

Marvell.Moving Forward Faster

June 24, 2019

CONFIDENTIAL

Document Classification: Proprietary Information

Marvell

Wireless Microcontroller

Getting Started Guide for

MW320/MW322

V1.9

Wireless Microcontroller - V1.9

 Confidential Copyright © 2016 Marvell

Page 2 Document Classification: Proprietary Information June 24, 2019

Document Conventions

Note: Provides related information or information of special importance.

Caution: Indicates potential damage to hardware or software, or loss of data.

Warning: Indicates a risk of personal injury.

For more information, visit our website at: www.marvell.com

Disclaimer

No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose,
without the express written permission of Marvell. Marvell retains the right to make changes to this document at any time, without notice. Marvell makes no warranty of any

kind, expressed or implied, with regard to any information contained in this document, including, but not limited to, the implied warranties of merchantability or fitness for any
particular purpose. Further, Marvell does not warrant the accuracy or completeness of the information, text, graphics, or other items contained within this document.

Marvell products are not designed for use in life-support equipment or applications that would cause a life-threatening situation if any such products failed. Do not use Marvell
products in these types of equipment or applications.

With respect to the products described herein, the user or recipient, in the absence of appropriate U.S. government authorization, agrees:

1) Not to re-export or release any such information consisting of technology, software or source code controlled for national security reasons by the U.S. Export Control

Regulations (“EAR”), to a national of EAR Country Groups D:1 or E:2;

2) Not to export the direct product of such technology or such software, to EAR Country Groups D:1 or E:2, if such technology or software and direct products thereof are

controlled for national security reasons by the EAR; and,

3) In the case of technology controlled for national security reasons under the EAR where the direct product of the technology is a complete plant or component of a plant, not

to export to EAR Country Groups D:1 or E:2 the direct product of the plant or major component thereof, if such direct product is controlled for national security reasons by the
EAR, or is subject to controls under the U.S. Munitions List (“USML”).

At all times hereunder, the recipient of any such information agrees that they shall be deemed to have manually signed this document in connection with their receipt of any
such information.

Copyright © 2019. Marvell International Ltd. All rights reserved. Marvell, the Marvell logo, Moving Forward Faster, Alaska, Fastwriter, Datacom Systems on Silicon, Libertas,
Link Street, NetGX, PHYAdvantage, Prestera, Raising The Technology Bar, The Technology Within, Virtual Cable Tester, and Yukon are registered trademarks of Marvell.
Ants, AnyVoltage, Discovery, DSP Switcher, Feroceon, GalNet, GalTis, Horizon, Marvell Makes It All Possible, UniMAC, and VCT are trademarks of Marvell. Intel Xscale is a

trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries. All other trademarks are the property of their respective
owners.

Caution

http://www.marvell.com/

Table of Contents

Copyright © 2016 Marvell Confidential

June 24, 2019 Document Classification: Proprietary Information Page 3

Date Author Revision Changelog

June 24, 2019 Abhinav Kulkarni V1.9 Changes with respect to major release from

amazon.

May 06, 2019 Abhishek Misra V1.8 Fixed command for flashing wifi fw

April 30, 2019 Mayank Sirotiya V1.7 Implemented Review Comments

April 25, 2019 Abhishek Misra V1.6 Implemented Review Comments

April 24, 2019 Abhishek Misra V1.5 Added screenshots in Section 4

April 22, 2019 Abhishek Misra V1.4 Changes Provisioning details in Section 4.

Formatting changes for commands to be run on

mw3xx in section 4.

Added Trouble Shooting instructions in section 5

April 17, 2019 Abhinav Kulkarni V1.3 Minor changes, addition of debug method.

Feb 26 2019 Sudeep Mohanty V1.2 Added cmake commands for building firmware

Feb 21 2019 Abhishek Misra V1.1 Added section on provisioning

Restructured section on flashing firmware

Feb 7 2019 Abhishek Misra V1.0 Release V1.2.r4.p1

Wireless Microcontroller - V1.9

 Confidential Copyright © 2016 Marvell

Page 4 Document Classification: Proprietary Information June 24, 2019

Table of Contents

1 Getting Started Guide for MW320 ... 5

1.1 Development Toolchain Requirements ... 5
1.1.1 GNU Toolchain ... 5
1.1.2 Linux Toolchain Setup Procedure... 6

2 Working with a Linux Development Host .. 7

2.1 Installing Packages ... 7
2.1.1 Avoiding ‘sudo’ ... 7

2.2 Setup Serial Console .. 7

2.3 OpenOCD ... 8

3 Build and Run the Amazon FreeRTOS Demo Project .. 9

3.1 Provisioning .. 9

3.2 Working with Command line ... 10
3.2.1 Building ... 10
3.2.2 Loading to Flash ... 12
3.2.3 Output of Demo App ... 15
3.2.4 Loading to SRAM ... 16

