEVoaOa9JiDix/872b+lc2glhAwtCNbXVtP9CBI0PHEZbT64lFm3MTaevHKNRS1+j5fvcW6xkNrcM5HMcAf19ADlUGxIIaJ2AHASepIgdkrgzv8NdlJuCSWBavy/t4X95dZnYI3pB5HR6y+c5o/2Q/kufb7Jn9Gz3Y6Ifcv9Lga2agfGTVvHI4qSiBJ7tkanixuOBktIyLP+WxR0EI1xKAAKPS/GjcjsTyC3Nol3xG2n6tvHUy6OT0U6JbvZJP59nKSmr6YxXji3OA4f8d7KVfdos6aDwnlZpOSn0gW8/6r3oMZqzdQrll+YQx6m/nneFPvIfRAnXz4qNiMurSunMlWM0a9OXNG39JyIuvSWYkjMT6V3v12lp1DwqqSi25FLklSGBT6fvEfdit8GhMrQOJoGA8wlA4HE+c9ToOAJXcpNp7Ql/sedO90UPmuy3fLJ2GJVUNv1u918bJ74n7uhoemIKT/wY6f06ue2Y2apTvPpmU8wqGuLVjUYue422nV5PJRVFxJNn1h9ZTksifhITUWrqaqigLJdWHfKhjwOG0O5zmywSd7h/tCxqIfV3e57i088Qr0JGkheB5esa9lf4a0dv7AMor6aBNS4i4GqBp666mny7PyEJPNGzp7qIBKpVA4GbRddp67l1NGXzWOq5uKPJfsgQv+50vSCties8ZqIbP2ltnzaMnzTBJss3ihJ4dBtRvjQoRJYwYRQIOJsABB5nE0d99iTAs0YvZsZT0FEvGrdmcKsdEg7DphN2+P9g35foat5lg+bc1zVQdFLmeMUYPM8HLemg6PJfzrpEszdPpAGLnqOPA4ZS0H5PCtzvSSO9XqcjSXspKnY7zQubTpOC36c1R/yoqDzfaP2GTvCATETcFnpvaV/ad6H1EHOGrscx+RHgmVDcYf7J0/i9KD+rYREIOI4ABB7HsUXJjifA+8vEXDlIi6O/Jx4k0e+XNH/dfKLKpA2jqaKmvIWRadeKpIGVUyYmppgr8HAlvPo4MnYrfRY0nIZ79aCZoV9Q8GFfmh4ynuZvm0aHEqMp9PgKmrnxC/pp69dizx1L98/JLLxOnwQOpS9XjaSCsrwWvuGA6wnwyjDuhwweF+Z6Y2ABCMiAgKsFnuO+HpK44/HYvVRRWCADKjBBKQR4YsX5G2fI79AiMrTfn35fpPn4CYeHNbS/b339LeJJJvxdwZMCjCWMnxgjI5/jihJ4HugWhIES+dw7sEQGBCDwyKARYIJFBFjEOHZ5P7lFzaIBy15sdXCEOyG8GfHZazFUVFFAPdweFvnfCehFPFvFWBr/bcOqie5DjK+asLSDoqurpq6azqefpRUHl9CMkM9o8OKuNHDhi/TNmg/p+40TafOJ1XQ976ouu0X/Mwtv0NxtU+iHrRMpPfeKRdcis/wI6IdFOXHupvwMhEUg4AICEHhcAB1V2kQgryyHdp/fTDO2f06veTxmtN/ysttDYiUPr+hJz79Mh5KjpLy8Mrk18cTciSmWCDw6p/NKcmh/QjgtiZhDnwUOp/4Ln6P3l75J3677hNx2zqTouB1UUV2my27R/91nN9PbPj1o9eGlYnWQRRcjs8MJ8KAdhyzmQTu/NXEOrw8VgIASCLhS4CnPy6XFj7aRBJ7TK/2VgAw2upgAT9jgPsW88GnUz+cZqW+hL+boXo9e+Sb5H3IT++vcKEyX8o5Z9RZxKFljacjHDZMB+L+xhPETY2Tkc1wxAg8GSuRz08AS+RCAwCOftoAlxgnwTJGwuFCauuVj6uX+qNTR0HVEdP95WfGXoaMo9FQQZRRea1HglyEjiTstPNjSWuI92vjH7K/buVNZeY3BrNZ2UPQL4/1yvtvwGa055EtVtZX6pyx+zfacSztJ73j1ojWH/YiFJCRlEwhYj7Aoym5BWO8IAhB4HEEVZdqbQGrOJQo+vow+WTvUaJ+F+y59lzwl9tzhvXdKKouamMGx8F9x70hzdk8Rq4abnGz2xtyJKdYIPPpV7Tm/g+Ztm0bHUw6KsLL65yx9zWFqZ2+aRMM8eojQtLwqG0leBE7HZYn+MPeJr6Q3vT/lZSmsAQHnEXClwBM+9UtJ3Fn+yjNUX4uwls5reWXVlFl8gzafDabJm8ZQj8WPGO2L8NgK59lydg1ll2S2cHJUUB8av254i/CwzTOaEy4W4yfNqcnvvWIEnsCQ86KDgvix8ruJYJHrCEDgcR171GycAP/IT7gZK0KvjQ0eaLRDwoMjvI/O3N3f0N6Lu6i8utR4oUQiLErzARRDFxSXVNEv2y4W3xm79xleCWNrB4V9vCb23xkiwpoYssOSYxwbf/2x5TTQ/UU6lXrEkkuRV6YEho1HWBSZNg3MciEBCDwuhI+qjRLgvWl4dTGHXhvk27XVfsu7ga/Tkn1z6Ez6cao1sedMdOIOMkf42Ko3MaWi0vjEFFsEHt5vJ+RoIHnu/oluFhpfBW0UUrMTFzPiabRvX5q9aQLdyE9vdhZv5UBgns8J0Rfu8GLrG2fLwVbYAALOIuAqgSc78QLNa3eHJPBcPhDtLJeptrqaSnOyqbq8ZZhQpxmBilolwGMTcddPidU3I4N6t9oPGbisKy2M/E6s6uHoKK2lQ8nRZCoPX68fLpYnBxhKGD8xREVexxQj8IyaEC46KP3HbJMXQVgDAi4kAIHHhfBRdRMCPFP1SMoe0dnov/T5Vjsl3GlZdnCB6MRwHFlHpGfeXCu+M76Ze8hg8bZ2UHiFzfGkA/Tx8qFi42KDlVhw8Ep2sti75+PAQZRX2voKJQuKRVYXEvjXk77iHvRZdc6FVqBqEJAXAQg88moPLVuTW5pFO+M3EodPa75fjm5lMf/n8LCfrx9B608G0PUC60KwmuJcWFRJt7VxE98Ze48YFku432KLwJNbkk1LI+ZR8CFfswZ7WrOZ+26rDy2jgYtfoLAzoVaHeGutDpyznUDvkZvFPTV2SpTthaEEEFAJAVcJPOveflMSdza8P9QimlWlpVRdZnkozeqKcrq0bw+FfPwhrRz1Nq3/9CNK2L2T6qoRKcKiBnBQ5pLKYtqfFC5W+r7h/XSr4yccYi3gsAcl3owza+KINSbf+/xy8Z3h5nfa4OUYPzGIRVYHFSPwtH2u4WZb7G/4ZpMVVRgDAk4iAIHHSaBRjUECvHR4W+w6mrJ5rAhDoj8gov+aQ5Tw5sIbT68kvsYZ6eufDooOynNvrTNYna0dlLLKElp1aBnN3jTRYPmWHGSx6PDFPTRo0YvktmMm3XKQ6GWJTchrG4HkKwXi/uOwKBcu5dpWGK4GARURgMCjosZUmCu8kiY5K4FWHvOhj4IHtTqQ8qb3M/TDzkkUnRhGpVUlTvG086urxffGLLejBuuzVeC5cP0cLQybQeGxWwyWb8nBorICmhz8Pr2/7E26eMNxg02W2IS8TQnU1dXTnx5aIu6pNVsSm57EOxDQMAFXCDyXwsMkcWd+h7soLzXJZAvUVlXS8RUBtGLEUPLp8yq5d3uBAga/RYeWeVNxpum9PcsLC+logB95dHuB9i/xoKKbNyjq5zkUOHQgJe/fZ7J+ZHAMAQ5Dz2MiPDai219Yf9xE9/pVj85ijIXHWvJKsx1jTLNSR09qWFTR74Otzc40vMX4iUEssjqoCIFHf/+dM/GGl4vJiiqMAQEnEYDA4yTQqEYQ4BmbPGuEZ4/wLBJdB8TQf17Fw3HneVYKr+5xdtq557L4Ufure92pvKJluBNbOyj5pbn0XcintPXEGptdyynOpMW7v6dRvq9TTIrhFUc2V4ICnEpAt//OXZ18HDbLyqkOoTIQsBMBCDx2AolizCLAYUk49NqiqJk0YNmLrfZbOPSaz/55dO7aCZN75phVuYWZvpi5T/Rbug8JNXilLQIPi1tRcdvFJJL4dNsnS+5LCKcRS18h3z0LiftDSPIjoL//zrUM54iU8qMAi0CgJQFnCzy8Wsa32+OSwBM9e2pLo5odKS/Ip8C3B1Pg0AEUH7aNrseepfM7tlHAO4No9t3/IK9XutPlo8ZDeleVltCpNcG06KnOtHPWt1RT0RDGK37HdvJ6tTuF/zSbOA+S4wlwKFcOvcbRS0YEvtZqP2Sw70siGgpHRamqrXK8cc1qCApt2Bbljo6Gf79i/KQZMBm+VYTAE7w5QXR4eRYKz0ZBAgEQaCAAgQd3gqMJ8L44h5KjaF7Et2K/HENiju7Y6BVviLix52+ccfmgtn64kz2HW4Y7saWD0rD/zmUa5z+EOAa9LYlFswvXztLopX1pytoxdgn3Zos9uNY+BHQ/Hgd8uN0+BaIUEFAJAQg8KmlIGbuRXXyTwuJCaOqWj4k3H9b1UZr/77m4I30ZOopCT68gnlHr6rRpV5L4vfubDh5UXV3XwhxbBB5eKbz+SAD5RM6jrKKMFmVbcqCmtpoWhE2nIe4v0bGkfcRlI8mPAIfY4VXEHHIHCQRAoJGAro/On4/VmxIaTzjo1XFfD0nc8XjsXqosKmy9plu3KOTTj2jNh+9RZXEx1dfW0q36eqqrraXSnBwK/mAEffePv5Dbc10oJzW5RVmcN/XwQVr0/FPk+8ZrlJfWuB8tHw/o14c2fPQB5aSmtLgWB+xDgPcM5v2Ff9w1mfou6WK0H8L9Et6vOOioF13KOm+fym0oJTWtUHxv8Gcj/mLLkPEYP7EBrpMuVYTA89E3UeJG6zPK9iXlTuKKakDAKQQg8DgFs+Yq4YGOLWfX0ORNY6jH4keMdkp44ITzbD4bTDygIrf02GvGw53oOijDvV6hCStGWmQ6X5uSmUgLtn9HZVWlFl3bPDNfv+VkMA32eInWHwtofhrvFUpAF1bWfbntM6UVigBmg4BBAhB4DGLBQRsI8KSLi5nxYoDkw9UDjPZZeCCln8+z9NOuyWLghSewyCnl5JVLAytHTrYMZ6sTeN71fo0Whc2wyPTSyhIKOx1K4ee2ULWNs4IvZyfRuMBBNHX9R5Se2zhwaJFByOxwArxvMQ/SvTcx3OF1oQIQUBIBZwo8Zbk5tPjRNpLAc2aVacH15oV4mtm+DcVt2yKEHX22LN6knThO393zT5r5n7/RjhnT9E+L1xVFhRQyfiwteuxBOuTr06SMFBZ43upDK4f2p7QTMS2uxQHrCVwvSKPQU0Fi4sjLbg8Z7Yu85vGYmIASFhdK+WXyWwH7ny5+4rvDe2XLPWQxfmL9/eGsKxUh8Oh+DP7kiYeQs24M1KMMAhB4lNFOcreSv6wvZJwVq29Gr3zTaIeEB0c4xMm88GliVQ+HPpFz+nT6HtFBeW3EphZm8soZjqs/Zml/mrZ2XIvzpg5U1VTaJSxJdlEGLd41iz5dOVyIRqbqxXn5E8jKKZMG6U7GZsrfYFgIAk4koOvTG5sd6ERTUJWCCXDoVw5hsiByOnFI2Oarc/TfjwrqI0KjxF0/TfzdL+d0X9dA8f2xyO9UCzPZ9oTrcTTObxAtCZ/T4nxrB/jakooiKq+yPWRudFwYfeD/Bm05FUwlFcWtVYtzLiTwzyeWiXvJf22cC61A1SAgPwLOFHh2T/1CEneWv/KMWI1jigjvsTPtb3+kWff+W+yh0zx/ZXEReXR/nqb/4y/k8fKLVF3W+FznVT4sAM1q34aW9ulF+VfTmlyeGBVBS3t1o4B+vSnl0IEm5/DGMgK1dTV09lqMCO369vJXWu2HDPV7mdyiZomQsdW18l71OuTjHeK7490vdrcAgvGTFkhkd0D2Ak9pWTXd1sZN3GSGwuzIjigMAgEnEoDA40TYKquKxQ3eH2fu7m+INxPWHwxp/vqDVf3EvjsJN2NdHnrNkmbgZfc8iPiXR7xb2M0zflmkCTkWQLvOthSALKnHlrxF5QUUGbeNtpwIJu4oIimfwLaIFHHf3d7ecJgd5XsID0DAegIQeKxnp/UrM4tv0NZz68Smw6+4dzTab+FzvHnxpjOriK9RUtINPPIAS/NO6gfRAAAgAElEQVTE/RYOr7bhWBAdvrSn+WmnvT9/7SytOuBN6bmpshfMnAZFZhVdvV4s+iHcB45LbBlmR2bmwhwQcCoB3XOWPx+ODNGWnXie5rW7QxJ4Lh8077m9120Bzfj7H2nm3/9EG778tAUbFnT8B79J3/79zzT38Y5Ulte4CqSisIA2T/qC5nRoQztmfdtk9Q4XdGZDCLk91ZkC3+pDqUew72sLuCYOFFUUUHRiGM3eMZF6ez1htB/SfdGDNG7NYFp5zIeSsxNNlCqv07rwnh1eDGxhGMZPWiCR3QHZCzz7jqaLDgqLPMUlzt9oSnYtBoNAQI8ABB49GHhpkgCHXuMBDx746OH2sNFOSS+PTmIAhQdSckuzTJYr1wzJVwqkH7gXU/LlaibsUhmBqT8fEvfdc2+tU5lncAcEbCcAgcd2hlopQaxYuRkrJpjwRJPmk0/03/MqHp6wwhNXeHWPUpPPqnPi++Pup/2U6gLslgGBkO2XxH30hwe8sH+xDNoDJsiLgLMEnnVvvymJOxs/GGY2hKKMG7Ru3Pu04p3BdCMutsV1vC+PZ48XhcCz+KVnqaq0Idwoh2/LTLhAPz58H7k9/Rhd2Nl0okBtVRXt93Kn2R3a0Iphgyj9dMuVoi0qwwG6mneZ1p1cTp+vH0Es3Oj3PfRfv+75BE3fNp52xW+k/2fvOqCiPLp2yvcnscReo6ZYYqyxxJgYe+891mhsMdYUNcYO0ov0XgRUUBFFURELiogCKiCICKKggtIRUHrJ8587uOsC20CQXZg5Z8++Zd4pzzswd+9zS0aO8uodbtx+LtSfpL1Q7GgtfHlWREDhCR4ts0C2wHqNcao4en6FI1DPEeAETz1fADKmX1RSBApJYuWrh1/2T5QokJBwMsd6GAt1QiFPyLOlrpSWfSzYHuJ07F5dmRKfh4IjMGreMbbm/t7ro+Aj5cPjCLx7BDjB8+4xV6YeKS/OteiLLBQs5csRVZ6UP6aQsrbXDFiIWbIqrQslKCxJqFh5nqhYOYLqAr71ZQ4kf5B3AskjvHAEOAJlEXgXBE+U12khuaPbtRXSHj0oOwgpZ7SfFeTkoDAnp4IHDpE4z8LDsPurz7C7fUu4bnwTZpyeCXCww462zWA1YxJeJpUNE52dmoqT2zZjW9tmOLJmJVJjHkkZRf29VVhcgKAn/jC7oon5tqOlyiF038h7LwJjr4GeqwslL68I//eVEdtDPC/H1IUp1as5KDzBI0gQuHLLhXr1YvhkOQLyIMAJHnlQql91XuZlsuTBlER4itkgqUIJJSN2uGHKkhPXVZQmLTnBBJS1Oy7V1SnyeSkQAiUl/4EsZkmxQha0vHAEOAJlEeAET1k8+BlA3sUnQg5hy/GVGG3YS6LcMs6oD6vjHuKM5KyEOgldUVEJGnQ1YXvIyfMP6+Qc+aRqHoEhMw+zNUQexbxwBDgCZRGoaYKnuKAA1iP6Cwkeb7XtZQfwFmeFeXnwUt+Dna2bME+duJBgYWvZaWlwXr6YefboDu4Hj93bcHbvLuHH7e8NMPxpEHZ81grn9u5BbmaG8Nn6fvAiJw3nI05B5fSfIE+c8gYlgvNRBj2w1mU+DgVYISal7v7O+26KM9tDVAxu1PeloXTzV3iC5/PBtmxxWR6o6J6odGjzAXMEqhkBTvBUM6BK2lz8i8dwDXLEn65LQYKHQAgp/z3BuB+2ua/B6bCjSMuuHzG5d+tfZ3vID9N5uCwlXd5KNewHMW/CAj56zH84KdXL44N9JwhwguedwKzQnRSXFCP8WTDzvlnmOFWizEIyzCyrodA5v4N59eQV1o9QIYOnuTC5heQXXjgClUWADE0afV1KEh73lN9roLL98PocAWVFoKYJngArIyG5Y9y/M/KqiUgh752nQbewt9uX2PN5OwQ42aOkuJi9BvL6SX/6GHrf98fujq3gsGAOvNT2wFN1F/ucVd0Fx4Vzodq5AzR6d4O/oz1KSkqU9RVWy7hjU6PhHGiD9YcXSA29Ntl0IHZ7bITXPXdQDp76UH7fdonJIdOWn6wP061Tc1Rogic9I5ctLLKEDQh+XqeA55PhCFQHApzgqQ4Ula+NouJC3Im7CQsfHSyyHydVOfKzzUjsu7gH/jE+KCiqG67DlXlj7l7RbB9p2M2ExyGvDHC8bpUQEMS9b9LDDHUlZFCVgOAPcQQkIMAJHgnA1PHLr/Jfsvw4mue2Ypr5YKlyy8oDM1jenfsJYfXy/+ia7aWKlanL3Ov4quDTqwkEoh6lC/UnMU+4oUlNYMzbVG4EapLgyU5NgWGfz4UET/BB+2oD61VKCmxnTYFKxzbwtTRFUcGb3/UlRUWIueGHHR3bQP2bznhw9QrI20f4yc3FVcq/06UTbKdPxCM/32obl7I0RHqQW4/9YHJZHaQfKW8IK3pOoddMLmvg9uPrIL1LfSvWh0LZPtJxEM8HqGzvXqEJHm+/p2xhffC5AXJy698flrItJj7ed48AJ3jePea11SNZjFy6fxpqZzeBLElEhRDRY0r+t/rQHDj5WyA6KaK2hqsw/T6OyxT+0L0fnaYw4+IDqZsI/Kt1ja234XOO1s0J8llxBN4SAU7wvCWASvQ4hV5zC3LCpmPLMNqgp0S5ZZxxX2w98RtOhR5G6qskJZphzQzVxjmM7SMdvuOKlZpBuG63esQjkq2fpj25oUndftN8dlVFoCYJnnP/bhSSO3bjfgARL9VRyHvn8OplUPmiPW4fPlShyaK8PNxxc8W2Nk2g811fZCaWDWNK4diObfgd29s1x6l/t4DIovpQKGLJufAT2HVqAyiSiajORPSYIqBsOLIQLjdt8SSN5525eSdBqD9JTa8f3tN15e9BoQkefevbbGH1GOVYV/Dm8+AIVCsCnOCpVjgVrjESMI7cssfGI4ulhl6baNIfO0+tw9m7bqAYsryURaB5b3O2l7icvF/2Bj/jCFQzAuMXH2dr7U+VK9XcMm+OI1A3EOAET914j+JmUVRShLD427Dy1cMv+ydKVKSQUmWO9TDoX9iF6w+9kV+YJ665envtVmiiULGSkpZTb3HgE68aAls1fdn6GTHXtWoN8Kc4AnUcgZoieJIi7kKncwshwRPj611tSJ7ZtY155kR4eYptsyAnB/77bbCrfQtYTZ+EooL8MvVSYx/BavwoGP7QH8FurnXaO/ZRShQOBlhircs8qXLIFLPvWM6dCxEeoBzGvLxBIDevEB9+Ycj2kou+T97c4EcKj4BCEzyLN3qyRbVog/h/ZAqPLh8gR6CGEeAETw0D/I6bLywuQPDTAJhd0QS5BotalpQ/pvuGl1QRGHsN9BwvkhEYNe8Y20v+0ah/7uiSUeF3agKBNv0s2VpzOnavJprnbXIElB4BTvAo/SssMwFSilyO9IS65xZMMRskVW757dBsONwwRVRSeJk2+ElZBPLyivC/L7lipSwq/ExeBASGJn+p+sj7CK/HEahXCNQUweOyYKqQ3HFbOb/aML2opwW1nl1Y/h3RRsk7KC44CEX5eSjIzsZ1W0sWvs1l9XLRasyLKNrnClQ6d4DbH2vxIu5pmfvKfkJGIoGxvkwvMtd6uFQ5hELbm1/RYvoWMkrhRTICvcY4sd+0ela3JFfidxQOAYUmePpNOMgWlbb5TYUDjg+II6AICHCCRxHewtuNISMnHecjTjELkokmAyQKJRR6jSxRDgVYgSxTeJEfgY27L7O9ZPJSHs9eftR4zcoiQC7slDOQPkFhPMxQZfHj9esHApzgUf73HP/iMVxvO+BP16VSvYspHMo29zU4HeYKCpPCi/wIfDPSge0lRnZB8j/Ea3IEAFBoP5JD7I/c5XhwBDgCYhCoCYIn6pyHkNzR69YaaTHRYnqu/CU/G0to9++NhHtlDSMoz+eLp09gO2c68l++RGFuLgvdpvp5O7hv+atMR1mJCTizYyuMhgxE6MkTwH//lbmvjCcUzpUil+w4uRYU5rW8IazgnMLD/nH0FxYRhWQXXuRHYMG6s2wv+fVvL/kf4jVrHQGFJXhKSv5Dg64mbFF5XHhU60DxAXAEFBEBTvAo4luRPabY1GgW43X94QUg4kYghJT/nmQ6ALs9NrLYsRk5L2Q3zGuIRUCQKPCLH2zF3ucXOQLVgcDVgDgms7zfiecNrA48eRt1EwFO8Cjfe6UEwyFxgbDw0QFZv5aXVUTPKXGxwUUV+Mf4gBIa81I1BGb/5sH2k9+2XqxaA/ypeolAZlY+WzdE8AQEP6+XGPBJcwRkIVDdBE9Rfj6shvcTEjzeattlDUGu+8FuR2E6fiRexMdXqF9cVIQH3hfhuGQBu1dcWIgHV7yxu1NbnNj8p7A+efmQ947Wtz1wTm0PcjKUU59AhBblFnbyN2e5hkXljvLHU82/ZzmLL90/g1f5L4VY8IPKIaBmHMD2k0FTnCv3IK9dqwgoLMHz6HGGUEB5+Fg5/xHV6pvlndcLBDjBoxyvmZQctx9fh8lldcyzGSVVObLQbiyrR/VJqcLL2yNwLTCe7SekeM/O4Zi+PaK8BXEIWB4IZevsqyF24m7zaxwBjgAATvAoxzLIzH2BS/dPY++ZvzHZdKBEuYWMVH53ngsnfwtEJ/M8d9X1dnfrX2f7yU+zjlRXk7ydeoCAf9Bzof6EyB5eOAIcgYoIVDfBE2BpJCR3jPt3Rl5mRsVOK3kl6rI3dn/RDvbzZuHkv1twYstfwo/b3xtxZO1KGP00GB47/xW2nPYkFno/DoTTL2/Cw6XGPMKBJQtgNHQwkh8oVwSQvMJc3Hh0Bfsu7sEsq6ES5RAieCjvn+VVXdyJu4nikmIhJvyg6gicOBfN9pPG3U3rdM6mqiOkmE8qLMFDXjtkffJJV2OQNw8vHAGOQEUEOMFTERNFuZKenco8b8gDh8KUlLcuEZyPMugB8uRxuWkL8uzhpfoRSHvxJnTW7dDE6u+At8gRALBhV2kowCm/8lCAfEFwBCQhwAkeScjU/vUnaTE4fMsOG48slhp6baJJf+w8tQ6ed93wIiet9gdeB0dwxCOS/Q5u1su8Ds6OT6mmEKCwbKQ/oTBtvHAEOALiEahOgic7JRmGvTsJCZ7gg/biO63E1dhAf+z6vA12tW7CPnvaNEH5j0qbJtD4vC38nfYLW87PfoUrxgbQ7NMdyVFRSHkUjRObNsJk5BBEeiuHN2jyy0ScDjuKbe6/Y5xRH4n6k9GGvfCX61K4BjnieUacEAN+UH0IRD5MZ/sJ7SlP4rOqr2HeUo0ioLAEj47FTbagKA8PLxwBjoB4BDjBIx6X2rpKuXEoRw7lyhEQOOK+p5h9x3LuUO6drNy3t/KprfkqU79t+1uxPeWA2z1lGjYfqxIhMHr+MbbGtmr6KtGo+VA5Au8WAU7wvFu8pfVWWFyAoCf+MLuiifm2o6XKLXTfyHsvAmOvgZ7jpWYRCLufIlSsJCZn12xnvPU6g8AmNR+2bsYvPl5n5sQnwhGobgSqk+A59+9GIbljP/5HlBS/vfdI4AEHHFy6AAeWLZb4ObhsMQ7/vgIJ4WFl4KEQbJd0tGA7ayocFs7FqW2bGdlTppICnVDotcjEu9h/3QSrDs6SKodMtxgMDc8tuBJ1DjkFrxRoFnVzKEVFJfiosxHbU7x8YuvmJOvgrBSW4Fm55QJbTPPWnqmDsPMpcQSqBwFO8FQPjlVtJb8onyk7DC+pYq71cKlCCcWtJyVK8NMAFJUUVbVL/lwVERg25yjbU3bpXa9iC/wxjoB0BD4fbMvWGE9sLB0nfrd+I8AJntp9/xk56SDjEpXTf2KiyQCJcguFXlvrMp8ZrcSkKFdYl9pFuHp6z80rBIWVJctZCjPLC0dAHgSmrzjJ1gx5FPPCEeAIiEegugiepIi70OncQkjwxF5TjL87Ik3yX75E3kvF9LrIKciG30Nv6F3YiZmWQyTKIWQku9RhMqx99REWH4SS/0rEv1B+tcYQ6D7Cge0ppg4hNdYHb7h6EVBYgmfEXFe2mHbo+lXvjHlrHIE6hAAneN79y0x7lYyzd91YeJLxxt9KFEpGG/RkYU6O3LJHXDq3enj3b6psj8s3nWd7ysL1Z8ve4GccgWpAID+/CB98XqqMuxrAQwVUA6S8iTqKACd43v2LpfCvzoE2LBwsETfiPIvp2iTTAaCwsl733JGRw/Ofvvs3VbZHCrNFBI+Da3jZG/yMIyABgZ6jHdmaMbYPllCDX+YIcASqi+BxmT9FSO64rXyT94YjXBGBxKxnOHnnMP45vgpjjXpLlEPo3ia35TgefAD0DC+1iwCFHSc55I89V2p3ILx3uRFQWIKn4yAu1Mr9FnnFeosAJ3hq/tWTFUx0UgRLILz60ByJAgkpR6aafw+1s5tYYuKXeTVnNVNYXIhXeS9BfRRzbyC5FoGmaSATUAZNcZarPq/EEagMAvej09j6IiE4PuFlZR7ldTkC9QoBTvDU/OsuKCrArcd+MLmsjnk2o6TKLQvtxsLksgZuP76OouLCGh9cSUkJcgtzmAyTX5iL/8DzrEoCnRs7SkKGXxeHAP1eodzFJIecuRQjrgq/xhHgCACoDoIn6pyHkNzR69Ya6TEPObYiCJC3TURCKOz8jLDiwHSpcgh58Wid+xdXH5wHefe8q0L/M3MLcpCd9xK5BdncQ0gM8H+qXGF7yuSlPL+sGHgU8pJCEjzcLV0h1woflAIiwAmemnkpeYW58I/xwb6LezDbaphUoeSX/RNh4aODO3E3UVzy9nF3pc3ov/9KkJARD+97Z3DQ1xz7fUxwMfwMMrO5pa003OjeUY8oJqA0780TFsvCit+vPAKnLz5i66tBVxPQDwZeOAIcAfEIcIJHPC5vezU9OxXnwk9g16kNmGDcT6LcMsqgBzYcWQiXm7Z4nPZuFVJkmBL29CaO+jvA8aopXAOc8PxFHFeqSHj5gnDl89fxcOUSIOKXRRCIe/6SySFE8FBybF44AhwB8Qi8LcFTlJ8Pq2HfCgkeb/Ud4juqZ1cpL45v9AXoeG3HdIsfJMohZBS7zGkabP0Mce95SK38biJiJzzuNlwDHJk8csjPBtEJEdxwttyaNXMMYfvK18P3l7vDTxUVAYUkeO5FpQoFlOeJPIGWoi4ePq7aR4ATPNX3DpJfJuJ02FFsc1+DccZ9JQolow174U/XpXANcsSzjKfVNwAZLZElzLMXcdD12IntR9bA684JuN9yxnzj0Th1+3CtCEcyhqxQt4PCkoT7youMPIUaGx+M8iNgZBfE1levMU7KPxk+A45ADSLACZ7qA/dRShQOBlhircs8iTILKVKmmH3Hcu5ciPBAVm5G9Q2gEi29zM2AR7ArNjgugJmXFrxCT0LNfTOsLukh9WVSJVqqP1W1zW+yfWXg5EP1Z9J8plVGwMc/jq0XChdbUFCzBmdVHiR/kCOgAAi8LcETYGkkJHeM+3dGXlamAsyqdobwPCMOJ0IOYbPbCowxlBx6bZxRH/xzfCXcQ5yRnJVQO4N93St565AMsm7/PBifU8Ple57QPb0T2w6vxpNU7v0o+nK8fGLZvvJRZyOUlHADRlFsFPVYIQmec1dKF9LHXYy50lJRVw4fl0IgwAmeqr8GsrKPTLwLhxumWHVwllTlyHSLwdDw3ILLkZ7Izq8d0jkp4zlsvPWx2m42bsX4Cb2FNh9agUWm42tNaVP1N/Bun0x7kcsEFLJsvHMv+d12znur8wj8perD1hfFKuaFI8ARkIwAJ3gkYyPrTn5RPgJjfWF4SRVzrYdLlVsW2Y+D+RUtBD8NQFEth3KlsLKnbh/BLIMfYX1pH+icwsv6R/lgpdVMXLl3TijTyMKgPt0/4hHJ9pXW31rWp2nzuVYRAadj99h6odxNvHAEOAKSEXgbgic7JRmGvTsJCZ6QQ/XLs4GilYQ/C4bNtX1Y5jhVqhwyy2oodM7vwLXoS6DoKIpQSP7wuuOOafqDYOKlAQppS0a0jxIiMddwBJyumnN5RORFkTco6U7o8yyRhyAXgUZhDxWS4LE+FMoWUZeh9goLHB8YR0AREOAET+XeAsV9v/7QG3oXdmKW5U9ShZKlDpNh5auHsPigWg8fkl+Yj6P+9lhsPhang4+WIZksLmhjrGYP3Iq5Xjkw6mHtht1M2N5C4bR44QhUJwJzVp9ma2vN9kvV2SxviyNQ5xDgBE/lXmnaq2ScveuGHSfXYrzxtxLlltEGPfHH0V9w5JY94tJjK9dJDde+8/gm5hoPxVr7ecjMeRM6KuJZKH42HAm7y0ZIf5VSw6NQvuav33rG9hVSrOTlFSnfBPiI3ykC6iYBbL38MP3wO+2Xd8YRUDYE3obg8dy6QUju2I//ESXFdd9b7lX+S/hEeUHz3FZMMx8sUQ4hj+GVB2Zg/3Vj3E8IU0hD/btPgzDb6Ccst5qKF9mpwqWbnJWIRSbjsengr1weEaICZOcUCuWQgODnInf4oaIioJAEz049P7aQRv7sqqi48XFxBBQCAU7wyH4NSVnPcfLOYWw98RvGGkl2HSa34k3HluF48AEkZMbLbvgd1SBLmYj4UPxiORGbXVYgObOsW7P9ZSOM0+vFQp68oyEpbTfdRziwvcXc6Y7SzoEPXDER+H6qC1tbWmaBijlAPiqOgIIgwAke6S+CvIujkyLg5G+O1YfmSFWkTDX/HmpnN+HS/TN4mZclveFaukvhTpZYTMAs4yEIe3K7zCiiEyMwx2gYNE/9g9sxN8rc4yfA02dZQsVKdCzPtcjXhHQEVv97ka2XeWt5zibpSPG79R2BqhI8SffCoNO5hZDgib12pc5CGf/iCdyCnPD3sV9B4emJvBH3obD2/55YjVOhh5H6SrHDrcalPcZvdrMwSa8/gmMDyry7tFcpWGIxGcttpnJ5pAwyAOUvJkOTY2celLvDTxURAYUkeJb+5cUWEf3z5YUjwBGQjAAneCpiQ262EQmhsPczxooD08UKIwIBZYbFj9A69y98HnghpyC7YmMKcCUjOw0OV00xfd/3OOBrzlyJRYdldl4LY7V7YKvzb6KX+bEYBMYudGN7y79a18Tc5Zc4AlVHoN0AK7a2Dp2IqHoj/EmOQD1AgBM8FV8yhS658egK9l3cg9lWw6TKLb/snwjLq7q4E3dT4cOIkDxmeVEXwzW6QtXtT+QXls1/FxF/B7MMh2C32wZ43z1bEZh6fqWoqAQffmHI9pbL199dzsd6DrvSTn/iLyfYWqHfhrxwBDgCkhGoKsHjPG+ykNxxW7VAcgdKeIdCuYbF34bVVT0scZgkVQ6ZYz0M+hd24cajyxX2dUWdOskj+68YY4x2T/zr8luFcZMB7SKzcVhqNZHLI+VeYt9xB9jeYmATVO4OP1VEBBSS4Bk17xhbROTJwwtHgCMgGQFO8JRik1PwCteiL0LHazumW/wgVShZ5jQNttcMcO95SK2HXpP8ZkvvkCUvuRKvtJmB3x3mIPChb5lH6D4pTUZpdsfmg8vL3OMnFRFYvuk821sWbfCseJNf4QhUEQFKZvz+6/jEVwPiqtgKf4wjUD8Q4ARP6XtOfpmI02FHsc39d5AFrMDwpPw3Wc7+5boUrkGOeJahXEr+p6kxmG04DCM1u8MnwqvMAi8uLsLtR9cxUbsfdrquw/nQU2Xu85NSBDoOsmFyC+VX4YUjIA2BXmOc2Foxtg+WVo3f4wjUewSqQvBEep4Skjt63VojPeah0uP4Mi8T3pFnoe65BVPMBkmUQ0gu+e3QbDjeMENUUrhSzvtZ+lMsNp/IdCaX7p4uM4eSkhI8To7GNL3BWGI1gcsjZdABpi5zZ3sL5ZvlRfERUEiC55uRpWF0LA7wMDqKv4T4CGsTgfpM8FAYtRMhh7Dl+EpQeLXyShHBOYVlozruIc6gcG3KVAqK8nHY3x6jNXpAx2MbEjLKho6j+6tt5mKkWjfsddukTFOrlbHu0rvOBBQyIuCFI1BdCMQ9f8nWFbmv8zA61YUqb6euIlBfCR4yyIhMvIv9102w6uAsiTILyS7TLQZDw3MLrkSdK5NzT9nWhONVcwxX74I5BkPxIjutzPDJa8kr1B0j1b6GyvE/4Xv/Ypn7/KQUAUH4T23zmxwSjoBUBFr0tmCyCA+jIxUmfpMjgMoSPEX5+bAa9q2Q4LmssVNpUaQcfa63HfDn0SWg3H0CfUn57wnG/bD95FqcDnNFWrby58hzCzyAsVo9MdtwKNJfvcm9Qy+yqLgQt2NvYLT6N1hiMZHLI+VWtyD85/x1PPxnOWgU8lQhCR5BnL/jnjzOn0KuGj4ohUGgPhE85Fob/iyYed8sc5wqUSAhAWWW5U/QOb+DefXkFuYozPuq7EDSXyVjrcN8TNDpi1O3DlcIx0KxZKfqfodhql1wPPBAZZuvd/VNHULYj9+eox3r3dz5hGsOgaCwJCHBk/Uyv+Y64i1zBOoAAvWJ4CH5w++hN/Qu7GRySXkFiuj5UofJsPbVR1h8kMJ7F8uzDDNzXuBnw+EsPJvhWdUKj6S9TIHVJT0M39sV+87swoPn3EOlAkgApi0/yfYXbjkrDh1+TYBAYeEbT2LfwLLGYII6/JsjwBEoRaCyBI+/haGQ3DEZ0AV5WZlKAyWRFyFxgTD30cYi+3FS9Sc/24yEwUUVBMRcRX5R3fk9k5WTgTV2czFSoxt0T1ck53Lys3H4hj2Gq3XFaptZXB4pt7p365cayI782bXcHX6qiAgoHMFDAgpZwdLnGhdQFHHN8DEpEAJ1neDJzn/F8uNontuKaeaDpQolKw/MYHl37ieEgSxllb0UFRchPC4YE7T6YbLeQDheNWNJ/ygRseDj7GeF0eo9MULt6wrJi5V9/jUxftfTUWxvadXXolLNu528B0vbQCQkvqzUczVZmda4lf1NWNrexMsqkgpZWflQ1bqCyz4xoDBjNVk8zkZip+pFUJ91rXhejmHr6pOuxnVtanw+HIFqR6CuEzzkKXzyzmH8c3wVyINYlMQRPdozchsAACAASURBVCbP401uy3E8+ADII7muFf9oX4xQ646he7vC4oKOUG4RyC/nw05ig8MiTND+Fgd8LZCVm1HXIKiW+azccoHtLwvXVy5HkZG5P2wdblfLGKqrkYKCItg7BUHP6BpKSqomp2dk5GGHykX4XIutrmGJbYfyH504FYE96t7Iz69Z+UjsACp58XniK7ZOSH8S9Si9kk/z6hyB+oVAZQieVylJMOzdSUjwhBzar/BgZea+wMUID+w98zcmmw6UKIeM3PcNfneeiwMBFohOvq/w86rqAG/F3MBMgyEYqtoVRufUKsgj1yIvYovzSozR7IFth3/n8kg5oM0cSw1ke4yqnIHs/oPBsLILxKtXBeVarL1T0p8YW/jDyq7qXtEkv2jpX4Xz0dAanQj1cysoHpu3n0dC4iu5+1I4gudZ4ptQJw9iXsg9EV6RI1AfEaiLBA/FmHcLcsKmY8tAsedFFSKixxSzfuuJ33Aq9DBSXibVuddPyYg9go5gmGpXjNfsiz8cl2DH4bXYcaT0s/3wWiwwHovhKl0wTfcHkLUsL9IRoPwo9OOX8qXQj3d5SnHxf1ixxh0/jLDBndAEeR55J3Vo05+/9Ci++Hof7oQlVklZEhWdhq69zLBT9VKNEy+qmpfRsqMhvC5Go7hYPuzfCZDV0ImDazhbV1/8YFsNrfEmOAJ1G4G6RvCQd3FEQijs/Iyw4sB0iTILyS8zLH6E1rl/cfXBeeQUZNfpF21/2YiFZxu5tzv+clpaTn5Zg/X7F2CcRh/MNxnFQrURjrxURGCHrh/bX8YskC+0LMks9Ok90ATDxtpVbLAWr+TmFmLRMld06GKIyAdlQ+TIMyxSzNyLSEbLDjrMYESeZ6paJy+vEFt3nke7r0zg56/4ua9CwpOFBM+LjLyqTps/xxGoFwhUhuDx/Ge9kNyxnzAEJcWKSfg+SXuEw7fssOHIIowy6CFRFplo0h87T62H5103vMgpGzq1rr78Q9esMEn3W4xU646NDosryCN/H/iV6Vom6QyA+XntOuFFXZ3vksJ+kv6kZR/5DWRJDpk44wCGjLJFogIZyJL+ZMrsg/issx6SU6omh+fmFuHL7vqYOvtgdcJcoS3SVR05Fo4WHQxhbh1Y4b6kCwpH8ATffRPqJLMOWvpKehH8OkegKgjUBYKnuKQYYfG3YeWrhyUOkyQKJKQcmW01DPoXduH6Q28QAVKXy8u8LBieVcFIje5Yt38+wp4GIep5uPAT9vQWlphNxgj1LvjHeWWF8G11GZuqzu1+dJrwB3BCknyWELS5/rLiGAYMsUBwiPw5nGjzv3svCQE34xBwM/71Nx2/+fgHxqH8J/DWM/YceQvJIqHIOrdFB30Ymt1AdnblrWMiIlPQ/it9/LPjAjIza/bv6UZAHD5to4VV606ClDx1qVBuBBJ8B01xrkvT4nPhCNQIAnWB4MkpeAXf6AvQ8dqO6RY/SJVbljlNg62fIe49D6k3SoOSkmJsdVnNCJ5V1jOFcotAhrkXdwfWl/ZhhGo3/HVgCfdAlvKXZrI/mO0vvcc4San15hbJDfTp/q0RBg+3enNDjiOKohESmsDkElFZ5c1xfAWZhWSYwFvxCI9IQnKK9JDI1P5Bl1B80kITuoa+coyobBUieO6GJ+GT5irYurNmczaRIcpF70do0EIDf2ypnPdU2VG/m7PzVx+zdfJRZ6N30yHvhSOgxAjIS/AkhodCp3MLIcHz2E9xkswXFhcg6Ik/TK9oYoHdGKlyyHzb0TDy3oubsddAz9WnQvKIittfLP/OCqvpCHt6u4xMEvksDEdvOGC4ajfMNxmJC2Gn6hM8cs2Vwn5W1kCW5JDRk/bju6GWSEiQPwIKefvcDn5eaTnk5u1nuHc/GalpOTIj+ZhZBeD9Rho4eDhErvmXr0Q6l/Zf6WD81Mp5NJVvR9Y5yTwPH6WjQxc9jBhvJ7c3scIRPBdeCyj/9xUXUGS9dH6fI6CsBA+RF5cjPaHuuQVTzAZJFUp+OzQbDjdMEZUUXq9eOCUk3uCwAJP1+sHQUxX/oWw4iwcJ9zBr3xAMU+mC08E8Jqo8iyM1PZcJKCSkhEfJZz1KAgoRPAN/sqwUwXMrOB6TZhxEp256aP+VLtp9KfrRY9e/6K6PL7rrofRbH59/rYfPOuswoeGbfiaYu+gInI+G4cWLXLHTi4vPwjf9zDByon2lhCdBY28InvNyEzwPY9LheCgYu/Z6499dF2FqGYCw8CSZHkRE6gwbZ4sOnfUQE5suU/gSjFEZvreoX2XravJSd2UYLh8jR6BWEVBWgofCqJ0IOYTNbitA4dVEPYpFjyks2z/HV8I9xBkUrq0+lsycDCwyGc/y71he0KkAQU7+KybXjFT/GuYXNJGVyz2QK4D0+oLLyftsf2k3QD6y5m0Inkcx6ejZ35jJJ+2+1Hkttwi+9dCxq04ZmUUgu5Dygaxhe/Y3xS8r3XDqTJRYAxVSVsTHZ+HLb/Zh8HBr5ORUztijLMFzQRJkZa6Tte79yBTY7L+Nbbsv4N9dF2Bld4sRUmUqijlJS8vBoGFW6NbHqMqWvmKarZFLzu6l6+Sz76xrpH3eKEegLiEgL8HjPG+ykNw5vmphrUOQkZOO8/dOQuX0n5hoMkCiHEKh19a6zMehQGvEpETV+rhrcwAkj6yynoWRml/D+JwaCsrlFiLCy+6KEUaodcNGp0VIzqyfcpu0dxTx4I2BbJKcXi8Cgof20MoQPJevPkLv78zLySECHYoePv+6rO6E5BDSn7T/SpvpT3oPNMOSlcfhef6BWDmE5vnkaSaatNXEhOlOMvUX4nAhgof0NZUheOKfZcHFNYxFTdmy4zz0jPxwI+CpxDEK+s3JKcCKNSfQ7DNd+AfK502scASPIEdC628tBfPi3xwBjoAEBJSJ4Il/8Riutx3wp+tSjDboKVEoGW/8Lba5r8HpMFekvUqWMPO6fZm8mpIyE7DYfALmmPyEY/4VLQTo2hT9AZhpMBTx6Y/rNiDVNDsSNojcoY/fzWdytVpVgocsUMgS1sc3Fodd72LAjxb4sPEevNdgD+YvcYWb+z1cu/5Y+PG78YQdX/B+CCMzf3w/zBpN2mijZQddFiIu+mFaBVKELEx//8MDLdprw9snFmQdW5lSGYInLT0XKppX0GuAGcZOdcSOPZegpuWDmfOd0bmnIX7feBqkHCIFjKRiaumPhq20Ye8YXOmxSmpTEa6v+qc0R8KiDZ6KMBw+Bo6AQiOgLAQPhQwLfxYMm2v7sMxxqkSZhcidWZY/Qef8DlyLvoTcQuleDAr9cqppcPHpTzFF5zsM29sF3uEVvR/SXqVgtd1sTN03EOdDT0ndN6ppSErbzLkrsUxmkTfH29sQPJRrhrx1rlyNwcnT99GllwGTWd5roIK5i4+wfH0CWUUgv/j6PWaKFJ1919BzgAkaNNdCuy/18McWT2SJyQ9Ixh4b/j6Dpu11cdWvcnl0KkPwUN2k5Gxs3u6Fbn2MmSJHRf0y6DN19iF07W2MjZs98TROcu4nyk2oreeLRq21cfhYmEKvIXOnO2yd9Bxd8feCQg+cD44jUAsIyEPwRHqeFJI7et1aIz32US2MFIhJfQDnQBusO7wARNyIGpSIHk8yHYA9Hn/A6547MnjYduG7InlkruEIDN/bFWfvHEdRcVnDAsr3vMFhIcbr9obFBV0eEUWI3JsDinoi0J/Im+OtqgRPZmY+894hOcTJ+Q7afqGN9xrsZrIIyQ7kWSuQP+hbIJNQCHhNPV907W2Ehi200LqTDrbuvICsrIoRSkh/MnvhYTRorg7ShVS2VIbgyc8vYnqdngPMWbh/MjLR1vfF4uVu+KqHIWYtOMJC7UsaA4313PlofNxMHVu2e0mqVua6whE8Ns5hbAF1G6b4CczKIMlPOAK1gIAiEzxFJUUIiQuEhY8OFtmPlyiQkHAy12YEDC6qwD/GB/nlLCtqAdZa75KsSZ6/IIFkOBaZj8H1SO8yYyLhZPPBlRij3QPm57WQV8fD1ZWZ/FueNPrahO0xpy/KJ6hXleChYZLlKH2ePc/C8HH2+KDRbjRtqwGPs/eRl1ckvC+oR9+0kRcWliDqQQrGT3XCR01V8X9N1LDurzOIi8+sMPvLPjFo84U+Nm4+i4wM8Z4+FR56fUFegoeUJDPnu6Bxay3muZOQkAWKT09CC1ng2jneRpO22uj/oyXC70n25nkal4kOXfUxcsJ+hUq4KAkfea/P/f00W1PrdpT9O5X3eV6PI1CfEFBkgod+6PtEeUHz3FZMMx8sVW5ZeWAG9l83xv2EME5QlFvAMckPMEHzWxbyJCqhrPd1cUkR7sTexBj1XlhmPQVPU2PKPc1PRRHwD3ouVKzQniurvA3BQ20TMUKyCO3x3foYMqUKyS5+Nx6LlVkE8ktBQRHuR6aCrGeJEGrUShubtp2r8LdBMs41v8cs9NnvGz1kTafMfXkJHqpH8tLoSQ5o0lYXugbX8PJlPpNZCMMXL3JgbhWIhi018OMoe5ABjbhC7UTcT0HLjlosZj/NVVGLhkkgWydDZh5W1CHycXEEFAYBWQRPUX4+LIf2FRI8lzV2vrOxFxQV4NZjPxh7q2GezSipcshCu7EwuayB209uVCAu3tmAFbwjkkdm6Q9h8sidJzfLEDhkyPPg+T2WD3CGwQ8IjwtS8NnUzvBy8wqFckhgiHz5iKtK8NAMBXIFRfxo+6UOI3hafKaBB9FpTE8iuC/6TbIFGWWEhiUwkuf9hnvwUVN1qOv4sL2/PHJnz0XhvYZ7sWtv5cO9ykvw0HgoNP0nLXSw7LcTSEp6xfQ/Av3JhUsP0b6zPrr2MWUGNOXHKDhPT8/BwCEW6NLbAKlpsnU9Ckfw6FreYguIx7IXvFL+zRGQjICiETxZuRm4dP809p75G1PMvpMqlPzuPBdO/haITr4veYL19E5+YT6ekcWJ0Qj8aj0Zd+OCyyAR+fwu5hj9xCxkY5Ie1Ju4/mVAqOJJx0E2bI85eDxCrhbehuARdHDx8kP06GfOlB7fDjZHyB3Z7t8ktFjb30KnbqUWtBQu5fylhxVceclTiBIpUwgRcV4+gjGI+5aH4KEkiRs2nUaTtvpYsNRNrJs1KXZ2qV5Cg5baGDvFCRTWRFwhZcnSVW5o1EoDAYFxTIATV0/ZrlHya7JsomTYvHAEOALSEVA0gudZxlO4BTnh72O/YrRhL4lyyzjjvvj3xGqcCj2MlJdJ0idZz+/GJkczgme8Rl+kZiWWQeNV3kuYn9fElH39YXBWFUXFskmLMg3UsxPR3IHyhEZ5W4JHAO+dsER81FSFKVYo1OyLDPH7uqA+fZPSwswygMk6ZHHbvrMuoqIrhsPNzMzFT6Nt8Xl3fSQkypcPkdqXl+AhL6Flq93xSQtt9i2OGHv5Mg9bd1zAR800GXmTnSM+LwUpcuYsPIwWHXRYfH/R+SrSseD3IA8Vq0hvhY9FURGQRfD4WxgKyR2TAV2Qn5VVo1NJz06FZ/hx7Dq1ARNN+kuUQ0YZ9MCGIwtx+KYdHqc9rNEx1ZXGSR4hgmecRh88SXlYxuiAyDRb730Yp9sLu45uAOlfeBGPAOV3o9+6lO9NnvI2BI+gfdfj4cwQg4xGSGagfVtWIf3JHnVv5vFCUVMopNvjJxll3ju1QUYfXXoZMv0J7fOVKfISPPuMr+P/mmpi4BBLsUa4REq5Hr+LDxvvRe/vTEGGsOIKyTDa+tfQqLUOjhy7K65KmWsKR/Bs1/Fji2fcIrcyA+UnHAGOQEUEBAI9/cPdZ3O7YoV3cOVJWgwO37LDxiOLQYKHqLuw6DEJLDtPrYPnXTeQIMOLZARKSkqQnJmI5ZZTsdx6GmKSIoWVydrE6qIuxuv1gfUlfeRz7x0hNvIcUKJi+nsxdZAvsV51EDwGJtfxWed9TOnxy4rjiH0sX74BCl/Sa4AFU7C833AXLG0DmUBSfp66htfQ/DM9HHAJBSk25C3yEDw+12LZ2Bu2VAO5P0sKA/fkaQaLgfu/Jmqwsb8tsd5Zryg0aq2F7XsuibWokXfsilRv4ORDbE3pW9fO/2BFwoKPhSMgC4HaJngoBGpY/G1YXdXDEodJEmUWkl9mWw2D/oVduPHoMt9rZb1YkftJmc8xQ+8HTNX5HmT4IyikoI9OiMDMfT9hld1Mdiy4x7/FI1DZ0CjVRfBY2QW+JmpUMHX2QfGDK3eVeedcf4wPGu3Cew12McXM8ZMVjWnIqtXEPIAZhRxwkU8Wo67kIXhoDOcvPsTHzVTRooM2CzlXbpjslNqKepCKNp/roHEbbTg5lzWkEjxDeLq63cXHzdWhqXdVcFnhvlduKQ0Vu3gjDxWrcC+HD0jhEJBG8LxKSYJBr45CgifEuWaiCj1MjsTBAEuscf5ZqhxCBrOqZ/7ChQiPMvupwoGqoAMieWSByRhM1R6ExMxnZRT9z9KfYJbBMMw2Hop7cfLvRQo61RodVpt+luy37lEP+XI6VQfB8/fWc/ioqRqTRTZv82LeL/JM0uNs5GtiaBdIf+J95RHz/Cn/7PY9F/FBY3Wm3yh/T9q5PAQPkTXtvqTwcqrY7yRevqA+SB4aNNQKHzfXAs1RXCHS6m54Epp/psVC45P8Iq0oHMFDIU5I+UYhT3jhCHAEpCNQGwQPhQcLeuIPsyuaINdgURKn/DG5Fht570Vg7DWQlQQv8iNAiRR3HF2L5TZT8TDxjZdTeFwIVthOw2r7OXj2Qr5ka/L3Wvdr/jTrCNtjKJyFPOVtCR4Kt7ZyrTsat9JgoU609/mCXG3lKW88f0hZshMWNoFiY8lG3E9mnj6zFrggNTVbnqZZHXkInjV/eKBhSy2Q5xElR5ZUSNiYMc8F/2uijh9GWLMQKOLqZmXlo88gM3T/1oi5Kouro2zXKKQsyS22Loodo1/ZcOXjrZsI1AbB8zIvC96RZ6HuuQVTzAZJlVt+OzQbjjfMEJVUNrRY3XwbNTMrkvdWWM/EeM2+yBTJBUDWsUaeqphi0B/uN13KhEqpmZEof6s5uW9Co9y8Izs0SnURPIuXH2OKCbKcpRBn8hQiVy77xDKFCsksFALt2ImKf0ckL0RGpYBCrkyaeUCs4kVcf/QcKTk+aa7CYuuLq0NGLktXncAHjffi++FWUhVCr17lY9KMA/jwU3WMmrhfotHJ8+dZzNJ3wBBLVNbSV9wYa+Laz2vOMDmEh4qtCXR5m3UNAWkEj+c/64Xkzv6JP6GkuHL5TSVhRSHoA2N9YXhJhYWmL68zET2n0PbmV7QQ8jQAFPKel6ojQPLIRsdfMEm7Pwt/L6oct7igjfF6veB01YLLIzIgFvzWpXQq8pS3JXiI+Bg21pZ5t5AnjuvxsApRTCSN443nz06mP7no/VCsnHEn9Dn+9+le/LLimKSmxF6Xh+DRN7qG9xuqsdD8ZAQrrWzZdh7vN9yLr3roI06CroX6nD73IFp10mXyk7T2FI7gWbbJiwkoS/8Sz2BJmwy/xxGobwi8K4KHkvWdjzgFldN/gpL4iQohoseU/G+ty3wcCrBCTIp8DH99e2fyzje3IAfHbx7EEuvxCHxY+uOarqm6/YG5xiMR8iSQx9uVF0yReuQdSsp4ecNpvS3BE/+M8u/Ysfw7Tdqo4eTpCGatITIkiYdmVgHo0IU8f3ajaTt1nPaMFPssKVXmLTmK1p20cSvomVghRlwnsggeGnuvgcb4oNFezF54VCZ5tHXneWZp83GzvbgR8FRiCDZynW7QUhOnzkTKLayJG7+iXOvwXWnYP2f3N0SsooyNj4MjoGgIvCuCJy49Fq63HfDn0SUYbdBTotwy3vhbbD+5FqfDXJH2KlnR4FLa8Zhf0MZQlS54klKa7448p24+vIZJugOg7r4ZJM/wIhsBUka938mAyS0+/nEyH6gOgody633d1+h1/p098PWTLyQLKWT2Gfu99vzZhWbt1RF6t2yIPsEEsrPzsWDpMTT/TBd378kX8lAWwUP3Y2Jf4LPOuvjfp2pYsPSooDux35QLkSyEicRq1l4DIaHiCTSqt3nbeXzaVgfePvLlbxTbYQ1enPKrO1sjW9QV18uoBqfPm+YIVAoBSQRPYngodDq3EBI8j6+/3d8TyRRnwo5hx8m1IFlDVGciekwyyh9Hf8HR2/tBsgsv1YuA3WUjjNfqi/vxYcKw9nefBmG8dl/scl0Pyr/Ii3QE+k04yPYYIzv58hS9LcHzKIby75AHzG40b6+GyKjUMt5X0ka7bfeF154/u9GyY2nuHlFiT/As6U9IR9OsvSbLlyy4LutbFsFDxr0/jrTGew32okc/Y4nGI4J+HA4EMzmkQQt1uLiKJ9AogorL0TB80kITekbXBY+K/VY4gmf+ulILlDXbL4kdML/IEeAIvEGgJgme2NRoOAfaYP3hBSDiRlQQET2eaDIAuz02wuueO8jrhJfqQYA2orjUGKy0ngFjz71If5WCYwGOWGY9GefunEBBEY8TWxWkZ6w8xQSUv1R95Hr8bQkeb58Y9OhXmnS47/fmCA55Jle/6S9yMWu+CwszQsqHaXMOI+pBisRnD7uGoWXHfdDS9wXl5ZGnyCJ4KCRb6056TOggT54XL6Qn9jOx8McnzdWZ1a+5dSAoN4+4QhYzTdtpY9GyY8iREPde3HOKeq15b3O2pty9ohV1iHxcHAGFQaCmCB6ycg2JC4S5jzbI+lVUTil/PNdmBAwuqiAg5irIqpaX6kfgcfJDTNTpB8uLesgrzMWth9cw33g01Nw38TC9lYS7QVcTtsecuyJb8VcdBE9YeBI+arqHKVY6dNGV2+s4LS0Xg4ZaMpmBrGJn/OwsMVwrjdP91H0W+kxN+4pciMgieIqKinHGMwrvN1Rhyp0/t0gPV0aElL7R9deKFQ3YOtwSOw5SAvldfwxSvvy+0UNsndq+OGpeaS7APftu1PZQeP8cAYVHQBLB4zxvkpDcOb5qYaXnQf+jHiTdg5O/OVYfmiNVDplq/j3Uzm7GpftnQF7GvNQcAk9TY7HYfBxMzmkgMzcDYU9uY57RSOw6th6p3LBHLuB/nHGYySGapvJHQBk9aT8GDbMSm79XVqdu7veE+XeGjLJFVpZ0HYSgveSUbPQaaIr3G+5me/uy305K1TXY7r+N9xqqw2a/+P1f0K7otyyCh0LxN269l+lDiECSVTy9HjB5i8LRrf/7jMTq8fGZ+PIbAwwaZik1JL/CETzTlp9ki2eTmnzKN4kI8BscgXqAQHUSPIXFBbj12A8ml9Ux33a0VKFkgd0YmFzWwO3H17kXSQ2uM0o+HBRzHVudV2Gj4yKouP2BqOfhHPO3wHzBurNsj1n970W5WnlbgocS7LX/Sp9t8ktWnpA7/46OgS/afVn63Fc9jHDh0kOJihKaSFp6DvoOMseAIdJDqYlOWhbBQ7l9mrYtjR9LOXMovJq0cuhwKBq0oFB0qlj+u7tE4YNCx06ZfZBZzFKYFnFWNdL6UbR7H3cxZmvKy0e28k3Rxs7HwxF41whUJ8FD+V0uRnhg75m/QXHqyxM5oue/O8/FgQALRCdzT7t39c5DYgOxfv8CbDr0K/5wXISTt1xAcg0vlUOgZR8Ltscc93wg88HqIHis7G6yfbzUuOSQzD6pAiUB3qV6iSlU3m+ois49DXE/UrJRCj1DIWW79zViyhh5DFNkETw0Bg0dXzb2j5upQxZxRBax+51CWP3/a7IXZMgiqVA4t+Fj7fBZF108T3gpqVqtXR88zYWtEW3zm7U2Bt4xR0BZEBBH8ER6nhSSO3pft0F6rHzeepQL98ajK9C/uJvl7ROVO8ofL3GYCMurugiNv8VDgr3jxRIRfwd/H/gVfx9cirX2PzOjWS6PyP8SxiwoNSLYpSfde0TQIskib0PwkIFGaf4dVWzZfl5quFVBn/S97q/Twud69DNlXr3S9Awpqdlo2UEL3w+zRHGx9Nw2gn5kETxnzkUyD2iSoWbOcxE8JvGbop582Hg3PmysysLSEXbiSqk3sRcatdZmeYXE1aFrCkfwCBbPTj0/SWPm1zkCHIHXCLwtwfMiJw3nwk9g16kNmGjSX6JyZJRBD2w4shAuN23xOO0hx/8dI0B5j7LzX6KopPAd91z3ulux+Tz7EUzCvTzlbQgeenbFGnc0akleLXuYS62s/DtkKWrrcBuff23IlA5dexvjpMd9iWSJ6BwoRNqnrbUkhnITrUvHsgieDZvOoOFrwkZd5ypevpRO8Bw/+cbaZtSE/VJj1TMyqKU2DE1viA07V36sinpOiQ8p5B99fAPjFXWYfFwcAYVB4G0Jnidpj3D4lh02HFkEkk3KK1AE5yTT7Dy1Hp533bjHSC2+/f/wH/Pu5oqUqr+EjoNKw4AePB4hsxGSO+hDee4GD7eSWV9cBfKuJUMN+ugZyv49Tp4whqbXmXKCyJ0e/U3hHyg7nBwRMjtVvNGotQ48z8smr2QRPJR/Z+Wak2zc5E1MBjbSCuF02DWUyWekWJk866DE6kQGWdrcQoOWOrBzvC2xXm3d6DvuAJNDTPZLTuZcW2Pj/XIEFA2B8gRPUX4eLIf2FRI8lzV3SR1yysskeIQewTb33zHOuK9EOWS0YS/85boUx4Kc8CyD582VCuo7uEnySGbuC25oUgWsK+uEQftrVQke2m+HjqHw9ipsfyb9ArUnrZD+ZK/WFZBxB8kufb4zx53QBInh4kXbWrnGHSS73A6WL8qKLILH1DJAKEMtWuYq2pXY4+CQ52jQQpV5HXXrY4gXGXli65HO4br/E3zSXA2r1p0UW4cuKhzBM2Rm5dy/JM6M3+AI1AMEqkLwPEqJwsEAS6x1mSc19Npk04Es586FCA+QlSwvHIG6gMD6nd7sR/Cc1aflmg4JFJR8b+BPlqANuDKFctgMG1uaf6dZOw1ckJDkT9Dm/agUZkHa/DM9FupszsIjCAp5JlOoETwfcDMebb/Qefb4hAAAIABJREFUx6p1p2SGU6NnZBE8C5e54hMmKKlAS0926LfTnlFo+JrM6jfYHJmZ4gUU6jslNQeff62PwcOtkZUluZ5gbor6LZoA+1ao+FwDijp2Pi6OQG0gUFmChwwcgp74w/SKJhbajZWoSCFiZ57NKBh578XN2GugxLq8cATqAgJfD9/P5BZ5khuTzEKfqhI8RJII8u982HgPgu9IlntI2UAhVxf9epzFmqf8e7/+dgKyEgoL3gk9fzvoGQvDsnSVm+CyxG9ZBA/lDpo+95CQ4DE295fYFt0gnNxOhLPQKKRIojAwRFaJK9Q35fdp1VELY6c4yJ3rUFxbNXFNkADb1kV8/P6a6JO3yRFQVgTKEzz+5gZCcsdkYFfkZ5UNmUZ//5GJd7H/uglWHpwpVQ6ZbjEYmp7/4ErUOZ7bRVkXCB93BQTmrS1No7J2h3xpVGh/rSrBQ/l32nxRmn+nVUdNxMVnVhiP6IWgkOeYMc8Z/2uiyfQQq9efYjl16O9WnuLjG8tkmE3/ymf8K4vg2al6UUjwyCPbhN1NfB3SbTfzEpYmQ5HO5KfRtujYTR+JSeJzRykcwfP91FIXY11L+ePgyfPieB2OQF1EQB6Ch+LLB8b6wvCSKijuvMC6Vdw3xa03v6KF4KcBoHj2vHAElA2BwJAE+AdJVkhQ7h3ytqBcPPIUElCqSvBcuvLodf6d3WjdSQs7VC4y7xzy0Cn93ALlrdm+5wLGT3NE8/Ya6NhVn8V4v3rtMUhZUZlCiomxUxzRqZse5Al9JovgmTb3ED5qQjFkVaCzTzbBQxa4jVpRiLbd6NrbEMnJ4gUPwZzW/nmaEVnXrj9WOGWJYIyyvjOz8tl6ojV15x5P0C4LL36fIyAPwZOR8wLn751kRiaTTAdIlFsoP+Bal/k4FGiNmJQoDi5HQCkRcDv7AHHPJYf96jnake0zFgfuyJwfySz0qSrBE3o3Af/XhPLv7MInzVWYF8wbmeU2814huYWSGFNs+cat1fH51/tYCBVSslS2UOizURPs0b6zLsgoRlqRRfCQ0mXkBHshwUNWtNIK4XTSI+I1wbMHfb83k5rDkMivJSvc0KStNkLvKpZBx5c/2rE14uh6T9qU+T2OAEcAgCjB4+jgC4NeHYUET4iLA8MotzAHfg+9oXt+B2ZZ/iRRDiF9yq+OU2Dtq4+7z4JR8p90TwP+AjgCiojAlRtPpf6OXbTBk+0xv22VP8R9VQmeYyfCX+ff2Q3KA2hicaOC/sTI7AY2bzuHn0bb4JPmpWFht+2+iNCwRLm8dkTfAelPeg4wYX3JilZCz8kieDb8fUZI8CxbfVy0K7HHd8OT0KStGpNFWnTQQESkZH0CjdXMMpB5EzseEu+xq3AEz8DJh9ji2WejeO7PYt8Iv8gRqEUEJBE8adkpOHvXDTtOrsUE434ShZLRBj3xx9FfcOSWPZ6mx9TiTHjXHIHqQcDBNZztIeMXHxdL9Aj+ZqYuc5erw7cheCj82Ged9zH34h79TTB7gQsWLz8GctcVfBb+ehRzFx1hSol2X2qjWx8jUNxZ8tyRZEkqbeDm1oFo1l4Ptg7BUpMKUhvSCB6yrJ0084CQ4NE38gMpYqQVz/NRQoLni+76SEyUrLCidq5ei2VxZGm+FFdWGUt6Ri5bb0Tw3JWRb0AZ58fHzBGobgQkETwxqQ/gHGiDdYcXSPUunmgyAHs8/oDXPXcW+qu6x8fb4wi8awQoN+BHnY1AlrHiiB7B34ypQ4jMob0twcMSDrPwbLtBoULIwEUgrwi+F/7qip8XH2EeymS88nVfY+za640H0akyx1e+AoVisd0fxJQV1vbS88fIInhIRhk6xlZI8FjYSE8GTVidOn2fKVUoITMpeKR5HhcVFeOM5wN83FwDu9Xks2IuP9+aOu/0vfxh/GpqDLxdjoCyICBK8Jj8vEhI7liP+x7uQYfwz/FVGGvUW6L+ZIxhb2xyW47jwQeRkMnDMyvLe+fjlIyAjsVNvN/JADNXnhJL9Aj+ZijUvTyF9teqEjyb/vV6nUdnDwYOsQCFjRXIH4Jv0p+QXoVCuTVrr85y+amoX2a5juX13BGdh6buVbzXUB0nT8vO0ymL4CEPIkGY25VrZeubwu8lo2k7Ci23m32HhUs2IKG5PXyUDiKCJkx3EktmKRzB02/CQaYsMbILEsWcH3MEOAJiEBAoq0m5uNvSDU7+5lh9aI5EgYSsTKaYDYLa2U24dP8MXuZJd3kU0yW/xBFQaAQEBA/9TdCnPNGzVdOXXZ+05IRc86gqwVNYWILlvx9n+Xfeb7gHFCokIyNXap/kkkteLS0+00PTtlrMMoWuVUZQofqUt4c8eRITpVvDSiN4aN6TZh7E/31KcfhLrXgrQ/BQ+LUEGYmIidQZMtqGWf/GxWVWap5SgXyHN1PScoQET8SDtHfYM++KI6CcCAiU1e9/oQfXa2dh7K2G+bajpcotC+zGwOSyBm4/uQEK2cYLR6AuIUAEj0BmEUf09J9Y+tvY0Fb2b2Pau+lTVQ+e0vw7FPdehXkYS8NZoGhYtMwNHzbWQPPPtLBX00eunIGCdqkNkls6dNHD8HGSQ6RRfapLlq7kWbR15wVBE8JvklF+Gm0nJHgsbaUTRoSTKMHzTT9jkFeutJKamo2+35uyPEOZmdLrSmunuu999p01W0MuJ2Urp6q7b94eR0DZEBAoqzt02iwkd3S+ao7Zf34lURaZYfEjtL224eqD88gpkB6hQNnw4OPlCBDBI5BDxBE9yzeV5jBe+peXXGDR/loVgoeMW8krh8Kmkv7k7LkokHGFtBL1IBXTf3bG/zXRQIvPtEBGqUTCVKZQWDgKMz919kGUlEj3wpNF8BCpIyB4Vq2VnCtHMD5Rgoc8eWR5CJM3MYXDJW/i4DsJgmaE3wpH8PQe48QWl5mjbCsl4Sz4AUegniJABE+zIX/jB9X+EgUSInVGaw3FpJ2rMeMvY8xd44Gf15zhH45BnVwD301xFgooAkFFlOjZruPH7hPxI08hAaUqIdqexmWw8CUfNNqNZu3UceZcFMhSVVZJTcvBrPmH8XEzNXzQSBU7VS8hOTlb1mNl7lPiPRJwKMwbjV9SkUbwkAfP5FmiHjzXZXrwnPV648Hz5Tf6SJIQG1Z0POTl9EkLTRx0CZULH9FnFeE4MTlbuN6iHqUrwpD4GDgCCo0AETyfz16MoVq9ysgtE9RHYPFfWzFWazBG6H+DseoTMHnbJszaaFcn9youh3E5VLAGBN4XojKLKNEjkGv0rWVHt6A9nz5VIXgoLOyb/Du74R8oX1Lw1NQcfD/MmpFCnzRXh56hX6UMNkhZsXq9Bz5to4XAW5Kt4WURPKR0obyHpFihccjjwSMI0UYePL2/M5PqwUP/WPPzixiJ1bCVFk6dURwypW1/KyaLHPXgoSoVegPkg1MIBIjgaT16Pf4Z3E5I8Pw9um0ZmYTpTzRHYtKOdZj5pznXn3C9SZ2WRQXGV6JyiCjRs+qfC2yPWbzRU66/YZJDqkLwRD9MRdsvBfl3NJi3Cu39skpC4iu2h7/fUIXpT8gbWR69i2i7lMOPSJ7oh9INNmURPL9veOPBs2KNbINi0RBt5I10916S6LAqHBcXl+CsVzQatNTEDpWKxi4KR/D0GFUaZ9jyQGiFyfALHAGOQFkE9KxuodeUfRUEkmG6PdD3z1HoMP1XfNJ7j1ABKfpPmx+XenhwHOoXDp2H2LO/hzELjpX9Y5JwRgJKVQiei5cfokc/c6ZoGPiTNe6EVrSwkNAlzKwC0aELhXZTwZffGMDXL1asC66k54loaf25AXarXQEl45NUpBE89MyMeW9y8GjrX5Mam57qE4lFghG5GJOSKCVFNjH1KCYNrTrpsMTIlc05JGle7/L6s8SXwv+vDx+/eJdd8744AkqJAIV/6LlobQW5ZelqPeiMzYXW2Gys+ikS3/f2QuMvLYV/X3yvrl97NX/fpe+biJ42/Ur/DsjCVlZ5G4LnTthzfNSUvHZ3g7xwMzIlyw+i4yCLW0NTPyazkMXtF931EP9MeohW0edJWXH+4kN80lyD5fYRvSd6LA/BM3qSg5DgMbGQnYPnuPs9Nt8PGsnOwUNjIeOXkDvP0bi1BpMNRcdXm8et+lqw/5WUz4kXjgBHQDoC27Svoed0FSxd0gnq37SAVpfmmLSrC4bp9ECfDWPw2ZQV+LjnXi5/vI6Gwffj+i1/EdEjyPNGHsfylKoSPK7HBfl3VDFivINM41LRsVAOno+aUi4bFZBHrqxQ8aLP0jHl/qEwbWR8Kq3IInj+2PwmBw952sgqYXcT8Wmb0hw8LTtqIiJSOsFD7ZFhTY9+xugzyLyCrkfhCJ5erz14zJ1kJ5KUBRa/zxGoDwi8yi7AoJ3fY4h6X3yzcgpaj16HD7toc6GECyV8DZRbAyScTP71BMNl7EI3uf49VJXgMTC5gfZf6TMhY+mqE3j8RH7l/5lzkfi6rylTOnzYeA/sHW9XytWYFCWtP9cHCTpZUsKNyCJ4lv7mhk+aEWGjCjVtH8hKPHjiVMTrpIgqGPAjCRyyw5fExL5A2y/1MGXWASgjwfM88ZXw7yw6Vv53LNfi45U4AnUUAcdT1xnBM2jnIHRZNBfNftyM9UMfM4KHSB7BR2tMDlYPeYQf+1xAk69KQxBxRUP9VjTUt/c/fM5RfDPCge0zupa3ZP5HeBuCx9ruJtvvac8nS1Z5C4VPOXvuAd5rsAvvNdjJ5AAyNJG3EMHjfSUWHzdTFxt6TdCOLIKHZIg5Cw8LCR59o+uCR8V+E1aHXUNZnkQKB0P5e2RZ/BLBQ0mcm7bTYjkBxDZcCxdbf1tKAh47wwmeWoCfd6mECDx8nI51i49h+bJ9mD55HlqO2IgPvtIRyvT1ba/h8+WylaQ18M1IB4yef4z9bSxcX7MEz1//nBOSNBSKNS9P/rDMTs7BaNBC47X+ZDf8rj+ulIGs+6kIvNdQDboG16T+R5NF8OzV8nktS6mAchbKKiF3EtCwZalxTaevdfE0TnYKjbS0HPT5zrQ0d2A5fYvCETx9xx1gi8dkf7AsLPh9jgBHAGChGOzd/XD09H2QYM8/HIP6vAYoSXF5AYWIHbvDd9kPd7LaovsTajBEG+XfIZfcRi3VQa7CekZ+SE/Pkfv/lZt7OLr2NmECCilLyApVWuJf0YZJAfLb+tIQbVeuxlQ5RBu1uWnbOTRqSYKSKv7dJZ0sovrOR8JeC1aqGDfVSS5SiubWoKU2nA7dkalYEZ2nohwnpbwJ0Rb5kIdoU5T3wseh2AiQ55vdCd8y8oqd2nMYLcmAztgcIcEjIHpKv3Ng9EsGbPc+h4vLozLP1uc9j89d+WW+ITMPV5BbiNi5cqM0RNqASYfYfQObms3B88sKN2aUQtavshQcov9hiCg5fjKcESUkszRooQ4X17uiVaQeU4i23zecRJN22vAPjJNYVxbBQ3n91v91lsksRBapanpLbItuEJnjcOAOq/+/T/di2lxnqfXpJoVoU9e+ikatdeDuESGz/ruq0G5AaYi2Ix6R76pL3g9HQKkRSHxSUEbeMFyQCZtdiXB2iuHyBdcn1bs1QKHXyutPiNg5fCqSkSQrNpfm4KHwhvIUkgsqG6KNvIHJ0KI0/44KkyuoHXmLpW3gaz0EGZvsgqfXA5ABiTyF5IuZ85zRoIUaoh6kSH1EFsFjs/+WUJaa8bNsY5kbAU/wv093g0LF9uhvKjMXIAvRdu4BM4rZvkcJQrRVJpGkVOT5TY4AR4AjwBGodwg4uIYLBRRRYkcAxD8avuz+5KXugktSv0mwqGyItvhnmRgx3g6Uf6dJGzUWp52EFnkLKVbafanHhJMGLVRx1O2u3EmLKVlx197GGDvFEUlJ0kOkyPLgMTK7gWbtKA6uCtb/fQYZGdLDtVjY3GRx74kQWvvHaZljJkXJT6Nt0bGrHuLiMysVs19eLGu6Xmp6rnC93YtKrenuePscgTqPwKu0/xB0sggum/KhO/6NN09ZsicXTuvyEHC0EC+eyffjrc4DxyeotAhQyBOBYkWU2BFM6NvxB9l9Y3vZxo8ks9Cnsjl4iGT55lvj194se3Dt+mNB9zK/aS9X07ryWqGxE5+2Uce1609kPkcVSKny5EkmOnXbh2FjbSFNVpJF8NCzeoa+jLChMC2bt0lPBk31DU2vC+v/uUV2bgGymu07yJSFf8nIlO2lLBcI1VCpw3c2bI04uytOXqBqmBZvgiNQYwjcOl4kwZgkF7bL8uDrUIjkR1y+qLEXwBtWKAQoBKxADhEldgSD/PVvL3Z/2Sbp+6qgPskhlSV4KGx7u69K8+80b09ES1qldAPr/zr92vtnFxq33svCqZLXrTzlUUw6CzM/dfZBmX3KIngoTD+FuiX9ycgJ9jK7p8grZBzzYWNVjJ3iIJOUyskpwLLfTqBpe20EhVRMAaBwHjyVSSQpEy1egSPAEeAIcATqFQJE8IgjdgQgbFLzYQLKtOUnBZekfleF4LngHY1vvjVjSoMBQ6xwJzRRah+iN5OTszFtziF83IxcdVUwdKwdQsMqbt6iz4gem1kFoEUHfVjb35YZ8kwWweNzLfY10aSC+UtcQYoNaWXb7gvMmuT9hqqwdwyW6ZHj4xuDRq00QUoVsrxVxkI5CgQCcWhEsjJOgY+ZI6CwCORk/IeQM0U48o90ssfh9zzccC5EWhxXxijsy+QDk4gAETziiB3BA71fhy83cwwRXJL4XVWC505YAj5upsKUEp266iH9hfT9XnQAiYmvMPAnS0YOfdh4L4aOscHLVwWiVSQekxeNjX0QGrTUgrW99BB0sggesmq9cOkh/vepCv6viRqWrpIeipfkDiKBSNZq2FIDh45Iz/9Loeg8zkQyOWfX3osS51QbN774wZbJIk7H7tVG97xPjoDSIZCf8x/ueRfhhEo+9k2RbExi9UsefOwKkRDF5Qule8l8wHIjQASPOGJH0MAvf5xje8zKLRU9RgR1RL+rQvAcORb2OtS7KoaP2y8z969of/HxWejR34R5wdCePmX2wQq5aUTrlz/W0PHBB401QOHmZRVZBE/8syy07KDJ9EB9vzeVqQ9xOhTC5BAyTPlnh3R8SQ6KepCKNp9rYeIMJ7GRWhSO4Bk8zYUtHnkSScoCn9/nCHAEOAIcgfqFAIXMkhZD/Y89V9geM2uVh1zAVIXg2Wd8XZh/Z8nK43Ln3yFrUnIv7tTNgClZGrfSgKlVgEzPGcFEcnOLMH6aI77qsQ8R95Nlxp2VRfCkpGZj0FArfNhIFUNG2yJRhkfQwmWuoDAnzdtr4m54ktT+yaJm7Z+n0biNJnz9nsi0VhHMUdG+SYklIHiC78pOiqho4+fj4QgoCwK5Wf8hzKsIx7bnQ2+iZGWM3Yo8+B0oREosV8Yoy7ut7+OMT5DubdtjlCPbZywPSCcgCMeqEjxErpD3LX2mzTko9yshRYeJxQ0WUoVCorT4TLtS4dkyM3OZxzF58sqKOy+L4KFBP3uWha69jEBE06hJ+6XKIaU5e44wxUqHLrqIfpQmdd5kNbt01XE076CNkFD5DW+kNlpNNzv/ZM/WyP6j4dXUIm+GI1B/ECjM+w/3fYpwSr0ABlMlyxeWi/Jw2aoQzyKKZVr51x/0+EzrAgIJSa+k7peUe4d+767+Vz7jhqoQPGTwSSQHETT/7Dgvd/4dMtbYo36JGV+Q50zTtpo4cy5KLPkh7l2RLNBnkCm++FofZLgpq8gieEjHMWG6E5On2n6hDdKnSCuqGpSzRwVN2mpCVv5C0hWZWQaiYSsdOB4S79WtcATPsDlH2eJRMw6QhgO/xxHgCHAEOAIcgUojsGZ7aY6eeWvPyPVsZQkeIpdY/p1WlH9nD3QN5cu/Q+FRzl+KRv/BFvig0R40aK6OVetOgUKuyVuu+z9B2y/08dv6U3jxIlfmY7IIHmpg257zaNxKC22/0AVZ+Epydc7KykO/H8zxQaO9mDHPWab3UELiS3TuaYgfR9ogI0P2WGVOppYqkFApIHgCgp/X0ih4txyB+oVAfvZ/CL9YhOO786E/SbIyxubXPFzdX4ikh5zsqV8rpG7NtsvQUuW9/RHZeW2qSvAsXn6MKRhIyaC9z1cuALOz8+HpFY22X+gw752mbbVZOFfKQyhPIXki8GYcPm2jiWWrT8h8RB6Ch/bkP7ecZbJIp27SkxWTx/Q3/Uzwv0/VMH+pq0T5hgZGfUc/TEe7L3UwfpqTVEMimROpgQrdRzgwWcTqoGwSsAa6501yBOoMAkUF/+GBXzFOaxXAaIZk+cJ8fi4umRcgLqwY/8kZBqrOgMQnUu8QmLP6NNtjNuy6LNfcK0vwFBQUYehYQf6dPaB8xNSGrEJki+vxu2jVsTS0W+NWmti+5yLLlyfrWcF97yuPGBmzeZt8+YVkETzU7v4DQczQ5MPGKvDxjRV0VeGb5KDpPzszmaX/DxYyCSbSmQwbZ4cvuu/Ds+fijYMUjuChxNekLKFE2LxwBDgCHAGOAEegOhGoSgxZeXPwkAIg9nE6ho+zZ/l3mrbVgMfZSIkx5WlTp9j16em5oDw7/QZbMsuVJm20sHTVCaZMoDblKSUlJdi66zyat9OR2qdoW/IQPOERSejZ34wJKYamN/DqlfiY8+fOP0DTdlpo1FIdHmfvyxTKDrqEMusTapOsUZS5fPC5AZNbLl8vTYitzHPhY+cIKBsCBbn/IeJKEdxVpYdZsVychys2hXgeWcItb5XtJdfz8bYfaM32GEp2LKtUheB59aoA3V/n3yFlhK+fZGUEySQkt1DIVseDwczjmMKytuqoi983eiAzS7b1q2AO1M6OPd74tK2uTKtVeob6Ju/gT5qrYOtO8WFMSK4KCnmOdl/qsmTLtvtviSVuCCePM/fxUdO9aN1JDxe8HwqGJfablE8W1jeZ3GLneFtsndq8KMhhbGATVJvD4H1zBOoUAsWF/+FhQDHO6hXAeJZkssd0bi4umBTgcXAxSorl+91Wp4Dik6nzCExacoLJIVs15TMAqQzBQ3v7/chktPuKjEV2s/Bm0vLv0D5PhrGpqTmwsrvJwsmT127z9trY9K8XXr6UL0QsvTTSn6xc647/+1QNt4KeyfUe5SF4XmTkot9gc7zXUA3r/z4t0Sjk8ZMXzEjm0zY6MLbwl9o/haG95vcYjVppYPWGUxLrKhzBM3PlKbZ4KIwOLxwBjgBHgCPAEahOBH5ec4btMet2eMvVLAko0ggeUlCkpGSzsCDRD9Oga3gdHbtSiDVVdOlliLPnovDsWSaeP88q86FQJESeuLnfw9LfTjDLk8attNG1tzHUtHxAHi6VKSmpOfj2e3MMGmaFuLhMuR6Vh+ChhozMr+Ozzkbo/Z05bt1+VsYqhoSNpKRXmDTzIBq31sXaPzxkeu8QplPmHESrjlq4H5mq9MrWRl+bsDV11jtGLtx5JY4AR6BmEKAwK1HXiuGhUQDDaZKVMRYLcuFtWYD4cG55WzNvgrdanQg07WnG9piT56WTENQn7a/06f6tEQYPtxI7DLpPeXMonBklNTa3DmB5a95rsAfN22swgqS8zELnJLfcu5+MYyfuYcHSYyxXYJM2uuj+rQmMzP2RW8lcegkJWeg5wATffm8mFzEkD8FDEya5TFvfF03b/T97ZwEe5ZX9//96V3/b9e5udeuFuru3QN3LtqXebo0aRVqgSHGCBIIFCRaCu0vw4A5BQyAkeAQy8+p8/8+5aQwympnknZnvfZ48mZn3yrmf9857z9xz7zldcMMd/SDBk6XPpUn0luzsfDxYbyj+8Pcu+KLpTFh+FmULCty479FknH9ZF4h/faelu55NVWOkfa8Mp4lGeUggJgiI4Wbvagszu+vo9bx3/UIMQZJH8oqBiIkEYoHAfS+kqTmmdfflAXVH5twH6w1W6xK5VbihFQON6CEHDxaomDLffDf3Rxdr36POzb2xbduRSusmpTqJeDbZuDkXw0dvxJMvjMQ557bFH/7WCVff0Bv9Bq2utEYRiKB5h0/hr+d3xJ0PDECgp48DMfBI21NnZOLc8zrhj+f9gMVLsirJJvqM6BWffDkdv/5zRzz5wggUFFS9iba0H3JC+cumM/GHf3TC/EXe1xwcZ+Bp+MkMNXje+yYw/36lHeZ/EiABEiABEvBHoEGjiWqO+aptur+s6rooKL4MPOs25uKtDybh3kcG4aY7++LSa3rhwit6qL8LLu+GW+5Jwv2PJeOBx+VvcNnfnQ/0R92bE3HF9b1x7a1JePL5kejQZTE2bckL6UTLkOHr8Jfzu6JbzxVeT9mc2eFADTzK32v/DNx45yDc99hgpIzcgLXrDqmdtDPnZOL5hqm4tG6iUjqOHfcfmDlj9UGc+89OeOv98WoHzplyRdv7v16XpMbU2Gk7o010yksCMUtA3KzsWm5hWiffblYSX3RhTm8d2Ru58zZmB0OUd+yXl/RQc8yc9Cy/PRGdRf58GXj2ZZ1UwXlL9ZYLLk8o01suvEJcp/Y/S2cRHUYWQOrc1BuX1hGjTH88/2qqMuzs2XfCr1xnZhB3tqPGbMI5f2qHzt0D89oRqIFH2pIFGDHyXHV9Eh55IgXjJ23Dps152LgpF5OnbcfTL47C5df1QfPWc/0al8QgNG/BHvzurz+g8deBuXA5s7+Rfv9Iw3FqjLTovDTSTbF+Eoh7AmLs2b/eUqd2El/ybuwRF2/TO+vYvcKC6CRMJBCtBG59YpSaYzonrQ6oC/4MPIuX7Ue9Z0ao9ZPrb0vExVf1LNNDZP3krgcH4P7HBpWtm5SsoSQr/UQ2hlx+XaLyfPJCw1T0TlqJ/dkFIW0Y7dV3BX76u3YYOnx9QP2STIEaeCTv6LRNuO7WfqhzUx8MHLIWGzbmYsvWw0hfkoWPP5+Gf/2nO958f3xAMQj37DmOi6/qgXseHoBil+FVXscZeN5tMkcNnv+g9vjRAAAgAElEQVR+OsOr0LxAAiRAAiRAAqEQePDlsWqOadl1WUDF/Rl4DuQUYMy4LZAAxQMGr4a47kgetrbsb8DgNeqaXK/4J58PTlmHCZO3Yc26HBUzR44ch5JkR8ezr4zC+Zd2VTtvZTEikBSogUfqkjrnLtiD9z+ZgsefSoH462/07njUf2aEWuQZMXqjUnj8tSsLNE2/nYPf/72TcslimtHtnk36e8FtA9WYGjZ2q7/u8zoJkEAtELBMD/assjCjq283K7Ird1aCjn1rLUgZJhKobQIy95bGeVu6yr/7kEAMPMdPFCsdpVRvqaizyGvRT8TtSUWdpfS1XBe9Zd2GQygs8r3b1Be7wkINz748Cudd0hXbdhzxlbXsWjAGHikkLKZM36Zc3j7SYBhef2ccGr07AfWeHoGXXhujdDfRn/wl2Wn8ceOpOPdfnbF4mX8jm7/6InH9qbcnqXHy+feLIlE96yQBEvBCQJ5LBzZbKh5P31fd6PRw1QYfOVUscX3klLGcNmYigWgiUOehYWqOSRwamCHEn4Fn997jSB62rmz95Ew9pFTnOPO/6CdDUtarjRqbtx4OaO3BG2eZ2+98YCDOu7gzDuUGfjI3GAOPtL1q7UF1UkeMVK+8kYa3P5iIBs8OR72nh6NnnxU4me/fta1sikkeug7n/Kk9evVd6a1L6nPHGXgat16oBs/T73j3K+ezR7xIAiRAAiRAAl4IlO5A6dR3lZcclT/2Z+CpnLt23slCi+zAfbVRmvKLH6gUwRh4SuuU0zx79p3EoiX7MG/hHmzaIsqV910kpeVK/x89WqxcvYlLFglwHAvpqgeGKr2lb8qGWOgO+0ACMU1Adt6Kn/zZPXSI33xvizE9nnEpg9CeDLpZiekB4fDOFRRqan4RI8/6Lf4NIYEYeGq7y7KZRU7S/OXfnfDcq6P8ukcrlTdYA09pOdFbduw8hgXp+zB/0R7lZu50cWA++qXNrKx8XHxVd9z90CBIvCInplc/nq7GCT2gOPHuUKZ4ISDPi5xtNhb0N9DvNe/Gnm4NXJjUVsf2RSYkjiATCTidwMV3DlJzzOAxWwIS1Z+BJ6BKIpxpRUa2in383keTgmopWAOPVK50ieyTSF+apWL+SaxAidMTaMrPd6H+s8Px70sTIMYxX8lxBp5W3ZarwSN+/phIgARIgARIIJwELr93sJpj+o/YGFC1TjfwiMLQpsNC5Z5t9NhNcLsDN7aEYuAJCJqPTBJz6Dd/aY+2HdIr+aL1UcTxl+54erQaUz/0pu97x98sCkgCFQh4bI9yzTY3UUefl70bexKecmFqR125fDM0LsZUQBj0SzkZdXi3B3syPDi4xYbpzPXyoPsVqQLZOYVqfhEDz979+X6biQYDjxhcOnZdit/9rSNSx27y26fSDKLvbN5yGOec2xrffDun9OOI/pdds8NGbMA557ZD916BnfyOqEBeKv9fi3lqnEicSSYSIAFnEMjbaSM92cCARt6NPV3ruTChlYat801op6lf1MSdk40+2Rs8mN/XxuLBNk4esuEhep/oz63TR80xE2bu8pmv9KLTDTyiT3zeZAZ++cf2WJC+p1TsgP6HYuAJqGIvmWRTzKo1B3HueR3R8K005VXFS1b1seMMPD0GrVWD57pHh/uSm9dIgARIgARIIGgCf7u+JF7KmCmZAZV1uoHn+PFi3PnAIFx7ayJ27z4RlP/ZmjbwyELJK43S8Od/dVZu6UJ1SRfQjavBTPVen6D0libtF9dgq2yKBEggnATkx97BLRbmJ+lIauh9Mab7Ey5Mbqdjx2KLO2+DvAGnjttYmWpjWmcTCweYmPKDiYyxFgzuYPZKcuO2I2p+EQPPiQB2e0aDgefo0dO45e4kXHl9LxwO4iRvbRh4xJXcE88NV37yM3cd83qfavtC805L1TiRWDxMJEACziNwZK+NJUMNDHrbu37R5XEXxn2rYfNsE65CWhwicReLjnswqY2J3i8ZWDTIwuivDCQ8o+PYfhp5vPGWufenF3RXc8yCZdneslX63OkGHtFDLr4qAdff1ifok7k1beDRNBMt2yzA7//eEZOm7qjEuao3jjPwDE3bqgbPhbcPrEpefkYCJEACJEACIRMoDVY8O4BgxdKI0w08U2dsx1/P76J2sxYU+PfhWhFcTRt4MncexT8v6YYGz6WgsDA4WSvK7bTXdI3itDtCeUig+gQO7bCxaKCB/q97X4zpVt+Fid9r2LaAO2/9ES866sGsBBN9XtGxcoyF7E0eLBlmoGsDTRnL/JWP1+vpKw+o38U/Ob+7312bwsjpBh6JKTRn3m789i/t8XmT6UHd1po28MgmlLXrcvDnf3XCS6+nBuxKLqhOhSmzBL4WI+AtDUaGqUZWQwIkECkCx7NtLBthYPB73vWLzo+6MKaphg3TTZw+SWNPOO6FGM1Gfm6iWz0dO1dY8NhQhrTOj2kY+53B2EheIAfrKlaqcbqBZ8y4Tfh/v/4eHbqke+m1949r2sBz6FAhrrstEXVuTsTxE/7dujnOwDNp9m6loPzf1YneqfIKCZAACZAACQRJwOU21PwiP4Iz1ucGVNrJBh6Xy8Rzr47GhZd3w+q1hwJa/KnY6Zo28DT9bg5+99cOmDp9h1L8KsoSza/pGiWa7x5lJwH/BA7vtrF4iIGBb3lfjBE3K+Nbatgy14S7iIsxFanqxcC8RBPt79GxZJgJcdMmqeCwB+3ud2PklxosumqriKzs9eQffxf/4arAfhc73cBTVKTh+VdG47xLukECJAeTatrA43ab+PTL6fjjeZ2wMH1fMKLWeN4BIzcp/fbSuwfXeNtskARIIHQC4h5sZaqBof/zrl+IsWf0VxrWTTFRdIz6RSi0LQNqc0nrWzWsSjOhFZfXMvQjDa3vcCE/F3AXlX/OVyUE9h8sdxW7L7sgICxONvAUFxu468GB+Nd/uuJgTmFA/amYqSYNPOL9ZNCQtfjNX35Aj8TlFcXw+tpxBp5FK4LbqeS1Z7xAAiRAAiRAAhUI5OQVlRl4du49WeGK95dONvCsWZ+Di67siVffHAs5ahxsqkkDz5GjxWrnyY139sWh3NjSnlt0LnGN8tArY4O9BcxPAiQQZQSO7rOxNMVA8rveF2O6PObC2OYaNs40UVwQ34sx4td+UbKBtrdYmNDarBRzR+IN9HjWjY4PmiouT5QNhRoRt9SzxQW3BebZwskGHjkRs2FjLv5xcWc898poaLoZFMOaNPBIW/v2ncRldXvi7ocHocDhp47HTtup9Ns/1+0bFFNmJgEScA6BgsM2Vo01MPxT7/pFp4ddGPm5hjUTTBQesZ0jvIMlET1k1zIL/RuaGP2FieMHKutlqd/oaH61hd0rJC5j5WsO7laNibZha7mr2JP5gXngcLKBZ+XqA/j1n37Aux9NQiju4mvSwJOf70L9Z1Nw/uXdsSPzaED33HEGnm07j5ctwB0OYcEqoF4zEwmQAAmQQNwRCFVBafhmGq6/vY9y1eEkaN//sBDnntcJI1M3QnaaBptKDDzd8HXzOQjWvVuwbaWN36wCKrdutwDiSzaWUmnswLoPp8RSt9gXEiABPwROHLSxYpSBIR94X4yRnbepTTSsn2ri1In4WzjI2eZBwhMG2t2lI3tz5cUoMfD0el5Duzs92LbI8kM7Pi+Xut66OUDXW6UGnsvqJqg4N06iJnN/hy6L8es/t8fIMRuDFq3UwPOrP7ZGkxZzgi4fTAHZNTt0+Hr89q8d0CVhSTBFayUvN8jWCnY2SgIRIyAnddZMNJUxp9MjLohhp6q/lE/cyEgzkJ9beX6NmGBRWLG4iJ3S3kbLm3Rsnm3B0Cp3YtRXOr67Blg72cKm2dRFKtMB5qRnqfX5X1zcI+BYv6KL3P9YMm64ow9yHbaxUzyK/Pz3bTFvwZ4zuxrQezHw/P3CDni4/pCA8oeaSYxPK1cdwJ//3RmyFmUYgX3HHWfgOX7SVWbg2bQ9MCtVqNBYjgRIgARIIH4ISNwdcc8mcXgCTTK5ftlsJp5+cSS2bgvOnUigbYSST3YjvffxZNz/2GDs2nU8YIWrYltZ2Sdx6z0D0bXnsqADDFasJ5DXskBS5+YkZSQLZbdMIG3UVp7Rk3eocfX3G/rVlghslwRIoJYJyOLKyjEGUj72buyRRZpRX2pYOyk+3KyIf/uJbXW0vtFWsQS0U5Vv0umTNrrW19D+dg/WT4stw3/lnob+7su2i9T8Uv+NiQFVIvOr/D3cYAief3V0QGVqKpPLZeB/jafgzgeTkXMoeLcoYuDZu/cErrqhF7r1XBZRscUY1bbDQlx/+wBs3+H89Yjtu8o3yOYdCf5Ed0RhsnISIIFqEZAYPLJJZPTXGmTTSFWGHvls6IdurBht4PiBwBaCqyVUFBXeMs9C72dMJD5j4cieymwsExj0nhvfXg2sSDWxZhJ1kTNv7fDx25Qe8s+b+595yet70UP++/ZYPPPSyJC8jHituJoXZP2k4Ztjce8jySgsPMPSF2Ddoh/cdm8/vP3BhABLhJZNjGSTpmzHFdf3xZTpOwKuxHEGHlHefn5RghpEcxfvD7gjzEgCJEACJEACvgikjNuq5pZ/3zLAV7azrq3IOIBZc3bi5En/ge3OKhyhD2SunDN/N+bM2xXS6R0RS3zQpo3fgs1b8iIeE2f12hyMGbcZssATa2nBsmw1rn52YUJIR71jjQf7QwLxTkDcpqweb2JEY83rQowsxoz4TMOqcQYK8iovOMQKv7zdHnR93EDzujq2LbQhCymlSX5kywmo7+9wo+3tHqybyl2zpWwq/n/ts5lqfnnry9kVP/b7etqMTMydv9tvvprMIIsV8xfuwdQZO0LalCKyys7ZUWM2Kb0lkrJblo2M1QeUjiSneZyeTuSXb5DduO2I08WlfCRAAiEScBV6sHGGibRmGsQdrDdjz+D33Fg23MCx/bGpXwSKT3cBUzuZaF5XQ2oTE8X5lUuKG90ez2hodhWweryFDdOd/7yv3IPIv+s2YI3SQ254fHhQjc1fuBez5+4MeZ0iqMYCzCzrJ9NnVU8/kjomTN6K9CWRjc1n2zZ27zmB4aM2ID9A13iCwXEGHhHqvJv6q0E0cuL2AG8Vs5EACZAACZCAbwJd+q1Wc8uN9Ub4zsirJBAEgS2Zx9S4ktNhR45ViNoZRB3MSgIkEJsETh33qBM7cnLH187bYR+51QmgkzmxsxizoL+BVjd40K2+hqLjld3T2Rawa7mFb67W0fZOHdvTK1h/YnMohNSrRxqOU/NLs47OdxMWUgdZKCwEZMFJ3OeIHiLudJhIgARin4D7lAeb55gY962GrvW8G3sGvunG4iHGWadXYp8QcOKAB/3/a6H1zSYWDjRhmZV1kZxtNtrfr+GbK3Rsm29j1/LY0cHCdX+btF+s5pbHX4vsiZVwyRvv9TjSwHP9Y8PVIOo+YG283x/2nwRIgARIIEwEvmqbruaWeq9TQQkTUlYD4OjxYjWuZGFlcxS4cuFNIwESqB0CxfklrsjGfOPb2CMxfZaPNHA8O3oXGlwFQPIHbjS/2oMJrY2zfN6bOrBkmImmV9ho/4CGvJ3R29dIjqZrH0lR84vEemMiAV8ExH2O6CHiToeJBEggvghoxR5sW2BiQmsN3ep7N/b0f92NRYMM5GbG/pwrbmL3rrHR9k4T3RuYWDfVgF7sqfQnLtna3Gaj+XVuZG+xcGRf7HMJ9pvxxuez1NzS6ItZwRZl/log4EgDT4NGE9Ug+qLNolpAwiZJgARIgARikcDLH01Tc8u7TSIbnDcW2bFP3gnIzlmJ6yQLKzMXRva4tncpeIUESCCaCIiblU2zTIxtoaHL494XYwa97cbSFANHo2zRYXeGhYQnLXxzhYlxLQ1smmth6wK77E8CGQ98W0fza2wkvuyGVhRNd6/mZP1Tnb5qbkmbmllzjbKlqCRwS4ORaqx0SMyISvkpNAmQQHgIGG4PdqRbmNxOR/cnvOsXSQ3dWNDPQM42K2S3meGRODK1aKc9WDnGRNOrdHSrZ2BaZ0PF2VmRakH+Vo6xkPyehm+vtdHpETfkxLXhjows0Vzrgy+PVXNL805Lo7kbcSO7Iw08HzafpwbR8+9PjZsbwY6SAAmQAAlElsCdz4xWc0ubHisi2xBrjzsCl9yVrMbWgJGb4q7v7DAJkED1CMgixJa5Jsa39O1mZUAjN9IHG8jb5fwdpstGWvjhXhtN62jo/aIb/d5woX8jd9lfn1fdaFbXhe+uszGmuQ6JycNUmcDpYkPNK7J5YOW6Q5Uv8h0JnEHgufemqPHyvxbzzrjCtyRAAvFKwNQ92LnMwtQOOno87d3Y0+dlF+Ym6jiwyYLHjo0JufAIMK2ThaZX6+j0uEudKh7yPw2lfwPfdqP59cVoeoWFlE91SLweprMJXHbPYDW39Bu+8eyL/MRxBBxp4Pmhd4YaRLc+McpxwCgQCZAACZBAdBI4/9YBam4ZkrYlOjtAqR1L4L4X0tTY+q7LMsfKSMFIgAScT0B3ebBtoYmJ32vo1sD7Yky/19xYOMDAoe2243beSnydiW10tL7JRu+XNRzP9kA7jUp/2xfZ+OZqTblGWTOJQY2rGpk7dp9Q84oYeHLyeMSpKkb8rJxA49YL1Xh54s2J5R/yFQmQAAn8SMAyPNi90sL0Ljp6Putdv+j9gguze+rIWmfBtqLX2HNkr41B75poe4eBpSNMiG5SMeVs8+CHBzQ0vcrEqnEWLKPiVb4uJXDOpT3V3DJ9/t7Sj/jfwQQcaeAR37GizJ53U38Ho6NoJEACJEAC0ULAsmz87MIENbfMX5odLWJTzigh8HrjmWps0T9xlNwwikkCUUBA3KxkLrEwpb2OhCe9L8b0fcWF+Uk6Dm5xxs7b4pMeDP5Aw7d1bExuY8JVeDbs+UkWml3pQdd6Ok7mRO8C0tk9C98ncxfvV/PKzy9KgB0jO6rDR4c1nUlAYhfL+onEbWIiARIgAV8ExHCzd7WFWQk6ej3vXb8QQ9DMbrrKa5nRM1fLqeCDW210f1JHj6csbJl7hnUHwIrRFlrfIjF6NOUGlyeJzx4xFePMbtp+9OwM/MRxBBxp4Fm04oBSUH5yfnfo+tlfRsdRpEAkQAIkQAKOJnDgUJGaV+TH7869Jx0tK4WLPgItOi9V4+uBl8ZGn/CUmARIwPEExM3KruUWpnXy7WYl8UUX5vTWkb2x9nbeHsv2oG9Dl9oVKwsoZ7o9kcDHSa9raHmNB2nfanTP5mX0DR6zRc0rF9w20EsOfkwC5QTGTtupxsu5dfqUf8hXJEACJOCHgBh79q+3MKeXjsSXvBt7xMWb6CC7V1gQncTJSU7j7F9vo8MDOpLftpG1vrJrW9sERn6hoeW1NkZ9ZZylpzi5bzUp27rNh8vWT07mM0BRTbIPtS1HGnj2HywsG0i79nEhLtSby3IkQAIkQAIlBNJXlm8ccLtNYiGBsBIYOGqT0lsuvJ0LcWEFy8pIgATOIiC7aPessjCjq283K7IrV3bn7ltbs8ae3J02ejzvwtdXnlaBns9cCBK3KS2u0/DdjQb2rq686HJWZ+P4g2+7lGwcEBegTCTgj8DqjXll6yf5BVyI88eL10mABM4mIPF3Dmy2MK+vjr6vutHp4aoNPnKqWOL6yCljOW3stGS4gT2rbbS5y41RX9g4sreyjEf3e9DpEQ2tbjaweb7oSE7rgTPkGTe9ZOPA/12d6AyBKIVfAo408Mgx9F9e0kMpKTMX7vPbCWYgARIgARIgAV8EklM3qzlF4vAwkUC4CSxcnq3G108v4MnjcLNlfSRAAt4JyM5b8ZM/u4cO8ZvvbTGmxzMuZRDakyF+5isvdHivPbQrebts9HpRU8GLD26xz1o4mdFNR6s6wNBP3JDTPExVE3j5o2lqXnnn6zlVZ+CnJFCBgOyullPq8rdmY16FK3xJAiRAAsET8Hg8yNlmq3h/EvfPm34h8QIntdWxfZEJiSPohGSZwP6NNjo8qGHcdyYKDpfLJcacuUkmWt9oYVI7E8X55decILuTZOjYZ5WaU26sN8JJYlEWHwQcaeARea+4b4gaTL2HrPchPi+RAAmQAAmQgH8CzTvRhZZ/SswRKoGKLgAz95wItRqWIwESIIGQCcjOW3HNNjdRR5+XvRt7Ep5yYWpHXbl8O/N0TciNVyiYn+tRLtha3e5C7k6JC1R+seiYB23u0tD6VgMHNnHLbDmZs1/dVH+E+i3cITHj7Iv8hASqIPCnOn3VmEmdsqOKq/yIBEiABEInkLfTRnqygQGNvBt7utZzYUIrDVvnmdBO16LhxAPk7rDR6wUdE1paKDxSLktupgcDXzPR41kd+zdYEHdtTFUTkA0msmngpf9NqzoDP3UcAccaeBo0mqgG02etFjoOGgUiARIgARKILgIvfliyE/a9b+ZGl+CUNioIyC63cy7tqfSW6fP3RoXMFJIESCB2Ccgz6eBWC/OTdCQ19L4Y0/0JFya307FjscTKKV8AqQ4Z8X0/qokOMfDkbLcrGXimddbR8ipgXl+jOk3ERVlxiSILKxJbhYkEAiFw6xOj1Jhp34tGwUB4MQ8JkEBoBMTV6pKhBga97V2/6PK4C+O+1bBplglXYXj0i2CkPZnjQVpzE2nf2DhxoKR99ylgRlcTCfUNZIx1zomjYPpVk3nFRazoIRJrlik6CDjWwNO49UI1mOq/MTE6SFJKEiABEiABxxK44fHhak7p1HeVY2WkYNFN4KoHhqox1jN5XXR3hNKTAAnEHIHcTBuLBhro/7r3xZhu9V2Y+L2GbQuqv/N22QgL7e81sGuFp8wl3L51FppdZWDwBzosPeYQh7VDx0641HwiCyvrtxwJa92sLHYJvPrxdDVu3vxyVux2kj0jARJwFIHj2TaWjTAw+H3v+kXnR10Y01TDhukmTp+sGWOPVgysnWhjyHsWMpdacBcBGWkm+r5iYFpno8bkcNTNClKYf908QM0pQ9K2BFmS2WuLgGMNPH1TNqjBdMldybXFhu2SAAmQAAnEAAHZyfyby3qpOWXS7N0x0CN2wYkEnnlnshpjHzSb50TxKBMJkAAJKAKHd9tYPMTAwLe8L8aIm5Vx32nYMteEuyj4xZiCwzYGf2Bi7LcGju6zkbnMRrd6BkZ9WbLIwlvhm8DSVTlqPvnJ+d1x6jStYb5p8Wopge8TVqhxc9uTo0o/4n8SIAESqDECJw/ZWJlqYNhH3vULMfaM/krDuikmTh0PXr8IpjPiFnZWTxOpTQxMam1h4vcWtsy1cTo/mFriM2/RKV3NJ7LRZNnqnPiEEIW9dqyBJ33lATWgJGBxsYvH+KNwbFFkEiABEnAEgX3ZBWUKys69Jx0hE4WIPQJyfF2U4HueHxN7nWOPSIAEYpLA0SwbS1MMJL/rfTGmy2MupDXTsHGmieKCwBdj8nYBI78yMPQjqd/E0hQLEviYyT+BASM3qfnkgtsG+s/MHCTwIwFx5yd6yB+uSiQTEiABEqhVArLRY9VYA8M/1dDpYe9xAUd+rmHNBBOFRyoE7AuT5BIDUOQ4sNmD/es9OJYFaMXhbydM4jqqmlUbcsvWT07mux0lG4XxTsCxBp6jx4vLBtS6zYe994BXSIAESIAESMAHAYmJIj94f/WfnrAsKnU+UPFSNQiMnLhdjbM/1+1bjVpYlARIgARqh8CJgzZWjDIw5APvxh7ZeZvaRMP6qQG6WfEAxfmAyb16Qd1UiUEreku91ycEVY6Z45vA1sxjZesnB3OL4hsGe08CJOAYAnKSZs1EE2LM6fSId2NPyiduZKQZyM8N7+913QW4ilApJqBj4DhUEHHLJnrIeTf1d6iEFKsqAo418Iiwf7m2rxpUIyZsq0p2fkYCJEACJEACfgl0Tlqt5pJrH0nxm5cZSCBUAhu2HilbWDl89HSo1bAcCZAACdQ6AVlckUWWlI+9G3tkkWbkFxrWTjIhizdM4SPw8Kvj1HzyVdv08FXKmmKegGFY+PlFCWrszE7Pivn+soMkQALRR0Bi8MgmkdFfa5BNI95O9wz90I0Vow3I5hOmmifwdbt0NZc89MrYmm+cLYZMwNEGnvteSFODqlnHJSF3kAVJgARIgATim0CjL2apueSVj6bHNwj2PqIE3G4T4lZWdjstXJ4d0bZYOQmQAAnUFAFxm7J6vIkRjX27WRnxmYZV4wzlDqWmZIvVdmTHrMwlDGwcq3c4cv266oGhauwkDFwbuUZYMwmQAAmEgYCr0IONM0zlBlbcwXoz9gx+z41lww2IW1mmmiEgJ4hFD5ETxUzRQ8DRBp6Pv52vBlX9NyZGD1FKSgIkQAIk4CgC1z82XM0l7XtlOEouChN7BC67Z7Aaaz0GcWEl9u4ue0QCJCABkddNNjHqS987byXAsgRaPpnDxZhgR82xEy41j8jCyuqNecEWZ/44J/Dih9PU+JHNTUwkQAIkEC0E3Kc82DzHxLhvNXSt593YM/AtNxYPMXBkD/WLSN7bf908QM0lA0dtimQzrDvMBBxt4ElO3awG1T9u7BfmbrM6EiABEiCBeCCg6xZ+eUkPNZfMWLA3HrrMPtYigZf+V7Kw8sbnXFipxdvApkmABGqAgLhZ2TDdxJhvfBt7JKbP8pEGju3nYkwgt2Xu4v1KZ/nZhQmQk6FMJBAMgQ6JGWr80C1xMNSYlwRIwEkEtGIPti0wMaG1hm71vRt7+r/uxqJBBnIzqV+E8/4dPV6s5hHZaLKGG03CiTbidTnawLNu8+GygUV/9hEfC2yABEiABGKOwPot5XFRcg+firn+sUPOItCxzyqlt9R9mPGenHVnKA0JkEAkCYiblU2zTIxtoaHL494XY5LfcWPJMANH93Exxtv9KI0bWOehYd6y8HMS8Epg1qJ9Sg+RWDyaRgOhV1C8QAIkEBUEdJcHO9ItTG6no/sT3vWLpIZuLOhnIGebBY+HcQGrc/MieusAACAASURBVHPnpGeVzSPcaFIdkjVf1tEGHtl5/YuLS3Zez1y4r+bpsEUSIAESIIGoJjB4zBaloPz9Bp4EjeobGSXCS1Bj2e3EhZUouWEUkwRIIOwEtNMebJlrYnxL325WBjRyIz3ZQN4uGnsq3gSJFyjzyOuNZ1b8mK9JICACsilWxo/8rd10OKAyzEQCJEAC0UDA1D3YuczC1A46ejzt3djT52UX5ibqOLDJgsemsSfYe9upLzcsBsvMKfkdbeARSNc9WhI74YfejJ3glEFDOUiABEggWgh88t0C9SP38dcmRIvIlDOKCRw5xiPtUXz7KDoJkECYCcjO220LTUxqo6FbA++LMf1ec2PhAAOHtttxv/P2ivuGKL0lYSBjuYV5OMZNdefd1F+NoUGjN8dNn9lREiCB+CJgGR7sybAwvYuOns961y96v+DC7J46stZZsC0aewIZJS9/RJfjgXByYh7HG3je/mq2UlCeeWeyE/lRJhIgARIgAQcTuO3JUWoO+bbLUgdLSdFiicC/bykJSpmUsjGWusW+kAAJkEC1CBhuDzKXWJjyg46EJ70vxvR91Y35SToObom/nbf5BW785MfTF4szDlaLNwvHL4En3pyodN/3m86NXwjsOQmQQNwQEMPNvjUWZiXo6PW8d/1CDEEzu+nYu9qCZdLY422AXHznIDWH9Exe5y0LP3coAccbeAaM3KQG1z9upHsdh44hikUCJEACjiQgvsd/eUmJm8+pc/c4UkYKFXsEXvhgqtJb3vh8Vux1jj0iARIggTAQEDcru5ZbmNbJt5uVxJdcmNNbx/4N8bHzttTv/c8uTMDpYiMMpFlFPBJo3ytD6SHXPsJ4gPF4/9lnEohnAmLsEZ1hTi8dokN0erjqP3HxJjrI7hUWRCdhKiFQ0RtFxvpcYokyAo438GzaflQpKOJHNjunMMrwUlwSIAESIIHaIrBy3aGy+ePo8eLaEoPtxhmBrv3XqHF3+b2D46zn7C4JkAAJBE9AdtHuWWVhRlffblZkV67szpVdurHqZqVtz5Vq/rj+seHBg2QJEviRwLwl+9U4EkPhqdM6uZAACZBAXBKQ+DtyGnheXx1yOtibsUdOFcvpYjllLKeN4znJplhZe5dNsrpuxTOKqOy74w08lmXjd1f0VoMsbWpmVEKm0CRAAiRAAjVPQI4Vi4JyyV3JNd84W4xbAktX5ahxJ252TuS74pYDO04CJEACwRIQw434yZ/dQ4f4zfe2GCNuVsQgJP73xQ9/rKT6b5S41vqg2bxY6RL7UQsECos0/PSC7koXWbg8uxYkYJMkQAIk4CwCHo8HOdtsFe9P4v550y8kXqDEDdy+yITEEYy31KLzUjV3iJt7pugj4HgDjyC9/8U0Nci+aLMo+ghTYhIgARIggVoh8MpH09Xc8erH02ulfTYanwRcbgM/vyhBjb1Zi/bFJwT2mgRIgASqSUB23mZvtDA3UUefl70be8TNytSOunL5Fu1uVv5ct6+aO4amba0mvcgVz830YMN0G67C+Fv4ihzV8Nd8zUPD1Fjq2GdV+CtnjSRAAiQQ5QTydtpITzYwoJF3Y0/Xei6Mb6lh6zwT2un4mPMefHmsmjsat17o2DtcdNSDncttHNhsw9QcK2atCBYVBp5SK+ItDUbWCiQ2SgIkQAIkEH0ESoPdJw5dH33CU+KoJnBzg5FKORb9hYkESIAESKB6BGTn7cGtFuYn6Uhq6H0xpvsTLkxup2PHYivqdt5u33VczRty8jhzz4nqAYtQaXehB0M+cqNnAw8WDmKMoAhhDku17zaZo8aTnApjIgESIAES8E7gyF4bS4YZGPS2d/2iy+MujG2hYdMsM2Y3OJimjd9e3kvNHWOmONN7lm0CGWkm+rxkYMxXNvatoxu5iiM7Kgw8s9Oz1CATP7JFp+hHtuIN5GsSIAESIIGzCezdn1+2UCKx3JhIoCYJfNl2kRp/dz+XWpPNsi0SIAESiAsCuZk2Fg000P9174sx3eq7MPF7DdsWmNCKnb/ztt/wjWre+PsN/bzew+ICD7YutHBwiw3UQpcyl1n4/hYLza8ExreqbOApOmZjXl8L+Xm1IJhXYvF7Yfj4bWo8/d/VibBt3pP4HQnsOQmQQDAEjmfbWD7SwOD3vesXnR91YUxTDRummzh9MnaerxXjF+cePuUV26pxJralm16vR/JCcb4HY76x0PxqG72fs7B9kV3WnF7swfZ0Gwe22DDj1GwQFQYeMeqIcUd2NImxh4kESIAESIAEfBEQ9yYyZ5xbpw9k5y8TCdQkgSlzygNUut21owDXZH/ZFgmQAAnUFoHDu20sHmJg4FveF2PEzcq47zRsmWvCfcqZOoG4kxW95cUPp3lFeTzbg9RvdCwbacJTvqbhNX8gF4KpZ3oXAy3qeNC8joHtCyvPbSJbmzsMLEyu/HkgMjBP+Alk5xSq8SRjat3mw+FvgDWSAAmQQIwTOJljY2WqgWEfedcvxNgz+isN6yabOHXcmfpFoLepc9JqNW9cds9gr0UkVmLPF10Y+214LSiB6iLH9nuQ+IKFZlfbSP3awLGscmVINsHM6m5jUnsT+bnRfS+83gA/F6LCwCN9EPdsoqA070R3J37uKS+TAAmQQNwTePPLWWrOeOrtSXHPggBqnsCJfBd+cn5JgONFKw7UvABskQRIgATikMDRLBtLUwwkv+t9MabLYy6kNdOwcaYJWQxwSvrXzQOU3tJn2AavIh3d58HQjzSkJ5uww+CVpOgYkD7YCmgHssQf6PWiGy2u9qBPQze005XFNNweJL6io9uTbujFla/xXe0QuPD2gWpM9Ri0tnYEYKskQAIkECMECg7bWDXWwPBPNXR62HtcwJGfa1g93kThkXLDQ7QgaNBoopoz3vl6jleRRffo9KgbKZ+FJ/iN1HdkrwdLhll+9RrJu3e1pTaTdLjfxIpUE1aFw8SW6cHKVAsJT7uxb63ttz6vnYziC1Fj4PmqbboabHc9S3cnUTzeKDoJkAAJ1AiBi+8cpOaMbgPW1Eh7bIQEziRQ9+EUNQa/T1hx5iW+JwESIAESiDCBEwdtrBhlYMgH3o09svM2tYmG9VNr183Knqxyt7Kbd3h3KytxAoZ9HD4Dz47FJlI+01F41L+hK3ujB61u1dDsahPrplZtXVox2kCLa2zsyaj6eoRvOas/g8DrjWcqPeSZdyafcYVvSYAESIAEQiVQdMyDNRNNjPxCQ6dHvBt7Uj5xIyPNQH6u8409lmVDXHrKoQpx8ektiZGl8+NuDG8cHgOP7gLWTDSQ2lSH7QeT+xSwfKSFplfrGNHYgrjrPTOJC9tu9UwsGWI7ahPPmXJG6n3UGHimzdurBtvPL2IcnkgNBtZLAiRAArFAYF92gZov6JYiFu5m9Pbhs1YL1Ti85/kx0dsJSk4CJEACMUBAFldkkSXlY+/GHlmkkcWatZNMyOJNTab+I0ri7/zl2r4+3cqG28Azu6eBGV2NgBZBFvQz0fJaG92fdEN84FeVCg4Dbe7UMb51eF23VNUWP/NPYEjaFqWH/PGaPpDFOyYSIAESIIHwEpAYPLJJRDaLyKYRb6d7hn7oVptOZPOJE1PG+tyy9ZMDh4q8ihhuA4/oExPb6Fg0yL971xMHPUhraqLdXQaWDDVguM8WU04XD37PRPIHGkRnircUNQaeU6d1/OLiHmrQTZ27J97uE/tLAiRAAiQQIIFAF0oCrI7ZSCAkAqUbU0R3kViCTCRAAiRAArVPQNymiPuUEY19u1kRNyyrxhkQtyyRTs+/P1X9xn35I+/xd0SGcBp4LMODYZ9q2DDNgrhX85UM3YN+jVxofrWFRckV/KGcUUh8849prqPjQzoK8nzXeUZRvo0AgYO5RWULdhI8m4kESIAESCByBMTt68YZpnIDK+5gvRl7Br/nxrLhBsStrFNSu14r1XxxxX1DfIoUbgNP/iEbg95zY0+Gbxa27cH+jTa61tcw5H0T2ZuqPinssT1YOMhE58c0bJ1nw4yzn+BRY+CRUXbv82PUoPvkuwU+Bx0vkgAJkAAJxC+BQBdK4pcQe14TBLgxpSYosw0SIAESCJ2ABESWwMijvvS981YCLEugZQm4HO4kJyvOrdNH/cYdPGaLz+rDaeA5metB0usaDu2w4S+4cd5OG23vMtDxYQ3HsnwbbnavtNHyRhMZY/3vxvXZWV4MC4Er7x+ixlbbnivDUh8rIQESIAES8E/AfcqDzXNMjPtOQ9d63o09A99yY/EQA4d3h1+/8C9leY7StfZPW/peaw+ngccygawNNvo30vzGApTYfmsmWGh1q44F/c2z4gCW9wTI2Waj13MWpvwgsZB86ywVy8XC66gy8ARqVYyFG8M+kAAJkAAJBE9AdneULpQkp24OvgKWIIEwEhD3bOIq0J+yHMYmWRUJkAAJkEAIBMTNyobpJsZ849vYM/h9N5aPNHA82/9ijNTpLwXqFkXqCaeBZ+t8CymfaCg47F/GpSNMtLrOhrh0M/y43ddOe5DwlIYBb2owNP91++PD69UjIPqH6CF0F1s9jixNAiRAAqES0Io92LbAxITWGrrV927s6f+6G4sGGVXGlgm17UDKBbMpMZwGHr3Yg5VjTKR+o0Pq9ZXy8zyY+L2Jrg/Z2LvGgseHeiGu28Y01dDreQ0SP1DWh+IlRZWBp6ICnJ1TGC/3iP0kARIgARIIkADniQBBMVuNEODGlBrBzEZIgARIIKwEXIUebJplYmwLDV0e974YM+htN5YMM3B0X9XGHonps36a75MscrJCFuD9uUWRDobTwDMjwcTMBB3SV19J3K4N/sCNH+7R1aKTvyDIUte8JBNtb7eRvalqLr7a47XwEqC72PDyZG0kQAIkUB0CusuDHekWJrfT0f0J7/pFUkM3FvQzcHCrGDN8z9PVkUfKSggU0UMCiXcfTgOPbIIZ/72BxUO9u34V+aT/ciqn9wsaBr9n+NVbpMyGmRa61TOxcrQN96nqEoqe8lFl4JEj7H+u21cNvqSUjdFDmZKSAAmQAAnUCIGWXZepOeKqB4bWSHtshAR8EVi9MU+NR1Ga92Tl+8rKayRAAiRAAg4kICdSts4zMb6lbzcrAxq5kZ5sIG9XiVHj1AkPOj1Ssnizbop3I89tT45S80Tj1gv99j5cBh7xST/0I7cyYvk7kXNsv432d9kY31qHuEgJJB3cbqPNHTqmdfG9aBNIXcxTPQKyM/tX/+mpxtj4GTurVxlLkwAJkAAJhI2AqXuwc5mFqR109Hjau7Gnz8suzE3Ukb3RgsSY8ZbEYCJ6QrDpg2bz1Bxx3wtpfouG08Bz4qAHA99xI2ud7+M7ciJn/VQLXR+1sXSE4detrHSi4AgwoJGBlM80HNvvnZnfDkdZhqgy8Ajb1z6bqQZf/TcmRhlqiksCJEACJBBpAjc8PlzNEU3aL450U6yfBPwSkB1H/7ixnxqTPQat9ZufGUiABEiABJxLQHbebl9kYlIbDd0aeF+M6feaG6lNtEoBltdOOtvIc+RYMX56QXc1R8xbst9vxwMx8OTnerB8lIWFAyzsWCI7V89e2BD3cv1edyN3t6dsoUTi8OxZZWPZMEvF2Sl1aXIyx4MJrWwc2CILS35FVBncRcCwTzQV5Pj08QALBVY1c4VA4NH/jldjrNEXs0IozSIkQAIkQAKRJmAZHuzJsDC9i46ez3rXL3q/4MLsnroyisgJ24pp/VRTlQ02ns+/bxmg5oiu/ddUrK7K14EYeCSP6BML+ltIT7ZwYMvZeoD0d+9qS7lzLS4qb0rctm2abWHtRBtFR0v6JxtRJL7fnB4WTuRU7nN5ycqvPBYwu7eJLvXc2LHIhBUn+02izsAzZkqmGnznXNoTxa44uUuVxyrfkQAJkAAJVEEgJ69IzQ9yWmJxxsEqcvAjEqh5Au98PUeNy4deGVvzjbNFEiABEiCBiBAw3B5kLpEgvjoSnvS+GNPp4fJrayZUNvIMTduq5offX9kbuu57B6t0wp+B5+BWGzO6Gcq4M7mthX6vWsgYa5/lzmTzbBspn2pliydSd95OD5Ia2uh0nwfjWhowXCWLKLIokp8LGNrZCzTewNomsH66hZY3mNgwo3KfvZXh55EjkDh0vRpnf7s+Ka5iEUSOKGsmARIggcgREMPNvjUWZiXo6PV8uQ5RUZ+Q12IImtlNV4YSy/Rg9NclG0vk80CNPBu2HilbP9mx+4TfTgVi4Fk+ysToJjqWjbCQ+rWFvi9Z2Le2smFGTkevGGVhTDO9bPOI6BuZS2x0edRGr6dsLE0xAY+4aAMkf+FRwDYr1+NL4Kz1Nno8ZWJWgomiY4GX81Wn069FnYGnoFBTvgFlAU98BTKRAAmQAAmQgBDoP2KjUlDOrdMH4tKTiQScQGDS7N1qXP7i4h4oLPITndoJAlMGEiABEiCBoAiIm5Vdyy1M6+TbzYosyKwaV75B8fn3p6r5Qf4HknwZeMTVyZzeOuYkGjh5yFaxf7o/ZmPg28ZZLlumdtIxp7cJV1H5goe4fvnhfhNNrzDRrYEGcfUSapLTqwWHgS71dAz5SPMbPDnUdlguMAJZBwrKFvBWrjsUWCHmIgESIAESqHUCYuzZv8HCnF46El/ybuwRF2+dHy2/3uMZF/J2+l8PKY0X+5+7kwPqqz8Dz+6VFga9qyFrnY3CIx4sGGCgZV0b41rpleoXHSPtW00ZgUoviPvYjTNMNL/GxHfXG8r4IxtGQk26Cxj5pYHEV904tN2jDEWh1hUt5aLOwCNg738xTSkp7zaZEy2cKScJkAAJkECECTRoNFHNDQ0/mRHhllg9CQROoKL/+7HT6P8+cHLMSQIkQALRR0B20c7rq1dyz3bmrtuMNAOaZkJO7simRTnJE0jyZuAR12lrp1iY1M7A/vW2WsRYMcZE5wc86P2sgUM7yo01pgEM/lDH1vkmZDGlNGmngTl9DLS+yULX+hqK88vLlOYJ5r+heTCjm4l2d1nI3Vm9uoJpl3mrJnDNQ8PUWGveaWnVGfgpCZAACZCAowlI/J2DWyylY/R91e1TzxC9Q4w+uZm+jTy3NBip5oZA4gAKHF8GHjmBI/qFnOCxTDn5C0z+wUCrOsCQD8sVDjmRUxJ/R8eBzeWnl+Xz/EPA8M9MtLzBQGpTHdUx8Ii8qyda6Pq4idUT7IDjCDp6EPgRLioNPD2T16lB+NfrkrhL288N5mUSIAESiAcCcjKiNIhs2tTMeOgy+xhFBCRuoCzivfzRtCiSmqKSAAmQAAmEQiCtWeX4O2caeGRhZvTAA2pe+NmFCTh2whVQM94MPBJ3Z3oXAwsHmtCKPTA1ILWphtY32Ej52MTRrPIFnuMHPOj/hhuH95TH3yltvPCwBz2e0dH3NTfE4FOdJEan/Rs8aHWrgXl9y08tVadOlg2dQIvOS9V4u+K+IaFXwpIkQAIkQAKOICAnZQ9tt7FwgAGJ+3emnlH6Xow8kq+qdOBQuXv7RSsOVJXlrM98GXiy1toq5k3R8ZJNHUVHgW5PuNCyrgdTO5XrAWII2rXSwsC33JCYfRWT1L91roWOD2uY0sGo9qmbEzlAUkMDqd8YyqhUsa1YfB2VBh4ZiD85vyQg5cLl2bF4X9gnEiABEiCBIAiMmrRd/XCV+GxyYoKJBJxEYEjaFjU+f3dFb7jd1Thr7qROURYSIAESIIGzCLiLPOjyWIlv/OGfapjeWceKUQZ2LLaUqzQ52SJJAt6L4f/BlwOPz+bNwHMo08bCQYbyXS91H9xio/fzJprV0ZE+xIKroFzMbQssjPhcQ9Hx8s9KX8nu2ZRPdYxvqUNiDFU3FRfYGPSege5PuVFcQYbq1svywRNYv6U8zsLWzGPBV8ASJEACJEACjiQgekdF92ylxp3S/wlPuZCzrfykTGknegxaq/SQYA5O+DLwrJlsYmrHEqOMnODZOs9Ci7oGWt1iYHdGuZHJfdqDJcMsjPtWr9KAI/EEB76tYemw6v9mllPV07uJ61k3dq6wY14XiUoDjwzIW58YpQbjx9/OLx2f/E8CJEACJBCnBJ57b4qaE55+Z3KcEmC3nUzg+ElXWfzAKXMYP9DJ94qykQAJkEB1CIhhxFXo2zhimjYkXqAYePqmbAi4OW8GHr0YKMiz4T5VUtWiwQZ+uNuDzo/o2LvKqhQDZ34/E/P7G3CfqkJGDzDsEw0ZY03IDtvqJqljRaqJVjfZyFxavrhT3XpZPjQCF985SI25Nj1WhFYBS5EACZAACTiOwOY5ZpUneLrWcyH5XTcmfq+pjSbi4q1iuvu5VDUnvPfN3Iof+3zty8BTdNQDOVEsyXDLSWIdLa4C+jaUkzrlbUv8nTHNdaxMq9qAk7PVRsqnGnYuC4/ekLnUQsITNtKTrZjXRaLWwNM5abUajP+8uT/keBoTCZAACZBAfBIodhn4zWW91JwwYsK2+ITAXjuewMOvjlNj9I3PZzleVgpIAiRAAiQQOQJz0rPUfCAeKXIP/2iVCaA5bwaeikXFRduwT3S0qGtjTDOzkksS5bqtmYbti2yY+tm/n2Vxpu9/3TiUaUFcrFU3iYFH3Me0usVC1oaz26tu/SwfHIGv26WrcXftIynBFWRuEiABEiABxxKYm6hDXMPK/7WTTOxbY6HgsI0zDToVO5B35DR+ekGJV6zZ6VkVL/l87cvAU1pQluePZVtof5+Gb6/1YH7/yoac4/tt9GvkRs62s/UCqX9Huhh43Cg4cvb10jaC+b95tomu9SwsH23HvC4StQaePVn5SkGRnU9LMg4Gc3+ZlwRIgARIIIYISMwdmQt+eUkPFBRqMdQzdiWWCPQbvlGN0/+7OlEF146lvrEvJEACJEACgRN45+s5aj6469nUwAsBysXbsI81pCeblU7lVKxEjEA9n7HQvK6OlWOsSrF0JBbP8M91HM2yqnSLsmqsXHfDVVixxtBfF+d70OdVHX0batCqOjEUetUsGQKBlesOla2fZO45EUINLEICJEACJBALBBKHrlfzgZwmNoyz3bd562MgBh7bBNZPs9DsahPf36FDXK6VJim/c7mFge9q0E6Xf156XU4Xz+5lYUaCDqmnuknqmNBGR8/nNOxbbce8LhK1Bh650Tc3GKkG5YfN51X3vrM8CZAACZBAlBIQt2xi4HnyrUlR2gOKHQ8Ejh4vLnPTNnHWrnjoMvtIAiRAAiRwBgFdt/DHa0rcs8kCSzApkBM84tKk8/0edHxIw941lU/ibJpjIq2FxN85e1ds4WGPWnDZMN0Mz6KKBexaYaH1LTaWDg/DKk0woJi3SgLi9eSiO0rctLXqtrzKPPyQBEiABEgg9gnc8fRotX4iG06CSYEYeOS08KS2Jr69xoPEl93Qi8t1DjnZu2CQjgmttbM2mkjdBzfbSPlMx4HNgRudfMl/eI+NPi9ZmNjGKnMf5yt/tF+LagNPwsCSoFB/rts3KKtjtN80yk8CJEACJFBC4GS+W53cEQPPmCmZxEICjiZQ7/UJSpl+/v2pjpaTwpEACZAACUSGwKTZu9U88LMLE3DkWHFQjQRi4Nk400T7O2wk/ddA3q7yRRVpaE5vA3P7mJVO9cjntuXBjO4GxrfWUZAXlEheM0ssonGtDHS4z8CxA2fv0vVakBciSqB5p6Vq/F169+CItsPKSYAESIAEnElgX3aBmgdk/WTBsuyghAzEwKO7gCEfutGyLjDqa71S/XIttYmBVePP3vhRdMzGuJYGFg8xYYTJKYtsMOn6uIH1MyyIXhLrKaoNPOKzuNRv4PT5e2P9XrF/JEACJEACZxAYOGqTUlB+d0VvSCweJhJwMgGJESXK9DmX9kRhUZg0Vyd3mLKRAAmQAAlUIvDih9PUPPDYf8dX+jyQN4EYeLbON9Hhbht9G+rI21luWNF/DHi8bqoJs8J6i20DK0abSGnsRs5WD6yz11wCEa1SHvG/fzzbRocHdKQ1N8JyIqhSA3wTMoEtmcfKFvZWbcgNuR4WJAESIAESiE4CP/TOUPOAxLO37eCMHoEYeAw3MPprDS3reDDyq8q/d/MPe9DvDQ15u8r1E6F4usCjNqCkNtNQFKbYO65CD4b+T0fyuwbyMj1nnRiKzrvnW+qoNvBI1x56ZawanK9+PN13T3mVBEiABEgg5gjc/2KamgNe+2xmzPWNHYo9AqdO6/jNZb3UmB2atjX2OsgekQAJkAAJeCVQdEpXBn4x9KeMC34OCMTAI6d2utc30fZODVsX2BB3KJIO77Yx8ksd+9bYZYsc2mlgUbKJEV/o2JNhwQzTPhlpc+UYE61utLAtPQwWI69EeSEUAnUfTlF6SOPWC0MpzjIkQAIkQAJRTOCah4apOeCLNouC7kUgBh7RAVaPt9HsKgNd62soPFLSjJTdk2Ej+X2tzG2bGJjycz2Y0c3EmBYGDp9h+AlawAoFdi6z0L2Bhfn9TJw+GZwhq0I1UfUy6g08g8dsUYPz15f24m7YqBp6FJYESIAEqkdg/8FC/OT87moOmLVoX/UqY2kSqCECr3w0XY1ZMU4ykQAJkAAJxA+B5NTN6vkvhn4x9gSbAjHwyM7ZuYkG2t9rYmAjC9sWWnAXARtmiA96HUf3eWC4gN0ZHkxsbWJcK10FHg6n6xJpr18jDT2e1VTbwfaT+SNLoFPfVWoc/vW6JLq5jyxq1k4CJEACjiKwdtNh9fyXjSbyOtgUiIFHTvHm59kY9YWBb6+zkNbUVCd2dJcHiwZZmNpJVxtNik96sGm2jbSmFqZ21pVxx1P5YE+w4pXll3omd9CR8JSB3SttWCYNPGVwnPxClOPfXl6yG3bAyE1OFpWykQAJkAAJhJHA9wkrlIIix4stK0zaQBjlY1UkUBWB2elZatyKcVJ8IDORAAmQAAnEB4E7nykJahzqqeNADDxCsugYsHqChRGNLQx820BaCw1Jr+tIes2NKR11TGprYUIrE8tHrhRfxgAAIABJREFUW2rRpfSUT7juwr61HrS+zcLCATy9Ey6m4aznUN4pSAwoWeCTmFBMJEACJEAC8UHgoxbz1bO/zkPDQupwIAYeqVhO5hzbDyzoZ2PgWyYGvathfGtDbfwY8qGGWT0NjG9lYnI7A+un2Th5KLwu1I5le5DU0MbYFiZOHIyfdaKoP8Ejg6fRF7PUIL39qdEhDVIWIgESIAESiC4CHo8HF90xSD37m3VcEl3CU9q4JiAK779vGaDGbqtuy+OaBTtPAiRAAvFCYOfek+q5L4vqC5cHF9S4lFGgBh7J7z7lwbGsEncoayZa6PWyGxO+N7BqrIEd6TZyd3ogu2dlp22409QOBtrdZeDwnghUHm5h47S+eq9PUOPxybcmxSkBdpsESIAE4ouAppk4t04f9exPGLg2pM4HauCRykW/ED0jd4cH2xfbWDrcRPsH3FgwwMT66SZ2LbdxNMsD7VT4dQVxE9v1cQNrJ3vK3MGF1OEoKxQTBp70lQfKFObtu45H2S2guCRAAiRAAsESWLAsu+y5L4smTCQQTQRadF6qxu8Ftw0MOrhlNPWTspIACZAACZQQkM0oYtyRzSmySSWUFIyBp7R+2wRytnqQ8qmGnUstFOcDuju09kvr9PW/uMCDTo9oSGmswzQi144vGXjNP4Fx03eq8fjzixJw+Ohp/wWYgwRIgARIIKoJjJmSqZ77v7i4B44eLw6pL8EYeCo2IO7ZMtM96POqG4VHxagDmHpkdAT3aQ9GNDaR9LqGg1utiGxkqdg3J72OCQOPKMmX3JWsBuvX7dKdxJeykAAJkAAJRIDAfz+doZ75dz2bGoHaWSUJRJbA7qzyndxzF++PbGOsnQRIgARIoFYJmKaN827qr/QWcS8bagrFwCNtyU7Zid/rkPKRTptmm2h5o43Nc61IN8X6q0FA1y38uW5fNSa79FtdjZpYlARIgARIIBoIPNJwnHrmP/PO5JDFDdXAI8ac+f11TPzeCLntQAvuWWWhx9M25vS2cOp4ZIxIgcpS0/liwsAj0H7onaEG61+u7Qs5esZEAiRAAiQQmwSOn3ThV//pqZ75Q9K2xGYn2auYJ3DfC2lqDD/33pSY7ys7SAIkQALxTGDCzF3qef/TC7ojO6cwZBShGHjksNDMBAOLBpkoOhrZhQ7b8mDI/9zo9oSu3LKE3FEWrBECjVsvVOPyP3cnh3yqrEYEZSMkQAIkQALVIrAnKx8S/1VOEk+btzfkukI18GinPRj2iYb1UyO70cRjezCzh45uDeTUso1wxxgMGVwNFYwZA0/ekdOQo2YyYEdO3F5D+NgMCZAACZBATROQnYbyrP/jNX3gckd+F0hN94/txQeB1Ck71DgW9ygS8JiJBEiABEggNgmU7pp94s2J1epgKAYeicUzuomGTbMtiIuUSKYjez1oeaOBWT2MuHKJEkmmkax7x+4TSg8RnXpOelYkm2LdJEACJEACtUigSfvF6nlfXffgoRh4ZKPJyRwbvV9y48i+yBp4Tp8E+r1mYPRXJo7uj2xbtXg7vTYdMwYe6eGLH05Tg5Yue7zeb14gARIggagmIC45Zaeh/BiVnYdMJBCtBMQ9yt+uT1JjuU2P0F32RGv/KTcJkAAJxAMBcclZumt2+vzQd80Kq1AMPAe22hj+uY7sDTYQWfsO5ifpaF7HQM62+FtUidaxfP+LJaeJn32Xp4mj9R5SbhIgARLwRUA8XImnK1k/ad8rw1dWv9dCMfBYJrBtkY1+b7hh6X6bqFaGfWssdHlUx8oxNuTUULylmDLwLFxeHnR7846j8XYv2V8SIAESiHkCssNQlBP5k52HTCQQzQRKg27/+5YBsCwuiEXzvaTsJEACJFAVAYkPKzrLhbcPhG1Xb7FBTsiIC7SFAw3IIksg6eBWG8tHGyjIq17b/tpyFXnQ+XENSa9pMCO8gONPFl4PnEBp0G05TZyTVxR4QeYkARIgARKICgLi4Ur0EPF4JZ6vqpNE9+j0qBspn7oDrkYMPJlLTSwbEdlQKqJ7LEo20OcVHdmb7Lg8SRxTBh4ZYVfcN0QN3g+azQt4wDEjCZAACZBAdBB48q1J6hkvOw6ZSCDaCWQdKIDEZBCle/yMndHeHcpPAiRAAiRQgUCxy8Cf6pTsmpV4sdVNx7JtjG1uYMVoE54ADTx6MXDqpCfifugP77HR+jYdayZGdgGnugxZvjIBw7Dw9xv6KT3kuy7LKl/kOxIgARIggagncPtTo9UzXjxeVTeJu7XEVzSMbxX4Tg7xwOIqBMR9WiTTqRMeTO9iYnZPA0XHIrupJZL9qE7dMWfg6TNsgxq8v7msF07ku6rDhmVJgARIgAQcREDcnJQuhkvAYiYSiAUCT71dYrS8+7nUWOgO+0ACJEACJPAjgf4jNqrfpedc2hNHjxdXm4vuAg7tsHEyp9pVhb0C7RSwfYGN0/k8jRp2uBGusFW35Wqc/vW6JLjdNNBFGDerJwESIIEaI5CxPlc932Uz4ZKMg2Fpd+8aC7mZzjOgyAmevEwPThywIKeG4jHFnIHn1GldBd6WAdyxz6p4vKfsMwmQAAnEJIFPWy5QCspFdwyiO6uYvMPx2amK7mXXbjocnxDYaxIgARKIMQKyY/WqB4YqveXtr2aHpXe25YH7FGAE7hklLO0GUonHBgqPeiD9ZoouAuKy55eX9FBjNTl1c3QJT2lJgARIgAS8Enjlo+nq2X5jvRFe8wR7oTjfA616nt6CbTKw/B7AfcoDQ49fPSTmDDxy579qW+LrWHzamyZ3EQX2bWAuEiABEnAugcIiDb+/srdSULoPWOtcQSkZCYRA4NpHUtTYfu2zmSGUZhESIAESIAGnEZhdIWYgY8M67e5QnjMJvPH5LKWH1H045cxLfE8CJEACJBCFBA7mFkHiq8nhh+Hjt0VhDyhysARi0sCz/2AhfnZhyUAePXlHsEyYnwRIgARIwGEExKgjysnvruiNgkLNYdJRHBKoHoEhaVvU+JYdtLmHT1WvMpYmARIgARKodQKP/Xe8eq4/+PLYWpeFApCAPwLrtxxR41V07flLs/1l53USIAESIAGHE2jaYYl6rv/jxn7Q9QAD9zm8TxTPN4GYNPBIl1/4YKoazDc8Ptw3AV4lARIgARJwNAEJACsnMuVHp7hpYyKBWCOgaSb+dn2SGuPf/LA41rrH/pAACZBAXBHYuK18sXzavL1x1Xd2NnoJ3PdCmtJDHv3v+OjtBCUnARIgARKAeD/5v6sT1TO9Xa+VJBInBGLWwLNmY54azLIgKEfkmUiABEiABKKTwNC0rep5LkeM5YQmEwnEIoEfemeocf6HqxJ5Si0WbzD7RAIkEDcEGn4yQz3Pr3loGGPSxM1dj/6Ozliwt2z9RE70MJEACZAACUQngS79VqvnuXg/OZHvis5OUOqgCcSsgUdIyJF4MfA88BKPxgc9MliABEiABBxAoGKQ4v9+OsMBElEEEogMgfwCd1mcqY59VkWmEdZKAiRAAiQQUQL7sgvKXIWnjNsa0bZYOQmEm0BpTMCX/jct3FWzPhIgARIggRogIJ4hzrupv1oL/6LNohpokU04hUBMG3jmLt5ftgtl1YZcpzCnHCRAAiRAAgESmDx7d9lznEGKA4TGbFFL4Ot26Wq8//2GfnC7zajtBwUnARIggXgl8PG389Vz/ILbBkJczDKRQDQRGDlxuxq/Es94T1Z+NIlOWUmABEiABAAMGr1ZPcd/cXEPHMwtIpM4IhDTBh65jzfWG6EG99PvTI6j28qukgAJkEBsELj1iVHqGd6g0cTY6BB7QQI+CBzKO4VfXtJDjfk+wzb4yMlLJEACJEACTiOQd+Q0zrm0p3qG90xe5zTxKA8J+CVgmjYuumOQGsPvNpnjNz8zkAAJkAAJOIeAZdm49O7B6hn+5peznCMYJakRAjFv4Bk/Y6ca3OKqbcNW+pKtkVHFRkiABEggDARmLtxX9vxevuZQGGpkFSTgfAIfNJunxv2/bxkAXefub+ffMUpIAiRAAiUEPv9+kXp+/+36JBS7DGIhgagk0G/4RjWOZfc3Y19G5S2k0CRAAnFKQFzDytr3Ty/ojsw9J+KUQvx2O+YNPBK/oe7DKWqQP8NTPPE70tlzEiCBqCNw25Mlp3ceaTgu6mSnwCQQKgFZTJFFFVHOk1I2hloNy5EACZAACdQggcNHT+PXl/ZSz24JbsxEAtFKQDaXnH/rADWW3286N1q7QblJgARIIK4IyOmdy+4pOb3T8BPGLo6rm/9jZ2PewCP9HDe95BTPT87vjo3beIonHgc6+0wCJBBdBGanZ6kflrLIvWx1TnQJT2lJoJoE3vtmrhr/ssDCUzzVhMniJEACJFADBL5sW3J656/XJeF0MU/v1AByNhFBAn1TNig9RDacZOcURrAlVk0CJEACJBAOAsPHb1PPbTm9s2M3T++Eg2m01REXBh45xVPnoWFqsD/77pRou0eUlwRIgATijsDtT41Wz+yHXhkbd31nh0kg60ABT/FwGJAACZBAlBCQ2Du/uazk9E7nJJ7eiZLbRjF9ENA0E/+6mad4fCDiJRIgARJwDAE5vXP5vSWnd179eLpj5KIgNUsgLgw8gnTstPJYPKs35tUsZbZGAiRAAiQQMIEpc/Yo446c3lm6iqd3AgbHjDFFQIIby3fgnzf3h8vN3eAxdXPZGRIggZgi8Ml3C9Tzmqd3Yuq2xn1n+gwrOcXz84sSsDvrZNzzIAASIAEScCqB5NTNSg+R0zvbdx13qpiUK8IE4sbAI6d4bnh8uBr0D7/KeA4RHlesngRIgARCImDb5XHT6r0+IaQ6WIgEYoHAgUNF+NV/eiq9hTvCY+GOsg8kQAKxSEBOXP7ykpK4aT0GrY3FLrJPcUpAXMRefOcgpYdwR3icDgJ2mwRIwPEE5MRlady0Rl/Mcry8FDByBOLGwCMIZy3apxQU2RG7YFl25KiyZhIgARIggZAIjJhQ4jtWYqZt2MqYaSFBZKGYIfBFm5KYDn+q0xcFhVrM9IsdIQESIIFYIfDG57PU70tZXJFFFiYSiCUCpTEdGMs4lu4q+0ICJBBLBBIGrlV6iGw2kU0nTPFLIK4MPHKb731+jBr8tz4xKn7vOntOAiRAAg4kYBgWLrkrWT2jX/5omgMlpEgkULMEjp1w4fdX9lbfiW+7LK3ZxtkaCZAACZCATwJbM49B3KHI5sHBY7b4zMuLJBCNBORk/TU/xjJu0GhiNHaBMpMACZBAzBIoOqXjL9f2VXrIpy0XxGw/2bHACMSdgWf5mkNq8IsinjY1MzBKzEUCJEACJBBxAj2T16nns/j63rWPvr4jDpwNRAWB7xNWqO+FBPDOySuKCpkpJAmQAAnEA4H6b0xUz+cr7x8CCXDMRAKxSGDy7N1l6yeLVhyIxS6yTyRAAiQQlQRadF6qns+/vbwXDh89HZV9oNDhIxB3Bh5B9+y7U9SXQHzK8ih9+AYTayIBEiCBUAmczHdD3FCJ8f2jFvNDrYblSCDmCJw6reMfN/ZT3403v6Rf5Zi7wewQCZBAVBKYt2S/ei6L3iIL4EwkEMsE7n4uVY33G+uNgMQ2ZiIBEiABEqhdAhKv9deX9lLPZtkQyEQCcWngkZ3hv7i4JBhm1/5rOApIgARIgARqmcCXbUtijfzhqkQcPV5cy9KweRJwFoFBozcr5V1cATE2lbPuDaUhARKIPwLituq6R4er5/J9L6TFHwD2OO4IrNqQC4nDIwbNlHFb467/7DAJkAAJOI3Aa5/NVM/kf97cH6eLDaeJR3lqgUBcGniEc+PWC9WX4Y/X9MHxk65aQM8mSYAESIAEhMCerHxIUED50dip7ypCIQESOIOAuP6p+3CK+o48+PLYM67yLQmQAAmQQE0SkHg7orPIgvfaTYdrsmm2RQK1RqDhJzPUuP/XzQNQ7OJiYq3dCDZMAiQQ9wRE9yg1ug9JYwzAuB8QPwKIWwPPiXwXzq3TRykpdAfErwMJkAAJ1B6BZ96ZrJ7FF94+kG4za+82sGWHE5iTnqW+J7KoOInugBx+tygeCZBArBKQgMalbjNfbzwzVrvJfpHAWQT2HyzEOZf2VLpI6+7Lz7rOD0iABEiABGqGQKnbTDlNLKeKmUhACMStgUc6XxrQ+2cXJtDlCb8PJEACJFALBCouWqdNzawFCdgkCUQPgdKA3hJD0O02o0dwSkoCJEACMULg63bpaoFbAhofzC2KkV6xGyQQGIHSgN4S9yHrQEFghZiLBEiABEggbARGTtxetulv4fLssNXLiqKfQFwbeEzTxjUPDVNfDrGAMpEACZAACdQcAcOwcOX9Q9Qz+P4X6cO+5sizpWglIDEES90ZtunBYJrReh8pNwmQQHQS2LH7RFkc1w6JGdHZCUpNAtUgIHEe/n3LAKW7P/vulGrUxKIkQAIkQALBEpBTxOfd1F89g1/8cFqwxZk/xgnEtYFH7q1YPMXdifyJJZSJBEiABEigZgh07b9GPXt/flECtmQeq5lG2QoJRDmBZh2XqO+N7J4VdylMJEACJEACNUPgkYbj1PP30rsH06VszSBnKw4kMGZKpvoeyPqJnMRnIgESIAESqBkCTdovVs/f31zWCwcO8RRxzVCPnlbi3sAjt0osn6KgiCW0oFCLnrtHSUmABEggSgmIW5PfX9lbPXsbt14Ypb2g2CRQ8wRk96wEOBa9ReJXMZEACZAACUSewLjpO9VzV5690+fvjXyDbIEEHExATt7Ld+GK+4bQ2Ong+0TRSIAEYofAtp3Hy04Rt+/FU8Sxc2fD1xMaeABl+fzdFSULje83nRs+uqyJBEiABEigSgJPvjVJ/TD8+w39aFivkhA/JAHvBCRelSysyN/4GTu9Z+QVEiABEiCBahPIL3DjHzf2U89c0V+YSCDeCcjJ+19c3EN9J77rsizecbD/JEACJBBRAh6PB3c+M1o9c3mKOKKoo7pyGnh+vH29Bq9TX5afnN8dizMORvVNpfAkQAIk4GQCFRenx07j4rST7xVlcy6BBo0mKr1FTh/L4iMTCZAACZBAZAi822SOet7KyWO6RIkMY9YafQS+7bJUfS/E0ENXy9F3/ygxCZBA9BDoM2yDet7K5j4JM8JEAlURoIHnRyq27cFtT45SX5rL76Vf5aoGCz8jARIggeoSOJnvhpzaEeXkqbe5C7a6PFk+fgnIImOpm0NZfGQiARIgARIIP4FFKw5ANgCK3iILLEwkQAIlBDTNVC7a5Lsh6yiynsJEAiRAAiQQXgIVf/O98zV/84WXbmzVRgNPhftZ8ahxi85LK1zhSxIgARIggXAQeOvL2WqR5A9XJSInj4EBw8GUdcQvgcSh69X3SRYfZRGSiQRIgARIIHwE3G4T4gpFFrDveHo0F7DDh5Y1xQiBJRkHywygPZPXxUiv2A0SIAEScA6BJ94s8dogrmLptcE598WJktDAc8Zdadl1mVLi5ajxpu1Hz7jKtyRAAiRAAqESmL80Wz1fZaEkKWVjqNWwHAmQwI8EZLesLDrKd+qyewZDFiOZSIAESIAEwkOgaYcl6vn6y0t6QIIbM5EACZxN4INm89T35LeX98L+g4VnZ+AnJEACJEACIRFInbKjbP2EcVdDQhhXhWjgOeN2y1HjK+8for5EtzQYyZ1aZ/DhWxIgARIIhYDLbeA/dyerZ+vdz6VCAgUykQAJVJ+ALDrK4qMYeZp1XFL9ClkDCZAACZAANmw9gp9flKCerd8nrCAREiABLwQKCjX88+b+6rvy+GsTvOTixyRAAiRAAsEQOJHvwt+