{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# QUANTUM PHASE ESTIMATION" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Use Braket SDK Cost Tracking to estimate the cost to run this example\n", "from braket.tracking import Tracker\n", "t = Tracker().start()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This tutorial provides a detailed implementation of the Quantum Phase Estimation (QPE) algorithm using the Amazon Braket SDK.\n", "The QPE algorithm is designed to estimate the eigenvalues of a unitary operator $U$ [1, 2]; \n", "it is a very important subroutine to many quantum algorithms, most famously Shor's algorithm for factoring and the HHL algorithm (named after the physicists Harrow, Hassidim and Lloyd) for solving linear systems of equations on a quantum computer [1, 2]. \n", "Moreover, eigenvalue problems can be found across many disciplines and application areas, including (for example) principal component analysis (PCA) as used in machine learning or the solution of differential equations as relevant across mathematics, physics, engineering and chemistry. \n", "We first review the basics of the QPE algorithm.\n", "We then implement the QPE algorithm in code using the Amazon Braket SDK, and we illustrate the application thereof with simple examples. \n", "This notebook also showcases the Amazon Braket `circuit.subroutine` functionality, which allows us to use custom-built gates as if they were any other built-in gates. \n", "This tutorial is set up to run either on the local simulator or the on-demand simulators; changing between these devices merely requires changing one line of code as demonstrated as follows in cell [4]. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## TECHNICAL BACKGROUND OF QPE " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "__Introduction__: A unitary matrix is a complex, square matrix whose adjoint (or conjugate transpose) is equal to its inverse. Unitary matrices have many nice properties, including the fact that their eigenvalues are always roots of unity (that is, phases). Given a unitary matrix $U$ (satisfying $U^{\\dagger}U=\\mathbb{1}=UU^{\\dagger}$) and an eigenstate $|\\psi \\rangle$ with $U|\\psi \\rangle = e^{2\\pi i\\varphi}|\\psi \\rangle$, the Quantum Phase Estimation (QPE) algorithm provides an estimate $\\tilde{\\varphi} \\approx \\varphi$ for the phase $\\varphi$ (with $\\varphi \\in [0,1]$ since the eigenvalues $\\lambda = \\exp(2\\pi i\\varphi)$ of a unitary have modulus one). \n", "The QPE works with high probability within an additive error $\\varepsilon$ using $O(\\log(1/\\varepsilon))$ qubits (without counting the qubits used to encode the eigenstate) and $O(1/\\varepsilon)$ controlled-$U$ operations [1].\n", "\n", "__Quantum Phase Estimation Algorithm__: \n", "The QPE algorithm takes a unitary $U$ as input. For the sake of simplicity (we will generalize the discussion below), suppose that the algorithm also takes as input an eigenstate $|\\psi \\rangle$ fulfilling \n", "\n", "$$U|\\psi \\rangle = \\lambda |\\psi \\rangle,$$\n", "\n", "with $\\lambda = \\exp(2\\pi i\\varphi)$. \n", "\n", "QPE uses two registers of qubits: we refer to the first register as *precision* qubits (as the number of qubits $n$ in the first register sets the achievable precision of our results) and the second register as *query* qubits (as the second register hosts the eigenstate $|\\psi \\rangle$). \n", "Suppose we have prepared this second register in $|\\psi \\rangle$. We then prepare a uniform superposition of all basis vectors in the first register using a series of Hadamard gates. \n", "\n", "Next, we apply a series of controlled-unitaries $C-U^{2^{k}}$ for different powers of $k=0,1,\\dots, n-1$ (as illustrated in the circuit diagram that follows). \n", "For example, for $k=1$ we get\n", "\\begin{equation} \n", "\\begin{split}\n", "(|0 \\rangle + |1 \\rangle) |\\psi \\rangle & \\rightarrow |0 \\rangle |\\psi \\rangle + |1 \\rangle U|\\psi \\rangle \\\\\n", "& = (|0 \\rangle + e^{2\\pi i \\varphi}|1 \\rangle) |\\psi \\rangle.\n", "\\end{split}\n", "\\end{equation}\n", "\n", "Note that the second register remains unaffected as it stays in the eigenstate $|\\psi \\rangle$. \n", "However, we managed to transfer information about the phase of the eigenvalue of $U$ (that is, $\\varphi$) into the first *precision* register by encoding it as a relative phase in the state of the qubits in the first register. \n", "\n", "Similarly, for $k=2$ we obtain\n", "\\begin{equation} \n", "\\begin{split}\n", "(|0 \\rangle + |1 \\rangle) |\\psi \\rangle & \\rightarrow |0 \\rangle |\\psi \\rangle + |1 \\rangle U^{2}|\\psi \\rangle \\\\\n", "& = (|0 \\rangle + e^{2\\pi i 2\\varphi}|1 \\rangle) |\\psi \\rangle,\n", "\\end{split}\n", "\\end{equation}\n", "\n", "where this time we wrote $2\\varphi$ into the precision register. The process is similar for all $k>2$.\n", "\n", "Introducing the following notation for binary fractions\n", "$$[0. \\varphi_{l}\\varphi_{l+1}\\dots \\varphi_{m}] = \\frac{\\varphi_{l}}{2^{1}} + \\frac{\\varphi_{l+1}}{2^{2}} + \\frac{\\varphi_{m}}{2^{m-l+1}},$$ \n", "\n", "one can show that the application of a controlled unitary $C-U^{2^{k}}$ leads to the following transformation\n", "\n", "\\begin{equation} \n", "\\begin{split}\n", "(|0 \\rangle + |1 \\rangle) |\\psi \\rangle & \\rightarrow |0 \\rangle |\\psi \\rangle + |1 \\rangle U^{2^{k}}|\\psi \\rangle \\\\\n", "& = (|0 \\rangle + e^{2\\pi i 2^{k}\\varphi}|1 \\rangle) |\\psi \\rangle \\\\\n", "& = (|0 \\rangle + e^{2\\pi i [0.\\varphi_{k+1}\\dots \\varphi_{n}]}|1 \\rangle) |\\psi \\rangle,\n", "\\end{split}\n", "\\end{equation}\n", "\n", "where the first $k$ bits of precision in the binary expansion (that is, those bits to the left of the decimal) can be dropped, because $e^{2\\pi i \\theta} = 1$ for any whole number $\\theta$.\n", "\n", "The QPE algorithm implements a series of these transformations for $k=0, 1, \\dots, n-1$, using $n$ qubits in the precision register. \n", "In its entirety, this sequence of controlled unitaries leads to the transformation\n", "\n", "$$ |0, \\dots, 0 \\rangle \\otimes |\\psi \\rangle \\longrightarrow \n", "(|0 \\rangle + e^{2\\pi i [0.\\varphi_{n}]}|1 \\rangle) \n", "\\otimes (|0 \\rangle + e^{2\\pi i [0.\\varphi_{n-1}\\varphi_{n}]}|1 \\rangle)\n", "\\otimes \\dots\n", "\\otimes (|0 \\rangle + e^{2\\pi i [0.\\varphi_{1}\\dots\\varphi_{n}]}|1 \\rangle) \n", "\\otimes |\\psi \\rangle.\n", "$$\n", "\n", "By inspection, one can see that the state of the register qubits above corresponds to a quantum Fourier transform of the state $|\\varphi_1,\\dots,\\varphi_n\\rangle$. Thus, the final step of the QPE algorithm is to run the *inverse* Quantum Fourier Transform (QFT) algorithm on the precision register to extract the phase information from this state. The resulting state is\n", "$$|\\varphi_{1}, \\varphi_{2}, \\dots, \\varphi_{n} \\rangle \\otimes |\\psi\\rangle.$$\n", "\n", "Measuring the precision qubits in the computational basis then gives the classical bitstring $\\varphi_{1}, \\varphi_{2}, \\dots, \\varphi_{n}$, from which we can readily infer the phase estimate $\\tilde{\\varphi} = 0.\\varphi_{1} \\dots \\varphi_{n}$ with the corresponding eigenvalue $\\tilde{\\lambda} = \\exp(2\\pi i \\tilde{\\varphi})$.\n", " \n", "__Simple example for illustration__: For concreteness, consider a simple example with the unitary given by the Pauli $X$ gate, $U=X$, for which $|\\Psi \\rangle = |+\\rangle = (|0 \\rangle + |1 \\rangle)/\\sqrt{2}$ is an eigenstate with eigenvalue $\\lambda = 1$, i.e., $\\varphi=0$. \n", "This state can be prepared with a Hadamard gate as $|\\Psi \\rangle = H|0 \\rangle$. \n", "We take a precision register consisting of just two qubits ($n=2$). \n", "\n", "Thus, after the first layer of Hadamard gates, the quantum state is\n", "$$|0,0,0 \\rangle \\rightarrow |+,+,+\\rangle.$$\n", "\n", "Next, the applications of the controlled-$U$ gates (equal to $C-X$ operations, or CNOT gates in this example) leave this state untouched, because $|+\\rangle$ is an eigenstate of $X$ with eigenvalue $+1$. \n", "Finally, applying the inverse QFT leads to \n", "\n", "$$\\mathrm{QFT}^{\\dagger}|+++\\rangle=\\mathrm{QFT}^\\dagger\\frac{|00\\rangle + |01\\rangle + |10\\rangle + |11\\rangle}{4}\\otimes |+\\rangle = |00\\rangle \\otimes |+\\rangle,$$\n", "\n", "from which we deduce $\\varphi = [0.00]=0$ and therefore $\\lambda=1$, as expected. \n", "Here, in the last step we have used $|00\\rangle + |01\\rangle + |10\\rangle + |11\\rangle = (|0\\rangle + e^{2\\pi i[0.0]}|1\\rangle)(|0\\rangle + e^{2\\pi i[0.00]}|1\\rangle)$, which makes the effect of the inverse QFT more apparent. \n", "\n", "__Initial state of query register__: So far, we have assumed that the query register is prepared in an eigenstate $|\\Psi\\rangle$ of $U$. What happens if this is not the case? Let's reconsider the simple example given previously.\n", "\n", "Suppose now that the query register is instead prepared in the state $|\\Psi\\rangle = |1\\rangle$. \n", "We can always express this state in the eigenbasis of $U$, that is, $|1\\rangle = \\frac{1}{\\sqrt{2}}(|+\\rangle - |-\\rangle)$. \n", "By linearity, application of the QPE algorithm then gives (up to normalization)\n", "\n", "\\begin{equation} \n", "\\begin{split}\n", "\\mathrm{QPE}(|0,0,\\dots\\rangle \\otimes |1\\rangle) & = \\mathrm{QPE}(|0,0,\\dots\\rangle \\otimes |+\\rangle)\n", "- \\mathrm{QPE}(|0,0,\\dots\\rangle \\otimes |-\\rangle) \\\\\n", "& = |\\varphi_{+}\\rangle \\otimes |+\\rangle - |\\varphi_{-}\\rangle \\otimes |-\\rangle. \\\\\n", "\\end{split}\n", "\\end{equation}\n", "\n", "When we measure the precision qubits in this state, 50% of the time we will observe the eigenphase $\\varphi_{+}$ and 50% of the time we will measure $\\varphi_{-}$. We illustrate this example numerically as follows.\n", "\n", "This example motivates the general case: we can pass a state that is not an eigenstate of $U$ to the QPE algorithm, but we may need to repeat our measurements several times in order to obtain an estimate of the desired phase." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## CIRCUIT IMPLEMENTATION OF QPE" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The QPE circuit can be implemented using Hadamard gates, controlled-$U$ unitaries, and the inverse QFT (denoted as $\\mathrm{QFT}^{-1}$). \n", "The details of the calculation can be found in a number of resources (such as, [1]); we omit them here.\n", "Following the previous discussion, the circuit that implements the QPE algorithm reads as below, where m is the size of lower query register and n is the size of upper precision register." ] }, { "attachments": { "image.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABZUAAAHpCAYAAAD6YtIDAAAgAElEQVR4Aeydd/AXxf3/+QcHG4g6imSIimQsGEdsMToqolHHjopxFBUN9jKOsff+tcQSMXZEFNRRGBuKDY01dowFC9YAGkUFC4IK7m+el9+e+35/3uXK3vt9d+/Hzrzn7n239bF7e3vP23ttN4ODAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEQk0C2iP7xBAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABAyiMo0AAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIhNAVI6MCo8QgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCCAqEwbgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgcgEEJUjo8IjBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIICrTBiAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQCAyAUTlyKjwCAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAojKtAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCITABROTIqPEIAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgACiMm0AAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIhNAVI6MCo8QgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCCAqEwbgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgcgEEJUjo8IjBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI5F5Unj17tnnuuefMBx98YH788ceaNfbdd9+Zzz//vOY5DkIAAhCAAATKQmDBggXmo48+Ms8++6x56623zLx58xoW7fvvvzf//e9/G/rhJAQgkC8Cv/zyi/niiy/Mq6++ap5//nkzc+ZMs3DhwnxlktxAAAIQgAAEIAABCHQ8gVyKym+++abZbbfdzIorrmi6detmlllmGdO9e3ez2GKLmT/96U/m3nvvrai4ESNGmKOOOqriGH8gAAEIQAACZSDw+uuvmzPPPNOsvvrqwT1R90X399vf/tZcdNFF5quvvupS3J133tkcfvjhXY5zoH0EnnnmGXPFFVeY008/3Rx66KFmjz32MFtssYV55JFHamYqrv+akWR88JNPPjFXX321Oeecc8zRRx9t9t5772C8dtZZZ2WS8owZM8wdd9xhJk6caCZNmmQeffRR89RTTwUvW7TVfx3X+TvvvLPmtaGMSaiVn7vvvts88MADZsqUKUa8n3zySfPwww+b++67z9x1111G5cva6YWR8qL2sPTSSwfX+LLLLmtWXnnlYAzco0ePoJ1ce+215ssvv8w6O8QPAQhAAAIQgAAEIACBpgRyJSprcK8H4yWXXNKstdZawQOBZmrIzZ8/37z99ttGDygaZO+6665m7ty5wUOEHq71YIaDgG8CmgV/3HHHmd133908+OCDvqPvEl+r0+uSAQ5AAAK5IfDee+8ZicJWQJaofMkll5h//etfgUim+6OEMAnOgwYNCl7ATpgwIcz/2LFjg7AHHXRQeIyd9hM4+OCDjQRCW692K5G0lovrv1YcWR+TKKuxmy2L3Q4fPjyTpDVW1ISDJZZYokuaNm1tJc6usMIKwWzfWhnRuLJXr14N41C5xo8fXyu4t2P33HOP6du3b5CPwYMHByL3rFmzwvjnzJkTCOUjR44M2k7Pnj3NxRdfbH766afQDzv5J8AYL/91RA4hAAEIQAACEIhHIFei8l/+8pdgQK1tPVMXKt4333xjttlmGzNw4EAzYMCAIAyicryKx3c0AhJr7AOqZst/+OGH0QIm9NXq9BJmk2AQgEDGBC644IJQMOvTp08gHjdKctGiReb88883iy++uDnxxBONZnJasQxRuRG59p2bPn26WXvttcN7zO23394wM3H9N4wso5Nff/21OeSQQ8IyZSUqu9n/7LPPzPLLLx+mKcFVs4x//vln11vDfYm2V111VTAjWPf8lVZayYwePdp8/PHHRtdWVk7maeyLIwng7kuhemm+8cYbRl8nKJ+rrbaaUbvAFYMAY7xi1BO5hAAEIAABCEAgOoHciMoPPfRQMEDu37+/0SeAzZxmNQ8ZMiR8iEBUbkaM80kIbLDBBmEb0wOcPjuN6jSTKq4t0zTpRc0X/iAAgfwS0P1v3333Dfudrbfe2mh2W1SnWcz6mqd3795hHGUTlZP0rVH5tdrf3/72t7CemonKyltc/60uj9LT7F/7MrYVorJEX81atmlqNm9S94c//CG4dmTDOGunNUPWW2+9IN96AST7yVGdzF/YFxK61l9++eWoQfHniUCSfogxnif4RAMBCEAAAhCAQG4I5EJUlmkLaz85ykOVpSfBTjNS9CCBqGypsPVJ4NJLLw0fVPWZbZwFITXrSLZQ47g06cVJB78QgED+CGhxrl122SXsczbbbDPzww8/xM6oTBFYgU3bsonKSfrW2BBbFOCGG24I6yrK+Ceu/xYVoyKZTz/9NCxTK0TlqVOnhumpvcsGclK3xhprmJNOOilp8MjhdF3LzJu9TmVLOa7Tl1P2awRt33nnnbhR4D8FgST9EGO8FMAJCgEIFJaAXjbfdtttNX9a90Dm3nw5LWKt8VS99LR2Fw4CEPBLIBeisla2tgPr999/P1YJ9bCssIjKsbDhOSIBzYi/5pprzCmnnGKmTZsWMZQx+gRY7TKuqJw0vcgZwyMEIJBbAmeffXZ4L5RIlGYxLi12a++rZRKVk/atea30G2+8MaynejaV3bzH9e+GbdW+zFHYttcKUdkV6pRunJe/LhO1LZm50kJ9WbsDDjggZKQvE5K6MWPGhPFIEJ83b17SqAgXg0DSfogxXgzIeIUABEpD4O9//3vwElQm2uz4wN3qCzsf9y+ZvbITFd34ta+0NbbWF184CEDAL4FciMr/+Mc/wg4miukLF8FLL70UhEVUdqmw324Cjz32WNAu44rK7c436UMAAu0h8NRTT4X2XDX4veyyy1JlRF/y2FmMZRKVy9a3xhWJ4/pP1YgSBm61qLzDDjuEY0its5HUabE8zT5ttKZH0rjdcJqVbB92JWJrBldSpwdo2Vy38R155JFJoyJcDAJl64diFB2vEIAABFIR0CLTGpdK5HUF4FtuuSVVvAp87733mi233DK8J+reOGLEiMQvm1NniAgg0CEEciEq2wX6dOFrAZK4TguVICrHpYb/LAnYNo2onCVl4oZAeQhsuOGG4SB4ueWWMz/99FPqwu21115BnGUSlcvWt8YVieP6T92IEkTQSlFZMz/tyxONIdOMBY8++uhgrY4ERY4cRPaff/e734XXugTxtM6dqS0zXf/5z3/SRkn4JgTK1g81KS6nIQABCHgl8MILLwSLUbuLl2666aap09A9VaYv7ItWbZ9++unU8RIBBMpKIMn6ELVY5EJUPuaYY8KLX5//xnX6jDDNg0Tc9PAPgUYEtKiWXTQIUbkRKc5BAAIioJkV7gD4kEMO8QJm7NixQbxlEZXL2LfGFYnj+vfSkGJG0kpR+ZVXXqm4dmSbMamTjePzzz8/afBI4ZQ/91q//vrrI4Vr5Gn69OkVcTIebkQr/bky9kPpqRADBCAAgegEXnvttUBU/vjjjyu+0tP9LKnTeg5a/Fb2md377Isvvpg0SsJBoPQEkqwPUQtKLkTl6667Lrz4tfDeJ598UiuvdY/JTs+JJ55Y9zwnINAqApqFtOOOO4btGVG5VeRJBwLFJeD2GRoI33///V4KYxdMK4OoXNa+Na5IHNe/l4YUM5JWisoyE+M+PMrsSxIn++UyRfHss88mCR45zNZbb12RX1+L68kepeXQChMekQtcMo9l7YdKVk0UBwIQyDkBKyorm0OGDAnvXyeffHLinF9wwQVGJlURlRMjJGCHEUi6PkQtTLkQlTWoXmyxxcIORfZ1tHJnHKeBXj337bffGr0Je/nll83DDz9sGi0GKPt0svUjG3darKXRw/0vv/xi5syZY/RW7V//+peZNGmS0QwG6xSXzj300EPmueeeM/Pnz7enEm/1uYgMzB977LFGnzzKDqebZr2Ixeerr74y7777blCuBx98sMKrbAiqDI8++qiZO3duxTn9aUdZld9bb73VnHXWWUafpf7f//1fwDiu3W2tsq6yadbeqaeeamRzUOxsG9MDsF5M1HLff/998JJDs6HUdmbMmFHLW3BM9Xv44YeH7VgPeHFF5TjpVWfEBy/V/QcffGDUzh544IEubUHtXQtrqq3rOmp03VXnj/8QgEBXAlqYRCKQFYT0+bqPxUpsSmuuuaaJOvM5r31I2r417f3PsnS3PlgpvrgicVz/Ns9Jxw42fK3trFmzgvvEk08+GYwvrJ9Wiso777xzeO3IFFpSd/fddwfXoQ+zM/XyoOt6ySWXDPPbu3fvel5jH99jjz3CeNWXTJkypWYc7RjLJWl7WVyzGr/ps+hzzjknmIgi+50SNqLWedp+SBWSZoyn8D76nazHeWnG3DUbLQchAIHSEXBFZS1SbMfAekEq/SSu071Ni9XqORVROS49/HcqAZ/rQ+RCVFZF7rnnnmGHoo6lR48eZtdddzUa6GsQlcQdeOCBwacVtqOy2yuvvLJLdLJB59rls371AFDLbbTRRkEerT+7lSAn0VMC6PLLL29WXXVVM3jw4MAcgsQCfZZxxRVXBCJtrXjrHXv11VeNFqCRUXvNOtOK3xJC9XZPgrzKWk+0Vl5d0V55lXkG6y6++OKg7IpLedY5V3RudVklktu6W3fddYPB/+jRo43MnKy00kpBXq+++mqb/YbbCRMmmL59+xqtrq44Hn/88UCIF7/NN9/c7LbbbqZfv35GNzHXXXXVVWappZaqaJPipgeSaqcHlb333juIw7YDu1W8Ylr90wxC18VJzw2nfR+8LG+bb7u1ori+HhBDvfDRdamf2onEMNVLrRcR1fnkPwQg0JWAXtDY601bXWM+nRYf++c//9kwyrz2IT761rT3v2pwPli5ccYVieP6TzN2cPNp9/Vyfqeddgrud7IDrgVwNPtW94Nhw4YZzXpolags4VHp2usnjdkHvWzWGChLpxe1Nq/a/v73v/eW3F//+teKuI8//vgucbd6LJe07fm+ZtUeNcbRWFDj51GjRgUvc3RMY2qNrTXxo57z0Q+lGeMpXz76nVaM85KOueux5zgEIFBOAq6oLN3EvZffd999sQv9xBNPmH322ScIh6gcGx8BOpSAz/UhciMqa0av26G4A299krj66qubww47zOht1ueffx6p6h955BFz+eWXB6KXBF0bZy1RWbOZNeg799xzzcCBA0O/9URl5UOfXaoDs/Fqq4d3PSjooctd0Vtv3TQL2H6iqIcXDXSjOOVL+VhllVVqLmSombxKWwKsBr/VTnnV7GYJgTavYi131FFHBcLqN998Y1zbhDpvZ6G2sqzKg8opQVczg2s5zTZWOfTJuD5ZredkG1Gi50svvVTTi95qHnzwwUFc1aKybnYS/zXz2J1FKBbVbvbs2eaGG24If6p/y1kLELjn7L5mq7guTnpuOF+8dK2oPUsgdq8Vicr6kmDllVc2N998s5t08DZYsyBVVs0Q0+wUHAQgEI+Au8iWriX14610ee5DfPStae9/bl34YuXGGVckjuM/7djBzae+ZjrttNMCEW7ttdcOv/SxfrRg3vjx482gQYOCWbL2Hjh8+HDrxfv23//+d3ivVXq17s9RE9UMp6ztKVdf61qh3pfTZ7+Wubbbb799l6hbOZZL0/Z8XrN6yaGFEfVSvNbLb13TGv9p4oXGw2rH1c5HP5R0jKe8+Op3sh7npRlzVzPnPwQgUG4C6hP1vGmdvki29zBpKHGdJndJWJZDVI5LD/+dSEAvq632aicRpuGQG1FZhZD4V2u2sO1k7FYzCzQjRp/hR3XuTOhaorIbjwahmimt9OqJyq5/10aeKmeXXXap++mGhGYrLOvTR3V8jZwVjDXg1SeEtZwGwZoBrfxuttlmtbyEx/74xz8G/pRPDTC10qo1JzFx4sSwQ9d5ezwMbEwwI8nWg++ySkTWDUYirmYUN3KWi2YA1xKWJYQqruOOO65RNMGMcbGrFpXdQIrDlrnWTGXXr/Zd8T7JRRo1PZ+83DJYoV1l1uyd/v37B8Ky68fuuzOvtHooDgIQiEfAvd51zW277bbxIkjhu2h9SNq+Nc39LytWcURiVXVU//Ye6WPsILMN66yzTnAf1FZjpHpOC+JobGDvmVmKyvpay6ajbVJ7yhINNXmh0WzVeuWNc1yzh938ahzry1177bUVcTd7OVWUcWuaa1ZsNTtXzxWaiV6v3Wp2ra0XXTfNXNp+yO3zm40ps+p3fI/zfI65m/HnPAQgUHwC1aKynpdtPyydJ879XCYv9GJYk8XkEJWL3z4oQbYENHHUXc8niV5VncNcicrKnOzcbrPNNmHHYjuYelvNLI7iZI7CxtFMVFZ8EnzlP4qobKeOy78G6prR08hNnjw5zItMMNhOsDqM7B/bWaPHHHNM9emK/1pcxpavni09BdBMVPnTQ9/GG28c2JOzESnfamASWOuZl8iqrJq5K9MWytt5551ns9Rwax82NAOl2tnFezRTvZnTjJpGovI111wTsm32AKC00j5wREnPNy+XkWa127ak2U4yj1LPyeSKHsblX+0JBwEIxCNQ/bXLfvvtFy+ChL6L2Iek7VuT3v+yZBVVJLbVHMW/77GDBDn18RLnar3EtXmzW/cekqWorBf49l6ll59JnURFvcyOals3aToaq9j8aqv26Mtp/Qk37hVWWKFh1FmN5Xy3vaTXrC28Jh5YLpqJXM/JBIb8qR1o9k4jl7YfijLGU/pZ9jvuNepjnOdzzN2IPecgAIFyEKgWlVUqfelk++s4E5X0HK+vdazzISonWQvApu9u9QW5tIOktvxtXGlt1We1vlgW6x+kYR91zQCZ15V1AXFp5GSuVC93tc6aXl4kda0oU9T1rnysD1GLQ+5EZZvJp59+2sg+nh4UbAdTb3vCCSfYYHW37meHUURlOxCNIiq7b/wbCbpu5vRGzZZHtn5rOX0aaf1oFkAjp9nKdpZ3o08qbV41eymJPT8bXvnyWVbXHqA+aY3ixo0bF/LRBe86+xAse9bNnGZWNRKVozzEu2mkfeCIkp5vXm7+3dlfernSbMEE2+6aPcS6abAPAQj8j8DIkSPDfkz9qr6qaYUrYh+Stm+196+4978sWUXp7932EMW/z7GD7vP2xWEtO71u3uy+xm927JKVqKyX8e6M6KiLUdo8uluZudpqq63cQ5nsy/605aLt0KFDvaWjh2o3br2kb+TstaAwPsdyPtue8m/zGfeaVVi1EY1LLJdGIr77NaMWwG7k0vZDUa5hpZ9lv+N7nOdzzN2IPecgAIFyEKglKrtf3MgUZlSnL3PctYrSiMpJ1wKozmtaW/5ufGls1dezpV9LC0uyvpjuzfYeq63GZdY1W7PL+rPbNOzrldPOwK23NpR0Pk3uqRaX77333sC0p9qWxm76ql1WDLQOl9aqieraUSa9HNd4p9rkl4/1IRqVO7eisptp2VDWBaVBSz2RuZm5BHcAVetCctPTftai8k033RRehLoAq2crS+i0F+lyyy1Xnb2a/7fbbrsgjHtBV3u0A3TFrdnbcZ0bPuqDSLOy6kK35kbiLFL10UcfhYxk29d17qBddpYaza7SbBC1j3rOjSuKzcasHziy4OWW3b1Wojxoq32qPfXs2dONhn0IQCACgTPOOCPsx3QdRXkRFiHahl6K2oek7Vvd+1fU+1/WrOLeX5r59z12kD19OxZpJrbZRvevf/0rDJOVqOzTnrJs7rqznGw5fG9PPvnkkIuYbrHFFt6S0Fd7tp603WCDDRrG7V4LvsZyvtueCuDmM+o16xZ87NixwaQBPRDah0v3vN235mLETjOYGrm0/VCza1hpZ93v+B7nuWVKO+ZuxJ5zEIBAOQjUEpUlgkkQs/eyKGMO2ZzfYYcdKqAkFZXTrAXgZsCHLX8bX1pb9VmvL5ZmzS5bRm3Tsk+7ZsBaa60Vrg117LHHGlkSqF6n7LbbbgsnWdT7oj9PZape78rH+hBu+ar3CyEqV2daA0N3UKfOZ/3116/2VvHfHUDlQVSWbWXbaWqrhQpdd91114Xno5oV0EKGNs6vvvrKjS7cdwfod955Z3g86o4bPuqDSLOy3nXXXWG+JYxHdfrkws6g0tZ9y6S3bRI5LQ+ZEVHcl1xyidEsqlr2ouul6w6W8yAqZ8HLLbt7rWimTDNnX8BoIICDAATiEXA/hVZ/pa9YsnZF7UPc+34jgageP/f+FfX+lzWruPeXZv59jh2mTp0a3kPVNmVbOYprhajs3qeUt6gLH1fnX5MWFD5re8pKtzrPSb4Wq86//a+HIJXD/nbeeWd7qubWvRZ8jeV8tj2baTefUa9ZG9Zuqydt2OPuVp9aW3aaCNHIpe2Hml3DSjvrfsdtiz7GeT7H3I3Ycw4CECgHgVqiskomE3C2L45iDk5ftVfPHE0iKtsXi5p5m3YNK1+2/H3bqne/yGmmhcVdX8yaJNXExrhrdvlkrzbkjhvirA11yy23BOL2XnvtZaQx1XJau0ztU5qHqztV+81LmRqZkUk7lqkucyFFZVuII444Iux4VMESC+s5dwDV7EJSHFYoy8r8hWuLVnnXTGzXuQKxRAaJoc1+eqtiO+J6D9zuhSb7MHGdGz7qg0izsrqzd/bYY49YWXLfaFbX/3333Res6G2ZuNullloqmCV0//33N00vygOAG0nai7RZelnxsmVwrxXtN3NxrpVmcXEeAp1GQJ9GuX1TI1M8SdhIbKs2n1TUPiRt3+rev6Le/7Jm1ay/r67zZv59jh1GjRoVtk3dM6O6ZqKyhFytnxHlV+8FudsWVl111ahZ6+JP4p3GEVnbU1bCmnXlXuu1vlLrksGIB1weSkP2Gxs591rwNZbz2fZs3t18Rr1mbdhaW5nz0qLg//jHP4zWKtHDo74OsV9cid0NN9xQK2h4zGVdb6wdeq6x0+waVpCs+50sxnm+xtw1kHEIAhAoGYF6orJ7n9S9+Ztvvqlbcr3o1hfs1WYa44rKvtcCsM/Fup+kseXv21Z9luuLJV3/wDd7NZakawasvfbagXmLRl+3a90vO47TPa+Wy1OZGk1MTTuWqS57LkRlfboQZ5VPWwgtLCfbJrZyNXW+nnMHUHkQlZVPt9M55ZRTKrKuRmDL9Yc//MFoNlvUn9601Fss0B2gV8+OrshAnT9u+KgPIs3K+qc//Sksq+zWxHESYCynWvWqh1v79sz6q95qRo8ecuu5KA8Abti0F2mz9LLkpXJkea24nNiHAAT+R8C1+6n+adasWd7QaABUPROtqH1I2r7VvX9Fvf9lzapZf1/dEJr59zl2cIWtOC87monKss1cfR+u918v02s5996vek3q9CCkOm6F04OvXYPAlldfcvlwLg/FLeG0kXOvBV9jOZ9tz+bdzWfUa9aGdbcffvhhICJrnQh92aY611orEjDef/99Y2cViV0eROWs+52sxnk+xtxuvbEPAQiUk0A9UVmllT1le4/UFzD1nPSOE088scvpuKKyz7UAfNry922rvhXri8Vd/8Ane9sQ3PtbnLWh1OaamdnS+MC2TU28qOXyVKZG612lfaaqLnsuRGVNx9eDUhIne2m2cjVLop5zG1gt8bE6nBV8s5qprPRcIUGzrl230UYbheXaf//93VOp9t0B+gcffBA7Ljd8nAeRRmWVEXRbhzKWHsdppo8N26gj0OcPZ599ttlmm22MOhgbxm7Fu54Q3+whvjq/aS/SZullzSvLa6WaFf8hAAFj3Bl+6pMaDaLj8tp6662NBt6uK2ofkrZvde9fUe9/WbNq1t+79ab9Zv59jh3OPPPM8F4ZZ72DrEVlLchj793aNjNXUM3Q/tfnnZoJpdnKrXLDhg2ryPuYMWNSJ/3xxx9XxCmBuZnJB/da8DWW89n2LBQ3n1GvWRtWW43rJBhrpr3aimxN1/q02TV/kQdROet+J+txXpoxt1t/7EMAAuUk0EhUvvDCC8N7muzh13MyRSABudrFEZWzWAvAly1/d7znw1Z9lv2+e69upMe4dZUFe8XvljPO2lAaIzz66KNuFrvsy66yHX9qLYtql7cyNVrvKu0zVXXZcyEq77bbbqZWxVRnttZ/d7E2idP1nNvA8iAq//DDD6E9YDXO6kVitCq4bbQ77bRTvWLFPu5e9EkG6G74qA8izcq64447hmXdZZddYpXJPiiIlWz4WNfsgUqfg5900kkVs4auuOIKG7xi63bqPmwqq81ef/31FWm4f5qllwUvN/0srxU3HfYhAIH/EdAMvMUXXzzsB3WN+3CaGakBxbRp0yqiK2of0mwA1Kxvde9fUe9/WbNq1t9XVFwEUdnn2EF2Cu04pNHAtDqPzURl1ZNMGUT51Zq1r6/bbL60bTYrtzp/9r9WJtcEgupPZ+35LLYqs5v3uCa/auXJtWWsuLWwTzPnXgu+xnI+257Nv5vPqNesDbtw4UKj5wvLWzPv640NfYrKzfqhKNd81v2O73FePa62LuKMuW0YthCAQHkJNBKVZbbNHRPXMjMk4XjTTTetCSiOqOzePxuZCnATcieC1DPR1axPVHzufafWy3Hftup99/suE/deHXX9g6zYu+Ws/lLTzbPdtxNJNVZoZjnBFZX1wrra5a1MmjhRzzV7pqoXrt7x3IjKKlgSJ0PaWoRNDaGRMO3aBowiKttPFLOaqfzGG2+EA13l/bHHHqsovvuJgs/FXNyLPu4AXRl0w0d9EGlWVnc2VL0bRAWc///nu+++q2Do2sCRrbwo9awblbWlp1k2tVyUBwA3XLOL9Iknnmi4Mnuz9LLg5ebf7YyjMLSdcZRrxU2HfQhA4FcChxxySCaftWQAACAASURBVNif6WVZ9arDv/qMviexTQOK6gUnitqHpO1b3ftX1Ptf1qya9ffVtd3Mv8+xwyeffBK2SY1TotodbiYqV5cp7v+ZM2dW5GvOnDlxozASHFdaaaUuL/RjR5QggL4eEE/9NH5t9hDTLAmtWm7j09dbjRaPsXG514KvsZzPtlcrn1GvWRtW4rrlIjNyqvN6zn24d2cqq++s7j/T9kPNrmHlMet+x/c4z+eYu14dcRwCECgPgUaiskqpCXW2/z766KO7FFwTwzQjuJaLIyq7ArHPNazcfOnFdVJb/j5t1fvu990yumOKqOsfZMXeLaf2mzmrY2g81sy5ovIZZ5zRxXveytRIm2k2lulSuCYHciMq68E3yYPB7Nmzw07n3nvvrVtcdxDXTCizq4GrM2tUGTYx90KKOjjX58i2s9RDQPXDmmy8yS6N/OhtnWb7RnWaul9vlXY3r3EH6ErfDe+rrLqxWBYSU+rlvbr8kyZNCsP95je/qTitFWP1WUwUJ1vcSr+ezUi37fiYqfz444+bDTfcsG7WmqWXBS83M25n3OxaUTjbGUe5Vtx02IcABH4loJkZrl1ULSCV1h1++OHm2GOP7RJNUfuQZgOgZn2re/+Kev/LmlWz/r668pr59z12cM1F6ZP2KC5rUVl5cPOVZOwoAVSTB9yX0VHK5sOPFue0kyE09qg12yVqOu6iRopLC9BFce614Gss57vtqRxuPqNeswq3YMEC45pH08v8Rk4ChR2HuqKyFlmS4Oy6tP1Qs2tYaWXd7/ge5/kcc7us2YcABMpJQH1cIxFPYqrtk9WXq0+3TiKtFuirpxfEEZWzWAvA5tOXLX+NqdKuD6U8+e73bTm1de/VUdc/yIp9luVsJioXqUzNxjJu/UbZz42orI4jyid71YXSYFhhJbzW+kzS+r/99tvDzqmemQPrV4NP25FFEcrcC2ny5Mk2mrpbfRLhziy5+eaba/qVGGDzEfVTAj1c6UGp3swXN69xBug2g254n2Xdd999w7LWW03T5sFurQF7MVL9uk4D3B49eph6n6W4fvUgpDjWWWcd93C4H+UBIPRsjLEroCrOl19+2T0V7E+YMMFst912XY7bA1HS883Lpq1tlp2xmw77EIBAJYGnn366QmxqJoRUhq78p5duffr0Mfqio5YrYh+Stm91719x7n9ZsorS37v1F8W/z7HDtddeG96bdc+N4iTu27HL8OHDowSJ7cddyOzZZ5+NFf7uu+8OrjPXZFasCDx4vvrqq0NGmlQR9SHMTVr2gt2xZBxTGu614HMs57PtqaxuPuNcs2+++WbIVxM0ms3elt1F22abicpp+6Eo17DKnmW/43uc53PM7bZx9iEAgXISaCYqSzh2J1q4OogmEerrvnoujqicxVoAWdjyV1nT2qr33e+7/JPcq7NgrzxlWc5monKRylRqUVlvrKJOmbcNeeeddw4GglpNvJF79913wwHjeeed18irEWQ7i0RidTPnXki1ZoVVh9cDjR28NrKdqdnJdgVUCZ7Vs5mr49V/LUYnG3L1nJtXialxnRveZ1klhtvF/KLM0NMMdWu2Qnb8qp0GuGIcZQbQv//978BvvQUR3QeAavG6Ol39Vx3Y+q21AJBmSB166KG1ggbHoqTnm5ebmbidsa2HKC9g3HTYhwAEuhIYPXp0+JWKXhDKfmxcp1nPmsnZ6AVdEfuQtH2re/+Kc//LklWU/t6t/yj+fY4d9BJcZql0T9MDXhT7w7qX2nvgn//8Zzf73vZdsfvyyy+PHK8WaZOIe80110QOk5XHAw88MOQk8wz1Fguul75WvbecBw4c2FQ4deNxrwWfYzmfbU/5dfMZ55qVLUrLRqJyvZdrSkPc3Znvrqh80EEHGb0AcF3afijKNaz0sux3fI/zfI65XdbsQwAC5STQTFRWqd0vSNwF13bYYYeak7YsqTiisu+1AHza8m9mlzmurfq4/X6cL5Hde3XUF8C+2dv6z7KczUTlIpWpmajcbH0Iy9tuczVT2T60aLZWFKfZFQojMbLRgNHGteqqqwb+BbGe0wPH5ptvbjTAtwNSPaA3cu6FpE80br311rreNSiWHT9b1nozim0EmoFjF6NTQ230QKdZ23roaxTn7rvvHpZLK1TGdVmWVbOGrGH+008/vW7W9LmLVvAWQwmaX3zxRRe/doArobPZg8ipp54avETQzJZaTov52LbgPmzU8qtjVqRWGD2QVDt9wvLAAw9UHw7/R03PJ68w8SpbflFEeT2gq6yaGe5+nuTGyT4EIBCdgMRgLYym60r3lEb9RXWsstu25pprGtm4bOaK1oek7VvT3P+yYuX291FMF0T173PsoAc0u87EPvvs08XGrNvO9OWVbbtqv1EXvnHjiLKvhy07W1mCYDMzFvKvBXJ1PUW5NqLkIa0f5ckVhrfZZhszf/78SNFqcoT46jd48GDzzTffRApnPWU5lvPZ9tJcs+uuu27ISF+I1XOy16nryj5Au+NPCRn69Nh1afsh9xpuNqbMqt9xbTb7GOf5HHO7rNmHAATKSSCKqOyKw927dzda5+HTTz+t+2WxJeWG0z2ykd7hey0An7b8fduqb9X6YlFFZd/sbf23U1QuUpmaicrN1gCzvO02V6KyPmU45ZRTgllaGuRJIa/n9HAgwVAialQRWmKvOheFq2VDToM3zQxWZ1RtE0UDP80wnjt3bpcsuYNzzWiQ0KlZNNVOphDspxzDhg1r+hBkw0+bNs3YwbGEZdl8dp2EPA0QZVe4lrmFJ5980uhTEdmFU9ntg8jaa68d2N/TYPvBBx+MJMxnXVbZGpQgojzqYevrr792ixqYOJHpCJ3fc88965q3sAPcFVdcMXhQqPUZuRZf0axACdkXXnhhRTp6aJCwo3q0M6iVpmw4qe3dc889XfLmRiDj7fIvodW9mckms+KoXvglaXq+eCkelVeihm2jyr/21aZ1Tn7kNBNJn9ar3bifgcq/ZqVpNrfO17pWXEbsQwAC9QloEVHZXtd1pZ/6Ow3C6zl93i37nxLNGgko1eGL1ofE7Vt93v98sarX3+servuL+tu33norrKq4/m3AtGMHG4+2H3/8cTgu0gzb6lm1ui9I6NRLU403bLvVVmM73ReqFyR240+y79oh32STTYzsF9ZyU6dODa4lic+aZZI3N2bMmND+rxZm1ouhek6TBvQ1l7hq7KKVzavrol5Y93jWY7k0bc/XNatnAzsDWWMZ9amu09j5nHPOMdtuu23wJaDEVXGVX30houcEjddqCf1x+6F613CUMaWvfkfxZDXOSzvmduuFfQhAoPwEoojKoqB7ux1PSOu44IILjMTRRi6OqKyJZ77WsNI9RWNwm99a2oObb3cmtvuC0dryV7/qa30opet+JdNszaQ064tFFZV9sne5tlNULlKZmonKzdapcZlrPzeisoRYK0LpwUOCp95K6aFaF5cavwQ+PZxY0XHIkCFdBNbqAlb/l00eCY0ajGuWiwbkehMk0VYPQ+qI5FxR2XYO2tYa7LuDcw1C9fAl8VcDU83qURqye6c0tY3zwG/zrxnKGvxqlrNmLm+55ZbmL3/5i5H5DM0gUsOoZz9Yq5lqNqk6OuVJ5ZetTW3FXcclNushoJlrRVn1gKQBu/Kojl4PWfqcVjPIVQ595tmMocTOfv36BbOYH3744eBlwfrrrx98SqkHB3XUq622mhkwYIDRA0y1GzFiRAUz5UWzWPSAollYMo/yz3/+szpYxf+TTz458Kt2rM+HNePlt7/9bfCmtcKjMSZNej54yRZjrTai9qL2oXN6ESKnlz0qv9qdeKgNiY/Ed/3XcZ2vda1Ul5v/EIBAYwK6Z62++urhIFX3EC3Ap0G1fiNHjjSDBg0K7gu6X+r+E9cVrQ+J07f6vP+Jqw9Wtfp79Z+2v9U9/ogjjgirMa7/MKAxwddNSccObjza12edEo779u0b9Psy46RZnVtssUVwn9Cq1xLg3IX63PGTxi++nV48a1yosYLuUxJc/+///i+Year7moR63YM1hqg3RvKdpyTxqRwa62p8obJsvfXWRg+ZEkZ1L9WYR2XQeb2s1tjv7bffTpJUEKYVY7mk41af16xmtullt9qGxuAaK0uYUL+pMaBM5+malpO5CT1X2DarfDQaF8fph2pdw3HGlD76nSzHeWnH3IkbMgEhAIFCEtDLXj0rNnO33HJL2CfrWVPj4eoJZ9VxxBGVFdbXWgC+bflLq/C1PpTKqZf79v6W5fpiUUVln+zdNtBOUblIZXInBtaalKpxZ6M1wFzm2s+FqKyB2f3331+dt2CmgB5YNItAIrMeSFQ42TOTUNjM1kyXCP//AYVTZ6ZZo1dddZUZO3ZsF7uVAjlu3Djz0EMPBQN6CWn1Pi+sHpzbdDWY1ayA6667LnjI0kweH072hDWzWLNKNXtan4K0yrWjrDJzotlbzz//fDBLNkpZNTvY5aI6V3jVqV5O6O2Lez5KnEn8qM1MnDgxmO0re+FR7GInSceGUdtIwsuGZwsBCOSTgGynaYaGbOZLPNbg+ne/+13wskrCiPtFRJoSFKUPaXXfWotpUVjZvPscO8jslMZtsk2se44EOes0g1j3bN379PL1jTfeCO63WZpH0ixMjQ1lLkFiocydySyEjtUzbWXzm6etxoka12nSgPKvmawSxjXpQYK5xpOqx7SuHWO5do1bxUpcNe6TQKGxs9psPZMpssesNhvlGaMd/VAe+528jLnTXheEhwAEWkNA+ooETnfsUCtlmby05rfkP8o6DXFFZd0ffKxh5duWv/0CJIqJIn0NIz56+VzPtWp9sWZmR938+WLvxhlXVNbkOLHTBMtmrplNZYUvSpnSrg9RzSoXonJ1por2v97gvGjliJLfTiprFB74gQAEIAABCEAAAkUiwFiuSLVFXiEAAQiUh4CEYn29KyHvuOOOa/oCT18jya9+tcyXVpOp/lpKLxGbOV9rAVhzpcpro6+qo9jyt6KyxM5mQm2z9aFs+bNaXyzN+ge+2Nsy6msk216iCPL6ksn6V9ts5Fy71LJEUM/lpUyN1ruyLyJU9iRrgFWXHVG5mkiC/500OO+ksiZoCgSBAAQgAAEIQAACuSbAWC7X1UPmIAABCJSKgEwi6AtxzY6UCS0r4mkr85Ra4EwibC3TFjIBJX/6aqfWFyT6Mlxfwii8zKVaM6k2DQmpl19+ubnrrruCha/rmWdIsxaArSyftvytqJx0fSibJ3frc30xX+sfKH9p2ftaM0BmomR20F0bSl+7yfKAvsBTG7TtSuZBL7vssmAdEX0NX+3yUqZG613FXR+iuozuf0Rll0bC/U4anHdSWRM2B4JBAAIQgAAEIACB3BJgLJfbqiFjEIAABEpH4OKLLw7MC8iUhdaPkE15mXGT6QF3PZ5a6xwJxjbbbBOYLK0FRiaNtN6A4lG8EmFlMtX+lI6OK12lf/7559eKJjiWdC0AN0JftvyzslXva30xn+sfiF8a9lmuGaD1QrTWiV2bTGugqE3ZdVA001nmymq5vJbJzWuc9SHccNX7iMrVRBL876TBeSeVNUFTIAgEIAABCEAAAhDINQHGcrmuHjIHAQhAAAJtJpB2HYq0tvyztFXve30x31WVlr3v/PiIL89l8rE+BKKyh1aityN2Knwj+zkekmp7FJ1U1rbDJgMQgAAEIAABCEDAMwHGcp6BEh0EIAABCEAAAhDoUAKIygkr/pVXXglWkr766quNa+B70KBBgU0frXiuVUDL4DqprGWoL8oAAQhAAAIQgAAEXAKM5Vwa7EMAAhCAAAQgAAEI+CCAqJyQ4oABA4LZyUsssURgx0d2VmSnRwLzYostFpyLsuJkwuRbGqyTytpSsCQGAQhAAAIQgAAEWkCAsVwLIJMEBCAAAQhAAAIQ6DACiMoJK3z+/Plm0aJFdUP/9NNPRr8yuE4qaxnqizJAAAIQgAAEIAABlwBjOZcG+xCAAAQgAAEIQAACPgggKvugSBwQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABDqEAKJyh1Q0xYQABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQg4IMAorIPisQBAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQKBDCCAqd0hFU0wIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAj4IICr7oEgcEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQ6hACicodUNMWEAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIOCDAKKyD4rEAQEIQAACEIAABCAAAQhAAAIQgAAEIAABCECgQwggKndIRVNMCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAI+CCAq+6BIHBCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEOoQAonKHVDTFhAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCDggwCisg+KxAEBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoEMIICp3SEVTTAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACPgggKvugSBwQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABDqEAKJyh1Q0xYQABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQg4IMAorIPisQBAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQKBDCCAqd0hFU0wIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAj4IICr7oEgcEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQ6hACicodUNMWEAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIOCDAKKyD4rEAQEIQAACEIAABCAAAQhAAAIQgAAEIAABCECgQwggKndIRVNMCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAI+CCAq+6BIHBCAAAQgAAEIQAACEIAABCAAAQhAAAIQyIDAiy++aN5++21+TRi8+eabZtq0aRnUAFHWIoCoXIsKxyAAAQhAAAIQgAAEIAABCEAAAhCAAAQg0GYCN954o+nWrRu/GAzmzJnT5lrrjOQRlTujniklBCAAAQhAAAIQgAAEIAABCEAAAhCAQMEITJw4MRCUhw4das455xx+DRisv/76Aasvv/yyYLVczOwiKhez3hLl+rXXXjPLLrus2WijjczgwYM76rfOOuuYPn36mG+++SYROwJBAAIQgAAEIAABCEAAAhCAAAQgAIFWE5g0aVIglI4fP77VSRcuvSOOOAJRuYW1hqjcQtjtTur6668PLq5evXqZ3r17d9Rv6aWXDso+derUdlcD6UMAAhCAAAQgAAEIQAACEIAABCAAgUgEEJUjYQo8ISpHZ+XDJ6KyD4oFieOBBx4IhNVx48YVJMf+snn66acHZZ8+fbq/SIkJAhCAAAQgAAEIQAACEIAABCAAAQhkSABROTpcROXorHz4RFT2QbEgcSAqdzOIygVprGQTAhCAAAQgAAEIQAACEIAABCAAAYOoHL0RICpHZ+XDJ6KyD4oFiQNRGVG5IE2VbEIAAhCAAAQgAAEIQAACEIAABCBgDKJyjFaAqBwDlgeviMoeIBYlCkRlROWitFXyCQEIQAACEIAABCAAAQhAAAIQgACicpw2gKgch1Z6v4jK6RkWJgZEZUTlwjRWMgoBCEAAAhCAAAQgAAEIQAACEIBAx8xU/vzzz82GG25oHn/88cS1jqicGF2igN5E5QULFiTKQNpAixYtMj/88EPaaDoiPKIyonJHNHQKCQEIQAACEIAABCAAAQhAAAIQKAmBTrGpfNBBB5lu3bqZhx9+OHHNISonRpcooDdReYUVVjBXXnllokykCXTIIYeYfv36mZ9++ilNNB0RFlEZUbkjGjqFhAAEIAABCEAAAhCAAARaRuDtt982yyyzjFljjTXM+uuvzw8GhWoD0rI22WSTll0vSRLqBFH5rbfeMj169DCDBw9OgigMg6gcomjJjhdR+dtvvw3eJkjgbbW75JJLgrQnTpzY6qQLlx6iMqJy4RotGYYABCAAAQhAAAIQgAAEck1gwoQJwTO5hOXf/OY3/GBQqDawxBJLmF69euX6GusEUXnbbbc13bt3N1OnTk1VF4jKqfDFDuxFVJ47d25wEzn44INjZyBtANlcWXzxxc12222XNqrSh0dURlQufSOngBCAAAQgAAEIQAACEIBASwn885//DPSAa6+9tqXpkhgEfBD4/e9/b1ZddVUfUWUWR9lF5cceeyzoQ/bff//UDBGVUyOMFUHbReWvv/7a3HDDDeaEE04wBxxwgDn55JPN5MmTzc8//xy5IDvttFMwTf6zzz6LHKYTPSIqIyp3YrunzBCAAAQgAAEIQAACEIBAdgQQlbNjS8zZE0BUzp5xoxS0TtrAgQPN0ksvbWbOnNnIa6RziMqRMHnz1DZRef78+eawww4zSy21VGAzZcyYMea+++4zF154oVlxxRVN7969zV133RWpoPfee2/wVuOiiy6K5L9TPSEqIyp3atun3BCAAAQgAAEIQAACEIBANgQQlbPhSqytIYCo3BrO9VKRFqjF+U477bR6XmIdR1SOhSu157aIyjJZscEGGwQNR7OUq92PP/5ohg4dGpw//PDDq093+a9F+pZddlnTv3//Luc48CuBLETlWbNmmTvvvNPIprU+yXj00UfNU089ZZ599tlgq/86rvN33HGHmT179q8ZMsbMmTMneHkgO1z333+/eeSRR8yTTz4ZhH/66aeNPoNQvu++++4gnY8++qgifNQ/p59+etCepk+fHjUI/iAAAQhAAAIQgAAEIAABCECgCQFE5SaAOJ1rAojK7aueefPmmeWXXz7Q87RWmw+HqOyDYvQ42iIqb7311oHAJ1MX9ZxmMg8aNKiu8Fwd7rjjjgv8Pvfcc9Wn+P//CWQhKl9++eXBSr8ybq+3S/V++pRBq6pKKHadZplrVrpmrNcLq+M6rxcHt956qxs88j6icmRUeIQABCAAAQhAAAIQgAAEIBCZAKJyZFR4zCEBROX2Vcq5554b6EDXXXedt0wgKntDGSmilovKt99+e9BotLrmd9991zCT48ePD/z27NnTfPjhhw39vvXWW4HfkSNHNvTXySezEJVdnpqB3rdv36AeJARLSNYsZc0kj+I0a3mzzTYLw2vlz5tuusn88MMPUYI39IOo3BAPJyEAAQhAAAIQgAAEIAABCCQigKicCBuBckIAUbk9FSH9SFrfgAEDzMKFC71lAlHZG8pIEbVUVFZDWW655QLRcM8992yaQU2FVyOTQKlF/Jq59ddf30isVjhcVwJZi8q//PJLMGvZzjjeb7/9umaiyZENN9wwFJU32mijJr6jn0ZUjs4KnxCAAAQgAAEIQAACEIAABKISQFSOSgp/eSSAqNyeWjnooIMC7Uc6lU+HqOyTZvO4WioqP/TQQ6FgeOWVVzbPnTFmyJAhQZgoYrGmzEvQvOWWWyLF3WmeshaV33jjjbB+VQ/jxo2Lhfj77783iy++eBjHGWecESt8I8+Iyo3ocA4CEIAABCAAAQhAAAIQgEAyAojKybgRKh8EEJVbXw+yNNCjRw8zePBg74kjKntH2jDClorKI0aMCAVDLbwWxQ0fPjwMo8XcGrm5c+cGJhdkQgHXlUDWovKoUaPCupKoPHPmzK6ZaHBEi/rZWc7aPv744w18xzuFqByPF74hAAEIQAACEIAABCAAAQhEIYCoHIUSfvJKAFG59TWz7bbbGpk7nTp1qvfEEZW9I20YYUtF5f79+4ei4VNPPdUwY/bk8ccfH4bRfjO3zz77BI2zmQ3mZvGU8XzWovLQoUPDulp55ZVjIzzttNPC8Fr4z4ctZZsJRGVLgi0EIAABCEAAAhCAQCcS+Pbbb43Ev5tvvtm88sor5scff+xEDJQ5AwKIyhlAJcqWEUBUbhnqIKHHHnss0H3233//TBJGVM4Ea91IWyYqa1E+vYmwM1GnTZtWN1Puib/97W9hmCgzkDW7VWn4NJ3g5qfI+1mKyrKn3Lt377CukiyY+Mc//jEMv8kmm3hFjajsFSeRQQACEIAABCAAAQgUhIAWzl599dUrnsX0vKRJHFtttZWZPn16QUpCNvNKAFE5rzVDvqIQQFSOQsmPn0WLFpmBAwcGFgbiftkeNQeIylFJ+fHXMlH5vffeCwVDDWI+/fTTSCW44YYbwnCrrLJK0zASN/v27Wv69Olj1GBxvxLIUlSutqc8fvz4XxOOsKdZyRrY2pcOvl8KICpHqAS8QAACEIAABCAAAQiUhsA333xjDjzwwHB8bcfZ1dull17aaL0bPUfhIJCEAKJyEmqEyQsBROXW1cSYMWOCe5K+Us/KISpnRbZ2vC0TlV9++eWKAc3nn39eO0dVR2+66