Troubleshooting ... 17

3.3 Enable additional logs ... 17

3.4 Using GDB .. 17

 Copyright © 2016 Marvell Confidential

June 24, 2019 Document Classification: Proprietary Information Page 5

1 Getting Started Guide for MW320

The AWS IoT Starter Kit is a development kit based on the MW302, the latest integrated Cortex M4

Microcontroller from Marvell. This integrates 802.11b/g/n Wi-Fi on a single microcontroller chip. The

development kit is FCC certified and available for sale. The MW302 module is also FCC certified

and available for customization and volume sale.

The first step for development of your application for the SDK board is to cross compile the

application along with SDK on a host computer. Once compiled the generated binary file is loaded

onto the board using tools provided along with SDK. Once the application starts running on the board

you can debug or interact with it from the Serial console on your host computer.

The following host platforms are supported for development:

• Ubuntu 16.04

You may be able to use other platforms, but those platforms are not supported officially. This system

will act as the host platform for development and debugging. You need to have permissions to install

software on this host system. Following are the external tools required for building SDK successfully.

• Any of the above platforms.

• The ARM toolchain is required to cross compile your application and the SDK. The SDK

takes advantage of the latest versions of the toolchain to optimize the image footprint and

fit more functionality into less space. Using older toolchains is not recommended. The

supported version of the tool chain at the time of writing this document is 4_9_2015q3.

Eclipse 4.9.0 IDE is supported

The development kit is pre-flashed with Wireless Microcontroller Demo Project Firmware.

1.1 Development Toolchain Requirements
For development purposes, at a minimum you will need the ARM toolchain (in addition to the tools

bundled with the SDK).

1.1.1 GNU Toolchain
The SDK officially supports the GCC Compiler toolchain. The cross-compiler toolchain for GNU ARM

is available from the following URL: https://launchpad.net/gcc-arm-embedded/4.9/4.9-2015-q3-

update

The build system is configured to use the GNU toolchain by default. The Makefiles assume that the

GNU compiler toolchain binaries are available on the user’s PATH and can be invoked from the

Makefiles. The Makefiles also assume that the GNU toolchain binaries are prefixed with arm-

none-eabi-.

The GCC toolchain can be used with GDB for debugging with OpenOCD (bundled with the SDK)

providing the software interfacing to JTAG.

The current version of the gcc-arm-embedded toolchain at the time of writing this document is

4_9_2015q3

https://launchpad.net/gcc-arm-embedded/4.9/4.9-2015-q3-update
https://launchpad.net/gcc-arm-embedded/4.9/4.9-2015-q3-update

Wireless Microcontroller - V1.9

 Confidential Copyright © 2016 Marvell

Page 6 Document Classification: Proprietary Information June 24, 2019

1.1.2 Linux Toolchain Setup Procedure
Setting up the GCC toolchain in Linux requires the steps outlined below.

• Download the toolchain tarball

o Linux: gcc-arm-none-eabi-4_9-2015q3-20150921-linux.tar.bz2

• Copy the file to a directory of your choosing. Please ensure there are no spaces in the

directory name.

• Untar the file using the “tar –vxf <filename>”

• Path of the installed toolchain should be added into system PATH.

o For example, .profile file found under /home/<user> directory. Append the

following line to the end of the file:

▪ PATH=$PATH:<path to>gcc-arm-none-eabit-4_9_2015_q3/bin

Newer distributions of Ubuntu might come with a Debian version of the GCC Cross

Compiler. It is imperative that the native Cross Compiler is removed. Setup procedure

outlined above should be followed.

