{
"cells": [
{
"cell_type": "markdown",
"id": "6a46bd98",
"metadata": {
"tags": []
},
"source": [
"# Tabular Online Explainability with SageMaker Clarify"
]
},
{
"cell_type": "markdown",
"id": "8a4b915e",
"metadata": {},
"source": [
"---\n",
"\n",
"This notebook's CI test result for us-west-2 is as follows. CI test results in other regions can be found at the end of the notebook. \n",
"\n",
"\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "e2789005",
"metadata": {},
"source": [
"1. [Introduction](#Introduction)\n",
"1. [General Setup](#General-Setup)\n",
" 1. [Install dependencies](#Install-dependencies)\n",
" 1. [Import libraries](#Import-libraries)\n",
" 1. [Set configurations](#Set-configurations)\n",
" 1. [Create serializer and deserializer](#Create-serializer-and-deserializer)\n",
" 1. [For visualization](#For-visualization)\n",
"1. [Prepare data](#Prepare-data)\n",
" 1. [Download data](#Download-data)\n",
" 1. [Loading the data: Adult Dataset](#Loading-the-data:-Adult-Dataset)\n",
" 1. [Encode and Upload the Dataset](#Encode-and-Upload-the-Dataset)\n",
"1. [Train XGBoost Model](#Train-XGBoost-Model)\n",
"1. [Create endpoint](#Create-endpoint)\n",
" 1. [Create model](#Create-model)\n",
" 1. [Create endpoint config](#Create-endpoint-config)\n",
" 1. [Create endpoint](#Create-endpoint)\n",
"1. [Invoke endpoint](#Invoke-endpoint)\n",
" 1. [Single record request](#Single-record-request)\n",
" 1. [Single record request, no explanation](#Single-record-request,-no-explanation)\n",
" 1. [Batch request, explain both](#Batch-request,-explain-both)\n",
" 1. [Batch request with more records, explain some of the records](#Batch-request-with-more-records,-explain-some-of-the-records)\n",
"1. [Cleanup](#Cleanup)"
]
},
{
"cell_type": "markdown",
"id": "2116c025",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"Amazon SageMaker Clarify helps improve your machine learning models by detecting potential bias and helping explain how these models make predictions. The fairness and explainability functionality provided by SageMaker Clarify takes a step towards enabling AWS customers to build trustworthy and understandable machine learning models. \n",
"\n",
"SageMaker Clarify currently supports explainability for SageMaker models as an offline processing job. This example notebook showcases a new feature for explainability on a [SageMaker real-time inference](https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints.html) endpoint, a.k.a. [Online Explainability](https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability.html).\n",
"\n",
"This example notebook walks you through: \n",
"1. Key terms and concepts needed to understand SageMaker Clarify\n",
"1. Training the model on a training dataset.\n",
"1. Create a model from trained model artifacts, create an endpoint configuration with the new SageMaker Clarify explainer configuration, and create an endpoint using the same explainer configuration.\n",
"1. Invoke the endpoint with single and batch request with different `EnableExplanations` query.\n",
"1. Explaining the importance of the various input features on the model's decision.\n",
"\n",
"\n",
"In doing so, the notebook will first train a [SageMaker XGBoost](https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html) model using training dataset, then use SageMaker Clarify to analyze a testing dataset in CSV format."
]
},
{
"cell_type": "markdown",
"id": "bf64fc0a",
"metadata": {},
"source": [
"## General Setup\n",
"\n",
"We recommend you use `Python 3 (Data Science)` kernel on SageMaker Studio or `conda_python3` kernel on SageMaker Notebook Instance."
]
},
{
"cell_type": "markdown",
"id": "48047964",
"metadata": {},
"source": [
"### Install dependencies\n",
"\n",
"Install required dependencies. We use `shap` and `matplotlib` to visualize the feature attributions."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "ec349708",
"metadata": {},
"outputs": [],
"source": [
"! pip install --upgrade -r requirements.txt --quiet"
]
},
{
"cell_type": "markdown",
"id": "7ec24d29",
"metadata": {},
"source": [
"### Import libraries"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "85c9245b",
"metadata": {},
"outputs": [],
"source": [
"import boto3\n",
"import io\n",
"import os\n",
"import pprint\n",
"import pandas as pd\n",
"import numpy as np\n",
"from sagemaker import get_execution_role, Session\n",
"from sagemaker.serializers import CSVSerializer\n",
"from sagemaker.deserializers import JSONDeserializer\n",
"from sagemaker.utils import unique_name_from_base"
]
},
{
"cell_type": "markdown",
"id": "b662efac",
"metadata": {},
"source": [
"### Set configurations"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "0787380b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Region: us-west-2\n",
"Role: arn:aws:iam::000000000000:role/service-role/SMClarifySageMaker-ExecutionRole\n",
"Demo S3 key: s3://sagemaker-us-west-2-000000000000/sagemaker/DEMO-Tabular-Adult-1686294366-1e35\n",
"Demo model name: DEMO-Tabular-Adult-1686294366-1e35-model\n",
"Demo endpoint config name: DEMO-Tabular-Adult-1686294366-1e35-endpoint-config\n",
"Demo endpoint name: DEMO-Tabular-Adult-1686294366-1e35-endpoint\n"
]
}
],
"source": [
"boto3_session = boto3.session.Session()\n",
"sagemaker_client = boto3.client(\"sagemaker\")\n",
"sagemaker_runtime_client = boto3.client(\"sagemaker-runtime\")\n",
"\n",
"# Initialize sagemaker session\n",
"sagemaker_session = Session(\n",
" boto_session=boto3_session,\n",
" sagemaker_client=sagemaker_client,\n",
" sagemaker_runtime_client=sagemaker_runtime_client,\n",
")\n",
"\n",
"region = sagemaker_session.boto_region_name\n",
"print(f\"Region: {region}\")\n",
"\n",
"role = get_execution_role()\n",
"print(f\"Role: {role}\")\n",
"\n",
"s3_client = boto3.client(\"s3\")\n",
"\n",
"prefix = unique_name_from_base(\"DEMO-Tabular-Adult\")\n",
"\n",
"s3_bucket = sagemaker_session.default_bucket()\n",
"s3_prefix = f\"sagemaker/{prefix}\"\n",
"s3_key = f\"s3://{s3_bucket}/{s3_prefix}\"\n",
"print(f\"Demo S3 key: {s3_key}\")\n",
"\n",
"model_name = f\"{prefix}-model\"\n",
"print(f\"Demo model name: {model_name}\")\n",
"endpoint_config_name = f\"{prefix}-endpoint-config\"\n",
"print(f\"Demo endpoint config name: {endpoint_config_name}\")\n",
"endpoint_name = f\"{prefix}-endpoint\"\n",
"print(f\"Demo endpoint name: {endpoint_name}\")\n",
"\n",
"# Instance type for training and hosting\n",
"instance_type = \"ml.m5.xlarge\""
]
},
{
"cell_type": "markdown",
"id": "7c44c759",
"metadata": {},
"source": [
"### Create serializer and deserializer"
]
},
{
"cell_type": "markdown",
"id": "9f0a7aba",
"metadata": {},
"source": [
"CSV serializer to serialize test data to string"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "79569f81",
"metadata": {},
"outputs": [],
"source": [
"csv_serializer = CSVSerializer()"
]
},
{
"cell_type": "markdown",
"id": "6e64de94",
"metadata": {},
"source": [
"JSON deserializer to deserialize invoke endpoint response"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "201230ef",
"metadata": {},
"outputs": [],
"source": [
"json_deserializer = JSONDeserializer()"
]
},
{
"cell_type": "markdown",
"id": "57480844",
"metadata": {},
"source": [
"### For visualization\n",
"\n",
"SHAP plots are useful visualization tools to interpret the explanations. For example, [SHAP additive force layout](https://shap.readthedocs.io/en/latest/generated/shap.plots.force.html) shows how each feature contributes to pushing the base value (also called the expected value which is the mean predictions of the training dataset) to the corresponding prediction. Features that push the prediction higher are in red color, while those push the prediction lower are in blue. We have some methods implemented for visualization in `visualization_utils.py` file."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "6f780c60",
"metadata": {},
"outputs": [],
"source": [
"%run visualization_utils.py"
]
},
{
"cell_type": "markdown",
"id": "aefb875e",
"metadata": {},
"source": [
"## Prepare data\n",
"\n",
"### Download data\n",
"Data Source: [https://archive.ics.uci.edu/ml/machine-learning-databases/adult/](https://archive.ics.uci.edu/ml/machine-learning-databases/adult/)\n",
"\n",
"Let's __download__ the data and save it in the local folder with the name adult.data and adult.test from UCI repository$^{[2]}$.\n",
"\n",
"$^{[2]}$Dua Dheeru, and Efi Karra Taniskidou. \"[UCI Machine Learning Repository](http://archive.ics.uci.edu/ml)\". Irvine, CA: University of California, School of Information and Computer Science (2017)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b94940af",
"metadata": {},
"outputs": [],
"source": [
"adult_columns = [\n",
" \"Age\",\n",
" \"Workclass\",\n",
" \"fnlwgt\",\n",
" \"Education\",\n",
" \"Education-Num\",\n",
" \"Marital Status\",\n",
" \"Occupation\",\n",
" \"Relationship\",\n",
" \"Ethnic group\",\n",
" \"Sex\",\n",
" \"Capital Gain\",\n",
" \"Capital Loss\",\n",
" \"Hours per week\",\n",
" \"Country\",\n",
" \"Target\",\n",
"]\n",
"if not os.path.isfile(\"adult.data\"):\n",
" s3_client.download_file(\n",
" f\"sagemaker-example-files-prod-{region}\",\n",
" \"datasets/tabular/uci_adult/adult.data\",\n",
" \"adult.data\",\n",
" )\n",
" print(f\"adult.data saved!\")\n",
"else:\n",
" print(f\"adult.data already on disk.\")\n",
"\n",
"if not os.path.isfile(\"adult.test\"):\n",
" s3_client.download_file(\n",
" f\"sagemaker-example-files-prod-{region}\",\n",
" \"datasets/tabular/uci_adult/adult.test\",\n",
" \"adult.test\",\n",
" )\n",
" print(f\"adult.test saved!\")\n",
"else:\n",
" print(f\"adult.test already on disk.\")"
]
},
{
"cell_type": "markdown",
"id": "9b39109e",
"metadata": {},
"source": [
"### Loading the data: Adult Dataset\n",
"From the UCI repository of machine learning datasets, this database contains 14 features concerning demographic characteristics of 45,222 rows (32,561 for training and 12,661 for testing). The task is to predict whether a person has a yearly income that is more or less than $50,000.\n",
"\n",
"Here are the features and their possible values:\n",
"1. **Age**: continuous.\n",
"1. **Workclass**: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.\n",
"1. **Fnlwgt**: continuous (the number of people the census takers believe that observation represents).\n",
"1. **Education**: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.\n",
"1. **Education-num**: continuous.\n",
"1. **Marital-status**: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.\n",
"1. **Occupation**: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.\n",
"1. **Relationship**: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.\n",
"1. **Ethnic group**: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.\n",
"1. **Sex**: Female, Male.\n",
" * **Note**: this data is extracted from the 1994 Census and enforces a binary option on Sex\n",
"1. **Capital-gain**: continuous.\n",
"1. **Capital-loss**: continuous.\n",
"1. **Hours-per-week**: continuous.\n",
"1. **Native-country**: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.\n",
"\n",
"Next, we specify our binary prediction task: \n",
"15. **Target**: <=50,000, >$50,000."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "3f6d7062",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Age | \n",
" Workclass | \n",
" fnlwgt | \n",
" Education | \n",
" Education-Num | \n",
" Marital Status | \n",
" Occupation | \n",
" Relationship | \n",
" Ethnic group | \n",
" Sex | \n",
" Capital Gain | \n",
" Capital Loss | \n",
" Hours per week | \n",
" Country | \n",
" Target | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 39 | \n",
" State-gov | \n",
" 77516 | \n",
" Bachelors | \n",
" 13 | \n",
" Never-married | \n",
" Adm-clerical | \n",
" Not-in-family | \n",
" White | \n",
" Male | \n",
" 2174 | \n",
" 0 | \n",
" 40 | \n",
" United-States | \n",
" <=50K | \n",
"
\n",
" \n",
" 1 | \n",
" 50 | \n",
" Self-emp-not-inc | \n",
" 83311 | \n",
" Bachelors | \n",
" 13 | \n",
" Married-civ-spouse | \n",
" Exec-managerial | \n",
" Husband | \n",
" White | \n",
" Male | \n",
" 0 | \n",
" 0 | \n",
" 13 | \n",
" United-States | \n",
" <=50K | \n",
"
\n",
" \n",
" 2 | \n",
" 38 | \n",
" Private | \n",
" 215646 | \n",
" HS-grad | \n",
" 9 | \n",
" Divorced | \n",
" Handlers-cleaners | \n",
" Not-in-family | \n",
" White | \n",
" Male | \n",
" 0 | \n",
" 0 | \n",
" 40 | \n",
" United-States | \n",
" <=50K | \n",
"
\n",
" \n",
" 3 | \n",
" 53 | \n",
" Private | \n",
" 234721 | \n",
" 11th | \n",
" 7 | \n",
" Married-civ-spouse | \n",
" Handlers-cleaners | \n",
" Husband | \n",
" Black | \n",
" Male | \n",
" 0 | \n",
" 0 | \n",
" 40 | \n",
" United-States | \n",
" <=50K | \n",
"
\n",
" \n",
" 4 | \n",
" 28 | \n",
" Private | \n",
" 338409 | \n",
" Bachelors | \n",
" 13 | \n",
" Married-civ-spouse | \n",
" Prof-specialty | \n",
" Wife | \n",
" Black | \n",
" Female | \n",
" 0 | \n",
" 0 | \n",
" 40 | \n",
" Cuba | \n",
" <=50K | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Age Workclass fnlwgt Education Education-Num \n",
"0 39 State-gov 77516 Bachelors 13 \\\n",
"1 50 Self-emp-not-inc 83311 Bachelors 13 \n",
"2 38 Private 215646 HS-grad 9 \n",
"3 53 Private 234721 11th 7 \n",
"4 28 Private 338409 Bachelors 13 \n",
"\n",
" Marital Status Occupation Relationship Ethnic group Sex \n",
"0 Never-married Adm-clerical Not-in-family White Male \\\n",
"1 Married-civ-spouse Exec-managerial Husband White Male \n",
"2 Divorced Handlers-cleaners Not-in-family White Male \n",
"3 Married-civ-spouse Handlers-cleaners Husband Black Male \n",
"4 Married-civ-spouse Prof-specialty Wife Black Female \n",
"\n",
" Capital Gain Capital Loss Hours per week Country Target \n",
"0 2174 0 40 United-States <=50K \n",
"1 0 0 13 United-States <=50K \n",
"2 0 0 40 United-States <=50K \n",
"3 0 0 40 United-States <=50K \n",
"4 0 0 40 Cuba <=50K "
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"training_data = pd.read_csv(\n",
" \"adult.data\", names=adult_columns, sep=r\"\\s*,\\s*\", engine=\"python\", na_values=\"?\"\n",
").dropna()\n",
"\n",
"testing_data = pd.read_csv(\n",
" \"adult.test\", names=adult_columns, sep=r\"\\s*,\\s*\", engine=\"python\", na_values=\"?\", skiprows=1\n",
").dropna()\n",
"\n",
"training_data.head()"
]
},
{
"cell_type": "markdown",
"id": "2c52d24f",
"metadata": {},
"source": [
"### Encode and Upload the Dataset\n",
"Here we encode the training and test data. Encoding input data is not necessary for SageMaker Clarify, but is necessary for the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e258c0de",
"metadata": {},
"outputs": [],
"source": [
"from sklearn import preprocessing\n",
"\n",
"\n",
"def number_encode_features(df):\n",
" result = df.copy()\n",
" encoders = {}\n",
" for column in result.columns:\n",
" if result.dtypes[column] == np.object:\n",
" encoders[column] = preprocessing.LabelEncoder()\n",
" # print('Column:', column, result[column])\n",
" result[column] = encoders[column].fit_transform(result[column].fillna(\"None\"))\n",
" return result, encoders\n",
"\n",
"\n",
"training_data = pd.concat([training_data[\"Target\"], training_data.drop([\"Target\"], axis=1)], axis=1)\n",
"training_data, _ = number_encode_features(training_data)\n",
"training_data.to_csv(\"train_data.csv\", index=False, header=False)\n",
"\n",
"testing_data, _ = number_encode_features(testing_data)\n",
"test_features = testing_data.drop([\"Target\"], axis=1)\n",
"test_target = testing_data[\"Target\"]\n",
"test_features.to_csv(\"test_features.csv\", index=False, header=False)"
]
},
{
"cell_type": "markdown",
"id": "f64e24d8",
"metadata": {},
"source": [
"A quick note about our encoding: the \"Female\" Sex value has been encoded as 0 and \"Male\" as 1."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "90c3e935",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Target | \n",
" Age | \n",
" Workclass | \n",
" fnlwgt | \n",
" Education | \n",
" Education-Num | \n",
" Marital Status | \n",
" Occupation | \n",
" Relationship | \n",
" Ethnic group | \n",
" Sex | \n",
" Capital Gain | \n",
" Capital Loss | \n",
" Hours per week | \n",
" Country | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 0 | \n",
" 39 | \n",
" 5 | \n",
" 77516 | \n",
" 9 | \n",
" 13 | \n",
" 4 | \n",
" 0 | \n",
" 1 | \n",
" 4 | \n",
" 1 | \n",
" 2174 | \n",
" 0 | \n",
" 40 | \n",
" 38 | \n",
"
\n",
" \n",
" 1 | \n",
" 0 | \n",
" 50 | \n",
" 4 | \n",
" 83311 | \n",
" 9 | \n",
" 13 | \n",
" 2 | \n",
" 3 | \n",
" 0 | \n",
" 4 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 13 | \n",
" 38 | \n",
"
\n",
" \n",
" 2 | \n",
" 0 | \n",
" 38 | \n",
" 2 | \n",
" 215646 | \n",
" 11 | \n",
" 9 | \n",
" 0 | \n",
" 5 | \n",
" 1 | \n",
" 4 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 40 | \n",
" 38 | \n",
"
\n",
" \n",
" 3 | \n",
" 0 | \n",
" 53 | \n",
" 2 | \n",
" 234721 | \n",
" 1 | \n",
" 7 | \n",
" 2 | \n",
" 5 | \n",
" 0 | \n",
" 2 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 40 | \n",
" 38 | \n",
"
\n",
" \n",
" 4 | \n",
" 0 | \n",
" 28 | \n",
" 2 | \n",
" 338409 | \n",
" 9 | \n",
" 13 | \n",
" 2 | \n",
" 9 | \n",
" 5 | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 40 | \n",
" 4 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Target Age Workclass fnlwgt Education Education-Num Marital Status \n",
"0 0 39 5 77516 9 13 4 \\\n",
"1 0 50 4 83311 9 13 2 \n",
"2 0 38 2 215646 11 9 0 \n",
"3 0 53 2 234721 1 7 2 \n",
"4 0 28 2 338409 9 13 2 \n",
"\n",
" Occupation Relationship Ethnic group Sex Capital Gain Capital Loss \n",
"0 0 1 4 1 2174 0 \\\n",
"1 3 0 4 1 0 0 \n",
"2 5 1 4 1 0 0 \n",
"3 5 0 2 1 0 0 \n",
"4 9 5 2 0 0 0 \n",
"\n",
" Hours per week Country \n",
"0 40 38 \n",
"1 13 38 \n",
"2 40 38 \n",
"3 40 38 \n",
"4 40 4 "
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"training_data.head()"
]
},
{
"cell_type": "markdown",
"id": "01c8a06b",
"metadata": {},
"source": [
"Get the feature names and the label names from the dataset"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "efe526bf",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Feature names: ['Age', 'Workclass', 'fnlwgt', 'Education', 'Education-Num', 'Marital Status', 'Occupation', 'Relationship', 'Ethnic group', 'Sex', 'Capital Gain', 'Capital Loss', 'Hours per week', 'Country']\n",
"Label name: Target\n"
]
}
],
"source": [
"feature_headers = testing_data.columns.to_list()\n",
"label_header = feature_headers.pop()\n",
"print(f\"Feature names: {feature_headers}\")\n",
"print(f\"Label name: {label_header}\")"
]
},
{
"cell_type": "markdown",
"id": "99ec8ebd",
"metadata": {},
"source": [
"Lastly, let's upload the data to S3 so that they can be used by the training job."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "637902e4",
"metadata": {},
"outputs": [],
"source": [
"from sagemaker.s3 import S3Uploader\n",
"from sagemaker.inputs import TrainingInput\n",
"\n",
"train_uri = S3Uploader.upload(\"train_data.csv\", \"s3://{}/{}\".format(s3_bucket, prefix))\n",
"train_input = TrainingInput(train_uri, content_type=\"csv\")\n",
"test_uri = S3Uploader.upload(\"test_features.csv\", \"s3://{}/{}\".format(s3_bucket, prefix))"
]
},
{
"cell_type": "markdown",
"id": "a953f7d8",
"metadata": {},
"source": [
"## Train XGBoost Model\n",
"\n",
"Since our focus is on understanding how to use SageMaker Clarify, we keep it simple by using a standard XGBoost model."
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "dc99c39e",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:sagemaker:Creating training-job with name: sagemaker-xgboost-2023-06-09-07-06-10-867\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"2023-06-09 07:06:11 Starting - Starting the training job..\n",
"2023-06-09 07:06:27 Starting - Preparing the instances for training.........\n",
"2023-06-09 07:07:21 Downloading - Downloading input data.....\n",
"2023-06-09 07:07:47 Training - Downloading the training image...\n",
"2023-06-09 07:08:07 Training - Training image download completed. Training in progress.....\n",
"2023-06-09 07:08:33 Uploading - Uploading generated training model.\n",
"2023-06-09 07:08:44 Completed - Training job completed\n"
]
}
],
"source": [
"from sagemaker.image_uris import retrieve\n",
"from sagemaker.estimator import Estimator\n",
"\n",
"container = retrieve(\"xgboost\", region, version=\"1.3-1\")\n",
"xgb = Estimator(\n",
" container,\n",
" role,\n",
" instance_count=1,\n",
" instance_type=instance_type,\n",
" disable_profiler=True,\n",
" debugger_hook_config=False,\n",
")\n",
"\n",
"xgb.set_hyperparameters(\n",
" max_depth=5,\n",
" eta=0.2,\n",
" gamma=4,\n",
" min_child_weight=6,\n",
" subsample=0.8,\n",
" objective=\"binary:logistic\",\n",
" num_round=800,\n",
")\n",
"\n",
"xgb.fit({\"train\": train_input}, logs=False)"
]
},
{
"cell_type": "markdown",
"id": "796a8b78",
"metadata": {},
"source": [
"Create a new model object which will be used to create the SageMaker model."
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "b4f2e34b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'Image': '246618743249.dkr.ecr.us-west-2.amazonaws.com/sagemaker-xgboost:1.3-1',\n",
" 'Environment': {},\n",
" 'ModelDataUrl': 's3://sagemaker-us-west-2-000000000000/sagemaker-xgboost-2023-06-09-07-06-10-867/output/model.tar.gz'}"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model = xgb.create_model(name=model_name)\n",
"container_def = model.prepare_container_def()\n",
"container_def"
]
},
{
"cell_type": "markdown",
"id": "2519d5f9",
"metadata": {
"tags": []
},
"source": [
"## Create endpoint"
]
},
{
"cell_type": "markdown",
"id": "12c22d4a",
"metadata": {},
"source": [
"### Create model\n",
"\n",
"The following parameters are required to create a SageMaker model:\n",
"\n",
"* `ExecutionRoleArn`: The ARN of the IAM role that Amazon SageMaker can assume to access the model artifacts/ docker images for deployment\n",
"\n",
"* `ModelName`: name of the SageMaker model.\n",
"\n",
"* `PrimaryContainer`: The location of the primary docker image containing inference code, associated artifacts, and custom environment map that the inference code uses when the model is deployed for predictions."
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "14991a1c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model created: DEMO-Tabular-Adult-1686294366-1e35-model\n"
]
}
],
"source": [
"sagemaker_client.create_model(\n",
" ExecutionRoleArn=role,\n",
" ModelName=model_name,\n",
" PrimaryContainer=container_def,\n",
")\n",
"print(f\"Model created: {model_name}\")"
]
},
{
"cell_type": "markdown",
"id": "0c8ce1b6",
"metadata": {},
"source": [
"### Create endpoint config\n",
"\n",
"Create an endpoint configuration by calling the `create_endpoint_config` API. Here, supply the same `model_name` used in the `create_model` API call. The `create_endpoint_config` now supports the additional parameter `ClarifyExplainerConfig` to enable the Clarify explainer. The SHAP baseline is mandatory, it can be provided either as inline baseline data (the `ShapBaseline` parameter) or by a S3 baseline file (the `ShapBaselineUri` parameter). Baseline dataset type shall be the same as input dataset type, and baseline samples shall only include features. For more details on baseline selection please [refer this documentation](https://docs.aws.amazon.com/en_us/sagemaker/latest/dg/clarify-feature-attribute-shap-baselines.html).\n",
"\n",
"Please see [the API documentation](https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html) for details on other config parameters."
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "e64aa1c3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Use the mean of the test data as the SHAP baseline: [38.76832669322709, 2.2148738379814077, 189616.37025232404, 10.272377158034528, 10.112749003984064, 2.5952855245683932, 5.989043824701195, 1.401394422310757, 3.6836653386454183, 0.6737715803452855, 1120.301593625498, 89.04189907038513, 40.951593625498006, 35.4675962815405]\n"
]
}
],
"source": [
"baseline = test_features.mean().to_list() # Inline baseline data\n",
"print(f\"Use the mean of the test data as the SHAP baseline: {baseline}\")"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "d196e917",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'EndpointConfigArn': 'arn:aws:sagemaker:us-west-2:000000000000:endpoint-config/demo-tabular-adult-1686294366-1e35-endpoint-config',\n",
" 'ResponseMetadata': {'RequestId': 'f413c1f7-561f-4577-84c2-54ab7aaa83dc',\n",
" 'HTTPStatusCode': 200,\n",
" 'HTTPHeaders': {'x-amzn-requestid': 'f413c1f7-561f-4577-84c2-54ab7aaa83dc',\n",
" 'content-type': 'application/x-amz-json-1.1',\n",
" 'content-length': '131',\n",
" 'date': 'Fri, 09 Jun 2023 07:08:47 GMT'},\n",
" 'RetryAttempts': 0}}"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sagemaker_client.create_endpoint_config(\n",
" EndpointConfigName=endpoint_config_name,\n",
" ProductionVariants=[\n",
" {\n",
" \"VariantName\": \"TestVariant\",\n",
" \"ModelName\": model_name,\n",
" \"InitialInstanceCount\": 1,\n",
" \"InstanceType\": instance_type,\n",
" }\n",
" ],\n",
" ExplainerConfig={\n",
" \"ClarifyExplainerConfig\": {\n",
" # \"EnableExplanations\": \"`false`\", # By default explanations are enabled, but you can change the condition by this parameter.\n",
" \"InferenceConfig\": {\n",
" \"FeatureHeaders\": feature_headers,\n",
" },\n",
" \"ShapConfig\": {\n",
" \"ShapBaselineConfig\": {\n",
" \"ShapBaseline\": csv_serializer.serialize(baseline), # inline baseline data\n",
" }\n",
" },\n",
" }\n",
" },\n",
")"
]
},
{
"cell_type": "markdown",
"id": "e1a7c19b",
"metadata": {},
"source": [
"### Create endpoint\n",
"\n",
"Once you have your model and endpoint configuration ready, use the `create_endpoint` API to create your endpoint. The `endpoint_name` must be unique within an AWS Region in your AWS account. The `create_endpoint` API is synchronous in nature and returns an immediate response with the endpoint status being `Creating` state."
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "70975b6f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'EndpointArn': 'arn:aws:sagemaker:us-west-2:000000000000:endpoint/demo-tabular-adult-1686294366-1e35-endpoint',\n",
" 'ResponseMetadata': {'RequestId': '9bd0678a-8792-4482-ba11-851fb84851ae',\n",
" 'HTTPStatusCode': 200,\n",
" 'HTTPHeaders': {'x-amzn-requestid': '9bd0678a-8792-4482-ba11-851fb84851ae',\n",
" 'content-type': 'application/x-amz-json-1.1',\n",
" 'content-length': '111',\n",
" 'date': 'Fri, 09 Jun 2023 07:08:48 GMT'},\n",
" 'RetryAttempts': 0}}"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sagemaker_client.create_endpoint(\n",
" EndpointName=endpoint_name,\n",
" EndpointConfigName=endpoint_config_name,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "53fa01f8",
"metadata": {},
"source": [
"Wait for the endpoint to be in \"InService\" state."
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "6270f18a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"----!"
]
},
{
"data": {
"text/plain": [
"{'EndpointName': 'DEMO-Tabular-Adult-1686294366-1e35-endpoint',\n",
" 'EndpointArn': 'arn:aws:sagemaker:us-west-2:000000000000:endpoint/demo-tabular-adult-1686294366-1e35-endpoint',\n",
" 'EndpointConfigName': 'DEMO-Tabular-Adult-1686294366-1e35-endpoint-config',\n",
" 'ProductionVariants': [{'VariantName': 'TestVariant',\n",
" 'DeployedImages': [{'SpecifiedImage': '246618743249.dkr.ecr.us-west-2.amazonaws.com/sagemaker-xgboost:1.3-1',\n",
" 'ResolvedImage': '246618743249.dkr.ecr.us-west-2.amazonaws.com/sagemaker-xgboost@sha256:d9deabb1be8135a1adee48079d2b6c8cc449c91270c2ead09b1ae80faef1914f',\n",
" 'ResolutionTime': datetime.datetime(2023, 6, 9, 7, 8, 49, 655000, tzinfo=tzlocal())}],\n",
" 'CurrentWeight': 1.0,\n",
" 'DesiredWeight': 1.0,\n",
" 'CurrentInstanceCount': 1,\n",
" 'DesiredInstanceCount': 1}],\n",
" 'EndpointStatus': 'InService',\n",
" 'CreationTime': datetime.datetime(2023, 6, 9, 7, 8, 49, 147000, tzinfo=tzlocal()),\n",
" 'LastModifiedTime': datetime.datetime(2023, 6, 9, 7, 10, 58, 162000, tzinfo=tzlocal()),\n",
" 'ExplainerConfig': {'ClarifyExplainerConfig': {'InferenceConfig': {'FeatureHeaders': ['Age',\n",
" 'Workclass',\n",
" 'fnlwgt',\n",
" 'Education',\n",
" 'Education-Num',\n",
" 'Marital Status',\n",
" 'Occupation',\n",
" 'Relationship',\n",
" 'Ethnic group',\n",
" 'Sex',\n",
" 'Capital Gain',\n",
" 'Capital Loss',\n",
" 'Hours per week',\n",
" 'Country']},\n",
" 'ShapConfig': {'ShapBaselineConfig': {'ShapBaseline': '38.76832669322709,2.2148738379814077,189616.37025232404,10.272377158034528,10.112749003984064,2.5952855245683932,5.989043824701195,1.401394422310757,3.6836653386454183,0.6737715803452855,1120.301593625498,89.04189907038513,40.951593625498006,35.4675962815405'}}}},\n",
" 'ResponseMetadata': {'RequestId': 'dcbdc2f7-d140-4fbc-9fa2-dd9a4f24da6a',\n",
" 'HTTPStatusCode': 200,\n",
" 'HTTPHeaders': {'x-amzn-requestid': 'dcbdc2f7-d140-4fbc-9fa2-dd9a4f24da6a',\n",
" 'content-type': 'application/x-amz-json-1.1',\n",
" 'content-length': '1360',\n",
" 'date': 'Fri, 09 Jun 2023 07:11:19 GMT'},\n",
" 'RetryAttempts': 0}}"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sagemaker_session.wait_for_endpoint(endpoint_name)"
]
},
{
"cell_type": "markdown",
"id": "a3742fae",
"metadata": {
"tags": []
},
"source": [
"## Invoke endpoint\n",
"\n",
"There are expanding business needs and legislative regulations that require explanations of _why_ a model made the decision it did. SageMaker Clarify uses SHAP to explain the contribution that each input feature makes to the final decision.\n",
"\n",
"Below are the several different combination of endpoint invocation, call them one by one and visualize the explanations by running the subsequent cell. "
]
},
{
"cell_type": "markdown",
"id": "36419959",
"metadata": {},
"source": [
"### Single record request\n",
"\n",
"Put only one record in the request body, and then send the request to the endpoint to get its predictions and explanations."
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "38a0dc1e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'Body': ,\n",
" 'ContentType': 'application/json',\n",
" 'InvokedProductionVariant': 'TestVariant',\n",
" 'ResponseMetadata': {'HTTPHeaders': {'content-length': '1391',\n",
" 'content-type': 'application/json',\n",
" 'date': 'Fri, 09 Jun 2023 07:11:20 GMT',\n",
" 'x-amzn-invoked-production-variant': 'TestVariant',\n",
" 'x-amzn-requestid': 'd0c4f3a0-13ad-4344-8557-b3f476e48e42'},\n",
" 'HTTPStatusCode': 200,\n",
" 'RequestId': 'd0c4f3a0-13ad-4344-8557-b3f476e48e42',\n",
" 'RetryAttempts': 0}}\n"
]
}
],
"source": [
"request_records = test_features.iloc[:1, :]\n",
"response = sagemaker_runtime_client.invoke_endpoint(\n",
" EndpointName=endpoint_name,\n",
" ContentType=\"text/csv\",\n",
" Body=csv_serializer.serialize(request_records.to_numpy()),\n",
")\n",
"pprint.pprint(response)"
]
},
{
"cell_type": "markdown",
"id": "4202f8e2",
"metadata": {},
"source": [
"Print the response body which is JSON. Please see the developer guide for its schema."
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "a8d231c0",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'explanations': {'kernel_shap': [[{'attributions': [{'attribution': [-0.002863750863790409]}],\n",
" 'feature_header': 'Age'},\n",
" {'attributions': [{'attribution': [-7.958259263737853e-05]}],\n",
" 'feature_header': 'Workclass'},\n",
" {'attributions': [{'attribution': [-0.0005799106931207973]}],\n",
" 'feature_header': 'fnlwgt'},\n",
" {'attributions': [{'attribution': [7.400679338294426e-05]}],\n",
" 'feature_header': 'Education'},\n",
" {'attributions': [{'attribution': [-0.0011474692113115962]}],\n",
" 'feature_header': 'Education-Num'},\n",
" {'attributions': [{'attribution': [-0.0010910584437894126]}],\n",
" 'feature_header': 'Marital Status'},\n",
" {'attributions': [{'attribution': [4.752810313976612e-05]}],\n",
" 'feature_header': 'Occupation'},\n",
" {'attributions': [{'attribution': [-0.003110098727907769]}],\n",
" 'feature_header': 'Relationship'},\n",
" {'attributions': [{'attribution': [-0.0010510744473187237]}],\n",
" 'feature_header': 'Ethnic group'},\n",
" {'attributions': [{'attribution': [-2.486117335041576e-05]}],\n",
" 'feature_header': 'Sex'},\n",
" {'attributions': [{'attribution': [0.007341078375308486]}],\n",
" 'feature_header': 'Capital Gain'},\n",
" {'attributions': [{'attribution': [0.0005919217832840569]}],\n",
" 'feature_header': 'Capital Loss'},\n",
" {'attributions': [{'attribution': [-0.0003354581308615858]}],\n",
" 'feature_header': 'Hours per week'},\n",
" {'attributions': [{'attribution': [2.9343273508735876e-05]}],\n",
" 'feature_header': 'Country'}]]},\n",
" 'predictions': {'content_type': 'text/csv; charset=utf-8',\n",
" 'data': '0.0006380207487381995\\n'},\n",
" 'version': '1.0'}\n"
]
}
],
"source": [
"result = json_deserializer.deserialize(response[\"Body\"], content_type=response[\"ContentType\"])\n",
"pprint.pprint(result)"
]
},
{
"cell_type": "markdown",
"id": "7f6693da",
"metadata": {},
"source": [
"Use SHAP plots to visualize the result. [SHAP additive force layout](https://shap.readthedocs.io/en/latest/generated/shap.plots.force.html) shows how each feature contributes to pushing the base value (also called the expected value which is the mean predictions of the training dataset) to the corresponding prediction. Features that push the prediction higher are in red color, while those push the prediction lower are in blue.\n",
"\n",
"The expected value is the average of the model predictions over the baseline. Here we predict the baseline data and then compute the expected value. Only the predictions are needed, so the `EnableExplanations` parameter is used to disable the explanations."
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "2eaa7ced",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"expected value: 0.0028374067042022\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Calling float on a single element Series is deprecated and will raise a TypeError in the future. Use float(ser.iloc[0]) instead\n"
]
}
],
"source": [
"response = sagemaker_runtime_client.invoke_endpoint(\n",
" EndpointName=endpoint_name,\n",
" ContentType=\"text/csv\",\n",
" Body=csv_serializer.serialize(baseline),\n",
" EnableExplanations=\"`false`\", # Do not provide explanations\n",
")\n",
"json_object = json_deserializer.deserialize(response[\"Body\"], content_type=response[\"ContentType\"])\n",
"expected_value = float(\n",
" pd.read_csv(io.StringIO(json_object[\"predictions\"][\"data\"]), header=None)\n",
" .astype(float)\n",
" .mean(axis=1)\n",
")\n",
"print(f\"expected value: {expected_value}\")"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "da8a8e1b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model Inference output: \n",
"Record: 1\tModel Prediction: 0.0006380207487381\n",
"Visualize the SHAP values for Record number 1 with Model Prediction: 0.0006380207487381\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABiIAAAFqCAYAAACXjkI0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACBXElEQVR4nO3dZ3wc1dn38f9s0ap3S3KVC+7GBRtjgzHFgA02vQcIBMIDSUggCQmkk/tOgLSbFBIghBASuukYCBiMCy64Y2OwDe69qdfV7s7zYqTV7mrVbI12Jf++fISs2dmZM7Nnyp5rrnMM0zRNAQAAAAAAAAAA2MAR6wIAAAAAAAAAAIDui0AEAAAAAAAAAACwDYEIAAAAAAAAAABgGwIRAAAAAAAAAADANgQiAAAAAAAAAACAbQhEAAAAAAAAAAAA2xCIAAAAAAAAAAAAtiEQAQAAAAAAAAAAbEMgAgAAAAAAAAAA2IZABAAAAAAAAAAAsA2BCAAAAAAAAAAAYBsCEQAAAAAAAAAAwDYEIgAAAAAAAAAAgG0IRAAAAAAAAAAAANsQiAAAAADs9vZK6UhZrEsBAAAAADFBIAIAAACwU1GF9P/+Kl34K4IRAAAAAI5LBCIAAAAQ3TPzpfRrpEUbWp931B3SBb/snHV1Ndmp0rN3S1sP1Acjyo95kUt31qrwN3s1e31VBxQQAAAAAOzlinUBAAAAgC7tt69IPn/r800cLM3/VLroV9Kcn0lZqfaXDQAAAADiAIEIAAAAHLtVD0mGEetSxMbvXpVq69o+/6c7pZ2HCEQAAAAAOG4QiAAAAMCx87hjXYL2qaiRUhM7ZlmH/tP6PF6f9NWHpHdWS3/6ujRmQMesuwuq8gaUnEAPsQAAAMDxhEAEAAAAWhYwpYdel578QNpbJPXNle6+VLrujMZ5Rt0h9eshvf2L8Pc+NU96+C1p2wEpP9N6z+Rh0sW/lh65XbruzPavq8GH66U/viGt3iLV1Ekn9JS+fq50y7nh8zWU7YGvSr94Tlr5hZWNsP4vHbF3WhcZhLhpmi2rqa4L6OGlFZqzsVp7y/xKTXDo1MIEff/0dA3Mbrztn/rYAfVMc+qFr+QGpz36cbkemF+uMwZ49O+rcoLT/7S4XP/3UbkW3ZanfpnWMmp9ph5fUaHXNlRrZ4lPHpehk/sk6Hunp2tUfmNAaunOWl3z3BH9/oJMVdWZ+vfqSu0s8embk1L13SnptuwDAAAAAPGJQAQAAABadt9zVtdDN58juV3SP9+XvvGINKhAmjS0+ff9ZY70k6elkf2kn10t+QPSswukd9cc+7qefF+66wnp5BOsQEWKxwpMfPcJK+jxq+vDl7v7iDVQ9KWTpIsnSpW1x7ZP2sPrk4oqbA1C+AKmbpxdpI93eTV9SKJunpCqPaU+/XtNlRZuO6RXrs/V4FwrSHBqoUcvf1ql6rqAktxWZsKSHV45DGn5bq+8flMJTqN+eq36pDuDQYg6v6mvzj6i1Xu8unRksm4cn6Ly2oCe/6RKlz99WLO/kqPRPRPCyvbPlRUqqTZ1zZhk9UhxqGea05Z9AAAAACB+EYgAAABAy+r80vz7pYT6W8dLJ0mjvyM99m7zgYjiCulXL0pDekkf/K+U7LGmf/1c6dQfHtu69hdLP3xKumyy9OR3Gt/79fOkH/7LysC4+RxpYEHja9sPSn+7Xbr+zKPZA8cmNVF65xeS077uiGavr9LHu7y6ZUKKfj4tIzj93MGJuuKZI/rlB2V6+mor0+HUfh4990mVVuz2auqARNX5Ta3Y7dUlI5L0yoZqrdnr1Sl9PaqpM7Vmr1cXj0gOLu9fqyq1bKdXT12ZrTMHNnZtdcO4FJ33xCH9+sOysEwLSdpb5teHt+YpO5kABAAAAHC8onNWAAAAtOzr5zYGBiSpV7bVDdLW/c2/Z946qdprBQcaghCSlJ7ctOuk9q7rtY+trInrz5COlIX/nD/e6t5pwafhy81Ok74ytW3be5Rq6ky9/llV9BdtDEJI0ruba2RI+vapaWHTT+7j0amFCVq8o1bltQFJ0qmFVsbC4h1eSdLafV5V1Zm6eUKKcpIdWrzdyhZZucerWn/j/JL02mfVGpDl1OgCt4qq/MGfOr+pKf09WrHbq5o6M6wMl49KJggBAAAAHOfIiAAAAEDL+uc1nZadKu063Px7dhyyfg/u2fS1Ib2PbV2b9li/L32g+eUcLG26XId9wYCaOlNfe/mIPt7p1fA8t4bkdu7g3TtL/MpNcSgrqek2Dst1a8kOr3aX+jU8z6HcFKeG5Lq0ZIcVcFiyw6vMREMj892a3C9BS3Z69T0p+PqphY2BpC+P+FTjMzXuLweaLUtRdUC93I2Bh/5ZfOUAAAAAjnd8KwAAAEDLmnua3zSjTz+W19q0rvp/P3K71Csn6uxNAhrJCdHn6wA1daZurg9C/GFmZqcHIVoTbW+fWujRv1dXqrQmoCU7ajW5n0cOw9CphR79Ym6pKr3W9BNyXMpPdYYsy9TgHJfuOycjylIt2cnhn2GS2+ioTQEAAADQRRGIAAAAQMdrCARs3itNGxP+2hd7j23Zg+qzLLLTpLNOPLZlHSOv39QtLx/R4h1ejS5wa3uxTw99VNbq+/7fxFSlJHRchka/TKfmb/WpuDrQJCti8+E6OQypT0ZjQOHUfgn616pKfbi1Rmv2evWz+nElTiv0qC4gzdtSq3X763TduOSwZQ3MculgZUCnFibIYRBgAAAAANA2BCIAAADQ8c4aLSW6pX/MlW48u3GciPJq6Ym5x7bsSydJv3xeeuAl6YxR4WNQSFJplbVuj/2ZCWU1AS3fbY21sG5/ndbtr2vT+64bm6KUDkzSmD4kUR9urdVfl5brp2c3Zius2uPVkh1end7fozRPY4BiUj+PHIb08JIK1fqtAIRkdaPUO92pPy0ul99snN7g0pHJun9+mR77uELfmBQ+HoUkHar0q0cK40EAAAAACEcgAgAAAB0vO1X6yVXSz56Rpv1MuvZ0yR+Qnlkg5aRLOw9LOson6nvnSA/dIt3xmHTy96VrTpf69ZAOl0kbdkpvrZSW/14qjDLeRAfLTXHq0UuzdfurRRqZ59a/r85RusfegamjufLEZL26oVqPr6jU7lK/Ti30aE+ZX/9eXak0j6GfT0sPmz8j0aGR+W6t31+nnmkODcxu/FowuV+CXvq0Wg5DmtwvPBBx84QUfbS9Vg8uKNfSnV6dVuhRmsfQnjK/Fu+olcdl6IVrcztlmwEAAAB0HQQiAAAAYI87L5TSk6SH35b+5wUpP1P66lnSiL7Sdf8nJR1DSsD1Z0on9JT+PEd68gOptNIKcAzuKf30KmtdnWTaoMRgMOL6F47oP1flKCOxc4MRLoehp67M1l+WVmjO59V6/8sapXocOnuQR9+bkq5BOU1v+08r9Gj9/rqwwagbpr/0abVG5LmbbIfbaejJK7P1n9WVemVDtR5aXC5Jyk91aEzPBF0xKsm+jQQAAADQZRmm2dJogQAAAEAH+/Ob0k+fkd7/X2ni4FiXpsN8sKVGv11Qpn9flRM2wDMAAAAAHO8IRAAAAMAeNV4pMSLroaxKOvWHUmWttOkRKaF7Jej6A6acDgZxBgAAAIBQ3eubHwAAAOLHos+sMSIuPkXqlS3tPiI9M9/6/edbu10QQhJBCAAAAACIovt9+wMAAEB8GFhg/fzrA+lIuRV4OLFQ+s2N0oUTY106AAAAAEAnoWsmAAAAAAAAAABgG0esCwAAAAAAAAAAALovAhEAAAAAAAAAAMA2BCIAAAAAAAAAAIBtCEQAAAAAAAAAAADbEIgAAAAAAAAAAAC2IRABAAAAAAAAAABsQyACAAAAAAAAAADYhkAEAAAAAAAAAACwDYEIAAAAAAAAAABgGwIRAAAAAAAAAADANgQiAAAAgFZ8+umn+utf/6pf/epXuu+++7R//35J0uuvv66nn3663cvbunWr7r//fpWVlXV0UXGM5s+fr/vuu09VVVWxLkrMlJSU6L777tPatWtjXRQAAAB0EwQiAAAAgBZUVlbq1VdfVXZ2tq6//np9/etfV05Ojvbt26e1a9fq7LPPbvcyBw4cqN69e+uDDz6wocQAAAAAEF8IRAAAAAAtOHLkiPx+v0aPHq3+/furT58+crvd+uijj9S7d2/16tXrqJZ78skna/369SotLe3gEgMAAABAfHHFugAAAABAvHrttdeC3dPMnj1bs2fPVv/+/XXFFVdo48aNmjFjRtj8c+bM0dq1a3XzzTcHAxSmaerf//63Dh48qNtvv11paWmSpKFDhyohIUGrV6/WWWed1anbhdaVlpbqzTff1NatWyVZn9f06dOVkpISnOfTTz/VmjVrdODAAdXU1CgzM1PDhg3T1KlTlZCQEJyvuLhYH3zwgXbs2KGqqiolJiYqLy9P06dPV0FBQdjyli1bpgMHDsgwDPXt21fnnHOOevbs2Ww59+/fr0cffVQXXXSRTjrppLDXvvjiCz3zzDO69tprNXToUBUVFWnhwoXauXOnysvLlZiYqJ49e2ratGnKz89vcX+89tpr2r59u+66666w6fPnzw92Z9XANE2tXLlSq1at0uHDh+VyuTRw4ECde+65ysrKanE9AAAA6J4IRAAAAADNmDp1qnr37q233npL06ZN04ABA+TxeLRlyxb5/X71798/bP4ZM2Zo9+7dmj17tm677TYlJiZq/vz52r59u66//vpgEEKSnE6n+vbtq82bNxOIiEMvvPCCRo4cqQkTJujgwYP68MMPdejQIX3961+X0+mUJBUVFWnw4MGaNGmS3G63Dh8+rMWLF2vPnj268cYbg8t65plnFAgEdO655yojI0NVVVXatWuXampqgvMsWrRI8+bN09ixYzV16lT5/X4tWbJETz75pG699Vb16NEjajkLCgrUs2dPrV27tkkgYu3atUpJSdHgwYMlSeXl5UpOTtY555yjlJQUVVdXa+3atfrHP/6h2267Tbm5uR2y7xoCcqeccorOOeccVVdXa8GCBXriiSd0++23KzU1tUPWAwAAgK6DrpkAAACAZmRnZwcbgHNyctSnTx/16NFDu3fvltvtbtJw63K5dNVVV6mqqkqvvfaatm7dqoULF+r000/XoEGDmiy/Z8+e2r9/v7xeb6dsD9pu+PDhOvfcczVo0CBNnjxZF154ofbt26cNGzYE55k6daomTZqkwYMHq7CwUCeddJIuueQSbdu2TQcOHJAkVVVV6fDhw5o4caJGjx6twsJCDR8+XOedd14wkFVaWqoPP/xQEydO1MUXX6whQ4Zo+PDhuuGGG5SQkKD58+e3WNaxY8dq586dOnLkSHBadXW1Nm3apDFjxsjhsL72FRYW6rzzztOIESNUWFioIUOG6Morr1R6erpWrVrVIftt9+7dWrVqlc455xydd955OuGEE3TiiSfqq1/9qmpra7V06dIOWQ8AAAC6FjIiAAAAgHZqeLLcMIwmr2VnZ+uiiy7S7Nmz9eWXX6qwsFBnnnlm1OWkpKTINE1VVFQoOzvb5lKjPU488cSwv0eOHKlXX31V27dv1+jRoyVZXS7NmzdP27ZtU2VlpUzTDM5/6NAh5efnKykpSdnZ2VqyZIlM01T//v1VUFAQVne2bNmiQCCgMWPGKBAIBKe7XC71799f27Zta7Gso0eP1ty5c7V27VpNmzZNktXNk8/n09ixY4PzBQIBLV68WOvWrVNRUZH8fn9YeTvC5s2bZRiGRo8eHbYtqampys/P1/bt2ztkPQAAAOhaCEQAAAAA7VRXVyeXq/lb6cGDBys1NVUVFRWaPHly8In0SA3L8Pl8tpQTRy+y+yCHw6Hk5GRVVVVJkrxer/75z3/K5XLp7LPPVk5Ojtxut0pLS/XCCy8EP1PDMPTVr35VCxYs0OLFi/Xuu+8qKSlJo0eP1tlnny2Px6OKigpJ0t///veoZYkW8AqVlJSkoUOH6pNPPtFZZ50lh8OhtWvXqnfv3srLywvO9+6772r58uWaMmWKCgsLlZSUJMMw9MYbb3RYHayoqJBpmvrd734X9XXGiAAAADg+EYgAAAAA2ik5OVn79u1r9vU5c+aotrZWeXl5euedd9SvXz8lJSU1ma+6ujq4PMSXiooKpaenB/8OBAKqqqoKflbbtm1TeXm5brrpprCxQkLHfWiQmZmpiy++WJJ05MgRbdiwQfPnz5ff79esWbOCy7zqqquUmZl5VOUdO3asNmzYoK1btyojI0N79uzRrFmzwuZZt26dxowZE8yaaNAwgHZLXC5X1GBFQ2CmQUOm0Ne+9rWowbqG8TUAAABwfGGMCAAAAKCdcnNzVV1dHbXRefXq1Vq3bp0uuOACXXvttaqpqdHrr78edTnFxcVKTk5WSkqK3UVGO61fvz7s7w0bNigQCDQZoDyysX3lypUtLjcnJ0dTp05VXl5eMJh1wgknyOFwqLi4WL169Yr605pBgwYpPT1da9as0Zo1a+RyuTRq1Kgm80WWd/PmzSorK2t1+ZmZmaqsrAxmb0iS3+/Xl19+GTbfkCFDZJqmysvLo25Hfn5+q+sCAABA90NGBAAAANBO/fv3l2ma2rNnT9gg1AcOHNA777yjsWPHaty4cZKkiy66SC+++KKWLVumSZMmhS1n9+7dKiwsbLXrHXS+zz//XA6HQwMHDtShQ4c0b948FRQUaOTIkZKkvn37KikpSXPmzNEZZ5whp9OpdevWBQepbnDgwAG9/fbbGjFihHJycuR0OoODWU+ZMkWS1ch/1lln6YMPPlBxcbFOOOEEJSYmqrKyUnv27JHb7dZZZ53VYnkdDofGjBmjpUuXyuPxaPjw4U2yHIYMGaK1a9cqNzdX+fn52rt3r5YsWRKW+dGckSNH6sMPP9RLL72k0047TT6fTx9//HHYuBiS1K9fP40fP16vvfaa9u7dq8LCQrndblVUVGjnzp3Ky8vTySef3Or6AAAA0L0QiAAAAADaqV+/fsrMzNTGjRuDgQiv16vZs2crMzNTM2fODM47YsQITZw4UXPnzlXfvn3Vu3dvSVJRUZEOHDjQ7EDWiK2rr75a8+fP14oVK2QYhoYOHaoZM2YEuxZKTk7WV77yFb333nt65ZVXlJCQoKFDh+qKK67QY489FlxOamqqsrKytGLFimDmQVZWlqZPn66JEycG5zv99NPVo0cPffzxx1q/fr38fr9SU1PVq1cvTZgwoU1lHjt2rBYtWiSfzxcMhIU6//zz5XQ6tWjRInm9XvXs2VNXX3215s2b1+qys7KydM011+iDDz7Qiy++qNTUVE2ePFlVVVWaP39+2LwXXnih+vTpo1WrVmnFihUyTVNpaWlh9R8AAADHF8OMfIQFAAAAQKuWLFmiRYsW6Xvf+57cbne73z9v3jx98sknuvPOO5sdzBoAAAAAugO+8QAAAABHYeLEifJ4PFqxYkW731tTU6MVK1Zo2rRpBCEAAAAAdHt86wEAAACOgsvl0mWXXRbsqqc9iouLNWXKFJ144ok2lAwAAAAA4gtdMwEAAAAAAAAAANuQEQEAAAAAAAAAAGxDIAIAAAAAAAAAANiGQAQAAAAAAAAAALANgQgAAAAAAAAAAGAbAhEAAAAAAAAAAMA2BCIAAAAAAAAAAIBtCEQAAAAAAAAAAADbEIgAAAAAAAAAAAC2IRABAAAAAAAAAABsQyACAAAAAAAAAADYhkAEAAAAjnubN2/WLbfcov79+8vj8Sg3N1fnnnuuXnzxxaNa3sqVK3XNNdeoV69e8ng8ys/P10UXXaT333+/2ffU1NTot7/9rcaPH6/09HSlpKRo1KhR+ulPf6rS0tKj3TQAAAAAiDnDNE0z1oUAAAAAYuXtt9/W5Zdfrpqamqiv33jjjXryySdlGEablvePf/xDt912mwKBQNTXf/7zn+uXv/xl2LQjR47o3HPP1Zo1a6K+p3///po3b54GDBjQpjIAAAAAQDwhEAEAAIDj1p49ezRy5MhgxsGIESN0zTXX6LPPPtPzzz8fnO/hhx/Wt771rVaXt3btWp188sny+XySpEmTJmnWrFlavHix3nnnneB8c+bM0cyZM4N/X3HFFXr55ZclSUlJSbrtttuUmJioxx9/XEeOHJEknXLKKVqyZIkcDpKaAQAAAHQtBCIAAABw3Lrnnnv029/+VpKUlpam7du3Kzs7W5J03XXX6dlnn5Uk9e7dWzt27JDT6WxxeVdffXWwO6cBAwZo48aNSkhIkCRNmTJFixcvlmQFFZYtWyZJ+vzzzzVixIjgMv7+97/r1ltvlSTNnTtX5513XvC1d955RzNmzDjm7QYAAACAzsTjVAAAADhuvfHGG8F/n3nmmcEghCRdfvnlwX/v2bNHq1atanFZfr9fb731VvDvWbNmBYMQknTZZZcF//3xxx/r4MGDTcoQud5zzjlH6enpUcsLAAAAAF0FgQgAAAAcl2pra7Vp06bg3wMHDgx7PfLvdevWtbi8rVu3qrKyst3LC11uRkZGWDDEMIywcSFaKwMAAAAAxCMCEQAAADguFRcXK7SX0tDMA8nqqinU4cOHW1xew1gO7V1e6Psi3xP5vtbKAAAAAADxiEAEAAAAjkuRQ6W19rdhGLYsL3R6tOHbQqe1VgYAAAAAiEcEIgAAAHBcys7ODmvYLy8vD3u9rKysyfwtycnJCfu7rcsLfV/keyLf11oZAAAAACAeEYgAAADAccnj8WjIkCHBv7ds2RL2euTfo0ePbnF5gwYNUkpKSruXF7rc0tLSsK6aAoGAtm3b1uYyAAAAAEA8IhABAACA49aFF14Y/Pf8+fPDggAvvvhi8N+9evXShAkTJEn33XefDMOQYRjq379/cB6n06nzzz8/+Pebb76p2tpaSVb3Si+99FLwtYkTJyo/P1+SdNFFF4WVKXS+d955RxUVFcG/I+cFAAAAgK7AFesCAAAAALFy55136rHHHlN5ebkqKio0depUXXPNNdqwYUNYQOCee+6R0+lsdXk/+tGP9Oqrr8rv92vHjh0688wzNWvWLC1atEjLly8PzveTn/wk+O8RI0bokksu0WuvvSZJ+u53v6tNmzYpMTFRjz76aHC+CRMmaPr06R2w1QAAAADQuQwz2oh4AAAAwHHizTff1JVXXhnMXoh0/fXX66mnnpLDYSUT33ffffrlL38pSSosLNT27dvD5n/sscf0jW98I+rA05L04x//WL/+9a/Dph0+fFjTpk3TunXror6nX79+mjdvngYNGtSeTcNxoLKyUqZpyjCMsK7BAAAAgHhC10wAAAA4rl144YVau3atbrrpJvXt21cJCQnKysrS2Wefreeee07/+c9/gkGItrjtttu0bNkyXXnllSooKJDb7VZubq5mzpypd999t0kQQpJyc3O1bNkyPfDAAxo3bpxSUlKUlJSkESNG6Ec/+pHWrl1LEAJRmaYZ/AEAAADiFRkRAAAAANBFVVRUBDMiUlNTY10cAAAAICoyIgAAAAAAAAAAgG0IRAAAAAAAAAAAANsQiAAAAAAAAAAAALYhEAEAAAAAAAAAAGxDIAIAAAAAAAAAANiGQAQAAAAAAAAAALANgQgAAAAAAAAAAGAbAhEAAAAAAAAAAMA2BCIAAAAAAAAAAIBtXLEuAAAAANCdVFVVyTRNGYah5OTkWBcHAAAAAGKOQAQAAADQgQKBQDAQAQAAAACgayYAAAAAAAAAAGAjAhFxqri4WDfccIMyMjKUkZGhG264QSUlJS2+xzRN3XffferVq5eSkpJ05plnasOGDWHz1NbW6tvf/rZyc3OVkpKiiy66SLt37w6bZ/Pmzbr44ouVm5ur9PR0nXbaafrwww87ehNhg1jWG0l66623dMoppygpKUm5ubm67LLLOnLzYJNY15uGeceOHSvDMLR27doO2jLYKVb1Zvv27brllls0YMAAJSUladCgQfrFL34hr9drx2biGP3tb3/TgAEDlJiYqPHjx2vRokUtzr9gwQKNHz9eiYmJGjhwoB599NEm87z88ssaMWKEPB6PRowYoVdfffWY14v4Eot688ADD+jkk09WWlqa8vLydMkll2jTpk0dul2wV6zONw0eeOABGYahu+6661g3BZ0oVvVmz549uv7665WTk6Pk5GSNHTtWq1at6rDtgr1iUW98Pp9++tOfBu+BBw4cqP/5n/9RIBDo0G2DfTq63mzYsEGXX365+vfvL8Mw9Mc//rFD1ov4Eot6Y+t9sYm4NGPGDHPUqFHmkiVLzCVLlpijRo0yZ82a1eJ7HnzwQTMtLc18+eWXzfXr15tXX3212bNnT7OsrCw4z+2332727t3bnDt3rrl69WrzrLPOMseMGWP6fL7gPCeccIJ5wQUXmJ988om5efNm85vf/KaZnJxs7tu3z7btRceIZb156aWXzKysLPORRx4xN23aZG7cuNGcPXu2bduKjhPLetPgO9/5jnn++eebksw1a9Z09CbCBrGqN++884550003me+++665ZcsW8/XXXzfz8vLM73//+7ZuL9rv+eefN91ut/n444+bn332mXnnnXeaKSkp5o4dO6LOv3XrVjM5Odm88847zc8++8x8/PHHTbfbbb700kvBeZYsWWI6nU7z/vvvNz///HPz/vvvN10ul7ls2bKjXq8dysvLzbKyMrO8vLzT1tldxKreTJ8+3XzyySfNTz/91Fy7dq05c+ZMs1+/fmZFRYXt23ysqG+xqzcNli9fbvbv398cPXq0eeedd9q1mehgsao3RUVFZmFhoXnTTTeZH3/8sblt2zbz/fffN7/88kvbtxnHLlb15le/+pWZk5Njzpkzx9y2bZs5e/ZsMzU11fzjH/9o+zbj2NlRb5YvX27efffd5nPPPWcWFBSYDz300DGvF/ElVvXGzvtiAhFx6LPPPjMlhV10li5dakoyN27cGPU9gUDALCgoMB988MHgtJqaGjMjI8N89NFHTdM0zZKSEtPtdpvPP/98cJ49e/aYDofD/O9//2uapmkeOnTIlGQuXLgwOE9ZWZkpyXz//fc7dDvRsWJZb+rq6szevXub//jHP+zYNNgolvWmwdtvv20OGzbM3LBhA4GILiIe6k2o3/72t+aAAQOOdbPQwSZOnGjefvvtYdOGDRtm3nvvvVHn/+EPf2gOGzYsbNptt91mTpo0Kfj3VVddZc6YMSNsnunTp5vXXHPNUa/XDjQMH71Y1ZtIBw8eNCWZCxYsaO8mdDrqW2zrTXl5uTl48GBz7ty55hlnnEEgoguJVb255557zClTphxr8REjsao3M2fONG+++eaweS677DLz+uuvP6rtQOeyo96EKiwsjNqgHA/3xTh6sao3kTryvpiumeLQ0qVLlZGRoVNOOSU4bdKkScrIyNCSJUuivmfbtm3av3+/zjvvvOA0j8ejM844I/ieVatWqa6uLmyeXr16adSoUcF5cnJyNHz4cP373/9WZWWlfD6fHnvsMeXn52v8+PF2bC46SCzrzerVq7Vnzx45HA6NGzdOPXv21Pnnn9+kyxXEn1jWG0k6cOCAbr31Vv3nP/9RcnJyR28ebBLrehOptLRU2dnZx7pZ6EBer1erVq0K+ywl6bzzzmv2s1y6dGmT+adPn66VK1eqrq6uxXkalnk060X8iFW9iaa0tFSSOLd0AbGuN9/61rc0c+ZMnXPOOce6KehEsaw3b7zxhiZMmKArr7xSeXl5GjdunB5//PGO2CzYLJb1ZsqUKfrggw+0efNmSdInn3yijz76SBdccMExbxfsZVe9sWO9iB+xqjfRdOR9MYGIOLR//37l5eU1mZ6Xl6f9+/c3+x5Jys/PD5uen58ffG3//v1KSEhQVlZWs/MYhqG5c+dqzZo1SktLU2Jioh566CH997//VWZm5rFuGmwUy3qzdetWSdJ9992nn/70p5ozZ46ysrJ0xhlnqKio6Ng2DLaKZb0xTVM33XSTbr/9dk2YMOGYtwWdJ5b1JtKWLVv0l7/8Rbfffnu7twP2OXz4sPx+f4ufd6T9+/dHnd/n8+nw4cMtztOwzKNZL+JHrOpNJNM09b3vfU9TpkzRqFGjjnZz0EliWW+ef/55rV69Wg888EBHbAo6USzrzdatW/XII49o8ODBevfdd3X77bfrO9/5jv797393xKbBRrGsN/fcc4+uvfZaDRs2TG63W+PGjdNdd92la6+9tiM2DTayq97YsV7Ej1jVm0gdfV9MIKIT3XfffTIMo8WflStXSrICApFM04w6PVTk6215T+g8pmnqm9/8pvLy8rRo0SItX75cF198sWbNmqV9+/a1Z3PRQbpCvWkYIOsnP/mJLr/8co0fP15PPvmkDMPQ7Nmz27yt6Dhdod785S9/UVlZmX70ox+1Z9Ngo65Qb0Lt3btXM2bM0JVXXqmvf/3rrW0eYqC9n3e0+SOnt2WZR1PPED9iVW8a3HHHHVq3bp2ee+65dpUbsdXZ9WbXrl2688479fTTTysxMfGYyo7YicX5JhAI6KSTTtL999+vcePG6bbbbtOtt96qRx555Ki3A50rFvXmhRde0NNPP61nn31Wq1ev1lNPPaXf//73euqpp456O9C57Kg3dqwX8SVW9aZBR98XuzpkKWiTO+64Q9dcc02L8/Tv31/r1q3TgQMHmrx26NChJpGtBgUFBZKs6FfPnj2D0w8ePBh8T0FBgbxer4qLi8OeNj148KBOPfVUSdK8efM0Z84cFRcXKz09XZI1QvvcuXP11FNP6d57723HFqMjdIV60/DeESNGBF/3eDwaOHCgdu7c2ZbNRAfrCvVm3rx5WrZsmTweT9jyJ0yYoOuuu46b6hjoCvWmwd69e3XWWWdp8uTJ+vvf/962DUSnyc3NldPpbPK0TujnHamgoCDq/C6XSzk5OS3O07DMo1kv4kes6k2ob3/723rjjTe0cOFC9enT51g2B50kVvVm1apVOnjwYFj3tX6/XwsXLtTDDz+s2tpaOZ3OY94+2COW55uePXuGfW+SpOHDh+vll18+6u1B54hlvfnBD36ge++9N3ivfuKJJ2rHjh164IEHdOONNx7ztsE+dtUbO9aL+BGrehPKjvtiMiI6UW5uroYNG9biT2JioiZPnqzS0lItX748+N6PP/5YpaWlTRpiGgwYMEAFBQWaO3ducJrX69WCBQuC7xk/frzcbnfYPPv27dOnn34anKeqqkqS5HCEVw2HwxF86h2dqyvUm/Hjx8vj8WjTpk3Beerq6rR9+3YVFhZ26P5A23SFevPnP/9Zn3zyidauXau1a9fq7bfflmQ97fPrX/+6w/cJWtcV6o0k7dmzR2eeeaZOOukkPfnkk02uWYi9hIQEjR8/PuyzlKS5c+c2W0cmT57cZP733ntPEyZMkNvtbnGehmUezXoRP2JVbyTrabE77rhDr7zyiubNm6cBAwZ0xCahE8Sq3kybNk3r168P3sesXbs2+DDF2rVrCULEuVieb0477bSw702StHnzZr43dQGxrDdVVVVN7nmdTiftNF2AXfXGjvUifsSq3kg23xcf83DXsMWMGTPM0aNHm0uXLjWXLl1qnnjiieasWbPC5hk6dKj5yiuvBP9+8MEHzYyMDPOVV14x169fb1577bVmz549zbKysuA8t99+u9mnTx/z/fffN1evXm2effbZ5pgxY0yfz2eapmkeOnTIzMnJMS+77DJz7dq15qZNm8y7777bdLvd5tq1aztn43HUYlVvTNM077zzTrN3797mu+++a27cuNG85ZZbzLy8PLOoqMj+DccxiWW9CbVt2zZTkrlmzRpbthMdK1b1Zs+ePeYJJ5xgnn322ebu3bvNffv2BX8QX55//nnT7XabTzzxhPnZZ5+Zd911l5mSkmJu377dNE3TvPfee80bbrghOP/WrVvN5ORk87vf/a752WefmU888YTpdrvNl156KTjP4sWLTafTaT744IPm559/bj744IOmy+Uyly1b1ub1doby8nKzrKzMLC8v77R1dhexqjff+MY3zIyMDHP+/Plh55WqqqrO2/ijRH2LXb2JdMYZZ5h33nmnbduJjhWrerN8+XLT5XKZv/71r80vvvjCfOaZZ8zk5GTz6aef7ryNx1GLVb258cYbzd69e5tz5swxt23bZr7yyitmbm6u+cMf/rDzNh5HzY56U1tba65Zs8Zcs2aN2bNnT/Puu+8216xZY37xxRdtXi/iW6zqjZ33xQQi4tSRI0fM6667zkxLSzPT0tLM6667ziwuLg6bR5L55JNPBv8OBALmL37xC7OgoMD0eDzm1KlTzfXr14e9p7q62rzjjjvM7OxsMykpyZw1a5a5c+fOsHlWrFhhnnfeeWZ2draZlpZmTpo0yXz77bft2lR0oFjWG6/Xa37/+9838/LyzLS0NPOcc84xP/30U7s2FR0olvUmFIGIriVW9ebJJ580JUX9Qfz561//ahYWFpoJCQnmSSedZC5YsCD42o033mieccYZYfPPnz/fHDdunJmQkGD279/ffOSRR5osc/bs2ebQoUNNt9ttDhs2zHz55Zfbtd7OQMPwsYlFvWnuvBJ6DotX1DdLrM43oQhEdD2xqjdvvvmmOWrUKNPj8ZjDhg0z//73v3f4tsE+sag3ZWVl5p133mn269fPTExMNAcOHGj+5Cc/MWtra23ZRnS8jq43Dd+fI38ilxPr+2Icm1jUGzvvi436FQAAAADoABUVFcGB5FJTU2NdHHRz1DcAAAB0BXSqDAAAAAAAAAAAbEMgAgAAAAAAAAAA2IZABAAAAAAAAAAAsA2BCAAAAAAAAAAAYBsCEQAAAAAAAAAAwDYEIgAAAAAAAAAAgG0IRHQjtbW1uu+++1RbWxvroqALod6gvagzOBrUGxwN6g2OBvUGR4N6g6NBvcHRoN7gaFBvcDTird4YpmmasS4EOkZZWZkyMjJUWlqq9PT0WBcHXQT1Bu1FncHRoN7gaHTVelNRUSHTNGUYhlJTU2NdnONOV603R4v61jGOt3qDjkG9wdGg3uBoUG9wNOKt3pARAQAAAAAAAAAAbEMgAgAAAAAAAAAA2MbVlplM01R5ebndZcExKisrC/sNtAX1Bu1FncHRoN7gaHTVehPaVU4gEIh1cY47XbXeHC3qW8c43uoNOgb1BkeDeoOjQb3B0ejMepOWlibDMFqcp01jRDT0JwUAAAAAAAAAANCgLeNQtCkQQUYEAAAA0DYMHozORH0DAABArLUlI6JNXTMZhhEXI2sDAAAA8c7hcNAwjE5DfQMAAEBXwGDVAAAAAAAAAADANgQiAAAAAAAAAACAbQhEAAAAAAAAAAAA2xCIAAAAAAAAAAAAtiEQAQAAAAAAAAAAbOOKdQEAAAAAAEfHMIyw3wAAAEA8IhABAAAAAF1USkpKrIsAAAAAtIqumQAAAAAAAAAAgG0IRAAAAAAAAAAAANsQiAAAAAAAAAAAALYhEAEAAAAAAAAAAGxDIAIAAAAAAAAAANiGQAQAAAAAAAAAALANgQh0LtMM/x05vbVp8airlBMAAADoRkzuw4E24Vg5dqZpsh+PAvusbbpK/bKzjM0tu2F6V9g/aJ1h8kmiM9T5pRVfSIGAZBhW473DkJwOyeeXVP9vyXrd57fmcTqsv+NRVyknAADoVGVDC2S4HKoLSFvKE2JdHKDbcjsMBUzJlKkA32qBZrkchmRKkikfx8pRcUhyOgyZpuSjGa3NGs7Tkik/u61ZXaF+GbLOJQHTns/SYUhOw5Bphp+nGs5fDkPym9LgHJfSEnmuvqsiEAH7bdsv7StWk28HFTVSaqL176pa6ZuPSndeKI0b2DjPvf+W1m3vtKK2SXqSdM/l4eW85ylp/Y7YlQkAAMSN4k//JFdWsvZXBHTOvytjXRygW5pS6NE9Z6RLkgKmqZW7vfrNwjJ5/TEuGBBneqU59dil2cG/Nx6q0x8WlWl/RSCGpep6fnlOhk7qZT1cUFYb0DNrK/X2ppoYlyq+TeyToJ+dnRH8e+XuWv12YbmqiYY18T/nZGhcQ/2qCejptZV6Z3N81a/bJ6Zq5rAkSVJNnak3Pq/Sf9ZWddjyf3d+pob1cEuSiqsD+teqCn1+qE5/vzSnybzpHkP9spxy8EBwl0MICfYz1TQIIUkpnsZ/J3ukSUOk3PTweS482daiHZXyaqlHRDkvmhibsgAAAADHoVn1jSGS5DAMpXocBCGAKGYOSwz7u1e6U0XVBCHao3e6MxiEkKR0j0O1NKa3KvQ8LUkZiQ6CEFH0SXcGgxCSlJ7okDfO0keS3YbOHtR4Lkl0d2wA4IQcVzAIIUlZSQ7V+EzNHJoUdf6AKYIQXRSBCNivZ3b06ZEnjVknS3NWhE+bNLRpo3+smZLmrAyfFo/lBAAAALqhAVlOjcx3h02bs7E6RqUB4leSy9C0QeGBiLlf1BC0a6eZQ8P3YVlNQIu218aoNF1Dn4zwxnVJemsT5+loLogI2MRj/Zo2KFFJIcEHf8Ds0IyNWREBh0OVfq3d59W0ExKjzp+TQnN2V8UnB/slJUhZqa3P1ydXOlRqddPUwOmQZk6wr2xHa+7apuW8IA7LCQAAAHQzkU/ZHqnya+nO+Gq0AeLBWYM8SklobPYJmKbepjG4XaIFc977kmBOayKfZC+tCWjhNs7TkZLchqYN8oRNezfOgoWGmmZWLdvl1eGqjsmsSvcYOn1A+D54Z1ONpg5IVGpC02Zrt9N6D7omAhHoHD2z2jbfeeOkDz4Jnzb9JOtME0+qvU3LOWNc/JUTAAAA6EZSEwydMSC8QeS/m2vko6cZoInIxuDlu706WMnB0h5nDfIoOaQx1B8gmNOaJLehs6M0rtdR9Zo4e6BHye7w+vXO5viqX2N7udU73RU2rSOzEM8bnKgEZ2Ngoc5v6t0vqptkSTTISXbIoFumLotABDpHVqqUmND6fBOHSEs3hU/LSJbOGGVPuY5FZPdMGSnS1JGxKQsAAABwHDh3cKI8rvAGi//GWaMNEA9GF7jVL9O+xsPjRWRj6PLdXh0imNOiaYOaNq5znm7KUNMMv493xV/9ujCijNuLffr0QF2HLNthSBdEHGMLt9eqMNOlwixXk/kNSdnJNGV3ZXx66ByG0basCIchjT9BWrM1fHo8Dlq963DTcjJoNQAAAGALhyHNHBLeYLFkZ61KauJrUE8gHkQ2Hu4q8emTfR3TeHi8GNvTrb4Ec9rFUNNMnHhsXI8HY3u61ScjvutXQapD43tHjPXRgWWc1DdBPVLCexaZs7G6SYCmQWaSIZeDbIiujEAEOk9+pvXtoTXnjZXeXhU+bXAvaVgfO0p1bN5cHv734F7S0N6xKQsAAADQjU3onaD8tPAGizc/j69GGyAe5KU4dHKf8MbDOXQn1G4zIxpDd5b4tG4/wZyWdIXG9XgRWb92FPu0voMyDTrKBUOT5AjpBqnCG9CH2zpukOrIfbDxUJ1KawI6pW/0HlVyU+gOvasjEIHO43JKeZmtz5eWJKUnSfuLw6dfFIdZEcu/kA6UhE8jKwIAAADocJFPSH55pE6bDvtiVBogfp0/NEnOkIcAq7wBfbiFgYLbIz/VoYkRwZy3COa0KvI8HY+N6/EgPzX+g4Uel3TuCeFjMr3/ZY1qO+iyW5jp1OiCiH2wsVrnDwk/fzVIdhtKcpMN0dURiEDnauug1TMnSG9FjMEwZYQ11kQ8CZjNlDMlNuUBAAAAuqE+GU6N69W0wQJAuASnNfhrqA+21KjaRxdm7XH+kPAnwSu9Ac3b0nFPgndH+akOTYjzxvV4ES3TYP7W+KpfZw5IVKqnsdk4YHbsQO2RXXgVVwe0fFetpkecvxrkptCE3R3wKaJzpSRag0+3ZmCBNQZDbUjk3OWUzj/JvrIdrXfXhJfT7ZRmjI9deQAAAIBuJrLBoqwmoEXbecIbiDR1QKLSPeFNPW9tiq8GznjnaSaYU0MCVotmdoHG9XjgcTbNNPjgy/irX5HZLav2eLWvvGPG+khJMHTWwPB98O7map1a6FF6YtOmapdDykgkG6I7IBCBztczu23zTRstzV8fPu2C8dYZKJ6UV0cvpzPOygkAAAB0QUluQ2cP8oRNe/eLGnn9MSoQEMdmDQtv3Fu916s9ZRws7TF1QKLSIoM5G2lQb0m0xvX347BxPR6cEa1+xVnmyKh8t/pn2TfWxzmDEpUY0s2SL2Dqnc01zQ5SnZPskGEQiOgOaClF58tJszqba82pw6VFn4VPy06zpsebN1eE/52TJp02LDZlAQAAALqRaYM8SnY3fnX1B0y9szm+Gm2AeDC8h0uDst1h0+jCrP2iPQm+t5xgTkvOGGhvNz7dSWT9Wrm7tsMyDTpKZBn3lPm0Zm/HjPVhyOqaKtTSnbXqkeLQCTnuqPNnJ9N83V3wSaLzGYZU0IasCKdDGtlP+nRn+PQL43DQ6q0HmpZzFoNWAwAAAMfCUNNumT7e5dWhyvhqtAHiwcyIxsP95X6t2uONUWm6phF5Lg3Mtu9J8O5q1lD7uvHpTkbkuTWgSf2Kr2yb3GSHJvWNGKh9Y406apSZk3onqFe6M2zanI3VzWZDZCQacjvJhuguCEQgNgoyrYBEa2acJL0TMRj0yH7WGBLxZs7y8L9H9ZMG5semLAAAAEA3MLanW30ywhtt4q0LCyAeZCc5dFpheBdmb2+qVoAxqtslsjF0X7lfq/cSzGnJyCiN63RlFd2FEV2n7S3zxV39On9IopyOxva66jpTH3TgQO0XRhxjW4t82lvmb3L+apDDINXdCp8mYsPtknqktz5fVqrkcEhHysOnx2NWxOKNXaOcAAAAQBcR+YT3zhKf1u3vmO4hgO5k+pBEuUIaD2t9puZ+SWNwe2QnOTS5X3hj6FsbCea0JnJcknhsXI8HUevXpo7LNOgIboc0fUj4dffDrTWqquuYUvZMc2p87/BsizkbqzVjSFLUrIckt6FkN9kQ3QmBCMROrzYOWj3rZOntVeHTzhwlpUVP24oZfyBKOU+Mv3ICAAAAXUB+qkMn92naYAEgnMshzRgc3hg8f1uNKrzx1MQZ/86PCObU1Jl6vwOfBO+OcpLjv3E9Xpw/NDzToKbO1AdxFiyc0t+jjMTIgdo77ro7c2j4eaq8NqAlO2o0Y0hi1PkZpLr7IRCB2ElNkhKbDkTTxNDe0oaI8Rc8bumUIfaU61gs2hD+t8ctTRwcm7IAAAAAXdip/TxyRDRALN5RG6PSAPFrRJ5b2cnhfa4v3s6x0l6RXcOs3e9VJcGcFk3qmxDWuC5JH1H3opoSUb/W7POqsoMyDTpKZBl3lvi0s7TjBmqf0j98+St2ezUg262ciPNXg4xEghDdDYEIxE5ljVTThrTqrfulwT3Dp9X5pVVf2lOuYxEZHKnzS6u3xKYsAAAAQBe2YnfTrj0iMyQASBsP1amsNnxgYI6V9lsecc45Md+tJBcNoS1ZucergBnemD6RuhdVk/pV4Faiq5mZYySyjH0ynOqZ1nFNx8t3hS9/XK8EbTlSp7Ka6AObl9fGV6AGx45ABGJnX3H06REXMb21Upo5IXza4s+k4kp7ynW0HEbTcn4Uh+UEAAAAuoDdZX6tiehnPHIgWQCS1y+990V4Fy/TBiXSiN5O72yuDmtUT0lw6KxB0QfQheVARUArd3Oebgtr8PjG+pWa4NCZA6N3SRQr87fVqCIkqOkwDF0wtOM+z7c2hXfzlJXk0MS+Hr37RfQuqg5XRg9QoOsiEIHY8PmlgyXRXwtNvy6vlsqqpYKs8HneWGFb0Y7ayYOjlHN5bMoCAAAAdAORY0KckOPW0Nw4e4QUiAPvbKqWP2RU5WQa0dvtQEWgyRPhMzuwEba7ijxPF2a5NCq/Dd1wH2cOVASaZPrNirP6VetTk0HuzzkhUZ4OuuzuKPFr3f6mgat3NoefvxpU1ZmqjrPuq3BsCEQgNg6USFFOMk28t1a6YHz4tC/2Sht321GqY3PRxPC/v9grbdoTm7IAAAAA3cDKPV4dKA/vn/rC4fHVcAPEg4OV8d/I2RVEDszbL9Ol0QU0qrdk7b467S71hU27kKyIqCLrV2GWSyfGWdAmWubGWQM6LnMjch8M6+FWRqJDH+9q2h2jJB2u7LgxKhB7BCLQ+Uyz+W6ZQgVMa3yFcQPDp78Zh9kQfXOblpNsCAAAAOCYBEzprc3hjRanFXqUlcRXWSDSmxENfH0zXRrTM74aOeNdtEZ1uhpqmammXe6c0jdBPVI4T0fqCvVrf0VAq/ZEZAZ1YBmX7fLqUERwYdbQpCaZNQ1Kqk352vIgM7oEzgrofMUVUk30SGeYFV9IkyIGfy6tkhZusKdcx2JWxNgQpZXxWU4AAACgi3n/yxrV+hobIVwOQ9MHx1e/2kA8WLe/TjtL4ruRsyuIbBCd2IdG9dZ8sKVWVXWN/fk7HYZmDKHuReoqQZvIY6B/B3a3FTCldzaFd/90+gCPdpT4tKPY12R+U1JRFWNFdBfxVdNxfGhLNoQkvbtamjam6TRv0xNTTCUlNC3nf9dIdaSPAQAAAMeqvNbUgm3hjRbnD0mUi2+zQBORjZwT+yQoL84aOePdvC21qvKGN6p35IC93VF1nal5W2rDpk0fnCg3Va+JaEGb8+MsaLNmb532lNkX1Hz3i2rV+RsfMEhwGpo+OElzNkXPijhSFZBpkhXRHXBKQOeq9loZEa3ZfVjqkSElhwyu5Q9Ib6+yr2xH65wxUcq5MnblAQAAALqZyKczs5OdmtyPgXiBSB9GNKI7DBrR26vaZ+qDreGN6ucNTlSCM0YF6iIig2AZiQ6d3p/zdKSuELQxJb21MfwBgEl9E5Sb3DGFLKs1tXB7+D44f2iiFm6rUYW3afZDnd96D7q+OKrmOC7sK4o+PTKyOWeFdOHJ4dOWbZIOltpTrqNlKHo5D5XFpDgAAABAd7St2K8NB+rCptHlDNBUtc/U+1vCGxDPG5woD43o7fJ2RPAz3UOjemt2l/q1Zm/EgOmcp6OKHLA5PdGhqQPiq359sKVG1XWNbXVW5kbHdYsY+YBBjxSnxvZM0Adf1kSd/0gl3TN1BwQi0Hn8AelASfTXDKPx31W10sEyqU9u+Dxz4nCQ6rEDm5YzHgfTBgAAALq4yC4bRuS5NTDbFaPSAPEr8knmNI9DUwcwrkp77C5r2qh+IY3qrYrMihic69bQXM7TkaLVr3gL2lTVmfpwa/i5ZPqQpA7L3PjyiE8bD4U/YDBzWJLe2hQ9EFHhNVVTR1ZEV0cgAp3nYKkVjGjNB59I540Nn7b9oPTJdjtKdWwumhj+9/YD0rrtMSkKAAAA0J0t3VGrI1Xh47DNHErjKhBpb7lfq/aEN3LOHMax0l5vRjyxPSjHrWE9aFRvyYrdXh0oDz9Px1sDe7yIzAg4ISf+gjaRZcxIdGhKB2YGRS5/dEGCEpzSyt21Uec/wqDVXR6BCHQO02y+W6ZISzdJE4eET4vHbIiCTOnkweHTyIYAAAAAbOE3pXcinpQ8Y0Ci0jxGM+8Ajl+RDXyDst0akRdfjZzxbtUer/bTqN4uAVN6a3N43Tut0KPMRM7TkVbuif+gza5Sv9busy8zaPGOWhVXhwcXZg5N0pyN0bMiiqsD8gfIiujKCESgc5RWWV0utWbNVumkQZIj5CJVUSPNW2df2Y7WzJOblvPD9bErDwAAANDNvftFter8jY0QHpehc0/gSW8g0uq9Xu0rj8wgiq9GzngXMKW3NzVtVM9KoimtJe9/WaNaX+N52u00NGMIdS9SVwnaRI5nMTjXrSEdlLnhC0jvRuyDswYmatPhOu0t8zWZP2CqSeACXQtnT3SOtmZDvLNKmj4ufNrctVJNXdTZY8bjbtp9VDyWEwAAAOhGSmpMfbQj/AGnC4YmhT0fBKC+kTOiAfHUQo+yaURvl7kRjeouh6EZHThgb3dUXmtqwbbwJ9pnDEmUi6rXxNwv4j9os3y3Vwcr7MvceGdzjXwhWQ6JbkPTBiU2O1bE4cqATJOsiK6K0wDsV1MnHSlvfb79xVJqopQWcUJ7a6U95ToWZ44KL2fAjM/uowAAAIBuJrJxNT/VqZP7JMSoNED8en9LTdjgrjSit1+F19T8yEb1wTSqtyaya7CcZKcm9eu4sQW6iwpv06DN+XEWtImWGTSlAzM3iqoDWroz/AGDmcOSNO/LmqiDU3v91n5D1xRHVRvd1v5msiEiI5hvrZRmnRw+bcUX0t42ZlN0pshBqld+Ke0rjk1ZAAAAgOPIpsM+fXE4PBM53vrVBuJBZbRG9CFJcdXI2RVENqpnJzt1Ko3qLdpW7NeGA+Hn6Y4cW6A7iVa/JsdZ/XovSndb0wd33OcZuQ96pjk1LM+teVubz4pA18TlB/ar80ef7g3p7622TlryuVRaKW3dL5XXn4TicfDn9GQpEJB8fqmo3PpNNgQAAIhATzGAfRoaLXwBU0VVfjkNKcEZ40IBcSjyWCmv9SsvhYOlPbYX+/XpAWvA3h0lPu0o9ikjiat8a+ZEPEXvNKQkF/stUmTQptZnKjc5vppry2tNLdzeGBTwB0xldGA3b58d9GlrUWMbYXWdqR4pDr0VUYcaBEwpQPdMXZJh0rEWOkONV1r8ueR2ST6fVBewxo2oqpVKKq2um/YXS7U+6+p02nBpeF/ps12xLnnLVm+RZk4gGwIAAASVXnuqHEkJqq4N6NUt8fVFEuguDEnjenm0o7hOb2+q1sh8t1I9HG9ANCPy3CqqCujNjdUa3sPFsXIUspMcKsxy6cX1VTpc4ZfTYSg90VBOslOZSYYyEx3KSHTIQ0N7mNxkp+r8pmr8ZtgT9QiX6DKUmuBQrS+gCq+peNxTLoeUlehUtc9UVV1AgQ4uZJLLUEqCQzV1pirrAsF9kJXokCkpwWmoxmdqaK5LWckEU7uqjhnmHGiOPyAdKZMOllp/7zok7SmyMgm8PiuMmZQg5aRKA/OljBQpM9kKWAQC0rDesS1/S4orrDNxvJcTAAB0Kpcp1ZVVy3QnaHCuO9bFAbqtcm9ADoehVI9DA7LdymQQXiCquoDkN6Vkt8GxcgwqvKbOH5KoSq+pkpqASmtMldYEtK8soP1lASW4DOWkONQn3amCNKfyUpzKT3UoOeH43d8B05TDIDjTmoZnxI0431d2fp7N7YOGdVKXugcCEeg4lTVWwOFgqXSwxAo47C2ysiG8PsntlJI8UmaKNLi39Ts1UeqqJxLDIcmwfhvH740FAAAIl/LFAW17/RPtveIsGT0YFBSwk2HIuiU3uu7XCqAzcKx0DMMwlJZoKC3Rob7100zTVGWdqdLqgIprTG04UKcVu62unBKchrKTHeqb4VR+qlN5qVZwIuU4CU7QcNw28R6AaGDn59ncPmhYJ3WpeyAQgfYLBKyulA6WSgdKrJ/dR0KyHAJWlkNqktQzsz7LIUVK6GbVzQj5OT7uIQAAQFsYRthtAgD7GBE/AKLjWLGPYRhKSzCUluBQnwxrmmmaqqozVVJjqqQ60DQ4keRQnwyn8tPqAxQpDrrMAtDtdbOWYXS4qtrwLIe99VkO1bXWeA5up5ScaHWnNKRXfZZDkuQ4Dm5tDCP8BwAAQAo+ceowjo9bIiCWHEb9c0Ecb0CLOFY6mWEozWMozSP1zbD6sw8GJ6qtrp0+P+TTqr1emaYVnMhMasycsLInHEpNMLrM0/IA0BoCEbAEAlJRRWPA4UCJtKshy6GuvkPJ+iyHgszGLAfPcdzvccPNAIEIAAAQxojyLwB243gD2oZjJTYMw1BqgqHUBKlPZHCiPnNi8yGf1kQEJ3o3jDmR6lB+qpPgBIAui0DE8ajaawUbGjIdQrMcGsZySK4fy2FofZZDWjKPTURyqP5xR7FvAABAGENWIwENBYC9Go4zjjegZRwr8ckwDKV6pFSPwrp1qq4PThRXB/TFEZ/W7rOCE26nocxEh3pnOFSQ5lJeikP5aU6lEZwA0AUQiOjOAgGpuKIx4NAwlsORMivg4A9YAYeGLIfMFCkzVUo8jrMc2sOoz20lIwIAAIRiQFCg05CkDLQNx0rXYRiGUjyGUjxS75DMiWqfqeJqK3Ni6xG/1u+vkz9gZU6kJxrWmBOpLuWnOpSX6lS6h+AEgPhCIKK7qPE2BhwO1Wc57DlijfFQ52/McshIkYb2tgIOaUmSk8GQjppBKwMAAIiioR/u+h8A9nGI4w1oC46VLs4wlOo2lOqW+qY7g5Or66ysieLqgLYWNQ1OWN06uYLdOhGcABBLBCK6GtOUiisbu1Y6UGxlORwul+pCshzSkqSeWVbAIStFSkyIdcm7H0b7AgAA0RgGSZNAJzGM8B8A0XGsdE/JCYaSE5zBzAmpMThRUhPQjmK/PjvoU53fVILTGkC7d7pTPdMbu3UiOAGgsxCIiGe1dY1ZDgdLpH3FVqZDZY0VdHA6pZREq0ul4X2s3+nJZDl0Fu7kAABAc7hFADoF3c0AbcOxcvyIFpyoCcmc2F3q1+eHGoMTqQ3BiTSn8lKdyk91KiOR4ASAjkcgIh6YplRS2RhwOFBqdat0qNQKOPhCshzyM6Ws+iyHJE+sS36cMxp/c4EGAAANGjIi1Hi3AMAeRsQPgOg4Vo5vSW5DSW6neoV061TjM1VcFVBxTUB7y/zadMinuoApt6MxOFGQZgUm8lKdyiQ4AeAYEYjobF6fFWA4UGIFHvbXZzlUNGQ5OKzBozNTpOF9rYBDRrKV/YD44qgPQNA1EwAACFUfiOAWAbAft+RA23CsIFKy21ByRkTmhK8xc2JfmV+bD/vk9ZtyOw2luA31znCqINWp/DSn8lIcykpyEJwA0GYEIuximlJpVchYDiVWwOFQqRWMaMhySE+S8jOkYb2tTIekBJ6u7yp4pAQAALTIkMFNAmCzxixljjegJRwraF2Sy1BSmkO90hqn1dYHJ4qqAzpQHtCXR3yq9VmZEykJhnqFdetEcAJA8whEdIQ6n3SorDHL4UCxtKdIqqiW6vzW4wZpSVJGqjS0j5SdJmWS5dDlGQ5Z3TI56v8NAAAgKyPCUHDAagD2CXs2iOMNaBbHCo5WottQT7dTPUO6dQoNThyqDGhLkU9enymX01CyO3pwwkHFA457BCLawzSlsurGLIeDIWM5eH2Szx+e5TC8j9W1UrKHK313VB+HkKP+BwAAQAo+dMqAoID9jPqWVY43oGUcK+hILQUniqsDKqoKaHuxTzV14cGJ0G6dspMJTgDHGwIRzanzSYfLrIGjD5ZY2Q6RWQ7pSVJGijSsj5Sdao3r4CLL4bgR+qgjF08AANCAwaqBTkNvqUDbcKzAbokuQz3TrEyIBl6/NSB2UX1wYkexX9V1AbmdhhLdhnqlhQ6I7VAOwQmgWyMQYZpSeXV9hkOJ9XtvkRV4qGtmLIfsNCmFLIfjnlH/P3JbAQBAKAYEBTqNo/52nOMNaBnHCmIh0WWoZ3p45oTXbwazJoqqA9pV4le1z5TLUZ9pkRberRPBCaD7OL4CET6/leXQMHh0wwDS5VVWloNRP5ZDVqo0om9jloP7+NpNaKPQjAju5AAAQAPT+kXSJGA/upsB2oZjBfHC4zJUUJ8J0aCuPjhxpMrq2mllqV/VdaacjsZgRkF9l075qU7lJDvkpB0G6HK6Zwu7aUoVNeFZDvuKrG6WvHX1WQ4JUnqylBeS5ZCayBUZbWcY4T8AAACSZJrcIgCdhN5SgbbhWEE8S3AZyk+zxo9oUBeRObF6t19VIcGJgmDmhEN5qU7lEpwA4l7XD0T4AxFZDsXS3mKprMrKgDAkpSVbWQ7D+1gBhyyyHNABGu7euJMDAAChjMZf3CEA9jJCfnO8Ac3jWEFXk+A0lJ9qjR/RIBicqA9QrNnrV6XXCk54XIYKUq1uoPJTHcpLcSonxSEXwQkgbnSt1viKGivD4VCpld2wr34sB6/PCjokeaSMiCyHtCQaiWEPMiIAAEA0hilDhhyGQZ/GgM2sW3GjvrdUjjegORwr6A6sbp0cKkhrnFbnN1VSH5w4UhXQJ/u8qvSachjW/PmpDvVKdzV260RwAoiZ+AxE+APSkdAsh/qgQ2ml1a1SMMshRRpeP5ZDdpqUEJ+bg26K0b4AAEA0ASOsL24A9qG7GaBtOFbQXSW4DOWlOZUX0q2TL9A45kRRVUDr9nlV4TXlNCS3MyQ4kWoFJ3IJTgCdIvYt95UNYznUj+ewr9gKPtTWWQGJpNCxHOq7VkonywFxgNG+AABANHTNBHQaupsB2oZjBccTt8NQXopTeSlNgxMNY058esCr8p3hwQmrWyfrfbkpDrmdHC1AR+q8QEQgIB0pbww67C+2gg6llVa3SjKsAENWqjQiJMvB4+60IgLtQkYEAACIxjB46hToJPSWCrQNxwqOd26nobxUp/JCxpzwh2ROHKkK6LODdVq+yysjOL9DPdPqgxOpTvUgOAEcE3sCEdVeK6uhIcthf7G0v6Q+y8EvJSZIGSmNWQ45qVbWg8NhS3EAW3AnBwAAoml4VkGSGeuyAN2cQ43HG98mgeZxrABNOaJkToQFJ6oD2nTIpxW7vTIMK9OiR4pDvdKtwERDt04JBCeANjm2QEQgIBVVNAYcDpRYWQ7FFVa3SpIVYMhsyHJIszIdEhOOueBAzDUEHwhEAACAMAa9NwKdhFtyoG04VoC2cTkN9Uh1qkdE5kRJTWPmxKZDPq3c7ZXqgxO5DcGJFKfy0xzqkeIkOAFE0fZARLXXCjYcLJUOlVoBh/3FjWM5NGQ59EiXhvaWctKkDLIc0M0ZEb8BAADCBgTlJgGwk2EYwWON4w1oHscKcPRcTivYkJvSOC0yOPHlYZ9W7bG6dXLVBycau3WyghMeF8cejm9tC0TMWyct3GB1q2TKCjhkpVhZDjlpVqZDElkOOM44ZLUwOMQYEQAAoFH9SKANwQgA9uEpb6BtOFaAjmUFJ5zKTWmaOVFUFdDhqoC2Fvm0Zq9XkpU5MWNook4soP0Ux6+2BSKOlEspidJZo6wghJMsB4A7OQAAEBVjRACdxgj54Vsq0DyOFcB+DoehHslO9Uh2amj9tIBpqqTa1AdbalRcHYhp+YBYa3vXTCkeKSfdxqIAXQyDVQMAgKgMq9dGbhEA2wW7QRPHG9ASjhUgNpyGoZwUQ25n6/MC3V3bAxGGQfczQChHw+OOHBsAACCE0fiLOwTAXqFDtnG8Ac3jWAFiiwAg0K5AhDhqgFBGQwfQPO4IAABCGSRNAp0k9AlvjjegeRwrQGwZhAABMiKAo0ZGBAAAiMYwZMiQg9YewHYOw5BhWMebg+MNaBbHCgAg1toXiOBiBYQwwrMiAAAAQtD9BWA/upsB2oZjBYgtjjugPYEIicZWIFTD8UCQDgAAhDLomgnoLHQ3A7QNxwoQYxx3QDsCEXQ/A4RzGI1dlnFsAACABjyrAHQahm0D2oZjBYgtDjugXRkRXK2AMDxSAgAAojGMYNcX3CEA9jIifgBEx7ECAIi1dowRIRpbgVA8UgIAAJrRcHtA0iRgr9BngzjegOZxrACxRbMR0N7BqrlaAY0csu7kHOLYAAAAjeq/aRo8dgrYjmeDgLbhWAFii8MOaHdGhH0FAbocclsBAEA0BrcHQGfhlhxoG44VIMY48ID2jBEhwuZAKB4pAQAA0dT3f0FGBGC/httwbsmBlnGsALHFYQe0t2umzrpafb5LemKutHSzdKhEcjqlAfnSRSdL15wuZabat+7T7pEmDZX+cLP194ES6dkF0nnjpJH9jm6ZSzdK1/xeev5uafKw1uf72+3SzAlHt66uqM4n/fVtafZi6WCp1DdXuuEs6WvT2vb+yhrp969Jc1ZIpZXSoJ7SN86XLppoa7GDjzsykDsA2O94vTdosPOQtf2LPpP2FkmBgNQjQ5pwgnT16dLkoe2/Fu06LE25V/r916QrTzu67bDb4TLpgZekD9ZJ1V5peB/p7kulKcPb9v6dh6RfvWjtb19AOmmgdO8V0omF9pZbDb03GjJt+Nr5+mdV+tn7ZcG/nYaUleTQhN4J+tbkVBVmtu9ZI0lasbtWt7xSrCcuy9LJfTzteu+WIz69+0W1Lh6RpN7p4ev+6dwSrdzt1X+/ltfuMnWkn84t0dwva/XxN/JbnXf0n/fr9okp+uaktE4oWfvsL/frwQVl2nTYpyNVAbkcUp90py4dmaQrT0yWqw3dhVZ5A/rLsgq990WNSmsCGpDl0s0TUnT+kKRO2IKO55ARPN4cndDM88zaSv1mYbkGZbv06vW5tq+vM1TUBvTsuiot21mrbcV+VdWZ6p3u1KyhibpubIo8rsb9uqfMp/P/dTjqcn4zI6NN9ai71cGuojOOlcjrU6S2XGPi5Ry8aHut1u/3Ri3HjCcPakKfBP3q3MxOL1fDPk5wSm/c0EO90p1hr9/88hEVV5vd5vwUafSf9zf7Wv8sp964oUery1i2s1YPL6vQ5sN1SnQZmjrAo++elqacZGer7z0WtBoB8ThGxLMLpJ88Iw3Ml26fLg3pJdX5pXXbpWcWSKu3Sv+4w771P/4tKTWpcVsPlkp/fNNqHD/aL60Ny3K0sg/bOl9387NnpFeWWg0LY/pLCzZIv3xeqqqVvj2z9fff9jerftx7uTSwQHptmfTtv0umKV06yb5yO0JGoTyePi8A6GzH872BJL231rquZadK158pjeonJbilHQelt1ZK1/5eeu770pQR7StDQab0+o+lwrz4vI7V1klf+YNUViX98lopJ016ap504x+lZ79vBV9acqRcuuI3UkayFWzxuKWH35au+Z0052fSoAL7ym4YwQFBbfnWWb/M/z03XQOyXPL6Ta3ZW6fHV1Ro+W6v3vhqrjISHe1b5DE8Kbu12KdHl1dqYt8E9ckI/3px+8RUVYw14+aZjbaU4+mrspWf6oybMoeq9plK9Ri6bWKKeqY5VRewGsseWFCuTYd9+uU5Ga0u47tvl+jTA3W667Q09c906u1NNbrnv6UyTWnmsK7XENxQZzvrubnXPquWJG0p8mn9Aa9GFyTYv1Kb7a/w65m1lZo1LElfPSlFyW5Dq/fU6ZGPK7R0l1ePX5olI3TsG0lfGZOsC4Ymhi2nMNPVps+gu9XBrqJTjpWI61OkQdltqyPxkLWxaHutnl9XpW9NbhqI+OOsLKUmGLEpY/06vX7p4WXlemB6ZtNZ4mD/2eXpq7KbTFu/v06/WViuaYMSW93uFbu9+uYbxTq9v0d/mpWlouqAHlpcrltfLdYL1+QowdVNdxwQJ9o5RoTNB+SqL6UfPy2dPkJ64tvWF8YGZ4ySbpshzV9vbzlO7B/+d8OqjulMbjT+bnEZbZ2vG9m0R3r+I+mey6wsBkk6dbhUXCH9eY50w5lSVgtPuX6wzno69OH/J11SH3Q4bbi0p0j69Wzp4lMkZ/u+iLcZua0AYL/j/d5g+0HpjsekIb2t7Im0kAaaU4dJ106VlmyUMpPbX5bEBGn8Ce0uead54SPrPuH1HzeW87Th0nm/kO6fbQUTWvLof6Wicuv9feqfCpw4xMpw+cNr0iPfsK/sDb03NvzbhsVL0uBct0blW8fExL4eBUzpr8sq9OHWGl06Mvnol9/OMofOH/neflEaomIh9LBtzdhe8duwPCjHpfsjGp2mDvCoqCqgNz6v1k/PSm+xEWXhtlot3enVb2dk6IL6Bt9T+nm0t9yv//uoXOcPTZQzHgOTLejMW/JPD9Rp02Gfpg7waOG2Wr26oVpjesZvfWmrPplOvXtzDyW7G783TernUVKCoT8sKtfafXU6qbe1nQ27uGe686iOle5YB7uKzjhWol2fjnpZMa4Gofsr0ohj3LZj0VCcKYUJentTjW4aX6dhPZqWJ9b7zy7RzjsvfVotQ9Llo5Ja3e7/+6hchZkuPTQrM5hF2CfDqRteLNKrn1XrmjFHf//Umu76mQDtEV8ZEX95y1rP726SkqLc1CS6pRknNf79+sfSc4ukjbutp+X65ErTx0nfvUhKDkn3u+sf0pyV0ls/s56+X7XFWv5FE6WfXhU+78S7rS/2f/y69cX+it9Y07/3T+tHkr53sXT3JdIn26RH/iut3mJ1HZCbbn1R/skVjV94paPIiFDL823cLT34svTxZqnGa3VF9P/Ok66a0jhPIGA15L+0VNp7REpwSb1zpGtPl75+njXPkTLpwVekeeuspwZTE62MgrsvkaaObH79Hem9NVbmwjWnh2/zNadLzy6UFnwqXTa5+fe/u1pKSbQ+y9D3Xz1F+tZj0tqt0smD7Sk7GREAYL/j/d7g8fesLokevMF6sj+ayG6Kth2Q/jRHWrFZ2ldiBSlGFUo/ulwa3rdxvl2HpVN+ID10i3XdlKyuDv/vdenDX1lZH/PWWcGfaaOtrIR0+76cNfHf1VbWQuh1PMElXT5ZeuBlq4usnlnNv//d1Vbgol9Iin5GsnTBeOv+KBCQXHal4HdORkTkc0KjCqyGiCNVgbDpn+63nmxevcerGp+pgdku3XpyimYMbQxsRWug+nR/nf61qlKf7PfqSGVAOSkOjemZoO9NSQt2BfHqhir99D2rG46bXy4OLu9X56Xr0pHJ+vG7JVqx26u5tzR2zVTrM/W3ZRV6Z1ONDlT4lZ3k0NknJOrOU1OVHpLJce4TBzU4x61rxybrT4vLtfWIT73Snbp5QoouG9VYF6vrTD28tFxzv6jVoUq/El2G+mY4deP4lManq+u3aWepTw98WKaVe+qU4TE0fUii7jotLazxfuRD+/XNSSnBp2AbtvHxy7L01sYazdtSozq/NLFvgn50Zpr6HkVXWB0tO9khw7B6rWupoeODLTVKdhuaPjT8qdFLRybph++Uav2BOo2L40BMNA3HQWc8N/fqhipJ0vempKqsJqB3Ntfo3jPTleQOX/H+cr8enF+mxTu8cjqsYNEN41J0zXNHgsdGg7Ycn3ZLSYj+4Nbo+nPK/gp/k0bZo93f3bEOdhWdcqy0o35U1Ab024Xlev/LGnn90km93PrxWenW+0OuRdGuI5L016Xl+tuySm34bmOGY8A09dzaKr28oVrbi3xKcBkakOXSrRNTdPYgK4PnnU3VeuXTam0+7FN5bUC9M5w6a2Cibp+UEgzG/fjdEr3+WY0kadQfG7sCeu/mXPXOcOncJw7q5D4JYYHhvWV+/WlxuZbs8KrcG1DfDKcuH5Wsr56ULEf9xuwp9em8fx7W3aenyTCkZ9dWqag6oCG5Lt1zRlrbApv1++Xmk1P02UGfHvqoXH+/rDFLIPJYbVhn5LlHanq9a9inr1yfo0c/rtCSHV45DOmSkUn6/ulp2lXi1wPzy7Rmb50ykwxdMzpZt5xsY/eobVDpDejdL2o0oU+CClt5+OFAhb8+GytVbmdjBT2pd4L6Zzk1b0uNrh1rYyDCtiUDXUf8jBHhD0iLP5dGF4Z/UW/JtoPWF+P/d56U5JG+3GeNNbB2m/TSPeHz+vzS9Q9ZT9jfMVNa+aX1BXvPEenf3226bMOQRveX/niLdNcT0l0XSueMsV7rmW29vvuIdEJP6ZJTrL6pD5ZYXQac/z/SgvutLgSksIceW9yHbXnC8st90kW/tho2/vc6q5uGl5daZTxcLn3rAmu+v70j/eF1q9yThlpdWHy5z2qUaVj2tx+X1u9o7NKorMr6u6Sy5XKapvV5tUVrX/A37bH2U35m+PSGPrc37W25LJv2SIN7Su6Iqhz6/olD2lbW9gq9iyO0DQAdj3sDadEG6xo5dmDbtl+SDpRa9wc/vlLKSZdKKqQXF0szfyXN/aVVvubK0DDt6w9bWYVfmSp9vlt6YLY1z0O3tLzuQEAKmK2X0TBaz1jctEc6ZUjT/TOiPpiyea/Uq2l6viQreLP9kHT++Ojvr1kg7Txsa/dMRshPR3OE/A7di3tKfZKkAVmu4PSPd9Xq1leLNbrArfumpSvN49Dbm2r0/bdLVeszg40S0Za5r8yvAVlOXTA0XRmJDh2q9Ov5dVW6+tkjmnNjrrKSHDprQKK+e1pADy2u0M/OTteIPOuerF+GVQYjZLmSZJqmvvNGsZbt8urWk1M0vneCNh/26eGlFfpkn1fPXx3eLcKmQ3X63YJy3XpyinJTHHppfbV+NrdMhZkundzHarD53YIyvfF5jb5zWqpG9HCpqs7UF0d8KqsJBNdrSPIFTH379WJdPipZXxufopW7vXrk40qleRz61qTwhhQjYp9I0s/nlmpyP49+f0Gm9pX79eclFfraS0V67frcsABKJNM05W/DYSGpTWM8hC6z0mtq8Y5avf5Ztb52UooSWnn/l0d8GpTtajLfsFzrc9ty2KfxXawROPRYsykPWpJU4zP19qYanZjv1tBcty4flaSfzS3T3M01umRkY9Cgqi6gr71UpNKagL5/epoKM51atL1Wd79VIin8GGvr8dkcf8BUW6qWFfNu/9lo+a5aSdKQHFeT4+EfKyr0p8XlcjqkEXlu3TKhsaG3Jd2xDnYVnXGshJ7rAxH3A4YUzHYxTVPfebNEa/Z69c1JqRqV79aavV7d/mpxcN7Q83fostXC9B+9W6o3P6/R5aOS9J3JVmPzZwfrtK/MH5xvZ4lfUwd49NWTUpTkNrStyKd/rKjUpwfq9K8rrPuKb56Sqpo6U+9+Uavnrmm818hPcYaVq+HfRVUBXf/CEdX5pe+cmqre6U7N31ar3y0s164Sn34xLSOsrM99UqWB2U796EzrvvDPSyr0jVeLNfeWHkrztPzpNLya5nbo9lNSdP/8ci3fWatJ/TxR52vuniF0P0bu6++/VaILhyfp6hOTtWSnV0+srJQ/IC3dWatrRyfr5vEpemtTjf7vowoVZrp03uCWj307z1XvbKpRdZ2pK0cltVqvtxy27pOG9XA3mXdorkur99bZeh0BEE9dMxVXWF8a+/Vo+3q+d3Hjv03T+rI6pJd06QPWoJYjGgaQNCSvT/rGjMZsgDNPtBqvH3hJWvFFSGN1/aXZMKyn/obVf9ntny9NiHiy/sKJ1k8Df0A6d5x04retcQoa1tWRXTP94TUrqPDyvVaGgySdM1YqrbJe++pZVrlXfGkN6PiDyxrfe/bo8GWt+FK6bqo1MHSD88e3UL56SzZKlz/Y+nyStPz34U8iRiqusLpeitzelETrqceSipb3WXGF1bd15DwN3Tm19v5jYYTUFQIRANDxuDewBqYe2a/pPJEN/g5DctR/dTp1mPUTVoax0hk/lp6eL/3yKy2Uof73V85ofLjhjFFWF1HPL7QCES2V9//esO5HWtMnV1r5h5bnae4eIas+mNPSNb6syvr8o76/4R6hlQcvjkVIlbEzIyIgU37TVK3P1Oq9dXpseaUm9HZr2gme4Kb9z7wyDc5x6akrs4ON3KcP8Ki4xgoeXDIyyfrSH6U6zBiaqBkhfcD7A6bOGuTRlEcPac7Gan31pBTlpDiCTyCekONs9knmhmV+tMOrj3Z49YPT03TLySmSpCn9PeqZ5tB33yrV659X66rRjY2vxdUBPXtNTjAD4+Q+CVq6q1ZvbarWxL7WulbvrdNphQn62viU4PvOGtS0DHV+6dunpmnGEGubTi30aMNBn97aWK07Jjd9ojPysBiV79b90xvHYBic69JXni/Sc+uqdPspzT8Runy3VzfOLm729VDv35LbZJyNaB5fUan/+6giWLzbTknRXae1PrBrSbX1lG5k1c9Mss4fJbWBLndb21ldM733RY3Ka01dfqLV9ccFQxP1wPxyvbyhSpeOagxEvP5ZjXaW+PX4pVk6fYDVMDilv0c1vlK9sK467Bhr8/HZjPOePKS9Za0/IPatSSn69qntG/h306E6PbGyUuee4NGwvMZuXxJchq48MUmnFXrUI8WhvWV+Pb22St96o0T/e266rjyx5eBJd6yDXUWnHCv1y73m+aImLzkNBbMXPtru1ce7vPrxmWn66kmN1wK309AfF1eElTe46GbK3DB95W6v3vi8RrdHnA+nDghvoP9mSODZNE2N7+3WoByXbnixSJsP12loD7cKs1zBgYtbytBpWPe/VlfqQEVAL16brdH1WQ2nD/AoYJp6/pNq3Tg+xRozo37+lARDj16SFQzM5Kc6deWzR7Roe23r46SEXJuuGZOs/6yp0h8+KtfsryQoOJaLml7DWrrljJx+1ejk4DX1tP4eLdlRq2fWVukvF2bq3Pqgwyn9EjR/a63mbKzW9CEtByK+9nKRVuyua3m7JF0yIlEPzshsdb5Qr3xarfT6DMfW6nVJjXW+zExsOr5HRqJDJTX2nn84tQHtCUTYPm5BWxvrQ2w/KD34kvTR51b3B2bIF/Iv9kkjC8MXffmp4cu+bLLV2LB4o3TK0MZ5Q8/awWJFKVdljdV9wZwVVvcGoVkCX+wLv9I3t4xQbclz/ehzq5/syCdDrznd6j5h1RYr4HDSQOm3n0j3PmV1WTFhcHi/0pI0bqDV/3JWmtUV05j+TTMLohk7QHr3vtbnkxqfEG2W0fL2tuUuKdo8nXGXRUYEANiMe4OgyHlu/ovVdVHw73OkB75q/dvnlx5+S3p5idVNU52/7WVoWM2Mk8LXObKvVFNnZV/mtTAY7lfPks4b2/r2JLjbvt3N3iM4Wv9GHfX9nXGPIBn1/9nxtdOoX+bVz4U39AzKdumRi7Plrg9K7Sj2aWuRX/dMTZMhI6w6njHAo/lba7W9yK9BOe7gMhvLbXV38LdlFXrvixrtKfOHPdW/tcgf8h41ea8ipjVM/3inV5J02ciksHnPH5Kkn7xXpmW7vLp6dErwvcPz3Oqd3nh/mljfzcbeskDw/aML3HpzY7X+sKhcp/f3aExBghLd0cohnT0wMWy9Q3NdWrazttlyh+7vC4eFl3l8L496pzv18S6vvnFK85/zqPwEvfSVnGZfD5Wf6mpSlmguG5msU/t5VFpjatmuWj2xslIVtaZ+dnbLg1Vbp7Lon5MkOaJ8hvHOiPjPLi9/Wq1ElzRrqFUPUhOcmjEkUa9sqNaOYr/61wfkVuz2KiXB0NQB4Q1zs4Ym6YV11cFytuf4bM6jF2fL24Z0m7xUZ7v2ze5Sn25/rVgFaU796tzMsPfmp7r0q3MzG2fubR2/Vz13WH9YVK7LRia3mNnTHetgV9EZx0rDcn8zI0ODssPbFkI/9493WdeCi4Ynh5XlwmFJ+uPiiibn4OauL6G/F223MniuG5PS4vbtKvHpj4vLtWyXV0eqAmFP6m8t8mtYj/DxUKItq8m1bZdXJ+S4NKZneNDjshHJeu6Tan2806uBWY3X2jMHeORyND57PyzXOs4brm3RMukajqvQa6/H6dBdp6Xp+2+X6L+ba3XB0IbrlNlk/zT3uUe73p0Vca0clO3SxkM+nTGgcbrbYagw06m95YGoyw31P+dkqtLbetA0K8nRrrr5xeE6fbK/TteNSVaiq/VchuB5pplzkKHon3eHod0IaEcgwu5+8HukS8kJ0q5DbVtPRY108a+tvqF/dIWVWp+cYA1SfNOfpNq68OW4nFZ3RqEKMq3fJRVN1xnad7NkneUj5/nGI1aXCd+7xGrUT0uy5rv299bYDZHLaOsYEUYL8xVXWF00RL7e0Edyw7bcdZGVVTB7sfTUh1b3B5OHSj+/urF7h3/cYTWWPLtA+s3L1vwzx0s/v6ZpV0mh0pKsrinaorWumbJTpQ07mm5PZY31pGpWasv7LDvN2ieR85RWNi7frnrb0IDR0ucFADh63BtY2Y+7jzSd53++In2/Pvvj3F+EL/MXz0r/fF/69iwrMyIzpf7e4InoZQjdjoYvSDlp4etsGCTcW9dyeQsyWw5UNGjLtTMrtZlrvNVHe4vX+IZMiGifY8M9Qo7N9wgNv2xYRcMif3u+1dBT6bW6jHl+XZW+93aJnrjc6kbiSLX1pf83C8v1m4XlUZdVXGOGx6JC/n332yVautPqNuPEArdSPdbX81tfKVat32xbXC1inpKagFwOKScl/B7RMAzlpjhUUh3+NGJmkqPJMhOchmp9jev/2bR0FaQ59famaj2+olIelzSl0KN7zkgPNg7LkJLcRpMARYLLUK0/erkj43M9Ups+xR2tzJFSE4w2D2za1q6Z8lKdyku19uHpAzzKSHTo94vKdcWo5BbXlZkU/YnPslqrrmRE2d/xrjOSlHcU+7Ritzf41G95/f5qCES8vKFKd59uXU9KagLKTW66H3Pr67xRX+b2HJ/NGZzranN3J23dN3vKfLpxdpGcDkP/vjJHWcmtN+4luAxdMDRJv19Urh0lPp3QQvCkO9bBrqIzjpWGxZ6Q49KJBc1nEjRcC7Ij6lfDeS30HBx5HYlcWcP0ouqAnIaUl9p8Har0BvSVF4/I4zR012lpGpDtVKLL0L7ygO54ozjs2tLsekPWH3pt653e9BqRn2ZtT2l9nW94PSuinnvqr00N19blu7264cXwhw3mfb2H+mS4GgMk9cubNSxR/1zp0kOLy8O6SGpyjW5uW6Ls68zE8PK5XUbUa6jbaajC23oWQf8sp0y1Pi5Xe85VkvTShmpJ0pWjk9v0vobzWbRzUGltoMl2dzRObUC7MiJkb/TO5ZROHyl9sE7aVyT1auWpoY8+k/YXS6//xBqIsEFZdWNZQ8+8Pr/1ZTY7JCX1kDWwnrLTwrfNiHImjrxal1VJ762VfnCp1ejfoLZOKq5s/up+rE//ZadagzNGvn6gxPqdk2695nZJ37zA+imtlBZskH71onTV76RP/mQNwpmbLt1/g/Wz+7D1ZOX/vmA9QfriPZFrbrT4c+mS+1vfDkla/VDLXTON6Cu9ukw6WBoe/Ni4x/o9vG/L+2x4X+mVpdYTp6FBj893t+39xyK0inC3DAAdj3sD6cwTpSfmWmNcjAsZJ2JgxNgGoct+aYk1+PTPrg6fp6jcGqy5La3HkdPamsHx+9ek373a/OsN+uZKa/7Y8jwj+lrX88j1bdxl/W7pGp/skQbkR3//57utgcn759t6/Q7uKjtWUb/M0IaeyYVWFxAvrq/WfzdX6/yhScEGnttPSWm2/+YB2S6rrCGLNgyrofXDrbX69qmpuj2kG4tan6nS+q4NmlSbKNOCr4U0vvgCUlG1P9jthWR1j3G4MqATC9xRq2NLy0xJcOiuKWm6a0qaDlf6tWBbrX6/sFy3v1akd2/Oi/qe0DK3ui31vw9X+ZvMd7gyoMLMpo1PoZbv8ur6iAal5nx4a482dc0UaUxPq+F3e4lPIwuabwQe2sOlOZ/XyG+aYUGPzUesfrOH5rq63G1tQ/21s3H15Q1VMiX9d3ON/ru5psnrr22o1vempMnpMJSV5NC6/XVNynKkqj47rb6c7Tk+m3POE4e0p8zf/Az1vj05Vd9pQ9dde0p9uuGFIpmSnrkqWz3TW284jOR0NO3yJFR3rINdRWccK83dIkVquBaU1ASUldQYjDhcf5yEnoM9LkNef9OgXEl1+LUoJ9khvykdrgo0BjQifLzLq4MVAT19dbZO6duYvVDurQ2WPzII3dJ2NLyWmejQocqmjdsHK63tyaoPToZeV6LeEtYvc1SBW69cH37fm5/mDLuvaFieYRj6wRnpuml2kV5cX9WkbA3BA28gfB8WN+w/Rd/m9tyytlafbpxdpOW7vS3PJGvQ+t+en9nqfJLk9Zt6/bNqjcp3a2Qbg/1D6sei2XzY16QLx82H6zSY8w9gu/gZrFqSvnux9P4n0nefkJ7+vjVGQKg6n9UYMeOkxn6QPRGp/U/NCy9zqJeWSLfNaPz75aXW7ykjon8Bl6ynKiWrO4LIL+Sm2XT9T89v7IahLV/0o62zpW9xU0dKb62U9pc0ZkFI0osfWV+6Tx7c9L2ZqdaAk/uLpR//x+oqYlif8Hn69pBunS4t/Exavrnlco4dKL3/v82/Hqq1rpkumCDd/5LVRdSdFzZOf36h1UhwzpiW3z9rgvSfD60uMC6d3Dj9hUVSQZbVJZVtgQgj/AcA0PGO93uDb5wvPbdQuucp6ZUfNe1mMVr5DKNpGd5bI+0rtgIYkWVoT7laK++N06TpJzX/egOPq/Vr58yTpR88aXU7OeEEa5rPL81eIo0f1PxA1cH3T5Ae+681zkbDuFrl1dZ91IyT2tYd5dEyrMwBuwY8DG0fD13HvWek690vavTnxRU6f0iiTsh2qX+WUxsP+vSD01se/DVymQ5JpiSP0whbx0vrq+Q3w9edWD+4dK3PbHUw0dMKPXp8RaXe/KxaN09oDHC8s7lGVXWmTuvnCVtGtP0YucxQeSlOXTkqWZsO+fTkqkrV1plKchvNvqel6ZGDd775ebUuGNJ4DK7a49WeMr+uOrHlATJPLHDr1etbCaTWK0h1HlW9aejyqn+mq8X3n3dCol5YV633NtdoVkg/5K9+Wq38VIfG9Ww6gGe8axgUvbmBWI+VP2Dq1Q3V6pfp1APnNc34mrfV6hpr0bZanT0oUaf0SdDbm2q0cGuNzhzYGGB4a5MVwGgoa3uOz+Y8fmmWatvQNVN+G+rV3jK/rn+hSH7T1LNX56hvOwJidX5Tb2+qVnaSQwMyW15Xd6yDXYXdx4rU/PUp0uR+Cda14PNq3XRS4/g+cz4PP04kqW+6U0eqAiqq9Aczi7x+M9gVU8N8Zw5I1KMfV+q5tVX67pTogbeG2FdixLXthU+qmqzX46xvwK8zm2QCRM57WmGCHvm4Up8dqNOokEbx1zdUy5B0al9P2H5vbv80TE9PcGhMMxkl0fbx6YUeTSlM0MNLK9SzPguj4bW8ZIc8LmnzIV/YOud92XRfh14TI6/FUvuux6F+fV6GKtrQNVN2kqPNdfPDL2tUXB3Qd09LbfN7eqU5NabArTc+r9b/OzklOEbHmr1ebS3y62snpdh6/qHZCGhvIMLu7mdOGSL94Wbp7iels39q9Xc8vI/VyLBuu9WQMLyvdMF4adIQq6uBu5+U7rnMempy9mJpw05rWaFdHRiG1XDxt3ekqlrppEFWY/vvX7MaukMHdIzc1oEFVoP4S4ulYb2t7osKsqwgwKnDrD6Yc9OlfrlWpsDT8xufNjzarplWbYl+hjptuHTP5dbTlpf82nriMivV2u731kq/vNbaJ5J0ze+sfTVuoNW9wq7D0qP/tZ5AHNzT+iJ+0a+kK06VBveyGjZWb5HmfSLNOrnlcmYkWw0AHWFEX+mGM62uoVwO67OZt87qTuonV1plb/DbV6yf0CddzxsnnXWiVQ8qaqSB+Vaf2B+skx77puRu/1M8beYwFOzOgq6ZAMAex/u9waAC6fE7pFsflk6/19r+MQOssh8ukz5cZ82XntS4nOnjpOcWSUN6WwNdr90q/eWtxob7lsoQ9g00pFxt7koq2/rpCDecaWWD3Pxn6RfXWF11PfG+9OU+6bUfh5fj4l9b+/rw043TvjNLmv2RdU/04yuscSn++IaVoXLv5fZeu0PjOjasprl4UWaSQ984JVUPLijXm59X65KRyfr1eRn62ktFuumlI7p8VLIKUh0qqTH15RGfNhyo018vzoq6zPREhyb2SdDjKyqUnexQ73Snlu/26sV1VUqv76Kp4T1D658wfGFdlVI9VoNH3wxXfV/P4WU+vX+Cpvb36LcLy1XhNTW+d4I2HqrTnxZXaGSeS5eOTGo9IyIibnbp04d19kCPhvVwKyPR0JdHfHrtsyqd1Mut5AQj9C2tLit0emR8bv3+Ov3o3RJdMDRJ+8r9+v2ichWkOnTDuJQWGxfSPA6N6Xl0Dc2RHvqoXIerAprYJ0EFaQ6V1ZhasK1WL6yr0gVDEzW6Z2MD2J+XlOsvSyrCnvw9a1CiphQm6Ofvl6rSa6owy6k3P6/Wwu21+r+ZmXI5u949bcNxZtezQQu21+pARUD3TE3T5EJPk9eH9nDrP2sqNXt9laadkKjLRyXpn6sq9f23S/S9KWkqzHJpwdbaYKOpM6ScbT0+mxM6iPSxOFzp13UvHNHBSr8enJGpouqAiqobn14uSHMGGzd/Na9MvoB17PZIcWhfuV9Pra7SZwd9+u35GWF16Hipg12F3cdKcB2SvjjiUyBKjKxfplM5yU5NHeDRxD4J+s2CMlXXmTqxwK1Ve7x6bUNDFmvjsmYNS9QfF5frzjklunViimp9pp5aXRVcfsN8E/sm6NIRSfrrsgodqQro7EEeJTgNbThYpyS3oRtPStH43gnKSDT0s7ml+s6paXI5pdc/q9bnh+qCywpe2/Ksa9tjKyp05gCPHA5pWA+3EpyN15WGeW+ekKJXN1Tr668U6bunpal3ulMfbq3R02urdN3YZA3McYWVNfS94Tuw9c+muXuAe85I10X/PqwjVQENCXmy3zAMXTIiSbM/rVK/TKeG57n1yb46vfF5033dXEZLS9fQttSnQTkd//DH7Ppxey4a0fS+ocHg3+/TxL4JeubqxocB7jkjTV+dXaQ73izW9WNTdKQqoN8uLNOQXJeuOLFtXTwdLc5uQLsCEeqc8N1N06TxJ0h/e1v605vSwRKrMXlQT+mK06T/N90qR0669OIPpZ8+Ld32Nysb4ILx0j+/I53xYzU5g7ud0gs/sJ4o/MNrUmKCdONZ0v9c1/wTf5LVuPDwbVZD+WUPWAM+3nO51ff0P75tDQb9i2etJx1PGSK9+mPpqt+GLyM0Zt3iPqx/7eG3or/85s+sgarf/aX0P89LP/iX1dfzkN7SX2+Xrjujcd7TR0pvLreyBcqrpbxMq8H+B5daX8RNWU8XvvCR1fd2nd8aAPvOi6zMhM4M1f7hZitz4u/vWZ93vx7Sg18Nf0JVkgKmtZ9NhZfvP9+zupR64CWri43BvaQnvm0NQGqnzriTAwAc5/cGsp7sX/IbK2jy7EIrKB8wrbEYxg+Snv6eNU/Dch680Xra/6HXpcpaaUx/6T/ftbpobLUMzXwDbU95O0pigvTGT6SfP2t9RtW10on9pZfusTJWQvkD1k9o2XpkSO/cZ9WHbz4q+QJW5uibP5OGRmSGdjTDaAxC2BGICPkd+XHcND5F/15TpT8vrdBFI5J0aqFHr92Qq78urdD/zitTWU1AmUkODc5xaeawxBaTYf50YaZ++UGZHlxQJn9AGt87Qf+5Ols3v1QcVhX6Zbn087PT9eSqSn3l+SPym9Lvzs/QFScmN2noNwxDf78sS39cXK6XPq3W35ZVKCvJoUtHJukHU9OiDDLdfJVrmH5qvwR9sKVW/1xVqeo6UwVpTl02MlnfmpwatWpH3ZdRpoc2GEnSb87P1KsbqvWdN4vl9Zua3M+jn09Lb1Mf+h1ldE+3/rWqUnO/rFFJdUAep6ETcl366dnpun5ceAOKaSo42Gno9EcvzdLvF5XrocXlKq0JaGC2S3++MFMXDm8h4yqOGUbj52XH6Wn2+iolOKUrR0dv7MpJcWj64ES9s7lGh6v86pHi1LPX5Oh/55XpNwvKZRjSlP4e/e+56fraS8VKD+mDvK3Hp922FPm0s9TqQuZ7b5U0ef3OU1N1V/0T5kN7uPTsJ1V64/NqVXhNpSQYGtMzQU9dma2pA8IDNcdLHewq7D5WpMbz5Q/fKY36+gPTM3TNmGQ5DUOPX56lX88r09+XV6guII3v7dY/r8jWOU8cCjsH98ty6e+XZel3C8v1rdeLlZfq1C0TUlRUFdCfllSEbcvvZ2ZoVIFbL66r0ssbquRxGRqc49I3J1nXg+xkh/55ebZ+/WGZvvd2iZLdhs45waOHL8rSrKcOh6334hFJWrXHq2fWVukvSypkSlp0W0j3eSH7MTfFqZeuz9XvFpTpd4vKVFFrqm+mU/eemaavn5zS5FrbWtdMbdnHkfOOKnDrouGJer0hqyTktZ+cZY1h8/cVlarymprcL0FPXJ6l0x87FPV619xtYGvX486yt8yvRdtrdcmIJGUkNn8N9pvWLXNo+SYXevTPK7L10EfluvXVIiW5DJ09KFE/OrPpPUiHo9kIkGGaZuu5nLMXW7+vPM3m4tjk9r9Jr38s7Xsq1iVBd7K/2BoM9OZzrCdhAQBdB/cGsBP3CN3K7PVVuvvtEr351VyN7qDMBnScAxV+Pbu2Ul8Zm6L8ZvqFjwcPLy3X7xeWa+k38o9q7AXgWHWVYwXorv61qlIDs52aOiD6uEDA8cDGznEBAAAAADi+/GtVpSRrQPk6v6klO2v1r1WVunRkEkEIAABw3CIQAQAAAABAB0lyG3piRYV2l/nl9Znqle7U7aek6tunRh9AFwAA4HhwfAQiHv2m9QMAACBxbwCgza48MVlXnpgc62KgC7l6dLKuHk2dAQAACNV5I6sBAAAAAAAAAIDjDoEIAAAAAAAAAABgGwIRAAAAAAAAAADANgQiAAAAAAAAAACAbQhEAAAAAAAAAAAA2xCIAAAAAAAAAAAAtnG1aS6HYXMxAAAAAAAAAKD7cRiSw6B9Fcc3wzRNM9aFALqkOp90pFzKSZPcbYvpAQCA4wD3CECnqfObKqoOKDvJIbeTBh6gORwrAIBYIxABAAAAAAAAAABswxgRAAAAAAAAAADANgQiAAAAAAAAAACAbQhEAAAAAAAAAAAA2xCIAAAAAAAAAAAAtiEQAQAAAAAAAAAAbEMgAgAAAAAAAAAA2IZABAAAAAAAAAAAsA2BCAAAAAAAAAAAYBsCEQAAAAAAAAAAwDYEIgAAAAAAAAAAgG0IRAAAAAAAAAAAANsQiAAAAAAAAAAAALYhEAEAAAAAAAAAAGxDIAIAAAAAAAAAANiGQAQAAAAAAAAAALANgQgAAAAAAAAAAGAbAhEAAAAAAAAAAMA2BCIAAAAAAAAAAIBtCEQAAAAAAAAAAADbEIgAAAAAAAAAAAC2IRABAAAAAAAAAABsQyACAAAAAAAAAADYhkAEAAAAAAAAAACwDYEIAAAAAAAAAABgGwIRAAAAAAAAAADANgQiAAAAAAAAAACAbQhEAAAAAAAAAAAA2xCIAAAAAAAAAAAAtiEQAQAAAAAAAAAAbEMgAgAAAAAAAAAA2IZABAAAAAAAAAAAsA2BCAAAAAAAAAAAYBsCEQAAAAAAAAAAwDYEIgAAAAAAAAAAgG0IRAAAAAAAAAAAANsQiAAAAAAAAAAAALYhEAEAAAAAAAAAAGxDIAIAAAAAAAAAANiGQAQAAAAAAAAAALANgQgAAAAAAAAAAGAbAhEAAAAAAAAAAMA2BCIAAAAAAAAAAIBtCEQAAAAAAAAAAADbEIgAAAAAAAAAAAC2IRABAAAAAAAAAABsQyACAAAAAAAAAADYhkAEAAAAAAAAAACwDYEIAAAAAAAAAABgGwIRAAAAAAAAAADANgQiAAAAAAAAAACAbQhEAAAAAAAAAAAA2xCIAAAAAAAAAAAAtiEQAQAAAAAAAAAAbEMgAgAAAAAAAAAA2IZABAAAAAAAAAAAsA2BCAAAAAAAAAAAYBsCEQAAAAAAAAAAwDYEIgAAAAAAAAAAgG0IRAAAAAAAAAAAANsQiAAAAAAAAAAAALYhEAEAAAAAAAAAAGxDIAIAAAAAAAAAANiGQAQAAAAAAAAAALANgQgAAAAAAAAAAGAbAhEAAAAAAAAAAMA2BCIAAAAAAAAAAIBtCEQAAAAAAAAAAADbEIgAAAAAAAAAAAC2IRABAAAAAAAAAABsQyACAAAAAAAAAADYhkAEAAAAAAAAAACwDYEIAAAAAAAAAABgGwIRAAAAAAAAAADANgQiAAAAAAAAAACAbQhEAAAAAAAAAAAA2xCIAAAAAAAAAAAAtiEQAQAAAAAAAAAAbEMgAgAAAAAAAAAA2IZABAAAAAAAAAAAsA2BCAAAAAAAAAAAYBsCEQAAAAAAAAAAwDYEIgAAAAAAAAAAgG0IRAAAAAAAAAAAANsQiAAAAAAAAAAAALYhEAEAAAAAAAAAAGxDIAIAAAAAAAAAANiGQAQAAAAAAAAAALANgQgAAAAAAAAAAGAbAhEAAAAAAAAAAMA2BCIAAAAAAAAAAIBtCEQAAAAAAAAAAADbEIgAAAAAAAAAAAC2IRABAAAAAAAAAABsQyACAAAAAAAAAADYhkAEAAAAAAAAAACwDYEIAAAAAAAAAABgGwIRAAAAAAAAAADANgQiAAAAAAAAAACAbQhEAAAAAAAAAAAA2xCIAAAAAAAAAAAAtiEQAQAAAAAAAAAAbEMgAgAAAAAAAAAA2IZABAAAAAAAAAAAsA2BCAAAAAAAAAAAYBsCEQAAAAAAAAAAwDYEIgAAAAAAAAAAgG0IRAAAAAAAAAAAANsQiAAAAAAAAAAAALYhEAEAAAAAAAAAAGxDIAIAAAAAAAAAANiGQAQAAAAAAAAAALANgQgAAAAAAAAAAGAbAhEAAAAAAAAAAMA2BCIAAAAAAAAAAIBtCEQAAAAAAAAAAADbEIgAAAAAAAAAAAC2IRABAAAAAAAAAABsQyACAAAAAAAAAADYhkAEAAAAAAAAAACwDYEIAAAAAAAAAABgGwIRAAAAAAAAAADANv8fx1/R0+7D5r4AAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"visualize_result(result, request_records, expected_value)"
]
},
{
"cell_type": "markdown",
"id": "3430f125",
"metadata": {},
"source": [
"### Single record request, no explanation\n",
"\n",
"Use the `EnableExplanations` parameter to disable the explanations for this request."
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "f4cd5d44",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'explanations': {},\n",
" 'predictions': {'content_type': 'text/csv; charset=utf-8',\n",
" 'data': '0.0006380207487381995\\n'},\n",
" 'version': '1.0'}\n"
]
}
],
"source": [
"request_records = test_features.iloc[:1, :]\n",
"response = sagemaker_runtime_client.invoke_endpoint(\n",
" EndpointName=endpoint_name,\n",
" ContentType=\"text/csv\",\n",
" Body=csv_serializer.serialize(request_records.to_numpy()),\n",
" EnableExplanations=\"`false`\", # Do not provide explanations\n",
")\n",
"result = json_deserializer.deserialize(response[\"Body\"], content_type=response[\"ContentType\"])\n",
"pprint.pprint(result)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "3709a842",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model Inference output: \n",
"Record: 1\tModel Prediction: 0.0006380207487381\n",
"No Clarify explanations for the record(s)\n"
]
}
],
"source": [
"visualize_result(result, request_records, expected_value)"
]
},
{
"cell_type": "markdown",
"id": "a8824447",
"metadata": {},
"source": [
"### Batch request, explain both\n",
"\n",
"Put two records in the request body, and then send the request to the endpoint to get their predictions and explanations."
