FROM rapidsai/rapidsai:21.06-cuda11.0-base-ubuntu18.04-py3.7 ENV DATASET_DIRECTORY="3_year" ENV ALGORITHM_CHOICE="XGBoost" ENV ML_WORKFLOW_CHOICE="singleGPU" ENV CV_FOLDS="3" # ensure printed output/log-messages retain correct order ENV PYTHONUNBUFFERED=True # delete expired nvidia keys and fetch new ones RUN apt-key del 7fa2af80 RUN rm /etc/apt/sources.list.d/cuda.list RUN rm /etc/apt/sources.list.d/nvidia-ml.list RUN wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-keyring_1.0-1_all.deb && dpkg -i cuda-keyring_1.0-1_all.deb # add sagemaker-training-toolkit [ requires build tools ], flask [ serving ], and dask-ml RUN apt-get update && apt-get install -y --no-install-recommends build-essential \ && source activate rapids && pip3 install sagemaker-training dask-ml flask # path where SageMaker looks for code when container runs in the cloud ENV CLOUD_PATH "/opt/ml/code" # copy our latest [local] code into the container COPY . $CLOUD_PATH # make the entrypoint script executable RUN chmod +x $CLOUD_PATH/entrypoint.sh WORKDIR $CLOUD_PATH ENTRYPOINT ["./entrypoint.sh"]