Note

https://launchpad.net/gcc-arm-embedded/4.9/4.9-2015-q3-update/+download/gcc-arm-none-eabi-4_9-2015q3-20150921-linux.tar.bz2

 Copyright © 2016 Marvell Confidential

June 24, 2019 Document Classification: Proprietary Information Page 7

2 Working with a Linux Development Host
Linux development hosts can be used in lieu of Windows development hosts. Any modern Linux

Desktop distribution such as Ubuntu or Fedora can be used, however it is recommended to upgrade

to the most recent release. The below steps are explained and tested to work on Ubuntu 16.04.

2.1 Installing Packages
To enable quick setup of development environment on a newly setup Linux machine, a script is

provided along with the SDK. The script will try to autodetect the machine type and install the

appropriate software viz. C libraries, USB library, FTDI library, ncurses, python and latex.

Make sure you have root privileges, then go to amzsdk_bundle-x.y.z/ directory and run the following

command:

#./vendors/marvell/WMSDK/mw320/sdk/tools/bin/installpkgs.sh

2.1.1 Avoiding ‘sudo’
Your Linux development host can also be configured to perform ‘flashprog’ and ‘ramload’ operations

without requiring the ‘sudo’ command to be executed each time. This can be done by executing the

following command:

#./vendors/marvell/WMSDK/mw320/sdk/tools/bin/perm_fix.sh

Note that fixing these permissions is mandatory for ensuring a smooth Eclipse IDE based

experience.

2.2 Setup Serial Console
1. Insert the USB cable into the Linux host’s USB slot as mentioned above. This will trigger the

detection of the device and you should see messages like the following in the /var/log/messages

file (or after executing the dmesg command).

Jan 6 20:00:51 localhost kernel: usb 4-2: new full speed USB device using

uhci_hcd and address 127

Jan 6 20:00:51 localhost kernel: usb 4-2: configuration #1 chosen from 1

choice

Jan 6 20:00:51 localhost kernel: ftdi_sio 4-2:1.0: FTDI USB Serial Device

converter detected

Jan 6 20:00:51 localhost kernel: ftdi_sio: Detected FT2232C

Jan 6 20:00:51 localhost kernel: usb 4-2: FTDI USB Serial Device converter

now attached to ttyUSB0

Jan 6 20:00:51 localhost kernel: ftdi_sio 4-2:1.1: FTDI USB Serial Device

converter detected

Jan 6 20:00:51 localhost kernel: ftdi_sio: Detected FT2232C

Jan 6 20:00:51 localhost kernel: usb 4-2: FTDI USB Serial Device converter

now attached to ttyUSB1

1. As can be seen two ttyUSB devices have been created. The second of this device is the serial

console, in our case ttyUSB1

2. Execute minicom in setup mode (minicom –s). Alternatively, you can use other serial programs

such as putty.

Wireless Microcontroller - V1.9

 Confidential Copyright © 2016 Marvell

Page 8 Document Classification: Proprietary Information June 24, 2019

3. Go to Serial Port Setup

4. Perform the following settings:

 | A - Serial Device : /dev/ttyUSB1

 | B – Lockfile Location : /var/lock

 | C - Callin Program :

 | D - Callout Program :

 | E - Bps/Par/Bits : 115200 8N1

 | F – Hardware Flow Control : No

 | G – Software Flow Control : No

You can save these settings in minicom for future use. The minicom window will now show

messages from the serial console.

5. Hit enter on the serial console window. This should show you a hash (#) on the screen.

The development boards from Marvell have an FTDI chip. The FTDI chip exposes two

USB interfaces for the host. The first interface is associated to JTAG functionality of

the MCU and the second interface is associated with physical UARTx port of the MCU.

2.3 OpenOCD
OpenOCD version 0.9 will be required. It is also required for Eclipse functionality. If an earlier

version (0.7) was installed on your Linux Host, please remove that repository with the appropriate

command for the Linux distribution you are currently using.

