# Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from __future__ import annotations import re from functools import reduce from typing import List, Union import braket.ir.jaqcd as ir from braket.circuits import circuit from braket.circuits.free_parameter import FreeParameter from braket.circuits.observable import Observable from braket.circuits.observables import Sum from braket.circuits.qubit_set import QubitSet, QubitSetInput from braket.circuits.result_type import ( ObservableParameterResultType, ObservableResultType, ResultType, ) from braket.circuits.serialization import IRType, OpenQASMSerializationProperties """ To add a new result type: 1. Implement the class and extend `ResultType` 2. Add a method with the `@circuit.subroutine(register=True)` decorator. Method name is added into the `Circuit` class. This method is the default way clients add this result type to a circuit. 3. Register the class with the `ResultType` class via `ResultType.register_result_type()`. """ class StateVector(ResultType): """ The full state vector as a requested result type. This is available on simulators only when `shots=0`. """ def __init__(self): super().__init__(ascii_symbols=["StateVector"]) def _to_jaqcd(self) -> ir.StateVector: return ir.StateVector.construct() def _to_openqasm(self, serialization_properties: OpenQASMSerializationProperties) -> str: return "#pragma braket result state_vector" @staticmethod @circuit.subroutine(register=True) def state_vector() -> ResultType: """Registers this function into the circuit class. Returns: ResultType: state vector as a requested result type Examples: >>> circ = Circuit().state_vector() """ return ResultType.StateVector() def __eq__(self, other) -> bool: if isinstance(other, StateVector): return True return False def __copy__(self) -> StateVector: return type(self)() # must redefine __hash__ since __eq__ is overwritten # https://docs.python.org/3/reference/datamodel.html#object.__hash__ def __hash__(self) -> int: return super().__hash__() ResultType.register_result_type(StateVector) class DensityMatrix(ResultType): """ The full density matrix as a requested result type. This is available on simulators only when `shots=0`. """ def __init__(self, target: QubitSetInput = None): """ Args: target (QubitSetInput): The target qubits of the reduced density matrix. Default is `None`, and the full density matrix is returned. Examples: >>> ResultType.DensityMatrix(target=[0, 1]) """ self._target = QubitSet(target) ascii_symbols = ["DensityMatrix"] * len(self._target) if self._target else ["DensityMatrix"] super().__init__(ascii_symbols=ascii_symbols) @property def target(self) -> QubitSet: return self._target @target.setter def target(self, target: QubitSetInput) -> None: """Sets the target qubit set. Args: target (QubitSetInput): The target qubit set. """ self._target = QubitSet(target) def _to_jaqcd(self) -> ir.DensityMatrix: if self.target: # convert qubits to int as required by the ir type return ir.DensityMatrix.construct(targets=[int(qubit) for qubit in self.target]) else: return ir.DensityMatrix.construct() def _to_openqasm(self, serialization_properties: OpenQASMSerializationProperties) -> str: if not self.target: return "#pragma braket result density_matrix all" targets = ", ".join( serialization_properties.format_target(int(target)) for target in self.target ) return f"#pragma braket result density_matrix {targets}" @staticmethod @circuit.subroutine(register=True) def density_matrix(target: QubitSetInput = None) -> ResultType: """Registers this function into the circuit class. Args: target (QubitSetInput): The target qubits of the reduced density matrix. Default is `None`, and the full density matrix is returned. Returns: ResultType: density matrix as a requested result type Examples: >>> circ = Circuit().density_matrix(target=[0, 1]) """ return ResultType.DensityMatrix(target=target) def __eq__(self, other) -> bool: if isinstance(other, DensityMatrix): return self.target == other.target return False def __repr__(self) -> str: return f"DensityMatrix(target={self.target})" def __copy__(self) -> DensityMatrix: return type(self)(target=self.target) # must redefine __hash__ since __eq__ is overwritten # https://docs.python.org/3/reference/datamodel.html#object.__hash__ def __hash__(self) -> int: return super().