aYw3LLLLlt1tvbfs88+OwgjG724XwlkKSpfddVVYT1poDpr1qxfE46w98QTT1SE92lPWckjKkeoBLxAAAIQgAAEIAABCJSGgGxWVgvIjf5rfRQcBJIQQFROQo0weSGAqNyampg3b55ZfvnljXQ9mWPKyh188MHBvU/ruElXyutP/eb333+fFYaWxdsyUdmapbADmdmzZ0cq5NixY8PB0FJLLRUpzCeffBJ83rXXXntF8t8pnrIUlXfbbbewnqLMKK9mftZZZ4XhfdtTVlqIytXE+Q8BCEAAAhCAAAQgUFYCo0ePDsfW9vmr2VYzlvV1KQ4CcQkgKsclhv88EUBUbk1tnHvuucF96dprr800wUGDBsW+/zW7P2Z1/tRTT82URSsib5mofM8991RU7Ndffx2pfOPGjasIF3VBiS233NJIhJ4zZ06kdDrBU1aicrU95YMOOig2zs033zysZ9/2lJUZROXYVUIACEAAAhCAQK4IfPnll+byyy83+hItzWf6eYsnV5DJTCkI6PmnV69e4dg6zsPwuFcJCAAAIABJREFUkCFDSsGAQrSWAKJya3mTml8CiMp+edaKTZYKevbsaQYMGGAWLlxYy4u3YyNGjAjuf5dddpm5/vrrc/u78cYbI5sF9gYng4haJirfeuutFQObqGLvbbfdVhFODwJRnA13zTXXRPHeEX6yEpXffPPNijoS+zhuwYIFwQsAO+D1bU9ZeUFUjlMj+IUABCAAAQjki8D8+fMrFgSWqbMkLm/xJCkDYSDQjMBDDz1UMTa3Y+wo2yWXXNL89NNPzZLgPAQqCCAqV+DgT8EIICpnX2HWJIU0qawdNpWzJlwZf8tE5QkTJlQMbqKKytVidFTbK1r4TW/oNfW9FU4zqGVHOM8/a0pEs799ump7yvqsIc4bISv42oGub3vKKqtN4+mnn851HeW5/ZQhb++//76ZMWMGbSDnfVUZ2lonl0GfTndy+Sn7rGDWhe/FkmUXz44TtP3tb3+baCiTt3iaFUK29mhT+R5f57F+TjjhhIrrxb12ouxPnjyZdsdYKVYbsM/6WX/W3qzP5DwEkhAYOHCg+c1vfhOrzbe677dazvjx45MU0XsY6W2yPvDf//7XfPHFF8F+vReSb731lunRo4cZPHiw93zUihBRuRaV7I61TFR+5JFHKgY3X331VaRS2dUhNQBabLHFYn3ueOihhwZpaiZt1m777bevKF+UAVu7/Jx88slecbj2lDW7YcUVV4z1k/02yyILe8oqbNyFSmx+2HYL6wYWsKAN0AZoA7SBqG3At404PbBojGDTT2JqS+OBvMXTbECmxWxsmdly/dEGaAN5bwOHHXZYs26N8xDIHYGk5oLacT36Hl81qozp06cbvTDSl+R77rmn2WCDDYKF9qT51Cu7tB0J9JtuuqnZb7/9zIUXXmjWWWedwP/UqVMbJeftHKKyN5SRImqZqPzCCy9UNLzPPvssUgZlZ8Q2WF3scdyUKVOCsOeff36cYIn8Pvjgg+a4447L9W/XXXcNePh8g1xtT1lCfly32WabhXWchT1l5efwww8P0jjwwANzXUd5b0NFz5/sBA4fPpw2kPO+qujtrJPzf8ABBxj16X/961+5zjr4Ojv++ONNFg8OsqW8yy67mNNOO81EXfC51pgkb/HUyqM9dt1113EtdfC1lPR+st5664Vja/scFWc7bNgw2h3tLlYbUJtRG7v44ott98UWAoUh0K9fP7PMMsvEavNJ++ek4TT+0TWmcUFWTl/1/uMf/zA777xzhckxpasJniussILZaKONzE477WRkt1gvkY455hhz9NFHB/t6ztZky3XXXdfUeinep0+fQGi+5ZZbUo3jmpUfUbkZIb/nWyYqv/POOxWDm08++SRSSSSA2kGQZsDGcbK3p7ASl3HGZGFTudqe8p133hkLtWwbum+6srCnrAxZ8xd624aDAAQgAAEIQAACEIBAWQlYUwT2GSrOVsJBVHODZeVHueITwKZyfGaEyA+BTrap/PHHHxuZL11zzTVD3U1fhkk81iSR22+/3UjzkbnXuO6bb74xq666avCl2d577x2k0b179yAd3Ws0oVBroMmMhk+HqOyTZvO4WiYqa7VHd0AT1STFeeedF4aTrZuoTjNo+/btG/zSrBAeNb0i+MtCVNabLLdeZVMnjrMDEBtHFvaUlR9E5Ti1gl8IQAACEIAABCAAgaIS0OQd++Bux9hRtxIWcBCIS8A+0/n8IjZuHvAPgaQEOk1U1roXWmNCNo7tvUIziw855BAzadIk89133yVFWRHu5ptvDrQifWFmncyQyS70HnvsYXr27Bmcl4i91157meeee856S7VFVE6FL3bglonKypk7Bf7ZZ5+NlFlrtkADIU2nj+qs6YuzzjorapDS+8tCVN59991DUbl///6xGZ555plh+KzsKStTiMqxq4YAEIAABCAAAQhAAAIFJaDPkaMKya6/hx9+uKAlJtvtJICo3E76pJ2WQKeIypptfP311wc2j9Xv64txibkyC+Z7geV58+YF9pelAdb7+kV+brvtNiMTlVbc3nDDDQNhO02dbr755sH9T/ad8/yTqF6GF3EtFZVlm8UOWvRZVhRn7QAr3N///vcoQQI/ml6vhqnp/Lj/EfAtKlfbUz744INjo5YBd9smsrKnrEwhKseuGgJAAAIQgAAEIAABCBSUwA8//GBWWWWVcJxtx9uNtpqlhoNAEgKIykmoESYvBMouKku3ufXWW41sGuseIKFXJi/SrE/RrO4Uv9KKKpq+++67wTpYSy21VBBOawM8+eSTzZKped7an956663NDjvskNufbFNn9aV+TTAZHWypqOyaSrjkkksiFUlvKuzg54MPPogUZs6cOUaNccstt4zkv1M8+RaV33rrrbBuVEeytxPHtcqesvKEqBynZvALAQhAAAIQgAAEIFB0Am+88YZZbbXVKsbr9rmqejt06FDz/fffF73I5L9NBBCV2wSeZL0QKLOo/NJLLwUL56nP7927t7n00kuNZghn6WT6VrNwBwwYYBYuXBgrKZlTPfbYY8N1t3RvmjFjRqw4MH8RC1dqzy0VlefOnRtMP1eD3nHHHZtmXrZc7CJuMhQe1V199dXB4ElT6XG/EvAtKrsvCVSnn3766a+JRdh74oknKga5Wb6lQVSOUCF4gQAEIAABCEAAAhAoFQFN4jjuuOOMFkWqFpL1f5lllok9MaRUgCiMFwKIyl4wEkmbCJRRVJZwfNRRRwV9v8yMnnTSSUYL57XC6Qt23V9knzmp09oAf/7zn4N4ZMJi1KhRJupaaYjKSaknC9dSUVlZPPTQQ4OGoYatGcWN3MSJE8PBjwTRqG7dddcNBkgaROF+JeBbVHbtKevzurhO9q7t4DZLe8rKF6Jy3NrBPwQgAAEIQAACEIBAWQho5pieBaytZS3Q9PTTTzM7uSwV3OZyICq3uQJIPhWBsonKL774Ymj+aLPNNjPvvPNOKj5xAk+bNs306NHDbLHFFnGC1fWrtdJWXnnlQDdSnDNnzqzr155AVLYkWrNtuagsIblv375Bo9DU+3pObyE02JHoGGeBvtdffz0II/EaV0nAp6hcbU955MiRlYlF+KcOzorKWdpTVlYQlSNUCF4gAAEIQAACEIAABEpN4MMPPwzG36ecckqpy0nhWksAUbm1vEnNL4EyicpXXnml0YQ9mYPVftTZvb6IbrfddsHaZlOnTvUVZWCu48gjjwzilQmPZgvKIip7Qx8popaLysrVCy+8EDRyNfZnnnmmZkbPO++8YMAjOyxfffVVTT+1Dh5zzDFBONmOwVUS8CkqV9tTHj9+fGViTf4tWLAgaANWVD7jjDOahEh3GlE5HT9CQwACEIAABCAAAQgUnwCicvHrMI8lQFTOY62Qp6gEyiAqS1/ZZ599Ai1MtvQ1Y7jVTrOKpe/st99+mSQtcxoy2SRzThdffHHdNBCV66LJ5ERbRGWVRKLkWmutFdhYlqD4/vvvG9lQ1lR9GeNWY5R5BR2L6n788cfA+Piaa64ZNUhH+fMpKlfbU47yGYILWyt5WkFZ2yztKStdRGWXPvsQgAAEIAABCEAAAp1IAFG5E2s9+zIjKmfPmBSyI1B0UVmTMDfeeONAX9ltt91iaWi+qC5atMisvfbagb4XVxuKkwfZWpaOKA3pwAMPND///HOX4IjKXZBkeqBtorJKJRH47rvvNsOGDTMSgldccUWz/vrrm8MPP9wkmWk8YcKEoHFdfvnlmUIrauQ+ReWtttoqFIX79OkTG4lW9LSist40Zb0CKaJy7CoiAAQgAAEIQAACEIBAyQggKpesQnNSHETlnFQE2UhEoMii8qeffmp+97vfBdrKySef3HJzFxb4zTffHOTh1FNPtYcy22ri6Y477hikt/POO5vqtdQQlTNDXzPitorKNXOU4uC2224b2I+ZPXt2iljKGzSpqCzx/4knngheAIwdOzawcW0FYW21GucVV1xhJOo/9NBDZtasWV0gPvXUU8Hqn3feeac5/vjjg3py4zj77LONzimP06dP7xI+7QFE5bQECQ8BCEAAAhCAAAQgUHQCiMpFr8F85h9ROZ/1Qq6iESiqqKz1yvr16xfYGr7qqquiFTYDX5oguPzyy5tll13WfPvttxmk0DXKhQsXmhEjRgTC8mmnnVbhAVG5Akfmf0ojKkvI1CqTu+66a+bQippAUlFZgwTNJpYN7F69egUmRtRpaIay7Txk20bisupA9rBdN2PGjOC4wvfs2TOwg7PccssF4VdYYYWg83HDZ2GDB1HZrRH2IQABCEAAAhCAAAQ6kQCicifWevZlRlTOnjEpZEegqKKyNLD+/fsbTfxrp7ProV177bUtzYYWIbzxxhu72I9GVG5pNZjSiMoXXHBB8JZCxrtxtQkkFZVrx1aso4jKxaovcgsBCEAAAhCAAAQg4J8AorJ/psRoDKIyraDIBIoqKueB+eeffx5MHBwwYIDR7OE8OETl1tZCKURlvaFYeeWVgxmveWnIra3GaKkhKnfLxLRGNPr4ggAEIAABCEAAAhCAQHsJICq3l39ZU0dULmvNdka5EJWT1/PBBx+cu8mdiMrJ6zNJyFKIyrLXK/u8J510UhIGHRMGURlRuWMaOwWFAAQgAAEIQAACEOhCAFG5CxIOeCCAqOwBIlG0jQCicnL0q666qhkyZEjyCDIIiaicAdQGUZZCVN5///0DUfndd99tUFROISojKnMVQAACEIAABCAAAQh0LgFE5c6t+yxLjqicJV3izpoAonJywnPnzjULFixIHkEGIRGVM4DaIMrCi8paXVILxG288cYNiskpEUBURlTmSoAABCAAAQhAAAIQ6FwCiMqdW/dZlhxROUu6xJ01AUTlrAm3Nn5E5dbyLryorNUeZfpi9OjRrSVXwNQQlRGVC9hsyTIEIAABCEAAAhCAgCcCiMqeQBJNBQFE5Qoc/CkYAUTlglVYk+wiKjcB5Pm0F1FZi+MtvvjibbFpvNdee5levXqZ7777zjOa8kWHqIyoXL5WTYkgAAEIQAACEIAABKISQFSOSgp/cQggKsehhd+8EUBUzluNpMsPonI6fnFDexGVlejrr79u5s2bFzf91P5nzJhh/v3vf6eOpxMiQFRGVO6Edk4ZIQABCEAAAhCAAARqE0BUrs2Fo+kIICqn40fo9hJAVG4vf9+pIyr7Jto4Pm+icuNkOJsHAojKiMp5aIfkAQIQgAAEIAABCECgPQQQldvDveypIiqXvYbLXT5E5XLVL6Jya+sTUbm1vNuaGqIyonJbGyCJQwACEIAABCAAAQi0lQCiclvxlzZxROXSVm1HFAxRuVzVjKjc2vpEVG4t77amhqiMqNzWBkjiEIAABCAAAQhAAAJtJYCo3Fb8pU0cUbm0VdsRBUNULlc1Iyq3tj4RlVvLu62p3XPPPaZbt25m2LBh5sILL+yo3xZbbBGUffr06W2tAxKHAAQgAAEIQAACEIBAuwggKreLfLnTRVQud/2WvXSIyuWqYUTl1tYnonJrebc1tRtuuCEQViUsd+pv2rRpba0DEocABCAAAQhAAAIQgEC7CCAqt4t8udNFVC53/Za9dIjK5aphROXW1ieicmt5tz21J554wrz22msd93vllVfMCy+80Hb+ZAACEIAABCAAAQhAAALtIoCo3C7y5U4XUbnc9Vv20hVJVB49erT57rvv+DVgcNBBBwWTKL/88suyN91clA9RORfVQCYgAAEIQAACEIAABCAAAQhkSwBROVu+nRo7onKn1nw5yl0EUXnUqFEd+7V50q/sP/3003I00JyXAlE55xVE9iAAAQhAAAIQgAAEIAABCPgggKjsgyJxVBNAVK4mwv8iESiCqPzJJ5+YddZZx+yzzz5m5MiR/Bow2GWXXYzW1MK1hgCicms4kwoEIAABCEAAAhCAAAQgAIG2EkBUbiv+0iaOqFzaqu2IghVBVO6IiqCQhSSAqFzIaiPTEIAABCAAAQhAAAIQgAAE4hFAVI7HC9/RCCAqR+OEr3wSQFTOZ72Qq2IQQFQuRj2RSwhAAAIQgAAEIAABCEAAAqkIICqnwkfgOgQQleuA4XAhCCAqF6KayGROCSAq57RiyBYEIAABCEAAAhCAAAQgAAGfBBCVfdIkLksAUdmSYFtEAojKRaw18pwXAojKeakJ8gEBCEAAAhCAAAQgAAEIQCBDAojKGcLt4KgRlTu48ktQdETlElQiRWgbAUTltqEnYQhAAAIQgAAEIAABCEAAAq0jgKjcOtadlBKicifVdvnKiqhcvjqlRK0jgKjcOtakBAEIQAACEIAABCAAAQhAoG0EEJXbhr7UCSMql7p6S184ROXSVzEFzJAAonKGcIkaAhCAAAQgAAEIQAACEIBAXgggKuelJsqVD0TlctVnp5UGUbnTapzy+iSAqOyTJnFBAAIQgAAEIAABCEAAAhDIKQFE5ZxWTMGzhahc8Ars8OwjKnd4A6D4qQggKqfCR2AIQAACEIAABCAAAQhAAALFIICoXIx6KlouEZWLVmPk1yWAqOzSYB8C8QggKsfjhW8IQAACEIAABCAAAQhAAAKFJICoXMhqy32mEZVzX0VksAEBROUGcDgFgSYEEJWbAOI0BCAAAQhAAAIQgAAEIACBMhBAVC5DLeavDIjK+asTchSdAKJydFb4hEA1AUTlaiL8hwAEIAABCEAAAhCAAAQgUEICiMolrNQcFAlROQeVQBYSE0BUToyOgBAwiMo0AghAAAIQgAAEIAABCEAAAh1AAFG5Ayq5DUVEVG4DdJL0RgBR2RtKIupAAojKHVjpFBkCEIAABCAAAQhAAAIQ6DwCiMqdV+etKDGicisok0ZWBBCVsyJLvJ1AAFG5E2qZMkIAAhCAAAQgAAEIQAACHU8AUbnjm0AmABCVM8FKpC0igKjcItAkU0oCiMqlrFYKBQEIQAACEIAABCAAAQhAoJIAonIlD/75IYCo7IcjsbSHAKJye7iTajkIICqXox4pBQQgAAEIQAACEIAABCAAgYYEEJUb4uFkQgKIygnBESwXBBCVc1ENZKKgBBCVC1pxZBsCEIAABCAAAQhAAAIQgEAcAojKcWjhNyoBROWopPCXRwKIynmsFfJUFAKlFZV/+eUXM2XKFDNz5syi1AX5hAAEIAABCEAAAhCAAAQgkBkBROXM0HZ0xIjKHV39hS88onKyKkRzS8atbKFKKSovWrTIDBw40HTr1s306NHDjBkzpmz1RnkgAAEIQAACEIAABCAAAQjEIoCoHAsXniMSQFSOCApvuSSAqBy/WtDc4jMra4hSisqTJ08OBGWJyvqtscYaZa0/ygUBCEAAAhCAAAQgAAEIQCASAUTlSJjwFJMAonJMYHjPFQFE5fjVgeYWn1lZQ5RSVH7//fdN9+7dQ2F56NChZa0/ygUBCEAAAhCAAAQgAAEIQCASAUTlSJjwFJMAonJMYHjPFQFE5fjVgeYWn1lZQ5RSVFZljRo1yvTr18/stNNO5u233y5r/VEuCEAAAhCAAAQgAAEIQAACkQggKkfChKeYBBCVYwLDe64IIConqw40t2TcyhaqtKJy2SqK8kAAAhCAAAQgAAEIQAACEEhDAFE5DT3C1iOAqFyPDMeLQABRuQi1RB7zSgBROa81Q74gAAEIQAACEIAABCAAAQh4JICo7BEmUYUEEJVDFOwUkACicgErjSznhgCicm6qgoxAAAIQgAAEIAABCEAAAhDIjgCicnZsOzlmROVOrv3ilx1Rufh1SAnaRwBRuX3sSRkCEIAABCAAAQhAAAIQgEDLCCAqtwx1RyWEqNxR1V26wiIql65KKVALCSAqtxA2SUEAAhCAAAQgAAEIQAACEGgXAUTldpEvd7qIyuWu37KXDlG57DVM+bIkgKicJV3ihgAEIAABCEAAAhCAAAQgkBMCiMo5qYiSZQNRuWQV2mHFQVTusAqnuF4JICp7xUlkEIAABCAAAQhAAAIQgAAE8kkAUTmf9VL0XCEqF70GOzv/iMqdXf+UPh0BROV0/AgNAQhAAAIQgAAEIAABCECgEAQQlQtRTYXLJKJy4aqMDDsEEJUdGOxCICYBROWYwPAOAQhAAAIQgAAEIAABCECgiAQQlYtYa/nPM6Jy/uuIHNYngKhcnw1nINCMAKJyM0KchwAEIAABCEAAAhCAAAQgUAICiMolqMQcFgFROYeVQpYiE0BUjowKjxDoQgBRuQsSDkAAAhCAAAQgAAEIQAACECgfAUTl8tVpHkqEqJyHWiAPSQkgKiclRzgIGIOoTCuAAAQgAAEIQAACEIAABCDQAQQQlTugkttQRETlNkAnSW8EEJW9oSSiDiRQWlH5l19+MVOmTDEzZ87swGqlyBCAAAQgAAEIQAACEIAABCoJICpX8uCfHwKIyn44Ekt7CCAqJ+OO5paMW9lClVJUXrRokRk4cKDp1q2b6dGjhxkzZkzZ6o3yQAACEIAABCAAAQhAAAIQiEUAUTkWLjxHJICoHBEU3nJJAFE5frWgucVnVtYQpRSVJ0+eHAjKEpX1W2ONNcpaf5QLAhCAAAQgAAEIQAACEIBAJAKIypEw4SkmAUTlmMDwnisCiMrxqwPNLT6zsoYopaj8/vvvm+7du4fC8tChQ8taf5QLAhCAAAQgAAEIQAACEIBAJAKIypEw4SkmAUTlmMDwnisCiMrxqwPNLT6zsoYopaisyho1apTp16+f2Wmnnczbb79d1vqjXBCAAAQgAAEIQAACEIAABCIRQFSOhAlPMQkgKscEhvdcEUBUTlYdaG7JuJUtVGlF5bJVFOWBAAQgAAEIQAACEIAABCCQhgCichp6hK1HAFG5HhmOF4EAonIRaok85pUAonJea4Z8QQACEIAABCAAAQhAAAIQ8EgAUdkjTKIKCSAqhyjYKSABROUCVhpZzg0BROXcVAUZgQAEIAABCEAAAhCAAAQgkB0BROXs2HZyzIjKnVz7xS87onLx65AStI8AonL72JMyBCAAAQhAAAIQgAAEIACBlhFAVG4Z6o5KCFG5o6q7dIVFVC5dlVKgFhJAVG4hbJKCAAQgAAEIQAACEIAABCDQLgKIyu0iX+50EZXLXb9lLx2ictlrmPJlSQBROUu6xA0BCEAAAhCAAAQgAAEIQCAnBBCVc1IRJcsGonLJKrTDioOo3GEVTnG9EkBU9oqTyCAAAQhAAAIQgAAEIAABCOSTAKJyPuul6LlCVC56DXZ2/hGVO7v+KX06AojK6fgRGgIQgAAEIAABCEAAAhCAQCEIICoXopoKl0lE5cJVGRl2CCAqOzDYhUBMAojKMYHhHQIQgAAEIAABCEAAAhCAQBEJICoXsdbyn2dE5fzXETmsTwBRuT4bzkCgGQFE5WaEOA8BCEAAAhCAAAQgAAEIQKAEBBCVS1CJOSwConIOK4UsRSaAqBwZFR4h0IUAonIXJByAAAQgAAEIQAACEIAABCBQPgKIyuWr0zyUCFE5D7VAHpISQFROSo5wEDAGUZlWAAEIQAACEIAABCAAAQhAoAMIICp3QCW3oYiIym2ATpLeCCAqe0NJRB1IoLSi8i+//GKmTJliZs6c2YHVSpEhAAEIQAACEIAABCAAAQhUEkBUruTBPz8EEJX9cCSW9hBAVE7GHc0tGbeyhSqlqLxo0SIzcOBA061bN9OjRw8zZsyYstUb5YEABCAAAQhAAAIQgAAEIBCLAKJyLFx4jkgAUTkiKLzlkgCicvxqQXOLz6ysIUopKk+ePDkQlCUq67fGGmuUtf4oFwQgAAEIQAACEIAABCAAgUgEEJUjYcJTTAKIyjGB4T1XBBCV41cHmlt8ZmUNUUpR+f333zfdu3cPheWhQ4eWtf4oFwQgAAEIQAACEIAABCAAgUgEEJUjYcJTTAKIyjGB4T1XBBCV41cHmlt8ZmUNUUpRWZU1atQo069fP7PTTjuZt99+u6z1R7kgAAEIQAACEIAABCAAAQhEIoCoHAkTnmISQFSOCQzvuSKAqJysOtDcknErW6jSisplqyjKAwEIQAACEIAABCAAAQhAIA0BROU09AhbjwCicj0yHC8CAUTlItQSecwrAUTlvNYM+YIABCAAAQhAAAIQgAAEIOCRAKKyR5hEFRJAVA5RsFNAAojKBaw0spwbAojKuakKMgIBCEAAAhCAAAQgAAEIQCA7AojK2bHt5JgRlTu59otfdkTl4tchJWgfAUTl9rEnZQhAAAIQgAAEIAABCEAAAi0jgKjcMtQdlRCickdVd+kKi6hcuiqlQC0kgKjcQtgkBQEIQAACEIAABCAAAQhAoF0EEJXbRb7c6SIql7t+y146ROWy1zDly5IAonKWdIkbAhCAAAQgAAEIQAACEIBATgggKuekIkqWDUTlklVohxUHUbnDKpzieiWAqOwVJ5FBAAIQgAAEIAABCEAAAhDIJwFE5XzWS9Fzhahc9Brs7PwjKnd2/VP6dAQQldPxIzQEIAABCEAAAhCAAAQgAIFCEEBULkQ1FS6TiMqFqzIy7BBAVHZgsAuBmAQQlWMCwzsEIAABCEAAAhCAAAQgAIEiEkBULmKt5T/PiMr5r6O85/Czzz4zH3zwQVuyiajcFuwkWhICiMolqUiKAQEIQAACEIAABCAAAQhAoBEBROVGdDiXlACiclJyhPv555/N+PHjzTLLLGO22267tgBBVG4LdhItCQFE5ZJUJMWAAAQgAAEIQAACEIAABCDQiACiciM6nEtKAFE5KbnODDd27Fhz1llnmb333tssu+yyplevXqZbt25myy23bAsQROW2YCfRkhBAVC5JRVIMCEAAAhCAAAQgAAEIQAACjQggKjeiw7mkBBCVk5LrzHASlI8//nhzxx13mDlz5pgDDjggEJWHDBnSFiCIym3BTqIlIYCoXJKKpBgQgAAEIAABCEAAAhCAAAQaEUBUbkSHc0kJIConJUc4EbCiMjOVaQ8QKB4BROXi1Rk5hgA8wobOAAAgAElEQVQEIAABCEAAAhCAAAQgEJsAonJsZASIQABROQIkvNQlgKhcFw0nIJB7AojKua8iMggBCEAAAhCAAAQgAAEIQCA9AUTl9AyJoSsBROWuTDgSnQCicnRW+IRA3gggKuetRsgPBCAAAQhAAAIQgAAEIACBDAggKmcAlSgNojKNIA0BROU09AgLgfYSQFRuL39ShwAEIAABCEAAAhCAAAQg0BICiMotwdxxieRJVP7ll1/MF198YV599VXz/PPPm5kzZ5qFCxd2XJ0UqcCIykWqLfIKgUoCiMqVPPgHAQhAAAIQgAAEIAABCECglAQQlUtZrW0vVLtF5QULFpiJEyeaPfbYwyy99NLBb8CAAWattdYyyyyzjOnRo4fZYostzLXXXmu+/PLLWLzef/9989xzz2XymzdvXpe8fPXVV+bTTz/N9Ddnzpwu6bbzAKJyO+mTNgTSEUBUTseP0BCAAAQgAAEIQAACEIAABApBAFG5ENVUuEy2U1S+5557TN++fU23bt3MZpttZiZNmmQkMlunmcuasSzhcrHFFjM9e/Y0F198sfnpp5+sl4bb/fbbL4hb8fv+iVu123jjjb2nU53vHXfcsTrZtv5HVG4rfhKHQCoCiMqp8BEYAhCAAAQgAAEIQAACEIBAMQggKhejnoqWy3aIyt9//73ZeeedAwF2qaWWMuPGjWuK7aWXXjIrrbRSEGa11VYz06dPbxrmhx9+MJrZO2PGjMB29Lrrrlsh+u69997mP//5T+Bn7ty5xv19/fXXwbmpU6eam266KZgt7Qq8Y8eO7ZL+KqusEsa/3HLLmfPPP9/cfffd5plnnjGvvPKKee2118yLL75oLrvsMtO9e/fQ7xJLLGFGjx5tVEb5efnll4MwEyZMMGeddZbp3bt36HeDDTbokm47DyAqt5M+aUMgHQFE5XT8CA0BCEAAAhCAAAQgAAEIQKAQBBCVC1FNhctkq0Xl2bNnm/XWWy8QSTXz+Mknn4zMTDaW+/fvH4SV0CrxNY678cYbQ3FWAvFtt90WJ7iRkCyTHAp79tlndwlrz51xxhmmlnkMN4ArFKtMjZzE7mOOOSZIt1+/fjW9Dh8+PDAVohndaX6LL754kFbNRGocRFSuAYVDECgIAUTlglQU2YQABCAAAQhAAAIQgAAEIJCGAKJyGnqErUeglaKyZg7LVrKd8XvrrbfWy1bd4++8805gd1lx9OrVy+h/VCcR2aat7Z133hk1aOhPM48VdsSIEeEx7fz444/B8WHDhlUcr/enT58+YV7WXnvtet4qjg8ZMiQwAVJx8P//0SznUaNGmSuvvDLV76qrrjJvvPFGrSRqHkNUromFgxAoBAFE5UJUE5mEAAQgAAEIQAACEIAABCCQjgCicjp+hK5NoJWishUgJcrutttutTMU4aiEUysOr7HGGk1nBdsofYjKsvMsYXzzzTe30QbbWbNmBXl67LHHKo7X+5NEVL7rrruCNObPn18v2pYft3W65ZZbtjxtJfj73//erLrqqm1JO06iCxcuDF486OUDv8YMdI3hWkMAUbk1nEkFAhCAAAQgAAEIQAACEIBAWwkgKrcVf2kTb5WoPHHixFAIliD85ptvJmaqhfpks9gKy0ceeWSkuHyIykpozJgxwQKDbqKyhSzTERIMo7gkovKXX34ZlFl2oPPiEJWb14RsY9u2yrb5opky3/Ltt982B4uP1AQQlVMjJAIIQAACEIAABCAAAQhAAAL5J4ConP86KmIOWyEqL1q0yPzud78LhTWZcUjrzj333DA+LXQXRWj1JSpLEJeArNmn1j3yyCNGCwhGdUlEZcW97LLLxrYlHTVPSfwhKjendvvttwdtdeONNzb77rsvvwYMrM10vUDBZU8AUTl7xrlJQTdJrVYrA/wHHXRQR/123313ow446lvf3FQaGYEABCAAAQhAAAIQgIAnAojKnkASTQWBVojKsl3sztC85ZZbKvKQ5M+MGTMq4jz00EObRuNLVNZM6Wohe/z48Wa77bZrmgfrIamovOGGG5rJkyfbaNq+3X///YN6GDx4cFvyUgTzF5MmTQoYqY3gGhM44ogjAlaIyo05+TqLqOyLZAHikcF890bcifuvvvpqAWqKLEIAAhCAAAQgAAEIQMA/AURl/0yJ0ZhWiMpbb711xbPsRx995AW9K8wuvfTSTSchxRWVL730UvP888/XzOuaa65pnnrqqfDc5ZdfbkaOHBn+b7bj5j3qQn2Kc+jQoWbs2LHNos/s/IIFCwLTBJ9//rl54YUXAnvG0iZ69+4dtKX//ve/5ptvvjGtsvuMqJxZVbclYkTl1mJHVG4t77am9sADDwQ34htuuCHoxGVjplN+J5xwQlD26dOnt7UOSBwCEIAABCAAAQhAAALtIoCo3C7y5U43a1F53rx5ZskllwxFZZlv8OX22muvMF4Jm1OmTGkYdVxRedNNNzUyXVDLzZ492/zwww/hKX1ZHEcsTyoq65n4s88+C9Nt9c6IESOMBPxlllkmEJJl23qFFVYIbFxLWNZxnW/Vwn2Iyq1uAdmmh6icLd/q2BGVq4mU+L8VlceNG1fiUtYu2umnn46oXBsNRyEAAQhAAAIQgAAEOoQAonKHVHSLi5m1qGyfY+2Xtttss423El588cUVovLxxx/fMO64ovKAAQPqisoNE4pwMqmoHCHqjvKCqFyu6kZUbm19Iiq3lndbU7M3Y0TltlYDiUMAAhCAAAQgAAEIQKAtBBCV24K99IlmLSrLhIQVlLXdZ599vDEdPXp0Rdzbb799w7jjiMrTpk0L4q43U7lhQhFOIipHgBTBC6JyBEgF8oKo3NrKQlRuLe+2poao3M1g/qKtTZDEIQABCEAAAhCAAATaSABRuY3wS5x01qKyZg+7ovKRRx7pjebdd99dEbcWtm/koorKL730kllrrbUQlRvBzMk5ROWcVISnbCAqewIZMRpE5YigyuANURlRuQztmDJAAAIQgAAEIAABCCQjgKicjBuhGhPIWlTed999K4TfM888s3GGYpy1ebeitWz7NnLVovIqq6xiNtxww/DXv3//wB6wjU9bZio3Itr+c4jK7a8DmwOt+aUvEV599VV7KPYWUTk2slQBvInKWsGzHW7RokUVxu3bkYeipImojKhclLZKPiEAAQhAAAIQgAAE/BNAVPbPlBiNscLstddemwkOLezmirRnnHGGt3Rs3m38q666asO4q0XloUOHGuXH/jSLepdddjHLL798mGdE5YZI234SUbntVRBm4OSTTw6umwkTJoTH4u4gKsclls6/N1FZb/SuvPLKdLlJEPqQQw4x/fr1Mz/99FOC0J0VBFEZUbmzWjylhQAEIAABCEAAAhBwCSAquzTY90XACrNZicpWaLLC71FHHeUr6+b+++8PxV/Fv9122zWMu1pUvvPOO2v6nzdvnrFiOKJyTUS5OYionI+qmDFjRjDLf+211zaaPJrUISonJZcsnBdRWVPU1QFL4G21u+SSS4K0J06c2OqkC5ceojKicuEaLRmGAAQgAAEIQAACEPBGAFHZG0oicghkLSr//e9/rxB+ZQ7Dlxs/fnxF3EcffXTDqKOKyorkyy+/NEsssQTmLxoSbf9JROX214FyMHz48OBanDJlSqoMISqnwhc7sBdRee7cuUHlH3zwwbEzkDbA559/bhZffPGmbxTTplOG8IjKiMplaMeUAQIQgAAEIAABCEAgGQFE5WTcCNWYQNai8tNPP10h/G6xxRaNMxTj7Omnn14Rd7Ovr+OIysqGFv5jpnKMCmmDV0TlNkCvSlI2lLt372623377qjPx/yIqx2eWJkTbReWvv/7a3HDDDeaEE04wBxxwgNGnLZMnTzY///xz5HLttNNOpkePHuazzz6LHKYTPSIqIyp3YrunzBCAAAQgAAEIQAAC/yOAqExLyIJA1qKytIFlllkmFH979eplfvnlFy9FkbkLa1ZD22eeeaZhvHFF5cGDByMqNyTa/pOIyu2vA70okqY3bdq01JlBVE6NMFYEbROV58+fbw477DCz1FJLGXW0Y8aMMffdd5+58MILzYorrmh69+5t7rrrrkiFuffee4MbwUUXXRTJf6d6QlRGVO7Utk+5IQABCEAAAhCAAASMQVSmFWRBIGtRWXkeNmxYhfj73nvveSnKsssuG8a71lprNY0zrqj8xBNPmI8//rhpvEk89OnTJ8y77NDikhFAVE7GzVcoa9f80EMP9RIlorIXjJEjaYuoLJMVG2ywQdABapZytfvxxx+NVlHVm8LDDz+8+nSX/1qkTzeD/v37dznHgV8JICojKv/aGtiDAAQgAAEIQAACEOg0AojKnVbjrSlvK0Tl5557LhRQpRNcdtllqQv38ssvV8Q5duzYpnHGFZWbRpjCA6JyCnhOUERlB0aLd/UVwmqrrWZ69uxppBP6cIjKPihGj6MtovLWW28ddN4ydVHPaSbzoEGDAn+1hOfqcMcdd1zgVzcbXG0CWYjKs2bNMlrxVgslTpo0yTz66KPmqaeeMs8++2yw1X8d1/k77rjDzJ49uyJzc+bMCWakT5gwIVh595FHHjFPPvlkEF62sx577DGjfN99991BOh999FFF+Kh/rK2s6dOnRw2CPwhAAAIQgAAEIAABCJSKAKJyqaozN4VphaiswlodQaLymmuu2bD8mqimZ81Gbu+99w5FZU1SU5hmDlG5GaHinUdUbl+dXX311cE1eP7553vLBKKyN5SRImq5qCwj9boJyA7Sd9991zCTdiVWvbXQAKiRe+utt4J4R44c2chbR5/LQlS+/PLLA/tWWtVW9Vrvt/TSS5sVVljBSCh2nUyXyNSJzKDUC6vjOq8b/a233uoGj7yPqBwZFR4hAAEIQAACEIAABEpKAFG5pBXb5mK1SlSeOnWqcZ87NYGp2klj2H///YNnT82AHDBggHnooYeqvZmZM2dWxBVlIpsiQVTugrLwBxCV21OF3377baDxLL/88uaHH37wlglEZW8oI0XUUlF54cKFZrnllgvEwz333LNpBufNmxdMg5eoqEX8mrn1118/EKsVDteVQBaispuKPlfo27dvKA5LSNYsZZknieL0JnmzzTYLw2v1z5tuuslLB4OoHKUG8AMBCEAAAhCAAAQgUGYCiMplrt32la1VorJKaGc2SiNYffXVjT6fd91+++1nTjjhhHAhv88++8xsvPHGRl/Guu7AAw8MnzslQkV1iMpRSRXHH6Jye+rqlFNOCa7BW265xWsGEJW94mwaWUtFZb0htLNRr7zyyqaZk4chQ4YEYTSzuZlYfN1112XSKCNltACeshaVtQKvuyqvbuhx3YYbbhi2kY022ihu8Lr+EZXrouEEBCAAAQhAAAIQgECHEEBU7pCKbnExWykqq2h/+ctfwmdGVxCeO3eu0cSm6i+iv/jiC7PiiiuGNlvPPvvsMPyf/vQno8lvUZ39mtrqGjIF2S6nMtl8DBw4sF3ZKHy6iMqtr8IZM2YE16oWmFy0aJHXDCAqe8XZNLKWisojRowIOz3ZyI3ihg8fHoapfrtYHd7eRDTbFdeVQNai8htvvBHWlW5u48aN65qJBke+//57s/jii4dxnHHGGQ18xzuFqByPF74hAAEIQAACEIAABMpHAFG5fHWahxK1WlTWZKYTTzwxfG4866yzAgxvv/222XzzzWsiOfzww43WdLrqqqvCcNINpCHEcZocZ4VcbaNOlouTRhS/MhcgM6E2LzIVWT1rO0o8rh/Nwt52222NRDmtk2SdeN9///1Gk8b+8Ic/mMGDB5vzzjvPfP3119ZLobeIyq2vvn333Tdou1OmTPGeOKKyd6QNI2ypqNy/f/+w03M7qUY5PP7448Mw2m/m9tlnHyOzCRow4SoJZC0qjxo1Kqwr3dxkpyqOk00se1PU9vHHH48TvKFfROWGeDgJAQhAAAIQgAAEINABBBCVO6CS21DEVovKtohjxowJv5TdcccdjdZZkrgqW63VTpPaNItZWoG+gr7mmmtCExnVft3/r7/+emDSUYvOX3DBBUH87jOrvtSVuQ19wq80Jk+ebF577TU3itT7ei5WvBJ277rrLnPRRReZ9dZbr+LZWXn64x//aC699NLA1IfMUCpM9ZpG9TJz8803m2HDhplPP/3UbL/99maxxRYz0g/0tbj+H3bYYUY2rTUL/MEHHzRLLrmkWWeddZp+TV4vvTwdR1RubW28+uqrwXWodpWFQ1TOgmr9OFsmKqvzUQduO+Bp06bVz5Vz5m9/+1sYJsoMZHW4SsPnLFcnO4XezVpUHjp0aFhXK6+8cmxWp512WhheCzD4NNaOqBy7OggAAQhAIDIBPbzpgVIPJK+88kqk1dMjR45HCEAAAhDwRgBR2RtKInIItEtUVha0Ls9RRx0VzNrVV68SjDfZZJNgcT5pDg8//HAw89aaaRw0aJDRp/f13HPPPWcWLFgQntbaTopTYrUWFJPJiZVWWin89enTJzimtaO0AL38aqKbT6c0Fa/iVz5WWGEFo3TdfGhfx3ROfmxeopjF0AxnhZegLHfxxRcHz+XSXyRU1/oCWTOWpbtIuC66Q1RubQ1uscUWpkePHiaqJhg3d4jKcYml898yUfm9994LBUN1PrbDapZ9rcJqhehVVlmlmffgbaMWi1OH6ts2S9PEc+4hS1FZn8ToxmXrauTIkbFp6IZlw2sg4NMhKvukSVwQgAAE/kdAs2C0SI770lj9uF4MbrXVVmb69OmgggAEIACBHBFAVM5RZZQoK+0UlS3G+fPnBzOF9RyqdZlWW201I/1ghx12CGYSawF4icI6rmfXek6zb9999916p0t5XDOsNW6zTqZC7HN5PfMeW265ZeBHAnTRHaJy62pQs+3Vtg455JDMEkVUzgxtzYhbJiq//PL/a+/Mg6Yo7gbMP1CA3FBgsPBALAETSwWMiSWggFhREbzLA0UU1BjL8kDjRTB4f4ISTy4lgqQ4CgWNeEE8MFGDCChGMVHkEvEEUQFJf/VrM+vuvrvvztEz09PzTNXWvrvb5/PrmXf3mZ6efxYOTDKINm3aVLFB5W/Kwd87oMkZNz+bt/C+LKfA9hOBOKVy+XrKcgODIJvMShYJ4cXa9ExzpHKQaJAWAhCAQP0Evv76a1V813Tv2F3+LJeZyo+R+n681V8Tn0IAAhCAgEkCSGWTNCnLI2CDVPbaUt/z8ccfr39vVru/kyzfKCfKP/vss/qKce4zWb6jeDaySFb5TidrJ1fbZBKfpJFlP7K+IZWTiaDMiJeTOrIWuF8fGKZl3kkRWYbm448/tvYhV0y48BspMansLUvh/eDcvHmzr/Exbdq0gmhs1qyZrzxr1qzR/wxOP/10X+nzkihOqVx8wwOJ8fr16wNhXbx4cSHOkt/kesrSEKRyoHCQGAIQgEC9BOQmLt7/cz/PsuY+GwQgAAEIpE8AqZx+DFxsQVaksrfcokxW++STT0pCsWPHDiWzb+WEuAuip6RzAV7IciKynrJ8v1u4cGHFnN5xRNL861//qpgmS28ilZOJlqxjLmPm5ptvjrXCnj17Bvqd4ue3TFxp/vjHP8bKIonCE5PKjz/+eElg/d4pVM6YFQdw+/btvrjIPwSR0HJQZPuRQJxS+cQTTyzEyc8yJeUxkTv2enE2vZ6y1IVULifOawhAAALhCEyZMqVwvPaO27We5QeaLIPFBgEIQAAC6RLwZNC1116bbkOo3SkCWZHKsv6v951FxLJcTSVXNz/44IN6BqV8Jjf8y/MmS5sJB/nuVs293HfffTqNzFZ2YUMqxx9Fuf+K7HOyBI3Je2dVarlMLpUxfMkll6irr77a2sc111yjby5aqQ9Zei8xqfzoo48WDuASYL+y97HHHivJ5/dSFC+fnA1h+5FAXFJZzuQWr6d8wQUXBEbeu3fvQpxNr6csjUEqBw4JGSAAAQjUISD/u+VGMfJ/POhD1jdkg0AUAvIdcPz48VoARJlFZls5UZiQFwJBCSCVgxIjvR8CWZHKIklrfY8RwZznTZbCkO94/fv3r4pBfq9LmiuvvLJqmix9gFSOP1pyIlPGjKxEEPfGmspxEy4tPzGpPGfOnJIfoH6lcrmMljMcfjY5+yH/MOTurmw/EohLKr/99tslsRWhH2STu+vKrHJPUJheT1naglQOEhHSQgACEKhMQC6D9I7VQZ932203JZeWskEgDAG5AVPxCWy5f0aYzbZywvSBPBCIQgCpHIUeeasRyIpUlvYPHz686neZTp06Kb++oRqLrL/fo0cPzefWW2+t2BVvqVH5Hrhs2bJCGrmSrdrM5kIiS/9AKscbGFk7WGa+//znP1e7du2KtzKlFFI5dsQlFSQmlZ999tmSg/fnn39e0pBqLx5++OFCPlnbJ8jMlAsvvFDnFekZ93buuecq+cFs86NJkyaahyw1YXIrX09Z1oWZOHGi74cnfD1BYXo9Zenr4MGDdd9laQ2bY0Tb4t2H5MYbjRs3ZgxYfqxiP4h3P4jCV/Yf71gd5pljsL2xjTIuyvPKieJx48aZ/Kqh5KZKxWNuzz33DFW+beXU6kT37t35n8X/LKNjwLsxtvyuKt93eZ2PY3QccfbG1eWXX17rsJb651999ZXq3Llzyf8U+f8iv5Vfe+211NuXZgNEqHvf9ZYsWVKxKTfddJNmJ/+fvE1uhiZLGyQhDL06TT63atVK35Mrjn3DVJmeyxH+SW1yIv7NN9/Us4uvu+46dcYZZ6jDDz9c7b///jrewk1ksdx4T/7u0KGDknEhVycOGzZMSVtlcqksKSP72AsvvJBI05HKiWAuVJKYVJYDdPGPgY0bNxYaUd8fkydPLuSTmcdBNhm0UmfcC4FLmyZNmqROOOEENWjQIGsf3oLl99xzTxCMNdMWr6csB005mAR5yIHIGxvyhSSONXbOO+88XYestW1zjGhbvPvPXnvtpXr16sUYsPg4xT4Q7z4QlW/btm0Lx2vvuB3kWWaCRG0D+e0eIxIfOZErkwlMbp9++qnypIWMuTBLbUl7bCunFiNZC5Axb/+Yz1KM+vbtq4/j8l09S+2mrXbvB4cddpgeV0kKr1rHz/o+//e//60uvvhitccee+j/LYcccojx/1v11W/rZ96a0/Wtp/zLX/5Sx/q2224rdEP+V40dO7bwOmt/yPFQ+mzzccZzObIOeFybeBi5KvGKK65QMmO9+HuXfPeSCVpy8kCksiyBIkukiDD+zW9+o/8+9NBD9drkIpjLfx/IyYo+ffpo0SwnLH744Ye4usFM5djIVi44MaksdwUtHlhy2YSfTdY08vLJzh5kk0sjJW9SZ0SCtC2NtHEsf1G+nrLMDg+6HXHEEYUYx7GesrTHmw29evXqoM0jPQQgAAEI/I+A/Gjw/ieHeZbLY9kgEJaA3ExJTuBff/31avPmzWGL0Wsy21RO6I6QEQIhCLD8RQhoZKlJIEvLX5R3Jk65VV6X7a+vuuoq/T2vvvtgnHzyyTrN7NmzdXcWL16slxzdunWr7d2r2r48L3+xbds2JcuXyvei4sl+Io9FssvJgieeeEK99957SmYu+91kPCxfvlztt99+WkaLFC9ez1yWNJPZzDIJwfQMd2Yq+42SmXSJSeVNmzaV/BD1uySFDGLvh+sBBxzgu9ciOzt27KgfQZbM8F1BBhPGIZXL11OeNWtWIDJyYJLZzV6M41hPWRqEVA4UFhJDAAIQqEig/P4I3rHbz7Ncap33dQorQuVNCEAAAgkSQConCDtHVWVZKucoTDW7etZZZ+nf5VOnTq2aViZpycxuEbGSXgT0J598UjV9Fj7Io1ResWKFvurLE72yvIZc1S1Xtb/77rtGwrZgwQI9nkaOHKnLkxM4//jHP/Rs5QMPPLDggORKSPE169evN1IvUtkIRt+FJCaVpUVytsP74VltjZ7ylstlKV4eOWj53bylL0yvH+y3fhvTxSGV77vvvkJ8JE5B/6F4X0C8GMexnrLEAqls44ikTRCAQNYIFN+cxTtu+33u1q1b1rpLeyEAAQg4RwCp7FxIreiQ95tOrjJmyy4BWW/6rbfe8tUBWULElAT0VWGMifIklcWTyTIU3vd3OUEg+63fe575DcPOnTtVly5d9HrLMsG00vbhhx8quR+X3CdD2iNi+8wzz1TvvPNOpeS+3zv66KN1eVK//P6w9SGTZmXCTta3RKWyTJ/3Bq9feN4N1iRfkLWAZRFxWfPlo48+ynqMjLU/Dql80kknFWIqNzwIuo0ePbqQP671lKVNSOWgkSE9BCAAgcoELr300sJx2/uf7uf5mWeeqVwg70IAAhCAQGIEkMqJoc5VRUjlXIXbuc7mQSrLpE5v7XPxLkOHDlXLli2LLZYPPPCA/r3g5/5