uT1LP1mfemRxMUeaNUwI08FRx45euyik7apwwcG0VOfgRCZAACZBAMASatF+slJNf/acnduw+EUxR5iUBEvBDoHX35er7JYuRsijJRAIkQAIkEDoBy7JxU/0R6rl69YNDoetW6JWxJAnEAYFJs3er74tsNhk5cXsc9JhdJAESIIHIEmj0xSz1XBXX9ofyTkW2MdYeEwRo4PFyG//Xovyo8b7sAi+5+DEJkAAJkIA/Ams3HcbPLizZBdu250p/2XmdBEggSAKy+CiLkLKwIouSpmkHWQOzkwAJkAAJlBLo0m+1ep7+9ILuWLH2UOnH/E8CJOCDwPPvT1Xfm79c2xdHjxf7yMlLJEACJEACvgjMSc9Sz1P5bdd/BF3b+2LFa+UEaOApZ1HpVWGRhn/dPEB9qe58ZjRkJ9f/Z+88wKK68v7/7O67fbO77+677b+7qSYxvZmY2BNj7zX23mNi1GgSTWLvghRpAkoTO4oKCth7FxUVVMSG2ABFiv33f77HzDgzDFNgZpjyPT4+zMy999xzPufec8/9VRYSIAESIAHrCBQV35OX6z4Oe/l6/Qi5d49WsNYR5N4kYBmBnfuzBcJIvAh8P3OHZQdxLxIgARIgAT0CqcevCryNMZcO/X6j3jZ+IQESKJtAztVC+fNrc9W9g6TgLCRAAiRAAtYTQGg2TdjL2u0WM7S99Qg99ggqeEwMfcq2c9pQbYy9bAIUN5EACZBAGQQ0iVeRI4Sho8qAxJ9JwEYENAnB4TGHcLMsJEACJEAClhMoKbmv9YZ8qU64FBbds/xg7kkCJCC6CcEDI2l1zkuCBEiABKwl0LZ/vFKUP1XVTzLP5Vt7OPf3YAJU8JgZ/BETN6ubC8ISuuibgcXNJEACJKBDID7pjJo/YQU7O2S/zhZ+JAESsAcBeMi92+Rx3ohnPpwnSHzMQgIkQAIkYBmBz8duUOuWXz43RxBeloUESMB6At2HJar76LdVfOXEqRvWV8AjSIAESMBDCYTGHtXKTyKXpXkoBXa7vASo4DFDDnHt32oYpW6y52uGScHtu2aO4GYSIAESIIHLV24LYnBDuVO/01K6FvOSIAEHEUg/kyu/e9FX3XtdhiY46Kw8DQmQAAm4NoGEjZlaocq0uXtduzNsPQlUIgGEun+uRqi6n95uFCWQp7CQAAmQAAmYJnDqbJ78/qXH73CfDVljemduJQEjBKjgMQLF8KfjGTcEFigQVPb4ap3hZn4nARIgARLQIfDo0SNp2HW5mjP/8nqAZOfc1tnKjyRAAvYmEBJzRCuojIk7Ye/TsX4SIAEScGkCV68Xyd/fDlTzZt32S+Thw0cu3R82ngQqmwDyAiICCuQnX0/aUtnN4flJgARIwKkJIArD+81i1Jz53w9CJP9miVO3l41zTgJU8Fg4LnMjDmuFJYvj0y08iruRAAmQgOcRmBN6QDtfrkg85XkA2GMScAICrfquUvfhH1/xl6wLN52gRWwCCZAACTgngaY94tR8iQTxF7ILnLORbBUJuBiBcV471X31s/96yYbt512s9WwuCZAACTiOwHfTt6v58udPe8mW3Rccd2Keya0IUMFjxXA268nFvxW4uCsJkIAHEjhy4pr8+gUftUDpNyrJAwmwyyTgHASu5xbLv94LVvdizTaL5MGDh87RMLaCBEiABJyIgP+CQ2qehKfBktU04nOioWFTXJwA1h0ftYpV99e/q4VIbn6xi/eIzScBEiAB2xPYuueiQLGDdQgUPSwkUF4CVPBYQQ7u+/94J0jdeHXaLaawxAp23JUESMD9CRSX3JPX6keoOfLF2uFSWHTP/TvNHpKAExNI2pIlsJzFC8N4711O3FI2jQRIgAQcT+BY+nX5TZXHRik9hzMMt+NHgGd0dwKZ5/Llqap+ah3Spl+8u3eX/SMBEiABqwjk5ZfI09XnqTmyWrMYQag2FhIoLwEqeKwkp5uAc9TkrVYezd1JgARIwH0JdPsyUS1OfvncHNmXmuO+HWXPSMCFCAyfsFndl7AMW78ly4VazqaSAAmQgP0I3Lx1R2CMAgX48zXDpOD2XfudjDWTgAcTiFyWpu4z3Gszg/Z5MAl2nQRIgASeEEC+v8bdVqj58fcv+cqps3lPNvITCZSDABU85YD2zdRt2kXKsrUZ5aiBh5AACZCAexHwm/8kxIlP2EH36hx7QwIuTODu3QfyYcvHIVL+8noA8/G48Fiy6SRAArYh8OjRI2nZZ6V6n4MHz8GjV2xTMWshARIwSqD3iPXqfvvFM96yaSfz8RiFxB9JgAQ8isAPs3Zo5coLV57wqL6zs/YhQAVPObginmz9TkvVzfiHl/3kxKkb5aiFh5AACZCAexDYse+SwGsHlnmdP1/rHp1iL0jAjQhcyimQv78dqO7RdxpHSUnJfTfqHbtCAiRAAtYRmOy7RytUWbAkzbqDuTcJkIDVBLDueK9ptLrv/vZWoFy8XGB1HTyABEiABNyFwOrkM9ow2sPGbXKXbrEflUyACp5yDgCSF2tiJb5cdz7d+svJkYeRAAm4NoGcq4XaRO5vfBopRcXMu+PaI8rWuyuBzbsuyP88662EK8w14a6jzH6RAAmYI4BQlZpkxoO+SzG3O7eTAAnYiMC5i7fkr28EqHXIB80XCjyMWUiABEjA0wiczsqTP73qr+bC2u0Wy/37Dz0NAftrJwJU8FQA7P7UHPn1C48TczJpYAVA8lASIAGXJIAkgLXaLlKLkz+/NlewWGEhARJwXgJeIQfU/Qpvu8DIVOdtKFtGAiRAAnYgkHXhpiBUJeZAhK6kgNkOkFklCZggkLz1nFbBOuCbZBN7chMJkAAJuB8BGMPCKBbrkH+9FywwlmUhAVsRoIKngiRDY49qhSXT5u6tYG08nARIgARch8CXP25S89/P/usla1IyXafhbCkJeDCBjoPXqPv2V8/Pkd0Hsz2YBLtOAiTgSQQQIgohKiFUQchKhK5kIQEScDyBqf5PQiSGLz7m+AbwjCRAAiRQSQQQzh7rEIS337mf72GVNAxue1oqeGwwtP1HJ6ubFEkDU7ads0GNrIIESIAEnJsAEgFicYL/P87e6dyNZetIgAS0BAqL7slr9SPUvfvvaiFy5Rotx7Rw+IEESMBtCSA0JdYsCFWJkJUsJEAClUPg0aO6rz1EAAAgAElEQVRH0rrvKnU/IhrKgSNXKqchPCsJkAAJOJDAnNAnkRT8Fxxy4Jl5Kk8hQAWPDUb6zp378n6zGLVIQVzZM1n5NqiVVZAACZCAcxLAi9jvXvRVc16T7ivk4cNHztlQtooESMAogYzMPPnjK09iP2Mdw0ICJEAC7krAN/ygWrNAwYNQlSwkQAKVS+BWwR1BHmPck8hrzDBFlTsePDsJkIB9CWzYfl6bC7X7sET7noy1eywBKnhsNPQXsgvkb28FqkXKS3XCJTe/2EY1sxoSIAEScB4C5y/dkn++G6TmuudrhklefonzNI4tIQESsJjAqvWnBeEVIVzpMjRBYFHLQgIkQALuRiA+6Yw258dnQ9a4W/fYHxJwWQLHM27IU1X91DqkWrMYQW4KFhIgARJwNwKY6/706mPDurcbRUlxCec6dxtjZ+kPFTw2HAnEsv9NFR+1SKndbrHQItaGcFkVCZBApRO4eeuONrTT/74+V06ezq30NrEBJEAC5ScwK3i/WrNAyTN25vbyV8QjSYAESMAJCexPzdF6HH/YMpZCFSccIzbJswkkbjorCHOPdUjLPisZFcCzLwf2ngTcjgC8E5/5cJ6a4xAa++Jl5v9zu0F2og5RwWPjwViekKG1iEUCLVrE2hgwqyMBEqgUAvfuPZBPOy9TixMkZ9+ym/HrK2UgeFISsDGBQd+laJU8THZsY7isjgRIoNIInLuo73F87UZRpbWFJyYBEiibQHB0qnYd8sUPG8vekVtIgARIwIUIwCsR3olQYP/hZT85nHbVhVrPproiASp47DBquhaxY2bQItYOiFklCZCAgwn0HrFe+/IVE3fCwWfn6UiABOxF4MGDh9K0R5y6v5F8PGXbOXudivWSAAmQgEMI6Hoc/+X1AEk/Q49jh4DnSUignARGT9mqfc9AInIWEiABEnBlAshRDK9EKHfgpQhvRRYSsDcBKnjsRHjwmCcWsWGLjtrpLKyWBEiABOxPYJLvbu1L10Sf3fY/Ic9AAiTgUAK3C+8KYkLjJeSPr/jLsfTrDj0/T0YCJEACtiIAj+P6nZaq+Qwex1v3XLRV1ayHBEjATgQQ9aTDoDXqvv35016ycv1pO52J1ZIACZCA/QnAGxHvVfgPL0UWEnAEASp47ETZ0CI2eSstYu2EmtWSAAnYkQC8dTSLE3jxsJAACbgngeyc2/Kf90PU/f7fD0Lk8pXb7tlR9ooESMCtCfQasU67blm4kh7Hbj3Y7JxbESgpuS81Wseq+/d3L/rKvtQct+ofO0MCJOAZBHzCDmrXIfBOZCEBRxGggseOpGER+07jJxaxR05cs+PZWDUJkAAJ2JYA8uzA+hUKHljDwiqWhQRIwH0JYJ3yVFU/dc+/2yRasI5hIQESIAFXITBhzi6tUAXexywkQAKuReB6brFUqRWu7uN/vBMkZ8/fdK0OsLUkQAIeTSBu3SmBFyLkJ/BKZE52j74cHN55KnjsjBwWsbCExQ2ORUpGZp6dz8jqSYAESKDiBGA1pxH0vlY/QhDPnoUESMD9CazfkiXIxYN1S70OS6S45J77d5o9JAEScHkCfvMPqXkLc1efkfQ4dvkBZQc8lsCps3ny1zcC1P38fM0wuZRT4LEs2HESIAHXIYA8pr9+wUfNXfBGhFciCwk4kgAVPA6gnZZ+XbtIgbLn3MVbDjgrT0ECJEAC5SMAK/7/fX2uWpw8XX2eXMjmi1X5SPIoEnBNAhFL0+RnP8WNbtJ9hdy9S+891xxJtpoEPIMA8p1q5qxmPePocewZw85eujGBXQey5fcv+ap3kar15su1G0Vu3Ft2jQRIwNUJbN97SRBaEkYmr36yQOCNyEICjiZABY+DiB84ckUlLsYN/0KtMIFnDwsJkAAJOBuB9DO58ve3A9Xi5F/vBcvpLHodOtsYsT0k4AgCAZGH1TyAdUvb/vGC3IIsJEACJOBsBBbFn9SGQ/nks6W0mHW2AWJ7SKCcBDbuOC+/qfLYGv6thlGSl19Szpp4GAmQAAnYj8D+1Bw9WS/zmNqPNWs2TYAKHtN8bLp1x75LWkuUVz6mVtemcFkZCZBAhQlkXbipTbKO0AjwPmQhARLwXAIzAvdplTzdvkyUhw8feS4M9pwESMDpCMQnndGGlPyoVawUFjGkpNMNEhtEAhUgsHZDpvzyucf5QKu3WMjcgBVgyUNJgARsT+AYozXZHiprLDcBKnjKja58B+rGZXyncZTk36QlSvlI8igSIAFbEoBXIeJcw1r/T6/6y8GjV2xZPesiARJwUQI/zNqhVfIM/DbFRXvBZpMACbgbgeStT2Ldv9skmrkC3W2A2R8S+InA0jUZ8otnHucGrNueuQF5YZAACTgHAeQL++e7Qeo9CfnW8Z2FBCqTABU8lUB/dfIZrSUKrM1uF96thFbwlCRAAiTwmADiWsOrEModxLveuT+baEiABEhAS2D4hM1aJc+IiZu1v/MDCZAACVQGAca6rwzqPCcJVB4B3dyAjbsxN2DljQTPTAIkAALIq4786pCf/OX1AIEnDwsJVDYBKngqaQQWx6dr40V/3HGpFJcwpEAlDQVPSwIeTQDxrN9uFKUWJ4hzvWH7eY/mwc6TAAkYJzDgm2StkgdePSwkQAIkUBkE9jHWfWVg5zlJoNIJGOYGvH+fuQErfVDYABLwQAKIfIK86lDu/PEVf0EOHhYScAYCVPBU4ijMX3JMfvZfLzUxwN244DY9eSpxOHhqEvA4AlevFwmSlmJxgvjWa1IyPY4BO0wCJGAZAeTfQR4ezBf4/+20bZYdyL1IgARIwEYEkM8UYWQxB8FyFha0LCRAAp5DQDc3YKu+q+TOnfue03n2lARIoNIJYN2hUe787kVfgUcxCwk4CwEqeCp5JIKiUrVKHiQOhDU9CwmQAAnYm8ClnAKpWm++VrmzPCHD3qdk/SRAAi5O4MGDh/LZkDVaJc8XP2yUR48euXiv2HwSIAFXIIA8pggjC+XOf94PYax7Vxg0tpEE7EBgku9u7TqkYdflUlTMSCh2wMwqSYAEDAhkZOZpw7JBucPIJwaA+LXSCVDBU+lDIIKYsprEgbCmRz4MFhIgARKwF4Gz52/KczVC1csRwrKt3UDPHXuxZr0k4G4E4MnTe8R6rXClz8j1gt9YSIAESMBeBJC/9Ncv+Kh55/maYZJ14aa9TsV6SYAEXICAV8gB7TqkdrvFcqvgjgu0mk0kARJwVQLIsfOPd4LUvIOwbPTccdWRdO92U8HjJOO7dE2GCpEEqzRY1cO6noUESIAEbE0g/Uyu/Lva44SAsITduIM5d2zNmPWRgLsTgNfO0O83aoUr8OphLHx3H3X2jwQqh8CS1enad6RXPl4giH3PQgIkQALB0ananMbvN4uR3PxiQiEBEiABmxNAjp2/vB6g3nv++kaAHDhyxebnYIUkYAsCVPDYgqKN6oAVPazpoeSBdT2s7FlIgARIwFYEUo9flb+/HajmGMSw33Ug21ZVsx4SIAEPJPDN1G1aJU+L3isZC98DrwF2mQTsSQD5Sn/+9OO8X283YpQDe7Jm3STgigSiVxzXRkJ549NIuXKt0BW7wTaTAAk4KQF46sBjBzLaf74bJPDkYSEBZyVABY+TjQys6TXxpWFlD2t7FhIgARKoKIG9hy/L/74+Vy1O/u/NADl07GpFq+TxJEACJCC6sfA/7byMsfB5TZAACdiEgP+CQ9o8pR+2jJX8m8xTahOwrIQE3IzAisRT8qvn56h3nJfqhMvFy4yE4mZDzO6QQKUQSN56TpBrB8qd/37A3H+VMgg8qVUEqOCxCpdjdoZVPazrMZHA2v7gUboAOoY8z0IC7kkAiuOnqvqpOeVf7wXL8Ywb7tlR9ooESKBSCMwJfRILv2abRZKXT0FspQwET0oCbkJgit8etWbBu9DHHZfK7cK7btIzdoMESMAeBNZtPiu/rfJYEPvsR6GCZOgsJEACJFBeAlAca3L/vVArTM5dvFXeqngcCTiMABU8DkNt3YlgXQ8re7zYwKOHSdCt48e9SYAEHhOIWJqmjV3/zIfz5ExWPtGQAAmQgM0JzFt4RBtK6eW68yXzHOcam0NmhSTg5gSQy6v/6GStcqdpjzgpKbnv5r1m90iABGxBYMvuC/KHlx8btCFfxrY9F21RLesgARLwMALe8w5o32le/WSBXL7C3H8edgm4bHep4HHioTt5OldggQIlzy+e8ZaAyMNO3Fo2jQRIwNkIjPPaqRWSIC41QxY42wixPSTgXgSWrsnQ5hL821uBsufQZffqIHtDAiRgNwIFt+9Ko67LteuW7sMS5d69B3Y7HysmARJwPwJIhv6Pd4LUPALr+9hVJ92vk+wRCZCAXQg8fPhIhn6/UbsOqdE6Vm7kFdvlXKyUBOxBgAoee1C1YZ1XrxfJB80XaieZERM3CyYeFhIgARIoi8Dduw8EghEoh/G/YdflcqvgTlm783cSIAESsBmBnfuztR7ICJeCEAcsJEACJGCKAAxQ3mwQqV23/Dh7p6nduY0ESIAEyiSQdeGmwOoe70A/+6+XIOQjCwmQAAmYIlBYdE9a9F6pXYd0HLyGHsSmgHGbUxKggscph0W/UcUl96R131XayaZt/3jBbywkQAIkYEgASYjrdViinS/6jUoShDxhIQESIAFHETidlScv1g5X89DPn/aS2SH7HXVqnocESMDFCBxOuyr/rhai5otfPjdHEFqWhQRIgAQqQgDvQ8jfpTF26/s134cqwpPHkoA7E8i5WijvNY3Wzhejp2yVR49oVO/OY+6ufaOCx0VGFl47X43frJ10qrdYKNduFLlI69lMEiABRxCAxdorHz+xWJvqT4s1R3DnOUiABEoTQEiDWm0XadctQ8ZskAcPqGwuTYq/kIDnEkjcdFabM+NPr/rLxh3nPRcGe04CJGBTAgjx2OOrddp1SIMuyxjRwKaEWRkJuD6BtPTr8nT1eWqe+J9nvSUk5ojrd4o98FgCVPC42ND7LzikTfj1fM0wST+T62I9YHNJgATsQWDv4ct6MacXxTPmtD04s04SIAHLCdy5c186DVmrFa406xkntwvvWl4B9yQBEnBbAkFRqSrHKCzsn/lwnhzPuOG2fWXHSIAEKo/AeO9d2nUIcpJeyC6ovMbwzCRAAk5DIGXbOYFxCdYhT1X1k3WbzzpN29gQEigPASp4ykOtko9ZnXxGfv+Sr5qIMCHFJ52p5Bbx9CRAApVJYMGSNG1i87++ESDb916qzObw3CRAAiSgJYAQB99N364VrrxWP0JOnc3TbucHEiABzyKAPIGDvkvRzgnVmsUIwqOwkAAJkIC9CEQtPy6/en6Omnf+/nagbN51wV6nYr0kQAIuQMB73gGBxw6UOwgTm3r8qgu0mk0kAdMEqOAxzcdptx44ckX+X7VgNSEheeD3M3cIwrixkAAJeA4BQyHJS3XCKTj1nOFnT0nApQiExh4V5NfAixSNU1xq6NhYErAZgYuXCwRhpjEP4D9yjBYVM6+ozQCzIhIggTIJbNp5Xv7yeoCaeyDYZX7AMlFxAwm4LYHConvy2ZA12nXIO42j5FIOvfrcdsA9rGNU8LjwgF+5Vih12i3WTk6Nui6X3PxiF+4Rm04CJGApASxEdIUkrfqukpu37lh6OPcjARIgAYcT2HUgW884ZezM7TROcfgo8IQkUDkEYDEPy3kodn7+tJdM9t3DJMaVMxQ8Kwl4LAHkK4VAV6Nk7jh4jUDgy0ICJOD+BBBBAJEENPc/cnQVl/D+d/+R95weUsHj4mN9//5D+Wr8Zu0k9exHoXLoGN0LXXxY2XwSMEmAQhKTeLiRBEjAiQnQOMWJB4dNIwE7EfAKeRIKBRb067dk2elMrJYESIAETBMoKbkvPYev08pPIPDNyGToWNPUuJUEXJsA0lpo8u0gokBA5GHX7hBbTwJGCFDBYwSKK/6EhOqavDy/qeIjEUvTXLEbbDMJkIAZAggnoIkXSyGJGVjcTAIk4JQEaJzilMPCRpGAzQnAMh4W8hprWVjOw4KehQRIgAQqm0BgZKo2L88fX/GXVetPV3aTeH4SIAEbE0AaC0QMQFoLrEWQ5gIRBVhIwB0JUMHjRqN6LP26VKkVrn2JGjwmRZCjg4UESMD1CdwuvEshiesPI3tAAiSgQ4DGKTow+JEE3IwALOJ1Q6HAYh6W8ywkQAIk4CwEdh/MVgnWIfiFAHjMDIaOdZaxYTtIoKIEkL4CaSw0RiZIb4FIAiwk4K4EqOBxs5FFDo4WvVdqJ7F3m0RL+plcN+slu0MCnkVgf2qOvFTnifKWQhLPGn/2lgTcmQCMU16s/WR+Qzzsgtt33bnL7BsJuD2BBUvS5A8v+6n3kV89P0dgKc9CAiRAAs5I4Or1IqnbfolWfgIh8PlLt5yxqWwTCZCAhQQQ0v4/74do72uktUAEARYScGcCVPC44eg+evRIJvnull88460mtN+96CvB0XyxcsOhZpfcnABciqf67xHEiYXlya9f8KGQxM3HnN0jAU8kAOOUln2eGKc8VyOU4RM88UJgn12eQF5+iXQY9CQkG4QrsJBnIQESIAFnJgDB74iJT/Ia//m1ubI4Pt2Zm8y2kQAJGCFw794D+WbqNvn5049DssHYBBEDWEjAEwhQwePGo7x97yV55sN5Wq11q76r5HpusRv3mF0jAfchcCG7QM+aDGFOjpy45j4dZE9IgARIwIDA3IjD8tsqvmrdAiOV8d675MEDWtsZYOJXEnBKAobWsu0HrhYofFhIgARIwFUIJG46K/94J0grP6FXsauMHNtJAqIiF73XNFp7/37QfKGczsojGhLwGAJU8Lj5UMMqtsvQBO0k96/3giVpS5ab95rdIwHXJgCLMViOaeLFDv1+I+PWu/aQsvUkQAIWEjiecUPebhSlnf9qtI6Vs+eZlN1CfNyNBBxOwJi1bPjiYw5vB09IAiRAArYggJBtzXvFadch9Cq2BVXWQQL2JRASc0QQuQjyE3jvjJ25nSHZ7IuctTshASp4nHBQ7NGkmLgT8sdX/NWEhwSCiEF55w4TndqDNeskgfISQN4J5NfRKHb+/nagJGzMLG91PI4ESIAEXJLA3bsPVKgUrFcwHz5V1U+ilh93yb6w0STgzgSQ55PWsu48wuwbCXgugYBIehV77uiz565C4EZesbTuu0orP0EEo217LrpK89lOErApASp4bIrTuSvLunBTarZZpJ383mwQyZBPzj1kbJ0HEdix75I8XzNMe3826xknsCBjIQESIAFPJZCy7Zz8v2rB2nmx05C1kpvPULOeej2w385DAPk+g6JSaS3rPEPClpAACdiBgKFX8UetYhnyyQ6cWSUJlIfAus1nBRGKNMaxnT9fK4hgxEICnkqACh4PG3nEsp/os1v+51lvNREieTvcF+nN42EXArvrNATgtfP52A2isVRH/gnkoWAhARIgARIQgWVem37x2pc3eDYyWSqvDBKoPAIZmXl6OQJpLVt5Y8EzkwAJ2J8AvIpHTtyi9642PWAvwz/ZHz3PQAJGCeDdoPuwRO27ASIVRa+gp79RWPzRowhQweNRw/2ks3sOXZaq9eZrJ8WX6oTLVroyPgHETyTgAAKrk8/If94P0d6H1ZrFCCzFWEiABEiABPQJhC06Kn969XGoWVjqwcvxQnaB/k78RgIkYDcC9+8/lKn+e+Q3VXy06xYkIKe1rN2Qs2ISIAEnIgCvYii0Nd4CyBd48OgVJ2ohm0IC7k9g4coT8re3ArX3Yb0OSwSRilhIgAREqODx4KsAXjvfz9wh8OLBQgUeBAO/TeGLmgdfE+y6YwhcuVYonw1Zo12YICGgV8gBgYcdCwmQAAmQgHEC2Tm39eJsIzeP/4JD8vDhI+MH8FcSIAGbENifmiNvNYzSrlue/ShUkrZk2aRuVkICJEACrkKgsOieDBu3SSVxh/zkF894y6jJW6W45J6rdIHtJAGXJHD+0i1p0n2Fdh3y59fmyryFRwQhY1lIgAQeE6CCh1eCHEu/LtVbLNROloh3v3L9aZIhARKwA4EFS9LkL68HaO+3Bl2WydnztDqxA2pWSQIk4KYElidkyD/fDdLOozVax9L70U3Hmt2qXAJFxfdkxMTNSoipEWYOn7BZIORkIQESIAFPJYBoKK/Xj9CuQ5BHdcP2856Kg/0mAbsRgBGXb/hB+cPLftr7rW3/eLl85bbdzsmKScBVCVDB46ojZ+N2Y+L0CTsov3/JVztxthuwmhOnjTmzOs8lkHkuX+p3Wqq9v/76RoBELE3zXCDsOQmQAAlUgED+zRLpNypJGxP/V8/PkfHeuwSx8llIgAQqTiB56zl5rkaodt3yZoNI2ZeaU/GKWQMJkAAJuAGBe/ceqNzGv37hSdjK3iPWS25+sRv0jl0ggconYMwQPW7dqcpvGFtAAk5KgAoeJx2YymrWuYu3pHG3J66PSFiG0FGIu81CAiRgPQG47P84e6dezPpOQ9bK1etF1lfGI0iABEiABPQIbN51QarUCtcKoZFTMHHTWb19+IUESMByAsht1WHQkzCyyLkzxW+PQJjJQgIkQAIkoE/g5OlcqdV2kXYd8n9vBqjQUQwfq8+J30jAUgK3Cu4o7+H/edZb3VdIJTHgm2SmkrAUIPfzWAJU8Hjs0JvueEycfvKyVz9ZQLdj08i4lQRKEViReEovGefT1efJ2g2ZpfbjDyRAAiRAAuUnUFJyX76Zuk00L4IIJdWyz0qB5yQLCZCAZQSQm3Oy7x5BXkDcQ/hft/0SycjMs6wC7kUCJEACHkoAeUACI1MFxrGa+bNasxjZfTDbQ4mw2yRgPQHcR4hw8o93noRhhuHW1j0Xra+MR5CABxKggscDB93SLufll8jQ7zdq425jsYKwbRSYWEqQ+3kqgaMnr8mnnZdpF/hw3R87c7sglj0LCZAACZCAfQgcz7ihFwoTngeYe28X3rXPCVkrCbgJAeTefKFWmHbdgnycMPZiIQESIAESsJzAlWuF0nP4Om34WHge4Ht2DvOFWE6Re3oiAeS1+qhVrHYdgpw70+buZehlT7wY2OdyE6CCp9zoPOfAIyeuSZ12i7WTLeLcj5y4RRD/noUESOAJgZyrhdJ/dLKeUrR5rzg5k0Ur8ieU+IkESIAE7Etg2doMgcekxooWloDzFh6RBw8Ybta+5Fm7qxHYn5qjt8b/5XNzZNTkrVSKutpAsr0kQAJORWDXgWx5r2m0dh0Cz8hxXjulsIjGfk41UGxMpRNAiojOn6/VKkWxdsf3SzkFld42NoAEXI0AFTyuNmKV2N5F8Sf1wk0hSbxv+EHG5K7EMeGpnYMAPHMm+e4WWJpoBIqvfLxAEjYyHJtzjBBbQQIk4GkEMC9DmKIbbur1+hGybjPz83jatcD+liZw/tIt6fZlop5ABQYp6WdyS+/MX0iABEiABKwmgBw8MC7RDTf1r/eCJXzxMWF+Hqtx8gA3I3Dz1h0VXhmRTjTyk3ebRDMcm5uNM7vjWAJU8DiWt8ufDXHu4SqpG1/2uRqhEr3iOBcqLj+67IC1BJBwOCDysPzz3SdxYv/2VqD67f59Wopby5P7kwAJkICtCSAsSq8R6+TnTz/OKYKXyHodljAuvq1Bsz6XIHDtRpEMn7BZdAUqbzeKYp5Nlxg9NpIESMAVCSBMLMLF/rbKk/xmyG8ct+6UK3aHbSaBChEoLrknM4P2yV9eD9Aqdv7zfohELksT5OBhIQESKD8BKnjKz86jj8QL4uAxKXoJjWEZG590xqO5sPOeQQBWV1BqPl/zSbx65HpAku9bBXc8AwJ7SQIkQAIuROBw2lW9/DxQ9LTss1KOpV93oV6wqSRQPgIFt+8qj7anqj7xNP53tRCZv4SW5OUjyqNIgARIwDoCFy8XSPdhiXoGJx80X0gFu3UYubeLEoDxa3B0qiDHn8ZjB2sSREGB0oeFBEig4gSo4Kk4Q4+u4XRWnnQaoh8zEwsVhqby6MvCbTsPxc6S1enyWv0I7cLkf571Vnl3GCfWbYedHSMBEnAjAinbzkm1ZjHaORyePYj1feLUDTfqJbtCAo8JQLEz1X+PIKyyRqACq1lYz1KgwquEBEiABBxP4OjJa9Ki90rtnIy5+eOOS2XL7guObwzPSAJ2JgDFDoxJXqj1xDAWXsTwJr6eW2zns7N6EvAsAlTweNZ42623sIxt2iNOb6HyfrMYWbuBOUjsBp0VO4wAFDvIQQV3eo2A5Gf/9ZLPhqyRU2fzHNYOnogESIAESMA2BJYnZAhypWnmdCh6MKen0aPHNoBZS6USgGJnit8evRAoyBP4/cwdgrj3LCRAAiRAApVLYOf+bKnbfol2HYL1CL5v2nm+chvGs5OADQhAsRO26KhexJNfPOMtfb9OkgvZBTY4A6sgARIwJEAFjyERfq8QASxUGnZdrrdQea9ptECQwmSCFULLgyuBAHLsRCxNk6r15muvaSh22vaPl9TjVyuhRTwlCZAACZCArQg8ePBQopYfl5fqhOvN8e0HrpYDR67Y6jSshwQcRuBGXrGM996lp9j5/Uu+MmryVrl6vchh7eCJSIAESIAELCOQvPWc1GyzSLsOgaKndrvFkrjprGUVcC8ScCICyNkdGJkqz34Uqr2modhBeMKMTBrGOtFQsSluSIAKHjccVGfo0q4D2dLIQNEDAUpo7FG5e/eBMzSRbSCBMgkUFt2TOaEH5L8fhGgXJlDsQOgHt3oWEiABEiAB9yEARU9M3Al5ue4TZT4ELJ92XsbY+O4zzG7dk/OXbsmwcZsEyhyNVxo+j56yVZA3k4UESIAESMC5CWzYfl4pdjRzOP6+2SBSFq48IVinsJCAMxPIv1miPIf//nagdh0CxU6Pr9Yx4okzDxzb5lYEqOBxq+F0vs7sOXRZWvVdJRCOaxYrSKw2PWCv5OYz5qbzjZhntyjnaqEKX4L49JrrFXsfbxoAACAASURBVDl2ugxNYCJuz7402HsSIAEPIABP49hVJ+WthlHaZwCeBfBExu8IN8FCAs5E4NCxq8oqFmsVzbrlz6/NlbEztzO2vTMNFNtCAiRAAhYSQIi2Bl2Waed0zO3P1QgV3/CDgvCbLCTgTATOXbwlIydukaeq+mmvWeTY6T86WZCvm4UESMBxBKjgcRxrjz4Tkhf3GrFOfvncHO3E/7sXfWXQdyly8nSuR7Nh5yufwMGjV5SA5FfPP7k+f1vFVz4fu0GyLtys/AayBSRAAiRAAg4lsG7z2VKx8f9dLUQlrEcYLBYSqCwCUETGrTslddot1q6pIQDE9Tk7ZD8FgJU1MDwvCZAACdiQAN5POw5eI8gRqFHg//EVf5Wc/ux5vp/aEDWrKgeB7XsvSbsBqwVeOrrXJ0LCXr5yuxw18hASIIGKEqCCp6IEebxVBC5eLlAa/j+96q99EMC7B+HcViefofuxVTS5c0UIIFTg4vj0Uq7wf3srUH6cvZMhTSoCl8eSAAmQgJsQ2H0wW4Xn1H2BhQEALBPhPcFCAo4iAMXirOD9ypJbI0zB39frR0j44mMMgeyogeB5SIAESMCBBOAFMXhMisA4VjP3Q+nTpl+8pGw7J48ePXJga3gqTyZQXHJPFixJU57tmmsRf//zfoiK0HPz1h1PxsO+k0ClE6CCp9KHwDMbcLvwrvjNPyRVaj1JbIyHw9PV58kk392CUFksJGAPAvDI+W76dtGND4trDzGOISC5c+e+PU7LOkmABEiABFyYAEJQfD1piyD8le5LbfUWCyViaZrgpZeFBOxBYOf+bOn2ZaIg5Inm2oNxVPNeccwRZQ/grJMESIAEnJBAXn6JzAjcp5cjFs+EF2uHK+9Nehc74aC5SZPSz+TKV+M3y/++XnoNvCieIYzdZJjZDTcgQAWPGwyiK3cBYSbguQMPHt08PQjlBpfPtRsy6dXjygPsJG2Ht86ytRnSpPsKPTd3xKyH9dPGHeedpKVsBgmQAAmQgDMTKCy6JwGRh+W1+hFaYTsELHjp/eKHjXI4jV49zjx+rtK267nF4hN2UN74NFLvOoOC8csfNzFhsasMJNtJAiRAAjYmgHyAS1ani2GYzt9U8ZGuXySo91p69dgYugdWV1R8T6JXHJd6HZborUNgbIL8xPBwZyEBEnAuAlTwONd4eHRrMs/ly+gpWwUhsjQWivj7r/eC5Zup2wSWAywkYA0BCNogcPvrGwF61xTciMd775LsHMaHtYYn9yUBEiABEnhCYNuei+olVzd/G9YtbzeKUsmQaU37hBU/mSfw4MFDZdgEAyfDa6pasxjlZQyBCwsJkAAJkAAJgMDxjBvqXVc3/D3WIc9+FCrjvHYylywvE6sJQHGDMMTI96Qrk3u+ZpjyIIMBCgsJkIBzEqCCxznHxaNbhRBZsatOyqedl+l59eAB80HzhcqikSHcPPoSMdl5hNGZNndvKatXeOu06L1SVq0/Ta8wkwS5kQRIgARIwBoC124Uqdwor3y8QO9lGEL6ln1WKktbhnCzhqhn7bv38GUZNm6T/PPdIL3rBwK7Qd+lyIEjVzwLCHtLAiRAAiRgFQEo/xFqvGabRXrPEURIqd1usQRHpwqNTqxC6lE7Z2TmKePXl+rop0+At06HQWtk/ZYs5nryqCuCnXVVAlTwuOrIeUi7IayfMGdXqYSySHYMBdD8JccE8WhZPJvAlWuFKmQOFrW6of6gFHz1kwVK8IZ9WEiABEiABEjAngT2HLosA75JFkNr2j+87CfdhyVK4qazcu/eA3s2gXW7AIG09Ovyw6wd8kKtsFLCOKxvF648ISUlzAnoAkPJJpIACZCAUxGAsB75Zv9dLUTv+YIQ+MjdhudLwe27TtVmNsbxBC5eLhDveQcEHsK6njr4/E7jKPFfcEhy8+mt4/iR4RlJoPwEqOApPzse6UACiCO7dc9FJTT5y+v64bawWGnYdbmExByRq9eLHNgqnqoyCWBR4ht+UBB/+OdPe+ktTGAFC2vYfak5ldlEnpsESIAESMBDCcBjZ3F8uvLgMQy3BeUPlD3wKKUQ33MukINHr8iYGdvl5brz9dYsEKYg1870gL1y/tItzwHCnpIACZAACdiNAMJ+Jm3Jkp7D18lTVf30njvwzEBki4ilaTSWtdsIOF/FSIkwM2ifVG+xsJRR7NPV56m0CEdOXHO+hrNFJEACFhGggsciTNzJmQjA8nV18hnpNGSt/P4lX73FCgT9EPjPCt4vJ08zZ48zjZst2pJ6/KpM8t2tQvUZeuog8XDvEeslZds5hmCzBWzWQQIkQAIkYBMC8DSet/CISlRraJAAzx7kXIGQBaHeWNyHwN27D9SaBAYnz9UI1VuvQqmD32BlfSz9uvt0mj0hARIgARJwOgIwJlm6JkNa910lv6nio/c8grFsgy7LlOEkFAAs7kMARtIIAwuPYeSHNPTU+b83A1QoWOSUxL4sJEACrk2ACh7XHj+Pbz0sZOPWnZKuXySUCoeCBxhCX+DFGtYrtJJ1vcvlduFdpcxDDPr/vK/vZo7xxaKk79dJDHnjekPLFpMACZCARxJAuFDEwocwBbnhdF+2ofz5sGWsTPbdI/D24Mu2610i2Tm3ZcGSNKW0M7SYxljDewdePBhfFhIgARIgARJwNAGEZ1sUf1LaD1xdylgWzymENx89Zats3nVBYKjA4loE8m+WyPKEDGX4+o939HP7YXz/9V6wDBmzQTbuOE+jWNcaWraWBMwSoILHLCLu4CoEsABJ2JgpA781rgyAtQrims8I3CeH065ScOKEAwtXcuQvgJcOEkLCokhX+IXPGqUdFyVOOIBsEgmQAAmQgMUEENscyoC2/eNLhU/B8w5GDJ8NWSNhi44ydJfFVB27Y2HRPbX2/Gr8ZnmtfkSpNQuUdgiFgnUN8u6wkAAJkAAJkICzENAYyyIKhjFlAKKlNO0RJ3NCD8jxjBvO0my2Q4cAotvAAwdeOjASQq5qQ/nJKx8vkFGTt8qOfZcoA9Nhx48k4G4EqOBxtxFlf7QEoMTBCzVerA1DouCh99c3ApSbMpLLwZISygUWxxLAgmTXgWwVdx6Lxz++4l9qQQIlD8LuIV7siVNcWDp2hHg2EiABEiABRxCAkUry1nPy5Y+blCGD4cs5vj9fM0xZZEIpdPb8TUc0i+cwIHCr4I5S6HwzdZt81CrWqCEK1jIIu4dxYm5IA4D8SgIkQAIk4JQE4DUMQ8vvZ+6QdxpHlcrRgnUIlEAdBq0R/wWH5OjJa1QWVMJI3rlzX+WmhpwLxsuGKQswTsixxLB7lTA4PCUJVDIBKngqeQB4escQQPz7ZWszZMA3yUbjoONBiBfyhl2Xy4+zd6qQXzfyih3TOA86C0LTIKn0t9O2qVwEv3tRP4cSxgH/EcLkix82qvBscCNnIQESIAESIAFPIgAFDkK5QVHwv6/PLWX8gGclQpdC0OIVckB27s9mKFobXyAQdmVk5knksjQZPCZFCbyMWcYi1F6N1rEy3nuXGof792kwZOOhYHUkQAIkQAIOJgADhYUrT0ivEevk39VKh0rHOuQvrwdIs55xyqgWRio3b91xcCvd/3QXLxcoOdbXk7ZIrbaLlPJGIzPR/fvGp5EycuIWWb8lS+CZxUICJOB5BKjg8bwxZ49F5ExWvoQvPiY9vlonz35UOvGt5mH5Yu1w6fz5WuU9krLtnFDpY/nlk3O1UCnKpvjtUTF+n/lwnlEBFVi/VCdc+o1KkugVxwWLGBYSIAESIAESIIHHBOBhvC81R2aH7JcWvVeWqfCBx2u1ZjHKmCUoKlVZ4vIl37KrCMqcU2fzZMnqdGWEAoOfshRrUOjAOxzhTtZuyBR49bCQAAmQAAmQgDsTOHk6V7C2gGykLIXPz37K4dN9WKIgSgry+CAnDItlBCAHWZ18RibM2aUizZjijLCwyKWzOD5dIHdhIQESIAEqeHgNkICIim0fE3dCPh+7QQlHjOV+0Sh9/vtBiIpFixd7hN+A0OV2oed6mWDRBsvh0NijMnzCZuUF9c93Syf00/CDyzDCmmDfpWsyuCDhHUgCJEACJEACVhB4+PCRpB6/KnMjDku3LxOlSq3wMg0o4HGChMkdB69RHibwZkYcfYRI9dRyKadAhcNDToH+o5OV981TVf3KZAgL5cbdVih+sFBG3h0WEiABEiABEvBkAjCYhSwE+Y/fahhlNPeL5v3/uRqh0rLPSmVAAYNOhMcvKvbcZymMhpE3BwozRC355LOlKu+ihpfhX0Q9Qch6yJ9Wrj9No2NPvvHYdxIwQYAKHhNwuMlzCZSU3FdJ6BD2pOsXCSpxrrGwHJqHL6xVYGFRt/0S6TNyvUz136OUF/tTcwRhyWAZ6qoFgqTsnNvKEnhR/Enlgt1z+Dqp2WaR0WSMGib4C0UZFnxw7UasXijDkGeAhQRIgARIgARIwHYEICxI2Jgp47x2KiEKjFF0n8eGn+GFAi9lKC6Gfr9RfMIOKm+UY+nXXT7ECtYZmefyleUwvLW/m75dhbJDTgFjuf502UDRU7vdYpULCaHZEKLNlddwtrvCWBMJkAAJkAAJlE0Axg/w2JkRuE8+G7JGRegwlgdZ88yF/OTp6vOUcgPGFjhuReIppfy5dqOo7BO5wBZ4XsMbB0awUGghhCsMcj5sGWtSkQM2MIZ9r2m0im4CBdChY1eFoV9dYNDZRBJwAgJU8DjBILAJrkEAYU6QeBAx8TWWFqY8VTSLF82D+oVaYSrvDBRG8F6ZHrBXWb0kbjorUASdzspT1hiOeIDDchcLJ4Qj2Xv4sqxJyVQh66CYGjZuk3QaslYJOBC+zpQ3k24fkQugUdflqm8QqMAyh8oc17i22UoSIAESIAH3IwClD8LLIrRb7xHrVVgxU54qus907AfPHyiAcCxy5yHcCuLxb9h+Xg6nXZVzF28pZZAjFCBYg12+clt5H+3Yd0kJgSD4gNAE+XHa9IuX95vFCNZlEBrp9sXYZyi4qtabL237x6uE0vAoxjrMEX1xvyuNPSIBEiABEiCB0gQQ5QTPbHgc41kNY9j/ezPA7DMaz+3fVPFRhijwbkHIN+SXmRm0T+XFQ56ZA0euKGOO3PxigULF3gVyDeQlSj+TK7sPZqtQaohgMtl3j5INwVMa+fhgYGPKMFizJsFaBbKWpj3iBPl1YFRy5MQ1KnPsPZCsnwTcmAAVPG48uOyaYwhgUYGFC1yUx87crixWYHXx59eMJ0XWPNRN/f3Dy37KIwi5ad5uFKVCmtXvtFSa94pTQgwkVYYSBsoi5BHCf3yGtUz7gavVPtgXCyJYisCLBpa6/69asMDF19S5TW376xsBSkDUZWiC/Dh7p0QtP66UXow/75hrjWchARIgARIggYoSuJBdIElbsiQg8rAyykBen1c+XqCEKabWAGVtg4Uu1jzItYd63m0SrRIBI48NQrJAiYJ1C+L2w4IVXsAQ1mAtgXVLuwGrVaz5Jt1XKOHPB80Xyuv1I+T5mmHy97cD5VfPzynXugXCEwha6nVYoixhYVizPCFD4KVEA5SKXkU8ngRIgARIgATKRwCGplt2X5CwRUeVAQnkF5B5WGqEYmw9gmNhcPpy3fmqLihbPu28TOUu1KxDDOUnmnWIRn7SrGecfNxxqZJ3vNkgUoXA/dd7wfLbKuWXn2Adg7Zg3YPcOjCUgXEvw72W79rhUSRAAmUToIKnbDbcQgIVJnDz1h0lSICXTkjMEaUAQgg3LB6QCBluyXDDNbZIceRvWLTAggRJgyHo6TcqSSlwsOiCEOjEqRsenWeowhcCKyABEiABEiABJycA7xWElYXgIW7dKfENP6isSqGUadBlmUDYAQ8ZSyxT7b2G+dOr/ir8C8KpQTCDHIrwQkY+xa17LsrZ8zepxHHy643NIwESIAESIAFDAnn5JcqTBRFGAiNTVZhVhHuHEQiMaKHEKa/hhy3XJr9/yVcZoiC3cKu+q2TAN8lKgTN/yTHlPY0Qr56cZ8hwXPmdBEjA/gSo4LE/Y56BBMwSgPsy4rQePXlNJdxbnXxGxWuFUghJgKf47VEhREZM3Kziwg8Zs0ElNIQiBqFT8B+fB32XooQcX/64Sbkx/zBrhxJ4ILb+vIVHlOBj7YZM5XGUln5dkGiYCw+zw8MdSIAESIAESIAEfiKA3HwQwECJgtjwm3aeVwqhiKVpShiDkHCTfHcroQxC0iKsLdYtEH70/TpJ5eWDsQti7mPdghxACA87espWlUMIcfiRtw9GJovj0wWhWBAiF2FREB6F3je8FEmABEiABEjAswkggsj5S7eUMgiGHfFJZ1R0EYTTR0hZyE8QXQXyE806ZOC3KUpmopGfaNYhMBKB/ASh0iA/mTZ3rzJyQQg2eNwgxyHy6RzPuKFyEyNsLAsJkAAJOBsBKnicbUTYHhIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIwQ4AKHjOAuJkESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEnI0AFTzONiJsDwmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmYIUAFjxlA3EwCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACzkaACh5nGxG2hwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgATMEKCCxwwgbiYBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABZyNABY+zjQjbQwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJmCFDBYwYQN5MACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZCAsxGggsfZRoTtIQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEzBKjgMQOIm0mABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEjA2QhQweNsI8L2kAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIAZAlTwmAHEzSRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiTgbASo4HG2EWF7SIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESMAMASp4zADiZhIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARJwNgJU8DjbiLA9JEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJGCGABU8ZgBxMwmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAk4GwEqeJxtRNgeEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEjBDgAoeM4C4mQRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAScjQAVPM42ImwPCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZghQAWPGUDcTAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQALORoAKHmcbEbaHBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABMwQoILHDCBuJgESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAFnI+CUCp5Hjx46jNOjR48cdi6eqDQBW431g4cPSlduwS8PHXitWdAck7vYipXuSVyp/7rtdpfP9x/ct0lXynttVOb4l2fufSSPpDzHmYNsjzrNnZPb3YfA4+vHMWsJXquVd908fPgAM5BNGoC5tzxjWVlztrO0tTztsMmAsRJFwHZrFjzLrX/Xw/jb6h60dkjLe++V9zhT7bNHnabOx22uQaA891R5e8a5uLzkKn6crdYiGEPUVZ5SGXNQea85e7S1vG0pD2seo08A4/nwofXrB/1aRK3ByzNnYuwrax2izlwO2XV5jzNkpvud94AuDef67FQKnqxrp+XYhYMya80PUlhSYFdSd+/fkS0n1otPwkS5c/+OXc/FyvUJPHh4X05cOioBSdMlr/CG/sZyfCsoviWRWwNk58mNFh99516JbDi2RkJSvBw6SRffLZKEg8skOGWWgIMlBQ+yC9czZfqq7+RS3gVLDrFon4LimzJvg5esPbTMov25k+0I3CzKl8htAbLj5IYKVwrl5tmrGRKQNE1ybmZbXB/GPzBphuxIr3gbLD6piJpvd6SniPfacVJ8r8jiQy/nXZSobQGy9USSxceY2xEM1h9ZKfM3+wqeCSwkYC0BrFvi9kXLusNxdr+GsvMuSOyOEEk5ulruW/j8sLY/3N84gTNXTsr8TX5y9topsYWwAGO4al+sXC+4avyERn49lXNcApNnyJmckw5dt5zMPipz10+RjMtpFvf93oO7smCzv2xOS5TCO7eN9KZ8P206liDhm30E9wKLYwlsOLpWYnfMs8l43n1wR8I2zJHdpzbL3ft3Le5I4uEVsmCLn9y28zuiYYNuFFyVqSu/keMXj1i8dkcdeC/Bu86tonzDKsv9XdOWtIupVrWl3CfkgU5PwNHyk60nk2TO2vFy536J07NxpwZi3oPsavHOcMEztiIF6xisZxZs8pPTOScsrgptwPoF77D3H9yz+LiK7nj11mWJ3hokaw4ssbgq9PH0lRPqXffslQyLjzO3I9oSsy1Y1hy0vC3m6uR2ywikZ6fJ8j2RcvT8AcsOMLEXZADrUuNkfeoqq+TOxy+mysIdIXIoa4+J2m2/CbLx+P2LJG5fjECOZGnBtR+7I1R2Z2yx9BCz+/F91CyiSt3BqRQ8e05vlfWpcdLOu65cvXm5QmAgrIMwvCxrM7xQbDy2VtrPqe3wG7RCHXPxg7EYSD1/QD4P7yTx+xaVOT6abkI7nFt4XQlhI7f4y5qDS0u9KGEsd6RvlCHhnWTz8XWaQ03+vV1yS4KTZ8jgsE5m22CsIrQLdRw9v1/i9i6UsI1zJGTDbFmxJ1oyso/pWeaW3CtW7cu9fU3wedX+WPnMr65kWrjYgCLo4Nk90mZ2LTlmgweapj+3ivNlatw3Mii0gxTdLdT8zL92JpBfmCtea8bJj0u+lLzC62bPhvHPvJohi3fPVwqOfWe2l7J8vVmcJ+EbfWV0TF+5nHfJbJ3YAXNsv5A2ErMjyKL9MadCUIdrBYpKzX98x++6//HSV5YQFPfr9pMp0s67luw7s8Oic2MnvIAMj+glkVsDLT7G3I5o88p9MdIvpJWkXThsbnduJ4FSBLBumRI3SvzWTxW8LFSk5BXlKqOHsizT8FI5a/VYmbJylFy4kVWRU/FYKwhkZKfJt7ED1QuSJUYpELwcPLtbFu0MUwJxKGbuGQhC8HI0YdlwtW64divHotbsytik5uy9Z7ZLebyWsf7CdbP5eKJEbw+W4JTZErHVX3amb5T8ojy9dUvahUOScfm4WrNkXkmXAfPaSuzO0FLrr7IaXlhyW4ZH9JTQTT6Se9v8c66segx/h5Khe0AT2Xp8vVWKAcN6+N06AmsPLpPBoR1kf+Yui4R6t4ryJOXoGnV9rT64RPKKbuhdX1hDY+4cHPaZUgJaamjnmzBZhi3oZtE1hfc/rE8sWbNgPVPW+yJIYb3cM6CZ+CROkIKSWxbDgxCod1AruVZg2T1uScVoS6/A5jInYbxVbbGkbu7jmgRsKT/B88uc/GTbySS1hsdzjsUxBDDvwChkVExfOZy1V28+NdYCPO/PXT8jK/ZGS/T2INmZsamUEVLe7RtKWfRt7CBlwGGsHsPfbty+poxUv47uq9YHhtvNfX/w4L5cu3VF9pzeIkt2z5fQDV4SvtlXko7EyaXc83qH41x7Tm1V75tXbl5W787DIrtLvoXGwWCwK2OL9A1qLVg32aqgLd5rxsuXEd0sboutzu3J9Ry/eFimrBgl4Zt85YYF60qsa3dmbJSY7cESvz9WLtw4q3ffYB198Owumbx8pCzeFa7kepbw3XI8Sb6JGSCJh5ab3R3nuHO/WMlINHIT/NWsTXRlJ0V3CuXew7KVppAhhm3ykRFRvVS7zZ78px32Z+6UMYsHy7I9kZYeYna/Kzezte+jF2+cM7s/d3AsAadS8Ow+tUVgndVhTl3BhVPegpvpTM4JNQmUZV2Cl4tLeeelV1BzmbN2QnlP5dLHYbEAJVdSarwU2dDCsiwoEPhCqfF5+GcyL8VLis0oFbDI3H9mp+BhPilupMQfiJVxS7+SsUs+l5tFuXqngVY74dAy6RXYTA5n7dPbZuwLLFACk6bJoLCOJl/qDI/FtXXxRpaEb/KR/sFtpIP3xzIsoqvMiB8j/uunqHZ+vqCTegmEQgeT9ZJd86VvcGuBEAcMzlw9KZ39PpX5m/0Nqzf6XSl4MndLm9k1LbZYALv0S2mSnn3UaJ34EYJ2KMRazqpulaC9zAq5wSwBXHdQBA4J/0wuXM8qUwmiqQj3CKwuBoW1l/mbfJXVysCwDhK7fZ6eBTfmsys3L6nr8NuFA+R2sXkBBITFfQJbStQ28woTKKVmrf5BtXvgvPYycF4HGRDSXgaEtJOh87vIF/O7qv9Dw7vI5/M7y+DQz2R0TD+J2DpXWZtr+qP5ezn/gvQLbiUz4sdqfjL799Tl4/JVVE+J2BJgcl8sgE5cOiKJh1bI2sPLlKDVcL7QVID78ei5/TIwrJ1S0mp+518SsJQA1i2T4r4W/3VTpKCk/AoeLPZX7VsoiYeXlylAhQBy2e4F8sX8LrIxLcHSJrrNfpjnzl49JUlHVkrquX0CT1x7l5z8S/Jt7ADxXz9VLuWeMztnY3/vxPFKCBO7c56y3ocQYMfJjXre4g8ePRDMacOjeqmXT8yx5go8PvsGtpS9p7dZpeDBc2dj2lr5fvHn0tmvvvQPaS0/LB0qvomTZPaaH2R4ZC8Zob9NygAAIABJREFUtbCv7D61VQlsjp0/pOZ1eKXhurx7745Mjvta9Qn8LSl4aR0e2UOt9W4UXLPkEIHQ5Mj5/SYVpdcLcmRI2GfilzhJraksqpg7VYjArozN0n1uE0k+Gm923Y4THcjcJcMje8qUuK9lzYHFMiZ2oPyweKjk3LykJ1zBOhXvfL0DmytDOwjjzBUlVIvsKpZcUwmHlsuohX2UERMMmdS6ZV47tY7BWkV33YJrCmuZmau/ly0nkkrNLVgrBKbMlG5+jeT89Uy9fphqM6y8ewe2EKy3TBV45UAAG39gsaQcWS2nr6SX+RxQbUmeKV19G8r5G5a3xdT5uc21CdhSfpJ5Nf0n+UmxUShKfnLjnPQJbqmeH0Z3cuMf0f8bt68K5hc81+9Z4YFYXix4r9lwbK0MCe+o/po7J5TAK/bGyJcRXWVu0lRZvCNURkb1Ut6vutEKMJdczr+oPIO/ix0oWL+YK5irgpJmyMjI3krxYm5/zXas146cP6CiN3QPaCzd/BvK6Jj+4r32R5mTMEHGLBosX0X1kCU7w39S6GSLd8IEmbR8pPIUw/EpR+Olm38j2XJ8vaZak38fK3g2S5+glkpRZHLnnzZivQTvEENlk+6xj6PArFZtgbEJi/0JwEsRXrRea39UhkqmQqvhHk27eEgZw41b9oVSJM5cPVbGLR1WSkYIWdimtAT5buEg5R2DdYm5siktUUbF9FNyR1P7oo0wQB+zaIiSNw4M+Ul+Mq+9WpcYyk+GhHVS65CpK0dL0tF4wb2mWxBmbdvJFPlyQTclBzI0HNPdV/fz/jM75NuFA2XZngjdn0t9hiw17eJhZVQPGcqhs3uU8VepHUWU7BTvo5hjNh7zvPdRY0yc6TenUvDAAsUWCh48COFuN2P1WJOLcEziwckzpYt/Q4Ew3pMKtMew6mg+u5p0mFtHCRjs3f/8olyZsHyEDIvsUUpBY3huLEB2ZWyUboGNZMLy4cpar/BOgRw4u0spJGK2hRgeoiZCrzU/Ku8gc54RGPug5OkyKNRyBQ88dpbuXiBd5zaUVl4fqofMgbO7BRYmN4vylFAit+CawMJgctxo+XbRQFmyc7609vpQvonurw2pc7MwT2bEfyd9g1tZpFizRsEDBVR23nmJ3hGs2gmrclPlct4F6RfUSqbHjzG1G7fZgACuabi1d/Spp0KzYWFtqkBABsumjn511Es/rlnMU/AW6+T/iZzOOa53OMb+9OUT0m9eG4tCD0Lg0DeolUUKHix4Tl46KtvTN0pQ0kypM+FFaTL9LZm4fKQSNmLxoPmPeXztwaUydvEQaTzjTekR0EQJrXUbC4UyLLY6+X6ihHq628r6rBQ8kWUreLCQR+jHSStHqheZ0I1zJHJboFrQweINymxjYa2UJVbCePnCQqvgstrH3z2TAK53Wyh4zl8/q6zSUo6tMbluOXrhoIyK6a9eyDEneFKBYHXaqtHSwquaDI3oLBBq2bNgzoaAAYKMEyo0k+lY9Qgj+eOyoTIotL2yTtXM2fBk+W7RILlw/axec/FsT0pdJX2D2wheGM0prOBpgzl7jxUKHoSQwFzcxvsj+Sqiuwopcu7aGeUphrBRWLvk3LyorHiHR/RQnj1DF3SR9l515GDWLq0iCd4Y3eY2UeFh8EJsrigFT0QPmbfB26y3Bbx9dp/eIt/E9lPrN4SgK6vgOQcjiUHzOsixi4dM3itl1cHfLSdwOf+SEo7NXT9NLFFCwlq6a0ADmbhipFKIIgwrhATtfWorC1kYPekWvK/NWDVWCSzg1QbBjKkCgzwIFCzxCsP9CGVT8pF4+WzOx/LJ5KrS1b+hJKWulH2nt2vXLPszdwjCxoakzJI2XjWk+axqMmPVGCXE1W0P5oBWsz4SeDOZu1c1fVAKnqCWZSp4IKiFF/GQ+Z2U8GrhzlAJSJohQ+d3klmrvy9TqYz1WKvZH6moBpa2RdMm/nU/AraSn+BagtHn9NVjTN6LmN9DNnhJZ78GyhvD/YiW3SMYxyK8f3Ovd6VzQH31TCx774pvwbsiPGq/XNBdAtZPNzv35BXmSvS2IOkW0EgW7giWW8U35fqtK7JoV5j0DGqmPCd1W4X6MZ+Mju4v3okTSnn56O6LzwgrG5Q8U76O6mORggf1w3PYf91k5fWFdiF8K0K/wiMaaxCsRfBOuuX4OrVWwtw3N2mydPSpI2EbfbTX4qnLJ9T73fRVY4y+zxm2VSl4TsGDp5VZBQ/WNeAAz8h+81qZDb+GtgyP6qmeFcbeLQ3bwu/lJ4BrGOu+0TEDlNGmubxR8CwcGdNbGYQfOX9QydrgwTUyupf4rptUav1QdPe2koVAaYP1tbkC4+hR0f1KyTYMj8P6AffLoay9SiH8VWR3qTfxZekV1FSitwUL1h4a2QnWJNvTU2T+Zh91/bWY/b6MX/6VuiZ1683Jz5ZpK79REQAsjeSgFDyxg8pU8GBdfThrj0xaMVK+iR0g8zZ6S/hmf2UU9v2SIUqhirWaYdG8jwalzHR42FzDtvC7PgG3VPDgQeG3frKsPrBYv7cG32BBiZw/rWZ9KKutiOlpUI1LfoWyIihlhtSdWkUazXxdZq/+0a79wMSA8WjjXUMOmXHphvsulCQdfT9RFkK64frg2dXZt6H0D26r3B11G41FBKxLO/k2kLlmFBvWKHgeL07OKvfGxjPfEHhQILQUhD/YZlgQXudK/iX5KrKHfDr9VSUI1/WSwAvdrlNbpfnM91WoKsPjDb+bU/CALSxtZ6z+Tr6O6i3d/BpLg6lvSMPpbygXYsP6dL9D0A6PiI4+dS2y3NE91trPeNCV5VFnbV2utj/6Dlf5noFNlScMxtRUgQIWMZabe70nPusmicaiBNfctvRkaTT9TZm3cU6pKvBytu7wCiWkgDLUVLFGwYN6cK1DOINwK3XGV5FWs6srKycsDLBN9z8W1fBYG7fiK6k7sYq080YozL3a5uCYk5eOSBuvmrJib5T2d1MfTCl4wBOW3/1D2sjwqB6SdfWUsqpDnH9YpIVsnCUdfevJ0l0LSt2zYIp44rAKgwKOhQSsIWArBQ/qCd3obdZLE4KVoOQZypsC17wnFQhYRy/qq9YtXebWl/WpK+3afXgsdPVrIElHVpkNRYLwfBPjRkqLWdWV9Zvuy9CchInS2usj2X4iRTuXaxp+936JTFk5WoYt6K48ejS/G/trjYIHzwLkS+noX08ZxSzY6q8848uy+MPvCOPSwa+O1Jv0ogyP7K6eWZp2IMQWPMe8E8ZZ5GFvTsED4Q6ud3gSwaqx9awa8snUqtIzsJkgpJ2pAgvDXkHNJG5vpN1fKvHsxbuCJxY8p2Ex2zOwhVzMzdIK2cpikXH5mFLuwLL/nI6XC8KkdPFvIAND2xkVBkOx09n3EwneYF5IYI2CB+su9AHr8U6+9aXupBcleMNsJfDUXa/gM/a7++CuJBxcIc2mv6uuxZANswSGZZqCewRCnZHRfQShjSwpphQ8OG/oBm+lUFq2O0Ip0LAewf+MS8ekR2ATZbGPsDLYV7egLRDIfm1FW3SP52f3ImArBQ+eY/D4WLlvoUlAuF+OXzosbWbXMLuvyYpccCOMVRGeCfKTZl7vynIzVvEV7eKV/GyZteZ7NReYi26D5y6inbSZU0NmrPpOq4DBOxkM9CDv8kmcWGo+wXoh5Rg8Uhqq9Y6pNluj4MFchrwfA8PaS4s578vE5SPU8x3zl+GchnOinYjcgnZ8MuUV6exfX7bp5KqFZxKUV3jGwNPMXDGn4IGHBELpTlwxQr5c0FU6+nwsH0+qKh18aqlw+qbqR1sQ+gttOWtBW0zVZW4bWGEtAg8OTyt4jq8/skoGh3WUJbsWlAp3bMgDa8sxSwbJwPB2si09RTTKIBg0T4kfJZ8v+Mxo1BrIDcYtGybwnsnONZ3j0VIFD9qGMcN8iQhGWO/WHv+CTIv/VmCAgnHV+491yE8eRb2Cm8vHk19W+bexRtIU1BW3N0Z5+iQfsUxmYUrBg/bh3QKRYn5c+oUgxxHeS+7cuyNg5ps4UXoGNpGV+xeWUv7evgNj+RlqHXL0QsVzImn6yL8VJ+CWCh5YKoxZNMjsSyLw5d2+rhbJI6L7WGQNUHHkzlEDJgi4O05eOUqmxo+2OB9MeVqPyfnSjXPSK7iFmjzu3TcdhuFGwRX1AtXSu5okHFqh91IJbxmEKIFXDNpvWJRnwEZfZS0IgXBZxVIFj5qUr6bL4LAO0mjmG0qohgnPnLWGmqCPJ0i9SS9Li5kfyF6DXCNXbyHMSCeZuHy4Xv+MtdcSBQ+sgOdt8lIWAgczd6nQE41mmVfwoH9K0D7bckG7sTaa+w19OHbhkFoUI/aupxVcl7BCaj37Q7NCPLA6fG6vtJr1gXQLaKi30MBiFcrFuhNflu8WDtQuXHR55tzMVq6/I6P6lHoY6+5nrYIHx+LlD5Z99aa8LL0DWqq49Lp16n7Gwh6hRmpNeEEpG5EcXLfAcgshg4bO71ZmKBLd/U0peLD4gcVw9+AGsvVEst6LA+YfvAgMj+4lfcNayJFzpYXiWHghVMCkFaMsaotuu/jZswnYQsGDaxSK2Ygt/mVaemsoY99NxxJl6PyusnR3hNE5QLOvu/2F4nvDsTUyfsVXsnDHPMFz1F4FQhzEuR67ZIhkXTtj8jQYk4Xb50k7nxoyZdVo0X0Zw4GwdoVXADyAjeXvQHzsnkFNJXaX6Rw3lip4wCk4Zaa09akh7X3qKMENwgeinaZKTt4lFWKz3uSXBB4buuEhcCzinsPbCM9yc3VZouCBQmnRjjBlxYiwvW18P1IWxqbWbmg/Xj5/WPKFCuly/oa+V5Sp/lm7rehukQpBlIwEvA4IY2xt++y9P8Idt51TU5bsehwyx9T5sMb5OqavfDLpFVl3ZIWelTmux76BraXJtPdUngdDwR6upZAUL2k3p5Ycv5Sq9Rozdj5rFDya4xHSpPnMasrzeNvJZJPrInj/d/NvrPbtEdhMYC2rWxIOx0nLmdVVqCGs1cwVUwoehFps71tLxiwZItcL9NfFYJR4OE5a+Xwgs9f8aHTeUNtnVpfUc/vFkraYayu3uy4BWyl4MOcjVBaUteYKvOjGxA6WYRE9HRKmzFx7HLUd72HIgTNm6RDxXTdZWejb69yQJUBI3cWvgSzeFab3bmN4zoePHqh3R4SAhwHEiUup2l3wrn8gc6e0mFFdRkT2MjqfwIscoaRGRPcymR/WUgUPjFzgmdzBt560mlNd5q6bot4Z0RZTBdfVvE2zpfaEKjJgXhs9z2cceyhrt/QKaiGLdoaaqkZtM6fgQV9W7ImUyG0Bqq2bjyWoEPod/MwreDBHoy29g1rKwu2lo8qYbZyFO2Buxxw/OW6UMl608DC32Q2h8pB39Puln6tcvKY6hmvHf/1kaTHrA+WFomuggWfsjDVjpKNvXRUtynANC0UQDE77BbdWBumG6xTd81qj4NEchxya/UPbSOMZ70jU1kC9kM2afTR/ITOFTKP2hBdkQGhrFb5Vsw1/j186omQW/kmW5X41peCBR//ElcOlX2grdQ/o9hvKn+MXU2X04n4yNLKzUr7qtgMMNe+jyO9j7t7WPZaf7UvA7RQ8mAiPXzwi30QPULHDzeGD1cLaQ8uk9eyPTOYrMVePK26Hpwn6byohui36hXPEH1wsrbw+kK0nkkxWiQXBqgOL5NMpr8rn87tI4R39XCJ4GPcOaiGtvKuXUpqgYkwuyDvTcnZ18UmYVOa5LFHwYOKC++PQ+Z2l/rSq0jektVzMO2dWsIGTPj72rLT1qq0WC7m39eNoIq49BEJtZ9c0Gef1cZ/uy0EzOXjgFQTrDvxFbHK4DVui4EH9ELSPXQRBe9dS1sVlArRyA9qGF+vWsz6Us9csi+Fv5SmcdndcC4iT3smnvvywZKjJBTo6AcEiXrCazn5H5m/x07vesFhFWKLa46rIwND2RoVO8LJBmI+23h8KBIdllfIoeHBMn8AW8um011S+KfStrPJ4zFOk1rgXpMHU10qFAYQCCIrJVrM/FCQxN1fKUvDgPBB8Np/xvnwZ0cVouE2EAEBS8aYz3xG/xMmCFyHdAsVV7I4QZYllKjyQ7jH8TAIgYAsFD+IeI6/Wst2RFglKkAtm0ooRMn3Vt3b3vHS2UUYeIqxZMH+Ymn8q2m547SCc5qr9C82GUk3PPib9QlsrY47tJzeUsjAMSJquvDGDN84ymjsEuda+WzRYPg/vKBkmDFMsUfDgGYF8bQgjC09P5PTA/GZJgafKrPjvpdG0t1V4EsNwWnjRQ55DCESwhjJVzCl4MAdjvQIvS6zb4MHQzq+mRQoenHftgcXSY24T2Xlqk92U8jAA+zysk0RuC7IoPJkpHq62DS/2yLvU3ruuZF3LMLtuidsbLS28q8mQ+Z/J1Zv6ilcof/oEtZJ6E16Wvae3Gx0vhJeFl1vA+qkmr63yKHiCU2ZJoxlvSmuvWnL2aobJeQPRDXoHtpS6E1+U9t51VIg03XkGuTcQlgoKVEuUfmUpeHD9j1v6pXw69TVZc2ipnkJMc61cu3VZus5tIC2mf6AE7obCk9zCa4/bkmze80lTJ/+6JwFbKHgg4ET+SiU/sUChjWcwDFMgPzlx8YkywT0J6/cK9yLkFfZeh8BjB9E5+sIr0oyhCTx9IMDGPIz3HKyVNAXzzb4z26XJ1HdlwLy2kpN3UbNJ+xfzNPJAdvCpJ+sPx2l/N/xgiYIHiqndpzbLZ34fS5OZb8vklV8rz0nDuox9B1PkRGk09W0VYhvfdQsMaKauHCUjI3uZnYPNKXgwt2MNgvZCfojrH2H4LVHwoE3IXzQ17mvVFngz2KOgbZvTEqV3QHNJPe95XhLrj6xUcr/IrXNNGmdgLJOPrpaugQ1laEQnOXh2l96zHgZh0+O/labT31MRUgyfpxg7jP+o2L5GDbV0x9ZaBQ+UJnH7YqSV10fqmW4uWgjyFcKTCN4+PQIbK8WL7vmx9kBYtK9j+piN+oDjylLwIEdQwuHl0sGnjkyMGy5Q8hqWxxGfpkvTae+p/OOG+dPxPgrPPE98HzVk5Uzf3U7BA0sxLJa91o6ziDMmhAs3Mn9asM+y6BjuZB0BvCQjiW+3uY1UrFVTR2NSgwC52ex3Zdnu+Xq7YqwQJgKLj5beH5TSaGt2xvngvdDF71MVQ1vzu+5fSxQ8CPUHa9x6k16SlrM/EAhu0AZLC7yNBga3USEddDXiOB7fIbBuO6uWso40VScWHeYUPLrHI3SENQoeLJ4QoxyC9mPnD+pWZbPPSth/IlnaetVUYfRsVrELVAQFZ0Lqcmk5+z2VG8xUk+G2DiHep1NeU2Hzzhl4qd1RSpF4FSKtd0ALwYPXsGDRcjL7iDSfUU0lDDbcrvlurYIHL39Hzx+UhlPflKYz3y0zlqumfrwszN/irxYoUKzAel234F6CZU6PgKYStTVAd5PRz2UpeJS110ZvaTz9TZX7CveLYcEYYEH18cRXlBsyXKN1C+7HQ+f2Sp/gViouru42fiYBUwRsoeDJvHpKwjb5WJyoEh6kC3eEypcR3WXbiWRTzeO2chDAM3Hc0uEqsTyeiaae+5gXA5KmSXOvajJ26ed61qY4NbbPjB+r8pEh9rehpb6meYt3hqlQlshDqRveTbMdfy1R8EDgBqFKnQlVVCgWcyFddOvHZ+TMgQfDoczdpYT6mEeRpBbKKORDMlXMKXgMj0X4TGsUPPCsGDivnUB4D6MWe5T8whsyNLyLRHmgggfPZli6jl/2lUlPXXCHUUq/4LZKKbJ8b3Sp6xfhWjv71pdaPz4vuzI2GzUkwnN7eFQv6eTzqclwcNYqeCDgQ0i1T6ZUVR55GFNT5XHo2BrKchbx8vE+oVswF3ivnSA9Apqr8CW624x9LkvBg/un/Zw6Un/Sa3Lk3D6jHjgQ0H4V2UvqT3lFlu6J0IZb0pwHbUH4xx4BzeRy/pMQLprt/Os5BGyh4MFzZ83BZcpjzBJyuP4u5Gap3Gzw+GSxLQG8l8BTqLNPQxUqE3NZWeX+w3tqbm0xs7p0C2ys8pTo7otwS5vTEuSTSa8qZZGx3B0YT4Q/7Ta3sYxb9lWZwnRzCh7UA0OVIeEd5ZPJL8ug8A4WhVPTtBf9hnC+q18jJVDW/K75i+sU0V26+zc2m1fHnIJHU6fmL4x1rFHwoC3rUldKN79GZtuiOYe1f6HgQW6iPoEtleeotce78v4wzkRIwYFhbWVH+kaTXUE49unx38mnk1+TgKSpcrMoX29/KEjHrxgmjae9LTHbQ4wamqgQlclTpU9QC5MG6dYqeCBPRA4qRPUZGdNLpQfRa5zBF3jJj4juKbUnviDDo7uXijyCe2xT2jqLIzmUpeDB+mZO4gQ1L8xdP8WoMRicAZbtiVKG8/CiOnNFPzQi5FbwpkMeY76PGgxkJX51WQUPHgDGCmJizlk7XnnlGNtu7DeVMG/teOkZ0NToxW3sGGf+DcJ0CD0hSECCUxRMBqbyn2C7qWK4HUKLssZAtx4Im+FR02xGNZm04muTgpKSu8XK2hQKlY5z6invGcO60i48FjC3mPW+Su6uu13zGd4xMTtCpKX3+ypck+Z33b/mFDwQ8OChjaSssLCbEjfa6MNAt07Dz1DwwPoTyd6NFSSsHb9smAwO+8ykq6a9FTwYW7zMdw9oJn6JZXs9GeuDpb85SsGDviAZH7ySyhKSGbYZx2AOwD2Da8eSgmsfc821ghxB6BsU1INz4q9uwQJl3NIvpd2cmsqTR3eb4WdcE2MWD5YG01+TH5d+WcrdFUqTyG2BghA6cCPGd2MFAi8koUZC4ZtFucZ2UaGgkHhSNz+U0R1/+hF9W7k/VmqPe0HlmUCerLIK+EA51cnvU6k3+UXpHdyqlFUvjsV9GLh+mnwV1d2sEKksBQ8sTkbH9pNms98R3zKuX7XIP71Vmkx7V4W9M5ZEEYvDGau+VTl8jCnOyuorf/dsApYqeDAv4J+xAktHPCesUbAjl93IqF4qj0nJT895Y3W7wm9YJ2AeRXhWzN945sGyDC8OxhS26JPhPGvYz9LbH6k6S/9ueKSo8K8IpYB42bBOM1VO55yQfiGtpO6El2Tl/phSFqVQdHyzcIASMAcmTy8znEtq1j7pGdRYvBPHlxmmz5yCB3ne4EFRd9JLyqAGOSYtWafp9g8KnjGxg5Sng+7vms8Jh5ZK97mNBeEmTAmc7K3gQb/8102Vz8M7CYQy9iiOUvDAMC2v6PH6w5LrE33Feh7rHKxDLB1jrG8Qgin39jXt2gL1IO+lYUk4vEJazH5P5SEwt5ZauTdG7dvKq6ZkXkkv1R6ECmo5q7rUHvei8kCG55axErllrjSb8Y5sPbleWVQb28daBQ9i6XfwrqPy74Rt9hF4S5ZVwN5rzTjlcVxvclWV2xLvAoYlNWuvCre78djaMtupOaYsBQ9CFyFsXLPp7yuBSVljOG7JF9JgxmsyYflwowZyum2BEJfFMwlYo+Ap61rDXOK3brKs3m86f7EuYazh566b/JMBp/F3Dd39nfkz7n/MdfDSwzyJ91YUPOc0n42139ycbbgdaxv8N1fgQYs1RXuf2rJib7TJ3ZGreNaasfLp1FdlzOIhpbwgMU7IFVRz3PPSL7hNmesarHfGLf1C+oe2LnMNYE7BA3bIg4ycZ629a8iSnfO1zxuTnfhpI9bJUGwhSgWE2MZKxuU0FYreJ3FCqeeN7v72VvDgXGjLl/O7yZyE/8/eWbhXcW1t/H/5bt2dUoq7u1txKFCkpUgFTUiIkgRNCARIsODu7k5xL0WqtLe3t967vue3wqRzTmbmnNAEmmbt54E5OWdkzzsze9Ze71rvCu6Lu1/F+fygCB7edfgLsMUjlSFw+g+++E8I8gjyMTrrs+R8WB97H9uHVvCM/VrkuUCylYya0fkDAzPYeMaoIUX2DnWbCFoOf+5OfXpEhs7vKg3iX5QFezI9z5FtqBeO4kr2tjRf31xxCZ5Ln59TuWcCr+JWjPS18cGCQCoIqIYJr0r9+Bdl1o7JnsG8t775VJUcJq4YHlHJwY/ggYgduaCPBu5mb0/3zCSmT+uO5UubyVWkV1YzT6INqcKhOV0la1uK/HTvmuqFtf8eGgJliuBh8Nl2Zr0WQ8P5ufzgvCIvXaQBqL/jMIw4Dj796rJMWDpM0tbHyH9/KeoQZWChqFvj+Ndkx+kND+1i/JUDMyhBKMzZma4TASJG41d9oJqdM7ckSfLaMZK3p0CvlAF15eEFMmn1KBm7ZIh8vGSgrDycV3h453dSfccsHqxOjqUH5ijWx64dUAcEUX04oievHycnrhWtaeHsjGuGTnTDhMiFCJlME8FXK+4p1fUNf8GQvbDpxEqVfGqU8Jqc+eyYc5iQJYbY3gvbpE7Ms5KxPjbkN+ePSATP7bs3VfsVZzYGCo6S4jaY8TH5Q1T31mvbgrTbtdJk0mshBejD1y1tgofjOY52Ile+/W9whGN4/6L5u7QJHp5rpBaHze+pknpEbFJ8lohpHHBejZfotjPrZEz+YHl/fk/V9B82v4ckrP7I19GKAUPh7XFLhmhEVfzKUTI+/11JXjNGn70JS98r8oKkZlP71NrSN7ONFvH16gvfMVad/uyYRpc0THhZn9HwdSGLxi4dopKBg+Z09nUuYHClrB0tzZIrFInkcvZZ3AweIltiVwyXajGPSY9pzTwNDvbNWETaujo1Yx+XzlPqydFroanSTh/03r56QDpn1NUMOed7r6UfwcP3b01rpA6mGVuSvDZVbI9c2SdNEl+X1pPf1AKF4StyP5AKTvTavvPbw3+2vw0BTwQiETyQ58hx8p6lQP3xa/tDJrs8L2uP5QvOzS/v1WEgMINxJmbpMJ2oeE2cnMi2kXl9A2W9PDv9N/kSgnrH2Y1a5yR2xfuacRizbJiO20zcZ25NLrTlyHJCZhHZAgoKQcUzAAAgAElEQVSBJq75SI5fO1B4JvxOYAe/I4WJrAkSldTUWH9imcSv/EBtGWq38K7AmeXXmLy1z6guc3Zm6ETUbz2+z90zQ5onvy6tUqtplF248+zGV1el98xmUnnMI4H7IyDn7Vlt1anh2K/hxw0ieDgudUwaTXpV3hzzL8nanqIEQPg+Iv09V+viZPoSUWQE9Z7RUusKBWXOlDbBw3kwaUW+Yu2xJYWOgkjnV5zfS5PgYd5x4OJO1ZYfmN1R3p3bTTNMmPx/8tlRX/Ls0p0zWvdheG4vDQIZNq+HjFrUT8kIvwCV87dPSeq68YJ9MmnVB/qMYLfgRBg2v7sSZOFE6qRVH6otcvLT4Pou2PhDcrpJzZgn1IFBkEp4W398hTSa9LLUjnlWbatw295Zf++F7VpzZtrmeF/7orgED+MLRErVcY8JtXj8HLWMw8xzGie+KjVin5TMLany/Y9FM6Tp60+//iT9Z3VQ/BmHg5ofwTN7R7pKFzVPqqTZcBzfq8WtHCV14p5WWSWv5415EX35aPHAcicj6IVXef0uEsGj/pPTjv9koCw/VNR/8tW/qb9D/eKCORPvFOSl9Z28brznM8m4gW3dOKGCbD21tkzCz9yLgLSMTRNl/NJ3dYxkHKbmyewdaSpHzdhBYx40Z0eGxK0aKWMWD1LH874LOwrPm/GPQDh+J9t17NLB6jDGr4JEWtLa0fo9tf3I/CVS369B2qSsHytdZ9QTAkD8GtcJdYW2aTV1zkf/whu1qdM2xEi1cY/JwNkdPaWs2ebuD9/I7F3p0i6jmtqg4fvh7yCCh/fawcu7pXliRaky9jF5Z07HQGe21/51LnzjmM43/QJsCG6YsSVRes1sHphJSX/2XdwhBDPyvo3UipvBw/7oC3623pnBfYl0bL/fS5PgIVj7/K3Tei8Ozukig+d0VluEoFTsZOxnr0ZWLpJjo5e8I8xBkJUfkddHZm1PVZUWr2A2fA75B+fqeDJxxQiV9JqQ/57wvsfvsnhfdpExhiCKzlPqSzrZJfeCab36w3sYcrr6+MdleF4vz6CfHWc2qARwi+SKsuJQXkDA3Q7pndVSJq7yJ06KS/DsvbBVesxsKvXjX1LJX66pV2Oc3nBihQZ71Yt/XhJWf+xLxpLhm7c3SwZmd9ISCF77c77zI3h4b/Sd1UpVWbBVCKrzaptPrZaOU2qplBvz1fAG/vjBCuq3+dc/D9/O/i49BMoMwUNUBSmZDCRHru2V3L0ztYAschZOw9AgvXTE/N6F0ftEa8Eo1ox/Utffe36bs3rIkhcWUgwfR1EjI2TDv8EfTAyIPn8/lyLh7+pkAbyI/iC6ffqWeHV+ohlNYxKYv3+OvJ/XS2qMe1IaJL2gBXWdU0FfEbmMEQv6SP2JL+rvFPnc8slalebYdW6jXP3ysuy7sFW6TG0gbdKqyu7zW5zNQ5YQB2nrx0vT5NfEK2reWZmXDCRKvdgXdKCh0Fl4o1jatE3xKgPRLq2mZ0YA22DsXLpzThrFvSpD53XzjAAOInicAbbKuEel+vgnNJrVb1IY3kf33/RDIyF8BkzWxflPscDk1f6SguoEj1CDx33c4kq0sa0e4+oBaZrwumw8sdK9uxL5XFoEDxjfvPupvlSaJLyqBt+1ry4Lxuz526cle3uadJveWA1r50R4Xsi8oWhfh4xakn8wRzCkv//pWzl/57SkbxgvrSdXUY1Wt4Yxzkgm5b2mt5Cj1/YrKQYpQObPuhNLpXliJek+pWkIwQOux64ekLqxz6mz1umD15LnLmfHVL2/W6dU9azNxDj11pSGUjvuGTWSvPbDdzz/SKU0THpZo7a81isuwfP5d7flrSmNpPbEpwViK9whwd9oEGNE9clsKfXintdi6BBsGOx+DfwGz+kiCas+LFIbx72NF8HDMU9+ekRapFRWxwxFwL0a9wkRYS1TKmv9rpwd3pJwRLO8M7ujRvFGE2HndSz7rnwhEETwXPvykkzdGKc1UXhvfrCkv4xY2EvtFAclHAYQQEsP4HApMK7Jjhu+sJfUiHtCPs4fqFHxzvrOkgnU+uPLZMCs9rLm6KIiz6Oz3t91iW2GgxkieMsnq+Tb/97VCECyCwgK6T2ruYxY1Es1sTkH3umZ21JUXoSs2i7T6oVI2l28fVZtvd6ZLbX2TJdpdXX/vAMI7qHAMPtgDG+S9JraEkSaerWsralKlKyPQBww3g3P7aPZORB4Xs4InD/U0SDDZ82xxWqXeR2TCd9Hi96R5omV5eiVfZ5jZhDBg63XN7OlVB7zqLRIflMlToLGXa8+8N0PP/1HyAgLH9+d9RlLic59O6udnLt1yvm6yPJBEDzYcQRnkB0OkVrSrbQIHibDUzZNlOZJFSVm+XtC4BQ2C+MFhbRxaGz7ZG1I9Cjvo2UH50q79BoSt+oDfS7YD44WZJU6ZtSS0fmDhPoE7msHydltamNZtC9bIOd0bvDLDxp1jHRyjQlPqY2CreI0rn+fzNbSMqmqECXq3p+zjrNUSTOceWMe0VqbZOKHt/QNsVoDp0VylUD5NWTLwIQAHbD3asUleBh/qb/TKqWaBp6E75O5B9Itias/1EC0LlMbyrpjS4s4msK3W7w/W1okvSkXb38SGEHuR/BMXjtO6sQ/K61TqgVigiIF9l6b1Bq+jswl+2ff68tpz3EjvO/29z8PgSCCR/0nR/NlZF4fOXJ1T6H/BAeu03j+T392QkbM71NIljPnmbV9svpPmqdWlN33SA5nG2fJvATn8Ad5/YpE4Dvr/F2XvCPP3zwlvWa2kMxtyToXZF5H0CDO/tH5Q6T55AoaJMI5kGGMMx+SBNK4SfIrsvrIosLTYz6zcN8srY3RIP4laZbyupYMwFYjoJY6xNQB23hypXSb1ki6zWgofn6pq19cVPuu58xmcueuvwQj70HI6apjH5EuU+rLietFg24ZW9/N7S41Y5+SjxcP8pVfg4giYIJAEWSDvVoQwYNNhTO+yrh/SaOEV3UOHvT+8No/30HMEKiIveHVuF+xrTpn1JcVhxd4raLfPQiCx+lLl4wGmvHq25n7/KG0CB58hKuOLpTOU+rKoJyOsvX0GkG+HL8Uwa8461PXj9PvnK5zLU9cPygjFvRW5Y0NJ1eoLw4iiPp62MFkkW89vTbkHrvx9VVJWPWRBpmcunFU8Odxr928e0Pvs2aJb2jAOFJmTsNvxByBOoB5uzMD321k5yB9VmP8k0oYsf/wRhYc9bk7a00bfzIagnvU4r7y3oJuvgRscQge7uGl9yTOuk6rL9s9stLwNfGMEtTWOqWKzhmQbca+C3p+CHIbqkoOSWq3h5+z87cfwYP0X9dpDaThpFd03OJ58WrUgAK3xomvyaJ9s1V62r2eez66qgzOR93n8k/5XCYIHh4O0v7fnddNJ+gMSkyU60x8RvUWnYuhmSdHF0jq2nHOVxqtxUug8aRXpVHiy2q4F/7o+sC2i/bPFieayvVTVB8ZgA9e3imTVn8gE5eP+Ev/YpcNl4yNsVpUM5qDY7wxcFHfBF3V8BciWuVMmJiUOw0SAyf32PyhUjfhOT2e8xtLficjCEKlZuyT0jezlWLN4M8AwICDUZF/IEdqxDypjD/bhDciG4bl9tL6Lte+uBj+c+Hf4I9RVHnsv6TWhGfU0YERVfhvc5JGGBBdD0NPxKDjDCvcievD59/elA7pdVSj1UtuKYjgYdI8Nn+w9oX0SAiA0mo4QTjH9pP96wVhPJRmDR7n3Aoc7W/pJIBJb0m20iJ4KJqHg7BR8ss6EeE4zv2vEnj5g1Vib0Run8KIWDKrxi4dKi1SK8rmk6s1C8Z5gaI1+s0PX+vz0CylgvCCpekk4NYn0jKpsiw/NL9Iau9/fvpOo8u7Tw0leDTr7NRKqTfpeV9j2cGZZ+WdOZ2kyrhHpFHcazJlU9yf9/+WJJmxOVESV30sNSc8LfUnFaQYO9uGL3kWcSjXjnlG0tbFhP+sfxeH4OEePHX9qNSOfVaqj3tC+ma2Fpw2RMzwj8gNNJu7TmkoDSe9JCMX9NbMIcYm53p4duIeGYUTlugnL11oZzsvgofrglYzmTk4bWdvT3NWD1nSBwxACJ5GCa8oERiywr0/uGdwIvfJbFEqDkOvY9p3ZRsBP4KHdxp1p5gkk1l8/asrWsSyfXotzcpxzppsDdZBssdpziS5btzz8l5uN6G4vVe78vmFe9ksH/tGZHpt53zH5GHF4VwhSvyv2C3YLPErR8rSQ3MjSgU4x2bCMXRuN8nZTuHUP6PZGIuRcMrdM1OzKx0pSN5Jv/z+i0qD9Z/dVjpNrStE9znN+f3U9SMq6dA06XUZkN1Br8E333+hYziTkM++vqYTmuZJb8iRq0WJFPZDdGGT+Ndl78Udhe8N5zjuJdG3XabW14yZ3pkt1PYstFm2JKl8HhkWXEckqg5d2RM4SZ28bpw0mPiSnpeXPRVE8OBkoqYHmt0fLOyn5+nua0l+BrcuGfVl9dHFhc7A8P0/CIKHY0JcdJvW+L4JrfB+u/8uDYKH65q+PkYaJ72qUd68837/vcDewqZNWjVa6kx8VgbMbheSRYUMWvPJb2jmGs4UbBWaPi+//yK7zm6R5skVNYoW252GPTQ4p6t8tHBAkdpPvDvJgodgOHqVrMI/CR4CXlolv6l2P3ZhUKM+Ub24F1T6B8nh6ZsmhdgtBNh1SKurcj3UhsT+8mvY3p3S60rHtHq+Ud/FIXg4/yE5XaX6uMc1eImsJMdmYYnSwaDZnfSZa59eW5YczJFvfvgq8Jl3+n7zmxvSKrmyzN85I1Da14/gYYxR4ialuty660+iMZ+FCGJuCgHo2KpOP1jeuvuZ9mXezumBfXFvY5//WQj4ETzYvtgY+E8IgijwnyyR2hOfURUCBwXsFRxz2PJO4/nZfxH/yWvqP/GK3GZd7Pz8/XOlefIbgTJKzn7Dl7z/j1zZU3L+k02x4tgN4ccK/xsSIWn1x9JjalN9l7mfL8ZYyN/u0xuHyP4jhQiR3ntmS2mU9LK+B539OuMxz/Tk9RM02KTXjOb6GbKccZZ1kKjK2ztDasYUyHGDf3g7+9kJrQ89ZE5X+Y+PHDfbENyAWgj+E4I0k9Z8HDIGY5NMWjlKGsW/JqhD8Ldfw7+z+/xWnYMyRnnN34IIngt3zqhkLX3pmF5XbSy/Y/3V7yENyOb+YEH/kMBK934fBMHD8bQviwbKBwv7Ry1V5u5n0OfSIHiwNdYcXaxEwuD5nVXFCJuAe5MlGRuQhe3SasiGE8sKs12USMntJoPmdpQDl3YU2NX3sk8hKZinf7RkoD4zkDzs74///S5L9ufIO7M7KXHk9i/xO8/SpFWj9N2MDeA0fHcEiLdNqSbuYH7nd/eSsal1ahUleDjOjM0JIc/A1I3xWg6BDLYh87oGqvJAcKEogEyhX92f4hA8nBP2RpUxjwnzDu4RbEC+Q2WGrGqCbbAnCDomC4r5IuMv+AQ16gxRo2hkbh/NxPJb14/goTZx+4xaSsYWSCn+aQe698X5QgThE52/e3rInM1Z78oXF1Q9gYSASHajs40tSw+BMkHwwMTO3TFVHwZeNjC8PHz1Ep9XJ6gDDw8R0U5Ef7obEbI5u6dqFsmeC95Futgv0Z2tk6spY+zePprPOHJ5AN7L7a4TCiYV9/sPNpaoXSLOo2lElCSu/kiaJVUUtK7DG5GyOTunSvLqPw031lGSY/NExdFN/jjbY3As2JelRdKbJlbQKBP3YMOLk6jYamMfl3apNZRpdrZ1lhgCpMa2Sq2qkTHO9+FL5FKQnsK53WRSBY3IjFn+vjj/Jix7T96b20Prf9SOfaYIIRW+PwaXt7PaSLPEip6O2iCC5/Y3N5QcehN5tqQ3AqNUw49b3L9//x+ZS0ek6aTXfcnHB0XwYKQvw4mQ/IbgOCzJxouK4muQkEQllUTj/oSUJSKJCFUm5k4rMBo+VdkcouD7ZbbRaFjOceWRhepAQeKEfoU3xgL62Dy5srSZXE0nChhYu89vUkcGY1F4UwLk0yPSf1b7kAk22XJ5e2ZKw+SXZdmBollpzn5wPHJMolhwRnSf1kzrPjn3P0vI2G5TGqkzkQnXkat/yhM5+3GW9Of41UNSY/zTmkLtfO9eFofgAbelh+br80c9LTRqD1zYqSnvpL3zmeLJRH59nP+O1tCKWfG+1t9yH9PrM9fq0OU90nVKIy3k57UO33kTPL+pTE/D+FeV4PGSJmBbrqlD8DDBIarXq4Hb/gs7tWjx8kO5XqvYd4ZACAJ+BA8ZqUhwEK3F842jpO/sVtJ9ZmOVCnJ2gpxo1tbkEBKHZ+LsrZMyYmFv+XDx24UyZc42zpJIU+75wXO6hmQpOr9HWhKwkbNzirw7v9t92yuOnTN03luStS1Zo9AiHZffN5xYrtKMM7cmepIEZAKmbZigBcjd+zt947gSOJ01g+dPgsdZB4fMx0vekSpj/yUjF/SV87c/CZkk4dBhnK425jGdNDK2uRtjNlkhLZOqyInrhzwdHM76qw4vkFaTK2uBUsiqCcuHFdosjNnj84eqDVJ57CPSL6tVxPfq7O3p0iThNZXPgSAJb34ED+MbxdYpHos8W86uKZ71OsL3d79/k+Xz/vxeMi7/XU/7iv0+KIKHukM9pjeWuTunlvg5lwbBwzyh49Ra+q4nu8YtV0bUOLZMtYmPSce0OoUkB7YBjhYcdGSZcr3DG+8upKvrxT+ncszcxzgR2yRX1WebzO7wBmE6YFZHzUjGnncadTObJr4uBMawD7/GuAapUzPmKWma+IZKD7ltltjlwwWCs1bMU/o8FkivFY2sdfYPsfv2rHbSJK6CRrl7nWdxCJ7Pvr4urZMqC7r3OJB2n92stTvVZsFuubhTJSKJ3O+UXkfezmqt2VDhY4LTP/eSviF513dmqyLkmXs9P4IHtYVaE5+WNqnV5fa3oVlX7u0dgqdJwuty7cuLnteevpDF1i+ztec8zL0/+/zPRMCP4MF/Mm/XNK1PyX2i/pOVw+/N+ycWgsEcPHXtWJWLLfwSPwH+l11TpUnSqyF2i3sd9ssY1Sa5utoT7t+i+QxhQnZQiflPlgyI2h7CVzAwu53WEPIa6/gOiToC+9yNgDzsBIILCXQIb2yXszNDJeU7Tamj8yNwchrnTJZE9XFPSu8ZzYsExjCec02bJlTUjBu/umXs7+KdM5rZXGPCkzp3oWawexxm7sgxKo/9P2k72V96jX1BamH3tEqqoufnRTz5ETzMpxlj60x4TiqPQZ6t030FHjkYRVri2+K6INPqJ3X3oAgest0IluoypZ7K5UXqe3F+Lw2C5/SNYzIsr7s0SnxV5u2eEUKQEYRCuYfaE5+Vpsmvq1+IDGICz1LWjZUG8a8Iahle9wb3OMRR27Rq8sHit3XeznrMuQne2HJqdZFTxwYiK4Q6pDxXTiPQZOLK4dJ1agPPrBdnPSSts7amSK2YZ6RpYkV5b273kPsfO+TdeT3Uz4ZfD/WWO99+5mxeZEkfIEnbplaXjSdXFPmdL4pD8ECwI6NbZeyjMjyvjyoPHLy0q8B/cmGn2iQ7z2zUbLd+yDRntZRF+2ZF9S7HBttwfLmWJlh9ZGHIXMfdcT+Ch3lY27TqqoDCNWDc8WoOwUOwGu8DrwA05qPMYZiPItNo7eEiUCYIHqKqxy4ZqjICDB5M4JslVpImk14Nkf1CfmBEbm81NNywMnicvH5EOqTXlqsBjmsMHDXYM9t4DlzufXp95kXCQFYS/5hg+D1o4cdmIq0ydBOfkF4zW8qWU2t0wuGw5PQLA2B/mP4oJMeUTbGBBA9ZNdUmPC7dpjQRshTcDVxxYlUf86S0SKwkTKbCG7U42qbUUOPJK5PGWZ8I525TG2lEGxMVBgr3P7alaBoEENlYOJODGhNzspaaJb4uF++cLrKqH8FD5MK5myekbuzzKnXSbWqTQK1+Z8dELhCl4CbA+I1rwD6DGhPvYfN6ac0YtySYsw33wYPI4KHvV7+8IO0n15ZZPpkQTp+Ku1TD79wWvU+ufnmpuJt7rk/2To/pTaVu/DMaARGOPc/QxhPLJX71yMIoDDSm+2W1lgaJL2rGj+eORdSpQWZQ3YRnNL2ea4DONJJ9zZMrCRJfRFP+8vufWWtMnDadXBWSWcbkCmnEximvyMaTq/wOp0QTafpVxzyqEVZbT60Juf95FqjRAAlKDZyeM1rI9wE1JAru41N6Hw+a09VzLCkOwcPYiFFUbcJjKt3CefH8h/9jEoJOfNqGcVIz9gmNbo+mcDzSRuPyh8jw+b19x14/gufQpd3SaNJr9zJ40j0x5r2BhnXL5MqKL5mJfo0If2qMjczr59sXv23t+/KHgB/Bw3t49vYMzaTAGJ63a7oW90TCABuGxn1J5sXcHVOKOAl556ExTuFW5Jv82v6L21XikDGJiWBxGscnOKUkbBb28etvP3s6IL36hFQJ8iRtJleV6ZsTNJACmUqnEdV37Or+IoEhBQRPdwkieEbnv6ORfODHWOVuSEgNndNVo+moPcjE3N2Y3CF7R5FVJFr8Gu8bAmOoL4ikFuOc22bh87UvL2vtDAie9I0xgdeR4yDP1SL1Dc0GdUcyOn3wI3jAHk3/auOeVLJp6ydkpv75bnK2dy95R/BeczJBnN+wWbgvwt+nzu/OcvH+OSrZycTRy8Z5UAQP5xC/YpQMzekml++cc7pXIkuuAfVx5u6cViLkEffEuKXvSZ24Z1TiBFk9dwPzHec2qs1CwWDWp03fnCj1Jj0nA2d3CIyMRDasYeJLam9je0PE9ZrRUnD8IQ90+MpulUJ0X1uk4O58dzPkuT18ZZ+QwTxu2buB9i/Bc8wNsEmofYUDKPwZWH98uTSKf1mqT3hC9p7b5hlU42CAEwm7vda4pzWwxuu+Kg7BA7leUH/ncZ3/4AgKt1m4fyC69pzbKmT91ZrwlMzZOaXIuOD00b3cc36bNEl8Tcl7r2Ah1vUlePLfvSe9FkzwELRYJ+5ZdVwxf+XZ9GpEGkMOMzfy64vXdvbdPwMBP4IH/wlEPHNI7h1qzTRPelOaJL4aUpPk829vqXoDainuxjNIbdAOabUDx1fmPxT7RsLaKzjBvU+vz2QUlJQdUhz/CUQM9YQZkwn6IxCHQvNO4z1KjWZIb3fDThieG5ngqTrucRk0p1PIPtkPfhlqjtUZ/6x0n9a4SGAMthxO1YYTX9bsavex3Z/ZD9e+/sSXpUXKGyqvHz4GE7SavjFWie7eM5vLp1+Gvnfc++MzspvYP29ntfWUyvQjeMgOIzCuyuhHpPaEZ4XMbscPFX4M52/eRdxj4evxPT4V/vk11qEsAyS7X1YS+JR2DR76R1/ItKcvqG3wd0k1ng3sZYKl8WX+1QYmC/dlS+PECtIzs6lgV4Y3ZMpm7UiVeXumFd6bvGN6ZjaTDhk1lfjwO0ckZ8nwaZpUQSi38OMvPyrJXDf2Ra1tzT3y2TfXQ95TF26f1iBMd3AF2c1jlw1RuWYC4fwaJSriVozQDLaPFg+Qy5+fK2KHkO3/1oyGWgMH2bcgwlQzh9ZNkOYJlTSY1eu4xSF4IK+7z2wiDSa9LHl7svS8w+0QrgnPPEpQA3LaCfV3INzxa0dqkOvU4EtY86EvoRpE8BA8RO3BQILn9DrpMq2+BjkXzDW95xeMn4Nmd9aAq+LORyOdp/1ePATKBMGDAQ558OvvP2sqMAXsaox/XPpltZP/3pu8sw61GEbm9i0yseW3MzdOyOCctzRrxQ8iXuRkGVDL48jV/X6r/e2+5+WI1EKL5MpSfcKjWiOjZWJlGZLTRYsGUtiPBw0c3C1agqdGzBMyZO5bEk4+cFw3wRMur8Tgj+O2RWJllW4Kd6Q4fcHoZEBGlgrpKSQ3wpumUa/5WB3MPaY3C3Rus60abQv66YSNSIXw5k/wFDjyq455TGqMf0KGze/h6bxw9ochtemT1dIvu630y2yrE/D35nXXCAIGOQwk0pyJpvRr7AMN9eZJr2u0Q/h6XLcHQfBwXCbspHJTSyZaI53+o8M6eG5neSe7k+e/gdkdBH3aamOf0LR2ZDH81v14yYCIRgyYUFQSyTBSRnFseDVemhQoZ+ncr3VinlMZMbf+dPi2hfdbzGPSY1oz1WNH9uSDRf2l6vhH9BlrGPeKUO8hbvkIzRpENoXjuBv3WdqG8dI49dUQCSb3OnzGqMk/MFez5UjThTxyN54lUv7bptbUCF00jv2MK7bjmcJAaxD7kjorvSb8xSF4kHnk+lF/h+KjQY1jU7QRfGrGPCkfLni7CC7h2/N8rDqySAkhv8xFb4Lnd3UCE92KgZK93b8GD7WQIOeQaPObDNAvjcQ6skDT09EKtmYIBCHgR/DgHKaeDGMVz/OYJe8Imuzzdk8rtFEgTnN3zZBlB+eFRPJzPMYOshIooskY69eYbDNmk7WChnNZacioUveC6H+cv43jX5Xu05pqkA0ZgtRWY8wOH+eiJXh4L+TuySwy9kDwvJvzlhI8RH8SBepuENR9Z7aWTml1tE6J+zf3519+/VlGLxmkUfijFr3tKYmG87xdenUtLo8EH++ioMY7oFVaJZm9M93TseJH8OBcGzy7s9b5QaLFS3rOfVycfGRY9stqK2/PaitD5nTRTAuyschugtSgDhCOBb+GhESP6U18M2ceFMFD/3ac2aikhmL8q/fEM/w8eCaRxhg0x9tucey3uhNekNap1aR/VjtfmwXbZ8HezEDyheMjpdNzRjOB8EOeg6CN8Oa2WfiNe4YiujVin5AxS4cEEk3bz2zQ9xtZ9USIsq/8A3OUWGZ75F07ptWVEXm9Zc6OdM0G+umXovWWmKQ3nVxBbVdsQr8GgUlWduUx/9IMX7dzxtkGWTSCcN6a2qhIlLqzjns5Kq+P1Bz/tJy4drjInIX1ikPwkEHp1N/57JtrRcYS93EZp5H6qRH7pJCljBoC409Qg2K4otwAACAASURBVDzGVk5c87HW5vBa14/goY4hMllk8Ny8e923b8jyIuVGjUcCA8LHQ+eYZH/1mNpMElZ/qHa8870tywcCfgQP97Xbf7JC/SePSZ+sNiH+EzIgqF8c/o7iGUAqbFBOF/n+x3/7gskcA5KUAMyyFL2Nb2TH6XWCMkj1mMelTsyz0jalpgyf31Oytk8W/AdgED4WREvw1Iih5s07RWw4xmYInroTntPg1vA5H/YFEuL1Yl+UpNUf+eIOKUbGBDXQOk+pp9mY4StT86f/7PY6d0xY+aHnuOreBmd75/S6KtFJUGR48yN4UJNBsYIsYuZZZGQENfYDmf52dhv1nyCtRcbne3O7aWbp4LldlCAPJ3/c++QdOnl9jL6fmYOHN3B+EAQPx9W+rJugdlW0ElXYSVs+Wa3+Os7fyy8ycFZHrTVUe/xz0n16E5UV9VoPm2XcsqERs9fwZSBLiB0yLLeHnLsZSl5yLszjf/n1Jw1+IPACHAtIodekx8ym4qeGxLZaw2ZRP6k69lGVfESWlXn94LkdVaq1VszTmsGMnYks8e7zm9V24jq73288E6OXvSN9s1upPRN+bZ2/8TdQE6jauMclY+PEIu9innEkn5l/IQUfKUCca4JEPokEyw7NL5Snc47HMlqCh3Ej/+BcaZzwmlB/xy3F7d6f85ljz9icpLYawW9rjiz2DepwtsF3PWd7hsq8+Y29fgQPGVUdMmqrRBsB/bwvvNrWT9ZKpyl11d/GnNWPvNH56KpRMjp/cJmaj3qdc1n/rkwQPIDsPPQFL9Ve0iDpxRBnHi+55YdzJW1D0XoT/Lb66CLVWw66YKTMwvI2mfSaRmMGrft3+40H/MjlvTJgTnt1lpDpUj32Mak98Sl1ZiMVgt6+u0VL8FCDh5TH8EgKBq6IBM/d61r8k9ocfgTP778XOOtrjn9K1Di8VDS1DykZomTrJzyvzlnnfnCfj/uzQ/A0S66o0Ufu3/gcRPCgR15t3BPqeBqbPyR805C/wYBUzwMXd2gK6dRNcWpo4djulF5f0Lc8c/N44ADNpJgCbM0T3yji2OdgDLgPiuDB4Ui0FzVWwg39kBN3/cFAf/DSTkla+5HWcohf9YG4/01a/aHWb0JHuPb4Z+TDhQNCfg9fd8rmiZ5FxV2HVMfTrnObVPe9UcLLsvbYUvfPnp+ZgLANKbpsg8asX+P+IOK66vhHteDdza8/1WuIhvLElSP1JYdTo3rMo1Jr4pMa/QVmRL66GxOitPXjpHFKMMHDs5G1bbIrQyY0qhyMieBBP5Z7GrmxoKYEz+0zGv2F0ejlqIuW4OH+O3ntsNSa8LRmv6w6vDDo0Prb53cLamCBUce02kXGnvAdYNRgSKH5iwPXq3kRPKx35sZxaTOZFGN/4obnlOcayUaiinCy+zWuPXW3uk5pUFjg3W9d+94Q8CN4QMZ5TxFJ3nV6femT3VLfFQ5qlz4/J5lbU2XH2Q3OV4VLMh0hIjcHZP6xMhFescsKJBwJqCgrjTEKQoosGJ7LKuMelWoxj0qN2MelduzTmvmy/cy6IhOJaAkeIvcX7i06YYlE8DBBIQoT/figDB7GiXfndpPqEx7XLE2n7omDP+c3ed0EaZjwogzK6RxRno3tqKUIwYPEGjZMePMleH78TkkrooWRlSACN6jR99M3jmg9I8g0yCyyU+vGPqcFavde2KoTbuf+9drXlS/Oq9Meh44XCcCYDnE0c0tyROKD/S/eN1taplWSrtMaega6ePXB+Q4HSaeMuhqg5RXM4KznXhL1OXf3VElYHWqvuO0RssmRyOk1o5lKYGHLuH93PlN7c8PJ5YHZLhz7kxvHVW6EOklZ21PESzbN3Uc+M+fpnF5Pqk54VGJXDPfE2tkGYqZxwqvqYMMmghgmyxjpXepXIhFSddwj+ozVnIis2usyd/f0Irb5vgvblOCJWzki8HhkrTVOqCBVlVDaWYRMJRK+a0ZDtaMyt6UWOY7Tb/eSQvC1xj+jNg5RruEtWoKH++Cd7M5KjLFPr+cpfN+Qbjh6cVCuu4df+Druv4n07ZxRT+sE+Dm//QgegnTIzKG2zo2vrxS+K9z753PcilFqX6JAASnu15y+4DAjQMla+ULAj+ABBWcc5xkYPr+X1E98oYj/ZMWRBZK6bnwR0Jifrjm6JGJgF3MUCnEjH00wVVlqZJ6g9tBlagN1ehPE5/hP8ElQvyM8SDNaggdnNn6E8IyBiATPbz/LplOrpO6E54WaFn6NZ33xvmx5c/QjGnBI/RB3YxzEbqg/8SVpn1FDtnkUeHevz2cIHuS0mNMSpBTe/AgexiCykBk/KRnA56DG++nyF+dk3/ltsv74Uq3fgUpE3bgX5P3cnvo+Dye+wvf3xXe3VE7rnTkd5TsPVYsHSfBgiyevGS3aF1ctmfA+u//m+Tp8ZY8GCUD6OzaFexm3aqTKrDaY+IoGZ8Sv9LZZyOCYuS1Rs5rcxwj/rJkxSwtqNn24qL9QOyVS4xmZuTVJuJ/7zGIes9N3E64ZSgXM/5EH5Hi8y8nIH7XwbZUSpkZT9ZjHtMZ3g0kvyej8QXI2jGhCknT00oEqbU3Ail87fv2gZgzh1yFAPNxuoEYdCiRVxz6m9l64LzR8v9iuUzfFS/OEN+/J0xXNxoqW4CGDkkwcfDfDcntG9CkwbyA7vtGkV6XGhKdk5pbEImNPeH95jqjbQ4AWGHs1P4IHv9Jb0xsK1yCXzCaPsgXsD39Zx4zaBVlZB+b6+jR1Prr8fRm3FPnmsjMf9cKsrH9XZggegObGv/T5WWkY96pmO7gzM4iWTVzzoWw8sbLINYFJp8jo7vNbivzm/oIHkUiLAdmd5KcIkZbu7ZzPGFEQLTxsf+Uf+8BYKm7DiUkExfFrB2Th/mzVg8dJ8eaY/1N5B+Tn3EYGk/xoJNqIaCOqorgED/1HZqVtcjWdfBNl6tVwICN/VWX0oxoNGB6FDBY7zqyX6uMfl7aTq8uNMFkLr31ifL03v4c0SyYr5myRVTj3aZvipG9mm5DMJO6xC3e4x15RWYuPFg0osm34F1x3Xig//fpf2XNui75E6scX6FRiXHBdghr3JwPzBwve9lz3QRE8Bc/XOa2fkrd7RlCXi/xGdlfQPU+ko1ODh/o+Qety/0fCjHXYX6XR/6dkTVA2jtNZtuFlVunj/5NGk16SjSeLjhXOutwf1H/AqdImuZrcvjex5lojI3Tp8/Oy9ni+6tH2y2qjL+JqEx6Vt6Y2DInkxlBADgyJtvUnlju7L7IEn+lbEqRW/FOa8RK+As913MqRUjv+GRmzZIgnYePeBvxw8tWLfUGGzuvmGYESLcGDAUoESmVqUiVWlAsekofuY4MRBSebJ7+pqfod0+vIV/8pGgXm3gYD8MNFA+SDhQPkF5+x14/goXYaxRAbJLyohQvd+3U+8wwduLRLGsS9Iq3TqshaD81sZ91Pv76qRRA/XjzIty/OurY0BIIIHtDh+cneniZ1Jz4vscuHCdJJTuN9AYnj5ZBH7nHapkma3eqs77Xcc36LDJzdSetu/PaHf8aF17Z8x1gRNB5H+xvja1Ckpdfxeecgm3Tli4uy8cQKDdAZMLuDNIh/Wcnu/nPaFIlGLG2Ch1puA2Z1kHaTa8rZMFkW9zlgLw7O6awBHUsP5BTJDifwQ98N459UmQreBZEauttItM3fO0NrJYSv70fwFGQTDdaCza1TqgqZh4zDfo3fuO7YdESdDsjuINXGPyaDc7rq/Raere21n9zdM4VsaiaUXMfw9qAIHoIXxi8dJsPm9ywizxzeJ/ff9Bl7OOj+xrnFvZCza5p8+d2dwHV59oIw59hEyaMnD8HDxB07NVKDOKQeT9UJj0nsyuGe94WzD+4PMllxsK0/sawwU5Bn88t/35Zd57eoY3fEgr5KXBFhC7FHAWNwcBo18ZBoG790aCBphdIBEmWN4ysIhF/4fQCx3STpNWmWVEku3Tlb5HfneM6S7d+d213qTHhezt066WkHRkvwME9onVxFZVvm7IhOci1m6TB1YIEfhB24BTU9v4TX5dDlvUXILWc7P4Jn0d4sqZ/woioX+NXWYR84h2vHPS1vz2oTSJTuOL1BGk+qIAcv7fHti9MnW/7zEAgieDhbni38J9Txap5UMaTIOP6TpFUfaV28cGQgofGLMHcKauxj3NKh0jezrfz8W2hdu6DtnN8YO3negsbjaH5jH24/h7P/SEtkGhlrIcln78gQHN+tUqvp+NEk6RUNunDvo/QJnl+0Rg9OfVRAqLXh1QjKnL9nhgb2InEdbmfgX5jB3HLi0zJqQb+oyN8z9yTaUN7guoY3P4KHYOq1R5cUZBJHCKRz9olELP4T7K7ZO9KUFGifXlPrPWGfhL9TnO1Ycs8Q7NhzRnOZvSPd8/37oAge+nJS+9JC7f1ItoD7PDj/oHsbqVV8YN2nNpFj1w8FrostGO6rcx+LzwUEz2C9t5H2jUbalvsKqVgy7ntntVBZwPD9On+TMfbRkgG6f8YEMpdp2Jzf/vdrtU/xKVAbp+vUhho8CgEyftl7If4TJGzHLRssvbKaaTCSs//wJf5DZM3aZdRQojb8d3y/PbOaaqbKphMrA+8ptv3Pj/+W9PUTpEXimyqhHb4//o6W4NFspoV9NZuJYCJkbIMa49e8XVOlbszzQtA7WXCQa0ENH+cHC99WOe+7PxQNDGNbP4IH+33AnHY6P6Weq5/Ns/74MmmbXk3r9Ww4EVrn3t233ee2yDtzOhfMRwMUANzb2OfSQaBMETxoxZMRwaSEyAJeJk4jGg8SIrwODOusPLxQPlo0sAir62zLkoFHC4tOqqgaou7fovnMcfIP5EiLlErSLKHiX/731rSGWnQwmmMT/U/kpxejzoth1dFFygYj3eHWkX0QBA9yJ71ntpCWSW8KMk9eDefrieuHpdqYJ1Xnl/o57qbZOHl9pX7SC5q66P7N7zNGTZ+ZLfW4kEzhzY/gYT2VaMlqrZG5ep+FFWEO35fzN1IvWdtTVee2SUIFQYc0UsP4oNBuo/hX9QXutf6DIniIUMrbPdMXM6++RfsdUQEOwYNe6F9tPK9kbtSJfU7qx78gOTunRtwl20AK1455VqMVeF79GmRk7Ir372XUtJLvf/pOjbf5u6cX2YRryP3bN6uVNEh8QSVrnJUYFxbtnyUNk16WJfvnOF8XWfIMz9qWKnUTnpWEVaHp+Bi4RJJzjzRNipy9w871nrl6QKVORi8eVOR4fBEtwYOBPyZ/sGJR8Dz8Oe567RgDAWcthY3R/h+9+J1Ag5PzI2WaSFgcTX7Nj+Dh+caIrDvpWa3FwHUOb/SJ7Mwa45/S2h3U4/FqXEt0hiHGKT5ozRCIhEAkggdCh+ixehMZG6YVRkhxn644vEDHi3BHLxFw6RtiZeXhBYGTEcgjJl1Dc97SwriR+hr+O2MxGYktkt74yzZLi+RKMmHZu4GyZu7jH7y0W52ovKvdjWeQifL7ub10rEauwF2bp7QJHjCluDyTO97hfg4GSHdq+VAkmfHO7SDnfIjCIyNl0JyOURMPFK4lco9sdK+MZz+Ch+PN3p6mzvS6sS+o7egXiefGms/IuSHtQkQljqDw6xG+Pn9z7mSGIgdF7Qav9qAIHt6NZP0s2Z9dhGTz6ldxvsMWheCZu2uaQOj91cZY0HtGC60lqdh9dzviLnl30Qfkg0Yu6BeYibLhxApplPCSSuGSsfrtf77S+lbh2WUctEDaZrzUjXtW3pndMYRswmHQLOl1fQbDxyZ3h09eP6wRnZCh4VrxkIQ8RzXjnlSpI6/72b0vPnOuyCM2m/SGXPvqkqfDLlqCh5qdRPQi20JwB+NKUOO+75JRX2tvEkSIveH37LMffhuZ11cl/oKeGT+CBykVauZQGJpMKC+7BUed1iSa+KRGdntlyhX2JbeP1mIL6kvQ+dtvZRuBSAQP/hMyHfGf9JnZKiQq/M53t9R/El4TjHfh6qOL5cOF/QODyngWLtw6LU0T3lA/SHGR5DhI72NDlIj/ZHoDQR41msYzxXv32lcFdRGdbXDQQ/BD9tRQacs6IbKppU3wMB6Q2dEs4Q1VvWBs9GpO1kyt2GdU3tY9ZnEOZ2+elE5T6kmHqTUECc9Ije1PXDuo9s+IvL4aoBS+jR/Bw7ZIcbVIflPn5dSPjJboQEITJzXqM32zWkcl50n20sK9WfLWtEZaZzq8n/zNuP8gJNrcfbl054xXV+77OyfIGYIH2/ivNu5dMo3IaBk8r0tERRCOh0+BjPiGk16RrtMbyo6AewnJt/fzemjG8OR147WO5rbTa9Uudd+f7Bdf3Lrj+dJ9ZmPpkF5Ta20750emTfyqUWqfBkmbYacPntdJumc2VmLQ2d7ZP3WQkX0l0zpS9g7bgE/imo+k3eRa6nN278/5HC3BAzHedVoDaZjwiizYm+UrgebslxrA1Fom+6ltWnX1iQQ9QxC/+Lj7z2oX6LPwI3iQWh6TP0gDfaZujPO0oZHoQ2GFgPl+2UWD7py+4+9iPoqygZ+PxVnXlqWPQNkieH79SVYeWagayRjWTmMAP3btoHywoF+IEcILEu1YIkK9sjic7Vky+Zi9PV1apVSNagBwb8tnBr9Lt8+qtM/i/bNVbgLJieL+W7Q3W9h+9bFFmv0Sfhyvv3HAwoSj1ezVOLfsHenSNLVCYbF51nsQBI+SMwv66WTR7xow4FODp3FcBZWicGf6cG2ZnCGb0GN6U42w8TrH8O8+/+6mtJ9cW7pmNCiise+cu1cGD7/BluftzdRU7SaJr0ct18fEqn92O5WjQJIuGocARkHKmnHq3MZQ82oPiuDBaOuX2VrG5Q/16sZf+q6kCR46Q3/Bu9bEp3QC4vcS5Hoy2b/+1WXdhpoDECnJa8b4nhPXsk9mSyUNcLRiXEMuU+QwPEKKnXCNMLzqT3whhKBR2cfTa1QHnsKLfo0JDi9QSIrUteNCVuM5zdgwQeomPKeSPyE/+vyhBuHZDVJn4rOSsWGi51rREjyQ5x0y6qhMCHr6kRpELrWJMFCaJlQQ0qeDGsQihgWTziDjy4/gYYKWu3eGGigUSfWKdgFDahEgYYRUoFdUGn0kuobrDZEV1Jeg87HfyhcCkQgestnGLh0szZPfUEPcQYf3AzV2IHnckx7GF5yCZPRFugdxbg/P7S2T148PlFJyjhm+xFGP9MHiA3NEbY/7sFnUxsHm2T9bkPaK5r1HP5AGI6uYWmpejcwk9MaT1nwU4nwubYKH98iklR9Ig7iXhWg0P6KE7yGva094TtCxdjtgGEcG5XSSehNf1PdGOPnjdb58l7punMpqInXjlcUdRPCQHYLEzJtjo5f/4pjzdk1TJz11WzaeXCFI2EVqREQi4cI70X3e7u0eFMGD3Y5tyPvXzwZw96s4n0ua4CFSN37FKM2op25jeEFzd98gay7fOa+2ReaWFKmf+LzKhn4RJrXs3gYbg/W6TW2kBA7jB9k/SMd6ERxcO7LYO0yuLV9+/6eE81f//lwzuXtOb6YBT+5juD/jHCCrl3shfKyi9ifZO0idUk8rmmvDfIGMX+x2v/OMluDBjqoT/2xBjZtv/GvcOOeTtTVV6sY9J1XG/0tlCrEZgtrVLy6pfYP8HfabX/MjeLAxOdfKYx7V4Cev553Aom5TG2uwjDsjK/xY1EJqMqmCLD0wL7Av4dvZ3/8cBCISPNR6PbZIasQ8qcSrc+aMC8evH5JReUX9J+dvnirwn0RwWBOAQfBKy+TKUTnmnWM7S+ZPKDssOZCjdkRx/SbO+o7/ZOWRBVrE3dl/0JJ5JJkqKw7lea7GXIFae2Q9udVFSpvgoTNKzqTV1dq+2GpeDacqChZ1JjynMno4Y52mNibZAHEFv/m9q531WXI/YPcQUMi7ym2bOuv5ETz8rgF3y4ZqQOCAWe2LvBecfbiXvBvIOm6dUkV9PePz3/V8X7m34TOBUO/P76U+C96tXo3zeRAED30ZNq9nYF+8+hfNdyVN8OAbJYiIOUnHKZAY/nL1kDUEj3P/EYjZe1YLaZ5cUZ8Xv6yyvRe2adZNy5RKGqSGbws1gvT1MSG2vHPuPP+5uzM1a55yBc5+1Ue5IVZaJ1fTOlPO+uFLJAVHLe4rvWY1VzlC9++HLu2W/jltpFcWtXe2uX/y/YzMYczKYZqp5FevJxqCB5yRjGs46WV5a0YwKUZnCIpZcThXlYwgOmOWvx/RD0xAOrUkP148MDCQzI/gwU7HbiT4FZWYL7770w50AMK+QYWidswzMn6Zv/Qa9wrzUdRv/IJRnH3asvQRKFMEDwM1RkzVMQURKE6NEIyLxfvmqGaiAxkP1rlbp4SiYzyIkRryBRRT5wYvaw1ChH5TAMvLcclLnWj0JkkVNIPBOT8Gz2mb46Re4vMyxcMJXJB9MFsJtffn9SQh1tlUl2B8+rPjUn3Mk9IisZJ8di8N070Sx8jYGCtNUl4LIZfc6/CZQn69Z7aU1slVQ0icb77/SvXrmSj6DbTh+8IgIZqI4oREELoNHmddPXcPiTZ+x9i49e0N6TatsUoj4MTxqmHi7IslL2CcMlXHPSY1JzwlY5Z4Z024t+E4OP/aT66lUZbu39yfi0vwYNQh+QaJkbomlCxw79f9mWeL1HSKy+JEKulWGgRPQc2s1RqhScSQV70E7gWkQXpOb65pyWxDFBtFvXE8hGeLcd5ggUQJ17FNajVh8sz13XZmrerb7z1f1EjQa/nNNY16ouaA05T4uX5YnYBjfDJpWJf1SDOuNeEZTccP2R7iKO5FLYbt1V9nXfey4NnNlkYpL4c4ld3rREPw0C8isqqNfaJACu/oEvcuQj6DAVHBaOlWGf+I9nnJ/tkh63j9gXxbv8y2WovD63fnOz+Ch2tMmj6Tg+4zmnhKWn3+3W1JXPuhNEt9Xebu8s/2YkIFuQPhZM0QiAaBSARPQTTYx5pyTwYg4wuN8Spza3JIpi7vJaLkKIB64XZwFGBB5NYCeTurrWaQRNPXv9M6a48tkV4zWvhqXPNMD8l5SyiU7ibVz3x2Qobl9dBMPK8oXScijRo8OH7CZeMgWyjiW2XMY5qt7ZVZwGSGWgKrji4IyR4Kx2/m5iThOOjHu528jDFEu03ZNFGDCsK38/qbdxP65G2SqwqZEV6OlSCCh2h/agU0SnpF2qbVkJOfUqS+aDaj+9hk3wzIbq92S+vUqiohxjge1LCnIMCQp7v8+XnfVYtL8JBR23JypYJo3Aj3vnNQbF/07hNWfahRos73JbUsaYKHfvE+7TKtvtoX2OXu+8bpNzUneTYIUOMa3r57U96a2kCqjX9CI1S9SEdkRbChq457VFYeXahE3df/+UJaJlXWQsZ+NWJG5vZV2wJHgdOo2wPx0zzxTeF58rsnmHv1mt5ckAV0Z8ozNxs8p7OQXY295NVf51juJRmFZA4RwAfZ49WiIXg4Xv9Z7TXriWcqEum86sgiaRD3ototBIl8EUVmFWNE25TqvplGTt/9CB5+pw4PgTvIdCLTG95Of3ZM6yQRSXwrgCSD5KQvV7+86Hutwvdtf/+zEIhE8BT4T3Zp1D7jxM/3SEkCrPL35+h71kGEMQf7ZPCcLkJx7UgNMhbFDBzzZa0x7iGl+h4y9B7vS95j0zclSMvkKiH1aBifRuT2UvltahSFN3wx1NIjOHXckqGFdp+zHnOrfRd2SN0Jz0n3aY11nun85iwhDXi/9ZzRVH0FzvfuJdfqyOU90jyxkjDHZL807AdsgHaTq8vb2W3k+pdX3Jv5fuZ+WH10odo/OTumeK4XRPAw9jLmExzbLLmCBpB47sT1JTbyzK2JmkXcNOl1meehlOFaXT9yHFRBUFsg0MSvcd8Xl+Chnl/r9MpKTvjt1/290xdUKAgmLelW0gQP/ePeok4OKhsEiHm9I7Gv8GfwrkOhhr+nbU5Q5ZRJq0bJl99/XuRUsa+5b+rFvSCjl7yj9gPPUMaGGCVSySz2aquPLJI+M1sL8wKncS/n7slUG2burum+fjjuRzKikb91ZxYhL5m6fqwGoSzYkxl1XWnGvhELe8nwhb3Uj+z0x72MhuDhvk5eO0YDNEYs6C3nbn3i3kXIZwhKspyohwO5g30dTbYW5NugOZ0lZ2eGLz4cyI/g4TeyjLrNbCTv5r4VIt3pdJDMcxRtmBMt2je7cIxxfmfJfBSSnEwiFA2sPXwEyhTBA1zf/OcLGTa/hzRKfqUw4oKBiaJju89tVkQZYBjw+2W1DRz4HfgLBufNQjE9UmLLWoMpjV81UokaChaHN/BBQ5cJD3VinIZ2K9IxRLmpxmvYxJ5BGdYdaYi3s9qFpHSzD3Dbc36bOkqaTHo9hDxyjgG5tO7EMqmf+KJGJTvfhy9xsuTgFEmpKGc+Kyiyzgslc1uKNEh4STXsw7fx+5t+7T6/WerFPa8vJq/1ggge1scooJYRBVDJqkjbEOOZCcS6BS/fdTrJpbAguto46SI17lMib5BzuxgQIcVL7uiV/WrA4fQKakzEP/vmunSb1khqxj6l0oRM1iO1gnvoA+k+rUmIMy3SdtH+7hhALZIqBUYZRLs/Zz2uIw7AGjFPyOCcLkXkZZh4fLRwYMh9wH1NxEKduGeUGOU6OA2jGMOn18xm0jjpVY3M5jeH4EEntk9mqyLHIeqZ7EKeg/B6GrwcIfF6TG0WIivpHNNZEgHbN7OV9M1qUzjRuHP3pvSb1Vo6TqkTMQvR2Q9LricFoZsmV5QLPkZFNAQPTgecD8j3cO2Isgtv3HOMMRQE7Tm9iVSf+Li0Tq0iaLZGajxnEItEAEeSNPQjeDgGky00mBsnvqKate7jMgFCBrFVShWdLJGR5NWY2CCJhZwBDlZrhkA0CEQieHg+yPDoOr2+DMntWnhvYVRnb0srJCQZt6dsiNUoTIJTIjWCIijESgACY1ZZa46ms9ekgnEY2dmB2R1l06nQZhZJJQAAIABJREFUCfORK3ul/+y20iatmk4Gw53PYPd+Xk+pG/u8jgmQ3e6G44XIUiLn5++e5hkUw+St/ZQaMnNbUpGx3r0v5M26TK8nObunFO6H+6HjlNoa9XvLI+jFvb37MxJXyHwSlOR3PYMIHvYFITFmyWB1GuPUOX7tkG89AnTYkURpm1pdC91SAJaAk0gNGZ8eM5pIzo4MT6eAsz3v2SFzuqiDIJJsFO8B3slIarVMqSw4ARxHlbM/r+XOMxulY3ptld9EgqikW2kQPPRx2cFcaZVWSaXleO+5zxXCh2vIexf7xmkEOLWc/KZ0nlJfLt85G0LeYZ+krY+RupOek8TVHxXWWYDgaZdaQwNHvIgWriUEENK8vP/cDanYOrHPqoQf18evZW5JVvlJgr1419K4ltjf6OyHP39+++H7Xec2S5OUV3Uu4JZldG8TDcFDkXcyi7BbyMYPPzf2h01KIBiFrWvHPSNVxj2q8yBkmcLHFPfx+cz+yOZm20iRqkEED7UJOqbXkjaTq8n1L4tK0pExjZ267KB/Zg41zOgLc7hIfQk/D/v7n4NAJIKHMyWz9P35PaVRyisaWMF32O4Q5E6NHeZDBMG9ndUmsE6pg5z6Ac5tU2lRL5l4Z72/65J3U79ZbaRR8kuy6vDCIt2k/iqZjDzrTmYBK+FUVlnuJG/fBlmQ6RtjdW5KbRzUOtwNnMmYpc4GY7q7prSzHkRzyvqx0nl63SK1CJ11WCJvBikOUeUQ47zfR+T1ki5T6+sY7l4/6DNO6cztKdJpWi3futVBBA/75lzJxKgT95y0mlxZyKjye4dQM2Te7mkqzYeMFbYT93KkxnwZ+S8UORiz/RrHjZbgYV0UY5omVpSmSa9J9tbJ8vv/goNkOK7Kna4dr9JyQX3x62Ok70uD4OGYZO/3m91Gr1H4O4ag5tVHF8nE5SNC5J8Jwhi7bIi0THlTFvBuddWH4f2/9fQ66TajkfSf005JBY6DLTh1U5zUGv+0SsNx/7gbRAyKKiMX9FVpVPdvSKt3yqgnKevGFNrY7t/5zHHJpO0ypYHOG/iO/i89OFfap9fSjNxINqh7n9hKPWc2k4Q1H/rWzIlE8GBDnLh+SH0O2BYpa8cI5xneGD8JlCLIvkVqJbVFqEccRAY5+2Bb6gsSTMO1DGpBBA9zIgg4/Je5e2YUmTNs4RpMqSMf5w+Uaz4lFrimZBIxH0Utx9rDR6DMETxM/NEo/HjxAGmc8JpQX4IoTaKuSWHnRUK9HR6QszdPRIUwRMf4pe9pJJqTFRTVhn+Tleg/UidkX/CgT1j+nuw6t0mlxTaeWikfLnpb+mW1FoqR01g/bsUojRpBg/PN0f+S6mOfkL7ZbSR39wwh0o/BuFdmc6kx7in9HR3rTun1lSjCabHlk7XSL7u1NI5/TQu6Vh7ziDSdVFGG5XYXCkc7jet18c45aTjxlUAZLQZDItR4Wb83v4dm6yStGS1tJ1eT1S5G39lv0BKyKHNbqhaJRefaq0UieNiGSfcnnx6T/rPbKcmFEZa3J1NOfXpYo/ZO3zghKw7lyvAFvaVnZjON4kUKg4GQKM1IDecBUUND53YrnBh7bROJ4MFQpCDsOzmd1MBjwv7m6P/Tf2S7dUyrqw6tUQv7eTrRwZ4BuU1SNZm1fbJXF/7yd7yISrIGj7tDOALm7ZwuDRNelg5pdSRvz0zN2svbmyVD53ZViTKO7244HRbuy1bNZ54NHBFovFL4uH1aTb2e+y/sKNykQGpttRrjg+Z2lsGzO8nKI4vk5I0jQjpy2voJqt+OXnV4c8YXIrqDIp4hQyGpmydXUukmXqqDcjrK29ltC5/d8H37/U1WDHq9/POKUGc7P4KHZ2PW9lQZMLud3juVRv+fVBn3L5VAY6JD7YV3sjvqPxylHANiq/LoRzTFGucOkizRNCUWV47SNHuvSGb3PoIIHtZDGi6eeiIplSVv7ww1pkgN575jLOszq2Wg1jD12yDCh+f2kV9++5P0c/fBPhsC4QhEInhYnzF68yerpHdmc81QmLY5Xt/Bk1aOkvUnlmsmz8gFfWTOzgwhej+aBjE6aE4XHSvCx7dotn/Y6zB57DKlvmZSovWOljqO/f0Xt0vGxonSP7u9yhswOaQdvLxLZQjIFqg8+lF9vxEcMSKvjzoEIGVjV46QtpOra8YhhdIbxL+sQQtE7yHjAAlMUVfq5vB73ZjnNOtvzo70kMxhbEze6cPzekp4XQI3bkTdTd0ULz1mNNOAIyRmqJ+Iwyza6+jsjwlYlxl1ZermuJC+OL+zjETwsA4OO6IsGye8Ig3iX1L5XqIaKfaKFC7Sd8hXke2Yum6sBiQgczJrW0ogmeX0A3u7y5SGcvTq3kC7JRLBQ7BA3MpRGtX51pSGqpHOuwbbpUl8Bc1GQeaOrDevyTmT+rgVI2VIThfPwAOnv39lWVoED45CSN8uU+uprFH6ugmaIYyTYmhOV0lY/ZF851HzB11zAj4gBJAYJroeaVfqPDE5z96eEfK+x/GEbFKfmS20EDU1lg5e2qmOh6UH5ytRF7t8hNz9IbQOFphtPLlSmqS8Iov2ZweSNNT36ZPVWslCAquS1o7WYCd04SO908OvjRJDE5+X/Zd2+joE/QgeCLCRC/uotG6t8c9qFCyRsK1TqmlUqWOzQBr3y2yjtgrjQJ2Y59Q5yriDIy2ahtRLo/hXNDglUkH3IIKHY5Et3i6thkbZE7H7488/6P0+Y0uS1I9/UbMA3URfeP/2X9j+Z1/C7Nzwde3vfy4C0RA8zMdvfnNdPlo8QOs/kW1f6D85vkxWHMlTG5jfvQgHL/SI6qeOHwoo7gBSr3X/jt8xfvWa3kyzXpnPQBqAJfbEisN5Oq9GCYT1wO/WN9dVhoigtIL31b+k9vhnZeTCvipRi1oAgbbdpjfWLE3sjBrjn1YZdjJfr3xxQefr1CYmIp7fq4x9XJonvKGF6d0yUhDJZNM0S3pDnel++DFu7bmwVW1LSCWySIbn9VbfxfGrkX0R7v06xFDPmc3FL0AlEsHD/ggOpBh7h4zaWueN9zSZTgTgXP3ighy+vFfm7Jyi8nPDcnvoWEqdWjKWwuu5ufvnfCa7lXp20zcnOF95LiMRPJwLwSrYGr1mNJeGca+oz4trW3Pc0yp3So06CD6yWb0aQcm9Z7SM2BevbaP5rrQIHo5Nltf7uT2EGt1k3Kw9ukRr4hBc8NGiAYIfJFwFh/sCGa52k2sIfqWVR/Jk3bGlGmjePq2WfLiov5Bp77T//IzMfIzaBWT6jVv6rt4bJ64fVDKZGr/UmqP+bfixyKYZvqiXfLC4X2EwnLNf95IMYpSM3pvbXdYez5cZWxKld2YLyd4+2dN+dG/r/oxtBjnZLrWmBqX7Sf/5ETwEl8SsGCa97j3fSNVXHvuINE96Q+0O7A/HFoFE75hWW2pPeFYVHobM7arPrpcSk7uPzmfIto8W9ZfE1RBR/iQn6wcRPPyO/GTsiuHSMaOOLNiXqfvDP4Mfqk9WKxk8t3MI0ef0wVkWzEc7l9n5qHMe/6RlmSN4HPAZtJmwM/nDSY5TO27VKGGijnPdiSRz1vdb8sJGB5vtMcTLYsNZzUPIRAGDgKgQmNQJy4Ypa7z+5PKQyC6cTfsubtfJIYYMzC+aq9vOrFNSCGc2UbIw56yHhiWTp+2n16uz9Psfv5VrX1zS7CgmdGhtsw8igLafXqtSWG4ciShBl7FNavVAPVauBRErs3emSdyKETJ7R1qRfbn36/cZZwCGGhJcfnVtoiF4nP0z4WIwpxAZkl3I0SGHQH0AIg4oDnn3XqFo7kscQk76u7OP8CX35yc3jkrTSRVkzbH88J9D/o5E8HDMS5+f0+tFBCQDLfcCAzrXbs+5rbLj7EbZdW6jpz4yk3BSK5smvi5XPr8YcuyS+qM0CR76CJ68oPL2ZakGbsyyYTJzW0pg/STuN5xwRHmgdTouf4jWQIAcdZyKzvlzDZBMWn4oVyM/Mf6RHuQ4GEJ5e2b4Gn9EFpNRSCYaUTJBDZyI+iCtl2d47bH8In0J2p7fMEjoH85NHKV+zY/gwZg8cnWvEpYY6IwtjAWbT65Wo2zd8aVqzGHQ8XnjieU6ubh0+1ygIyi8H25iEYItUotE8LA9kWMQ/e/n9lQiCsKbzK5ZO1KFbCi/xv3DGEaKPdHV1gyBaBGIhuBx9oXznTo11Hki6pqISwrREphC9gTPRDQNMpjiv2R7RIrcimZ/D2MdasZAvn757881azdr+2SJXf6+ZiVB0kNIuCVTiHbH3sDO2H8Ru2Wnvtd2ntukTiucAjhpeVcjfYJdAiGy9fQanWzioGEyS4Qh9gy/40whWpnMWHeUP+M9dQ15z2NP8q7wa9hTm06ukuS1oyV1/Th9//plH/jtg++RtWie+IZKvTIGe7VoCB5nO6RJs7alKFGCfds6uYrW/ECSjaxXnBLcRzTeBdybnHdQw9YcNq+HjF0yVANygtaNRPBAKnAdIJ+wP7mP1Wa5vEc136nzs/X0WpUB9soCQToVG2zuzj+zp4L6cz+/lRbB4/SFex95P97145e+qzbF4at7A4kGsAAvZFWwWSauGC6L98+Rm19fKzLvIVhr4b5ZqnuPHN/CfVlKqmG3cA8curLb91hESCPbB/nnRIU7/Q5fkhmQs3OKOliytqeo3FC0czBnX9g+yE1itwc5+PwIHuzuLadWyfoTS9XegkDDbmE+FG6zkD0IOXbi00MqDx30fDv9cy+pU0nNQAi0SC0SwcP2yFunb5igconIKw+c3UGQimMsc55Rv+PgLItUv9BvW/v+n4NANASPc7Z/+k9myLD5PdX/gQObOXdx/CfYKxAWSKsTSV4WG0ohzOuoqfXdj3cl/8Bcfffj7GT+hL3mkLicL3WxeC/tOL1eiSDeW8wZd57doP4K3nv4T7ArCu2MiwXvOewNMlaQUoSEwaHN9lw73ce5jRrA7ODI8SDayGDA2e70w/ndvcRmIIsyfWOMZnGiKEE2TnEa4yBBBO0n19TMDWRfvVo0BA/bsb8vv7styw7Nk6Fz35JWSVVUxhxFCyRIwZjzdt7vLAm0i/TuIGuEwAaCbvGjBDXu9aAMHmy1E9exC9dqxhJZaI7/hKAi7JAdpzfIgUs7VKIs/FgEUHL/0JdICivh20b7N9d2x5n1GkwZjWxXtPt11sORT6AqxOTY/CFCcDXqMtiFfo17EZ8IcnooAU1Y+q5kbU2Ro1f3hWT1sH2Bz3GHPheQF1zzyesm6HbMf9YcW+z7zmdODzn01rRGGoTr1x++x2ZhLsVYNnNrkl6PSOUVwveHrUO2DTWYeX79mh/Bg0+J88MOQX1gy6k1OhbwvOObUL/JPd8Jth/jBIFtd+5+Fiix5tUPJH5RV4IEjjR3jETwsH/mAFx35OQGzu6o80uCpLHtCMD3a9goc+7NR5lXWft7IFBmCR4HPl4IyOogJXY/je0pDkw6P5EL1koeARzcDHTIbxCtXJoNB8WJa4elQdxLkrUt1fdQxSF43DvhRYuBR8G5vxI1TXQL0hZtUqpHjC7gnKKVaHP3NdrPGIE4Ckfk9g50ZEW7P6/1eAHw0muaWKHUom29jvt3+e72NzekU1pdzdYqrjOhuOdQIG2Yqlr24XJx7n35ETzudUrzM8QihjGRQze+ijz2RkPwOP1lggAO3/73rm8ksLMuSwwb5CAp1h1t9pF7e/tcfhEoDsHjoEQ27eztabLrbIGsrPN9tEucKh8u7K+6017ZDdHux9bzRwAiqX1GDbUPw+VV/Le6v1+wR9DcpuaBnzwbey4OweP0BJIMh8h3P36r2R1/5f2DJF3HtDpCpqrjlHGOE76MRPCEr1/cv5HB7Uom0ZW9pWa3ELjTd2ZrocZJJJKjuP0vC+snrR6t0ksXb50pNYwdHHBkNk1+XaO6/bKOWdeP4HH2U9pLHDgtk95UtQM3Kex33GgIHmdb5hTY4zw7kRw2bHPr7mfSKpngxBkhBLWzP1uWHwSKQ/A4qDj+kykb7q/mJDY8hAg2fNB7yzmeLYuPgEqRrR+vNTKYA5Vmw87BH9Yho6YG3/gdK1qCx7094xmBrzj4CTzwy4xwb+P3GV8dmQsjF/STX1wS617rRyJ4vLYpznf0BVt8VBR9Kc5+3evidyJYoUtGfSXg3L+Vh88EY1A+ANIGOfzSbBDcWtdx9QeB9TP9CJ7S7Jt732ROTl43ThUMSHaI1KIheJx94D8hOB71mWgIMuajHyx4WzPPbT7qoPjwl2We4GHShdyYox9bXEjRsac2zceLB0ZlUBd3/7Z+AQJk5pCaSTGwaAaM+8UNAwUtT6TdmPz4tfslePz2V9zv73x3U2VOmEBHaqVJ8LBvdPpJFScKubQaLwwiipGuISq2vDUmUkidNE2qEJjm+ldxwYgm0qJTej0Zu2RwoFPmYRM8GAJITI3M6xPYTweT4hA8zjbRLskWGJjdQfWB3Trb0W5v65VfBO6H4MFembUtVbNU7gc5ItCRM111pKhm/P3sz7YpigCkCPJvSFIiKVKabdvp9dJ2cg1ZeXRBiMRW+DHvh+AJ38df+Ttt3QStbXn+tn+xWGf/pUnwcG3em9tNpZXJ7CqtRuTprG2TlViLRGiVVh8e5n55LzZLfF2DpYJIl5LoI5nQZMwR3R5EQj5sgmfRvmytzRkt6VUcgqe4OBYEJ1aSCzdPB2JW3P3a+mUPgfsheAhsInsQZ+X9NGx4Ir1H5fUNqU9zP/uybbwRYI5Olk+HtNpaz857rZL5FjuHIBOUSYLed/dD8JRMDwuk88ngRm2B4O5IrTQJHq4NfSF4M5q+ROqr3+/4T5AqI5DdTzbPb9t/wveQnPGrR8l787rJ6RsFNbpL47zwTVKmoueM5rI5gj/sYRM8SMEh6UageDRSuMUheIqLLVlJZF+vOrqouJva+qWIQJkmeHBmUsCcooEUwituY+A/dHmvam7uOLuhuJvb+sVAgAiE7afXScP4lwMjQ4qxyyKr6kvw9ilpmlBR5u2aVuR39xcPk+ABi22n1wr1A45FUaunNAkecECqo31abd8Cdm7c7PP9I8AYRVo6qfZBDoz7P4JopPaCvVmavRMp2uthEjzc08euHrxHLIYWUfc7/9IieHDikTrdKaNuYEq2X7/s+/KNQHEJHu59tN3n757hKfkQCU0iIJEQoG5NNJFbkfZnv/sjQH0LirQiYVpaDm4cKdT9QsYWmdGg9jAJHmSz0Lyn5lAkvW/OoTQJHmQgOqbXUQnTaCa3QZjab8EIINtCpvm1Ly+WWhAcGY1IBFPjEvIuqD1MgocMG+q9Ukg4Wp380iJ46Au1hOgLjnpr5RuB4hI8+E8INFT/SUAwpB+q2DFHruzT2r9E2FsrPQSQl522MU66T28s178MthHutxfYN9il+AKQeQ9qD5PggVSk7g71cm7fvRHUTf2tNAke+kKtl14z6Yt/QHHETtoKERFAAQYSYe7OqRFlSyPuzGcF6gYNm99DktZ8LN941CV0b/YwCR58nQv2ZmopCnCJppUWwYMdlLxmtM5HI/mcoumnrVNyCJRpggcD9/ClvfLRooHipxUaBJVme6weo5EAOLqtlS4C6HxSVLfb1MYqcVbSRyObi1RZIm4jSSc8TIKHAXH0onekb2abqGTeSpPgIRoERwl6qNZKFwHGK2pDNE2sKFtPrSnxg/HSv3DrE2mVXCWqemIPk+Dh+ctYHysd0qMnFkuL4MEwn7h8uBbrxilpzRAoDgLFJXiYrM/bNV1WH11UpKBoNMdFr5lC7Ohdm3M7GsTufx3kzaZujFOn7tmbJ0vFwb3kQI68NbWR1jvEGRHUHibBs/rIIiXBKbqLTRKplSbBk7punE72L9yKLE0RqZ/2ezAC2Ks9pjfT+jrIgpR0++3331QemNoz1PKJ1B4mwXPs2gENzCJAi0CtaFppETxIyRAkRo2xaPsSTX9tnbKJQHEJHuYjR67sV/WSaMbzcFSQ2UpbN17fCcztrZUuAsx/Bs3uJJNWflDiAYKQfTi3Ia+nbYoPqX3odVYPk+DhnU/dEWwA+h2plSbBwzXpP6ud1tGMpi+R+mq/+yNAINTsHemqAkSdpJJuBT7BeHl3XjetQxZp/w+T4Pnsm+sybulQrVkaVK/QfQ6lRfAwHx2S08Xmo26w/yafyzTBQ8RB3t4smbE5sdhwMhgTLdk2teZ9bV/sA9oG+jK+8+1NeSe7o04W3QWU/yo8EDp5uzOlw+RaUWkBPyyCh8wNDJTmSZUEqYdoWmkRPNTFoUhb40kV5Mxnx6Lpiq3zFxEouE9nahHLktasxuh+N6ebFkmMZsL/sAgexl5k5Dqm1ZX0DTFRI1oaBA/P47Gr++WtKY00oyLqztiKhsA9BIpL8DCRztyarMV7iwsiuuVICAzI7iC7z91f/Z7iHrO8r4/zCn31CcveDyw0ej84UdwXbfGlB+YKNkmk9rAIHmyFDxcNkFF5/eTG11cjdVN/Ly2CB0KeiNnpmydFrF8YVUdtpYgInPnsuLROqSYrDuaVOKlMtn2njPpy6c6ZiMW16ejDJHgoPt1lSgPNfIgI2r0VSovgQd65c0b9YvUl2j7bemUPgeISPPhPyPYnA6G4DRue9wCyYVM23l/9nuIes7yvDyFHZg2ZK8sP5ZUoHMicxq4YrnZONGTdwyJ4CGhaeyxfg1IPXt4VFQalRfCE9OVSyRMOUZ1cOVsJ/yEE59j8IXLti0sldvb4Igm4G5Lzlmw8uSKqwLuHSfBsO71O+me3E4LDolWDKQ2Cp2A+OlMGZne0+WiJ3Y0lt6O/FcGz7+J2WXs8X5olVpRoWEkG7qtfXLwveTYKda08ulBrYuA4tPZgEGAw4ppRP2DmlqQSqcfDtVx9bLF0zmggJ68fjupEiD7K2BgjPaY1EyIIH1TDqM7ZOVWaJ70ht76JnF5MvyB4SIWnTs6J64dKrKvUwhk2v6emeZZmXaQS6/A/ZEc48mZsTpC+ma3kVhQp5tGcNgZ3zPL3tZ4NxfGiaYyxXTMaaFRMNOuX1DpIoq07sUyaJlWU08UgFpGjejurvWRvTy+prqjMyrzd06XbzMZy5fPzJbZf21H5QQC7ZUz+EEldO1a+/ylyJOvd/3wt17+6fF9ZrDhVxiwdLBNXjZDPv71VfkB+yGd6+y5SNr0kfX2MfP7vksH94u3TMnB2J5WTJfs4mrb7/Gbpkl5fHT1kbD6o9smNo9JlWn1Zemie/PBzZCKKfkHwDJjVXt910Ui6RXsuyw7mSvu0miqneT+R59Eex9YLRWDfhe0alEGx559/+zn0x/v4i1p3a44t0cLRZMZEyl5zDpG46mPpl9VGyIR8kI3somYJb8j0TQl6b0d7bOx9ajQQUFNSjb40T6ykUkWWdVxSqJbt/TxI/wk2PHPupskV5dzNk2UbuDLUe0iFLafWaKYNsnglUS+UeWDGhokyPLeX4ECPpn31788lY2OsDJrdObBWTzT7Ks46N7+5LmOWDJEhc7vIDz9Fp7bAe2XvhW3SOb2+HIggPVecvhCkOGbxEBmc07lY74PiHMPWLYoA/sPY5cMlcfXHJSKLhw3JszR8fi9ZcXhBVKo69IptyDpefXRx0U6W4jc//PS9pK2foLWyTn16NOojHby0W96b1z3qwPJodkySROF89LuSs2+iObatExmBvxXBg57m5Tvn1IEXSWIr8qkFr0GE++Ere1Tz+X7k3YL3br8GIQDJg3Mqb89M+fa/XwetGtVvTHCW7J8jl+6cjWp9Vvr515+1cGH+/jlRpflGveMIK2IY7zy7SZYfmhdhzT9/xojD8Jq1fbJQbK6kGo6a/AM5WiSwpPZp+4kOAdKNN51cWSLY4+gjG2jh3qxiGZo8Nwv3ZAnOlQfZiERDXoTI1uKQq199/7msOrxIjlzdV2LdBQOMfwpkRhsJU2IHtx39IxDAbtlyarXsPrcl6snB/Z444/+640vl0OU9dr/eL4j3uR0kxYrDufLpl1dKBPudZzfKnnNbBKngaNuNr6/Jon2zhOWDlAS59sVFyduTJZ99E/1xie5D0//wlb0l6gSi4PTKI4sEJ5O1B4vAqetHZMWRhSVSj+rn335Sm+XynfNRSf45Z8o4u+LQghLpg7PPaJbf/fcbydyWKje+uhJVppGzT+psLto/K6oMPWebSMv77Uuk/drvZRcBx38ye3t6RInyv3qW+E+OXtuv2cQPMtDgr/b7n7A92bSffHpM1hxbLL9GKRPpd97Mea5/eVmWH5oflTyms58ff/lBDvAePrygWGOhs/39Lql5s/boEtl9bmvUu1C1nq+vysJ9s0osoJKDF/blfPR