OpenOCD can be installed with standard linux command ‘apt-get install openocd’

If above mentioned command does not install v0.9 or higher, use following procedure to download

source for openocd

• Install libusb-1.0 (sudo apt-get install libusb-1.0)

• Download openocd 0.9.0 (We get it in the form of source code) from http://openocd.org/

• Extract openocd and go to it's folder

• Configure openocd (./configure --enable-ftdi --enable-jlink)

• Make openocd (make install)

Note

http://openocd.org/

 Copyright © 2016 Marvell Confidential

June 24, 2019 Document Classification: Proprietary Information Page 9

3 Build and Run the Amazon FreeRTOS
Demo Project

3.1 Provisioning

Depending upon if user wants to use test or demo application, user will need to set provisioning

data in below files

./tests/include/aws_clientcredential.h

./demos/include/aws_clientcredential.h

example:

#define clientcredentialWIFI_SSID "Paste Wi-Fi SSID here"

#define clientcredentialWIFI_PASSWORD "Paste Wi-Fi password here"

#define clientcredentialWIFI_SECURITY Paste Wi-Fi Security

Note: Possible values are - eWiFiSecurityOpen, eWiFiSecurityWEP, eWiFiSecurityWPA and

eWiFiSecurityWPA2

Note: SSID and Passphrase should be enclosed in “”

Wireless Microcontroller - V1.9

 Confidential Copyright © 2016 Marvell

Page 10 Document Classification: Proprietary Information June 24, 2019

3.2 Working with Command line

3.2.1 Building
Building demo or test application is straight forward. Follow these commands for building a demo

application:

$ cmake -DVENDOR=marvell -DBOARD=mw320 -DCOMPILER=arm-gcc -S . -Bbuild -
DAFR_ENABLE_TESTS=0

Make sure you are getting o/p as in image below

cd build
make all -j4

Make sure you are getting o/p as in image below

 Copyright © 2016 Marvell Confidential

June 24, 2019 Document Classification: Proprietary Information Page 11

Follow these commands for building a test application:

$ cmake -DVENDOR=marvell -DBOARD=mw320 -DCOMPILER=arm-gcc -S . -Bbuild -
DAFR_ENABLE_TESTS=1
$ cd build

$ make all -j4

Make sure to run the cmake command every time you switch between the aws_demos project and

the aws_tests project.

Wireless Microcontroller - V1.9

 Confidential Copyright © 2016 Marvell

Page 12 Document Classification: Proprietary Information June 24, 2019

3.2.2 Loading to Flash

This method writes the firmware image to the flash of the development board. The firmware then

gets executed on a reset of the development board.

3.2.2.1 Loading Layout and Boot2

Before we flash the firmware image, let’s prepare the development board’s flash with some common

components which are namely Layout and Boot2. This can be done as:

$ cd amzsdk_bundle-x.y.z

$./vendors/marvell/WMSDK/mw320/sdk/tools/OpenOCD/flashprog.py -l
vendors/marvell/WMSDK/mw320/sdk/tools/OpenOCD/mw300/layout.txt --boot2
vendors/marvell/WMSDK/mw320/boot2/bin/boot2.bin

Some comments about what is being done here:

• Layout: The flashprog utility is first instructed to write a layout to the flash. The layout is like a

partition information of the flash. The default layout is available in the location

/lib/third_party/mcu_vendor/marvell/WMSDK/mw320/sdk/tools/OpenOCD/mw300/layout.txt.

• boot2: This is the boot-loader used by the WMSDK. The flashprog is also writing a bootloader to

the flash. It is the boot-loader’s job to load the microcontroller’s firmware image once we flash it

subsequently.

Make sure you are getting o/p as in image below

 Copyright © 2016 Marvell Confidential

June 24, 2019 Document Classification: Proprietary Information Page 13

3.2.2.2 Flashing the Wi-Fi Firmware

Notice that this firmware uses the Wi-Fi chipset for its functionality. The Wi-Fi chipset has its own

firmware that must be present in flash for this to work. We go back to our flashprog.py utility.

Remember we had used this utility to flash the boot2 boot-loader and the MCU firmware to flash.

The Wi-Fi firmware can be flashed as:

$ cd amzsdk_bundle-x.y.z

$./vendors/marvell/WMSDK/mw320/sdk/tools/OpenOCD/flashprog.py --wififw
./vendors/marvell/WMSDK/mw320/wifi-firmware/mw30x/mw30x_uapsta_W14.88.36.p135.bin

Make sure you are getting o/p as in image below

Wireless Microcontroller - V1.9

 Confidential Copyright © 2016 Marvell

Page 14 Document Classification: Proprietary Information June 24, 2019

3.2.2.3 Loading MCU Firmware

Once layout and boot2 are flashed, you can flash the microcontroller firmware as under

$ cd amzsdk_bundle-x.y.z

$./vendors/marvell/WMSDK/mw320/sdk/tools/OpenOCD/flashprog.py -mcufw

build/cmake/vendors/marvell/mw300_rd/aws_demos.bin -r

Once this is flashed, on resetting the board you should see the logs for demo app. To run the test

app, please flash the aws_tests.bin binary present at the same location.