__hash__() ResultType.register_result_type(DensityMatrix) class AdjointGradient(ObservableParameterResultType): """ The gradient of the expectation value of the provided observable, applied to target, with respect to the given parameter. """ def __init__( self, observable: Observable, target: List[QubitSetInput] = None, parameters: List[Union[str, FreeParameter]] = None, ): """ Args: observable (Observable): The expectation value of this observable is the function against which parameters in the gradient are differentiated. target (List[QubitSetInput]): Target qubits that the result type is requested for. Each term in the target list should have the same number of qubits as the corresponding term in the observable. Default is `None`, which means the observable must operate only on 1 qubit and it is applied to all qubits in parallel. parameters (List[Union[str, FreeParameter]]): The free parameters in the circuit to differentiate with respect to. Default: `all`. Raises: ValueError: If the observable's qubit count does not equal the number of target qubits, or if `target=None` and the observable's qubit count is not 1. Examples: >>> ResultType.AdjointGradient(observable=Observable.Z(), target=0, parameters=["alpha", "beta"]) >>> tensor_product = Observable.Y() @ Observable.Z() >>> hamiltonian = Observable.Y() @ Observable.Z() + Observable.H() >>> ResultType.AdjointGradient( >>> observable=tensor_product, >>> target=[[0, 1], [2]], >>> parameters=["alpha", "beta"], >>> ) """ if isinstance(observable, Sum): target_qubits = reduce(QubitSet.union, map(QubitSet, target), QubitSet()) else: target_qubits = QubitSet(target) super().__init__( ascii_symbols=[f"AdjointGradient({observable.ascii_symbols[0]})"] * len(target_qubits), observable=observable, target=target, parameters=parameters, ) def _to_openqasm(self, serialization_properties: OpenQASMSerializationProperties) -> str: observable_ir = self.observable.to_ir( target=self.target, ir_type=IRType.OPENQASM, serialization_properties=serialization_properties, ) pragma_parameters = ", ".join(self.parameters) if self.parameters else "all" return ( f"#pragma braket result adjoint_gradient " f"expectation({observable_ir}) {pragma_parameters}" ) @staticmethod @circuit.subroutine(register=True) def adjoint_gradient( observable: Observable, target: List[QubitSetInput] = None, parameters: List[Union[str, FreeParameter]] = None, ) -> ResultType: """Registers this function into the circuit class. Args: observable (Observable): The expectation value of this observable is the function against which parameters in the gradient are differentiated. target (List[QubitSetInput]): Target qubits that the result type is requested for. Each term in the target list should have the same number of qubits as the corresponding term in the observable. Default is `None`, which means the observable must operate only on 1 qubit and it is applied to all qubits in parallel. parameters (List[Union[str, FreeParameter]]): The free parameters in the circuit to differentiate with respect to. Default: `all`. Returns: ResultType: gradient computed via adjoint differentiation as a requested result type Examples: >>> alpha, beta = FreeParameter('alpha'), FreeParameter('beta') >>> circ = Circuit().h(0).h(1).rx(0, alpha).yy(0, 1, beta).adjoint_gradient( >>> observable=Observable.Z(), target=[0], parameters=[alpha, beta] >>> ) """ return ResultType.AdjointGradient( observable=observable, target=target, parameters=parameters ) ResultType.register_result_type(AdjointGradient) class Amplitude(ResultType): """ The amplitude of the specified quantum states as a requested result type. This is available on simulators only when `shots=0`. """ def __init__(self, state: List[str]): """ Args: state (List[str]): list of quantum states as strings with "0" and "1" Raises: ValueError: If state is `None` or an empty list, or state is not a list of strings of '0' and '1' Examples: >>> ResultType.Amplitude(state=['01', '10']) """ if ( not state or not isinstance(state, List) or not all( isinstance(amplitude, str) and re.fullmatch("^[01]+$", amplitude) for amplitude in state ) ): raise ValueError( "A non-empty list of states must be specified in binary encoding e.g. ['01', '10']" ) super().__init__(ascii_symbols=[f"Amplitude({','.join(state)})"]) self._state = state @property def state(self) -> List[str]: return self._state def _to_jaqcd(self) -> ir.Amplitude: return ir.Amplitude.construct(states=self.state) def _to_openqasm(self, serialization_properties: OpenQASMSerializationProperties) -> str: states = ", ".join(f'"{state}"' for state in self.state) return f"#pragma braket result amplitude {states}" @staticmethod @circuit.subroutine(register=True) def amplitude(state: List[str]) -> ResultType: """Registers this function into the circuit class. Args: state (List[str]): list of quantum states as strings with "0" and "1" Returns: ResultType: state vector as a requested result type Examples: >>> circ = Circuit().amplitude(state=["01", "10"]) """ return ResultType.Amplitude(state=state) def __eq__(self, other): if isinstance(other, Amplitude): return self.state == other.state return False def __repr__(self): return f"Amplitude(state={self.state})" def __copy__(self): return type(self)(state=self.state) def __hash__(self) -> int: return super().