9ibrTtmIgAgTGQnQim/xXGxlr2OKHLu0uVsD5lc8vyJqjS+TczVN/tQvF2h7f0fYz62Tb6fXCcxhtQ9aNuePJT6MLgo9mv8xH1zIfvWTz0WjwetDr/K0Ingd98nY8Q8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBMoiAkbwlMWrZn02BAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDIFyjYARPOX68tvJGwKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoZAWUTACJ6yeNWsz4aAIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhUK4RMIKnXF9+O3lDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAECiLCBjBUxavmvXZEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATKNQJG8JTry28nbwgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgCZREBI3jK4lWzPhsChoAhYAgYAoaAIWAIGAKGgCFgCBg4jvypAAAgAElEQVQChoAhYAgYAoaAIWAIGAKGQLlGwAiecn357eQNAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ6AsImAET1m8atZnQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAo1wgYwVOuL7+dvCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIlEUEjOApi1fN+mwIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAuUaASN4yvXlt5M3BAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDIGyiIARPGXxqlmfDQFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUOgXCNgBE+5vvx28oaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhUBYRMIKnLF4167MhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCJRrBIzgKdeX307eEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATKIgJG8JTFq2Z9NgQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAyBco2AETzl+vLbyRsChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGQFlEwAiesnjVrM+GgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIVCuETCCp1xffjt5Q8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAoiwgYwVMWr5r12RAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEyjUCRvCU68tvJ28IGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAmURASN4yuJVsz4bAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChkC5RsAInnJ9+e3kDQFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUOgLCJgBE9ZvGrWZ0PAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQKNcIGMFTri+/nbwhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCJRFBIzgKYtXzfpsCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIGALlGgEjeMr15beTNwQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAyBsoiAETxl8apZnw0BQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDoFwjYARPub78dvKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIVAWETCCpyxeNeuzIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAiUawSM4CnXl99O3hAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEyiICRvCUxatmfTYEDAFDwBAwBAyBcovA77+J/PbzH/K//5VbCOzEDQFDwBAwBAwBQ+AhIYD98fN/zQh5SPDbYQ0BQ8AQMAQMgSIIGMFTBBL7whAwBAwBQ8AQMAQMgb8nAj/cFdme9bvk9P9NTqz/XSB7rBkChoAhYAgYAoaAIfAgEPjlx//JkWV/SFb3P2Rf3q8WbPIgQLdjGAKGgCFgCBgCERAwgicCQPazIWAIGAKGgCFgCBgCXgjcOveH3Dr7P/n3lw8uivXS/j9keuff5MMXfpX1yb/JT/8pOPavP4l8dvoPuX3+d/njd6/e2nf/JAQ+PfmHfH39jxIh+L648ofcPPuH/PxD9Pfxrz+LXD7wh9y99ccDvd9+/VGEZ+DbO3/I//6I/oreOvc/ufHJ7/LLf6PfJtKaPPeX9v8uP3wbPW7/z951eEdtfN3/5ktPfgkppJCQkA7phYQ0UkjvCWBTXcCAMdhgsAGDTTe9995777330EJZSTOS7nfuKMLaXUm7xjYkoDnH3ibNjJ5G0sy7792bqs7o9/QsYBrArmUSsb/T2z7VVvvXWrhwwq7WWL70F7BzSe2OqVT9dH8/stkE7wGmcL9J/Rr728aORSb4WluF1+Du5SbOHq6e7Wqr/age4NBGS/2d2lt75zWVXS+eslHSzEDW/yxU/KDDMp22TWGD/di/pho351SNRb//ay1w9YKNA+stxC7WfOxx/nFki4m/DqdfF+8/50/wOWxBaOnvV1ODco59/pit5kDSSL9d3nsPrrfx1+Hauz44Fzuxx8KhDdHEv6bntbr7W9LGyb2WuufVxrqLz1GuK6szF9evAEe22OA8/oayOtjA6f02Dm+xoF9O33K8TrlWPbmnFtcOnr5ol9K/HtPv9X9rywjg+W+dr6i3kQUiC0QWiCwQWSCywL/EAvP7S0wvENi+4MYsrLiAWD5CotNTAt1flFgzXl5zcl/6y8a0LhYmdDRx9kg0wf2XDJFa7wYXcGsmSAz/w8D+dSasNDK46AS5eBpqXEg9uUsnd1sY/ruOlaMkrqbpqDl3DOj/mY61E2vm4JYGcPkslFOHDhMubBMXqTxG7YqtjvXCKRsDPheY10/gyvn0x/mUrgbGtjOUIzrZAtf3DZ2YfT6Q2DzzxjqXrq+3t85exhUbE3IMTOxk4NJf6TnKpG7j7BHg4kl/p8KGaQIDW+g4tNkZZ+lYa9MsgZ6vx/DXwRvsWAEwvYdAn2a6cjKm01duc2iDhfxXNeWQqQ1nFOtkBintNqadAJ29UbnxFhifJTA+y8DMomqgfTXoJs/5/nUW2j2koePDNhaVG9dqo7NxwQAdPd/UwTlJVG5dC5w7ZmNyFwNTuwnE/gk0SnW0DNBQ9+HTyWMjdsnG2gkSw37VcXRrevd146qN9VNs9P/MqBFowjmSdhm4cMKZi3DsEqz0Fs5LpObQEtJJvXGGiT4fCOxbk/78n877iu91LB+exsTN23jI+8vnbCzob6LsCwkCr1G5MRYgsLdhisSYdgZ2LjJhWaltz7ns32csnD8GXxCHwMeEHB2LytMPXjm2w8SoDB0Ly0TSmK1LS1gWsGyYQPl3OnYuTv8aOHfUBp9ZfF65AYo17Sf7smKERPl3hgpiqWl9//X9I4Dnv34Go/5HFogsEFkgskBkgcgCN8UCs4sdJ+PWOelPbv06Skf1tgUWDq4Pr4eLzom5Ehn36hj5h4nTB6oWwVLYWDJYot9nBrbMDq/Hrw/Rd9W3gG1CZRDcSJq8jdMlSj/VsGGqTCtq7thOE1PyTAz71cCQHwVGZwqVdWbKqsUoswB2LTXR7zNdgYbpLLro1C56J4aVo0wFvlTHegSZ9q+xMb2Hif7NDfR8S0evdzT0ek9Hv88EZhdLBUbR6cK/JUMMLBokcPG0DUsA4zpIDPhCw4ldVceQqn06QAlinTmQ/j5cwLP9oEJgiv0d11Hg/PH06w2qL/o+tQU4VifnGShroeHkHlzLHAjbc+tcE0N/NjDyTxODWkjM7i1w9WL8Hszsmt9foO9HMZzczWyU1Odz/RSJzo00Fb2bCErG1w6cPWZhVaWFRYMklg4VWD7CVA4J3rPpzPH+LS6XWD3WxL6VFq6eTwY8WfeuJSZyGhjYNsdGuhHke1dZyH1Gw8H1/iBXYp/prKfTk86TsEKwNe9553oMu17C6oh+u34LjG5jYHSmgSldawbw0KF9bCewclR4PQThFw20kHm3hYLXDFw4WdV31rF3lY3sp3SsnxLNQ6osU3fvFPCgA9qlumsjsWZmO07pYmDIT7oCVlJd9+zbuikCw3+VGPaLUH8LygSMWFXNPA7WO7dEYNA3Ok7tTXHjgeMkXz1GovCdmMomqKot9TuC3BdPAWvGWRjxh0Tv93Q1F+Fr8Qc6hv8usHmWCQah2Lat5g7TCgxsmydVEMrhjRb6figwo4eRFJQS1Dod+JxncT6TbqFtw+7x7N+W2Ra6Nzaiay5do9ZwO46dzbMkhvxoYPlIAT2NzPATuyxM6y4x9GeBIT9KjO8gwcxh77XDc8ks26G/alg6WKalcXZkq4UhP+uY00eqsRp2aAzg2rHQUvMN1r9suFTzkKVD4+cgnI8sruBvJrbNs3D2oP88g+uG/p/rmNNXgCwS6ZS/DtkY2cp5XqW8Z9mAoQHa30iZrbxrmYkBXzh2SLcv6fT3v7hNBPD8F89a1OfIApEFIgtEFogsEFngpltgTh+BSZ0FagrwML2eTkdO7MPKwQ3kvDfR5RmJZSMYrRW/9f41Jsq+0jGjZ+1FRsW3EH1yLcDI0bklEqUfSkztIsGotLouhzfRoaBjwQCJS2dTt8eoutJmEuPaCxUR+9dBGwO/MTD8Dz0pk4ULy2XDJEo+1rF7aWptJwfg0RTAky6dBBfFe1eZGPm7ibyGEn3eF5jVS2L7Qqko4o5tN7F1joWRfwhU/GDg4EZTRfT2aGxjcbl1zSm/ZY6pMhE2Tk8/c6Y6AA8X3NsXWajM0HFkUzD1FLeb21coYIpOczuNCM66HiO3ev2M0uzeWMfe1aQnC78GCLwuLJPo+pKOJUOkynYhnVjXFwTo0Eik6yPNCEFAOm0IJqYqBHgIbJCSKhXAc2ybhYk5dG4a6PxcDB0ftZD1iIl+zQ1UttJVBC6jcPnHPhQ31dH5aRvF70usHM2+xveHfS1+X8fIDD3tzBkH4IkpgMcL8HqPk2N61xILY9oIjPhdYMQffDWxbKjElXP+x0mqldyGBpYNYzZffD+9dUfv68YCCuBpU3OAh8D+0iEWZhZVZeT49ZgZA4Na6MipZ2NmoRHnoOT2zCIY8Ln+D3WbXw3Rd7VlAT5Tj241MeQngYGfm9g41Uw6H7XVllsPM/UIVPf5UE8LLL50xlbP+d7vSKyslArE2TTdROHbOpYOi5/E8v5DYGdUhoGRrURK6jeC0AR4GGxCuqh0y6UzUA5s9qnLcw7otGqMxIH1Eif22Diw1sSigSYGfmlgZqHA8d2WCizp8z7psBzg6eIpC5PyhLLD36fTa7k6AA+fKX+fsrGgzMSUfAPMfgoqJ/fYKP9WV8+SxHVB0D7R99dvgQPrLDVP4FqL98OwwjG9e5mFshZ81hvqmjm2w1bBVgQWCfx4C+fiq0ZLBXJumJb6eibAM/QXA1yPct+wcuGEheXDTPVc7/WuhqzHBbIesdDzdYmhv8TPQ0a21NH/cw35L5no0djE5DypaNW89XOexACnob+IpN+823nfOwCPrgISguhimXG9f62NqV2lAlo5Dxn5h8TCARJnDvrbm5TJ7AsBZF4Pt3OJAJ7b+exHxx5ZILJAZIHIApEFIgtctwVqC+DZMltiVi9mVsRP9L0d42Jv7USJrs8LDP7exLHtydtevQC14Kz4TlxbhHrriN7XngVIi9D3fRuZ91joWF/DnhW1o4cT1ENGujH6lQsp6iylciiTNqTkAwvlLSQOb3F0mbjQ5Jjt2sjA5lkWhB6/CGKUHB3QzPY548kO8+tTdQEeOocZYdjzFRtdGwnM7Wvi1D5bRR0zK4eOKv5xgXrpFDAx10C/j03kNjDQ4TFN0SAyS43lyjlmzhiK5oEaQOmUMICHDhFq+vD62zhVYlQmbWSqdncsDtc5oQ5K4ZsCS4bUrrZJOsd0u23D85P/ko75/QRI55OqLBki0PVpG7N6mooGkNcMHQcEMXu8GfMFZUmh0+0lDQsHSl8KFW+b1QF4OK6ZNXT5rK0c3+3us1HQWAe1oZjB6f2jw4h0hdMLTWQ9aisHzOLB8YAUj4WZM12e10CKRV7bqUoqgIe6RgRcu78sMLeU9xkbfx2ysHW2heL3BCq+kzi1PzmrjbQzg39i9p0GOnOjcmMtUFsAD8fgmDZ8NgTTR3GcndhpIetxDV1fMHDSR/eHWRmk7un0nMCp29zRVtcjgfOCZUNNtL3PQpsHJMq/1+OyYmq7fT4r9yy30esdAwvKZEqQnWNqfj8T+S+amNunKiOB9yxG/g9oLkAtM29hG7uXWiqrl9mMYaW6AA8zYQ6us1DxrUTeUwQiJbYvsNT9l+OWWdkc4+wDnzG7l1gY8LmBXm+ZaP+wjrIW+jUaW97TGZDSvTEzqsODs9xjCAN42C6B+9MHTKXtt6CfQMknAlmPOYFbsRCdE4JuPB9Fbwv1THHbi15r3wIEsCflCAz+UXfWWSkeeftWmyj/0kLF1yYOrLEVrSm1e5ghk984pmi3Off1FrYxMcdQwI3fWs+7bXUAHrbDa+byOahM4rxnJHKfkgqw5bw6fh5iqQy3dVNM9Glqof2DtmKO4BzJLRyzBKP6fqxh3cTwa9XdJxXAw/4tH2GhpJnElE6mopY9c9ACA7vIQjDoa6EYBxKzrFVfxjBITVOBYW57t+NrBPDcjmc9OubIApEFIgtEFogsEFmgxhaoDYCHTusVI6WKNE+kDfJ2kKn15DrPflJT6fV+Wip0+m2c5kxwSRvACW9U6sYCpMsb8qOOtg8IlHzkLKpTgS416cnySoHurwhsmWWDorphhdz4A7+U6PS0gR3z4wGKteNN5D9nY06R7auRQOH6Hk0YsW+GUr5UB+ChoPDw3wRyHrbQ/xOJvSssFY0aZi9mRJV+ZCDjbgu93xU45l1U0rldKlD4lob9a1NHONJWYQDPyd1cOEr0fNPAwBZcVAtkPy7Qrp6GnSkAHjqCqIdU8Z2BU/vq9oJjBt/hzWadOvDCxtXN/I3ZOMN/09U5P3/EP5PE2z9mr3V5xlbR1eeOxZ8XRqa2+Z+B3cuos+Ddy3HuzSg0FAhKHYhEx4t36+oAPO5+dMT1fDOGNnfbGNuWEeruL8mvzIzr20xD5j02OjfUVYS6l+f/9EFSrulYVBEP/iTX5HyTCuBZXCHQ6XEb80tNXDlPXSHHc0UAh/ShnZ4WKgqZkbKJhaAAnf67l8ffbxK3iz7XvgVqA+DhqT572FJR4+ePB/fRiNlYNdpCVj1baWD5zTFY1+l9Nrq+oGFW74QLLLjq6JfrsABBhm3zTXRqoCO7vsSMQhF6z7qOJuJ2ob7j8D8N9P9M4nICMBO3IaCeUxumWkozcvD3QmUAutvw+T42w0Thq7YCjNzv3VfOr2YWSvR+x8LxnQneb3cjRdGWfgYPMzY3TjeR/5JAlyctTO8uwXsZQZ2gwozEdZMstPufQMdHTTUH985bGKRCDRI+m8Jo1Nz6wwAe0mGuHc/5l4HeTUl/Z6DfpxIZ9wiUfaUpuky3nsRX0mgeXG+j8G0N80rq9pojNTQzWHiObreiQISxEsXva0pHic/GsMJstMo/GJgisXqchDdzdt0kqUDyCdlSAS5x9dhQQU2lnxiY3Ss82KQ6AI/bBu/jc4oF2j8o0LepqQBV97fEV95jFpYZ6PioRNajUgGJ3uCwYzssDP7BwMSc1NlMrDsM4OF8ixqj3V/VMaGjk+3HOQ+vOdr+GljWgmMw+cJlENDgHw1MyDaSbZp4YLfw5wjguYVPbnRokQUiC0QWiCwQWSCyQN1ZoDYAnr9P28pZvWqsDAVkGMU1/AcLFV+ZOLQx3mHpPULSVAz/XWJsOxEJrnoNU8vvueAgLceBtRbOHWPEZ90tdqn1wkjT8h/o5A0+9zxELoKm9xToVN/E2PbJ2jBrJgoUNLIx8neBs0eS66IThBRVxc200IyydAEeOteH/CDR8SELfT8QylEs0/A/qOPoIZD7mIWxmSJJTP7oNhOFb0kwwjf2d+qTGwbwEDC7eNIGaVs0Ru0ut9DjVRvtH04N8LDldZO5INWwbZ6ZBBik7lmaW9jAqEwdY9oavuctzVr+s5vtW2MhrwGpgcyUmTWMQi1pJtD2Aakoi7zOCBqAOlQdHqCjmmBZ8nXLe2juMwYm5RmhIOf1ADyHNlhKn6TVHRIrR1m+7XtPUmVrgbb3W2h591UVteoFpHiNUJC870eaclR69/N7HwbwEBTu/qpAbsMYzjBLJ8EsdLxUtjaUY58OT4qMewuzR3s00TC5k0AQ7Yp3++h97VmgNgAejivqKTB70+uETOzllfNQGhKdn5Y4sjXZweZuH7toY2x7HYVvamlpxbn7Ra/VtwDvYaf2QEW6h2V5VL/m+D3o6KXWS7cXDSwsF0n3CO/WvH8w06tvM4GCFyylv+O9pzBDkTSQ+c9aWFGZPCHg/WbPcgv5L2uKnoz3Or+SbgYPs3M2zpBgxkKnxy0F1BBA9/bJr35+R6cx5y7dG9lYOyG+r5x7cA7CuQjnJKlKGMDDY2R9tA3vp+ePWZjd21JZ4qkAHrbL7cd2MJSuIQMJ6qosHy5Q8aOOPctTH29d9eFm1cuM1lGtbAz90cn4DusHx9z8fhLZ9QXGZCbTOG+YYqLgZRMjf7N8g4M47x+fJVD6mVDARlBb1wPwEGAdlSHQ8g5HFysVveH6yaS2lWh1p4HxOYbKRHb7QxCUIFTZF5rKPHO/D3oNA3gYJFX5m4WeTSQ2T09mKqC2zrwSEzlP6oo6kRlv3kIaQ7JhlH2hKw1D72+30/sI4LmdznZ0rJEFIgtEFogsEFkgskCtWaA2AJ7Dm2zMLBLYsTB8sUQu5sI3dczuFS9Mm3gwXITPL5Xo11wHo9ijUncWoHMgLMK/tlpeP8VAt+dNLBtiKQAirN5DmywUvSWRVd/AzoXJWjorRpro1pDUbQKnD/g7AciT37WRxJpx1NTwby0dgIcRqXTidKjHBZmBbXOTaeH8a3e+XTVWoOuzFpYOtpJAHDokR/xhKN75dDJnwgAetuZ19FCnpcerSBvgoVAzRZmndBMgYFsnhQBPhlAgD6Oob7cyrr2BnKd0RU0Z5OxzbUJqtk6PMXuHAvDJtiIo0v5+W/G500GYWFg/+ejznospCirv2PBuez0AD7WAsh8B2j+k4dB6GXr/YD/Kv9XQ5l4TmfdpOLTBoXfx9oEi4E7mTGpwMQzgWT5cIvdRW4GxBMj8CvWPuM3g7w1F5eLdhjaaXiDQ7WVN0boF2cy7T/S+dixQGwAPrwPqVXEuElR4Tnmv7dTwqrr3hj37COJzTpP1hJFybhPUXvR9+hbguQk7H+nXFLzlhRM2xrUz0OtNE16aJr89mHG+sMxSGc7l3xlJWjrM6h35m4kuDWwsGOA/5vicYyBK3/dNcHu/kg7Aw+Ab3vsKXpVo94CpMm4YzJFuoTO8spVArzfsJGpkZs4wm6UozcyZMIDH7Y9776SDf1aRmTbAQ+c3M6byGWyyoO7m/nxWVHxvgKL2t1thBljRmzpmFYWvw2gXZpuUfWYi/wUTq8cnB/CtGS/R9TmJod9Z4LhIKjZU1k9Bkxjm9ZOB+jrXA/DsW21hwKcW2t4vMD2fgSz+z3zVJxsKhO3UQCDjbgPT8uODqjhet84zUfqZrqjemG0dVgIBHpvjl6CXxOBvLKUb6lfPxmncRqDiayuJipx9YUZjv890LCwTig7Pr45b/bsI4LnVz3B0fJEFIgtEFogsEFkgskCdWKA2AB5S28zqbeDE7uDFEiMN6TyjdgTFOlOV3ctMJY45t0QqzYlU20e//3stQKfNmPaO1sbeVeF0ZHQIT+nqZL1UfC99s31mFwt0fsLGoK+CAZ6j2y3lzBiTaeLcUf/xlg7As3iwQN4zFlrdJZWjorqUHptnmuj5uo7tC8j1n3yOSHFBHZN0MmdSATze2qsL8JBCYlq+QJ9m/3CyeyurrfcK4DFuS4CHQtPdXtQx4Esdl86GOCKoz3QeKHrnKjLuNrF4kJWU7UNqyz4fxdD2HmpDkPrE/wQRCM2pb2PtxORsFXeP6wF4RrTUFLhU+LaBiyf9ry23fjpR8xoZyLjTVmPr/Ink7Rmp3aOJjsmdjZSZM0EAjwNoGehwv41JIRk4OxYK5Dxuq+jZk3uTdX+ObLaQ08DAuklmUoaPe0zRa+1boDYAHuo+jcqgYzjYO8dMR0Zy5z4JleWY6kj+Pgn0bqphZKsUnKKpKop+v+kWoOP08CYLBa9rGPqzEUoTy22Z9UJq1S4NLEUhye+85dReG/0/FSorc35/n4c7nGyWJYMtdH3WxNoJ/vPjdAAeirJX/CCQeZeFgsZC6SUm9sfbt8T3SnOlk8CA5rzHJt+DVeZMewMDPhdIlTmTDsDjtl9dgIf7kcq2f3NdUdLWFeDnADz6bQfwEAQhuNHjNU1R/YWNIf2qjbl9BdrXMzD4OxPHd8RfAKR2YxZc9mNCgRkEafwKafcGfmGhsqWpqM38trkegEfRwz0v0KWhiZWjw7PxOP5JI5dxNzVgJVaPFyCw6S3M1B+dKTGypYGzh+OP1bsd3wcBPLyWCZxl3q+j8k8zsJ4di6l/aqHgJQnOwRLL+ePMDpSobCkCgeHEfW61zxHAc6ud0eh4IgtEFogsEFkgskBkgRtigVQAD/V1uJAl1QQntYnUJ3RaLxsu/tHfcSbFXDRcOG4r4WwK6LLQMT6nWGJuicCVNKgXyCs+rqNQAp1+Isg3xDj/wUboqD93xAaj4km7sXSoqTReSN+1Z4V1jZaAWVKXz9g4c8jCse22osxjxKpbvL8f5+8bSLlBOhBbOWEPbrSUsC91Lai7lLhYcuvhKxdXxe87zoNUmSon99goektHq7uEorJK1Pfggn90W4GOD1oY+pMMXDAy82ZQCwMFr11Vmi/e/rjvUwE8J3ZRmF0i4y4TBU0MHNlkwasf4tYT9rp2osSAr3QELX7/PgX0/kDH1PzUmTN1CfDwGPauNNHjNQOrx1rg4r7Wyw0AeGjPLXMsLB4ksXiwVBmApIwJc2RcOWdj+3wLSwabWFIhsU0JVlO/JTxHCwYAACAASURBVNgCbGfzbEfnaXG5ic2zSI9nY+9qiZP7LCTy2u9cYqLzE3BEugMAGbc1Rsrm1Gf2VQxHNttJUe1su9tLGlrfyT4Ha9fQEdfpKVM5CoKcdtUFeFgPKavoaHT0d4KNRAq0ES2FAoOyHjWwbZ7lq/FAO0/rLpD/io6zh8Iph4IAHvaLukDsF58zQaDXwXUmsp800PKuGHYsMJFItSh1GwO+0DHkB/LfBx+be66i19qxQCqAh2OEmkq7ltqgjhfPk7fwd97PB32jg84xtzAj4PAmE7xmWBhosnyEiWG/6TANd6vgV44jgqh5z+lI1MEK3iv6hc9pnoets4GlQ0z1x+ufmSTHdpig5gULgVk+qy8cs0HA9fBmCyf3VOmGJf7OZzCfy6yfUfac6/DeunOpQxHlF0Thng03O4QakPNKkp2q7nZ8pSOcIumt7tRR+Aap/OK9wRxvBIu6UQvnaRtLh/rXx+fAjkUmcp+OYXyWnnQvZ1upAB7OoZcPN5F5r0THhyXGZaU3dr3HQ8q0iZ0MjO1o+D7XaJuNUy10e1XD9hSZ+HUN8PC+S4qq3u/R0e49itp7X9cADyk+D66zFYXpokEC66ea+Otgcvaq94iYac4xtXqMM3dnkAHnEmFjmu0cWGdj9RgLSypMrB7HzDRbXUOHNptJYB31lkinpjJHNsePaW9f+J6Z9OVfOxlsM3uKJP0ktk0NqDb3Sgz50VTXZWId/MwM5LFtTKWTE8TIUF2Ah5SOc4uF0pVy9Hf8wVO2z+w32qXbCyba/09icq70zYrmtbpsqETppxq2zAquj3UGATy8zkZlkjZOx+i2RiDF+P7Vpso+ynqE2rVm0rzIks49pd+nOhgkdjuWCOC5Hc96dMyRBSILRBaILBBZILJAjS0QBvCQ5oZUQSP+EBj8nUTpJwJrxppxkY8XT1kKtKH4JhfjLNRoqPjWROeGAqTzoX4EF8TkOfbTi/A7CNa1aoyJkk80MFIrKqktQCcnAZ0hPwnM7ClVhN7K0SbGtDNQ/K5A98Y6Dm90HNd7V1oo+9xG+0c1tH3QQJeXdEXT4Z7DPSskBjZ3f9fR+TkdhzbaijqgsqXEmLYCE7IFer0jFAhCWoIgpyqBg6LGNiZ0FL4LK++RLR0m0fUZG9lP6GAWSiKgePmshX7NDWTeZWJ8BwFSrvgVAlETcg1Vz5bZ/tRPoQCPDVCoPusxE63uMJVYMqNRq1vIaU+anyDKKCdzRqJPMy2JqiGxrboGeLTLFsq/MTCyJbWN/O2a2Kdqfa5DgCd2yQaz/fJfNtUCfXoPgRk9BIb+LDHoGwO7liSDC8yEWTpEovg9E8N/NbFwIIFqE+XfCvR+1wDpRxLvV7w+Vo6UGPCFgRkFQtFxbJhmqettwJcGsuubWD6CoEu8/Wb3EehYzwFeCZ4GFcu0MeQXHe3vsxVvvV/G2L5VFrKfEPjzDh2bptnq/upXHzOBujfW0PPNq4HXXXUBHkd/x1C896v4LND8WgYunbEwrr1Edj1LUSWSFoZ8/kHFzZxZO9EEz0tQCQJ4zhyylfZO6ztsLBpoQg+gZaQjKevJGFrfYWLVaP/n0fKRAjlP68rZVlcR5EHHd7t+Hwbw0EHHgIKK7wyMzhDo01RiVOt4hyOdoDsWS6Xn5J4z7bKNWYUU1bYUyM7PLCJmp62pw+vxyBYLnZ6hIPnt6Wir7phkUMaKURJlXwqlMbF+qsT6yZbK4OYcsugNEwv6OXO6y2eZhWgi71kTbR7S0PExgcoM4xqVE3+fV+pE6bu/j/jTUM99Uj4N+VGqecjw3wwUvEqdEH8tEB4D65rT20TBizY2TvPPuHGPlRH8fHa0u89CxQ9aUsAD7+FbZgk1d8p/3saGqcH1UXuy4A0N/T41wGCCxJIK4CGgRarO1neQos1U86LEOlJ9ZpDDrqVS6QcGbXt0h6m0byju7l5DftvWNcBDR/uuJSZ6vK5j+ci6mfvXFcDDoIZt8y0M/IqaRkI5+UkZSZrf8m8NFQiXSLnK4927wsLw30wMaC4xvUAqmjDqT5Z8KDA5TyRlsnM9dWCtibFthLoXcs7BZyyDTYb/IdD9ZYnKP6UCerznkPOgPk0Z9GHh/PFggMe2CIpIdHlWIv8lE+unJGvJcP488k9TzQVIvUvw1q/wuT+zUCDv+RhWjvLPtKkuwOPo70i0vMNQeq3McPMr+mUbq8ZIFL1mIbe+xOQ8J6uG9vMrB9aZGNhCqHtV0HqG+wUBPASuh/xgIeNuoTLQGKjoV6hBO/BLG5n3CswokL46iQfWWyj7SlfjwX12+dV1q34XATy36pmNjiuyQGSByAKRBSILRBaoUwsEATzScAS8mVlwbJulovsHfS4x4idLRYi5neJEdVahUFGK7ndb51ooetNE6zslxrUXgVFM7vZBr1xI0qkzubNQWSJB2wV9T2csHb/UF7lwgn92Df6AK+fCo+mC+nEjvmc068pKLk50tdCj45WOMTq+rv5tYXy2oQAeRj9zccOo0GPbgBk9BXKfstC5oYH9a6soixjByt/pLM1rKJH7tJNlMr4jKfacBQnbIFBU9LqNvOc10PHs5xhYMZI6NHS8WvBmCSXahc70ob9oaPeAI2zMyGv2w/u3ZyWzabiwE1gwIDlC0VvngjKBTk+aWDHcSoo+5HZhAA8XvyXNGOmvI+sxXQEEtGd1C+1h8y9kVwJgBU0EVo8lSBa8YV0DPDy2JUMM9HyD4Fq4tkp17aC2ryOAh2OKIHTWwzZm9JCgNgGpmOiEY+Za+TcCec9pinLHHZ8EYCj+m/OkAB36BEO4Pf/0Szbm9JXIfUJgdm8RB1ySG73rCzp2LHTGFK8v9WeQw91C7uMCy4YlgxnUzGnzUEwBrG4f/GxIoeDOz+oqO2dKngFSRHnHP9/P728g62GgXT0NBzcEnye2M7CFgQ71Y0pvwgVvve1WF+Bx9XfaPqBh80ypIuiZrck/giyH1lvKydSnqUD+SxKTcgVO7g4Gody+0O4EzYb8qIdmzgQBPEe3MjNHV07QRYOCryM6YHKeJsBD/aL4c+v25cIJ0srpmFdiQQu5Ht3to9eaWyAI4OF9k6Lg1EzaMtfE5b8cKsmuT1rYMrvKQUkHGM/nrF5VDmGC6nTSZ9xhq+dXKs2VoKNgRsHgn3UVbMJxWt3CY6Bw9sWTtTMPYaZgKo2I6vaxtrang3vTTBO93tGxeYYTDOTeIwkybJpGkMK4lkHD3zg3YwbkoBYCbR8wlTaSa2fndxvb5lHLxlR6OH0/jmFOX4HZRQIXjpN+0skSmNPHRMd6lqLT89PdY9DCiN8cHRpmCgUV3jdJJZvbQEPOYxamFRBMjJ+HMFJ/Th9nHtLjNaGyHYLqO73fwqCvBXq/5WS1J24XBvDQOb5uskCb+3Rk3Geg4lvd1xmcWKffZ44ZzkWCyuVzjrh7r3fCKarqGuBh/+hAH/prDIN/MJKCLIL6X53v6wLg4fx15SgT3V8yMegrC9SI4djkXITBV4sHmej+Kp8rzDB15nkc3+smSxS9JRQdF59P3J7fcwyTurffR1KBQ8zucQufqaQSm5jLIKd/5iACKjiCVGrMbh/+i5kE8DBopcvzmsoY51wiqDCwZGKuQ2nW7xOJ3UtNBYp75yI7FkqUNjPR5j6BaQXBGjicdywfaaLzczHM7p0cNMM+VBfgcfV3mD00tr2Ok7ssNQfhPOTcESidKVJxjvhdKuC34jupsnJ4HsLm4pxLTu1CME7H4S3BF0sQwENGg7IvLLS+Wyj7EVT2K1zbDGpB6mehMvL8gCBmSE3pIsC+H95Sde796rsVv4sAnlvxrEbHFFkgskBkgcgCkQUiC9S5BYIAHgIBU7oa2DLbcZhsnWui9xsmBn5uqcgxt2ObZpiY1Vso4WL3Oy6G55Wa6PiYjnEdUlNPufslvnJxxOg36lbsWxU82U7cz/1MQGd8lkSb/2nIuD9Wo7829wv0/dChfHLr/ze9nj9BGgQLI3+3k6L92E8uVga1YBZOPPXUyd0Wit4y0elpPQ7gcY+NGVp9PtTR9gEDhW9pKpLa66CmI0Y5r+83sWiQlUQJwXrodOtY38AaUn+FOExP77NR+JaOP/5PQ5v/xVREPheF7l9eoxiyHo+h1V38XceWOcnUBm6/+Up6tO6NbMwuMuGXfRMG8JDirtsLttIO6d88fnx726iN98xYGPStDkYh05kZVG4EwMPI5cK3dcztY4Y62oP6GPp9HQA8XKxPzDGQ85CNIT8SqIlfUDMDMedRIONOYNWoKuCFFDC59WyVecP7VWJhvUN/0dHufoE146s0bIb+YqDnWzH8fTp5H9bB87h0qFDOGbdOZjAWN9WR+8xVdW2GORjWjCenPdDy/3R0eCymgCl3/KvXRjG0fSimwPOC13QQjAgrozIMtHmAoKx/Flt1AB72e/jvBtreb6FjfR1lX2kY/IOOiu915Ygb9J2B4g80ZNXXkVWf4JgzhphNl05ZM85E1pNaKAgWBPAw8pZZf4xyX1QeTFvHaPjsfwAeOpuConTpNCp8W4uj+0rnGKJtrs8CQQAP6bvmlRqY1NlBVhRo85NA7qM2VoyoAnMIwtDhSbout/A5Rcdhl0YGchroijLW/a06r3zGbZpuIftJETf3SbcO3l+YOdLufxZa33e1RvOQjPti6PKsqbIE0m3/Rm6n5lwdDfR+n0BtcsuMvCdV2Kxe8UgZz/PyYRbaPCAw4nf9WgaPWwOfkcySaX1vTIHyE3LiNXToRN63xkJuAx2Fr1m+DlFSv5V8JFD0tgjUxmB7PF/ULyPNUsu7NXR47Co49/Deh3kvb/eQpuYi/Zr7H6vbd4JBY9tIFDWm7lPV+HR/DwN4mO0xKZfBUkDOE6bSRHH3q+1XXi/7Vlro3iQWSDnHNm8EwMN5IueL+Y117F8T/oy7HjvUBcCzaaZEr9dM9HrDxNY58ed532oTZZ9ZyLwLGPGrfW29RPq+kvdMlH9hKupJv2NZPVYi71lDZeQQWGBZM06i13uaypTz22flaKkySKgj5RZmw6ugp4YxLBggk2jB3O34SgC0/CtmrzvrJ1IMesd/50YaOj5+FRn3COQ2MLCikgwOwc95zjO6vWhgQpbwnVdWB+DhdGLtBIkujSTaPSjVc9o7Dyn/3kC/zzR0eV5Hh0d1leVHGrtENgDv8Xrfb5wm0fdjTWViI+CQggAejtX+n1rKLpyXBtG8MiuU9Het7xQY09YIzLDeOL2qL34BOt5+32rvI4DnVjuj0fFEFogsEFkgskBkgcgCN8QCfgAPF3rLhkuV3cEFO4EWim22e9BAZSumuDuLBkaZkVKL1EaJ0WCHN5PqiOnl/lHS6R4cI9hI00Yea1IZVKewf2f2k6PdUjRZpMq63r+di2xF2cMIsH9joWN+1J82erzi8HDznHnLpb+gIsWot+P1t57YZaPoTYlOT2u+AM+Fkxb6fqQrHZqpXU1fx/b4jgayHrIwvbupdEi87bIt/t7+kasgGOhG5nq3cd9vmSPR/SUbre/WlFYJnbZHt9nKSccFIDnFmdHFKN8e1MRJEdW2fYGFni/bmNDB9KWjCAN4GCFMhwqjv6fmyevOQnOPLdUrdaxISUJHvBdA8+53IwAeLiJ5vko/08CxUduFgMPY9gbOHqlyPNSkDY6B3AZCaSWQNz1xfG2ZK5H7pKmodBhxyt+pKdapoaGAXwKeQfZmJHpufRv5r2jKIcixXP6djg4PC6yb4ETnJvadgDQdMl6KNi7yu72sodsrsUBKQbce0rF0eNBWgOvWeRJHt1rXxj8daxTn7dQwpoDH0W1SC2ITpO/4EB3U/lk01QF46Fzv8Tp1bihYTLFut9dVr7QRt5vbVyKrHpRTh/pGzAhNVf4+bSHveV05f/1AN+4fBPDQgZbzpENjtLgiGOBhFoebwTO7l6mcuX79YlZd9hMGts6x0+q7Xx3Rd+lbIAjgISBABzqvc96bGLnesb6GnCflNbCFY476FgO/1sGABG+ho5hznC4vaNf057y/p/ueejIEVCfmxgMT6ezP+wszTXYtwXXPP6rmLRL7ViE0EzadPtXVNryvj2plIr+RQ41Eijtv4b1h1WjSYcZP5jh/XDY0GODhfGb9VEe8vOAlhyrWWy/f8/7I7KDCl+24jHJ3O/7e/VUNfT7UlCak+33iK8H7yZ2lyqIseC2msjWPbDWr7sNbbayZINH5GQMd6pnqXhj0DGHdrG96Nwvdn7cUpWdie2EADzUL+38m1Dwk/0UL2+bF2y2xrpp+5jxy+O86yr8Lzpy5EQAPj4PXfB+lT1j9ay6VHVaMlKj4QceeFfFATKr9gn7n/WFsW4lWdxqKjo3rJm85vsvRjGSgGDNj+KxjpjGziDPv15UGHUFOv0KKv6E/WMh5QijgjZlYq0ZTF8zA6Namrw4lgaP5/UScLg5pS6f3MJQe1DKC4/FdjGuawVOkUuxQT6gsEmaQcA7OP55/ZtCMbKkrirE+75tK6zCugoQPDBDs9aaJMRk2zh1Lbrg6AA+z2ggQt3tAoPQj0/cc8pnA7Qi0lTSl7UylF5QqIIbdJt3biN+FOp/UD/UrQQAP5yH9PnEAnkm5wQCPAtC+ttDqDofGL6hfZ0iD94dUfUmk9vPr1630XQTw3EpnMzqWyAKRBSILRBaILBBZ4IZZwA/g4WJ663wnW4UL1xO7bQz7yULWYwboPHPpQbiImVvCCHdyUMV3mQvFKV0M0HHNyfb1FlJlkd+ZuiBh2Q3XW3+d7mcDl87aitLu6FZbOWvpsK3OHxe5jMLjQiPMiUCHKHVH2twvkfWYoztCkdbju+xrWTOkHyDo5S1pATzNNLS8S8PKUdJX24KL1OyHLUzrauJiQmYD+zw600CHRzVFNyFDaM4Wlkl0ftJSzu2D6+MzjdjnK+eA0k9jyLzbwoSOMqWzfPcyC4Wv2qj8Q/ryg4cBPIwQpqAxOb6XDXWo4rx2876nTbkA3rnIBNs8uN7RbTi0yQQXfLsW22rsJtreW8dfh21Fa8PMkqCovxsB8LBPFFkmlcj6yTJQY8Xbd74n9cvZo+Fjm2N50DeaynIhcEvwzv9asBWInAjWJLbJz7x/ZT1kI/vJmAJuqGmUWJilRgFv1/4LBnC8At1e0sHo6qBCuhRSE3IMbJxG6hQbs/sayHkYyLzPwIDPDSwul9i3xsSls44Dmg5l/Wo8iEqauE7PXkXPNzRfgNRtn9dKWQsd7e61Uf61/zgg8JDzhDMumVXAPoUVAk7Z9SjC7K+XUx2Ah5z/2U8ayimxVgFc4W3TUdjhAVtRHdEpFHb/co9hfEeBwrdjvtcrtwkCeEiNkqUyeGwsKjfjMqjcuvlKgDv7qauKom1OcXAGD2lyejfVUdnaSMoK89YXva8dC/gBPAR0/jpiYX5/oYBZUhZRY67NPQz60K9pAfI+QYcmMyATo5yZ+cExzmyzdMZf0NHQ+Uo6024vhYMDQfvf7O9pBwqsH9kSdM8Nv3c792kbfx2uuo/6HRMDYBYMsND6Dom2DxkY+LWhKCup/ec+16RuJ1GmpgfwSLS+9yqK3jFw5kA8kMe+KK2bxgI9XraxfX6y455gfpcXYij9VAd1goIKKdXKv5Zo/4ClwI7EwCKC1VvnEIzSQP0dRvyHFdJdzS60kP8cKbyStw0DeDj3K2hC4Fqi8E09NOiC82xSGO5aamHnYkvRzB3axPNqg/OpXcskDqyxEbsYfN/m84vaagVNdEXL7HdcNwrgITBGiug+H1BzKfl8+/WN2aKkWD2x21IAkf/8wsK0fKGyNAh0BG3D70/vdyhS/dryfrdzMYEEE+0fEphbavjqyJGGiwEGrg7TnhUW+jUzkfO4VMBN4r3LrZ9zf+rxcB4yKoNzWQu7lpro29RE5t0SBY0NTOkqwAApzmkdelpb0Yu6cx7WRcqvyXmGChAhQBRU2A9qH3V6SqLHqyY2z0y+lgioE3ggVTLXZ2HzKLZDgLrPeyYqf7dw5kDy+KsOwMMAw8pWzhyIOkNuVlPQ8TDbp9vzUs3nOV/kGA8rpGImAF36Gal4k4+d+wYBPE4Gj5kyg4drA9L4tUqRwcO19oKBEv0+07F9gX9fwo7lv/xbBPD8l89e1PfIApEFIgtEFogsEFngplnAD+BJ7AwdJD1eNtH/YysuWoqLxpmFFDBPnnjSmUthTUZu1aRwsj23VKB/cx17lqe3yKtJe7W5Lx1StG/7RzS0vieGVndfvY6/GDLu0xTVXWJUYGJfj263FB1B5t0m2twJtL6T/NjU3jEwtyQ5u4b7pwPwMOK11b1XlcM/UXSedbgAz9Qu/gDPiD+oA6KBGRTeBWdi/yd3MZDzqIXSj0QSdzi35Tjr/rKFzHsNbJji77D21klneFETqIUo+fcTSxjAwywTLtYz7tWwYVq48DudWuOzBYre0dDtZR1tHryKlndeVVRz7R+JoaCxxNrxzBZI7EHVZy6qh/ysY/BPuu8CmFveKICHgESvdw11/dI5lU5hRGq/LzRk3qeFjnHa5c87Y2iproUrvttm3CNR3NSIiz4N6gPpAdvdD/R4zVB6O0Hbeb8nlVP7+20UvW0kZZx5t2P2QF4jTdF+zewpVbYHtXoGfauh/X1Q1xip3/68g7RBOkb+IRSYm0gFQodMToOYohKhfkZQoV5Y0dsaMu+2MUPpPiRvOaOngY4P2opH/9yReCApeWsorQoCUqtGWb5aBtUBeAjuU+eo/cOaiuJN5TBfNcZE1qOkOQTmlQTr4nj7vXGGRPtHr+LQen9KlSCA59gOG1lPUlvHwoKy4LbonHS2oyZY8HbsE7Op8hs7WVdBzjdv36P3128BP4AnsTbqGfT7zEDuI1BZw+7vvK/OLxWY0yc50p+BD0uHSOUAdbe/nlcp6KRkJLgMdHxfT703Yh9m0RDYzHkqhtb36L733LTmJvfE0OcDamqFz8NOH7Ax+Aehsgw5D2EWLNvt/JyBce0J7CfPCdMHeK6gd1P/TEgvwMMAAm8h+EHa4c7PxtD/82C9EO5DGkc+G3LrW5hVlBARw4ycMzZmFpgqq7lvM4IPwfd01keqOlL0dXu2+gAP71fdXjLQ+i6Bko+00ExijlHOedingtc05D7DwJyraHkH553O5+G/WaHnT9lpvYUer2tYOCj52Hk8NwrgYaDZhsmmmlP5Udt5z6/7nuAGteHaPnxVZYIHjWtllzuvOvYJmJdn3KMj/2WpAGK3/qDXtRNMdHmOoIip6MoSA9789ls3SSL/BRN5z5gq69dvG3539QIwubOhQIOyzx0qNwaRLB3CfaWah2TeCQW2kDaw5CMD6yaaSn/UWyfnqcxAJN3a6nHBAA91tOaWSjX/VZTc6+KvJda5fYFE8TsmsutLLKkQ14L+vO153xN0JABW+VsVPZ339+oAPNTH4lq07QNCzVGZmRRWCOxSF4fzkIpvHOAvbHv+tmW2iZKPNSwd4h+gGATwEFAd+KWFjLsFJmSLwExB9onb8bpmNnTYPJtZSH0/0UD9w9tpHhIBPKlGafR7ZIHIApEFIgtEFogsEFnAxwKpAB46T0izlnk/QQZSC1QtZjdON5UI+el9yQv+DVMdijfyntekkPpgtMrgCRd+rUkbdbbvP3RFjCak8+F6/riYPrbToXNI5VDlcTDjaXGFqUCSzAeo1WFdc0RTeDUx8jVdgKf1fbHrAni4IBnZihk8MZByys3+8rP5uA4GsupZGN3aP+NmRqFAp/oWSj82VLaGXx3e7+gUYAbP6Fb+9YUBPNR86PiIqegzuNhLh2KKzhFmVPA42j/k0IJtmFql++LtW+J7LhgpTD27WF6LdE7c5kYBPIwUVBk8CkSrut4T++P9zLFJsd9j283Acc6xTOoXZvGQPu/YNv9tmdlDQC5VBg/tzYyXtvc62k3ee5O3b9735ImnTg73IYgVBrjwWiLAk3mnjUk5UkXAsi79so3lwy2UfmKg42MaWt5pIOMOB/Dp/IxQWSZeIJP15DaMoeebetz909svvqcDu9srmuJlXz02GcAkYNy7qYY291A7iMLfiTUkf57VWyL7IRvUt0mkbeTW1QF4qL9DYKz3e3pSpl5yy07d2Y/ZaH0Haf9EWrRSvHYIlAZFBAcBPKSGcsE4ip8HRenSsZL1hKa0BUgV5WcTHgudXMUf6BjZWlcONr/ji76rPQukAnh4f+G5a/tgDJ0axlMP0YE+4g8Nu5cmzzV4TQ37rebRz+48KP9lvUZUb7VnserVZJKa8oBDr3Q98xC1zzYLfx2x06LKZeYygbW+Hxpo/6im9GzoYOW9tOdrMikoqDoAD3W+/EAV9rHgnwweP4CHIvWdG8VUNDyzmYMKn1PdXzFUxg21ThILAa6+zQQ6P2EnaQklbsvPKoOnyFT1kb4zsYRm8Oy00PMNAxl3myj9NH2aQV4vB9abKrsjU2W8GWnpiakMnjFOBg9puPzKjQJ4VAZPN2bw6IEaJX79I6h7ap8DRAWN9endhcoCXD5cgIFR/ttRz9JOop/2a5MZL7lPSXR+WmLVmORznLgPM41WVpIaWaJLQ9IqB+/DjKspXYQCeJjxs3elc144P2LQ26hWAnmNdJVVrIK67gQ6PmxiZs94HUWOec5rc5+JgcEXQYVjgNmKGfcaGPm7VJRl3m05t6GGT4dHBAZ+wYz14Lrc/Zhh2fc9S9FIJ65BuE11AB5m5HRtZKLrcxKrfK4nt033lXVXfGOqeUhJM2bZh/dXHV+ZVEGF7LdfCQJ4SCE69CfqdwmMaWcEzvf2rzUxoLmFNvdJTOtuJIFxbpvXsomaB2cTudveaq8RwHOrndHoeCILRBaILBBZILJAZIEbYoFUAA8Xs8N+tv6hERDXIoi4uKD+zqJBMmkBREoBRj7y93Qc42EHygwgLmwpnJ0OwOGti30kLQmps0jZUZO/HQuowcNoumDHgLfthOW8wAAAIABJREFUG/2etCekQKGzgIXHzkha0iuQT7r9Iw610uJBZpyjtc4BHmrwZDkaPJtnhFNKje3A7AQLMwpMFSXrtSHHVL9PnEXnihHB2hnefQhUOBo8/nRuYQAPx1unpywVBbp2olR83t66g94zsnLwjzra3Geh1zvxjsigffj9smFSiRvvXXHzNXgoMN//c9LB+Dt4wo4j1W+1rcEz9BcDbe+zUdBYT8uBxf4N+9XZh5Q3fwdwrHM70kzmNiSdlwU3g4eORUYJsxC85Ljct8oCwUdy4re9y8ky8AJHpG/r9nJMafkQsA4qpNfp+lIMf94VU5z2XpCI+zCDjXQu2U9oIKd/OtGcU7rq6KA0ePyvvXQBnjj9nSzhq7+TeFwzewl0eMjJ4JnbNzxbhvtSP4XCyOTXd+9jiXUGATz6ZaDo3Rja3G1jen5y9LJbz65lJnKfsBTlJGl1Em3sbrd3hYXsxw1snRtOSeVuH73WzAKpAB5qWi0bRno2GwO+0K6dN4K8pPwhFRizCL2F55YUO2Vf63GaWN5t0n3PbL6CJjHlIE13H3c7zluYbUcdv5rMQZx9mUFk48q/dR4iHECDYDQLzwG1Iwi+Te1GYXQDmfdYKPtKx+VzVeerrgEe9kUBN401FH8Qw+W/nP75/Sc1V/4rhqJ64z3CW0h1x8CmNvfr6vlOPbdUhUDF9G4mCl6wwcCnxBIG8NAZXvGdowfU+30N545V2SyxHu9njjkGuGQ/oSPrUSvtDDbSII/43VBBEAS5/cqNAnjIAtD7/ZgKMPPrR02+q20NHgI0XZ7js0UqerN0ns2ktmbWjwKFSJnmb25FEToxR0fruwXcDB6CNVcvOnMQ3gNJv8YsPc6N+zU30P5/Et1fZPZRFX22doU0zk4Gz/IRwdkgHI/TCwy0vjeGcR2Ts0uoCzXyNxPtHjJU1mRQkIT3/GydK1GkNHisGmnwxOnvNKP+TurrgSBN73dNlcFT/nXqDB4+T0j3ObZdfECj93iCAB5SCY5pK9DyTh2jGKgWQAG8e7mFkg9MZD8mFM1vUOAbqfBG/CZVXzjXvJ1KBPDcTmc7OtbIApEFIgtEFogsEFmg1iyQCuChCGn/j0z0fsuMo1ujo3JuX4E1E0XcwoQTVfI7T803FA92TTqqIsl6SAxqYeDAutQT+cS2OCEmbVhuA11FbWc9EcP1/lFwe2ALSy2aE9v5N3w+vc/G9J4C6ybHOyRU32xgzXipIkiH/SKU49rtc10DPGyHDtvsxwVWj7YCHbfcjpRIWY9YmF9qxkXNcwHLBWn+s7bSPeECM52ybqJE90Y25vSyfKOuwwAe0g9SZLbVHRIzeshQCgVvX6jbwohbggJj24m0QAdSc5V/YyjRWmYiBJUbkcFzaq+Fwrd1zO8na9+JaAMEeEZl6ipDJ+g4q/P9vFKJjvVslSF2fFuwThUBTzpB6HjhPln1bHR6WlMZbRxffuXQBgvZTxloeafA5hnM4gKG/GQoJy3fJxYK4vZ+x1AUZke2VQEwBF+Lm8aQ+7SmAOeg9tg/6vRk3E+KMgteqjc6SklH1+F/NsK0YxL7VJkhkPGApu5bfmBGugAPo7npLGx1p8TaiZbKcElsy/uZAFfR23RKSWTV10ENjlQAPa/x3Gd0pZ0QtG0QwMO2CRJ0/J+NypYi7v7h7dea8QI5jwF5zzpUiH7ngt+NzhRQmQInAwaHt9LofY0tkArgif0NRWWTUw+Y0rXq4uN1yGyNES11MDvPLTyHBGXKv9WwrYbaBXTqk04p92mBI5uD789u24mvdKwu6G8i9ynqRF3/HIT7Zj+po6AJRc2TgYLEdm/GZ4Lik/I0MAMxsfCaPryRFGISRa/Z2L+26nzdCICHYEzJRzp6vU2tkqq2E/tJnZSitwSKXgMOJNBT0bE7/FeJLg0szC0x0tKXZDbiuDYSRY1tX4d0GMDDgCLOhzLuYlaRxK6l6Z13PkuWDJZK46NrIxvrJvvTrXmPnVpDdIaTnm1FZfD2NwLgYRYOnwcFr+vgc7i2y/LhEhXf6yDgXxuFmjglH1po94BQwW0uwJlYN68BrmsIinCf0g8tpQ2zsIw6Y/5jkvcxggUt7zIwOlPiwnEnI5d6jX6ZbMxanNFTIvtxDTMLqZvp1Mvzu3Cgk8HD+Z3fHIb9Zd9Id9nuoZi613IsuYXzJ2YodW0kMfgbC8yKS6cQaOryoq6ojF0tLu9+6WbwEIAc+aczrke2NFPqsjLwY3ZvofTA2j0oMKtQQLvkbTn+PZ8b7Cs13laOloHXdxDAw2cFbdv+Ial0a4/v8h9fm2eZKHzNRGETE5tm+F/T7AsZAEpT9CX+CG6dTxHAc+ucy+hIIgtEFogsEFkgskBkgRtogVQAD0UjB31moc87pqJVcrtGYXHq73jT3Qnu7FgkMTHHUJGznKDWpFActuJ7Qzn+6eCpdrG5mAIunraUSCsjSWvyd/U8dSGq3YsbssOZ/VwEChWhxwVkYqGocMnHBip+0OOcG6kAnvMnLfT5MIa0Kdp8osyWjzDQ9Vk6uaxQ0GDhQKEcJ3RoXD5fdQyMiitrLhVQR3FjN4Mi8RgTP7O+3CdNLBtu+dJZhQE8jF4dlelkFBW/J3Bkqxm42HPb5eJ96RADnZ+2VbQlBcHDFpPufoxCpFDu6nHB4vDctiYAT6JQtNt24iudQqQSI5d/kJM9cZ+0P9cBwENAjVHhre8UyiHECE+/snmOqQSbeR3QgedQmugKtPYDPnjvWjxYIPdR6vtoKgKf31F4d0oeM1iqxqe3PVLsta13BUcSAI3hvwm0eUhLAm68+xLQGfSNgcwHXA2aql/pDGJ0cO+munJcp3Nv5fkb2EJHh/oxlY3lF1WcLsCzaCD1d4D29a7i6NbwsUFAi3pazN5pez9pjChsXHUsfu/obKKQ8NCfdBWx7LcNvwsDeJQTvr6lbMR7vl+hLlxuPah7ZVA25vljTibRvFLS4PmfZ7+6o++u3wKpAB7eR6d1lch5yHFeui0RHJ9dbGB+vyqHNK8N6qRM7qwrjYZ0rhW3Pr9XUsAN/lFDv+ZaoFPUbz/vd7wv/X0KSiesJnMQ6qMx0+/fOg8hwFOZYYDZuH7PD15z1L4ideqelVXOz9QAj411UyVa33vFAV59dG+uUbS9ZCvQz2t/vift5/BfDRS9bis9nsTf3c/Mmin/hgCPHQfw0PG9cZpETn2B8m9FUpaxu3/i6+n9FgZ9I9DrLds36CkM4KEND6w1lQ5P9qPMghIgbVOqQmqxoT86gSZFbwsc35V6HwIDM4sker8rQgMwrhfgGdhC852H+R3LmYO2yrRlQEVQJpHfful+V9sAD4PJxneUyLxHgEFUJ/f6P394HkhvtnOJqbJ/J2SR/lpXGptBGRp85g341ETnBgLLhktFkciMb2aKu3RticfNzLPe7+uY0kUHQQ63qKyh53WV0cVrzq9wnkDKOeoGkhrOO4dlcNWI3wnwCAWApHMfcuvr/FxMgS1+GT/pAjw83n7NLLS9nxqRzPT1PwYeF+dTZDAoepPnhUFUZkpAivenSXkC5d8bijbOzz78Lgjg4W9bZksUvi7R/yPLVzeW9mAGWaenCAKZvvcE1qOo+VRfnKCXoL7cqt9HAM+temaj44osEFkgskBkgcgCkQXq1AKpAB5Gj43JtNDpaYFlw6rENDdOMzG7WCh+ZjpQpAZsmy8xpp3A+snpaZaEHRgnweSoZiQVnZBRCbcAnRKVv9ugKOq+NVXZA+5edC4VN9WUk5uUITxntLGKVn1TKgHmA2stSFm1YOLvpLDq86Gu6BrWTxbwRiZaFpQTZ3yWQPbDTrYUnVeJDjXyhNOhMzGLQFtV/W7f3FdSivRqQool65rzhM73OcUUkxWYXxLPKe7u5/fKPkygoGwDHdvnSUgfp0gYwMM6D2+xUPw+uc8lpnQ2lS5I4rG5bRNAObrDVJoDpNLo8KiOXUuslHoFtDGd4X0/0pXj3K3P7zUVwGNZToYKnUIEBHq8YqN9PR3bF0owspBtBfWf7aWbSeTXt7S+qwOAh+3OLRHo9JiF3u8JnD1kg+PSLTxeOgHKv9exaoy4RrW3oEyi8+M2hv5Maid3a+eV+1A3oU9TAx3qGVgznhkr5GRzAJO853Qc22kmUaTR7pPyHIFrUjJ5bU2Qo+NDFkhTGBQ5y9ZnFZPWzMTOhTYoms3CiNd+nxro0lAoh44fIOVsGf+ftGrdG+uKuiyIii4M4GH/OWbY3pCfNbS/z0afDwylv6OufV7/HFP/3AcYgUxnODXbmFXV5gEbE7KCNaW8vT28yUb2U7rKQAwDcMMAHopRF7+vo8PDBvatIv1a/L2GjlTqJrV7WGDHAt4TvD2oer9ipImcp7XQTKKqraN3tWGBVAAPx8SGqRY6PGgq3S3X6Uun9Ig/DOz5R5eCDscLxy1M6iwwriOfV/FjoLp95TWttFueMbBiRMCAqW6lt/D2zEAd8ZtQGd8EXHhv8JZLZwHqghU3NfHXYedH3mfozKRofJsHBIb+qoGaQXyeuYXzjk3TTLS+96rSxmLQh7du3oeObCFVp1DUaszq4u/eezDv6XOKLEWVtnF6Qsfchv7RQptV5IBQOxZW9fH4DgaamOj1lsT+NVXglGdX37ekzurxRkzRnvI4E0sYwMNtFShWYaLt/wS6vyzBIJegZwCPl4FIS4cLtX3mvQSj9LSAleM7bJR8EsOEHCPOton9TQfgceciBC2oBZN5t4myL3U1x1DnJeHceNtIN5PIu09139c2wMP2OeeiRk63RhIrK52MX+/4oz4js5I4R3C1STnnHfCJhT7vmmBWB+833kLtr7l9JXKeMJQ2JYEvlhUjJLq9rKlsZCMWP6bY5uZZEiWf6lhSEU9tzQytPu+ZGJtpBercsf4di00UvycxvoOj/8nveA1y3tS1kY6ZBZyLq66k/Edwm4EVXV+MgRpUXpu4O4cBPGp7m4ANs4cEujSU6Pa8qVgJ/OYhBHYYEMhrvPhdE5n3kt7ZVOfHr223D3zlGoj0kdQg8q51vNvwfRjAwzXO+PYmOj9jKOrlRBCMwQcTskm1q2PhIGdunli/6ss6CwNbGJjeI1hT0G+/W+W7COC5Vc5kdByRBSILRBaILBBZILLADbVAKoCHizHq4PRtysgpE5tnWmpiv2SIUBQQ5IH+67CNhQMlhv9hYPPM4NT/6hzYxdM2xrbnYt9AupRc1an/VtuWAM/I3y20+5+p6IVO7LaVU5+LSvJ1z+0jFZ85Kfe4gGYmAylLFg4S6PqcrTjl55YKHN0K6FcdZ/+Z/VAipt1eFGh9F3mg6Ti1ceGUUzfBP2Z69G0WQ7v7LJR+bCi6AfbF66SlyHxxU4HSTw2QAiyokMpm2M8CA77QFV8+F4brJhGokJic50Q8Bu2b+D2jE0ntV/i2pgR0E3/n51QAD7fhgpgRgG3uExjTViqnL6P6CZjQUc/jpAOGWh39PzMw/HepdER6vZeehg0Xg73e1zC9h4BXt8Wvv2EAj02dh6M2mJFFcWU6aXIft9D6LieamtQux3cC5w6zz/EOAbctlUnUJHUmkbt9tV/rCOAhgDMxV6BTfRtDfpag0C2/o+ODYOakzrqihrt0pmrs0UHMaOicx01M7mTizEFmT3EfZ/FOGp6sx6RyrlyLErWBQd9qyH6IQroSJ/c4+3AMsK29q00lzk1dsmv7/GOkrfMl8h6nNlm4fhQ1z/IakRZQ4Mo5qOhZAqh5z0psmm7GXVep7M9MG+pIje8g4nS3vPsFATwc23QmHdtmYc0EgZynDWTeZaPiWwHSF57aY1/7I0i8b7Wp9Nh6vqUh52Eg/0WJZUPNJDt423bf0+lC2q38xpqijwxzwoQBPKyPdFxdG9oY8oPExRO2coTSwcLrlRlZXZ6yMbFTcAYWj5uab0NSZBK5fY9ea8cCqQAetkLHGOl5CMzO7k3aTChHafl3Oggc0Km3Y5GFwT/pmJbPrDH/+1x1esw66GDt3Kh6Qu/VaeNW2pYAT+UfEjn1LAz9RYDZK4bmPC+ZCUDgpe9HBuaVCOXMZuDFhRPA7qW20gpsc6+lqB3pYD5/7B8Nn1OW0jljhgTnId1elFgxSoDzk6t/20oDkvepxRUUftfQ6QkLk/MMNYfw6jK584mcp3QVnBRkd86P6Hjv8ZqTAUZwn7oc4zpI9GwisWVO1XMkqA73ewVWLJTo1FBToKOfzkoqgId18TlG2q12D9K5LRQFHgErZVvDub+xHs6vFID2noHBPzILQ1PPObc/Qa98fjEwK/9VTWWXBG3H78MAHt67mTFCAOPYNtYp0beZoSjmur7g0F4d2WLi5F5movm3ci2TiAEbR2p+Dfu1UhcADwMcSKnV+23nb91ES2Wj0rYMPmCGaWVrTWV4uOAkn00EY4rflQo83DbfROyipeYhf58BlpRzTiHU8+ywhx5yZaVAl2clit8ysXYi9+FYcAJRmL01tr0BZg0TZPWWE7tNjPjZQvlXVmgWG++1E7NNlH0lsH+1pdYE6yeZKH5fqu95nadbCMaObWOh5EMZx/jg3T8I4CHgxbXgiZ02ti80MfhHanhJ9HzNVHpD3nkINSMPbpBqzUBtxs4NTOQ1sDC2rQTB2VSFbfEewnXK1jkJSFvCzmEADzfdvcxCaTOHxo4ZeASsCTxx3rluoomeTQQqW0p1X0moWn1kX5YM5ppJV+PDb5tb/bsI4LnVz3B0fJEFIgtEFogsEFkgskCdWCAVwMNGOdkkD/a4dib6fChQ9qWBXu9qSjdkfEehouBnFpmgc7K2CgXFSYlCR0BYxHtttfdfr+f0ARvjsyRGtjQwtatQWiFT8wWmdXO4xkkpQvo8lx6BvM8UbO3+KjMOYujeWEP+ywZ6N3Ui10mfUv4NxYZ1RVFFmioKxfdoIrFwoKkcCaPbCHRvoql9e76hq4hCRtCO+MNU2iauTTl+Rrc10KWRpjIQLDN40X50u43y7yRG/ilUxGLJxxQhFbhy3q0tvdej2y30esPG2Lam4iz32ysdgIf70YFN4dTcBhKdG9KeAjN6GMrxNyHLQP/mAv0/lVg5ylTCt6vHCgWcBVFuePuydoKp7LdjQbDgu7t9GMBz5ayNMe0N9H7PAJ3sBU00FLyuocfrzrktfMsRhSaXOxeniYUOhynXMolq7zqOa6eOAB62QecKM/6ondC9sYERfwiMa2ti4NcEB4VykCUCBxyX6yZZKGkm0LupgVGtJIb/qoOUNmXNBbbNJaDisZUNxdtP4Hlqvo7B30nFKT+7l4mxbRxH1sIy6kx59vnHAMwS6vaijgFfJosWx9kIwJpxQmUjTcyRGPSdjrLPJfYsNwMzThL3dz8vHyGQU99x3HkBV/d3vgYBPLyX92sukP+qgc7PaujUMKaclHnPx9C9ScJfYw1dXtTUvaT8WwOLB0ucPRofYe9tM/E9r+2CxrpyRHrpYBK34+dUAA+32ThdKspD0iyRT5+ZdFO6CaUbMLlzeEbR4Y1OJtGGKfEgtV9fou9qzwLpADxsjWNlQT+JPk3piBMo+4rjTsf0fKk0qnjdb19Qe/cv0vUVN9VRmanX3sHewjXR8Tuug1COWGbect4xuZNUEfGjMwQGfilV1LobHU/KuWn5Us0r8l/R1FyEIEOP1wxM7GTg4inqhpjqdzX/eI2/aWpeUv61E5XPzAnqxjFbkfMYasjkv2KgT1OBxRVVjlre/5mNxTnLkB/1a3Mhv9PBoJgVo0wUfyAV9dbQHzinql7mDut1tHAs5FMHZ1JVX7xtpgPwuHWxDjrZOzwiUPiWoUCnuX0MzCiUyqHPZ9mYTBOHNjpi9tRSIYCQqpw7Skc4g2uMQPpRt44wgIdz9d1LTPT+QEOvdwz0eIPzw9g/cxGeX34v0P8ziaVD/fvFTKLST7SUmURuf67ntS4AHvaDcwpmdw3/VagxWPaFwJg2EsN+IbgjVWYMQT9v4dyL4M2YtqayDa+ZUa0E+n2io+8HAvNKJHh+vIU6p4N/cKjWKlsbqPyTQSEm+Hwb9LXAuPZCZbR59+F7Pl+ndef1pmPj9HDa4cObTFS2Eqj4TqCytTM2FpaZai6VWG/YZ+pYDfzCwujW1rWsvcTtgwAeApsELAuaGOjygo7cZ2JqPkK6t26vaPFzkcbOd/kv6+C6gc98Bp4QYEunKK2jDIlRGbR3+D6pAB6Og52LLZR9KdG/ucTyEaQ4l5jVy1Rz9LFtTEWbG9Qvtk+9Jc7X6wrkDGr73/J9BPD8W85E1I/IApEFIgtEFogsEFngP2WBdAAe94A4aWVE5LIREoyQmtNHqgk0HdleOg13++t9ZbQ1FzX9PzdAoCcqqS1AhwmdqpfOOkLzpIjaOtvCltm2Wui5DhW3JkaSMYuHkX90SDMrJXaJ2ShO1Cwd2/yN2/B3tY363dmWi1TSR1y9aKmITdbPyE06RrS/nWg1ty2+rp9qomsjE0sHmykdCKSk2rvCwo5FtgJnOO6qW5YNdxy66ybagTQ96QI8bJt9YGbS6jEmJuYQxNIxtp1UmVG7FjvAju1BELho93z07T5tPPw3RtoaYNRlqhIG8LC92CVLLeC5iGcWlvPHc+d8T2eT9rczPhLbYhQ1M4mmFaTOJErcN+3PCuARGJWp19milc6ywxstbJ7tRHxSEyLV+KED4OhW7mOqCPPju4Jp1PibK1p87rgFAnMbp9vYs8xUGQU8D0GFGXAUSae2WBjIyf25qN82z8aB1Ry/QTUGf89jHvKzgS7Px1SUaNBYDAJ4GFlMijcCh1fO2Yr2h9Q/fM8Ia+/flbNOFhsj5IPaCe4psGGaRMfHNaXJkej8StwvHYCH+5CSctUoUzmJmQE1t9jEoQ2kvQu+ztj3KV0JEKbOJErsV/S5ZhZIF+BxW+Hz6MB6C0N/1VHZylDR3cxIZZR0bRVS+G2bZ6HjE3pg5HlttXWr1MN7Ke+5fIbzWj53zML2BTY2zbSwd5WdlKXK+5R2yVLzDPXc4lzkkkOxxPmF+v0yMyD4fdVcxJ278BlKzS/OW0gxyvu/motcAq5csJLuncwmHtfBRNEbFo5tD59YkAbt1D5bAf0HN1zffZi2GPaLgb5NJc4d8z/L6QI87t60AwH/OcUCozI4FzEwJU9i1WgGWcXTfPGeFvZMYp38nZqaDAKhPkyqEgbwcA7EbAV1vi47c0Q+L50/5/xxfsi5iB99IsfP+smWyiRiFlddFQfgMbBrWd20wTHJDNidi2xsmWuqZz7Hc1jhs4njZfdSzttN7F/nUBL7PVMJfJw/YSmKVM65mVW7aaaJ7fMtlZnPNVRQIbDT43UdM1PQkHF/AuoH1trYtcTG+aMOBXBQvX7fc2ytHmsqgG/BAOpH+W0FpXfjrCnjA/pIwcbrg/OQy2ctXD3vUBBeOWf9813VXIQZz5yf0M6cv1Sn0MbUziFF4aJyIyW1ciqAx22b52njNEsF2o3vaCi66d3LnHucu03iK/tC1gxm7ywqdzSXEre5HT5HAM/tcJajY4wsEFkgskBkgcgCkQVq3QLVAXjcxjfNMDG3xPDNBHC3qckrBUopVMooNFIFROW/b4HLf9kY0FyojIR0wIyaHDEdB6TQ6vuJhuM7gxfw1QF4atKfoH2p8VP4psTSIVI5r4K2c78PA3jcba73dc14Zj3o2MlMomoujtNu0wZGt9Expi0BnhAkJO0K/1sb7lttIa8B6Sz9s3xq82jo7M59mhl8pnJ8BtUdBPAEbV/b3ztAlMCAz4207vXpAjzX0086pXkNUBOLTtSo3DgLVBfgYc94vka11lVWV130lE7qMW0NFL2jQb8czUPqwsY3uk5mmGyZZaLbCwYWDBTXBUin22fe2wjEdH9Fx7QeRmBb1QV40m0/3e0IljFLquht0rgGz5fc+sIAHneb631l5sKYNoZiCWAwSl0VathU/BhT56eu2vi31ktwYlRLC0N/sHBsR93ZmMfP9dv4jiYGNJfYvzZ4zheUwXOjbMiAAQJeA78ysH9NcD/d/qQL8LjbV+eVYOisQqm0gDhnvF1LBPDcrmc+Ou7IApEFIgtEFogsEFmgRhaoLsDDKO1lw6TSM7ieyPJUnVURX+MFSj7RVeSXX/Raqjqi3/+dFlg9jrQVOkh/lC5tQnWPREXizZEofN3CqkpLZSYF1XEzAR6O81m9qIukqcyCdMZ5XQE8+lVLUfoN/VXEUesF2a0m3xPUoui0iNWklv/mvgTOKjMM9HidGVtWoMOvpkdnCuoOGcqxeHxXeNTtzQZ4ju2w0IkC9iOF0h1Idex1CfBQyyD7KU05olJlEqXqZ/R79SxQXYCH90+CmNTEqi59Zzo9Y/3Ubch73sD8soCw83Qqirb511ng3DEbozINlHykB9K31kanL5y0FT1oyYcWTu8NdqTfbICH2iUDWwjwGgzKsPDao64AHgWIrZDo+YaGRR5qPW/btfWemTKHNjqZZrVV53+lHt7b1pLq7wMnQ6SuKLCZpbx5lqmus/n9wqnSbjbAc2QzqaENTOkqlZZbqnNZlwAP6fpUX7rIQO3EVP27FX6PAJ5b4SxGxxBZILJAZIHIApEFIgvccAtUF+Bh5P3sPtQ2kHXioKSzZlIngYrvjSSB0BtunKjBWrUAo+JH/OboA53YbdfJ+GFU99AfDaXHcOZgePTbzQR4SN1Q+rGOCTnpi3fXFcBDeo+ebxogbUkqGpFaHRC3YWXHdpjo9rKOuSXM2gp2+tXENEe2WIqvftEg6asH5K37ZgI8BDX5LOnygqaokNKh+awrgIdOrorvdRU1S/HyqNxYC1QX4KGm1OZZQgGm6YDj1T0aBq9QcDvvOQeMre7+0fb/XgsQxNiz3FZaGPP7B9NG1eQISFO2fQGzYjQsrggHCG8mwEOKO0ezTAd1GdMpdQXwXLlgg0BAr3eFoppLpy/RNtdngYunLEzIcbSyCChNoOE0AAAgAElEQVSgDh55F07YGNvB0WglWB5WbibAQ2BxxUiJko81bJiaOoONx1FXAI/bl9JPNaUfGGazW/23COC51c9wdHyRBSILRBaILBBZILJAnVigugDP/tUWZhcL7F2Z3kS4up3eu8pU9AyzeolrWhfVrSPa/t9rAS4m+36oY/4Agb9r2ZFKp9+iQQIlHwmlmZCKauxmAjx0pnSn0O0ME3SypFPqAuBhlOXMIlGtTKJ0+hptE2wBOhOo87J7pZlWxHRwTcm/xP6GEl8e+pOBi6dTj6ubCfBQM4NC3GM7GEqDI/lokr+pK4Dn+E67WplEyT2LvqmJBaoL8DBYgBoki8rDnefX2ydmXzCLeNhvekq9rOttI9rv5lmA9HuLKqTKYqAIPB2rtVWYIXFil43hv+uobM2MgPD78M0EeDjOJ+QYaqynS4dcVwAP6eHKvjLSziSqrfN1u9bDwJ7BP+qY3kMo7c7atIPQoAKGyr7SQc0fXhNh5WYCPNSQHdtOYPhvAqf2pejoPwdRVwAP+zK+g4lhvxk4tTe9voTZ9b/8WwTw/JfPXtT3yAKRBSILRBaILBBZ4KZZYHaxoYSot85Jb4W7a4nEilES5Mqu7cLIyoUDJfp9Zihh29quP6rv32EBghr9PiVVW+1lMXDsbF8glTDpmglmyswFWsIBeGJYOcqEdqX2x3OQtdnXykwDA1sYOLkn/UVcXQA8l88ApR8LTMg2QGdPVOreAgQeqfMy4EtdaR7UlnOR2lO8n5d8rOPEbiulU4VHSoCncyNN0V3VRSZEmDUZ4Z7TwMCOBSYoaJ9OcQAeTYlK15bd2O6s3ga6Pp9+JlE6fY22Sd8CCuDJJEVOegMhdtHG9J66ollKv5X0tuT9eddSiewnNWyamf79Ob3ao63+LRa4eNLGlG5CAeKcC6RyQqfTb95Dzx+3wQCl8m/1tBzG1P9YPUai8J0Y6lqf0HsMFLA/tMFGr/c11V/vb2Hv6wLgURl5MywUNDawaXp6mURhfYx+S20BjvfNs01U/KBj6TCR1pw5da1QQSvb5kkM/VnHkiEyLepVAjxDftYxp49EXVHGBfV95yITpZ/pmF+aftsOwOM8r2pTr2/HIon+zXXMK5VpB34FHdd//fsI4Pmvn8Go/5EFIgtEFogsEFkgssBNscC8/hLTCgR2LEzPkUENHi5IuTis7fL/7Z2HWxXX1sb/gptybzTGXmI3xhhN1NhLLDFGjSXRGHs0puq9GlERREEQUapYUBQUsYLYBQvYwK7YULCBIqKCoIigvt+ztt+QA6cwKJAjvvt5eGbOzJ699/z2njFZ76y15AvCMMdnCJnxVP1PcnG3z/ash8DR0FwE/JGNhGPPUBz5Lm5eeKa+wIteW/gXsxoFicW/eNgTSO6NksgnpfVTcCtf6S0Z/hSRS59CwpLoLWHOT7DONgcSP764injieQ58gjO7nr3x/0NZXEz1tCNiTMisHGyYkYPMu8XzMj0e9hR+o7MheY4K817Txnh6Zy7m986GhDMsbYFni6t8OZ5VJGHx2olncOnxGImxz4rtq3sx6As3EVAfpRffs6Ux5rZwAhvscxR/yUump4hxUt6dete5nja1OuJRsXtxLjz7PUHmfa4HjUtZ3N5PeiHybHJ6gqzMV59rMfbGrM9F4J/6QwxLPrrjYc+waOgTpF4vnn8L9MyVeFmc3i4e1bmQ96reIt5JEs7ywEp9z6qedjPuPke4Tw4Wj3yCjLt6rmCd4iAg//ad2JyLtdNy1AdSxfHfAImxz7FhxhMV4vJRId5r2j3If79LXqx9frnIzXn151Brt7Ct/DuyPzBXeTJdOqj/GZAPHOXfrO3uTyD/XhRHkbHIM7X8l2xc3K/vg8vi6Nda26DAY60zw3GRAAmQAAmQAAlYNQFJsHrrwjM8uKP/P25L6obkK77Ec0+RfFmMd6X3H/kldT9s1zIB+WrvfiKKxUh358pz5Q1RFKFGQqPFxzyFfMlbnN4Alu8aEIOOhCKUPDzyP3V6S9KFpyovVVHusbC2M1KB+JhcSMgaltIlIHka4qOf6krqq2dkCUefQuLeF2UtS76ZuAOlK3Bq9yJfgotQo9d7R67LyhDvimeFhj3S+tCzlWdQnsd7iSgSOz1ts44+AtdPPcW1k7kqF5O+K0qulnxwcOvyM0joLpayTyArHbh68hmK40t8+fgp6exzSK5KvUXeP2nJz9Q7KDdb71WvXk/+nUi7+eK/gcTQr7cIpyvHnxbpHgtrW/5b7Pbl55D3AEvpEnj+FMpzLCW+eD6auHv9GW5efI7sR/rvQ0QS+W+BO1dK+UOT50DKleeQ/xZ5XASBV/5fNem8rNniYaZIqbE8Q9K558yFCYACj/7nhzVJgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIwCoIUOCximngIEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEhAPwEKPPpZsSYJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJWAUBCjxWMQ0cBAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnoJ0CBRz8r1iQBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABqyBAgccqpoGDIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAH9BCjw6GfFmiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRgFQQo8FjFNHAQJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJKCfAAUe/axYkwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgASsggAFHquYBg6CBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABPQToMCjnxVrkgAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIBVEKDAYxXTwEGQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgH4CFHj0s2JNEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABErAKAhR4rGIaOAgSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAES0E+AAo9+VqxJAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAlZBgAKPVUwDB0ECJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEAC+glQ4NHPijVJgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIwCoIUOCximngIEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEhAPwEKPPpZsSYJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJWAUBCjxWMQ0cBAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnoJ0CBRz8r1iQBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABqyBAgccqpoGDIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAH9BCjw6GfFmiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRgFQQo8FjFNHAQJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJKCfAAUe/axYkwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgASsggAFHquYBg6CBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABPQToMCjnxVrkgAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIBVEKDAYxXTwEGQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgH4CFHj0s2JNEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABErAKAhR4rGIaOAgSIAESIAESIAESIAESIAESIAESIAESsG4Cz58/R87jLDx/9sxooHIu9/Fj4Plzo3M8QAIkQAIkQAIkUDIEKPCUDFe2SgIkQAIkQAIkQAIkQAIkQAIkQAIkQAJligAFnjI1nbwZEiABEiCBMkCAAk8ZmETeAgmQAAmQAAmQAAmQAAmQAAmQAAmQwJtDQDxo5O9Zbm6p3fTTJ09wftd2zGvVHGt+G4Mnjx7l9Z2bnY2zmzepc+sm/Ibc7Md550QUepqTk/ebO6VLwBrYyxqQtSrbopRnT5+W6hrXxib9Pn/6VPupa/uy92ipcdWmMCjiWCy1yXP6CWhzqv+Kkqn5TN73L7EGnubm/iNr52W4ldRa/6feISWzEsy3SoHHPBueIQESIAESIAESIAESIAESIAESIAESIAGrI3Az9gwSTxxXgktpDe7R/XtYM240bMu/DdcWzZB5Ozmv64d37yJw+GDYvv8O5rVtCakrRYxrd+Iv4dTG9ch98iSvPndKnoAYTDNTUnB222ZkZ2aWfIeAEh2l34JF1sfF3eHISEnWLfKIgJh48jgu7dtdsLmX+q2M5GIoNzE+wwafPHyIqzHRuBS5p9C62nXS5v3EGzi7ZVPe2tfOvcpWnqOLEbuQdPrUqzTDa1+CQE52NlLiLiJ+/76XEleK2qWsIVOhL0VYT7kUh7h9eyD7esvjB+mI3x+F60di9F5SLPVEVLqbEI8zmzfhcUaG7jYf3rur1nryuXO6rymsYk5WFm6cOoG4PeEm2RZ2/et0ngLP6zRbHCsJkAAJkAAJkAAJkAAJkAAJkAAJkMAbT2DXnNnYbDcNC3p2feWcN2JYfJqdbZGp1Ll7NQEuzT+GfdUKCLH5X57BTM6JAdKpcT3MqF4RWx1s8wzj4tkTGxYCp0a1kXDogMU+yvpJ4VRaRc1XQgJWjh6K0KmT8PSJ5fl91XFJ7qX027eQHHsG929cg8y7YUm/dRPbZ9ojeOxo3L9xPW99GNYpuJ+WlIjQyROx/MfvimTY1toRQUfW9eP0dNy7fg3J588i+Wws0pJuKO8zQ48IMeZn3rmDnMeP8eB2MjbbTYV3145Iv3lTa87iVu73dFgI5rVrhetHi8+gLgLD8iEDsfrn0S/FwOKgedIsAZlPEdaWDeqPmFUBee86sxe8wgkRwR/dv4+Uy3FIuXgBjzMe5PO6Ec+3K4cPYsWwQTiwZKHudXA77iIChg1GyF//LXR08r4QTz+5b71/yiPPRC42eYZOh2zA3FbNcG771kL71iqIiLmoT0/scZ+rHSp0W9g7NTM1FeFzZ8Ozc1ukJsQX2t7rXIECz+s8exw7CZAACZAACZAACZAACZAACZAACZDAG0cg3NUZW+xtlUHM1FffeoGIgUyM3zvnOEE8F8wVMfqd3boZNhXehVPj+rhx/GheVTHonVi/BpPLvw3nTxrh5tnYvHNKaLiaALfWLRA6ZaIuw37exWVk56kYcO/dQ/rNJN3G2Ve9dREmVo4aioDhP1j03pF5fZKZqUSNBym38TgzQ4kieteUzG/mnRTsdpuDhV93Q8CwQVjUqxuiFnobheW7d+0qJHyfiBVieC2siMCzyWaSMlI/zdHvuSDCjog6V2MOYbujvRJBXZo3wdyWn8KtTQt4dGyD4J9H41LUXjUf8pX/uR1bEfTzKKTGxysDd+zmMLh98Zla14WNU84LxzObQuDeqS2uHYnWc4ky4ouXkvA3V8Twv89rPjw6fIGbZ86Yq8bjxUhAhIv4A1FY/G0v7PFwMyvuSD2Zv6z79/EgORmP0u6p38+KEI5SPOsu7QlH0OjhWDqgD5YP7o+gMSMgHpqG4oV47lzcvQu+X3dHdKC/Lo8iEd0DRwxBqM3EQulk3L6Nw/5+2OXiiIi5ztg93xUR8+Ygws0F4a6zscvgT37v8/bAmU0blIeTvP8Nxyqd3TxzGou+/RohkybkE6ssDUSu0ZhbqieCmOJ+7x4ykpORlZamhFk5XrDIHF0M34V5bT7HIX+/gqfL1G8KPGVqOnkzJEACJEACJEACJEACJEACJEACJEACZZ1AcQk8Ypg+v3O7MgSKMcxckXA/YVP+gn3l8ggaOzJfXpRHafcR8r8/4VDlfaz98xcjjyK5dqu9rfqiOzP1jrkuyuRxCVckYca8u3bAvJZNEbNyRYnfZ1Z6mhI23L74HPduXDfZnxhD7169gr3z52L5DwPh1783fHt1x8Kvu2LrjGlqzIWFgxKj7r0rVxA44ge4tWiG+IP7laH1xPq1mFm/hvJoMexc6iedPIFFfb/Gtll2hYpdLyPwiOFXxMe1v46BQ53qmPNZE2y1n4bLkXsVi4zbybhx4hi2z5oB3x5dcMBvoQrfJKKP/+ABeSLn7YsXsGxwfwSPG1PoOOUe9Qo8Ipzl5uQgOyNDeWWs+/1n7PNyN8SUb1/qi9gwv2Mb7PN2NzKk56vMH69MQNaoeNEEjhyC1WNG5a0Hw4aljoTOE++Utb+Pg9+APmpN+/bshlWjflSioIQbK0wkzXqQjpiA5Zj3RXNsmT4FWWn3lWDiP6g/AoYOUsKFYb/i2ROzwl+JiPEHIgtdC0UReORdsG2mHVYMHaSEzSnl3oJtxffg2qoZVo8bjTW/jkXwL2PUVoRjnx5dMK1mJeW1ucXWxsgrT7zhdjrPgmfndro9Z/QIPPLcxO2NUNz9v++nvPv8fxiIHTOnI+nMaSNRWfiJ507gyBdid24JezIazldp71PgKW3i7I8ESIAESIAESIAESIAESIAESIAESIAEXoFAcQk8YmQMnzsHu+dZDosjYbXEi8D5o7qIi9yTN3Jl5L96BXNaNIVzkwa4GnM475y2I8LR1cMHMbNhbRxbHaQdfiO24hUV5eutchNNrfhv+A3om08cK24IIjSc3bYFjh/Xw4n160w2L6GYEqJeeChstp2s5ky8i1LjLyPK1wf2tSrD6aM6iFzgbTZ0n8x7emIiVo0YgjkfN1D5dbTOxFNnTvOPsaR/byNxJCfrEU6sDYZb2xY4ExZq0QheFIFHjOlpiYmIWuCJOc0+wrzmjbF9lp0yPGvjMtw+yXqE2C2b4NbmM7g0aQDHejVVKCetzqO0NET5esGjQ2sknTqpHTa7LUzgkfN3r8Qj4cB+HA1ehXV//qqeF8c61bDFfprZduWEPHsbJvwBv/7fKE8wi5Vf8aQIf+LRJF5Qb2LJuJOCcBcneHVpj5tnjT2mZN3LfGx3nIEVQ77D8eAg3Ll8Gek3ExG3O0J54DjUqoSVQwfh1rmzZkWY7IeZOLZ6JVw+bYS1v/6swrIJb/HYivRww7zPmkC8yAoWebbW/vkrlg7sCwl7aKkUReDR2hFxeP8iH9iUewvzW3+Oy/sjtVP5tk8ePVTPr+tnTWBf7X2sHDFU5dfSKomwfWnvHszv8IUKKyfcCiuFCTwZKSnY6zUfbl80wxa7KUq4eZyWhivRB7F67Ch4dmyN42uDjd452ZkZOLxiGea3bQkJW1dWCwWesjqzvC8SIAESIAESIAESIAESIAESIAESIIEySaC4BB750nr1uFGIs5DIXgSBy1F7YVujovJyeJr9OI+peHmc37kN06tWQODIH42Ma1pFMc75fd8Xy4d8h9wiJArXrn9dt0pMObgfrp9/ArfPPsZez/lmjb7FcY9pSUnw69cLi77tpQz1ptq8n5iIRX2/wvLv+yH1akK+8Yjgt81+OuQL/ln1a+UTbgzbEkNwhKsz7Kt9gLBpf+VrQ8I9eXZpB+dPGkJEmoIlNeEyVo4cimXffQtLHl16BR4Rd1KvJGCzrQ3salSEZ/tWOBW6sVAhTdbkLicHTH3/HYih2tCgLm0mHNoPjy7tsWe+a6GCR2ECj8pBNMseC7t3wdLv+6kQcZKjZFad6spzoiAjw9/ilXR87WoVZurCrh2Gp4p1X8QdmZtTIRtUiLtibfw1aEyE6Ev7dsO9Q2sl4JgSJUQsEC8aty+aIyZwBUSw1IqsGcmV4/JpY8yoVgFrxv2ExxkZ2um8rfSTcCgKHh1aYUHn9sqjTDspIRKlffE+k/CCBYu8b8/t2Aa31p8r4dhUWDLtmpcReES8Wv/Hr5j6/rvqHWLp+ZTnZ6fjDEwu9y+4Nm1kJN6L58zqsSOx4sfvlceaNi5zW0sCjzwDpzeug/MnDbD2t7HIefQ3d2lP7nXZwL7waNdSfUxg2IfMo3j1effoAvEulHkqi4UCT1mcVd4TCZAACZAACZAACZAACZAACZAACZBAmSVQHAKPGLpS4uKUaJORctssKzFqRrjMxuz6NXFq44Z89TRBwKXhhyrUW76TBj/EQHdo2RI4Nq5n8st4g6plblcMumKAlFBtT0swRJCIDKdC1sOhbjUjY6sGVXlTRR+CTaVymFrpPSU25BoYqcWAfHbbZvxV7i0l2kkOjYJF2pAQUTPr1cTcz5tCwpkZFllLXl07wLF+LVw7esTwlNoX74WjqwKV6HUsOCifOGRYWY/AI8bbtBvXsWW6DaZXLgf31p/jTNgmw2bM7st9XNgdDvu61eHVuS1uX4rLV1fznFnS7xuVZyXfyQI/ChN4pC/Jw/Qw9Y4SOF8YpPvAUYfAI12J8Xth368Q8tcEXflXCgxP109NSJrfvpXyPtF1URmq9OB2MrbaTYNXxzZIOm3aa0vWxNrff8a08m9jXoumOBmyMR+BO/GXsGLwACWQurdtoUIS5qsAqFCBGyf8ruZ+60y7fDlqnjzMVALPtCrlsfqXsSZDjt29kqAE0kW9uivPoYLta79fRuCR3D/eXdtjRo1K2PC/8RbXmoSMO+i3WL0rZokHnOtsrWu1lX83ov/fcybh0IF850z9sCTwpFy+hIAh38G9xSc4t32b0eXyTole4Q/7DysrDyd5Hg2LCKxhUyerUHgSUrQsFgo8ZXFWeU8kQAIkQAIkQAIkQAIkQAIkQAIkQAJllkBxCDxiBIvdtkV58Fj6qjn91i0s7NMDPt074VF6Wj6mYjjz6toei3p/ZTFZvLR/+8J5zPnsE4TPdTFr1M/XOH8UiUBmaioChg+GW8tmZsM3idAgxtbpNSrCrtr78OnRGSLSaUW8qy6G78DkCu/Ctkp5rPl9rHYqbyv9rPnlJzhUraAEh7wT/7+TdjMJ81p/Bqe6NXApcm/B0+r3jRPH4dGpjTJU5zx6aLKOHoHn4b17iPTxhG3V8nBqVAd7PdyK9IV+0ulTmN+hNZYP+d4o34qEcZOQT5Kg/XwhnjOFCTwFb1BCRS3t10u3wKNymsyeqYQz8VYqiaIJPOJ9JYb+N6mIUHj9aIzKdbTqpxEql5Sp+xeBZ+Ofv2FGlfKY1/xjRAf456uWmpCAwOE/KIFHnoErh/MLG7JOzu/YqsRRzw6tlWeJYQPiGXfA1xtTKv4HK4YNRu7jv70ltXoirBz294Nrs8Y4unqVdthoW1SBR7wNL4bvwow61eDSuB4O+i0yatPwgLwHds91xuT3/qWevf2LFhieVu94zXNGwiVa8jaSC80JPGpcu3ZgRp3q8PqyPYRxwSJtS/hDh4Yfwqtja9w6G5uvivq3bvMmLBs0wGQY0XyVX9MfFHhe04njsEmABEiABEiABEiABEiABEiABEiABN5MAnoEHjFaSq6E7IwHJo1rYkzc6eyISB+vPIhyTc7jx3mGRTGcXTtyGE6fNMCRlQF59WRH8+SY9XE9nNxgOt+L4QXSX9iUSXDv2AYP76Yannrt9oWT3I94q2TcTsbDu3dVeLqc7GzFW7shqSechKmEc5L8JoZFOy8GSAk7ZBjySQybjx+kqz85b6nIPCWeOIZZDWtjzW/GoozhtTLuQ36LsWWaDeIiduUT28TIf3jZYmW0lVw8kQv+XhvShghA58N3KIHIuXF9xB/ab9i0EldEHJhRrwYc69bA5ah9+c5rP0S82ThxAjzbtDBrcC1M4JGxSh4fp4/qKrFq9ZgRyLx3V+tC11byrPgN6I2ds2earJ987iz8vuuLdeN/g6U5kHNnNoXAvVNbXDsSbbItw4NFFXhkDUlyeffObSCGdFk3xV1KQ+ARoTc7MxOZKSlIT76lvJrEa8xSkXuVXFYicomXjXhCWZoLaUv6kfBoWj/yvsl5nKU8YuR4QUFb5Wnx98OcTxri0DI/s8ORfq8djVY5YKIWeKnn37DyrdgzSoSY8v67WPhNd6McUBK2LHjsSBXaUPIwFbwPub9t06fAttJ7CBgxJO89bNiHjF3yzri2aoagMSON3ila3aIKPJL/Z5+XOyaXfxvubVspwUtrq+BWcuxcOxIDnx6dYPvBf7Cod3eTXl8SrlG8lBZ81RmSP8hSMSfwyLt19zwXTKnwLpZ+1xfmPHBErBWvqTkf11deUAX7unP5Ehb17aUE4dwS9KQs2G9p/abAU1qk2Q8JkAAJkAAJkAAJkAAJkAAJkAAJkAAJFAOBwgQeMZreOn8OsZs3KfHlxoljRsbCB8nJCPppuMo1IkMSQ6qIFbFhoTi7Y5sSG8SwfO3oUayf8DskAblheZFf5gA2ThyPR/fvGZ4yua++xN4dDqfG9XBms74wWiYb+gcPCqPH6elIPHYUJzeuR0yAvwo9JyHHLkfuheRIEUO/FGGXevkSLoTvQuzmUBxfsxqX9+3JG72p8xf3hCsx7t71a4jfH4XToRtV3ogLO7YjNf6ykUFYa0yEo6NBgZhVuyoOL1uqHba4NSUSSF4NWRPTKryrcpGkFEhKLvO8/s9fYfvBv7GwV3ej3BoiAAmDqRX/g5n1a+La0RiTY1BeCH6LMfujeioJu6lKlgQeGfuduDgEDB2kvCXcWjR9qTWVfP4cgn8do54TU2MQ43KE2xxltE8pEIrOsH5JCzzS172rVxD8y09YrnKa/O11ZTiOV9kvSYFHRIms+/dx44iSNzcAACAASURBVPgxHFsThChfL+z39UJM4HKV3+tB8k0jEVo9aw8eQEST05s24rD/Euxf6IOYgOW4GLET8oyYEodEQBKx4MzmUBxZuUI9nyJOyzWX9u7GiQ3rIN5ZhiX9ZhJCJo5XguOVmEOGp3Tvi4gbuyUMDnWrw6lhbexynY1nuTl518v773z4Tsxq+KESko4Grcw7p+2Id9aq4T/Arur7CFYh2kyLXyJW+A3sC58v2+PO5cva5fm2RRV47l+/pvIGybPtN7CPWbFU3lsply5ik80kTK/yPjw7fIEjqwJNhnOT+Tm/Yxsk7J+8nywVcwKPeE2t++3nF6LX8B+M8u9obcqzvKB7J8yqXQ1bHWy1w3lbEbbX/PYz1vwyFhLmrqwVCjxlbUZ5PyRAAiRAAiRAAiRAAiRAAiRAAiRAAmWagCWBRwyJV4/EYOPEP7HN3hZBPw2DT9eOuGrgWSAG11vnzmLZ4AF4dPeF14MSCVavxIxaleD6eZO85N/iHVIwqbUG19I5rY7hVsJ3+X7TA0FjRylvEMNzRdmXfsXQ+Kp/8iV6UUr2gweIWbkCK4YNUob/05tCcHb7Fhz2X4p1f4xTOWkCR/6omhRD88ElC+Hbowvs69bAjOoVsXL0sLzutPMLv/oSMxp8CLtqHyjjfUrcBexymY3QvyZg97w52Dx9Cjw6tcaKQf1xNfqwSe8NMV5umjwRs+vXQsLBqLw+9O48E4+H9HSc274Vjo3qwL1VM0QHrsjXl6wZGZtLs8bqXjbbTzVqXnJhRHrNV4nXZ3/SCHevXDGqIwdECDq7dTNmNqylcn3IfBYslgQe8cY4tXG9yrkhYtLyId/hoQ6RsWAfIuDE7Ykw8sTQ6sn6urg3Ah7iObPYNx8PrY5sS0PgES+TmBXL4dG+FS7vjzTsvlj2S0rgkbm9n3gDB5b4YlGfr+D/fT+Ez3FC1EIfbHOYjlWjh6kcSoZChaw1EZuPBQUicNhgrB03GpELPJVgs8PJAYFDB2Hj+N9w9fBB5ZmjAZD1F7tlM4LGDMdWh+k4uX4tzm3booSkjZMmwL19ayz+9mtkFcjDIuEjF/bqBp9unSDrrqhFxB0Rotb9Pg6z6lTH6rGjjNb+w9RUhM9xhE25t+HZuS1uFggjJoKW5Oma364FZn5YFVvsp5ldbxIac4vNJHi0+hQXdm03OdyiCjyJp06qcTnUrIyNf/1XPaOG71dZH5l3UpRou9nWBi5NG2Lx192UcGMqlJw2KBGjJNyceBuJR6m5Yk7gkeuXDuwLuyrlsXL0cLPh8yQX2KLePWBfrQLW/v6LkeAka0q83xb3/VqJwfK7LBUKPGVpNnkvJEACJEACJEACJEACJEACJEACJEACZZ6AOYFHjITqi+fxv6hQQyLMnFgbDIdqH0CMcloRg9zpTaFY8/u4vHBFUvfQsiUqwbZjnWo4FhykVS+2rYgakd4ecGneGKkJpr88t9SZGOUyU24jbncELkaEv9KftBEfFYl0nQZdEYOuH4nB3Jaf4kCB/BQyruTzZ7Hgqy8ROGqougUxbD+4dUt59gT8+D3sKpXLJ/C8OH9TCTLr/vhFfaG+oGdX7HSaiX0LvPK8ojRmDtUqKAHoSWamESIJXyWGa/GOupsQb3Te1AFZK9KWhCG7Gn1IGcG9u3aEd6c2EO+Cpzn5vQfEiC0Gc5v334FdzcoId5mtwjhJ7pIbx46oP/GQWP7DQEyt8K7KFyOihKkifUvoP5fmn2Dp9/1U2K6C9SwJPHJOPC6mlHsLjg0/xB7PeQUvL7bf8rX/6nH/7zljkK/IsIPSEHiE2Y1jR+HTs6sSL8T4XpylJAQeGXNGcjLC58yGS5N6WDXyR4jwoBXxGNvlPAuOjWpj64zpKoSanBMxZP9Cb8z/ojk22fwPD5JvaZcoMS1+fySW9PsGi7/pjsv79ynvH+kr8eQJLBnQG5umTsrnsSjn7sZfxuqxo7GwT8/8As/z50o4df60MfyHDDTKxZTXcYEdESnlXZt08rgSRkMnjceczz5G6KQ/YcrbS8Ly+fXrhWkV/g3vHp0Qt293vudHnkEREe0+rKzCjB1ebt4TTzzpREh1+bg+Di1dXGBkL34WReART5tzO7bBvnYVzKxbA2HTJuH60SO4En0YCYcPIf7AAeWdtNvVBYt798D8di2x1XaKEqRQSLhAEZ+jfH3g0VFyDh0zOVY5aE7gEfHNt2dXTK9SXglnOdnGeYnkeuG7uG9PTK9cDoEjh+JJgXCYUufK4YNY9n0/iEiYnWH63WR2gFZ+ggKPlU8Qh0cCJEACJEACJEACJEACJEACJEACJEAChgTMCTzihXNi/VpIovDc7MeQUFg7Zs3AjKoVlEeI1oYY3Xa6OCHS21M7pL4Wf5CUhMCRQ1Ty91MhG/LOFdeOiBqJp07A+dOPVLilorYrhnRJeO/TrQM8urR9pT/PLm2xpM9XOLF+ja5hSB4Q8UJwql8T8Qfy556RBkSIObBwATQPHq1Rdd3iBUYCj3Ze7ul06AZMFrHiozrKq8FQXBFmN04eh22NinD6uD7uXLqoXZq3FcHD9YvmmPtFc2TqzG8k7d6Ou6BCLQWNHanyZMz7rAlCp0yEhDt68jC/kCT5gMKmToZNubdgW6MS/Pp9g2WDB+b7W/BND9hWrwDbKuVVODFLxl/J1ePRqQ18unfGg1s38+5F27Ek8IgxWOZvcrl/Yd4XzRG/33SuH62tV9mKSHUkYIVFz5nSEHjkHkTo2Go3Db69ur2Up4klDiLwnFgXDM8u7SBzUxxF2hRPKxFwvDq0VgZ2w3bVPHZuA9uK/4H/DwORlfFACTNnt4VhTrOPseib7rh77ZrhJWpf3nMSCtGxYW0EDPlOhWtTz9GmjXBq0gAHly4x8uAQUfvMlk0qrJ9hSEnxeDy3fRscGtTEmt/GASa8yYwGICLU3bvKe2X9H7/Af1B/tQ7FQ+nk+nUQDxt5vrQi+/EHouD4UT1MrfgeXFt+Cv8fvsv37CwZ0AeuLT7FpHJvYd4XnyH+gHkvLXnXHAlYjhl1q5vNH1UUgScrLU0J75PLvQ2HBh9i7W8/Y7vDdGydYYttM2yx2W4q1o//DX79v4Fnh9YI+mmECr0mOcgKKyJ+i7Di1bUjds+fm4+L4bXmBB4RoH26dVRh68Qzylz+HAknKQLa9ErlXgjhD429hWTONttOUR6YIgaWpUKBpyzNJu+FBEiABEiABEiABEiABEiABEiABEigzBMwJ/BIouzNU//CuR3bIWG37lyKw9wWn8Kxfk31BbYG5n5iIlaO/BGJp45rh9RWjJ2XovbCtUVT3Dx9Kt+54voh4lLo5Ilw79xWhfwpSrvyJb4YI5Njz0BCCr3KX9Kpk7h1NhaSgF1PEWN1zIplsK38HpYO6IMTG9Yi+dyL68W4LB4+EsLsyMr8uSZE4Dnkt9CiwHMqdAMmvfcvODdpoL5kNxyP3HPK5UuY1ag2HBvUQsLhg4anlTAnHgOzGtVRRlTxtNFbREh6eO+u+rt/7ZrK+ePb80vMb9VceRJJbhKtpN+6Be/undR9SB4YCZ0keYG0PzHEigfClPffgUPdasrbR7vW1FZCKi3u01Pl8Eg+d86oijmBR4VN270LM+pUg8377ypPDvEEMVeEn8yBhJeSPFIP793D4wcPVEg6eV7E+0nWpBiiTRW5XuZ52aB+2PDfP/KFBNPql5bAI89n3N7d8OzcHgf9FpkN4aWNy3Ar14rgK0Kdqb+MlGREB/hjfofWuHYk2mJdCbVlKGAY9mO4L3MsRvcZNSohZNKEPA8drY6EYROPvg2/jcXR4CB1XoSJFT8MhFO9mtjl4qhVNdrK+lv+fT841q2BHbNnITcrC2e3bYF97WoqF0v0imW4cfy4CvUmIf1kHu9du6JyYcl60Irk4zmxdjXsPqyKsGl/aYcL3cp6eZyRgUf37qo+JN/U1ulT4fJpIwSNGIILEbtUCElpSERCGc+UD95VXj6Sj+uOwbMjz9DF3eEqTJwIFCt+/D7Pg8/UQJQ3Xch62NWuqtak3FvBUhSBJzUhHqtGDIFtpXIIGDYYj9Lu42luTr4/ySf0KC1N5RGT+ZlZrybW/zEOty9cKNi10W8RgrY52MG3V1fcvXrV6LwcMCfwSChR764dXgg8P4828izUGhOBRwQ24ecveapMeDoKJwkN6de/DyJ9vMzmNNPafJ22FHhep9niWEmABEiABEiABEiABEiABEiABEiABN54AuYEHvmy/VLkXmWwl30JsyYJu+Xrac0ILkJE4olj6itnMfgaFjknYaAkT45e4cPwej37Etro/K5tmNWoLi7s2qHnEquoIwbtGyeOK0+OqRX+DbcWn6pcIJumTETUAi+c37ldhXsTscCwiDH54BLfQgWev8q/jbmtP0Nm6h3Dy5VhWgywjo3rYpbyHsqfY0cMzbfOxcK+TnX49upu1gCar1EzPzQRS8IhzapfA3vc3ZQRVAyj4jnk2LgeHGpWQsQ8V6MWZC3tdHTAlPLvYH7blkhLvGFUx/DAi9wafeDVrpXy6jI8J/vmBB4xbp8JDcHUKuUwrUr5QvM5iRhxOSoSO2bZY/tMOxXeTDwTttrbImz6FGyfZY9jwasgz4u5IiHDdrnOhnf3jkiNNw6BV1oCj4wv9Uo8Vv00HIEjhugOJybG7rjd4corY4vdNJj6E++spd99i5kNayvvK1N15Jh4EEX5eCDl4nlzuNRxEeJEjJrZ4EPMblQH+7w9jOrL2pV8OBJWUNaP8nSJ2gunj+qq8GMxAf5G12gHJK/Pxgm/Y9oH/1Him3iuJV84r0Jw2VYuhzlNG2H5oP4ImTQeez3m4+yWTUqM1PrR2pG8PUdXrsCMD6tiq4OtdrjIW7mXpNOnlGgp+WKWDxqQJ5KLiLhztgNsyr8Dnx6dce9afpFD7vtK9EG4Nm8CpwYfKk8Xac9ckZBqZ7eEwb5udaz+ZayRt5Jcp1fgkWf7+rEjygNJ8gdtm2VvVuyUduV9diR4FaZX/0B5M8pzIeKhpSLjjd26BfPatTQr/JoTeMSbcMFXXVSINsnjY86D54Vg3EOFaAsYPsTs8yx5wdb88hPW/j4O969ftzTs1+ocBZ7Xaro4WBIgARIgARIgARIgARIgARIgARIggTedgDmBx5DLo3v3sHrsSMysXhFbZvydsFuM+EeDV6kv6gt++S1G7uPr1mDtH+NMGg0N23/ZfTEGXo7ai1kN6+B0WOjLNvOPXKeFnFrWvzcc69fC1A/+jakfvIuZdavBu3M7bLWbCvmS3LDoFXgml38b7h3bqK/nDa+XOSpM4LkZe1p9zS/C3LNCjK2GbRfcV0LO5Ti4NGsMm/ffxrzWnylDvhigrx8/osLEzaxTA7FbNxe8FOIVJsbrGdU+QOjk/+Z5LxhV/P8DIvD4f/8tPNu1QtLpk0bVLAk8p0M2YlqVcrCrWdHkOjZsTNb01ZjDiPTxQISrCwKHD8HUquUxvXpFeHRqiwi3Ocq7TUQac0U8ffZ5zlNJ6CUnSMFSmgKPiAPBv46B/+D+eGwmx1HB8YmoERu2CWt/HaMEsaCxo4y2q0YPV+Hy7GpXU3mRVv882qiOXCdhsrbZT4V4wFkqwv3khnWYUuk9uH7SEDErV1iqrs5JGLWTG9dhapXymPvpRzi+drXZayRcnXgrSshAzy/b4058vBIfxBMmcNhgzPmkAaZWeg825d+Gw4dV4NGuJUInTVB5bwzFExF4YgKWw752VSUAmu1Qx4nM1FSVb0jGNLNuTeycPUs9B+IJFzrxT0yvXB4iPhiFP8x4AMm5I6ENPTu2UR5Ulrp7IZhsxox6NVRYuecG4eC06/QKPML8VOhGTK/xAVw//UjNmdaGqa14hl45dFCJveKRtGxQf6N3VsHrROwTjybJ3ROzMqDgafXbnMAj9yGh4SS3zsqRQ2HOQ1Hl6vm6q/qgIXjcGLPvwbTERKz7fZxax6lXEkyO5XU8SIHndZw1jpkESIAESIAESIAESIAESIAESIAESOCNJVCYwCMGTMmv4ty0ERwb1Ebcnog8VhLiTDwXolcYfx0voXQ2/O8PFS4p74Ji3hFj8645TnBr/RkkgX1Ri4QVEy8XCbn1qn/ipSTGUr1FwhRlP3qE60ejcXDJQoTaTMKqkT9gQZf2sK9RCTNqVUbIX+OVN4LWpl6Bx+b9d15K4BGDa/KFcyp3hnf3zhbDDomhVcL2xW4KQcKhAxBvqoJFvA0WftMDNuX+BYc6VXE0aJUyUksejckV31PeFTdj84fvE9Hu0p4I2NWqBNdPGyP+0IGCzRr9fpF0/ht4dfgCt86eNTpvTuCRvi7+f4g2uxoVsXHiBFjK9SMNCyOZZ5nvQ0v9MOWDf6uwhTtdHFUoJ+Fiqdy5HIdVo4chaPQIFZarYN3SEniUp8fhg/D9qqvyKJLfeoq8DyTvjAiFIqyZ+rt19gz2+XjCrW0LnNuxzWQd7br7N64jJ+uRxa4l9JkINDYV3lUCz5FV+UMXmrpYhUtbF4wpFf8D16aNChV4JKTaFBF4OrdVHisyjxI27VbsGUSvWIrN06ciaNRQ+HbvjFn1aihRL/jnkRAvDq2Ih9fR1SuVB8/m6TbaYaOtiJ+P7t9VXkkXd25TeX8KVpK2jqxeCZuK/4ZNhX/Db0CfF+EPb1zHut/GYmbNytg0ZZKRh4yIdmt+Hg2HmpWxcdIEIwGoYD9qvYWFKFF3/YTfTYbq0yvwSF6a8LmzlaDr1bltofmXZM3F749Unlkyt0v694YIoJaKfGwg+Xe8u3VAkpn8TuYEHiVojh0J24rvYfmP35kMvSZ9S7hN767tMbNWFWya+pdJJlLvcuReLB3UDxFznc22ZelerPUcBR5rnRmOiwRIgARIgARIgARIgARIgARIgARIgARMEChM4BFj9tntWzGtcjl4dGyNzNS/c5SkJSUhcOQQJJ3Kn2RavoyW/ASrxoxQScJNdPvKh8RIevfqFeUpsPF/f+rK42HYqRj3bxw/hjCbScpzQ4yhr/K3fcY0XN6fP+SZYX+G+2JUvXL4kEqWLsfF0Clf7KdcOI/zO7dh20w7uDRtiDlNGuBq9OG8S0ta4FFMryTAudnHcO/QClnp6Xl9F9x5mHpH8XJv3RzLB/bF9aNHClZR9ySeNSLwiGC1x2O+yi90LfowplQuh9nNGyM96e/cPNKA5OzYNHki7KuUV95fhRn/5RoJveTVvRN8vuxgUugzJ/DI/SaeOK7uVb7qDxw11Gw4poI3J6HWdrrMgk35tzC3ZTOV96RgnYK/RQQTwcOjUxuzXiilJfBI+L/9i3yVEHj9aEzBob7Sb/G4ObF+DTy7tFNz80qNAUo8lLCFdrUqw/mjuiqMYWFtvmD94po5H9dXXi3mrpEQgBvG/46p77+rcq+k3UxS3nPnd+1QAoo8n5IfR4TEuD27Ee46W+V7cv2kQT4vEpm705tCYFenKjb8b7yR+KL1L3zkOfft3gneXdohfK6z0brTvJZsKr+HSeXegk+PLirUoIx1/Z+/wLl+TYTPcdKaVFu557g94cprzrNdS1za+7cYn6+iwQ/xJBTxTPINbbGbanDm7129Ao+IXRLuTwQU/x++U3l2/m7FeC/rQToOLVui/m0RD7qN/xtvUVSWFiQ/l/8PA7Bu/G8mc1hJHXMCjwjOO5wkvN27WPJtLzy8ZzpnWuLJY3Br2QwuH9VF5AIv44EDqm8J17ekfx/IOilLhQJPWZpN3gsJkAAJkAAJkAAJkAAJkAAJkAAJkECZJ1CYwCOGxmOrV8K20nsqJ4UWkkgEkoSDBxAwIn+OAjkuYXcChv2gQhiVFEAZlyRyd/y4gcm8K4X1K0bbu1fiEb18GQ4uXfzKf0dWBiD5vLH3iKlxiOfRbjdXZQyVcRQs4hl1cMkizKxdFYdXLMs7XdICj3Qk+ZUWfP0lZjdpiNSrf3sn5A0C4uTyHBKSyOnjerB5719wqlMNR4JWGlZR+5kpKfDu1hGTxYOnbjWcClmvPGBSLl7AzAa1MbdVM4hQpBUxUF/aHa48JLy/7KjyqWjnLG1vHD+KOS2aYUn/b/DYhChlTuCRNjPupGCnMvq+Dfd2rVQINkt9aeckR8vCXt0gOZSW9OuFjDu3tVNmtzIOERElTJQYm02V0hJ4bsaewZIBvbFx4vgieZ6ZGnPBY5poIAKP9FMcRUQ8v2+/hn21Cljz689m86fIfJ7etBGSR0XmaGm/XnD8sCo2200164khdRd90w1Odapj+6wZePzgAY6vC4b/4AFqfRQcv9zf6ZD1cG7aEJumTc47Le/GhIP7lbfjiqGDjEQbraKIuRHi6VLuXyqXzuJvv1ZeUdp52WZnZCBmxXL89f47mPLBf+A/ZKAal9zfLkd7ODesjX1e7oaXqHw8a8aNgghakd4ehYolcrES+hZ6K+HMnJihR+CRe78afQjOn34Ex3o1EeE62yxv6Vc8pK4cOgDPTm0wtcI78P6yg8rfk++GCvxQIfACA1TuMskPZ66YE3jk2YrdEqaEQq9ObXD7vHGIRPn360LETtipUHyt1EcApvpJPHkCAcMGI2za5BLLMWeq39I4RoGnNCizDxIgARIgARIgARIgARIgARIgARIgARIoJgKFCTxi8Lq4JwK2VcrBq1tHZXiUrsXYdmjpEmyePiVvJEr0OXQQq38ehVMb1+syMOZdXMQdMZBLmB3J2yC5H16miLiSnZmhwqCJ6PIqf9KO3L+eInXD58yGa/PGRnl25HrFPGInHOpWxxmD3EI5jx7hoN9C2FUqh5Wjhxl1pQyYm0MhIdokJ4zcT8EiXk+OjevCsUEtk+HPJESS5FeRBO2Sb8ZcSb91Cz5fdVbhqDZNGq+8qQzrisFX8vk41K+JKRXegUeH1pCcFVIeJCfDp2cXOH3SKJ+Hl+RCka/zZzeqgzObQnR5ZYmh+EL4DsxsXAfr/vjVZL4MSwKPMjQfPgjvLm3hUKsKwqZMUmvC8F4K7j8Wz4OlSzC9egWVu0e8NaQdS0UzgHt364TwuS5m762oAo/KKyIixv8ntbc0Bu2ciKOnNqzD/HYtELs1TDtcbNuSEHiEuYRKc6hdBd4d25hcm/LcxB+IQvAvP+HO5ctq/YuAO7NudSzu3QP3rl0zukdhIWvNoV4NLOjaATdOHIMKtRa0Eq4tmiJ2i3GOKBE4xbPOrc3nypvHsNGkM6fh3qkNFvbsCglTaarI8y+5emyrfYBFX3dVYSwLvjse3E7G1ulTlDgqz8M+b3e1Zl6IHCvg2OBDFVpPa1+OHw9erTz/1owbjfTkm9opi1sZo3gfurf4RIkfpirrEXjUnK8JVvms5n7exGRuLa1tEXKvHzuCgB+/h12V8nBr0RTH1gSZFcS06+TdtebXMVg+5DtkpZsP5WZO4JF5k/w6/gP7Yl7zxjgZsk5rOm8rgteBRQtUmMzgX8aYDHEn7cjHBYv6fIXja1abfZbzGn3NdijwvGYTxuGSAAmQAAmQAAmQAAmQAAmQAAmQAAm82QQKE3jEmCWGeUnEPrtBLUT7L4Xkrnl47y5CJ/8XZzaHKoBiGDu+Jgirfx6J42uDkW1CXCgu0k/l6+/oQ3BqUh/iOfO6FU3gcahWQYVbenj/Xr5bEJZbbKfAvePfooiEynthjLXD9Ir/weJvv4FcJ3MhRQQGyU8R5euFv8q/BdcWnyL54gXlnSHigohZYrhOOHQQM2pXwcw61XB87RplVDUUJ6ROpI+HWa8cbaBi0D3svxQuzRrh6OpVRkZOEZd2Os1UHi4z69dETODyPBFE7n/PPFdlpJav/qUoJq7OcG5ST4Xgkt96SnZmploDsxvXR+QCT5OXWBJ45AIZqxhqxdA8p2lDyDNhzjgv3hdi3PXu0VklkndpXB+Hli422a/hwReGY18V5vDaEfMh0fQIPDKXudmP8SQzE5ej9sG9XUvYV/8Aa8aNQUbqHZU8XtbFcxPeYTKm+4k3DDyJ/g65aDjeV9kvCYFH3kP3rl7BJpuJysNr1U/DcTfh77xbwuTm2TMI+eu/2Os5T/FR11y7is3TbODcpD42T5uscm5p9ybPlLxH/Pr1wjwRGVavUuzEU05y6Uyt+j5W/DBQiUXaNbJ9lJaG/Qt9ML9jG+WxY3hORIjVY0bCq11LXD9+zPBU3r48j0mnT6n8LatGDcXdq1fzzsmOPI8iVLm3bQG7au9j5fAheQKqXHst5jDcO7dB8K9j1RyLOCTeMAu/7goJiSgCh9y7niK5lFaOGAKvjq2V15OpaywJPLk5OSpcWUrcBfUusyn/Njw7Sf6dWPVuyn2Srbytnj7JViEfxRNLBJQFPTrDsW4NLOz5JU5uWGcxHKTGRHLeeHZpq9hbuj9zAo+0I++VY0Er4dK0AYLHjFAeTNo9S5vJZ2Ox9Nte8GzTQuWbM9WPiGmhk/6LoNHDiiUEoda/tWwp8FjLTHAcJEACJEACJEACJEACJEACJEACJEACJKCDQGECjzQhBsTEY0ch4X+8urRXwk6kjxcWfPUlDvotxpGAFQibOglbpk9B3L7dJSruyHiUeODsCLdWzfK8QnTcqtVUkfHvcnFSngVBPw3HxknjlcAQtzcCJzeshSR8X/ZdP8Ru2aSMvWKU3OvticBhg+Dc7COVs8KhXk0EDP0eez3nQwzSknh+5fDBmPtFM3XetlZlLOrbE6F/TcCtc2eVsXnV6OHw/fpL2FQqB9vqH2Be+1ZY+9sYnArZmMdGGZf3R2JG7aoItflv3vGCO2L4fJB8E3vmzcXSAX2xzWG6yi8jic8lp8uOWTPg/FEduH3eBPsXLYCEndOKGKlvnTuHpQN6I3DEj4jdHIptDnZY1KsbDi72Vbl7tLqFbZWng91UuLdqjkuRe0xWL0zgkXvJun8Ppzasx+LeX8H543oqHGGUr4/KaSL3c3F3OPYvXID1v4/Dml/GICbQH9Erwe4roQAAD+xJREFUliljsITlKqykxl9G4PAfsOqnEcr7zVz9wgQe8WQ5ExaixrBy9HCVm8W2ViVMrVJeCZ4SVix43E/YZjdNeaMU7EfYX40+CJ9CPIkKXleU3yUh8Ej/sjZT4uKw09EB89u0wLKBfbHP0x0n1gUj0scTGyb8jj3z5+bzChMxODU+HrvdXODbowtW/TRMzaOEndzhNFOFy1s+qD9OhWzIExlePE8BsK9THYFDB2H9hN9UKEdZA6dCN2CHgx0Cfhyk8vqIIGpYxAMuyssdrk0b4lhwkOGpfPviOXRp724Ejx2p/qL9/XD9SDQST59WOXH8vu2FWXWrY83Ykbh2/Gg+sU6E3H3eHir84YElCxET4I/AoYOV593140d1exLKuk88cQzu7Vtj+Y/f48mjzHxj1H6YE3jSb91UvFePHoZFvXtgRr0a+Ou9f8GudjXlXbl67CjIX9DYUWrdi+eNeP3Na/s5lvTuqebkxonj6v2l9WVu+/DuXUTMc9WV18mSwCP3LLnjds91VsKoiH4SRjA9+RYSDkSp58qzU2tEB/qb9N6R8YmI5zegjxp/wfk3N/7X6TgFntdptjhWEiABEiABEiABEiABEiABEiABEiCBN56AHoFHIIlhTBKNJ50+iSNBgVjz+89KTIhwdUb0Cn+Vq0CMm2JQLcki45Av+d3atkSY7WSV06Uk+yuJtsWIH78/Eme3hqmcN5f378M+z/nYNXsW9ri7qZBR6Uk3VHJ56V88DSTPzIXwnYjbu1tdG7cnAhciduHGsSPKoJt8LhYXdu3Axb0R6nx81D5c2L0Ll/btUfleMm7fxsXwnbi4J1x5fSTsj1RfqEs7t+Mu5LtNCb+2sE8PzG/XSs15vpMGP2QuxIvkxsnjiJgzB6tG/agMn379eyNg6HfY5zEPty+cMxl6STwu7l27ikPLFitj62H/ZUi+eN5kXYMujXZvno2F79ddsfS7b5F133TYpsIEHq1RETLFu+V06Eb1hb4IZJLcflHfrxEwfDC2zbDF2a2blbAlcyjCm+Qiki/6LRWpK9fNa9sCJ9avtVRVhTWUkGHundri2pFoo7rS1u24i7gYsROXo/aquRYvHjFOy1Zyk8ici+iUaSJEmDyj+7znw7Nja8iaKYlSUgKPjFXWnOTIuXUuFkcC/bHd0QHhc5zUfuKpkybD66l1+vChEoeOrw1CxBxnbHecgUgfb1zaG4EHKbfz5SGSEGLSvoSZTE9OVuHEDizyxS4XR+yZ74qT69eq0Io5j7OM8Mm6lnmR8G7r/jQdMlC7SASr+zeu48TaYCVOLf2+H5b0741l332LjZP+xLntW9WaljYNi9xPVtp9xO0Oxx43V5WLR8QnEVEL1jW8ruB+TtYj5XU5u2lDJcIWPK/9NifwyPq/Gh2N8zu2qrHGbtuSb3tOjv//39kdW3F+1zZcitqrBOeHd1Mh/cu96Ckiwiz8tidC/pqQT+wyda0lgUfqv+CXpp6VMFsbiBfVahHaxo1Wc5x08oTZ95C8I+S9K++4uH2mBWVTY3qdjlHgeZ1mi2MlARIgARIgARIgARIgARIgARIgARJ44wnoFXg0UGJAfJh6B1ELvBE23QbiUZDz6KHur8a1dl52m/P4MU5sWAvHRnVM5uF42XZL+zox1MufFDEaCkcJ46V4ZmUZGT7FGCxCj9RV+zk5eb+lDZkXo/M5OaoP8doQo6bq00Qb0p5hEQ+Gg36LMLt+LZzbud3wlMl96VtC8mWkpEDy6MiX/Rl37ihjuyWDs4wp++FDdc9PHmZCxlmUImtBPC/mNP8YUb7eRsy0tvQKPFJf4yRzIbmC0m8mqb+Hd+4oA7r0KXW0omfMwiRsqg18vvpSiUPataa2MkeWBB65xnCutfUgc5i3LmSNyF8BYUCuvX3xApYN6gfJL6KtP1PjeJVjIvAcC14F9w6tcCv2zKs0ZfbaZ8+eKSO89syIJ0XBdVzwYpk38ZyRa9R1kjfryYsQhwXrSltSV4p6PjMz/n4+H2eZZKu1ce/6Naz97Wcs6NZReQ9px01t1XrLysKj+/eQkZyMtJtJKjygiDWFzY8IUVkP0tWzZ+4+TPWpHUtLvKHyVvl0aWc2PJvUNSfwyNiFk3qvZGe/eP/I++XJk7xj2jltK/VNrUttTKa2LwTDYMxr8znO63gfFSbwaH3IvIpQJuL3g1u38DA1VfG0tI4k99su51kImTjebBhHrf3XdUuB53WdOY6bBEiABEiABEiABEiABEiABEiABEjgjSRQVIFHIEmIoA0T/8DpsBf5d0oTnITqWTl6KHy/+Qo5jx6VZtdvTF9iuL1zKQ7u7Vop1pYMnv8kFPF+EC+JBT26KG8gc2MpisBjro2XPS4sxftKxJ3ts+wKNW6LIbwwgedlxyJtx24J0+VJ9LJ9yHWyXm4cP4adLk7KeP4qbb2O14oIeCYsFHNbNUXkAi+rvAURWcSLb17bltg6086iOGZO4CmtG5PnfMN//1Th9OT9X1jRK/AU1o6p8yJYLvq2p8oppkfcNdWGtR+jwGPtM8TxkQAJkAAJkAAJkAAJkAAJkAAJkAAJkIABgaIKPGKwvn/tKiSfgoRKK80iRsmkUycwu4mEFPItza7fuL7kq/nD/n5walwPCYcOWN39i5fA2e1bML9tS0geEkteAf+kwCNhrKID/NU49XAsSYFHPKvEk2hBz8I9iV51wmV+HmdkWJyXV+3Dmq+/f/0aNkz4A77fdId4ylhbUV5ltlOwoEdn3L540eLw/kmBR0SUK4cPwKNLe+ye76rLy6+kBJ4nKqTdauVJJOEAy2qhwFNWZ5b3RQIkQAIkQAIkQAIkQAIkQAIkQAIkUCYJFFXgkbA2l/dHInDU0LwcMaUFRnKd7PWYD+emH+HulYTS6vaN7EeEvPSbNxE46kcs6d9H5dqxJhB34i9j5aihCBo9Ag/vpVoc2j8p8Mg6DRozEit+/B7ZmZZz9chNlJTAo3kSeffogu3isWEifJtFiDxZJALixZRwaD98e3XHjtkzdQkTRergFSqLh1Hs1jB4dGqDmJUBhea0+ScFnkdpaYjy9YJHh9Yq/5ue2y4pgUc8idZP+EN5Eul5lvWM1RrrUOCxxlnhmEiABEiABEiABEiABEiABEiABEiABEjADIGiCjzikRC50Bs7nBzMtFhyh9MSE+HTrTPW/D42Xx6UkuvxzW5Zvp6/df4cfLp3xhb7aVbDPCPlNnY4zcTivj0t5g7RZu+fEnjEyB+3Oxzz27XAIX8/bTgWtyUl8DzOeIBDSxdjftsWr3XuKovwrOykeMGdDtkAry874OSGtVYxOnmmb5w4Br8BfbB9ln2heX5k0P+kwKNyRg3ujzW/jjWbL6kg2JIQeIRb/IH9mN+hNfZ5u1vNu7DgvRfHbwo8xUGRbZAACZAACZAACZAACZAACZAACZAACZBAKRHY5eyILdOnYsFXXXR9ZS4ePLcvnC/18GwS8uncti2Y1eBDXNi1o5TosBsRKa4eOQyvbp0Q5ev9j3t+PLx3D/sX+mBJv29w/WiMrjV7P/EGQiZOwLLB/fE050mpTWpm6h0lhHp1aovUhHhd/YrAczp0A9xaf44r0Yd0XaOnkng8BQwbrDyJcrKYu0oPs+Kok5WehphAfyzs/ZUS+4qjzZdtQwm252IRNHYkQmwmQrxj9JSUuIvw/2EgNk4cr6d6sdWRZyF2UwhcPmtSJIEs6dRJ5TkV4eZSbGN5dP8+9nq4wavjF7gVG1ts7VpjQxR4rHFWOCYSIAESIAESIAESIAESIAESIAESIAESMEPgQvhOFa5nn4+HmRrGh8VQ+OzZM+MTJXhEhKVrR2PUV+dlOTxOCSJ86aaF/a1zZ7DH3Q3ZGRkv3U5xXCjeOAeXLkLiqRO6xSYxssduDsXh5UuB58+LYxi62shKu4+TG9YhesUy3WOV0GnCOnyuC+Rei6uk3UxC1CIfnNu+tbiaZDs6Ccj6k/fsseCgQsOh6WzypapJaLZrR6JxaOkSyJj0loyUFMQELsep0A16LymWevLeuX4sBiLUZN5J0d2mPDdRixYgbm+E7msKqygecLFbwnBgsS+e5eQUVv21Pk+B57WePg6eBEiABEiABEiABEiABEiABEiABEjgTSPwNDcX8idfS1t7EeN37uPH1j7MMjk+EfRkjUgul3+ySP/izVXUHDK5OTm6QzwV1/3JWF+mXxFQFetiFFHzuOXmFtftsZ0iEFDv2Sel5z1mbmgvMw61dnJy/hFhQ73zi/jeKam1/jLPsrl5sObjFHiseXY4NhIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIwQYACjwkoPEQCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEAC1kyAAo81zw7HRgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAImCFDgMQGFh0iABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEjAmglQ4LHm2eHYSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESMAEAQo8JqDwEAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAlYMwEKPNY8OxwbCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZggQIHHBBQeIgESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAFrJkCBx5pnh2MjARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARMEKPCYgMJDJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJGDNBCjwWPPscGwkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkYIIABR4TUHiIBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABKyZAAUea54djo0ESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAETBCgwGMCCg+RAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgDUToMBjzbPDsZEACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZCACQIUeExA4SESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESsGYCFHiseXY4NhIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIwQYACjwkoPEQCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEAC1kyAAo81zw7HRgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAImCFDgMQGFh0iABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEjAmgn8H1HoHaMhJoHTAAAAAElFTkSuQmCC" } }, "cell_type": "markdown", "metadata": {}, "source": [ "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Going from left to right in the image above, the QAA routine proceeds as follows:\n", "\n", "1. __Original situation__: First, the original state prepared by $\\mathcal{A}$ as $|\\psi\\rangle = \\mathcal{A}|0\\rangle _{n+1} = \\sin(\\theta) |G\\rangle |1\\rangle + \\cos(\\theta) |B\\rangle |0\\rangle$ resides in the two-dimensional plane spanned by the basis vectors $|G\\rangle |1\\rangle$ and $|B\\rangle |0\\rangle$, respectively, with (typically small) projection $\\sin(\\theta)$ onto the $|G\\rangle |1\\rangle$ axis.\n", "2. __Reflection about $|B\\rangle |0\\rangle$__: We then apply a reflection around $|B\\rangle |0\\rangle$, transforming $|\\psi\\rangle$ to $|\\psi'\\rangle$, keeping the projection along $|B\\rangle |0\\rangle$ unchanged, but adding a minus sign to the $|G\\rangle |1\\rangle$ component. Reflection about $|B\\rangle |0\\rangle$ means that all terms apart from $|B\\rangle |0\\rangle$ pick up a negative sign. Because there are only two terms, only $|G\\rangle |1\\rangle$ picks up a negative sign, which is accomplished by the operator $\\mathcal{R}_{B} = \\mathbb{1} - 2 |G\\rangle |1\\rangle \\langle 1|\\langle G|$, as defined previously. \n", "3. __Reflection about $|\\psi\\rangle$__: Finally, we apply a reflection around the original state $|\\psi\\rangle$, giving the final state $|\\psi''\\rangle$, with an amplified $|G\\rangle |1\\rangle$ amplitude of $\\sin(3\\theta)$, adding an angle of $2\\theta$ from the rotation around $|\\psi\\rangle$ to the original angle $\\theta$.\n", "Reflection about $|\\psi\\rangle$ means that all terms except for $|\\psi\\rangle$ pick up a minus sign, as can be done by applying the operator $\\mathcal{R}_{\\psi} = 2|\\psi\\rangle\\langle\\psi| - \\mathbb{1}$. \n", "Using the definition $|\\psi\\rangle = \\mathcal{A}|\\vec{0}\\rangle$ and conversely $\\langle \\psi | = \\langle \\vec{0}|\\mathcal{A}^{\\dagger}$ as well as the unitarity condition $\\mathcal{A}\\mathcal{A}^{\\dagger}=\\mathbb{1}$, this reflection can be rewritten as $\\mathcal{R}_{\\psi} = \\mathcal{A}\\mathcal{R}_{0}\\mathcal{A}^{\\dagger}$, where $\\mathcal{R}_{0}=2|\\vec{0}\\rangle\\langle\\vec{0}| - \\mathbb{1}$ is a reflection about the all-zero state $|\\vec{0}\\rangle$ where all terms except for $|\\vec{0}\\rangle$ pick up a minus sign. \n", "\n", "This sequence completes one cycle of the QAA routine, that is one application of $\\mathcal{Q}$. \n", "In total, each application of $Q$ involves two reflections, first through $|B\\rangle |0\\rangle$ and then through $|\\psi\\rangle$. \n", "The product is a rotation with angle $2\\theta$. \n", "Based on our analysis above we can write the rotation $\\mathcal{Q}$ as \n", "\n", "$$\\mathcal{Q} = \\mathcal{R}_{\\psi}\\mathcal{R}_{B} = \\mathcal{A}\\mathcal{R}_{0}\\mathcal{A}^{\\dagger}\\mathcal{R}_{B},$$\n", "\n", "thereby confirming the formal definition above. \n", "Repeating this sequence, after $m$ iterations of $\\mathcal{Q}$ we get the generalized equation\n", "\n", "$$\\mathcal{Q}^{m} |\\psi\\rangle = \\sin((2m+1)\\theta) |G\\rangle |1\\rangle + \\cos((2m+1)\\theta) |B\\rangle |0\\rangle.$$\n", "\n", "\n", "__Obtaining a quantum speedup__:\n", "To see that QAA indeed provides a quantum speedup, suppose we use it to query an unsorted database with $N$ elements and $G$ _good_ elements. \n", "The classical algorithm for finding good entries is to query each element in the database until a good one is found. Thus, the classical solution requires $O(N/G)$ queries. \n", "A quantum solution would be to query the database in superposition using the state $1/\\sqrt{N}\\sum_i|j\\rangle$, where $j$ enumerates the $N$ elements of the database. \n", "The oracle prepares the state\n", "\n", "$$|\\psi\\rangle = \\sqrt{\\frac{G}{N}} |G\\rangle |1\\rangle + \\sqrt{\\frac{N-G}{N}} |B\\rangle |0\\rangle.$$\n", "\n", "Thus, $\\sqrt{a}=\\sin(\\theta)=\\sqrt{G/N}$ and $\\theta \\approx \\sqrt{G/N}$ for the typical scenario where $\\theta \\ll 1$.\n", "\n", "We then apply the QAA algorithm to amplify the amplitude of the good states, such that the probability of obtaining a _good_ outcome is amplified. \n", "To ensure that we measure a good outcome with high probability, we apply the Grover iterator $\\left\\lfloor\\frac{\\pi}{4\\theta}\\right\\rfloor=\\left\\lfloor\\frac{\\pi}{4}\\sqrt{\\frac{N}{G}}\\right\\rfloor$ times. \n", "In other words, we only need to query the oracle $O(\\sqrt{N/G})$ times in order to find a good outcome to the search problem with high probability.\n", "This outcome is a quadratic improvement over the $O(N/G)$ oracle calls required classically. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## CIRCUIT IMPLEMENTATION OF QAA" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "__Implementation of QAA on a QC__: Now that we have an intuitive understanding for QAA (after all, it is just a rotation, as illustrated previously), the final puzzle piece that remains to be solved is the actual implementation of the reflections $\\mathcal{R}_{B}$ and $\\mathcal{R}_{0}$ as a quantum circuit (since $\\mathcal{A}$ is given as input to the QAA problem). \n", "Rather than implementing $\\mathcal{R}_{0}$ below, we will show how to implement \n", "\n", "$$-\\mathcal{R}_{0} = \\mathbb{1} - 2|0\\rangle_{n+1} \\langle 0|,$$ \n", "\n", "which gives a minus sign to $|0\\rangle_{n+1}$ only, leaving all other states untouched. \n", "To compensate for this minus sign, overall we will show how to implement the unitary \n", "$$\\mathcal{Q}=\\mathcal{A} (-\\mathcal{R}_{0}) \\mathcal{A}^{\\dagger} (-\\mathcal{R}_{B}).$$\n", "\n", "__Implementation of $-\\mathcal{R}_{B}$__: First, let us consider \n", "\n", "$$-\\mathcal{R}_{B} = 2 |G\\rangle |1\\rangle \\langle 1|\\langle G| - \\mathbb{1},$$ \n", "\n", "which is a reflection about $|G\\rangle |1\\rangle$, because $-\\mathcal{R}_{B} |G\\rangle |1\\rangle = +1|G\\rangle |1\\rangle$ and $-\\mathcal{R}_{B} |B\\rangle |0\\rangle = -1|B\\rangle |0\\rangle$. \n", "This transformation can be achieved by applying $X_{n+1}Z_{n+1}X_{n+1}$ to the (last) ancilla qubit. \n", "This way, we obtain a minus sign whenever the ancilla is in the $|0\\rangle$ state. \n", "\n", "__Implementation of $-\\mathcal{R}_{0}$__: We must implement the transformation $|0, \\dots, 0\\rangle \\rightarrow -|0, \\dots, 0\\rangle$, while leaving all other states untouched. \n", "To this end, we can flip all the qubits (using single-qubit $X$ gates), flipping the sign of $|11...1\\rangle$, and flipping the qubits back. \n", "Thus, the last operation that remains to be defined explicitly is flipping the sign of $|11...1\\rangle$ , which can be done with ancilla qubits. \n", "One possible way to do this task is by using a multiply-controlled Toffoli gate:\n", "First apply a Pauli-$X$ gate to each qubit. \n", "Then apply the $N+1$ qubit Toffoli, controlled on all $N$ of the qubits we want to test, and targeted on a single ancilla qubit. \n", "If (and only if) all of the qubits were in the zero state, then the ancilla qubit will be flipped to $|1\\rangle$. \n", "We then apply a $Z$ gate to the ancilla qubit, so the overall wavefunction picks up a minus sign whenever all of the register qubits are in the $|0\\rangle$ state. \n", "Finally, we uncompute the ancilla by applying another $N+1$ qubit Toffoli gate." ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can decompose the $N+1$ qubit Toffoli gate into $N-1$ CCNOT (that is, 3 qubit Toffoli) gates and $N-1$ ancilla qubits, shown as follows for $N=4$ register qubits: " ] }, { "attachments": { "image.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABl8AAAQZCAYAAABLtxzUAAAgAElEQVR4AezdC5QdRZ0/8IyQEEdAcEMCSHiIAREID0lERDCgIiISBIX43jiJ7qpHXTXquvtPdtfXqhs96vHtqlGcKKiIGBEThQhiREwAQSEDAmJ8rYkQMSKe0/9TYYdNpnoyd2b63ttd9elzODPTt7uqfp8qkq77zU0mFA4CBAgQIECAAAECBAgQIECAAAECBAgQIECAAIHKBCZU1pKGCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECuGLRUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQqFBA+FIhpqYIECBAgAABAgQIECBAgAABAgQIECBAgAABAsIXa4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUKGA8KVCTE0RIECAAAECBAgQIECAAAECBAgQIECAAAECBIQv1gABAgQIECBAgAABAgQIECBAgAABAgQIECBAoEIB4UuFmJoiQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECAhfrAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQIUCwpcKMTVFgAABAgQIECBAgAABAgQIECBAgAABAgQIEBC+WAMECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgQoFhC8VYmqKAAECBAgQIECAAAECBAgQIECAAAECBAgQICB8sQYIECBAgAABAgQIECBAgAABAgQIECBAgAABAhUKCF8qxNQUAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQED4Yg0QIECAAAECBAgQIECAAAECWQhs2rSpWLZsWTF//vxi1qxZxZQpU4pJkyZt/S98H86F18I14VoHAQIECBAgQGCsAsKXscq5jwABAgQIECBAgAABAgQIEGiEwLp164p58+ZtDVkmTJhQtPJfCGXCPeFeBwECBAgQIEBgtALCl9GKuZ4AAQIECBAgQIAAAQIECBBohMDGjRu3fpKlp6enpcClLJQJ94ZPw4S2HAQIECBAgACBVgWEL61KuY4AAQIECBAgQIAAAQIECBBojMCaNWuK6dOnjzl0GRrEhLZCmw4CBAgQIECAQCsCwpdWlFxDgAABAgQIECBAgAABAgQINEZgxYoVRW9vb2XBy2AQE9oMbTsIECBAgAABAiMJCF9GEvI6AQIECBAgQIAAAQIECBAg0BiB1atXF5MnT648eBkMYELboQ8HAQIECBAgQGBHAsKXHel4jQABAgQIECBAgAABAgQIEGiMwIYNG4pp06a1LXgZDGBCH6EvBwECBAgQIEBgOAHhy3AyzhMgQIAAAQIECBAgQIAAAQKNEpg7d27bg5fBACb05SBAgAABAgQIDCcgfBlOxnkCBAgQIECAAAECBAgQIECgMQKrVq3qWPAyGMCEPh0ECBAgQIAAgTIB4UuZinMECBAgQIAAAQIECBAgQIBAowTmzJnT8fAl9OkgQIAAAQIECJQJCF/KVJxrtMDmzZuL/v7+YsGCBcXs2bOLvfbaq5g0adLW/8L34dzChQuL5cuXF+FaBwECBAgQIECAAAECBAg0W2BgYKDo6enpePgS+gx9OwgQIECAAAECQwWEL0NF/NxYgfXr1xd9fX1Fb29vyw/c4dpwT7jXQYAAAQIECBAgQIAAAQLNFFi6dGnL+8DBvzKsqq+hbwcBAgQIECBAYKiA8GWoiJ8bJ7Bly5Zi0aJFxcSJE8f8sB3uDW2EthwECBAgQIAAAQIECBAg0CyBuXPnjnk/ON4QJvTtIECAAAECBAgMFRC+DBXxc6MEwse7Z86cWdlDdmjLR8YbtQQMlgABAgQIECBAgAABAsWMGTMq2xeONowJfTsIECBAgAABAkMFhC9DRfzcGIG1a9cWU6dOrfwBO7QZ2nYQIECAAAECBAgQqJPA4sWLK3/2He2bzK6fYA4mMPD/gTVgDVgD1oA1YA2kvwaWLFky7q2A8GXchBrohkD4dEo7gpfBXzhD2z4B042Z1ScBAgQIECBAgMBwAsKX9Df5g/sRX821NWANWAPWgDVgDVgD3V0D4dl7vIfwZbyC7u+4QPh3War8q8aG+4Us9OHfgOn49OqQAAECBAgQIEBgGAHhS3c34MPtG5w3L9aANWANWAPWgDVgDaS3BoQvw2xKnE5bYNGiRR37qH/oy0GAAAECBAgQIECgDgLCl/Q29d6oMafWgDVgDVgD1oA1YA3Ucw0IX+qwAzKGjgqsX7++mDhxYsfCl9BX6NNBgAABAgQIECBAoNsCwpd6bsy9YWJerAFrwBqwBqwBa8AaSG8NCF+6vfvRf8cF+vr6Oha8DP6iGfp0ECBAgAABAgQIECBAgEB9BZYuXdrxveLgnjH07SBAgAABAgQIDBXwb74MFfFzbQU2b95c9Pb2dvyBOvQZ+nYQIECAAAECBAgQIECAQD0FBgYGip6eno7vF0Oft912Wz1RjIoAAQIECBDoqoDwpav8Oh+NQH9/f8cfpAf/JFPo20GAAAECBAgQIECAAAEC9RWYM2dOx/eMoU8HAQIECBAgQKBMQPhSpuJcLQUWLFjQ8QfpwfBl4cKFtTQxKAIECBAgQIAAAQIECBB4UGDlypUd3zOuWrUKPwECBAgQIECgVED4UsriZB0FZs+e3fEH6cHwJfTtIECAAAECBAgQIECAAIF6C8ydO7dj+8bQl4MAAQIECBAgMJyA8GU4GedrJzBlypSOPUQPhi6DX/faa6/aeRgQAQIECBAgQIAAAQIECGwvsGHDhmLatGlt3zuGPkJfDgIECBAgQIDAcAIdD18WL17c9oegwTfMfZ3AegID/x90Zw0sWbJkuF93nSdAgAABAgQIECBAoI0Cq1evLiZPnty2/XBoO/ThIECAAAECBAjsSED44s35tj2QetO/O2/6c6+HewiaHQQIECBAgAABAgQIdEdgxYoVRW9vb+X73dBmaNtBgAABAgQIEBhJQPgifKn8YdSb//V48988dHcehC8j/fbjdQIECBAgQIAAAQLtFVizZk0xffr0yva8oa3QpoMAAQIECBAg0IqA8EX4UtmDqDf7u/tmP/96+QtfWvktyDUECBAgQIAAAQIE2iuwcePGYv78+UVPT8+Y977h3tBGaMtBgAABAgQIEGhVQPgifBnzA6g3++v1Zr/5qNd8CF9a/W3IdQQIECBAgAABAgTaL7Bu3bpi3rx5xaRJk1reA4drwz3hXgcBAgQIECBAYLQCHQ9fRjtA1xMYFOjv72/5IbnqIGL58uWDw/CVAAECBAgQIECAAAECBBoqED69smzZsq2fZJk1a9bWfxdmp512KsJ/4d9z2Xfffbe+Fq7xSZeGTrJhEyBAgACBmggIX2oyEYYxssDmzZvb8g8mjhTUhAfw0LeDAAECBAgQIECAAAECBNISCKHL0D3h3/72t7SKVA0BAgQIECDQFQHhS1fYdTpWgb6+vujBeOiDctU/hz4dBAgQIECAAAECBAgQIJCewM477xztMR944IH0ClURAQIECBAg0HEB4UvHyXU4HoH169cXEydOjB6Oqw5cBtsLfYU+HQQIECBAgAABAgQIECCQnkDZ/vKvf/1reoWqiAABAgQIEOi4gPCl4+Q6HK/AokWLOha+hL4cBAgQIECAAAECBAgQIJCmwC677BLtL++///40i1UVAQIECBAg0FEB4UtHuXVWhcCWLVuKmTNnRg/Ig59Wqepr6CP05SBAgAABAgQIECBAgACBNAUmT54c7S3tA9Oca1URIECAAIFOCwhfOi2uv0oEBgYGiqlTp0YPyVUFL6Ht0IeDAAECBAgQIECAAAECBNIVePjDHx7tK//85z+nW7DKCBAgQIAAgY4JCF86Rq2jqgXWrl3blgAmBC+hbQcBAgQIECBAgAABAgQIpC3Q29sbhS/33Xdf2kWrjgABAgQIEOiIgPClI8w6aZdA+HRKlX8FWWjLJ17aNVvaJUCAAAECBAgQIECAQL0Edt111yh82bx5c70GaTQECBAgQIBAIwWEL42cNoPeViD8fbyLFi0qJk6cGD00t/rXkIV7Qxv+bt9tZX1PgAABAgQIECBAgACBtAV22223aB957733pl206ggQIECAAIGOCAhfOsKsk04IrF+/vujr6yvKPjY+XAgTrg33hHsdBAgQIECAAAECBAgQIJCXwO677x6FL/fcc09eCKolQIAAAQIE2iIgfGkLq0a7KRA+It7f318sWLCgOPDAA7eGMTvttFMR/nvEIx5RHHPMMVtfC9f4OHk3Z0rfBAgQIECAAAECBAgQ6K7AHnvsEYUvmzZt6u6g9E6AAAECBAgkISB8SWIaFTGcwNFHHx09SK9du3a4y50nQIAAAQIECBAgQIAAgYwE9txzz2jPuHHjxowElEqAAAECBAi0S0D40i5Z7dZCQPhSi2kwCAIECBAgQIAAAQIECNRS4FGPelQUvvzhD3+o5VgNigABAgQIEGiWgPClWfNltKMUEL6MEszlBAgQIECAAAECBAgQyEhgypQpUfjy+9//PiMBpRIgQIAAAQLtEhC+tEtWu7UQOOqoo6IH6XXr1tVibAZBgAABAgQIECBAgAABAt0V2GuvvaI94+9+97vuDkrvBAgQIECAQBICwpckplERwwkIX4aTcZ4AAQIECBAgQIAAAQIEpk6dGoUvv/3tb8EQIECAAAECBMYtIHwZN6EG6iwgfKnz7BgbAQIECBAgQIAAAQIEuiuw9957R+HLr3/96+4OSu8ECBAgQIBAEgLClySmURHDCcycOTN6kL7++uuHu9x5AgQIECBAgAABAgQIEMhIYJ999on2jBs2bMhIQKkECBAgQIBAuwSEL+2S1W4tBIQvtZgGgyBAgAABAgQIECBAgEAtBfbdd98ofPnVr35Vy7EaFAECBAgQINAsAeFLs+bLaEcpIHwZJZjLCRAgQIAAAQIECBAgkJHAfvvtF4Uvd999d0YCSiVAgAABAgTaJSB8aZesdmshcOSRR0YP0jfccEMtxmYQBAgQIECAAAECBAgQINBdgenTp0d7xrvuuqu7g9I7AQIECBAgkISA8CWJaVTEcALCl+FknCdAgAABAgQIECBAgACB/fffPwpf7rzzTjAECBAgQIAAgXELCF/GTaiBOgsIX+o8O8ZGgAABAgQIECBAgACB7goccMABUfhyxx13dHdQeidAgAABAgSSEBC+JDGNihhO4IgjjogepG+88cbhLneeAAECBAgQIECAAAECBDISOOigg6I94+23356RgFIJECBAgACBdgkIX9olq91aCAhfajENBkGAAAECBAgQIECAAIFaCjzmMY+JwpfbbrutlmM1KAIECBAgQKBZAsKXZs2X0Y5SQPgySjCXEyBAgAABAgQIECBAICOBgw8+OApfBgYGMhJQKgECBAgQINAuAeFLu2S1WwuBww8/PHqQ/ulPf1qLsRkEAQIECBAgQIAAAQIECHRXYMaMGdGe8dZbb+3uoPROgAABAgQIJCEgfEliGhUxnIDwZTgZ5wkQIECAAAECBAgQIEDgkEMOicKXW265BQwBAgQIECBAYNwCwpdxE2qgzgLClzrPjrERIECAAAECBAgQIECguwKHHnpoFL78/Oc/7+6g9E6AAAECBAgkISB8SWIaFTGcgPBlOBnnCRAgQIAAAQIECBAgQOCwww6Lwpebb74ZDAECBAgQIEBg3ALCl3ETaqDOAo9//OOjB+mbbrqpzkM2NgIECBAgQIAAAQIECBDokIA9Y4egdUOAAAECBDIUEL5kOOk5lexBOqfZVisBAgQIECBAgAABAgRGJ+BvSxidl6sJECBAgACB1gWEL61bubKBAsKXBk6aIRMgQIAAAQIECBAgQKBDAkceeWT0tyXccMMNHepdNwQIECBAgEDKAsKXlGdXbYW/v9ciIECAAAECBAgQIECAAIHhBGbOnBmFL9dff/1wlztPgAABAgQIEGhZQPjSMpULmyggfGnirBkzAQIECBAgQIAAAQIEOiNw1FFHReHLunXrOtO5XggQIECAAIGkBYQvSU+v4oQv1gABAgQIECBAgAABAgQIDCdwzDHHROHL2rVrh7vceQIECBAgQIBAywLCl5apXNhEgcc97nHRg/TPfvazJpZizAQIECBAgAABAgQIECBQscCxxx4b7Rmvu+66invRHAECBAgQIJCjgPAlx1nPqGbhS0aTrVQCBAgQIECAAAECBAiMUuAJT3hCFL78+Mc/HmUrLidAgAABAgQIxALCl9jEmYQEhC8JTaZSCBAgQIAAAQIECBAgULHAcccdF4Uv1157bcW9aI4AAQIECBDIUUD4kuOsZ1TzoYceGj1I//znP89IQKkECBAgQIAAAQIECBAgMJzA7Nmzoz3jmjVrhrvceQIECBAgQIBAywLCl5apXNhEAeFLE2fNmAkQIECAAAECBAgQINAZgSc+8YlR+PLDH/6wM53rhQABAgQIEEhaQPiS9PQqTvhiDRAgQIAAAQIECBAgQIDAcALHH398FL5cc801w13uPAECBAgQIECgZQHhS8tULmyiwCGHHBI9SN9yyy1NLMWYCRAgQIAAAQIECBAgQKBigRNOOCHaM1599dUV96I5AgQIECBAIEcB4UuOs55RzcKXjCZbqQQIECBAgAABAgQIEBilwJOf/OQofLnqqqtG2YrLCRAgQIAAAQKxgPAlNnEmIQHhS0KTqRQCBAgQIECAAAECBAhULHDiiSdG4cv3v//9invRHAECBAgQIJCjgPAlx1nPqGbhS0aTrVQCBAgQIECAAAECBAiMUuCkk06Kwpcrr7xylK24nAABAgQIECAQCwhfYhNnEhKYMWNG9CB96623JlShUggQIECAAAECBAgQIEBgrAInn3xytGe84oorxtqc+wgQIECAAAECDwkIXx6i8E2KAsKXFGdVTQQIECBAgAABAgQIEKhG4KlPfWoUvnzve9+rpnGtECBAgAABAlkLCF+ynv70ixe+pD/HKiRAgAABAgQIECBAgMBYBU455ZQofFm1atVYm3MfAQIECBAgQOAhAeHLQxS+SVHgsY99bPQgvX79+hRLVRMBAgQIECBAgAABAgQIjFLg1FNPjfaMK1euHGUrLidAgAABAgQIxALCl9jEmYQEhC8JTaZSCBAgQIAAAQIECBAgULHA0572tCh8+c53vlNxL5ojQIAAAQIEchQQvuQ46xnVLHzJaLKVSoAAAQIECBAgQIAAgVEKPOMZz4jCl8svv3yUrbicAAECBAgQIBALCF9iE2cSEjj44IOjB+mBgYGEKlQKAQIECBAgQIAAAQIECIxV4LTTTov2jJdddtlYm3MfAQIECBAgQOAhAeHLQxS+SVFA+JLirKqJAAECBAgQIECAAAEC1Qg885nPjMKXb33rW9U0rhUCBAgQIEAgawHhS9bTn37xwpf051iFBAgQIECAAAECBAgQGKvA6aefHoUvK1asGGtz7iNAgAABAgQIPCQgfHmIwjcpCjzmMY+JHqRvu+22FEtVEwECBAgQIECAAAECBAiMUuCMM86I9oyXXnrpKFtxOQECBAgQIEAgFhC+xCbOJCQgfEloMpVCgAABAgQIECBAgACBigWe/exnR+HLN77xjYp70RwBAgQIECCQo4DwJcdZz6hm4UtGk61UAgQIECBAgAABAgQIjFLgzDPPjMKXSy65ZJStuJwAAQIECBAgEAsIX2ITZxISOOigg6IH6dtvvz2hCpVCgAABAgQIECBAgAABAmMVOOuss6I948UXXzzW5txHgAABAgQIEHhIQPjyEIVvUhQQvqQ4q2oiQIAAAQIECBAgQIBANQJz586Nwpevfe1r1TSuFQIECBAgQCBrAeFL1tOffvHCl/TnWIUECBAgQIAAAQIECBAYq8DZZ58dhS9f/epXx9qc+wgQIECAAAECDwkIXx6i8E2KAsKXFGdVTQQIECBAgAABAgQIEKhG4JxzzonCl4suuqiaxrVCgAABAgQIZC0gfMl6+tMv/sADD4wepH/xi1+kX7gKCRAgQIAAAQIECBAgQGBEgXPPPTfaM1544YUj3ucCAgQIECBAgMBIAsKXkYS83mgB4Uujp8/gCRAgQIAAAQIECBAg0FaB5z3veVH48uUvf7mtfWqcAAECBAgQyENA+JLHPGdbpfAl26lXOAECBAgQIECAAAECBEYUOO+886LwZfny5SPe5wICBAgQIECAwEgCwpeRhLzeaIEDDjggepC+4447Gl2TwRMgQIAAAQIECBAgQIBANQLnn39+tGfs7++vpnGtECBAgAABAlkLCF+ynv70ixe+pD/HKiRAgAABAgQIECBAgMBYBebNmxeFL1/84hfH2pz7CBAgQIAAAQIPCQhfHqLwTYoCwpcUZ1VNBAgQIECAAAECBAgQqEbghS98YRS+XHDBBdU0rhUCBAgQIEAgawHhS9bTn37x+++/f/Qgfeedd6ZfuAoJECBAgAABAgQIECBAIBLYtGlTsWzZsmL+/PnFrFmzil122SXaM5588slbrwnXOggQIECAAAECYxUQvoxVzn2NEBC+NGKaDJIAAQIECBAgQIAAAQJtFVi3bl0R/oqxSZMmRWHLhAkTSs+Fa8M94V4HAQIECBAgQGC0AsKX0Yq5vlECwpdGTZfBEiBAgAABAgQIECBAoFKBjRs3bv2US09PT2nAMlzwsu35cG/4pExoy0GAAAECBAgQaFVA+NKqlOsaKTB9+vToAfuuu+5qZC0GTYAAAQIECBAgQIAAAQKtC6xZs6Yo2xNuG6yM5vvQVmjTQYAAAQIECBBoRUD40oqSaxorUPagLXxp7HQaOAECBAgQIECAAAECBFoSWLFiRdHb2xv9YbzRhC1l14Y2Q9sOAgQIECBAgMBIAsKXkYS83mgB4Uujp8/gCRAgQIAAAQIECBAgMGqB1atXF5MnT648eBkMY0LboQ8HAQIECBAgQGBHAsKXHel4rfEC++23X/TA/ctf/rLxdSmAAAECBAgQIECAAAECBGKBDRs2FNOmTYv2gYPBSVVfQx+hLwcBAgQIECBAYDgB4ctwMs4nISB8SWIaFUGAAAECBAgQIECAAIGWBObOndv24GUwwAl9OQgQIECAAAECwwkIX4aTcT4JAeFLEtOoCAIECBAgQIAAAQIECIwosGrVqo4FL4MBTOjTQYAAAQIECBAoExC+lKk4l4yA8CWZqVQIAQIECBAgQIAAAQIEdigwZ86cjocvoU8HAQIECBAgQKBMQPhSpuJcowU2b95c9Pf3FwsWLCgmTZoUPXwfffTRxcKFC4vly5cX4VoHAQIECBAgQIAAAQIECDRbYGBgoOjp6Yn2f4OfUGnX19Bn6NtBgAABAgQIEBgqIHwZKuLnxgqsX7++6OvrK3p7e1t+4A7XhnvCvQ4CBAgQIECAAAECBAgQaKbA0qVLW94HVh3EhL4dBAgQIECAAIGhAsKXoSJ+bpzAli1bikWLFhUTJ04c88N2uDe0EdpyECBAgAABAgQIEKijwOLFi8f8vFv1m83am2AuJjDw/4E1YA1YA9aANWANpLsGlixZMu4tgfBl3IQa6KZA+Hj3zJkzK9v4hLZ8ZLybM6pvAgQIECBAgACB4QSEL+lu7r1xY26tAWvAGrAGrAFrwBqo1xoIz97jPYQv4xV0f9cE1q5dW0ydOrWy4GXwF7jQZmjbQYAAAQIECBAgQKBOAsKXem3IB/cPvpoXa8AasAasAWvAGrAG0lsDwpc67YSMpaMC4dMp7QheBn+hDG37BExHp1RnBAgQIECAAAECIwgIX9Lb1A/uP3w1t9aANWANWAPWgDVgDdRrDQhfRticeDlNgfDvslT5V40N9wtb6MO/AZPmGlIVAQIECBAgQKCJAsKXem3Ih9tHOG+erAFrwBqwBqwBa8AaaP4aEL40ccdkzOMWWLRoUeV/1dhwvyCGvhwECBAgQIAAAQIECBAgUG+BGTNmdGyfOHT/eMghh9Qbx+gIECBAgACBrgj4N1+6wq7TsQqsX7++mDhxYsceqkNfoU8HAQIECBAgQIAAAQIECNRXYO7cuR3bJw4NX0LfDgIECBAgQIDAUAHhy1ARP9daoK+vr+MP1KFPBwECBAgQIECAAAECBAjUV2Dp0qUd3ysOhjChbwcBAgQIECBAYKiA8GWoiJ9rK7B58+ait7e34w/Uoc/Qt4MAAQIECBAgQIAAAQIE6ikwMDBQ9PT0dHy/GPq87bbb6oliVAQIECBAgEBXBYQvXeXX+WgE+vv7O/4gPfgnmULfDgIECBAgQIAAAQIECBCor8CcOXM6vmcMfToIECBAgAABAmUCwpcyFedqKbBgwYKOP0gPhi8LFy6spYlBESBAgAABAgQIECBAgMCDAitXruz4nnHVqlX4CRAgQIAAAQKlAsKXUhYn6ygwe/bsjj9ID4YvoW8HAQIECBAgQIAAAQIECNRbYO7cuR3bN4a+HAQIECBAgACB4QSEL8PJOF87gSlTpnTsIXowdBn8utdee9XOw4AIECBAgAABAgQIECBAYHuBDRs2FNOmTWv73jH0EfpyECBAgAABAgSGE+h4+LJ48eK2PwQNvmHu6wTWExj4/6A7a2DJkiXD/brrPAECBAgQIECAAAECbRRYvXp1MXny5Lbth0PboQ8HAQIECBAgQGBHAsIXb8637YHUm/7dedOfez3cQ9DsIECAAAECBAgQIECgOwIrVqwoent7K9/vhjZD2w4CBAgQIECAwEgCwhfhS+UPo978r8eb/+ahu/MgfBnptx+vEyBAgAABAgQIEGivwJo1a4rp06dXtucNbYU2HQQIECBAgACBVgSEL8KXyh5Evdnf3Tf7+dfLX/jSym9BriFAgAABAgQIECDQXoGNGzcW8+fPL3p6esa89w33hjZCWw4CBAgQIECAQKsCwhfhy5gfQL3ZX683+81HveZD+NLqb0OuI0CAAAECBAgQINB+gXXr1hXz5s0rJk2a1PIeOFwb7gn3Oq4va5cAACAASURBVAgQIECAAAECoxXoePgy2gG6nsCgQH9/f8sPyVUHEcuXLx8chq8ECBAgQIAAAQIECBAg0FCB8OmVZcuWbf0ky6xZs0r/XZijjz566zU+6dLQSTZsAgQIECBQEwHhS00mwjBGFti8eXPpg3HVQcvQ9sI/qBj6dhAgQIAAAQIECBAgQIBAWgLveMc7oj/k97a3vS2tIlVDgAABAgQIdEVA+NIVdp2OVaCvry96MB4allT9c+jTQYAAAQIECBAgQIAAAQLpCbzzne+M9phvfetb0ytURQQIECBAgEDHBYQvHSfX4XgE1q9fX0ycODF6OK46cBlsL/QV+nQQIECAAAECBAgQIECAQHoC73rXu6L95Vve8pb0ClURAQIECBAg0HEB4UvHyXU4XoFFixZFD8eDYUnVX0NfDgIECBAgQIAAAQIECBBIU+Dd7353tL9885vfnGaxqiJAgAABAgQ6KiB86Si3zqoQ2LJlSzFz5szoAbnq4CX0EfpyECBAgAABAgQIECBAgECaAu95z3uiveWb3vSmNItVFQECBAgQINBRAeFLR7l1VpXAwMBAMXXq1OghuaoAJrQd+nAQIECAAAECBAgQIECAQLoC733ve6N95Rvf+MZ0C1YZAQIECBAg0DEB4UvHqHVUtcDatWvbEsCE4CW07SBAgAABAgQIECBAgACBtAXe9773ReHLG97whrSLVh0BAgQIECDQEQHhS0eYddIugfDplCr/CrLQlk+8tGu2tEuAAAECBAgQIECAAIF6CSxdujQKX17/+tfXa5BGQ4AAAQIECDRSQPjSyGkz6G0Fwr/LsmjRomLixInRQ3Orfw1ZuDe04d942VbW9wQIECBAgAABAgQIEEhb4P3vf3+0j3zd616XdtGqI0CAAAECBDoiIHzpCLNOOiGwfv36oq+vr+jt7Y0enocLYcK14Z5wr4MAAQIECBAgQIAAAQIE8hL4wAc+EO0fX/va1+aFoFoCBAgQIECgLQLCl7awarSbAps3by76+/uLBQsWFDvvvHP0IH3sscdufS1cE651ECBAgAABAgQIECBAgECeAh/84AejPeNrXvOaPDFUTYAAAQIECFQqIHyplFNjdRPYc889owfpjRs31m2YxkOAAAECBAgQIECAAAECXRD40Ic+FO0ZX/3qV3dhJLokQIAAAQIEUhMQvqQ2o+rZTkD4sh2HHwgQIECAAAECBAgQIEBgG4EPf/jDUfjyqle9apsrfEuAAAECBAgQGJuA8GVsbu5qiIDwpSETZZgECBAgQIAAAQIECBDogsBHPvKRKHz5h3/4hy6MRJcECBAgQIBAagLCl9RmVD3bCeyxxx7Rg/SmTZu2u8YPBAgQIECAAAECBAgQIJCnwEc/+tFoz/jKV74yTwxVEyBAgAABApUKCF8q5dRY3QSEL3WbEeMhQIAAAQIECBAgQIBAfQQ+9rGPReHLK17xivoM0EgIECBAgACBxgoIXxo7dQbeioDwpRUl1xAgQIAAAQIECBAgQCBPgU984hNR+LJw4cI8MVRNgAABAgQIVCogfKmUU2N1E3jkIx8ZPUj/8Y9/rNswjYcAAQIECBAgQIAAAQIEuiDwyU9+Mtoz9vX1dWEkuiRAgAABAgRSExC+pDaj6tlOQPiyHYcfCBAgQIAAAQIECBAgQGAbgU996lNR+PLyl798myt8S4AAAQIECBAYm4DwZWxu7mqIgPClIRNlmAQIECBAgAABAgQIEOiCwKc//ekofJk/f34XRqJLAgQIECBAIDUB4UtqM6qe7QR233336EH6nnvu2e4aPxAgQIAAAQIECBAgQIBAngKf+cxnoj3jy172sjwxVE2AAAECBAhUKiB8qZRTY3UTEL7UbUaMhwABAgQIECBAgAABAvUR+OxnPxuFLy996UvrM0AjIUCAAAECBBorIHxp7NQZeCsCwpdWlFxDgAABAgQIECBAgACBPAU+97nPReHLS17ykjwxVE2AAAECBAhUKiB8qZRTY3UT2G233aIH6XvvvbduwzQeAgQIECBAgAABAgQIEOiCwOc///loz/iiF72oCyPRJQECBAgQIJCagPAltRlVz3YCwpftOPxAgAABAgQIECBAgAABAtsIfOELX4jClxe+8IXbXOFbAgQIECBAgMDYBIQvY3NzV0MEhC8NmSjDJECAAAECBAgQIECAQBcELrjggih8ecELXtCFkeiSAAECBAgQSE1A+JLajKpnOwHhy3YcfiBAgAABAgQIECBAgACBbQT6+/uj8OX888/f5grfEiBAgAABAgTGJiB8GZubuxoisOuuu0YP0ps3b27I6A2TAAECBAgQIECAAAECBNopsHz58mjPeN5557WzS20TIECAAAECmQgIXzKZ6FzLFL7kOvPqJkCAAAECBAgQIECAwMgCX/rSl6Lw5fnPf/7IN7qCAAECBAgQIDCCgPBlBCAvN1tA+NLs+TN6AgQIECBAgAABAgQItFPgwgsvjMKXc889t51dapsAAQIECBDIRED4kslE51rmIx7xiOhB+k9/+lOuHOomQIAAAQIECBAgQIAAgW0ELrroomjPeM4552xzhW8JECBAgAABAmMTEL6Mzc1dDREQvjRkogyTAAECBAgQIECAAAECXRD4yle+EoUvz33uc7swEl0SIECAAAECqQkIX1KbUfVsJyB82Y7DDwQIECBAgAABAgQIECCwjcDXvva1KHw5++yzt7nCtwQIECBAgACBsQkIX8bm5q6GCPT29kYP0vfdd19DRm+YBAgQIECAAAECBAgQINBOgYsvvjjaM5511lnt7FLbBAgQIECAQCYCwpdMJjrXMoUvuc68ugkQIECAAAECBAgQIDCywNe//vUofHnOc54z8o2uIECAAAECBAiMICB8GQHIy80WEL40e/6MngABAgQIECBAgAABAu0UuOSSS6Lw5cwzz2xnl9omQIAAAQIEMhEQvmQy0bmW+fCHPzx6kP7zn/+cK4e6CRAgQIAAAQIECBAgQGAbgUsvvTTaM55xxhnbXOFbAgQIECBAgMDYBIQvY3NzV0MEhC8NmSjDJECAAAECBAgQIECAQBcEvvnNb0bhy7Oe9awujESXBAgQIECAQGoCwpfUZlQ92wkIX7bj8AMBAgQIECBAgAABAgQIbCOwYsWKKHw5/fTTt7nCtwQIECBAgACBsQkIX8bm5q6GCEyePDl6kN6yZUtDRm+YBAgQIECAAAECBAgQINBOgcsuuyzaM5522mnt7FLbBAgQIECAQCYCwpdMJjrXMoUvuc68ugkQIECAAAECBAgQIDCywLe//e0ofHnGM54x8o2uIECAAAECBAiMICB8GQHIy80WEL40e/6MngABAgQIECBAgAABAu0UuPzyy6Pw5elPf3o7u9Q2AQIECBAgkImA8CWTic61TOFLrjOvbgIECBAgQIAAAQIECIwssHLlyih8OfXUU0e+0RUECBAgQIAAgREEhC8jAHm52QK77LJL9CD9l7/8pdlFGT0BAgQIECBAgAABAgQIVCKwatWqaM94yimnVNK2RggQIECAAIG8BYQvec9/8tULX5KfYgUSIECAAAECBAgQIEBgzALf/e53o/Blzpw5Y27PjQQIECBAgACBQQHhy6CEr0kKCF+SnFZFESBAgAABAgQIECBAoBKBK664IgpfTj755Era1ggBAgQIECCQt4DwJe/5T776SZMmRQ/S999/f/J1K5AAAQIECBAgQIAAAQIERha48soroz3jSSedNPKNriBAgAABAgQIjCAgfBkByMvNFhC+NHv+jJ4AAQIECBAgQIAAAQLtFFi9enUUvjzlKU9pZ5faJkCAAAECBDIREL5kMtG5lil8yXXm1U2AAAECBAgQIECAAIGRBa666qoofDnxxBNHvtEVBAgQIECAAIERBIQvIwB5udkCEydOjB6k//rXvza7KKMnQIAAAQIECBAgQIAAgUoErr766mjPeMIJJ1TStkYIECBAgACBvAWEL3nPf/LVC1+Sn2IFEiBAgAABAgQIECBAYMwCP/jBD6Lw5UlPetKY23MjAQIECBAgQGBQQPgyKOFrkgLClySnVVEECBAgQIAAAQIECBCoROCaa66Jwpfjjz++krY1QoAAAQIECOQtIHzJe/6Tr37nnXeOHqQfeOCB5OtWIAECBAgQIECAAAECBAiMLLBmzZpozzh79uyRb3QFAQIECBAgQGAEAeHLCEBebraA8KXZ82f0BAgQIECAAAECBAgQaKfAj370oyh8mTVrVju71DYBAgQIECCQiYDwJZOJzrVM4UuuM69uAgQIECBAgAABAgQIjCxw7bXXRuHLcccdN/KNriBAgAABAgQIjCAgfBkByMvNFthpp52iB+m//e1vzS7K6AkQIECAAAECBAgQIECgEoHrrrsu2jMee+yxlbStEQIECBAgQCBvAeFL3vOffPXCl+SnWIEECBAgQIAAAQIECBAYs8BPfvKTKHw55phjxtyeGwkQIECAAAECgwLCl0EJX5MUEL4kOa2KIkCAAAECBAgQIECAQCUCa9eujcKXo48+upK2NUKAAAECBAjkLSB8yXv+k69e+JL8FCuQAAECBAgQIECAAAECYxa4/vrro/Bl5syZY27PjQQIECBAgACBQQHhy6CEr0kKPOxhD4sepJMsVFEECBAgQIAAAQIECBAgMGqBG264IdozHnnkkaNuxw0ECBAgQIAAgaECwpehIn5OSkD4ktR0KoYAAQIECBAgQIAAAQKVCtx4441R+HLEEUdU2ofGCBAgQIAAgTwFhC95zns2VQtfsplqhRIgQIAAAQIECBAgQGDUAjfddFMUvjz+8Y8fdTtuIECAAAECBAgMFRC+DBXxc1ICPT090YN0UgUqhgABAgQIECBAgAABAgTGLHDzzTdHe8bDDjtszO018cZNmzYVy5YtK+bPn1/MmjWrmDJlSjFp0qSt/4Xvw7nwWrgmXOsgQIAAAQIEWhMQvrTm5KqGCghfGjpxhk2AAAECBAgQIECAAIEOCPzsZz+LwpfHPe5xHei5+12sW7eumDdv3taQZcKECZFD2bkQyoR7wr0OAgQIECBAYMcCwpcd+3i14QLCl4ZPoOETIECAAAECBAgQIECgjQK33HJLFDoceuihbeyx+01v3Lhx6ydZyvbLZYFL2blwb/g0TGjLQYAAAQIECJQLCF/KXZxNRKDsITGR0pRBgAABAgQIECBAgAABAuMUuPXWW6PwZcaMGeNstb63r1mzppg+fXpUc9neuZVzoa3QpoMAAQIECBCIBYQvsYkzCQmUPSwmVJ5SCBAgQIAAAQIECBAgQGAcAuvXr4+CiMc+9rHjaLG+t65YsaLo7e2N6i3bN4/mXGgztO0gQIAAAQIEthcQvmzv4afEBMoeGBMrUTkECBAgQIAAAQIECBAgMEaBgYGBKIw4+OCDx9hafW9bvXp1MXny5KjWsj3zWM6FtkMfDgIECBAgQOD/BIQv/2fhuwQFyh4aEyxTSQQIECBAgAABAgQIECAwBoHbb789CiQOOuigMbRU31s2bNhQTJs2LaqzbL88nnOhj9CXgwABAgQIEHhQQPhiJSQtUPbgmHTBiiNAgAABAgQIECBAgACBlgV+8YtfRKHEgQce2PL9Tbhw7ty5UY1le+UqzoW+HAQIECBAgMCDAsIXKyFpgbKHx6QLVhwBAgQIECBAgAABAgQItCxwxx13RMHEAQcc0PL9db9w1apVUX1l++Qqz4U+HQQIECBAgEBRCF+sgqQFhj5A9vT0JF2v4ggQIECAAAECBAgQIECgdYG77rorCiemT5/eegM1v3LOnDlRfUP3yVX/HPp0ECBAgAABAsIXayBxgaEPkcKXxCdceQQIECBAgAABAgQIEBiFwC9/+csonNhvv/1G0UJ9Lx0YGCjCHnjovrjdP4c+Q98OAgQIECCQu4BPvuS+AhKvf+hDpfAl8QlXHgECBAgQIECAAAECBEYhcPfdd0fhxKMf/ehRtFDfS5cuXRrVNnSP3K6fQ98OAgQIECCQu4DwJfcVkHj9Qx8khS+JT7jyCBAgQIAAAQIECBAgMAqBDRs2RAHFPvvsM4oW6nvp3Llzo9qG7pHb9XPo20GAAAECBHIXEL7kvgISr3/og+TDHvawxCtWHgECBAgQIECAAAECBAi0KvDrX/86Cij23nvvVm+v9XUzZsyIahu6R27Xz6FvBwECBAgQyF1A+JL7Cki8/qEPksKXxCdceQQIECBAgAABAgQIEBiFwG9+85sooJg2bdooWqjvpbvttltU29A9crt+Dn07CBAgQIBA7gLCl9xXQIL1b9q0qVi2bFkxf/780gfNWbNmbX0tXBOudRAgQIAAAQIECBBogsDixYtLn2/b9eapdifwnsDA/wfWgDVgDVgD1oA1kOcaWLJkybi3CMKXcRNqoC4C69atK+bNm1dMmjSp5U1SuDbcE+51ECBAgAABAgQIEKizgPAlz42/N3zMuzVgDVgD1oA1YA1YA51fA+HZe7yH8GW8gu7vusDGjRu3fpKlp6en5dBl6C9Y4d7wSZnQloMAAQIECBAgQIBAHQWEL53fdA/dN/jZHFgD1oA1YA1YA9aANZDHGhC+1HFHZEwdFVizZk0xffr0MYcuQ3+xDG2FNh0ECBAgQIAAAQIE6iYgfMljoz90j+Jn824NWAPWgDVgDVgD1kDn14DwpW67IePpqMCKFSuK3t7eyoKXwV/EQpuhbQcBAgQIECBAgACBOgkIXzq/6R7cI/jK3hqwBqwBa8AasAasgbzWgPClTjshY+mowOrVq4vJkydXHrwM/iIa2g59OAgQIECAAAECBAgQIEAgXYE//vGP0b7ykY98ZBIFDwwMFOP567kH98ej/Rr6vO2225IwVAQBAgQIEBiPgH/zZTx67u2KwIYNG4pp06ZFD8ijfSAc6frQR+jLQYAAAQIECBAgQIAAAQJpCtxzzz3R3nL33XdPptg5c+ZE9Y20Fx7v66FPBwECBAgQIFAUwheroHECc+fO7djDY+jLQYAAAQIECBAgQIAAAQJpCmzevDnaX+66667JFLty5cqovvGGKyPdv2rVqmT8FEKAAAECBMYjIHwZj557Oy4QHuJGetCr+nUPjh2fZh0SIECAAAECBAgQIECgIwJ/+tOfoj3mIx7xiI703alO/AHGTknrhwABAgQIbC8gfNnew081F/CR6ZpPkOERIECAAAECBAgQIECgQQL33XdfFL709vY2qIKRh+qv7h7ZyBUECBAgQKAdAsKXdqhqsy0C3fzHAkPfDgIECBAgQIAAAQIECBBIS2DLli1R+DJ58uS0iiyKYvXq1UWoq+q/KWKwvdB26MNBgAABAgQI/J+A8OX/LHxXc4GlS5e27UFx8IFxuK+hbwcBAgQIECBAgAABAgQIpCXwl7/8Jdpn7rLLLmkV+b/VrFixogif6hlu3zvW86HN0LaDAAECBAgQ2F5A+LK9h59qLNDJv6d26ENn6NtBgAABAgQIECBAgAABAmkJ3H///VEYMWnSpLSK3KaaNWvWFNOnT49qHroHbvXn0FZo00GAAAECBAjEAsKX2MSZmgrMmDGjsgfEVh8kB68LfTsIECBAgAABAgQIECBAIC2BBx54INpn7rzzzmkVOaSajRs3FvPnzy96enqi2gf3wCN9DfeGNkJbDgIECBAgQKBcQPhS7uJsDQV22223MT8YjvTgONLroW8HAQIECBAgQIAAAQIECKQl8Le//S3aZ+60005pFTlMNevWrSvmzZtXhE/6jLQnHnw9XBvuCfc6CBAgQIAAgR0LdDx8Wbx4ccu/qQ/+5u7rBGYTGPj/oFlrYMmSJTv+1derBAgQIECAAAECBAjUQmDoXuthD3tYLcbVqUGET68sW7Zs6ydZZs2aVfr+Q/iUS7jGJ106NSv6IUCAAIEUBIQv3tQvfbAa+vDp52a98W++uj9fIWh2ECBAgAABAgQIECBQf4Gy/VP9R92+EfJon62WCRAgQCAvAeGL8EX4Yg1YA21YA8KXvH4zVS0BAgQIECBAgEBzBYQN288dj+09/ESAAAECBMYqIHxpw5uuZQ8qznX/kwjmwBx0cg0IX8b625L7CBAgQIAAAQIECHRWoOwfnu/sCOrVW9m+qV4jNBoCBAgQINAMAeGL8MWnHqwBa6ANa0D40ozfBI2SAAECBAgQIECAwE477RTtiXJWEb7kPPtqJ0CAAIEqBToevlQ5eG3lJTAwMFCU/YmksgfDKs+FPm+77ba8sFVLgAABAgQIECBAgACBTAR23nnnKHx54IEHMqk+LrNsPx1f5QwBAgQIECAwkoDwZSQhr9dKYM6cOdFDcdmDYZXnQp8OAgQIECBAgAABAgQIEEhTYOLEidE+869//WuaxbZQVdl+uoXbXEKAAAECBAgMERC+DAHxY70FVq5cGT0Ulz0YVnlu1apV9UYxOgIECBAgQIAAAQIECBAYs8CkSZOifeb9998/5vaafmPZfrrpNRk/AQIECBDohoDwpRvq+hyXwNy5c6MH47KHwyrOhb4cBAgQIECAAAECBAgQIJCuwOTJk6M95pYtW9IteITKyvbSI9ziZQIECBAgQKBEQPhSguJUvQU2bNhQTJs2LXo4LntAHM+50Efoy0GAAAECBAgQIECAAAEC6Qo8/OEPj/aXf/7zn9MteITKyvbRI9ziZQIECBAgQKBEQPhSguJU/QVWr15dlP3ppLKHxLGcC22HPhwECBAgQIAAAQIECBAgkLZAb29vFL7cd999aRe9g+rK9tA7uNxLBAgQIECAwDACwpdhYJyuv8CKFSuKsofksgfF0ZwLbYa2HQQIECBAgAABAgQIECCQvsCuu+4ahS+bN29Ov/BhKizbPw9zqdMECBAgQIDADgSELzvA8VL9BdasWVNMnz49elAue1hs5VxoK7TpIECAAAECBAgQIECAAIE8BHbbbbdoT3nvvffmUXxJlWV755LLnCJAgAABAgRGEBC+jADk5foLbNy4sZg/f37R09MTPTCXPTSWnQv3hjZCWw4CBAgQIECAAAECBAgQyEdg9913j/aS99xzTz4AQyot2zMPucSPBAgQIECAQAsCwpcWkFzSDIF169YV8+bNKyZNmhQ9OJc9PIZz4dpwT7jXQYAAAQIECBAgQIAAAQL5Ceyxxx7RHnLTpk35QfxvxWX752wxFE6AAAECBMYhIHwZB55b6ykQPr2ybNmy4sUvfnH0AB0+4TJr1qytn3IJ1/ikSz3n0KgIECBAgAABAgQIECDQKYE999wz2jvmvFcUvnRq5emHAAECBFIXEL6kPsMZ1xf+gcShD43hH1J0ECBAgAABAgQIECBAgACBQYFHPepR0d7xD3/4w+DL2X0duo8OPzsIECBAgACB0Qv4HXT0Zu5oiIDwpSETZZgECBAgQIAAAQIECBDoosCUKVOi8OX3v/99F0fU3a6FL9311zsBAgQIpCMgfElnLlUyRODee++NHqB32223IVf5kQABAgQIECBAgAABAgRyFthrr72ivePvfve7bEmEL9lOvcIJECBAoGIB4UvFoJqrj4DwpT5zYSQECBAgQIAAAQIECBCoq8DUqVOj8OW3v/1tXYfb9nEJX9pOrAMCBAgQyERA+JLJROdYpvAlx1lXMwECBAgQIECAAAECBEYnsPfee0fhy29+85vRNZLQ1cKXhCZTKQQIECDQVQHhS1f5dd5OgXvuuSd6gN59993b2aW2CRAgQIAAAQIECBAgQKBhAvvss0+0d9ywYUPDqqhuuMKX6iy1RIAAAQJ5Cwhf8p7/pKsXviQ9vYojQIAAAQIECBAgQIBAJQL77rtvFL786le/qqTtJjYifGnirBkzAQIECNRRQPhSx1kxpkoEhC+VMGqEAAECBAgQIECAAAECSQs8+tGPjsKXu+++O+mad1Sc8GVHOl4jQIAAAQKtCwhfWrdyZcME/vjHP0YP0I985CMbVoXhEiBAgAABAgQIECBAgEA7BaZPnx7tHe+66652dlnrtoUvtZ4egyNAgACBBgkIXxo0WYY6OgHhy+i8XE2AAAECBAgQIECAAIEcBfbff/8ofLnzzjtzpNhas/Al26lXOAECBAhULCB8qRhUc/UREL7UZy6MhAABAgQIECBAgAABAnUVOOCAA6Lw5Y477qjrcNs+LuFL24l1QIAAAQKZCAhfMpnoHMvctGlT9AC9xx575EihZgIECBAgQIAAAQIECBAYRuCggw6K9o633377MFenf1r4kv4cq5AAAQIEOiMgfOmMs166ICB86QK6LgkQIECAAAECBAgQINAwgcc85jFR+HLbbbc1rIrqhit8qc5SSwQIECCQt4DwJe/5T7p64UvS06s4AgQIECBAgAABAgQIVCJw8MEHR+HLwMBAJW03sRHhSxNnzZgJECBAoI4Cwpc6zooxVSIgfKmEUSMECBAgQIAAAQIECBBIWmDGjBlR+HLrrbcmXfOOihO+7EjHawQIECBAoHUB4UvrVq5smMDGjRujB+g999yzYVUYLgECBAgQIECAAAECBAi0U+CQQw6J9o633HJLO7usddvCl1pPj8ERIECAQIMEhC8NmixDHZ2A8GV0Xq4mQIAAAQIECBAgQIBAjgKHHnpoFL78/Oc/z5Fia83Cl2ynXuEECBAgULGA8KViUM3VR0D4Up+5MBICBAgQIECAAAECBAjUVeCwww6Lwpebb765rsNt+7iEL20n1gEBAgQIZCIgfMlkonMs8w9/+EP0AP2oRz0qRwo1EyBAgAABAgQIECBAgMAwAo9//OOjveNNN900zNXpnxa+pD/HKiRAgACBzggIXzrjrJcuCAhfuoCuSwIECBAgQIAAAQIECDRM4PDDD4/Cl5/+9KcNq6K64QpfqrPUEgECBAjkLSB8yXv+k65e+JL09CqOAAECBAgQIECAAAEClQgceeSRUfhy4403shTjGQAAIABJREFUVtJ2ExsRvjRx1oyZAAECBOooIHyp46wYUyUC//M//xM9QP/d3/1dJW1rhAABAgQIECBAgAABAgTSEJg5c2a0d7z++uvTKG4MVQhfxoDmFgIECBAgUCIgfClBcSoNAeFLGvOoCgIECBAgQIAAAQIECLRT4KijjorCl3Xr1rWzy1q3LXyp9fQYHAECBAg0SED40qDJMtTRCQhfRuflagIECBAgQIAAAQIECOQocPTRR0fhy9q1a3Ok2Fqz8CXbqVc4AQIECFQsIHypGFRz9RH4/e9/Hz1AT5kypT4DNBICBAgQIECAAAECBAgQ6LrAscceG+0dr7vuuq6Pq1sDEL50S16/BAgQIJCagPAltRlVz0MCwpeHKHxDgAABAgQIECBAgAABAsMIPOEJT4jClx//+MfDXJ3+aeFL+nOsQgIECBDojIDwpTPOeumCgPClC+i6JECAAAECBAgQIECAQMMEjjvuuCh8ufbaaxtWRXXDFb5UZ6klAgQIEMhbQPiS9/wnXf3vfve76AF6r732SrpmxREgQIAAAQIECBAgQIDA6ARmz54d7R3XrFkzukYSulr4ktBkKoUAAQIEuiogfOkqv87bKSB8aaeutgkQIECAAAECBAgQIJCGwBOf+MQofPnhD3+YRnFjqEL4MgY0txAgQIAAgRIB4UsJilNpCAhf0phHVRAgQIAAAQIECBAgQKCdAscff3wUvlxzzTXt7LLWbQtfaj09BkeAAAECDRIQvjRosgx1dALCl9F5uZoAAQIECBAgQIAAAQI5CpxwwglR+HL11VfnSLG1ZuFLtlOvcAIECBCoWED4UjGo5uoj8Nvf/jZ6gJ46dWp9BmgkBAgQIECAAAECBAgQINB1gSc/+cnR3vGqq67q+ri6NQDhS7fk9UuAAAECqQkIX1KbUfU8JCB8eYjCNwQIECBAgAABAgQIECAwjMCJJ54YhS/f//73h7k6/dPCl/TnWIUECBAg0BkB4UtnnPXSBQHhSxfQdUmAAAECBAgQIECAAIGGCZx00klR+HLllVc2rIrqhit8qc5SSwQIECCQt4DwJe/5T7r63/zmN9ED9LRp05KuWXEECBAgQIAAAQIECBAgMDqBk08+Odo7XnHFFaNrJKGrhS8JTaZSCBAgQKCrAsKXrvLrvJ0Cwpd26mqbAAECBAgQIECAAAECaQg89alPjcKX733ve2kUN4YqhC9jQHMLAQIECBAoERC+lKA4lYaA8CWNeVQFAQIECBAgQIAAAQIE2ilwyimnROHLd7/73XZ2Weu2hS+1nh6DI0CAAIEGCQhfGjRZhjo6gV//+tfRA/Tee+89ukZcTYAAAQIECBAgQIAAAQJJC5x66qnR3nHlypVJ17yj4oQvO9LxGgECBAgQaF1A+NK6lSsbJiB8adiEGS4BAgQIECBAgAABAgS6IPC0pz0tCl++853vdGEk9ehS+FKPeTAKAgQIEGi+gPCl+XOogmEEhC/DwDhNgAABAgQIECBAgAABAg8JPP3pT4/Cl8svv/yh13P7RviS24yrlwABAgTaJSB8aZesdrsusGHDhugBep999un6uAyAAAECBAgQIECAAAECBOojcNppp0V7x8suu6w+A+zwSIQvHQbXHQECBAgkKyB8SXZqFSZ8sQYIECBAgAABAgQIECBAYCSBZz7zmVH48q1vfWuk25J9XfiS7NQqjAABAgQ6LCB86TC47jonIHzpnLWeCBAgQIAAAQIECBAg0FSB008/PQpfVqxY0dRyxj1u4cu4CTVAgAABAgS2CghfLIRkBX71q19FD9D77rtvsvUqjAABAgQIECBAgAABAgRGL3DGGWdEe8dLL7109A0lcofwJZGJVAYBAgQIdF1A+NL1KTCAdgkIX9olq10CBAgQIECAAAECBAikI/DsZz87Cl++8Y1vpFPgKCsRvowSzOUECBAgQGAYAeHLMDBON19A+NL8OVQBAQIECBAgQIAAAQIE2i1w5plnRuHLJZdc0u5ua9u+8KW2U2NgBAgQINAwAeFLwybMcFsXEL60buVKAgQIECBAgAABAgQI5Cpw1llnReHLxRdfnCtHZBHCGAcBAgQIECAwegG/g47ezB0NEbj77rujh8ZHP/rRDRm9YRIgQIAAAQIECBAgQIBAJwTmzp0b7R2/9rWvdaLrWvbhky+1nBaDIkCAAIEGCghfGjhphtyagPClNSdXESBAgAABAgQIECBAIGeBs88+OwpfvvrVr2ZLInzJduoVToAAAQIVCwhfKgbVXH0EhC/1mQsjIUCAAAECBAgQIECAQF0FzjnnnCh8ueiii+o63LaPS/jSdmIdECBAgEAmAsKXTCY6xzJ/+ctfRg/Q++23X44UaiZAgAABAgQIECBAgACBYQTOPffcaO944YUXDnN1+qdzCF82bdpULFu2rJg/f34xa9asYsqUKcWkSZO2/he+D+fCa+GacK2DAAECBAiMRUD4MhY19zRCQPjSiGkySAIECBAgQIAAAQIECHRV4HnPe14Uvnz5y1/u6pi62XnK4cu6deuKefPmbQ1ZyuosOxdCmXBPuNdBgAABAgRGIyB8GY2WaxslIHxp1HQZLAECBAgQIECAAAECBLoicN5550Xhy5e+9KWujKUOnZYFEHUY13jGsHHjxq2fZOnp6YnmuqzesnPh3vBpmNCWgwABAgQItCIgfGlFyTWNFLjrrruih6rp06c3shaDJkCAAAECBAgQIECAAIH2CJx//vnR3rG/v789nTWg1bLgoQHDHnaIa9asKcJ7AWV1jeVcaCu06SBAgAABAiMJCF9GEvJ6YwWEL42dOgMnQIAAAQIECBAgQIBAxwTCXyk19E34L37xix3rv24dDbUIPzf1WLFiRdHb2xvNb1mNozkX2gxtOwgQIECAwI4Emvs76I6q8hqBoiiEL5YBAQIECBAgQIAAAQIECIwk8IIXvCB6c/6CCy4Y6bZkXy8LIZpY7OrVq4vJkydHc1tW31jOhbZDHw4CBAgQIDCcgPBlOBnnGy9w5513Rg9Z+++/f+PrUgABAgQIECBAgAABAgQIVCfwohe9KNo7fv7zn6+ug4a1VBZENKyEYsOGDcW0adOieS2rbTznQh+hLwcBAgQIECgTEL6UqTiXhIDwJYlpVAQBAgQIECBAgAABAgTaKvDiF784epN+2bJlbe2zzo2XhRF1Hm/Z2ObOnRvNaVldVZwLfTkIECBAgECZgPClTMW5JASEL0lMoyIIECBAgAABAgQIECDQVoGXvOQl0Rv1n/vc59raZ50bLwsk6jzeoWNbtWpVNJ9lNVV5LvTpIECAAAECQwWEL0NF/JyMwB133BE9cB1wwAHJ1KcQAgQIECBAgAABAgQIEBi/wMte9rJo7/iZz3xm/A03tIWyUKJJpcyZMyeaz7KaqjwX+nQQIECAAIGhAsKXoSJ+TkZA+JLMVCqEAAECBAgQIECAAAECbRP4+7//++jN+v/+7/9uW391b7gslKj7mAfHNzAwUPT09ETzWVZTledCn6FvBwECBAgQ2FZA+LKthu+TEhC+JDWdiiFAgAABAgQIECBAgEBbBObPnx+9Wf/pT3+6LX01odGyUKIJ4w5jXLp0aTSXZfW041zo20GAAAECBLYVEL5sq+H7pASEL0lNp2IIECBAgAABAgQIECDQFoG+vr7oDftPfvKTbemrCY2WBRNNGHcY49y5c6O5LKunHedC3w4CBAgQILCtgPBlWw3fJyXwi1/8InroOvDAA5OqUTEECBAgQIAAAQIECBAgMD6BBQsWRHvHT3ziE+NrtMF3lwUTTSlnxowZ0VyW1dOOc6FvBwECBAgQ2FZA+LKthu+TEhC+JDWdiiFAgAABAgQIECBAgEBbBBYuXBi9Yf/xj3+8LX01odGyYKIJ4w5j3G233aK5LKunHedC3w4CBAgQILCtgPBlWw3fJyUgfElqOhVDgAABAgQIECBAgACBtgi88pWvjN6w/+hHP9qWvprQaFkw0YRxhzHutNNO0VyW1dOOc6FvBwECBAgQ2FZA+LKthu+TErj99tujh66DDjooqRoVQ4AAAQIECBAgkI/A4sWLo+fbdryBqM0JnCcw8P+BNWANWAPWgDVgDeS9BpYsWTLujYbwZdyEGqirgPClrjNjXAQIECBAgAABAmMREL7k/QaAN4DMvzVgDVgD1oA1YA1YA51bA+HZe7yH8GW8gu6vncDmzZuL/v7+4vzzz4/+xFr4GPDs2bOL8Hf6Ll++vAjXOggQIECAAAECBAg0QUD40rnNtjc2WFsD1oA1YA1YA9aANZD3GhC+NGGHZIwdE1i/fn3R19dX9Pb2RqHLcL9YhmvDPeFeBwECBAgQIECAAIE6Cwhf8n4DYLg9jfPWhTVgDVgD1oA1YA1YA9WvAeFLnXdGxtYxgS1bthSLFi0qJk6c2HLoMvQXpHBvaCO05SBAgAABAgQIECBQRwHhS/Wb6qH7Aj8ztgasAWvAGrAGrAFrwBoIa0D4UscdkTF1VGBgYKCYOXPmmEOXob+YhrZCmw4CBAgQIECAAAECBAgQyEPgta99bbSn/MAHPpBH8SVVDt0nh5+bdMyZMyeaz7KaqjwX+nQQIECAAIGhAs36HXTo6P2ctcDatWuLqVOnVv5QFdoMbTsIECBAgAABAgQIECBAIH2B17/+9dG+cunSpekXPkyFZaHEMJfW8vTKlSuj+Syrqcpzq1atqqWFQREgQIBAdwWEL9311/sYBcKnU9oRvAw+fIW2fQJmjJPjNgIECBAgQIAAAQIECDRI4J/+6Z+iN+v/67/+q0EVVDvUwX3xtl+r7aH9rc2dOzea023rqfL70JeDAAECBAiUCQhfylScq7VA+HdZqvyrxoZ76Ap9+Ddgar0UDI4AAQIECBAgQIAAAQLjFnjDG94QvVH/vve9b9ztNrWBsj1y02rZsGFDMW3atGhey2obz7nQR+jLQYAAAQIEygSEL2UqztVaYNGiRW1/gBp8+Ap9OQgQIECAAAECBAgQIEAgXYE3velN0R7zPe95T7oFj1DZ4H54268j3FLLl1evXl1Mnjw5mttt6xrP96Ht0IeDAAECBAgMJyB8GU7G+VoKrF+/vpg4cWLbHp6GPniFvkKfDgIECBAgQIAAAQIECBBIU6DsD/j953/+Z5rFtlDV0H1x+Lmpx4oVK4re3t7K30MIbYa2HQQIECBAYEcCzf0ddEdVeS1Zgb6+vsofmsoeLLc9F/p0ECBAgAABAgQIECBAgECaAm9+85ujfea73/3uNIttoapt98OD37dwW20vWbNmTTF9+vRojgdrG+3X0FZo00GAAAECBEYSEL6MJOT12ghs3ry5LX9iZaQHrfAnWkLfDgIECBAgQIAAAQIECBBIT+Ctb31r9Mb8O9/5zvQKbbGisj1yi7fW9rKNGzcW8+fPL3p6eqK5Lqu37Fy4N7QR2nIQIECAAIFWBIQvrSi5phYC/f39Y35IKntwGs250LeDAAECBAgQIECAAAECBNIT+Od//udor/mOd7wjvUJbrKhsr9zirbW/bN26dcW8efOKSZMmRXNeVnc4F64N94R7HQQIECBAYDQCwpfRaLm2qwILFixo+eFouIemsZ5fuHBhV2vXOQECBAgQIECAAAECBAi0R+Btb3tbtNd8+9vf3p7OGtBq2b65AcMe1RDDp1eWLVu29ZMss2bNiuY/GIRPuYRrfNJlVLQuJkCAAIFtBIQv22D4tt4Cs2fPLn0gKnswrPpc6NtBgAABAgQIECBAgAABAukJ/Ou//mu01/z3f//39AptsaKy/XSLtzb2shxrbuxkGTgBAgQaJNDx8GXx4sXRQ03Zb3LOTeA0gYH/D5q7BpYsWdKg3woMlQABAgQIECBAgEC+Av/v//2/aP/9b//2b9mClO1DU8fIsebU51R9BAgQqIOA8MUb/NFDZtlDh3PNDQHMXXfmLgTNDgIECBAgQIAAAQIE6i9Q9odEc/7DVGV7yPrP4vhGmGPN4xNzNwECBAi0IiB8Eb4IX6wBa6ANa0D40spvQa4hQIAAAQIECBAg0H2B8CmXoW++5/w8P9Qi/Jz6kWPNqc+p+ggQIFAHgY7/Dlr2J0rKfpNzrjt/Wp87d2ugmjWQ82atDr+5GQMBAgQIECBAgACBVgXCv+8ydB8U/h2YXI+hFuHn1I8ca059TtVHgACBOgh0/HdQ4Us1b+yWPRg4x9YaqM8aEL7U4bc4YyBAgAABAgQIECAwssB//Md/ROHLv/zLv4x8Y6JXlO0rEy31obJyrPmh4n1DgAABAm0T6Hj40rZKNJy8wIIFC6IH4rIHpHacW7hwYfK+CiRAgAABAgQIECBAgECOAm9/+9ujvebb3va2HCm21ly2p04dI8eaU59T9REgQKAOAsKXOsyCMbQk0N/fHz0Qlz0gtePc8uXLWxqjiwgQIECAAAECBAgQIECgWQLvfOc7o73mW9/61mYVUeFoy/bUFTZfy6ZyrLmWE2FQBAgQSExA+JLYhKZczubNm4ve3t7oobjsIanKc6HP0LeDAAECBAgQIECAAAECBNITeNe73hXtM9/ylrekV2iLFZXtp1u8tbGX5VhzYyfLwAkQINAgAeFLgybLUIuir68veigue0iq8lzo00GAAAECBAgQIECAAAECaQq8+93vjvaZb37zm9MstoWqyvbTLdzW6EtyrLnRE2bwBAgQaIiA8KUhE2WYDwqsX7++mDhxYvRgXPagVMW50Ffo00GAAAECBAgQIECAAAECaQq85z3vifaYb3rTm9IstoWqyvbSLdzW6EtyrLnRE2bwBAgQaIiA8KUhE2WY/yewaNGi6MG47EGpinOhLwcBAgQIECBAgAABAgQIpCvw3ve+N9pjvvGNb0y34BEqK9tLj3BL41/OsebGT5oCCBAg0AAB4UsDJskQtxfYsmVLMXPmzOjhuOxhaTznQh+hLwcBAgQIECBAgAABAgQIpCvwvve9L9pfvuENb0i34BEqK9tHj3BL41/OsebGT5oCCBAg0AAB4UsDJskQY4GBgYFi6tSp0QNy2QPTWM6FtkMfDgIECBAgQIAAAQIECBBIW2Dp0qXR3vL1r3992kXvoLqyPfQOLk/ipRxrTmLiFEGAAIGaCwhfaj5Bhje8wNq1a9sSwITgJbTtIECAAAECBAgQIECAAIH0Bd7//vdH4cvrXve69AsfpsIcg4gcax5m+p0mQIAAgQoFhC8VYmqq8wLh0ylV/hVkoS2feOn8POqRAAECBAgQIECAAAEC3RL4wAc+EIUvr33ta7s1nK73m2MQkWPNXV9oBkCAAIEMBIQvGUxy6iWGf5dl0aJFxcSJE6MH5rIHqLJz4d7Qhn/jJfXVoj4CBAgQIECAAAECBAhsL/DBD34w2ku+5jWv2f6ijH4q2zOnXn6ONac+p+ojQIBAHQSEL3WYBWOoRGD9+vVFX19f0dvbGz04lz1IhXPh2nBPuNdBgAABAgQIECBAgAABAvkJfOhDH4r2kK9+9avzg/jfisv2z6lj5Fhz6nOqPgIECNRBQPhSh1kwhkoFNm/eXPT39xfnnntu9AC98847F7Nnzy4WLFiw9ZpwrYMAAQIECBAgQIAAAQIE8hX48Ic/HO0dX/WqV2ULkmMQkWPN2S5whRMgQKCDAsKXDmLrqrMCP/3pT6MH6MMPP7yzg9AbAQIECBAgQIAAAQIECNRa4CMf+Ui0d/zHf/zHWo+5nYPLMYjIseZ2riFtEyBAgMCDAsIXKyFZgRtvvDF6gD7iiCOSrVdhBAgQIECAAAECBAgQIDB6gY9+9KPR3vGVr3zl6BtK5I4cg4gca05kuSqDAAECtRYQvtR6egxuPALCl/HouZcAAQIECBAgQIAAAQJ5CHzsYx+LwpdXvOIVeRRfUmWOQUSONZdMvVMECBAgULGA8KViUM3VR0D4Up+5MBICBAgQIECAAAECBAjUVeDjH/94FL4sXLiwrsNt+7hyDCJyrLntC0kHBAgQIFAIXyyCZAVuuOGG6AH6yCOPTLZehREgQIAAAQIECBAgQIDA6AU++clPRnvHvr6+0TeUyB05BhE51pzIclUGAQIEai0gfKn19BjceASEL+PRcy8BAgQIECBAgAABAgTyEPjUpz4VhS8vf/nL8yi+pMocg4gcay6ZeqcIECBAoGIB4UvFoJqrj4DwpT5zYSQECBAgQIAAAQIECBCoq8CnP/3pKHyZP39+XYfb9nHlGETkWHPbF5IOCBAgQMBfO2YNpCtw/fXXRw/QM2fOTLdglREgQIAAAQIECBAgQIDAqAU+85nPRHvHl73sZaNuJ5Ubcgwicqw5lfWqDgIECNRZwCdf6jw7xjYuAeHLuPjcTIAAAQIECBAgQIAAgSwEPvvZz0bhy0tf+tIsai8rMscgIseay+beOQIECBCoVkD4Uq2n1mokIHyp0WQYCgECBAgQIECAAAECBGoq8LnPfS4KX17ykpfUdLTtH1aOQUSONbd/JemBAAECBIQv1kCyAsKXZKdWYQQIECBAgAABAgQIEKhM4POf/3wUvrzoRS+qrP2mNZRjEJFjzU1bl8ZLgACBJgoIX5o4a8bcksC6deuiB+ijjjqqpXtdRIAAAQIECBAgQIAAAQJ5CHzhC1+I9o4vfOEL8yi+pMocg4gcay6ZeqcIECBAoGIB4UvFoJqrj4DwpT5zYSQECBAgQIAAAQIECBCoq8AFF1wQhS8veMEL6jrcto8rxyAix5rbvpB0QIAAAQKF8MUiSFZA+JLs1CqMAAECBAgQIECAAAEClQn09/dH4cv5559fWftNayjHICLHmpu2Lo2XAAECTRQQvjRx1oy5JYG1a9dGD9BHH310S/e6iAABAgQIECBAgAABAgTyEFi+fHm0dzzvvPPyKL6kyhyDiBxrLpl6pwgQIECgYgHhS8WgmquPgPClPnNhJAQIECBAgAABAgQIEKirwJe+9KUofHn+859f1+G2fVw5BhE51tz2haQDAgQIEPDXjlkD6QoIX9KdW5URIECAAAECBAgQIECgKoELL7wwCl+e97znVdV849rJMYjIsebGLUwDJkCAQAMFfPKlgZNmyK0J/OQnP4keoI855pjWbnYVAQIECBAgQIAAAQIECGQhcNFFF0V7x3POOSeL2suKzDGIyLHmsrl3jgABAgSqFRC+VOuptRoJCF9qNBmGQoAAAQIECBAgQIAAgZoKfOUrX4nCl+c+97k1HW37h5VjEJFjze1fSXogQIAAAeGLNZCsgPAl2alVGAECBAgQIECAAAECBCoT+OpXvxqFL2effXZl7TetoRyDiBxrbtq6NF4CBAg0UUD40sRZM+aWBK677rroAfrYY49t6V4XESBAgAABAgQIECBAgEAeAhdffHG0dzzrrLPyKL6kyhyDiBxrLpl6pwgQIECgYgHhS8WgmquPgPClPnNhJAQIECBAgAABAgQIEKirwNe//vUofHnOc55T1+G2fVw5BhE51tz2haQDAgQIECiELxZBsgLCl2SnVmEECBAgQIAAAQIECBCoTOCSSy6Jwpczzzyzsvab1lCOQUSONTdtXRovAQIEmiggfGnirBlzSwI//vGPowfoJzzhCS3d6yICBAgQIECAAAECBAgQyEPg0ksvjfaOZ5xxRh7Fl1SZYxCRY80lU+8UAQIECFQsIHypGFRz9REQvtRnLoyEAAECBAgQIECAAAECdRX45je/GYUvz3rWs+o63LaPK8cgIsea276QdECAAAEC/toxayBdAeFLunOrMgIECBAgQIAAAQIECFQlsGLFiih8Of3006tqvnHt5BhE5Fhz4xamARMgQKCBAj750sBJM+TWBIQvrTm5igABAgQIECBAgAABAjkLXHbZZVH4ctppp2VLkmMQkWPN2S5whRMgQKCDAsKXDmLrqrMC1157bfQAfdxxx3V2EHojQIAAAQIECBAgQIAAgVoLfPvb3472js94xjNqPeZ2Di7HICLHmtu5hrRNgAABAg8KCF+shGQFhC/JTq3CCBAgQIAAAQIECBAgUJnA5ZdfHoUvT3/60ytrv2kN5RhE5Fhz09al8RIgQKCJAsKXJs6aMbckIHxpiclFBAgQIECAAAECBAgQyFpg5cqVUfhy6qmnZmuSYxCRY83ZLnCFEyBAoIMCwpcOYuuqswI/+tGPogfoWbNmdXYQeiNAgAABAgQIECBAgACBWgusWrUq2juecsoptR5zOweXYxCRY83tXEPaJkCAAIEHBYQvVkKyAsKXZKdWYQQIECBAgAABAgQIEKhM4Lvf/W4UvsyZM6ey9pvWUI5BRI41N21dGi8BAgSaKCB8aeKsGXNLAsKXlphcRIAAAQIECBAgQIAAgawFrrjiiih8eepTn5qtSY5BRI41Z7vAFU6AAIEOCghfOoitq84KrFmzJnqAnj17dmcHoTcCBAgQIECAAAECBAgQqLXAlVdeGe0dTzrppFqPuZ2DyzGIyLHmdq4hbRMgQIDAgwLCFyshWQHhS7JTqzACBAgQIECAAAECBAhUJrB69eoofHnKU55SWftNayjHICLHmpu2Lo2XAAECTRQQvjRx1oy5JQHhS0tMLiJAgAABAgQIECBAgEDWAt///vej8OXEE0/M1iTHICLHmrNd4AonQIBABwWELx3E1lVnBX74wx9GD9BPfOITOzsIvREgQIAAAQIECBAgQIBArQWuvvrqaO94wgkn1HrM7RxcjkFEjjW3cw1pmwABAgQeFBC+WAnJCghfkp1ahREgQIAAAQIECBAgQKAygR/84AdR+PKkJz2psvab1lCOQUSONTdtXRovAQIEmiggfGnirBlzSwLCl5aYXESAAAECBAgQIECAAIGsBa655poofDn++OOzNckxiMix5mwXuMIJECDQQQHhSwexddVZAQ/QnfXWGwECBAgQIECAAAECBJoo4N8L3X7Wcgwicqx5+1n3EwECBAi0Q0BznaQlAAAgAElEQVT40g5VbdZCQPhSi2kwCAIECBAgQIAAAQIECNRa4Ec/+lH0yZdZs2bVesztHFyOQUSONbdzDWmbAAECBB4UEL5YCckKCF+SnVqFESBAgAABAgQIECBAoDKBa6+9NgpfjjvuuMrab1pDOQYROdbctHVpvAQIEGiigPClibNmzC0JCF9aYnIRAQIECBAgQIAAAQIEsha47rrrovDl2GOPzdYkxyAix5qzXeAKJ0CAQAcFhC8dxNZVZwV+8IMfRA/QT3rSkzo7CL0RIECAAAECBAgQIECAQK0FfvKTn0R7x2OOOabWY27n4HIMInKsuZ1rSNsECBAg8KCA8MVKSFZA+JLs1CqMAAECBAgQIECAAAEClQmsXbs2Cl+OPvroytpvWkM5BhE51ty0dWm8BAgQaKKA8KWJs2bMLQkIX1pichEBAgQIECBAgAABAgSyFrj++uuj8GXmzJnZmuQYRORYc7YLXOEECBDooIDwpYPYuuqswNVXXx09QJ9wwgmdHYTeCBAgQIAAAQIECBAgQKDWAjfccEO0dzzyyCNrPeZ2Di7HICLHmtu5hrRNgAABAg8KCF+shGQFhC/JTq3CCBAgQIAAAQIECBAgUJnAjTfeGIUvRxxxRGXtN62hHIOIHGtu2ro0XgIECDRRQPjSxFkz5pYEhC8tMbmIAAECBAgQIECAAAECWQvcdNNNUfhy+OGHZ2uSYxCRY83ZLnCFEyBAoIMCwpcOYuuqswJXXXVV9AD95Cc/ubOD0BsBAgQIECBAgAABAgQI1Frg5ptvjvaOhx12WK3H3M7B5RhE5FhzO9eQtgkQIEDgQQHhi5WQrIDwJdmpVRgBAgQIECBAgAABAgQqE/jZz34WhS+Pe9zjKmv//7N3L3BWVvXi/x1kJhhRFBUs4yDHUDt6LDtB1imDc1JPeaM0jbw2AmYWKCje7zc0RTPNa5mk4iXNLOmiWMHp6IQe0FA7Mih5wQ4ahECI2Hl+ry//9v+1fdaambWf/VzWWt/Per18zexnP89a3+97re3ez/oyM6F1pLEQoTHn0NYl8SKAAAIhClB8CXHWiNlJgOKLExMnIYAAAggggAACCCCAAAKqBf7whz8YxZedd95ZrYnGQkSMOa9cuTKZOXNm0tHRkYwcOTLZZpttkra2to3/yfdyTJ6Tc+RcGgIIIIBA/gIUX/I3pUdPBObNm2d8gP7kJz/pSXSEgQACCCCAAAIIIIAAAggg4IPA888/b9w7jhgxwofQKokhxkJEb5Ax5bxw4cJk3LhxG4sstrxsx6QoI9fItTQEEEAAgfwEKL7kZ0lPnglQfPFsQggHAQQQQAABBBBAAAEEEPBQYPHixUbx5QMf+ICHkZYTkm1zvpyRqxslhpxXrFix8SdZWlpajPVsy892TK6Vn4aRvmgIIIAAAs0LUHxp3pAePBWg+OLpxBAWAggggAACCCCAAAIIIOCRQFdXl7FZveOOO3oUYbmh2Dbly42g/NFCz7mzszMZOnSosY5tebkck76kTxoCCCCAQHMCFF+a8+NqjwXmzp1rfPD41Kc+5XHEhIYAAggggAACCCCAAAIIIFC2wAsvvGDcOw4fPrzsMLwZz7Y5701wBQUScs6zZ89O2tvbjTVsy6mRY9Kn9E1DAAEEEMguQPElux1Xei5A8cXzCSI8BBBAAAEEEEAAAQQQQMADgRdffNHYuN5hhx08iKyaEGwb9NVEUt6ooeYs+x79+vUz1q8tnyzHpG8Zg4YAAgggkE2A4ks2N64KQIDiSwCTRIgIIIAAAggggAACCCCAQMUCS5cuNTavhw0bVnFU1Q1v26SvLppyRg4x52XLliVDhgwx1q4tl2aOyRgyFg0BBBBAoHEBii+Nm3FFIAIUXwKZKMJEAAEEEEAAAQQQQAABBCoUeOmll4wNbPmbF1qbbaM+dosQcx47dqyxbm155HFMxqIhgAACCDQuQPGlcTOuCETgN7/5jfFBZK+99gokesJEAAEEEEAAAQQQQAABBBAoQ+Dll1827h3f//73lzG0l2PYNuu9DDTHoELLec6cOcaateWQ5zEZk4YAAggg0JgAxZfGvDg7IAGKLwFNFqEigAACCCCAAAIIIIAAAhUJvPLKK8ZG9vbbb19RNNUPa9uwrz6qYiMILecxY8YYa9aWQ57HZEwaAggggEBjAhRfGvPi7IAEKL4ENFmEigACCCCAAAIIIIAAAghUJCB/zyK9Sf3e9763omiqHzZtIY9jbyHl3NXVlbS0tBhr1pZDnsdkTBmbhgACCCDgLhD/O6i7BWdGJvDrX//a+DDy6U9/OrIsSQcBBBBAAAEEEEAAAQQQQKAZgddee824d9xuu+2a6TLoa20b9kEn5BB8SDnPmDHDWK+2+Is4JmPTEEAAAQTcBSi+uFtxZmACFF8CmzDCRQABBBBAAAEEEOhR4Nxzz61sw62ITTz63IT53AQDXgesAdYAa4A1wBpgDfi5Bs4777weP5u7PEnxxUWJc4IUoPgS5LQRNAIIIIAAAggggEA3AhRf/LwxZ8OEeWENsAZYA6wB1gBrgDUQ3xqQz97NNoovzQpyvbcCv/rVr4x/STZ69Ghv4yUwBBBAAAEEEEAAAQR6EqD4Et9NPRs1zClrgDXAGmANsAZYA6wBP9cAxZee7kx4Tr0AxRf1SwAABBBAAAEEEEAgKgGKL37emLNhwrywBlgDrAHWAGuANcAaiG8NUHyJ6laKZPIWoPiStyj9IYAAAggggAACCFQpQPElvpt6NmqYU9YAa4A1wBpgDbAGWAN+rgGKL1Xe+TC2twIrV65MZs6cmXz2s581fu1Ya2trMnLkyKSjo2PjOXIuDQEEEEAAAQQQQAABBBBAQK+A3BemN7623HJLtSBpC3kcewsp5xEjRhjr1RZ/Ecd22mmn2JcC+SGAAAK5CsT/DporF535LLBw4cJk3LhxSVtbm/MHETlXrpFraQgggAACCCCAAAIIIIAAAvoE/vKXvxj3kAMHDtQH8feMbZv2sWOElPPYsWON9WqLv4hjMjYNAQQQQMBdgOKLuxVneiqwYsWKjT/J0tLSkvkDiFwrPw0jfdEQQAABBBBAAAEEEEAAAQT0CKxatcq4l9xiiy30AKQytW3ap06J7mFIOc+YMcNYr7b4izgmY9MQQAABBNwFKL64W3GmhwKdnZ3J0KFDc/vgIX1JnzQEEEAAAQQQQAABBBBAAAEdAqtXrzbuKQcMGKAjeUuWtk17y2lRHQop566urqSZf3xqy9XlmIy5ZMmSqOadZBBAAIGiBSi+FC1M/4UJzJ49O2lvbzc+JLt8aOjpHOlT+qYhgAACCCCAAAIIIIAAAgjEL7BmzRrjvnKzzTaLP/FuMrTdL3dzajSHQ8t5zJgxxpq15ZDnMRmThgACCCDQmADFl8a8ONsTgblz5yb9+vUr7MOG9C1j0BBAAAEEEEAAAQQQQAABBOIWWLt2rXFvKf8oT2uzbdjHbhFazo888oixZm055Hlszpw5sS8D8kMAAQRyF6D4kjspHRYtsGzZsmTIkCGFf9CQMWQsGgIIIIAAAggggAACCCCAQLwC69atM+4v5R/kaW22DfvYLULMeezYsca6teWRxzEZi4YAAggg0LgAxZfGzbiiYgE+YFQ8AQyPAAIIIIAAAggggAACCEQk8NZbbxmb2O95z3siyrCxVGyb9Y31EN7ZIebMP0wNb50RMQII6BOg+KJvzoPOWH7M1fahqMhj/Ght0EuG4BFAAAEEEEAAAQQQQACBHgXWr19v3Ge2tbX1eE3MT9rur2POV3ILNWd+JXvsK5P8EEAgdAGKL6HPoLL4+aNyyiacdBFAAAEEEEAAAQQQQACBggU2bNhgbL737du34FH97T7UQkQzoiHnPHv27ET+RpEth2aOSZ/SNw0BBBBAILsAxZfsdlxZskBXV1fS0tKS+weK3j6MyJgyNg0BBBBAAAEEEEAAAQQQQCA+gXfeece4z9x0003jS9QxI9s9suOlwZ4Wes6dnZ3J0KFDjXVsy8vlmPQlfdIQQAABBJoToPjSnB9XlygwY8aM3D5IuHzYqD9HxqYhgAACCCCAAAIIIIAAAgjEKVB//yff9+nTJ85EHbJKW8jj2FsMOa9YsSLp6Oho6h+tyj8+lT6kLxoCCCCAQPMC8b+DNm9ED54IjB07trLii4xNQwABBBBAAAEEEEAAAQQQiFMgvfkum9BaW9qC4ktYK2HhwoXJuHHjEvm7Rba5tB2Tc+UauZaGAAIIIJCfQOnFl3PPPdf5f/62NwSObYLfJhjwOvB/DZx33nn5/Z+anhBAAAEEEEAAAQQQQKBQAds9VqEDety5RosYc5afXpk5c+bGn2QZOXKkdS9JfspFzuEnXTx+QRIaAggELUDxhY186xuw7YMHx/zf8GeO/JkjKTTTEEAAAQQQQAABBBBAIAwB298XDSPy/KO03VfmP4pfPWrIWUOOfq0qokEAAQSShOILxReKL6wB1kABa4DiC2+xCCCAAAIIIIAAAgiEIyB/4yW9OR1O9PlGmnaQx7E3DTlryDH2dUp+CCAQnkDp76D82jF//mW+7Y2XY8wPayCfNUDxJbw3RCJGAAEEEEAAAQQQ0CvQt29fo/iyYcMGlSC2e8LYITTkrCHH2Ncp+SGAQHgCFF8K+Bfvtjc0juWzoY0jjqGsAYov4b0hEjECCCCAAAIIIICAXoHW1laj+PL222+rBLHdc8UOoSFnDTnGvk7JDwEEwhMovfgSHhER+yIwduxY48Ow7cNDEcdkbBoCCCCAAAIIIIAAAggggECcAm1tbcb95vr16+NMtpesbPfUvVwS/NMactaQY/ALkQQQQCA6AYov0U1pvAnNmDHD+DBs+/BQxDEZm4YAAggggAACCCCAAAIIIBCnQL9+/Yz7zXXr1sWZbC9Z2e6pe7kk+Kc15Kwhx+AXIgkggEB0AhRfopvSeBPq6upKWlpajA/Etg8QeR6TMZcsWRIvLJkhgAACCCCAAAIIIIAAAsoF+vfvb9xr/vWvf1WpYrufjh1CQ84acox9nZIfAgiEJ0DxJbw5Ux3xmDFjjA/Etg8QeR6TMWkIIIAAAggggAACCCCAAALxCrS3txv3mmvXro034R4ys91P93B6FE9pyFlDjlEsRpJAAIGoBCi+RDWd8SfzyCOPGB+IbR8g8jw2Z86c+GHJEAEEEEAAAQQQQAABBBBQLDBgwADjXnP16tUqRWz307FDaMhZQ46xr1PyQwCB8AQovoQ3Z+ojHjt2rPGh2PYhIo9jMhYNAQQQQAABBBBAAAEEEEAgboHNN9/cuM9888034066m+xs99LdnBrNYQ05a8gxmgVJIgggEI0AxZdoplJPIsuWLUuGDBlifDC2fZBo5piMIWPREEAAAQQQQAABBBBAAAEE4hbYYostjHvMVatWxZ10N9nZ7qO7OTWawxpy1pBjNAuSRBBAIBoBii/RTKWuRObOnZv069fP+HBs+zCR5Zj0LWPQEEAAAQQQQAABBBBAAAEE4hfYcsstjfvLlStXxp+4JUPbPbTltKgOachZQ45RLUqSQQCBKAQovkQxjTqTmD17dmL7o4i2DxSNHJM+pW8aAggggAACCCCAAAIIIICADoGtttrKKL6sWLFCR/KpLG33z6lTonuoIWcNOUa3MEkIAQSCF6D4EvwU6k6gs7MzGTp0qPEh2fahwuWY9CV90hBAAAEEEEAAAQQQQAABBPQIDBo0yLiv/POf/6wHoC5T271z3dNRfqshZw05Rrk4SQoBBIIWoPgS9PQRvAjIv0bq6OhIWlpajA/Ltg8XtmNyrfSh9V82sZIQQAABBBBAAAEEEEAAAc0C22yzjXE/+cYbb6gksd0zxw6hIWcNOca+TskPAQTCE6D4Et6cEXE3AgsXLkzGjRuXtLW1GR+abR8y5JicK9fItTQEEEAAAQQQQAABBBBAAAGdAttuu61xH7l8+XKVGLb759ghNOSsIcfY1yn5IYBAeAIUX8KbMyLuRUB+emXmzJnJPvvsY3x4lmLLyJEjN/6Ui5zDT7r0gsnTCCCAAAIIIIAAAggggIACgcGDBxv3j//7v/+rIHMzRY2b9Bpy1pCjuZo5ggACCFQrQPGlWn9GL1DgoYceMj48f+5znytwRLpGAAEEEEAAAQQQQAABBBAIUWDIkCHG/eOf/vSnEFNpOmaNm/QactaQY9OLnw4QQACBnAUovuQMSnf+CPz0pz81Pjzvt99+/gRIJAgggAACCCCAAAIIIIAAAl4IvPe97zXuH5ctW+ZFbGUHoXGTXkPOGnIs+7XCeAgggEBvAhRfehPi+WAFKL4EO3UEjgACCCCAAAIIIIAAAgiUKvC+973PKL68+uqrpcbgy2AaN+k15KwhR19eQ8SBAAII1AQovtQk+BqdAMWX6KaUhBBAAAEEEEAAAQQQQACBQgS23357o/jyyiuvFDKW751q3KTXkLOGHH1/bREfAgjoE6D4om/O1WT8k5/8xPjwvP/++6vJn0QRQAABBBBAAAEEEEAAAQTcBIYOHWrcP7700ktuF0d2lsZNeg05a8gxspci6SCAQAQCFF8imERSsAtQfLG7cBQBBBBAAAEEEEAAAQQQQODdAv/wD/9gFF/++Mc/vvskJY80btJryFlDjkpeoqSJAAIBCVB8CWiyCLUxAYovjXlxNgIIIIAAAggggAACCCCgVWDYsGFG8WXp0qUqOTRu0mvIWUOOKl+wJI0AAl4LUHzxenoIrhkBii/N6HEtAggggAACCCCAAAIIIKBHYPjw4Ubx5YUXXtADUJepxk16DTlryLFuGfMtAggg4IUAxRcvpoEgihB48MEHjQ/PBxxwQBFD0ScCCCCAAAIIIIAAAggggEDAAv/4j/9o3D8uWbIk4Iyyh65xk15DzhpyzL7quRIBBBAoRoDiSzGu9OqBAMUXDyaBEBBAAAEEEEAAAQQQQACBAAR23HFHo/jS1dUVQOT5h6hxk15DzhpyzP/VQI8IIIBAcwIUX5rz42qPBSi+eDw5hIYAAggggAACCCCAAAIIeCQwYsQIo/jy/PPPexRheaFo3KTXkLOGHMt7lTASAggg4CZA8cXNibMCFPjxj39sfHg+8MADA8yEkBFAAAEEEEAAAQQQQAABBIoU2GmnnYz7x//5n/8pckhv+9a4Sa8hZw05evuiIjAEEFArQPFF7dTHnzjFl/jnmAwRQAABBBBAAAEEEEAAgTwEdt55Z6P48oc//CGProPrQ+MmvYacNeQY3IuNgBFAIHoBii/RT7HeBCm+6J17MkcAAQQQQAABBBBAAAEEGhH44Ac/aBRfnnvuuUa6iOZcjZv0GnLWkGM0L0ISQQCBaAQovkQzlSSSFnjggQeMD88HHXRQ+jQeI4AAAggggAACCCCAAAIIKBf4p3/6J+P+8ZlnnlGponGTXkPOGnJU+YIlaQQQ8FqA4ovX00NwzQhQfGlGj2sRQAABBBBAAAEEEEAAAT0Cu+66q1F8WbRokR6Aukw1btJryFlDjnXLmG8RQAABLwQovngxDQRRhADFlyJU6RMBBBBAAAEEEEAAAQQQiE9gt912M4ovv//97+NL1CEjjZv0GnLWkKPD8uYUBBBAoFQBii+lcjNYmQI/+tGPjA/PY8eOLTMExkIAAQQQQAABBBBAAAEEEAhAYPfddzfuH5966qkAIs8/RI2b9Bpy1pBj/q8GekQAAQSaE6D40pwfV3ssQPHF48khNAQQQAABBBBAAAEEEEDAI4EPfehDRvFl4cKFHkVYXigaN+k15Kwhx/JeJYyEAAIIuAlQfHFz4qwABSi+BDhphIwAAggggAACCCCAAAIIVCDw4Q9/2Ci+LFiwoIJIqh9S4ya9hpw15Fj9q4cIEEAAgXcLUHx5twePIhK4//77jQ/Pn//85yPKkFQQQAABBBBAAAEEEEAAAQTyEPjIRz5i3D8++eSTeXQdXB8aN+k15Kwhx+BebASMAALRC1B8iX6K9SZI8UXv3JM5AggggAACCCCAAAIIINCIwL/8y78YxZcnnniikS6iOVfjJr2GnDXkGM2LkEQQQCAaAYov0UwliaQFKL6kRXiMAAIIIIAAAggggAACCCBgE/joRz9qFF/mz59vOzX6Yxo36TXkrCHH6F+cJIgAAsEJUHwJbsoI2FWA4ourFOchgAACCCCAAAIIIIAAAroFRo0aZRRfOjs7VaJo3KTXkLOGHFW+YEkaAQS8FqD44vX0EFwzAvfdd5/x4fkLX/hCM11yLQIIIIAAAggggAACCCCAQIQCH/vYx4z7x8cffzzCTHtPSeMmvYacNeTY++rmDAQQQKBcAYov5XozWokCFF9KxGYoBBBAAAEEEEAAAQQQQCBggT333NMovjz22GMBZ5Q9dI2b9Bpy1pBj9lXPlQgggEAxAhRfinGlVw8EKL54MAmEgAACCCCAAAIIIIAAAggEIPCJT3zCKL789re/DSDy/EPUuEmvIWcNOeb/aqBHBBBAoDkBii/N+XG1xwI//OEPjQ/PBx98sMcRExoCCCCAAAIIIIAAAggggEAVAv/6r/9q3D/+53/+ZxWhVD6mxk16DTlryLHyFw8BIIAAAikBii8pEB7GI0DxJZ65JBMEEEAAAQQQQAABBBBAoEiBT37yk0bxZd68eUUO6W3fGjfpNeSsIUdvX1QEhgACagUovqid+vgTp/gS/xyTIQIIIIAAAggggAACCCCQh8Bee+1lFF/mzp2bR9fB9aFxk15DzhpyDO7FRsAIIBC9AMWX6KdYb4L33nuv8eH5kEMO0QtC5ggggAACCCCAAAIIIIAAAlaBT3/608b9469//WvrubEf1LhJryFnDTnG/tokPwQQCE+A4kt4c0bEjgIUXxyhOA0BBBBAAAEEEEAAAQQQUC4wevRoo/jyq1/9SqWKxk16DTlryFHlC5akEUDAawGKL15PD8E1I0DxpRk9rkUAAQQQQAABBBBAAAEE9AiMGTPGKL48+uijegDqMtW4Sa8hZw051i1jvkUAAQS8EKD44sU0EEQRAvfcc4/x4fmLX/xiEUPRJwIIIIAAAggggAACCCCAQMAC//7v/27cPz7yyCMBZ5Q9dI2b9Bpy1pBj9lXPlQgggEAxAhRfinGlVw8EKL54MAmEgAACCCCAAAIIIIAAAggEIPCZz3zGKL48/PDDAUSef4gaN+k15Kwhx/xfDfSIAAIINCdA8aU5P672WIDii8eTQ2gIIIAAAggggAACCCCAgEcCe++9t1F8+eUvf+lRhOWFonGTXkPOGnIs71XCSAgggICbAMUXNyfOClDg7rvvNj48H3rooQFmQsgIIIAAAggggAACCCCAAAJFCuy7777G/ePPf/7zIof0tm+Nm/QactaQo7cvKgJDAAG1AhRf1E59/IlTfIl/jskQAQQQQAABBBBAAAEEEMhD4D/+4z+M4svPfvazPLoOrg+Nm/QactaQY3AvNgJGAIHoBSi+RD/FehOk+KJ37skcAQQQQAABBBBAAAEEEGhE4LOf/axRfJk9e3YjXURzrsZNeg05a8gxmhchiSCAQDQCFF+imUoSSQtQfEmL8BgBBBBAAAEEEEAAAQQQQMAmsN9++xnFl5/+9Ke2U6M/pnGTXkPOGnKM/sVJggggEJwAxZfgpoyAXQXuuusu48PzYYcd5no55yGAAAIIIIAAAggggAACCCgR2H///Y37x5/85CdKsn93mho36TXkrCHHd69kHiGAAALVC1B8qX4OiKAgAYovBcHSLQIIIIAAAggggAACCCAQmcABBxxgFF8efPDByLJ0S0fjJr2GnDXk6LbCOQsBBBAoT4DiS3nWjFSyAMWXksEZDgEEEEAAAQQQQAABBBAIVOCggw4yii8PPPBAoNk0F7bGTXoNOWvIsbmVz9UIIIBA/gIUX/I3pUdPBGbNmmV8eP7Sl77kSXSEgQACCCCAAAIIIIAAAggg4IvA2LFjjfvHH/3oR76EV2ocGjfpNeSsIcdSXygMhgACCDgIUHxxQOKUMAUovoQ5b0SNAAIIIIAAAggggAACCJQt8PnPf94ovtx///1lh+HFeBo36TXkrCFHL15ABIEAAgjUCVB8qcPg27gEKL7ENZ9kgwACCCCAAAIIIIAAAggUJXDwwQcbxZf77ruvqOG87lfjJr2GnDXk6PULi+AQQEClAMUXldOuI+k777zT+PA8btw4HcmTJQIIIIAAAggggAACCCCAgLPAIYccYtw/3nvvvc7Xx3Sixk16DTlryDGm1yG5IIBAHAIUX+KYR7KwCFB8saBwCAEEEEAAAQQQQAABBBBAwBD44he/aBRf7rnnHuM8DQc0btJryFlDjhpen+SIAAJhCVB8CWu+iLYBAYovDWBxKgIIIIAAAggggAACCCCgWODQQw81ii933323ShGNm/QactaQo8oXLEkjgIDXAhRfvJ4egmtG4I477jA+PH/5y19upkuuRQABBBBAAAEEEEAAAQQQiFDgS1/6knH/KH9HVGPTuEmvIWcNObq8XleuXJnMnDkz6ejoSEaOHJlss802SVtb28b/5Hs5Js/JOXIuDQEEEGhGgOJLM3pc67UAxRevp4fgEEAAAQQQQAABBBBAAAFvBOTvg6Y3p+W3KWhsaQd5HHvTkLOGHHtapwsXLkzkdS6FFpuF7ZicK9fItTQEEEAgi0D876BZVLgmCgGKL1FMI0kggAACCCCAAAIIIIAAAoULyG9JSG++yj2lxpZ2kMexNw05a8jRtk5XrFix8SdZWlpajNe4zcR2TK6Vn4aRvmgIIIBAIwLxv4M2osG5UQncfvvtxhvr4YcfHlWOJIMAAggggAACCCCAAAIIINC8wBFHHGHcP/7gBz9ovuMAe7BtPgeYRkMha8hZQ47pSe/s7EyGDh1qvLZtFi7HpC/pk4YAAgi4ClB8cZXivOAEKL4EN2UEjAACCCCAAAIIIIAAArwdfEMAACAASURBVAhUInDkkUcaG7TyNx80NtsmdOwOGnLWkGP9Op09e3bS3t5uvK5tDo0ckz6lbxoCCCDgIkDxxUWJc4IUoPgS5LQRNAIIIIAAAggggAACCCBQusBRRx1lbNLedtttpcfhw4C2jWgf4ioyBg05a8ixtkbmzp2b9OvXz3hN2wyyHJO+ZQwaAggg0JsAxZfehHg+WAGKL8FOHYEjgAACCCCAAAIIIIAAAqUKHHPMMcZG7a233lpqDL4MZtuM9iW2ouLQkLOGHGV9LFu2LBkyZIjxerbl38wxGUPGoiGAAAI9CVB86UmH54IWkN/Pm34jld/jS0MAAQQQQAABBBBAAAEEEECgXuArX/mKcf/4ve99r/4UNd+n76PlcexNQ84acpR1OnbsWOO1bMs9j2MyFg0BBBDoSSD+d9Cesue5qAUovkQ9vSSHAAIIIIAAAggggAACCOQm0NHRYWzYfve7382t/5A6sm1KhxR/llg15Kwhxzlz5hivY1veeR6TMWkIIIBAdwIUX7qT4XjwAhRfgp9CEkAAAQQQQAABBBBAAAEEShEYP368sWl78803lzK2b4PYNqZ9izHveDTkrCHHMWPGGK9jW955HpMxaQgggEB3AhRfupPhePACM2fONN50jzzyyODzIgEEEEAAAQQQQAABBBBAAIF8BSZMmGDcP9500035DhJIb7aN6UBCzxymhpxjz7GrqytpaWkxXse2vPM8JmPK2DQEEEDAJkDxxabCsSgEKL5EMY0kgQACCCCAAAIIIIAAAggULjBx4kRj0/bGG28sfFwfB7BtTPsYZ54xacg59hxnzJhhvIZtORdxTMamIYAAAjYBii82FY5FIUDxJYppJAkEEEAAAQQQQACBvwuce+65lW0sFbFZRZ+bMJ+bYMDrgDXAGmANsAZYA6wBP9fAeeed1/R9CMWXpgnpwFeB2267zbiZOeqoo3wNl7gQQAABBCoQWL9+ffLWW2/xn4PB3/72twpmiCERQKBegOKLnzfmbJgwL6wB1gBrgDXAGmANsAbiWwPy2bvZRvGlWUGu91aA4ou3U0NgCCCAgBcCixYtMor0fGDu/gPzlClTvJg3gkBAswDFl+7/H8X/v7FhDbAGWAOsAdYAa4A1wBrIcw1QfNF850XuvQpQfOmViBMQQAAB1QLz58+n+NLAr3s5/vjjVa8XkkfABwGKL2wo5LmhQF+sJ9YAa4A1wBpgDbAGWAPdrwGKLz7cARGDtwLf//73jU21o48+2tt4CQwBBBBAoFwBii/df8i0fQCn+FLu+mQ0BGwCFF8a+/+W7f9lHMOQNcAaYA2wBlgDrAHWAGvAZQ1QfLHdkXAMgb8LUHxhKSCAAAII9CRA8aWxD9wUX3paTTyHAAIIIBC6wKRJk4x/vPetb30r9LQyxW/bkMrUUUAXacg59hxHjBhhvIZtORdxbKeddgpotRMqAgiUKcDffClTm7FKFaD4Uio3gyGAAALBCVB8ofgS3KIlYAQQQACBwgQmT55sbNxeffXVhY3nc8e2zWmf480jNg05x57j2LFjjdewLecijsnYNAQQQMAmQPHFpsKxoAVWrlyZzJw5M/nUpz5lvPH269cvGTlyZNLR0bHxHDmXhgACCCCgU4DiC8UXnSufrBFAAAEEbAInnXSScf84Y8YM26nRH7NtTseetIacY89RXq+2HMs4pvX/FbH/f4H8EMhDgOJLHor04YXAwoULk3HjxiVtbW3Ob7hyrlwj19IQQAABBHQJUHyh+KJrxZMtAggggEBPAlOmTDHuI6+88sqeLon2OdtmdbTJ/j0xDTnHnmNXV1fS0tJivI5teed5TMZcsmRJ7C8R8kMAgYwCFF8ywnGZPwIrVqzY+JMszbzJyrXy0zDSFw0BBBBAQIcAxReKLzpWOlkigAACCLgITJ061di0veKKK1wuje4c28Z0dEmmEtKQs4Ycx4wZY7yObXnneUzGpCGAAALdCVB86U6G40EIdHZ2JkOHDs3tzVX6kj5pCCCAAALxCyxbtiyR38980EEH8Z+DwQ9+8IP4FwUZIoAAAgioFTjllFOM+8rLL79cpYdtYzp2CA05a8jxkUceMV7HtrzzPDZnzpzYXx7khwACTQhQfGkCj0urFZg9e3bS3t6e+xur9Cl90xBAAAEEEEAAAQQQQAABBHQITJs2zbi3vOyyy3Qkn8rStjGdOiW6hxpy1pCjLEz5x1W2XIs4JmPREEAAgZ4EKL70pMNz3grMnTs36devX2FvqNK3jEFDAAEEEEAAAQQQQAABBBCIX+DUU0817i+nT58ef+KWDG2b1JbTojqkIWcNOcqilJ9uHzJkiPF6tuXfzDEZQ8aiIYAAAj0JUHzpSYfnvBTgjdTLaSEoBBBAAAEEEEAAAQQQQCBYgdNPP93YrL3kkkuCzaeZwG0b0s30F8K1GnLWkGNtrfEPdmsSfEUAgaoFKL5UPQOM37AAP0LaMBkXIIAAAggggAACCCCAAAII9CBwxhlnGMWXiy++uIcr4n1K0yZ9bRY15Kwhx9p8yld+VX29Bt8jgEBVAhRfqpJn3EwC8ofMbB8YijzGH0/LNFVchAACCCCAAAIIIIAAAggEI3DmmWca95oXXXRRMPHnGajt/jrP/n3sS0POGnJMr63Ozs5k6NChxmvbZuFyTPqSPmkIIICAqwDFF1cpzvNCYMyYMbm9abq8sco5MiYNAQQQQAABBBBAAAEEEEAgXoGzzz7buNe88MIL4024h8xs98o9nB7FUxpy1pCjbTGuWLEi6ejoSFpaWozXuM3EdkyulT6kLxoCCCDQiADFl0a0OLdSga6urqbeLG1voC7H5E1WxqYhgAACCCCAAAIIIIAAAgjEKXDOOecYG7Pnn39+nMn2kpXtPrmXS4J/WkPOGnLsaSEuXLgwGTduXNLW1ma81m02ckzOlWvkWhoCCCCQRYDiSxY1rqlEYMaMGc5vkN29cWY9LmPTEEAAAQQQQAABBBBAAAEE4hQ499xzjfvN8847L85ke8nKdt/cyyXBP60hZw05uixE+emVmTNnbvxJlpEjRxqve3GSn3KRc/hJFxdRzkEAgZ4ESi++2D7Q2N4AOLaJ9Q0AF1xYA2GsAa03aj294fAcAggggAACCCCAAAK+Csjn9/S9luxfaGxpB3kce9OQs4Ycs6xTXLKocQ0CCLgKlP4OSvEljI1j25sPx5g71oD7GtB6o+b65sN5CCCAAAIIIIAAAgj4JHDBBRcYxRf5OzAam+2+L3YHDTlryDHLOsUlixrXIICAqwDFl03cN1Nt/0PmGH6sAdaAbQ1QfHF9G+I8BBBAAAEEEEAAAQSqF7jwwguN4stZZ51VfWAVRGC7v6kgjFKH1JCzhhyzLBpcsqhxDQIIuApQfKH4YnzAtL3xcIwCA2ugsTVA8cX1bYjzEEAAAQQQQAABBBCoXuCiiy4y7o3PPPPM6gOrIALbvV8FYZQ6pIacNeSYZdHgkkWNaxBAwFWA4gvFF+MDpu2Nh2ONbbzjhRfFF9e3Ic5DAAEEEEAAAQQQQKB6gUsuucS4Nz799NOrD6yCCGz3sxWEUeqQGnLWkGOWRYNLFjWuQQABV4HSiy+ugXEeAmmBESNGGB+GbW+SRRzbaaed0uHwGAEEEEAAAQQQQAABBBBAIBKBSy+91LjfPO200yLJrrE0bPfUjfUQ3tkactaQY5aVh0sWNa5BAAFXAYovrlKcV7nA2LFjjQ/DtjfJIo7J2DQEEEAAAQQQQAABBBBAAIE4BaZPn27cb5566qlxJttLVrZ76l4uCf5pDTlryDHLQsQlixrXIICAqwDFF1cpzqtcYMaMGcaHYdubZBHHZGwaAggggAACCCCAAAIIIIBAnAKXX365cb95yimnxJlsL1nZ7ql7uST4pzXkrCHHLAsRlyxqXIMAAq4CFF9cpTivcoGurq6kpaXF+EBse6PM85iMuWTJksrzJwAEEEAAgXwFXn311eTAAw9M9t9/f/5zMLjtttvynQB6QwABBBBAwCOBb37zm8a95sknn+xRhOWFYrufLm/0akbSkLOGHLOsHlyyqHENAgi4ClB8cZXiPC8ExowZY3wgtr1R5nlMxqQhgAACCMQnMH/+/NLfU/J8fyq7r+OPPz6+RUBGCCCAAAII/F3giiuuMD4XTJ06VaWP7TNG7BAactaQY5Z1iksWNa5BAAFXAYovrlKc54XAI488Ynwgtr1R5nlszpw5XuROEAgggAAC+QpQfNmkofdUii/5rj96QwABBBDwS8D2a65POukkv4IsKRrb/XRJQ1c2jIacNeSYZQHhkkWNaxBAwFWA4ourFOd5IzB27NiGNotsb6Sux2QsGgIIIIBAnAIUXyi+xLmyyQoBBBBAIIvAVVddZdxnnnjiiVm6Cv4a2/1y8En1koCGnDXk2Ms0W5/GxcrCQQQQyEmA4ktOkHRTnsCyZcuSIUOGGB+MbW+YzRyTMWQsGgIIIIBAnAIUXyi+xLmyyQoBBBBAIIvA1VdfbdxjTp48OUtXwV9ju48OPqleEtCQs4Yce5lm69O4WFk4iAACOQlQfMkJkm7KFZg7d27Sr18/48Ox7U0zyzHpW8agIYAAAgjEK0DxheJLvKubzBBAAAEEGhW45pprjPvLSZMmNdpNFOfb7qGjSKyHJDTkrCHHHqa426dw6ZaGJxBAIAcBii85INJFNQKzZ89O2tvbjQ/ItjfORo5Jn9I3DQEEEEAgbgGKLxRf4l7hZIcAAggg0IjAt7/9bePe8utf/3ojXURzru3+OZrkuklEQ84acuxmens8jEuPPDyJAAJNClB8aRKQy6sV6OzsTIYOHWp8SLa9ebock76kTxoCCCCAQPwCFF8ovsS/yskQAQQQQMBV4NprrzXuK0844QTXy6M6z3bvHFWClmQ05KwhR8vU9noIl16JOAEBBJoQoPjSBB6X+iGwYsWKpKOjI2lpaTE+LNveRG3H5FrpQ/qiIYAAAgjoEFi0aFHm9w3be0nsx6ZOnapjYZAlAggggIBKgeuuu874XPC1r31NpYXtM03sEBpy1pBjlnWKSxY1rkEAAVcBii+uUpznvcDChQuTcePGJW1tbcaHZtubqRyTc+UauZaGAAIIIKBPYMOGDQn/uRn83//9n74FQsYIIIAAAmoErr/+euM+8qtf/aqa/OsTtd0/1z8f4/cactaQY5a1iUsWNa5BAAFXAYovrlKcF4yA/PTKzJkzk0984hPGh+d+/folI0eO3PhTLnIOP+kSzLQSKAIIIIAAAggggAACCCBQmMANN9xg3D8ed9xxhY3nc8caN6M15KwhxyyvK1yyqHENAgi4ClB8cZXivOAEvvOd7xgfno8//vjg8iBgBBBAAAEEEEAAAQQQQACBYgVuvPFG4/5x4sSJxQ7qae8aN6M15KwhxywvKVyyqHENAgi4ClB8cZXivOAE+J29wU0ZASOAAAIIIIAAAggggAAClQjcfPPNRvFl/PjxlcRS9aAaN6M15KwhxyyvHVyyqHENAgi4ClB8cZXivOAEKL4EN2UEjAACCCCAAAIIIIAAAghUInDLLbcYxZdjjz22kliqHlTjZrSGnDXkmOW1g0sWNa5BAAFXAYovrlKcF5wAxZfgpoyAEUAAAQQQQAABBBBAAIFKBL773e8axZeOjo5KYql6UI2b0Rpy1pBjltcOLlnUuAYBBFwFKL64SnFecAIUX4KbMgJGAAEEEEAAAQQQQAABBCoRuPXWW43iyzHHHFNJLFUPqnEzWkPOGnLM8trBJYsa1yCAgKsAxRdXKc4LTuDaa681PjyfcMIJweVBwAgggAACCCCAAAIIIIAAAsUKfP/73zfuH48++uhiB/W0d42b0Rpy1pBjlpcULlnUuAYBBFwFKL64SnFecAIUX4KbMgJGAAEEEEAAAQQQQAABBCoRuO2224ziy1FHHVVJLFUPqnEzWkPOGnLM8trBJYsa1yCAgKsAxRdXKc4LToDiS3BTRsAIIIAAAggggAACCCCAQCUCP/jBD4ziyxFHHFFJLFUPqnEzWkPOGnLM8trBJYsa1yCAgKsAxRdXKc4LTuDb3/628eH561//enB5EDACCCCAAAIIIIAAAggggECxArfffrtx/3j44YcXO6invWvcjNaQs4Ycs7ykcMmixjUIIOAqQPHFVYrzghOg+BLclBEwAggggAACCCCAAAIIIFCJwB133GEUX7785S9XEkvVg2rcjNaQs4Ycs7x2cMmixjUIIOAqQPHFVYrzghOg+BLclBEwAggggAACCCCAAAIIIFCJwKxZs4ziy7hx4yqJpepBNW5Ga8hZQ45ZXju4ZFHjGgQQcBWg+OIqxXnBCVxzzTXGh+dvfOMbweVBwAgggAACCCCAAAIIIIAAAsUK3HXXXcb942GHHVbsoJ72rnEzWkPOGnLM8pLCJYsa1yCAgKsAxRdXKc4LToDiS3BTRsAIIIAAAggggAACCCCAQCUCd999t1F8OfTQQyuJpepBNW5Ga8hZQ45ZXju4ZFHjGgQQcBWg+OIqxXnBCVB8CW7KCBgBBBBAAAEEEEAAAQQQqETgnnvuMYovX/ziFyuJpepBNW5Ga8hZQ45ZXju4ZFHjGgQQcBWg+OIqxXnBCXzrW98yPjxPmjQpuDwIGAEEEEAAAQQQQAABBBBAoFiBH/7wh8b948EHH1zsoJ72rnEzWkPOGnLM8pLCJYsa1yCAgKsAxRdXKc4LToDiS3BTRsAIIIAAAggggAACCCCAQCUC9913n1F8+cIXvlBJLFUPqnEzWkPOGnLM8trBJYsa1yCAgKsAxRdXKc4LToDiS3BTRsAIIIAAAggggAACCCCAQCUC999/v1F8+fznP19JLFUPqnEzWkPOGnLM8trBJYsa1yCAgKsAxRdXKc4LTuDqq682PjxPnjw5uDwIGAEEEEAAAQQQQAABBBBAoFiBBx54wLh/POigg4od1NPeNW5Ga8hZQ45ZXlK4ZFHjGgQQcBWg+OIqxXnBCVB8CW7KCBgBBBBAAAEEEEAAAQQQqETgxz/+sVF8OfDAAyuJpepBNW5Ga8hZQ45ZXju4ZFHjGgQQcBWg+OIqxXnBCVB8CW7KCBgBBBBAAAEEEEAAAQQQqETgwQcfNIovBxxwQCWxVD2oxs1oDTlryDHLaweXLGpcgwACrgIUX1ylOC84AYovwU0ZASOAAAIIIIAAAggggAAClQj89Kc/NYov++23XyWxVD2oxs1oDTlryDHLaweXLGpcgwACrgIUX1ylOC84gauuusr48HziiScGlwcBI4AAAggggAACCCCAAAIIFCvw0EMPGfePn/vc54od1NPeNW5Ga8hZQ45ZXlK4ZFHjGgQQcBWg+OIqxXnBCVB8CW7KCBgBBBBAAAEEEEAAAQQQqERg9uzZRvHls5/9bCWxVD2oxs1oDTlryDHLaweXLGpcgwACrgIUX1ylOC84AYovwU0ZASOAAAIIIIAAAggggAAClQj8/Oc/N4ov++67byWxVD2oxs1oDTlryDHLaweXLGpcgwACrgIUX1ylOC84gRkzZhgfnk866aTg8iBgBBBAAAEEEEAAAQQQQACBYgV+8YtfGPeP++yzT7GDetq7xs1oDTlryDHLSwqXLGpcgwACrgIUX1ylOC84AYovwU0ZASOAAAIIIIAAAggggAAClQj88pe/NIove++9dyWxVD2oxs1oDTlryDHLaweXLGpcgwACrgIUX1ylOC84AYovwU0ZASOAAAIIIIAAAggggAAClQg88sgjRvHlM5/5TCWxVD2oxs1oDTlryDHLaweXLGpcgwACrgIUX1ylOC84gSuvvNL48DxlypTg8iBgBBBAAAEEEEAAAQQQQACBYgXmzJlj3D/+27/9W7GDetq7xs1oDTlryDHLSwqXLGpcgwACrgIUX1ylOC84AYovwU0ZASOAAAIIIIAAAggggAACpQgsXbo0uf3225OzzjorOfTQQ5MRI0YYxZfW1tZk2LBhyR577LHxHDlXrpFrY24aN6M15KwhxyyvS1yyqHENAgi4ClB8cZXivOAEKL4EN2UEjAACCCCAAAIIIIAAAggUIrBhw4bkoYceSjo6OpLhw4cbhRbbBmxPx6QP6Uv6lL5jara8Y8rPlouGnDXkaJvb3o7h0psQzyOAQDMCFF+a0eNarwWuuOIK4wP11KlTvY6Z4BBAAAEEEEAAAQQQQAABBPITeP7555NJkyYlgwcPNu4PbZuuWY5J3zKGjBVDsxnEkFdPOWjIWUOOPc1xd8/h0p0MxxFAIA8Bii95KNKHlwIUX7ycFoJCAAEEEEAAAQTUCqxb/06y9LU1ye+efSP52WOvJHf8fEly/X3/k1w2c1Fy9o0LkqlXz0+Ov+zxpOPC/0oOP2deMu7Mucmhp/8mOXjar5OxJ/8qufMXL6i1I3EEGhVYsGDBxl8V1qdPn8KKLulNWxlLfoWZjB1yS+clj2NvGnLWkGOWdYpLFjWuQQABV4H430FdJTgvOgGKL9FNKQkhgAACCCCAAALBCPxl9frkP59antz6k8XJ2TcsSI45/7cbiyjHXfr4xsdXzXo2ue2hruSB37yU/OqJ15L5z76RPPvCyo3FmT/9+a/JyjfXJ2v+uiH561vvJOs3/C1552//F0zuBIpAlQLLly/f+OvAWlpaSiu6pDdvZWz5lWQSS4gtnY88jr1pyFlDjlnWKS5Z1LgGAQRcBeJ/B3WV4LzoBL75zW8aH7ZPPvnk6PIkIQQQQAABBBBAAAE/BKRY8qNfv5ScdNX85Cvn/3bjT7Tc9+gfkyeeeyP53xXr/AiSKBCIWODGG29MttxyS+M+0La52rdv3+TjH/94IveIt9xyS3L99dcb140aNSp58cUXk3nz5m08R86Va+RaW5/pYxKLxBRaS+chj2NvGnLWkGOWdYpLFjWuQQABV4H430FdJTgvOgGKL9FNKQkhgAACCCCAAALeCnQ+83oy4eLHktt/tiT545/WeBsngSEQo8DKlSuTgw8+uNeCSP/+/ZPDDjssefDBB5M1a979Ov2v//ov43optNja6tWrN/YhfUmfts3b+mMSm8QYSquPvfZ9KLFnjbOWZ/3XrH35el19brXvfY21zLhqFvVfyxyfsRBAIG4Bii9xz6/q7Ci+qJ5+kkcAAQQQQAABBEoVOOyM3/DTLaWKMxgC/5/AU089lQwbNqzHAsj222+fzJgxI3nzzTe7ZXvssceMPvbcc89uz689sWrVquTKK69MZIz6zdv09xKjxBpCS8cuj2NvGnLWkGOWdYpLFjWuQQABV4H430FdJTgvOgGKL9FNKQkhgAACCCCAAALeChw45VFvYyMwBGIVePTRR5Mtttii26LHoEGDkuuuuy5Zv359rwSdnZ1GP/Jrx1ybjHHttdcmMqZtM1eODRw4MJGYfW+2+H2Pudn4NOSsIccs6wCXLGpcgwACrgIUX1ylOC84gcsvv9z40HvKKacElwcBI4AAAggggAACCPgvQPHF/zkiwrgE7r///qStrc2456ttpB577LHJ66+/7pz07373O6OvkSNHOl9fO1HGlLFrcaS/SswSu88tHbM8jr1pyFlDjlnWKS5Z1LgGAQRcBeJ/B3WV4LzoBCi+RDelJIQAAggggAACCHgrQPHF26khsAgFHn744W4LL1tttVWm4sb8+fONgslHP/rRzHpSYJFYbBu7UoCRHHxttph9jTWvuDTkrCHHLOsBlyxqXIMAAq4CFF9cpTgvOAGKL8FNGQEjgAACCCCAAALBClB8CXbqCDwwAfkJlQEDBliLGrvuumuydOnSTBk9+eSTRp8f+chHMvVVu0hikZhsm7uSg+TiY7PF62OcecakIWcNOWZZE7hkUeMaBBBwFaD44irFecEJXHbZZcaH3GnTpgWXBwEjgAACCCCAAAII+C9A8cX/OSLC8AWWL1/e7R+232uvvZKVK1dmTvK///u/jfvHPfbYI3N/tQslJonNtsG7/fbbJ5KTb80Wq28x5h2Phpw15JhlXeCSRY1rEEDAVYDii6sU5wUnQPEluCkjYAQQQAABBBBAIFgBii/BTh2BBySw9957W4sYUtxYt25dU5ksWLDA6PvDH/5wU33WLpbYuivA7LPPPrXTvPmqcTNaQ84acszyIsIlixrXIICAqwDFF1cpzgtOgOJLcFNGwAgggAACCCCAQLACFF+CnToCD0TAdn8nm6by0ymrVq1qOounnnrKKL586EMfarrfWgcSo8Rq2+iV3Hxqthh9iq+IWDTkrCHHLGsDlyxqXIMAAq4CFF9cpTgvOIHp06cbH2xPPfXU4PIgYAQQQAABBBBAAAH/BSi++D9HRBiuwIsvvpi0t7cb93eDBw9OXn311VwSe/rpp43+//mf/zmXvmudSKzbbrutMY7kJjn60jRuRmvIWUOOWV5DuGRR4xoEEHAVoPjiKsV5wQlQfAluyggYAQQQQAABBBAIVoDiS7BTR+ABCOy3335GwaJPnz7Jww8/nFv0v//9740xdtttt9z6r3UkMUvs6Q1fydGXlo5NHsfeNOSsIccs6xSXLGpcgwACrgLxv4O6SnBedAIUX6KbUhJCAAEEEEAAAQS8FaD44u3UEFjgAnPmzDEKFbJZOnXq1FwzW7RokTHOrrvumusYtc6mTJlijCU5Sa5VtdWrVyezZs1KJkyYYI1t1KhRycSJE5O77rorkXNjaxo24DXkmGVd4pJFjWsQQMBVgOKLqxTnBSdw6aWXGh8aTzvttODyIGAEEEAAAQQQQAAB/wUovvg/R0QYpsDo0aON+7qhQ4cma9asyTWhZ5991hjngx/8YK5j1DqT4oXkkN70lVzLbosXL07Gjx9v/bVu6fhqj+XXpMk1cm0srZZb/ddYcqvlUZ9b7fvac5q/1izqv2r2IHcEEMhXgOJLvp705pEAxRePJoNQEEAAAQQQQACByAUovkQ+waRXG7YZhwAAIABJREFUicC8efOMAoVskN599925x/Pcc88ZY+2yyy65j1PrUHKo3+ytfS85l9HWrVuXTJs2LWltbbXGUYunp69yrfQhfYXebHmGnlM6fg05pnN2eYyLixLnIIBAVgGKL1nluM57AYov3k8RASKAAAIIIIAAAtEIUHyJZipJxCOBcePGGYWBon4V2B/+8AdjrJ133rlQDcklvfErORfdurq6kt13390YOx2L62PpS/oMudlyDTkfW+wacrTl3dsxXHoT4nkEEGhGgOJLM3pc67XAJZdcYnyYPP30072OmeAQQAABBBBAAAEEwhSg+BLmvBG1vwKrVq1K+vfvb9zT3XnnnYUE/fzzzxtjjRgxopCxap1KLumNX8lZci+qLViwIBk8eLAxbjqORh9Ln9J3qM2Wb6i5dBe3hhy7y72n47j0pMNzCCDQrADFl2YFud5bAYov3k4NgSGAAAIIIIAAAtEJUHyJbkpJqGKBm2++2SgQbLvttsnbb79dSGTy90vSm7Af+MAHChmr1qnkIjmlx5Xci2jy0ylFFF5q8Uvfof4ETC2H+q9FzEGVfdbnVvu+ynh8GbtmUf/Vl9iIAwEEwheg+BL+HJJBNwIUX7qB4TACCCCAAAIIIIBA7gIUX3InpUPlAgcddJBRlJg8eXJhKlI0qN98le933HHHwsardSw5pceV3PNu8ndZ8vxVY+mYa49ljBD/Bkwt/vqvec9B1f3V51b7vuqYfBi/ZlH/1Ye4iAEBBOIQoPgSxzyShUWA4osFhUMIIIAAAggggAAChQhQfCmElU6VCrzzzjvJwIEDjaLE448/XpjICy+8YIw3fPjwwsardSw51W/6yveSuxjk2aZNm2aMkx43r8cyVmjNlntoOfQWr4YcezOwPY+LTYVjCCCQlwDFl7wk6cc7gYsvvtj4cHnGGWd4FycBIYAAAggggAACCIQvQPEl/DkkA38EOjs7jXu5IgoS9Rm/+OKLxpg77LBD/SmFfN9doUkM8mryK9VaW1uN/Gybznkck7FkzJCaLe+Q4neJVUOOLg7pc3BJi/AYAQTyFKD4kqcmfXklQPHFq+kgGAQQQAABBBBAIGoBii9RTy/JlSxw3XXXGYWCIn4VV31aS5cuNcYcNmxY/SmFfW/7FWtikFcbP368kZttwznPYzJmSM2We0jxu8SqIUcXh/Q5uKRFeIwAAnkKUHzJU5O+vBKg+OLVdBAMAggggAACCCAQtQDFl6inl+RKFpg0aZJRLLjwwgsLjeKll14yxhw6dGihY9Y6l9zSG8BikEdbvXp10t7ebvSfHi/vxzKmjB1Ks+UfSuyucWrI0dWi/jxc6jX4HgEE8hag+JK3KP15I3DRRRcZHzDPPPNMb+IjEAQQQAABBBBAAIF4BCi+xDOXZFK9wD777GPcy917772FBvbyyy8bY77//e8vdMxa55JbegNYDPJos2bNMvpOj1XUYxk7lGYzCCV21zg15OhqUX8eLvUafI8AAnkLUHzJW5T+vBGg+OLNVBAIAggggAACCCAQvQDFl+inmARLFNh5552NgsHTTz9daASvvPKKMeb2229f6Ji1ziW39AawGOTRJkyYYPSdHquoxxMnTswjhVL6sBmUMnCJg2jIMQsnLlnUuAYBBFwFKL64SnFecAIUX4KbMgJGAAEEEEAAAQSCFSij+HLHz5ckMg7/YRD7Gug3YJvKCga2jdgqjolBHvO85XYfrMxSxs4jhzL6sM1xGeOWOYaGHLN44sJ7apZ1wzU61s2dv3ih6XsTii9NE9KBrwK235t71lln+RoucSGAAAIIIIAAAggELCA34UU3ii86bvTZ0Hk02bSt/L9RYtuArfKYGOSxFtr6D6ys+CJj55FDGX3Y5rqMccscQ0OOWTxx4b01y7rhGh3rRj57N9sovjQryPXeClB88XZqCAwBBBBAAAEEEIhOQG7Ci24UX3Tc6LOh82jS0tKnsoKBbSO2imNikMda6LNpa2WWMnYeOZTRh22Oyxi3zDE05JjFExfeW7OsG67RsW4ovhR9d0P/QQtQfAl6+ggeAQQQQAABBBAISkBuwotuFF903OizocNPvshmcF4/+ULxxe3/Gxo24DXkmOX/n7i4vUay2HINtqGvAYovRd/d0H/QAhdccIHxL3zOPvvsoHMieAQQQAABBBBAAAE/BeTmsuhG8YVNjNA3MVzj52++bJLk9Tdf+LVjbv/f0LABryFH1//H1J+Hi9trpN6M7zHTsgYovhR9d0P/QQtQfAl6+ggeAQQQQAABBBAISkBuQmkIIJCPwM4772z8Q7qnn346n8676eWNN94wxtx66627OTvfw5JbegNYDPJoo0aNMvpOj1XUYxk7lGYzCCV21zg15OhqUX8eLvUafI8AAnkL8Ddf8halP28EKL54MxUEggACCCCAAAIIRC9A8SX6KSbBEgX22Wcfo2Bw7733FhrBn//8Z2PMQYMGFTpmrXPJLb0BLAZ5tAkTJhh9p8cq6vHEiRPzSKGUPmwGpQxc4iAacszCiUsWNa5BAAFXAYovrlKcF5zA+eefb3zIPOecc4LLg4ARQAABBBBAAAEE/Beg+OL/HBFhOAKTJk0y7uXkb3oW2VauXGmMueWWWxY55P/ft+3vlYpBHm3WrFlGXrbN5iKO3XXXXXmkUEoftvxLGbjEQTTkmIUTlyxqXIMAAq4CFF9cpTgvOAGKL8FNGQEjgAACCCCAAALBClB8CXbqCNxDgeuuu84oGBx00EGFRvqXv/zFGHPgwIGFjlnrXHJLbwCLQR5t9erVSXt7u9F/ery8H8uYMnYozZZ/KLG7xqkhR1eL+vNwqdfgewQQyFuA4kveovTnjQDFF2+mgkAQQAABBBBAAIHoBSi+RD/FJFiiQGdnp1EskELIO++8U1gUq1atMsbcYostChuv1rHkJLmlN4DFIK82fvx4o//0eHk/ljFDarb8Q4rfJVYNObo4pM/BJS3CYwQQyFOA4kuemvTllQDFF6+mg2AQQAABBBBAAIGoBSi+RD29JFeyQHcFiccff7ywSOSnNNKbsAMGDChsvFrHjz32mDFu3oWmxYsXJ62trcY46XzzeixjyZghNVvuIcXvEquGHF0c0ufgkhbhMQII5ClA8SVPTfrySuC8884zPlyee+65XsVIMAgggAACCCCAAAJxCFB8iWMeycIfAduv4po8eXJhAa5Zs8a4f9xss80KG6/WseSU3vwt4lesTZs2zRgnPW5ej2Ws0Jot99By6C1eDTn2ZmB7HhebCscQQCAvAYoveUnSj3cCFF+8mxICQgABBBBAAAEEohWg+BLt1JJYRQK33HKLUSzYdtttk7fffruQiNauXWuMJ3+3pMgmuUhO6c1fyT3vtm7dumT33Xc3xkqP3exjGUPGCq3Z8g4th97i1ZBjbwa253GxqXAMAQTyEqD4kpck/XgnQPHFuykhIAQQQAABBBBAIFoBii/RTi2JVSQgf4Olf//+RrHgzjvvLCQiKRikN2H79etXyFi1TiWX9JiSs+ReROvq6koGDx5sjJmOIetj6VvGCLHZcg4xj55i1pBjT/l39xwu3clwHAEE8hCg+JKHIn14KSC/Yiz9JioFGRoCCCCAAAIIIIAAAnkLUHzJW5T+EEiScePGGfd0u+66ayE0b731ljHWe97znkLGqnUquaTvWSXnItuCBQsKKcBI4UX6DrWl50Eex9Y05JhlznDJosY1CCDgKhDfu4lr5pwXvQDFl+inmAQRQAABBBBAAAFvBCi+eDMVBBKRwLx584zihGyU3n333blnuX79emOstra23MepdSg52DZ9Jeeim/x0Sp6/gkz6CvUnXmrWtrmoPRfLVw05ZpkrXLKocQ0CCLgKUHxxleK84AQovgQ3ZQSMAAIIIIAAAggEK0DxJdipI3DPBUaPHm0UKYYOHZqsWbMm18g3bNhgjNPa2prrGLXOVq9enUgO6U1fybWsJr9mbdq0aYnkmI7D9bFcK32E+Dde0s62nNPnhP5YQ45Z5giXLGpcgwACrgIUX1ylOC84gXPOOcf4EHn++ecHlwcBI4AAAggggAACCPgvQPHF/zkiwjAF5syZY9zXyWbplClTck3onXfeMcbZdNNNcx2j1pnEbtvwffTRR2unlPZ18eLFyfjx45P29nZrTLY45Vy5Rq6NpdnyjCW3Wh4acqzl2shXXBrR4lwEEGhUgOJLo2KcH4wAxZdgpopAEUAAAQQQQACB4AUovgQ/hSTgscB+++1nFAb69OmTPPzww7lGnd6ElTHybhKz9JseS3KssslP48yaNSuZMGGCEZvEOmrUqI3PyTlybmwtPR/yOLamIccsc4ZLFjWuQQABV4H43k1cM+e86AUovkQ/xSSIAAIIIIAAAgh4I0DxxZupIJAIBV588UXrT2Zsu+22yauvvppbxulN2JaWltz6lo4kVok5PY78JInk6EtLxyePY28actaQY5Z1iksWNa5BAAFXgfjfQV0lOC86gbPPPtv4UHvBBRdElycJIYAAAggggAACCFQvQPGl+jkggrgFLrvsMuP+TjZN99hjj2TVqlW5JF/kJqzEKLHaxpDcfGq2GH2Kr4hYNOSsIccsawOXLGpcgwACrgIUX1ylOC84AYovwU0ZASOAAAIIIIAAAsEKUHwJduoIPCCBvffe21q82GuvvXL5o+/yky7pjdg8eOQP0kuM6b7lseTkW7PF6VuMecejIWcNOWZZF7hkUeMaBBBwFaD44irFecEJUHwJbsoIGAEEEEAAAQQQCFaA4kuwU0fgAQksX7482X777a1FDClurFy5sqlsbH+LpakOk2RjTN0VXiQXycm3pnEzWkPOGnLM8lrCJYsa1yCAgKsAxRdXKc4LTuCss84yPpRfeOGFweVBwAgggAACCCCAAAL+C1B88X+OiDAOgd/97nfJgAEDjHs92UDdddddk6VLl2ZOtG/fvka/GzZsyNyfxCIx2TZ3JQfJxcdmi9fHOPOMSUPOGnLMsiZwyaLGNQgg4CpA8cVVivOCE6D4EtyUETACCCCAAAIIIBCsAMWXYKeOwAMUePjhh5O2tjZrUWOrrbZK7r///kxZtba2Gn2+/fbbmfqSGCQW28auxC45+NpsMfsaa15xachZQ45Z1gMuWdS4BgEEXAUovrhKcV5wAhRfgpsyAkYAAQQQQAABBIIVoPgS7NQReKACUtzorgAjm6nHHnts8sYbbzSUna2/9evXN9TH66+/vnFs24auHJMxshaHGgqkiZNtsTfRXRCXashZQ45ZFhsuWdS4BgEEXAUovrhKcV5wAhRfgpsyAkYAAQQQQAABBIIVoPgS7NQReMACjz76aDJw4EDrT5fIhuqgQYOS6667LnEtoPTr18/oa926dU5CMoaMJWPaNnPlmMQqMfvebPH7HnOz8WnIWUOOWdYBLlnUuAYBBFwFKL64SnFecAJnnnmm8aH3oosuCi4PAkYAAQQQQAABBBDwX4Dii/9zRIRxCjz11FPJsGHDjHu/+g1V+cP2M2bMSN58880eEfr372/089e//rXHa1atWrWxbxmjfsz09xKjxBpCS8cuj2NvGnLWkGOWdYpLFjWuQQABV4H430FdJTgvOgGKL9FNKQkhgAACCCCAAALeClB88XZqCEyBwMqVK5ODDz64x+KHbLBKceWwww5LHnzwwWTNmjWGTHt7u9HH2rVrjfPkWulD+rIVbNKbuRKbxBhKS8cvj2NvGnLWkGOWdYpLFjWuQQABV4H430FdJTgvOgGKL9FNKQkhgAACCCCAAALeClB88XZqCEyRwI033phsueWWRgHFtrnat2/f5OMf/3hy8sknJ7fccksyb968ZLPNNjOufeaZZzY+J+fIuXKNXGvrM31MYpGYQmvpPORx7E1DzhpyzLJOccmixjUIIOAqEP87qKsE50UncMYZZxgfiC+++OLo8iQhBBBAAAEEEEAAgeoFKL5UPwdEgIAILF++POno6EhaWlqM+0HbJmsRx2RsiUFiCbHZTELMo5GYNeSsIcdG5rx2Li41Cb4igEARAhRfilClTy8EKL54MQ0EgQACCCCAAAIIqBCg+KJimkkyIIEFCxYkhx56aNKnT5/SijAylowpY4fcNG5Ga8hZQ45ZXne4ZFHjGgQQcBWg+OIqxXnBCVB8CW7KCBgBBBBAAAEEEAhWgOJLsFNH4JELPP/888mkSZOSwYMHF1aEkb5lDBkrhqZxM1pDzhpyzPL6wyWLGtcggICrAMUXVynOC07g9NNPNz5cX3LJJcHlQcAIIIAAAggggAAC/gtQfPF/johQt8CGDRuShx56aOOvA9thhx2Me0XbBmxPx6QP+dVi0qf0HVOz5R1TfrZcNOSsIUfb3PZ2DJfehHgeAQSaEaD40owe13otQPHF6+khOAQQQAABBBBAICoBii9RTSfJKBBYunRpcvvttydnnXXWxl8VtsceeyTDhg1Ltt5666StrW3jf/K9HJPn5NeJyblyjVwbc9O4Ga0hZw05Znld4pJFjWsQQMBVgOKLqxTnBSdA8SW4KSNgBBBAAAEEEEAgWAGKL8FOHYEjgEBKQONmtIacNeSYWspOD3FxYuIkBBDIKEDxJSMcl/kvcNpppxk/Sn7ppZf6HzgRIoAAAggggAACCAQnQPEluCkjYAQQ6EZA42a0hpw15NjNku7xMC498vAkAgg0KUDxpUlALvdXgOKLv3NDZAgggAACCCCAQGwCFF9im1HyQUCvgMbNaA05a8gxy6sWlyxqXIMAAq4CFF9cpTgvOAGKL8FNGQEjgAACCCCAAALBClB8CXbqCBwBBFICGjejNeSsIcfUUnZ6iIsTEychgEBGAYovGeG4zH+BU0891fi1Y9OnT/c/cCJEAAEEEEAAAQQQCE6A4ktwU0bACCDQjYDGzWgNOWvIsZsl3eNhXHrk4UkEEGhSgOJLk4Bc7q8AxRd/54bIEEAAAQQQQACB2AQovsQ2o+SDgF4BjZvRGnLWkGOWVy0uWdS4BgEEXAUovrhKcV5wAhRfgpsyAkYAAQQQQAABBIIVoPgS7NQROAIIpAQ0bkZryFlDjqml7PQQFycmTkIAgYwCFF8ywnGZ/wIUX/yfIyJEAAEEEEAAAQRiEaD4EstMkgcCCGjcjNaQs4Ycs7x6ccmixjUIIOAqQPHFVYrzghOYNm2a8TdfLrvssuDyIGAEEEAAAQQQQAAB/wUovvg/R0SIAAJuAho3ozXkrCFHtxX+7rNwebcHjxBAIF8Bii/5etKbRwIUXzyaDEJBAAEEEEAAAQQiF6D4EvkEkx4CigQ0bkZryFlDjlleprhkUeMaBBBwFaD44irFecEJUHwJbsoIGAEEEEAAAQQQCFaA4kuwU0fgCCCQEtC4Ga0hZw05ppay00NcnJg4CQEEMgpQfMkIx2X+C5xyyinGrx27/PLL/Q+cCBFAAAEEEEAAAQSCE6D4EtyUETACCHQjoHEzWkPOGnLsZkn3eBiXHnl4EgEEmhSg+NIkIJf7K0Dxxd+5ITIEEEAAAQQQQCA2AYovsc0o+SCgV0DjZrSGnDXkmOVVi0sWNa5BAAFXAYovrlKcF5wAxZfgpoyAEUAAAQQQQACBYAUovgQ7dQSOAAIpAY2b0Rpy1pBjaik7PcTFiYmTEEAgowDFl4xwXOa/wMknn2z82rFvfvOb/gdOhAgggAACCCCAAALBCVB8CW7KCBgBBLoR0LgZrSFnDTl2s6R7PIxLjzw8iQACTQpQfGkSkMv9FaD44u/cEBkCCCCAAAIIIBCbAMWX2GaUfBDQK6BxM1pDzhpyzPKqxSWLGtcggICrAMUXVynOC06A4ktwU0bACCCAAAIIIIBAsAIUX4KdOgJHAIGUgMbNaA05a8gxtZSdHuLixMRJCCCQUYDiS0Y4LvNfYOrUqcavHbviiiv8D5wIEUAAAQQQQAABBIIToPgS3JQRMAIIdCOgcTNaQ84acuxmSfd4GJceeXgSAQSaFKD40iQgl/srQPHF37khMgQQQAABBBBAIDYBii+xzSj5IKBXQONmtIacNeSY5VWLSxY1rkEAAVcBii+uUpwXnADFl+CmjIARQAABBBBAAIFgBSi+BDt1BI4AAikBjZvRGnLWkGNqKTs9xMWJiZMQQCCjAMWXjHBc5r/AlClTjF87duWVV/ofOBEigAACCCCAAAIIBCdA8SW4KSNgBBDoRkDjZrSGnDXk2M2S7vEwLj3y8CQCCDQpQPGlSUAu91eA4ou/c0NkCCCAAAIIIIBAbAIUX2KbUfJBQK+Axs1oDTlryDHLqxaXLGpcgwACrgIUX1ylOC84AYovwU0ZASOAAAIIIIAAAsEKUHwJduoIHAEEUgIaN6M15Kwhx9RSdnqIixMTJyGAQEYBii8Z4bjMfwGKL/7PEREigAACCCCAAAKxCFB8iWUmyQMBBDRuRmvIWUOOWV69uGRR4xoEEHAVoPjiKsV5wQmcdNJJxt98mTFjRnB5EDACCCCAAAIIIICA/wIUX/yfIyJEAAE3AY2b0Rpy1pCj2wp/91m4vNuDRwggkK8AxZd8PenNIwGKLx5NBqEggAACCCCAAAKRC1B8iXyCSQ8BRQIaN6M15KwhxywvU1yyqHENAgi4ClB8cZXivOAEKL4EN2UEjAACCCCAAAIIBCtA8SXYqSNwBBBICWjcjNaQs4YcU0vZ6SEuTkychAACGQUovmSE4zL/BU488UTj145dddVV/gdOhAgggAACCCCAAALBCVB8CW7KCBgBBLoR0LgZrSFnDTl2s6R7PIxLjzw8iQACTQpQfGkSkMv9FaD44u/cEBkCCCCAAAIIIBCbAMWX2GaUfBDQK6BxM1pDzhpyzPKqxSWLGtcggICrAMUXVynOC06A4ktwU0bACCCAAAIIIIBAsAIUX4KdOgJHAIGUgMbNaA05a8gxtZSdHuLixMRJCCCQUYDiS0Y4LvNfYPLkycavHbv66qv9D5wIEUAAAQQQQAABBIIToPgS3JQRMAIIdCOgcTNaQ84acuxmSfd4GJceeXgSAQSaFKD40iQgl/srQPHF37khMgQQQAABBBBAIDYBii+xzSj5IBC/wJo1a5Jf/OIXyRVXXJFMnDgxGT16dDJixAjjHzHK5rQcl+flPDlfrpPrY2kaNuA15JhlPeKSRY1rEEDAVYDii6sU5wUnQPEluCkjYAQQQAABBBBAIFgBii/BTh2BI6BKYNGiRclZZ52V7Lnnnknfvn2thRbbZrTtmFwv/Uh/0m/IzZZfyPnYYteQoy3v3o7h0psQzyOAQDMCFF+a0eNarwUmTZpkfJD81re+5XXMBIcAAggggAACCCAQpgDFlzDnjagR0CCwatWq5Morr0w+9KEPGffIto3nrMekfxlHxgut2XIOLYfe4tWQY28GtudxsalwDAEE8hKg+JKXJP14J0DxxbspISAEEEAAAQQQQCBaAYov0U4tiSEQrMCf/vSn5LTTTksGDhxYaNElvXkt48m4Mn4oLZ2DPI6tacgxy5zhkkWNaxBAwFUgvncT18w5L3oBii/RTzEJIoAAAggggAAC3ghQfPFmKggEAfUC69evT6ZPn54MGDCg1KJLehNbxpc4JB7fWzp2eRxb05BjljnDJYsa1yCAgKtAfO8mrplzXvQC3/jGN4wPmtdcc030eZMgAggggAACCCCAQPkCFF/KN2dEBBAwBebMmZOMGDHCuBe2bTDLseHDhydHH310csUVVyQPPvhg8uyzz1qvlePyvJwn58t13fWZPi7xSFw+t3TM8ji2piHHLHOGSxY1rkEAAVeB+N5NXDPnvOgFKL5EP8UkiAACCCCAAAIIeCNA8cWbqSAQBFQKbNiwYeOv+urTp0+vRZGPf/zjybXXXpv88Y9/tFq5bkbL9dKP9Ge7pv6YxCW/ikzi9LHVx1r73sc4m4mpllf912b6i+Xaeo/a97HkRh4IIFC9AMWX6ueACAoSoPhSECzdIoAAAggggAACCBgCFF8MEg4ggEBJAq+99lrysY99rMcCSP/+/ZMTTjgh6erq6jWq2gZ0/dfeLpJ+v/a1ryUyTv116e/33HPPROL1raXjlMexNQ05ZpkzXLKocQ0CCLgKxPdu4po550UvQPEl+ikmQQQQQAABBBBAwBsBii/eTAWBIKBK4Lnnnkt22GGHbgseffv2TU488cRk+fLlzi7NbEbLODKejGvrR45JvBK3T80Wq0/x5RGLhhyzOOGSRY1rEEDAVYDii6sU5wUn8PWvf934sPftb387uDwIGAEEEEAAAQQQQMB/AYov/s8RESIQm8Djjz+eDBo0yLjvrW0mjx49OnnmmWcaTrt2ff3XRjuRcWX8+j7qv5e4Ozs7G+22sPPrY6t9X9hgFXVcy6v+a0WheDVsvUfte68CJBgEEAhagOJL0NNH8D0JUHzpSYfnEEAAAQQQQAABBPIUoPiSpyZ9IYBAbwJPP/10stVWW1mLG62trcn06dN766Lb52sb0PVfuz25lyckDomnvq/a9xK/5OFDq8VU/9WHuPKMoT632vd59h9qXzWL+q+h5kLcCCDgnwDFF//mhIhyEqD4khMk3SCAAAIIIIAAAgj0KkDxpVciTkAAgZwE5O+rbLfddtaCxuDBgxP5iZhmWv0mdO37Zvp77LHHEomr1lf9V8nD5e/QNDO+y7X1MdW+d7kupHNqedV/DSn+omKt96h9X9RY9IsAAvoEKL7om3M1GcsfE6y9cda+XnvttWryJ1EEEEAAAQQQQACB8gQovpRnzUgIaBZYu3Ztsttuuxn3unLPu9NOOyVLlixpmqd2/1z/tdlOJS6Jr77P2veSj+RVZavFUv+1yniKGLs+t9r3RYwTWp81i/qvoeVAvAgg4K8AxRd/54bImhSg+NIkIJcjgAACCCCAAAIIOAtQfHGm4kQEEGhC4IgjjrAWMHbZZZdE/th9Hq1+E7r2fR79SnwnoGKuAAAgAElEQVQSZ63P+q+SV5WtPpba91XGU8TYtbzqvxYxTmh91nvUvg8tB+JFAAF/BSi++Ds3RNakAMWXJgG5HAEEEEAAAQQQQMBZgOKLMxUnIoBARoHvfe971sLFsGHDkpdffjljr+ZltQ3o+q/mWdmOSJwSb33fte8lv6paLYb6r1XFUtS49bnVvi9qrJD6rVnUfw0pfmJFAAG/BSi++D0/RNeEwNe+9jXjA911113XRI9cigACCCCAAAIIIICAXYDii92FowggkI+A/NTIoEGDjHvczTbbLFm0aFE+g/y9l/pN6Nr3eQ4g8Urctb5rXyW/vH56p9F4azHUf220D9/Pr8+t9r3vMZcRX82i/msZ4zIGAgjoEKD4omOeVWZJ8UXltJM0AggggAACCCBQiQDFl0rYGRQBNQLd/bqxO+64I3eD+k3o2vd5DyJx1/qu/1rVrx+rj6H2fd45V91fLa/6r1XH5MP49R61732IixgQQCAOAYovccwjWVgEKL5YUDiEAAIIIIAAAgggUIgAxZdCWOkUAQSSJJk/f761UHHUUUcV4lPbgK7/WsRARx55pDUvybeMtnr16mTWrFnJhAkTrHGMGjUqmThxYnLXXXclcm7orX4+a9+HnlMe8dcs6r/m0S99IIAAAiJA8YV1EK3A8ccfb3yA+s53vhNtviSGAAIIIIAAAgggUJ0AxZfq7BkZgdgFDjjgAOPeduutt05ef/31QlKv34SufV/EQBK/5FEbo/ZV8i2yLV68OBk/fnzS3t5ujF2LIf1VzpVr5NpQWzoneUxLrGsAFwQQQCAvAf5Pm5ck/XgnQPHFuykhIAQQQAABBBBAIFoBii/RTi2JIVCpwJNPPmndHL7pppsKi6vMTXrJwzae5J13W7duXTJt2rSktbXVOqYtjvQxuVb6kL5Ca+lc5DGN4gtrAAEEihXg/7TF+tJ7hQIUXyrEZ2gEEEAAAQQQQECZAMUXZRNOugiUJNDR0WEUCoYPH55s2LChsAjK3KSXPCSf9JiSd56tq6sr2X333Y1x0uO6Ppa+pM+Qmi23kOIvKlZcipKlXwQQEAGKL6yDaAW++tWvGh+srr/++mjzJTEEEEAAAQQQQACB6gQovlRnz8gIxCqwdu3aZPPNNzfua2+++eZCUy57M1rySY8peUv+ebQFCxYkgwcPNsZIj9noY+lT+g6l2fILJfYi48SlSF36RgABii+sgWgFKL5EO7UkhgACCCCAAAIIeCdA8cW7KSEgBIIXmDlzplEwGDhwYOG/8qrszWj5FV6SV3pcyb/ZJj+dUkThpRar9B3KT8DUYq7/2qxvDNfXe9S+jyEvckAAAT8EKL74MQ9EUYAAxZcCUOkSAQQQQAABBBBAwCpA8cXKwkEEEGhC4JBDDjEKEscdd1wTPbpdWtuArv/qdmX2sySv+vHke8m/mSZFnTx/1Vg6vtpjGSOEvwFTi7f+azO+sVxb71H7PpbcyAMBBKoXoPhS/RwQQUECFF8KgqVbBBBAAAEEEEAAAUOA4otBwgEEEGhSYNCgQUZBYu7cuU322vvltQ3o+q+9X9XcGZJX/XjyveTfTJs2bZrRZ3qMvB7LWL43W66+x1xGfLiUocwYCOgVoPiid+6jz9z2L2duuOGG6PMmQQQQQAABBBBAAIHyBSi+lG/OiAjELPDEE08YhQP5OyjyB+qLblVsRktetr9vIw5Z2uLFi5PW1lbD0JZbHsdkLBnT52bL0+d4y4oNl7KkGQcBnQIUX3TOu4qsKb6omGaSRAABBBBAAAEEvBCg+OLFNBAEAtEIXH/99UbhYP/99y8lv6o2