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "61434d42",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'explanations': {'kernel_shap': [[{'attributions': [{'attribution': [-0.002949592623471876]}],\n",
" 'feature_header': 'Age'},\n",
" {'attributions': [{'attribution': [9.292116176143873e-05]}],\n",
" 'feature_header': 'Workclass'},\n",
" {'attributions': [{'attribution': [-0.0006494697445634267]}],\n",
" 'feature_header': 'fnlwgt'},\n",
" {'attributions': [{'attribution': [4.697105974365071e-05]}],\n",
" 'feature_header': 'Education'},\n",
" {'attributions': [{'attribution': [-0.0010410828803403037]}],\n",
" 'feature_header': 'Education-Num'},\n",
" {'attributions': [{'attribution': [-0.0010605378944009967]}],\n",
" 'feature_header': 'Marital Status'},\n",
" {'attributions': [{'attribution': [0.00011443244050032733]}],\n",
" 'feature_header': 'Occupation'},\n",
" {'attributions': [{'attribution': [-0.0032267514524764716]}],\n",
" 'feature_header': 'Relationship'},\n",
" {'attributions': [{'attribution': [-0.0010867091425781194]}],\n",
" 'feature_header': 'Ethnic group'},\n",
" {'attributions': [{'attribution': [-1.7082021856064373e-06]}],\n",
" 'feature_header': 'Sex'},\n",
" {'attributions': [{'attribution': [0.007222158474038775]}],\n",
" 'feature_header': 'Capital Gain'},\n",
" {'attributions': [{'attribution': [0.0005413751447842143]}],\n",
" 'feature_header': 'Capital Loss'},\n",
" {'attributions': [{'attribution': [-0.000168493045777195]}],\n",
" 'feature_header': 'Hours per week'},\n",
" {'attributions': [{'attribution': [-3.289925049850505e-05]}],\n",
" 'feature_header': 'Country'}],\n",
" [{'attributions': [{'attribution': [-0.008404027887723617]}],\n",
" 'feature_header': 'Age'},\n",
" {'attributions': [{'attribution': [0.0006568933537865196]}],\n",
" 'feature_header': 'Workclass'},\n",
" {'attributions': [{'attribution': [0.008677237824808965]}],\n",
" 'feature_header': 'fnlwgt'},\n",
" {'attributions': [{'attribution': [0.0014229503054353967]}],\n",
" 'feature_header': 'Education'},\n",
" {'attributions': [{'attribution': [-0.01862278130235372]}],\n",
" 'feature_header': 'Education-Num'},\n",
" {'attributions': [{'attribution': [0.037943425274538894]}],\n",
" 'feature_header': 'Marital Status'},\n",
" {'attributions': [{'attribution': [-0.025825927504319612]}],\n",
" 'feature_header': 'Occupation'},\n",
" {'attributions': [{'attribution': [0.054077126686993215]}],\n",
" 'feature_header': 'Relationship'},\n",
" {'attributions': [{'attribution': [1.0414272365337138e-05]}],\n",
" 'feature_header': 'Ethnic group'},\n",
" {'attributions': [{'attribution': [0.0009073754613358985]}],\n",
" 'feature_header': 'Sex'},\n",
" {'attributions': [{'attribution': [0.08438387320628549]}],\n",
" 'feature_header': 'Capital Gain'},\n",
" {'attributions': [{'attribution': [0.0090709522065053]}],\n",
" 'feature_header': 'Capital Loss'},\n",
" {'attributions': [{'attribution': [0.014799893299492975]}],\n",
" 'feature_header': 'Hours per week'},\n",
" {'attributions': [{'attribution': [0.0002624650485291702]}],\n",
" 'feature_header': 'Country'}]]},\n",
" 'predictions': {'content_type': 'text/csv; charset=utf-8',\n",
" 'data': '0.0006380207487381995\\n0.1621972769498825\\n'},\n",
" 'version': '1.0'}\n"
]
}
],
"source": [
"request_records = test_features.iloc[:2, :]\n",
"response = sagemaker_runtime_client.invoke_endpoint(\n",
" EndpointName=endpoint_name,\n",
" ContentType=\"text/csv\",\n",
" Body=csv_serializer.serialize(request_records.to_numpy()),\n",
")\n",
"result = json_deserializer.deserialize(response[\"Body\"], content_type=response[\"ContentType\"])\n",
"pprint.pprint(result)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "ff81310b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model Inference output: \n",
"Record: 1\tModel Prediction: 0.0006380207487381\n",
"Record: 2\tModel Prediction: 0.1621972769498825\n",
"Visualize the SHAP values for Record number 1 with Model Prediction: 0.0006380207487381\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABiMAAAFqCAYAAAB4TCkKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACCPklEQVR4nO3dd4AU9f3/8ddsub3egTva0UE6ggiKWFBAwd6jRqPxp6kaY6JJTGKamsR8TVdjjNHYwY5YUASRXgURQem9XO97uzu/P+bK7t7t3XF3c3vHPR/JeuzM7OxnZj+zM/t5z+fzNkzTNAUAAAAAAAAAAGATR7QLAAAAAAAAAAAATmwEIwAAAAAAAAAAgK0IRgAAAAAAAAAAAFsRjAAAAAAAAAAAALYiGAEAAAAAAAAAAGxFMAIAAAAAAAAAANiKYAQAAAAAAAAAALAVwQgAAAAAAAAAAGArghEAAAAAAAAAAMBWBCMAAAAAAAAAAICtCEYAAAAAAAAAAABbEYwAAAAAAAAAAAC2IhgBAAAAAAAAAABsRTACAAAAAAAAAADYimAEAAAAYIf5a6TcomiXAgAAAAA6BIIRAAAAQFvLK5H+3z+kC39LQAIAAAAARDACAAAAwZ5bJCVfIy3Z3PSyI78rXfCr9nmvziY9UXr+bmnH4eqARHGrV7l8T6Vyfn9AczaVtUEBAQAAAKB9uaJdAAAAAKDT+cOrks/f9HITB0uLPpMu+q007+dSWqL9ZQMAAACADohgBAAAAFpm7SOSYUS7FNHxx9ekyqrmL//ZHmnPUYIRAAAAALosghEAAABoGY872iU4PiUVUmJs26zr6P+aXsbrk77+iPTOOukv35TG9G+b9+6EyrwBxccwQiwAAADQlRGMAAAAQH0BU3rkDempD6UDeVKfTOnuS6XrzqxbZuR3pb7dpPm/DH3t0wulv78t7Tws9Ui1XjN5mHTx76RHb5euO+v436vGR5ukP78prdsuVVRJg7Klb54n3XJe6HI1ZXvw69IvX5DWfGn1Stj0t7bYO00LD0TcNM2WtymvCujvy0s074tyHSjyKzHGodNyYvTDM5I1IL3uUn/q44eVneTUS1/LrJ322MpiPbioWGf29+iZqzJqp/9labH+75NiLbmtu/qmWuuo9Jl6YnWJXt9crj0FPnlchk7pHaO7zkjWyB51Qanleyp1zQu5eviCVJVVmXpmXan2FPj07UmJ+sGUZFv2AQAAAIDOgWAEAAAA6rv/BWsYopvPldwu6T8fSN96VBqYJU0aGvl1f5sn/exZaURf6edXS/6A9Pxi6b31rX+vpz6Q7nxSOmWQFaxI8FjBiR88aQU+fnt96Hr35VrJoy+dJF08USqtbN0+OR5en5RXYmsgwhcwdeOcPK3c69WMIbG6eUKi9hf69Mz6Mn2886hevT5TgzOtQMFpOR698lmZyqsCinNbPRSW7fbKYUir9nnl9ZuKcRrV0yvVO9lZG4io8pv6+pxcrdvv1aUj4nXj+AQVVwb04qdluvzZY5rztQyNzo4JKdt/1pSooNzUNWPi1S3Boewkpy37AAAAAEDnQTACAAAA9VX5pUUPSDHVl4uXTpJGf196/L3IwYj8Eum3L0tDekof/kaK91jTv3medNqPW/deh/KlHz8tXTZZeur7da/95nTpx/+1emLcfK40IKtu3q4j0j9vl64/qyV7oHUSY6V3fik57RuaaM6mMq3c69UtExL0i2kptdPPGxyrK57L1a8+LNKzV1s9Hk7r69ELn5Zp9T6vpvaPVZXf1Op9Xl0yPE6vbi7X+gNendrHo4oqU+sPeHXx8Pja9f13balW7PHq6SvTddaAumGubhiXoOlPHtXvPioK6XEhSQeK/Pro1u5KjycIAQAAAMDCwK0AAACo75vn1QUHJKlnujUk0o5DkV+zcKNU7rUCBDWBCElKjq8/jNLxvtfrK63eE9efKeUWhT7OH28N9bT4s9D1pidJX5vavO1toYoqU298XtbwTBsDEZL03rYKGZK+d1pSyPRTent0Wk6Mlu6uVHFlQJJ0Wo7Vc2Hpbq8kacNBr8qqTN08IUEZ8Q4t3WX1Glmz36tKf93ykvT65+Xqn+bU6Cy38sr8tY8qv6kp/Txavc+riiozpAyXj4wnEAEAAAAgBD0jAAAAUF+/7vWnpSdKe49Ffs3uo9bfwdn15w3p1br32rrf+nvpg5HXc6Sw/nod9gUEKqpMfeOVXK3c49VJ3d0aktm+Cb33FPiVmeBQWlz9bRyW6day3V7tK/TrpO4OZSY4NSTTpWW7raDDst1epcYaGtHDrcl9Y7Rsj1d3SbXzT8upCyZ9letThc/UuL8djliWvPKAerrrgg/90viZAQAAACAUvxIAAABQX6S7+k2z4emtmdes96r+96O3Sz0zGly8XlAjPqbh5dpARZWpm6sDEX+aldrugYimNLS3T8vx6Jl1pSqsCGjZ7kpN7uuRwzB0Wo5Hv1xQqFKvNX1Qhks9Ep1B6zI1OMOl+89NaWCtlvT40M8wzm201aYAAAAAOEEQjAAAAEDbqAkGbDsgTRsTOu/LA61b98Dq3hbpSdLZo1q3rlby+k3d8kqulu72anSWW7vyfXrkk6ImX/f/JiYqIabtemr0TXVq0Q6f8ssD9XpHbDtWJYch9U6pCyqc1jdG/11bqo92VGj9Aa9+Xp1n4vQcj6oC0sLtldp4qErXjYsPWdeANJeOlAZ0Wk6MHAZBBgAAAAAtQzACAAAAbePs0VKsW/r3AunGc+ryRhSXS08uaN26L50k/epF6cG50pkjQ3NSSFJhmfXeHvt7KBRVBLRqn5V7YeOhKm08VNWs1103NkEJbdhZY8aQWH20o1L/WF6s+86p67Wwdr9Xy3Z7dUY/j5I8dUGKSX09chjS35eVqNJvBSEka0ilXslO/WVpsfxm3fQal46I1wOLivT4yhJ9a1JofgpJOlrqV7cE8kMAAAAAaBzBCAAAALSN9ETpZ1dJP39OmvZz6dozJH9Aem6xlJEs7TkmqYV31vfKkB65Rfru49IpP5SuOUPq2006ViRt3iO9vUZa9bCU00D+iTaWmeDUY5em6/bX8jSiu1vPXJ2hZI+9yaobcuWoeL22uVxPrC7VvkK/TsvxaH+RX8+sK1WSx9AvpiWHLJ8S69CIHm5tOlSl7CSHBqTX/RSY3DdGcz8rl8OQJvcNDUbcPCFBn+yq1EOLi7V8j1en53iU5DG0v8ivpbsr5XEZeunazHbZZgAAAACdF8EIAAAAtJ07LpSS46S/z5d+/ZLUI1X6+tnS8D7Sdf8nxbWia8D1Z0mDsqW/zpOe+lAqLLWCHIOzpfuust6rnUwbGFsbkLj+pVz976oMpcS2b0DC5TD09JXp+tvyEs3bUq4PvqpQosehcwZ6dNeUZA3MqH+pf3qOR5sOVYUkqK6ZPvezcg3v7q63HW6noaeuTNf/1pXq1c3lemRpsSSpR6JDY7JjdMXIOPs2EgAAAMAJwzDNxrIJAgAAAG3gr29J9z0nffAbaeLgaJemzXy4vUJ/WFykZ67KCEn6DAAAAAAIRTACAAAAbafCK8WG9X4oKpNO+7FUWiltfVSKObE65/oDppwOEjsDAAAAQGNOrF+CAAAAiK4ln1s5Iy4+VeqZLu3LlZ5bZP39660nXCBCEoEIAAAAAGiGE+/XIAAAAKJnQJb1+O+HUm6xFXwYlSP9/kbpwonRLh0AAAAAIEoYpgkAAAAAAAAAANjKEe0CAAAAAAAAAACAExvBCAAAAAAAAAAAYCuCEQAAAAAAAAAAwFYEIwAAAAAAAAAAgK0IRgAAAAAAAAAAAFsRjAAAAAAAAAAAALYiGAEAAAAAAAAAAGxFMAIAAAAAAAAAANiKYAQAAAAAAAAAALAVwQgAAAAAAAAAAGArghEAAABAAz777DP94x//0G9/+1vdf//9OnTokCTpjTfe0LPPPnvc69uxY4ceeOABFRUVtXVR0YYWLVqk+++/X2VlZdEuStQUFBTo/vvv14YNG6JdFAAAAJxACEYAAAAAYUpLS/Xaa68pPT1d119/vb75zW8qIyNDBw8e1IYNG3TOOecc9zoHDBigXr166cMPP7ShxAAAAADQsRGMAAAAAMLk5ubK7/dr9OjR6tevn3r37i23261PPvlEvXr1Us+ePVu03lNOOUWbNm1SYWFhG5cYAAAAADo2V7QLAAAAAHQkr7/+eu3wNHPmzNGcOXPUr18/XXHFFfriiy80c+bMkOXnzZunDRs26Oabb64NUpimqWeeeUZHjhzR7bffrqSkJEnS0KFDFRMTo3Xr1unss89u1+3C8SksLNRbb72lHTt2SLI+uxkzZighIaF2mc8++0zr16/X4cOHVVFRodTUVA0bNkxTp05VTExM7XL5+fn68MMPtXv3bpWVlSk2Nlbdu3fXjBkzlJWVFbK+FStW6PDhwzIMQ3369NG5556r7OzsiOU8dOiQHnvsMV100UU6+eSTQ+Z9+eWXeu6553Tttddq6NChysvL08cff6w9e/aouLhYsbGxys7O1rRp09SjR49G98frr7+uXbt26c477wyZvmjRotqhrWqYpqk1a9Zo7dq1OnbsmFwulwYMGKDzzjtPaWlpjb4PAAAATlwEIwAAAIAgU6dOVa9evfT2229r2rRp6t+/vzwej7Zv3y6/369+/fqFLD9z5kzt27dPc+bM0W233abY2FgtWrRIu3bt0vXXX18biJAkp9OpPn36aNu2bQQjOriXXnpJI0aM0IQJE3TkyBF99NFHOnr0qL75zW/K6XRKkvLy8jR48GBNmjRJbrdbx44d09KlS7V//37deOONtet67rnnFAgEdN555yklJUVlZWXau3evKioqapdZsmSJFi5cqLFjx2rq1Kny+/1atmyZnnrqKd16663q1q1bg+XMyspSdna2NmzYUC8YsWHDBiUkJGjw4MGSpOLiYsXHx+vcc89VQkKCysvLtWHDBv373//WbbfdpszMzDbZdzUBulNPPVXnnnuuysvLtXjxYj355JO6/fbblZiY2CbvAwAAgM6FYZoAAACAIOnp6bUNvxkZGerdu7e6deumffv2ye1212uwdblcuuqqq1RWVqbXX39dO3bs0Mcff6wzzjhDAwcOrLf+7OxsHTp0SF6vt122By1z0kkn6bzzztPAgQM1efJkXXjhhTp48KA2b95cu8zUqVM1adIkDR48WDk5OTr55JN1ySWXaOfOnTp8+LAkqaysTMeOHdPEiRM1evRo5eTk6KSTTtL06dNrA1uFhYX66KOPNHHiRF188cUaMmSITjrpJN1www2KiYnRokWLGi3r2LFjtWfPHuXm5tZOKy8v19atWzVmzBg5HNbPvpycHE2fPl3Dhw9XTk6OhgwZoiuvvFLJyclau3Ztm+y3ffv2ae3atTr33HM1ffp0DRo0SKNGjdLXv/51VVZWavny5W3yPgAAAOh86BkBAAAANEPNXeWGYdSbl56erosuukhz5szRV199pZycHJ111lkNrichIUGmaaqkpETp6ek2lxotNWrUqJDnI0aM0GuvvaZdu3Zp9OjRkqzhlxYuXKidO3eqtLRUpmnWLn/06FH16NFDcXFxSk9P17Jly2Sapvr166esrKyQerR9+3YFAgGNGTNGgUCgdrrL5VK/fv20c+fORss6evRoLViwQBs2bNC0adMkWUM++Xw+jR07tna5QCCgpUuXauPGjcrLy5Pf7w8pb1vYtm2bDMPQ6NGjQ7YlMTFRPXr00K5du9rkfQAAAND5EIwAAAAAmqGqqkouV+TL58GDBysxMVElJSWaPHly7d3o4WrW4fP5bCkn2kb4UEIOh0Px8fEqKyuTJHm9Xv3nP/+Ry+XSOeeco4yMDLndbhUWFuqll16q/XwNw9DXv/51LV68WEuXLtV7772nuLg4jR49Wuecc448Ho9KSkokSf/6178aLEtDAbBgcXFxGjp0qD799FOdffbZcjgc2rBhg3r16qXu3bvXLvfee+9p1apVmjJlinJychQXFyfDMPTmm2+2WX0sKSmRaZr64x//2OB8ckYAAAB0XQQjAAAAgGaIj4/XwYMHI86fN2+eKisr1b17d73zzjvq27ev4uLi6i1XXl5euz50XCUlJUpOTq59HggEVFZWVvu57dy5U8XFxbrppptC8ogE54GokZqaqosvvliSlJubq82bN2vRokXy+/2aPXt27Tqvuuoqpaamtqi8Y8eO1ebNm7Vjxw6lpKRo//79mj17dsgyGzdu1JgxY2p7T9SoSardGJfL1WDAoiY4U6Om99A3vvGNBoN3Nfk2AAAA0PWQMwIAAABohszMTJWXlzfY2Lxu3Tpt3LhRF1xwga699lpVVFTojTfeaHA9+fn5io+PV0JCgt1FRits2rQp5PnmzZsVCATqJTAPb3Bfs2ZNo+vNyMjQ1KlT1b1799rg1qBBg+RwOJSfn6+ePXs2+GjKwIEDlZycrPXr12v9+vVyuVwaOXJkveXCy7tt2zYVFRU1uf7U1FSVlpbW9uKQJL/fr6+++ipkuSFDhsg0TRUXFze4HT169GjyvQAAAHBiomcEAAAA0Az9+vWTaZrav39/SGLqw4cP65133tHYsWM1btw4SdJFF12kl19+WStWrNCkSZNC1rNv3z7l5OQ0OfQOomvLli1yOBwaMGCAjh49qoULFyorK0sjRoyQJPXp00dxcXGaN2+ezjzzTDmdTm3cuLE2cXWNw4cPa/78+Ro+fLgyMjLkdDprE1xPmTJFktXQf/bZZ+vDDz9Ufn6+Bg0apNjYWJWWlmr//v1yu906++yzGy2vw+HQmDFjtHz5cnk8Hp100kn1ejsMGTJEGzZsUGZmpnr06KEDBw5o2bJlIT1AIhkxYoQ++ugjzZ07V6effrp8Pp9WrlwZkidDkvr27avx48fr9ddf14EDB5STkyO3262SkhLt2bNH3bt31ymnnNLk+wEAAODEQzACAAAAaIa+ffsqNTVVX3zxRW0wwuv1as6cOUpNTdWsWbNqlx0+fLgmTpyoBQsWqE+fPurVq5ckKS8vT4cPH46Y3Bodx9VXX61FixZp9erVMgxDQ4cO1cyZM2uHGYqPj9fXvvY1vf/++3r11VcVExOjoUOH6oorrtDjjz9eu57ExESlpaVp9erVtT0Q0tLSNGPGDE2cOLF2uTPOOEPdunXTypUrtWnTJvn9fiUmJqpnz56aMGFCs8o8duxYLVmyRD6frzYwFuz888+X0+nUkiVL5PV6lZ2drauvvloLFy5sct1paWm65ppr9OGHH+rll19WYmKiJk+erLKyMi1atChk2QsvvFC9e/fW2rVrtXr1apmmqaSkpJBjAQAAAF2PYYbfygIAAACgQcuWLdOSJUt01113ye12H/frFy5cqE8//VR33HFHxATXAAAAAHAi4hcQAAAA0EwTJ06Ux+PR6tWrj/u1FRUVWr16taZNm0YgAgAAAECXw68gAAAAoJlcLpcuu+yy2qF6jkd+fr6mTJmiUaNG2VAyAAAAAOjYGKYJAAAAAAAAAADYip4RAAAAAAAAAADAVgQjAAAAAAAAAACArQhGAAAAAAAAAAAAWxGMAAAAAAAAAAAAtiIYAQAAAAAAAAAAbEUwAgAAAAAAAAAA2IpgBAAAAAAAAAAAsBXBCAAAAAAAAAAAYCuCEQAAAAAAAAAAwFYEIwAAAAAAAAAAgK0IRgAAAKBL2rZtm2655Rb169dPHo9HmZmZOu+88/Tyyy+3aH1r1qzRNddco549e8rj8ahHjx666KKL9MEHH0R8TUVFhf7whz9o/PjxSk5OVkJCgkaOHKn77rtPhYWFLd00AAAAAOhwDNM0zWgXAgAAAGhP8+fP1+WXX66KiooG599444166qmnZBhGs9b373//W7fddpsCgUCD83/xi1/oV7/6Vci03NxcnXfeeVq/fn2Dr+nXr58WLlyo/v37N6sMAAAAANCREYwAAABAl7J//36NGDGitufB8OHDdc011+jzzz/Xiy++WLvc3//+d33nO99pcn0bNmzQKaecIp/PJ0maNGmSZs+eraVLl+qdd96pXW7evHmaNWtW7fMrrrhCr7zyiiQpLi5Ot912m2JjY/XEE08oNzdXknTqqadq2bJlcjjo0AwAAACgcyMYAQAAgC7lnnvu0R/+8AdJUlJSknbt2qX09HRJ0nXXXafnn39ektSrVy/t3r1bTqez0fVdffXVtUM79e/fX1988YViYmIkSVOmTNHSpUslWYGFFStWSJK2bNmi4cOH167jX//6l2699VZJ0oIFCzR9+vTaee+8845mzpzZ6u0GAAAAgGjiFisAAAB0KW+++Wbtv88666zaQIQkXX755bX/3r9/v9auXdvouvx+v95+++3a57Nnz64NREjSZZddVvvvlStX6siRI/XKEP6+5557rpKTkxssLwAAAAB0VgQjAAAA0GVUVlZq69attc8HDBgQMj/8+caNGxtd344dO1RaWnrc6wteb0pKSkhAxDCMkDwRTZUBAAAAADoDghEAAADoMvLz8xU8SmlwDwTJGrYp2LFjxxpdX01uh+NdX/Drwl8T/rqmygAAAAAAnQHBCAAAAHQZ4enSmnpuGIYt6wue3lAKt+BpTZUBAAAAADoDghEAAADoMtLT00Ma94uLi0PmFxUV1Vu+MRkZGSHPm7u+4NeFvyb8dU2VAQAAAAA6A4IRAAAA6DI8Ho+GDBlS+3z79u0h88Ofjx49utH1DRw4UAkJCce9vuD1FhYWhgzbFAgEtHPnzmaXAQAAAAA6A4IRAAAA6FIuvPDC2n8vWrQoJBDw8ssv1/67Z8+emjBhgiTp/vvvl2EYMgxD/fr1q13G6XTq/PPPr33+1ltvqbKyUpI11NLcuXNr502cOFE9evSQJF100UUhZQpe7p133lFJSUnt8/BlAQAAAKAzckW7AAAAAEB7uuOOO/T444+ruLhYJSUlmjp1qq655hpt3rw5JChwzz33yOl0Nrm+n/zkJ3rttdfk9/u1e/dunXXWWZo9e7aWLFmiVatW1S73s5/9rPbfw4cP1yWXXKLXX39dkvSDH/xAW7duVWxsrB577LHa5SZMmKAZM2a0wVYDAAAAQHQZZkMZ8wAAAIAT2FtvvaUrr7yythdDuOuvv15PP/20HA6rI/H999+vX/3qV5KknJwc7dq1K2T5xx9/XN/61rcaTEYtST/96U/1u9/9LmTasWPHNG3aNG3cuLHB1/Tt21cLFy7UwIEDj2fT0IWUlpbKNE0ZhhEyXBgAAADQETFMEwAAALqcCy+8UBs2bNBNN92kPn36KCYmRmlpaTrnnHP0wgsv6H//+19tIKI5brvtNq1YsUJXXnmlsrKy5Ha7lZmZqVmzZum9996rF4iQpMzMTK1YsUIPPvigxo0bp4SEBMXFxWn48OH6yU9+og0bNhCIQKNM06x9AAAAAB0dPSMAAAAAoBMqKSmp7RmRmJgY7eIAAAAAjaJnBAAAAAAAAAAAsBXBCAAAAAAAAAAAYCuCEQAAAAAAAAAAwFYEIwAAAAAAAAAAgK0IRgAAAAAAAAAAAFsRjAAAAAAAAAAAALYiGAEAAAAAAAAAAGxFMAIAAAAAAAAAANiKYAQAAAAAAAAAALCVK9oFAAAAADq7srIymaYpwzAUHx8f7eIAAAAAQIdDMAIAAABopUAgUBuMAAAAAADUxzBNAAAAAAAAAADAVgQjoiA/P1833HCDUlJSlJKSohtuuEEFBQWNvsY0Td1///3q2bOn4uLidNZZZ2nz5s0hy1RWVup73/ueMjMzlZCQoIsuukj79u0LWWbbtm26+OKLlZmZqeTkZJ1++un66KOP2noTYZNo1h1Jevvtt3XqqacqLi5OmZmZuuyyy9py82CzaNefmmXHjh0rwzC0YcOGNtoytIdo1Z9du3bplltuUf/+/RUXF6eBAwfql7/8pbxerx2biTbwz3/+U/3791dsbKzGjx+vJUuWNLr84sWLNX78eMXGxmrAgAF67LHH6i3zyiuvaPjw4fJ4PBo+fLhee+21Vr8vOqZo1J8HH3xQp5xyipKSktS9e3ddcskl2rp1a5tuF+wXre+eGg8++KAMw9Cdd97Z2k1BFESr/uzfv1/XX3+9MjIyFB8fr7Fjx2rt2rVttl1oH9GoPz6fT/fdd1/tNfKAAQP061//WoFAoE23DfZq67qzefNmXX755erXr58Mw9Cf//znNnlfdEzRqD9tct1sot3NnDnTHDlypLls2TJz2bJl5siRI83Zs2c3+pqHHnrITEpKMl955RVz06ZN5tVXX21mZ2ebRUVFtcvcfvvtZq9evcwFCxaY69atM88++2xzzJgxps/nq11m0KBB5gUXXGB++umn5rZt28xvf/vbZnx8vHnw4EHbthdtJ5p1Z+7cuWZaWpr56KOPmlu3bjW/+OILc86cObZtK9peNOtPje9///vm+eefb0oy169f39abCBtFq/6888475k033WS+99575vbt28033njD7N69u/nDH/7Q1u1Fy7z44oum2+02n3jiCfPzzz8377jjDjMhIcHcvXt3g8vv2LHDjI+PN++44w7z888/N5944gnT7Xabc+fOrV1m2bJlptPpNB944AFzy5Yt5gMPPGC6XC5zxYoVLX5fOxQXF5tFRUVmcXFxu73niSZa9WfGjBnmU089ZX722Wfmhg0bzFmzZpl9+/Y1S0pKbN/m1qLeWaJVd2qsWrXK7Nevnzl69GjzjjvusGszYZNo1Z+8vDwzJyfHvOmmm8yVK1eaO3fuND/44APzq6++sn2b0XaiVX9++9vfmhkZGea8efPMnTt3mnPmzDETExPNP//5z7ZvM9qGHXVn1apV5t13322+8MILZlZWlvnII4+0+n3RMUWr/rTFdTPBiHb2+eefm5JCTiLLly83JZlffPFFg68JBAJmVlaW+dBDD9VOq6ioMFNSUszHHnvMNE3TLCgoMN1ut/niiy/WLrN//37T4XCY7777rmmapnn06FFTkvnxxx/XLlNUVGRKMj/44IM23U60vWjWnaqqKrNXr17mv//9bzs2De0gmvWnxvz5881hw4aZmzdvJhjRyXSE+hPsD3/4g9m/f//WbhZsMHHiRPP2228PmTZs2DDz3nvvbXD5H//4x+awYcNCpt12223mpEmTap9fddVV5syZM0OWmTFjhnnNNde0+H3tQKNw60Wr/oQ7cuSIKclcvHjx8W5Cu6PeWaJZd4qLi83BgwebCxYsMM8880yCEZ1QtOrPPffcY06ZMqW1xUeURav+zJo1y7z55ptDlrnsssvM66+/vkXbgfZnR90JlpOT02Bjcke4bkbrRav+hGvJdTPDNLWz5cuXKyUlRaeeemrttEmTJiklJUXLli1r8DU7d+7UoUOHNH369NppHo9HZ555Zu1r1q5dq6qqqpBlevbsqZEjR9Yuk5GRoZNOOknPPPOMSktL5fP59Pjjj6tHjx4aP368HZuLNhTNurNu3Trt379fDodD48aNU3Z2ts4///x6w62g44pm/ZGkw4cP69Zbb9X//vc/xcfHt/XmwWbRrj/hCgsLlZ6e3trNQhvzer1au3ZtyOcpSdOnT4/4eS5fvrze8jNmzNCaNWtUVVXV6DI162zJ+6LjiVb9aUhhYaEk8T3TSUS77nznO9/RrFmzdO6557Z2UxAF0aw/b775piZMmKArr7xS3bt317hx4/TEE0+0xWahnUSz/kyZMkUffvihtm3bJkn69NNP9cknn+iCCy5o9XbBfnbVHTveFx1PtOpPQ1py3Uwwop0dOnRI3bt3rze9e/fuOnToUMTXSFKPHj1Cpvfo0aN23qFDhxQTE6O0tLSIyxiGoQULFmj9+vVKSkpSbGysHnnkEb377rtKTU1t7abBZtGsOzt27JAk3X///brvvvs0b948paWl6cwzz1ReXl7rNgztIpr1xzRN3XTTTbr99ts1YcKEVm8L2l8060+47du3629/+5tuv/32494O2OvYsWPy+/2NfubhDh061ODyPp9Px44da3SZmnW25H3R8USr/oQzTVN33XWXpkyZopEjR7Z0c9COoll3XnzxRa1bt04PPvhgW2wKoiCa9WfHjh169NFHNXjwYL333nu6/fbb9f3vf1/PPPNMW2wa2kE0688999yja6+9VsOGDZPb7da4ceN055136tprr22LTYPN7Ko7drwvOp5o1Z9wLb1uJhjRRu6//34ZhtHoY82aNZKsoEA40zQbnB4sfH5zXhO8jGma+va3v63u3btryZIlWrVqlS6++GLNnj1bBw8ePJ7NRRvqDHWnJgnWz372M11++eUaP368nnrqKRmGoTlz5jR7W9H2OkP9+dvf/qaioiL95Cc/OZ5NQzvoDPUn2IEDBzRz5kxdeeWV+uY3v9nU5iFKjvczb2j58OnNWWdL6ho6nmjVnxrf/e53tXHjRr3wwgvHVW5EX3vXnb179+qOO+7Qs88+q9jY2FaVHdEXje+eQCCgk08+WQ888IDGjRun2267TbfeeqseffTRFm8HoiMa9eell17Ss88+q+eff17r1q3T008/rYcfflhPP/10i7cD7c+OumPH+6Jjilb9qdHS62ZXi94N9Xz3u9/VNddc0+gy/fr108aNG3X48OF6844ePVovQlUjKytLkhXFys7Orp1+5MiR2tdkZWXJ6/UqPz8/5A7TI0eO6LTTTpMkLVy4UPPmzVN+fr6Sk5MlWZnXFyxYoKefflr33nvvcWwx2kpnqDs1rx0+fHjtfI/HowEDBmjPnj3N2UzYpDPUn4ULF2rFihXyeDwh658wYYKuu+46LpijqDPUnxoHDhzQ2WefrcmTJ+tf//pX8zYQ7SozM1NOp7Pe3TjBn3m4rKysBpd3uVzKyMhodJmadbbkfdHxRKv+BPve976nN998Ux9//LF69+7dms1BO4pW3Vm7dq2OHDkSMtyt3+/Xxx9/rL///e+qrKyU0+ls9fbBXtH87snOzg75fSVJJ510kl555ZUWbw/aVzTrz49+9CPde++9tdfyo0aN0u7du/Xggw/qxhtvbPW2wV521R073hcdT7TqT7DWXDfTM6KNZGZmatiwYY0+YmNjNXnyZBUWFmrVqlW1r125cqUKCwvrNbzU6N+/v7KysrRgwYLaaV6vV4sXL659zfjx4+V2u0OWOXjwoD777LPaZcrKyiRJDkfox+5wOGrvfEf76wx1Z/z48fJ4PNq6dWvtMlVVVdq1a5dycnLadH/g+HSG+vPXv/5Vn376qTZs2KANGzZo/vz5kqy7eX73u9+1+T5B83WG+iNJ+/fv11lnnaWTTz5ZTz31VL3zGDqGmJgYjR8/PuTzlKQFCxZErCeTJ0+ut/z777+vCRMmyO12N7pMzTpb8r7oeKJVfyTrrrDvfve7evXVV7Vw4UL179+/LTYJ7SRadWfatGnatGlT7fXNhg0bam+02LBhA4GITiKa3z2nn356yO8rSdq2bRu/rzqRaNafsrKyetfETqeTtp1Owq66Y8f7ouOJVv2R2ui6udmprtFmZs6caY4ePdpcvny5uXz5cnPUqFHm7NmzQ5YZOnSo+eqrr9Y+f+ihh8yUlBTz1VdfNTdt2mRee+21ZnZ2tllUVFS7zO2332727t3b/OCDD8x169aZ55xzjjlmzBjT5/OZpmmaR48eNTMyMszLLrvM3LBhg7l161bz7rvvNt1ut7lhw4b22Xi0SrTqjmma5h133GH26tXLfO+998wvvvjCvOWWW8zu3bubeXl59m842kQ060+wnTt3mpLM9evX27KdsEe06s/+/fvNQYMGmeecc465b98+8+DBg7UPdDwvvvii6Xa7zSeffNL8/PPPzTvvvNNMSEgwd+3aZZqmad57773mDTfcULv8jh07zPj4ePMHP/iB+fnnn5tPPvmk6Xa7zblz59Yus3TpUtPpdJoPPfSQuWXLFvOhhx4yXS6XuWLFima/b3soLi42i4qKzOLi4nZ7zxNNtOrPt771LTMlJcVctGhRyHdMWVlZ+218C1HvLNGqO+HOPPNM84477rBtO2GPaNWfVatWmS6Xy/zd735nfvnll+Zzzz1nxsfHm88++2z7bTxaLVr158YbbzR79eplzps3z9y5c6f56quvmpmZmeaPf/zj9tt4tIoddaeystJcv369uX79ejM7O9u8++67zfXr15tffvlls98XnUO06k9bXDcTjIiC3Nxc87rrrjOTkpLMpKQk87rrrjPz8/NDlpFkPvXUU7XPA4GA+ctf/tLMysoyPR6POXXqVHPTpk0hrykvLze/+93vmunp6WZcXJw5e/Zsc8+ePSHLrF692pw+fbqZnp5uJiUlmZMmTTLnz59v16aijUWz7ni9XvOHP/yh2b17dzMpKck899xzzc8++8yuTYUNoll/ghGM6JyiVX+eeuopU1KDD3RM//jHP8ycnBwzJibGPPnkk83FixfXzrvxxhvNM888M2T5RYsWmePGjTNjYmLMfv36mY8++mi9dc6ZM8ccOnSo6Xa7zWHDhpmvvPLKcb1ve6BRuG1Eo/5E+o4J/j7rqKh3daL13ROMYETnFa3689Zbb5kjR440PR6POWzYMPNf//pXm28b7BeN+lNUVGTecccdZt++fc3Y2FhzwIAB5s9+9jOzsrLSlm2EPdq67tT81g5/hK8n2tfNaBvRqD9tcd1sVK8IAAAAQAuVlJTUJo1LTEyMdnHQRVDvAAAA0Jkw6DIAAAAAAAAAALAVwQgAAAAAAAAAAGArghEAAAAAAAAAAMBWBCMAAAAAAAAAAICtCEYAAAAAAAAAAABbEYwAAAAAAAAAAAC2IhjRCVRWVur+++9XZWVltIuCToj6g5ai7qA1qD9oKeoOWoP6g9ag/qClqDtoDeoPWoq6g9aIVv0xTNM02/UdcdyKioqUkpKiwsJCJScnR7s46GSoP2gp6g5ag/qDluqsdaekpESmacowDCUmJka7OF1WZ60/LUW9a1tdrf6g7VB30BrUH7QUdQetEa36Q88IAAAAAAAAAABgK4IRAAAAAAAAAADAVq7mLGSapoqLi+0uCyIoKioK+QscD+oPWoq6g9ag/qClOmvdCR4uJxAIRLs4XVZnrT8tRb1rW12t/qDtUHfQGtQftBR1B63R1vUnKSlJhmE0uVyzckbUjCEFAAAAAAAAAABQo7m5J5oVjKBnBAAAABAZiYQRDdQ7AAAAdATN7RnRrGGaDMMgKzsAAAAQgcPhoFEY7Y56BwAAgM6EBNYAAAAAAAAAAMBWBCMAAAAAAAAAAICtCEYAAAAAAAAAAABbEYwAAAAAAAAAAAC2IhgBAAAAAAAAAABs5Yp2AQAAAAAAx88wjJC/AAAAQEdGMAIAAAAAOqGEhIRoFwEAAABoNoZpAgAAAAAAAAAAtiIYAQAAAAAAAAAAbEUwAgAAAAAAAAAA2IpgBAAAAAAAAAAAsBXBCAAAAAAAAAAAYCuCEQAAAAAAAAAAwFYEI2Av02z4340t15L50dSRywYAAAB0UaZpyuRaHWgTHEstw347Puyv5uvM++p4y16zfCAQsKM4aGeG2ZlrLzquA3nSzsOSTMnhsBrsA6bkdEiGUbecYUg+vzU/fF6NQKDh10abIckXaLzsAACgSygZ0kOm26mqgLS9OCbaxQEg6847p8OQaUo+fvYCreIyDOs3sEz5aA9sNqdhWE0FpikfX0NNchqSwzBkSvIF2GGNcTkMyZRkdL5jMsZhyG9KAdNUcz7lmuWd1c1ucW5DgzKccji4x74zIhiBtlVZJW3dLxWVhU7zuK1/z1st/fMdKTlOuudyadyAuuXufUbauKvu+Z0XSmePltxO6/lTH0pzltq+CU3yuKSfXCFNGCw5qr8JH5gjfbIluuUCAABRU7LmDzKz03SoJKBznymNdnEASHpgeopGZVnBwaKKgJ5eX6r3v6yIcqmAzifBbei/V2Qo1m39/t1T4NNflhVr2zFflEvWscW5Df33inTFu60G073V+20r+61BDkN6/JJ0ZSVZbUBHS/16bGWJVu3zRrlkHU/PJKcevzS99vnWo1X60ydFOljc8aMSN4yN11WjEyRJXr+p97+s0OOrSiIuP3tYrG6bmCTJ6iFhVN8IbEjqmexQRoLT9jKjbRFCQtuKcUmVYSeKmkCEJE0bI8V7pOJyqVty6HIXnhL63OWsC0RI0qwJdY3/0VTpkxLjQsty0cTolQcAAABAiH6pztpAhCQlxzpUyW3JQIucOyi2NhAhSb2Sncot6/iNntF27sDY2kCEJPVkvzVqfK+Y2kCEJHVLcKq4kv3VkFnDYkOe90x2Kq8T1C23Q5oxJK72eYzTaLSZz5A0a2jd8kbQiCSmJI+7A7QR4rgRjEDbMgwpKz10WnDnm7gY6bwx1rfGW6tDl5s0VOqeUvf8zVWh87unWMt0BG+FlW1kjtS/R3TKAgAAACDErGFxIc/zywNaursySqUBOi9D0gVDQ4+n5XsqaVRvgqH6DcYr9np1jP0W0YVh39vbc6u05Si9SMLFuQydOzC0br3/ZYUq/VEq0HE4o59HKbGhTdHzviiPuPzYnm71TnE1OM/lkBJjaNbujPjU0PayUuvnhQg2+xTrzPzBp1JZ0A8Cp0O6YHzd820HrCGfgoX3noiWpVukvOLQaR2lbAAAAEAXlhBj6OwBoQ01720r73RjagMdwcm9YtQzOXQYlHlfMNxZU8b2dKtXcmgjamONrl1d72SnxvUMzbk1byv1rCFnD/QoPqgRPmCaemdb56hbs8MCTp8e9GpvYeQoyuywQGiwzASatDsrPjm0Pber/hBMwXplSCcPlMq90oefhs6bcbI11FON8B4IY/pLOd3arqwt5QtI76wLnXbWKCkxtuHlAQAAALSL8wbFyuOquyHKFzD1zjYatYCWCL9bfWeeT5uPVEWpNJ1H+H7ble/TZ4fZb5FcELa/iioC+ngn39sNmRXWQL9qn1eHSzp+tH1opkuDM90h0xoL0PVIdGhC75gG5xmSuhGM6LT45GCPnumNz7+wOsdC+FBNKfHSmSPqnn/8uZQflsimo/RAmL9W8gVFcGPd0oxx0SsPAAAA0MU5jPoNNct2VyqvvOM31AAdTc8kp8b3Crtbnbv7m5SV6GC/HYc4t6FpAz0h097/qkLeTjDsUHsbk+1W39TO2eMmvFfE4RJ/o8nJZw2NkyN8pJVqKbFGSP4IdC4EI2CPxDgpKXJ3Kk0YJGWnSftypXXbQ+ddGJQM2ueX3g3rgXDO6I7RAyG/RPrk89BpHSXJNgAAANAFhSdAlTpPQw3Q0YTnPCiuDGgxd6s3adaw0EbUksqAFrHfIpo20BOS6NsfMDV/K9/bDQlv0N9b4NOnBzt+j5vUWEOn54QGnOZvLVfAbHh5j8vq5RhJVjLN2Z0Znx7s01jvCIdh5Y6Q6veOGJQtndS77vn8tZI/6E6m2Bjp3DFtV87WCC97Vpp0yuDolAUAAADo4sIbarbnkQAVaIk4l6FpYUlyF3zVOZLkRpPHJZ07qIH9xtdQgww1POzQ0VJ6s4XrnuDQxN7heTU6R9Bm5pA4uZ11AbpKn6kFX0UO0J3VP1aJnoabrGNdUoyT5uzOjE8P9slItvJHRHLeWGtoo9VfSofyQ+cF947ILZaWbQmdX5MEO9q27JO+PBA67aKJDS8LAAAAwDa9kp06OTwBKol2gRY5e6BHCWFJcrlbvWln949VIvut2cZmu9U7pXMOO9TeLggbtqjMG9BH2yujWKLmcTmkmUNCA3SLd1aouDJCtwjVv7EgWHZY70d0PgQjYB+HYQ3FFMwM+rJJjLWGXAqY0rw1octNOUlKT6x7/mZYD4Se6dKEDtIDIbx3xLgBUp/M6JQFAAAA6KJmkQAVaDOdNUlutIU3oq7d79Uh9ltE4ftrd75PGw91/GGH2pvHKU0fHNqg/8H2CpX7IjfodxST+3qUEd/84RNH9nCrX1rDNzY7DSkplqbszo5PEPbKSgvtwRCeYKZmqKb310sVQSccl1M6f3zd8817pO2HQl/bURJZL/5MKiwLnTZ7QnTKAgAAAHRBJEAF2s7orM6bJDeaRvZwKyesEfUt9ltEPRIdmtBJhx1qb1P7xyopbNiitztJz7/wgNPmw1XamR/55NxYr4jMhI4wRApai2AE7BXjkjKTI8/v110a3U8qqZAWbQqdd/7JVn+uGvPCeiBMGCT1aiQvRXup8kvvhSXZnjZGiotpeHkAAAAAbeqcASRABdrKhZ00SW60he+3fYU+bTjAfotkVtiwQyXegBbt6BwN7O2toR43B4o7frR9QLpLw7u7Q6Y1FnDKjHdoUp/IbWndEmjGPhHwKcJ+2U0EDGp6OLy5KnR6epI0ZXjd80WbpOKwL63ZHaR3xNtrQpNsx3usnBgAAAAAbGWofkMNCVCBlume4NAp3K1+3LolOHRqWCPq/K0V6viD6ESHxyWdF5bo+8OvKlRBou96hnd3a0B65+ypNHtY6GecW+bX8t2R81ycPzROTkfDvR+SPYYcDpqxTwR8irBfUpyVHyKSSUOl7inSriPSpt2h84ITWVf6pPfWh84/b2zH6IFwtEhasTV02oUdJMk2AAAAcAIjASrQdi4IawzsLElyo+38IWH7rSqgD7Zzl38kZ/WPVaInNNH32wS9GnRhWIP+gSK/1u73Rqk0zZfsMXRm/9Cyv7O1Qv4IETq3Q5oxOHLbYXYyTdgnCj5J2M8wGu8d4XRIF1TnhwjvHXFSb2lwdt3zeauthNc14j1WEuyOILzsvTKkcQOjUxYAAACgiwhPXL2ngASoQEt05iS50dRQI+rC7ZUqr2K/RRL+vb12v1cHi+nNFi49zqHJfUPzIc3fWt4petycNyhWMc66AF2V39R7X0YOOJ3Rz6OUCMmpPU7J46IJ+0TBJ4n20S3ZSkodyYyTrfwSK7ZKx4pC5wUPxXSkUFq5LXR+R0lkvWm3tOtw6LSLOkjZAAAAgBNQj8QGhpShVwTQIp05SW40Te3vUXJs+H7jeyiSkT3c6h+W6Jt61rDzh8aG9LipqDL1wVcdf185DKuXVbBPdleqoCJyGKWxxNVZyY20J6LTIRiB9uFwSFmpkeenxEtnjrDyLry9JnTemSOl5Pi652+F9UDo200a27/Nitoqb4Un2R4sZaVFpywAAADACa6hBKgfkQAVaJHOmiQ32sL32/oDXu0rYr9FEr6/9hf5tO5Axx92qL25HNKMwaH76qMdFSrtBD1uJvaOUffE0ABCYzcKDM10aXCmu8F5TsMa8gknDoIRaD+ZKY3PP2OE9XfJ56HTY1zSpCF1zzfslIrKwl47XB1CeNkdhjTlpOiUBQAAADjBnZ4TOnzF2v1eEqACLZCd5KyXJHdpI4lmYemR6NCgjNBGVPZbZG6H1VAdbNlub6cYdqi9jezhVlpcaLPtJ52kbk3pF3puPlrq17ZjkU/O4csHS/IYMgyCEScSghFoP3nFoc/NsNNNTQLoU4eETvf5pTVf1T0f3ie0p4RUf+imaJk4pP60jlI2AAAA4ASzal/o3bTjsmPk5lcucNwOFvu1rzC0sTB8CDTUd7gkoD0F7LfmqgpIGw6Gfm+zvxq25UiVSipD82iEB3I6qlV7Qz/jbglO9UuLPNRS+PLBir2Eqk40XKahfQRM6VB+6LTgyGZphbRwo9WTYPaE0OWWfSHlldQ9D88RcTA/NFgRTeE5IjbslPYei05ZAAAAgBPc21tDh31IjnVoav/Id1gCiCx8GJWJvWPULYFmo6aE77dTeseoRyL7LZLw/dUvzaWRPRoeoqcrq/RLC8LyQ5w7KFaxrggv6ECW7alUXlnoUGWN5YTYdLhKu/Mb7jnhD0jFFSQ3P5Hw7Yj2kVskeRvpL71gg1RRJU0YJGWnh857MyhHRHqidHrYsEfzVlvBjmgb2ksa0it0Wnh+CwAAAABtZl+hX+vDxhpvrMEDQGQLt1eqzFvX6Od0GPWS0KK+j3ZUqCRovzkMQ7PYbxGtP1Cl/UWh7UMX8r3doLe3lisQNKpIQoxDZw+IjWKJmscXkN79MjSQclb/WCXGRB5uad7WyDklDpK75oRCMALt42Be4/PnVSetvnBi6PTtB6XP99Y9v2CC5Arq2lXhtQIZHcFFYWU/XMAQTQAAAIDNwu+yHZTh1rBuneDWUaCDKfeZ+nB7aAPi9MGxiok8ugokVfikD8PuYD9vUKw87LcGmZLe/iJ0f53ah144DTlcEtDqfZ0z4P7utgr5gm4c9rgMnTc4ciBlUVhQL1iFT6ry0zviRMGRDvuVlEtFkSOcWv2ldCBP6pUhjR8YOu/N1XX/djml808Onb9wk1QSehKLirQEaUpYEu2313SMHhsAAADACWzNfq8OFzd/OAgAkb29NfT3dbLHoan9O/6d2NEWPmRcosehMzvBHezR8sH2CpVVhfbCmTmE7+2GhAfc+6a6NDqr4w9rlV8eqJfMfdaQODkidI6o8EkffBW5fe9gEcGIEwXBCNjvYH7j89+qDjiE54ooKpMWf1b3fMpJUlpi6DLzVqtDmDlecgfd9lBZJb23PnrlAQAAALqIgCm9vS20seb0HI/S4vi5Cxyv/UV+ras39BmN6k05WBzQmn2hDa8ERSMrrzL10fbQ/TVjcKzcfG3X8+nBqnrJ5TtL3QoPpPRIcmpCr8hJuOeHDUsVrLDClBlhHjoXDnPYq8onHS2MPH9/rrT2KykuRjpvbOi899aH5pkIHwZp4y5p15G2KmnLuRzSBeNDpy36TCpupDcIAAAAgDaz4MsKVfrqGilcDkMzh9CACrTEvC2hv2UHprs1vDtDnzVlXtjQQ/1JzNyo8BwBKbEOTe3viVJpOi5TnTe5/BdHffoqtypkWmOBlIPFAa3d721wninpWCm9I04EHb/monM7XBA6VFF4FHPeGusbZdoYKT7opOMPWMMc1RjcUxrWO/S1HSU59GknSRlJodM6StkAAACALqDEa2rRztCGwJmDY+XiFy9w3NYe8NZLGNtZ7sSOpnUHvPUSM5PIOrJ9hX6tr9cLh/3VkM6cXD48kDKuZ4x6p0ROqBK+fLCjBCNOCFyawT6mWX+IJiNocLhyr/TBBsmQdOEpocut3CYdCepRcVHY/KOF0vKtbVnalgvvsfHZHmnH4eiUBQAAAOiiwhsw0uOdOj2Hu2yB4xUwpbfDjqfT+nqUztBnjWooMfPkvjHKjGe/RRL+vT0ow61h3eiFE64zJ5f/eGeliipCgwizGwmkrD9QVS+oV8MXkEojJLlG58E3IuyTV2zlTohk4UaptFIaO0Dqkxk6762gXBAp8dLUEaHz317bMZJDD8yShvcJnTaPXhEAAABAe9uV79dnh0PvsuWuZKBlPtheoYqqut/cToeh8xn6rEkfbq9QOfut2dbs9+owvXCapbMml68KSO99GVr2cwbGKt7dcCbrhoJ6wQ4W+SPOQ+dAMAL2OZDX+PyagEN4r4jdR6RPd9Y9n3my5A6KjHt90rvr2qaMrRVe9mNF0tIvolMWAAAAoIsLv8v2pO5uDUznLlvgeJU2MPTZjCFxDH3WhLIqUx/tqL/fSMzcsIApvb0t9Hv79ByP0uiFU09nTi7/zrZy+YNuKI5zG5o2MHLZw4N6wcqqJJ+f3hGdGUc37FFaIRWWRZ6/Yae056iUlSpNHBI6L7hXhNMhzZoQOn/xZ1JRI+tuL8lx0lmjQqe9s9bKdwEAAACg3a3Y49Wx0tC7Ji/kLlugRcKDe2lxDk1h6LMmhe+3lFiHpvRjv0Wy4MsKVfrqGp5dDkMz6U3SoM6aXP5oaUAr94b1XBwWq4b7RlhBvYXbG+kdUUy7W2dGMAL2CM8VEa4mwfOsUyRH0NdPSYU1fFONyUOlzOSw165WhzDjZCkm6Eu/yie900F6bAAAAABdkN+U3tkW2oBxRn+Pkj2RmjwARLK7wK+Nh0gwfLz2Fvq14WDofiMoGllJA71wZg6OpRdOAzpzcvm3woJ0vZJdGtfTHXH5eVsjJ7IuKDdlmh1g6Ha0CIc22p7PLx0piDz/SIGVoNrjkqaPDZ23YINUEZRn4sKw5NCf75W+Otg25WwNhyHNGh86bcnnUkFpdMoDAAAAQJL03pflqvLXNVLEOA1NH8xdtkBLhN/lP7SbW4MzOv6d2NEWvt8GZ7o1NJP9Fkn4/kqPd+q0vvQmCddQcvnJnSS5/GeHq7QrPzQxdWOBlH2Ffq0PG5aqhikpr4zeEZ1Vx6+t6HwOF4Qmlw6PVs5bY80/a5SUFPbF8/aaun/36y6Nygl7bQfpFXHqEKl7aui0jtJjAwAAAOjCCitMLdlVGTLtgqFxIR2yATTPyr1eHS3tnHdiR9PqfV4dLgndb7PYbxHtyvfrs8P0wmmO8OTyrk6UJD08kDK+V4yyEiM3Tb/dSO+IIyUEIzorghFoW6ZZf4gmI+iqv7JKem+99e+Lwno9rP4yNOl1+Py8YumTz9uurK0RXrat+60HAAAAgKgLv8u2W4JTk/rERKk0QOcVMKX5YQ2CZ/TzKCWW6F5jGtpvU3I8SmW/RRT+vX1Sd7cGptObJFxnTi7/0c4KlVTWBREchtFokG71Pq8Ohw1LVaMqIJV5CUh0Rp2gqqJT8fpU75aj4ITOiz6Tisut5M/hiZ7DexY4HdLuI9KRQuv5O+skXwf4ovG4JLfLGo4qr9j6W5MDAwAAdGk0MQAdw5e5Pn1x1Br+1RcwdbDIr7ROMIwF0BG9/2WFvNVDn/kCpnbn+9QzieOpKQu+shIzB0xT245VaU+BTz2TnNEuVoe1Yo9Xx4J64RRXBpTN/mpQeOCmrCqgHokdf19V+qzjokbANJXsifxdEjClt7dF7h1R6iVvRGdkmGT8QFszTWnXEWnXYcnhkEor6xrwSytCh3DyuKQqv1RUZvWoKCyzGvhzi61eFJJ0Uh/pnFHS5r1Ww39H4Q9IG3ZYeS0O5lmD1gEAgC6p5MpJMpNiVV4Z0GvbaaABOoLMeIf6pLj05bEqvftlhcZmu5XYSKMHgMgGprsU63Loq1yvPviqUuN6cjw1x4B0l3x+6c0tZSr3SXFuQ90THMpIcCg9zqG0OIfcTm5lqJHgNhTrcqjSF1BJFY0sjUmLdciU5PWZKvN1nn3lNKSMeKfKq0yVVQXkb6LohqTMeKcqfKY8LkMOQ3I7DA3r7pTTwXdQZ0R/J7Q9w5D697AeAbOup4TXJ+WXWD0djhRYuSX250p5JVbgwR+Q4mKkbsnSoGwpJd56xMZY8wdlRXOr6ssvkTY7Jb9fGtor2qUBAABRZPgD8heWy4yJ0eBMd7SLA6BaSZWpuBirwa9/ulup9I4AWswbMJUc61R6PMfT8XA6pMtGxqugIqC8soDyygM6UmI9Yl2GeiY7lZPqUnayUz2TnEqJNWQYXTNAUXO/dFfd/uMRME05Oul+Ot6y1yzvCwTkIgDR6RGMQNszTWsopiOF0tFC6+/+XOlQvlRRZQUWYlxSnMcKNgzKllISpMS4+kM8dWSGQ5Jh/TX4MgQAoCtLWPalDq7cqR1XnyejW+dIIgh0FYYh67LdCE1nB+D4cTy1jMtpKDPBqcwEaygd0zRV6jWVW24FKPburlRFlalYl5QW71S/VKd6JrvUM9mp7okOuTpTW0krEIRovs4aiJCOv+w1yxOIODEQjEDreH11AYcjhVbAYV+uVFxmzZNpBR2S4qSe6VJqghWAcJ8AVc8IevB9CABA12ZIMozaSwMAHYcR9gDQchxPbcMwDCV5DCV5HOqXak3z+s3anhObDlVp5V6vnA4pIcZQnxSX+qQ4a3tPxMfQCAGgczoBWoTRLkxTyi+tDjwUSIcLpQO5VgCissrK+xDrluI9VsChT4b1N95z4t4uYRihDwAA0HVVByIcRufq6Al0BQ5DHJ9AG+F4sk/NkE09k63eE4GAqcJKU7llAe0v8uuLoz4FTFMep6EeSQ7lpLpql0+Pc9CrAECnQDAC9ZV7rYBDzTBLB/KtwENZpdXbweGQEjxScrzUr4cVdEiOk1zOaJe8fdWc6AlGAACAoGsBrgqAjovjE2g7HE/2cjoMpccZSo9zaHCGNa3MG1BueUC5ZQGt3udVeZWpGKeUHGsFJ3qlWMGJHolOxZAYG0AHRDCiK/MHpLziuiGWDudL+/OsaV6f5PNbPRsSY6VuKVbQITXBSjINa2gmw7D+cksIAABdm6NmpKaum3QS6KhqjkuOT6D1OJ6iK8HjVILHqb6p1nOf31RedXDiy1yf1h/0yiEp1m2oV7I1tFOvZGt4pyQPQzsBiD6CEV2BaUolFaEJpQ/kSgcLpEqvFXhwu6zeDqkJ0tBe1t/EOMnJySoiw6gdH5qeEQAAdHHV1wVcFgAdDx2agbbD8dSxuF2GeiQ51SOpLjF2UfXQTrllfu3K98nrt4Z2ykhwKCfVqV7JLmUnO9UtwdGpkyAD6JwIRpxoqnzS0aK6oMPhAml/rlRYk1BaVm+H5Dipd4aUliClJkoxVIXjZlSn7OIqDAAA1OSMqH4A6DgcEscn0EY4njo4w1BarKG0WIcGpVvtPBVVpnLL/DpWFtDGQ1Vavscrt0NKiHGob6pTvVOs3BNZSU7FumjbAGAvWqA7K9OUCkrrgg5HCq2gw9FCqdIn+XySJ8YaYiktQerbrbq3QywN522FzF0AAKCGg54RQEdlGKEPAC3H8dT5xMUY6h3jUu9U67k/YCq/PKBjZQHtK/Rr85EqyZQ8LkPZSU71TbV6TvRMciolluG4ALQtghGdQYW3LuBwtFA6VGAFHsoqJK/f+vGbGCulJEgDs+tyO3S1hNLtjaswAABQo7pnBJcFQMfDsDJA2+F46vxcTkPdEp3qllg3tFOJ1xra6VhpQCv2VqqiylSM01BqnDW0U89kq/dE90SHXNyMCaAVCEZ0JIGAlFdSHXgoqOvtkFtsDb/kD0hxHikpTuqRWjfEUlwMVwFRYdT9Zf8DANDFGTX/F1cFQMdihD0AtBzH04nHMAwlewwlexzqn2ZNq/SZyiuzek98cbRKa/Z75TSk+BiHeqc41bs6KXbPJKfiYxiwC0DzEYyIlpIKK+BwtNDK8XAgTzqUL5V7pSq/lcMhMdbq4TCir/U3OZ6E0h2JozoIwTBNAADAYTB6I9BBcdkOtB2Op64hzm2oV4pTvVKcktzyB0wVVpg6VubX0RK/vsr1yee3ek90T3Sqb6pTPZOtR3qcg6GdAEREMMJuPr90rKhumKXD+VbgITihdILHCjT07Wb1dkhLlDzu6JYbTeOWEAAAUMOo+Y8hgwsDoIOp69HM8Qm0FsdTV+RyGMqIlzLinRqaaU0r9VrDOh0rC2jDQa+W7jbldhhK8hjqm+pSrxQrONEj0akYJ3UFgIVgRFsxTSvAEJxQ+kBedULpKqu3Q1yMNcRSaqLUr4f1NylWctDboVMyHLLGY3BU/xsAAHRZhqPuHgV+bwMdSsg9RByfQKtwPKFGosehRI9D/dKt51X+6rwTZQHtLvBp0+EqyTTlcTnUK9mp3ilO9aoe3inJQxsK0FURjGiJyqrQoMPhAiu3Q2mF1RPCcFhBhpQEaUi21dMhNUFys7tPKNWxCDmqHwAAoOuquUeBVFJAh2NUt5xyfAKtx/GESGJchrKrgw2SWwHTVFH10E5WYmxfbWLs9Pi6xNjZyU51S3DIQYUCugRaxxsTCEj5JXVBhyMF0sF8K8eDz28llE6ItXo79EyrDjokWsMu8SV64jOMuttB+LwBAOjaDIPRG4EOitFVgbbD8YTmchqG0uIMpcU5NDjDmlZeVRec2HLUp1X7vHIahhJiDPVJdapXsks9k53KSnIq1kUNA05EBCNqlFZYQYYjhVavh4N5VuChIjihdJyV02FUjhV4SImXXM5olxzRUjM2NP1TAQBAdasMCT2BjsdRfcnO8Qm0HscTWiMhxlBCjEs5qdZzf6BuaKfDxQFtPVqhgGkqxulQVpJDfVKsnhM9k5xKiTVIjA2cALpeMMLnl3KL63o6HC6UDuRa+R58fiv3Q2KcFWgY0MMKOqQlWvkegGDBPSO4CgMAoGur6RlBh0mgw2FYGaDtcDyhLbmchnokOdUjybrR1zRNFVeaOlYW0NESv9bu96psV0Bup6GUWIf6plhDO/VMdqp7okMu2mKATufEDUaYplRUbvVyqMnvcDDPCj54q6zAQ2yMlBwnpSdJg6pzOyTHkVAazWMYoQ8AANB1VV8LcFkAdDyMrgq0HY4n2MkwDKXEGUqJc2hghtVkWemrC07szPPr04NVkiHFuQz1SnGqd3Weip5JTsXH0J4HdHQnRjDC6wtLKJ0vHciTSiurE0obUnK8lUT6pN51vR1iTozNR5TUXHlxFQYAAKqvBxhDG+h4jKC/HJ9A63A8ob3Fugz1TraCDpI1tFNBRUBHSwI6WhbQrnyfqvyS2yF1S3SqT4pTPZOtR3qcg6GdgA6mc7XGm6aUVyIdK6obYulgnvU8OKF0crzUK0NKS5LSE6XEWBqL0fboGQEAAGpUByIchiEH1wVAh2JdrhvVo6tyfAKtwfGEaHM4DXVLcKhbgvXcNE2VVZk6UhLQ0VK/Nh+p0sq9XjkNKdFjqE+KS71TrN4TWYlOuZ3UWyCaOm4wotxrBRxqE0rnS4fypYrqIZbcLiklTkpNlMYOsIIOqQkklEb7IXMXAACoUXNdwD0KQIfDsDJA2+F4QkdjGIYSPYYSPQ4NqB7aqcpv6lipFZw4WOzXlqNVMk0pxmkoO7m690SSFaBI8jC0E9Ceoh+M8Aek3KLqoEORdLjA6u2QXyr5/ZIpKak6ofTAbCvokJ4kxXuiXXJ0dWTuAgAANYKGaOKqAOhYGFYGaDscT+gMYpxG7VBNkhQwTRVWmDpa6teRkoBW7/OqvMqU2ymlxdUlxs5OdqpbgoNeP4CN2i8YYZpSSUVdT4cj1b0djhRUJ5QOWAmlU+KljGRpSE8r6JAcLzmJUqIDomcEAACoUX1dwD0KQMfD6KpA2+F4QmfkNAylxxtKj3doaDdrWnmVqSOlfh0tCeirXJ/WHaiSYUjxbkO9U5zqlexSz2SnspKcinVR2YG2Yk8wospn9XKoCTwcLrACD8XlVm8Hw7CCDmlJ0oi+db0dPG5bigPYgqswAABQoyZnhKyOvQA6DodUe3xymxvQOhxPOFEkuA31T3Wpf6r13B8wdawsoKOlAR0p9Wt7boV8AcntNJSV6FDvFKvnRM8kp1JiDRJjAy3UumCEaUoFpXU9HWp6OxwrtHo61CSUTk2QemdIGUlW0CEpjsZbdH41dZhgBAAAqB6+kcsCoOPhsh1oOxxPOFG5nIaykqyeEJJbpmmqqNLU0dKADpf4tfGQV8t2m3I5pRSPQ72rh3bqmexU90SHXIyYATRL84MRFd66gENwb4dyr9XbweWSUuOtXg59BkoZiVbPBzcJpXECM8L+AgCALs1qnOHCAOhIDMOoPTY5PoHW4XhCV2EYhlLjpNQ4pwZnWiO5VPpMHSnx60hpQPuK/PrscJUkyeOyclT0Tq7OPZHkUHwMfYeAhjQvGLFwo/Tx5rqE0slxUmqiNCTb6umQUZ1QmhMRuhKHrDrvEDkjAADo6hzVgQhxSQx0NNzJDbQdjid0ZbFuQ33TXOqbZj33B0zllQd0pCSgo6V+rdjrlddXKZdDOnNArCb19US3wEAH1LxgRG6xNdzSWSOtIZdIKA1wFQYAAOqQMwLosIygB79kgdbheALqOByGeiQ41SOhbminEq+pD7dXKL88EO3iAR1S84dpSvBImck2FgXoZEhgDQAAatR2i+CyAOhoanos0XMJaD2OJyAywzCUHGso1sXBAUTS/GCEYTAUDRDMUX0F5uDYAACgy3MYIXeLAug4gtO8cXwCrcPxBABojeMIRoiwNxDMCLr9kWMDAICurfq6gMsCoOMJvoub4xNoHY4noGncrwpERs8IoKXoGQEAAGo4jOrLZVpngI7GYRgyDEOO6geAluN4ApqBYwOI6PiCERxMQBAjtHcEAADowoza/3JVAHQsDCsDtB2OJ6BpHBtAZM0PRkg0uALBao4HAnUAAMAwGLYC6KAYVgZoOxxPQNM4NIDImh+MYCgaIJTDqBu+jGMDAICurXr4RhpngI6HVG9A2+F4AgC0xnH0jOBMA4TglhAAAFDDYJgmoKMywh4AWo7jCWgaTURAZMeRM0IcTUAwbgkBAAA1qq8HajpNAug4gu8h4vgEWofjCWgaTURAZMeXwJozDVDHIesqzCGODQAAujpH0L07XBYAHQr3EAFth+MJaBqHBhDZcfaMsK8gQKdD/1QAAFDDCPkDoAPhsh1oOxxPAIDWOI6cESLsDQTjlhAAAFCjeogmekYAHU/NpTqX7UDrcTwBTePQACI7vmGa2utMs2Wv9OQCafk26WiB5HRK/XtIF50iXXOGlJpo33uffo80aaj0p5ut54cLpOcXS9PHSSP6tmydy7+QrnlYevFuafKwppf75+3SrAkte6/OqMon/WO+NGepdKRQ6pMp3XC29I1pzXt9aYX08OvSvNVSYak0MFv61vnSRRNtLbYViKj5y6kGANpcV70eqLHnqLX9Sz6XDuRJgYDULUWaMEi6+gxp8tDjP//sPSZNuVd6+BvSlae3bDvsdqxIenCu9OFGqdwrndRbuvtSacpJzXv9nqPSb1+29rcvIJ08QLr3CmlUjr3lllE9eqMh06afoG98Xqaff1BU+9xpSGlxDk3oFaPvTE5UTurx3WckSav3VeqWV/P15GVpOqW357heuz3Xp/e+LNfFw+PUKzn0ve9bUKA1+7x69xvdj7tMbem+BQVa8FWlVn6rR5PLjv7rId0+MUHfnpTUDiU7PoeK/XpocZG2HvMptywgl0PqnezUpSPidOWoeLmaMWRomTegv60o0ftfVqiwIqD+aS7dPCFB5w+Ja4ctiC5H0PHpsLmJ6LkNpfr9x8UamO7Sa9dn2vpe7aWkMqDnN5ZpxZ5K7cz3q6zKVK9kp2YPjdV1YxPkcdXt0/1FPp3/32MNruf3M1OaVd+6cl3tDOw+nsLPdeGCz1dPrC7RwHSXzhkY2+A6Xrg6QyN6uNukXK05X+L4ffBVhd7/qkKbD1fpSIlfGfEOje0Zo2+d2vzrnX2FPv3pk2Kt2uuVz5TGZLl15+lJGt69bepEY2giAiLreDkjnl8s/ew5aUAP6fYZ0pCeUpVf2rhLem6xtG6H9O/v2vf+T3xHSoyr29YjhdKf37IayFv6I7ZmXY4m9mFzlzvR/Pw56dXlVkPDmH7S4s3Sr16Uyiql781q+vW3/dOqH/deLg3Ikl5fIX3vX5JpSpdOsq/cDqPuuOhKnxcAtIeufD0gSe9vsM5l6YnS9WdJI/tKMW5p9xHp7TXStQ9LL/xQmjL8+MqQlSq98VMpp3vHPHdVVklf+5NUVCb96lopI0l6eqF045+l539oBWAak1ssXfF7KSXeCrh43NLf50vX/FGa93NpYJZ9ZXcYdfcn2LVrq9f7m/OS1T/NJa/f1PoDVXpidYlW7fPqza9nKiXWcXyrbMUdrjvyfXpsVakm9olR75TQnxW3T0xUyVizw/wYb045nr0qXT0SnR2mzMHKfaYSPYZum5ig7CSnqgLSkl2VenBxsbYe8+lX56Y0uY4fzC/QZ4erdOfpSeqX6tT8rRW6591CmaY0a9iJ3chbU7/b4/661z8vlyRtz/Np02GvRmfF2PuG7eBQiV/PbSjV7GFx+vrJCYp3G1q3v0qPrizR8r1ePXFpmozqHVuzf782Jl4XDA1tIM5JdTVr/3flutoZ2H48hZ3rwg1Mr6tH/15TqvMGeTRtUGhdUyvObZEM7+7Ws1elh7w/7PPU2lJlJDh06ykJ6p3i0qESv/69ukRXv5Cr565O16CMxgMKeWUB3TQ3T8mxDv36vBTFOA09uaZEt7yapxeuyWiwbrUlqggQ2XHmjLD5cFr7lfTTZ6UzhktPfs/6AVnjzJHSbTOlRZvsLceofqHPa96qVWcxo+5vo+to7nInkK37pRc/ke65zOrNIEmnnSTll0h/nSfdcJaU1sidrx9utO4Y/fv/ky6pDjycfpK0P0/63Rzp4lMl5/H9KG82+qcCgD26+vXAriPSdx+XhvSyelEkBTW8nDZMunaqtOwLKTX++MsSGyONH3TcJW83L31iXRu88dO6cp5+kjT9l9IDc6yAQmMee1fKK7Ze37v6juSJQ6yeLn96XXr0W/aVvaYhrvY/NrxF9d/BmW6NrL7Tc2IfjwKm9I8VJfpoR4UuHRHf8vUfZ7mDlw9/bV+bf+Q3V/Ch25SxPTtuo/HADJcemJEaMm1qf4/yygJ6c0u57js7WTGuyBv58c5KLd/j1R9mpuiC6sbcU/t6dKDYr//7pFjnD42VsyMGKNtIe122f3a4SluP+TS1v0cf76zUa5vLNSa749ar5uqd6tR7N3dTvLvud9Wkvh7FxRj605JibThYpZN7WdtZs3uzk50tOqa6el3tDOw+nho61zW1fHg5jKB/tFUZk2IdHeY8UV5lKs59Yh8Hf784VRnxzpBpk/rEaPp/jup/68v06/MaD8L/d12p8soDevbqDPVMttYzvpdb5//3qP6xvER/mpVqV9EBNKFj9Yz429vW+/zxJimugS/5WLc08+S652+slF5YIn2xz7qDrnemNGOc9IOLpPigbnN3/luat0Z6++fWXfhrt1vrv2iidN9VoctOvNv6of/nb1o/9K/4vTX9rv9YD0m662Lp7kukT3dKj74rrdtuDSmQmWz9cP7ZFXU/gKUW9IxQ48t9sU966BVp5TapwmsNS/T/pktXTalbJhCwGvPnLpcO5EoxLqlXhnTtGdI3p1vL5BZJD70qLdxo3UmYGGv1LLj7EmnqiMjv35beX2/1YLjmjNBtvuYM6fmPpcWfSZdNjvz699ZJCbHWZxn8+qunSN95XNqwQzplsD1lp2cEANijq18PPPG+NTzRQzdYd/g3JHzIop2Hpb/Mk1Zvkw4WWIGKkTnSTy6XTupTt9zeY9KpP5IeucU6V0rWUIf/94b00W+t3h8LN1oBoGmjrd4JyS1v3D5u766zei8En7tjXNLlk6UHX7GGy8pOi/z699ZZwYu+3eqmpcRLF4y3rokCAcnljPz61nAYdQ0iNveMCG94GZllNdbklgVCpn92yLpzed1+ryp8pgaku3TrKQmaObQuwNVQo9Jnh6r037Wl+vSQV7mlAWUkODQmO0Z3TUmq/UH/2uYy3fe+NYzGza/k167vt9OTdemIeP30vQKt3ufVglvqhmmq9Jn654oSvbO1QodL/EqPc+icQbG647REJQf16DjvySManOHWtWPj9ZelxdqR61PPZKdunpCgy0bW1cfyKlN/X16sBV9W6mipX7EuQ31SnLpxfELd3dPV27Sn0KcHPyrSmv1VSvEYmjEkVneenhTSgD/ikUP69qQEfWdyUsg2PnFZmt7+okILt1eoyi9N7BOjn5yVpD4tGBarraXHO2QY1ih2jTW4fbi9QvFuQzOGxoYsd+mIOP34nUJtOlylcR2kkc0ONceM3ffXvba5TJJ015REFVUE9M62Ct17VnK9RsNDxX49tKhIS3d75XRYgaUbxiXomhdya4+hGs05ju2WENPwzV2jq797DpX4Q75LpJbv665eVzsD24+nZtahEY8ckiS9saVCb2yx/n1Kb7f+e2VG7TrKqgL6zcJCvbetQqakU3rH6GdnJ6t7Yt21QHPPOav2Vuobc/P11BVpmtin7ppx40GvHltZqg0HvSqvMtUj0akzB3j0k7OSG93Mr45V6feLi7XugFdxbkMzhsRpar8YffuNgpD3uGlOrvLLTf38nGQ98kmxvjhapbMHxOrhWak6UOTXX5YWa9lur4q9AfVJcerykfH6+snxclTvvEjl3l/o0/T/HAv5zvnpewV6/8tKvXhNuh5YVKyNB6usy+4hcfrhGUntGgDJTKh/vdYjyamsRGfId04kH26v0Kl9YtQrpW49SbEOnTsoVm9tKZffNJs1xGFLcb8qEFnHyRnhD0hLt0ijc0J/uDdm5xHrh/L/my7FeaSvDlq5BzbslObeE7qszy9d/4h1p/13Z0lrvrJ+cO/PlZ75Qf11G4Y0up/051ukO5+U7rxQOneMNS873Zq/L1calC1dcqo1bvWRAmsogfN/LS1+wBpaQAq5EbLRfdicuy6/Oihd9DuroeM311nDN7yy3CrjsWLpOxdYy/3zHelPb1jlnjTUGtriq4NWI03Nur/3hLRpd93wRkVl1vOC0sbLaZrW59UcTf3g37rf2k89UkOn14zHvfVA42XZul8anC25w6py8OsnDmleWY9X8BUYZxoAaBtcD0hLNlvnxbEDmrf9knS40Lom+OmVUkayVFAivbxUmvVbacGvrPJFKkPNtG/+3epR+LWp0pZ90oNzrGUeuaXx9w4EpIDZdBkNo+neilv3S6cOqb9/hlcHVLYdkHqmN/zacq+066h0/viGX1+xWNpzzL6hmgxDhlEdkLDnHeQI+hu8J/cX+iRJ/dNctdNX7q3Ura/la3SWW/dPS1aSx6H5Wyv0w/mFqvSZtQ0PDa3zYJFf/dOcumBoslJiHTpa6teLG8t09fO5mndjptLiHDq7f6x+cHpAjywt0c/PSdbw7ta1WN8UqwxG0HolyTRNff/NfK3Y69WtpyRofK8YbTvm09+Xl+jTg169eHVGSGBg69Eq/XFxsW49JUGZCQ7N3VSuny8oUk6qS6f0thoi/7i4SG9uqdD3T0/U8G4ulVWZ+jLXp6KKQO37GpJ8AVPfeyNfl4+M1zfGJ2jNPq8eXVmqJI9D35kU2gPXCNsnkvSLBYWa3Nejhy9I1cFiv/66rETfmJun16/PDAmihDNNU/5mHBqSmt0gUrPOUq+ppbsr9cbn5frGyQmKaeL1X+X6NDDdVW+5YZnW57b9mE/jT+AGXiPoYVOfaVX4TM3fWqFRPdwamunW5SPj9PMFRVqwrUKXjKgLHJRVBfSNuXkqrAjoh2ckKSfVqSW7KnX32wWSQo/F5h7HkfgDpppTBa0Y+fF/c63aWylJGpLhqnfc/Ht1if6ytFhOhzW8zS0TEuqN69+Qrl5XOwO7j6fg80Yg7PrCkGp7xrxwTbq+MTdPE/t49K1TEyRJiTGOkGPolwuKdGb/uu/vhz8u1r3vFuq/V4ReSzTnnNPQ+fKTXZX69hv5GpDu0r1Tk5Wd7ND+Ir+W7vY2um+OlPh145w8xbkN/fKcFKXHO/T21nL97qPieu8hSUdL/br33QLdMiFBPzg9UYZhqKAsoOtfylWVX/r+aYnqlezUop2V+uPHxdpb4NMvp6VELHek6TXnzNtfz9fVo+N16ykJ2nCgSo+tKtHBIr8evaSRG0IkBUyzeZeEUot6OO0t8OlAsV/TBnka3b8VPlN7C/w6d2BsveWGZro0xyftL/TbOlQTLURAZB1nmKb8EutHZN9uzX+fuy6u+7dpWj9eh/SULn3QSno5vCbBpCF5fdK3Ztb1CjhrlNWA/eBcafWXQQ3W1adVw7DuBBxW/eO3Xw9pQtgd9hdOtB41/AHpvHHSqO9ZeQtq3qsth2n60+tWYOGVe62eDpJ07lipsMya9/WzrXKv/spK+Pijy+pee87o0HWt/kq6bqqVLLrG+eMbKV+1ZV9Ilz/U9HKStOrh0LsTw+WXWMMwhW9vQqx1J2RBSeP7LL/EGvc6fJmaoZ2aen1rGEF1hWAEALQNrgesZNUj+tZfJrzR32FIjuqfWKcNsx4hZRgrnflT6dlF0q++1kgZqv9+7cy6mxrOHGkNF/Xix1YworHy/t+b1jVIU3pnSmv+1Pgyka4L0qoDOo2d14vKrM+/wdfXXBc0ccNFawSPl27XZUH1egMy5TdNVfpMrTtQpcdXlWpCL7emDfLUbt6vFxZpcIZLT1+ZXtvQfUZ/j/IrrADCJSPirMbHBqrEzKGxmhk01rs/YOrsgR5Neeyo5n1Rrq+fnKCMBIdyqn/ED8pwRrxTuWadn+z26pPdXv3ojCTdcorVaDSln0fZSQ794O1CvbGlXFeNrmtYzS8P6Plr6oZWOKV3jJbvrdTbW8s1sY/1XusOVOn0nBh9Y3xC7evOHli/DFV+6XunJWnmEGubTsvxaPMRn97+olzfnVx/ONDwQ2NkD7cemFE3HMTgTJe+9mKeXthYpttPjTyc6Kp9Xt04Jz/i/GAf3JJZL+9GQ55YXar/+6Sktni3nZqgO09vOuF2Qbl1x2x49U+Ns75DCioDJ/TlbHsM0/T+lxUqrjR1+ag4GYZ0wdBYPbioWK9sLtOlI+uCEW98XqE9BX49cWmazuhv3aU8pZ9HFb5CvbSxPORYbPZxHMH0p47qQFHTN5F9Z1KCvnfa8SVu33q0Sk9Wj9c/LCgZbIzL0JWj4nR6jkfdEhw6UOTXsxvK9J03C/Sb85J15ajGAyhdva52BrYfT9XrvObFvHqznIa0+QfWTQXjesbIYRhKjzPqn4Oq13FGP4/uO6euh0JRhak/LinWsTK/ugXded+cc05D58vfLCxSdpJTL38tIySR++UjG6/nz6wvU2GFqWevztCgDOu7/8wBHn3zlTztL/LXu1QsrDD1l9mpmtS3rmfDn5YU63BJQC9fm67R1cPBndHfo4Bp6sVPy3Xj+ASrsT3S5WeE6VV+6RvjE/T1k+vO1S6n9OelJVp/wFs7JFtD/rm8RP9YUdrotktSz2SHFn6ze5PLBfMFTN23oEjxbkM3jU9otO4VVQZkSkqNMyJ+lxRW2PxdwvcUENFxhAHtbnBtboN9kF1HpIfmSp9ssYZFMIN+oH95UBqRE7rqy08LXfdlk63Gh6VfSKcOrVs2OPBSW6wGylVaYQ1rMG+1NexBcG+BLw+GnqUjrSNYc/q0frLFGkM7/G7Ra86whlVYu90KOpw8QPrDp9K9T1tDWUwYHDrmtCSNG2CNzZyWZA3LNKZf/R4GDRnbX3rv/qaXk+ruGo3IaHx7m3OF09Ay7fGLg54RAGADrgdqhS9z89+sYYxqn58rPfh1698+v/T3t6VXlllDNlX5m1+GmreZeXLoe47oI1VUWT0vuzcyLu/Xz5amj216e2Lczd/uiNcFjsavGSK+vn2uC6xqY180wqhe79UvhDbQDEx36dGL0+WuDk7tzvdpR55f90xNkiEjpEqe2d+jRTsqtSvPr4EZ7tp1GtX/k6RSb0D/XFGi97+s0P4if8jd/Tvy/EGvUb3XKmxazfSVe7ySpMtGxIUse/6QOP3s/SKt2OvV1aMTal97Une3eiXXXZfGugz1T3PpQFGg9vWjs9x664ty/WlJsc7o59GYrBjFuhsqh3TOgNiQ9x2a6dKKPZURyx28vy8cFlrm8T096pXs1Mq9Xn3r1Mif9cgeMZr7tYyI84P1SHTVK0tDLhsRr9P6elRYYWrF3ko9uaZUJZWmfn5O42NnW19nDX9OkuRo4DM8kRhh/7PDK5+VK9YlzR5q1ZfEGKdmDonVq5vLtTvfr37VwbvV+7xKiDE0tX9oL4HZQ+P00sby2jIez3EcyWMXp8vbjO453ROdx7Vf9hX6dPvr+cpKcuq356WGvLZHoku/PS+1buFe1nF+1QvH9KclxbpsRHyjPYG6el3tDOw+nmrW+fuZKRqYHto+EaluRKov5wwM++7vZh0vB4sC6p7gql22Oeec8PPlznyf9hT6ddeUJMW6jq+PyOp9Xg3OdGlw2PE7e1icPtntrXcuSvEYmtw39Dtj5V6vBmW4NCbbEzL9suHxeuHTcq3c49WAtIbP8w1tT/C0i06KD1n2wmFx+vPSEq3c69X4XqHvF+zq0Qk6e0DTPaBinMdXd0zT1H3vF2ntfq/+emGaeiY13m4VaZuD59n9XcL3FBBZ84MRdo+L3y1Zio+R9h5t3vuUVEgX/84aN/onV1hd7uNjrMTFN/1FqqwKXY/LaQ1tFCwr1fpbUFL/PYPHdZasq6LwZb71qDWUwl2XWA37SXHWctc+bOVyCF9Hc3NGGI0sl19iDd0QPr9m/OSabbnzIqt3wZyl0tMfWcMiTB4q/eLqumEf/v1dq/Hk+cXS71+xlp81XvrFNfWHTQqWFGcNWdEcTQ3TlJ4obd5df3tKK6y7V9MSG99n6UnWPglfprC0bv121duaBo3GPi8AwPHhesDq+bgvt/4yv/6a9MPqXiDn/TJ0nb98XvrPB9L3Zls9JFITqq8Hnmy4DMHbUdM4n5EU+p41icO9VY2XNyu18WBFjeacL9MSI5zXrXHYGz2v1/SIaOhzrLkuyLD7ukC29oyoWe0fzrcaaEq91rAwL24s013zC/Tk5dawE7nlVqvl7z8u1u8/Lm5wXfkVZmhMKujfd88v0PI9Xn17UqJGZbmV6LF+Ut/6ar4q/Wbz4mthyxRUBORySBlhY0AbhqHMBIcKykPvUEyNc9RbZ4zTUKWv7v1/Pi1ZWUlOzd9aridWl8rjkqbkeHTPmcm1Db8ypDi3US9IEeMyVOlvuNzhcbpuifXv0m6ozOESYwwNb0byVan5wzR1T3TWjnV+Rn+PUmIdenhJsa4YGd/oe6XGOVTQwF2gRZVWXUlpYH+fSOzu0Lw736fV+7yaUd37prh6v9YEI17ZXKa7z7DOPQUVAWXG19/fNeOjG9XlPZ7jOJLBma5mD9PU3P2yv8inG+fkyekw9MyVGUqLb7oRNsZl6IKhcXp4SbF2F/g0qJEASlevq52B3cdTzSoHZbg0KqsZQ3I1UI6ap2lhd8Z7qk8NwecyqXnnnPBzXn71MZqVdPx1sqAioN7JDZ9bgt+jRkPnoYKKgHo1sI4eSdZ3Sc2d/5HO1Q3eC2tILoeVjyhYzXmnsInvnO6JjtptaEzIezbBNE3dt6BQb24p1+9npui8wU0HO1JjHTLUcO+Hwgrrc2voM29LfE0BkR3fAGl2Hqkup3TGCOnDjdLBPKlnE3cRffK5dChfeuNnVqLCGkXldWUN/tb1+a0ft+lB3U+PWkn3lJ5U/1s5+Nu43jRZQwG8v0H60aVWw3+NyiopvzTymbm1dwSmJ1rJG8PnHy6w/mYkW/PcLunbF1iPwlJp8Wbpty9LV/1R+vQvVpLOzGTpgRusx75j1t2Wv3nJuqv05XvC37nO0i3SJQ80vR2StO6RxodpGt5Hem2FdKQwNADyxX7r70l9Gt9nJ/WRXl1u3YUaHPjYsq95r2+N4CrCFTEAtA2uB6SzRklPLrByXowLyhsxICzXQfC65y6zElL//OrQZfKKrQTOzWk9jvgrtYnWhodfl/74WuT5NfpkSuv/3Pgyw/tY5/Dw9/tir/W3sfN6vEfq36Ph12/ZZyUr79fD9usCO4MRNesNbqCZnGMNyfDypnK9u61c5w+Nq21EuP3UBE2P8KO9f7qrJn5Su2rDsBpRP9pRqe+dlqjbg/IpVPrM2h/wDTX6NNVhJS3OIV9Ayiv3KyO+7prNNE0dKw1oVJa7wSrZ2DoTYhy6c0qS7pySpGOlfi3eWamHPy7W7a/n6b2buzf4muAyN7kt1X+PldVPlHmsNKCc1PqNQMFW7fXq+pfrDzPSkI9u7dasYZrCjcm2GnV3Ffg0IityA+/Qbi7N21JRL2Hntlwr38jQTNcJfTlbU9ftajx9ZXOZTEnvbqvQu9sq6s1/fXO57pqSJKfDUFqcQxsPVdUrR25ZdY+26jIez3EcyblPHrWGfGnC9yYn6vvNGO5rf6FPN7yUJ1PSc1elKzu5iRvPGuB01B82JVhXr6udgd3HU6RLrqbK1Jx1NPYTvqlzTvhrM6qP0cMlxz/cT2qsQ7ll9V93rCzQYPkaKm9qrENHS+uv40ipdcynVQc9a4aPqgoLwBdUn9PDgzm+gDUvLa4uqHCs+vupoWGPgv1jWYn+trwk8gLVeiU7tej/NT1Mk2ma+tn7hXrls3I9MCNFlzSRJ6dGXIyhnDSnth3z1SvvtlyfYl1S37TGz+GtxfcUEFnHSWAtST+4WPrgU+kHT0rP/tDKGRCsymc1Tsw8uW6MZE9Yl/+nF4aWOdjcZdJtM+uev7Lc+jtleOQzUWz1RX1FVf0f6KZZ//2fXVQ3PENzfvg39J6N/aKbOkJ6e410qKCuN4QkvfyJ9SP8lMENnKUSrYSUh/Kln/7PGkJiWO/QZfp0k26dIX38ubRqW+PlHDtA+uA3kecHa2qYpgsmSA/MtYaLuuPCuukvfmw1Gpw7pvHXz54g/e8ja2iMSyfXTX9piZSVZg1PZVujgxH6AAC0ja5+PfCt86UXPpbueVp69Sf1h1lsqHyGUb8M76+XDuZbQYzwMhxPuZoq743TpBknR55fw+Nq+nw56xTpR09Zw05OGGRN8/mlOcuk8QMjJ6+uff0E6fF3rbwbNbm1isuta6eZJzdvOMqWMqwf6HYlx5VCG0KC3+feM5P13pcV+uvSEp0/JFaD0l3ql+bUF0d8+tEZjd9VGr5OhyRTksdphLzH3E1l8puh7x1b3cBR6TPrbXfNemumn57j0ROrS/XW5+W6eUJdkOOdbRUqqzJ1et/QZJTh29jQOoN1T3DqypHx2nrUp6fWlqqyylSc24j4msamO8KWeWtLuS4YUnccrt3v1f4iv64aFdfo5z0qy63Xrm/eME1Zic4W1Z2a4a/6pboaff30QbF6aWO53t9WodnD6rbltc/K1SPRoXHZblvrbrTVJFUPT+DaFvwBU69tLlffVKcenF6/l9jCHdZwWkt2VuqcgbE6tXeM5m+t0Mc7KnRW0HAmb2+1ghg15Tye4ziSJy5NU2Uzhmnq0Yz6d6DIr+tfypPfNPX81RnqcxzBsyq/qflby5Ue51D/1Mbfq6vX1c7AzuNJinyua0iMs/FzUPg6Gpve1Hki/LUD013qm+rU3E1lumV8QkjOiKac2idG/15dqu3HqjQ4sy6Q/PYXod8DDZWjxuk5MXp0Zak+P1ylkUE9497YXC5D0ml9rPNq3xQraLj1aJXO7F83xNLCryojvtdbW8p108l1+ZjmbbHKNblP44mjrx0Tr3MGRh7GqUb4NUZDggMRv52eoquayDcTbvqgWP13XakOFflrc4GUeAN6f1uFpg2MVYzdo1vQRAREdHzBCLsP1lOHSH+6Wbr7Kemc+6yxkE/qbTU6bNxlNSyc1Ee6YLw0aYg1BMHdT0n3XGbdSTlnqbR5j7Wu4CEQDMNqyPjnO1JZpXTyQKvB/eHXrcbu4ISP4ds6IMtqFJ+7VBrWyxrKKCvNCgScNswanzkzWeqbafUYeHZR3R2ILR2mae32hn+sn36SdM/l1h2Yl/zOugszLdHa7vc3SL+61tonknTNH619NW6ANezC3mPSY+9adyUOzrZ+mF/0W+mK06TBPa2GjnXbpYWfSrNPabycKfFWg0BbGN5HuuEsa5gol8P6bBZutIaW+tmVVtlr/OFV6xF89+v0cdLZo6x6UFIhDehhjZf94Ubp8W9L7uO/W6fZHIZqh7lgmCYAaDtd/XpgYJb0xHelW/8unXGvtf1j+ltlP1YkfbTRWi45rm49M8ZJLyyRhvSykl9v2CH97e26xvvGyhD8Kze4XM0eVirderSFG86yeoXc/Ffpl9dYw3Y9+YH01UHp9Z+GluPi31n7+tizddO+P1ua84l1HfTTK6w8FX9+0+qpcu/l9p6vHUbd/SQ23gdR8zf4UjE1zqFvnZqohxYX660t5bpkRLx+Nz1F35ibp5vm5urykfHKSnSooMLUV7k+bT5cpX9cnNbgOpNjHZrYO0ZPrC5RerxDvZKdWrXPq5c3linZE7SNsu5QlqSXNpYp0eOQxyX1SXEpLc5Rr+fBGf1iNLWfR3/4uFglXlPje8Xoi6NV+svSEo3o7tKlI+Kavks1LH526bPHdM4Aj4Z1cysl1tBXuT69/nmZTu7pVnyMEfySJtcVPD08TrfpUJV+8l6BLhgap4PFfj28pFhZiQ7dMK7xBJpJHofGZLesETncI58U61hZQBN7xygryaGiClOLd1bqpY1lumBorEZn1zVE/XVZsf62rETPXp2uU/tYjUJnD4zVlJwY/eKDQpV6TeWkOfXWlnJ9vKtS/zcrVS7niX0tW3Nc2nEP0eJdlTpcEtA9U5M0Oad+I9zQbm79b32p5mwq07RBsbp8ZJz+s7ZUP5xfoLumJCknzaXFOyq1ZJfVMOgMKmNzj+NIghNLt8axUr+ueylXR0r9emhmqvLKA8or99bOz0pyKrt6aJjfLiySL2Ad490SHDpY7NfT68r0+RGf/nB+Skhdo652TnYeT7Xrl/Rlrk+BBmJpfVOdtT3shnZza+VerxZur1C3RIcSYxwaENRjqF7PiAjTg+fVTaj/mvDX/vrcFN36ap6ueP6Ybh6foJ7JTh0o8uvjXZX68+zIx+fNExI097My3fxqvn5weqIyExx68/MK7cizegA5g1NkRdjXN09I0Guby/XNV/P0g9OT1CvZqY92VOjZDWW6bmy8BlQnxu6e6NTpOTF6bFWJUuMc6pns1LLdlXrvy4p622PICvA8uaZUZVWmRme5tW6/V/9YUaIz+3t0Sp/Gz2lZSU5lJbVNG8yvPizSy5vKdeWoOA3r5tKGg3XfOTFOQyOCAjDXvZSrVXu9+vLu7Nppt05M0OufV++fKUmKcUqPrSyV12/qztOTbL+flG8qILLjCEaofe7+vmmaNH6Q9M/50l/eko4UWA3KA7OlK06X/t8MqxwZydLLP5bue1a67Z9Wr4ALxkv/+b505k8V8ktCstbx0o+suwz/9LoUGyPdeLb06+si3wUoWY0Nf7/Naiy/7EGrb9s9l1vjUv/7e1aC6F8+b939eOoQ6bWfSlf9IXQdCjuLRFQ97+9vNzz7rZ9byavf+5X06xelH/3XGgd6SC/pH7dL151Zt+wZI6S3Vlm9BorLpe6pVqP9jy61fpibsu44fOkTa1zuKr+VFPuOi6weCu15p/+fbrZ6UPzrfevz7ttNeujroXetSlLAtPazqdDy/e8ua3ipB+daQ28M7ik9+T0rQamd7L4KA4CurEtfD8i6w3/Z763AyfMfW8H4gGnlZhg/UHr2LmuZmvU8dKN11/8jb0illdKYftL/fmAN0dhkGSL9Mj+O8raV2BjpzZ9Jv3je+ozKK6VR/aS591g9V4L5A9YjuGzdUqR37rfqw7cfs8YaOGWwdQ01NKxXaFurLoetwYigv+EfyU3jE/TM+jL9dXmJLhoep9NyPHr9hkz9Y3mJfrOwSEUVAaXGOTQ4w6VZw2IbbVz5y4Wp+tWHRXpocZH8AWl8rxj97+p03Tw3P6Q69E1z6RfnJOuptaX62ou58pvSH89P0RWj4htoxDH0r8vS9OelxZr7Wbn+uaJEaXEOXToiTj+amtRA4unI1a5m+ml9Y/Th9kr9Z22pyqtMZSU5ddmIeH1ncmKD1bvBfdnA9OBGGUn6/fmpem1zub7/Vr68flOT+3r0i2nJzRorv62Mznbrv2tLteCrChWUB+RxGhqU6dJ95yTr+nHxIdthmqpNOh48/bFL0/TwkmI9srRYhRUBDUh36a8XpurCkxrpfXWCMIy6z7atv87mbCpTjFO6cnT9gJokZSQ4NGNwrN7ZVqFjZX51S3Dq+Wsy9JuFRfr94mIZhjSln0e/OS9Z35ibr+TYunHMm3sc2217npWoV5Luerug3vw7TkvUnVOsm8iGdnPp+U/L9OaWcpV4TSXEGBqTHaOnr0zX1P6hwRrqaudk5/Ek1X33/vidwgbnPzgjRdeMse6S/8W0ZP1yQaG+P69A5VWmTu0ToxevzYh4vowYpFDT55yGXnvmAI9e+lqG/rqsRL9aWKRKn6nsJKfOHdT48ZmV5NSL12bo1x8W6b4FhYpzGZo+OFY/mJKou+cXhnwPhJejRmaCU3Ovz9QfFxfpj0uKVFJpqk+qU/eelaRvnhIaLH9kVqp++WGRfr+4SH5TmjYwVn+9ME0XPXOsgZwRhp68PE2/+qBI/1herFiXoWtGx+snZ9nfgB/sw+1WgHbOpnLN2VQeMq9XslOf3F43zFOg+rskuHyZCU69/LUMPbCoSD+aXyCfKZ3c060XrsnQoEwbe8pWo4UIiMwwTbPpfptzllp/rzzd5uLY5PZ/Sm+slA4+He2S4ERyKN9KFnrzudbdsQCAjo3rAdiJ64ITzpxNZbp7foHe+nqmRrdRDwdEx+ESv57fUKqvjU1Qj0Qbe063wt+XF+vhj4u1/Fs9WpSLAWgvneF46qzufbdAb24p14bvZykmCr2Afvh2vuZvrdCWu7KbXhiNmrOpTIkxhs4fShAVCGd/OBAAAAAAAEiS/ru2VJKVjL7Kb2rZnkr9d22pLh0RRyAC6CL+srRY3RMd6pvqUpnX1IfbK/Tip2X63mmJUQlEAEB7IRgBAAAAAEA7iXMbenJ1ifYV+eX1meqZ7NTtpybqe6clNf1iACcEl0P616oSHSwOyB8w1S/NpZ+fk6ybJyQ0/WIA6MS6xjBNgB0YjgEAANTgugDosBhWBmg7HE9A0ximCYis/bKuAQAAAAAAAACALolgBAAAAAAAAAAAsBXBCAAAAAAAAAAAYCuCEQAAAAAAAAAAwFYEIwAAAAAAAAAAgK0IRgAAAAAAAAAAAFu5mrWUw7C5GAAAAAAAAADQuTkNmlKBSAzTNM1oFwLolKp8Um6xlJEkuZsX1wMAACcorguADqvKbyqvPKD0OIfcTlqHgNbgeAIAtAbBCAAAAAAAAAAAYCtyRgAAAAAAAAAAAFsRjAAAAAAAAAAAALYiGAEAAAAAAAAAAGxFMAIAAAAAAAAAANiKYAQAAAAAAAAAALAVwQgAAAAAAAAAAGArghEAAAAAAAAAAMBWBCMAAAAAAAAAAICtCEYAAAAAAAAAAABbEYwAAAAAAAAAAAC2IhgBAAAAAAAAAABsRTACAAAAAAAAAADYimAEAAAAAAAAAACwFcEIAAAAAAAAAABgK4IRAAAAAAAAAADAVgQjAAAAAAAAAACArQhGAAAAAAAAAAAAWxGMAAAAAAAAAAAAtiIYAQAAAAAAAAAAbEUwAgAAAAAAAAAA2IpgBAAAAAAAAAAAsBXBCAAAAAAAAAAAYCuCEQAAAAAAAAAAwFYEIwAAAAAAAAAAgK0IRgAAAAAAAAAAAFsRjAAAAAAAAAAAALYiGAEAAAAAAAAAAGxFMAIAAAAAAAAAANiKYAQAAAAAAAAAALAVwQgAAAAAAAAAAGArghEAAAAAAAAAAMBWBCMAAAAAAAAAAICtCEYAAAAAAAAAAABbEYwAAAAAAAAAAAC2IhgBAAAAAAAAAABsRTACAAAAAAAAAADYimAEAAAAAAAAAACwFcEIAAAAAAAAAABgK4IRAAAAAAAAAADAVgQjAAAAAAAAAACArQhGAAAAAAAAAAAAWxGMAAAAAAAAAAAAtiIYAQAAAAAAAAAAbEUwAgAAAAAAAAAA2IpgBAAAAAAAAAAAsBXBCAAAAAAAAAAAYCuCEQAAAAAAAAAAwFYEIwAAAAAAAAAAgK0IRgAAAAAAAAAAAFsRjAAAAAAAAAAAALYiGAEAAAAAAAAAAGxFMAIAAAAAAAAAANiKYAQAAAAAAAAAALAVwQgAAAAAAAAAAGArghEAAAAAAAAAAMBWBCMAAAAAAAAAAICtCEYAAAAAAAAAAABbEYwAAAAAAAAAAAC2IhgBAAAAAAAAAABsRTACAAAAAAAAAADYimAEAAAAAAAAAACwFcEIAAAAAAAAAABgK4IRAAAAAAAAAADAVgQjAAAAAAAAAACArQhGAAAAAAAAAAAAWxGMAAAAAAAAAAAAtiIYAQAAAAAAAAAAbEUwAgAAAAAAAAAA2IpgBAAAAAAAAAAAsBXBCAAAAAAAAAAAYCuCEQAAAAAAAAAAwFYEIwAAAAAAAAAAgK0IRgAAAAAAAAAAAFsRjAAAAAAAAAAAALYiGAEAAAAAAAAAAGxFMAIAAAAAAAAAANiKYAQAAAAAAAAAALAVwQgAAAAAAAAAAGArghEAAAAAAAAAAMBWBCMAAAAAAAAAAICtCEYAAAAAAAAAAABbEYwAAAAAAAAAAAC2IhgBAAAAAAAAAABsRTACAAAAAAAAAADYimAEAAAAAAAAAACwFcEIAAAAAAAAAABgK4IRAAAAAAAAAADAVgQjAAAAAAAAAACArQhGAAAAAAAAAAAAWxGMAAAAAAAAAAAAtiIYAQAAAAAAAAAAbEUwAgAAAAAAAAAA2IpgBAAAAAAAAAAAsBXBCAAAAAAAAAAAYCuCEQAAAAAAAAAAwFYEIwAAAAAAAAAAgK0IRgAAAAAAAAAAAFsRjAAAAAAAAAAAALYiGAEAAAAAAAAAAGxFMAIAAAAAAAAAANiKYAQAAAAAAAAAALAVwQgAAAAAAAAAAGArghEAAAAAAAAAAMBWBCMAAAAAAAAAAICtCEYAAAAAAAAAAABbEYwAAAAAAAAAAAC2IhgBAAAAAAAAAABsRTACAAAAAAAAAADYimAEAAAAAAAAAACwFcEIAAAAAAAAAABgK4IRAAAAAAAAAADAVgQjAAAAAAAAAACArQhGAAAAAAAAAAAAWxGMAAAAAAAAAAAAtiIYAQAAAAAAAAAAbEUwAgAAAAAAAAAA2IpgBAAAAAAAAAAAsBXBCAAAAAAAAAAAYCuCEQAAAAAAAAAAwFYEIwAAAAAAAAAAgK0IRgAAAAAAAAAAAFv9f1BXfgKzoMHMAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Visualize the SHAP values for Record number 2 with Model Prediction: 0.1621972769498825\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABiUAAAFqCAYAAAB1UllNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNMklEQVR4nO3dd5wcdf3H8fdsu36Xu1x6ufTeSCMJJKGE3qT3IqCgPwsqKqIIKAIqiCgqFkRQagiE3iE9hJBCQkII6aT3XG+78/vju3Nbbq/mbvfK68kj3N3s7Ox3Z78zO/P9fL+fr2Xbti0AAAAAAAAAAIBm5kp0AQAAAAAAAAAAQPtAUAIAAAAAAAAAAMQFQQkAAAAAAAAAABAXBCUAAAAAAAAAAEBcEJQAAAAAAAAAAABxQVACAAAAAAAAAADEBUEJAAAAAAAAAAAQFwQlAAAAAAAAAABAXBCUAAAAAAAAAAAAcUFQAgAAAAAAAAAAxAVBCQAAAAAAAAAAEBcEJQAAAAAAAAAAQFwQlAAAAAAAAAAAAHFBUAIAAAAAAAAAAMQFQQkAAAAAAACgNXnjE+lAfqJLAQCNQlACAAAAAAAAaC0OFkrf/It0zj0EJgC0SgQlAAAAAAAA0HyemiNlXibNX1P3uiO+I515d3xeq7XKSZeevlXatCcYmChoks0u3lamvN/u1MzVxU2yPQCoiSfRBQAAAAAAAAAQ9LsXpUp/3etNHCjN+Uw69x7ptTuk7PTmLxsANAGCEgAAAAAAAGgZlj0kWVaiS5FYv39JKquo//qfbZO27SMoAaDVICgBAAAAAACAliHJm+gSNExhqZSe3LTb3Pffutcpr5SueUh6c7n08I3S6L5NW4ZWprg8oFQfWeqB1oKgBAAAAAAAAJpfwJYeell6/H1p50GpV6506/nSldND64z4jtS7k/TGnZHPfeID6ZHXpc17pC4dzHMmD5HO+430t5ulK09o+Gs5Plwt/fEVaflGqbRCGtBNuvEU6YZTItdzynbfNdKdz0iffGlGJ6z+c1PsnfqLDkhcd3KzvVRJRUCPLC7Ua+tKtDPfr3SfS1PyfPrR1Ez1ywk1K077+x51y3DruStyq5Y9uqRA980p0PS+SXryko5Vyx9eWKA/LCjQ/Js6q3cHs42ySlv/XFqo2WtKtO1wpZI8lib09OmHUzM1oksoULV4W5kue+aAHjizg4orbD25vEjbDlfq25PS9YPjM5ttPwBoWgQlAAAAAAAA0PzuesakJbp+huT1SP9+T/rW36T+XaVJg2t+3p9fk37+P2l4b+mOSyV/QHp6rvT2iqN/rcffk255TJowwAQt0pJMkOIHj5kAyD1XRW53+wEzufT5k6TzJkpFZUe3TxqjvFI6WNjsAYnKgK1rZx7Ukq/KddqgZF0/Pl07jlTqyRXFmrd5n168KlcDc03AYEpekmZ9VqySioBSvGbEwqKt5XJZ0sfby1Xut+VzW8HlZeqZ6a4KSFT4bV0z84CW7yjX+cNTde24NBWUBfTsp8W68H/7NfOKjhrVzRdRtn9/UqjDJbYuG52qTmkudctwN9t+AND0CEoAAAAAAACg+VX4pTn3Sr5gc9T5k6RR35P+/nbNQYlDhdI9z0uDukvv/1pKTTLLbzxFmvKTo3ut3YeknzwhXTBZevx7oefeeKr0k/+YkRnXz5D6dQ09tmWv9NebpatOaMweaBrpydKbd0ru5k1XNHN1sZZ8Va4bxqfplydnVS0/ZWCyLnrqgO5+P1//u9SMgJjSO0nPfFqspdvLNa1vsir8tpZuL9fXhqXoxTUlWrGzXMf2SlJpha0VO8t13rDUqu39Z1mRPtpWricuztEJ/UKpsK4+Jk2nPrZPv/kwP2IEhiTtzPfrw290Vk4qwQigNSLZGgAAAAAAAJrfjaeEggSS1D3HpEratLvm53ywSiopN4ECJyAhSZmp1dMrNfS1Zi8xoymumi4dyI/8d8Y4kwJq7meR283JkK6YVr/3e5RKK2y9vLY49oPNHJCQpLfXl8qS9N0pGRHLJ/RM0pQ8nxZuLVNBWUCSNCXPjGRYuLVckrRyV7mKK2xdPz5NHVNdWrjFjCj5ZEe5yvyh9SVp9toS9c12a1RXrw4W+6v+VfhtHd8nSUu3l6u0wo4ow4UjUglIAK0YIyUAAAAAAADQ/Pp0rr4sJ136an/Nz9m6z/wc2K36Y4N6HN1rfbHD/Dz/vpq3s/dI9e26mj8gUFph6+uzDmjJtnIN7ezVoNz4TwC+7bBfuWkuZadUf79Dcr1atLVc24/4NbSzS7lpbg3K9WjRVhN8WLS1XB2SLQ3v4tXk3j4t2lauH0pVj0/JCwWYNhyoVGmlrWP+vKfGshwsCai7NxSE6JNNkybQmnEEAwAAAAAAoPnV1LvftmMvP5rH6vVawd//drPUvWPM1asFN1J9sddrQqUVtq4PBiQePKtDQgISdYm156fkJenJ5UU6UhrQoq1lmtw7SS7L0pS8JN357hEVlZvlAzp61CXdHbYtWwM7enTXjKwYWzVyUiM/zxSv1VRvBUACEJQAAAAAAABAy+QEBdbvlE4eHfnYlzuPbtv9g6MvcjKkE0ce3baaSLnf1g2zDmjh1nKN6urVlkOVemhBfp3P++bEdKX5mnYER+8Obs3ZVKlDJYFqoyXW76+Qy5J6ZoWCC1N6+/SfZUX6cFOpVuws1x3BeSiOy0tSRUD6YGOZVu2u0JXHpEZsq1+2R3uLApqS55PLItgAtAcEJQAAAAAAANAynThKSvZK/3pXuvak0LwSBSXSY+8e3bbPnyTd/ax03wvS9BGRc1ZI0pFi89pJ8RupkF8a0MfbzbwMq3ZXaNXuino978oxaUpr4kEcpw1K1oebyvSXxQX6xUmhUQzLdpRr0dZyTe2TpIykULBiUu8kuSzpkUWFKvObYIRkUi31yHTr4YUF8tuh5Y7zh6fq3jn5+vuSQn1rUuT8FZK0r8ivTmnMHwG0JQQlAAAAAAAA0DLlpEs/v0S64ynp5Duky6dK/oD01FypY6a0bb+kRvau79FReugG6Tt/lyb8SLpsqtS7k7Q/X1qzTXr9E+njB6S8GPNTNJPcNLcePT9HN790UMM7e/XkpR2VmdT8c1jEcvHIVL20pkT/XFqk7Uf8mpKXpB35fj25vEgZSZZ+eXJmxPpZyS4N7+LV6t0V6pbhUr+cULPj5N4+vfBZiVyWNLl3ZFDi+vFpWrClTPfPLdDibeU6Li9JGUmWduT7tXBrmZI8lp67PDcu7xlAfBCUAAAAAAAAQMv1/XOkzBTpkTekXz0ndekgXXOiNKyXdOUfpJSjGCJw1QnSgG7Sn16THn9fOlJkgh0Du0m/uMS8Vpyd3D+5KjBx1XMH9N9LOiorOf6BCY/L0hMX5+jPiwv12uclem9DqdKTXDqpf5J+eHym+nes3qx4XF6SVu+uiJjI2ln+wmclGtbZW+29eN2WHr84R/9dXqQX15TooYUFkqQu6S6N7ubTRSNSmu9NAkgIy7ZrmxUIAAAAAAAAaIH+9Kr0i6ek934tTRyY6NI0ufc3lup3c/P15CUdIyaGBoDWjqAEAAAAAAAAWq7Scik5ajREfrE05SdSUZn0xd8kX9tMBuIP2HK7mPwZQNvSNs/YAAAAAAAAaBvmrzVzSpx3rNQ9R9p+QHpqjvn5p2+02YCEJAISANqktnvWBgAAAAAAQOvXr6v595/3pQMFJggxMk/67bXSORMTXToAQAORvgkAAAAAAAAAAMSFq+5VAAAAAAAAAAAAjh5BCQAAAAAAAAAAEBcEJQAAAAAAAAAAQFwQlAAAAAAAAAAAAHFBUAIAAAAAAAAAAMQFQQkAAAAAAAAAABAXBCUAAAAAAAAAAEBcEJQAAAAAAAAAAABxQVACAAAAAAAAAADEBUEJAAAAAAAAAAAQFwQlAAAAEmDOnDm66667VFxcnOiiJMzhw4d11113aeXKlYkuCgAAQFx99tln+stf/qJ77rlHd911l3bv3i1Jevnll/W///2vwdvbtGmT7r33XuXn5zd1UQGgyRGUAAAAAAAAAOKkqKhIL730knJycnTVVVfpxhtvVMeOHbVr1y6tXLlSJ510UoO32a9fP/Xo0UPvv/9+M5QYAJoWQQkAAAAAAAAgTg4cOCC/369Ro0apT58+6tmzp7xerxYsWKAePXqoe/fujdruhAkTtHr1ah05cqSJSwwATcuT6AIAAAC0Z0eOHNGrr76qTZs2SZIGDx6s0047TWlpaVXrfPbZZ1qxYoX27Nmj0tJSdejQQUOGDNG0adPk8/mq1jt06JDef/99bd26VcXFxUpOTlbnzp112mmnqWvXrhHb++ijj7Rnzx5ZlqVevXppxowZ6tatW43l3L17tx599FGde+65Gjt2bMRjX375pZ566ildfvnlGjx4sA4ePKh58+Zp27ZtKigoUHJysrp166aTTz5ZXbp0qXV/zJ49W1u2bNEtt9wSsXzOnDlVKa8ctm3rk08+0bJly7R//355PB7169dPp5xyirKzs2t9HQAAgESYPXt2VerKmTNnaubMmerTp48uuugirVu3TqeffnrE+q+99ppWrlyp66+/vipYYdu2nnzySe3du1c333yzMjIyJJnrSJ/Pp+XLl+vEE0+M6/sCgIYgKAEAAJBAzz33nIYPH67x48dr7969+vDDD7Vv3z7deOONcrvdkqSDBw9q4MCBmjRpkrxer/bv36+FCxdqx44duvbaa6u29dRTTykQCOiUU05RVlaWiouL9dVXX6m0tLRqnfnz5+uDDz7QmDFjNG3aNPn9fi1atEiPP/64vvGNb6hTp04xy9m1a1d169ZNK1eurBaUWLlypdLS0jRw4EBJUkFBgVJTUzVjxgylpaWppKREK1eu1L/+9S/ddNNNys3NbZJ959ykH3vssZoxY4ZKSko0d+5cPfbYY7r55puVnp7eJK8DAADQVKZNm6YePXro9ddf18knn6y+ffsqKSlJGzdulN/vV58+fSLWP/3007V9+3bNnDlTN910k5KTkzVnzhxt2bJFV111VVVAQpLcbrd69eql9evXE5QA0KKRvgkAACCBhg4dqlNOOUX9+/fX5MmTdc4552jXrl1as2ZN1TrTpk3TpEmTNHDgQOXl5Wns2LH62te+ps2bN2vPnj2SpOLiYu3fv18TJ07UqFGjlJeXp6FDh+rUU0+turk9cuSIPvzwQ02cOFHnnXeeBg0apKFDh+rqq6+Wz+fTnDlzai3rmDFjtG3bNh04cKBqWUlJib744guNHj1aLpe5tMzLy9Opp56qYcOGKS8vT4MGDdLFF1+szMxMLVu2rEn22/bt27Vs2TLNmDFDp556qgYMGKCRI0fqmmuuUVlZmRYvXtwkrwMAANCUcnJyqjqBdOzYUT179lSnTp20fft2eb3eap03PB6PLrnkEhUXF2v27NnatGmT5s2bp6lTp6p///7Vtt+tWzft3r1b5eXlcXk/ANAYjJQAAABIoJEjR0b8PXz4cL300kvasmWLRo0aJcmkZfrggw+0efNmFRUVybbtqvX37dunLl26KCUlRTk5OVq0aJFs21afPn3UtWtXWZZVte7GjRsVCAQ0evRoBQKBquUej0d9+vTR5s2bay3rqFGj9O6772rlypU6+eSTJZlUUJWVlRozZkzVeoFAQAsXLtSqVat08OBB+f3+iPI2hfXr18uyLI0aNSrivaSnp6tLly7asmVLk7wOAABAPDgjTcOv3Rw5OTk699xzNXPmTG3YsEF5eXk64YQTYm4nLS1Ntm2rsLBQOTk5zVxqAGgcghIAAAAJFJ1iyOVyKTU1VcXFxZKk8vJy/fvf/5bH49FJJ52kjh07yuv16siRI3ruuedUWVkpSbIsS9dcc43mzp2rhQsX6u2331ZKSopGjRqlk046SUlJSSosLJQk/eMf/4hZllg3weFSUlI0ePBgffrppzrxxBPlcrm0cuVK9ejRQ507d65a7+2339bHH3+s448/Xnl5eUpJSZFlWXrllVeqynu0CgsLZdu2fv/738d8nDklAABAa1JRUSGPp+ZmuoEDByo9PV2FhYWaPHly1QjVaM42muqaCwCaA0EJAACABCosLFRmZmbV34FAQMXFxUpNTZUkbd68WQUFBbruuusicgyHzxPh6NChg8477zxJ0oEDB7RmzRrNmTNHfr9fZ599dtU2L7nkEnXo0KFR5R0zZozWrFmjTZs2KSsrSzt27NDZZ58dsc6qVas0evToqtEUDmfy7dp4PJ6YN9FOkMbh9CT8+te/HvMG3pmPAwAAoDVITU3Vrl27anz8tddeU1lZmTp37qw333xTvXv3VkpKSrX1SkpKqrYHAC0Vc0oAAAAk0OrVqyP+XrNmjQKBQLVJDqMb3j/55JNat9uxY0dNmzZNnTt3rrrBHTBggFwulw4dOqTu3bvH/FeX/v37KzMzUytWrNCKFSvk8Xg0YsSIautFl3f9+vXKz8+vc/sdOnRQUVFR1agOSfL7/dqwYUPEeoMGDZJt2yooKIj5Prp06VLnawEAALQUubm5KikpidnxZPny5Vq1apXOPPNMXX755SotLdXLL78cczuHDh1Samqq0tLSmrvIANBojJQAAABIoM8//1wul0v9+vXTvn379MEHH6hr164aPny4JKlXr15KSUnRa6+9punTp8vtdmvVqlVVE1w79uzZozfeeEPDhg1Tx44d5Xa7qybCPv744yWZBv8TTzxR77//vg4dOqQBAwYoOTlZRUVF2rFjh7xer0488cRay+tyuTR69GgtXrxYSUlJGjp0aLXRD4MGDdLKlSuVm5urLl26aOfOnVq0aFHEiJCaDB8+XB9++KFeeOEFHXfccaqsrNSSJUsi5tGQpN69e2vcuHGaPXu2du7cqby8PHm9XhUWFmrbtm3q3LmzJkyYUOfrAQAAtAR9+vSRbdvasWNHxATWe/bs0ZtvvqkxY8bomGOOkSSde+65ev755/XRRx9p0qRJEdvZvn278vLy6kzLCQCJRFACAAAggS699FLNmTNHS5culWVZGjx4sE4//fSq9EOpqam64oor9M477+jFF1+Uz+fT4MGDddFFF+nvf/971XbS09OVnZ2tpUuXVo1IyM7O1mmnnaaJEydWrTd16lR16tRJS5Ys0erVq+X3+5Wenq7u3btr/Pjx9SrzmDFjNH/+fFVWVlbdHIc744wz5Ha7NX/+fJWXl6tbt2669NJL9cEHH9S57ezsbF122WV6//339fzzzys9PV2TJ09WcXGx5syZE7HuOeeco549e2rZsmVaunSpbNtWRkaGevXqpR49etTrvQAAALQEvXv3VocOHbRu3bqqoER5eblmzpypDh066Kyzzqpad9iwYZo4caLefffdiOuegwcPas+ePTVOgg0ALYVlR3c7AwAAAAAAABBXixYt0vz58/XDH/5QXq+3wc//4IMP9Omnn+r73/9+jRNhA0BLwBkKAAAAAAAASLCJEycqKSlJS5cubfBzS0tLtXTpUp188skEJAC0eJylAAAAAAAAgATzeDy64IILqtJ4NsShQ4d0/PHHa+TIkc1QMgBoWqRvAgAAAAAAAAAAccFICQAAAAAAAAAAEBcEJQAAAAAAAAAAQFwQlAAAAAAAAAAAAHFBUAIAAAAAAAAAAMQFQQkAAAAAAAAAABAXBCUAAAAAAAAAAEBcEJQAAAAAAAAAAABxQVACAAAAAAAAAADEBUEJAAAAAAAAAAAQFwQlAAAAAAAAAABAXBCUAAAAAAAAAJrQ+vXrdcMNN6hPnz5KSkpSbm6uTjnlFD3//PMN3tY///lPXX/99Ro5cqQ8Ho8sy5JlWerTp0+dzz1y5IjuueceTZw4UdnZ2UpKSlKPHj10wgkn6Fe/+lUj3hkAHD3Ltm070YUAAAAAAAAA2oI33nhDF154oUpLS2M+fu211+rxxx+XZVn12l6HDh105MiRasvz8vK0ZcuWGp+3dOlSnXPOOdqzZ0/Mx91utyorK+tVBgBoSp5EFwAAAAAAAABoC3bs2KErrriiKiAxbNgwXXbZZVq7dq2effZZSdITTzyhCRMm6P/+7//qtU23262hQ4dq/PjxWr16tVauXFnnc7Zv364zzjhDBw4ckCR17txZ559/vnr27KmSkhJ99dVX9doOADQHghIAAAAAAABAE/jTn/5UNaohIyND8+fPV05OjiTJ5XLp6aefliTdd999uvnmm+V2u+vc5vbt25WSkiJJuu666+oVTPjFL35RFZA48cQT9cYbbyg5ObkxbwkAmhxzSgAAAAAAAABN4JVXXqn6/YQTTqgKSEjShRdeWPX7jh07tGzZsnpt0wlI1FdpaWnVqAxJOuWUU3Teeeepc+fOSktL07hx4/TII48oEAg0aLsA0FQYKQEAAAAAAAAcpbKyMn3xxRdVf/fr1y/i8ei/V61apYkTJzZ5OZYtW6aysrKqv2+//faIx5cvX67ly5fr/fff16xZs+Ry0WcZQHxx1gEAAAAAAACO0qFDh2TbdtXfmZmZEY9nZGRE/L1///5mKceuXbuqLZsxY4buvPPOiCDI7Nmz9a9//atZygAAtSEoAQAAAAAAAByl8IBEff62LKtZylFeXh7x97hx4/TOO+/orrvu0rx589StW7eqx5566qlmKQMA1IagBAAAAAAAAHCUcnJyIgINBQUFEY/n5+dXW785dOjQIeLv6dOnV5UrKSlJkyZNqnps48aNzVIGAKgNQQkAAAAAAADgKCUlJWnQoEFVf0c3+Ef/PWrUqGYpx4gRI2p9PDxwkpyc3CxlAIDaEJQAAAAAAAAAmsA555xT9fucOXN04MCBqr+ff/75qt+7d++u8ePHS5LuuusuWZYly7LUp0+foy5D7969NXLkyKq/582bV/V7eXm5Pvroo6q/nTIAQDx5El0AAAAAAAAAoC34/ve/r7///e8qKChQYWGhpk2bpssuu0xr1qzRCy+8ULXeT3/6U7nd7npt895779XBgwclSZ988knV8kOHDunWW2+t+vuBBx6o+v0Xv/iFLr300qrnnHbaaZoyZYrefPNN7dy5U5IZMfGd73yn8W8WABrJsqNn2QEAAADCFBUVybZtWZaltLS0RBcHAACgRXv11Vd18cUXq6ysLObjV111lZ544gm5XCaByV133aW7775bkpSXl6ctW7ZErN+nTx9t3bq1zteNbuK79dZb9eCDD8Zc17Is/e53v4sIagBAvJC+CQAAALWybbvqHwAAAGp3zjnnaOXKlbruuuvUq1cv+Xw+ZWdn66STTtIzzzyj//73v1UBieb0wAMP6LXXXtMZZ5yh3NxceTwedenSRRdccIHmzp1LQAJAwjBSAgAAALUqLCysGimRnp6e6OIAAAAAAFoxRkoAAAAAAAAAAIC4ICgBAAAAAAAAAADigqAEAAAAAAAAAACIC4ISAAAAAAAAAAAgLghKAAAAAAAAAACAuCAoAQAAAAAAAAAA4oKgBAAAAAAAAAAAiAuCEgAAAAAAAAAAIC4ISgAAAAAAAAAAgLjwJLoAAAAAAAAAAGIrLi6WbduyLEupqamJLg4AHDWCEgAAAAAAAEALFQgEqoISANAWkL4JAAAAAAAAAADERbsLShw6dEhXX321srKylJWVpauvvlqHDx+u9TkvvviiTjvtNOXm5sqyLK1cubLaOieccIIsy4r4d9lllzXPmwAaobnqfllZmb773e8qNzdXaWlpOvfcc7V9+/bmeRNAIzSm7tu2rbvuukvdu3dXSkqKTjjhBK1ZsyZiHc77aIn++te/qm/fvkpOTta4ceM0f/78WtefO3euxo0bp+TkZPXr10+PPvpotXVmzZqlPXv2SJL27Nmjl156qVnKDhyNpq77//nPf6qd4y3LUmlpaXO+DaBRGlL/d+3apSuuuEKDBw+Wy+XSLbfcEnO9WbNmadiwYUpKStKwYcM496NFauq6z7kfrUlD6v+LL76oU045RZ06dVJmZqYmT56st99+u9p6nPsRT+0uKHHFFVdo5cqVeuutt/TWW29p5cqVuvrqq2t9TlFRkY477jjdf//9ta73jW98Q7t27ar69/e//70piw4cleaq+7fccoteeuklPfvss1qwYIEKCwt19tlny+/3N/VbABqlMXX/d7/7nf7whz/okUce0dKlS9W1a1edcsopKigoiFiP8z5akueee0633HKLfv7zn2vFihWaOnWqzjjjDG3bti3m+ps3b9aZZ56pqVOnasWKFbr99tv1ve99T7NmzapaZ/Hixbr00kurchenpqbqkksu0ZIlS+LynoD6aI66L0mZmZkR5/hdu3YpOTk5Hm8JqLeG1v+ysjJ16tRJP//5zzV69OiY6zjn/quvvlqffvqprr76as79aHGao+5LnPvROjS0/s+bN0+nnHKK3njjDS1btkwnnniizjnnHK1YsaJqHc79iDu7HVm7dq0tyf7oo4+qli1evNiWZK9bt67O52/evNmWZK9YsaLaY9OnT7e///3vN2FpgabTXHX/8OHDttfrtZ999tmqZTt27LBdLpf91ltvNVn5gcZqTN0PBAJ2165d7fvvv79qWWlpqZ2VlWU/+uijVcs476OlmThxon3zzTdHLBsyZIh92223xVz/Jz/5iT1kyJCIZTfddJM9adKkqr8vueQS+/TTT7cLCgrs/Px8u6CgwD7ttNPsyy67rOnfANBIzVH3H3/8cTsrK6vJywo0tYbW/3A1Xcs45/5wnPvR0jRH3W/J5/7wazHgaOq/Y9iwYfbdd99d9TfnfsRbuxopsXjxYmVlZenYY4+tWjZp0iRlZWVp0aJFR739p556Srm5uRo+fLhuvfXWaj1qgURprrq/bNkyVVRU6NRTT61a1r17d40YMaJJjingaDWm7m/evFm7d++OqNdJSUmaPn16tedw3kdLUV5ermXLlkXUW0k69dRTa6zrixcvrrb+aaedpk8++UQVFRW1rsM5Hi1Fc9V9SSosLFReXp569uyps88+O6I3IdASNKb+1wfnfrR0zVX3Jc79aPmaov4HAgEVFBQoJyenahnnfsSbJ9EFiKfdu3erc+fO1ZZ37txZu3fvPqptX3nllerbt6+6du2qzz77TD/72c/06aef6t133z2q7QJNobnq/u7du+Xz+ZSdnR2xvEuXLkd9TAFNoTF131nepUuXiOVdunTR1q1bq/7mvI+WZP/+/fL7/THrbW11Pdb6lZWV2r9/v7p161bjOpzj0VI0V90fMmSI/vOf/2jkyJHKz8/Xww8/rOOOO06ffvqpBg4c2GzvB2iIxtT/+uDcj5auueo+5360Bk1R/x988EEVFRXpkksuqVrGuR/x1iaCEnfddZfuvvvuWtdZunSpJMmyrGqP2bYdc3lDfOMb36j6fcSIERo4cKDGjx+v5cuXa+zYsUe1baAmLaHux9Jc2wUc8aj70Y9HP4fzPlqiuuptfdaPXt7QbQKJ0NR1f9KkSZo0aVLV48cdd5zGjh2rP//5z/rTn/7UVMUGmkRznKc596M1aOp6yrkfrUlj6/8zzzyju+66Sy+//HK1Dnyc+xFPbSIo8Z3vfEeXXXZZrev06dNHq1at0p49e6o9tm/fvmrRwKM1duxYeb1effnllzROodkkuu537dpV5eXlOnToUMRoib1792rKlCmN3i5Ql+as+127dpVkeop069atavnevXtrPV447yORcnNz5Xa7q/Vkqq3edu3aNeb6Ho9HHTt2rHWdpr5uAhqruep+NJfLpQkTJujLL79smoIDTaAx9b8+OPejpWuuuh+Ncz9aoqOp/88995xuuOEGzZw5UzNmzIh4jHM/4q1NzCmRm5urIUOG1PovOTlZkydP1pEjR/Txxx9XPXfJkiU6cuRIkzegrlmzRhUVFRENWkBTS3TdHzdunLxeb0S6ml27dumzzz4jKIFm1Zx130nJFF6vy8vLNXfu3FrrNed9JJLP59O4ceOqpQ979913a6y3kydPrrb+O++8o/Hjx8vr9da6Dud4tBTNVfej2batlStXco5Hi9KY+l8fnPvR0jVX3Y/GuR8tUWPr/zPPPKPrrrtOTz/9tM4666xqj3PuR9zFfWrtBDv99NPtUaNG2YsXL7YXL15sjxw50j777LMj1hk8eLD94osvVv194MABe8WKFfbrr79uS7KfffZZe8WKFfauXbts27btDRs22Hfffbe9dOlSe/Pmzfbrr79uDxkyxD7mmGPsysrKuL4/oCbNUfdt27Zvvvlmu2fPnvZ7771nL1++3D7ppJPs0aNHU/fRYjSm7t9///12VlaW/eKLL9qrV6+2L7/8crtbt252fn6+bduc99EyPfvss7bX67Ufe+wxe+3atfYtt9xip6Wl2Vu2bLFt27Zvu+02++qrr65af9OmTXZqaqr9gx/8wF67dq392GOP2V6v137hhReq1lm4cKHtdrvtnTt32vn5+fbOnTttj8djf/TRR3F/f0BNmqPu33XXXfZbb71lb9y40V6xYoX99a9/3fZ4PPaSJUvi/v6A2jS0/tu2ba9YscJesWKFPW7cOPuKK66wV6xYYa9Zs6bqcefcf//999uff/65ff/993PuR4vTHHW/JZ/7CwoK7Pz8fLugoCDRRUEL0ND6//TTT9sej8f+y1/+Yu/atavq3+HDh6vW4dyPeGt3QYkDBw7YV155pZ2RkWFnZGTYV155pX3o0KGIdSTZjz/+eNXfjz/+uC2p2r8777zTtm3b3rZtmz1t2jQ7JyfH9vl8dv/+/e3vfe979oEDB+L3xoA6NEfdt23bLikpsb/zne/YOTk5dkpKin322Wfb27Zti8+bAuqhMXU/EAjYd955p921a1c7KSnJnjZtmr169eqqxznvo6X6y1/+Yufl5dk+n88eO3asPXfu3KrHrr32Wnv69OkR68+ZM8c+5phjbJ/PZ/fp08f+29/+Vm2bM2fOtL/88ks7Pz/f/vLLL+1Zs2Y199sAGqyp6/4tt9xi9+7d2/b5fHanTp3sU0891V60aFE83grQYA2t/7Gu7/Py8iLWmTlzpj148GDb6/XaQ4YM4dyPFqmp635LPvcTlEC0htT/6dOnx6z/1157bcQ2OfcjnizbDs7qBgAAAMRQWFhYNdFdenp6oosDAADQrnAtBqCtaRNzSgAAAAAAAAAAgJaPoAQAAAAAAAAAAIgLghIAAAAAAAAAACAuCEoAAAAAAAAAAIC4ICgBAAAAAAAAAADigqAEAAAAAAAAAACIC4ISYcrKynTXXXeprKws0UUB4o76j/aKuo/2jPqP9oq6j/aKuo/2jPqP9oq6j5bIsm3bTnQhWor8/HxlZWXpyJEjyszMTHRxgLii/qO9ou6jPatv/S8sLJRt27IsS+np6XEsIdA8OPejvaLuoz1rzfWfazEcjdZc99F2MVICAAAAAAAAAADEBUEJAAAAAAAAAAAQF57GPMm2bRUUFDR1WRIuPz8/4ifQnlD/0V5R99Ge1bf+h6cMCAQC8Sga0Kw496O9ou6jPWvN9Z9rMRyN1lz30XplZGTIsqwaH2/UnBJOLjIAAAAAAAAAAABHXXOYNCoo0VZHSgAAAKA6JlcEAABIHK7FALQ2dY2UaFT6JsuymK0dAACgnXC5XNwIAwAAJAjXYgDaGia6BgAAAAAAAAAAcUFQAgAAAAAAAAAAxAVBCQAAAAAAAAAAEBcEJQAAAAAAAAAAQFwQlAAAAAAAAAAAAHHhSXQBAAAA0LJZlhXxEwAAAACAxiIoAQAAgFqlpaUluggAAAAAgDaC9E0AAAAAAAAAACAuCEoAAAAAAAAAAIC4ICgBAAAAAAAAAADigqAEAAAAAAAAAACIC4ISAAAAAAAAAAAgLghKAAAAAAAAAACAuCAoAQAAAAAAAAAA4sKybdtOdCEAAEiY8kppxUapwm/+drukgC3JllzB2H0gIFkuyWVJtm1+94etnyiBgCmPyyVZVmLKYNtmv1QGzN+J3B/NxbbN/vUHzE9XgvY1Wq/2cJwAzYFjBwAkSfmDu8ryuFQRkDYW+BJdnHbJ7dxvWZI/QFNqOJckl2VJslWZgF1jSfK4LLksaXgXr9zcr7UKBCUAAO3Xqi1SfnHNj5dVSEle8/sHq6Rn50u/vFTqmWuWBWzp6oekQ4XNXtQqHpd07zXSiN6hZb96VvpoffzK4OjXVfr5RVK3HPN3hV+64gGpqCz+ZWku50+SrpwupSaZvz/6QvrVc4ktE1qXEXnSj78mdcoyfxeUSFc+GGpkBRDb0J7STy+QOncwfxeXSVc8aDoTAEA7c/izh+XOTtXuwoBmPFmU6OK0O0lu6b+X5CrFaxq79xT69ft5+fpiP99JknTHiZma2MvcLxVXBPT0ymK9/HlJ3F7/6mPSdMnIVEkmQJGd6lLPLHfcXh+NQ1cTAED75anjQsUJSEjSpMEm+JCTEVrmsqTjhzZP2WpSGZAU1Z9g2vD4lsGx+5CUmxn62+uWJg9JTFmaS35xKCAhSeMGSOnJiSsPWp/dh0IBCUnKSJHG9k9ceYDWYvchqWPYd0xqkjRhQOLKAwBot8b39FUFJCQpN9Wl3YX+BJao5UjzWTqme2j0TqrXpfyy+Ha+mdondL9mS3IzUKJVICgBAGi/euXW/nj4YMLUJGlMX2nxush1po9o+nLVZe6ayL+PHSwleeJfjuIy6ZMNkcsSFSBpLou/kCrCekB53dLkwYkrD1qf/fnSmm2Ry9racQI0h0NF0uqtkcumJeA7FwDQ7k3rE9kpadXuCh0pJfGMJE3unSRvWBSg3G9ryVflcXv9gR096pYR2dkwK4Xm7taATwkA0H5lpNSenzp6noZpw6V5ayOXDesVOVogHhZ+buY3cKT4pAkD41sGx7yoAMkx/aTMlMSUpTnECrxMpUEZDRR9nEwaLPkSEEgEWpvoY2fCQCnZG3tdAACaQYrH0rgekfN4zN/ShtLVHqXwUQqStGxHuYor4hewiX59n1tK4TK7VSAoAQBo37LT67/uhEHS59tMTvhwU4c1bZnqcrjIzIcRLlE9r5esl0orQn+7XdKUOKe0am5tPfCC5rfgczMHjSM1SRpPGhqgTouigvDJXunYQYkrDwCg3ZnYy6ckT6izWmXA1uJtBCUkKTPJ0uiukZ0F4hmwsSQdHxWU6JDikhXduRAtEkEJAED71pAUTsleaewAaVFUCqdEBARi9R5N8cVetzmVVkhLv4xc1tZS07SHwAua16HCGGlo2thxAjSH/BJpxabIZRw7AIA4iu6Jv2JnuQrLSd0kSVN6J8ntCgUAyiptLd0ev6DE4E4edUqLSt2UTFN3a8EnBQBo39KSJU9DUzhFBQQG95C6dmjyotVq0TqpMmxytaQE9h6N3h8j86TstMSUpTm0h8ALmt/8qONk4kBz3AKoXfSxM36AGW0EAEAzS/NZGtud1E01iR6lsHR7mUora1i5GUQHjJI8UjKpm1oNghIAAGRn1H/dCQOkL3dKR4oil8e7kbqgBfUe/eRLM/eCw+2SjotzSqvmNu+zyL/bWuAFzW9BdBoaH2logPpYtE6qCAvCez3S5MGJKw8AoN2Y1MsXMYlzRZwncW7JslNcGhmVumleHAM2Lks6Pi8qdVMyqZtaE4ISAAD0bkAKJ69HmjjINDCGS8Tkx9EjFMYNkNIS0Hu0rNKkOArX1kYSLN3Q9gMvaF75xdLKzZHL2tpxAjSHojJp2YbIZRw7AIA4mNonOeLveE/i3JIdl+eTKywAUFwR0LId8QvYDOvsVU5qVOqmFJq5WxM+LQAAUpIkj7vmx+uTwql/V6lHx6YvW20WfyFVhI2P9bqlyUPiWwZH9P4Y0Vvq2IARKC1deTsIvKD5RR8n4wckZi4YoLWJPnaO6SdlpCSmLACAdiEzydKYbombxLmliw7YLPmqXOX+GlZulteP7IyX7JGSPYySaE0ISgAAIDWsAX1sP2nrXulgQeTyeDdSF5dJn2xMbBkcyzZKhaWRy6a2sZEEbT3wgua3OCoNjY80NEC9LFkvlVWE/va4pSkJCsIDANqFyTEmcf44jpM4t2S5qS4N65y4gI3LMpNsh+vAKIlWh08MAABJ6tWAFE4etzRpsDR/beQ60xMQEIieAHRMXykzAb1HK/2mwTVcWxtJ0B4CL2hehaXSihYSSARak5Jy6RNSOAEA4ie6J368J3FuyY6LmsuhsDygFTvjl7ppVFdvtSBEVjJN3K0NnxgAAJKZdNbbgBRO00dU7znfu5PUp3PTl602H30hlUb3Hh0a3zI4ovfHkJ5Slw4JKUqziBV4mT4iMWVB6zU36jgZ219KT469LoCQuZ9F/j2qj9QhLSFFAQC0bR2SLY3oQuqmmkzrGxmUWLytTJWB+L1+dMAoxWspidRNrQ5BCQAAHLmZ9V93VB9p10Fp75HI5fHuuVlaIS39MrFlcKzcLB0pjlzW1kYSRAdeBvdoW4EXNL+PvjBzlDhIQwPUz9IvzYgJh9slHZegIDwAoE07Li8ydVNxRUCfxHES55asS7pLg3ITF7DxuGKkbkomINEaEZQAAMDRswEpnNwuMyIhOoVTIhrhoxvKR+YlpveoPyAt+jxyWVtLr9EeAi9oXiXlLSeQCLQmZZVmbolwHDsAgGYQPYnzx3GexLklix6lkF8a0KpdFTWs3fTGdPMpPSkqdRPzSbRKfGoAADiSvGbi2ZpEp3CaNrx6QKBHR6l/16YvW20+idF79PhEpXCKCtIM6CZ1z0lMWZpDewi8oPlFzwUzuq+UmZqYsgCtSfSxM7y3lJOemLIAANqkjqkuDSd1U42OjwpKLNpWJr9dw8rNIDookuq15HMzUqI1IigBAEC4hqRwGpEnHcg3aZzCxbuRuqxSWvJFYsvgWL1FOlQYuaytNdq39cALmt+SL6XSFhJIBFqTTzZIRaWhv10Wo9UAAE3q+BiTOC+P4yTOLVn3DLf65yQuYON1SZN6+SKWdUghINFaEZQAACBcQxqXXZbp4bxic+TyY/o1bZnqY8WmyL+H9ZaSahn10VwCtvTplshlidgfzemzrVJF1PjttvYe0bzKKqTPt0cuow4BdavwS2u2RS7j2AEANKEx3SIb3dfsqYjrJM4t2Zjukfumwm9rzZ74pW4alOtVqi+yKTvdR9N2a8UnBwBAuD2HG7b+mm3SiN6Ryz7b2mTFqbcReZF/f7nTjKCIN0stY380p8E9JK87cllbe49oXl63qUfhqENA3dwuaUjPyGWfbYu9LgAAjbBmb2Qj+9BOXpEdyIgOQHjdlgblxq8j3IaDFSqtiMwVVVROxKi1IigBAEC4vUfqv+7n26XUJKl3p8jl0el9mpvHLU0eElWGNbHXbW5De1VPgZWosjSX6HRUW/dKW/clpixoncYPMOcOR8CW5sf5vAG0Rsf0qz7/Slv7jgEAJFR0OqLMZJdGRY2eaK+2HvZr2+HIjm/Rczw0p7JKaemOyM/ncGkcJ7RAkyIoAQCAo6LSpFWpiR11wTNvTfUG6r2HpXVRaVma29j+Unpy5LJENXC29QZ7l1U993+8g1Bo/aZGHSdrtkkHC2OvCyAkev6Iddsb1pkAAIA67CkMaP3+yHvCeDa8t3TRQZvj8pLkiuNIkujXLyq3VRHPmbbRZAhKAADg2H6g9setsKutgC0tWFu9ET4RDdTTohpp1myT9ufHvxwuSzo+qixtrcF+RJ6UkxG5jF66aIgkrzRpUOQy6hBQN49bmtJCRgUCANq06Ibvyb2S5KEFVZK0IGrf5KS6Naxz/EaSLNtRruKKyJRNR0pJ4dQacUgBAODY14Delmu2STnp1SfGjncDic8jTRocuWxughppRuaZfRKurTUYRQehNu6SdtQRzALCTRwoJftCf/sDJsAJoHbj+0tpYaMCSXsGAGgm0Q3v6UkuHdPNV8Pa7cv2fL82HYxM4TQtjiNJyv3Skm3lEcsOlzBSojUiKAEAgGTSNpXXMjF0rNRN0SlYdh6UNuxq+rLVZkJUbnp/QFqYoEaa6P3R1hrs3S7pOFI34ShFB7ZWbZGOFCekKECrEn3srN0mHShITFkAAG3a/uKA1u4lhVNN5m8pjfh7SoJTOBVX2ConhVOrQ1ACAABJ2r6/9sfDUzf5A9LCz6unTUrEqIDoRprPtkqHiuJfjvbQYD+6r5QVNcHq/DY2EgTNK8VnJrkO19ZGEwHNIckjHRs1KpBjBwDQjKIb3o/t7ZPPnaDCtDDRQYGsZJdGd41fCqcVu8pVWBaVwqmEFE6tDUEJAAAkaX8Deluu2iJ1zZY6d4hcHu8GkmSvNKGF5KZvDw320UGoL3ZIuw8npChopY4dZOaUcFT6TYATQO3GDzRBPYc/IC3g2AEANJ+FW8sVCBstn+p1aVwPUjhJZjLwL6MmAz8+jiNJKgPS4q8iAyOHSxkp0doQlAAAoLRCqmhg