__hash__() ResultType.register_result_type(Amplitude) class Probability(ResultType): """Probability in the computational basis as the requested result type. It can be the probability of all states if no targets are specified, or the marginal probability of a restricted set of states if only a subset of all qubits are specified as targets. For `shots>0`, this is calculated by measurements. For `shots=0`, this is supported only on simulators and represents the exact result. """ def __init__(self, target: QubitSetInput = None): """ Args: target (QubitSetInput): The target qubits that the result type is requested for. Default is `None`, which means all qubits for the circuit. Examples: >>> ResultType.Probability(target=[0, 1]) """ self._target = QubitSet(target) ascii_symbols = ["Probability"] * len(self._target) if self._target else ["Probability"] super().__init__(ascii_symbols=ascii_symbols) @property def target(self) -> QubitSet: return self._target @target.setter def target(self, target: QubitSetInput) -> None: """Sets the target qubit set. Args: target (QubitSetInput): The target qubit set. """ self._target = QubitSet(target) def _to_jaqcd(self) -> ir.Probability: if self.target: # convert qubits to int as required by the ir type return ir.Probability.construct(targets=[int(qubit) for qubit in self.target]) else: return ir.Probability.construct() def _to_openqasm(self, serialization_properties: OpenQASMSerializationProperties) -> str: if not self.target: return "#pragma braket result probability all" targets = ", ".join( serialization_properties.format_target(int(target)) for target in self.target ) return f"#pragma braket result probability {targets}" @staticmethod @circuit.subroutine(register=True) def probability(target: QubitSetInput = None) -> ResultType: """Registers this function into the circuit class. Args: target (QubitSetInput): The target qubits that the result type is requested for. Default is `None`, which means all qubits for the circuit. Returns: ResultType: probability as a requested result type Examples: >>> circ = Circuit().probability(target=[0, 1]) """ return ResultType.Probability(target=target) def __eq__(self, other) -> bool: if isinstance(other, Probability): return self.target == other.target return False def __repr__(self) -> str: return f"Probability(target={self.target})" def __copy__(self) -> Probability: return type(self)(target=self.target) def __hash__(self) -> int: return super().__hash__() ResultType.register_result_type(Probability) class Expectation(ObservableResultType): """Expectation of the specified target qubit set and observable as the requested result type. If no targets are specified, the observable must operate only on 1 qubit and it is applied to all qubits in parallel. Otherwise, the number of specified targets must be equivalent to the number of qubits the observable can be applied to. For `shots>0`, this is calculated by measurements. For `shots=0`, this is supported only by simulators and represents the exact result. See :mod:`braket.circuits.observables` module for all of the supported observables. """ def __init__(self, observable: Observable, target: QubitSetInput = None): """ Args: observable (Observable): the observable for the result type target (QubitSetInput): Target qubits that the result type is requested for. Default is `None`, which means the observable must operate only on 1 qubit and it is applied to all qubits in parallel. Raises: ValueError: If the observable's qubit count does not equal the number of target qubits, or if `target=None` and the observable's qubit count is not 1. Examples: >>> ResultType.Expectation(observable=Observable.Z(), target=0) >>> tensor_product = Observable.Y() @ Observable.Z() >>> ResultType.Expectation(observable=tensor_product, target=[0, 1]) """ super().__init__( ascii_symbols=[f"Expectation({obs_ascii})" for obs_ascii in observable.ascii_symbols], observable=observable, target=target, ) def _to_jaqcd(self) -> ir.Expectation: if self.target: return ir.Expectation.construct( observable=self.observable.to_ir(), targets=[int(qubit) for qubit in self.target] ) else: return ir.Expectation.construct(observable=self.observable.to_ir()) def _to_openqasm(self, serialization_properties: OpenQASMSerializationProperties) -> str: observable_ir = self.observable.to_ir( target=self.target, ir_type=IRType.OPENQASM, serialization_properties=serialization_properties, ) return f"#pragma braket result expectation {observable_ir}" @staticmethod @circuit.subroutine(register=True) def expectation(observable: Observable, target: QubitSetInput = None) -> ResultType: """Registers this function into the circuit class. Args: observable (Observable): the observable for the result type target (QubitSetInput): Target qubits that the result type is requested for. Default is `None`, which means the observable must operate only on 1 qubit and it is applied to all qubits in parallel. Returns: ResultType: expectation as a requested result type Examples: >>> circ = Circuit().expectation(observable=Observable.Z(), target=0) """ return ResultType.Expectation(observable=observable, target=target) ResultType.register_result_type(Expectation) class Sample(ObservableResultType): """Sample of specified target qubit set and observable as the requested result type. If no targets are