# Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from itertools import product import numpy as np import pytest from braket.ir.jaqcd.shared_models import MultiProbability np.random.seed(1) def pauli_strings(n_qubits: int): pauli_strings = list(map(lambda x: "".join(x), product(["I", "X", "Y", "Z"], repeat=n_qubits))) return pauli_strings[1:] # remove identity term def random_noise(n_qubits: int): return np.random.dirichlet(np.ones(4**n_qubits))[1:] # remove identity term @pytest.mark.parametrize("n_qubits", [1, 2, 3]) class TestMultiProbability: """A class with common parameters, `param1` and `param2`.""" def test_multiprobability(self, n_qubits): paulis = dict(zip(pauli_strings(n_qubits), random_noise(n_qubits))) MultiProbability(probabilities=paulis) def test_multiprobability_less_probabilities(self, n_qubits): paulis = dict(zip(pauli_strings(n_qubits), random_noise(n_qubits))) del paulis["X" * n_qubits] del paulis["Z" * n_qubits] MultiProbability(probabilities=paulis) @pytest.mark.xfail(raises=ValueError) @pytest.mark.parametrize("str", ["T", "s", "x"]) def test_multiprobability_non_pauli(self, n_qubits, str): paulis = dict(zip(pauli_strings(n_qubits), random_noise(n_qubits))) paulis[str * n_qubits] = 0.0 MultiProbability(probabilities=paulis) @pytest.mark.xfail(raises=ValueError) @pytest.mark.parametrize("value", [12, -0.1, 1.1, np.inf, None]) def test_multiprobability_non_float(self, n_qubits, value): paulis = dict(zip(pauli_strings(n_qubits), random_noise(n_qubits))) paulis["X" * n_qubits] = value MultiProbability(probabilities=paulis) @pytest.mark.xfail(raises=ValueError) def test_multiprobability_empty(self, n_qubits): MultiProbability(probabilities={}) @pytest.mark.xfail(raises=ValueError) def test_multiprobability_identity(self, n_qubits): paulis = dict(zip(pauli_strings(n_qubits), random_noise(n_qubits))) paulis["I" * n_qubits] = 0.1 MultiProbability(probabilities=paulis) @pytest.mark.xfail(raises=ValueError) def test_multiprobability_pauli_equal_lengths(self, n_qubits): paulis = dict(zip(pauli_strings(n_qubits), random_noise(n_qubits))) paulis["X"] = 0.0 paulis["XY"] = 0.0 MultiProbability(probabilities=paulis) @pytest.mark.xfail(raises=ValueError) def test_multiprobability_sum_over_one(self, n_qubits): paulis = dict(zip(pauli_strings(n_qubits), 10 * random_noise(n_qubits))) MultiProbability(probabilities=paulis) @pytest.mark.xfail(raises=ValueError) def test_multiprobability_sum_under_zero(self, n_qubits): paulis = dict(zip(pauli_strings(n_qubits), random_noise(n_qubits))) paulis["Z" * n_qubits] = -0.9 MultiProbability(probabilities=paulis)