# # Copyright (c) 2019-2020, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging import sys import traceback from HPOConfig import HPOConfig from MLWorkflow import create_workflow def train(): hpo_config = HPOConfig(input_args=sys.argv[1:]) ml_workflow = create_workflow(hpo_config) # cross-validation to improve robustness via multiple train/test reshuffles for i_fold in range(hpo_config.cv_folds): # ingest dataset = ml_workflow.ingest_data() # handle missing samples [ drop ] dataset = ml_workflow.handle_missing_data(dataset) # split into train and test set X_train, X_test, y_train, y_test = ml_workflow.split_dataset(dataset, random_state=i_fold) # train model trained_model = ml_workflow.fit(X_train, y_train) # use trained model to predict target labels of test data predictions = ml_workflow.predict(trained_model, X_test) # score test set predictions against ground truth score = ml_workflow.score(y_test, predictions) # save trained model [ if it sets a new-high score ] ml_workflow.save_best_model(score, trained_model) # restart cluster to avoid memory creep [ for multi-CPU/GPU ] ml_workflow.cleanup(i_fold) # emit final score to cloud HPO [i.e., SageMaker] ml_workflow.emit_final_score() def configure_logging(): hpo_log = logging.getLogger("hpo_log") log_handler = logging.StreamHandler() log_handler.setFormatter( logging.Formatter("%(asctime)-15s %(levelname)8s %(name)s %(message)s") ) hpo_log.addHandler(log_handler) hpo_log.setLevel(logging.DEBUG) hpo_log.propagate = False if __name__ == "__main__": configure_logging() try: train() sys.exit(0) # success exit code except Exception: traceback.print_exc() sys.exit(-1) # failure exit code