6qboBupt+6Qte5u+bLWZOMgEJhzOCI5EaOsN9h63NJkJVnGUokc2rdgkFZbGXhdASPSxs3qrdDgBowIBAO3GoZKAPttDCqeaRI+WmNI7vpOBR79+SYWtskoCE60JQQkAAL7aV/vj4ambKv3SR19Unz8hEQ3U02M0cOaXxL8cHrc0JTp1UxtrsB/bX8pIiVzGBKtoiPRkaVxU6qZETUoPtCYpPjNBfLi5nyWmLACAdmX+5siG7wk9kpTkSVBhWpgFWxM7GfiqXRU6UhqVwqmUFE6tCUEJAAAaMlHmik1Sr05Sx4zI5fFuhE9Nqp6bPlHpksb2Nw2uEWVpYw320SNB1myT9ucnpixonSYPlrxhiYgrKk2AE0DtYqU9W7QuceUBALQbi7aVyR8I9b5P9lqa0JPREpK0ryixk4H7bWlRVGDkMPNKtCoEJQAA7VtJmWngqEl9Ujdt2i1tP9D0ZavNpMGSN6ybToVfWpygBs623mDv85j9Ha6tjQRB84seXfXJBqm4LPa6AEKij52Vm6WCBIwKBAC0O/lltj7dHdXwnkdQwrEgKoXSsb188iYwhVNppUjh1IoQlAAAtG/b9tf+eHjqpopKacl66fioRvh5CRgVEJ1fe/nGxOSmbw8N9uMHmJEpjoDNBKtomMwU6Zh+kcva2nECNIe0JGl8/8hlHDsAgDiKbvge39OnFK9Vw9rty8KtZZGTgfviOxn4mr0VOlgc2cGQ0RKtB0EJAED7dqiw/ut+slEa0E3qkBa5PN4NJOnJ0tgW0sDZHhrsY02w2pB6A0wZKrnDLrtLK0yAE0Dtqo0KrJQWk7oJABA/i7eVqcIfanj3uS1N6hW/hveW7GBJQGsSOBl4wJYWbiuPWHaYeSVaDYISAID2q6i0gambPqs+ufT6HdLuQ01fttocN9RMLu0oq0hcbvro/bF6S9tqsE/2ShMHRS6bxwSraKDo42TpehOYAFC76SMi//5ko1RE2jMAQPwUldtasTOy4TueDe8t3byokSQTe8Z3MvD5myOzBZRVSqUVpHBqDQhKAADar68akLqptEJatsH0eA7XElI3fbJBKimPvW5zSvZKE6Ib7NtYWo2Jg8z7dPgD0sI2NhIEzSs7TRqRF7msrR0nQHPISJHG9I1cNp9jBwAQf9EpnMZ08ynNRwonyUw2ncjJwNftq9S+oqgUToyWaBUISgAA2q/SOhryK/xmFEJBifThKikjVdq6V9q4KzTJZrwbSNyW5PdLm/eEJpNOVANnj47SzgNmfxSXtc0G++45Un6xmcxcMhOs5jPBKhogr7M511T6pYMFpj4t3ZDoUgEtX15nE3B3jp2iUtKeAWjHTKMvzeCJsWR7ucr9tioDttbvr1BBWUB5HeI4HKAFyy+ztSpsMvDKgK3uGe5antG0bFWfcLucya5bBcu2o3NTAADQRti2VF5pRjmUlZvGjbIK87ez7HCR9Pl2qbzCPFZcbnJWV/rNY16PSZVUUmaeY9tmcufjh0t9O0sbdze+fIGAVO43r11RacaaVlSaMof/c5aF83qk4b1MKqcvdpiEms0hYJsG1eIy868o+LOkLFSmFJ90wgipe0cTLGlLDhVKn38lpSVL502U8ktN4xjQEJZMQPHjDeZYIbAF1I8lMx/Lx19KJ46UjhQnukQAkBBHLp8iV4pPJWUBvbSR/sWJ0D/Hq/3Ffn24qUwuSxrQ0aM+2W5lJPF5JHsspXgsVfilooqA4t3Q7HFJWUluVQZsHdPDJ5+b8F1rQFgPANBy2bYZrVAaHkwI+72sIizQEAw6FJUGG83LTcN5ZcA0rAcCpie/bUt+24wVdLtNY4fzz+uWcjNMg7/PY/6O+btHcgUvdIb0iCxzpT+yrE45y8L+dpaVx8gp7/NKSV4zmXVy8PdkX/Bn8Hdnucdt3s+g7ke/rysqzeiPghLTYFoQ9i8QHP7qdkuZKVK3DiatRmaq+ZmeHJrjInp/tFa2La3bIW3fL/XrKh07KLjvfVLnzESXDq3RoUJzx5TiMyNwANSPc+wke6VubeQ7BgAayGPbqsgvke31aWCut+4noFl0Tnfr3KEp2nKoUjvz/SoqD2hYZ6/G9khS32y3LIvGcKC+CEoAAJpXpT+sgT6skd4ZqRD+d0l0b/xyqbIyGFSwTVAhEAwyWDIN4W636YHsdpu/ncBBWrLUId387gQSwoML7nr2aLHtyPeQX1I94BD+e0XUiAbLMgEEJ6iQmiRlZ4QCCym+yMBDfcvVGLZt9mthqUkhU1AS+lkcNuQ1NckEGzp3kPp3M79npJjl7eFCu6xC+ni9tPOgNKyXNDwvFIQCGstySbLMT4sedUC9cewAgNLW79HmV1Zp50UnyuqUnOjitGupPkvDung1uJNHO/L9WrO3Up/uqlDPLI/G9/RpeBevkj3cOwB1ISgBAKidP1C9AT56JEBp2GgFJ6BQXB5K8WM7AYXgiIVAwCR/9ARHKniCgQVvWNAgLUnqkCb5okYo+NxmNMHRNN7bdihdU8TohXKpJEagoTJy4iy5rFAgIdkrZSRLnTJrDjTEu0HbH4gMOOQXh0Y/OO/F5QqOdkiROnU282VkBoMP3nZ8eXCwQFq4zozQmT6cHu1oOlbYP9pVgfrj2AEASZGnQySex2Upr4NHvbPcOlRia9OhSs36rFgfbnTpmB4+jenmVcfU+M2tALQ27bjVAQDaiUAgstE91kiF8ICDk/7IGalQVhEaqeCMUnDSIHmd9EdOcMEVCiAke00jtzM6IWK0gses25S97gPBQEN4kKQkVgAl+L6j52BwWaEgQ7JPykqTukalTXICDj5P4kcM2LZ5b/klUkEw6OAEH4pLVZXIM8lrAg05GVKfzqG0S2nJ9P4PZ9vShl3Sik1mhM3JQ8w+ApqKZUX+A1A/HDsAIFmWLMtcvnMJ38JYlnLTLOWm+VRSYWvLoUrN2ViqhVvKNLSTx6R2ynHLxXcYEIGgBAC0dE7jc/RIhZIaRi84AQUnqFBaHgomVM2tEPzppD/yukJpkJzAgc8rpaeERidULQ/+87ibv3HAHzCBhpLwAEqMn857t6MCDR535DwMORlSildK8oV+Oo974/B+GsMfMIGi/LDAgzPXQ1lwTgqXZRrQM1Ol3p2CIx6CIx+SyDlbpwq/tPRLaeteaVAPaUzf5k2jhfbJOb/QsAo0DMcOAESc/zgTtlypXkvDOns1JNej7fl+rd9fqdV7KtQjk9ROQDSCEgDQ3GzbpDCKNVIh1qTNxaWh1EfFwaBC1QTNgcgRC1Wpj4KjFNzu0KgEn0dKy4iR+ij4e/hkzfFUlQ4qOrgQI+DgNLqH87pD6ZFSfKbhPfzv8ICDtxUNly2vDAYewkc9FJv5H5xRHV63CTxkpkg9O4Z+T0+hEb2xjhRJCz43aceOHyrldU50idBWuWQaFFyiiyPQEBw7AGCm1pEly7KYTLkVcLst5WW7lJft1cFivzYerNRLa4r1wUaXxnb3aUx3UjsBBCUAoC7hEx07oxJKymOPXgifrLk4uF5JmXl+eDDB+d1VR1AhJ736XApVQQV3y2mIrvAH52OIEVQoKQ/N1VBaXn0iaCly/oUUn5lLIjzQUDXawddy3nNj2LZp/I4VfCgtD62XlmzSLHXLCQUeMlPNvuAmpOls2SstWS+lJ0unj5WyUhNdIrRllhVMBE1vb6BBOHYAQMGoBKfCVqhjmlsd09wqrbC1+VCl5m0u1aKtZRrSyaNjevjUL8dDaie0SwQlALQPVUGFGHMoRM894IxQKC4zjxc7QYVA9bkVJBNU8LhjBxWyUs0EyOGpj8J/b6kN7LZtAg3hIxpKwvZV9H6riJoI2lLk/AxpyVJOZlSAISwQ0VL3Q2NV+IPzPEQFHvJLzEgRybxnJ+DQpYP5PSs1mDKLXjPNyh+Qlm+U1u+U+naRJgxkn6P5WcGpKWlNABqGYwcAJJlbLFfwH1qfVK+l4Z29GhpM7bThQKU+21Ohbpkeje/h04guXiV7+Z5D+0FQAkDr4A9EBQ9ijFQI/724zOThLwn23i+vjAwm2HboZ1VQIRhY8IQFFTJSpI4ZkXMphAcW3E08WXNzsm2prDLGiIawUQzh6ZOcxnOHyxUKJKT4TCN656xgoMEXCjSk+MyIjraeYsG2zX50Ag5HwgIQRaWh9Zx91SlLGtAtGIhIldKSWk/daUsKSqQFa6XDRdKkQeYz4XNAPLiCvb2ZoRJoGI4dAHAGShCfbQNMaieP8rI9OlhsghMvf16sDze5dEx3n8Z08yo3jQ5TaPsISgCIj0DANIjHDCbEGL0QPlGzE4iIOVLBNqMTwgMK4UGF9BQzuXGsUQo+r3lOa76qC9jVU0o5Ixmi/441EbTbFRlMyMmIHMUQnkLJ52nd+6qx/AHTkH2k2Ix+OFIcCkQ4I0QsK5RiqW+XUOAhK9XsN7QM2/dLi9aZz+T0saa+A/FiWZH/ANQPxw4ABCMSnArbmvDUTpsOVmrhllIt3lqmwZ08GktqJ7RxtJQAqB/brnkOhVgTOBeVhtIgOY3iAVuyYwQWotMfhQcVUpPM/AIxgwrBv9val3SsiaCrjWwI29/RgQavOzRyIcVn0kdFj2Rw/va6297+a6zS8rARD2GjHwpLQ/s4yWuCDdnpZkJkJ/CQltz2UlC1JYGAtHKztGab1DNXmjLEfJZAXFmhn5x3gQbg2AEAWZYTlxBnwrYnxWtpeBevhnTyaEe+XxsP+rVmT5G6ZXo0rodXI7v4SO2ENoegBNBehM8RUBVMCGvojg44lJSHRio4cyv4wwIK4cEFl0vyuiSPxwQWvO5Q8CDFF+ot7osapeALTtbsageNuZX+yGBCSVTQoTQseFMWYyJoZ186gYYOaZGBh/CRDR6GetYoEDBBhvDgg/OztMKsY8lMfJyZJvXuFAo8ZKaa/UyDSOtSXGbSNe09Io0fIA3rxWeIxHAFG1RJQQM0DMcOAFQFJTgVtm0ut6U+2R71yfboYHFAXx6o1Gufl2jOpjKN6ebVmO4+dSK1E9oIghJAa2HbYZM1R8+hEDVSoaQ8bJRCWAqkSn/kfAqBgPndcoIKwVEKbrfkc4eCB+nJMYIKUfMqtDfRE0GXxBjFEB5oiDURdJI3FFhITZJy0mPPz5Dsa5/7+GiUV4YCDuEjH/KLIycod4INPXJCv2emmGMArd/uQ9L8teb3U8eYCcWBRLGi/gGoH44dAAhjyeJk2C50THWrY6pbpZW2Nh6o1EdflWvJV+UamOvR2O4+9e9Iaie0bgQlgHiqSstTUfOkzaXlkfMqlJSb4EJxWTCoEAgLKtihBlav2/yrGq0QFjxISw772yslRQUXaIA1bNs0ZocHE6pGNpRFjXAolyqjJ4K2IudjyEiVOnUIjWRISQoFGpK87WOESHOybamoLBh8KIoc+VBcFlovLckEG7rmSIN7hkY+pDLRdJtl29JnW6UVm6Su2dLUYeb4AxLJcsmkn3EFfwdQLxw7ABCaT0LcwrQ3KV5LI7p6NbSzSe204UCl1u0tUpcMt8b18GlEF69SvHw/ovUhKAE0RCBQ8xwKzt/hgYaqkQrB4EJZZSigED5aQTK9tr2e0GTNPicFktf0oO/aIfZoBZ/HrM+VSWy2XX3UQm2BBn/0RNCWlJwkpTgTQadJydk1Bxr4HJpepb96uqUjwUCEExhyu8wIh6xUqXM389MZ+cBE0+1LWYVJ1/TVAWlUH2lMHwKAaBmC7apyBf8BqB+OHQCowkTX7ZfHbSkv26O8qtROFXp9nUntNLqrSe3UOZ0Op2g9aKlB+xI+WXNE+qOo3511issiJ2suK48MKISPWAgfqeCkQnKCBh3SpM4dYs+p4MyrwJVF/fkDoZEmTpAhIuAQlUIpeiJojzs0/0KKT8rNDEub5A0tT/G1zYm0WyLbNp9VeMDB+b0obKLp5OAcJbmZUv+uweBDmhkNQcMz9udLcz6TKiqlU0abSa2BliK8eyPfK0D9cewAgCQy2SGkY6pLHVOTVFpha+PBSn28vVxLt5erf0ePxvbwaQCpndAKEJRA61KVXifGSAWnp3v4spKyUAokJ6jgj5qo2QksuN1hgQVnlEIwsJCVKnXKZLLm5uTMl+GMXggPNkQHHJwJicNVTQQdHL2QmRo5iiF8kmgvp76E8QekgpKowEPwZ3lwgm+XJWUERz307RIa9ZCVZkajANFsW/pih/TxeiknQzp9rKlDQEtiBf9H3gWgYTh2AECybVkWE10jUqrP0siuXg3v4tH2I359ub9Sz+wzqZ3GdvdpZFdSO6HlomUO8RU+OXC1ORRqGKkQHlQoLTeNmtEjFWzbBAXCgwrOSIUkj5SRLHXMCP0dPkrB+UdQoelVVIY+x4hRDOGpk8rM3+UxAg1JYQGFVF/kRNCpSaG5G1J85vNGy1FWIR0OCzrkF0uHi6WCsImmnVFE2elSn84mkNQh1czFwcTeqK+KSmnhOmnTbmloL2nCAM4HaJnCe3vTmgDUH8cOAEjBrLUMGkMsbiuU2ulQSUBf7KvQm1+Uat7mMo0MpnbqQmontDAEJdBwTo92Z6RCRCqk6JEKUXMqlFRIlZWRaY/s4D/LCgYVPGFpkIKBhfRk0yAdPUrBCTA4gQg0r+iJoKNHMUT/XumPfL4lKSksNVJ6cih1UvRohmQfDdMtXSBgJpo+XBQa7eAEIkrLQ+ulJ5tRDr06Slm9ze9ZqeZz5ooaR+NQofThaqmwVDpxpNSva6JLBNTMaUWgNQFoGI4dAJAsm1Mh6iUn1aXJeUkqrbS18UCllu8s1yc7ytUvx6Nx3X3q39EjN0F+tAAEJdojf6DmORTC51dw0iE58yk4gYVKf+x5FaSooELw9ySPSaOTlVZ9LgWfx/SG93lMAzTfrvHnzLMRHlQodoILZWGjGoKP+wORz3dZwTRJwWBCVprUNTsywJDiM+skMSKlVaqojJzrIXwEhD9sonYnxVL3HDMCwgk+EDBEc9i420xonZEinXesqXNAS+Zc49CaADQMxw4AyJlJgjklUF8pHksjung1rLNJ7bR+v1/PripWpzSXxvXwaUQXr1J9tM8gcQhKtEaBgFRWGQomlIQHFcJGLzgBhpKw9EfFZaane/gIharfZeZQ8MQIKiR5TMNPdCAhKSzA4GGy5hYjEAgFliICDLECDzEmgna7IoMJHaNGM4SnUPIxEXSbYNvm/HA4fMRDUWiiaUdqMMDYtYM0uEco8JCeTD1AfFT6zdwRn2+XBnSTpgxhnhi0DvT2BhqHYwcAJEmWLLksiwmM0SAuy1KfbJf6ZHt1qCSgdfsq9PaXJrXTiK5eHUNqJyQId/GJ4PRMjzVSwQkshAcaSsoiG5BLy0NBhOjggjOngtcTmlPBGZ2Qmxw5UiHW3Ap8ubVczgiXqvkZKiIDDeGjWcoqqgcaPB4zL0NycH6GLlmhoENK1IgGLwGmNqvSL+WXhI14CP48XGxSq0lmNIszv8PAbpGjHphoGomUXyx9sEo6WChNHWYCY5yr0Fq4gnnxmaESaBiOHQCQLMtc9hKfxVHISXVpSlhqp5U7y7V8R7n65ng0trtPA0jthDgiKNEY4ZM1R6RBqiEVktNY7AQWSsslf1gwIXy0gics/VFVKqRgACEno+ZRCj6vGeVAapzWpdIfGUyIFWAoCQtSRXNSYzkBhey00N9O8MEZ0UAKnfbDts05qGq0QzDocLjITDTtxKuSvCbg0DHD5OLvkGb+ZaRwLkHLs3WvNPczU2/PO9bMRwO0JuEtCbQmAPXHsQMAVec/0jehKVRP7VSp51cXq2OqSe00ktROiIP2GZSw7bDJmitiBxbCgws15dWvCiYoFFxwWaGggi8YUHACB9npkaMTwn9P9pp1mdi3dXMCVhFBhVoCDuWVkc+3LNPg5gQT0pOlTpkxRjMEHyfQ0L4FApGjHsL/OUEsy5IyU8xIh76dQ4GHDmmmDgEtXSAgfbJBWrlZyussTR9hvjOB1obe3kDjcOwAgInNivgsmpbbspSX7VFetqcqtdN7TmqnLl6N7e5TlwzandA8Wm9QoiqoEGMOhehRC85cCk7qI2ey5vBgghNgsKxQMMEZreAEDrJSpc5ZYUGFGMEFGonbHtsOzuFRVn3S7+KwQJUzEqbSH/l8yzINaKnBwEJmqtSlQyhVkhOAcIIN9FBHtLKK0DwPhwtDgYf8EtNgK5lzVVYw2NC7UyjwkMlE02jFikpNuqbdh6VJg6VRfbgLQ+tFXnygcTh2AMCkb5LkUmjgO9CUOqa4dFzvJJV1t7XhQKU+21OhlTvLlZft0bgepHZC00tcUKJqIt6wwELEpM3lMVIghc2pUF4ZNUlzcMSC7ODoBG/10QqZqSbdQ3QKpPDf3S4udtsD244KJtQQcHDqmz8Q+Xy3KyptUobUPZguKXyehtQkU6+oU6iLbUuFpZFBBycQET7RdHqKCTb0zDWB0g7p5u+0JOoZ2padB6X3PzX1+pwJUrecRJcIODrOOZqGVaBhOHYAwCA+izhI9loa0dWrYV1Maqd1+yo1M5ja6ZjuPo3s6lUaqZ3QBBoflAgEgr3HY8yhED1qISJlTdjy8GBC+O9OMMETFlRICvY0z04zAQdndEJEOiQvE/S2Z85E0BGBhVoCDdUmgnZHBho6Z4XmZQgf0ZCaxKTgaLwKf+x0S0eKQqNs3O5gwCFNGtIjOOoh3Uw87W29A9yAerFtk6pp6ZcmEHHyKHPeBdoCK+ongPrh2AHQ3gVHSpigBCdDND+T2smlvGyvSe20t0IfbCzVgi1lGt7Fq2O6+9SV1E44Co1r3Xp2vvTFdhNAiBipEBZU8HrMxMvhEzWnJJnGNSeYED1KwZl7gRMsGmrB59JnW6sv93oigwodUsMCD0mhkQ2pSTT2ovmt2iItWhf6O8VnzoldsqTBweBDdpqZS4Q0Xmivlm0yAYmx/aXx/TkW0Ha4ZK5xXSIvPtAQHDsAUDXDtROYAOIpJ9WlKX2SNK7Spw0HKvX53gqt3FWuE/ola3JvOpChcRrXCrs/X+qUJQ3sXn3EQpKHBgTE3+FCqXMHaVy/yKCDl6gtWpAjxSaN3IzRZiQEE00D1eUXS12zpWMHJbokQNMiBQ3QOBw7AFAVkGBOCSRSisfSyC5eDe/s0etflOpwSaDuJwE1aHzX8NxMaUC3JiwKcBQsS8pMkfp2TXRJgNol+0yDK4Ca0fCEtojJeoHG4dgBAEnBDHacCtECuC1LXvqj4yg1Pijhshg+i5bDuUmhTqIlczndW6inQI1cpOhAGxX+HUD9BuqPYwcAqiIRwSxOANDqHUUSfcKzaGHoPYUWj15+QN2chLkcJ2hjrLC6Tf0G6o9jBwDMRNecCtGC0E8AR+soRkqIGoiWgx7oaA1cop4CdXEx8g1tFL29gcbh2AEASZIlSy6iEmgpqIc4So0PSnAiRItClwG0BtRToF4scZygDbIie3wDqCeOHQAgfRNaGuohjhbpm9A2OA1Y1Em0ZNxQA3VjXDraKqdOU7+BhuHYAYCI/m2cCtESUA1xtJjoGm2DRfomtAKkGQPq5txpcZygrQlPTUb9BuqPYwcA5DQBE5QA0FYcRfomcSZEy0GXAbQW1FOgds7hwXGCtsbpQMH3ANAwHDsAYEZKiPRNaDn4SsbRIn0T2gYr+D/qJFqy8JtqALERZEZbFZ7Cj/oN1B/HDgBIlsWAYrQofCXjaJG+CW2DZUkuUSfRsnEVCdSNdHxoq1wK1m1Rv4GG4NgBgKrhEU6cFkg0qiGO1lGmb2q6ggBNgjqJlsyK+gmgOsalo62yRP0GGoNjBwAkWZwGAbQppG9C20CeWbQG1FOgfjhO0BaRggZoHI4dAKgKzDJSAi0F1RBHq+FBiVmLpD++Ih0qkioqpTd+KQ3vXf/n590o3XKO9IPzGvzSjbLnsPT0XOnUYxpWzqay94j059ekD1eb33MzpOOGmX3Qo2PkunM/kx5+Vfpsm+TzSBMHSrddKA3qEbleWYX0+Pvms/hqv5SWJA3Pk753tjR+QOS6v39JWvuVtGab2RcXTZEevL7ucn//n9LsJdJJo6THv1e/97p6q3TfC9KKTZLHJU0eIv3iEql3p/o9v7E+/0p6doG0abf0w8ckt1vq20U6d4J02VSpQ3rzvfZxP5UmDQ7t06aob4vXSZc9ID17q9mHda3315uls8Y37rVao4pK6S9vSDMXmmOqV6509YnS10+u3/OLSqUHZkuvLZWOFEn9u0nfOkM6d2LDyzJzoXTr49Krv5BG9an++Nf/JK3fIS38rfmbOSVan7o+43jKuzH28p9eIH37zMhl+/PN+fj9VVJJuTS0p3Tr+dLxQ+v3Wtv2Sfc8b84zlQFpbD/ptoukkXlH9x4czn6Vqp/rLEuyJU2/Xdq6T5o0SHruJ03zuo5Enrsl6cud5jz2yQZp72EpNVnqniON6y/95AIpI8WsN3uJdCBfuuGUxpVJkp78UErxSRcf1/httARvLpPeWCZ9ulnafVjqlCmNGyD94FzznV8fzV2v62Qlbg6s8GNOktwuKSfDHF8/+lr992G4htT5aOt3Sq8vlS46znyPh/vRv6WPvgh9dybKj/5t6tznf6l73Xjf3zRUS7p2apQEHjtomz7/SnrsXWnxemnf4fZz/+jYts+8//lrpZ0HpUBA6pRl2hIunSpNHtzwY+2r/dLxt0kPfL3lXnO09OvjulhWMJOdJbuZm4M/3VWuJ1cUacXOCh0uDSgr2aVjunl17dg0je7ma9bXTpRnVxUrxSOdNyw1YvmO/Eqd8Z/9+vWMzGqPtWazPivW3R/kK8Vracm36ncdeKDYr4cWFmje5jKVVtrqlObWhSNSdMbglGYuLdqqhgUl9udL3/yLuRD99hnSMf2kAV0bntsznjnV9x6R/viqufiO201nUFmFdMnvzMX7D8+TBnWXNu6W/vCyNG+N9OGvpfTgwfv2Cukbf5FOHSP949tSfokJ/lz0W+m1O6Q+nUPb/dmT0ksfSf93pnTcUOlwkbnRuPT30ou3mc/F8di75sv2lDHS8wvMsrr2/fufSu+sNI0i9c3rvWGXdNnvpWG9pL/dbN77A7NN+d++S+qYUd+91jBPz5V+/pQJ9pwyWrpgslThl1ZtkZ6aKy3fJP3rO83z2pL0z/8zn6Gzj5qivjnbqmvelvqu19bc8ZT04mJzATm6jzR3jXT3s1JxmfTds+p+/k1/NfXjtgulfl2l2R9J3/2HZNvS+ZMaVpaqdEw1fAbOIucx5pRofer6jOPtrHHSN0+LXNY9J7JsZRXSFQ9K+cXS3Zeb8+8TH0jX/lF6+kfmRrM2BwrMuTsr1dxYJnmlR94w5/jX7pD6dz369+EUNz3ZfDcdF3YzaFnS5t0mIJGebFZu6n2fyHP3Z1ul8++XBnYzjZi9cqWDhaYDwSsfSzefbva9JL2yRPpih/SNUxtXJkn674em8fnS4xu/jZbg0bdMg8l3zzadHXYdlB55XTrrV9LLP5cG96j9+fGo13VxhX0HxPt84rzcg1+XBnQz54mlG6Q/vy4t/kL68B6pQ1rDtnk01yEbd5ljbsoQKS+q88r3z5FumNEyzrlS/crx8u1St+yWU+ZoLenaqTESeeyg7XHuH/t1kW4+zdyjt5f7R8nc53/3H1JOunTVCdKI3pLPK23dK73+iXT5A9IzP5KOH9awMnTtYM6FeZ1b5nHaGq6P6xIMSjT3SImnVhbpd/MKNKKLVz88PkPdMt3aVeDXs58W69oXDuqn0zN0xegGXjO0As+vLlaHZEtfGx4ZeOic5tb/LslRryxPm4mL7yn06w8LCtQ5zaWCcrte76u80tY3XjqkgrKAfjo9UzkpLv1xYYH+tKhQk3snaVLvpOYvONqchgUlNuwyX9hj+krDepseao0Vr6M5vEEp3meQpV9Km/dIv79OunyaWTZlqGns/84/pAWfS2eMM8vve0Ea0sNcADnlnDBAmna79ODL0iPfNMvKKkzPya9Nkn56Yei1JgyUxv3QPDa2f2j5F3+VXC7z+4uL694P+cXSbf+Vfny+CWhI9dtvD842ozueuCXUw3NUH2nqz6S/vy39/OK6t9FQyzZIt/9PmjpMOnu8ubibEmzYmj5Cuul0ac7q5v3cR/aJ/LtJ6psV+lnrNuq7XhvyxQ4zKuanF5geepL5zA8VSn96Tbr6BCm7lp5N768yPYIe+aY5hiTTGLrjoPSbmdJ5x5reo/Xl7Pe6Rj+Erxf+d3MpKZeSvS2/XpSUSSkt/OKlvp9xvORm1f3d+9wCc6y8fHto3eOGSqfeKd0709w41ebRt6SDBeb5PYM9mCcOMj37Hpwt/e1bR/02qvblORNNkP03paHvDkvSxxvMqIHC0sj1j1ZJuRk1kMhz92PvmZv1mT8JdUyQpLMnmFEStl39+Ufz/qvqcAuov0fjP9+XcjMjlx03VJr8E+lf75oGgtrEo17XJfyziPfn4bzekJ7S6L7m9ylDpYBt3v87K0zv2IZtNPSzwe+nluc2ZtRGc2jIsXM090TNraVdOzVGIo8dtC3h94+Pfdc0LDvaw/3jlr3Sd/5uMjE8e2vo2ksyQeLLp0mL1kkdUhtelmRfyz4Xtobr47oEgxGW83szWL6zXL+bV6CpfZL08Dkd5AkLMJ05OFnff/Wwfju3QEM7ezW2e9scMRFd9ZO8lsa0sff66w/yNa6nT1lJlt7ZUFavw/2ltSXacKBS/7skp2p/7C6o1KMfF+m+Ofl6+ZpmzpCCNqn+QYmb/yo9Pc/8/ux882/yYGnWbdIt/5Je+0R6927TE+ej9SaCfO5E06Mm/MteCvV0KSiRhn1H+tlFZuSFZCLQo75vekeu+bPkcZvlv3jK9MpZ/adgagfb9O767xxp/xFpcE+znT+9atafdZv5Qr0oOPT7h/82/yQzauHWrzVmfzWML7h7s1Ijews4PdFSfGb5wUIzguL/zoy8qO/dyfT8e3u5eb9ul0mL5LKkzJTIbTqvkeyNXO5yR5bJUu09F379nNQlS7rxFBOUqE/v4Eq/9N4q6eIpod6dTvmnDDHlv+OS2rfRGH9+3ZTv99eZzzq6rMle6fSxob9fXiI9M19at90EX3rmSqcdY1I/pIY1jDr1+fU7TH1ettF8VudONOmowtedeKt5j3+8se769ulm6W9vScs3mlFHucHUEz+/KHRhIzVipIRqX2/ddun+WdKS9VJpuRnp9M1TpUvCes0GAubG9IXF0s4Dpu726ChdPlW6MdhD90C+dP+L0gerzHGanmx6y936NWna8Jpfvym9s8IcC5dNjXzPl00156e5n5nRMjV5e7mUlmw+y/DnX3q89H9/l1ZuMgG++rLq+KzCH3f+9gek+1+QXv5Y2n3I9NI5baw5V4YfP92/HvtcFV7nJHOB/YPHTA+fl5dI764055RN/5CKShr3mT0w24zoevsuM2Jr/lpT9lNGB3sWRTUMvrzENAqu/cqsN2GAdPvFkb29nOPq1Z9Ldz9njqshPUxapGhf7JBO/IX0929L50wwy1ZtkU6/2/Rmm/Ob0LrXPmz249t3Naw8kjkm//CKCSCXlEkDupseo+HpKGJ9xnsOS9f8USoskf77A7NP46Wuc7gkvbXc9NYKr8s+j3ThZOm+Wab83bJrfv7by81NWnjqvaxU6cxx5hwRCIS+mxvL2a/nH2uCEq8sMalEJHOeWr1Fuvdq8zlGv+cHZ0sfrDZB/0q/GUl43cnmfBV+RT3xVtMAe9nx0kOvSht2mvPZzy9O7Ln7cJFpBMhIqeGGP7jswvtND3ZJ6hmWdnHn4/XfDxNvlbYfiNxGz47Sxw+Ezh1Lfh+ZPsfZHy/81OwjyaRn/P1LJj1jQYlpwBzRW/rttWakTjx0zqq+rHuO1C3HjJqo67iIR72uS0JHStRQP8f0MT/3F0Qur8/5MVadr8/x4tQ9yYwodjx0g/k+vuVfph5+/EDosdIK6Q+z6/7udI77r59sOvxs2GWuZ759RqiDkGRGCPz+JZOeae9hEyDv3Um66bRQz39nd2zdW/f9TfR3tvMen7nVnOPeWWE6Fh03VPr1FaYncby0tGunxmCkBJpK+P1jSoxGxrZ+//jPd0wHjfuvjjx3hotOZbR5j/Twa9LS9dKuwyZgMSJP+tmF0tBeofW+2i8d++PQuVwK3VN8eI8ZDfLBKnPuPHmUuafIjGMqnNZwfVyn5h8p8djSIlmSfnlyprzuyBfxui3dcXKmTntsnx5bWqRxXwsdQ5sOVuqvHxXq46/KlV8WUMdUlyb29OnuGVnyecx29hT69dfFhVqwpUz7iwPKTnFpTDevfnFSpnLT3HppTbF+8U6+3rk+Vz2yQk2VH39Vpq+/cEiPX5Stib3MsXTdzAM6VGLrlydl6oH5BfpiX4Wykl06f0SK/m9Sutxhx8FfFxdq3pYybT1UKb8t9e7g1uWjU3XB8BRZweujUx7bq535AUnSiD/uliR1z3Tp3Rs6a8eRSp367/2659RMnR82imLZjnL9ZXGhVu+uUMC2NaSTV9+cmKbp/ZKr1nHe078vytbb60v19vpS2ZIm9PTp5ydmqnN6c9eZ6l79vESf7CjXK9fk6k+LCiTVLwb5/sZS9c1265geoc/d47Z0bC+fZq8t1e4Cv7pmxP/9oHWrf1DiJxeYL8Af/dukGDpxhDR5aKj2Vvql6/4kXTFVuvkMkwv2oVfMF80Po/KrOmfSzFQz6mL+WtMgL0kLP5eSPKZ35MrNoS+N+WvNEEKn1/99s8xcDVedYL4Idh40uXIr/WYopmWZnvp/vEG65TGTImHGaPPcbjm1H3WV/vrtE7er9u1MHGTK8ODL5oZ/YDB90/2zTOPYtOHm+c7rJcXo2ZzkNRcOW/eZL1GfV7r2JHNxNG242SeHC83+yEw1+6OuM0pNj89bI72wSHrzzsgv1Lq2t3WfaUQa1qv6usN6SfPWmhux5CaMLvsDpq6MygtekFl192TevNdcAH3zVHPzuWGXSXu1crNpfAlX6Zeuesj0HvvOWSbv9x9flXYckJ78QfVt16e+bT9gUiZ87ViTp3TvYTNk9IxfSXPvDaW4CuvoUnvv+7DXrmm9Dbukc39jLmB/faUZpjtrsSnj/oLQcffXN009veUck+O0wm+em18c2vZ3/2kappyh+/nF5u/DRbWX07bN51UfdV3IfbHD7KcuHSKXO/lXv9hZe1m+2GFSpnijTn3hz584qH5llUKfQaCG92jbwfXCyvTEB9KmPaZx59hBJqft72ebm5fXfhHZyFFbHYgeffGjf0snj5b+/E3T2OLzSNc38jNzHrrhz+Zm6pqTzL773YvS+l3SG3eE9uHDr0q/fdE0/N5yjlTul/72pnT+fWbOofCUKhWV5nvi6hPM+68MxC7HkJ7mM56/NtQANn+tOYes32luGrpmm+P0oy+ka04Mbae+5Vn4uRnCfUw/07CakWJuPG/+mzmfOT2Gq4oXPM7WbZeu/INpDH3m1rpT0zXV94lj9hLTKSBgm/dy/QzTsBTuix2mbsU6H0tmH9bUkFxSLm3ZZ0bxxXp+6Vxp2/6jH6LubDoj1Yx0e3aBqWeS9PGX5rW/dqwJSkiRZdl+wNQhZ16mZRtNx4U9h6tfb6zeauZvuOVcqXeuaRQI31Yizt3j+kvvfWpGTF51gqmDsRpG7rtG+vF/TIPov78bWeb67od/f0/6xiNmP99/tVnmC15r1FTe6OXFZSZPde9O0n1Xm9E6+46YY6iorPb3GgiYuloXy2pcT+ute6Xt+00DUm3liFe9rouz3xMyUiLsl/DX/mq/+dm/a2h5Q8+P4XWoPsfLjNGmI9F9L5g65QSM8zpXPz4l8116/Z/MCOP6fHeu/cqkJvrOWSbl19NzpR89LvXtGkrPcfez5pr3pxdKI3uber5uR/Xvx8bc34Tvmx/9W5o+XPrLTeZe5bcvShf+Vvrg11JWLakv2vK1U2Mk8thB21Ht/rEe2tr94/w15lwwpl/N60Tbc8TcQ95+semYdLhQen6hdNY9plPqgG41l8FZduMjZlTVFdOkz7dL98006zx0Q+2v3ZTXEa3h+rgerLB/Tc0fsPXxV+Ua3sWr7jU0LvfIcGt4F68+/qpcdsCW22Vp3b4KXfncQWWnuPTdyenK6+DWvqKAPthUJn/AlkuW9hT6denTB1QZsPXNiekanOvR4ZKAFmwtV2GZrc5ppq+lFOxzGfaaNS3fX+TXrW8c1jcmpOl7U9I1d1OZ/r6kSAWltu44KdSJbme+X5eOTFG34Hv6dHeF7v0wX3sLA/q/SWak4J/PydYtrx1WepKlXwaf63NbEa8Z/vvH28t146yDGpTr0T2nZMrnsfTMp8X6v5cP64Ezs3RmcI4FZ/07383X9L5JeuDMDtpV4NcD8wp021tH9J+Lau/cY9u2/PU4BCRFjGqpyYFiv+6fk68fHp+h7hnuqrpUn6vwL/dXanwPX8S6lqQemeb6YP3+CoISaLD6ByX6dTVfqJL5MhrU0zQcSZIsqbzSpPxxGpCmDZc+3WJ6B/3oa1EbC7ugnDbcDIUrrzQ3FPPXmsmZ9hw2v08cZHpEfbnT9F6yLHPD8I+3zRdb+HD9oT2ls35tyuoEPYYEv2T6dJHG16MXz7Z9pvdCfcy6LTIPdjSvx8zx8O1HzYWDY8oQM1zUF7yB6pwlZaeZ3mjhX3JHikwDmBR5k/TrK817u/GR0Jd0j47mwqjOHrs1XMwXlZqgzrfOMD0fnHWlui/+DxeZn9np1dfNTjc3VvklTZum5VChuTjo3SmscaWOG5Xwm0fbNhclg7qbxsrPvzIpyRTcTnml9K3TQ6METhhpPs/7XjCfU9XNlxV63brq2zkTzT+HPyCdcow08rtmFJDzWk2ZvunB2SbAMOu2UMPVjDHSkWLz2DUnmnIv3WCOnx9fEHruSaMit7V0g3TltFBvZimUfqw2i9aZHr/18fEDtU+Mfqgwdj1LSzaN8IcLa99nhwqrN3pIobQFdT2/muC6Z/265lV65oa2uXqbueC949JQQOiEkVL3jiZf8wuLTCNl+ParlceKWh78efyw6ulLGvuZVb2v8dIvLzO/nzjSnKu+/aj06lLpwinmO+GB2aZh/DdXhZ5+wgiTUuUPL0v/+L/QNiv85jgM761ak6nDzI2T8z7nr5Uummx6oc1fa0b6rNxsem07Ad6GlOdnT5pG/Vm3hRp0ThplRpncN8ts3+UK7QvLMq97w5/N8P5Hvll3oLUpv08k05N1xmhzw7Q/3/Rw/cFj5nXC0/nVdJxkB29ca6vn+cXm/FjT+VyqO6hVL2H79fJp5hzxxQ5zXbFgrUkvk5EaWjf89R7+Ruj3QCC03/71jqlf4cfG/nxp3n0xbhITeO7+9plm5M9LH5l/bpe5oT15lNmWk6JoSE/TA8/njX39Up/9MKqPqacZKTG2UVN5o5Zv2GXq1EM3RPYePe/Ymt+j4w+vmO+auvTMlT55sO71wlX6TY/StOTQ9WFN4lav62CF1bu4N6yGNfD7A6azyMdfmgazSYMjAzsNPT+G16H6HC+dskLXq4N61FA3w7Y55zPzr17fnZZ0MF965RdmVJBkAhEL1prXd0b/LN1gvhtuPj30sqccU70cjb2/cfbNmL7SQzeGVhnSUzrnHuk/H5hgaU3a9LVTIyT02EGbEX3/WB9t7f5x50ETUIxeJ7rx32WFOoNOGRI6d1aVYYw0/Xbpf3Oku6+opQzBn1dMD52/p48waaSenWeuLWorb1NeR7SK6+M6hH89NsNLHS4NqKTSVs8sd61vpWeWW6t2V+hIWUAdU9367dwCeVzSzCs6Kic11GR97rBQerA/LyrU4ZKAZl+dq/4dQ82QZw4JSyFWz0vTUHlt/fW8LJ3U34xMOL5Pkkr9tp5dVawbJ6Spe6a5hrnv9NBo24Bt69je5h7uyeVF+r9JabIsS8O7eJXssZTus3RMdKqmGK//hwUFykx26clLcpTmM+/5xH5J+tp/D+j38wp05uBkWWGdgKb2SdIvwgIl+aW2fj+/QPuL/eqUVnND/ktrS3T72/k1Ph5u3Q/rDor96oN89c3x6IrRKTH7gdTmSGlAWSlWtc8mzWcWHCqpZ2cKIEz9gxLRwi8KreDfpx0TWZuH9ZIWrq1ew531JWnqcNPj6JMNplFt3hqTOmjXIfP7reebhiBJmjbCPG/5RnMzdd7EyG2PH2hGJIRvv+oEUs+L2G45kWlAajOgW+3brKg0N0vrtksPXm/W37ZPeuhlMyn1rNvMhYjbLX19hmkwe+hl6eqTTFqQX/zPXDhJ5qLAea2HXjE9f398vnTsYNMo9+/3zDaf+3H1PJXhwvdNuN/MlLxuc4MVa9/Vpmr9WPs4+Lernvu/3qK+GcL/1WTLXpM2Z8HnpqHKDrvw+nKXNDwvctMXTonc3gWTzUXlwnVmvzvr1re+FZWaz/i1paZnYngPuC93Re7HmrYRsQuijr9YFnxuGnejewNdNtUMn1220TQ0jO0n/e5T6bYnTMPE+IGROUYl02PyuQXmwm3acDNRYnSvuVjG9K3/MVXXKKa6RsTU5ziPtU5993msbUnSIzeZXoTRfvm0ufh31vv8K/Pzsqg0M+cdaxqX56+NDCDEeq/V6lzw59kTqq/b2M+spmPgvGOl7/3THAMXHWcaiSr90iXHRdbnZJ8JLi/8vPqxcc7E+u3jqcNNQ9O2/Sal3MfrpetOkg4Vme+GS6ea/ZXkNcejZdW/PJv3mGPursvN3+HrzhhtUmBt3G0ay5yyPr/ATBh8wymh59WlKb9PpOq5as+ZKF31B5OKILwxW6q9Llu1jMqoz/m8KRqFwuvFcUNN6qFn55vPdfNe6awJkeuEv978tdLDr4SCUuH2F4TS/Fgy1yEDYhybiTx3J/uk/9wird8hfbjaNHAuXmcah5/8UHr1jsgy13TOq+9+qGkbNZU3enm/ribt5D3Pm8k4Jw2ue1JpxzUnmtG1dXFGb9SXbUs/fMykJXzsu3X3eI1Xva6Lc3OaiIZV5/XO/FXk8kHdpSdvCX03NOb8GP5+6n28qPpzq8qqyDq78HPzsz7fnZZMg1t4SrKUJFOPtx8IPf+YfmautXueD14H9a8+YskpQ2Pub5yf0d+jEweZsi38XPpB1EiLcG352qkxEnnsoA2xQj/rW4/a2v2jI3qd6/9s0htV/T3DjNiUzLX1I69LsxaZ74iKsFHAdZXBeZnoEY3De5m0fNHXK9Ga+jqipV8f18WSrOB/oZ3blJu3nJep+j0W5zBwyVJphbR0e7kuGpGqjqk1N67P21KmY3v5NKCjt8Z1Qq9vRbx+rOWWLKX5LJ3cP7LN4pwhKZq5ukSfbC/XecNMB6fF28r0949NmqXC8shhBweLbeWmhQIp0a8d6/WLKwJatatCl49OVbov9J49LkvnDUvRA/MLtPlQQP1zPFXPPal/csR2B3cy+2FXfkCd02q+Pz+pX4peuKLmfRarnDV5e32JPtxUptlX5cpluaq9t/q+RvXPxm7QNoBwjQ9KROcrTPFF5kqUTE7G0orqeQ2tsOceO0hK9Zkbip655sv2hJGmIe+xd81w6vlrTINF32D+VadnfucO1bftfKmF51WUzJm1PjlIk72mZ2F91JVu45l5ZnK4d+8ODZGcMsTc0E/4kfTPt0M90398vnmvD71ihnZLpgfC5dNMD4QeOab864MpVO68VPq/s0Kvdcpo6bjbpDufkWbfXnu5o/fD8o3S4+9L//meCaRUVJrlTkqagmLTiBI9N4jDGTZ6uKj6to8Eewx0SGvaHLCdMk29+WpfKOBR22dcWCqd9xvz+f7sItNrNtVnJum77mET5Ap/rsddfULNrh3Mz8OF1V+nPvXtW38zdfmHXzM3wxkpZr3LHzDpEKK3Ud85Jaxa1jtUaIboRj/u5Mt03sst55oeczMXSk98aOr25MHSLy8N1d1/fcdcFD89V/rtLLP+WeNMT/rolADhMlLqf0zVlYIgJ11as7X6+ykqNb2TstNr32c5GWafxKqnzvYbUk+dVQd3jz0MOjPVnMucbRaVmt+rXXwHl0XXrdo+2/C6JpnPNHrdxn5mznmta4fIbfo8Zh875dwf7LVx2l01lzH8+am+mvPXRjthhPm5YI3p0VbhN4GV/fkm1ZjLMsGJiQOltOB3T33L46x31zPmXyyHguczp/gvLzHnwatPqH+amab8PqnJxceZRsJVW0JD/rPTa6jnxeZnbfXc6QEW6zznHCcdG3icxOI83WWZ9375NNPDv6zC1LsB3SL3v/N6yzdKl/7OBDL+cIPUPdvUyzeWme/P8qhzeazzX7hEnLsdQ8JGnNq29Pe3pDueNsfqY8F0TVbUth0N2Q/R+9ARvjxiLqqo99EhTXr556bTxL0zzXd9lw7mWPjhebUHOrt2qL2xoaos9dxnktlXP3jMBC0fucmM6KpLvOp1XZwGi4a83yZ77eDPv9xkAhGFpSYd3BMfmLRMz/3YPN6Q82OsOl/f48Wqx/HiLD9UaK4P6vvdmZNRfZtJ3sjXv+9qc209e4lpbEv2SieOlO68PHJkVWPvb5yHYp2DOmeF9mFN2vK1U2Mk8thB2xF9/1iXtnj/2KOjCdBGr/OrK6QfBQOlp9wZuc07nzYdIL97tmnLcO7rb3ksdhnC34dzru8YdV522hWir9uiNeV1RGu4Pq5LcH9alpojJqGcVJdSPJa25/trvS3Zke9XisdShxSX9hUF5LelrhmuWp9zqCSgrhm1j8BwHqqrv4wjN7X6azqjDo6U2bIs6dNd5bph1kFN7OXTPadmqWu6W1639N6GMv1tSaHK/HaNMfdqrx/8vaDMli2pc3r11++Sbu4Tj5QGqpqoJCk7aoRBUvDyOdbrh8tOsZSZXM+gRC3bKSoP6Fcf5OvqMWnqku5WQZkJcFYER0gVlAXkcUup3prvczukuKreV9VrSioKBno6pPD9jIZrfFBCijo7qOajINZyZ5nTy3XeGpOSonOW6eHUJxiAWLTOzElw6pjQc3KCjeD786tve++R4GiJqlNaWBnrcZBs2yeN/UHd60mm8f/4YTU//tk209gyum/ka/ftYr701u0ILfd6pHuukm67yJQhJ93kTL/4t1Jep1DqnTVfmRvyY/pHbtPnNZNOOhM+x+J8RtGPr99ptnntw9Wfs+OANOBmU7bwIe7h+nYxN22fb6++7c+/Cj7ehKmbJHPRN3W4CfrsOljze3MsWGvSgL3888gUKfnB3qURPTos0yPkUGGorknSvuCNek5G9W/JuupbfrH0zkoTfAofrl9WYW5Mayr70fb4yEk3qdCiH99z2PzsmGke83pMSpFvn2kurOauMb0HL/m99OnD5oY8N9NMPHvv1SaH91vLzcTo+/Ol538a/cohCz+XvnZv3e9DkpY/VHsKgmG9TMqEvUciG9XX7TA/h/aqfZ8N7WV6RvqjJiL7fHv9nh8t/HOv9Qor+Fh6ign2HSiIvGmxbZOj/Zh+kefG8srq2z1YWL2+Oj+j123sZ+bYm2/SYzic48K5MHcCko9/r+aeytHlq+/+7dHR3PzNDQYlxvQ1uXSnjZB+8oRplF22waQtCr/hqU95nPVuOcf0yI/FGbngbPvRb5uebufdK838afVJs2Npyu+TuoQHNYb1in0+XhccqVNbPU9NMufsmOfz7eZc36dL4wIo4aKPnSummcb4Jz4wEw5W7fuoev7SR2ZU39M/ikyf9eby0Ho1np9jlCGR5+7o9b91pkk/ti7Gvo/+u0H7IWofOpznRZ9nDhZWf93hvaV/fdecq9ZsM/NaPTDb1Ifv15KC5oHZZjLhuvTKlVb8se71nIDEM/Olh280aYTqI171ui7hH0lzv1a11w6+3qAe5rtGMtdR/oDp/PLqUpOiqCHnx+jtN+R4idXaEP13+HV/pb9+3501bTN6eXqKuea+7SJzTfH+p+b78ao/SB/9PrRuY+9vnJ/7jsS+V+lbR31ry9dOjZHIYwdtR/T9Y/g1bixt8f7xhJGm4+fKzaHvAql6Cujwbb+wyExcfcelkescLDCdjepzTxLr+qymdcM15XVEa7g+rofoS+Sm5HFbOra3T/M3l2l3ob9qDoZwuwr8WrOnQtP6JsnjtpSd4pLbknYXBmp9+zkpLu0urD3YkeQ1D1ZETTvopAWK/grYX1z9NQ8Um5E8ThDgjS9K5XFL/7wgR0me0MrvbSwz26yhusb8O7huVrIllyXtK6r++nuLTFlznIBJDVW9vl9rL64p0W1vHal5hTBf3hpjdHjQ4dKA9hcH9O9lRfr3sqJqj4//yx7NGJCkv32t5jkuBuV69MX+imqH8o58s88H59YveAKEa5r0TeHLYv1d15fS9BHmRiA92fxuWeZmYfwA03Ny9yHzBeo8Z/wA02A3+6PIHItLvzQjLcLzRDpRxdKK+n1JdMuR3qslP3y4utJtdMs2F/ArNpsyOzbsMjf93WMMt85ICU0c9+lmE6z59ZWh9Zwe7ss2RjZglVWYnrKxthkt+vGTR5uLrWjfeMTsyzsurf3myesxQ9tfX2qG+ztpf7bvN0Ndbz6jeb6gf3CemSz0B49J5x5bvV5VVJqLztPHhnJiRk8m/sQHod+jy/jCIummsEDMrMXm5/HDaq7rNdU3yzI3z9Gv/785oWG49bmgi/WatX2TTRsuvf6JtPtwqO5IJhVNapKZSD76uR3STUqE3Yek2/9rjqmq+WOCenWSvnGaCRh+vL72co7pV/9jqq4UBGeOl+59waQk+v45oeXPzjMXgzNG1/78s8ebFDyvLZXOnxxa/tx8EwQcH2N/1EeNNwVhj0smcPjaUlO3vnVGaL1XPzYTxjrnP8lcXK/9KnK789aYno3h26yrDI6GfGbOY7MWRd6wvLzE3HA5x8DJo80N3pa95hisj4bs3+kjzGv26GhGjlmWNLC7yRN+/ywzeiJ8n9W3PIN6mIDHmq+kOy6rX1my06UXfyZd8YD0td9Iz/3EHD+1acrvk5rMXGgap8eENcqdNUH68ePme8L57qn0SzMXmUmWa5rEz3HWeNNrf+fBUEC8oMScS04fW78UYPXl1NvuHaXvnG3mjzp+eOR5LbxuuyyT8tDjDi0rKTfntOh1pbqv9BNx7t59yJxvou06ZPZzeEcGp3d39PYash+SPLGvgZxGzM+3m2PC8VYNAR5n2cg+5t+z86RVW2t/r9eeLJ02tubHHUmeuuu/E5B4ep70h+ulK0+oe7vh4lmva+Ls07rqSDzK4Lj7CvO9dP8L0jkTGnZ+jK7zDTlenF6yZbVcnzvLpw+X/vxa/b47pdjHfU33JJJpqL9iugm4PfqWOZbCR0c09v5GMmUO/z76eL25rrrqBK6dGqIlHDtoG8LvH//3IzPKMFxbv3/81hkmm8NPnzDXtdHpemOVz7Kql+GdFea6xZnLM3z9hpSrrvI25XVEa7o+rollEuTUc8x2o3zr2HTN21ymu987or+dly132OgPf8DWXe8ekR1czyUp1WtpYi+f3lpfoluPz4iYUyLc9L5Jmr22RFsOVqpfTux91Ss4B8T6fRUaELbOB04AQaH3bsn00P9gQ6lmDEiuWvfVdSVyWdKxPZOqJqb2WJY8Vui5pRW2Xl5jgouusG36PFJZpV1t/4a/pktSus+l0d28eufLUt0+PVPJwWBKwLb1ytoSdc1wqX92aBLp6LKrluXRZvRP1ktX1a9u1badLmluPXVJ9Tr+6MdF+nh7mf59QY6yU1y1buO0gcn65Xv5WrWrXGO6mc5NftvWx1+V6ZhuXnVhkms0QtOkbwpvLAhnqebl4ctOGGGGiM9bI/3t5tBjJ4w0PVMty9yQOMs7ZkjfPsOkKOjwb3OxvPOgSXvkpBtx1u3X1Vxwv7BQGtLDpC/pmh3ZQBsu2Wu+lJrClSeYuR++/rCZq2FgN9NY9oeXTbqR62eEyrlgren5O7y3Scm2fKP08Kumke2bp4XWmzIkmP9/lmmomDLE9KL4xzvS1n2mN2/4vl34eWgovj9ghmu++rH5+7ihpsdZtxr2R5LX9OqYNjxyudPzd/lDoWU/u0g6+Q7TYHfLueYm894XzGf13bOaZyjjsYPMXB23Pm4aVU4eZUbaVFSaAM0TH5geD2eOkyYNMkNNb31c+ukFpiFn5kJzAypVr88+j/TXN01KrbH9zU3kA7PNjVv4RF/O+vWpb1OGmBQBuZlS72A+4f/NCfUwaWz6pmUbY1+EHTfU9CJ/Z6VpRP3x+aZhdeZCs+zuy80+kaTLfm/21TH9zGf21X5zY94r19TbghLp3Huki6aYRuGMFFNHP/jUzGVQWzmzUpvumBrWy6QM+e0syeMyn80Hq0zKqZ9fHOrhKZk0Z797MbJ306nHSCeONPWgsFTq18U0vL+/Svr7t03jbkPU+VlFfaaj+ph6cfczZt6YYweZOnj/LPPYZVND61461aRKuf8FU/4vdkj/fMekhKpPfTlS3PjPzHnotaXmWDlxpOm9fe9MaUSeyY/rssyItp9dZOak2bpPmjHKBLX2HjGvlZpkHpdq/p6ozQkjzHDxAwVmtIfz3OkjpKfmmvo7tl9oeUPK89AN0sW/ky6+X7p8ujlGDxdKX+yUVm02Of+j929WqvTCbdLVD0kX3W96qU+NOj+Ga8rvkz+9aurAtBEm5ci+fOl/H0ofrJZuu9CkJHBcfYLpBXf9n6Q7LzOPPfaeCYjPvj3yMzjvN8Hvif+Fln3vbGnmAnNeuP0iMxLvj6+Y8/ptFzbN+TxWvb37cvPztaXV0wE6v5821pybb/qLuVE9WGDOq04DZ7VjsZbzaKLO3T98LHh8TpSG9jSjXNbvNNcLLpf5DnWeP7yX2R+Pv2dGC7lc5jzdkP0wrLfp5Tz7I3OMJHnNtcb4Aeb8/sunzfVBhzTzWku+iNzGW8tNfTprvHm+LXMdcaTYnBtqTRORY/41hZ88Yfb7VSeY8i/bEHosKSpVWqLqdV1cVugaON4paGqqnznp0g/ONek/Zy02vWEbc350Un3V93gZ3sv8fPJD8/2U7DMjg8N7EzvrnjTKXOPV57tTUq3HvbN8xh2mQ83w3lJWmjkGn19ggs3pwcaNo7m/cX6u3Czd8k/T2WPHQeme50zD1zdObb/XTo2RyGMHbUv4/eNJvzD340N7tp/7x/5dpX9+x3Q+nHqbef+j+5qy78+XPlxl1stMCbv2OsaMUBzUw5wzV24y85k5jfi1laHqfKnIctU73VQTXke0huvjuoRVt+ZK3z+hp093nJSpX3+Qr0ufOaCrx5oJo3fm+/W/FUVauatCd5yUqfE9QyN1f3Fipi55+oAufGq/bj42XXnZbu0vCui9jaX6zalZSve59IPjMzR3c5kue/aAvj0pXYNzPcovC2je5jLdMD5d/Tt6NLqbV/1y3LpvboH8thmR8M76Mi3bUV71vquaPSwzGuKX7x3RrgK/+mZ79OHmUj23qkRXjklVjyzz3XRi/yQ9tqxIP3j9sC4bnarDJQH9c2lRVTwyfJtDcr16dV2JXv+iRL2y3EryWBrSyRsztvaTaRm65vmDuvL5A7pxQpp8bkv/W1Gs9fsr9fA5HeQK1oea4nL1jSPmpLqUk+qreYV6SvZampxXPXvJi2tK5LaqP/bTtw7rxc9KNOcbndQjy+ysi0em6n8ri/WdVw7pJ9My1THVpadXFmt3YUAPnZ191GVE+3QU4dwYR0+1o8mqeXn4stF9zQXxgYLIERFOUGJUH5NmJtwvLzNf2I+/Z/KlD+xues79+nlzc+FsIy3Z5Bz+7SzpgvtMz9qfXhhqmGpOvXKlD39jgiUPv2pS5nTKMjnQf3JBZM9En9cMnX9wtlRWaS4YfnaRSZkUPlTa7ZZe+rn051dND+JHXjcBjsE9TUqRU8ZEluG+F0ITBEom+LEgOHH4q3dIU+vI0Wip+udXGZzcKnz54J7Sa3eYm9rrHjY3PVOHS/f8yLzn5nLdydK4AabXwxvLTC8wr1vq381MxPvN00w5O2ZKz//ETB5+019N4+SZ46R/f0+afruq1Umv2+RX/ukT5jNJ9knXnij96srY3xr1qW//+q6ZSPrOYAPQsYOkl26XLvld5DbC4+a19vgIPvbI67EffvUOM8n123dLv3pW+vF/TCBrUA/pLzdLV04PrTt1uGlk+u+HJgDRuYO5Af3x+aZu2jINWM8tMHlYK/wmPc73zzW97uLZa+3B602vwH+8I+09bHr73n9NZK8kKTQniq3I8v33h2Zk1n0vmCHWA7ub/O0XTmlEYcIuuGPWC+enc+HtMhMl7zhoGtUfnG3OfZceb3qkhqdh+f45pvHlmXnmMx7bX3r8+ybwF77NmsqQ4juKzyz42H9/aIIij79n1j99rJn0Lnx+mR99zYykefRN6cVF5vzVOcuU9/oZ9fieqMW0EeYCP8Vnjpfw74an5pp6645qDKlveaaNkN7/tfkMbn/SNILnZJgJfM+fVPP+TU2SnrlVuvHP5th98gemwaa5DephGoffWWnKmuIzAaJYdTfZJ73yc9PY/NMnpJIy07P9hZ9WTxHlD5h/4Z9LpyzpzbvM+fLbj0qVAdNQ9+od5lzfJGo7dsKv0hX6XTIBqUduMt+plz9gbtivPcncrH/3H6p23qzp2Kx6PAHn7ptON0GCJz+Qdh4yjRe5GdKEQaZjQfgInG+dYVKs/Pp50wHBtqXDzzRsP/zsInP9ccu/zPm9V660+s/m2uLZH5vvhh89Zs71F0yWfv/14HsLbmNAN9Mo86fXzCgPr8cEM/56s+ldHi/OCI7/zTH/wjnvyZGwel0HpxUhIb29aznmbjpd+ue70u9fNPPUNPT8GF7f6nu89Olivk8efUs65x6zbvS1Sfgd+1M/MkGIur47a3qP0ducNtykO/vrm2ZkRLds6bJp0q1fa6L7G+ca7ZvSswukGx4xudOnDpPuvzYyvUs8tKhrp0ZI6LGDNse5f/zrG+Z7dO/hdnT/KNPJYNFvzfnv6XkmEBmwzfXyuP7S/35o1nG2c/+15rv/oZfN6LTRfaT//sCk+q2zDOHXdOHlakB5m0qruD6ug2WFAhLNuNuuG5em0d28+ufSIt07J1+HSwLKSnZpQk+fZl6RqbE9Ir93h3XxavY1HfXQgkL9fn6+ispt5aa5NaW3Tz63KXO3TLdmX5OrPy4o0KNLCnW4JKCcVJfG9/CpQzDVksdt6V8X5OjO947ojneOyOexdPaQZN09I1PXzzpUrRp1SnPr7hmZum9Ogdbtq1CHZJe+PSlNPzg+o2q94/ok6XdnZOnRJYX6xosH1TXDrctGpapjqks/fetIxDZvOT5de4v8uv3tIyost9Uj060FN3cOXY4otO6k3kl66rKO+uOCAv3kzSMK2LaGdvbqnxdk6+SwkRvhR0JjghLNroZLmoAt+W1FHKLJXkv/uzRH988p0N3vH1FJpa0u6W59d3K6JvVu4nTtaDcs27btuleL8sjr5suoth6iibBlrzT+hyZSfev5iS4N4unp4BD08ycd/bZu/qsJ+Ox64ui3BYR7c5lp1Pv6jESXpHb3zjSNP5v/UT0gDDS3Vz82jaBXn5jokgBNa/chM/rr+hmxU3ih7XhqjvStR6U5vzFBcRwdjh20dNw/Ih44F1a59On9OlgS0Ls3dE50Udq1mauLle6zdMbgWlLBAbWIQ+K7ZrJ6qxnieOwgM+z7y11m+FxGinQNDRkAAAAAAAAAALQ0rTcokZokrdhkctEeKTZ51qcONWmdOndIdOkAAAAAAAAAAECU1huU6N9VeuUXiS4F2qJHv23+Ae3V7RebfwAAoOGuPMH8A9A+cP8IxNVzV+QmuggAmoAr0QUAAAAAAAAAAADtA0EJAAAAAAAAAAAQFwQlAAAAAAAAAABAXBCUAAAAAAAAAAAAcUFQAgAAAAAAAAAAxAVBCQAAAAAAAAAAEBeNC0q4LMlFPAMtiNtl6iXQkrlcnDuBunCcAAAAAECL5rJohsPRsWzbthNdCAAAAKBNq6iUDhRIHTMkryfRpQFaD44dAOBcCKDNISgBAAAAAAAAAADigvwIAAAAAAAAAAAgLghKAAAAAAAAAACAuCAoAQAAAAAAAAAA4oKgBAAAAAAAAAAAiAuCEgAAAAAAAAAAIC4ISgAAAAAAAAAAgLggKAEAAAAAAAAAAOKCoAQAAAAAAAAAAIgLghIAAAAAAAAAACAuCEoAAAAAAAAAAIC4ICgBAAAAAAAAAADigqAEAAAAAAAAAACIC4ISAAAAAAAAAAAgLghKAAAAAAAAAACAuCAoAQAAAAAAAAAA4oKgBAAAAAAAAAAAiAuCEgAAAAAAAAAAIC4ISgAAAAAAAAAAgLggKAEAAAAAAAAAAOKCoAQAAAAAAAAAAIgLghIAAAAAAAAAACAuCEoAAAAAAAAAAIC4ICgBAAAAAAAAAADigqAEAAAAAAAAAACIC4ISAAAAAAAAAAAgLghKAAAAAAAAAACAuCAoAQAAAAAAAAAA4oKgBAAAAAAAAAAAiAuCEgAAAAAAAAAAIC4ISgAAAAAAAAAAgLggKAEAAAAAAAAAAOKCoAQAAAAAAAAAAIgLghIAAAAAAAAAACAuCEoAAAAAAAAAAIC4ICgBAAAAAAAAAADigqAEAAAAAAAAAACIC4ISAAAAAAAAAAAgLghKAAAAAAAAAACAuCAoAQAAAAAAAAAA4oKgBAAAAAAAAAAAiAuCEgAAAAAAAAAAIC4ISgAAAAAAAAAAgLggKAEAAAAAAAAAAOKCoAQAAAAAAAAAAIgLghIAAAAAAAAAACAuCEoAAAAAAAAAAIC4ICgBAAAAAAAAAADigqAEAAAAAAAAAACIC4ISAAAAAAAAAAAgLghKAAAAAAAAAACAuCAoAQAAAAAAAAAA4oKgBAAAAAAAAAAAiAuCEgAAAAAAAAAAIC4ISgAAAAAAAAAAgLggKAEAAAAAAAAAAOKCoAQAAAAAAAAAAIgLghIAAAAAAAAAACAuCEoAAAAAAAAAAIC4ICgBAAAAAAAAAADigqAEAAAAAAAAAACIC4ISAAAAAAAAAAAgLghKAAAAAAAAAACAuCAoAQAAAAAAAAAA4oKgBAAAAAAAAAAAiAuCEgAAAAAAAAAAIC4ISgAAAAAAAAAAgLggKAEAAAAAAAAAAOKCoAQAAAAAAAAAAIgLghIAAAAAAAAAACAuCEoAAAAAAAAAAIC4ICgBAAAAAAAAAADigqAEAAAAAAAAAACIC4ISAAAAAAAAAAAgLghKAAAAAAAAAACAuCAoAQAAAAAAAAAA4oKgBAAAAAAAAAAAiAuCEgAAAAAAAAAAIC4ISgAAAAAAAAAAgLggKAEAAAAAAAAAAOKCoAQAAAAAAAAAAIgLghIAAAAAAAAAACAuCEoAAAAAAAAAAIC4ICgBAAAAAAAAAADigqAEAAAAAAAAAACIC4ISAAAAAAAAAAAgLghKAAAAAAAAAACAuCAoAQAAAAAAAAAA4oKgBAAAAAAAAAAAiAuCEgAAAAAAAAAAIC4ISgAAAAAAAAAAgLggKAEAAAAAAAAAAOKCoAQAAAAAAAAAAIgLghIAAAAAAAAAACAuCEoAAAAAAAAAAIC4ICgBAAAAAAAAAADigqAEAAAAAAAAAACIC4ISAAAAAAAAAAAgLghKAAAAAAAAAACAuCAoAQAAAAAAAAAA4oKgBAAAAAAAAAAAiAuCEgAAAAAAAAAAIC4ISgAAAAAAAAAAgLggKAEAAAAAAAAAAOKCoAQAAAAAAAAAAIgLghIAAAAAAAAAACAuCEoAAAAAAAAAAIC4ICgBAAAAAAAAAADigqAEAAAAAAAAAACIC4ISAAAAAAAAAAAgLghKAAAAAAAAAACAuCAoAQAAAAAAAAAA4oKgBAAAAAAAAAAAiAuCEgAAAAAAAAAAIC4ISgAAAAAAAAAAgLggKAEAAAAAAAAAAOKCoAQAAAAAAAAAAIgLghIAAAAAAAAAACAuCEoAAAAAAAAAAIC4ICgBAAAAAAAAAADigqAEAAAAAAAAAACIC4ISAAAAAAAAAAAgLv4fmUp6Lm6BYKAAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"visualize_result(result, request_records, expected_value)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "6a4732f0",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'explanations': {},\n",
" 'predictions': {'content_type': 'text/csv; charset=utf-8',\n",
" 'data': '0.0006380207487381995\\n0.1621972769498825\\n'},\n",
" 'version': '1.0'}\n"
]
}
],
"source": [
"request_records = test_features.iloc[:2, :]\n",
"response = sagemaker_runtime_client.invoke_endpoint(\n",
" EndpointName=endpoint_name,\n",
" ContentType=\"text/csv\",\n",
" Body=csv_serializer.serialize(request_records.to_numpy()),\n",
" EnableExplanations=\"`false`\", # Do not provide explanations\n",
")\n",
"result = json_deserializer.deserialize(response[\"Body\"], content_type=response[\"ContentType\"])\n",
"pprint.pprint(result)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "6caec6c0",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model Inference output: \n",
"Record: 1\tModel Prediction: 0.0006380207487381\n",
"Record: 2\tModel Prediction: 0.1621972769498825\n",
"No Clarify explanations for the record(s)\n"
]
}
],
"source": [
"visualize_result(result, request_records, expected_value)"
]
},
{
"cell_type": "markdown",
"id": "63eabecd",
"metadata": {},
"source": [
"### Batch request with more records, explain some of the records\n",
"\n",
"Put a few more records to the request body, and then use the `EnableExplanations` expression to filter the records to be explained according to their predictions."
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "5922a2c0",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'explanations': {'kernel_shap': [None,\n",
" None,\n",
" None,\n",
" [{'attributions': [{'attribution': [0.006114497519667782]}],\n",
" 'feature_header': 'Age'},\n",
" {'attributions': [{'attribution': [0.0003501730095504252]}],\n",
" 'feature_header': 'Workclass'},\n",
" {'attributions': [{'attribution': [0.0012082672336744121]}],\n",
" 'feature_header': 'fnlwgt'},\n",
" {'attributions': [{'attribution': [-0.0026339170191323202]}],\n",
" 'feature_header': 'Education'},\n",
" {'attributions': [{'attribution': [-0.0005213645642889592]}],\n",
" 'feature_header': 'Education-Num'},\n",
" {'attributions': [{'attribution': [0.011663477401727032]}],\n",
" 'feature_header': 'Marital Status'},\n",
" {'attributions': [{'attribution': [8.174865259447106e-05]}],\n",
" 'feature_header': 'Occupation'},\n",
" {'attributions': [{'attribution': [0.014338411399320156]}],\n",
" 'feature_header': 'Relationship'},\n",
" {'attributions': [{'attribution': [-0.0029147193310081615]}],\n",
" 'feature_header': 'Ethnic group'},\n",
" {'attributions': [{'attribution': [9.674410290752555e-05]}],\n",
" 'feature_header': 'Sex'},\n",
" {'attributions': [{'attribution': [0.9645793076903789]}],\n",
" 'feature_header': 'Capital Gain'},\n",
" {'attributions': [{'attribution': [0.0022727186477716904]}],\n",
" 'feature_header': 'Capital Loss'},\n",
" {'attributions': [{'attribution': [5.6295284624752195e-06]}],\n",
" 'feature_header': 'Hours per week'},\n",
" {'attributions': [{'attribution': [-0.00027586537371593334]}],\n",
" 'feature_header': 'Country'}],\n",
" None,\n",
" [{'attributions': [{'attribution': [-0.014416842837292257]}],\n",
" 'feature_header': 'Age'},\n",
" {'attributions': [{'attribution': [0.0017354490398059363]}],\n",
" 'feature_header': 'Workclass'},\n",
" {'attributions': [{'attribution': [0.012205030643245157]}],\n",
" 'feature_header': 'fnlwgt'},\n",
" {'attributions': [{'attribution': [-0.0023979374730959888]}],\n",
" 'feature_header': 'Education'},\n",
" {'attributions': [{'attribution': [0.18028287838935786]}],\n",
" 'feature_header': 'Education-Num'},\n",
" {'attributions': [{'attribution': [0.02478354177040737]}],\n",
" 'feature_header': 'Marital Status'},\n",
" {'attributions': [{'attribution': [0.10162519690391414]}],\n",
" 'feature_header': 'Occupation'},\n",
" {'attributions': [{'attribution': [0.08112310305001733]}],\n",
" 'feature_header': 'Relationship'},\n",
" {'attributions': [{'attribution': [0.010020417810162857]}],\n",
" 'feature_header': 'Ethnic group'},\n",
" {'attributions': [{'attribution': [0.0031619555256293466]}],\n",
" 'feature_header': 'Sex'},\n",
" {'attributions': [{'attribution': [0.5942507276691332]}],\n",
" 'feature_header': 'Capital Gain'},\n",
" {'attributions': [{'attribution': [0.007065926890266458]}],\n",
" 'feature_header': 'Capital Loss'},\n",
" {'attributions': [{'attribution': [-0.02629517299171047]}],\n",
" 'feature_header': 'Hours per week'},\n",
" {'attributions': [{'attribution': [-0.005759148344867238]}],\n",
" 'feature_header': 'Country'}],\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" [{'attributions': [{'attribution': [0.011418133903638427]}],\n",
" 'feature_header': 'Age'},\n",
" {'attributions': [{'attribution': [-0.019112711834036955]}],\n",
" 'feature_header': 'Workclass'},\n",
" {'attributions': [{'attribution': [0.017348263799401832]}],\n",
" 'feature_header': 'fnlwgt'},\n",
" {'attributions': [{'attribution': [0.002910214539856598]}],\n",
" 'feature_header': 'Education'},\n",
" {'attributions': [{'attribution': [-0.005314536439832644]}],\n",
" 'feature_header': 'Education-Num'},\n",
" {'attributions': [{'attribution': [0.028713179571532813]}],\n",
" 'feature_header': 'Marital Status'},\n",
" {'attributions': [{'attribution': [0.0015292863198149292]}],\n",
" 'feature_header': 'Occupation'},\n",
" {'attributions': [{'attribution': [0.03660920319786565]}],\n",
" 'feature_header': 'Relationship'},\n",
" {'attributions': [{'attribution': [-0.0013032296085910347]}],\n",
" 'feature_header': 'Ethnic group'},\n",
" {'attributions': [{'attribution': [9.275861027367022e-05]}],\n",
" 'feature_header': 'Sex'},\n",
" {'attributions': [{'attribution': [0.8921386858609416]}],\n",
" 'feature_header': 'Capital Gain'},\n",
" {'attributions': [{'attribution': [0.0008752557697499982]}],\n",
" 'feature_header': 'Capital Loss'},\n",
" {'attributions': [{'attribution': [0.022843418097394173]}],\n",
" 'feature_header': 'Hours per week'},\n",
" {'attributions': [{'attribution': [0.0012127614888677307]}],\n",
" 'feature_header': 'Country'}],\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" [{'attributions': [{'attribution': [0.01035479390309033]}],\n",
" 'feature_header': 'Age'},\n",
" {'attributions': [{'attribution': [-0.005103583972230152]}],\n",
" 'feature_header': 'Workclass'},\n",
" {'attributions': [{'attribution': [-0.007040638893724631]}],\n",
" 'feature_header': 'fnlwgt'},\n",
" {'attributions': [{'attribution': [-0.003544816318712271]}],\n",
" 'feature_header': 'Education'},\n",
" {'attributions': [{'attribution': [-0.0007675659877545565]}],\n",
" 'feature_header': 'Education-Num'},\n",
" {'attributions': [{'attribution': [0.016652558547761924]}],\n",
" 'feature_header': 'Marital Status'},\n",
" {'attributions': [{'attribution': [0.008956065853782419]}],\n",
" 'feature_header': 'Occupation'},\n",
" {'attributions': [{'attribution': [0.017231379844120584]}],\n",
" 'feature_header': 'Relationship'},\n",
" {'attributions': [{'attribution': [-0.0035400535423557034]}],\n",
" 'feature_header': 'Ethnic group'},\n",
" {'attributions': [{'attribution': [-0.0005046160853101195]}],\n",
" 'feature_header': 'Sex'},\n",
" {'attributions': [{'attribution': [0.9571801696561953]}],\n",
" 'feature_header': 'Capital Gain'},\n",
" {'attributions': [{'attribution': [0.0019992170590623984]}],\n",
" 'feature_header': 'Capital Loss'},\n",
" {'attributions': [{'attribution': [-0.001246273599893405]}],\n",
" 'feature_header': 'Hours per week'},\n",
" {'attributions': [{'attribution': [-0.00014971735875568548]}],\n",
" 'feature_header': 'Country'}],\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" [{'attributions': [{'attribution': [-0.027662768090417525]}],\n",
" 'feature_header': 'Age'},\n",
" {'attributions': [{'attribution': [-0.01821643505293241]}],\n",
" 'feature_header': 'Workclass'},\n",
" {'attributions': [{'attribution': [0.04339607370894737]}],\n",
" 'feature_header': 'fnlwgt'},\n",
" {'attributions': [{'attribution': [-0.010147401522498496]}],\n",
" 'feature_header': 'Education'},\n",
" {'attributions': [{'attribution': [0.06797448630579843]}],\n",
" 'feature_header': 'Education-Num'},\n",
" {'attributions': [{'attribution': [0.05884761780078573]}],\n",
" 'feature_header': 'Marital Status'},\n",
" {'attributions': [{'attribution': [0.07402402598913706]}],\n",
" 'feature_header': 'Occupation'},\n",
" {'attributions': [{'attribution': [0.1003548151764327]}],\n",
" 'feature_header': 'Relationship'},\n",
" {'attributions': [{'attribution': [0.004394713253695476]}],\n",
" 'feature_header': 'Ethnic group'},\n",
" {'attributions': [{'attribution': [0.008292519334194545]}],\n",
" 'feature_header': 'Sex'},\n",
" {'attributions': [{'attribution': [0.6060737888718258]}],\n",
" 'feature_header': 'Capital Gain'},\n",
" {'attributions': [{'attribution': [0.011160596086372265]}],\n",
" 'feature_header': 'Capital Loss'},\n",
" {'attributions': [{'attribution': [0.046266414662099326]}],\n",
" 'feature_header': 'Hours per week'},\n",
" {'attributions': [{'attribution': [-0.00019917668726787685]}],\n",
" 'feature_header': 'Country'}],\n",
" [{'attributions': [{'attribution': [-0.007034035697966927]}],\n",
" 'feature_header': 'Age'},\n",
" {'attributions': [{'attribution': [0.001560393579535635]}],\n",
" 'feature_header': 'Workclass'},\n",
" {'attributions': [{'attribution': [0.0004912999268773394]}],\n",
" 'feature_header': 'fnlwgt'},\n",
" {'attributions': [{'attribution': [0.0060591310091570524]}],\n",
" 'feature_header': 'Education'},\n",
" {'attributions': [{'attribution': [-0.006568399668502312]}],\n",
" 'feature_header': 'Education-Num'},\n",
" {'attributions': [{'attribution': [0.06976409920150162]}],\n",
" 'feature_header': 'Marital Status'},\n",
" {'attributions': [{'attribution': [0.041145934033722305]}],\n",
" 'feature_header': 'Occupation'},\n",
" {'attributions': [{'attribution': [0.257985256352123]}],\n",
" 'feature_header': 'Relationship'},\n",
" {'attributions': [{'attribution': [0.007931601227768453]}],\n",
" 'feature_header': 'Ethnic group'},\n",
" {'attributions': [{'attribution': [-0.0024794049128609302]}],\n",
" 'feature_header': 'Sex'},\n",
" {'attributions': [{'attribution': [0.5851870800506597]}],\n",
" 'feature_header': 'Capital Gain'},\n",
" {'attributions': [{'attribution': [0.004887694118272029]}],\n",
" 'feature_header': 'Capital Loss'},\n",
" {'attributions': [{'attribution': [0.01510332370388142]}],\n",
" 'feature_header': 'Hours per week'},\n",
" {'attributions': [{'attribution': [0.001357845053483464]}],\n",
" 'feature_header': 'Country'}],\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" [{'attributions': [{'attribution': [-0.000980851705019549]}],\n",
" 'feature_header': 'Age'},\n",
" {'attributions': [{'attribution': [0.0004807654973812414]}],\n",
" 'feature_header': 'Workclass'},\n",
" {'attributions': [{'attribution': [0.0031277213097771206]}],\n",
" 'feature_header': 'fnlwgt'},\n",
" {'attributions': [{'attribution': [7.400192357098767e-05]}],\n",
" 'feature_header': 'Education'},\n",
" {'attributions': [{'attribution': [0.00017167342687329779]}],\n",
" 'feature_header': 'Education-Num'},\n",
" {'attributions': [{'attribution': [0.0074863069833167595]}],\n",
" 'feature_header': 'Marital Status'},\n",
" {'attributions': [{'attribution': [0.001955076460624164]}],\n",
" 'feature_header': 'Occupation'},\n",
" {'attributions': [{'attribution': [0.011361153375526928]}],\n",
" 'feature_header': 'Relationship'},\n",
" {'attributions': [{'attribution': [-9.979087004974296e-05]}],\n",
" 'feature_header': 'Ethnic group'},\n",
" {'attributions': [{'attribution': [0.00038409954200004093]}],\n",
" 'feature_header': 'Sex'},\n",
" {'attributions': [{'attribution': [0.9688885635516323]}],\n",
" 'feature_header': 'Capital Gain'},\n",
" {'attributions': [{'attribution': [0.0001905171484137408]}],\n",
" 'feature_header': 'Capital Loss'},\n",
" {'attributions': [{'attribution': [0.0017565704112934566]}],\n",
" 'feature_header': 'Hours per week'},\n",
" {'attributions': [{'attribution': [3.2072304604779944e-05]}],\n",
" 'feature_header': 'Country'}],\n",
" None,\n",
" None,\n",
" None,\n",
" [{'attributions': [{'attribution': [0.003839272601114162]}],\n",
" 'feature_header': 'Age'},\n",
" {'attributions': [{'attribution': [-0.0007661550500716596]}],\n",
" 'feature_header': 'Workclass'},\n",
" {'attributions': [{'attribution': [0.006065825922088097]}],\n",
" 'feature_header': 'fnlwgt'},\n",
" {'attributions': [{'attribution': [-0.002889202254488632]}],\n",
" 'feature_header': 'Education'},\n",
" {'attributions': [{'attribution': [-0.00036132482207158756]}],\n",
" 'feature_header': 'Education-Num'},\n",
" {'attributions': [{'attribution': [0.01437901443666123]}],\n",
" 'feature_header': 'Marital Status'},\n",
" {'attributions': [{'attribution': [0.014011952525245633]}],\n",
" 'feature_header': 'Occupation'},\n",
" {'attributions': [{'attribution': [0.01730869765020524]}],\n",
" 'feature_header': 'Relationship'},\n",
" {'attributions': [{'attribution': [0.0009597568052142624]}],\n",
" 'feature_header': 'Ethnic group'},\n",
" {'attributions': [{'attribution': [-0.0001265337547701889]}],\n",
" 'feature_header': 'Sex'},\n",
" {'attributions': [{'attribution': [0.9324545668913921]}],\n",
" 'feature_header': 'Capital Gain'},\n",
" {'attributions': [{'attribution': [0.004776708548033699]}],\n",
" 'feature_header': 'Capital Loss'},\n",
" {'attributions': [{'attribution': [0.007352223996360395]}],\n",
" 'feature_header': 'Hours per week'},\n",
" {'attributions': [{'attribution': [-0.0010749534623596402]}],\n",
" 'feature_header': 'Country'}],\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None,\n",
" None]},\n",
" 'predictions': {'content_type': 'text/csv; charset=utf-8',\n",
" 'data': '0.0006380207487381995\\n'\n",
" '0.1621972769498825\\n'\n",
" '0.3054092824459076\\n'\n",
" '0.9972025156021118\\n'\n",
" '0.0013476297026500106\\n'\n",
" '0.970222532749176\\n'\n",
" '0.0024346690624952316\\n'\n",
" '0.010292550548911095\\n'\n",
" '0.8399405479431152\\n'\n",
" '0.5122696161270142\\n'\n",
" '0.0018374125938862562\\n'\n",
" '0.9031689763069153\\n'\n",
" '0.9002657532691956\\n'\n",
" '4.049914423376322e-05\\n'\n",
" '0.24104931950569153\\n'\n",
" '0.001413782243616879\\n'\n",
" '0.5082170367240906\\n'\n",
" '0.0010446715168654919\\n'\n",
" '0.045837871730327606\\n'\n",
" '0.1906164437532425\\n'\n",
" '0.9927980899810791\\n'\n",
" '0.0003221344668418169\\n'\n",
" '0.001426001195795834\\n'\n",
" '0.3073173761367798\\n'\n",
" '0.05194048210978508\\n'\n",
" '0.9933143258094788\\n'\n",
" '0.04457666352391243\\n'\n",
" '0.05030836910009384\\n'\n",
" '0.16129137575626373\\n'\n",
" '0.017369559034705162\\n'\n",
" '0.5470560193061829\\n'\n",
" '0.007983737625181675\\n'\n",
" '0.0005699116736650467\\n'\n",
" '0.0008268037927336991\\n'\n",
" '0.5507656335830688\\n'\n",
" '0.6126627922058105\\n'\n",
" '0.053321998566389084\\n'\n",
" '0.018157348036766052\\n'\n",
" '4.950358561472967e-05\\n'\n",
" '0.2998623251914978\\n'\n",
" '0.017528310418128967\\n'\n",
" '0.0281106885522604\\n'\n",
" '0.001090642879717052\\n'\n",
" '0.15454837679862976\\n'\n",
" '0.00018330365128349513\\n'\n",
" '0.005943750962615013\\n'\n",
" '2.2748718038201332e-05\\n'\n",
" '0.9408358335494995\\n'\n",
" '0.17077189683914185\\n'\n",
" '0.00017498192028142512\\n'\n",
" '0.16936400532722473\\n'\n",
" '0.9673966765403748\\n'\n",
" '0.9782292246818542\\n'\n",
" '0.1119702160358429\\n'\n",
" '0.2185535877943039\\n'\n",
" '0.023345354944467545\\n'\n",
" '0.035531185567379\\n'\n",
" '0.00127658701967448\\n'\n",
" '0.026648659259080887\\n'\n",
" '0.997665286064148\\n'\n",
" '0.00016714308003429323\\n'\n",
" '0.03608269244432449\\n'\n",
" '0.21766014397144318\\n'\n",
" '0.9987672567367554\\n'\n",
" '0.5855525732040405\\n'\n",
" '0.08639360219240189\\n'\n",
" '0.0007715810206718743\\n'\n",
" '0.5504859089851379\\n'\n",
" '0.12247973680496216\\n'\n",
" '0.1473180651664734\\n'},\n",
" 'version': '1.0'}\n"
]
}
],
"source": [
"request_records = test_features.iloc[:70, :]\n",
"response = sagemaker_runtime_client.invoke_endpoint(\n",
" EndpointName=endpoint_name,\n",
" ContentType=\"text/csv\",\n",
" Body=csv_serializer.serialize(request_records.to_numpy()),\n",
" EnableExplanations=\"[0]>`0.95`\", # Explain a record only when its prediction is greater than the threshold\n",
")\n",
"result = json_deserializer.deserialize(response[\"Body\"], content_type=response[\"ContentType\"])\n",
"pprint.pprint(result)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "d73b9455",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model Inference output: \n",
"Record: 1\tModel Prediction: 0.0006380207487381\n",
"Record: 2\tModel Prediction: 0.1621972769498825\n",
"Record: 3\tModel Prediction: 0.3054092824459076\n",
"Record: 4\tModel Prediction: 0.9972025156021118\n",
"Record: 5\tModel Prediction: 0.00134762970265\n",
"Record: 6\tModel Prediction: 0.970222532749176\n",
"Record: 7\tModel Prediction: 0.0024346690624952\n",
"Record: 8\tModel Prediction: 0.010292550548911\n",
"Record: 9\tModel Prediction: 0.8399405479431152\n",
"Record: 10\tModel Prediction: 0.5122696161270142\n",
"Record: 11\tModel Prediction: 0.0018374125938862\n",
"Record: 12\tModel Prediction: 0.9031689763069152\n",
"Record: 13\tModel Prediction: 0.9002657532691956\n",
"Record: 14\tModel Prediction: 4.049914423376322e-05\n",
"Record: 15\tModel Prediction: 0.2410493195056915\n",
"Record: 16\tModel Prediction: 0.0014137822436168\n",
"Record: 17\tModel Prediction: 0.5082170367240906\n",
"Record: 18\tModel Prediction: 0.0010446715168654\n",
"Record: 19\tModel Prediction: 0.0458378717303276\n",
"Record: 20\tModel Prediction: 0.1906164437532425\n",
"Record: 21\tModel Prediction: 0.9927980899810792\n",
"Record: 22\tModel Prediction: 0.0003221344668418\n",
"Record: 23\tModel Prediction: 0.0014260011957958\n",
"Record: 24\tModel Prediction: 0.3073173761367798\n",
"Record: 25\tModel Prediction: 0.051940482109785\n",
"Record: 26\tModel Prediction: 0.9933143258094788\n",
"Record: 27\tModel Prediction: 0.0445766635239124\n",
"Record: 28\tModel Prediction: 0.0503083691000938\n",
"Record: 29\tModel Prediction: 0.1612913757562637\n",
"Record: 30\tModel Prediction: 0.0173695590347051\n",
"Record: 31\tModel Prediction: 0.5470560193061829\n",
"Record: 32\tModel Prediction: 0.0079837376251816\n",
"Record: 33\tModel Prediction: 0.000569911673665\n",
"Record: 34\tModel Prediction: 0.0008268037927336\n",
"Record: 35\tModel Prediction: 0.5507656335830688\n",
"Record: 36\tModel Prediction: 0.6126627922058105\n",
"Record: 37\tModel Prediction: 0.053321998566389\n",
"Record: 38\tModel Prediction: 0.018157348036766\n",
"Record: 39\tModel Prediction: 4.950358561472967e-05\n",
"Record: 40\tModel Prediction: 0.2998623251914978\n",
"Record: 41\tModel Prediction: 0.0175283104181289\n",
"Record: 42\tModel Prediction: 0.0281106885522604\n",
"Record: 43\tModel Prediction: 0.001090642879717\n",
"Record: 44\tModel Prediction: 0.1545483767986297\n",
"Record: 45\tModel Prediction: 0.0001833036512834\n",
"Record: 46\tModel Prediction: 0.005943750962615\n",
"Record: 47\tModel Prediction: 2.274871803820133e-05\n",
"Record: 48\tModel Prediction: 0.9408358335494996\n",
"Record: 49\tModel Prediction: 0.1707718968391418\n",
"Record: 50\tModel Prediction: 0.0001749819202814\n",
"Record: 51\tModel Prediction: 0.1693640053272247\n",
"Record: 52\tModel Prediction: 0.9673966765403748\n",
"Record: 53\tModel Prediction: 0.9782292246818542\n",
"Record: 54\tModel Prediction: 0.1119702160358429\n",
"Record: 55\tModel Prediction: 0.2185535877943039\n",
"Record: 56\tModel Prediction: 0.0233453549444675\n",
"Record: 57\tModel Prediction: 0.035531185567379\n",
"Record: 58\tModel Prediction: 0.0012765870196744\n",
"Record: 59\tModel Prediction: 0.0266486592590808\n",
"Record: 60\tModel Prediction: 0.997665286064148\n",
"Record: 61\tModel Prediction: 0.0001671430800342\n",
"Record: 62\tModel Prediction: 0.0360826924443244\n",
"Record: 63\tModel Prediction: 0.2176601439714431\n",
"Record: 64\tModel Prediction: 0.9987672567367554\n",
"Record: 65\tModel Prediction: 0.5855525732040405\n",
"Record: 66\tModel Prediction: 0.0863936021924018\n",
"Record: 67\tModel Prediction: 0.0007715810206718\n",
"Record: 68\tModel Prediction: 0.5504859089851379\n",
"Record: 69\tModel Prediction: 0.1224797368049621\n",
"Record: 70\tModel Prediction: 0.1473180651664734\n",
"Visualize the SHAP values for Record number 4 with Model Prediction: 0.9972025156021118\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABmcAAAFqCAYAAADvHY7QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvTUlEQVR4nO3dd5xU5dnG8Wtme1926W3pVYqCCCgqAnaxK5rYNZJEjT2WmGBiXhNLTGJPbDHBhgV7RxRp0lYsKNKl9+11Zt4/7jk7ZTvC7O7s7/v5jLMzc86ZZ87MmcHnOvfzuHw+n08AAAAAAAAAAACICHdTNwAAAAAAAAAAAKA1IZwBAAAAAAAAAACIIMIZAAAAAAAAAACACCKcAQAAAAAAAAAAiCDCGQAAAAAAAAAAgAginAEAAAAAAAAAAIggwhkAAAAAAAAAAIAIIpwBAAAAAAAAAACIIMIZAAAAAAAAAACACCKcAQAAAAAAAAAAiCDCGQAAAAAAAAAAgAginAEAAAAAAAAAAIggwhkAAAAAAAAAAIAIIpwBAAAAAAAAAACIIMIZAAAAAAAAAADQfLyzWNqV39StOKAIZwAAAAAAAAAAQPOwu1D6xcPSKXdFdUBDOAMAAAAAAAAAQHM0fbaUPkWa8039yx50lXTinZF5rgMpK1Xf/P03Kv5+q/ZO+qO0q6Bp23OAxDZ1AwAAAAAAAAAAQCtxz6tSpafORdLzPFraJUdHrPpBmnyX9NYdUpvUCDUwMghnAAAAAAAAAABo6ZY8ILlcTd2K+t37mlRWUeci3fwXSdLXG6QNOwhnAAAAAAAAAABAM5MQ19QtaJgd/7XrwlIpNbHGRRasLlL+OX/TpFXfyvWPy6VhPSPYwJ+muNyr5Pj6Z5QhnAEAAAAAAAAAoDnz+qQHXpee/ljavFvq1la68XTpZ0cFljnoKql7O+mdP4Su+59Z0kNvS2u3SR0ybZ0xA6RT/yw9OlX62dGNfy7HJ19Jf39DWrpaKq2Q+nSSLp8kXTYpdDmnbXdfKP3heWnxD1YJ89WD1bdZXql+1z+kzB++1ZLfXqiRF0+QJJVUePXQ/EK99V2JNud7lBrv1ticeN0wLl29sgJRx5GPb1OntBi9eH7bqvseW1igu2cX6KieCXr2nOyq+/8xt0B/+7xAc65sr+6Zto2ySp/+vahQM78p0Ya9lUqIdenQrvG6fly6DuoQCMDmbyjTlOd36b4TM1Vc4dOzS4u0YW+lfjU6VdcdkV79dYUhnAEAAAAAAAAAoDmb9rwNBXbpRCkuVnrqI+mXj0q9O0qj+9e+3oNvSbf/TxrcXbrjXMnjlZ77VHp/2U9/rqc/kq59Ujq0j4U3KQkW1lz3pAVBd/08dLsbd0mn3CWdPlo6dZRUVFbz85dXKnZvoW498SyNnHyURkqq9Pp00YzdWvhjuY7rl6hLR6ZqU16lnl1WrM/W7tCrP2+rvm0tOBmbk6BXvi5WSYVXSXFWwTJvfbncLumLjeUq9/gUH+Py31+mrukxVcFMhcenC2fs0tJN5Tp9cLIuGpGigjKvXviyWGf+b6dmnJ+toZ3iQ5r71OJC7S3xacqwZLVLcatTWkzt+zYI4QwAAAAAAAAAAM1ZhUea/X9SvL9L//TR0tBrpMffrz2c2VMo3fWS1K+z9PGfpOQEu//ySdLYm3/ac23dI938H+mMMdLT1wTWvfxY6eZnrFLn0olSr46Bx9Ztlx6ZKv386Lpfa2qivnnmNr3w0h6N9N8146tiLfyxXJeNTNHvJ2RULTqpb6LOmr5Ld36cr/+daxUxY7sn6Pkvi7VoY7mO7JmoCo9PizaW67RBSXr1mxIt21yuw7olqLTCp2Wby3XqoOSq7T2zpEgLNpTrP2dn6ehegSHXLjg4Rcc+uUN//iQ/pCJHkjbne/TJFe2VldywUMZR/8BnAAAAAAAAAACg6Vw+KRCWSFLnLBtCbM3W2teZtVwqKbfAxAlmJCk9ufqwY419rpkLrbrm50dJu/JDLyeMsKHRPv06dLtZadL5R1bdLK3w6fVvi2tuQ0xodPH+ylK5JF09Ni3k/kO7JmhsTrzmri9TQZlXkjQ2xypb5q4vlyTlbilXcYVPl45MUXayW3PXWcXO4k3lKvMElpekmd+WqGebGA3tGKfdxZ6qS4XHpyN6JGjRxnKVVvhC2nDmQcmNDmYkKmcAAAAAAAAAAGjeerSvfl9WqvTjztrXWb/Drvt2qv5Yvy4/7bm+32TXp99d+3a251XfrttCl9IKny55ZZcWbijXwPZx6tc2roYNBGzY61HbFLfaJFWvNxnQNk7z1pdrY55HA9u71TYlRv3axmreegth5q0vV2aiS4M7xGlM93jN21Cu66Wqx8fmBIKrVbsqVVrp08EPbqu1LbtLvOocFwhjerTZt5iFcAYAAAAAAAAAgOYsppZBsHy+mu//KY816Ln8fz86VeqcXfPy4SFPslWolFb4dKk/mLn/pMx6g5n61PRKxuYk6NmlRcor9Wre+jKN6Z4gt8ulsTkJ+sOHeSoqt/v7ZMeqQ2pM0LZ86psdq2kTM2rYqslKDt0/SXGufWo34QwAAAAAAAAAANHGCUdWbpYmDAt97IfNP23bvf3VOFlp0vghDV6t3OPTZa/s0tz15RraMU7r9lTqgc/zqy33Y55HkvT+yhJtzKtU53S31qyr1J4Sb7XqmZU7K+R2SV0zAiHL2O7xemZJkT5ZU6plm8t1h3+emsNzElThlWatLtPyrRX62cHJIdvq1SZW24u8GpsTL7dr30KXhmLOGQAAAAAAAAAAos34oVJinPTEh1JxWeD+ghLpyQ9/2rZPHy0lxEl3vxy6bUdesc1JEya/1KsvNtpcMMu3VujvcwtrvLzydYkk6cNVZfr73EId2TNBPkkPzy8I2d6STeWat75cR+QkKC0hEHeM7p4gt0t6aF6hyjwWykg2BFmX9Bj9Y26BPL7A/VUva3CydhV79fjCwhpf9o4iT4N3UX2onAEAAAAAAAAAINpkpUq3nyPdMV2acId03jjJ45Wmfyplp0sbdkrax+qQLtnSA5dJVz0uHXqDNGWc1L2dtDNf+maD9PZi6Yv7pJzQoc3apsTosdOzNPW13RrcPk7Pnput9ITqNSTzN5RpyvO7dN+JmTp7SLIqvT59tKpM/15UpI15Ho3NSdCmfI+eXVqktASXfj8hPWT9jES3BneI01dbK9Qpza1eWYEoZEz3eL38dYncLmlM99Bw5tKRKfp8XZn+8mmB5m8o1+E5CUpLcGlTvkdz15cpIdalF89ru2/7LAzhDAAAAAAAAAAA0eg3p0jpSdJD70h/fFHqkCldOF4a1E362d+kpPh93/bPj5b6dJL++Zb09MdSXpGFPn07Sb87x56rBhN6J1YFND9/cZf+e062MhLrHuQr1u3Sf87O0oPzC/XWihJ9tKpUqQluHdM7Qdcfka7e2dWjjsNzEvTV1gqNDauOOTwnQS9/XaJB7eOqPW9cjEtPn52l/y4t0qvflOiBuVap0yHVrWGd4nXWQUkN3z/1cPl8dc38AwAAAAAAAAAAoso/35R+N1366E/SqL5N0oSPV5fqnk/z9ew52eqQGlP/ClGGcAYAAAAAAAAAgGhUWi4lhlXH5BdLY2+Wisqk7x+V4ptugC2P16cY9z4OrdbCMawZAAAAAAAAAADRaM63NufMqYdJnbOkjbuk6bPt+p9XNGkwI6nVBjMS4QwAAAAAAAAAANGpV0e7PPOxtKvAwpghOdJfL5JOGdXUrWvVGNYMAAAAAAAAAAAggtxN3QAAAAAAAAAAAIDWhHAGAAAAAAAAAAAggghnAAAAAAAAAAAAIohwBgAAAAAAAAAAIIIIZwAAAAAAAAAAACKIcAYAAAAAAAAAACCCCGcAAAAAAAAAAAAiiHAGAAAAAAAAAAAggghnAAAAAAAAAAAAIohwBgAAAAAAAAAAIIIIZwAATWL27NmaNm2aiouLm7opTWbv3r2aNm2acnNzm7opAAAAAAAA+83XX3+thx9+WHfddZemTZumrVu3SpJef/11/e9//2v09tasWaP/+7//U35+/v5uapMhnAEAAAAAAAAAAPtFUVGRXnvtNWVlZennP/+5Lr/8cmVnZ2vLli3Kzc3VMccc0+ht9urVS126dNHHH398AFrcNAhnAAAAAAAAAADAfrFr1y55PB4NHTpUPXr0UNeuXRUXF6fPP/9cXbp0UefOnfdpu4ceeqi++uor5eXl7ecWN43Ypm4AAKB1y8vL05tvvqk1a9ZIkvr376/jjjtOKSkpVct8/fXXWrZsmbZt26bS0lJlZmZqwIABOvLIIxUfH1+13J49e/Txxx9r/fr1Ki4uVmJiotq3b6/jjjtOHTt2DNneggULtG3bNrlcLnXr1k0TJ05Up06dam3n1q1b9dhjj2ny5Mk65JBDQh774YcfNH36dJ133nnq37+/du/erc8++0wbNmxQQUGBEhMT1alTJ02YMEEdOnSoc3/MnDlT69at07XXXhty/+zZs6uGgnP4fD4tXrxYS5Ys0c6dOxUbG6tevXpp0qRJatOmTZ3PAwAAAAAAsL/NnDmzavj2GTNmaMaMGerRo4fOOussfffddzr++ONDln/rrbeUm5urSy+9tCq08fl8evbZZ7V9+3ZNnTpVaWlpkqzPKD4+XkuXLtX48eMj+roOBMIZAECTevHFFzV48GCNHDlS27dv1yeffKIdO3bo8ssvV0xMjCRp9+7d6tu3r0aPHq24uDjt3LlTc+fO1aZNm3TRRRdVbWv69Onyer2aNGmSMjIyVFxcrB9//FGlpaVVy8yZM0ezZs3S8OHDdeSRR8rj8WjevHl6+umndcUVV6hdu3Y1trNjx47q1KmTcnNzq4Uzubm5SklJUd++fSVJBQUFSk5O1sSJE5WSkqKSkhLl5ubqiSee0JVXXqm2bdvul33n/APmsMMO08SJE1VSUqJPP/1UTz75pKZOnarU1NT98jwAAAAAAAANceSRR6pLly56++23NWHCBPXs2VMJCQlavXq1PB6PevToEbL88ccfr40bN2rGjBm68sorlZiYqNmzZ2vdunX6+c9/XhXMSFJMTIy6deumlStXRkU4w7BmAIAmNXDgQE2aNEm9e/fWmDFjdMopp2jLli365ptvqpY58sgjNXr0aPXt21c5OTk65JBDdNppp2nt2rXatm2bJKm4uFg7d+7UqFGjNHToUOXk5GjgwIE69thjq3748/Ly9Mknn2jUqFE69dRT1a9fPw0cOFAXXHCB4uPjNXv27DrbOnz4cG3YsEG7du2quq+kpETff/+9hg0bJrfbflZzcnJ07LHHatCgQcrJyVG/fv109tlnKz09XUuWLNkv+23jxo1asmSJJk6cqGOPPVZ9+vTRkCFDdOGFF6qsrEzz58/fL88DAAAAAADQUFlZWVUnvmZnZ6tr165q166dNm7cqLi4uGonrMbGxuqcc85RcXGxZs6cqTVr1uizzz7TuHHj1Lt372rb79Spk7Zu3ary8vKIvJ4DicoZAECTGjJkSMjtwYMH67XXXtO6des0dOhQSTZc2axZs7R27VoVFRXJ5/NVLb9jxw516NBBSUlJysrK0rx58+Tz+dSjRw917NhRLperatnVq1fL6/Vq2LBh8nq9VffHxsaqR48eWrt2bZ1tHTp0qD788EPl5uZqwoQJkmyItMrKSg0fPrxqOa/Xq7lz52r58uXavXu3PB5PSHv3h5UrV8rlcmno0KEhryU1NVUdOnTQunXr9svzAAAAAAAA/FTOKCPB/TSOrKwsTZ48WTNmzNCqVauUk5Ojo48+usbtpKSkyOfzqbCwUFlZWQe41QcW4QwAoEmFD73ldruVnJys4uJiSVJ5ebmeeuopxcbG6phjjlF2drbi4uKUl5enF198UZWVlZIkl8ulCy+8UJ9++qnmzp2r999/X0lJSRo6dKiOOeYYJSQkqLCwUJL0r3/9q8a21PQPhGBJSUnq37+/vvzyS40fP15ut1u5ubnq0qWL2rdvX7Xc+++/ry+++EJHHHGEcnJylJSUJJfLpTfeeKOqvT9VYWGhfD6f7r333hofZ84ZAAAAAADQXFRUVCg2tvY4om/fvkpNTVVhYaHGjBlTNTpJOGcb+6t/pSkRzgAAmlRhYaHS09Orbnu9XhUXFys5OVmStHbtWhUUFOjiiy8OGZc0eB4ZR2Zmpk499VRJ0q5du/TNN99o9uzZ8ng8Ovnkk6u2ec455ygzM3Of2jt8+HB98803WrNmjTIyMrRp0yadfPLJIcssX75cw4YNq6qucRQXFysxMbHO7cfGxtb4DwwnrHI4Z5tccsklNf7jxpmvBwAAAAAAoKklJydry5YttT7+1ltvqaysTO3bt9e7776r7t27KykpqdpyJSUlVdtr6ZhzBgDQpL766quQ29988428Xm+1CeLCA4jFixfXud3s7GwdeeSRat++fdWPf58+feR2u7Vnzx517ty5xkt9evfurfT0dC1btkzLli1TbGysDjrooGrLhbd35cqVys/Pr3f7mZmZKioqqqrykSSPx6NVq1aFLNevXz/5fD4VFBTU+Do6dOhQ73MBAAAAAABEQtu2bVVSUlLjybZLly7V8uXLdeKJJ+q8885TaWmpXn/99Rq3s2fPHiUnJyslJeVAN/mAo3IGANCkVqxYIbfbrV69emnHjh2aNWuWOnbsqMGDB0uSunXrpqSkJL311ls66qijFBMTo+XLl2vbtm0h29m2bZveeecdDRo0SNnZ2YqJidHatWu1bds2HXHEEZIs+Bg/frw+/vhj7dmzR3369FFiYqKKioq0adMmxcXFafz48XW21+12a9iwYZo/f74SEhI0cODAatUw/fr1U25urtq2basOHTpo8+bNmjdvXkiFUG0GDx6sTz75RC+//LIOP/xwVVZWauHChSHz7EhS9+7dNWLECM2cOVObN29WTk6O4uLiVFhYqA0bNqh9+/Y69NBD630+AAAAAACAA61Hjx7y+XzatGmTevfuXXX/tm3b9O6772r48OE6+OCDJUmTJ0/WSy+9pAULFmj06NEh29m4caNycnLqHZq+JSCcAQA0qXPPPVezZ8/WokWL5HK51L9/fx1//PFVw3IlJyfr/PPP1wcffKBXX31V8fHx6t+/v8466yw9/vjjVdtJTU1VmzZttGjRoqoKlTZt2ui4447TqFGjqpYbN26c2rVrp4ULF+qrr76Sx+NRamqqOnfurJEjRzaozcOHD9ecOXNUWVlZ9Q+HYCeccIJiYmI0Z84clZeXq1OnTjr33HM1a9aserfdpk0bTZkyRR9//LFeeuklpaamasyYMSouLtbs2bNDlj3llFPUtWtXLVmyRIsWLZLP51NaWpq6deumLl26NOi1AAAAAAAAHGjdu3dXZmamvvvuu6pwpry8XDNmzFBmZqZOOumkqmUHDRqkUaNG6cMPPwzp49i9e7e2bdumo48+uilewn7n8oWfigsAAAAAAAAAALAfzZs3T3PmzNH111+vuLi4Rq8/a9Ysffnll/rNb34jt7vlz9jS8l8BAAAAAAAAAABo1kaNGqWEhAQtWrSo0euWlpZq0aJFmjBhQlQEMxLhDAAAAAAAAAAAOMBiY2N1xhlnVA1l3xh79uzREUccoSFDhhyAljUNhjUDAAAAAAAAAACIICpnAAAAAAAAAAAAIohwBgAAAAAAAAAAIIIIZwAAAAAAAAAAACKIcAYAAAAAAAAAACCCCGcAAAAAAAAAAAAiiHAGAAAAAAAAAAAggghnAAAAAAAAAAAAIohwBgAAAAAAAAAAIIIIZwAAAAAAAAAAACKIcAYAAAAAAAAAACCCCGcAAAAAAAAAAEC9ZsyYoalTp2rkyJFKSEiQy+WquuyrxYsXa8qUKercubMSEhLUoUMHTZ48WR999FGt65SWluqee+7RiBEjlJ6erpSUFB100EH63e9+p7y8vH1uSyS5fD6fr6kbAQAAAAAAAAAAmrfhw4fryy+/rPGxfYkannjiCV155ZXyer01Pv773/9ed955Z8h9u3bt0qRJk7Rs2bIa1+nRo4dmzZqlnj17Nro9kUQ4AwAAAAAAAAAA6nXwwQeroKBAI0eO1NatW/Xpp59WPdbYqCE3N1eHHnqoKisrJUmjR4/WySefrLlz5+rdd9+tWu6tt97SSSedVHX7rLPO0iuvvCJJSkpK0pVXXqnExET9+9//1q5duyRJhx12mObNmye3u/kOHkY4AwAAAAAAAAAA6lVSUqKkpCRJ0rRp00KqWhobNZx77rl66aWXJEk9e/bUd999p/j4eEnSEUccoblz50qyoGXBggWSpBUrVmjQoEFV2/jXv/6lK664QpL04Ycf6thjj6167N1339Xxxx/f2JcYMc03NgIAAAAAAAAAAM2GE8z8VB6PR2+//XbV7ZNPPrkqmJGkM844o+rvhQsXavv27ZKkN954I2Q7Z555ZtXfEydOVHp6etXt8GWbG8IZAAAAAAAAAAAQMWvWrFFRUVHV7V69eoU8Hn57+fLlIdeSlJGRoaysrKrbLpcrZJ6Z4GWbI8IZAAAAAAAAAAAQMc7cMI7gihdJSktLC7m9c+fOauuFrxO+nrNOc0U4AwAAAAAAAAAAIiZ8fpr6brtcrmr31zTHTfB9zjrNFeEMAAAAAAAAAACImOzs7JDbBQUFIbfz8/NDbjvDlwWvF75O+HrBQ541R4QzAAAAAAAAAAAgYnr37q2UlJSq26tXrw55PPz20KFDQ64lKS8vL2SYM6/Xq7Vr11Zbp7kinAEAAAAAAAAAAPvdtGnT5HK55HK51KNHj6r7Y2JidMIJJ1TdfvPNN1VWVibJhiZ7+eWXqx4bNWqUOnToIEmaPHlyyPaDl3v33XdVWFhYdTt82eYmtqkbAAAAAAAAAAAAmr9HH320qqpl3rx5IY/deOONVX/ffvvtatOmTZ3buvXWW/Xaa6/J4/Fo/fr1Ovroo3XyySdrzpw5+uKLL0K25Rg0aJBOO+00zZw5U5J03XXX6fvvv1diYqIee+yxquVGjhyp4447bp9fZyS4fDXNmgMAAKoUFRXJ5/PJ5XKFlNwCAAAAAAC0JkcffbQ+/fTTepdbu3atevTooWnTpunOO++UJOXk5GjdunUhyz3++OP65S9/qdpiittuu01//vOfQ+7buXOnJkyYoOXLl9e4Tvfu3TVr1iz17t27Aa+o6TCsGQAA9fD5fFUXAAAAAAAA7B9XXnmlFixYoLPPPlsdO3ZUXFyc2rZtq5NOOknvv/9+tWBGktq2basFCxbo7rvv1sEHH6yUlBQlJSVp0KBBuvXWW5Wbm9vsgxmJyhkAAOpVWFhYVTmTmpra1M0BAAAAAABAC0flDAAAAAAAAAAAQAQRzgAAAAAAAAAAAEQQ4QwAAAAAAAAAAEAEEc4AAAAAAAAAAABEEOEMAAAAAAAAAABABBHOAAAAAAAAAAAARBDhDAAAAAAAAAAAQAQRzgAAAAAAAAAAAEQQ4QwAAAAAAAAAAEAExTZ1AwAAAAAAAAAAQOtUXFwsn88nl8ul5OTkpm5OxBDOAAAAAAAAAACAJuH1eqvCmdaEYc0AAAAAAAAAAAAiiHAGaEb27NmjCy64QBkZGcrIyNAFF1ygvXv31rp8RUWFfvvb32rIkCFKSUlR586ddeGFF2rz5s2RazTQgj3yyCPq2bOnEhMTNWLECM2ZM6fO5cvKyjRixAglJiaqV69eeuyxxyLUUiA6NeYYfPXVVzVp0iS1a9dO6enpGjNmjN5///0IthaILo39DXTMnTtXsbGxGj58+IFtIBDl9uXfobfffrtycnKUkJCg3r1766mnnopQa4Ho09hjcPr06Ro2bJiSk5PVqVMnXXLJJdq1a1eEWgtEl88++0ynnHKKOnfuLJfLpZkzZ9a7zqeffhqV/TGEM0Azcv755ys3N1fvvfee3nvvPeXm5uqCCy6odfni4mItXbpUd9xxh5YuXapXX31VK1eu1OTJkyPYaqBlevHFF3Xttdfq9ttv17JlyzRu3DidcMIJ2rBhQ63r7Ny5U+PGjdOyZct022236ZprrtErr7wSwVYD0aOxx+Bnn32mSZMm6Z133tGSJUs0fvx4nXLKKVq2bFmEWw60fPvyGyhJeXl5uvDCCzVhwoQItRSITvtyDJ5zzjn6+OOP9eSTT+r777/X888/rwEDBkSw1UD0aOwx+Pnnn+vCCy/UZZddpm+++UYzZszQokWLdPnll0e45UB0KCoq0rBhw/TQQw81aPm1a9fqxBNPjMr+GJfP5/M1dSMASCtWrNCgQYO0YMECHXbYYZKkBQsWaMyYMfruu+/Uv3//Bm1n0aJFGjVqlNavX6/u3bsfyCYDLdphhx2mQw45RI8++mjVfQMHDtRpp52mu+++O2TZwsJC+Xw+bdu2TX369Km6f+rUqfryyy81f/78iLUbiBaNOQZrM3jwYJ177rn6/e9/f6CaCUSlfT3+pkyZor59+yomJkYzZ85Ubm5uBFoLRJ/GHoPvvfeepkyZojVr1igrKyuSTQWiUmOPwfvuu0+PPvqoVq9eXXXfgw8+qHvuuUc//vhjRNoMRCuXy6XXXntNEydOrJpzJjU1NWSZ3/72t3rjjTe0YsWKqvuipT+GyhmgmZg/f74yMjKqghlJGj16tDIyMjRv3rwGbycvL08ul0uZmZkHoJVAdCgvL9eSJUt07LHHhtx/7LHH1nm8JSYmhtw+7rjjtHjxYlVUVByQdgLRal+PwWBer1cFBQV0UgGNtK/H39NPP63Vq1frD3/4w4FuIhDV9uUYfOONNzRy5Ejdc8896tKli/r166cbb7xRJSUlkWgyEFX25RgcO3asNm7cqHfeeafqpL2XX35ZJ510UiSaDLR68+fPr3bMRkt/TGxTNwCA2bp1q9q3b1/t/vbt22vr1q0N2kZpaaluueUWnX/++UpPT9/fTQSixs6dO+XxeNShQ4eQ+zt06FDn8RYTE1Nt+crKSu3cuVOdOnU6IG0FotG+HoPB7r//fhUVFemcc845EE0Eota+HH8//PCDbrnlFs2ZM0exsfwvJPBT7MsxuGbNGn3++edKTEzUa6+9pp07d+pXv/qVdu/ezbwzQCPtyzE4duxYTZ8+Xeeee65KS0tVWVmpyZMn68EHH4xEk4FWb+vWrTUes9HQH0PlDHCATZs2TS6Xq87L4sWLJVkpXzinpK8+FRUVmjJlirxerx555JH9/jqAaBR+bDX0eAtevqbtAGiYfT0Gn3/+eU2bNk0vvvhijSc2AKhfQ48/j8ej888/X3feeaf69esXqeYBUa8xv4Fer1cul0vTp0/XqFGjdOKJJ+pvf/ubnnnmGapngH3UmGPw22+/1TXXXKPf//73WrJkid577z2tXbtWU6dOjURTAajmY7am+1saTnsCDrCrrrpKU6ZMqXOZHj16aPny5dq2bVu1x3bs2FEtHQ5XUVGhc845R2vXrtWsWbOomgHq0bZtW8XExFQ7M2r79u11Hm8ej6fa8rGxscrOzj4g7QSi1b4eg5JN4HrZZZdpxowZmjhx4oFsJhCVGnv8FRQUaPHixVq2bJmuuuoqSdZR7PP5FBsbqw8++EDHHHNMRNoORIN9+Q3s1KmTunTpooyMjKr7Bg4cKJ/Pp40bN6pv374HtM1ANNmXY/Duu+/W4YcfrptuukmSNHToUKWkpGjcuHG66667WvRZ+0BL0LFjxxqP2Wjoj6FyBjjA2rZtqwEDBtR5SUxM1JgxY5SXl6cvvviiat2FCxcqLy9PY8eOrXX7TjDzww8/6KOPPmrxX0pAJMTHx2vEiBH68MMPQ+7/8MMP6zzeysrKQm5/8MEHGjlypOLi4g5IO4Fota/H4PPPP6+LL75Yzz33HGN8A/uoscdfenq6vvrqK+Xm5lZdpk6dqv79+ys3NzdkvkQA9duX38DDDz9cmzdvVmFhYdV9K1eulNvtVteuXQ9oe4Fosy/HYHFxsdzu0C5UZ8hr5+x9AAfOmDFjqh2z0dIfQzgDNBMDBw7U8ccfryuuuEILFizQggULdMUVV+jkk09W//79q5YbMGCAXnvtNUlSZWWlzjrrLC1evFjTp0+Xx+PR1q1btXXrVpWXlzfVSwFahOuvv15PPPGEnnrqKa1YsULXXXedNmzYUFWafuutt+rCCy8MWaeyslLXX3+9VqxYoaeeekpPPvmkbrzxxqZoPtDiNfYYfP7553XhhRfq/vvv1+jRo6t+7/Ly8prqJQAtVmOOP7fbrYMOOijk0r59eyUmJuqggw5SSkpKU74UoEVq7G/g+eefr+zsbF1yySX69ttv9dlnn+mmm27SpZdeqqSkpKZ6GUCL1dhj8JRTTtGrr76qRx99VGvWrNHcuXN1zTXXaNSoUercuXNTvQygxSosLKw66UeS1q5dq4qKiqrHw4/BqVOnav369VHZH8OwZkAzMn36dF1zzTU69thjJUmTJ0/WQw89FLLM999/X9URtXHjRr3xxhuSpOHDh4cs98knn+joo48+4G0GWqpzzz1Xu3bt0h//+Edt2bJFBx10kN555x3l5ORIkrZs2aINGzaErNO2bVvNnj1bDz/8sDp37qx//vOfOvPMM5ui+UCL19hj8PHHH1dlZaV+/etf69e//nXV/RdddJGeeeaZSDcfaNH25TcQwP7T2GMwNTVVH374oa6++mqNHDlS2dnZOuecc3TXXXc11UsAWrTGHoMXX3yxCgoK9NBDD+mGG25QZmamjjnmGP31r39tqpcAtGiLFy/W+PHjq25ff/31OuGEE9SlSxdJ1Y/Bnj176p133tF1110Xdf0xLh/1dwAA1KmwsLBqgsjU1NSmbg4AAAAAAEDUaK39LgxrBgAAAAAAAAAAEEGEMwAAAAAAAAAAABFEOAMAAAAAAAAAABBBhDMAAAAAAAAAAAARRDgDAAAAAAAAAAAQQYQzAAAAAAAAAAAAEUQ4AzRTZWVlmjZtmsrKypq6KUCrxDEINC2OQaBpcQwCTYtjEGg6HH9A02pNx6DL5/P5mroRAKrLz89XRkaG8vLylJ6e3tTNAVqd4GPQ7XbL5/PJ5XIpNTW1qZsGtAr8DgJNi2MQaFocg0DT4fgDIq+wsLCq38Xr9baaY5DKGQAAAAAAAAAAgAginAEAAAAAAAAAAIig2KZuQEP5fD4VFBQ0dTOAiMnPzw+5BhBZwcdg8LBmXq+3iVsGtA78DgJNi2MQaFocg0DT4fgDIi98WDOp8cdgWlqaXC7XgWjeAdNi5pxxxnsEAAAAAAAAAABwtMQ5alpMOEPlDACgqQSfwZGamtrUzQEAAAAAAIga+6PfpSVWzrSYYc1cLleLS74AANEheFgzwhkAAAAAAID9p7X2u7ibugEAAAAAAAAAAACtCeEMAAAAAAAAAABABBHOAAAAAAAAAAAARBDhDAAAAAAAAAAAQAQRzgAAAAAAAAAAAERQbFM3AACA5s7lcoVcAwAAAAAAAD8F4QwAAPVISUlp6iYAAAAAAAAgijCsGQAAAAAAAAAAQAQRzgAAAAAAAAAAAEQQ4QwAAAAAAAAAAEAEEc4AAAAAAAAAAABEEOEMAAAAAAAAAABABBHOAAAAAAAAAAAARBDhDAAAAAAAAAAAQAS5fD6fr6kbAQBAk9uxV/p+c+h9sW7J45NcktxB5zP4fJLLJXm81R+rjc8nuV1SZSPWCV8/xiVVeO12DOdXAAAAAACAlq+wXwf54mJU4ZXWFSbI5fJJPpfcLsnn86lzulvt0+Kaupn7HeEMAKB183qled/VvczWPdKlD9rfJ46QLpkgpSTa7S/XSbc+W/f6Y/pL15wsZaTY7c27pcsfangbB3SVbj1Tapdht0vKpfPuk8orG74NAAAAAACAZqhw8T3ydWqjCq+0sdj6W3w+n1wuV9UyLkn928cqPsZVy1ZaHk67BQC0bg2pYOnYRurd0f7eUxgIZiTpoO5SenLd6+/IDwQzktQ5S+rZoeFt3LJbykoL3E6Klw7p1fD1AQAAAAAAmrng2CU4mHHERVmaEWUvBwCAfZCWVP8yhw+06yWrrXLFEeO2ypi6rNpi1Tc1ba8h8oqlbzbs+/oAAAAAAAAtWGq8q8bApiUjnAEAoHen+pcZO8CuyyulxT+EPtaQoCR86LTDBzSsbY65K0Jvj+pnc+IAAAAAAABEueyU6ApmJMIZAACk1MT6l+neTurW1v6eGxa0DOsppSTUvX54uJLTXuqa3fA2hoc7aUnS0J4NXx8AAAAAAKAFcklKS4i+KCP6XhEAAPuivnBFko7wV8gs+sEqaBxxMdJh/epe97uN0q6C0PvGNmJosl0Fto1gja2+AQAAAAAAaGGSo3BIM4lwBgAA06tj/cs4YUpJubR0dehj9Q1t5pM0fz8PbTZmgOSOvn+cAAAAAAAAOLKTo7Pvg3AGAABJykipf5neHaWObezv8KDkkN5SYlzd64ev07ez1CGzwU2sNpxaZoo0qHvD1wcAAAAAAGhh0hOjM8aIzlcFAMC+SIyvfxmn2mXhSqnSE7g/IU4a2afudb9aL+UVh943thHVM1v3SKu31tweAAAAAACAKJMc55I7Coc0kwhnAAAI6NW+/mWc4csKS6Xl62p+rDZen7QgfGizRsw7I0nzwqpvDh9oM+MBAAAAAABEmawoHdJMIpwBACAgK73+ZQZ0lbLT7O/wYcoO7SvFxdS9fvjQZIO6SVmpDW/j52HP2TZd6tel4esDAAAAAAC0EJlROqSZRDgDAECohNj6l3GGIpv/vVXDOJITpIN7171u7lqpqLTm7TXEjzulDTtC72ts9Q0AAAAAAEAzlxgrud1UzgAA0Dr06FD/Mk4YsrdI+nZD2GP1BC2VHpuvpqbtNdS88KHRmHcGAAAAAABEl6zk6I4vovvVAQDQWO0y6l9mcHcpI9n+Dh/abHR/Kaaen9fwdQ7KkdKTG97G8PU7ZUm9GhAqAQAAAAAAtBBtkqI7vojuVwcAwL6ob96YGLeFMFL1OWTSkqShPepef+lqqbQ8bHv9Gt6+1VulrXtC7xvL0GYAAAAAACA6JMRKMVE8pJlEOAMAQHXd29a/jDMU2c586ftNYY/VM8xYWaW0eFXN22sohjYDAAAAAABRKtqrZiTCGQAAquvQpv5lhveUUhPt7/BhxsYMkOo7uyN8neG9pJSEhrcxfP2c9lLX7IavDwAAAAAA0ExlEc4AANAKud31hyuxMdKgbvb38nWhj7VJlbrVU30Tvk5cjDSwW8Pb+P0mqawi9L76hlMDAAAAAABo5mLdUmxMdA9pJhHOAABQM6+v7sc9Xuk7/3Bm4aFKfrG0cVfd64ev4/FKKzfVvGxNenWUEuJC7/v2x4avDwAAAAAA0AxVeiVPff0yUYBwBgCAcNvz6l/m6w0WwkjV54tZuNLClrqEr/PVeim/pOFtDF9/825p3faGrw8AAAAAANBM7Smpp18lChDOAAAQbt22+pdx5nxpkxIY3iz8sdrExkij+jZunXCHD/hp6wMAAAAAADRTu4sJZwAAaH3KK+tfZv53dj1mQOj8NMVl0tI1da97cC8pJTFw2+uT5n3X8PbltJO6hs1pQzgDAAAAAACiRGll9A9tRjgDAECwXfn1L/Ptj9KuAvs7fHixL1ZKlZ661w+velnxo7SnsOFtHBv2nDvypJWbG74+AAAAAABAM5dXGt3VM4QzAAAEW9uAeVucKpe0JGloj9DH5tZTAeN2SaP7h63zE4c0a0zVDQAAAAAAQAuwq5jKGQAAWo/S8vqXccKU0f2kmKCf0tIKafGqutcd0kNKTw69rzHhSqc2Uq+ONbcHAAAAAAAgSpRU+OT1RW9AQzgDAIAjr6j+ZVZtkbbttb/Dhxdbskoqq6h7/fCqlx82S9vzGtzEasOo7Sm0YdYAAAAAAACiTH4UD21GOAMAgGP11vqXcapckuKlQ3rV/FhtXJLGhoUzjR7SLCycmf+9FOUT5AEAAAAAgNYpmoc2I5wBAMBRXFb/Mk6YMqqvFBcbuL/CI32xsu51B3aTstJq3l5DtE2X+nfZ9/UBAAAAAABakOJyn3xROrQZ4QwAAJJUUFr/Mht2SD/utL/DK1hy10hF9YQ74eus2y5t2t3wNoYPiVZQIi1f1/D1AQAAAAAAWhCfpPyy6BzajHAGAABJWr25/mWcKpWEWGlkn5ofq8tPHdIsfI6bBd9Lnuj8BwoAAAAAAIAk7SqicgYAgOhV2IDKmbn+OWUO6S0lxgfu93ilBfUMada3k9QhM2x7jQhnMlOkwd1D76tvjhsAAAAAAIAWrihKhzYjnAEAoKQBc81s2SOt2Wp/hw9P9vV6Kb+47vXD19m0y4Y1a6gx/SW3K3C7uExaurrh6wMAAAAAALRAPllAE20IZwAAWLWl/mWcKpfYGOmwfjU/VpfwcGZuI6tewtdf9INU4WncNgAAAAAAAFqgnUXRN6w74QwAAHn1VL1IgQBmeE8pJTH0sfqGF8tpJ3XJDlunEUOapSZKQ3vU3B4AAAAAAIAoVxiFQ5vFNnUDAABoMh6vVFRq4Ux5hVRSbnPPxLillAS73aODlFckrdxk67RLlzbskMoqpL6dpW9/lHYX1v083dtJ2/OkPYW2zs58aeXmhrczp709n2TDpyXESYtX7dtrBgAAAAAAaIaCsxefzyeXKzC8u9cnVXil+JgmaNgB4vJFW9wEAGhdfD6pvNKClNJyqbTCrp3bJeVSQYkFMHsK7ZJXJOWXWDBTVmEXZ3mvzypjMpItqBmaI5V7pK177HkkyeWy8Obsw23ulx351dtVXintLrDgZk+hhT8pidKJI6T4OGnz7sa9TpdszpkvfpCOGdqwah8AAAAAAIBmrvDs0fKlJaqiwquVhYmq9PoU73YpIdYlj1dqn+pSl4zYkLAmGhDOAACaB4/XH674A5WS8tDQpMQfvJSUWWhSVGpVJHuKAsuWVVgIUlZp4YjXI3l8FuC4XHaRLOiIcUsxMRZ4uHw2u5xkwUl8rBQXI6UnW6CSkmhhjHOdnCglxdu6jkqPVcRs22uXvUV2f0aK1CHTLu3Sbc6afbWnUPowV5o0XGqTuu/bAQAAAAAAaCaKBnWRL9YtV1KCUjLTm7o5EcOwZgCA/cfns0nqQwKVWoKW4qCQpbhcKi2zIMXjCQQtZRVSpVfyeq2ipdIftni9du2WP2TxXxLipbRkKStGcrsDbar0WLsqvVKsyx5zuy1gSfaHLqmJgb9T/OFLTB1Ts/l8FsBs3WNhzM58C5iS4i2I6d/NrpPi99/+dbkluezaxbRxAAAAAACg5UuZ94O0eot06cSmbkpEEc4AAKrzegOVKuEhS/jQYVUBS5ldKjz+8MQfqDjBikv+20H3+ST5/Mt6vP7wxRsauCTF2xwrSfFSYpyFKi4FhTRee86KCmuXE+LIIyXGSylJVu2SGlYBk5xQd/hSk6JSC2K27rXrsgqrhGmXIQ3rYWFMRnKgQmd/cwVdyGYAAAAAAEA0iK7RyhqMcAYAolV4FYsTqtQUtBSXSoVldl1UZo95vYEKleCAJTbGLk544nb5QxZn+DAFflR9PgtPyivtOpgTvDihixPCxLhte5Veq6KpqLTKmqJSm9sleDsJcRa2ZCSHDT3m//unDCEm2XNvzwtUx+SX2Gtrkyb16SR1zJSy0xsf8uwrZ2i24CHaAAAAAAAAWrJW2sdBOAMAzZ3XWz1UqTYXi/+6qCxQxVJUZuGCN6yCxeMNBCyx7sDf8bF2yUoNhA1e/zBjXp+FJc5QY6XlUkGJv1IlLHSJj/UHLvHVrxP94YvXJ5WVW+hS6A+EtufZdaUndFtO0NIlO3Tel5REKW4//4x5fdKugkAYsyvf7ktNlDq0kYb2kNpnWijUFKrmzCGcAQAAAAAAUaKV9nEQzgBAJDjznlSb3L7cQoqSoPuc6hVnLpaSsurhihOIxMZKcWEBS1yslBwvZSYHJrdP8N/vdlnIUl5p2y2psOtS/xwwu/LtvrKK0Pa7FBqytEmVOsXb8yQGBTBJ8dY2Z6izQv/r2JkfuK8iKHyJjZFS/UFLpzahVS+pSdb2A/2+FJRYGOMMVVbhseftkCmN7CN1bCOlJR3YdjSUW/YPFrfsvQQAAAAAAGjpWunQ7YQzANAYThVLbXOxBFe1FPlDFidsceZiqapk8QcuMcEVLG4LUeLjLFDJSpXiM61Sw6lsSYizZWLd1lHv8wWeM7gdBaVSab4/ePHfH1yVIvmHFkvwDyuWIKUnB/5OCgpjEuICYUCFxz8MWmkgeCkqkwpL7Lq8InT7TuDSPkNK6WB/pybYXDAJsZE/O6K0wj9vzB5pyx57LS6X1C5dGtTNwpistOYZfrhc/mHjqJwBAAAAAABRopX2cRDOAGidKiprnty+NKyKpaQsdKiwkvJA5UpwwCL5AxP/XCxxbinOH7AkJ0qZqaHhSnxsoKqlthDA4w1tT0FJ9QDG+dvrC103ITZQzZKSaPOiJCVISXH++/3hS1xM9R9Aj9cfLJXaEF9FpYGhxwr9Q5k53K5ApUt2mtS9faASJiXRnqOpf2A9XmlHXqA6ZneBzWmTkSx1a2sVO+0z9v8QaQeCyz+hD+EMAAAAAACIFq20j6MF9EQBQC28XqmssuaqlWpzsfjDlZrmYvH4r30+C1ZiYyy0cIYKS/AHKdlpoRUsTnVLfFygiqU+wcObFRQH2lhcFgiDSoJeSzC3K3QIsazU0OqW5ITAY3VNUO/x2vPtLbTQxamAcUKY4rLAsi5XYH6XjGSpa1YgeElNtJCnuVWY+HzS3iKritm6x+ayqfTYvunYRurfxQKZ5ISmbmnjuf2VM25X89vvAAAAAAAA+6KV9nEQzgBoetXmYgmqXAm+zwlWisr8IUZZIFgJnpPF57MqiLigYcLiYgOTy7dJDa1eSYgNzNVSV6hRF2doseLgqpayoLYHvQaPN3TdGLc/ZPFXs6SnBOZyCQ5cgocWq4vXZ88THLxUXZfYY06hjUv2vCmJNsdLxzaB4CUl0Z5/X/dJJBWXBYYp27LH9nWM2ypihvW019UmpeWfieFyhV4AAAAAAABaulbax0E4A2D/8PkCYUr4hPc1zsUSVMlSXhkIWHxeyeMPWpw5WGL9QUtcTGAosOw0KSErdJgw5zq2hqG69pXHY6+juCw0ZAkOX2odWiwuUNmS6p9zxQlaqi4JNQ8tVt++dvZjQUlY+OK/Dm6LM7RZaqLULiMQvKT6hyOLidk/+yqSKiqtImbLbgtj9hbZ/VlpUu+OgaHKWuJrq5MrcN1K/+ECAAAAAACiTevs4yCcARAquIoluHKlxqHCgia7Ly0PqmIJqmbx+QKBiTNcmFOxkpZkc6Ek1DBMWPxPqGKpj89nk9oHhyslNQQuJWU2bFowt0tKjAtUuWSnh4UtQZd9DQacoCs8fCn0V74UhVXfJMYFwpbsdLsODmBioyCg8Hql3YXS5t2Bocq8PguXOmVJQ3tYdUxSfFO39MBy+0MZhjUDAAAAAADRopX2cRDOANHIGWKrzrlY/LedcCWkiqWGocJi3P7qldjQkCUhTmqfXj1Ycf5ubFXIT33dpeFhS1joUuy/rmloseSEQLCSmVJD4JJgQchPfT0+n+1nJ2wJHn6swH87uH3OcGypiVLXtoHwxQlg4qP0q7ygJBDGbNlj+ywuRurQRjq0j1XHpCe3rgoSV9gFAAAAAACgpWulfRxR2qMHRIlKT/V5V0pqClvC5mIpLgud5N4JWKTQye6deVgSwqpYEuJC52KJj2vaeUc8nsDrLg6exyWs8qWmocUS4wJDiaUlS+0zQ+d3ca73d4hUXhkathSWSkUlUoE/kKnwBJaNiwmEL52zg6pekqS0RNv/rUF5RWDOmC27pfwSO3Oibbo0sLuFMW3TW8YcOAeKyy0b0szt/xsAAAAAAKCFa6V9HIQzwIHmVLHUFLKEV7UUl/nnYykLDKnlq2Gy+xh3IFyJjZHig6pY0jL8gYr/dkJc01Sx1Mfns3lDwkOXYn/YVBr0d01DiwVXs7RNs7+TwwKXpLgDN+dIRaW9T7WFL8FtjnEHKl06ZkipHULDl4T9UI3TEnm80o58q47ZslvamS/5ZNUwXbKkQ7OkjpmtJ5xqCH82I7f/AgAAAAAA0NK10j4OwhmgoTzeoLlYapnw3nmsai6Wcqm0TKr0hoYrzrVTueLMx+IMB5aRbJOZ1xiyxDbvSc693tCwqVr4ElT5UukJXTc2xoKVZH/Akpka+Ds4dNkfQ4vVx+ORCsuChh0LCmEKSqz9Drc7UPnSNl3q0T4QxqQlWeVOawxfwvl8Ul6xhTHOcGWVHikh3qpi+nWROrex0Ao1c7n8Q5q5+EwBAAAAAIDo0Er7OAhn0Lo4c33UORdLUJhQdSmXyspDwxXnEuOykMWZjyV4LpYOSaHhivO3E7q0pC+eSmdosRoCl/DQpaahxZzKlozkwMTtwUFMUnxk507xeK3NhSWh1S+F/uqX4rLAsi4FKl0yU0LnfUlLsra7W2nEX5+ScquK2eSvjikqs2OmfaY0rKfUOUvKTmtZx0JTcvn/4wQ0AAAAAAAALV0r7eIgnEHL5PGGVrAEV7GUBd8uC0x2X+IPWSo9oQGLz2tDKTmVK3Fhc7GkJ0vtMgJzsSSETXwf24yrWOoTHFaFV7Y4+8sJY8oqQtd1u/zhij9YaZce+Dt8eLGmmCPE67X21xi+lNjnwucPkVwua7MTtnTOsiDGuZ2c0LrnOWmMSo+0bW8gjNlVYPdnpUq9OticOh0zW/Zx05SCK2fcrfRfLgAAAAAAILq00hNQCWfQdJxgoMFzsQSFLGUVoeFKVRWLO6iKxR+yOGFKelgVS3A1S0urYqmP12v7tVplS1jgUlxmQVew2JjQkCU7NRCyBN/f1POk+Hz2GgqCw5eSwLBjhaWB8EWydjuBS/tMC12c6peURMKCfeXzWQDjDFW2ba99ppITLOQ6KMeukxOauqXRwRnOjGHNAAAAAABAtGilfRyEM/jpvMFzsdQyRJgTwDgBi3PxeKrPw+LMxVJ1CRomLDNZ6pAROkRYcMgS7R3slZ6aA5eqYdj816XlocGEZPOeOOFKRop/aDF/5UtyfCB0iWsmXws+n31unEqXguDwpdiug4OlxHh/2JIk9UwP/O1Uv0T7ZyOSCkulTbsCgUxpue3fTm2kkX2lLlk2/Fsr/WE9oJx9SjgDAAAAAACiRSvt42gmvbBocj6fVOGpYXL7GqpanECgKGyOkeCAxeuzIXfi/QFLvDNUWFAVS1WoEhc6ZFi0VbHUx6kgChlWLChoqRpirMyWC1Y1tJh/CLH2GUEVLv77kxMsuGhuw3I5r7uq8iUogHEqXyo9geXjYy1sSUuUurfzBy/+26lJkZ2vprUpr5S27AkEMnlFNrRW23RpQFcLY9plEIBFApUzAAAAAAAg2rTSPg56M6ONM5xVXUOEObedKpZSfxBQ4QlUrgRXsVTNxRIbGAIsIc7OjO+QWX2YMCdoae0dtU5FUXC4UlxL+OLxhK4bFxs2tFhaIGgJrnZp6qHF6lNeaWFLfg3hS0GJVBEUNsXGBoKWrtmhwUuaP8xDZHi90o58C2M27Za277XvgrRkG6Ls0D5Spywpkfck4tz+OWfczDkDAAAAAACiRCvt4yCcaY6cKpbgCe9rClxKK6Ti0kCnf4l/OCuvAvOw+FR7FUtCnHX+Z6bUPExYQpwt625mFRdNLXhoMWd4tpJy/3sRNtRY2MhiSgoaPiwzxYaBSk4MVL44oUtzGVqsPhWVgTlegqtfCortuqwisGyMOzDPS8c2Up9O/ttJgUqq5hw0RTOfT8ovljYGDVVWXmlBa6cs6fCBUudsKSO5qVsKl0sSlTMAAAAAACCKtNI+jhbSA9xCBVexhFethIQs5YFOfedS6aleweL1hVavxAVVsbRJtY7+4KHBnL8T46xjvJV+yBvE55PKKoMqXMoC1UXh9wUHDpLt2+AhxDpkSilhw4ol+atgmtvQYvWp9Fj4ElL9EhTAlJQHlo1xB+Z5aZ8h9epo4YtzSYrnM9iclJZbVcymXRbKFJZYiNshUxrWQ+qSLbVLJ5xtbqicAQAAAAAA0aaV9nEQztTH57MO6pomt3duO/eFzxlSUl5zwOJyBQKWqkuczQuSkWJhSvhE94n+azpKGyd4aDEnaAkPXJyqo+DJ5SX/0GL+cCU5QcpODwpdgoKXllzx4fFKRUGVL8EVMPkltn8cLkkp/qHGslJt3pc0/+20ZNsffD6br0qPtG2vBTGbdkm78q2yKzNF6tFe6trWAl7m7mnemHMGAAAAAABEm1bax9F6euG8Xn9lRAPmYgkZqspfxRIesPh8UlxMaBWLE6ZkpUrxbaqHLM58LLExrfYDt984Q4tVuwQNLxYckDlcLntfnKHE2qRKXRIC1S0pQfO8tJShxeri9dp+KfCHLQVB1S/5JRbMOPvH5bLXnZYkpSdb5YQz30t6sj3W0ip/WjOfT9pdKG3caWHMlj123CTF23t7UI7/PU5s6paiMZzfDsIZAAAAAAAQLVppH0fL632uqAxUrtQ4TFhF9QnvS8osgPF4/QGLQqtYEsImu4/3V0y0SakhXAkKWagS2L98vkBQFlzlUhxW8VJUFjqRvGTvhVPhkpwgdcwMrXppyUOL1cXnC4Qv4RdnGLLgcCrJCV+SbB8Fz/mSkmjBIVquotLAMGUbd9nxEhNjFTEj+0hds6XstFb7gxc1XGHXAAAAAAAAaHFaTjizI0965mPrmA+pYFFQFYt/6K/4mMCcK9mpUqIzF0u8hSrBc7FQxdI87C6QXltYPXSJi7VqlmR/VUv7DH/okhgavrTkocX21e5C6bUFofssMS4wx0v7jED44twXR/gStXLXSAtW2t9t06UBXSyM6diG0C2auGXfdW612vFYAQAAAABAlImic+kbo+WEM3nFdjm0j5SeEpiDJTHOQploqoZojQr91TBHHyRlpgbmdiFMqF1Rqe2z8UOkdv4ghvlCWq+8Ehum79RRduwgOjGsGQAAAAAAiDattI+j5fXk9urEHAnRyCU7CHPa2/BaqJ/TOdu1rQUzaN1csgqyZI6fqOYc94QzAAAAAAAgWrTSPo6WFc4wlEv0crusc9nt4v1tKPYZgrmCPg+IXhz3AAAAAAAg2rTSPo6WFc5InC0crVwuSZwN3ijsMwQL/jwgenHcAwAAAACAaNNK+zhaVjjD2cLRy8XZ4I3GPkMwPgutA5UzAAAAAAAg2rTSPo6WFc5wtnD0Yh6FxnPm6WGfQQqdKB5RzEWVFAAAAAAAiDKts4+jZYUzwZ3RiC5V7ynvb4MFd8azz0BQ1zpw3AMAAAAAgGjTSvs4WlY4IzGUS7Ry+zsaeX8bjn2GYP5iCj4LUY7jHgAAAAAARJtW2sfR8sIZKiuik9OxzNngDefMOcM+g0TlTGvBcQ8AAAAAAKJNK+3jaFnhDJ2P0St4DgXe3wZinyEY85C0CnxXAgAAAACAaNNK+zhaVjgjMZRLtHLOBuf9bTi3SwxlhSpu58JnIaq55T/mxXsNAAAAAACig7upG9A0Wl4443RGI7q4wi6oH/sMNeGzEN047gEAAAAAQLRppX0cLSucYZz96MVQPY3HPkMwhn1sHTjuAQAAAABAtGmlfRz7Fs58vV56+B3p82+lrXulWLfUp5N05ljpwmOkrNT928oqLum4adLYAdL9l9pd2/ZKz30qHXuwNLj7vm12/nfSlPukF26Uxgyof7lHpkonjdy352qJKirt/Z4xV9qeJ3VrK10wXrpkQs3LP/2RNO0FqV9n6cM/SkWl0n0zpbcWSXlFUu9O0i9PkCaPCqzTUia5njFXuvFp+7tjG2nrHum2s6Urj7P7fD7pqNuk9Tuk0f2kF2+24+Rnf7PHlz0gZaXV/zy17bO/viKN7m+ff5d/uUfflU4ZdeA//5L0w2b7LCxeJW3fKyUnSp2zpBG9pZvPkNKSbLmZC6Vd+dJlk/atTZL07CdSUrx09uH7vo1ICv5sSFKM297rnLZSeoq0eot9X7ZLl0b0ka6bLPXsUPc2nffmH5dL7yyx25Ve6ZBe0i1nSUNyAss6x41zvXKz9PYi6azD7ZgNdsNT0oLvpbl//ckv+ye54Sl7XSsern/ZnMula0+Rrjv1wLdrXzT2ezJcQ74nJVkw41w34+9KAAAAAMD+t+JH6ckPpfkrpR17pZgY61uYfKg0ZZyUeaD6ZCUd/ttAn5QU2T5Zx4Yd9vrnfCtt3i15vVK7DGlkH+nccdKY/o3/f+Ufd0pH3CLdd0nz7IM69x5pwcraH190v9Q+I3C7uMz6Ct9cJG3aJSUnSAO6Sn+5MLQfat026e9vSgtXSrsKpA6Z0qTh0tUnSW3CPkfvLJGe+EBatcX6Pnt2kC6eIJ0xpmGv4av10t0vS8vWWI4wZoD0u3Ok7u2CFmqdfRyND2ee+Vi6/impbyfpmlOkAV2kCo/t3Kc+kr74QXruhgPQVNl79M8r7MPijLW/Pc8+SN3ahnZUNoazrfrmO2noctHmjunSq/OlG0+XhvWQPv1GuvMFO9ivPqn68i/NteuVm6Uv10r3viYtXyfdcqbUq6M0c4F09b/sYD59tC3r9nc0Nvd5FJymxcVIewsD9zltnv+9BTOpifZASZl0y7P2md22t+GfnSsfqXmf3Xy6BTHO/ioqk57/zMLRA/35/3q9dPpf7Ni/9hQ75nYXSt/+KL3xhTT1eCkj2ZZ9Y6H0/SbpimP3rU2S9N9PLNw494h930YkObvu/kvs/SirkBatsg73uBj70RnQVdqyW3robemkP0qv3y7171L7Np33Y9oLFurcd4mUECc99I405V7prTuk3h39z+8KfQ9Xb7HvxrEDpJx2odv9zSnSZRObz7HWkHa8fpvUqU3zaXO4xn5PhqvtmA/+npSCvitb2e8QAAAAALR2z30q3T5d6tVBmnqcnRRd4bH/l5z+qbR0jfTEVQfu+f/9ayk1qWn6ZCXpg1z7/+SsVOnnR0sHdZfi46T126W3F0vn3Sc9f4N0xKDGtaFjpvU55LRvnv+f/ecLpMKS0PtKyqULHrD93jEzcH9RqXTuvdYH+esTrR+qoERassr6qZzXt6tAOu1uKS1RuvE0qUu29fv97XVpwXfSO7+X3P5JYF6YI930jHTiCOtPkqSX50nXPSntKay/72/VFuvDGtRNenSqteO+mdJZf5XenyZl+09ib477PgIaF84sXGk7fvwQ6fkbrZPQccxQ6eqTpY9y928Lww3uHjg7Xwp0iP6kigtX4LrObTR0uSjy/Sbphc+l355hZ3FL0tiBdvD98y3pgqND09Qv11pn/YSh0sfLpftftzT7oV9Ip/k7GA8fKG3aLf15hnTqYVZh4Ozb5l4547TN41WNbX7hc6siKSy123e/YoHFhKHSP95q2Ov7eHn1fXZIb9tn//lE+vVJ1bcTic//kx/ZF+WMm+3H2HHyoVY14/NVX/+nvJfhlSDNndPOAV2lYT3t77ED7bPw6LtSSoIFJZIdA2Nulp740AKX2jdqV/nF0ru/l7r6K2BG9bMzVu6fKT36y6BFg9/DOt7X+ip2IqUx7/GIPge2LT9FY78nw9V0zNf4PanQfdZSjg0AAAAAwE+zZJV02/+kcYOkJ68O7ZM96iDpyuOl2V8d2P9PHNIj9HYk+2TXbZeuelzq18WqbIL7hscOkM47Upr3nZSZ3Pi2JMY37z6Hmk7qnTHXgrnzjgx9vfe+ZmHIh3da2OQ47uDQ9T/ItT6LR6cGwqzDB9o2//KKtGKjdJA/cHvpc6lrtvTYLwOBzfgh1v87Y670i+Pqbv/9M6X4WOk/1wbet6E9pHG3So+/L91+tt3XSvs4GhfO3D/TdtQ/rwj9EnDEx0onBg339co8G5ro2x9tmJbu7Ww4sJvPkFISA8tNfUR6faE06y7p5mfsbPOkeCuN+tPPrPxKkuSSJt5hH5a/X24H3Vn+YXmuf8ouknT9qZb6fblWevQ9aelqaWe+1NY/nNDtZwU6OaV9qJxR3ct9t9E+yAtXSqXlNjzNL46VzgmqAPB6rdPu5fnS5l2277pkS+eNky73J4678qW/vCrNWm6JZmqinVF942nSkYNrf/796YNl1uk+ZVzoa54yTnruM+nTr0NL2F783K5vP1vKK5bmrrBO6cmjQtc/drj02TdS/19J8THSYf2sDHHAr6UHLgutlvhyrfS3N6RFP1glSp/OdiZ6teF+IsDjtesTDpE+XG5/O5Uz+cVW5ven863TvaDYzmp483f2pSfZ8GY/7pQqPVKP9lYCeN640C+gXz1qHbFxMTaM36rN9pk49wjp149Ll/xD+t/1Uu4aq5qRIvP531tkX6JpSbV8YfrvO/MvVkEkSV0vDTy82T/k1/0zpVlfSWu31b4fRt0obdwVuo2u2dIX99ln7LonpYX3hg7X5XwfvPzbQAjy1Xr7YVq2xs4UaJNqZ1b89SIbjm1/ctWyH8f2t3BmZ0Hg/s5ZdmbAh7nSQVfX/rl2lh+SEyj1dN7XsgorUV26WhrZVzpiYOCz6OwjSTrnnsD2nGPr2idsf31xX+Cx0grpbzOl17+w4fqy06TjDrFKDqciSrL3ZkBXG67r7pftR79LtvSrE+wfBY7iMtv37yyxIfCSEuw1XHlcoBLE2U3rt1vlyYKV9lyTR9nzBv/OdL4k8NmWAq/x+Rul1xbYd1VZhf0+/On80H+EHGiN/Z4M9/5S+00M/550jvncNdKhfe0+KmcAAAAAoPV58G37f8F7L7Y+03CJcdLxhwRuv75Qen6O9VHmF1s/0HEH2xDrVf2ssv6BtxZLb99h/1++ZLVtf/IoGwEkeNlRN1p/S1P0yf77A6sW+csFoX0UwY4YGHp77TY7UXrRSmnLXgtuDsqRbj1TGtgtsNyPO6XDbgrtj7xvplWRfHKXVQfNWm59FBOGSneeJ6XX0oZIeWGO9SOcdlhgvxWX2Xt+8qH1n5QbH2PXGcmh+93Zt0nxgfvjYu25YmOCNuAKBC11vW+VHumj5dLZY0Pft+7t7LP0/lLpjnPq304Ua3g44/FaZ/rwnqEHUV1Wb7VxB391onXQr9ws/f0NO9DfuiN02QqPHdSXTLA5BRautI69H3dKL91sywS/Ry6XpWx/v0y69kkbZmniMHusU5Y9vnGXDS902mE25uL2vdJ/Zkkn/FH69P8CZVPBJ5rXldI1JBFetUWa/Gf70vnTz6zU7pX51sadBVZSJkmPvGtVJdeeYuM1Vnhs3fziwLav/rd1LjvD3OQX2+29RXW30+cLhAj1CTmwavD9JttPHTJD73fGkvx+c6AtJeU2FM/wnvYld944m5ukc5YdyI7iMvuClqQTDpbOGWfrvb3Y7gt+H+aukM6/Xzq4l3WopyXZD8zURy34Ondc3e33eG1/1MftCqS/dflgmV1ffqzk9UnvLg18HmYutO2cdpj0rw/s83/FsVZF8WGurXf24YHEe8lq6XfTrdTw+qB5NCo8tr3/e1m6drLUva39GCb5fxDz/J+RAV3th/X9ZZH5/I/oLX30pXTVv6x89OBeNf+D4O4Lrdxx/XbpqasD9zvb3rjLKgm6ZNe+H566RrriISkt2X54JStVdeYmqqm94fcXl9m4pd3bSXdfILXNkHbk2WeqqKzu1+r12vtbH5crqKIhqCHB2/5xp1337hi4/9X5Nv9Mx0zp/y6o/XNdXmHXOe1C91+fTrbO9E/tDIX3lkp/fNH+AeRy2Wfh1rMsPLn7gkB5cU776hVXkh0jl/5T+nyFBUSH9bNxbO+d6f++/l1oUPLtjzZk11UnWaj63KfSDU9LPTva+K6SPf7yPOm3Z0pDutv78d2m6t9flR7p4n9K54+Tpp5gc+E88Ib9Qyf4uHD2cVXliP++G56SjhosPXyljTf711elM/8qzfqTlJFS+3vXVN+Tta3ft1Po92T4+qP62d8tZX4uAAAAAMD+4fFaX8bQnIb3ya7dbkHCL461/qRVW2ye1Ny1dlJrsEqP9PMHrK/mqpOsL+/vb9p8Jc9eV33bTdEnO+cb+3/u4b0a9volaVue9cvedraUnW7TE7w0VzrpLqss6dOp9jY4913+kI1mcf6RVk1y9wxb5oHL6n7ufelXaqg1W63f/PwjQ0e2+Wq99b306mBTLLy+0G4P7CbddJo0cXhg2RNGWJ/PnS/aXDRds6Xl620Y/WOHW4WS49KJ0i8elv7xpvUHulxWTbN8nVXe1PW+rd9h/VyDulVfblA36bNv7UTbxPhW28fR8HBmV769oY05G/nmMwJ/+3wWQvTvIp1wp41j55RHSVJ5pX0BOEPCHDPUKgf++KJ11rVND9qwv1MqPVka4E86e3Sws8eDnTLKLg6PV5p0sDTkagsDnAqV/Tms2f0zrXP9lVsCnc8Th1uH+v0zpQvHW7sXrZIGdpVuCtpHxwwN3daiVdLPjrRJpR0njKijfX7zvrPqhYb44r6wyZfC7Cm0aoPw15uSaNU+ewsDj729WMovkc4/yu47bbR04zNWNRW8/ktz7Qtesi+I8UOs83nFRjuwg/fvrc/aZ+aVWwIdpMcMtblO7n7FqpHqClVG3yxt3Fn/frjhNOmm0+te5uv1VvEh2Q/b5FEWzmzPs/a+MEc65VALFHbmSz7Z++tyKVBVMtZ+gLxeO8Nfsgm1rj818Jq9Xpv0/bkbA/OJSBZeSHasuFz2BewcF5H4/P/qRHt/Xltglxi3fZFOGGrbctoyoKul4fFx1dskSf+4IvB3bfthaA/7Yk5LqmEbtbU37P5VW+zz+8BloWePnHpY7a/R8bc37HitT9e20uL7Q5/f6fQvq7A5uP7+pn33HX+ItavSI934tAV5b/wucPzV9LkuKrPHUoOqlZz39bX5Fs4M7yX9fLw06NdWIeRyWWDSy//Z6delln0YtP9mf22XO84NBMhHD5E6Z9tcKC/Psx9gZ93d+db2rv7vuDH9pc+/tc+VU7W0aJV09EE2F5Fj0sHV21FeaceeUzF05GDpy3X2GbvhtOrLhw/bNryn9MDlgUUGdJVOuUt6ZpaFm7Vpqu/J2tYPD86kwFBoweu7gt67VvoPFwAAAABoVfYU2gnR3ds1/P8Dg0929PnsJMx+naXT77aTMQf5TwZ0/r/8l8cH+omOHmInD979so1i45wsGNyXEOk+2c277QTG8GXCQ5Dgk6/HDgj0UVS1Ybh01G3S/2ZLd55fRxv81+cfFegnOeogG17thc+sr6mu9u5Tv1IDPT/Hrn92VGgbnH7Dh9+xPucHf2GPP/aedOE/bI748UNsmYwUm1fmsgelo28PbOOUQ6WHrgzd7smH2knU1/zbToiV7GTtf14hTa6nj21vkV3X1GfSJtU+m/kl1s/aSvs4GjesWWOt3Sb96UWruNmRH1rB8P2m0HBGCh32S7Iqgz/61z9jjAJzKqh6kllTR1VRqZWgvbXIzl4PPkv6hy1hnV21bCNY8HPWttznK2z8x/Ake8o4K4Fbsto6YQ/pJd3zpXTLf6zTdmTf0PESJatMePFzqU2adVgO61H9zOqaDO9pEyo1hJNo18pV9+sN3mfPf2YH5+mjA+FBaqIFU2u3BTqL539nlSDFZYH1XS774li+LnB77TZ7n6adZ7eD37+Jw6waZfXW0DQ33H+vC1Qf1KVjm7r3Q6XHhlA6uJedQeBSYDzK3LUWLOWutS/2ZWvsh3NQt0D5p7Ppy/4pffOjDbEVbGeB1D4jcDs1MZDgO8I/fyFVJBH4/CfGS89cK63cJH3ylXWgz//OwodnP5HevCO0zbV9buZ8K/3jDdtf9e2HmrZRW3vD7+/VUcpMke56yQI0JxxuiAvH25kC9XGqeYKf/8Q/hi7Tr7P07LV27Pp8drZBSbl9J3TJrvtzXdNrdd7XF/w/xqf+ObD+tryGfTe6FLpv566w6ylhQ+ydeph97ud8GwiJXbJ/EAUPKZeUYPt7467A+gf3sgqhu17yf+f1rl5p5bThuINDn3dQN2nut7W0O2x/nzk2dLlR/axtc1dYFWZtmup7stZN1PQ+1fD+UzkDAAAAAK1MAwOMYOu2S3952fopd4b1yf6wRRqcE7rp8P+3PmOMhTNzv5MO6x9Ytqn6ZB3hy1z6oI0mUnV7oo3oIllf3kNv27Qba7fZyfQNbYPzNM6Jto7B3WxY+PD+q3D70q/UEJUeq1rpX8OJuE5IFR9rQ8A7VTVHDLJ5jx94PVAYsLdIuugfNsz+I1Otf+q7jfaeXfR3afoNgZPkZy23IddPOTQwJ+77y6TfPBGY96Y2db6//tvO8O2ttI+j4eFMdrp1NK/f3rDlC0ul46fZUDh3nGudtknxVjHxs79ZSVNIS2ICJW0OZ4iY3QX+O4LepOAxCZ2Hwsem++WjVvZ2/WnWUZiWZMudd589f/g2GjrnjKuO5fYUWrvDH+/Uxq73Ftpj1062s6pnzLVJ3mPcdvb5788NlOg9cZUdFM99Kv31FVv+pBHS76dUHz4nWFqSVR40RH3D9WSlSt+sr/56ikotWW+Tao+t2WbzjJw80vZxQbEt1yHTOuCf/8w+B5J9AbRJtXAmKzVwEDrzEDnv5c58uz3tebvUZE9R3e/ZwK6NGNasju38+30rxfvNyRbOFJcGhnlavs4e79XBEvlxt9h7kJoY2A8bdti1x2fDWPXqYF+W7yyxIZzKK4I+h+6a25PnT5vj46p/cUXi8+8Y0NUuku3bx9+T7njOPqNP+ocxc4Vt27F0tXTuPVYt87fLpM5tat8Pzqrh2wi+P/ix8NeRmSK9frv9+PzfDPvcdci0Mt3rT6076OyYWfePbFVbXNXb+/CVFsgUltpQd/+ZZcOVvXCjBR3OPxpemBMIWMI5n2snsC0sDTyP874eOVh6b5kNHdetrXTGX+xHOvh7qqb9FMy5f0+hfRdUe80uu8/53nJkpVXfZkJc6Ofq7gukLlm2Dx5628a/HT9E+sN5oRVhSfGhY9hKtmxpRQ3vfQ37u6bv2/YZ9X83NMX3ZK3rp9l7UNsxn5Ua+r46l1Y6HisAAAAAtCrt0qXkeOnHHQ37/8DCUjuRMzHOhjzv3dHW37RbuvgfNtJH8HZiY8JGLJL1i0jV+wOkpumT7ZJtJ4SGL/PH86Ub/CdmTvpD6Db/8Jz01EfS1Sdbf11mir9P9sma2xD8Opw+leyw/g+nL7C8hj6LYPvSr9QQs5bbCchXn1x9Padf/dC+oXPipCba6393SWCdh962foylfw+812MHBKqrXp1vJ/D6fDYv0Zj+VonjGD/E+ntv+68NXRc8t3xNbdpbQx+NM9KS874QztQjxm3lWx/mWsDiDNlVm8++lrbssRKpIwYF7s8rrnn5So9Neh8c0DjlWFlhoU1ImlZLApdfbJOw33R66NA2ZRXWaVdbItfQlLa25bJSrd3hjzuvJTvdHouLtWGifnWifRg//cbOMD/nXunLf1hnZdt068j/vwtsaK73llol0s586aXfhj9zwNwV0mn/V//rkKSlD9Q9XM+gbja80Pa80EDou012PdA/ZuDzn9oB++Yiu4R7YY50+zn2OWqTGghenPVdLuvIlAK3nc/CtadIJx1ac/v6dKr7PTv0hsCcH3W56XSbG6M2322yz9SfXrLbpwcNh1RcZpN+XzHJ2uLsmy9+kPpMDd3Ooh8slZ7tf3/e9XfUB3+m4mJsOCuPN7RTeMVGu85MCZw974jk5z98+V+eaBOlfbex9jP/Ha8tsNf33A1WieOoaT8EH9vBnPWc4d0cuwurP+/g7tITV9tn85sNVvp530wLBH5Tx5BX9820Oa/q062ttOzvoc/Zr4v9w0OSxg229/F/sy08mbtCuu0s6c8zGva5dn70N2y328Hv67a99jpOHGnPEXz8BF+H/13TMllpge/g4H+Q+Xw2T8/Bvep/b8PvT02SbjnLLtvzpI+/tO+vn/9NWnBvYFlXA7ZVV9t35FVfbnueTX5X1+e5Kb4nazOwm/3Dp7ZjPnj94MOjlf7DBQAAAABaldgY61/4eLm0ZbcNQV6Xz7+Vtu6xE1adoeQlGz5Kqj46Q6XHThgM7n/d4e+3y0qr3r/QFH2yRw+RnvzQRmFx+lykwCg9NbXv5XnSuUcEThZ37C6w4fgbUr0Tfl9DK332pV+pIaZ/aic5n3tE9ed35q0NbqfD5wsNQL5Zb6OEOMUEjoN727XTx7c9z/qfLjqm+jYP6WVVPBt3BU7iDtezg/Vdraihz3DFj/7Hw0YdamUaN6zZ9afahOhX/0t64Sb7MASrqLQJw08YEdjh8XGhyzz9Ue3bf+nzwJwzklWVSDZMmFS9M1qyFFiys6zDDxafzzo3g+//3+xAKV1jS+iCO8dqW+7IwTb3yta9oR/wlz63wOXQvtXXzUy1srCteyxx/HFn9Q91t3bSFcfZRElfrKy7ncN7SR/9qfbHg9U3XM+JI21i+hc/l35zSuD+F/xDmE0cZmVzL3xuB9TfLw9df8kqG5rO6Zw97hD7YXh9oYU0I/sG9rvTkSnZ7X5dLN3/5kfpjikNez3hnrtBKqusf7n6hjX7zWQr0/v4S+mfb0n3XWpf5Fc8ZJOtJyVIVxxv23j9dumqx+3xP/sns7/5GRvK75nf2JB3LpcNbfXS54HX6zx/UoKFM28tkk4fE2jDi3Ms3HJ+GF2uQEduJD7/W/fYfgq3ZY+l5cN6BtZ3qijCt+d2STEx1m7nsdr2Q0Js9dclBTrJV2wMHdLuvZoCHgXuG9LDLi98ZpOc1fVaL5pgn9X6JMTW/8M97Tx7fZ9/K/3tUtv2C3Ma9rl2trN8vY2vmpYUqAR7e7GV18bFSv/5IFC+GvweSPaPn/rCj6MGSw++Zf9wCf4OfvML+ywedVDY50s1v27VcL9kgcX5R1lA9th79p4HV8s0dFs1vbcvzwsd4/SLlfYd6kxSV5tIf0/Wtf7JI6X/flLzMd+xTeB7Ugrsg/qOVwAAAABA9LjuVOtzve5J6X831Nwn+/Fy6ydw5lwJ7xP6z6zA3zX9v/WVQXPGvjLfro8YVPv/s0eyT/aXJ9ioPL/9j/TqrdWnhqipfc5Jr8Hb/WCZ9WP16lhz30ND21Vfe39Kv1Jttu21z8DJI+3k/3Cdsqzf+YuV1k/nVM8Ul9m8uyP6BJ6rY5b1MW/ZI3XOCmxj8Sq77pJty7ZJtfd5yarq7Vy8yvr56upTjYu1oezfXmT9Y877tnGnDbk39YS6+5NagcaFM4f1swmPrn9KOvJW6bJJNmxUhceGdnr6YzuD+IQRNu5/Zop03RPSLWdaZ+xLc6Wv1te87fhYK6kqKrW5CRautIRx0nBpzACb3FsKdAo6pVC9Olrn18tzpQFdrIyqYxsLRsYOsG22TZe6++cg+N/sQDq6r8OaLVld8wfm8IFWffFBrnTany0hbpNqIdMHudKd59k+kaQp99rZ0Af3sgqRH3dap2W3tlLfTnYQTb5LOmus1LezfXiXrpZmfWkTMdXVzoxkaUTv2h9vjEHdbBiov74ixbrtvZm13IZiu/1sa/t7S63j/ugh0hl3hybzR/qT/bkrbKzK1EQpd409VlYhPTvL3sOX50rrttn9se7A63vgMunse6Sz/yKdd5S9r3sLpe83S8vX2hwodQmf12hfDehil43+KpxDegUqe84+3MoJHUcOts9hRor9Ldn7/P0m66z9xfE2mftDbwcmfF+6WurR3v5Oirdt3/i0laL26mDjY3683CqzYoKGPWuTYpUkkfj8X/+kVb5NHmXHfYxbWrlZevRd++G/dnJg/cHdrKP56Y9sbg+32/bBcYdIj7wrXfmw/VDtLrA2OkFCcBsGdbdqgpkLbN8kxNlZACP72DHy++fsRz0zxZ5r4feh23hvqZ1VcdJIW98nCxvyiqXxQ+opl82yS2PUth//+opV+UgW2i5ZZf/guf2/0vF/sM+D87n+3XQbOnL3c6HbTE+y74zbzrJ9/7eZFnIdM1S6e4a9r8kJCinBHeyfmO/ZT+z7IzFeymkXetaLs+wxQ6UJQ6U7n5cKS+y7/psN0l9esaG/powL2191fFac+yfeYT/Ag7vbsbBys4VUh/a17wGpejuCNl/r/eGf29y10rX/toB7027prhftHxZXHNu8vicd97xql+DvyWMPts9kTcf847+yajOH2xXYDwxrBgAAAACtw2H9pPsvtf9vPOZ3NrfKwK4WyixfZ8HLwG7SiSOk0f4+2Rufln57hvXJzphr/58vhf7/pMtlfbKPvGud+If0ts79+2baiYZjB4S2o6n6ZHt3lP59lZ0kPe4We/3Delrbd+ZLnyy35dKTAts57mAbQaVfF+ubyF0jPfh2IIyoqw1V/RIKbVeDh2Hbh36l+rw4x6qcLjym9uf+08+sP/mcv9rJoy6X9NA71v92+9mB9a6YZO/bWX+xkV26ZNtJ0Pe9ZsOxnXO4LZsUb/3/D78j/epRO6E0xm0nDL88z/pCgvs8DrnOrpc+ELjv1rOkCXdI599nfYdlFXaCa3aadPVJ1d+HVqZx4YwkXTzBkraH35b+/oaldnExNgzP2YdLVx5ny2WnSTN+ax2QVzxsHYcnjbTKgXG3Vt9uXIz00s1WYXDva9aReNEx0l0/CyxTU5KZkig9dKV1ip1xtwVFvz3T3vgnrpZu+Y+NMejx2hfZa7dJ59wTtr2g6zpTOv9jD71d88Nv3mFVPu/fKf3xBemmZ6x6oF8X6eGp0s+OCiw7brB1FP/3Ewti2mda59xNp1u1kU/WCf3i5zamZIXHKi5+MzlwcEXK/Zda+vqvD6Tte61y4S8XBhL1/822L8MhOdLsr6ztwe178WbpqFstmDvzrzZ+4T0X2yTj0563ZUf1lSYdbF8MGSmB9Y88SPr4T9L9M6XbnrUxCrPSbOKr00c3Qaoa/CVdR4pe9ZHy/5HjD15WbrbxNTu1sc/3FyttSK/wfTa8p9SnswVaewotoHvy6sDcO85zxsVJ915sVQ8H+vN/5fEWljw7S9q8x36026ZJh/aTHvuVdbo7fnmCVUL96SUrZ/X5pL3PWwXGQ1dK/3gzdD+0TbeKvOA23HqWfb9c+4QdI93aSl89aP+oeOEmO75ueNKOlzPGSPde4n9t/m306WT/GPnnWxYexsVaqPPIVKvi2O+CPhvB+zF4YjqnY97xzYbQz3VpedhnwX/9l4us2uxXj9l7nJlqy97238D7espd/lX86/ToYJPgPfaePebxVv8eCj47YfoNFsZM/9SOt+w0f/nvlNAh6Gp6jSGPOcfuYPtsP/KuVcp0aiNNOVK68bTaz7qpti9ruD983zz0C6vcu+whG/N13CDbX+HDYR5o9X1POrw+ey/Cj/n/Xm/DvoUf82eODV3f5VLVfmilZ5UAAAAAQKvk9Mk+8o71q2zfa/2pvTtJZx0u/eI4+//E7HTrY/3d/6QrH7E+2RNHSE9dIx11m6r1/8TFSC/eZFUp98/098mOl/74s9qrRqQI98nK+pXn/dX6GZ77zPpXvD4LE0b0lv53vS3jbOcvF1lf0AOv28nRw3pI/73OppWotw219fk1or372/RPra9h/JDan3t0fzsZ9K6XpF88YveN7CO99Xt7DxwH95Y+/KP1wd/1krSzwPptThgh3Xym1DZovpw//cz6YZ/+2D5PPq/1Od17iXRx2HBnlR67Dr6vf1fprTukPzxvcx7Fuq1f/K4bpHZBz9NK+zhcPl9DZks/wKY+Yh2PW/5T+zKrtthZ11edFDqpEaLDqi3WCT/nW+nbh+qf0wjS6q2Wmv/6JDvzAK3bO4ttTNiLjmnqlkTG9NnSLx+TZv/ZzuxpLbbusQkNL51Y8zCDAAAAAAA0VEP6ZIFIaKX9HY2vnAH2h8ffs+t+XawE8/UvrMTxjDEEMwAAAAAAAACAqEY4g6aRnGDjFW7YYWMNdmhj5XX3XdLULQMAAAAAAAAA4IBqHuHMY7+yC1qPC8bbxeEMWxffPD6SAJq5nx1tFwAAAAAAsG/okwWalLupGwAAAAAAAAAAANCaEM4AAAAAAAAAAABEEOEMAAAAAAAAAABABBHOAAAAAAAAAAAARBDhDAAAAAAAAAAAQAQRzgAAAAAAAAAAAERQywlnXC4ppuU0F43E+9t4LrHPEMAxBAAAAAAAALQYLp/P52vqRgAAgAaoqJR2FUjZaVJcbFO3BgAAAAAA4Kdrpf0dhDMAAAAAAAAAAAARxBg4AAAAAAAAAAAAEUQ4AwAAAAAAAAAAEEGEMwAAAAAAAAAAABFEOAMAAAAAAAAAABBBhDMAAAAAAAAAAAARRDgDAAAAAAAAAAAQQYQzAAAAAAAAAAAAEUQ4AwAAAAAAAAAAEEGEMwAAAAAAAAAAABFEOAMAAAAAAAAAABBBhDMAAAAAAAAAAAARRDgDAAAAAAAAAAAQQYQzAAAAAAAAAAAAEUQ4AwAAAAAAAAAAEEGEMwAAAAAAAAAAABFEOAMAAAAAAAAAABBBhDMAAAAAAAAAAAARRDgDAAAAAAAAAAAQQYQzAAAAAAAAAAAAEUQ4AwAAAAAAAAAAEEGEMwAAAAAAAAAAABFEOAMAAAAAAAAAABBBhDMAAAAAAAAAAAARRDgDAAAAAAAAAAAQQYQzAAAAAAAAAAAAEUQ4AwAAAAAAAAAAEEGEMwAAAAAAAAAAABFEOAMAAAAAAAAAABBBhDMAAAAAAAAAAAARRDgDAAAAAAAAAAAQQYQzAAAAAAAAAAAAEUQ4AwAAAAAAAAAAEEGEMwAAAAAAAAAAABFEOAMAAAAAAAAAABBBhDMAAAAAAAAAAAARRDgDAAAAAAAAAAAQQYQzAAAAAAAAAAAAEUQ4AwAAAAAAAAAAEEGEMwAAAAAAAAAAABFEOAMAAAAAAAAAABBBhDMAAAAAAAAAAAARRDgDAAAAAAAAAAAQQYQzAAAAAAAAAAAAEUQ4AwAAAAAAAAAAEEGEMwAAAAAAAAAAABFEOAMAAAAAAAAAABBBhDMAAAAAAAAAAAARRDgDAAAAAAAAAAAQQYQzAAAAAAAAAAAAEUQ4AwAAAAAAAAAAEEGEMwAAAAAAAAAAABFEOAMAAAAAAAAAABBBhDMAAAAAAAAAAAARRDgDAAAAAAAAAAAQQYQzAAAAAAAAAAAAEUQ4AwAAAAAAAAAAEEGEMwAAAAAAAAAAABFEOAMAAAAAAAAAABBBhDMAAAAAAAAAAAARRDgDAAAAAAAAAAAQQYQzAAAAAAAAAAAAEUQ4AwAAAAAAAAAAEEGEMwAAAAAAAAAAABFEOAMAAAAAAAAAABBBhDMAAAAAAAAAAAARRDgDAAAAAAAAAAAQQYQzAAAAAAAAAAAAEUQ4AwAAAAAAAAAAEEGEMwAAAAAAAAAAABFEOAMAAAAAAAAAABBBhDMAAAAAAAAAAAARRDgDAAAAAAAAAAAQQYQzAAAAAAAAAAAAEUQ4AwAAAAAAAAAAEEGEMwAAAAAAAAAAABFEOAMAAAAAAAAAABBBhDMAAAAAAAAAAAARRDgDAAAAAAAAAAAQQYQzAAAAAAAAAAAAEUQ4AwAAAAAAAAAAEEGEMwAAAAAAAAAAABFEOAMAAAAAAAAAABBBhDMAAAAAAAAAAAARRDgDAAAAAAAAAAAQQYQzAAAAAAAAAAAAEUQ4AwAAAAAAAAAAEEGEMwAAAAAAAAAAABFEOAMAAAAAAAAAABBBhDMAAAAAAAAAAAARRDgDAAAAAAAAAAAQQYQzAAAAAAAAAAAAEUQ4AwAAAAAAAAAAEEGEMwAAAAAAAAAAABFEOAMAAAAAAAAAABBBhDMAAAAAAAAAAAARRDgDAAAAAAAAAAAQQYQzAAAAAAAAAAAAEUQ4AwAAAAAAAAAAEEGEMwAAAAAAAAAAABFEOAMAAAAAAAAAABBBhDMAAAAAAAAAAAARRDgDAAAAAAAAAAAQQYQzAAAAAAAAAAAAEUQ4AwAAAAAAAAAAEEGEMwAAAAAAAAAAABFEOAMAAAAAAAAAABBBhDMAAAAAAAAAAAARRDgDAAAAAAAAAAAQQYQzAAAAAAAAAAAAEUQ4AwAAAAAAAAAAEEGEMwAAAAAAAAAAABFEOAMAAAAAAAAAABBBhDMAAAAAAAAAAAARRDgDAAAAAAAAAAAQQYQzAAAAAAAAAAAAEUQ4AwAAAAAAAAAAEEGEMwAAAAAAAAAAABFEOAMAAAAAAAAAABBBhDMAAAAAAAAAAAARRDgDAAAAAAAAAAAQQYQzAAAAAAAAAAAAEfT/UOJRLkOeqQ0AAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Visualize the SHAP values for Record number 6 with Model Prediction: 0.970222532749176\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABiIAAAFqCAYAAACXjkI0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7dUlEQVR4nO3dd5xU1fnH8e9s7yy79LL0XlVEiiDVjr0gsZdoYolRE5MYoyYmJkZjTKz5xRoRFQv2giCKYKMsICIovXe295nfH8/OTtmZ3dllZ2eX/bxfL5idO/feOXPntjnPOc9xuFwulwAAAAAAAAAAAMIgKtIFAAAAAAAAAAAARy4CEQAAAAAAAAAAIGwIRAAAAAAAAAAAgLAhEAEAAAAAAAAAAMKGQAQAAAAAAAAAAAgbAhEAAAAAAAAAACBsCEQAAAAAAAAAAICwIRABAAAAAAAAAADChkAEAAAAAAAAAAAIGwIRAAAAAAAAAAAgbAhEAAAAAAAAAACAsCEQAQAAAAAAAAAAwoZABAAAAAAAAAAACBsCEQAAAAAAAAAAIGwIRAAAAAAAAABAS/XeEml/bqRLgSMcgQgAAAAAAAAAaIkO5Es/fVSadi/BCIQVgQgAAAAAAAAAzdfMBVLadGnh6trnHXyDdOo9jfNezUFGivTibdKG3ZXBiLx6r+qLLSXq9rcdmr2qsAELiCNFTKQLAAAAAAAAAAAIg/tfl8orap9vZB9pwbfSGfdK79wptU4Jf9nQohCIAAAAAAAAANAyLH1IcjgiXYrG8/c3pJKy0Of/dou0ZS+BCDQ4AhEAAAAAAAAAWob42EiXoG7yi6WUhPovv/d/tc9TWi5d+pD0/jLp4aulYT3q/37NVGGpU0lxjGIQTgQiAAAAAAAAADR/Tpf00JvSM/OkHQekrm2k286WfnKCZ57BN0hZbaX37vJd9rn50iPvSht3S+3TbZnR/aUz/yw9fp30kwl1fy+3T1ZJ/3xLWrZeKi6TeneUrp4qXTXVdz532e67VLprlrTkB+uZsOrfDbF1AvMPQlw+uUFXX1Tm1CNf5Oud74u0I7dCKXFRGtMtTreOS1PPDE/V9Pgnd6tjarRentGmatoTX+XpvgV5OqFHvJ6/ILNq+sOL8vSPz/O08Np2ykq3dZSUu/R/3+RrzuoibTlUrvgYh47tEqdbxqVpcHtP8OmLLSWaPmu/Hjg1XYVlLj2/rEBbDpXr56NS9Mvj0xr0s8MXgQgAAAAAAAAAzd/dsywN0ZVTpNgY6emPpZ89LvXqII3qF3y5f78j3fGCNChLuvNCqcIpvfip9OHyw3+vZz6Wbn5KOra3BSqS4y0w8cunLOhx78W+69223waNPnuUdOZIqaDk8LZJbUrLpQP5YQlClDtdumz2AX21tVQn9U3QlSNStD2nXM8vL9RnG/fq9YvbqE8bCxKM6Rav174tVFGZU4mx1jNh8eZSRTmkr7eVqrTCpbhoR+X0EnVJi64KQpRVuHTp7P1atr1UZw9K0mXHJCuvxKmXVhTq3Bf2afaMTA3tGOdTtqeX5OtQkUvThyWpbXKUOqZGN+hnR3UEIgAAAAAAAAA0f2UV0oK/SHGVVZ5nj5KG3iQ9+WHwQMTBfOneV6S+naR5f5KS4m361VOlMb8+vPfadVD69XPSOaOlZ27yLHv1idKvn7UeGFdOkXp28Ly2aY/02HXSxRPqswXqLiVBev8uKbrh0xLNXlWor7aW6qoRyfrD5FZV06f2SdB5M/frnnm5euFC6+kwJites1YU6pttpRrfI0FlFS59s61UZw1M1Ouri7R8R6mO6xqv4jKXlu8o1ZkDk6rW9+zSAn25pVTPnZ+hCT09aawuOSpZJz61V3/+JNenp4Uk7cit0CfXtFNGEgGIxkLiKwAAAAAAAADN39VTPYEBSeqUYWmQNuwKvsz8lVJRqQUH3EEISUpLqp46qa7vNecr6zVx8QnS/lzff6ccY+mdPv3Wd70ZqdKM8aF93joqLnPpze8Kq78QhiCEJH24rlgOSTeOSfWZfmyXeI3pFqdFm0uUV+KUJI3pZj0WFm0ulSRl7yxVYZlLV45IVmZSlBZtsp4hS7aXqqTCM78kzfmuSD1aR2toh1gdKKyo+ldW4dLx3eP1zbZSFZe5fMpw7uAkghCNjB4RAAAAAAAAAJq/7u2qT8tIkbbuC77M5r322Kdj9df6dj6891q73R7Pvi/4evbkVF9vVMMHBorLXLritf36akupBrSLVd824R+0e8uhCrVJjlLrxOqfp3+bWC3eXKptORUa0C5KbZKj1bdNjBZvtoDD4s2lSk9waFD7WI3OitPiLaW6Rap6fUw3T9Dox/3lKi536ah/7w5algNFTnWK9QQeuremWryxscUBAAAAAAAANH/BWva7XIGnH85rIb1X5d+PXyd1ygw4e7WARlJc4PkOQ3GZS1dWBiEePC29UYIQtQm0Zcd0i9fzywqUU+zU4s0lGp0VryiHQ2O6xeuuuTkqKLXpvTNj1D4l2mtdLvXJjNHdU1oFWKvJSPL9vhJjHQ31URAiAhEAAAAAAAAAWiZ3IGDdDmnyMN/XfthxeOvuVdnLIiNVmjjk8NZVT6UVLl312n4t2lyqoR1itelguR76PLfW5X46MkXJcYfXMyMrPVoLNpTrYJGzWq+IdfvKFOWQurTyBBTGZMXp2aUF+mRDsZbvKNWdleNKjO0WrzKnNH99iVbuKtNPjkryWVfP1jHaU+DUmG5xinIQYGiqCEQAAAAAAAAAaJkmDpUSYqX/zpUum+QZJyKvSHpq7uGt++xR0j0vSfe9Kp0w2HcMCknKKbT3jg9fD4XcYqe+3mbjLqzcVaaVu8pCWu4nw5OVfJidM07qm6BPNpTo0S/y9PtJnt4KS7eXavHmUo3rHq/UeE+AYlRWvKIc0iOL81VSYQEIydIodU6L1sOL8lTh8kx3O3tQkv6yIFdPfpWvn43yHY9CkvYWVKhtMuNBRBqBCAAAAAAAAAAtU0aKdMcF0p0zpcl3SheNkyqc0sxPpcw0acs+SfVsZd85U3roKumGJ6Vjb5Wmj5Oy2kr7cqXVW6R3l0hfPyB1CzDeRANpkxytJ87O0HVvHNCgdrF6/sJMpcWHZ3Bqf+cPSdIbq4v0f98UaFtOhcZ0i9f23Ao9v6xAqfEO/WFyms/8rRKiNKh9rFbtKlPH1Cj1zPBUXY/OitOr3xYpyiGNzvINRFw5IlmfbyrRXz/N0xdbSjW2W7xS4x3anluhRZtLFB/j0MsXtWmUz4zgCEQAAAAAAAAAaLl+MU1KS5QeeU/648tS+3Tp0onSwK7ST/4hJR5G14CLJ0i9O0r/ekd6Zp6UU2ABjj4dpd9fYO8VZpN7JVQFIy5+eb/+d0GmWiWEPxgRE+XQc+dn6N9f5OudNUX6+MdipcRHaVKveN1yfJp6ZVavmh7bLV6rdpX5DEbtnv7qt0Ua2C62Wtljox165vwM/W9ZgV5fXaSHFuVJktqnRGlYxzidNzgxfB8SIXO4XDWNugIAAAAAAAAALdC/3pZ+P1P6+E/SyD6RLs1hm7e+WPd/mqvnL8j0GewZaAwEIgAAAAAAAAC0XMWlUoJfr4fcQmnMr6WCEmnt41LckZFYpsLpUnQUAzqj8R0ZRxAAAAAAAAAA1MfC72yMiDOPkzplSNv2SzMX2OO/rjlighCSCEIgYo6cowgAAAAAAAAA6qpnB/v37Dxpf54FHoZ0k/52mTRtZKRLBxwRSM0EAAAAAAAAAADCJvzDowMAAAAAAAAAgBaLQAQAAAAAAAAAAAgbAhEAAAAAAAAAACBsCEQAAAAAAAAAAICwIRABAAAAAAAAAADChkAEAAAAAAAAAAAIGwIRAAAAAAAAAAAgbAhEAAAAAAAAAACAsCEQAQAAAAAAAAAAwoZABAAAAAAAAAAACBsCEQCarAULFujuu+9WYWFhpIsSMYcOHdLdd9+t7OzsSBcFAAAAAAA0Qd9++60effRR3Xvvvbr77ru1a9cuSdKbb76pF154oc7r27Bhg/7yl78oNze3oYuKFoxABAAAAAAAAAA0QwUFBXrjjTeUkZGhiy++WFdffbUyMzO1c+dOZWdna9KkSXVeZ8+ePdW5c2fNmzcvDCVGS0UgAgAAAAAAAACaof3796uiokJDhw5V9+7d1aVLF8XGxurzzz9X586d1alTp3qt99hjj9WqVauUk5PTwCVGSxUT6QIAQG1ycnL09ttva8OGDZKkfv366aSTTlJycnLVPN9++62WL1+u3bt3q7i4WOnp6erfv7/Gjx+vuLi4qvkOHjyoefPmafPmzSosLFRCQoLatWunk046SR06dPBZ35dffqndu3fL4XCoa9eumjJlijp27Bi0nLt27dITTzyhM844Q0cffbTPaz/88INmzpypiy66SP369dOBAwf02WefacuWLcrLy1NCQoI6duyoyZMnq3379jVujzlz5mjTpk26+eabfaYvWLCgKp2Vm8vl0pIlS7R06VLt27dPMTEx6tmzp6ZOnarWrVvX+D4AAAAAAKDpmjNnTlUq59mzZ2v27Nnq3r27zjvvPH3//fc6+eSTfeZ/5513lJ2drSuvvLIqQOFyufT8889rz549uu6665SamirJ6l7i4uK0bNkyTZw4sVE/F45MBCIANHkvv/yyBg0apBEjRmjPnj365JNPtHfvXl199dWKjo6WJB04cEB9+vTRqFGjFBsbq3379mnRokXavn27Lrvssqp1zZw5U06nU1OnTlWrVq1UWFiorVu3qri4uGqehQsXav78+Ro+fLjGjx+viooKLV68WM8884yuueYatW3bNmA5O3TooI4dOyo7O7taICI7O1vJycnq06ePJCkvL09JSUmaMmWKkpOTVVRUpOzsbP33v//VtddeqzZt2jTItnPfZBx33HGaMmWKioqK9Omnn+qpp57Sddddp5SUlAZ5HwAAAAAA0LjGjx+vzp07691339XkyZPVo0cPxcfHa/369aqoqFD37t195j/55JO1bds2zZ49W9dee60SEhK0YMECbdq0SRdffHFVEEKSoqOj1bVrV61bt45ABBoEqZkANHkDBgzQ1KlT1atXL40ePVrTpk3Tzp07tXr16qp5xo8fr1GjRqlPnz7q1q2bjj76aJ111lnauHGjdu/eLUkqLCzUvn37NHLkSA0dOlTdunXTgAEDdOKJJ1ZdnHNycvTJJ59o5MiROvPMM9W3b18NGDBAl1xyieLi4rRgwYIayzp8+HBt2bJF+/fvr5pWVFSktWvXatiwYYqKstNut27ddOKJJ2rgwIHq1q2b+vbtq/PPP19paWlaunRpg2y3bdu2aenSpZoyZYpOPPFE9e7dW0OGDNGll16qkpISffHFFw3yPgAAAAAAoPFlZGRUNZbMzMxUly5d1LZtW23btk2xsbHVGjnGxMToggsuUGFhoebMmaMNGzbos88+07hx49SrV69q6+/YsaN27dql0tLSRvk8OLLRIwJAkzdkyBCf54MGDdIbb7yhTZs2aejQoZIs5dL8+fO1ceNGFRQUyOVyVc2/d+9etW/fXomJicrIyNDixYvlcrnUvXt3dejQQQ6Ho2re9evXy+l0atiwYXI6nVXTY2Ji1L17d23cuLHGsg4dOlRz585Vdna2Jk+eLMnSPJWXl2v48OFV8zmdTi1atEgrV67UgQMHVFFR4VPehrBu3To5HA4NHTrU57OkpKSoffv22rRpU4O8DwAAAAAAaDrcWRi86zvcMjIydMYZZ2j27Nn68ccf1a1bN02YMCHgepKTk+VyuZSfn6+MjIwwlxpHOgIRAJo8//RBUVFRSkpKUmFhoSSptLRUTz/9tGJiYjRp0iRlZmYqNjZWOTk5evnll1VeXi5JcjgcuvTSS/Xpp59q0aJF+vDDD5WYmKihQ4dq0qRJio+PV35+viTpP//5T8CyBLqIe0tMTFS/fv20YsUKTZw4UVFRUcrOzlbnzp3Vrl27qvk+/PBDff311zr++OPVrVs3JSYmyuFw6K233qoq7+HKz8+Xy+XS3//+94CvM0YEAAAAAABHnrKyMsXEBK/27dOnj1JSUpSfn6/Ro0dXZW/w515HQ9VToGUjEAGgycvPz1daWlrVc6fTqcLCQiUlJUmSNm7cqLy8PF1++eU++Q+9x31wS09P15lnnilJ2r9/v1avXq0FCxaooqJCp59+etU6L7jgAqWnp9ervMOHD9fq1au1YcMGtWrVStu3b9fpp5/uM8/KlSs1bNiwql4Tbu4BtGsSExMT8CbAHZhxc7d+uOKKKwLegLjH1wAAAAAAAEeOpKQk7dy5M+jr77zzjkpKStSuXTu9//77ysrKUmJiYrX5ioqKqtYHHC7GiADQ5K1atcrn+erVq+V0OqsNuuRf2b5kyZIa15uZmanx48erXbt2VRfo3r17KyoqSgcPHlSnTp0C/qtNr169lJaWpuXLl2v58uWKiYnR4MGDq83nX95169YpNze31vWnp6eroKCgqveGJFVUVOjHH3/0ma9v375yuVzKy8sL+Dnat29f63sBAAAAAIDmpU2bNioqKgrYQHPZsmVauXKlTj31VF100UUqLi7Wm2++GXA9Bw8eVFJSkpKTk8NdZLQA9IgA0OStWbNGUVFR6tmzp/bu3av58+erQ4cOGjRokCSpa9euSkxM1DvvvKMTTjhB0dHRWrlyZdUg1W67d+/We++9p4EDByozM1PR0dFVg1kff/zxkqySf+LEiZo3b54OHjyo3r17KyEhQQUFBdq+fbtiY2M1ceLEGssbFRWlYcOG6YsvvlB8fLwGDBhQrZdD3759lZ2drTZt2qh9+/basWOHFi9e7NPzI5hBgwbpk08+0auvvqqxY8eqvLxcX331lc+4GJKUlZWlY445RnPmzNGOHTvUrVs3xcbGKj8/X1u2bFG7du107LHH1vp+AAAAAACg+ejevbtcLpe2b9/uMwj17t279f7772v48OE66qijJElnnHGGXnnlFX355ZcaNWqUz3q2bdumbt261ZqmGggFgQgATd6FF16oBQsW6JtvvpHD4VC/fv108sknV6UWSkpK0owZM/TRRx/p9ddfV1xcnPr166fzzjtPTz75ZNV6UlJS1Lp1a33zzTdVPQ9at26tk046SSNHjqyab9y4cWrbtq2++uorrVq1ShUVFUpJSVGnTp00YsSIkMo8fPhwLVy4UOXl5VUXd2+nnHKKoqOjtXDhQpWWlqpjx4668MILNX/+/FrX3bp1a02fPl3z5s3TK6+8opSUFI0ePVqFhYVasGCBz7zTpk1Tly5dtHTpUn3zzTdyuVxKTU1V165d1blz55A+CwAAAAAAaD6ysrKUnp6u77//vioQUVpaqtmzZys9PV2nnXZa1bwDBw7UyJEjNXfuXJ+6ggMHDmj37t1BB7IG6srh8m9CCwAAAAAAAABothYvXqyFCxfqlltuUWxsbJ2Xnz9/vlasWKFf/OIXQQezBuqCvQgAAAAAAAAAjiAjR45UfHy8vvnmmzovW1xcrG+++UaTJ08mCIEGw54EAAAAAAAAAEeQmJgYnXPOOVVprevi4MGDOv744zVkyJAwlAwtFamZAAAAAAAAAABA2NAjAgAAAAAAAAAAhA2BCAAAAAAAAAAAEDYEIgAAAAAAAAAAQNgQiAAAAAAAAAAAAGFDIAIAAAAAAAAAAIQNgQgAAAAAAAAAABA2BCIAAAAAAAAAAEDYEIgAAAAAAAAAAABhQyACAAAAAAAAAACEDYEIAAAAAAAAAAAQNgQiAAAAAAAAAKCJWrduna666ip1795d8fHxatOmjaZOnapXXnmlzusqLy/X448/ruOPP17p6emKj49XVlaWLr/8cn333XfV5n/22WflcDhC+rdgwYIG+LQ4UjlcLpcr0oUAAAAAAAAAAPh67733dO6556q4uDjg65dddpmeeeYZORyOWteVn5+vU045RZ9//nnA1+Pi4jRr1iydc845VdOeffZZXXHFFSGVdcGCBTrhhBNCmhctD4EIAAAAAAAAAGhitm/frkGDBiknJ0eSNHDgQE2fPl3fffedXnrppar5HnnkEV1//fW1ru/666/XY489JklyOByaMWOG+vTpo3feeUdLliyRJCUnJ+vbb79V9+7dJUmrV6/W+++/H3B9Tz/9tNasWSNJyszM1JYtW5SUlFTvz4sjG4EIAAAAAAAAAGhibr/9dt1///2SpNTUVG3atEkZGRmSpJ/85Cd68cUXJUmdO3fW5s2bFR0dHXRd5eXlysjIUF5eniTp0ksv1XPPPSdJKiwsVFZWlvbv3y9Juummm/Twww/XWLa9e/cqKyurqqfG73//e/3pT386jE+LIx1jRAAAAAAAAABAE/PWW29V/T1hwoSqIIQknXvuuVV/b9++XUuXLq1xXXv37q0KQkjSkCFDqv5OSkpSr169qp6/8847tZbt0UcfrQpCxMfH64Ybbqh1GbRsBCIAAAAAAAAAoAkpKSnR2rVrq5737NnT53X/5ytXrqxxfWlpaYqK8lQFr1q1qurvwsJCrV+/vur5hg0bVFRUFHRdxcXFVSmeJOtd0b59+xrfH4iJdAEAAAAAAAAAAB4HDx6Ud0b9tLQ0n9dTU1N9nu/bt6/G9SUnJ2vSpEn6+OOPJUn/+9//5HQ61adPH7399ttVaZncDh06pMTExIDreu6557R3715JNtbELbfcEtqHQotGIAIAAAAAAAAAmhD/YX1re+5wOGpd5yOPPKJx48Zp7969crlceuGFF4LOGxcXF7RcDz30UNXz008/Xf3796/1vQFSMwEAAAAAAABAE5KRkeETXPAe30GScnNzq81fm379+ik7O1s///nP1b17d8XFxSkrK0uXXXaZbrzxxqr5EhMT1bp164DrePvtt31SRt12220hfR6AHhEAAAAAAAAA0ITEx8erb9++VZX+3mM4BHo+dOjQkNbbqVMnPfroo9Wmn3baaVV/H3fccT7jSXh78MEHq/4+9thjNX78+JDeF6BHBAAAAAAAAAA0MdOmTav6e8GCBT7jOLzyyitVf3fq1EkjRoyQJN19991yOBxyOBzq3r27z/qKi4tVWFhY7X1eeOEFvffee1XPr7zyyoDlWbJkiT777LOq5/SGQF3QIwIAAAAAAAAAmphf/OIXevLJJ5WXl6f8/HyNHz9e06dP1+rVq/Xqq69WzXf77bcrOjq61vX9+OOPGj16tE455RT17dtXkvT1119r7ty5VfOMHTtWM2bMCLj8Aw88UPV3jx49dO6559b3o6EFIhABAA2koKBALpdLDodDycnJkS4OAAAAAABoxrp06aKZM2fq/PPPV0lJib777jv94Q9/8Jnn4osv1g033BDyOvPz8zV79uyAr40cOVKvv/56wKDG5s2b9dprr1U9v/nmm0MKfgBupGYCgAbicrmq/gEAAAAAAByuadOmKTs7W5dffrm6du2quLg4tW7dWpMmTdKsWbP0v//9L+h4Dv46deqkX/ziFzrqqKPUpk0bxcTEqE2bNpoyZYqeeuopLVq0SO3atQu47MMPP6zy8nJJUuvWrXXVVVc12GdEy+BwUWMGAA0iPz+/qkdESkpKpIsDAAAAAAAANAn0iAAAAAAAAAAAAGFDIAIAAAAAAAAAAIQNgQgAAAAAAAAAABA2BCIAAAAAAAAAAEDYEIgAAAAAAAAAAABhQyACAAAAAAAAAACEDYEIAAAAAAAAAAAQNgQiAAAAAAAAAABA2BCIAAAAAAAAAAAAYRMT6QIAAAAAAAAAAMKvsLBQLpdLDodDSUlJkS4OWhACEQAAAAAAAADQAjidzqpABNCYSM0EAAAAAAAAAADChkBEM3bw4EFdcsklatWqlVq1aqVLLrlEhw4dCjp/WVmZbr/9dg0ZMkTJycnq1KmTLr30Uu3YsaPxCg00M4899ph69OihhIQEHXPMMVq4cGGty+zZs0cJCQnq2bOnnnjiiUYoJXBkqctx9/rrr2vq1Klq27at0tLSNHr0aH344YeNWFqg+avPtU6SFi1apJiYGA0fPjy8BQSOQHU97kpKSnTHHXeoW7duio+PV69evfT00083UmmBI0Ndj7uZM2dq2LBhSkpKUseOHXXFFVdo//79jVRaoHn77LPPNG3aNHXq1EkOh0Nz5sypdZlPP/1UxxxzDPUpRzACEc3YjBkzlJ2drQ8++EAffPCBsrOzdckllwSdv7CwUMuWLdOdd96pZcuW6fXXX9e6det0xhlnNGKpgebj5Zdf1s0336w77rhDy5cv17hx43TKKadoy5YtAecvLy+XJMXFxWn58uX63e9+p5tuukmvvfZaYxYbaNbqetx99tlnmjp1qt577z0tXbpUEydO1LRp07R8+fJGLjnQPNX1mHPLycnRpZdeqsmTJzdSSYEjR32OuwsuuEDz5s3TU089pbVr12rWrFnq379/I5YaaN7qetx9/vnnuvTSS3XVVVdp9erVmj17tr755htdffXVjVxyoHkqKCjQsGHD9Mgjj4Q0/8aNG3Xqqadq3Lhx1KccwRwul8sV6UKg7tasWaOBAwfqyy+/1HHHHSdJ+vLLLzV69Gh9//336tevX0jr+eabbzRy5Eht3rxZWVlZ4Swy0Owcd9xxOvroo/X4449XTRswYIDOOuss3XfffdXm3759u9LS0uRwOJSSkiJJuu6667RixQp98cUXjVZuoDmr63EXyKBBg3ThhRfqD3/4Q7iKCRwx6nvMTZ8+XX369FF0dLTmzJmj7OzsRigtcGSo63H3wQcfaPr06dqwYYMyMjIas6jAEaOux90DDzygxx9/XOvXr6+a9u9//1v333+/tm7d2ihlBsIlPz+/aowId91FODkcDr3xxhs666yzgs5z++2366233tKaNWuqplGfcuShR0Qz9cUXX6hVq1ZVQQhJGjVqlFq1aqXFixeHvJ6cnBw5HA6lp6eHoZRA81VaWqqlS5fqxBNP9Jl+4oknBj3GSktLq0076aSTtGTJEpWVlYWlnMCRpD7HnT+n06m8vDwqaoAQ1PeYe+aZZ7R+/Xrddddd4S4icMSpz3H31ltvacSIEbr//vvVuXNn9e3bV7fddpuKiooao8hAs1ef427MmDHatm2b3nvvPblcLu3evVuvvvqqTjvttMYoMtDifPHFF9WOUepTjjwxkS4A6mfXrl1q165dtent2rXTrl27QlpHcXGxfvOb32jGjBlKS0tr6CICzdq+fftUUVGh9u3b+0xv37590GOsoqKi2rT27durvLxc+/btU8eOHcNSVuBIUZ/jzt+DDz6ogoICXXDBBeEoInBEqc8x98MPP+g3v/mNFi5cqJgYfkoAdVWf427Dhg36/PPPlZCQoDfeeEP79u3Tz3/+cx04cIBxIoAQ1Oe4GzNmjGbOnKkLL7xQxcXFKi8v1xlnnKF///vfjVFkoMXZtWtXwGOU+pQjCz0impi7775bDoejxn9LliyRZF2b/Lm7VtWmrKxM06dPl9Pp1GOPPdbgnwM4UvgfT6EeY97zB1oPgODqe9zNmjVLd999t15++eWAwXoAgYV6zFVUVGjGjBm655571Ldv38YqHnBEqsu1zul0yuFwaObMmRo5cqROPfVU/eMf/9Czzz5LrwigDupy3H333Xe66aab9Ic//EFLly7VBx98oI0bN+q6665rjKICLVKgYzTQdDRfNGNqYm644QZNnz69xnm6d++ulStXavfu3dVe27t3b7UIor+ysjJdcMEF2rhxo+bPn09vCCCANm3aKDo6uloLmT179gQ9xqKjo6tN27Nnj2JiYpSZmRmWcgJHkvocd24vv/yyrrrqKs2ePVtTpkwJZzGBI0Zdj7m8vDwtWbJEy5cv1w033CDJKkhdLpdiYmL00UcfadKkSY1SdqC5qs+1rmPHjurcubNatWpVNW3AgAFyuVzatm2b+vTpE9YyA81dfY67++67T2PHjtWvfvUrSdLQoUOVnJyscePG6d5776V1NtDAOnToEPAYpT7lyEKPiCamTZs26t+/f43/EhISNHr0aOXk5Ojrr7+uWvarr75STk6OxowZE3T97iDEDz/8oI8//piDGQgiLi5OxxxzjObOneszfe7cuUGPsbi4uGrTPvroI40YMUKxsbFhKSdwJKnPcSdZT4jLL79cL774Inl7gTqo6zGXlpamVatWKTs7u+rfddddp379+ik7O9tn7DIAgdXnWjd27Fjt2LFD+fn5VdPWrVunqKgodenSJazlBY4E9TnuCgsLFRXlW2XmbnjmbqUNoOGMHj262jFKfcqRhx4RzdSAAQN08skn65prrtGTTz4pSfrpT3+q008/Xf369auar3///rrvvvt09tlnq7y8XOedd56WLVumd955RxUVFVXRxoyMjICVqEBLdsstt+iSSy7RiBEjNHr0aP3nP//Rli1bqrrj/va3v9X27dv1/PPPS5KSk5MlSYcOHdLWrVv1xRdf6KmnntKsWbMi9hmA5qaux92sWbN06aWX6uGHH9aoUaOqrmuJiYk+LUcBBFaXYy4qKkqDBw/2Wb5du3ZKSEioNh1AcHW91s2YMUN/+tOfdMUVV+iee+7Rvn379Ktf/UpXXnmlEhMTI/lRgGajrsfdtGnTdM011+jxxx/XSSedpJ07d+rmm2/WyJEj1alTp0h+FKBZyM/P148//lj1fOPGjcrOzlZGRoaysrKqHXPXXXedHnnkEd1yyy265pprqE85QhGIaMZmzpypm266qWpU+TPOOEOPPPKIzzxr165VTk6OJGnbtm166623JEnDhw/3me+TTz7RhAkTwl5moDm58MILtX//fv3xj3/Uzp07NXjwYL333nvq1q2bJGnnzp3asmVL1fwxMTFyuVwqKSnR8OHD1alTJ/3rX//SueeeG6mPADQ7dT3unnzySZWXl+v666/X9ddfXzX9sssu07PPPtvYxQeanboecwAOX12Pu5SUFM2dO1c33nijRowYoczMTF1wwQW69957I/URgGanrsfd5Zdfrry8PD3yyCO69dZblZ6erkmTJulvf/tbpD4C0KwsWbJEEydOrHp+yy23SPL8TvM/5nr06KH33ntPv/zlL/Xoo49Sn3KEcrjoUwYADSI/P79qwLOUlJRIFwcAAAAAAMAHdReIFMaIAAAAAAAAAAAAYUMgAgAAAAAAAAAAhA2BCAAAAAAAAAAAEDYEIgAAAAAAAAAAQNgQiAAAAAAAAAAAAGFDIAIAAAAAAAAAAIQNgYgjSElJie6++26VlJREuihAi8AxBzQ+jjug8XHcAY2LYw5ofBx3QOPimGuZHC6XyxXpQqBh5ObmqlWrVsrJyVFaWlqkiwMc8fyPufz8fLlcLjkcDqWkpES6eMARiWsd0Pg47oDGxTEHND6OO7QkTaHugmOuZaJHBAAAAAAAAAAACBsCEQAAAAAAAAAAIGxiQpnJ5XIpLy8v3GXBYcrNzfV5BBBe/secd/dGp9MZyaIBRyyudUDj47gDGhfHHND4OO7QkjSFuguOuSNPamqqHA5HjfOENEaEO28XAAAAAAAAAACAWyjjfYQUiKBHBADUrikM+AQAAAAAABAMdRcIh1B6RISUmsnhcDCCOQDUIioqios5AAAAAABosqi7QKQwWDUAAAAAAAAAAAgbAhEAAAAAAAAAACBsCEQAAAAAAAAAAICwIRABAAAAAAAAAADChkAEAAAAAAAAAAAIm5hIFwAAjhQOh8PnEQAAAAAAAACBCABoMMnJyZEuAgAAAAAAANDkkJoJAAAAAAAAAACEDYEIAAAAAAAAAAAQNgQiAAAAAAAAAABA2BCIAAAAAAAAAAAAYUMgAgAAAAAAAAAAhA2BCAAAAAAAAAAAEDYEIgAAAAAAAAAAQNg4XC6XK9KFANCCuFzSuu3SvlxJDkkuyeGQoqOkCqfkdNnfDkf1ZSucNn90dM3v4ZBU7rT3CrauQOVyOKSKCnuMCnOc1uGQyivqVkbUQ+V3Gsp+g6bH5bLjucLZOMcl0Ky47JpZ03UTAAAA8JPft71csdEqc0rr8+LC/n4xlfepLkkV9aiG9izvUoXX4lGSoqMc8l5lm+QodWkVLQf3xk0SgQgAjedgvvTjTqmkzHd6cakUFytFVV4o7n9dWvCt/Z2ZKv3+AqlfZ8/8P39C2rSn+voTYqW7L5KGdvdMu3OmtHR9zeWaOES65kQpPdme/7BD+sV/6/TRQpYUL909XRrczTPtt/+TVmwMz/u1VO3TpTvOl3p39Ey7+hFpx4GIFQl1dOox0mWTpNREe758g3THC5EtE9BU/PIMacIQKbYywPrsPOmVRZEtEwAAAJqF/CX3y9WxtXblOzXl+YKwvldKnEPPnZ+puGir79l6qFwPfp6n9QfKQ1q+VYJDz56XqZjK+qIth8r1989ytelQhX43IU2js+IlSS6Xqyr4EB8tdU2PVlIcDdmaGr4RAI0nPrZ6EEKSEuI8QQhJmjrc8/fBfAtGeDtxuAIqLpMS/aL5web1llvoCUJIUp9OUs/2tS9XH4UlUnKC77RQyoi62Z8rtU3znea9X6HpKyj2BCEk6aieUrtWkSsP0JQ4nZ4ghMT5DQAAAE3SCT3iq4IQktQhNVp7CipCXn5iz4SqIIQktU+J1p4Cp9ITHDq2i6f+x7sHRGmFFBdDj4imiEAEgMaTFO9bsRjMUT2tRbtkKSc+XuH7+qShUkyQNDsfZfs+H9VfSqvlPZdvkPbm+E4LZ6XOR8t9n48dIKUkBJ4X9VPulOav8p02ZZhvwAtN2+Lvpbwi32lUtgLmw2zf550zpcFZESkKAAAAEMzU3r51HV9uLVFeSejJefyXX7S5RIVlrmoBCm9pCY6gryGyCEQAaFzuAIM//yxxU4Z5/vYPLqQlSaP6Bl7Pp99KpV5d/GKjLfVSTYIFO2LDNKbAJ6ukMq8WAHEx0gmDw/NeLZl/wCczVTqmd2TKgrorq5AW+AWTpg4nmARI0vfbpC17faedeFRkygIAAAAE0DMjRr0yY32mzf2xOOTl+7WJUVZ6TMDlp/QO3pizdSLV3U0V3wyAxtUmLXBFov9AQt4VjrsOSis2+b4erMIlv1hatCa0eb3NzfZ9npooje5X+3L1kVskffm97zTSMzW8zXultdt9p7Gdmxf/Vt/tWknDekSkKECT4x+kP35g9fSEAAAAQIT4Bwv2FlRoxc4A6bpDXH5HboW+3V0WMEDhFhslpcbTeK2pIhABoHHFRFswojb+FY5z/Vq3H90r+Hr8K2d6tJf6dAw4a5Vdh6oPGB3O1qX+ZQznuBQtmX+viOP6Sq2SIlMW1N2GXdL6nb7TCCYBZv5KqcLpeZ4QS+86AAAANAmxUdKEHvE+0+b9WCxniFmZ4mOk8d39ll9vvSGm9qmhN0RSlM94EWhaCEQAaHztW4c230legYBFa2zwWrcohzR1WPVlJGnlRutF4S2UoMKHfpXWw8M4OG5jj0vRUn262gYxd4uJtrRbaD78g3Zj+oc21gxwpDtUIH29zncagToAAAA0AaOy4pUa71vt/PH60NMyjc2KV1KcZ/kKp0vz1hcrIUYa5xeg8EZapqaNbwdA40tLDC19xOh+ngrHknIb/8HblOFSoEC3S9JcvzEfJgy2kHpNFn9vqZ3cohy+Y1U0pMYel6KlKiyRFn3nO42Kuublk1VSmfe4LzF2PAOonr6sfxcpq21EigIAAAC4+Q8yvWJnqXbnO4PMHWB5v14Py3eUan+hU2O7xSspNnB1dnKcQ/Ex9IZoyghEAGh8Dkdog1b7Vzj6t4zu2Foa0j3wej7Olk+fv+QEaXT/mstVWh54cNxwXccCjUsxKkzjUrRk/vtNt3ZSv84RKQrqIb/YgoTeCCYBZskP0oE832kcHwAAAIigdslRGtax/oNUd0qN1uD2vo1XQxmkOoPeEE0e3xCAyAiW8sg/l593SqV1O6RNu/1eHx54PXtzLf2Rt5PqMWh1+3RpaJgGx23scSlaqlWbpR0HfKdRUde8+AeTenWUenWISFGAJsXpkj5e6Ttt0lAphlt8AAAARMakXgmK8qrbyS916ostJSEvP9kv2JBT7NTX20oDBijcohxSq0R6QzR1/EoBEBlxsVJGSu3z9ergW+HoXyE5doCUHCQ/oP8A18N6SB3Sa36/H3baALneThpeeznry//zHNVTahvCYN6oG/8A0wmDpfjYgLOiCcreIO055DuNYBJg/M9v6cnSyL4RKQoAAABaNoeq91r4dEOJSitCWz7KIU3u5VvH88mGYpU7a+4NkZ4Y5RP8QNNEIAJA5ISSnkny7ckwf5VU5nUFi4+1SuVAFq+Vcgt9p4UyILR/pc6YAVJK8AveYVm0JsC4FMPD814t2ccrpAqvfJRJ8dLxAyJXHtRNwHFfhkhxtYz7ArQE2/dL327xnUagDgAAABEwtGOs2qf4jn1Zl7RMR3eKU2ZS9eWjHNKkXsEHqc6gN0SzQCACQOS0Tg08OLN/FPuEwZ4Kx9xC6au1vq8Hq3Apr7CBbr1NGWaV/TWZ7zc4blwYB8ctDTAI99Rh4RuXoqXanyctW+87jTRYzcvcbN9xX1ITbUB7ANV7AB7TW8pMjUxZAAAA0GL5D1K94UC51h8oDzJ37cuv3VumLYcqdEyAAIVbQoyUGEslSnNAIAJA5EQ5pHbpgV9z+VU4jvEaaNo/nVHfzlL3doHX4z9v21aW/qgmeUXSl37BjlB6UtTXR34VSB1ah29cipbMfzsP6SZ1yohMWVB3e3IYUwUIZuF3UqFX3t3oKGny0MiVBwAAAC1OSpxDo7N8ey18XIfeEK0SHBrZ1XcMCPfyU/sEz1LROilKDtIyNQsEIgBEVrD0TP4XEe9AwLL10r5c39eD9YrYuFv6YUdo83r7MNv3eZ9OUs/2tS9XHz/stHJ6I61Gw/tqnZRT4DstnAEmNDz/YNJRPYMPfA+0JMVl0sLVvtM4vwEAAKARndAjXnHRnrqcsgqXFmwMPRAxsWeCYrwyWJSUu/TZphKlJzh0bJfAg1Q7JLVOpHq7ueCbAhBZSfHW46E2R/X0BC2cLsv5723SUCkmcDe9ar0iRvWX0mp5z+wN1gLbW2P2ihgbxnEpWqpyp6Xd8hZKqi40HYu/tx5L3qhsBYx/AL1zpjQ4KyJFAQAAQMvjn1bpy60lyitxBZm79uUXbS5RYZmrWoDCW1qCI+hraHoIRACIvFAHrZ4yzPO3/4DSaUnSqL6B1/PptzYWg1tstDRxSM1lChbsCDSmRUP4xG8Q7riY4INwo/78Az6ZqZZLHc1DWYW0wC+YNHU4wSRAkr7fJm3Z6zuNQB0AAAAaQc+MGPXKjPWZNveH0HtD9G0To6z0GN/lK9MyTeldQ1omekM0K3xbACIvI8iAmv7pmbwDDTsPSpv3+L0eZODa/GJp9RbfaceFMMjtV+t8n6cmSgO71r5cfeQWSWu2+k47LkhgBfW3ea+066DvNLZz8/LVD77P27WSuocpbRrQ3Hztd3wEuy4CAAAADWikX+qkknKXVuwqC3n54/yWLyh1avXuMnVMjaoWoHBzSEqNp1Fac0IgAkDkHSoIPN2/R8SyDZ6/26RJXdv6vb4+8HoS46T+XUKb15v/oNaFJdL322tfrj6S4qV+nX2nLd8QeF7UX+cMGwzc2/IQ9gU0Hf7H5YE8adPuwPMCLc1RPXyfh3KtAwAAAA7T8h2lPs/jYxwa0DY2yNwBlt/pG7RIjotSnzYx2pXn1M68ioDLuCQVlIae+gmRRyACQOTtPhh4un+PCO90TFP9cvsXFEuL1gRez7iBFoxwq3BK81bWXCaHqg8Y/em3UknoEf06mTBYive6SJdXSPNrKSPqzj9NSU5B9Z4vaLpioqTJQ32nzVtpqdSAlq5XB6lXR99p/mMkAQAAAGGwdl+5thwq95k2tU/o415+u7tMO3J9Aw5TeyfIJenjH4OneDpQ6KxTORFZBCIARFZRqZRTWPt8q7dI2/bb3w5JU4b7vv7pt1JJuf9S5sSjfJ9/84N0ML/m9xvcTeqU4TstnBU6/hXkX60LbbsgdFEOafIw32nzV9kg1mgeju0jpSf7TqOiFTD+wfM9h6QVGyNREgAAALRAc/0CBsd3i1dSbOipk/wDDuO7xys+Rpq3vlhO/4wZlXKKXaqgYVqzQSACQGTtORR4uv9FxruycWh3qWPr4K9769qm+rgO/gNdB+JfobN5j7Q2TGmZurernpaJytWGN6K3DU7tzX/wajRtJ/kFFVdvkbbvj0xZgKYkLkaaMMR32twV9BYCAABAo/lkQ7HKve4/42McGtc9PuTl560v9gkqJMVFaWxWvPYXOrV8R+DsFC5Jh4poXNhcEIgAEDkul7T7UODXvNMyFZVKC1d7nvv3Hti0W1q3I/B6/Oc9mF99ME9/SfHS2IG+0xqzN8S+XGnpj+F7v5bKfzuv3W6DV6N5yEiRjuntO41AEmBG95NSE32nhRJ0BwAAABpITrFLX2/1HStiau/Q0zMdKHJqmd9YE+70Th/9UFTDcjS+aS4IRACInEMFUmmAdEr+vSE+Wy0VV0a/k+OlsQN8Xw8WJIgOkk++opZo+QmDpIRGGq8hJlqaRM77sEtPlo7r6zuNSuzmZcowO6bdCkukhd9FrjxAU+KfgnD5BmlPTmTKAgAAgBbLP71Sv7axykqPrvfyg9vHqVNqtL7eVqrc4sB1OUVlLhWVUYfSHBCIABA5u0IcpNq7wvgEv0Gdyyosz38gx/aWWqf4TgspLZNfhU44x2s4rq/UKsl3GhXkDW/iEAv6uBWXSZ+uDj4/mh7/Hi0LvQKUQEvWrpV0VE/faVxHAAAAEAFLd5Rqf2H1QadD9fW2UuX4BRym9E5QudNSPwVzkEGrmwUCEQAio6xcOpBX+3xb90lrtnme++eI/2qtlBskSOAfUPhuq62vJo09XoP/51m1WdoZJECD+vPfzou+sxb1aB4GZ0mdM32nMY4KYPyDdHlF0hdrI1IUAAAAtGxOlzR/ve9v7Yk9ExQTYg10oIDDpF7xinJUHwzb28EiZ9ABrdF0EIgAEBl7cmxUIX/VBqn2atXZo73Up5Pf69mB1986RTq2T/B1BdOY4zW0SZOO7uU77UNasTa4fp2lrLa+0z7MjkhRUE/+x+WWvb4BSqClinJUPz4WrAqc9hAAAABoBP4Bg1YJURrZJa7ey2cmReuYTnHafKhC6/YF7hVf4ZJyiwlENHUEIgA0vlAHqa5w2ngJbicO9513X660bH3g9Uwe6ptPvqi09nzyMVGNO17DlGFWieRWWGIt9dGw/HtDbN8vfbs5MmVB3SXGSeMacfB4oDkZ1sNSM3nj+AAAAEAE7cyr0Le7fQednlKH9ExbDlVo7V7fgIN7+bk/BO8VcaCI9ExNHYEIAI0vvzi0tDhfr7MBrSXL7z9xiO/rH68IHiTwD1osXG3BiJoc16/6eA2hjClRHw5JU4f5TlvwrVRCK9YGFR8rjR/kO23uisiUBfUzfpCU4NV6JpyDxwPNjf+1bv0u+wcAAABEkP+g00d3ilNGYujV0P7Lj+wap/QEhz7bVKKS8sD1QPklLpVW0CuiKSMQAaDxBesN4c87fc7oflKa/6DO2QpoYFepS5vQ5vXmX6GzarO040Dty9XHkO5SxwzfaQwu2vDGDZSS4j3PK5zSPAIRzYp/j5avf/AEKIGWLDVRGtPfdxrXEQAAADQBn28uUWGZp4dCdJRDk3uF3ivCP+AQE+XQhJ4JKixzadHm4A1bGbS6aSMQAaBxVTilvTm1z3cgT1ryg+e5fw7sFZukXUEGdfYPKGzdZwNV1yQztfp4DeGs0PEv46Y90rod4Xu/lsp/Oy9dL+0PYZB0NA1ZbaX+XXynkXYGMBMGS7Exnudl5dazDgAAAIiwknJp4SbfgMGU3glyBJnfX6CAw1R3eqZaBq12MWh1k0UgAkDj2p9rwQh//heKj73GZmgbYFDnYEGCxDhpnH8qnuzayzVlmO+YEoUl0udral+uPpLjpbEDfKfRirXhdc6QBnfzncZ2bl78A0n+AUqgJTvRr7fQ4u+lvKLIlAUAAADw4z+eQ6e0aA1qHxv68n4Bh6z0GPVrE6Nvd5dpR25FwGVKK6SCUgIRTRWBCACNK5RBqiXf4IH/oM4FxdLiIEGCcQMtGOEWSioeh6pXeH76rVRSFmjuw3fCYBu7wK2sQpq/Kjzv1ZL596I5VGDjjqB5CDR4/MdhHDweaE56dbB/3ugtBAAAgCZk7b5ybTnkOw7m1DoMWh0o4DC1jy0/b30Ng1aTnqnJIhABoPEUlUo5hbXP9+0Waft++9shacpw39drGtTZv4Xo1z9IB2vJJz+4W4DxGrJrL2d9+VeQf7VWyg1huyB0UQ5pst9g4PNXSuXckDQbx/aR0pN9p82lRwsgqXrwfM8hacXGSJQEAAAACMq/V8PYbvFKig01QVP1QavHdY9XfIwFIiqCNFLLKXYFfQ2RRSACQOMpKrFWzv5K/YIK3pWNmWmS06/yOFiQICHW/gVbVzCtU6Qfd0jrd9rzzXuktdtrX64+EuPs827c7Rlwl1asDa9dulRcauNuuHu2sJ2blw6tLUXagTypvKIyQBmmweOB5iYj1Y4L9/ExdwW9hQAAAFAnoYcD6u+TDcUq97pPzS91qnNadMjL+wccispc6pIWo/2FTi3fUVo13XtciOgoqbice+OmyOFiBA8AjcnplFZtlg7kV6ZjclklSoVTiomWYqOlvABd7OJjpKgoa+leUFL9dcnGmXCvq6zcUh4dyLeK6OIyeywotoBIYYm97nRKFS5bNilemnGClFMg7QlhQO3aVDil/GIpv8jydrv/drqkuBhpZB9peM/aB9JG3ZRXWI+arftsnzlhkNSjPYOBN0cFxRaAOGOkfa8MNA54lJRJKzdJZx0n7c2tHtQHAAAAAsg/f5RcqQkqLXNq6f642hc4TK3io+RwSKXlLhXWI0CQnmANWv2Xj492KCUuSiUVTsU4HJJDykyKUs+MGDn803+jSSAQASByXC4LRrgfvad5z1NSZsGHgsqK/MJS+7uwxJ7nFlnKp9xCm7fCaf/KK3MJxkZL0ZVBjvjKXhMJcV5/Vz6Pi6k+VkWoSsqkg/nWy8H9L6/I83nSkizNTOsUe0xPtvdDwykpk37YIf2w077/bm2l/l2k1MRIlwz1dTDfxouZOtyOHQAeHB8AAACoh4KBneWKcsiRnKDk9LSwv5/L5TqswECw5d1V2g6H47DfA42DWjAAja8quFBsvQQKSzyP7mm5hRZcyCuSSiuDC+WVAQa5KntPxFhwIa4ykNAmzSvAEGcBhsMJLgQre0GJdCjfN/BQWNlLIybaggztW0v9uljlUFqS9Q1EeBQUW2+HDbvsea8OUt/O1sMFzZsjSpLDHh0cQ4APjg8AAADUQ/LiH6QVG6SbpjXK+x1ugCDY8t7TCUI0DwQiADQMl8vSHxUUV/4rqf53ToH1XsgttBQSFU5LjVReGVyIjfEEF9y9Fdq18u21EB+G4EIwFU4r66ECG/D6UGXgwZ3+IiFOap0s9Wjn6e2QktA4ZYMFqdZslTbttQBQ/85S3062j+DI4PD6Rz0r4IvjAwAAAPXhqPoPaFQEIgAE53JJRaW+PRbyi/3SIhVKOZVjIJR5p0WqHGA6LkBwoUNrT2DB/RgbHdkK/LJyT8DB3dMhp8Az+GdqogUbBmR4gg6J4c+liAAO5FsAYts+23eGdbdeELFc0o44DofvPwAeHB8AAACoD+4dESHU2gAtjTu4ECwtUkGxpUTKKbRAQ1m5DeZcUTkItMNhQYPYGGuFnhAnJcZKHVvbY3xlcCExzl5vihe4olILNrgDDgfzLZAi2eDG6UkWaOjZwXo8pCdTyR1pLpcNxvrdVmnnAet5MqKPDUJN2qsjl/v8QUUrUB3HBwAAAOqDe0dECDVrwJHA5fIKJPg9unsu5BRaWqT8IqmswhNYcAcX4mKluGgLHiRWpkBKz7THxDhP74WmGlwIxOWyAMOhAmtF7w48FJXa63ExFmjonGmPjOfQ9Lhc0o4D0uqt0r5cCwqNHSBltZWimsl+iPqLkp1vosT3Dfjj+AAAAEB9VA41BjQ2AhFAU+V0SoWlUmFx9YGcC0usgj23SMortGllXoGFCqdVSsS5B3OOsZ4KibFW4e6dEsmdFqm5q3B6eje4Hw/mS+UV9npSvJSeIvXuaAGH1slSMuM5NFlOl7Rlr/WAOJRvA5FPGCx1yuA7a0kcjsoc+LT4Bqrh+AAAAEB9cO+ICCEQATQmd3Ah2IDO7p4L+ZVjLpR7BRacTmup7x5vITbGeiokJUgZqZ7gQmKcBR2OhOBCMKXlFmSo6uWQb9vN6bJKmbTK1Epd2nh6OiQwnkOzUOGUNuyyAER+sdSptXTscKltK26WWiJH5Ui8VLQC1XF8AAAAoD64d0SEEIgADpfTGSQdkrvnQuVgzvmV/8q9AgsVXsGFuGhLj5QYZ/nv26RVjr/glxapJXGnnHL3bjhQIB3Ms20r2bZrnSK1TZP6dpYyUix1T0vbTkeCsnLph53S99ssdVZWW+mEQRZkQ8sVVdniO8pB6hnAH8cHAAAA6iOqskEL0MgIRACBVDirBxS8Aw15RVJu5ZgLhcUWXHB69V6IqUyHFBsjxVemRUpLktq18gostNDgQjBOl21T754OB/OlkjJ7PS7GKqWz2lnAwT2eA5UvzVtxmbR2m7R2u6XR6tFeGpgltUqKdMnQFDgcvv8AeHB8AAAAoD7cKT6BRkYgAi2HO7gQKCWSe+wFd1qk/GLfXgsVTk+vhdhYqxRPjLO0Px1be4ILiZXBhWiCCzUqr/AEGtyBh0MFnvEcUhIs0NC/iz1mpNgYD1S0HDkKiqU1W60XhCT16SgN6GrjdgBVHJ5Hjn/AD8cHAAAA6oN7R0QGgQg0b+UVFkhwD+js/bc7LVJusT0WlHgCC06Xp+dCvLvnQmVapIxUqXOmZ7yFBIILh6W41BNsOJBvqZVyCiWXrDdDqySpdaq1hHf3dIiPjXSpES65hdLqLdL6XXb8DcqS+ndmDA8EFlVZwUrqGaA6jg8AAADUB/eOiBACEWh6yisCp0Ny/51X6EmNVFjq6bngDi7EVQ7mHBdrAYSEWBtDoKtfr4WEOBtjAA3D5bLvzZ1W6UCe/V1YYq/HRFsPkg6tpYFdLeDQOpkAT0uxP0/6dou0ZY8de0f1lPp2suMVCMbh9w+AB8cHAAAA6oN7R0QINUBoHGXlgQdyzq8MMORXBhbyKqc7nVKFyxNgiK3suRAX6xnQuV1lSiTvtEjxsQQXGkOF076v/XmeXg4H8qXScns9IU7KTJF6drReDhmpUmqCFMV30+LsPiSt2iRtPyClJkrH9Zd6dyAAhdA4omRpZ6Iq/wZQheMDAAAA9eGIIhiBiCAQgforK/ftuZDvF2TIrey5kFckFZX69lpwuTzpkGKjPWmQOqb7jbdQ2XuBCuzIKS33Sq1UGXA4lG+BIklKS7Rgw5AsCzi4x3NAy+VySdv2S99ulnbnWM+XEwZK3dtxLKNuKutZFVX5D4AHxwcAAADqI0oiEoFIIBABX6XlNQ/o7A4s5BZZ7n93cMH9GF85kHNcjCeI4D3eQqJXzwUqJJueohILNLh7OhzIs+/b5bLvKz3Zgg29O0qZqZZeidQ6cHM6pU17pFWbLXjVtpU0eajUtQ0DqaJ+HI7KtDMMxgtUw/EBAACA+uDeERFCDWJLUFruSYFU1WPBa3Bn93gL+cVSSalXSiSnDSgcV5kSKT6mMqAQL3VNskeftEgxBBeaC5fLgknuHg778+zvolJ7PS7GejZ0aeNJrZSeTNorBFZeYYNPf7vZ9qvOGdJx/aQO6dzg4PA4Kv9zV7YC8OD4AAAAQH1w64gIIRDRHLlcnuBCsAGdvdMilZTZMhWVvRZclT0X3L0XEuOkpDhr4e7da8Hdo4Eft81beYV0qMC3l8OBfEutJUnJCRZs6NfZxnXITJNSEvjeUbuycun77dLqLRbE6tZWmjhEapMW6ZLhSOHd4juKcxLgg+MDAAAA9UF9DyKEQERT4XJZwMB/QOeqv4tsIOe8QmtxXFbuGW/B6ZLkkuIreyXEx9jfKQlS2zRPjwXvtEicdI5MJWWeYMP+yn+HCmz/ckhKS7JAQ1ZbCzxlVAafgLooLpW+2yqt2WZB0d4dpSHdrNcM0JDcKWdIPQNUx/EBAACA+nA3aAEaGYGIcKoKLgQYyNndeyG3yNNzwR1ccI+3IEdlUKGy90JCrJSaJLVNtx4M7gBDUrz1bOBHaMvhctl+5A42uAMPeUX2enSUBRnatZIGdLHgQ+tkGyAcqK+CYunbLdLa7bYP9u1sAYiUhEiXDEcq93WNilagOo4PAAAA1Af3jogQaiXryuWSissCD+jsDjR4BxfK3cGFygCDw+EJLMTHSAnxUqtkqUNrr14LlWMvEFyAZPtNTqFvL4cDebYfSrYvZaRK3dtbL4fMVKlVEuN1oOHkFEgrN0s/7pBioqXBWdLALHrTIPxo8Q0Ex/EBAACA+nA4RJcIRAKBCMmCC0Wlvj0WgqVFyi+Wyio8vRacTqvw9Q4uJMZZzv3OGb6BBYILqE15ReXg0bmegMOBfJsuSSmJFmgYlOUJOiQzngPCZH+elL1R2rTbemCN6GM9bOK4dKCRRFV2GY4iBz5QDccHAAAA6oN7R0TIkVub5A4uePdaqJYWqTKwkFdsFb0up6f3QpTDkw4pLtaCCW3SpC5tLBVSQuUAz4nxUmw0FcGou+JSTw+HfbkWdDhUILlk+1+rZKlNqtSzg6VWyki1/REIt50HpRUbpa37pNREacwAqW8n6w0BNCZ3Sx1afAPVcXwAAACgPhgjAhHSvAIR7rz4PimRSnx7LuQWWXAhv0gqd/oFF6KsIjehsvdCYrzUtpXUrW1lYCHe03uB4AIaistl++S+XN/AQ0GxvR4TbT0bOmVIQ7pb8KF1CpW+aFwulwUesjdKuw5ar65JQ6ReHUjzhcihxTcQHMcHAAAA6oN7R0RI5AMRTqdUWCoV+vdYqHzMqwwq5BXZtIoK3wGdo6MsiBAfUzl4c7zUIV1KaFcZWKiclhTHQL0Ivwqn9WpwBxvcKZZKy+31xDgLOvTpZI9tUqU0xnNABDmd0obd1gNif54NcH7S0RagJRiLSCMHPhAcxwcAAADqg3tHREh4aubdwYVAAzq7/3anRcov9h1vweWyluDxcZ6eC0nx1lrcHVCo6r1AcAERVFbuFXBwDyKdb8EyyQaMzkyThrWxtF6ZqbbfcsJHU1BeIf2wwwIQOYWWdu70/nauZR9FU+HeF6loBarj+AAAAEB9cO+ICAm9Ft/ptCBCtYGcAwzoXFhiLcOdLgssOF1SjLvnQqxnfIXOGV7jLcR7/o4lJQ2amMIS692wzyvwkFto+3dUlKVSapNmefTbpNp4DvGM54AmqKxcWrNNWrFJKiqRureTpgyzNHVAU+TwewTgwfEBAACA+iAYgQgILRDxySpp4WoLLrgDC06XFBfjNd5CZU+F1m3t76R4z2DOBBfQnM3Nltbvsr9jYyzQkNVWalvZy6F1iqUIA5q6Cqf08udSUakFzYb1sLEggKYqSnaDHCXymAL+OD4AAABQH1RhIUJCC0Tsy7WAw7F9fNMiMZguWoKcQms1Pqa/jedA1BjNVYXTevdMGir16xzp0gC1I/UMEBzHBwAAAOqDe0dESOipmVISpe7tw1gUoAlLTZTSaTmOZs5dWRUbw40HmgcG4wWC4/gAAABAfXDviAgJPRDhcNDtGy1TlIP9H0eGKIflESeNB5qLqn2WczBQDccHAAAA6sN9Hwk0sjoEIkTEDC0UrQ1xhHA4xP6MZoV9FgiO4wMAAAD1wb0jIoQeEUBt3EE49n80d+5WD+zPaC5o8Q0Ex/EBAACA+oiqbNACNLK6BSKImKElcjjoEYQjA/nE0ew4fFt9A/DC8QEAAID64N4RkRF6IELiRw5aJncQgv0fzZ17H2Z/RnPBPgsEx/EBAACA+nA3uAUaWeiBCLp9o6Vy/8Bn/0dz5z3wOvszmgP2WSA4jg8AAADUB/eOiJA69IigtRVaKlIz4Qjh3eqB/RnNgXdqPPZZwBfHBwAAAOqDe0dESB3GiBA7KlomfuTjSOGdS5z9Gc0B+ywQHMcHAAAA6oN7R0RI3QarpusOWiJSM+FIEVXZepY0HmguolS5z4p9FvDH8QEAAID6iJIYJAKRUMceEeErCNBkOcT+jyODQ+zPaF7YZ4HgOD4AAABQH9w/IkLqMEaE6LqDlou0BzgikMYDzQypZ4DgOD4AAABQH9w7IkLqlpop0I46e5F02zP290u3SaP7+77uckkn/E7avFca1Vd6+deHUdwAxt4ujeonPXilPd99SHrxU+nEo6RBWfVb5xffS9MfCPx5/P2wQ3r0PWnJj9KeQ1JSgtQpQzqml/Trc6TURJtvzlfS/lzpqqn1K5MkPf+JlBgnnT+2/utoCt5fKr23VFqxUdp1SGqbJh3TW/rlGVKP9qGtY8te6d5X7Lsqd0pH95R+c540pFvDl9e93wc7UXsfA5IUHSVlpNr+futZoX8mb3XZB/2t2yG9+4103lipaxvf1259WvpyrbTob3UvU0O69WnbB9Y8Wvu83a6Wbp4m/fLM8JerPsrK7Rwwe5G0J8e2+SUTpSsmh7Z8QbH0wBzpnW+knAKpV0fpZ6dIZ4xs+LJWDVYdYqXVsvXS/30kffOjdChfSk+WRvSRrjnRznFHomDn2a37pON/Iz1wRfM/B2dvkB58U1r6o+SSNLS7dNtZ0rF9Qlt+X65036vSvJVSUak0oIt029nS8QPqVx7/c6i/c0er1n22qZwn5q+0a1ugcvjfrzQm9zaOj5Hm/1nqkun7+oX3Swfypbl/bPyyNYZvfrBtsHqLXSNLy6XP/1r9GinZvhTI7edIPz+19vc63GtCndTxnA4AQEuxZqv01Fzpi3XS3kNSdLT9Lj/jWGn6OCk9JXzvHek6KsnqS56aKy38TtpxQHI6pbatpBG9pQvHSaP71f3eoan/Hvr8O+nx9+1e71CB1cX17Sz99ERp0lDfeeetkN5ZYveG63dJ5RXS5v8GXm+o93ZvfiW9sEDasEvKLbLfzkO62f3jiN6hfYZVm+131vINUkyUfde/v0DKalvnzVE77h0RGYc/RoR7UkqC9Mrn0li/iogv1loQIiXBZm7oHLb/d72UkuhZ754c6Z9v28mhvpXS7nXVlkf9283S2X+V+nS0CpCubeyH/Hdbpbe+lq47WWqVZPO+9ZW0drtV4NXX/z6xCu4Lj6//OpqCJz6wi+CNp9sJdecB6ZF3pdP+KL15h9Svc83L78+TzvubbdsHrpDiY6VH3pOm/116506pV4eGLa973w+2L7gnP3iF1LujVFJmFbf/ftf2/0/utYtQXYS6DwayfqcdA2P6S938Lli/mCZdNaXp5JIOpRxv/k7q2LrplNnfnTOl17+withh3aVPV0v3vCQVlkg3nlb78tc+Jq3cJP3mXKlnB2nOl9KN/7Eg7tmjGrasUY7a92e3Z+ZJd8+ShveQ7jhP6pxpN7HPzZfO+6t0z0XS5eGoWIuwYOfZDum2L3Zr13T3xVBkb5QuuF8a1kP659UWiHjifeknD0ov/8qCwjUpKZNmPCjlFto+kJlq+8Rl/5RevNV+1NSV/znU24F8q0QOZZ9tCmP5LPjWtsetZ1V/zf9+pTG537KkXHrwDenhawLPEOntFy6L10iL1tiP/9REuzbXtE+ddoz005N8p3XKCG37HO41oS7qck4HAKClePFT6Y6ZUs/20nUnSX07SWUV9ptr5qfSsg3Sf28I3/tHso5Kkj7Ktt+TGSnSxROkwVlSXKy0eY/07hLpogekWbdKxw+sWxma+u+hQwVWl3TReKtvOlRggYEr/iU9fLV0zmjPvB8ut8r+QVlSXIwFAIJ9plDv7XIKrGHXVVOk1qnWUPn/5tpvr1m31f476cedVqc1sKv0+HX2u+uBOVb39eHd9rurITXF7xAtQh3HiAgUiKicNm2k9MaX0p+LPb0AJOmlz63lbH6x7/yHq6jUWq0O6V69nO73qfd7OTyPNa3jqY/t4J39a7vQuJ1+rPWGcLmqL384n7+2lvnNxbO/kNqk+U4bO0Aa/Wvpv3MtuFCTJz6QDuTZRbBLZWvGkX2t5cGDc6THf9aw5a2ttaF7ev8uVrknSWMGSE6Xleej5dbqoO5vWvP71mfZ+vTOCIe67Mu1VYxG0trtdo67/RzrxSDZd38wX/rXO9IlE6TWNbS2mbfSWqk88lPprMqgw9gB0vYD0p9nS2ceZz1sGkrVdlfN2/6bHywIMWmo3aTHRHteO/M46epHpLtmSYO7hd6KvrkItm8mxDXtfTFUD8yR0pKkmbdIifE2bfxAaczt0r2zpTm/q3n5lz+3/f7N33m2x9gB0ol3SX+ZbcHgugp0DnXbfch+NIZ6TW8q18dA5fC/X2lM7vJMGGw9NK87WRqYVX2eprL9GtrNZ0i3nGV/P/GBBSJq+rxtWtXveD/ca0JdeZ+vjtTvDgCAulj6o/S7F6RxA6WnbrRGi24nDJauPVlasCq8181I1lFt2iPd8KT1BHjpNt+6uTH9rZJ+8fdSelLdy9LUfw+deZz98zZ1mDT6dunFz6Rzx3im//1yKaryd/YdL1ggItD2qMu93RVTqi8/aag07BfSywtt+9fkwTkWFHnuZs/3NrS7NO630pMfSnecX/PydVWVLQFoXA3QI6Jy2tnHWSDira+sm5JkLSbfWyr9aYZVMDvku44H50jzV0kbd1tXqO7trIXtReN8TwIjb7MKiunHSw+9Lf24Q7r6RDsQR95mB/Q/r7YT6nmVKWduedr+SdItZ1raiRUbpcc/sHQj+3KtMvyY3tba112hLYUebXZ390pNDHISr5x27l/tR68kdfFKybDjmdC3w8jbpG37fdfRJVP6+gGrGPrlU9JXf/dNM+DeHq/e7jnprdos/f0Ni/7mFdlJc3CW9LfLrLVfY2jXqvq0ThlSxwzrHVFbZPbDZVbx5d09rVWSdOox0qtfWLdD74rTw+VwSFGqoUdEkP1leHd73JfnO33FRukfb1llb1GJ1LuTRdK9U/EE2gdD2X/d+4JkkXe3h66yFt43/9f2i68f8LxWXCb9Y4705tfSroMWaT/paGuh7+7RI3mOwysmW3fBH3daK/mfn2I3NG6FJbaPvbfUWgEkxtt3de1Jnhb+7s2xeY+1MPhynb3XGSPtfb1vGDtd4TmGvT/jrNvsnPPRcmstMHaAnWu6tQv8PYXDR8st4Dh9nO93PH2c3ex8+q1vywt/Hy6TkhPsc3svf+Hx0vVPWgqdhqzoD7X17KPv2Xx/vdRuhrzFxUj3XSKN+rXN9/zNntd+2Cn9401reZxbaPvomP52o+f+TncetHnmr7T9OCPVuqr+5WJruVKX89m5f7UW83+9VPrTy9YbLT3Ztv+tZ/kGcQ73PLt1n3TcrzzHkttX62zdyzdKFU5pUFfreTRlmGce92ea/Wvp7W/sn1zWZfvPF0sdWtf0rTWsJT9Kk4fafueWlmRleW+ptDdHap8efPkPllmvM+/9Mi7G0ifd95oFDjrW8fMEO4e6p3nvs3lF1gLp/aXWun9kH+lPP/Gsx718oHOdZIGYf7zpuf5Kds14Zr406zPrSh0XYz0zbjxdOukom+fNr6RZC6Xvt9m+3aWNvfbLM6SkeM97vrLI/va+1rv3Ze/7Fbdt+6W/vmotq/KK7Fw5Y7x1IXf/OHLve3deYNOe/th6Bg7oIt19UWhp0tzb+PpT7T7gL69aD5aq1722t/d7+u/vUvVzsnubfvxH6Z9v2WeJjpIuGGtdyTftkf7wovUUbJ0sXTbJytGYorzuCbw/a009HevTSuxwrwl1RY8IAAB8/ftduzb+/XJruOovIVY6+WjP81Du8SS7z3tnifTunfb7del6W/8ZI+1+x3veSNZR/d9H1mj3r5f4/pb35p9OdeNu6eF3pG/WSTsPWZBicDfpt+dKA7p65gt0f+i+D/zkXuv1MX+l/e6bPNR6T6cFKUNjiY+17RAT5bvdgt0b+jvce7u0RCtDTHTN31t5hfTxSun8Mb7fW1Zb25c+XGa/BRpSlENEIhAJhz9GhHtSapJ0+giLFl46yabN+cp27rOOs0CEez1u2/ZbBLFzZa7ipeul38+0ioxb/PIrr9ps4zHcfIaU1cZO9N7rcjgsWvjPq6Sbn7JUSe6KoI4Z9vq2/Va5cNZxlhNwzyFLoXDKH6VP/+Lp6uQVbK4xSnxML+njFdIN/7Eub0f1DHyxu+9S6VfPWqXr0zf6ljnU7fD0TdI1j9h2/uslNi0u1jeK6V9e/+mFJZZXMKutVSS2aWWVTovWSAUlNX9Wp9Na+NfG4ahfC+7Ne6Rt++ymoKZyFJVKm/ZKpxxTfb6BXaXiT6Ut+8KTnilojwivP7zn2brPHnt18ExftMbSmhzV04I/qYl283Pd41JxqafnRKDvNJT9d8ow6bfnWaDgvks8XT+7tat+vEh2Ub3yX9LnaywYclxfy6f59zm2H77ze9+gwHdbrRLwhtOs0vjFT6Vbn5F6dPB0NbznJenVxdLt50pDsmy/+367Be68y1BeIV3+L2nGOOm6U2zsiofespsV/+Pfezu4V3Hr09IJg6RHr7WUQX97XTr3b9L8P0mtakiF5XJZhXEoagtord1u292/4tad+3Ptjpr357XbLbVbrN+p2Hv5kX1DK2soqu41atifK5y2nw7r7jkn+evSxs63i9bYeSE6yvJrnvkX6wL8q7OtK/TuQ9Y1uLzCWtDsPCid+kfrGn3T6XbMHsy3Vkk5hVK79NDPZ257cqSfPW775K/OsXPyP9+29f3lEs984TjPLv7eus8O6Cr940qrwH52vnTZw9ad1t0ix73sbc/YMfrYddKO/dKfXpFu/D8LrtSkIffZsnI7pv2/f/dx/v32mgMja7fbeSLQ+VeynKx1DWq7V+UM8DmdLt9tfuW/pSU/2BgMw3tYQPfif3jWU1svREeA6Tc/Jb32hQWlfn2OFBtt9xzb9nvm27jHflD99EQLrv640wJx2Rs9398vz7Tz3TtL7Nzp1j498Pl3X6505p9tvIJfn2PBio+zpT++bCkt/3qpb5mfnW/XgD/OsOf3vy5d8pAFOmr7kedeR0qi3UfdOdOOX/8u+f7n2WD3QYHOydc+Zi3NLpkofbbatk95hfTZd9Llk6wV2RtfWm+vHu2l00bUXOYKp+37tYlyeII2oQilZ9icr6SXFtr+16+zdOUU+8FZm8O9JtSV+9xEjwgAADy/Y4Z2863Er0ko93hu5RXSxQ/Zb4obTrMGPv98W9q+X3r+l9XXHYk6qoWr7T5keM/QPr8k7c6x33C/O1/KTLOxAV9ZJJ12rzT3Hk/q1EBlcE+7+hH77TNjvLRmm3TfbJvnoatqfu9w1DO517kvV/rfAmto9Pvza6jPcfg+eqvPvV2F08qw66D0r3ctFe4VU2r+3jbvtfqggV0D/8767DtrfJkQoL6xvrh3RIQcfmomeR20F423Fqprt1vL6ZcWStOOtUod97ze6/DOUex0esaX+O9HVjHk8DrT7cuVPrsvQAWzw7PetCSpf2VlSPf2Nqiqt2kj7Z9bhVOaepQ05EbLy371iV7rDFBefz8/1VJGvPGl/YuOspPE5KG2Lnf6of5dLKoZF1u9TKFuh6Hd7aSTmhhgHcHK6zf9x51W6ffQVb6tAPy7rwXyj7es1W9turSRljxY+3zeyiusZUBygrWar2mb5xZaxUTrlOrzubvE+Vd4Hy6H1z4WeAZ7cFcWlpRJX/9gNyWj+vkGV377vFVqvPYbT4XhpKHWqvu+16QLjq+sUAnwnYay/7ZtZeMMSNYdM+C+4rXOBd/avzsv9LRQnTBE6pRplUqvLrYgm3vZA7nSW7/3DHQ6up8NCjXnS08r9W9+tPQf153sedupR1UvR2m5VVi7e4KMHySt2GTHUrX86g7f84FklZAPebUs7t9FmnavVdbdfIaCWvy9nadC8fUDNQ8MdTA/8L6YnGCV0ofya94XD+ZXDxJJXvtyLcvXlfe+HGy9B/Mt4JfVtub3zmprPasOFtiA83e/ZC1N3r/LN/XaeV4Dmf39DUurNu9ey9Xq5nMOCvF85v77YL703C+sF48kTRwilZTaDfz1p3n21XCcZ/8y24Jeb/zW08PgxKOkyXdaZfKZx3m2uSRNHCr92Ss4cqjQenLszbEgTDAvf26tsEKx67maX+/byVpcuVyeytvyCpsmhbbPBjz/poa2fECV85/2p+ovRUfZ8exw2Llq0Rrp3p94rtcThti19b5XVf08EWg/9/uh8eVaO8/dPE36zXme2SYP813MOzjqclkwpm8n6ez7LHg7MMsq19tW9vgLdK33L9N/PrTg3Ht/kI6u7NUwaahU4bJB0396UuU9T+X8KQnSC7d4foR1aC2dco/0ySpParegvD73ZZNsv793tvTBXb77qP95Nui1L8A5+ZKJnvP+CYOthdjT86wBxqmVQYexA6S52XaeP/3Ymot8/v02MGNtLjhe+pf/mBehCPLZzhltlQSdMuze88XPrEfTlr0WYK/J4V4T6vwRQjinAwDQUoT6O8ZbKPd4kqp+v/7sZN/70NgYuw/95gevBmQRrKPaccAqyf3n8a/w927IMaa/b9qgCqc0dbh0wu9sjIV7ZtRQhsrHGSd46hNOGGw9Yl/6zOqeaipvOOqZLn7I7o8l+1335M8D1EcEEKic9bm3m3CH1b1JFsCYdavVXdTkUIE9BqvncrlsAGx3at2GwL0jIiT0QESwE553JHTsAEt38dJCa9mdvdFOWsFany38Tnr4LZsvr8h3vfvyPCl8HLIKfv9BLKvW6VcOd7n8y1tQbN3G3vnGWqt7t7z8YafXOhzB1+EtIU569mZp3XY70a3YZD+a//m2VSK8fadvmf0/f123Q7B1BCuv//SeHSxtyb2vWCviUf1qHxja7dKJ0onDa5/P3Xo4VC6XdMtTlt7kqRtrb7lQ43cT4vdWV+711RZBP/WPvtP7drK0Ne7W7ht3235290W2jPf+N2WYVc6s32UBhECfM+T9V9WXrSqrfPehRWvscbpfOrQzj7OKl4XfeVKtOWQ3Nd7pchLjbb/ybjl8VE8bzOneV6xS7ehe1XsKuctw0lG+7zuwq7TouyDl9js+zx3jO9/Ivla2RWusZXIww3vYYE+hcLdUCcoR/Lh2l7W2fTHg9xTOfbm29YZ4k+tuqRzlsBv+L763G9C2rYIvM3+lXSdqOu+Eej5zFzUlQTr5GN91nDNGeuFT6au1UtfKQEhDn2cLSmygu8sn+Y4RFBMtnT/WAgzrd0l9OnmWPdlvfx9U+aNk2wGpfevg2+Sko0LfZ2vbX66aasf27/5nFfxOl3Wpdqekioqq3z5b9VoIywcr8yPXWg8hbwfzrbWZw2FBRKn6sX/OaPsB6H8vEPB79HvP+ZU/Uq6cWnO5N+2xFEqfr7HKae+W+j/slAZ1811vwPslvzJ9vsaOBf9cu9PHWSBt0Rq7h3DPP2W4b48Xd0ss9/k3UM8Z9/ze2yU+1oIuP3tceutrC2L4b5fazkGB7rtOHO47b59O0uqtFtRxT4+NsYDNtn217ycPXCHlF9U8j2Tp3eqyz9X22fzHmZo20nrd/Ptd30YmgVd++NeEugjpnA4AQEsR4u8YbyHf41VOC3Yfuuh76bh+nnkD3Ss1Rh2Vm/88V/7bUqxWPZ9imTska5T0yLvSa4utzqKsIvQyuN/GP7PFoK6WAtr/d5a/cNQz/eUS6x2/+5B9pmsfk/710+AplGq6f6/Pvd1TN1ov6e377Z5+xoPWY8bdEK62MgSr54oK8bsPlfs+EmhkoQciguWic3i9Hh1lvSL++5G1Cu/VwRNZ9Z5PstaXF95vB+M/rpI6tbaI4ntLLT1LaZnv+7VPrzmnmnfOPPf7+c//s8etq9otZ1llaWqizXfRA9YNyn8doebc7d/F/kl24XryA+nOF6W/vWYnIclzwvBfX122g/82dPOe7pP3zu9zpCdLb94hPfSmteQ9VGDb9ZIJ1hLAPz2Mtw7pNV9AqsoS4jaTbFv98ilrjfrItbWnaZA8EeJD+dXfJ6cyipyZ0rC5kt03EjXlkpYsRVDfTjYw+5yv7KJz3ePSy7+y1/fl2uPds+xfIAcLfL9H779D3X8dIey/7ukH862iqtp367Bp/ts5I7X6OuNjfd//vkukzhm2DR551/JwThwi3XWRb4+mxDjfXJqSzVtcFmAfd1Q/DgKdE9q18mzDYFITreV7KGpLc5ORIq3eXP39CoqtxUzrWvbFjFT7DoLtyxkNvC+Hkk+8bZqUFCdt3Vvze2/bZ/NlploX4gqnfe81LbM/z1oZ1zRPqOezqvK2qr6+Dun26N4XGuI8639tyavsnRVoP3SPkXCo8v3dL2f6HT/urrX+1zt/mal2/g5FbfvLxROsB9Y/3rTeQ5J0bG/r4ffvd2r/flqnBNlnC+2xPvuse/Z+nap3I991yNJoORye85V/RbD7+w50/Ql0LvGefiDP7l06pAe/sc8vthRKCbGW+q5XB9v3tx+QLn/Y7ndqe99Arx3MtxZ7/vO6U1u5t7P7df9rmzvA637/Rd9LZ/3Fd11L/1HZKtDrvaMcNqbH4+/bD+dplT0TvK9zNd1LSX7n5MpH/+tDXEzg83xcjAUYattPenWoQ2qmOuxzwc4xNTl/rDUWWLnJd/wXf4d7Tagr74YSjBEBAGjpQv0d41bXe7ya7kMD1U9Eoo6qc6Y1UvGf548zpFsrG+tNvct3nXe9aGOQ3Xi61d+lJ9trNz8VuAzen8N9H+j/O8ed9rW23znhqGfybgx86jHShX+3zBTnjKo5nWeg9dfn3s6dsnZEb6vjmvR76c4XpAV+9+ne3Cm4DgWoy8ipzPjh/l4aCo1YECF16BGhIK3i3NMqfwjNGG8V8M/Nt8GkvV/3nv+NLy0P84u3+uY5e3+ZZz7/1rAhRSEdgefPLbRc5b862zdtS0mZVVYFbfVX1woVh/SzU62F6ffbqi/v/7xO28FvG7pVVWaV+752IL/6+w7Kkv57o/24X73FBmZ6YI5VFvyihnQ2D8yxtCq16dpGWv7P2udzByFmLZQevtpSK4QiKd5aU64JsG3XbLPP0b19A59UHbXvf5L1ZDiqshJt3CCrmH1hgQ1Me8ZIz8Xl5mnSaUFSUni3fvVef13230CtyP2fe1cclVdYBbH3TZXLZelijupZ+z7sPz0l0Vrb/uY863kzb4W1Dr/4H9KXf/fM6whhXTWVfW9O9fn25Nj+UdP3v2hN9cq6YJY9VHNqpoFd7Rjek+ObN/L77fY4IECOR28DulrvkQq/AdbXbAtt+boKpSVNTLQ0dqD1Xth5wNJ0+dux33qATR5m87dOtcrcHQdqLm9mqqWiqWmeupzPpOD7gWQ3jg5Hw5xn/bed+0ZwT4D333XI83n9112Xfd7tpYXSjf8J/rq3fS/UPs8vplkKnQ277Hjt2sZ6piXHWyCgprIM7Br4/Pv9Vnuszz5b0/bx/lrc56uD+fa3297c6utKiLPzo//63PuRe3qbVDv+9uQEHxvj8+8sx+ubd/i2ZMot8qwrUEuxYJ/V+/y7+1D1eXcfsse67j/Dekhz/XrmuXt1+a/D4ZDumm5p6v63oPr6gx6Heb7vGeyzVT0PMF9tn8XtnPs8vWBqMn2cNWYIWQjnwWCia+nxc7jXhLryPj74MQkAaOliou13+Lwafsd4q+s9Xk33of49NCNVRzVhiPTUXOsFfpRXA5+eHXzn8173q4tt8Ok7L/Sd50CepRgPdJ8byn1gsHm9NXQ9UyBH97LftvvzAwc9arp/P9x7u9gYawT55lc1z9ejvdVlBazn2lr5egOmZZI895FAIzv8war9X++UKd1wug0sPX188JNxlEOKjraLhXtaUan0yueB36+2H1lVP54rI6/FZdXf2+WqPkjnCws83d9COcF623UwcMXFzoOW+mNYD8/y7lbj/uury3aIj6n+uSRPRemabVYZ7vZBkKCOe9qQ7vbvpc+klZtr/qyXTfbkYK9JfEztP4bdQYgXP7MBXn8yofb1ejtthPU62XHAM/BsXpH07hLrElhTz476cO97tX0u/3numWFdLP9a2eK0b2drZbF6q3Tn9NrX5b3Ouuy/7tYHgSrh/Nd/wiBrBf3qYhtI1O3try31zAmDaz8Oa7pwt0+3dD2rt0hPfGD7tnfr2FDXFWj7v7pYOsNrbIGv11l31osn1PxdDe8pfRwgF30gtaVmOnWE9JdXLYf/L6Z5pr/0md1ITBlW8/Knj5D+94ntJ2d7dRV9eaGdW0b0aeBKK0fN35fbL8+wANKvn7NupN4Dg1U4pV89W3kcV+buT4qXxgywNC+/v9ATdPM3ZZid237caWlbAqnL+czhsJZMHyyzAezdXv/Czq1jB9g8DXGe9b+epCRaSp13l0h//ImndbrTKb26yFq1e6dl8n8f73XWdn45+ejQ99lQ95eEOE/O2237rAfTJROrt173d9qx0q+esV4KIypTCpVXSLMXS8f0qvtA1f5lD3bsOxzSuIGe89W1XmPQvPZF9eWz2lovtL25nh8cpeXSJys980qW7uifb1vvkN96jRHhzd1yyv/8+9x833JKtv9Itg/5p6Tzn3f8IOmfb1kr+2E9PK+//Hnl5x1UfX8P9mPU4bAcxO6xJoLxXseEIdKEwdIDb3h+qLtfa59u91PfbfV9z2DHYW3lC/S8tn31H1fZ8V2bzNTQ93v/9w91udmLLJhZW6DucK8JdeV9fDTkegEAaK5+eab08Qqrb3jhVuuJ6a2s3AIVJx9dt3s8t2D3occPDH7P05h1VD87RZr1mXT7c9Lrv7UeFsF4r9O/DB8tt3qtnh0C37vV5T6wseqZAnG5LIVwq6Ta7xkDvXa493bFpdKS9bU3loyNsXS8735jqbzd39u2fZY27LpTGv5ej3tHREjdAhGBugEF6iJ2z0XB1+Oe56Sjpcfel6591E4+B/IsjYu7ErVal7Mg7+9ftp4d7ITw6iKpf2cbRKZDa0uVMaa/vUebNCmrMpf8Cws8Ud66dnu75SlLR3HGSGlAF6usW7fD0h1EVQ6w6V5+UFerbHzmY8tRHxVlEeq6bIeBWVbBNudLG4sjPtZ6OIzobXm1//CiXbDSk+29vlrru44Plll0/LQRtrxLVuGcUyhNHFJLF78M+9cQfv2cbfeLJ1j5l/7oeS0+1jdtzpl/tu/Ju5XvTadLsz+Xpv9d+t15li/wn29Zxftvzm349AQOh2pMzRRsf8lIsYrau2bZDcqFx9tgTeffL53/V+miE2y/PJQvrd0hrdxoY44EWmd6cuj7rzvv/POf2AUsIU7q1ta3lYZ73klDbXD1e2ZZqozj+lrQ4K+v2fcwfVzox6F7+pQ77SI6KMsG8l23wyp8j+1j+fzd29R7Ga/VB53uf3xmb5Ru/j8bz2L7Aenel60S9JoTa94HWiVZhWlDGNjVUpv97TUbqNnd2uK5T6xHmHeF/P2v2z/vFjcnHmXH3m3PWIVbz/aWx3LeShtUK7aW1FB1FeW1L9e0jUb3t5yhv31eOu0ey4vepY3dCP13rh2z911q48y4/fli6dR7pBP/YOe+nu2t5cj7y2y/T02Ufne+BTim/cnSwQ3Msq6m81ZYaqC+nUM/n7llpFjF+Pb91qNobrbt+1dO8QQ1GuI8G+g4v2u6dPZfpLP+LN1wmt1APj3Xgij/vcETwAl2jgj1WtMmrZa89HXw3VY77w/vaTf0326x82evDtIdF/iW48b/2A8Z755Bl0yw68iV/7LP3zZNeupjCy7N+V39zr/uZdZus0COt/15UlGJzTN5qJ0H73nJAklH9bT94mV3QMlrXeeOtiDwNY9IN55m14cnP/T8qHPPN3aAnZsfnGO9a046yr7zlZssKPPTk6RRfW0/vO0Z6fZzLKA1e5GdK93rqjr/VgZ3/v22BTmio2ya+0ew97n6+lPt3HjRAxYE6drGfvQ9/bHtv+4B3WtNkxRkeqBt7L+v3TPDBtTbm2spJqtec1hPxRc/tWN5cDcLPr26uPp7Vp23/coR7DzvX6ZgQh3DKhT7cj1jIq2p7L0zb4Xn2HKfk//1trR2uzR+sN3z7M2VXvjExhL5zbm2v7u99Jl0w3+kR35qDW+kul0TGkKo53QAAFqK4/pKD15p922Tfm/3VAO6WABi5SYLMgzoail76nKP53DY/dxj71v+/6N7WUO4B+ZYZbT3YM/u+SNRR9Wrg/R/N9g98Ljf2Ocf1sPKvi/X0ygnLdGrbu4oy1TRt7Pdt2ZvsLGx3A2MaipDsPvAkFNJNWA904wHpcFZ0pBuVvex86A061Pbpn+/wjcotWWvtHyD/b1pjz2+/bU9ZrX19Capy73diXdZ47h+nayB0Ja9dl+/abf0v1/6boejf2mPyx7yTPvtedLkO6UZD9jv6ZIyC4JkptrvmYa+14tyEIxARNQhEKEgO6mjltd9Z/O0xB5sXekfftt+hHdsLV02yU7AN/7HFqitJbbP+itfS06w9f7tNevWX1Yh3X6uHdT/vVH6zXOWA6/CaRepN34nXXC/7zpCHeTo2pOtwur5+dKOg3ZBapMqHdtXeuLnVvHq9rNTrPvWn16xLngul3RoVt22w2/Ps5QNN//XegB0bSOt+rddMF/6lbVSvvUpq5g/Z7SdbC+437OO3h3tQvuvd6w3R2yMVfg9dp21Wm8s7haVLyywf97cn8mtwmn/vL+Htq2k9++Wfv+C9PMnpHKnbeu375T6dWn48rr3vaD7Qg3HwLUnS/83V/r765Zjevxgad6frNLrd89bDsCMVKtwOXtUzftgqPtv9/ZWSfzEB9K0e23eR6+TfuL1HXu3XJh5qwUeZn5q5cpMreyaOd03jU2wz+i/zvGDrPL5sfetsrBja6ukue2s4K1Eqm3LANP9t80jP5Ve+ly66hHLPTluoPTXy3y7yjaGB6+0nhP/+cjGSshqK/31Ut+WMpINClzhtACg9+f73y2Wuuq+V62rb59ONrbMuWMavqwOh6q2ZW03HdeebDdaj7wr3TnTUtq0TpZG9Zc+uNsGB/c2tLs0717pvtnSH1+ywEq7dNsf3C1sOmdWzvOqtUI/UJkSbFQ/T6As1POZW/t0e+3OmVbJ3jpZuvUsO1/W53oT7Dwb6Jg8fqD01u/t81z/hH3Hg7tJs26zVlaeDe958NnuIV5rGlJ8rPTZaquULyi2ANMVUyxompzgO6/7/OufsuetOyxQdPtzFiQY0l169XbbHvVSue7rnwz8snvwu+hoadavpDv+Z9exsnI7D86+XTr2Vt9ydm8vvXib7YuXP2z7yfWn2Q+wv73mu70f/5n9QHthgQVeEuLsR+ItZ9l8mWnSK7+2a861j1mA4tRjpKdvkk74ne/7nn+89NU6C87c/4Zd61f8y4LBVR+3ct62raQP77Ey/vEl29+6t7ccvtefWv2cF/S4DWX/CbIPDushnTfGfnT7v3bvxfb4r3dsXxk3yMY8GnqT33vWUr6A04JMD5fvt9t+4O22Z+xx7ADp3T/Y33072z3KR9l2fU6Ms2M60DnZKTs+nPL9LKFeExpCXc7pAAC0FJdPtp7Lj71n9/97DlkDr14dpfPGWkOTut7jSbaOl39l98APzrF7xssmWu/omu6BGrOOSrKGp4v/Zr/HX/zMGsM5XdZL+Jhe0gu32Dzu9fz1MqsbeuhNy4owrLtVnN/7SghlCHYfGIHfOaP6Sm9+Lf3fR3Zf3SrJAgov/6p6r4vP19jvN2/ue8WLxtvvA7dQ7+2O62v1g1v2Wt1gZqrVU/3lUnvNW3nlgODe26ZfF+mdO60h6+UPW+Bj3CDp3lvtd0ND494REeJwuUIYCXD2Ins8f2yYiwM0QU/Ntcq6k46KdEkgSTMXSD97Qlrw59rTkMBXcakNUnzOaGv93Nydeo+1mP/qgUiXBOGy66Cnh0CwMRyAlorjAwCAxnHdY5bnf+dzkS4J0DC4j0SE1DBkPAAAAAAAAAAAwOEhEAEAAAAAAAAAAMIm9DEiAKAp+MkE+we8d1ekSwAAAADgSPfEz+0fAOCw0CMCAAAAAAAAAACEDYEIAAAAAAAAAAAQNgQiAAAAAAAAAABA2BCIAAAAAAAAAAAAYUMgAgAAAAAAAAAAhA2BCAAAAAAAAAAAEDYxIc0V5QhzMYAmLMrBMYAjR3SU5GB/BgAAAAAAQONxuFwuV6QLAQAAUE1ZubQ/T8pMlWJDazsBtBgcHwAAAKgP7iMRIQQiAAAAAAAAAABA2DBGBAAAAAAAAAAACBsCEQAAAAAAAAAAIGwIRAAAAAAAAAAAgLAhEAEAAAAAAAAAAMKGQAQAAAAAAAAAAAgbAhEAAAAAAAAAACBsCEQAAAAAAAAAAICwIRABAAAAAAAAAADChkAEAAAAAAAAAAAIGwIRAAAAAAAAAAAgbAhEAAAAAAAAAACAsCEQAQAAAAAAAAAAwoZABAAAAAAAAAAACBsCEQAAAAAAAAAAIGwIRAAAAAAAAAAAgLAhEAEAAAAAAAAAAMKGQAQAAAAAAAAAAAgbAhEAAAAAAAAAACBsCEQAAAAAAAAAAICwIRABAAAAAAAAAADChkAEAAAAAAAAAAAIGwIRAAAAAAAAAAAgbAhEAAAAAAAAAACAsCEQAQAAAAAAAAAAwoZABAAAAAAAAAAACBsCEQAAAAAAAAAAIGwIRAAAAAAAAAAAgLAhEAEAAAAAAAAAAMKGQAQAAAAAAAAAAAgbAhEAAAAAAAAAACBsCEQAAAAAAAAAAICwIRABAAAAAAAAAADChkAEAAAAAAAAAAAIGwIRAAAAAAAAAAAgbAhEAAAAAAAAAACAsCEQAQAAAAAAAAAAwoZABAAAAAAAAAAACBsCEQAAAAAAAAAAIGwIRAAAAAAAAAAAgLAhEAEAAAAAAAAAAMKGQAQAAAAAAAAAAAgbAhEAAAAAAAAAACBsCEQAAAAAAAAAAICwIRABAAAAAAAAAADChkAEAAAAAAAAAAAIGwIRAAAAAAAAAAAgbAhEAAAAAAAAAACAsCEQAQAAAAAAAAAAwoZABAAAAAAAAAAACBsCEQAAAAAAAAAAIGwIRAAAAAAAAAAAgLAhEAEAAAAAAAAAAMKGQAQAAAAAAAAAAAgbAhEAAAAAAAAAACBsCEQAAAAAAAAAAICwIRABAAAAAAAAAADChkAEAAAAAAAAAAAIGwIRAAAAAAAAAAAgbAhEAAAAAAAAAACAsCEQAQAAAAAAAAAAwoZABAAAAAAAAAAACBsCEQAAAAAAAAAAIGwIRAAAAAAAAAAAgLAhEAEAAAAAAAAAAMKGQAQAAAAAAAAAAAgbAhEAAAAAAAAAACBsCEQAAAAAAAAAAICwIRABAAAAAAAAAADChkAEAAAAAAAAAAAIGwIRAAAAAAAAAAAgbAhEAAAAAAAAAACAsCEQAQAAAAAAAAAAwoZABAAAAAAAAAAACBsCEQAAAAAAAAAAIGwIRAAAAAAAAAAAgLAhEAEAAAAAAAAAAMKGQAQAAAAAAAAAAAgbAhEAAAAAAAAAACBsCEQAAAAAAAAAAICwIRABAAAAAAAAAADChkAEAAAAAAAAAAAIGwIRAAAAAAAAAAAgbAhEAAAAAAAAAACAsCEQAQAAAAAAAAAAwoZABAAAAAAAAAAACBsCEQAAAAAAAAAAIGwIRAAAAAAAAAAAgLAhEAEAAAAAAAAAAMKGQAQAAAAAAAAAAAgbAhEAAAAAAAAAACBsCEQAAAAAAAAAAICwIRABAAAAAAAAAADChkAEAAAAAAAAAAAIGwIRAAAAAAAAAAAgbAhEAAAAAAAAAACAsCEQAQAAAAAAAAAAwoZABAAAAAAAAAAACBsCEQAAAAAAAAAAIGwIRAAAAAAAAAAAgLAhEAEAAAAAAAAAAMKGQAQAAAAAAAAAAAgbAhEAAAAAAAAAACBsCEQAAAAAAAAAAICwIRABAAAAAAAAAADChkAEAAAAAAAAAAAIGwIRAAAAAAAAAAAgbAhEAAAAAAAAAACAsCEQAQAAAAAAAAAAwoZABAAAAAAAAAAACBsCEQAAAAAAAAAAIGwIRAAAAAAAAAAAgLAhEAEAAAAAAAAAAMKGQAQAAAAAAAAAAAgbAhEAAAAAAAAAACBsCEQAAAAAAAAAAICwIRABAAAAAAAAAADChkAEAAAAAAAAAAAIGwIRAAAAAAAAAAAgbAhEAAAAAAAAAACAsCEQAQAAAAAAAAAAwoZABAAAAAAAAAAACJv/BzVmpHE7M1TyAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Visualize the SHAP values for Record number 21 with Model Prediction: 