# Amazon Comprehend with SageMaker Pipelines This SageMaker example showcases how you can deploy a custom text classification model using Amazon Comprehend and SageMaker Pipelines. ## Contents [sm_pipeline_with_comprehend.ipynb](sm_pipeline_with_comprehend.ipynb): Notebook explaining the pipeline step-by-step. [prepare_data.py](prepare_data.py): Script used in ComprehendProcess step in pipeline for data preparation used for training and testing. [train_eval_comprehend.py](train_eval_comprehend.py): Script used in ComprehendTrainAndEval step in pipeline to train and evaluate the Amazon Comprehend model. [deploy_comprehend.py](deploy_comprehend.py): Script used in ComprehendDeploy step in pipeline to deploy an Amazon Comprehend model endpoint. [iam_helper.py](iam_helper.py): Helper function to create and delete an IAM role for the Lambda function used in LambdaStep. [test_comprehend_lambda.py](test_comprehend_lambda.py): Lambda handler used to perform inference using the Amazon Comprehend model endpoint.