Advanced Functionality ================================= .. raw:: html
Advanced Algorithms ------------------------------------------- .. toctree:: :maxdepth: 1 pytorch_bring_your_own_gan/build_gan_with_pytorch pytorch_deploy_pretrained_bert_model/pytorch_deploy_pretrained_bert_model mxnet_mnist_byom/mxnet_mnist Parallelism with Data Distribution -------------------------------- .. toctree:: :maxdepth: 1 data_distribution_types/data_distribution_types Multi-Model Endpoints ------------------------- .. toctree:: :maxdepth: 1 multi_model_pytorch/pytorch_multi_model_endpoint multi_model_catboost/multi_model_catboost Prebuilt Deep Learning Containers -------------------------------- .. toctree:: :maxdepth: 1 autogluon-tabular-containers/AutoGluon_Tabular_SageMaker_Containers SageMaker Pipeline -------------------------------- .. toctree:: :maxdepth: 1 autogluon-sagemaker-pipeline/sagemaker-pipelines-project Multi Container Endpoint -------------------------------- .. toctree:: :maxdepth: 1 multi-container-endpoint/direct-invocation/multi-container-direct-invocation Bring Your Own Algorithm Container -------------------------------- .. toctree:: :maxdepth: 1 multi_model_bring_your_own/multi_model_endpoint_bring_your_own Fine-tuning and deploying a BERTopic model on SageMaker with your own scripts and dataset, by extending existing PyTorch containers -------------------------------- .. toctree:: :maxdepth: 1 pytorch_extend_container_train_deploy_bertopic/BERTtopic_extending_container Bring Your Own Pipe-Mode Algorithm ------------------------------------- .. toctree:: :maxdepth: 1 pipe_bring_your_own/pipe_bring_your_own Bring Your Own Model ------------------------------------- .. toctree:: :maxdepth: 1 scikit_learn_bring_your_own_model/scikit_learn_bring_your_own_model Casual Inference Container ------------------------------------- .. toctree:: :maxdepth: 1 causal-inference/causal-inference-container