msrKArOc9YMAAnUc83mmnnabk/1WYzStn77331mJb5LKND1mbOuiV/mF4xJ0nUalcPKv1zjvv9NU3uamW92NVzob52b788ksldx6X6ftsPxEwLZXL11MeMWLET5X5/EvuHurFN671lKUpSGWfASEZBCAAgRoE5CYe8iXNO3b7efYue6tRNB9DAAIQgEDMBJDKMQPOafFI5ZwG3pFuuyyV161bp7x1sEUmX3TRRWrt2rWxRk6Wu5NVCtq1a6fkd0OQbenSper444/XvzOkvaNGjVLffPNNkCK4UV8gWtETJyqV5XIKb/FvuUtkrU0W9/bW25U7Sfrd7r//fj0IZcFxtp8ImJbKcllCsUyYOXPmT5X5+Cup9ZSlKUhlHwEhCQQgAAGfBFauXKnv7lz8P6Da30OGDAn8ZdBnM0gGAQhAAAIBCSCVAwIjuS8CSGVfmEhkKQEXpbLc/E6u9G/RooV2NieeeKLyO0kzapiuu+46Xee0adNCFyUzq3v06KHL6dChgxKX5XdjTWW/pMykS1QqS5MvvPBCPTDkrIPMKK5vmzt3rk4rPyengSIAACAASURBVFSDDKKDDjpItWrVKtDdKetrhyufmZbKxTPPJUYbNmwIhEruFFssIeJaT1kahVQOFBoSQwACEKhJQE4MXnnllUpuwFd8LPf+lv/DQU821qyUBBCAAAQgEIkAUjkSPjJXIYBUrgKGtzNBwDWp/PHHH6vevXvr7+eyXvHzzz+fWBxkFrRMJP35z3+uRGxH2eTK+IkTJ2q3J78vhg8frmTiaa0NqVyLkNnPE5fKIpI7duyoB/hdd91VtTcygPr27avTBblBn9zFUgacyGu2UgKmpXLxespyKXTQTW6i6MkHOckQ9NKIIPUhlYPQIi0EIAAB/wTk5hvy/2XMmDGqa9eu+rg+e/ZsZif7R0hKCEAAAokRQConhjpXFSGVcxVu5zrrklR+8skntYSVdYnlPigyCSTJ7eyzz9a/BeSGgKY2mbw4cOBAXe6+++6r3n777XqLRirXi8f4h4lLZenBa6+9ptc8FpH4yiuvVOzU2LFj9aCRBbWD3Inysssu0/neeOONiuXm+U2TUrl8PeXzzz8/MNojjjhCx0rEcpzrKUvDkMqBw0MGCEAAAoEJXHPNNfq4zk1yA6MjAwQgAIFECCCVE8Gcu0qQyrkLuVMddkEqi5+58cYblcjk1q1bq2effTbxGL355pu6/mOOOSaWuidMmKDEIcpM6Dlz5lStA6lcFU0sH6QilaUnsh5v9+7d9YCQwf/BBx/oqeyvv/66kvUXRTTKTFg/09s9Mtu3b9c7ULdu3by3eC4iYFIql6+nPGPGjKKaav/5/fff6xML3kxlGQNxbkjlOOlSNgQgAIEfCSCVGQkQgAAE7CaAVLY7PlltHVI5q5Gj3UIg61JZ3Mppp52mHVrPnj2V3Jwvja1Pnz6qcePGatWqVbFVL76wbdu2Wl7fcsstFetBKlfEEtubqUll6ZFI4Hnz5qlTTjlFiQiWBbhlMe6LL75YhZlpLGcrRFKOHz8+NmBZLtikVC5fTznogevFF1/UsfKkcpzrKUvMkMpZHrm0HQIQyAoBpHJWIkU7IQCBvBJAKuc18vH2G6kcL19Kj5dAlqWyTMIUmSteRbxa0stdeJGRZTekDSNHjvTeiu15/fr16sADD9T1yRIfMku7eEMqF9OI/+9UpbLp7sk6KzIdfvPmzaaLdqI8k1K5X79+BSm8++67B+Zz+eWXF/LLTZ62bdsWuIwgGZDKQWiRFgIQgEA4AkjlcNzIBQEIQCApAkjlpEjnqx6kcr7i7VpvsyqV5Z5UvXr10l5FloEtl6tJxWnnzp1Klq1t0aKFknutJLGJTD/yyCN132+//faSKpHKJThif+GMVJazFTLVfvDgwbFDy2oFYaWyzChfvHixnlU+bdo0JTdO9GYYy7OsaXP33XfrdW0WLlyoJBbl20svvaTk7NWsWbPUVVddpeV/cRlygyf5TNq4evXq8uyRXyOVIyOkAAhAAAI1CSCVayIiAQQgAIFUCSCVU8XvbOVIZWdDm4uOZVUqy/G8WbNmavTo0anG6YEHHtB+SO6LluQmy378/ve/Vy+//HJJtUjlEhyxv3BGKst6KiIpRVyyVSYQVirLlwSZTSyzwFu2bKnXrW7Xrp2SGcry3KZNG32HUZHLIvbLDyZr167V70t+OXvVqlUrvQ6O5G/fvn2d/EOHDq3cgQjvIpUjwCMrBCAAAZ8EkMo+QZEMAhCAQEoEkMopgXe8WqSy4wF2vHtZlcoSlh9++CHV6GzZskX7HPFCMnPahg2pnGwUnJDKMs1/r7320oM57Z0q2fAFqy2sVA5Wi52pkcp2xoVWQQACbhFAKrsVT3oDAQi4RwCp7F5MbegRUtmGKNCGsASyLJXD9tlUvuuuu05P7pQr2m3ZkMrJRsIJqSxLK8gsZfkxy1adAFK5QSxLa1QnzicQgAAE8kUAqZyveNNbCEAgewSQytmLWRZajFTOQpRoYzUCSOVqZGq/37FjRyX8du3aVTtxQimQygmB/l81Tkjlc845R0vl9957L1l6GasNqYxUztiQpbkQgEDGCCCVMxYwmgsBCOSOAFI5dyFPpMNI5UQwU0lMBJDK4cG+//77id2cz28rkcp+SZlJl3mpLGu4yFq+hx12mBkiDpeCVEYqOzy86RoEIGABAaSyBUGgCRCAAATqIYBUrgcOH4UmgFQOjY6MFhBAKlsQBINNQCobhOmjqMxL5cmTJ+tZylOmTPHR3XwnQSojlfO9B9B7CEAgbgJI5bgJUz4EIACBaASQytH4kbsyAaRyZS68mw0CSOVsxMlvK5HKfkmZSWdEKsvN8Zo0aZLKmsann366atmypdq6dasZIg6XglRGKjs8vOkaBCBgAQGksgVBoAkQgAAE6iGAVK4HDh+FJoBUDo2OjBYQQCpbEASDTUAqG4TpoygjUlnqWbFihdq2bZuPKs0mWbt2rVq+fLnZQh0tDamMVHZ0aNMtCEDAEgJIZUsCQTMgAAEIVCGAVK4ChrcjEUAqR8JH5pQJIJVTDoDh6pHKhoHWKM6YVK5RDx9bQACpjFS2YBjSBAhAwGECSGWHg0vXIAABJwgglZ0Io3WdQCpbFxIaFIAAUjkArAwkRSonGySkcrK8U60NqYxUTnUAUjkEIOA8AaSy8yGmgxCAQMYJIJUzHkBLm49UtjQwNMsXAaSyL0yZSYRUTjZUSOVkeadaG1IZqZzqAKRyCEDAeQJIZedDTAchAIGME0AqZzyAljYfqWxpYGiWLwJIZV+YMpMIqZxsqJDKyfJOtbYFCxaoBg0aqEsuuUTNmTMnV48hQ4bovq9evTrVGFA5BCAAAZcJIJVdji59gwAEXCCAVHYhivb1AalsX0xokX8CSGX/rLKQEqmcbJSQysnyTrW2e+65R4tVEct5fbz11lupxoDKIQABCLhMAKnscnTpGwQg4AIBpLILUbSvD0hl+2JCi/wTQCr7Z5WFlEjlZKOEVE6Wd6q17dy5U916661q9uzZau7cubl6TJ8+Xd17772p8qdyCEAAAq4TQCq7HmH6BwEIZJ0AUjnrEbSz/UhlO+NCq/wRQCr745SVVEjlZCOFVE6WN7VBAAIQgAAEnCWAVHY2tHQMAhBwhABS2ZFAWtYNpLJlAaE5gQhkQSo/9NBD+mrzli1bqjZt2vCoh0Hz5s01q40bNwYaByQORwCpHI4buSAAAQhAAAIQKCOAVC4DwksIQAAClhFAKlsWEEeag1R2JJA57UYWpPKbb76pRXKvXr1Unz59eNTDoHv37qpTp05KrtRni58AUjl+xtQAAQhAAAIQyAUBpHIuwkwnIQCBDBNAKmc4eBY3HalscXBoWk0CWZDKNTtBAgikRACpnBJ4qoUABCAAAQi4RgCp7FpE6Q8EIOAaAaSyaxG1oz9IZTviQCvCEUAqh+NGLggIAaQy4wACEIAABCAAASMEkMpGMFIIBCAAgdgIIJVjQ5vrgpHKuQ5/5juPVM58COlAigSQyinCp2oIQAACEICASwSQyi5Fk75AAAIuEkAquxjV9PuEVE4/BrQgPAGkcnh25IQAUpkxAAEIQAACEICAEQJIZSMYKQQCEIBAbASQyrGhzXXBSOVchz/znUcqZz6EdCBFAkjlFOFTNQQgAAEIQMAlAkhll6JJXyAAARcJIJVdjGr6fUIqpx8DWhCeAFI5PDtyQgCpzBiAAAQgAAEIQMAIAaSyEYwUAgEIQCA2Akjl2NDmumCkcq7Dn/nOI5UzH0I6kCIBpHKK8KkaAhCAAAQg4BIBpLJL0aQvEICAiwSQyi5GNf0+IZXTjwEtCE8AqRyeHTkhgFRmDEAAAhCAAAQgYIQAUtkIRgqBAAQgEBsBpHJsaHNdMFI51+HPfOeRypkPIR1IkQBSOUX4VA0BCEAAAhBwiQBS2aVo0hcIQMBFAkhlF6Oafp+QyunHgBaEJ4BUDs+OnBBAKjMGIAABCEAAAhAwQgCpbAQjhUAAAhCIjQBSOTa0uS4YqZzr8Ge+80jlzIeQDqRIAKmcInyqhgAEIAABCLhEAKnsUjTpCwQg4CIBpLKLUU2/T0jl9GNAC8ITQCqHZ0dOCCCVGQMQgAAEIAABCBghgFQ2gpFCIAABCMRGAKkcG9pcF4xUznX4M995pHLmQ0gHUiSAVE4RPlVDAAIQgAAEXCKAVHYpmvQFAhBwkQBS2cWopt8npHL6MaAF4QkglcOzIycEkMqMAQhAAAIQgAAEjBBAKhvBSCEQgAAEYiOAVI4Nba4LRirnOvyZ7zxSOfMhpAMpEkAqpwifqiEAAQhAAAIuEUAquxRN+gIBCLhIAKnsYlTT7xNSOf0Y0ILwBJDK4dmREwJIZcYABCAAAQhAAAJGCCCVjWCkEAhAAAKxEUAqx4Y21wUjlXMd/sx3Hqmc+RDSgRQJIJVThE/VEIAABCAAAZcIIJVdiiZ9gQAEXCSAVHYxqun3CamcfgxoQXgCSOXw7MgJAaQyYwACEIAABCAAASMEkMpGMFIIBCAAgdgIIJVjQ5vrgpHKuQ5/5juPVM58COlAigSQyinCp2oIQAACEICASwSQyi5Fk75AAAIuEkAquxjV9PuEVE4/BrQgPAGkcnh25IQAUpkxAAEIQAACEICAEQJIZSMYKQQCEIBAbASQyrGhzXXBSOVchz/znUcqZz6EdCBFAkjlFOFTNQQgAAEIQMAlAkhll6JJXyAAARcJIJVdjGr6fUIqpx8DWhCeAFI5PDtyQgCpzBiAAAQgAAEIQMAIAaSyEYwUAgEIQCA2Akjl2NDmumCkcq7Dn/nOI5UzH0I6kCIBpHKK8KkaAhCAAAQg4BIBpLJL0aQvEICAiwSQyi5GNf0+IZXTjwEtCE8AqRyeHTkhgFRmDEAAAhCAAAQgYIQAUtkIRgqBAAQgEBsBpHJsaHNdMFI51+HPfOeRypkPIR1IkQBSOUX4VA0BCEAAAhBwiQBS2aVo0hcIQMBFAkhlF6Oafp+QyunHgBaEJ4BUDs+OnBBAKjMGIAABCEAAAhAwQgCpbAQjhUAAAhCIjQBSOTa0uS4YqZzr8Ge+80jlzIeQDqRIAKmcInyqhgAEIAABCLhEAKnsUjTpCwQg4CIBpLKLUU2/T0jl9GNAC8ITQCqHZ0dOCCCVGQMQgAAEIAABCBghgFQ2gpFCIAABCMRGAKkcG9pcF4xUznX4M995pHLmQ0gHUiSAVE4RPlVDAAIQgAAEXCKAVHYpmvQFAhBwkQBS2cWopt8npHL6MaAF4QkglcOzIycEkMqMAQhAAAIQgAAEjBBAKhvBSCEQgAAEYiOAVI4Nba4LRirnOvyZ7zxSOfMhpAMpEkAqpwifqiEAAQhAAAIuEUAquxRN+gIBCLhIAKnsYlTT7xNSOf0Y0ILwBJDK4dmREwJIZcYABCAAAQhAAAJGCCCVjWCkEAhAAAKxEUAqx4Y21wUjlXMd/sx3Hqmc+RDSgRQJIJVThE/VEIAABCAAAZcIIJVdiiZ9gQAEXCSAVHYxqun3CamcfgxoQXgCSOXw7MgJAaQyYwACEIAABCAAASMEkMpGMFIIBCAAgdgIIJVjQ5vrgpHKuQ5/5juPVM58COlAigSQyinCp2oIQAACEICASwSQyi5Fk75AAAIuEkAquxjV9PuEVE4/BrQgPAGkcnh25IQAUpkxAAEIQAACEICAEQJIZSMYKQQCEIBAbASQyrGhzXXBSOVchz/znUcqZz6EdCBFAkjlFOFTNQQgAAEIQMAlAkhll6JJXyAAARcJIJVdjGr6fUIqpx8DWhCeAFI5PDtyQgCpzBiAAAQgAAEIQMAIAaSyEYwUAgEIQCA2Akjl2NDmumCkcq7Dn/nOI5UzH0I6kCIBpHKK8KkaAhCAAAQg4BIBpLJL0aQvEICAiwSQyi5GNf0+IZXTjwEtCE8gC1L5u+++U5dccom677771MSJE3nUw+DOO+9UN910U/gBQc5ABJDKgXCRGAIQgAAEIACBagSQytXI8D4EIAABOwggle2Ig2utQCq7FtF89ScLUnncuHGqQYMGPAIw+PTTT/M1kFPqLVI5JfBUCwEIQAACEHCNAFLZtYjSHwhAwDUCSGXXImpHf5DKdsSBVoQjkAWp/OSTT2qhfO2116pFixbxqIfBoEGDNKvPPvss3IAgVyACSOVAuLKdeP78+aphw4aqcePGqmnTprl6SJ8bNWqk1qxZk+0g0noIQAACFhNAKlscHJoGAQhAQCmFVGYYxEEAqRwHVcpMikCWpPKMGTOSwpLZen77298ilROMHlI5QdhpV/XYY4/pnevggw9WQ4YMydWjc+fOuu+rVq1KOwzUDwEIQMBZAkhlZ0NLxyAAAUcIIJUdCaRl3UAqWxYQmhOIAFI5EC7rEyOVkw0RUjlZ3qnW9tRTT2mxOn369FTbkUblN9xwg+776tWr06ieOiEAAQjkggBSORdhppMQgECGCSCVMxw8i5uOVLY4ODStJgGkck1EmUqAVE42XEjlZHmnWhtSuYFCKqc6BKkcAhBwnABS2fEA0z0IQCDzBJDKmQ+hlR1AKlsZFhrlkwBS2SeojCRDKicbKKRysrxTrQ2pjFROdQBSOQQg4DwBpLLzIaaDEIBAxgkglTMeQEubj1S2NDA0yxcBpLIvTJlJhFRONlRI5WR5p1obUhmpnOoApHIIQMB5Akhl50NMByEAgYwTQCpnPICWNh+pbGlgaJYvAkhlX5gSS7Rt27ZIdSGVI+ELnNmYVP7+++8DV24iw65du9S3335roijny0AqI5WdH+R0EAIQSJUAUjlV/FQOAQhAoCYBpHJNRCQIQQCpHAIaWawhgFS2JhRq+fLlqmnTpurRRx8N3Sikcmh0oTIak8rt27dXEyZMCNWIKJlGjhypOnXqpHbs2BGlmFzkRSojlXMx0OkkBCCQGgGkcmroqRgCEICALwJIZV+YSBSQAFI5IDCSW0UAqWxPOPr166caNWqkVq5cGbpRSOXQ6EJlNCKVt2zZoho0aKBE8Ca93XnnnbruuXPnJl115upDKiOVMzdoaTAEIJApAkjlTIWLxkIAAjkkgFTOYdAT6DJSOQHIVBEbAaRybGgDFfz0009rt3f++ecHyleeGKlcTiTe10ak8ldffaWDP2LEiHhbW6H0TZs2qSZNmqhjjjmmwqe8VUwAqYxULh4P/A0BCEDANAGksmmilAcBCEDALAGkslmelPYjAaQyIyHLBJDK6Ufvhx9+UF27dlXNmzdXGzdujNQgpHIkfIEzpy6Vv/jiCzVp0iQ1atQoNWzYMPX73/9eyRmKnTt3+u7M8ccfrxo3bhx58PmuMKMJkcpI5YwOXZoNAQhkhABSOSOBopkQgEBuCSCVcxv6WDuOVI4VL4XHTACpHDNgH8VPnDhRT1QdM2aMj9T1J0Eq18/H9KepSeXvvvtOXXTRRapZs2aqb9++6uGHH1bz589Xt912m+rQoYNq3bq1mj17tq/+PvHEE3oA3n777b7S5zURUhmpnNexT78hAIFkCCCVk+FMLRCAAATCEkAqhyVHvvoIIJXro8NnthNAKqcboa1bt6o2bdroxzfffBO5MUjlyAgDFZCKVJYlK3r27KlFsMxSLt+2b9+uhgwZoj+/+OKLyz+u81pu0ieDsHPnznU+442fCCCVkco/jQb+ggAEIGCeAFLZPFNKhAAEIGCSAFLZJE3K8ggglT0SPGeRAFI53ajdeOON2v1NnTrVSEOQykYw+i4kFancv39/PWhkqYtqm8xkPvjgg6uK5/J8V155pU776quvln/E6/8RiEMqr1+/Xs2aNUvJjRKffPJJ9dxzz6mXXnpJLVmyRD/La3lfPv/LX/6iNm/eXBKPL7/8Us9InzNnjlqwYIF69tln1Ysvvqjzv/zyy+r5559X0u558+bpej788MOS/H5f3HDDDXp8rF692m8W0kEAAhCAQEACSOWAwEgOAQhAIGECSOWEgeekOqRyTgLtaDeRyukFdsOGDXod5W7duqldu3YZaQhS2QhG34UkLpVnzpyp5V7Lli2VTHOvb5sxY4ZO26JFCyVfgOrb3nnnHZ026p0i66sj65/FIZXHjx+vWrVqpZo2bar5N2jQoOKzLLjevn17JaK4eJOlS2SpE1kGpVpeeV8+l9nojz76aHF2338jlX2jIiEEIACB0ASQyqHRkRECEIBAIgSQyolgzl0lSOXchdypDiOV0wun3FdNfM8zzzxjrBFIZWMofRWUqFSWOzq2bdtWD5pTTz21ZgO3bdumRCjLIJPBVmvr0aOHElkt+djqEohDKhfXIsuadOzYsSCHRSTLLGVZnsTPJrOWjzjiiEL+hg0bKrkE4ttvv/WTvd40SOV68fAhBCAAASMEkMpGMFIIBCAAgdgIIJVjQ5vrgpHKuQ5/5juPVE4nhCtWrFCNGjVSAwYMMNoApLJRnDULS1QqL1y4sCAMJ0yYULNxkuCoo47SefzI4oceekin/fOf/+yr7Lwlilsq//e//9Wzlr0Zx0OHDg2MuFevXoUxcuihhwbOXy0DUrkaGd6HAAQgYI4AUtkcS0qCAAQgEAcBpHIcVCkTqcwYyDIBpHI60evXr5+WyitXrjTaAKSyUZw1C0tUKp977rkFYShr5PrZzjrrrEIeWXe3vu2rr77S67HIbFe2ugTilspyMPCEsjxPnz69biPqeUfu9NmkSZNCGbJgu6kNqWyKJOVAAAIQqE4AqVydDZ9AAAIQsIEAUtmGKLjXBqSyezHNU4+QyslH++mnn9beZ/jw4cYrRyobR1pvgYlK5c6dOxeEodzMzc921VVXFfLI37W2M888U8myCfKFia2UQNxS+U9/+lMhViKV161bV9qAGq/kpn7FUnrRokU1cvj/GKnsnxUpIQABCIQlgFQOS458EIAABJIhgFROhnPeakEq5y3ibvUXqZxsPGVZ3K5du+oJoRs3bjReOVLZONJ6C0xMKstN+UT2etJw1apV9TbM+/D//u//Cnn8zEAWESl1mJzl6rUl689xS+UhQ4YUYrXXXnsFxnX99dcX8suN/0yspew1Aqnskcjn85YtW5R82X3kkUfU0qVL1fbt2/MJgl5DIGYCSOWYAVM8BCAAgYgEkMoRAZK9IgGkckUsvJkRAkjlZAM1adIk7X3GjBkTS8VI5ViwVi00Man8/vvvF4ShSN8NGzZUbVTxB96Akzx777138UcV/5Z1feVmcbvvvrvatWtXxTR5fTNOqSzcW7duXYjx+eefHxjzr371q0L+X//614Hz15cBqVwfHXc/kxtF7r///iUntORYIictZA2n1atXu9t5egaBFAgglVOATpUQgAAEAhBAKgeARVLfBJDKvlGR0EICSOXkgiKTTdu0aaMfsvxpHBtSOQ6q1ctMTCr/85//LAhDkTqbNm2q3qqiT6ZOnVrIJ4PPzyZnPKQOWU6B7ScCcUrl8vWUZ8yY8VPFPv6SWcki+iRu8jA90xyp7CMIDiX5+uuv1XnnnVcYT964Kn9u3ry5kpuGykkRNghAIDoBpHJ0hpQAAQhAIE4CSOU46ea3bKRyfmPvQs+RyslFUTyP/CafMmVKbJUilWNDW7HgxKSytyyFJ3U2b95csUHlb06bNq0ghpo1a1b+ccXXa9as0TMTTz/99Iqf5/XNOKXyvffeW4iTxHj9+vWBMC9evLgkv8n1lKUhSOVA4ch84oEDB5aMJ++4U+1Z1gNngwAEohNAKkdnSAkQgAAE4iSAVI6Tbn7LRirnN/Yu9BypnEwUZbUCmdTVrVu3WFcVkPusye9++V3yxz/+0drH2LFjnbhyOjGp/Pjjj5dIni+++MLXyJ0+fXpJPr9roR555JFKJPSXX37pq548JIpTKp944omFOPlZpqSc9x/+8IdCftPrKUtdSOVy4u6+lrOe1eRxtffln5ss0cMGAQhEI4BUjsaP3BCAAATiJoBUjptwPstHKucz7q70GqmcTCSHDRumf6c/88wzsVbYo0ePwD6gmieI+/3Ro0fHyiKJwhOTyo8++mhJYP3K3scee6wk32effeaLi5fvgQce8JU+D4niksrl6ylfcMEFgXH27t27EGfT6ylLY5DKgUOSyQxyXGnZsmVhLAX5J3DUUUdlss80GgI2EUAq2xQN99oi3wHHjx+vlzeLsmyRbeW4Fyl6ZDMBpLLN0clu25DK2Y0dLVcKqRz/KFixYoVq1KiRGjBgQOyVXXTRRdoHLFmyRK1atcrax7vvvqt27twZO4+4K0hMKs+ZM6dE9PiVyuUyesuWLb6YyBq9IpcOPvhgX+nzkCguqfz222+XxFaEfpDt+++/17PKPQFoej1laQtSOUhEspt24cKFJWPRG1N+nnfbbTe1Y8eO7HaelkPAAgJIZQuC4GgTvvvuu5IbAoe9Y7ht5TgaLrplMQGkssXByXDTkMoZDh