Make sure you are getting o/p as in image below

Note:

If you are changing only MCU FW then you need not load boot2, layout and WiFi FW again.
If there is any change in layout then it is better to reflash all components again.

Using -r option with flashprog.py causes device reset

 Copyright © 2016 Marvell Confidential

June 24, 2019 Document Classification: Proprietary Information Page 15

3.2.3 Output of Demo App

Make sure you get below o/p once Demo App is flashed and board is reset.

Wireless Microcontroller - V1.9

 Confidential Copyright © 2016 Marvell

Page 16 Document Classification: Proprietary Information June 24, 2019

3.2.4 Loading to SRAM
This method loads the firmware image in SRAM and directly the execution is started. Since loading

the firmware in SRAM is a faster operation, this is what you will most commonly use during iterative

development.

The firmware can be loaded into SRAM as follows:

$ cd amzsdk_bundle-x.y.z

$./vendors/marvell/WMSDK/mw320/sdk/tools/OpenOCD/ramload.py
build/cmake/vendors/marvell/mw300_rd/aws_demos.axf

Once you execute the above command, you should the logs for demo app.

 Copyright © 2016 Marvell Confidential

June 24, 2019 Document Classification: Proprietary Information Page 17

Troubleshooting

Check if network credentials are valid if network is not getting up.

3.3 Enable additional logs

To enable additional logs related to wifi and Marvell modules please follow below mentioned

procedure

To enable board specific logs: Enable call to wmstdio_init(UART0_ID, 0) in function

prvMiscInitialization file main.c file(tests or demos)

To enable WiFi logs: Enable macro CONFIG_WLCMGR_DEBUG in

AFR_HOME/lib/third_party/mcu_vendor/marvell/WMSDK/mw320/sdk/src/incl/autoconf.h file.

To enable WiFi Scan logs: Enable macro CONFIG_WIFI_SCAN_DEBUG in

AFR_HOME/lib/third_party/mcu_vendor/marvell/WMSDK/mw320/sdk/src/incl/autoconf.h file.

3.4 Using GDB

It is recommended to use arm-none-eabi-gdb and gdb command file packaged along with SDK

cd AFR_HOME/lib/third_party/mcu_vendor/marvell/WMSDK/mw320

Run this command to connect to GDB:

arm-none-eabi-gdb -

x ./sdk/tools/OpenOCD/gdbinit ../../../../../../build/cmake/vendors/marvell/mw300

_rd/aws_demos.axf

cd AFR_HOME/lib/third_party/mcu_vendor/marvell/WMSDK/mw320

Run below command to connect to GDB:

arm-none-eabi-gdb -x sdk/tools/OpenOCD/gdbinit <path to axf file to be

debugged>/aws_demos.axf

e.g.

arm-none-eabi-gdb -x ./sdk/tools/OpenOCD/gdbinit

../../../../../../build/cmake/vendors/marvell/mw300_rd/aws_demos.axf

Marvell. Moving Forward Faster

Marvell Semiconductor, Inc.

5488 Marvell Lane

Santa Clara, CA 95054, USA

Tel: 1.408.222.2500

Fax: 1.408.752.9028

www.marvell.com

	1 Getting Started Guide for MW320
	1.1 Development Toolchain Requirements
	1.1.1 GNU Toolchain
	1.1.2 Linux Toolchain Setup Procedure

	2 Working with a Linux Development Host
	2.1 Installing Packages
	2.1.1 Avoiding ‘sudo’

	2.2 Setup Serial Console
	2.3 OpenOCD

	3 Build and Run the Amazon FreeRTOS Demo Project
	3.1 Provisioning
	3.2 Working with Command line
	3.2.1 Building
	3.2.2 Loading to Flash
	3.2.2.1 Loading Layout and Boot2
	3.2.2.2 Flashing the Wi-Fi Firmware
	3.2.2.3 Loading MCU Firmware

	3.2.3 Output of Demo App
	3.2.4 Loading to SRAM

	Troubleshooting
	3.3 Enable additional logs
	3.4 Using GDB