0.9927980899810792\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABjkAAAFqCAYAAABIwDgrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACDu0lEQVR4nO3dd5wU9f3H8ffu9X4cvXcQkKIiCAr2HlFjQyJ2o7FFo4n+khhNYmI09m4Su9iwYI0lKoqKSBUEEaX3znG97O7vj8/O7ezeXvXa3r2ejwfs7ezs7HdnZ2Z3vu/5fr+eQCAQEAAAAAAAAAAAQIzxNncBAAAAAAAAAAAA6oOQAwAAAAAAAAAAxCRCDgAAAAAAAAAAEJMIOQAAAAAAAAAAQEwi5AAAAAAAAAAAADGJkAMAAAAAAAAAAMQkQg4AAAAAAAAAABCTCDkAAAAAAAAAAEBMIuQAAAAAAAAAAAAxiZADAAAAAAAAAADEJEIOAAAAAAAAAAAQkwg5AAAAAAAAAABATCLkAAAAAAAAAAAAMYmQAwAAAAAAAAAAxCRCDgAAAAAAAAAAWoN350k79zZ3KZoUIQcAAAAAAAAAALFuV770y4ekk25tU0EHIQcAAAAAAAAAIPZNmyllTpZmLa153n2vlE74c9O8VlPJSZeev15atVU66VbNXbxTvW/fpOlLCpu7ZI0qvrkLAAAAAAAAAAAAanDHa1K5r+b5xgyUZn6roRfdrswTfykpu7FL1qwIOQAAAAAAAAAAbcv8eySPp7lLUTf/fF0qKav17Kkr1qvnIbskdWu8MrUAhBwAAAAAAAAAgLYlKaG5S1A3+cXS9mdrnq+0XDr3Hum/C7Tq5vO1tKxH45etERSW+pWaWLvRNgg5AAAAAAAAAACthz8g3fOG9ORH0qZdUs8O0vWnSr84NDTPvldKvTpK794c/tynP5YefEdavVXqnG3PGbePdPLfpEcuk35xWN1fy/HJEuneN6UFK6XiMmlAV+nio6WLjg6fzynbbedKN78gzftBapcuLXmg+vftCjh038XadsQh0gs7w2YpKvPrwdn5ent5kTbt9Sk90avxvRN13YRM9csJxQUTH9uqrhlxemlKh4ppj87J020z83Ro3yQ9c2b7iun3fZGnuz/P06xLO6lXti2jpDygf8/N14ylRVq3p1xJ8R4d2CNRv5mQqX07hwKm2etKNPmFnbrzhGwVlgX0zIICrdtTrssPSte1h2RW/36DCDkAAAAAAAAAAK3HLS9Yt04XHiUlxEtP/E/61SNS/y7SQYOrft4Db0t/eE4a1ku66SzJ55ee/1R6f+FPf60n/ydd87h04AALQdKSLPS49nELVG49J3y5G3ZKJ90qnXqQdPIYqaCk5vddWi7typfuu1g6/0hpXfhzyv0BnTd9l+asL9Wxg5J14eh0bcwt1zMLC/XZ6u167ZwOGtjBAojxvZP06reFKirzKyXBWlR8ubZUXo/09YZSlfoCSozzBKeXqEdmXEXAUeYL6NzpO7VgY6lOHZaq8w5IU16JXy9+U6jTntuh6VPaa0TXxLCyPTEvX3uKApo8MlUd07zqmhFX8/sNIuQAAAAAAAAAALQeZT5p5t+lxGD196kHSSOulh57v+qQY3e+dOvL0qBu0kd/lVKTbPrFR0vjf/fTXmvLbul3T0s/Hyc9eXXouRcfI/3uKWs5cuFRUr8uocfWbJMevkw657Dav+/0ZOm/N0tx0bt5mr6kUHPWl+qi0Wn605FZFdOPHpis06ft1J8/2qvnzrIWGuN7JemFbwo1d0OpJvZNVpkvoLkbSnXK0BS9trRICzeVamzPJBWXBbRwU6lOHppasbyn5hfoq3WlevqMHB3WL7li+tT90nTM49v1t0/2hrUQkaRNe3365JJOykmtfbjhqF2nVgAAAAAAAAAAxIKLjw6FDpLULce6hlq1pernfLxYKiq14MEJOCQpM7Vyd1J1fa0Zc6y1xzmHSjv3hv87/gDr8urTb8OXm5MhTZkY9SWLywJ6Y1lh9PJUEXBI0vsriuWRdNX4jLDpB/ZI0vjeifpibYnySvySpPG9raXFF2tLJUmLNpeqsCygC0enqX2qV1+ssVYi8zaWqsQXml+SZiwrUt92cRrRJUG7Cn0V/8p8AR3SJ0lzN5SquCwQVobT9k2tV8Ah0ZIDAAAAAAAAANCa9OlUeVpOurR+R9XPWbvdbgd2rfzYoO4/7bW+32i3p95W9XK25VZerrdyYFFcFtAFr+7UnHWlGtIpQYM61H4A9XV7fOqQ5lW7lMrL3adDgr5cW6oNuT4N6eRVh7Q4DeoQry/XWpjx5dpSZSd7NKxzgsb1StSX60r1G6ni8fG9Q8HQjzvLVVwe0H4PbK2yLLuK/OqWEAo1+rSrf1RByAEAAAAAAAAAaD2qas0QCESf/lMeq9VrBf9+5DKpW/uos1cKS1ITK81SXBbQhcGA464Ts+sUcNQk2jsc3ztJzywoUG6xX1+uLdG4Xknyejwa3ztJN3+Yq4JSmz6gfbw6p8e5lhXQwPbxuuWorChLNTmp4estJcFT77ITcgAAAAAAAAAA2jYnZFixSTpyZPhjP2z6acvuH2wdkpMhHT68Xoso9QV00as79cXaUo3okqA1u8t1z+d7q33O+lxf2P1e2XGauapcu4v8lVpzrNhRJq9H6pEVCivG90rUU/ML9MmqYi3cVKqbguN4HNw7SWV+6eOVJVq8pUy/2C81bFn92sVrW4Ff43snyuupf3hRW4QcAAAAAAAAAIC27fARUnKC9J8PpfOOCI3LkVckPf7hT1v2qQdJf35Ruu0V6dB9w8f8kKTcQnvtpKpbZuwt9uvrDTY+xuItZVq8pazOxTh2ULI+WVWih2bn6Y9HhFpZzN9Yqi/XlmpCnyRlJIXCj4N6JcnrkR78Ml8lPgs3JOtaqntmnO77Ik++QGh6xdsdlqq/z9yrx+bk61cHhY//IUnbC3zqmFa/8TeiIeQAAAAAAAAAALRtOenSH86UbpomHXmTdPYEyeeXpn0qtc+U1u2QVM9WCd3bS/dcJF35mHTgddLkCVKvjtKOvdLSddI786Sv75R6RxnfI6hDWpwePTVHl72+S8M6JeiZs9orM6nqQcYlafa6Ek1+YWfF/TOGp+r1pUX699wCbcj1aXzvJG3c69MzCwqUkeTRn47MDHt+VrJXwzonaMmWMnXN8KpfTihOGNcrUa98WySvRxrXKzzkuHB0mj5fU6J/fJqn2etKdXDvJGUkebRxr09frC1RUrxHL53doS5rsFqEHAAAAAAAAAAA/PokKTNFevBd6S8vSZ2zpXMPl4b2lH5xt5RSeZyMWjvnMGlAV+n+t6UnP5JyCyw8GdhV+uOZ9lo1OLJ/ckXQcc5LO/Xsme2VlVx90OEW7/Xo6TNy9MDsfL39XZH+92Ox0pO8OqJ/kn5zSKb6t68cFxzcO0lLtpSFDSzuTH/l2yIN7ZRQqQwJcR49eUaOnl1QoNeWFumeL/IkSZ3TvRrZNVGn75tS6zLXhicQqG7UFAAAAAAAAAAA2rD735L+OE3631+lMQObuzT6aGWx7vh0r545s33YgN9tFSEHAAAAAAAAAADFpVJyRGuNvYXS+N9JBSXS949IiS2jcySfP6A4b+MP6h0LWsYnAgAAAAAAAABAc5q1zMbkOHms1C1H2rBTmjbTbu+/pMUEHJIIOFxazqcCAAAAAAAAAEBz6dfF/j31kbQzz0KN4b2l28+TThrT3KVDFeiuCgAAAAAAAAAAxKTaD70OAAAAAAAAAADQghByAAAAAAAAAACAmETIAQAAAAAAAAAAYhIhBwAAAAAAAAAAiEmEHAAAAAAAAAAAICYRcgAAAAAAAAAAgJhEyAEAAAAAAAAAAGISIQcAAAAAAAAAAIhJhBwAAAAAAAAAACAmEXIAAAAAAAAAAICYRMgBAECMmTlzpm655RYVFhY2d1GazZ49e3TLLbdo0aJFzV0UAAAAAAAazLfffquHHnpIt956q2655RZt2bJFkvTGG2/oueeeq/PyVq1apb///e/au3dvQxe1xSDkAAAAAAAAAACgmRUUFOj1119XTk6OzjnnHF188cVq3769Nm/erEWLFumII46o8zL79eun7t2766OPPmqEErcMhBwAAAAAAAAAADSznTt3yufzacSIEerTp4969OihhIQEff755+revbu6detWr+UeeOCBWrJkiXJzcxu4xC1DfHMXAAAA1E9ubq7eeustrVq1SpI0ePBgHXvssUpLS6uY59tvv9XChQu1detWFRcXKzs7W/vss48mTpyoxMTEivl2796tjz76SGvXrlVhYaGSk5PVqVMnHXvsserSpUvY8r766itt3bpVHo9HPXv21FFHHaWuXbtWWc4tW7bo0Ucf1aRJk7T//vuHPfbDDz9o2rRpOvvsszV48GDt2rVLn332mdatW6e8vDwlJyera9euOvLII9W5c+dq18eMGTO0Zs0aXXPNNWHTZ86cWdHFlyMQCGjevHmaP3++duzYofj4ePXr109HH3202rVrV+3rAAAAAADQ0GbMmFHRJfP06dM1ffp09enTR6effrqWL1+u4447Lmz+t99+W4sWLdKFF15YEX4EAgE988wz2rZtmy677DJlZGRIsvqCxMRELViwQIcffniTvq+mQMgBAECMeumllzRs2DCNHj1a27Zt0yeffKLt27fr4osvVlxcnCRp165dGjhwoA466CAlJCRox44d+uKLL7Rx40add955FcuaNm2a/H6/jj76aGVlZamwsFDr169XcXFxxTyzZs3Sxx9/rFGjRmnixIny+Xz68ssv9eSTT+qSSy5Rx44do5azS5cu6tq1qxYtWlQp5Fi0aJHS0tI0cOBASVJeXp5SU1N11FFHKS0tTUVFRVq0aJH+85//6NJLL1WHDh0aZN05PwbHjh2ro446SkVFRfr000/1+OOP67LLLlN6enqDvA4AAAAAALUxceJEde/eXe+8846OPPJI9e3bV0lJSVq5cqV8Pp/69OkTNv9xxx2nDRs2aPr06br00kuVnJysmTNnas2aNTrnnHMqAg5JiouLU8+ePbVixYpWGXLQXRUAADFqyJAhOvroo9W/f3+NGzdOJ510kjZv3qylS5dWzDNx4kQddNBBGjhwoHr37q39999fp5xyilavXq2tW7dKkgoLC7Vjxw6NGTNGI0aMUO/evTVkyBAdc8wxFT+icnNz9cknn2jMmDE6+eSTNWjQIA0ZMkRTp05VYmKiZs6cWW1ZR40apXXr1mnnzp0V04qKivT9999r5MiR8nrtJ0nv3r11zDHHaOjQoerdu7cGDRqkM844Q5mZmZo/f36DrLcNGzZo/vz5Ouqoo3TMMcdowIABGj58uM4991yVlJRo9uzZDfI6AAAAAADUVk5OTsXFg+3bt1ePHj3UsWNHbdiwQQkJCZUu+ouPj9eZZ56pwsJCzZgxQ6tWrdJnn32mCRMmqH///pWW37VrV23ZskWlpaVN8n6aEi05AACIUcOHDw+7P2zYML3++utas2aNRowYIcm6ofr444+1evVqFRQUKBAIVMy/fft2de7cWSkpKcrJydGXX36pQCCgPn36qEuXLvJ4PBXzrly5Un6/XyNHjpTf76+YHh8frz59+mj16tXVlnXEiBH68MMPtWjRIh155JGSrOur8vJyjRo1qmI+v9+vL774QosXL9auXbvk8/nCytsQVqxYIY/HoxEjRoS9l/T0dHXu3Flr1qxpkNcBAAAAAOCncno8cJ+jO3JycjRp0iRNnz5dP/74o3r37q3DDjss6nLS0tIUCASUn5+vnJycRi510yLkAAAgRkV2qeT1epWamqrCwkJJUmlpqZ544gnFx8friCOOUPv27ZWQkKDc3Fy99NJLKi8vlyR5PB6de+65+vTTT/XFF1/o/fffV0pKikaMGKEjjjhCSUlJys/PlyT961//ilqWaD+23FJSUjR48GB98803Ovzww+X1erVo0SJ1795dnTp1qpjv/fff19dff61DDjlEvXv3VkpKijwej958882K8v5U+fn5CgQC+uc//xn1ccbkAAAAAAC0FGVlZYqPr7oaf+DAgUpPT1d+fr7GjRtX0VNCJGcZDXVu3ZIQcgAAEKPy8/OVmZlZcd/v96uwsFCpqamSpNWrVysvL0/nn39+WN+d7nE2HNnZ2Tr55JMlSTt37tTSpUs1c+ZM+Xw+/exnP6tY5plnnqns7Ox6lXfUqFFaunSpVq1apaysLG3cuFE/+9nPwuZZvHixRo4cWdHaw+EMhl6d+Pj4qD/WnNDH4VwBc8EFF0T9oeiMZwIAAAAAQHNLTU3V5s2bq3z87bffVklJiTp16qT//ve/6tWrl1JSUirNV1RUVLG81oYxOQAAiFFLliwJu7906VL5/f5Kg5FFVuTPmzev2uW2b99eEydOVKdOnSp+SA0YMEBer1e7d+9Wt27dov6rSf/+/ZWZmamFCxdq4cKFio+P17777ltpvsjyrlixQnv37q1x+dnZ2SooKKhodSJJPp9PP/74Y9h8gwYNUiAQUF5eXtT30blz5xpfCwAAAACAptChQwcVFRVFvWBxwYIFWrx4sU444QSdffbZKi4u1htvvBF1Obt371ZqaqrS0tIau8hNjpYcAADEqO+++05er1f9+vXT9u3b9fHHH6tLly4aNmyYJKlnz55KSUnR22+/rUMPPVRxcXFavHhxxYDjjq1bt+rdd9/V0KFD1b59e8XFxVUMTH7IIYdIsgDh8MMP10cffaTdu3drwIABSk5OVkFBgTZu3KiEhAQdfvjh1ZbX6/Vq5MiRmj17tpKSkjRkyJBKrTMGDRqkRYsWqUOHDurcubM2bdqkL7/8MqzFSlWGDRumTz75RK+88ooOPvhglZeXa86cOWHjkEhSr169dMABB2jGjBnatGmTevfurYSEBOXn52vdunXq1KmTDjzwwBpfDwAAAACAxtanTx8FAgFt3LgxbEDxrVu36r///a9GjRql/fbbT5I0adIkvfzyy/rqq6900EEHhS1nw4YN6t27d43dTcciQg4AAGLUWWedpZkzZ2ru3LnyeDwaPHiwjjvuuIrullJTUzVlyhR98MEHeu2115SYmKjBgwfr9NNP12OPPVaxnPT0dLVr105z586taDHRrl07HXvssRozZkzFfBMmTFDHjh01Z84cLVmyRD6fT+np6erWrZtGjx5dqzKPGjVKs2bNUnl5ecWPMLfjjz9ecXFxmjVrlkpLS9W1a1edddZZ+vjjj2tcdrt27TR58mR99NFHevnll5Wenq5x48apsLBQM2fODJv3pJNOUo8ePTR//nzNnTtXgUBAGRkZ6tmzp7p3716r9wIAAAAAQGPr1auXsrOztXz58oqQo7S0VNOnT1d2drZOPPHEinmHDh2qMWPG6MMPPww7v921a5e2bt1a5aDksc4TiLy8EQAAAAAAAAAAtAhffvmlZs2apd/85jdKSEio8/M//vhjffPNN/r1r39d5cDksaz1vSMAAAAAAAAAAFqJMWPGKCkpSXPnzq3zc4uLizV37lwdeeSRrTLgkAg5AAAAAAAAAABoseLj4/Xzn/+8onvquti9e7cOOeQQDR8+vBFK1jLQXRUAAAAAAAAAAIhJtOQAAAAAAAAAAAAxiZADAAAAAAAAAADEJEIOAAAAAAAAAAAQkwg5AAAAAAAAAABATCLkAAAAAAAAAAAAMYmQAwAAAAAAAAAAxCRCDgAAAAAAAAAAEJMIOQAAAAAAAAAAQEwi5AAAAAAAAAAAADGJkAMAAAAAAAAAAMQkQg4AAAAAAAAAAJrAihUrdNFFF6lPnz5KSkpShw4ddPTRR+vll1+u87LKy8v1yCOP6JBDDlF2draSkpLUq1cvnX/++Vq2bFmVz1u2bJkuuugi9e3bV0lJScrOztb48eP10EMPqays7Ke8vWbhCQQCgeYuBAAAAAAAAAAArdm7776r0047TcXFxVEfP++88/Tkk0/K4/HUuKz8/Hwdf/zx+vzzz6M+npiYqBdeeEE///nPw6a//PLLOvfcc1VSUhL1eYceeqjeeecdpaWl1ViGloKQAwAAAAAAAACARrRx40YNGzZMubm5kqShQ4dq8uTJWrZsmV588cWK+R588EFdccUVNS7viiuu0MMPPyxJ8ng8mjJligYOHKi3335b8+bNkySlpaXp22+/VZ8+fSRJ69ev16BBgypClv79+2vKlCnauXOnHn/88Yrg4/LLL9dDDz3UYO+9sRFyAAAAAAAAAADQiG644QbdcccdkqSMjAytWbNGOTk5kqRf/OIXev755yVJ3bt319q1axUXF1flssrLy5WTk6O8vDxJ0rnnnqunn35aklRYWKhevXpp586dkqSrr75a9913nyTp9ttv14033lixnFWrVqlv376VHktISND69evVuXPnBnv/jYkxOQAAAAAAAAAAaERvvvlmxd+HHXZYRcAhSaeddlrF3xs3btT8+fOrXdb27dsrAg5JGj58eMXfqamp6t+/f8X9t99+u+LvVatWVfydlpZWEXBI0ogRIyr+Lisr0wcffFDje2opCDkAAAAAAAAAAGgkJSUl+v777yvu9+vXL+zxyPuLFy+udnmZmZnyekNV+0uWLKn4u7CwUCtXrqy4v2rVKhUVFUmSsrOzK6YXFBRo9erVVb7m0qVLqy1DSxLf3AUAAAAAAAAAAKC12r17t9yjRmRmZoY9npGREXZ/x44d1S4vLS1NRxxxhP73v/9Jkp599ln5/X4NHDhQb731VkVXVY49e/YoJSVFkyZNqugyS5KOPvpo/eIXv9COHTv0xBNPVCpzrCDkAAAAAAAAAACgkUQOi13TfY/HU+MyH3zwQU2YMEHbt29XIBDQc889V+W8iYmJkqSDDz5YV199te6//35J0sqVK/WXv/yl2ufEArqrAgAAAAAAAACgkeTk5IQFF+7xNCRp7969leavyeDBg7Vo0SJdfvnl6tOnjxITE9WrVy+dd955uuqqqyrmS0lJUbt27Sru33fffXrxxRc1ceJEZWRkKD09XQceeKAef/zxsBYm3bp1q/P7bC605AAAAAAAAAAAoJEkJSVp0KBBFeNyuMfMiHbfPQh4dbp166aHHnqo0vQTTzyx4u+xY8eGjd8hSWeddZbOOuussGlz584NC1vGjx9fqzK0BLTkAAAAAAAAAACgEZ100kkVf8+cOTNs3IyXX3654u9u3bpp9OjRkqRbbrlFHo9HHo9Hffr0CVtecXGxCgsLK73Oc889p3fffbfi/oUXXhj2eOR4HZKNv3H55ZdX3B8wYIAmTJhQy3fW/GjJAQAAAAAAAABAI/r1r3+txx57THl5ecrPz9fEiRM1efJkLV26VK+88krFfDfccIPi4uJqXN6PP/6ocePG6fjjj9egQYMkSV9//bU+/PDDinkOPvhgTZkyJex5l112mX744Qcdcsgh6tKlizZs2KDXX39d27Ztk2Tjgdx///2VWn+0ZIQcAACg0RQUFCgQCMjj8SgtLa25iwMAAAAAQLPo0aOHpk2bpjPOOEMlJSVatmyZ/vSnP4XNc8455+jKK6+s9TLz8/M1ffr0qI+NGTNGr732WqXAJBAI6JtvvtE333xT6Tnx8fF65JFHdPzxx9e6DC0BIQcAAGg0gUBAgUCguYsBAAAAAECzO+mkk7Ro0SLdfvvt+uijj7R161alpaVpv/320yWXXKLJkyfXelndunXTr3/9a3322Wdav3699uzZo+zsbI0aNUpnn322zj33XMXHV67+nzJlisrKyvTNN99UtN7o2bOnjjzySF177bUaOHBgg73fpuIJUPMAAAAaSX5+fkVLjvT09OYuDgAAAAAAaGVip2MtAAAAAAAAAAAAF0IOAAAAAAAAAAAQkwg5AAAAAAAAAABATCLkAAAAAAAAAAAAMYmQAwAAAAAAAAAAxCRCDgAAAAAAAAAAEJMIOQAAAAAAAAAAQEwi5AAAAAAAAAAAADGJkAMAAAAAAAAAAMSk+OYuAAAAAAAAAAAAqJvCwkIFAgF5PB6lpqY2d3GaDSEHAAAAAAAAAAAxxu/3V4QcbRndVQEAAAAAAAAAgJhEyIEwu3fv1tSpU5WVlaWsrCxNnTpVe/bsqfXzL730Unk8Ht17772NVkagudR1/ygrK9MNN9yg4cOHKy0tTd26ddO5556rTZs2NV2hgUby8MMPq2/fvkpOTtYBBxygWbNmVTt/SUmJDjjgACUnJ6tfv3569NFHm6ikQNOry/7x2muv6eijj1bHjh2VmZmpcePG6f3332/C0gJNq67fH44vvvhC8fHxGjVqVOMWEGhG9fl99Yc//EG9e/dWUlKS+vfvryeeeKKJSgs0nbruG9OmTdPIkSOVmpqqrl276oILLtDOnTubqLRA0/nss8+0Y8cOSdKGDRs0Y8aMGp/z6aeftspzc0IOhJkyZYoWLVqk9957T++9954WLVqkqVOn1uq5M2bM0Jw5c9StW7dGLiXQPOq6fxQWFmrBggW66aabtGDBAr322mtasWKFJk2a1ISlBhreSy+9pGuuuUZ/+MMftHDhQk2YMEHHH3+81q1bV+VzduzYoQkTJmjhwoX6/e9/r6uvvlqvvvpqE5YaaBp13T8+++wzHX300Xr33Xc1f/58HX744TrppJO0cOHCJi450Pjq8/0hSbm5uTr33HN15JFHNlFJgaZXn/3jzDPP1EcffaTHH39c33//vV544QXts88+TVhqoPHVdd/4/PPPde655+qiiy7S0qVLNX36dM2dO1cXX3xxE5ccaHwFBQVKTEys9fyrV6/WCSec0CrPzT2BQCDQ3IVAy/Ddd99p6NCh+uqrrzR27FhJ0ldffaVx48Zp+fLlGjx4cJXP3bhxo8aOHav3339fJ554oq655hpdc801TVRyoPH9lP3Dbe7cuRozZozWrl2rXr16NWaRgUYzduxY7b///nrkkUcqpg0ZMkSnnHKKbrvttrB58/PzFQgEtHXrVg0YMKBi+mWXXaZvvvlGs2fPbrJyA02hLvtHVYYNG6azzjpLf/rTnxqrmECzqO/+MXnyZA0cOFBxcXGaMWOGFi1a1ASlBZpWXfeP9957T5MnT9aqVauUk5PTlEUFmlRd940777xTjzzyiFauXFkx7YEHHtAdd9yh9evXN0mZgabknHNv3LhRy5cv1ymnnFLlvDfccIPefPNNfffddxXTWsu5OS05UGH27NnKysqqqMCVpIMOOkhZWVn68ssvq3ye3+/X1KlT9dvf/lbDhg1riqICTa6++0ek3NxceTweZWdnN0IpgcZXWlqq+fPn65hjjgmbfswxx1S7LyQnJ4fdP/bYYzVv3jyVlZU1SjmB5lDf/cPN7/crLy+PCiu0OvXdP5588kmtXLlSN998c2MXEWg29dk/3nzzTY0ePVp33HGHunfvrkGDBun6669XUVFRUxQZaBL12TfGjx+vDRs26N1336242OqVV17RiSee2BRFBlq02bNnV9qfWsu5eXxzFwAtx5YtW9SpU6dK0zt16qQtW7ZU+bzbb79d8fHxuvrqqxuzeECzqu/+4VZcXKwbb7xRU6ZMUWZmZkMXEWgSO3bskM/nU+fOncOmd+7cudp9IS4urtL85eXl2rFjh7p27dooZQWaWn33D7e77rpLBQUFOvPMMxujiECzqc/+8cMPP+jGG2/UrFmzFB/PqStar/rsH6tWrdLnn3+u5ORkvf7669qxY4cuv/xy7dq1i3E50GrUZ98YP368pk2bprPOOkvFxcUqLy/XpEmT9MADDzRFkYEWbcuWLVH3p9Zwbk5LjjbglltukcfjqfbfvHnzJEkej6fS8wOBQNTpkjR//nzdd999euqpp6qcB2jJGnP/cCsrK9PkyZPl9/v18MMPN/j7AJpa5HZf233BPX+05QCtQX33jxdeeEG33HKLXnrppajBOtAa1Hb/8Pl8mjJliv785z9r0KBBTVU8oFnV5fvD7/fL4/Fo2rRpGjNmjE444QTdfffdeuqpp2jNgVanLvvGsmXLdPXVV+tPf/qT5s+fr/fee0+rV6/WZZdd1hRFBVq8aPtTtOmxhsth2oArr7xSkydPrnaePn36aPHixdq6dWulx7Zv314p5XPMmjVL27ZtCxtbwOfz6brrrtO9996rNWvW/KSyA42tMfcPR1lZmc4880ytXr1aH3/8Ma04ENM6dOiguLi4SldObdu2rdp9wefzVZo/Pj5e7du3b5RyAs2hvvuHZINqXnTRRZo+fbqOOuqoxiwm0Czqun/k5eVp3rx5Wrhwoa688kpJVqkbCAQUHx+vDz74QEcccUSTlB1obPX5/ujatau6d++urKysimlDhgxRIBDQhg0bNHDgwEYtM9AU6rNv3HbbbTr44IP129/+VpI0YsQIpaWlacKECbr11ltj+kp14Kfq0qVL1P2pNZybE3K0AR06dFCHDh1qnG/cuHHKzc3V119/rTFjxkiS5syZo9zcXI0fPz7qc6ZOnVrpRPzYY4/V1KlTdcEFF/z0wgONrDH3DykUcPzwww/65JNPYv5LA0hMTNQBBxygDz/8UKeeemrF9A8//FAnn3xylc8rKSkJu//BBx9o9OjRSkhIaLSyAk2tvvvHCy+8oAsvvFAvvPAC/UWj1arr/pGZmaklS5aETXv44Yf18ccf65VXXlHfvn0bvcxAU6nP98fBBx+s6dOnKz8/X+np6ZKkFStWyOv1qkePHk1SbqCx1WffKCwsrNTFodN1rnPFOtBWjRs3Tm+99VbYtFZzbh4AXI477rjAiBEjArNnzw7Mnj07MHz48MDPfvazsHkGDx4ceO2116pcRu/evQP33HNPI5cUaHp13T/KysoCkyZNCvTo0SOwaNGiwObNmyv+lZSUNMdbABrEiy++GEhISAg8/vjjgWXLlgWuueaaQFpaWmDNmjWBQCAQuPHGGwNTp04NBAKBQF5eXmDv3r2B5cuXB6699trAsmXLAo8//nggISEh8MorrzTn2wAaRV32j0AgEHj++ecD8fHxgYceeijse2LPnj3N9RaARlPX/SPSzTffHBg5cmQTlRZoWnXdP/Ly8gI9evQInH766YGlS5cGPv3008DAgQMDF198cXO9BaBR1HXfePLJJwPx8fGBhx9+OLBy5crA559/Hhg9enRgzJgxzfUWgEaTl5cX2LVrV2Dv3r2B7777LnD33XcHFi5cGFi7dm0gEKi8f6xatSqQmpraKs/NacmBMNOmTdPVV1+tY445RpI0adIkPfjgg2HzfP/998rNzW2O4gHNqq77x4YNG/Tmm29KkkaNGhU23yeffKLDDjus0csMNIazzjpLO3fu1F/+8hdt3rxZ++67r95991317t1bkrR582atW7cu7DkdOnTQzJkz9dBDD6lbt266//77ddpppzVH8YFGVdf947HHHlN5ebmuuOIKXXHFFRXTzzvvPD311FNNXXygUdXn+wNoK+q6f6Snp+vDDz/UVVddpdGjR6t9+/Y688wzdeuttzbXWwAaRV33jfPPP195eXl68MEHdd111yk7O1tHHHGEbr/99uZ6C0CjmTdvnrp06aLu3btLkn7zm99ICp1LRO4fffv21bvvvqtrr7221Z2bewIB2moBAIDGkZ+fXzEwoNOVAgAAAAAA+Ok45zbe5i4AAAAAAAAAAABAfRByAAAAAAAAAACAmETIAQAAAAAAAAAAYhIhBwAAAAAAAAAAiEmEHAAAAAAAAAAAICYRcgAAAAAAAAAAgJhEyIEqlZSU6JZbblFJSUlzFwVocdg/gKqxfwBVY/8Aqsb+AVSN/QOoGvsHEF1b2jc8gUAg0NyFQMu0d+9eZWVlKTc3V5mZmc1dHKBFYf8AqubeP7xerwKBgDwej9LT05u7aECz4/sDqBr7B1A19g+gauwfaMvy8/OrPOduS/sGLTkAAAAAAAAAAEBMIuQAAAAAAAAAAAAxKb6pXzAQCCgvL6+pXxb1sHfv3rBbACHsH0DV3PuHu7sqv9/fzCUDmh/fH0DV2D+AqrF/AFVj/0Bb5u6uKvKcO1b3jYyMDHk8njo9p8nH5HD6AgMAAAAAAAAAAHDUZwyRJg85aMkBAEDbUd0gaAAAAAAAoP5a4zl3fVpyNHl3VR6Pp9WP5g4AAIy7u6rW8oMLAAAAAICWgHNuw8DjAAAAAAAAAAAgJhFyAAAAAAAAAACAmETIAQAAAAAAAAAAYhIhBwAAAAAAAAAAiEmEHAAAAAAAAAAAICbFN3cBAABA6+XxeMJuAQAAAAAAGhIhBwAAaDRpaWnNXQQAAAAAANCK0V0VAAAAAAAAAACISYQcAAAAAAAAAAAgJhFyAAAAAAAAAACAmETIAQAAAAAAAAAAYhIhBwAAAAAAAAAAiEmEHAAAAAAAAAAAICYRcgAAAAAAAAAAgJjkCQQCgeYuBAAAaGKlZdI3q6WS8tA0T/A2ziv5A1IgIHm9kscTdRGSbB6PR/L57dZbzbzVLcPrkcr9oddvKO5le2Tvp7EFApICtg5rWn9NwfkcfT4poIZdvwAAAACAZpM/qLMCCXEq80sr8xLrvZy44HmrxxOoODX3eiSvPPJ6JF9AGt4lQQlxzXx+WwVCDgAA2ppvVkt5RbWb9+p/Sz9ujv7Y+UdIpx4kJcTb/fcXSPe9XbeyDO8t3XCalJNu9/OKpCl3WWjyUx0zSvrlsVJqkt3/boN03RM/fbnV+e2p0sRhoSDhqY+llz9v3NesTq+O0l/Oljpl232fX/rFXdLeWn7+AAAAAIAWK3/eHQp0bact+X4d9UxBvZaRHC9NO6uDEoMBxo4Cn/42c6+mjEzVgT2SwubNSPKob078Ty53Q+NSPgAA2prEOvwgGTuo6sdyC0MBhySNGRRqDVJbm3aFAg5JykiRhvWq40KqsCMvFHBI0uDuUru0hll2VfKLwltKHFTN+msKW3ZLmamh+3Fe6cCBzVceAAAAAECLsn+3xIqAQ5KyU7zaVejTyK6VW4bUp/OGpkDIAQBAW9Mtp/bzHjS46sdmfx9+v126NLhH3cqyM0/6YVPEazZQMLB4jVRYErrv9VgQ05i+WhF+f58etl6aS2m5tGBV+LTqPlMAAAAAQJsypmd4a40lW8o0qENCWPDhyEpumXFCyywVAABoPJmptR8non8XqVNW9Me27JbWbgufVp+AIjIYGNtAlfDlPmn+j+HTGruCf8kaqaA4fNqYZm45MScijNq/v5QQ1zxlAQAAAAC0GF6PdGCP8BYbX28o0UERwYcjI6llNuUg5AAAoK3xeKSM5NrPX12XVZEBRX1ChK8iKuG7tpP6dKr7cqKJbG0yqq+UlNAwy46m3C/NiwhWxjVzy4k5P4SPcZKSKI3s23zlAQAAAAC0CEM6JigzKTwi+Hp9aaXgQ5LSEz2Ka6H9VRFyAADQFnVuV/t5qwsuIgOKXh3r1h2WJK3eKm3dU/vXrIt5P4ZX8CclSPv3a5hlV2VORPAzqp+U3IjBSk32Ftqg6250WQUAAAAAbd7YnuFhxspdZeqQFqfMKN1SZSa3zIBDIuQAAKBtqqoLqmiG95bSojdV1YqN0q688GnVtfyoSmRYUp9lRJNfLH27tnGWXZV5P1pXWY7EeGm/Rg5WahLZZdXYegwSDwAAAABoVcZGdEv19frSSsGHI7LFR0vScksGAAAaj8cjpVQRXESKj5NGD4j+WECVWy7Up3umyGUM7i7lNNCA3ZEByphB1vFoY8kvlr5dFz6tuVtORK6D9hnSwG7NUxYAAAAAQLPrmRWnbpnh4zXOqSLkSI6XEuNb7pVyhBwAALRVnTJrP291g4FHBhRDekqZKXUry5K1Fg6EvWYDtbiIHDckO03ap0fDLLvK12ziYKUmG3dJ63eET2vu4AUAAAAA0Gwiw4ztBT6V+ALqnhlfad5o3Ve1JC27dAAAoPF0rcPYGQcOkOKr+NmwaLVUXBq6H+eVDhxYt7L4ogzY3VCV8Fv32LgfjbHsqkSGHFmpFv40p8gyHdTI3XYBAAAAAFqsqF1VRRlwXCLkAAAALVV8nI0XURtpydK+vaM/VlouLVgVPq0+IUJkJfyovg03YHdka5PGruDfliut2hI+rbHHAqlJ5Dro01nqkt0sRQEAAAAANJ/sZI8GdQivD5izoaRS8CFJCV4ppZZVB82FkAMAgLasLuNeVBdcRAYU+/eXEuKiz1uV+REDdifESwf0r9syqjI7onw9Okjd2zfMsqvSEGOVNKTlG6Q9BeHTquuGDAAAAADQKo3pkSSvJ9SlcmGpX+v2lGtwx+hdVXk8LXc8DomQAwCAtq0uFf3VtX74+gfrcsqRkiiN7Fu3shSU2Ngcbg1VCf/jJmlnXvi0xg4dIoOf7u2lHo0crFTHH5C+jmzRQsgBAAAAAG1N5HgcCzaVav9u4cGHIzO5ZQccEiEHAABtW0qSjaFRG52ypX6doz+2t1D6bkP4tIbosmrMwIYZsDsgaU7Eshu7+6gfN0s79oZPa+5QIXL97ttLSk9unrIAAAAAAJpcUrw0smt4yPHV+lKN6Vl5PA6vR0pLJOQAAAAtXVZq7eetrmVFtBChrr+FIrt4ykyVhjbQgN1fRSx7SM+6vfe6CijKWCDNHHIsXC2VlIXu12eQeAAAAABAzNqva6KS4kMn6z5/QEu2lGq/rpVDjowkT9TWHS0NIQcAAG1dtwbqsiqylUD7DGlgt7qVZVuutDJiwO6GCga+WS0VlYbuez3SmEZuzREZcuzTQ8pOa9zXrE5JmbSwAQaJBwAAAADEpMjBxb/dWqaBHRLCgg9HZnJsxAexUUoAANB4slKl2l6ZMbCbhRfRbNwlrdsePq0huqxqqEr4Mp8Nbh627EYOORatlgpLQve9nuZvORG5fg/oL8XXcZB4AAAAAEDM8XqkA3uEt9iYs75UY3pUbsUhWUuOWEDIAQBAW+fxSMnRf9BEtW+vqh9buq7289Z2Gd1ypHbpdV9ObZa9b++GWW5Vyn3Sik0Rr1mPddKQItdBapLUv0vzlAUAAAAA0GR6ZMYpK6J1xrJtZdq3c0KleZPjpfiGGCOzCRByAAAAqaS05nkc32+s+rHB3cPvL69m3touY9seaXd+3ZdTm2Uv3xB9voYS55UGdA2fVt36awqR66C4TFqztXnKAgAAAABoMhv3+pRf4g+bNqhDvL7fXl5p3pJyG68jFhByAADQ1u0tlGr7w2XNVmnLnuiPdc6W+kW0CIjsGqk2IrunihwwvL7ivNLoiK6iIsfMaGj79pbSk5v2NWsSuX4XrrJfrwAAAACAVs0XkOZtDL/IcWzPJM3ZUFJp3oCkvBJCDgAAEAs27ar9vNUFDmMjxrfILah7S4mc9MotDeoTlETTHIFD5JgfKzZKO/Ma9zWrkxAnHTAgfFpDrV8AAAAAQIs3Z314yDGiS4KWbStXma9yoLE3otVHS0XIAQBAW7enoPbzVlchHtlC4Osfat9CxBEZlBQUS9+urdsyqtIcgUPkOmnuVhwj+0oprvFX/AFp7g/NVx4AAAAAQJOav6k0LNBIiPNoaKd4Ld5SVmnevOKAAoGW35qDkAMAgLasuNQGx66NnXnSD5uiP5aeLA2PGMS7Pi0ExkaEAnN/lMob6MqRcY3UDVZV+nSyLrzcZjdzq4nIoGf5hrqFXAAAAACAmFZUFtCSreGBxtieSZqzvnKXVb6AVFBKyAEAAFqyTTtrP++cFdYpZzSjB9iYF46SMmnBqrqVJTlBGtU34jUbKBTo21nqlB0+rbG7aYoMVbbukdZsa9zXrI5H0piIkIOuqgAAAACgzYkMNA7snqj5EWN1OPbGwLgchBwAALRlO/NrP29duqpatNqCjrrYv7+UGB+6X+6T5v1Yt2VUJbJ8W3Y3fuAQ2fVWcwcKA7pJHTLDpzV3mQAAAAAATe7riHE50pO86pwepx92VD6P31vsb/FdVhFyAADQVpX7ah9EFJVK36yO/li811pyuNWn8jwyiFiyViqo3Fy2XiK7aWrsyv32GdKgyAHUm3k8jsh1sGGHtKEOLXkAAAAAAK3CjkK/ftwZ2WVVYqVBySWp1CeVlDdVyeqHkAMAgLZqy57az7tgpVRWxdgdw/tIqUnh076uY4W+1yMdODB8WkMFEe0zpIHdwqc19gDgka048htwAPX6igyRmjt0AQAAAAA0m8hAY2zPJM3ZEP1Cw9ziBhors5EQcgAA0FZt31P7eavtqirKYNa76ziY9dCeUlZq+LSGCiIiA4e8IunbdQ2z7KpEBgrzfpB8zfijsHO2jUviRldVAAAAANBmRY7L0SUjTv6AtDW/8gWOLX1cDkIOAADaokCg9l1B+fzS3B+qfnxsZAuBelSeRy5j5RZpW27dlxNNpcDhx8YNHFISpZF9wqc1d6AQGUTlFlgYBQAAAABok1bv9mlbRKBxUM8kfb2+cl1BUVlAZb6WG3QQcgAA0Bbt3Fv7eb9bL+0tiv5Y/y5Sp6zwafXpBimyEr6hWnGkJEoj+4ZPa+zAYf/+UoJrAPUynzRvZeO+Zk0ig56vf5D8LfcHKgAAAACg8c3ZENllVaK+ijIuh2QDkLdUhBwAALRFm3fXft7Z1XVVFVF5vmmXtG573crSs4PUvX34tIYKIg7oLyXEhe6X+awlR2OKDGyWrJEKG2gA9fpIT5b27R0+rblblgAAAAAAml1kl1WDOiRo816f8ksrBxotucsqQg4AANqivCpaZkRTXauKhmiBERmU7Ngr/bi57supzbIXr5GKol+V0iCiDqDezAN8jx4gxbl+8pWUSQtWNV95AAAAAAAtwtKtZSqICDQO6J6o+RsrnzfnlwTka6E9AhByAADQ1uQV1b6ronXbrXVGNB0zpf5dw6dV1+qjKpEDgzdUK4M4b5TAoZFbMAztJWVGDqDe3ONxRAQ9i1Zb0AEAAAAAaNPK/dK8iEBjTBVdVgVkQUdLRMgBAEBbs3Fn7eetrhVC5GDhewulZevqVpbsNGmfHuHTGmo8jmG9pIyUxll2VcZFDqC+Wdpeh/FPGlp8nLXkcKOrKgAAAABA0NcRgcbIrolatrU06kDje0ta5rgc8TXPAgAAWhWnuyafXyorl0rLbawK99/t0qScjOorxNOTpNVb7e++naW59RjMunt7ac1We16P9nb7zZp6va1KumRLG3bYeBgDu1kXWDsaOXDoki1t3WPrskeH5u+qqkd7+5zLfRZCZaZKXzdzmQAAAAAADcrzE547f2Opyv0BxXttKWW+gDqkxenbrWXar1ti2Lwl5T/hhRqRJxAItMw2JgAAILpAwIKIkrIo/8qlktLgrWt6UalUVCIVlkp5hdKeQmnLLltWuT8UcvgDUkGxVdD3aC+t3xF8vNwqyyN5PdYa47TxVrm/PVcq9UmlZRaYlJbbc0vKQyFKablVurulJEpHjJA6ZNpr1laZz95XQUnw/Tn/SiW/X/J4pLQk6eQxki8gbcv9Sas+Kn9Ayi2w9759r7237jnS8aMtZGnMMUBqy+OR5q6Qjhol7Slo7tIAAAAAABpA/hkHKZCRrNIyv+bvTKz5CVXISvLKH5B8/oAKyy0uSIn3KCneowSvR8XlAe3XPVHJ8T8lTmk8hBwAADSlQKD6MCIsrAj+XVhiFeWFJVJxqf1dUla5FUZZ8O9A8HX8zj9/6L4CFkx4vTZmhddjt3FxUlKChQ3JifZ3Yrw97nCe7/OH/jkBSElZ5eDC47FlJCdKyQmh5SYnBG+d6QlSUmL4a7n5/FJ+sZRfZOOJuP+5x5ZISbLuqTKSpfQUKTPFbtOSq152ffkD1ipk/Q7r/qu41F6/R3sLiDpk2PtvKXbnSx8uko4eJbVLb+7SAAAAAAAaQMHQ7grEeeRJTVZadmZzF6fZ0F0VAAC15fdLxRFhRGl55Wnuf06rgqJSqwgvKQ0PCEpd4URZuVWM+wOhUCLgt9DCmeZMjwwqvF4pIcEq9ZMSpIR4CxgSE6TEOLtNiLPpXk8wCPHbssr9ki/YMqQ4+K+gWNoZJbjwemz5SYlSSoKU7g4vIsKMpITahwuBgK2jyBAjr8jK4lyTkRAfCjK65AT/DoYZCXEN+WlX5g9Ya40NO6QNwWAjNUnq3cmCjfYtLNhw83gleezWw5BsAAAAANAapH35g7RkjXTlic1dlGZFyAEAaBvKfVUEFKXhrSpKnYr+0lALioqAotyCDqd1hN9fuSunQCA8lHBPc4cUPp9ViHu9UpwTUsTZtIqAIvgv8r4zLSn4d3ycdcDpC7jKX2bvqSj4XnIL7La4rHK3U15veOuKrBQpOSu8lUWyqwXGT6nILyu34GJvlDDDCVS8Hmt9kZkq9WwfCjUyUq0MTRkk+INdXLmDjbQkqU9HqWcLDzbcPK5/ZBwAAAAA0DrEwOloUyDkAAC0bM74E8Wl4aGEU5nv3Lq7eSoutTEaioPjUBSVSeXl4d03uf+W7IeB3/WaAX9wohNQyNUFlCvoCCjUmsItMoiIFlREhhhOCwyvx16rtDzUNZUTUBSXWtdNxcHpRcEwI3LAb68n2LIiGFBkp4eHFimu8CIxvmEr6n1+a33hDjCcUKPYNT5FSqIFGO0zpD6dQq0y0pJtnTYXf0Datse6otqw09ZzWpLUNwZabFTF4wn/BwAAAACIfZzfSSLkAAA0Jr8/1J2TO4yINs09QLYz9kRhsHuncn/1AUNcXOjqdKey3xMMKOQJdctU0cLCb60enG6j/P6oxVecN9jdUzUBhfO4E2g4gUW0Snq/09KiNNTaYm9RKLxw30YLLuJd42YkJUjtMqSuEd1EObdOq5DGEghYWfdGBhmFFnA4ZY+Ps7ExMlKkztl269xPaEE/Q/wBGzh9/Q5rtVFSZmFLvy7WYiMnPbZ/PDplJ+QAAAAAgNbD46E1hwg5AABV8flDYzS4W004LSVK3bfBSnln7ImiUqm4xKY73Tb5IoIKycKJ+DjrrikuLji2hFMZKwslEuKkeK+1sgi4wg2fz8KPcp+9XuTYEQ5nDImEYECQFBlIREyrCCwSateawB8ItaooLJFK8kOtLyJvi0ut7G7xcaHQIiVRysiMHlokJwS7pWriXy/RupfaW2i3ZZHdS6XYwNsZKda1VGaKvaeWWqnu87uCjWCLjfRkqX8XqVfH2A823LwKdo+mhh+EHQAAAADQPLwSKQchBwC0PoGAVfi7x5kICyPcoUXwseJgMFHo+rssonsnd0Dh8ViFuzugiPdK8fEWJnhlld6pyQp19xQIX4YzlkVpuXW55AzAHY3HEzGYdrwN+OwOLyq6fHKFFE6LirpWVFcEPK7WFe7Awj29tDw09oYjIT48oMhIqRxYpCRad1GNPVh2bfgDUn5EiwwnyCgqCc2XnGjBRU6GDbadmRoc9LuZu5eqCyfYWLfdgo3SMhu0fEAXqWcrCzbcnKt7aMkBAAAAAK0H53eSCDkAoGVxxmFwd9/kDiOcx9ytK4qCLSYKS0IV7+W+ymNPOK0gnEAiLhhQOGFFQpxVzqclS9lpwXEhJAspXF09OYNml5aHylNaLuWVhUKLyNYKklWwurt3SgwGAZmplVtTuEOKioG1f+IXt88fJawoC4U87r9LooQtifHhAUXFGBfu8MLV4qKlCQTsPeYVhocYe4ss4KjoXsobaoXhdC+VkRL8nGL0Z4PPL23Z7eqKqtze08BuUq8OUrtWGmy4eYKjjhNyAAAAAEDrwfmdJEIOAGg4fn+w9URZ5X9VdfVU5PrnVLD7IltOBEKtICpaTMQFx6LwWiCQEGcV0NmpUmKmTYv3St644ADaCnbx5LeAoiQYRpSWhcKKwpJQYOG04ojGHVQkOUFFXHh44bSscAcWjTFGRLkvPJwICy7KwtdraZTgIikYTqQkSqmJdhW/u5VFiivAiJWWCmU+V5dShaFupnILQy1lPMHupbJSpe45wTEyUu1+S+5eqi58fmnz7mCLjR32+WemSoO6Sb06Se3SWsf7rC1vsCWHu0s4AAAAAEBs4/xOEiEHAJhyX+UwolJA4fwrD7aeKLVulpyWFCVloZYT0QIKJ3hwt6RwWk8kJViXP854EE5okRBvX1jOcpwAosQVUJQEp+0pCAUWzmNVBRXO8t3BRFpy5cG0EyNaVDjlaUxlvipCiyj3yyLG4fAoFFwkJ0ppSVKHjNB9d2hR2zE3WiJ/wAb33lsYGuw7N9gyo9DdvVSChRfZadYVU1ZqqGVGrL736jjBxtpt0sadoWBjcA+pd0dbD20p2HDzeML/AQAAAABiHwOPSyLkABDrAgGr6I7WesI9JoV7erTWE+7xJ9wBhd8fajFRMQaFNxROJMQFu3dKD4YAcdGDCjnljGg94e7uqbAkPLhw/vb5o793d0DihBDZaa4BtF2tLSLn8zZhBbfzGdUmuIg2gLgzcLjTuiIjReqYGQwsEiPGuEho2vfWmAIB2zb2urqX2utqmVExeLvXKvIzU6ROWaFxMjJTbX20dj6ftCmixUZWqrRPDxs8vC0HG2E8oVvWBwAAAAC0EpzfSYQcAJqTU4lbVRgRFlY4AUVJqFLcaUFR7qvccsK5dbecqAgoXCFEdpqUkFV9QOFc8e7zV+7iqcT1997C8PsVf5fZINvRxHkjAonglfcdIrp8cv/ttLRozivxnVYl7pDCHRq5P5+i0spBjdcTPo5FVqqN/5AS0drCCTBac6VsuS/UnVRkywyniy2PLEzLTJW6BbuXygx2L5Wa1LrXTzQ+n7RxlwUb63dYiJadKg3pSYuNqniD4QbdVQEAAABA68H5nSRCDgD15feHumhy/pWWV57m/ldYGqr4Lg4O/uzzVw4m/AFJgfCWE+7BsZ3WCOlJVvFfVUARH1f5qn6/P3oritJgF1SVQgpXy4rIFgYOp6WBO5BIS7LxHSK7fIpsYRHXggaodkInd2ARrdWF81hkV1heT6h1RUqiDebsbmXh7i4qqZUHF5H8fqmgJEqrjEKb7khKsAAjK1Xq2SHUQiMzpWVtK83BCTbWBltslPkszBjWU+rdyf5G1TwR/wAAAAAAsY/zO0mEHEDb5AzWXCmgKA1vVVEarPCuuCrfVckdrXsn59bjsZYTCREBhRNCpCdbBbg7mIgWUFRVCe60IohsLbGnKLylRWRgUVJWeQwHh9cTHj4kxkupyVK7jMpdPrm7fXLGdWipFfaBQHhXUGFdREVphREZXMR5wwOKnAwpJSkUXLj/TohvueuhqRSXhkKMXFeQkVcUas0S5w11J9WvazDICIYZyYnNW/6WptxnY2tUCjZ6E2zUlccr66rKG/wbAAAAABDznHO9No6QA4gl7rEN3KGEE0Y4t+5WFcWlNtZDVd07Rd6GtZrwho8/kRgvtUuzfv+jBRSJwWm1ueLceS/OIN+l5dLeglBIURIlxHCPUxFtPG2PIgbKTpBSEuyq+MgWFIkJ4dMSqglVWhq/3zW2SJlUXBIcAD1agFFaeV0lxIW3quiYGaW1RfA2ltZLU/H5pNyI1hhOoFFSHpovLdm2va7tpH26hXcv1VrGDWkM5T5pw04bPHzDTjtOtEuXhveW+nSUsgg26sX53esN/gMAAAAAxD7O7yQRcgBNx+kmqaowotK00oiAotRaWPiiBBOB4L+4YHdOTkjhtKZwKvYzksNbSyTGh7egcI8/URuBgFVIVoQURaHyl0QJJiIfC0RLKhQKKBJdLScyUsLHo0hKUKVuoGK5JYHPH2UsiyrCi5Io6y4hPjygyEy1gCdaq4sEDv01CgSkguJgeFEk5RaEupoqKA6t/8R4q3TPSrPupbLSQq0y4tt491J14QQba7ZZi41yn7UaGt5b6tPZwiH8NB5PsKsqBh4HAAAAgFbDOddr46jpAmrD5w+NVeBuNVFSHt6qomJMiuAV9u6Bl52K6WgBhRQab6IiqPCGWkmkRXTvVKkFxU9siVDus7LnuUOKKANou7u2clpX+KoLKiLGo0hLDu/qyWlN4Q4sEqKMoxGrnG7BIltXFEW5X1JW+fmJ8aGBuFMSrWueaK0tUhKpUK+vkjILMnILwsfKyC10dS/lscHgM1OlvsEKd6eLqdY+KHpjKisPtdhYv0Mq99s4NiP7WldUBBsNyxP8zwk6AAAAAACxj9M7SYQcaO3cLQ2ccSacMKJSaOFqPRE58HKZr+qAwuuJElC4wojs1PDundzBhPOvIcZ0KPeFBsqO7OopWkhR4mpl4VTmRnLK6e7eKTU9ouuniFYVTmuL1hJURCr3RQ8pot0vjRJcJCWEgonURKvUdQKLVKfVRfCW4KJhlPsswMt1BRjO38Wlofmc7qW6ZEuDgt1LZafZIPKtdXtuamXlFmisCXZFVe6T2mdI+/WT+nSydY7G4W7J4eVXMAAAAAC0ClzEJomQAy2ZM7i0e3BsdxgRLagIG1Q5eL/cZ2MSuLt1cv6Od48/4dwGW0UkBQfIjuzWKbKLp4asiPb5axdOVNy6Ao3yKgbUjvO6wofgbWbkGBVVBBZ16boqlpUFW+AUltQcXJSVhz/XIykpMdQ1VFqy1CEzFGS4W1skJ7adddrUAgGpoCQYYhSEBxn5RaFxSRLiLcjISpV6tLcQw+leim68GocTbKzeZoOIl/tsHyHYaFpON1V0VwUAAAAArQfnd5IIOdBY/P5g64myyv+q6uqpojI52N1TcZktxx+wCkp3QKFAKJBwhxTOuBJO907RgomKvxupWyRn7I1qW1BECzHKK1egO+K8EV07BceoSMwMDy+cx9xdQLXF1gDOoOYVY1pUEV44451UCi484eFERoq1xnFPS0kKDdzNVf5Np6TMgos9BeEDfucWhoK+OK99Zk73Us6A35mp9pnxA6DxlTotNrbarc9PsNHcnO2ekAMAAAAAWg/O7yQRciAap9sjdxdPlQKKstA8ToWxu6snZ/yJyIAiELCdr1LrCacFRbzULk1KyKq5BUVj7sRhrUjKQ++5ui6f3GNVROPxuAIJp+unZKldlHEpIgfVjm/k9xsLnM8kMqAoKgkPL5xxUCJbtng84eNbZKVJnbODXURFhBdJrbi7rVjg84ePjZHrap3h7l4qNck+x07Z0kBX91LpyXx+zaG0XFq33YKNDTvtc+yYKY0eYIOHZ6Q0dwnbNlpyAAAAAEDrwzmeJEKO1sW5ej1a64logUVJWXi3Ts4/Z/yJaC0o4rzh3Tq5B8dOCrYuiBxvojHGn6jr+ggLJ8qkYlcwURLl79Ly0IDgbh5P5e6dUhNt3I0kV3hR0aLC1U1UYwczsSgQCG2H7pAi2v3iMskXEVx4veHBRU66lJxjn0nFGBfBsS+SGCC6RQkELKhyAow9hdLeYJCRVxTa/+KD49pkpVn3UllpoVYZiXyFNbuSMmupsWqLtHGX7aOdsizY6Euw0aJ4g2NyeBmTAwAAAABaDc7vJBFytBxOZW9VYURYWOEEFMEr1p1BsktK7crZsHEnFLrvhBPxzlgSwS6Q3N07JQQHmY5sOeFMa+rxBCoGDne996q6f4rWqsIfJaiQKrecSEyQMlzjVCRHaU3h3FJRXr1AILRNVgQWVQUXpZIv4jOK84ZaVKQmSu0zw8MKd3iRxOfR4pWWB0MMV/dSTquMsmBo5fVYZXhWmnVllJUW6mIqNYnPuKUpKbMWG6u3Sht22D7cOVs6MBhspBNstEgejyRacgAAAABAq8L5nSRCjobh94e6aHJXvkdOq9SCwtWKoqQsYmBshf6WgqFEvJQYF+rqKSnYOiA7za6cTYwLhRaVgopGGn+itsp9lddPZGhTKbAITvP5oy8zMWIsCqclibvLJ/djTsuKxGZeF7HI2cadgbkLXV1GRQsuIsOl+LjwoKJTVmhMi8gxLgiSYo/Pb60vKgb8DoYauYW2jThSk0LHq4HdggOAp9l+y4DsLVtJmbR2m7Rqqw0e7vNbsDF2sNS3E8FGLKAlBwAAAAC0PpzfSSLksMr3qAGF05qiNNQ6oKLVRElofIqiklD3TtFaTzjdG4WNOxEXqqDPSA2/H9nNU1ILGo+h3BcRRJRXHp8jrEsoV3BRVVCREOcKH+KtBYUzYHhFUBHRqiI5+DdBxU/j84cPxl0RYEQb46LUtmu3hLjwoCKrXXhY4W6NkcChJuZV6l7KFWjsLQoPZJ0upbq1t1DDCTPoXiq2FDvBRrArKr9f6pIdDDY629gniB2MyQEAAAAArQ/nd5JiOeRwxlsoLg0PJSoq18tC4YXTqsI97kRR8H513TvFeUOtIJwunpzWEU73ThVhRBUtKOLjmntNhfP5g8FENYFEZGDh/IscyNkRF1e5e6fMVKljdSFFcBpXbzcsnz/UoiKylUVk6wv3AM6OpIRQd1ApiVZBneK67wQYqUktb9tGwygtt26l9uTbOBnu1hml5TaPu3up3p1CoUZWmpRG91IxrbhUWrPNuqLauNO+F7u0k8YNtsHDCTZil7NfEnIAAAAAQOvhCbbab+OaJ+Tw+0PBQ7QwotK0iGAiWvdOgWBA4XSTEx8MKCq6eHK1oMhKkzolVN2CwgkuWmoFvN9febDsyG6ynMciw4uy8ujL9Hord++UkSx1yAi1sIgcTNuZj8ruxlXuCw8q3F1DFUaMeVFSVvn5SQnhAUVOenjXUe7H+CzbBr/fWl84AcYed/dSxaH5UhKl7HQ7DvTvYkFGdnC8jJZ6fETdFTnBxhZpw06b5gQbfTtbqI/WwRNxCwAAAABAK9D0Icd/PrCrQ90tJgKuFhTyhMIHp+VEfPB+UrxVvIe1lkgIPVbRoqKFdO/UGP67wLoPicbjcYUPwUGZ05Mjun2K0g1US+oSC+Fe+0ratqfy9OSEUFCRnix1zIze2iIlkcpohNu0S3pnXqgLufi4UHjRLcdus4OtMpISmresaHybdklvzZUUkLrmSIcMIdhorbyy73mv6LMVAAAAAFoLr8SVbM0RcmzLlbq3l3p1DHVhlOgKLOK9VLZXZ3e+dQ+zT/fKYUVrDnfaqt350qBuNkhzqmusC8YjQX3lF1vAceJo63IvPZnjRluWX2wXGEw9nK6oWju6qwIAAACA1ofzO0nN1V1V1xyrtEXdeRTsOqZrc5cETcEjqVO2BVtAQ3AqOHt0oJUPQttDKmOptHoMPA4AAAAArQ/nd5KaK+TwiK4S6supnGD9tQ3O4EF83mgoXtc2xXYFtoe2g88aAAAAAFof51yvjWumkIOrCOuPqzDbHD5vNDiOI3Bje2gTPB7xWQMAAABAK8P5naTmCjm4irD+KgYOZf21Cc5nzeeNhsLV3HBje2g7+KwBAAAAoPXh/E4SLTliULCSgvXXNniC//F5o6HQLz/c2B7aEE94aw4AAAAAQCvA+Z3UXCEHJ9j15wQcrL82gspHNDBnW2K7gsT20JbwWQMAAABA68P5naRm665KNKWpLwYeb1s8Yn9Bw3IfQ9iuwPbQdnj5rAEAAACg1fFyIZtEd1WxifXXdtC1CBqax9XlHdsV2B7aDj5rAAAAAGh9OL+TRMgRe9yVFGgb2F/QkNzjvLBdge2h7XCH5nzWAAAAANA6cH4nqTlDDrpKqB+6q2pb6FoEDc0bDErZriCxPbQlXtEFIgAAAAC0Nt7mLkDL0Ewhhxj4vb48Yv21JXzeaAxsV3Bje2gbPOKzBgAAAIDWhvM7SXRXFZtYf22H8zHzeaOh0GUN3Nge2g4+awAAAABofTi/k/RTQo5H/ivd8LQ0pIc05866PTdWxpQoLpWO+7O0eqt0ylhp6Xpp3XappEx68mrpgvujP++BX0qTxoRP632xdM1J0rUnh6YVFEt3zpDenivlFkj9u0q/Or7yc91qOxD11j3S859Kx+wnDetVizfbiFZskk78i1RaLr31R2lEn9Bjny+zbWnFJmlPgZSRIg3qLv3yGOmIEaH58oqkpz6y+VdukQpKpJ4dpFMPki44SkpOCH/NNVule9+S5qyQduZJ6cl2O+030iFDQ/O98Jn08WLps6VScZnUu6M0Yah09UlS5+yq39P2XOmoP1mZH75MOnF07dbFkx9Jz34ird8hdcqWzhgvXXGClFDVrkiFVK1N/0K6/snK21hz2LpHuvxRad6Pdr9XB+mKE6XJE0LzBALSob+X1m6XOmRKPr9UVGrH1OtPlQ4ZUrvXWrdduvVlafZyqdwv7d9PuvF06bKHpYMGS3ddGCrT859KA7rVf/Dh2culyXdKL14vjdun+nl/2CQ99K6tg217pNRkqVuOdEB/6Xc/t31dkmbMkXbulS46um5lcXvmEyklUTrj4Povo6k526sjziulJduxSrLjVcdM6YAB0rWTpL6da16m8/kcOFD6fkP49jC8d/TnOOM8/bhZ+u986fSD7djqdt0T0lffS1/cXq+32mCue0J6d7703UM1zxvtO7clKSu3/WP6F9K2XFvnUw+XLjiyds+vz+8HecLHYAEAAABau+/WS49/KM1eIW3fI8XF2bnVpAPt/Dw7vfFe++Abop+T/5R6urqck0tWX/D4h9KsZdKmXZLfL3XMkkYPkM6aII0bXPdzg/U7pENulO68oGWeg591h/TViqofn3uX1Cmr7vWMq7ZIt78mfbnc6jf36S5deaJ09KjKr/HufOk/H9h5diBg29z5R0o/H1e797BkrXTbK9LCVVK81z7rP54p9epYxROcc722rf4hx3Mz7fa7DdLcH6xSpbZiZUyJu2ZIhSX295tfW6X7386RkuJDFXQXHGkBiFvfztHfX+T7vvRhafEa6cbTpH5dpBlfSVf9y3aAUw+KXqba9qe9Ldcq+Xt2qLpyqyn4/NLvnpLapdsBPXId7CmQBneXzp5oB9o9BbZtXXC/dN/FoQPA5l3SE/+z+5ccK6UlSV+vkO550w5Iz18XOjDvzJNOuU3KSJauP0Xq3l6aNlN6c6500zTpk1slb7DDunvelMbvI/XvYuvsV8dL970lfbBIeu9mK1M0f3peSgoe8Grbl/39b1ul1OXHS4cOk75ZI/3zdVsvt58X/TmMyVF77lYvzbm+9hZKp99uFY9S6Ivxhqel/CLpl8fa/dnfW8Dh9dhz7rxAap8hPf2xdN69tk2PG1z9a+3Ms9fKSrXnJyVID74rTf6ndM+F0j49Q+vCOSZcd3L9tytn/pqe++1a6dR/SAO7WkVzzw7Srnxp2Xo7ll52nJVZkt6cI32/UbrkmLqVxe3ZT6ScDOmsQ+q/jKbmrL67LpAGdLXw/Nf/kbbsllKTpEcusx9dD75jIfEbf7BjZXXyi+x2y+7K28PbN9lxLpI3WOG9cottH+P3sbDX7dcnSRcd1XKOQ7Upxxu/l7q2azlljnTTNOm12RZojuwjfbpU+vOL9pvjqhNrfn59fj84nzXfKQAAAGgLnv9U+sM0qV9n6bJjpUHdpDKf/Y6e9qm0YJX0nysb7/X/fYWUnlL5nPyn1NPV9pxcsnqtq/4l5aRL5xwm7dtLSkyQ1m6T3pknnX2n9MJ14RcC10aXbDvf6t2pZZ5X/G1q6NzYUVQqTb3H1nuXbJtWl3rG9TukU2+zcOS2qTbvszOlSx6SHr1MOsF14fOLs6TfPiWdcICdS0vSK19K1z4u7c6vue7jx812Dj+0p9ULlJRZXeLpt0vv32L1RpG89Eks1TfkWLDSUqVj95PeX2gVTHUNOVr6VYQLV0lPfSzd/0u7ItofkE4bZxVAkm3gklWgHzCg9st13vdHiy1JffCX0inBComDh0gbd0l/my6dPNau7K28gNqtP3eFb3Ou6/98KG3ebRX7N79QuRXPyWPtn9vRI6VxN0jPfyadNt6m9e4kffVPq/xzHDLUrg6/9WW7WnzMIJv+wSI7cDxyWehgvXGnhRyrtlowt2/wC+X9W+wq+vPulXIL7cA/vLd04l+lF2aFDkhu78yTPv3WAq9rHletrordnW8hx5SJ0v+dbtPGD7ED7T1vShcfbS1YIrWUq26LSqSUpJrna07OOmrulmLPzrSrJa6dZJ/tqeOk17+y/fuuN6TJE62C/8XP7cfN+h3SwG6hQO/gIdIxN0t/n24V09V59D1pV579wOgRvPp+eB/pqJtsez/e9UXribytz3blWkh1z338f/YlO/139qPO8bMDrRVHIFD5+T/lM6v47Fv494qbU9Z9ekgj+9rf/73Ztp+7Ztgx46wJtj2M+50dS++8oPplvjnXbm88LfQja8wgu4LorhnSI7+KUo4oEyLXY21akTSFunzOdflebmrfb7T9/4afW7Au2feB8z0x9TC7MKAq9f394F5/sbSvAAAAAHU1/0fp989ZTx2PXxW6SFWSDt1XuvQ4aeaSxv1dPLxP+P0Gqaer5Tn5mm3SlY9ZPdOL14cu1JasXvPsidYiITu17mVJTmzZ51vRLg6c/oUFXGdPDL3futQzPvxfq7+bdp1dTCdJh4+wupc/vyQdf0DoYuqXP5d6tJce/VVo2uHD7aLP6V+ELnytyl0zpMR46elrQp/biD7ShP+THntf+sMZlZ/D+Z2k+oYcz35it3+eYlfevzpb+sd54RuGZBXLNz5tJ+RxXmuSlZoonfAX6Z6Lwq+6/Wa1dPeb1iqkqMS6VLnqxBq6XmgkpeXWjcj5R0hvzQlN/9Wj9m/cYOnei23a7a9Kx+9vV2V+tcIqLyeNsUqmpIimTc4VlHlF0vn32kY7aYxN25knjfi1tRIpLpMWrbLg6I/T7ArNJfcHD4QB697luielHbnS4B5WaX7/W/Yar95oB6rTg92K/OYJ+ydJvznZWjY0lVVbLG185DLbTqTapc1JCbYe472heZ0uXCLt389uN+8OzZsYZ7dZqaFp7h0+JTE0vVNW+ONejzSqr22vG3ZI/3hFeuNruzK6fYZ02HDpf4ukG04LVSpf9nD0dTvmevvyuPdiC0VKyuxqgRNHS2/MkT5cZFe3S/YZ78y3rrOc7rX6dZEGdLGDbFXr7M4Z0t1vWFhz75tW8eXxWFD057Ol9pnh878xxypLl623+Q4cIP3+jPCrCK75j/T2POmtP9jBev5Ka4b31h8rv/73G6XD/yg9drl00oE2bfEa6+ZtUDdp5t9C8553n63H92+pW3mk2h0f3J+hs7627pHOvddS/GevtXXa2Ob9aN0MOc0ITx1rIUf7dLtK+9NvpSOGW/PFnu3tOJDpurojMd62y8+/k4ZeYQFrn07WtPHsCeHb8n8+kLLSrOXERQ9KP26SLj7GrhiY9qntS/dfEn5MuPMNu73nzdB2+81q6ZH3LMDesdeCvwMGSH84PbSdS7W/asTpei4jpYov2+C00/5hLVokqceFoYc3BbtxumuG9PES6zKw3Bd9PYy5XtqwM3wZPdpLX98pvfS5XS0x55/hXTA56+OVG0LB9ZK11rJq4So7RrdLtytdbj/PutlqaNG2105Z0qg+9veOPJveLUfqmiOt2Ggt3KrbB77+wW47Z4eWuWarfQ5vz5U+WGit09yfrcdj+989b9r8Z94RWp7zPX3Nf2ydfe3qmrK4TLp7Rvjx8dj97bvPaaUj2eezTw9r9XjbK3ZVSvf2FnyfPTE0X2GJrf9351v3ZilJtg9demyoZYKzKa3dVvN3brcLwo/LzrbwwvW2P36w0I7JBw+R/jrFfuA2lQ8WWtA3eUL4fjR5goX7n35bfTPm9xdY12bO7wfHWYdIVzwW+v0QiZYcAAAAaCseeMd++/7zfKsDipScIB23f+j+G3PsQtflG6ynhR4d7MLuayeF13U69SXv3GTnJPNX2vInjbHuhNzzuuuEaqqna+hz8n9/YJXy/5gafn7mFtlF9uqt0n1vS3NXSJv3WACyb2/p/06ThvQMzbd+hzT2t+H1uk7d1Ce3WmuVjxfb+dmRI6xuKrOKMjSVF2fZOdQpY+tXzzjvB2lYT6m7q27AG2c9/jz2vvXUckB/m54Qb68VH+daqCcUWFT3uZX7pP8ttq7t3Z9br462Lb2/QLrpzMrP4/xOUn1CjqJSa2azf39rOjP1MOnKf1mlwS8ODc1XUGxXw+/OtzCkX2fpf9+EurlyX239xXfSlLuk/fpZhVJGih1gLnvExsU4a4Kq5fNbhUFNvJ5Qilade960CpcbTrMDzTvzbfr/nS4dvI9dmexsP2U+6eAbbePt38Uqg//1ge3Av4noC9x5z5mpduDzekNjMXzxXSjgkKTvN1liOGtZsJI7WO7/Ba/gPOcwq8jctMsCmXKfrWOPxxK+ey+yVgbXnCQdNdKe2zWn+nSv3FfzupEsAKgpJQwEpOufssr24/aXXpoVWgnRnuv3W2Xujr12JfOqLdIfz6j5db74zm736RGa9/gDpH/OsAr6f5xrFZ6rNttjYwZaRbfPX7m8ki1j9nJ7fO6Pln5fdaI0dpD15XjrdKuEPudQqwx1VNd6wOORlm8M3b/uCenIkTZ2S2GJdWP04uf2mk7XI3sLrdJ15eYalh28vegB+1I99wgLHu54TVqxWXr3ptA2dt9b1n/g5ENsuyj12Xgop94mvfun8LS7rFw6/37bv6860fr2j1aGfXpYheqsZaHK1lnLLNlfsclChi7tbNv66nvp3MNDy6lteWp7fKgoXnAbW75B+sXdVkn8wvXRm/S5NdT2X+azJqDOLBmp0s9G2/gwkrUk2ltox6M9BaGKWfcynb+vPNGu8p+/0gLPrXtCx5WiUvtcikqlv74sXTPJxv5ITbJtMyA7DkceE35xqO1vkyfavuHxWEgwoKt94WenWyXz0x9Lx/9F+vTvoXXnumik2nVwQH873l/5LztW7dcv+g/L2861Zpxrt0lPXFX5/W/Yadtg9/Z2P9p6eOJq6ZIHbT3/Y6pNS0wIjTURrbyR0wtLrF/TXh2t6WmHLBt354vvrF/O6t6rc+yqiccTfnV95PbqcFoJ9u9i09dus8B1ww6ruK5qHygqlbburvx+N+y0Za3dbn3BxseFf7Yej3133Hia9I9X7f07IWPvTtG3y0BAuvB+C+Lcx8d/zrDP6O0/hgcOy9ZbV0xXnmghy/OfWlDft0uoS7Y/v2i/LW44TRreyz6T5RttH3GXodxnx6YpE6TLjrfjyj1vVv+d617f1z1h3QU+dKl9f97+mnTa7dLHf7XAsCqBQOXvjaqE/ZiN4vuNtk9Fjvvk9Mv7/abqt7nvN1pXcJFjObmf71xx5ObsE7TkAAAAQGvm89u53Ije4QFBdVZvswr5Xx5jF1z9uNnG0Fu02i6Ocyv3SefcE6wPPdEudLz3LbvQ+5lrKy+7NvV0DX1OPmupnW+M6le79y9JW3Ota6vfn2EXzO7Jl17+QjrxVunDP1v5qiqDM+3iB61l+ZSJVvdx23Sb556Lqn/t+p5X18aqLVYfM2VieE8TVYlWz1hRzxOxzhOD573fbbBxTiTpwqOkXz5kdV7nHGbPeflzuyD4kcuq/9zWbrdz/KE9K883tKf02TK7WC85on6F8ztJ9Qk5Znxl3fqce7jd//l46cZnrHWHO+R4/jPbkF69MTQIy5EjbWNZtFphFTv/94xVaL56Y6hy4IgRdpX7ba9KZx5SfThx0O+sAqgm150i/fbU6uf5dq308Lt2YEpLDj8g9usijQ5eHbl1j1UMrdpqy+zb2QbzeeNr2xFe/8peL4zrPSfEW0VnablVBs1aZgPJbNhpA/buybfX+GGTXcnqCVaIzl5u6Z2725IhPSxQ6tclFKLsE0xZ+3QOlbk667Zbylwbr95oV79W54n/WSXzv29TxWDpUtWVK+fcI32yxP7OSLGWAUfvV/1rLFtnTcZOOCB80KasNKskv+gB6bA/hD/n6x+knlUcXHt0sErhG5+1L5AfN0s3nWUDg0t2UJOsMvG1ryK6cIn2vjyh6Xvybdsu91lo5f78/vGqhSkXHWUDzzqOP8AOitVWSAWnnzha+tNk+/vw4XZF+OWPSm/NtS6/Nu60ZP3Co6ybLcdh+1pXOHe/If3ritAyy3xWYei+0roqE4baF6hTxlnLpNPH2dUNs5bZ/rtotV0dP3GYzVeX8tT6+ODaxmYts8//0H2tS5fIL4BIDbn9D+5m62N3Qag8Z0+0ClzJtoVZS63ly2uzg1d6RHzGN5xm76FnB1u/zuv95wP7XDweO35Itj0+f334eAtrttltSXnlY0K3HPvxMHpA6MfBSWPsn8Pnt/1v+FV2zL/Y6TPS9Wumui/Ry0+wL/DXv7J/cV77Qj5yhC2rQ7CF0T497OqExITox6n7Lgn97fdHXw8j+tjnm5ESZRlVlTdi+o+bLZC/56Lwq3kiu9KL5u43rcVJTXp0kObdVbkMTuV5SZkdn+59ywanO25/m+5c4TOwW/X7wN5CC7Yi3+9JY+y48/ES+z7Yr1/4ZztuH2uO6xzPBnWvYj26ljnzW/vnPj4eNlzq1t7GinjlS/sx5zx3117pzT9aqCZZsPH5Mnt9pyXN3B9t/7/suNDLVvoO8Nh35m9PDYWqE4PjG9X0neus71F9pXsuDs2yTw/ppFute8prJqlKXy63lke18fWd1QwIJ9vW2qVX3ofSki1E35Nf/f61O79yACWFuriq6vke1+fIj2AAAAC0Vrvz7Ty5V8fa/+51XzAVCNiFXIO62UWY362Xhjp1TsFzkl8dFzpPPmy41fHd9oq1vK+44Mj1+7umerqGPifftMvqySLniQwT3BeDj98ndH5WUYZR0qG/twvW/zylmjIEb6ccGjpHPHRfq5t48TM7166uvPU+r66FF4IXXf/i0Jq3h6rqGQd1s3PCwhI7b3PMDV7M6j4H+9mBdjHm1f+2i+oku+jz/kukSTXUMTi94EQ7X2yXbtvm3qLK3cm7L/Jsw+oecjz7iX04zlgJ6cnWJ/RzM62iyEn2vlhmlU6Ro8wP7WkVns5J9uqt0g+bpVvOtvvuKyWPGmld+qzcEn28gooyXSuVltVc9i7tqt+gy33WncXJY60CSap89a9zv0s7u6p29TZLbpODzdOO/7MFE1H7nHc9PyXRNt55P1ql92dLbVyGHzfb852KWkmauK/dX7DSrtwev0/4skcPtMrQaClqbSszuuaEdyNUnQFdq1/m+h3S31+R/voLqVN2qBxOuaI99+9TLTzbukd69UurKLv/l1V32bFuuw0a1C1HujviYLmnwLpGKiqRHr7MrgJ/bqb1fbdPD+nuC6S4iCtt//S8Vbxf+IAFZieOtoq6yRNCFcq/e0q6+mfWFG3WsvCuj6K9L497uuuA87MDK8+bkWLdqbTLsEq7kX1cV+lW8xk6k08bHz7PyWPtgPrFcun0g61CstwnnXlw+D6WnGiVnF98V3nbOWlM7badCcNsXa3bIXXOsoGazj/CKvk/W2pXmc9aZmHe2MG2zNqWpy7HB6esL39ux6mLjg49ryYNuf1PPVx6+pNQt355hfYeHLmFdgz88xQLOZxtw73Mb9bY7bWPWxd5bjvyLMRy5u+cFTruVoiyv4UdEwLhx4aCYguW3p5r+697Pf+w2bUM12116yA5UXrqGuti6ZMl9n5mL7cK/Gc+kd66KbzMVR0XZi2T7nszFJJFWw/VLaOq8kZO79dFyk6zfje35VrIUNMg345zD5eOGVXzfJFXfTh/n/CX8PkGdZOeucbCjKv/ZVec+AOhvkOr2gfczX8jP9vXv7K/J90a/oP2h802FkTYdhLlsw07lil0ZYtzfHScPNa22VnLQoGtR/bj0N1dWEqSrfMNO0PP36+f7Q+3vmzfv/v3r9z6xynDsfuFv+7Qnvabo7rvXOc28lg5ZpCV7YvvpGsjWoK4jepb+2NETa0mo+3zYQ/X4ns76udUw/7pcb0uIQcAAABaLU/otra/e9dss+7KP//OehgJRJw3DesdvujI84qfj7OQ44vlVu/hzFvberqGPid3RM5z4QPSewtc94+yHhYkq6N58B2rk1u9NXShb23K4LzMcfuHv+awntZjTeT5e6T6nlfXpNxndUSDo13MF6G6esYLj5beW2gDud98tl2s+sSHdrGeZEGRM//Hi60b4ZMODI2X+P5C6df/CY0LUpVqP9/gfW+Uxzi/k1TXkGPlFtthTx5jO7yTMJ081iqRn5tplYqSXWHaMcoGnBZMmzyyD2bHXrt/ywv2L5rdBdX3LzakRx26q6pmOf9+35oG/ecqq5iU7EDjKCq113E3jUpJDPW5l5Rggc9fXwq9npvH9fpdc6xCf9YySyLX77D010njUpPtau8+naS+wb7C3Yle5LKdg4W7fz4ptJ5rkpxgV0TXRk3d9fzfM/aZTDowtB6LS+22qNTGR4jsj89d4XnCAdJZ/7Tl/Pygyq141u+QTrvNKgFf+7/K3RA9+I60dK204F6pS7ZNW7vNQo7lG6SVW61yzi092bbFHXttIKHXZtvynfV62ytSQpyl5698aeOhFJWEnl9SVnWllddjTf6cL4iu7cI/kz0FdoV69/bWjcvtr1oyfOIBUpec6rfbitAtO3yexHjbTvbkh+9nx94SfTmRr5GaWHW/jZEO29duP19qV0qU+Syo2bHXBtr2eizsGDMwtP/Xtjx1OT44xX9jjlWyTz2s9s0YG3L736eH9NSvpcsfsftn3GGf7dGjrEJ6/Q5rdTF+H/uMioL7hrP+F6yUbnrO/r7seOvyLTHexiq4500LdL2e0FXbSQmVt4/cgsqPuY8JzrHImfarR+x485tTrLI5I9gl39l32r4buYza9um/Tw/7J9mx87H3pJuet2388WD3VJ6IZTsWrJTOusP2jbsvkrq1i74enPcUbRnu6e7HIt9Hdpr0xh+ke96wAd/3FFjT3qmH2RU9kd0CuXXJrv7HWkVZIsrg/PnQpRZs5BfbeEtPf2whb9d2dqy5dpLtRzXtA7072TIDqvzZOq3k7rvEfty5P9vISu/qPltn+u788OOj+011ygoddxw5GZWXmZQQvm3dNtX6N50xx47hyQnS4cPtB6S7lZL7O9eRnGA/nKv7znUeco9X4uiUVfPvjIyU2h8jauquKifdvqMiX6+g2K4Ki/YdH/b8DPsMqtrvc6p4vvM5R26LAAAAQGvSMdPqNNZvr93v3vxi6eS/2XnF/51u5x+pidLGXdL591l9j3s58XGh3gkcTt1T5LmQVLt6uoY+J+/e3i4qi5znL1Ok64IXdx19c/gyb37eemW56mdWX5GdZo9d83j0Mrjfh3M+2T7i3M/pxrg0yvmaW33Pq2vy8WK7kPGqn1X/vJrqGQ/b11pi3Py8NDbYC8jg7tbt89+mWzDi9Vi9xzX/sd4LHvhl6PmHD7cLN3//rHVJ5m4N4ua87p4o56e5wa6cnc/FjZBDUl1Djuc+sQ9sxhz7F+n5z6z7ijivnWTPX1l5nvxgxbBzou18gNecJJ14YPTXrenK6QOvC/VjXp3fnmrdwFRl+Ua7Yt/ZYCNd9S8bdMfpr9x9VWQFV9hS1ZWUkl3Z+s1qG2C0W47tzMN6WRcvkh0APltmSabznJzgunI2bLdtucHWHM5014GmNhv7uu3S/tfWPJ8kzfi9tT6pyvIN9nkMuKzyY6f83QKOVf+q/jX27x8chDs//EC3foctIyCrlHT66ndbutZCpK7tQtPc62D5hvD7JWV2pXhxmfTy76xJndPSYGeefXkt32AtFYZdGSrHF8tDy3jgHevqxN2n+6780Pof6mrm5v5Mtu6x1xjV164i/vtUa0ny3gILyzpnW+hT02e4ba91FeMo94V3ieLsZ09eXXWflJGJcW0Pkt3b24+AT4Mhx6i+1ofkxH2l3z1tldXzf7R9z/3FV5vy1OX44Cz70cstlDr579L0GyoPYh5NQ27/kgUaf55irWn+c5Ul+E99ZCHHolU2IJnHY1egfxncjpzyv/6VfWH5A9YaxdmO/7sgNJ/HYxW98V77QRb5WX23wQ4B6SmVjwlOTbiznL2F0geL7Pjo7q6npMwqfqu7KrwuPB7pVydYN2WR+2C05b3+lQWLz18X3t1Y5Hpwv7fIZTjPKy0Pf2xXfuXXHdbLPqtAQFq6zpq03jnDKtV/XU03RnfOsAGza9Kzg7Tw3sqvO6i7/YiVrFVUuc8GjffIQokDB1rIUdM+kJpkx71Nu0LLdz7bEX2sVc0ZB9uPtmifrXvVVddCQLLvIvfx0REI2Fgm+/Wr/ZUlzvT0FOnG0+3ftlzpo2/sGHjO3dJX/wzNW+k7t4bXiCz79tzo3599O1e/TX/xnX331MaCe6rvrmpoT9u+t+WGj8vhjN00JEr/q25DeloQ7/OHByrfbaj++e7dhR/BAAAAaK3i4+zc6qPF0uZd4XUl0Xy+TNqy2+qY3F1T7w32JhB23uQJ1bfkuCrCtwcv0MzJCP+tXdV5q3uexjgnP2y4dam/aHXofFMK75EksiyvfGkDid90Vvg8u/LsItjatCaJnFbblif1Pa+uybRP7WLJsw6p+vVrU88oWQuMMw62oRni42xd3vumLXdcsMedbblWz3feEZVfb/9+1qpkw87QxaCR+na2OojvotSZfLc++HhS5edxeiepLiGHz28hRt/O1sd9pPcWWEXvBwttLIGDh9q4BR8slI7ZLzTfd+tDf3s8VsHTv4u0dL100+T6vYvnr7O+52tSU3dVv55UudnQtlwb1FaSbvh5aNwLN+d+WbmFPymJdnV2dTv7z0ZbdzaLVltCe2iwS6oZX9lVw59+awfZw4aHnjN6gFVqfr5cusG17Lk/2E7p7m8wOZiWFpfVrjKja470v7/WPJ9Uc+j07yvtYOz20WLp/rds4Fv34D3RBALWtU1WqlVyO/Nu2GHpus9v/btXVYnUJccCos27LUCK1L19aJklZdJ591qlZ4dMGzdGsoFpH3jbDvK/Oj7UndaX31mfelecYMv+w3MW6PXtHF6h/NnSUCsgj8e6lUmIs1YO7u3gxVn29wmjQ9N6dpQuOdbew8wloWVE40x/9cvwL6435oTG//B47H3Fx1kTzJr6AIxcdm0cuq+9ptNiweOxMQR6tLcxR8p8oW1cqn156nN8aJduyfuUO6VT/ia99DurKK5OQ27/DmeePp0ssHj5c9vGDhxog357PFZpPfPbiKAiIPkCFvQ5229RqT3fWa4zb0qSbbubdoW+iPOKpHfmWQW/uxmjc0woLbNjjDvMCgTsCgv3+3puZqiJbG1+zLht2W3H20ibd1v5RvYNPd+5oj9yeV6PdSsXHxd6rKr1kBQf/VjnHCO+2xDe5eF70YIShaYN72P/XvxMWry2+vd63pHSsftX/bgjKb7qH6bO9EAg1OKrY5Z9H3m9td8HDhpsld878sI/2x82WbNhp0VK5Gfr8YSusCmp5jvDmR55fHS89bUN1O7e16XoleqR25Rb52zry3XpOunR9+xzd7feqO2yon2+r3wZfsz5eoV9fzoDwlVlVL/aHyNq6q7qhNHWpeNLn0u/Pik0/cXP7PfDUSOrf77z++HtudKpri4dX5pl+93ogdVvazXtvwAAAECsu/Zk6X/fWHe6z11nFd1uZeVWT3Xc/qHeQyLPiZ/+OPR3tPOKS13jCb46226dOhi3murpGuOc/FfHSy98Jt3wtNWPZFQz4LZ7mZFl+GChnce760KrCjGqK1dN5f2p59XRbN1j28DPRttA6tHUtp7RkRAvDQ4GFHsLrTvu4w8IPa9dun3O83+sXM55P1o9R3V10wnx1j3zO3OtpyTnc9uww7pSu+z4agIvzvFqH3I4G/ZfplgiGmloT+lfH0jPzrQPeMpE6aF3pUsekm4603aIDxdZv26SVdY7zWvuuci6dDnjH9LZh9qVy3vype83SYtXW9/u1dm3Fldq18Y+3e2f27rtob+H9JQygxvYH561lirlPqv43rDTurtastauvH93fuj93REcaMbdVO6Y/Sy0mPejVYhfc5L0m//YQfakMVZZ5PFYZZLznPYZdsCc+a103RO2o27aZZXuTndFzrz9ulhlyStf2HtKS7Ydyd26wS05QTqg/09ehZJsgKZIzsDw+/ULr4yfcpe0by+72j4nw7axFz61q2b/eUHoi2h7rh14tu6xJmI799o/R7ecUCXvJUfb+z79H7Zeu7e3dSzZAefMg0Pr6YL77KDXt7OFEvOD/ellpNj7+PML1r3W2EFW4fbQu3ZV9E1nWbgkWRD1+lfSna9b6v/f+TZuh/Pl4PXYZ3fc/jYQ+JP/k4onWguHO16zrrN+9Yh0+ngLBjJS7LGPv5H6d62hu6rg7dtzrTL48OF2lfzfp9t+8fNx9tw+nazZ5d+mW5dsR42w1hbbcu21UpPscSl0wKxLE8DD9rVmjTvzLBBynnvovpacZ6dZau1Mr0t5ant8cDedzEqVXrnR+lM8/R8WhEY7bjkacvuXbPwWpwu99xdYc8VNO6W3/2RduTmmHmbHkuUbLKjqmCktWmPPTUmwsHNXnnXfszMv9P6c95qRYqHF5H9Kvz/d+qe8902rqHautIg8JvzvG9vnvllt+0bXdtYU9cF3LITpFRyf4LmZlZdR26axv3ncQsFJY+z9xnmlFZukR/5rPyCvmRR6/rCetv0++T9rBeT12jHi2P1twK9LH7IfPM56cCrj3WUY2ssq92d8ZdtWUoK1zBg9QBrY1cbc8fltO3x7rjTn+/BlvLfArnI5cbQ9PyA7BucW2j5VbTPgHPtXV9HW5e+ethBnv37SwlV2JctRI+3H8x+eC98HfveUhTeTDgztAz8/KDiuxUtScrxtD5kpdgXSkJ7SZ99W/mw9HjuODA0OgvfMJ7ZdJSdKvTuGX4nklPOIETaIfOTx8R+v2vFx8oSIdVbN9uJMP+om+zE3rJe1iFuxydbFgQOtO0Gp6mOTR1VPj9x2F62Wrvm3dbO5cZetq2450iXHVP85Z6U23DFiaE/b929/1X4LOS0Xn/5E+sMZ4U2j73jN/rmvKjtmP9sur3/SAtJ+ne348dFi6bHLLVCPxunWr7bdzQEAAACxauwgu8j2+ielI/5oY08M6WHhxuI1FmAM6Wn1dwcNsnPF65+0i5vj46y786XrbFnu388ej9VTPfxfG4R6//524dSdM+zczT1wtzN/berpGvqcvH8XuwD5kgelCTfa+x/Z18q+Y6/0yWKbLzMltJxj97MeDQZ1t/OyRavsYnbn4svqylBxTqbwctW6e616nldX56VZVmd77hHRX7su9Yzbc6UH37XtKiPZzlfvf9uWe+cFoeWnJFqPHA+9a12YnzrO6kPemWfB2NTDws/3nB5FFtwTmvZ/p0tH3mQX7l4zyep3/v6KPe+qE6O/F+dcr42rfcjx7EzbGc45LPrj7TNtQOU35kjb9tiA02//UbrxGatg8nikI4bbyfn0L6wSw6mwmLiv9NFfpbtmSL9/xvoey8mw/s1OPaiZrzh0vbY7eRzS067CLCmXTr3NKmEO6G8J6ZwVFnI481YM9OoJfy+v/14aeKmluA/91/plf/wq677nra+tsigybTxmP9vJPlxo4zcM7CbdfaH015fD12lasvTgpVaJ8vPb7OrgG04LVRw3OdeBz70ODhokvfG19O8P7ArvrFSr4Hvpt+Ep7veb7Kp/yfqrj+R+b/v1lz78i1UQ3vqyXdXspJ+PXiZ1cHV/9f5Cu3XCt2NuDj02bh/pihOtkv6uGXZAOesQu5o6OTH0nk4cbU3mXvjMvpSc/uOTgruX836PO8BCjs+W2j7QKdsOWFedaPvIS59bEFbms23g15NC66vKfSA4/dnf2CBZT/7P5j1ufxs8yqkQlqTrTrFWNI/+V3rtS9t2O2XZl/KFR1V9tUFtTNzXDqopiXbQd5572HBbfxOGVR7svbblqfXxIWIbS02SXrheuvgB6cw7pGeuDW9V1pg27rKBkCWrPD/uAAtaIq8KcCqS9xTaFRZFJdaC4MoTbds8+077wXPeEbYef9yssONInNcGTs5MlS5/VCr3W6XwWzdJU+8Oro+IY8JfXrRt7YVZof3mP1dJNz5t/Uv6/PYZvv57W2/uZdR2ALdLj7PK9mc+ljbtth9/HTKkAwdZd2LuljW/Ot666fnry3YlRCAg7XnBArIHL5Xueyt8PXTItK4D3WX4v9Pth8k1/7HjSM8O0pIH7Mfpi7+VfvuUdN3jVun/83EWoJ55R2gZA7raj9r737ZWKAnxFo48fJm1KGgUUY6JTguThavs1qnglizIzkoL7QOSrSt3a7+s4DgtXdqFtocRfYI/wt+t5rP1SH062zHj0fekk261eR+6TPqF6/27r86Zdp2FGlUeHyPeak2tQyYOs67IHv6vtdzo2s5aPF1/Si2OTZ6qp0duuw/+Unrxc+miBy0gnDBU+sd54U3Nm8JdF1qLj399YL+ZenWU/nFu+NVgkv1+8PkteHO/v2d/Y9153faKNZUfGPz9cNr4ql/T+axpyQEAAIC24PwjpQMG2LnQfW/Z7+6EOLuY9PSDpV8ea7+L22da1+V/fM7qm1KTLPx44mrp0N+r0vlvQpzVWd3wtJ0LJSdK5x0u/eUX1Vxlr+rr6Rr6nFyyuqovb7dzrOc/s3NLf8DqXQ7oLz33G5vHWc4/zrNz4XvesBb6I/tIz15r9Wo1lsF1ThZWrjqUt6FN+9TOsw4fHv2161LPmBAvfbvW6mFzC6TO7WwbueHnlett//oLq6968iNbbsBv59v/vEA6P6Ibq/JgTw7uaYN7SG/fJN38go0JE++1OrVbr4s+9nXk89swTyBQmxG7G9DP/mqDbS97sOp+zlC1h9+1q0APGx6atmabNPo3NuDN9ac2X9nQ8O583Sr5x1TR3dLfp1tF4+p/Vd38DnBbstZC1BtOq/3A7Gi92sr2MG2m9KtHpZl/syC1Ldqy21rcXXhU9O7kAAAAAFTvsoft4u7NTzd3SYAQzvUk1XXg8bp67D27HdTdmoR9ttSaXB09ioCjvjbtsm6SCkusdcIPm617mowU6dzDm7t0AAAAAAAAAAA0mcYNOVKTrB+yddutD7EeHazJ1e9obVBvifHWZc0Vj1l/8Zmp0oQh0p8mW/dHAAAAAAAAAAC0EY0bckw93P65/X269WWG+umQaf27uburQtv1+zPsHwCgar84zP4BAAAAQH09ern9A9DitOIOuAEAAAAAAAAAQGtGyAEAAAAAAAAAAGISIQcAAAAAAAAAAIhJhBwAAAAAAAAAACAmEXIAAAAAAAAAAICYRMgBAAAAAAAAAABiUtOHHHFeyeNp8pdtNVh/bUucV+LjRkPyyLYrQGJ7AAAAAAAAMc8TCAQCzV0IAAAANKKycmlnntQ+Q0qIb+7SAAAAAAAaAud6kgg5AAAAAAAAAABAjKKPCgAAAAAAAAAAEJMIOQAAAAAAAAAAQEwi5AAAAAAAAAAAADGJkAMAAAAAAAAAAMQkQg4AAAAAAAAAABCTCDkAAAAAAAAAAEBMIuQAAAAAAAAAAAAxiZADAAAAAAAAAADEJEIOAAAAAAAAAAAQkwg5AAAAAAAAAABATCLkAAAAAAAAAAAAMYmQAwAAAAAAAAAAxCRCDgAAAAAAAAAAEJMIOQAAAAAAAAAAQEwi5AAAAAAAAAAAADGJkAMAAAAAAAAAAMQkQg4AAAAAAAAAABCTCDkAAAAAAAAAAEBMIuQAAAAAAAAAAAAxiZADAAAAAAAAAADEJEIOAAAAAAAAAAAQkwg5AAAAAAAAAABATCLkAAAAAAAAAAAAMYmQAwAAAAAAAAAAxCRCDgAAAAAAAAAAEJMIOQAAAAAAAAAAQEwi5AAAAAAAAAAAADGJkAMAAAAAAAAAAMQkQg4AAAAAAAAAABCTCDkAAAAAAAAAAEBMIuQAAAAAAAAAAAAxiZADAAAAAAAAAADEJEIOAAAAAAAAAAAQkwg5AAAAAAAAAABATCLkAAAAAAAAAAAAMYmQAwAAAAAAAAAAxCRCDgAAAAAAAAAAEJMIOQAAAAAAAAAAQEwi5AAAAAAAAAAAADGJkAMAAAAAAAAAAMQkQg4AAAAAAAAAABCTCDkAAAAAAAAAAEBMIuQAAAAAAAAAAAAxiZADAAAAAAAAAADEJEIOAAAAAAAAAAAQkwg5AAAAAAAAAABATCLkAAAAAAAAAAAAMYmQAwAAAAAAAAAAxCRCDgAAAAAAAAAAEJMIOQAAAAAAAAAAQEwi5AAAAAAAAAAAADGJkAMAAAAAAAAAAMQkQg4AAAAAAAAAABCTCDkAAAAAAAAAAEBMIuQAAAAAAAAAAAAxiZADAAAAAAAAAADEJEIOAAAAAAAAAAAQkwg5AAAAAAAAAABATCLkAAAAAAAAAAAAMYmQAwAAAAAAAAAAxCRCDgAAAAAAAAAAEJMIOQAAAAAAAAAAQEwi5AAAAAAAAAAAADGJkAMAAAAAAAAAAMQkQg4AAAAAAAAAABCTCDkAAAAAAAAAAEBMIuQAAAAAAAAAAAAxiZADAAAAAAAAAADEJEIOAAAAAAAAAAAQkwg5AAAAAAAAAABATCLkAAAAAAAAAAAAMYmQAwAAAAAAAAAAxCRCDgAAAAAAAAAAEJMIOQAAAAAAAAAAQEwi5AAAAAAAAAAAADGJkAMAAAAAAAAAAMQkQg4AAAAAAAAAABCTCDkAAAAAAAAAAEBMIuQAAAAAAAAAAAAxiZADAAAAAAAAAADEJEIOAAAAAAAAAAAQkwg5AAAAAAAAAABATCLkAAAAAAAAAAAAMYmQAwAAAAAAAAAAxCRCDgAAAAAAAAAAEJMIOQAAAAAAAAAAQEwi5AAAAAAAAAAAADGJkAMAAAAAAAAAAMQkQg4AAAAAAAAAABCTCDkAAAAAAAAAAEBMIuQAAAAAAAAAAAAxiZADAAAAAAAAAADEJEIOAAAAAAAAAAAQkwg5AAAAAAAAAABATCLkAAAAAAAAAAAAMYmQAwAAAAAAAAAAxCRCDgAAAAAAAAAAEJMIOQAAAAAAAAAAQEwi5AAAAAAAAAAAADGJkAMAAAAAAAAAAMQkQg4AAAAAAAAAABCTCDkAAAAAAAAAAEBMIuQAAAAAAAAAAAAxiZADAAAAAAAAAADEJEIOAAAAAAAAAAAQkwg5AAAAAAAAAABATCLkAAAAAAAAAAAAMYmQAwAAAAAAAAAAxCRCDgAAAAAAAAAAEJMIOQAAAAAAAAAAQEwi5AAAAAAAAAAAADGJkAMAAAAAAAAAAMQkQg4AAAAAAAAAABCTCDkAAAAAAAAAAEBMIuQAAAAAAAAAAAAxiZADAAAAAAAAAADEJEIOAAAAAAAAAAAQkwg5AAAAAAAAAABATCLkAAAAAAAAAAAAMYmQAwAAAAAAAAAAxCRCDgAAAAAAAAAAEJP+H+ifk2j16HmGAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Visualize the SHAP values for Record number 26 with Model Prediction: 0.9933143258094788\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABk8AAAFqCAYAAACzl830AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB14klEQVR4nO3dd5xU5dnG8Wu2zXaWXXqXKiBFRaSIvfcOoqKxRGJviSa+RpOYWKIxxp5YohEbFjSKLSoWilJFQUQB6b0s28vMvH/cc3bOlK0sW3/fz2eYnTNnzjwzc84s+1znfh5PIBAICAAAAAAAAAAAAJKkuMZuAAAAAAAAAAAAQFNCeAIAAAAAAAAAAOBCeAIAAAAAAAAAAOBCeAIAAAAAAAAAAOBCeAIAAAAAAAAAAOBCeAIAAAAAAAAAAOBCeAIAAAAAAAAAAOBCeAIAAAAAAAAAAOBCeAIAAAAAAAAAAOBCeAIAAAAAAAAAAOBCeAIAAAAAAAAAAOBCeAIAAAAAAAAAAOBCeAIAAAAAAAAAAOBCeAIAAAAAAAAAAOBCeAIAAAAAAAAAAGpm+jxp++7GbsVeR3gCAAAAAAAAAACqtyNf+uWj0il3tfgAhfAEAAAAAAAAAIDamDJDypwgfbGk+nX3u1o68Q8N81x7W3a69OLN8q3YpKUH36G3vtzS2C3aaxIauwEAAAAAAAAAAKAJuO8NqdxX7Wp5w/pq0Jyl6nLtX6WP75DapjdA4xoW4QkAAAAAAAAAAHvL/Aclj6exW1Ezf31TKimrdrWs4HWbFeukNVsJTwAAAAAAAAAAQC14Exu7BTW39T9SfrGUnlz5OqXl2nHOA8r6dJEW/GaSRgzbp+HaVw8KS/1KTap+RhPCEwAAAAAAAAAA6sIfkB58S3r2Y2nDDql7O+nmM6TzDwuts9/VUo/20vQ7wh/73CfSI+9KqzZLHbPsMaP3lU77s/T4ZOn8w2v/XI5Pv5X+/ra0YIVUXCb17Sxddox06THh6zltu3uSdMdL0rwfrYrk24djv97ScmnSg2o7Y5FuPfFsjTj1MI0I3lVU5tcjs/P1zrIibdjtU3pSnMb0TNJN4zLVOzsURRz65GZ1zojXKxPbVSx74qs83T0jT4ft49Xz5+ZULH9oZp7+9mWevriig3pk2TZKygP619x8TVtSpDW7yuVN8Oigbkm6cVym9usYCqpmrynRhJe26/4Ts1RYFtDzCwq0Zle5rhyVrhsOyYz9+lwITwAAAAAAAAAAqIs7X7Jhri45WkpMkJ75n/Srx6U+naRRAyp/3MPvSLe9IA3uId0+XvL5pRc/kz5YuOfP9ez/pOuflg7qa+FKmtfClBuetqDmrgvCt7tuu3TKXdIZo6TTRkoFJZW3obRc2pGvlXdcrJfLhlQEJ+X+gC6aukNfrS3Vcf2TdcmIdK3PLdfzCwv1+aqteuOCdurXzoKNMT29ev27QhWV+ZWSaBUgs1aXKs4jfb2uVKW+gJLiPcHlJeqWGV8RnJT5Apo0dbsWrC/VGYNTddGBacor8evlbwp11gvbNHVijoZ2Tgpr8jPz8rWrKKAJw1LVPi1OnTPiK399LoQnAAAAAAAAAADURZlPmvEXKSnY1X7GKGnotdKTH1QenuzMl+56VerfRfr4T1Kq15Zfdow05jd79lybdkq/eU46c7T07LWhx152rPSbf1ulyyVHS707he77eYv02GTpgsOrf73pydJ7d2jL+jLppe0Vi6d+W6iv1pbq0hFp+v1RbSqWH9MvWWdP2a4/fLxbL4y3ipIxPbx66ZtCzV1XqkP3SVaZL6C560p1+qAUvbGkSAs3lOrg7l4VlwW0cEOpThuUWrG9f88v0Jw1pXrunGwd3js0tNiF+6fp2Ke36s+f7g6raJGkDbt9+vTyDspOrVlo4qh+YC8AAAAAAAAAABDtsmNCYYYkdcm2IbJWbqr8MZ8slopKLdBwghNJykyNHlarts817SurTrngMGn77vDLCQfa0F+ffRe+3ewMaeKhYYuKywJ6a2lh7HbER8cKHywvlkfSNWMywpYf1M2rMT2TNHN1ifJK/JKkMT2tMmTm6lJJ0qKNpSosC+iSEWnKSY3TzJ+t8mXe+lKV+ELrS9K0pUXap228hnZK1I5CX8WlzBfQIb28mruuVMVlgbA2nLVfaq2DE4nKEwAAAAAAAAAA6qZXh+hl2enS2m2VP2b1Vrvu1zn6vv5d9+y5flhv12fcXfl2tuRGbzcuFIgUlwX0i9e366s1pRrYIVH921U/4f2aXT61S4tT25ToYGXfdomatbpU63J9GtghTu3S4tW/XYJmrbaQZNbqUmUlezS4Y6JG90jSrDWlulGquH9Mz1DA9NP2chWXB7T/w5srbcuOIr+6JIbCkl5t6xaDEJ4AAAAAAAAAAFAXMaowJEmBQOzle3JfjZ4r+PPjk6UuOTFXjwphUkOVHcVlAV0SDE4eOCmrRsFJdWK9ojE9vXp+QYFyi/2atbpEo3t4FefxaExPr+74KFcFpba8b06COqbHu7YVUL+cBN15dJsYWzXZqeHvU0qip07tJjwBAAAAAAAAAKChOOHF8g3SUcPC7/txw55tu0+wmiU7QzpiSK0eWuoL6NLXt2vm6lIN7ZSon3eW68Evd8dcd22uT5L0wfIinTggWT2y4jVjZbl2Fvmjqk+WbytTnEfq1iYUgozpkaR/zy/QpyuLtXBDqW4PzpMytqdXZX7pkxUlWrypTOfvnxq2rd5tE7SlwK8xPZMU56lbKFJThCcAAAAAAAAAADSUI4ZKyYnSUx9JFx0Zmvckr0h6+qM92/YZo6Q/vCzd/Zp02H7hc6pIUm6hPbc3uqJkd7FfX6+zeUgWbyrT4k1l1T7dRz+VqKA0oOP6J+vTlSV6dHae/u/IUFXI/PWlmrW6VON6eZXhDYUqo3p4FeeRHpmVrxKfhSaSDbHVNTNeD83Mky8QWl7x8gan6i8zduvJr/L1q1Hh86tI0tYCn9qn1X5+k1gITwAAAAAAAAAAaCjZ6dJt50q3T5GOul06b5zk80tTPpNyMqU12yTVsaqia4704KXS1U9KB90kTRgn9WgvbdstLVkjvTtP+vp+qWf0/Cnt0uL1xBnZmvzmDg3ukKjnx+co0xt7qLDZa0o04aXtuv/ELHVIj9c5Q1L15pIi/Wtugdbl+jSmp1frd/v0/IICZXg9+v1RmWGPb5Mcp8EdE/XtpjJ1zohT7+xQVDG6R5Je+65IcR5pdI/w8OSSEWn68ucS3fNZnmavKdXYnl5leD1av9unmatL5E3w6JXz2tXtvYtAeAIAAAAAAAAAQEO67hQpM0V6ZLr0x1ekjlnSpCOkQd2l8/8mpSRVu4lKXXC41Lez9I93pGc/lnILLJTp11n6v3PtuSpxVJ/kigDlgle26z/n5qhNciVzrbgkxHn03DnZenh2vt75vkj/+6lY6d44HdnHqxsPyVSfnOgoYmxPr77dVBY2Ibyz/LXvijSoQ2LUcyfGe/TsOdn6z4ICvbGkSA/OzJMkdUyP07DOSTp7v5Tq358a8gQCVc1AAwAAAAAAAAAAGsQ//iv93xTpf3+SRvZrtGZ8vKJY9322W8+fmxM2YXtrQngCAAAAAAAAAEBDKi6VkiOqS3YXSmN+IxWUSD88LiU17sBRPn9A8XF7d1L2poxhuwAAAAAAAAAAaEhfLLU5T047WOqSLa3bLk2ZYdf/uLzRgxNJrTo4kQhPAAAAAAAAAABoWL072eXfH0vb8ywsGdJTuvci6ZSRjd06iGG7AAAAAAAAAAAAwsRVvwoAAAAAAAAAAEDrQXgCAAAAAAAAAADgQngCAAAAAAAAAADgQngCAAAAAAAAAADgQngCAAAAAAAAAADgQngCAAAAAAAAAADgQngCAAAAAAAAAADgQngCAAAAAAAAAADgQngCAAAAAAAAAADgQngCAAAAAAAAAADgQngCAGh0M2bM0J133qnCwsLGbkqj2bVrl+68804tWrSosZsCAAAAAABasO+++06PPvqo7rrrLt15553atGmTJOmtt97SCy+8UOvtrVy5Un/5y1+0e/fu+m5qoyI8AQAAAAAAAACgFSgoKNCbb76p7OxsXXDBBbrsssuUk5OjjRs3atGiRTryyCNrvc3evXura9eu+vjjj/dCixsP4QkAAAAAAAAAAK3A9u3b5fP5NHToUPXq1UvdunVTYmKivvzyS3Xt2lVdunSp03YPOuggffvtt8rNza3nFjeehMZuAAAAjtzcXP33v//VypUrJUkDBgzQcccdp7S0tIp1vvvuOy1cuFCbN29WcXGxsrKytO++++rQQw9VUlJSxXo7d+7Uxx9/rNWrV6uwsFDJycnq0KGDjjvuOHXq1Clse3PmzNHmzZvl8XjUvXt3HX300ercuXOl7dy0aZOeeOIJnXrqqTrggAPC7vvxxx81ZcoUnXfeeRowYIB27Nihzz//XGvWrFFeXp6Sk5PVuXNnHXXUUerYsWOV78e0adP0888/6/rrrw9bPmPGjIqhzhyBQEDz5s3T/PnztW3bNiUkJKh379465phj1LZt2yqfBwAAAAAAtHzTpk2rGC586tSpmjp1qnr16qWzzz5by5Yt0/HHHx+2/jvvvKNFixbpkksuqQhVAoGAnn/+eW3ZskWTJ09WRkaGJOvDSUpK0oIFC3TEEUc06OvaWwhPAABNxiuvvKLBgwdrxIgR2rJliz799FNt3bpVl112meLj4yVJO3bsUL9+/TRq1CglJiZq27ZtmjlzptavX6+LLrqoYltTpkyR3+/XMcccozZt2qiwsFBr165VcXFxxTpffPGFPvnkEw0fPlyHHnqofD6fZs2apWeffVaXX3652rdvH7OdnTp1UufOnbVo0aKo8GTRokVKS0tTv379JEl5eXlKTU3V0UcfrbS0NBUVFWnRokV66qmndMUVV6hdu3b18t45/6E5+OCDdfTRR6uoqEifffaZnn76aU2ePFnp6en18jwAAAAAAKB5OvTQQ9W1a1e9++67Ouqoo7TPPvvI6/VqxYoV8vl86tWrV9j6xx9/vNatW6epU6fqiiuuUHJysmbMmKGff/5ZF1xwQUVwIknx8fHq3r27li9f3mLCE4btAgA0GQMHDtQxxxyjPn36aPTo0TrllFO0ceNGLVmypGKdQw89VKNGjVK/fv3Us2dPHXDAATr99NO1atUqbd68WZJUWFiobdu2aeTIkRo6dKh69uypgQMH6thjj634j0Bubq4+/fRTjRw5Uqeddpr69++vgQMH6sILL1RSUpJmzJhRZVuHDx+uNWvWaPv27RXLioqK9MMPP2jYsGGKi7NfsT179tSxxx6rQYMGqWfPnurfv7/OOeccZWZmav78+fXyvq1bt07z58/X0UcfrWOPPVZ9+/bVkCFDNGnSJJWUlGj27Nn18jwAAAAAAKD5ys7OrjhRNCcnR926dVP79u21bt06JSYmRp3gmZCQoHPPPVeFhYWaNm2aVq5cqc8//1zjxo1Tnz59orbfuXNnbdq0SaWlpQ3yevY2Kk8AAE3GkCFDwm4PHjxYb775pn7++WcNHTpUkg3H9cknn2jVqlUqKChQIBCoWH/r1q3q2LGjUlJSlJ2drVmzZikQCKhXr17q1KmTPB5PxborVqyQ3+/XsGHD5Pf7K5YnJCSoV69eWrVqVZVtHTp0qD766CMtWrRIRx11lCQbAqy8vFzDhw+vWM/v92vmzJlavHixduzYIZ/PF9be+rB8+XJ5PB4NHTo07LWkp6erY8eO+vnnn+vleQAAAAAAQMvjjJrh7jdxZGdn69RTT9XUqVP1008/qWfPnjr88MNjbictLU2BQED5+fnKzs7ey63e+whPAABNRuTQUnFxcUpNTVVhYaEkqbS0VM8884wSEhJ05JFHKicnR4mJicrNzdUrr7yi8vJySZLH49GkSZP02WefaebMmfrggw+UkpKioUOH6sgjj5TX61V+fr4k6Z///GfMtsT6D4NbSkqKBgwYoG+++UZHHHGE4uLitGjRInXt2lUdOnSoWO+DDz7Q119/rUMOOUQ9e/ZUSkqKPB6P3n777Yr27qn8/HwFAgH99a9/jXk/c54AAAAAAIDKlJWVKSGh8qigX79+Sk9PV35+vkaPHl0x2kYkZxv11d/R2AhPAABNRn5+vjIzMytu+/1+FRYWKjU1VZK0atUq5eXl6eKLLw4bh9M9j4kjKytLp512miRp+/btWrJkiWbMmCGfz6eTTz65YpvnnnuusrKy6tTe4cOHa8mSJVq5cqXatGmj9evX6+STTw5bZ/HixRo2bFhFdYrDmcS+KgkJCTH/w+GESQ7n7JBf/OIXMf+z48wXAwAAAAAAECk1NVUbN26s9P533nlHJSUl6tChg9577z316NFDKSkpUesVFRVVbK8lYM4TAECT8e2334bdXrJkifx+f9SEZZEBwbx586rcbk5Ojg499FB16NCh4j8Dffv2VVxcnHbu3KkuXbrEvFSnT58+yszM1MKFC7Vw4UIlJCRov/32i1ovsr3Lly/X7t27q91+VlaWCgoKKqpkJMnn8+mnn34KW69///4KBALKy8uL+To6duxY7XMBAAAAAIDWqV27dioqKop5cuqCBQu0ePFinXjiiTrvvPNUXFyst956K+Z2du7cqdTUVKWlpe3tJjcIKk8AAE3G999/r7i4OPXu3Vtbt27VJ598ok6dOmnw4MGSpO7duyslJUXvvPOODjvsMMXHx2vx4sUVE8U7Nm/erOnTp2vQoEHKyclRfHx8xYTyhxxyiCQLJo444gh9/PHH2rlzp/r27avk5GQVFBRo/fr1SkxM1BFHHFFle+Pi4jRs2DDNnj1bXq9XAwcOjKom6d+/vxYtWqR27dqpY8eO2rBhg2bNmhVWYVOZwYMH69NPP9Vrr72msWPHqry8XF999VXYPC+S1KNHDx144IGaNm2aNmzYoJ49eyoxMVH5+flas2aNOnTooIMOOqja5wMAAAAAAK1Pr169FAgEtH79+rCJ4Ddv3qz33ntPw4cP1/777y9JOvXUU/Xqq69qzpw5GjVqVNh21q1bp549e1Y7FHpzQXgCAGgyxo8frxkzZmju3LnyeDwaMGCAjj/++Iphp1JTUzVx4kR9+OGHeuONN5SUlKQBAwbo7LPP1pNPPlmxnfT0dLVt21Zz586tqPBo27atjjvuOI0cObJivXHjxql9+/b66quv9O2338rn8yk9PV1dunTRiBEjatTm4cOH64svvlB5eXnFfyTcTjjhBMXHx+uLL75QaWmpOnfurPHjx+uTTz6pdttt27bVhAkT9PHHH+vVV19Venq6Ro8ercLCQs2YMSNs3VNOOUXdunXT/PnzNXfuXAUCAWVkZKh79+7q2rVrjV4LAAAAAABofXr06KGsrCwtW7asIjwpLS3V1KlTlZWVpZNOOqli3UGDBmnkyJH66KOPwvocduzYoc2bN1c6mXxz5AlEnr4KAAAAAAAAAABajVmzZumLL77QjTfeqMTExFo//pNPPtE333yj6667rtIJ5ZublvEqAAAAAAAAAABAnYwcOVJer1dz586t9WOLi4s1d+5cHXXUUS0mOJEITwAAAAAAAAAAaNUSEhJ05plnVgydXhs7d+7UIYccoiFDhuyFljUehu0CAAAAAAAAAABwofIEAAAAAAAAAADAhfAEAAAAAAAAAADAhfAEAAAAAAAAAADAhfAEAAAAAAAAAADAhfAEAAAAAAAAAADAhfAEAAAAAAAAAADAhfAEAAAAAAAAAADAhfAEAAAAAAAAAADAhfAEAAAAAAAAAADAhfAEAAAAAAAAAADAhfAEAAAAAAAAAIAWYvny5br00kvVq1cveb1etWvXTsccc4xeffXVWm+rvLxcjz/+uA455BBlZWXJ6/WqR48euvjii7V06dJKH7d06VJdeuml2meffeT1epWVlaUxY8bo0UcfVVlZ2Z68vAbjCQQCgcZuBAAAAAAAAAAA2DPTp0/XWWedpeLi4pj3X3TRRXr22Wfl8Xiq3VZ+fr5OOOEEffnllzHvT0pK0ksvvaQzzzwzbPmrr76qSZMmqaSkJObjDjvsML377rtKS0urtg2NifAEAAAAAAAAAIBmbv369Ro8eLByc3MlSYMGDdKECRO0dOlSvfzyyxXrPfLII7rqqquq3d5VV12lxx57TJLk8Xg0ceJE9evXT++8847mzZsnSUpLS9N3332nXr16SZLWrl2r/v37V4Q3ffr00cSJE7V9+3Y9/fTTFYHKlVdeqUcffbTeXvveQHgCAAAAAAAAAEAzd8stt+i+++6TJGVkZOjnn39Wdna2JOn888/Xiy++KEnq2rWrVq9erfj4+Eq3VV5eruzsbOXl5UmSJk2apOeee06SVFhYqB49emj79u2SpGuvvVYPPfSQJOnee+/VrbfeWrGdlStXap999om6LzExUWvXrlXHjh3r7fXXN+Y8AQAAAAAAAACgmXv77bcrfj788MMrghNJOuussyp+Xr9+vebPn1/ltrZu3VoRnEjSkCFDKn5OTU1Vnz59Km6/8847FT+vXLmy4ue0tLSK4ESShg4dWvFzWVmZPvzww2pfU2MiPAEAAAAAAAAAoBkrKSnRDz/8UHG7d+/eYfdH3l68eHGV28vMzFRcXCg++Pbbbyt+Liws1IoVKypur1y5UkVFRZKkrKysiuUFBQVatWpVpc+5ZMmSKtvQ2BIauwEAAAAAAAAAAKDudu7cKfcMHZmZmWH3Z2RkhN3etm1bldtLS0vTkUceqf/973+SpP/85z/y+/3q16+f/vvf/1YM2eXYtWuXUlJSdOqpp1YMHSZJxxxzjM4//3xt27ZNzzzzTFSbmzLCEwAAAAAAAAAAmrHIqc2ru+3xeKrd5iOPPKJx48Zp69atCgQCeuGFFypdNykpSZI0duxYXXvttfrHP/4hSVqxYoX++Mc/VvmYpophuwAAAAAAAAAAaMays7PDAhH3fCWStHv37qj1qzNgwAAtWrRIV155pXr16qWkpCT16NFDF110ka655pqK9VJSUtS2bduK2w899JBefvllHXroocrIyFB6eroOOuggPf3002EVMV26dKn162xIVJ4AAAAAAAAAANCMeb1e9e/fv2LeE/ecJLFuuydvr0qXLl306KOPRi0/6aSTKn4++OCDw+ZHkaTx48dr/PjxYcvmzp0bFuKMGTOmRm1oLFSeAAAAAAAAAADQzJ1yyikVP8+YMSNsXpJXX3214ucuXbpoxIgRkqQ777xTHo9HHo9HvXr1CttecXGxCgsLo57nhRde0PTp0ytuX3LJJWH3R86HItn8JldeeWXF7b59+2rcuHE1fGWNg8oTAAAAAAAAAACaueuuu05PPvmk8vLylJ+fr0MPPVQTJkzQkiVL9Nprr1Wsd8sttyg+Pr7a7f30008aPXq0TjjhBPXv31+S9PXXX+ujjz6qWGfs2LGaOHFi2OMmT56sH3/8UYcccog6deqkdevW6c0339SWLVsk2Xwr//jHP6KqVZoawhMAAGqpoKBAgUBAHo9HaWlpjd0cAAAAAAAAdevWTVOmTNE555yjkpISLV26VL///e/D1rngggt09dVX13ib+fn5mjp1asz7Ro4cqTfeeCMqiAkEAvrmm2/0zTffRD0mISFBjz/+uE444YQat6GxEJ4AAFBLgUBAgUCgsZsBAAAAAAAQ5pRTTtGiRYt077336uOPP9bmzZuVlpam/fffX5dffrkmTJhQ42116dJF1113nT7//HOtXbtWu3btUlZWloYPH67zzjtPkyZNUkJCdMQwceJElZWV6ZtvvqmoNunevbuOOuoo3XDDDerXr1+9vd69yROg9wcAgFrJz8+vqDxJT09v7OYAAAAAAACgnjXtQcUAAAAAAAAAAAAaGOEJAAAAAAAAAACAC+EJAAAAAAAAAACAC+EJAAAAAAAAAACAC+EJAAAAAAAAAACAC+EJAAAAAAAAAACAC+EJAAAAAAAAAACAC+EJAAAAAAAAAACAC+EJAAAAAAAAAACAS0JjNwAAAAAAAAAAADQ9hYWFCgQC8ng8Sk1NbezmNCjCEwAAAAAAAAAAEMXv91eEJ60Nw3YBAAAAAAAAAAC4EJ4AzcjOnTt14YUXqk2bNmrTpo0uvPBC7dq1q9L1y8rKdMstt2jIkCFKS0tTly5dNGnSJG3YsKHhGg00E4899pj22WcfJScn68ADD9QXX3xR7WO2bNmi5ORk9e7dW0888UQDtBJoGWpzvL3xxhs65phj1L59e2VmZmr06NH64IMPGrC1QPNWl99vkjRz5kwlJCRo+PDhe7eBQAtS2+OtpKREt912m3r27Cmv16s+ffromWeeaaDWAs1bbY+3KVOmaNiwYUpNTVXnzp31i1/8Qtu3b2+g1gLN1+eff65t27ZJktatW6dp06ZV+5jPPvtMBx54YIvoLyE8AZqRiRMnatGiRXr//ff1/vvva9GiRbrwwgsrXb+wsFALFizQ7bffrgULFuiNN97Q8uXLdeqppzZgq4Gm75VXXtH111+v2267TQsXLtS4ceN0wgknaM2aNTHXLy8vlyQlJSVp4cKF+t3vfqdrr71Wr7/+ekM2G2iWanu8ff755zrmmGM0ffp0zZ8/X0cccYROOeUULVy4sIFbDjQ/tT3eHLm5uZo0aZKOOuqoBmop0PzV5Xg799xz9fHHH+vpp5/WDz/8oJdeekn77rtvA7YaaJ5qe7x9+eWXmjRpki699FItWbJEU6dO1dy5c3XZZZc1cMuB5qegoEBJSUk1Xn/VqlU68cQTNW7cuBbRX+IJBAKBxm4EgOp9//33GjRokObMmaODDz5YkjRnzhyNHj1ay5Yt04ABA2q0nblz52rkyJFavXq1evTosTebDDQbBx98sA444AA9/vjjFcsGDhyo008/XXfffXfU+uvXr1dmZqY8Ho/S09MlSZMnT9Y333yj2bNnN1i7geaotsdbLIMHD9b48eP1+9//fm81E2gR6nq8TZgwQf369VN8fLymTZumRYsWNUBrgeattsfb+++/rwkTJmjlypXKzs5uyKYCzV5tj7f7779fjz/+uFasWFGx7OGHH9Z9992ntWvXNkibgeYsPz9fgUBA69ev17Jly3T66adXuu4tt9yit99+W99//33FsubcX0LlCdBMzJ49W23atKkITiRp1KhRatOmjWbNmlXj7eTm5srj8SgrK2svtBJofkpLSzV//nwde+yxYcuPPfbYSo+t0tLSqGXHHXec5s2bp7Kysr3STqAlqMvxFsnv9ysvL4+OJqAadT3enn32Wa1YsUJ33HHH3m4i0GLU5Xh7++23NWLECN13333q2rWr+vfvr5tvvllFRUUN0WSg2arL8TZmzBitW7dO06dPVyAQ0ObNm/Xaa6/ppJNOaogmA63K7Nmzo47P5txfktDYDQBQM5s2bVKHDh2ilnfo0EGbNm2q0TaKi4t16623auLEicrMzKzvJgLN0rZt2+Tz+dSxY8ew5R07dqz02PL5fFHLOnbsqPLycm3btk2dO3feK20Fmru6HG+RHnjgARUUFOjcc8/dG00EWoy6HG8//vijbr31Vn3xxRdKSOBPRaCm6nK8rVy5Ul9++aWSk5P15ptvatu2bbryyiu1Y8cO5j0BqlCX423MmDGaMmWKxo8fr+LiYpWXl+vUU0/Vww8/3BBNBlqVTZs2xTw+m2t/CZUnQCO788475fF4qrzMmzdPkuTxeKIeHwgEYi6PVFZWpgkTJsjv9+uxxx6r99cBNHeRx1FNjy33+rG2AyBaXY+3l156SXfeeadeeeWVmCcUAIhW0+PN5/Np4sSJ+sMf/qD+/fs3VPOAFqU2v9/8fr88Ho+mTJmikSNH6sQTT9Tf/vY3/fvf/6b6BKiB2hxvS5cu1bXXXqvf//73mj9/vt5//32tWrVKkydPboimAq1OrOMz1vLmgNOJgEZ29dVXa8KECVWu06tXLy1evFibN2+Oum/r1q1RiW6ksrIynXvuuVq1apU++eQTqk4Al3bt2ik+Pj7qLKUtW7ZUemzFx8dHLduyZYsSEhKUk5OzV9oJtAR1Od4cr7zyii699FJNnTpVRx999N5sJtAi1PZ4y8vL07x587Rw4UJdffXVkqxzNxAIKCEhQR9++KGOPPLIBmk70NzU5fdb586d1bVrV7Vp06Zi2cCBAxUIBLRu3Tr169dvr7YZaK7qcrzdfffdGjt2rH79619LkoYOHaq0tDSNGzdOd911V7M7Ex5oyjp16hTz+Gyu/SVUngCNrF27dtp3332rvCQnJ2v06NHKzc3V119/XfHYr776Srm5uRozZkyl23eCkx9//FH/+9//muUXFbA3JSUl6cADD9RHH30Utvyjjz6q9NhKSkqKWvbhhx9qxIgRSkxM3CvtBFqCuhxvklWcXHzxxXrxxRcZmxqoodoeb5mZmfr222+1aNGiisvkyZM1YMAALVq0KGzePQDh6vL7bezYsdqwYYPy8/Mrli1fvlxxcXHq1q3bXm0v0JzV5XgrLCxUXFx4F6hzQpxzRjyA+jF69Oio47M595cQngDNxMCBA3X88cfr8ssv15w5czRnzhxdfvnlOvnkkzVgwICK9fbdd1+9+eabkqTy8nKdffbZmjdvnqZMmSKfz6dNmzZp06ZNMSe8BlqrG2+8UU899ZSeeeYZff/997rhhhu0Zs2aijLu3/72t5o0aVLF+mlpaZKkXbt26fvvv9czzzyjp59+WjfffHOjtB9oTmp7vL300kuaNGmSHnjgAY0aNari91hubm5jvQSg2ajN8RYXF6f99tsv7NKhQwclJydrv/32q/jdByC22v5+mzhxonJycvSLX/xCS5cu1eeff65f//rXuuSSS5SSktJYLwNoFmp7vJ1yyil644039Pjjj2vlypWaOXOmrr32Wo0cOVJdunRprJcBNAv5+flhE72vWrVKixYt0po1ayRFH2+TJ0/W6tWrdeONN7aI/hKG7QKakSlTpujaa6/VscceK0k69dRT9cgjj4St88MPP1R0KK1bt05vv/22JGn48OFh63366ac6/PDD93qbgeZg/Pjx2r59u/74xz9q48aN2m+//TR9+nT17NlTkrRx48aK/xhIUkJCggKBgEpKSjR8+HB16dJF//jHP3TWWWc11ksAmo3aHm9PPvmkysvLddVVV+mqq66qWH7RRRfp3//+d0M3H2hWanu8Aai72h5v6enp+uijj3TNNddoxIgRysnJ0bnnnqu77rqrsV4C0GzU9ni7+OKLlZeXp0ceeUQ33XSTsrKydOSRR+ree+9trJcANBvz5s1Tp06d1LVrV0kWXkqhv8cij7d99tlH06dP1w033KBHH3202feXeALUpwEAUCv5+fkVExKmp6c3dnMAAAAAAAD2itbcB8KwXQAAAAAAAAAAAC6EJwAAAAAAAAAAAC6EJwAAAAAAAAAAAC6EJwAAAAAAAAAAAC6EJwAAAAAAAAAAAC6EJwAAAAAAAAAAAC6EJ0AzVlJSojvvvFMlJSWN3RSgReNYAxoOxxvQcDjegIbD8QY0HI43oOG09OPNEwgEAo3dCAB1s3v3brVp00a5ubnKzMxs7OYALVbksZafn69AICCPx6P09PTGbh7QovC7DWg4HG9Aw+F4AxoOxxtQv6rqA2npxxuVJwAAAAAAAAAAAC6EJwAAAAAAAAAAAC4Jjd2AygQCAeXl5TV2M4Ambffu3WHXAPaOyGPNXbLq9/sbs2lAi8PvNqDhcLwBDYfjDWg4HG9A/aqqD6Qxj7eMjAx5PJ69+hxNds4TZ7w0AAAAAAAAAAAAR0PMs9JkwxMqTwAATRUTxgMAAAAAgNagqfaBNETlSZMdtsvj8ez15AgAgLqIi4trkv9xAAAAAAAAqE+tuQ+ECeMBAAAAAAAAAABcCE8AAAAAAAAAAABcCE8AAAAAAAAAAABcCE8AAAAAAAAAAABcCE8AAAAAAAAAAABcEhq7AQAANDcejyfsGgAAAAAAAC0L4QkAALWUlpbW2E0AAAAAAADAXsSwXQAAAAAAAAAAAC6EJwAAAAAAAAAAAC6EJwAAAAAAAAAAAC6EJwAAAAAAAAAAAC6EJwAAAAAAAAAAAC6EJwAAAAAAAAAAAC6EJwAAAAAAAAAAAC6eQCAQaOxGAABQbwIB6ect0oYdkse1LD6+8vXjPFK5327HV3deQUDyB4KPi5M8nmrWr6KdHo/k81s74/bgfAb3a/B47GcAAAAAAIA9lN+/owKJ8SrzSyvykiqWx0mK83gkBVTuShgSPB4FZN0T5f6AEuI8ciIIX0BKDN72eDyyRwfUNzte6ckJDfmyaoTwBADQcuQWSD+sl0rLo++74jFp7bbwZf26SLedLXXIstslZdJ590vFZbG3f+d50oi+oXDiof9KHyysfTtPGyldeISU6rXbc3+U7nip9tuRpHPHShPGScnB/8B8sUS6+/W6bQsAAAAAAMAlf959CnRuq035fh39fEHF8t8dnqnRPaxfo6gsoJcXF+jjFcV67uwcxQf7Tbbk+9QhPXQy6+Y8nzpmxD65Nd4jDeqYIE9dT1LdCxi2CwDQciQnxQ5OJGnswOhlG3dI2Rmh295E6aB+lW+/uDS8quOQQXVr566CUHAiScN7S+nJddtWbmEoOJGs/d6md7YGAAAAAABoGZITpAO6hPoiUhI9yi32a1R3b0VwIkltU8Ljh8zkyoOROI+aVHAiEZ4AAFoSb6KUkRL7vrH7Ri/LL5a++TlivRghi+PLpeG3h/WqW+jx9Y/hIU9ivDSyf+23I0mzf7ChvxzJSdIBfeq2LQAAAAAAgGqM6OqVNyEUdJT7A/pqbanG9PSGrVfqCx/0Kq6KcCQrpWkFJxLhCQCgpcnJjL28T2epc9vo5TO/D79dVeXGvJ9saC9HQrw0akDt21hUKi1YEb6sqtCmKrsLpe9Why+ra0UMAAAAAABANcb2TAq7vXhTmTweaVinxLDlaUnh8YM7cInULq3pRRVNr0UAAOyJdhmV3xcroJi9LLxyI6WKyo3iMgtQ3A6pY+jxZURoc2Afe+762NbB/S3YAQAAAAAAqEfeeKs8cZu5ukQjuyWFDdlVHlF1UlzmV2US4qTE+KYXVTS9FgEAsCeSkyofSitWeJIbo3KjqiqQyEqV/fuEz19SU18vl8p8odtJCdLIKuZbqcqsZZLf9Z+SVK90QO+6bQsAAAAAAKAS+3dJUnJiKCTx+QOas6ZEYyOG7CouDw9PVNWQXVXMhdKYCE8AAC1PZUN3DegqdWgTvTwyEBk1oPLKja+WS2WR85XUIfTIL5a+WRW+rK5Dd+3Ml5aurZ9tAQAAAAAAVCIyJPluc5nK/dLwzuGjaaR7w6OH5GY2ZJdEeAIAaIlqO3RXbSo3ikqlBSvDl9V1jpHICehH9LNJ7+tiZsS2Rg2wulcAAAAAAIB6kBAnjewWHpLMWmNDdiXGh1ejuJVEVqFEbDOpifZfNM1WAQCwJ1K8UlolQ2nFCk921LJyIyr06Fu3+Urm/BA+30pyom2rLmYuC7+dkSIN3adu2wIAAAAAAIiwf+ckpbomgfcHApq9plRjIqpRisrCwxJ/oPLwJLOJDtklEZ4AAFqqyobuGtRdyolRmRJz6K5Kfk1+tVwqj5iv5KA6hB67i6TFP4cvq+sE9Nt2S8vW1c+2AAAAAAAAIkQO2fX9lnIVlwV0YNeqh+xKSaw8hujQRIfskghPAAAtVbtKwhNJGrNv9LJZEeFJVZUb+cXSonqaryQytDmon4UxdfFlxLZG7yvFNd0zOAAAAAAAQPPgkXRw9/CQZObqEh3YLUlJVQzZVVrFkF3xnqY7ZJdEeAIAaKlSvXaJJVbQsTVG5cbYGCGLI1bo4a1D6FGb+VaqE9mmNqnSkJ512xYAAAAAAEBQYrwnqqJk9poSje0RHqhEDtnlq2LIrjZNeMguifAEANCSxRqeS5L26yllpUUvj6zcGFNF5cbsZRHzlSRJB9Zh6K5dBdJ3q8OX1XUC+s27pB83hC+ra0UMAAAAAABAUFJ8+O1lW8uUV+LXiK7hJ67WZsiudulNO55o2q0DAGBPVDZ0V5wn9tBdUZUbaZVXbuwukr6NCD3qa+iukf2lhPjY69Z2W2MGMnQXAAAAAADYI+6huSRp1uoSHdA1ScmJoeX+yCG7fFUP2ZXchIfskghPAAAtWarXKkJiiRV01LZy48ul4bcP7i8l1iH0mLUs/HZ6sjS8kvlWqhMZnmSnSwO7121bAAAAAAAAij4vc9aaEo3pEV51UhgxZFd5FeFJZhMfsksiPAEAtGQej9SukqG7hvaSMlOil0dVblQzdFfkfCX796l9O7fnSUvXhi87pI5VLOt3SCs31c+2AAAAAAAAIvy4rUw7Cv0a2S38hNXUJE/E7SqG7Epr+tFE028hAAB7orKhu+LjpFEDopdHVW5kVF65sbNAWromfFldg4rI5x29r7WxTtuKqGQZO1Bq+id0AAAAAACAZmDWmhIN75IUFo74AwHFeUKdD2VVVJ3EeaqeC6WpaPotBABgT6QlVx5CDIsxNNb6HdK23RHr9ap8+9/8XPN1q/LNqvDbGSlS7471s612mVKXnLptCwAAAAAAwGXxpjIN65QYtqwoYsiukvLKw5OUxOZxhifhCQCgZSsskXz+2PctWRO9rEOb6GqVJWuj13MMiqhKqWrdqkRup7BEWrWlfra1M1/auKNu2wIAAAAAAHAZ2D5RS7eUhS1LSQgPRJISKg9IissqD1aaEsITAEDLFllF4vAHbM6SSJETxOcWSt/+HHsbGSk2d4rbzKUxV63W2EHht+f8IJX76ratyKHDIudmAQAAAAAAqKOxPb2av6E0rLokLmK+2KT4ysMTX0AqKa/kRNcmhPAEANCybc+LvXzpGpuzJFJkeDKniuBh1IDwIcGKy6R5K2rfxjap0n49wpdFzoFSUx3aSP27hi/7so7bAgAAAAAAiDCwQ6LSEuM0b31p2PL8kvBApKis8oBkawHhCQAAjaewxC6xxAoUcjKih7yqKniIrPCY96NUUhZ73apETg5fVCrNr0MII1VSObO6btsCAAAAAACQFHla6ZieSZq5OrzPJXIuE/cE8pFyi5v+CBmEJwCAlmt7JUN2SbErOyKDh7yi6MnXHenJ0vDe4cvqWuERGcLM/VEqLa/btmJVzlQ25wsAAAAAAEANRHZTjO3h1bx1pSr1hUKQ+Iihu7xVzHvi80ulTXzoLsITAEDLta2SIbu+Xxd7OK/IEOOr5VJlv8hH9pcS40O3S8st9KitjBRp2D7hy76s47wpsSpnZsaY1wUAAAAAAKAWSnzhlSKDOibKmyAt2BAxdFdpeD9KVZPDN/WhuwhPAAAtU1GpVFAc+75Y4UTbNGlQxLwjVVWSRFZ4zF9hz1lbo/qHD9lVUibN+6n225GkMfuG384vlhatrNu2AAAAAAAAgsp8ARW65jCJ83g0qodXsyKG7kqOrDapvPikyQ/dRXgCAGiZajtk1+h9JXd5aWGJtLCSeUdSkqQD+0Rss47VImMHhd+e95NNPF8Xh0Rsa84PlVfOAAAAAAAA1FBA0tx14SeNju3p1ddrS1XmqkpJiBi6KypMcSlv4kN3EZ4AAFqmbZWEJz9ukLbkRi+PDB6+Xi6V+WJvY2Q/KSkhdLvMZ0N81VaaV9o/Yt6UWMFOTbRNkwZHVM7UdVsAAAAAAAARIqtMhnRMVHyc9M3G8FClIGLorpLyyitMthUSngAA0HCKS23IqlhiDcWVmSoN6Vn9eo7IIbsWrpQKSmKvW5XIeVPKyusWwkixK2cWVFI5AwAAAAAAUEvz15eGzWESH+fRwd29mrkmPDzxxodXmwQClYcnu4qa7tBdhCcAgJYn1mTwjphDdg0In3ekuFSaX8m8I95EaUS/6rdZE5ET1C9YWbd5U6ToQKeqyhkAAAAAAIBaKvFJ89ZHD9311doS+fyuobsiwpPkxMpjiHK/VOZrmtUnhCcAgJansiG7Vm6SNuyIXh4ZPMz9SSopj72NEX2l5MTQbZ/f5haprZQk6cC+4ctiTWRfE5kp0tBe4csYsgsAAAAAANSzWWvCR94Y1jlR/oC0eFP4/K21GrqrgPAEAIC9r6RMyiuKfV+sQCE9WRq+T8R6VYQYkUHLN6sqf76qHNQ3fN6U8jrOmyJJo2JUzsyrpHIGAAAAAACgjuatK1VpxATxI7slRc2HkhRRfeJvhkN3EZ4AAFqWqobsijWPycH9pQTXvCMlZVZ5EktSgk0W71bXCo+xERPUL1pV+Twt1Ymc7L6qyhkAAAAAAIA6KioPaEGMobvmRAzdlRgRnqRUMXRXmV8qb4JDdxGeAABalsqG7FqzVVq7LXp5ZPCwYEXl844c0FtK9YZu+/zS7DoM2eVNtMoTt7qGMDErZxiyCwAAAAAA7B2RQ3cd0CVJJT5p6ZbwobsKI4buclesRNpW2PSqTwhPAAAtR2m5tLsw9n2xqk5SkiwQqW49R2TQ8t0aaVdB7dooSSP6SMlJods+vzR7We23I0VXzpSWS3N/rNu2AAAAAAAAqvH12lKV+cKrTEZ2S9LMiKG7IieOL/dXNXQXlScAAOwdPr+0dZfNP7IlV1q3TVqxScoNhhuxJmPvmiOt2iKt2CgVlkhl1cw74k2UVm+RNu6021XNjVKVLtnSll32vJK0+Gdpdx3mTZHsNZSUSTvybN6U+T9VXjkDAAAAAABQB+4YpKAsoEUbQ30PPn9AnTPiNXtNeH9EacQk8VWFJ+V+KVDFvCiNwRNoai0CALRu5T7r/C8utWvnUhxxXVhic4QUFEuFxVJRmT22uFTakW/3+/xS12ypU1vp5y1WlVFabmGDW3KiVZVkpkjLN9o2Kp6vzH52xt5MiJf6dJSOGm7hR5mv+tcUCNi2duZb23bm2/bapEpnjLLXUdVcLdUpLJa+XS2dOELyB2z7AAAAAAAAeyj/nFEKZCSrtMyv+dtDo2gkJ3iUkuBRqU8qLPPLCRmykuPkD0hlvoCKygPKTolXmS+gUn9AJeUB5aTEKyAp3iPFeSxQ6Z0dr6yUeHk8nphtaCyEJwCA+hcIWKgQK/SIvC4otvCgsEQqKLFgw++3cMHnt5/LfBYKBALBZQFb7g9IAb+dnuAL/hwf57rE2xwlKUlSYnBoq4BCj/f5bNsl5fazIz7e5hJJ9UppXiktOXjx2rKkBKm6X+glZVYBs2mnXRcU22OyM6SObaSObaXsdGvnntqZL320SDpmuNQ2fc+3BwAAAAAAIKlgUFcFEuLkSfEqLSuzsZvToBIauwEAgCYsELBKjarCj6KIEKQgGISUlVug4QQhTvgRH2fVG/Fxdl9Akjyhn/3BwKTcZ6FIuc8e5w4rEuKl5BSrGEnx2nVSgj3eCVPK/VJZmVRYau0qdVWbxMeFApHUYCiS7vrZm1h9OBKp3GeT1W/eZRen+iMzVeqSI3XMkjq0kRL3wq9eT5wkj117GJETAAAAAADUj7RZP9rIG5cc3dhNaXCEJwDQGgQCNvxUTSpB3AFIQYmFAk4FiDsESYgPXoJhSGK8lJRo121SI4KQ4GPLyq3KwxkWK3Ksy6REqxJJTbbr5KTQdVKCpIBtq7Q81M6CEmlbrm3PEecJBiNeqW2a1C3bwhGneiQ5qfbhSCR/QNqVb0HJpl0WnPj8tu1OWdKALhaYpHr37HlqwuO6kJ0AAAAAAID60rRG0mpQhCcA0Jz4/TUIQcqkohIpLzgXSEGxVV/4gkNfOQFIxRweceFBSFKwiiMlyUIQ53acJzRUVpnPhqVynre4VNpVbM8dOZ+IxxOsEAmGIG3Tgz+7qkZSkqwio7TMwpCKKpYSmwukoEQqLlHFAJoeBYfUSrY2dmkbPrRWitfaW9/yiywocapLSsvtfWufKQ3bx8KSNql7HszUlscTfgEAAAAAAKgPrbifgfAEABqDzx8KHQojhsByhyGFJaHqioISC0X8/tBwWE4I4pGUkBBRBZJgwUdGqpSTKXkTQkGIc1+8Jzg3SYlNuO5+7tzC8HaVR0yMHh8XXh2SkWrXkRUj3sRg8BKw53GHIzvyQ7cLS6yiRbJfzClJFoakJ1sokR4RjtTHXCHVKSkLVZZs3mltjgvOW9K/i81bkpPRMG2pivMfGcITAAAAAABQn1pxPwPhCQDsifJqJkV3KkEKi0MhQUGJ3R858bnfL8XFxRgKKxh0tE2TOrUJD0C8wZ8T4sPb5fOHKkOc9uwukopzQ2GN08aoobMSQsFHWrLULjM8DEkNXifGh/8CDQSCc58EX+fGncHX63rt7udKSQpNxt4+MzwcSUtunEDC55e25lpYsmmnzVsSkJSZInXNseG4OmQFhxBrQuJkn0Wc9k7FDQAAAAAAaJ1a8fDgTaz3BwAaQSAQIwRxgoeS8OXuKpDCYhu2KVYIEh8xFFZiMADxJkjtMoKhRzD4cFeEVBcYOO0sKrVhubbujq5eKS614CTgCio8HntOpzIkK01KaRu87Q0fQisyiHG/TyVl9h5s2mVDWFUEQsGLMxSYZM/nDKXVNl1KTwkGJMFwpLLnaUiBgAUkG3dahcnW3NC8JR2zpAFd7TotuZEbWg2PJzjnCZUnAAAAAACgHrXifgbCEwAtRyBgYUa184GUhldEFJbYROaRIUjMSdGDFR/JiVaN4K7+cMKRxBqEILHanV8cXrHihDfOHCZFpTbEllvk0Fkd2oTfdn5OTqq+IsFpx8780LBa+RGVI+7nT4y3QCTNK3XJDv3sDLWV2ER/xTjzlmzaadclZfb5dsiShvW26pKstOb1nwNPcLZ4whMAAAAAAFCfWnE/QxPt2QLQqjkVDrFCj7AwJFgBkl9klReFJda5768iBEkMXjvDXqV5bTgsJwDxJoZ+TkzYsyGQ/IEY85qUhIcjzutxV2xI9tzO8FipXiknPfSze+ispITa/RIrKw8FIu5wxPm5rDy0bkJ8aCitTlmhn51rb2Ld35uG5MxbsnGnXfKL7D3LCc5b0rmtDU3W2POW7Im4YOVJnIdhuwAAAAAAQP1pxf0MhCcA9h6/Xyopt1CjykoQZwLxYBVIUYkNT+UPRIcgiQkWgFSEIMFqj8xU6wB3hyDOdeTcHHvK5w+9JicUcb9G51JSavNlODwKDp3ltYqQNmlSJ9fQWSmuapG6DmlV7qsiHCmyyhJHfFwoDGnfRtqnY3hA4k1snmcX+PzSllyrLNm4U9qZZ59DRnDeks5tbSiupjZvyZ7weMIvAAAAAAAA9aEV9zO0oJ4jAHuN3x97EvRYlSD5JaHJ0YtKXENhuUIQKVjZES/FB4MQJ+zITpeSskKhiPu6vkMQt0DAqi7cc4dEVok4t90BhGSTvLuDj/aZ0WGIM3TWnlY3+HzBaptgGBIZlBSXhrcrzWtBSHa61LN9eOVISlLL+AUYCEg78kNhyZZdoXlLOre1eUs6t23685bsEU/ouiV8pgAAAAAAoIlovf0MhCdAa1Lus9AjsvrDHRIUl4XCj0KnEqTUNRSWKwSJ84QqQZz5QLzBao8ObaIrQJzr+LiG6+D1+0NDgDkXd9VIkevnqKGz4sOrQrLTY1eJ1GeFhlPVEjMcKbL2O9UsHoXCkKw0qXu70O30YDgS14yHoqpKflFoGK5NO22/deYt2b+3zcHS3OYt2RNxwdCEYbsAAAAAAEB9asX9DIQnQHNUFjkpeqwqkNJQCOIEISVlsUMQ91wgznwgTgiSmRI7APEmWNVIY/H5XGGI+zWXhIbRct6bQCD8sd7E4JwhXhvuq1NWaD4RdyiyNyY8d6p48ovDA5KKidmLw8ORFG8oDOmUZUNPOQFJqrd5z9NRGyVlocqSjTulvCJ7f3IyQ/OWtM9s3H2yMXkiLgAAAAAAAPWhFfczEJ4AjSUQsMnNY84DEnHtzAdSFAxDwiZFD84F4vMH5wJJCIUhScHhrtKCwzY5Q2B5k0JDYSUlNJ0O+Ir3pCR6qKzCiGUlkUNneULDY6V6pXZtQhUiqcFqkeRgKLI3X28g4ApHiqIrSAqKJZ8rzElJCoUj7bOkjGQp3QlIvK03DPD5pC27pY07LCzZvttCpcxUqUtw3pJObZvPpPV7mydONmRXXPBnAAAAAACAetCK+xkIT4A9FQiEhoWqrhKkoDg0FFaBMyl6RAgSc1L0YLVHm7TgcFiJoeqPijlBEpruEE2BQOg9iQpDXKFIYYlUHjF0VkKcqyLEK7VNi6gQCf6c3ECTmzuvJbJqxP2ze/iv5MRQOJLTPhSOOMvqOjF8SxMISDvzpQ07pQ07bN6Scr+9f53bSgO6SF3a2nuHaMHsRHHBCwAAAAAAQH1oxf0MhCeAw93BX20lSMSk6OX+2CFIUkKoEiQpITQcVtv04FnzzlBYia6fE5rPPA0+f3SFSFFJaC6RQtd9sYbOcoKP9BSbqyIlKTwoSUnau5PExxII2ITwTiCSFyMkKfeF1k9MsKG00pOlbjmuYCR4ncTXbKXyiywscapLikvtWOmYJe3fx8KStunN53hoTB5PcMguJowHAAAAAAD1qBX3M9Crh5bH7w8PQQpLKglFXHOBFBTbMl8gOgTxeELDYSVWMSl6WCVIYsN3+tensvJQABKrSsQ9n4hbnCc0NFaqV8rJiA5DnEtjVlyEhSMxqkdKXUOCJcQFw5EUq4DI6BKqGklPYdio2nDmLdkQDEtyC63Dv12m1L+rhSXt21CNUxee4D9OgAIAAAAAAFAfWnE3A+EJmi6nqiGy6iNyWWHEcFhFpRZ6OCFIIBiExMWF5gGpCEESbVigNqnR4YdzO6EZhyBu7uHFCktiXzvVImUR84nEO0NneW3+kDZpoXlE3NUiyYlNY+iwcl+oaiQvYt6RvCJ7HxzxcRaCZCRbxUPflPBwpKGGA2uJyn3S1t3Shu1WYbJtt+2HmalSl2xpRF8LpAig9py78iSO/RUAAAAAANSTVtwvRniCva+8mknR3fNdOJUgRcFqESf48PtDPyfEhVeBOJUf6cFJ0ZOTQpUhziUpoeWeze73h7+HznWsYMQfMXRWUkIo+EhLltpnBgOSiFCkqQ0lVu6zwCzfFY64r4tLQ+vGeUJBSE6G1KtDaEitjBR7fU3ptTVngYC0I98qSzbskDbvss/Km2hhyYCudp3BvCX1zhmui2G7AAAAAABAfWrF/QyEJ6iZQEAqqyYEKY4IQYqCHfgl5dEhSCAQmgckMSE8BMlKlTq2cQUfieFhSHwTqGxoCOW+YAhSGnovo6pFXCGTwxMcOis1GH5kp7uqRlxDZ6V6m26g5PNHhCOuYCSvyF67w+MJVYpkpUnd24WCkfQUex+aQjVMS5VfHKwsCQYmRaV2jHZqK+3f28KSnIxW/Yu2QTjvL+EJAAAAAACoT624n4HwpLVxJsOuMgRxhnZyDYVVUGLhiROCBPyhKoawECQ+NOxV24zgpOiJ4ZfkYCVIa+zQdt7/qMqQYEjiXhY5dFacJzwE6ZQVul1RJeKVUprI0FlV8fvtNeYXS7tjhSPFkpMHeWSvLT1FykiVuuTYEFtO9UhacusJ1JoCZ96S9dul9Tuk3cF5S3KC85Z0zbG5gJpqMNdSUXkCAAAAAAD2hlbcz0B40ly5569w5v2oLAxxD4VVWCKV+2OHIE71hxOEOGFH+2SpW2J0COJNlJLim35HfUOIGjrLHYaUuCpISiWfL/yxicGhs1K9Upo3NHRWWkQo4m1iQ2dVJRAIhSNOIBI2B0lReLVMijcUiHTKClWNZATDETriG4/PL23ZZUHJhu02h4kzb0nXbGlkP6lztoWiaDxxwTlP4pjzBAAAAAAA1KNW3M9AeNLY/P5QpUeVlSCu+UCcDnmfazL0iknRPaHwI8k1KXpKkg1p5J4IPXJOkObSMd+QnKGzouYRKQ4PR4pKQ5USknViJruGx8pKl7p4w0MR5+fmGAwEArZfOsFIRThSFJp7xOcPrZ+cGApE2mUGfw4OrZWR0jzfg5aqYt6SYGXJxp12HCQ785Z0s+vM1MZuKdw8HklUngAAAAAAgHrWivsZCE/qi89vYYd7EnR3KFJYEqoQcQcgRaXh4YczH0icJ7wSxJkPJCPY+RwZgCQHrxPiW/UOXSPuocsKiqODEfeykrLwx8bHBYfNCoYiHbOCYYhrmTOMVnMeSioQsLlq8otsWCZ3BYlzKXdV0HgTQ2FIzw5WMVJRPZJi+y+arvzi4DBcwblLCkuk+HirAhrRx4biYt6Spo3KEwAAAAAAsDe04n4GejQjlVczKboTikRWHhSXhYcfzs/xcdaxnBgRgmSlWcdkrKGwkhM5E78uAoGIIKQkPKxyByTlkUNnxYeCjzSvzd+QmiSlJodCkVSvfT4tpQO5tDw6EHGqR3YXhc+5khgfCkK65oQqRpyLlyGbmpWSMmnjDqssWb9d2lUQPW9Jpyy+h5oT5jwBAAAAAAB7QyvuZ2i54UlZ5KTolQyNVTEherDaoLQ8dgiSGB97PpCcDMmbHV79kZwUGgqLzsc95wRaTiBSEOu61H72B8Ifm+wKPtqk2twM7lDECUsSW+ChUO4LhSKR1SO7C8OrauLjQ9UindpKfbsEg5FkG56pJYVGrVHFvCXbpXXbpa25dqxkplpQMqKfzV+SnNTYLUVdOccn4QkAAAAAAKhPrbifoWn3GAcCUpkv1DFe6XwgzhwUzqTcJfY4dwgSCNicFEmRk6IHg5COWaHwI7IKJCmxeQ/B1BQ5n21kVUjYJfi5Rg6d5fGEApFUr9ShTejnlCTXMFrelv25lftiD6eVVyTlFdpx4YiLCw2r1S5D6t0xfM6RVG+r/iJscQIBaWe+BSXrtkubdlqg7E2UuuRI+warS5i3pGXxRFwDAAAAAACgzppuePLDeun1WVYJEjkfiGSBRuR8ICleqW16dPjhniQ9rgV3pjcXZeXSS19YQOKWEB8KQdK8UnaGVYekJQdDkWC1SHISHf3zfrKLw6PQsFrZ6VLP9uHDaqV52fdbk7fn2twl8XFWSXRgcN6SdhnsBy1VnOx7MU6teixSAAAAAABQz1pxV1LTDU925lt1ySGDooOQpAQ6z5uzknILTg7oI3XLCYYlyTY0Gp9rzeQWWlA4blAwHElu2VU2qJ3cQmlwD2n0vnZcoeVj2C4AAAAAALA3tOJ+hqYbnkg2D0O/Lo3dCtQ3p3OvS7bUrV1jt6Z58sgCE94/VCYt2YJmtA5MGA8AAAAAAPaGVtzP0LR71jxi+JGWKM4T+mz5fOvG4+H4QOXi2D9aHb5XAQAAAADA3tCK+xmadngizqBtkTweVXy2fL51wxnmqA77R+vC9yoAAAAAANgbWnE/Q9MOTzhzumVyzpD2cIZ0nQX7SXn/EJNzbLF/tB5UngAAAAAAgL2hFfczNP3wpBUnWy1WRdWE+HzrisoTVMUT/If9oxXxhFefAAAAAAAA1IvW28/QtMMTOoFaJuczpfN/D9BJiqoQTrY6fK8CAAAAAIC9oRX3MzTt8IRhiVqmOA/DCu2pOHF8oHIcX60P36sAAAAAAGBvaMX9DE07PJFadbLVYrmH7OLzrSOG7UIVGLar9eF7FQAAAAAA7A2tuJ+haYcndAK1TM64/HTu1h1znqBK7B+tjnu+Ez53AAAAAABQX1pxP0PTDk+kVl0W1GI52QnDy9Sd+z0EIsU5F/aPVqNiKD/xuQMAAAAAgPoT19gNaDxNOzxxOojRsngiLqg93j/UBPtH68H3KgAAAAAA2BtacT9D0w5PGNapZWJ4mT3nfg+BSAzr1vrwvQoAAAAAAPaGVtzPULfw5OsfpUfekWb/IO3Ik9qmS6MHSFefLB3cv/5a50x+2xQ8/6mUkiSdMzZ8+dpt0iG3Svf/Ivq+5mTJGumvb0o/rJe250nJiVLvTtKkI6QzR1f/+Gf/J935spSZIsXHS0Wl0sBu0s1nSIcMDF+3YmJjNZ3PtyaKS6Xj/yCt2hxa9vLN0uh9Q7d/WC/9/W3p/QWSPyAlJUjnHiL9+YLqt19QLN0/TXpnrpRbIPXpLP3qBOnUkeHrjb1F6tZOOmeMvX+bd0kvfiYdu780uEfdXtvsZdKE+6NfTyw/bpAenS7N+0nasktKTZa6ZEsH9pF+c6aUkWLrTftK2r5buvSYurVJqvy4a06mzpRufjZ8WZxH6txWuvciadzgmm1nzVbprlftsyopl0rKpLsvlCYeFnv9yjrRl2+Q3p0rnT1W6t4u/L6bnpHm/CDNvLdmbdpbbnpGmj5f+v7R6tfteZl0/SnSDaft/XbVRVm5HS9TZ0pbcu09v/AI6RdH1ezxNf1eUPB7lVAVAAAAABre92ulpz+SZi+Xtu6yvrF9OkqnHiRNGCdlpe+95x57izRqgPTAJXa7ofuJJOuzePoj6Yul0oYdkt8vtW8jjegrjR9n/ca1/Vu1qfe5jr9PmrO88vvnPiB1aBO6XVgiPf6e9N+50vrtUqpX2rebdM8k21ccP2+W/v5f6avl1kfbMUs6Zrh0zUnWB+82fb701IfSTxulQMC2c/FRNevLlaRvV0t3vyYtXCklxNln/X/nSj3aR6zYevsZah+ePPG+dOtz0oF9pT9OtDdz7TbpXx9Kx91hnYFXHF9PzWtCc2L851MpO0Maf0j48k5Z0lu/k3p2aDptrYv8IqlrtnT6wVKntnZAvzlHuuFpO6CvO6Xqx7/8pV3vLpJuPM060p/7RLro79KLN9mXpCPOdXZ0c3rPHphm74sjPVl69UtpbDAcmrVMuughaUAXC05SkixUSE6s2eu84jFp8c/SrWdZcDVtjnTNP+3L74xRofX+dZU0/6fQ+7cl175Uu7eThvSs22tz2lfdPDTfrZbOuEfq19k6rLu3k3bkS0vXSm9/LU0+XmqTauu+/ZWFSZcfW7c2SZUfd82J83YO7i4dOVTKybAA+r350oUPSm/81v4zUZXtedLZ99p7e/8vpJWbpXtel/74iv1i69Mp4jmrOL5WbLT9Zcy+Us+IX4bXnSJdenTTOS5r0o63fmdBVFNpc6Tbp0hvzLYgeVgv6bMl0h9etu+Sa06q/vE1/V6Ic33mTfW9AAAAAICW6MXPpNumSL07SpOPk/p3kcp89rfclM+kBSulp67ee8//r6uk9JTQ34IN2U8kSR8usr9Ts9OlCw6X9ushJSVKq7dI786Tzrtfeukm6ZBBtWtDU+9z/fOF1p/qVlRqfT1Delr7HQXF0vi/WrB11YkWmuQVWf9eSVno9W3Pk06/W8pIlm4+XeqaY31xf3tLmrNMmv57KS44AcnLX0i//rd04oGhftvXZllf7s786vvjftooTfirNKi79Phka8f906z/6YM7rf/K0RTf/wZSu/Bkzg8WnBy7v3WIJ8SH7jt7jDTxAemW56Rh+1jiuaeaUmWC047I9iQnWZDU3I0ZaBe3Y4ZbMPbi59L1p1b+2G9WScvWhW5v2ikdtp+FCsfeIf1lqvTO7aH73e9lU/l8q7NwpfTvT6R//FKa/JgtO2WkBUx/LrZ09tp/SmP3lTJT7djIL7ZE+M7zqt/+x4stnX/kl9LpwQ7RsQOl9TukP0+VTjtYKi23QGZIL2nNNut8dap4pD18Pz2h66q28fT/7Atz6m/sF7Pj5IOs6iQQiH78nnzGlR13zYnT9vsutu9GSbrsWOlPr0hPfmAJ/xu/rXobT7xvVX5v/c6qjmYts+UJ8RbqPf6riOdUFftDFZ+1+0yHxlSbz70pf//+sN6C5VvOtGoRyb5nd+ZL/3hHuvDw6LNG3GryvRAf/E9Tc/xeBQAAAIDmbv5P0u9ekMYNkp6+RvImhu47bD87wXzGt3v377QhvcJvN2Q/0c9bpKuflPp3tSqVDFdf0Zh9pfMOtT6MrNTat6Wp97kO6Bq9bOpMC87OOzT89f71TQsrPvqDhUGO4/YPf/yHi6zP4PHJobBp7EDb5j2vS9+vk/YLBmKvfil1y5Ge+FUoUDliiJ3gPHWm9Mvjqm7/A9NsxJznrg99bkN7SeN+a/1Vt50TWrcV9zPULjx5YJq9WQ9eGh6cSHb7b5dIQ661NOzV34TuW75euvt16fMlNuxIhza2Azz8y9CXyoYd0j2vSR8tsoQ0I9XWO3eslXm98qUlZ1/9NXyomVnLLBF77RY7KCXprHvsbPh7JlkH5dK1UlaalcnddHqos8l5TZ98a0MxlfukXh2svOm8caEdY+TN0rrt9nO3YAlctxzp6/stXDj41/aeuM+O/2q5bXvhKsnnt7POrztFOnpYaB3nNU39jZVs/XeupIAFT3++wCpAGltOhqWeVSWMrwSrTrq3s1Kyt7+2qqRUr3TWaPvsN++yjvU7XpI+/Vby+aTv1kg3nCKd+Kfo9++bVdLf3pbm/igVlUh9u9hZ2lFD1TSA0nIbduniI6X99wktP+NgC0/e/sr248250l+PlH75mPSnidJTH9nvGvd7V9n+tmCFlJZsry/OY/vcvt2siuXzJVLfK+xL77Zz7L7u7aXxYy3QPDs4xNKNz9hFsuqfm0+39/Hx923723ZL7TLtF89tZ1snvKOmZxTsKrAv1IyUqjvmz7rHhvWTQseMJG14tur3oabHXW2+D75dbb+kFq60VL9tup0Fce9FVhm0t3kqeW8PGWi/jLbuDl8ea9/fkmu/LJ2ySWf9Uf2lj76xctgla0Kf9aZdUts066h3f9bO+yZJ594Xek7n+Lv+KXsPv74/dF9xmfS3adJbX1swmpMhHXeAVUI4VUZSaJ/9xVEWCP200c6QuPIE+0+Do7DEPo/p823YtxSvva4rjgtVUjhvx+otVrkxZ7k916kj7Xnd/xnt8ovQ/u5+jS/dbMfnhwvt7ImxA+24dP8nZW/7cKF9700YF/4ZTxhnofRn31VdSvvBgvDvBcf4Q6SrnpQWrZQO6mfLqDwBAAAAgIb38Lv2t9hfL7YTXiMlJ0rHHxC6/dZX0ktf2EnIuwvt7/Xj9pduONX60RzXPyW9M09693b7u3j+Ctv+qSNtWCX3uiNvtj6Qv18W6heRGqaf6F8fWrXFPReG9xG4RQ7nv2qz9NA70tzl0sZdFqzs11P67VnSwO6h9WL1ud4/zfqdP73Lqms+WWx9BEcNlf5wnp3Q3Jhe/sL+jj/94ND7Vlhin/nJB1V/0mpSsL+9TWr4++68tylJoeWJCfZcYX30nlAQUtXnVu6T/rfYpgRwf2492tu+9MEC6fZzQ8tbcT9DzcMTn9/OgN2/t3WIxdKtnTR8H+vs9fktpPh2tQ3nlZNhHb99OlnH3nvzrFPam2jByeG32djwN51uHZtfLbcvidxCqUNWWOAZ1mlb2fItudKvHpeuPkn69ZnS/76xgyq3UPrLhaH11m23s3+d1zR/hfR/U6yz/8bgGPrPXCtd/ogFOvcEH5uUGHHWv+v5Zy2zsqeB3S1QSkqwqoWLHrLk8LSDw9t+87MWqjw2WdqwXfrTq9I1/7IO4KoEAvY+10Rk2FUZv9+GnNpVYGPsz/jOgpzKEsaiUhtGJiHePvvD95NuetbK8s49xEq/JNsP/vCytCvfvqyXrLHHTH7C7ne/fzO/tyqm/XtbB3dGiv1ymfy4zTsyflzVr8Hnt/emOnGeUDJblQffti+6W86yOTwcGanSySPszPJ9g2nz50uk0jLpd/+xdrRNt33JCcIq29/aptlQWImuQ/Lb1fY+SdIlR9tzhe37HkuE/36pdP3TNoyWE851zrb7122X+na2L+2sdOusfu4T6YQ/Sp/9JVSCV9lxFOnAPnYsXf1PK8Xcv3fs/xzcPclKB1dvkZ65JrzNVb0Pe3LcxXodhSU2RmeP9jY/SLs20tZc28cKSqp+rc6xUB2PJzyQjbrf9YP7+b5ZZdd9O1W9778+y/aDuB6u6oLgNnp2sPBkzbbwz/rz76TsTBuj1P1ZHz1M+u3ZFm7cfWGofLdnh+h9S7Lj6JJ/SF9+b+Hlwf1tHNe/TrPP7J3/Cw8ylq614/zqkyz0fvEz+z7Yp1No6L4/vGxlpLecJQ3pYZ/RsvX2neNuQ7lPuvgf0sRx0uQTLCh88G37j5Czj7jf48j35qZnpMMGS49eYb9j7n1DOute6ZM/SW3SKv+86vN79Yf19r53zApf7ow5+8OGqvfBH9ZHfy9EPn5kcJ6xirmkqDwBAAAAgAbh89vf8UN7hgcPVVm1xTr6f3msnUz400abJ3PRquh+wHKfdMGD1n9y9Uk29+zf/2vD6z9/Q/S2G6Of6Isl9jfv8N41e/2SnXycnS797hwpJ9P6Cl+dKZ10l1Vm9O1ceRucZZc9Yv2rEw+1aoy7p4ZO+K9KffX1xLJyk/VnTzw0fLSWb1db30fvjtKtz1sfZ2GJ9Rv/+nTp6OGhdU840Ppc/vCKFQV0y5EWr5YemS4dO9wqfByXHC398lHpof9aH53HY9Uoi3+2/ueqPrfVW62PdVD36PUGdZc+X2onoiYnhd6PVqrm4cn23fbBVnfWbs8O1qm2I886z373vHUwffpnSzMd7iqDP79q2591X6jkKTnJPpiKncJ1xIR9YLGWe6zE6bnr7AxpycqWSkrtC+Gqk2znk6SHLg9tyu8PzV/x1IfWQed88SQnWUfmiH4RLzjG8/9lqnXOvflbSwAlG+rsqNttjoLTDg6uG1z/iKE2Tp5jV6FVzGzNteCoMq98aUl0TWx6rmbr/fY/Nkm3ZKHPXedLFx1Z+frvzrN5TuLjLCg4fZT0+5eklz63kKNt8Ev3vQWWLL94k83v8OQHNtSb973g87nev98+b/vB67eGOiePHGrVRHe/bqFMVaHHqN9I67ZV/1pvOl369RlVr/Pdaumx6fZLKS3ZqnAcHo+dUX/WPaF2PvuxjW1514XSVU/Y+mfeI338JzsroLL97f437TW79+Ftu204p9P+bL+89u8Tus8TvM5MlfYNBlS9Okbvn6eMtIvD55eO2V8aco2FXpcdG9pmxbar+EK88kT7En5zjl3i4+xL9aihti3nGN+3myXXSYkxjhntneMu1vKfNtp3wYOXhp/p4QSYVfnb21YhU51u7aR5D1SxgiuI8Pntl8/sH+wsi/g4O/ar2vcHdZden23zpAQCwX0/uL7zy3hXQfhnvXqrnbVx1Unhn3X7NjZvhmTfrTHfV9d7OuM7u9w+3sbklKTDh0hdcmwujtdm2S9o57E7dktv/1/o+3X0AOnLpfb8TiXQ3J8sZJ3smhvrmP2j21FabsenU2126GDpm59tv7vp9Oj13ceOZGHug5eFVtm3m3TKXRZkVzUM4axldkzXxNf3x5hEzWVnvn0vRh5Tacn2/borv+rjbWd+dLAlhYb6cj/e4/rsWvF/agAAAACgwezMt5OKe7Sv+d9h7pMBAwE7SbF/F+mMu+1kxUHOBO/Bv4t/dXyo7+bwIXZy3d2v2WgVzsl07r/lG7qfaMMOO8Evcp3IkMJ9AvOYfUN9BBVtGC4d9jvphRnSHyZW0Ybg9cTDQv0Uh+1nw4e9/Ln1/1TV3nrr64nhpS/s+vzDwtuweZddPzpdGtjNRmLyeGyI9kkPWV/pEUNsnTZpNq/JpQ9boYHjlIOkR64I3+7JB9mJx9f+y04YlewE539cLp1aTb/XrgK7jtVn0Tbd9s3dRRbwSa26n6H2E8ZXK3hgOGd9f/m9NOmI8OAk0kffSOMGR48V5+4Eqmw891jLPbLJvI8/MHx7Z46RXvhM+uoHqftYW/bFUumhty3hzYuY5Gdbng0dVvFcit5ZIp+/oMQmgrr4yPCUMSFeOmeshSIrNkn9uoQee/z+4dsdHPySW7dD6tg28t0KOW5/m8CnJmq6k193ih3k2/JsyJnf/cd+EVx5Yuz1X/rcDsxynz1Heood0C9/YWGJ46cN9pkcNczKEp338ozRFp4479+qzdKPG22eEI8n/Azwo4fZsG4rNoUnrZH+c4NVf1SnU9uq35dynw3/c9rBFt5IEfuerNO/Vwdp4w5b5vNL915sQ69lpVlFybL11uF7weFV729lvvB9eFD3UDlf5P7tXFc350lBsZUzvjPXyh3d7+ePG6s/viIlJ0n/vt6G4vv0W+vMnr3Mznx4/lPpv7eHzhBwtzFSfR93lS3v3ck+h7tetWq0UQNij0kZy6QjLNWvjlMNUxnnvhP/GH3fY5NDgXRl+75znV8c2vej9oXg963zWa/eGl59FfZZux4T9b4q/P2e+b1dTxgXvu5pB9ux8cVS6cIjQo8d3CN8GLUUr30G67aHHr9/b5tA/a5X7bg6oE909ZLThuMivhsHdZdmLq2k3RH78lljwtcb2d/aNvN76YaIyhW34fvU/HvVOXOnUp7KjwGnrdV9N8f8nGL93nM9Vyv+Tw0AAAAANJwaBgxuP2+xaQu+/N5Omo38231wz/BNR/5te+ZoC09mLpMOHhBaN+zvYqdZDdBP5Ihc55KHpfcXuG4fbaOUSNbf9si7NtLGqs3WH1bTNjhPc/wB0X2pxWXRfUqR6quvJ1K5z6o+BsQ4UdUJkZISbIhxp7/4kEHS6N9ID74V6nfcVWAjFxWVWJ9R1xwb4u1vb0kX/V2a4pqD/JPFNqT3KQeF5kT9YKF03VOheVcqU+XnG7wd54n+LFqhmocnOZl25vzqLVWvt3qrrecMV+TzVz+vwLbdUtcY63gUGlPN+Ywix9qrbAy+9m2ix2PrlGXXOwvsvgUrpPH3WQf43y6VurS1HXn6fBseprQs9vO7ue+P80h5hfbF1zEret3Obe16V/D5nbtzMsLXdUqi3M8fS06GdQzXRE3HpuvRPnQm9bHDrY1/nmqdp5EB2MrNdgb9ySNsSJ0tu+z1nzrSwpOXPg99kZeUhz4T5+DzeKSOwS805/3bFhwW686X7BKL8/lVZmC3WgzbVcV2/vWB7c9PXWOvS7JfMo7C4M/nHWpzQkj2uTvpuUf2+Xg8VsGyaGXV+9uu/PD2dMyyOYIkK2d03+e8f+7X4D5eHL963EoobzzdOq0zUmy98+638jz38VOT98Sxbze7SPZeP/m+dPuL0r2v2wRpThvd23bUx3FX0++DrDTprdvsF9Ffptqx1zHLSl5vPC16OCS3TllV/8KtaEs175lz16NX2BBM975hv+ACssqNc4JBbm32fef5nP0xJz38s14brDwZvk/0Z+2pwWftLN+Zb7+Uo94Hjy2L3GezM6K36U0Mf/67L7Tv+2lf2X+WkhPtDIs7zrNhHR0pSeFjuEq2bnGM70X3Z+DcFes7uEOb6r8/MlKs6qkmqhu2KztdWrI6+vkKiu0MorbpVbclO8M+g8h1Yn0vON8J1e2PAAAAAID60T5TSk2yv8Fr8ndYfrGNLpKcaENq9+lkj1+/Q7r4IRupwr2dhPjovjinbzPy73Epuo+nIfqJuubYCZOR6/xxonRT8MTFY+4I3+YdL0rP/E+65mTrQ8tKs/uufzp2G8L6h4PXkX2pzpDi1fWl1ldfT6RPFttJu9ecHP04Zyi0g/qFz8mSnmyv/735occ88q71Iyz4e+izHrNvqDrpjdnWRxsI2GhEowdYJYvjiCF2kvLv/mNDszkjIkVy2rQrRh9JbnBYdedzcd6PVqrm4Ul8nDRukM13sH577HlP1m+3M8mPGR4axik+zkq4qtIu074oYnE+nIpAoTz8A9uRH72uZENeRX6wW3LtOjtYkvTmHCkx3sqjkl1nPr+3ILS9yLKw6s4AdnasLTGef9Muu87JiN52VWcmV+blL6Rr/ln5/W7bXqjZepEO6GPD3KzZauGH20uf2cH637l2+70FUt/Joftf+TI0SVGXbGnW99FpsfOZOMudg/f6U6STDordpr6dq35fDrrJ0vPq/PoMm3ehMsvWW5XMwTfHvv+Me2w4uomH2lkDknTooOh9RrLSxOr2t1VbLGx0OmQ9Hhu3UbJxECs92z5iH3TsLpQ+XGSv0z1MUUmZdSBXdvZAbb8QPR7pVyfapF3L1lV+jDjq47irzffB4B4WgAUCNnfIS19YW1OSpOuqGL7p/mk2sXl1ureTFv698vuddvTrYsMGfvKtDVv29Y9WjvrfuRY4VrXvX/yQhUxDeoa/3tVb7XVkZ4R/1o9OtwqVQT2iP+tYlTqRt53r7Aw7e2J7Xvh/2AIB+47dv3f1n3fk8vQU6daz7bIlV/r4G6vIu+Bv0py/htb11GBbVbW9st8B+3Sseh+f+b10+l8qv99twYNVD9s1qLvt71tyw+c9WbbermMd124Du9t/jNzfC1Ls7wX3IdOK/1MDAAAAAA0mId5G0vl4sY1I0qWSOaIdXy6VNu20kzyd4cslGx5Jiv7bvdxnJ9RlZ4TW3Ro88TI7I/rv+1h9KXu7n+jwIdLTH1l/8P6ueU96dwpfz73t12bZdA63jw9fZ0eeDQFfk+qXyGU1rZSpr76eSFM+sxODxx8S/fzOvKXudjoCgfAKjyWrbZQL5wR8hzOUv9PvtiXXihYuOjJ6mwf0tiqYddtDJz5H2qej9Sd9H6Mf7/u1wftdJ7S24m6G2g3bddPpNmzSjc9Yx6d74hyf34ZxCQRCyWJKknTIQOs8+v14q16J5ZhhFgT8uME6GB3uHd7poPp+XfiQTe/H6HD1eCzNfX+BTbTjeGO27ZBjB4YSxPh4+7JzHltUajtY5Da9CXbGc1UdhR6PdQwe2NfmAvnj+aHhaPx+6bWZFiK4h+yKfB73Nqs74I8/QPrfnyq/v7J21saX39v71Cuiw9Hnt4nS9+ko/f0yS0mfeF+672IrUftwoXXgPveJTTJ+9DBb9vE3NnyO89qmzQlvY/+ulrwvWSvdPqFubX7xJqt0qU51w3Zdd2p0iduWXJvEXJLuv8R+GaQnS+cfbh3hAYVvc1eBHRMj+krf/lz1/lZYYmWTZ4y22x5Jr3xh7RzRL0Zbg+9hcjBdj9w/PR57bm9EqeELM0JlmTX5heS2aae1J9LGnZZsD9vHdcwEKw4it1cfx11tvg8cHo80pJddXv7cJtyq6rVedFRozqSqeBNqdnw9+La172+X2P5y0kH2ed/zmpVYVrXvnznaqnvyiuwsBef55vxg3wOJCeGftdOBHuuzds7GKInxvjqc5YcNlh5+x/5j86sTQvf/92sbovCw/SL2OcV+3xVjuWSBwsTDLNR64n3bD9zVJjXdVqzP+7VZ4WN8fr3cQlVnErXKDO9d8+/V6obtOnGE9JfXLEi+7pTQ8peDwx0ePazqx588QvrPp+HfC1Ls7wXnPajuGAYAAAAA1J8bTrMTzW94WnrhJutAdysrt3Dl+ANCc35E9tM890no51h/217hmjP09dl2fcigyv9mbsh+ol+dYCPP3PKczdvrnEQdi3ubkW34cKH1LfXuFPtv/5q2q7r21ndfj2Qhxv++sb/hY/V9d862qpOvl4f6dSTrB5y1zPqRnefqlG2TtW/cGT6S07yf7Lprjq3bNt0+5/k/Rbdz3k/W91ZVv2digg2V/u5cGz7e+dzWbbO+4MknxH7/W6HahSejBkj3XCTd+px07B3SL4+TuudIa7fbEEfzfrL7naGaJOkvk6Tj7pCO+D8bJqd3J+uAnj7Pzr7OSJFuO9fmPTn+Dxa8DO5hEx+9M1c68cDgxMZ9bcib379oB3RWmt3/1Q/2PJFlZNnp0q+ftWqYvp0t9Hn+Uxtjz+l4Pe4A6bH3pCsetYNnR56VRzmdi+5tDuph4cu0OTbHhTfR2hmrjO2OCdIZf5FO/7N09Um2Qz7zkXX0PnV1KHSqrASupqVx7TKrnkumNq7/l5SRapUmHdrYmebTgpOCX3NyeEnbNf+UXvzMxuy78zybyPng/jax9EP/tdc/sp/0uMcqip640oYPeuI9afLjth/8vFn6+9s2Z4IkJcSFXuuDl0rn3Cedc4903mGWtu7Kl37YIC1eZXNuVGW/nvXznuzb1S5ua7aGfj6gt5QZ/HJ5+JfWGfr0R9YhfPQwOztg+24bAujM0fal99h70uG/k5ZvCIWRzv42aoB087MW/BWXWif6+u3Sk1dapYabR6H9o3cne+7XZlp705LtC7JzWyvte+Rd2096BOd7eGFGKMmvbTnmjU9LucGh2QZ2s315+Qbp8ffsPwHXnxp6/ODudow++z/7/OPi7CyE+jjuavp98P4C+0xOGmGPD8g6/nMLpSOGVFN6mh17OMHacp7jvfnWcT+4h/1yk6Szx0hPfWT/+Rl/iO37p/1Fane+9M+rQ/t+YjBomvBX6Xdn2xigklXe3HqWvX73Z71ykwUSn30X/Vk7cyo9/6l9/yYnST3bh5+14qx75FDpqKHSH16S8ovsOF+yRrrndduvJ4yLeA+r2H+c5Uffbr+gB/ewidCWb7Dg7KB+FkRK0e1wbb7S5ZH78qJV9r122sH2PXTXK3YMXn5s1Z97m1QLfOvDoO42RNy9r9t33AF9rJT3uU+l284JVRtJ0n1v2MV9BtKx+9t+6nwv9O5oY8J+vDj6e8EZCrKmQ+8BAAAAAPbcwf2lBy6xv9uO/D/rdxzYzUKTxT9bMDKwu/Vvjupvf7/f/Kx0y5l2UunUmfZ3thQxNLvHgpjH3rNO9gP6WOf7/dOsz8k94bqzvvPYhuwn6tNJ+tfVdqLxuFvt9Q/bx9q+bbf06WJbLzMltJ3j9rdRQfp3tb6BRSulh98NhQVVtaGiX0Dh7arxMGP11Nfj9soXViU06cjKn/tP50un3iWde6+dXOnxSI9Mtz6x284JPe7yY+xzO/seG5mka471J9//pvXNnjvW1k1Jki49xk5cv/JxO+EyPs5O5n9tlvVFuPscDrjBrhc8GFr227Olo26XJt5v/XklZXYCaE6GdM1Jsd/fVqj2E8ZPPt4O2EfekW77jw2T0zbdxlj74A/2peE2pKcNbfSXqdKdL1sHXMcs63B30tgu2dKnd9k6D75tO05mqh3YTodeQrz08q+lX/9buulpm7jnzNHSX38hnXufFDn0Vccsu+/2KdLStTZx902n245RcVb1ftIjV1iH/3n325fIRUfaF8g1/wzf5m/PtiTx+qcsJezeTvr2Yck9Voqz7iGDpLf/zyZwuuoJCxn262mTAh3vTjddB35Yghdjm3vbQf2txOylz61jOS1Z2q+HddCNHxe+rs9vrykxPnQWd3KS9PZt1pl9y3M2sVFWmrSr0MblS0+R3r5d+u3zdqZ9mc+GgXvgEumce60T1Xmth+4nffwn6YFp0u+et+qN7AyraDljVCOnnZ7wH91tueci+1J7/lPpnx9Ymt8u0/YFb2Jof/v9FHv/nv/Ujidnf3vwMunfH9t+s3W3dSQ/fY1NDlZpczz2WT1yhXXQnnm3vbe3nGX77FPXWNh5RzBkOLi/9ObvgseMu/013OeuON7CjOc/kTbstF/g7TJs/3niSusAd/zqBBue6E+vWmloICDteql+jruafh/07Wz74T/esaqZxAQLXR6bbBUPDcL1fr4wwy5u8XHSX9+wuU8O3U8a1ss6/iP3/ZtPt+VXPhGqrPrLJGlAsATT/VkXldh3TqzPuldHm6TtifelU+6y/eLRydL5rvfDfSbHlJssLJnymR2TORnB8toJ4cOuOS+1umqWQwfbEG2PvWeVJp3bShMOtddXVWWf+72srArLvc4jv7TquEsfsTFPxw2yY9Rd7twQHrjEzjL554c2L1SP9tI9k8LPHJLsO8Hnj65e+8+NNqzZ3a9ZINuvS+zvBY9HFe9DKz4jBAAAAAAa3MVHWfXAY9Otr2PLLusz69NZOnusnXzu8VhVwqu/kf7vBemKx2zkhRMPlJ65Vjrsd4rqk0mMl175tfWzPTDN/ga/6Agb6aayqgupYfuJJDthdda99nf+i5/biYH+gHX2H9hHeuFGW8fZzj0XWf/Mg2/ZqBbDekn/uUG669UatMHVL9DYfamOKZ/Z3/pHDKn8uUcNsJMl73pV+uVjtmxEX+md34f3pe/fR/rojza02F2vStvyrN/khAOl35wltXOd3P6n862/6NmPbX8K+K3P56+/kC6OGM6r3GfX7mUDuknv3C7d8ZINF58QZ8PQ3XVT9NQNrbifwRMI1GRm7UYw5wdp9jIrf6utE/9glRNf3V//7cKeyy2UHn3XQpk3Z1vn+tJHYs+jg9je+srORD+/oQIANCsPv2NVPocMauyWNLwpM6RfPSHN+LMF/a3Fpp024d4lR8ceWg8AAAAA0HxMfsz6fjY+19gtAVp1n0PtK0+AunryfbvumiOt2GQJ88tf2FnsBCcAAAAAAAAAgCaC8AQNJ9VrY/Gt3mLD9XTNsTH1fnNmY7cMAAAAAAAAAIAKLTM8mX5HY7cAsVx4hF3cw3b16dTYrQLQkpx/uF0AAAAAAGiunrjSLgAaVVxjNwAAAAAAAAAAAKApITwBAAAAAAAAAABwITwBAAAAAAAAAABwITwBAAAAAAAAAABwITwBAAAAAAAAAABwITwBAAAAAAAAAABwabrhiUdSfNNtHvZQfJx9xqibOI9dgFji4tg/AAAAAAAAgD3gCQQCgcZuBAAA2ANl5dL2PCknQ0pMaOzWAAAAAACAlqIV9zkQngAAAAAAAAAAALgwLhYAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIAL4QkAAAAAAAAAAIDL/wMZUt+JJQrW6QAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Visualize the SHAP values for Record number 52 with Model Prediction: 0.9673966765403748\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABj4AAAFqCAYAAACqHCNSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChLklEQVR4nOzdd3wbVdYG4HfU3LtjO9VO7wVIhwQIoRN6CSWwlF1gqQss8C2wwC5L751dOoQACRB6D+mQHtIL6b26d0nz/XE01sxoZMtVsvw+/Iyj0Wh8NXM1mrnn3nMVVVVVEBERERERERERERERRQFbuAtARERERERERERERETUVBj4ICIiIiIiIiIiIiKiqMHABxERERERERERERERRQ0GPoiIiIiIiIiIiIiIKGow8EFERERERERERERERFGDgQ8iIiIiIiIiIiIiIooaDHwQEREREREREREREVHUYOCDiIiIiIiIiIiIiIiiBgMfREREREREREREREQUNRj4ICIiIiIiIiIiIiKiqMHABxERERERERERERERRQ0GPoiIiIiIiIiIiIiIKGow8EFERERERERERERERFGDgQ8iIiIiIiIiIiIiIooaDHwQERERERERERERUXT6ZjFwqCjcpaAWxsAHEREREREREREREUWfwyXAX14CJjzE4Ecbw8AHERERERERERERUWsxeSaQPBGYs7rudQfcCJz2YMv8rUiUngh8cAeweZ8v+FEc0st+3V6J3Md2Y+rKsmYuIDUXR7gLQERERERERERERERUb49/Crg9da83vCcwcxVw5kPAV/cBaYnNXzYKKwY+iIiIiIiIiIiIiKLRkmcARQl3KZrPE58BldWhr79qO7D9AAMfbQADH0RERERERERERETRKMYZ7hLUT0kFkBgb+voH3qt7nSo3cPkzwLdLgeeuAQZ3bXj5WoGyKi/iXZzhgoEPIiIiIiIiIiIiotbGqwLPfA689TOw+zDQORO44xzg0mP96wy4EejSDvjmfuNr35kBvPg1sGUfkJ0qrxnVBzjrP8Ar1wGXHlf/v6X5ZSXw7BfA0k1ARTXQoz1wzYnA1Sca19PK9sjlwP1TgMUbZSTGyheaYu8Ic9DjTyc0eFPl1V68+GsJvlpXjt1FHiS6bBid68LtY5LRLd3fzD72tX1on2THR5dk1ix7dUExHplZjGO7xuDdCzNqlj83rxhPzy3GnGuz0CVVtlHpVvG/RSWYvroc2wvciHEoGNbJhdvGJGNAtj+Q9ev2SkyccghPnpaKsmoV7y4txfYCN/46MhF/Oya5we8zWjDwQURERERERERERNTaPDBF0jxdNR5wOoA3fwKufwXongOM7B38dS98BdzzPtC/C3DfRYDHC3wwC/h+WeP/1ls/Abe+AQzrIYGRhBgJhPztDQmyPHSZcbs7D8mk4+eMBM4aDpRWNm6fmFW5gcMljQ56uL0qrph6GAt2VOHkXrG4amgidhW68e6yMszecgCfXpaJnpkSlBidG4NPVpWhvNqLOKeMvJi/rQo2BVi4swpVHhUuu+JbXolOyfaaoEe1R8XlUw9h6a4qnNM/HlcclYDiSi8+/L0M571/EFMvycCg9i5D2d5cXIKCchUTB8ejXYIN7ZPsDX6f0YSBDyIiIiIiIiIiIqLWptoDzHwYcPmaeM8ZCQy6GXjt++CBj/wS4KGPgV4dgJ//DcTHyPJrTgRG39m4v7U3H7jzHeDcUcBbN/tfe81JwJ1vywiTq8YD3XL8z23dD7x8HXDZcQ3ZA3VLjAW+vR+wNy7109SVZViwowpXD03AP09IqVl+Ys9YnD/5EB78uQjvXyQjOUZ3icGU38uwaGcVxnaNRbVHxaKdVTi7Xxw+XV2OZburMKJzDCqqVSzbXYWz+sXXbO/tJaX4bXsV3rkgHcd186f8mnREAk564wD+80uRYSQJAOwu8uCXP2chPZ4BDz0m+yIiIiIiIiIiIiJqba450R+IAIAO6ZJWavPe4K+ZsQIor5JghBb0AIDk+MBUVPX9W9MXyKiQy44FDhUZf049StJlzVpl3G56EnDJ2NDeby0qqlV8vqbM+slGBj0A4PsNFVAA3DQ6ybB8WKcYjM51Yd62ShRXegEAo3NlRMa8bVUAgOV7qlBWreKqoQnIiLdh3lYZ1bJ4VxUqPf71AWD6mnJ0TbNjUI4Th8s8NT/VHhXH5MVg0c4qVFSrhjKcNyCeQQ8LHPFBRERERERERERE1NrkZQUuS08EdhwM/pptB+R3z/aBz/Xq2Li/tX6X/D7nkeDb2V8YuF1b4wITFdUqrvzkEBZsr0LfLCd6ZTb9hO7bCzzITLAhLS6wrH0ynZi/rQo7Cz3om2VDZoIdvTIdmL9NAhzzt1UhNVZB/2wnRnVxYf72KtwG1Dw/OtcfgPrjkBsVbhVHvLAvaFkOl3vRwekPdOSlsYnfCvcKERERERERERERUWsTbCSDqlovb8xzIf0t379fuQ7okGG5ekAAJd5lvV6IKqpVXOULejx1emqzBD3qYrXXRufG4N2lpSis8GL+tkqM6hIDm6JgdG4M7v+xEKVVsrxHhgPZiXbdtlT0zHDggfEpFlsV6fHGYxHnVJrqrUQVBj6IiIiIiIiIiIiI2gIt8LBhN3DCYONzG3c3btvdfaNI0pOA4wc2blshqPKouPqTQ5i3rQqDcpzYmu/GM3OL6nzdX4YnIsFVv1EmXVLtmLnZjfxyb8Cojw0Hq2FTgE4p/gDG6C4uvL2kFL9srsCy3VW4zzcvyNG5Maj2AjM2VWLF3mpcekS8YVvd0hzYX+rF6FwXbAoDGo3BwAcRERERERERERFRW3D8ICDWCbz+I3DFOP88H8XlwBs/Nm7b54wEHvwQeGQacOwA4xwiAFBYJn87pmlGZRRVeLFwp8yjsWJvNVbsrQ7pdZcOSUBCPQeanNwrFr9srsRLvxbj3nH+0RhLdlVh/rYqjMmLQVKMPyAysksMbArw4vwSVHok4AFIWqqOyXY8N68YHtW/XHNO/3g8PLMIry0owfUjjfOJAMCBUg/aJXA+j1Aw8EFERERERERERETUFqQnAvdcCNw3GTjhPuDiMYDHC0yeBWQkA9sPAmjgSIOOGcAzVwM3vgYMux2YOAbo0g44WASs3g58vRhY+CSQazFfSANkJtjx6jnpuO6zw+if5cS7F2UgOabxE5lbuWBgPD5bXY7/LSrFzkIPRufGYFeRB+8uLUVSjIJ/npBsWD8l1ob+2U6s3FuN9kk2dEv3N8OP6uLCtFXlsCnAqC7GwMdVQxMwd2slHp1VjF+3V+Ho3BgkxSjYVeTBvG2ViHEo+OjizGZ5j9GGgQ8iIiIiIiIiIiKituKWCUByHPDiN8C/PgKyU4HLjwf6dQYufRqIa8S8G5cdB/RoDzz/FfDWz0BhqQRUerYH7r1Q/lYTOqF7bE3w47KPDuG9CzOQEtv0wQ+HTcE7F6TjhV9L8NXacvz0RwUSY2wY1z0Gtx2TjO4Zgc3sR+fGYOXeasPk5dryaavK0S/LGVBWp13BWxek472lpfh0dTmemVcMAMhOtGFwexfOHxDX5O8tWimqWtusNUREREREREREREQU9Z7/Erh3MvDTv4HhPcNdmnr5eVMFHp9VhHcvzDBMFk5tFwMfRERERERERERERG1FRRUQaxrVUVQGjL4TKK0E1r8CuFpfoiCPV4XdxgnBSbS+GkxEREREREREREREDTNnjczxcdYIoEM6sPMQMHmm/H7+z60y6AGAQQ8yaJ21mIiIiIiIiIiIiIjqr1uO/Lz9M3CoWAIdA3OBx64AJgwPd+mImgRTXRERERERERERERERUdRo+inuiYiIiIiIiIiIiIiIwoSBDyIiIiIiIiIiIiIiihoMfBARERERERERERERUdRg4IOIiIiIiIiIiIiIiKIGAx9ERERERERERERERBQ1GPggIiIiIiIiIiIiIqKowcAHERERERERERERERFFDQY+iIiIiIiIiIiIiIgoajDwQUREREREREREREREUYOBDyIiIiIiIiIiIiIiihoMfBARERHVYebMmXjggQdQVlYW7qKETUFBAR544AEsX7483EUhIiIiIqI2ZNWqVXjppZfw0EMP4YEHHsDevXsBAJ9//jnef//9em9v8+bNePjhh1FUVNTURaUIwsAHEREREREREREREUWc0tJSfPbZZ0hPT8dll12Ga665BhkZGdizZw+WL1+OcePG1Xub3bp1Q8eOHfHzzz83Q4kpUjDwQUREREREREREREQR59ChQ/B4PBg0aBDy8vLQqVMnOJ1OzJ07Fx07dkSHDh0atN1hw4Zh5cqVKCwsbOISU6RwhLsARERERK1FYWEhvvzyS2zevBkA0Lt3b5x88slISEioWWfVqlVYtmwZ9u3bh4qKCqSmpqJPnz4YO3YsXC5XzXr5+fn4+eefsW3bNpSVlSE2NhZZWVk4+eSTkZOTY9jeb7/9hn379kFRFHTu3Bnjx49H+/btg5Zz7969ePXVV3HmmWfiyCOPNDy3ceNGTJ48GRdffDF69+6Nw4cPY/bs2di+fTuKi4sRGxuL9u3b44QTTkB2dnat+2P69OnYunUrbr31VsPymTNn1qQH06iqisWLF2PJkiU4ePAgHA4HunXrhhNPPBFpaWm1/h0iIiIiImp7pk+fXpNqd+rUqZg6dSry8vJw/vnnY926dTjllFMM63/11VdYvnw5rrrqqpqAiKqqePfdd7F//35cd911SEpKAiD3ci6XC0uXLsXxxx/fou+LWgYDH0REREQh+uijj9C/f38MHToU+/fvxy+//IIDBw7gmmuugd1uBwAcPnwYPXv2xMiRI+F0OnHw4EHMmzcPu3btwhVXXFGzrcmTJ8Pr9eLEE09ESkoKysrKsGPHDlRUVNSsM2fOHMyYMQNDhgzB2LFj4fF4MH/+fLz11lv485//jHbt2lmWMycnB+3bt8fy5csDAh/Lly9HQkICevbsCQAoLi5GfHw8xo8fj4SEBJSXl2P58uV4/fXXce211yIzM7NJ9p12EzJixAiMHz8e5eXlmDVrFt544w1cd911SExMbJK/Q0RERERE0WHs2LHo2LEjvv76a5xwwgno2rUrYmJisGnTJng8HuTl5RnWP+WUU7Bz505MnToV1157LWJjYzFz5kxs3boVl112WU3QAwDsdjs6d+6MDRs2MPARpZjqioiIiChEffv2xYknnoju3btj1KhRmDBhAvbs2YPVq1fXrDN27FiMHDkSPXv2RG5uLo488kicffbZ2LJlC/bt2wcAKCsrw8GDBzF8+HAMGjQIubm56Nu3L0466aSai/fCwkL88ssvGD58OM466yz06tULffv2xaRJk+ByuTBz5sxayzpkyBBs374dhw4dqllWXl6O9evXY/DgwbDZ5DIwNzcXJ510Evr164fc3Fz06tULF1xwAZKTk7FkyZIm2W87d+7EkiVLMH78eJx00kno0aMHBg4ciMsvvxyVlZX49ddfm+TvEBERERFR9EhPT6/p7JWRkYFOnTqhXbt22LlzJ5xOZ0AnLYfDgQsvvBBlZWWYPn06Nm/ejNmzZ2PMmDHo3r17wPbbt2+PvXv3oqqqqkXeD7UsjvggIiIiCtHAgQMNj/v374/PPvsMW7duxaBBgwBICqsZM2Zgy5YtKC0thaqqNesfOHAA2dnZiIuLQ3p6OubPnw9VVZGXl4ecnBwoilKz7qZNm+D1ejF48GB4vd6a5Q6HA3l5ediyZUutZR00aBB+/PFHLF++HCeccAIASZvldrsxZMiQmvW8Xi/mzZuHFStW4PDhw/B4PIbyNoUNGzZAURQMGjTI8F4SExORnZ2NrVu3NsnfISIiIiKi6KeNWtffP2nS09Nx5plnYurUqfjjjz+Qm5uL4447znI7CQkJUFUVJSUlSE9Pb+ZSU0tj4IOIiIgoROZ0TDabDfHx8SgrKwMAVFVV4c0334TD4cC4ceOQkZEBp9OJwsJCfPTRR3C73QAARVFw+eWXY9asWZg3bx6+//57xMXFYdCgQRg3bhxiYmJQUlICAPjvf/9rWRari3y9uLg49O7dG7///juOP/542Gw2LF++HB07dkRWVlbNet9//z0WLlyIY445Brm5uYiLi4OiKPjiiy9qyttYJSUlUFUVTzzxhOXznOODiIiIiIhCVV1dDYcjeLN2z549kZiYiJKSEowaNapmtLuZto2muu+hyMLABxEREVGISkpKkJycXPPY6/WirKwM8fHxAIAtW7aguLgYf/rTnwz5ZvXzdmhSU1Nx1llnAQAOHTqE1atXY+bMmfB4PDjjjDNqtnnhhRciNTW1QeUdMmQIVq9ejc2bNyMlJQW7du3CGWecYVhnxYoVGDx4cM2oEI024XptHA6H5U2CFgjSaL2xrrzySssbFG1+FCIiIiIiorrEx8djz549QZ//6quvUFlZiaysLHz77bfo0qUL4uLiAtYrLy+v2R5FH87xQURERBSilStXGh6vXr0aXq83YFI9c+P+4sWLa91uRkYGxo4di6ysrJoL+B49esBmsyE/Px8dOnSw/KlL9+7dkZycjGXLlmHZsmVwOBwYMGBAwHrm8m7YsAFFRUV1bj81NRWlpaU1o1MAwOPx4I8//jCs16tXL6iqiuLiYsv3kZ2dXeffIiIiIiIiAoDMzEyUl5dbdjBbunQpVqxYgdNOOw0XX3wxKioq8Pnnn1tuJz8/H/Hx8UhISGjuIlMYcMQHERERUYjWrl0Lm82Gbt264cCBA5gxYwZycnLQv39/AEDnzp0RFxeHr776CsceeyzsdjtWrFhRM6m5Zt++ffjmm2/Qr18/ZGRkwG6310x+fswxxwCQoMLxxx+Pn3/+Gfn5+ejRowdiY2NRWlqKXbt2wel04vjjj6+1vDabDYMHD8avv/6KmJgY9O3bN2AUR69evbB8+XJkZmYiOzsbu3fvxvz58w0jW4Lp378/fvnlF0ybNg1HH3003G43FixYYJjXBAC6dOmCo446CtOnT8fu3buRm5sLp9OJkpISbN++HVlZWRg2bFidf4+IiIiIiCgvLw+qqmLXrl2GScv37duHb7/9FkOGDMERRxwBADjzzDPx8ccf47fffsPIkSMN29m5cydyc3PrTCNMrRMDH0REREQhuuiiizBz5kwsWrQIiqKgd+/eOOWUU2pSNcXHx+OSSy7BDz/8gE8//RQulwu9e/fG+eefj9dee61mO4mJiUhLS8OiRYtqRlakpaXh5JNPxvDhw2vWGzNmDNq1a4cFCxZg5cqV8Hg8SExMRIcOHTB06NCQyjxkyBDMmTMHbre75uJf79RTT4XdbsecOXNQVVWF9u3b46KLLsKMGTPq3HZaWhomTpyIn3/+GR9//DESExMxatQolJWVYebMmYZ1J0yYgE6dOmHJkiVYtGgRVFVFUlISOnfujI4dO4b0XoiIiIiIiLp06YLU1FSsW7euJvBRVVWFqVOnIjU1FaeffnrNuv369cPw4cPx448/Gu49Dh8+jH379gWd+JxaP0U1d8kjIiIiIiIiIiIiIopQ8+fPx5w5c3DbbbfB6XTW+/UzZszA77//jltuuSXo5OfUuvGoEhEREREREREREVGrMXz4cMTExGDRokX1fm1FRQUWLVqEE044gUGPKMYjS0RERERERERERESthsPhwLnnnluTdrg+8vPzccwxx2DgwIHNUDKKFEx1RUREREREREREREREUYMjPoiIiIiIiIiIiIiIKGow8EFERERERERERERERFGDgQ8iIiIiIiIiIiIiIooaDHwQEREREREREREREVHUYOCDiIiIiIiIiIiIiIiiBgMfREREREREREREREQUNRj4ICIiIiIiIiIiIiKiqMHABxERERERERERERERRQ0GPoiIiIiIiIiIiIiIKGow8EFERERERERERERERFGDgQ8iIiIiIiIiIiIiCosNGzbg6quvRl5eHmJiYpCZmYkTTzwRH3/8cb235Xa78corr+CYY45BamoqYmJi0KVLF/zpT3/CmjVrAtZ/++23oShKSD8zZ85sgndLLUVRVVUNdyGIiIiIiIiIiIiIqG355ptvcN5556GiosLy+SuuuAJvvfUWFEWpc1slJSU49dRTMXfuXMvnXS4XpkyZgnPPPbdm2dtvv40rr7wypLLOnDkTxx57bEjrUvgx8EFERERERERERERELWrXrl3o378/CgsLAQD9+vXDxIkTsWbNGnz44Yc167344ou44YYb6tzeDTfcgJdffhkAoCgKLrnkEvTs2RNfffUVFi9eDABISEjAqlWrkJeXBwBYvXo1vv32W8vtvfnmm1i7di0AICMjA9u3b0d8fHyD3y+1LAY+iIiIiIiIiIiIiKhF3XXXXXj88ccBAElJSdi6dSvS09MBAJdeeik++OADAEDHjh2xbds22O32oNtyu91IT09HcXExAODyyy/HO++8AwAoKytDly5dcOjQIQDAzTffjOeee67Wsh04cABdunSpGYly77334t///ncj3i21NM7xQUREREREREREREQt6osvvqj593HHHVcT9ACA8847r+bfu3btwpIlS2rd1oEDB2qCHgAwcODAmn/Hx8eje/fuNY+/+uqrOsv20ksv1QQ9YmJicOONN9b5GoosDHwQERERERERERERUYuprKzE+vXrax5369bN8Lz58YoVK2rdXnJyMmw2f1P3ypUra/5dVlaGTZs21TzevHkzysvLg26roqKiJmUWIKNHsrOza/37FHkc4S4AEREREREREREREbUd+fn50M/AkJycbHg+KSnJ8PjgwYO1bi8hIQHjxo3DTz/9BAB477334PV60bNnT3z55Zc1aa40BQUFiIuLs9zWO++8gwMHDgCQuUJuu+220N4URRQGPoiIiIiIiIiIiIioxZinna7rsaIodW7zxRdfxJgxY3DgwAGoqor3338/6LoulytouZ555pmax2eccQb69OlT59+myMNUV0RERERERERERETUYtLT0w3BDP38HABQVFQUsH5devfujeXLl+Ovf/0r8vLy4HK50KVLF1xxxRW46aabataLi4tDWlqa5Ta+/PJLQwquO+64I6T3Q5GHIz6IiIiIiIiIiIiIqMXExMSgV69eNUEG/RwcVo8HDRoU0nY7dOiAl156KWD56aefXvPvESNGGOYD0Xvqqadq/j1s2DCMHTs2pL9LkYcjPoiIiIiIiIiIiIioRU2YMKHm3zNnzjTMw/Hxxx/X/LtDhw4YOnQoAOCBBx6AoihQFAV5eXmG7VVUVKCsrCzg77z//vv45ptvah5fddVVluVZvHgxZs+eXfOYoz1aN474ICIiIiIiIiIiIqIWdcstt+C1115DcXExSkpKMHbsWEycOBGrV6/GtGnTata76667YLfb69zeH3/8gVGjRuHUU09Fr169AAALFy7Ejz/+WLPO0UcfjUsuucTy9U8++WTNv7t27YrzzjuvoW+NIgADH0RERERRprS0FKqqQlEUJCQkhLs4REREREREATp16oTJkyfjggsuQGVlJdasWYN//vOfhnUuu+wy3HjjjSFvs6SkBFOnTrV8bvjw4fj0008tgyjbtm3DJ598UvP41ltvDSnYQpGLqa6IiIiIooyqqjU/REREREREkWrChAlYvnw5/vSnP6Fz585wuVxIS0vDuHHjMGXKFLz33ntB5+Mw69ChA2655RYcccQRyMzMhMPhQGZmJsaPH4833ngD8+bNQ1ZWluVrn3vuObjdbgBAWloarr766iZ7jxQeiso7YiIiIqKoUlJSUjPiIzExMdzFISIiIiIiImpRHPFBRERERERERERERERRg4EPIiIiIiIiIiIiIiKKGgx8EBERERERERERERFR1GDgg4iIiIiIiIiIiIiIogYDH0REREREREREREREFDUY+CAiIiIiIiIiIiIioqjBwAcREREREREREREREUUNBj6IiIiIiIiIiIiIiChqMPBBRERERERERERERERRwxHuAhARERERERERERERNVZZWRlUVYWiKIiPjw93cSiMGPggIiIiIiIiIiIiolbP6/XWBD6obWOqKyIiIiIiIiIiIiIiihoMfLQS+fn5mDRpElJSUpCSkoJJkyahoKCgztetXbsWZ555JlJSUpCUlISRI0di+/btzV9gavMaWmc11157LRRFwbPPPttsZSQyq2+9ra6uxl133YWBAwciISEBHTp0wOWXX47du3e3XKGpTXn55ZfRtWtXxMbG4qijjsKcOXNqXb+yshJHHXUUYmNj0a1bN7z66qstVFIiUZ86++mnn+LEE09Eu3btkJycjFGjRuH7779vwdIS1f88q5k3bx4cDgeGDBnSvAUkstCQ64N77rkHubm5iImJQffu3fHmm2+2UGmJ6l9nJ0+ejMGDByM+Ph7t27fHlVdeiUOHDrVQaamtmz17NiZMmIAOHTpAURRMnz69ztfMmjWL92ERgIGPVuKSSy7B8uXL8d133+G7777D8uXLMWnSpFpfs2nTJhxzzDHo06cPZs6cid9//x333XcfYmNjW6jU1JY1pM5qpk+fjgULFqBDhw7NXEoio/rW27KyMixduhT33Xcfli5dik8//RQbNmzAmWee2YKlprbio48+wq233op77rkHy5Ytw5gxY3DqqafW2qHh4MGDGDNmDJYtW4Z//OMfuPnmm/HJJ5+0YKmpLatvnZ09ezZOPPFEfPPNN1iyZAmOP/54TJgwAcuWLWvhklNb1ZDzLAAUFhbi8ssvxwknnNBCJSXya0i9vfDCC/Hzzz/jjTfewPr16zFlyhT06dOnBUtNbVl96+zcuXNx+eWX4+qrr8bq1asxdepULFq0CNdcc00Ll5zaqtLSUgwePBgvvvhiSOtv2bIFp512Gu/DIoFKEW/NmjUqAPW3336rWfbrr7+qANR169YFfd1FF12kXnbZZS1RRCKDhtZZVVXVnTt3qh07dlRXrVql5ubmqs8880wzl5ZINKbe6i1cuFAFoG7btq05iklt2PDhw9XrrrvOsKxPnz7q3XffHbBucXGxWlRUpG7cuNGw/Nprr1VHjhzZrOUk0tSnzgbTr18/9cEHH2zqohFZamidveiii9R7771Xvf/++9XBgwc3YwmJAtW33n777bdqSkqKeujQoZYoHlGA+tbZJ554Qu3WrZth2fPPP6926tSp2cpIrZt2L1RcXNzk2wagfvbZZ7Wuc+edd6p9+vQxLON9WHhwxEcr8OuvvyIlJQUjRoyoWTZy5EikpKRg/vz5lq/xer34+uuv0atXL5x88snIysrCiBEjQhqORdRYDamzgNTbSZMm4e9//zv69+/fEkUlqtHQemtWWFgIRVGQmpraDKWktqqqqgpLlizBSSedZFh+0kkn1Vo/zaM8Tz75ZCxevBjV1dXNUk4iTUPrrJ7X60VxcTHS09Obo4hEBg2ts2+99RY2bdqE+++/v7mLSBSgIfX2iy++wNChQ/H444+jY8eO6NWrF+644w6Ul5e3RJGpjWtInR09ejR27tyJb775BqqqYt++fZg2bRpOP/30ligyUb39+uuvAXWc92HhwcBHK7B3715kZWUFLM/KysLevXstX7N//36UlJTg0UcfxSmnnIIffvgB55xzDs4991zMmjWruYtMbVxD6iwAPPbYY3A4HLj55pubs3hElhpab/UqKipw991345JLLkFycnJTF5HasIMHD8Lj8SA7O9uwPDs7u9b6abfbA9Z3u904ePBgs5STSNPQOqv31FNPobS0FBdeeGFzFJHIoCF1duPGjbj77rsxefJkOByOligmkUFD6u3mzZsxd+5crFq1Cp999hmeffZZTJs2DTfccENLFJnauIbU2dGjR2Py5Mm46KKL4HK5kJOTg9TUVLzwwgstUWSietu7d69lHed9WMtj4COMHnjgASiKUuvP4sWLAQCKogS8XlVVy+WA9JADgLPOOgt/+9vfMGTIENx9990444wzOKEONVhz1tklS5bgueeew9tvvx10HaKGaM56q1ddXY2JEyfC6/Xi5ZdfbvL3QQQE1tFQ66d+favtEDWXhtbZKVOm4IEHHsBHH31kGZQmai6h1lmPx4NLLrkEDz74IHr16tVSxSOyVJ9zrdfrhaIomDx5MoYPH47TTjsNTz/9NN5++22O+qAWU586u2bNGtx888345z//iSVLluC7777Dli1bcN1117VEUYkaxKqOWy2n5sVuKWF04403YuLEibWuk5eXhxUrVmDfvn0Bzx04cCAggqjJzMyEw+FAv379DMv79u2LuXPnNrzQ1KY1Z52dM2cO9u/fjy5dutQs83g8uP322/Hss89i69atjSo7tV3NWW811dXVuPDCC7FlyxbMmDGDoz2oyWVmZsJutwf0hNu/f3+t9dPj8QSs73A4kJGR0SzlJNI0tM4CMunp1VdfjalTp2L8+PHNWUyiGvWts8XFxVi8eDGWLVuGG2+8EYA0KKuqCofDgR9++AHjxo1rkbJT29WQc2379u3RsWNHpKSk1Czr27cvVFXFzp070bNnz2YtM7VtDamzjzzyCI4++mj8/e9/BwAMGjQICQkJGDNmDB566CG0b9++2ctNVB85OTmWdZz3YS2PgY8wyszMRGZmZp3rjRo1CoWFhVi4cCGGDx8OAFiwYAEKCwsxevRoy9e4XC4MGzYM69evNyzfsGEDcnNzG194apOas85OmjQpoHHj5JNPxqRJk3DllVc2vvDUZjVnvQX8QY+NGzfil19+4YUMNQuXy4WjjjoKP/74I84555ya5T/++CPOOuusoK+rrKw0PP7hhx8wdOhQOJ3OZisrEdDwOjtlyhRcddVVmDJlCnN3U4uqb51NTk7GypUrDctefvllzJgxA9OmTUPXrl2bvcxEDTnXHn300Zg6dSpKSkqQmJgIQNoJbDYbOnXq1CLlprarIXW2rKwsIJ2gls5V60VPFElGjRqFL7/80rCM92FhEo4Z1an+TjnlFHXQoEHqr7/+qv7666/qwIED1TPOOMOwTu/evdVPP/205vGnn36qOp1O9b///a+6ceNG9YUXXlDtdrs6Z86cli4+tUENqbNmubm56jPPPNPMJSXyq2+9ra6uVs8880y1U6dO6vLly9U9e/bU/FRWVobjLVAU+/DDD1Wn06m+8cYb6po1a9Rbb71VTUhIULdu3aqqqqrefffd6qRJk1RVVdXi4mK1qKhIXbdunfq3v/1NXbNmjfrGG2+oTqdTnTZtWjjfBrUh9amzqqqqH3zwgepwONSXXnrJcD4tKCgI11ugNqa+ddbs/vvvVwcPHtxCpSUS9a23xcXFaqdOndTzzz9fXb16tTpr1iy1Z8+e6jXXXBOut0BtTH3r7FtvvaU6HA715ZdfVjdt2qTOnTtXHTp0qDp8+PBwvQWKcNq9UHFxcZNtb9myZeqyZctUAOrTTz+tLlu2TN22bZuqqoF1dvPmzWp8fDzvwyIAAx+txKFDh9RLL71UTUpKUpOSktRLL71Uzc/PN6wDQH3rrbcMy9544w21R48eamxsrDp48GB1+vTpLVdoatMaWmf1GPigllbfertlyxYVgOXPL7/80uLlp+j30ksvqbm5uarL5VKPPPJIddasWTXPXXHFFeqxxx6rqqr/Yv/gwYPqEUccobpcLjUvL0995ZVXwlRyaqtCrbOqqqrHHnus5fn0iiuuaPmCU5tVnzprxsAHhUt96+3atWvV8ePHq3FxcWqnTp3U2267TS0rK2vhUlNbVt86+/zzz6v9+vVT4+Li1Pbt26uXXnqpunPnzhYuNbUWTR34+OWXX2q9RrWqszNnzuR9WARQVJXjwoiIiIiiSUlJSc0kkVoaCyIiIiIiomjHeyHS2MJdACIiIiIiIiIiIiIioqbCwAcREREREREREREREUUNBj6IiIiIiIiIiIiIiChqMPBBRERERERERERERERRg4EPIiIiIiIiIiIiIiKKGgx8EBERERERERERERFR1GDgo5WqrKzEAw88gMrKynAXhSgkrLPU2rDOUmvDOkutDesstUast9TasM5Sa8M6S60N62zkUlRVVcNdCKq/oqIipKSkoLCwEMnJyeEuDlGdWGeptWGdpdZGX2dtNhtUVYWiKEhMTAx30Ygs8TxLrRHrLbU2rLPU2rDOUmOVlJS06L0Q62zk4ogPIiIiIiIiIiIiIiKKGgx8EBERERERERERERFR1HCEuwBWVFVFcXFxuIsR0YqKigy/iSId6yy1Nqyz1Nro66w+1ZXX6w1zyYis8TxLrRHrLbU2rLPU2rDOUmPpU121xL0Q62x4JCUlQVGUWteJyDk+tNxoREREREREREREREREmlDmVInIwAdHfBARERE1XEtP6EdERERERBQJeC/UNoQy4iMiU10pilJnxIaIiIiIrOlTXfFin4iIiIiI2greC5GGk5sTEREREREREREREVHUYOCDiIiIiIiIiIiIiIiiBgMfREREREREREREREQUNRj4ICIiIiIiIiIiIiKiqMHABxERERERERERERERRQ1HuAtARERERE1LURTDbyIiIiIiIqK2hIEPIiIioiiTkJAQ7iIQERERERERhQ1TXRERERERERERERERUdRg4IOIiIiIiIiIiIiIiKIGAx9ERERERERERERERBQ1GPggIiIiIiIiIiIiIqKowcAHERERERERERERERFFDQY+iIiIiIiIiIiIiIgoajDwQUREREREREREREREUUNRVVUNdyGIiIiIIkaVG1iyCfB6AJsNsCmAxwuoqjxWFN3KKuBVgzynraICik22pwKwR0i/E1UFFAAeVcptsyh7OKm+cnm8Uk5bhOy3hjC8lwjc101Ju7XwqvI+rT4T0SzSP1etWVuvW0RERBSSkl7ZUJ12VHuBTcWuJtuuAsCuKFChwtOA1nSbAtigAArg9lpvwKEoUBQgzqmgR4Yd9tZ8DxQBGPggIiIi0qzeDuSX+B8fKgIykv2Pb30d2LBb/v2vS4Aju/sbNp/7Evh+mXF7XdoB/7oYyEqVxx4vcMlTQHF5s72FkFx6LHDB0YDLIY9nrACenB7WIhmcMxKYdBwQ67tRWbABePDDsBapwS46Bpg4BohxyuPZq4FHPwlvmZrLTacDJw4BHHZ5/OEc4N1fwlqkFnX58cC5o/yfqx+XA898EdYiRQ1z3fpoLvDOjLAWiYiIiCJTyZLHoeakYW+JF+PfLW2y7U4cFI9LhyQAADxeFTO3VOLZecUhv/6BE1JwVEe5vymvVvHeslJ8uc5/X2hTgE8uzYRD13EmI15BxxRHE72DtodhIyIiIiKNw3RpFB9jfDyyt//fpRXG3tz65zR784HkBP9juw0Y1qPx5WysglJ/4ywADOsZWT3T80v8QQ8AGNIViGmlF/wFpf6gBwAM7RFYz6JFcYW/YRoARvYKX1nCwfy5Gh5hn6vWrLjcWLdGtLG6RURERGE3vJP//sRuU1BS6Q35tXEOBYNy/PcEcU4F+eXG1x/ZwWkIemivo4aL0rsuIiIiogZITzI+djmNj4f39P97wQbjc1aN81VuYNlm47JIaLBbaCp7UhzQr3N4ymJl8R8yOkYT4wSGdAtfeRpj4Ubj4/gYYEBueMrS3BasNz7OywayU8NSlLAwnxNSEoDeHcNTlmhj3rd5WUBOaliKQkRERG1PepwNPTON94YLd1aF/PohHZxw2v1BjGqPiqW7ja8/tXdcwOtS49l03xjce0RERESatERJ3qoxz8fRLQfISpF/h9o4b24MPioCevwfKAI27TEuG2ExYiVcSiqAVduNy1rr6IH8EmD9LuOySAh+NYf1u4BCUzqBaH2vVvYVAFv3GZdF0ueqNVu/S0bU6LWlukVERERhpR/tAQAlVV6s3lcd8utHdDJmEli1rxpl1cbZJwZkGQMrLjtg45xmjcLABxEREZHGYQeS443LqtzGx1pjW0mFzAli9ZzeIose/wPzGlXMJrHAVK4RPa3XCxfzqJRhvYxBqdbE3Fs9WhtsvWrgCJdofa/BmD9XrTVgF2m8auC5lEElIiIiaiHDOxsDH0t2VYU8wblNAYaaAicLd1YaHndOsSPeZWymT41trTc/kYOBDyIiIiI9c7ormK5o9Q255gbt4RaN8/mlwLqdwbcRLuaRKJ0ygY4Z4SmLFfO+TU8EerXStEG/mfZ1Tpqk6olG5uM2MDdwrpxoZj7WXdoB7dPCU5ZoY963A7oACW2obhEREVFYxDiAwe1NgYsdoae56p3pQEqssQne/PoJfQLTXKUzzVWjcQ8SERER6WXUMc/HwDwgznfha9U437ND4DYjscf/H3uAQ8XGZZFQLs3uw8D2A8ZlkVS++ti6H9hfYFw2vJW+l7os3QRU60ZJOezA0O7hK09L27BL0pvptdZ6G2mWbQ6sW0f1CF95iIiIqE0Y0t4Fl25+Do9XxZLdoQc+hnc2dtTYku/G/lLjxObDTCNC7ArgCnd65CjAPUhERESkF+sK7KGun8vDaQeO8jXkWjXOj7RIv2IOfGSnhr/Hv4rAckVaWp5IDBg11G8Rvq+bSkU18PtW47JoDfJYUcF0X82lohpYvsW4jPuWiIiImpl5fo9V+6pRWhViniuL1y/aYUxzleBSkGEa3ZEUwzRXTYGBDyIiIiKz9ETjY/M8H/rghrmRc7jFXBlb98vEx3qR0GBnnkejb2cgKXCYddiYAx9ds/2Ty7c25vfSqyOQlhCesjQ3c0qiYT0luXFbYf5cDcgFEmPDU5ZoY/4cDe0B2HlLS0RERM1DATDMNDH5op2hj/Zon2RDl1SHYdkC0+tP6RkLxTSJeWYCr2+aAvciERERkZl5no84Yy8dDO3hb8g1N/J2y7FunDevZzUypKUt3yK9qDV2GzAsglLHrNsJFJYZl0VCwKghVm4DynS9u2yKBASikTkYmBQH9OsSnrKEw9LNxmCp3eYfJUaNYw58JMUB/TqHpyxEREQU9XplOpAWZ2w+X2AasVGb4aagSX65FxsPGjvVHdfNuI4CIM7ZhjoNNSMGPoiIiIjMkuIkpVUwyfH+xjarxnmr1D7mxuDeEdDjv8otefP1Iimw4FWBRab9FgkBo4Zwe4Alm4zLImlfN6WDRTKHjF60pvayUmmVkqmV1ttIc6jYom5x3xIREVHzMKep2l7gxt4Sb5C1LV7f2ZTmamcl9EmyHDagc4pxREi8SwkYAUINw8AHERERkZmiAGmmUR9lpp49WnDDsnHeopF35dbg2winBaaRKEf1kCvwSGEu34DcwDlYWgvzezmiO+ByWK/b2kXT/CwNYT7WTMnUdNp63SIiIqIWY56YfGE90lwluBT0z3LW+voRnVywm1LCZsQz6NFUePVNREREZCXDNM9HrPGi1RDcMDdyDswLTI/l9gKL/zAui4TAx8KNErzRxMdI+SPF0s1AtW44uH5y+dZm0R+AR9dDLNYJDO4avvI0J3PjdMcMoFNGeMoSDuYRXomxwIA2lO6rOZnTBnZIBzpnhqcsREREFLWyE23ISzPNz1GPNFdDOxqDGpVuFcv3GAMfJ/cKnAcuOZbN9U2Fe5KIiIjISmqijPzQ2EyXTZ0ypTEXCL1x3twYfES38Pf4LygFNuwyLoukHtTlVcDvW43LIql89VFcDqzdYVzWWt9LXf7YIymv9KL1vVo5VAxs3G1cFgmBzmiwaW/brltERETUIszzcxRWeLHBND9HbYaZ0mSt2FuFStPL+2YZ14lxADamuWoyDHwQERERWbHbgFTTHByV1cbHWmNbqI3zizYG9vgfEgE9/n+L8NQx5oDRsJ7+yeVbG/O+Ht5TZjCMRgvN9aqNzcVgPtaci6LpMN0VERERNTNz4GLRzirDQPnaOGzAUR2Nr1+wwzjao3u6HbEO441AKkd7NCnuTSIiIqJg0k3prsyN7fp0V+ZGXqvG+ZIKYE0E9vg3lz07FcjLCktRLJnLlxQH9GulaYPMDbaZyUCP9uEpS3NbYEr31LcTkBwXnrKEg/lYt08DurQLT1mijXnf9u0MJMeHpyxEREQUdeKdCgbmmOfnCD3NVb8sJxJdxmb3Rab5PSb0DbwuTuf8Hk2KgQ8iIiKiYNJNE5w7TWmp+naWRnggsCEuOV6eNzPnpx/eK/w9/rfuB/bmG5dFQkBGc6AI2LTHuCySylcfuw4BOw8al0VrCqTftwAVuhs8uw0Y2jN85Wlpm/cCBwqNy1prvY005rplU4BhPcJXHiIiIooqR3ZwwaHrxFbtUbFsd+gTmw83jRbZeLAah8u9hmVHdjCm0nLYAKedTfVNiXuTiIiIKJgYZ+Ck5np2mz+4caAI2FdgfN5qMuPV242PM5KA9umNKmaTMJdrQG54yhHMKnP5WumIDyDy93VTqXIDG0zzXAxsxcetIQKOdRt7/82l2gOsN9WtaP0cERERUYvrl228B9x02I2K0Kf3QH/T69fsN6ZMdtiA1Fhj77d4Z7h7w0UfBj6IiIiIgqlyAxXVwZ/3qv6JwdMSJUWU3rpdAS9B747Gx4WlgaMtwsFcrnU7w1OOYPp0Mj6OtPLVh3lfr2/F76U2DltgGi+rz0Q0622ut23s/TcXhw3okWNc1prPCURERBRRNhww3gN2TXPAZa/H602ToPfMNAZC3F6guNI4YUh5dYgTiFDIGPggIiIiCuZwsfGx22N8vGEXUFAq/x5uSuFTWgGs3ha4TfMExws3IuRZ8ppLxwygU6ZxmXlejXBKSwwMFizcaL1upMtOBfKyjcvMadKixcA8IN44hL/VHreG6NJO5vXQi9Zj3dIG5AIJscZlbaluERERUbNasrsKHt09WoxDweAcVy2vMFpomsi8TzsHUkwjPJbvMa5T7QXcHmM6LGocBj6IiIiIgjlcYnxsDnz8pmvENOfuX/yHdOXRi48JTMcSCQ2h5rIfLAL+2GO9bjiYg0pllcDKrWEpSqOZ93VBKbA+SkcBmI/b+l1Afon1utHIfKwPFMq8H9R45n3b1uoWERERNaviShVrTemphncOPfCxYm+VYQSHTVEwtKPx9V+tKw94XX45R300JQY+iIiIiKx4vUCBqSEt1nSxu8A3UXmMAziim+k5i4DGUd0Bp26MdLUbWLqp8WVtrJGmRsSFG4FIuuYOJajUWpjfy6IIGPHTXMyjm35bH55yhIv5WEdCkDNacN8SERFRM1u40zgiY1gnF0KdhaPai4DJ0Id3Mo6EXnvAjSq38T4gv7yV3uNEKAY+iIiIiKwUlBobpM2N03vzgW0H5N+Du8lE6BqPVxrnzcyNdb9vrX0OkZaQFOefoF0TSY2IMQ5gSAhBpdYgPgYYaBrxE63BgLyswDlvWutxa4iU+MB5adrS+29Oue2AHKYQIyIioua1wJSuKiPeju4ZjpBfv3BnpeHxER1ccJpa4jccMt4LVrgBVY3STlFhwMAHERERkRVzmqsK44WvoaHNPGJi9XagpMK4zKYAw0ypfyKhsW5YD8CuuySsqAZ+3xK+8pgN7gbEmoJKi1ppLv+h3QGHacTPss3hK09zMgf59hUAW/eHpShhMbynfOY1ZZUS6KTGG2EaSbS/ANiyLyxFISIioui1u9iDnYXGScpHdAo93dWinVXw6oIYcU4Fg0zzhPy4ocL8MhRVMPDRVBj4ICIiIjJT1cCJzc2TNGtBCwXA8BDSrvTrIqMr6lqvpZkbEZdtAqrc1uuGgzmotGZHYFCptTDv6+Vbwj/ip7m09VREAZ+rzYFzBFHDmM8Jba1uERERUYsxp7sa3jkmyJqBiipVrDtgvK8yzxMyZ1ulITgCAIfKmO6qqTDwQURERGRWWlF7439pBbBqm/y7ZwcgPdH4vFVDnLkheNMemUQ8nBx2mXdEL5IaERUETpDdWlND2W3A0B7GZZG0r5tSWkLbTvPktANHmtKztdZ6G2nSEoBeHY3LfmtDdYuIiIha1EJTuqtu6Q60Swi9OX3hDmO6q2GmESPVXmBXobFzTFk1R3w0FQY+iIiIiMwOmUZ7mNNcLdnkn1zbPIHz9gPA7sOB2zT3Uo6ExrqBucaRLF5VJjaPFD07AOlJxmULI2C/NUS/zpE54qc5mFO6lVUCK7eGpShhMbgrEKu7qfWqwCKLOX+o/oZZpBBbuS185SEiIqKotvZANYoqjSMwzMGL2phHjLRLsKNbunGekDnbjKPZvSpQXs1RH02BgQ8iIiIiM/P8Hvp5GQBj723ziASrwEHHDPkxrBcBjd7mUSgbdsmk7pHCXL4dB4FdFkGl1sD8Xv7YExhgixbmNE9L/vAHCtsC87FeuwMoKgtPWaKNed8u2cQUYkRERNRsvCqwxJzuqlPo6a52FHqwu8h4rTLcFDj5dn1FwITmh0rb0LVzM2Lgg4iIiEivslpSWenpAx8eL7DY13s7KwXolmNc1yqljXm0x8EiafgOt0gchaIXTfNERNN7qY3LARxhSvMUre81mLZyrFuaywEcEcGp+YiIiCgqLdhpTFc1KMeJOIcSZO1Ai0yvNwc+CipUFFQYAx1FlUx31RQY+CAiIiLSM09qbp7rY/V2/+Ta5knNC8uAdTsDt2luCF24EQj3tWxeFpCValwWCaNQNFZBpdbayNnJYsRPa30vdRnSFYh1+h97vG0rzVP3HCAz2bgsWo91SxtsUbcWR1BqPiIiIopKS3dXo9rjv3lz2hUc0cFZyyuMFpjmCemZ6UR6nLFJfuku4zpuL1Dt4aiPxmLgg4iIiEjPHPgwDTs2NGKaR0ws2ijjofWS4oC+nYNvI1zMc5PszQe27g9PWaxYBZXW7ghPWRrLvK8jZcRPczAftzU7gOLy8JQlHMzHetchSdFGjWeZQqwN1S0iIiIKi/JqFav2VRuWDe8cerqrNfurUWKaJ8Q86uOLtYHXNIfLwt1TrvVj4IOIiIhI4/ECBaZc/DGm3jxa0CLOBQzMs35Ob1gPwK675KqoBn7f0uiiNlqkp+Mxl2+xRVCptTAHAyJpZE1TUhD59aq5hTLnD9WfgsB929bqFhEREYXNQlO6qmEdXbCFmO3KowJLdpvmCelsDHxszvegotp4r2NOf0X1x8AHERERkSa/xDjCw2u62Nx+ANjtm1z7qO6AUzf3R7UbWLopcJvmiZ6XbQpMn9XS0hKB3h2NyyKpETHOBQzKMy6LtPlHQpUcB/TtZFzWWt9LXXq0BzKSjMsWWMx5E60ykoCeHYzLrOb8ofrr0T4whVi0fo6IiIgo4iw0patKjrWhTztHyK83p7sa3N6FGNPL1x4wrlPpBrzm7ANULwx8EBEREWnMaa4qjEOaDb23zT3bV2wDyo0Xq3DYJUCiFwkBBnPP6dIKYNW28JTFypHmoJLHOqjUGgztaRrxUxUZI36agznIt/MgsOtweMoSDuZzQnG5pPqixjOPmtp1SH6IiIiIWsD+Ui+25Bs7rw3rFHq6q6W7quDWjV532RUc0d446uO7DRUBryvkqI9GYeCDiIiISFNhClyYe9joe293yDCu9+u6wO1lpwDbDgCb9kgjqFeNjNQ3iXHA5r3yAwBLNskMepEiPVHmG9HmwVixNTCo1FpkJMlIoU2+fb10swRyolFWCrAnX94v0PZ65HfMAEoq/J+rxX9I+jxqvI4ZgNsjwWm3p+3VLSIiIqq3EDNRhWzhDkl3taPQjYOlHnRICr1ZvbRaxWrdPCEer4pOKXbDOgt2VMFjSu1bWskRH42hqCrHzBAREVEb5PZIyqnKaklTVemWx0Vl0mDp9UojpqpKUED1AqWVso724/EA2pVUSbk0cqqqBDhUyL9VFXA5gFF9gG45wJZ99Sunqsp23R7fj/7fumXVpmXaa6o9gQEcALApQHI8cMHRwKFioKC0sXs0kMcr+6lat8+s/l3tOxb6cioKkBADXHg0UFwhZYwkqirlrqiSkUEVVaZ/V8v+B2RfJ8YBF4yWOWTyS8Jb9qagqhKMKiyTz0xhqXxe7DYJgEwYLkGQ0sCea1GpshrYth/YUwCkxgNnDpd90xyfq7ZKGy112lD5fLWVukVERET1UnLhSKiJsSiv9OKzTU3X5z/BpaBLigNfry/HwTIv0uNs6JruQKdkO2KddYdZ4hwKXHYFbq+KsmoVVg3yabE22G0KXHagdzsHnHaOWWgMBj6IiIiodfB4pXGxyg1U+X5X6hrPzQGMmnWqpYFWa5CurPat6wsIeL0SqPCqxseKIo242o/NJg3YDpuksNJ+nKbf5udsvotVj8ffyK9v8Df/22pZsMs1m03+hssBOH0/Lrvx3w6LZdq/HTZ5n/U5BlXVsi+1/Rjs35W6hn89l1MmjI/1/a7t3y5H/crXlLSG/dJKoKwSKKuQ36WV/mUe3ftz2IH4GAnWxMcA8bH+fyfEALGu8L2XpuDxAodLgENFEoQ6WCTHGJAAWkaS7ydZ5jVpze+1PiqrgfW7gI175PzQp5PMR+G01/1aqp/8EuDH5cCJQ2SeIiIiIiILpf07olpRUOl0YXVxbJNv36uqOFjqxfYCDwrKvYh3Keib5cTAbCe6ZTjgCHXWc2p2DHwQERFR89B6+9cEJKr9jfm1BTAqTEGK8ip/I7pVgEL7sSmAXQHsdt+/fY36lkEKhz+AUfNv32+nQ5ZrF6zayAlthEK1xzhaobbntMBFMFqZnA5/8KImWOGwfq4mgOEwzh3REKrq2+fVQGWVMXhhDmJUVMvxsnoPsU4gxmUdwIh1SVljnRL0iJReSx6vL7ChBTR8v2v+XWWc3N7l9AcxEmKNQY6E2PAGaZpDeSVwsFgCHQeLpdHZ65XjrQU5MpOB9CQ5zm1NtQfYuEuCHl4V6NUB6N1J6gE1j/wS4IdlwElHMPBBREREwRWWYsvC7dh9/vGoapfarH+qyqNiV6EHOwvdqHQDmQk2DG7vQv8sJ7ISbVCi6f6gFeKVOREREQmvN3C0hP4naADDNKJCazCv9sg2VV1wQv9YgT9IoQUabEpgkCIpFkhLsB5VoX8crEHdnG5JP7KitEK33A1Uac/pghhWoxY0hmCE73diDOBMCAxSWK3b1EEAVZXymoMXFVVybCurjM9VVcux0LPZdEELp7yfzCQgxuEPZOgDG44I7dnu9vhHaGjBjFLdqI3yKuNImliXBDASYmSOEXOAwxnFl81eVVIyHSqSkRwHi/1phBJi5fh3bSejOVIT/EHBtsjjlbln1u6U80OPHKBvZyDOVfdrqXEU3U+ExE+JiIgoAimK4bKhOcXYFXRLd6BbugPFlTIK5JdNFZi9pQJdUh0YlONC3ywHEly8eAmHKL6DIyIiinJeb+BoiWDpngwBDF/jd7ku7VNFlTT6q17diArVOMICkBERWtqnmt+Kf9SE0wEkxkrjqNMiQBFKoEJPm1/DnAKqrNI4N0RAUEMXxAg2ubACYxooLTgRF29MH+XyjQCxGnXREg3AHq9/9ItVWinzc+b3q0BGK+hHY6TEG0do6EdnOO2tY+SCVg/MAY1S3zItDRMg+yDOF8hIiAOyUo1BjYTYyBmJ0hIqqyXAoaWsOlQs9camSE/6zpkymiMzSfYbyXlwyz5g9XYZDZOXDQzoInWHWoaiGH+IiIiIrPguFbR+dS0lJdaGgTk29M924ECJF9sKPPhsdRl+2CipsPpnO9E93QF7W+5E1MIY+CAiImopWqBCa6gPmIsiWABDF6TQp4CqcpuCFKbRFYBvJIUNcCi6OSpMAYn4GGkINwQmHIDTl/7JWY9AhZk2AkF7z2VVphEWFnNaGJ5zB45I0NgU02gKX1m13vnm4IXTFORwhKmB36uaUkjpj2114KgMq1RZLocxpVRakvzWBzC051zO1tdDX/Xto1Lf3Br6gIYW5KjS7RebzR/ASE0AOqbrAhux0hu/LQU29FRVJh8/6AtyHCySx4Dsl8xkYFCepK5KT2q7+ykYVQW2HwBWbgOKy4Eu7YCBuTKvCbUs7XzNwAcRERHVRnfvE44rBruiICfJjpwkO6rcKnYUebB6XzWW7qpCZoINg3Jc6JftRFYCU2E1NwY+iIiIgtHmP9CCEPrgRM0cFfof3WTa5rRPFVXynKoGzlOhwj+XgN0XYLArxpEV+rkpEmKBFN+ICvNICv16tiZoHPKqvvfrK3+VxYgKc6DCvF6w2cTsNn+wQgtMxDgltZUWnAgWuGjIxNzNRVUlYFNhEZwyBzO09FLmfWK3GYMWKfH+f+tHZWgBjdbeOO1VZR+VVvgDGmWVQIkusOHWjVxx2P2BjawUf0oqbQLxuFY+cXhTqvb4R3JoP1VuuetLTQByUmWkQrtk2Y/cb9ZUFdiTD/y+BcgvBTqkA8f0leAQhYcNvu6baH3BXCIiImo5igIFChRFCXtgIcapoEeGDT0ynCiq8GJbgRu/bPalwkrzpcJq50A8U2E1CwY+iIgoemiBCnMgwjxHhVUAQz+iolI3H4IhSGFKAQVVF6jQpX6qmTTbF4QwjKhwBA9W2JuhId/jtR5ZYR5xoV+mH3VR18TcWkBCC17ExUhQpraAhRbQiOTG+5p5MnQBi2CBjcpq4yTYgBxHfeAiLsY/KkO/XD9PRjQ1QHu8kg6oRDdxeIlu9EZZZeDE4Vpgo0OG/99acCMmyiYObyqqKvtTC3AcKJS5OlRVPmuZyUCfThLkyEiK7nlKmtL+AuD3rbI/s1KAE4fIbwovRfEl6+aIDyIiIqqF75oh0i4ZUuJsGBTnwoAcFftKvNiW78Znq8vwvVNBvywnBuQ40TWNqbCaEu9+iIgofLSe8lYTZ9cVwNAma9aPqqjyzW+gjaAwBysA6yCFTTeiwmGXhtZkU2BCP5JCW9YcgQozjzcwUGE1wsKcIkr7tzvI/BaAP1ihD1IkxhmXWa2jLY/kwIWZx2tMLRUwEkNXn7SJ2c1iHP55MWKdkurGalRGjCv6G+rdHmPqqZp/+36XVxpHtcTpJg7PSPb/W/vNBvnQeLzAYd9ojgO+YEd5lTyXHC9zcvTqKAGPlPjoroPN4VAxsGILsDtfJrg/fhDQPo37MVIovilKI60Vg4iIiCKLTSY3t/l+Io1NUdAxyY6OSXZUulXsKHRj9f5qLN1dhYx4Gwa3d6FflhNZifZwF7XV410mERGFTpuvIWBuiuq6AxiV2jwVWqAiyIgKLfWTlgbKbvcHJxx2XwooLQjhm0w7IQZIjQ8MTJiDFS2dGkk/MXdVbUELX2ooc+Ciyh04kkCjKMZghPbv+BjrYIX53w57604Voqr+OqRPK1bbfBlmTrsukOEC0hKA2FRTMEMX1GhNgZ7GqnL7gxolpjRUpZWynzWK4p9LIzlOUikl6gMbbWzi8KZUXiWjDrRAx6FiOSc47DKCo0cOkJkigY5YZ7hL23oVlsoIj+0HJGB0bH+Z4J2N65HF5hvx0dIzlRIREVGr01oGicY6FfTMdKJnphMF5b5UWJsqMHtLJbqk2jEox4U+TIXVYAx8EBFFM/3E0ubUTpaTa+sCGOaGZO3H4w1M/aT/t103gkIbUWG3SbBCC0YkxAIp5hEVDgTMURHuORz0I1L0qZ+sghhWqaK0OT2s2BSLdFAOaTDWBygCghe6dFmRfhVXH9q+1o/IqDQFNMzzppj3rU3RpZByyb7MTDIGN/S/HW20B402cXhJhWnUhi7IYZg4XPEHMNKTgE6ZvsBGrH8CcTZCNp5XlTRVNYGOQjkegASRMlOAvCygXYrM1cFgUuMVl8uk5Vv2yki/0X2Brtmsz5FKUYw/RERERFYiNNVVXdLibUiLd2FQjoq9JV5szXfjszVlSPClwuqf7UJemp2psOqBgQ8iokiiqv6UPKHOTaEFMCqrgHJdY7H2vNsTGJzQ/9aCEnZd2idtjgotAKGfo0I/T4VV+qdIurLweoOngaordZT2umCBC+396gMTcb5JqYMFLszzW0TSvmoOHo91Sqlgvz1B5snQT+ydEh8YwNB+O6M8vVSovF4ZKaBPPVVSYUxL5dal8tKCkQmxQFaqNLLrAxucOLx5VFX7R3JowY5qjzS6pyfJiIPMFP8k5NR0yiqBVduAjXskLd2wnkCP9vJdSBFM8f/mOYmIiIiC8aW60n5aG7tNQcdkOzomSyqs7QVurN5XjSW7qpCZYMegHCf6ZTvRLoHXrnVh4IOIqLHc5hRPugb02gIYWnBCH6yoctc9oqImMKFP/2SaTDshVnoE6+etsAxW+LYRqbT5LcwBi2CBCquRF8FoIyf0AYrE2OCBCkMQw942G8i8XuO8Kpa/df+22v9OuzFgkZFsHcSI9c2TEcn1M1w8XlPqqQrd6I1y+e3VBexiHP4gRscMY1AjIUYCS2xEbF6qChSV+YMcBwqBgjJ5LtYpozgG5cnvjKS2OxqpuVVWA6u3A+t2yvfmEV2B3h05x0xrYfMFPJjqioiIiGqjKFGTHTPOqaB3Oyd6t3Miv1xGgczcUoHZWyuRm2rHQF8qrDgn75ut8CqfiNoew4gKi4m0gwUwzCl4Kn3zVGgjKqyCFF5Vvmn1wQl9KijtJ14bKWCaTNtqvorW0hCsjV6pb8BC/5x5BIBGgXVwIikuSKDCvKwV7cfmpKqyr7VARXkdwYyqauOE1YDU55qAha8eZwcZkRHrbJsBo/pye/zBDH06qhJfUCPYxOFaai/z/BouXu61uGq3zMehBTr2F8o5TYEEpbNTgQG5MpojKY6Bp+ZW5ZZgx+rt8tnp1xno3xlwcV6UVkUx/RARERFZUfyjRJUoumhIj7MjPc6OwV4Ve4o92FrgwfTVZYh32dAvy1GTCsvGe4savBMmosinNZ4b0j1V++cDqC2AYZ6joqLaOvWTeUSFPkhh1z3WRk3ExwLJCYEjKKzmqmitedj181vUGqzQ7XvDfBjVgKeO+S3MoyviYwODFC6HNE6ZJ+zml7k1t8cYtCi3CGBU6h6bj5FNMU7uHR8LpCcDcRYTfse6Ii+9WWtQVe0fraEFNkrK/f/WTxxu008cngC0N43YSIxhMCncVFWOmzaSY38hkF8i3ylOu4zi6NsFyEqRwBQb21uOxwOs3y3zeFRXA706AQNzJVhIrY9ig6S5svn+TURERGRBUbRpPqLyVtVhV9A51YHOqQ5UuFVsy5dUWEt3VSFDS4WV5UQmU2Ex8EFEzUBLhxNKuidDAENL+1TlT6dT6QbcblOAAv5/q6p8k9WMqNDmq1CMAYl4F5AcZ0r35EtZZJ5cu7UGKsy03vzBRlUEm5xbH8wIEreQ/es0BidinbKP6xpt4fLt52i8AmkO2gglw4iMWlJNWaWXinH4R2TEOYGUOF8qKd8ojDiXLqjBtEeNoqpyLPSBDUOQo8I4cbjd5g9gZCQCudrE4XGyLD6Go5MijccLHPaN5tjvC3aUVspzyXES6OjdwTcJeTyPXzh4vcAfe4Hft0jwt3sOMLirfLao9fLFPWDz/RARERFZ8V0ntLbJzRsizqmgT5YTfbIkFdbmw27M2lyJ2VsqkZfmwMAcJ3pnOhHrjPIdEQQDH0TknwA6lHRPhnX0vcd9gYsK3+tUGIMV+hEVhkCFKWChBSLifI3oDru/odwyYOGInkCFmcdb+/wVwUZdaD/uOibmNgcm4mKAlATZt9ooC8vRFw72MG8MVTWORiqvqj2wUVkduA2Hb56MOF+wIjVRNyLDZQxmxDij9zMSDtrE4bUFNvQThzvsQGKcpJ7KTpWGV+2HE4e3DuVV/pEc+wuBQ0VyfrbbgMxkaVRvlyI/HEkQXqoKbN0PLNssc6p0zQaGdJXvNmr99F03ed4kIiKiYJTWPbl5Q6XH2ZDe0QVPexW7iz3Yku/BZ6vLEe+sqEmFldvGUmEx8EHUGukDFfrghNb4Xek2jajQ1tEaW7Ugha9RtcpjHaBQVX+Pf4dNAg5akEI/R4XDLo09hhEVDuNICv26bWXSVrenjmBFkIBFTVqpWibmtprHItFifgtz8EILdLAhvOloKcGs5sQoNwUxtCCH1xSQsiv+IEWcS45lZkrgaAztNyfibT41E4eX+4Ma5sCGYeJwpz+QoU0cXvPj+0y2oQvLVs/rlUnH9xf4gx1F5fJcQoykq8rrIb/Tk3gujRSqCuw8BCzdBBwuATpnAscNlIniKXoovv9Fa94KIiIiaiKS6ioaJjdvCJtdQW6qA7mpDpRXq9hW4Maa/W4s3V2NzHgbBuY40S/biYz46G+bY8sJUUtQ1cCGbi04oY2isAxg6EZT6P9d7bYYTQH/vwH/SAqnbmSFw+bv6R/rlAlV9YEJ/egK/SgLu63t3WCqqgQuqj1yPCrrCFjUBJp0zwedmFvxByFidEGJ+ATr0RVasCLGyYm5W4rbl36t3BS0CAho+Jabj7WiBKaRSk0wjsrQBzTYON5y3B5fUMMX3CitAIp1QY2ySuNIqfgYfyCjXbIEM/TBDQahWrfKauBgkX80xwHfJOQ2RQIbnTMlyJGVyjRJkWpPPrBkkwSrctKAM4bK6CqKPvoRH22xFYOIiIhC47tM4CBRIN6loG+WE33aOXC43IvNhz2YuaUSs7dWomuaAwOynejVzolYR3TuKN6tE1nRenDXNnF2sABGpW4kRYVuWbD5KbRRFdpICIfNmAZKP6IiKc46MKEfZdFWAxVm+om5zcdPH2yyOq5a8CJYmigtcBFjGlGREOsfZeG0+wMV5tEXnAy65WnzzugDGJZBDV+6qWp34DacDmPgIjM5MK1UTXopB4NT4VKpm1+juDwwJZV+4nBFkV78CbFASjzQMV3+nRTnX95WRqi1Baoq6Y+0IMf+QqCgRL6DY5xAdgowKE+CHJlJDGpFuoNFwOI/gN2H5Xx8ypFAh3R+v0YzrfWCrRhERERUG5vCSwYTRVGQmWBHZoIdHq+KXUUebD4sqbASXBXo60uF1SU1ulJh8Y6OooO+kbsmtZPWuF1HAEObQLuiyp8KqsotDaUqLNI/AYDqC07YjSMqtBEWTt9EwknxdY+o0NIORdGJpUl4vaZjZx5VYT6WFsc2WODCbpMgRIwuIBHrCywZghWmwEWM038cebzCSxtFZZ4Xo7wqcHSG9ttcH+w2Y8AiJUF6C5uDGdpjNoCHX83E4fo0VKaUVFW6OVHsNv9cGhlJQG47f2AjMQ6IdzFAFc3cHmkc31coowH2F/oDX2mJMpJjYK78To7neb21yC+RlFZb98v8RicMls82j1/0U9h9k4iIiELgu05oa3N8hMph86fCKqv2YsthD9bsc2PprmpkJtgwMMeFflkOpEdBKiwGPig8tDRC5tROlpNrmwIYhtRPVf5GcI/FKAr9Y32QQpsQW5u3wmn3N3zXNpJCH8DgDVftPF5TCq/qwCCF/vibU0VZ9bjXOOz+0RZOu/yOjwXSrCbk9gU49JN4swE7Mrk9gYELqzkytN/meTIUGEddxMcCGbWMyuDIm8ijTRxebApsaOmorCYOT/KlnspJNaWhiuPE4W1NaQWwr8A3mqMAOFgs3/8OuwQ3+naWUR3tUiSQTa1LUZlMWr5pjwQwjx0gE8szeNl2cMQHERERhUJRoECBTVGiavRCc0h02TEwx44B2SoOlXmx6bAbMzdXYPYWIC/NgYE5TvTMbL2psBj4oNBogYr6zE2hjcDQ0j7pgxZV1f4RFFrjpXlUhUOX6sluSv3k9M1RkRwXGKQISAXF1EINYpiYu9riGOtTRVk8765lYm7znBUuh4yOiQky0sIcwOBksq2Dxxt8TgzDb9/zbotgV4zTGKxIijMGMPT/jnHycx7pPF5jGip9OiotyKEfmRPr8o3QiJW5FpJidcGNODkn8Ji3TR4vcLhYghz7CuSntEKeS4qXAEevjjLXQ1oCG8dbs9IKYPkWYP0uOc+P7gv07shrgbbI5pvjo63OVEpERESh8aW6AvtKhExRFLRLtKNdoqTC2lHowebDbn8qrHYODMhxoVNK60qFxcBHtFJVaRSotBhJUdfk2pVV/nRPFVX+QIbHazGSQvdvw0gK3VwVTl8AQmu0NKd5shpV4bCxkaIxzIGqgIBUkEBGzagM3wgaKwoC00S5HEBajG8EhiPwOf1cGJyYu/VSVesJv61GaZT7Ap5mTt98NTG+YEVaItDeZR3MiHWxYau1cXt0gYzywKBGWaUvXaCPNnF4Upz0yNcHNZI4cTjpVFT5Axz7C4EDRVLf7DaZdL57ewlyZKVIvaLWr6IK+H0rsGaHHOehPYD+XThqsy3Tt2C0ohtuIiIiamFMddUoDpuCrmkOdE1zoLTKlwprvxtLd+tTYTmRFhf57TVsUYgkbtMcFVbBCasARkW1cURFpRao8AQPUqgwBii0URX6eShindIA5dIHJoKkfmJjdtPS5i+wqg9WgYqAgEZ1YBogjd1mHEGhBSS0NF+GkRgWAQ6OnokeWoDMHLww/1s/WsNcr2yKLmgRI/WoXUrgaIw4X7opNmS3bpXVxpEaxfo5NsqlrmhsiozWSPRNHN4pwx/kSPRNHs4GTLKiqjKPwz7daI7CUnkuIUYmHx/WQwIdGUmsR9Gmyg2s2gas2CrXq4PzZC4WpicjjvggIiKiUCiKBD3YV6LREmNsGNjehgE5Dhws82LTITdmba7A7C0V6JrmQP9sJ3plOhEToamw2ALVGPoRFVbBiWABDP1E2lqQwjCiIsioCps2gsKmm6/C7m+MjnFKg5I+SOGy++ewcJmCFQxUNB+vF6jyGAMT5pRQVnVHC1pUu429ovW0wJQ+BVR8jPXoCm0y7hjdY06kHt3cnsDRGOWVQQIZ1YEpyRQY00vFxcioDH0AQx/QcDHVUNRQVakXxVr6Kf3IDd8y/dw72sThSXHS+JyX5R+pkRQn5yV+z1AoqtzGlFX7C2SZokjd6pwpvf2zU6XO8ZwTndweGd2xfLN05ujXGRjSVb6HiADO8UFERESh8QU+bAjetEb1pCjITrAjO8EOt1fFjgIP/jjsxudryhHvrEDfLAf6Z7vQOcUOJYKu09pW4EObbNkQkKj2T5pdWwDDMD+FL3BhmfpJ99gwosKXAsqpC0TEuKSRqLa0T/p5KpjypeV4vMbRE/qgRMAonCDBjGDM81vEOPz1QD/nhXm0hTa/BXu2ti1erz+9VG2jMbTfVumlXA7jqAyrERmxulEZbKyOTl4vUFZlTEFVXG4McugDYS6HP5DRPg3o2cE/kXgSJw6nBlJVqXNakGNvgczVoaryHZiTCgzu6k9bxVFi0c/jBTbsApZskkB9707Akd3k/EOkp33nMPBBREREtWF2zGbltCvoluFAtwxJhbXpsBtr97uxbHc1MuL9qbBSIyAVVmTfTXq9/gblOkdU6AMYvgCFfjRFle95fWAC+qAF5NPg1I2kcNr981ZoQYjEWGNwoiYwYRG4YKAiPFQVcHstRluYghMBgYtq/yiNYBNzK4puDgvdKIqU+MA0UZbpohxsVG7rtDRmAUGMSv/cGTXPVcpj1dRHwW43Bi5S4qWxMNik3wyWtQ0erz+AERDYCDJxuBbE6NJON3G4L9jByeKpKbg9Mh+HFujYl+9PiZaWKAGOgV3kd2oC61xboqrApr3A4j8klVn39jKyJzUh3CWjSKaYfhMRERGZ+bJjSuCDFw3NKTHGjsHt7RiUo+JAqRd/HHJj1pZKSYWVLqNAemU64LKH5zhEZuCjoBR4/QfJIW45R4XvtxaocNglpZN+jgqn3deTPsYfkLAKUuhHWzBQ0fpt3gf8/Ls0AFpRFH/QQhtBEeOUPPTmgEVAAMPBtD7UOHvyga8XW6eXiovxByoSYiS9S5zL4ieG86xQoOVbgAXrAycO10Zo5KT659ZI4sTh1EL2FwKfL5DvZKddRpv18wU5slPknEdt1+w1ktoqtx1w0hAgMzncJaJIZ4Nc/9jAOT6IiIgoOEUxBD+o+SmKguwkO7KTJBXWtnwPNh2qxudrypAUY8NVRyUgMabl290js9WjpBwoLAMG5fl70mtBCn0aKM5VQGZFZTKi4viBgRN4x/iCXKwzFC5aKqETBktwIy7Gn16K9ZIao7AMSI4HxvaXwEZCLEf6UPiVVEjQ46wREnzjiEfSyy+RFHrjB4e7JNRaMNUVERERhYJzfISVy6agZ4YDPTMc2FXkxqzNlSirVpEYhqn7IjPwoemWA6QnhrsU1No47ECvjuEuBVEgrbtB9xw2SlPT0kYNdW4X7pIQ+WmNk5nJMiqXyEBhJyaqH05uTkRERKGwSeADvGQIu1iHEtYUpZEb+NBCcxzGTPVh832gWG8oEim6+sk6Sk1J4bmPIpANPOdRcDVpi1g3KEQ2XkcRERFRCHzRDt8c5xRG4d7/kRv40MJyDM1RfbAXGEUyxfe1yzpKTU1ft4giBc95VCsmXqZ64jmFiIiIQqEobB6MFOEd8BHJgQ+wNw/VH3s9UyRjT0VqLqxXFIk4yo1qo92Jsm5QqHgdRURERKFQFChQYGPkI+xsYd7/kRv40HqAsYJSfTCJH0Uy5qam5qKf8JUoUvCcR7XhtT7Vm1ZfWG+IiIioFkx1FTHCvf8jN/AB8GaI6k/rXcp6Q5FIq5Y8t1FTY+MyRSJ9QI51k8x4zUb1xXMKERERhYKpriKGdskfLpEb+NCGvnMYM9UH0yZQJNPXT9ZRakpaVxbWK4okNp7zqBa8ZqP64jmFiIiIQmGTXwx8hJ82WDdcIjfwAYDDmKnemO6FIpm+dyvrKDUldmehSMVzHtWGdYPqg9dRREREFApFqekbyCuG8Ar3/o/swAcvaqm+2PhHkUyfl5p1lJoUc55TBOI5j2rDazaqL55TiIiIKBS6VFccJBpeNjDVlTUtZQdrKNUH071QJNN6KvLcRk3Npv2wXlEEsfGcR7XgNRvVl3bnzO87IiIiqo0+GQwvGcIq3H1VIjfwAXBMEtWfYvpNFEkU0w9RU2O9okjCcx7VhnWD6ovnFCIiIgqFLtUVtW0RHPjgMGZqAKZNoEjGFA3UXHjuo0ik6FooWTfJTGHdoHridRQRERGFwpdtgyM+wi/cl2z1D3x8Mh947FNg6z6gohqY+ygwKC/01ydPBO4+D/jHBbWv11QT1+0rAD6YBZx0BNC/S+O2VV9llcCdbwOrt0s5vCrQKRM4czhwzYlAfIxx/fnrgJe+BtbuBMqrgC6ZwMQxwOXjALtN1ikuB97+GZi7Bti0FyitBDpnAueMBK4cD8Q6jdusdgMvfQNMnQfsL5R1Jx0PXHmCcb2j7wJ2HrJ+HzEOYMOr/sfF5cAr3wIfzQUOFgHpScDIXsDfzgR6dfSvd+XzwIZdwLzHArf51s/Ae78AOw4CWanABaOBG04DnI2MxeknPaTGmzoPuOMt4Mt76/c5bw6511gvv+tc4K+nGZcdLAIemQb8vEI+S307AXecAxzTV57X3hcAfHgHMKqP8fXb9gMnPyCvtSnA6D7A3ecDA3Mb9x60L91j7wFG9QaeukqWN8V56td1wMQnrd+P2cbdcl5Y/AewvwCIjwU6pANHdQfuPBdIipP1pi8ADhUBV5/YsDIBwLu/AHEu4IKjG76NSPDtEuCbJcDvW4BdhwG3J/i6wY7B9gPAQx/LsSoql3P8y9c3vl4B/nNefc99M1bIe/rbWYHPHX0XMFJXT1uS9hmNcQAz/gN0yjA+f9HjwOES4Md/tXzZWsKijbIPVm8HNuwGqtxyvdU507hefa8zrGjXCe/Pks+7ogCqCmQkAUN7An8+Sc4NDaI03fVccwh2ftpxEDjmbuDJK1v3uWv1duCJz4D1u4BDxXKN2C0HuPx44NxRwV+n/44EfDeLvmPYpyNwz4X+79NQWX5HhdiAvWE38PUi4PyjAz8Dt78J/Lbe+lqzJd3+pnxHrH2p7nVzrwFunWB93o0Eod47BFNaATw5HfhqEVBYCnRvD1x/qpyXGk0x1kciIhJrdwBv/Aj8ugE4UADY7UDXbODMYdKmlJrYfH/bfM/Q0ve2gNxnvfEjMGcNsPsw4PUC7VKAoT2Ai8bIvXd9vzci/Xpw7hppl9uwGygolXv4Xh2Bv5wEjBtkXPfn34GvFsu14aa9ci+77XXr7YZ6HfD5AuD9mcDmvXJvm5og97V/PU32eyhWbpN2m2WbAYdNjvW9FwJd2tV7dwTwjfiwQYHaBJGPyctL8djsYnRPd+CzyzLrfkEr8fz8YszdWondxR5UuFW0S7BjZGcX/jwsER2S7UFf99v2Svxlej4AYNafs5AWZwu6rg0KFCgoq/LiwZ9K8NX6chSWe9E9w4HrRyThzH5xTf6+9OrXynywCPjLS8D4IcDTVwEuJ9CjffOUDGianND7C4Fnv5QPa1M0LtWHxwuokEaDzpmAzQYs2AA8/yWwYD0w5Q7/unPWAJc9DYzoBTx2hTRW/LgceOBDOYk/eImst+cw8OZPcsP655OBhBhg4QbgmS/kxPfB7cYT+n2TgU9/lUbfwXnArNXAgx9KY8lNp/vX+98N0rCit+sw8NdXgZOPNB6Hq18AVmwFThgkJ88/jZO/cc4jwI8PSqML4I+qmo/h81/JDdFfTwWO7Q/8vlVuzPcVyHtvDM5e1LRqUodFyD49/SjgLycbl3VIN5atshq45CmgqAx48GJpvHtnBnDFs/L5GNXb/74SY4GP5wJH6xpwDhUDZz0sQY9YJ5CbBVS6gYlPAF/dB3TPaXj5bb76+dr1QEqCv9xNcZ7StlXXeXPVNuCcR4Ge7aXhpXOmNCCv2QF8sRC47hQgJV7W/WKBNJj9+aSGlQmQAGd6EnDRMQ3fRiR49Tu5eL7pDLm4e/lbIDsFKCwHnrjCeHHWs0PgMThUDJz/mOzbJ68E/vIy4PY2Tb0C/J/R+n5OZ66Sz8ftZwc+978bgMS48Hz2tT9Z6Qae+gx47s/WK0TCeak5zF8LzFsrN4tJccCv662Pb32uM4K5b7Lc2Hi8ck3XpZ0ExIb3kmuO8x+Vc+mfQmz01LMpDa+bLSHY+SknFfj8H3L+j8Ryh6qkHOiYDpw9AshJk2u/z34D/vYGsOsQcMsE69dpb/mxy+VcV1IhDRo/LAf+2ANc8QzwwR3yfRoqq+8orTNAXft40x75jhzdB8g13QjfMgG4enzkHKdQyvH5P4D2aZFTZrNQ7x2CufZluU+4+zwJtE3/DbjpvxJQPWdk48oW6ecUIqJw+GAWcM9koFs2cN3JQK8OQLVHzsWTZwFLNwOv39h8f998z9CS97aAXJ/c9F8gPRG47DhgQBdpq9y2H/h6MXDxk8CU24Fj+tWvDJF+PVhQCvTuCFw8Vu5TC0olEHHl88Bz1xg7uXy/TIIL/bsALocEHIK9p1CvAwpLgWE95TosLUk6VP7vR+DCx+UepK7rxD/2yL1wv87AK9dJO86T0+We+fsHpB2nMbRUV0004mP6mnIAwKbDbqzcV4VBOa7GbzQCFFepOLV3LLqlO5DgUrDpkAf/XVSCmVsqMf2yTKRaBDTKqrx4cEYRshJs2F/qrbMfk3YM7vyuEGv3V+Pu45LRNc2Bz9eU46Yv8+GFirP7xTfbe6xf4OOPPXICveiY+p806q2Jeu7rG25bumdQagLw6vXGZWP7S4DhlW8loJGbJcunzgOcduCdW/09NMf2lwa2qfOBf10qy3KzgN+eMPbiPKaf9Nh+6GPpwT28lyxfvwv4cK70iL/+VFk2ui+QXyLBh0nHAWm+yP/AvMDyz/pcfl8y1r/vtuyTRpVbzpCyfLVYAiDH9pfG4u+WBTaS6ve79rcvGQv83/n+Mrk9wOOfSQ9V/aiR+lIAVHsD/24kKq8E4kLojRtONb3IERn7MzMFOKqO3gMfzZW6//k//Ose3Rc46X7g4anSyKy9lwnDpRHoPxX+UQ6vficXDQO6yPkuLRF462bpyfLUdOCV6y3/bEgqfcHFAbmAQxc9b5LzlOL/Xds23vhJLnKm3ikXqJozhsloD1UNfH1jjn1DRyJEmrdvATKT5d8fz5XfT1wpgeB564Bzauk9DUi9Olws9VILDp89AvhwTuPrFdD4HrBWr7P6XmgpWnmOGyAjj647BejXJXCd1l6vgrn1TOC2s+Xfr34ngQ+r91uf6wwr63dJHQSAEwbLTbHDLqNIPv0N+O1x6fl//xQ5bw3rWb/3Ec5rsFAEOz/Fuur+rmkNRveVH70Th0gPxg9mSz2zou2PrQeAbQf836fPfCHnq+xU//dpyCy+o0JO0VfL91vX7HqUoRnV57sukutWfe4drPy8QjpzvfgX4GxfkOPovtKZ6j9TgbNG+EexN4S57hARtXVL/gD+8T4wph/wxk1AjC4DyLEDgGtPAWaubN5zpvmeoSXvbbfuB258TdqQPrzDf08PSIeJi8dKZpXU+PqXJdKvB88aIT96Jw4GRt0l13nnjfYvf+JP0kEKAO55XwIfVvujPtcBV44PfP24QcDgW4CP5sj+r81T0yUI886t/uM2KA8Y83/Aa98D99SRJaguNsUwULQxVu2rxvqDboztGoPZWyrx2epyDG4fHYGP+8YlGx4P7wx0SrHj+s/z8cuWCpzbPzAg8ez8EiTHKBjbNRavLSwNKfCxNd+NBTuq8PyEVJzlC3KMzo3BriIPHv6lCBP6xMHeTAHG0AMf170sHx4A+NNz8nNMX+Cb++W5zxcAcx+Tm+X5a+Vm/JxRwP0TjSdfvaIyGe79wMX+XmeHioD+N0kQ4NIx/ijkvZOlx9DK5/1pGF74GnhvJnCwEOjdSRrSn/9S1v/kbjnBne8b+n7bm/IDALedBdxxdj12UxPL9EUunQ7/+3M65CfeZYy8JsfL/tOWJcZab/PIbvJ7T75/3R+WyX6aOMa4zYlj5FjOWhU81YGqSuNebjv5EtVqcYzDXy5tmU2R4w1ID/manny65zU//i6R3B+Xy/YzkmREyVXjJYXaD8uBPp2ADldaH6fhd8gJ9Flf2qOP5krPxQ9ulzr47RIZZnf9KUBpOfDop9Jz9VCx7LtuObLNsf2t3zcgUeanP5co87NfyA2cosiXyIMXAxnGEwM+XwC8/qP0mFcUYFgPSeWm791w6+sSJPryHuDBj4AlmyRdxJf3Bv799buA4+8FXvsrMGGYLFuxFTjlQem9MfM//nWveA7Ymy9lrU95AElv8/QXklKlvBLo0UEi+PpUBPpjqB3HfQXA5c9KT9L3/ib7tKUoqLu3xXdLpfe8voHO5QDOGwU88omUX3tf54yQwMcXC2T4JiB1SAFwxTjZjwqkl/5pRwHTfpXe5zNXSxDQ7QHysqQn9MVjjGf74XdIXZ54DPDMl8Afu6URoGOGDJnV6nFd56nftwCvfAcs3SSj7jKT5QLsnvP9DehA6L1itGGwSXFBvp18y857VBpbAaCTLtXRbl/6k6emAzNW1r4fht/hT6GnbaNTBrDwSf9nd8ETxtQl2v6Ydpf/YmnlNhkVtmyzpNpLS5TA1GNXyIiflpCV4v+39v7aJQPt06VXfLB9XlwuPWS0xuW73wX+7Qtkx7r89erW1yVdy8Inja/Xzkfafgdk6PZbM4ApsyU47nJIvRjb31+OzxcAU+YA63bKd22nTODkIyQloRY4v/V14ON58m/9MdaOifl8C8jxfHSa9PwpLpfRAZeMlSHV2sX0joPAiL8D910oy978Sc7BfTvJ930oaZO0fXzDaXL8H54m5/ma532/tfer/c1nrg7svW/+PtH26U//knP8rNXSEHfh0TK0eut+4J8fAIv+ANIS5FxwgymdXnOzWQRG69PD2eo6w8oPy2TEiE0BHr1c6hLgv06YuwZ4ZBIw8k4Z8v7urf7Xbtwj+3HeWqljmclSX574k/+671Ax8NPvUv+11JhDewAPXyY90+pzHjjvURmd9ujlwL8/ku+41AQp6+1nGxtTG3t+ClafFmyQbS/bIiNk+neW69fxg/3raO9p6p3Al4vkB6qMmPjPZTLyItwykuTYBKsb2j76bZ3x+3RInvzu00muIfcVyMiFUK4nrL6jdh6U/fXAlODfb9r+BKQHoUY7Nre+LvVFf+6sqAaeng58vlCukbRrzbvP849oBPzf01eeIGkW/tgj39F/PVUaSjRllfId9M0S6c0YFyPnvmtP9o9g0Hbltv3SU/K3DfK3zhwuf1d/L2Q+J2nvccodck3ywzK5Vj66L/DvS2oPXja1xtw7AMD3S4GEWHnf+tdfdAxww2vA8s31D6DqccQHEZHRC1/LefGJP0n6TrNYJ3DKkf7HodwjAP72i6/vk++1JZtk+2cOl+tl/br6e4aWvrf93w+SqeHRScbveD1zes4t+4DnvgIWbQD2FEhQZEAu8H/nAX07+9ezuh7U7iN+eUhGtcxYId/xJwyStqLk5uu1HpIYp+wHh82434LdW5g19jogOU7K4LDXftzcHuCnFZLyXn/curSTuvT9UrmXbAxF13+3kZcMn60uAwDcdkwiiiq8+HZDBe4+LhlxTuOG9xZ78OjMIszbVgW7DRjbNQaTjkjAxCmH8NBJyThHF0RYtbcarywowdJdVahwq+iW7sCfhyXglN7Nm/YpFOnxcl/lsCkBTUZLdlZh6soyTJmYgV82VwCoO8apKMDmw27EOxWc3sf4/i4YGIebv6zEst3VGNqpeYJJoQc+7jxXTki3vynBjDH9pVJrqj0yTOny4+VmZ9464PFP5YN/93nW20yOB47sDvyy0h/4mLlKbrwrq4FV24EcX6PWnDUyskFrWHnkE+CFr2Qo22lHSR6/O96SD1C3bNmzg/KAZ68Gbn1DUrpoN6bt02s/KrXlbtez20KLGquq3CCXV8lN4Wvfy42S/ib/iuOBz38D7vsAuPkM+VL5Ybk04v7j/Lr/zry18rtPJ/+663fJzV52qnFdLc/i+t3Btzt7tTQI3HWuf58DQOd28sX4vx+kIRmQ3oCTZ0k6hTOGyXvV3jfg/xuqCjz7ufz7wqPleK7dATwxXb5I0xOlzKGMMtCvA0i9PGGw9F5cvUPq0FX/kwYzbah9UZk8Liit41Pp+331C/LFfvk4KdfjnwIb9gDf3Oefi+S5LyVgM/EYqWNVHulle84jwDf/lKGHmmo38KfnJUp+0+mS5saqHH06yTGbs8bfaDBnjTSSbtgtDQ05aVJPf1svnzltO6GWZ95aSQd1RDdpPE6Kk4ug614BKqokD6Z+X2g9LdbtBC59Whqbp9xR9/DDpv4sTV8gDWheVd7LVePlS1hv/S5JGWfeXj/fRcyG3f73lRQPnDFUejVcPk4+o9sPSE7Us0dI4AOQbfXrDFTMks/NpOOkcQSQunvvZDkut5nyda/cJvNp3HqmzOewt0AaqjWhnKd2HpL0M2ePkNys+wskNdGp/wJmPew/Btp7qu1zA0ij80+/Azf+V86fR3Szvkh+5HLg729LI86bNxnLDEi56toPb94M/PlF2c+PTpJlLidq5uKxKq95eVml5Hft0k4aYDNTgAOFUodLK2t/r16v1JW6KEr9eqBqf3LXYWm4O2mI/7yn35aqAle9IBfVXlUCmb06SFpDbTtavSqt8L/e6m/pl9/6BvDJr9KIe+e50lHg01+BfN25bct+uQD/y0nSSPfHHmm4Xr5FGpMByS9fVik3NV/pgrDZqaZj4vv3wSLgrP/IaII7z5XvsJ+WA//6SL4HHr3cWOa3Z0jd/ZcvVePjnwKTnpFG7rpuCrRtJMbJ5+e+yXLMzaNNzd8Fweq/YrHutS9LT6hJx8t33kvfyDlr9hpJ4Xj9qb4RYVOlV/npQ2svs8fr/96rjU0xfq/WJZTvxFCuM6ys2ym/h3T1f5YB43XCeaPlPDVvrdRju03yA5/1sHxv//0cue7aVyDXLW6PfF/tyZfvlLJK4PazgEFdpbfYzJVAYZnM7xXqeUCzvxC4/hXgxtOBv58r57Jnv5TtPTzJv15znJ/mr5Pr3L6dfeleHVLHr3hOhudrPe60197xlpzPX74O2H0I+PfHwE3/83/+gtGOZSj0Iwdro50LC0pl3oWZqyQIE/Qay/d76wFpLNDW23FQfg/OkxvfDbul8aA+1xP6fZpfArRPlc4qwb7fxg+Wjk2PTJPvAK0TR26W9XlKVYGrngfmrpVrrRG9jNeaX91rDEKs2SHB6RtPl2DcB7OA298Cuub4UzQ8+CEwbT5w13nAwC5Sp9ftCryedHvkOu+SMcB1p8o12jNfyPnOfH1gdU66/U0ZQf3StXJf89inwHmPATP+Lekxg2nKOtOYewft9T3bB87Zp3+9NjK9IbTPJ0d8EBHJuX/eWmBQrjFoUJtQ7hE0bg9w2TNyTXXj6ZJd5NkvJV3mu38L3HY47m3nrJbvrCHdQnv/ALCvUK5h/3GBdGotKJHOYKc/JKnbtXT+VmXQll3zolz7XTJW5uh9ZKqs88zVtf/t5rg/1bZ5sEg6hm/eC9x7QQhtaRbPN+Q6wOOVMuzNB57/WjpVXTm+9uO27YBcJ/brbN1uM3uNtAnHNqIhXFFqsqo25oqhwq3im/UVGJjtRO9MJ84bEIf7fizCjxsqcHZ/f5t4WbUXV047jMIKL24fk4TcVDvmbK3EHV8XAABsvh8AWLCjEn/+LB+Dcpx44IRkJMXY8M36Ctz+TSEq3aohQGLF41URQi3yxQ1De/durwq3VwIUj80qQl6aHSf1iIG+Fla4Vdz3YyEuPyIBA7KdmOkLfOjfm2U5ABwu8yIvzQ6HKSDWt51cl284GAmBj245coIDpPfXcFNvnSq3nDi0nk/HDZTeuVPnBQ98AJLG4sWvpVLHOOVmbFhPYP1O6S114hHyAdq4W3pWKYrcaPz3eznRPHmlf1t9OwGn/1vKqihyo9HH19iZly2TdNZl+wGJWIfik7uNcwMEo90AaiaOkXLrK+BRPYBpd8tN+Fs/yzK7Tfbp9XX0NF2zXXIwn3aUcfKo/BLpGW2u6AmxcsNeUBL8ZDRljvz9iWMC13n9RuD/3gVe+lYe69/bwJuN63bK9L9+5ipg+0HZ7r0XybLjBgIdMqQBql2ylFnRfcMElE8xLff9Pqaf7NMFvgZGh11661461t+THwBOPcr6/Qb8DUgj1z8nyr+PHyg9vv/6qvTePG+0fB6enC6N7/+5zP/y4wYAo+6UngD/vcG/zWqP3PjqexEGM6affIlr73POGuD8UdJAOWcNcOExcnFSXC69vBWlfuX5v3clcPDJ3f6b4HGDpDftI5/I9m02/75QFPm7V78gQ2Zf/EvdX0JN/Vk6d5RcOHVIly/1D2ZLD8ntB6QxQhOs3qf5LqIKSozv6+Kx0pN4/S7pPawC6NdJGsNkJVlPG9Kpn6zL6/WX+/Uf5Pjq6+bBImD2I/75G9ZsBzbvM263rvPUhOHyo/F45bw48CYZBXfNSf7t6bcbzF9PkxFEn/0mP3abXFycMEi2paVz6tNJel+4nNbnTv2cC8H2w6A8qSdJcRbbCFZe0/I/9sgxfeZqY28l87BeK0/70rLUpVMmsPiputczl/GaF+X36z/6g2R2G7DLNzrjl5VyM3LnOZLKb1CezBHickojHnT1qtKN4Oc8+Jf/tl4a4G6dANx9vn81t0fqm7aevpFNVaXxr1cHCYKu3SFpo7pmS0MfEOT70XS+/e/30pj9zT+l0wIg5w2PKpNE/+VkX133rZ8YC7x/m/+iPScNOPVB2S9aCpSgdO/7inFSrx6aCnx3PwzddszfBUHrv8X3xqTjJYUWIOe1WauAN3+WQN9pviDH0X1lhOJnv0lgvzYXPC4TMdblwmOA581zloSils92KNcZVvYXyu8u7Yzrmq8TurSTa7r8UvmufuBD6Un27f3+cwYgk09rnvhMAhKXHSfnFu07w/DZDfE8oP07vwR45xbpvQ/Id3Nlldww33C6jNgAmuf89PBUaXz+7P9k/wAyaecJ90nw76wRxrp5/CDgP7pgTEGZjFQ5UChBn2A+miu9LEOx953Q1vu/9+QzCshxfehS+VwF5XsPxWXynssqgYUbpbFjZG/5vnj+K6kfT39ev+sJ/T4d3E1GVWnXZlbfb+1S/CNLe3UMcqx025y5Sn7uu8g/Ukt/rTltvtRJ7bWHi4Av7vXXnVG9ZaTT9N/8o40W/SHXUtr5ApBymstR5ZZAoNZpZaxvHrvPfrOYR8ninDSkK/CMboRdn07AhIckwBYsLRkgQbnzHg3+vN7CJ2ufMLQx9w7a681BKcD/XVfX6+ui6I43Ax9E1Nbll0inF/N1XG1CuUcAUPO9dv0p/vvN4wZKYPuRadLRpiaQrTs3t/S97e7D0gZmXsccYNB3PBrdx5iGyeOVVKDH/kPmyNDm1w12PQoAlxzrv844doCMGP9wttyz1lbe5rg/vewZub8C5Lr2tb9aXKdYsCpnQ64DjrtH7tkBCZhMuV2uaWpTUCq/LdttEqVuFpU3LjW8r7OE/vK8IX7YWIHiShXnDYyDogCn9Y7FIzOL8cnqMpwzwB/4+HxNBbYXePC/c9IwpquU+5i8GFS4C/HRinJDNfrXjCL0zHDgnQvSawIBY7rGIL/Ci2fmleDs/nG1BixOeusAdhfV3enlhpEJuGl0HZ2VARwo9WDMawdqHg/OceKdC9KRGGMMZzw/vxheFbh5dGJA/6NaT0GKBE2SYwPDIym+OUTyy0PsxNMAoQc+6qIowKlHGpcN6ALMXlX7644bIDfHCzbIDcLMlTKMrKLKn9N6zhpZd+wAebx0kwRKzhpu3LtDe0rvRgX+5TXnpxAvkNunG9MG1aZH+9C2efwg2WZJhUTJX/xaTihv3+I/+f6+RSYhOrI78MRxMnRw7hrgsU+Aqmp/rm+z7QekB22HdOBp80lWMe4Ls2D7JL9ERpoc77tRNLvrXeDbxRLk+uw3aWifu0ZGVDz+J390+J8fyBeR9je0USkOu/HvnjVCGrDLqoxlsiq7Ylqu/T5jWM2JrWYbR3STBoS0JKlbg/MCe6BZ7hff7/NGB5bz5v/JaKbzj5Yba7dHRq/oe9rFuoBRfeT9muvhhOGh1Zkx/eXmfPtBmUB54QbpgZxfKj2TLxojn4sYJzCit2wz1PJs2ScpSh64WB7r1x0/WBr5Nu2VBgatrB/PlUlgrz7R/7q6NPVnyTwHwoTh0nP+ha+NDfZA7Z93xWY8Lkf3lTQoH86RUUOA9BgJqIe+xyu2yudSCzzpHSz2p0RSIAEFrceItlB/zRTKeaq0QhqWvlokvW31x2vjnsDPQl3nulgX8PatwIZdcoH0+1ZprH32S2kY+/I+Y5mDnUPmrAGe+6Lu/RBsG8HKa17eLUcCUg99LI20I3sbR1LV5vLjZTRGXbRe3vVlU6RxTX/hrH8/832N4KcPlcCH9ty5o+SGQQFqDr753FazPd12AUnfAwBXnRh4vtdfTW3dLymp5q6VgIh+JMLGPUD/XON2rd6/uUxz18q+N+e6nThGGp7nrTV+lscPMfYu1gLzOw/JOla9lLX19Z+NGKcEea5/BfhioQRNzPulrvpv9Xk7aYhx3Z4dZMTgCYP9y50OCRDtPFh3HXnySkkBWJf0pPrVt1A+26FcZ1hv3P/bcr8p/mMFSJ0vr5JzxiXH+gNnVmaskO/hzKRajkuI5wGtqImxwCmmDgznjgbenyWTuXf2BV6a+vxUWikTg/5pnHFuJIcduOBoCWhs2it1SHvtKUcYt9vf1wiw8zCQnRa4LzQnHxH6d2eo9eiWCcClx8p7/2EZ8I/35Dj+NUjHGm27bq80ALw/Ux736iDpzjbslscHi+t/PaE/plXV0sPywQ/r+H5D4GtrygrjMdSuNc0dd7RrzTlr/B1iFMh5ST8yKi5Gvne08xQg9fjTX+V7aNwguVY3j5TUynCy6bj36wzMWxOk3Kbzl/m6c3gvKdu8tTJCL5ghXUOvM3WNem/ovUNd64R6jVIX87U+EVGbVsd1nJWQ7xF8y8zfTdp9zLx10g6hrWt1rd0S97Ya8zpXvSBtWjWPx0tGA0DaTF78GvhkvrSNVOuyVNRVBu3PnHJk4HVeRXXgdaZZc9yfPjxJOhvtK5D3dO3LwPN/CZ6Sqrb7v4ZcB7xxk3SS2XVI7gkveUpGBNXWsbXW4+t7bAvx2AdjU6D95z9w9ffJqnLEOoAzesdBgYJElx2n9IrFp6vLsS3fg7w0aWNctLMKCS6Z90LvjN5x+GhFeU1ZtuW7sfmwB3eNTYICxfAROLZrDGZursTWwx50zwgyZQSAV89KR5Wn7jEfWYl23/uvXXqcHdMuyUCVR0Z8vL6oBFdMPYz3LshAVqLcn6/YU4V3l5bh9XPTEeeU+0tFdw6q7e9oz9V6BdqMl3VNF/iIdwX2AHc55MNfmxG9pZF/5kpJSbDtgDQibd4nPRjLKqXne14W0NWX41aLDmalBuaN004y+pyAgOzhUHLBxjqlF2AoQk3Pk54oP4A0wHfNBv7yEvD9Mn/qjP97V8r+7q3+3rFj+8u/n/hMGtrzTDl+dxwEzntEbrw//b/AtEPpicDqbYHvu7RCovdpidb75JP5EliadFzg8z+vkDQAb9wk2/nsN0m38o/zgSNvk/zHL/xF1k2Ol8CHtg1tNEdltQS2avJCKvLedx0ylklRgh8z/XEFJMe0dmLUjvXrN8qX6gezpKE6IRY4/SgZxWEeuqenHdOcVOPfdzmkfAUlsvxgkSw/+YHgZdS/Pt4VPO+k2XED5Pfc1dKDo9oj9eFgEfDU57Ld2atl5FWCbz+GWh5tvQemyI+V/NKayaAAyGcx1iV1ItQhl83xWTK74GhpWFmx1T+MNi1R6pq57hRKXkakJ8ooMkDWsdtk1MfrP/jTDSXHGd+/TQEKfeede9+XEUZPXw10SJN68c0SSWdRVW38u9mpptyapi/vUM5T178i58DbzpbGl6Q4We/iJ+VzZN5GqHmv+3SSH0AueF/7TlLtPfaJfL4Bf1nN21u6CbjocbmYqWs/6Pehnn65eR/pl6cmAJ/fAzzzufS4LiiV/TrpOOmxVFswMye19gvPmrKEuM8A2VcfzpZ///0cGfYdTH6JnJ+7+kYhaueOnFT/39XqlZZ6JWA/mY7B4WKpszmpgXVJex8lFZKSKtYpKWK658j5Z9dhmZ+rsjrw79T2/vXn8C7tAtfV5lnRPnfa8xmm7xitoVD7+/PWAWc/bNzWkqd9vdZ0f9umSGrFV76VGy1t7iP956Wu73r9Mdb2W3pS4Dk+zmXMWawtLymvu450z6lHqqt6nO+CfVb0QrnOsJLt+3zsOGDctvk6YedBqUMZSZKSwOOV9Ja1vY9DxTI6Ttv3lsclyHsLdj5rlxK4He3zpH1vNcX5yVyfisvk2JrP6YBcfwBybtJ/b2SY6pd2jWz+njDLSPLPm1aXUOtRl3b+Xv4nDZEy/meqBAf0nQY02maT46VR/W9nSqrJd2bIyKKrT5TntfoeyvWE1TF9b6aM6L7z3Nq/35Qg9UFPf55y2C3O/YosKzBdH5jPA4Ccj/V//5FJUt+nL5CGklgncPxA4P6L/SM6AevzR6xT7oWszu3memhVv7JS/PswmKS40K+36kp11dB7h5rXJwW5Biv1b78xc3NoDST1+d4mIopW7ZLl+sx8HRdMfe8RHPbA6wTtusv8fQqE5962Y4Z0VjCv869LJNUqAJx4v3Gb938gcxDedIa0PaYmyHO3vmFdBv370K5JzNd52r1cXdd5zXF/qu+0eNpRwEVPSPviuSNRawcoq+035DpASyk+tIfcd4y7F7jvfWCm6T5PT2u7LLC4xin0pRLVjkuDyWsVBai1xb0W2/LdWLSzCif3kmBGcaVEKbTAxyery3DHGPmMFFR4kRlvC2jWykyw15RGUYBDvpENj80uxmOziy3/bn6FWmvzWM9MR8iprkJpZnPaFQzyTdY+tJMLY7vGYNzr+/G/RSW4d5zU13/8UIiTesZiYI6zZj9U+oIvpVVexDiARJd1fVMUINahoLAicFRHoW9/pFqMBmkqTRf4aCiXQ3rw/rJSGk+yU6VnmJajcP46ye+m75mZ7vuQ6NN6aPYX+kZ9aMt1J6hQjvj2A8CRfwut7NP/EZhvPBTaxK6b9/rLtGq7nJjMNyRHdJcheht3S0OGZsdBaTBSIY2C+tzcmn6dJTCxv9DY0L9ul/zua5FPD5AUQlkpkkrC/PzqbfL7yO4yygMAoEh+xq7Zki88WC+v9CT/TfK6nf5ew6oq0elqj6QrUxT54qhyB27rcIkp4m46vtpZTVHkS/rhSfKz86BE/P/9kdSbj+vIsQ0A+4uMI17cHuPQP+1k/dbNwXNqWpYvBB0z5EJkli/wMaSr7OOxA4A735GGnSV/SIon/ZdvKOXR1rt1AnB6kNQtWq9tbduv/lUaHM96GJh6V+BE6VZa4rOk0QdO+nWWPJvmfb1uh/zu21nqG4CaunLJWGnwnzxLvuxrXq87fmt3SmoXu00mWdYHer9d6l9P/3etHuv/bl3nqaIyyZn/93OMaS4qq/3zOVjVqfoGkRRFUuo9Ob32z7Dms99kXomQ9oPps6qpaQQ0fc4PlwT+3f5dgNdvknPF6u2Siu/J6dLIdEst6T+enC6B47p0zgSWPVv3eqrqm4h5gzweP6T2fZ2eJOeNiio5P2r16kCRf521O+V9ZCTJcbU65wH+5ZlJ0ui8vzBwkmTtamruGgnufX6PsadNUbl/W1bnUCv6ddOT5LNjXlf7PGWYe/bXcs5TFGBwV+DHfxmXa72RrT4r90+UdC7vzQzcftD6pLuYtKrXAZ9Xi/Xqei+acx/xj/KpzcQxwIvX1r2e/m/XlC/Ez7bVdYaV/l2kMXfZZmDPYf93nv46Yc9hGRl2wmC5RklLkvOgfkSnlYwkSeuEzsHLXp/zACDbs7ruA+TcrShNc34yf3drN177Lf7+3gL/+61P/Q/mwznATf8N/rzewfdDW8/syO6SPmn7AetRO1r5erSX9HZj+suPxzcCREtbpKUxCOV6wrz9ojJJ/3j2yLq/3yy/R02P9ecpt0cCb/rGGlWV+nNEt+DbCLYfEuNk1Nnd50sd+Pl3uZ687Gngtyf86wY9fwRZbi57sPrdNbv2OjNvbWAQOZilz9Se6qqh9w6avp1ldIzHa7ynWbsztNfXRf/Rbcx2iIiigcMu388/rzBexwVT33sErf1Da38D/Pcx5hHM4bq3PW4g8MaPMsr3CN08H91yjOvptz1tvmSZue8i4zqHi6WjarC2pmDbq2tdvaa+P7VyZHcZeX2oxDrIUtv9X2OvA5wO6Yzx+YLa1+uaLffAVu02a3f4nm9EmivAcBvZ0MDHJ6vLoAL4bkMFvttQEfD89NXluO2YJNhtCtLibFixtzrg7Rwq8xjKo00cft2IBJzUMxZWuqY7at194984gF1FnuAr+Nw0KhE3H113qiuz9sl2ZCXYsTXfU1OOjYfc2HjIjW8t9sP4Nw6gTzsHvrzC+hpTUYCMBBu2HPbA7VUN83ysO+AGAPTKDD7CpbHCH/gAgOMHSk+xpDh/T/cYhzSKvP6DnJyPG+j/QAztIQ3j038z5gdctFECAvoch7G+nVdh0aBkpX068NO/Qyt3qKmuzLRh+FovYEAiv8u3+CcO1Sz+Q353zPCvu/OgROo9XslLHOwG5rShwMPTJN2TNnk8IL2V41zSQ95c/mWbpWHxpjOse1Jrk80v+cO/TFHkC3HTHn86MkB3c+L7x7H9ZUJ6h10aLrV8j18ulJQLiq/MiiIn+jU7jOWbvbqWCYB1ZzWrm6HO7YA/nyxBtIUbaj9u2nOfzDd+eX6+QL78j+kn62iNQFv3A2eGMN+AVblrc+wA+ZsdMyTnpKJIGo1OGcCjn0ig6Fjd/g61PL06SlBl9Q7gvomhlSUtUUYVXfIkcPZ/gI/ulLl4atMSn6Wp86SBS5+a6vRhwN/fkklMtbk43B5g6nxpDNR6pwP+OtMhA7jxDAkwtk+Thp3dh/3rlFQAXy+WPKV78o3p2sqrJBWYfns124f1BaH5sxHsPKUo0lgTYxrq+v5M42Ta5t+17cu9+YEN5oC8r+JyOe9qr9d6vZq3Z1NkAvhQ9kOMw/r8q5231u6UOqn5LkgQSVs2ME9+PpwNrNhW+3u94gT/XAC1iXHUXf+0oMcHsyXV3Idz6t7XY/rJOW/afOn98tp3Uq8++VWer3JLvTrlSKlbB4vkZkK7QK1yA7+s8L93QIItz34pjZb/p5vjQ38O1Hr2mOvNOzOM62vvHZBjZDXJvX7dsf2BZ7+QEVaDu/qf/2iurDOmf+ANU7CbF0WR3uTaXCHB6Ldx3EC5RnjyM/+NnfZcdqp8jszfG1b1KZTyWT2uq448fbWcK+qSkVT3toL9/VBfZ3WdYeW0oTKSSlUlqP7u3+QaRLtOOH4gcPN/ffX/TNlWfAwwuq+kHbv3osDRpprxg6VuDMwLXvb6nAe0c/F3S43zdX36q5yTjvZNwt0U5yfzeTgxTjprfL0Y+Nel/s+K1wtMmyffK/o0V+a/o99mXcfxlCND/+5syPcmIOktbIqcd2rbxjH9gOe/9H+fPniJXLN9uVC+T4/uF/r1hPn9K4p03jGnP7X6ftN6UVoFh83b1641p80Hrj/V//yXCyVlmf66CbC+ZqztM5+dKmneVm8HXv1O6pZ+lEeo27KqB9PmG6/fFm6Q+5rLjqv9OA3pFnqdqSvVVUPuHfTOGCqpUb9aBJyjS7Hx0Ry59hjas+H1FjBd7zdiO0RE0eJvZwE//S73Ke/fLh2L9ardEhg55cj63SNops0HrtXNcaXdx2htInrhuLe9/lRgymzgrnekvSIpLvi6+m2ay/DDMrkf7pZj/d1dn/uIlro/taKqkpI2Jb7uew6r5xp7HVBRBSzeVHenDadD0oN+vUhSpmrHbedBuU697tTGf88rkmCpoeMIPF4Vn60uR5dUOx45KTCANGNzJd5YXIo5WyoxrnssRnRy4Zv1FZi9uQLHdfMHNL5eL/eHWll6pDuQl2bHuv1u/H1Mwybz/t85aTWjLWqTnWhv0Pvfmu/G3hIPTtBNbj75wvSA9T5ZXY5PV5fj1bPTkJ1oC/q3tPe9ep8b366vwIS+/s/ptFVlyE604YgO0R74OHaAnOhmrpKe5QAARW6sn/9SKvyx/XXpM5KAv54qKQtS35SL7N2Hgcc+9acn0tbtliMf0GnzgD4dJd1RTpo/NYFZrNPfU7Kx3vpZTjrjBkrjdWmlzFvyv+8lb+8ZQ/3l/OtpcrK+5EngyhMkujlrFfDSN9LQow1hP1AoQY99BTI56qEi+dF0SPeP/ujXWdLBPPaJ9FTXIr/v/ALcc4F1Y8XkmfL78uOth5WdOVxyQt7xljSIANIw94UveHH9KbqULCVyw/bkZ5LGYNwgmRDzl5XA2z9LI2tqvPTeVSD5p7VhcheNkcaYR6dJY8b6XcD/fpCGMkUJHH6oHXPtBra4HDjzIeD80dIYkRQnoyRm/C7zgdQ2ZE576qtFckN+/EDpBf/wVGBAruRKtCmSeuz/zpd0EdsOAOMHyaiM/YXyt+Jj/A2Tiqm8oThugAzBPFQso1a01x47QEYmpCYAR3bzL69PeZ65WibiveBR4OJj5fNQUAKs3w2s2CJzQJj3b0o8MO1umVPm/EelN+2Y/sHL35Sfpee/lDowdoCkmzhQBLz/i8x3cPd5MsxXM+k46fVx1fPSQ7xdMvDGTzLh1vR/GM8Pf39LGnEPvg88eLEsO1gEfLMYmPiE1CObIp/Lympp+LvhNeDal+Si5XCxpL3QpykyHGPTY0WBIegRynlqdB/5G5nJQBdfru/3Z/p7o9R3OPBtb0jarzOHywgru03ytb/yrVwM33qm//X9O8vn4K2fpGevzSbBwJOPBF7+NrT90K+LNExO/03qaIxTepkP7QH0bC9zAXm8Up+/WiR5+vXb+G6pHM/Th8rrVUgDVmGZfDZrHfqcLj9N4c53ZL9fdpx/iPd3S2QUnNNhHGJ8/wcyEfD+d+X4PfihTH6XEAuccC9qKsGnv0q9uvs82S+PTgP+/CJw0+my/LXv/TcB2vs8uq/0UHpqunwfnHyEvParRXJjc8U4YGQv2Z93vAXcda6cx6bOk4Y6/b4F/PNuvPClBFXsNlmm3TTp69gNp0nj8cVPyrmkc6bcJLz5k+TN7dXBWFYF1scn2HK9YPX5wUuA4+6Rc0CfTrrnFJlE+YNZQLdsOVcv2SQ3a+a/qb3EhsDPJxC8bHWVOdS5Z0JxsMgfvFjrG6328+9yHshM9vfSq891xoezgRv/C7z4F2DiWFnWr7PMd/DBLOD7pcCYu2X/fbdUGmAve1o6OjxyuYzO1fznMuC0B4GT/innjG7Z8l3z7VL5fkmKA/5xgWxzymwgt50EywpL5X389TTfRNUhngc06Yly3t51SD5zPy6XuYmuGu8PojTF+cmq/t0/ETjnYQn+33i6fO7f/FGCNq/f6O+0EqzuhnqO1o5xU7j1f0CSL8CYlSLXE9N/k558N51h7AV403/lWC19xl++046Sz7j++7RDurznYwfIeg25nrApcqx7tAe+XSLn1tq+37T5Ud79RepWrEvqlL63qbaudq354BRJUTeil5z7Hv1ErqUnjqn9e1pPWz7+PjnX9u8ik71v2C3nwmE9Zd4ZIPj5Q0Hw5ebv7+Vb5JidNULSjjz0kezvP59Ue51JiW+666363Ds8/qn86HsOn3SEfDff8ZYEKrtlS0ein1fIZKvOOlJt1UW71q/rc0RE1FaM6AU8dZWcd8fdK9dEfTvJfcGKrRLU6NtZvtPrc4+gKHI/8PK3kn7+yO4SkH9yujR+6+c41NYPx71t9xzgfzfKPdSYu+X9D+4qZT9Y5O9EpqWyBuQ7fcocuRbt3wVYvlnmDdU6SNZWhmD3ESGn5mrC+9NLnpJ5lQfmyjXRnnxgyizZp09caQyCbT8gnZwB6SgLyD01INfQWoff+lwHnHS/dEbq3UHa6bYfkPvCrfuA9/5m3A9aJpClz/iX/d/5wAn3SVvLrWfK/e/D0+Rv3HR647/nfa9XFPiPWz3M2lqJfSVe3DU2CaNyA0ef9G7nxHvLSjF1ZRlO6BGL8wbE4c0lpbj9mwLcdkwSctMcmLW5EnO2VgIA7Ir/cvE/J6XgymmH8adph3DegHjkJNpQUKHij0NurN5XjZfOSqu1bH2ymiZIsHZ/NR76pQin9opFl1QZZbL+QDXeWlKKtDgb/jIsoabMVvtgwc4qAMDQjq6akSyATIL+wvwSvH9ROkZ0joGiAHlpDozo7MI9PxSgpNKL3DQHvlhbjllbKvHsGamwN+N1XWQEPgbnSeU+VAwc7wuCKACO8QU+BuUBGaabwH9OlBPoWz/JDXvPDsDTVwH//lhuSrSjkxArKSUe+0TSUFR7JD2Qvqdsc+nfRfJr/+sjeW8Ou3wJ3HYWcMPpxhEV154ivbBe+UYm0K6okhPQXedKA4H2ftbv9p+orn058G+a39tTV8l2//uD5OXu0g549HJj1F5TXiUR/NF9ZH9aSYqTXmVPfiY3z4D0Yj6qh/R21Y8C0OqtV/VHviffLjefb/8sN0KAHKPrTwXuvdD/Pm+ZIDesU2bLF+OR3YG3bpGTIqCL/uq+gGp6gEG+aIf2kEj1jgNy3DtlSlqcWybUET32PffebdIQ+dZPsv4pR0rjT4zuJHP72dL49uq3wKfzgUq3NCQc2V2+dGvrRVqXsb5GhTiXXNDoez1PniVBB7vpBjLU8owdAPz8b2k8/ce7klsxPUka7s4ZGXz/xscAU+4ArnkBuPBx6R180hGhv6eG6tVRGuJ+WC5ljXNJw+YbN8mEa3qxLuCLe6Qh7a53gPJK6XE87S5dOi3f+/J6fecb3XFplwJ8+4DM5fHtEhk2PKa/TPo9pKs0vD/3pTT+tk+ThubMZF9qEsW4LW2/6R/rv3VDOU+9fhNw9zvSmO7xSl347B+y//Xb0Od/qK2eXXuKNPS9OwPYnS8XsplJwLBeEnjWf4avP1WGtf77YxmarKpAwRRp8Hrx2tD2w/+dL4HaW1+XQFLnTGDlC3I+/PDvwN/fBm5/QyZwO3eUXKRd+Lh/Gz3aywX681/JaBWnQxpKX75Oet22FK0HujbJLyAX/lZ6tJdjZbcDU/4O3POeBN8qq6WRrFwufmBTpF719s218sEdwL8+lBy72anyPXGwSOqF/pi+cr1c0L8/U86RsS6Zq+F438jIjGTg4zulDl/7snxuTzsKePNm4Nh/wHB8LjhGUne98ZNMwK6qwO/PS6OiRlu3XQrw/YNSxn99KMczL1ty6N5wmsV5I1hdrKOOGrYB47qDu0pAe+q8wOceukx+P/+VjA4c0x/46O/AoJtNf7OO8lkuC7K8uazbJfVA74635PfRfYGv/yn/rs91hhdSL70wvhftOuGtn2TU2x++SR3nrwVG9gG+e0CCKHqD8oCfHwIemSp1oaRC5l0b29/fg65jhtS5eyb7J1vPTJYAitZgHep5QJOdKs/dN1lG96QlyPfe/53vX68pzk9W59Nj+sko20emATe8Ktc2A3LlO/EUfc+9IHU31HN0UxrWS64XpsyWYHFCrNwgv/ZX6WCi5/F9H0J3dxjjCPw+7d9F9uXnC4B7Lqz/9YT+/V8xTjrO1PX9lpct11+vfgdMeEjWfek66TCj0ffA1K41J8+ScmUk+VJaTAycj7C2z3bNNVN/Ceq9/K1cK7dPk+DhHWeHcJ2nBF9u3jcv/gX4cC5w9YuSI3xMP+DRK4wpRlpCqPcOXlWOhQrj+3vvNkkF9sg0+dz37GB9vdYQWusFR3wQEfn96QRpj3n5G7n+2V8ggebu7WWu2L+cXP97BEC28dHf5RrgqenyHXrF8TL6tbZr6Ja8twWkg9z8x+R7+oPZEpT3qtIOclR34P3bZB1tO49eIdfIz3wunYYG50lD/UMfh1CGYPcRYbjOG9kL+HyhdBAuLpfg0RHd5JiZR5XMXSvXr3ravcbFY+X+UhPqdcCIXtKusP2AtClkJElbwsOXy3N6bi3dk27f9O4EfHUfcP8UKYvDJvdvD91unYq1vhTFH/RowCGZurIMLjtwwaA4y0OakWDDyT1j8e2GChws86Bdgh0fTMzAv2cU4bFZxVAU4Ji8GPz7xGRcOS0fybH++T9G58Zg+qRMvPRrCf49owhFFV6kxtnQM8OB0/vEtlgVapdoQ3aiHW8sLsX+Ui88XhU5SXaM6x6Lv45MRIfk2jus1NR6U7VXVUAbkKLv+/v4KSl4e2kZnppbjMIKL7qnO/DChDSc2a+WkVpNQFHVUGbibGE7D0qvrr+cXL9eb1v3A0Nvk96zd5zTfOWjyPXrOmnE0+eMrK+Hp8oN85b/BgbciBpj1TZp5Lnz3LonGCWqj28WyyiIK8aFuyREfut2yg3RbWcFNjjX12kPSnBnwZNNUzYKv/d+kVSaZwSZH6StmDwTuP5VYOZ/6k7/19btzfePMrRK20lERE3jupelk8Oed8JdEqKGiZBrhhd/LcaTs4vx6/XZaF9HICFa7Sv24IPfS3HpkARkJbb8PoiMER8NsXKbDJ0b0UtGIWzcI7nHk+IkTRMRERERERERERERUTN6e0kpAKBHhgPVHhXzt1fi7SWlOKd/XJsNekSC1hv4iI+RHHXv/iLD95PjgTF9JQVWVmq4S0dEREREREREREREUS7OqeCNRSXYWeRBlVtFh2Q7rhuRiJtGt3DaUjJovYGP7jmSa5moqf3jAvkhIiKiyPDN/eEuAVHzuPQ4+SEiIooUr/5VfogoZBcNisdFg+LDXQwysdW9ChERERERERERERERUevAwAcREREREREREREREUUNBj6IiIiIiIiIiIiIiChqMPBBRERERERERERERERRg4EPIiIiIiIiIiIiIiKKGgx8EBERERERERERERFR1IjcwIfdBijhLgS1OjZF6g5RJFJYP6mZsG5RJGK9pNrYFPkhIiIiIqKoZVPCd82vqKqqhu2vExEREREREdWl2g0cKgYykgCnI9ylISIiokjFawbyYeCDiIiIiIiIiP6/nTsgAQAAABD0/3U/Qm8EAQBs+A8AAAAAAAAbwgcAAAAAALAhfAAAAAAAABvCBwAAAAAAsCF8AAAAAAAAG8IHAAAAAACwIXwAAAAAAAAbwgcAAAAAALAhfAAAAAAAABvCBwAAAAAAsCF8AAAAAAAAG8IHAAAAAACwIXwAAAAAAAAbwgcAAAAAALAhfAAAAAAAABvCBwAAAAAAsCF8AAAAAAAAG8IHAAAAAACwIXwAAAAAAAAbwgcAAAAAALAhfAAAAAAAABvCBwAAAAAAsCF8AAAAAAAAG8IHAAAAAACwIXwAAAAAAAAbwgcAAAAAALAhfAAAAAAAABvCBwAAAAAAsCF8AAAAAAAAG8IHAAAAAACwIXwAAAAAAAAbwgcAAAAAALAhfAAAAAAAABvCBwAAAAAAsCF8AAAAAAAAG8IHAAAAAACwIXwAAAAAAAAbwgcAAAAAALAhfAAAAAAAABvCBwAAAAAAsCF8AAAAAAAAG8IHAAAAAACwIXwAAAAAAAAbwgcAAAAAALAhfAAAAAAAABvCBwAAAAAAsCF8AAAAAAAAG8IHAAAAAACwIXwAAAAAAAAbwgcAAAAAALAhfAAAAAAAABvCBwAAAAAAsCF8AAAAAAAAG8IHAAAAAACwIXwAAAAAAAAbwgcAAAAAALAhfAAAAAAAABvCBwAAAAAAsCF8AAAAAAAAG8IHAAAAAACwIXwAAAAAAAAbwgcAAAAAALAhfAAAAAAAABvCBwAAAAAAsCF8AAAAAAAAG8IHAAAAAACwIXwAAAAAAAAbwgcAAAAAALAhfAAAAAAAABvCBwAAAAAAsCF8AAAAAAAAG8IHAAAAAACwIXwAAAAAAAAbwgcAAAAAALAhfAAAAAAAABvCBwAAAAAAsCF8AAAAAAAAG8IHAAAAAACwIXwAAAAAAAAbwgcAAAAAALAhfAAAAAAAABvCBwAAAAAAsCF8AAAAAAAAG8IHAAAAAACwIXwAAAAAAAAbwgcAAAAAALAhfAAAAAAAABvCBwAAAAAAsCF8AAAAAAAAG8IHAAAAAACwIXwAAAAAAAAbwgcAAAAAALAhfAAAAAAAABvCBwAAAAAAsCF8AAAAAAAAG8IHAAAAAACwIXwAAAAAAAAbwgcAAAAAALAhfAAAAAAAABvCBwAAAAAAsCF8AAAAAAAAG8IHAAAAAACwIXwAAAAAAAAbwgcAAAAAALAhfAAAAAAAABvCBwAAAAAAsCF8AAAAAAAAG8IHAAAAAACwIXwAAAAAAAAbwgcAAAAAALAhfAAAAAAAABvCBwAAAAAAsCF8AAAAAAAAG8IHAAAAAACwIXwAAAAAAAAbwgcAAAAAALAhfAAAAAAAABvCBwAAAAAAsCF8AAAAAAAAG8IHAAAAAACwIXwAAAAAAAAbAfEO2AnMOCarAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Visualize