5NRyonMAb69eunpbLciyvujTWV4yZcWn5iUvnZZ58tkT2ff/55aUuqvHr44YcL+eTMRpCZKRdeeKHOK9Iz7m316tVq1qxZVj+uvvpqzeORRx4xiqN8PWVZt2bixIm+H57w9cSf6fWUpbOjRo3Sfb/77rutjpHtY8j29p1yyimF44U3noI833rrrYwPy49jto/BvLfPW89c1inPO4s893/27Nnq008/NfpdY968eSXH9z333DNU+baVU6sTr732GvsS/5eMjgG5QbF8N/rNb35jtNw8H/Po+yx9k3UZV9ynpNZRnc9tJNClSxfVpk0bq4+Jns/485//nBpCWYr2o48+UkuXLtVXjc2fP1/J5FH5brVgwQIl98l66623lKydvGvXrkI7n376af1/Z/jw4YX34vwDqRwn3bplJyaV5UtxsdzZuHFj3dZUeGfy5MmFfDLzOMj2wgsv6Lw333xzkGyh0vbp06fQzuJ+2vj3FVdcEaqP1TIVr6cssz07dOgQ6CHr2Xqc4lhPWdotSxt4dfDcABYNYMB+wBhgDDAG4hwDl112WbWvDaHeF0kt3xG8lAzl0AAAIABJREFUNodZaksqtq2cWjDCLunkceKZ/ZwxwBhIcgwkJY1qHTv5HAJBCLRo0aLw/SLJ/SVMXVdddVWQroVKKxM5//WvfymZ4HnppZeqvn37qvbt2+uZxn7b3KRJE9WpUyd1zDHH6CvNxBP985//DNWeoJmQykGJRUufmFSWQVk8ANesWeOr5Q8++GAhn8jKIJtcGil1ilyOe/vwww/1GRo5S2Pr47rrrtM8TJ7dKl9PWWaHB92OOOKIQozjWE9Z2uPN0r7vvvusjY+t4yZL7TrhhBMKY6n4eOP3b5lln6X+0lZ7j7d5jc2xxx6r98GHHnqIfcni7wNxj88nnnhC+b0iLch3hueee07Jcf76669XmzdvDpK1JK1t5ZQ0ruzFsmXL2JdyvC/Fsa/K/Wbke9Hxxx/P2GJsGRsD8h1axpX81mKDQNYI7LfffnqmchzHXFNlei5HloeNY/viiy/UtGnT1GmnnVay3Jjs13KCu2fPnvozmTF95513qilTpihZ9nTu3LlKrlCTv8Xd3XbbbUomFgwZMkQdcMABSuRy8W9xEc0yMUBmNsuSZHFsSOU4qFYvMzGpvGnTppLB5HdJirFjxxbyyaD0u4ns7Nixo34EWTLDb/lZTBfHmsrl6ynL5V9BNjmQyFkr70ATx3rK0h5viQ1ZpoTNXQLla7d748rPsyyv43fNdncJ0jMIRCPAmsrR+JEbAhCAQNwEWFM5bsL5LJ81lfMZd1d6ndcb9cl9yGbMmKH69+9fkL/ym/iQQw7Ry4eKEF+7dm3oMG/dulXL+tatWytZgUAmIO6zzz4F9yNXrJ9xxhnqmWeeKVkuI3SF/8uIVI5KMFj+xKSyNEvWqfHkjtyJ0c928cUXF/KcddZZfrLoNN7SF3/4wx9853E9YRxSWc5GezGV508++SQQRu8LiFdGHOspS4OQyoHCktnEcgVEw4YNS8akN7ZqPXfr1i2z/abhELCFAFLZlkjQDghAAAKVCSCVK3Ph3WgEvN90MlORDQJZI5A3qSzrIsuSqN4SWzLJb9CgQUpmQZu80mz06NH6d7nMai7e5De7rO9/+OGHF367y4TQO+64Q3355ZfFSUP97d1bTdySXPFl62P58uVqx44dofpoU6ZEpbIMVE/syIxCP9vgwYMLee655x4/WXQaOeMhckl2GLYfCcQhlU866aRCfDp37hwYtXegkXER13rK0iikcuDQZDaDrPvkHWeCPMsZUjYIQCAaAaRyNH7khgAEIBA3AaRy3ITzWT5SOZ9xd6XXeZHK77//vjr77LNV48aN9e/l7t276yVrTIjc8rEgN+uTmcgycav4pn3l6cTXybK1bdu21W0S0S2/Jz777LPypL5fy0zrIB4gzbTiqbK+JSqVi2e1yjosfrZevXoVBsS///1vP1n02Y1mzZqpI4880lf6vCQyLZXL11MeMWJEYJRydsrbieNaT1kahVQOHJrMZpDLePbee+/CuPLGV33PI0eOzGx/aTgEbCKAVLYpGrQFAhCAQF0CSOW6THgnOgGkcnSGlJAeAdelsixFK67Gk8kDBgxQcV0h7kVx2LBh+ve434lbO3fuVDNnztQSWn63i1y++eablfy2D7qJOJcyZGnV22+/3dqHOFH5n5z1LVGp/NVXX+mzFRLg4447riY7WYPFW2/30EMPrZneS3D//ffrQSSLhbP9RMC0VH7nnXdKxJ0cBIJsSa2nLG1CKgeJTPbTrly5Uu27774l47OaVJabCHzzzTfZ7zQ9gIAFBJDKFgSBJkAAAhCohwBSuR44fBSaAFI5NDoyWkDAVaksM4Tlan9vmYu+ffuq1157LXbiK1asULI2s6zVHHSTiYuylrNcBS+/32VZDLmpX5CNNZWD0IqeNlGpLM311jeRpQ5qTbOXO0l6IkiEqN/toIMOUq1atYrtbpJ+22FbOtNSuXjmucRJLnEIsi1evLgQX8kf59kypHKQyLiRVk5aXHnllfofmnccKX6WY0TQEyFukKEXEIiPAFI5PraUDAEIQMAEAaSyCYqUUU4AqVxOhNdZIuCiVH733XfVwQcfrH3LnnvuGVjMRolfv3799G9wmegVdpOZy/fee29BiJ9yyim+13tGKoelHi5f4lJZRLKcbRC5c9ddd1VttZyhkDMpki7IDfrkrIjkEXnNVkrAtFQuXk9ZlhsIuslNFD3JF+d6ytIupHLQ6LiTXi73kbEvl7/IeDvwwAPVyy+/zOxkd0JMTywigFS2KBg0BQIQgEAFAkjlClB4KzIBpHJkhBSQIgHXpLLIWFnPuEmTJuraa69NdLLlwoUL9W/u4cOHG4mo/JYXoSy/49u0aaOee+65muUilWsiMpogcaksrZcp97LmsYjEV155pWKHxo4dqwdOly5dfJ+RkIIuu+wyne+NN96oWG6e3zQplcvXUz7//PMDoz3iiCN0rOQAEed6ytIwpHLg8DiXQc52ylg788wznesbHYKALQSQyrZEgnZAAAIQqEwAqVyZC+9GI4BUjsaP3OkScEUqy/KxnoCVSX+vv/56omB/+OEH1bVrVy20N27caLTuWbNm6dUIZFmN0aNHK/FR1TakcjUy8byfilSWrsh6vHK3STmDIjMIP/jgAyU7gQx8WeNU5I/MhJX3/G7bt29XrVu31ot7+82Tp3QmpXL5esozZswIhPL777/XJxYkzvKQMRDnhlSOk242ykYqZyNOtDLbBJDK2Y4frYcABNwngFR2P8Zp9BCpnAZ16jRFwAWpvGbNGrX//vtrt3LqqacG8mimOE6aNEnXL1ekx7F99NFH6pBDDtF1nHDCCVWvPEYqx0G/epmpSWVpkkhgWYRbzqZ069ZNdejQQfXo0UNdfPHFKsxM4zlz5ugBNn78+Oo9zvEnJqVy+XrK69atC0T2xRdf1LHypHKc6ylLw5DKgcLjZGKkspNhpVOWEUAqWxYQmgMBCECgjABSuQwIL40QQCobwUghKRHIulReunSpXhpCZvGOGzcuFYpy43tZnkIe8ndcmzjEoUOHapcky1p++umndapCKtdBEusbqUpl0z0bOHCgXlJj8+bNpot2ojyTUlkWX/eE8O677x6Yz+WXX17ILwe/bdu2BS4jSAakchBabqZFKrsZV3plFwGksl3xoDUQgAAEygkglcuJ8NoEAaSyCYqUkRaBLEtluVdQy5Yt9QoA8+fPTwuhXpJC/NCUKVMSacMtt9yifZIs8/Hxxx+X1IlULsER+wtnpPL69etV48aN1eDBg2OHltUKwkplORu0ePFiPat82rRp+saJnlCWZ1nC5O6771YyU1wWZpdYlG8vvfSSevLJJ5WshXPVVVdp+V9cxpgxY/Rn0sbVq1eXZ4/8GqkcGWHmC0AqZz6EdCADBJDKGQgSTYQABHJNAKmc6/DH1nmkcmxoKTgBAlmVyiJTxcWIVF6yZEkCpCpXsWHDBt0OWX1g165dlRPF8K4styETFEeNGlVSOlK5BEfsL5yRyt6ZChGXbJUJhJXK8iVBdla5saIcsGTd6nbt2imZoSzPcolDq1at9IFExL7cZLF4W7t2rRb+kr9FixY6bdu2bXX+9u3b18kvlzOY3pDKpolmrzykcvZiRouzRwCpnL2Y0WIIQCBfBJDK+Yp3Ur1FKidFmnriIJBVqbxlyxY1fPhwtWzZsjiw+C5z2LBhetbwM8884zuPqYRyr6+vv/66pDikcgmO2F84IZXlzo977bWXlpNyx0m2ygTCSuXKpWXrXaRytuIVR2uRynFQpUwIlBJAKpfy4BUEIAAB2wgglW2LiBvtQSq7Ece89iKrUtmGeK1YsUJPQOzfv78NzdFtQConGwonpLIsrSBLKciPWbbqBJDKDWJZWqM6cT6xiQBS2aZo0BZXCSCVXY0s/YIABFwhgFR2JZJ29QOpbFc8aE0wAkjlYLyKUx999NFaKq9cubL47VT/Rioni98JqXzOOedoqfzee+8lSy9jtSGVkcoZG7JGm4tUNoqTwiBQkQBSuSIW3oQABCBgDQGksjWhcKohSGWnwpm7ziCVw4f82GOPVVdffXX4AmLIiVSOAWo9RWZeKss6MrI4+WGHHVZPN/lICCCVkcp53hOQynmOPn1PigBSOSnS1AMBCEAgHAGkcjhu5KqfgPc788ADD1SnnHIKDxhkagzI/aHkPlE2b3LvMLk6f8aMGTY304q2IZWTDUPmpfLkyZP1zjVlypRkyWWwNu+f/fTp0zPY+mhNZk3laPxcyI1UdiGK9MF2Akhl2yNE+yAAgbwTQCrnfQTE0//Fixfr3+QivRo2bMgDBpkaAzJukcrxHBvSKBWpnCx1I1JZbo7XpEmTVNY0Pv3001XLli3V1q1bkyWXwdqQysxUzuCwNdZkpLIxlBQEgaoEkMpV0fABBCAAASsIIJWtCAONgAAEIBCIADOV/eNCKvtnZSKlEaksDZG7Pm7bts1EmwKVsXbtWrV8+fJAefKaGKmMVM7r2Jd+I5XzHH36nhQBpHJSpKkHAhCAQDgCSOVw3MgFAQhAIE0CSGX/9JHK/lmZSGlMKptoDGXESwCpjFSOd4TZXTpS2e740Do3CCCV3YgjvYAABNwlgFR2N7b0DAIQcJcAUtl/bJHK/lmZSIlUNkExI2UglZHKGRmqsTQTqRwLVgqFQAkBpHIJDl5AAAIQsI4AUtm6kNAgCEAAAjUJIJVrIiokQCoXUCTyB1I5Ecx2VIJURirbMRLTaQVSOR3u1JovAkjlfMWb3kIAAtkjgFTOXsxoMQQgAAGksv8xgFT2z8pESqSyCYoZKQOpjFTOyFCNpZlI5ViwUigESggglUtw8AICEICAdQSQytaFhAZBAAIQqEkAqVwTUSEBUrmAIpE/kMqJYLajkhkzZqgGDRqoAw44QB1zzDG5euy555667++8844dwaAViRNAKieOnApzSACpnMOg02UIQCBTBJDKmQoXjYUABCCgCSCV/Q8EpLJ/ViZSIpVNUMxIGX/9619Vo0aNVPPmzVWLFi1y9dhtt91UkyZN1Nq1azMSLZppmgBS2TRRyoNAXQJI5bpMeAcCEICATQSQyjZFg7ZAAAIQ8EcAqeyPk6RCKvtnZSIlUtkERcqAAASsJ4BUtj5ENNABAkhlB4JIFyAAAacJIJWdDi+dgwAEHCWwYMECfeX1qFGj1MKFC3nUw+DYY4/VrD777DNHR4Nd3UIq2xUPWgMBCMREAKkcE1iKhUARAaRyEQz+hAAEIGAhAaSyhUGhSRCAAARqEBg/frwWpbKcKQ9/DDZv3lyDKh+bIIBUNkGRMiAAAesJIJWtDxENdIAAUtmBINIFCEDAaQJIZafDS+cgAAFHCWzfvl1dddVVavLkyeqRRx7hUQ+DCRMmqDvuuMPRkWBft5DK9sWEFkEAAjEQQCrHAJUiIVBGAKlcBoSXEIAABCwjgFS2LCA0BwIQgAAEIJBhAkjlDAePpkMAAv4JIJX9syIlBMISQCqHJUc+CEAAAskQQConw5laIAABCEAAAnkggFTOQ5TpIwQgoJDKDAIIxE8AqRw/Y2qAAAQgEIUAUjkKPfJCAAIQgAAEIFBMAKlcTIO/IQABZwkglZ0NLR2ziABS2aJg0BQIQAACFQgglStA4S0IQAACEIAABEIRQCqHwkYmCEAgawSQylmLGO3NIgGkchajRpshAIE8EUAq5yna9BUCEIAABCAQLwGkcrx8KR0CELCEAFLZkkDQDKcJIJWdDi+dgwAEHCCAVHYgiHQBAhCAAAQgYAkBpLIlgaAZEIBAvASQyvHypXQICAGkMuMAAhCAgN0EkMp2x4fWQQACEIAABLJEAKmcpWjRVghAIDQBpHJodGSEgG8CSGXfqEgIAQhAIBUCSOVUsFMpBCAAAQhAwEkCSGUnw0qnIACBcgJI5XIivIaAeQJIZfNMKRECEICASQJIZZM0KQsCEIAABCCQbwJI5XzHn95DIDcEkMq5CTUdTZEAUjlF+FQNAQhAwAcBpLIPSCSBAAQgAAEIQMAXAaSyL0wkggAEsk4AqZz1CNL+LBBAKmchSrQRAhDIMwGkcp6jT98hAAEIQAACZgkglc3ypDQIQMBSAkhlSwNDs5wigFR2Kpx0BgIQcJAAUtnBoNIlCEAAAhCAQEoEkMopgadaCEAgWQJI5WR5U1s+CSCV8xl3eg0BCGSHAFI5O7GipRCAAAQgAAHbCSCVbY8Q7YMABIwQQCobwUghEKiXAFK5Xjx8CAEIQCB1Akjl1ENAAyAAAQhAAALOEEAqOxNKOgIBCNRHAKlcHx0+g4AZAkhlMxwpBQIQgEBcBJDKcZGlXAhAAAIQgED+CCCV8xdzegyBXBJAKucy7HQ6YQJI5YSBUx0EIACBgASQygGBkRwCEIAABCAAgaoEkMpV0fABBCDgEgGkskvRpC+2EkAq2xoZ2gUBCEDgRwJIZUYCBCAAAQhAAAKmCCCVTZGkHAhAwGoCSGWrw0PjHCGAVHYkkHQDAhBwlgBS2dnQ0jEIQAACEIBA4gSQyokjp0IIQCANAkjlNKhTZ94IIJXzFnH6CwEIZI0AUjlrEaO9EIAABCAAAXsJIJXtjQ0tgwAEDBJAKhuESVEQqEIAqVwFDG9DAAIQsIQAUtmSQNAMCEAAAhCAgAMEkMoOBJEuQAACtQkglWszIgUEohJAKkclSH4IQAAC8RJAKsfLl9IhAAEIQAACeSKAVM5TtOkrBHJMAKmc4+DT9cQIIJUTQ01FEIAABEIRQCqHwkYmCEAAAhCAAAQqEEAqV4DCWxCAgHsEkMruxZQe2UcAqWxfTGgRBCAAgWICSOViGvwNAQhAAAIQgEAUAkjlKPTICwEIZIYAUjkzoaKhGSaAVM5w8Gg6BCCQCwJI5VyEmU5CAAIQgAAEEiGAVE4EM5VAAAJpE0Aqpx0B6s8DAaRyHqJMHyEAgSwTQCpnOXq0HQIQgAAEIGAXAaSyXfGgNRCAQEwEkMoxgaVYCBQRQCoXweBPCEAAAhYSQCpbGBSaBAEIQAACEMgoAaRyRgNHsyEAgWAEkMrBeJEaAmEIIJXDUCMPBCAAgeQIIJWTY01NEIAABCAAAdcJIJVdjzD9gwAENAGkMgMBAvETQCrHz5gaIAABCEQhgFSOQo+8EIAABCAAAQgUE0AqF9PgbwhAwFkCSGVnQ0vHLCKAVLYoGDQFAhCAQAUCSOUKUHgLAhCAAAQgAIFQBJDKobCRCQIQyBoBpHLWIkZ7s0gAqZzFqNFmCEAgTwSQynmKNn2FAAQgAAEIxEsAqRwvX0qHAAQsIYBUtiQQNMNpAkhlp8NL5yAAAQcIIJUdCCJdgAAEIAABCFhCAKlsSSBoBgQgEC8BpHK8fCkdAkIAqcw4gAAEIGA3AaSy3fGhdRCAAAQgAIEsEUAqZylatBUCEAhNAKkcGh0ZIeCbAFLZNyoSQgACEEiFAFI5FexUCgEIQAACEHCSAFLZybDSKQhAoJwAUrmcCK8hYJ4AUtk8U0qEAAQgYJIAUtkkTcqCAAQgAAEI5JsAUjnf8af3EMgNAaRybkJNR1MkgFROET5VQwACEPBBAKnsAxJJIAABCEAAAhDwRQCp7AsTiSAAgawTQCpnPYK0PwsEkMpZiBJthAAE8kwAqZzn6NN3CEAAAhCAgFkCSGWzPCkNAhCwlABS2dLA0CynCCCVnQonnYEABBwkgFR2MKh0CQIQgAAEIJASAaRySuCpFgIQSJYAUjlZ3tSWTwJI5XzGnV5DAALZIYBUzk6saCkEIAABCEDAdgJIZdsjRPsgAAEjBJDKRjBSCATqJYBUrhcPH0IAAhBInQBSOfUQ0AAIQAACEICAMwSQys6Eko64QODcc89VZ599tho1ahQPwwyuvPJK1aBBA9WlSxfYGmbrjdf+/furmTNnWr0rLlq0SPXp00ddddVVjIMYxkGPHj30fjZixAj4xsB3+PDhatCgQVbvYzQufwTuv/9+1apVKyX7/6GHHsrDcga/+MUv9HG6Xbt2xMryWHn7U8eOHVXPnj3zd3ChxxCAAAQgYD0BpLL1IaKBeSIg0pMHDLI8Brp37271Ljtw4ED2MY4zmR8D77//vtX7GY3LF4EzzjhD71Nt2rRRHTp04GE5A5HJTZs2Va1btyZWlsfK258kXs2bN8/XgYXeQgACEIBAJggglTMRJhqZFwIiE4877ji1du1aHjEw+Ne//qXWrFkD2xjYfvDBB1oqyEx7m7frr79et/Pll19mHMQwDuTYtWrVKtjGxFZmgMv/iXXr1tm8m9G2nBH4wx/+oMel/I9lgwAEzBP41a9+pdq2bWu+YEqEAAQgAAEIRCSAVI4IkOwQMElAZMGpp55qskjKgkAiBL7//nstFYYOHZpIfWEr8aSySHA2CGSNgCzbglTOWtTcby9S2f0Y08N0CSCV0+VP7RCAAAQgUJ0AUrk6Gz6BQOIEkMqJI6dCQwSQyoZAUgwE6iGAVK4HDh+lRgCpnBp6Ks4JAaRyTgJNNyEAAQhkkABSOYNBo8nuEkAquxtb13uGVHY9wvTPBgJIZRuiQBvKCSCVy4nwGgJmCSCVzfKkNAhAAAIQMEcAqWyOJSVBIDIBpHJkhBSQEgGkckrgqTZXBJDKuQp3ZjqLVM5MqGhoRgkglTMaOJoNAQhAIAcEkMo5CDJdzA4BpHJ2YkVLSwkglUt58AoCcRBAKsdBlTKjEkAqRyVIfgjUTwCpXD8fPoUABCAAgfQIIJXTY0/NEKhDAKlcBwlvZIQAUjkjgaKZmSaAVM50+JxtPFLZ2dDSMUsIIJUtCQTNgAAEIACBOgSQynWQ8AYE0iOAVE6PPTVHI4BUjsaP3BDwQwCp7IcSaZImgFROmjj15Y0AUjlvEae/EIAABLJDAKmcnVjR0hwQQCrnIMiOdhGp7Ghg6ZZVBJDKVoWDxvyPAFKZoQCBeAkglePlS+kQgAAEIBCeAFI5PDtyQsA4AaSycaQUmBABpHJCoKkm1wSQyrkOv7WdRypbGxoa5ggBpLIjgaQbEIAABBwkgFR2MKh0KbsEkMrZjV3eW45UzvsIoP9JEEAqJ0GZOoISQCoHJUZ6CAQjgFQOxovUEIAABCCQHAGkcnKsqQkCNQkglWsiIoGlBJDKlgaGZjlFAKnsVDid6QxS2ZlQ0hFLCSCVLQ0MzYIABCAAAYVUZhBAwCICSGWLguFQU9588001cuRINXDgQDVgwAA1bNgw9be//c1oD5HKRnFSWEYJLF26VPXv31+tWrUqlh4glWPBSqERCSCVIwIke+YJxH3sRypnfojQAQhAAALOEggklUUa2Lbt2rVLffvtt7Y1i/YEJEAMfwSGVA44cEhek8DUqVNVu3bt1MKFC5Ucw7/77jv117/+Vb9300031czvNwFS2S8p0rlEYOfOnUqE2oUXXqgOOugg1bx5cyXH8UWLFsXSTaRyLFgpNCIBpHJEgGTPHIGkj/1I5cwNERoMAQhAIDcEAknl9u3bqwkTJlgFR2bfderUSe3YscOqdtEY/wTeeust1axZM/XEE0/4z+RoSqSyo4FNqVsrVqzQkkskcvn21FNPqUaNGqnnn3++/KNQr5HKobCRKeMEfvjhBzVx4kT9/+vzzz9Xp59+OlI54zGl+cEJIJWDMyNHtgkkfexHKmd7vNB6CEAAAi4T8C2Vt2zZon8oicS1abvzzjt1u+bOnWtTs2hLAAKXXXaZjqFcop/3Damc9xFgtv99+vTRUvm///1vxYL33Xdftddee1X8LOibSOWgxEjvIgGksotRpU+1CCCVaxHic9cJxH3sRyq7PoLoHwQgAIHsEvAtlb/66ist/kaMGBFrb+Wfsghsv9umTZtUkyZN1DHHHOM3C+ksIiCXj7Vp00btt99+FrUqvaYgldNj71rNsszFbrvtprp37161a3LclDG3du3aqmn8foBU9kuKdC4TiFsssPyFy6Mnu31DKmc3dja3XH7jVTop/sknn6ivv/7aqqbHfexHKlsVbhoDAQhAAAJFBKySyuvWrVOtWrVSsk5ykO34449XjRs3Vhs3bgySjbQWEJBL8EVq3XbbbRa0Jv0mIJXTj4ErLViyZInet2S2crVt6NChOs3MmTOrJfH9PlLZNyoSOkwgbrGAVHZ48GS4a0jlDAfPwqbLfVZOPvlkdcYZZ+iJJ5MnT9atlO8qvXr1Umeeeabq16+fku83ppbwiooh7mM/UjlqhMgPAQhAAAJxEbBKKk+fPl0dd9xxgfsqa/GKjLv99tsD5yVDugROPfVUva6riZmS6fbETO1IZTMcXSxFZuX8/e9/V3KHcT9Xc8ybN08fF+WHV7Vt+PDhOo2JtfKRytUo836WCATdz8r7FrdYQCqXE+e1DQSQyjZEwd42BD2uXnHFFUp+E8om4rhly5ZqzJgxSpbLk7WMve2AAw5QrVu39l6m+hz3sR+pnGp4qRwCEIAABOohYJVUFsExbty4eppb+SO5SZ8sodC5c+fKCXjXSgLyJbN58+b6C6OVDUyhUUjlFKBbXuWCBQtUly5d9L7yi1/8Qj/LOJG1kKdMmaJkCZlKm8zokXT9+/ev9LF+7/zzz9dp7rjjjqpp/H6AVPZLinQ2Egi7n5X3JW6xgFQuJ85rGwgglW2Ign1tCHNcld90HTt2VLKEl2zy206+y1x66aV1Onj44Yfrz7Zu3Vrns6TfiPvYj1ROOqLUBwEIQAACfglYJZU7deqkwt6s7corr9RfLF599VW/fSddygSmTp2qY/bII4+k3BJ7qkcq2xMLG1pywQUXqEMOOUS99NJLavv27bpJMkvn6aef1ifSZLzITB05QVO+zZ8/X+9f9S1/cc455+g09913X3n2wK+RyoGRkcESAlH2s/IuxC0WkMrlxHltAwGksg1RsKsNYY+r8h3njTfe0J3ZvHmz/o6y9957F74Deb2UE+oyMWX33Xf33qr4LCffDzvsMPXLX/4y8OPoo49WshRkJeuQAAAd00lEQVSHny3uYz9S2U8USAMBCEAAAmkQsEYqy/IHYdZT9qC98847+ouHzLxjywaB3r176y+Efi7lz0aPorcSqRydoSslyEkXmZnsyeTyfn344YeFWctyw73ytehXrlypj4my/mC17aSTTtJp/vrXv1ZL4vt9pLJvVCS0iEDU/ay8K3GLBaRyOXFe20AAqWxDFOxpg6nj6pw5c/R3lEpXU73yyiv6s4suuqjejr/33nv6qi5ZlznoY/bs2fWWXfxh3Md+pHIxbf6GAAQgAAGbCFgjlR999FElN9yLsvXo0UOvu7Vt27YoxZA3AQJr1qxRDRs2VPIljO0nAkjln1jk/S+ZmSM3oxF5XG0bNWqU/lEl4+bFF18sSSZ3TJe1BmVpoGqbzIKWm5xWmulcLU+195HK1cjwvs0Eou5n5X2LWywglcuJ89oGAkhlG6JgTxtMHVcvueQS/R3n9ddfr9M5754QIpdl27Rpk/rss8/qpEvqjbiP/UjlpCJJPRCAAAQgEJSANVL5vPPOU+PHjw/a/pL0Dz30kP7y8ec//7nkfV7YR+CWW27RsVq4cKF9jUuxRWlKZbmU8KOPPlKyhIw8i5Ssb5NLAuVLPJt5AvLDSMaCPOSHRLVNlsHw0t166611knlrJm/cuLHOZ7Jeodz8ZsCAAXU+C/MGUrk2Nfax2oySTGFqPytuc9xiAalcTJu/bSGQplTmuGrLKPixHSaPq/vtt5/+nlJ8cz6pRa7gku8v++yzT6HzcqP3F154ofA66T/iPvYjlZOOKPVBAAIQgIBfAtZI5T322EMtW7bMb7srpvvqq6/05eBHHHFExc950x4C++67r55BWf5F0Z4WptOSJKWyLJfwt7/9Tcm6d7ImncxY9QSlPMtadbIO3ZNPPlkHhgjEvn37qv/7v/+r85krb8iSPH/5y1/U3LlzNYPnnntOr228ZMkS/SyvhY18PmvWLPX5559X7LqMcUkzb9489dRTT+kfPTKzRmYWP/PMM0rWPpZLLGX2vrfJTWd22203HY9BgwZ5b9d5fuuttwoxO/fcc+t8LuXIviazfcq3O++8U++DlYRzeVo/r5HKdSmxj9VlUv6OC/uZ1yeRW0ceeaTeJ+Xqqzg2pHIcVCkzKoEkpTLH1drRcuG46q2nPHDgwDodXr9+vWrUqJG68MIL9WcyQaW++0fUKcDwG0kc+5HKhoNGcRCAAAQgYIyAFVL5448/jrSecjENuVxcllX4z3/+U/w2f1tE4J///Kf+0X355Zdb1Co7mpKEVBb5d9ttt6m2bdvqODRt2lSdfPLJavr06eof//iH+vTTT7XgFBF69dVXqxYtWqh+/fopOWkjm/ygO/HEE3XeSpck2kEyeituv/12fVwSPsWyvfxvke/t27fX7CrV+u677+oZNeX5il+LQJ4xY0ZJdmErV2/UJ3299QalLGlvpW3VqlVKZvtIzER0iQAXAS0n8rzLRivlC/oeUvknYuxjP7Go9ZcL+9nBBx+sfvazn+mTNLLkjDzkHhEdOnTQJ+zuuuuuWhh8f45U9o2KhAkSSEIqc1z1H1AXjqt///vf9XcvuQq10nbZZZepLl266JPmsnzil19+WSlZrO8leexHKscaSgqHAAQgAIEIBGKTyuvWrdOz8mT2ca3ZqLJcRbXZePIlQW4i5QmtWn1dtGiR/hJy44031krK5ykRuPTSS3WMZJYlWykBkYOnnnpq6ZsGX8ms2D333FPzF1ksNz+pNsPWq1akqHxxP+igg5TMfJWZIdJOyS+zM/Kwidht166d7rfXd5llHKT/ciy799579UkvKUMklNyVXJYaEVEfZhsxYoRuk5xIq+9KD1nKRGZYP/zww2rSpElq8eLFaseOHWGqrJoHqfwjGvaxqkOk5gdZ389qdtBAAqSyAYgUYZxA3FKZ42r4kGX1uCrfW95///16Oy7fq+o78V5v5ox9iFTOWMBoLgQgAIEcETAulUWyiHQSCXXOOefoGTs9e/ZUGzZsqIp12LBh6u67767zudw8SmYAioDp3r27L/EiX0I6duyoZweFFTV1GsIbxgjI+JBZXF27djVWpksFyViPQyrL+sdSrpQvj2OPPVbJ5ZF+ty1btmipKuvXeWWYWovXbxvSTCfHEpl56PVd1ioOu/3yl7/U+4CceIuyyTG1WbNmuk1Dhw6NUpSRvHmXyuxj0YcR+1lthkjl2oxIkTyBuKQyx9XoseS4Gp2hDSUglW2IAm2AAAQgAIFKBIxLZbkc6eKLLy7M4JPL7EXEDB48uFL9+j2RwJVmrcqsPk/iyLNcmu9nGzNmjM4na56y2UVA1qCVWMoMWba6BISNaan8ySefqB49ehT2Jdk/wmwPPvhgoQxpZ6Ubw4UpNwt5ZBaw9Nl7yBrIYTc5oXLNNdeEza7zydUfvXv31u2Ryy9F+qe95Vkqs4+ZGX3sZ7U5IpVrMyJF8gTikMocV83EkeOqGY5pl4JUTjsC1A8BCEAAAtUIGJXKjz32mOrVq1fJchejR4/W4kPWDK10qbjcnEpmAMoM4/JNRLOsV+qJHFk/1M8mZcrl4HInXja7CJxyyin65hpykw22ugRkrJuUyqtXr9brenr7UJS1PWW5BLmhn1fWq6++WrcDjr4j3Lx+y/OmTZtC9fSLL77Qx6aoaxn//ve/1+2Rq0DkTus2bHmVyuxj5kYf+1ltlkjl2oxIkTwB01KZ46q5GHJcNccyzZKQymnSp24IQAACEKiPgDGpLDPnZMbxG2+8UVKf3DxBJIzcpVekQ/k2bdo0dcIJJ5S/XXgtotqTOc8++2zh/Vp/yB3Y5dLwNG7cUKttef1c1sWWmBx11FF5RVCz3zLWTUllGfvFy1X89re/rVl/rQTeEhpyssf0mry16k7zc1kuxDsOydI+YbfHH39cnyjbvn172CLUPffco9sisfjuu+9Cl2M6Yx6lMvuY2VHEflabJ1K5NiNSJE/ApFTmuGo2fhxXzfJMqzSkclrkqRcCEIAABGoRMCaV582bp7p161ZSn1yS7c00ljWRK23nnnuuliSVPvPe22OPPbREqXXDBi+9PHsy+oEHHih+m79TJCA3JRMxJzdmZKtMwJRUFuHbt2/fggiVm8LJTfaibtddd50uM08nBuSEWcuWLQssZc34sJvcpDIKu3HjxqnGjRsrubO7bVvepDL7mNkRyH7mj2fepbJcmTF+/Hgly5tVusLNH0Wlr/CwqRy/7bY1nSmpzHHVbIQ5rprlmWZpSOU06VM3BCAAAQjUR8CYVD7ppJOUCI/iTWYhe7P7qq2/KrJr+fLlxdnq/C3iWeR0kBvvyc09RATJeqNsdhA4/PDDdRxNyE07emS+Faak8pVXXlnY96TMZ555xkhjp06dqssdO3askfKyUMjSpUtLWM6aNSt0s+Xk2s033xwq/5133qmXCqoUS1l7stK69KEqCpkpb1KZfSzkQKmSjf2sCpiyt/MsleXKDLnRr/e9Muz9AWwrpyzEmXxpSipzXDUbfo6rZnmmWRpSOU361A0BCEAAAvURMCaVn3rqKSXLGxRvMiNPvvzL0hfr1q0r/kj//dFHH1VdT7k48S233KJESAbdZEah1P/2228HzRo4vfzQE0HOozKDdu3a6Vg0bdoURvWMExmvBx54YODxV5zh3XffVU2aNCn88D7nnHOKP470t1yRIG18+eWXI5WTpcxyskz67D1E4IbZZIadrPW+ZMmSwNnlhqdyxYbEttImaybKMSjNzZPKcgLQ5uOgN+t8xYoVoXGxj4VGVzUj+1lVNCUfeEuKyf9Um/czOV7J1UkmN+//j3cs3nPPPUMVb1s5tTrRv39/q2Mt49A7rorEDLtxXA1Lrno+jqvV2WTtkw4dOugr1Ww+7tO2yr+BTXGRk6pyjyoZC6bKpJx4Y5YXvvLbT+6Rlpf+muynfF+ePn161v4l1WmvMalcXvKGDRu0TJYv/7K+caXtkUceUYMHD670Ucl7Z599trrhhhtK3vPz4oUXXtAiKOzMQD91eGlkJrbcNItHZQbt27fXsWjTpg2M6hknsr/IGIqyDRgwoCBARWJ++OGHUYoryStXH8g/jihrApcUmIEXgwYNKvDcd999Q7dYRIawC7oWtRy/DjnkEPXpp59WrVvWpX/44Yerfp7EB55Uli+9Nh8H27Ztq+P5zjvvhMbCPhYaXdWM7GdV0ZR8IFeFyf+Jn//851bvZ3LTZr83Vy7pYD0v5BgoJ6Y9qXzBBRfUk7r6R7aVU72lP34ydOhQq2Mtx3tv4sCyZctqdafq5xxXq6IJ/QHH1dDorMso4kGOfzZ/v6JtlX8Dm+Iiv0FE3MlvAlNlUk68McsLX/E7cm+1vPTXZD/l+/L8+fOt+58TtEGxSeXis+NyyXylTWZQTpgwodJHJe/JzcbCzO6TSyPlx4fIZbZ0CXTu3FmJzJH13diqE5DxGuVGfXIzS+8Htzz36dOnemUhPpHZndX25xDFWZ9FltyRL3Ae0yjrKV9yySWB11O+6aabtIiWk2oyW7n4ISey5PPf/e53emb666+/nipPTyqLALF5u/7663U8P/jgg1DNZB8Lha3eTOxn9eIp+TDPy18ICFlLWU6iyX68efPmEjZBXthWTpC225g26vIXHFfNR5XjqnmmaZbI8hdp0qduCEAAAhCoj0BsUlmWqxARI0tfyGXflTaZOl7rEuRFixYpEZJB1lOWuuQGLnLGRB5RbuZSqd28F4zAG2+8ocdC2pfnB2t1Oqlln4kilU877bSCAJWyXLicIp1I/FirrPfuCWV5/stf/hK6OV27dg20nvLo0aNL6i5uR6W/5caoaW55kcrsY+ZHGfuZf6Z5l8r+SZEySQJRpTLHVfPR4rhqnmmaJSKV06RP3RCAAAQgUB+BWKSyrK3cuHFjLUQOO+ywivXLJflymXQt4XvMMceEWpfPW/pCvuiypUtAZlKKBKt1AiHdVtpRu3AKK5W3bdumZ7V6wlHWOJQbVrKFJ3DPPfeUiN2w6ynLjDpZiuTVV1/11Rg5Pnpx9PMs66ulveVBKrOPxTPK2M/8c0Uq+2dFyuQIRJHKHFfjiRPH1Xi4plUqUjkt8tQLAQhAAAK1CMQilRcvXlwQIldffXXFNsj6n0OGDKn4mffmk08+qWR2X5j1W8844wwtceRmgGzpEZD1Y+XkwQEHHJBeIzJUcxSpLLNoiwWkrKXHFo2AXGbtMZUrJsJusrZomPWUw9aXRr48SGX2sXhGFvuZf65IZf+sSJkcgShSmeNqPHHiuBoP17RKRSqnRZ56IQABCECgFoFYpPLjjz9eEDEPPvhgxTbIupt/+tOfKn4mb37xxRd62Yu33367appqH3z55ZeqWbNmVW8QWC0f75snsGDBAj0W7rrrLvOFO1hiFKl86aWXFvY7KeeWW25xkFByXZKrKIrXUx45cmToyi+++GLVr1+/0PmzkDEPUpl9zPxIZD8LxhSpHIwXqZMhEEUqc1w1HyOOq+aZpl0iUjntCFA/BCAAAQhUIxCLVF6zZk1BblVbfmL33XdXK1eurNgumd165JFHqvvvv7/i57XelHwi1R577LFaSfk8ZgInn3yyXgpl48aNMdfkRvFRpHLxrBQp5/nnn3cDSkq9MLke4X777ee85M+DVGYfM78zsp8FY4pUDsaL1MkQiCKVOa6ajxHHVfNM0y4RqZx2BKgfAhCAAASqEYhFKktlbdq00WL3+OOPr1P3f/7zn6rrKcsM5T59+qjLLrusTj6/bxx00EF6huF3333nNwvpYiDgzRjv379/DKW7WWQUqXzggQcWTuZIOcLf1u2HH35Qq1atUnITxzge8oPqm2++idT98vUIw54Y2bRpk46L3/WUIzU6xcx5kMrsYz/tryb2MRmu7GfBdlqkcjBepE6GQBSpzHGV42oyozTbtSCVsx0/Wg8BCEDAZQKxSeVHHnlEixS5OdXLL79cwnDq1KnqxBNPLHlPXrz33ntq7733VtXWYa6TocIbcjM4EWoXXnhhhU95K0kCkydP1rGYMWNGktVmuq4oUrlt27aat5QhN+kzucmllK+99pqxIuUYIO2M83HWWWdFau/gwYML7dtnn31ClzV79mzn11MWOHmQyuxjpfts1H1Mxg37WbBDC1I5GC9SJ0MgilTmuMpxNZlRmu1akMrZjh+thwAEIOAygdikskD74x//qG+WJ+uSTpkyRYmYku3ss89W9957b4Hrp59+qq644gq15557KhEwUTaZ4SyiSmY/sqVL4Ne//rVq0aKFkjt7s/kjIGP31FNP9Ze4LFWXLl0KErRjx45ln0Z7KfulXEFgapMrEh544AEla23H8ZgwYYKeCR2lvd7VFhKTESNGhC5q2LBhasCAAaHzZyVjHqQy+9hP+6uJfUzGNvtZsD0cqRyMF6mTIRBFKnNc5biazCjNdi1I5WzHj9ZDAAIQcJlArFJZwMkl7iKRmzdvrpekGDRokF76Qm56JTOSRVR16tRJjRs3Tn377beRWG/fvl2X3a1bt0jlkDk6gQ8//FCfUJAbMrL5JxBFKvfu3bsglWXmj8nt6KOPVpMmTTJZpNVlbdiwocBSYiIzq8NsIs/l2Bf1ZFmYupPOkwepzD5mdlSxnwXniVQOzowc8ROIIpU5rpqND8dVszxtKQ2pbEskaAcEIAABCJQTiF0qexXu2rVLffDBB0pmN8nMZXmePn26XvLCSxP1ec6cOVoEjR8/PmpR5I9IYOzYsToW3CwuGMgoUvnyyy8viNAmTZoUrgwI1oK6qWVJmdatW6stW7bU/dDRd5YuXVpgKTEJe+XDHXfcodq1a6d27tzpKKmfupUHqcw+9lO8TfzFfhacIlI5ODNyxE8gilTmuGo2PhxXzfK0pTSksi2RoB0QgAAEIFBOIDGp7FUsay3LnZ7j2AYOHKiaNm2qNm/eHEfxlBmAgKxB2759eyUnE9j8E4gilV944YUSEfrvf//bf8VVUsqSNUcccYSaOHFilRRuvr1u3boSlmFueig3I/zZz36mbrnlFjchlfUqD1KZfaws6BFfsp8FB4hUDs6MHPETiCKVOa6ajQ/HVbM8bSkNqWxLJGgHBCAAAQiUE0hcKp933nl6lnJ5Q6K+Xr9+vWrcuLG+6U/UssgfjcDrr7+uhVyUGy5Ga0F2c0eRyjt27FD77bdfQYb+6U9/igxCyujRo0cuTw7I7GyJhzzCSGVZK1pumPjZZ59FjkMWCsiDVGYfMz8S2c+CMUUqB+NF6mQIRJHKHFfNx4jjqnmmaZeIVE47AtQPAQhAAALVCCQuleUGYm+//Xa19oR+X2YDivx58sknQ5dBRjMEfvvb3+pYxBFnMy20t5QoUll69dprr+mTK1LOXnvtpbZu3Rq6s3PnztVlyPp8edzk5nrCUR5LliwJhGDevHn6qolnn302UL4sJ86DVJb4sI+ZHaXsZ8F4IpWD8SJ1MgSiSGVpIcdVs3HiuGqWpw2lIZVtiAJtgAAEIACBSgQSlcpy8zY5ey6X1JvcpDwRaHIXebnknC09AjLjRGL8i1/8Ir1GZLjmqFJZuj5q1KiCDD3nnHNC0Zg1a5ZeC3j16tWh8ruQ6cEHHyxwDLJOu/w4lpvzPfDAAy5g8N2HvEhlAcI+5ntY1EzIflYTUUkCpHIJDl5YQiCqVJZucFw1F0yOq+ZY2lISUtmWSNAOCEAAAhAoJ5CoVH744YfVySefXN6GyK9feuklLX+uueaayGVRQDQC8+fP17EIIuGi1ehWbhNS+bvvvlNdu3YtCNGpU6f6hvT111+rc889V3Xr1k3JDfryvMnJKm+2j5woqbWMhaSXtaflRqSXXXZZ7tDlSSqzj5kb3uxnwVgilYPxInUyBExIZY6r5mLFcdUcS1tKQirbEgnaAQEIQAAC5QQSlcoyazKO2XtSrsi49957r7x/vE6YwEknnaSXX9i0aVPCNbtRnQmpLCS2bdum5I7qjRo10vuGyNGVK1dWhSQy+fbbb1eyPI0sJSMzztmU2rhxo74CQuLy61//Wv3nP/+piGXZsmWqV69eepb+Y489VjGN62/mSSpLLNnHzI1o9jP/LJHK/lmRMjkCJqSytJbjqrmYcVw1x9KGkpDKNkSBNkAAAhCAQCUCiUrlTp06qXfffbdSO0K/t2XLFn2p+WGHHRa6DDKaISA3M9ttt93UwIEDzRSYw1JMSWUPndw00Zu1LIJZxOgFF1yg5CZy999/v7rhhhvUkUceqZo1a6b69++vPvjgAy8rz/8j8MUXX6iRI0dqQS/LWpx++unq1ltvVXfccYe+8mKPPfZQDRs2VHJy6/PPP88tt7xJZS/Q7GMeiWjP7Gf++CGV/XEiVbIETEllr9UcVz0S0Z45rkbjZ1NupLJN0aAtEIAABCBQTCBRqTxt2rTiuo38PXnyZD0Tc8qUKUbKo5DwBCZNmqRjMXPmzPCF5DynaaksOGXW8XPPPadnLvfu3Vt16dJFdejQQfXs2VOdeOKJSpYq+fjjj3NOvnb333zzTTVmzBgls/H33Xdftc8++6i+ffvq97gppVJ5lcrsY7X3nSAp2M/qp4VUrp8Pn6ZDwLRUll7w3cVcLDmummOZVklI5bTIUy8EIAABCNQi4Fsqyw3wmjRpomxbt1hmDbZs2VJt3bq1Vl/5PGYCZ555pl5P9ttvv425JneLj0Mqu0uLntlEIM9S2aY40Ba3CSCV3Y5vVnsXh1TOKgvaDYE4CCCV46BKmRCAAAQgYIKAb6kslcmNu2S9M5u2tWvXquXLl9vUpNy2RWIha8uyhSeAVA7PjpzpEkAqp8uf2vNBAKmcjzhnrZdI5axFjPZmjQBSOWsRo70QgAAE8kMgkFTODxZ6CoF0CCCV0+FOrdEJIJWjM6QECNQigFSuRYjP0yCAVE6DOnXmiQBSOU/Rpq8QgAAEskUAqZyteNFaxwkglR0PsMPdQyo7HFy6Zg0BpLI1oaAhRQSQykUw+BMCMRBAKscAlSIhAAEIQMAIAaSyEYwUAgEzBJDKZjhSSvIEkMrJM6fG/BFAKucv5lnoMVI5C1GijVkmgFTOcvRoOwQgAAG3CSCV3Y4vvcsYAaRyxgJGcwsEkMoFFPwBgdgIIJVjQ0vBEQgglSPAIysEfBBAKvuARBIIQAACEEiFAFI5FexUCoHKBJDKlbnwrv0EkMr2x4gWZp8AUjn7MXSxB0hlF6NKn2wigFS2KRq0BQIQgAAEigkglYtp8DcEUiaAVE45AFQfmgBSOTQ6MkLANwGksm9UJEyQAFI5QdhUlUsCSOVchp1OQwACEMgEAaRyJsJEI/NCAKmcl0i710+ksnsxpUf2EUAq2xcTWqQUUplRAIF4CSCV4+VL6RCAAAQgEJ4AUjk8O3JCwDgBpLJxpBSYEAGkckKgqSbXBJDKuQ6/tZ1HKlsbGhrmCAGksiOBpBsQgAAEHCSAVHYwqHQpuwSQytmNXd5bjlTO+wig/0kQQConQZk6ghJAKgclRnoIBCOAVA7Gi9QQgAAEIJAcAaRycqypCQI1CSCVayIigaUEkMqWBoZmOUUAqexUOJ3pDFLZmVDSEUsJIJUtDQzNggAEIAABhVRmEEDAIgJIZYuCQVMCEUAqB8JFYgiEIoBUDoWNTDETQCrHDJjic08AqZz7IQAACEAAAtYSQCpbGxoalkcCIpWPOuoo9frrr/OAQabGwCuvvKJk/J5xxhlW77rXXnutbufcuXMzxZdjAsdEGQNnnnmmHr/r1q2zej+jcfkigFTOV7zpbfIEkMrJM6dGCEAAAhDwRwCp7I8TqSCQCAGRcjxgkOUxsP/++yeyr4StpH///uxjHGcyPwZWr14ddhcgHwSMEzjppJP0PtWkSRPVtGlTHjBgDBgeAw0bNlS77bab8X2XAiEAAQhAAAJRCSCVoxIkPwQMErjxxhvVNddco8aNG8cDBpkbA+edd55atGiRwT3CfFErVqxQZ599dubYckzgmChjYPTo0ep3v/ud+R2DEiEQgcDMmTNVp06d1AknnKCGDBnCAwaMAcNj4OCDD1bHHXdchL2UrBCAAAQgAIF4CCCV4+FKqRCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEnCSAVHYyrHQKAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEA8BJDK8XClVAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACThL4f4GpPt9oLa5DAAAAAElFTkSuQmCC" } }, "cell_type": "markdown", "metadata": {}, "source": [ "