oyW/9NjikKWNHz/e6Cvdd96PZUyfmy1fn+MtKzZcypJmHAR0ClB80TnvKrKm+KJimkkSAQQQQAABBBDwQoDiixfTQBAIRCMwefJko3hw/vnnl5JfVZvRkl96bHFotK1evTppb283+kr3nfdjGVPG9rXZ8vU11jLjwqVMbcZCQJ8AxRd9c64m44kTJxoftm688UY1+ZMoAggggAACCCCAQHkCFF/Ks2YkBDQI7Lvvvsb97D333FNK6lVtRkt+6bHFodE2a9Yso590v0U9lrF9bbacfY21zLhwKVObsRDQJ0DxRd+cq8mY4ouaqSZRBBBAAAEEEECgcgGKL5VPAQEgEJXALrvsYhQQnnrqqVJyrGozWvJLjy0OjbYJEyYY/aT7Leqx7EP42mw5+xprmXHhUqY2YyGgT4Dii745V5MxxRc1U02iCCCAAAIIIIBA5QIUXyqfAgJAICqB973vfZUVEGyb0VUdE4dG26hRoyqzk7F9bbY59DXWMuPCpUxtxkJAnwDFF31zriZj2792uemmm9TkT6IIIIAAAggggAAC5QmUUXy54+dLEhmH/zBgDcS/BjZtK/9vltg2oas+Jg6Nrve2/gMrK77I2I3GW9b5trksa2yfx8El/v+f+rz+iM3v9XfnL15o+maC4kvThHTgqwDFF19nhrgQQAABBBBAAIH4BOTmuehG8cXvG3Q2UJifPNdAS0ufygoIts3oqo6JQ6OufTZtrcxOxm403rLOt81hWWP7PA4u/L/b5/VJbNWuT/ns3Wyj+NKsINd7K0DxxdupITAEEEAAAQQQQCA6Abk5LrpRfKn2BpwNEPzLXAP85MsmGwsoWX7yheKL/bVKkQGXMv8fxlj29YZLWC4UX4q+u6H/oAXGjx9v/GuXm2++OeicCB4BBBBAAAEEEEDATwG5mS66UXwJ64adDRbmq5k10G/ANsb9rG3zPPZj4tCoI792zP7as62VRm1jPB8X+3qJca7JibludA1QfCn67ob+gxag+BL09BE8AggggAACCCAQlIDczBXdKL6wadDopgHnh7tmNh/0D0bxZfSRtzRciMiyBqrajJb80mOLQ6M5bLndB41+0v0W9VjGbjTess635VzW2D6Pg0u4/5/0eV0RWxzriuJL0Xc39B+0AMWXoKeP4BFAAAEEEEAAgaAE5CabhgACCOQlsO+++xoFhHvuuSev7nvsx7YZ3eMFOT0p+aXHFodGm+1XkKf7LerxxIkTGw23tPNtOZc2uMcD4eLx5BAaAhEI8DdfIphEUrALHHvsscYHt1tuucV+MkcRQAABBBBAAAEEEGhCgOJLE3hcigAChsDkyZON+9nzzz/fOK+IA1VtRkt+6bHFodE2a9Yso590v0U9vuuuuxoNt7TzbTmXNrjHA+Hi8eQQGgIRCFB8iWASScEuQPHF7sJRBBBAAAEEEEAAgfwFKL7kb0qPCGgWuOGGG4wCwv77718KSVWb0ZJfemxxaLStXr06aW9vN/pK9533YxlTxva12fL1NdYy48KlTG3GQkCfAMUXfXOuJmOKL2qmmkQRQAABBBBAAIHKBSi+VD4FBIBAVAJPPPGEUTzYfPPNkw0bNhSeZxWb0ZKX5JceWxyyNNuvIU/3nfdjGdPnZsvX53jLig2XsqQZBwGdAhRfdM67iqwpvqiYZpJEAAEEEEAAAQS8EKD44sU0EAQCUQkMGjTIKEbMnTu38Byr2IyWvNLjSv5Z2+LFi5PW1lajz/QYeT2WsWRMn5stV5/jLSs2XMqSZhwEdApQfNE57yqy7ujoMD5offe731WRO0kigAACCCCAAAIIlCtA8aVcb0ZDQIPAIYccYtzTHnfccYWnXsVmtOSVHlfyb6ZNmzbN6DM9Rl6PZSzfmy1X32MuIz5cylBmDAT0ClB80Tv30WdO8SX6KSZBBBBAAAEEEEDAGwGKL95MBYEgEI3AzJkzjeLBwIEDk3Xr1hWaY9mb0ZKP5JUeV/Jvpkm/u+++u9FvepxmH8sYRc9JMw61a2151p7T/BUXzbNP7ggUL0DxpXhjRqhIgOJLRfAMiwACCCCAAAIIKBSg+KJw0kkZgYIF1qxZY/07KDfffHOhI5e9GS35pMeUv/+ydu3apvPs6upKBg8ebPSfHi/rY+lbxgih2XIMIe6iY8SlaGH6R0C3AMUX3fMfdfZf+cpXjA9Y3/ve96LOmeQQQAABBBBAAAEEqhGg+FKNO6MiELuA7R8VDh8+PJE/UF9UK3MzWvKQfNJjSt55tQULFhRSgJHCi/QdSksby2NaYqw9XFgVCCCQpwD/p81Tk768EqD44tV0EAwCCCCAAAIIIBC1AMWXqKeX5BCoTODJJ5+0bg7fdNNNhcVU5ia95GEbT/LOs8lPp+T5K8ikr1B+4qXmaHOuPaf5Ky6aZ5/cEShegOJL8caMUJEAxZeK4BkWAQQQQAABBBBQKEDxReGkkzICJQkccMABRoFi6623Tl5//fVCIihrM1rilzzS40m+RTT5uyzTpk1LWltbjTHTMXT3WK6VPkL4Gy9pQ1tO6XM0PsZF46yTMwLlCVB8Kc+akUoWOOaYY4wPVLfeemvJUTAcAggggAACCCCAgAYBii8aZpkcEahGYP78+ca9rWwYH3nkkYUEVNZmtMRvG0vyLbItXrw4GT9+fNLe3m4d3xaTnCvXyLWhNlteoeaSZ9y45KlJXwggkBag+JIW4XE0AhRfoplKEkEAAQQQQAABBLwXoPji/RQRIAJBCxxxxBHWQsEdd9yRe15lbEZL3LZxJM+y2urVq5NZs2YlEyZMsMYyatSojc/JOXJu6M3mHXpOecSPSx6K9IEAAt0JUHzpTobjwQtQfAl+CkkAAQQQQAABBBAIRoDiSzBTRaAIBCmwfPnyZNCgQUaRYLPNNksWLVqUa05Fb0ZLvBJ3ehzJT/KsoqVjkcexNQ05ZpkzXLKocQ0CCLgKxPdu4po550UvcPTRRxsf5r7//e9HnzcJIoAAAggggAACCJQvQPGlfHNGRECbgPwabdtG8bBhw5KXX345Nw7bGHl1LnFKvLYxqvw14bZ48srZl3405JjFGpcsalyDAAKuAhRfXKU4LzgBii/BTRkBI4AAAggggAACwQpQfAl26ggcgaAEDj/8cGvhYpdddsntp0aK2oyWn2rZeeedrfGX+evGbBNeVM62sao6piHHLLa4ZFHjGgQQcBWg+OIqxXnBCVB8CW7KCBgBBBBAAAEEEAhWgOJLsFNH4AgEJbB27dpkt912sxYwpLDxwgsvNJ1PEZvREtdOO+1kjVvykbyqbEXkXGU+trE15GjLu7djuPQmxPMIINCMAMWXZvS41muBo446yvhgd9ttt3kdM8EhgAACCCCAAAIIhClA8SXMeSNqBEIU6OrqSrbbbjvjflc2kQcPHpw8/vjjTaWV92a0xCNx2fqVPCSfqpsttqpjynt8DTlmMcMlixrXIICAqwDFF1cpzgtOgOJLcFNGwAgggAACCCCAQLACFF+CnToCRyBIgaeffjrZaqutrAWN1tbWZPr06ZnzynMzWuKQeGx9SvyShw/NFp8PceUZg4Ycs3jhkkWNaxBAwFWA4ourFOcFJ0DxJbgpI2AEEEAAAQQQQCBYAYovwU4dgSMQrID8REl3BRjZUB49enTyzDPPNJxfHpvRMq6Mb+tLjg0aNCjp7OxsOLaiLrDFWdRYVfWrIccstrhkUeMaBBBwFaD44irFecEJUHwJbsoIGAEEEEAAAQQQCFaA4kuwU0fgCAQt8NxzzyU77LBDt0WOvn37JieeeGIif+zetTWzGS3jyHgyrq0fOSbxStw+NVusPsWXRywacszihEsWNa5BAAFXAYovrlKcF5zAkUceaXzYmzlzZnB5EDACCCCAAAIIIICA/wIUX/yfIyJEIFaB1157LfnYxz5m3P/Wbyr3798/OeGEE5z+vkr9dbXve7OTv9si/cs4tWtsX/fcc89E4vWt2WL1Lcb/1969QNlVnvfBj2RFQbKMQFjCsUJkWmO3kVNbaWhMmhJIA2lKHHBxpFCnaSpWm0tXhYv52iQf8arLShx1FTldRXWJlaahGAeTYAdXvlSRbCPbILDNxTaOCViCmIsFRtbFVoRkv996pt8Zzpy9R3PmnL332ZffXos1c/bZ+32f5/cedGb2f2bPuPV0ocdRjLiMouYcAgSGFRC+DCvluMYJCF8at2QKJkCAAAECBAg0VkD40tilUziBVggcP348/fqv/3pauHDhScOPuNB83nnnpRtuuCE99thjub0PezE6zo9xYry8c/r3RV1RX9RZx62/1t7ndaxznJp6ffV/HGe8tpzb79H7vC296YMAgckLCF8mvwYqKElA+FISrGEJECBAgAABAgQyAsKXDIkdBAhMQGDnzp3pnHPOmTMM6V1kPvvss9Mv/dIvpeuvvz7dcccd6aGHHso9N/bH83FcHB/n9caY62PUE3XVecvroc71jlJbF3rkMoqAcwgQKFNA+FKmrrEnKvALv/ALmS8G/9f/+l8TrcnkBAgQIECAAAEC7RQQvrRzXXVFoIkCx44dS+94xzvSsmXLMt8T512AL2tfzB91RD113/IM6l7zfOvrQo/zNYnjuYyi5hwCBIYVEL4MK+W4xgkIXxq3ZAomQIAAAQIECDRWQPjS2KVTOIHWCjz99NNTt/pavnx57gXmvIvOReyL+eIWYzF/U7a8vptS+7B1dqHHYS36j+PSr+FzAgSKFhC+FC1qvNoICF9qsxQKIUCAAAECBAi0XkD40vol1iCBxgocPHhw6nZhr33ta0sNYWL8uC1ZzNe0rQsX4LvQ4yivOy6jqDmHAIFhBYQvw0o5rnECb37zmzNfWN58882N60PBBAgQIECAAAEC9RcQvtR/jVRIgEBKX/jCF9K1116bXv/616dFixZlvmfOuxA92744P8aJ8WLcJm95PTa5n7zau9BjXt9z7eMyl5DnCRAYR0D4Mo6ec2stIHyp9fIojgABAgQIECDQKgHhS6uWUzMEOiFw+PDh9NGPfjT95//8n9O/+lf/Kl1wwQXpnHPOSS972cum/l7Mi170oqmP8Tj2x/NxXBwf5x05cqQ1Tl24AN+FHkd5QXIZRc05BAgMKyB8GVbKcY0TEL40bskUTIAAAQIECBBorIDwpbFLp3ACBAjk/gZQ21iEDPkryiXfxV4CBIoREL4U42iUGgr803/6TzNfQL3nPe+pYaVKIkCAAAECBAgQaLqA8KXpK6h+AgS6LNCFC/Bd6HGU1zCXUdScQ4DAsALCl2GlHNc4AeFL45ZMwQQIECBAgACBxgoIXxq7dAonQIBA5gc344J82zYhQ/6Kcsl3sZcAgWIE2vduUoyLUVogIHxpwSJqgQABAgQIECDQEAHhS0MWSpkECBDIEejCBfgu9JiztHPu4jInkQMIEBhDQPgyBp5T6y1wxRVXZH565ZZbbql30aojQIAAAQIECBBopIDwpZHLpmgCBAhMCXThAnwXehzl5cxlFDXnECAwrIDwZVgpxzVOQPjSuCVTMAECBAgQIECgsQLCl8YuncIJECCQ+cHNuCDftk3IkL+iXPJd7CVAoBiB9r2bFONilBYICF9asIhaIECAAAECBAg0RED40pCFUiYBAgRyBLpwAb4LPeYs7Zy7uMxJ5AACBMYQEL6MgefUegsIX+q9PqojQIAAAQIECLRJQPjSptXUCwECXRPowgX4LvQ4yuuWyyhqziFAYFgB4cuwUo5rnMDP//zPZ351+L3vfW/j+lAwAQIECBAgQIBA/QWEL/VfIxUSIEBgNoEuXIDvQo+zre/J9nM5mY7nCBAYV0D4Mq6g82srIHyp7dIojAABAgQIECDQOgHhS+uWVEMECHRIoAsX4LvQ4ygvWS6jqDmHAIFhBYQvw0o5rnECwpfGLZmCCRAgQIAAAQKNFRC+NHbpFE6AAIHMXTPignzbNiFD/opyyXexlwCBYgTa925SjItRWiCwYcOGzBdQf/zHf9yCzrRAgAABAgQIECBQNwHhS91WRD0ECBAYXqALF+C70OPwK/7CkVxesPAZAQLFCwhfijc1Yk0EhC81WQhlECBAgAABAgQ6ICB86cAia5EAgdYKdOECfBd6HOUFymUUNecQIDCsgPBlWCnHNU5A+NK4JVMwAQIECBAgQKCxAsKXxi6dwgkQIJC5a0ZckG/bJmTIX1Eu+S72EiBQjED73k2KcTFKCwTWr1+f+QLq1ltvbUFnWiBAgAABAgQIEKibgPClbiuiHgIECAwv0IUL8F3ocfgVf+FILi9Y+IwAgeIFhC/FmxqxJgLCl5oshDIIECBAgAABAh0QEL50YJG1SIBAawW6cAG+Cz2O8gLlMoqacwgQGFZA+DKslOMaJyB8adySKZgAAQIECBAg0FgB4Utjl07hBAgQyNw1Iy7It20TMuSvKJd8F3sJEChGoH3vJsW4GKUFAj/3cz+X+QLqfe97Xws60wIBAgQIECBAgEDdBIQvdVsR9RAgQGB4gS5cgO9Cj8Ov+AtHcnnBwmcECBQvIHwp3tSINREQvtRkIZRBgAABAgQIEOiAgPClA4usRQIEWivQhQvwXehxlBcol1HUnEOAwLACwpdhpRzXOAHhS+OWTMEECBAgQIAAgcYKCF8au3QKJ0CAQOauGXFBvm2bkCF/Rbnku9hLgEAxAu17NynGxSgtEHjTm96U+QLqtttua0FnWiBAgAABAgQIEKibgPClbiuiHgIECAwv0IUL8F3ocfgVf+FILi9Y+IwAgeIFhC/FmxqxJgLCl5oshDIIECBAgAABAh0QEL50YJG1SIBAawW6cAG+Cz2O8gLlMoqacwgQGFZA+DKslOMaJyB8adySKZgAAQIECBAg0FgB4Utjl07hBAgQyNw1Iy7It20TMuSvKJd8F3sJEChGoH3vJsW4GKUFAsKXFiyiFggQIECAAAECDREQvjRkoZRJgACBHIEuXIDvQo85SzvnLi5zEjmAAIExBIQvY+A5td4Cl19+eeanV/7kT/6k3kWrjgABAgQIECBAoJECwpdGLpuiCRAgMCXQhQvwXehxlJczl1HUnEOAwLACwpdhpRzXOAHhS+OWTMEECBAgQIAAgcYKCF8au3QKJ0CAQOYHN+OCfNs2IUP+inLJd7GXAIFiBNr3blKMi1FaICB8acEiaoEAAQIECBAg0BAB4UtDFkqZBAgQyBHowgX4LvSYs7Rz7uIyJ5EDCBAYQ0D4MgaeU+st8E/+yT/J/PTKn/7pn9a7aNURIECAAAECBAg0UkD40shlUzQBAgSmBLpwAb4LPY7ycuYyippzCBAYVkD4MqyU4xonIHxp3JIpmAABAgQIECDQWAHhS2OXTuEECBDI/OBmXJBv2yZkyF9RLvku9hIgUIxA+95NinExSgsEhC8tWEQtECBAgAABAgQaIiB8achCKZMAAQI5Al24AN+FHnOWds5dXOYkcgABAmMICF/GwHNqvQXe+MY3Zn565fbbb6930aojQIAAAQIECBBopIDwpZHLpmgCBAhMCXThAnwXehzl5cxlFDXnECAwrIDwZVgpxzVOQPjSuCVTMAECBAgQIECgsQLCl8YuncIJECCQ+cHNuCDftk3IkL+iXPJd7CVAoBiB9r2bFONilBYICF9asIhaIECAAAECBAg0RED40pCFUiYBAgRyBLpwAb4LPeYs7Zy7uMxJ5AACBMYQEL6MgefUegtcdtllmZ9eef/731/volVHgAABAgQIECDQSAHhSyOXTdEECHRQYN++fenmm29O1157bVq/fn1at25d5tpBXJBfs2bN1HNxTBwb58S5Td2EDPkrxyXfxV4CBIoREL4U42iUGgoIX2q4KEoiQIAAAQIECLRUQPjS0oXVFgECjRc4fvx42r59e9q4cWM6++yzc4OWvAvws+2LMWKsGDPGbsqW109Tai+zTi5l6hqbAAHhi9dAawWEL61dWo0RIECAAAECBGonIHyp3ZIoiACBjgs8/PDDadOmTWnVqlVjBy55F+hjX4wdc8Rcdd/yeqh7zVXUx6UKZXMQ6K6A8KW7a9/6zi+99NLMF1gf+MAHWt+3BgkQIECAAAECBKoXEL5Ub25GAgQI5Ancd999U7cTW7hwYeaaQN6F9iL2xVxxe7KYu65bXp91rbXKurhUqW0uAt0TEL50b80707HwpTNLrVECBAgQIECAwMQFhC8TXwIFECDQcYH9+/dP3Q5swYIFlYUugxfuY+64JVnUUrdtsNZ4bEu5rxUuBAgQKErAv7RFSRqndgLCl9otiYIIECBAgAABAq0VEL60dmk1RoBAAwRuvPHGdNppp+VeSB8MHRYtWpTOO++8dM0116Rt27al3bt35563d+/eqefimDg2zolzB8fLexy1RE112vLqrFN9k6qFy6TkzUugGwLCl26scye7FL50ctk1TYAAAQIECBCYiIDwZSLsJiVAoOMCBw4cSJdffvmcgciSJUvShg0b0h133JGOHDmSURv2Avzhw4enxoixYsy88/r3RW1RYx22/rp6n9ehrknX0LPo/zjpmsxPgEB7BIQv7VlLnQwI/OzP/mzmC6E/+7M/GzjKQwIECBAgQIAAAQLjCwhfxjc0AgECBOYj8MADD6Q1a9Zkvu/vv4i+evXqtGXLlnTo0KGTDt1/Tu/zk56QUjp48GC6/vrrU8zROyfvY9QYtU56y6tt0jXVYX4udVgFNRBor4Dwpb1r2/nOhC+dfwkAIECAAAECBAhUJiB8qYzaRAQIEEi7du1Kp5566qyhx4oVK9LWrVvTsWPHhtIa5wJ8zHHDDTekmDNvnNi3fPnyqZqHKqakg/JqK2mqRg3LpVHLpVgCjRMQvjRuyRQ8rIDwZVgpxxEgQIAAAQIECIwrIHwZV9D5BAgQGE7g9ttvT4sXL5416LjyyivTM888M9xg//9RRVyAjzlj7ryxYl/UHLVPasura1K11GleLnVaDbUQaJ+A8KV9a6qj/1/gDW94Q+aLnri/q40AAQIECBAgQIBA0QLCl6JFjUeAAIGswI4dO2YNXk4//fSRw40iL8BHwBK15I0ZAUz0MIktr55J1FG3ObnUbUXUQ6BdAsKXdq2nbvoEhC99GD4lQIAAAQIECBAoVUD4UrV8IqQAACAASURBVCqvwQkQIJDuueeetGzZstxQY+3atWnfvn0jKxV9AT5qiZryxo0eopeqt7xaqq6hjvNxqeOqqIlAewSEL+1ZS50MCAhfBkA8JECAAAECBAgQKE1A+FIarYEJECCQ9u/fP+sftj///PPTgQMHxlIq4wJ81BS15Y29evXqqZ7GKnqeJ+fVMc8hWnk4l1Yuq6YI1EZA+FKbpVBI0QI/8zM/k/ki54Mf/GDR0xiPAAECBAgQIECAQBK+eBEQIECgPIGLLroo8/19XDSPcOPo0aNjT1zWBfiobbYA5uKLLx677vkMUFaP86mhjsdyqeOqqIlAewSEL+1ZS50MCAhfBkA8JECAAAECBAgQKE1A+FIarYEJEOi4wObNm3ODl3Xr1qWDBw8WolPmBfioMWrNmyN6q2rLm7+ques8D5c6r47aCDRfQPjS/DXUwSwCwpdZYOwmQIAAAQIECBAoXED4UjipAQkQIJD27t2bli5dmgkuVq1alZ544onChMq+AB+1rly5MtNH9BY9VrGV3WMVPZQxB5cyVI1JgEBPQPjSk/CxdQKXXHJJ5gub//2//3fr+tQQAQIECBAgQIDA5AWEL5NfAxUQINA+gbzv6xcuXJh27NhRaLNVXICPmqP2wbmixyq2wXnjsS1l1oOLVwUBAkUK+Je2SE1j1Uog74s04UutlkgxBAgQIECAQIUCx44dS3feeWf68Ic/nD772c/mzjzMMbkn2ulvvngNECBAoGCBnTt35l4Yf+tb31rwTNVdgL/66qtze4pey96EL/nCXPJd7CVAoBgB4UsxjkapoYDwpYaLoiQCBAgQIECgVIFDhw6l73znO7lz/NEf/dGMCz5f/epXM8cNc0zmJDumBPzmixcCAQIEihW44IILZrxvxUXys846Kx05cqTYiVJ14cvhw4enehi84B+9lrEdOHAg3XTTTWnjxo0Zy6jh3HPPnXoujolju7gNrkU8thEgQKAoAf+iFCVpnNoJ/ON//I8zX1xs3769dnUqiAABAgQIEJiMwDe+8Y3027/92yl+CjX++93f/d0UF0WauL3//e9Pq1evnvraJ+6D//jjj2fa+B//43/M+NroscceG+mYzEl2TAkIX7wQCBAgUJzA7t27Z7xn9S6Q33rrrcVN0jdSb/z+j31PF/pp9NA/T+/z6Lmo7f77709XXHFFWrx4ce5cvTn7P8axcU6c26Wt36D3eZf61ysBAuUKCF/K9TX6BAWELxPENzUBAgQIEGiAwNvf/vbMBYnf+Z3faUDl2RLf+MY3zuglfoJ1cBO+DIoU+1j4Uqyn0QgQ6LZAhAC9C+G9j2vXri0NpTdH/8fSJkspRS/9c8Xn0fO423PPPTf1mywLFizIjD8432yP49z4TZkYqwtbnkMX+tYjAQLVCAhfqnE2ywQEhC8TQDclAQIECBBokMA555yTuTDxAz/wAw3q4IVS3/SmN83oJYKWwU34MihS7GPhS7GeRiNAoLsCBw8eTEuWLJnxvhYXyG+55ZbSUKq+AB+9DM4ZPUfvo2579uzJvaXZ4DzDPo5bvMWYbd/yPNres/4IEKhOQPhSnbWZKhYQvlQMbjoCBAgQINAggbvvvjtz0aP3zfdsf4y+zu3dfvvtU7cdi59Wfd3rXpf+6q/+KlOu8CVDUugO4UuhnAYjQKDDAu9+97sz79ErV65Mzz//fGkqva8B+j+WNllKU71ET/3zxefR+yjbhz70obR06dLMeIPjz/dxjBljt3nLM2lzv3ojQKBaAeFLtd5mq1Dgp3/6pzNfeLT9i4YKeU1FgAABAgQaLfCv//W/znyd0Pvm+y1veUtjezt69OistQtfZqUp5AnhSyGMBiFAgEC69NJLM+/RV111Vakyva8B+j+WOmFKKXrqny8+j97nu915553plFNOyYw1OPaoj2PsmKOtW55LW3vVFwEC1QsIX6o3N2NFAsKXiqBNQ4AAAQIEGiYQPzn70pe+dPoixS//8i+nM888c/rxy172snTixImGdTV3ucKXuY3GOUL4Mo6ecwkQIPB/BeL9d/ny5dPvyb0L4/Ebq2VuvXn6P5Y5X4yd91u40ft8vgZ58sknZ3wN019/kZ/H10kxVxu3PKc29qknAgQmIyB8mYy7WSsQEL5UgGwKAgQIECDQQIEPfvCDMy7q7N69O/2bf/NvZuz7yEc+Mmdn3/nOd9KXv/zl9PnPfz4dOHBgxvFxz/Y77rgjvetd70qf/OQn0ze/+c0Zzw/7IG4fFr+5+9/+239Lf/zHf5w+97nPpZh3cIt9X/nKV6Zqme3iSNHhS1wcuvfee9Ott96abrjhhvRf/+t/TR/4wAfSI488klvjYM1teyx8aduK6ocAgUkIxN8YGbwYPt9AYpS6B+eMx2VvswVN8/k7K5dddlnGK6+XIvbFXG3c8mza2KeeCBCYjED57yaT6cusBNI/+kf/KPNFyIc//GEyBAgQIECAQMcF1q9fP/01Qvwx2Qgu7rrrrul98U34m9/85jmV3vOe90yf88M//MNTx3/84x9Pr3/969OLXvSi6edivHj8cz/3c+nw4cNzjhv1bN26NZ1xxhkzxuhdHFi9enX6vd/7vRk/Gdtfy8KFC9NTTz2Vmaeo8OX+++9P//yf//N06qmn5tYXdYbHpz/96UwNbd4hfGnz6uqNAIGqBOL9r/d+1/s4yq245ltvb67+j/MdY5Tj826xFgbDbDt37sxY9ddfxucxZ9u2PKe29agfAgQmJyB8mZy9mUsWEL6UDGx4AgQIECDQQIH4jZT++6Jfc801012cffbZ0xcxXvziF6cjR45MP5f3SX+Y8YM/+IPpd37nd1L8wfu8b+J7++K4Z555Jm+4qX3xWys/+ZM/edIxemNdccUV0+P01xLPP/bYY9PP9T4p4pj/+T//ZyZY6tUz+DEs4rdiurIJX7qy0vokQKBMgU2bNmXeA6+77royp5wae/A9LB5XsUVvg3OHwTDbhRdemDl3cKyiH8ecbdvyjNrWo34IEJicQDXvJpPrz8wdFhC+dHjxtU6AAAECBGYR+IM/+IMZFyo++9nPTh/5m7/5mzOeu+mmm6afy/tkMMzo/+Z9xYoV6fzzz0/xWyr9++Pza6+9Nm+4qX15PwH7qle9Kr3hDW9Ir3vd69KiRYumx1u8ePH0OIO1lBW+vPGNb5yeP3o555xz0oYNG9Jb3vKW9PM///Np5cqVM56P3ywa9ZZr08015BPhS0MWSpkECNRa4OKLL57xPhLvNbfddlvpNQ++V8fjKrbobXDuMJhri1t8zvUDH4PjFvE45oy527TlubSpP70QIDBZgWreTSbbo9k7KvBTP/VTmS9ihrl/e0e5tE2AAAECBDoh0P9TohEc9G9f+MIXZnztMNfFj8HAo/fN+9VXXz3jt2b+03/6TzMukEQwkxdIDN4+JI6LvxfTv8UFj7h9Wcz1kpe8ZPqpwVrKCl/+2T/7Z1Nz/8zP/Ez61Kc+NT1/75PnnnsuXXDBBTMc3/e+9/WebvVH4Uurl1dzBAhUJPDqV796xntIvN89+OCDpc/eew/v/1j6pClN9dY/Z3weBnNtW7ZsyTgNjlPW45i7TVueU5v60wsBApMVEL5M1t/sJQoIX0rENTQBAgQIEGigwOOPP57i76H0vsl+29velukibgvWez7+Tkve307pnTQYeMR5/+E//Ife0zM+RljRGzc+9v/GTe/A+M2W/mPij9nPtv3Jn/zJ1N+F6T0/WEtZ4cvXv/719Oijj/amzf34wAMPzOhj8+bNuce1aefXnjuaNvzmJ0pv6T0feTRFyOM/Bl4DXgNtfQ2csuylM95D+t8Xu/J5GMy1vi975Y9NzCnmnqu+Jj2f97pqUv1q9X7gNVDea+CWj35l7K/vhS9jExqgrgLCl7qujLoIECBAgMBkBH73d393xoWKhx56KFPIO97xjhnHXH/99ZljejsGA4/Zgpc4/vbbb58x7gc/+MHeMFMfv/GNb8x4Pn57ZD7bYC1lhS/D1hR/M6d3MeNXfuVXhj2tccc99vSRdPOHH03/8rfvSnu+OPvf8imqMeFLed9cu3DB1mugHq+BFy1eOv3+0Xsf6drHMJjr9fji07O3Na3KKeaeq74mPZ/n1qT61VqPf7usQzvXIb72HncTvowr6PzaCuTdK/ajH/1obetVGAECBAgQIFCuwGte85rpCzqvfe1rcyfbt2/fjFuErVu3Lve42DlM4NE7+f7775+eO77J//3f//3eU1MfP/OZz8x4ftu2bTOen+vBMLUUdcxctcTzr3zlK6f7+YVf+IVhTqn9MfHbLZ/50rPpT3c9ljbf9IX0L97+qfRv33lvev/HH09Hjp6opH7hSzu/sXfBxrp6DbzwGliw4IXfUM27KN6FfWEw12tikiHVMOHQXPXX6fm811Sd6lPLC/8+sGBR9WtA+FLJtzgmaaqA8KWpK6duAgQIECBQvMBg+BG/4TLb9qM/+qPTwUF8Q/7FL34x99BhwozeiU8//fSMMd/5znf2npr6+N73vnfG8/H3X+azDVNLUcf06nryySfTH/7hH6b/+B//Y/rVX/3VdNlll6X4zeP4b9GiRdP91CV8OfHt76Rjx7+dvvXXJ9KRbx1PBw4dS09//Vtp31NH0kNfOZDufejZ9LHPPJU+8InH0x9tfyS9870Ppd/67/elX37H3enyf/fx9Etv/9TU4z/84F+mTz6wP33j8LEeRWUfhS8uOlR90cF8XnNVvwYmGSrkXYSfxL5hwo1JhlTDhENVv27GmS9vjccZz7n+3fQaaM9rQPhS2bc5JmqigPCliaumZgIECBAgUI7AW9/61ukwIL7JvuGGG9L27dtz/3vDG94w49hf//Vfzy1qmDCjd+KBAwdmjDkYvlx33XUznv/Sl77UO3Woj8PUUtQx8TddfuInfmLG38/Ju3DR21eH8GW+ocUb/5+PpbdsuTdtve0v0ic+99RUUDPUQpR80Hz78M1/e775t5bWsiuvAX/z5bvSMH/zZZIh1TDhUJNer72vV/o/Nql+tXp/8Boo7zUgfCn5mxvDN1vgoosumnERI95I/8//+T/Nbkr1BAgQIECAwLwFTpw4kV7+8pdnvi7o/yb7ZJ9///d/f/rOd76TmXeYMKN30lzhy2/8xm/MqC/v79H0xsr7OEwtRRzz+c9/Pp1xxhkzau3ZLV68OK1YsWLqv96++FiH8CXM2vCbL3lrbx8BAgTaJPDqV7868x7z4IMPlt5i//tW7/PSJ00pRW+9+Xofw2Cu7Zxzzsmc1zu/7I+vetWr5iqvUc/neTWqAcUSIFBrAX/zpdbLo7hxBIQv4+g5lwABAgQItEcgfvgi7xvr+ez72Mc+lgEZJszonTRX+PKud71rRo07duzonTrUx2FqGfeYCLG+93u/d0adP/uzP5ui1q9//esz6uy/eFaX8GVGgSM8qMPffBmhbKcQIECgUQJ5d7C47bbbSu8h72uC0idNKUVvg3OHwVxb3Opz8LyqHsfcbdry3NrUn14IEJisgPBlsv5mL1FA+FIirqEJECBAgECDBH7xF39xxgWKSy65JEVocLL/fuRHfmTGOVdeeWWm42HCjN5Jc4UvH/nIR2bMd+ONN/ZOHerjMLWMe8xnPvOZGTVu3Lhx1traGL7kNfvY00fSzR9+NP3L374r7fniM3mH2EeAAAEC8xDYtGnTjPeauDAet+Yse5vUBfjB245GHWEw17Zly5aMU14PZeyLudu05Rm1qT+9ECAwWQHhy2T9zV6igPClRFxDEyBAgACBhgh885vfTMuWLZu+QPGa17xmqMq/9rWvzfij8cuXL09Hjx6dce4wYUbvhLnCly9/+cvTNcZFgAh/5rMNU8u4x/yX//JfZtR47733zlpiV8KXHkD8VsyG3/xE76GPBAgQIDCiwNatW2e818R74qWXXjriaMOfNqkL8NHb4NxhMNf2yCOPpAULFmTOHRyr6Mcx56OPPjpXeY16Ps+oUQ0olgCBWgsIX2q9PIobR+Anf/InM1+IzPcWHuPM71wCBAgQIEBg8gLvec97Znw9MJ+fnv2pn/qpGee+733vm9HQMGFG74S5wpfnn38+fd/3fd+M+Wb7W3XHjx9Pb3vb26b+6H3vb9EMU8u4x2zevHlGfXfffXevvRkf47d2Fi1aNH1sW247NqPJnAfxx05tBAgQIDCewJ49e6bfP3oXxeMHIOLWl2Vuvbn6P5Y5X4wdPUVv/XPG52EwzHbhhRdmzh0cq+jHMWfbtjyjtvWoHwIEJicgfJmcvZlLFhC+lAxseAIECBAg0ACBn/7pn55xYeLhhx8euuqbbrppxrlxm7L+bZgwo3f8XOFLHDf4d19OOeWUFDVEMBNbBC0RyKxbt26qrvgD973fxhmmlnGP+ehHPzrDI+5J/9xzz/VaTBEK/ft//+9nHBMXNIQv00Q+IUCAAIE5BGYLJGYL/OcYbuinJ3EB/q677sq8Z84naPrzP//zzPl5fRS5b+fOnUObNuXAPJ+m1K5OAgTqLyB8qf8aqXBEAeHLiHBOI0CAAAECLRF4+umnZ/wGxg/90A/Nq7NDhw6lJUuWTF/Y+O7v/u707LPPTo8xTJjRO3iY8CVClle84hXT8/UuBnzP93zP1G/FvPjFL848961vfWtqimFqGfeY6GHFihUzagiTCGEimDr11FNnPNerX/jSexX4SIAAAQLDCOTdiuuqq64a5tSRj+m9Z/V/HHmwIU+Mnvrni8/ne4u1yy67LDPG4JhFPY652rjl+bSxTz0RIDAZAeHLZNzNWoHAP/yH/zDzRUj8ZIiNAAECBAgQ6IbA4H3j47ZZ893Wr18/4+uJ3//9358eYpgwo3fwMOFLHPvQQw+l+Ls0eRcCBvf1X4gappYijvmzP/uzOWs788wz0yWXXDJ9nPCl9yrwkQABAgSGEdi2bdv0e0jvvW/lypXTvwk6zBjzPaY3T//H+Y4xn+PjBy6ip/754vPofT7bk08+meJ9d3Ccoh/HHDFXG7c8qzb2qScCBCYjIHyZjLtZKxAQvlSAbAoCBAgQIFBjgd/6rd+avhgRvzXy+OOPz7vaj3zkIzP+oG38rZXedtttt02PH78B8rWvfa33VObjN7/5zRS3Eet9g/8Hf/AHmWN6O+K3WX7t134t92JK/C2V+Bpn8O/BDFNLUcd87GMfS+eee+50L72e4lYpb3rTm9JTTz2Vor/e/l/5lV/ptdbqj/7mS6uXV3MECFQocPDgwRm/edp7P7nllltKq6I3R//H0iZLKUUv/XPF5/HbttH7fLc777xzxtcYg+OO+zi+fok52rrl+bS1V30RIFC9gPClenMzViQgfKkI2jQECBAgQKCmAvE3UuLWY0888cT030YZpdS4EPLVr351aqzeH7jvjRN/8ySei3Blri2OiWO//vWvz3Xo9PMRZETQ8qEPfSjt3r07xW/QzLYNU0tRx0QNUVtcjNm+fXv6/Oc/n7797W/PKC3CqDhmcP+Mg1r0QPjSosXUCgECExe44oorMuHE2rVrS6ur6gvw0cvgnNHzqFt8nbB06dLMmINzzPdxjBljt3nLM2lzv3ojQKBaAeFLtd5mq1DgJ37iJzJfeLTxj8NVSGoqAgQIECBAgACBWQSEL7PA2E2AAIERBOIHDvIuit96660jjDb3KXlzzX3WaEdED3nzRc/jbHv27ElnnXVW7th58821L8aKMdu+5Tm0vWf9ESBQnYDwpTprM1UsIHypGNx0BAgQIECAAIEOCwhfOrz4WidAoBSBCy64IBMkRCBw5MiRwuer6gL84cOHcwOS6LWILX7DdePGjTNumZrX28n2LViwYGqMGKsLW55FF/rWIwEC1QgIX6pxNssEBIQvE0A3JQECBAgQIECgowLCl44uvLYJEChNIO5ckXdh/Oqrry58zrx5Cp8kpRS15821a9euQqe7//77U9zGbPHixbnz5dUQx8Y5cW6XtjyLLvWvVwIEyhUQvpTra/QJClx44YWZLzKK/oJmgu2ZmgABAgQIECBAoEYCwpcaLYZSCBBojcAll1yS+b5+4cKFaceOHYX2WMUF+Kg5ah+cK3osa4vfXrnpppumfpNlcN54fO655049F8d05TddBq3zXAaP8ZgAAQKjCghfRpVzXu0FhC+1XyIFEiBAgAABAgRaIyB8ac1SaoQAgRoJ7N27N/cPya9cuTI98cQThVVa9gX4qDVqHpwn/qB99FjFNjh3PLalzJpw8aogQKBIAf/SFqlprFoJCF9qtRyKIUCAAAECBAi0WkD40url1RwBAhMU2Lx5c+4F8nXr1qWDBw8WUlmZwUTUGLXmzRG9VbXlzV/V3HWeh0udV0dtBJovIHxp/hrqYBaBvD/O97GPfWyWo+0mQIAAAQIECBAgMLqA8GV0O2cSIEBgLoGLLrooN7w4//zz09GjR+c6fc7ny7oAH7VFjXnjR09Vbnk1VDl/XefiUteVUReBdggIX9qxjrrIERC+5KDYRYAAAQIECBAgUIqA8KUUVoMSIEBgSmD//v1p9erVuSFGhBsHDhwYS6qMC/BR02zBS/QSPVW5ldFjlfWXNReXsmSNS4BACAhfvA5aKyB8ae3SaowAAQIECBAgUDsB4UvtlkRBBAi0TOCee+5Jy5Ytyw1g1q5dm/bt2zdyx0VfgI9aoqa8caOH6KXqLa+Wqmuo43xc6rgqaiLQHgHhS3vWUicDAsKXARAPCRAgQIAAAQIEShMQvpRGa2ACBAhMC+zYsSMtXrw4N9Q4/fTT0+233z597Hw+KfICfNQQteSNGbVHD5PY8uqZRB11m5NL3VZEPQTaJSB8add66qZP4Md//MczX+x8/OMf7zvCpwQIECBAgAABAgSKERC+FONoFAIECMwlEOHGbAFMXEi/8sor07PPPjvXMDOeL+IC/DPPPDM1d95YsS9qHjUcmlHsiA/y6hpxqFadxqVVy6kZArUTEL7UbkkUVJSA8KUoSeMQIECAAAECBAjMJSB8mUvI8wQIEChOYNeuXWn58uWZH7jsXUhfsWJF2rp1azp27NhQk/bO6/841IkpTc0Rc8Wc/ef3fx61Rs2T3Prr6X0+yXrqMnfPov9jXWpTBwECzRcQvjR/DXUwi4DwZRYYuwkQIECAAAECBAoXEL4UTmpAAgQInFTggQceSGvWrJk18IiL6fGH7bds2ZIOHTp00rH6L7z3Pj/pCSmlgwcPTo0dc/TOyfsYNUatk97yapt0TXWYn0sdVkENBNorIHxp79p2vrPzzz8/8wXQJz7xic67ACBAgAABAgQIECheQPhSvKkRCRAgMJfAgQMH0uWXX5753n/wgvqSJUvShg0b0h133JGOHDmSGXbw+Hict8W5MUaMFWPmnde/L2qLGuuw9dfV+7wOdU26hp5F/8dJ12R+AgTaI5D/btKe/nTSYQHhS4cXX+sECBAgQIAAgYoFhC8Vg5uOAAECfQI33nhjOu200+YMQ+IC+6JFi9J5552XrrnmmrRt27a0e/fu3PP27t079VwcE8fGOXFu/0X62T6PWqKmOm15tdapvknVwmVS8uYl0A0B4Us31rmTXQpfOrnsmiZAgAABAgQITERA+DIRdpMSIEBgWmD//v1p48aNacGCBUMFJHkX3cfdF3NHDVFL3ba83upW4yTq4TIJdXMS6I6A8KU7a925Tv/BP/gHmS+47rzzzs45aJgAAQIECBAgQKB8AeFL+cZmIECAwDAC9913X1q/fn1auHBh5ppA3oX2IvbFXDFnzF3XLa/PutZaZV1cqtQ2F4HuCQhfurfmnelY+NKZpdYoAQIECBAgQGDiAsKXiS+BAggQIDBD4OGHH06bNm1Kq1atKi2EibFjjpir7puQIX+FuOS72EuAQDECwpdiHI1SQwHhSw0XRUkECBAgQIAAgZYKCF9aurDaIkCg8QLHjx9P27dvn7od2Cte8Yqxg5gYI24tFmPG2E3ZhAz5K8Ul38VeAgSKERC+FONolBoK/NiP/Vjmi6r4Q3o2AgQIECBAgAABAkULCF+KFjUeAQIEyhHYt29fuvnmm9O11147dauwdevWpTVr1qQzzjgjLV68eOq/+Dz2xXNxO7E4Ns6Jc5u6CRnyV45Lvou9BAgUIyB8KcbRKDUUEL7UcFGURIAAAQIECBBoqYDwpaULqy0CBAi0REDIkL+QXPJd7CVAoBgB4UsxjkapoYDwpYaLoiQCBAgQIECAQEsFhC8tXVhtESBAoCUCQob8heSS72IvAQLFCAhfinE0Sg0F/v7f//uZ24598pOfrGGlSiJAgAABAgQIEGi6gPCl6SuofgIECLRbQMiQv75c8l3sJUCgGAHhSzGORqmhgPClhouiJAIECBAgQIBASwWELy1dWG0RIECgJQJChvyF5JLvYi8BAsUICF+KcTRKDQWELzVcFCURIECAAAECBFoqIHxp6cJqiwABAi0REDLkLySXfBd7CRAoRkD4UoyjUWooIHyp4aIoiQABAgQIECDQUgHhS0sXVlsECBBoiYCQIX8hueS72EuAQDECwpdiHI1SQ4Ef/dEfzfzNl0996lM1rFRJBAgQIECAAAECTRcQvjR9BdVPgACBdgsIGfLXl0u+i70ECBQjIHwpxtEoNRQQvtRwUZREgAABAgQIEGipgPClpQurLQIECLREQMiQv5Bc8l3sJUCgGAHhSzGORqmhgPClhouiJAIECBAgQIBASwWELy1dWG0RIECgJQJChvyF5JLvYi8BAsUICF+KcTRKDQXOO++8zG3HPv3pT9ewUiURIECAAAECBAg0XUD40vQVVD8BAgTaLSBkyF9fLvku9hIgUIyA8KUYR6PUUED4UsNFURIBAgQIECBAoKUCwpeWLqy2CBAg0BIBIUP+QnLJd7GXAIFiBIQvxTgapYYCwpcaLoqSCBAgQIAAAQItFRC+tHRhtUWAAIGWCAgZULRRVwAAIABJREFU8heSS76LvQQIFCMgfCnG0Sg1FHj961+fue3YXXfdVcNKlUSAAAECBAgQINB0AeFL01dQ/QQIEGi3gJAhf3255LvYS4BAMQLCl2IcjVJDAeFLDRdFSQQIECBAgACBlgoIX1q6sNoiQIBASwSEDPkLySXfxV4CBIoREL4U42iUGgoIX2q4KEoiQIAAAQIECLRUQPjS0oXVFgECBFoiIGTIX0gu+S72EiBQjIDwpRhHo9RQ4Ed+5Ecytx27++67a1ipkggQIECAAAECBJouIHxp+gqqnwABAu0WEDLkry+XfBd7CRAoRkD4UoyjUWooIHyp4aIoiQABAgQIECDQUgHhS0sXVlsECBBoiYCQIX8hueS72EuAQDECwpdiHI1SQwHhSw0XRUkECBAgQIAAgZYKCF9aurDaIkCAQEsEhAz5C8kl38VeAgSKERC+FONolBoK/L2/9/cytx3bs2dPDStVEgECBAgQIECAQNMFhC9NX0H1EyBAoN0CQob89eWS72IvAQLFCAhfinE0Sg0FhC81XBQlESBAgAABAgRaKiB8aenCaosAAQItERAy5C8kl3wXewkQKEZA+FKMo1FqKCB8qeGiKIkAAQIECBAg0FIB4UtLF1ZbBAgQaImAkCF/Ibnku9hLgEAxAsKXYhyNUkMB4UsNF0VJBAgQIECAAIGWCghfWrqw2iJAgEBLBIQM+QvJJd/FXgIEihEQvhTjaJQaCpx77rmZv/lyzz331LBSJREgQIAAAQIECDRdQPjS9BVUPwECBNotIGTIX18u+S72EiBQjIDwpRhHo9RQQPhSw0VREgECBAgQIECgpQLCl5YurLYIECDQEgEhQ/5Ccsl3sZcAgWIEhC/FOBqlhgLClxouipIIECBAgAABAi0VEL60dGG1RYAAgZYICBnyF5JLvou9BAgUIyB8KcbRKDUU+OEf/uHMbcfuvffeGlaqJAIECBAgQIAAgaYLCF+avoLqJ0CAQLsFhAz568sl38VeAgSKERC+FONolBoKCF9quChKIkCAAAECBAi0VED40tKF1RYBAgRaIiBkyF9ILvku9hIgUIyA8KUYR6PUUED4UsNFURIBAgQIECBAoKUCwpeWLqy2CBAg0BIBIUP+QnLJd7GXAIFiBIQvxTgapYYCf/fv/t3Mbcc+85nP1LBSJREgQIAAAQIECDRdQPjS9BVUPwECBNotIGTIX18u+S72EiBQjIDwpRhHo9RQQPhSw0VREgECBAgQIECgpQLCl5YurLYIECDQEgEhQ/5Ccsl3sZcAgWIEhC/FOBqlhgLClxouipIIECBAgAABAi0VEL60dGG1RYAAgZYICBnyF5JLvou9BAgUIyB8KcbRKDUU+KEf+qHMbcc++9nP1rBSJREgQIAAAQIECDRdQPjS9BVUPwECBNotIGTIX18u+S72EiBQjIDwpRhHo9RQQPhSw0VREgECBAgQIECgpQLCl5YurLYIECDQMIF9+/alm2++OV177bVp/fr1ad26dWnNmjWZH06N0CGei2Pi2Dgnzu3aJnzp2orrl0C1AsKXar3NVqGA8KVCbFMRIECAAAECBDouIHzp+AtA+wQIEJiQwPHjx9P27dvTxo0b09lnn50bsuQFDLPtizFirBgzxm77lufQ9p71R4BAdQLCl+qszVSxQPwEx+Cb6Oc+97mKqzAdAQIECBAgQIBAFwSEL11YZT0SIECgPgIPP/xw2rRpU1q1alXm2sfgtZBRH8fYMUfM1dYtz6atveqLAIHqBYQv1ZubsSIB4UtF0KYhQIAAAQIECBBIwhcvAgIECBCoQuC+++6bulXYwoULSwtdBgOJmCtuTxZzt20b7DUe2wgQIFCUgH9RipI0Tu0EhC+1WxIFESBAgAABAgRaKyB8ae3SaowAAQK1ENi/f//U7cAWLFhQWegyGEzE3HFLsqilLdtgj8KXtqysPgjUQ0D4Uo91UEUJAsKXElANSYAAAQIECBAgkCsgfMllsZMAAQIEChC48cYb02mnnTZU6LJo0aJ03nnnpWuuuSZt27Yt7d69O+3duzf33Hgujolj45w4Ny+MGNwXtURNbdgGexO+tGFV9UCgPgLCl/qshUoKFnjd616X+aKhjb8iWzCb4QgQIECAAAECBEYQEL6MgOYUAgQIEDipwIEDB9Lll1+eubYxGBgsWbIkbdiwId1xxx3pyJEjuWMOnpMXMhw+fHhqjBgrxsw7p39f1BY1Nnnr76f3eZP7UTsBAvUSEL7Uaz1UU6CA8KVATEMRIECAAAECBAicVED4clIeTxIgQIDAPAUeeOCBtGbNmpMGIKtXr05btmxJhw4dmnP0XrDQ//FkJx08eDBdf/31KeboP2fw86gxam3qNthPPLYRIECgKAH/ohQlaZzaCQhfarckCiJAgAABAgQItFZA+NLapdUYAQIEKhfYtWtXOvXUU2cNPVasWJG2bt2ajh07NnRto4YMMccNN9yQYs68MWLf8uXLU9TcxC2vpyb2oWYCBOopIHyp57qoqgCB1772tZkvDO6///4CRjYEAQIECBAgQIAAgZkCwpeZHh4RIECAwGgCt99+e1q8eHHmekYvJLjyyivTM888M+/Be+f3f5zPIDFnzN1/fv/nUXPU3rStv4fe503rQb0ECNRXQPhS37VR2ZgCwpcxAZ1OgAABAgQIECAwtIDwZWgqBxIgQIDALAI7duyYNXg5/fTTxwo3esFC/8dZyjjp7ghYopb+cXqfRwATPTRp69Xe/7FJ9auVAIF6Cwhf6r0+qhtDQPgyBp5TCRAgQIAAAQIE5iUgfJkXl4MJECBAYEDgnnvuScuWLcsNNdauXZv27ds3cMb8HvaHC73P5zfCC0dHLVFTb5z+j9FD9NKUrb/23udNqV2dBAjUX0D4Uv81UuGIAn/n7/ydzBcCTf4jcCMyOI0AAQIECBAgQKACAeFLBcimIECAQEsF9u/fP+sftj///PPTgQMHxu68Fyz0fxxn0Kgpausfr/f56tWrU/TUhK1Xc//HJtStRgIEmiEgfGnGOqlyBAHhywhoTiFAgAABAgQIEBhJQPgyEpuTCBAgQCCldNFFF+WGGBFuHD16tBCj/nCh9/m4A0dtswUwF1988bjDV3J+z6L/YyUTm4QAgU4ICF86sczdbFL40s111zUBAgQIECBAYBICwpdJqJuTAAECzRfYvHlzbvCybt26dPDgwcIa7A8Xep8XMXjUGLX2xuz/GL3Vfeuvt/d53WtWHwECzREQvjRnrVQ6T4Ef/MEfzLz5P/jgg/McxeEECBAgQIAAAQIE5hYQvsxt5AgCBAgQmCmwd+/etHTp0sy1i1WrVqUnnnhi5sFjPuoFC/0fxxxy+vSodeXKlZk+orfosc5bv0fv8zrXqzYCBJolIHxp1nqpdh4Cwpd5YDmUAAECBAgQIEBgLAHhy1h8TiZAgEAnBS655JJMYLFw4cK0Y8eOwj16wUL/xyIniZqj9v7x4/Posc7bYL3x2EaAAIGiBPyLUpSkcWonIHyp3ZIoiAABAgQIECDQWgHhS2uXVmMECBAoRWDnzp2ZoCIu/L/1rW8tZb4qQoarr746t6fota5bFS517V1dBAiULyB8Kd/YDBMSeM1rXpN50//85z8/oWpMS4AAAQIECBAg0GYB4UubV1dvBAgQKF7gggsuyFyzOOuss9KRI0eKnyylzFxl/IbH4cOHU/QwGGhEr3XaDhw4kG666aa0cePGTK1R+7nnnjv1XBwTx9oIECAwqoDwZVQ559VeQPhS+yVSIAECBAgQIECgNQLCl9YspUYIECBQusDu3btzL/rfeuutpc09GIiUEb5E8dFD3lzR86S3+++/P11xxRVp8eLFuTXm1R3Hxjlxro0AAQLzFRC+zFfM8Y0REL40ZqkUSoAAAQIECBBovIDwpfFLqAECBAhUJhAX8wcv9K9du7bU+Qfni8dlbdHL4HzR86S25557buo3WRYsWJCpa7DO2R7HufGbMjGWjQABAsMKlPcv7bAVOI5ASQLCl5JgDUuAAAECBAgQIJAREL5kSOwgQIAAgRyBgwcPpiVLlmRCgFtuuSXn6OJ25YUKxY0+c6ToZXC+6Dl6r3rbs2dP7q3QBusb9nHcVi3GtBEgQGAYAeHLMEqOaaRA3k9afOELX2hkL4omQIAAAQIECBCot4Dwpd7rozoCBAjUReDd7353JphYuXJlev7550stMS9cKGvC6CV6Gpwzeq9y+9CHPpSWLl2aqWOwrvk+jjFjbBsBAgTmEhC+zCXk+cYKCF8au3QKJ0CAAAECBAg0TkD40rglUzABAgQmInDppZdmwoCrrrqq9FryAoYyJ42eBueM3qva7rzzznTKKadkahisadTHMXbMYSNAgMDJBIQvJ9PxXKMFhC+NXj7FEyBAgAABAgQaJSB8adRyKZYAAQITEThx4kRavnx5JhC4++67S68nL2Qoc9LoaXDO6D0Myt6efPLJdOaZZ2bmH6xn3McxR8xlI0CAwGwCwpfZZOxvvMAP/MAPZN5ov/jFLza+Lw0QIECAAAECBAjUT0D4Ur81UREBAgTqJhB/K2Twgn9VgcTgvPG4zG22oKmKv5dy2WWXZZzz+i9iX8xlI0CAwGwC5f5LO9us9hOoQED4UgGyKQgQIECAAAECBKYEhC9eCAQIECAwl8DWrVszoUBVt+LKCxrmqnfc5/NusRYGZW47d+7MGOf1XuS+mNNGgACBPAHhS56Kfa0QEL60Yhk1QYAAAQIECBBohIDwpRHLpEgCBAhMVGDTpk2ZYOC6666rpKa8sKHsiaO3wXnDoMztwgsvzMw5WEPRj2NOGwECBPIEhC95Kva1QuBv/+2/nXnDfeihh1rRmyYIECBAgAABAgTqJSB8qdd6qIYAAQJ1FLj44osz1yluu+22SkrNCxzKnjh6G5w3DMraHnnkkbRgwYLMnIM1FP045oy5bQQIEBgUEL4MinjcGgHhS2uWUiMECBAgQIAAgdoLVBG+vOcjj6aYx38MvAa8BrwGmvkaePHpZ2WCgQt+cVsl/67nBQ5lv46it8F5w6Csedf++K9l5hucv6zHMXdZfRm3mf+/W7fmr9stH/3K2N+DCF/GJjRAXQWEL3VdGXURIECAAAECBNonEN9gl70JX5r/TbwLMdbQa6Dbr4FTlr10YuFAWaHDfMcNg7L+P3jZK39sYr4xd1l9Gbfb/25Y/8mtf3ztPe4mfBlX0Pm1Ffhbf+tvZd50v/SlL9W2XoURIECAAAECBAg0VyC+MS57E75M7ptvFz7Yew14DRTxGnjR4qWZ6xTzDS+afnwYFGGZN8aLT189Md+YO68m+/zb4TXQ3NeA8KXs726M32gB4Uujl0/xBAgQIECAAIFGCcQ31mVvwpfmfvPuwou18xrwGojXwIIFCycWDtQltAmDsv5/mGS4VWaoVJaXcf275DVw8teA8KXs726M32gB4Uujl0/xBAgQIECAAIFGCcQ3r2VvwpeTf4PsAgIfrwGvgbq/BiYZDtQlfCkzpJhkuFVmqFT317X6/Nvb1teA8KXs726M32iBV7/61ZmfKPmLv/iLRvekeAIECBAgQIAAgXoKxDedNgIECBAgcDKBl7/85ZnrFHUJRaqqIwzK2l7ykpdMzDfmthEgQGBQwN98GRTxuDUCwpfWLKVGCBAgQIAAAQK1FxC+1H6JFEiAAIGJC+Rdp3jwwQcrqSsvXCl74uhtcN4wKGs755xzMvMNzl/W41e96lVltWVcAgQaLCB8afDiKf3kAnlf1PjNl5ObeZYAAQIECBAgQGA0AeHLaG7OIkCAQJcELr744kw4cNttt1VCkBc6lD1x9DY4bxiUtV122WWZ+QbnL+txzG0jQIDAoIDwZVDE49YICF9as5QaIUCAAAECBAjUXkD4UvslUiABAgQmLrBp06ZMOHDddddVUlde6FD2xNHb4LxhUNa2ZcuWzHyD85f1OOa2ESBAYFBA+DIo4nFrBOJXPgffVL/85S+3pj+NECBAgAABAgQI1EdA+FKftVAJAQIE6iqwdevWzHWKSy+9tJJyB6+PxOOyt+htcN4wKGt75JFH0oIFCzJzDtZQ9OOY89FHHy2rLeMSINBggfL/pW0wjtKbLSB8afb6qZ4AAQIECBAg0CQB4UuTVkutBAgQmIzAnj17MsHA8uXL04kTJ0ovKC9wKHPS6Cl6G5w3DMrcLrzwwsycgzUU/TjmtBEgQCBPQPiSp2JfKwSEL61YRk0QIECAAAECBBohIHxpxDIpkgABAhMVmC2QuPvuu0uvKy9wKHPSu+66KxOCVBE0/fmf/3lm3rzei9y3c+fOMimNTYBAgwWELw1ePKWfXOCcc87JvOE+/PDDJz/JswQIECBAgAABAgRGEBC+jIDmFAIECHRQIO9WXFdddVXpEnlhQ5mTRk+Dc1Z1i7XLLrssM/dgLUU9jrlsBAgQmE1A+DKbjP2NFxC+NH4JNUCAAAECBAgQaIyA8KUxS6VQAgQITFRg27ZtmWBg5cqV6fnnny+1rrywoawJo5foaXDO6L2K7cknn0xnnnlmZv7BesZ9HHPEXDYCBAjMJiB8mU3G/sYLCF8av4QaIECAAAECBAg0RkD40pilUigBAgQmKnDw4MG0ZMmSTDBwyy23lFpXXtBQ1oTRy+B80XP0XtV25513plNOOSVTx2Bdoz6OsWMOGwECBE4mIHw5mY7nGi3wyle+MvMm+5d/+ZeN7knxBAgQIECAAAEC9RQQvtRzXVRFgACBOgpcccUVmesVa9euLbXUvJChrAmjl8H5oueqtw996ENp6dKlmVoGa5vv4xgzxrYRIEBgLgHhy1xCnm+sgPClsUuncAIECBAgQIBA4wSEL41bMgUTIEBgYgK7d+/ODQRuvfXW0mrKCxjKmCx6yJsrep7EtmfPnnTWWWfl1pRX51z7YqwY00aAAIFhBIQvwyg5ppECwpdGLpuiCRAgQIAAAQKNFBC+NHLZFE2AAIGJCVxwwQWZQCAu7B85cqSUmvJChaInOnz4cG7QEb1OcnvuuefSxo0b04IFCzLmeS55++LcGCPGshEgQGBYAeHLsFKOa5zA3/ybfzPzpvrII480rg8FEyBAgAABAgQI1F9A+FL/NVIhAQIE6iSwc+fOzDWLuOh/9dVXl1JmXqBQ9ERRe948u3btKnqqkca7//77U9z+bPHixbl15tUex8Y5ca6NAAEC8xUQvsxXzPGNERC+NGapFEqAAAECBAgQaLyA8KXxS6gBAgQIVC5wySWXZEKAhQsXph07dhReS16wUOQkUXPUPjhP9Fi3LX575aabbpr6TZbBeuPxueeeO/VcHOM3Xeq2euoh0CwB4Uuz1ku18xAQvswDy6EECBAgQIAAAQJjCQhfxuJzMgECBDopsHfv3tw/CL9y5cr0xBNPFGqSFzIUNUHUGjUPzhF/mD56rPM2WHM8thEgQKAoAf+iFCVpnNoJ/I2/8Tcyb/yPPvpo7epUEAECBAgQIECAQPMFhC/NX0MdECBAYBICmzdvzly7iABg3bp16eDBg4WVVFbIEDVGrXnjR2913/LqrnvN6iNAoDkCwpfmrJVK5ykgfJknmMMJECBAgAABAgRGFhC+jEznRAIECHRe4KKLLsoNL84///x09OjRQnzKCBmitqgxb+zoqQlbXu1NqFuNBAg0Q0D40ox1UuUIAsKXEdCcQoAAAQIECBAgMJKA8GUkNicRIECAQEpp//79afXq1bkhRoQbBw4cGNup6JAhapoteIleoqcmbEW7NKFnNRIgUJ2A8KU6azNVLCB8qRjcdAQIECBAgACBDgsIXzq8+FonQIBAAQL33HNPWrZsWW4As3bt2rRv376xZikyZIhaoqa8MaOH6KUpW14PTaldnQQI1F9A+FL/NVLhiAJnn3125guBr3zlKyOO5jQCBAgQIECAAAECswsIX2a38QwBAgQIDCewY8eOtHjx4sy1jAgITj/99HT77bcPN1DOUUWFDFFD1JI3XtQePTRpy+ujSfWrlQCBegsIX+q9PqobQ0D4MgaeUwkQIECAAAECBOYlIHyZF5eDCRAgQGAWgQg3ZgtgIii48sor07PPPjvL2bPvHjdkeOaZZ6bmzhsn9kXN44RDs1de7jN5/ZQ7o9EJEOiSgPClS6vdsV6FLx1bcO0SIECAAAECBCYoIHyZIL6pCRAg0DKBXbt2peXLl+f+dkmEBStWrEhbt25Nx44dG7rzUUOGmCPmijnzxoh9UWvU3MQtr6cm9qFmAgTqKSB8qee6qKoAgVe84hWZLwz27t1bwMiGIECAAAECBAgQIDBTQPgy08MjAgQIEBhP4IEHHkhr1qzJXNfoDwviD9tv2bIlHTp0aM7J+s/rfX6ykw4ePDg1dszROz7vY9QYtTZ1y+upqb2omwCB+gkIX+q3JioqSED4UhCkYQgQIECAAAECBOYUEL7MSeQAAgQIEJinwIEDB9Lll19+0vAjwoMlS5akDRs2pDvuuCMdOXIkd5ZhQoY4N8aIsWLMvHP690VtUWOTt/5+ep83uR+1EyBQLwHhS73WQzUFCghfCsQ0FAECBAgQIECAwEkFhC8n5fEkAQIECIwhcOONN6bTTjttzjAkwoNFixal8847L11zzTVp27Ztaffu3Wnfvn2558ZzcUwcG+fEub0A4mQfo5aoqQ1bXp9t6EsPBAjUQ0D4Uo91UEUJAnm/nhtfcNgIECBAgAABAgQIFC0gfCla1HgECBAg0C+wf//+tHHjxrRgwYKhApK8UGHcfTF31BC1tGXLM2lLb/ogQGDyAsKXya+BCkoSEL6UBGtYAgQIECBAgACBjIDwJUNiBwECBAiUIHDfffel9evXp4ULF1YWwsRcMWfM3bZN+NK2FdUPgXoJCF/qtR6qKVBA+FIgpqEIECBAgAABAgROKiB8OSmPJwkQIECgYIGHH344bdq0Ka1ataq0ECbGjjlirrZuwpe2rqy+CNRDQPhSj3VQRQkC3//935/5AuSxxx4rYSZDEiBAgAABAgQIdF1A+NL1V4D+CRAgMBmB48ePp+3bt0/dDizvb9/mhQsn2xdjxK3FYswYu+1bnkXbe9YfAQLVCQhfqrM2U8UCwpeKwU1HgAABAgQIEOiwgPClw4uvdQIECNRIIP7W7c0335yuvfbaqVuFrVu3LsWdQc4444y0ePHiqf/i89gXz8XtxOLYOKeLfydX+FKjF69SCLRQQPjSwkXV0v8VEL54JRAgQIAAAQIECFQlIHypSto8BAgQIECgOAHhS3GWRiJAICsgfMma2NMSgbPOOitz27HHH3+8Jd1pgwABAgQIECBAoE4Cwpc6rYZaCBAgQIDAcALCl+GcHEWAwGgCwpfR3JzVAAHhSwMWSYkECBAgQIAAgZYICF9aspDaIECAAIFOCQhfOrXcmiVQuYDwpXJyE1YlIHypSto8BAgQIECAAAECwhevAQIECBAg0DwB4Uvz1kzFBJokIHxp0mqpdV4Cwpd5cTmYAAECBAgQIEBgDAHhyxh4TiVAgAABAhMSEL5MCN60BDoiIHzpyEJ3sc3v+77vy/zNl7/6q7/qIoWeCRAgQIAAAQIEShYQvpQMbHgCBAgQIFCCgPClBFRDEiAwLSB8mabwSdsEhC9tW1H9ECBAgAABAgTqKyB8qe/aqIwAAQIECMwmIHyZTcZ+AgSKEBC+FKFojFoKCF9quSyKIkCAAAECBAi0UkD40spl1RQBAgQItFxA+NLyBdYegQkLCF8mvACmL09g9erVmduOffWrXy1vQiMTIECAAAECBAh0VkD40tml1zgBAgQINFhA+NLgxVM6gQYICF8asEhKHE1A+DKam7MIECBAgAABAgTmLyB8mb+ZMwgQIECAwKQFhC+TXgHzE2i3gPCl3evb6e6EL51efs0TIECAAAECBCoVEL5Uym0yAgQIECBQiIDwpRBGgxAgMIuA8GUWGLubL/Dyl788c9uxJ554ovmN6YAAAQIECBAgQKB2AsKX2i2JgggQIECAwJwCwpc5iRxAgMAYAsKXMfCcWm8B4Uu910d1BAgQIECAAIE2CQhf2rSaeiFAgACBrggIX7qy0vokMBkB4ctk3M1agYDwpQJkUxAgQIAAAQIECEwJCF+8EAgQIECAQPMEhC/NWzMVE2iSgPClSaul1nkJfO/3fm/mtmNPPvnkvMZwMAECBAgQIECAAIFhBIQvwyg5hgABAgQI1EtA+FKv9VANgbYJCF/atqL6mRYQvkxT+IQAAQIECBAgQKBkAeFLycCGJ0CAAAECJQgIX0pANSQBAtMCwpdpCp+0TUD40rYV1Q8BAgQIECBAoL4Cwpf6ro3KCBAgQIDAbALCl9lk7CdAoAgB4UsRisaopcDLXvayzG3HnnrqqVrWqigCBAgQIECAAIFmCwhfmr1+qidAgACBbgoIX7q57romUJWA8KUqafNULiB8qZzchAQIECBAgACBzgoIXzq79BonQIAAgQYLCF8avHhKJ9AAAeFLAxZJiaMJCF9Gc3MWAQIECBAgQIDA/AWEL/M3cwYBAgQIEJi0gPBl0itgfgLtFhC+tHt9O92d8KXTy695AgQIECBAgEClAsKXSrlNRoAAAQIEChEQvhTCaBACBGYREL7MAmN38wXOPPPMzN98efrpp5vfmA4IECBAgAABAgRqJyB8qd2SKIgAAQIECMwpIHyZk8gBBAiMISB8GQPPqfUWEL7Ue31UR4AAAQIECBBok4DwpU2rqRcCBAgQ6IqA8KUrK61PApMREL5Mxt2sFQgIXypANgUBAgQIECBAgMCUgPDFC4EAAQIECDRPQPjSvDVTMYEmCQhfmrRaap2XwKpVqzK3Hfva1742rzEcTIAAAQIECBAgQGAYAeHLMEqOIUCAAAEC9RIQvtRrPVRDoG0Cwpe2rah+pgWEL9MUPiFAgAABAgQIEChZQPhSMrA6coptAAAZ7ElEQVThCRAgQIBACQLClxJQDUmAwLSA8GWawidtExC+tG1F9UOAAAECBAgQqK+A8KW+a6MyAgQIECAwm4DwZTYZ+wkQKEJA+FKEojFqKbBy5crMbcf2799fy1oVRYAAAQIECBAg0GwB4Uuz10/1BAgQINBNAeFLN9dd1wSqEhC+VCVtnsoFhC+Vk5uQAAECBAgQINBZAeFLZ5de4wQIECDQYAHhS4MXT+kEGiAgfGnAIilxNAHhy2huziJAgAABAgQIEJi/gPBl/mbOIECAAAECkxYQvkx6BcxPoN0Cwpd2r2+nu3vpS1+aue3YM88802kTzRMgQIAAAQIECJQjIHwpx9WoBAgQIECgTAHhS5m6xiZAQPjiNdBaAeFLa5dWYwQIECBAgACB2gkIX2q3JAoiQIAAAQLTAvv27Us333xzuvbaa9P69evTunXr0po1azI/tBthTDwXx8SxcU6cayNAgMAoAsKXUdSc0wgB4UsjlkmRBAgQIECAAIFWCAhfWrGMmiBAgACBlggcP348bd++PW3cuDGdffbZuSFL3m+9zLYvxoixYswY20aAAIFhBIQvwyg5ppECZ5xxRubN9dlnn21kL4omQIAAAQIECBCot4Dwpd7rozoCBAgQ6IbAww8/nDZt2pRWrVqVuSY0W7Ay3/0xdswRc9kIECBwMgHhy8l0PNdoAeFLo5dP8QQIECBAgACBRgkIXxq1XIolQIAAgZYJ3HfffVO3Clu4cGFpoctgSBNzxe3JYm4bAQIE8gSEL3kq9jVOIO/enXlvuGeddZZ7dzZudRVMgAABAgQIEKi/gPCl/mukQgIECBBon8D+/funbge2YMGCykKXwRAm5o5bkkUtNgIECPQLCF/6NXzeGAH37mzMUimUAAECBAgQINAJAeFLJ5ZZkwQIECBQI4Ebb7wxnXbaaUOFLosWLUrnnXdeuuaaa9K2bdvS7t270969e3PPjefimDg2zolzBwOXvMdRS9RkI0CAQE9A+NKT8LERAu7d2YhlUiQBAgQIECBAoHMCwpfOLbmGCRAgQGBCAgcOHEiXX375nIHIkiVL0oYNG9Idd9yRjhw5klttXogyeODhw4enxoixYsy8c/r3RW1Ro40AAQLCF6+BRgi4d2cjlkmRBAgQIECAAIHOCghfOrv0GidAgACBCgUeeOCBtGbNmpMGIKtXr05btmxJhw4dmrOy/tCk9/nJTjp48GC6/vrrU8zROz7vY9QYtdoIEOi2gPCl2+tf++7du7P2S6RAAgQIECBAgACBlJLwxcuAAAECBAiUK7Br16506qmnzhp6rFixIm3dujUdO3Zs6ELygpNhTo45brjhhhRz5o0R+5YvX56iZhsBAt0VEL50d+1r3/m49+6MN7nBN8D7779/6r6e7t1Z++VXIAECBAgQIECgUQLCl0Ytl2IJECBAoGECt99+e1q8eHHmOk/vus+VV16ZnnnmmXl31Tu//+N8Bok5Y+7+8/s/j5qjdhsBAt0UEL50c91r3XVR9+48/fTTM29+zz33XKZ39+7MkNhBgAABAgQIECAwTwHhyzzBHE6AAAECBIYU2LFjx6zBS1z7GSfc6A9Kep8PWdaMw6KGvOtQMWYEMNGDjQCB7gkIX7q35rXuuMh7d+a96eWFL/0g7t3Zr+FzAgQIECBAgACBYQWEL8NKOY4AAQIECAwvcM8996Rly5Zlfrg2Qo21a9emffv2DT9YzpG9wKX/Y85hQ+2KWqKm/rF6n0cP0YuNAIFuCQhfurXete626Ht3nnbaaZk3vPitmmE29+4cRskxBAgQIECAAAECPQHhS0/CRwIECBAgUIxA/B3g2f6w/fnnn5+GvcZzsmp64Uj/x5MdP9dzUVPU1j9e7/PoJXqyESDQHQHhS3fWutadlnHvznHClx6We3f2JHwkQIAAAQIECBA4mYDw5WQ6niNAgAABAvMXuOiii3JDjAg3jh49Ov8Bc87oBSP9H3MOm9euqG22AObiiy+e11gOJkCg2QLCl2avXyuqL+venUWELz1g9+7sSfhIgAABAgQIECCQJyB8yVOxjwABAgQIjCawefPm3OBl3bp1KW4ZX9TWH7r0Pi9i7Kgxau2N2f8xerMRINANAeFLN9a5tl2Wee/O5cuXZ97kvvGNb4xs4d6dI9M5kQABAgQIECDQegHhS+uXWIMECBAgUJHA3r1709KlSzPXdFatWpWeeOKJQqvoD0V6nxc1QdS6cuXKTB/RW/RoI0Cg/QLCl/avcW07LPvenUWHLwHp3p21fTkpjAABAgQIECAwUQHhy0T5TU6AAAECLRK45JJLMoHFwoULU9w5peitF7j0fyxyjqg5au8fPz6PHm0ECLRfQPjS/jWubYdl37uzjPAlMN27s7YvKYURIECAAAECBCYmIHyZGL2JCRAgQKBFAjt37swEFRFWvPWtby2ly8FQJB4XvV199dW5PUWvNgIE2i1Q/L8o7fbSXUECVdy789RTT828uRV1X1D37izohWAYAgQIECBAgEBLBIQvLVlIbRAgQIDARAUuuOCCzLWcs846Kx05cqSUuqoIXw4fPpyih8G5olcbAQLtFhC+tHt9a9ldVffuLDN8CVj37qzly0tRBAgQIECAAIGJCAhfJsJuUgIECBBokcDu3bszAUUEFrfeemtpXQ4GIvG4jC16yJsrerYRINBegXL+RWmvl84KEKjq3p1lhy9B4d6dBbwgDEGAAAECBAgQaIGA8KUFi6gFAgQIEJiowBVXXJEJKNauXVtqTXmBSFkTRi+D80XPNgIE2isgfGnv2taysyrv3VlF+BLI7t1Zy5eaoggQIECAAAEClQoIXyrlNhkBAgQItEwgbu++ZMmSTDhxyy23lNrpYBgSj8vaopfB+aLnom6RX1bdxiVAYHSB8v5FGb0mZ7ZYoMp7d77kJS/JvKkdOnSocF337iyc1IAECBAgQIAAgcYJCF8at2QKJkCAAIEaCbz73e/OXMNZuXJlev7550utcjAMKTN8iV6ip8E5o3cbAQLtFBC+tHNda9lV1ffurCp8CWz37qzlS05RBAgQIECAAIHKBIQvlVGbiAABAgRaKHDppZdmQomrrrqq9E4Hg5Ayw5doJnoanDN6txEg0E4B4Us717WWXVV9784qw5cAd+/OWr7sFEWAAAECBAgQqERA+FIJs0kIECBAoIUCJ06cSMuXL8+EEnfffXfp3Q4GIWWHL9HT4JzRexjYCBBon4DwpX1rWsuOJnHvzmXLlmXe0OIWYWVt7t1ZlqxxCRAgQIAAAQL1FxC+1H+NVEiAAAEC9RTYs2dP5vpNVYHEYBBSdvgyW9AUBjYCBNonIHxp35rWsqNJ3Luz6vDFvTtr+dJTFAECBAgQIECgEgHhSyXMJiFAgACBFgps3bo1E75UdSuuqsOXWL68W6yFgY0AgfYJCF/at6a17CjvjaXse3dWHb4EvHt31vLlpygCBAgQIECAQOkCwpfSiU1AgAABAi0V2LRpUyZ8ue666yrpdhLhS/Q2OG8Y2AgQaJ+A8KV9a1q7jmb7lcqy79354he/OPNmduTIkVJ93LuzVF6DEyBAgAABAgRqKyB8qe3SKIwAAQIEai5w8cUXZ67f3HbbbZVUPRiCxOOyt+htcN4wsBEg0D6B8v9FaZ+ZjuYpMKl7d04ifJktaHLvznm+aBxOgAABAgQIEGiYgPClYQumXAIECBCojcCrX/3qTBjx4IMPVlLfYAhSRfgSvQ3OGwY2AgTaJyB8ad+a1q6jSd27cxLhS+Dn3WLNvTtr97JUEAECBAgQIECgUIEqwpf3fOTRFPP4j4HXgNeA14DXQJteA6cse2kmjBgMJ9r+OAzatKZ68W9UG14Dt3z0K2N/vyB8GZvQAHMJTOrenUuXLs28eX/zm9+cq9yxn3fvzrEJDUCAAAECBAgQaJxAfINZ9iZ8cSGjDRcy9OB17DXgNTD4GnjR4uz1m7aHLYP9hcGgi8f+X/EamOxrIL72HncTvowr6Pw5BSZ1785JhS/u3TnnS8IBBAgQIECAAIHWCcQ3x2VvwpfJfgPuAgh/rwGvAa+Bcl4DCxYszPzw7GA40fbHYeD1Vc7riyvXUV8Dwpeyv7sxfiECk7p356TCF/fuLORlYxACBAgQIECAQKME4pu6sjfhi4sHo148cJ7XjteA10CdXwN+8+W7kt988f9onf8f7WptjQxffMPQvX9M3Lvzu5J7d3bvdV/EfSHLvoBjfAIECBAgQKA4gfimtOzN91Ld+5qyqxc79O217jXQrdeA60auG/l/vlv/zzdlvYUv/thkI34l0U8w+AmGpvyjWmSdRfwDXfYFHOMTIECAAAECxQnE1xE2AgQIECBAYP4Ck7pjSlSadzuz+XcwvzPcMWV+Xo4m0GSByv/mi5/W6l6S6d6d35Xcu7N7r3vhS5PfGtVOgAABAgTmLyB8mb+ZMwgQIECAQAhM6m8Fx9yTCF/8rWCvewLdERC++O2Z0n97xm+++M2XIn+jpCljCV+680aqUwIECBAgEALCF68DAgQIECAwmsCmTZsyIch111032mDzPGsS4Uv0NjhvGNgIEGifgPBF+FJ6+OLene7d2ZTApMg6hS/te8PUEQECBAgQOJmA8OVkOp4jQIAAAQKzC2zdujUTRlx66aWzn1DgM4MhSDwue4veBucNAxsBAu0TKP9flPaZ6WieApO6d+cpp5ySeTM7evToPKuf/+Hu3Tl/M2cQIECAAAECBJouIHxp+gqqnwABAgQmJbBnz57M9Zvly5enEydOlF7SYAhSdvgSPUVvg/OGgY0AgfYJCF/at6a162hS9+6cVPji3p21ewkqiAABAgQIECBQuoDwpXRiExAgQIBASwVmCyTuvvvu0jseDEHKDl/uuuuuTPBSVdBUOqYJCBDICAhfMiR2FC0wqXt3fs/3fE/mDe2v//qvi24vM557d2ZI7CBAgAABAgQItF5A+NL6JdYgAQIECJQokHcrrquuuqrEGf/v0FWHL9HT4JxV3WKtdEwTECCQERC+ZEjsKFpgUvfunFT4kvcFg3t3Fv2qMh4BAgQIECBAoF4Cwpd6rYdqCBAgQKBZAtu2bcuEEitXrkzPP/98qY0MBiFl/uZL9BI9Dc4ZvdsIEGingPClnetaq64mde/OSYQvs/2qrHt31uolqRgCBAgQIECAQOECwpfCSQ1IgAABAh0SOHjwYFqyZEkmmLjllltKVRgMQsoMX6KXwfmi5+jdRoBAOwWEL+1c11p1NVsgUfa9OxcvXpx5Uzt27FipNu7dWSqvwQkQIECAAAECtRUQvtR2aRRGgAABAg0RuOKKKzLXcdauXVtq9YNhSJnhS/QyOF/0bCNAoL0Cwpf2rm2tOsu7FVfZ9+6cRPji3p21etkphgABAgQIECBQmYDwpTJqExEgQIBASwV2796dCScirLj11ltL63gwDCkrfIke8uaKnm0ECLRXQPjS3rWtVWeTuHdn1eGLe3fW6iWnGAIECBAgQIBApQLCl0q5TUaAAAECLRW44IILMiHFWWedlY4cOVJKx3mBSNETHT58OEUPg3NFrzYCBNotIHxp9/rWprtJ3Lvzu7/7uzNvbGX+oTb37qzNy00hBAgQIECAAIHKBYQvlZObkAABAgRaKLBz587MtZwILa6++upSuh0MROJx0VvUnjfPrl27ip7KeAQI1Eyg+H9RatagcuojUPW9O6sOX9y7sz6vNZUQIECAAAECBKoWEL5ULW4+AgQIEGirwCWXXJIJKxYuXJh27NhReMt5oUiRk0TNUfvgPNGjjQCB9gsIX9q/xrXpsOp7d1YZvrh3Z21eZgohQIAAAQIECExEQPgyEXaTEiBAgEALBfbu3ZuWLl2aCSxWrlyZnnjiiUI7HgxF4nFRW9QaNQ/OEb1FjzYCBNovUNy/KO230mEBAlXeu3PRokWZN7jjx48X0MXMIdy7c6aHRwQIECBAgACBLgoIX7q46nomQIAAgbIENm/enLmmEyHGunXrUtzavqhtMBgpKnyJGqPWvPGjNxsBAt0QEL50Y51r02WV9+6sKnxx787avLwUQoAAAQIECBCYmIDwZWL0JiZAgACBlgpcdNFFueHF+eefn44ePVpI13nhyLgDR21RY97Y0ZONAIHuCAhfurPWtem0qnt3VhG+uHdnbV5WCiFAgAABAgQITFRA+DJRfpMTIECAQAsF9u/fn1avXp0bYkS4ceDAgbG7zgtIxhk0apoteIleoicbAQLdERC+dGeta9NpVffuLDt8ce/O2rykFEKAAAECBAgQmLiA8GXiS6AAAgQIEGihwD333JOWLVuWG8CsXbs27du3b6yuiwxfopaoKW/M6CF6sREg0C0B4Uu31rs23VZx784XvehFmTe8EydOFGLg3p2FMBqEAAECBAgQINAaAeFLa5ZSIwQIECBQM4G468jixYsz13gi5Dj99NPT7bffPnLFeUHJKINFDVFL3nhRe/RgI0CgewLCl+6teW06LvvenWWFL+7dWZuXkEIIECBAgAABArUREL7UZikUQoAAAQItFIhwY7YAJgKPK6+8Mj377LPz7jwvLJnPIM8888zU3HnjxL6oeZxwaD61OJYAgfoJCF/qtyadqajse3eWEb64d2dnXp4aJUCAAAECBAjMS0D4Mi8uBxMgQIAAgXkL7Nq1Ky1fvjz3t0si6FixYkXaunVrOnbs2NBj54Umw5wcc8RcMWfeGLEvao2abQQIdFdA+NLdta9F52Xeu3PhwoWZN8BxmnbvznH0nEuAAAECBAgQaLeA8KXd66s7AgQIEKiHwAMPPJDWrFmTud7TH4DEH7bfsmVLOnTo0JxF95/X+/xkJ8Vt6GPsmKN3fN7HqDFqtREg0G0B4Uu3178W3Zd1784iwxf37qzFS0URBAgQIECAAIHaCghfars0CiNAgACBlgnEXUkuv/zyk4YfEYgsWbIkbdiwId1xxx3pyJEjuQp5wcnggXFujBFjxZh55/Tvi9qiRhsBAgSEL14DtRAo496dRYQv7t1Zi5eHIggQIECAAAECtRcQvtR+iRRIgAABAi0TuPHGG9Npp502ZxgSwciiRYvSeeedl6655pq0bdu2tHv37hR3OOkPTXqfx3NxTBwb58S5vedO9jFqiZpsBAgQ6AkIX3oSPk5coOh7dy5YsCDz5jhsk+7dOayU4wgQIECAAAECBEJA+OJ1QIAAAQIEqheIvye8cePGlHcN6GRBSZHPxdxRQ9RiI0CAQL+A8KVfw+cTFyjy3p15b7xzNejenXMJeZ4AAQIECBAgQCBPQPiSp2IfAQIECBCoRuC+++5L69evT3l3QSkyaOkfK+aKOWNuGwECBPIEhC95KvZNVKCoe3cOG764d+dEl9vkBAgQIECAAIFWCGz4zU+krz13tBW9aIIAAQIECDRV4OGHH06bNm1Kq1atytwNpT84GefzGDvmiLlsBAgQOJmA8OVkOp6bqMC49+7MeyPdu3fv1H093btzoktrcgIECBAgQIBA6wT2fPGZ9C9/+65084cfTY89nf9HfVvXtIYIECBAgEBNBY4fP562b98+dTuwV7ziFWMHMTFG3FosxoyxbQQIEBhGQPgyjJJjJibg3p0TozcxAQIECBAgQIDAPAWOfOt4ev/HH0//9p33pn/x9k+lzTd9If3prsfSZ770rN+KmaelwwkQIECAQJEC+/btSzfffHO69tprp24Vtm7durRmzZp0xhlnpMWLF0/9F5/HvngubicWx8Y5ca6NAAECowgIX0ZRc07lAu7dWTm5CQkQIECAAAECBMYQ+MbhY+mTD+xPf/jBv0y/9d/vS7/09k+ly//dx9Mvv+PuqcfvfO9D6Y+2P5I+8InH08c+81S696Fn00NfOZD2PXUkPf31b6UDh46lCHO+9dcn0rHj304nvv2dMapxKgECBAgQIECAAAECVQsIX6oWN99YAu7dORafkwkQIECAAAECBCYocPTYialw5Z6Hnk0fvuur6T0feTS960+/PPUbMhHQvPX37k2/uvnutPG6T6c3v213uuL/vTOt/41PTIU2l13zsXTLR78ywepNTYAAAQIECBAgQIDAfASEL/PRcmxtBNy7szZLoRACBAgQIECAAAECBAgQIECAAAECBAgQGBAQvgyAeNhMAffubOa6qZoAAQIECBAgQIAAAQIECBAgQIAAAQJtFBC+tHFV9USAAAECBAgQIECAAAECBAgQIECAAAECBAhMTED4MjF6ExMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJtFBC+tHFV9USAAAECBAgQIECAAAECBAgQIECAAAECBAhMTED4MjF6ExMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJtFBC+tHFV9USAAAECBAgQIECAAAECBAgQIECAAAECBAhMTED4MjF6ExMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJtFBC+tHFV9USAAAECBAgQIECAAAECBAgQIECAAAECBAhMTED4MjF6ExMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJtFBC+tHFV9USAAAECBAgQIECAAAECBAgQIECAAAECBAhMTED4MjF6ExMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJtFBC+tHFV9USAAAECBAgQIECAAAECBAgQIECAAAECBAhMTED4MjF6ExMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJtFBC+tHFV9USAAAECBAgQIECAAAECBAgQIECAAAECBAhMTED4MjF6ExMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJtFBC+tHFV9USAAAECBAgQIECAAAECBAgQIECAAAECBAhMTOD/AwZ2jZsWGQQEAAAAAElFTkSuQmCC" } }, "cell_type": "markdown", "metadata": {}, "source": [ "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Thus, the final circuit can be implemented using ancilla qubits as" ] }, { "attachments": { "image.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB1kAAAQWCAYAAAB2cQGGAAAgAElEQVR4Aezdf9AV1134cR4IT4CWAg4tSRsaaCEUWmiLfWKtpYRUW0tTS221/HCiPqYxGXWiidaYzJD8o37zY4ijjhqNY4IWojRSSUVEMC3yhCBiaCktv3+USkkdIQVCoPw43zk33cvec/bcZ+/unr3nx3tnnrl39+6ecz6vc3b32f3cH0MEEwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAboEhuddkRQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABQZKVQYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgh0IECStQMsVkUAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRIsjIGEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEOiCwJAhQwR/fqYr/Wx1FwY5VSKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQpQAJ1teSzFWa1lUWSda6pKkHAQQQQAABBBBAAAEEEKhRgAt1fy/UaxwmVIUAAggggAACCCCAAAJdFuDazd9rN5KsXd55qB4BBBBAAAEEEEAAAQQQsCHAhbq/F+o2xgNlIoAAAggggAACCCCAgJsCXLv5e+1GktXNfYpWIYAAAggggAACCCCAAAKlBLhQ9/dCvVTHszECCCCAAAIIIIAAAgh4JcC1m7/XbiRZvdrVaCwCCCCAAAIIIIAAAgggkE+AC3V/L9Tz9TBrIYAAAggggAACCCCAQAgCXLv5e+1GkjWEPZAYEEAAAQQQQAABBBBAAAFFgAt1fy/Ula5kFgEEEEAAAQQQQAABBAIWMF27hRpySPGSZA11lBIXAggggAACCCCAAAIIRC1gunCNbXnUg4DgEUAAAQQQQAABBBBAwHkB0zWa8w0v2MCQ4iXJWnAQsBkCCCCAAAIIIIAAAggg4LJASBeueZxjizePCesggAACCCCAAAIIIICA+wKxXcuEFC9JVvf3L1qIAAIIIIAAAggggAACCHQsENKFa57gY4s3jwnrIIAAAggggAACCCCAgPsCsV3LhBQvSVb39y9aiAACCCCAAAIIIIAAAgh0LBDShWue4GOLN48J6yCAAAIIIIAAAggggID7ArFdy4QUL0lW9/cvWogAAggggAACCCCAAAIIdCwQ0oVrnuBjizePCesggAACCCCAAAIIIICA+wKxXcuEFG9QSVZTx8S23P1DBi1EAAEE/BKI7TxiitevXqO1CCCAAAKxHc9ji5cRjgACCCCAAAIIIIAAAmEIxHYtE1K8JFmHDBGmDvV1eRiHFaJAAAEE3BHw9XxQdbvd6RFaggACCCCQR8B0HsizrY/rxBavj31EmxFAAAEEEEAAAQQQQEAXiO1aJqR4SbKSZNX3aJYggAACCLQImE78sS1vQWEGAQQQQMB5AdN5yvmGF2xgbPEWZGIzBBBAAAEEEEAAAQQQcEwgtmuZkOIlyUqS1bHDCc1BAAEE3BMwnfhjW+5ez9AiBBBAAIF2AqbzVLttfH4ttnh97ivajgACCCCAAAIIIIAAAlcEYruWCSlekqwkWa/syTxDAAEEEMgUMJ34Y1ueicNCBBBAAAFnBUznKWcbXLJhscVbkovNEUAAAQQQQAABBBBAwBGB2K5lQoqXJCtJVkcOIzQDAQQQcFfAdOKPbbm7PUTLEEAAAQSyBEznqax1Q1gWW7wh9BkxIIAAAggggAACCCDQTuDkyZNi+fLlor+/X/T19Ynx48eL3t7exp98LpfJ1+Q6cl1fp9iuZUKKN4okq6871mDtDmkgDhYrryOAAALdFIjteBtbvN0cW9SNAAII2BSI7XgeWryx3FCyuQ9QNgIIIIAAAggggICfAjt27BCLFi1qJFNN/+ery2XyVW4jt/VtUmNJ5quI49SpU2JgYGDQv+eff15cunSpWeXZs2fbbiPXv3z5cnP9Tp4k8amPnZThyrokWV3piQLtUAdgMl+gKDZBAAEEEGgjkBxf1cc2m3j9khpnMu91UDQeAQQQiFAgOX6rj6FSqHEm877FG9sNJd/6h/YigAACCCCAAAII2BM4ceJE45OpPT09Ivl/vtNHua38dKssy5fJFGMV7V+3bp0YNWrUoJ7jxo0TR48ebVa5ZcsWMXr0aON2w4YNEy+99FJz/U6e2Iy3k3ZUsS5J1ioUu1RGSAOxS4RUiwACCOQSiO14G1u8uQYBKyGAAAIeCsR2PPc93lhvKHm4a9FkBBBAAAEEEEAAAQsCW7duFRMnTjQm9Uz/75uWy7JkmT5Mphiqarv8hKpMms6YMUPznTx5stizZ09mVfKTqqtWrWrZZujQoWLx4sVi7969mdvkWWg73jxtqGodkqxVSXahnJAGYhf4qBIBBBDILRDb8Ta2eHMPBFZEAAEEPBOweTznK6eqHQwx31CqVpLSEEAAAQQQQAABBHwUWLt2ba5PW5qucUzL5Sc4ZdmuT6b2V93unTt3CpkkTdd37733tq1m+/btzfVHjBghnn322bbr53kxXX/6eZ5tXVuHJKtrPdJBe9KDL/28gyJYFQEEEEAgh0D6GJt+nmNTL1dJx5h+7mUwNBoBBBCIWCB9DE8/r4KEr5yqQvG1MmK/oVSdJCUhgAACCCCAAAII+CiwadMmIZN36WuWKp/LsmUdLk+meG20+ZZbbmmxnj17trGa06dPi1mzZjXWl795u379euO6nbxQZ7ydtKvIuiRZi6g5sk1IA9ERUpqBAAIIZArEdryNLd7MTmchAgggEICA7eM5XzlVfpBwQ6m8ISUggAACCCCAAAII+Ctw7NgxMWHChJakn+k6psxyWYesy9XJFJuN9q5Zs0bzlp9WVaeLFy+K+fPnN9aVv7/6zDPPqKsUnq8z3sKNzLkhSdacUC6uFtJAdNGXNiGAAAKJQGzH29jiTfqZRwQQQCA0gbqO53zlVLGRww2lYm5shQACCCCAAAIIIBCOwIIFC7SEn+k6puxyWZerkyk2G+2VydPrrruuxf3OO+/UqpLLknY9/vjj2utlFiTlqo9lyuzWtiRZuyVfQb3qAEzmKyi6q0WcPHlSLF++XPT394u+vj4xfvx4IT+KLv/kc7lMvibXkesyIYAAArYFkuOr+mi73m6Vr8aZzHerPdSLAAIIIFBMIDl+q4/FSmu/FV851d4n61VuKGWpsAwBBBBAAAEEEEAgFoGNGzc2k3jqNYuteVmni5MpXlttXbp0aYv9mDFjxNmzZ5vVPfroo83X77vvvubyqp7UHW9V7c4qhyRrloony0IaiJJ8x44dYtGiRY1kqik2dblMvMpt5LZMCCBgR4A3PojmPxXqMciOePdLVeNM5rvfMlqAAAIIINCJQHL8Vh87KSPvunzlVF6p19bjhlJnXqyNAAIIIIAAAgggEJ7AvHnzjPfc1GuYquZlnS5OpvhstfXIkSNi6NChLf5PPfVUozr5tcDJa0uWLBGXL1+uvBl1x1t5AKkCSbKmMHx7GspAPHHiROOTqT09PS07tSm+rOVyW/npVlkWEwIIVCPAGx+uOGYdd+SyUKfY4g21H4kLAQQQqPN4zldOdTbeuKHUmRdrI4AAAggggAACCIQlsH//flEmH2C61hlsuaxT1u3aZGq3zXYmv7ea1D1nzhzxwgsviJEjRzbyNDfddJM4f/68lSYkdaqPViqzXGhQd4jVDknmLRt2rfgkPvWxaw0qUPHWrVvFxIkTCydX1dhlWbJMJgQQKC7AGx90O/VYk8zra4axJIlPfQwjOqJAAAEE4hFQj+PJvC0BvnIqnyw3lPI5sRYCCCCAAAIIIIBAuALLli2rLCeQXOfkfZR1uzaZ2m6znatXr9b6YPjw4Y1lM2bMsPpTjd2I15YlSVZbsjWU6/tAXLt2rRg1apS2I5viyrtclinLZkIAgc4FeONDtpnp+JO9tv9LY4vX/x4jAgQQQCBboO7jOV85ld0P6lJuKKkizCOAAAIIIIAAAgjEJrBgwYLK8wKm6x91uazbtUltYzJvs50XLlwQ1157rdYP11xzjTh8+LDNqrU664jXVkAkWXPKnjp1SgwMDAz69/zzz4tLly41S5U/FtxuO7l+0e+0Tgae+tis3OEnmzZtEiNGjDDuTGpMnc7LsmUdTAggkF+ANz6YrUzHIPMW+V/h/JLfijURQAABBDoTsHn+MrWEr5wyyVxZzg2lKxY8QwABBBBAAAEEEIhTYOrUqdZyA6broGS5rNu1KWmb+mi7nffff7/WD5s3b7ZdrVZnErf1ii1UQJI1J+q6detyfepy3Lhx4ujRo81St2zZIkaPHm0cNMOGDRMvvfRSc/1OniQDT33spIxurHvs2DExYcIEo4kaT9F5WYesiwkBBAYX4I0P7Y1Mx6H2W+V7lfNLPifWQgABBBDoXMDm+cvUGr5yyiRzZTk3lK5Y8AwBBBBAAAEEEEAgToF2ORPTdUxVy2Xdrk2m2Gy38+DBg1qeZsWKFbar1epM4rdesYUKSLJ2gCo/oSqTpvL7qJNOTx4nT54s9uzZk1ma/KTqqlWrWrYZOnSoWLx4sdi7d2/mNnkWJnWrj3m27eY6db5z28WP/nfTnroRyBLgjQ9ZKq3L1ONsMt+6VvE5zi/F7dgSAQQQ8FHggQceaLk2SM4rdT3aNHPxK6fqcqWeIV0d1/jjzxhgDDAGGAOMAcYAY4AxENoYsHntJsteunSp9j/83LlzbVer1elavz344IO5DUiy5qa6suLOnTuFTJKmO/7ee++9skLGs+3btzfXl19l++yzz2as1dmidP3p552VUu/aGzdubDqk22zzuayTCQEEzAK88cFsk7xiOkYlr1f1yPmlKknKQQABBNwWCDnJKuVd+8op03mc5dyEYwwwBhgDjAHGAGOAMcAYYAwwBlweAzavbJ988kljrmb37t02qzbW60pfyGv2vBNJ1rxSynq33HJLy0CYPXu2ssaV2dOnT4tZs2Y11u/t7RXr16+/8mKJZ6YBV6JI65vOmzevxc0UQ5XLZZ1MCCCQLcAbH7Jd1KWmY5K6XhXznF+qUKQMBBBAwG2B0JOsrn3llOk8znJuqDEGGAOMAcYAY4AxwBhgDDAGGAMujwFbV7bynvDw4cMbuRr5javTpk1rydvcc889tqpulOuyuWwbSdYhrQcGG6NhzZo1LYNOwstPq6rTxYsXxfz58xvryt9ffeaZZ9RVCs+bBmLhAi1vuH//ftHT06O5meKoarmsU9bNhAACugBvfNBNspaYjkdZ65ZdxvmlrCDbI4AAAu4LhJ5k5SunWq9HTf9HsBwnxgBjgDHAGGAMMAYYA4wBxgBjoN0YsHF1u2vXLjF27NhGnkZ+NfD58+fFY4891pK3GT9+vDh37pyN6htltovZhddIstaQZJXJ0+uuu65l4N15553aoJPLkkHx+OOPa6+XWZCUqz6WKdPmtsuWLWtaqG22PS/rZkIAgVYB3vjQ6tFuznSMardN0dc4vxSVYzsEEEDAH4GQk6x85RQ3iUz/N7GcscEYYAwwBhgDjAHGAGOAMcAY6GwMVH2Ve/z4cTFp0qRGnmb69OnixIkTjSrko/yZy3T/rFixourqm+Wl63HxOUnWGpKscjSo79AeM2aMOHv2bHOgPProo81Bed999zWXV/XENPiqKr/qcur83UfVRtbNhAACrQK88aHVo92cekxJ5tttU+Y1zi9l9NgWAQQQQCARSM5X6mPyetWPrn7lVNVxli2P/8HKCrI9AggggAACCCCAgO8C3fzwx4EDB5zjU6/ZkvkqG3rmzBnR19fXyFlNmDBBHDp0qKX4W2+9tZnPkvXLT7nampL41Edb9dksl99kLaF75MgRMXTo0JaB99RTTzVKlF8LnLy2ZMkScfny5RI1ZW+qDsBkPnvt7i+dOnVqi1XS3joeZd1MCCDQKsAbH1o92s2ZjlPttinzGueXMnpsiwACCCCQCNR5/nL5K6cSD1ceuaHkSk/QDgQQQAABBBBAAIFuCvAzZlf0bV+7XbhwofmzlqNGjRLbtm27UvkPnw0MDGj5m927d2vrVbHAdrxVtDFvGR0nWbv91VYm/HbL82IUWS/5vdWk/jlz5ogXXnhBjBw5sjEgb7rppsZ3Whcpe7Btkjp57Owj9njhxRhgDFQ1BgY7Tpd5nfNL8XH64IMPlqFnWwQQQCAYAdP5ruoAXf/KqarjraI8bihVoUgZCCCAAAIIIIAAAj4LbNiwQUvqma5hqlouv33HxckUXxVtlR8A7O/vb1gPGzZMrFmzxljszJkzW/rk7rvvNq5b5gWb8ZZpV5FtSbIWUUtts3r16pZBJwfH8OHDG8tmzJghTp48mVq72qemgcjy4jfmscOOMcAY6GQMVHtUby2N80vxsdjJ7ya0qjOHAAIIhCVgOqdVGSVfOVVMkxtKxdzYCgEEEEAAAQQQQCAsgTq/ac/lnxS0de0mE6x33HFHM4f10EMPtR1AjzzySHNd2aaxY8eKl19+ue02RV60FW+RtpTdhiRrSUH5Metrr722ZeDJAXLNNdeIw4cPlyy9/eamgcjy4jfmscOOMcAY6GQMtD9Kl3uV80vxsUiStdzYY2sEEAhHwHROqypCvnKqnCQ3lMr5sTUCCCCAAAIIIICA/wLHjh0T8vdBTdcuVS2Xdci6XJ1McZZpr0yOpq855LevXrp0qW2Rzz33nNYXd911V9ttirxoI94i7ahiG5KsFSjef//92sDbvHlzBSW3L8I0EFle/MY8dtgxBhgDnYyB9kfp8q9yfik2Hkmylh97lIAAAmEImM5pVUTHV06VV+SGUnlDSkAAAQQQQAABBBDwX2DTpk1ixIgRWo7FdD3T6XJZtqzD5ckUU5E2y28beuKJJ8SUKVM004cffljs27dPyDfMpif5EzDyd1rVny9L2rVw4UKxfPlycfTo0fRmhZ8n5aqPhQvs4oYkWSvAP3jwoDZYV6xYUUHJ7YtQByDzxW7G44YbY4AxUHQMtD9Kl3+V80uxsUmStfzYowQEEAhDwHR+KxsdXzlVVvDK9txQumLBMwQQQAABBBBAAIF4BdauXStGjRql5VlM1zR5l8syZdmuT6Z4irR75cqVgzoODAw0i37llVeE/K1WUxvSy2+++ebmdmWepMtMPy9TZre27TjJ2q2G5qk33Rnp53m2LbPO0qVLtQE4d+7cMkXm2jYdY/p5ro27sNKyZcs0p3S7bT6XdTMhgECrQPrrImzuf1llu/wbCK1Kr81lxSCX2Z44v9gWpnwEEEAgbAEb5y++cqr6MRP7DaXqRSkRAQQQQAABBBBAwEeBrVu3iokTJ1aWQ5BlyTJ9mGxcu7kcd0jx2r9DXGNPdqNjnnzySeNOv3v3bqvRdyPeMgHt379f9PT0GL1M8ZRdLus8cOBAmaazLQJBCvDGh/zdajoO5S+h8zU5v3RuxhYIIIAAAq0CVZ6/+MqpVtuq52K+oVS1JeUhgAACCCCAAAII+Ctw4sQJ0d/fXyqPIPMBsgxZli9TldduPsQcUrwkWUuMuI0bN4rhw4c3koaLFy8W06ZNa0kg3nPPPSVKH3xTHwfivHnzWoxMMVS5XNbJhAACugBvfNBNTEtMxyTT+mWXc34pK8j2CCCAAAJSoMrzF185ZX9MxXpDyb4sNSCAAAIIIIAAAgj4JrBjxw6xaNEi0dvba7yuUa935LpyG7mtb5MaSzLvWxx525vEpz7m3d6l9UiyFuyNXbt2ibFjxzZ2cPnVwOfPnxePPfZYyw4/fvx4ce7cuYI1DL6ZOgCT+cG37N4aGzZsaDFK2mzzUSYrmBBAIFuANz5ku6hLTccodb0q5jm/VKFIGQgggAACUqDO85cL4qHEG9sNJRfGDm1AAAEEEEAAAQQQcFNAvhFx+fLljU+m9vX1NX63Vf5+qPyTv7f65je/ufGaXMenT66q2qFcy6hxmeZDipckq6mX2yw/fvy4mDRpUuOmxfTp05s7r9yJR4wY0XIzY8WKFW1KKveSrwOxzt+B9O13H8uNCLZGoHMB3viQz6yu4y3nl3z9wVoIIIAAAvkE6jp/5WuN/bVCizeWG0r2RwY1IIAAAggggAACCIQiIJOr6v/9Fy9e9D48NaZk3vvADAEk8amPhtWdXkyStcPukb9FJN8xITt/woQJ4tChQy0l3HrrrS07ufyUq61JHYDJvK36qir32LFjDbukvbYeZf/IupgQQKC9AG98aO8jXzUdpwbfMv8anF/yW7EmAggggEA+gTrOX/laUs9aoccb6g2lekYHtSCAAAIIIIAAAgiEIHDVVVdp9+kuXLjgfWihX8uoHRRSvCRZ1d5tMy931vnz5zd2YvlR9G3btmlrDwwMaDv57t27tfWqWODzQNy0aZP2qV9TPEWWy08UyzqYEEBgcAHe+DC4kek4NPiW+dbg/JLPibUQQAABBDoTsH3+6qw19tcOPd5QbyjZHxnUgAACCCCAAAIIIBCKwPDhw7X8yw9+8APvwwv9WkbtoJDiJcmq9q5h/vLly43v9padL99BvGbNGsOaQsycObNlR7/77ruN65Z5wfeBuHbt2sb3ppviKLpcJsBl2UwIIJBfgDc+tLcyHY/ab5XvVc4v+ZxYCwEEEECgcwGb56/OW2N/i9DjDfWGkv2RQQ0IIIAAAggggAACoQhcffXVLbkXeQ1w/vx578ML/VpG7aCQ4iXJqvZuxry8AX7HHXc0d96HHnooY60rix555JHmunKwjB07Vrz88stXVqjoWQgDcevWrWLixIktXqa48iyXZckymRBAoHMB3vhgNjMdf8xb5HuF80s+J9ZCAAEEECgmYOv8Vaw19rcKPd5QbyjZHxnUgAACCCCAAAIIIBCKgPwGS/X//ldffdX78NSYknnvAzMEkMSnPhpWd3oxSdZBukcmR9O/Vzhy5Ehx6dKltls999xz2o5+1113td2myIvqAEzmi5TVzW1OnDjR+JRwT0+P5pbENNij3La/v1/IspgQQKC4AG98yLYzHYOy1863lPNLPifWQgABBBAoLmDj/FW8Nfa3DD3eUG8o2R8Z1IAAAggggAACCCAQioDMz6j/9589e9b78NSYknnvAzMEkMSnPhpWd3oxSVZD95w5c0Y88cQTYsqUKdpO+/DDD4t9+/YJ9QeVjx8/3vid1uR3W9UBsnDhQrF8+XJx9OhRQ62dLVbLT+Y7K8WdtXfs2CEWLVokent7NfMkNvVRriu3kdsyIYBANQK88UF3VI89yby+5uBLOL8MbsQaCCCAAALVCCTnK/WxmtLdK0WNM5l3r6XFWhTqDaViGmyFAAIIIIAAAgggEKOA/KnA5P/85PGVV17xniKJRX30PjBDAGqcybxhdacXk2Q1dM/KlSu1nTXp6ORxYGCgubXckeVvtSavtXu8+eabm9uVeWKqo0yZLmwrEzwyGS0/mXr99dc3frdV2so/eRB9z3ve03hNrsMnV13oMdoQqgBvfLjSs1Uebzm/XHHlGQIIIICAXYEqz192W1pN6aHHG+oNpWp6n1IQQAABBBBAAAEEYhB4/etfr+VgTp8+7X3ooV/LqB0UUrwkWdXe9Wg+pIFoYpcJVTXOF1980bQ6yxFAwIJA+o0PfX19Qv4zk37jw1ve8pbGJ8pDfuODehxK5i1wO1FkEp/66ETjaAQCCCCAQG4B9TiezOcuwLMVk/jUR8/CMDY31BtKxoB5AQEEEEAAAQQQQAABRWD06NFavuDUqVPKWv7Nqtcwybx/keRrcRKf+phva7fWIsnqVn901Bp1ACbzHRXi+MokWR3vIJoXpUCM+2VyfFUfQx0AapzJfKjxEhcCCCAQqkBy/FYfiddPgVBvKPnZG7QaAQQQQAABBBBAoBsCb3jDG7Qk6/e///1uNKXSOtVrtmS+0kocKiyJT310qIm5m0KSNTeVeyuqAzCZd6+lxVsUYzKnuBZbIlCPQIz7ZXJ8VR/rEa+/FjXOZL7+llAjAggggEAZgeT4rT6WKdPlbdU4k3mX29xJ20K9odSJAesigAACCCCAAAIIxC0wduxYLcl68uRJ71GSaxf10fvADAGocSbzhtWdXkyS1enuad+4ZOCpj+238uvVd7/73dpBU/5OJBMCCHRPgCTrkOZxqXu9YLdm9bySzNutldIRQAABBKoWSI7f6mPV9bhSnhpnMu9K+8q2I9QbSmVd2B4BBBBAAAEEEEAgHoFx48Y178sl/+/LnzrzfUpiUR99j8vUfjXOZN60vsvLSbK63DuDtC0ZeOrjIJt59TJJVq+6i8ZGIhDjfqkeZ5P5ULs8iU99DDVe4kIAAQRCFVCP48k88fopEOoNJT97g1YjgAACCCCAAAIIdEPgR37kR7Qk6//93/91oymV1plcq8X+WClqTYWRZK0J2kY1ph3ORl3dKjPGZE63rKkXgbwCMe6XMRxv0/0fW7zp2HmOAAIIhCQQ2/E89HhDvaEU0j5HLAgggAACCCCAAAJ2BcaPH68lWf/3f//XbqU1lG66lolteQ3UlVdBkrVy0voKNO1g9bXAfk2zZs3SDppf+9rX7FdMDQggYBQgycrXBRsHBy8ggAACCDglYLpeiG25U51SojGh3lAqQcKmCCCAAAIIIIAAApEJvPGNb9TyBd/73ve8V4jtGs0Ur48dSZLVx177YZtDGoimbiDJapJhOQLdE4hxv4zheJseUbHFm46d5wgggEBIAqbjeWzLQ+nTUG8ohdI/xIEAAggggAACCCBgX+BNb3qTlmR96aWX7FdsuYbYrtFM8VpmtlI8SVYrrPUUGtJANInFmMwxWbAcAVcEYtwvYzjepsdXbPGmY+c5AgggEJKA6Xge2/JQ+jTUG0qh9A9xIIAAAggggAACCNgXuOaaa7Qk63e/+137FVuuIbZrNFO8lpmtFE+S1QprPYWGNBBNYjNnztQOml//+tdNq7McAZ8ixsAAACAASURBVARqECDJytcF1zDMqAIBBBBAoAIB0/VCbMsroHSiiFBvKDmBSyMQQAABBBBAAAEEvBC49tprtXzBsWPHvGh7u0bGdo1miredkauvkWR1tWdytCukgWgKlySrSYblCHRPIMb9MobjbXpExRZvOnaeI4AAAiEJmI7nsS0PpU9DvaEUSv8QBwIIIIAAAggggIB9gTe/+c1akvV//ud/7FdMDQgYBEiyGmB8WGy6OeJD2/O2McZkTl4b1kOgWwIx7pcxHG/T4ym2eNOx8xwBBBAIScB0PI9teSh9yg2lUHqSOBBAAAEEEEAAAQSKClx33XVakvU73/lO0eLYDoHSAiRZSxN2rwDTzZHutaj6mt/1rndpB82dO3dWXxElIoBAbgGSrHxdcO7BwooIIIAAAgggUJkAN5Qqo6QgBBBAAAEEEEAAAU8FJk6cqOULvv3tb3saDc0OQYAkq8e9SJLV486j6Qh4LBDjmx9iON6mh2Rs8aZj5zkCCCCAAAKuCnBDydWeoV0IIIAAAggggAACdQm89a1v1ZKsR44cqat66kFAEyDJqpH4syCGm+AxJnP8GYG0NFaBGPfLGI636fEcW7zp2HmOAAIIIICAqwLcUHK1Z2gXAggggAACCCCAQF0C119/vZZkPXz4cF3VUw8CmgBJVo3EnwUx3AR/5zvfqR00v/GNb/jTSbQUgQAFSLLydcEBDmtCQgABBBBAwHkBbig530U0EAEEEEAAAQQQQMCywOTJk7V8wcGDBy3XSvEImAWiSLKakpGhLjd3t3+vkGT1r89ocfgCMe6XoZ4vOo0r/NFNhAgggAACCLgrwA0ld/uGliGAAAIIIIAAAgjUI/C2t71NS7IeOHCgnsqpBYEMAZKsQ658IqnTm82urp/Rz94uijGZ421n0fBoBGLcL1093tfdrmgGOYEigAACCCDgoAA3lBzsFJqEAAIIIIAAAgggUKvA29/+di3Jun///lrbQGUIpAVIspJkTY8H557HmMxxrhNoEAKKQIz7Zd3JTFfrU4YCswgggAACCCBQowA3lGrEpioEEEAAAQQQQAABJwWmTp2qJVn37t3rZFtpVBwCJFlJsjo90mfMmKEdNHft2uV0m2kcAqELkGQN7xsQ8iZ1Qx/bxIcAAggggIDLAtxQcrl3aBsCCCCAAAIIIIBAHQI33HCDli/Ys2dPHVVTBwKZAiRZSbJmDgxXFpJkdaUnaAcCVwRi3C/zJiFDX+/KKOAZAggggAACCNQtwA2lusWpDwEEEEAAAQQQQMA1gWnTpmlJ1t27d7vWTNoTkQBJVpKsTg/3GJM5TncIjUNACBHjfhl68jRvfOwACCCAAAIIINA9AW4odc+emhFAAAEEEEAAAQTcEJg+fbqWZP3mN7/pRuNoRZQCQSVZo+zBwIPmoBl4BxOelwIxJlm97CgajQACCCCAAAJBCXBtFFR3EgwCCCCAAAIIIIBAAQHuSxZAYxOrAiRZrfJSeFkBbiSUFWR7BKoXYL+s3pQSEUAAAQQQQACBwQS4oTSYEK8jgAACCCCAAAIIhC7wzne+U/sk6ze+8Y3QwyY+hwVIsjrcOTRNCJI5jAIE3BNgv3SvT2gRAggggAACCIQvwA2l8PuYCBFAAAEEEEAAAQTaC8ycOVNLsn79619vvxGvImBRgCSrRVyKLi/wjne8Qztofutb3ypfMCUggEBhAZKshenYEAEEEEAAAQQQKCzADaXCdGyIAAIIIIAAAgggEIjArFmztHzB1772tUCiIwwfBUiy+thrEbWZJGtEnU2o3giwX3rTVTQUAQQQQAABBAIS4IZSQJ1JKAgggAACCCCAAAKFBN797ndrSdYdO3YUKouNEKhCgCRrFYqUYU2AZI41WgpGoLAA+2VhOjZEAAEEEEAAAQQKC3BDqTAdGyKAAAIIIIAAAggEIvDe975XS7K++OKLgURHGD4KkGT1sdciavO0adO0g+bu3bsjEiBUBNwTIMnqXp/QIgQQQAABBBAIX4AbSuH3MREigAACCCCAAAIItBeYPXu2li/Yvn17+414FQGLAiRZLeJSdHkBkqzlDSkBgaoF2C+rFqU8BBBAAAEEEEBgcAFuKA1uxBoIIIAAAggggAACYQv86I/+qJZk/a//+q+wgyY6pwVIsjrdPTSOZA5jAAH3BNgv3esTWoQAAggggAAC4QtwQyn8PiZCBBBAAAEEEEAAgfYC73vf+7Qk67Zt29pvxKsIWBQgyWoRl6LLC9xwww3aQXPPnj3lC6YEBBAoLECStTAdGyKAAAIIIIAAAoUFuKFUmI4NEUAAAQQQQAABBAIRuPHGG7V8wdatWwOJjjB8FCDJ6mOvRdRmkqwRdTaheiPAfulNV9FQBBBAAAEEEAhIgBtKAXUmoSCAAAIIIIAAAggUEvixH/sxLcn6wgsvFCqLjRCoQoAkaxWKlGFNgGSONVoKRqCwAPtlYTo2RAABBBBAAAEECgtwQ6kwHRsigAACCCCAAAIIBCLw/ve/X0uybtmyJZDoCMNHAZKsPvZaRG0mmRNRZxOqNwLsl950FQ1FAAEEEEAAgYAEuKEUUGcSCgIIIIAAAggggEAhgQ984ANaknVgYKBQWWyEQBUCJFmrUKQMawJTp07VDpp79+61Vh8FI4DA4AIkWQc3Yg0EEEAAAQQQQKBqAW4oVS1KeQgggAACCCCAAAK+CfzET/yEli/YvHmzb2HQ3oAESLIG1JkhhkKSNcReJSbfBdgvfe9B2o8AAggggAACPgpwQ8nHXqPNCCCAAAIIIIAAAlUKfPCDH9SSrP/xH/9RZRWUhUBHAiRZO+Ji5boFSObULU59CAwuwH45uBFrIIAAAggggAACVQtwQ6lqUcpDAAEEEEAAAQQQ8E3gQx/6kJZk/epXv+pbGLQ3IAGSrAF1ZoihTJkyRTto7tu3L8RQiQkBbwRIsnrTVTQUAQQQQAABBAIS4IZSQJ1JKAgggAACCCCAAAKFBObOnavlC77yla8UKouNEKhCgCRrFYqUYU2AJKs1WgpGoLAA+2VhOjZEAAEEEEAAAQQKC3BDqTAdGyKAAAIIIIAAAggEInDTTTdpSdbnnnsukOgIw0cBkqw+9lpEbSaZE1FnE6o3AuyX3nQVDUUAAQQQQACBgAS4oRRQZxIKAggggAACCCCAQCGBm2++WUuybty4sVBZLm00ZMgQLa4Yl7nUJ3nbQpI1rxTrdUXg7W9/u3Zw2b9/f1faQqUIIPCaAElWRgICCCCAAAIIIFC/QKg3lOqXpEYEEEAAAQQQQAABXwU+/OEPa/mCDRs2+BpOs90xJlSzYm6CePSEJKtHnRVjU0myxtjrxOy6APul6z1E+xBAAAEEEEAgRIFQbyiF2FfEhAACCCCAAAIIIGBH4Cd/8ie1JOu//du/2amsxlKzEo4xLquRvLKqSLJWRklBNgRI5thQpUwEygmwX5bzY2sEEEAAAQTqEojxojwr5rq8bdcT6g0l226UjwACCCCAAAIIIBCOwEc+8hEtybp+/XrvA8y6jolxmY8dSZLVx16LqM1ve9vbtIPmgQMHIhIgVATcEyDJ6l6f0CIEEEAAAQSyBGK8KM+KOcvGx2Wh3lDysS9oMwIIIIAAAggggEB3BD760Y9q+YJ169Z1pzEV1pp1HRPjsgpJayuKJGtt1FRURIAkaxE1tkHArgD7pV1fSkcAAQQQQKAqgRgvyrNirsqz2+WEekOp267UjwACCCCAAAIIIOCPwE//9E9rSdZ/+Zd/8ScAQ0uzrmNiXGbgcXoxSVanu4fGkcxhDCDgngD7pXt9QosQQAABBBDIEojxojwr5iwbH5eFekPJx76gzQgggAACCCCAAALdEfjYxz6mJVnXrl3bncZUWGvWdYxcFuoUUrzh9lKooy+yuCZPnqwdNA8ePBiZAuEi4JYASVa3+oPWIIAAAgggYBIwXbjGttzk49vyUG8o+dYPtBcBBBBAAAEEEECgewIf//jHtXzBl7/85e41qKKaTddoFRXvXDEhxUuS1bnhRYPSAiRZ0xo8R8ANAfZLN/qBViCAAAIIIDCYgOnCNbblgzn58nqoN5R88aedCCCAAAIIIIAAAt0XuOWWW7Qk67PPPtv9hpVsgekarWSxzm4eUrwkWZ0dZjRMCpDMYRwg4J4A+6V7fUKLEEAAAQQQyBII6cI1Kz51WejxhnpDSe1H5hFAAAEEEEAAAQQQMAl84hOf0JKsa9asMa3uzfLQr2XUjggpXpKsau8y75QAyRynuoPGINAQYL9kICCAAAIIIOCHQEgXrnnEQ4831BtKefqWdRBAAAEEEEAAAQQQkAKf/OQntSTrl770Je9xQr+WUTsopHhJsqq9y7xTApMmTdIOmocOHXKqjTQGgdgESLLG1uPEiwACCCDgq0BIF655+iD0eEO9oZSnb1kHAQQQQAABBBBAAAEpsGDBAi1fsHr1au9xQr+WUTsopHhJsqq9y7xTAiRZneoOGoNAQ4D9koGAAAIIIICAHwIhXbjmEQ893lBvKOXpW9ZBAAEEEEAAAQQQQEAKfOpTn9KSrP/4j//oPU7o1zJqB4UUb1BJVlPHxLZcHbA+z5PM8bn3aHuoAjHul7GdR0zxhjqmiQsBBBAIVSC243no8YZ6QynU/Y+4EEAAAQQQQAABBKoX+PSnP60lWb/4xS9WX1HNJYZ+LaNyhhQvSdYhQ7Sd0tTBvixXB6zP89dff73WP4cPH/Y5JNqOgPcCJFnDO2/kPb95P3gJAAEEEIhMwHR8D5Uh9HhDvaEU6ngkLgQQQAABBBBAAIHqBT7zmc9o+YJVq1ZVX1HNJYZ+LaNyhhQvSVaSrOr4dmqeJKtT3UFjEGgIxLhfmk78sS1nF0AAAQQQ8EvAdJ7yK4r8rQ093lBvKOXvYdZEAAEEEEAAAQQQiF3g537u57Qk6z/8wz94zxL6tYzaQSHFS5KVJKs6vp2ajzGZ41QH0BgEMgRi3C9NJ/7YlmcMBxYhgAACCDgsYDpPOdzkUk0LPd5QbyiV6nQ2RgABBBBAAAEEEIhK4LOf/ayWZH366ae9Nwj9WkbtoJDiJclKklUd307Nv/Wtb9UOmkeOHHGqjTQGgdgESLLydcGxjXniRQABBHwVCOnCNU8fhB5vqDeU8vQt6yCAAAIIIIAAAgggIAUWLlyo5QtWrlzpPU7o1zJqB4UUL0lWkqzq+HZqniSrU91BYxBoCMS4X5pO/LEtZxdAAAEEEPBLwHSe8iuK/K0NPd5Qbyjl72HWRAABBBBAAAEEEIhdYNGiRVqSdcWKFd6zhH4to3ZQSPFGkWRVOzCU+ZAGoqlPYkzmmCxYjoArAjHulzEcb9PjK7Z407HzHAEEEAhJILbjeejxhnpDKaR9jlgQQAABBBBAAAEE7AosWbJES7J+4QtfsFtpDaXbvJY5deqUGBgYGPTv+eefF5cuXWpGe/bs2bbbyPUvX77cXL+TJzbj7aQdVaxLkrUKxS6VEdJANBFOnDhRO2h++9vfNq3OcgQQqEGAJOuVrwuugbsrVcRwfukKLJUigAACNQvEdjwPPd5QbyjVvFtQHQIIIIAAAggggIBHAidPnhTLly8X/f39oq+vT1x99dVavmDu3LmNdeS6vk42r2XWrVsnRo0apbmpdY4bN04cPXq0SbhlyxYxevRo43bDhg0TL730UnP9Tp6odSfznZThyrokWV3piQLtSAae+ligKGc3IcnqbNfQsIgFYtwv1eNsMh/qMEjiUx9DjZe4EEAAgVAF1ON4Ml9FvLwbugrF9mXEckOpvQKvIoAAAggggAACCMQosGPHDiG/yaW3t9eY5Euub5JHua7cRm7r25TEoD5WFYf8hKpMms6YMUPznDx5stizZ09mVfKTqqtWrWrZZujQoWLx4sVi7969mdvkWajGmczn2da1dUiyutYjHbQnGXjqYwdFOL9qjMkc5zuFBkYvEON+qR5nk/lQB0MSn/oYarzEhQACCIQqoB7Hk/kq4uXd0FUoZpcR2w2lbAWWIoAAAggggAACCMQocOLEicanVnt6eloSe8m1TJ5Hua385Kssy5fJFFfV7d+5c6eQSdJ0fffee2/barZv395cf8SIEeLZZ59tu36eF9P1p5/n2da1dUiyutYjHbQnPfjSzzsowvlVr7vuuuYOnMSY/si68wHQQAQCFCDJytcFBzisCQkBBBAIUiD5/1l9rCpY3g1dleRr5cR6Q6laRUpDAAEEEEAAAQQQ8FVg69atIuu+o3o9k3deliXL9GEyxWSj7bfccktLzmX27NnGak6fPi1mzZrVWF9+Unj9+vXGdTt5oc54O2lXkXVJshZRc2SbkAaiiZQkq0mG5Qh0TyDG/TKG4216RMUWbzp2niOAAAIhCdR1POfd0OVHTcw3lMrrUQICCCCAAAIIIICA7wJr167N9buhpmsc03L5W6SybNcnU/tttHvNmjUtSVZZt/y0qjpdvHhRzJ8/v7Gu/P3VZ555Rl2l8Hyd8RZuZM4NSbLmhHJxtZAGosk3xmSOyYLlCLgiEON+GcPxNj2+Yos3HTvPEUAAgZAE6jye827o4iMn9htKxeXYEgEEEEAAAQQQQCAEgU2bNgn5NbSm65eyy2XZsg6XJ1OMNtosk6fq/d0777xTq0ouS9r1+OOPa6+XWZCUqz6WKbNb25Jk7ZZ8BfWqAzCZr6BoZ4pQd3YZI18X7Ez30JBIBWLcL5Pjq/oY6hBQ40zmQ42XuBBAAIFQBZLjt/poI17eDV1MlRtKxdzYCgEEEEAAAQQQQCAMgWPHjokJEyY0k3nqtUtV87IOWZerkylOW+1dunRpi/mYMWPE2bNnm9U9+uijzdfvu+++5vKqntQdb1XtziqHJGuWiifLQhqIJvK3vOUtzZ05ifc73/mOaXWWI4BADQIkWflN1hqGGVUggAACCFQgkPz/rD5WULRWBO+G1kgGXcANpUGJWAEBBBBAAAEEEEAgcIEFCxZo9//V65eq5mVdrk6mGG2198iRI2Lo0KEt9k899VSjOvm1wMlrS5YsEZcvX668GXXHW3kAqQJJsqYwfHsa0kBM2588eVIsX75c9Pf3C/ljymqc7373uxuvyXXkukwIIFCvQIxvflCPQ8l8vfL11ZbEpz7W1wJqQgABBBCoQkA9jifzVZSdVQbvhs5SMS/jhpLZhlcQQAABBBBAAAEEwhfYuHGjdu8/uWax9SjrdHEyxWuzrcnvrSZ1z5kzR7zwwgti5MiRjX656aabxPnz5600IalTfbRSmeVCSbJaBrZZvDoAk3mbddose8eOHWLRokWZidUkNvVRJmHlNnJbJgQQsCOQfuNDX19f851M6f1x4cKFjTdHhPrGh3Ss6ed2xLtfajrG9PPut4wWIIAAAgh0IpA+hqefd1JGJ+vybuj8WtxQym/FmggggAACCCCAAAJhCsybN6/2JKus08Upfb2Wfm6zratXr9b8hw8f3lg2Y8YMqx9wS8eYfm4zXltlk2S1JVtDuenBl35eQ9WVVnHixInGJ1N7enq0nTodV7vnclv5yVdZFhMCCFQjwBsfrjiajj9X1gjrWWzxhtV7RIMAAghcEejG8Zx3Q1/xb/eMG0rtdHgNAQQQQAABBBBAIHSB/fv3izL5ANO1zmDLZZ2ybtcmU7tttvPChQvi2muv1XIy11xzjTh8+LDNqrU6k/itVmqpcJKsOWFPnTolBgYGBv17/vnnxaVLl5qlyh8LbredXL/od1onA099bFbuwZOtW7eKiRMnGncqNbbB5mVZskwmBBAoLsAbH3Q707FHX7PzJZxfOjdjCwQQQACBfAI2z1+mFvBuaJPMleXcULpiwTMEEEAAAQQQQACBOAWWLVtWWU7AdN1jWi7rdm0ytdV2O++//36tHzZv3my7Wq3OJH7rFVuogCRrTtR169aJUaNGGTs/GQTjxo0TR48ebZa6ZcsWMXr0aON2w4YNEy+99FJz/U6eJHWqj52U0c11165dm8tUjW+wedlPsmwmBBDoXIA3PmSbmY472Wt3tpTzS2derI0AAgggkF/A5vnL1AreDW2SubKcG0pXLHiGAAIIIIAAAgggEKfAggULjDkT03VMVctl3a5Npthst/PgwYNaP6xYscJ2tVqdSfzWK7ZQAUnWDlDlJ1Rl0lR+H3XS6cnj5MmTxZ49ezJLk59UXbVqVcs2Q4cOFYsXLxZ79+7N3CbPwqRu9THPtt1eZ9OmTWLEiBEtJmocZeZl2bIOJgQQyC/AGx/MVqbjkXmLzl7h/NKZF2sjgAACvgs88MAD1v4PNp2z0stt+7n2buh07Dwf0tWxhz/+jAHGAGOAMcAYYAwwBhgDjIH8Y8D2tdvSpUu164O5c+farlar07Ux8eCDD+Y2IMmam+rKijt37hQySZru+HvvvffKChnPtm/f3lxfJgCfffbZjLU6W5SuP/28s1LqX/vYsWNiwoQJTY9026t8LuuQdTEhgMDgArzxob2R6djUfqvOX+X80rkZWyCAAAI+CoSeZHXt3dCm8zjL89/cwQorxgBjgDHAGGAMMAYYA4wBxkD9Y8Dm9e6TTz5pzNHs3r3bZtXGel0ZY/KaPe9EkjWvlLLeLbfc0jIQZs+eraxxZfb06dNi1qxZjfV7e3vF+vXrr7xY4plpwJUospZN6/wqABc/+l8LMpUg0IEAb3wYHKvO4y3nl8H7gzUQQAAB3wVCT7Lybuj6b76Y/ldhOX3BGGAMMAYYA4wBxgBjgDHAGPB3DNi69t24caMYPnx4I2clv3F12rRpLfmue+65x1bVjXJdH5MkWYe07jQ2RsOaNWtaBp0cFPLTqup08eJFMX/+/Ma68vdXn3nmGXWVwvOmgVi4wBo2lDuvqd22lss6mRBAwCzAGx/MNskrpuNT8nqVj5xfqtSkLAQQQMBNgZCTrLwbuvVa1PQ/BMtxYgwwBhgDjAHGAGOAMcAYYAwwBgYbAzauaHft2iXGjh3byNPIrwY+f/68eOyxx1ryNuPHjxfnzp2zUX2jzMHi7vbrJFlrSLLK5Ol1113XMvDuvPNObdDJZcmAePzxx7XXyyxIylUfy5Rpe9t58+Y1PdR225qXdTIhgEC2AG98yHZRl5qOT+p6VcxzfqlCkTIQQAABtwVCTbLybmhuEpn+Z2I5Y4MxwBhgDDAGGAOMAcYAY4Ax0PkYqPrK9vjx42LSpEmNHM306dPFiRMnGlXIR/kzl+k+WrFiRdXVN8tL1+Pic5KsNSRZ5WhQvwZrzJgx4uzZs82B8uijjzYH5X333ddcXtUT0+Crqvyqy9m/f7/o6elpmpjaX/VyWaesmwkBBHQB3vigm2QtMR2XstatYhnnlyoUKQMBBBBAoM7zl8vvhnZtJEydOrX2a6JkLNxwww2ucdAeBBBAAAEEEEAAgQgF6vxmveR/4eTRxZ8YTNqmPlY5NM6cOSP6+voa1yITJkwQhw4dain+1ltvbblOkZ9ytTWpcSbztuqzWS6/yVpC98iRI2Lo0KEtA++pp55qlCi/Fjh5bcmSJeLy5cslasreNBl46mP22t1fumzZshYrtd0252XdTAgg0CrAGx9aPdrNmY5P7bYp8xrnlzJ6bIsAAgggkAjUdf5y/d3QiYcrj9xQcqUnaAcCCCCAAAIIIIBAtwTIFbTK2752u3DhQvNnLUeNGiW2bdvW2gAhxMDAgJa/2b17t7ZeFQtsx1tFG/OWQZI1r5RhveT3VpNBMWfOHPHCCy+IkSNHNgbkTTfd1PhOa8PmpRYndaqPpQq1uDE3EyziUjQCBQT4ZyY/mnqcTebzl9D5mpxfOjdjCwQQQACBVoHkfKU+tq5Vbo53Q3fux/9gnZuxBQIIIIAAAggggEBYAt388MeBAwecw1Sv2ZL5KhoqPwDY39/fyFcNGzZMrFmzxljszJkzWxKtd999t3HdMi8k8amPZcrs1rYkWUvKr169umXQyUExfPjwxrIZM2aIkydPlqzBvLk6AJN58xbdfaWbX4sl62ZCAIFWAd740OrRbi45vqqP7bYp+xrnl7KCbI8AAgggoJ63kvmqZHg3dDFJbigVc2MrBBBAAAEEEEAAgbAE+BmzK/2ZXKupj1fWKPZMJljvuOOOZg7roYcealvQI4880lxXtmXs2LHi5ZdfbrtNkRfVOJP5ImV1e5uOk6zyB1+TgH15tIksbyxce+21msk111wjDh8+bLNqrU5f+oN2dv4D15hhxhhwcwzYPMhzfine5w8++KDNrqFsBBBAwBsB0/8PVQTAu6HLKXJDqZwfWyOAAAIIIIAAAgj4L7Bhw4bacxwbN250Es7GtZtMjqY/ZCO/ffXSpUtt43/uuee0PrnrrrvablPkRRvxFmlHFduQZK1A8f7779cG3ubNmysouX0RpoHI8uI35rHDjjHAGOhkDLQ/Spd/lfNLsfEo3xDGhAACCCAgtGuU5BxX1oZ3Q5cVFIIbSuUNKQEBBBBAAAEEEEDAf4F0EjC5XrH1KOtydTLFXKS98iddnnjiCTFlyhTtmvDhhx8W+/btE/LDHenp+PHjjd9pVX++LGnXwoULxfLly8XRo0fTmxV+npSrPhYusIsbkmStAP/gwYPaYF2xYkUFJbcvQh2AzBe7GY8bbowBxkDRMdD+KF3+Vc4vxcYmSdbyY48SEEAgDAHT+a1MdLwbuoxe67bcUGr1YA4BBBBAAAEEEEAgPoFjx46JCRMmaPkV07VM0eWyDlmXq5MpriLtXbly5aCeAwMDzaJfeeUVIX+r1dSG9PKbb765uV2ZJ+ky08/LlNmtbUmyViC/dOlSbQDOnTu3gpLbF5EefDwvdiMeN9wYA4yBMmOg/VG6/KucX4qNT5Ks5cceJSCAQBgCpnNckeh4N3QRtfbbcEOpvQ+vIoAAAggggAACCMQhsGnTJjFixAgtx2K6nul0uSxb1uHyZIrJ5TaXaVtI8ZJkLTMShBBPPvmkceffWdCHHQAAIABJREFUvXt3ydLbb24aiCwvdlMeN9wYA4yBTsdA+6N0uVc5vxQfjyRZy409tkYAgXAETOe1IhHybugiaoNvww2lwY1YAwEEEEAAAQQQQCB8gbVr14pRo0YZcy2ma5vBlssyZdmuT6Y4XG930faFFG/HSdaiaHVsV3fHyB9JHj58eGPHX7x4sZg2bVrLQeCee+6xGnbd8ZYNZtmyZS0+pvbbWC7rZkIAgVaBOr+iTt2vXf4NhFal1+bU9ifzWetWsYzzSxWKlIEAAgggkJyv1MdQZdQ4k3nX4439hpLr/UP7EEAAAQQQQAABBOoR2Lp1q5g4cWJlOQRZlizThym5dlEffWh7kTaqcSbzRcrq9jYkWQv2wK5du8TYsWMbO7z8auDz58+Lxx57rOUAMH78eHHu3LmCNQy+WTLw1MfBt+zOGvv37xc9PT0tRmrbbczLOg8cONCdoKkVAYcFeOND/s4xHZvyl5B/Tc4v+a1YEwEEEECgvUCd56/2LannVZ/jjfmGUj2jg1oQQAABBBBAAAEEfBA4ceKE6O/vL5VHkPkAWYYsy5fJ52uZIsYhxUuStcAIOH78uJg0aVIjWTh9+vTmzip3WvW7w1esWFGghnyb+DgQ582bV3uSVdbJhAACugBvfNBNTEvqOt5yfjH1AMsRQAABBIoI1HX+KtI2G9v4Hm+sN5RsjAXKRAABBBBAAAEEEPBbYMeOHWLRokWit7c3dz5Briu3kdv6Nvl+LdOpd0jxkmTtsPfPnDkj+vr6Gjv2hAkTxKFDh1pKuPXWW1t2evkpV1uTjwNxw4YNLT6mGKpcLr92kwkBBLIFeONDtou61HRMUtcrM8/5pYwe2yKAAAIIZAnUcf7Kqrdby0KJN7YbSt0aL9SLAAIIIIAAAggg4L6AfCPi8uXLG59MlXmZrN9tfc973tNYx6dPrqryoVzLqHGZ5kOKlySrqZczll+4cEHMnz+/kSSUO/O2bdu0tQYGBrQk4u7du7X1qljg60Cs83cgffvdxyrGBWUg0IkAb3zIp2X7eMv5JV8/sBYCCCCAQGcCts9fnbXG/tqhxRvLDSX7I4MaEEAAAQQQQAABBEIR+P3f/30t/3L//fd7H15o1zKDdUhI8ZJkHay3f/j65cuXG++WkJ0/bNgwsWbNGuOWM2fObNnR7777buO6ZV7wdSAeO3ZMyE8Bm9pf1XJZh6yLCQEE2gvwxof2PvJV03Fp8C0HX4Pzy+BGrIEAAgggUEzA5vmrWIvsbhV6vKHeULI7KigdAQQQQAABBBBAICSBP/iDP9Du0/3e7/2e9yGGfi2jdlBI8ZJkVXs3Y17eAL/jjjuaO+9DDz2UsdaVRY888khzXTlYxo4dK15++eUrK1T0zOeBuGnTJu33a03xFFkufxtX1sGEAAKDC/DGh8GNTMehwbdsvwbnl/Y+vIoAAgggUE7A1vmrXKvsbR16vKHeULI3IigZAQQQQAABBBBAIDSBP/zDP2zJvchrgHvvvdf7MEO/llE7KKR4SbKqvavMy+Ro+lNeI0eOFJcuXVLWap197rnntB39rrvual2pgjnfB+LatWszv0PdFFfe5fKrnGXZTAggkF+ANz60tzIdf9pv1f5Vzi/tfXgVAQQQQKC8gI3zV/lW2Ssh9HhDvaFkb0RQMgIIIIAAAggggEBoAv/v//0/Lffyu7/7u96HGfq1jNpBIcVLklXt3R/OnzlzRjzxxBNiypQp2k778MMPi3379gn5G3rp6fjx443faU1+t1UdKAsXLmz8APPRo0fTmxV+rpafzBcusAsbbt26VUycOFEzTmLp9FGWJctkQgCBzgV444PZzHQsMm9hfoXzi9mGVxBAAAEEqhWo8vxVbcvslBZ6vKHeULIzGigVAQQQQAABBBBAIEQBmZtR/+//nd/5He9DVWNK5r0PzBBAEp/6aFjd6cUkWQ3ds3LlSm1nVTt8YGCgufUrr7zS+K1WdZ2s+Ztvvrm5XZknWWXLZb5NJ06caPzebU9Pz6Dmppjltv39/UKWxYQAAsUFeONDtp3p2JO9dvulnF/a+/AqAggggEB1AlWev6prlb2SQo831BtK9kYEJSOAAAIIIIAAAgiEJqD+VKO8Bvjt3/5t78MM/VpG7aCQ4vUvI6f2Rmo+pI5JhWV8Glq8O3bsEIsWLRK9vb25k61yXbmN3JYJAQSqEeCND7pjaMdbPcLWJbHF2xo9cwgggEA4ArEdz0OPN9QbSuHscUSCAAIIIIAAAgggYFvg0Ucf1XIH99xzj+1qrZcf+rWMChhSvCRZ1d71aD6kgZhmlwme5cuXNz6ZetVVV2kHzfe+972N1+Q6fHI1LcdzBKoV4I0PVzxDPd5eibD1WWzxtkbPHAIIIBCOQGzH89DjDfWGUjh7HJEggAACCCCAAAII2BZYtmyZli/4rd/6LdvVWi8/9GsZFTCkeEmyqr3r0XxIA9HEPm7cOO2gSWLVpMVyBOwIpN/40NfXJ7K+2nvJkiWNN0eEun/GcLxNj57Y4k3HznMEEEAgJIHYjuehxxvqDaWQ9jliQQABBBBAAAEEELAr8Nhjj2n5gt/8zd+0W2kNpYd+LaMShhQvSVa1dz2aD2kgmthJsppkWI5A9wRi3C9jON6mR1Rs8aZj5zkCCCAQkkBsx/PQ4w31hlJI+xyxIIAAAggggAACCNgV+KM/+iMtyXrXXXfZrbSG0k3XMrEtr4G68ipIslZOWl+Bph2svhbYrynGZI59VWpAoJxAjPtlDMfb9KiILd507DxHAAEEQhKI7Xgeeryh3lAKaZ8jFgQQQAABBBBAAAG7An/8x3+sJVl/4zd+w26lNZRuupaJbXkN1JVXQZK1ctL6CjTtYPW1wH5NY8eO1Q6aJ0+etF8xNSCAgFGAJOuQ5nHJiOT5CzGcXzzvIpqPAAII5BKI7Xgeeryh3lDKNZhZCQEEEEAAAQQQQAABIcSf/MmfNO/LJf////qv/7r3NkkssT/62JEkWX3stR+22bTDeRyS1nSSrBoJCxDoukCM+2UMx9v0wIot3nTsPEcAAQRCEjAdz2NbHkqfhnpDKZT+IQ4EEEAAAQQQQAAB+wJ/+qd/qiVZf+3Xfs1+xZZriO0azRSvZWYrxZNktcJaT6EhDUSTWIzJHJMFyxFwRSDG/TKG4216fMUWbzp2niOAAAIhCZiO57EtD6VPQ72hFEr/EAcCCCCAAAIIIICAfYE/+7M/05Ksd955p/2KLdcQ2zWaKV7LzFaKJ8lqhbWeQkMaiCaxMWPGaAfNl19+2bQ6yxFAoAYBkqx8XXANw4wqEEAAAQQqEDBdL8S2vAJKJ4oI9YaSE7g0AgEEEEAAAQQQQMALgT//8z/X8gV33HGHF21v18jYrtFM8bYzcvU1kqyu9kyOdoU0EE3hkmQ1ybAcge4JxLhfxnC8TY+o2OJNx85zBBBAICQB0/E8tuWh9GmoN5RC6R/iQAABBBBAAAEEELAv8Bd/8RdakvVXf/VX7VdMDQgYBEiyGmB8WGy6OeJD2/O2McZkTl4b1kOgWwIx7pcxHG/T4ym2eNOx8xwBBBAIScB0PI9teSh9yg2lUHqSOBBAAAEEEEAAAQSKCvzlX/6llmS9/fbbixbHdgiUFiDJWpqwewWYbo50r0XV1/yGN7xBO2h+//vfr74iSkQAgdwCJFn5uuDcg4UVEUAAAQS6KmC6XohteVc7ocLKuaFUISZFIYAAAggggAACCHgp8Fd/9VdavuC2227zMhYaHYYASVaP+9F0c8TjkLSmk2TVSFiAQNcFYtwvYzjepgdWbPGmY+c5AggggAACrgpwQ8nVnqFdCCCAAAIIIIAAAnUJPPHEE1qS9Vd+5Vfqqp56ENAESLJqJP4siOEmeIzJHH9GIC2NVSDG/TKG4216PMcWbzp2niOAAAIIIOCqADeUXO0Z2oUAAggggAACCCBQl8Bf//Vfa0nW/v7+uqqnHgQ0AZKsGok/C2K4CT569GjtoHnq1Cl/OomWIhCgAElWvi44wGFNSAgggAACCDgvwA0l57uIBiKAAAIIIIAAAghYFvibv/kbLV/wS7/0S5ZrpXgEzAIkWc02zr9CktX5LqKBCAQpEOObH2I43qYHa2zxpmPnOQIIIIAAAq4KcEPJ1Z6hXQgggAACCCCAAAJ1CTz55JNakvUXf/EX66qeehDQBKJIsppuFoe6XOtljxfEmMzxuLtoeiQCMe6XoZ4vOo0rkiFOmAgggAACCDgpwA0lJ7uFRiGAAAIIIIAAAgjUKPDUU09pSdZbb721xhZQFQKtAiRZh1z52sdObza7un5rF/s9F2Myx+8eo/UxCMS4X7p6vK+7XTGMb2JEAAEEEEDAVQFuKLnaM7QLAQQQQAABBBBAoC6Bv/3bv9WSrL/wC79QV/XUg4AmQJKVJKs2KFxa8PrXv147aJ4+fdqlJtIWBKITIMka3ptz8iZroxvsBIwAAggggIBDAtxQcqgzaAoCCCCAAAIIIIBAVwT+7u/+TssXLFmypCttoVIEpABJVpKsTu8JJFmd7h4aF6lAjPtl3iRk6OtFOuQJGwEEEEAAAScEuKHkRDfQCAQQQAABBBBAAIEuCnzhC1/QkqyLFy/uYouoOnYBkqwkWZ3eB2JM5jjdITQOASFEjPtl6MnTvPGxAyCAAAIIIIBA9wS4odQ9e2pGAAEEEEAAAQQQcENg5cqVWpJ14cKFbjSOVkQpQJKVJKvTA/91r3uddtA8c+aM022mcQiELkCSla8LDn2MEx8CCCCAAAIuCnBDycVeoU0IIIAAAggggAACdQo8/fTTWr7gs5/9bJ1NoC4EWgSCSrK2RMZMEAIkWYPoRoIITID9MrAOJRwEEEAAAQQQ8EKAG0pedBONRAABBBBAAAEEELAo8Pd///dakvXnf/7nLdZI0Qi0FyDJ2t6HV7ssQDKnyx1A9QhkCLBfZqCwCAEEEEAAAQQQsCzADSXLwBSPAAIIIIAAAggg4LzAqlWrtCTrZz7zGefbTQPDFSDJGm7fBhHZqFGjtIPmK6+8EkRsBIGArwIkWX3tOdqNAAIIIIAAAj4LcEPJ596j7QgggAACCCCAAAJVCHzxi1/U8gWf/vSnqyiaMhAoJECStRAbG9UlQJK1LmnqQSC/APtlfivWRAABBBBAAAEEqhLghlJVkpSDAAIIIIAAAggg4KvAM888oyVZf/Znf9bXcGh3AAIkWQPoxJBDIJkTcu8Sm68C7Je+9hztRgABBBBAAAGfBbih5HPv0XYEEEAAAQQQQACBKgRWr16tJVk/9alPVVE0ZSBQSIAkayE2NqpLYOTIkdpB8+zZs3VVTz0IIJAhQJI1A4VFCCCAAAIIIICAZQFuKFkGpngEEEAAAQQQQAAB5wW+9KUvafmCT37yk863mwaGK0CSNdy+DSIykqxBdCNBBCbAfhlYhxIOAggggAACCHghwA0lL7qJRiKAAAIIIIAAAghYFPinf/onLcn6Mz/zMxZrpGgE2guQZG3vw6tdFiCZ0+UOoHoEMgTYLzNQWIQAAggggAACCFgW4IaSZWCKRwABBBBAAAEEEHBeYM2aNVqS9ROf+ITz7aaB4QqQZA23b4OIbMSIEdpB89VXXw0iNoJAwFcBkqy+9hztRgABBBBAAAGfBbih5HPv0XYEEEAAAQQQQACBKgS+/OUva/mCj3/841UUTRkIFBIgyVqIjY3qEiDJWpc09SCQX4D9Mr8VayKAAAIIIIAAAlUJcEOpKknKQQABBBBAAAEEEPBV4J//+Z+1JOv8+fN9DYd2ByBAkjWATgw5BJI5IfcusfkqwH7pa8/RbgQQQAABBBDwWYAbSj73Hm1HAAEEEEAAAQQQqEJg7dq1WpL1Yx/7WBVFUwYChQRIshZiY6O6BEjm1CVNPQjkF2C/zG/FmggggAACCCCAQFUC3FCqSpJyEEAAAQQQQAABBHwVWLdunZZk/ehHP+prOLQ7AAGSrAF0YsghXH311dpB89y5cyGHTGwIOC9AktX5LqKBCCCAAAIIIBCgADeUAuxUQkIAAQQQQAABBBDoSOBf//VftXzBRz7ykY7KYGUEqhQgyVqlJmVVLkCStXJSCkSgtAD7ZWlCCkAAAQQQQAABBDoW4IZSx2RsgAACCCCAAAIIIBCYwPr167Uk60/91E8FFiXh+CRAktWn3oqwrSRzIux0QnZegP3S+S6igQgggAACCCAQoAA3lALsVEJCAAEEEEAAAQQQ6Ehgw4YNWpL1wx/+cEdlsDICVQqQZK1Sk7IqF+jt7dUOmufPn6+8HgpEAIH8AiRZ81uxJgIIIIAAAgggUJUAN5SqkqQcBBBAAAEEEEAAAV8FNm7cqOULbr75Zl/Dod0BCJBkDaATQw6BJGvIvUtsvgqwX/rac7QbAQQQQAABBHwW4IaSz71H2xFAAAEEEEAAAQSqEPj3f/93Lck6b968KoqmDAQKCZBkLcTGRnUJkMypS5p6EMgvwH6Z34o1EUAAAQQQQACBqgS4oVSVJOUggAACCCCAAAII+Crwla98RUuyzp0719dwaHcAAiRZA+jEkEMYPny4dtD8wQ9+EHLIxIaA8wIkWZ3vIhqIAAIIIIAAAgEKcEMpwE4lJAQQQAABBBBAAIGOBL761a9q+YIPfehDHZXh4spDhgzR4opxmYt9M1ibSLIOJsTrXRUgydpVfipHIFOA/TKThYUIIIAAAggggIBVgVBvKFlFo3AEEEAAAQQQQACBoAQ2bdqkJSPnzJnjfYwxJlSzYvaxI0my+thrEbWZZE5EnU2o3giwX3rTVTQUAQQQQCBygayL1hiXhTIMQr2hFEr/EAcCCCCAAAIIIICAfYHNmzdrSdYPfvCD9iu2XEOM12lZMVtmtlI8SVYrrBRalcBVV12lHTQvXLhQVfGUgwACBQRIshZAYxMEEEAAAQS6IJB10Rrjsi7QW6ky1BtKVrAoFAEEEEAAAQQQQCBIgYGBAS1f8IEPfMD7WGO8TsuK2ceOJMnqY69F1GaSrBF1NqF6I8B+6U1X0VAEEEAAgcgFsi5aY1wWyjAI9YZSKP1DHAgggAACCCCAAAL2BZ5//nktyfrjP/7j9iu2XEOM12lZMVtmtlI8SVYrrBRalQDJnKokKQeB6gTYL6uzpCQEEEAAAQRsCmRdtMa4zKZxnWWHekOpTkPqQgABBBBAAAEEEPBbYMuWLVqS9f3vf7/fQQmhxRTjdZuM2cfJz1b7KE2bCwkMGzZMO8BcvHixUFlshAAC1QiQZK3GkVIQQAABBBCwLRDrhbkat23nusoP9YZSXX7UgwACCCCAAAIIIOC/wNatW7V8wY033uh9YOo1TDLvfWCGAJL41EfD6k4vJsnqdPfQOJKsjAEE3BNgv3SvT2gRAggggAACWQLqBWus81k2Pi4L9YaSj31BmxFAAAEEEEAAAQS6I/Cf//mfWpK1r6+vO42psFbTtVqFVThVVEjxkmR1amjRGFWAZI4qwjwC3Rdgv+x+H9ACBBBAAAEE8giEdOFKvEKEekMpT9+yDgIIIIAAAggggAACUmDbtm1akvV973uf9zhcuw1p9KuPHUmS1cdei6jNJHMi6mxC9UaA/dKbrqKhCCCAAAKRC3Ch7u+FetbQDfWGUlasLEMAAQQQQAABBBBAIEtg+/btWpJ19uzZWat6tYxrN3+v3UiyerWrxdfYoUOHagfN+BSIGAG3BEiyutUftAYBBBBAAAGTABfq/l6oZ/VpqDeUsmJlGQIIIIAAAggggAACWQL//d//reUL3vve92at6tUyrt38vXYjyerVrhZfY0myxtfnROy+APul+31ECxFAAAEEEJACXKj7e6GeNYJDvaGUFSvLEEAAAQQQQAABBBDIEnjxxRe165z3vOc9Wat6tYxrN3+v3YJKspoGYmzLvTp6DNJYkjmDAPEyAl0QiHG/jO08Yoq3C8ONKhFAAAEESgjEdjwPPd5QbyiVGOJsigACCCCAAAIIIBCZwNe+9jUtyTpr1izvFUK/llE7KKR4SbIOeS1DbupUH5erA9bn+Z6eHu2g6XM8tB2BEARIsoZ33sh7rgth/BIDAgggEJOA6fgeqkHo8YZ6QynU8UhcCCCAAAIIIIBAO4GTJ0+K5cuXi/7+ftHX1yfGjx8vent7G3/yuVwmX5PryHWZXhP4+te/ruULZs6c6T1P6NcyageFFC9JVpKs6vh2ap4kq1PdQWMQaAjEuF+aTvyxLWcXQAABBBDwS8B0nvIrivytDT3eUG8o5e9h1kQAAQQQQAABBPwX2LFjh1i0aFEjmWr6/1VdLpOvchu5bezTzp07tSTru971Lu9Z1D5P5r0PzBBAEp/6aFjd6cUkWUmyOj1AY0zmON0hNA4BIUSM+6V6wo91nh0AAQQQQMAvAdP5yq8o8rc29HhDvaGUv4dZEwEEEEAAAQQQ8FfgxIkTjU+mZt1XM/0fqy6X28pPt8qyYp127dqlJVlnzJjhPYfa18m894EZAkjiUx8Nqzu9mCQrSVa3B2hG/zjdYBqHQAQCWf8Mhh62esKPdT70fiY+BBBAIDQB0/kqtDiTeEKPN9QbSkn/8YgAAggggAACCIQqsHXrVjFx4kQtOWj6/3Ww5bIsWWaM0ze/+U3Ncfr06d5TmPrc+8AMAYQUL0nWjCSeqYN9WW4Yt14uzjL3MhAajUBAAjHul1kxx7gsoGFMKAgggEAUAqZzVajBhx5vqDeU8o5HfrcsrxTrIYAAAggggIBLAmvXrhWjRo3SEoOm/13zLpdlyrJjm771rW9plu94xzu8ZzD1u/eBGQIIKd4okqyGfvR+cUgD0dQZWTGa1mU5AgjUIxDjfpkVs1wW6hRbvKH2I3EhgAACsR3PQ4831BtKg+2p/G7ZYEK8jgACCCCAAAKuCmzatEmMGDFCSwqa/m/tdLksW9YR07Rnzx7Nc9q0ad4TmPq+isBOnTolBgYGBv17/vnnxaVLl5pVnj17tu02cv3Lly831+/kic14O2lHFesGdYc4pI7J07kxxJsVYx4b1kEAAXsCMe6XWTHLZaFOscUbaj8SFwIIIBDb8Tz0eEO9oWTaU/ndMpMMyxFAAAEEEEDAB4Fjx46JCRMmaAlB0/+sRZfLOmRdsUx79+7VTKdOnep9+Kb+ryKwdevW5fo09bhx48TRo0ebVW7ZskWMHj1a807aOmzYMPHSSy811+/kSVKG+thJGa6sG9QdYrVDknlXsKtuRxKf+lh1Pd0sT41NzjMhgEB3BWLcL7NiDvl4FFu83d2jqB0BBBCwJxDb8Tz0eEO9oZS1B/C7ZVkqLEMAAQQQQAABnwQWLFhgTE6Z/m8tulzWFcu0b98+zXXKlCneh2/q+6oCk59QlUnTGTNmaH6TJ08W8g2dWZP8pOqqVatathk6dKhYvHixkNcnRSfb8RZtV5HtgspYhdQxeTozhnizYsxjwzoIIGBPIMb9MitmuSzUKbZ4Q+1H4kIAAQRsHs/5yqn6x1eoN5RUSX63TBVhHgEEEEAAAQR8E9i4cWNLUsr0f3mVy2WdMUz79+/XbN/+9rd7H7ppLFQd2M6dO4VMkqbru/fee9tWs3379ub68iuqn3322bbr53kxXX/6eZ5tXVsnqDvE6c5IP3cNvar2pGNMP6+qfBfKSccln/f09LjQLNqAQNQC6n4p50OfsmIOOe7Y4g19/BIfAgjEK2DzeM5XTtU/rkK9oZSW5HfL0ho8RwABBBBAAAFfBebNm9dMSpn+J696uawzhungwYOarfwkpu+TaTzYiOuWW25pMZw9e7axmtOnT4tZs2Y11u/t7RXr1683rtvJC3XG20m7iqwb1J3xkDomT2fGEK8aI0nWPCODdRCwKxDjfqnGnMzble5e6Ul86mP3WkTNCCCAAAJFBNTjeDJfpKysbfjKqSwVe8tCvaGUiPG7ZYkEjwgggAACCCDgs4B8Y5y8h538713Xo6xT1h36dOjQIc120qRJ3odtGic2AluzZo1mKD+tqk4XL14U8+fPb6wrf3/1mWeeUVcpPF9nvIUbmXNDkqw5oVxcLaSBaPJVYyTJapJiOQL1CcS4X6oxJ/P1qddbUxKf+lhvK6gNAQQQQKCsgHocT+bLlqtuz1dOqSJ25kO9oZRo8btliQSPCCCAAAIIIOCzwLJly7QEVvJ/uO1HWXfo0+HDhzXf66+/3vuwTWPDRmAyeXrddde1ON55551aVXJZ0q7HH39ce73MgqRc9bFMmd3aliRrt+QrqFcdgMl8BUU7U0QSU/JIktWZrqEhEQsk+2PyGMN+mcSqPoY6DNQ4k/lQ4yUuBBBAIFSB5PitPtqIl6+csqHaWmaoN5RklPxuWWtfM4cAAggggAAC/grU+cYx9f98WXfo07e//e1m4i+Jf+LEid6HncSiPtoKbOnSpS2OY8aMEWfPnm1W9+ijjzZfv++++5rLq3qixpnMV1V+neWQZK1Tu+K6koGnPlZcTVeLU2OTP8rMhAAC3RVQ90uSrN3tDxu1q32czNuoizIRQAABBOwJJMdv9dFGjXzllA3V1jJDvaEko+R3y1r7mjkEEEAAAQQQ8Fdg6tSpzeSU+n+47XlZd+jT0aNHNV/5qUzfJ9PYsBXXkSNHhMy1pOt96qmnGtXJrwVOXluyZIm4fPly5c1I15t+XnlFNRRIkrUGZFtVpAdf+rmt+rpRbjou+Zwkazd6gToRaBWIcb9UY07mW2XCmUviUx/DiZBIEEAAgTgE1ON4Mm8jer5yyoZqa5mh3lDid8ta+5k5BBBAAAEEEPBbYPTo0S2Jq+R/8DoeZd2hT9/5znc037e85S3eh20aHzYDS35vNal7zpw54oUXXhAjR45sGN90003i/PnzVpqQ1Kk+WqnMcqEkWS0D2yxeHYDJvM066y47iSl5JMladw9QHwK6QLI/Jo8x7JdJrOqjrhPGEjXOZD6M6IgCAQQQiEcgOX6rj7YE+MopW7IXbnY7AAAgAElEQVSvlRvqDSV+t8zuuKF0BBBAAAEEEKhXYNiwYVoSUP1/3Na8rDv06dixY5rvtdde633YpjFhM7DVq1drlsOHD28smzFjhjh58qS16rsRr61gSLLakq2h3JAGYppL7rzLly8Xv/zLv6zt5DLmvr4+0d/f31jH5o6ebhPPEYhZ4PTp02LlypXic5/7nLjxxhsz98vbb79dPP3000KuG+IU6vHW1FexxWtyYDkCCCDgu0Ddx3O+csruiAn1hhK/W2Z33FA6AggggAACCNQrwCdZ7Xp/97vf1e5NXnPNNXYrraH0uq/dZEgXLlwQMkGt1i09Dx8+bDVqtc5k3mqllgonyWoJto5ik4GnPtZRt406duzYIRYtWiR6e3u1HVuNMZmX68pt5LZMCCBQrcC+ffvEbbfdJkaNGpV7n5Trym3ktiFNyTFHfQwpxnQsapzJfHodniOAAAIIuC+QHL/VR5st5yun7OmGekOJ3y2zN2YoGQEEEEAAAQTqF+jm/zY33HBD/QHXXOPx48e1+5QTJkyouRXVV6desyXz1dfUWuL999+veW7evLl1JQtzSXzqo4WqrBdJkjUn8alTp8TAwMCgf88//7y4dOlSs9SzZ8+23UauX/SHg9UBmMw3K/fkyYkTJxqfTO3p6dF26CSmwR7ltvLTrbIsJgQQKCfw6quvis9//vMi+XqIwfa/rNfltrIMWVYIU1aMclkVE+eXKhQpAwEEEEAgS8Dm+SurPrmMr5wyyZRfHuoNJT7tUX5sUAICCCCAAAIIuCPAt3TY7Yvvfe97Wg7hjW98o91Kayi9G9duMqyDBw9qnitWrLAecbfitRFYNXeIbbSsQJk2O2bdunW5Ps01btw4cfTo0Wbrt2zZItpdNMrvSX/ppZea63fyxGa8nbSjzLpbt24VEydO1HZkU2yDLZdlyTKZEECgmMD+/fvFrFmzKtsnZVmyTN8n07Gnirg4v1ShSBkIIICAXwIPPPBAZeda0zmq3XKbWi5+5VQ7C14b0tWxiD/+jAHGAGOAMcAYYAwwBhgDjAHzGLB57SbLXrp0qXY9MHfuXNvVanW6NgYefPDB3AYkWXNTicYnVGXSVP7or9rpkydPFnv27MksTX5SddWqVS3bDB06VCxevFjs3bs3c5s8C9U2JPN5tnVhnbVr1+ZKXCdx5X2UX1cqy2ZCAIHOBF588UXxpje9qeVYlXe/a7eeLFOW7fNkiq+qmOQ3IHB+qUqTchBAAAH3BUJOskp9175yynQeZ7n5Zg422DAGGAOMAcYAY4AxwBhgDDAGuj8GbF7dPvnkk8b7wLt377ZZtbFeV8acvGbPO5FkzSuVWm/nzp1CJknTHX7vvfem1tCfbt++vbn+iBEjxLPPPquv1OGSdP3p5x0W05XVN23aJKRDut1VPpdlyzqYEEAgn4D8tKmNBGuyX8uyff5EaxKH+phPN/9anF/yW7EmAggg4LNA6ElW175ySj1/M9/9m0X0AX3AGGAMMAYYA4wBxgBjgDHAGBh8DNi67t24cWPzp+LkhwGnTZvWkqu55557bFXdKNf1vifJOqR1cNoYDbfcckvLoJs9e7axmtOnTze/frO3t1esX7/euG4nL5gGYidldGPdY8eOCflj1Kb2V7Vc1iHrYkIAgfYC8ndTq/yKYNM+LOvw9TdaTTG1ly32KueXYm5shQACCPgkEHqSla+car0eNf0fwXKcGAOMAcYAY4AxwBhgDDAGGAOMgXZjwMZ17q5du8TYsWMb+Rn51cDnz58Xjz32WEu+Zvz48eLcuXM2qm+U2S5mF14jyVpDknXNmjUtg052vPy0qjpdvHhRzJ8/v7Gu/P3VZ555Rl2l8LxpsBUusKYN6/zxb1kXEwIItBf4/Oc/rx3PTMeXsstlXT5OprhtxML5xYYqZSKAAAJuCYScZOUrp7hJZPq/ieWMDcYAY4AxwBhgDDAGGAOMAcZAZ2Og6ivZ48ePi0mTJjXuBU+fPl2cOHGiUYV8VL95dMWKFVVX3yzP9XFAkrWGJKtMnl533XUtiYk777yzOUiSJ3JZMmAef/zxZHElj0m56mMlhVsqRH4MXW2v7XlZJxMCCGQL7Nu3r/nVELb3RVn+8OHDhazTt8lkYyMOzi82VCkTAQQQiFOgzvOXFHb1K6dC6f2XX35Zu5YaM2aM9+HJn5To6enRYjON36qWyzoPHDjgvR8BIIAAAggggICbAnybo51++f73v6/93/iGN7zBTmU1lmr6H7fKJpw5c0b09fU1/OS3gB46dKil+FtvvbXFVn7K1dZUR7y22q6Wy2+yqiIdzKtfgyUvcM+ePdss4dFHH20Oyvvuu6+5vKonPg7EefPmNU1M7a96uayTCQEEsgVuu+222vdJWadvk+m4ZCsOzi+2ZCkXAQQQiEugzvOXy185FUqvh3pDSfYP14mhjFLiQAABBBBAAIG0wKZNm7RPB5r+Ry+yXH7yUNYR0yR/mlG1ev3rX+89gRpTMl9VYBcuXGh+4+qoUaPEtm3btKIHBgY02927d2vrVbEgiU99rKLsussgyVpC/MiRI2Lo0KEtA++pp55qlCi/Fjh5bcmSJeLy5cslasreVB2AyXz22t1f2s13KMu6mRBAoFVA/lMiT6rJsaOuR1mnrNunyWRjKwbOL7ZkKRcBBBCIS6Cu85frXzkVSq+HekNJ9s+GDRtq/5+UbzwKZc8gDgQQQAABBNwWWLt2rZX7b/L+miw7tkl+GlO9znnd617nPYMaUzJfRWAyN9Xf399wkz9pKX+qzDTNnDmzxffuu+82rVpqeRKf+liq0C5tTJK1JHzye6vJYJgzZ4544YUXxMiRIxuD8aabbmr8cHDJajI3T+pUHzNXdmDhsmXLWnZQtd0252XdTAgg0CqwcuXKru2Tsm6fJtPxyWYMnF9s6lI2AgggEIdAHecvvnKqvrEU6g2lRHDBggW1/W8q62JCAAEEEEAAAQTqEti6dauYOHFiZf/ryLJkmTFOr7zyiuYoE86+T7au3WSC9Y477miaPfTQQ22pHnnkkea6sk1jx44V8mdLqp5sxVt1O/OUR5I1j1KbdVavXt0y6OTgkL85KB9nzJghTp482Wbrci/5NhDrvGhWbbiILjfW2DpMgc997nPa8Uvdd2zN33777V6hmhxsBsH5xaYuZSOAAAJxCNg+f/GVU/WOo1BvKCWK/G5ZIsEjAggggAACCIQocOLEicanCcv8Fr3cVn4iUZYV6/Tqq69q9zPl1yb7Ptm4dpPJ0XRORn4w8NKlS22pnnvuOc33rrvuartNkRdtxFukHVVsQ5K1pKK8sXDttddqA++aa64Rhw8fLll6+819G4hTp07VnEwxVL1c1s2EAAKtAjfeeGPX9klZt0+T6ZhkMwbOLzZ1KRsBBBCIQ8Dm+YuvnKp/DIV6Qyktye+WpTV4jgACCCCAAAIhCuzYsUMsWrRI9Pb25r4vJ9eV28htY5/OnTunuV199dXes1R57Sa/AeeJJ54QU6ZM0awefvhhsW/fPiHvO6Yn+RMw8nda1W/WS9q1cOFCsXz5cnH06NH0ZoWfJ+Wqj4UL7OKGHSdZH3jgAa1jVAjX5m373n///ZrJ5s2bbVer1emaO+0ZQh8NwYD9IOwxYPtAz/ml2Ph58MEHbXcN5SOAAAJeCJj+DynbeL5yqqxgse1DvaGkavC7ZaoI8wgggAACCCAQooD8NKpMWslPpvb19WXeR5avyXVi/uSq2vfnz5/XrGQS2vepymu3PD8RNzAw0CST35gjf6vV1Ib08ptvvrm5XZkn6TLTz8uU2a1tSbJWIH/w4EFtAK5YsaKCktsXkR58PC92Ix433BgDjIEyY6D9Ubr8q5xfio1P+YYwJgQQQAABoV2jJOe8MjZ85VQZvXLbhnpDKUuF3y3LUmEZAggggAACCIQskPyvnn4MOd6isclPYKaN5POrrrqqaHHObKfGlMw708CKG5LEpz5WXE0txZFkrYB56dKl2o49d+7cCkpuX4Q6AJkvdjMeN9wYA4yBomOg/VG6/KucX4qNTZKs5cceJSCAQBgCpvNbkej4yqkiatVuE+oNJZMSv1tmkmE5AggggAACCIQokPW/e4hxlo3p4sWLWi5GfgrT9ymr/+WyUKeQ4u24l/i64NZh/eSTT2o7dTJAdu/e3bpyxXNJPTwWuwmPG26MAcZA2TFQ8WG9pTjOL8XHJ0nWlqHEDAIIRCxgOs8VIeErp4qoVbtNqDeUBlPid8sGE+J1BBBAAAEEEAhBIOt/9xDishGDajV06FAb1dRaphpTMl9rI2qsLIlPfayxCZVVRZK1BOXGjRvF8OHDG0nWxYsXi2nTprUkXO+5554SpQ++qToAmS9+Qx477BgDjIEiY2DwI3WxNTi/lBuPJFmLjTu2QgCB8ARM57bwIn0tohjiVWMM4YZS3vHI75bllWI9BBBAAAEEEPBRQP0/T84zZQuEaJUVU8hjIKR4g9pT6+yYXbt2ibFjxzaSqvKrgeXv4zz22GMtSdbx48eLc+fOZR8JKlhaZ7wVNFcsW7asxcfUfhvLZd1MCCDQKvC5z32ua/vk7bff3toYx+dMxyUbzeb8YkOVMhFAAIE4Beo8f7kgHEO8WTG6YN+NNmDRDXXqRAABBBBAAAFbAvxvk182RKusmOSyUKeQ4g2ql+rqmOPHj4tJkyY1khPTp08X8h21cpKPI0aMaElarFixwtp+UFe8VQWwf/9+0dPT0+JjiqHK5bLOAwcOVBUG5SAQjECer/2rcl9Ml/X000975Zhue/p51UFwfqlalPIQQACBuAXS56z081BV0jGmn4cUbzqu5HlI8XUSSxJ/+rGT7VkXAQQQQAABBBBwSSD9P03y3KX2udSWrByDS+0r0pakz9XHImX5sI0aZzLvQ9vVNpJkVUUGmT9z5ozo6+trJAonTJggDh061LLFrbfe2pJElJ9ytTUlA099tFVfFeXOmzevxUdtu415WScTAgjoAqdPnxajRo2qfZ+Udcq6fZpMx6YqY+D8UqUmZSGAAAIISIE6zl8uSccQb4g3lIqOoaz+LloW2yGAAAIIIIAAAt0W4H+b/D0wbNgw7Von/9ZurpnV/3JZqFNI8QbVS7Y75sKFC2L+/PmNHVgmCbZt26aN8YGBAW0H3717t7ZeFQtsx1tFG9UyNmzYoPmY4qhqufxtQyYEEMgWuO2222rfJ2Wdvk2m41FVcXB+qUqSchBAAAEE0gK2z1/pulx4HkO8Id5QKjp2svq7aFlshwACCCCAAAIIdFuA/23y98BVV12l3c+U99Z8nrL6Xy4LdQop3qB6yWbHXL58WfT39zd2Xnlhu2bNGuP4njlzZstOfvfddxvXLfOCzXjLtGuwbRcsWNDiY4qjiuWyLiYEEDAL7Nu3TwwfPry2fVLWJev0bTIdj6qIg/NLFYqUgQACCCCQJWDz/JVVX7eXxRBviDeUio6brP4uWhbbIYAAAggggAAC3Rbgf5v8PZB1L/MHP/hB/gIcXDOr/+WyUKeQ4g2ql2x1jLwBfscddzSTEA899FDbsf3II48015VtGjt2rHj55ZfbblPkRVvxFmlLJ9scO3ZMyK9aNrW/quWyDlkXEwIItBf4/Oc/b31/TPZrWZePU9J+9bFsLJxfygqyPQIIIIBAOwH1vJXMt9vG59eS+NRHn2NS2x7iDSU1xrzzaj/LeSYEEEAAAQQQQMBXAf63yd9zvb292r3M8+fP5y/AwTWz+j/k/29DijeoqxAbHSOTo+lPXo4cOVJcunSp7W743HPPaTv5XXfd1XabIi/aiLdIO4pss2nTJjFixAjNyRRTp8tl2bIOJgQQGFzg1VdfFbNmzbK2Pyb7r6xD1uXjlMSgPpaJhfNLGT22RQABBBDII6Cet5L5PNv6uE4Sn/roYyymNod4Q8kU62DL1X6W80wIIIAAAggggICvAvxvk7/nsvIKvt5zTKLO6v+Q/78NKd6grkKq7JgzZ86IJ554QkyZMkVLPDz88MONr7tUv+f7+PHjjd9pTX63VW3PwoULxfLly8XRo0eTfafUo1p+Ml+q0Bo3Xrt2rZC/bZu0u6pHWaYsmwkBBPIL7N+/X7zpTW+qfH9M9mtZtqzD1ymJQ30sEg/nlyJqbIMAAgggUERAPW8l80XK8mGbJD710Ye2521jiDeU8saurqf2s5xnQgABBP4/e2cDdUdR33+SmBioQLCRgBAB5aUECRhItAhCsFYNqEFFCSi1aUKhL4cKNSL0D7S1Vl4aPG2PlooVYk1QRDRoSikRDDxAjDFBRAMJr8EYfEmQQIBCsv8zT7rPvbsze5/d2Zm7O/P7zDnP2d25M7+Z7+c3M7t3fs+9FwIQgAAEQiXAs015z6kPwuV5bd26tbyBFpbM60mvW9hVJ11K9eWPToz32UhU70LyDkmvbZguWrRIm6ipvfQ4MDAwZPq5555L1G+1pq/1Op544olD9eqcFLVRx2a/6y5fvjyZOHFiKW5FervzlS1lkwQBCFQnsGrVKi+BVhVgVbZDTt3rTPe5jSbuLzbUqAMBCEAAAjYEuu9Z3ec2tkKo062x+zyEvpftY4wbSmW158t1+zg9z5fhGgIQgAAEIAABCIRCIH2e6T6G0vd+99P0wS0Vnwk5dfu9+zxkTb363q2x+7xXnba+RpC1rZ4p0a/uwdd9XqJqq4ps2rQpmT17djJixAjrYKuqq2woWyQIQMCegPq0qcuvDla2Qv4Ea0qye43tPk9fj+3YrbH7PDad6IEABCAQO4HuNbz7PFbd3Rq7z2PSG+OGkq1/un2cntvaoh4EIAABCEAAAhBomkD6PNN9bLpPbW3/Va96lRZH2LJlS1u7W6pf3X7vPi9VOcBC3Rq7zwOUkhBkDdFr/9fn7sHXfR6qpNWrVyezZs1KTL8z1K2v+1yVVXVUXRIEIOCGgPoNg3nz5iWjR4/WHli651+vc1VX2Qj99xBSokVa09djO0rTG5v/0AMBCEAgJSBtPZegN8YNpXS8Vj2a/F3VBuUhAAEIQAACEIBAWwjwbFPeE7vuuqu2Z/nMM8+UN9DCkib/q7xYU0x6o/JSTI4pM3li1as+jap+u/ajH/2otliqT6xOnTp18FOrqgyfXC0zUigDATsCa9euTebMmVPpt5PVpytUHVU3phTrelvkI2l6iziQDwEIQCB0AtLWcwl6Y9xQsp1nJn/b2qIeBCAAAQhAAAIQaJoAzzblPbDbbrtpcYPf/va35Q20sKTJ/yov1hST3qi8FJNjykye2PWqj/jnNar/3CZBAAL9JaDmovod0blz5yZHHXWUNi/V71Gr11SZ0L+ao4hsfi1Kr4vKh56f6ssfQ9dF/yEAAQhII5Bfx9PrWDmk+vLHmPTGuKFk65+8n9U1CQIQgAAEIAABCIRKgGeb8p4bN26ctj+5efPm8gZaWNLkf4l5LXTNsF2K6l1I0aAblkKgBWLXqz7in9eo/nObBAEINEdA6j8/5Nei9Lo5T/htOdWXP/ptFesQgAAEIOCaQH4dT69dt9MWe6m+/LEt/XPRjxg3lGy55P2srkkQgAAEIAABCEAgVAI825T33B577KHFDUL/xkuT/yXmlR8F7SkZ1buQokHXHtxuexK7XoKsbscL1iDggoDUeRn7epsfG9L05vVzDQEIQCAWAkXrubT8WPypdMS4oWTrH9M4trVFPQhAAAIQgAAEINA0AZ5tynvg1a9+tRZk/c1vflPeQAtLmvwvMa+Frhm2SwRZh0XU3gJFk6y9Pa7WM6nBnGqUKA2B/hKQOi9jX2/zo0ia3rx+riEAAQjEQqBoPZeWH4s/lY4YN5Rs/WMax7a2qAcBCEAAAhCAAASaJsCzTXkPjB8/Xguy/upXvypvoIUlTf6XmNdC1wzbJYKswyJqb4GiSdbeHlfrmfqx6rxG9RtEJAhAoDkCBFl3yqxLzXnCb8v5tTe99tsq1iEAAQhAwDWBdP2WfnTNtUl7MW4o2fI0jWtbW9SDAAQgAAEIQAACTRPg2aa8B17zmtdk9ucUu1/+8pflDbSwpMn/EvNa6Jphu0SQdVhE7S1QNMna2+NqPSPIWo0XpSHQDwJS52Xs621+7EjTm9fPNQQgAIFYCBSt59LyY/Gn0hHjhpKtf0zj2NYW9SAAAQhAAAIQgEDTBHi2Ke+BPffcUwuyPvXUU+UNtLCkyf8S81rommG7RJB1WETtLVA0ydrb42o9kxrMqUaJ0hDoLwGp8zL29TY/iqTpzevnGgIQgEAsBIrWc2n5sfhT6YhxQ8nWP6ZxbGuLehCAAAQgAAEIQKBpAjzblPfAXnvtpQVZN27cWN4AJSHgkABBVocw+23KtPCqvFjS008/rS2Wu+++eyzy0AGBIAkQZOXrgoMcuHQaAhCAgFACRe8XpOXH5H42lDreNI3jzqucQQACEIAABCAAgbAI8GxT3l977723FjfYsGFDeQOUhIBDAvFE5JJEm1jpwuSQV6tMpfryx1Z1skZnCLLWgEdVCHgiIHVe5tfZ9NoT5sbNpvryx8Y7RgcgAAEIQAACwgmwodQZAPnnFHVNggAEIAABCEAAAqES4NmmvOde+9rXarGgn//85+UNUBICDglE9S7EtBDF/EYrdr1SgzkO5zemIOCcgNR5Gft6mx8o0vTm9XMNAQhAAAIQaCsBNpQ6njE9r3Re5QwCEIAABCAAAQiERYBnm/L+2meffbQg65NPPlneACUh4JAAQVaHMPttyrTwqrxY0ubNm7XFcty4cbHIQwcEgiRAkJWvCw5y4NJpCEAAAhCAQCQE2FDqONL0frjzKmcQgAAEIAABCEAgLAI825T318SJE7W4wRNPPFHeACUh4JBAPBE5vi54aGFxOD4aNUWQtVH8NA4BIwGp89L0oBvTP7XknS1Nb14/1xCAAAQgAIG2EmBDqeMZ0/NK51XOIAABCEAAAhCAQFgEeLYp76/Xve51Q7GQlNvjjz9e3gAlIeCQgIggazrRpBwdjo9GTUkN5jQKncYhMAwBqfNSyv1jOJ3DDA9ehgAEIAABCEDAMwE2lDqATc8tnVc5gwAEIAABCEAAAmER4NmmvL/2228/Lcj62GOPlTdASQg4JECQdafsVz+aFrPQ8hyOj0ZNSQ3mNAqdxiEwDAGp8zK0+4Cv/g4zPHgZAhCAAAQgAAHPBNhQ6gA2Pe90XuUMAhCAAAQgAAEIhEWAZ5vy/jrggAO0IOsjjzxS3gAlIeCQAEFWgqwOh5NbU5s2bdIWyz322MNtI1iDAAQqESDIGt8/5pge4ovyKg0WCkMAAhCAAAQg4JwAG0odpKbnlc6rnEEAAhCAAAQgAIGwCPBsU95fr3/967W4wcMPP1zeACUh4JAAQVaCrA6Hk1tTBFnd8sQaBFwQkDovTQ+6EvNcjCFsQAACEIAABCBgT4ANpQ4707NY51XOIAABCEAAAhCAQFgEeLYp7683vOENWpB13bp15Q1QEgIOCRBkJcjqcDi5NSU1mOOWItYg4JaA1HlpetCVmOd2NGENAhCAAAQgAIGqBNhQ6hAzPYt1XuUMAhCAAAQgAAEIhEWAZ5vy/jrooIO0IOtDDz1U3gAlIeCQAEFWgqwOh5NbU7/5zW+0xfLVr36120awBgEIVCJAkJWvC640YCgMAQhAAAIQgIBTAmwodXCyEdlhwRkEIAABCEAAAuET4NmmvA8PPvhgLW7w4IMPljdASQg4JBBVkNUhF0y1gABB1hY4gS5AIEeAeZkDwiUEIAABCEAAAhDoIwE2lDqw2YjssOAMAhCAAAQgAIHwCfBsU96HhxxyiBZkXbNmTXkDlISAQwIEWR3CxJRbAgRz3PLEGgRcEGBeuqCIDQhAAAIQgAAEIGBHgA2lDjc2IjssOIMABCAAAQhAIHwCPNuU9+Ghhx6qBVl/+tOfljdASQg4JECQ1SFMTLkl8Otf/1pbLH/3d3/XbSNYgwAEKhEgyFoJF4UhAAEIQAACEICAUwJsKHVwshHZYcEZBCAAAQhAAALhE+DZprwPJ02apMUNHnjggfIGKAkBhwQIsjqEiSm3BAiyuuWJNQi4IMC8dEERGxCAAAQgAAEIQMCOABtKHW5sRHZYcAYBCEAAAhCAQPgEeLYp78PDDjtMC7L+5Cc/KW+AkhBwSIAgq0OYmHJLgGCOW55Yg4ALAsxLFxSxAQEIQAACEIAABOwIsKHU4cZGZIcFZxCAAAQgAAEIhE+AZ5vyPjz88MO1IOv9999f3gAlIeCQAEFWhzAx5ZbAr371K22xHD9+vNtGsAYBCFQiQJC1Ei4KQwACEIAABCAAAacE2FDq4GQjssOCMwhAAAIQgAAEwifAs015H06ePFmLG9x3333lDVASAg4JEGR1CBNTbgkQZHXLE2sQcEGAeemCIjYgAAEIQAACEICAHQE2lDrc2IjssOAMAhCAAAQgAIHwCfBsU96HRxxxhBZkXb16dXkDlISAQwIEWR3CxJRbAgRz3PLEGgRcEGBeuqCIDQhAAAIQgAAEIGBHgA2lDjc2IjssOIMABCAAAQhAIHwCPNuU9+GRRx6pBVlXrVpV3gAlIeCQAEFWhzAx5ZbAL3/5S22xfM1rXuO2EaxBAAKVCBBkrYSLwhCAAAQgAAEIQMApATaUOjjZiOyw4AwCEIAABCAAgfAJ8GxT3odTpkzR4gYrV64sb4CSEHBIgCCrQ5iYckuAIKtbnliDgAsCzEsXFLEBAQhAAAIQgAAE7AiwodThxkZkhwVnEIAABCAAAQiET4Bnm/I+POqoo7Qg6w9/+MPyBigJAYcECLI6hIkptwQI5rjliTUIuCDAvHRBERsQgAAEIAABCEDAjgAbSh1ubER2WHAGAQhAAAIQgED4BHi2Ke/Do48+WguyrlixorwBSkLAIQGCrA5hYsotAYI5bnliDQIuCDAvXVDEBgQgAAEIQAACELAjwIZShxsbkR0WnEEAAhCAAHMGFBAAACAASURBVAQgED4Bnm3K+3DatGlakHX58uXlDVASAg4JEGR1CBNTbgk89dRT2mK55557um0EaxCAQCUCBFkr4aIwBCAAAQhAAAIQcEqADaUOTjYiOyw4gwAEIAABCEAgfAI825T34Zvf/GYtbnDvvfeWN0BJCDgkQJDVIUxMuSVAkNUtT6xBwAUB5qULitiAAAQgAAEIQAACdgTYUOpwYyOyw4IzCEAAAhCAAATCJ8CzTXkfvuUtb9GCrPfcc095A5SEgEMCBFkdwsSUWwIEc9zyxBoEXBBgXrqgiA0IQAACEIAABCBgR4ANpQ43NiI7LDiDAAQgAAEIQCB8AjzblPfhMcccowVZBwYGyhugJAQcEiDI6hAmptwS2Lhxo7ZYTpgwwW0jWIMABCoRIMhaCReFIQABCEAAAhCAgFMCbCh1cLIR2WHBGQQgAAEIQAAC4RPg2aa8D9/61rdqcYO77rqrvAFKQsAhAYKsDmFiyi0BgqxueWINAi4IMC9dUMQGBCAAAQhAAAIQsCPAhlKHGxuRHRacQQACEIAABCAQPgGebcr78Nhjj9WCrHfeeWd5A5SEgEMCBFkdwsSUWwIEc9zyxBoEXBBgXrqgiA0IQAACEIAABCBgR4ANpQ43NiI7LDiDAAQgAAEIQCB8AjzblPfh2972Ni3I+v3vf7+8AUpCwCEBgqwOYWLKLYFf/OIX2mK51157uW0EaxCAQCUCBFkr4aIwBCAAAQhAAAIQcEqADaUOTjYiOyw4gwAEIAABCEAgfAI825T34fHHH6/FDe64447yBigJAYcECLI6hIkptwQIsrrliTUIuCDAvHRBERsQgAAEIAABCEDAjgAbSh1ubER2WHAGAQhAAAIQgED4BHi2Ke/DE044QQuy3n777eUNtLCkyf8S81rommG7RJB1WEQUaIoAwZymyNMuBIoJMC+L2fAKBCAAAQhAAAIQ8E0gxg0lW2amTSdbW9SDAAQgAAEIQAACTRPg2aa8B0488UQtyPq9732vvIEWljT5X2JeC10zbJcIsg6LiAJNEdiwYYO2WO69995NdYd2IQCBJEkIsjIMIAABCEAAAuEQkPim3KQ5HI8N39MYN5SGV20uEbuvzarJhQAEIAABCEAgVgI825T37Nvf/nYtbnDbbbeVN9DCkib/S8xroWuG7RJB1mERUaApAgRZmyJPuxAoJsC8LGbDKxCAAAQgAIG2EZD4ptykuW1+qdOfGDeUbHnE7mtbLtSDAAQgAAEIQCBMAjzblPfbH/zBH2hB1v/5n/8pb6CFJU3+l5jXQtcM2yWCrMMiokBTBAjmNEWediFQTIB5WcyGVyAAAQhAAAJtIyDxTblJc9v8Uqc/MW4o2fKI3de2XKgHAQhAAAIQgECYBHi2Ke+3d7zjHVqQ9dZbby1voIUlTf6XmNdC1wzbJYKswyKiQFMEfv7zn2uL5Wtf+9qmukO7EIBAkiQEWRkGEIAABCAAgXAISHxTbtIcjseG72mMG0rDqzaXiN3XZtXkQgACEIAABCAQKwGebcp79p3vfKcWN7jlllvKG2hhSZP/Jea10DXDdokg67CIKNAUAYKsTZGnXQgUE2BeFrPhFQhAAAIQgEDbCEh8U27S3Da/1OlPjBtKtjxi97UtF+pBAAIQgAAEIBAmAZ5tyvvtXe96lxZk/a//+q/yBlpY0uR/lRdriklvvF6KdfQJ0kUwR5CzkRoMAeZlMK6ioxCAAAQgAAFt46HojWzs+TENhRg3lGz9Yxq3traoBwEIQAACEIAABJomwLNNeQ+8+93v1t7rLFmypLyBFpY0+V/lxZpi0huvl2IdfYJ0EcwR5GykBkOAeRmMq+goBCAAAQhAQNt4SN/Ixoom1Zc/xqQ3xg0lW//k/ayuSRCAAAQgAAEIQCBUAjzblPfcSSedpL3X+c53vlPeQAtLmvwf8/NtTHp5F9LCCUWXdhB48skntcVyn332AQ8EINAgAYKsDcKnaQhAAAIQgEBFAjG9cS0jXYLeGDeUyvjWVMbkb1M58iAAAQhAAAIQgEAIBHi2Ke+lk08+WYsb3HzzzeUNtLCkyf8qL9YUk954vRTr6BOkiyCrIGcjNRgCzMtgXEVHIQABCEAAAtrGQ/pGNlY0qb78MSa9MW4o2fon72d1TYIABCAAAQhAAAKhEuDZprzn3vOe92jvdRYvXlzeQAtLmvwf8/NtTHp5F9LCCUWXdhAgmMNIgED7CDAv2+cTegQBCEAAAhAoIhDTG9cijd35EvTGuKHU7cMq5yZ/V6lPWQhAAAIQgAAEINAmAjzblPfG+973Pi3I+q1vfau8gRaWNPlf5cWaYtIblZeKHCMtP5aJt379em2x3HfffWORhw4IBElAapBV2n2kSG+Qg5ZOQwACEBBMQNp6LkFvjBtKtlPU5G9bW9SDAAQgAAEIQAACTRPg2aa8B2bOnKnFDW666abyBlpY0uR/lRdriklvVF4qcoy0/FgmHkHWWDyJjpgISJ2X0u4jRXpjGstogQAEICCBgLT1XILeGDeUbOeiyd+2tqgHAQhAAAIQgAAEmibAs015D5xyyilakPWb3/xmeQMtLGnyv8qLNcWkNyovFTlGWn4sE09qMCcW/6EjTgJS56W0+0iR3jhHNaogAAEIxEtA2nouQW+MG0q2M9Dkb1tb1IMABCAAAQhAAAJNE+DZprwHPvCBD2hB1m984xvlDbSwpMn/Ki/WFJPeqLxU5Bhp+bFMvCeeeEJbLCdOnBiLPHRAIEgCBFl30tYlSfeYIActnYYABCAgmEDRPSpWJBL0xrihZDseTf62tUU9CEAAAhCAAAQg0DQBnm3Ke+CDH/ygtj93ww03lDfQwpIm/6u8WFNMeqPyUpFjpOXHMvEIssbiSXTEREDqvJR2HynSG9NYRgsEIAABCQSkrecS9Ma4oWQ7F03+trXV5nqbN29OFixYkMyePTuZOnVqMn78+GTMmDGDf+pc5anXVBlVlgQBCEAAAhAIlYD0e56UZxsX4/PUU0/Vgqxf//rXXZhuzIbJ/yov1hST3qi8VOQYafmxTDypwZxY/IeOOAlInZfS7iNFeuMc1aiCAAQgEC8Baeu5BL0xbijZzkCTv21ttbHe6tWrk1mzZg0GU01aTXkq+KrqqLokCEAAAhCAQCgEuOft8JTp3h6KD/vdzw9/+MNakPVrX/tav7vhtD2T/1VerCkmvVF5KSbHlJk8set9/PHHtcXyda97XRk0lIEABDwRIMia/bpgT5gbNxv7/aVxwHQAAhCAQJ8ISFvPJeiNcUPJdjqY/G1rq031Nm3aNPjJ1BEjRmjvh02aTXmqrvp0q7JFggAEIAABCLSVAPe8rGdM9/RsCa5SAqeddpr2nLRo0aL05SCPJv+rPBfpmWeeSQYGBob9u/vuu5Nt27YNNbl169aedVT57du3D5WvcuJTb5V+uCjrxksueuLARkyOKYMjdr0EWcuMAspAoL8EpM7L2Nfb/CiSpjevn2sIQAACsRCQtp5L0BvjhpLtfDP529ZWW+otX748mThxorZpaNJaJk/ZUjZJEIAABCAAgbYR4J6ne8R0b9dLkaMIqG/uyPNauHBh0HDyetJrF6JuueWWZJdddtGYpW2kxz322CNZv379UJP33HNPsuuuuxbWGzVqVPLUU08Nla9ykraZP1ax0ZayBFnb4gmLfuQHYHptYaqVVaQGc1rpDDoFgf8jIHVeputr/hjrwMjrTK9j1YsuCEAAArESSNfv/BG94RKIcUPJ1hv5ca2uQ05Lliwptfll0t0rT22oKdskCEAAAhCAQFsIcM8ze8J0PzeXJPf000/XAn9f/epXgwZj8r/Kc5XUJ1RV0HTSpEkauwMOOCB58MEHjU2pT6recMMNmTojR45MlA8eeughY50ymb71lumDqzLuvOSqRzXsxOSYMhhi1/vYY49lJq/Su99++5VBQxkIQMATAYKsfF2wp6GFWQhAAAIQ8EDA5/sFvnLKg8NKmIxxQ6mEbGMR0/g2Fgwgc9myZcnYsWO1978mjTZ5yrZqgwQBCEAAAhBomgD3vGIPmO7xxaVlv/KRj3xEe276yle+EjQUk/9Vnut0//33JypI2t3eBRdc0LOZlStXDpVXz5U333xzz/JlXuxuv/u8TN22lXHvpQYVdjuj+7zBLnltultj97nXRvtonCBrH2HTFARKEpA6L7vX2O7zktiCK9atsfs8OCF0GAIQgIBwAt1rePe5Cyx85ZQLitVtxLihVJ3CjhrdYzo9t7XVZL0NGzYkEyZMGNq4SrW4Pqo2VFskCEAAAhCAQFMEuOf1Jm+69/euIffVj370o9qz04IFC4IGYvK/yvORTj755Ay/KVOmFDazZcuWZPLkyYPlx4wZk9x6662FZau80E+9VfplU9aPl2x64qBOTI4pgyN2vVKDOWV8TxkINEVA6ryMfb3NjydpevP6uYYABCAQCwHf6zlfOdX/kRLjhpItRdP4trXVZL2ZM2dmNrlMulzlqbZIEIAABCAAgaYIcM/rTd50v+9dQ+6rZ555pvb8dN111wUNxOR/lecjLV68WOOnPq2aTy+//HIyY8aMwbLq91dvvPHGfBHr637qte5kyYp+vFSycdfFYnJMGTax65UazCnje8pAoCkCUudl7OttfjxJ05vXzzUEIACBWAj0az3nK6f6N2Ji3FCypWca37a2mqq3dOlSbYPLpMtlnmqTBAEIQAACEOg3Ae55wxM33e+HryWzxMc+9jHtGerLX/5y0DBM/ld5PpIKnu67774Zhuecc47WlMpL+3X11Vdrr9fJSO3mj3VsNlXXj5caUpN3SHrdUHe8N5vqyx+9N9ynBh599NGhSZxq3H///fvUOs1AAAImAgRZ+U1W07ggDwIQgAAE2kkgfYbOH330lq+c8kFVtxnjhpKuslxOflyr69DS9OnTtfe8Jl0u81SbJAhAAAIQgEC/CXDPG5646X4/fC2ZJf74j/9Ye4b6j//4j6BhmPyv8nyliy++OMNw9913T7Zu3TrU3JVXXjn0+oUXXjiU7+qk33pd9dtkx5+XTK15zovJMWVQxa6XIGuZUUAZCPSXgNR5Gft6mx9F0vTm9XMNAQhAIBYC/VzP+cqp/oyaGDeUbMmZxretrSbqrVu3LhkxYsTQ5pVJj4881aZqmwQBCEAAAhDoFwHueeVIm+775WrKKzV79mztGepLX/pS0CBM/ld5vtLjjz+ejBw5MsMx/cpl9bXA6WtnnHFGsn37dufd6Lde5wK6DPrzUlcj/TqNyTFlmMWuV2owp4zvKQOBpghInZexr7f58SRNb14/1xCAAARiIdDP9ZyvnOrPqIlxQ8mWnGl829pqot78+fMzm1omPb7yVNskCEAAAhCAQL8IcM8rR9p03y9XU16pOXPmaM9RX/ziF4MGYfK/yvOZ0t9bTds+7rjjknvvvTfZeeedB/mecMIJyYsvvuilC2mb+aOXxjwb9eslz53Pm887JL3Ol4vlOtWXP8ai75FHHtEWywMOOCAWeeiAQJAECLLydcFBDlw6DQEIQEAogfz7hPTaFw6+csoX2Y7dGDeUOuqqnaXjuftYzUKzpWfOnKm93+3W4vNctU2CAAQgAAEI9IsA97xypE33/nI15ZWaO3eu9hz17//+70GDMPlf5flMN910k8Zx9OjRg3mTJk1KNm/e7K35JvT6EuPXS756XWA3JscUSMxkx66XIGvG3VxAoBUEpM7L2Nfb/OCSpjevn2sIQAACsRDo93rOV075HzkxbijZUjONb1tbTdQ76KCDtE0tkyYfeaptEgQgAAEIQKBfBLjnlSNtuueXqymv1FlnnaU9R1199dVBgzD5X+X5TC+99FKy9957ayz32muv5LHHHvPZtNZmqt9ro56M+/WSp04XmU0dkT8Wla+S/8wzzyQDAwPD/t19993Jtm3bhkyrHwvuVU+Vt/1O67zO9Hqo8cBPpAZzAncb3Y+cgNR5ma6v+aMLd3N/cUERGxCAAAQgYCKQv2+l16ayrvL4yilXJM12YtxQMisdPjcdz93H4Wu1p8Suu+5auLnUrcnHuWqbBAEIQAACEOgXAe555Uib7vnlasordfbZZ2vPUV/4wheCBmHyv8rznS666CKN5V133eW7Wa3NVL/3hj004N9LHjpdZDJ1RP5YVL5K/i233JLssssuhc5P29xjjz2S9evXD5m+5557kl43klGjRiVPPfXUUPkqJ2mb+WMVG20sqz6GvmDBguTUU0/VeCteU6dOTdRvEakyPj+y3kY29AkCTRDYsmVLsmjRokR9cuKII47Q5uUrX/nKRG34XX/99YkqG2PKr7PptQut3F9cUMQGBCAAAQiYCKT3q/zRVNZVHl855Yqk2U6MG0pmpcPn5se1ug4pqfe2Jg39yFNtkyAAAQhAAAL9IsA9rxxp0zNAuZrySp1zzjnac9TnP//5oEGY/K/yfCfTB2oWLlzou1nNf6l+7w17aMC/lzx0ushk6oj8sah81Xz1CVUVNFXfR51vQ/1W6IMPPmg0qT6pesMNN2TqjBw5Mjn99NOThx56yFinTGa+D+l1mbptLLN69epk1qxZyZgxYzKsUl2moyqr6qi6JAhAwC2BtWvXJup3v8r8g0k6P1VZVUfVjSml+vJHVxq5v7giiR0IQAACYRC45JJLSj/v5u89Lq59UmrjV065YIaN7O/SwwMejAHGAGOAMcAYYAwwBhgDjAH/Y8Dnezdl++KLL9bemx5//PG+m9XabNtYuvTSS0szIMhaGlWn4P3335+oIGm34y+44IJOAcPZypUrh8qPHTs2ufnmmw2lqmV1t999Xs1K86U3bdo0+MnUESNGDDHq1lPmXNVVn25VtkgQgEA9As8//3wyb968JP2h8zJzMF9G1VU2lK0YUl5feu1aG/cX10SxBwEIQKCdBGIOsiribfvKqfS+zdH/JhCMYcwYYAwwBhgDjAHGAGOAMcAYcDcGfL6jvfbaawvjMWvWrPHZdGG7bRk76j172USQtSypXLmTTz45MxCmTJmSK9G5VF+fOXny5MHy6pOXt956a+fFGmdFA66Gyb5XXb58eTJx4sQMyyJdZfKVLWWTBAEI2BFYt27d0HpVZs4NV0atfcpm6KlIpw9d3F98UMUmBCAAgXYRiD3I2ravnCq6j5PvbvMHlrBkDDAGGAOMAcYAY4AxwBhgDLgfA77eyS5dunToAzbqG1cPOeSQTIzm/PPP99X0oN22jxWCrDtlB7OP0bB48eLMoFODQn1aNZ9efvnlZMaMGYNl1ffP33jjjfki1tdFA9HaYJ8rLlmypNLXkBbpzeerrytVtkkQgEA1AqtWrUr23HNPbW3Lz7Gq18qmsh1yKtLsQxP3Fx9UsQkBCECgXQRiD7LylVPZ96NFzxHkw4kxwBhgDDAGGAOMAcYAY4AxwBjoNQZ8vJN94IEHknHjxg3uAauvBn7xxReTq666KrMnPH78+OSFF17w0fygzV6a2/AaQdY+BFlV8HTffffNDDz1g8v51P0jzFdffXX+5VrXRYOtltE+VV62bFmivja5SEPdfGVbtUGCAATKEVCfNvURYE3nsrId8idaUx35Yzm61Upxf6nGi9IQgAAEQiQQc5CVr5xikyj/vMQ1Y4IxwBhgDDAGGAOMAcYAY4AxYDcGXL/f3bhxY7L//vsPxmUOPfTQoZ9fVD/DmI/XLFy40HXzQ/baPh4IsvYhyKpGQ/4/tHffffdk69atQwPlyiuvHAoiXnjhhUP5rk6KBqIr+77sbNiwIZkwYcIQmyIddfNVG6otEgQg0JuA+t3U9CvN6867XvVVG6H+RmuRrt5k7V/l/mLPjpoQgAAEINAh0O/7V1u/cqpDJPyzc889V3sf9bnPfS58YRYKTOPbwkyjVaZPn67506TLZZ5qkwQBCEAAAhDoNwHuecMTN93vh68ls8THP/5x7Rlq/vz5QcMw+V/luUzPPvtsMnXq1EF2Knby6KOPZsyfeeaZGa7qU66+Uj/0+up73q5bL+Wt9/m63455/PHHk5EjR2YG3nXXXTeoWn0tcPraGWeckWzfvt05jX7rdSVg5syZGWZFOlzkq7ZIEIBAbwLz5s3r25xUbYWYitYjX1q4v/gii10IQAACsgj08/7V5q+cisnrMW4o2frHNL5tbTVV77bbbuvbc3jKS/0zBAkCEIAABCDQbwLc84Ynnt6ru4/D15JZ4rzzztOeof7pn/4paBjdfu8+dyXqpZdeGvpZS/VziytWrNBMDwwMaFzXrFmjlXOR0a2x+9yF7X7bIMhak3j6e6vpQDjuuOOSe++9N9l5550HB+QJJ5ww+J3WNZsxVk/bzB+NhVuSqd7Q5fvr+5o3kS1xPt1oJYG1a9cO/ci577mo7I8ePTpRbYaWitj41MH9xSddbEMAAhCQQaBf96+2f+VUTN6OcUPJ1j+m8W1rq8l6/BNyk/RpGwIQgAAE+kmAe15v2rE82/RW6ebV888/X4sxqG8VDTmZ/K/yXCT1AcDZs2cPMhs1alSyePHiQrOHH354hq16/+Ej+dTro7+9bLrxUq8W+vhaE4656aabMoNO9UEFEdRx0qRJyebNm70RaEJvXTF8NURdgtSHgFsCc+bM0daworXFVb5qM7RUpN2nDu4vPuliGwIQgIAMAv24f/GVU/0dSzFuKNkSNI1vW1tN1uPndJqkT9sQgAAEINBPAtzzetOO5dmmt0o3r37iE5/Q9jMvv/xyN8YbsmLyv8qrm1SA9eyzzx7iddlll/U0ecUVVwyVVe2PGzcuefrpp3vWsXnRl16bvtStU99LdXvgsH4TjlEfs957770zA0/1Y6+99koee+wxh+p0U03o1XtRPmfdunXJiBEjNFZFOlzlqzZV2yQIQCBLYMuWLYn6eghXc62sHdWmajukVKTNpwbuLz7pYhsCEICADAK+71985VT/x1GMG0q2FE3j29ZW0/WWLVuWjB071ttzubKt2iBBAAIQgAAEmibAPa/YAzE92xSrdPOK6afPhgseumnZnxWT/1VenaSCo92fIFffvrpt27aeJm+//XbtmfTcc8/tWcfmRR96bfrhok49L7nogUMbTTnmoosu0gbeXXfd5VCZ2VRTes29GT5X/fh0UZ9954f+w9fD06UEBKoTWLRoUWNzUrUdUipao3xr4P7imzD2IQABCMRNwOf9i6+cambsxLihZEvSNL5tbbWh3pIlS7z8A6T6B0dlmwQBCEAAAhBoCwHueWZPxPZsY1bpJveTn/yktqf52c9+1o3xhqyY/K/ybJL6tqFrrrkmOfDAAzVO6hO/6qfc1D/Mdif1EzDqd1rzP1+W9uu0005LFixYkKxfv767mvV5ajd/tDbYYEU7LzXY4V5N5x2SXveq4+K1Rx55RBusCxcudGG6p41UX/7Ys1KDL3b/10S+z76vVdskCEAgS2Du3Lna2uV7Lqb2zzrrrGxnWn6V9jt/9N1t7i++CWMfAhCAQNwE8vet9Lquar5yqi5B+/oxbijZ0kjHc/fR1lZb6i1fvjyZOHGis2d0ZUvZJEEAAhCAAATaRoB7nu6R7mea9FwvRY4i8KlPfUp7XvrMZz4TNJzU5/mjjagyH6wZGBgYMv3cc88l6rda822brk888cShenVOTLZVXoipcq8vueSSUrCLIDWR79sxF198scbk+OOP992s1mYTbGlzJ/ywEwyYB3LHgO+FnvuL3di69NJLfbsG+xCAAASCIFD0jFKn83zlVB169evGuKFkS8U0vm1ttanepk2bktmzZ9f6qR31kznKhrJFggAEIAABCLSVAPe8rGdifbbJqnRzdeGFF2p78v/wD//gxnhDVkz+V3mxppj0VvYSQdbssL722mu1CZ0OkDVr1mQLO75K2+FotwkPN7gxBhgDdceA42U9Y477i/34VM8qJAhAAAIQSArfp9iw4SunbKi5rxPjhpItJdNznK2tNtZbvXp1MmvWrGTMmDGFcznPQJVVdVRdEgQgAAEIQCAUAtzzdngqf19X1yQzAdPPa3360582Fw4k1+T/mMdATHorz1SCrJ1ZuXTp0mT06NGDb3hOP/305JBDDsm8+Tn//PM7hT2cFQ1E8u035mEHO8YAY6DKGPCwtA+a5P5SbxwSZPU1MrELAQiERqDonmajg6+csqHmvk6MG0q2lEzj29ZWm+upT/mo379Sn0ydOnVqZs8hZaBeU2X45GqbPUnfIAABCEBgOALS73npfb37OBwzqa//v//3/7Rnor/7u78LGke337vPgxbVo/PdGrvPe1Rp7UsEWS1d88ADDyTjxo0bnMzqq4FffPHF5KqrrspM7vHjxycvvPCCZQvDV+sefJzX25CHH/wYA4wBmzEw/EpdvQT3l/pjkSBr9XFHDQhAIE4CRfe2ONW6/eRuWxnFuKFky9o0vm1thVRPqu6QfERfIQABCEDADQFp9zxpeuuMEtPPa/3t3/5tHZON1zX5X+XFmmLSW9lLfJI1STZu3Jjsv//+gwHVQw89dOi/RdV/24wdOzYTaF24cKG3eVA0EMmvv0EPQxgyBhgDZcaA6wWe+4ubcUeQ1fXIxB4EIBAqgaJ7Wah6huu3BL0xbigN59ei103+LiobU75U3TH5EC0QgAAEIFCOgLR7njS95UaBuZQpRnXppZeaCweSa/K/yos1xaQ3Ki/1wzHqt4jSr+iZMGFC8uijj2bG+ZlnnpkJsqpPufpK/dDrsu8zZ87MsCnqv4981TYJAhDIEpg2bVpjc1K1HVIqWpdcauD+4pImtiAAAQhAQBHox/2rTaQl6I1xQ8l2DJn8bWsrpHpSdYfkI/oKAQhAAAJuCEi750nTW2eUqE+t5nmF/g/3eT3pdR1Oba6b6ssf29znor4RZC0iY8h/6aWXkhkzZgxO4F122SVZsWKFVmpgYECb4GvWrNHKucjID8D02oVtHzbmz5+vrT0+8AAAIABJREFUsUn77Puo2iZBAAJZAnPnzm1sTp511lnZzrT8qmiNctVt7i+uSGIHAhCAAAS6Cfi+f3W31YZzCXpj3FCyHTsmf9vaCqmeVN0h+Yi+QgACEICAGwLS7nnS9NYZJer3V/O81M9qhJzyetLrkDX16nuqL3/sVaetrxFkLemZ7du3J7Nnzx6cvKNGjUoWL15cWPPwww/PTPLzzjuvsGydF/IDML2uY9Nn3XXr1iUjRozIsEn77POo2nz44Yd9SsM2BIIksGjRor7Px3SuX3/99UExS/udP7oQwf3FBUVsQAACEICAiUD+vpVem8rGkJfqyx9j0JZqiHFDKdVW9Zj3s7qWkKTqluBbNEIAAhCAQJaAtHueNL1Zb1e7+vu//3ttT/Nv/uZvqhlpWWmT/1VerCkmvVF5yZdj1Ab42WefPTRxL7vssp5j+4orrhgqq/o0bty45Omnn+5Zx+ZFX3pt+lK2zvTp0zNsijS4zFdtkiAAAZ3Ali1bEvWpfJfzrYwt1aZqO6RUpKuuBu4vdQlSHwIQgAAEehHwdf/q1WaTr0nQG+OGku2YMfnb1lZI9aTqDslH9BUCEIAABNwQkHbPk6a3zij59Kc/re1nXnTRRXVMNl7X5H+VF2uKSW9UXvLhGBUc7f4t0Z133jnZtm1bz7F9++23a5P83HPP7VnH5kUfem36UaXObbfdprEp0uEqf+nSpVW6SFkIiCIwZ86cvs9J1WZoqWg9qqOD+0sdetSFAAQgAIEyBHzcv8q021QZCXpj3FCyHS8mf9vaCqmeVN0h+Yi+QgACEICAGwLS7nnS9NYZJZ/5zGe0/cxPfepTdUw2Xtfkf5UXa4pJb1RecumYZ599NrnmmmuSAw88UJuwl19+ebJ27dpE/YZed9q4cePg77Smv9ua789pp52WLFiwIFm/fn13NevzvP302tpgnyp2B63TPvs6qrZIEIBAMQG1lo0ePVpb53zNSdWWajO0VMTDRgf3Fxtq1IEABCAAARsCLu9fNu33u44EvTFuKNmOE5O/bW2FVE+q7pB8RF8hAAEIQMANAWn3PGl664ySf/zHf9T2Mi+44II6Jhuva/K/yos1xaQ3Ki+5dEyZ3yocGBgYGuPPPfdcon6rtagP3fknnnjiUL06J902u8/r2OxH3Q0bNiQTJkwoxapbV9Vz1YZqiwQBCPQmMG/ePO/zMZ2/qq0QU9r//NFGC/cXG2rUgQAEIAABGwL5+1Z6bWMrhDqpvvwxhL6X7WOMG0pltefL5f2sriUkqbol+BaNEIAABCCQJSDtnidNb9bb1a4++9nPanuZn/zkJ6sZaVlpk/9VXqwpJr1ReSkmx5SZPCHrXbZsWTJ27FhtMSzSVDVf2VZtkCAAgeEJPP/888nkyZO9zcd0/qo2VFshplRD/hiiljJ9zutMr8vUpQwEIAABCLSHQLp+54/t6aHbnuR1ptduW2nWWowbSrZEU/92H21thVSvW296HlL/6SsEIAABCECgLIH0Ptd9LFs3xHLdOtPzEHX0o8/qm0ZTRunxE5/4RD+a9tZGqiN/9NZgw4bzOtPrhrtl1TxBVits7aiUDrz8sR29G74XS5YsSXbZZRdtQczrqXqtbCrbJAhAoDyBdevWJXvuuafz+ZjOX2VbtRFqSnXkj6HqGa7feZ3p9XD1eB0CEIAABNpFIF2/88d29dJdb/I602t3LTRvKcYNJVuqqX+7j7a2QqrXrTc9D6n/9BUCEIAABCBQlkB6n+s+lq0bYrlunel5iDr60ecrrrhC28P867/+63407a2N1Of5o7cGGzac15leN9wtq+YJslpha0eldODlj+3oXbleLF++PJk4caK2KOY1lb1WtpRNEgQgUJ3AqlWrvARaVYBV2Q45Fa1BIWvq1Xdpenux4DUIQAACIROQtp5L0BvjhpLtHDP529ZWSPWk6g7JR/QVAhCAAATcEJB2z5Omt84oufLKK7V4wvnnn1/HZON1Tf5XebGmmPRG5aWYHFNm8sSid9OmTcns2bOTESNGaItjkcZ8vqqrbChbJAhAwJ6A+rSpy68OVrZC/gRrSjK/5qTX6euxHVN9+WNsOtEDAQhAIHYC+XU8vY5Vd6ovf4xJb4wbSrb+yftZXUtIUnVL8C0aIQABCEAgS0DaPU+a3qy3q13Nnz9fiyN8/OMfr2akZaVN/ld5saaY9EblpZgcU2byxKZ39erVyaxZs5IxY8Zoi2SRVlVW1VF1SRCAgBsC6ndT582bl4wePbr0XMzPUVVX2Qj1N1jzJPP60ut8uViuU335Yyz60AEBCEBACoH8Op5ex6o/1Zc/xqQ3xg0lW//k/ayuJSSpuiX4Fo0QgAAEIJAlIO2eJ01v1tvVrq666iptz/Kv/uqvqhlpWWmT/yXmtcwtpboT1buQokFXikSAhWLVqz6NumDBguSUU07RFstRo0YlU6dOHfzUqirDJ1cDHLh0ORgCa9euTebMmVPpt5PVbyKrOqpuTCnW9bbIR9L0FnEgHwIQgEDoBKSt5xL0xrihZDvPTP62tRVSPam6Q/IRfYUABCAAATcEpN3zpOmtM0o+97nPaXGDc889t47Jxuua/C8xr3FHWHSAIKsFtLZUKZpkbelf3X785Cc/0RbLww47rK5Z6kMAAhUJbNmyJVm0aFEyd+7c5PDDD9fm5c477zz4miqjysaYYl9v8z6Tpjevn2sIQAACsRAoWs+l5cfiT6Ujxg0lW/+YxrGtrZDqSdUdko/oKwQgAAEIuCEg7Z4nTW+dUfLP//zP2v7kX/7lX9Yx2Xhdk/8l5jXuCIsOEGS1gNaWKkWTrC39q9uP+++/X1ss3/jGN9Y1S30IQKAGAan//BD7epsfEtL05vVzDQEIQCAWAkXrubT8WPypdMS4oWTrH9M4trUVUj2pukPyEX2FAAQgAAE3BKTd86TprTNK/uVf/kWLG/zFX/xFHZON1zX5X2Je446w6ABBVgtobalSNMna0r+6/SDIWpcg9SHgnoDUeRn7epsfKdL05vVzDQEIQCAWAkXrubT8WPypdMS4oWTrH9M4trUVUj2pukPyEX2FAAQgAAE3BKTd86TprTNK/vVf/1ULsv75n/95HZON1zX5X2Je446w6ABBVgtobalSNMna0r+6/ZAazKnLjfoQ8ElA6ryMfb3NjxlpevP6uYYABCAQC4Gi9Vxafiz+VDpi3FCy9Y9pHNvaCqmeVN0h+Yi+QgACEICAGwLS7nnS9NYZJZ///Oe1IOuf/dmf1THZeF2T/yXmNe4Iiw4QZLWA1pYqRZOsLf2r248f//jH2mKpfg+SBAEINEeAIOtOmXWpOU/4bTn2+4tfeliHAAQg0B4CReu5tPz2eKR+T2LcULKlYhrHtrZCqidVd0g+oq8QgAAEIOCGgLR7njS9dUbJF77whcz+nGJ39tln1zFJXQhYEyDIao2u+YqmhVflxZIIssbiSXTEREDqvIx9vc2PUWl68/q5hgAEIBALgaL1XFp+LP5UOthQ6njTNI47r8Z7JlV3vB5FGQQgAAEIFBGQds+TprfI72Xy/+3f/k0Lsv7pn/5pmaqUgYBzAvFE5JJEm1jpwuScWksMpvryx5Z0r3Y3pAZzaoPDAAQ8EpA6L/PrbHrtEXWjplN9+WOjnaJxCEAAAhCAAAQSNpQ6gyD/nKKuJSSpuiX4Fo0QgAAEIJAlIO2eJ01v1tvVrq6++motFnTWWWdVM0JpCDgiENW7ENNCpPJiTbHrve+++7TFcvLkybG6E10QCIIAQVa+LjiIgUonIQABCEAAApESYEOp41jT++HOq/GeSdUdr0dRBgEIQAACRQSk3fOk6S3ye5n8L37xi1rcYM6cOWWqUgYCzglEFYE0LUQqL9YUu16CrLGOXHSFTEDqvIx9vc2PSWl68/q5hgAEIAABCLSVABtKHc+Ynlc6r8Z7JlV3vB5FGQQgAAEIFBGQds+TprfI72Xyr7nmGi3I+id/8idlqlIGAs4JRBWBNC1EKi/WFLteqcGcWMcruuIgIHVexr7e5kenNL15/VxDAAIQgAAE2kqADaWOZ0zPK51X4z2Tqjtej6IMAhCAAASKCEi750nTW+T3Mvlf+tKXtCDr7Nmzy1SlDAScE4gqAmlaiCTmOR8lDRmUGsxpCDfNQqAUAanzUuK9xKS51CChEAQgAAEIQAAC3giwodRBK/VZRarujuc5gwAEIAABKQSk3fOk6a0zjr/85S9rQdaPfexjdUxSFwLWBAiy7pT9fT3TYhZanvVoaFnF1atXa4vlEUcc0bJe0h0IyCJAkDW+e0aVe5ys0Y5aCEAAAhCAQPsIsKHU8YnpGabzarxnUnXH61GUQQACEIBAEQFp9zxpeov8Xib/2muv1eIGf/RHf1SmKmUg4JwAQVaCrM4HlSuDBFldkcQOBNwRkDovTQ+6EvPcjSQsQQACEIAABCBgQ4ANpQ4107NY59V4z6TqjtejKIMABCAAgSIC0u550vQW+b1M/nXXXacFWc8888wyVSkDAecECLISZHU+qFwZlBrMccUPOxDwQUDqvDQ96ErM8zGmsAkBCEAAAhCAQHkCbCh1WJmexTqvxnsmVXe8HkUZBCAAAQgUEZB2z5Omt8jvZfK/8pWvaEHWj3zkI2WqUgYCzgkQZCXI6nxQuTK4atUqbbE88sgjXZnHDgQgYEGAICtfF2wxbKgCAQhAAAIQgIAjAmwodUBK3YiUqrvjec4gAAEIQEAKAWn3PGl664zj//zP/9TiBmeccUYdk9SFgDUBgqwEWa0Hj++KBFl9E8Y+BKoTkDovTQ+6EvOqjxhqQAACEIAABCDgkgAbSh2apmexzqvxnknVHa9HUQYBCEAAAkUEpN3zpOkt8nuZ/K9+9atakPX0008vU5UyEHBOIKogq3M6GGyUgNRgTqPQaRwCwxBgXg4DiJchAAEIQAACEICARwJsKHXgSt2IlKq743nOIAABCEBACgFp9zxpeuuM40WLFmlB1tNOO62OSepCwJoAQVZrdFT0TeBHP/qRtli+6U1v8t0s9iEAgR4ECLL2gMNLEIAABCAAAQhAwDMBNpQ6gKVuRErV3fE8ZxCAAAQgIIWAtHueNL11xvH111+vxQ0+/OEP1zFJXQhYEyDIao2Oir4JEGT1TRj7EKhOgHlZnRk1IAABCEAAAhCAgCsCbCh1SErdiJSqu+N5ziAAAQhAQAoBafc8aXrrjOOvfe1rWpD1Qx/6UB2T1IWANQGCrNboqOibAMEc34SxD4HqBJiX1ZlRAwIQgAAEIAABCLgiwIZSh6TUjUipujue5wwCEIAABKQQkHbPk6a3zji+4YYbtCDrqaeeWsckdSFgTYAgqzU6KvomsHLlSm2xnDJliu9msQ8BCPQgQJC1BxxeggAEIAABCEAAAp4JsKHUASx1I1Kq7o7nOYMABCAAASkEpN3zpOmtM46/8Y1vaHGDD3zgA3VMUhcC1gQIslqjo6JvAgRZfRPGPgSqE2BeVmdGDQhAAAIQgAAEIOCKABtKHZJSNyKl6u54njMIQAACEJBCQNo9T5reOuP4xhtv1IKs73//++uYpC4ErAkQZLVGR0XfBAjm+CaMfQhUJ8C8rM6MGhCAAAQgAAEIQMAVATaUOiSlbkRK1d3xPGcQgAAEICCFgLR7njS9dcbxN7/5TS3Iesopp9QxSV0IWBMgyGqNjoq+Cfzwhz/UFsujjjrKd7PYhwAEehAgyNoDDi9BAAIQgAAEIAABzwTYUOoAlroRKVV3x/OcQQACEICAFALS7nnS9NYZx9/61re0uMH73ve+OiapCwFrAgRZrdFR0TcBgqy+CWMfAtUJMC+rM6MGBCAAAQhAAAIQcEWADaUOSakbkVJ1dzzPGQQgAAEISCEg7Z4nTW+dcfztb39bC7K+973vrWOSuhCwJkCQ1RodFX0TIJjjmzD2IVCdAPOyOjNqQAACEIAABCAAAVcE2FDqkJS6ESlVd8fznEEAAhCAgBQC0u550vTWGceLFy/Wgqzvec976pikLgSsCRBktUZHRd8ECOb4Jox9CFQnwLyszowaEIAABCAAAQhAwBUBNpQ6JKVuRErV3fE8ZxCAAAQgIIWAtHueNL11xvF3vvMdLch60kkn1TFJXQhYEyDIao2Oir4JrFixQlssjz76aN/NYh8CEOhBgCBrDzi8BAEIQAACEIAABDwTYEOpA1jqRqRU3R3PcwYBCEAAAlIISLvnSdNbZxx/97vf1eIGM2bMqGOSuhCwJkCQ1RodFX0TIMjqmzD2IVCdAPOyOjNqQAACEIAABCAAAVcE2FDqkJS6ESlVd8fznEEAAhCAgBQC0u550vTWGcdLlizRgqzvfve765ikLgSsCRBktUZHRd8ECOb4Jox9CFQnwLyszowaEIAABCAAAQhAwBUBNpQ6JKVuRErV3fE8ZxCAAAQgIIWAtHueNL11xvEtt9yiBVnf+c531jFJXQhYEyDIao2Oir4J/OAHP9AWy6lTp/puFvsQgEAPAgRZe8DhJQhAAAIQgAAEIOCZABtKHcBSNyKl6u54njMIQAACEJBCQNo9T5reOuP4v//7v7W4wR/+4R/WMUldCFgTIMhqjY6KvgkQZPVNGPsQqE6AeVmdGTUgAAEIQAACEICAKwJsKHVISt2IlKq743nOIAABCEBACgFp9zxpeuuM41tvvVULsr7jHe+oY5K6ELAmQJDVGh0VfRMgmOObMPYhUJ0A87I6M2pAAAIQgAAEIAABVwTYUOqQlLoRKVV3x/OcQQACEICAFALS7nnS9NYZx7fddpsWZH37299exyR1IWBNgCCrNToq+iawfPlybbGcNm2a72axDwEI9CBAkLUHHF6CAAQgAAEIQAACngmwodQBLHUjUqrujuc5gwAEIAABKQSk3fOk6a0zjpcuXarFDU488cQ6JqkLAWsCBFmt0VHRNwGCrL4JYx8C1QkwL6szowYEIAABCEAAAhBwRYANpQ5JqRuRUnV3PM8ZBCAAAQhIISDtnidNb51x/L3vfU8Lsk6fPr2OycbrmvwvMa9xR1h0gCCrBTSq9IcAwZz+cKYVCFQhwLysQouyEIAABCAAAQhAwC2BGDeUbAmZNp1sbYVUT6rukHxEXyEAAQhAwA0Bafc8aXrrjJI77rhDC7KecMIJdUw2Xtfkf4l5jTvCogMEWS2gUaU/BO69915tsXzzm9/cn8ZpBQIQMBIgyGrEQiYEIAABCEAAAhDoC4EYN5RswZk2nWxthVRPqu6QfERfIQABCEDADQFp9zxpeuuMku9///ta3OBtb3tbHZON1zX5X2Je446w6ABBVgtoVOkPAYKs/eFMKxCoQoB5WYUWZSEAAQhAAALNEpD4ptykuVkvuG09xg0lW0Kx+7qIi1TdRTzIhwAEIACBeAlIu+dJ01tn5C5btkwLsh533HF1TDZe1+R/iXmNO8KiAwRZLaBRpT8ECOb0hzOtQKAKAeZlFVqUhQAEIAABCDRLQOKbcpPmZr3gtvUYN5RsCcXu6yIuUnUX8SAfAhCAAATiJSDtnidNb52Re+edd2pB1mOPPbaOycbrmvwvMa9xR1h0gCCrBTSq9IfAPffcoy2Wb3nLW/rTOK1AAAJGAgRZjVjIhAAEIAABCLSSgMQ35SbNrXSOZadi3FCyRKG9V1S+l5BiH+MSfIhGCEAAAhAoR0DaPU+a3nKjwFxqYGBAexY85phjzIUDyTX5X2JeIO7KdFPGu5CMZC5CIUCQNRRP0U9JBJiXkryNVghAAAIQCJ2AxDflJs2h+7G7/zFuKHXrq3Ieu6+LWEjVXcSDfAhAAAIQiJeAtHueNL11Ru7dd9+tBVl///d/v47Jxuua/K/yYk0x6Y3XS7GOPkG6COYIcjZSgyHAvAzGVXQUAhCAAAQgoG08FL2RjT0/pqEQ44aSrX9M49bWVkj1pOoOyUf0FQIQgAAE3BCQds+TprfOKIlxf9Lkf5UXa4pJb7xeinX0CdIV42IpyH1IjZQA8zJSxyILAhCAAASiJFD0xlVafkzO5Vms403TOO68Gu+ZVN3xehRlEIAABCBQREDaPU+a3iK/l8lfvny59g+l06ZNK1O1tWVM/ld5saaY9MbrpVhHnyBd/Je2IGcjNRgCbOwF4yo6CgEIQAACENA2HtI3srGiSfXljzHpjXFDydY/eT+rawlJqm4JvkUjBCAAAQhkCUi750nTm/V2tasf/OAH2nudqVOnVjPSstIm/6u8WFNMeuP1UqyjT5AugqyCnI3UYAgwL4NxFR2FAAQgAAEIaBsP6RvZWNGk+vLHmPTGuKFk65+8n9W1hCRVtwTfohECEIAABLIEpN3zpOnNerva1YoVK7T3OkcffXQ1Iy0rbfK/yos1xaQ3Xi/FOvoE6SKYI8jZSA2GAPMyGFfRUQhAAAIQgIC28ZC+kY0VTaovf4xJb4wbSrb+yftZXUtIUnVL8C0aIQABCEAgS0DaPU+a3qy3q12tXLlSe68zZcqUakZaVtrkf5UXa4pJb7xeinX0CdI1MDCgLZbHHHOMIAJIhUD7CBBkbZ9P6BEEIAABCECgiEBMb1yLNHbnS9Ab44ZStw+rnJv8XaV+qGWl6g7VX/QbAhCAAATsCUi750nTaz8ykuRHP/qRFjd405veVMdk43VN/ld5saaY9EblpSLHSMuPZeIRZI3Fk+iIiYDUeSntPlKkN6axjBYIQAACEghIW88l6I1xQ8l2Lpr8bWsrpHpSdYfkI/oKAQhAAAJuCEi750nTW2eUrFq1SguyHnnkkXVMNl7X5H+VF2uKSW9UXipyjLT8WCae1GBOLP5DR5wEpM5LafeRIr1xjmpUQQACEIiXgLT1XILeGDeUbGegyd+2tkKqJ1V3SD6irxCAAAQg4IaAtHueNL11Rsl9992nBVknT55cx2TjdU3+V3mxppj0RuWlIsdIy49l4t11113aYvnWt741FnnogECQBAiy7qStS5LuMUEOWjoNAQhAQDCBontUrEgk6I1xQ8l2PJr8bWsrpHpSdYfkI/oKAQhAAAJuCEi750nTW2eU/PjHP9b25w4//PA6Jhuva/K/yos1xaQ3Ki8VOUZafiwTjyBrLJ5ER0wEpM5LafeRIr0xjWW0QAACEJBAQNp6LkFvjBtKtnPR5G9bWyHVk6o7JB/RVwhAAAIQcENA2j1Pmt46o+T+++/XgqxvfOMb65hsvK7J/yov1hST3qi8VOQYafmxTDypwZxY/IeOOAlInZfS7iNFeuMc1aiCAAQgEC8Baeu5BL0xbijZzkCTv21thVRPqu6QfERfIQABCEDADQFp9zxpeuuMkgceeEALsh522GF1TDZe1+R/lRdriklvVF4qcoy0/Fgm3p133qktlscee2ws8tABgSAJEGTl64KDHLh0GgIQgIBQAkXvg2LFIUFvjBtKtuPR5G9bWyHVk6o7JB/RVwhAAAIQcENA2j1Pmt46o+SnP/2pFjc49NBD65hsvK7J/yov1hST3qi8FJNjykye2PUSZC0zCigDgf4SkDovY19v86NImt68fq4hAAEIxEJA2nouQW+MG0q2883kb1tbIdWTqjskH9FXCEAAAhBwQ0DaPU+a3jqj5Gc/+5kWZP293/u9OiYbr2vyv8pzkZ555plkYGBg2L+777472bZt21CTW7du7VlHld++fftQ+SonPvVW6YeLsm685KInDmzE5JgyOGLXKzWYU8b3lIFAUwSkzsvY19v8eJKmN6+fawhAAAKxEJC2nkvQG+OGku18M/nb1lZI9aTqDslH9BUCEIAABNwQkHbPk6a3zihZs2aNFmQ95JBD6phsvK7J/yrPRbrllluSXXbZRWOWb3OPPfZI1q9fP9TkPffck+y6666F9UaNGpU89dRTQ+WrnOTbTq+r2GhLWTdeaoma1BH5Y0u657wbeZ3ptfOGGjK4bNkybQIfd9xxDfWGZiEAAUWAIGv264JjHRXp/SR/jFUvuiAAAQjESiC/jqfXLvTy39AuKFa3EeOGUnUKO2qk47n7aGsrpHrdetPzkPqf7+vmzZuTBQsWJLNnz06mTp2ajB8/PhkzZszgnzpXeeo1VUaVJUEAAhCIiQBrYG9vpve57mPvGmG/2q0zPQ9bkb/eP/TQQ1rc4KCDDvLXYB8spz7PH101rT6hqoKmkyZN0tgdcMAByYMPPmhsSn1S9YYbbsjUGTlyZHL66acnyg+2Ka8zvba112Q9gqxN0q/Zdjrw8seaZltTnSBra1xBRyAwREDqvMyvs+n1EJjITlJ9+WNkMpEDAQhAIHoC+XU8vXYhnP+GdkGxuo0YN5SqU9hRIx3P3UdbWyHV69abnofU/7Svq1evTmbNmjUYTE11DHdUwVdVR9UlQQACEAiZAGtgOe+Z7gvlaoZZSpreOl5au3ZtJuin2B144IF1TDZe1+R/lec63X///YkKkna3d8EFF/RsZuXKlUPlx44dm9x88809y5d5sbv97vMyddtWxr2XGlTY7Yzu8wa75LXpbo3d514b7aNxqcGcPiKmKQhUJiB1Xnavsd3nlQEGUqFbY/d5IN2nmxCAAAQg8H8Eutfw7nNXgPhvaFcky9uJcUOpvPpsye4xnZ5nS8R5lWrtPoakdNOmTYOfTB0xYsTQZl23ljLnqq76dKuyRYIABCAQEgHWwGreMt0TqlkIq7Q0vXW8s27dOu054g1veEMdk43XNflf5flIJ598cobflClTCpvZsmVLMnny5MHy6h/ebr311sKyVV7op94q/bIp68dLNj1xUCcmx5TBEbteqcGcMr6nDASaIiB1Xsa+3ubHkzS9ef1cQwACEIiFQL/Wc/4bun8jJsYNJVt6pvFtayukeiHrXr58eTJx4sTMpp5JT9k8ZUvZJEEAAhAIgQBrYHUvme4H1a2EU0Oa3jqeeeSRR7TnCfWVtyEnk/9Vno+0ePFijZ/6tGo+vfzyy8mMGTMGy6o/AZupAAAgAElEQVTfX73xxhvzRayv+6nXupMlK/rxUsnGXReLyTFl2MSu9/vf/7422d/2treVQUMZCEDAEwGCrPwmq6ehhVkIQAACEPBAoJ/vF/hvaA8ONJiMcUPJILNUlml8l6oYeKFQdS9ZsiTZZZddtPf4Jj1V8pRNZZsEAQhAoM0EWAPtvGO6H9hZCqOWNL11vPLoo49qzxT7779/HZON1zX5X+X5SCp4uu+++2YYnnPOOVpTKi/t19VXX629XicjtZs/1rHZVF0/XmpITd4h6XVD3fHebKovf/TecJ8aIMjaJ9A0A4EKBKTOy/w6m15XQBdU0VRf/hiUCDoLAQhAAAJDb4j7sZ7z39D9GXAxbijZksuPa3UtIYWoW/2jpvr9LlPfXeQp26oNEgQgAIE2EmANtPeK6R5hb639NaXpreORxx57THuu2G+//eqYbLyuyf8qz1e6+OKLMwx33333ZOvWrUPNXXnllUOvX3jhhUP5rk76rddVv012/HnJ1JrnvJgcUwZV7HqlBnPK+J4yEGiKgNR5Gft6mx9P0vTm9XMNAQhAIBYC/VzP+W/o/oyaGDeUbMmZxretrZDqhaZ7w4YNyYQJE4Y26Uz9d5Gn2lBtkSAAAQi0iQBrYD1vmO4P9Sy2u7Y0vXW88cQTT2jPFupnBEJOJv+rPF/p8ccfT0aOHJnheN111w02p74WOH3tjDPOSLZv3+68G/3W61xAl0F/XupqpF+nMTmmDLPY9d5xxx2ZSa70Hn/88WXQUAYCEPBEgCArXxfsaWhhFgIQgAAEPBDo9/sF/hvagxNzJmPcUMpJLH1pGt+lKwdcMDTdM2fO1N7XmzS4yFNtkSAAAQi0iQBrYD1vmO4N9Sy2u7Y0vXW8sX79eu35Qn39bcjJ5H+V5zOlv7eatn3ccccl9957b7LzzjsP8j3hhBOSF1980UsX0jbzRy+NeTbq10ueO583n3dIep0vF8t1qi9/jEUfQdZYPImOmAhInZf5dTa9jsm33VpSffljdxnOIQABCECg/QTy63h67avn/De0L7IduzFuKHXUVTtLx3P3sZqFMEt3603P26pk6dKl2gZo2mdfR9UmCQIQgEAbCLAG1veC6V5R32p7LUjTW8cTTz75pPaMsc8++9Qx2Xhdk/9Vns900003aRxHjx49mDdp0qRk8+bN3ppvQq8vMX695KvXBXZjckyBxEx27HqlBnMyTuYCAi0jIHVexr7e5oeZNL15/VxDAAIQiIVAE+s5/w3td/TEuKFkS8w0vm1thVQvJN3Tp0/XNu5M/XeZp9okQQACEGgDAdbA+l4w3R/qW22vBWl663hCfRV3ntfee+9dx2TjdfN60mufHXvppZcSxS1tKz3utddeifqZEp8pbSt/9NmmL9sEWUuSfeaZZ5KBgYFh/+6+++5k27ZtQ1bVjwX3qqfK236ndX4AptdDjQd+cvvtt2sTXH1EnQQBCDRHgCCr+68L5v7S3HimZQhAAAKxE0jfH+SPPnXz39A+6SaDvzmZ92foG0q2xPIc1LWEFIrudevWJSNGjNDe05v67zJPtanaJkEAAhBokgBroBv6pvuDG8vttCJNbx0v/OIXv9CeMVRgMORk8r/K850uuugijeVdd93lu1mtzVS/94Y9NODfSx46XWQydUT+WFS+Sv4tt9yS7LLLLoXOT9vcY489EvUVTmm65557kl133bWw3qhRo5KnnnoqLV7pmLaZP1Yy0uLCBFlb7By6JpaA1HmZX2fTaxcDgfuLC4rYgAAEIAABE4H0fpU/msq6yuO/oV2RNNuJcUPJrHT43Py4VtcSUii658+fX7gPYtLgMk+1TYIABCDQJAHWQDf0TfcGN5bbaUWa3jpe2Lhxo/acMWHChDomG69r8r/K850eeeQRjeXChQt9N6u1mer33rCHBvx7yUOni0ymjsgfi8pXzVefUFVBU/V91Pk2DjjggOTBBx80mlSfVL3hhhsydUaOHJmcfvrpyUMPPWSsUyYz34f0ukzdEMpIDeaE4Bv6KJeA1HmZrq/5o6uRwP3FFUnsQAACEAiDwCWXXJJ5b5C/v/i+9k2pbf8N7Zsn9rPf9AEPeDAGGAOMAcYAY4AxwBhgDDAG3IwB3+/dLr74Yu296fHHH++7Wa3Nto2XSy+9tDQDgqylUXUK3n///YkKknY7/oILLugUMJytXLlyqPzYsWOTm2++2VCqWlZ3+93n1ay0r/SWLVuSRYsWJSeddNIQs1Sf+uHladOmJWeddVZy/fXXJ6osCQIQ6B8BgqzZByTX5Lm/uCaKPQhAAALtJBB7kLVt/w2dvpfgmH2OgQc8GAOMAcYAY4AxwBhgDDAGGAPtHgM+39Fee+21WvwlHQ9r1qzx2XRhu2n7TR/Ve/ayiSBrWVK5cieffHJmIEyZMiVXonOpAoGTJ08eLD9mzJjk1ltv7bxY46xooNUw2WjVtWvXJnPmzCn1tcypdvUVzqqOqkuCAAT8ENi8eXOyYMGCZPbs2ckhhxySWfvUXNxtt90GX1NlVNkYU7rm5I8+tHJ/8UEVmxCAAATaRSD2ICv/Dd3ujZr88wzX+IsxwBhgDDAGGAOMAcYAY4Ax0M4x4Oud7NKlSxP1gTbld/WNq/k93/PPP99X04N22z7eCLLulJ0QPkbD4sWLtUCD+rRqPr388svJjBkzBsuq31+98cYb80Wsr4sGorXBhio+//zzybx584YmdZGuXvlqQVA2lC0SBCDghsDq1auTWbNmJeqfQ3rNv+7XVFlVR9WNKXVr7D73oZH7iw+q2IQABCDQLgIxB1n5b+jse9Hu5wbOYcMYYAwwBhgDjAHGAGOAMcAYYAxUGQM+3sk+8MADybhx4wb3e9VXA7/44ovJVVddldn/HT9+fPLCCy/4aH7QZhUGTZQlyNqHIKsKnu67776ZgXfOOedog07lpYPg6quv1l6vk5HazR/r2Ox33XXr1g19yjevw+ZafWJY2SRBAAL2BDZt2jT4ydQRI0YMrV9V56Oqqz75qmzFkIr0+9DG/cUHVWxCAAIQaBeBWIOs/Dc0G0ZFz0zkMzYYA4wBxgBjgDHAGGAMMAYYA9XHgOt3shs3bkz233//wT3fQw89dGjvVu3hqp+57PbRwoULXTc/ZK+7nTaeE2TtQ5BVjYb812DtvvvuydatW4cGypVXXjk0KC+88MKhfFcnRYPPlX3fdlatWpXsueeeQ4yK9FTNVzaVbRIEIFCdwPLly5OJEyc6m5fKlrIZeipah3zp4v7iiyx2IQABCMgi0M/7V5v/Gzomr6ufZsj7Vf0XusSU56CuJaRQdB900EHaWDX13UfewQcfLGEooBECEGgxAdZAN84x3SPcWG6nFWl663jh6aef1p4zVGwm5GTyv8pzmZ599tlk6tSpg+wmTJiQPProoxnzZ555Zoar+pSrr9QPvb76nrfr1kt5632+7rdjHn/88WTkyJGZgXfdddcNqlZfC5y+dsYZZyTbt293TqPfel0KUJ829RFgTZko23yi1aXHsCWBwJIlSyr9JnI634Y7qt9OVrZDTkUafWni/uKLLHYhAAEIyCLQr/tX2/8bOiavx7ihZOsf0/i2tRVSvVB0z5w5M7NXYuq3rzzVNgkCEIBAkwRYA93QN90n3FhupxVpeut44be//a32nLHbbrvVMdl4XZP/VZ6r9NJLLw39rKXaq12xYoVmemBgQOO6Zs0arZyLDN96XfSxrA13XirbosdyTTgm/b3VtO3jjjsuuffee5Odd955cECecMIJg99p7UN22mb+6KMtlzbV76aqr/XN99v1tWqD32h16TlsxUxg2bJl2ldCuJyT6usmVBuhpiIWPvVwf/FJF9sQgAAEZBDox/2L/4bu71iKcUPJlqBpfNvaCqleKLrnz5/v/T2/iYXKU22TIAABCDRJgDXQDX3TOu/GcjutSNNbxwtbtmzRnjNe9apX1THZeF2T/1Wei6Q+AKh+1k3ZGzVqVLJ48eJCs4cffniG7XnnnVdYts4LPvXW6ZdNXTdesmnZQ50mHHPTTTdlBp3qw+jRowfzJk2alKivc/KVmtDrQsu8efM0ZkVa6uartkgQgEBvAhs2bEjUV0TUnW/D1VdtqLZCTEXafGrh/uKTLrYhAAEIyCDg+/7Ff0P3fxzFuKFkS9E0vm1thVQvFN3qm6VGjBjh/T1Gnodq8+GHHw7JpfQVAhCIkABroBun5td4dR1zkqa3ji/VP3rmef3O7/xOHZON183rSa/rdkwFWM8+++whXpdddllPk1dcccVQWdUH9dMk6tt0XKdUX/7oup1+2ItqZco7JL32CVJtLOy9996Zgafa3WuvvZLHHnvMZ9Nam/3QW1fQ2rVrh4LQaX99HlXAW7VJggAEign082tsQv3qrqJ1qphq/Ve4v9RniAUIQAAC0gn4vH/x39DNjK4YN5RsSZrGt62tkOqFpHv69OmF+xYmHS7yVJskCEAAAm0gwBpY3wum+0J9q+21IE1vHU8899xz2jOG+grckJPJ/yqvTlLB0e59X/Xtq9u2betp8vbbb9fYnnvuuT3r2LzoQ69NP1zUqeclFz1waKMpx1x00UXawLvrrrscKjObakqvuTflcufMmaOxKtLhKl+1SYIABMwEli5d2vc5qdoMLRWtR751cH/xTRj7EIAABOIm4Ov+xX9DNzduYtxQsqVpGt+2tkKqF5Lu2267jfcaIQ0u+goBCDglwBpYH2dI97z6ahPjPdOF3RhtqJ8IzI8P9VNlIae8nvTaRpP6x8xrrrkmOfDAAzVOl19++eCH0tSHO7rTxo0bB3+nNf/zZWk/TjvttGTBggXJ+vXru6tZn6d280drgw1WJMjqAP4jjzyiDdaFCxc6sNzbRH4Apte9azX3qvpqK/UfJWk/+3VUbaq2SRCAgE6A/6zUmZhyitYrU1mXedxfXNLEFgQgAAF5BHzcv/hv6GbHUYwbSrZETePb1lZI9ULT3f3pCVPfXeaF+q05IY0/+goBCFQjwBpYjVe+tOkekS8T07U0vXV898ILL2gxhle+8pV1TDZe1+R/lWeTFi1apPHJ2x8YGBgyrf6RU/1Wa76M6frEE08cqlfnxGRb5YWYwux1AemmHHPxxRdrA/D4448v6KW77Kb02iooM7mLNNXNV22TIACBLIEmfyNEtR1SKlqDfGvg/uKbMPYhAAEIxE3A5f2L/4Zux1iJcUPJlqxpfNvaCqleaLo3bNiQTJgwQdszMemok6faUG2RIAABCLSJAGtgPW+Y7gv1LLa7tjS9dbzx4osvas8WY8aMqWOy8bom/6u8WFNMeqPyUhOOufbaa7UJnfZjzZo1XudA2k7+6LXRGsbnzp1byCqvwfX1WWedVaPnVIVAnATmz5/f2JxUbYeUitYknxq4v/iki20IQAACMgi4vH+V+YdJ/hva/7iKcUPJlpppfNvaCqleiLqXLVuWqK/wM/XdRZ6yrdogQQACEGgjAdZAe6+Y7hH21tpfU5reOh5RX3Wb5/WKV7yijsnG6+b1pNeNd8xTB1J9+aOn5ryarRxkveSSS7QBnAfRtmtfBNXvCo4ePXqQx+mnn54ccsghGTbnn3++r6YH7baNM/3ZKeN/eMCDMRD/GPC1yHN/qTd2Lr30Ul+uwS4EIACBoAgUPYsEJaJCZyXojXFDqYKLM0VN/s4UiPQiVN1Llizx8vNB6ueBlG0SBCAAgTYTYA20806o9zw7tfwmaxVuL7/8srYPr77uNuRkGu8qL9YUk97KXiLIumNYP/DAA8m4ceMGJ7P6amD1H8VXXXVVZnKPHz8+UV/n5CsVDUTy623Oww9+jAHGQNkx4GN95/5Sf/ypZxUSBCAAAQiYN2rUPS7WVHT/jklvjBtKtv4x+dvWVkj1Qta9fPnyZOLEiZl9E5OesnnKlrJJggAEIBACAdbA6l4y3Q+qWwmnhjS9dT2T5zVy5Mi6Jhutn9eTXjfaKY+Np/ryR49NejNd+R02QdYk2bhxY7L//vsPvjE49NBDk02bNg06SB3zX4GzcOFCf87bqf5GdH4Qcw1TxgBjgDFQfgy4XuC5v5Rn32ucEmR1PTKxBwEIhEqgaK0MVc9w/ZaiN68z9A2l4fxa9Hqeg7qWkELXrfZNZs+enYwYMcI62KrqKhvpXowEv6MRAhCIgwBrYDU/hn7Pq6bW/A+SVW1IKp8fH+r5IOSU15Neh6ypV99Tffljrzptfa3yuxDpQdZnn302mTp16uCbgQkTJiSPPvpoxrdnnnlm5o2C+pSrr5QfgFy72ZyHIxwZA4yBsmPA5frO/cXduCPI6nJkYgsCEAiZQNH9LGRNvfouRW9eZ+gbSr182uu1PAd1LSHFonv16tXJrFmzkjFjxmT2UEz60jxVVtVRdUkQgAAEQibAGljOe+n6330sVzPMUt060/MwlfSn1ymj7mN/WvbTSreO7nM/rTVvtVtj93nzPaveg8rvQiQHWdXv38yYMWPwDYD63Y8VK1ZoxAcGBrQ3CGvWrNHKucjoHnycu9uchyUsGQOMgbJjwMVarmxwf3E75giyuhqZ2IEABEInUHQ/C11XUf+l6DXpLGISc75UDrHpVp/qWrBgweAnU9N/aM9rVJ9aVWX45GrMMxptEJBJgDWwt9/z9wN1HXOSpreuL03filHXZpP1Tf6PeczHpDeqlcmnY7Zv3z740K/aUD+ivHjx4sI5d/jhh2cCreedd15h2Tov+NRbp19FdadNm5bhUtR/H/mqbRIEIJAlcNBBBzU2Jw8++OBsZ1p+VbQuueg29xcXFLEBAQhAAAImAj7vX6b2ms6Toje2DSXbcWPyt62tkOrFrjt2fSGNNfoKAQj0nwBrYJa5NB7S9Ga9Xf1K/WRGnll1K+2pkdeSXrenh257kurLH9220h9rBFlLcFYb4GefffbQpL3ssst61rriiiuGyqpBMm7cuOTpp5/uWcfmxfwATK9tbPWjzty5czNc0v7243jWWWf1QyJtQCAoAjNnzmxsTqq2Q0pF61RdDdxf6hKkPgQgAAEI9CLg6/7Vq80mX5OiN7YNJdsxY/K3ra2Q6sWuO3Z9IY01+goBCPSfAGtglrk0HtL0Zr1d/eoVr3iFtq+pviku1GTyv8qLNcWkNyov+XCMCo52ByJ23nnnZNu2bT3H9u23365N8HPPPbdnHZsXfei16UfZOosWLdK4FGlwnX/99deX7SblICCGwPz58xubk6rtkFLRmlRHA/eXOvSoCwEIQAACZQj4uH+VabepMlL0xrahZDteTP62tRVSvdh1x64vpLFGXyEAgf4TYA3MMpfGQ5rerLerX40ePVrb1/zf//3f6oZaUsPkf5UXa4pJb1RecumYZ599NrnmmmuSAw88UJusl19+ebJ27drB39DrHuQbN24c/J3W9Hdb8/057bTTBn9HZP369d3VrM/z9tNra4OeK27ZsiVRv2Wb9rNfR9WmapsEAQhkCaxbty4xfd2c77mp2nz44YeznWn5VRETm25zf7GhRh0IQAACELAh4PL+ZdN+v+tI0RvbhpLtODH529ZWSPVi1x27vpDGGn2FAAT6T4A1MMtcGg9perPern41ZswYLc7w4osvVjfUkhom/6u8WFNMeqPykkvHlPnU5cDAwNAYf+655wZ/q7WoD935J5544lC9OifdNrvP69j0XXfOnDna4tfddx/nqk0SBCBgJjB9+vS+z0nVZmipaG2y0cH9xYYadSAAAQhAwIaAy/uXTfv9riNFb2wbSrbjxORvW1sh1Ytdd+z6Qhpr9BUCEOg/AdbALHNpPKTpzXq7+tXYsWO1Pc3nn3++uqGW1DD5X+XFmmLSG5WXYnJMmckTol71CWDTf14Xaambr9pSbZIgAAEzgdtuu017IKk774arv3TpUnNnWpxbpKnFXa7VNWl6a8GiMgQgAIEWE5C2nkvRG9uGku0UMvnb1lZI9WLXHbu+kMYafYUABPpPgDUwy1waD2l6s96ufqV+1jHPbOvWrdUNtaRGXkt63ZLuOe9Gqi9/dN5QHwwSZO0DZF9N5Adgeu2rPVd2582bpy2Aad9dH1VbJAhAoDeB7t+ddj0H8/ZUWyGmvI70OkQtZfqc6ssfy9SlDAQgAAEItIdAfh1Pr9vTQ7c9SfXlj25bad5abBtKtkTzflbXElLsumPXJ2GMohECELAnwBqYZSeNhzS9WW9XvzL9LKH6ttFQk8n/Ki/WFJPeqLwUk2PKTJ5Q9aqP7U+ePNl7oFW1EfJXBJQZA5SBgAsCGzZsSCZMmOB9Tqo2VFshplDXW1vW0vTacqIeBCAAgbYTkLaeS9Eb24aS7Twy+dvWVkj1Ytcdu76Qxhp9hQAE+k+ANTDLXBoPaXqz3q5+9apXvUrby9yyZUt1Qy2pYfK/yos1xaQ3Ki/F5JgykydkvevWrUv23HNPbSEs0lQ1X9lWbZAgAIFyBJYtW5aYvnqu6twrKq9sqzZCTUW6QtUzXL+l6R2OB69DAAIQCJWAtPVcit7YNpRs55fJ37a2QqoXu+7Y9YU01ugrBCDQfwKsgVnm0nhI05v1dvWrXXfdVYstPPPMM9UNtaSGyf8S81rijkrdIMhaCVe7ChdNsnb1srg3q1at8hJoVQFWZZsEAQhUI7BkyZLE9MmIorWmbL6yqWyHnIq0hqypV9+l6e3FgtcgAAEIhExA2nouRW9sG0q2c8zkb1tbIdWLXXfs+kIaa/QVAhDoPwHWwCxzaTyk6c16u/rVbrvtpgVZf/vb31Y31JIaJv9LzGuJOyp1gyBrJVztKlw0ydrVy969UZ82dfnVwcoWn2DtzZxXIdCLwPLly5OJEydqDylF681w+cqWshl6KtIZuq6i/kvTW8SBfAhAAAKhE5C2nkvRG9uGku08M/nb1lZI9WLXHbu+kMYafYUABPpPgDUwy1waD2l6s96ufjVu3Dht/3Lz5s3VDbWkhsn/EvNa4o5K3SDIWglXuwoXTbJ29XL43qjfTZ03b14yevRobWEs0pjPV3WVDX6DdXjelIDAcAQ2bdqUzJ49OxkxYoT1nFR1lQ1lK4aUX3PS6xi0mTSk+vJHU1nyIAABCECgvQTy67jU6/Z6yK5nsW0o2VFIjM+ptrZCqmeaxyH1f7i+xq5vOP28DgEIyCbAGpj1vzQe0vRmvV39ao899tCeB0PehzT5X2Je9ZHQfA2CrM37wLoHRZPM2mDDFdeuXZvMmTOn0teVqq8hVXVUXRIEIOCWwOrVq5NZs2YlY8aM0R5aitYfVVbVUXVjSkV6Y9LYrUWa3m7tnEMAAhCIiUDRei4tPyafKi2xbSjZ+sc0jm1thVQvdt2x6wtprNFXCECg/wRYA7PMpfGQpjfr7epXr371q7X9yt/85jfVDbWkhsn/EvNa4o5K3SDIWglXuwoXTbJ29bJ6b7Zs2ZIsWrQoede73qUtlCqAM23atGTu3LmDZVRZEgQg4JeA+i+wBQsWDH4y9eCDD9bm5e677z74mioT8n+M9aIY63pbpFma3iIO5EMAAhAInUDRei4tP3Q/5vsf24ZSXl/Za9M4Lls35HKx645dX8hjj75DAAL+CbAGZhlL4yFNb9bb1a/Gjx+v7VH++te/rm6oJTVM/peY1xJ3VOoGQdZKuNpVuGiStauX9r35zne+oy2UJ510kr1BakIAArUJfPe739Xm5YwZM2rbbbuB2NfbPH9pevP6uYYABCAQC4Gi9Vxafiz+THXEtqGU6qp6NI3jqjZCLB+77tj1hTjm6DMEINA/AqyBWdbSeEjTm/V29avXvOY12h7lL3/5y+qGqAGBmgQIstYE2GR108Kr8mJJBFlj8SQ6YiIgdV7Gvt7mx6g0vXn9XEMAAhCIhUDRei4tPxZ/pjrYUNpBwjSOU0YxH2PXHbu+mMcm2iAAgfoEWAOzDKXxkKY36+3qV3vuuacWZH3qqaeqG6IGBGoSiCcilyTapEoXppqMWls91Zc/trbDFTsmNZhTERPFIdBXAlLnZX6dTa/7Cr+PjaX68sc+doGmIAABCEDAAYH8Oi712gHKVplgQ2mHO0zjuVWO8tSZ2HXHrs/TsMAsBCAQCQHWwKwjpfGQpjfr7epXEyZM0OJBGzdurG6IGhCoSYAga02ATVY3LbwqL5Z08803awvlySefHIs8dEAgSAIEWXfKrEtBOrFEp2O/v5RAQBEIQAACEIBAawmwobTDNabnldY6zWHHYtcduz6HQwFTEIBAhARYA7NOlcZDmt6st6tf7b333pk9OsVvw4YN1Q1RAwI1CcQTkeOTrEOLSs0x0ZrqBFlb4wo6AoEhAlLnpelBV+XFmqTpjdWP6IIABCAAgTgJsKG0w6+m55U4PZ5VFbvu2PVlvckVBCAAgSwB1kDZPPB/1v/DXb32ta8dioek7H7+858PV43XIeCcQFQ7xOlkyh+dU2uJwbzO9Lol3avdDanBnNrgMAABjwSkzst0fc0fPaJu1HReZ3rdaKdoHAIQgAAEIACBQQJsKO0YCOnzSfdRwhDp1puex6Q71dR9jEkfWiAAAQj0ItC99qXnvcrH/lrKoPsYs+Zunel5zHrrattnn320IOuTTz5Z1yz1IVCZAEHWysjaUyFdbPPH9vSwXk+kBnPqUaM2BPwSkDov8+tseu2XdnPWU335Y3M9omUIQAACEIAABFICbCjtIJF/TlHXElLsumPXJ2GMohECELAnwBqYZSeNhzS9WW9Xv5o4caIWZH3iiSeqG6IGBGoSiOpdiGkhkphXc0y0pvrixYu1hfI973lPa/pHRyAgkQBB1uxvskq7x0gc82iGAAQgAAEItI0AG0o7PGJ6Dmubr3z0J3bdsevzMSawCQEIxEOANTDrS2k8pOnNerv61ete9zotdvD4449XN0QNCNQkQJB1p/g2zGuOidZUJ8jaGlfQEQgMEZA6L00PuhLzhgYCJxCAAAQgAAEINEaADaUd6E3PYkEfVL0AACAASURBVI05pY8Nx647dn19HCo0BQEIBEiANTDrNGk8pOnNerv61X777acFWR977LHqhqgBgZoECLISZK05hPxVlxrM8UcUyxCoT0DqvDQ96ErMqz+CsAABCEAAAhCAQF0CbCjtIGh6FqvLNoT6seuOXV8IY4w+QgACzRFgDcyyl8ZDmt6st6tfHXDAAVqQ9ZFHHqluiBoQqEmAICtB1ppDyF/1b3/729pC+d73vtdfg1iGAASGJUCQNb5vPzA9xBflDTtAKAABCEAAAhCAgHcCbCjtQGx6XvEOvwUNxK47dn0tGEJ0AQIQaDEB1sCsc6TxkKY36+3qV69//eu12MHDDz9c3RA1IFCTAEFWgqw1h5C/6gRZ/bHFMgRsCUidl6YHXYl5tuOGehCAAAQgAAEIuCPAhtIOlqZnMXeU22spdt2x62vvyKJnEIBAGwiwBma9II2HNL1Zb1e/esMb3qAFWdetW1fdEDUgUJMAQVaCrDWHkL/qUoM5/ohiGQL1CUidl6YHXYl59UcQFiAAAQhAAAIQqEuADaUdBE3PYnXZhlA/dt2x6wthjNFHCECgOQKsgVn20nhI05v1dvWrgw46SAuyPvTQQ9UNUQMCNQlEFWStyYLqLSPwrW99S1so3/e+97Wsl3QHArIISA2yyvIyaiEAAQhAAAIQaDMBNpR2eEfqRmTsumPX1+a1hb5BAALNE2ANzPpAGg9perPern518MEHa7GDBx98sLohakCgJgGCrDUBUt0fAYKs/thiGQK2BJiXtuSoBwEIQAACEIAABNwQYENpB0epG5Gx645dn5tVACsQgECsBFgDs56VxkOa3qy3q18dcsghWpB1zZo11Q1RAwI1CRBkrQmQ6v4IEMzxxxbLELAlwLy0JUc9CEAAAhCAAAQg4IYAG0o7OErdiIxdd+z63KwCWIEABGIlwBqY9aw0HtL0Zr1d/erQQw/Vgqw/+9nPqhuiBgRqEiDIWhMg1f0RuOmmm7SFcubMmf4axDIEIDAsAYKswyKiAAQgAAEIQAACEPBKgA2lHXilbkTGrjt2fV4XB4xDAALBE2ANzLpQGg9perPern41adIkLXbwwAMPVDdEDQjUJECQtSZAqvsjQJDVH1ssQ8CWAPPSlhz1IAABCEAAAhCAgBsCbCjt4Ch1IzJ23bHrc7MKYAUCEIiVAGtg1rPSeEjTm/V29avDDjtMC7L+5Cc/qW6IGhCoSYAga02AVPdHgGCOP7ZYhoAtAealLTnqQQACEIAABCAAATcE2FDawVHqRmTsumPX52YVwAoEIBArAdbArGel8ZCmN+vt6ldvfOMbtSDr/fffX90QNSBQkwBB1poAqe6PwDe/+U1toTzllFP8NYhlCEBgWAIEWYdFRAEIQAACEIAABCDglQAbSjvwSt2IjF137Pq8Lg4YhwAEgifAGph1oTQe0vRmvV39avLkyVrs4L777qtuiBoQqEmAIGtNgFT3R4Agqz+2WIaALQHmpS056kEAAhCAAAQgAAE3BNhQ2sFR6kZk7Lpj1+dmFcAKBCAQKwHWwKxnpfGQpjfr7epXRxxxhBZkXb16dXVD1IBATQIEWWsCpLo/AgRz/LHFMgRsCTAvbclRDwIQgAAEIAABCLghwIbSDo5SNyJj1x27PjerAFYgAIFYCbAGZj0rjYc0vVlvV7868sgjtSDrqlWrqhuiBgRqEiDIWhMg1f0RIJjjjy2WIWBLgHlpS456EIAABCAAAQhAwA0BNpR2cJS6ERm77tj1uVkFsAIBCMRKgDUw61lpPKTpzXq7+tWUKVO0IOvKlSurG6IGBGoSIMhaEyDV/RG48cYbtYXy/e9/v78GsQwBCAxLgCDrsIgoAAEIQAACEIAABLwSYENpB16pG5Gx645dn9fFAeMQgEDwBFgDsy6UxkOa3qy3q18dddRRWuzghz/8YXVD1IBATQIEWWsCpLo/AgRZ/bHFMgRsCTAvbclRDwIQgAAEIAABCLghwIbSDo5SNyJj1x27PjerAFYgAIFYCbAGZj0rjYc0vVlvV786+uijtSDrihUrqhuiBgRqEiDIWhMg1f0RIJjjjy2WIWBLgHlpS456EIAABCAAAQhAwA0BNpR2cJS6ERm77tj1uVkFsAIBCMRKgDUw61lpPKTpzXq7+tW0adO0IOvy5curG6IGBGoSIMhaEyDV/RH4xje+oS2UH/jAB/w1iGUIQGBYAgRZh0VEAQhAAAIQgAAEIOCVABtKO/BK3YiMXXfs+rwuDhiHAASCJ8AamHWhNB7S9Ga9Xf3qzW9+sxY7uPfee6sbogYEahIgyFoTINX9ESDI6o8tliFgS4B5aUuOehCAAAQgAAEIQMANATaUdnCUuhEZu+7Y9blZBbACAQjESoA1MOtZaTyk6c16u/rVW97yFi3Ies8991Q3RA0I1CRAkLUmQKr7I0Awxx9bLEPAlgDz0pYc9SAAAQhAAAIQgIAbAmwo7eAodSMydt2x63OzCmAFAhCIlQBrYNaz0nhI05v1dvWrY445RguyDgwMVDdEDQjUJECQtSZAqvsjcMMNN2gL5Qc/+EF/DWIZAhAYlgBB1mERUQACEIAABCAAAQh4JcCG0g68UjciY9cduz6viwPGIQCB4AmwBmZdKI2HNL1Zb1e/eutb36rFDu66667qhqgBgZoECLLWBEh1fwQIsvpji2UI2BJgXtqSox4EIAABCEAAAhBwQ4ANpR0cpW5Exq47dn1uVgGsQAACsRJgDcx6VhoPaXqz3q5+deyxx2pB1jvvvLO6IWpAoCYBgqw1AVLdHwGCOf7YYhkCtgSYl7bkqAcBCEAAAhCAAATcEGBDaQdHqRuRseuOXZ+bVQArEIBArARYA7OelcZDmt6st6tfve1tb9OCrMuWLatuqCU1TP6XmNcSd1TqBkHWSrgo3E8CX//617WF8tRTT+1nF2gLAhDIESDImgPCJQQgAAEIQAACEOgzgdg2lGzxmTadbG2FVC923bHrC2ms0VcIQKD/BFgDs8yl8ZCmN+vt6lfHH3+8Fju44447qhtqSQ2T/yXmtcQdlbpBkLUSLgr3kwBB1n7Spi0IlCPAvCzHiVIQgAAEIAABCEDAF4HYNpRsOZk2nWxthVQvdt2x6wtprNFXCECg/wRYA7PMpfGQpjfr7epXJ5xwghZkvf3226sbakkNk/8l5rXEHZW6QZC1Ei4K95MAwZx+0qYtCJQjwLwsx4lSEIAABCAAgTYQkPim3KS5Db5w2YfYNpRs2UjwtYlN7Lpj12fyKXkQgAAEUgKsgSmJHUdpPKTpzXq7+tX06dO1IOv3vve96oZaUsPkf4l5LXFHpW4QZK2Ei8L9JPC1r31NWyg/9KEP9bMLtAUBCOQIEGTNAeESAhCAAAQg0GICEt+UmzS32EVWXYttQ8kKQpJo7xWV7yWk2Md47PokjFE0QgAC9gRYA7PspPGQpjfr7epXb3/727Xnwdtuu626oZbUMPlfYl5L3FGpGzLehVRCQuH/z967QN9RVPn+JpBMEsBAgMBc5B9YYwBF8eKMEddd40TXgDM8BubigAFEb0wiiBLkEREQRXyAQPABozzGBwMJ6IheHLkKxlkLBiEiN4KgDkQJl1EZmGsMScAQsP5r/3I7dHdV/87p6sep2vWptbK6q0/Xrv397F19+lTl1x0KARZZQ4kEfkDgRQKMyxdZsAcBCOgm8O///u/mLW95iznkkEP4NwSDL37xi7oTIlJ1Kf4od2mONHyVbmubUKoUOuCDFGLtQqBdt3Z9rphyDAIQgEBGgGtgRmLLNjUeqektRrt+7S//8i+tRdbbb7+9vqFAWrjin+KxQMJRyw0WWWvh4uQ+CbCY0ydt+oLAcAQYl8Nx4iwIQCB+Avfee6/1gy3FHzjDaj755JPjD7pCBcPGT/t52kKrbULJNz6uvPW1FVM77bq164sp1/AVAhDonwDXwCLz1HikprcY7fq1gw8+2PrNftttt9U3FEgLV/zlmNaiSa/eKGnNvoR0sZiTULCRGg0BxmU0ocJRCECgIQEWWV9i/WCt+hEkx1lkbZhwHTUfL2YpfdYR3pGZ1Tah5AvSlcO+tmJqp123dn0x5Rq+QgAC/RPgGlhknhqP1PQWo12/Jk+eKjP7zne+U99QIC3KWrJ6IO617kamr7xtvaMeDLLI2gNkuvAjcOONN1oXymOPPdbPGK0gAIFWCLDI2gpGjEAAAhEQYJGVRdYI0nSgi+UfrKnWB4KK7ARtE0q++F357GsrpnbadWvXF1Ou4SsEINA/Aa6BReap8UhNbzHa9Wt/9Vd/Za0d/K//9b/qGwqkhSv+ckxr0aRXb5S0Zl9CulhkTSjYSI2GAOMymlDhKAQg0JAAi6wssjZMoSCaa/rhOgzQVPRqm1AaJrauc1zxdp2n7Zh23dr1actH9EAAAu0S4BpY5Jkaj9T0FqNdv/bXf/3X1iLrrbfeWt9QIC1c8ZdjWosmvXqjpDX7EtLFYk5CwUZqNAQYl9GECkchAIGGBFhkZZG1YQoF0VzTD9dhgKaiV9uE0jCxdZ3jirfrPG3HtOvWrk9bPqIHAhBolwDXwCLP1HikprcY7fq1ww47zFpk/ed//uf6hgJp4Yq/HNNaNOnVGyWt2ZeQruXLl1sXyre97W0JEUAqBMIjwCJreDHBIwhAoBsCLLKyyNpNZvVrVdMP12HIpaJX24TSMLF1neOKt+s8bce069auT1s+ogcCEGiXANfAIs/UeKSmtxjt+rXDDz/cWjv41re+Vd9QIC1c8ZdjWosmvaqiVBWY1I5rGXgssmqJJDo0EUh1XKb2PVKlV1MuowUCgwiwyMoi66AcieHz1K7nqejVNqHkO5Zc8fa1FVM77bq164sp1/AVAhDonwDXwCLz1HikprcY7fq1I444wlpkveWWW+obCqSFK/5yTGvRpFdVlKoCk9pxLQMv1cUcLfFDh04CqY7L1L5HqvTqzGpUQcBN4KGHHjITJ040EyZM4N8QDM466yw3SI6OlEBq1/NU9GqbUPIdJK54+9qKqZ123dr1xZRr+AoBCPRPgGtgkXlqPFLTW4x2/dqRRx5pLbJ+85vfrG8okBau+MsxrUWTXlVRqgpMase1DLxly5ZZF8p58+ZpkYcOCERJgEXWen/Zpe37J8qkxWkIQAACCROo+h7SiiQVvdomlHzz0RVvX1sxtdOuW7u+mHINXyEAgf4JcA0sMk+NR2p6i9GuXzvqqKOstYNvfOMb9Q0F0sIVfzmmtWjSqypKVYFJ7biWgcciq5ZIokMTgVTHZWrfI1V6NeUyWiAAAQikQCC163kqerVNKPmORVe8fW3F1E67bu36Yso1fIUABPonwDWwyDw1HqnpLUa7fu1v//ZvrUXWm2++ub6hQFq44i/HtBZNelVFqSowqR3XMvBSXczREj906CSQ6rhM7XukSq/OrEYVBCAAAb0EUruep6JX24SS7wh0xdvXVkzttOvWri+mXMNXCECgfwJcA4vMU+ORmt5itOvXjj76aGuR9etf/3p9Q4G0cMVfjmktmvSqilJVYFI7rmXg3XDDDdaF8rjjjtMiDx0QiJIAi6w8LjjKxMVpCEAAAokSqPodpBVHKnq1TSj55qMr3r62YmqnXbd2fTHlGr5CAAL9E+AaWGSeGo/U9BajXb/21re+1Vo7+NrXvlbfUCAtXPGXY1qLJr2qoqQpMMMMHu16WWQdJgs4BwL9Ekh1XGq/3pazKDW9Zf3UIQABCGghkNr1PBW92iaUfMebK96+tmJqp123dn0x5Rq+QgAC/RPgGlhknhqP1PQWo12/9nd/93fWIutXv/rV+oYCaeGKvxxrozz99NPmrrvuGvjvBz/4gXnhhRe2dvnMM8+M20bO/8Mf/rD1/Do7Xeqt40cb57YTpTY8acGGpsAMg0O73lQXc4aJPedAYFQEUh2X2q+35XxKTW9ZP3UIQAACWgikdj1PRa+2CSXf8eaKt6+tmNpp161dX0y5hq8QgED/BLgGFpmnxiM1vcVo168dc8wx1iLrTTfdVN9QIC1c8ZdjbZTvfOc7Ztq0aRavcp877bSTefzxx7d2effdd5sddtihst0222xj/uM//mPr+XV2yn1n9To2Qjm3nSgFoiYLRHkbiHutu1HWmdVb72hEBq+//nprAB9//PEj8oZuIQABIcAia/FxwVqzIvs+KW+16kUXBCAAAa0EytfxrI7euAlom1DyjUaWz/mtr62Y2uX1Zvsx+T/I10xTfjuoDZ9DAAIQ0EIgf+3L9rVo89GRMchvfezE0iavM9uPxfdR+Pm2t73NWjtYvnz5KFxppc8s5uVtK8aNGfsLVVk0feUrX2lx23vvvc2//du/ObuSv1SVxzDn/Zo4caKR1zo+/PDDzjbDHMzby+8P0za0c1hkDS0iNfzJJ19+v4aJoE9lkTXo8OBcogRSHZf5a2x+X2sa5DXm97XqRRcEIAABrQTy1/D8fht6eeRUGxT9bGibUPKjYAoTPVl++9qKqV2mNb+Nyf9BvuZ1ZfuD2mj8fO3atea6664z8+fPN6973evMLrvsYiZPnjz2T/blmHwm58i5FAjEQIC8Hhyl7LqX3w5upfeMPIdsX6/adO9tfGM6b948635w2bJlvuZG3i7L8fK2bcd+8pOfGFkkzfdz9tlnj9vNfffdt/X8KVOmmG9961vjnj/Mh/n+8/vDtA3tHBZZQ4tIDX/yyZffr2Ei6FNTXcwJOig4lzyBVMdl/hqb39eaEHmN+X2tetEFAQhAQCuB/DU8v9+GXh451QZFPxvaJpT8KKQ7EZkfy9m+L8MQ22Wa8tsQ/ezKpx//+MdGxrgsqOYZjLcv50obaUuBQIgEyOvho+Ia68O31ndmajxS09s0Y+UvKcvM5Al8sZaylqzehZ7DDz+8wO61r31tZTfr1683BxxwwNj5cs9x2223VZ5b54NMX3lbx0Yo57LIGkokPPwoJ2BW9zAVZJNUF3OCDAZOQeD/EUh1XGbX1/JWa2KUdWZ1rXrRBQEIQEArgez6Xd62pfeFF14wPHKqLZrD29E2oTS88uKZ5byWegpFu27t+qpy9Le//e3YX6ZOmDChMOnp4lF1TNrKX7eKLQoEQiBAXtePgmt817eip0VqPFLT2zRTTzjhBOs78x//8R+bmh1Ze1f85VgX5ZZbbrHYyV+rlsvzzz9vDj300LFz5f2rX//618uneNf71Ovt5JANu4nSkJ23fZqmwAzDRrteuSiWNcrFkwIBCIyOAIusvJN1dNlHzxCAAAQgUJdA+V46q9e1M+h8Hjk1iFC7n2ubUPKlk+VzfutrK6Z2eb3Zfkz+D/I105TfDmoT++crV640e+65pzX/kWdQZ19siU0KBEZJgLz2o+8a636WdLRKjUdqeptm6dvf/nbru1Meox9rccVfjnVRZPH0ZS97WYHfySefbHUlxzK/rrrqKuvzJgcyu+VtE5ujattNlEakphyQrD4idzrvNtNX3nbecU8dsMjaE2i6gUANAqmOy/J1NqvXQBfVqZm+8jYqETgLAQhAAAJbfxD3cT3nkVP9JZy2CSVfcuW8lnoKRbtu7frKOXrrrbeaadOmVV6vXTyGOSY2xTYFAqMgQF77U3eNb39r8bdMjUdqeptm6Iknnmh9f37lK19panZk7V3xl2NdlfPPP7/Ab/r06eaZZ57Z2t2ll1669fNzzjln6/G2dvrW25bfLjvdRcnVW8fHNAVmGFTa9aa6mDNM7DkHAqMikOq41H69LedTanrL+qlDAAIQ0EKgz+s5j5zqL2u0TSj5knPlt6+tmNpp161dXz7X7rjjDjNlypStE5gu7U2OiW3pgwKBPgmQ181ou8Z8M4txt06NR2p6m2bnO9/5Tus79Etf+lJTsyNr74q/HOuqPPbYY2bixIkFhtkitTwWOPvs+OOPN3/4wx9ad6Nvva0LyBnsLkq5Tvra1RSYYZhp1yt/3l/WKP9rmwIBCIyOAIusPC54dNlHzxCAAAQgUJdA+V46q9e1M8z5PHJqGErtnKNtQsmXSpbP+a2vrZja5fVm+zH5P8jXTFN+O6hNjJ//+te/Nrvttps155HX3ca+9CF9USDQBwHyujll17hvbjVeC6nxSE1v08z8H//jf1jfo1/84hebmh1Ze1f85ViXJXvfatb3n//5n5t77rnHTJ06dYzt3LlzzaZNmzpxIeuzvO2ks46Ndhuljp0vmy8HJKuXz9NSz/SVt1r0sciqJZLo0EQg1XFZvs5mdU2xzWvJ9JW3+XPYhwAEIACB8AmUr+NZvSvPeeRUV2SLdrVNKBXVDV/L8jm/Hb51vGfm9Wb78aqxPc805bf2WfEfOeqoo6yJ4bzmNvelLwoE+iBAXjen7Br7za3GayE1HqnpbZqZ8+fPt75L/+Ef/qGp2ZG1d8VfjnVZvvGNb1gMJ02aNHbsla98pVm7dm1n3Y9Cb1diuo1SV15X2NUUmAqJhcPa9aa6mFMIMhUIBEYg1XGp/XpbTrPU9Jb1U4cABCCghUDf13MeOdVP5mibUPKl5spvX1sxtdOuW7s+ybUVK1ZYE5ou3W0ekz4pEOiSAHndDl3XuG/HcpxWUuORmt6mWblgwQLr+/Saa65panZk7V3xl2Ndls2bN5s//uM/tjjuvvvuZs2aNV12bfWZ6e+0046MdxuljpyuMpsForytOj/242WdWT12XZn/8gzwTFO2lfcPUSAAgdERYJGVxwWPLvvoGQL9Eti4caO59tprzdVXX82/IRisWrWq3wDR21AEsnvo8naoxp4n8cgpT3A1mmmbUKohvXBqOa+lnkLRrlu7PsnRN73pTdZch0t3m8ekTwoEuiRAXrdD1zXu27Ecp5XUeKSmt2lWLly40Po+ld/vsRZX/OVY1+Xcc8+1OP7rv/5r191afWb6O++4gw66j1IHTleZzAJR3ladX+f4008/be66666B/37wgx+YF154YavpZ555Ztw2cr7vi4PLOrP61s4j32GRNfIA4r5KAqmOy+z6Wt62EWS+X9qgiA0ItE/g3nvvrbzpL18LqL/EnHzyye0HAYuNCVTlZmPD4xjgkVPjwGnpI20TSr5YXPntayumdtp1a9e3evVqM2HChN7vMaRP6ZsCgS4IkNftUdV+DaxLKjUeqemtmw/l8xctWmR9n1511VXl06Kpu+Ivx7ouv/zlLy2Oy5Yt67pbq89Mf+cdd9BB91HqwOkqk1kgytuq8+sc/853vmOmTZtWGfysz5122sk8/vjjW03ffffdZocddqhst80225j/+I//2Hp+nZ2sz/K2jo2Qz011MSfkmOAbBFIdl+XrbFZvIyP4fmmDIjYg0D4BFlmLf7mfXfeqtiyytp+DbVisilcbtqts8MipKjLtHdc2oeRLxpXfvrZiaqddt3Z9S5curZwfcmlv85j0TYFAFwTI6/aousZ8e9bjs5Qaj9T0Ns3Ik046yfpO/cIXvtDU7Mjau+Ivx7ou559/vsXxL/7iL7ru1uoz0995xx100H2UOnC6ymQWiPK26vy6x+UvVGXRVF76W+5j7733Nv/2b//mNCl/qfq1r32t0GbixInmuOOOMw8//LCzzTAHyz5k9WHaxnDOl7/85QIz0feOd7wjBtfxEQJqCbDIWlx0aCvQfL+0RRI7EGiPAIusxetddp9ZtWWRtV7uffjDH7buc6vYdnG8nrf1zw7tkVNdMMRmvWsEvOBFDpAD5AA5QA6QA+QAOUAO1M+B+r/Ghm/hWn/JYvTzn/98eEMeZ2b9hLr9yEc+MrQqFlmHRvXiiT/5yU+MLJLmE+Dss89+8QTH3n333bf1/ClTpphvfetbjrPqHcr3n9+vZyXcs12DnEXWcOOFZ2kQSHVc5q+x+f22o873S9tEsQcBfwIsstb78ccia71c077IGtojp/Lf3ezXG9vwghc5QA6QA+QAOUAOkAPkADkwuhyo90tz+LNXrFhhJk2aNLZmJX8MuO+++25dv5J4n3HGGcMb8zgz9JyS3+zDFhZZhyVVOu/www8vJN1rX/va0hkvVtevX28OOOCAsfMnT55sbrvtthc/bLBXlYgNTAbVNNXFnKCCgDMQKBFIdVz2eb3l+6WUdFQhMCICLLLW+xHJImu9RNW+yBraI6eqvsc5Xm+cwwte5AA5QA6QA+QAOUAOkAPkQL85UO+X5nBnP/TQQ2bHHXccW6+SRwNv2rTJXH755YX1rl122cX8/ve/H86gx1mh5xGLrC8pJrpHjAc2ueWWWwpJJ0khf61aLs8//7w59NBDx86V969+/etfL5/iXa9KRG+DgTSURenly5cbGeBljfJXwHPmzDHyHqIbb7zRyLkUCECgPwIssvL90l+20RMERkuARdbi9a58T1aus8haL181L7K67hWyfEn9kVMZB7b1ri/wghc5QA6QA+QAOUAOkAPkQKo5UO+X5uCzn3jiCbPXXnuNrbu84hWvML/97W/HGslW1l7ynJctWzbYoOcZ+X5C3GeRtYdFVlk8fdnLXlZIOtfkkhzLkuSqq67yTDl3s8xuees+O/yjjzzyiFmwYIGZNm3aVmZlbeW6nCttpC0FAhDohsDatWvNddddZ+bPn2/k/dPlcSj/s0k+k3PkXI2lrDmrd6GV75cuqGITAvUJsMha70e86z64PvV0WmhdZOWRU/XGTXY/wRZu5AA5QA6QA+QAOUAOkAPkADngyoE2fyVv2LDBvO51rxub291tt93Mo48+WjB/4oknFuZ95Y/guiourSEdY5G1h0VWSa7yY7CmT59unnnmma15d+mll25NynPOOWfr8bZ2qpKuLft92Xn22WfNkiVLtj4DvErXeMfl+eFiQ2xRIACBdgj8+Mc/NvPmzTPymPPxxl/+MzlX2khbTSWvMb/flUa+X7oii10IDE+ARdZ6P3BZZB0+t/o8M/+dld/vwoeQHznVhd5R2jz11FOte7PPfOYzcksBggAAIABJREFUo3RpJH3nczrbH4kjPXeaac1ve3ah0+7yurL9Tjvs2fjs2bOt8Zvp7Hq7zz779KyW7lIhQF63F2nXdaA96/FZSo1HanqbZuTixYut79RPf/rTTc2OrL0r/nKsrbJ58+atT1yVP1yTOY9yueuuuyymXT2NqGu9ZW1d1tuLUpdeDmm778A89thjZuLEiYXE+8pXvjLmrTwWOPvs+OOPN3/4wx+GVDH8aX3rHd6z4c9cvXr11vfVVumpc1zefSs2KRCAgD8BeTyE/GXqhAkTCte3OmNR2oqN7JET/t6E0bJKe1fe8f3SFVnsQmB4AvJOkptvvnnsVQ9yX8e/8Rk8/PDDw8PlzN4I9PX9Ffojp3oD3lNH2iaUfLG58tvXVkzttOvWru+oo47y/o3lYlPnmPRNgUAXBMjr9qi6xnR71uOzlBqP1PQ2zcj3v//91nfq0qVLm5odWXtX/OVYG0XWpmSeVuzJKy3lVZhV5dWvfnWB6+mnn151aqPjXept5JhH43ai5NFxF01GEZjsfatZ33/+539u7rnnHjN16tSxZJw7d+7Yi4O16G1Tx6pVq8zMmTMLgzbj2GQrNsU2BQIQqE9g5cqVZs8992xtXIotsRl7qbomdamL75cu6WIbAhCAQBoE+vj+iuGRU9qirW1CyTc+rvz2tRVTO+26teuTyV+Xxj6OxTzxHNMYTdFX8rq9qLuuBe1Zj89SajxS09s0I2Xxr8zssssua2p2ZO3LWrJ6U4dkgfWkk07ayuriiy8e1+Qll1yy9VzxYccddzS/+93vxm3j82Gmr7z1sTXqNiyyNozAN77xjULSSVLIo2tl+8pXvrLT9xOWEzCrN5TUS3P5a9MuFlgzBmKbv2jtJZR0oojArbfeWuudyNl4G7SVR1CI7ZhLlcYuNfH90iVdbEMAAhBIg0DX3188cmo0eaRtQsmXoiu/fW3F1E67bu36ZJ6iyRODXHyGOSZ9/uIXv4gp1fE1IgLkdXvBco3n9qzHZyk1HqnpbZqRZ5xxhrUuI69vjLW44i/HmhRZHM0/bUD+MPCFF14Y1+S//Mu/WFzlSTptly70tu3jsPaaRWnYXno6bxSBkYmFP/7jP7YSb/fddzdr1qzpVPko9LYhSN6bKo/1rfK/rePSB+9obSNi2EiBwB133GGmTJnS2bgU29JHrKXqutSlHr5fuqSLbQhAAAJpEOjy+4tHTo0uh7RNKPmSdOW3r62Y2mnXrV2f5Nqb3vSmzn53ufjJMemTAoEuCZDX7dB1jeF2LMdpJTUeqeltmpVnnXWW9X36qU99qqnZkbV3xV+O+RR52tC1115rXv7ylzsZPfLII0bmHfNFXgEj72ktP1kv8+ttb3ubue6668zjjz+eb+a9n9ktb70NjrChX5RG6PB4XZcDktXHa9PGZ+eee66VrP/6r//ahulxbWT6yttxGwXw4ZIlSyxeZQ1t1aUvCgQgMD6BX//612a33XbrfFxKH9JXjKXqmtS1Fr5fuiaMfQhAAAK6CXT1/cUjp0abN9omlHxpuvLb11ZM7bTr1q5Pcu173/te57+9yhxXrFgRU5rja4QEyOt2glYeu1JPuaTGIzW9TXPbtcYw6FG4Tfvssr0r/r7XgOXLlw+817jrrru2ytm4cePYu1qrfMgff/Ob37y1XZOdvM38fhObo2qr6kqdD0Z+v2u4v/zlL62kXbZsWdfdWn1mmjvvuEEH8r8ksscpZ/52uZW+pE8KBCBQTSD/2Igux6PYlr5iLFVcutbC90vXhLEPAQhAQDeBLr6/eOTU6HNG24SSL1FXfvvaiqmddt3a9WW5xm+wjARbTQTI6+bRTOUaOCyp1HikpnfYPKg67wMf+IC1PnLRRRdVnR78cVf85ZjWokmvqiiNKjDnn3++NaD/4i/+ovP8H5XeJsIWLFhgsarS0dZx6ZMCAQi4Ccj/aG5rrA1rJ8b/RV2lzU21vaN8v7THEksQgAAEUiTQ5vcXj5wKJ4O0TSj5knXlt6+tmNpp161dX5ZrPE0oI8FWEwHyunk0U7kGDksqNR6p6R02D6rO++AHP2jNaX7iE5+oOj344674yzGtRZNeVVEaRWC+/OUvW4M58+PnP/95p2Mg66e87bTTBsbXr19vpk2bVsmrrKOtuvQpfVMgAAGbAO9NsZm4jlRdj1zntnWM75e2SGIHAhCAQLoE2vz+4pFT4eSRtgklX7Ku/Pa1FVM77bq168vn2h133GGmTJnS2RyJ2JY+KBDokwB53Yx2StfAYUilxiM1vcPkwHjnnHPOOdZ36Mc//vHxmgT9mSv+ckxr0aRXVZT6Doz8NVb26NvjjjvO7LvvvoWBfcYZZ3Q6BvrW21TMMBMzVZqaHpe+KRCAQJHA6tWrzYQJEwrXraZjbZj20qf0HVOp0tWVBr5fuiKLXQhAAAJpEej7+2vUdFPRq21CyTdvXPH2tRVTO+26tesr59qtt97ayX9Gl/9sLrYpEBgFAfLan3pq18BBpFLjkZreQfEf9Pm5555rzWl+7GMfG9Qs2M9d8ZdjWosmvbWj9OEPf9hK3iogoRzvIhEfeughs+OOO46xkEcDb9q0yVx++eUFNrvssov5/e9/30X3YzZD4YsfLynEHR7wIAfSyYEuLvB8vzTPn4985CNdhAabEIAABKIjUHVPEp2QIR1ORa+2CaUhw2ud5oq3dZLCA9p1a9fnSsmVK1eaPffcs7V5BbElNikQGCUB8tqPforXwPFIpcYjNb3jxX6Yzz70oQ9Z350XXnjhME2DPMcVfzmmtWjSWztKLLIa88QTT5i99tprbBC/4hWvML/97W/Hcl225Ue9LFu2rLNxUJWIHG8+QQ9DGJID5MAwOdD2BZ7vl3byTu5VKBCAAAQgYKxJh+y7TSubTF95q02vtgkl3/iU4yz1FIp23dr1VeWozCfNnz+/0ZOG5IlBYiObo6rqi+MQ6IsAeV2fdKrXwCpSqfFITW9V3Ic9fv7551u/dy644IJhmwd3niv+ckxr0aS3dpRSX2TdsGGDed3rXjc2gHfbbTfz6KOPFvL8xBNPLAxu+SvXrkpVInK8nUl6OMKRHCAHBuVAm9d3vl/ayzcWWdvMTGxBAAIxE6j6HotZ03i+p6JX24TSeDEd7zNXvMc7X8tn2nVr1zcoD3/84x+befPmmcmTJxfmllxcsmNyrrSRthQIhEiAvB4+Ktm4zm+Hb63vzDyHbF+fyhcVZRrz2xc/Za9MwLVOFfOTzfJxz++XdWup5zXm92PUxyJrjaht3rzZHHrooWM3uvJ+i3vvvddqfdddd1k3wj//+c+t89o4kE8+9tubnIclLMkBcmDYHGjjWi42+H5pN+dYZG0rM7EDAQjETqDq+yx2XVX+p6JX24RSVTwHHXfFe1AbDZ9r161d37A5KH8BeN111439ZWr2H/3LbOSvVuUc/nJ1WKqcN2oC5PXgCJTHudRTLqnxSE1v09yWBdUys5jng8pasnpTTqG2z/SVt6H6O55fta/Urh90ZRCh1ccDMOxnf/jDH8ZubkXbNttsY2655ZbKpq9+9asLA/z000+vPLfJB6Fxxp92FwngCU9yIPwcaHINz9ry/dJ+nGO+qc7ygi0EIACBNghU3Uu0YTtEG6no1Tah5JtLrnj72oqpnXbd2vX55hpcfMnRLmQC5LUdHZgUmaTGIzW9xWjXr330ox8trMEIP3mtRqzFFX85prVo0qsqSl0FRibATzrppK2D9uKLLx43ty+55JKt54pPO+64o/nd7343bhufD7vS6+PLMG122WWXApcq/7s4vuuuuw7jIudAICkCO+yww8jGpPQdU6m6LjXVwPdLU4K0hwAEIACB8Qh09f01Xp+j/CwVvdomlHxzxhVvX1sxtdOuW7s+31yDiy852oVMgLy2owOTIpPUeKSmtxjt+rULL7zQmtc877zz6hsKpIUr/nJMa9GkV1WUugiMLI4eddRRWwfs1KlTzQsvvDBubv/Lv/zL1vMznxYvXjxuG58PM9vlrY+tPtrMmTPH4lL2vau69E2BAASKBGbPnj2yMbnPPvsUnQm8VnVtauI23y9N6NEWAhCAAASGIdDF99cw/Y7qnFT0aptQ8s0XV7x9bcXUTrtu7fp8cw0uvuRoFzIB8tqODkyKTFLjkZreYrTr1z72sY9Z85rnnntufUOBtHDFX45pLZr0qopSm4HZsGGDufbaa83LX/5ya7B+6lOfMo888sjYO/TySf7EE0+Mvac1e29r2Z+3ve1tY+/LePzxx/PNvPfL9rO6t8GOGy5cuNBimfnc9XbRokUdq8M8BOIjkP8PJF2PwbJ96TumUvY/q/to4PvFhxptIDAaAvKfIdauXcu/IRg899xzowkSvY5LIPu+Km/HbRTxh2WdWT1iSU7XtU0oOUUOcTCLb347RLPoT8nrzfajF5UTkGnKb3MfJ7ub55HtJwsD4WoIZLmc36oR5ykkzyLb9zSlolnGIL9VIaxCRF5ntl9xKoeNMZ/4xCestYYPfvCD0bLJYl7eRitogONlnVl9QLMgP2aRtSIsy5cvtwZpFuhse9ddd21tvXHjxrF3tWafjbd985vfvLVdk52qPprY7LLtMEyrNDU9fuONN3YpDdsQiJLA0qVLB17nmo69qvbSd0ylSoePhmGuhXy/+JClDQTaJfDAAw+M7BpZdc0J+fhpp53WbgCw1gqBqpxpxXiARlLRq21CyTeVXPH2tRVTO+26tevzzTW4+JKjXcgEyGs7OjApMkmNR2p6i9GuX/vkJz9p/WY/++yz6xsKpIUr/nJMa9GkV1WUNAVmmMETm97169ebadOmWRe/Kh1tHZc+pW8KBCBQJLB69WozYcKE3sek9PmLX/yi6EzgtarrUeBue7uXml5vUDRUTeDee+/t/fpYNfZiOH7yySerzodYxVXlTqx6Bvmdil5tE0qD4lr1uSveVedqOq5dt3Z9vrkIF19ytAuZAHltRwcmRSap8UhNbzHa9WsXXXSR9Zv9Ax/4QH1DgbRwxV+OaS2a9KqKkqbADDN4YtS7YMEC6+JXpaOt49InBQIQcBN405ve1PuYlD5jK1XXo9h0DOtvanqH5cJ5aRFgkfUltb4fWGQNc3ykdj1PRa+2CSXf0eOKt6+tmNpp161dn2+uwcWXHO1CJkBe29GBSZFJajxS01uMdv2avNKxzOyss86qbyiQFmUtWT0Q91p3I9NX3rbeUQ8GWWTtAXJXXZQTMKt31V8bduVdtpMmTbIugJnvbW+lL+mTAgEIuAl873vf6208ZuN7xYoVbmcCPpr5Xt4G7HIj18o6s3ojozSGQGQEWGRlkTWylHW6m12/y1vnyQoOlnVmdQXSChK0TSgVxNWoZPHNb2s0j/bUvN5sP1oxDsczTfmt47TkDuV5ZPvJQUCwOgJZLue36kTWFJRnke3XNKHq9IxBfqtKYElMXme2XzqFao7AJZdcYs1pnnnmmbkz4trNYl7exqVieG/LOrP68BbCOZNF1nBiUduTLPHK29qGem6wZMkS6wJY1tBWXfqiQAAC4xM46qijehuT0leMpeqaFKOWYXxOTe8wTDgnPQIssrLIqiHrU7uep6JX24SS71hzxdvXVkzttOvWrs831+DiS452IRMgr+3owKTIJDUeqektRrt+7dJLL7XmM88444z6hgJp4Yp/iscCCUctN1hkrYUrrJOrBllYXtrePPvss+aAAw6wLoJVenyPSx/SFwUCEBifwK9//Wuz2267dT4mpQ/pK8ZSdR2KUcswPqemdxgmnJMeARZZWWTVkPWpXc9T0attQsl3rLni7WsrpnbadWvX55trcPElR7uQCZDXdnRgUmSSGo/U9BajXb+2dOlSay7z/e9/f31DgbRwxT/FY4GEo5YbLLLWwhXWyVWDLCwv3d6sXr3azJw507oQVmmqe1xsSx8UCEBgOAJ33HGHmTJlSmdjUmxLH7GWqmtQrHoG+Z2a3kE8+DxNAiyyssiqIfNTu56nolfbhJLvWHPF29dWTO2069auzzfX4OJLjnYhEyCv7ejApMgkNR6p6S1Gu37t8ssvt+YxTzvttPqGAmnhin+KxwIJRy03WGSthSusk6sGWVheVnuzatWqThZaZYFVbFMgAIF6BG699VYzbdo06wal6loz7HGxKbZjLlVaY9Y0nu+p6R2PBZ+lS4BFVhZZNWR/1fU8teMaYpnXoG1CKa+tzr4rj+u0j/Vc7bq16/PNO7j4kqNdyATIazs6MCkySY1HanqL0a5f+/SnP23NYS5evLi+oUBauOKf4rFAwlHLDRZZa+EK6+SqQRaWl+N7I39t2uajg8UWf8E6PnM+hcB4BFauXGn23HNP6yal6noz6LjYEpuxlyqdseuq8j81vVUcOJ42gd/85jfmuOOOM/PmzePfEAxuvPHGtBMmUPVV1/PUjgcaHm+3tE0o+YJw5bGvrZjaadetXZ9vrsHFlxztQiZAXtvRgUmRSWo8UtNbjHb92mc/+1lr/vLUU0+tbyiQFq74p3gskHDUcoNF1lq4wjq5apCF5eVgb+S9qUuWLDGTJk2yLoxVGsvHpa3Y4B2sg3lzBgQGEfjtb39r5s+fbyZMmOA9JqWt2BBbGkr5mpPVNWhzacj0lbeuczkGAQhAAALhEihfx1OthxshP8+0TSj5UTDO+1RfWzG1c43jmPwf5Kt2fYP0V30OlyoyHI+ZAHltRw8mRSap8UhNbzHa9Wuf+9znrPvB9773vfUNBdLCFf8UjwUSjlpusMhaC1dYJ1cNsrC8HN6bRx55xCxYsKDW40rlMaTSRtpSIACBdgn8+Mc/HvvrrcmTJ1s3LVXXHzlX/upL2moqVXo1acxrSU1vXjv7EIAABDQRqLqep3ZcU0xFi7YJJd/4uPLY11ZM7bTr1q7PN9fg4kuOdiETIK/t6MCkyCQ1HqnpLUa7fu2KK66w5itPOeWU+oZoAYGGBFhkbQhwlM1dF145FntZv369Wb58uflv/+2/WRfKqVOnmjlz5piFCxeOnSPnUiAAgW4JyF+jXnfddWN/mTpr1ixrXMp7kOWvVuUcLX+5Wiaq9Xpb1pnVU9Ob6WYLAQhAQBuBqut5ase1xZUJpS0RdeWxtli79GjXrV2fK6bDHIPLMJQ4JzYC5LUdMZgUmaTGIzW9xWjXr1155ZXWHOV73vOe+oZoAYGGBOJfkcsBcF2I5JjWol0vF0qtmYuumAn8/d//vXUDc/LJJ8csaSjftV9vyxBS01vWTx0CEICAFgJV1/PUjmuJZ6aD30lbSLjyOGOkeatdt3Z9vrkJF19ytAuZAHltRwcmRSap8UhNbzHa9Wuf//znrTnKk046qb4hWkCgIQFVK5CuC5Ec01q062XyQGvmoitmAqmOS+3X23JOpqa3rJ86BCAAAQhAIGQCTChtiY7rfiXkuLXlm3bd2vX55gFcfMnRLmQC5LUdHZgUmaTGIzW9xWjXr33hC1+wFlnf/e531zdECwg0JKBqBdJ1IZJjWot2vaku5mjNV3TpIJDquNR+vS1nZ2p6y/qpQwACEIAABEImwITSlui47ldCjltbvmnXrV2fbx7AxZcc7UImQF7b0YFJkUlqPFLTW4x2/dpVV11lLbIuWrSoviFaQKAhAVUrkK4LkRzTWrTrTXUxR2u+oksHgVTHpfbrbTk7U9Nb1k8dAhCAAAQgEDIBJpS2RMd1vxJy3NryTbtu7fp88wAuvuRoFzIB8tqODkyKTFLjkZreYrTr16655hprkXXBggX1DdECAg0JqFqBdF2IUjzWMCeCaX7FFVdYF8pTTjklGP9wBAIpEmCR9SXWdSml75kUcx7NEIAABCAAgdAIMKG0JSKue7DQYtWFP9p1a9fnmxNw8SVHu5AJkNd2dGBSZJIaj9T0FqNdv3bttddac3Tvete76huiBQQaEmCR9SX6Jswb5kQwzVlkDSYUOAKBrQRSHZeuG90Uj21NBHYgAAEIQAACEBgZASaUtqB33YuNLCg9dqxdt3Z9vqkCF19ytAuZAHltRwcmRSap8UhNbzHa9Wv/8A//YC2yzp8/v74hWkCgIQEWWVlkbZhC3TVPdTGnO6JYhkBzAqmOS9eNborHmmcQFiAAAQhAAAIQaEqACaUtBF33Yk3ZxtBeu27t+nxzDC6+5GgXMgHy2o4OTIpMUuORmt5itOvXvvSlL1mLrO985zvrG6IFBBoSYJGVRdaGKdRd88997nPWhfK9731vdx1iGQIQGEiARVZ9Tz9w3cRXHRuYIJwAAQhAAAIQgEDnBJhQ2oLYdb/SOfwAOtCuW7s+3xSCiy852oVMgLy2owOTIpPUeKSmtxjt+rUvf/nL1trBO97xjvqGaAGBhgRYZGWRtWEKddecRdbu2GIZAr4EUh2XrhvdFI/55g3tIAABCEAAAhBojwATSltYuu7F2qMcriXturXr880suPiSo13IBMhrOzowKTJJjUdqeovRrl/7yle+Yi2ynnjiifUN0QICDQmwyMoia8MU6q55qos53RHFMgSaE0h1XLpudFM81jyDsAABCEAAAhCAQFMCTChtIei6F2vKNob22nVr1+ebY3DxJUe7kAmQ13Z0YFJkkhqP1PQWo12/9o//+I/WIusJJ5xQ3xAtINCQgKpF1oYsaB4Ygc9+9rPWhfJ973tfYF7iDgTSIpDqImtaUUYtBCAAAQhAAAIhE2BCaUt0Up2I1K5buz7fawtcfMnRLmQC5LUdHZgUmaTGIzW9xWjXr11//fXW2sHxxx9f3xAtINCQAIusDQHSvDsCLLJ2xxbLEPAlwLj0JUc7CEAAAhCAAAQg0A4BJpS2cEx1IlK7bu36fK8CcPElR7uQCZDXdnRgUmSSGo/U9BajXb92ww03WIusxx13XH1DtIBAQwIssjYESPPuCLCY0x1bLEPAlwDj0pcc7SAAAQhAAAIQgEA7BJhQ2sIx1YlI7bq16/O9CsDFlxztQiZAXtvRgUmRSWo8UtNbjHb92vLly61F1nnz5tU3RAsINCTAImtDgDTvjsBnPvMZ60J56qmndtchliEAgYEEWGQdiIgTIAABCEAAAhCAQKcEmFDagjfViUjturXr8704wMWXHO1CJkBe29GBSZFJajxS01uMdv3ajTfeaK0dHHvssfUN0QICDQmwyNoQIM27I8Aia3dssQwBXwKMS19ytIMABCAAAQhAAALtEGBCaQvHVCcitevWrs/3KgAXX3K0C5kAeW1HByZFJqnxSE1vMdr1azfddJO1yHrMMcfUN0QLCDQkwCJrQ4A0744AizndscUyBHwJMC59ydEOAhCAAAQgAAEItEOACaUtHFOdiNSuW7s+36sAXHzJ0S5kAuS1HR2YFJmkxiM1vcVo16999atftRZZ/+7v/q6+IVpAoCEBFlkbAqR5dwQ+/elPWxfKxYsXd9chliEAgYEEWGQdiIgTIAABCEAAAhCAQKcEmFDagjfViUjturXr8704wMWXHO1CJkBe29GBSZFJajxS01uMdv3aP/3TP1lrB0cffXR9Q7SAQEMCLLI2BEjz7giwyNodWyxDwJcA49KXHO0gAAEIQAACEIBAOwSYUNrCMdWJSO26tevzvQrAxZcc7UImQF7b0YFJkUlqPFLTW4x2/drXv/51a5H1v//3/17fEC0g0JAAi6wNAdK8OwIs5nTHFssQ8CXAuPQlRzsIQAACEIAABCDQDgEmlLZwTHUiUrtu7fp8rwJw8SVHu5AJkNd2dGBSZJIaj9T0FqNdv3bzzTdbi6x/+7d/W98QLSDQkACLrA0B0rw7AizmdMcWyxDwJcC49CVHOwhAAAIQgAAEINAOASaUtnBMdSJSu27t+nyvAnDxJUe7kAmQ13Z0YFJkkhqP1PQWo12/9s1vftNaZD3yyCPrG6IFBBoSYJG1IUCad0fg8ssvty6Up512WncdYhkCEBhIgEXWgYg4AQIQgAAEIAABCHRKgAmlLXhTnYjUrlu7Pt+LA1x8ydEuZALktR0dmBSZpMYjNb3FaNev/c//+T+ttYO/+Zu/qW+IFhBoSIBF1oYAad4dARZZu2OLZQj4EmBc+pKjHQQgAAEIQAACEGiHABNKWzimOhGpXbd2fb5XAbj4kqNdyATIazs6MCkySY1HanqL0a5fu+WWW6xF1iOOOKK+IVpAoCEBFlkbAqR5dwRYzOmOLZYh4EuAcelLjnYQgAAEIAABCECgHQJMKG3hmOpEpHbd2vX5XgXg4kuOdiETIK/t6MCkyCQ1HqnpLUa7fu2f//mfrUXWww47rL4hWkCgIQEWWRsCpHl3BJYuXWpdKN///vd31yGWIQCBgQRYZB2IiBMgAAEIQAACEIBApwSYUNqCN9WJSO26tevzvTjAxZcc7UImQF7b0YFJkUlqPFLTW4x2/dq3v/1ta+3g0EMPrW+IFhBoSIBF1oYAad4dARZZu2OLZQj4EmBc+pKjHQQgAAEIQAACEGiHABNKWzimOhGpXbd2fb5XAbj4kqNdyATIazs6MCkySY1HanqL0a5fu/XWW61F1r/+67+ub4gWEGhIgEXWhgBp3h0BFnO6Y4tlCPgSYFz6kqMdBCAAAQhAAAIQaIcAE0pbOKY6Ealdt3Z9vlcBuPiSo13IBMhrOzowKTJJjUdqeovRrl/7zne+Yy2yvuUtb6lviBYQaEiARdaGAGneHYHLLrvMulCefvrp3XWIZQhAYCABFlkHIuIECEAAAhCAAAQg0CkBJpS24E11IlK7bu36fC8OcPElR7uQCZDXdnRgUmSSGo/U9BajXb/23e9+11o7OOSQQ+obogUEGhJgkbUhQJp3R4BF1u7YYhkCvgQYl77kaAcBCEAAAhCAAATaIcCE0haOqU5EatetXZ/vVQAuvuRoFzIB8tqODkyKTFLjkZreYrTr12677TZrkfXggw+ub4gWEGhIgEXWhgBp3h0BFnO6Y4tlCPgSYFz6kqN93QFnAAAgAElEQVQdBCAAAQhAAAIQaIcAE0pbOKY6Ealdt3Z9vlcBuPiSo13IBMhrOzowKTJJjUdqeovRrl/73ve+Zy2y/uVf/mV9Q7SAQEMCLLI2BEjz7ghceuml1oXyjDPO6K5DLEMAAgMJsMg6EBEnQAACEIAABCAAgU4JMKG0BW+qE5HadWvX53txgIsvOdqFTIC8tqMDkyKT1HikprcY7fq1FStWWGsHb37zm+sbogUEGhJgkbUhQJp3R4BF1u7YYhkCvgQYl77kaAcBCEAAAhCAAATaIcCE0haOqU5EatetXZ/vVQAuvuRoFzIB8tqODkyKTFLjkZreYrTHr23YsMHIKzNkXnLRokVm7ty55mUve5m1yDp58mQze/bssc/lPDlf2kl7CgS6IsAia1dksduYAIs5jRFiAAKtE2Bcto4UgxCAAAQgAAEIQKCSwJo1a8z1119vzjvvPHPMMceYAw880Oy2227WhNKUKVPGPpNz5FxpI201l1QnIrXr1q7Pd0zCxZcc7UImQF7b0YFJkUlqPFLTW4y2XXvwwQfH7msPOuggs+2221r3vy5eVcekvdiR+2SxS4FAmwRYZG2TJrZaJXDJJZdYF88zzzyz1T4wBgEI1CPAIms9XpwNAQhAAAIQgAAE6hDYvHmz+fa3v23mz59v9t57b+v3UNXEUdVxsSG2xKbY1lRcmjXpq9KiXbd2fVVxHXQcLoMI8XmMBMhrO2owKTJJjUdqeovR3lJbt26dkVeVveY1r2l8H+zimR0T+9KP9EeBQFMCLLI2JUj7zgiwyNoZWgxDwJsA49IbHQ0hAAEIQAACEIBAJYGHH37YnHrqqWbmzJmdTSiJbelD+tJQskmy/FaDrkEa8nqz/UFtYvo805TfxuR/V77meWT7XfWFXQj0RSDL5fy2r75D7SfPItsP1dc+/MoY5Ld99DuqPvI6s/1R+dJ3v0888YQ5++yzzfTp0zu7F86Y5rfSn/Qr/VMg4EuARVZfcrTrnACLOZ0jpgMI1CbAuKyNjAYQgAAEIAABCECgksCqVavGHgM8ceLE3iaUpC95rLD0HXPJT5Bl+zHrGdb3TGt+O2zbGM7L68r2Y/C7ax8zFvlt131iHwJdE8jnc7bfdZ+h28845Leh+9ylf3kO2X6X/Y3adqYxvx21T133v2nTJnPRRReZ7bffvrd74TzfbF/6Fz/EHwoE6hJgkbUuMc7vjQCLOb2hpiMIDE2AcTk0Kk6EAAQgAAEIQAAClQSefPLJscf4TpgwYWQTStK3PEpYfImxZJNi+W2MOur6nNeb7de1EfL5mab8NmR/+/ItzyPb76tv+oFAVwSyXM5vu+orFrt5Ftl+LL534WfGIL/top9QbOZ1Zvuh+NaFHytWrDCzZ88e+l5YXoPxjne8w8irzG655RZzww03WG3/7M/+zPz0pz8d+1zOk/PrvIJD/BG/KBCoQ4BF1jq0OLdXAp/61KesC+VZZ53Vqw90BgEIFAmwyFrkQQ0CEIAABCAAAQjUJXDVVVeZHXfc0fqtk02m5bfbbrutecMb3mDOPPNMc+2115o777zT/NM//ZPV9k//9E/HPpNz5FxpI23ztqr2xRfxKbbi0hObBh9/tevWrs8n5tIGLr7kaBcyAfLajg5MikxS45GK3s2bN489oneYJ7nIPe0VV1xhHnvssWJyGGN+8IMfWN+Pcr6rSHuxI5+7OOePiV/yCGHxkwKBYQiwyDoMJc4ZCQEWWUeCnU4hMC4BxuW4ePgQAhCAAAQgAAEIVBJYu3atOfroowdO7EydOtUce+yxY/8Df8OGDZa9YSeU1q9fP2ZDbInN/OSRa198Ex9jKS4NsfjexE/turXr8409XHzJ0S5kAuS1HR2YFJmkxiMFvb/5zW/M61//+nHvS+W+9ZRTTjGrV68uJkSpdvfdd1t2DjrooNJZdlXsvuc97xl4fyy2xF8KBAYRYJF1ECE+HxkBFnNGhp6OIVBJgHFZiYYPIAABCEAAAhCAQCWB+++/38yaNcuaCMpPpu2xxx5m6dKl5umnn660Ix/4TCitW7fOXHbZZUb6yPdZ3hcfxdcYStl3qadQtOvWrs83R+HiS452IRMgr+3owKTIJDUe2vX+7Gc/M3vttVflvag8heW0004b+lUWK1eutGzNmTOnmETj1OSVGdLfeE9/EX/FbwoExiOQxq+Q8QjwWbAELr74YutCuWTJkmD9xTEIpECARdYUooxGCEAAAhCAAATaJPD973/fvPSlL7V+22QTaTNmzDBXXnml2bRp01DdNplQkj7kUWnSZ9Z/eTt9+nQjPodeyn5LPYWiXbd2fb45ChdfcrQLmQB5bUcHJkUmqfHQrPeee+4Z9/5z7ty55qGHHiomwIDaD3/4Q+t+9nWve92AVvbH0q/07+Ivx+S+We6/KRCoIpDGr5Aq9RwPmgCLrEGHB+cSJcC4TDTwyIYABCAAAQhAwIvAzTffbCZPnlw5afOud73LPPXUU7VstzGhJH1K31WTSeKz+B5ycfkesr9t+aZdt3Z9vnkAF19ytAuZAHltRwcmRSap8dCq94EHHjA77bST875z0qRJ5qKLLioGfsjavffea9n8sz/7syFb26eJH+KPKw7iv+igQMBFgEVWFxWOBUGAxZwgwoATECgQYFwWcFCBAAQgAAEIQAAClQRuv/32ygVWmajxXcRsc0JJfKia9JKFVtEQanFNgIXqa5t+adetXZ9vLsDFlxztQiZAXtvRgUmRSWo8NOqV95/uvvvuzoXLmTNnGvkLV99y3333WXZf+9rX+pobayev5RC/XLEQHYPeE9uocxpHS4BF1mhDp99x+d8j5QvaBz7wAf3CUQiBgAmwyBpwcHANAhCAAAQgAIFgCMhfm26//fbW7xn5fbP//vubNWvWePva9oSS+CI+lX97SV00iJYQi8vfEP1s2yfturXr880HuPiSo13IBMhrOzowKTJJjYc2vRs3bjSvetWrnPeY++yzj/nFL35RDHjN2v/+3//bsn3ggQfWtGKfLn6Jf654iB7RRYFAngCLrHka7AdFgEXWoMKBMxAYI8C4JBEgAAEIQAACEIDA+ASefPJJs8ceezgnZt74xjeatWvXjm9gwKddTCiJT+KbazJJtIim0IrL19B87MIf7bq16/PNCbj4kqNdyATIazs6MCkySY2HNr0nnHCC895yv/32a+XectWqVZb9//pf/2sxiTxrcu8rfrpiIrooEMgTYJE1T4P9oAiwmBNUOHAGAmMEGJckAgQgAAEIQAACEBifwMEHH+yckJFFzGeffXb8xkN82tWEkvhWtdB6yCGHDOFZv6e4Jr369WA0vWnXrV2fb9bAxZcc7UImQF7b0YFJkUkKPNavX2+WL19uFi5c6Lx/nDNnjlm0aJG58cYbjZwbS/niF7/o1DNr1izz+OOPtyLj/vvvt/p4zWte04ptMSJ+ir+uPBR9FAhkBFhkzUiwDY7AJz/5SesidvbZZwfnJw5BICUCLLKmFG20QgACEIAABCBQl4Dr1QoyMSOPLlu3bl1dc87zu5xQEh/FV9dkkmgLqbh8DMm/rnzRrlu7Pt+8gIsvOdqFTIC8tqMDkyITzTweeeQRs2DBAjNt2jTnfZdLu5wrbaRtyEX+CnTGjBmWru222848+OCDrbn+wAMPWH28+tWvbs2+GBJ/xe9yPERfiE96aVU8xoYmwCLr0Kg4sW8CLLL2TZz+IDCYAONyMCPOgAAEIAABCEAgTQKPPvqoc6Js5syZ5le/+lVrULqeUBJfd911V2sySSb2RGMopTzZJfUUinbd2vX55ihcfMnRLmQC5LUdHZgUmWjkIU8OWbJkiZk0aZJ1r+XS6zombcVGG09IKRJvp1b1mOAbbrihnQ7+n5Wf/OQnFkN5Z2rbRfx2xYHHBrdNOl57afwKiTc+SXvOYk7S4Ud8oAQYl4EGBrcgAAEIQAACEBg5gcMOO8yagJk4caK5/fbbW/Wtjwkl8Vl8L08oicZQStk3qadQtOvWrs83R+HiS452IRMgr+3owKTIRBuP1atXmwMOOMC6v3LpHOaY2BKbIZV7773Xqe/EE09s3U35K9Myp/3337/1fsTg29/+dqsv6Vv0UiCQxq8Q4hwlgU984hPWxeuDH/xglFpwGgJaCLDIqiWS6IAABCAAAQhAoE0CK1assH67yMTLGWec0WY3Y7b6mlA6/fTTnZpE66iK1veW1eFZnkyUuqaiXZ9vrODiS452IRMgr+3owKTIRBOPVatWGXm6iUtTk2NiU2yHUo444ghL484772yeeuqp1l386U9/avX1ile8ovV+xKD4LzrKsRK9FAjouhsnnqoIsMiqKpyIUUKAcakkkMiAAAQgAAEIQKBVAnPnzrUmXfbcc0+zYcOGVvsRY31NKMmCpmgoTyaJ1r6L5veW1WVZjofUNRXt+nxjBRdfcrQLmQB5bUcHJkUmWnjIX5t2scCa8RHbIfxF63333WfdN4qPV199dTGwLdV+9rOfWf3tt99+LVm3zYiOjHl+K7opaRPQdTeedizVqWcxR11IEaSAAONSQRCRAAEIQAACEIBAqwTuvPNO54TLTTfd1Go/mbE+J5REQ34SKdsXzX2UFN5bVpdjFoP8tq6NkM/P68r2Q/a3L98yFvltX33TDwS6IpDP52y/q75isZtxyG9j8b0LP/Mcsv0u+unSptzLtPmI4IxDeSt9jPodrfPnz7fuG/fee2+zefPmThD//Oc/t/rbd999O+lLjIoO0VNmL7opaRNgkTXt+AetnsWcoMODc4kSYFwmGnhkQwACEIAABCBQSWDevHnWZEtX74MSJ/qeUBIt5ckk0dx1SeG9ZT4My7GQuqaiXZ9vrODiS452IRMgr+3owKTIRAOPJUuWWPdRLl1tHJO+RlU2btxodthhB0vrNddc05lLDz/8sNXf7NmzO+tPDIuecqxEt+inpEtA1914unFUqfzjH/+4ddE655xzVGpFFARiIcAiayyRwk8IQAACEIAABPogsG7dOjN16lTrd8uyZcs6677vCSXRUp5MEs2ivauSynvLfPiVYyF1TUW7Pt9YwcWXHO1CJkBe29GBSZFJ7DzkdQeTJk2y7qNcuto4Jn1Jn6Mo1113naVz+vTpnf51rWgtc3v5y1/eqXz5a2HRVe5X9FPSJaDrbjzdOKpUziKryrAiKnICjMvIA4j7EIAABCAAAQi0SsD1v9l33XVX89xzz7XaT95Y3xNKokU0lSeTuvrLhFTeW5aPaZ39chykrqlo1+cbK7j4kqNdyATIazs6MCkyiZ3HggULrPsnl6Y2j0mfoyhvfetbLa3vfve7O3VF7hnL7P7kT/6k0z7FuOgq9yv6KekS0HU3nm4cVSpnMUdlWBEVOQHGZeQBxH0IQAACEIAABFolcOSRR1qTLIsXL261j7KxUUwoiabyZJJob7uk9N4yX3blOEhdU9GuzzdWcPElR7uQCZDXdnRgUmQSM4/169ebadOmWfdPLk1tHpM+pe++y4wZMyytd9xxR6du/PKXv7T6lHemdl1EVzlmop+SLgFdd+PpxlGl8o997GPWBevcc89VqRVREIiFAIussUQKPyEAAQhAAAIQ6JrA888/73xc2D333NNp16OYUBJN5ckkeVSaMGizpPLesibMynGQuqaiXZ9vrODiS452IRMgr+3owKTIJGYey5cvt+6dXHq6OCZ991l+9KMfWVrlPaWbN2/u1I1HH33U6nevvfbqtE8xLrpc758VDpQ0Cei6G08zhmpVs8iqNrQIi5gA4zLi4OE6BCAAAQhAAAKtEli5cqU1sdPFwmPZ6VFMKFUtKAuDtkpK7y1rwsw1GdvEXmhttevz5Q0XX3K0C5kAeW1HByZFJjHzWLhwoXWf6NLTxbFFixYVQXZc+/znP29pPfzwwzvu1Zg1a9ZY/c6aNavzfqUD0VeOnXCgpEmARdY04x6FahZzoggTTiZGgHGZWMCRCwEIQAACEIBAJYErr7zSmlzp4hG6ZQdGNaHkejSyMGirpPTesibMyhN6UtdUtOvzjRVcfMnRLmQC5LUdHZgUmcTMY86cOdZ9oktPF8ek7z6L67USF1xwQecu/J//838sxnvuuWfn/UoHoq8cu65fGdKLMDrxIqDrbtwLAY1CJXDhhRdaF6vzzjsvVHfxCwJJEGCRNYkwIxICEIAABCAAgSEInHrqqdbvFfkN03UZ1YSS6/eZMGijpPbesibMyhN6UtdUtOvzjRVcfMnRLmQC5LUdHZgUmcTMY5dddrHuE116uji26667FkF2XHvLW95iaf3qV7/aca/GPP7441a/L3vZyzrvVzoQfeXYCQdKmgR03Y2nGUO1ql0/4llkVRtuhEVCgHEZSaBwEwIQgAAEIACBzgkccsgh1uTK1772tc77HdWEkmgrTyYJgzZKSu8ta8qrHAOpayra9fnGCi6+5GgXMgHy2o4OTIpMYuYxefJk677JpaeLY9J3n2W//faztN5///2du/Dv//7vVr977LFH5/1KB6KvHDvhQEmTgK678TRjqFY1izlqQ4uwiAkwLiMOHq5DAAIQgAAEINAqgX333deaXHnggQda7cNlbFQTSqKtPJkkDNooKb23rCmvcgykrqlo1+cbK7j4kqNdyATIazs6MCkyiZlHSous/+W//BfrHtEVO+3HhAMlTQK67sbTjKFa1R/96EetC/SHPvQhtXoRBoEYCLDIGkOU8BECEIAABEIncMN3fmH+5vTv8y9yBlO2H91j4EKZpBIGbeTyjru/wvrt15dG6bsNDX3ZcHHpq+8++tGuz5chXPjO9M2dkNuR13Zew6TIJGYek6dOH9m9jfTd59jfZvK0kWl15ciojgmHPrnTV/F60TaPZd/95dDTCiyyDo2KE/smwCJr38TpDwKDCTAuBzPiDAhAAAIQgMAgAiyydvuDuO0f2FX2mFB6iWlrMimliciqfBr2uGvicNi2MZynXZ9vDOCi43vDN/5a25HXdl7DpMgkZh4p/QeyCRMmssj6kpcY4aD1ep2iLvnNPmxhkXVYUpzXOwEWc3pHTocQGEiAcTkQESdAAAIQgAAEBhJgkbU4gRbrj3YmlNqbTJq4zaSRTc5J3zHlYMwTzsNw1q5vGAauc+Ci43vDFduUj5HXdl7DpMgkZh6zXn34yO5tZh1weK/3NvzHw5eMxbqt/3yY8vdCSNpZZB04rcEJMRC44IILrC+j888/PwbX8RECagmwyKo2tAiDAAQgAIEeCbDIWpxAC+nHdB1fmFBq7y9ZWWQdfkzEPOE8zPjSrm8YBq5z4DL8GHHx41iY/MhrOy4wKTKJmcefHnaeNa/t0tPFsT897EO9LrLyCo0ti6xtvUaD76zidWBUPFhk7XGChK66I8Aia3dssQwBXwKMS19ytIMABCAAAQi8SIBF1jB+ODf9wc6E0ktMW5NJPC54+DHhmoxtmsshtdeuz5c1XIYfI76Madc/Y/LaZg6TIpOYeRz6vm+bbbb9o94XWqVP6bvPa9oOM/4/S+fct1/buQ9/9Z5vWv329T5a0VfOT+HQJ3f6Kl4v2ubBIuuL8xfsRUyAxZyIg4fragkwLtWGFmEQgAAEIAABCNQksO+++1qTKw888EBNK/VP/8///E+r35133rm+oZotRFt5MkkYtFHmzJlj2S731VVd+o6puDjE5P8gX7XrG6S/6nO4VJHheMwEyGs7ejApMomdx4IFC3q/v5E++y5vectbLJ1f/epXO3fj//7f/2v1O2PGjM77lQ5EXzk/hQMlTQK8kzXNuEehmsWcKMKEk4kRYFwmFnDkQgACEIAABCBQSeCQQw6xJle+9rWvVZ7f1gejmlASbeXJJGHQRlm4cKFlu9xXV/VFixa1IaE3Gy4OvXXeQ0fa9fkihIsvOdqFTIC8tqMDkyKT2Hk88sgjZtKk/t47L31Jn32XxYsXW/dxMn/YdVm7dq3V74477th1t2P2XfOjwoGSJgEWWdOMexSqP/KRj1gXyg9/+MNR+I6TENBKwHUTwbuStUYbXRCAAAQgAAEIjEfg1FNPtX6vXHjhheM1aeWzUU0oibbyZKcwaKMsX77csl3uq6v6jTfe2IaE3my4OPTWeQ8dadfnixAuvuRoFzIB8tqODkyKTDTwWLJkSW/3ONLXKMoXvvAFS+Phhx/euSu/+93vrH6nT5/eeb/Sgegr56dwoKRJgEXWNOMehWoWWaMIE04mRoBxmVjAkQsBCEAAAhCAQCWBK6+80ppcOfLIIyvPb+uDUU0oibbyZJIwaKOsX7/eTJs2zbJf7q/tuvQpfcdUXAxi8n+Qr9r1DdJf9TlcqshwPGYC5LUdPZgUmWjg8eyzz5oDDjig83sc6UP6GkX50Y9+ZOnbYYcdzObNmzt1Z926dVa/L33pSzvtU4yLLtFXzk/hQEmTAIusacY9CtUs5kQRJpxMjADjMrGAIxcCEIAABCAAgUoCK1eutCZX5H/PP//885Vt2vhgFBNKokm0lSeThEFbJZX3ljXlVY6B1DUV7fp8YwUXX3K0C5kAeW1HByZFJlp4rF692sycOdO6j3Lp8zkmtqWPURZ5F2rZ9zvuuKNTl+Q/ypX73H777TvtU4yLrnK/fb0LtnNxdOBFQNfduBcCGoVKQB4NXL5gyQIPBQIQGB0BFllHx56eIQABCEAAAhAIi0DVwuM999zTqaOjmFC6++67rd9mbS8op/LesqbJUf6NLHVNRbs+31jBxZcc7UImQF7b0YFJkYkmHqtWrepkoVUWWMX2qMtb3/pW617x3e9+d6dubdiwwepzu+2267RPMS66yrkp+inpEtB1N55uHFUqZ5FVZVgRFTkBxmXkAcR9CEAAAhCAAARaJeB6hO7ixYtb7aNsbBQTSqKpPJnUxaORU3hvWTmedevlOEhdU9GuzzdWcPElR7uQCZDXdnRgUmSijYf8tWmbjw4WW6P+C9YsYtddd511ryj/Ia/LRxhv3LjR6lNeBdFlET2up7uIfkq6BHTdjacbR5XKWcxRGVZERU6AcRl5AHEfAhCAAAQgAIFWCVx77bXW5M6uu+5qnnvuuVb7yRvre0JJtIim8kSnaG+7pPDesqbMynGQuqaiXZ9vrODiS452IRMgr+3owKTIRCMPudeR/1Q2adIk697Kpdd1TNqKjS4XMIuRGFyT/wToek/pNddcM7ix5xmiv8xnypQpntaGayZ6yn2Kbrk/p6RLQNfdeLpxVKn8/PPPty5aF1xwgUqtiIJALARYZI0lUvgJAQhAAAIQgEAfBOT9qFOnTrV+tyxbtqyz7vueUBIt5ckk0SzauygpvLesCbdyLKSuqWjX5xsruPiSo13IBMhrOzowKTLRzENekyDvo5e/vHTpdB2Tc6WNtA2xzJ8/39Ky9957m82bN3fi7u9//3urvz/6oz/qpC8xKjpETzk2opuSNgFdd+Npx1KdehZZ1YUUQQoIMC4VBBEJEIAABCAAAQi0SmDevHnWZMv+++/fah95Y31PKImW8mSSaO6yaH9vWRN25VhIXVPRrs83VnDxJUe7kAmQ13Z0YFJkkgKP9evXm+XLl5uFCxda91uif86cOWOfyTlybsjlvvvuc2q4+uqrO3F706ZNVn+TJ0/upC8xKjpcOSm6KWkT0HU3nnYs1alnMUddSBGkgADjUkEQkQABCEAAAhCAQKsE7rzzTueEy0033dRqP5mxPieURINrMkk0d100v7esCTtXPJrYC62tdn2+vOHiS452IRMgr+3owKTIJDUeGvQeccQR1r3jzjvvbJ566qlicFuoyV+WlpnJo5S7KOK/6Cj3J3opEGCRlRwIlsCHPvQh68L10Y9+NFh/cQwCKRBgkTWFKKMRAhCAAAQgAIG6BObOnWv9dtlzzz2NvJ+q7dLXhJL8tYRoKE8mida+itb3ljXhV46H1DUV7fp8YwUXX3K0C5kAeW1HByZFJqnx0KD33nvvte4dRdfb3/72YnBbqD3//PNWX9tss00Llm0T4r8rPqKXAgFdd+PEUxUBFllVhRMxSggwLpUEEhkQgAAEIAABCLRKYMWKFc6Jl9NPP73VfsRYXxNK4rtrMun73/9+65oGGdT43rJBmqs+d8Wk6twYj2vX5xsTuPiSo13IBMhrOzowKTJJjYcWvSeccILzHvKGG24oBriFWpnZxIkTW7BaNCF+l/uRuuikQEAIsMhKHgRLgMWcYEODYwkTYFwmHHykQwACEIAABCAwLoHDDjvMmoCRiZ7bb7993HY+H5YnetqeUBKfxWa5H9E4yqLpvWW+HMsxkbqmol2fb6zg4kuOdiETIK/t6MCkyCQ1Hlr0Pvnkk2bGjBnWfeR2221nHnzwwWKQG9bKzCZMmNDQYrG5+Ct+l/sRfaKTAgEhoOtunJiqInDeeedZF7ALL7xQlUbEQCA2AiyyxhYx/IUABCAAAQhAoC8Cjz76qJk2bZr1G2bXXXc1v/rVr1p1ozzR0+aEkvgqPpf7EG2iMZRS9k/qKRTturXr881RuPiSo13IBMhrOzowKTJJjYcmvV/60pese0nRN2vWLPP4448XA92g1iUz8VP8dfUh+igQyAik8SskU8s2KgIsskYVLpxNhADjMpFAIxMCEIAABCAAAS8CF198sXMi5sADDzTr1q3zsulq5JrscZ1X95j4KL667Iu2kIrLx5D868oX7bq16/PNC7j4kqNdyATIazs6MCkySY2HNr3HH3+8855yv/32a+2vQOU/Gpa5FbPIryZ/pbrvvvtatqUvHhPsx1RzKxZZNUc3cm0s5kQeQNxXSYBxqTKsiIIABCAAAQhAoEUCBx98sHNC5o1vfKN59tlnW+mpiwkl8U18LE9USV00hVZcfobmYxf+aNetXZ9vTsDFlxztQiZAXtvRgUmRSWo8tOnduHGjedWrXuW8t5QFzF/+8pfFgHvUXK+38DBTaCJ+7bOkBA4AACAASURBVLPPPk6/RY/ookAgT4BF1jwN9oMiwGJOUOHAGQiMEWBckggQgAAEIAABCEBgfALyP9/32GMP58SMLGKuXbt2fANDfNr2hJL4VLXAKlpCfOeUtonIIcI+dop23dr1DRvn8nlwKROhroEAeW1HESZFJqnx0Kh39erVZvfdd3feF8+cOdPcc889xaDXrG277baW7c2bN9e08uLp4o/45YqF6BA9FAiUCbDIWiZCPRgC5557rnVB+9jHPhaMfzgCgRQJsMiaYtTRDAEIQAACEIBAXQI//OEPzfbbb2/9npEJm/3339+sWbOmrsnC+W1OKIkv4pNrMkk0iJYQi8vfEP1s2yfturXr880HuPiSo13IBMhrOzowKTJJjYdWvQ888IDZaaednPeakyZNMhdddFEx8DVq0r7M7bnnnqth4cVTxQ+XPbEv/osOCgRcBFhkdVHhWBAEWGQNIgw4AYECAcZlAQcVCEAAAhCAAAQgUEng9ttvN5MnT7YmfrKJmptvvrmy7aAPXBNAPhNK4kPVpJf4LhpCLeUJNamnULTr1q7PN0fh4kuOdiETIK/t6MCkyCQ1Hpr1yl+IVt1ziu65c+eahx56qJgAQ9Rc99qbNm0aouWLp0i/0r+LvxybMWOGWbly5YsN2INAiUAav0JKoqnGQYDFnDjihJdpEWBcphVv1EIAAhCAAAQg0IyALGK6Jn+ySZx3vetd5j//8z9rd+KyWWdC6amnnjLSd+ZHeSv2mywC1xbk0aDss9RTKNp1a9fnm6Nw8SVHu5AJkNd2dGBSZJIaD+16f/azn5m99tqr8v5TntRy2mmn1XpNxZQpUyx7zz77bDGRKmryOgzpz/WEmCwW4q/4TYHAeATS+BUyHgE+C5bAOeecY10kP/7xjwfrL45BIAUCLLKmEGU0QgACEIAABCDQJoHvf//7Zvr06dZvm2zyRv53/JVXXmnqLJL6TihJH9KX9Jn1X96Kr+Jz6KXst9RTKNp1a9fnm6Nw8SVHu5AJkNd2dGBSZJIajxT0/uY3vzGvf/3rK+9DhcHUqVPNKaecMtT7T+XcMrdnnnmmmEilmrxXVey72uZtHXTQQUb8pUBgEIE0foUMosDnQRJgkTXIsOBU4gQYl4knAPIhAAEIQAACEPAicP/995tZs2ZZk0D5iZw99tjDLF261Dz99NMD+3BNCo03obRu3box29JHvs/yvvgovsZQyr5LPYWiXbd2fb45ChdfcrQLmQB5bUcHJkUmqfFIRe/mzZvN2WefbSZOnDjufanweMMb3mCuuOIK89hjjxWT4//Vpk2bZtnYuHGjda60Fztiz8U5f0z8Ev/ETwoEhiGQxq+QYUhwTnAEWMwJLiQ4BAHDuCQJIAABCEAAAhCAgB+BtWvXmqOPPnrgxI4soB577LHmlltuMRs2bHB2NsyEkrQVG2LLtSibn0ySffFNfIyllP2XegpFu27t+nxzFC6+5GgXMgHy2o4OTIpMUuORmt4VK1aY2bNnD7w3zrjsvffe5p3vfKe57LLLxu5xf/rTn5rtttvOav+jH/1o7HM5T86XdpmNQVvxR/yiQKAOgTR+hdQhwrnBEPjgBz9oXQA/8YlPBOMfjkAgRQIssqYYdTRDAAIQgAAEINAmgauuusrsuOOO1m8d16SPvCNK/sf9mWeeaa699lpz5513mjVr1jgnlG677baxc+RcaTPe+6XyfYkv4lNsJa8h249Ng4+/mdb81sdOqG3yurL9UH3t06+MRX7bZ//0BYEuCOTzOdvvop+YbGYc8tuY/G/b1zyHbL/tPkKyl2nMb0Pyrwtf5FUWn/zkJ832228/1L1xnk2b+9K/+FHn9R1d8MBmnARYZI0zbkl4zSJrEmFGZGQEGJeRBQx3IQABCEAAAhAIksCTTz5p5s+fbyZMmDCyCSXpW3wQX2Isrom1GHXU9Vm7bu366sY7Ox8uGQm2mgiQ13Y0YVJkkhqP1PTmo/3EE0+MPaJ3+vTpvd4bS3/yaGDpnwIBXwIssvqSo13nBFjM6RwxHUCgNgHGZW1kNIAABCAAAQhAAAKVBFatWmWOOeaYod5J5Zp48zkm75mSPqXvmItLe8x6hvVdu27t+oaNc/k8uJSJUNdAgLy2owiTIpPUeKSmtxjtLbV169aNPQ74Na95TaeLrWJfHics/VEg0JQAi6xNCdK+MwLyv0jKXy7yZ/sUCEBgdARYZB0de3qGAAQgAAEIQEAvgYcffticeuqpZubMmdZvoPJvIt+62JY+pC8NxcVBg65BGrTr1q5vUHyrPodLFRmOx0yAvLajB5Mik9R4pKa3GG279uCDD5rzzjvPHHTQQUO/BsPFUI7JazTEjtgTuxQItEmARdY2aWKrVQIssraKE2MQaIUA47IVjBiBAAQgAAEIQAACTgKbN2823/72t8ce47vXXns1XnAVG/JIYLEptjUV1ySaJn1VWrTr1q6vKq6DjsNlECE+j5EAeW1HDSZFJqnxSE1vMdrj19avX2+++93vmksvvdQsWrTIzJ0718yePdvsvvvuY+9z3Wabbca2Upfj8rmcJ+dLuw0bNozfAZ9CoAEBFlkbwKNptwRYzOmWL9Yh4EOAcelDjTYQgAAEIAABCEDAj8CaNWvM9ddfP/a/7uURvwceeKCZNWuW2Xnnnc3kyZPH/sm+HJPP5Bz5H/rSRtpqLqlORGrXrV2f75iEiy852oVMgLy2owOTIpPUeKSmtxhtahCIlwCLrPHGTr3nH/jAB6z/uX3RRRep141ACIRMgEXWkKODbxCAAAQgAAEIQCAdAqlORGrXrV2f7wiFiy852oVMgLy2owOTIpPUeKSmtxhtahCIlwCLrPHGTr3nLLKqDzECIyTAuIwwaLgMAQhAAAIQgAAEFBJIdSJSu27t+nyHIlx8ydEuZALktR0dmBSZpMYjNb3FaFODQLwEWGSNN3bqPWcxR32IERghAcZlhEHDZQhAAAIQgAAEIKCQQKoTkdp1a9fnOxTh4kuOdiETIK/t6MCkyCQ1HqnpLUabGgTiJcAia7yxU+85iznqQ4zACAkwLiMMGi5DAAIQgAAEIAABhQRSnYjUrlu7Pt+hCBdfcrQLmQB5bUcHJkUmqfFITW8x2tQgEC8BFlnjjZ16z5csWWK9k/Xiiy9WrxuBEAiZAIusIUcH3yAAAQhAAAIQgEA6BFKdiNSuW7s+3xEKF19ytAuZAHltRwcmRSap8UhNbzHa1CAQLwEWWeONnXrPWWRVH2IERkiAcRlh0HAZAhCAAAQgAAEIKCSQ6kSkdt3a9fkORbj4kqNdyATIazs6MCkySY1HanqL0aYGgXgJsMgab+zUe85ijvoQIzBCAozLCIOGyxCAAAQgAAEIQEAhgVQnIrXr1q7PdyjCxZcc7UImQF7b0YFJkUlqPFLTW4w2NQjES4BF1nhjp97zs846y3pc8Kc+9Sn1uhEIgZAJsMgacnTwDQIQgAAEIAABCKRDINWJSO26tevzHaFw8SVHu5AJkNd2dGBSZJIaj9T0FqNNDQLxEmCRNd7YqfecRVb1IUZghAQYlxEGDZchAAEIQAACEICAQgKpTkRq161dn+9QhIsvOdqFTIC8tqMDkyKT1HikprcYbWoQiJcAi6zxxk695yzmqA8xAiMkwLiMMGi4DAEIQAACEIAABBQSSHUiUrtu7fp8hyJcfMnRLmQC5LUdHZgUmaTGIzW9xWhTg0C8BFhkjTd26j0/88wzrccFX3LJJep1IxACIRNgkTXk6OAbBCAAAQhAAAIQSIdAqhOR2nVr1+c7QuHiS452IRMgr+3owKTIJDUeqektRpsaBOIlwCJrvLFT7zmLrOpDjMAICTAuIwwaLkMAAhCAAAQgAAGFBFKdiNSuW7s+36EIF19ytAuZAHltRwcmRSap8UhNbzHa1CAQLwEWWeONnXrPWcxRH2IERkiAcRlh0HAZAhCAAAQgAAEIKCSQ6kSkdt3a9fkORbj4kqNdyATIazs6MCkySY1HanqL0aYGgXgJsMgab+zUe37GGWdYjwu+9NJL1etGIARCJsAia8jRwTcIQAACEIAABCCQDoFUJyK169auz3eEwsWXHO1CJkBe29GBSZFJajxS01uMNjUIxEuARdZ4Y6fecxZZ1YcYgRESYFxGGDRchgAEIAABCEAAAgoJpDoRqV23dn2+QxEuvuRoFzIB8tqODkyKTFLjkZreYrSpQSBeAiyyxhs79Z6zmKM+xAiMkADjMsKg4TIEIAABCEAAAhBQSCDViUjturXr8x2KcPElR7uQCZDXdnRgUmSSGo/U9BajTQ0C8RJgkTXe2Kn3/PTTT7ceF3zZZZep141ACIRMgEXWkKODbxCAAAQgAAEIQCAdAqlORGrXrV2f7wiFiy852oVMgLy2owOTIpPUeKSmtxhtahCIlwCLrPHGTr3nLLKqDzECIyTAuIwwaLgMAQhAAAIQgAAEFBJIdSJSu27t+nyHIlx8ydEuZALktR0dmBSZpMYjNb3FaFODQLwEWGSNN3bqPWcxR32IERghAcZlhEHDZQhAAAIQgAAEIKCQQKoTkdp1a9fnOxTh4kuOdiETIK/t6MCkyCQ1HqnpLUabGgTiJcAia7yxU+85iznqQ4zACAkwLiMMGi5DAAIQgAAEIAABhQRSnYjUrlu7Pt+hCBdfcrQLmQB5bUcHJkUmqfFITW8x2tQgEC8BFlnjjZ16z9///vdb72RdunSpet0IhEDIBFhkDTk6+AYBCEAAAhCAAATSIZDqRKR23dr1+Y5QuPiSo13IBMhrOzowKTJJjUdqeovRpgaBeAmwyBpv7NR7ziKr+hAjMEICjMsIg4bLEIAABCAAAQhAQCGBVCcitevWrs93KMLFlxztQiZAXtvRgUmRSWo8UtNbjDY1CMRLgEXWeGOn3nMWc9SHGIEREmBcRhg0XIYABCAAAQhAAAIKCaQ6Ealdt3Z9vkMRLr7kaBcyAfLajg5MikxS45Ga3mK0qUEgXgIsssYbO/Wen3baadbjgi+//HL1uhEIgZAJsMgacnTwDQIQgAAEIAABCKRDINWJSO26tevzHaFw8SVHu5AJkNd2dGBSZJIaj9T0FqNNDQLxEmCRNd7YqfecRVb1IUZghAQYlxEGDZchAAEIQAACEICAQgKpTkRq161dn+9QhIsvOdqFTIC8tqMDkyKT1HikprcYbWoQiJcAi6zxxk695yzmqA8xAiMkwLiMMGi4DAEIQAACEIAABBQSSHUiUrtu7fp8hyJcfMnRLmQC5LUdHZgUmaTGIzW9xWhTg0C8BFhkjTd26j1fvHix9bjgT3/60+p1IxACIRNgkTXk6OAbBCAAAQhAAAIQSIdAqhOR2nVr1+c7QuHiS452IRMgr+3owKTIJDUeqektRpsaBOIlwCJrvLFT7zmLrOpDjMAICTAuIwwaLkMAAhCAAAQgAAGFBFKdiNSuW7s+36EIF19ytAuZAHltRwcmRSap8UhNbzHa1CAQLwEWWeONnXrPWcxRH2IERkiAcRlh0HAZAhCAAAQgAAEIKCSQ6kSkdt3a9fkORbj4kqNdyATIazs6MCkySY1HanqL0aYGgXgJsMgab+zUe37qqadajwv+zGc+o143AiEQMgEWWUOODr5BAAIQgAAEIACBdAikOhGpXbd2fb4jFC6+5GgXMgHy2o4OTIpMUuORmt5itKlBIF4CLLLGGzv1nrPIqj7ECIyQAOMywqDhMgQgAAEIQAACEFBIINWJSO26tevzHYpw8SVHu5AJkNd2dGBSZJIaj9T0FqNNDQLxEmCRNd7YqfecxRz1IUZghAQYlxEGDZchAAEIQAACEIBAxAQ2bNhgvvvd75pLL73ULFq0yMydO9fMnj3beuqRTEzKcflczpPzpZ2011S0T8Bq1+ebi3DxJUe7kAmQ13Z0YFJkkhqP1PQWo00NAvESYJE13tip9/x973uf9cP5s5/9rHrdCIRAyARYZA05OvgGAQhAAAIQgAAEdBB48MEHzXnnnWcOOuggs+2221q/C12TkFXHpL3YEXtiN/bi0hm7prz/2vXltdbZh0sdWpwbCwHy2o4UTIpMNPNYs2aNuf7668fuT4455hhz4IEHOu93Zs2aNfaZnCP3MtJG2lIgAIFwCLDIGk4s8KREgEXWEhCqEAiAAOMygCDgAgQgAAEIQAACEFBIYN26deayyy4zr3nNa5yTjK6JVp9jYl/6kf5iLC7NMeqo8lm7virdg47DZRAhPo+RAHltRw0mRSaaeGzevNl8+9vfNvPnzzd7771343sdsSG2xKbYpkAAAqMjwCLr6NjT8wACLOYMAMTHEBgBAcblCKDTJQQgAAEIQAACEFBM4IknnjBnn322mT59euMJR9dkbNUx6U/6lf5jKi49Mfk/yFft+gbpr/ocLlVkOB4zAfLajh5Mikw08Hj44YeNPBVu5syZnd3niG3pQ/qiQAAC/RNgkbV/5vQ4JAEWc4YExWkQ6JEA47JH2HQFAQhAAAIQgAAEFBPYtGmTueiii8z222/f2aSja3K2fEz6Fz/EnxhK2X+payra9fnGCi6+5GgXMgHy2o4OTIpMYuaxatUqI4/4nThxYm/3OdKX9Cl9UyAAgf4I6Lob748bPfVA4L3vfa/1JfS5z32uh57pAgIQqCLAImsVGY5DAAIQgAAEIAABCAxLYMWKFWb27NnW7z3XZKock0fiveMd7zCXXnqpueWWW8xPf/pTZ1s5Lp/LeXJ+ncfxiT/iV+jFxSh0n+v4p11fHRb5c+GSp8G+FgLktR1JmBSZxMjjySefHHuM74QJE5z3Ki5NbR+TvuVRwuILBQIQ6J4Ai6zdM6YHTwIssnqCoxkEOiTAuOwQLqYhAAEIQAACEICAcgLyzjB5RO8wf9Xxhje8wVxxxRXmsccec1JxTUi6TpT2Ykfsudrkj4lf4l/I7zbL+5vtu3THeizTlN/GqqVNv/M8sv027WMLAqMgkOVyfjsKP0LqM88i2w/Jv759yRjkt337UKe/q666yuy4444D7zdEz7bbbjt2b3LmmWeaa6+91tx5553Odo8++ujYZ3KOnCv3M9I2z6RqX3wRnygQgEC3BFhk7ZYv1hsQYDGnATyaQqAjAozLjsBiFgIQgAAEIAABCCgn8Jvf/Ma8/vWvH3dScOrUqeaUU04xq1evHkjDNaE4qJHYfc973mOkH1f77NhBBx1kxN8QS+Zjfhuin74+5XVl+762NLXLWOS3mvShJU0C+XzO9tMk8aLqjEN+++Kn6e3lOWT7IVJYu3atOfroo8e9txD/5f7j2GOPHXvqxoYNGywpmcb81jrJGLN+/foxG2Jr0D2N2BLfxEcKBCDQDQEWWbvhitUWCMiP6/yXiuzL/0CmQAACoyPAIuvo2NMzBCAAAQhAAAIQiJXAz372M7PXXntZv++y33vyFxmnnXZarcfaZW3z22H5yOPzpL/x/hJE/BW/Qyt5vdl+aD428SfTlN82saelbZ5Htq9FGzrSJZDlcn6bLo0tyvMssv2UmWQM8tvQeNx///1m1qxZlfc44vsee+xhli5dap5++ulx3c/rzPbHbWCMWbdunbnsssvG+sjauLbio/hKgQAE2ifAImv7TLHYEgEWWVsCiRkItEiAcdkiTExBAAIQgAAEIACBBAjcc889ZsaMGZWTj3PnzjUPPfRQbRKuCcS6RqRf6d9lS46J3ytXrqxrttPzXb522mHPxrXr88UJF19ytAuZAHltRwcmRSah8/j+979vXvrSl457H3HllVeaTZs2FYVV1JrolT7kj5PGu+eaPn26EZ8pEIBAuwRYZG2XJ9ZaJMBiToswMQWBlggwLlsCiRkIQAACEIAABCCQAIEHHnjA7LTTTs7Jx0mTJpmLLrrIm0KTichyp+KH+OOyKf6LjlCKy8dQfGvDD+36fBnBxZcc7UImQF7b0YFJkUnIPG6++WYzefJk572D+P2ud73LPPXUU0VBA2pt6JU+pW+XLTkmPovvFAhAoD0CLLK2xxJLLROQd+WUvxDkf/9QIACB0RFgkXV07OkZAhCAAAQgAAEIxERA3n+6++67W7/p5DfezJkzjfyFa5NS/q0o9Sbl7rvvHvPLZVd0DPOe2Cb9D9vW5d+wbWM4T7s+3xjAxZcc7UImQF7b0YFJkUmoPG6//fbKBVb5z1m+i5ht6hUfqv6jmyy0igYKBCDQDoFmv0La8QErEHASYJHViYWDEBgpAcblSPHTOQQgAAEIQAACEIiCwMaNG82rXvUq5wLrPvvsY37xi1801tHmRGTmjPgl/rlsix7RNeri8m3UPrXZv3Z9vqzg4kuOdiETIK/t6MCkyCREHj/84Q/N9ttv77xX2H///c2aNWuKImrU2tYrvohPLruiQbRQIACB5gRYZG3OEAsdEWAxpyOwmIVAAwKMywbwaAoBCEAAAhCAAAQSIXDCCSc4J/T2228/8+STT7ZCwTVh2IZh8U/8dNkXXaMuLr9G7VOb/WvX58sKLr7kaBcyAfLajg5MikxC4yH3CHvssYfzHuGNb3yjWbt2bVFAzVoXesUn8c1lW7S0dV9WUyqnQ0AVARZZVYVTl5iTTz7Z+gL4+7//e10iUQOByAiwyBpZwHAXAhCAAAQgAAEI9Ezgi1/8ovU7Tib2Zs2aZR5//PHWvHFNFrZlXPwUf119iL5RFpdPo/Sn7b616/PlBRdfcrQLmQB5bUcHJkUmofE4+OCDnfcGsoj57LPPFp33qHWlV3yrWmg95JBDPDylCQQgkCfAImueBvtBEWCRNahw4AwExggwLkkECEAAAhCAAAQgAIEqAvLXEDNmzLAmILfbbjvz4IMPVjXzOt7VRGTmjPgrfpf7EX2j/KuPsj9S11S06/ONFVx8ydEuZALktR0dmBSZhMTj4osvtu4JxL8DDzzQrFu3rui4Z61LveKj+OrqQ7RRIAABfwK67sb9OdAyQAIs5gQYFFxKngDjMvkUAAAEIAABCEAAAhCoJFD1mOAbbrihso3vB65JQl9bVe3Eb1c/o3xssMufKv9jPK5dn29M4OJLjnYhEyCv7ejApMgkFB6PPvqomTZtmnVPMHPmTPOrX/2q6HSDWtd6xdddd93V0iHaRCMFAhDwI8Aiqx83WvVA4KSTTrIu+p///Od76JkuIACBKgIsslaR4TgEIAABCEAAAhBIm8C9995r/X6TycITTzyxEzBdT0RmTr/97W936hK9fZX169eb5cuXm4ULFzp9mTNnjlm0aJG58cYbjZwbc+krrrExgktsEcPfYQiQ1zYlmJix77HQvvMOO+ww6/t34sSJ5vbbb7eD2OBIH/EXn8X3cl+ikQIBCPgRYJHVjxuteiDAImsPkOkCAjUJMC5rAuN0CEAAAhCAAAQgkAiBI444wpqw23nnnc1TTz3VCYHy5KDUuyjiv+go9yd6uy6PPPKIWbBggfOvZ8r+ZHX5axRpI21jLJmO/DZGHW37nOeR7bfdB/Yg0DeBLJfz2759CK2/PItsPzQfu/In1O+8FStWWPcAEpszzjijdRRZzPPb1jsxxpx++ulOTaKVAgEI1CfQza+Q+n7QAgIWARZzLCQcgMDICTAuRx4CHIAABCAAAQhAAALBEbjvvvuck3VXX311Z77mJyCz/a46Ex1ZH/mt6O6iPPvss2bJkiVm0qRJzn7zPlTtS1uxIbZiKi49Mfnfla9w6YosdkdJgLy26afIJPTvvLlz51rfxXvuuafZsGGDHcCGR/qKvzz1QjSU+xOtFAhAoD4BFlnrM6NFTwRYzOkJNN1AoAYBxmUNWJwKAQhAAAIQgAAEEiEwf/58a6Ju7733Nps3b+6MQHliUOpdFdEhesp9iu62y+rVq80BBxxg9VXue9i62BKbsRSXrlh879JPuHRJF9ujIkBe2+RTYxL6d96dd97p/D6+6aab7OC1cKTP+IsGV3+imQIBCNQj0N2vkHp+cDYELALvfve7rYv9F77wBes8DkAAAv0RYJG1P9b0BAEIQAACEIAABGIgsHHjRrPDDjtYv92uueaaTt13TQx22aHoKfcpukV/W2XVqlVm5syZVj/lfuvWxabYjqG4tMXgd9c+wqVrwtgfBQHy2qaeEpMYvvPmzZtnfSfvv//+duBaOtJ3/EVLuU/RTIEABOoRYJG1Hi/O7pEAi6w9wqYrCAxJgHE5JChOgwAEIAABCEAAAokQuO6666wJuunTp3f+mNrypKDUuyzyOEPRVe5X9LdR5K95ulhgzfwV2zH8RWvmb37bBt/YbeR5ZPuxa8J/CGS5nN+mTiXPItvXyCSG77x169aZqVOnWt/7y5Yt6ywkWczz2846M8aIlnxfsi+aRTsFAhAYnkC3v0KG94MzIWARYDHHQsIBCIycAONy5CHAAQhAAAIQgAAEIBAUgbe+9a3WBJ3cM3ZdypOCUu+6uO6FRX/TIgu4bT4i2MVGjkkfob+j1eV7U74a2sNFQxTRUCZAXpeJGOv7VBhpK7F857meYLHrrrua5557rrOQ9D0mRItoKvfb9dNIOgOIYQiMiIC+K/WIQNJt+wQWLVpkXeSvuuqq9jvCIgQgMDQB18QSj/EeGh8nQgACEIAABCAAAXUEZsyYYf1uu+OOOzrXWZ4Q7GMiWnSV+xX9TcuSJUssu+V+2qpLXyEXl86Q/e3LN7j0RZp++iRAXtu0U2ASy3fekUceaX03L1682A5ai0dGEX/RVO5XtFMgAIHhCbDIOjwrzuyZAIusPQOnOwgMQYBxOQQkToEABCAAAQhAAAKJEPjRj35kTczJe0o3b97cOYHyhKDUuy6iy/X+WeHgWx555BEzadIki6NLXxvHpC/pM9Ti0hiqr336BZc+adNXXwTIa5u0diaxfOc9//zzzlcE3HPPPXbQWjwyiviLpnK/8noEYUCBAASGI9D9r5Dh/OAsCFgEWMyxkHAAAiMnwLgceQhwAAIQ6UaAUgAAIABJREFUgAAEIAABCARD4POf/7w1MXf44Yf34l95QlDqfRTRV+5bOPiWBQsWWPbK9tuuS5+hFpfWUH3t0y+49EmbvvoiQF7bpLUzieU7b+XKldZ3cx8Lj6OIf9WCsjCgQAACwxHo51fIcL5wFgQKBBYuXGh9oV199dWFc6hAAAL9EmCRtV/e9AYBCEAAAhCAAARCJuB6xNwFF1zQi8ujmIgUYaKv3Lfv4wPXr19v/n/27jfIjiqv//hOICkSwg5MTIgbcRLd/NHgYlSWoPvDQSWowIKCIAK7GHahaqkKFEtt8YAnFA8WqiCPSO0CcdHInwUUFQU3ZhOVqCT8ERIDKBtIEPkj2SI1ZFIpGKrOrz6z3uXePufO7du3T/c5p9+nKjXTfbvP+X5f5/S9M/2d3Dtnzhyrv2z/ZW9rTI0dYnPlGmKcVceES9XijFeFAOvaVk7ZJKbXvA0bNlivzVW8hW5d8+96a2QZ0BBAIJ8ARdZ8ThxVgwBF1hrQGRKBHgJclz2AeBgBBBBAAAEEEGiQwNlnn23dhHzkkUcqEajrRqTyy44thyLtoYcesvrK9u1rW2OH2Fz5hhhn1THhUrU441UhwLq2lVM2iek1b926ddbr86233mpPWMl76pp/5ZYdWwY0BBDIJ0CRNZ8TR9UgQDGnBnSGRKCHANdlDyAeRgABBBBAAAEEGiSwYsUK66bcrl27KhHI3gzUdhVN+WXHlkOR5vrZOtu3r229Q02IzZVviHFWHRMuVYszXhUCrGtbOWWTmF7z1qxZY73WP/roo/aElbynrvlXbtmxZUBDAIF8AtX8FpIvFo5CoEPA9T799957b8cxbCCAQLUCrh+KeRvvaueA0RBAAAEEEEAAgVAEPvOZz1g35bI36ZqwLYci7fOf/3xtfho7xOZaLyHGWXVMuFQtznhVCLCubeWUTWJ6zVu+fLn1+rx79257wkreU9f8K7fs2DKgIYBAPgGKrPmcOKoGAYqsNaAzJAI9BLguewDxMAIIIIAAAjkEHvjea+aLN2zjHwbRr4GjZlX/eaLZm4AhbMuhyDU9a/awdVOzqnw0dpGYfZ/jyt/3mDH0jwuvmTGs035jZF3b6zplk5he846Z+xO1vT671kAd+2TQ7zXN8fY1jUm8Jg9ufj3Hb/Y/OoQia24qDqxagGJO1eKMh0BvAa7L3kYcgQACCCCAQC8Biqzx/rLNjZLOuRsamtH4m5C68SmHImtjxlEza/PT2EVi9n2O60ay7zFj6B+XzueeGOaMGHvPGevaNkrZJKbXPP6I7FOm6B+Q8dxnX9eYxGmi39nzNoqseaU4rnKBq666yvqFc+PGjZXHwYAIIPCJAEXWTyz4DgEEEEAAgaICFFnj/EWbGyT2vHET8lNTv7MWvREZ0w3nqtZ/ygWGQQxxsZ9/BvHk3DA8Wdf2PKRsEtNrHn9EVvwPyHh+ta9rTOI0ocha9G4H5wUlQJE1qOkgGASmBLguWQgIIIAAAggMLkCRNc5ftLlBYs8bb6f3oyJr0bfUi+mtE6ta/ykXGAYxxMV+/hnEk3PD8GRd2/OQsklMr3n8ERn/k5XXCfv5qWkmFFkHv+9BDwEIUMwJYBIIAYGMANdlBoRNBBBAAAEECghQZOWX9lRuUhw38tPWuw+NXbGxkrehretGtPLLji2HInN6/MKfs/rK9u1rW2MXidn3Oa58fY8ZQ/+48LoRwzrtN0bWtb2uUzaJ6TWPPyL7lCn6B2T9Pg9wvP08gEkYJhRZC9zo4JTwBCjmhDcnRIQA1yVrAAEEEEAAAQQQQKAlcPbZZ1tFwkceeaT1sNevrhvRXgf8v86VX3ZsORRpX/3qV62+sn372r766quLhOz9HFe+3geNYABcIpgkQuxbgHVtk6VsEtNr3vLly63X5927d9sTVvKeuuZfuWXHlgENAQTyCfCZrPmcOKoGgbVr11pP8H/yJ39SQyQMiQACLQGKrC0JviKAAAIIIIAAAghcd9111u9st9xySyUw2ZuB2q6iKb/s2HIo0h566CGrr2zfvra/+93vFgnZ+zmufL0PGsEAuEQwSYTYtwDr2iZL2SSm17w1a9ZYr8+PPvqoPWEl76lr/pVbdmwZ0BBAIJ9ANb+F5IuFoxDoEKDI2sHBBgJBCHBdBjENBIEAAggggAACCAQh8O1vf9u6KXfuuedWElv2ZqC2q2jKLzu2HIq0Q4cOmTlz5lj9Zfsve1tjauwQmyvXEOOsOiZcqhZnvCoEWNe2csomMb3mrVu3znptvvXWW+0JK3lPXfOv3LJjy4CGAAL5BKr5LSRfLByFQIcAxZwODjYQCEKA6zKIaSAIBBBAAAEEEEAgCIHnnnvOuil33HHHmcnJSe/xZW8Gatt3U17KLzu2HIq2r3zlK1Z/2f7L3taYoTZXrqHGWmVcuFSpzVhVCbCubenUTWJ5zduwYYP12nz++efbE1bynrrmX7llx5YBDQEE8gn4/y0kXxwchYAl8Md//MfWE/x3vvMd6zh2IIBAdQIUWauzZiQEEEAAAQQQQCAGgZGREev3tqeeesp76Nmbgdr23ZRXdlzlP0j7wQ9+YGbOnGn1mx2nrG2NpTFDba48Q421yrhwqVKbsaoSYF3b0qmbxPKat3PnTut1eXh42Hz88cf2pJW4p475V07KLTu2DGgIIJBPwP9vIfni4CgELAGKrBYJOxCoXYDrsvYpIAAEEEAAAQQQQCAogYsuusi6MXfNNdd4jzF7M1Dbvpvyyo6r/Adt3/jGN6x+s+OUta2xQm6uPEOOt6rYcKlKmnGqFGBd29pNMInhNa9b4XHHjh32pJW4p475f/rpp62fQaooKJfIRlcI1C7g/7eQ2lMkgFgFKObEOnPEnbIA12XKs0tuCCCAAAIIIIBA/wKbNm1y3pw7cuRI/531cUbVNyKVj+t/eij/QZv6/tznPmc5unIcZJ/G8D0vg1q48hu0zxTOxyWFWSSHrADrOitinK8D9lFx74nlNc/1FrrXXXedV/w6rgnllB23irdG9gpJ5whULECRtWJwhssvcOWVV1pP8vfdd1/+DjgSAQRKF6DIWjopHSKAAAIIIIAAAlELTExMOD+n9N577/WaV/aGoLZ9NuWTHVOfz3r48OFSht27d69ZsGCBNUZ2zKLb6ltjhN5c+YUecxXx4VKFMmNULcC6tsWbYhLDa97GjRut1+T58+ebjz76yJ64kvZUPf/KRTllx1XuNAQQyC/g97eQ/HFwJAKWAEVWi4QdCNQuwHVZ+xQQAAIIIIAAAgggEJzA2rVrrRt0S5YsMZOTk95izd4Q1LavpjyUT3ZM5V1me+GFF7wUWlVgVd8xtKyxz3mNwaMVIy4tCb6mJMC6tmezSSahv+aNj4+b2bNnW6/9Dz74oD1xJe2pev6VS3ZM5azcaQggkF/A328h+WPgSAScAhRznCzsRKBWAa7LWvkZHAEEEEAAAQQQCFLg+eeft27S6abdPffc4y3e7E1BbftqysM1nvIuu+l/95T51sHqK4b/wdpydDm3HmvyV1yaPPvp5s66tue2aSahv+Zdeuml1uv/ypUr7YkraU/V869csmMqZxoCCPQn4O+3kP7i4GgELIEvf/nL1hP9n/7pn1rHsQMBBKoToMhanTUjIYAAAggggAACMQmcd9551u9v8+bNMwcOHPCSRvamoLZ9NMWvPLLjKV9fTZ9X941vfMPMnDnTGjcbR7dtnas+Qv8M1qyhK5/sMU3cxqWJs55+zqxre46baBLya9727dudr8MPP/ywPXkl7Kly/pWDazzlTEMAgf4E/PwW0l8MHI2AU4Aiq5OFnQjUKsB1WSs/gyOAAAIIIIAAAsEKPPvss86bdVdccYWXmF03Bn0MpPhdYylf3+0HP/iB+cpXvmLmzJnjjMEVl47VOTo3xubKKcY8yo4Zl7JF6S8EAda1PQtNNgn1NW9sbMx6DT7ppJOMPpO+7FbV/B86dMgoh+x4ypWGAAL9C1Bk7d+MMyoSoJhTETTDINCHANdlH1gcigACCCCAAAIINEzg8ssvt27Y6QbeAw88ULpE9sagtstuits1jvKssulm6EMPPWS++tWvOuP5/Oc/P/WYjtGxMTeXd8z5lBU7LmVJ0k9IAqxrezYwMVOvYyG95m3dutX52nvDDTfYEzjgnqrmX7G7xtq2bduAGXA6As0UKP+3kGY6krUHgS996UvWE/6f/dmfeRiJLhFAIK8ARda8UhyHAAIIIIAAAgg0T+C9994zIyMj1u9xxx57rNmzZ0+pIK6bg2UOoHgVd3Yc5ac862rZeLSdUks9v6JzhUtROc4LWYB1bc8OJp0moXicc8451s8DM2bMMFu2bOkMeMCtKvJVzIo9O5ZypCGAQDGBtH4aL2bAWYEKUGQNdGIIq9ECXJeNnn6SRwABBBBAAAEEegrcd9991o073cgbHR01b775Zs/z8x6QvTmo7bKa4lS8rjGUX53NFVOd8ZQ9dur5FfXCpagc54UswLq2ZweTTpNQPPbt2+d86/758+ebt956qzPoAbZ856tYFXN2HH3UgHKkIYBAMYHyfgspNj5nIdBVgGJOVxoeQKA2Aa7L2ugZGAEEEEAAAQQQiEbgsssus27g6YbeihUrSvtfoNkbhNouo+l/qS5fvtwZf9VvE+zKx1ferrHq2Jd6fkVNcSkqx3khC7Cu7dnBpNMkJI/bb7/d+bPBqlWrzPj4eGfgBbd85qsYFatrDOVGQwCB4gLl/BZSfHzORKCrAMWcrjQ8gEBtAlyXtdEzMAIIIIAAAgggEI3A4cOHzcknn+y8kacC5uuvvz5wLq6bhIN2qriWLVvmjFv5KK+6m4+8686pffzU82vPtZ/vcelHi2NjEWBd2zOFSadJaB5nnXWW82eEM844wxw5cqQz+AJbvvJVbIrR1b9yoiGAwGACFFkH8+NsjwJXXHGF9eS/adMmjyPSNQII9BKgyNpLiMcRQAABBBBAAAEEJLB3716zcOFC63c63eBbsGCB2bFjx0BQrhuFg3SoeBSXq1/loXxCaK74QoirrBhSz6+oEy5F5TgvZAHWtT07mHSahOahd7tYtGiR82cFFTEPHjzYmUCfWz7yVUzdCqzKpc7Pme+Th8MRCFaAImuwU0NgFFlZAwiEJ8B1Gd6cEBECCCCAAAIIIBCqwO7du80JJ5zgvBk5c+ZMc9tttxUOvcwbkYpD8bj6VPzKI5TmijGU2MqII/X8ihrhUlSO80IWYF3bs4NJp0mIHs8884yZO3eu82eGlStXmv3793cm0cdW2fkqFsXk6lc5KBcaAggMLkCRdXBDevAkQDHHEyzdIjCAANflAHicigACCCCAAAIINFBA/0O0W6FVN/3GxsbMSy+91LeM64Zhv51oXI3v6kv7RkZGzM6dO/vt1uvxrli9Dlhx56nnV5QTl6JynBeyAOvanh1MOk1C9diyZYuZNWuW8+cH/czz2GOPdSaSc6vMfBVDt5+/FLtyoCGAQDkCFFnLcaQXDwKXX3659WL153/+5x5GoksEEMgrQJE1rxTHIYAAAggggAACCLQEXnnlFbN48WLr97vWzcSjjz7aXH/99X29ZV3r3PavrfF6fdVb42k8jdt+fvv3ildxh9baY2x9H1qMg8TTyqn96yD9pXJuu0fr+1RyI4/mCrTWcvvX5mr8KPN2i9b3TTZpGbR/DcVDRcxuhVbFe9VVV5kf/vCHfYXbnmfr+746MMYcOHBgauzW+dmvirloEbjfWDgegaYIUGRtykxHmCdF1ggnjZCTF+C6TH6KSRABBBBAAAEEEPAi8M4775jTTjuta1FTNwFnz55trr322lyff5q9aajtXk2fq6r+NY7r/Na+1atXG8UbYmvF2P41xDiLxtSeV+v7on2ldF7Lov1rSvmRSzMF2tdz6/tmSnySdcuh/esnjzbvu3aH1vchKWzbts0MDw93/ZlC74ixYcMG8+GHH+YKu5Vj+9dcJxozNYbG0pjt57d/r1gVMw0BBMoV6P1bSLnj0RsCuQUo5uSm4kAEKhPguqyMmoEQQAABBBBAAIHkBCYnJ81NN91kZsyY0fUGYOtm4Omnn27uuusu88YbbzgdWse1f3UdqPPVj/prP9b1veJSfIoz1OaKO9RYi8SVen5FTHQOLkXlOC9kAda1PTuYdJrE4LFr1y4zOjrqfJ5uxb9o0SKzfv1688EHH3QmmNlqHd/+NXOItTk+Pj7Vt8ZoPy/7vWJUrDQEEChfgCJr+ab0WJLAZZddZr043H///SX1TjcIIFBEgCJrETXOQQABBBBAAAEEEGgX2Lp1q1m6dKn1+172hmBre8mSJebKK680d955p3n88cfNyy+/7DxX+/W4jtPxOq/VR6+vikdxhd5ceYQecz/xpZ5fPxbtx+LSrsH3qQiwru2ZxKTTJBaPgwcPmgsvvLDnzxx6J41LLrlk6meViYmJzmT7+IManaufd9RXr3fnkKFiU4w0BBDwI0CR1Y8rvZYgQJG1BES6QKBkAa7LkkHpDgEEEEAAAQQQaKiA3jrvm9/8ppk7d27Pm5Kum6xl7dP4iiPvW/nVPV2uvOuOqczxU8+vqBUuReU4L2QB1rU9O5h0msTmcffdd5vjjz8+1881+lx4vcvGjTfeaDZu3Gi2b9/uPG/fvn1Tj+kYHatzpvtM+XYzxaKYaAgg4FeAIqtfX3ofQIBizgB4nIqAJwGuS0+wdIsAAggggAACCDRU4N133516i97pPtOs/YZhWd9rPL01sMaPqbnyjyn+XrGmnl+v/Ls9jks3GfbHLMC6tmcPk06TGD3ee+89s3btWjM0NOQsmrpyKnufxlYMioWGAAL+BSiy+jdmhIICf/RHf2S9GD3wwAMFe+M0BBAoQ4AiaxmK9IEAAggggAACCCCQFdBniultfk855RTr98Aybz6qf42j8WJsLosY8+gWc+r5dcu7135cegnxeIwCrGt71jDpNInZ44UXXjAXX3xxrs+hd+VZZJ8+W15jamwaAghUJ0CRtTprRupTgCJrn2AcjkAFAlyXFSAzBAIIIIAAAggg0HCBPXv2mJtvvtmsXr0691vidbsZqbfUUz/qT/3G3lx5xp5Te/yp59eeaz/f49KPFsfGIsC6tmcKk06TFDxeffVVs27dOrNgwQJvf0SmvjWGxqIhgED1AhRZqzdnxJwCFHNyQnEYAhUKcF1WiM1QCCCAAAIIIIAAAubQoUNm8+bN5o477jBXX321GRsbM0uXLjULFy6c+jzXo446auqrtrVfj+s4Ha/zJiYmklJM4YbzdBOSen7T5T7dY7hMp8NjsQqwru2Zw6TTJCWPyclJ88QTT0y9je/ixYsHLriqD70lsPpU3zQEEKhPgCJrffaM3EPg0ksvtV5wHnzwwR5n8TACCPgUoMjqU5e+EUAAAQQQQAABBBCYXiClG86uTFPPz5Vznn245FHimNgEWNf2jGHSaZKyx/79+839998/9U4beovfVatWmdHRUTNv3jwza9asqX/6Xvv0mI7Ru3LoHJ1LQwCBcAQosoYzF0SSEaDImgFhE4EABLguA5gEQkAAAQQQQAABBBBorEDKN5w1qannV3Th4lJUjvNCFmBd27ODSacJHp0ebCGAQJgCFFnDnBeiMsZQzGEZIBCeANdleHNCRAgggAACCCCAAALNEUj9hnPq+RVdqbgUleO8kAVY1/bsYNJpgkenB1sIIBCmAEXWMOeFqCiysgYQCFKAImuQ00JQCCCAAAIIIIAAAg0RSP2Gc+r5FV2muBSV47yQBVjX9uxg0mmCR6cHWwggEKYARdYw54WojDF/+Id/aL1V0EMPPYQNAgjUKECRtUZ8hkYAAQQQQAABBBBovEDqN5xTz6/oAsalqBznhSzAurZnB5NOEzw6PdhCAIEwBSiyhjkvREWRlTWAQJAC/PFDkNNCUAgggAACCCCAAAINEUj9hnPq+RVdprgUleO8kAVY1/bsYNJpgkenB1sIIBCmAEXWMOeFqCiysgYQCFKAImuQ00JQCCCAAAIIIIAAAg0RSP2Gc+r5FV2muBSV47yQBVjX9uxg0mmCR6cHWwggEKYARdYw54WojDGXXHKJ9XbB3/3ud7FBAIEaBSiy1ojP0AgggAACCCCAAAKNF0j9hnPq+RVdwLgUleO8kAVY1/bsYNJpgkenB1sIIBCmAEXWMOeFqCiysgYQCFKAP34IcloICgEEEEAAAQQQQKAhAqnfcE49v6LLFJeicpwXsgDr2p4dTDpN8Oj0YAsBBMIUoMga5rwQFUVW1gACQQpQZA1yWggKAQQQQAABBBBAoCECqd9wTj2/ossUl6JynBeyAOvanh1MOk3w6PRgCwEEwhSgyBrmvBCVMebiiy+23i744YcfxgYBBGoUoMhaIz5DI4AAAggggAACCDReIPUbzqnnV3QB41JUjvNCFmBd27ODSacJHp0ebCGAQJgCFFnDnBeiosjKGkAgSAH++CHIaSEoBBBAAAEEEEAAgYYIpH7DOfX8ii5TXIrKcV7IAqxre3Yw6TTBo9ODLQQQCFOAImuY80JUFFlZAwgEKUCRNchpISgEEEAAAQQQQACBhgikfsM59fyKLlNcispxXsgCrGt7djDpNMGj04MtBBAIU4Aia5jzQlTGmD/4gz+w3i74kUcewQYBBGoUoMhaIz5DI4AAAggggAACCDReIPUbzqnnV3QB41JUjvNCFmBd27ODSacJHp0ebCGAQJgCFFnDnBeiosjKGkAgSAH++CHIaSEoBBBAAAEEEEAAgYYIpH7DOfX8ii5TXIrKcV7IAqxre3Yw6TTBo9ODLQQQCFOAImuY80JUFFlZAwgEKUCRNchpISgEEEAAAQQQQACBhgikfsM59fyKLlNcispxXsgCrGt7djDpNMGj04MtBBAIU4Aia5jzQlTGmIsuush6u+BHH30UGwQQqFGAImuN+AyNAAIIIIAAAggg0HiB1G84p55f0QWMS1E5zgtZgHVtzw4mnSZ4dHqwhQACYQpQZA1zXoiKIitrAIEgBfjjhyCnhaAQQAABBBBAAAEEGiKQ+g3n1PMrukxxKSrHeSELsK7t2cGk0wSPTg+2EEAgTAGKrGHOC1FRZGUNIBCkAEXWIKeFoBBAAAEEEEAAAQQaIpD6DefU8yu6THEpKsd5IQuwru3ZwaTTBI9OD7YQQCBMAYqsYc4LUVFkZQ0gEKQARdYgp4WgEEAAAQQQQAABBBoikPoN59TzK7pMcSkqx3khC7Cu7dnBpNMEj04PthBAIEwBiqxhzgtRGWMuvPBC6zNZ/+Iv/gIbBBCoUYAia434DI0AAggggAACCCDQeIHUbzinnl/RBYxLUTnOC1mAdW3PDiadJnh0erCFAAJhClBkDXNeiIoiK2sAgSAF+OOHIKeFoBBAAAEEEEAAAQQaIpD6DefU8yu6THEpKsd5IQuwru3ZwaTTBI9OD7YQQCBMAYqsYc4LUVFkZQ0gEKQARdYgp4WgEEAAAQQQQAABBBoikPoN59TzK7pMcSkqx3khC7Cu7dnBpNMEj04PthBAIEwBiqxhzgtRGWN+//d/33q74L/8y7/EBgEEahSgyFojPkMjgAACCCCAAAIINF4g9RvOqedXdAHjUlSO80IWYF3bs4NJpwkenR5sIYBAmAIUWcOcF6KiyMoaQCBIAf74IchpISgEEEAAAQQQQACBhgikfsM59fyKLlNcispxXsgCrGt7djDpNMGj04MtBBAIU4Aia5jzQlQUWVkDCAQpQJE1yGkhKAQQQAABBBBAAIGGCKR+wzn1/IouU1yKynFeyAKsa3t2MOk0waPTgy0EEAhTgCJrmPNCVMaY3/u937PeLvixxx7DBgEEahSgyFojPkMjgAACCCCAAAIINF4g9RvOqedXdAHjUlSO80IWYF3bs4NJpwkenR5sIYBAmAIUWcOcF6KiyMoaQCBIAf74IchpISgEEEAAAQQQQACBhgikfsM59fyKLlNcispxXsgCrGt7djDpNMGj04MtBBAIU4Aia5jzQlQUWVkDCAQpQJE1yGkhKAQQQAABBBBAAIGGCKR+wzn1/IouU1yKynFeyAKsa3t2MOk0waPTgy0EEAhTgCJrmPNCVMaYCy64wHq74L/6q7/CBgEEahSgyFojPkMjgAACCCCAAAIINF4g9RvOqedXdAHjUlSO80IWYF3bs4NJpwkenR5sIYBAmAIUWcOcF6KiyMoaQCBIAf74IchpISgEEEAAAQQQQACBhgikfsM59fyKLlNcispxXsgCrGt7djDpNMGj04MtBBAIU4Aia5jzQlQUWVkDCAQpQJE1yGkhKAQQQAABBBBAAIGGCKR+wzn1/IouU1yKynFeyAKsa3t2MOk0waPTgy0EEAhTgCJrmPNCVMaY888/33q74L/+67/GBgEEahSgyFojPkMjgAACCCCAAAIINF4g9RvOqedXdAHjUlSO80IWYF3bs4NJpwkenR5sIYBAmAIUWcOcF6KiyMoaQCBIAf74IchpISgEEEAAAQQQQACBxAT2799v7r//fnPzzTebiy++2KxatcqMjo5af4isG9B6TMfoWJ2jc2Nt3FB3zxwubhf2xi3Aurbnr6kmExMTZvPmzeaOO+4wV199tRkbGzNLly51vuZpvx7XcTpe5+l8GgIIIFCXAEXWuuQZt6cAxZyeRByAQOUCXJeVkzMgAggggAACCCCAQAMEJicnzRNPPGHWrl1rlixZ4ryx7Lr53m2f+lBf6lN9x9Jc+cQSu884cfGpS991CbCubfkmmezZs2fqj4NWr15tjj766IFe93S++tEfG6lfGgIIIFClAEXWKrUZqy8Bijl9cXEwApUIcF1WwswgCCCAAAIIIIAAAg0RePXVV826devMggULBrrB7Lox39qnvjWGxgq9tWJu/xp6zFXE1+7R+r6KcRkDAZ8CrbXc/tXneDH03W7R+j6GuPPGOD5eUuRbAAAgAElEQVQ+bu68805zyimneHvNk5v61zgaj4YAAgj4FqDI6luY/gsLfPGLX7RecP/mb/6mcH+ciAACgwtQZB3ckB4QQAABBBBAAAEEEHjhhRem3uJ3xowZ1u+9rRvrZX/VWHpbYY0danPlHGqsVcaFS5XajFWVAOvalk7V5N133zU33XSTGR4eruw1T5YaT+NqfBoCCCDgS4Aiqy9Z+h1YgCLrwIR0gEDpAlyXpZPSIQIIIIAAAggggECDBN57772pt/EdGhqq9EZz+417ja23ElYsobX2OFvfhxZjHfG0LNq/1hEHYyJQpkD7em59X2b/MfbVcmj/GmMerZg//PBDc9ttt5m5c+fW9ponS42vOBQPDQEEEChbgCJr2aL0V5oAxZzSKOkIgdIEuC5Lo6QjBBBAAAEEEEAAgYYJ3H333eb444/PdaNZny93+umnmxtvvNFs3LjRbN++3ezbt895rh7TMTpW5+T9bDvFophCau2Fhdb3IcVXVywti/avdcXCuAiUJdC+nlvfl9V3rP20HNq/xprL1q1bzdKlS52vW+35tb7XZ4l/+ctfNnfccYd5/PHHzcsvv+w8V/v1uI7T8f18jrniUVw0BBBAoEwBiqxlatJXqQLnnXee9WKqF1EaAgjUJ0CRtT57RkYAAQQQQAABBBCIU+DgwYPmwgsvtH6/bd1Ybn2dPXu2ueSSS6ZuHk9MTDiTbR3b/jV74KFDh6b6UF/qs/1Y1/eKTTGG0FzxhRBX3THgUvcMML4PAda1rZqCyeTk5NRb9OZ5O3z9YdBdd91l3njjDRvDGOfrl+tAna9+1J/LsH2f4tJbCCtOGgIIIFCGAEXWMhTpw4sARVYvrHSKwEACXJcD8XEyAggggAACCCCAQMMEdu3aZUZHR6e96bto0SKzfv1688EHH/TUab9R3Pp+upPGx8fNnXfeaTRG63jXV8WoWOturtjqjimE8XEJYRaIoWwB1rUtGrvJO++8Y0477bRpX2/0xz/XXnut2bt3rw2Q2VPEQ/1+7Wtf6/lHRqtXrzaKl4YAAggMKkCRdVBBzvcmQDHHGy0dI1BYgOuyMB0nIoAAAggggAACCDRMYNu2bebTn/5015vNIyMjZsOGDX19RlyRG85i1+fQ6X/5aExXH9o3PDxsFHOdzRVbnfGEMjYuocwEcZQpwLq2NWM2eeWVV8zixYu7vsboreyvv/76vj4PfBAPfe64xpvuLfQVr+KmIYAAAoMIUGQdRI9zvQqce+651gvz3/7t33odk84RQGB6AYqs0/vwKAIIIIAAAggggAACEnjsscfMrFmzrN9pWzeMr7rqKnPgwIG+sVrnt3/tpxONqbHbz2//XjEr9rpaeyyt7+uKJaRxWxbtX0OKj1gQKCLQvp5b3xfpJ6VzWg7tX2PIb8eOHdP+Ec/Y2Jh56aWX+k6l3aH1fb+daFyN3zo/+1V/fLRz585+u+V4BBBA4McCFFl/TME3oQlQZA1tRogHAWO4LlkFCCCAAAIIIIAAAghML7Bly5auBdYTTjhhoCJm9uawtos0FVIVi6s/FVqVQx3NFU8dcYQ2Ji6hzQjxlCHAurYVYzTZvXt319eTmTNnmttuu81ONOeeMj0Uh+Jx9anXQ+VBQwABBIoIFPtpvMhInINAnwIUc/oE43AEKhDguqwAmSEQQAABBBBAAAEEohV45plnzNy5c503cVeuXGn2798/UG6um8NFO1QsisnVp3JQLlU3VyxVxxDieLiEOCvENKgA69oWjM1En3+6cOFC5+vIggULjP6H6yCtbI+nn37aKC5Xv8ojz+fEDpIP5yKAQJoCFFnTnNcksjrnnHOsF72/+7u/SyI3kkAgVgGKrLHOHHEjgAACCCCAAAII+BbQ578tWrTI+j1WN3PPOOMMc/DgwYFDcN0YHqRTxaTYXP0qF+VUZXPFUeX4oY6FS6gzQ1yDCLCubb2YTA4fPmxOPvlk5+vHsmXLzGuvvWYn2OceHx6KS/G5+lY+youGAAII9CNAkbUfLY6tVIAia6XcDIZALgGuy1xMHIQAAggggAACCCDQQIGzzjrLedNWRcwjR46UIuK6KTxox4qtW6F1zZo1g3bf1/k+8usrgEAPxiXQiSGsgQRY1zZfTCaXX3658zVvxYoVpf2Bji8P/QGR4nT1r7xoCCCAQD8CFFn70eLYSgUo5lTKzWAI5BLguszFxEEIIIAAAggggAACDRO4/fbbnTdrV61aZcbHx0vTcN0QLqNzxahYXf0rt6qaa/yqxg55HFxCnh1iKyrAurblYjH5zne+43y9GB0dNW+++aadWME9Pj0Up+J1jaH8aAgggEBeAYqseaU4rnKB3/3d37Ve6J544onK42BABBD4RIAi6ycWfIcAAggggAACCCCAgAT27dtn5syZY/3+qs99e+utt0pFct0MLmsAxTp//nwrD+WmHKtoPvOrIn5fY+DiS5Z+6xRgXdv6MZjof4GOjIxYrxXHHnus2bNnj53UAHt8eyhexZ0dR/lV/Xb5AzBxKgII1CxAkbXmCWD47gIUWbvb8AgCdQlwXdYlz7gIIIAAAggggAACoQq4/hBxxowZZsuWLaWHnL0RrO0ym2JW7NlxlGMVLTtu2flVkYOPMXDxoUqfdQuwru0ZiMGk29sEP/DAA3ZCA+6pwkNxu8bhbYMHnDxOR6BBAuX+NN4gOFL1L0Axx78xIyDQrwDXZb9iHI8AAggggAACCCCQssDWrVudN2e//vWve0nbdSO47IFuuOEGZ07K1XerIj/fOfjoHxcfqvRZtwDr2p6B0E2effZZ5+vDl770JTuZEvZU5XHFFVc481K+NAQQQKCXAEXWXkI8XpsAxZza6BkYga4CXJddaXgAAQQQQAABBBBAoIECY2Nj1o3Zk046yUxMTHjRqOKG86FDh4xyyI6lXH20gwcPmk2bNpm1a9daYyqGU089deoxHaNjm9iyc6FtGgKxC7CufzSDMT0Hnnfeedbz9Lx588yBAwe8LMeq1ojiVx7Z8ZQvDQEEEOglwE9lvYR4vDaB3/md37Fe3J588sna4mFgBBAwhiIrqwABBBBAAAEEEEAAgR8JbN++3fqdVTdoH374YW9E2RvA2vbRlINrLOVcVnvxxRfNpZdeambNmuUcyzW+jtU5OrdJzWXRpPzJNU2Bpq/r2J4Dn3/+eedz9T333ONtgVa5RpSHazzlTUMAAQSmE/Dz0/h0I/IYAjkFKLLmhOIwBCoU4LqsEJuhEEAAAQQQQAABBIIWULEve0N25cqVXmPOjqdtX025ZMdTzoO2999/f+p/pg4NDVn9Z8frtq1z9T9f1VcTmsuhCXmTY9oCTV3XsT4Hut5tYMmSJWZyctLbQq1yjSgP5ZMdU3nTEEAAgekE/P00Pt2oPIZADgGKOTmQOASBigW4LisGZzgEEEAAAQQQQACBIAXGx8fN7NmzrZuxDz74oNd4szd/te2rKZfseMpZuRdtO3fudL4VcXacvNt6W2P1mXpzeaSeM/mlL9DEdR3rc+Dhw4fNcccdZ70m3HvvvV4XatVrRPlkx1Teyp+GAAIIdBPw99N4txHZj0BOgd/+7d+2Xtj+/u//PufZHIYAAj4EKLL6UKVPBBBAAAEEEEAAgdgEXDdi58+fbz766COvqWRv/mrbV1Muyik7ZtGb6vr4nzlz5lj9Zfvvd1t9pv7RQi4TX/NOvwhUJdC0dR3zc6A+Ezs7X8PDw+bIkSNel0t2TG37bMpHeWXHVf40BBBAoJuA32embqOyH4EcAhRZcyBxCAIVC3BdVgzOcAgggAACCCCAAAJBCpx//vnWTdjrrrvOe6zZG7++bzgrp+yYyr3f9tRTT5ljjjnG6ivbd9Ft9a0xUm0ul1RzJa/mCDRpXcf+HHjRRRdZz9/XXHON98VaxxpRXtlxlT8NAQQQ6CZAkbWbDPtrF6CYU/sUEAAClgDXpUXCDgQQQAABBBBAAIGGCXz88cfO/+myY8cO7xLZG7/a9tmUU3ZM/S8fGeRtb7/9tjnxxBOtfrL9DrqtMTRWis1lk2Ke5NQsgaas6xSeA0dGRqzn8Cr+sKWONaK8suMqfxoCCCDQTcDvT+PdRmU/AjkEzj77bOtF7Xvf+16OMzkEAQR8CVBk9SVLvwgggAACCCCAAAKxCOgz9bI3YPstPBbNNTuutn22bgXlfj4H9YILLrC8XHmUsU9jpdhcNinmSU7NEmjKuo79OfC5556znsP1OaWTk5PeF2wda0R5uT5/Vg40BBBAwCXg96dx14jsQyCnAEXWnFAchkCFAlyXFWIzFAIIIIAAAggggECQAhs2bLBuOBd5C90iydVxw9n11sgyyNO2bt1qWblyKHOfxkytuXxSy5F8mifQhHWdwnPgt771Let5/Nxzz61kwda1RpRfdmw50BBAAAGXAEVWlwr7ghCgmBPENBAEAh0CXJcdHGwggAACCCCAAAIINFBg3bp11s3XW2+9tRKJ7E1fbftuyi07rgzytDPPPNM6N9tX2dsaM7XmMkotR/JpnkAT1nUKz4Guz+a+5ZZbKlmwda0R5Zcdu4rPXa8ElUEQQKB0Af8/jZceMh02RWDNmjXWC9rmzZubkj55IhCkAEXWIKeFoBBAAAEEEEAAAQQqFHD9rvroo49WEkH2pq+2fTfllh1XBr3a3r17zdDQkHVutq+ytzWmxk6puYxSyo9cmimQ+rpO5TnQdR/okUceqWTR1rVGlF92bDnQEEAAAZeA/5/GXaOyD4EcAq5fXCmy5oDjEAQ8CnBdesSlawQQQAABBBBAAIEoBJYvX27dfN29e3clsWdv+mrbd1Nu2XFl0KutX7/eOi/bj69tjZ1SczmllB+5NFMg9XWdynPgihUrrOfyXbt2VbJo61ojyi87thxoCCCAgEvA/0/jrlHZh0AOAYo5OZA4BIGKBbguKwZnOAQQQACBJAUe+N5r5os3bOMfBqyBSNfAMXN/wrr5mr0Zm/q2DHo9jy387Bdqc9LYveKL6XHXeoopfmLlNd+1BlJf16k8B/Ka96mp17I8r3uudc4+nv9YA3GugQc3v577XgRF1txUHFi1wFlnnWX9QvYP//APVYfBeAgg0CZAkbUNg28RQAABBBAoKECRNc5ftLlBwry11sBRs+ZYv6u6igUp75NBy6Pb12NPWFSbk8buFleM+11rKcY8iJnn0fY1kPq6TuU5kNe8HxVZ87zuta9vvuf5jjUQ9xrQ7+x5G0XWvFIcV7kARdbKyRkQgZ4CXJc9iTgAAQQQQACBngIUWeP+hZsbJszf0NCM2oqHrqJEHftk0OtaqPPGfGo3w11z3Mufx3muCn0NpL6uU3kO5DXvR0XWPK97oV9zxMfrAmsg/xqgyNrztgYHxCBAMSeGWSLGpglwXTZtxskXAQQQQMCHAEXW/L/cciMAqxDXQJ03zl1FiTr25Sli1nljPrWb4a45DvHaICaes/tZA6mv61SeA3nN43+y9nNdcyyvA6msAYqsPu6E0GflAhRzKidnQAR6CnBd9iTiAAQQQAABBHoKUGTl5kMqNx+amgefT/cpk+ez6eq8MZ+nCBzT+k29GBXTXBBrea/hqa/rVJ4Dec3jM1l53ivveQ/LeCwpsva8rcEBMQj81m/9lvUWTFu2bIkhdGJEIFkBiqzJTi2JIYAAAggggAACCOQUWL58ufW76u7du3OePdhhrqLEYD32Plu5ZceVQa+2dOlS67xsP762ly1b1iu8qB53OUWVAMEi4BBIfV2n8hy4YsUK67l8165djhktf1dda0T5ZceWAw0BBBBwCfCZrC4V9gUhQJE1iGkgCAQ6BLguOzjYQAABBBBAAAEEEGigwJo1a6ybr48++mglEtmbvtr23ZRbdlwZ9GoXXHCBdV62H1/bGjul5nJKKT9yaaZA6us6lefAs88+23ouf+SRRypZtHWtEeWXHVsONAQQQMAl4P+ncdeo7EMghwDFnBxIHIJAxQJclxWDMxwCCCCAAAIIIIBAcALr1q2zbr7eeuutlcSZvemrbd9NuWXHlUGvtn79euu8bD++tjV2Ss3llFJ+5NJMgdTXdSrPgdddd531XH7LLbdUsmjrWiPKLzu2HGgIIICAS8D/T+OuUdmHQA6B3/zN37Re0L7//e/nOJNDEEDAlwBFVl+y9IsAAggggAACCCAQi8CGDRus31XPP//8SsLP3vTVtu+m3LLjyqBX27t3rxkaGrLOzfZV9rbGfO2113qFF9XjLqOoEiBYBBwCqa/rVJ4Dv/3tb1vP4+eee65jRsvfVdcaUX7ZseVAQwABBFwC/n8ad43KPgRyCFBkzYHEIQhULMB1WTE4wyGAAAIIIIAAAggEJ7Bz507r5uvw8LD5+OOPvceavemrbZ9NOSm37LgyyNPOPPNM69xsX2Vva8zUmssotRzJp3kCTVjXKTwHPvfcc9bz+HHHHWcmJye9L9o61ojyUn7ZseVAQwABBFwCfn8ad43IPgRyClDMyQnFYQhUKMB1WSE2QyGAAAIIIIAAAggEKdCt8Lhjxw7v8WZv+mrbZ3v66aetG839FJT1blSumH3u27p1q0+SWvp2edUSCIMiUKJAE9Z1Ks+BIyMj1nP5U089VeJqcHdVxxpRXtlxlT8NAQQQ6Cbg96fxbqOyH4EcAr/xG79hvail+MtSDgoOQSAYAYqswUwFgSCAAAIIIIAAAgjUKOB6C90qPq8te+NX2z6b67P4+n1r5AsuuMD63d6VRxn7NFaKzWWTYp7k1CyBpqzrFJ4DL7roIut5/JprrvG+YOtYI8orO67ypyGAAALdBPz+NN5tVPYjkEOAImsOJA5BoGIBrsuKwRkOAQQQQAABBBBAIEiBjRs3Wjdh58+fbz766COv8WZv/GrbV1Muyik7pnLvp7399tvmxBNPtPrJ9jvotsbQWCk2l02KeZJTswSasq5TeA7ctGmT9RyudzU4cuSI10Vb9RpRPq63yFf+NAQQQKCbgL+fxruNyH4EcgpQzMkJxWEIVCjAdVkhNkMhgAACCCCAAAIIBCswPj5uZs+ebd10fvDBB73GXOUNZ+WSHU85K/d+m95+8ZhjjrH6y/ZfdFt9V/HWlf3mXdbxLpey+qYfBOoSaNK6jv05cGJiwvk5pffee6/X5VP1GlE+2TH1+ayHDx/2miedI4BA3AIUWeOev6Sjd304/LZt25LOmeQQCF2AImvoM0R8CCCAAAIIIIAAAlUJXHrppdbN2JUrV3odPnvzV9u+mnLJjqeci7Ynn3zSzJkzx+ozO0a/2+pTfafcXCYp50tuzRBo2rqO/Tlw7dq11vP3kiVLzOTkpLcFW+UaUR7KJzum8qYhgAAC0wn4+2l8ulF5DIEcAhRZcyBxCAIVC3BdVgzOcAgggAACCCCAAALBCmzfvt26Gaubsw8//LC3mLM3f7XtoykH11jKeZC2c+dOc9JJJzn7do3Xa5/6Up+pN5dD6jmTX/oCTVzXMT8HPv/8887n7nvuucfbYq1yjSgP13jKm4YAAghMJ+Dnp/HpRuQxBHIKUMzJCcVhCFQowHVZITZDIYAAAggggAACCAQvMDY2Zt2UVeFPb63oo7luAJc9zqFDh5yFUOVaRnv//feN/mfQ0NCQZefKz7VP56oP9dWE5jJoQt7kmLZAU9d1zM+B5513nvW8PW/ePHPgwAEvi7WqNaL4lUd2POVLQwABBHoJUGTtJcTjtQm4fln9x3/8x9riYWAEEDCGIiurAAEEEEAAAQQQQACBTwS2bt1q3ZTVTdobbrjhk4NK/C57A1jbZTfF7hqn7I/vefHFF43efnjWrFnO8Vwx6Fido3Ob1FwWTcqfXNMUaPq6jvE58Nlnn3U+X19xxRVeFmlVa0Txu8ZSvjQEEECgl0D5P433GpHHEcgpQJE1JxSHIVChANdlhdgMhQACCCCAAAIIIBCFwDnnnGPdnJ0xY4bZsmVL6fG7bgKXOYhiVuzZcZSjr6b/1bVp06ap/5maHVfbp5566tRjOqYp/3M1a+1yyR7DNgKxCbCufzRjsT0HXn755dZrhObygQceKH0JVrFGFLdrHOVJQwABBPIIUGTNo8QxtQhQzKmFnUERmFaA63JaHh5EAAEEEEAAAQQQaKDAvn37zJw5c6ybtPPnzzdvvfVWqSKuG8FlDaBYFXN2DOWmHKto2bG1TTPWnODCqkhBgOvdnsUYTN577z0zMjJiPS8de+yxZs+ePXZSA+zx7aF4FXd2HOWnPGkIIIBAHgF+Ws2jxDG1CFDMqYWdQRGYVoDrcloeHkQAAQQQQAABBBBoqMDtt99u3aTVTdtVq1aZ8fHx0lSyN4K1XUZTjIrV1b9yq6q5xq9q7JDHwSXk2SG2ogKsa1suFpP77rvP+XoxOjpq3nzzTTuxgnt8eihOxesaQ/nREEAAgbwC5fw0nnc0jkOgD4Ff//Vft17o/umf/qmPHjgUAQTKFqDIWrYo/SGAAAIIIIAAAgikInDWWWdZv8Pq5u0ZZ5xhjhw5UkqarpvBg3as2BSjq2/lVGVzxVDl+KGOhUuoM0Ncgwiwrm29mEwuu+wy5+vGihUrSvtfoL489L9Uly9f7oyftwm21yV7EEBgegGKrNP78GiNAhRZa8RnaAS6CHBddoFhNwIIIIAAAggggEDjBXTTdtGiRc6btipiHjx4cGCjsm84K6ZuBVblUvXbJZad38DggXSASyATQRilCrCubc6YTA4fPmxOPvlk52ueCpivv/66nWCfe3x4KK5ly5Y541Y+youGAAII9CNAkbUfLY6tVIBiTqXcDIZALgGuy1xMHIQAAggggAACCCDQUIFnnnnGzJ0713nzduXKlWb//v0DyZR5w1mxKCZXn8pBuVTdXLFUHUOI4+ES4qwQ06ACrGtbMDaTvXv3moULFzpfRxYsWGB27NhhJ9nHnrI9FI/icvWrPJQPDQEEEOhXgCJrv2IcX5mA669p//mf/7my8RkIAQRsAYqstgl7EEAAAQQQQAABBBBoF9iyZYuZNWuW8ybuCSecYB577LH2w/v63nVjuK8O/u9gxaBYXP0pduVQR3PFU0ccoY2JS2gzQjxlCLCubcUYTXbv3t319WTmzJnmtttusxPNuadMD8WheFx96vVQedAQQACBIgIUWYuocU4lAhRZK2FmEAT6EuC67IuLgxFAAAEEEEAAAQQaKqAiZrdCq27wXnXVVeaHP/xh3zqum8P9dHLgwIGpsV39aJ9iHqQI3E8srmNdcbmOa9o+XJo2483Il3Vtz3OsJvofot3+cEc5jY2NmZdeeslOuMeeMjw0rsZ39aV9IyMjZufOnT0i4WEEEECguwBF1u42PFKzAMWcmieA4RFwCHBdOlDYhQACCCCAAAIIIICAQ2Dbtm1meHh42hu7GzZsMB9++KHjbPcu101i95GdezWGxtLNZFcf2qdYFXOdzRVbnfGEMjYuocwEcZQpwLq2NWM2eeWVV8zixYu7vsYcffTR5vrrr+/rs74H8dBnims8jevqR/sUr+KmIYAAAoMIUGQdRI9zvQr8v//3/6wXwaeeesrrmHSOAALTC1Bknd6HRxFAAAEEEEAAAQQQaBfYtWuXGR0dtX63bb/hu2jRIrN+/XrzwQcftJ/q/L79vNb3zgP/b+f4+PhU3xqjdbzrq2JUrHU3V2x1xxTC+LiEMAvEULYA69oWjd3knXfeMaeddtq0rzezZ8821157ba7PPy3ioc9VVf8ax3V+a9/q1auN4qUhgAACgwpQZB1UkPO9CVBk9UZLxwgUFuC6LEzHiQgggAACCCCAAAINFTh48KC58MILp73Zq5u+uiF8ySWXmMcff9xMTEw4tVo3h9u/Zg/UuepDffW6yax+FJtiDKG159X6PoS46o6hZdH+te6YGB+BQQXa13Pr+0H7jP38lkP719hympycNDfddJOZMWNGz9e9008/3dx1113mjTfecKbZ7tD63nWgzlc/6q91XLevikvxKU4aAgggUIYARdYyFOnDiwDFHC+sdIrAQAJclwPxcTICCCCAAAIIIIBAgwXuvvtuc/zxx/e8Aawbw3p7Q90svvHGG83GjRvN9u3bzf79+53n6jEdo2N1znRvjdh+01mxKKaQWnt8re9Diq+uWFoW7V/rioVxEShLoH09t74vq+9Y+2k5tH+NNZetW7eapUuXOl+32vNrfb9kyRJz5ZVXmjvvvHPqD4Vefvll57narz8k0nE6Xue1+uj1VfEoLhoCCCBQpgBF1jI16atUgS984QvWi6R+eaQhgEB9AhRZ67NnZAQQQAABBBBAAIH4BfQZcWvXrjVDQ0PW77u9bg6X9bjGVgyKJbTmyjG0GOuIB5c61BnTtwDr2hZOzUSfB/7Nb37TzJ07t7bXPJlqfMXRz2eg27PDHgQQQMAtQJHV7cLeAAQosgYwCYSAQEaA6zIDwiYCCCCAAAIIIIAAAgUEXnjhBXPxxRfnejtF1033Ivv0FokaU2OH2lx5hRprlXHhUqU2Y1UlwLq2pVM1effdd6feond4eLjSYqvG01sDa3waAggg4EuAIqsvWfodWIBizsCEdIBA6QJcl6WT0iECCCCAAAIIIIBAgwVeffVVs27dOrNgwQJvN57Vt8bQWKG3VAsMg7rjMqgg54cowLq2ZyV1k/Hx8am3+T3llFO8vebJUP3r7YQ1Hg0BBBDwLUCR1bcw/RcW+LVf+zXrBfdf/uVfCvfHiQggMLgARdbBDekBAQQQQAABBBBAAIGswOTkpHniiSem3sZ38eLF1u/Crhvv0+1TH3pLYPWpvmNprpxiid1nnLj41KXvugRY17Z8k0z27Nljbr75ZrN69ercnyXu8tE+fRa5+lF/6peGAAIIVClAkbVKbcbqS4Aia19cHIxAJQJcl5UwMwgCCCCAAAIIIIBAwwX2799v7r///qkbxnqL31WrVpnR0VEzb948M2vWrKl/+v0PHR8AACAASURBVF779JiO0c1lnaNzY22uG+ix5lJm3LiUqUlfoQiwru2ZaKrJoUOHzObNm80dd9xhrr76ajM2NmaWLl1qFi5cOPV5qkcdddTUV21rvx7XcTpe501MTNiY7EEAAQQqEqDIWhE0w/QvQDGnfzPOQMC3ANelb2H6RwABBBBAAAEEEECguQJNLTD0mnFcegnxeIwCrGt71jCxTdiDAAIIhC5AkTX0GWpwfBRzGjz5pB6sANdlsFNDYAgggAACCCCAAAIIRC9AgcE9hbi4XdgbtwDr2p4/TGwT9iCAAAKhC1BkDX2GGhzfr/7qr1qfQ/Ov//qvDRYhdQTqF6DIWv8cEAECCCCAAAIIIIAAAqkKUGBwzywubhf2xi3AurbnDxPbhD0IIIBA6AIUWUOfoQbHR5G1wZNP6sEKcF0GOzUEhgACCCCAAAIIIIBA9AIUGNxTiIvbhb1xC7Cu7fnDxDZhDwIIIBC6AEXW0GeowfFRzGnw5JN6sAJcl8FODYEhgAACCCCAAAIIIBC9AAUG9xTi4nZhb9wCrGt7/jCxTdiDAAIIhC5AkTX0GWpwfKeffrr1dsH/9m//1mARUkegfgGKrPXPAREggAACCCCAAAIIIJCqAAUG98zi4nZhb9wCrGt7/jCxTdiDAAIIhC5AkTX0GWpwfBRZGzz5pB6sANdlsFNDYAgggAACCCCAAAIIRC9AgcE9hbi4XdgbtwDr2p4/TGwT9iCAAAKhC1BkDX2GGhwfxZwGTz6pByvAdRns1BAYAggggAACCCCAAALRC1BgcE8hLm4X9sYtwLq25w8T24Q9CCCAQOgCFFlDn6EGx7d69Wrr7YKffvrpBouQOgL1C1BkrX8OiAABBBBAAAEEEEAAgVQFKDC4ZxYXtwt74xZgXdvzh4ltwh4EEEAgdAGKrKHPUIPjo8ja4Mkn9WAFuC6DnRoCQwABBBBAAAEEEEAgegEKDO4pxMXtwt64BVjX9vxhYpuwBwEEEAhdgCJr6DPU4Pgo5jR48kk9WAGuy2CnhsAQQAABBBBAAAEEEIhegAKDewpxcbuwN24B1rU9f5jYJuxBAAEEQhegyBr6DDU4vtNOO816u+AdO3Y0WITUEahfgCJr/XNABAgggAACCCCAAAIIpCpAgcE9s7i4XdgbtwDr2p4/TGwT9iCAAAKhC1BkDX2GGhwfRdYGTz6pByvAdRns1BAYAggggAACCCCAAALRC1BgcE8hLm4X9sYtwLq25w8T24Q9CCCAQOgCFFlDn6EGx0cxp8GTT+rBCnBdBjs1BIYAAggggAACCCCAQPQCFBjcU4iL24W9cQuwru35w8Q2YQ8CCCAQugBF1tBnqMHxff7zn7feLnjnzp0NFiF1BOoXoMha/xwQAQIIIIAAAggggAACqQpQYHDPLC5uF/bGLcC6tucPE9uEPQgggEDoAhRZQ5+hBsdHkbXBk0/qwQpwXQY7NQSGAAIIIIAAAggggED0AhQY3FOIi9uFvXELsK7t+cPENmEPAgggELoARdbQZ6jB8VHMafDkk3qwAlyXwU4NgSGAAAIIIIAAAgggEL0ABQb3FOLidmFv3AKsa3v+MLFN2IMAAgiELkCRNfQZanB8FHMaPPmkHqwA12WwU0NgCCCAAAIIIIAAAghEL0CBwT2FuLhd2Bu3AOvanj9MbBP2IIAAAqELUGQNfYYaHN+pp55qfSbrM88802ARUkegfgGKrPXPAREggAACCCCAAAIIIJCqAAUG98zi4nZhb9wCrGt7/jCxTdiDAAIIhC5AkTX0GWpwfBRZGzz5pB6sANdlsFNDYAgggAACCCCAAAIIRC9AgcE9hbi4XdgbtwDr2p4/TGwT9iCAAAKhC1BkDX2GGhwfxZwGTz6pByvAdRns1BAYAggggAACCCCAAALRC1BgcE8hLm4X9sYtwLq25w8T24Q9CCCAQOgCFFlDn6EGx/crv/Ir1tsFP/vssw0WIXUE6hegyFr/HBABAggggAACCCCAAAKpClBgcM8sLm4X9sYtwLq25w8T24Q9CCCAQOgCFFlDn6EGx0eRtcGTT+rBCnBdBjs1BIYAAggggAACCCCAQPQCFBjcU4iL24W9cQuwru35w8Q2YQ8CCCAQugBF1tBnqMHxUcxp8OSTerACXJfBTg2BIYAAAggggAACCCAQvQAFBvcU4uJ2YW/cAqxre/4wsU3YgwACCIQuQJE19BlqcHy//Mu/bL1d8HPPPddgEVJHoH4Biqz1zwERIIAAAggggAACCCCQqgAFBvfM4uJ2YW/cAqxre/4wsU3YgwACCIQuQJE19BlqcHwUWRs8+aQerADXZbBTQ2AIIIAAAggggAACCEQvQIHBPYW4uF3YG7cA69qeP0xsE/YggAACoQtQZA19hhocH8WcBk8+qQcrwHUZ7NQQGAIIIIAAAggggAAC0QtQYHBPIS5uF/bGLcC6tucPE9uEPQgggEDoAhRZQ5+hBsf3S7/0S9bbBT///PMNFiF1BOoXoMha/xwQAQIIIIAAAggggAACqQpQYHDPLC5uF/bGLcC6tucPE9uEPQgggEDoAhRZQ5+hBsdHkbXBk0/qwQpwXQY7NQSGAAIIIIAAAggggED0AhQY3FOIi9uFvXELsK7t+cPENmEPAgggELoARdbQZ6jB8VHMafDkk3qwAlyXwU4NgSGAAAIIIIAAAgggEL0ABQb3FOLidmFv3AKsa3v+MLFN2IMAAgiELkCRNfQZanB8q1atst4u+N///d8bLELqCNQvQJG1/jkgAgQQQAABBBBAAAEEUhWgwOCeWVzcLuyNW4B1bc8fJrYJexBAAIHQBSiyhj5DDY6PImuDJ5/UgxXgugx2aggMAQQQQAABBBBAAIHoBSgwuKcQF7cLe+MWYF3b84eJbcIeBBBAIHQBiqyhz1CD46OY0+DJJ/VgBbgug50aAkMAAQQQQAABBBBAIBqBiYkJs3nzZnPHHXeYq6++2oyNjZmlS5da72algoP263Edp+N1ns5vUqPw0qTZbk6uTV7X+/fvN/fff7+5+eabzcUXX2x0r2V0dNT5HKjHdIyO1Tk6l4YAAgggEI4ARdZw5oJIMgIUczIgbCIQgADXZQCTQAgIIIAAAggggAACCEQosGfPnqkiwerVq83RRx/tLCa4ii6ufTpf/ajooH5Tby6D1HMmv/QFmrSuJycnzRNPPGHWrl1rlixZMtDzn9zUh/pSn+qbhgACCCBQnwBF1vrsGbmHwC/+4i9aP3S88MILPc7iYQQQ8ClAkdWnLn0jgAACCCCAAAIIIJCWwPj4uLnzzjvNKaecYv1+7yqwFN2n/jWOxkuxuVxSzJOcmiXQhHX96quvmnXr1pkFCxZ4ew5U3xpDY9EQQAABBKoXoMhavTkj5hSgyJoTisMQqFCA67JCbIZCAAEEEEAAAQQQQCBSgXfffdfcdNNNZnh42FthwVWg0XgaV+On1Fy5ppQfuTRTIOV1rf8korf4nTFjRmXPgRpLY/IfVJp5PZE1AgjUJ0CRtT57Ru4hQDGnBxAPI1CDANdlDegMiQACCCCAAAIIIIBAJAIffvihue2228zcuXMrKyy4CjUaX3EonhSaK8cU8iKHZgukuK7fe++9qbfxHRoaqu05UGPrrYQVCw0BBBBAwL8ARVb/xoxQUMD1dkIvvvhiwd44DQEEyhCgyFqGIn0ggAACCCCAAAIIIJCewNatW83SpUtzFxb0mYJf/vKXzR133GEef/xx8/LLLzvP1X49ruN0fD+fZ6h4FFfsLcViVOxzQvyDC6S2ru+++25z/PHHO5/Hsrnqc6VPP/10c+ONN5qNGzea7du3m3379jnP1WM6RsfqnLyfaa1YFBMNAQQQQMCvAEVWv770PoAARdYB8DgVAU8CXJeeYOkWAQQQQAABBBBAAIFIBSYnJ6feojfP22KqQHDXXXeZN954w5ltthChbVfT+epH/bnOad+nuPQWwooz1taeT+v7WHMhbgRaAq213P619VhMXw8ePGguvPDCns9Fs2fPNpdccsnUH41MTEw4U2y3aH2fPfDQoUNTfagv9dk6rttXxaYYaQgggAACfgTcP636GYteEehLgGJOX1wcjEAlAlyXlTAzCAIIIIAAAggggAACUQi888475rTTTpv2Jr+KANdee63Zu3dvz5xcRYJeJ6nfr33taz2LDatXrzaKN8ZWxCXGPIm5WQIprOtdu3aZ0dHRaZ8DFy1aZNavX28++OCDnhPcr8n4+Li58847jcZwndvapxgVKw0BBBBAoHwBiqzlm9JjSQKf+9znrB8Q+IGgJFy6QaCgAEXWgnCchgACCCCAAAIIIIBAYgKvvPKKWbx4sfV7e+umvt7S8vrrr+/rcwFb57Z/zcumzx/UeNO9labiVdyxtXaP1vex5UC8CGQFWmu5/Wv2mJC3t23bZj796U93fQ4cGRkxGzZs6OuzodstWt/nMdDnT+t/92vM1nnZr8PDw0Yx0xBAAAEEyhWgyFquJ72VKECRtURMukKgJAGuy5Ig6QYBBBBAAAEEEEAAgYgFduzYMe3N/LGxMfPSSy/1nWG2KKDtfpvG1fiuvrRPRYidO3f2222tx7tyqTUgBkegBIGY1/Vjjz1mZs2a1fV55qqrrjIHDhzoW2lQE42psV39aJ9iVuw0BBBAAIHyBPr/abW8sekJgWkFKOZMy8ODCNQiwHVZCzuDIoAAAggggAACCCAQjMDu3bvNCSec4LyJP3PmTHPbbbcVjtVVGCjameJQPK4+Fb/yiKW5coglduJEoJtArOt6y5YtXQusem4ZpIhZloli6PY8rUKrcqAhgAACCJQjQJG1HEd68SDwC7/wC9YvQzH9EuSBhC4RqF2AImvtU0AACCCAAAIIIIAAAgjUJqDPP124cKH1u7oKAwsWLDD6H66DtLIKDK0Ynn766am4XP0qjzyfE9vqq86vrvjrjIexEShDIMZ1/cwzz5i5c+c6nwNXrlxp9u/fPxBNmSaKRTG5+lQOyoWGAAIIIDC4AEXWwQ3pwZMARVZPsHSLwAACXJcD4HEqAggggAACCCCAAAIRCxw+fNicfPLJzhv2y5YtM6+99trA2bmKAYN2qrgUn6tv5aO8Qm+u2EOPmfgQ6CUQ27rW5z4vWrTI+VxyxhlnmIMHD/ZKuefjZZsoJsXm6le5KCcaAggggMBgAhRZB/PjbI8CFHM84tI1AgUFuC4LwnEaAggggAACCCCAAAKRC1x++eXOG/UrVqwo7Ua9qxBQBpsKCYrT1b/yCr254g49ZuJDoJdAbOv6rLPOcj6HqIh55MiRXunmetyHiWLrVmhds2ZNrrg4CAEEEECguwBF1u42PFKzgOsvZP/jP/6j5qgYHoFmC1Bkbfb8kz0CCCCAAAIIIIBAMwW+853vOIsLo6Oj5s033ywNxUeBoRWc4lS8rjGUX8jNFXPI8RIbAnkEYlrXt99+u/O5Y9WqVWZ8fDxPurmO8WWiGBWrq3/lRkMAAQQQKC5AkbW4HWd6FqDI6hmY7hEoIMB1WQCNUxBAAAEEEEAAAQQQiFhA/wt0ZGTEujl/7LHHmj179pSamasAUOYAildxZ8dRfiG/bWY2Xm3TEIhdIJZ1vW/fPjNnzhzreUOfQ/3WW2+VOg0+TRTr/PnzrTyUm3KkIYAAAggUE+CnsmJunFWBAMWcCpAZAoE+Bbgu+wTjcAQQQAABBBBAAAEEIhfo9jbBDzzwQOmZ+SwwtIJV3K5xQn7bYFe8rXz4ikCsArGs63POOcd6zpgxY4bZsmVL6fS+TRSzYs+OoxxpCCCAAALFBCiyFnPjrAoEKOZUgMwQCPQpwHXZJxiHI4AAAggggAACCCAQscCzzz5r3YzXzfkvfelLXrLK3vjXto92xRVXOPNSviG2qlxCzJ2Y0hWIYV1v3brV+Vzx9a9/3cvEVGFyww03OHNSrjQEEEAAgf4F/Py02n8cnIGAJbBy5UrrRb/styKyBmUHAghMK0CRdVoeHkQAAQQQQAABBBBAICmB8847z/q9fN68eebAgQNe8qyiwKDAFb/yyI6nfENpBw8eNJs2bTJr16614lTcp5566tRjOkbH0hCIQSC2dT02NmZdfyeddJKZmJjwwp19TtJ22e3QoUNGOWTHUq40BBBAAIH+Bcp/pu4/Bs5AwClAkdXJwk4EahXguqyVn8ERQAABBBBAAAEEEKhM4Pnnn7duwuum/D333OMthuxNfx8FhlbwysM1nvKus7344ovm0ksvNbNmzXLG54pZx+ocnUtDIESBGNf19u3bndfgww8/7I3YdX37GEw5uMZSzjQEEEAAgf4EKLL258XRFQpQzKkQm6EQyCnAdZkTisMQQAABBBBAAAEEEIhcwPU/KJcsWWImJye9Zea66e9rMOWhfLJjKu862vvvvz/1P1OHhoasmLIxdtvWuYpffdEQCEEg5nWtP1zIXmu6J+KzZcfTtq/mur+jnGkIIIAAAv0J+Hum7i8OjkbAEvj5n/9564eZl156yTqOHQggUJ2A64dw3sa7On9GQgABBBBAAAEEEECgCoHDhw+b4447zvqd/N577/U6fJUFBiWifLJjKm/lX2XbuXOn8+07s7Hl3dZbgapPGgJ1CsS8rsfHx83s2bOt54cHH3zQK6nrGvc1oHLJjqeclTsNAQQQQCC/AEXW/FYcWbEARdaKwRkOgRwCXJc5kDgEAQQQQAABBBBAAIHIBfQ5n9mb78PDw+bIkSNeM8uOqW2fTfkor+y4yr+q9uSTT5o5c+ZYMWRj6ndbfapvGgJ1CMS+rl1/gDF//nzz0UcfeeV0Xee+BlQuyik7pu8/pvGVD/0igAACdQn4/Wm1rqwYNwkBijlJTCNJJCbAdZnYhJIOAggggAACCCCAAAIOgYsuusi68X7NNdc4jix3V/Zmv7Z9N+WVHVf5V9Geeuopc8wxx1jjZ+Mpuq2+NQYNgSoFUljX559/vnVdXnfddd4ZXde6z0GVU3ZM5U5DAAEEEMgv4P+n1fyxcCQCHQI/93M/Z73Qv/zyyx3HsIEAAtUKUGSt1pvREEAAAQQQQAABBBCoQ2BkZMT6fbyKYl32Zr+2fTfllR1X+ftub7/9tjnxxBOtsbOxDLqtMTQWDYEqBFJY1x9//LHzf7jv2LHDO6Hrevc5qHLKjqn/3S8DGgIIIIBAPgH/P63mi4OjELAEKLJaJOxAoHYBrsvap4AAEEAAAQQQQAABBBDwKvDcc89ZN931OaWTk5Nex1Xn2Zv92vbdlJfr82fl4LNdcMEFznxdBoPu01g0BKoQSGFd67Nks9dcVYXH7Lja9tm6FZT5TGef6vSNAAKpCfh9pk5Ni3wqFaCYUyk3gyGQS4DrMhcTByGAAAIIIIAAAgggEK3At771LavAcO6551aST9UFhlZSyi87thx8ta1bt1rjZccve1tj0hDwKZDKut6wYYN1fVb1Frqu697nnKlv11sjy4CGAAIIIJBPgCJrPieOqkFgxYoV1g81r7zySg2RMCQCCLQEKLK2JPiKAAIIIIAAAggggECaAq7P6LvlllsqSbaOAoMSU37ZsX1+/uKZZ55pjZcdv+xtjUlDwKdAKut63bp11vV56623+qT7cd+u6/7HD3r6Rrllx5UBDQEEEEAgnwBF1nxOHFWDAEXWGtAZEoEeAlyXPYB4GAEEEEAAAQQQQACByAXOPvts64b7I488UklW2Rv92q6iKb/s2HLw0fbu3WuGhoas8bLjl72tMTU2DQEfAimt6zVr1ljX56OPPuqDzerTdd1bB5W8Q7llx5UBDQEEEEAgn0A1P63mi4WjEOgQoJjTwcEGAkEIcF0GMQ0EgQACCCAQucAD33vNfPGGbfzDgDXAGghyDRw38tPWDfexKzZWEmv2Rr+2q3i+VH7ZseXgY+yVv/41a6zs2L62NbaPnOiT1/SU1vWxJ5xkXaNjX0r3OVC5ZZ9zZMB1zXXNGmANNHkNPLj59dx3HSiy5qbiwKoFli9fbr3I/+d//mfVYTAeAgi0CVBkbcPgWwQQQAABBAoKUGTlhkWTb1iQe/jr/5i5P2H9Lp69Ad+EbTn4WK8LP/uF2nw1to+c6DP869r3HKW0rnkO/JTx9fznex3SP89FrAHWQFlrQL+z520UWfNKcVzlAhRZKydnQAR6CnBd9iTiAAQQQAABBHoKUGTll/+yfvmnH9aSjzVw1Kw5tRUBQyreysGH77EnLKrNV2P7yIk+eS5KaV3zHPgp4+v5j+cKnitYA6yBWNYARdaetzU4IAYBijkxzBIxNk2A67JpM06+CCCAAAI+BCiycnMhlpsLxNnMtTo0NKO2ImBIRVY5+LgG6izgUDhp5jXtYx1n+0xpXfMc+Cnj6/kvu27Y5jmJNcAaCHUNUGT1cSeEPisXoJhTOTkDItBTgOuyJxEHIIAAAggg0FOAIis3E0K9mUBcrE2tgTqLJSEVWX0VJOss4FA44Rr39Tyf0rrmOZD/yerrOqFfnoNZA/GsAYqsPW9rcEAMAsuWLbP+eva//uu/YgidGBFIVoAia7JTS2IIIIAAAggggAACCEwJfOYzn7F+Fw+p+FlVLHLw0Y477rjafDU2DQEfAimta54DP2V8Pf/5WHv0iQACCNQtwGey1j0DjN9VgCJrVxoeQKA2Aa7L2ugZGAEEEEAAAQQQQACBSgRWrFhhFQF37dpVydiuAmoVAyu/7Nhy8NGWLl1qjZUd29e2fp+jIeBDIKV17frj8t27d/tgs/p0XfvWQSXvUG7ZcWVAQwABBBDIJ0CRNZ8TR9UgQDGnBnSGRKCHANdlDyAeRgABBBBAAAEEEEAgcoGzzz7buuH+yCOPVJJV9ka/tqtoyi87thx8tAsuuMAaKzu2r22NTUPAh0BK63rNmjXWNfroo4/6YLP6dF371kEl71Bu2XFlQEMAAQQQyCdQzU+r+WLhKAQ6BFx/Bffqq692HMMGAghUK0CRtVpvRkMAAQQQQAABBBBAoGqB6667zrrhfsstt1QSRvZGv7araMovO7YcfLT169dbY2XH9rWtsWkI+BBIaV2vW7fOukZvvfVWH2xWn65r3zqo5B3KLTuuDGgIIIAAAvkEqvlpNV8sHIVAhwBF1g4ONhAIQoDrMohpIAgEEEAAAQQQQAABBLwJfPvb37ZuuJ977rnexmvvOHujX9tVNOWXHVsOPtrevXvN0NCQNV52/LK3NeZrr73mIyX6RMCktK43bNhgXZ/nn39+JbPsuu59D6zcsuPKgIYAAgggkE+gmp9W88XCUQh0CFDM6eBgA4EgBLgug5gGgkAAAQQQQAABBBBAwJvAc889Z91wP+6448zk5KS3MVsdZ2/0a9t3U17KLzu2HHy1M8880xovO37Z2xqThoBPgVTW9c6dO63rc3h42Hz88cc++ab6dl33PgdVTsotO64MaAgggAAC+QT8/7SaLw6OQsAS+OxnP2u9yP/gBz+wjmMHAghUJ0CRtTprRkIAAQQQQAABBBBAoC6BkZER6/fxp556yns42Rv92vbdlFd2XOXvs33/+9+3xszGUPb21q1bfaZE3wiYVNZ1t8Ljjh07vM+y67r3OejTTz9tPRdVVVD2mRd9I4AAAlUK+P9ptcpsGCspAYqsSU0nySQiwHWZyESSBgIIIIAAAggggAAC0whcdNFF1o33a665Zpozynmo6gKDolZe2XGVv+92wQUXWONm4yhrW2PREKhCIJV17XoLXV+f09w+L65rvv3xsr93fQZ3VW+NXHYu9IcAAgjUJUCRtS55xu0pQDGnJxEHIFC5ANdl5eQMiAACCCCAAAIIIIBA5QKbNm2yCoD6301HjhzxGkvVBQbl43qrTOXvu7399tvmxBNPtJxdBoPs0xgai4ZAFQKprOuNGzda1+b8+fPNRx995JXRda37GlC5KKfsmMqdhgACCCCQX4Aia34rjqxY4Gd/9metF/q9e/dWHAXDIYBAuwBF1nYNvkcAAQQQQAABBBBAIE2BiYkJ5+eU3nvvvV4Tzt7s17bPpnyyY+rzWQ8fPuxz2B/3rbcqPuaYY6wYsjEV3VbfVbzN848T4hsEjJlac7Gv6/HxcTN79mzr2nzwwQe9zrHrWvc1oHLJjqeclTsNAQQQQCC/gN+fVvPHwZEIWAIUWS0SdiBQuwDXZe1TQAAIIIAAAggggAACCFQisHbtWusG/JIlS8zk5KS38bM3/LXtqykP5ZMdU3lX2Z588kkzZ84cK45sXP1uq0/1TUOgDoEU1vWll15qXZcrV670yum6zn0NqFyy4ylnGgIIIIBAfwL+flrtLw6ORsASoJhjkbADgdoFuC5rnwICQAABBBBAAAEEEECgEoHnn3/eugGvG/L33HOPt/GzN/y17aspD9d4yrvqtnPnTnPSSSc543HF2Guf+lKfNATqFIh9XW/fvt15TT788MPeWF3Xto/BlINrLOVMQwABBBDoT8DfT6v9xcHRCFgCP/MzP2O94L/22mvWcexAAIHqBCiyVmfNSAgggAACCCCAAAII1C1w3nnnWb+Xz5s3zxw4cMBLaK6b/j4GUvzKIzue8q2rvf/++0b/i3ZoaMiKKxtnt22dqz7UFw2BEARiX9djY2PW9ag/YtBbqvtormu77HEOHTrk/KMO5UpDAAEEEOhfgCJr/2acUZEARdaKoBkGgT4EuC77wOJQBBBAAAEEEEAAAQQiF3j22WetAoOKAFdccYWXzKooMChwxe8aS/nW3V588UWjt+ycNWuWM0ZX3DpW5+hcGgIhCsS6rrdu3eq8Dm+44QYvzK7ru+yBFLtrnG3btpU9FP0hgAACjRCgyNqIaY4zSYo5cc4bUactwHWZ9vySHQIIIIAAAggggAACWYHLL7/ceUP+gQceyB468Lbrxv/AnWY6UNyucZRnSE3/A3DTpk1T/zPVFe+pp5469ZiO4X+uhjRzxDKdQIzr+pxzzrGeM2bMPGxRnQAAIABJREFUmGG2bNkyXaqFHnNd64U66nKSYlbs2XGUIw0BBBBAoJgARdZibpxVgQDFnAqQGQKBPgW4LvsE43AEEEAAAQQQQAABBCIXeO+998zIyIh1U/7YY481e/bsKTW77I1/bZfZFK/izo6j/JRnqC0bb9kuoeZNXGkLxLKu9+3bZ+bMmWM9b8yfP9+89dZbpU6STxPFqpizYyg35UhDAAEEECgmUO5Pq8Vi4CwEnAJLliyxXvhff/1157HsRACBagQoslbjzCgIIIAAAggggAACCIQkcN9991m/n+tG/ejoqHnzzTdLCzV781/bZTXFqXhdYyi/kJsr5pDjJTYE8gjEtK5vv/1253PHqlWrzPj4eJ50cx3jy0QxKlZX/8qNhgACCCBQXKC8n1aLx8CZCDgFKLI6WdiJQK0CXJe18jM4AggggAACCCCAAAK1CVx22WXOG/QrVqwo7X+BugoAZSSs/6W6fPlyZ/yhvU2wK19fLq6x2IdAVQKxreuzzjrL+RxyxhlnmCNHjpTC5sNEsSlGV9/KiYYAAgggMJgARdbB/DjbowDFHI+4dI1AQQGuy4JwnIYAAggggAACCCCAQOQChw8fNieffLLzRr0KmGW885SrCDAom+JatmyZM27lo7xCbz5cQs+Z+NIXiG1d6481Fi1a5HwuURHz4MGDA09a2SaKqVuBVbmE/DbpA2PSAQIIIFCRAEXWiqAZpn+BxYsXWz+48BkB/TtyBgJlClBkLVOTvhBAAAEEEEAAAQQQiEtg7969ZuHChdbv6ioMLFiwwOzYsWOghMouMCgexeXqV3konxiaK/4Y4iZGBKYTiHFdP/PMM2bu3LnO55SVK1ea/fv3T5dyz8fKNFEsisnVp3JQLjQEEEAAgcEFKLIObkgPngQosnqCpVsEBhDguhwAj1MRQAABBBBAAAEEEEhAYPfu3eaEE05w3rifOXOmue222wpn6SoGFO1McSgeV5+KX3nE0lw5xBI7cSLQTSDWdb1lyxYza9asrs8tjz32WLeUe+4vy0QxdHueVuzKgYYAAgggUI4ARdZyHOnFgwDFHA+odInAgAJclwMCcjoCCCCAAAIIIIAAAgkI6H+IdruBryLB2NiYeemll/rOtIwCg8bV+K6+tG9kZMTs3Lmz79jqPMGVS53xMDYCZQjEvK5VxOxWaFVeV111lfnhD3/YN9OgJgcOHJga29WP9inmQYrAfSfECQgggEADBCiyNmCSY01xdHTU+qVo0LfdiNWCuBEIRYAiaygzQRwIIIAAAggggAACCNQr8MorrxjX7wetm/tHH320uf766/v6zL/Wue1f82apzxbUeBq3/fz27xWv4o6ttefQ+j62HIgXgaxAay23f80eE/L2tm3bzPDwcNfnG/1Bx4YNG8yHH36YO412i9b3eU7WGBpLY7bOy35VrIqZhgACCCBQrgBF1nI96a1EAYqsJWLSFQIlCXBdlgRJNwgggAACCCCAAAIIJCDwzjvvmNNOO63rTX3d5J89e7a59tprc33+abYooO1eTZ+rqv41juv81r7Vq1cbxRtja+XQ/jXGPIgZgXaB9vXc+r798Ri+37Vrl3HdJ2nlo6+LFi0y69evNx988EHPlNrPa30/3Unj4+NTfWuM1vGur4pRsdIQQAABBMoX6P3Tavlj0iMCuQRcP6TwP1lz0XEQAt4EuC690dIxAggggAACCCCAAAJRCkxOTpqbbrrJzJgxY9qb/Lrxf/rpp5u77rrLvPHGG85cXcUB14E6X/2oP9c57fsUl+JTnLG29nxa38eaC3Ej0BJoreX2r63HYvp68OBBc+GFF/Z8LtIfglxyySXm8ccfNxMTE84U2y1a32cP1LnqQ331+uMS9aHYFCMNAQQQQMCPAEVWP670WoLAT//0T1s/oHT7RayE4egCAQRyCFBkzYHEIQgggAACCCCAAAIINFBg69atZunSpdbv8a1CQfbrkiVLzJVXXmnuvPPOqYLByy+/7DxX+1VQ0HE6Xudl++q2rXgUV+zNlV/sORE/Aqmt67vvvtscf/zxuZ6f9Lbm+iORG2+80WzcuNFs377d6D+WuEz0mI7RsTpnurdEbz9fsSgmGgIIIICAXwGKrH596X0AAYqsA+BxKgKeBLguPcHSLQIIIIAAAggggAACCQjocwG/+c1vmrlz5zqLBe0FAJ/fa3zF0c9nIYbM77IKOV5iQyCPQIrrWp8NvXbtWjM0NFTbc6DGVgyKhYYAAggg4F+AIqt/Y0YoKEAxpyAcpyHgUYDr0iMuXSOAAAIIIIAAAgggkIjAu+++O/UWvcPDw5UWGjSe3hpY46fUUixGpTQ/5FJMIOV1/cILL5iLL74419uouxyK7NNbo2tMjU1DAAEEEKhOgCJrddaM1KfASSedZP0y9t///d999sLhCCBQpgBF1jI16QsBBBBAAAEEEEAAgbQFxsfHp97m95RTTrF+vy9SROh2jvrX2wlrvBSbK+8U8ySnZgk0YV2/+uqrZt26dWbBggXengPVt8bQWDQEEEAAgeoFKLJWb86IOQUosuaE4jAEKhTguqwQm6EQQAABBBBAAAEEEEhIYM+ePebmm282q1evzv2Zgq4ijPbpMwnVj/pTv6k3l0PqOZNf+gJNWteTk5PmiSeemHob38WLFw9ccFUfektg9am+aQgggAAC9QlQZK3PnpF7CFDM6QHEwwjUIMB1WQM6QyKAAAIIIIAAAgggkJjAoUOHzObNm80dd9xhrr76ajM2NmaWLl1qFi5cOPV5rkcdddTUV21rvx7XcTpe501MTCQmMn06TSpGTS/BoykJNHld79+/39x///1Tfyiit/hdtWqVGR0dNfPmzTOzZs2a+qfvtU+P6Rj9UYnO0bk0BBBAAIFwBCiyhjMXRJIRoJiTAWETgQAEuC4DmARCQAABBBBAAAEEEEAAgUYJNLkY1aiJbliyrOuGTTjpIoAAAokKUGRNdGJTSOunfuqnrLfPePPNN1NIjRwQiFaAImu0U0fgCCCAAAIIIIAAAgggEKkAxahIJ46wpxVgXU/Lw4MIIIAAApEIUGSNZKKaGCZF1ibOOjmHLsB1GfoMER8CCCCAAAIIIIAAAgikJkAxKrUZJR8JsK5ZBwgggAACKQhQZE1hFhPNgWJOohNLWlELcF1GPX0EjwACCCCAAAIIIIAAAhEKUIyKcNIIuacA67onEQcggAACCEQgQJE1gklqaoiLFi2y/qrtf/7nf5rKQd4IBCFAkTWIaSAIBBBAAAEEEEAAAQQQaJAAxagGTXaDUmVdN2iySRUBBBBIWIAia8KTG3tqFFljn0HiT1GA6zLFWSUnBBBAAAEEEEAAAQQQCFmAYlTIs0NsRQVY10XlOA8BBBBAICQBiqwhzQaxdAhQzOngYAOBIAS4LoOYBoJAAAEEEEAAAQQQQACBBglQjGrQZDcoVdZ1gyabVBFAAIGEBSiyJjy5saf2mc98xnq74Lfeeiv2tIgfgagFKLJGPX0EjwACCCCAAAIIIIAAAhEKUIyKcNIIuacA67onEQcggAACCEQgQJE1gklqaogUWZs68+QdsgDXZcizQ2wIIIAAAggggAACCCCQogDFqBRnlZxY16wBBBBAAIEUBCiypjCLieZAMSfRiSWtqAW4LqOePoJHAAEEEEAAAQQQQACBCAUoRkU4aYTcU4B13ZOIAxBAAAEEIhCgyBrBJDU1xJ/8yZ+03i747bffbioHeSMQhABF1iCmgSAQQAABBBBAAAEEEECgQQIUoxo02Q1KlXXdoMkmVQQQQCBhAYqsCU9u7KlRZI19Bok/RQGuyxRnlZwQQAABBBBAAAEEEEAgZAGKUSHPDrEVFWBdF5XjPAQQQACBkAQosoY0G8TSIUAxp4ODDQSCEOC6DGIaCAIBBBBAAAEEEEAAAQQaJEAxqkGT3aBUWdcNmmxSRQABBBIWoMia8OTGntrChQuttwt+5513Yk+L+BGIWoAia9TTR/AIIIAAAggggAACCCAQoQDFqAgnjZB7CrCuexJxAAIIIIBABAIUWSOYpKaGSJG1qTNP3iELcF2GPDvEhgACCCCAAAIIIIAAAikKUIxKcVbJiXXNGkAAAQQQSEGAImsKs5hoDhRzEp1Y0opagOsy6ukjeAQQQAABBBBAAAEEEIhQgGJUhJNGyD0FWNc9iTgAAQQQQCACAYqsEUxSU0OkmNPUmSfvkAW4LkOeHWJDAAEEEEAAAQQQQACBFAUoRqU4q+TEumYNIIAAAgikIECRNYVZTDSHE0880fpM1nfffTfRbEkLgTgEKLLGMU9EiQACCCCAAAIIIIAAAukIUIxKZy7J5BMB1vUnFnyHAAIIIBCvAEXWeOcu+cgpsiY/xSQYoQDXZYSTRsgIIIAAAggggAACCCAQtQDFqKinj+C7CLCuu8CwGwEEEEAgKgGKrFFNV7OCpZjTrPkm2zgEuC7jmCeiRAABBBBAAAEEEEAAgXQEKEalM5dk8okA6/oTC75DAAEEEIhXgCJrvHOXfOQLFiyw3i74f//3f5PPmwQRCFmAImvIs0NsCCCAAAIIIIAAAgggkKIAxagUZ5WcWNesAQQQQACBFAQosqYwi4nmQJE10YklragFuC6jnj6CRwABBBBAAAEEEEAAgQgFKEZFOGmE3FOAdd2TiAMQQAABBCIQoMgawSQ1NUSKOU2defIOWYDrMuTZITYEEEAAAQQQQAABBBBIUYBiVIqzSk6sa9YAAggggEAKAhRZU5jFRHOYP3++9XbB7733XqLZkhYCcQhQZI1jnogSAQQQQAABBBBAAAEE0hGgGJXOXJLJJwKs608s+A4BBBBAIF4Biqzxzl3ykVNkTX6KSTBCAa7LCCeNkBFAAAEEEEAAAQQQQCBqAYpRUU8fwXcRYF13gWE3AggggEBUAhRZo5quZgVLMadZ8022cQhwXcYxT0SJAAIIIIAAAggggAAC6QhQjEpnLsnkEwHW9f9v7/xjrCrO/y/rQgVWFhbZkhK+SBt+pJAQ+iNg/zD7j5h8hK9JNVqjWAIpJiUBY/3DJiaNtamYgGkaiVVJ2xg1URISbfikhkAaiRFQYyEIqaUFS4gGbHFhKeJS5pNn6cjdOXPuz5k5M+e8JtmcO+ee8zzP+zXP3Z1n5u69V1nwCAIQgAAE0iXAJmu6Y1f6yG+44YbMxwWfPn269LoRCIGYCbDJGvPoEBsEIAABCEAAAhCAAAQgUEYCbEaVcVTRRF6TAxCAAAQgUAYCbLKWYRRLqoFN1pIOLLKSJsDrMunhI3gIQAACEIAABCAAAQhAIEECbEYlOGiE3JAAed0QERdAAAIQgEACBNhkTWCQqhoimzlVHXl0x0yA12XMo0NsEIAABCAAAQhAAAIQgEAZCbAZVcZRRRN5TQ5AAAIQgEAZCLDJWoZRLKmGqVOnZj4u+NNPPy2pWmRBIA0CbLKmMU5ECQEIQAACEIAABCAAAQiUhwCbUeUZS5RcJUBeX2XBIwhAAAIQSJcAm6zpjl3pI2eTtb0htk1Sq3iuPXrc1YgAr8tGhHgeAhCAAAQgAAEIQAACEICAWwK2mt6th7is2fRW8Vxco+I+GtuYuveCRQhAAAIQgIBfAmyy+uWL9SYJHD9+XL344ovq0UcfVXfddZdavHix6urqyvwn68yZM0eek2vkWrlH7qVdJWCbpFbx3FUiPHJJgE1WlzSxBQEIQAACEIAABCAAAQhA4CqBoaEh9cYbb6hNmzaptWvXqoGBATVnzpzM2ojU+HJenpfr5Hq5T+4vQ6viGoZNcxnGUjSQ12UZSXRAAAIQgICNAJusNiqc805geHhY7dixQ61evVrNnj3bWjDYJph558SG2BKbYrvKLY9R1c5XOQdcaM8rgmxvfvj6179e2uLeBUtsQAACEIAABCAAAQhAAAIQyCNw6NChkTeRL126VHV3d3e0PiL3ix15U7rYTbVVbf0iT2+q4ydxk9cpjx6xQwACEIBAKwTYZG2FFtd2TODDDz9U69evV/39/R0VDnkTUDkvtsWH+Kpiq8emSs9Vcew71UwR1ClB7ocABCAAAQhAAAIQgAAEINCYwODgoNq8ebNatGiRt7URqf/FvvgRfym1Kq1d1NOa0phJrOR1aiNGvBCAAAQg4IIAm6wuKGKjIYH3339/5GOAbf8FV29C2clz4ks+Vlh8V6l1wqxM91ZpzDvRShHUCT3uhQAEIAABCEAAAhCAAAQg0DyBTz75RD3yyCOqt7fX6+aqWduLP/Er/lNoZvxV7acwVhIjeZ3KSBEnBCAAAQj4IMAmqw+q2PySwKlTp0Y+xnfMmDFBC4jaCbj4lo8Slliq0Gq1V/lxFca6E40UQZ3Q414IQAACEIAABCAAAQhAAALNE7h48aLauHGj6unpKWxtRNYHxL/EIfHE3Kq8llGrPeYxktjI69hHiPggAAEIQCAEATZZQ1CuqI9nn31WTZ48uakCQr435KabblIPP/yw2rp1q9qzZ4/1nZ1//vOfR56Ta+RauafZ7yyRWCSmsrfaCXnt47LqrtVY+7isejvVRRHUKUHuhwAEIAABCEAAAhCAAAQg0DyBXbt2qTlz5jS1NiI17ezZs9UPf/hDtWnTJvX666+rw4cPW++V8/K8XCfXy321NXG9xxKPxBVry4s91ng7jStFveR1p6PO/RCAAAQgUBYCbLKWZSQj0nHmzBl1xx13NJzcjx8/Xt19990jRcHQ0FBGwZQpUzI2/vWvf2WuO3fu3IgNsSU28yan+rzEJjGWtWmd5hG9ZSXQvC4XRZDtY6327t1b2uK+ebpcCQEIQAACEIAABCAAAQhA4CqB4eHhkY/obeZrk+QN5E8//bT66KOPrhqoeWTW99K3Nblf7Ig92z215yQu+QhhiTO2Vhtn7ePY4nQVT63G2seu7Lu0Q167pIktCEAAAhAoAwH7rKwMytBQCIEDBw6oWbNm1Z3Mz5gxQz311FPq7NmzdWNsdpO11oj+fknxUTsxNR9LjBJrGZupVffLqFU0aX3msax629Hlsghq9nVZluK+Hd7cAwEIQAACEIAABCAAAQhUm8DHH3+slixZkluvSv0qbxJft26dOnr0aENYZr0r/UZN7P74xz9u+Gb0pUuXKok3pmbT24zmmDS0EksqesnrVkaVayEAAQhAoCoEGs/KqkICnR0T2L17t5o0aVJuEdHX16e2bNnS9Hd/2D5quNn/QJWPRJV3b4rPvMmq/EeexFy2lqe3bDq1nqrp1bqbPbougprdZK2NL+XivlYHjyEAAQhAAAIQgAAEIAABCDQicOTIEXXjjTfmrkXIVx49+OCD6tSpU41Mffm8re798skGD8SP+Kv3VUsSr8QdS7PplXNlbSnoJa/Lmn3oggAEIACBTgmUd4bSKRnub4nA9u3b1bhx43KLiDVr1qjTp0+3ZLOTTVbtSHyK77wJq8QssZep5Wktk8ZaLVXTW6u90WMfRVAnr8sUi/tGjHkeAhCAAAQgAAEIQAACEICAJiBfpVLvzd4DAwPqgw8+0Jc3fbTVvU3f/N8Lxa/4t9mScxL3vn37WjXr5fq8GL04i8Bo7HrJ6wiShBAgAAEIQCBaAmyyRjs06QS2c+fO3A1W+a+3djcxO9nMMelJDLb/wJOJrGy0ioaytNgn5645V01vs/x8FUEuXpcpFffN8uY6CEAAAhCAAAQgAAEIQKDaBA4ePJi77jB27Fi1cePGtgHZ6t52jUkcEo/NpqybiI6imy02OVfWFrNe8rqsWYcuCEAAAhBwRaC8MxRXhLBTl8D+/ftVT0+PdXK+YMECdfz48br313tSPs7XnGh+9tln9W6p+5zEIjGZNqUvGkRLGZpNn5wra6ua3mbG0WcR5GKTVWtIobjXsXKEAAQgAAEIQAACEIAABCCQR0C+ImX69OnW9Yb+/n4lb4LtpNnq3k7svf3220ristkVHc18T2wn/hvda4tLzpW1xaqXvC5rxqELAhCAAARcEijvDMUlJWxZCchHf86YMcM6Kb/55ptVs9+fajWulHK9ySp+JCaJzTaBFS2tfCdKXtxFn7dpoxgpelTC+fddBLl+XcZe3IcbOTxBAAIQgAAEIAABCEAAAikSOH/+vFq4cKF1nWHu3Lnqb3/7W8eybHV+p0YlLonPZlv0iK6imi0m1jXCjgZ5HZY33iAAAQhAIF0CbLKmO3aFR37LLbdYJ+OyiXnhwoWO43O9maMDktjyNlqXLVumL0v2SDFyzUheJjuAHQQeogjy8bqMubjvYDi4FQIQgAAEIAABCEAAAhCoAIH77rvPujYyf/58Z2/kttX5LtDKG80lTpt90VVUs8Uj58raYtRLXpc129AFAQhAAAKuCZR3huKaFPZGEXjyySetk/DFixerwcHBUde225k0aVLGhyvbYkditU1kRVvKzaaJYiTlEW0+9hBFkI9NVlEYa3HfPH2uhAAEIAABCEAAAhCAAASqRuC3v/2tdV1h1qxZ6sSJE85w2Op8V8YlTonX5kP0FdFssbCuEW4kyOtwrPEEAQhAAALpE2CTNf0xDK7g2LFjasKECZkJuHyfx8mTJ53F43OTVYKUWKdNm5bRIdpEY6qNYqSa/8kaqgjy+bqMsbhP9fcAcUMAAhCAAAQgAAEIQAACfgnIG0X7+voyawoTJ05Uhw4dcurcVue7dCDxStymH9FXxNcqmXHovkvNMdnS+sxjETGS10VQxycEIAABCKRMgE3WlEevoNhvu+22zMS7q6tL7dy502lEPjdzdKASs8RuTmRFY6rN1KL7qeppFLfWZx4b3Vem50MWQb5fl7EV92XKE7RAAAIQgAAEIAABCEAAAu4I5H2S0EsvveTOyX8tmfWu9F03idvmp4iPDbbF4UOza4bt2otJL3nd7ihyHwQgAAEIVJWA+1lZVUlWRPeuXbusk+6f/OQnzgn43szRAT/00ENWTaI1xRbT5DwEv6rptTENWQSFeF3GVNzbeHMOAhCAAAQgAAEIQAACEKg2gXfeece6jnD//fd7AWOre304WrlypVWX6A3ZbHrlXFlbLHrJ67JmGLogAAEIQMAngfLOUHxSq7DtgYGBzIR75syZamhoyDmV66+/PuPr7Nmzzv2cO3dOiQZzUitaU2ymDt33oeXIkSPqrbfecvLz73//u60QtT7z2JaxBG8KXQSF2GSVYYiluE8wJQgZAhCAAAQgAAEIQAACEPBMYMWKFZk1hKlTp6rTp0978WzWu9L30SR+0WH6E70hm+lf913HEMOahmjS+syja72N7JHXjQjxPAQgAAEIQCBLwM+sLOuHMyUgsGfPHuvE75VXXvGiLtQmqwQvGszJrPRFc2rNpkPOuW6XL1+2bk7n+W90vl3WeXZd643VXugiKNTrMpbiPtZxJy4IQAACEIAABCAAAQhAoBgC7733nnX94LnnnvMWkK3u9eVMdNj8ie5QzeZfzrlssaxpiKYQehuxI68bEeJ5CEAAAhCAgJ2A2xmK3QdnS0LgnnvuyUz8FixY4E1dqM0cLUC0mBNb0ZxaMzXovmsd+/fvz/CS/whesmSJWr58uVq1apX60Y9+lPnR8dQe77333rbDq7VT+7htgwndWEQRFPJ1GUNxn1A6ECoEIAABCEAAAhCAAAQgEIDA6tWrM7Xw7Nmz1fDwsDfvtbWufuzLmegQPdqPPoruUE37NI8u/ceypiGaTJ2671JvI1vkdSNCPA8BCEAAAhCwE2CT1c6FswaBwcFBNX78+MzE7+WXXzaudNft6enJ+JOP9vXVRIueyOqjaBbtKTUdu3l0reGnP/3pCK+uri61bt061cy7Wrdv367GjBkzivPixYtVux8VLJpMnbrvWm+M9ooogkJussZQ3Mc47sQEAQhAAAIQgAAEIAABCBRD4Pz588pWEz3//PNeA9J1bu3Rp0PRU+tLHotu0R+imb5136XvWNY0RJPWZx5d6q1ni7wOk9f1xoDnIAABCEAgXQJssqY7dkEjt02wp02bpr744gtvcYTeZBUtosmc1PoullwDNOPXfdd+5s2bN7Jh+vvf/74p04cPH84UozfccIM6fvx4U/fnXaT1mce868tyvqgiKPTr0va7J2RxX5Z8QQcEIAABCEAAAhCAAAQg0DmBF154IbNm0Nvbqy5cuNC58ToWzHpX+j6b6BFdpl/RH6KZfnXfpe9Y1jREk9ZnHl3qrWeLvA6T1/XGgOcgAAEIQCBdAn5nZelyIXKDwO23356Z9G3YsMG4ym039GaORC+azEmtaE+pmfHrvksNsmEqdtesWdOU2c8++0zNnTt3FNvu7m61e/fupu6vd5HWZx7r3VOG54oqgkK/Losu7suQK2iAAAQgAAEIQAACEIAABNwQuPPOO0fVtVKHPvDAA26M17Fi1rvS991El+lX9Idopl/dd+U7pjUN0aT1mUdXehvZIa/D5HWjceB5CEAAAhBIk4D/WVmaXIi6hsClS5es72Dcu3dvzVXuH06cODEz0RwaGnLvqMaiaDIntfLuTWGQSjPj132X8cvH/s6ZM0f985//bGj28uXLasWKFRmuv/rVrxre28wFWp95bObelK8pqggKvckqY1RkcZ9yjhA7BCAAAQhAAAIQgAAEIOCWQF9fX6a2ffPNN906sVgz613p+26iy/Qr+kM006/uu/Id05qGaNL6zKMrvY3skNdh8rrROPA8BCAAAQikScD/rCxNLkRdQ2Dfvn2ZCV+IjcciNlnzNpSFQSrNnJTrflHx/+xnP8vkz/333+8sHK3PPDpzEKmhooqgIl6XRRb3kQ4/YUEAAhCAAAQgAAEIQAACgQm8++67mdpWvspkeHjYeyRmvSt930102b5/Vjj4bja9ITTbdPle0xCfReolr68Z4R8ir235xTkIQAACEEifgP9ZWfqMKq9gy5YtmQlfiI/QLWIzRwbb9tHIwiCVVuTk3GT02muvjXxva23mr5XwAAAYcklEQVRM3/72t51+X02t7drHZixl6hdZBBXxuiyyuC9T3qAFAhCAAAQgAAEIQAACEGifwDPPPJNZG1m+fHn7Blu4s7bW1Y9buL3tS0Wf9qePwsF3077Mo2+/pv0Qaxri09Sp+2Y8Pvrk9ZVN1hB57WP8sAkBCEAAAsUTYJO1+DGIPoL169dnJnyPP/6497gnTJiQ8Xv+/HnvfkWbntDqozBIpemYzWPo+I8cOaImTZo0imV/f7/6xz/+4TQUU6fuO3USmbEii6AiNlkFf1HFfWRDTzgQgAAEIAABCEAAAhCAQEEENmzYMKq+ldrzscceCxKNrnNrjyEci75an/JYOPhupk/d9+231n6oNQ3xqfWZx9p4fD0mr69ssobIa19jiF0IQAACECiWAJusxfJPwvuyZcsyE75t27Z5j72oTVbRZk5shUEqzYxd90PGPzg4qObPnz+KY3d3t/rTn/7kPAytzzw6dxSRwSKLoKJel0UV9xENO6FAAAIQgAAEIAABCEAAAgUSuPXWW0fVuFKDvvrqq0EiMutd6Ydoos/0LRx8N9On7vv2q+2HXNMQn1qfedTx+DyS11c2WUPktc9xxDYEIAABCBRHIMysrDh9eHZAYN68eZkJ38GDBx1Yrm+iqM0c0WZObIVBKs2MXfdDxX/58mXrRy7/+te/9hKC1mcevTiLxGiRRVBRr8uiivtIhpwwIAABCEAAAhCAAAQgAIGCCZhvJJYa9MCBA0GiMutd6Ydoos/0LRx8N9On7vv2K/ZDr2mIT63PPIbQS15f2WQNkdchxhMfEIAABCAQnkDLs7KX/vg39f8f2s1PhRhc13ND7oTPnACWtS8MUsn7vDEI9evl5z//eSZfVq1a5c19nt5UxqudOK/v+38ZxgMrtwbJ0Wu7r8v4/p/1/+vdt+gzx1o4tMOPe8r/N/zlN/7u7XcOhiEAAQi4IEBNVf6/Rcw3GGNyoHw5wNrIlc2oEOsjZu2n+y7+BjeyEXpNQ+LR+sxjiN8j5HW4vA4xnvgo398expQxJQeKyYFW1hbZZK3QZmm7L8hrx2W/G9Wc+JW9Lwza5Rf6vryxaFRIuHj+D3/4gxozZsyoAuG73/2u+vzzz12Yt9rI0xuae0h/FEEUQSHzLUVfsnlBgwAEIBAzATZZiymUU/ybRszkCjkQTw6wNnKlDguxPpJX5/v+217EmoZoytMb4vVPXofL6xDjiY94/mYwFowFOZB2DrSytsgmK5usDTcPx4zpyp3w5U0Ey3ZeGKTyizGPve9i5C9/+Yvq7e0dlStf/epX1YkTJ7y6ztObyni1EydFEEVQO3lTpXtamQh5/QWFcQhAAAI5BNhkTbvgrtLfVLSSq+TA1RxgbeRKHRZifSSvzs/5s+rkdFFrGhJ8nt4Qrz/yOlxehxhPfFz9nQ0LWJAD5EAnOdDK2iKbrGyyNtw8ZEPnGhXinZqdvOhr782bnDupOnKMnD17Vn3zm98cVRiMHTtW7dmzJ+cOd6fz9NYyKdtjiiCKoLLltGs9rUyE3P02whIEIACB5gmwyUrB7/pvH/bIKXLAfw6wNhLuza55dX7zf2lbu7LINQ2JNE9viNc1eR0ur0OMJz78/y2AMYzJgWrkQCtri2yyssnacJOVjya9RoX4zhFXv6DzJuetlRjNX3358mX1/e9/P1MUbNmypXkjHVyZp9cVzxjtUARRBMWYlzHF1MpEqINfP9wKAQhAoG0CbLJWozCP6W8jsZBz5EDnOcDayJU6LMT6SF6d3/Yf3jo3Fr2mIaHl6Q3xuiWvw+V1iPHER+e/62EIQ3KAHJAcaGVtseVN1jrzEp4qKYF58+ZlJnwHDx70rva6667L+L1w4YJ3v6LNnOAKg1SaGbvu+4r/F7/4RYbXmjVrfLnL2NX6zGPmwhKd+NrXvpZhbuqvQl840CAAAQhAAAIQgAAEIAABCIQgMH/+/EwdduDAgRCuM36l3gvRRJ9ZWwoH3830qfs+/Ba9piGatD7z6EOvaZO8vrLJGiKvTfb0IQABCECgHATCzMrKwaqyKpYtW5aZ8G3bts07j6I2WUWbObEVBqk0M3bd9xH/jh07VFfX6O/sXbp0qfr88899uLPa1PrMo/Xikpwssggq6nVZVHFfkpRBBgQgAAEIQAACEIAABCDQIYFbb701s1bw6quvdmi1udvNelf6IZroM30LB9/N9Kn7rv3GsKYhmrQ+8+har80eeX1lkzVEXtv4cw4CEIAABNInEGZWlj6nSitYv359ZsL3+OOPe2fyla98JeM3xOadaDMntsIglWbGrvuu4//rX/+qJk+ePIrV9OnT1cmTJ5ty9dZbb6n+/n7V6X9Fa33msakgEr2oyCKoqE3Woor7RFOEsCEAAQhAAAIQgAAEIAABxwQ2bNgwqv6VGvSxxx5z7MVuzqx3pR+iiT7Tt3Dw3Uyfuu/SbyxrGqJJ6zOPLvXm2SKvr2yyhsjrvDHgPAQgAAEIpE0gzKwsbUaVj16+W9Oc6N1+++3euRS1ySraTL2hvl/UBVQzdt13YVvbOHfunFq4cOEoTuPGjVOycdpMu3Tpklq0aNHIJu0XX3zRzC2512h95jH3hhI8UWQRVNTrsqjivgTpggQIQAACEIAABCAAAQhAwAGB3/zmN6NqYKlBly9f7sByYxNmvSv9EE30mb6Fg+9m+tR9V35jWtMQTVqfeXSlt54d8vrKJmuIvK43DjwHAQhAAALpEggzK0uXD5Erpfbt25eZ8PX29irZKPPZitjMEU2izZzYCoNUmhm77ruM/84778wwamVC+stf/nLk/pUrV3YcltZnHjs2HLGBIougIl6XMhRFFfcRpwGhQQACEIAABCAAAQhAAAIBCbz77ruZOvj6669Xw8PD3qMw613p+26iS/SZvoWD72b61H1XfmNa0xBNWp95dKW3nh3y+soma4i8rjcOPAcBCEAAAukS8D8rS5cNkf+XQN7G4969e70ykv+MNCeYFy9e9Orz7bffzvgMsaHsUpTJTPdd+XjiiScyjNauXdu0+c2bN395/2uvvdb0fXkXan3mMe/6MpwvsggqYpO1yOK+DPmCBghAAAIQgAAEIAABCEDADYG+vr4v61ldg7755ptujNexon3VHutc7uQp0VXrTx6L/hDN9Kv7LnzHtqYhmrQ+8+hCbzM2yOswed3MWHANBCAAAQikR4BN1vTGrJCIbR+h6/v7CorYZLV9DGuIj0Z2OajmpFz3Xfj44x//qLq6ukYVAN/73vdUvc3v//znPyPf0/rMM8+ogYGBL+/t6elRFy5c6Dgsrc88dmw4cgNFFUFFvC6LLO4jTwPCgwAEIAABCEAAAhCAAAQCErD9B+QDDzzgPQKz3pW+7ya6TL+iP0Qz/ep+p75jXNMQTVqfeexUb7P3k9dh8rrZ8eA6CEAAAhBIi4D/WVlaPIg2h8DWrVszk75p06apTr9PM8fdyOnQmzmiRTSZk1rRnlIz49f9TjUcPXpUTZkyJcNnxowZ6jvf+c6on29961vqG9/4xsj15qasjucHP/hBpyGN3K/tmUcnxiM2UlQRFPp1KUNQZHEfcQoQGgQgAAEIQAACEIAABCAQmMALL7yQqYnl069cvIG4nhSz3pW+zyZ6bF+lJPpDNJveTjXHuqYhPH3obWWcyOswed3KmHAtBCAAAQikQ8DvrCwdDkTagMDg4KAaP358ZuL38ssvN7iz/afHjh2b8edzU1e0mBNb0SzaU2qmBt3vVIP+HlVtr9Pjtm3bOg1p5P68OJwYj9hIUUVQ6E3Woov7iFOA0CAAAQhAAAIQgAAEIACBwASGhoas31P6/PPPe43EVvf6dCh6TJ/y/aznz5/36fZL26Zv3f/ygjYexLqmIVK0PvPYhsy2biGvw+R1W4PDTRCAAAQgED0BNlmjH6J4ArznnnsyE78FCxZ4CzD0JqtoMSe0ojm1ZmrQ/dR0NBuv1mcem70/1euKKoJCvy6LLu5TzQ/ihgAEIAABCEAAAhCAAAT8EFi9enVm7WD27NlqeHjYj8OcTThfzkSH6DFrbNEdqpm+dT+U/9B+tD7zGDIO8jokbXxBAAIQgECZCLDJWqbR9Kxlz549mUm2TABfeeUVL55DbuaIBnMyK33RnFqz6ZBzZW1V01s7jkUUQSFflzEU97W8eQwBCEAAAhCAAAQgAAEIQOC9996zrh8899xz3uDY6l5fzkSHzZ/oDtVs/uVcWVsMesnrsmYXuiAAAQhAwDeB8s5QfJOrqP2BgYHMZHvmzJlK/qvOdevu7s748vHO0HPnzinRYE5qRWuKzdSh+ylqaSZmrc88NnNv6tcUUQSF3GSNobhPPUeIHwIQgAAEIAABCEAAAhBwT2DFihWZNYSpU6eq06dPu3cW8D9ZJX7RYdbXojdkM/3rfsgYQvrS+sxjyBjEF3kdmjj+IAABCECgDATYZC3DKAbUsGvXrsxkWyaBDz30kPMoQm2ySuzmRFb6u3fvdq4phEGbFjlX1lY1veY4hi6CQr0uYynuTd70IQABCEAAAhCAAAQgAAEIvPPOO9Z1hJUrV3qBY6t7fTiS+G2+RG/IZotBzpW1xaKXvC5rhqELAhCAAAR8EijvDMUntYrbvu222zKT7q6uLrVz506nZEJs5kjMErs5oRWNqTZTi+6nqqdR3FqfeWx0X1meD10EhXhdytjEUtyXJU/QAQEIQAACEIAABCAAAQi4JXDfffdl1hKkLn3ppZfcOgr0n6wSt1lXS190hm62OORcWVtMesnrsmYZuiAAAQhAwBeB8s5QfBHDrjp27JiaMGFCZvI9bdo0dfLkSWeEfG/mSKwSszmZFW2iMdVm6tH9VPU0ilvrM4+N7ivT8yGLIN+vSxmXmIr7MuUJWiAAAQhAAAIQgAAEIAABdwROnTql+vr6MmsKEydOVIcOHXLnKMAmq8QrcZt1tegTnaGbGYfuh44jlD+tzzyG8l/rh7yupcFjCEAAAhCAQGMCbLI2ZsQVFgJPPvlkZvItk8HFixerwcFByx2tn7r22mszPi5dutS6IcsdEqPEak5gpS/aUm42TXKurK1qem3jGLII8r3JGltxb+PNOQhAAAIQgAAEIAABCEAAAkLgd7/7nXVdYdasWerEiRPOINnqXlfGJU6J1+ZD9BXRbLHIubK22PSS12XNNHRBAAIQgIAPAuWdofighc1RBG655RbrJPzmm29WFy5cGHVtOx1fm6wSm8Rom8SKptSbTRfFSOqj2jj+UEWQr9elKIyxuG9MnisgAAEIQAACEIAABCAAgSoTuPfee63rC/Pnz3f2X6C2Ot8Fc3nD7rx586zxF/ExwVqTTS/rGppOmCN5HYYzXiAAAQhAIH0CbLKmP4aFKZDJ+IwZM6yTcdnEPHPmTEex+djMkZjyNlhFi2hKvVGMXDOSk6mPYzvxhyiCfLwuRWusxX0748A9EIAABCAAAQhAAAIQgEB1CJw/f14tXLjQujYiG5h///vfO4Zhq/M7NSpxzZ071xq36BFdRTWbXjZZw44GeR2WN94gAAEIQCBdAmyypjt2UUS+f/9+1dPTY52UL1iwQB0/frztOLu6ujJ22zam1EgsEpNtsi4aREsZmk0fxUgZRraxhhBFkI9N1piL+8bUuQICEIAABCAAAQhAAAIQqDqBo0ePqunTp1vXG/r7+9XevXs7QmSr8zsxKPFIXDa7okP0FNlscbGuEX5EyOvwzPEIAQhAAALpEWCTNb0xiy7inTt3qnHjxlkn51OmTFHbt29vK2aXm6wSg8Rim6hL7KKhLM2mkWKkLKPbWIfvIsjl61LUxF7cNybOFRCAAAQgAAEIQAACEIAABJQ6ePBg7rrD2LFj1caNG9vGZKvz2zUmcUg8NpuybiI6im622FjXKGZUyOtiuOMVAhCAAATSIcAmazpjFXWksomZt9EqE+E1a9aoTz/9tCUNLjZzTp8+PeI7b4IuMbe7CdySmIAX52kNGEJQV1XT2wxcn0WQi9el1pBCca9j5QgBCEAAAhCAAAQgAAEIQKARAXkTad4bvKV2HRgYUB988EEjM5nnbXVv5qIGJ8Sv+LfZknN9fX1q3759DayEeTovxjDew3uJXS95HT4n8AgBCEAAAukQYJM1nbGKPtLdu3er3t7euhP2LVu2qIsXLzalZcyYMRlbTd2o1IgP8SVFQt5kVWKVmMvW8vSWTafWUzW9Wnejo68iyMUma0rFfSPOPA8BCEAAAhCAAAQgAAEIQKCWwJEjR9SNN96YuxbR3d2tHnzwQXXq1Kna2+o+ttW9dW+oeVL8iD/xa7Mj5yReiTuWlhdnLPG5jiMFveS161HHHgQgAAEIlIUAm6xlGclIdBw4cEDNmjUrd+IuE8cZM2aop556Sp09e7Zu1O1ssg4ODo7YFh95k1Q5LzFKrGVsebrLqFU0VU1vK+Poowhq53WpY06xuNexc4QABCAAAQhAAAIQgAAEINAsgY8//lgtWbIkt16VOnb8+PFq3bp1TX3/qa3ubRSLfJWM2Bc/tvv1uaVLlyqJN6amYzOPMcXoMhZTp+679OHCFnntgiI2IAABCECgbATYZC3biEag58yZM+qOO+6oO4mXCaNM9O+++271+uuvq6GhoUzkzW7myL1iQ2w1Kh7Er8QmMZa16cm4eURvWQnU1+W6CGr2dVkbVcrFfa0OHkMAAhCAAAQgAAEIQAACEGiWwPDwsHrkkUeU7dOAzHr9pptuUk8//bT66KOPrObN66Vva3K/2BF7tntqz0lcEp/EGVurjbP2cWxxuoqnVmPtY1f2Xdohr13SxBYEIAABCJSBgH1WVgZlaCicwLPPPqsmT57ccGIvE0j52BopAh5++GG1detWtWfPHut9x44dG3lOrpFr5Z56H3lTOzmVWCSmsrdazVV+XPZxbkWfyyKo2U3WshT3rXDmWghAAAIQgAAEIAABCEAAAiaBXbt2qTlz5ljXOGw1++zZs9WqVavU5s2bR95QfvjwYeu9cl7ecC7XyfVyn82e7ZzEI3HF2mwxV/FcrOMjcZHXMY8OsUEAAhCAQEgCbLKGpF1BX/LxoKtXr1a2jZlQE2TxLTG08n0nKQ9VKK6x+0l5DH3FThHkiyx2IQABCEAAAhCAAAQgAAEI5BO4ePGieuKJJ1RPT0/TG6E+am7xL3FIPDE3H9pTtBnzGEls5HXsI0R8EIAABCAQggCbrCEo40O9//776q677mrqY3JcTXzlo2/Ep/iuUnPFL3U7VRrzVrRSBLVCi2shAAEIQAACEIAABCAAAQi4I/DJJ5+MfERvb29v0M1W8ScfDSz+U2ipr0e4ij+FsZIYyetURoo4IQABCEDABwE2WX1QxWYugQ8//FCtX79e9ff3eysoxLb4EF9VbK4m86nbqeLYt6KZIqgVWlwLAQhAAAIQgAAEIAABCEDAHYHBwcGRj/ldtGiRt7URqenFvnycsPhLqaW+HuEq/pTGTGIlr1MbMeKFAAQgAAEXBNhkdUERGy0TkO+I3LFjx8jH+N54440dFxViQz4SWGyK7So3V5P51O1UOQda0U4R1AotroUABCAAAQhAAAIQgAAEIOCWwKFDh9Sjjz6qli5dqrq7uztaH5H7xY7YE7upttTXI1zFn+r4SdzkdcqjR+wQgAAEINAKATZZW6HFtd4IHD9+XL344osjhYB8xO/ixYvVrFmz1NSpU9W4ceNGfuSxnJPn5BopGuQeuZd2lYCryXzqdq4S4VGzBCiCmiXFdRCAAAQgAAEIQAACEIAABNwTOHfunHrjjTfUpk2b1Nq1a9XAwICaM2eOmj59+sj3uV577bUjR+nLeXlerpPr5b6hoSH3QRVgMfX1CFfxF4Dei0vy2gtWjEIAAhCAQCQE2GSNZCAIAwIQgEBMBCiCYhoNYoEABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIHYCLDJGtuIEA8EIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIBA1ATZZox4egoMABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABGIjwCZrbCNCPBCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQNQE2GSNengIDgIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQiI0Am6yxjQjxQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACURNgkzXq4SE4CEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAgNgJsssY2IsQDAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhETeD/ALdz7iTIWvA9AAAAAElFTkSuQmCC" } }, "cell_type": "markdown", "metadata": {}, "source": [ "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## IMPORTS and SETUP" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# general imports\n", "import numpy as np\n", "import math\n", "import matplotlib.pyplot as plt\n", "# magic word for producing visualizations in notebook\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# AWS imports: Import Braket SDK modules\n", "from braket.circuits import Circuit, circuit\n", "from braket.devices import LocalSimulator\n", "from braket.aws import AwsSession, AwsDevice" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# local imports\n", "from utils_circuit import get_unitary, adjoint\n", "from utils_qaa import qaa\n", "\n", "# monkey patch get_unitary() and adjoint() to the Circuit class\n", "Circuit.get_unitary = get_unitary\n", "Circuit.adjoint = adjoint" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# set up device: Local Schroedinger Simulator\n", "device = LocalSimulator()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## IMPLEMENTATION OF REFLECTION OPERATORS" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In ```utils_qaa.py``` we provide a set of simple helper functions to implement the quantum circuit for the QAA algorithm. \n", "Specifically, we demonstrate how such modular building blocks can be registered as subroutines, using ```@circuit.subroutine(register=True)```. \n", "Here we first highlight the implementation of the reflections $-\\mathcal{R}_{B}$ and $-\\mathcal{R}_{0}$ as discussed previously. The functions defined as follows comprise the ```utiles_qaa.py``` module." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### REFLECTION AROUND $|B\\rangle |0\\rangle$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We need to apply a minus sign to $|B\\rangle |0\\rangle$ only. We achieve this goal by applying $XZX$ to the ancilla qubit, so that we obtain a minus sign whenever the ancilla is in the $|0\\rangle$ state." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```python\n", "# helper function to apply XZX to given qubit\n", "@circuit.subroutine(register=True)\n", "def minus_R_B(qubit):\n", " \"\"\"\n", " Function to apply a minus sign to |B>|0>. This goal is achieved by applying XZX to the ancilla qubit.\n", "\n", " Args:\n", " qubit: the ancilla qubit on which we apply XZX.\n", " \"\"\"\n", " # instantiate circuit object\n", " circ = Circuit()\n", " \n", " # Apply sequence XZX to given qubit\n", " circ.x(qubit).z(qubit).x(qubit)\n", " \n", " return circ\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### REFLECTION AROUND $|0\\rangle^{\\otimes n+1}$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We must implement $-\\mathcal{R}_{0}$, which gives a minus sign to $|0\\rangle_{n+1}$ only, leaving all other states untouched. \n", "To this end, we implement the circuit visualized previously using ancilla qubits; alternatively, as controlled by the flag ```use_explicit_unitary```, one can evolve the system with the the unitary $\\mathrm{diag}(-1,1,1,...,1)$.\n", "This way, we can run QAA on _classical_ simulators without the need to resort to ancilla qubits. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```python\n", "# Helper function to apply rotation -R0\n", "@circuit.subroutine(register=True)\n", "def minus_R_zero(qubits, use_explicit_unitary=False):\n", " \"\"\"\n", " Function to implement transformation: |0,0,...0> -> -|0,0,...0>, all others unchanged. \n", "\n", " Args:\n", " qubits: list of qubits on which to apply the gates\n", " use_explicit_unitary (default False): Flag to specify that we could instead implement\n", " the desired gate using a custom gate defined by the unitary diag(-1,1,...,1).\n", " \"\"\"\n", "\n", " circ = Circuit()\n", " \n", " # If the use_explicit_matrix flag is True, we just apply the unitary defined by |0,0,...0> -> -|0,0,...0>\n", " if use_explicit_unitary:\n", " # Create the matrix diag(-1,1,1,...,1)\n", " unitary = np.eye(2**len(qubits))\n", " unitary[0][0]=-1\n", " # Add a gate defined by this matrix\n", " circ.unitary(matrix=unitary, targets=qubits)\n", " \n", " # Otherwise implement the unitary using ancilla qubits:\n", " else:\n", " # Flip all qubits. We now must check whether all qubits are |1>, rather than |0>.\n", " circ.x(qubits)\n", "\n", " # If we have only 1 qubit, we only must apply XZX to that qubit to pick up a minus sign on |0>\n", " if len(qubits) < 2:\n", " circ.z(qubits)\n", "\n", " # For more qubits, we use Toffoli (or CCNOT) gates to verify the qubits are in |1> (after applying X)\n", " else:\n", "\n", " # Dynamically add ancilla qubits, starting on the next unused qubit in the circuit\n", " # NOTE: if this subroutine is being applied to a subset of qubits in a circuit, these ancilla\n", " # registers may already be used. We could pass in circ as an argument and add ancillas outside of\n", " # circ.targets instead, if desired.\n", " ancilla_start = max(qubits) + 1\n", "\n", " # Check that the first two register qubits are both 1's using a CCNOT on a new ancilla qubit.\n", " circ.ccnot(qubits[0],qubits[1],ancilla_start)\n", "\n", " # Now add a CCNOT from each of the next register qubits, comparing with the ancilla we just added.\n", " # Target on a new ancilla. If len(qubits) is 2, this does not execute.\n", " for ii,qubit in enumerate(qubits[2:]):\n", " circ.ccnot(qubit,ancilla_start+ii, ancilla_start+ii+1)\n", "\n", " # A Z gate applied to the last ancilla qubit gives a minus sign if all register qubits are |1>\n", " ancilla_end = ancilla_start + len(qubits[2:])\n", " circ.z(ancilla_end)\n", "\n", " # Now uncompute to disentangle the ancilla qubits by applying CCNOTs in the reverse order to the previous.\n", " for jj,qubit in enumerate(reversed(qubits[2:])):\n", " circ.ccnot(qubit,ancilla_end-jj-1, ancilla_end-jj)\n", "\n", " # Finally undo the last CCNOT on the first two register qubits.\n", " circ.ccnot(qubits[0],qubits[1],ancilla_start)\n", "\n", " # Flip all qubits back\n", " circ.x(qubits)\n", " \n", " return circ\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## VISUALIZATION OF THE CIRCUIT FOR THE REFLECTION $\\mathcal{R}_{0}$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To check our implementation of the $-\\mathcal{R}_{0}$ circuit discussed previously, let us visualize this circuit for small number of qubits. \n", "Note that our implementation accepts a list of qubit indices with arbitrary index ordering. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example circuit with four qubits and simple index ordering:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "T : |0|1|2|3|4|5| 6 | 7 |8|\n", " \n", "q0 : -X-C-------------C---X-\n", " | | \n", "q1 : -X-C-------------C---X-\n", " | | \n", "q2 : -X-|-C-------C---|-X---\n", " | | | | \n", "q3 : -X-|-|-C---C-|-X-|-----\n", " | | | | | | \n", "q4 : ---X-C-|---|-C---X-----\n", " | | | | \n", "q5 : -----X-C---C-X---------\n", " | | \n", "q6 : -------X-Z-X-----------\n", "\n", "T : |0|1|2|3|4|5| 6 | 7 |8|\n" ] } ], "source": [ "qubits = [0,1,2,3]\n", "circ = Circuit()\n", "circ.minus_R_zero(qubits)\n", "print(circ)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example with four qubits and arbitrary index ordering:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that the simulators require contiguous qubit indexing, while our algorithm does not." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "T : |0|1|2|3|4|5|6| 7 |8|\n", " \n", "q0 : -X-C-----------C---X-\n", " | | \n", "q1 : -X-C-----------C---X-\n", " | | \n", "q4 : -X-|---C---C-X-|-----\n", " | | | | \n", "q5 : -X-|-C-|---|-C-|-X---\n", " | | | | | | \n", "q6 : ---X-C-|---|-C-X-----\n", " | | | | \n", "q7 : -----X-C---C-X-------\n", " | | \n", "q8 : -------X-Z-X---------\n", "\n", "T : |0|1|2|3|4|5|6| 7 |8|\n" ] } ], "source": [ "qubits = [1, 0, 5, 4]\n", "circ = Circuit()\n", "circ.minus_R_zero(qubits)\n", "print(circ)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## IMPLEMENTATION OF QAA " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This section puts everything together and shows how to implement QAA using the subroutines given previously. \n", "We first build a function ```grover_iterator(...)``` that implements the Grover iterator $\\mathcal{Q}=\\mathcal{A} \\mathcal{R}_{0} \\mathcal{A}^{\\dagger} \\mathcal{R}_{B}$, given the unitary $\\mathcal{A}$ and the so-called flag qubit labeling the good/bad subspaces. \n", "Given this implementation for the Grover iterator $\\mathcal{Q}$ it is straightforward to implement a QAA routine ```qaa(...)``` which repeatedly applies the iterator $\\mathcal{Q}$ for a given number of iterations. \n", "\n", "The full code (imported into this notebook in the [imports and setup](#IMPORTS-and-SETUP) section) is available in the module ```utils_qaa.py```. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```python\n", "@circuit.subroutine(register=True)\n", "def grover_iterator(A,flag_qubit,qubits=None,use_explicit_unitary=False):\n", " \"\"\"\n", " Function to implement the Grover iterator Q=A R_0 A* R_B. \n", "\n", " Args:\n", " A: Circuit defining the unitary A\n", " flag_qubit: Specifies which of the qubits A acts on labels the good/bad subspace.\n", " Must be an element of qubits (if passed) or A.qubits.\n", " qubits: list of qubits on which to apply the gates (including the flag_qubit).\n", " If qubits is different from A.qubits, A is applied to qubits instead.\n", " use_explicit_unitary: Flag to specify that we should implement R_0 using using a custom\n", " gate defined by the unitary diag(-1,1,...,1). Default is False.\n", " \"\"\"\n", " # If no qubits are passed, apply the gates to the targets of A\n", " if qubits is None:\n", " qubits = A.qubits\n", " else:\n", " # If qubits are passed, make sure it's the right number to remap from A.\n", " if len(qubits)!=len(A.qubits):\n", " raise ValueError('Number of desired target qubits differs from number of targets in A'.format(flag_qubit=repr(flag_qubit)))\n", " \n", " # Verify that flag_qubit is one of the qubits on which A acts, or one of the user defined qubits\n", " if flag_qubit not in qubits:\n", " raise ValueError('flag_qubit {flag_qubit} is not in targets of A'.format(flag_qubit=repr(flag_qubit)))\n", " \n", " # Instantiate the circuit\n", " circ = Circuit()\n", " \n", " # Apply -R_B to the flag qubit\n", " circ.minus_R_B(flag_qubit)\n", " \n", " # Apply A^\\dagger. Use target mapping if different qubits are specified\n", " circ.add_circuit(A.adjoint(),target=qubits)\n", " \n", " # Apply -R_0\n", " circ.minus_R_zero(qubits,use_explicit_unitary)\n", " \n", " # Apply A, mapping targets if desired.\n", " circ.add_circuit(A,target=qubits)\n", " \n", " return circ\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```python\n", "@circuit.subroutine(register=True)\n", "def qaa(A,flag_qubit,num_iterations,qubits=None,use_explicit_unitary=False):\n", " \"\"\"\n", " Function to implement the Quantum Amplitude Amplification Q^m, where Q=A R_0 A* R_B, m=num_iterations. \n", "\n", " Args:\n", " A: Circuit defining the unitary A\n", " flag_qubit: Specifies which of the qubits A acts on labels the good/bad subspace.\n", " Must be an element of qubits (if passed) or A.qubits.\n", " num_iterations: number of applications of the Grover iterator Q.\n", " qubits: list of qubits on which to apply the gates (including the flag_qubit).\n", " If qubits is different from A.qubits, A is applied to qubits instead.\n", " use_explicit_unitary: Flag to specify that we should implement R_0 using using a custom\n", " gate defined by the unitary diag(-1,1,...,1). Default is False.\n", " \"\"\"\n", " # Instantiate the circuit\n", " circ = Circuit()\n", " \n", " # Apply the Grover iterator num_iterations times:\n", " for _ in range(num_iterations):\n", " circ.grover_iterator(A,flag_qubit,qubits,use_explicit_unitary)\n", " \n", " return circ\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## NUMERICAL EXAMPLE" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This section shows how to use QAA to amplify the amplitude of $|11\\rangle$ of a two-qubit state, thereby increasing the entanglement between the two qubits. Consider a single qubit in the state \n", "\n", "$$|\\psi\\rangle=\\sqrt{1-\\delta^2}|0\\rangle + \\delta |1\\rangle,$$\n", "\n", "where $\\delta$ is small. This state can be prepared using a small rotation around the $y$ direction:\n", "\n", "$$R_y(\\epsilon)|0\\rangle=|\\psi\\rangle,$$\n", "\n", "where $\\epsilon$ is chosen to give a coefficient of $\\delta=\\sin(\\epsilon/2) \\approx \\epsilon/2$ to $|1\\rangle$.\n", "\n", "Suppose $|1\\rangle$ is the \"good\" state and $|0\\rangle$ is the \"bad\" state. \n", "We can use a single ancilla qubit to mark whether our register qubit is in the \"good\" or \"bad\" state, which can be accomplished by applying a single $\\mathrm{CNOT}$ gate to our ancilla qubit and $|\\psi\\rangle$. \n", "Thus,\n", "\n", "$$\n", "\\mathcal{A}|0\\rangle|0\\rangle = \\mathrm{CNOT}\\circ R_y(\\epsilon)|0\\rangle|0\\rangle = \\mathrm{CNOT}|\\psi\\rangle|0\\rangle = \\sqrt{1-\\delta^2}|00\\rangle + \\delta |11\\rangle.\n", "$$\n", "\n", "Our goal is to amplify the coefficient of the \"good\" state. Using the previous algorithm, this amplification corresponds to applying Quantum Amplitude Amplification with an input unitary $\\mathcal{A}=\\mathrm{CNOT}\\circ R_y(\\epsilon)$. We then test whether the flag qubit is in the $|1\\rangle$ state, which we can achieve by checking the amplitude of the $|11\\rangle$ state.\n", "\n", "Let us check the effectiveness of the algorithm by plotting the probability of measuring $|11\\rangle$ as a function of the number of repetitions $m$, which corresponds to the number of queries of the oracle, in the classical problem. According to the description given previously, we should see a distribution that looks like $O(\\sin^2(m))$. Note that the probability `ResultType` we will use requires a non-zero value for `shots` when running on an on-demand simulator." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAE9CAYAAAB9QqflAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deXxU1fnH8c9DCBBZjAgqIAgqoogKGpeKdaEqWDeKoiCCOy5VW7VYsK22ta1WWqs/txY3cGMREVA2F7AudQEERVAUFJSg4EJYNEBInt8fd4JDmCQ3IZM7M/m+X6+8MneZyZfbmif3nHvOMXdHREQkU9WLOoCIiEgyqdCJiEhGU6ETEZGMpkInIiIZTYVOREQymgqdiIhktPpRB6iOFi1aePv27aOOISIiKWLu3LnfuHvLRMfSstC1b9+eOXPmRB1DRERShJktL++Ymi5FRCSjqdCJiEhGU6ETEZGMpkInIiIZTYVOREQymgqdiIhkNBU6ERHJaEktdGb2iJmtNrMPyjluZvZ/ZrbEzN43s0OTmUdEJNkmzsun++0z6TB0Ct1vn8nEeflRR6rzkn1HNxLoVcHxU4COsa/BwANJziMikjQT5+UzbMIC8gsKcSC/oJBhExao2EUsqTOjuPurZta+glPOBB7zYJnzt8ws18xaufuXycwlIlLjtmxi9LRZHFq8gt3rreE7mvGZ70F+UQuGz1hM725tqvRxE+flM3zGYlYWFNI6N4chPTtV+TMkEPUUYG2AL+K2V8T2bVfozGwwwV0f7dq1q5VwIiJbbVwHa7+Agi9i3z/fdnvDKsYCNNj2bUWexYofWsATB0PzvWHXfaD5PtC8A+TuBVnb/xouvTMsLCoGfrwzBFTsqiHqQmcJ9nmiE919BDACIC8vL+E5IiLVMXFePvdOn0/jdUvp0mQd/feDLo3jC9vnsHHttm/KagA77wk7t4WOJ8HO7fjLG+v54Pud+cp3YVfW0aHeV+xlq+jc4Gs6bFgFn78Jmzf8+Bn16gfFbmsB3Bua78NT01axuagpkLX11MKi4mrdGUr0hW4F0DZue09gZURZRKSuKSnh9ZcnwWuPMNneZqeGm6AIWAhF9RuT3XyvoJC1OzL4ntsWdm4XfG+8G9Tb9jGHLjvn82TsTmwZrZhb3Imc7CxuO/0g6NYG3OH7r+HbpfDdUvju0x9fxxXBcUBRwyy+8JZ87G15trg7L5ccysqCwtq/Rhkg6kI3GbjazMYARwJr1T8nIklX8AW8NxrmPcExBctZbzlMLD6aV0q6ssJbssJb0HTnFrxx1c+q9LGld1vl9q2ZQZPdgq+9frLtm91hw2r4bil/fXwKuRs/p719xWH1PqFX1mxWeS7T6p8IBQdBrrpvqiKphc7MRgPHAy3MbAVwC5AN4O7/BqYCPweWAD8AFyUzj4jUYUWF8NEUmPcEfPoK4ND+p1y3+lSmlRzORhpuc/r6tRur9WN6d2tTveZFM2i6OzTdnQNP3WtrH10WxRxfbz4Ds2dxQfEzcNczsO+JcNiFsF+vhH18sq1kP3XZv5LjDvwymRlEpA5zh5XvwrwnYcF42LQ2aII87rfQtT/s0p53bp/JxgRNgq1zcyIIHCh7Z/hRs2Mo6HkJ1qEE3n0M5j0OYwdA01bQbSAcOihoTi1HXX+C04Jak17y8vJcC6+KSLk2fA3vjw3u3r7+EOo3ggNOh27nQ/tjt+lbK/uEIxD0q/U5KHWLQfEW+GQGzHkUlrwU3A3uexLkXRR8j7vLS8t/XzWY2Vx3z0t4TIVORDJCcRF88iLMfxI+ng4lW6DNYUFxO7AP5OSW+9a0vuNZs/zHu7wNq6BZm9hd3kDYeU+63z6T/AR3rG1yc3hjaI8IAieHCp2IZK7VH8H8J+C9sfD9amjcEg7pB10HwG4HRJ2u9hQXBQV+zqOwdGZwl9fxZC75oAuzSrpSUmYiLAM+u/3UaLImQUWFTr2YIpKWpv9vHg1eGkaPkjfZQhZf73EcrU6/LBjTlpUddbzal5UdNM8ecDqsWQZzR8G8J3i4wXTyfVfGbjmB0cUn8DW7ANH2QdY2rV4gIumlpJj3nrmDY2acwtHFc/hX0VkcufFeeuRfzsTCQ+pmkStrl/Zw4i1w/SLeOfwultGG67PHM6vhDQzMeoGdso0hPTtFnbLWqNCJSPr48n146EQOWfBX3i3Zl56b/87dxWfxLTtvnTlE4mRlc8SpF/F17zH0a3Av80o6cmv2SF5reQe999xQ6dszhfroRCT1bdoAr9wGbz0AOzXn2jXnMrnkJ5SdRTDT+p1qnHswUH76MCj6AY4dAt1/DfUbVP7eFFdRH53u6EQktS2eDvcfBW/eGzxJePVs5jb7GYmmyq1L/U7VYgZdz4OrZ8P+p8Gsv8KI42HF3KiTJZUKnYikpnUrYexAGH0uNGgCF8+A0++GnF0Y0jOYQzJeTnZWnep32iFNdoO+j0K/0VC4Bh4+EabfBJu/jzpZUuipSxFJLSXFMPshePlWKCmCn90MP7lmm+a1SueUlHD2/zm07w4v/RHeug8+ej74Y2KfE6JOVqPURyciqePL9+C5X8HKebBPDzj1n8HSNZJ8y96A566Fb5cEYxBP/gvs1Hy701J1cL366EQktW3aADN+F/QXrc2Hsx6G8yeoyNWm9t3hijfgmOvhvTFw35Gw8NngAZaY0unE8gsKcX5cEHbivPzocoegQici0Vo8Lfil+ua9cOgFcPU7cNDZwYMTUruyGwXj7wa/As1awdMXwpgBQX8pQVNx/JyZQFoM61AfnYhEY20+TLsx6BfarTOc/UKwwKlEr9XBcOlMeOt+mPW34A+Rk/7MlwUtSHR/lOoLwuqOTkRqV0kJvP0fuO+IYOb9n90Cl7+qIpdqsupD92vhqv9B667w/K8Zn3Mb7W37tbFTfViHCp2I1J6iQnjm4uBOru2RcNVb8NPrNW1XKmu+NwyaDGfcw0FZnzOjwVCuzJpMfbYA6TGsI3Shs8BEM6tD04GLSI1ZvwpGnoovnMh99QfRYeHFdB/xWco/yCAE/aWHDiL7V3P4pvUJ/DZ7DCOz/06nnUvSYl27qtzRnQzkAZcmKYuIZKqvPoAHe7Dlq0VcW3w9wzf0wrG0eWpPYpruQZvLn4Yz7+eY7I+Z0ewv9G6/JepUlapKobuEoMidbmZ6iEVEwlk8HR7pCV7MZVm38lzRYdscToen9qSMbgNg4LOw/kt46GcpP4VYqEJnZi2AA919OvAS8IukphKR9OcOb94Ho/vBrvvCZTN5ZV3rhKem+lN7kkCHn8IlL0H2TjDyVPjwuagTlSvsHd0gYHTs9aMEd3ciIokVF8Hzv4YZN8EBp8FF06BZ63Kfzkv1p/akHC33g0tfhj26BPOS/u+ebQaYp4qwhe4iggKHu88GWplZ26SlEpH0VbgGnugDc0cGs2z0fQwa7ASgyZgzUZOWcMFz0PlMeOH3MOV6KE6tfrtK+9rMLBe4193je4t/A7QAvkhWMBFJQ98uhafOgTXLofcDwZIwcTQZc4bKzoGzH4WX28Mbd0HBF8HqCA2bRp0M0KTOIlJTlr0OY88HDPo9CXsdHXUiicLckfD89bDbAXDeONi5dv6IScqkzmZ2c/UjiUhGmfcEPNYbGreEy15WkavLDrsQzh8PBZ8HT2R++V7UiXZoZhSNpxOp60pK4MWbYdIvof0xcMmLWnFAgiWWLp4BlgWPnBIMMSlj4rx8ut8+kw5Dp9D99plJHUtZYaEzs3XlfK0HEj8nLCJ1w+bvYdxAeONuyLsYBjwNOblRp5JUsXvn4O6+RUcY0x/eHrH1UG0v91PZHV0B0NHdm5X5agpsP7OniNQN61bCI71g8VTo9Xc49U7NVynba7oHXDQV9jsFpg2BaUOhpLjWl/up7KnLx4C9gFUJjj1V83FEJOWtnAej+weLpfYfC/udHHUiSWUNGsO5jwdDD966HwqWs6bgbKDRdqcma+KACu/o3P337v5OOcd+m5REIpK6Fk0O+lzqZcMlM1TkJJx6WdDrNjhlOHw8nQk5f6Ula7Y7LVkTB2iZHhEJ543/C/rk9ugS9L3sfmDUiSTdHDkY+o9h33ormdTwZjrZ51sPJXPigMoeRvnMzD6t4Kv0+LVJSSciqeH1u+DFP8CBvwhmwWiyW9SJJF3t15P6l85gl5wsJjT8E8fWe582uTlJXe6nwj46d++QlJ8qIunjrQfgpVugy1nQ58GgGUpkR7Q6hJwrX4GnzuWx1cNhwHRom7yB5Wq6FJHyzX4Ypg9lZauTOPaTfnS4aXrSxzxJHbFzG7h4GvT4PbQ5rPLzd4DWlRORxN59HKZcz1e7H0+vFReyrqgI+HHME6A5KmXHNGwKP70+6T9Gd3Qisr33x8Hka2CfHvQvuJJ1RbbNYS2WKulEhU5EtrXwWXj28mBKr35PsWxtccLTtFiqpItQTZdmth8whGDw+Nb3uHuPJOUSkSh8NAWeuRTaHgnnjYXsHFrn5pCfoKhpsVRJF2H76J4G/g08CCT+805E0tvHL8C4C6BV12B5lQaNgWCx1GETFmwzZZMWS5V0ErbQbXH3B5KaRESis3RWsJbc7p3h/GegUbOth7RYqqS7sIXuOTO7CngW2FS6092/q+hNZtYLuBvIAh5y99vLHG8HjAJyY+cMdfep4eOLyA5b9nowd+Wu+8LAiQlXIOjdrY0Km6StsIXugtj3IXH7HCh34SkzywLuA04CVgCzzWyyuy+KO+33wDh3f8DMOgNTgfYhM4nIjvr8bXjyHMhtB4MmwU7No04kUuNCFbpqzpByBLDE3T8FMLMxwJlAfKFzoLSNZGdgZTV+johUR/5cePLsYCmVCyZDk5ZRJxJJigoLnZn1cPeZZtYn0XF3n1DB29sAX8RtrwCOLHPOH4EXzOwaoDFwYqWJRWTHffk+PP4LyNklmLuy6R5RJxJJmsru6I4DZgKnJzjmQEWFzhLs8zLb/YGR7v5PM/sJ8LiZdXH3ku0+zGwwMBigXbt2lcQWkXKtWgSPnQkNmgZFbmf1vUlmq2xS51ti3y+qxmevANrGbe/J9k2TlwC9Yj/jTTNrBLQAVifIMgIYAZCXl1e2YIpIGN98EhS5+g2D5spd9oo6kUjSJXNmlNlARzPrYGYNgH7A5DLnfA78DMDMDiBYcvbrJGYSqbu+XQqjTgccBk2GXfeJOpFIrUhaoXP3LcDVwAzgQ4KnKxea2Z/N7IzYaTcAl5nZe8Bo4EJ3192aSE0r+Dy4k9uyKShyLfeLOpFIrQk7BVhDd99U2b6yYmPippbZd3Pc60VA9/BxRaTK1ubDyNNg07qgT273zlEnEqlVYe/o3gy5T0RSyfpVQXPlD9/BwGeh1SFRJxKpdZUNL9iDYJhAjpl148cnKZsBOyU5m4jsiE0bgnFy67+CgROSvrilSKqqrOmyJ3AhwROTd8btXw/clKRMIrKjSophwmWw6gPoPwbaHRV1IpHIVDa8YBQwyszOcvdnaimTiOyoF2+GxVPhlDtgv55RpxGJVGVNl+e7+xNAezPbbr1zd78zwdtEJEpzHoE37+XTDucxcFZHVj47RSsOSJ1WWdNl49j3JskOIiI1YOlMmPIbvtrtp5yx5DQ2FAULpuYXFDJswgIAFTupcypruvxP7PufaieOiFTb6o+ChVNb7s/AtVeyoWjbw4VFxQyfsViFTuqcUMMLzGxvM3vOzL42s9VmNsnMyl2iR0Rq2Yav4am+kJ0D541lydrEp60sKKzdXCIpIOw4uqeAcUAroDXwNMFMJiIStaJCGNM/KHb9R0NuW1rn5iQ8tbz9IpksbKEzd3/c3bfEvp5g+5UIRKS2lZTAxKtgxWzoM2LrWLkhPTuRk521zak52VkM6dkpipQikarsqcvS5YZnmdlQYAxBgTsXmJLkbCJSmVdug4UT4MQ/Qecztu4u7YcbPmMxKwsK9dSl1GlW0RzKZvYZQWFLuLacu0fST5eXl+dz5syJ4keLpI75o2HiFdBtIJxxD1ii/0xF6gYzm+vueYmOVfbUZYfkRBKRHbLsDZh8DXQ4Fk69U0VOpAJhVy8YlGi/uz9Ws3FEpFLfLoWxA2CX9nDOY1C/QdSJRFJaqEIHHB73uhHBYqnvAip0IrXph+/gqXMAgwHjIGeXqBOJpLxQhc7dr4nfNrOdgceTkkhEEtuyGcYNChZRHTQZmmsoq0gYYe/oyvoB6FiTQUSkAu7w/HWw7DXo8yDs9ZOoE4mkjbB9dM/x47i5ekBnggHkIlIbXv8XzH8CjhsKB58TdRqRtBL2ju4fca+3AMvdfUUS8ohIWQsnwst/gi5nw/FDo04jknbC9tH9N9lBRCSBFXPh2cuh7ZFw5n0aRiBSDWGbLteTeMovIxg43qxGU4lI8NDJ6H7QZHfo9xRkN4o6kUhaCtt0+S/gK4InLQ0YADR19zuSFUykTtu4Dp46F7Zsggufh8Ytok4kkrbCTurc093vd/f17r7O3R8AzkpmMJE6q3gLjL8IvvkYzn0MWmoiZpEdEbbQFZvZADPLMrN6ZjYAKE5mMJE66+U/wZKX4NR/wt7HR51GJO2FLXTnAecAq2JffWP7RKQmLXwW/vd/cPilcNiFUacRyQhhn7pcBpyZ3Cgiddzqj2DiL2HPI6DnbVGnEckY1Z0ZRURq0sZ1wUTNDXZieue/c+s/Xtc6ciI1RIVOJGruMPFK+O4zXjv6Ea6btprCoqALPL+gkGETFgCo2IlUU9g+OhFJltf/BR89DyffytC5zbYWuVKFRcUMn7E4onAi6S/sgPHrE+xeC8x19/k1G0mkDlk6E2beCl3OgqOuYuWkqQlPW1lQWMvBRDJH2Du6POAKoE3sazBwPPCgmd2YnGgiGa7gcxh/CbTcH864B8xonZuT8NTy9otI5cIWul2BQ939Bne/gaDwtQSOBS5MUjaRzFVUCGPPh5ItcO4T0KAxAEN6diInO2ubU3OysxjSU4PGRaor7MMo7YDNcdtFwF7uXmhmm2o+lkgGc4cpv4Ev34P+Y2DXfbYeKn3gZPiMxXrqUqSGhC10TwFvmdmk2PbpwGgzawwsSkoykUw199Fgbbljb4ROp2x3uHe3NipsIjUo7IDxW81sGtCdYFLnK9x9TuzwgGSFE8k4K+bA1Bth3xO1tpxILQk9js7d55jZ50AjADNr5+6fJy2ZSKbZsBrGDoRmraHPg1Avq/L3iMgOC/UwipmdYWafAJ8B/419n5bMYCIZpXgLjL8YCr+Dcx+HnZpHnUikzgj71OWtwFHAx+7eATgReCNpqUQyzUu3wLLX4PS7odUhUacRqVPCFroid/8WqGdm9dx9FtA1iblEMscHE+DNe+Hwy+CQflGnEalzwvbRFZhZE+BV4EkzWw1sSV4skQyx+kOYdDW0PRJ6/i3qNCJ1Utg7ujOBQuA6YDqwlGCIgYiUZ+NaGDMgGAzedxTUbxB1IpE6KVShc/fv3b3Y3be4+yh3/79YU2aFzKyXmS02syVmlvBZajM7x8wWmdlCM3uqqv8AkZRUUgLPXgkFy+GcUdCsVdSJROqsCpsuzWw94ARj5zz+EODu3qyC92YB9wEnASuA2WY22d0XxZ3TERgGdHf3NWa2W7X/JSKp5PU7YfEU6HU77HV01GlE6rTK+ugOcfdPq/nZRwBLSt9vZmMImkDjZ1K5DLjP3dcAuPvqav4skdSx5GWY+Rc4qC8ceUXUaUTqvMqaLp8GMLOXq/HZbYAv4rZXxPbF2w/Yz8zeMLO3zKxXeR9mZoPNbI6Zzfn666+rEUekFqxZDs9cArt1DoYSmEWdSKTOq+yOrp6Z3UJQjLZbk87d76zgvYn+C/cy2/WBjgRL/uwJvGZmXdy9IMHPGgGMAMjLyyv7OSLR27oiQUkwKDy2IoGIRKuyO7p+wEaCgtQ0wVdFVgBt47b3BFYmOGeSuxe5+2fAYoLCJ5Je3GHKDfDV+9BnxDYrEohItCq8o3P3xcDfzex9d6/qlF+zgY5m1gHIJyia55U5ZyLQHxhpZi0ImjKr2ycoEp15T8D8J2MrEpTbAi8iEQg7vKDK81q6+xbgamAG8CEwzt0XmtmfzeyM2GkzgG/NbBEwCxgSZtiCSEr56gOY+hvocJxWJBBJQeaeft1deXl5PmfOnMpPFEm2jetgxPGw+Xu44jVoohEyIlEws7nunpfoWOhlekSkDHd47lew5jNeO3okQ+/9QKuCi6SgUIXOzPok2L0WWKCxb1JnzX4IFk5g4QHXMfjVhhQWFQKQX1DIsAkLAFTsRFJA2LkuLwEeIlhNfADwIHA98IaZDUxSNpHUlT8Xpg+Djidz+afHUFhUvM3hwqJihs9YHFE4EYkXttCVAAe4+1nufhbQGdgEHAn8NlnhRFJS4Rp4+kJosjv84j/kr92U8LSVBYW1m0tEEgpb6Nq7+6q47dXAfu7+HVBU87FEUpQ7TLwK1q2EviNhp+a0zs1JeGp5+0WkdoUtdK+Z2fNmdoGZXQBMAl41s8bAdrOYiGSsN++FxVPhpFuh7eEADOnZiZzsrG1Oy8nOYkjPTlEkFJEywj51+UvgLKA7wdRejwHPeDA24YQkZRNJLZ+/BS/eAgecDkdduXV36QMnw2cs1lOXIilI4+hEwvj+G/j3T4PFUy9/FRrtHHUiEYlT0Ti6UE2XZtbHzD4xs7Vmts7M1pvZupqNKZKiSkpgwmD44dtgpXAVOZG0Erbp8g7gdHf/MJlhRFLS6/+EpS/Daf+C1l2jTiMiVRT2YZRVKnJSJ332Ksz6W7CI6mEXRZ1GRKoh7B3dHDMbS7DawNZBQ+4+ISmpRFLB+lUw/hLYdV847S4toiqSpsIWumbAD8DJcfscUKGTzFRSHKwUvmk9DJoEDZtEnUhEqilUoXN3tdlI3fLKbbDsNej9AOzeOeo0IrIDKix0Znaju99hZvcQ3MFtw92vTVoykah88hK8Ohy6nQ9dy64VLCLpprI7utIHUDRoTeqGtStgwmWw24FwyvCo04hIDaiw0Ln7c2aWBXRx9yG1lEkkGsVFMP5iKN4M54yCBjtFnUhEakClfXTuXmxmh9VGGJFIvfRH+OJtOPsRaNEx6jQiUkPCPnU5z8wmA08D35fu1PACyRgfTQkmbD78UuhyVtRpRKQGhS10zYFvgR5x+zS8QDLDd5/Bs1dCq67Q829RpxGRGqbhBVK3bdkULKIKwfpy9RtGmUZEkiBUoTOzR0k8vODiGk8kUptm/A6+nA/nPgnNO0SdRkSSIGzT5fNxrxsBvwBW1nwckVr0wTMw+0H4ydVwwGlRpxGRJAnbdPlM/LaZjQZeSkoikdrwzScw+VpoeySc+Meo04hIEoVdvaCsjkC7mgwiUms2/wDjBgX9cWc/ClnZUScSkSQK20e3nm376L4CfpuURCLJ5A5TboDVH/LGT0Zw4wOLWVkwn9a5OQzp2Yne3dpEnVBEaljYpsumyQ4iUivmPQ7vPcVHna7k0tebUVhUCEB+QSHDJiwAULETyTChmi7NrLuZNY69Pt/M7jSzvZIbTaSGfbUApg6BvY/nsmU/o7CoeJvDhUXFDJ+xOJpsIpI0YfvoHgB+MLNDgBuB5cBjSUslUtM2rg365RrlQp+HWLF2c8LTVhYU1nIwEUm2sIVui7s7cCZwt7vfDag5U9KDO0y+BtYsh76PQpOWtM7NSXhqeftFJH2FLXTrzWwYcD4wJbaigR5Vk/Tw9n9g0ST42c2w19EADOnZiZzsrG1Oy8nOYkjPTlEkFJEkClvozgU2AZe4+1dAG0CLdUnqWzEHXvg97HcKHP3jOsG9u7Xhtj4H0SY3BwPa5OZwW5+D9CCKSAayoEUyveTl5fmcOVoLVirxw3fw759CvXpw+auQs0vUiUQkScxsrrvnJToW9qnLo8xstpltMLPNZlZsZmtrNqZIDSopgQmD4fvV0HeUipxIHRa26fJeoD/wCZADXArcl6xQIjvs9TthyYvBsjttDo06jYhEKOykzrj7EjPLcvdi4FEz+18Sc4lU32evwqy/BguoHn5p1GlEJGJhC90PZtYAmG9mdwBfAo2TF0ukmtZ/BeMvgeb7wOl3g1nUiUQkYmGbLgfGzr0a+B5oC5yVrFAi1VK8JShym9bDOY9BQw31FJHwc10uN7McoJW7/ynJmUSq55W/wfLXofe/YffOUacRkRQR9qnL04H5wPTYdlczm5zMYCJV8vEL8No/4dBB0LV/1GlEJIWEbbr8I3AEUADg7vOB9pW9ycx6mdliM1tiZkMrOO9sM3MzSzgGQqRCBV/As4Nh94PglDuiTiMiKaYqc11WadxcbJqw+4BTgM5AfzPbrj3JzJoC1wJvV+XzRQDYshmevjDonztnFGRrrkoR2VbYQveBmZ0HZJlZRzO7B6hseMERwBJ3/9TdNwNjCCaFLutW4A5gY9jQIlu9+AfInwO974Nd94k6jYikoLCF7hrgQIL5LkcD64BfV/KeNsAXcdsrYvu2MrNuQFt3fz5kDpEfLXwW3v43HHkldE70N5SISPinLn8Afhf7CivRAKatE2uaWT3gX8CFoT7MbDAwGKBdu3ZViCEZ6ZslMOka2PNwOOnPUacRkRQW9qnLPDObYGbvmtn7pV+VvG0FwXi7UnsCK+O2mwJdgFfMbBlwFDC5vAdS3H2Eu+e5e17Lli3DxJZMVVQIT18AWfXh7EehfoOoE4lICgs7M8qTwBBgAVAS8j2zgY5m1gHIB/oB55UejD3c0qJ028xeAX7j7lqWQMrnDs/9ClYthAFPQ27byt8jInVa2EL3tbtXadycu28xs6uBGUAW8Ii7LzSzPwNzqvp5IkCwiOr7Y+GE30HHk6JOIyJpINR6dGb2M4LVC14meCAFAHefkLxo5dN6dHXUstdh1BmwX08498lgnTkRESpejy7sHd1FwP5ANj82XToQSaGTOmjtChh3Aesbt+OsZefxyU3TaJ2bw5CenbQquIhUKGyhO8TdD0pqEpHyFG2EsQMp2lzIuZtu4uOi4E4uv6CQYRMWAKjYiUi5wrb9vJVoVhORpHOHKTfAynf5g13DoqI9tjlcWFTM8BmLIwonIukgbKE7hmAtusWxoQULQgwvENlxcx6G+U/AsTcydnUudUkAABhaSURBVP3BCU9ZWVBYy6FEJJ2EbbrsldQUIoksfxOm/RY6ngzHD6P1O6+Qn6Cotc7V/JYiUr5Qd3TuvjzRV7LDSR227stgUHhuO+jzINSrx5CencjJztrmtJzsLIb07BRRSBFJB2Hv6ERqz5ZNMG4QbNoAAydCTi7w4wMnw2csZmVBoZ66FJFQKix0ZtbQ3TdVdI5IjZv2W1jxDvQdtd1K4b27tVFhE5Eqqazp8k0AM3u8FrKIwNyRMPdROOY6OLB31GlEJANU1nTZwMwuAI42sz5lD0Y1M4pkqC9mw9QhsE8P6PGHqNOISIaorNBdAQwAcoHTyxzTzChSc9avgnEDoWkrOOthqJdV+XtEREKosNC5++vA62Y2x90frqVMUtds2Rw8YblxLVzyIuzUPOpEIpJBwj51+biZXQscG9v+L/Bvdy9KTiypU174HXz+ZnAnt0eXqNOISIYJW+juJ5jQ+f7Y9kDgAeDSZISSOmTek/DOCPjJ1XDQ2VGnEZEMFLbQHe7uh8RtzzSz95IRSOqQ/Hfh+eugw7Fw4p+iTiMiGSrsXJfFZrZP6YaZ7Q0UJyeS1AkbvoaxA6HJ7nD2SMjS3AUikhxhf7sMAWaZ2aeAAXsRrFEnUnXFRfD0hfDDN3DxDGi8a9SJRCSDhSp07v6ymXUEOhEUuo80Y4pU24s3w/LX4Rf/gdZdo04jIhkudHtRrLBpaR7ZMe+NhbfuhyOvgEP6RZ1GROqAsH10Ijvuy/fguV/BXt3h5L9EnUZE6ggVOqkdG1bDmPODweB9R0JWdtSJRKSOCFXozOwZMzvVzFQYpeo2fw9PnRM8fHLuE9Bkt6gTiUgdErZwPQCcB3xiZreb2f5JzCSZpKQYxl8SNFue/Qi0OTTqRCJSx4RdYfwldx8AHAosA140s/+Z2UVmpjYoScwdpg+Fj6fxXpeb6P5sQzoMnUL322cycV5+1OlEpI4I3RRpZrsCFxJM+zUPuJug8L2YlGSS/t68D94ZwSf7XEi/+QeRX1CIA/kFhQybsEDFTkRqRdg+ugnAa8BOwOnufoa7j3X3a4AmyQwoaWrRJHjh99D5TC5acTqFRdtOpFNYVMzwGYsjCicidUnYO7qH3L2zu9/m7l8CmFlDAHfPS1o6SU9fvAMTBsOeh8Mv/kP+2sRzC6wsKKzlYCJSF4UtdIkGPb1Zk0EkQ3y7FEb3g2atof8YyM6hdW5OwlPL2y8iUpMqLHRmtoeZHQbkmFk3Mzs09nU8QTOmyI++/xaePDt4CGXA+K1zWA7p2Ymc7G1XDM/JzmJIz05RpBSROqayKcB6EjyAsidwZ9z+9cBNScok6aioEMb0h7X5cMFzsOvWxS7o3a0NAMNnLGZlQSGtc3MY0rPT1v0iIslk7l75SWZnufsztZAnlLy8PJ8zZ07UMaRUSQmMvyh4AKXvSDiwd9SJRKSOMbO55T0zUuEdnZmd7+5PAO3N7Pqyx939zgRvk7rmpZth0cRg/koVORFJMZU1XTaOfdcQAknsnQfhf/fA4ZfBT66OOo2IyHYqLHTu/p/Y9z/VThxJK4unwbQbYb9T4JS/g1nUiUREtlNZ0+X/VXTc3a+t2TiSNvLfhfEXQ6tD4OyHoV5W5e8REYlAZU2Xc2slhaSXNcvhqXNhpxbQfyw0aFz5e0REIlJZ0+Wo2goiaaJwDTzZF4o3wYXPQ9Pdo04kIlKhypou73L3X5vZc8B24xDc/YykJZPUs2VTsHjqms9g4LPQUgO+RST1VdZ0+Xjs+z+SHURSnDtMuhqWvw59HoL2x0SdSEQklMqaLufGvv/XzBoA+xPc2S129821kE9Sxcy/wIJx0OMPcHDfqNOIiIRW2R0dAGZ2KvBvYClgQAczu9zdpyUznKSIuaPgtX/AoYPgpzdEnUZEpErCrl7wT+AEdz/e3Y8DTgD+VdmbzKyXmS02syVmNjTB8evNbJGZvW9mL5vZXlWLL0n3yUvw/HWwz8/g1Ds1Vk5E0k7YQrfa3ZfEbX8KrK7oDWaWBdwHnAJ0BvqbWecyp80D8tz9YGA8cEfIPFIbls6EsQNg985wzijIyo46kYhIlVX21GWf2MuFZjYVGEfQR9cXmF3JZx8BLHH3T2OfNQY4E1hUeoK7z4o7/y3g/Cqll+RZ8jKMOQ923RcGToKGTaNOJCJSLZX10Z0e93oVcFzs9dfALpW8tw3wRdz2CuDICs6/BFCfXypY8hKMPo+1jdvTv2AIH976lpbWEZG0VdlTlxftwGcn6sxJuCaQmZ0P5PFjIU10zmBgMEC7du12IJZU6JOXYMx5FDTpwCnf/YYvi4LmyvyCQoZNWACgYiciaSXsU5eNCO64DgQale5394sreNsKoG3c9p7AygSffSLwO+A4d99U3oe5+whgBATr0YXJLVX0yYtBc2XL/em/5oatRa5UYVExw2csVqETkbQS9mGUx4E9CFYc/y9B0VpfyXtmAx3NrENsDF4/YHL8CWbWDfgPcIa7V/hwiyTZxy8ERW63A2DQJD5am/jBk5UFhbUcTERkx4QtdPu6+x+A72PzX54KHFTRG9x9C3A1MAP4EBjn7gvN7M9mVjp12HCCte6eNrP5Zja5nI+TZFo8PXi6crfOMHAi7NSc1rk5CU8tb7+ISKoK1XQJFMW+F5hZF+AroH1lb3L3qcDUMvtujnt9YsifL8myeBqMHQh7dAnmr8wJnjEa0rMTwyYsoLCoeOupOdlZDOmp+S1FJL2ELXQjzGwX4A8EzY9NYq8lnX00FcYNgj0OihW53K2HSvvhhs9YzMqCQj11KSJpy9zT77mOvLw8nzNnTtQx0ttHU2DcBdDqYDh/wjZFTkQk3ZjZXHfPS3QsVB+dme1qZveY2btmNtfM7jKzXWs2ptSaD58L7uRaHbLdnZyISKYJ+zDKGIIpv84Czga+AcYmK5Qk0aLJ8PSF0LobDJwAjXaOOpGISFKF7aNr7u63xm3/xcx6JyOQJNGiSTD+Ymh9KJz/DDRqFnUiEZGkC3tHN8vM+plZvdjXOcCUZAaTGrZwIjx9EbQ5TEVOROqUyiZ1Xk8wbZcB1wNPxA7VAzYAtyQ1ndSMhc/C+Etgz8Ph/PGaoFlE6pTK5rrUb8R098Ez8Mxl0PYIGPC0ipyI1Dlh++iIzWZybGzzFXd/PjmRpMYsGA8TBkPbI2HAOBU5EamTwg4vuB34FcFacouAX8X2SapaMB4mXAbtjtKdnIjUaWHv6H4OdHX3EgAzG0WwOvjQZAWTanKH2Q/BtBuh3dFw3lho2CTqVCIikQnddAnkAt/FXmvwVSoq2ghTb4B5T0DHntD3UWjQOOpUIiKRCju84DZgnpmNjN3NzQX+lrxYUmXrVsLIn8O8JxiZ1Ze9Fwyk+51vM3FeftTJREQiVekdnZkZ8DpwFHA4wVCD37r7V0nOJmEtfxPGDaJo4wZuKL6eyRuD6d60KriISIg7Og9mfZ7o7l+6+2R3n6QilyJK++NGnQYNm3Jh1u1MLtp2TtPSVcFFROqqsE2Xb5nZ4UlNIlWzZRNMvgam3AD79IDLZvK/dS0SnqpVwUWkLgv7MMoJwBVmtgz4nqD50t394GQFkwqsWxkslpo/B44dAsffBPXq0To3h/wERU2rgotIXRa20J2S1BQSXqw/js3fwzmPQ+czth7SquAiIturbK7LRsAVwL7AAuBhd99SG8GkDHeY80gwPi63HVwwGXY7YJtTtCq4iMj2KrujGwUUAa8R3NV1JpghRWrTlk0w9Tfw7mPQ8WTo82C5i6X27tZGhU1EJE5lha6zux8EYGYPA+8kP5JsI74/7qe/gRNugnpZUacSEUkblRW6otIX7r4lGFIntebzt4L+uE0b4JzHoPOZUScSEUk7lRW6Q8xsXey1ATmx7dKnLrV6Z7LMeQSm3gi5bWHQpO3640REJJzK1qNTG1lt27IJpg6Bd0fBvifBWQ9Czi5RpxIRSVtVmdRZkm3dlzBuIKyYDT+9AU74nfrjRER2kApdKigpgfdGw0u3wOYfoO8oOLB31KlERDJC2CnAJFk+fwse6gGTrmLhD7vQc8PNdH+umVYdEBGpIbqji0rBF8Ed3AfPUNhoN24puZqnNx+FUw+06oCISI1Roattm3+AN+4OvnA49kZOe7sbSzf7NqeVrjqgQicismNU6GqLO3zwDLx4C6xbAQf+Ak76M+S249MXpiR8i1YdEBHZcSp0tSH/XZg+FL54G/Y4OBgysNfRWw9r1QERkeTRwyjJtP4rmHgVPHgCfPcpnHEPDH5lmyIHwaoDOdnbDiPQqgMiIjVDd3TJULQR3rofXvtnMAD86GuDdeMaJZ5IRqsOiIgkjwpdTXKHj56HGb+DguXQ6edw8l9g130qfatWHRARSQ4Vupry1QdBP9yy16DlATDwWdinR9SpRETqPBW6HbVhNbxyG8wdCY12hp//Aw67CLJ0aUVEUoF+G1fH+lXw0XN8/fY4mn8zG3d4tv4p7HT87zj1iAOjTiciInFU6MJamw8fPgeLJsHnbwLOem/N6OIzmFh8DJ9uak3O819Q1CBXfW0iIilEha4ia5bDh5Nh0WRYEVtcfbfOcPxQzv/fHry+rgXB0nwBzWYiIpJ6VOjK+nZprLhNgpXzgn17HAw9/hCs8N2iIwBvTNdsJiIi6SCphc7MegF3A1nAQ+5+e5njDYHHgMOAb4Fz3X1ZMjNNnJe//Xi1Pb8PCtuHk+CrYDJlWh8KJ/4JOp8Bzffe7nM0m4mISHpIWqEzsyzgPuAkYAUw28wmu/uiuNMuAda4+75m1g/4O3BusjJNnJfPsAkLKCzawn62gp9veJsDJ74DtiI4oe2R0PNvcMDpkNuuws8a0rNT7LOKt+7TbCYiIqknmXd0RwBL3P1TADMbA5wJxBe6M4E/xl6PB+41M3P3bafyryHDZyymsKiYwVnPc1P2aErceMf35/nsS7nu2hugWevQn6XZTERE0kMyC10b4Iu47RXAkeWd4+5bzGwtsCvwTTIClfafvVxyKN8X5fBCcR5fk4tthuuqUORKaTYTEZHUl8xCZwn2lb1TC3NOcKLZYGAwQLt2FTcrlqe0X22pt2FpcZtt9ouISGZK5uoFK4C2cdt7AivLO8fM6gM7A98l+jB3H+Huee6e17Jly2oF0ioBIiJ1TzIL3Wygo5l1MLMGQD9gcplzJgMXxF6fDcxMVv8cBE2Nt/U5iDa5ORjQJjeH2/ocpOZHEZEMlrSmy1if29XADILhBY+4+0Iz+zMwx90nAw8Dj5vZEoI7uX7JylNK/WoiInVLUsfRuftUYGqZfTfHvd4I9E1mBhERqdu0wriIiGQ0FToREcloKnQiIpLRVOhERCSjqdCJiEhGU6ETEZGMpkInIiIZzZI4EUnSmNnXwPIKTmlBkiaGrgXpmj1dc4OyRyVds6drbsjs7Hu5e8L5IdOy0FXGzOa4e17UOaojXbOna25Q9qika/Z0zQ11N7uaLkVEJKOp0ImISEbL1EI3IuoAOyBds6drblD2qKRr9nTNDXU0e0b20YmIiJTK1Ds6ERERIMMKnZn1MrPFZrbEzIZGnacqzGyZmS0ws/lmNifqPBUxs0fMbLWZfRC3r7mZvWhmn8S+7xJlxvKUk/2PZpYfu/bzzeznUWZMxMzamtksM/vQzBaa2a9i+1P+uleQPR2ueyMze8fM3otl/1Nsfwczezt23cfGFpdOGRXkHmlmn8Vd865RZy2PmWWZ2Twzez62Xe1rnjGFzsyygPuAU4DOQH8z6xxtqio7wd27psHjvyOBXmX2DQVedveOwMux7VQ0ku2zA/wrdu27xtZRTDVbgBvc/QDgKOCXsf9/p8N1Ly87pP513wT0cPdDgK5ALzM7Cvg7QfaOwBrgkggzJlJeboAhcdd8fnQRK/Ur4MO47Wpf84wpdMARwBJ3/9TdNwNjgDMjzpSR3P1VghXh450JjIq9HgX0rtVQIZWTPeW5+5fu/m7s9XqCXwBtSIPrXkH2lOeBDbHN7NiXAz2A8bH9KXfdK8idFsxsT+BU4KHYtrED1zyTCl0b4Iu47RWkyX9MMQ68YGZzzWxw1GGqYXd3/xKCX2zAbhHnqaqrzez9WNNmyjX/xTOz9kA34G3S7LqXyQ5pcN1jTWjzgdXAi8BSoMDdt8ROScnfNWVzu3vpNf9r7Jr/y8waRhixIncBNwIlse1d2YFrnkmFzhLsS5u/YIDu7n4oQdPrL83s2KgD1SEPAPsQNPF8Cfwz2jjlM7MmwDPAr919XdR5qiJB9rS47u5e7O5dgT0JWo4OSHRa7aaqXNncZtYFGAbsDxwONAd+G2HEhMzsNGC1u8+N353g1NDXPJMK3Qqgbdz2nsDKiLJUmbuvjH1fDTxL8B9UOlllZq0AYt9XR5wnNHdfFfulUAI8SIpeezPLJigUT7r7hNjutLjuibKny3Uv5e4FwCsE/Yy5ZlY/diilf9fE5e4Va0Z2d98EPEpqXvPuwBlmtoygC6oHwR1eta95JhW62UDH2JM5DYB+wOSIM4ViZo3NrGnpa+Bk4IOK35VyJgMXxF5fAEyKMEuVlBaKmF+Qgtc+1kfxMPChu98Zdyjlr3t52dPkurc0s9zY6xzgRII+xlnA2bHTUu66l5P7o7g/ioygjyvlrrm7D3P3Pd29PcHv8ZnuPoAduOYZNWA89njyXUAW8Ii7/zXiSKGY2d4Ed3EA9YGnUjm7mY0GjieYTXwVcAswERgHtAM+B/q6e8o99FFO9uMJms8cWAZcXtrvlSrM7BjgNWABP/Zb3ETQ15XS172C7P1J/et+MMGDD1kENwbj3P3Psf9mxxA0/80Dzo/dJaWECnLPBFoSNAXOB66Ie2gl5ZjZ8cBv3P20HbnmGVXoREREysqkpksREZHtqNCJiEhGU6ETEZGMpkInIiIZTYVOREQymgqd1Dlm5mb2z7jt35jZH2vos0ea2dmVn7nDP6dvbDWAWWX2t7fYygxm1rUmVwQws1wzuypuu7WZja/oPSKpQIVO6qJNQB8zaxF1kHixFTjCugS4yt1PqOCcrkCVCl3czBOJ5AJbC527r3T3pBd1kR2lQid10RZgBHBd2QNl78jMbEPs+/Fm9l8zG2dmH5vZ7WY2ILbm1wIz2yfuY040s9di550We3+WmQ03s9mxCXUvj/vcWWb2FMGA6rJ5+sc+/wMz+3ts383AMcC/zWx4on9gbHagPwPnWrDu2LmxGXgeiWWYZ2Znxs690MyeNrPnCCYWb2JmL5vZu7GfXboKyO3APrHPG17m7rGRmT0aO3+emZ0Q99kTzGy6BeuI3RF3PUbG/l0LzGy7/y1EakpFf72JZLL7gPdLf/GGdAjBhL7fAZ8CD7n7ERYsJHoN8OvYee2B4wgmLJ5lZvsCg4C17n64BTPGv2FmL8TOPwLo4u6fxf8wM2tNsAbXYQTrb71gZr1jM1z0IJgxIuEive6+OVYQ89z96tjn/Y1gOqWLY9NDvWNmL8Xe8hPgYHf/LnZX9wt3Xxe7633LzCYTrHXXJTZRcOlKBKV+Gfu5B5nZ/rGs+8WOdSVYsWATsNjM7iFYZaGNu3eJfVZuxZdepPp0Ryd1Umz2/MeAa6vwttmxSXE3ESzVUlqoFhAUt1Lj3L3E3T8hKIj7E8xfOsiCZVPeJlh2pGPs/HfKFrmYw4FX3P3r2PIkTwI7sqrFycDQWIZXgEYEU4dBsIxL6dRhBvzNzN4HXiJYDmX3Sj77GOBxAHf/CFgOlBa6l919rbtvBBYBexFcl73N7B4z6wWk1UoMkl50Ryd12V3AuwSzuJfaQuwPwNjEtw3ijsXPq1cSt13Ctv8tlZ1XzwmKxzXuPiP+QGwuv+/LyZdoaZIdYcBZ7r64TIYjy2QYQDAf4mHuXmTBLPKNQnx2eeKvWzFQ393XmNkhQE+Cu8FzgItD/StEqkh3dFJnxe5gxhE82FFqGUFTIQSrd2dX46P7mlm9WL/d3sBiYAZwpQXL1WBm+1mwUkVF3gaOM7MWsQdV+gP/rUKO9UDTuO0ZwDWxAo6ZdSvnfTsTrAdWFOtr26ucz4v3KkGBJNZk2Y7g351QrEm0nrs/A/wBODTUv0ikGlTopK77J8FKBqUeJCgu7wBl73TCWkxQkKYRzA6/EXiIoNnu3dgDHP+hkhaV2Ez+wwiWJ3kPeNfdq7IczCygc+nDKMCtBIX7/ViGW8t535NAnpnNISheH8XyfEvQt/hBgodg7geyzGwBMBa4sJKZ5dsAr8SaUUfG/p0iSaHVC0REJKPpjk5ERDKaCp2IiGQ0FToREcloKnQiIpLRVOhERCSjqdCJiEhGU6ETEZGMpkInIiIZ7f8BfkgZswOWo8YAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Set up the state A|00>\n", "flag_qubit = 1\n", "epsilon = 0.05\n", "A_circ = Circuit().ry(0, epsilon).cnot(0,1)\n", "\n", "# Add marginal probability for flag qubit as result Type \n", "A_circ.probability(target=[flag_qubit])\n", "\n", "# Let's find the probability of measuring |11> for different values of m, the number of applications of QAA:\n", "probabilities = []\n", "stepsize = 2\n", "iterations = range(1, 40, stepsize)\n", "for m in iterations:\n", " \n", " # Get circuit object\n", " circ = Circuit()\n", " # Apply QAA using A defined by A_circ\n", " circ.qaa(A_circ, flag_qubit, m, use_explicit_unitary=True)\n", " \n", " # Classically simulate the circuit\n", " # Give the correct device.run call depending on whether the device is local or on-demand\n", " if isinstance(device, LocalSimulator):\n", " task = device.run(circ, shots=0)\n", " else:\n", " task = device.run(circ, shots=1000)\n", " \n", " # Get result\n", " result = task.result()\n", " # Append the probability of measuring |11> for this value of m.\n", " probabilities.append(result.values[0][1])\n", "\n", "# Get analytical result for comparison\n", "probs_theo = [np.sin((2*mm+1)*epsilon/2)**2 for mm in iterations]\n", " \n", "# Plot the results\n", "plt.figure(figsize=(7,5))\n", "plt.plot(iterations, probabilities, 'o');\n", "plt.plot(iterations, probs_theo);\n", "plt.xlabel('Number of Iterations');\n", "plt.ylabel('Probability of measuring flag qubit in |1>');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As expected, we see that the repeated application of the Grover iterator $\\mathcal{Q}$ does increase the amplitude associated with the state $|11\\rangle$. \n", "The probability of measuring the bitstring 11 follows the expected analytical result, given by $(P_{11} = \\sin^{2}[(2m+1)\\epsilon/2])$, and shown as the solid orange line.\n", "Moreover, we have verified that the optimal number of iterations is approximately given by $\\lfloor \\frac{\\pi}{4\\theta}\\rfloor= \\lfloor \\frac{\\pi}{2\\epsilon}\\rfloor \\approx 31$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "## APPENDIX" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Version: 0.6.0\r\n" ] } ], "source": [ "# Check SDK version\n", "# alternative: braket.__version__\n", "!pip show amazon-braket-sdk | grep Version" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## APPENDIX: ALTERNATIVE RUN WITH AMPLITUDE RESULT TYPE" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Rather than just examining the marginal probability to find the flag qubit in state $|1\\rangle$ as done before, we can also investigate the behavior of the amplitude associated with the state $|11\\rangle$.\n", "This amplitude is initially given by $\\delta=\\sin(\\epsilon/2)\\approx \\epsilon/2$ for small $\\epsilon$. We can check explicitly that this amplitude increases using repeated applications of the Grover iterator, and recover the plot using the absolute value squared of the amplitudes. \n", "\n", "Using amplitudes also presents a learning opportunity:\n", "If we use $N-1$ ancilla qubits to implement the reflection $\\mathcal{R}_{0}$ (by fixing ```use_explicit_unitary = False```), then measurement outcomes are bitstrings of size $N+N-1=2N-1$ (as we measure the original qubits on which the circuit acts, as well as the ancilla qubits).\n", "\n", "Since the ancilla qubits are initialized in $|0, 0, ...\\rangle$ and are uncomputed back to their initial state in the last step of the algorithm, we can find the amplitude of a given bitstring on the register qubits by padding that target bitstring (for example, $11$ in our example) with the right number ($N-1$) of zeros. \n", "\n", "Using a classical simulator backend, we can attach the corresponding amplitude as a `ResultType` to the circuit, as shown in the following code. " ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Amplitude <11|Initial State>:\n", " {'11': (0.024997395914712332+0j)} \n", "\n", "Maximum amplified amplitude <110|Final State> after approximately 31 Grover iterations:\n", " {'11': (0.9997837641893592+0j)}\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbkAAAE9CAYAAACWdRzmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3dd3xUVfrH8c9DSOiEDtKkCCIltACirg0LViwroqKuYi/ourrq7soqrrur/ixr72LHWFaxrLqydlQIxQgoiogQeg0lgYTk+f1xJxpiEgbI5GYm3/frxWvm3rkz8+WKeXLOPfccc3dEREQSUa2wA4iIiMSKipyIiCQsFTkREUlYKnIiIpKwVORERCRhqciJiEjCqh12gJ3VokUL79SpU9gxRESkGpk+ffpqd29Zen/cFblOnTqRmZkZdgwREalGzOynsvaru1JERBKWipyIiCQsFTkREUlYKnIiIpKwVORERCRhqciJiEjCUpETEZGEFbMiZ2ZPmNlKM5tdzutmZveY2XwzyzKzAbHKIiJSJbIy4K7ecGOT4DErI+xENV4sW3ITgOEVvH4U0C3y5wLgwRhmERGJrawMeGMs5CwGPHh8Y6wKXchiVuTc/WNgbQWHjACe9sAXQBMz2yNWeUREYmryeCjI235fQR5F798UTh4Bwp3Wqx2wuMR2dmTfstIHmtkFBK09OnbsWCXhRKSGyMoIClRONqS2h2HjIG3kDt+Wk1vA3GUbgj9LN3B7TnbZrYacJfS44T80q59Ck/opNGuQQtMGKTSrn1xqO4Um9ZNp1iDYV/ebV3Ypl2wvzCJnZezzsg5090eARwDS09PLPEZEZKcVdzEWt8CKuxjh54Li7mSvy2PO0l8K2jfLNrBk/S+ttpaN6rA2qSUtClf+6is2123DWX07sW5zPuty81m7OZ8l6/NYuzmfnLyCMmMdX+tTbk1+jHqW/3MunzQ2+KGpQrdTwixy2UCHEtvtgaUhZRGRmqicLsbN/xnH7Qt7/VzQNm7dBkAtgy4tGzJwz6acOXRPeu7RmH32aEzLRnUg65btCyZAcj0aHTOeP6XtU+bXbyssIievIFL8gsd1m/M5evJV1Nuav92xti2PNZP+wrRav+HgvVtRNzmpUk9FogqzyE0CLjOzicAQIMfdf9VVKSISMznZZe6ul7ucjMzF7LNHY07o346ebYNitnfrRtRLKae4FLewdqKLsXZSLZo3rEPzhnW2f+HtFWUe33TbSi56dgYNUpI4rGdrjk1ry4HdW1CntgpeeWJW5MzsBeBgoIWZZQN/BZIB3P0h4G3gaGA+kAucE6ssIiKlLV6bS6OU1jTJX/6r1wobt2X274+kVq2yrqpUIG1k5XQnpraPjNLcnqW247nRQ3gzaynvzF7O67OW0qhObQ7v1Zpj0/bggL1aklJbtz+XZO7xdYkrPT3dtZ6ciOwKd2fGonU89smPvDtnOSOSPuPW5MdI8a2/HJRcD467J9xrX6WvFZaRq6CwiCk/rOGtSMHbsGUbqfWSObJXa45Ja8t+XZuTnFRzCp6ZTXf39F/tV5ETkUS3rbCI/8xezmOf/shXi9eTWi+Z04d05OyhnWjz06TqOYpxJ0Z95m8r4tP5q3gzaxn/nbOCjVu30bR+MsN7t+HYtLYM6dyM2gle8FTkRCSxRFEEcvIKeHHaIiZ8tpClOVvo3KIB5+7fiZMHtqd+SphDEmJnS0EhH3+3ire+Xsb7c1ewOb+QFg1TOKr3HlxwYBc6NKsfdsSYUJETkcSxg+68n9Zs5snPFvJS5mI25xcytEtzxhzQmUN7tNr562xxbEtBIR/OW8myT5/hiGUPswdr2FS3NXWPvImUAaPCjlepyityifmrjIgktnKG/m9990bGftWF9+auoHYt47i0tpx7QGd6t0sNJ2fI6iYnMbzoE1hzJ1hwvhpvXU7epLHMXLqBfsecj1liF30VORGJP+UM/U/etJQvf1zLJQd35ayhnWjduG4VB6uGyviFoB5baTn1Vk5b2ocbj+9FjzaNQwoXeypyIhJ/yhlin1uvDZ9fNaz8e9lqonJ+IWhXaw3fLt/I0f/6hDP33ZPfH96dJvVTqjhc7CX2cBsRSUjLB/2RLWx/A7Un16Ph0eNV4EpLbV/mbkttz4dXH8zofffkmS9+4pD/+5Bnv/iJwqL4GqexIypyIhI3ioqcxz/9kYPeaclNXEhuvbaAQWoHLOx726qrYeOCQTklJdeDYeNoUj+F8SN689bY37B3m0b85bXZHHfvp0z9saIFZOKLRleKSFxYvDaXq1/6ii9/XMuwHq34x8l9aNVI19yiEsXtFu7O218v55a35rI0ZwvH923L9Uf3YI/UeuV8aPWiWwhEJC65OxOnLeZvb87FzBh3XE9OGdg+4UcFhiUvv5AHP/qBhz76gSQzLjt0L8Yc0LnaTwitIicicWfFhi1c90oWH8xbxdAuzbn9lDTaN03Mm5mrm8Vrc7nlrW94Z85yOjarzw3H9uSwfVpV218uVOREJG64O29kLeOG12azdVsh1w3vwVlDO9WoG7mri0+/X81Nb8zh+5WbOLB7S8Yd25O9WjUMO9avqMiJSPiiuDa0dnM+N7w2m7e+Xka/Dk24c2RfurSsfj9Ua5KCwiKe/eIn7vzvd+TlFzLmgM784Yi9q9WKB5rxRETCFcUq3O/PXcF1r35NTl4+1xy5Nxce2CXhJxaOB8lJtThn/84c37ctt70zj4c/XsDMxet54IwBtCi9Fl41o389IlI1ypmKi8nj2bClgGte+orzns6kRcMUJl12AJcespcKXDXTfMHr3Lr4dH6sewZ3LR3NvXf9ndlLcsKOVSG15ESkapQz84bnZHPU3Z+wLCePSw/pyhXDulerbjCJKNESN6Cdrea6wgf5y8PbOPCkSxjRr13YCcukIiciVaOcqbiWFDWnTu1avHLxfvTv2DSEYBKVcubAvK52BoMm7sfcZRv445E9SKpmg4P065KIVI0yZt7I9RS+7Hwpb439jQpcdVdOS7xF0SpG79uRhz9awLkTppGTW1DFwSqmIiciVSNtJH7cPWyo04YiN5bTkuwD/snJ51yl+SbjQQVzYP7thD7846Q+TPlhNSPu/5TvV2ys4nDlU5ETkSqxrbCIP83vQVrOnfx+nw9ocN03dD98TNixJFoVzIEJcNrgjrxw/r5s2lrIiQ9M4b9zV4QQ8tdU5EQk5vLyC7no2em8MHUxlx2yF3ef2o9GdZPDjiU7I21ksPJ6ageKJ8Wm1KTY6Z2a8cbl+9OlZQPOfzqTeyZ/T1HIqxroZnARiam1m/MZ89Q0Zi1ez/jje3Hm0E5hR5IY21JQyJ9e/ZpXZy5heK823DGyLw3qxHacY3k3g6slJyIxs3htLr99aApzlm7gwTMGqsDVEHWTk7hjZF/+csw+vDd3OSc9MIVFa3JDyaIiJyIxMWdpDic9OIXVG7fy3HlDGN67TdiRpAqZGef9pgtPnTuY5Ru2cPz9n/Lp96urPIeKnIhUus/mr+bUh78guZbxysX7MahTs7AjSUh+060lky7bn1aN6nDWE1/y2CcLqMrLZCpyIlKpXp+1hN89OZV2TerxyiX70a11o7AjScj2bN6AVy/Zn8N7tuZvb33DHzK+YktBYZV8t4qciFSaRz9ewBUTZzGgY1MyLhoaN6tKS+w1rFObB88YyO8P686rM5cw8uHPWZaTt+M37iYVORHZbUVFzs1vzuWWt7/hmD578NS5g0mtp1sEZHu1ahlXHNaNh88cyA8rN3HcvZ8x/ae1sf3OmH66iMS/rAy4qzfc2CR4zMrY7uWt2woZO3Emj3/6I+fs34l7T+tP3WTNYCLlO7JXG/596f40qJPEQx8tiOl3aYJmESnfDtaA27ClgAuezuSLBWu5/qgeXHBgF8yq1wS9Uj11b92ISZceADH+56KWnIiUr4I14JbnbGHkQ5+TuXAdd53alwsP6qoCJ9HLyiD14f6k3tqyzB6CyqKWnIiUr4I14E5+cArrc/N58pxB/KZbyyoOJnEtilXiK4taciJSvnJmnl9Gc7ZuK+LFC4eqwMnOq6CHoLKpyIlI+cqYeT7PU3iizln8+5L96N0uNaRgEtfK6SEod/9uUHeliJSvuOto8ng8J5sl3pwXG5/DJRf9kWYNUsLNJvGrnFXiy+s52B1qyYlIxdJG8ujASXTe8hx/7TyRiy+/TgVOds8O1qarTGrJiUiFJk5d9PNN3v8a1Y/aSfrdWHZTiR4CcrKDFtywcZU+6ARU5ESkAm9lLeP6f3/NQd1bctepKnBSidJGxqSolaZ/sSJSpg/nreTKF2cysGNTHho9kJTa+nEh8Uf/akXkV6YtXMtFz06nW6tGPP67QdRL0TRdEp9iWuTMbLiZzTOz+WZ2XRmvdzSzD8xsppllmdnRscwjIjs2Z2kO506YRtvUejw9RhMtS3yLWZEzsyTgfuAooCdwmpn1LHXYX4AMd+8PjAIeiFUeEdmxBas2cdbjU2lUpzbPnDeEFg3rhB1JZLfEsiU3GJjv7gvcPR+YCIwodYwDjSPPU4GlMcwjIhVYuj6P0Y99CcAz5w2hXROtBSfxL5ajK9sBJe/2ywaGlDrmRuA9M7scaAAcFsM8IlKO1Zu2MvrxL9m4ZRsvXLAvXVs2DDuSSKWIZUuurOnIvdT2acAEd28PHA08Y2a/ymRmF5hZppllrlq1KgZRRWquDVsKOPuJqSxdn8cT5wzSVF2SUGJZ5LKBDiW22/Pr7sgxQAaAu38O1AValP4gd3/E3dPdPb1lS00GK1JZ8vILGTNhGvOWb+TB0QMZ1KlZ2JFEKlUsi9w0oJuZdTazFIKBJZNKHbMIGAZgZvsQFDk11USqQP62Ii5+bjqZP63j7lH9OGTvVmFHEql0MSty7r4NuAx4F/iGYBTlHDMbb2bHRw77A3C+mX0FvAD8zt1Ld2mKyK7IyggWo7yxya8WpSwscq7KmMWH81bx9xP7cGxa2xCDisROTKf1cve3gbdL7RtX4vlcYP9YZhCpkSpYlNL7nMJfXvuaN7OWcf1RPThtcMcQg4rEluauFElEFSxK+c8lfXhh6mIuPaQrFx7UNZx8IlVkl7orzaxHZQcRkUpUzuKTnpPNwx8t4Mx99+TqI/au4lAiVW9Xr8m9V6kpRKRylbP45JKi5ozo15abju+FWVl3+YgklnK7K83snvJeAprEJo6IVIph47a/Jgfkegpvtzqf/zulL7VqqcBJzVDRNblzCEY/bi3jtdNiE0dEKkWJRSk9J5ul3pxXmpzLBRdeQ7LWhJMapKIiNw2Y7e5TSr9gZjfGLJGIVI60kXzRcBhnPzGVvds04rnzhlA3WUvmSM1SUZH7LbClrBfcvXNs4ohIZfluxUbOfyqTDs3qM+GcwTSqqyVzpOYpt8i5+9qqDCIilWft5nzGPDWNuilJPH3uYJo1SAk7kkgodvUWgv9UdhARqRz524q46NnprNiwlUfOHEhbLZkjNVhFoysHlPcS0C82cURkd7g7416fzdQf1/KvUf3o37Fp2JFEQrWjgScfUfaSObqFQKQaevKzhUycFsxmMqJfu7DjiISuoiL3DXChu39f+gUzW1zG8SISog/nreRvb83lyF6t+cPhms1EBCq+JndjBa9fXvlRRGRXzV+5kcufn8nebRpz58h+utlbJKKi0ZUvV/Daa7GJIyI7a93mfMY8lUmd5Fo8dnY6Depo3nWRYvq/QSSOFRQWcclzM1i2fgsvXLAv7TSSUmQ7KnIiccrduXHSHD5fsIY7R/Zl4J4aSSlSmiaxE4lTT3/+E899uYiLDurKSQPKXnVApKbbYUvOzE4qY3cO8LW7r6z8SCKyI598v4rxb87lsH1acc2RGkkpUp5ouivHAEOBDyLbBwNfAN3NbLy7PxOjbCJShh9WbeKS52bQrVVD7h7VnySNpBQpVzRFrgjYx91XAJhZa+BBYAjwMaAiJ1JFcnILOO+pTFKSavHoWek01EhKkQpFc02uU3GBi1gJdI9M4FwQm1giNVRWBtzVG25sEjxmZfz8UkFhEZc+P4Psdbk8dOZAOjSrH2JQkfgQza+Bn5jZm8BLke2TgY/NrAGwPmbJRGqarIztV/POWRxsA6SN5OY35/Lp/NXc9ts0BnVqFl5OkTgSTZG7lKCw7U8wj+XTwCvu7sAhMcwmUrNMHv9LgStWkAeTx/NM7hCe/vwnzv9NZ0amdwgnn0gc2mGRixSzlyN/RCRWcrLL3O052dw4aQ6H7N2S647ap4pDicS3HV6TM7OTzOx7M8sxsw1mttHMNlRFOJEaJbXse92W0ZwuLRpwz2kaSSmys6IZeHIbcLy7p7p7Y3dv5O6NYx1MpMYZNg6St5+Wawt1uJfTefzsQTSqmxxSMJH4FU2RW+Hu38Q8iUhNlzYSjrsHUjvgGKuTWnH9tvMYcdaVdGyukZQiuyKagSeZZvYi8BqwtXinu78as1QiNVXaSEgbyU2T5jBhykL+eVIf9u3SPOxUInErmiLXGMgFjiixzwEVOZEYeGHqIiZMWcg5+3di1OCOYccRiWvRjK48pyqCiAjMWryev74+h990a8Gfj9ZISpHdVW6RM7M/uvttZnYvQcttO+4+NqbJRGqYtZvzueTZ6bRsVId7RvWndpIWCRHZXRW15IoHm2RWRRCRmqywyLli4kxWb8rn5YuH0rRBStiRRBJCuUXO3d8wsySgt7tfU4WZRGqcu9//jk++X80/TupDWvsmYccRSRgV9oe4eyEwsIqyiNRI//t2Bff+bz6nDGzPqEGaskukMkUzunKmmU0imKB5c/FO3UIgsvsWrcnlyomz6LlHY24+oTdmmtFEpDJFU+SaAWuAQ0vs0y0EIrtpS0EhFz07HYCHRg+kbnJSyIlEEo9uIRAJybjXZzN32QYePztdM5qIxMgOi5yZPUnZtxCcG5NEIjXAxKmLyMjM5vJD92LYPq3DjiOSsKLprnyzxPO6wInA0tjEEUl8X2fnMG5ScMP3lYd1DzuOSEKLprvylZLbZvYC8H7MEokksPW5+Vz07HRaNEjhX6O0dI5IrEXTkiutG6AJ9UR2UlGRc+WLs1i5cQsvXbQfzXTDt0jMRbNo6sbIYqkbIoulvgFcG82Hm9lwM5tnZvPN7LpyjhlpZnPNbI6ZPb9z8UXix73/m8+H81Yx7rhe9OugG75FqkI03ZWNduWDI7Ol3A8cDmQD08xskrvPLXFMN+B6YH93X2dmrXblu0Squw/nreTuyd9xUv92jB6ijhCRqhJNS25/M2sQeT7azO40sz2j+OzBwHx3X+Du+cBEYESpY84H7nf3dQDuvnLn4otUf4vX5nLli7PYu3Ujbjmxj274FqlC0Uxz/iCQa2Z9gT8CPwFPR/G+dsDiEtvZkX0ldQe6m9lnZvaFmQ0v64PM7AIzyzSzzFWrVkXx1SJVKCsD7uoNNzYJHrMyfn5pS0Ehlzw3g8JC58HRA6mXohu+RapSNEVum7s7QSvsX+7+LyCaLsyyfl0tfb9dbYKBLAcDpwGPmdmvLla4+yPunu7u6S1btoziq0WqSFYGvDEWchYDHjy+MfbnQnfTG3P5ekkOd4zsS+cWDcLNKlIDRTO6cqOZXQ+MBg6MXGtLjuJ92UDJ2Wbb8+v767KBL9y9APjRzOYRFL1pUXy+SPgmj4eCvO33FeTB5PG8lD+UF6Yu4uKDu3JErzbh5BOp4aJpyZ0KbAXGuPtygi7H26N43zSgm5l1NrMUYBQwqdQxrwGHAJhZC4LuywVRZhcJX052mbs9J5u/vDab/bo25w+H64ZvkbBEM7pyOXBnie1FRHFNzt23mdllwLtAEvCEu88xs/FAprtPirx2hJnNBQqBa9x9za79VURCkNo+0lW5vRXWgqb1U7jnNK3wLRImCy63VXCA2b7AvcA+QApBwdrk7qmxj/dr6enpnpmpxcqlmii+Jleiy3Kr1eG6gvMYff41DNyzaYjhRGoOM5vu7uml90fzK+Z9BINCvgfqAecR3P8mImkj4bh7ILUDYGyo04Zrto6h39EXqMCJVANRTevl7vPNLCmyUviTZjYlxrlE4kfaSEgbyaffr+asJ77k2LS2nDU0mltJRSTWoilyuZGBI7PM7DZgGaCx0CIlLF2fx9iJM9mrVUP+ebJu+BapLqLprjwzctxlwGaC2wJOjmUokXhSUFjEZc/PIH9bEQ+OHkj9lF2Z91xEYiGa0ZU/mVk9YA93v6kKMonEldve+ZYZi9Zz3+n96dqyYdhxRKSEaOauPA6YBbwT2e5nZqXvdxOpkd6bs5xHP/mRs4buybFpbcOOIyKlRNNdeSPBZMvrAdx9FtApdpFE4sPitblc/dJX9GmXyp+P2SfsOCJShmjnrsyJeRKROLJ1WyGXPj8DBx44YwB1amviZZHqKJor5LPN7HQgKbL+21hAtxBIjfaPt78lKzuHh88cSIdm9cOOIyLliKYldznQi2D+yheADcCVsQwlUp29lbWMCVMWMuaAzhypiZdFqrVoRlfmAn+O/BGp0Rau3sy1r2TRv2MTrh3eI+w4IrIDOyxyZpYO/IlgsMnPx7t7WuxiiVQ/xQug1k4y7jt9ACm1NfGySHUXzTW554BrgK+BotjGEam+xr85l7nLNvDE79Jp16Re2HFEJArRFLlVkWVxRGqs12Yu4fkvF3HRQV05tEfrsOOISJSiKXJ/NbPHgMkEg08AcPdXY5ZKpBqZv3ITf/r31wzu1Iyrj9ACqCLxJJoidw7QA0jml+5KB1TkJOHl5RdyyXPTqZecpAVQReJQNEWur7v3iXkSkWrohtdn8/3KTTx1zmDapNYNO46I7KRofi39wsx6xjyJSDWTkbmYl6dnc/khe3Fg95ZhxxGRXRBNS+4A4Gwz+5HgmpwBrlsIJJHNW76Rca/PZmiX5lxxmK7DicSraIrc8JinEAlDVgZMHg852ZDaHoaNg7SRbN66jYufm06jusn867R+JNXSAqgi8Sqq9eSqIohIlcrKgDfGQkFesJ2zGN4YiwN/mtuNhas389x5+9Kqka7DicQzDRWTmmny+F8KXLGCPHLfHsfrs5Zy1eHdGdq1eTjZRKTSlFvkzKxOVQYRqVI52WXurpe3nAO7t+SSg/eq4kAiEgsVteQ+BzCzZ6ooi0jVSW1f5u4V1oK7Rvallq7DiSSEiq7JpZjZ2cB+ZnZS6Rc144nEtWHjtr8mB+R6CnkH/ok9GqoTQyRRVFTkLgLOAJoAx5V6TTOeSHxLGxk8Th6P52SzpKg53/a6ksOGnRtuLhGpVOUWOXf/FPjUzDLd/fEqzCRSNdJG8lXTI/jtQ1M4sFtLHj0lPexEIlLJorlP7hkzGwscGNn+CHjI3QtiF0sk9nJyC7j0+Rm0alSXO3QdTiQhRVPkHiCYnPmByPaZwIPAebEKJRJrRUXOVRmzWLFhCxkXDqVJ/ZSwI4lIDERT5Aa5e98S2/8zs69iFUikKjz08Q9M/nYlNx3fi/4dm4YdR0RiJJqbwQvNrGvxhpl1AQpjF0kktqb8sJr/e3cex/Vty1lD9ww7jojEUDQtuWuAD8xsAcHkzHsSrDEnEndWbNjC2Bdm0rlFA/5xUh/MdB1OJJFFM3flZDPrBuxNUOS+dfetO3ibSLWzrbCIy5+fyeathTx//r40rBPN73giEs+i+r88UtSyYpxFJKZuf28eUxeu5e5T+9G9daOw44hIFdAEzVIjvDdnOQ9/tIDR+3bkhP7two4jIlVERU4S3k9rNvOHl74irX0qNxyrRe5FapIdFjkze8XMjjEzFUSJO1sKCrn42RnUMuP+0wdQp3ZS2JFEpApFU7geBE4Hvjezf5pZjxhnEqk0N06aw9xlG7jr1L50aFY/7DgiUsV2WOTc/X13PwMYACwE/mtmU8zsHDNLjnVAkV31UuZiJk5bzKWHdOXQHq3DjiMiIYiqC9LMmgO/I5jKaybwL4Ki99+YJRPZDd8s28ANr89maJfm/P6w7mHHEZGQRHNN7lXgE6A+cJy7H+/uL7r75UDDHbx3uJnNM7P5ZnZdBcf91szczDQNvOy2DVsKuOS5GTSum8w9p/WndpIuJ4vUVNHcJ/eYu79dcoeZ1XH3re5eblEysyTgfuBwIBuYZmaT3H1uqeMaAWOBL3c6vUgp7s61L2exaG0uL5y/Ly0baQFUkZosml9x/1bGvs+jeN9gYL67L3D3fGAiMKKM424GbgO2RPGZIhV64rOF/Gf2cq4dvjeDOzcLO46IhKzclpyZtQHaAfXMrD/BlF4AjQm6LnekHbC4xHY2MKTUd/QHOrj7m2Z29c4ElxoqKwMmj4ecbEhtD8PG/bzKd+bCtfzj7W84omdrzv9Nl5CDikh1UFF35ZEEg03aA3eW2L8R+FMUn13WzLf+84vBfXd3Rb6j4g8yuwC4AKBjx45RfLUkpKwMeGMsFOQF2zmLg21gdZcRXPb8TNo1rcftp/TVxMsiAlRQ5Nz9KeApMzvZ3V/Zhc/OBjqU2G4PLC2x3QjoDXwY+YHUBphkZse7e2apLI8AjwCkp6c7UjNNHv9LgStWkIdPHs+VU/dkXW4+r16yH6n1dGeLiAQq6q4c7e7PAp3M7KrSr7v7nWW8raRpQDcz6wwsAUYR3FRe/P4coEWJ7/sQuLp0gRP5WU52ufs/XbGa205Oo1fb1KrNJCLVWkUDTxpEHhsStLpK/6mQu28DLgPeBb4BMtx9jpmNN7Pjdyu11Eyp7cvcvcSbc8rA9owc1KHM10Wk5jL3+Or9S09P98xMNfZqpNLX5IA8UvhXvcu54vd/pl6K5qUUqanMbHpZt7VV1F15T0Uf6O5jKyOYSNQioyiZPB7PyWZVrZbcUXgqF435gwqciJSpotGV06sshUi00kZC2khufH02T33+Ew+NHkDnFg12/D4RqZF2NLpSpNqZ9NVSnvr8J847oDPDe+8RdhwRqcYq6q68292vNLM3KHF/WzF31+ARqXLfLNvAtS9nkb5nU649Sqs+iUjFKuqufCby+H9VEURkR9Zuzuf8pzNJrZfMA2cMIFkTL4vIDlTUXTk98viRmaUAPQhadPMic1GKVJmCwiIufW4GKzdu5aULh9Kqcd2wI29ASzIAABcXSURBVIlIHNjhKgRmdgzwEPADwVRdnc3sQnf/T6zDiRS75a1v+HzBGu44pS99OzQJO46IxIloltq5AzjE3ecDmFlX4C1ARU6qREbmYiZMWciYAzpz8sCybwgXESlLNBc1VhYXuIgFwMoY5RHZzoxF6/jLv2dzwF4tuF4DTURkJ1U0uvKkyNM5ZvY2kEFwTe4UgnkpRWJqxYYtXPTMdNqk1uW+07XCt4jsvIq6K48r8XwFcFDk+SqgacwSiQBbCgq54JnpbNq6jWfGDKFJ/ZSwI4lIHKpodOU5VRlEpJi78+d/z+arxet5aPRA9m6zw/nARUTKFM3oyrrAGKAX8PO4bXc/N4a5pAZ78rOFvDIjmyuGdWN47zZhxxGROBbNRY5nCBY0PRL4iGDx042xDCU112fzV3PL299wRM/WXDGsW9hxRCTORVPk9nL3G4DNkfksjwH6xDaW1ESL1uRy6fMz6NqyAXee2o9atSzsSCIS56IpcgWRx/Vm1htIBTrFLJHUSJu3buOCZzJxh0fPSqdhnWhu4RQRqVg0P0keMbOmwA3AJIKVwm+IaSqpUYqKnKtf+orvVmzkqXMHs2dzLZ0jIpVjh0XO3R+LPP0I6BLbOFIT3ffBfP4zezl/OWYfftOtZdhxRCSB7LC70syam9m9ZjbDzKab2d1m1rwqwkmCyMqAu3rDjU2Cx6yMn196b85y7vzvd5zUvx1jDugcYkgRSUTRdFdOBD4GTo5snwG8CBwWq1CSQLIy4I2xUJAXbOcsDraB71sfxe9fnEVa+1T+flIfzDTQREQqVzRFrpm731xi+29mdkKsAkmCmTz+lwJXrCCPovdv4vzCltRLqc3DZw6kbnJSOPlEJKFFM7ryAzMbZWa1In9GEqxCILJjOdll7rYNS1iyPo+HzxzAHqn1qjiUiNQUFU3QvJFgQmYDrgKejbxUC9gE/DXm6ST+pbYPuihLWVLUnJtH9Gbgns1CCCUiNUW5LTl3b+TujSOPtdy9duRPLXdvXJUhJY4NGwfJ27fUcj2FzztfyqjBHUMKJSI1RVR33JrZ8cCBkc0P3f3N2EWShJI2MnicPB7PyWapN+eVJudy8VlXhptLRGqEaCZo/icwCHgususKMzvA3a+LaTJJHGkjWdV5BMff9ym1zJh0/v4ka204EakC0bTkjgb6uXsRgJk9BcwEVOQkKpu3bmPMU9NYl5vPKxfvR/OGdcKOJCI1RLS/Tjcp8Tw1FkEkMRUUFnHxczOYs3QD958+gF5t9c9HRKpONC25fwAzzewDgpGWBwLXxzSVJAR359qXs/j4u1XcenIfhu3TOuxIIlLDVFjkLJiC4lNgX4LrcgZc6+7LqyCbxLlb35nHqzOX8IfDu3PqII2kFJGqV2GRc3c3s9fcfSDBCgQiUXnysx956KMfGL1vRy47dK+w44hIDRXNNbkvzGxQzJNIwngzaynj35zL8F5tuOn43pqTUkRCE801uUOAi8xsIbCZoMvS3T0tlsEkPk35YTVXvfgV6Xs25e5R/UjS6t4iEqJoitxRMU8hCWHu0g1c+PR0OrWoz2NnDdKkyyISuormrqwLXATsBXwNPO7u26oqmMSXxWtz+d2TU2lYtzYTzhlMav3ksCOJiFR4Te4pIJ2gwB0F3FEliSTurN2cz9lPTmVLQSFPnTuYtk20qoCIVA8VdVf2dPc+AGb2ODC1aiJJPMnN38a5E6axZF0ez543hO6tG4UdSUTkZxW15AqKn6ibUsqyrbCIy56fSVb2eu45rT+DOmnZHBGpXipqyfU1sw2R5wbUi2wXj67Ucjs1mLvzp39/zf++XcnfTujNkb3ahB1JRORXyi1y7q6hcTVdVgZMHh+s7p3aPlgbLrJ0zp3//Y6MzGzGHroXo/fdM+SgIiJli2o9OamBsjLgjbFQkBds5ywOtoFnNg/m3v/N59T0Dvz+8O4hhhQRqVhMF/Uys+FmNs/M5pvZr5bmMbOrzGyumWWZ2WQzU5Ogupg8/pcCV6wgj7x3/sq4SXMY1qMVt5yo2UxEpHqLWZEzsyTgfoLbD3oCp5lZz1KHzQTSI7OnvAzcFqs8spNyssvcXWfzMvp1aMJ9pw+gthY+FZFqLpY/pQYD8919gbvnAxOBESUPcPcP3D03svkF0D6GeWRnpJb9n2JlrRY8cfYg6qXokq2IVH+xLHLtgMUltrMj+8ozBvhPDPPIzhg2DpK3v6k7jzokH3EjTRukhBRKRGTnxHLgSVkXa7zMA81GE8yuclA5r18AXADQsaPWJasSkVGUhe/fhG1YwnJvjg8bR7uho0MOJiISvVgWuWygQ4nt9sDS0geZ2WHAn4GD3H1rWR/k7o8AjwCkp6eXWSil8uX2OImzPmtP1pocnjp3MEO7Ng87kojITolld+U0oJuZdTazFGAUpRZeNbP+wMPA8e6+MoZZZCfl5BVw5uNTmbFoHXed2k8FTkTiUsxacu6+zcwuA94FkoAn3H2OmY0HMt19EnA70BB4KTIUfZG7Hx+rTBKdtZvzOfPxL/luxUbuO30AR/fZI+xIIiK7JKY3g7v728DbpfaNK/H8sFh+v+y8FRu2MPqxL1m0NpdHzkznkB6two4kIrLLNOOJ/Gzx2lzOeOxL1mzayoRzdA1OROKfipwA8MOqTZzx6Jfk5m/j2fOG0L9j07AjiYjsNhU5Ye7SDZz1xJcAvHjhUPbZQwtMiEhi0LxMNdyMResY9cjnJCfVUoETkYSjllwN9vkPaxjz1DRaNqrDs2OG0KFZ/bAjiYhUKhW5GuqDb1dy0bPT6disPs+eN4TWjeuGHUlEpNKpyNVAb2Ut48oXZ7J3m0Y8fe4QmmkuShFJUCpyNcxLmYu59pUsBnRsyhPnDKJx3eSwI4mIxIwGniSarAy4qzfc2CR4zMr4+aWnP1/INS9nsf9eLXh6zGAVOBFJeGrJJZKsDHhj7C8reucsDraBB9YO4LZ35nF4z9bce1p/6iZrPTgRSXxqySWSyeN/KXDFCvLIefMGbntnHiP6teWBMwaowIlIjaGWXCLJyS5zd6OtKzhtcEf+dkJvkmqVtcyfiEhiUksukaS2L3P3hjqt+fuJKnAiUvOoyCWSYeMgud52uwpq1SX12JuJLGUkIlKjqMglkrSRbDriTlYntaLIjY119iD5hHuxtJFhJxMRCYWuySWQ6T+t5bL3W7Nmyz3cfEIvTh3UMexIIiKhUpFLAEVFzsMfL+D/3ptH+6b1eOXi/ejTPjXsWCIioVORi3NrN+dzVcYsPpy3imPS9uAfJ/XRTd4iIhEqcnFs6o9rGfvCTNbm5vO3E3pzxpCOGmAiIlKCilwcKipyHvzoB+7873d0bFaff/9uP3q1VfekiEhpKnJxZvWmrfz+xVl88v1qjuvblr+f2JtG6p4UESmTilwc+WLBGsa+MJP1eQX8/cQ+nDa4g7onRUQqoCIXBwqLnAc+mM9d739Hp+YNmHDOYHq2bRx2LBGRak9FrjrIyggmV87JDqbmGjYOIjdwr9oYdE9+On81J/Rry99O7EPDOvrPJiISDf20DFsFy+NMqX8oV7w4iw15Bdx6ch9Gpqt7UkRkZ6jIha2c5XE2vHUDZ2xoQJcWDXhmzGB6tFH3pIjIzlKRC1s5y+M03LKCE/u34+YRvWmg7kkRkV2iCZrDVs7yOHn123DnyH4qcCIiu0FFLmzDxlFUe/vlcYpq16PBUeNDCiQikjhU5EK0ZtNWblncm2u2jmGJt8Axihq3p9bx9/w8ulJERHad+sJCkJNbwKOfLOCJz35kS0EhJ/YfSeGwP2PN66OxkyIilUdFrgpt3FLAk58t5NFPFrBxyzaO69uWK4Z1Y69WDcOOJiKSkFTkqkBefiFPf76Qhz76gXW5BRzeszVXHd6dffbQbQEiIrGkIhdDW7cV8sKXi7jvgx9YvWkrB3VvyVWHd6dvhyZhRxMRqRFU5HZHOdNxFRQW8fL0bO6d/D1Lc7YwpHMzHhw9gEGdmoWdWESkRlGR21VlTMflb4xl2sK1XP3t3ixam0v/jk24/ZS+7Ne1uabjEhEJgYrcripjOi4ryKNt5u00ajGBJ36XziF7t1JxExEJkYrcripnOq52tdbwxmUHUKuWipuISNh0M/hOKCpyZi/J4ZGPf2B1Ussyj7HU9ipwIiLVhFpyFXB3flqTy2c/rGbK/DVM+WE163ILAFiVOppriu4nxbf+8obkesHgExERqRZiWuTMbDjwLyAJeMzd/1nq9TrA08BAYA1wqrsvjGWmihYohWCR0ik/rOaz+av5bP4alqwPrru1aVyXQ3u0Zv+9mrNf1xa0ST0Gsvap8LNERCRcMStyZpYE3A8cDmQD08xskrvPLXHYGGCdu+9lZqOAW4FTY5WpzBGRk8Yye0kOr27bjynz1zBvxUYAGtetzdCuzbnooC7st1cLurRo8OtBJGkjVdRERKqxWLbkBgPz3X0BgJlNBEYAJYvcCODGyPOXgfvMzNzdY5KorBGR2/Jo+vk/eb7oPgZ1asaI/m05YK8W9GqbSpKurYmIxLVYFrl2wOIS29nAkPKOcfdtZpYDNAdWxyRRBSMiv7rhCOomJ8Xka0VEJByxHF1ZVjOodAstmmMwswvMLNPMMletWrXricpZoNRS26vAiYgkoFgWuWygQ4nt9sDS8o4xs9pAKrC29Ae5+yPunu7u6S1blj10PyrDxgUjIEvSiEgRkYQVyyI3DehmZp3NLAUYBUwqdcwk4OzI898C/4vZ9TgIBokcdw+kdgAseDxOC5SKiCSqmF2Ti1xjuwx4l+AWgifcfY6ZjQcy3X0S8DjwjJnNJ2jBjYpVnp9pRKSISI0R0/vk3P1t4O1S+8aVeL4FOCWWGUREpObStF4iIpKwVORERCRhqciJiEjCUpETEZGEpSInIiIJS0VOREQSloqciIgkLIvlBCOxYGargJ8qOKQFsZrgOfaUPRzxmj1ec4OyhyVes0eTe093/9W8j3FX5HbEzDLdPT3sHLtC2cMRr9njNTcoe1jiNfvu5FZ3pYiIJCwVORERSViJWOQeCTvAblD2cMRr9njNDcoelnjNvsu5E+6anIiISLFEbMmJiIgACVbkzGy4mc0zs/lmdl3YeXaGmS00s6/NbJaZZYadpyJm9oSZrTSz2SX2NTOz/5rZ95HHpmFmLEs5uW80syWR8z7LzI4OM2N5zKyDmX1gZt+Y2RwzuyKyv1qf9wpyV/vzbmZ1zWyqmX0VyX5TZH9nM/sycs5fjCwKXa1UkH2Cmf1Y4rz3CztrWcwsycxmmtmbke1dPucJU+TMLAm4HzgK6AmcZmY9w0210w5x935xMMR3AjC81L7rgMnu3g2YHNmubibw69wAd0XOe7/IGojV0TbgD+6+D7AvcGnk33d1P+/l5Ybqf963Aoe6e1+gHzDczPYFbiXI3g1YB4wJMWN5yssOcE2J8z4rvIgVugL4psT2Lp/zhClywGBgvrsvcPd8YCIwIuRMCcndPyZYyb2kEcBTkedPASdUaagolJM7Lrj7MnefEXm+keAHQDuq+XmvIHe154FNkc3kyB8HDgVejuyvduccKsxe7ZlZe+AY4LHItrEb5zyRilw7YHGJ7Wzi5H+mCAfeM7PpZnZB2GF2QWt3XwbBDzagVch5dsZlZpYV6c6sVt19ZTGzTkB/4Evi6LyXyg1xcN4j3WazgJXAf4EfgPXuvi1ySLX9OVM6u7sXn/dbIuf9LjOrE2LE8twN/BEoimw3ZzfOeSIVOStjX1z85hKxv7sPIOhuvdTMDgw7UA3xINCVoEtnGXBHuHEqZmYNgVeAK919Q9h5olVG7rg47+5e6O79gPYEvUX7lHVY1aaKTunsZtYbuB7oAQwCmgHXhhjxV8zsWGClu08vubuMQ6M+54lU5LKBDiW22wNLQ8qy09x9aeRxJfBvgv+h4skKM9sDIPK4MuQ8UXH3FZEfBkXAo1Tj825myQSF4jl3fzWyu9qf97Jyx9N5B3D39cCHBNcVm5hZ7chL1f7nTInswyPdx+7uW4EnqX7nfX/geDNbSHDJ6VCClt0un/NEKnLTgG6RUTgpwChgUsiZomJmDcysUfFz4AhgdsXvqnYmAWdHnp8NvB5ilqgVF4iIE6mm5z1yXeJx4Bt3v7PES9X6vJeXOx7Ou5m1NLMmkef1gMMIril+APw2cli1O+dQbvZvS/xCZATXtarVeXf36929vbt3IvgZ/j93P4PdOOcJdTN4ZBjy3UAS8IS73xJypKiYWReC1htAbeD56pzdzF4ADiaYGXwF8FfgNSAD6AgsAk5x92o1yKOc3AcTdJk5sBC4sPgaV3ViZgcAnwBf88u1ij8RXN+qtue9gtynUc3Pu5mlEQxySCJoEGS4+/jI/68TCbr7ZgKjIy2jaqOC7P8DWhJ0Ac4CLioxQKVaMbODgavd/djdOecJVeRERERKSqTuShERke2oyImISMJSkRMRkYSlIiciIglLRU5ERBKWipzUOGbmZnZHie2rzezGSvrsCWb22x0fudvfc0pkZv8PSu3vZJFVFsysX2XO7m9mTczskhLbbc3s5YreIxI2FTmpibYCJ5lZi7CDlBRZSSNaY4BL3P2QCo7pB+xUkSsxq0RZmgA/Fzl3X+ruMS/oIrtDRU5qom3AI8DvS79QuiVmZpsijweb2UdmlmFm35nZP83sjMiaXV+bWdcSH3OYmX0SOe7YyPuTzOx2M5sWmRz3whKf+4GZPU9ww3TpPKdFPn+2md0a2TcOOAB4yMxuL+svGJn1ZzxwqgXrhp0amVnniUiGmWY2InLs78zsJTN7g2CS8IZmNtnMZkS+u3g1j38CXSOfd3upVmNdM3sycvxMMzukxGe/ambvWLAW2G0lzseEyN/razP71X8LkcpQ0W9tIonsfiCr+IdulPoSTNC7FlgAPObugy1YCPRy4MrIcZ2AgwgmIP7AzPYCzgJy3H2QBTO/f2Zm70WOHwz0dvcfS36ZmbUlWEdrIMEaWu+Z2QmRmSsOJZgNoswFdt09P1IM0939ssjn/Z1gmqRzI1M+TTWz9yNvGQqkufvaSGvuRHffEGntfmFmkwjWqusdmfS3eFWBYpdGvrePmfWIZO0eea0fweoDW4F5ZnYvwWoJ7dy9d+SzmlR86kV2jVpyUiNFZsJ/Ghi7E2+bFpngdivBkivFReprgsJWLMPdi9z9e4Ji2INgPtKzLFj65EuC5UO6RY6fWrrARQwCPnT3VZFlRp4Ddmd1iiOA6yIZPgTqEkwHBsFSLMXTgRnwdzPLAt4nWNak9Q4++wDgGQB3/xb4CSgucpPdPcfdtwBzgT0JzksXM7vXzIYDcbOigsQXteSkJrsbmEEwG3uxbUR++YtMYptS4rWSc+UVldguYvv/l0rPlecEheNyd3+35AuR+fk2l5OvrCVGdocBJ7v7vFIZhpTKcAbB/IYD3b3Aghnh60bx2eUped4Kgdruvs7M+gJHErQCRwLnRvW3ENkJaslJjRVpuWQQDOIotpCgexCCVbeTd+GjTzGzWpHrdF2AecC7wMUWLDuDmXW3YMWJinwJHGRmLSKDUk4DPtqJHBuBRiW23wUujxRvzKx/Oe9LJVjTqyBybW3Pcj6vpI8JiiORbsqOBH/vMkW6QWu5+yvADcCAqP5GIjtJRU5qujsIViUo9ihBYZkKlG7hRGseQTH6D8Es71uAxwi66mZEBms8zA56UiKz8l9PsMzIV8AMd9+ZZV0+AHoWDzwBbiYo2lmRDDeX877ngHQzyyQoXN9G8qwhuJY4u4wBLw8ASWb2NfAi8LsdzBLfDvgw0nU6IfL3FKl0WoVAREQSllpyIiKSsFTkREQkYanIiYhIwlKRExGRhKUiJyIiCUtFTkREEpaKnIiIJCwVORERSVj/D5mUhHgN6DbIAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Set up the state A|00>\n", "flag_qubit = 1\n", "epsilon = 0.05\n", "A_circ = Circuit().ry(0, epsilon).cnot(0,1)\n", "\n", "# set switch to either use explicit unitary diag(-1, 1, ...) [True] or use ancillas [False]\n", "use_explicit_unitary = True\n", "\n", "# Let's find the probability of measuring |11> for different values of m, the number of applications of QAA:\n", "probabilities = []\n", "stepsize = 2\n", "iterations = range(1, 40, stepsize)\n", "for m in iterations:\n", " \n", " # Get circuit object\n", " circ = Circuit()\n", " # Apply QAA using A defined by A_circ\n", " circ.qaa(A_circ, flag_qubit, m, use_explicit_unitary=use_explicit_unitary)\n", " \n", " if use_explicit_unitary:\n", " target_string = '11'\n", " circ.amplitude(state=[target_string])\n", " else:\n", " number_ancillas = A_circ.qubit_count - 1\n", " target_string = '11'+'0'*number_ancillas\n", " circ.amplitude(state=[target_string])\n", " \n", " # Classically simulate the circuit\n", " # Execute the correct device.run call depending on whether the device is local or on-demand\n", " if isinstance(device, LocalSimulator):\n", " task = device.run(circ, shots=0)\n", " else:\n", " task = device.run(circ, shots=0)\n", " \n", " # Get result\n", " result = task.result() \n", " # Append the probability of measuring |11> for this value of m.\n", " probabilities.append(np.linalg.norm(result.values[0][target_string])**2)\n", "\n", "# Get analytical result for comparison\n", "probs_theo = [np.sin((2*mm+1)*epsilon/2)**2 for mm in iterations]\n", " \n", "# Plot the results\n", "plt.figure(figsize=(7,5))\n", "plt.plot(iterations, probabilities);\n", "plt.plot(iterations, probs_theo, 'o');\n", "plt.xlabel('Number of Iterations');\n", "plt.ylabel('Probability of measuring 11');\n", "\n", "# Let's compare the amplitude of |11> in the initial state versus the state with maximum probability:\n", "# Print the initial amplitude of |11>\n", "\n", "# Add a Result Type to output the amplitude of |11> for A\n", "A_initial = A_circ.copy()\n", "A_initial.amplitude(state=['11'])\n", "\n", "if isinstance(device, LocalSimulator):\n", " initial_result = device.run(A_initial, shots=0).result()\n", "else:\n", " initial_result = device.run(A_initial, shots=0).result()\n", "print(\"Amplitude <11|Initial State>:\\n\", initial_result.values[0],\"\\n\")\n", "\n", "# Find the number of iterations required to achieve the maximum probability:\n", "max_prob = max(probabilities)\n", "max_iter = iterations[probabilities.index(max_prob)]\n", "\n", "# Generate that state:\n", "circ = Circuit()\n", "circ.qaa(A_circ, flag_qubit, max_iter, use_explicit_unitary=use_explicit_unitary)\n", "circ.amplitude(state=[target_string])\n", "\n", "# Run the simulator\n", "if isinstance(device, LocalSimulator):\n", " task = device.run(circ, shots=0)\n", " result = task.result()\n", "else:\n", " task = device.run(circ, shots=0)\n", " result = task.result()\n", "\n", "# Print the final amplitude of |11>:\n", "info = \"Maximum amplified amplitude <110|Final State> after approximately\"\n", "print(info+\" {} Grover iterations:\\n {}\".format(max_iter, result.values[0]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "## References\n", "\n", "[1] Wikipedia: [Amplitude Amplification](https://en.wikipedia.org/wiki/Amplitude_amplification).\n", "\n", "[2] G. Brassard, P. Høyer, \"An exact quantum polynomial-time algorithm for Simon's problem\", Proceedings of Fifth Israeli Symposium on Theory of Computing and Systems. IEEE Computer Society Press: 12–23, [arXiv:quant-ph/9704027](https://arxiv.org/abs/quant-ph/9704027) (1997). \n", "\n", "[3] G. Brassard, P. Høyer, M. Mosca, A. Tapp, \"Quantum Amplitude Amplification and Estimation\", [arXiv:quant-ph/0005055](https://arxiv.org/pdf/quant-ph/0005055.pdf) (2000).\n", "\n", "[4] Y. Suzuki, S. Uno, R. Raymond, T. Tanaka, T. Onodera, N. Yamamoto, \"Amplitude Estimation without Phase Estimation\", [arXiv:1904.10246](https://arxiv.org/pdf/1904.10246.pdf) (2019). " ] } ], "metadata": { "kernelspec": { "display_name": "conda_braket", "language": "python", "name": "conda_braket" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.11" } }, "nbformat": 4, "nbformat_minor": 4 }