the SHAP values for Record number 53 with Model Prediction: 0.9782292246818542\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABiIAAAFqCAYAAACXjkI0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABt3klEQVR4nO3dd5xU1fnH8e/M9so2OuyuVOkIiBRBqYIEe0GjiC2SqLGbRGOiiQlJ1PgzYksssSAqRrFhQZCOSpViQbp0WNjeZ+b3x9nZKTu7O7vs3fp5v17LMPfeuXNm5t4zd85zznlsLpfLJQAAAAAAAAAAAAvYG7oAAAAAAAAAAACg+SIQAQAAAAAAAAAALEMgAgAAAAAAAAAAWIZABAAAAAAAAAAAsAyBCAAAAAAAAAAAYBkCEQAAAAAAAAAAwDIEIgAAAAAAAAAAgGUIRAAAAAAAAAAAAMsQiAAAAAAAAAAAAJYhEAEAAAAAAAAAACxDIAIAAAAAAAAAAFiGQAQAAAAAAAAAALAMgQgAAAAAAAAAAGAZAhEAAAAAAAAAAMAyBCIAAAAAAAAAAPVjwVopI7uhS4F6RiACAAAAAAAAAGC947nSL56Spj5MMKKFIRABAAAAAAAAANWZs0SKnyYt31r9tn1vkc59qH6eqylJipVev1vaebgsGJFT612t3luktL8f0LzN+XVYQFgltKELAAAAAAAAAABoBv7xjlTqqH67od2lJVuk8x6WPnxASoy1vmxoUAQiAAAAAAAAAKAurXtcstkauhT175F3paKS4Lffslfae5RARAtAIAIAAAAAAAAA6lJEWEOXoGZyC6XYyJPfz9FXq9+muFSa/rj08XrpiRukAaec/PM2MfnFTkWHt6ysCQQiAAAAAAAAACBYTpf0+HvSS4ukA8elzinS3RdKPz/Ls03fW6TU1tKCP/o+9uXF0uyPpF2HpbYJ5jHDT5XO/4v0zEzp52fX/Lncvtgs/d/70vodUmGJ1K29dMME6foJvtu5yzZruvTHudLaH82IhM1P1sW7UzX/IMSMcXW6+4ISp2avztWH3xfoQLZDseF2jUgL112j4tUlydMUPvq5w2ofF6I3r0wpX/bsVzmatSRHZ50SoVcuSy5f/sTKHP1zRY6W39RGqQlmH0WlLv1nTa7mby3Q3sxSRYTadHqncN05Kl5923qCUKv3Fmna3Aw9em6C8ktcemV9nvZmlupXw2J1x5nxdfraGzsCEQAAAAAAAAAQrAfnmumHrhsvhYVKL34u/fIZqWs7aVjPyh/35IfS/a9JfVKlBy6XHE7p9aXSpxtO/rle+ly6/QXp9G4mUBETYQITd7xggh4PX+W7330ZJln0hcOk84dKeUUn954Eq7hUOp5rSRCi1OnSNfOO66ufinVOj0hdNyRW+7NK9cqGfC3bdVTvXJWi7ikmSDAiLUL/25KvghKnosLMyIRVe4plt0lf7ytWscOl8BBb2fIidYoPKQ9ClDhcmj4vQ+v3F+vCPtG6ZnCMcoqceuObfF382jHNuzJZ/duH+5TtxbW5yixwadqAaLWOsat9XEidvvamgEAEAAAAAAAAAASrxCEt+asUXta0euEwqf+vpec+rTwQcSJXevgtqUcHadGfpegIs/yGCdKIe0/uuQ6dkO59WbpouPTSrz2PvWGidO9/zQiM68ZLXdp51u0+Ij09U7rq7Nq8A7UXGyl9/EcppO6nJZq3OV9f/VSs64fE6A/jWpUvn9A9UpfMydBDi7L12uVmpMOI1AjN/SZfa/YVa/QpkSpxuLRmX7Eu6B2ld7YWaMOBYp3ROUKFJS5tOFCs83tHl+/vv+vy9OXeYr18aZLO7uKZzurq02I08YWj+ssX2T4jLSTpQLZDX9zYRknRLS8A4dayJqICAAAAAAAAgJNxwwRPYECSOiSZaZB2Hqr8MYs3SQXFJjjgDkJIUnx0xamTavpc878yoyauOkvKyPb9mzzYTO+0dIvvfpPipCtHB/d6a6GwxKX3vs0PvNKCIIQkfbqtUDZJt46I81l+eqcIjUgL18o9RcopckqSRqSZEQsr9xRLkjYeLFZ+iUvXDYlRcrRdK3ebESJr9xeryOHZXpLmf1ugUxJD1L9dmI7nO8r/ShwunZkeoTX7ilVY4vIpw8V9o1t0EEJiRAQAAAAAAAAABC+9TcVlSbHST8cqf8yeo+a2e/uK63p0PLnn+mG/ub1wVuX7OZJVcb92awIChSUuXfu/DH21t1i92oSpR0r9JO7em+lQSoxdiVEVX9epKWFatadY+7Ic6tXGrpSYEPVICdWqPSbgsGpPsRIiberTNkzDU8O1am+x7pTK149I8wSPtmeUqrDUpdOePFxpWY4XONUhzBN4SE+kGZ53AAAAAAAAAACCVVmPfpcr8PKTWRfUc5X9/5mZUofkgJtXCGhEhwfe7iQVlrh0XVkQ4rEpCfUWhKhOoHd4RFqEXlmfp6xCp1btKdLw1AjZbTaNSIvQHxdmKa/YLO+WHKq2sSFe+3Kpe3KoHhzfKsBejaRo388tKsxWVy+lySIQAQAAAAAAAABWcgcCth2Qxg3wXffjgZPbd9eyURZJcdKYfie3r5NQ7HDp+v9laOWeYvVvF6bdJ0r1+Irsah/3i6Gxigk/+dEZqQkhWrKzVCcKnBVGRWw7ViK7TerUyhNQGJEarv+uy9MXOwu14UCxHijLKzEyLUIlTmnxjiJtOlSin58W7bOvLomhOpLn1Ii0cNltBBiCRSACAAAAAAAAAKw0pr8UGSY9v1C6ZqwnT0ROgfTCwpPb94XDpIfekGa9LZ3V1zcHhSRl5ZvnjrB2dEJ2oVNf7zM5FzYdKtGmQyVBPe7nA2MUUwcDNM7pEakvdhbpqdU5+v1Yz2iFdfuLtWpPsUalRyguwhOgGJYaIbtNmr0qV0UOE4CQzDRKHeND9MTKHDlcnuVuF/aJ1l+XZOu5r3L1y2G++Sgk6WieQ61jWnY+iEAIRAAAAAAAAACAlZJipfsvkx6YI417QLpilORwSnOWSsnx0t5jkmrZu75jsvT49dItz0mn3yVNGyWltpaOZUtb90ofrZW+flRKC5Bvog6lxITo2QuTNPPd4+rTJkyvXJ6s+Ahr8lAEcmm/aL27tUD/WZOnfVkOjUiL0P5sh15Zn6e4CJv+MC7eZ/tWkXb1aRumzYdK1D7Ori5Jnqby4anhentLgew2aXiqbyDiuiExWrG7SH9bmqPVe4s1Mi1CcRE27c92aOWeIkWE2vTmFSn18pqbEgIRAAAAAAAAAGC126ZK8VHS7AXSn96U2iZI08dIvTtLP/+nFHUSwwKuOlvq1l7614fSS4ukrDwT4OjeXvr9Zea56sG4rpHlwYir3szQq5clq1Vk/QQjQu02vXxpkp5cnasPvyvQ59sLFRth19iuEbrzzHh1Ta7YFD4yLUKbD5X4JKN2L397S4F6twmrUP6wEJteujRJr67P0ztbC/T4yhxJUttYuwa0D9clfaOse5FNmM3lqiobCgAAAAAAAADAMv/6QPr9HOnzP0tDuzd0aerEoh2F+sfSbL1yWbJPome0XAQiAAAAAAAAAMBqhcVSpN+oh+x8acS9Ul6R9MMzUnjzmcDG4XQpxE4yZxjN58gGAAAAAAAAgMZq+bcmR8T5Z0gdkqR9GdKcJeb2Xzc2qyCEJIIQ8NG8jm4AAAAAAAAAaIy6tDN//10kZeSYwEO/NOnv10hThzZ06QBLMTUTAAAAAAAAAACwTP2kLAcAAAAAAAAAAC0SgQgAAAAAAAAAAGAZAhEAAAAAAAAAAMAyBCIAAAAAAAAAAIBlCEQAAAAAAAAAAADLEIgAAAAAAAAAAACWIRABAAAAAAAAAAAsQyACAAAAAAAAAABYhkAEAAAAAAAAAACwDIEIAAAAAAAAAABgGQIRaDGWLFmiBx98UPn5+Q1dlAaTmZmpBx98UBs3bmzoogAAAAAAAKAJ2rJli5566ik9/PDDevDBB3Xo0CFJ0nvvvafXXnutxvvbuXOn/vrXvyo7O7uui4pGhEAEAAAAAAAAAKBaeXl5evfdd5WUlKSrrrpKN9xwg5KTk3Xw4EFt3LhRY8eOrfE+u3Tpoo4dO2rRokUWlBiNBYEIAAAAAAAAAEC1MjIy5HA41L9/f6Wnp6tTp04KCwvTihUr1LFjR3Xo0KFW+z399NO1efNmZWVl1XGJ0ViENnQBgPqWlZWlDz74QDt37pQk9ezZU+ecc45iYmLKt9myZYs2bNigw4cPq7CwUAkJCTr11FM1evRohYeHl2934sQJLVq0SHv27FF+fr4iIyPVpk0bnXPOOWrXrp3P/r788ksdPnxYNptNnTt31vjx49W+fftKy3no0CE9++yzOu+88zRo0CCfdT/++KPmzJmjK664Qj179tTx48e1bNky7d27Vzk5OYqMjFT79u01btw4tW3btsr3Y/78+dq9e7duv/12n+VLliwpn87KzeVyae3atVq3bp2OHTum0NBQdenSRRMmTFBiYmKVzwMAAAAAAICma/78+eXTfc+bN0/z5s1Tenq6LrnkEn3//feaNGmSz/YffvihNm7cqOuuu648QOFyufTKK6/oyJEjmjlzpuLi4iSZ9rnw8HCtX79eY8aMqdfXhfpBIAItzptvvqk+ffpoyJAhOnLkiL744gsdPXpUN9xwg0JCQiRJx48fV/fu3TVs2DCFhYXp2LFjWrlypfbv369rrrmmfF9z5syR0+nUhAkT1KpVK+Xn5+unn35SYWFh+TbLly/X4sWLNXDgQI0ePVoOh0OrVq3SSy+9pBtvvFGtW7cOWM527dqpffv22rhxY4VAxMaNGxUTE6Pu3btLknJychQdHa3x48crJiZGBQUF2rhxo55//nnddNNNSklJqZP3zv0FcsYZZ2j8+PEqKCjQ0qVL9cILL2jmzJmKjY2tk+cBAAAAAABA4zJ69Gh17NhRH330kcaNG6dTTjlFERER2rFjhxwOh9LT0322nzRpkvbt26d58+bppptuUmRkpJYsWaLdu3frqquuKg9CSFJISIg6d+6sbdu2EYhoppiaCS1Or169NGHCBHXt2lXDhw/X1KlTdfDgQW3durV8m9GjR2vYsGHq3r270tLSNGjQIF1wwQXatWuXDh8+LEnKz8/XsWPHNHToUPXv319paWnq1auXJk6cWF7xZmVl6YsvvtDQoUN1/vnnq0ePHurVq5euvvpqhYeHa8mSJVWWdeDAgdq7d68yMjLKlxUUFOiHH37QgAEDZLebUzgtLU0TJ05U7969lZaWph49eujSSy9VfHy81q1bVyfv2759+7Ru3TqNHz9eEydOVLdu3dSvXz9Nnz5dRUVFWr16dZ08DwAAAAAAABqfpKSk8g61ycnJ6tSpk1q3bq19+/YpLCysQkfY0NBQXXbZZcrPz9f8+fO1c+dOLVu2TKNGjVLXrl0r7L99+/Y6dOiQiouL6+X1oH4xIgItTr9+/Xzu9+nTR++++652796t/v37SzJTLi1evFi7du1SXl6eXC5X+fZHjx5V27ZtFRUVpaSkJK1atUoul0vp6elq166dbDZb+bY7duyQ0+nUgAED5HQ6y5eHhoYqPT1du3btqrKs/fv318KFC7Vx40aNGzdOkpnmqbS0VAMHDizfzul0auXKldq0aZOOHz8uh8PhU966sG3bNtlsNvXv39/ntcTGxqpt27bavXt3nTwPAAAAAAAAmg73TB3ebWJuSUlJOu+88zRv3jxt375daWlpOvvsswPuJyYmRi6XS7m5uUpKSrK41KhvBCLQ4vhPH2S32xUdHa38/HxJUnFxsV588UWFhoZq7NixSk5OVlhYmLKysvTmm2+qtLRUkmSz2TR9+nQtXbpUK1eu1KeffqqoqCj1799fY8eOVUREhHJzcyVJ//73vwOWJVAF7S0qKko9e/bUN998ozFjxshut2vjxo3q2LGj2rRpU77dp59+qq+//lpnnnmm0tLSFBUVJZvNpvfff7+8vCcrNzdXLpdLjzzySMD15IgAAAAAAABoeUpKShQaWnkzc/fu3RUbG6vc3FwNHz68fIYPf+591FVbFhoXAhFocXJzcxUfH19+3+l0Kj8/X9HR0ZKkXbt2KScnRzNmzPCZ284774NbQkKCzj//fElSRkaGtm7dqiVLlsjhcOhnP/tZ+T4vu+wyJSQk1Kq8AwcO1NatW7Vz5061atVK+/fv189+9jOfbTZt2qQBAwaUj5pwcyfQrkpoaGjACt4dmHFzR7avvfbagF8u7vwaAAAAAAAAaDmio6N18ODBStd/+OGHKioqUps2bfTxxx8rNTVVUVFRFbYrKCgo3x+aH3JEoMXZvHmzz/2tW7fK6XRWSKjj39i+du3aKvebnJys0aNHq02bNuWVb7du3WS323XixAl16NAh4F91unbtqvj4eG3YsEEbNmxQaGio+vbtW2E7//Ju27ZN2dnZ1e4/ISFBeXl55aM3JMnhcGj79u0+2/Xo0UMul0s5OTkBX0fbtm2rfS4AAAAAAAA0LykpKSooKAjYiXf9+vXatGmTzj33XF1xxRUqLCzUe++9F3A/J06cUHR0tGJiYqwuMhoAIyLQ4nz33Xey2+3q0qWLjh49qsWLF6tdu3bq06ePJKlz586KiorShx9+qLPOOkshISHatGlTeZJqt8OHD2vBggXq3bu3kpOTFRISUp7M+swzz5RkGvnHjBmjRYsW6cSJE+rWrZsiIyOVl5en/fv3KywsTGPGjKmyvHa7XQMGDNDq1asVERGhXr16VRjl0KNHD23cuFEpKSlq27atDhw4oFWrVvmM/KhMnz599MUXX+jtt9/WyJEjVVpaqq+++sonL4YkpaamavDgwZo/f74OHDigtLQ0hYWFKTc3V3v37lWbNm10+umnV/t8AAAAAAAAaD7S09Plcrm0f/9+nyTUhw8f1scff6yBAwfqtNNOkySdd955euutt/Tll19q2LBhPvvZt2+f0tLSqp3KHE0TgQi0OJdffrmWLFmiNWvWyGazqWfPnpo0aVL51ELR0dG68sor9dlnn+mdd95ReHi4evbsqUsuuUTPPfdc+X5iY2OVmJioNWvWlI88SExM1DnnnKOhQ4eWbzdq1Ci1bt1aX331lTZv3iyHw6HY2Fh16NBBQ4YMCarMAwcO1PLly1VaWlpecXubPHmyQkJCtHz5chUXF6t9+/a6/PLLtXjx4mr3nZiYqGnTpmnRokV66623FBsbq+HDhys/P19Llizx2Xbq1Knq1KmT1q1bpzVr1sjlcikuLk6dO3dWx44dg3otAAAAAAAAaD5SU1OVkJCg77//vjwQUVxcrHnz5ikhIUFTpkwp37Z3794aOnSoFi5c6NOedPz4cR0+fLjSRNZo+mwu/27PAAAAAAAAAAAEadWqVVq+fLnuvPNOhYWF1fjxixcv1jfffKPbbrut0mTWaNr4VAEAAAAAAAAAtTZ06FBFRERozZo1NX5sYWGh1qxZo3HjxhGEaMb4ZAEAAAAAAAAAtRYaGqqLLrqofOrzmjhx4oTOPPNM9evXz4KSobFgaiYAAAAAAAAAAGAZRkQAAAAAAAAAAADLEIgAAAAAAAAAAACWIRABAAAAAAAAAAAsQyACAAAAAAAAAABYhkAEAAAAAAAAAACwDIEIAAAAAAAAAABgGQIRAAAAAAAAAADAMgQiAAAAAAAAAACAZQhEAAAAAAAAAAAAyxCIAAAAAAAAAAAAliEQAQAAAAAAAADQtm3bdP311ys9PV0RERFKSUnRhAkT9NZbb9V4X6WlpXrmmWd05plnKiEhQREREUpNTdWMGTP07bffVvq4Dz74QBdeeKFSU1MVGRmp8PBwtWvXTuPHj9e///1vlZaWnsxLRAOxuVwuV0MXAgAAAAAAAADQcBYsWKCLL75YhYWFAddfc801eumll2Sz2ardV25uriZPnqwVK1YEXB8eHq65c+fqoosu8ll+3333adasWVXue9KkSfroo49kt9PHvikhEAEAAAAAAAAALdj+/fvVp08fZWVlSZJ69+6tadOm6dtvv9Ubb7xRvt3s2bN18803V7u/m2++WU8//bQkyWaz6corr1T37t314Ycfau3atZKkmJgYbdmyRenp6ZKkQ4cOqWPHjnI6nZKktm3b6tprr1VYWJheffVV7d69u3z/S5cu1ejRo+vipaOehDZ0AQAAAAAAAAAADedf//pXeRAiLi5Oy5cvV1JSkiTJbrfr9ddflyTNmjVLM2fOVEhISKX7Ki0t1auvvlp+/+qrr9bLL78sSbrnnnuUmpqqjIwM5eXl6fHHH9cTTzwhSdq9e3d5EEIyQY9LLrlEkjRu3DidffbZ5euOHj1aB68a9YnxKwAAAAAAAADQgr3//vvl/z/77LPLgxCSdPHFF5f/f//+/Vq3bl2V+zp69KhycnLK7/fr16/8/9HR0eratWv5/Q8//LD8/926dVN4eHj5/QULFuj48ePKycnRe++9V748NjZWI0eODPaloZEgEAEAAAAAAAAALVRRUZF++OGH8vtdunTxWe9/f9OmTVXuLz4+3id/w+bNm8v/n5+frx07dpTf37lzpwoKCiRJKSkpmjVrVnkOipdeeknJycmKj4/X448/Lknq2bOnPvroI7Vr164mLxGNAFMzAQAAAAAAAEALdeLECXmnEY6Pj/dZHxcX53P/2LFjVe4vJiZGY8eO1eeffy5JevXVV+V0OtW9e3d98MEHysjI8Nk+MzNTUVFRkqQ777xTXbp00fTp031GVUhSVFSULr/8cg0ePLhmLxCNAoEIAAAAAAAAAGihvIMQwdx3j1ioyuzZszVq1CgdPXpULpdLr732WqXbek/H9MQTT+iuu+6Sw+FQYmKirr32WkVFRemVV17RTz/9pD/96U/66KOPtGrVKp/HofFjaiYAAAAAAAAAaKGSkpJ8ggv+IxGys7MrbF+dnj17auPGjfrVr36l9PR0hYeHKzU1Vddcc41uvfXW8u2ioqKUmJgoyUzhdMcdd8jhcEiS3n33XT322GN6+OGHtWzZsvIyrlu3Tq+88krtXiwaDCMiAAAAAAAAAKCFioiIUI8ePcrzRHjncAh0v3///kHtt0OHDnrqqacqLJ8yZUr5/88444zyfBKLFy/2GX0xdOjQ8v+np6crJSVFR48elSRt3LgxqDKg8WBEBAAAAAAAAAC0YFOnTi3//5IlS3zyOLz11lvl/+/QoYOGDBkiSXrwwQdls9lks9mUnp7us7/CwkLl5+dXeJ7XXntNCxYsKL9/3XXXlf/fPRLCbe3ateX/37Nnj09uCndOCTQdjIgAAAAAAAAAgBbstttu03PPPaecnBzl5uZq9OjRmjZtmrZu3aq33367fLvf/OY3CgkJqXZ/27dv1/DhwzV58mT16NFDkvT1119r4cKF5duMHDlSV155Zfn90aNH++zjoosu0owZMxQREaE5c+b4jJaYOHFirV8rGobN5Z9tBECDy8vLk8vlks1mU0xMTEMXBwAAAAAAAM3cBx98oEsvvVRFRUUB11911VV6+eWXy6dSevDBB/XQQw9JktLS0rR79+7ybbds2aJ+/fpV+lxDhw7VBx98oDZt2vgsv/XWWzV79uwqyzljxgy99NJLwbwkNCJMzQQ0Qi6Xq/wPAAAAAAAAsNrUqVO1ceNGzZgxQ507d1Z4eLgSExM1duxYzZ07V6+++mp5EKI6HTp00G233abTTjtNKSkpCg0NVUpKisaPH68XXnhBK1eurBCEkKQnn3xS8+fP1/nnn69OnTopPDxcYWFhat++vaZMmaK33nqLIEQTxYgIoBHKzc0tHxERGxvb0MUBAAAAAAAAgFpjRAQAAAAAAAAAALAMgQgAAAAAAAAAAGAZAhEAAAAAAAAAAMAyBCIAAAAAAAAAAIBlCEQAAAAAAAAAAADLEIgAAAAAAAAAAACWIRABAAAAAAAAAAAsQyACAAAAAAAAAABYhkAEAAAAAAAAAACwTGhDFwAAAAAAAAAA0Lzk5+fL5XLJZrMpOjq6oYuDBkYgAgAAAAAAAABQp5xOZ3kgAmBqJgAAAAAAAAAAYBkCEUA9evrpp3XKKacoMjJSgwcP1vLly6vcvqioSIMHD1ZkZKS6dOmiZ599tp5KCqAmanJuv/POO5owYYJat26t+Ph4DR8+XJ9++mk9lhZATdT0u9tt5cqVCg0N1cCBA60tIIBaq821+f3336+0tDRFRESoa9euevHFF+uptABqoqbn95w5czRgwABFR0erffv2uvbaa5WRkVFPpQUQjGXLlmnq1Knq0KGDbDab5s+fX+1jli5dSrtaI0IgAqgnb775pm6//Xbdf//92rBhg0aNGqXJkydr7969lT7m2LFjGjVqlDZs2KD77rtPv/71r/W///2vHksNoDo1PbeXLVumCRMmaMGCBVq3bp3GjBmjqVOnasOGDfVccgDVqc13tyRlZWVp+vTpGjduXD2VFEBN1eb8vuyyy7Ro0SK98MIL+uGHHzR37lydeuqp9VhqAMGo6fm9YsUKTZ8+Xddff722bt2qefPmac2aNbrhhhvqueQAqpKXl6cBAwZo9uzZQW2/a9cunXvuubSrNSI2l8vlauhCAC3BGWecoUGDBumZZ54pX9arVy9dcMEFmjVrls+2ubm5crlcOnz4sLp161a+fObMmfrmm2+0evXqeis3gKrV5NyuTJ8+fXT55ZfrD3/4g1XFBFALtT2/p02bpu7duyskJETz58/Xxo0b66G0AGqipuf3J598omnTpmnnzp1KSkqqz6ICqKGant+PPvqonnnmGe3YsaN82ZNPPql//OMf+umnn+qlzEBz5W7fstlsio2NrbP92mw2vfvuu7rgggsq3eY3v/mN3n//fX333Xfly2hXa1iMiADqQXFxsdatW6eJEyf6LJ84caJWrVpV6eMiIyN97p9zzjlau3atSkpKLCkngJqp7bntzel0Kicnh0YNoJGp7fn90ksvaceOHfrjH/9odREB1FJtzu/3339fQ4YM0T/+8Q917NhRPXr00N13362CgoL6KDKAINXm/B4xYoT27dunBQsWlHcIfPvttzVlypT6KDIAi6xevbpCXUC7WsMKbegCAC3BsWPH5HA41LZtW5/lbdu21aFDhyp9XEhISIXtS0tLdezYMbVv396SsgIIXm3PbW+PPfaY8vLydNlll1lRRAC1VJvz+8cff9Rvf/tbLV++XKGhXGYDjVVtzu+dO3dqxYoVioyM1Lvvvqtjx47pV7/6lY4fP06eCKARqc35PWLECM2ZM0eXX365CgsLVVpaqvPOO09PPvlkfRQZgEUOHToUsC6gXa3hMCICqEc2m83nvnt4WrDcM6nV5DEArFfbc3vu3Ll68MEH9eabb6pNmzZWFQ/ASQj2/HY4HLryyiv10EMPqUePHvVVPAAnoSbf306nUzabTXPmzNHQoUN17rnn6p///Kf++9//MioCaIRqcn5/++23+vWvf60//OEPWrdunT755BPt2rVLM2fOrI+iArBQoLog0HLUD7pqAfUgJSVFISEhFXpgHDlypEJ01pvD4aiwfWhoqJKTky0pJ4Caqe25LZkketdff73mzZun8ePHW1lMALVQ0/M7JydHa9eu1YYNG3TLLbdIMg2XLpdLoaGh+uyzzzR27Nh6KTuAqtXm+7t9+/bq2LGjWrVqVb6sV69ecrlc2rdvn7p3725pmQEEpzbn96xZszRy5Ejdc889kqT+/fsrJiZGo0aN0sMPP0yvaaCJateuXcC6gHa1hsOICKAehIeHa/DgwVq4cKHP8oULF2rEiBGVPq6oqMjn/meffaYhQ4YoLCzMknICqJnanttz587VjBkz9PrrrzP3LNBI1fT8jo+P1+bNm7Vx48byv5kzZ6pnz57auHGjzjjjjPoqOoBq1Ob7e+TIkTpw4IByc3PLl23btk12u12dOnWytLwAgleb8zs/P192u2/zmHuaZHfvaQBNz/DhwyvUBbSrNSxGRAD15M4779TVV1+tIUOGaPjw4fr3v/+tvXv3lg/3/N3vfqf9+/frlVdeKX9MaWmp7rzzTt14441avXq1XnjhBc2dO7ehXgKAAGp6bs+dO1fTp0/XE088oWHDhpX30IiKivLpZQmg4dXk/Lbb7erbt6/P49u0aaPIyMgKywE0vJp+f1955ZX685//rGuvvVYPPfSQjh07pnvuuUfXXXedoqKiGvKlAPBT0/N76tSpuvHGG/XMM8/onHPO0cGDB3X77bdr6NCh6tChQ0O+FABecnNztX379vL7u3bt0saNG5WUlKTU1NQK5/bMmTM1e/Zs2tUaEQIRQD25/PLLlZGRoT/96U86ePCg+vbtqwULFigtLU2SdPDgQe3du9fnMSkpKVqyZImeeuopdejQQf/617908cUXN0TxAVSipuf2c889p9LSUt188826+eaby5dfc801+u9//1vfxQdQhdp8dwNoGmp6fsfGxmrhwoW69dZbNWTIECUnJ+uyyy7Tww8/3FAvAUAlanp+z5gxQzk5OZo9e7buuusuJSQkaOzYsfr73//eUC8BQABr167VmDFjyu/feeedkjy/pf3P7VNOOUULFizQHXfcQbtaI2FzMc4MaHRyc3PLk2nFxsY2dHEAAAAAAACAGqF9C97IEQEAAAAAAAAAACxDIAIAAAAAAAAAAFiGQAQAAAAAAAAAALAMgQgAAAAAAAAAAGAZAhEAAAAAAAAAAMAyBCIAAAAAAAAAAIBlCEQAjURRUZEefPBBFRUVNXRRANQxzm+geeLcBpovzm+g+eL8Bponzu3Gz+ZyuVwNXQgAUnZ2tlq1aqWsrCzZ7Xa5XC7ZbDbFxsY2dNEAnCTv8zs+Pr6hiwOgjnBuA80X5zfQfHF+A/UnNze33tq3OLcbP0ZEAAAAAAAAAAAAyxCIAAAAAAAAAAAAlgkNZiOXy6WcnByrywK0aNnZ2eW33lMzOZ3OBi4ZgJPlfX4DaD44t4Hmi/MbaL44v4H64z01k9XtW5zbDSsuLk42m63KbYLKEeGeYwsAAAAAAAAAAMAtmNwcQQUiGBEB1K/6TOYDAAAAAAAA1DXat1qOYEZEBDU1k81mI9s4UI+8p2aiogYAAAAAAEBTQ/sWvJGsGgAAAAAAAAAAWIZABAAAAAAAAAAAsAyBCAAAAAAAAAAAYBkCEQAAAAAAAAAAwDIEIgAAAAAAAAAAgGVCG7oAACqy2Ww+twAAAAAAAADQVBGIABqhmJiYhi4CAAAAAAAAANQJpmYCAAAAAAAAAACWIRABAAAAAAAAAAAsQyACAAAAAAAAAABYhkAEAAAAAAAAAACwDIEIAAAAAAAAAABgGQIRAAAAAAAAAADAMgQigLrmdJpbl8v31l9ly4NdH+w2warLfTW05vRaGhveWwAtEXUfAAAAUOdc1Vxne6+vbls0fjYXnyJw8lwuadt+6Wh2xXU2SXa7ZLN57pc6zWNCvJa79+Neb7eZx1X2fC6X5Aywj5qy2aRSR+DyNDVVvbeoPffXhMNpjkk77yuAFsL9HSmXFBLS0KUBAAAAmpTcHm3lCgtRiVPakRNeYX2Y3SanyyWnSwrUQG3WS5JLdptNLpfUsVWI2sRybd4UEYgATlZ2vvTtT2UNFZW47Xnp4HHpvkulgad4lv/uVembXeb/EwZI146XEmLM/a17pXv+W3Ff08dIF5whRZZV4B+tlZ5aUPNyR4ZJv79MGtTVs+zBudLXP9Z8Xw0tNjLAe/uK9M3uBitSs3HxcGnaKCkm0txf/q006+2GLRMAWC0pVvrdJVKfVM+yX/9H2n6w4coEAAAANDG5a/8hV/tEHcp1avwreT7rzukeqVuGx0mSHE6XvvypWP9Yll0WeJD6twvTXyYmBNxvdJhNaYkhCguho2RTwtRMwMkKD6s6CCFJ5w6Wcgs9QQbv5W75Rb7r+6RK6W0q7svh9AQhJGlMPymqYlS5WoUlUlxU5eVpSnILpcQq3lvUXnGpJwghScN7SomxDVceAKgPmXlS61a+yyYPapiyAAAAAM3Q5B6etoYQu02hdpUHIcz6qACPMkocLoXSqt3k8JEBJysyTGoVU/U2Z/U1vfYXrPNd7t2o++U2KSPHd32gxvRP1ptghFt0hAlG1IZ/eYZ0l9q0CrxtY1fhvT2VBvO6sHiTVFjsuR8aIp1zWsOVBwDqg9Mlfbred9mYfuY7FwAAAMBJ6ZESqq7JYT7LPt5WWP7/xCi7hqVW3uk2KdouG9NxNzkEIoC60DGp6vWRYdLY/lU36jqc0qcbfB83tr95rLeMHOmrbb7LJtey9/+SLVKep6KX3SZNaqI9PhcFeG8nDmyw4jQbeUXS0i2+yyYNIk8EgObvkw2+gf/IcGlsLQP/AAAAAMr5j3Y4nOPQhgOeNp0J3SIVWkW7Q1I0TdpNEZ8aUBcSY6WwahLlnDvYTL+0pIpG3UCjHc4O0Ojh3/u/azupZ8eal7uoxDTge5t4mprk+Lb8AA3mk2kwrxP+x1ubVtKQbg1TFgCoLydypdXf+y5j2j8AAADgpMSE2zQq3Xek8Sc/FpRPy2S3SZO8pm3yFx9pIzdEE9UEWxuBRshmkzpUMyoitbXUN62SRt3u5v/Hsismiw7U6LFhh0l+7W3KkJqV2c2/PEmxZlqjpqjCe5tAg3ld+PGgtG2/77Jza3m8AUBT4v+9kt5W6t25YcoCAAAANAPjukYqItQTSChxuPT5ds9sHYM7hqt1TOWdfZMZDdFk8ckBdaVtYvXbTBksbT8o/eDfqOsVbPjYr9GjW/uKox1ckj72m7t6dB+Th6Km9h6VtuypvDxNScAG8yb6WhqbCvlEujXdfCIAEKxvdkn7M3yX8b0CAAAA1Npkv9EOq/cWKbPQVel6b+EhUmw4oyGaKgIRQF0JDzWjCaoyopeUEBO4Ubdtgvn/+h3SoRO+6wM1eny2USpx+D7/hIE1LHQZ//IMOEXqlFy7fTW05pSAuzFZulXK9csnUtvcJADQVLhU8XtlVG8pPrpBigMAAAA0Zf3ahqlTq1CfZd5JqtvG2jW4Y+VJqpNJUt2kEYgA6lKHahrvw8oSKC8L0KjrThLtdAU32iE7X1r5re+y2vbSXPGdlJXnu6ypNjIHajBvqgm4G5OiEmnRN77LJg5smvlEAKAmPv9GKi713A8LlSYMaLjyAAAAAE3U5J6+bVs/ZZZqy+GS8vsTu0fJXkmgwSYpkWmZmjQ+PaAutYqWIkKr3mbSIKmktOpG3YUbfUc7RIRJ4wI0enzk10uzY7I0IL2GhZZU6jAjLLyNH2BGWTQ1ARvMm2gC7sbGP0CW2ITziQBAsHIKpOVbfZdNHmx+CQEAAAAISkKkTcNTfZNUe4+GCLVLE7pVPi1TqyibQu1chDdltMwBdclmq35URLtEaVDXilM9JMZKI8oadTPzpFXf+a4PNNph615pzxG/7WqZRNi/kTkuyozEaIr8X0tTTsDdmATMJ0LSagAtgP93dockaWCXhikLAAAA0ARN6BblE0goKnVp8U5PIGJYaoQSoypvqiZJddPHJwjUtbYJ1feSPHew9NMxabNfo+5kr0Zd/9EOnVOk/ukV9+XfODK8pwlq1NShE9La7RXL2RQ1pwTcjc1Ha33vD0hvuvlEACBY3+2Tdh32Xcb3CgAAABAUm6Rz/JJQL9tdqLzi4JJUR4ZK0WGMhmjqCEQAdS00REqJr3qb07tLreMDN+p2TjH/37LHNKh7C9TosWiTVFjs+/znnFbjYkuSPvYLapzaSerSrnb7amgV3tsmnIC7MVn5vRmx443GOAAtgf/3yrCeUnJcw5QFAAAAaELCQmxqGxvis+zjHzyjITq1ClH/dpUnqU4iSXWzQCACsEJ10zOF2E2uiFUBGnUneyVW9h/tMOJUKTHGd1l+kbR0i++ySYNMkuaa+mqbdCzbd1lTbWRe+X3zScDdmATKJzJuQPW5UQCgqftis1TgFfgPsdc+8A8AAAC0IJGhvm1U2zNK9GNGafn9Sd0rHw1ht6nKKZvQdPApAlaIjZSiKo/kSjKNFy5X1Y26izdJhSWedaEh0oQAjR7+AYs2raQh3WpcbDld0id++RXG9Kv+tTRGzSkBd2Pzid/xFhcljWqi+UQAIFgFxSYY4a22gX8AAACgBQn3HQzhk6Q6IkQa17XyQERCpE0hXHM3CwQiACvYbFLHakZFJMWZaR0+WWcCAG7eSaJzC6VlfqMdzg3Q6PHjQWnbfr/taplE+NMNksPpuR8VLo3tX7t9NTT/qaaacgLuxuRQZsV8IlNIWg2gBfAP/KfES2f0aJiyAAAAAE1QfrFTy3Z5AhFnpkcoNqKKJNUxIZWuQ9NCIAKwSutWJiBRlXMHm0bd9Tv8lleRtLpNgjQ4wGgH/8aRId3MyIiaysiRvvyhYjmbokAN5k31tTQ2C/zmSu/ZUeraRPOJAECwdh6Svt/nu4xp/wAAAICgLd5ZpELPrEya3COq0m2jwmyKIkl1s0EgArBKiL1iPgd/p3WRYiKkld/5Lu/Z0ZMA88cD0tEs3/UjT624r1Xf+96326ThAbYLhv++TmkrdUiq3b4amv9rObUTyUXrwtrtUnGp77KRvRqmLABQn/y/VwZ1bZpTGAIAAAANYPXeovL/J0XZ1bN1WKXbtookCNGcEIgArOJwVkxE7W/rXimvSDq9u+/ynYfMyARJSm9jRld4W/NjxX0FygnhPxogWKf77WvfMenA8drtq6H5v5YdXu8taq//KRXzbXwd4LgEgObG//t2yx7fJNYAAAAAKjWko6cTz/ECp3YdL61025wiV6Xr0PQQiACskpHtm/shkAXrTO98//mlvadZ8p9KKCNH+nJbxX3554TYuEvanxF8ed1aRUsje/su+3h94G0bu+Q4aajfe+ufNwK1439cBpquBACam84pUv9032X+UyMCAAAAqNS4bpEK82qR/nhbQaXb5hW7VFhCMKK5IBABWKW6IEBWvrTiW2nSIDONk1tBsfTFZvP/yLCKiaL9k0lLZtRE31TfZf5z+AdrwkApzCsRUHGp9Pk3tdtXQ/N/b/OLPO8taq+64BkANFf+QdjMvIpTNQEAAACoVHyEXWemR5TfX7KrSAVVBBsy8p2VrkPTQiACsEJuoZlyqSoLN5qAwjmn+S7/YpNnioez+0nRnspZDqf0aYDRCZMH+d4/niOt/qHidtWxqWLSzWVbpZzKo9ONVojdBCK8fbGZ6TPqAgEeAC1RRKg0boDvss82SKWOhikPAAAA0ESU+F0yT/JKUF1Q4tKSnYWVPvZEgVPO6mYcQZNAIAKwwsEg8il8st70Kk+J913u3bN8il9QYM2P0tFs32WRYQEaRjZWHDURjEFdpfaJlZenKRnavWJS6qb6WhqTEHvF4NkSAjwAWoDRfaTYSM99p6vpTl0IAAAA1KPCUt9AQu82YUpP8MzGUdX0TE6XlFlIIKI5IBAB1LVSh3Qkq+pt1u8wyZ/98zp8t0/aedj8v2dHqWt73/WBGtLP6ltx1ERt8yD4TzmxownP+z/F77399idp1+GGKUtzMrR7xeDZRwR4ALQA/t/Z67ZLhzMbpCgAAABAU1LscCkj33dYxOSenlERu0449P3Rkkofz/RMzQOBCKCuHcmSXEEkqW6XKA3u6rfcK6+Df1Dg0AkTwPDn3+C+dnvFURPBSIlvPomd2yea0R3eGA1RN/yPt+/2EeAB0Px1a286CHjjewUAAAAIikvSwh99p186u0uEokJt5fc//qHyUREFJS7lFxOMaOoIRAB1yeUyIx2qcixb+mpbxbwOOQXS8m/N/2MjzRQQ3j5eb8ajeevewTSOeKttw8g5pzWfef/981zkFJjE4Dg5AQM8tUyKDgBNif939tEsM10iAAAAgKB8+mOhHF7tWtFhdp11imeGjxV7ipRTVHmw4TijIpo8AhFAXcopkAqrmSv/0w2SzSZNHOi7/PNvpOJS8/9xA6SIMM+6EodJiOnPP4fE4UwzVURNNafEzmEh0oSBvssWbvS8t6i9QAGe5QR4ADRz0RHSmH6+yz4J0DkAAAAAQKWO5Tu1Zr9vO5P39EzFDmnRjiqSVhe6fAIZaHoIRAB1qbrREA6nabw4s5fUKsZ3nfdIBv9pmVZ+J2Xl+y6LjZRG9/VdFmjURDDO6NF8EjuP7CW1ivZd1lSnmGpMAgV4vINnANBcje0nRYZ77jucplMBAAAAgBr55AffQEOXpFD1TAn1rN9WeSDC5ZJOFDAqoikjEAHUlRKHlFFNboavt0kZORUTXm7cJe3PMP/vny51TvFdHygoMK6/FOk1aqK0klETwfAPfDTlxM7+OQw27JT2VxMgQvUCBXiaarAKAGrC/zt79ffS8dyGKQsAAADQhK0/UKzDOX5Jq3t4RkXsz3bom4OVz86Rke+Uq7q8rGi0CEQAdeXwCZN9pyofrZPSWkt9U32Xe8+z7z/d0t6j0pY9FfflP03Oqu+lzLygi1uuQ1LzSeyc3kbq4//eNtHX0tj4B3i8g2cA0Fz17my+W7zxvQIAAADUikvSJz/6JqU+Mz1CseFeSau3VZ60uqhUyi8hENFUEYgA6kIwSaoPnpA27KgYQDieK335g/l/Yow0/FTf9YEaPPqmSamtq98uGP65IZpyYmf/ZKLHczzvLWovYICHJNUAWgD/EYP7M6RvdjVMWQAAAIBmYOH2QpU4PMGEiFCbxnWNLL//1U/FVU7BlJHH9ExNFYEIoC5k5Vc/V/7H60wC6nH9fZd/tkEqLatEJ5wmhYZ41hWWSIu+qbgv/1ETPx2TNu2ucbGbVWLnyDCT5NvbpxvMXN44OYECPKsJ8ABo5uKjpVG9fZctWFf96EcAAAAAlcoqdGnV3iKfZZN6eAIRpU7psx8rHxWRVehSqYOL8qaIQARQF6qboqbEIX22UTqrrxTjqVzldJnk1ZJkt0nn+jX4Lt0i5flWzkqIkUb08l1W29EQZ/ZuPomdz+orRUd47rsTg+PkBArwfLaRAA+A5m/CACnMkzhPxaXS5wE6BwAAAACoEf+k1J1ahap/O08e1E9/LJSzklwQLknHSVrdJBGIAE5WcYl0opqklSu/lbLzK07xsOZH6UiW+f/gblKbBN/1gQIMEwaakQxuRZWMmgiGf3macmJn/xwGa36UjlaTPBzVCxTgaarBKgAIlk0Vp1JcvtVMXwgAAADgpGw5XKK9mb6zcUz2GhVxNM+ptfsqT1p9nKTVTRKBCOBk5Reb0QxV+WidFBsp2f1OOe9AQ5tWUqFXJfvjAfPnLzHGtzf6sq1SbmHF7aoTEWoaVHYe8gRSmmoCzthIM43VrsMm4CM13dfS2KTESwVFZjqmUoe0djsBHgDNX1KcqfNKHZ76j+8VAAAAoFYCtZr5j4qIjbD7NK99vK3yti6bTSphUESTY3MRPgJOntMlbd4tZeWZ2rDUIYWElN3afQMF4aFmmf9yt8gwkyeiqMRM6RSIzWYCCWEhJhDiHZhwusxj84vMX0GR2aagyAQecgul/ELzGIfTlPP0btKgrtKWvXX6tljG5ZIKiqXMPM9fYbHJwTG8p0nm/e1PDV3K5iO/0BwbFwwzx4872AMAzZ1N0rodJlfO4ayGLg0AAADQpOReOkyuuEgVlzi1LiPcZ51NUkp0iApLXSosdanEWbGJOiU6RCUOl4ocLsWE2VXqdKljqxB1jA+RzVZNp2A0OgQigLrmdJpAgWRuXS7PfW+VLXevcz/ef3lhiWkIzs43SbKz802AITNPysiRMnPNPNbunpyymeBHWKgUFWam2fH+iwr3TZDdGLlcUnaBdCzL9MY/mm0CKzabyZmREi+1biW1jjfBCNStE7kmifmEgVJibEOXBgDqD/UfAAAAUGt5vTvKZZdsMVGKSYivsN7lclUZUPBeX922aPxCq98EQI34T79UWSUZaHlJaVmQocATbMguMCMtMnJMg0hBsSfI4HSZIEN4qBQRbgIL7ZI8AYboCLOuqVXULpcJrBzN9gQfCsumwEqMk9LamMBDSrx5fbCWzS7JZm5tzOgHoAWh/gMAAABqLWbVj9L67dId5wdcX11gwXs9QYimjxY8oL44nGbkQo5fkCE7T8rINUGGnALJ4ZBKnSbQEBYihYeZaZiiIqTkOE+QISbCBB+qy0/RFDhd5vUfdY94yDKjOux285q7tTWBh+R430TdqB82rz/a4QC0JNR/AAAAQO01gyYr1B0CEUBdcLlMPoZAoxmO50gn8syohpJST5AhxGaCDOGhJrAQG2mmFopxT5kUYfJINEcOpwk8HMkyfxnZJh9GSFngoWcnqU28SRba2KeNaglsNt8/AGgpqP8AAACA2rO5e/UABCKA4BSVeHIyeI9oyMr3TJlUVGIa2EsdJjARURZkiCybIqlziifIEB1hcja0FKUO8z4dyTKjHTJyykZ8hJrplXqnmhEPSbHNN/jSlHnnPKEhDkBLQv0HAAAA1B7X0PDSglpCgUqUOszIhRz/0QxlQYbjuSYxcqnDBBoczrK8DGFSZFny5/aJJsgQFVE2ZVJYy65sSxzSsWzpSGbZiIccM/1SRKiU0koakG4CD4mxzWNqqebOLnM828XnBaBlof4DAAAAaq8s5RogEYhAc+d0SrmFAfIy5JspkzLzzKiGUmdZbgaHFBpqGswjyoIMyXFSdIr5vzvYQGOEr+JSM9LhcKa5PZ5rRoVEhpuAw+Cy5NIJMS07QNNU2Wxlc6TTIxhAC0P9BwAAANQe19DwQiACTZfLJRWWVAwwZOebAIM70ODOy+Bwmgow3B1kCJeiI83UQDGRnimTyElQvcIS6WimGe1wOEvKzJVcMu9fm1ZS1/ZSmwQpPoovnebAPacjDXEAWhrqPwAAAKD2uIaGFwIRaLxKSgPkZSgwSZ/dCaALiz2jGZxleRkiwkzy5+gIKa21CTa4RzOEh1IJ1kZ+UVli6UwTeMjKM8tjo0zgoVdHE3iIjeT9bY7sZT2C7TZGAwFoWaj/AAAAgNqz06EHHgQi0DAcThNcqDBlUp6Z1udEnpRb4En+7HCaxMaRZYGGmEiTl8E7yBAZTiNBXckt9OR3OJxpPidJio82gYd+aeY2JrIhS4n6YrP5/gFAS0H9BwAAANQe19DwQiACdc/lMj3oy0cw5HsSQZ8oG8mQlecZyeBwSna7J8gQHSElxUqdksuCDJFmGqUQpkyyhMtlAg2HMz2Bh7xCsy4xVuqQZEY7tG1l8mOgBbJ5brmIANCiUP8BAAAAtcc1NDwIRKDmikoCTJlUdt+dl6GoxAQYHE6TOyDKPWVSWR6G1q3MKAZ3oCGcQ7HeuFzmM3IHHY5kSvnF5rshKU5Kb2NGO7RpZUaZAO6hlExNAqClof4DAAAAas891SkgAhHwV+owIxdy/JI/Z+dLGWVBhvwiT5DB6ayYlyG1tW+QITKMXoQNyek0o1C8RzwUlZjPJDlO6trOjHhoEy+FhzVwYdEo2fz+AKCloP4DAAAAao9raHghENGSOJ1m7v8KeRnypRNleRly8sumTCr7CwsxgYTIcJOPoV2iJ8DgnjLJbm/oVwZvDqcZmXI40xN8KC6VQuxSSrx0aicTeGgdb/JuANWx2WWmJbGX/R8AWgjqPwAAAKD23NfTgAhENB8ul1RYUjHAkJ1vRjGcyDW3JQ4TkHA4zfCoiDATaIiOkBJjpE5JniBDTIQUSl6GRs/hkI7lSIcyTeDhaJb5nEPtZnqlvp2ltolS6zjybKB23NcN9rI/AGgpqP8AAACA2uMaGl4IRDQVJaUB8jKUJYJ2J4AuKvEkf3a6zFRJkeHmNibC9IB3BxjceRmYMqnpKXWYYIN34MHhNKMb2rSSBqSbkStJcWYUBHCybGVzOtpI1gqghaH+AwAAAGrPfT0NiEBE4+BwmuBChSmT8qTjZaMZ8gs90yU5nJ6cDBFhJqiQ1tozZVJsWV4GpkxqHopLzfRKh06YwENGtuRwmc++bYI0uJvULkFKjOUzhzVsZf+4G+MAoKWg/gMAAABqj0toeCEQYTWXyyR39h7B4E4EfSJXysozf6VeyZ9DvPIyxEZK7RM80yXFRpoABFMmNV9FJSbgcCjTBB8ycsxxFBVhAg5d20ntE6WEGBpFUD+8ewTbOeYAtCDUfwAAAEDt2WwiGgE3AhEnq6gkwJRJZffdeRmKSz1BBtmkKHfy5wipVYzUMdkzXZJ7yiS0HAXFntEOB09ImbmSS+b4aJ9okku3TZBaRRN4QMNwT0nC1CQAWhrqPwAAAKD2mJoJXmjxrkqpw4xcyPFL/pxdFmQ4kScVFJlpcpxlgYZIr7wMsZFSSry5dQcZIsP4IdvS5RV6RjscOmGCVZIUF2UCD/3STOAhLopjBY2D+zikIQ5AS0P9BwAAANQe19Dw0nIDEU6nlFsYIC9DvgkwZOaade7Ezw6nGangTgAdEymltvaMZIiNND3YmaMf3lwucxwdypQOnzAjHnIKzLpWMVL7JOm0Lia5dExkgxYVqBQ9ggG0VNR/AAAAQO1xDQ0vzTMQ4XJJhSUVAwzZ+ab3eWaumTqpxFE2ksFl5v2NCjfz8MdEmB7pXdp5RjPERpKXAdVzucyx5R7tcPCEGQFhs5lk0mmtTdChXaI53oCmwF42lNLOHOkAWhjqPwAAAKD2uIaGl6YZiCgpDZCXoSwRdGaumTapqNQzXZJLZUGGcCk6siwvQ0pZkCFCiomSIkKJ0qHmXC7peK4n8HDohJRfbBotUuJNYul2iVLbRDMtF9AUuZNL0SMYQEtD/QcAAADUHtfR8NL4AhEOpwkuVJgyKa9syqQ808PcWZaXweEyDbxRZcmfYyOllA6eUQyxkWYdUyahLjidUkaOGengHvFQVCKF2E3goWdHM91S2wSSjqP5oEcwgJaK+g8AAACoPa6h4aV+W0pdLimvyJP8OSvf8/8TZdMlZed58jI4nWY6pKiIsuTPUVLnFHMb65WXgSmTYBWHUzqWLR08XhZ8yDQjckLsUptWUt80k2C6bQLHIZov5kgH0FJR/wEAAAC1xzU0vNRtIKKoJMCUSfmeKZMy800jrjv5s91mggzRZcmf27SSurT1yssQRa9y1K9Sh3Q0SzpQFng4nGmWhYWaYMPAU0zgoXUrAg9oOdwXDjTEAWhpqP8AAACA2rOVjTAGVJNARKnDk/TZZ9qkfDOaITNfKiw2AQaXywQb3NMlRYVL8TFSh2TPSIbYSCkynB91aFglpdLhssDDoRPSkSzJ4ZDCw6R2CdKQbibwkBJvRkEALZXN7xYAWgrqPwAAAAA4acEFIhZvkpZvNfkYnGXTJkWEmZEMUWV5GbrHe0YxuKdMouEWjdnBE9IHa8wxHRlmcjsM62ECD8lx5BUB3OwyQWO7mN8RQMtC/QcAAADUnl2iRw/cggtEZOSYUQ3DenqCDWFMS4MmLrfQBCEuGWFGPDA6BwiMqUkAtFTUfwAAAEDtMTUTvAQ/NVNslNS5tYVFAeqZTaZCTGL0A1AlkrUCaKmo/wAAAIDa4xoaXoIPRNhsDElH8+KOyto5toEq2TlXALRQ1H8AAABA7XENDS81CESIKBaaF5tNEr0cgWpxrgBoqaj/AAAAgNrjGhpeGBGBlotejkBwOFcAtFTUfwAAAEDt2enQA4+aBSI4cNCcMO8zECSbb69gAGgxqP8AAACA2uMaGh7BByIkfoCheXEfzgQigKq5zw/OFQAtDfUfAAAAUHtcQ8NL8IEIhqSjuXE3KnBsA1Wzc64AaKGo/wAAAIDac091CqhGIyLoCYZmxmbzJGHn2AYqx7kCoKWi/gMAAABqj2toeKlBjghx8KB58Z7zmWMbqBznCoCWivoPAAAAqD339TSgmiarZkg6mhN3L0emWwCqZlfZuSLOFQAtC/UfAAAAUHvu62lANR4RYV1BgHpn8/sDEBjnCoCWivoPAAAAqD2uoeGlBjkixJB0NC9MtwAEh3MFQEtF/QcAAADUHtfQ8FKzqZnq6uBZv0P6z2fSmu1SZq6UECMN6S7dOFEa3LVunqOxeeULKSpcunSk7/Kfjkln/lZ69NqK65qSrXulR96VftgvZeRIkWFSl3bS9DHSRcOD28exbGnW29KiTVJBsdSrk3T3hdKZvawpc3kPx5M4tuetlO5+yfz/jbul4af6rne5pLPuk/YclYb1kN6892RKXNHI30jDekqPXWfuH86UXl8qTTxN6pNau32u/l6a9mjg1+PvxwPSUwuktdulI5lSdKTUIcmcx/deJMVFme3mfyVlZEvXT6hdmaTKz6Gm5uN10oJ10je7pEOZUut4aXA36Y7zpFPaBrePvUelh98yn1WpUxrURfrtJVK/NIsKXTaNmWiIw0nyrjMlKcQuJcWZ+vGuC4I/B7zVpM7yt+2A9NEa6ZKRUucU33V3vSh9+YO08u81L1NduutFU2d891T126bdIN0+VbrjfOvLVRslpeY7Y95K6UiWec+vHiNdOy64x+cVSo/Olz5cI2XlSV3bS7+cLJ031MJCU/8BAIAqfPeT9MJCafU26WimFBJirmnPO12aNkpKiLXuuRu6PUAyv01fWCgt/1Y6cFxyOqXWraQh3aTLR0nDe9b8Gqqxt5P5/6bxtuYxqU0rz/1F30gfrjVtZjsOSaUOac/zFR/3+HvS/31Q+XM++Qvfa94F66TnP5O2HzTtTqe0lWaMC779bfMe0/62YacUajef9e8vk1JbB/f4GmFoMTzqP0fES4ukB+dKA0+R7r9E6phsKquXF0uX/E166Apz8jQ3r35hGlsuP9N3ebsE6b37pLQ2TXvu4dwCqWOSdMEZUrtEKb9IevdL6Y4XpP0Z0m1Tq358UYl05WNSdr45BpLjzDFxzf9Jr99lvrzqmt3mOa5r+967HxYbKb21QhrpFzRZ/YMJQsRGmo3r+jP+z81SbJRnv0eyzJdX55TaN0q791Xd+7Jlj3Th36Tu7U3DV+cU6Xiu9O1P0vtfSzMnSa2izbbvf2WCVDdOrF2ZpMrPoabm2U/MhdmtPzNf8gePS7M/kqb8SXrvfqlnx6ofn5EjXfJ3894+eq0UESbNXiBNe0T68AGpa7u6L3NdnCuA5KkzH7tW6tbe1P1rtktPfmTqyy8eNp0TaiLYOiuQHQdNnTniVCnN76L7tqnS9eMbzzEfTDneu09qn9h4yuzvgTnSO6tNJ4MB6dLSrdJDb5hrhlunVP/4m56WNu2Wfnux6eww/0vp1n+bH18XDrOmzNR/AACgMq8vle6fI3VpK808R+rRQSpxmOuVOUul9Tul52+x7vkbsj1Akj7baK7FkmKlq86W+qZK4WHSniPSR2ulKx6V5t4lndm7ZmVo7O1k/r9pvCXH+pb50w2msb9PqhQeagIAgV7TlaOlMf0qLr/3ZdOmNKaf53FvLJfu+a907mBPW9vbq0z724nc6ttdth807Qe9O0vPzDS/yR6db9oZPn3QtMfVJbuNOATK1TBHxEkeOWt+NEGIsf1NZRwa4ll3/hnSDbOlP86V+qZJp3c/uedqbNzvnf97GBluekM3dSN6mT9vEwaaSPbry6Tbz6v68W+uMA3V793neT9G9pIm/lH66zzTwFrnvD6T2h7b7sdNHWoCL38p9IwCkKQ3VpjRAbmFvtufrIJiMzqgX7pfebzKVevnsnluq9rHC5+bL5R595qLH7efnW5GQ7hcFR9/Mq+/snOoqfnvbVJKvO+ykb2k4fdKzy80wYWqPPuJdDzHnCudynpwD+1hesM8Nl965pd1X2ZbHZwrgOQ5fk7tJA04xfx/RC/J6TLH72cbTM+pmu3Uc1vj47OKx9ZmdIYValL3NebriR/2m+/E31xkRjFI5rM/kSv960Pp6rOlxCp6DC7aZHrazf6FdEFZ0GFkL2n/cekv88x1ZIi97stN/QcAAAJZt1267zVpVG/phVtNBzG3s/pKN02Slmy29vqhIdsDdh+RbnlO6tHRjJ7wbgcZcap0xWhp1fdSQnTNy9LY28kC/aapzCMzJHvZNer9r5lARKD3o0Oy+fP20zEzgvvCYb6dtd5aIXVKlp79pWffY/qZTqHzVkq/OKfqMj023wRFXr7d87n1T5dG/U567lPp/kurfnxNcQ0NL/U7IuKpBWY/f5tuDnpv4aHSrKulYfea7V653bPux4PSP9+TVn5nesynxJuK7ZEZnsr+4AmzzeJNZoqfpDgzFOyvV5nex2+uMNHBrx7xnX5h1fcm6vf2b8w+Jeniv5me3X+bLv35TXMyJ8SYYXV3XeD7Q/ex+dLizdKuw2aIVXobM6LjilGek23o3dK+DPP/TmVD5jolS18/aiqWM+6RHr/et6f3V9vMvjfskhxOqU9nE+kcP8Czjfs1zbtX+mCN+ZPLDM37y1VmZEJDS44zPbirO3Y+WW96cnsHoMJDpYuHS7P+Z4YYtq/j11MnIyLKHnfhGSYQ8f5XZpoJyRyrC9ZJf77SNDDb5Ps8wRw7kjl+Tu0kTTtTevwDafsB6YaJ5sth6N3muP2/GzzHsiTd+aL5k6Q7z5fuvsBMBfTMJ2ZqtGPZ5jwa3M2MTOrkdU4E2wMiM898acVFVfLFUrbs4r+Zns6S5/iXpAMvBf8+VHUO1eTc3rzHTCG2YaeUU2AavfqmSn+/xkwpVR+8h2m6dUiS2ieZ0RHVHYufrjeNb95DJltFm94Qb682Q2G9g7x1gR7BqCu2SuqXgenm9pjf98U3u6R/vm86MhQUSd06mJ7z3sOSA9VZwdR37rpDki77h2d/7u/j25839cjXj3rWFZZI/5wvvfe1dOiE+Y47Z5Dpoe8eASZ56u1rx5khz9sPmhGgv5psfpS55ReZOmnBOjO9XVSEObdvOsfTw9/9duw5YkYUfLnNPNd5Q83zev/o7XCtp873fo1z7zbfUZ9tMD2eRvYy301pbSr9qOrcZxtMgHraKN/PeNoo02Fh6Zaqh5J/ul6KiTSv2/vxl58p3fyctHGnNZ1YqP8AAEAgT35krhEemWE6CfqLDJMmDfLcf+8rae5y6ft9pq2gU4p0zmlmit7oCM92tz9vpvL56AFz7bduh9n/eUPN1Dne2zZke8B/PjMdJP92te91sDf/abZ3HZae+FBas006mGmCFH3TpN9dLPXq7NkuUDvZo/NNm98XD5tRH4s3mevgcf3NrBrxlZTBCpX9pgnE7vXb3L1psNeUb64w188/H+37mLBQc13s87vf5gkqVLX/Uof0+Sbp0hG+n1tqa3MsfbpeeuCy4MoXLK6h4aX+ckQ4nCaQMCDd/BgPpFOKicKt/M70jgyxm3nUzv+rGep1z4VmyNvhTDMErNRhIqUHT0jn/skMgfv1z8zwohO5JvqclS+1SfAJ6vq8jsqWH8mSfvmMdMsU6Z6LpM+/MZVdVr7016s92+3LML343K9p3Q7p93NMGe8sm6P5xV9LN86W4qJNJS2Z4Wo2W+DnX/W9GSbVq7P0z+tMg/x/F0vXPGGGTZ1/hm/Z737JBCienikdyJD+/JZ0639MA2xVXC7zuQQj2IZNp9N8dpl5Zg7nJVtMUKS6Y+eH/dIZPSpu17vsy2jbgbpvKHa//yc1IqLsNi5a+tkQ09tz+lizbP5XpsK94AwTiHA/p1swx47b5j0mH8Pt50mpKebiw+c4tplz5/+ul25/wUyV5A5atU8y6/dlmGGDF5xh5qk8kmmmv5r8J2npXz3D7yo7J/wN7mrOi1v+bYZhntYl8AXYrOlm2OCeI9KLt/qWOdj3oabnUKDXkV9k5rpMbW2CnimtpKNZpr7JK6r6tbqP6+rYbLXrkbvniLTvmLlQraocBcXS7qPS5MGBz5XCpdLeY3U/PVNdnCuA5DUk1+9Y+umYue3azrN85Xdmyr7TuphgYVyU+QE38xmpsNgzciJQHRBMfTd+gPS7S0ygYNbVnuHraW0q1q+S+c687l/Siu9MMOSMHmZO4Efmm3rrw9/7BgW+/clMO3TLFNMh4vWl0l0vSae080w3+NAbZhj1by6W+qWaeur7/eY71LsMpQ5pxr+kK0dJMyeb3BWPv29+cPl/X3i/D+5d3PWidFYf6ambzHSYf39Huvjv0uI/S62qmAqrLq8Tfthv3ve2Cb7L3fMX/3Cg6vrlh/1mKsAwv0tX78cP7RFcWWuC+g8AAPhzt2/1T/NtxK/KriOm0fwXE03nk+0HTSfcjbsqtt2UOqSrHje/k2+ZYnIy/t8HZtrrV+6ouO+GaA9YvtVc1w3sEtzrl6TDWaZt775LpeR4kzP2rZXSlIelhQ95pjkKVAb3shtmmzaxK0dL3+2TZs0z2zx+fdXPXZe/6d1lmf5/puNtfLTJsXDvhaYzUlX79r6trrxvrTCjtP1nH7luvPSLp6QnPjBtMTab2XbTbtNmWNX+9xw1v6V6dw7cprDsW9NxKTJA205tebfboMWrv6mZTuSaRrTU1lXvJ7W16a18Is8kcX3wDZM45eM/+k5ncolXwppH3jVTlSx62MzJ5+ZusC9/AWW3Ps8faLnNlPfl20xPR8kMcyoqNhX1zVNMb2xJeuJGz66cTk+OgOc/M40D7i+EyHDTiDLEv7degOf/6zzTMPDu70yUUzLJhsY9IP3pTfO6bDbPY8f0l/7iFRzJzDcjOY5mmSBMZd5cYaLtwTj0cnDb/e5Vk1RYMgGUh38uXTO2+sedyDW90/2PjcSyL8PM3LpvALCV/VMXwxZtNtPL9eK/mcaSUzuZefumnm4az93bej9PMMeO+3HHsqVlswI0MNs8+42Plk4tC9ykt614rE0dav7cHE5pwmlSv1vNPNs3TPTaZ4Dy+vvVueaL7t0vzV+I3Xxxjetv9uU+X0/tZCLt4WEBjv8g34eankOBlm8/aI6zx6/37ZniU09U4p/vm5Eb1emUIq19rPrtvJU6TG+VmEjTC7qq9zw73zQMBjxXyqY08W/ArAs2r+OMhjicFK9GfYfTXOR+/aP5YTWsp28w7nevmJwp//utp5F7bH8zYnHW/6TLziwbihygDgimvmvdyuQZkMyQ8oB1i9c+l2wxfw9cLt18rll2dj8zhPqmp01A4aqzPY89ni29/3vP9cLwntKKb83zu0dprdkund3X5NRxm3BaxXIUl5rOGO6RIKP7SN/sNnXvXRdU3N77+0Myebkev8GzyamdpKkPm04OVU2duOp7870WjK8frTq5XWXf8zGR5nqhuu/5E7kVg0SSV91nwXWCRP0HAAAqCrZ9y5t35xGXy3Rq6dFBunCW6dzS251cuuza75eTPL/Rz+5nOmPMetuMFC7vfNGA7QEHjpsOIf7b+Df4222e6YNGnOq5Di4vw0DprPuk15ZID11ZRRnKbq88y3MtflZfM0XUG8vM7/yqyluXv+nbJJhgz6BuUlykCYjM/kia8mfpg99Xnyg8mGNm6VbzHt9/acXtf3a66az56/+YDkaS6RT6rxul86pp38jMM7eVtSm4XFJ2gQmW1RXv9ku0eMEHImo197Lf44PZj6uswrLbTMW++ntT0bQOMJ2J2+JNpvGyqiSvlc3xG2i5TSa58KTBvvu4aIT02lLpqx+kzmWBkOXfSk+8b6LYOQW+2x/L8Z2GJVAwx//584pMQqMZY33n3Q8NkS4daQIMOw5J3Tt4HjvpNN/99in78tl3XGqbWPl7cs5pJhFNMIL97G+bKv38LPPaP9sg3feq+Rx/dW5wz1HZ89jsFjQA2DyfSa1HRHgdMyN7mWmF3lhueupu3GW+SL238X6eYI8dm0wDv38SpPJ9+pXDXS7/15RXaIYyfrjG9D727uX640HfY7GyfXiLDJf+e7u0bb/0xWbTKLb6e9Og+MoX0gcP+JY50PFfk/ehsn0Ee253aWemWHv4LTPiaVjP6hNDu00fI00cWP127lEawXK5pDtfMFOxvXBr9b1pqvxsgvzcaoMewagr7uPn3D/5Lu/RwUzJ6O7tvuuwqZcevMI8xru+Gj9AWrjRfBf26Bj4vAi6vlPFx5aXVb51zsrvzO00v+nzzj/DTH+0/FvP1Hw2mR8g3tPFRUWYemhfhufxp3UxyZsffssEWQZ1rTiyzF2Gc/y+63t3llZ+W0m5/erzi0f4bje0hynbyu+kO/xGVHgbeErw1wnu3naVsqnS7wF3WaurXwJ+ThbWfeX7tXD/AACgCQqyfcvb7iPS3942o2uPZXvaviRzfdonzXfX/tdvFw03gYiV30tn9PRs21DtAW7+21z3pJl6u/z+eDNLgmQ64c3+SPrfKnO9X+IIvgzup/GfRaBPZzN9qn/bgb+6/E0/boD5cxvRywRUzr5f+sc7gUetSBVfX1XmLjPtgP6/PSTTBnrzc6bjqztP2qcbpNueN++p91SwVZWhsjYFew2O62BwDQ0vwQciTnZu3NbxUnS49NPRqvez75jZLjnODBVzOKWOSVU/JiPHTNtT1TbuVf6vo7L571q3qri/dgnm9kSeWbd+h3T5P0wD9D+vlzokml59C9aZKROKSzz78H5+b97r7TYpp6zHc9uEitu6cyRk5vlmnU+O893WPYTK+/kDSY7zTXhTlWA/+9TWnh6REweaMv5lnqk8/RP0ekuMNb0K/J8nK9/cJsXW/bxydZIjwmtfIXZT4T//menl27WdJ9rv//nX5NiRAh8P/q/F+9amitv/8hkzfPLOC0zjV1yU2e6KR83QPP99BPu+nNrJM/zQ5ZKe+0R64HXp7/8zjeuS54vHf391cQ4Fe24nxEjv3S89/p4ZdZSZZ97Xq882vVP8p/vw1i6h6oua8rLU4FhyuUzj5durpNk3SVOGVP8Yd6+FzEDnSlnPhmQLzhX3RUpNXh8QiPvweeomE3zILTTT2L282Ey59OY9Zv2xbHP74FzzF4j7uzhQnRVsfWcLor5zLz+Ra34MVKgLbGaZ/3mZFFdxnxFhvs8/62pzjTP/K/OjLDJMGtNP+uMVviPgosJ95wOWzLaFAb7nvc9T96pA3yFtWnnew8rERZkRacGobmqmpFhp656Kz5dXaHr9JVZTdyXFVXKdkOfZvxX1E/UfAADwF2z7lltuoXT+X8z12+8uMdd50eHS/uPSjCdM+4H3fkJDKrafuNujAv0WbIj2gI7JpoON/zZ/ulK6q6yjy4Q/+u7zj69LL34u3foz01aSEGPW3f5C4DJ4vw73dbt/+5d7atTq2r+s+E3vLb2NGeWyfkcQeSOqWZ+RYwILEwZUzP3qcpmZTYb3lJ78hWf5mH6mY+d9r5rpt9yzq/hzT8GVGeB3QFbZ7Aruz6WuuDv2AKrRiAidXBQrNEQa2dtE7g4er5gNXjL5Db7ZbSKLoSFmWp4QuxmOVNVzJ8eZPBHV9d6WzI9d7+2O53r+7738aFbF/R3JMrdJZY2B734phYVIr9/lO3/ax+s9+yvfh1/l6f+c7m3dJ/yRAM9/KNPzev33XVUPw8q8sVy69d+Vr/d27LXgtvM3qKuZ+mHv0apHtfTubIaz+Zf3+5/Mba8A89edrLroRen/GVw52jTAv7zYbwid3+dfo2OnmjJWdpx5b5+db/Kq3HOh7zQcRSWmIaqy/df0fbHZpF+eaxJJfR/g8/S/XxfnUE3O7T6p0vO3mi/vrXtNsrBH55tGvtuqmJ7k0flmCrjqdE6RNvxf9du5gxBzl0tP3GCmmAlGdISZIzLQufLdPvM60ttacK543dKbASfDffz06Gh+AEnSqD6m08FrS6QP1pjph9wXyLdPlaacHnhf3doHrmNqUt/517OByuq+TYozvbgycnx/GLpc5prhtC7V13n+y2OjpN9eYv6OZEmLvjEjH6/6p/TlI55tqzr3qqq73beVXdOcUk19sfI76YK/Vr7e2/rHq56aqXdnU+cfyfLNE/H9fnNb3fd8r85m9IjD6Rv0+G5fcI+vLeo/AADgLzTEXMMuqqJ9y9uKb6VDJ0zHOPdUxJKZAkeqeH1a6jAdMJLiPNseLeuokxRXRVtBPbYHnN1PemGhmdnAfV0veaY+DVS+t1eZ5NMPXO67zfEcM51zMKMyArWVVLatt7r+TR+Qq/q2G+/bysxbado3rhoT+Br+cKaZAt1/3aAuJlfEvozKc1Wc0ta0GwRsU/ipbH0dTsskEYSAj/pLVi1Jd5xnfmTf+7IZquSdAMbhNAltXS6znc1mGt1G9JLe/1r6/eWehgl/4weYk237QTNlUSDuH8ff7TMNIG6fBGjwtNlMxPqT9SYprNs7q02QYGQvT5Q0JMR8CbkfW1BsyuK/z4hQ03OxqkYKm800SgzuJn20VvrTzz1TNDid0tsrzcgP72mZ/J/He5/VfWaTBkmf/7ny9ZWVsyZWfGfep+oaR6ecLt3zkkn4OaSbWVbqkOatMkmR6zpRteR5f+ri2Hbvo0OydMvPTGLpaaMr/5xqcuxI1TeAuNdFlvUG8D/WbDZzbkX4DTN8bYlnSGYwX/reDp2oGJ2XTFAwp0AacIrX8V/WC9h/f3VxDtXk3Haz2aR+6ebvjWXSpj1Vv9ZrxnnyxVQlIrT6Y8kdhHh9mUlG//Ozq9+vtylDzKiTA8c9Cb5zCkydMWlQ1SM7aqsuzxVAqngsPXSlGSb+t7fNEOMeHU1Psa0/SQ9Mq35f3vusSX3n7kFVFKBu8d//WX2kJz80P6B+Odmz/oOvzbSKZ/Wtvt6u6sdH2wQzFeXWvdKzn5i60HsURLD7CnSevr3Kd77Yr7eZIfnu5HaVGdgl+OuE6qZmOneI9Ne3TX6q26Z6lr+xzFzrjB9Q9eN/NkR69QtznFw43LP8zeXmu2hId4sCEdR/AAAggDvOlz7/xvy2e+0uM7LfW0mpCVRMGuTJkeB/ffryYs//A12/3eSVR+x/q83tmb0rvy6sz/aAX0420wf95mXpnd+ZERaV8d6nfxk+22DaELq0C3x9G2y5qitvXf6mD2TPEemrHyv+JgikuvVzlprr2wkDK26bGGs+53XbK65bu920sbRLrPw5wkLNlK8frTHT4Lo/t33HTPvdzMl1f83LNTS81CwQcbJDc4afauaG+90r0pSHTDKcTinmgH9+oTmRZk03c7e7/eUq6dyHpIl/MJHbLm1NBPDj9SYZTVyUdN+lJsAx9c9mipXeqWZI0aJvTG6CHh1N43b39tIfXjcVbUKM+TH71Q/mefyHnSXFmobx/Rmm1+XCjWbe++vGexo+zxkkPf2xdNNTplI7nmOmVnA3bHjvs3eqCWTM/9IM2YoIM72zAw17++M06cK/Shf8RbpliqkoXlxoGlqfv8UTwKlsyFywQ+lS4queLqkmbv+PSco8qKsZ7paRY17ru1+aYXfeQ+Bu/bf5wvLuPXn12Saaft2/zOtvHS+98LkJLs2/z8LpFnRyUzMFeq8fuqL67Wty7JjCVl5G73OzSzvToPP2SunUjmY4XrtEM63XiFPNc6TES6llc4O/tsTT86CmQzHvfMFMnXXeUKlXJ3NcbjsgPfOxudC6/TzP4/t0NufbS5+bOcftdtNroi7OoWDP7U/Wm2NsyhDzeJdMA2JWvjSmXzXDTpPMX12492Xzvl91tin/uu2edRFhvtOgnP8X8zl5j0j69c+keSukaY9I911i5rD8v/dNQ+pvL7bmXLHXwbkCSJXXL0mxphPCH+eaH1mXn2m+4y/9h3Tp36QrzjL1WGau9MMBadMuk6Mm0D4TYoKv79w5lV75wlxPRIZLaa19e5q5tx3bXxrXX3porpRbYIZeb90r/e1/5rydNir4etu9fPwD5odAn1SpVYypQ99aIZ3e3eSqkiqWw2v3lS73r8837jLf0+efYaYAePhNE+C/cWLV53SraNMZoC707my+6//+PynUbq4XFm+SXv7CjCD07mzyj3fMn3evwYmnmbr67pdMZ5Eubc38wos2Sc/9yoyuswL1HwAACOSMHtJj15lrk7G/N21FvTqZAMSm3SbI0KuzdO5gaVgPc41690vSby4yHfHmrTTXkpLvdYbNZoIaT38s5ReZa6avt5ke/eMH+CZ7dm/fEO0BXdtJ/7lFunG2NOq35vUPOMWU/Vi29MUms118lFc7yGlmVoAeHc3178ad0pMfeTqeVlWG8mtf+ZYr6Kmk6vA3/QV/MZ2m+3Q27WDf7pX+9aF5/vsv9S3H3qPShp3m/7uPmNsPvja3qa19R5NIJpjw/b6y6aMDXN9GhUvXT5CeWiD96hnTQSfEbjomvr3KXG97X1cPusPcrn/cs+x3l0jjHpCufNS02xSVmA5DyXHSrVPq/prXbpMYFoEyNQhEqG6iWDdNMhXp7I+kB+aY6VMSY6Rhp0qfPGgSKHrrny4teliaNU/60xvmx2ebBGl0H08ktWNy2TZvm0S5x8umTRjW09OYEBoivXGPGXVx1wum8e6i4dIj10qX/cO8QO/X1zbBrHtgjvTtT6aMd11gTtjy3pF9zdzuT3xg5tVrn2iGR6XEl0155LXP311ihk/d/rzpvdw5Rdr8pOQ95t+97Zm9pfd/b17Pzc9KTpfUN02ae7eJpvt8KIE+mwD7tNrpPUzUdu4y07AbEyn1TTWNA5eP8t3W4SyLunuVLzJcev9+05j8m5elgiLTW/3t35j3wwo2ecpQ6/epss8g8Ga1OnaC2n/ZuphIs9+//0+6aJZJVPSbi83x9/yt0m9fNvMyOpzmwund+8qOf+/9B3n83DTJBAZeWSwdOGEuklLizLHw7K9MQ5rbLyeb6Tf+/JYZFupySZlz6+YcCvbc7tbeXPz960MzmiMs1AQwnp5peiHXF/dIjdeWmD9v5fVCGfe54v05tG4lffyg9PvXpF89K5U6zXv9wQNSz0qGX54sW9mFAz2CcdKqqDNvmiT9Z6H0yDvSpSOl0X2lRX+WHpsv3feKmcc0Kc4kmb9wWNV1VrD1XXpb0wHi2U+kqQ+bbZ+aKf3cq07w7n015y4TeJiz1JQrOa5sePk03+nlKnuN/vsc3cd0rHj6YzMCon2iGU139wWV93Sr8F4GWO7/3sz+hfTGCun62Wb+3FG9pb9d4zvcvz48dp0ZOfHvz0wesNTW0t+m+/b2k8x1j8NpAsber+/VO83UVbPeNtMVdO9gchFdPMK6MlP/AQCAyswYZ2a0eHqB+U17JNM0HndtL10yUvrFOeb6ITleeute8xvupqfNqNdzB0sv/lo66z5V+O0dFmJyp/3mZXPNGRkuXTPGzJpR2WgAqX7bAyTTyW/V38217OvLTEcSp8t0RB3cVXrtTrONez9/u8b8Dn/8PTOieEC69Ood0sNvBVEGr2vfhm7/6p0qvbvatGsWFJuOtKP6SPdeZNodvK34zrTreZvxhLm9YrT0zC991722xLyO6WMqfz1//rn5TfTSInM8uZzmd80j10oz/KZsKi1LCO69rGcn6cMHTCewGU+YTkKj+kgP31X1lOq15e4EDEiyuVwuV7VbzVtpbi8daXFxGolzHzI9+r96tKFLAitt2WOm/br3ouqTbAIt2aETJqnYdeMDT8cFoHGas0T65bPSkr+YTiCoOeo/AABQn2Y+Lb33lXTw5YYuCVA3uJ6GF3v1mwAAAAAAAAAAANQOgQgAAAAAAAAAAGCZ4HNEtCQL/tjQJQAAADg5Pz/b/AEAAKBpePZX5g8AmiFGRAAAAAAAAAAAAMsQiAAAAAAAAAAAAJYhEAEAAAAAAAAAACxDIAIAAAAAAAAAAFiGQAQAAAAAAAAAALAMgQgAAAAAAAAAAGCZ0KC2stssLgbQAGw2KYRYHAAAAAAAAABYyeZyuVwNXQgAQCNWUipl5EjJcVJYcPFrAGgWqP8AAACA2uN6Gl4IRAAAAAAAAAAAAMswLw0AAAAAAAAAALAMgQgAAAAAAAAAAGAZAhEAAAAAAAAAAMAyBCIAAAAAAAAAAIBlCEQAAAAAAAAAAADLEIgAAAAAAAAAAACWIRABAAAAAAAAAAAsQyACAAAAAAAAAABYhkAEAAAAAAAAAACwDIEIAAAAAAAAAABgGQIRAAAAAAAAAADAMgQiAAAAAAAAAACAZQhEAAAAAAAAAAAAyxCIAAAAAAAAAAAAliEQAQAAAAAAAAAALEMgAgAAAAAAAAAAWIZABAAAAAAAAAAAsAyBCAAAAAAAAAAAYBkCEQAAAAAAAAAAwDIEIgAAAAAAAAAAgGUIRAAAAAAAAAAAAMsQiAAAAAAAAAAAAJYhEAEAAAAAAAAAACxDIAIAAAAAAAAAAFiGQAQAAAAAAAAAALAMgQgAAAAAAAAAAGAZAhEAAAAAAAAAAMAyBCIAAAAAAAAAAIBlCEQAAAAAAAAAAADLEIgAAAAAAAAAAACWIRABAAAAAAAAAAAsQyACAAAAAAAAAABYhkAEAAAAAAAAAACwDIEIAAAAAAAAAABgGQIRAAAAAAAAAADAMgQiAAAAAAAAAACAZQhEAAAAAAAAAAAAyxCIAAAAAAAAAAAAliEQAQAAAAAAAAAALEMgAgAAAAAAAAAAWIZABAAAAAAAAAAAsAyBCAAAAAAAAAAAYBkCEQAAAAAAAAAAwDIEIgAAAAAAAAAAgGUIRAAAAAAAAAAAAMsQiAAAAAAAAAAAAJYhEAEAAAAAAAAAACxDIAIAAAAAAAAAAFiGQAQAAAAAAAAAALAMgQgAAAAAAAAAAGAZAhEAAAAAAAAAAMAyBCIAAAAAAAAAAIBlCEQAAAAAAAAAAADLEIgAAAAAAAAAAACWIRABAAAAAAAAAAAsQyACAAAAAAAAAABYhkAEAAAAAAAAAACwDIEIAAAAAAAAAABgGQIRAAAAAAAAAADAMgQiAAAAAAAAAACAZQhEAAAAAAAAAAAAyxCIAAAAAAAAAAAAliEQAQAAAAAAAAAALEMgAgAAAAAAAAAAWIZABAAAAAAAAAAAsAyBCAAAAAAAAAAAYBkCEQAAAAAAAAAAwDIEIgAAAAAAAAAAgGUIRAAAAAAAAAAAAMsQiAAAAAAAAAAAAJYhEAEAAAAAAAAAACxDIAIAAAAAAAAAAFiGQAQAAAAAAAAAALAMgQgAAAAAAAAAAGAZAhEAAAAAAAAAAMAyBCIAAAAAAAAAAIBlCEQAAAAAAAAAAADLEIgAAAAAAAAAAACWIRABAAAAAAAAAAAsQyACAAAAAAAAAABYhkAEAAAAAAAAAACwDIEIAAAAAAAAAABgGQIRAAAAAAAAAADAMgQiAAAAAAAAAACAZQhEAAAAAAAAAAAAyxCIAAAAAAAAAAAAliEQAQAAAAAAAAAALEMgAgAAAAAAAAAAWIZABAAAAAAAAAAAsAyBCAAAAAAAAAAAYBkCEQAAAAAAAAAAwDIEIgAAAAAAAAAAgGUIRAAAAAAAAAAAAMsQiAAAAAAAAAAAAJYhEAEAAAAAAAAAACxDIAIAAAAAAAAAAFiGQAQAAAAAAAAAALAMgQgAAAAAAAAAAGAZAhEAAAAAAAAAAMAyBCIAAAAAAAAAAIBlCEQAAAAAAAAAAADLEIgAAAAAAAAAAACWIRABAAAAAAAAAAAsQyACAAAAAAAAAABYhkAEAAAAAAAAAACwDIEIAAAAAAAAAABgGQIRAAAAAAAAAADAMgQiAAAAAAAAAACAZQhEAAAAAAAAAAAAyxCIAAAAAAAAAAAAliEQAQAAAAAAAAAALEMgAgAAAAAAAAAAWIZABAAAAAAAAAAAsAyBCAAAAAAAAAAAYBkCEQAAAAAAAAAAwDIEIgAAAAAAAAAAgGUIRAAAAAAAAAAAAMsQiAAAAAAAAAAAAJYhEAEAAAAAAAAAACxDIAIAAAAAAAAAAFiGQAQAAAAAAAAAALDM/wPxZ+CQIxkstAAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Visualize the SHAP values for Record number 60 with Model Prediction: 0.997665286064148\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABosAAAFqCAYAAADCw2MvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8hklEQVR4nO3dd5wU9f3H8ffu9QrcHb136SiIgqIo9oIaGxqx56dJjLElscSoicZoLEnssRs7qNgLiiACKiCIIopSpfcrXN/d3x+fndvZvd0ryBVuX8/HA+52d2Z2dmdn9ub7ns/36wkEAgEBAAAAAAAAAAAgLnmbegUAAAAAAAAAAADQdAiLAAAAAAAAAAAA4hhhEQAAAAAAAAAAQBwjLAIAAAAAAAAAAIhjhEUAAAAAAAAAAABxjLAIAAAAAAAAAAAgjhEWAQAAAAAAAAAAxDHCIgAAAAAAAAAAgDhGWAQAAAAAAAAAABDHCIsAAAAAAAAAAADiGGERAAAAAAAAAABAHCMsAgAAAAAAAAAAiGOERQAAAAAAAAAAAHGMsAgAAAAAAAAAACCOERYBAAAAAAAAAADU5J350raCpl6LBkNYBAAAAAAAAAAAEMv2Iun/HpBOvLXFBkaERQAAAAAAAAAAoG6emyFlT5RmLal92sGXScfd0jjP1YDmFiVp4onnq/LHjcHAqLBJ16chJDb1CgAAAAAAAAAAADSZO1+VKn0xH+6S79MBa4q1bXBvtZ+/VJpwq/TWjVKbzEZcyYZFWAQAAAAAAAAAAPa8BfdKHk9Tr0Xt/vmaVFYR8+Gukq503/HNGmnNFsIiAAAAAAAAAACAGqUkNfUa1M2W/9nPolIpM7Xaw3PXlGnSs5s089Pn1Xn2V9K/L5aG9Wzkldw9xeV+pSfXPiIRYREAAAAAAAAAAKgff0C693XpyY+k9dulrnnSNadIvzw0NM3gy6RubaV3bgqf9+np0v1vSys3Se1b2zyj95FOuk166FLpl+Pq/1yOj7+W/vWG9OVyqbRC6tNRuvhI6aIjw6dz1u32c6WbXpDm/2CVQl/fV22RnopKPfjK0+r047cWFJ0/XiUVft0/t0hvfVei9QU+ZSZ7NaZ7sq4em61eOaHo5ZBHNqljVoJeOjuv6r6HPy/U7TMKdWjPFD1zRm7V/f+eXah7Pi3UrEvaqVtrW0ZZZUCPzivS1CUlWrOzUimJHu3fJVlXjc3W4PahMG7umjJNfGGb7jqutYorAnrmy11as7NSvzkwU1cenB19G7oQFgEAAAAAAAAAgPq5+QXruu3CI6SkROmJD6VfPyT17iAd2D/2fPe9Jd3wrDSom3TjmZLPLz0/U3p/4c9/ric/lK54XNq/j4VJGSkWHl35uAVTt54Tvty126QTb5VOOVA6aZS0qyzq03sqKtWmpFgL/niuRp4/XpX+gM6bvF2f/1Suo/ul6sKRmVqXX6lnFhbrk5Vb9Oo5eeqbZ0HOmO4peuWbYpVU+JWWZBU+c1aXy+uRvlhbrnJfQMkJnuD9ZeqSnVAVFFX4Ajp38jZ9ua5cpwxK13kjMlRY5teLXxXr1Ge3avLZuRraMTlsXZ+YX6SdJQFNHJauthledcxKiP2+uhAWAQAAAAAAAACA+qnwSTP+LiUHY4ZTDpSGXi498n7ssGhHkXTry1K/TtJHf5PSU+z+i4+Uxvzx5z3Xxh3SH5+WfjFaevLy0LwXHyX98SmrZLrwCKlXh9BjqzZLD14qnTOuxpfqT0/VxEm/1Z0n5GikpMlfF+vzn8p10cgM/WV8q6rpjuybqtOe26ZbPirQs2daxdCYbil64atizVtbrkN6pqrCF9C8teU6eWCaXl1SooXry3VA1xSVVgS0cH25ThqYXrW8pxbs0mdryvX06Tka1yvUPd6kfTN01ONbdNvHBWEVS5K0vsCnj3/VTjnpdQuJHLV3VAcAAAAAAAAAAOB28ZGh8EaSOuVYl28rNsaeZ/piqaTcAhwnKJKk7PTq3cTV97mmfm7VR+ccKm0rCP937Ajrym7mN+HLzcmSzj6k6mZpRUCvf1scdRX83lCc8v6yUnkk/W5MVtg0+3dJ0ZjuyZq9ukyFZX5J0pjuVvkze3W5JGnRhnIVVwR04cgM5aZ7NXuVVTPNX1euMl9oekma+m2JerZJ0NAOSdpe7Kv6V+EL6OAeKZq3tlylFYGwdTh1cHq9gyKJyiIAAAAAAAAAAFBfPdpVvy8nU/ppa+x5Vm+xn307Vn+sX+ef91zfr7Ofp9weezmb86svNxgClVYEdMEr2/T5mnINaJekfnlJURZg1uz0KS/DqzZp1etx9slL0pzV5Vqb79OAdl7lZSSoX16i5qy2UGjO6nK1TvVoUPskje6WrDlrynWVVPX4mO6hEO3HbZUqrQxo3/s2xVyX7SV+dUoKhUM92uxe7ENYBAAAAAAAAAAA6ichRsdlgUD0+3/OY3V6ruDvD10qdcqNPn1k6JRuVTylFQFdGAyK7j6+dY1BUW2ivYox3VP0zJe7lF/q15zVZRrdLUVej0djuqfopmn52lVu9/fJTVT7zATXsgLqm5uom49oFWWpJic9/L1JS/Ls1noTFgEAAAAAAAAAgIbnhDXL1kvjh4U/9sP6n7fs3sFqpZws6bAhdZ6t3BfQRa9s0+zV5RraIUmrdlTq3k8Lwqb5Kd8nSXp/WYnW5lfK5w9oyy6/dpT4q1UXLdtaIa9H6tIqFPqM6Zaspxbs0scrSrVwfbluDI5zdFD3FFX4penLy7R4Y4V+uW962LJ6tUnU5l1+jemeLK9n90KguiIsAgAAAAAAAAAADe+woVJqkvTYNOm8w0PjFhWWSI9P+3nLPuVA6ZYXpdunSIcODh8TSZLyi+25U8KrhgpK/fpirY0ntHhjhRZvrIj5FNN+LNO0H8uqbj8wt1B/PjxU9bNgXbnmrC7X2B4pykoJhUgHdkuR1yPdP6dIZT4LiSTrMq5zdoL+PbtQvkDo/qqXNChdf59RoEc+L9KvDwwfH0mStuzyqW1G/ccnioawCAAAAAAAAAAANLycTOmGM6Qbn5PG3yidNVby+aXnZkq52dKarZJ2s4Kmc65070XSZY9I+18tTRwrdWsrbS2QlqyR3p4vfXGX1D28K7q8jAQ9fEqOLn1tuwa1S9IzZ+YqOyW8WmjumjJNfGGb7jqutU4fkq5Kf0Bnv7hNj87bpbX5Po3pnqJ1BT498+UuZaV49Jfx2WHzt0r1alD7JH29sUIds7zqlROKZkZ3S9aUb0rk9Uiju4WHRReOzNCnq8r0j5mFmrumXAd1T1FWikfrCnyavbpMKYkevXRW3u69XxEIiwAAAAAAAAAAQOP4/YlSdpp0/zvSX1+S2reWzj1MGthV+uU9Ulry7i/7nHFSn47Sf96SnvxIyt9lIVTfjtKfz7DnimJ879SqwOicl7bpf2fkqlVqjHGSJCV6PXr69BzdN7dIby0t0Yc/liozxavDe6foqoOz1Tu3evRyUPcUfb2xQmMiqocO6p6iKd+UaGC7pGrPmZTg0ZOn5+h/X+7Sq0tKdO/sQklS+0yvhnVM1mmD0+r3/tTAEwjUNGoUAAAAAAAAAABAA/vPm9Kfn5M+/Js0qm+TrMJHy0t158wCPXNGrtpn7pnu3fYWhEUAAAAAAAAAAKBxlJZLqRHVQwXF0pg/SrvKpO8fkpKbrlM0nz+gBO9udoW3F6MbOgAAAAAAAAAA0DhmfWtjFp10gNQpR1q7TXpuhv38z6+aNCiSFJdBkURYBAAAAAAAAAAAGkuvDvbvqY+kbYUWDg3pLt1xnnTiqKZeu7hFN3QAAAAAAAAAAABxzNvUKwAAAAAAAAAAAICmQ1gEAAAAAAAAAAAQxwiLAAAAAAAAAAAA4hhhEQAAAAAAAAAAQBwjLAIAAAAAAAAAAIhjhEUAAAAAAAAAAABxjLAIAAAAAAAAAAAgjhEWAQAAAAAAAAAAxDHCIgAAAAAAAAAAgDhGWAQAAAAAAAAAABDHCIsAAECLMGPGDN18880qLi5u6lVpMjt37tTNN9+sRYsWNfWqAAAAAADQrHzzzTd64IEHdOutt+rmm2/Wxo0bJUmvv/66nn322Xovb8WKFfr73/+ugoKCPb2qTYKwCAAAAAAAAAAAtFi7du3Sa6+9ppycHJ1zzjm6+OKLlZubqw0bNmjRokU6/PDD673MXr16qXPnzvroo48aYI0bH2ERAAAAAAAAAABosbZt2yafz6ehQ4eqR48e6tKli5KSkvTpp5+qc+fO6tSp024td//999fXX3+t/Pz8PbzGjS+xqVcAAABgT8rPz9ebb76pFStWSJL69++vo48+WhkZGVXTfPPNN1q4cKE2bdqk0tJStW7dWvvss48OOeQQJScnV023Y8cOffTRR1q9erWKi4uVmpqqdu3a6eijj1aHDh3ClvfZZ59p06ZN8ng86tq1q4444gh17Ngx5npu3LhRDz/8sCZMmKD99tsv7LEffvhBzz33nM466yz1799f27dv1yeffKI1a9aosLBQqamp6tixo8aPH6/27dvX+H5MnTpVq1at0hVXXBF2/4wZM6q67nMEAgHNnz9fCxYs0NatW5WYmKhevXrpyCOPVJs2bWp8HgAAAAAAmqOpU6dWddc+efJkTZ48WT169NBpp52m7777Tsccc0zY9G+99ZYWLVqkCy+8sCpECgQCeuaZZ7R582ZdeumlysrKkmRtDsnJyfryyy912GGHNerr2tMIiwAAQIvy0ksvadCgQRo5cqQ2b96sjz/+WFu2bNHFF1+shIQESdL27dvVt29fHXjggUpKStLWrVs1e/ZsrVu3Tuedd17Vsp577jn5/X4deeSRatWqlYqLi/XTTz+ptLS0appZs2Zp+vTpGj58uA455BD5fD7NmTNHTz75pH71q1+pbdu2UdezQ4cO6tixoxYtWlQtLFq0aJEyMjLUt29fSVJhYaHS09N1xBFHKCMjQyUlJVq0aJEee+wxXXLJJcrLy9sj753zB/EBBxygI444QiUlJZo5c6Yef/xxXXrppcrMzNwjzwMAAAAAQGM55JBD1LlzZ7399tsaP368evbsqZSUFC1fvlw+n089evQIm/6YY47R2rVrNXnyZF1yySVKTU3VjBkztGrVKp1zzjlVQZEkJSQkqGvXrlq2bNleHxbRDR0AAGhRBgwYoCOPPFK9e/fW6NGjdeKJJ2rDhg1asmRJ1TSHHHKIDjzwQPXt21fdu3fXfvvtp5NPPlkrV67Upk2bJEnFxcXaunWrRo0apaFDh6p79+4aMGCAjjrqqKo/JPPz8/Xxxx9r1KhROumkk9SvXz8NGDBAkyZNUnJysmbMmFHjug4fPlxr1qzRtm3bqu4rKSnR999/r2HDhsnrtT/VunfvrqOOOkoDBw5U9+7d1a9fP51++unKzs7WggUL9sj7tnbtWi1YsEBHHHGEjjrqKPXp00dDhgzRueeeq7KyMs2dO3ePPA8AAAAAAI0pJyen6kLO3NxcdenSRW3bttXatWuVlJRU7QLMxMREnXHGGSouLtbUqVO1YsUKffLJJxo7dqx69+5dbfkdO3bUxo0bVV5e3iivp6FQWQQAAFqUIUOGhN0eNGiQXnvtNa1atUpDhw6VZN3LTZ8+XStXrtSuXbsUCASqpt+yZYvat2+vtLQ05eTkaM6cOQoEAurRo4c6dOggj8dTNe3y5cvl9/s1bNgw+f3+qvsTExPVo0cPrVy5ssZ1HTp0qKZNm6ZFixZp/PjxkqxLu8rKSg0fPrxqOr/fr9mzZ2vx4sXavn27fD5f2PruCcuWLZPH49HQoUPDXktmZqbat2+vVatW7ZHnAQAAAACgOXB68XCf5ztycnI0YcIETZ48WT/++KO6d++ucePGRV1ORkaGAoGAioqKlJOT08Br3XAIiwAAQIsS2VWa1+tVenq6iouLJUnl5eV64oknlJiYqMMPP1y5ublKSkpSfn6+XnrpJVVWVkqSPB6Pzj33XM2cOVOzZ8/W+++/r7S0NA0dOlSHH364UlJSVFRUJEn673//G3Vdov3B6ZaWlqb+/fvrq6++0mGHHSav16tFixapc+fOateuXdV077//vr744gsdfPDB6t69u9LS0uTxePTGG29Ure/PVVRUpEAgoH/+859RH2fMIgAAAABAS1JRUaHExNgRSd++fZWZmamioiKNHj26qvePSM4y9tT5eVMhLAIAAC1KUVGRsrOzq277/X4VFxcrPT1dkrRy5UoVFhbq/PPPD+uX2D0OkaN169Y66aSTJEnbtm3TkiVLNGPGDPl8Pp1wwglVyzzjjDPUunXr3Vrf4cOHa8mSJVqxYoVatWqldevW6YQTTgibZvHixRo2bFhV9ZGjuLhYqampNS4/MTEx6h+sTnjmcK6muuCCC6L+seyM9wQAAAAAQEuQnp6uDRs2xHz8rbfeUllZmdq1a6d3331X3bp1U1paWrXpSkpKqpa3N2PMIgAA0KJ8/fXXYbeXLFkiv99fbcDKyEBk/vz5NS43NzdXhxxyiNq1a1f1x2SfPn3k9Xq1Y8cOderUKeq/2vTu3VvZ2dlauHChFi5cqMTERA0ePLjadJHru2zZMhUUFNS6/NatW2vXrl1VVVCS5PP59OOPP4ZN169fPwUCARUWFkZ9He3bt6/1uQAAAAAA2Fvk5eWppKQk6sWjX375pRYvXqzjjjtOZ511lkpLS/X6669HXc6OHTuUnp6ujIyMhl7lBkVlEQAAaFGWLl0qr9erXr16acuWLZo+fbo6dOigQYMGSZK6du2qtLQ0vfXWWzr00EOVkJCgxYsXa9OmTWHL2bRpk9555x0NHDhQubm5SkhI0MqVK7Vp0yYdfPDBkiyIOeyww/TRRx9px44d6tOnj1JTU7Vr1y6tW7dOSUlJOuyww2pcX6/Xq2HDhmnu3LlKSUnRgAEDqlUL9evXT4sWLVJeXp7at2+v9evXa86cOWEVVLEMGjRIH3/8saZMmaKDDjpIlZWV+vzzz8PGaZKkbt26acSIEZo6darWr1+v7t27KykpSUVFRVqzZo3atWun/fffv9bnAwAAAABgb9CjRw8FAgGtW7dOvXv3rrp/06ZNevfddzV8+HDtu+++kqQJEybo5Zdf1meffaYDDzwwbDlr165V9+7da+2KvrkjLAIAAC3KmWeeqRkzZmjevHnyeDzq37+/jjnmmKpu1NLT03X22Wfrgw8+0Kuvvqrk5GT1799fp512mh555JGq5WRmZqpNmzaaN29eVQVPmzZtdPTRR2vUqFFV040dO1Zt27bV559/rq+//lo+n0+ZmZnq1KmTRo4cWad1Hj58uGbNmqXKysqqP0Tdjj32WCUkJGjWrFkqLy9Xx44ddeaZZ2r69Om1LrtNmzaaOHGiPvroI7388svKzMzU6NGjVVxcrBkzZoRNe+KJJ6pLly5asGCB5s2bp0AgoKysLHXt2lWdO3eu02sBAAAAAGBv0K1bN7Vu3VrfffddVVhUXl6uyZMnq3Xr1jr++OOrph04cKBGjRqladOmhZ0jb9++XZs2bdK4ceOa4iXsUZ5A5GWlAAAAAAAAAAAALdycOXM0a9YsXXXVVUpKSqr3/NOnT9dXX32l3//+9/J69+5Rf/butQcAAAAAAAAAANgNo0aNUkpKiubNm1fveUtLSzVv3jyNHz9+rw+KJMIiAAAAAAAAAAAQhxITE/WLX/yiquv6+tixY4cOPvhgDRkypAHWrPHRDR0AAAAAAAAAAEAco7IIAAAAAAAAAAAgjhEWAQAAAAAAAAAAxDHCIgAAAAAAAAAAgDhGWAQAAAAAAAAAABDHCIsAAAAAAAAAAADiGGERAAAAAAAAAABAHCMsAgAAAAAAAAAAiGOERQAAAAAAAAAAAHGMsAgAAAAAAAAAACCOERYBAAAAAAAAAADEMcIiAAAAAAAAAACwV5o8ebIuvfRSjRw5UikpKfJ4PFX/dtf8+fM1ceJEderUSSkpKWrfvr0mTJigDz/8MOY8paWluvPOOzVixAhlZ2crIyNDgwcP1p///Gfl5+fv9ro0Fk8gEAg09UoAAAAAAAAAAADU1/Dhw/XVV19FfWx34o/HHntMl1xyifx+f9TH//KXv+iWW24Ju2/btm068sgjtXDhwqjz9OjRQ9OnT1fPnj3rvT6NhbAIAAAAAAAAAADslfbdd18VFhZq5MiR2rhxo2bOnFn1WH3jj0WLFmn//fdXZWWlJOnAAw/UCSecoNmzZ+vdd9+tmu6tt97S8ccfX3X7tNNO0yuvvCJJSktL0yWXXKLU1FQ9+uij2rZtmyTpgAMO0Jw5c+T1Ns8O3wiLAAAAAAAAAADAXqmkpERpaWmSpJtvvjms6qe+8ceZZ56pl19+WZLUs2dPfffdd0pOTpYkHXzwwZo9e7YkC34+++wzSdLSpUs1cODAqmX897//1a9+9StJ0rRp03TUUUdVPfbuu+/qmGOOqe9LbBTNM8ICAAAAAAAAAACohRMU/Vw+n09vv/121e0TTjihKiiSpF/84hdVv3/++efavHmzJOmNN94IW86pp55a9fsRRxyh7OzsqtuR0zYnhEUAAAAAAAAAACCurVixQrt27aq63atXr7DHI28vXrw47KcktWrVSjk5OVW3PR5P2DhF7mmbG8IiAAAAAAAAAAAQ15yxhRzuiiBJysrKCru9devWavNFzhM5nzNPc0RYBAAAAAAAAAAA4lrk+Ea13fZ4PNXujzZGkvs+Z57miLAIAAAAAAAAAADEtdzc3LDbhYWFYbcLCgrCbjvdzbnni5wncj53F3XNDWERAAAAAAAAAACIa71791ZGRkbV7eXLl4c9Hnl76NChYT8lKT8/P6xbOr/fr5UrV1abpzkiLAIAAAAAAAAAAHHh5ptvlsfjkcfjUY8eParuT0hI0LHHHlt1+80331RZWZkk60puypQpVY+NGjVK7du3lyRNmDAhbPnu6d59910VFRVV3Y6ctjlJbOoVAAAAAAAAAAAA2B0PPfRQVdXPnDlzwh675pprqn6/4YYb1KZNmxqXdd111+m1116Tz+fT6tWrNW7cOJ1wwgmaNWuWvvjii7BlOQYOHKiTTz5ZU6dOlSRdeeWV+v7775WamqqHH364arqRI0fq6KOP3u3X2dA8gWgjLgEAAKDB7Nq1S4FAQB6PJ6zEHQAAAAAA1M+4ceM0c+bMWqdbuXKlevTooZtvvlm33HKLJKl79+5atWpV2HSPPPKIfv3rXytWdHL99dfrtttuC7tv69atGj9+vBYvXhx1nm7dumn69Onq3bt3HV5R06AbOgAAgEYWCASq/gEAAAAAgObjkksu0WeffabTTz9dHTp0UFJSkvLy8nT88cfr/fffrxYUSVJeXp4+++wz3X777dp3332VkZGhtLQ0DRw4UNddd50WLVrUrIMiicoiAACARldUVFRVWZSZmdnUqwMAAAAAAOIclUUAAAAAAAAAAABxjLAIAAAAAAAAAAAgjhEWAQAAAAAAAAAAxDHCIgAAAAAAAAAAgDhGWAQAAAAAAAAAABDHCIsAAAAAAAAAAADiGGERAAAAAAAAAABAHCMsAgAAAAAAAAAAiGOERQAAAAAAAAAAAHEssalXAAAAAAAAAAAAoLkoLi5WIBCQx+NRenp6U69OoyAsAgAAAAAAAAAACPL7/VVhUbygGzoAAAAAAAAAAIA4RlgERLFjxw5NmjRJrVq1UqtWrTRp0iTt3LmzzvNfcskl8ng8+te//tVg6wg0tfruJxUVFfrTn/6kIUOGKCMjQ506ddK5556r9evXN95KAw3swQcfVM+ePZWamqoRI0Zo1qxZNU5fVlamESNGKDU1Vb169dLDDz/cSGsKNJ367CevvvqqjjzySLVt21bZ2dkaPXq03n///UZcW6Dp1Pc7xTF79mwlJiZq+PDhDbuCQDOwO3973XDDDerevbtSUlLUu3dvPfHEE420tkDTqO9+8txzz2nYsGFKT09Xx44ddcEFF2jbtm2NtLZA4/vkk0904oknqlOnTvJ4PJo6dWqt88ycObNFnssTFgFRnH322Vq0aJHee+89vffee1q0aJEmTZpUp3mnTp2qzz//XJ06dWrgtQSaVn33k+LiYn355Ze68cYb9eWXX+rVV1/VsmXLNGHChEZca6DhvPTSS7riiit0ww03aOHChRo7dqyOPfZYrVmzJuY8W7du1dixY7Vw4UJdf/31uvzyy/XKK6804loDjau++8knn3yiI488Uu+8844WLFigww47TCeeeKIWLlzYyGsONK7d+U6RpPz8fJ177rkaP358I60p0HR2Zz8544wz9NFHH+nxxx/X999/rxdeeEH77LNPI6410Ljqu598+umnOvfcc3XRRRdpyZIlmjx5subNm6eLL764kdccaDy7du3SsGHDdP/999dp+pUrV+q4445rkefynkAgEGjqlQCak6VLl2rgwIH67LPPdMABB0iSPvvsM40ePVrfffed+vfvH3PedevW6YADDtD777+v448/XldccYWuuOKKRlpzoPH8nP3Ebd68eRo1apRWr16tbt26NeQqAw3ugAMO0H777aeHHnqo6r4BAwbo5JNP1u233x42bVFRkQKBgDZt2qQ+ffpU3X/ppZfqq6++0ty5cxttvYHGVJ/9JJZBgwbpzDPP1F/+8peGWk2gye3uvjJx4kT17dtXCQkJmjp1qhYtWtQIaws0jfruJ++9954mTpyoFStWKCcnpzFXFWgy9d1P7rrrLj300ENavnx51X333Xef7rzzTv3000+Nss5AU/J4PHrttdd08sknV523ezweZWZmVk3zpz/9SW+88YaWLl1adV9LOZensgiIMHfuXLVq1aqqAVySDjzwQLVq1Upz5syJOZ/f79ekSZP0hz/8QYMGDWqMVQWazO7uJ5Hy8/Pl8XjUunXrBlhLoPGUl5drwYIFOuqoo8LuP+qoo2rcJ1JTU8NuH3300Zo/f74qKioaZD2BprS7+4mb3+9XYWEhjXxo0XZ3X3nyySe1fPly3XTTTQ29ikCT25395I033tDIkSN15513qnPnzurXr5+uueYalZSUNMYqA41ud/aTMWPGaO3atXrnnXeqLm6bMmWKjj/++MZYZWCvMHfu3Gr7VUs5l09s6hUAmpuNGzeqXbt21e5v166dNm7cGHO+O+64Q4mJibr88ssbcvWAZmF39xO30tJSXXvttTr77LOVnZ29p1cRaFRbt26Vz+dT+/btw+5v3759jftEQkJCtekrKyu1detWdezYsUHWFWgqu7ufuN19993atWuXzjjjjIZYRaBZ2J195YcfftC1116rWbNmKTGR03y0fLuzn6xYsUKffvqpUlNT9dprr2nr1q36zW9+o+3btzNuEVqk3dlPxowZo+eee05nnnmmSktLVVlZqQkTJui+++5rjFUG9gobN26Mul+1hHN5KosQN26++WZ5PJ4a/82fP1+SlRxGcsoOo1mwYIH+/e9/66mnnoo5DbA3aMj9xK2iokITJ06U3+/Xgw8+uMdfB9BUIj//dd0n3NNHWw7QkuzufvLCCy/o5ptv1ksvvRT1ggWgpanrvuLz+XT22WfrlltuUb9+/Rpr9YBmoT7fKX6/Xx6PR88995xGjRql4447Tvfcc4+eeuopqovQotVnP/n22291+eWX6y9/+YsWLFig9957TytXrtSll17aGKsK7DWi7VfR7t/bcMkR4sZll12miRMn1jhNjx49tHjxYm3atKnaY1u2bKmWGjtmzZqlzZs3h4254vP5dPXVV+tf//qXVq1a9bPWHWgsDbmfOCoqKnTGGWdo5cqVmj59OlVFaBHy8vKUkJBQ7Qq9zZs317hP+Hy+atMnJiYqNze3QdYTaEq7u59INjjzRRddpMmTJ+uII45oyNUEmlx995XCwkLNnz9fCxcu1GWXXSbJGsUDgYASExP1wQcf6PDDD2+UdQcay+58p3Ts2FGdO3dWq1atqu4bMGCAAoGA1q5dq759+zboOgONbXf2k9tvv10HHXSQ/vCHP0iShg4dqoyMDI0dO1a33nrrXl0xAewpHTp0iLpftYRzecIixI28vDzl5eXVOt3o0aOVn5+vL774QqNGjZIkff7558rPz9eYMWOizjNp0qRqDRdHH320Jk2apAsuuODnrzzQSBpyP5FCQdEPP/ygjz/+eK//EgUcycnJGjFihKZNm6ZTTjml6v5p06bppJNOijlfWVlZ2O0PPvhAI0eOVFJSUoOtK9BUdnc/eeGFF3ThhRfqhRdeoL98xIX67ivZ2dn6+uuvw+578MEHNX36dE2ZMkU9e/Zs8HUGGtvufKccdNBBmjx5soqKiqoGKl+2bJm8Xq+6dOnSKOsNNKbd2U+Ki4urdWfqdJ3tVE4A8W706NF68803w+5rMefyAQDVHHPMMYGhQ4cG5s6dG5g7d25gyJAhgRNOOCFsmv79+wdeffXVmMvo3r174N57723gNQWaTn33k4qKisCECRMCXbp0CSxatCiwYcOGqn9lZWVN8RKAPerFF18MJCUlBR5//PHAt99+G7jiiisCGRkZgVWrVgUCgUDg2muvDUyaNCkQCAQChYWFgYKCgsB3330XuPLKKwPffvtt4PHHHw8kJSUFpkyZ0pQvA2hQ9dlPAoFA4Pnnnw8kJiYGHnjggbDvjZ07dzbVSwAaRX33lUg33XRTYNiwYY20tkDTqO9+UlhYGOjSpUvgtNNOCyxZsiQwc+bMQN++fQMXX3xxU70EoMHVdz958sknA4mJiYEHH3wwsHz58sCnn34aGDlyZGDUqFFN9RKABldYWBhYuHBhYOHChQFJgXvuuSewcOHCwM6dOwMFBQWBtWvXhu0nK1asCKSnp7fIc3kqi4AonnvuOV1++eU66qijJEkTJkzQ/fffHzbN999/r/z8/KZYPaBZqO9+snbtWr3xxhuSpOHDh4dN9/HHH2vcuHENvs5AQzrzzDO1bds2/fWvf9WGDRs0ePBgvfPOO+revbskacOGDVqzZk3YPHl5eZoxY4YeeOABderUSf/5z3906qmnNsXqA42ivvvJI488osrKSv32t7/Vb3/726r7zzvvPD311FONvfpAo9md7xQg3tR3P8nMzNS0adP0u9/9TiNHjlRubq7OOOMM3XrrrU31EoAGV9/95Pzzz1dhYaHuv/9+XX311WrdurUOP/xw3XHHHU31EoAGN3/+fB122GFVt6+66ipJ0urVq9WmTRv5fL6w/aRnz5565513dOWVV7a4c3lPIEANIQAAQGMqKiqqGljW6QYFAAAAAAA0D/F43u5t6hUAAAAAAAAAAABA0yEsAgAAAAAAAAAAiGOERQAAAAAAAAAAAHGMsAgAAAAAAAAAACCOERYBAAAAAAAAAADEMcIiAAAAAAAAAACAOEZYBNSirKxMN998s8rKypp6VYBmi/0EqBtnXwkEAk29KkCzxXcKUDv2E6B27CdA7dhPgNoFAoG42U88AVorgBoVFBSoVatWys/PV3Z2dlOvDtAssZ8AdePeVzwejzwejzIzM5t6tYBmhe8UoHbsJ0Dt2E+A2rGfALEVFRUpEAgoEAjEzX5CZREAAAAAAAAAAEAcIywCAAAAAAAAAACIY4lNvQLNVSAQUGFhYVOvBpqBgoKCsJ8AqmM/AerGva843dD5/f4mXiugeeE7Bagd+wlQO/YToHbsJ0Bs7m7opOr7SVZWljweT1OsWoNhzKIYnD47AQAAAAAAAAAAHC1xDCPCohioLAIAAA3FuULJ4/EoMzOzqVcHAAAAAAC41Hbe3hIri+iGLgaPx9PikkEAANA8eL1ewiIAAAAAAJqpeDxv9zb1CgAAAAAAAAAAAKDpEBYBAAAAAAAAAADEMcIiAAAAAAAAAACAOEZYBAAAAAAAAAAAEMcIiwAAAAAAAAAAAOJYYlOvAAAAQLzxeDxhPwEAAAAAAJoSYREAAEAjy8jIaOpVAAAAAAAAqEI3dAAAAAAAAAAAAHGMsAgAAAAAAAAAACCOERYBAAAAAAAAAADEMcIiAAAAAAAAAACAOEZYBAAAAAAAAAAAEMcIiwAAAAAAAAAAAOIYYREAAAAAAAAAAEAcS2zqFQAAAIgrpWXSopVSpT90n0eSxyMFgrcTvaHHEyKu7QkEJ/IHJK/H5oslEJC8Xsnns2VHLgsAAAAAAITZvssn7/BOSkhOqDpNjweeQCAQT68XAACg6cz7QSqrqHmaSp+UmGC/F5VKE/9pwZAk/f5E6YhhodDnxVnSMx9HX07/ztKNZ0o5mXa7rEI6859SeeXPfx0AAAAAALRgBYvvlSc3U5V+aVtFqvrkJTX1KjU4Li8FAABoLGnJtU/jBEWSlJkqDegaul1QHF4dNLJP7OWs2ya1Sg/dTkmShvao86oCAAAAAAAp0VtDjx4tCGERAABAY+nZvv7zuAOh+T+GP9ano9QmI/p8RaXS9+vC7xvRu/7PDwAAAABAHMtNj48YJT5eJQAAQHOQkVr/edxh0bc/ScVl4Y+PqKG6aN4PsZcFAAAAAABqlZlCZREAAAD2tOTE+k3fu0No3CGfX1q4Ivzx/WsIgCIrkTrnSp1y6vf8AAAAAADEKY9H8ngIiwAAALCndd6NsMZdPRRZLTS8lxSr/+QVG6XtheH3UV0EAAAAAECdxEtQJBEWAQAANK6OuxEWuauHFiwPfywrTdqnS/T5AlGmJywCAAAAAKBOYl2b2RIRFgEAADQmr9fq2Otj315SQvDPtm2FVjHktn/f2PNGdkU3tIeUUs+u8AAAAAAAiENxlBURFgEAADS61un1mz4jVRrQNXQ7MgAa2Tv2vAtX2FhHjuREaUiP+j0/AAAAAABo0QiLAAAAGluPDvWfx919XGRY1LujlJMZfb6iUmnp2tjLAgAAAAAAcY+wCAAAoLFlpNR/Hnf10NK1FgK5jaghAJr/Q/jt/QmLAAAAAABACGERAABAU0iu57hBvTpIuVn2u89v3cu51VQtFFmJ1DFH6pxTv+cHAAAAAAAtFmERAABAU+iyG2FNTV3R7dtLSojxp92KTdK2wtjLAgAAAAAAVQKBQFOvQqMjLAIAAGgKHX5mWLQgIizKTJUGdIk9b2S4NLJv/Z8fAAAAAIA44I+/rIiwCAAAoEl4vZLHU7959u0lJQb/fNteJC3fEP54fbqiG9JdSqlnV3gAAAAAAKBFIiwCAABoKm0y6jd9eoo0oGvo9ryIAGhEDWHRwhU21pEjOVEa2rN+zw8AAAAAAFokwiIAAICm0rN9/efZ39V9XGS1UO8OUm5W9PmKy6Rvf4pYFuMWAQAAAAAAwiIAAICmk5ZS/3nc4xItWxdeLSRJ+9QwbtHSiLCopjGOAAAAAABA3CAsAgAAaCql5fWfZ9n60O+9OkgJEX/O/bBeMfXtFHtZAAAAAAAgbhEWAQAANJVVm+s/j7vrOXeXdJK0Zou0OT/6fKlJ0uBusZcFAAAAAADiFmERAABAU9leWL/pS8ulb1aHbo+MGHOopvBnWE8pKTF0u9InLVpZv+cHAAAAAAAtEmERAABAU/D7JX+gfvN8tUqq8Nnv2enVu5WbV0NYtH9EsLRkjVSyG93gAQAAAACAFoewCAAAoClsitFdXE3clUMjekteT+h2SbkFQLHUpwoJAAAAAIA45vHUPk1LQ1gEAADQFNZtrf887oAnMvxZtNK6louma57UrnXsZQEAAAAAgCreOEyLCIsAAACaQmlF/aZfs0XatNN+93qsssht/g+x592/b/jtzfnS6i31e34AAAAAANBiERYBAAA0ttLdGCtowfLQ73072ZhFbjVVCtEFHQAAAAAAqAFhEQAAQGNbtbn+88xzVQ5Fhj+rN0tbCqLPl5YsDeoWft8CwiIAAAAAABBCWAQAANDYthfWb/qScumbNaHb+0eERfNqCH+G95SSEkK3K3w2vhEAAAAAAEAQYREAAEBj8vslf6B+83y1Uqr02e+tM6R+ncMfr6lSaEREsLRkjYVPAAAAAACgRvU8e9+rERYBAAA0pk359Z/HPcbQfr3DHysuswAolsgqJMYrAgAAAACgTgJxlBYRFgEAADSmtVvrP4874Ikcr+irlVKlP/p83dtKbVvFXhYAAAAAAIjJH0dpEWERAABAYyqrqN/0qzdLm4PVSF6PNCKisqim8Yoig6XNO6U1W+r3/AAAAAAAxKlAQArESWBEWAQAANBYSndjrKD5y0O/9+8sZaVFPF5TWNS37tMCAAAAAIBqdlUQFgEAAGBPWrGp/vPU1AXdqs3S1oLo86UlS4O6xl4WAAAAAACo1bZdMbp+b2ESm3oFAAAAWiy/XyqrlMorpbJyadlaaWexVFIuFZZIKUk2TV62VFEpdcyRikqlXaVS51yrd1+yJrS8zrnSlnybv1vbmsOfHu1CYxkVFEtpKdKilQ37egEAAAAAaGHKKuOjssgTiJcO9wAAAOrC7w+GO5VSeUXwd9fPsgoLdApLQsHOrlKpsFQqLJbyd0kFJXZfcZlrOT6pslKq8Nmy/H4pNVlK8Eqt0qWALODxeu2xcYOldq2tGml7obStUNpWIPkDUrtW0vEjbSyjotLYr8XjkTySvlgmjR8m5Rc30psIAAAAAMDeaXtahrwnD1dCWpLkDyirVXZTr1KjoLIIAADs/ZyAx/nnhDoVvtDv7tCnvFIqKbOKm8ISC3qc0Kek3Kp8Knz2s9xnVUHOvJV+C2wCwX/+gD2/ZMFMQoL9DEjyekL/UpMkT5KUlCilJlpQ1DpDysmS2mRKrTOl7DQpM9WWuTlfmv+D/QwEpFYZUt/+Uqccm97rkbrk1v7e7CiSkhPt+Tt2bsCNAAAAAADA3i9H0i6fT4EinzxpKU29Oo2GsAgAADSNQKB61U61sCdY4eN+rLTcgp6SCvvdCXmcip3K4E8n7KnwWZjjD4RCnkrnPklyhT4BWdDj8YSqcpwAKD1VapUgJSZY+JKUIHkTQtP7/RYkVfqsWijRKyUnSVlp9i8zVcp0/UxPscBHsufeViCt2y4tXm0hltcrtW8l7ddH6thGykjdvffZ47UX4fEGfwcAAAAAADXJ+GatNO9H6cIjmnpVGg1hEQAAqDt3wBMtyCmrsC7XnHF6nN9Ly4MhT/BnaTAMcqpyfH5X2BOs5oms3HGCHifkCbgqehK8Fq7IFfokeOy+tGQLdJz5fX6bz+sNzZfgtUqfjBQLcVKTLAzyB6f3+V2vt9x+OhITooRBwX/pKRYkRVNWIa3bIa3fLm3YYa89Ndkqh4b1kNq3tnX4uTyuf2RFAAAAAADULg4H7yEsAgCgpQsEQt2xRQtyqoKfCoWN0+OEO07A40zrc4IbV7WOO8iRJzzocX6XIrpv80s+V3jjBDdeT/D3YHVPojdU6WMvyP5ocwdNlX7J5wuf3+MJhUBpyRYApbp+piTZ4xXBruVKykLd0W0psNfqSEq0QCgn0yp83OFQalLsQChyOxSWWDi0frs9RyBgXcr162whUU5m3ZZVH1VVUp49v2wAAAAAANAiEBYBANAchQU8rmCnWtgTvO2EPVXVOxXBf+WhgMddpRNwhTxON2sJHvvpdQUKgar/ggGNPzwIqvSHBzZOpU+kpETrus35l+CUuAQH9/G7wiO/L1Rp5Iw75OYEQFXhT7KUliSlBH8696UmW9BUWm4hUFGJVFQaDGx22O1yV4VQWnIoCOrYxoIgJxRKSdq97ejzS1sLpHXbLCAqLLH1b99GGtnHAqL0Bu7/2AmICIsAAAAAAKgbKosAAMBucwKeyO7YolXtuMfpKatwBTxOF23loQqesO7XnMocWfdnicFqnKqfCdZ1WVKClOSVktOkQKpNH7kMp3s1nz+0biXltl7+KH8VeWRj8KQEA5+kRAtRnAAoMcEVJCn4XMHu28p9ode2vcjG9XHzekIBUHqq/UxLDg+FnNtJCeGhhz8gFZeFwqDt20OhUFGJhViO9BQpK9UqeLq3tSDICYSS9tCfRWUVFgyt2y5t2G6fifQUqXOONKK3dS+XuAe6l6srr+z98io8CAQAAAAAANEF4i8tIiwCAMS3QMCCi8ju2NyBjjvUcapdSl1j77h/+iK6Z3NX8ChgIUGC11XJEwx4EhNC1TcZKaHbSQkWAvn9wcAnWH1T6QuGMJXhIVRRiasipzL6a07wWuiTnBgMfpKkVumuyh9XIJSYYM/rC3bzVuoOt8qt67btRfZ75PN5PBYmpQW7fMtKk9q2qh4CpSbb89VU9eLzWyC0rdBeY6ErDCoqDVU0eTxWHZSZKrVrJfXuEKwQSrX7GyKkCQSk/OJQ9dDWYPdyuVnSgK4WErVpgO7l6srjCY5ZRGURAAAAAAB1Eofnz4RFAIC9jxPwuIOSyGAn8vcyV5ds7ioe9xg87u7ZnJ9SKNAJq+DxhsKc5GA1TFVFT6Krwic4TYLXllfhi1Jd5Ap7dpWGr7sznk40SQnhlT1OIJPsvi/RFQwFf3o84WMSubuuKyiRSvPDxymK5ARAqUkWwORkh26nubqAS0mqXyWLzx8MgkpC3cYVBv8Vl4W2h9cTCoA65YR3F5eR6urirgH5/NLmndLaYEBUVGrbo31r6YB+Uqdcey+aA49HEmMWAQAAAABQZ3F4/kxYBABoHE63Z5Fj7LjDnIrKUIVPVWASDDJKgsFOVQWPP6Jyxx8R8AS7aHPCHSfwSUq0+5wKHifMcQc7iREhT2SXZ5Hdy7krjwqKowdVFbG6dvOEBzkpSRZ6RN6X5Ap+UoJdwLlDkUAg9P64A6Cikur3lVVUL6dOTgwFPWnJVgnjDn/SXAHQzwljKiqrB0GFweqg4rLQeiUmBAOgtGB3ccFAKCvNunRriu7USsql9duktduljcHu5TJSpS65UudcC4oaI6iqL2+wssjroRs6AAAAAADqIsZ1uy0ZYREAoGaVvpq7Y3OCk/LK0O9l5a6AwlXBU+kLD3jcPwPuLtqcbtpqqOBJjhLsOBU9id7arwBxup4rd722otKIyiTXOEPOzwpf9OUleMMDnuQkqXWGq0u3pPAqn6oQKCH2ugYCth5OwFNcLm0rCq8IclcFRQZASQmhKp+0ZCk7vXoFkPNzT4YcZRXVgyDn99Ly8PXLSrcKobatQmFQVpqtV1NfxRMISDt2Wfdy67ZJ2wrs/rxsaXB3C4haZzT9etbG4wn/BwAAAAAAahaH58+ERQDQElVV8MToji0yCHHurwogKkLdttUY8CgU6CS4gh6nC7bEhJoreNzdtSXWEJrEEgiEqpHKK6RdZbGrfiJ/+mJ17RZRwZOSJGWnRQ993OFPXcfCCQS7oistl3buCgZBruopd/hTUh4ai8eRmBA+5k9ednjo4/7ZEOPzOK+htDx6GFRYYu+vIzUpVBXUsU14IJSS1Pz++Kr0SZt2Smu3WhdzxWX2mejURuo/wLq9S20m3cvVmSf0s7m93wAAAAAANEdxeP5MWAQAzYUT8IRV6ER2zRalC7fI7tlKY1TwuH9PdFXvOEFPohPuJIS6Qous2onWXdue+PL0+WNX8kRWLbnHJyqrsMAqktdTvconM1XKyaoeBIVNl2hd1u2OSl+UwCdaCFRefQwir8fCnbRkKS1Fys0KBT5pyeHjANVUibQnBQIWlBSWRP/nrrBKT7YKoTaZUre2rkAo1d7r5q64zIKhddukDdtt+2SlSj3aWRdz7Vo3z+7l6sobDInohg4AAAAAgLqJw9NnwiIA+DmckCNmd2wV0Stc3NUjTgVPhS969Y7z06nYSQz+9EZ20ZYgZWSFV+wkxxiHpyHCBveYRFXd1cUIgKqN51ND124pERU8rTOqj+cTWemzp16jzxeq8CmJCH5KI+6rjHgNHk+ou7e0FFvvDq2jh0DJiU1zxYrfb9VYTgBU4IRBxVYt5FRfeWRj82SlSW2zpV7twyuEGqqCqaEEAtK2QguH1m6z3z2S2raWhvW0gKhVesu5isgT8Q8AAAAAANSspbQJ1ANhEYD44/dXD3LCQoyI6hUn0HCqdtw/a+qizR8IhTvuKp5EV3CTXFMFT8TPxvqScnftFhb8VFQPxiLfo1hdu0WGO6nJUna00Cei0qchQgifP7QNS8qlkrLolUAl5fa63DySUlxBT1a6VZ1Edv+Wltx8uljz+ULdxLnDIKf7OH+wNMvrse7istOkTrnhYVBmqn1+92YVldLGHdJPW6V1262aKDlR6pwjDexm4w+l7AVVULvD45V1QecN/g4AAAAAAGrkidHG1YIRFgHYO/j9NQc5kV2zuQOOqgqe8tBjYV2zKbybtgSPhRRO12zOmDxJCaGuyjJSI6p2EsNvO5U8u9ul2Z4Q2bVbZMjjfi8j39eYXbu5um9LSbRgoaqyx6nuiaz0+Rldu9WV3x/a1tFCn8ixgCI5FUCpyTa+Ul5W9fDHCYCacpvGUlEpFZaGQqACV3dxu0pD2zPBa9ssK03qlhcMg9LtvoyU5vnafo6i0tDYQxt22D6RnW6VUV1zpbat9u7u5eoqmBXJG/wHAAAAAABq1gyu/21shEUAGo474IkW5ISFPcGuyJwKnpJyCy+cCh4nwIg2/k4gYI3c7oAmKVjN44Q3KYlSZkr1ah2neiUpGPY0dcATKRCw6qWw7u1ihT8RIVlkt2iOxISIMXuSLPwKC3midPHWmNVNzmt3B0DVQqCyUPhTWm7TuyUnWvdvTujTJrN692/Oz70hMCivCIVABcXh4VBxWWi6xAQLRJwu45wwKCtNSk9pHtVODSUQkLYWWPXQ2m3S9kJ7ve1bSyN6S13yrHu5eOPxBLug87Ts7Q8AAAAAwB4Tf+fPhEUAwjkBT6wgJzLkiazgKXONw1NWGT3YcY/Bk+C1qhyne7YEbyjMSU6S0lNDoU61cXhcVTzNKeCJJhCI0p1brPAn4rYvWpmPwsOclKTQuDiR3bk1RtdudeW8DyURoU9pRSj8cQdD/ojXnpTgCnxSLBRxAqHIEGhvHEentCIYAJUGA6GS0E93RVRKUigA6phjP7ODVUKpzaT7u8ZSXilt2C6t2WpjEJWU2/vTJVca0sO6mWup3cvVlSf4nxMYAQAAAACAmsXh6TNhEdASuIOIaEFOZFdkzng0pcEGeef3smAlTyBG9U5A1hWZM+ZOgnv8neA/ZwyeqmAnsXoVj/Nzb6jmiOTz11LRU0PFT2Tli2Tvp1PdU9W1W3r1Kh93KJSS1LwCskDAwsRSV/hTXEMlUOS4RgleC3zSgyFPu1bBbuFcIVB6it2XtJd/bQUC9h4UFAerhII/nUDIPUZSWooFQG0ypW5t7XenYijew4/CEqse+mmrjUPk81tQ2q+T1DXPKqqay/7RHLgri7xx+NcuAAAAAAD1FYenz3t5qxuwF3MCnlhBjhM4hFWgRIQ6zu9lroDHPf5O1Rg8Xlew4wp4nOAmOUHKyHJV9ER01ebct7cGPJHcXbs5719kuOa+3z1dTV27RVbxVHXtFqXSxwl/Ehu5a7f6qPRZsFFcFh76FJdVD4Ii3xevJzzsycmU0nIt8ElPCa8Oauzu7Rqa3y/tKgtVBbmDocLS0HvlkVXOZafZ2Dm9OoTCoOy0vT8Y25P8fmlLsHu5n7ZIO3bZZ6xDG2n/vhamZaU19Vo2X073c3RDBwAAAABA3cTh+TMtUUB9OBUU7sqRqGFPRSjgKXcqeIIBjzMOT1mFNYAGFKWCJyB5vBbsOOPwJASDHneVTkZKeOWO0zVbckJ4VU9LCHii8fvDu8eLDHZqqvqJrG6R7EsgMtBJS5FaZ4ZX9VRVAjWTrt3qo9IXpcu34O/FTpdwzphRleHzej3BLt6CYU+rDGusd6qCUl1VQMmJLftL1eeXikpCVUFVVULFUlFp6PPl9UiZwYqgjjlSP1d1UFba3vO5aQplFdK67RYOrd1mn8u0ZBt3aN/eUudc+5yhds6+SFgEAAAAAEDdxOH5M60saPnCAh5XsFOtaieiC7do3bOVVVQPddzVPFVdtEVU7yQGg5yUxGAXbe4KnogqHid4iKdG5EpfRDVP5Pg9FeEBnPvxaMP5OF27uf+1yojo1i2yyqeZde1WH36/VOIOgCKCIHeXcGUV4fN6JKUkB7uAS7Exb9q1Dt12VwDF21g4lb4o1UHB20Uloc+e1xMKgLq2td+dLuMyUltuWNsQCoqlNVts/KGNO+y4mpMpDegS7F6uVXx9BvcUKosAAAAAAKifODx9JixC8xTZTVh5RJBTVumq4HE95u6azQl7ysolX2TAo9DvUmh8nSTXODxOhY57DJ7IcCeyu7Z4CngiVW2zGNU9Mat/KqXKyujLTEysHuo447VEDXyCt5tz12515ffbe1MV9gR/lpaH31dSHuqG0M2pikpLts9vXnZ4AOSMAZSWvHcGZHtKeWX1ruKcaqFdpaHpEhNCIVCv9sHfg7fTU+L7Pfw5fH5p804Lh9ZskfJ3WRVlpzbSmH2kbnlWmYWfxxscs8jLmEUAAAAAANTJ3t62uBsIi7DnuAOe8ohqnciqnbKKULWPE/C4u2crLXdV8Kh6FY9HoXCm6l9EF21OwBOriscJehK8cbnzx+T3hyqu6hz4uKquInnkquYJBjrpKVYtEFnZE9kFXEuryAgE7H1yQp/isvAQqDiiMijy7UxJtK7enDF/2mSGKn/S3SFQcst773aX854XuEIg9+8l5aFpUxJDIVCHNqHqoOx0e285TuwZpRXS2mA4tHarHUvSk60qa1Q/qXMO4zXtaR6PJCqLAAAAAACoszg8f6Y1Jt45AU9N3bFF/u4EA6UVVrVT6gQH5XaVeGS449yWJzQGT2TQ44QEGamhUCc5RtCTnEjAUxeVEWP5VHWvV4fQJ5oEb/Vwp3VGKABKjQx+XOFQS95WgYC9tyURYY+78sd5rLS8+lhJiQk29pQTArVKDwY/KdWDoHiuXKtJIGDvsRME5UcEQu7PdFqyhT+t0q1qxV0hlBJn3ew1lkBA2rkr2L3cFmnTTguW87KlId2lbm3td977hkNlEQAAAAAA9ROHp8+ERXujQMAanGvqjs09rktFZSjMKamICHsqJJ8vIuBRRBdtwcAmIVi5E1bBk2RdBDnj7LiDHvd9BDy7xz3eknublUfZjpHBT6Uv+jKdsZOide0WGfg4/1KT4m/7VVS6un+LCH3c4wCVlFUPgBK8FvakB8OevOzwyh9nDKD0ZCoo6ioQsG7hqoIgJxQKdh1X4fq8Z6Ra+JObZV3GZQXDoex0Oxah4fn80oYdoYCooNi+DzrnSAcPtCqizNSmXsv4wZhFAAAAAADUU/ydP9Nq1piqKnhidM3mjMtT5g57guPulJaHhwI+f/Rwxwl4nIod91g87gqerLTYVTvuqp6WMPZLc+B07VatqicY9sQMf2J17eYJD3KSE62BPCdG4JPqqvaJ5+7JKn1RAp+y0H3uUKgiYhwlrycY8ARDnpws++lUATnBUFqKbQ/2m/rz+aWikojqIKdCqMSCbcne26xgF3EdWkv9OoXCoOx0KrCaSkmZ9FOwe7mfttoxLyNV6t5W6raP1DmXbdNUnOMRYREAAAAAAHUTh+fPhEW1qargcVfoRIY9FaGAx93VV2Sjf6UvSrgjV8DjqtipCntcgY4zBk9k92yRFTwEPA0nsmu3yG1cGq2rvmAYFI3Xa92PuQMdp2u3yNDHfZswIsTnD3XxVhwlAHIHQZEBkMcT6v4tPdne+45twquAnDGAUumibI+o9EmFJRFhUDAcKiwJHQ+9XqsOykqXuuSGuo7LTregKJ5Dz+YiEJC2F1k4tHqztDnf7mvbShre07qXy81iv2kuPBE/AQAAAAAAXAiLYvlxgzR5tjX0O6GOIit5FAp2khKkxEQpyeuq4EmUslKjV+xE666NBrXmq7BEmjIn9ng+SRFj9qQmWcO2M2ZPSpKUklw9AEqMs67d9rQPv7J91c0jC3ecKp+sNKl9q9AYQOmu6qCUJAsl0DgWr5Lmfhc8nsqOe9nBCqFe7UOBUKsMG8eJbdO8TftKWr7RvtO65EnjulpAlJ7S1GuGSF7Zd41XjFkEAAAAAEBdxOH5M2FRLDuKbHyMgwZECXtcoQ8N/fGhuMyCogP7SzmZEV3AxXnXbk1pR5HUNU8a0iPUJVxqMtujucovtkqhw4ZYKJSewjF0b7Zzl9Sno21Pupdr3uiGDgAAAACAeoq/82fCopokeKV9ujT1WqA5cBrYerS3sAjNg8cjtcmUerRr6jVBXaUm29g12Pt5PBb4JfGnRLPnfIcRFgEAAAAAUDdxePpMC09t4rDcDFF4PXaAoAuf5sWjYNdKbJO9QtV+xPZqEdj/9h7ufY/tBQAAAABA7eLwYkvCoppwBS6qeOwfn4lmxhNqsMZegH2oZWH/22t4+A4DAAAAAKBe4vD8mbCoNlyBC4mrspsrr4fKhr2JV1QWtSTsf3sPvsMAAAAAAKifODx9JiyqCVdMw8F4D80X22Qvwj7U4rA99xKe8OoiAAAAAABQszg8fSYsqhGNKghyPgY0jDYvBHh7FxqrWxb2v72Hs43YXgAAAAAA1E0cnj8TFtWE7pLgcHe3xGei+QhmD2yTvYS7Kyzs/dj/9h58hwEAAAAAUD9xePpMWFSbOEwQEYUn2MhNVUQzQ2XDXoft1YKw/+01nO8wthcAAAAAAHUUf+fPhEU1oVEFVVzdZ/GZaD7oBmvv4m6wxt6P/W/v4eE7DAAAAACAeonD82fCotrQXQuk8O6z+Ew0H3SDtXdxGqrZXi0D+9/ew6vgthLbCwAAAACAuojD02fCopo4DWGAJ+Ifmge2yd7FE/ETezf2v70H32EAAAAAANQPlUUIR3ctCKILn2bKtV3Q/DFmSgvD/rfX4DsMAAAAAID6icPz5/qFRc/NkH79sDTjNmm/3tUfP/0OaelP0jf375m1a2rxOLbG5NnSNU9Kb/5ZGtqjcZ7zy+XSox9I836UdhZJrTOkkX2lXx0ltW8t/esNaeY30s5dUptMaXhP6b+/DV/G1gLp9inSR4ulknJpQBfpmlOkgwfUbR3WbJFufVma+51U6Zf26yVde5o0pLs9vqcHB3/mYyktWTr9oPD7f9oqHXytdNcF1R9rSG9+If37LXsfyiqkd/4iDepW9/m7XyxdcaJ05Ul2e/ZS6bXPbNuu3y5lp9vn6fcnSEN61G2ZNW3TTTul52dKFZVS17ym3U+XrZeO/6tUXln7fvPP16T735b6dZKm/TX8sTPvlD5bVn2e/p2l79fZ7y9eI3VvJ938gvTtT/YeJSZIpRX2XhzQV3r5T+Hzv7NAeuwD6ccNUiAg9WwvnT9e+sXo0DSbdtpncvZSadVmW1aPdtIvD7X1Hb2PdPeFoWmfnykdtW/1z8iTH0n/+9g+x+1aS6ePkX57nJQU/Kpx9qPPvpcm3mWvZ/Q+Nb69+mG99MA70vwfpc07pfRUqVOONKK39MdfSFlpNt3Uz6VtBdJFR9a8vJrE2i8bmnPcdSR4pZws6cB+0tUn2zarj3cX2GuZ85299+1bSSP6SFdOqNuylq2Xnp8hLd8kLVoRfkx86iPbfrPvaNrw7+on7LO99IHap408PjU3FZX2GZ88W9qcb8e0SYdJF4yv2/y7SqW7pkpvzZPyd0m9O0q/PlaaMMo1UXDfI9wDAAAAUFdLf5IenybNXSZt2SklJNg55YT9pYljpdaZDffcB/1JOrB/3doi6mrud3Vvi5CsjezxadKsb61ty++X2raSRvaRzhwrje5f//Orpmr3q6sN26X/fiAtWWPbv6Ak9rrGasc6dJD0zJXh99X1vPeFT6Tpi63Na0uB1KG1NHagdPmJ1kYcy5Z86Yi/WNvxg5dKx4+s2+utSztWnKGyqDbx1rd/VTdRjTSuyJMfWcP38J7SDadJnXPtAPz0dOnU26W0FKlvJ+nPZ0gd29gBZeY34etWViGdfbdUUCzdcpaUm2Xzn/cv6fmr7eBdk22F0ml3SK3S7QCYkiTd/4408Z/SWzdKvTsExyzy7Lkxi/73sTUGn3lw+P0dWkuvX2+BQGN99rYVSlc+Lh06WLrtHCklUerTof7P7/7MPDdD2rFLuvAI237bC6X/vi+dfLv07JXSQbWEeLVt0/QU6V9vSqeObtpxpHx+6Y9PWYi5aWfN+82SNdKj70tts+12tek8Ure20n2/Cr979lLpztekzFTp5U+l351gAcnvT5Q650iLV0m3v2LTrtgcvtwXZ0l/eEo6boRNL0lT5tj23lFkgayzbq/OtffzihMtgPr4a+mGZ6Xxw2xeZ7mb8+2975oXClMl6T9vWYP1b461Pwy+WmXh2Kad0h3nBV9ixJhFtW27b1ZLp/xD6tvR1qtrnrS9yP5oeOML6dJjbL+VpDc+t1DNeU27I9Z+2dCct+DuC6Q+He3zP+9H6b63pbnfSx/faiF6XT38nm1DyY6rbTIt9Dv+r9LrN1gAWZNFK6Qnp9v7HXlMfOQ30kVH7Plj4u6qy3O/fr19fzTX7/Mbn7P975pTpGE9pJlLpFtelIrLpN8dX/v8lzxox4FrT5V6dZCmfib97r8WDp9yoE3TXLYXAAAAgL3D8zOlG56TerWXLj3aLnqt8Nm5x3MzpS9XSI9d1nDP/+hvpcy02tsi6qOubRGS9MEiO6/KyZTOGScN7iYlJ0mrN0tvz5fOukt64Wrp4IH1W4emaPerjzVb7JxyUDfpsKHS65/XMFZxjHas7PTq09f1vPfeN6Qx+9jFwR3aSCs2Sv9+07bHezdZWBfNX563tgup7ue9dWrHqn0xLU3LCItKyqXUpD2f9u3pK6ZLyiz8aM6c19sYVVXzfrCg6PCh9gXjNG5KdkX0kMulolJr7BzjChdOOiB8OS99ao3Er19vV89LFkYcdZP098kW+NTk4fcszHj9eqlLnt03qp9dxXD3VOmhX+/596VqeRHLSk0OvYbGsnKTfeGfOtoOyD+H83pumyTlZYc/dtgQu3ri/rdr/zKtbZvedo7zhOHP29gemyZt2GFfLDe9EPvzUemTrn5S+uU4Czp2FEWfLi3K9l++0X6eOMqqtW6bJP3r4tDjk+dYlc2y9dLWfKtwcr4gX/5U6pIrPfxryeu1+w4bYuswebb0f0fbffv3lWb/I3TlhGT7QIXPQrrbzgnfB6Tw4+OOIvuSPfsQ6brT7L4xA+x13/madPGRUr/Ori9ZT+hnTdvu8Q/tC37yH+2PRMcJ+9sfDoFA9fl/zmch1n7Z0Jzn26eLNKyn