specified, the observable must operate only on 1 qubit and it is applied to all qubits in parallel. Otherwise, the number of specified targets must equal the number of qubits the observable can be applied to. This is only available for `shots>0`. See :mod:`braket.circuits.observables` module for all of the supported observables. """ def __init__(self, observable: Observable, target: QubitSetInput = None): """ Args: observable (Observable): the observable for the result type target (QubitSetInput): Target qubits that the result type is requested for. Default is `None`, which means the observable must operate only on 1 qubit and it is applied to all qubits in parallel. Raises: ValueError: If the observable's qubit count is not equal to the number of target qubits, or if `target=None` and the observable's qubit count is not 1. Examples: >>> ResultType.Sample(observable=Observable.Z(), target=0) >>> tensor_product = Observable.Y() @ Observable.Z() >>> ResultType.Sample(observable=tensor_product, target=[0, 1]) """ super().__init__( ascii_symbols=[f"Sample({obs_ascii})" for obs_ascii in observable.ascii_symbols], observable=observable, target=target, ) def _to_jaqcd(self) -> ir.Sample: if self.target: return ir.Sample.construct( observable=self.observable.to_ir(), targets=[int(qubit) for qubit in self.target] ) else: return ir.Sample.construct(observable=self.observable.to_ir()) def _to_openqasm(self, serialization_properties: OpenQASMSerializationProperties) -> str: observable_ir = self.observable.to_ir( target=self.target, ir_type=IRType.OPENQASM, serialization_properties=serialization_properties, ) return f"#pragma braket result sample {observable_ir}" @staticmethod @circuit.subroutine(register=True) def sample(observable: Observable, target: QubitSetInput = None) -> ResultType: """Registers this function into the circuit class. Args: observable (Observable): the observable for the result type target (QubitSetInput): Target qubits that the result type is requested for. Default is `None`, which means the observable must operate only on 1 qubit and it is applied to all qubits in parallel. Returns: ResultType: sample as a requested result type Examples: >>> circ = Circuit().sample(observable=Observable.Z(), target=0) """ return ResultType.Sample(observable=observable, target=target) ResultType.register_result_type(Sample) class Variance(ObservableResultType): """Variance of specified target qubit set and observable as the requested result type. If no targets are specified, the observable must operate only on 1 qubit and it is applied to all qubits in parallel. Otherwise, the number of targets specified must equal the number of qubits that the observable can be applied to. For `shots>0`, this is calculated by measurements. For `shots=0`, this is supported only by simulators and represents the exact result. See :mod:`braket.circuits.observables` module for all of the supported observables. """ def __init__(self, observable: Observable, target: QubitSetInput = None): """ Args: observable (Observable): the observable for the result type target (QubitSetInput): Target qubits that the result type is requested for. Default is `None`, which means the observable must operate only on 1 qubit and it is applied to all qubits in parallel. Raises: ValueError: If the observable's qubit count does not equal the number of target qubits, or if `target=None` and the observable's qubit count is not 1. Examples: >>> ResultType.Variance(observable=Observable.Z(), target=0) >>> tensor_product = Observable.Y() @ Observable.Z() >>> ResultType.Variance(observable=tensor_product, target=[0, 1]) """ super().__init__( ascii_symbols=[f"Variance({obs_ascii})" for obs_ascii in observable.ascii_symbols], observable=observable, target=target, ) def _to_jaqcd(self) -> ir.Variance: if self.target: return ir.Variance.construct( observable=self.observable.to_ir(), targets=[int(qubit) for qubit in self.target] ) else: return ir.Variance.construct(observable=self.observable.to_ir()) def _to_openqasm(self, serialization_properties: OpenQASMSerializationProperties) -> str: observable_ir = self.observable.to_ir( target=self.target, ir_type=IRType.OPENQASM, serialization_properties=serialization_properties, ) return f"#pragma braket result variance {observable_ir}" @staticmethod @circuit.subroutine(register=True) def variance(observable: Observable, target: QubitSetInput = None) -> ResultType: """Registers this function into the circuit class. Args: observable (Observable): the observable for the result type target (QubitSetInput): Target qubits that the result type is requested for. Default is `None`, which means the observable must only operate on 1 qubit and it will be applied to all qubits in parallel Returns: ResultType: variance as a requested result type Examples: >>> circ = Circuit().variance(observable=Observable.Z(), target=0) """ return ResultType.Variance(observable=observable, target=target) ResultType.register_result_type(Variance)