/T5mgOQP2DHog4V21VJdPfV7+zyccac0sJvt1wcNkEb/0T6zd11Q8/wfLLKf154qHRe8Gsc5Jr44y46J7vVuiv2vPs/d2MfU+vh+nfTip9KffmHVQJJte2efmjTOwr5YPlpsV7nd/3/SycFg6KAB0rrt0m2T7fsywRv+fsXhlVEAAAAA6mHBj9L1z1pFx+O/C7UxSHah8SXHSDO+bthzi8heaaK1RdRbHdsiVm2WLnvE2jFevCbUo4lk59dnHWI9ebROr/+6NEW7X30c2F9a/B/7/auVwbCohvcrWjtWpPqc975/c3h74ph9LBw8/m/SC7NCF0K7vT3fCgtuO0e64nHVqUeNOrdjxd/5c8OHRaXl0j9ekV6ZYxUjednS8ftLfzkz/Erp7InWMHX96eHzD77MGpYf/o3ddrrCe+066ZW51t3OtkJp8zMWLPz1RWnaIitVy0qzq7SvP90aSGP5+2Rbx1m3S3e+Ks34xkoLe7STfnmIlBvR6P3659bg9u1P9qHZv489hzvZvuIx6a350ps3SLe8JC1YLu3T2bqpivT9OumwP9sV2yfub/ctXiUdc4sl9zNuC0173r+ljTts56nP+ki2k9/zhoU0JWVSn06W3rq7qnF2AncKu2mndO6/pKIS6X9X2pXLe8ID79jz/eNcKTnio/jlctueHo+VP7rDhR82SPe8bhUXBcV2X1aadf/lrPO2QgvmFq2Uelxs23BkH+nv51gK/dKnVl3x+T+l97+0xrVube1gf9od0pQ/WTXGlLnSaf+wKxhG9pUm3WuNsK0zrOT26pOtIc5x91Rp+tcWwFT67DN0/njprLGh93bUNdLabfZ7l2A5bZdc6Yu7rOzxgD9I914UXt3w+TJb9sKVVs0yqKsdII8YFprGeU2T/yi9Oc/+KWAH+tvOsUQ+0hWPSS/Ptt9//bD9G91feuXa0Gd42i12BcBny6yKY8Io21fdfyxIoavWC0ukEVfZwfY3x4a2x9Df2+Prt4e205+fsysWvv6PzR8IWDXFvW/Yd/iNz9ty/vOmTX/qaKuiOf5vdvuVOfZPkq46Sbrm5OqvsaGs2GhXIDx0qZW5SrGvXnjwHZvmulNtX3KmdXNuVrs/ePuUAywseuNzK9WV7PP/zgLpb2dbw7A8UlJCaBkbd1pXdUN/H/55zEq1aZ3pjrnZgoqJB0v3vin9uF66+Cjreuzp6dK1T0vPXhXaPyTpqifsnyQdu59Vw4zoLf3mYdt/txbYl30gYMHUjWdWr2yo7WqPnbts385Ki/EFHbzv1H9YBY4U2qckaX2wa7efu1+6jxdd80LLdx8vnKD169V2JcrCFbYvtMm0K5DuOM+6z4sm2nFXkob3sJ9bC8Pvr+1Y3q6VdTvoXmanHKvQ++gr6cA/2PbJy7Y/6m44LRSUv/SpfYdK0m8fsX+SHZOOG2F/nB1wjTTv7tDVReWV0j1Tpde/sO+n3Czp6P3sOOFUfjnv8T5drMz89im2jp1z7Thx1iGh6YrL7D18Z4F1PZiWYsfnS44OVco4b8fqzbUfnzpdEH58cLbnC9fYPvXBQvv8HjTA9qXu7aJvp4bwwULbRyaODd/GE8dKz39if/C6u4yM9P6XUkaqvW73/GcebNtu0QoLg6ksAgAAAFBX971t5w//PN/CgEipSdIx+4Vuv/65nSt+t9baKbrkSUfva12hp7sumnfamd6+0c7jFiy35U8YZT0KuacddY2dZ//r4thtEc553lcrpYfeC7VFRDvXlereFvHoB1aY8I9J4ee0bpHDXqzcZMM7zFsmbdhpQdLg7tYONKBraLpo7X53TbV2zo9vteqp6YvtnHb8UOttJzvGOjQEr+tCfuc9itWLTqx2rEj1Oe9tF6VyaHhPa3vdsL36c+0okv78rPSnU0Pb2luHdZr5jbUDRFunO161i2j36UJlUZ35/NbgFikQeTsgnXW3bYCrTrKdfMkaC2fmLZM+/Fv1Bue6+u0jduD572+tYSkpUfrVA3aA+MuZFhLlF1tYsL2wbsv85d3SKaOt66wPFtk4H2fdI71zY+iK+3+/aR+aiQdbt0jlPumhd6VTbrdxXtzd+1RUSuf/xxLS3x1v4z5Ea/Dcp4v1uzjr21Bj36xvLW1ett7Cmg5t7D3/7Hvp3MNCy6nr+sxeat167dvLGi2z0uxgfulDFug5V627r/z3eOxA/8t7rKHxhWusEbAm0T4XscxeaqWHnXOrP+b0edmjnR0ke/7K+kYd0t2CtLxs6Q+nWDnsRfdZ1UGlz96zDTuk4/4q7SqzZfzpVGtonPG1fSbatQ69zrIKadUW6dgRofFUnPdhYFepdKaNB7OtUHpnvnTZ8dJ1PaUPv7IDeH6x9PdJofVeu822t/OaFiy3QGTTTtsHJOmJy6Vf3S9lpdsXj2SlrJHP72zjOd9Z908Dukr3XGjB2lPTLTh86NJQpZUz7zVPWoj04KXS+m3S316WfveoNWhHuvIk+0xc9z9rYB3d3xoefX6raqiotOc562DpV0dLn39vrzs7PfR6HM46Z6fbgXzWt9bPp7OtkxOkssrg+x9c2VnfWhDoVL3c/op031u2HUf1sz5Rr3nStm2v9rZNJCuBfvh96fAh0iGDLAjsmFNz4l/Xz6b7KvxYAgHpmqekI4fZH0gvzQq9CZHzfr/O9tPHfxdeHRPtOVZvlgZeZiFDl1zbtl2Cn6WsdOmEkXY1xrmH2zq8Mtfe96QE+yx2ahNeHdQtzz6TJx1gn4mvVknXPmPb95Ffh6/D16ttfKArJth86SnWTaQUCmuG9pD+dZFdqXGFK6ycEgzskhPt2HvyAdZ38ead0mX/tQqh3x4ffL4Yn/NoRvS2fe2y/1rZ9769ov+hevu51t3e6s3SE7+r/h43xH7p3HbfX1xm/R93ayvdPknKa2X95s5easejWK/VudsXsG3jWLXZfvZoF7p/zncWWtf1WO6s2+rN0qZ8m++y40Lb5+np0rF/lWb+3Y7v7j94b58UuuigezsLpnz+0HeZx2Pf+xf+R/p0qX3PHdDP+jX+51R7n9/6c/j3/Lc/Wan5ZcdbcP/8TKu669kh1GXoLS/aZ+pPp0pDutn7+t06Cw/d72Glz75jzx4rXXqsfT/e+0bNxyf3e3P1E1Zq/sAlFmLf8ap06h3S9L9JrWro9i8QsZ1q4q6Yjeb7dfa+R/a97PTB/f36mveR79dZN41JEX/Ouecf1S/0OaayCAAAAEBNfH47hx3aPTxoqcnKzRZs/N9RdrHfjxvsAvFFK6u3RVX6pHPutXP0y4638Yn/9aa0blv1cW6kmtsinHagtduqt0VEnutKdW+LmLXEztGG96rb65fsfDsn0y7ez822Mdlfni0df6tdhN2nY+x1cO67+H5rvzn7EGnpWun2yTbNvRfV/Nz+YBtebTye8Avea5+h+rpGitaOdcWE8Labn3veO/c7+1z271J9uhuftzaYi46wNgGpbue93wXHBh/YNXzaDm1seILv18Xt+fPuhUXja+jWq5vrQPLRYruK+W+/DJWJHT7UGuzO/7cNWnV+HQdwjnToYOnfEX0ifh4MUtzLrOuAVpJ18/S3X9rv2el2oHrjC6vQOHWM3b5rqoVJVd1gSRo32Lr3ued1C68kSR7rwumqk8KvmI5l7EA7GLkb0U8bbYn7rG+lMw62g2xhiTWOezz1W5/rnrHg6JVrQ41Xhw+18T9uf8WW7/UqdCDw2PNedJ+91/f/nzXg12TNFkv+6+KJ31lK361t9B1v0077+dNWO+Ddf6lUVm6NiuUV0jNXhJL5knLrficrmLT/8zULCP/9K6tycA5WYd3XBZ+zsMQa/tpkhhqyncedEshKvzXEn3SANVjnZVulWlm5ffn89vhQg777M+n3h8bmeewD+yw4X3KpydbIO7JvxAt3Pb/zvvx9sjVcvnadBTmSDeg3/kbpry/ZernX/bCh1lWZY2ex9LeXrNG6Xevwp+vZ3hpJJatCOenv1bfFjxukv00Ov++1z6yqKnLdnXU+ZJB17+d0iTbrW/vC3rTTGjY9HqtA+GG9VQt4PNYQ/N/37fW8M98+r+eMkwZ0sUqiXh2kNsEv+FbBbZOTZWMiVXsfI9Tns/nKtbWPqfTEhxakPnp7+Hsf+UXi99sVL8eNlI4YHnqfnGndDuhnr71PJ2v0n75YevBdqXvb0PRnHWJVNN+vs+qP24Lb5con7PParV34cl+5TnrvS+nyR62aQrL9Pz3Zjnce1+dta4H0ye02Rpdk4eqUOTZWUkpyKAjcJ7jf9Wgfet9fnGXb+bSIAQ99fmuAX73ZKsi6tQu+/Cif82h+c5yFw699Zv8SvPZFPn6oVT45pcn7dLGrfZKTon8WGmK/jHb/jxvsqpZ7Lwq/yiqy68xqgss54W/RH77kwdDviQm2T9T1WC6PbYernrBt+ehvQ6GZzy8dua805He2fS4+Kjx06Nc5/L1wjol+V/d/36y2atwbzwyFw+OGSJ1ybb2nzLH92FmX7QXSG38OHTNH95c+/dae36nOmvejfY9dekzouY/ct/p7Vl5pFw04F1kcEuxjuLbjk/PeDO8p3evq0nGfLtKJt1oYf8UExTTnO9sP6+KLYHgYy44i1/ePS0aqha87Y3RZ6Z6/e7vq0zjbypm/KqiNzz92AQAAANTRjqKa2+uicV+sFwhY+0a/TnYh+9KfrHt0SVXncb8+xs4/JTt/TEq03ifm/WAXuznTOucwsdoiHCeOsn+OaOe6VcuUam2LWL/dgozIaSJDGa8ndPHzmH3Ch3bw+aUjh0uHXi89O0O65ewa1iH48+xDQ+fVhw62C0hf/MTaGGpa33vesB5VatMlT5p/d+3TOTy1vF+x2rG++EF69drQe/NzznuLSqRr/2djdp99SPh00xZJb34hffBXKzCo6/aV7DlTkkLtrG5tMlzDR8Tf+fPuhUWP/Cb6ANnXPWMBhuOTb+znLw8Nn+6UA6XfPmwNTLsbFp00qvp9I3pb+VpOlh1s9u1Z/WrbmpwRMaj5wC7WDc7s76wRdMY3loCfcVD4VcWpydLofSx5j0yFwxpkazB2kDWqrdkqtW8lfbFMOv9waccu6ZMldrX4rG/tg3xAf1tmXddn5Sbruu3ms+y2e9ojhtnOtXxjeF+ML39qg71fdGRovtp0zAnvHq8mVVdtx9iBnYNvm0wLOcbsY5UOlz9qV7K//oXry0bhDWDTF4e6lZMkT5RKEff4De75w+53bcuMlFDI4UzzizHSszMtpOwabCSf9a307zdCwZ7b1sLwckqPal4vj8eqEb5cYZ8Fd1VKYoJV3fztJdt2fTuF5j1m3/DlDgp+oa7dLrVvo2qcaYf3CN9+d70mTfvKuk50dxP4+IfWFVq1dXcta+wgu8J//o9WOfTmF1JBiVUtLFsfCiMl6ZDBdvvL5VbpddIoC4uc92BkX+v6y/10zoUQkdstlvp8Nvt0rHl5P22V/j7FgmUnfHPv9+55H3lfWrnRro6JPDZEPsd1EV1wHjncPsM3vxCa76ABVmXy4ix7XLL9c2uB9MDb9lzu5f7nLekfU8Lvq/TZv0enWVDnLHtg19CVLotXSf/3oJVtb9ge/rrc6x/2h4OsAuSe16W35tn75D7W/LAh2L1XxH5W03udmiw9dYW0bJ308dcWBMz9zq46euZj6c0bQ+vsrFu05e3p/TLW/b06WBeVt75sXVce2D/6d2WkWO9BtzwLMzKDf7ys3y5d8B+7eKGux3JJuupx68rywUutWizW9on2+qKFYx7XY9/+ZPdNHBs+7UkHWFdvs74NdZvokf3B7e7KLy3F3re120Lz79vLBr689WULwvbrXb2izFmHoyOOdwO7SrO/rfn45Px03kfHqH62brOXWtVlLMN71v14UlvFo7PvxJqmLse3aNNE+27zxJgWAAAAAKrUo8HdsWqztT18utTaJwKuQOWHDdKg7uGLjjwX+8VoC4tmf2dtns60tbZFBO0qrbktIlYbYG0ip7nwPrsgt+r2EdbTiWTtLPe/bUMlOGOD13UdnKc5Zr/q7XmlFdXbLSKde5h01PDaX4/Te0pd1fSeSzW3Y72/MDQG8u6e95aW23u+dqtdDO1uFy0olv74lFWnOb0QxWqbi/Xi6rJOcXj6vHthUf/O1ngTyanGcWwvskbtyIHuPR5rZN1RtFtPLyl6o/dTv7dBqJ6Zbo1Mmak2EPrfflm91C3qMiOm8SZYWLGzyNLirQV2/9E3R58/ss/L9OTYfVtGGjfYfn66xHasCp9dJb21QLr7dVvuJ0ukUX0tuJDqvj7OdDe/EGp4jrRjV3BMg+Dt1z+3htpJ4+peopiaZFfn11V6svTTluj9SOYEr4pODlZB5GZZGak/YNv161Wh+dpk2mfJPV5RpxyrBnKWFWt8mFbBweicbezuvzQ/OA5NYoIFkB5P+DQdWttP5737crl05p3WoH/PRdYlWHKiBY73vmEVUVX9fSr0PG7ux70eqbDYvmTbt64+bcfgPrAzYtvlZoVP61SEuZ8/2nNmpoVvv9aZ1kA7MmKguq659mUVbWwd574D+tl2m/WtfZEWlNiVHOOHSufea6HCrCUWfPRsF3odkh0bIrep86XobFOnv1ZPxPPGUp/PZm3d0F33jFV2TNjfto9kX2CSXX1TVGLrt3arjYH25zOk1MTQtJV+26aFxfZFHa1bNcfpB4X2Wa/H1u2sQ6wipqzCqoCcq05emmXVYd+stte64Efptpft83/H+dU/j7dPls4dF7qKwvmMLV4lnXGndfv34jXSuBtCz+/+6XH9npNpn4n/e0Cas1S66mRr8M9Kk06/w96f0vLg/hOxrLqMn7JPF/sn2Xv3yHtWanzHK9a9nxTaZpHL2xP7pft+92ORr6N1hvT6DdK9r1tF4M5d9r5OGmdXWsW6eMFZ5H9+JfXrKBWV2TH4fzOsr+gXrrbHSyvsZ12O5c66Pfiu9PFi6f5LLICZtSR8+3gknXVXaPu0ybT7AlFer3NM9HpDx5yiUjtGVvvD1WP37SwKX0ZOVvX3NyUp9PySdX/XOUea+rn9sZ2aJB02RLrprFDlm2T7jrtPa8mmre345DwU7bjarlXoPYwlK63ux5PauqHLyZSWrK7+fLtK7Yq7NlG+v8Lmzwo/VjqcbeV8/7lDI8YsAgAAABBL2+ya2+siFZVKJ91m52LXnWbnbOnJ0rrt1qtUWcT5WbR2Yqd9LfL8Uaq5LcLx64dqP9eNXFZNr61zrl3QGDnNX8+Wrg5eWHjkTeHLvOl564XmdyfYBe+tM+yxKx6Pvg7u1+G0Z0S25zldusdqz3N0aF1zmOSo7/lgTe95LE471pfLrU1e2r3z3rIKu1j2i2XSc1dL+0e0Td4+xYZkuPioUHtbSXA4ktIKuy87PXb7ntOOVVpevV1h5y5pWM/wttY4snthUV3lZFqy6gwu5ggErOHfHTilJNkHJNL2GIFStI2Vm21jONxxniXJ78y3D+iWAuvCqzabdoYPQO73h5fKOX1cPnl57H47Y1Wq1KZzrh1QZwbDouE9rbH+kMHSH5+2nWzBjzaGg/sgUpf1caa74kTp+P2jT+dUUzjLfvg3tuOd9Hdp8p9C41bUZM0Wab8r6/Z6p14vHTTQqoA2bLcui9ycfivX77BkOjHBuiBL8NoVAl5Xg/7ArtaXp/t92bBD+i54xfuArtW3gxOgeL3WFZszv/vztnStNUamJoXGvXK/R5vz7WdO8PPx2md2oHr+6vAu+979svq8sboii/z8OF8um/OrT7txZ+j1VqvyiPG5q+nzOOc76x81Usfz674s5z6nAu6lWbYtMlKkf5xrXwTOc33yrV354MyTE/ycbi2ovk0359sV/8427dE+/Dlr28/q+9k8eGDsx79ba8eXPpdWf+zkv9uX0Yr/Squ3WHh0w7P2L1KfS62yx91lYKTIqg6Px8pu73jFukC84fTQNM5nbsUm+1J7/hO7ff54q+Z0OJ/HknL748cJYTweG7fotDusi7Ap14YqAGN9dqv2weD++uFX0h9/EerCa9NOC/iqpvWE5o/6GuvA45F+fZx1wfnd2tj7kGNP7JdVgWtl+GPu44Vz/6Bu0mO/s++5JWtskM+7ptqx5PcxujZz5r380eqPzfi6+j5Yl2O5cyXX9K+sG75j9rOx/v5wSngXa2UVFo4470N6igW2Tleg7te7dK0dgxO9oe3pjBe3rbD69/yWfPtDvbZtFHl/Zpp07Wn2b3N+sDvbl6Rz7pE++2doWk8dlhXtPufnlijH1c359p1Q0+dy9lLb1+viy3tr7oZuYFf7jG7OD79gxek/Odr3l9uArhYC+vzhwdTSteHzuz/iVBYBAAAAiCUxwXqL+ShGe12kT7+1YQZevyG8S/+CYK8eYRU0Hjt/3FEUagOSrN1WCl2o7aitLUKyCpMPFtV+rhuppvOicUOkx6dZ7yT7usYt6tUhfDr3sqfMkc482Lpod9teGLpQ3f280dYr8r66VkLdNdWG5KhN1zxp4b9qny60AnV7/rBZgtNFttvW57y3rEI671927v2/K61LvkjfrbXeuQZdVv2xyx6xn8sfiT0esdOO9d1a61XHsWmntW8McMZHir/z54YNiw4dbN0FvTjLysIcr39u3WuNc23sbm2lb9aEzz/zG0uod0fXPOmSYyx8cQa4qs3Ln4YfBJautYPYwQPtAzJ+mB00V22WJtQ2BkVQfRplDh1s703nXAtIPB7rXqxLrvSPV6za6NDBoWXWdX36dbYgaslP0o0T67YubTKlV6+Tzr5LOvk26aU/SvvXMi5MxxzpwxhjbkTq01G6coI1Av7xaeumy13BdPjQUDB05YRQI+bQHtLCFeF9hx6/v/SHJ20w9ZF9rDuml2bZOCkjeocHgA6n8W7pWhvX6pH3rIun91wN6W/PtwbWzfn2ef0xopumV+dakHPQgFA6n5Bg28SZpqTcPldS+LwpiZZg19SI6gk2xI7oY+vy11+GqlD8fmnKbHtt7i7oIp/HvczaviD37Rm+/e58xarZ3vpL+PRPT7cuCmv7UpMsKOqWF+o6MTPNttFjH9gfE+OGhOYZ2cdCpqmfhW/TQMDCma550uQ5tk2d8U4q/HVr/KzvZ7Om5T16mX1xuX20WPrPm9LdF1r44vHYZ/X1G6rPf8P/7I+m+/7Ptl9Nz/XSrNDvzvvbKVe67AQb72miq7/W4uAVFL062H1pwStQFq6I/nn0emzgPuexwmIbh6VTju37zpgn7ueXLDyVwj+/RwyzbVdWYT+d+1+cZdvHCS6cbVXXP3g27rB1jLRhh3UnN6yna58KVqdELm9P7Jfu40U/V7dy70ULnBS6b0gP+/fiJ9Li1bV/Th+4NLzbusISadI9Fkg//jvJ45XO/1ftx/JAwAYTlWzcp1+Osz+gA4Hw7SNZ38lOib5z//59rXx/natruMISOw51zrGqI+c1D+lm3UxOmSP9+tjQct/8wo6b7u8sKfr+GvlHs1v71tZv85I1Ng5aScRVP3VdVrRtNGVO+HfnF8vsWHPOuJq31fBedT+e1NYN3XEjrVvLlz4Nje0o2WcmLdn2rZrmP2GkHY/fmiedMjp0/0uzbN8Z2Tf02t3/AAAAACCWK0+yi0GvfFx69urwoQkkqaLS2kGO2S80Lk3kuebT00O/RzsXu8Q1Ru0rc+2n0/7qVlNbhPN4Xc9169oW8etjpRc+kf70tLWPZKXFnta9zMh1+GChtV847TTu6euzXrWt73njpaP3i/24IyWxfueD0da1Nk471sg+oXnqc97rBEWzvpWevsLavqP5+6RQ70OOb1bbxdp/+oU0ZoC1QcZa7yOG2WfqhVnhY2C9OMvmOW5k8H2v28tuSRo2LDp8qG3Um563hqYD+1uDz98nS8N62BgHjoljreu4W1+2cU2+W2eD3de1G7f8YumEv1q5W99OtiN/uVz6cFH4IGc1efMLa1A8bIjt0O8ukAZ3t74zvR7rMuu602xQ+dVbpCOGWvXP5nx7rvQUe1xyJan1+FSNG2wli9sK7UPvzHvoYOm5mVZlsl+v0P31WZ97L5JOv1M6/R/SWYdaF2Y7i6Tv10uLV9q4IO719XrsvZ9yrTTpXum0f9iV+WMHxV7/1CRryK+r0ftY357XPSMdf4uVDnbJs+67HptmgYhkY5PsKrXXtW6b7aivzLHX36u9dUuXnSZd8G8bv+WwIfbFs2KT9KthdpVD/i4Lppb8ZI3nm56xMYj+8rx1D5WRKh16XejK7FtftgPUtafawPCtM2w8kCHdrYF62iJbrwuPCDUkH72fdfl0yQN2oN5eaF0oOWWj7jLXgd0sbJr6mb2OlCQLwKKVxN40UTrl7xbaXXa8dWX1xDRruH7sslDIFquctrYyW+e+rPTw7ZebbcuO3KbTFobP5/C47rv/bRtjRrKk/8yxVhkn2f75TDBsOnSQ9PtH7Uv4y3ul3xxrXYNlpVs4NPFOW3CbDOn7dbafT73evmjTkqWFy6Wh3aW2raxh1OmaL1J9P5s1OaBf9fvWbrWf+/YKBc5tMq0ryUitMqwrOvdjc76T7plqIVmPdhZ6fPiV/XHVr5ON8+Rsv9unWMP/KQdaP7iLVti02wqtymy/4PMft7/0yAe2HX5xux1z35pn80o2poxTdVhRacFcZpp1m7dyk/2TbD9wl407FSf/ekPap7PtOx3aSNecYt3e/fNVK9ktKLY/zlKT7Q/LqoZq1b30+6rHbZtPGGVXdSR47b146F37g/SKCaH5B3W11/fkh1aZ6fXattgT++XIPqHjhc9vx4O35tl4Ze5lvPelXX10/EibPyD7XskvtuNSrNfq3D+gS/gFC5JdHXXTC9LyTXaV0oOX1n4s/+PT9pmQbD2cfW9Id9tuedkW4s5eauNaSaHAW7Jj4lvzpGufCVYGpkqvzbXPwQH9rKtCpxx7WE/rXvKWF6wLxgP62ff8P16xwHTi2IjXXcM2d+4/4kYbi2hQN9tflq23cG//vqHxm2J9x3oU+/7Isv9FK6UrHrV9Yd126daXLCz91VE1fy5bpe+548nArtZN4R2vWMXWfr2t4vbpj61y0NlHJevW8s5Xw6/YO2pf+2xd86RdXNOrvX0/frTYxpdMSgi9Zuc9oBs6AAAAADU5oJ9dDHvNk9Lhf7a2rwFdrO1g8SprqxjQVTpuhHRgPztHvuZJa6RPTJAmz7bzQin8HMTjsfaBB9+1C173620X7d011Rrvx+wTvh7u81SnHWjK7PC2iI5tbL773w4/1312Rqiip77d0PXuYBcK/+p+aey19vqH9bR131pgXb1L1hbpLOfofS146NfZzmUXrbBu5Z0L2Gtah6rzWIWvV527zcuxf3vK65/bz1Wb7edXK0OB2UnBCy5rasc6ZJB9NqraWupx3nvBv205V59s9zvtGZKtg9M7zrCe1de7qm2la3ib2+yl1lXiH39h/yRb9tWnWEaRk2kZxpfL7Zz73HGhcZDi8Py5YcMij8fGWrh9ivTcDOmu16wB+syx1gDuNNZJliwWFkvPz5Tue8saYp6+Qjrrn3V7rtQka9B7cZZ1OVXhs+DhignhZYg1eTa4ro9Ps7Fx+nay7uvc63n1yfbBfPhd6dU5Ulml9Qu5X287eNRUKVKbQwbbhzAt2Q7MzrzjhlhYNHaQXSHvVtf1OWSw9NHfpLunStc/Y425OVl2FfspB7rW03Wgcqp5XrhGuvg+G8fkmSutcWpPueQYW9f735ZufM66dWqTIR24j/T+LVYO+PB71viVmWpfHuccZmHJX1+0xrF2raXxw6Ukr6X+JWX2xZGXLb3xhfTUR/b7gf3t/XW663nxD9IfnpJuft7e11YZoYbwxATpzRul/sGDUF62NVS+9pl0x6u2jlefbGGc894dOtjGBfn3m9Yvasc20nmH27y/+6+9qc60151mz3XFYxakds2Tvr4v9P67pz14oPTGn+2z+duH7bM5uLttl2PcVw5EbLvI+2N2T+f60q6p8ija9JH3O/e5B/yTrBw2siR2aA87Hvj8was9PNJfJtoX/pMfWjiYnir5Kq1CoVW6NOVPoS7i7r/EgsZbX5ZuedG6aHTC0UYX672vYXL3dB3bWBBy12sW+nhkfwhdf7q9R1c8Gppn315WCffOfNtfUpNsP27f2v6gcX8e//N/1gD+yRLrvzcp0fofLiiRbjgzNG15pR0zdxTZZzfS+u2u6ptgdVtJmYVQFb7Qe+/3W/hw31s2fY920jNXSGffHXzdzmekts9k0CXHWHjzzHTrkrK4TMrLkvbvZ11luqsdf32sXWTwt5dDVTQ7X9gz+6X7eHH14zbW1C9GS/+8wI6LzjL6dLQ/kv/zllVFJSVayPTgpVYdU+MHIsrnwnkPHp1mIdzpB9XtWO7e//7wVPjy0pLtAg6f375nBnWzAN3ZPpIdk685RXrgbdu/JFv+mzfaZ8+9Lb1e6z/4H6/Y99TdU+2PrjMPtuond9d/sV5j1WPO99Ug6ybwwXetkqhjG6uiu+bkOnzH1uH45Exz//9JL34qXXS/9QE9dqD0j/PCu0NoDHdfaBVI//3Auujt1ta67XRfaSfZsd/nD1V2Of53lXXTd/sU24f7drJKtFPHhKZx9jsqiwAAAADUxfnjraebB9+x8+nNO+1itN4dpdMOkv7vaDu3yM2WXv6j9OdnpUsetHbE40ZIT1wuHXq9qp33JyVIL/3B2u/unmrnjOcdZr3p1NQmlZFq5/Z3vFK9LeKx30nXPh1+rvva9cHzdVU/F6ytLUKyi0Dn3GHnpc9/YiGCP2BtriN6S89eZdM4y/nHedYGcO/r1oY1rId1oeacU9e4DrHa5eqxvnvS+f8Ov/3YNPsnWTuLVHM71mXHV2+/rut57/vBC9Tvnmr/3A4aIL0d0ftRmBjvY0D2ufAHwu//wykWQD32gbVLt2ttGYK77SEOz589gYDTP1Ac+/tka+ha+V87yEnSvB+kGd/YBwfx7bhbbHyg08bYl2HkQHxoWKs2SyOvsiqvayL2x8c+sC+YPRlgouG8u8BClAuOaOo1wZ6wt+5/z82Qfv2wNOO28LETW7KNO6xy+cIjonftCAAAAAAN7dIHrWplw9NNvSZA3cThuXTDVhYBQH18vdpKig/oZ+n+Dxus26ysNOncw5p67QAAAAAAAACgRSIsAtB8pKdYl1jPfGzjvGSnS2MHWPd07Vo39doBAAAAAAAAQItEWCRZf4rXn97Ua4Hm6p2bpLVbLcBAw+rdwcZnAoCG8stx9g8AAAAA0Hge/o39A9BseZt6BQAAAAAAAAAAANB0CIsAAAAAAAAAAADiGGERAAAAAAAAAABAHCMsAgAAAAAAAAAAiGOERQAAAAAAAAAAAHGMsAgAAAAAAAAAACCOERbF4vFICbw9COLz0DwleG3bYO/g9bIftSTsfwAAAAAAAC2GJxAIBJp6JQAAANBAKiqlbYVSbpaUlNjUawMAAAAAQPMXh+fShEUAAAAAAAAAAABxjP6AAAAAAAAAAAAA4hhhEQAAAAAAAAAAQBwjLAIAAAAAAAAAAIhjhEUAAAAAAAAAAABxjLAIAAAAAAAAAAAgjhEWAQAAAAAAAAAAxDHCIgAAAAAAAAAAgDhGWAQAAAAAAAAAABDHCIsAAAAAAAAAAADiGGERAAAAAAAAAABAHCMsAgAAAAAAAAAAiGOERQAAAAAAAAAAAHGMsAgAAAAAAAAAACCOERYBAAAAAAAAAADEMcIiAAAAAAAAAACAOEZYBAAAAAAAAAAAEMcIiwAAAAAAAAAAAOIYYREAAAAAAAAAAEAcIywCAAAAAAAAAACIY4RFAAAAAAAAAAAAcYywCAAAAAAAAAAAII4RFgEAAAAAAAAAAMQxwiIAAAAAAAAAAIA4RlgEAAAAAAAAAAAQxwiLAAAAAAAAAAAA4hhhEQAAAAAAAAAAQBwjLAIAAAAAAAAAAIhjhEUAAAAAAAAAAABxjLAIAAAAAAAAAAAgjhEWAQAAAAAAAAAAxDHCIgAAAAAAAAAAgDhGWAQAAAAAAAAAABDHCIsAAAAAAAAAAADiGGERAAAAAAAAAABAHCMsAgAAAAAAAAAAiGOERQAAAAAAAAAAAHGMsAgAAAAAAAAAACCOERYBAAAAAAAAAADEMcIiAAAAAAAAAACAOEZYBAAAAAAAAAAAEMcIiwAAAAAAAAAAAOIYYREAAAAAAAAAAEAcIywCAAAAAAAAAACIY4RFAAAAAAAAAAAAcYywCAAAAAAAAAAAII4RFgEAAAAAAAAAAMQxwiIAAAAAAAAAAIA4RlgEAAAAAAAAAAAQxwiLAAAAAAAAAAAA4hhhEQAAAAAAAAAAQBwjLAIAAAAAAAAAAIhjhEUAAAAAAAAAAABxjLAIAAAAAAAAAAAgjhEWAQAAAAAAAAAAxDHCIgAAAAAAAAAAgDhGWAQAAAAAAAAAABDHCIsAAAAAAAAAAADiGGERAAAAAAAAAABAHCMsAgAAAAAAAAAAiGOERQAAAAAAAAAAAHGMsAgAAAAAAAAAACCOERYBAAAAAAAAAADEMcIiAAAAAAAAAACAOEZYBAAAAAAAAAAAEMcIiwAAAAAAAAAAAOIYYREAAAAAAAAAAEAcIywCAAAAAAAAAACIY4RFAAAAAAAAAAAAcYywCAAAAAAAAAAAII4RFgEAAAAAAAAAAMQxwiIAAAAAAAAAAIA4RlgEAAAAAAAAAAAQxwiLAAAAAAAAAAAA4hhhEQAAAAAAAAAAQBwjLAIAAAAAAAAAAIhjhEUAAAAAAAAAAABxjLAIAAAAAAAAAAAgjhEWAQAAAAAAAAAAxDHCIgAAAAAAAAAAgDhGWAQAAAAAAAAAABDHCIsAAAAAAAAAAADiGGERAAAAAAAAAABAHCMsAgAAAAAAAAAAiGOERQAAAAAAAAAAAHGMsAgAAAAAAAAAACCOERYBAAAAAAAAAADEMcIiAAAAAAAAAACAOEZYBAAAAAAAAAAAEMcIiwAAAAAAAAAAAOIYYREAAAAAAAAAAEAcIywCAAAAAAAAAACIY4RFAAAAAAAAAAAAcYywCAAAAAAAAAAAII4RFgEAAAAAAAAAAMQxwiIAAAAAAAAAAIA4RlgEAAAAAAAAAAAQxwiLAAAAAAAAAAAA4hhhEQAAAAAAAAAAQBwjLAIAAAAAAAAAAIhjhEUAAAAAAAAAAABxjLAIAAAAAAAAAAAgjhEWAQAAAAAAAAAAxDHCIgAAAAAAAAAAgDhGWAQAAAAAAAAAABDHCIsAAAAAAAAAAADiGGERAAAAAAAAAABAHCMsAgAAAAAAAAAAiGOERQAAAAAAAAAAAHGMsAgAAAAAAAAAACCOERYBAAAAAAAAAADEMcIiAAAAAAAAAACAOEZYBAAAAAAAAAAAEMcIiwAAAAAAAAAAAOIYYREAAAAAAAAAAEAcIywCAAAAAAAAAACIY4RFAAAAAAAAAAAAcYywCAAAAAAAAAAAII4RFgEAAAAAAAAAAMQxwiIAAAAAAAAAAIA4RlgEAAAAAAAAAAAQxwiLAAAAAAAAAAAA4tj/Ay4sTPH3gwcwAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Visualize the SHAP values for Record number 64 with Model Prediction: 0.9987672567367554\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABmQAAAFqCAYAAAAEKjXTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACSTklEQVR4nO3dd5wU9f3H8ffu9QocvTdBAQVURMWu2BVLLNhjyU+TmMSaWGKiidHEWGNNojH2ggV7iwgiKDYQC4pSBaS362V3fn98dm5m9vb27pC9O+5ez8cD7nZudvc7ZWdnvu/5fr8hx3EcAQAAAAAAAAAAIGXCLV0AAAAAAAAAAACAto5ABgAAAAAAAAAAIMUIZAAAAAAAAAAAAFKMQAYAAAAAAAAAACDFCGQAAAAAAAAAAABSjEAGAAAAAAAAAAAgxQhkAAAAAAAAAAAAUoxABgAAAAAAAAAAIMUIZAAAAAAAAAAAAFKMQAYAAAAAAAAAACDFCGQAAAAAAAAAAABSjEAGAAAAAAAAAAAgxQhkAAAAAAAAAAAAUoxABgAAAAAAAAAAIMUIZAAAAAAAAAAAQMt69WNp3eaWLkVKEcgAAAAAAAAAAICWs75E+r+7paOvb9OhDIEMAAAAAAAAAACtwWNTpcKJ0vQvG553xwulI65rnvdKtaJ8fXn7b1T2zUptPPhP0rrili5RSqS3dAEAAAAAAAAAAEAbdtNzUk0k6SyFmyL6tHd/7f3dt9KE66WXr5E65TdTAZsHgQwAAAAAAAAAANuaT26TQqGWLkXj/P15qbI66Sx9Y/8kSV8slZauIZABAAAAAAAAAAAtLCujpUvQeGsekUoqpPzsemf5YEGpNp90qw7+7iuF7jhPGjWwGQv445RVRZWb2fAIMQQyAAAAAAAAAAC0JlFHuu0F6cG3pRXrpb5dpMuOk07bz5tnxwulfl2lV/8YfO5DU6S7XpEWrZK6d7Tn7LmDdMxfpHsvkE7bv+nv5Xrnc+n2F6VPF0gV1dJ2PaXzDpbOPTg4n1u2G8+U/viE9PG31trl8zsTL29VjYZecpc6fvuVPvndmRrz04MkSeXVUd31fole/rpcKzZHlJ8Z1rj+mbp0n0INKvLijX3/uUo9C9L01KldaqfdN6tYN04t1n4Ds/TwSZ1rp98xo1i3vles6ed3U7+O9hqVNY7+/VGJJn9ZrqUba5SVHtJufTJ1yT6F2rG7F3y9v7RSE59Yp5uP6KiyakcPf1qqpRtr9Is98nXx3oWJl82HQAYAAAAAAAAAgNbk2iesi69zxksZ6dJ//if9/F5pcA9pj+3rf96dL0tXPyqN6Cddc7IUiUqPT5PemP3j3+vB/0kXPSDttp0FNnlZFtBc/ICFP9efHnzdZeuko6+XjttDOmasVFpZfxmqapS+sURXHnGCxkzYT2Mk1UQdnTVpvWZ9X6VDh2brnDH5Wr6pRg/PLtO7i9boudO7aEgXC0vG9c/Ss1+Uqbw6qpwMa6kyc0mVwiHpw2VVqoo4ykwLxaZXqk9hWm0YUx1xdOakdfp0eZWOG5Grs3bNU3FlVE9+VqafPLpWk07trJE9MwPF/c/HJdpY7mjiqFx1zQurZ0Fa/cvmQyADAAAAAAAAAEBrUh2Rpt4gZcaq8I/bQxr5a+mfb9QfyGwoka5/WhraS3r7z1Julk0/72Bp3G9/3Hut3CD99iHp+D2lB3/tPfe8Q6Tf/tda5JwzXhrUw/vb4tXSPRdIp+/f8PLmZ+vL/16lJ5/eoDGxSZM+L9Os76t07pg8/eGgDrWzHjwkWyc8tk7Xvb1Zj55sLV/G9cvSE5+V6aNlVdp3YLaqI44+WlalY4fn6LkvyzV7RZV275ulimpHs1dU6ZjhubWv999PSvXB0io9dGKR9h/kdal2xs55OuSBNfrLO5sDLW8kacXmiN75WTcV5TYuiHE13KkZAAAAAAAAAABoPucd7AUkktSryLoHW7iy/udMmSuVV1lI4oYxklSYW7dLsaa+1+RZ1orm9P2kdZuD/w7f1bo9m/ZF8HWLCqRT9w1Mqqh29MJXZYnLkRaMK96YX6GQpF+NKwhM361Plsb1z9SMJZUqroxKksb1txYsM5ZUSZLm/FClsmpH54zJU+fcsGYsttY5Hy+vUmXEm1+SJn9VroGd0jSyR4bWl0Vq/1VHHO09IEsfLatSRbUTKMNPdsxtchgj0UIGAAAAAAAAAIDWZUC3utOK8qXv19b/nCVr7OeQnnX/NrT3j3uvb5bbz+NurP91Vm+q+7phL2SpqHZ09rPrNGtplYZ1y9DQLhlKZunGiLrkhdUpp267kh26ZGjmkiot2xTRsG5hdclL09Au6Zq5xIKXmUuq1DE7pBHdM7Rnv0zNXFqlS6Tav4/r7wVW362rUUWNo53vXFVvWdaXR9UrwwtgBnTasmiFQAYAAAAAAAAAgNYkrZ7OrRwn8fQf87dGvVfs93svkHp1Tjx/fLCT67VCqah2dE4sjLnlyI4NhjENSbQ04/pn6eFPS7WpIqqZSyq1Z78shUMhjeufpT++tUmlVTZ9u87p6p6f5nstR0M6p+va8R0SvKopyg2uo5yM0BaVm0AGAAAAAAAAAIBtnRuIzF8hHTQq+LdvV/y41x4ca3VTVCAdsFOTnloVcXTus+s0Y0mVRvbI0OINNbrtvc115vt+U0SS9Mb8ci3bVKNehWEtXFyjDeXROq1k5q+tVjgk9engBSvj+mXqv5+U6p2FFZq9okrXxMad2at/lqqj0pQFlZq7slqn7ZwbeK1BndK1ujSqcf0zFQ5tWdDSWIwhAwAAAAAAAADAtu6AkVJ2hnT/W1JZpTe9uFx64K0f99rH7SFlZUg3PhN8bdemMhtjJoHNFVF9uMzGdpm7slq3zyhJ+O/ZL8olSW99V6nbZ5Ro34FZciTd/X5x4PU+WV6lmUuqtHf/LBVkeRHHHv2yFA5Jd80sUWXEghjJuhfrXZimO2YUK+J402sXbUSu1pVF9c9ZJQnLv6Y00qhV1Bi0kAEAAAAAAAAAYFtXlC9dfZJ0zWPSQddIp+wjRaLSY9OkzoXS0rWStrAFSO/O0m3nShf+U9rtUmniPlK/rtLazdKXS6VXPpY+vFnqX3c8mi55abrvuCJd8Px6jeiWoYdP7qzCrLptRd5fWqmJT6zTzUd01Ik75aom6uh/31Xq3x+VatmmiMb1z9LyzRE9/GmpCrJC+sNBhYHnd8gOa0T3DH2+slo9C8IaVOTFH3v2y9QzX5QrHJL27BcMZM4Zk6f3Flfqr9OK9f7SKu3VP0sFWSEt3xzRjCWVykoP6alTumzZeotDIAMAAAAAAAAAQFvwm6OlwhzprlelPz0lde8onXmANLyvdNqtUk5mgy9Rr9P3l7brKf3jZenBt6VNpRb0DOkp/f4ke696HDQ4uzaUOf2pdXrkpM7qkJ28A6/0cEgPnVikO98v0cvzyvW/7yqUnxXWgYOzdMnehRrcuW68sVf/LH2+slrj4lrB7NU/S898Ua7h3TLqvG9GWkgPnlikRz4t1XNfluu2GdYip3t+WKN6ZuqEHXMat34aIeQ4yUbzAQAAAAAAAAAA27R/vCT9/jHpf3+Wxg5psWK8vaBCN03brIdP6qzu+WkNP6GNIZABAAAAAAAAAKAtqKiSsuNawWwuk8b9ViqtlL65V8ps2Y6zIlFHaeEt7DptG0eXZQAAAAAAAAAAtAXTv7IxZI7ZXepVJC1bJz021X7+42ctHsZIardhjEQgAwAAAAAAAABA2zCoh/3779vSumILYHbqL/3tLOnosS1dunaPLssAAAAAAAAAAABSLNzSBQAAAAAAAAAAAGjrCGQAAAAAAAAAAABSjEAGAAAAAAAAAAAgxQhkAAAAAAAAAAAAUoxABgAAAAAAAAAAIMUIZAAAAAAAAAAAAFKMQAYAAAAAAAAAACDFCGQAAAAAAAAAAABSjEAGAAAAAAAAAAAgxQhkAAAAAAAAAAAAUoxABgAAoA2bOnWqrr32WpWVlbV0UVrMxo0bde2112rOnDktXRQAAAAAaLO++OIL3X333br++ut17bXXauXKlZKkF154QY8++miTX2/hwoW64YYbtHnz5q1d1BZDIAMAAAAAAAAAALZYaWmpnn/+eRUVFen000/Xeeedp86dO+uHH37QnDlzdOCBBzb5NQcNGqTevXvr7bffTkGJWwaBDAAAAAAAAAAA2GLr1q1TJBLRyJEjNWDAAPXp00cZGRl677331Lt3b/Xq1WuLXne33XbT559/rk2bNm3lEreM9JYuAAAAAFJv06ZNeumll7Rw4UJJ0vbbb69DDz1UeXl5tfN88cUXmj17tlatWqWKigp17NhRO+ywg/bdd19lZmbWzrdhwwa9/fbbWrJkicrKypSdna1u3brp0EMPVY8ePQKv98EHH2jVqlUKhULq27evxo8fr549e9ZbzpUrV+q+++7ThAkTtMsuuwT+9u233+qxxx7TKaecou23317r16/Xu+++q6VLl6q4uFjZ2dnq2bOnDjroIHXv3j3p+pg8ebIWL16siy66KDB96tSptd28uRzH0ccff6xPPvlEa9euVXp6ugYNGqSDDz5YnTp1Svo+AAAAANDWTZ48ubaL6EmTJmnSpEkaMGCATjjhBH399dc67LDDAvO//PLLmjNnjs4555zaoMZxHD388MNavXq1LrjgAhUUFEiya9fMzEx9+umnOuCAA5p1uVKBQAYAAKAdeOqppzRixAiNGTNGq1ev1jvvvKM1a9bovPPOU1pamiRp/fr1GjJkiPbYYw9lZGRo7dq1mjFjhpYvX66zzjqr9rUee+wxRaNRHXzwwerQoYPKysr0/fffq6Kionae6dOna8qUKRo9erT23XdfRSIRzZw5Uw8++KB+9rOfqWvXrgnL2aNHD/Xs2VNz5sypE8jMmTNHeXl5GjJkiCSpuLhYubm5Gj9+vPLy8lReXq45c+bo/vvv1/nnn68uXbpslXXnXizsvvvuGj9+vMrLyzVt2jQ98MADuuCCC5Sfn79V3gcAAAAAtkX77ruvevfurVdeeUUHHXSQBg4cqKysLC1YsECRSEQDBgwIzH/YYYdp2bJlmjRpks4//3xlZ2dr6tSpWrx4sU4//fTaMEaS0tLS1LdvX82fP79NBDJ0WQYAANAODBs2TAcffLAGDx6sPffcU0cffbR++OEHffnll7Xz7Lvvvtpjjz00ZMgQ9e/fX7vssouOPfZYLVq0SKtWrZIklZWVae3atRo7dqxGjhyp/v37a9iwYTrkkENqT7I3bdqkd955R2PHjtUxxxyjoUOHatiwYTrjjDOUmZmpqVOnJi3r6NGjtXTpUq1bt652Wnl5ub755huNGjVK4bCdwvbv31+HHHKIhg8frv79+2vo0KE68cQTVVhYqE8++WSrrLdly5bpk08+0fjx43XIIYdou+2200477aQzzzxTlZWVev/997fK+wAAAADAtqqoqKj2prvOnTurT58+6tq1q5YtW6aMjIw6N8ulp6frpJNOUllZmSZPnqyFCxfq3Xff1T777KPBgwfXef2ePXtq5cqVqqqqapblSSVayAAAALQDO+20U+DxiBEj9Pzzz2vx4sUaOXKkJOuKbMqUKVq0aJFKS0vlOE7t/GvWrFH37t2Vk5OjoqIizZw5U47jaMCAAerRo4dCoVDtvAsWLFA0GtWoUaMUjUZrp6enp2vAgAFatGhR0rKOHDlSb731lubMmaODDjpIknV/VlNTo9GjR9fOF41GNWPGDM2dO1fr169XJBIJlHdrmD9/vkKhkEaOHBlYlvz8fHXv3l2LFy/eKu8DAAAAAG2N26uB/3rRVVRUpAkTJmjSpEn67rvv1L9/f+2///4JXycvL0+O46ikpERFRUUpLnVqEcgAAAC0A/HdaoXDYeXm5qqsrEySVFVVpf/85z9KT0/XgQceqM6dOysjI0ObNm3SU089pZqaGklSKBTSmWeeqWnTpmnGjBl64403lJOTo5EjR+rAAw9UVlaWSkpKJEn/+te/EpYl0cm4X05Ojrbffnt99tlnOuCAAxQOhzVnzhz17t1b3bp1q53vjTfe0Icffqi9995b/fv3V05OjkKhkF588cXa8v5YJSUlchxHf//73xP+nTFkAAAAACCx6upqpafXH0EMGTJE+fn5Kikp0Z577lnbG0I89zW21nVeSyKQAQAAaAdKSkpUWFhY+zgajaqsrEy5ubmSpEWLFqm4uFg//elPA/37+seFcXXs2FHHHHOMJGndunX68ssvNXXqVEUiER111FG1r3nSSSepY8eOW1Te0aNH68svv9TChQvVoUMHLV++XEcddVRgnrlz52rUqFG1rWhcZWVlys7OTvr66enpCU/m3YDK5d7NdfbZZye8kHDH3wEAAAAABOXm5uqHH36o9+8vv/yyKisr1a1bN7322mvq16+fcnJy6sxXXl5e+3rbOsaQAQAAaAc+//zzwOMvv/xS0Wi0zuCK8aHDxx9/nPR1O3furH333VfdunWrPdHebrvtFA6HtWHDBvXq1Svhv4YMHjxYhYWFmj17tmbPnq309HTtuOOOdeaLL+/8+fO1efPmBl+/Y8eOKi0trW3NI0mRSETfffddYL6hQ4fKcRwVFxcnXI7u3bs3+F4AAAAA0B516dJF5eXlCW/0+/TTTzV37lwdccQROuWUU1RRUaEXXngh4ets2LBBubm5ysvLS3WRU44WMgAAAO3AvHnzFA6HNWjQIK1Zs0ZTpkxRjx49NGLECElS3759lZOTo5dffln77bef0tLSNHfuXK1atSrwOqtWrdKrr76q4cOHq3PnzkpLS9OiRYu0atUq7b333pIs7DjggAP09ttva8OGDdpuu+2UnZ2t0tJSLV++XBkZGTrggAOSljccDmvUqFF6//33lZWVpWHDhtVp9TJ06FDNmTNHXbp0Uffu3bVixQrNnDkz0BKoPiNGjNA777yjZ555RnvttZdqamo0a9aswLg5ktSvXz/tuuuumjx5slasWKH+/fsrIyNDJSUlWrp0qbp166bddtutwfcDAAAAgPZmwIABchxHy5cv1+DBg2unr1q1Sq+99ppGjx6tnXfeWZI0YcIEPf300/rggw+0xx57BF5n2bJl6t+/f4PdX28LCGQAAADagZNPPllTp07VRx99pFAopO23316HHXZYbZdbubm5OvXUU/Xmm2/queeeU2ZmprbffnudcMIJ+uc//1n7Ovn5+erUqZM++uij2pYonTp10qGHHqqxY8fWzrfPPvuoa9eumjVrlj7//HNFIhHl5+erV69eGjNmTKPKPHr0aE2fPl01NTW1J+l+hx9+uNLS0jR9+nRVVVWpZ8+eOvnkkzVlypQGX7tTp06aOHGi3n77bT399NPKz8/XnnvuqbKyMk2dOjUw79FHH60+ffrok08+0UcffSTHcVRQUKC+ffuqd+/ejVoWAAAAAGhv+vXrp44dO+rrr7+uDWSqqqo0adIkdezYUUceeWTtvMOHD9fYsWP11ltvBa611q9fr1WrVmn//fdviUXY6kJO/G2AAAAAAAAAAAAAP9LMmTM1ffp0XXLJJcrIyGjy86dMmaLPPvtMv/nNbxQOb/sjsGz7SwAAAAAAAAAAAFqdsWPHKisrSx999FGTn1tRUaGPPvpIBx10UJsIYyQCGQAAAAAAAAAAkALp6ek6/vjja7vLbooNGzZo77331k477ZSCkrUMuiwDAAAAAAAAAABIMVrIAAAAAAAAAAAApBiBDAAAAAAAAAAAQIoRyAAAAAAAAAAAAKQYgQwAAAAAAAAAAECKEcgAAAAAAAAAAACkGIEMAAAAAAAAAABAihHIAAAAAAAAAAAApBiBDAAAAAAAAAAAQIoRyAAAAAAAAAAAAKQYgQwAAAAAAAAAAECKEcgAAAAAAAAAAICEJk2apAsuuEBjxoxRVlaWQqFQ7b8t9fHHH2vixInq1auXsrKy1L17d02YMEH/+9//6n1ORUWFbrrpJu26664qLCxUXl6edtxxR/3+97/Xpk2btrgszSnkOI7T0oUAAAAAAAAAAACtz+jRo/XZZ58l/NuWxAv333+/zj//fEWj0YR//8Mf/qDrrrsuMG3dunU6+OCDNXv27ITPGTBggKZMmaKBAwc2uTzNiUAGAAAAAAAAAAAktPPOO6u4uFhjxozRypUrNW3atNq/NTVemDNnjnbbbTfV1NRIkvbYYw8dddRRmjFjhl577bXa+V5++WUdeeSRtY9POOEEPfvss5KknJwcnX/++crOzta///1vrVu3TpK0++67a+bMmQqHW2/HYAQyAAAAAAAAAAAgofLycuXk5EiSrr322kDrlabGCyeffLKefvppSdLAgQP19ddfKzMzU5K09957a8aMGZIsXPnggw8kSfPmzdPw4cNrX+Nf//qXfvazn0mS3nrrLR1yyCG1f3vttdd02GGHNXURm03rjYoAAAAAAAAAAECLcsOYHysSieiVV16pfXzUUUfVhjGSdPzxx9f+PmvWLK1evVqS9OKLLwZe5yc/+Unt7+PHj1dhYWHt4/h5WxsCGQAAAAAAAAAAkFILFy5UaWlp7eNBgwYF/h7/eO7cuYGfktShQwcVFRXVPg6FQoFxY/zztkYEMgAAAAAAAAAAIKXcsV5c/pYtklRQUBB4vHbt2jrPi39O/PPc57RWBDIAAAAAAAAAACCl4sebaehxKBSqMz3RmDX+ae5zWisCGQAAAAAAAAAAkFKdO3cOPC4uLg483rx5c+Cx2zWZ/3nxz4l/nr87s9aIQAYAAAAAAAAAAKTU4MGDlZeXV/t4wYIFgb/HPx45cmTgpyRt2rQp0IVZNBrVokWL6jyntSKQAQAAAAAAAAAAW8W1116rUCikUCikAQMG1E5PS0vT4YcfXvv4pZdeUmVlpSTrduyZZ56p/dvYsWPVvXt3SdKECRMCr++f77XXXlNJSUnt4/h5W5v0li4AAAAAAAAAAABone69997a1iszZ84M/O2yyy6r/f3qq69Wp06dkr7WlVdeqeeff16RSERLlizR/vvvr6OOOkrTp0/Xhx9+GHgt1/Dhw3Xsscdq8uTJkqSLL75Y33zzjbKzs3XffffVzjdmzBgdeuihW7yczSHkJBoFBwAAAGhmpaWlchxHoVAo0IwdAAAAANBy9t9/f02bNq3B+RYtWqQBAwbo2muv1XXXXSdJ6t+/vxYvXhyY75///Kd+/vOfq75o4qqrrtJf/vKXwLS1a9fqoIMO0ty5cxM+p1+/fpoyZYoGDx7ciCVqOXRZBgAAgFbBcZzafwAAAACAtun888/XBx98oBNPPFE9evRQRkaGunTpoiOPPFJvvPFGnTBGkrp06aIPPvhAN954o3beeWfl5eUpJydHw4cP15VXXqk5c+a0+jBGooUMAAAAWomSkpLaFjL5+fktXRwAAAAAALYqWsgAAAAAAAAAAACkGIEMAAAAAAAAAABAihHIAAAAAAAAAAAApBiBDAAAAAAAAAAAQIoRyAAAAAAAAAAAAKQYgQwAAAAAAAAAAECKEcgAAAAAAAAAAACkGIEMAAAAAAAAAABAihHIAAAAAAAAAAAApFh6SxcAAAAAAAAAAAC0H2VlZXIcR6FQSLm5uS1dnGZDIAMAAAAAAAAAAJpNNBqtDWTaE7osAwAAAAAAAAAASDECGdSxYcMGnXHGGerQoYM6dOigM844Qxs3bmzwefPmzdOECRPUoUMHFRQUaI899tDSpUtTX2AgiS3dn13nn3++QqGQbr/99pSVEWiMpu7L1dXV+t3vfqeddtpJeXl56tWrl84880ytWLGi+QoNxNxzzz0aOHCgsrOzteuuu2r69OlJ56+srNSuu+6q7OxsDRo0SPfdd18zlRRoWFP25+eee04HH3ywunbtqsLCQu2555564403mrG0QHJNPT67ZsyYofT0dI0ePTq1BQSaYEvON66++mr1799fWVlZGjx4sP7zn/80U2mB5Jq6Pz/22GMaNWqUcnNz1bNnT5199tlat25dM5UWSOzdd9/V0UcfrV69eikUCmny5MkNPmfatGlt/lqQQAZ1nHrqqZozZ45ef/11vf7665ozZ47OOOOMpM9ZsGCB9t57b+2www6aOnWqPvvsM11zzTXKzs5uplIDiW3J/uyaPHmyZs2apV69eqW4lEDDmrovl5WV6dNPP9U111yjTz/9VM8995zmz5+vCRMmNGOpAempp57SRRddpKuvvlqzZ8/WPvvso8MPPzzpTRtr167VPvvso9mzZ+uqq67Sr3/9az377LPNWGogsabuz++++64OPvhgvfrqq/rkk090wAEH6Oijj9bs2bObueRAXVtyfJakTZs26cwzz9RBBx3UTCUFGrYl+/NJJ52kt99+Ww888IC++eYbPfHEE9phhx2asdRAYk3dn9977z2deeaZOvfcc/Xll19q0qRJ+uijj3Teeec1c8mBoNLSUo0aNUp33XVXo+ZftGiRjjjiiDZ/LRhyHMdp6UKg9Zg3b56GDx+uDz74QLvvvrsk6YMPPtCee+6pr7/+Wttvv33C502cOFEZGRl65JFHmrO4QFJbuj9L0vLly7X77rvrjTfe0JFHHqmLLrpIF110UTOVHAj6Mfuy30cffaSxY8dqyZIl6tevXyqLDNTafffdtcsuu+jee++tnTZs2DAde+yxuvHGGwPzlpSUyHEcrVq1Stttt13t9AsuuECfffaZ3n///WYrN5BIU/bn+owYMUInn3yy/vCHP6SqmECjbOn+PHHiRA0ZMkRpaWmaPHmy5syZ0wylBZJr6v78+uuva+LEiVq4cKGKioqas6hAg5q6P99888269957tWDBgtppd955p2666SZ9//33zVJmoCGhUEjPP/+8jj322Npp7vVfKBRSfn6+fve73+nFF1/UvHnzaudpi9eCtJBBwPvvv68OHTrUVvhJ0h577KEOHTpo5syZCZ8TjUb1yiuvaOjQoTr00EPVrVs37b777o1qhgak0pbsz5Lt02eccYYuv/xyjRgxojmKCiS1pftyvE2bNikUCqljx44pKCVQV1VVlT755BMdcsghgemHHHJI0n03voXtoYceqo8//ljV1dUpKSfQGFu6P/tFo1EVFxdT+YcWt6X784MPPqgFCxboj3/8Y6qLCDTaluzPL774osaMGaObbrpJvXv31tChQ3XZZZepvLy8OYoM1GtL9udx48Zp2bJlevXVV2tvbnrmmWd05JFHNkeRga3m/fffr7Pvt8VrQQIZBKxcuVLdunWrM71bt25auXJlwuesXr1aJSUl+utf/6rDDjtMb775po477jgdf/zxmjZtWqqLDNRrS/ZnSfrb3/6m9PR0/frXv05l8YBG29J92a+iokJXXHGFTj31VBUWFm7tIgIJrV27VpFIRN27dw9M7969e9J9Ny0trc78NTU1Wrt2bUrKCTTGlu7PfrfccotKS0t10kknpaKIQKNtyf787bff6oorrtBjjz2m9PT05igm0Chbsj8vXLhQ7733nr744gs9//zzuv322/XMM8/ol7/8ZXMUGajXluzP48aN02OPPaaTTz5ZmZmZ6tGjhzp27Kg777yzOYoMbDUrV65MuO+3tWtBApl24tprr1UoFEr67+OPP5ZkTcjiuc3HEolGo5KkY445RhdffLFGjx6tK664QkcddVSbHHgJLS+V+/Mnn3yiO+64Q//973/rnQfYWlK5L/tVV1dr4sSJikajuueee7b6cgANid9PG7vv+udP9DpAS9jS/fmJJ57Qtddeq6eeeiphyA60hMbuz5FIRKeeeqquu+46DR06tLmKBzRJU47P0WhUoVBIjz32mMaOHasjjjhCt956q/773//SSgatQlP256+++kq//vWv9Yc//EGffPKJXn/9dS1atEgXXHBBcxQV2KoS7fuJpm/LuK2lnbjwwgs1ceLEpPMMGDBAc+fO1apVq+r8bc2aNXUSSleXLl2Unp6u4cOHB6YPGzZM77333pYXGqhHKvfn6dOna/Xq1YHxNSKRiC699FLdfvvtWrx48Y8qO+CXyn3ZVV1drZNOOkmLFi3SlClTaB2DZtWlSxelpaXVuZtv9erVSffdSCRSZ/709HR17tw5JeUEGmNL92fJBuc999xzNWnSJI0fPz6VxQQapan7c3FxsT7++GPNnj1bF154oSSr0HYcR+np6XrzzTd14IEHNkvZgXhbcnzu2bOnevfurQ4dOtROGzZsmBzH0bJlyzRkyJCUlhmoz5bszzfeeKP22msvXX755ZKkkSNHKi8vT/vss4+uv/569ezZM+XlBraGHj16JNz329q1IIFMO9GlSxd16dKlwfn23HNPbdq0SR9++KHGjh0rSZo1a5Y2bdqkcePGJXxOZmamdtttN33zzTeB6fPnz1f//v1/fOGBOKncn88444w6FSWHHnqozjjjDJ199tk/vvCATyr3ZckLY7799lu98847beoEBtuGzMxM7brrrnrrrbd03HHH1U5/6623dMwxx9T7vMrKysDjN998U2PGjFFGRkbKygo0ZEv35yeeeELnnHOOnnjiCfpyR6vR1P25sLBQn3/+eWDaPffcoylTpuiZZ57RwIEDU15moD5bcnzea6+9NGnSJJWUlCg/P1+S1WGEw2H16dOnWcoNJLIl+3NZWVmdriTdLoDd1gXAtmDPPffUSy+9FJjWJq8FHSDOYYcd5owcOdJ5//33nffff9/ZaaednKOOOiowz/bbb+8899xztY+fe+45JyMjw/nXv/7lfPvtt86dd97ppKWlOdOnT2/u4gMBW7I/x+vfv79z2223pbikQHJN3Zerq6udCRMmOH369HHmzJnj/PDDD7X/KisrW2IR0E49+eSTTkZGhvPAAw84X331lXPRRRc5eXl5zuLFix3HcZwrrrjCOeOMMxzHcZzi4mJn8+bNztdff+1cfPHFzldffeU88MADTkZGhvPMM8+05GIAjuM0bX92HMd5/PHHnfT0dOfuu+8OHIc3btzYUosA1Grq/hzvj3/8ozNq1KhmKi2QXFP35+LiYqdPnz7OCSec4Hz55ZfOtGnTnCFDhjjnnXdeSy0CUKup+/ODDz7opKenO/fcc4+zYMEC57333nPGjBnjjB07tqUWAXAcx461s2fPdmbPnu1Icm699VZn9uzZzpIlSxzHcZxly5Y5mzdvdoqLix3HcZyFCxc6ubm5bf5akEAGdaxbt8457bTTnIKCAqegoMA57bTTnA0bNgTmkeQ8+OCDgWkPPPCAs9122znZ2dnOqFGjnMmTJzdfoYF6bOn+7Ecgg9agqfvyokWLHEkJ/73zzjvNXn60b3fffbfTv39/JzMz09lll12cadOm1f7trLPOcvbbbz/HcbxAZu3atc7OO+/sZGZmOgMGDHDuvffeFio5UFdj92fHcZz99tsv4XH4rLPOav6CAwk0ZX+ORyCD1qap+/O8efOc8ePHOzk5OU6fPn2cSy65xCkrK2vmUgOJNXV//sc//uEMHz7cycnJcXr27OmcdtppzrJly5q51EDQO++8k/RceMmSJYFAxnEcZ+rUqW3+WjDkOLRdAwAAQMsrKSmpHbDU7T4EAAAAAND2tNfrv3BLFwAAAAAAAAAAAKCtI5ABAAAAAAAAAABIMQIZAAAAAAAAAACAFCOQAQAAAAAAAAAASDECGQAAAAAAAAAAgBQjkAEAAAAAAAAAAEgxAhkkVVlZqWuvvVaVlZUtXRTgR2N/RlvC/oy2xN2fHcdp6aIAPwrHZrQl7M9oS9if0ZawP6Ot2bx5c7van0MOV75IYvPmzerQoYM2bdqkwsLCli4O8KOwP6MtYX9GW+Lfn0OhkEKhkPLz81u6WECTcWxGW8L+jLaE/RltCfsz2oqSkhI5jqPly5erV69e7WZ/poUMAAAAAAAAAABAihHIAAAAAAAAAAAApFh6SxegMRzHUXFxcUsXo13avHlz4CewLWN/RlvC/oy2xL8/u12WRaPRFi4V0HQcm9GWsD+jLWF/RlvC/oy2wu2yrKSk5EfvzwUFBQqFQlupZKm1TYwh4/aNCAAAAAAAAAAA4NqWxlTaJgIZWsgAAAC0fe4dUqFQSPn5+S1dHAAAAABAimzN679tqYXMNtFlWSgU2mYSLgAAAGyZcDhMIAMAAAAA7UB7vf4Lt3QBAAAAAAAAAAAA2joCGQAAAAAAAAAAgBQjkAEAAAAAAAAAAEgxAhkAAAAAAAAAAIAUI5ABAAAAAAAAAABIsfSWLgAAAAAgSaFQKPATAAAAAIC2hEAGAAAArUJeXl5LFwEAAAAAgJShyzIAAAAAAAAAAIAUI5ABAAAAAAAAAABIMQIZAAAAAAAAAACAFCOQAQAAAAAAAAAASDECGQAAAAAAAAAAgBQjkAEAAAAAAAAAAEgxAhkAAAAAAAAAAIAUCzmO47R0IQAAANDORKPSN8ul9SWS40jhkBQO23RHUlrYpjuOPQ6HpFDIm7cmKoVkz3E5jiRHivrmT8ZxbB7/ezbEff9IE56T6D0j0caVEQAAAADaoM3b91AoPayaqLS0NEuOI3XNC6lnYZrC4bbbjoRABgAAAM3rh/XSgpXBaZXVUlaG9/ib5dL2vb3HNz8vRR3p10dJ2Zk2bdEq6Zf/tN+vPUUaO8Sb/77XpRc/rL8Mg7pLfzld6pBnj2si0kk3SRXV9T9nx37SNSdLBTn2uLRCOvnvVq7GuHiCdNAoC2Ik6cnp0sPvNO65AAAAANCGbPziDqV1ylVNVPq+LDvwt+06pyk3s22GMm1zqQAAANB6+YMXV2Z68ueMGiit2uiFMZI0sLvUIdd+31hSd/5klq+Xcn0n/elp0o79G3jOOi+MkaS8bGlIr+TP8dtQ4oUxkjS6gTICAAAAQFuVpLOAnIy225MAgQwAAACaV2Fu3WnxXXfVRIKPRw+U5q+QyiqD093gZc6i4PSR/YPhR7zKaumbZXXfI5kNpdLi1U17jl98GYf0knKzGv98AAAAAGgj6rtaSwtLoTbctTOBDAAAAJpXelqwpUkiXQqDj7t2kHp0lL5YGpzuBiKfLQ5Ob0zrlfiApKFWNZL0WdxzmhLIfPW9VFXjPU4LSzs10CoHAAAAANqg+iKX/My2G8ZIBDIAAABoCR3zkv+9e0fr4stv1MC6gYgbomwokZasTvy3+sQHMoN7JG69k+w5w/o23N2aq6pGmvd9cBrdlgEAAABArc45bTuyaNtLBwAAgNYpUSATdYKPV24IPh49sG4g0rOThTdS3b81FHbMXy6VVwWnjRqQ/DmfL5EiUe9xZro0vG/y5/htSascAAAAAGgn8rJoIQMAAABsXQU5dcd4STbmiySNHCAtWSVtKg1Or+22LC7sGN5A65WaqPTFkuC0hgKSskrp2xWJ378x4gOZAd2kTg20FgIAAACAdiCjjY8fIxHIAAAAoCWEww13D9azKPi4MFca2KPueDFuiJKo9cqwBlqvNLVVTaLnNKWVy7crpNKKLX8+AAAAALRRBdltO4yRCGQAAADQUhoaR6ZjnrRqY3Baom7L3G7GSiul736oO38y8a1qehVJ3To07Tnb9ZTyspI/xxV1LDjyI5ABAAAAABW18fFjJAIZAAAAtJQOCQIZJ24cmbWbg49HJQhkOuVb119S3bCkoUBm0SppU1nd90hm3jKpqsZ7nBa27tQaK76FT1O6PAMAAACANiongxYyAAAAQGrkZ1uY4RffX3B6WvDxjv2ktZvqtpxxQ5T4sKah1iuOpLmLg9MaCkiqaqSvvk/8/o0RHxp17yj16NT45wMAAABAG5OZ1vbHj5EIZAAAANBSQqGGuy3r0zn4ODtT2qFP/WO/fPV93dYrO/VP/h7xAYnbBVoyWzL2jGvxamlDyZY/HwAAAADamA7tYPwYiUAGAAAALSlRt2V+ednSsrXBaaMG1g1RduovhUMWxsxrYuuV+HClqEDq1zX5c+Lfv19XqSg/+XMCz18cfEwgAwAAAKAdK8ptH1FF+1hKAAAAtE6JWsjEjyOzsTT4eHSCQCY3Sxra235vauuVFeul1Zua9pxvV0ilFcFpP6bbslEDpPZxQxgAAAAABIQkZaW3j6iifSwlAAAAWqecTCkjPTgtvt/gnLgxYLbvLZVXWddffqPrGUemfzepUwOtV+oEJA2EK1FHmrsk8fs3RnwZO+RJA7o3/vkAAAAA0EZkpzc8T1tBIAMAAICW09hxZGoi3uP0NGnH/vWP/ZKw9cqA5O8RH5CMjHWBlsyWjD3jWrVR+mHDlj8fAAAAANqIDjntJ6ZoP0sKAACA1qmhbsuyMqTv48aRSdRt2bC+Uma6tV75PK71SkMtXuJfKy9b2q5n8ufEhzjdOko9OyV/TrL3ZBwZAAAAAO1QUU776b+ZQAYAAAAtqyCn4XniW7wM7SXNXxGclpkuDehmv3+7ou78yawvkdZubtpzlq6RKqqa9hy/+PIPacJzAQAAAKCNSE9rPzFF+1lSAAAAtE7xYUsi8ePILFwlDeoRnFYTsZBEkgbGjceyaFXy1y/MlboU1n2PZHoVSdmZTXuO36AmlhEAAAAA2qCaSLSli9BsCGQAAADQsjaW1p0W8jVZr45IfbsE//7ZorrdkH2zXKqolkKSRg4I/i2+e7F48eO3lFdJ85cnf058F2Priut2rZb0PeOe31AZAQAAAKAN2ljhNDxTG0EgAwAAgJaVKJDx+36tdUfmikSluYul0QOC87mBxqAe1uIl0d/qEx+OfLFEqmngLq3458SPCZNM54LEIRMAAAAAtDMbymkhAwAAAKReRZVUWR2c5sTdHRXfpdl3P0hpYWlwz+B0N9CIb7myfF3d8WHixT+noQAnUSucpgQq8WFOcbm0YGXjnw8AAAAAbURFdcPztBUEMgAAAGg5DXVXJkkd4lq7fLaobhhSUSV9vcx+b2pXYN062Hgw8e+RzMAedcvVlC7H4gOguYulaPtppg8AAAAALkdSdTsZR4ZABgAAAC2noe7Kyiul3p2D0+YsqhtofLHUuhhLD0s79qs7fzLxAc6mUmnRquTPSdQKZ00DrXCSPZ/uygAAAAC0Y+tKCWQAAACA1HGchgOZZeusezJXVY301ff1j9+yQx8pO9ObHnWs9UkyiVqrNNRY5ccEKr07S10Kg9Oa0roGAAAAANqYTZXto8cAAhkAAAC0jLJKqSYSnBY/fkz8+DLzvreuwhK1mpHqBjULV9r4LMmMGpD4teqzJa1w/OLDnLWbLXgCAAAAgHaqsqalS9A8CGQAAADQMhozfkxRQfBxou7KNpdZ8CLV/VtDQUm/ronfI5nt41rhSA23wvGjuzIAAAAAqKOipu13W0YgAwAAgJbRUHdlm8ukXkXBaXMW1W0F43Yxlp0hbd87+LeGwo74cGT1RumHDU17zoIfpM0NtMJxhUPSyAHBaXRXBgAAAADtYhwZAhkAAAA0v6gjbWogkFmxPvi4tEL6dkX9rWB27C+lp3nTqyPSF0uTv0d8uNOYcKTOcxY3/BzXoB5SQU7T3xMAAAAA2rjNFW1/HBkCGQAAADS/knILZfziH0fi7o76fImNHRPfxZjbCiY+qPlmWd0xaPzCIWlk/+C0hsKR7Axphya2wvGLL+OytdK64sY/HwAAAADaqOqo5MSPK9rGEMgAAACg+SXqriwcN35Mj47Bx58l6K5szSZpeawlTVNbuwzpJeVlx73H4uTPiW+FUxORvliS/Dl+W9IiBwAAAADaibJqAhkAAABg62po/Ji1m6XOhcFpcxbV311ZYa40uEfiv9UnPhxZslraUNK053y9XKpI0grHLz1NGtEvOK0prWsAAAAAoI1bX9a2x5EhkAEAAEDzikSl4rLk86zaGHy8vkT6fq20U1wXY26gMWpAcHp5lTR/efL3qC/cSfqcuPdpSqCyQx/r8swVdRpukQMAAAAAbVB97WCKK2khAwAAAGw9m8vqnn3Hjx+TFneaOneRNLinVJATnO6GKPEtV75YItUkubMqM10a3jc4raFwpTDHypDo/RsjPgBa8INUUtH45wMAAABAG1Ff7FLTxseRSW/pAgAAAKCNchypOiJV10hVNVJVtbVcWbTawoiKavtbryILJqpqLHDJyZSKy6VFq6ybr84F0qz5UvcO1q1YVY3Uv5u0coO1nJGsy7Ilq6VwWOrbpeGgpE9naV2xVF4pde0g5WZJnzcwFszA7lbOlRvs+ZL0zbLGr49+XWzMmc1lVl5axwAAAABor5JkLuXVjnIzQ/XPsA0LOW05bgIAAEDDolELTqpiwUl1jT2ujAUopRX2s6zSAoyyKqmiyqZVVEkl5RZUlFRKZRXedDdwqY5YEFEdkSIRu+UpErW/OY6FE1U11kqmQ66FIyUV9recTKl3ZxtzpqrGyhoOS0N72e9ri73lSAtLPTtJh+0irdhgZa2ssTKVVlr53X+VsXFfsjOk3YZK2/WQlqxJvH6qamxMm9WbpI0lUlaGNG4HK9eydU1b1xVVFhYdtrOtB1rIAAAAAGiHNp0yTuGcTNXUOFpanq2oIxXlhNSnY5rSwm23Yy8CGQAAgG1FJOqFJjU13u9VNRZ41AYoseCkNkSpsr/5g5XKagsHyiqlcjc4iYUn1RF7fTc4iToWjrinjY5j06Kxv4VCUkiSYj/d3xWS0iSFwvYwLWwtXtLD9ns4LIVDUka6/Z4We6yQam+Xykiz56SFpewsqSDb/uVkWXCTk2kBSSQWKlVUWcixucxa2dRE7HXCYWt94/4rzLUuyPJz7D3iVVZLK9bbuDXueDZdCq31Te/O9r5bYkOJ9NYc6eDRUqf8LXsNAAAAANjGlY7uJyfqKJSTpbyOhS1dnGZDl2UAAABbk+NYCFBVE9ddV4033d8SpazSApSKWDDib8VR29Ik1tqkqsaCh5pYSxP39WtDlEgsx3CCPx3fz1AoGKCEFZwWcoOUsAUl6WEpnOabJxaUpPuCEjdcycqQsjNjgUtaLFyRBTeRqFd2t5zpYXvNcNhaquTEAhY3aMnJknIzvemRqIUsbtiysUxautaCJncMmswMC1o6FUj9ulnwUpAj5WV75alPZbW0fJ20LBbCOJK6Fkq7bPfjQhi/UNjWbygc+x0AAAAA2p+8+aul6V9K54xv6aI0KwIZAADQPjmOF5q44Yi/u676WqK4QUlphbVCKY09ju+my+2aqybq66bL112X49hPtyzuz9q2y47khCxECMfCkHDI/u4GC+GQlBayAMMNNxSy13Fbm4TDNo8bqLjvE/W9vzuvG6xkpFmwkp0hZaZb0JKZLqWney1loo5vGSNSVUSqiq0Ht7WNZK+Xm1m3VUtt6JJp75UW9spWViltjgUvyzbbz83ltn4lW468LKkgV+pd5IUuhTlW1lADwYuf2xJmqRvCONYSZpdBNk5MTlaTd62kQr5/5DEAAAAA2qu2OURMgwhkAABA6+aONZIoLKlOFKj4WqVUuC1OKixACYx9Uu211vAHCxHfz6gT7K7LcXxdasWE5AUpbmuPsLzuuNwgxO16K0de6BL2ByEh32N/t15xXXhJXpkijuT4Wp/4X88NJdLCXqDi/xk/LS0k1ThSNNbaxt/dWVmVjdXijrviykjzWq90ypNyOtVt3VJfQFITsa7F1pd44Yvb8sUfFLndi3XvaAFMYazLsfQE3Yw1VlWNtYRZusYXwnSQdh4k9U1BCOMXCgX/AQAAAEB71E6vhwhkAADAj+e29kjUNVfCEKWmbusUNyhxW5y4g8O7r1cT18rEH574u+Ry/CGKvBYm/sDDbUXib0ESDltLDbfbrnBYsZQl+Lrua4dUN1AJxcKUjDQLOTLSbB7/eabblVhUwZYq0YgFIjUR6+JLigUtseeFQvaatSFKhpQVH7Kke9MzY6FLOGRBSllVcFyZskppXbFNK6vyWrS4sjO9YKVzgY2dUtulWKyFS0YjTiUrq6VNvrDFDV5KK72WQdmZFrR0LpQGdo+N75JrrWC21kl6bQizVlq5wWsJs/Mgb9mag7s8BDIAAAAA2rN2ejlEIAMAQHviOMEQpL7xTeod+6TaG8vE7aKrrNJ++scxCYQncd101Y5tEvs9Gmvl4Q4O74Yc4QS/u2OTZMW6uEoLBccqcZdR8sITxQafj7ihSlQ2dkrYN2ZKTEhe11yZacHf09JiXUz5AhpH3sD2bosad71Wxro3c8c28QuHvFYqOfGtVeICFTd0yUivOwZK1IkLWaqsxUlZXPDiL0M45HUVlpsldcyzn7mZwTFb0prQn1bUsRZIbtdibuiyudxrVROSlB/rVqxfVy90cbsZSwV/S5gfNlg5u8a6I+vbxZa7ublj9oTV8Jg2AAAAANBmtc/rIQIZAABao2i0aV1zxc9TWeV12VUZ+1dVY5X3busSf3AS31WXFGxx4shCE0e+35MFKLGfGWnWyiErM9YtVtirhI5vHeDUE9K4YYf7z209oliXXW55JQstMtJ9LVR8v2emWzdXmeneWCzuuo7GftbEQqXKagufKqulsjL7Gd+CxP+e/kAlPyfYYqVO2JLhG+8liZqIF6zEhyxuq5aKKi+Akiw0coOWvGwLH3KzgkFLduaWBwHVEak4QehSXObrZizNQpYOeVKvIi94KchpWsizpaprpGX+ECYqdY11R9ava8uEMH6hkBcE0kIGAAAAANoVAhkAAH4Mfzdd8S1O/IFJohDFrfh3Q5OqamtV4Vb+O04wMIkPTyJR74aSQJARN0C8f/yTZAFKeppV2mfEWmekx8Y8yUjzut5yK/Ld1/K/l/vebmuUqOMFHNU1Nl6IPzyJ546x4gYpmZlewBIfrrg/3XFE3OCmOrb+Kmu8QKWqxrrKqvSt30TlCIfqtlLpmF933JUs3zxuyNQUjuO1MHJbsPhDlvLY48q4ACgr3QtWOuVLvbK88VpyY79npv/4Sn7HsX2yNnAp87ocK6305svJlDrkSt06SNv1tBCmMNfK0dxBgz+EWbHeawnTWkIYv1CsyzwCGQAAAADtWTu9HCKQAQC0fW6wkbQrrmRjn9QTmrjz+8OIRMFJ1PEGfne7u3K70lIocYCSaJwSf5DitvJwQ4yM9LoBSrrvZ3parPLXH9LIC2r8rVDix3cpq/DWRX3Swr4gJfYzO13KzIlrrZLutVbJSAu2aJG89VpZHfxXVSOVlHt/83ed5m8h4kpPCwYobnhQOy0+ZMmwMvzYCvKo442F4w9b4rsQq/Gty1BIys7wQpXuHesGLTlZ3jraWqKOrVM3cNnkC2CqYmFQOGQtWwpzvbFdOsRavGS28GlkfAgTibWE2SUWwuRlt2z56hOOtZBxP8sAAAAA0B6108shAhkAQOvhthyo0zVX3KDwNTWJQ5T4lhHu4+oab/yS2sHefQGEG57Utjbx/XQc3wQFQwwpOMi749RtfZIWltLdLrrkhSNuiBIfnCSalh6WQuG675toPJjaEKUq2GKnJhJYjAD/YPFuSJIZa43hb42SKFBxp/tbibjlShSulFVa91v+LsHcgKsmQeATktclmPuvMDfYSiW+1Up2Rmq6xopE6wla/I/juhALh2KtWmL/igqshUuub1p2Zmq78qqqqdvSZXOZtRpyx5bJSPO6FuvbxbobK8yV8rObp5uxxnLHhFmyRvohFsJ08bWEaa0hjF8oFPwHAAAAAO1RO70eIpABADRdoBVFTT0hSiTx71W+wMRt4VDb6qEm2GIj8LtiXWH5uumSOw6I47VC8avNUmLdaPlbn0Rj09JiY3mEY90I+YVDXsuTjGStUNLrn5YetmDG7crLHfg+voszd5rbCiR+zJhEA8NLXpgSH5oU+FqmBMIUX+Di/kxLMp5JNOqNRVPlC1U2lARbr9Ruz1jAEk3QJVhaONg6JTs23oo/UIlvwZKZbusv1dzxdeLDljJfAFNRFXxORpoXqhTmSj06BcOXvCxbjuY4yXQcK2N88LKpzKa7crOshUvPIml7X2uXnMzWezJc7Qthlq/zQpjRAy2Eyc9p6RI2Ucj72VrXOQAAAAAgJQhkAKCtcluAJO2KK8HYJ/4QoLJKqqgJVrr7u+kKBCcKPg7XV9kY66artrsu92H860SDv0d8Y6DUV4kZDgWDkUCAEtfyJFmLFHdaWtiWJ9k6ctdhWWVwffp/1hemSMEgxf2Zlx0MWQJ/jwtUmtLNVk3EC1EqqqSNpQm6B4ttd3+3bPWVOzvDa5WSn22tP7ITdAXmTktvQlm3FsfxQiT3X6m/+7AKexzfHZu/C7GuhcEWLf7xWppbJGotW/zdjG0qtcfuMoRDXtdi2/W0nx1ypYJW0M1YY7ndkQVCmAJrCdN/WwxhfNxjI12WAQAAAGjP2ukNatvIVTkAtGGJup1qdIgSP75JjddCoaqebrriA5S0sPevNidxf4lxvyRrJ/n/Jl83XlFfEBRNHkRIXoDihgv1BScJW6DEBS6ZsUHn/V/obouU+PDEnVZe5Y2XUTtftVTla9GTbBB6d9wUf2CSk2GDm9cXqMQPSL8lrT/crt0qq6TNcd1+JQtXEi1LKFS3dUqn/LoD2PsfZ6aoS7CmisZ1IVbqG6ulNBa2lFcFlzskrxVLXpbUocj7vTZsyZTStvJ4LU1VVe0LXNwWL6VScYXXJVpmugUtRfnSgG5e8JKf3TytirY2/5gwy/whzMBtP4TxC8X9AwAAAID2qJ1eDxHIAEBjuV03NaVrLn+IUtvKxFdBXh376SgYmvhbi7iDv6en+cKTtLotUMIhLycJySpra8dCiUpR1Q1l3PFTKqutnA0FKGnhYBCSGR+eJOjeq95AJT15pb7jxNZlpG6Lk5LKuNYq1XXDKvdvSZclQUiSn123S69EgUpD5W+sSDRBkFJPoOLvNizRpspI88ZQyXQHss/zWrLU+RdbrtZ4V0pNJEGrFl/o4o7d4l8PaWEvWMnPlrp18HUflh0bryWj9YQVjmPLs6nU18VY7PdyX/do+dkWtPTu6oUu7nZtjduuKdzuyBavtp81UalzgTR6kNS/m3W919aEwrLuymJjQwEAAABAe7SNX85uKQIZAG2Pv5uu+BYn1Qkq9+uMbxLX0qCqxirEa2rqCU4UHGy9Njhxf4ZiA7uHg91tueFETmawlYkUHDPFHeukJuoFONUVVmHdUICSHpbS0733ykiTMjLqD0oSduPl+72xAYTjeK17/EFJeUXd1iq1jxN0oVbf4oVDdYOSjDSpQ44FEgm7+vIFKplpW78FhH8g+/h/FQnCFfdfotAopOAA9VnptmzdChMHK+48Ld2qozHcoK00rlVLoJVLha0nv8x0L2wpypP6FMUeZ3utWpprvJamikSkTeVe12L+rsZqYq130sJeN2M9Okod87zxXdK3ge3aFP7uyJattXVQ2xKmjYYwfrE8RuHYPwAAAABol1rh9XszIJAB0DL8FfaN7porbmwOt6K7uiY43kUk0nBwEooFJOn+4CQWnqSnx/4WGyMjJ1PeQCfyQhN3wHjH1y1YxLHgxh24vbLKlq064o27kkx9A8RnZ9UNRzLj50uvG6xsaUuAiG/9V1Qn6NYrPkxJ8Li+ZQ2FvJYc8S1TErVGSTQt2SD0W0M0mrgLMLeFSkX8tNi8DQ1k7/4rzPGFLf6uwTJjXYI100D2W5vj2Ng0icKW0grv9xpfCBUKSdmZXrdh3Tt6wUtt4JJp27+1q6gKhi3u7yXl3uchK9OCli6F0uAeXmuXvKxtc5s3Vk3EQpjFq2MhTMTGHBodC2EKc1u6hM0nFIp1V5ZkPCwAAAAAQJu0DdRuAGhR7lgViQIRf2hSE1cp7wYstUGJr9K6Mvb8qBtkqP7gJC0tFprE/rkhg9t1lhtIZGdamKKQF7D7x46v7apLXldd7jLURLyAxy23G6IkE1KC8CQWMORm1Q1JAiFKgmAlPbx1KmTdFkKllYkDE383X/X9HkkSHCUaGyU3y+7oTxak+FuyNGclZE0kFqDEWqckClXqhC41iV/LHaw+2x3IPse6V8rK9KZlx4UrLTGQfSpEonVbsZRV2U9/8OJvtZUWsvFa3IClc2EwbHHHcmkN49E0VjQa7GZsU6m0MfZ7RbXNE5K18uiQZ2OfuKFLh1w7VrUX/hDm+zVed2SjBtqYN+0phPELxf5zQxkAAAAAQLtBIAO0FW7AEN8VV7KuufytUir9gUl1sPLeiTUFqS84kbzurNwWJ264kB72QovsDKkg2wspwm5FVEgKxV5fvveIOl64EB+UVFVbRbC7TG6wkozbMsM//okbprjjhriDwwdam8SNheIPWLZ2ZZp/EPr6WqDUGSclFny5vydbD7XjvqR7LTGy/YPQN9AyJeNHtLr5sdxwMD5ICYQtbpdgvseJBrIPh7zAJDv2M6/Ae+yul9ruwDK9ljltUaALsYpg8OI+9o9pInlBXF6WBQ29OllrFjdwyc2Kdce3jVY410QsZNlYGgxfNpV5+1R6mhe29OnshS5tsZuxxqoNYVZJ36+zfatzrCXMwO7tN4Tx87eQCW+jnw8AAAAA+LEa6kWmjSKQAZqT4yQY3yRBaBI/9ol/Wu1A39XBICUS8QZ/ry84SQtb5U9teJIWbHnihgwFOd7v/unuIPL+cU6k2MDwvm65/MFJdY1V5Pqnuz8TVZT7+QOU+NYk2Tm+cKS+brzipqe6myt3DJGqGm+QeXeMEH8LFHebJQpUkoUp8YPQu//ysutOSxSubK1B6LcGdz+o8AUntY8TdAnmtrJK9F2dnuYLTmJdzHXKSzDGSoYXtmS20oHstzbHsXVXmiRoKa20fdAvK8P2q9xMqWuHWPASF7a0hXXoOHZ8qg1bSqWNsd9LKrz5cjItbOnWURra20KXjvm2Prb1dbA1uCHMolXS977uyEYNsJYwHfJauoSti9tVGV2WAQAAAGjP2mceQyADJOSvWI8fFL5RY51Ue8GJWznvhihuy4/4rrnigxO3Cyt/YOK2PHEDhrwsm+ZvseGGEWlu91eOd4CL76YrUcuTssr6g5WGApS0cP2hSE5mPWFJutciJTNuEPlUByh+7pg2iQKTRK1SKv1/r7YB6atr6k/3wyHfYPOxLq0y0qUOWcHWKslaqLTGO+7dz4obpMSHKf7H/q7C4gMAyba1O5ZKdqatpw55Ure4sVbiw5XWuF6aQzRqYUKdsKUiOM3/uQ2FvEAlL8sLFdzwJS/b/tbW1mk0KhWX123xsrHU9k3JPqNuN2ODelgXfG6Ll6yMli1/a1QTkZbHQpila+0z7YYwA7sTwiTjfq8RyAAAAABo19pnIkMgg21bNNr0rrn8IUqgey43QIk9DoQlcb+7IUe6r5VJbVddsS6d3JAkJ9PX4sQNIcK+3/0BSshe1x+CuD8TBSQl1b55InXDloaa/vnHYXErtv2tLurr3svfbZe/lUpLtr6I38aJAhO31Yq7reMDl3oHoVeCoCQ2fkhmuheuJAxSMrygqbVXvLkD2fvDFTdICXQFFhe6RBOst7SwL0SJdQlWmBscf8XfJZgbrrT2ddRcaiLBcCXwuy988a/6tHAwWOnWIdiqJS/bjkdteeD46hqvhYs7tsvGUmlzmbefpqdZC6oOeVLfrlLHWJdjhbmtpwVZa+WGMAtjLWGqa6Si/FhLmO4WYqFhtJABAAAAgHZ7PUQgg9SrHUA9waDw8eFJfYFK/Bgn/i6hEoYlvhAlFIprceILUPwBSUGuVJSgpUlGenBef/dd7nLFhyfVkdgg974wpbjKN/5JTeLQpaEApbZccV11ZWdKBfUFJfW0RnFDoNbAbblTWRMMTdwQJdBKJS5ccfeHaJLWOxlxIUlWemzMmLjWKvGBS2aa16plW/qScFv7xLdOqawnWPF3CZZIpj84ybCAsUsH3/grceFKVsa2EUC1BHccnECXYb6gxQ1fKuLGa8nM8Fq1FBVIfbt4rVnc0CUro32sc8exdeS2cNlY4oUwpb5uxvKyLWjpXSQN72thQcc8W2ftYT1tLf6WMEvW2LG6U740sr/XkghNE46NIRNmDBkAAAAA7VgDHfG0VQQy8LiVuE3qmit+HIwEA8JX1tj4JrUDwLuDt8cFJ2FfaBI/ton7z225EQhMEgQoGWleV15u6OB2reRvbVKna65YiFJWGQxTAoPJ++ZtqGVdbfliQYjb2sTtEijD3/LEF7L4W6P4f2+Nd7ZHo966qq/lSb3him9fq4+/1Y77LzvD7mZ3A5P4VilZsUAlI7beW+N6ayzH8QKUQKhSX9gSe1zfQPb+7r6yMqSi7GArlfguwbLSt+3115zc8UjqtGqJ60KsOm5/z830gpUenYItWtywJaMdfl1HotayZaO/tUsseKmKdXkXDlmXYh3ypCG9vG7GOubZ8QBbxt8SZukaW9+d8qWRA6w7sk75LV3CbVsoJIkWMgAAAADauXZ6PURtxbYo6m9t0lDXXL6/ufP6u+UKhCexrocSBifyWm/4Q5LaliZp3oDj6WmxO5PTgoFEejg4yHp8C5T4St+or/VJjS/8qYlb9tIKX4uUuFYq8S1QGuJW4Ke7lfuxcrqtKeKDFf88bhhQ271XgmVqbWrHyvHtB7WBii9c8YcsldXBQeiTrde0sK+1iS80yc8OtkDxt1DJyvBClZbuBm1rq9NqxTegfX1hizvuULyM9GBwkptpXQfFByr+37e1lj6tSSRad3yWUl/g4nYh5g/CwiEpN9sbo6VLYex3X9iSm9W29vEtUVkdF7ok6GYsKzaeUFG+NKi719qlIIf1t7XURKTl66WFK6Ulq30hTKwlDCHM1kMLGQAAAABotwhkUikSrRuMNGWskzpjm/i76YoLTmq77ZLXTZd/TBM3NPGPbeJW6MZ3xRUY6yQtOH+yQdZrAxRfGFJV43XdVVEtlVQkCE3q+Zms1YRklRnxwYn7e35O3W69an9Pr9vyxP19W6qsjm/R5N9vAuFJpG6IUrsvJWnlEwp5oUhWrNuurAyrBHWnxbdciQ9e2trA4C6326n6Wqe4j+P/Ft8yQrL9OCsuQOmYV09rlbguwbB1uMFuSXyrFl/oUh7XhVh6mhesdMiTehV5rVncsCUnc9s6pqSS49h63BgXumwoCa7b/Gzb//t29UKXjnmsy1SJRKVl64IhTMc8ryVMUUFLl7BtYgwZAAAAAGi310MEMu74Jkm74krQNVdt911uSxPf725FbSQaF5yo7iDxibrlih/fJCvTCxjSfa1QAoFJXMuTZMGJyx23I1EYUl4pbYrrpqv27wmeUxWxbsmSCYeCgYg/IHEH9PYHJPGtUOK79GrMMrZmgTAlUVdecS1UEo2lkmgwdcnWS6LxUApygtNqA5f0uiHLthZQbaloNHGQUlFPyOL+TDiQfZo3zooboHTITdxaxR+utIf13BIcx7ZXSUUwaCmJG7+lMm7snKwMCwbysqWuHaQB3eqGLZnpbLdEaiJeN2Nu4LKx1MZ7cVvTpaVJHXOt4r+nO7ZLvn1W2mPXbM0tEpWWrbUxYRavtv2/Y560U6wlDCFM6rnHDgIZAAAAAO1ZO70c2nZqPmq7VnJbkiToiqu+EMXtkqm2UtsdCNwdDNxpODhJGJj4Wp9kxMY26VhPSFJfq5OmdGmVaBD46hqptNpb3ppIcB3UF6I0NAi65GtNE9eqJCPN7lbOTFfdVihxg8b7w5RtPUDxqw3xEo2N4g/pEgUu1Q0HWBlxQUpmhlUGd8xruGWK25qlrazrxnJbDFXUE6AkClwaGsjeH6AUZEtdC+IClQRdgqF5RKNSWZUXrJQkaNVSWhn8nIVCUk6sy7D8bKlTkXUZ5oYveVnWxRjbsWEVVbHAxW3tEgteisu979GsDOvmqmuhNKRnsJux1t6dY1sTidqYMAtWWghTFQthduwnDY51R9bevjNaWijuJwAAAAC0N+30OrT1BzI1Eelfb0hrNgW75Yrvpsvtd8kfmrgDu9eGJrEQxB1QPTCGSVzXXPHjnbTkDvLNcmnalw0HKGkJApSMNGv9kJ8dbG1SXwsUfysVukSqq7xSenpG3e6L/AKD0McClZxMu/s7UXgSH6RkMoh6k60vlp6flXg8m1DI1r9/4Pr8nLotWdyfObGAhW3Qes1fIb3zeXBsnXBYyo+1YMnPlnp0tGO9+zgv28bZYbv+eG/MttYVklUmF+RYC5eBvrFdOuXb5w4tLxKVnpxuIWWHXGsJM7iHjcfTTk9+W1xYtu7DYgwZAAAAAGhnWn8gUx2xu277d5N6dqoboKT7Hqe3oRYYfpvLrFJ/3I7BMCW+ZQoDG6deebWFMWO2kzoXBAegd4MWtkPzK6m0MGafEVJhjtdyhYHs26bNZfaZO3Ck14VYNl2/NZuNpRa+7DZEKsylRVFrF4laGLP3cGsRw+ek5dFlGQAAAAC02x4DWn8g4+rbxfo2b5dCVtm/Q5+WLghCssqT/t2k7h1bujRwudtlUHernEcbFxuPakD3li5I+9UhT+pS2NKlQGO4lf65WbQQay3cbUIgAwAAAKA9a6fXQ9tOIBMOtd9uHcIhq3Bur8vfmoRi24Lt0br4PyNsl7avtrsftnWLoKulbQvHx9aHbQIAAAAAtJBp/drxXYTu3f/tdflbk1AsjWF7tC5sl/alNhhlW7eIUOw/1v+2geNj68M2AQAAAAC110Rm2wlk2vNdhO4Fe3td/taEu1pbpxDbpV3hmNiy3HXP+t82uN9bfGZaD84lAAAAAKDd2nYCmfZ8F6F/8Fe0LPp9b53YLu2L/+5yND9abW5bao+NYpu1GiGOYwAAAADQTq+HtqFARu12I1HR3Ir4wzG2R+tRuy3YLu1Ge/5OaHHcJLBN4Xur9WGbAAAAAEB77bFsWwpk2nG3Dgwi33qEfV0lsT1aD7ZL++Lf3mh+fNa2LRwfWx+2CQAAAAC02xvUtq1App1uJLq1aEXcbl/YHq2LG1q25+NEe0L3Sy2LY+C2xf95YZu1DmwTAAAAAGi3CGS2BVQ+th7+cIzt0XqwXdoZQuqWxWdtm+IeH/nMtB58ZwEAAABAu70e2nYCmfbcrYN7wd5el781ccOx9rw/tkZsl/YlLLpxbElh9x/rf5sQ5vjY6tQew8Q2AQAAANB+tdPLoW0nkHFv8GyPfDe3ooWFxPZojdgu7QvbunVg/W8bOD62PmwTAAAAAKCFTKvXnrt1oL/+1qO2mxGxPVoTun9pZ+h+qUWF+KxtW/jeanX4zgIAAACAdmvLA5l7X5N+95A0rI806+atWKQkmnLROu976YG3pPfnS2s2Smlp0sDu0oTdpIn7SB3zEz/v5JukD+bXnb7fCOnhi73H36+V9r4i8WsU5UsHjpRuOccer9ooPT5NOmRnaUQ/b77SCunmydLLH0mbSqXBPaWfHy5NGBv3giFpyWppwM+kJy+T9tyh/uV+/2tp4s3SPRdIR46pf77m8NKH0h0vS0vXSJXV0qt/CC5/Q/qfJ110tHTxMQ3PW10j3f2qNGmGtHqT1LeLdMYB0tkHNe69SiukPz1lZa6qkYb0Srwtau9o3cqVKGWV0m//K3251PaXqCP16WLvf97BUm6WN+8fHpMeekfq2UlaXyJ1LZR23U66eILt42f/Q5q/XJrxN+mm56R3PpeWr5MqqqRuHaW9h0sXHin16Rwsw+JV0u0vSbPmS+uKpe4dpYNHS786UuoU93l59RPp/jel736QHMfe96cHScfv6c3j7ov1OW0/6YYzGl43D74tPfKOfea6dZROHCf98ggpw3f4amsDJE+aIV32oPTS76WRA7b+63+6QPr3m9JH30kbS6SOedKYIdLPDpF2HVz/8+avkI78k31G4svmljmRj26RunVouFxL10jXP237Tk1U2mWQdMUJ0k79g/NtybhaD78j5WRKJ+4VnO4ey28+u+7fmsK//ImO044j7XeVtGSNtMdQ6anfbvl7JbLbpbEuqcL2+c1Kl3KzpdP3k351VONeY+1m6cZnpLfnSuVVUt/O0rc/JFieBBXJ366wY/DH30mrN9p79yqy/em3x0sFOTbf5FnSus3SuQdv+bLWty23hvj9OC0sFRXYNrv0WDvWNZV7LIxfj699YsfSzxZJKzfWPZZL9pl75SPphL3se83v0v9I730ljRqY/DOT6uPjpf+x5Zh3d8PzNuV7vSVsjXOJxp7XcbMNAABA+7WldZZbw16/k/bYvuE6y6ao75qnPkvX2PJP/0pasV6KRqWuHaQx20kn7yPtuX3Tz5O31rV9qvywXvrXm1bvN+97aXN5/WVtbN201PhrmCfelabMlb76XlqzWerRUdpnuPTro63+rz5rNknj/yBtLG1aXXNj6vKkdns9tOWBzKNT7ee8ZdJH30q7Ddk6JapPU/o+f3yadPVj0qDu0gWHSkN7SdURae5i6bFp0qcLpfsvrOfJIalfV+nOnwUnF+YG39/9/eyDpGN3D85bUSX16uzNs3qTVXT37RKsJDn/HivTFT+RBvWQJn8g/epfVnF33B7B9wr5fk+2Hty/tXRf8euKpYsfkPbbUfrL6VY5uF2PppepsWPnXPOY9Nz70mXHSaMGSNO+lK570oKOXx3Z8PPPv8f2i9JK6eeH2YGm3m0R2vrrNxKVHFmFeN8uVqk6a770j5ekWd9IT1zmzfvO5/bzpL2lvYbZQf2uV6yi/IWrg/tKcbntn9v1lPKzrXLvHy9L/5sjvf1nL2hZVywde6NUkC1ddqzUu7P0xRLp1hekD762MC0ctnmfnC5d/l/piF2l3xxt056Zadt7Q4ktg2SV9S9cVXdZH5lq8x+2S8Pr8B8vW+XWLw63L57PFkt/f95OGP52ljdf7XZR2+iP312EVIwd9eDb0rVPSKMHSlefYNt6xXrpoSnSCX+VrjvFwrV4kaiFhp3ybf3Hl8399ZazbX/z65zf8HKsK5ZO+JvUIddOSrIypLtelSb+XXr5GmlwD29e/+ewsR55xyrWT947OL1HR9tP+3f7cevafWp+tvT0e/bZ9Hv/Gwtj8rNt5q29XS89Rpr5td0M0KOTneT96Sn7/EjeZ7U+ldXSqbdIm8tsH+hcIN32ov3t62XB5Ykfw+eLJdJxf5WG9LTK9r5dLCz+6nvpxQ+lCw6z7SpJL86SvlnuHSe2RH3bcmuI348rqy24vPMV24bvXG8BZlPU97183+t20fGro+y8I/5Yvn1vacEPdv4wbgepf9fg6555gH0fLFqV/DPjfl5SPRZdY177havsZoLWepzeGucSjT6vS8G5BAAAAFq/H1VnuRX8+5dSfk7DdZZN0ZS6yDfn2DlyUb50+v7Sjv2kzAy7Ef2Vj6VTbpaeuNRuJm6KrXVtnypL19j1wYh+0gEjpRdmJRkbt5F101Ljr2Fue9GuK397vNUZLFwp3fGSbY/X/2jXpon84XG71pQaf/3S2Lo8iUCmST5dIH2+RDp0Z+mN2VY5kupAprF3dn7ynXTVo5byPfArb6eRLBw4/zBp6ufJXysn0+5Sbag8klVmNjiv7znu896ea0nwXf8nHRu7SN9rmLR8vfSXSdIxu9uduf73cl8s6XoINXK+FFu0yr5QfrKnfeB/jIaW45vl0pPvSb873u5ElaRxwywc+MfL0hn7123h4edui8uPswPEkF4WdiTdFlt5/XbMk+77eXDaviOsJcK9r9mBu383m37uwdIfn5AOGW13Rku27+z5W+n+t7znh0J1W6CMG2YH9TNvt4PuxH1s+ptzbH3de4H3pbfXMNuGf33WgtcdY1/MT79nrWvu+7kX0hywk/TFUkvk/+9Qm1aYW/ez4TjSr/9tz99vRPJ16G6/U/eVrjzBK39NRLrpeWs5NLS3u7DeMje0XcorpZys5PO0NHcZQtq6+9lH31oYc+BIO8FLT/P+dszu0nl32b61Y/+6x/T735J+2GBfqH98om7Z3N936OPtl01x3+vS+mI7geoTawkwdqjdvXPLZOneuM9HU+/2D4WCP13ZjTjeN+X1jx4rPf+B9JcKr1WIZMeoXQdLJRWJy7GlyqvsO+u0/e2fKz/bfvbrKj3+rnTRhOSv89R7dix94SpvfYTDdjL86DTpPH+AEgqu/wf+Zydlk35rJ/auo3azkz3Hqbu8P2b569uWW0Oi/XjcMGu1eMtk6c3ZdsdW017U++kv839/I3UpDM7qP5bffHb9z5WsVcrmMumVa5J/ZvzrK5XrrDGvvTU+a6mytc4lmnJe11ZadQIAAKBxtkad5Y+104Dg40R1lk3WyLqyxaulC/9pdTlPXha8Zh63g3TKvnajYcfcppdla13bp8oe20tz/2G/f7YoFsgkWV+NqZtuyjXMG9cGrz/H7WAB3JF/lp6Ynvgmzlc+lqZ9YTfaX/SAGlUX2qS6PHm7TjuzZYHMI+/Yz+tOtZYEz74v/fWsYLdKknWTdMVDdpGaFrbmb784Qjrgaqv49VcefbpA+ttz1sytvMruDL3kGOnwXe3vjU3h7nzFdo6//9R23njZGXZnvuuFWbbjfb3MKjYUknIzrZWLf3kuul96+WOr+LjmMbtjVpJe/1T66YHBecdeZjv27efZgeSEv9n0S/5j/ySr8MzLlgZ0k35xny3/2s32OutLpLdmS0fEmoH5Kz4b3UJGyef7eplVtM+ab8s6uKf0f4dYEOGKRu1D9Mz70op1Uma6BVCn7ONVzq3bLP31OWv2tq7YKgFDIftdkn5+n/3bc3vp2Su89fjWdbYeP5hvd05PGGt3lPq/jCTvDtLicmn4hfZh/kXsILOuWBr5GykjzSr8Ju5j8/7+MUudH/y1VURO+0Jats5aZqzdJG3fx17nHy/Z6wzsbgfuvz9fdztJ0pyFXuV0c9/V2qXAfmake+9XmOuVxZ3Wq0jqWWR3WLvN//zlq6iWbp0svfChtYaQbB0dOcbWf2asYn7izfa5u+xYe+ze1X7W7XZycPt59vo1EanfedLjl9pn6K05tt+OGiBtKK67TwzqYa8ZDlkrgUuPCYYBkqXnt75gXxK3vyhN+dzuTl++1l6zc+yLY+I+dqy4/SU7xnz1vU3v1sFCnrFDvdd097eXrpaue0r6ZIG0Q2/rbiveN8ulA34v/fMX0tG72bS5i6XDrrM7Vqb+xZv3rDuklRusrK4XZlkl6lff2z6y23bSVSfWvcPks0XSrS9aOFJeKW3Xy+5a8Hdpk+jzvmqjBWkl5dIjF9s6baq7X7XX/uuZ9nn2y0yXbjxD2uO3Nt/DF3l/e+dz68oqN8taXUjSLS9ID1zofWY3ldnPM2+3Y2lRgTU3vuF0u9PiqfesFdWsvwe7XnKPkT06WeVlv67ST/5q+9Nfz7Tlf+kj6cP5dnJ26bFeq8FwyCqep8RaCdRE7Jj604PsOOWux7GX2TFAkvrEmmX36Sx9eLM1n939cum2c4MtLmbNt9eevchaB43oayco40d587jLNOm31upLinV7WC09+o70y9jdKJvLrPL8z6faPuKW3dWYZXCXY4c+0sS9pdtekr5bYcfiq0+s/3tn6Rpvud3P9meLpHtf9753uhTaZ61/12AQlxH7jH73g+1/PTvZY/c7yV2GjaV2Il2QU8/JWWzaT/5qrUz820GSVjzY+PWQbFs2tI898zvvBoHPl9gxf/ZC+37plG93ZrmBdPwxfvQA+7m2ODi9MZ/nRHeLJdoGu25nrdbcY/mkGbY8knTSTd7rufvqo1MtNOvnazmTlWHb6eWPrEu0LoXS+NHenVRh33rcoY+18r3xGdvGvTvb9+sp+3qvV1Zp6+nVT6wrupwse7/zD/VafLirY8nqhr/Xe50d/I5xt9kTl1mQ+eZs2xf3GmafF/dGhObw5uzguYRr4j7euYS/W854b3xq53UTxgaff/Le0i//2bLnEgAAAGgdfmydZZ8udnP8xROS11l+ssBef8JY6fcnNb3OMtm1o3vd0sd3zdXYFjL/ftPqfP96hlffFG/vuN4mFq2y4RA+mi/9sNHCmh37S1f+RBrW15sv0bW9W8/0zvVWhzRlrl2fHDTSeoYorKcMqRD21YG566i+XgxCcfPVpynXMIm6kR890Orrf1hf9702lEi/f1T63U+8bd2YXmmmfWHXdInK9Lfn7IbwHfokWNj2pemBTHmVVTztMlga3tfStgv/ZRfSp+3nzVdaYSnbhhILbgZ1l/73mXT2HXVf890vpeNvtMq728+zD8SzM6Wf3iHd4TbPSpLCRaK2A0ai1p/6Tv2sci8SDc7n9q/vt2i1fRD/7xCraLj8Qfuw7/AL60KqT2e7q7EmYv9Ov82W+aS97U7/j7+ThvzcPtA79bf+8FyhkHXbdPu5liRe5KvMu/IR697lhw3WLcqxu1sfkXMWWoXnb+6X9tjBuo0J3IWu5GlkY5Lt736QJvzFDqR/Ps2aCT77vpVxbbG3DPe8ZpWuFx1tSW51xJ67ucx77V/92yq23O45NpfZHaLllfalceUJ0l472F3T7nNqIlahfcre0s8OtS65bn/JKu7j7+J2ova8wlw7UEz/yivfjHnWFVpFtR3I3T4Pp39llWpui44Hp9hdCKfvb91srVhvYwTURGy//Ga5bYtzxwe305I1VonyzQqvkj++L/6aSP3bwi8t3Lh0392Py6usgu+fb1ill79y0X2ZqOPt40vWSMvWWquZRau8srqv+dM7bH1N3Mf22bWb7Qv6xJukl39vweffJ1vAsW6zVcLNXWLd3xwy2gs9QiHpnPHSz2JjBVx0v7XkOWwX68rs54cn3ic+X2KVtm/Mts/hxH0T3DEf+3nunXbScGi6dXc061vplFulV6+xMKhHJzuxePFDq6i96Gj74r3zFenUW617te19aXt1jfTTf9jn9ldH2jgLibbFDn1sH5r+lVeZOv0rC+vmr7AK6R6dbJt/8I11F+S+zh0v2RfLxL2tPFURa9l03I3B8syYZ91C7TzImmkW5NgJ1gX3WjDq3nlfW7zYfvb1Mum0Wy14e+IyOy4kk2i/dI+PI/vbckaidffLPl3smDVjnu1faWHrjuqM2+wY9/uTrNL1ntekmhp7n+xMO47d9oK9RkW1rePicjt5m71QOnSXwA0zdY5pkrRqg3T8Ht7fVm+Sfn6vHXte/ljaZ4QdJzaVxfosja2bZets2/aOjYn0yQILZVdttJNISfrPr6Wf3SUV5NqJn2RNot3Pc3y5Zn5t3T4N6yvdeo6FVf+dYsetey+w7wR/2S970KsUP+9g6e7X7ITxwtjYLZNn2X5/7O5eK7ZQyPu8L11rd4+4y/DpAunqR+2kyD0mugHm50tsvJaLJkj9utiJtX99Oo59N19/qvT7x+19f36YfcZ7FnnrzP+9s3qjNRnfVGZBmLt/+T8m81fY/ueW3f8ds+tg+36/8F92nN15UOKLixvPtO4Ol6yW/vMr3z4Qe51UbEv/crjTyyotfO7X1ULILh2sX9wZ8+zE0Z3Z/xrfr7WfA7t7x92ZX0un32rLe8MZ9nl+8UP7PJdVSKfsl/j93WWN3wYPTZEOudaOmYftYt9DV55ggcmNZ3jhbv9u9jkrqfBugpBs25/zD2vR6Ei66ac2jsnfJ9t8x+4eXKavvrem7BceaaHp49OkSx+UBvawmygk+/szM+0kfKd+tu6+Xm7Hc/9r1UTsOHvqPtIFh9sx8rYX7bvb3Xb+7eFvBSjZODT7jZDuPt++o//2nPSTv0lT/ix1SNJFnOPUPderT/xNAPG+WW77fnz/yW4/2t+sSP497p5LxPeJ7H9+fecSAAAAaPsiUbvmGNk/GGYkE19n+d0PdgPlnEV2w5mfv87ywiOt7se9kTV+3BEpeZ1lsmvHh6ZIh/9JmnZD3WvHhuosp39p59ujBzVu+SVp1Sart7zqRLtRd2OJ9PQM6cjr7WZvt8v0RGVwp513l13Hn7qvXS/dOMnmue3c5O8djVrdSENCIa81fKP4ylff+lqy2m5MLy736qYvmhC81v6x1zDvf2375fZ96s53zeN2zXzueLu+kxp3/fL1cvs5vG9w3h6d7Mbdb5ZzDaQtCWQmf2CVNmceYI+PHydd8bC1mvEHMo+/a/3RPXuFDQwuSQeNsorm//wv+JqXPCAN62N9nrsXzONH2d31N0yyFijJNvoev7XKaNfsRVLfBB+qS4+1bqkC7+2rKHAc62Klstoqwm84ww5297wmdcqz7qN+fpjdkbxqow2WXFJp6+SXh0tTv7CK7075qq3MKcyVdogltgO628DZkgVW/btZ9zZH++6kHdDNApmqGnvd8w6JW/aGdv5GzHfLZAtXnr3Cq/gaP9q26y2TbdsW5loroGF9pMuP95574Mjga330nXTavjZglOvwXe1L5onpViHvLrNbrqoaO5D8eVJcuV6wf363vWSVWv26WsX/fa/b87MyrLJ8zx3sznm3YnnlBqusPP9Qu1M1I90qhI/ZPdb9S8ywPhYYDuphoWH/bnW3U99YBevGEt/BPOSt2+/X2p0FjfHsFXXHlEjErZx3TdzHyh3YlrHfj/xz3ee7lb19unjPmTzLQk/J+iPdZbD01OXWAuD8e6yy7fT9LTgY9RvpoXfsn2QtRe46X9rrCm+5j9rNQpkH3rJK82dm2hfCnbFuWi59MPE+sanUApz9dqw7OHVgucZIf5goXfYf2863nGOtyF76SPrJODuZKK+yffe28+w5C1fanRJPvmt3P/zrl95rVkfsc+6/67s++wy3EwR33U3/SjphTwsEpn9lQeycRfaFuG+sy7Xl6+yui3PGWzNO1/47WtdD/vJc+bCFM89e4R3rDhxpleA3PmuvH3YH6JC9/vSvLKTab0frCic7QUW339I1yfdL//Ex0X7Zr6t9ZjaU2iDj599rx8bX/mih1ZPTbb6rTrJKccnuoC+ttG1+8Ggbi2jeMhsP4xf/jLVIqu/Y5FYmy46d7mdsQ4n00G+sAvjlj62lRHaGnfyNHeqduNSG9rKTJXd57n/Ttrt7kpmdaRXmgeOR7/395bphklUCP3+lHUcka+F50DV2fD5md6+cknTASC8wPmxXaV2JfSfO/NrK8+R0+yy568t9r6fes8+EZK0h4vmPiSsfsuet3Sy9e2NwTJ3a5QhZ2P/wO97k4/eUrpkYnDX+eycStUAmGvW+dwLrRsHjYO3bxR7/4ghrTfb8B/YvLWwnXweNtNdym0Xv0CfWIi8jwXZQarZlounf/WD7123nBu8+O2Z3b/92K/orq6UPv7ULmT22t8EX/+/u4Nt++K3987vsvxY8+z/P/nIl2gYHjJSG/cK+t84/1EIStyXc0N7B5V25wX6GfaHq1C/s33F72HYY2ttudOnawcKyN2fb+nPLsn6z9OLv7eReshDmva9sH3BbEn30nR3LLjjMe++Ddw4uq/u9fvlxXpi9b6yf4Oc/sHOv+Pn95zSSfX7c47lk+8rR11sQmqy7vZlfW8urxvjw5mBrongbSnzHIJ+8bAtl4z8DiZ7fv1vdedwuAuo7l+BiBAAAoH3YUGJ1Gf26Nv4cML7Ocveh1oPHcTfatcnwWMW7e07u1llK0v472bXFjc/YDb+1vYn4zkXrq7N0JbpuOXhnaadf1XPt2MD57Yr1FhbEzxMffPhvqB+3Q3AohEjU6h32u8p6Dbju1CRliP08dT/v5u79drSu0558164Jk5X31hetnrQhfbpIH9/S8Hyuhup4dx9q16fb9bKbd6fMtbrpD7+VnrvCWzc/5hqmpFy64hGpd5EFVf753ppjvX+8+ScpLU2N3r6SvWdWhleX4tcpz8qc6AbKdqbpgcwj71jl60/G2eP8bKuEfXSqVXK4yeSMr6zCxA1jXCeMCwYyC1banbduRab/zu5DRluXYOuKk6eGj1xsXcRsKLW7mvfbUbrqhLrz9ehU9zUWr5b++oz03jyr6HJ8B4DOBTZeR7+uNu6CZMsdCtlr3XKuNyhTeroNwnv4dTaYsr/P/Nr9Nm7Hde/UvfUF617k+7XenZ7VEenbH4KVfoleI57/Peub7715VvEcn8hP3Mc+5J8ssEriXQZJN31m3c4dtosdmP39O0p2Z/BT70mdCqwCZtQAO+DXVw738Tnjbfu6HvifNPl96aVrvGmHXmuhl5vM7zPC7rj9+DtrAfPul3Y3+rcrrGWPW3ktSfvuqNo70KNR6ZixwXKMGWKhQGDbxK1jf8VJ4GAZm9azKNhlVTLb9WzcF+4BI+01SypsOe96xQ5W//2Nd8B1X+eu86XtelgYMGWudM3J9iX1h8ftS86d7/PF9vORiy1AufsVq8B67kq7u376V/YFe9YdNt+Ru0r/d5i1yrj1BeuuTI633FPm2uddsoq23Yday5ff3G/7bX37xHMf2F3dp+2XeF24k9zPmLuuj9ndWqPN+Fo6YS+rcJRswDb38xKJShlhO8GY+XXdz97RYxu3/vcZYQHT0rVS9w4W9v30QDu2vPultWCZ/pV9uey+vb3m1C/suHXSXsE7tbMzLTCcMc/mW7TKPtPXnmKP/fOOH2VfeAtWWiWqW9an37Nj7rkHe89rSH37ZaLjY6L90j0GhkNW3oUrrSLabQqc6LM9Za4dU/yh57hhdvzf/2rppud8XTAmOA76f3c/i/nZFm489773t+PH2Xgm8763O2Pcz/wdL3pBmd/a4mCz3ETHxfjPeWmlDaL40wOD46Gkp0kn7iX9+SnbTkN6ec89bGe7a8d9jyN2te326FS7A2TOIjtJjF93h+5s22r2IjsZnL/CvhP8nrzcTlrc9TK8r/c9G1iO2L/fHG2fsQ/n2x0tz75vJ7y/8LXeLK1I/L0j+b534rdNuO66ch9nZ0r/vUiav9y6t/tssd1pc/tLFg69dE2wzPV9P23tbVnf9EE9bNyu65+2Y+Ie23ut2Nx5j/hT8LWH9rJu/Mqr7PtwxXrp7H9IPzskOFi7ZF2F3flK3c+zv1zJtsG4Hbzv52TnD/HrYcY8+7nnDhaEuM85ajfrFuzTBcHnjegXDMdzsmzdLFvnzbfzIPsMXv907LxgcN3WT/792V/G4X3tXLDOdpLq7GO1x/2YsUOtbDPmSRfHtbDxGz2w8d/D7rlEvUJKeu7UmPAk0TyJtn/I914EMgAAAO2Ev16pkeeAyeosv/1BGtE/+NLx59XH72mBzIyvrQ7DnTdwTu4WK0G5mnrt2Njz2/h5zrnT6n9rH4+3HhYkq2+56xXrSckdr7qxZXDf5rBdgu85oq/VT8VfZ8Y784Bg3WV93F4bGivZOpekK08MPj54tFc3/cZsr35lS69hKqpsnS9bKz17ZbDuY3OZ9Nv/Wiur4UnqgZItXFPK1E4vh5oWyCxYaR/iY8baQWBjqU0/ZnereHp0qlUaSnbHd9cEO3X8jr4mVol19aP2L5HyquT9EA7r493NmpMhFZf57gL1iX+NkgrpmL/YXddXnmB3HOdm2gCsP73D7owNh6wS7tonbIeJH4C3R0f76SaAx+5hXcqUlAf7UJRsJ3N/Lyqwivaf32t35F9yrFV8rCu2u2/zs+wDEg5ZH30h32s1ZgyZUJL5NpRYc7b4v7vjA2wssb9dNMESzUkzrMVEWtjuoP3DyV7zwvsvtIPz49Okvz1r8x+5qzf2T6Jy5GTanfdF+d60vp2tm6f47da9o20fySr+czOt0q5PF/sy2H8n6fXZVoFUVmnrckA3aWA3++JwA75uCZbX3RfdbRG/nTbF9u+i/OC2dJcpOyPxfpZIY7ssK8r31su+I6x7nP+72w64R7oV2rF5h/a0u4enzLVw5sS9bHphrlUWumXeVGaVye6d4ONHSbteYl9o3TrY9r7rFenLJfb34f28OxDcOy/cMoVkd/QP7mHd3Ry6s+23B+xkFahXPSK991dryRS/T3y+xMbEOWLXevrIjE3r0dH+XpQf6/4qYom/u1+u3WzzfbJA6n123deJ/4zkZtbfN2m8/Xe0n+99aV921RHbDms3W0uFcMiCmbFDpLxYH6xueQ69NvFruuVx57v2CS/gjbeh1BsfRbIWU9mZ1uS4sc1f69svEx0fE+2Xy9baOutcIP38Hpu2x1B7nmTHJcmOyyXltr+tK7burOK364Bu9rn9dIG3/8ZvH//nbqPvc9i1Q/Bz2Dnfu2OmpMKOIXMWSiffZC0pbj1X6tXJ7gJ59RMLb6uqg6/vf79E7x8O2XI6TgPHyLjt1LnAKvbd13MrrKfMtYr/wT28O3r85ehcIC1aKV31cNwypEmvfWrdng3sZvuiW5ZE5fLr1zU4/7gdbEDxift431/x3zsFORbWlVR43zvx68p/HHRPoOLLsUMfry9Yx5H++bqFQn971gasdJ8b/9qS7SM/dlv6pyfax9zpHfPsBorbXrDWUBtLbb36u0u7+3w7/pVUWCvDh6ZY68UnLrXjZkWsa7N/v2n/EnE/z4n6U/Zvg9ED7TXemmMhebcOwXWdaJncVhdRx5u+ocSO9dHYRVLn2DZLC9txeHN53DYtqLsOszKC+8CNZ9gdU5Nn2fdEdoYd7/94SrCVVk5m3XEEszNsPdXZTqG62zLRft2tg7cO61OQ0/jv4Ya6LCvKt+/B+PcrrbC7DTvlJy9L/LmEK9G5hD/UZAwZAACA9qFroV1rf7+mceeAja2zdKWnJa+zrO9aOFGdpSvRtWNI0ik3J752bKjOsndnq7+Ln+dPp9pYw5J08B+Dr/nHx+3G/l8dZde3HfNidZYPJC6Dfznc66nOcdc+7jiXVQmuV/x6dEwe2Liael6fbJ3Xx62b/nSB3XQnbdk1TGW13Vz44XzpsUtt/GO/G5+x8WTPO8SrByqP3ThaUW3TCnPrr+N06/Lix2aX7Np71MBgmdrpDWpNC2QefccqWSbPsn/xHn/X7tJPC9sG+GRB3XlWbQw+dvsbvPSYYDM4V2W1paTJUtbdLvX6d5fs7uaeP6073+XHWT/orve+sm4/Xrg62G3P5tidufF3ATuOXWwX+cZvWBOrZC0qiM3nBJ9rD+pOG9ZXem6mdQ302+O9Ljncu8HLqnzzJ6jMaEiy9VWUb9sh/u/utnHvPM9It7uqf3GEVShM+9Lukj3p79Jnd9gHq0uhde12wxlWkfv6p3YH+bc/JC6He1fozK+lY2+oW7b47XbLC9Jp+1sFo9sq4d0vrfK3Wwe7w3fvYXY39qufSO9+Zel1KOT1WyhZZXj88q7eZHfgDutr691N+t0yz1tmj4f5+j30p8Lfr5V2uTjxOo43+SpvsOim2HWw/Vy4sm4Zbn3Rgpo7zrOuruK58xUVWKixrti2V+/O9qWyYKUFojsPsgN4zyLbB6pqvOfuHHv/4nKbtmazzbPLYG/wenfeXQZZi46yyrr7xLVP2AH5F0fYnQPJrN4s9ersNb39cmmwGaY70PhP9rSxCiTrNuztz6wFjX9MjfjPcEN6d7aTnGmxQGb0QOsndd8dpd8+ZF98n3xnxxH/F7skPfjr+vuBDYW8+S46Wjpyt8TzuS1W3Ne+7xf2ZXjMDdKk33ljSCSzdE3y/dJ/fIzfL1ess9YNB42yk7mFsfGIbn/J/vkde4N9CS/8ly3bDxvqWc+x1oJuV2v+/Uuy8F6y/W/eMu9vazZ5n8OcTGs+7fZbWpArKWStADLSpMcvDXbl9lrszpr6jsN+8fuKe3K3elPdeVdutJ/u2F7+145/H8nuLHloinT1iYnL8eR06ypMsqDZbeHnt/vl9nPtowmWKU6i5R3QzVoZLF1jIdfmMhtE7/Ljgl1B7djfjq31vX7gONhAOdyy/PwIa8H39bL617tra2zLhvYx/3NG9JPu/5V9r3+51LrYvHmydx4ytLcdGyVrOReJ2k0nP7vbxolpSPeO9nlNtNz+bfCboy3kfnOOdMvZNsZO4I6uek5Uc7PsYqjat6zusX72Qu8z4/6ttMK64WtoO8RPz8+RrjjB/q3eZMfZPz9lY+d88Hdv3lAjXivRtPjPu9/qTXZTQrL9bMa8xOcSiXx6W/Iuy4b3tf1w9aZgH8zuuYT/M5CI/1zCH/4kPJeQ97OdXoAAAAC0O+lpdm3x9lwbL7RX5+TzN7bO0v29JtKIOkvVfW6iOkup/mvHylgPRfVdEyY7v91/J+v+fs4i73pL8rpqTlS+Z2ZKJ+9t9c1+64vt5ts69XUJypWobrK+ef1unmxdtDekbxdp9u0Nz+cVoHHvH3hKbD5/t9VNvYaprLZecGbMs1509tux7vt8vcx6jRlxYd2/XfhP+7ngn/WP9enW5X29TNrVF/as2mj1ksMSjFfTDjU+kIlELXAZ2N3GMYj3+qfWRcebs611xF7DrYuiN2db3/uuZ98PPm9IL6sA/Xyp3XEZr7zKukBJ1qTv8Uulyhr7/aulVrmx62DpT6d7lbeSNyD323OttYDbBVRWXNOyh6Z4v4dC0lPTvcfPzJTO9/Wl7i7P3sPttd3Bm/2D2LstPCqqvWlHjbEubeLf/6npUmFOglBIwcf1ia8wS2TfEdIrH1vlonvHt2SV6blZ0m5D6j63Y761hFq5wVpBfL/WuxPa1ber9LNDLRSZ8VXycoweJP3PNwbKQ1Nsffinjb/GxqTwdzOy345WGZSfbb+HQtYq6e/PW7+OKzfYAT4Usi6AsjPsDuLJHwQDv4++tWXo19XbFh/Mt7+52+mp6bbPjBmS4GAdsnL5y5tMY7ssi+d2QTOwh/d8t4nqG7NtwPHT9g8+x7+vSDZQ8p0v277788Mt3Fmx3rroKa209fjht7bd+nT2ghbJuk2TvCahnfJtnS5e7b2Hf95wKNg1oLtP3PuatGSNjVXTUKXdszPti3n8KHuvvz5rn629h9s8G2J3G3fvaMGQZF8EX31vSXt8t3r+126M/Xa0lim9O1uz0FDIjlN9OltZqiPevid54cXi1dKE3et/3aG97Vj35fd1x/SoT6d861ru1JulY/8iPfVb+3wmk2y//GKJdPH91kXTdacGu1OKRK0y2HGkiyfY9Pt/ZdMWrpTu+7kFMG/Plf7xko3ts0Psi3T8KDt+fPeDrSvXktXSrG9tfbkVofOW2fu63GbJe2xvzaDd7vZKKuzE4pWP7XidkW6VneGQtGNf6yIsHLL+TNPTvOUor7KySMH9Mys9eAx2xZ+U5efYScMrH0t/Os1r7RKNSs/MsDDY311ZotdwHx+3p5Vn4r6J5zlsF+vG8+WPLRxzK3Erq6Wz77CTqkcvCX6mGqrAjf/embfM1pNbOR8K2TaO/95zW8Gt84XXboukob1sub03CZZj5QYrY7wfNliYO2qgbzvEWmDEL8PW2JYN7WP1nZjvNMD+PfmuNx5d/LzXnWr75xdLbODIUNhOZHt3tvA5Xla6fV7c1/K/prsNMtOtK7HH37VjeVVN8MYAd31Jtk/El713ZzvJXbHefneP9S9/5H1mJLtZoTpi48kE9kMlXh9KMF2yY+6p+1mAdd/rtn38dzw19rUSbYdnZgaPnx/Ot+/oZN8ZUt1ziWQa6rLsiDHSDc9Yl5u/Odqb/uS7dhwYPyr5891ziZc/ss++K9m5RFMuwAAAALDtu/gY6X+f2XXAo5faNYFfdU3T6yz9ktVZ1ne+nqjO0v17omvHR6fWvW5pbMDx88OlJ96VfveQ1XUkqr+JL18oVLcMb862681BPRJfdzS2XA2V96yDpEN3qf/vrqz0pp3X11efkIxbN+2/rmvKNYwbxkz/SnroIqvLSuSGM6ynHb8vllivVr873rqn99d5x3Pr8p6YHhyT6Mnp9pwjxmzZ8rcxjQ9k3J39T6daohtveF/pX29Kj0y1QObUfaW7X7W7Sa85yT4kb82xuyslq8xw3fEzG9Pi2Bus7/teRZbqfrPc7kgf0S95s7cdfXeN7zrYKpEue1C65AHrd3BYHzuozfjKDlzD+lq3SXsMtbuhL3vQdqrvfrCKY7cS6ssl0uUP2nO6d7T09Z7XrAXAZ4usmeCchVYpvHSNdM2j1i1TUb61EnLL+0KsNdF/3pJ26G1dh+w0QDpgJ2v6d8tkb3nfnmsJr5vyusvt7qCN7bLskwWJd+q9htnd/W/OsQrey4+zSt9JM2zadafYOpGsC5thfa1yvHOBVY7c97olv0N6WkXbhOutQnFILzuQfrpAmvKZdVM07UtvGVxumTrkeq0/JOmt2d728+vVyftykKxLqWufsDu5773AXnt4X6vw+2yRzZOdIf3laetm7eoT7c7g216UOv7HmtlNmmF3B7hdYx2ys22L21+0AO+Bt6T/zbFt8bezgqGe202R22VZfHm31INvWyufA3eyirXSSun9b6R/v2F96R81xluPz860n4ftbJ+NT77zXicrQ7WJzFffS1c/YoMsjx5ozTynfGYtIHIy7fVHDrCujEYNsMrmkgr7nP7iXtueT063fTkn1uokJ9PGM7n7VXuPD+fbvvvKx95dC8ffGNwnZs23MKZzgX0WE5kxz7vr4OWPrFL2gJ3sWPPWHGva26OTjX/zrzdsn/zXm9aSbPxIW19fL5NueNrCwytjY6T4PzeNtf+O1hx2XbF9EbnP3W9H6bFp9vnYZZA3fUA3e7+/TLLlHD/SyrB6k30ecrO88tx2rnTiTdKJf5VO2c8C0Y0l0jcrpLmLbBwOf3nDIfusPHOFdMZt0gl/tQA60THYlWy/3HWwfQlf+bDtG+cdYq16lq2V7n/L9qUbz7RwRLLP8d3nS0dcJ13zmN0VE4odH1/52JrMhkPSVSfa5+rA30vH7yFt38e2x3Pv2za4+kQLAIf0tDGObnrOxhs54wBpVqzVy/F7SDPn2XEn6ljo+sv77Pn772TlffgdO6Z372jr99Bd7Jh8/t12orS+2LpVciux/cfL4f2sPJM/sG2WleF9t8TP+8eJ0nE32DHywiOtYvs/b1lF//0Xet3HJXqu//ezD6q/ZVw4ZC3WzjjAPjv3vhpchoIcW8ad+sfd1V/Pd8D6YrvL6IVZ1npwxXor56cLrN/g5evspLlnJ/v7n5+y1xk90D5/739tj2d8bceYroXS35+z1/7pQXHHcQWP7Zc8YCdsE8baZzwtbOPh3PuaXURcNMGbd0Rf+4w/+D9773DYPs9bY1uO2c7bxyJR+6y+/JG3j7mv8fqndpw/cow935ENWLipzMo/e2Hd79qifAsq//iEtGCVHevuvcA+zzc83fjPs9tl2rgd7JhXWS0dNNJuEnj9U+sKcV2xnfCOHGDrS5J+cZ8da//3Z6l/V/sOG9bH1vPEv9u4UBnp9tobS617yHe/sPDkxmdtTKzD47uLTHI+4U4ff411TTminwXf81dYSLbbEPuMSvUfZ0Oqf3p8twJzFkkX/dtu/Fi+Xrr+KTsX/NkhyY/f8ecSP8bwvtZt3d+eldLDdm43Za53LuG2cpTsGHbTc8G7Fd1zicsetO/SQd3ts/T2XOmfv6j/XIIuywAAANqP3YfazY2XPWjXz/46y7mLk9dZpqfZdfeXS+21/OeSoZCFO26d5S6Drb7m5slWQe52oe3yX88N6mF1Pc/M8Oose3Sy65txO9h1WZdCqV9sjMdHpwbrLN2yxJcpkcE9pH9fKP3sLmmfK2z5Rw20sq/dLL0z1+YrzPFe59CdrXJ/aG+7Lpmz0BoEuDcNJitD7TWJguVqdBdrRfZva3Hrh92bnD9b5IVSx8RuUJv5tXTrZOtZZUA3u6Hxf5/ZvrHviOAwAE25hjn7DnudS4+16f66xIIc76b7UQPrltt9v2F9rQyuGfOsW73fHm//JHvtS4+z7sGL8m0s0k8X2PXTmft749K42unlUOMDmUem2gfk9P0T/71zofVh98IsafVGG7Pj5d9LVzxslSOhkFU233KOdMLfpI6+MR32HSG9c7108/M2/8ZYE7sdettrritu2l2EPz3I7nC+51XpjpesPBlp0uCe1qXR/x1qr9W5UHr6t9LvH5XOv8cqdXIz7S5VyQaaH9LLKhu/WS698pH01OWW5M76xioNM9LtoHnlw1Yp8NyV0m/+bc93y5sWuwgvLrfK6uqIhSKPXCJd8ZAdUO96JXbndz87OJ10U/A1ajW0HmJ/u+uVxH9+6RobfPuN66Q/PWl3v1dU2YHt7gssEHPtM8IqqR55x8reraNVNlx+nHU75cgqwJ56z/rArI5Y5e5vJlgK6gYy9aXQicrd0PKOGmgf7nXFXksYySrOj/yTbeef3mEVmH890+4McBz7QnnwfxYqRh3pF4dbCy63C5dHLrEKyifflb5ZZpXJknV1E39HsVumrZnijuhnLV7+9JQtW3qafSlecoz0yyO9O50lC/0k68rH7c7H1beLd3Dr3iEWYrxqd7BLtk0cx9bhhLHWUiM707ome+tP0t+es0q8p96zZe3W0SoVL74/tvwh6c+nWSuVx6fZAda9+/7vZ0un7GOfd/8+4d4lfvVJ9a8zR17Ln0cusUHrHvyfzT9qoDWVPfkmK89FE6TLjrUA8b7XrOu/impbjn2G25dWslYQDdl3R1umnEw7WXKfu/9OFsjsM8L7TLsuPda+vNzyVNZYpfcug+0Ew32NfXeU3v6zhbBXPWwVp0UFFlYct4evnL6Th1DIQp0nLpPOu9OODQ9fHGx52BTnH2bluusVC1nWl9ig8XvsIL1+rQWAfiMHSG9fL904yY4Z7p0SGeneXSq9O0sn7yO9OMvWkSNbh70729ghI2JNVp+83I45076wz2FWhu03J90kdciXXrvWjsevf2p/HznAjk+//a+V8dJjLdya+bWtnP12tPGT7njJ+rDt2Uk660A7WfzVvxQ4flx5gjWRveh+O5717SJ9fqe3rv3z7j1cevH31l3cL++zsuzY37aBOxZT/HZK9Hui43Xtn2K/NGUZ3Ocn2p8zM6x1y+UP2jbKy7aWeZtK7Tj+3Pv2vXPlCXZSPXmWjf8l2X4++Wq7MSIz3b7jyiul/t3s7zsNqHsHi/8YeP5h9voPT5FWbLALgC4F0m5Drds9f6uunx9uzaf//LR9rh1H2vjE1tmW6WnePnbpA7ZOjt/T28fc19iup13Y/ONlOzZmpFuQc88Ftu8+/m7i9Xz+YdK/37Kg6sS9mv559i/D/b+Sdr3Yfn97bvB93ppj30Gf32nH1hvPtBsRoo5dtLnf1dmZdpwf2N0Cm5qonYf07WJjq/13ih3rTxhnyxt/11Z9+5J80/cdYd8z97xmLWJ6drIWX5cd24jjbGO+191zlv+TnnxPOvcu68d5n+HSX88KdrfQHG45x1rS/OtNO3f0n0v4RR0L/RwFl889l7jxGQvQhvSyY+BPxgWfHwopJecSAAAAaP22tM4yN8sq4//za2m/q1TnWjEjzauzvGWyXS+cdYD1/JCsXi4v267F/vZssM7yyhPsuuWKh+wG30jUrh2fvypBnWWSa+B4R46RZv7NrjEef9cq6qOO1aHsOth6iTjS14rir2fZNdttL9jNuKMGWHdb1z/diDL4rkkC5WpCebemn94RfHz/W/ZPsutiya650sJWR76u2Io6qIfVTV94ZN36qMZew7wRuxH+lsn2z2+vYdIrf0hS8HrWoyPbL6JOcPrlx1nIc/+bsfGrO3p1eT+mvq4NCTmOWwvaTG5+3ipivrrLGzw3mfIq+9D9ZJxVcrSUC+6xsOmHh5r/vad9IX2xVPrlEc3/3m3V4tXSmEukK34iXXZc45+3eqMdLM86sHH7LxrvhknWJdiif9mJR1N894Pdtf2ro5I3ecW24Yjr7MRj1s2J//7ulxaEX3hksxYLMf983UKN+po4o3WpqLLw7bg97I6m1uSxqdLP75Om/sXrgrI9WLnBWmKeMz5xd38AAABAU7RknSXwY7TTa6PGt5DZEv983X4O7W3N79790rq8OnlvKrPRfD5fYk0vdx9qlfXf/mDdkxXkSGce0NKlAwAAAAAAAAC0A6kNZHKzrLukpWusn/Q+XayJktuvHNAccrNsTICH37GufApzpX2GSX+YaM3mAAAAAAAAAABIsdQGMmccYP/agvt+Yf+w7Rncw8aDQOt21Yn2D3j1jy1dAgDN4bT97R8AAACALUedJbBNCbd0AQAAAAAAAAAAANo6AhkAAAAAAAAAAIAUI5ABAAAAAAAAAABIMQIZAAAAAAAAAACAFCOQAQAAAAAAAAAASDECGQAAAAAAAAAAgBTbNgKZtLAUaulCtKBQyNYBWp67LULteYdshfiMtC8hsb1bUphj4DaH7y0AAAAAAFqFkOM4TksXAgAAAGgXqmukdcVS5wIpI72lSwMAAAAALaOdXhsRyAAAAAAAAAAAAKQYfb4AAAAAAAAAAACkGIEMAAAAAAAAAABAihHIAAAAAAAAAAAApBiBDAAAAAAAAAAAQIoRyAAAAAAAAAAAAKQYgQwAAAAAAAAAAECKEcgAAAAAAAAAAACkGIEMAAAAAAAAAABAihHIAAAAAAAAAAAApBiBDAAAAAAAAAAAQIoRyAAAAAAAAAAAAKQYgQwAAAAAAAAAAECKEcgAAAAAAAAAAACkGIEMAAAAAAAAAABAihHIAAAAAAAAAAAApBiBDAAAAAAAAAAAQIoRyAAAAAAAAAAAAKQYgQwAAAAAAAAAAECKEcgAAAAAAAAAAACkGIEMAAAAAAAAAABAihHIAAAAAAAAAAAApBiBDAAAAAAAAAAAQIoRyAAAAAAAAAAAAKQYgQwAAAAAAAAAAECKEcgAAAAAAAAAAACkGIEMAAAAAAAAAABAihHIAAAAAAAAAAAApBiBDAAAAAAAAAAAQIoRyAAAAAAAAAAAAKQYgQwAAAAAAAAAAECKEcgAAAAAAAAAAACkGIEMAAAAAAAAAABAihHIAAAAAAAAAAAApBiBDAAAAAAAAAAAQIoRyAAAAAAAAAAAAKQYgQwAAAAAAAAAAECKEcgAAAAAAAAAAACkGIEMAAAAAAAAAABAihHIAAAAAAAAAAAApBiBDAAAAAAAAAAAQIoRyAAAAAAAAAAAAKQYgQwAAAAAAAAAAECKEcgAAAAAAAAAAACkGIEMAAAAAAAAAABAihHIAAAAAAAAAAAApBiBDAAAAAAAAAAAQIoRyAAAAAAAAAAAAKQYgQwAAAAAAAAAAECKEcgAAAAAAAAAAACkGIEMAAAAAAAAAABAihHIAAAAAAAAAAAApBiBDAAAAAAAAAAAQIoRyAAAAAAAAAAAAKQYgQwAAAAAAAAAAECKEcgAAAAAAAAAAACkGIEMAAAAAAAAAABAihHIAAAAAAAAAAAApBiBDAAAAAAAAAAAQIoRyAAAAAAAAAAAAKQYgQwAAAAAAAAAAECKEcgAAAAAAAAAAACkGIEMAAAAAAAAAABAihHIAAAAAAAAAAAApBiBDAAAAAAAAAAAQIoRyAAAAAAAAAAAAKQYgQwAAAAAAAAAAECKEcgAAAAAAAAAAACkGIEMAAAAAAAAAABAihHIAAAAAAAAAAAApBiBDAAAAAAAAAAAQIoRyAAAAAAAAAAAAKQYgQwAAAAAAAAAAECKEcgAAAAAAAAAAACkGIEMAAAAAAAAAABAihHIAAAAAAAAAAAApBiBDAAAAAAAAAAAQIoRyAAAAAAAAAAAAKQYgQwAAAAAAAAAAECKEcgAAAAAAAAAAACkGIEMAAAAAAAAAABAihHIAAAAAAAAAAAApBiBDAAAAAAAAAAAQIoRyAAAAAAAAAAAAKQYgQwAAAAAAAAAAECKEcgAAAAAAAAAAACkGIEMAAAAAAAAAABAihHIAAAAAAAAAAAApBiBDAAAAAAAAAAAQIoRyAAAAAAAAAAAAKQYgQwAAAAAAAAAAECKEcgAAAAAAAAAAACkGIEMAAAAAAAAAABAihHIAAAAAAAAAAAApBiBDAAAAAAAAAAAQIoRyAAAAAAAAAAAAKQYgQwAAAAAAAAAAECKEcgAAAAAAAAAAACkGIEMAAAAAAAAAABAihHIAAAAAAAAAAAApBiBDAAAAAAAAAAAQIoRyAAAAAAAAAAAAKQYgQwAAAAAAAAAAECKEcgAAAAAAAAAAACkGIEMAAAAAAAAAABAihHIAAAAAAAAAAAApBiBDAAAAAAAAAAAQIoRyAAAAAAAAAAAAKQYgQwAAAAAAAAAAECKEcgAAAAAAAAAAACkGIEMAAAAAAAAAABAihHIAAAAAAAAAAAApBiBDAAAAAAAAAAAQIoRyAAAAAAAAAAAAKQYgQwAAAAAAAAAAECKEcgAAAAAAAAAAACkGIEMAAAAAAAAAABAihHIAAAAAAAAAAAApBiBDAAAAAAAAAAAQIoRyAAAAAAAAAAAAKQYgQwAAAAAAAAAAECKEcgAAAAAAAAAAACk2P8DZgfnk1HpEEEAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"visualize_result(result, request_records, expected_value)"
]
},
{
"cell_type": "markdown",
"id": "f50ee663",
"metadata": {
"tags": []
},
"source": [
"## Cleanup\n",
"\n",
"Finally, don’t forget to clean up the resources we set up and used for this demo!"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ea70e043",
"metadata": {},
"outputs": [],
"source": [
"sagemaker_client.delete_endpoint(EndpointName=endpoint_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9f7c3f69",
"metadata": {},
"outputs": [],
"source": [
"sagemaker_client.delete_endpoint_config(EndpointConfigName=endpoint_config_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "780e3045",
"metadata": {},
"outputs": [],
"source": [
"sagemaker_client.delete_model(ModelName=model_name)"
]
},
{
"cell_type": "markdown",
"id": "22453c49",
"metadata": {},
"source": [
"## Notebook CI Test Results\n",
"\n",
"This notebook was tested in multiple regions. The test results are as follows, except for us-west-2 which is shown at the top of the notebook.\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
}
],
"metadata": {
"instance_type": "ml.t3.medium",
"kernelspec": {
"display_name": "conda_python3",
"language": "python",
"name": "conda_python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}